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ABSTRACT 

 
HYBRID RANKING APPROACHES BASED ON  

DATA ENVELOPMENT ANALYSIS AND OUTRANKING RELATIONS  
 

 

Eryılmaz, Utkan 

M.S., Department of Industrial Engineering 

Supervisor: Assist. Prof. Dr. Esra Karasakal 

 

December 2006, 122 pages 

 

In this study two different hybrid ranking approaches based on data envelopment 

analysis and outranking relations.for ranking alternatives are proposed Outranking 

relations are widely used in Multicriteria Decision Making (MCDM) for ranking the 

alternatives and appropriate in situations when we have limited information on the 

preference structure of the decision maker. Yet to apply these methods DM should 

provide exact values for method parameters (weights, thresholds etc.) as well as 

basic information such as alternative scores. DEA is used for classification of 

decision making units according to their efficiency scores in a non-parameteric way. 

The proposed hybrid approaches utilize PROMETHEE (a well known method 

based on outranking relations) to construct outranking relations by pairwise 

comparisons and a technique similar to DEA cross-efficiency ranking for 

aggregating comparisons. While first of the proposed approaches can deal with 

imprecise specification of criterion weights, second approach can utilize imprecise 

weights and thresholds.  

 

Keywords: Data envelopment analysis, Outranking relations, PROMETHEE, Cross-

efficiency, Ranking 
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ÖZ 

 
VERİ ZARFLAMA ANALİZİ VE BASKINLIK İLİŞKİLERİNİ 

TEMEL ALAN HİBRİT SIRALAMA YAKLAŞIMLARI 

 

 

Eryılmaz, Utkan 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Esra Karasakal 

 

Aralık 2006, 122 sayfa 

 

Bu çalışmada veri zarflama analizi ve baskınlık ilişkileri metodlarına dayanan iki 

ayrı hibrit sıralama yaklaşımı önerilmektedir. Baskınlık ilişkileri metodları çok 

kriterli karar verme (ÇKKV) problemlerinde sıralama için yaygın kullanımı olan ve 

karar vericinin tercih yapısı hakkında sınırlı bilginin olduğu durumlarda kullanımı 

uygun metodlardır. Bu metodların kullanımı için karar vericinin kriter skorları gibi 

temel bilgilerle beraber birçok parametreyi (kriter ağırlıkları, eşik değerleri vb.) tam 

olarak belirlemesi gerekir. Veri zarflama analizi (VZA) ise karar verme birimlerinin 

verimliliklerine göre parametrik olmayan bir şekilde sınıflandırılmasında kullanılır. 

Önerilen yaklaşımlar PROMETHEE (baskınlık ilişkileri metodu) yoluyla baskınlık 

ilişkilerinin ikili karşılaştırmalarla oluşturulmasında ve VZA çapraz verimlilik 

sıralaması benzeri bir yöntemi ise baskınlık ilişkilerinin birleştirilmesinde 

kullanmaktadır. Birinci yaklaşım kriter ağırlıklarının eksik bir şekilde belirtildiği 

durumda, ikinci yaklaşım ise hem kriter ağırlıklarının hem de tercih fonksiyonu eşik 

değerlerinin net olmadığı durumda kullanılabilmektedir. 

 

Anahtar Kelimeler: Veri Zarflama Analizi, Baskınlık İlişkileri, PROMETHEE, 

Çapraz Verimlilik, Sıralama. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

In multi-criteria decision making problems where there is a finite number of 

alternatives, the decision maker (DM) may aim to select the best alternative, rank 

the alternatives or sort/classify the alternatives. For ranking the alternatives from 

most desired to least in the presence of multiple criteria, there are several different 

methods. In the MCDM framework two distinct viewpoints exist, multi-attribute 

utility based methods and outranking relations. 

 

In contrast to multi-attribute utility based methods, outranking methods avoid 

making strong assumptions about the preference structure of the decision maker.  

These methods are based on collecting evidence about the preferences of the 

decision maker by building outranking relations from pairwise comparisons. Most 

known outranking methods are ELECTRE [62] and PROMETHEE [10] both of 

which also have many variants.  

 

PROMETHEE method forces DM to specify weights and thresholds precisely at the 

beginning of the decision process. To minimize the number of parameters the 

decision maker has to provide precisely in the beginning of the solution process, in 

this study we propose two different approaches. In the first approach the DM 

determines his preference structure (preference functions and preference function 

parameters) for each criterion in the same way described by the PROMETHEE 

method, except the criterion weights. Aggregation is done for each alternative by 

maximizing its own score relative to average of the others and overall ranking is 
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done by aggregation of these evaluations. Two different ideas borrowed from DEA 

approach is used in the development of the methods. First is that the aggregation of 

outranking information among criteria is done based on most favorable weights for 

each alternative similar to the main idea of DEA, and secondly final ranking is done 

based on both self evaluation and other alternatives’ evaluations in the same way as 

DEA cross-efficiency method does. Constraints similar to assurance region 

constraints used in DEA based methods and global constraints on the criterion 

weights can be added. In the second method the DM may also specify lower and 

upper bounds for the preference function parameters. For each criterion pairwise 

outranking relations are built such that the preference of the alternative under 

consideration is maximized.  

 

The organization of the thesis is as follows: 

 

In Chapter 2, we review the literature on DEA models, relation between DEA and 

MCDM, ranking methods based on DEA, application of DEA ranking in MBA 

programs, PROMETHEE method and alternative approaches for determining 

parameters in PROMETHEE. In Chapter 3, we present the background information 

on PROMETHEE method, DEA, cross-efficiency ranking approach, and types of 

constraints imposed in DEA models. In Chapter 4, we introduce our approaches and 

in Chapter 5 we describe the decision aid we develop to implement our methods. In 

the conclusion chapter, we discuss the significance of this study and indicate 

direction for further research. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

 

In this chapter, we review the literature on DEA and PROMETHEE. In Section 2.1 

we present a review of DEA methods, relation between DEA and MCDM, DEA 

based ranking approaches, and application of DEA in MBA programs ranking. In 

Section 2.2, we present PROMETHEE and review studies that aim to deal with the 

DM’s problem of determining parameters in PROMETHEE and incorporating 

imprecise information. 

2.1. Data Envelopment Analysis 

There has been extensive research and literature on DEA. Seiford [67] provides 

exhaustive list of DEA journal articles. Tavares [71] also supplies various statistics 

based on publication type, author, keywords, journal, university and country in 

addition to exhaustive listing of publications. Examining the keyword statistics, it 

can be concluded that main application domains for DEA are bank evaluation and 

educational institution evaluation. Gattoufi et al. [31] provides an exhaustive list 

containing refereed journal publications, books, conference proceedings and 

technical reports. They also analyzed the content of the DEA publications between 

1996 and 2001 and classified them according to their nature (theory, application or 

both) and research strategy used [30].  

 

In Section 2.1.1 general DEA models are briefly presented. Section 2.1.2 review the 

studies that aim to investigate the relationship between MCDM and DEA 
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approaches and Section 2.1.3 presents DEA based ranking approaches. Finally 

studies that deal with application of DEA in MBA programs ranking are presented. 

2.1.1 Models 

The first explicit introduction of DEA method was by the classic paper of Charnes 

et. al. [15]. In this paper an efficiency concept based on multiple inputs and outputs 

is developed and a method for determining an efficient set of units based on 

observational data is provided. The model they provide solely based on the idea of 

Pareto efficiency principle which is “a unit is fully efficient if and only if none of its 

input or outputs can be improved without worsening some of its other inputs and 

outputs.” Former study for measuring the efficiency of units was by Farell [26] 

which deals with single output case. 

 

Primary distinguishing factor of DEA efficiency analysis is that each Decision 

Making Unit (DMU) is scored to increase its own advantage –an input or output of 

which a DMU ranks better is weighted higher when calculating the score of the 

DMU- with minimum required input from the analyst [15]. For the simplest DEA 

model the only data needed for DEA analysis is the levels of inputs and outputs for 

each DMU. 

 

Later the DEA formulation of Charnes et al. [15] which is called the CCR model 

was modified and alternative formulations were introduced. The assumption of 

CCR model was that the inputs and outputs can be scaled such that the ratio of 

inputs and outputs stays constant. The BCC formulation proposed by Banker et al. 

[6] adds another constraint to the CCR model for variable returns to scale 

production frontier which limits the scaling of the DMUs. DMU that may not be 

efficient compared to set of DMUs based on constant returns to scale DEA model 

(CCR model), may be efficient if variable returns to scale model is used (BCC 

Model).  

 

Both of these models require solving two linear programming (LP) problems, first 

to maximize efficiency and to find the efficiency score, second to find slacks and 



 5

discriminate weakly efficient DMUs. Alternatively objectives of the two LPs can be 

combined using a very small archimedean constant (ε) as a multiplier for the second 

objective.  

 

In CCR or BCC models solution is found either by projection in the input space by 

taking the outputs constant or in the output space by taking the inputs constant. The 

set of DMUs classified as efficient will be the same while the efficiency scores of 

the inefficient DMUs will differ for input and output oriented models.  

 

To decrease computational burden, additive formulation was developed to enable 

finding efficient DMUs by solving the LP once for each DMU. In this model both 

input and output slacks are varied simultaneously [13]. As the efficiency of the unit 

is concluded by the sum of slacks, the calculated efficiency score is not intuitive as 

in CCR or BCC. In addition to decreased computational burden, the additive model 

has advantage of translation invariance (i.e. translation of input or output measures 

do not effect efficiency score) but also has some drawbacks as direct inefficiency 

score is based on slacks and hard to interpret [19]. 

 

CCR, BCC and additive model are equivalent in the fact that they project inefficient 

DMUs radially to efficient frontier meaning that the efficiency scores are found 

based on a radial measure from the frontier [19]. Yet the efficient set of DMUs may 

change depending on the return to scale characteristics assumed (i.e. CCR has CRS 

assumption, BCC has VRS assumption, additive model may have CRS or VRS 

assumption). Moreover, as the efficient set and frontier is affected, therefore the 

scores of the inefficient DMUs based on the radial distance to the frontier may also 

differ.  

 

A more recent measure of efficiency, slack based measure (SBM), is suggested by 

Tone [74]. Tone [74]  states that commonly accepted desirable attributes of a DEA 

based efficiency measure are units invariance (the efficiency score should not 

depend on criteria measure as long as it is applied to all criteria equally), being 
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monotonic (shall increase as any of the outputs increase, decrease as any of the 

inputs increase and vice vs.) and translation invariance (no change with translation 

of criteria), concluding that such a measure shall only depend on the reference 

efficient DMU’s and develops a slack based measure for efficiency. A method for 

dealing with zero inputs and outputs and comparison with Russell efficiency 

measure which is more commonly used in economics literature is presented.  

 

2.1.2 MCDM and DEA Relationship 

The interactive approach given by Belton and Vickers [7] was one of the first 

attempts to use DEA as an MCDM tool. Aggregated inputs and outputs are used 

and both input weights and output weights add up to unity. A unit or alternative is 

efficient if it can obtain a combination of input and output score that is higher than 

those of other units based on goal programming formulation. Also for a user 

controllable set of inputs and outputs the aggregated input and output is displayed. 

This study also states the coincidence between DEA and MCDM where alternatives 

in MCDM terms are regarded as DMUs and criteria are regarded as inputs and 

outputs. Stewart also analyzes the correspondence between the ratio form efficiency 

definition and distance to the pareto frontier in linear form value function model 

[70]. 

 

Li [51] proposed a multi criteria approach to DEA problem by formulating the first 

objective maximizing self efficiency, second minimizing maximum of deviation of 

the input or outputs from the efficient point (slacks) and third minimizing sum of 

the deviations (slacks).  

 

Joro et al. [46] showed the connection between DEA and MOLP approaches 

formulating DEA as a reference point model and reference point model as a DEA 

model. Later these results are used by Halme et. al. [34] to arrive at different 

measures of efficiency that incorporates DMs preferences called value efficiency. 

An interactive way for improvement of the calculation of value efficiency is 

presented later by Joro et. al. [47]. 
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Besides these approaches there are attempts to use several multiple criteria 

approaches with DEA simultaneously. A short review of such studies on use DEA 

with AHP is given by Ramanathan [60]. Another approach that incorporates DEA 

and MAVT is given in Mavrotas and Trifillis [54].  

2.1.3 DEA Based Ranking Approaches 

At first DEA was developed for differentiating between efficient and inefficient 

DMUs. Later DEA researchers aim to rank both efficient and inefficient DMUs. 

Adler et al. [1] made a survey of DEA ranking approaches. Sarkis et. al. [66]  

compares some of these methods with other MCDM methods. 

 

The first approach for full-ranking using DEA was cross-efficiency approach [24]. 

It was based on former work that utilizes DEA to rank units based on votes.  

Aiming at consensus it may be utilized in cases where the DMUs are also part of the 

decision process. Each DMU evaluates itself and also other DMUs, and final 

evaluation is based on average of these evaluations. The problem is that during self 

evaluation the set of weights that a DMU is classified as efficient is not unique. To 

arrive unique weights two different approaches are formulated namely aggressive 

and benevolent cross-efficiency.  Both solve for the weights formulating a second 

LP model either by suppressing other DMUs efficiency scores (aggressive model) 

or favoring them  while holding the efficiency score of the DMU under 

consideration constant at the level found in first LP.  

 

Benchmarking approach which may not result with a full-rank use the number of 

times the efficient unit is in the reference set for inefficient DMUs as a basis for 

ranking efficient units [1]. Being a simple measure and can be obtained easily, the 

model is the most used approach in available DEA software tools [20]. 

 

Another ranking approach is the super-efficiency approach of Andersen and 

Peterson [4] also called AP method. In this method, the units having an efficiency 

value of one are marked as efficient and are scored by running DEA again by 
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excluding corresponding constraint that prevents them having an efficiency value 

greater than one. It has weak points such that the dual formulation ends up with 

infeasible solutions, and very small input values may cause very high variability in 

DEA scores.  

 

Tone [75] proposes to use SBM for ranking both efficient and inefficient units. The 

inefficient units are ranked as in AP method (by excluding the constraint for the 

efficient unit under consideration) by using input or output oriented SBM. The zero 

values in input or output levels are handled by the model.  

 

Other variants that use DEA and aim to rank all the DMUs exist in the literature 

[5][36][37][39][41][57].  

 

Bouyysou [9] presents some weaknesses of DEA use in the MCDM problems. First 

the simple DEA models -which aim only ranking inefficient units- are criticized for 

not being able produce a consistent rank for inefficient units as different models 

produce different rankings and all the efficient units are ranked better than 

inefficient units. Secondly, super-efficiency approach [4] has additional problems 

such as rank reversal occurs for efficient unit when a similar inefficient unit is 

introduced. Third different cross-efficiency methods [24] produce different rankings 

with different formulations and an alternative may rank better when its score on one 

of the criteria is decreased. 

 

Main application areas of DEA are bank evaluation and educational institution 

evaluation [29]. Cooper et.al. [20] presents other application areas of DEA, such as 

engineering applications, benchmarking in sports, retailing applications, health care 

applications. DEA is firstly used as a method for evaluating non-profit 

organizations; recently it is used for performance appraisal of firms from various 

sectors. 
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2.1.4 Ranking of MBA Programs 

There are a large number of studies that evaluate performance of universities, 

university departments etc. using DEA. We present a survey of studies that evaluate 

particularly MBA programs. Also some of these studies introduce extensions to 

original DEA method. 

 

The first study [65] utilizing DEA for MBA program evaluation introduces different 

perspectives and focuses on the applicants perspective. In that sense it is the first 

paper that uses DEA to evaluate a university department from the applicant’s 

perspective. The applicant can select the relevant criteria among The Times league 

table, categorize them as less important, important, very important that are modeled 

as weight restrictions enabling a nearly complete rank. The second study [56] 

utilizes five criteria, where the performances are gathered from “Peterson’s Guide 

to MBA Programs” and puts weight restrictions on each pair of outputs and inputs. 

Negative perturbations to performances of the efficient DMUs are done to examine 

whether their efficiency status changes or not. The third study [17] also 

accommodates different viewpoints of students and recruiters and adjusts outputs 

accordingly. Also outputs and inputs are combined for some of the trials resulting 

smaller number of efficient units as expected. More recent study [61] uses CCR, 

BBC and Russell efficiency measure to rank the business schools based on business 

week data. 

2.2. Outranking Methods 

Outranking methods are developed as an alternative to utility based approaches 

which aim to model the underlying preference structure of the decision maker based 

on strong assumptions. The outranking information is collected by pairwise 

comparisons and formulating statements whether an alternative is inferior, 

indifferent or preferred to another alternative. 

 

Also the degree of uncertainty in criteria can be modeled by pseudocriteria concept 

and incorporated in the decision process. According to the pseudoucriteria concept, 
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we cannot state that evidence of an alternative outranking another for a given 

criterion for which the performance advantage do not pass a certain threshold called 

the indifference threshold. The indifference value can be interpreted as the 

minimum margin of error acceptable to the DM or the minimum value of difference 

resulting a perception of difference by the DM. The preference threshold value can 

be interpreted as maximum margin of error acceptable or the minimum value that 

indicates a certain preference of the DM for the given criterion. 

 

The weight concept used in outranking relations is distinct from the weight concept 

of multi attribute utility based methods as they represent the relative importance of 

the criteria [29].   

 

PROMETHEE method is introduced by Brans et al. [10][11]. Unlike Electre’s 

concept of concordance and discordance, positive and negative outranking flow 

concepts are used for gathering evidence about preference of alternatives and 

building the outranking relation. After aggregation of outranking relations criterion 

wise ranking is done by using the information on the level of evidence that shows 

how much the alternative outranks other alternatives (positive outranking net flow) 

and how much the alternative is outranked by others (negative outranking net flow). 

PROMETHEE I relies on an ordinal aggregation of these evidence and produces a 

partial rank where a better ranked alternative has both a higher positive outranking 

net flow and a lower negative outranking net flow. PROMETHEE II aggregates 

these evidences cardinally and produces a complete rank [8].   

 

As obtaining exact values of parameters from the DM is a problem, so fuzzy 

PROMETHEE (F-PROMETHEE) method [32] and Monte Carlo Simulation with 

PROMETHEE [35] are proposed to cope with imprecise information. In F-

PROMETHEE the alternative performance values are regarded as fuzzy parameters 

and ranking is done accordingly. First limitation of the F-PROMETHEE is that the 

criterion weights are taken as crisp with special difficulty of incorporating fuzzy 

weights as they add up to one. Also the studies do not provide an example of 
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specifying fuzzy preference parameters and only the alternative performances are 

modeled by fuzzy variables. In the second approach, the distribution functions are 

assigned to parameters based choices of group of decision makers, which are later 

used to generate data and calculate rankings. In general it will be hard to provide 

enough number of estimations for these parameters by the DMs to formulate a 

distribution function for the PROMETHEE parameters. 

 

There is another study that aims to compute the credibility indices of Electre 

method given partial information on pseudocriteria, namely preference, indifference 

and veto parameters and criterion weights [22]. Under partial information about the 

parameters, robustness of outranking among two actions is examined. The study 

does not deal with ranking of the alternatives or robustness of ranking if more then 

two actions are present. Another study based on Electre method aims to find the 

weights that makes the certain alternative best when weights are imprecise [58]. 

The study does not provide the solution exactly and an interactive search procedure 

is proposed.   

 

Özerol and Karasakal [59] develop a PROMETHEE based interactive approach for 

selecting best alternative and ranking the alternatives when the criterion weights 

and preference function parameters are imprecise. However, this method do not 

guarantee complete ranking. 

 

The review of the relevant literature demonstrates that there seems to be no method 

aiming complete ranking when there is no or partial information on criterion 

weights or preference parameters and this study proposes two methods for arriving 

at a ranking under such circumstances.  
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CHAPTER 3 

 

PROMETHEE and DEA 

 

 

 

In this chapter PROMETHEE and DEA are presented. These methods are the 

building blocks of the hybrid approaches proposed in Chapter 4.  

3.1. PROMETHEE Method 

In this section we will explain PROMETHEE method in five steps which are 

initialization, determination of method parameters, calculation of preferences, 

calculation of outranking flows, and ranking the alternatives based on the netflow.  

 

Step 1: Initialization 

DM formulates the alternatives, selects the criteria and assesses the performance of 

the alternatives for the criteria. After this step, we will have a performance matrix 

(S) for n alternatives and m criteria. Sij represents ith alternative’s performance in 

criterion j. 
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Step 2: Determine Method Parameters 

There are two types of parameters in PROMETHEE methods, intra-criteria and 

inter-criteria information [29]. 
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The intra-criteria information is used to model the preference structure of the DM 

for a criterion. Each criterion selected in step 1, is modeled by the appropriate 

preference function (Pj) and parameters. Originally there are 6 types of functions 

and three different threshold parameters, indifference (qj), preference (pj) and 

Gaussian thresholds (sj) as shown in Figure 1 [10].  If the difference between 

performance values of the alternatives ( kjij
j
ik SS −=Δ ) is smaller than the 

indifference threshold then there is no evidence that one alternative is preferred to 

other in that criterion. Whereas any difference bigger than the preference threshold 

is a clear indication of preference of the better performing alternative. If the 

difference is between indifference and preference the preference changes linearly 

for “type 3” or “type 5” functions and takes discrete value of 1/2 for “type 4” 

function. Gaussian threshold on the other hand has an intermediate meaning and the 

preference changes continuously, approaching one in the limit as the difference 

approaches infinity. 

 

As the inter-criteria information the weights of the criteria shall be provided to the 

model. The criterion weights are determined so that sum of the weights is one. The 

weights are used for aggregating the outranking information and are not meaningful 

for scaling alternative performance values.  
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Figure 1. PROMETHEE Preference Functions 
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Step 3: Calculate  Preferences 

The preference between the alternatives for each criterion is calculated by using 

preference functions (Pj) and parameters of the preference function.  

 
j

ikP  = Pj (i, k)= )( ik
jjP Δ  

 

The preference of alternative i to alternative k, denoted as ),( ki∏ ,  is calculated by 

aggregating preference values using criterion weights.  

∑=∏
j

j
ikj Pwki ),(    

Likewise, the preference of alternative k to alternative i, denoted as ),( ik∏ ,  is 

calculated by aggregating preference values using criterion weights.  

∑=∏
j

j
kij Pwik ),(  

 

Step 4: Calculate Outranking Flows 

For each alternative the positive outranking flow is found by evaluating the average 

preference value of the alternative. 

∑∏
−

=Φ+

k
i ki

n
),(

1
1  

For each alternative the negative outranking flow is found by evaluating the average 

preference value of other alternatives preference values compared to alternative i. 

∑∏
−

=Φ−

k
i ik

n
),(

1
1  

The positive outranking flow of an alternative is interpreted as the quantitative level 

of evidence that the given alternative outranks other alternatives and negative 

outranking flow is interpreted as the level of evidence that the given alternative is 

outranked by other alternatives.  
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Step 5: Rank  the alternatives 

PROMETHEE I exploits these values conservatively for ranking such that an 

alternative is ranked better than another only if it has both a larger positive 

outranking flow and a smaller negative outranking flow than the other, so some of 

the alternatives may not be ranked.  

 

PROMETHEE II aiming full ranking of the alternatives, acts more liberally and 

aggregates two types of evidence and uses  the net outranking flows ( i
netΦ ), 

difference between positive and negative outranking flows.  

iii
net −+ Φ−Φ=Φ  

3.2. DEA 

In this section DEA models of particular interest are presented. Across the many 

DEA models we will present the basic CCR model which is used for classification 

of units, super-efficiency approach, and cross-efficiency approach, and how value 

judgments are incorporated in DEA models. 

3.2.1 DEA CCR Model 

DEA CCR model is the first model proposed for classification of the units The 

fractional form of the model presented by Charnes et. al. [15] is as follows:  
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This fractional program can be converted to a linear program equating the 

denominator to 1 by adding the constraint (C1). 

(C1) 1
1

=∑
=

kss

l

s

xu  

If there are only outputs in the model, the denominators can be equated to unity. 

Generally rather than the multiplier model presented above, the dual problem called 

envelopment model is solved. 

 

In the end some of the units can obtain an efficiency value of 1 and classified as 

efficient. Inefficient units obtain efficiency scores between 0 and 1 based on radial 

distance to the frontier and can be ranked based on these scores.  

3.2.2 Super-efficiency Approach 

In order to rank the efficient units under evaluation all of which have efficiency 

score of 1 which are ranked as efficient, super-efficiency approach is proposed [4]. 

The constraint stating that all efficiency scores should be smaller than 1 is excluded 

only for the unit under evaluation (k), so a new score for the unit that may be greater 

than 1 is obtained. The score is based on the radial distance of the alternative to this 

new frontier. For the marginal alternatives the exclusion will affect the frontier 

radically causing high super-efficiency scores. 

(Super efficieny) 
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3.2.3 Cross-efficiency Approach 

Originally the DEA ranking is based on the alternative efficiency scores ( kh ). To 

obtain a full ranking, cross-efficiency approach introduces self evaluation and peer 

evaluation concepts [24]. Self evaluation is the efficiency value determined from 

the solution of the LP. Peer evaluation of alternative i by alternative k is calculated 

by using optimal weights for k.  

isks

l

s

ijkj

m

j
ki

xu

yv
E

∑

∑

=

==

1

1  

 

The output oriented CCR model in terms of cross efficiencies is given as: 

 

(CCR-O) 
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In fact 1≤kiE  is also a linear constraint so above LP can be solved for finding self 

efficiency. Usually the optimal input and output weights may not be unique. So 

after optimizing self efficiency a second LP is solved either to minimize or 

maximize the sum of other alternatives’ efficiency while preserving the efficiency 

score of the alternative under evaluation ( kkE ) found in step 1. Cross-efficiency 

values ( kiE ) values are calculated by using weights determined in the second stage.   

 

At last final evaluation score is found by averaging self and peer evaluations. 
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3.2.4 Incorporating Value Judgments 

Value judgments of the decision maker can be imposed on input and output weights 

or on virtual weights. Normalization of data is needed if weight restrictions are 

added to the model. Two types of weight restrictions exist in the thesis, absolute 

weight restriction and assurance region restrictions.  

Absolute Weight Restrictions 

These restrictions can be specified on input weights ( su ) or output weights ( jv ). 

jsjj

sss

LvU
LuU

≥≥
≥≥

 

Assurance Region Restrictions 

These restrictions can be specified for ratio of two input weights ( ls uu / ) or ratio of 

two output weights ( tj vv / ). 

jttjjt

sllssl

LvvU
LuuU

≥≥
≥≥

/
/

 

There are other types of weight restrictions that is not mentioned here, assurance 

region restrictions between inputs and outputs [72] and restricting weights by cone 

ratio method [16]. 

3.3. An Example Ranking Problem 

To illustrate problems of PROMETHEE and DEA based ranking, a small example 

problem with 5 alternatives and 2 outputs (criteria) is provided below. Input values 

of all alternatives are assumed to be 1. Both criteria are increasing as they are 

outputs. Such examples should be treated with caution but can be helpful for 

illustrative purposes.   
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Table 1. An Example Problem with Two Criteria 

 
 Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 

Criterion 1 8 6 8 7 2 

Criterion 2 2 3 1 4 8 

 

 

When the criteria scores are plotted in the criterion plane (See Figure 2), we can 

observe that four alternatives lie in lower right region of the criterion plane while 

alternative 5 lies in the higher left portion alone. 

 
Figure 2. Alternatives in Criterion Space and Efficiency Frontier  

 

Our aim is to rank the alternatives. We try different techniques starting with DEA, 

super-efficiency, cross-efficiency and PROMETHEE.  
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3.3.1 DEA Ranking  

First we calculate the DEA CCR scores for the alternatives using basic model and 

scores and slacks are given in Table 2. There are more than one alternative in the 

efficiency frontier so complete ranking is not possible with technical efficiency 

score of basic CCR model. Except alternative 2 all the remaining alternatives will 

get technical efficiency score of 1. However Alternative 3 is weakly efficient 

alternative so the slack of output two is positive, so it is ranked inferior to efficient 

alternatives according to a variation of CCR model.  

 

 
Table 2. Ranking Using CCR-O Model 

 

 Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 

Rank 1 5 4 1 1 

DEA Score 1 0.83 1 1 1 

Slack 1 0 1.2 0 0 0 

Slack 2 0 0.6 1 0 0 

 

 

From the ranking we obtained using basic DEA model, we can conclude that a 

complete rank for the DMUs may not be obtained. 

3.3.2 DEA Super-efficiency Ranking 

In this case for the efficient alternatives we exclude the corresponding constraint so 

the alternative under evaluation can attain efficiency score greater than 1. The 

super-efficiency scores of the alternatives is given in Table 3. 
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Table 3. Ranking Using DEA Super-efficiency Method 

 
 Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 

Rank 3 5 4 2 1 

DEA Score 1.04 0.83 1 1.09 2 

Slack 1 0 1.2 0 0 0 

Slack 2 0 0.6 1 0 0 

 

 

As seen from the Table 3, alternative 5 obtains a very extreme score and ranked 

first. Alternative 1 whose values are just the reverse of the alternative 5 is ranked 

third getting a much less score. Super-efficiency method favors the marginal 

alternatives even if there is no information about the importance of the criteria. 

 

3.3.3 DEA Cross-efficiency Ranking 

By using the weights calculated by CCR-O, other alternatives are evaluated and 

final scores are obtained by taking averages of the evaluations. 

 

 
Table 4. Ranking Using DEA Cross-efficiency Method  

 

 Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 

Rank 2 4 3 1 5 

Score 0.87 0.75 0.80 0.90 0.69 

 

 

Cross-efficiency method favors the alternatives in the crowded region. Alternative 5 

which is an efficient alternative ranks worst while inefficient alternatives 2 and 3 

rank better. 
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3.3.4 PROMETHEE Ranking 

For PROMETHE ranking we need to determine preference functions (type and 

preference parameters) and weights. The preference functions are assumed as given 

in Table 5.  

 

 
Table 5. PROMETHEE Preference Functions and Parameters for Ranking Example 

 

Criteria Weight Preference 
Function Type 

Indifference 
Threshold 

Preference 
Threshold 

Criterion 1 0.5 Type 5 0 3 

Criterion 2 0.5 Type 5 0 3 

 

 

For the sample the results of a PROMETHEE II ranking are shown in Table 6. 

 

 
Table 6. Ranking Using PROMETHEE II Method 

 

 Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 

Rank 2 4 5 1 3 

PROMETHEE II 
Score 

0.041 -0.125 -0.125 0.203 0 

 

 

PROMETHEE II method produces a reasonable rank compared to previous 

approaches. Alternative 4 is ranked as in the first place and alternative 1 and 

alternative 5 are ranked second and third with a very little score difference. 

Alternative 2 and alternative 3 are ranked 4 and 5 respectively. The ranking is also 

reasonable compared to DEA ranking, which ranks all the weakly efficient DMUs 

better than inefficient ones. To arrive such a ranking we had to specify both weights 

and preference structure precisely.  
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CHAPTER 4 

 

HYBRID METHODS BASED ON PROMETHEE AND DEA 

 

 

 

4.1. General Outline 

The proposed methods explained in this section extend PROMETHEE so that it can 

be used when there is uncertainty in criterion weights, indifference and preference 

thresholds.  The general flow of operations can be seen as show in Figure 3.  

 

In the first method, PROMETHEE is used for building outranking relations based 

on pairwise comparisons. Instead of aggregating preference values among criteria to 

arrive at a general preference of an alternative to another (Section 3.1, step 3), 

netflows for alternatives for each criterion are evaluated. Then outranking netflows 

are aggregated using a procedure similar to DEA cross-efficiency ranking. If DM 

desires, s/he can define constraints on weights either as specifying absolute upper 

and lower bounds for individual weights or upper and lower bounds on ratios of two 

criterion weights. 

 

In the second method, the outranking relations are built based on the partial 

information of preference structure (preference function type and parameters) such 

that netflow for each alternative and criterion is maximized. After finding 

preference and indifference thresholds for each alternative and criterion the 

outranking netflows are calculated. After this step, the netflows of outranking may 

be aggregated using exact weights specified by the DM a priori or by using the first 

method if uncertainties in criterion weights exist.  
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Figure 3. General Flow of the Methods

-Calculate Objective Function 
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-Determine Positive 
Outranking, Negative 
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Peer Evaluation for Each 
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Method II 

-Calculate Preference Scores. 
-Determine Positive Outranking, 
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Flows for Each Alternative and 
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-Determine Preference Function 
Parameters For each Alternative and 
Criterion Maximizing own Net flow. 
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4.2. The First Approach: Ranking When Weights are not Precisely 

Specified 

PROMETHEE method does not address a specific way to determine the weights for 

the criteria for aggregating the preferences.  In our case the weights are determined 

for each alternative separately by using DEA. Assurance region constraints on 

weights can be specified by the DM. We present the steps of the algorithm below. 

 

Step 1: Initialization 

Ask the DM to determine criteria and alternatives and to evaluate all alternatives 

),..,1( ni =   in all criteria ),..,1( mj = . 

 

Matrix of alternative performance values (S) with n rows and m columns is 

prepared. Sij represents the ith alternative’s performance in criterion j.  
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Step 2: Calculate Preference Values 

Ask the DM to determine preference function type for each criteria j. Then for each 

pair of alternatives (i, k) using preference function (Pj) the preference score of an 

alternative i with respect to alternative k in criteria j, j
ikP  is calculated.  

j
ikP  = Pj (i, k) 

The entry of j
ikP refers to the preference value for ith alternative compared to kth 

alternative. The preference function (Pj) may be any of the functions used in 

PROMETHEE.  
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Step 3:  Calculate Outranking Flows 

The positive outranking flow of alternative i in criterion j is calculated by 

aggregating the preference values. 

∑−
=Φ+

k

j
ikij P

n 1
1    

For the negative outranking flow similar approach is utilized. 

∑−
=Φ−

k

j
kiij P

n 1
1   

Net flow is calculated by taking difference of the positive outranking flow and 

negative outranking score: 

kjkjkj
net −+ Φ−Φ=Φ  

 

Unlike PROMETHEE approach, the preferences between alternatives are 

aggregated for each alternative and criterion. Thus +Φ and −Φ are not aggregated 

flows over all the criteria but intermediate measures. 

 

Let +Φ  be the matrix of positive outranking flows and +Φ ij  representing the positive 

outranking flow of alternative i for criterion j, calculated by the equation above.   
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Likewise −Φ be matrix of negative outranking flows. 
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Step 4: Add Constraints on Weights 

At this step DM may provide information on the weights (wj) of the criteria. Any 

Linear constraint can be specified by DM. 

 

Upper bound (Uj)  and lower bound (Lj) on criterion weights can be specified. 

Specification of lower bound is critical if every criterion is desired to contribute 

overall score by the DM. The DEA counterparts of these constraints are called 

absolute assurance region constraints. 

 

jjj UwL ≤≤  

  

Weight constraints can be added based on the importance of the criteria between 

weights or ratio on weights. In DEA models these are called relative assurance 

region constraints. 

 

lj wAw ≤  

 

Additional linear constraints on weights may be added to the model. 
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Finally as the PROMETHEE method suggests we add the constraint that asserts 

sum of the weights is one. This constraint is also meaningful as an alternative that is 

scoring well in a criterion will force that weight to infinity in the absence of such a 

constraint. 

1
1

=∑
=

m

j
jw  

Finally we can formulate feasible weight set for Wj. 
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The objective is to maximize self net flow relative to the average of net flows of 

other alternatives.  The decision variables (vkj) are the weights assigned to criteria j 

by alternative k. 
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Terms in parentheses are constant and were calculated in Step 3.  
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Step 5: Construct Cross-efficiency Matrix 

For each alternative, LP with the objective function and constraints given in step 4 

is solved. The optimal objective function value is recorded as the self score (Ekk) of 

the given alternative. 
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Using the optimal criterion weights other alternatives are evaluated. Eki is the 

evaluation of the ith alternative by using weights of alternative k. 
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Now we can form a matrix of self (Ekk) and peer evaluations (Eki), like cross-

efficiency matrix of DEA. 
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Step 6: Rank the Alternatives 

To arrive at a final score for ranking the self and peer evaluations are averaged. The 

ranking of the alternatives is done based on this average (hi). 
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4.2.1 Example Ranking by the First Proposed Approach  

We apply proposed method to illustrative problem described in Section 3.3. The 

scores of alternatives and rank is given in Table 7. For the weights no constraints 

are added. 
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Table 7. Ranking Using First Proposed Approach 

 

 Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 

Rank 3 4 5 1 2 

Method 1 Score -0.063 -0.146 -0.312 0.271 0.250 

 

 

In the ranking, alternative 5 manages to be positioned before alternative 1. 

Alternative 1 is ranked higher than alternative 2 and 3. Proposed method can rank 

distinct alternatives which has a high outranking value and yet able to discriminate 

between other alternatives. So alternative 5 can be ranked higher but just not the 

best because it is distinct from the others like in the super-efficiency method.  

Proposed method does not favor alternatives in the crowded region. Also we 

assumed that no information on weights is available and did not define any weight 

constraints for this example which will refine the ranking. 

4.3. The Second Approach: Ranking When Weights and Preference 

Function Parameters are not Precisely Specified 

In the second approach, we assume that DM can provide partial information about 

preference function parameters. DM may not exactly state indifference thresholds 

and/or preference thresholds so the additional assumption of the method is that only 

upper and lower bounds for the preference and indifference thresholds can be 

specified by the decision maker for some of the criteria. 

 

The preference of the DM for each criterion is assumed to be one of the type 1, type 

2, type 3 and type 5 (Section 3.1, Figure 1). A generalized form of above mentioned 

four types of preference   is defined shown as Figure 4.  
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Figure 4. Generic Preference Function 

 

 

We call this preference function type g, standing for generic.  The type g which is 

similar to type 5 “linear preference function with indifference threshold” has two 

parameters q and p. The feasible set of (q, p) pairs, can be defined as: 

 

{ }qpqRpqG ≥≥∈= ,0),( 2  

 

For any given real number pair Gg ∈ , there exists a PROMETHEE preference 

function of the types 1, 2, 3 or 5. So by constraining the parameters of the 

preference function type g; type 1, type 2, type 3 and type 5 preference functions 

can be obtained as shown in Figure 5.   

p q 

P

1 
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Figure 5. PROMETHEE Preference Functions as Special Cases of a Generic Preference Function 
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The preference between two alternatives for the generic function can be defined as: 

Pj ( i, l) = 
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The steps of the proposed algorithm is presented below. 

 

Step 1: Initialization 

Ask the DM to to determine criteria and alternatives and to evaluate all alternatives 

),..,1( ni =  1 in all criteria ),..,1( mj = . 

 

Matrix of alternative performance values (S) with n rows and m columns is 

prepared. Sij represents the ith alternatives performance in criterion j.  
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Step 2: Calculate Preference Function Parameters 

In this approach the DM does not provide preference function completely. In fact 

s/he only provides some upper and lower bounds for the parameters of the type g 

function. So there are no explicit preference values. By determining lower ( jLq , 

jLp ) and upper ( jUq , jUp ) bounds for indifference and preference thresholds 

respectively, the set of feasible values for criterion j, Gj is defined as: 

 

{ }jjjjjjjjjjjj UppLpUqqLqqpqRpqRpqG ≤≤≤≤≥≥∈∈= ,,,0,,),( 2  
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If the DM can not specify a lower bound it may be taken as 0. The upper bound is 

also  specified by the DM; if not it may be taken as the difference between the best 

performing score and the worst performing alternative’s score for the  criterion 

under consideration. 

 

As in the first proposed method, we want to solve the model M2, weights (vkj) and 

thresholds (qkj, pkj) are the decision variables. 
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M2 is a nonlinear model and can be split into two terms; weights (vkj) and the term 

that only depends on thresholds (F) by Theorem 1.  
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Note that the term (F) is independent of the weights and thresholds are the only 

decision variables in the second part. Theorems 1 and 2 show how optimal solution 

to model M2 can be found. 

 

Theorem 1:  

Let kjkj
−+ ΦΦ ,  be the positive and negative outranking flows of alternative k for 

criterion j respectively. 
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Proof: See Appendix A. 
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To find maximum of M2, given linear constraints on weights and upper and lower 

bounds on preference function parameters, first the maximization of individual flow 

of an alternative and criterion can be done, then, using these parameters 

corresponding optimal criterion weights can be found. 

 

Theorem 2:  

Let kjkj
−+ ΦΦ ,  be the positive and negative outranking flows of alternative k for 

criterion j respectively. 
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Proof: See Appendix B.  

 

So the q, p values that maximize the unweighted outranking flow can be determined 

by trying a discrete set of values (members of the set GDj) for q and p. The values 

of q and p that maximize objective function (i.e. optimal solution to M2) are 

denoted by ( )** , kjkj pq  where k stands for the alternative under evaluation and  j is the 

criterion under consideration  

 

Step 3: Calculate Outranking Flows 

Now we have determined the values of the preference function parameters for each 

alternative and criterion.  Using ( )** , kjkj pq found in step 2, that specify jP  preference 

score of alternative i with respect to alternative l is calculated. 
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We can form the matrix of preference scores for each alternative and criterion 

( kjP ). 
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We next calculate the second part of the objective function of M2 which will be 

used as objective function coefficient of LP in step 4.  

 

The positive outranking netflows ( ij
k+Φ ) can be calculated by using pairwise 

preference matrix ( kjP ) of alternative under evaluation (k). 

∑−
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The negative outranking netflows ( ij
k−Φ )can be calculated by using pairwise 

preference matrix ( kjP ) of alternative under evaluation (k). 
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The net outranking flow ( ij
knet )(Φ  ) can then be evaluated. 

ij
k

ij
k

ij
knet −+ Φ−Φ=Φ )(  

 

Step 4: Calculate Criterion weights 

The nonlinear program (M2) is transformed into an LP and solved just as M1. For 

the objective function coefficients the values found in step 3 are used. For each 

alternative, LP with objective function coefficients and constraints given in 

previous step is solved. The objective function value is recorded as the self score. 

Different types of weight constraints that form feasible weight set (Wj) explained in 

Section 4.2, can be used. 
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The optimal criterion weights kjv* are calculated for each alternative and criterion. 

 

Step 5: Construct Cross-efficiency Matrix 

The cross evaluations are done similar to first method. During cross evaluations, 

negative, positive and net outranking flows found in step 2 are used first to calculate 

net flow for each alternative and criterion (see step 3).  

 

Then the calculated weights for alternative that is under evaluation are used for 

aggregating these. Unlike first method, for different alternatives, different 

preference functions exist, resulting in different preference values. So the 

unweighted positive, negative and net flows are not unique for each alternative and 

criterion but also depend on the alternative under evaluation. 
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Using the optimal criterion weights and flows calculated in step 3 other alternatives 

are evaluated.  
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Now we can form a matrix of self and peer evaluations, like cross-efficiency matrix 

of DEA. 
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Step 6: Rank the Alternatives  

To arrive at a final score for ranking the self and peer evaluations are averaged 

similar to first method. The ranking of the alternatives is done based on this score. 
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4.3.1 Example Ranking by the Second Proposed Approach  

We apply proposed method to illustrative problem described in Section 3.3. The 

scores of alternatives and rank is given in Table 8. For the weights no constraints 

are added. Instead of setting indifference threshold to 0 and preference threshold to 

3 as in method 1, we set lower and upper bounds on the thresholds as follows: 
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Then we calculate the resultant scores and ranking for the illustrative example. The 

resultant scores and ranks are shown in Table 8.  

 

 
Table 8.  Ranking Using Second Proposed Approach 

 

 Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5 

Rank 3 4 5 1 2 

Method 2 Score -0.056 -0.173 -0.313 0.277 0.269 
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Although scores of alternatives slightly changed, overall ranking is the same as 

ranking of proposed method 1. We should also state that overall ranking may 

change if the upper and lower bounds of thresholds change. 
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CHAPTER 5 

 

SOFTWARE 

 

 

 

Proposed methods are implemented as a decision aid tool. For data input, a user 

form and excel spreadsheets are utilized. The user form and spreadsheets are 

explained in Section 5.1 and Section 5.2 respectively. 

5.1. User Form 

Five input windows exist in the main user form, general parameter window includes 

basic information, criteria information window includes the criteria information, 

thresholds window includes preference type and parameters inputs, auto generate 

window includes inputs  to generate symmetric bounds for preference parameters, 

and weights and output window  includes inputs for customizing output 

information.  

5.1.1 General Parameters Window 

Number of alternatives (n) and number of criteria (m) is specified, also the user can 

define the area that alternative score information is placed (See Figure 6.). By 

default score information resides in “Scores” worksheets but another area may be 

defined by the user using scores textbox. 
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Figure 6. Screenshot of General Parameters Window  

 

 

5.1.2 Criteria Information Window 

The criterion information is entered in this tab. The user specifies whether exact 

weights or constraints on weights are used. If the user prefers using constraints on 

weights, then s/he may select type of constraints on the criterion weights; i.e. 

absolute lower bounds and upper bounds, lower and upper bounds on ratios, or 

other linear constraints. If the user does not want to use default sheet (“Criteria”) 

s/he may specify the location of the criteria input data (See Figure 7). If constraints 

on weights is selected either the first proposed approach or the second will be used 

depending on the selected options on thresholds. 
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Figure 7. Screenshot of Criterion weights Window 

 

5.1.3 Threshold Information Window 

This tab is used to enter information about the criteria. The user either selects to 

specify the thresholds (predetermined option) or let the model (model specified 

option) determine the thresholds (See Figure 8). The second approach described in 

Section 4.3 will be used to determine the thresholds if the second option is selected.  

 

 
 

Figure 8. Screenshot of Thresholds Window 
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5.1.4 Auto Generate Upper and Lower Bounds Window 

Rather than creating bounds on weights by manually entering, the user can use this 

tab to generate upper and lower bounds for the weights and thresholds 

automatically. The user may input the percentage of relaxation on the 

predetermined values (See Figure 9). If auto generate weights option is used, then 

the approach described in Section 4.2 is used if both options are specified, the 

approach described in Section 4.3 will be used. 

 

 
 

Figure 9. Screenshot of Auto generate Upper and Lower Bounds Window 

 

 

5.1.5 Output Window 

The place where output of the model will be displayed is determined in the output 

column (See Figure 10). Also any other ranking of the same alternatives that may 

be placed in output column to compare with produced ranking are specified. The 

user can select S or absolute difference metric to be calculated based on two 

rankings. Additionally two rankings may be graphed in a chart. 
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Figure 10. Screenshot of Output Window 

 

 

5.1.6 Run Button 

After successfully determining model parameters run button is used to execute the 

model. 

5.1.7 Help Button 

Help for the software is displayed, 

5.2.  Worksheets 

For the inputs by default “Scores” and “Criteria” worksheets are used. The outputs 

are provided in the “Output” worksheet. 
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5.2.1 Scores Worksheet  

The alternatives are listed in rows and criteria in columns (See Figure 11). The 

alternative score information is read from this worksheet considering the number of 

alternatives and criteria provided in general information window. 

 

 

 
 

Figure 11. Screenshot of  Scores Worksheet 

 

 

5.2.2 Criteria Worksheet  

The criteria worksheet includes information on preference functions, preference 

parameter bounds, weights, intra-criterion weight constraints (absolute bounds on 

weights), inter-criterion weight constraints (bounds on ratio of weights) (See Fıgure 

12). 
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Figure 12. Screenshot of Criteria Worksheet 

 

 

5.2.3 Output Worksheet  

In the output worksheet the net outranking flows, calculated objective function 

parameters foe M1, optimal weights, cross-evaluation scores, final scores and 

metrics are displayed (See Figure 13). 
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Figure 13.  Screenshot of Outputs Worksheet 
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CHAPTER 6 

 

CASE STUDY 

 

 

 

We will use the MBA program ranking problem for testing and comparing proposed 

methods and other ranking approaches. In Section 6.1, information on MBA 

ranking problem and used data are presented. In Section 6.2, various MCDM 

approaches are applied and evaluated. We compare the methods in Section 6.3. 

Finally in the last section, the results of the case study are presented. 

6.1. MBA Program Ranking Data 

Various sources provide data sets of performance of MBA programs and their 

rankings. Main reasons for choosing the FT data for the case study are: 

a. It is the most comprehensive data, according to the number of criteria. 

b. Both international and US programs are ranked and the number of programs 

for which performances are given for each criterion is higher than other 

rankings. 

c. The school performances are provided free of charge in FT website. 

Financial Times (FT) 2006 data is used for the case study. The data set includes 

performances of 100 MBA programs in twenty criteria. Exact performance values 

are provided for twelve criteria and ranks of the graduate programs are provided for 

the rest.  
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6.2. Ranking Methods   

To compare different ranking approaches and examine the weak and strong points 

of our methods numerous ranking approaches are applied to the FT data. Following 

rankings are considered:  

a. Ranking of Financial Times (FT). 

b. Ranking using SMART method (SMART) using FT weights. 

c. Ranking by PROMETHEE method (PROM) using FT weights. 

d. Rankings by using different mixtures (MIX), for cases with unconstrained 

weights and with AR constraints. 

e. Ranking based on basic DEA CCR model, for cases with unconstrained 

weights and with AR constraints. 

f. Ranking based on super-efficiency approach (SE) approach explained in 

Subsection 3.2.2, for cases with unconstrained weights and with AR 

constraints. 

g. Ranking based on simple cross-efficiency (SXE) approach explained in 

Subsection 3.2.3 , for cases with unconstrained weights and with AR 

constraints.  

h. Ranking based on proposed method 1 (M1), for cases with unconstrained 

weights and with AR constraints. 

i. Ranking based on proposed method 2 (M2). 

 

Ranking of FT, SMART (with FT weights) and PROMETHEE (with exact values 

for preference parameters and FT weights) methods used for comparison of 

different ranking approaches. Main reason for the comparison with these rankings is 

to show the difference of various DEA based methods with the case when exact 

parameters are available.  

 

Ranking using different mixtures is used to understand whether different set of 

weights provide substantially different rankings or not for the data set.  
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SE, SXE, M1 methods are used for two kinds of weight set, unrestricted weights 

and imprecise weights. For the first case it is assumed that no information on 

weights exist and for the second case the weights are assumed to be not known 

exactly and constrained by relaxing the weights provided by FT ( jF ), by a fixed 

percentage p (1%, %25, %50, %75, 100%). So the following assurance region (AR) 

constraint is added for each criterion j. 

 

)1()1( pFwFp jjj +≤≤−  

 

The alternatives still classified as efficient by CCR for various AR constraints are 

also determined for comparison of approaches. Also for different cases of AR 

constraints, mixtures of weights are used to examine the impreciseness of the 

ranking.  

 

Rankings of each method are compared to FT rank using various measures. The 

sum of absolute value of rank difference over all programs (ABS), the standard 

error (S), and number of programs that change at least 10 rank places is used as 

metrics for measuring the difference of the ranking from FT ranking. Kendall’s 

Tau-b measure is also used when comparing trial rankings by MIX method and 

different rankings. We do not provide Kendall’s Tau-b statistics for comparing 

rankings by the same method with different relaxations of weights as they are 

extremely high. Finally the ranking methods are compared and strengths and 

weaknesses of DEA based methods and proposed methods are presented. Ranking 

results for different methods are provided in Appendix E. 

6.2.1 FT Ranking 

FT 2006 ranking is produced by normalizing the performance values and 

calculating z scores and linearly aggregating these scores based on criterion 

weights. Final scores of the schools are not provided and only ranks of the schools 

are given. 
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6.2.2 Ranking Using SMART Approach 

We intend to examine if the ranking will vary for different weights. For this purpose 

we assume a linear utility function and normalized the given FT data to use the 

same weights as FT ranking. Normalization is also needed since AR constraints on 

criterion weights are defined in various DEA models (DEA CCR, SE and SXE). For 

the criterion (j) whose raw performance values ( ijS ) are given, the normalization is 

done by using the formula: 
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For the criterion (j) whose ranks ( ijR ) are given a slightly different version of the 

above formula is used: 
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Then for each program final score is calculated using normalized score (SNij) and 

weights provided by FT. FT rank and SMART is compared in Table 9. Differences 

of these two rankings can be attributed to the availability of limited information for 

some of the criteria (ranks are provided for eight of the criteria) and normalization 

method used. 

 

 
Table 9. Comparison of FT Ranking and Ranking Using Normalized Scores 

 
Kendall’s 

Tau-b ABS Average ABS S Rank difference ≥10 
0.959 516   5.16 83.07  10 
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6.2.3 PROMETHEE Ranking 

For PROMETHEE ranking, DM has to provide preference function type, 

parameters and bounds on weights. Type 5 preference function is used for all the 

criteria, the preference threshold (p) is set to difference of performance values of 

best performing program and worst performing program and indifference threshold 

(q) is set to 10% of that value. FT weights are used for aggregating the flows of 

various criteria.  

 

 
Table 10. Comparison of FT Ranking and PROMETHEE Ranking 

 
Kendall’s 

Tau-b ABS Average ABS S Rank difference ≥10 
0.945 628  6.28 95.88  22 

 

 

As seen form Table 9 and Table 10, compared to SMART, PROMETHEE ranking 

is more different from FT as PROMETHEE ranking uses preference information. 

6.2.4 Ranking Using Different Mixtures of Weights 

Before comparing various ranking approaches, it will be beneficial to examine if 

different approaches can produce different rankings from the data set for the cases 

where no AR is defined or AR is defined by relaxing the FT weights as explained in 

Section 6.2. Most comprehensible method is to check whether various feasible 

weight combinations produce different rankings using a linear model for 

aggregation (similar to SMART). For the case where no AR constraints defined, we 

use a simplex lattice design, and various weight mixtures are used for ranking the 

programs. Secondly, AR is defined as 1%, 25%, 50%, 75%, 100% around FT 

weights. This time D-optimal design is used to find extreme weight mixtures and 

examine the variation of the ranking. The summary information about mixture 

design that are used to produce trial weight sets are shown in Table 11. A more 

detailed explanation on mixture designs used is provided in Appendix D. 

 



 54

 

 

 

 

 
Table 11. Properties of Mixture Design Experiments 

 

 
No of 

Mixtures Constraints Explanations 

Simplex  
Lattice 231 - 

Degree of Lattice = 2, 
Includes Augmented 

Points 
D-Optimal  

(For Dif. AR 
Cases) 

100 
Weight Lower and Upper 

Bounds 
(Relaxations of FT weights) 

Linear 

 

 

100 mixtures are selected from the first design and pairwise Kendall’s Tau-b 

statistics are calculated for both cases. The summary of the analysis are given in 

Table 12. 

 

 
Table 12. Correlation of Mixture Experiments 

 

 

No of 
Mixtures 

No of Pairwise 
Comparisons 

 No of 
Correlated 

Observations  
(0.05 Level) * 

 No of 
Correlated 

Observations   
(0.01 Level) 

Simplex Lattice 100 4950 536 2368 

D-Optimal     

(100% Relaxation) 
100 4950  - 4950 

*Observations that are not correlated for 0.01 confidence level but correlated for 0.05 level. 
 

 

We now can conclude that for the given set of weights, correlation exist for a 

fraction of the experiments (~60%). For the unconstrained problem we can say that 

different weight sets will not necessarily produce correlated rankings. 
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For the constrained problem we observe that all the rankings are correlated even for 

the 100% relaxation case. For this case, we further analyze if the rankings observed 

are far different from rankings provided by FT. As shown in Table 13, the rankings 

do not agree with FT and a high number of programs ranked significantly different. 

Since 41.87 observations have on the average more than 10 rank difference 

compared to FT and variability of the measures are high, the need for a ranking 

approach still exists for the constrained case. 

 

 
Table 13. Comparison Constrained Mixture experiments with FT 

 
 Kendall’s 

Tau-b ABS 
Average 

ABS S 
Alt. with Rank 
Difference ≥10 

Minimum 0.465 572 5.72 84.33 18 

Maximum 0.827 1542 15.42 248.60  71 

Average 0.688 1078 10.78 145.9  41.87 

 

 

We then use D-optimal designs for the cases where FT weights are relaxed by 1%, 

25%, 50%, 75% and compare the variability of each individual program among 

different ARs. For each case, 100 mixtures are obtained and lowest and highest 

ranking of the programs are determined The difference of these two values are 

calculated to show rank impreciseness of each program (See Figure 14 and 

Appendix D.3). It is observed that as AR constraints get tighter, the highest and 

lowest ranks an alternative obtains become closer and difference decreases. 
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Figure 14. Rank Impreciseness of MBA Programs for Mixture Designed Set of Weights 

 

 

For the high ranking alternatives (Top 15) the rank difference is limited to 30-45 

rank places, while for the middle ranking alternatives rank differences are very high 

at least 40 for the AR defined by 100% relaxation of FT weights. For the very low 

ranking programs rank difference exists but is lower than middle ranking programs. 

Average rank impreciseness of top 15, bottom 16 (there are two 85th ranked 

program in FT list and no 86th) and all the alternatives for different AR is provided 

in Figure 15. So we can conclude that the ranks of the programs vary considerably 

for AR defined as 50% relaxation of FT weights. Even for 25% relaxation variation 

exists but there is absolutely very little variation when the AR is limited to 1% 

relaxation of FT weights. 
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Figure 15. Average Rank Impreciseness of Ranks for Top 15, Bottom 16 and All Programs 

 

 

6.2.5 DEA CCR Ranking 

We ranked the programs using DEA CCR method. There are 70 programs which 

are classified as efficient and cannot be ranked. Generally programs that rank 

highest in subset of criterion maximize its score by equating the sum of 

corresponding criterion weights to unity to be efficient. If the subset has only one 

criterion the weighting is similar to vertices of the simplex of unconstrained mixture 

design, so at least we can say that for different vertices of the simplex different 

programs are ranked first. This result is in agreement with the result of the mixture 

experiments presented in previous section which shows the variability of the 

ranking for different weights. 

 

Then we find the efficient alternatives by using the assurance region defined by 

upper and lower bounds around FT weights. CCR efficient programs are listed in 

Table 14 except for the unconstrained case for which set of efficient programs is too 

large. 
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Table 14. CCR Efficient Programs 

 
 Number of CCR 

Efficient Prog. Set of CCR Efficient Programs 
Unconstrained 70 * 

1% Relaxation 0 {} 

25% Relaxation 0 {} 

50% Relaxation 3 {1, 5, 9} 

75% Relaxation 9 {1, 2, 3, 4, 5, 8, 9, 12, 14a**} 

100% Relaxation 14 {1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14a**, 18, 21} 

     *Set of efficient programs is large and not presented in the table. 
        **The first of the programs ranked in the 14th, which is IMD program. 
 

 

For the given data set the number of efficient programs is very high if no AR is 

defined. We observe that incorporating AR constraints drop the number of CCR 

efficient programs radically down. As we introduce the AR constraints by relaxing 

around the FT weights certain programs that perform very high in low weighted 

criteria is no more classified as efficient.  

6.2.6 DEA Super-efficiency Ranking (SE) 

Unlike DEA CCR model, SE approach produces a full ranking. First the programs 

are ranked without AR constraints. Then lower bounds and upper bounds are set as 

fixed relaxation percentage of FT weights. The rankings are compared with FT 

ranking and the summary of the comparison is given in Table 15. 
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Table 15. DEA Super-efficiency Ranking Compared to FT Ranking 

 
 Kendall’s 

Tau-b ABS 
Average 

ABS S 
Alt. with Rank 
Difference ≥10 

Unconstrained 0.294 2418 24.18 310.10 71 

1% Relaxation 0.852 516 5.16 83.07 13 

25% Relaxation 0.852 516 5.16 83.07 13 

50% Relaxation 0.857 502 5.02 80.05 13 

75% Relaxation 0.815 666 6.66 91.69 18 

100% Relaxation 0.761 866 8.66 116.14 28 

 

 

For the constrained case for small relaxations (1%-25% interval), the solution is not 

affected by percentage of relaxation as there is no program having an efficiency 

value greater than one and all the scores increase proportionally as the constraints 

are relaxed. Finally higher relaxation results in rank changes for significant number 

of programs as programs with marginal characteristics are able to rank better by SE.  

 

Also it shall be noted that the ranking varies significantly for the SE method. For 

the case with no AR constraints, Hong Kong UST business school ranks the 1st, that 

ranks in 30-40 range when constraints are introduced. That is because this school 

has very promising scores in various criteria; “women students”, “international 

faculty”, “international board”, “research rank”, “placement success”, and “women 

board” which are weighted heavily in SE ranking of the program. Various other 

examples of this pattern (ranking high for the unconstrained case) exist (such as 

Ashridge, George Washington University, Birmingham Business School), and the 

reverse of this pattern (such as Stanford University GSB, Dartmouth College and 

University Oxford) also exist. Finally we could conclude that the ranking of SE 

method is very variable if no AR constraints are provided. SE rank depends on the 

AR heavily and ranking changes abruptly as the constraints become tighter. If more 

than one program has similar performance, they will not be classified as marginal 

and ranked high by SE. 
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6.2.7 DEA Cross-efficiency Ranking (SXE) 

DEA SXE is used for ranking the programs using same AR constraints given in the 

SE ranking. The rankings are compared with FT and results are provided in Table 

16.  

 
Table 16. DEA Cross-efficiency Ranking Compared to FT Ranking 

 
 Kendall’s 

Tau-b ABS 
Average 

ABS S 
Alt. with Rank 
Difference ≥10 

Unconstrained 0.580 1408 14.08 181.9 60 

1% Relaxation 0.852 468 4.68 77.54 13 

25% Relaxation 0.854 470 4.70 77.74 13 

50% Relaxation 0.882 424 4.24 71.71 10 

75% Relaxation 0.876 434 4.34 74.97 11 

100% Relaxation 0.847 554 5.54 86.41 18 

 

 

SXE method produces results closer to FT in all the measures compared SE 

approach. However this method ranks some inefficient programs better than 

efficient programs. This weakness will be discussed in section 6.3. 

 

Ceibs which ranks high among financial criteria (weighted salary, salary percentage 

increase and value for money), is not ranked high by SXE method. Another 

example is Yale Business School which ranks 48th without any constraints but ranks 

the 11th when AR constraints are introduced. SXE approach favors schools which 

are good at in diversity criteria (9th to 16th explained in Appendix C.2) whereas the 

schools that are better in financial and career related criteria (1st to 8th in Appendix 

C.2)   are not favored.  

 

6.2.8 Ranking by Proposed Method 1 (M1) 

For the proposed method 1, DM has to provide preference function type, parameters 

and bounds on weights. Type 5 preference function is used for all the criteria, the 
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preference threshold (p) is set to the difference of performance values of best 

performing program and worst performing program and indifference threshold (q) is 

set to 10% of that value. The AR constraints are incorporated by relaxing FT 

weights and rankings are compared with FT and results are provided in Table 17. 

 

 
Table 17. Ranking by Proposed Method 1 Compared to FT Ranking 

 

 Kendall’s 
Tau-b ABS 

Average 
ABS S 

Alt. with Rank 
Difference ≥10 

Unconstrained 0.459 1864 18.64 235.32 67 

1% Relaxation 0.817 632 6.32 92.52 22 

25% Relaxation 0.831 602 6.02 91.72 22 

50% Relaxation 0.827 618 6.18 95.35 21 

75% Relaxation 0.821 676 6.76 93.81 23 

100% Relaxation 0.806 724 7.24 99.26 27 

 

 

Some of the criteria both SE and SXE ignored are taken into account in proposed 

method 1. Generally MBA programs have low performance in language scores 

because only a few of them have language education. MBA programs of schools 

such as Insead, University of Michigan: Ross, Esade Bussiness School, ECSP rank 

higher in overall score. This shows proposed method 1 is better at discriminating 

programs that only a minor number of programs are better than the average but 

perform similar to each other. SE does not provide very promising scores for such 

schools as they are not radically different. SXE on the other hand undervalues 

language criterion as most of the programs underperformed in this criterion. Other 

criteria that are undervalued by SXE are “women board” and “international board”. 

SE may also fail to discriminate the few good performing programs in these criteria 

if a few programs perform equally well. Proposed method 1 will provide a better 

ranking for these as the difference causes a high net flow and high net flow will 

cause a higher weight for the corresponding criterion.  

 



 62

To analyze sensitivity of M1 to preference function parameters and examine the 

effects of preference functions and compared the change of preference function type 

on the ranking produced by proposed method 1. For different types of preference 

functions the rankings are compared with each other for AR 25% around FT 

weights. 

 

 
Table 18. Average ABS for Difference for Different Preference Functions 

 

  
Pref. 

Func.1 
Pref. 

Func. 2 
Pref. 

Func. 3 
Pref. 

Func. 5 
Pref. 

Func. 1 - 2.94 5.26 7.2 
Pref. 

Func. 2 2.94 - 4.52 6.36 
Pref. 

Func. 3 5.26 4.52 - 2.34 
Pref. 

Func. 5 7.2 6.36 2.34 - 
 

 

The preference threshold (p) and indifference threshold (q) is set as explained in the 

beginning of this subsection. For preference function 1 no preference parameter is 

needed, for the preference function 2 only indifference threshold is used, for the 

preference function 3 only preference threshold is used and for the preference 

function 5 both of the parameters are used. Average ABS is given for different 

pairwise comparison of ranks in Table 18. For this case more rank difference exists 

between for functions 1 and 5 as expected. As we use very high value for preference 

threshold the difference of rankings using preference function 1 or 2 is considerably 

different than preference function 3 and 5.  
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Table 19. Kendall’s Tau-b Correlation for Different Preference Functions 

 

  
Pref. 

Func. 1 
Pref. 

Func. 2 
Pref. 

Func. 3 
Pref. 

Func. 5 
Pref. 

Func. 1 1 0.926 0.858 0.808 
Pref. 

Func. 2 0.926 1 0.877 0.828 
Pref. 

Func. 3 0.858 0.877 1 0.938 
Pref. 

Func. 5 0.808 0.828 0.938 1 
 

 

The correlations of ranks for different preference functions are also substantially 

high (See Table 19) and all ranks are correlated in 0.01 confidence level (See Table 

19). We can conclude that average ABS is low and rank correlation is high for 

different preference functions. 

6.2.9 Ranking by Proposed Method 2 (M2) 

For proposed method 2 we introduce two test cases, weights are unconstrained and 

weights are constrained by 1% around FT weights. For both of the cases, feasible 

region of thresholds are formed by relaxing the preference threshold 5% and 

relaxing the indifference threshold 50% around the values used for proposed 

method 1. The comparisons with method 1 rankings are given in Table 20.  

 

 
Table 20. Ranking by Proposed Method 2 Compared to Proposed Method 1 

 

 Kendall’s 
Tau-b ABS 

Average 
ABS S 

Alt. with Rank 
Difference ≥10 

Unconstrained 0.974 110 1.10 16 - 
1% Relaxation 0.990 46 0.46 6.78 - 

 

 

We observe from the table that the ranking by method 2 is very similar to method 1. 

For the unconstrained weight case, introducing uncertainty for thresholds effects 
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ranking more compared the case where weights are tightly constrained because in 

the second case weights are so tightly bounded so that rank change is limited. In this 

study we analyze the proposed method 2 to measure the sensitivity of result to 

uncertainty in thresholds in a limited way. Detailed analysis is left out for further 

study. 

6.3. Comparison of Rankings 

In this section we aim to compare different ranking methods. In the first subsection 

we examine the correlations of rankings using Kendall’s Tau-b statistics, in the 

second we compare rankings of all programs in general; in the third subsection we 

examine ranking of top and bottom programs, and in the last subsection we examine 

some programs whose rankings change much.  

6.3.1 Correlations of Rankings 

In the first case, we compare FT, SMART and PROMETHEE rankings with other 

methods where weights are unconstrained. Kendall’s Tau-b statistics are listed in 

Appendix F.  

 

We observe that SE, SXE and M1 methods correlate with FT ranking. The SXE 

method correlates more with FT ranking then other approaches (See Figure 16). 

Knowing that SXE ranking is based on average weights of individual DEA 

calculations, an agreed weight set exist that makes it more similar to a linear 

aggregation method. The peak observed for correlation of SXE 50% AR case with 

FT (See Figure 16) stems from the fact that FT rank and SXE does not use the same 

performance values and normally the SXE correlation will increase by restricting 

the weights more. We can observe this fact by examining the correlations of SXE 

and SMART for different AR constraints shown in the Appendix E. 

 

For very tight AR constraints (25 % for the case study) SXE and SE converges to a 

similar ranking and correlation of SE with FT is equal to the correlation SXE with 

FT. Proposed method 1 also depends on cross-evaluation principle like SXE but 
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outranking information is used rather than normalized scores so lower correlation 

can be justified.  
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Figure 16. Correlation of rankings with FT 

 

 

Proposed method produces a ranking more different than FT ranking compared to 

SE and SXE when AR constraints are incorporated. Next we examine the 

correlation of methods (SE, SXE, and M1) with PROM ranking. We observe that 

SXE has higher correlation with FT and PROM when constraints are not tight. As 

the constraints get tighter the correlation of proposed method with PROM approach 

becomes the highest of three rankings. Main reason for this fact is that small 

differences are eliminated preliminary by using preference functions and flow 

calculations are similar to PROM. Secondly, our objective function also has term 

for other units’ appraisal and even for small weight set each program focuses on this 

relative measure.  
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Figure 17. Correlation of Methods with PROM 

 

 

In general the Kendall’s Tau-b measures are high and all the rankings are found to 

be significant according to this measure. This does not mean that the differences in 

rankings are insignificant as we observed impreciseness of rankings in the mixture 

design experiments in which AR constraints are introduced. In the next subsection 

we will examine these differences.  

6.3.2 General Ranking Differences 

In this subsection we aim to compare the ranking of SE, SXE and M1 methods 

generally. For this purpose we illustrate the rankings of MBA programs by graphs 

where the horizontal axis is programs’ index and vertical axis is the rank place this 

program is ranked by a particular approach. If FT ranks are plotted in such a graph 

the result is nearly the diagonal as program index is taken from FT list (See Figure 

18).  

 

First we compare the rankings of SE, SXE, and M1 when no AR constraints are 

defined in Figure 18 and 19. For SE the ranking of alternatives are much more 

dispersed compared to SXE and M1. In SXE and M1 for top ranked alternatives are 

similar to those of FT ranking and particularly SXE produces more similar ranks to 
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FT. As SE ranks alternatives based on their marginality, the programs are free to set 

DEA weights favoring their marginality when no AR is defined. As different 

programs are marginal for different set of criteria, programs that are ranked in the 

bottom by FT can be ranked in the top and vice versa. 
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Figure 18. FT and SE Rankings (No AR Constraints) 
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Figure 19. SXE and M1 Rankings (No AR constraints) 
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Figure 20. SXE (AR 100%) Ranking 
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When AR constraints around 100 % weights of FT are defined in the case SXE (See 

Figure 20), the ranking difference with FT decreases considerably and the 

difference is observed more on the programs approximately after the 45th in FT 

ranking. SXE method favors programs that are better in criteria where most of the 

alternatives have high scores. The significant weight difference between the FT 

weights and implied weights of SXE method if no AR constraints are defined 

causes rank difference. For 100% relaxed case some criteria are partially free but 

the weights of no AR case cannot be obtained. When AR is defined the implied 

weights obtain values more similar to FT weights. 

 

For M1 imposing AR constraints have a similar effect to that observed in SXE as 

shown in Figure 21. While the programs ranked by FT in the upper and lower 

portions are very similar, some alternatives are ranked differently in the middle 

portion. The difference of ranking of M1 is considerably more significant than SXE 

even if AR constraints are defined. 
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Figure 21. M1 (AR 100%) Ranking 
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Further tightening the constraint results in more similar rankings for lower and 

upper extreme programs for M1 as shown in Figure 22. 
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Figure 22. M1 (AR 50%) Ranking 

 

 

6.3.3 Ranking of Extreme Programs 

In this subsection we examine the ranking of top and bottom portion of FT ranking 

and ranking of DEA efficient alternatives.  

 

For different weight relaxations, we provide a measure which is the number of 

inefficient programs that rank higher than at least one efficient program. While SE 

ranks efficient units (given in Table 14) always higher than inefficient units SXE 

and M1 do not. We provide the number of inefficient units ranked better than at 

least one efficient program for SXE and M1 for different AR constraints in Table 

21. 
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Table 21. Number of Inefficient Programs Ranking Better than Efficient Programs for SXE and M1 

 

AR SXE M1 
1% 0 0 

25% 0 0 
50% 8 3 
75% 15 5 
100% 20 10 

 

 

For the 50 % relaxation 8 inefficient units rank better than efficient units in case of 

SXE and for M1 this number is 3 much less than that. For 75% and 100% 

relaxations, number of inefficient units ranked better than efficient are 15 and 20 

respectively for SXE, while for M1 it is much less, 5 and 10 respectively. So for 

these assurance regions, M1 is better at ranking efficient units higher than 

inefficient units. In a problem where number of efficient units is limited for the 

original CCR model when no AR constraints exist, M1 method may be better at 

ranking of efficient units higher than inefficient ones. 

 

We now can examine the rankings of different methods for top and bottom ranking 

alternatives in FT. We select the first 15 programs and last 16 (there are two 85th 

ranked program in FT list and no 86th) programs. If there are no AR constraints 

almost any program can achieve the best rank or the worst by different weight 

combinations. We observe that methods using fixed weights (such as FT, SMART 

and PROMETHEE) ends up with similar rankings for top 15 programs (See Table 

22). However we could observe that DEA based methods ranks these top 15 

problems differently from the case where exact weights are available. For the case 

of SE, only 5 programs are still ranked in top 15 and 5 programs are ranked 

marginally different (i.e., new ranks range between 39th and 60th). And even the first 

program is no longer in top 15. For SE rankings of top 15 changes drastically. For 

example alternative ranked the first (48th in FT ranking) bases its SE score on 

criteria, “women students”, “international faculty”, “international board”, “research 
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rank”, “placement success”, and “women board”. On the other hand the 2nd 

program’s score is based on criteria “women board”, “languages”, “women faculty” 

and “research rank”. SE scores of programs are based on only self evaluations 

which depend on the distance to the efficient frontier and differ from scores of 

additive approaches. In the case of SXE, top 15 programs in FT ranking also ranked 

higher. Only one program is ranked lower than 20th and it is ranked 25th. M1 

ranking of top 15 programs is more different from SXE but compared to SE more 

similar to FT. Half of the alternatives in top 15 of FT ranking are still ranked in top 

15, and only one alternative is ranked higher than 40th.  

 

 
Table 22. Ranks of Top 15 and Bottom 16 Alternatives (No AR Const.) 
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M
1 

1 1 1 8 7 8  85a 84 87 10 99 70 
2 3 3 4 2 20  85b 76 72 50 69 74 
3 5 5 60 8 21  87 86 86 78 90 57 
4 4 6 33 14 19  88 90 83 14 54 22 
5 2 2 16 15 12  89 92 90 58 72 60 
6 8 8 40 18 18  90 93 93 82 97 54 
7 9 9 46 12 28  91 96 94 99 94 90 
8 10 10 26 16 37  92a 94 97 22 83 45 
9 6 4 3 11 2  92b 89 84 61 82 76 

10 7 7 39 9 10  94 85 82 71 75 46 
11 11 11 48 25 41  95 99 96 90 98 99 
12 16 17 6 1 5  96 52 53 31 48 51 
13 13 14 18 17 6  97 100 100 76 100 85 
14a 15 12 5 20 1  98 97 98 88 86 96 
14b 14 15 17 5 14  99 95 99 7 78 40 
       100 98 95 44 80 78 

 

 

Secondly we inspect ranks of top 15 alternatives ranks when AR constraints are 

appended to SE, SXE and M1 (See Table 23). Looking at the mixture design 

results, we observe that only three of the program ranks (1st, 4th and 5th in the FT 

ranking) remain in top 15 for different weight combinations. But SE, SXE and M1 
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rank at least 13 of these programs (i.e. top 15 of FT) in top 15. The rankings of 

these programs however depend on the method and the programs that are ranked 

2nd-10th in FT list change places. Introducing AR for SE makes the rank more 

similar to fixed weight approaches such as FT, SMART and PROMETHEE. SXE 

ranks some of the programs that are marginal much worse than SE. M1 produces an 

intermediate result, it does not assign very high ranks for programs that are 

marginally different in a set of criteria as SE, but does not rank them as low as SXE. 

In order to be ranked high by M1, programs should have clear difference from the 

rest of the alternatives in most of the criteria and should not have very low 

performance in criteria where some other programs perform well.  

 

 
Table 23. Ranks of Upper 15 Programs (With AR Constraints) 

 

     SE SXE M1 

FT
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1 1 11 1 1 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 

2 1 20 3 3 3 3 4 4 6 2 2 3 3 3 3 3 2 2 2 

3 2 25 5 5 5 5 6 9 12 4 4 4 4 4 5 4 5 5 4 

4 1 15 4 6 4 4 5 7 8 3 3 2 2 2 6 5 4 3 3 

5 1 14 2 2 2 2 3 3 2 5 5 5 5 6 2 2 3 4 5 

6 3 27 8 8 8 8 9 13 18 8 8 8 7 8 8 8 9 9 13 

7 3 25 9 9 9 9 8 11 13 9 9 6 6 5 9 9 8 8 9 

8 1 48 10 10 10 10 7 8 7 10 10 9 9 10 10 10 10 10 12 

9 1 24 6 4 6 6 2 1 1 6 6 11 11 15 4 6 6 6 6 

10 4 20 7 7 7 7 13 16 20 7 7 7 8 9 7 7 7 7 7 

11 4 37 11 11 11 11 11 12 14 11 11 10 10 7 11 11 11 12 10 

12 1 47 16 17 16 16 10 6 3 18 17 16 15 14 16 15 14 11 8 

13 1 32 13 14 13 13 14 10 9 14 14 14 14 11 14 12 12 13 11 

14a 1 68 15 12 15 15 12 5 5 17 18 19 24 34 12 13 13 14 14 

14b 8 38 14 15 14 14 17 21 26 13 13 13 13 16 15 16 16 18 21 

*Minimum rank obtained from different mixtures when AR constraints around 100% FT weights are 
incorporated. 
**Maximum rank obtained from different mixtures when AR constraints around 100% FT weights 
are incorporated. 
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For the case of lower 16 programs of FT by examining Table 24, we observe that at 

least 2 and at most 5 of the programs are no more ranked in lower 16 by SE, SXE 

and M1 and the change of ranking is higher compared to top 15 programs in AR 

case. The rank changes of the programs which are in the 85th-88th places and the 

96th place in FT ranking are observable. 

 

 
Table 24. Ranks of Lower 16 Programs (with AR Constraints) 
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85a 22 100 84 87 84 84 80 72 63 87 87 88 88 93 87 85 84 81 77 

85b 44 95 76 72 76 76 78 79 76 72 72 71 68 67 72 75 77 76 78 

87 51 94 86 86 86 86 91 92 95 88 88 87 87 86 86 82 81 79 76 

88 41 97 90 83 90 90 85 81 75 91 91 92 90 92 83 81 82 82 79 

89 43 98 92 90 92 92 92 93 94 89 89 89 93 95 90 90 89 86 86 

90 34 100 93 93 93 93 93 80 64 94 95 95 95 91 93 93 93 93 93 

91 71 100 96 94 96 96 96 97 96 95 94 93 91 87 94 94 94 94 92 

92a 57 100 94 97 94 94 95 94 89 93 93 94 92 90 97 95 95 95 94 

92b 38 98 89 84 89 89 90 84 82 92 92 91 89 88 84 87 87 88 89 

94 37 97 85 82 85 85 87 85 85 90 90 90 94 94 82 84 86 90 91 

95 75 100 99 96 99 99 97 96 98 96 96 96 96 96 96 96 96 96 96 

96 23 91 52 53 52 52 50 50 44 48 48 46 46 45 53 54 54 57 60 

97 54 100 100 100 100 100 100 100 97 98 98 98 98 98 100 100 100 100 98 

98 72 100 97 98 97 97 98 98 100 97 97 97 97 97 98 99 99 99 100 

99 36 100 95 99 95 95 94 95 92 99 100 100 100 100 99 98 97 97 97 

100 70 100 98 95 98 98 99 99 99 100 99 99 99 99 95 97 98 98 99 

* Minimum rank obtained among different mixtures when AR constraints around 100% FT weights 
are incorporated. 
** Maximum rank obtained among different mixtures when AR constraints around 100% FT 
weights are incorporated. 
 

 

6.3.4 Illustrative Examples 

In this section we provide some rankings that illustrate the specific properties of 

M1. We present some programs that are ranked differently by M1 compared to SE 

and SXE rankings and explain the causes of differences in ranks. We select some of 
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the programs that are ranked differently by M1 which are shown in Figure 23. 

Programs that are better ranked are marked with empty rectangle and that are 

ranked worse are marked with empty triangle. Although for 50% AR restricted case 

the changes in the rankings of the programs are between 10 and 30, these changes 

are considerably higher for the unconstrained case. The scores of programs that are 

ranked better by M1 for both the unconstrained case and AR case are presented in 

Table 25 and programs that are ranked worse are presented in Table 26. In the table 

the bold entries stand for the criterion that a program has score that is in the first 

quartile and gray background stands for programs that have scores in the lowest 

quartile. This is based on descriptive statistics given in Appendix C.5.  
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Figure 23. Some of the Alternatives Ranked Higher By M1 

 

 

We can observe that the programs ranked high by M1 have very promising scores in 

a high number of the criteria while not performing very poor in most of the others. 

The programs with high score in criteria “career progress rank”, “international 

faculty”, “international students”, “international board”, “international mobility”, 
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“international experience rank”, “languages” and “FT doctoral rank” is more 

emphasized by M1. In order to better rank by M1 programs shall have high 

performances in these criteria and shall have not very low performance in others. 
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Table 25. Alternatives Ranked Better by M1 
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Weighted Salary 0.5453 0.3701 0.6519 0.2078 0.3555 0.3434 0.3434 
Salary Percentage 

Increase 0.3644 0.5763 0.4576 0.3644 0.5339 0.4831 0.4407 

Value for Money Rank 0.8200 0.9700 0.8500 0.5300 0.3400 0.9500 0.8100 
Aims Achieved 0.8571 0.7857 0.7857 0.6071 0.6429 0.6429 0.6071 

Alumni 
Recommended Rank 0.5600 0.7200 0.7600 0.1800 0.2600 0.1100 0.2300 

Career Progress Rank 0.7000 0.5300 0.9100 0.5700 0.5000 0.5500 0.7900 
Placement Success 

Rank 0.4900 0.2500 0.3400 0.7400 0.5400 0.2200 0.1500 
Employed At Three 

Months 0.7368 0.5614 0.8070 0.9649 0.9298 0.8772 0.7895 

Women Faculty 0.5000 0.5789 0.4737 0.2368 0.5789 0.8684 0.4737 
Women Students 0.2895 0.5000 0.1053 1.0000 0.8158 0.4211 0.0263 
Women Board 0.5000 0.3167 0.7000 0.6500 0.1833 0.3333 0.4167 

International Faculty 0.6020 0.4592 0.2143 0.8980 0.0816 0.4490 0.3878 
International Students 0.9326 0.5056 0.6517 0.8989 0.4494 0.9101 0.7528 
International Board 0.4787 0.2979 0.2660 1.0000 0.0319 0.3511 0.3511 

International Mobility 0.8000 0.9100 0.6600 0.6700 0.4900 0.8300 0.6900 
International 

Experience Rank 0.8700 0.3800 0.2500 0.9400 0.4100 0.5100 0.5800 

Languages 0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.5000 
Faculty with 
Doctorates 0.9615 0.7308 0.6154 1.0000 0.8846 0.6538 0.8077 

FT Doctoral Rank 0.9200 0.4100 0.6700 0.6000 0.7700 0.7300 0.3900 
FT Research Rank 0.4900 0.6100 0.1300 0.6500 0.6900 0.0900 0.1700 

FT Rank 35 44 46 47b 61 65 82a 
M1 Rank (AR %50) 27 37 36 38 52 49 67 

Best Quartile* 8 5 8 9 4 5 6 
Worst Quartile** 3 4 4 4 3 4 5 

* Number of criterion for which program is in best quartile 
** Number of criterion for which program is in worst quartile 
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Table 26. Alternatives Ranked Worse by M1 
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Weighted Salary 0.3595 0.4008 0.4347 0.4630 0.4168 

Salary Percentage 
Increase 

0.9746 0.8814 0.5847 0.6950 0.5763 

Value for Money Rank 0.8300 0.7000 0.1300 0.2400 0.4000 

Aims Achieved 0.8571 0.6786 0.6786 0.7860 0.7143 

Alumni Recommended 
Rank 

0.4600 0.1700 0.4800 0.4500 0.2400 

Career Progress Rank 0.4600 0.1400 0.2100 0.1600 0.4500 

Placement Success 
Rank 

0.7900 0.2900 0.6600 0.5800 0.5300 

Employed At Three 
Months 

0.8596 0.6842 0.8596 0.8950 0.7544 

Women Faculty 0.0263 0.3158 0.2368 0.4470 0.5000 

Women Students 0.0000 0.5526 0.4474 0.2370 0.5526 

Women Board 0.1500 0.1833 0.2167 0.2170 0.2333 

International Faculty 0.0000 0.1224 0.4694 0.0920 0.3776 

International Students 0.0000 0.2584 0.2921 0.1910 0.0899 

International Board 0.1064 0.0000 0.0000 0.0320 0.0000 

International Mobility 0.1900 0.1200 0.2000 0.1400 0.0800 

International 
Experience Rank 

0.0800 0.2600 0.3400 0.6300 0.3200 

Languages 0.0000 0.0000 0.0000 0 0.0000 

Faculty with 
Doctorates 

0.8974 0.9744 1.0000 0.8970 1.0000 

FT Doctoral Rank 0.0100 0.0100 0.2900 0.0100 0.0100 

FT Research Rank 0.4300 0.3000 0.8700 0.6900 0.4900 

FT Rank 45 51 52a 59a 79 

M1 Rank (AR 50%) 56 78 71 79 92 

Best Quartile* 4 3 3 2 2 

Worst Quartile** 11 8 6 8 5 

      * Number of criterion for which program is in best quartile 
                    ** Number of criterion for which program is in worst quartile 
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The programs ranked by FT in the middle (44th, 46th, 47th, 61st and 65th as shown in 

the Table 25) are ranked upper by M1. Programs which are also ranked in the 

middle by FT (45th, 51st, 52nd and 59th as shown Table 26) are ranked lower by M1. 

the effect of the change of the ranking . Because the first set of programs have 

considerably better performance than others compared to second set. This 

contributes to their net flow and they rank better than the second set. 

 

We analyze the rankings of “Stanford University: GSB”, “Purdue University:  

Krannert” and “Washington University: Olin” to see the effects of different ranking 

approaches. 

 

Rankings of “Stanford University: GSB” is listed in Table 27. “Stanford University: 

GSB” which is a high ranking program considering the FT Rank also having high 

average scores for most of the criteria. We observe an equally good performance 

with the SMART ranking. But it can not assume a good ranking position in SE 

unconstrained case. In the financial (first to third in Appendix C.2) and career 

related (fourth to eight in Appendix C.2) criteria, it performs well but is not 

marginally different from other high ranking alternatives. Both SXE and M1 

produces a better ranking for Stanford University GSB as it has high score in a quite 

large number of criteria. Still the ranking is worse for no AR case as criteria 

including financial and career related ones are more uniformly weighted in these 

approaches. 

 

 
Table 27. Ranks of Stanford University GSB 

 

 Rank 
Ranking Method  Constant No AR AR 100%  

FT Rank 3 N/A N/A 
Normalized Rank 5 N/A N/A 

PROMETHEE Rank 5 N/A N/A 
SE Rank N/A 60 12 

SXE Rank N/A 8 4 
Method 1 Rank N/A 21 4 
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In the second case we examine the rankings of “Purdue University: Krannert” (See 

Table 28). M1 produces a better ranking for the program than others in no AR case. 

The program does not perform very poor in most of the criteria, and performance is 

outstanding for the criteria such as “placement success rank” and “FT doctoral 

rank”.  So we had this school far better ranked by M1 then SXE. This program do 

not have very low negative net flows for most of the criteria but have sufficiently 

larger net flow for the others so it is ranked better by M1. 

 

 
Table 28. Ranks of  Purdue University: Krannert 

 

 Rank 
Ranking Method  Constant No AR AR 100% 

FT Rank 77b N/A N/A 
SMART Rank 70 N/A N/A 

PROMETHEE Rank 66 N/A N/A 
SE Rank N/A 62 81 

SXE Rank N/A 64 73 
Method 1 Rank N/A 47 72 

 

 

“Washington University: Olin” ranks lower then FT, SMART and PROMETHEE in 

all cases as shown in Table 29. The reason for the lower ranking obtained by SXE 

and M1 is that it only ranks better than others in criteria “Faculty with Doctorates” 

and the difference is not notable (the average is already so high). The programs do 

not have high average performance for the other criteria this program performs well 

so the evaluation will not be advantageous in the case of SXE. An examination of 

the score shows that this program ranks in the lowest quartile for 6 of the criteria 

and in second for most of the others.  In the case of SE, it has a low rank as it is not 

marginally different in any of the criteria from the other programs. 
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Table 29. Ranks of Washington University: Olin 

 

 Rank 
Ranking Method  Constant No AR AR 100% 

FT Rank 52a N/A N/A 
Normalized Rank 56 N/A N/A 

PROMETHEE Rank 58 N/A N/A 
SE Rank N/A 75 68 

SXE Rank N/A 70 60 
Method 1 Rank N/A 82 82 

 

 

6.4. Results 

Finally we can conclude that each DEA based ranking methodology has different 

characteristics. When no assurance region constraints are provided these 

characteristics are more apparent but the introduction of assurance region 

constraints forces methods to arrive a similar ranking very quickly. Basic DEA 

CCR model could not rank the programs and even the classification of efficient and 

inefficient set is very poor in case of large number of criteria. SE tends to rank 

marginal programs very high but the marginality is defined locally and a few 

programs having similar scores but very different from large set of programs may 

not be ranked higher. We saw such a case for language criterion in the case study.  

SXE on the other hand favors programs that score similar to most programs. In our 

case most of the schools get similar scores from gender and international diversity 

criterion so they are heavily weighted while programs that have high performance 

in financial and career related criteria are ranked lower. The advantage of SXE is 

that it produces a robust ranking for a fixed set of programs. Proposed method 1 can 

rank programs higher that are significantly better than most of the programs in a 

criterion or a set of criteria and also robust compared to SE method. Also note that 

the selection of indifference and preference values by the DM has an effect on the 

ranks of the programs. Proposed Method 1 increases its correlation with 

PROMETHEE as AR constraints are imposed and becomes the most correlated 
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approach. It is also shown that introducing moderate amount of uncertainty in the 

thresholds does not affect the ranking of proposed method 1 and proposed methods 

1 and 2 produce similar results. 
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CHAPTER 7 

 

CONCLUSION 

 

 

 

In this thesis two methods are proposed based on PROMETHEE and outranking 

methods. In these methods the outranking relations are aggregated using a method 

similar to DEA cross-efficiency ranking. These methods can be used when: 

 

i. When outranking relations can be built but the weight information is not 

available so the aggregation of these relations is a problem. 

ii. When there is only partial information about criterion weights, absolute 

bounds or relative bounds on criterion weights can be specified. 

iii. When both information about the preference structure and weights are not 

precise. The bounds on indifference and preference parameters and 

constraints are used as inputs. 

 

Also the effects of change of parameters of preference functions on net flow are 

analyzed, which will provide benefit for future studies that examine the robustness 

of PROMETHEE methods. 

 

In a case study, the proposed methods together with some other ranking approaches 

are applied to MBA program ranking problem. In this problem the proposed method 

1, produced a robust ranking when there is imprecise information on weights. 

Differences of ranking exist between the proposed method 1 and other DEA based 

methods because proposed method 1 uses preference information taken from the 

DM. 
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As a future work, the approach can be applied for other real-life MCDM problems. 

In our case study proposed method 2 is compared with proposed method 1 in order 

to show that impreciseness introduced in thresholds has minor effects in ranking. 

More detailed analysis of proposed method 2 will provide sensitivity of ranks to 

thresholds. The preference information is taken to be a proportion of performance 

range for the case study. If this information can be obtained from the DM the 

advantages of the method will become more evident.  

 

Also in the case study in the proposed method 2, lower bounds or upper bounds for 

thresholds are used in calculating alternative scores. A more efficient algorithm for 

the selection of thresholds is a problem to be addressed. Similarly the Gaussian 

preference (type 6) function is not studied and used in our analysis and introducing 

it will provide an approach that has a larger scope.  
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APPENDIX A 

 

PROOF OF THEOREM 1 

 

 

 

Remark: 

Let NN babababa ≤≤≤≤ ,,,, 332211 K for Rbbaa NN ∈KK ,,, 11 , 

Then for 0≥kv , 
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Proof: 

Let us define K(p,q) which is independent of weights (vkj) and defined for 

values jkjkj Gqp ∈),(  
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),( kjkj qpK  has an upper bound as the preference function definitions are limited to 

one and number of alternatives is finite. There is a pair of values, let us call 

jkjkj Gqp ∈),( ** such that 

 

jkqpKqpK kjkjkjkj ,),(),( ** ∀≤   
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Then by using the remark and preceeding result 
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Also for any value of ( kjkjkj qpv ,, ) used in the right hand side just replacing these 

values will provide the same result in the left hand side, so it is impossible for right 

hand side to be greater. Then two sides should be equal and proof is completed. 
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APPENDIX B 

 

PROOF OF THEOREM 2 

 

 

 

To simplify the proof let us take an instance problem for a fixed j and k. Dropping 

the corresponding indices, k stands for the index of the alternative that calculations 

are done for and is fixed. 
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Where flows are calculated by using the generic preference function for fixed k and 

j. 
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There are n*n ki
jΔ value where a is the number of alternatives. Some of these values 

may be same as different alternatives may have same value in that criterion.  Now 

let us form a set from these | ki
jΔ | values. The set will have less then 12/)1( +−nn   

members1. Then order these values such that: 

)min()1(
jj Δ=Δ  

M  

|})||,..,{|-min( )1()1()( −ΔΔΔ=Δ k
j

k
j  

M  

)max()(
j

n
j ı Δ=Δ  

where 2/)1(' −≤ nnn  + 1 

 

                                                 
1 The equivalence may be a result of negative differences. 

ikSS ikikki
j ,∀Δ−=−=Δ . So ikik

j
ki

j ,|||| ∀Δ−=Δ  resulting 2/)1( +nn  distinct  

|| ki
jΔ values at most. Diagonals are equal to zero resulting 12/)1( +−nn  values at 

most ( kkk
j ∀=Δ 0 ). Other then these, two alternatives may have same scores 

resulting 0 differences as in case b. Two alternatives may have same scores 

resulting equalities. If alternative k and l have the same scores than for every other 

alternative ( iSSSS il
j

ljijkjijik
j ∀Δ=−=−=Δ |||||||| other then k, l). Even the 

alternative scores may result in different scores. There may be alternatives i, k, l, m 

such that no two of them have same scores but resulting differences will be same 

( |||||||| lmmlkiik SSSS Δ=−=−=Δ ) 

 



 96

We have 'n  intervals such that [ ])2()1( , jj ΔΔ , [ ])3()2( , jj ΔΔ , K , [ ])'()1'( , n
j

n
j ΔΔ −  covering 

the [ ])'(,0 n
jΔ   interval. The q and p values which are positive may be valued between 

one of these intervals or may be greater then | )'(n
jΔ |.  

 

Then we can rewrite the set jG as an intersection of sets based on the above 

formulation as in Table 30. The gray area is discarded as only one point for the 

entire union is feasible (p=q) which is also included in the diagonal set in that row 

where q and p take upper bound values. 

Table 30. Decomposition of Feasible Set into Intervals for q and p 

(q,p) bounds 
for subsets 

q in the 1st 
interval 

…. q in the kth 
interval 

…. q in the n’th 
interval 

p in the 1st 
interval 

( [ ])2()1( ,ΔΔ , 

[ ])2()1( ,ΔΔ ) 

(…………, 
[ ])2()1( ,ΔΔ ) 

( [ ])1()( , +ΔΔ kk , 

[ ])2()1( ,ΔΔ ) 

(…………, 
[ ])2()1( ,ΔΔ ) 

( [ ])'()1'( , nn ΔΔ − , 

[ ])2()1( ,ΔΔ ) 

…. ( [ ])2()1( ,ΔΔ , 

…………) 

(…………, 
………….) 

( [ ])1()( , +ΔΔ kk , 

……………) 

(…………, 
………….) 

( [ ])'()1'( , nn ΔΔ − , 

……………) 
p in the kth 
interval 

( [ ])2()1( ,ΔΔ , 

[ ])1()( , +ΔΔ kk ) 

…………., 
[ ])1()( , +ΔΔ kk

[ ])1()( , +ΔΔ kk , 

[ ])1()( , +ΔΔ kk  

………...., 
[ ])1()( , +ΔΔ kk  

( [ ])'()1'( , nn ΔΔ − , 

[ ])1()( , +ΔΔ kk ) 

…. [ ])2()1( ,ΔΔ , 

………… 

…………, 
…………. 

[ ])1()( , +ΔΔ kk , 

…………… 

…………, 
…………. 

[ ])'()1'( , nn ΔΔ −  

………….. 
p in the n’th 
interval 

( [ ])2()1( ,ΔΔ , 

[ ])'()1'( , nn ΔΔ − ) 

…………, 
[ ])'()1'( , nn ΔΔ −

 

[ ])1()( , +ΔΔ kk , 

…………… 

…………, 
[ ])'()1'( , nn ΔΔ −

 

( [ ])'()1'( , nn ΔΔ − , 

[ ])'()1'( , nn ΔΔ − ) 

 

 

To maximize the objective, q and p will take values that will be in one of the 

intervals given in white cells of Table 30. 

 

i) For subspaces that are feasible and p is definitely greater then q (elements that 

are not neighbor to diagonal elements). 

ii) Neighborhood of diagonal elements p=q is possible only when p takes the 

lowest and q takes the highest value.  

iii) For the diagonal intervals where p=q may be true for the all the set values in 

the interval.  
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Case i: 

Given )1'()'( +Δ≤≤Δ i
j

i
j q , )1'()'( +Δ≤≤Δ k

j
k

j p , then q is valued in the ith interval 

( [ ])1'()'( , +ΔΔ∈ i
j

i
jq )  and p in the kth interval( [ ])1'()'( , +ΔΔ∈ k

j
k

jp ) where  ki ≤+ 2  

and formulate the problem for this specific case. N( ki
jΔ ) is used for denoting the 

ki
jΔ values in the corresponding interval as explained. 

 

Figure 24. Illustration of the Feasible Subset Region for p Strictly Greater than q 

 

For any alternative k, ki
jΔ will either positive or negative.  

 

If 0≥Δ ki
j , then one of the below conditions hold for ki

jΔ  ; 

i) )1'( +Δ>Δ k
j

ki
j  so it will contribute directly to positive outranking flow. 

Assume there are kz such values. 

ii) )'()1'( k
j

ki
j

i
j Δ≤Δ≤Δ +  so it will have proportional contribution to positive 

outranking flow. Assume there are ky such values.  

iii) )'(i
j

ki
j Δ<Δ  so it will not contribute to positive outranking flow. Assume 

there are kx such values. 

 

If 0<Δ ki
j , then one of the below conditions hold for ki

jΔ ; 

q-q -p p 

1 

N4 ( ki
jΔ ) = xk  N5 ( ki

jΔ ) = yk  
N6 ( ki

jΔ ) = zk  
N1( ki

jΔ ) = tk  N2 ( ki
jΔ ) = uk  N3 ( ki

jΔ ) = wk  

 

kiΔ

)1'( +Δ i  )'(iΔ  )1'( +Δ k  )'(kΔ  
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i) )1'( +Δ>Δ− k
j

ki
j  so it will contribute directly to negative outranking flow. 

Assume there are kt such values. 

ii) )'()1'( k
j

ki
j

i
j Δ≤Δ−≤Δ +  so it will have proportional contribution to negative 

outranking flow. Assume there are ku such values.  

iii) )'(i
j

ki
j Δ<Δ−  so it will not contribute to negative outranking flow. 

Assume there are kw such values. 

 

For any alternative k, nwutzyx kkkkkk =+++++   will hold. Assuming qp ≠ and 

replacing equation we get: 
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By replacing the result in the equation we arrive at the function: 
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The z and t terms will not effect the function as long as (p, q) pair do not pass the 

limits causing x, y, z, t, u, w to change.  
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Grouping similar terms we get: 
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By rearranging: 
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Then let us replace the terms that can be calculated by available information in 

order to simplify the formulation: 
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This problem is a fractional programming problem.  

)(
qp

qL
qp

KMax
−

+
−

 

Subject to 

qA ≤  

Bq ≤  

pC ≤  

Dp ≤  

0, ≥qp  

 

Solution can be found by first transforming it to an LP based on method of Charnes 

et al.[14]. Noting than p-q always greater than 0 as p>q. Let )/(' qpqq −= , 

)/(' qppp −= , )/(1 qpz −=  are the variables for the corresponding LP and iS  are 

the slack variables. The LP in standard form is given below: 

 

LqKzMax '+  

Subject to 

01'' =−−qp             (1) 

0' 1 =+− SqAz         (2) 

0' 2 =+− SBzq         (3) 

0' 3 =+− SpCz        (4) 

0' 4 =+− SDzp        (5) 

0,',' ≥zqp              (6) 

 

Where zpp /'= and zqq /'= are the optimal solution of the original fractional 

problem. 
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The maximum objective will be on one of the basic feasible solution. As there are 7 

variables 5 constraints, there will be 21 basic solutions. However all these solution 

will not be feasible, the feasibility of these solutions is shown in Table 31. 

 

Table 31. Basic Solutions of the LP (Subproblem) 

Basic Variables Solution 

p' q' z S1 S2 S3 S4 
Feasible or Not, 

Constraints Causing Inf. p' q' 
Objective 
Fun. Value 

- - √ √ √ √ √ No (1),(6) - - - 

- √ - √ √ √ √ No (1),(6) - - - 

- √ √ - √ √ √ No (1),(6) - - - 

- √ √ √ - √ √ No (1),(6) - - - 

- √ √ √ √ - √ No (1),(6) - - - 

- √ √ √ √ √ - No (1),(6) - - - 

√ - - √ √ √ √ No (1),(5),(6) - - - 

√ - √ - √ √ √ No (1),(2),(5),(6) - - - 

√ - √ √ - √ √ No (1),(3),(5),(6) - - - 

√ - √ √ √ - √ Yes or No* 1 0 K 

√ - √ √ √ √ - Yes or No* 1 0 K 

√ √ - - √ √ √ No (1),(5),(6) - - - 

√ √ - √ - √ √ No (1),(5),(6) - - - 

√ √ - √ √ - √ No (1),(5),(6) - - - 

√ √ - √ √ √ - No (1),(5),(6) - - - 

√ √ √ - - √ √ No (2),(3),(6) - - - 

√ √ √ - √ - √ Yes C/(C-A) A/(C-A) (K+L *A)/(C-A)

√ √ √ - √ √ - Yes D/(D-A) A/(D-A) (K+L *A)/(D-A)

√ √ √ √ - - √ Yes C/(C-B) B/(C-B) (K+L *B)/(C-B)

√ √ √ √ - √ - Yes D/(D-B) B/(D-B) (K+L *B)/(D-B)

√ √ √ √ √ - - No (4),(5),(6) - - - 

*These cases are only feasible when lower bound for q is equal to zero (A = 0), which will make the 

solution equivalent with q=A. 
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Therefore (p,q) pairs for the basic feasible solutions are  (C,A), (D,A), (C,B) and 

(D, B) which means the optimal point of the problem will occur these boundary 

points depending on value of K and L.  

 

So we can conclude that: 
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Case ii: 

Given )1'()'( +Δ≤≤Δ i
j

i
j q , )1'()'( +Δ≤≤Δ k

j
k

j p , then q is valued in the ith interval 

( [ ])1'()'( , +ΔΔ∈ i
j

i
jq )  and p in the kth interval( [ ])1'()'( , +ΔΔ∈ k

j
k

jp ), as these intervals 

are neighboorhood intervals we equate  ki =+1  and replace i, we have 

[ ])1'()'( , −ΔΔ∈ k
j

k
jq  and [ ])1'()'( , +ΔΔ∈ k

j
k

jp  as shown in Figure 25. 

 

 
Figure 25. Illustration of the Feasible Subset Region for p and q in Neighborhood Intervals 

 

 

If p≠q the function to be maximized is: 
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We can call ∆ = )'(k
jΔ , and ∆ = ki

jΔ  = il
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Then if M < 0, to maximize objective, it is better to decrease the contribution of 

second term to zero and equate q = ∆ = )'(k
jΔ  and [ ])1'()'( , +ΔΔ∈ k

j
k

jp  . As all p values 

except p = )'(k
jΔ  is feasible then the upper bound value for p may be selected which 

is )1'( +Δ k
j . 
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If M > 0, then 
)(
)(

qp
q

−
−Δ  is to be maximized. The maximum will occur when p is 

equated to ∆ ( p = ∆ = )'(k
jΔ ). In this case again q can be selected any feasible value 

for instance q = )1'( −Δ k
j .  

 

If p=q, then using generic function the objective value is equal to: 

 
1

)(
)( ,1

−

−−+
−−−+
∑

≠=

n

tuyz
tuyz

iiii

n

kii
kkkk  

 

This value is also same with the M > 0 case. So we can conclude that the maximum 

occurs one of the points (p,q) = ( )1'( +Δ k
j , )'(k

jΔ ),( )'(k
jΔ , )1'( −Δ k

j ) or ( )'(k
jΔ , )'(k

jΔ ). This 

is a subset of combinations of boundary points of the region ( [ ])1'()'( , +ΔΔ∈ i
j

i
jq ), 

( [ ])1'()'( , +ΔΔ∈ k
j

k
jp ) where k=i+1, so by iterating the maximum of the four distinct 

boundary combinations, we can get the maximum for the continuous subspace. 

 

Case iii: 

Lastly let us examine the situation where q and p are in the same interval illustrated 

in Figure 26.  

 

 
 

Figure 26. Illustration of the Feasible Subset Region for p and q in the Same Interval 
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By definition   (∉Δ ki
j

)'(k
jΔ , )1'( +Δ k

j ), so the function does not change value when p 

and q is varied in the interval except boundary points. There will be two distinct 

values function takes.  
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When )1'( +Δ== k
jpq  the function takes another distinct value. As one of these 

values is simply greater we can state that: 
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For all three cases, the maximum occurs in the boundary points. So we can 

conclude that  
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APPENDIX C 

 

MBA PROGRAM RANKING DATA 

 

 

 

Various institutions prepare league tables of full-time MBA programs for the MBA 

applicants. The tables are formed by collecting information from schools and 

alumni and generally smoothed over several years to prevent abrupt rank changes. 

Also these tables do not provide the reader with the raw data and even for some 

categories only rankings for individual criteria are provided. In Table 32 some of 

these rankings are listed. 

 

 
Table 32. MBA Program Rankings 

 
Source No of 

Programs 
Ranked 

No of 
Criteria 

Scope Website Free/Not 
Free 

Bussiness 
Week 

30, 10 N/A US, 
international 

http://www.businessweek.com
/bschools/05/geographic.htm 

Not Free 

Financial 
Times 

100 20 Global http://media.ft.com/cms/c51a4
c7c-8f2d-11da-b430-
0000779e2340.pdf 

Free 

Forbes 67, 18 7 
(Category) 

US, non-US http://www.forbes.com/2003/0
9/24/bschooland.html 

Free 

U.S News 50 10 Global http://www.usnews.com/usne
ws/edu/grad/rankings/mba/bri
ef/mbarank_brief.php 

Not Free 

WSJ 10, 10, 10 5 Natiomal, 
regional, 
international 

http://www.careerjournal.com/
reports/bschool/ 

Free 
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C.1 Financial Times MBA Ranking 2006 Data 

Financial Times Data is reproduced from http://media.ft.com/cms/c51a4c7c-8f2d-

11da-b430-0000779e2340.pdf . 

 

C.2 MBA Criteria Key 

Key for Financial Times 2006 MBA rankings is reproduced from 

http://www.ft.com/CareerAdvisor/MBARankings/pdf/2006_key_mba.pdf. The 

number in parenthesis is the FT weight of the criterion.  

0) Salary Today: An average of salaries – three years after graduation – from the 

2004, 2005 and 2006 surveys. The figure is in US dollars and is not used in the 

ranking.  

1) Weighted Salary (20): The average ‘salary today’ with adjustment for salary 

variations between industry sectors. The figure is a weighted average of salaries 

three years after graduation from the 2004, 2005 and 2006 surveys and is in US 

dollars.  

2) Salary percentage increase (20): The percentage increase in salary from the 

beginning of the MBA to three years after graduation. The figure is a weighted 

average of the increases from the 2004, 2005 and 2006 surveys.  

3) Value for money (3): The value for money criterion is a short-term indicator 

calculated using the salary earned by alumni three years after graduation and course 

costs, including the opportunity cost of not working for the duration of the course.  

4) Career progress (3): The degree to which alumni have moved up the career 

ladder three years after graduating. Progression is measured through changes in 

level of seniority and the size of company in which they are employed. The data in 

this field has been combined with career progress results from the MBA 2005 and 

MBA 2004 surveys.  

5) Aims achieved (3): The extent to which alumni fulfilled their goals or reasons 

for doing an MBA. This is measured as a percentage of total returns for a school.  

6) Placement success (2): The percentage of alumni, who graduated in 2002, that 

gained employment with the help of career advice. The data is presented as a rank. 
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The figure behind the rank is a weighted average of the placement success results 

from MBA 2004, 2005 and 2006.  

7) Alumni recommendation (2): Alumni of 2002 were asked to name three 

business schools from which they would recruit MBA graduates. The figure 

represents the number of votes received by each school. The data is a weighted 

average from the 2004, 2005 and 2006 surveys and is presented as a rank.  

8) Employed at three months (2): The percentage of the most recent graduating 

class that had gained employment within three months. The figure in brackets is the 

percentage of the class on which the school was able to provide employment data.  

9) Women faculty (2): Percentage of female faculty.  

10) Women students (2): Percentage of female students.  

11) Women board (1): Female members of the advisory board, as a percentage.  

12) International faculty (4): The percentage of faculty whose nationality differs 

from their country of employment.  

13) International students (4): The percentage of international students.  

14) International board (2): The percentage of the board whose nationality differs 

from the country in which the business school is situated.  

15) International mobility (6): A rating system that measures the degree of 

international mobility based on the employment movements of alumni between 

graduation and today.  

16) International experience (2): Weighted average of four criteria that measure 

international exposure during the course.  

17) Languages (2): Number of additional languages required on completion of the 

MBA. Where a proportion of students require a further language due to an 

additional diploma, that figure is included in the calculations but not presented in 

the final table.  

18) Faculty with doctorates (5): Percentage of faculty with a doctoral degree.  

19) FT Doctoral rating (5): Number of doctoral graduates from the last three 

academic years with additional weighting for those graduates taking up a faculty 

position at one of the top 50 schools in MBA 2005.  
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20) FT Research rating (10): A rating of faculty publications in 40 international 

academic and practitioner journals. Points are accrued by the business school at 

which the author is presently employed. Adjustment is made for faculty size.  

C.3 Correlation Analysis 

The correlation among each pair of criteria is presented in Table 33. Only for the 

first criterion is significantly correlated with the second which is not used by FT in 

ranking and in the case study.  
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C.4 Normalized Data 

Table 34. Normalized Performance Values for MBA Programs 
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1 University of Pennsylvania: Wharton 0.960 0.822 0.080 0.857 1.000 0.720 0.820 0.877 0.289 0.474 0.067 0.296 0.371 0.798 0.550 0.650 0.000 0.962 1.000 0.990 
2 Harvard Business School 1.000 0.686 0.290 0.714 0.990 0.830 0.650 0.912 0.421 0.632 0.817 0.337 0.315 0.160 0.590 0.470 0.000 0.949 0.820 1.000 
3 Stanford University GSB 0.997 0.729 0.070 0.786 0.980 0.760 0.810 0.930 0.289 0.474 0.267 0.378 0.337 0.213 0.410 0.610 0.000 0.987 0.950 0.980 
4 Columbia Business School 0.849 0.915 0.230 0.750 0.930 0.620 0.840 0.877 0.184 0.447 0.133 0.571 0.270 0.383 0.520 0.360 0.000 0.974 0.810 0.960 
5 London Business School 0.722 0.720 0.120 0.786 0.960 0.710 0.420 0.947 0.184 0.211 0.133 0.908 0.921 0.638 0.970 0.910 0.500 0.987 0.710 0.920 
6 University of Chicago GSB 0.809 0.814 0.200 0.750 0.950 0.470 0.970 0.895 0.184 0.368 0.367 0.357 0.258 0.191 0.380 0.690 0.000 0.974 0.830 0.970 
7 New York University: Stern 0.755 0.881 0.110 0.893 0.900 0.250 0.900 0.860 0.342 0.500 0.217 0.408 0.202 0.032 0.480 0.480 0.000 1.000 0.970 0.890 
8 Dartmouth College: Tuck 0.934 0.881 0.260 0.964 0.880 0.480 0.990 0.895 0.474 0.447 0.350 0.133 0.247 0.106 0.360 0.570 0.000 0.949 0.010 0.870 
9 Insead 0.774 0.415 0.920 0.786 0.950 0.850 0.330 0.807 0.158 0.079 0.217 0.867 0.865 0.798 0.950 0.920 1.000 0.962 0.730 0.940 

10 MIT: Sloan 0.847 0.712 0.520 0.821 0.920 0.580 0.850 0.930 0.158 0.421 0.183 0.296 0.270 0.255 0.560 0.710 0.000 1.000 0.940 0.840 
11 Yale School of Management 0.798 0.949 0.250 0.964 0.770 0.410 0.860 0.825 0.237 0.526 0.300 0.296 0.202 0.074 0.530 0.330 0.000 0.974 0.350 0.750 
12 Instituto de Empresa 0.524 0.932 0.900 0.750 0.590 1.000 0.680 0.807 0.737 0.579 0.367 0.408 0.742 0.894 0.770 0.680 0.500 0.821 0.010 0.170 
13 Iese Business School 0.454 0.890 0.190 0.714 0.820 0.840 0.720 0.982 0.184 0.237 0.167 0.327 0.742 0.926 0.940 1.000 0.500 0.974 0.530 0.530 

14a IMD 0.818 0.322 0.960 0.893 0.840 0.930 0.780 0.912 0.079 0.211 0.167 1.000 1.000 0.809 1.000 0.450 1.000 0.949 0.010 0.430 
14b University of Michigan: Ross 0.714 0.661 0.500 0.893 0.910 0.220 0.950 0.772 0.526 0.447 0.683 0.296 0.281 0.117 0.440 0.440 0.000 0.936 0.890 0.940 
16 UC Berkeley: Haas 0.691 0.619 0.310 0.786 0.850 0.740 0.870 0.877 0.421 0.474 0.300 0.347 0.315 0.085 0.600 0.820 0.000 1.000 0.860 0.950 
17 Northwestern University: Kellogg 0.728 0.593 0.350 0.786 0.970 0.520 0.980 0.877 0.289 0.447 0.150 0.245 0.191 0.064 0.260 0.620 0.000 0.949 0.930 0.920 
18 York University: Schulich 0.350 0.881 0.930 0.714 0.690 0.870 0.160 0.842 0.500 0.632 0.333 0.592 0.685 0.564 0.810 0.780 0.000 0.987 0.290 0.530 
19 UCLA: Anderson 0.769 0.636 0.370 0.750 0.860 0.750 0.830 0.912 0.079 0.500 0.167 0.214 0.191 0.106 0.320 0.700 0.000 1.000 0.710 0.890 
20 University of Oxford: Said 0.733 0.500 0.740 0.750 0.640 0.980 0.240 0.719 0.342 0.237 0.233 0.469 0.933 0.266 0.890 0.550 0.000 1.000 0.310 0.560 
21 Ceibs 0.826 0.949 0.010 0.607 0.380 0.360 0.600 0.965 0.079 0.579 0.167 0.633 0.112 0.532 0.020 0.880 0.500 0.923 0.010 0.300 

22a Manchester Business School 0.499 0.746 0.550 0.857 0.700 0.820 0.410 0.895 0.605 0.289 0.000 0.214 0.865 0.000 0.920 0.950 0.000 0.795 0.920 0.270 
22b HEC Paris 0.502 0.729 0.630 0.750 0.510 0.970 0.700 0.368 0.368 0.395 0.200 0.286 0.831 0.340 0.930 0.900 1.000 0.846 0.500 0.130 
24a University of Virginia: Darden 0.713 0.822 0.330 0.893 0.870 0.730 0.960 0.912 0.447 0.263 0.350 0.010 0.191 0.064 0.300 0.200 0.000 0.936 0.390 0.390 
24b University of Toronto: Rotman 0.435 0.746 0.620 0.786 0.810 0.310 0.500 0.895 0.421 0.289 0.633 0.592 0.404 0.489 0.460 0.160 0.000 0.962 0.760 0.840 
24c RSM Erasmus University 0.523 0.653 0.670 0.464 0.620 0.920 0.170 0.667 0.158 0.368 0.333 0.194 0.944 0.319 0.880 0.990 0.500 0.910 0.870 0.490 
27a Duke University: Fuqua 0.643 0.669 0.020 0.786 0.890 0.320 0.940 0.842 0.421 0.211 0.267 0.337 0.303 0.085 0.220 0.560 0.000 0.936 0.620 0.920 
27b Esade Business School 0.387 0.873 0.470 0.571 0.630 0.940 0.450 0.912 0.579 0.158 0.367 0.153 0.753 0.830 0.860 0.960 1.000 0.667 0.460 0.090 
29 University of North Carolina: Kenan-Flagler 0.585 0.737 0.450 0.786 0.830 0.180 0.880 0.772 0.289 0.316 0.083 0.265 0.213 0.053 0.350 0.590 0.000 0.910 0.710 0.870 
30 Lancaster University Management School 0.461 0.703 0.990 0.607 0.170 0.900 0.350 0.895 0.500 0.421 0.733 0.276 0.742 0.468 0.720 0.860 0.000 0.821 0.920 0.170 

31a Michigan State University: Broad 0.435 0.881 0.610 1.000 0.470 0.030 1.000 0.930 0.395 0.500 0.533 0.061 0.360 0.000 0.180 0.290 0.000 0.936 0.500 0.750 
31b University of Western Ontario: Ivey 0.441 0.703 0.710 0.786 0.800 0.540 0.390 0.895 0.368 0.316 0.217 0.449 0.629 0.479 0.740 0.600 0.000 0.962 0.350 0.760 
33 University of Iowa: Tippie 0.415 1.000 0.760 0.607 0.030 0.370 0.570 0.737 0.368 0.474 0.283 0.153 0.506 0.074 0.500 0.050 0.000 0.910 0.470 0.390 
34 SDA Bocconi 0.391 0.729 0.650 0.179 0.540 0.600 0.190 0.632 1.000 0.237 0.783 0.245 0.461 0.255 0.730 0.930 1.000 0.808 0.990 0.390 
35 University of Cambridge: Judge 0.545 0.364 0.820 0.857 0.560 0.700 0.490 0.737 0.500 0.289 0.500 0.602 0.933 0.479 0.800 0.870 0.000 0.962 0.920 0.490 

36a Georgetown University: McDonough 0.578 0.864 0.270 0.786 0.660 0.420 0.320 0.807 0.579 0.395 0.267 0.235 0.247 0.117 0.390 0.520 0.000 0.897 0.010 0.390 
36b Cornell University: Johnson 0.663 0.593 0.060 0.714 0.780 0.260 0.930 0.807 0.553 0.342 0.250 0.388 0.281 0.468 0.270 0.280 0.000 0.936 0.390 0.750 
38 University of Maryland: Smith 0.482 0.695 0.510 0.786 0.580 0.060 0.520 0.877 0.447 0.447 0.100 0.255 0.326 0.160 0.420 0.040 0.000 1.000 0.760 0.790 
39 University of Illinois at Urbana-Champaign 0.368 0.729 0.490 0.679 0.300 0.390 0.670 0.947 0.447 0.579 0.283 0.276 0.506 0.000 0.280 0.240 0.000 1.000 0.850 0.660 
40 University of Rochester: Simon 0.537 0.746 0.100 0.679 0.390 0.200 0.760 0.807 0.184 0.500 0.233 0.224 0.461 0.479 0.580 0.210 0.000 0.859 0.410 0.530 
41 Carnegie Mellon: Tepper 0.507 0.619 0.140 0.643 0.750 0.120 0.910 0.825 0.289 0.211 0.250 0.378 0.236 0.085 0.290 0.370 0.000 0.949 0.890 0.800 

42a Emory University: Goizueta 0.583 0.602 0.050 0.714 0.680 0.670 0.800 0.895 0.579 0.474 0.250 0.204 0.315 0.074 0.150 0.400 0.000 0.910 0.010 0.840 
42b Pennsylvania State: Smeal 0.446 0.805 0.540 0.643 0.450 0.130 0.690 0.789 0.342 0.289 0.283 0.163 0.270 0.021 0.240 0.430 0.000 0.846 0.540 0.690 
44 McGill University 0.370 0.576 0.970 0.786 0.720 0.530 0.250 0.561 0.579 0.500 0.317 0.459 0.506 0.298 0.910 0.380 0.000 0.731 0.410 0.610 
45 Brigham Young University: Marriott 0.359 0.975 0.830 0.857 0.460 0.460 0.790 0.860 0.026 0.000 0.150 0.000 0.000 0.106 0.190 0.080 0.000 0.897 0.010 0.430 
46 Cranfield School of Management 0.652 0.458 0.850 0.786 0.760 0.910 0.340 0.807 0.474 0.105 0.700 0.214 0.652 0.266 0.660 0.250 0.500 0.615 0.670 0.130 

47a Imperial College London: Tanaka 0.552 0.356 0.780 0.607 0.430 0.770 0.300 0.754 0.395 0.526 0.667 0.735 0.573 0.532 0.620 0.130 0.000 0.936 0.660 0.300 
47b Hong Kong UST Business School 0.208 0.364 0.530 0.607 0.180 0.570 0.740 0.965 0.237 1.000 0.650 0.898 0.899 1.000 0.670 0.940 0.500 1.000 0.600 0.650 
47c City University: Cass 0.488 0.508 0.840 0.250 0.330 0.890 0.210 0.895 0.395 0.368 0.267 0.429 0.685 0.309 0.780 0.420 0.000 0.885 0.800 0.190 
50 Boston University School of Management 0.504 0.653 0.040 0.357 0.430 0.960 0.100 0.877 0.500 0.684 0.267 0.245 0.348 0.149 0.470 0.540 0.000 0.833 0.460 0.560 
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Table 34. Normalized Performance Values for MBA Programs (continued) 
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51 College of William and Mary 0.401 0.881 0.700 0.679 0.170 0.140 0.290 0.684 0.316 0.553 0.183 0.122 0.258 0.000 0.120 0.260 0.000 0.974 0.010 0.300 
52a Washington University: Olin 0.435 0.585 0.130 0.679 0.480 0.210 0.660 0.860 0.237 0.447 0.217 0.469 0.292 0.000 0.200 0.340 0.000 1.000 0.290 0.870 
52b Warwick Business School 0.388 0.407 0.800 0.536 0.730 0.560 0.070 0.842 0.816 0.158 0.533 0.388 0.764 0.340 0.710 0.830 0.500 0.897 0.980 0.270 
54a University of Southern California: Marshall 0.509 0.559 0.030 0.893 0.610 0.230 0.890 0.737 0.553 0.421 0.167 0.245 0.146 0.085 0.160 0.530 0.000 0.744 0.530 0.840 
54b Thunderbird: Garvin 0.436 0.619 0.420 0.536 0.710 0.650 0.430 0.105 0.368 0.421 0.150 0.255 0.371 0.245 0.840 0.770 0.000 1.000 0.010 0.430 
56 University of Georgia: Terry 0.352 0.703 0.860 0.500 0.290 0.510 0.560 0.877 0.395 0.684 0.000 0.092 0.292 0.000 0.130 0.140 0.000 0.923 0.850 0.390 

57a University of Minnesota: Carlson 0.382 0.610 0.220 0.643 0.410 0.040 0.750 0.965 0.421 0.342 0.250 0.184 0.348 0.021 0.450 0.190 0.000 0.923 0.660 0.790 
57b Boston College: Carroll 0.514 0.754 0.380 0.571 0.090 0.340 0.480 0.947 0.711 0.526 0.183 0.143 0.236 0.021 0.050 0.180 0.000 0.821 0.250 0.490 
59a University of Notre Dame: Mendoza 0.463 0.695 0.240 0.786 0.450 0.160 0.580 0.895 0.447 0.237 0.217 0.092 0.191 0.032 0.140 0.630 0.000 0.897 0.010 0.690 
59b Vanderbilt University: Owen 0.497 0.771 0.210 0.750 0.670 0.240 0.550 0.684 0.368 0.289 0.133 0.122 0.315 0.085 0.170 0.100 0.000 0.821 0.250 0.270 
61 University of Washington Business School 0.355 0.534 0.340 0.643 0.260 0.500 0.540 0.930 0.579 0.816 0.183 0.082 0.449 0.032 0.490 0.410 0.000 0.885 0.770 0.690 
62 University of Texas at Austin: McCombs 0.511 0.508 0.390 0.536 0.790 0.170 0.590 0.842 0.500 0.289 0.233 0.173 0.146 0.021 0.230 0.270 0.000 0.910 0.740 0.750 

63a Ashridge 0.880 0.203 0.590 0.714 0.080 0.810 0.130 0.579 0.526 0.211 1.000 0.592 0.461 0.426 0.540 0.850 0.000 0.449 0.010 0.270 
63b Case Western Reserve: Weatherhead 0.360 0.712 0.360 0.464 0.270 0.290 0.260 0.596 0.421 0.316 0.000 0.102 0.281 0.000 0.640 0.310 0.000 0.949 0.560 0.610 
65 University of Bradford/Universiteit Nimbas 0.343 0.483 0.950 0.643 0.110 0.550 0.220 0.877 0.868 0.421 0.333 0.449 0.910 0.351 0.830 0.510 0.000 0.654 0.730 0.090 
66 University of Cape Town 0.865 0.381 0.680 0.429 0.400 0.490 0.020 1.000 0.526 0.316 0.417 0.112 0.337 0.223 0.700 0.740 0.000 0.551 0.250 0.050 

67a Rice University: Jones 0.519 0.576 0.150 0.714 0.650 0.150 0.620 0.877 0.579 0.447 0.167 0.265 0.258 0.021 0.090 0.060 0.000 0.949 0.010 0.490 
67b Temple University: Fox 0.257 0.593 0.690 0.607 0.050 0.380 0.090 0.754 0.263 0.447 0.450 0.367 0.382 0.415 0.850 0.750 0.000 0.910 0.630 0.270 
69 Melbourne Business School 0.497 0.373 0.580 0.107 0.550 0.400 0.050 0.491 0.447 0.289 0.450 0.643 0.854 0.096 0.900 0.670 0.000 1.000 0.220 0.490 
70 Wake Forest University: Babcock 0.402 0.788 0.320 0.750 0.250 0.300 0.400 0.772 0.237 0.158 0.267 0.031 0.202 0.043 0.060 0.070 0.000 0.936 0.010 0.430 
71 University of British Columbia: Sauder 0.247 0.407 0.640 0.679 0.350 0.690 0.460 0.860 0.289 0.526 0.333 0.694 0.607 0.117 0.820 0.730 0.000 0.833 0.640 0.610 

72a Ohio State University: Fisher 0.356 0.602 0.460 0.571 0.500 0.190 0.610 0.930 0.474 0.316 0.167 0.163 0.348 0.021 0.110 0.390 0.000 0.872 0.550 0.750 
72b Arizona State University: Carey 0.366 0.576 0.430 0.500 0.530 0.070 0.470 0.877 0.474 0.395 0.150 0.153 0.180 0.000 0.400 0.660 0.000 0.885 0.800 0.650 
72c SMU: Cox 0.481 0.644 0.170 0.500 0.520 0.350 0.370 0.842 0.474 0.579 0.217 0.122 0.315 0.011 0.250 0.510 0.000 0.872 0.010 0.270 
75a George Washington University 0.439 0.475 0.180 0.679 0.200 0.860 0.200 0.561 0.526 0.974 0.150 0.071 0.360 0.053 0.650 0.110 0.000 0.872 0.800 0.270 
75b Australian Graduate School of Man. 0.493 0.339 0.600 0.393 0.490 0.020 0.440 0.509 0.447 0.474 0.183 0.551 0.764 0.160 0.750 0.840 0.000 0.936 0.430 0.560 
77a Babson College: Olin 0.484 0.492 0.090 0.643 0.570 0.950 0.180 0.825 0.579 0.395 0.350 0.194 0.416 0.074 0.330 0.970 0.000 0.910 0.010 0.270 
77b Purdue University: Krannert 0.414 0.441 0.280 0.607 0.600 0.100 0.920 0.877 0.237 0.211 0.167 0.194 0.225 0.032 0.570 0.100 0.000 0.962 0.960 0.610 
79 University of California: Davis 0.417 0.576 0.400 0.714 0.240 0.450 0.530 0.754 0.500 0.553 0.233 0.378 0.090 0.000 0.080 0.320 0.000 1.000 0.010 0.490 

80a Georgia Institute of Technology 0.352 0.636 0.660 0.607 0.320 0.590 0.630 0.842 0.289 0.263 0.217 0.316 0.146 0.000 0.370 0.230 0.000 0.923 0.320 0.390 
80b University of Wisconsin-Madison 0.405 0.449 0.410 0.571 0.370 0.660 0.770 0.877 0.395 0.553 0.433 0.173 0.146 0.021 0.210 0.040 0.000 0.974 0.570 0.650 
82a Edinburgh University Management School 0.343 0.441 0.810 0.607 0.230 0.790 0.150 0.789 0.474 0.026 0.417 0.388 0.753 0.351 0.690 0.580 0.500 0.808 0.390 0.170 
82b University of California at Irvine: Merage 0.375 0.466 0.300 0.607 0.280 0.090 0.640 0.842 0.658 0.474 0.183 0.337 0.348 0.138 0.070 0.170 0.000 0.923 0.420 0.790 
82c Leeds University Business School 0.205 0.517 0.870 0.571 0.060 0.330 0.060 0.947 0.447 0.553 0.150 0.296 0.787 0.234 0.790 0.300 0.000 0.897 0.590 0.610 
85a Trinity College Dublin 0.648 0.373 0.980 0.750 0.210 0.440 0.120 0.386 0.342 0.842 0.500 0.122 0.618 0.266 0.990 0.150 0.000 0.244 0.210 0.050 
85b Texas A & M University: Mays 0.332 0.610 0.890 0.500 0.320 0.080 0.360 0.965 0.474 0.105 0.100 0.051 0.124 0.000 0.340 0.640 0.000 0.859 0.620 0.620 
87 Queen's School of Business 0.395 0.441 0.790 0.714 0.740 0.630 0.380 0.316 0.632 0.105 0.150 0.439 0.438 0.319 0.510 0.040 0.000 0.846 0.390 0.190 
88 Birmingham Business School 0.278 0.415 0.940 0.071 0.010 0.640 0.510 0.298 0.737 0.737 0.750 0.296 0.899 0.777 0.760 0.220 0.000 0.782 0.440 0.100 
89 University College Dublin: Smurfit 0.402 0.246 0.770 0.393 0.120 0.780 0.080 0.965 0.474 0.211 0.200 0.306 0.472 0.596 0.870 0.460 0.500 0.885 0.350 0.170 
90 Incae 0.000 0.737 0.480 0.357 0.340 0.280 0.270 0.456 0.079 0.526 0.000 0.592 0.787 0.862 0.630 0.810 0.500 0.846 0.010 0.050 
91 University of Tennessee at Knoxville 0.251 0.695 0.750 0.607 0.110 0.050 0.280 0.737 0.447 0.553 0.283 0.020 0.090 0.000 0.100 0.120 0.000 0.795 0.590 0.130 

92a Coppead 0.331 0.576 1.000 0.679 0.020 0.010 0.730 0.000 0.763 0.447 0.283 0.071 0.000 0.000 0.030 0.790 0.500 1.000 0.260 0.050 
92b National University of Singapore 0.156 0.364 0.720 0.571 0.190 0.270 0.030 0.789 0.395 0.316 0.250 0.439 0.955 0.404 0.960 0.890 0.000 0.936 0.270 0.390 
94 University of Durham Business School 0.248 0.297 0.880 0.000 0.080 0.880 0.040 0.895 0.368 0.342 0.217 0.520 0.820 0.415 0.680 0.760 0.500 0.833 0.500 0.390 
95 Pepperdine University: Graziadio 0.344 0.525 0.160 0.607 0.220 0.610 0.140 0.404 0.474 0.763 0.183 0.020 0.270 0.000 0.610 0.350 0.000 0.910 0.010 0.090 
96 University of Florida 0.424 0.636 0.910 0.643 0.130 0.800 0.710 0.842 0.184 0.395 0.100 0.122 0.090 0.000 0.010 0.040 0.000 1.000 0.710 0.750 
97 Ipade 0.175 0.890 0.440 0.429 0.370 0.990 0.310 0.807 0.000 0.132 0.283 0.071 0.011 0.000 0.040 0.720 0.500 0.000 0.010 0.050 
98 University of Alberta 0.120 0.339 0.570 0.750 0.140 0.110 0.110 0.719 0.421 0.421 0.267 0.592 0.427 0.245 0.430 0.490 0.000 0.949 0.310 0.530 
99 ESCP-EAP 0.259 0.000 0.560 1.000 0.040 0.680 0.230 0.614 0.500 0.868 0.117 0.347 0.899 0.777 0.980 0.980 0.500 0.679 0.200 0.090 

100 Nottingham University Business School 0.145 0.305 0.730 0.107 0.150 0.430 0.010 0.754 0.605 0.816 0.633 0.255 0.865 0.138 0.310 0.800 0.000 0.782 0.530 0.390 
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C.5 Descriptive Statistics For the Data Set 

Table 35. Descriptive Statistics for the Data Set 

 

Criteria Mean St.dev. Minimum Q1 Median Q3 Maximum 
Weighted 

Salary 0.4958 0.2060 0.0000 0.3614 0.4576 0.6287 1.0000 

Salary 
Percentage 

Increase 0.6165 0.1956 0.0000 0.4682 0.6186 0.7436 1.0000 

Value for 
Money Rank 0.5050 0.2901 0.0100 0.2525 0.5050 0.7575 1.0000 

Aims Achieved 0.6514 0.1940 0.0000 0.5714 0.6786 0.7857 1.0000 

Alumni 
Recommended 

Rank 0.5058 0.2897 0.0100 0.2525 0.5050 0.7575 1.0000 

Career 
Progress Rank 0.5050 0.2901 0.0100 0.2525 0.5050 0.7575 1.0000 

Placement 
Success Rank 0.5050 0.2901 0.0100 0.2525 0.5050 0.7575 1.0000 

Employed At 
Three Months 0.7858 0.1850 0.0000 0.7412 0.8421 0.8947 1.0000 

Women 
Faculty 0.4134 0.1826 0.0000 0.2895 0.4211 0.5000 1.0000 

Women 
Students 0.4153 0.1965 0.0000 0.2895 0.4211 0.5263 1.0000 

Women Board 0.2920 0.1926 0.0000 0.1667 0.2500 0.3500 1.0000 

International 
Faculty 0.3154 0.2107 0.0000 0.1556 0.2806 0.4235 1.0000 

International 
Students 0.4463 0.2731 0.0000 0.2472 0.3483 0.7275 1.0000 

International 
Board 0.2448 0.2638 0.0000 0.0319 0.1383 0.3989 1.0000 

International 
Mobility 0.5050 0.2901 0.0100 0.2525 0.5050 0.7575 1.0000 

International 
Experience 

Rank 0.5058 0.2890 0.0400 0.2525 0.5100 0.7575 1.0000 
Languages 0.1250 0.2694 0.0000 0.0000 0.0000 0.0000 1.0000 

Faculty with 
Doctorates 0.8812 0.1492 0.0000 0.8462 0.9231 0.9615 1.0000 

FT Doctoral 
Rank 0.4920 0.3153 0.0100 0.2525 0.5150 0.7600 1.0000 

FT Research 
Rank 0.5221 0.2848 0.0500 0.2700 0.5300 0.7575 1.0000 
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APPENDIX D 

 

INFORMATION ON MIXTURE DESIGN 

 

 

In this section we will provide details of the mixture design method that is used to 

evaluate the variability of rankings based on linear aggregation of performance 

values. Basic limitation of such an approach is the number factors which is high.  

 

D.1 Simplex Lattice Design 

First we will provide information on the mixture design based on simplex formed 

by the constraint that sum of the criteria equals to unity:  

1
1

=∑
=

m

j
jw  

For this problem we can use the simplex lattice design approach and MINITAB is 

used for design of mixture. The degree of lattice is chosen as 2, so points other than 

vertices of the simplex can be included. Also using augmentation 20 points and 

center point of the simplex are added. In table we can summarize the points of the 

design and their types: 

 
Table 36. Number of Mixture Design Points for Each Type  

 

Point Type No. 
Vertex 20 

Double Blend 190 
Center Point 1 
Axial Point 20 
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Finally in the above table we selected a sample of 100 points from above design 

points in order to ease calculation of Kendall’s Tau-b correlations. 

 

D.2 D-Optimal Design  

Now we add constraints on mixture weights such that the mixture proportion is 

limited by imposing lower and upper bounds (AR) relaxing the FT weight of the 

criterion j ( jF ) (given in Appendix 0) by 1%, 25%, 50%, 75%, 100%. 

 

Design Expert is utilized and D-Optimal design is used to produce 100 points for 

each relaxation. Linear model and coordinate exchange method is used to find the 

points. Design-Expert uses the CONVERT algorithm to find vertices. (see Piepel, 

Journal of Quality Technology, pp125-133, April, 1988.) 



 116

D.3 Rank Impreciseness for Different AR 
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APPENDIX E 

RANKING RESULTS 

Table 37. Ranking Results 
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1 1 1 8 1 1 1 2 4 7 1 1 1 1 1 8 1 1 1 1 1 8 1 
2 3 3 4 3 3 4 4 6 2 2 2 3 3 3 20 3 3 2 2 2 19 3 
3 5 5 60 5 5 6 9 12 8 4 4 4 4 4 21 5 4 5 5 4 21 5 
4 4 6 33 4 4 5 7 8 14 3 3 2 2 2 19 6 5 4 3 3 18 6 
5 2 2 16 2 2 3 3 2 15 5 5 5 5 6 12 2 2 3 4 5 13 2 
6 8 8 40 8 8 9 13 18 18 8 8 8 7 8 18 8 8 9 9 13 17 8 
7 9 9 46 9 9 8 11 13 12 9 9 6 6 5 28 9 9 8 8 9 28 9 
8 10 10 26 10 10 7 8 7 16 10 10 9 9 10 37 10 10 10 10 12 39 10
9 6 4 3 6 6 2 1 1 11 6 6 11 11 15 2 4 6 6 6 6 2 4 

10 7 7 39 7 7 13 16 20 9 7 7 7 8 9 10 7 7 7 7 7 10 7 
11 11 11 48 11 11 11 12 14 25 11 11 10 10 7 41 11 11 11 12 10 41 11
12 16 17 6 16 16 10 6 3 1 18 17 16 15 14 5 16 15 14 11 8 4 17
13 13 14 18 13 13 14 10 9 17 14 14 14 14 11 6 14 12 12 13 11 6 12

14a 15 12 5 15 15 12 5 5 20 17 18 19 24 34 1 12 13 13 14 14 1 14
14b 14 15 17 14 14 17 21 26 5 13 13 13 13 16 14 15 16 16 18 21 14 15
16 12 13 28 12 12 15 18 23 4 12 12 12 12 13 15 13 14 15 17 19 15 13
17 19 19 51 19 19 24 31 34 23 16 16 17 18 19 16 19 21 23 25 27 20 19
18 18 18 24 18 18 16 14 11 6 19 19 18 16 12 26 18 17 17 16 16 22 18
19 17 16 66 17 17 20 28 33 28 15 15 15 17 17 27 17 18 20 24 25 27 16
20 20 20 42 20 20 19 22 22 41 22 22 23 27 30 42 20 20 21 22 23 42 20
21 29 32 15 29 29 21 15 10 60 23 23 21 20 26 64 32 30 26 26 24 58 32

22a 22 22 19 22 22 18 17 15 24 27 27 27 22 20 23 22 22 18 15 15 25 22
22b 25 26 21 25 25 22 20 17 34 29 30 30 32 32 4 26 23 22 20 18 5 26
24a 32 33 43 32 32 30 27 29 31 28 28 24 25 24 36 33 32 31 27 26 38 33
24b 23 23 38 23 23 25 24 24 21 20 20 20 19 18 30 23 25 28 31 32 29 23
24c 21 21 34 21 21 23 23 21 44 24 26 28 28 27 17 21 19 19 21 22 16 21
27a 28 30 72 28 28 32 36 37 37 25 24 26 29 29 44 30 33 34 34 36 44 29
27b 30 28 11 30 30 26 19 16 30 32 34 36 33 31 7 28 24 24 19 17 7 28
29 26 27 81 26 26 31 33 35 38 21 21 22 21 23 29 27 31 32 33 34 30 27
30 31 31 12 31 31 28 25 19 10 34 32 31 30 28 13 31 28 25 23 20 12 31

31a 34 34 29 34 34 34 32 27 22 33 31 29 26 21 33 35 34 35 35 35 35 34
31b 24 24 64 24 24 27 26 28 29 26 25 25 23 22 32 24 27 30 30 31 31 24
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Table 37. Ranking Results (continued) 

 
   SE SXE Proposed Method 1 PM 2 

FT
 

SM
A

R
T 

PR
O

M
 

SE
 (N

o 
A

R
) 

SE
 (1

%
 R

el
.) 

SE
 (2

5%
 R

el
.) 

SE
 (5

0%
 R

el
.) 

SE
 (7

5%
 R

el
.) 

SE
 (1

00
%

 R
el

.) 

SX
E 

(N
o 

A
R

) 

SX
E(

1%
 R

el
.) 

SX
E 

(2
5%

 R
el

.) 

SX
E 

(5
0%

 R
el

.) 

SX
E 

(7
5%

 R
el

.) 

SX
E 

(1
00

%
 R

el
.) 

M
 1

 (N
o 

A
R

) 

M
1 

(1
%

 R
el

.) 

M
1 

(2
5%

 R
el

.) 

M
1 

(5
0%

 R
el

.) 

M
1 

(7
5%

 R
el

.) 

M
1 

(1
00

%
 R

el
.) 

M
2 

(N
o 

A
R

) 

M
2 

(1
%

 R
el

.) 

71 54 50 86 54 54 52 53 55 35 59 59 63 63 63 31 49 50 51 54 56 32 50
72a 72 68 77 72 72 72 73 71 63 69 69 67 67 69 73 68 70 74 78 81 73 68
72b 66 62 89 66 66 70 71 72 57 61 61 64 65 62 68 62 62 64 64 67 68 63
72c 88 91 95 88 88 89 91 93 87 86 86 85 82 81 97 91 89 85 85 84 97 91
75a 74 76 13 74 74 76 76 78 74 78 78 79 78 76 81 76 72 68 62 58 82 76
75b 59 59 85 59 59 65 70 74 76 66 66 69 74 78 53 59 65 66 70 73 54 59
77a 83 85 41 83 83 81 82 83 77 84 83 84 85 84 94 85 83 83 83 80 93 84
77b 70 66 62 70 70 74 78 81 64 65 65 68 73 73 47 66 69 70 71 72 50 66
79 87 89 74 87 87 86 90 90 68 82 82 81 79 77 91 89 91 92 91 90 90 89

80a 80 78 94 80 80 83 87 87 67 76 76 74 69 70 66 78 76 76 74 68 67 78
80b 78 77 80 78 78 82 89 91 45 75 75 78 76 74 59 77 79 80 84 85 61 77
82a 77 74 97 77 77 75 77 79 71 83 84 86 86 85 52 73 71 67 61 59 51 75
82b 81 80 59 81 81 84 86 86 62 81 81 82 83 83 84 80 86 90 92 95 84 79
82c 64 60 52 64 64 62 56 48 53 74 74 76 70 68 77 60 63 65 67 69 75 60
85a 84 87 10 84 84 80 72 63 99 87 87 88 88 93 70 87 85 84 81 77 70 88
85b 76 72 50 76 76 78 79 76 69 72 72 71 68 67 74 72 75 77 76 78 74 71
87 86 86 78 86 86 91 92 95 90 88 88 87 87 86 57 86 82 81 79 76 60 86
88 90 83 14 90 90 85 81 75 54 91 91 92 90 92 22 83 81 82 82 79 26 85
89 92 90 58 92 92 92 93 94 72 89 89 89 93 95 60 90 90 89 86 86 56 90
90 93 93 82 93 93 93 80 64 97 94 95 95 95 91 54 93 93 93 93 93 53 93
91 96 94 99 96 96 96 97 96 94 95 94 93 91 87 90 94 94 94 94 92 89 94

92a 94 97 22 94 94 95 94 89 83 93 93 94 92 90 45 97 95 95 95 94 48 98
92b 89 84 61 89 89 90 84 82 82 92 92 91 89 88 76 84 87 87 88 89 76 83
94 85 82 71 85 85 87 85 85 75 90 90 90 94 94 46 82 84 86 90 91 43 82
95 99 96 90 99 99 97 96 98 98 96 96 96 96 96 99 96 96 96 96 96 99 97
96 52 53 31 52 52 50 50 44 48 48 48 46 46 45 51 53 54 54 57 60 52 53
97 100 100 76 100 100 100 100 97 100 98 98 98 98 98 85 100 100 100 100 98 85 100
98 97 98 88 97 97 98 98 100 86 97 97 97 97 97 96 98 99 99 99 100 95 96
99 95 99 7 95 95 94 95 92 78 99 100 100 100 100 40 99 98 97 97 97 40 99

100 98 95 44 98 98 99 99 99 80 100 99 99 99 99 78 95 97 98 98 99 78 95
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Table 37. Ranking Results (continued.) 
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33 37 36 37 37 37 35 35 31 49 37 37 35 31 25 56 36 35 33 32 30 57 36
34 33 29 2 33 33 33 29 25 19 31 33 34 34 33 11 29 29 29 29 28 11 30
35 27 25 20 27 27 29 30 30 13 30 29 32 36 38 9 25 26 27 28 29 9 25

36a 43 46 83 43 43 40 39 39 56 39 39 38 37 37 86 46 45 44 40 39 86 46
36b 36 37 47 36 36 38 44 57 39 36 36 37 39 42 50 37 38 40 41 44 49 37
38 35 39 67 35 35 37 37 38 40 35 35 33 35 35 65 39 39 41 43 45 64 38
39 39 41 56 39 39 41 38 36 27 40 40 40 38 36 48 41 41 42 42 42 46 40
40 42 44 96 42 42 45 48 54 73 42 42 42 43 44 61 44 44 45 45 43 62 44
41 41 40 84 41 41 43 43 52 50 38 38 39 42 43 43 40 43 46 48 50 45 41

42a 46 49 57 46 46 44 46 53 43 44 44 44 45 46 75 50 51 53 59 61 77 49
42b 45 45 98 45 45 48 47 46 59 43 43 41 40 39 58 45 47 48 49 48 59 45
44 40 38 35 40 40 42 42 43 42 41 41 43 41 40 38 38 37 37 38 40 37 39
45 63 67 55 63 63 53 51 42 84 57 57 48 44 41 72 67 60 56 52 51 71 67
46 44 42 23 44 44 39 40 40 51 46 47 47 49 57 24 42 40 36 36 33 24 43

47a 49 48 45 49 49 49 49 47 36 50 50 51 53 64 34 48 48 47 46 46 33 48
47b 38 35 1 38 38 36 34 32 3 45 45 50 48 49 3 34 36 38 44 47 3 35
47c 48 47 70 48 48 46 41 41 47 51 51 52 50 53 39 47 46 43 39 38 36 47
50 50 51 53 50 50 51 60 66 65 47 46 45 47 47 88 51 49 50 50 52 87 51
51 79 81 79 79 79 73 69 62 89 79 79 65 62 54 98 81 80 78 73 64 98 81

52a 56 58 75 56 56 61 61 68 70 56 56 54 56 60 82 58 66 71 77 82 83 58
52b 47 43 27 47 47 47 45 45 26 52 52 58 60 59 25 43 42 39 37 37 23 42
54a 51 55 65 51 51 59 67 73 55 49 49 49 52 56 62 55 56 61 65 71 63 55
54b 57 61 69 57 57 56 59 59 92 58 58 57 57 58 63 61 57 59 58 57 65 62
56 65 65 36 65 65 69 63 60 46 62 62 61 55 48 49 65 59 57 53 53 47 65

57a 55 54 63 55 55 57 58 56 52 54 54 53 51 50 71 54 55 58 60 65 72 54
57b 67 73 49 67 67 64 66 70 58 63 63 59 58 55 93 74 73 72 68 66 92 72
59a 71 75 87 71 71 66 68 69 79 64 64 62 64 61 92 75 77 79 80 83 94 73
59b 75 79 100 75 75 77 75 77 95 77 77 72 72 72 87 79 78 75 69 62 88 80
61 53 52 32 53 53 55 57 58 32 55 55 56 54 51 55 52 52 52 55 55 55 52
62 58 56 91 58 58 67 74 80 61 53 53 55 61 65 67 57 58 63 66 70 69 56

63a 69 71 9 69 69 63 55 51 93 70 70 75 84 89 79 71 74 73 75 74 79 74
63b 62 63 92 62 62 68 65 65 91 60 60 60 59 52 89 63 61 62 63 63 91 61
65 61 57 25 61 61 54 52 49 33 73 73 77 71 71 35 56 53 49 47 41 34 57
66 68 70 30 68 68 60 54 50 88 67 67 66 77 82 83 70 64 55 51 49 81 70

67a 82 88 73 82 82 79 83 88 81 80 80 80 80 80 95 88 88 88 87 88 96 87
67b 73 69 68 73 73 71 64 61 66 71 71 73 66 66 69 69 67 60 56 54 66 69
69 60 64 54 60 60 58 62 67 85 68 68 70 75 79 80 64 68 69 72 75 80 64
70 91 92 93 91 91 88 88 84 96 85 85 83 81 75 100 92 92 91 89 87 100 92
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APPENDIX F 

 

RANK CORRELATIONS 

 

 

 

Kendall’s Tau-b rank correlations for various rankings are provided in the following 

tables. 

 

 
Table 38. Correlation of Methods (No AR) 

 

 FT SMART PROM SE SXE M1 
FT 1.000 0.852 0.819 0.294 0.580 0.459 

SMART 0.852 1.000 0.954 0.324 0.666 0.554 

PROM 0.819 0.954 1.000 0.333 0.692 0.583 

SE 0.294 0.324 0.333 1.000 0.439 0.450 

SXE 0.580 0.666 0.692 0.439 1.000 0.676 

M1 0.459 0.554 0.583 0.450 0.676 1.000 

 

 
Table 39. Correlation of  Methods (AR with 100% Relaxation around FT Weights) 

 

 FT SMART PROM SE SXE M1 
FT 1.000 0.852 0.819 0.761 0.847 0.806

SMART 0.852 1.000 0.954 0.798 0.875 0.824

PROM 0.819 0.954 1.000 0.796 0.860 0.825

SE 0.761 0.798 0.796 1.000 0.805 0.820

SXE 0.847 0.875 0.860 0.805 1.000 0.825

M1 0.806 0.824 0.825 0.820 0.825 1.000
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Table 40. Correlation of Methods (AR with 75% Relaxation around FT Weights) 

 

 FT SMART PROM SE SXE M1 
FT 1.000 0.852 0.819 0.815 0.876 0.821

SMART 0.852 1.000 0.954 0.870 0.923 0.867

PROM 0.819 0.954 1.000 0.861 0.901 0.870

SE 0.815 0.870 0.861 1.000 0.877 0.871

SXE 0.876 0.923 0.901 0.877 1.000 0.874

M1 0.821 0.867 0.870 0.871 0.874 1.000

 

 
Table 41. Correlation of Methods (AR with 50% Relaxation around FT Weights) 

 

 FT SMART PROM SE SXE M1 
FT 1.000 0.852 0.819 0.857 0.883 0.827

SMART 0.852 1.000 0.954 0.932 0.955 0.907

PROM 0.819 0.954 1.000 0.914 0.918 0.917

SE 0.857 0.932 0.914 1.000 0.924 0.914

SXE 0.883 0.955 0.918 0.924 1.000 0.890

M1 0.827 0.907 0.917 0.914 0.890 1.000

 

 
Table 42. Correlation of Methods (AR with 25% Relaxation around FT Weights) 

 

 FT SMART PROM SE SXE M1 
FT 1.000 0.852 0.819 0.852 0.855 0.831

SMART 0.852 1.000 0.954 1.000 0.992 0.938

PROM 0.819 0.954 1.000 0.954 0.950 0.956

SE 0.852 1.000 0.954 1.000 0.992 0.938

SXE 0.855 0.992 0.950 0.992 1.000 0.935

M1 0.831 0.938 0.956 0.938 0.935 1.000
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Table 43. Correlation of Methods (AR with 1% Relaxation around FT Weights)  

 

 FT SMART PROM SE SXE M1 
FT 1.000 0.852 0.819 0.852 0.852 0.818

SMART 0.852 1.000 0.954 1.000 1.000 0.952

PROM 0.819 0.954 1.000 0.954 0.954 0.998

SE 0.852 1.000 0.954 1.000 1.000 0.952

SXE 0.852 1.000 0.954 1.000 1.000 0.953

M1 0.818 0.952 0.998 0.952 0.953 1.000

 

 




