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ABSTRACT

HYBRID RANKING APPROACHES BASED ON
DATA ENVELOPMENT ANALYSIS AND OUTRANKING RELATIONS

Eryilmaz, Utkan
M.S., Department of Industrial Engineering

Supervisor: Assist. Prof. Dr. Esra Karasakal

December 2006, 122 pages

In this study two different hybrid ranking approaches based on data envelopment
analysis and outranking relations.for ranking alternatives are proposed Outranking
relations are widely used in Multicriteria Decision Making (MCDM) for ranking the
alternatives and appropriate in situations when we have limited information on the
preference structure of the decision maker. Yet to apply these methods DM should
provide exact values for method parameters (weights, thresholds etc.) as well as
basic information such as alternative scores. DEA is used for classification of
decision making units according to their efficiency scores in a non-parameteric way.
The proposed hybrid approaches utilize PROMETHEE (a well known method
based on outranking relations) to construct outranking relations by pairwise
comparisons and a technique similar to DEA cross-efficiency ranking for
aggregating comparisons. While first of the proposed approaches can deal with
imprecise specification of criterion weights, second approach can utilize imprecise

weights and thresholds.

Keywords: Data envelopment analysis, Outranking relations, PROMETHEE, Cross-
efficiency, Ranking
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VERI ZARFLAMA ANALIZI VE BASKINLIK ILISKILERINI
TEMEL ALAN HIBRIT SIRALAMA YAKLASIMLARI

Eryilmaz, Utkan
Yiiksek Lisans, Endiistri Miithendisligi Boliimii
Tez Yoneticisi: Yrd. Dog. Dr. Esra Karasakal

Aralik 2006, 122 sayfa

Bu c¢alismada veri zarflama analizi ve baskinlik iligkileri metodlarina dayanan iki
ayr1 hibrit siralama yaklagimi onerilmektedir. Baskinlik iligkileri metodlar1 ¢ok
kriterli karar verme (CKKV) problemlerinde siralama i¢in yaygin kullanimi olan ve
karar vericinin tercih yapist hakkinda smirli bilginin oldugu durumlarda kullanimi
uygun metodlardir. Bu metodlarin kullanimi i¢in karar vericinin kriter skorlar1 gibi
temel bilgilerle beraber bir¢cok parametreyi (kriter agirliklari, esik degerleri vb.) tam
olarak belirlemesi gerekir. Veri zarflama analizi (VZA) ise karar verme birimlerinin
verimliliklerine gore parametrik olmayan bir sekilde siniflandirilmasinda kullanilir.
Onerilen yaklasimlar PROMETHEE (baskinlik iliskileri metodu) yoluyla baskinlik
iligkilerinin ikili karsilastirmalarla olusturulmasinda ve VZA c¢apraz verimlilik
siralamas1 benzeri bir yontemi ise baskinlik iliskilerinin birlestirilmesinde
kullanmaktadir. Birinci yaklasim kriter agirliklarinin eksik bir sekilde belirtildigi
durumda, ikinci yaklasim ise hem kriter agirliklarinin hem de tercih fonksiyonu esik

degerlerinin net olmadigi durumda kullanilabilmektedir.

Anahtar Kelimeler: Veri Zarflama Analizi, Baskmlk Iliskileri PROMETHEE,

Capraz Verimlilik, Siralama.
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CHAPTER 1

INTRODUCTION

In multi-criteria decision making problems where there is a finite number of
alternatives, the decision maker (DM) may aim to select the best alternative, rank
the alternatives or sort/classify the alternatives. For ranking the alternatives from
most desired to least in the presence of multiple criteria, there are several different
methods. In the MCDM framework two distinct viewpoints exist, multi-attribute

utility based methods and outranking relations.

In contrast to multi-attribute utility based methods, outranking methods avoid
making strong assumptions about the preference structure of the decision maker.
These methods are based on collecting evidence about the preferences of the
decision maker by building outranking relations from pairwise comparisons. Most
known outranking methods are ELECTRE [62] and PROMETHEE [10] both of

which also have many variants.

PROMETHEE method forces DM to specify weights and thresholds precisely at the
beginning of the decision process. To minimize the number of parameters the
decision maker has to provide precisely in the beginning of the solution process, in
this study we propose two different approaches. In the first approach the DM
determines his preference structure (preference functions and preference function
parameters) for each criterion in the same way described by the PROMETHEE
method, except the criterion weights. Aggregation is done for each alternative by

maximizing its own score relative to average of the others and overall ranking is



done by aggregation of these evaluations. Two different ideas borrowed from DEA
approach is used in the development of the methods. First is that the aggregation of
outranking information among criteria is done based on most favorable weights for
each alternative similar to the main idea of DEA, and secondly final ranking is done
based on both self evaluation and other alternatives’ evaluations in the same way as
DEA cross-efficiency method does. Constraints similar to assurance region
constraints used in DEA based methods and global constraints on the criterion
weights can be added. In the second method the DM may also specify lower and
upper bounds for the preference function parameters. For each criterion pairwise
outranking relations are built such that the preference of the alternative under

consideration is maximized.

The organization of the thesis is as follows:

In Chapter 2, we review the literature on DEA models, relation between DEA and
MCDM, ranking methods based on DEA, application of DEA ranking in MBA
programs, PROMETHEE method and alternative approaches for determining
parameters in PROMETHEE. In Chapter 3, we present the background information
on PROMETHEE method, DEA, cross-efficiency ranking approach, and types of
constraints imposed in DEA models. In Chapter 4, we introduce our approaches and
in Chapter 5 we describe the decision aid we develop to implement our methods. In
the conclusion chapter, we discuss the significance of this study and indicate

direction for further research.



CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the literature on DEA and PROMETHEE. In Section 2.1
we present a review of DEA methods, relation between DEA and MCDM, DEA
based ranking approaches, and application of DEA in MBA programs ranking. In
Section 2.2, we present PROMETHEE and review studies that aim to deal with the
DM’s problem of determining parameters in PROMETHEE and incorporating

imprecise information.
2.1. Data Envelopment Analysis

There has been extensive research and literature on DEA. Seiford [67] provides
exhaustive list of DEA journal articles. Tavares [71] also supplies various statistics
based on publication type, author, keywords, journal, university and country in
addition to exhaustive listing of publications. Examining the keyword statistics, it
can be concluded that main application domains for DEA are bank evaluation and
educational institution evaluation. Gattoufi et al. [31] provides an exhaustive list
containing refereed journal publications, books, conference proceedings and
technical reports. They also analyzed the content of the DEA publications between
1996 and 2001 and classified them according to their nature (theory, application or
both) and research strategy used [30].

In Section 2.1.1 general DEA models are briefly presented. Section 2.1.2 review the

studies that aim to investigate the relationship between MCDM and DEA



approaches and Section 2.1.3 presents DEA based ranking approaches. Finally
studies that deal with application of DEA in MBA programs ranking are presented.

2.1.1 Models

The first explicit introduction of DEA method was by the classic paper of Charnes
et. al. [15]. In this paper an efficiency concept based on multiple inputs and outputs
is developed and a method for determining an efficient set of units based on
observational data is provided. The model they provide solely based on the idea of
Pareto efficiency principle which is “a unit is fully efficient if and only if none of its
input or outputs can be improved without worsening some of its other inputs and
outputs.” Former study for measuring the efficiency of units was by Farell [26]

which deals with single output case.

Primary distinguishing factor of DEA efficiency analysis is that each Decision
Making Unit (DMU) is scored to increase its own advantage —an input or output of
which a DMU ranks better is weighted higher when calculating the score of the
DMU- with minimum required input from the analyst [15]. For the simplest DEA
model the only data needed for DEA analysis is the levels of inputs and outputs for

each DMU.

Later the DEA formulation of Charnes et al. [15] which is called the CCR model
was modified and alternative formulations were introduced. The assumption of
CCR model was that the inputs and outputs can be scaled such that the ratio of
inputs and outputs stays constant. The BCC formulation proposed by Banker et al.
[6] adds another constraint to the CCR model for variable returns to scale
production frontier which limits the scaling of the DMUs. DMU that may not be
efficient compared to set of DMUs based on constant returns to scale DEA model
(CCR model), may be efficient if variable returns to scale model is used (BCC

Model).

Both of these models require solving two linear programming (LP) problems, first

to maximize efficiency and to find the efficiency score, second to find slacks and

4



discriminate weakly efficient DMUs. Alternatively objectives of the two LPs can be
combined using a very small archimedean constant (¢) as a multiplier for the second

objective.

In CCR or BCC models solution is found either by projection in the input space by
taking the outputs constant or in the output space by taking the inputs constant. The
set of DMUs classified as efficient will be the same while the efficiency scores of

the inefficient DMUs will differ for input and output oriented models.

To decrease computational burden, additive formulation was developed to enable
finding efficient DMUs by solving the LP once for each DMU. In this model both
input and output slacks are varied simultaneously [13]. As the efficiency of the unit
is concluded by the sum of slacks, the calculated efficiency score is not intuitive as
in CCR or BCC. In addition to decreased computational burden, the additive model
has advantage of translation invariance (i.e. translation of input or output measures
do not effect efficiency score) but also has some drawbacks as direct inefficiency

score is based on slacks and hard to interpret [19].

CCR, BCC and additive model are equivalent in the fact that they project inefficient
DMUs radially to efficient frontier meaning that the efficiency scores are found
based on a radial measure from the frontier [19]. Yet the efficient set of DMUs may
change depending on the return to scale characteristics assumed (i.e. CCR has CRS
assumption, BCC has VRS assumption, additive model may have CRS or VRS
assumption). Moreover, as the efficient set and frontier is affected, therefore the
scores of the inefficient DMUs based on the radial distance to the frontier may also

differ.

A more recent measure of efficiency, slack based measure (SBM), is suggested by
Tone [74]. Tone [74] states that commonly accepted desirable attributes of a DEA
based efficiency measure are units invariance (the efficiency score should not

depend on criteria measure as long as it is applied to all criteria equally), being



monotonic (shall increase as any of the outputs increase, decrease as any of the
inputs increase and vice vs.) and translation invariance (no change with translation
of criteria), concluding that such a measure shall only depend on the reference
efficient DMU’s and develops a slack based measure for efficiency. A method for
dealing with zero inputs and outputs and comparison with Russell efficiency

measure which is more commonly used in economics literature is presented.

2.1.2 MCDM and DEA Relationship

The interactive approach given by Belton and Vickers [7] was one of the first
attempts to use DEA as an MCDM tool. Aggregated inputs and outputs are used
and both input weights and output weights add up to unity. A unit or alternative is
efficient if it can obtain a combination of input and output score that is higher than
those of other units based on goal programming formulation. Also for a user
controllable set of inputs and outputs the aggregated input and output is displayed.
This study also states the coincidence between DEA and MCDM where alternatives
in MCDM terms are regarded as DMUs and criteria are regarded as inputs and
outputs. Stewart also analyzes the correspondence between the ratio form efficiency
definition and distance to the pareto frontier in linear form value function model

[70].

Li [51] proposed a multi criteria approach to DEA problem by formulating the first
objective maximizing self efficiency, second minimizing maximum of deviation of
the input or outputs from the efficient point (slacks) and third minimizing sum of

the deviations (slacks).

Joro et al. [46] showed the connection between DEA and MOLP approaches
formulating DEA as a reference point model and reference point model as a DEA
model. Later these results are used by Halme et. al. [34] to arrive at different
measures of efficiency that incorporates DMs preferences called value efficiency.
An interactive way for improvement of the calculation of value efficiency is

presented later by Joro et. al. [47].



Besides these approaches there are attempts to use several multiple criteria
approaches with DEA simultaneously. A short review of such studies on use DEA
with AHP is given by Ramanathan [60]. Another approach that incorporates DEA
and MAVT is given in Mavrotas and Trifillis [54].

2.1.3 DEA Based Ranking Approaches

At first DEA was developed for differentiating between efficient and inefficient
DMUs. Later DEA researchers aim to rank both efficient and inefficient DMUs.
Adler et al. [1] made a survey of DEA ranking approaches. Sarkis et. al. [66]

compares some of these methods with other MCDM methods.

The first approach for full-ranking using DEA was cross-efficiency approach [24].
It was based on former work that utilizes DEA to rank units based on votes.
Aiming at consensus it may be utilized in cases where the DMUs are also part of the
decision process. Each DMU evaluates itself and also other DMUs, and final
evaluation is based on average of these evaluations. The problem is that during self
evaluation the set of weights that a DMU is classified as efficient is not unique. To
arrive unique weights two different approaches are formulated namely aggressive
and benevolent cross-efficiency. Both solve for the weights formulating a second
LP model either by suppressing other DMUs efficiency scores (aggressive model)
or favoring them while holding the efficiency score of the DMU under

consideration constant at the level found in first LP.

Benchmarking approach which may not result with a full-rank use the number of
times the efficient unit is in the reference set for inefficient DMUs as a basis for
ranking efficient units [1]. Being a simple measure and can be obtained easily, the

model is the most used approach in available DEA software tools [20].

Another ranking approach is the super-efficiency approach of Andersen and
Peterson [4] also called AP method. In this method, the units having an efficiency

value of one are marked as efficient and are scored by running DEA again by
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excluding corresponding constraint that prevents them having an efficiency value
greater than one. It has weak points such that the dual formulation ends up with
infeasible solutions, and very small input values may cause very high variability in

DEA scores.

Tone [75] proposes to use SBM for ranking both efficient and inefficient units. The
inefficient units are ranked as in AP method (by excluding the constraint for the
efficient unit under consideration) by using input or output oriented SBM. The zero

values in input or output levels are handled by the model.

Other variants that use DEA and aim to rank all the DMUs exist in the literature
[S1[36][37][39][41][57].

Bouyysou [9] presents some weaknesses of DEA use in the MCDM problems. First
the simple DEA models -which aim only ranking inefficient units- are criticized for
not being able produce a consistent rank for inefficient units as different models
produce different rankings and all the efficient units are ranked better than
inefficient units. Secondly, super-efficiency approach [4] has additional problems
such as rank reversal occurs for efficient unit when a similar inefficient unit is
introduced. Third different cross-efficiency methods [24] produce different rankings
with different formulations and an alternative may rank better when its score on one

of the criteria is decreased.

Main application areas of DEA are bank evaluation and educational institution
evaluation [29]. Cooper et.al. [20] presents other application areas of DEA, such as
engineering applications, benchmarking in sports, retailing applications, health care
applications. DEA is firstly used as a method for evaluating non-profit
organizations; recently it is used for performance appraisal of firms from various

sectors.



2.1.4 Ranking of MBA Programs

There are a large number of studies that evaluate performance of universities,
university departments etc. using DEA. We present a survey of studies that evaluate
particularly MBA programs. Also some of these studies introduce extensions to

original DEA method.

The first study [65] utilizing DEA for MBA program evaluation introduces different
perspectives and focuses on the applicants perspective. In that sense it is the first
paper that uses DEA to evaluate a university department from the applicant’s
perspective. The applicant can select the relevant criteria among The Times league
table, categorize them as less important, important, very important that are modeled
as weight restrictions enabling a nearly complete rank. The second study [56]
utilizes five criteria, where the performances are gathered from “Peterson’s Guide
to MBA Programs” and puts weight restrictions on each pair of outputs and inputs.
Negative perturbations to performances of the efficient DMUSs are done to examine
whether their efficiency status changes or not. The third study [17] also
accommodates different viewpoints of students and recruiters and adjusts outputs
accordingly. Also outputs and inputs are combined for some of the trials resulting
smaller number of efficient units as expected. More recent study [61] uses CCR,
BBC and Russell efficiency measure to rank the business schools based on business

week data.
2.2. Outranking Methods

Outranking methods are developed as an alternative to utility based approaches
which aim to model the underlying preference structure of the decision maker based
on strong assumptions. The outranking information is collected by pairwise
comparisons and formulating statements whether an alternative is inferior,

indifferent or preferred to another alternative.

Also the degree of uncertainty in criteria can be modeled by pseudocriteria concept

and incorporated in the decision process. According to the pseudoucriteria concept,
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we cannot state that evidence of an alternative outranking another for a given
criterion for which the performance advantage do not pass a certain threshold called
the indifference threshold. The indifference value can be interpreted as the
minimum margin of error acceptable to the DM or the minimum value of difference
resulting a perception of difference by the DM. The preference threshold value can
be interpreted as maximum margin of error acceptable or the minimum value that

indicates a certain preference of the DM for the given criterion.

The weight concept used in outranking relations is distinct from the weight concept
of multi attribute utility based methods as they represent the relative importance of

the criteria [29].

PROMETHEE method is introduced by Brans et al. [10][11]. Unlike Electre’s
concept of concordance and discordance, positive and negative outranking flow
concepts are used for gathering evidence about preference of alternatives and
building the outranking relation. After aggregation of outranking relations criterion
wise ranking is done by using the information on the level of evidence that shows
how much the alternative outranks other alternatives (positive outranking net flow)
and how much the alternative is outranked by others (negative outranking net flow).
PROMETHEE I relies on an ordinal aggregation of these evidence and produces a
partial rank where a better ranked alternative has both a higher positive outranking
net flow and a lower negative outranking net flow. PROMETHEE II aggregates

these evidences cardinally and produces a complete rank [8].

As obtaining exact values of parameters from the DM is a problem, so fuzzy
PROMETHEE (F-PROMETHEE) method [32] and Monte Carlo Simulation with
PROMETHEE [35] are proposed to cope with imprecise information. In F-
PROMETHEE the alternative performance values are regarded as fuzzy parameters
and ranking is done accordingly. First limitation of the F-PROMETHEE is that the
criterion weights are taken as crisp with special difficulty of incorporating fuzzy

weights as they add up to one. Also the studies do not provide an example of

10



specifying fuzzy preference parameters and only the alternative performances are
modeled by fuzzy variables. In the second approach, the distribution functions are
assigned to parameters based choices of group of decision makers, which are later
used to generate data and calculate rankings. In general it will be hard to provide
enough number of estimations for these parameters by the DMs to formulate a

distribution function for the PROMETHEE parameters.

There is another study that aims to compute the credibility indices of Electre
method given partial information on pseudocriteria, namely preference, indifference
and veto parameters and criterion weights [22]. Under partial information about the
parameters, robustness of outranking among two actions is examined. The study
does not deal with ranking of the alternatives or robustness of ranking if more then
two actions are present. Another study based on Electre method aims to find the
weights that makes the certain alternative best when weights are imprecise [58].
The study does not provide the solution exactly and an interactive search procedure

is proposed.

Ozerol and Karasakal [59] develop a PROMETHEE based interactive approach for
selecting best alternative and ranking the alternatives when the criterion weights
and preference function parameters are imprecise. However, this method do not

guarantee complete ranking.

The review of the relevant literature demonstrates that there seems to be no method
aiming complete ranking when there is no or partial information on criterion
weights or preference parameters and this study proposes two methods for arriving

at a ranking under such circumstances.
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CHAPTER 3

PROMETHEE and DEA

In this chapter PROMETHEE and DEA are presented. These methods are the
building blocks of the hybrid approaches proposed in Chapter 4.

3.1. PROMETHEE Method

In this section we will explain PROMETHEE method in five steps which are
initialization, determination of method parameters, calculation of preferences,

calculation of outranking flows, and ranking the alternatives based on the netflow.

Step 1: Initialization
DM formulates the alternatives, selects the criteria and assesses the performance of
the alternatives for the criteria. After this step, we will have a performance matrix

(S) for n alternatives and m criteria. Sj; represents ith alternative’s performance in

criterion j.
S, S, . .. S, |
S21
S =
Sy e e S

Step 2: Determine Method Parameters
There are two types of parameters in PROMETHEE methods, intra-criteria and

inter-criteria information [29].
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The intra-criteria information is used to model the preference structure of the DM
for a criterion. Each criterion selected in step 1, is modeled by the appropriate
preference function (P;) and parameters. Originally there are 6 types of functions
and three different threshold parameters, indifference (g;), preference (p;) and

Gaussian thresholds (s;) as shown in Figure 1 [10]. If the difference between

performance values of the alternatives (A, =S8, —S,) 1is smaller than the

indifference threshold then there is no evidence that one alternative is preferred to
other in that criterion. Whereas any difference bigger than the preference threshold
is a clear indication of preference of the better performing alternative. If the
difference is between indifference and preference the preference changes linearly
for “type 3” or “type 5” functions and takes discrete value of 1/2 for “type 4”
function. Gaussian threshold on the other hand has an intermediate meaning and the
preference changes continuously, approaching one in the limit as the difference

approaches infinity.

As the inter-criteria information the weights of the criteria shall be provided to the
model. The criterion weights are determined so that sum of the weights is one. The
weights are used for aggregating the outranking information and are not meaningful

for scaling alternative performance values.
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Type, Graphical Illustration Preference Formula

4P
Type 1, Usual 0 A<O0
1 P(A) =
I A>0
e LA
Type 2, U-Shape 4 P
0 A<g
1 P(A) =
I A>gq
A
< i >
Type 3, V-Shape 4 P 0 A<0
1 P(A)=<A/p pzA>0
A 1 A> p
< 5 >
Type 4, Level N P 0 A<gq
. P(A)=<1/2 p>2A>q
1 A>p
1/2 A
a Y
P
Type. 5,. V-Shapea 0 A<gq
with indif. thre: ;| P(A)=4(A—q)(p—q) p=A>q
A 1 A> p
a p
Type 6, G i
P(A) = -A? /257
—e "' A>0
A

Figure 1. PROMETHEE Preference Functions
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Step 3: Calculate Preferences
The preference between the alternatives for each criterion is calculated by using

preference functions (#;) and parameters of the preference function.
P = P; (i, k)= P (A7)

The preference of alternative i to alternative &, denoted as [1(i,k), is calculated by

aggregating preference values using criterion weights.

[1G,6) = Y w, P

Likewise, the preference of alternative k to alternative i, denoted as [I(k,i), is

calculated by aggregating preference values using criterion weights.

[1(k,i) = Y w,P

Step 4: Calculate Outranking Flows
For each alternative the positive outranking flow is found by evaluating the average

preference value of the alternative.

D, :LZH(i,k)
n—1

For each alternative the negative outranking flow is found by evaluating the average

preference value of other alternatives preference values compared to alternative i.
_ 1 )
O =——> Tl(k,i)
n— 1 k

The positive outranking flow of an alternative is interpreted as the quantitative level
of evidence that the given alternative outranks other alternatives and negative
outranking flow is interpreted as the level of evidence that the given alternative is

outranked by other alternatives.
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Step 5: Rank the alternatives

PROMETHEE 1 exploits these values conservatively for ranking such that an
alternative is ranked better than another only if it has both a larger positive
outranking flow and a smaller negative outranking flow than the other, so some of

the alternatives may not be ranked.

PROMETHEE II aiming full ranking of the alternatives, acts more liberally and

aggregates two types of evidence and uses the net outranking flows (")),

difference between positive and negative outranking flows.

@}'leti — ®+i _®_i
3.2. DEA

In this section DEA models of particular interest are presented. Across the many
DEA models we will present the basic CCR model which is used for classification
of units, super-efficiency approach, and cross-efficiency approach, and how value

judgments are incorporated in DEA models.
3.2.1 DEA CCR Model

DEA CCR model is the first model proposed for classification of the units The
fractional form of the model presented by Charnes et. al. [15] is as follows:

(CCR)

2, ViV

max h, =<
usxks

1

§=

subject to:

m
2 ViVi
j=1 .
[ —_— 9

z usxis

s=1
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This fractional program can be converted to a linear program equating the

denominator to 1 by adding the constraint (C1).
/
(CD D ux, =1
s=1

If there are only outputs in the model, the denominators can be equated to unity.
Generally rather than the multiplier model presented above, the dual problem called

envelopment model is solved.

In the end some of the units can obtain an efficiency value of 1 and classified as
efficient. Inefficient units obtain efficiency scores between 0 and 1 based on radial

distance to the frontier and can be ranked based on these scores.
3.2.2 Super-efficiency Approach

In order to rank the efficient units under evaluation all of which have efficiency
score of 1 which are ranked as efficient, super-efficiency approach is proposed [4].
The constraint stating that all efficiency scores should be smaller than 1 is excluded
only for the unit under evaluation (k), so a new score for the unit that may be greater
than 1 is obtained. The score is based on the radial distance of the alternative to this
new frontier. For the marginal alternatives the exclusion will affect the frontier
radically causing high super-efficiency scores.

(Super efficieny)
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3.2.3 Cross-efficiency Approach

Originally the DEA ranking is based on the alternative efficiency scores (4, ). To

obtain a full ranking, cross-efficiency approach introduces self evaluation and peer
evaluation concepts [24]. Self evaluation is the efficiency value determined from
the solution of the LP. Peer evaluation of alternative i by alternative & is calculated

by using optimal weights for £.

m
Vig Vi
E. =t

ki !

Z uks xis

1

The output oriented CCR model in terms of cross efficiencies is given as:

(CCR-O)

m
max E,, = Z Vi Vi

J=1

subject to:

!
z uks'xks =1
k=1

E.<1; i=L...,n

Vs 205 k=1,....m, s=1,...,1

In fact E,; <1 is also a linear constraint so above LP can be solved for finding self

efficiency. Usually the optimal input and output weights may not be unique. So
after optimizing self efficiency a second LP is solved either to minimize or
maximize the sum of other alternatives’ efficiency while preserving the efficiency

score of the alternative under evaluation (£, ) found in step 1. Cross-efficiency

values ( E,,) values are calculated by using weights determined in the second stage.

At last final evaluation score is found by averaging self and peer evaluations.
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3.2.4 Incorporating Value Judgments

Value judgments of the decision maker can be imposed on input and output weights
or on virtual weights. Normalization of data is needed if weight restrictions are
added to the model. Two types of weight restrictions exist in the thesis, absolute
weight restriction and assurance region restrictions.
Absolute Weight Restrictions
These restrictions can be specified on input weights (u, ) or output weights (v, ).
U,z2u, 2L,
U,zv, 2L,
Assurance Region Restrictions

These restrictions can be specified for ratio of two input weights (u, /u, ) or ratio of
two output weights (v, /v,).

U,2u /u >2L,

U,zv,/v,2L,
There are other types of weight restrictions that is not mentioned here, assurance

region restrictions between inputs and outputs [72] and restricting weights by cone

ratio method [16].
3.3. An Example Ranking Problem

To illustrate problems of PROMETHEE and DEA based ranking, a small example
problem with 5 alternatives and 2 outputs (criteria) is provided below. Input values
of all alternatives are assumed to be 1. Both criteria are increasing as they are
outputs. Such examples should be treated with caution but can be helpful for

illustrative purposes.
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Table 1. An Example Problem with Two Criteria

Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5
Criterion 1 8 6 8 7 2
Criterion 2 2 3 1 4 8

When the criteria scores are plotted in the criterion plane (See Figure 2), we can
observe that four alternatives lie in lower right region of the criterion plane while

alternative 5 lies in the higher left portion alone.

9
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0 1 2 3 4 5 6 7 8 9
Criterion 1

Figure 2. Alternatives in Criterion Space and Efficiency Frontier

Our aim is to rank the alternatives. We try different techniques starting with DEA,
super-efficiency, cross-efficiency and PROMETHEE.
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3.3.1 DEA Ranking

First we calculate the DEA CCR scores for the alternatives using basic model and
scores and slacks are given in Table 2. There are more than one alternative in the
efficiency frontier so complete ranking is not possible with technical efficiency
score of basic CCR model. Except alternative 2 all the remaining alternatives will
get technical efficiency score of 1. However Alternative 3 is weakly efficient
alternative so the slack of output two is positive, so it is ranked inferior to efficient

alternatives according to a variation of CCR model.

Table 2. Ranking Using CCR-O Model

Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5
Rank 1 5 4 1 1
DEA Score 1 0.83 1 1 1
Slack 1 0 1.2 0 0 0
Slack 2 0 0.6 1 0 0

From the ranking we obtained using basic DEA model, we can conclude that a

complete rank for the DMUs may not be obtained.
3.3.2 DEA Super-efficiency Ranking

In this case for the efficient alternatives we exclude the corresponding constraint so
the alternative under evaluation can attain efficiency score greater than 1. The

super-efficiency scores of the alternatives is given in Table 3.
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Table 3. Ranking Using DEA Super-efficiency Method

Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5
Rank 3 5 4 2 1
DEA Score 1.04 0.83 1 1.09 2
Slack 1 0 1.2 0 0 0
Slack 2 0 0.6 1 0 0

As seen from the Table 3, alternative 5 obtains a very extreme score and ranked
first. Alternative 1 whose values are just the reverse of the alternative 5 is ranked
third getting a much less score. Super-efficiency method favors the marginal

alternatives even if there is no information about the importance of the criteria.

3.3.3 DEA Cross-efficiency Ranking

By using the weights calculated by CCR-O, other alternatives are evaluated and

final scores are obtained by taking averages of the evaluations.

Table 4. Ranking Using DEA Cross-efficiency Method

Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5
Rank 2 4 3 1 5
Score 0.87 0.75 0.80 0.90 0.69

Cross-efficiency method favors the alternatives in the crowded region. Alternative 5
which is an efficient alternative ranks worst while inefficient alternatives 2 and 3

rank better.
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3.3.4 PROMETHEE Ranking

For PROMETHE ranking we need to determine preference functions (type and

preference parameters) and weights. The preference functions are assumed as given

in Table 5.

Table 5. PROMETHEE Preference Functions and Parameters for Ranking Example

Criteria Weisht Preference Indifference Preference
g Function Type Threshold Threshold
Criterion 1 0.5 Type 5 0 3
Criterion 2 0.5 Type 5 0 3

For the sample the results of a PROMETHEE II ranking are shown in Table 6.

Table 6. Ranking Using PROMETHEE II Method

Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5
Rank 2 4 5 1 3

PROMETHEE 1I 0.041 0.125 -0.125 0.203 0
Score

PROMETHEE II method produces a reasonable rank compared to previous
approaches. Alternative 4 is ranked as in the first place and alternative 1 and
alternative 5 are ranked second and third with a very little score difference.
Alternative 2 and alternative 3 are ranked 4 and 5 respectively. The ranking is also
reasonable compared to DEA ranking, which ranks all the weakly efficient DMUs
better than inefficient ones. To arrive such a ranking we had to specify both weights

and preference structure precisely.
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CHAPTER 4

HYBRID METHODS BASED ON PROMETHEE AND DEA

4.1. General Outline

The proposed methods explained in this section extend PROMETHEE so that it can
be used when there is uncertainty in criterion weights, indifference and preference

thresholds. The general flow of operations can be seen as show in Figure 3.

In the first method, PROMETHEE is used for building outranking relations based
on pairwise comparisons. Instead of aggregating preference values among criteria to
arrive at a general preference of an alternative to another (Section 3.1, step 3),
netflows for alternatives for each criterion are evaluated. Then outranking netflows
are aggregated using a procedure similar to DEA cross-efficiency ranking. If DM
desires, s/he can define constraints on weights either as specifying absolute upper
and lower bounds for individual weights or upper and lower bounds on ratios of two

criterion weights.

In the second method, the outranking relations are built based on the partial
information of preference structure (preference function type and parameters) such
that netflow for each alternative and criterion is maximized. After finding
preference and indifference thresholds for each alternative and criterion the
outranking netflows are calculated. After this step, the netflows of outranking may
be aggregated using exact weights specified by the DM a priori or by using the first

method if uncertainties in criterion weights exist.
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Figure 3. General Flow of the Methods
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4.2. The First Approach: Ranking When Weights are not Precisely
Specified

PROMETHEE method does not address a specific way to determine the weights for
the criteria for aggregating the preferences. In our case the weights are determined
for each alternative separately by using DEA. Assurance region constraints on

weights can be specified by the DM. We present the steps of the algorithm below.

Step 1: Initialization
Ask the DM to determine criteria and alternatives and to evaluate all alternatives

(i=1,..,n) inall criteria (j =1,..,m).

Matrix of alternative performance values (S) with n rows and m columns is

prepared. S; represents the ith alternative’s performance in criterion ;.

_Sll S12 Slm_
SZI

S =
Sy e e S,

Step 2: Calculate Preference Values
Ask the DM to determine preference function type for each criteria j. Then for each

pair of alternatives (7, k) using preference function (P;) the preference score of an

alternative i with respect to alternative k in criteriaj, P/ is calculated.
Bl =Pi(i k)
The entry of P/refers to the preference value for ith alternative compared to kth

alternative. The preference function (P;) may be any of the functions used in

PROMETHEE.
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B P} . .. P
P}

P =
Pl . P

Step 3: Calculate Outranking Flows
The positive outranking flow of alternative i in criterion j is calculated by

aggregating the preference values.

1 .

L— J
Oy = P}
k

n—1
For the negative outranking flow similar approach is utilized.

- 1 ;
Dy =nT§Pkf

Net flow is calculated by taking difference of the positive outranking flow and

negative outranking score:

(Dllelkj — ®+k] _(I)_k]
Unlike PROMETHEE approach, the preferences between alternatives are
aggregated for each alternative and criterion. Thus ®" and®~ are not aggregated

flows over all the criteria but intermediate measures.

Let @ be the matrix of positive outranking flows and @ representing the positive

outranking flow of alternative i for criterion j, calculated by the equation above.

27



_CD+11 O L CD+1m_
D"y

of =
_(D+nl . . . (DJrnm_

Likewise @ be matrix of negative outranking flows.

_(D711 (O R (D71m_
(ONSY]

O =
_®7n1 .o . . cDinm_

Step 4: Add Constraints on Weights
At this step DM may provide information on the weights (w;) of the criteria. Any

Linear constraint can be specified by DM.
Upper bound (U;) and lower bound (L;) on criterion weights can be specified.
Specification of lower bound is critical if every criterion is desired to contribute

overall score by the DM. The DEA counterparts of these constraints are called

absolute assurance region constraints.

Weight constraints can be added based on the importance of the criteria between
weights or ratio on weights. In DEA models these are called relative assurance

region constraints.
Aw; <w,

Additional linear constraints on weights may be added to the model.
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Finally as the PROMETHEE method suggests we add the constraint that asserts
sum of the weights is one. This constraint is also meaningful as an alternative that is
scoring well in a criterion will force that weight to infinity in the absence of such a
constraint.

Zm:wj =1

j=1

Finally we can formulate feasible weight set for IV

m
W,=qw, eR LijjSUj,ijSW,,ij =Lw, 20
Jj=1

The objective is to maximize self net flow relative to the average of net flows of
other alternatives. The decision variables (vy,) are the weights assigned to criteria j

by alternative k.

14 m
b -
] > Yvy @5 -0
_ i=lizk j=1
Max v (@ — D ) -
vigW; =1 n-1

Terms in parentheses are constant and were calculated in Step 3.
(M1)
N z ((I)Jrij - (I)7U)
Maxzvk,- (O — D y)—

v EW; =1 n-— 1

Step 5: Construct Cross-efficiency Matrix
For each alternative, LP with the objective function and constraints given in step 4
is solved. The optimal objective function value is recorded as the self score (Ex) of

the given alternative.
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n

N D (@ -Dy)
Ey = ZV*kj (D —Dy) — ==
=

n—1

Using the optimal criterion weights other alternatives are evaluated. Ej; is the

evaluation of the ith alternative by using weights of alternative .

u Z (@ —Dy)
Eki :Zv*kj ((I)+1j _q)_ij)— [=1,l#i

J=1

n—1

Now we can form a matrix of self (Ex) and peer evaluations (Ej), like cross-

efficiency matrix of DEA.

E, E, In
E = E, E, E,,
E. FE E

Step 6: Rank the Alternatives
To arrive at a final score for ranking the self and peer evaluations are averaged. The

ranking of the alternatives is done based on this average (4;).

n

2B
h- — k=1

i
n

4.2.1 Example Ranking by the First Proposed Approach

We apply proposed method to illustrative problem described in Section 3.3. The
scores of alternatives and rank is given in Table 7. For the weights no constraints

are added.
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Table 7. Ranking Using First Proposed Approach

Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5
Rank 3 4 5 1 2
Method 1 Score -0.063 -0.146 -0.312 0.271 0.250

In the ranking, alternative 5 manages to be positioned before alternative 1.
Alternative 1 is ranked higher than alternative 2 and 3. Proposed method can rank
distinct alternatives which has a high outranking value and yet able to discriminate
between other alternatives. So alternative 5 can be ranked higher but just not the
best because it is distinct from the others like in the super-efficiency method.
Proposed method does not favor alternatives in the crowded region. Also we
assumed that no information on weights is available and did not define any weight

constraints for this example which will refine the ranking.

4.3. The Second Approach: Ranking When Weights and Preference

Function Parameters are not Precisely Specified

In the second approach, we assume that DM can provide partial information about
preference function parameters. DM may not exactly state indifference thresholds
and/or preference thresholds so the additional assumption of the method is that only
upper and lower bounds for the preference and indifference thresholds can be

specified by the decision maker for some of the criteria.
The preference of the DM for each criterion is assumed to be one of the type 1, type

2, type 3 and type 5 (Section 3.1, Figure 1). A generalized form of above mentioned

four types of preference is defined shown as Figure 4.
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Figure 4. Generic Preference Function

We call this preference function type g, standing for generic. The type g which is
similar to type 5 “linear preference function with indifference threshold” has two

parameters q and p. The feasible set of (g, p) pairs, can be defined as:
G={4.p) € Rg20.p>q]

For any given real number pairg € G, there exists a PROMETHEE preference

function of the types 1, 2, 3 or 5. So by constraining the parameters of the
preference function type g; type 1, type 2, type 3 and type 5 preference functions

can be obtained as shown in Figure 5.
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Graphical Illustration Type, Parameter
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Figure 5. PROMETHEE Preference Functions as Special Cases of a Generic Preference Function
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The preference between two alternatives for the generic function can be defined as:

1 S, =S, >p

(i h=]1 Sy =Sy =p.r=q
(Sz/'_S/j_Q)/(P—f]) qSSy-—SUSp,p;tq
0 S;—=S8;<4q

The steps of the proposed algorithm is presented below.

Step 1: Initialization
Ask the DM to to determine criteria and alternatives and to evaluate all alternatives

(i=1,..,n) 1in all criteria (j =1,..,m).

Matrix of alternative performance values (S) with » rows and m columns is

prepared. S represents the ith alternatives performance in criterion ;.

S, S, . o S,
SZI

S =
Sy e e S

Step 2: Calculate Preference Function Parameters
In this approach the DM does not provide preference function completely. In fact
s’he only provides some upper and lower bounds for the parameters of the type g

function. So there are no explicit preference values. By determining lower (Lg,,
Lp;) and upper (Ug,;,Up,) bounds for indifference and preference thresholds

respectively, the set of feasible values for criterion j, G; is defined as:
Gj = {(qj7pj) € Rz‘qjapj € R7qj 2 Oﬂpj 2 qj’qu < q < qu’ij = p < Upj}
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If the DM can not specify a lower bound it may be taken as 0. The upper bound is
also specified by the DM; if not it may be taken as the difference between the best
performing score and the worst performing alternative’s score for the criterion

under consideration.

As in the first proposed method, we want to solve the model M2, weights (v;) and
thresholds (gu;, pi;) are the decision variables.
(M2)

” Y (@ -D7y)
max kaj ((I)+1g' -O7y) - ELizk

vig €W (g1 i )EG; =1 n —1

M2 is a nonlinear model and can be split into two terms; weights (vy;) and the term

that only depends on thresholds () by Theorem 1.

n

Y (@ -Dy)
F = ((D+I(y —®7ﬁ) _i=Lizk

n—1

Note that the term (F) is independent of the weights and thresholds are the only
decision variables in the second part. Theorems 1 and 2 show how optimal solution

to model M2 can be found.

Theorem 1:
Let @'y, @4 be the positive and negative outranking flows of alternative k for
criterion j respectively.

G, = {(q_,-,p_,) € Rz\qj,p_,- €R.q;20,p;,2q;,Lq, <q<Uq,,Lp, < p< Upj}

. 2 (@7 -07) 2 (@ -07)
max S| (@7 - @) - = max Oy, max (@75 -0 y)- "))
) vyl o (g4 P45 )€G;

v Wy py)e0; n—-1 n—1

Proof: See Appendix A.
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To find maximum of M2, given linear constraints on weights and upper and lower
bounds on preference function parameters, first the maximization of individual flow
of an alternative and criterion can be done, then, using these parameters

corresponding optimal criterion weights can be found.

Theorem 2:
Let ®", @ 4 be the positive and negative outranking flows of alternative k for

criterion j respectively.

GD, = {(x,y)‘x eAU {qu,qu},y eAU {ij,Upj},x < y}

Zn: (@75 —D7y) Zn: (@75 —Dy)

max Dy — D) = max Dy — D) -
(91-Pk )EGJ( ( ! ! ) n—1 ) (qk/’pk/’)EGDr( ( ’ ! ) n—1 )

Proof: See Appendix B.

So the ¢, p values that maximize the unweighted outranking flow can be determined
by trying a discrete set of values (members of the set GD)) for ¢ and p. The values

of ¢ and p that maximize objective function (i.e. optimal solution to M2) are

denoted by (CIZ,- , pzj) where £ stands for the alternative under evaluation and j is the

criterion under consideration

Step 3: Calculate Outranking Flows

Now we have determined the values of the preference function parameters for each

alternative and criterion. Using (q,:j, p,;)found in step 2, that specify P, preference

score of alternative 1 with respect to alternative 1 is calculated.
RY = P(i1) where (q,p)=(ay.p})
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We can form the matrix of preference scores for each alternative and criterion

(PY).

[ pki ki k]
Py Py .. .. B
ki
P21
PY =
ki ki
_Pn1 Pnn_

We next calculate the second part of the objective function of M2 which will be

used as objective function coefficient of LP in step 4.

The positive outranking netflows (®**;) can be calculated by using pairwise

preference matrix ( P¥) of alternative under evaluation (k).

oy = 2B/

I’l—l 1

The negative outranking netflows (®*;)can be calculated by using pairwise

preference matrix ( PY) of alternative under evaluation (k).

1 .
Oty = Py
' n—lZ,: :

The net outranking flow (®"““; ) can then be evaluated.

(Dnet(k)ij — (D+kij _q)_kij

Step 4: Calculate Criterion weights

The nonlinear program (M2) is transformed into an LP and solved just as M1. For
the objective function coefficients the values found in step 3 are used. For each
alternative, LP with objective function coefficients and constraints given in
previous step is solved. The objective function value is recorded as the self score.
Different types of weight constraints that form feasible weight set (#}) explained in

Section 4.2, can be used.
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n
k -k
Y (@ -0™)
B =y
maxzvk ((D+k q) k/g')_l Ji#k
v €W i3 n—1

The optimal criterion weightsv'y are calculated for each alternative and criterion.

Step 5: Construct Cross-efficiency Matrix
The cross evaluations are done similar to first method. During cross evaluations,
negative, positive and net outranking flows found in step 2 are used first to calculate

net flow for each alternative and criterion (see step 3).

Then the calculated weights for alternative that is under evaluation are used for
aggregating these. Unlike first method, for different alternatives, different
preference functions exist, resulting in different preference values. So the
unweighted positive, negative and net flows are not unique for each alternative and

criterion but also depend on the alternative under evaluation.

i D (@Y —0y)
Z /g (@ q)—k/g) _ I=1,l#i

j=1

n—1

Using the optimal criterion weights and flows calculated in step 3 other alternatives

are evaluated.

z ((I)+k 7k )
Ekl ZV i (q)+k“ _(D_ky)_l =1,l#i

Jj=1

n—1

Now we can form a matrix of self and peer evaluations, like cross-efficiency matrix

of DEA.
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Step 6: Rank the Alternatives
To arrive at a final score for ranking the self and peer evaluations are averaged

similar to first method. The ranking of the alternatives is done based on this score.

4.3.1 Example Ranking by the Second Proposed Approach

We apply proposed method to illustrative problem described in Section 3.3. The
scores of alternatives and rank is given in Table 8. For the weights no constraints
are added. Instead of setting indifference threshold to 0 and preference threshold to

3 as in method 1, we set lower and upper bounds on the thresholds as follows:

0<g,<03 j=12
27<p, <33 j=12

Then we calculate the resultant scores and ranking for the illustrative example. The

resultant scores and ranks are shown in Table 8.

Table 8. Ranking Using Second Proposed Approach

Alt. 1 Alt. 2 Alt. 3 Alt. 4 Alt. 5
Rank 3 4 5 1 2
Method 2 Score -0.056 -0.173 -0.313 0.277 0.269
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Although scores of alternatives slightly changed, overall ranking is the same as
ranking of proposed method 1. We should also state that overall ranking may

change if the upper and lower bounds of thresholds change.
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CHAPTER S

SOFTWARE

Proposed methods are implemented as a decision aid tool. For data input, a user
form and excel spreadsheets are utilized. The user form and spreadsheets are

explained in Section 5.1 and Section 5.2 respectively.

5.1. User Form

Five input windows exist in the main user form, general parameter window includes
basic information, criteria information window includes the criteria information,
thresholds window includes preference type and parameters inputs, auto generate
window includes inputs to generate symmetric bounds for preference parameters,
and weights and output window includes inputs for customizing output

information.
5.1.1 General Parameters Window

Number of alternatives (n) and number of criteria (m) is specified, also the user can
define the area that alternative score information is placed (See Figure 6.). By
default score information resides in “Scores” worksheets but another area may be

defined by the user using scores textbox.

41



x

General Parameters ICriteria Weights | Threshaolds | Sukagenerate Upper &nd Lower Bounds | Qukput |

Mo of alternatives I 100|
Mo of Criteria I 20

Scores

Help Run

Figure 6. Screenshot of General Parameters Window

5.1.2 Criteria Information Window

The criterion information is entered in this tab. The user specifies whether exact
weights or constraints on weights are used. If the user prefers using constraints on
weights, then s/he may select type of constraints on the criterion weights; i.e.
absolute lower bounds and upper bounds, lower and upper bounds on ratios, or
other linear constraints. If the user does not want to use default sheet (“Criteria”™)
s/he may specify the location of the criteria input data (See Figure 7). If constraints
on weights is selected either the first proposed approach or the second will be used

depending on the selected options on thresholds.
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General Parameters  Criteria weights IThreshoIds | fAutogenerate Upper And Lower Bounds | Cutput |

Weight Specification
" Predetermined £+ Model specified |

[ Criteria Weight Constraints (Upper and Lower Bounds)

[+ iCriteria "Weight Constraints (Inker-Criteria):

[ Criteria Weight Constraints (Other)

Predetermined Weights

weight Lower and Upper Bounds

weight Intercriteria Constraints

wWeight Other Constraints

Help Run

Figure 7. Screenshot of Criterion weights Window

5.1.3 Threshold Information Window

This tab is used to enter information about the criteria. The user either selects to
specify the thresholds (predetermined option) or let the model (model specified
option) determine the thresholds (See Figure 8). The second approach described in

Section 4.3 will be used to determine the thresholds if the second option is selected.

x|

General Parameters | Critetia Weights ~ Threshalds I Autogenerate Upper And Lower Eounds | Cutpuk |

Threshold Specification
’7 & Model specified

Predetermined Thresholds I

Criteria Increasing I

Threshold Lower and Upper Bounds I

Help Run

Figure 8. Screenshot of Thresholds Window

43



5.1.4 Auto Generate Upper and Lower Bounds Window

Rather than creating bounds on weights by manually entering, the user can use this
tab to generate upper and lower bounds for the weights and thresholds
automatically. The user may input the percentage of relaxation on the
predetermined values (See Figure 9). If auto generate weights option is used, then
the approach described in Section 4.2 is used if both options are specified, the

approach described in Section 4.3 will be used.

x

General Parameters | Criteria Weights | Thresholds —Autogenerats Upper And Lower Bounds IOutput |

¥ autogenrate Weight Bounds

™2 Autogensrate Threshold Bounds

Weight Relaxation Percentage 25| o
Indifference Threshold Relaxation Percentage I a5 Yo
Preference Threshold Relaxation Percentage I 25 Yo
Help | Run

Figure 9. Screenshot of Auto generate Upper and Lower Bounds Window

5.1.5 Output Window

The place where output of the model will be displayed is determined in the output
column (See Figure 10). Also any other ranking of the same alternatives that may
be placed in output column to compare with produced ranking are specified. The
user can select S or absolute difference metric to be calculated based on two

rankings. Additionally two rankings may be graphed in a chart.
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Genatal Parameters | Criteria \Weights | Threshalds | Aukogenerate Upper And Lower Bounds — Qutput I

Score Output Column I 14
Other Rank Calumn I 13

Metrics Wisual Oukputs

v Compare With Given Rank.

] Graph For Each Alternative

Help Run

Figure 10. Screenshot of Output Window

5.1.6 Run Button

After successfully determining model parameters run button is used to execute the

model.
5.1.7 Help Button

Help for the software is displayed,
5.2. Worksheets

For the inputs by default “Scores” and “Criteria” worksheets are used. The outputs

are provided in the “Output” worksheet.
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5.2.1 Scores Worksheet

The alternatives are listed in rows and criteria in columns (See Figure 11). The
alternative score information is read from this worksheet considering the number of

alternatives and criteria provided in general information window.

Microsoft Excel - PRODEAworkbook.xls
@ Dosya Digen Gordndm  Eke  Bigim  Araglar  Weri  Pencere  Yardm  Adobe PDF
= g prisi e - 10 vggggél%l z|| € =
o I I R I | S | & By ga Dedisikliklerle Yanitla,., %100 =
A - F Alternative Scores
A ] C G
Alternative Scores
Alurnni J
Salary | Yalue for Recomme | Career
YWeighted |Percentag| Money Aims nded Progress
Salary |eIncrease| Rank | Achieved Rank Rank
University of Pennsylvania:
sl WWharton 142795 139 e G54 1 2
Harvard Business School 152733 123 72 80 2 1
Stanford University GSB 152442 128 94 g2 3 i
M|Columbia Business School 137835 150 75 &1 g 3
ill|London Business School 125276 127 89 g2 5 3
M|University of Chicago GSB 133874 138 &1 &1 3 5
M| Mew Y ork University: Stern 128461 146 an 85 11 kil
QAR|Dartmouth Callege: Tuck 146205 146 75 87 13 B
130341 il gl 52 5] 11
137573 126 49 83 9 4L
4 4 b »}Scores { Criteria / Thresholds Solverl £ Output ;l <| | L”_‘
Hazir Toplam=10374309 v

Figure 11. Screenshot of Scores Worksheet

5.2.2 Criteria Worksheet

The criteria worksheet includes information on preference functions, preference
parameter bounds, weights, intra-criterion weight constraints (absolute bounds on
weights), inter-criterion weight constraints (bounds on ratio of weights) (See Figure

12).
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Figure 12. Screenshot of Criteria Worksheet

5.2.3 Output Worksheet

In the output worksheet the net outranking flows, calculated objective function
parameters foe M1, optimal weights, cross-evaluation scores, final scores and

metrics are displayed (See Figure 13).
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Figure 13. Screenshot of Outputs Worksheet
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CHAPTER 6

CASE STUDY

We will use the MBA program ranking problem for testing and comparing proposed
methods and other ranking approaches. In Section 6.1, information on MBA
ranking problem and used data are presented. In Section 6.2, various MCDM
approaches are applied and evaluated. We compare the methods in Section 6.3.

Finally in the last section, the results of the case study are presented.
6.1. MBA Program Ranking Data

Various sources provide data sets of performance of MBA programs and their
rankings. Main reasons for choosing the FT data for the case study are:
It is the most comprehensive data, according to the number of criteria.

b. Both international and US programs are ranked and the number of programs
for which performances are given for each criterion is higher than other
rankings.

c. The school performances are provided free of charge in FT website.
Financial Times (FT) 2006 data is used for the case study. The data set includes
performances of 100 MBA programs in twenty criteria. Exact performance values
are provided for twelve criteria and ranks of the graduate programs are provided for

the rest.
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6.2. Ranking Methods

To compare different ranking approaches and examine the weak and strong points

of our methods numerous ranking approaches are applied to the FT data. Following

rankings are considered:

a.
b.

C.

d.

Ranking of Financial Times (FT).

Ranking using SMART method (SMART) using FT weights.

Ranking by PROMETHEE method (PROM) using FT weights.

Rankings by using different mixtures (MIX), for cases with unconstrained
weights and with AR constraints.

Ranking based on basic DEA CCR model, for cases with unconstrained
weights and with AR constraints.

Ranking based on super-efficiency approach (SE) approach explained in
Subsection 3.2.2, for cases with unconstrained weights and with AR
constraints.

Ranking based on simple cross-efficiency (SXE) approach explained in
Subsection 3.2.3 , for cases with unconstrained weights and with AR
constraints.

Ranking based on proposed method 1 (M1), for cases with unconstrained
weights and with AR constraints.

Ranking based on proposed method 2 (M2).

Ranking of FT, SMART (with FT weights) and PROMETHEE (with exact values

for preference parameters and FT weights) methods used for comparison of

different ranking approaches. Main reason for the comparison with these rankings is

to show the difference of various DEA based methods with the case when exact

parameters are available.

Ranking using different mixtures is used to understand whether different set of

weights provide substantially different rankings or not for the data set.
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SE, SXE, M1 methods are used for two kinds of weight set, unrestricted weights
and imprecise weights. For the first case it is assumed that no information on
weights exist and for the second case the weights are assumed to be not known

exactly and constrained by relaxing the weights provided by FT (F)), by a fixed

percentage p (1%, %25, %50, %75, 100%). So the following assurance region (AR)

constraint is added for each criterion j.

(I=-p)F;<w; <F,(1+p)

The alternatives still classified as efficient by CCR for various AR constraints are
also determined for comparison of approaches. Also for different cases of AR
constraints, mixtures of weights are used to examine the impreciseness of the

ranking.

Rankings of each method are compared to FT rank using various measures. The
sum of absolute value of rank difference over all programs (ABS), the standard
error (S), and number of programs that change at least 10 rank places is used as
metrics for measuring the difference of the ranking from FT ranking. Kendall’s
Tau-b measure is also used when comparing trial rankings by MIX method and
different rankings. We do not provide Kendall’s Tau-b statistics for comparing
rankings by the same method with different relaxations of weights as they are
extremely high. Finally the ranking methods are compared and strengths and
weaknesses of DEA based methods and proposed methods are presented. Ranking

results for different methods are provided in Appendix E.
6.2.1 FT Ranking

FT 2006 ranking is produced by normalizing the performance values and
calculating z scores and linearly aggregating these scores based on criterion
weights. Final scores of the schools are not provided and only ranks of the schools

are given.
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6.2.2 Ranking Using SMART Approach

We intend to examine if the ranking will vary for different weights. For this purpose
we assume a linear utility function and normalized the given FT data to use the
same weights as FT ranking. Normalization is also needed since AR constraints on

criterion weights are defined in various DEA models (DEA CCR, SE and SXE). For

the criterion () whose raw performance values (S ) are given, the normalization is

done by using the formula:

S, —min(s,)

i max (S, ) —min(S,)

For the criterion (j) whose ranks (R ) are given a slightly different version of the

above formula is used:

R, -1 101-R,
SNi- — 1_ y — y
/ 100 100

Then for each program final score is calculated using normalized score (SN;) and
weights provided by FT. FT rank and SMART is compared in Table 9. Differences
of these two rankings can be attributed to the availability of limited information for
some of the criteria (ranks are provided for eight of the criteria) and normalization

method used.

Table 9. Comparison of FT Ranking and Ranking Using Normalized Scores

Kendall’s
Tau-b ABS Average ABS S Rank difference >10
0.959 516 5.16 83.07 10
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6.2.3 PROMETHEE Ranking

For PROMETHEE ranking, DM has to provide preference function type,
parameters and bounds on weights. Type 5 preference function is used for all the
criteria, the preference threshold (p) is set to difference of performance values of
best performing program and worst performing program and indifference threshold
(q) 1s set to 10% of that value. FT weights are used for aggregating the flows of

various criteria.

Table 10. Comparison of FT Ranking and PROMETHEE Ranking

Kendall’s
Tau-b ABS Average ABS S Rank difference >10
0.945 628 6.28 95.88 22

As seen form Table 9 and Table 10, compared to SMART, PROMETHEE ranking

is more different from FT as PROMETHEE ranking uses preference information.
6.2.4 Ranking Using Different Mixtures of Weights

Before comparing various ranking approaches, it will be beneficial to examine if
different approaches can produce different rankings from the data set for the cases
where no AR is defined or AR is defined by relaxing the FT weights as explained in
Section 6.2. Most comprehensible method is to check whether various feasible
weight combinations produce different rankings using a linear model for
aggregation (similar to SMART). For the case where no AR constraints defined, we
use a simplex lattice design, and various weight mixtures are used for ranking the
programs. Secondly, AR is defined as 1%, 25%, 50%, 75%, 100% around FT
weights. This time D-optimal design is used to find extreme weight mixtures and
examine the variation of the ranking. The summary information about mixture
design that are used to produce trial weight sets are shown in Table 11. A more

detailed explanation on mixture designs used is provided in Appendix D.
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Table 11. Properties of Mixture Design Experiments

No of . .
Mixtures Constraints Explanations
Simplex Degree of Lattice = 2,
P 231 - Includes Augmented
Lattice i
Points
D-Optimal Weight Lower and Upper
(For Dif. AR 100 Bounds Linear
Cases) (Relaxations of FT weights)

100 mixtures are selected from the first design and pairwise Kendall’s Tau-b

statistics are calculated for both cases. The summary of the analysis are given in

Table 12.
Table 12. Correlation of Mixture Experiments
No of No of
No of No of Pairwise Correlated Correlated
Mixtures Comparisons Observations Observations

(0.05 Level) (0.01 Level)

Simplex Lattice 100 4950 536 2368

D-Optimal
100 4950 4950
(100% Relaxation)

Observations that are not correlated for 0.01 confidence level but correlated for 0.05 level.

We now can conclude that for the given set of weights, correlation exist for a

fraction of the experiments (~60%). For the unconstrained problem we can say that

different weight sets will not necessarily produce correlated rankings.

54




For the constrained problem we observe that all the rankings are correlated even for
the 100% relaxation case. For this case, we further analyze if the rankings observed
are far different from rankings provided by FT. As shown in Table 13, the rankings
do not agree with FT and a high number of programs ranked significantly different.
Since 41.87 observations have on the average more than 10 rank difference
compared to FT and variability of the measures are high, the need for a ranking

approach still exists for the constrained case.

Table 13. Comparison Constrained Mixture experiments with FT

Kendall’s Average Alt. with Rank
Tau-b ABS ABS S Difference >10
Minimum 0.465 572 5.72 84.33 18
Maximum 0.827 1542 15.42 248.60 71
Average 0.688 1078 10.78 145.9 41.87

We then use D-optimal designs for the cases where FT weights are relaxed by 1%,
25%, 50%, 75% and compare the variability of each individual program among
different ARs. For each case, 100 mixtures are obtained and lowest and highest
ranking of the programs are determined The difference of these two values are
calculated to show rank impreciseness of each program (See Figure 14 and
Appendix D.3). It is observed that as AR constraints get tighter, the highest and

lowest ranks an alternative obtains become closer and difference decreases.
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Figure 14. Rank Impreciseness of MBA Programs for Mixture Designed Set of Weights

For the high ranking alternatives (Top 15) the rank difference is limited to 30-45
rank places, while for the middle ranking alternatives rank differences are very high
at least 40 for the AR defined by 100% relaxation of FT weights. For the very low
ranking programs rank difference exists but is lower than middle ranking programs.
Average rank impreciseness of top 15, bottom 16 (there are two 85" ranked
program in FT list and no 86"™) and all the alternatives for different AR is provided
in Figure 15. So we can conclude that the ranks of the programs vary considerably
for AR defined as 50% relaxation of FT weights. Even for 25% relaxation variation
exists but there is absolutely very little variation when the AR is limited to 1%

relaxation of FT weights.
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Figure 15. Average Rank Impreciseness of Ranks for Top 15, Bottom 16 and All Programs

6.2.5 DEA CCR Ranking

We ranked the programs using DEA CCR method. There are 70 programs which
are classified as efficient and cannot be ranked. Generally programs that rank
highest in subset of criterion maximize its score by equating the sum of
corresponding criterion weights to unity to be efficient. If the subset has only one
criterion the weighting is similar to vertices of the simplex of unconstrained mixture
design, so at least we can say that for different vertices of the simplex different
programs are ranked first. This result is in agreement with the result of the mixture
experiments presented in previous section which shows the variability of the

ranking for different weights.

Then we find the efficient alternatives by using the assurance region defined by
upper and lower bounds around FT weights. CCR efficient programs are listed in
Table 14 except for the unconstrained case for which set of efficient programs is too

large.
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Table 14. CCR Efficient Programs

Number of CCR
Efficient Prog. Set of CCR Efficient Programs

Unconstrained 70 *
1% Relaxation 0 {}
25% Relaxation 0 {}
50% Relaxation 3 {1, 5,9}
75% Relaxation 9 {1,2,3,4,5,8,9,12, 142"}
100% Relaxation 14 {1,2,3,4,5,7,8,9,11,12, 13, 142", 18, 21}

Set of efficient programs is large and not presented in the table.
“"The first of the programs ranked in the 14™, which is IMD program.

For the given data set the number of efficient programs is very high if no AR is
defined. We observe that incorporating AR constraints drop the number of CCR
efficient programs radically down. As we introduce the AR constraints by relaxing
around the FT weights certain programs that perform very high in low weighted

criteria is no more classified as efficient.
6.2.6 DEA Super-efficiency Ranking (SE)

Unlike DEA CCR model, SE approach produces a full ranking. First the programs
are ranked without AR constraints. Then lower bounds and upper bounds are set as
fixed relaxation percentage of FT weights. The rankings are compared with FT

ranking and the summary of the comparison is given in Table 15.
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Table 15. DEA Super-efficiency Ranking Compared to FT Ranking

Kendall’s Average Alt. with Rank

Tau-b ABS ABS S Difference >10
Unconstrained 0.294 2418 24.18 310.10 71
1% Relaxation 0.852 516 5.16 83.07 13
25% Relaxation 0.852 516 5.16 83.07 13
50% Relaxation 0.857 502 5.02 80.05 13
75% Relaxation 0.815 666 6.66 91.69 18
100% Relaxation 0.761 866 8.66 116.14 28

For the constrained case for small relaxations (1%-25% interval), the solution is not
affected by percentage of relaxation as there is no program having an efficiency
value greater than one and all the scores increase proportionally as the constraints
are relaxed. Finally higher relaxation results in rank changes for significant number

of programs as programs with marginal characteristics are able to rank better by SE.

Also it shall be noted that the ranking varies significantly for the SE method. For
the case with no AR constraints, Hong Kong UST business school ranks the 1*, that
ranks in 30-40 range when constraints are introduced. That is because this school
has very promising scores in various criteria; “women students”, “international
faculty”, “international board”, “research rank”, “placement success”, and “women
board” which are weighted heavily in SE ranking of the program. Various other
examples of this pattern (ranking high for the unconstrained case) exist (such as
Ashridge, George Washington University, Birmingham Business School), and the
reverse of this pattern (such as Stanford University GSB, Dartmouth College and
University Oxford) also exist. Finally we could conclude that the ranking of SE
method is very variable if no AR constraints are provided. SE rank depends on the
AR heavily and ranking changes abruptly as the constraints become tighter. If more

than one program has similar performance, they will not be classified as marginal

and ranked high by SE.
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6.2.7 DEA Cross-efficiency Ranking (SXE)

DEA SXE is used for ranking the programs using same AR constraints given in the
SE ranking. The rankings are compared with FT and results are provided in Table

16.

Table 16. DEA Cross-efficiency Ranking Compared to FT Ranking

Kendall’s Average Alt. with Rank

Tau-b ABS ABS S Difference >10
Unconstrained 0.580 1408 14.08 181.9 60
1% Relaxation 0.852 468 4.68 77.54 13
25% Relaxation 0.854 470 470 77.74 13
50% Relaxation 0.882 424 4.24 71.71 10
75% Relaxation 0.876 434 4.34 74.97 11
100% Relaxation 0.847 554 5.54 86.41 18

SXE method produces results closer to FT in all the measures compared SE
approach. However this method ranks some inefficient programs better than

efficient programs. This weakness will be discussed in section 6.3.

Ceibs which ranks high among financial criteria (weighted salary, salary percentage
increase and value for money), is not ranked high by SXE method. Another
example is Yale Business School which ranks 48" without any constraints but ranks
the 11"™ when AR constraints are introduced. SXE approach favors schools which
are good at in diversity criteria (9" to 16™ explained in Appendix C.2) whereas the
schools that are better in financial and career related criteria (1 to 8" in Appendix

C.2) are not favored.

6.2.8 Ranking by Proposed Method 1 (M1)

For the proposed method 1, DM has to provide preference function type, parameters

and bounds on weights. Type 5 preference function is used for all the criteria, the
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preference threshold (p) is set to the difference of performance values of best
performing program and worst performing program and indifference threshold (g) is
set to 10% of that value. The AR constraints are incorporated by relaxing FT

weights and rankings are compared with FT and results are provided in Table 17.

Table 17. Ranking by Proposed Method 1 Compared to FT Ranking

Kendall’s Average Alt. with Rank

Tau-b ABS ABS S Difference >10
Unconstrained 0.459 1864 18.64 235.32 67
1% Relaxation 0.817 632 6.32 92.52 22
25% Relaxation 0.831 602 6.02 91.72 22
50% Relaxation 0.827 618 6.18 95.35 21
75% Relaxation 0.821 676 6.76 93.81 23
100% Relaxation 0.806 724 7.24 99.26 27

Some of the criteria both SE and SXE ignored are taken into account in proposed
method 1. Generally MBA programs have low performance in language scores
because only a few of them have language education. MBA programs of schools
such as Insead, University of Michigan: Ross, Esade Bussiness School, ECSP rank
higher in overall score. This shows proposed method 1 is better at discriminating
programs that only a minor number of programs are better than the average but
perform similar to each other. SE does not provide very promising scores for such
schools as they are not radically different. SXE on the other hand undervalues
language criterion as most of the programs underperformed in this criterion. Other
criteria that are undervalued by SXE are “women board” and “international board”.
SE may also fail to discriminate the few good performing programs in these criteria
if a few programs perform equally well. Proposed method 1 will provide a better
ranking for these as the difference causes a high net flow and high net flow will

cause a higher weight for the corresponding criterion.

61



To analyze sensitivity of M1 to preference function parameters and examine the
effects of preference functions and compared the change of preference function type
on the ranking produced by proposed method 1. For different types of preference
functions the rankings are compared with each other for AR 25% around FT

weights.

Table 18. Average ABS for Difference for Different Preference Functions

Pref. Pref. Pref. Pref.
Func.l Func. 2 Func. 3 Func.5
Pref.
Func. 1 - 2.94 5.26 7.2
Pref.
Func. 2 2.94 - 4.52 6.36
Pref.
Func. 3 5.26 4.52 - 2.34
Pref.
Func.5 7.2 6.36 2.34 -

The preference threshold (p) and indifference threshold (g) is set as explained in the
beginning of this subsection. For preference function 1 no preference parameter is
needed, for the preference function 2 only indifference threshold is used, for the
preference function 3 only preference threshold is used and for the preference
function 5 both of the parameters are used. Average ABS is given for different
pairwise comparison of ranks in Table 18. For this case more rank difference exists
between for functions 1 and 5 as expected. As we use very high value for preference
threshold the difference of rankings using preference function 1 or 2 is considerably

different than preference function 3 and 5.
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Table 19. Kendall’s Tau-b Correlation for Different Preference Functions

Pref. Pref. Pref. Pref.
Func. 1 Func. 2 Func. 3 Func. 5
Pref.
Func. 1 1 0.926 0.858 0.808
Pref.
Func. 2 0.926 1 0.877 0.828
Pref.
Func. 3 0.858 0.877 1 0.938
Pref.
Func. 5 0.808 0.828 0.938 1

The correlations of ranks for different preference functions are also substantially
high (See Table 19) and all ranks are correlated in 0.01 confidence level (See Table
19). We can conclude that average ABS is low and rank correlation is high for

different preference functions.
6.2.9 Ranking by Proposed Method 2 (M2)

For proposed method 2 we introduce two test cases, weights are unconstrained and
weights are constrained by 1% around FT weights. For both of the cases, feasible
region of thresholds are formed by relaxing the preference threshold 5% and
relaxing the indifference threshold 50% around the values used for proposed

method 1. The comparisons with method 1 rankings are given in Table 20.

Table 20. Ranking by Proposed Method 2 Compared to Proposed Method 1

Kendall’s Average Alt. with Rank

Tau-b ABS ABS S Difference >10
Unconstrained 0.974 110 1.10 16 -
1% Relaxation 0.990 46 0.46 6.78 -

We observe from the table that the ranking by method 2 is very similar to method 1.

For the unconstrained weight case, introducing uncertainty for thresholds effects
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ranking more compared the case where weights are tightly constrained because in
the second case weights are so tightly bounded so that rank change is limited. In this
study we analyze the proposed method 2 to measure the sensitivity of result to
uncertainty in thresholds in a limited way. Detailed analysis is left out for further

study.
6.3. Comparison of Rankings

In this section we aim to compare different ranking methods. In the first subsection
we examine the correlations of rankings using Kendall’s Tau-b statistics, in the
second we compare rankings of all programs in general; in the third subsection we
examine ranking of top and bottom programs, and in the last subsection we examine

some programs whose rankings change much.
6.3.1 Correlations of Rankings

In the first case, we compare FT, SMART and PROMETHEE rankings with other
methods where weights are unconstrained. Kendall’s Tau-b statistics are listed in

Appendix F.

We observe that SE, SXE and M1 methods correlate with FT ranking. The SXE
method correlates more with FT ranking then other approaches (See Figure 16).
Knowing that SXE ranking is based on average weights of individual DEA
calculations, an agreed weight set exist that makes it more similar to a linear
aggregation method. The peak observed for correlation of SXE 50% AR case with
FT (See Figure 16) stems from the fact that FT rank and SXE does not use the same
performance values and normally the SXE correlation will increase by restricting
the weights more. We can observe this fact by examining the correlations of SXE

and SMART for different AR constraints shown in the Appendix E.
For very tight AR constraints (25 % for the case study) SXE and SE converges to a

similar ranking and correlation of SE with FT is equal to the correlation SXE with

FT. Proposed method 1 also depends on cross-evaluation principle like SXE but
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outranking information is used rather than normalized scores so lower correlation

can be justified.
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Figure 16. Correlation of rankings with FT

Proposed method produces a ranking more different than FT ranking compared to
SE and SXE when AR constraints are incorporated. Next we examine the
correlation of methods (SE, SXE, and M1) with PROM ranking. We observe that
SXE has higher correlation with FT and PROM when constraints are not tight. As
the constraints get tighter the correlation of proposed method with PROM approach
becomes the highest of three rankings. Main reason for this fact is that small
differences are eliminated preliminary by using preference functions and flow
calculations are similar to PROM. Secondly, our objective function also has term

for other units’ appraisal and even for small weight set each program focuses on this

relative measure.
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Figure 17. Correlation of Methods with PROM

In general the Kendall’s Tau-b measures are high and all the rankings are found to
be significant according to this measure. This does not mean that the differences in
rankings are insignificant as we observed impreciseness of rankings in the mixture
design experiments in which AR constraints are introduced. In the next subsection

we will examine these differences.
6.3.2 General Ranking Differences

In this subsection we aim to compare the ranking of SE, SXE and M1 methods
generally. For this purpose we illustrate the rankings of MBA programs by graphs
where the horizontal axis is programs’ index and vertical axis is the rank place this
program is ranked by a particular approach. If FT ranks are plotted in such a graph
the result is nearly the diagonal as program index is taken from FT list (See Figure
18).

First we compare the rankings of SE, SXE, and M1 when no AR constraints are
defined in Figure 18 and 19. For SE the ranking of alternatives are much more
dispersed compared to SXE and M1. In SXE and M1 for top ranked alternatives are

similar to those of FT ranking and particularly SXE produces more similar ranks to
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FT. As SE ranks alternatives based on their marginality, the programs are free to set
DEA weights favoring their marginality when no AR is defined. As different
programs are marginal for different set of criteria, programs that are ranked in the

bottom by FT can be ranked in the top and vice versa.
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Figure 18. FT and SE Rankings (No AR Constraints)
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Figure 19. SXE and M1 Rankings (No AR constraints)
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When AR constraints around 100 % weights of FT are defined in the case SXE (See
Figure 20), the ranking difference with FT decreases considerably and the
difference is observed more on the programs approximately after the 45™ in FT
ranking. SXE method favors programs that are better in criteria where most of the
alternatives have high scores. The significant weight difference between the FT
weights and implied weights of SXE method if no AR constraints are defined
causes rank difference. For 100% relaxed case some criteria are partially free but
the weights of no AR case cannot be obtained. When AR is defined the implied

weights obtain values more similar to FT weights.

For M1 imposing AR constraints have a similar effect to that observed in SXE as
shown in Figure 21. While the programs ranked by FT in the upper and lower
portions are very similar, some alternatives are ranked differently in the middle
portion. The difference of ranking of M1 is considerably more significant than SXE

even if AR constraints are defined.
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Figure 21. M1 (AR 100%) Ranking
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Further tightening the constraint results in more similar rankings for lower and

upper extreme programs for M1 as shown in Figure 22.
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Figure 22. M1 (AR 50%) Ranking

6.3.3 Ranking of Extreme Programs

In this subsection we examine the ranking of top and bottom portion of FT ranking

and ranking of DEA efficient alternatives.

For different weight relaxations, we provide a measure which is the number of
inefficient programs that rank higher than at least one efficient program. While SE
ranks efficient units (given in Table 14) always higher than inefficient units SXE
and M1 do not. We provide the number of inefficient units ranked better than at
least one efficient program for SXE and M1 for different AR constraints in Table
21.
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Table 21. Number of Inefficient Programs Ranking Better than Efficient Programs for SXE and M1

AR SXE M1

1% 0 0
25% 0 0
50% 8 3
75% 15 5
100% 20 10

For the 50 % relaxation 8 inefficient units rank better than efficient units in case of
SXE and for M1 this number is 3 much less than that. For 75% and 100%
relaxations, number of inefficient units ranked better than efficient are 15 and 20
respectively for SXE, while for M1 it is much less, 5 and 10 respectively. So for
these assurance regions, M1 is better at ranking efficient units higher than
inefficient units. In a problem where number of efficient units is limited for the
original CCR model when no AR constraints exist, M1 method may be better at

ranking of efficient units higher than inefficient ones.

We now can examine the rankings of different methods for top and bottom ranking
alternatives in FT. We select the first 15 programs and last 16 (there are two 85"
ranked program in FT list and no 86™) programs. If there are no AR constraints
almost any program can achieve the best rank or the worst by different weight
combinations. We observe that methods using fixed weights (such as FT, SMART
and PROMETHEE) ends up with similar rankings for top 15 programs (See Table
22). However we could observe that DEA based methods ranks these top 15
problems differently from the case where exact weights are available. For the case
of SE, only 5 programs are still ranked in top 15 and 5 programs are ranked
marginally different (i.e., new ranks range between 39™ and 60™). And even the first
program is no longer in top 15. For SE rankings of top 15 changes drastically. For
example alternative ranked the first (48" in FT ranking) bases its SE score on

99 Gy 99 Gy

criteria, “women students”, “international faculty”, “international board”, “research
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rank”, “placement success”, and “women board”. On the other hand the ond
program’s score is based on criteria “women board”, “languages”, “women faculty”
and “research rank”. SE scores of programs are based on only self evaluations
which depend on the distance to the efficient frontier and differ from scores of
additive approaches. In the case of SXE, top 15 programs in FT ranking also ranked
higher. Only one program is ranked lower than 20" and it is ranked 25" M1
ranking of top 15 programs is more different from SXE but compared to SE more

similar to FT. Half of the alternatives in top 15 of FT ranking are still ranked in top

15, and only one alternative is ranked higher than 40",

Table 22. Ranks of Top 15 and Bottom 16 Alternatives (No AR Const.)

E = = — E = = -
S22 8% %= =2 g8 %=
@ A~ 7 A~
1 1 1 8 7 8 85a 84 87 10 99 70
2 3 3 4 2 20 85b | 76 72 50 69 74
3 5 5 60 8 21 87 86 86 78 90 57
4 4 6 33 14 19 88 90 83 14 54 22
5 2 2 16 15 12 89 92 90 58 72 60
6 8 8 40 18 18 90 93 93 82 97 54
7 9 9 46 12 28 91 96 94 99 94 90
8 10 10 26 16 37 92a | 94 97 22 83 45
9 6 4 3 11 2 92b 89 84 61 82 76
10 7 7 39 9 10 94 85 82 71 75 46
11 11 11 48 25 41 95 99 96 90 98 99
12 16 17 6 1 5 96 52 53 31 48 51
13 13 14 18 17 6 97 100 | 100 | 76 100 85
14a 15 12 5 20 1 98 97 98 88 86 96
14b 14 15 17 5 14 99 95 99 7 78 40
100 | 98 95 44 80 78

Secondly we inspect ranks of top 15 alternatives ranks when AR constraints are
appended to SE, SXE and M1 (See Table 23). Looking at the mixture design
results, we observe that only three of the program ranks (1%, 4™ and 5™ in the FT

ranking) remain in top 15 for different weight combinations. But SE, SXE and M1
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rank at least 13 of these programs (i.e. top 15 of FT) in top 15. The rankings of
these programs however depend on the method and the programs that are ranked
2".10™ in FT list change places. Introducing AR for SE makes the rank more
similar to fixed weight approaches such as FT, SMART and PROMETHEE. SXE
ranks some of the programs that are marginal much worse than SE. M1 produces an
intermediate result, it does not assign very high ranks for programs that are
marginally different in a set of criteria as SE, but does not rank them as low as SXE.
In order to be ranked high by M1, programs should have clear difference from the
rest of the alternatives in most of the criteria and should not have very low

performance in criteria where some other programs perform well.

Table 23. Ranks of Upper 15 Programs (With AR Constraints)

SE SXE M1

P i

Z | K|

5 E % ~ a | wn |~ S a |~ S a |~

Z| =
1 1 11 1 1 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1
2 1 20 3 3 3 3 4 4 2 2 3 3 3 3 3 2 2 2
3 2 25 5 5 5 5 6 9 12 4 4 4 4 4 5 4 5 5 4
4 1 15 4 6 4 4 5 7 8 3 3 2 2 2 6 5 4 3 3
5 1 14 2 2 2 2 3 3 2 5 5 5 5 6 2 2 3 4 5
6 3 27 8 8 8 8 9 13 18 8 8 8 7 8 8 8 9 9 13
7 3 25 9 9 9 9 8 11 13 9 9 6 6 5 9 9 8 8 9
8 1 48 10 10 10 10 7 8 7 10 10 9 9 10 10 10 10 10 12
9 1 24 6 4 6 6 2 1 1 6 6 11 11 15 4 6 6 6 6
10 4 20 7 7 7 7 13 16 | 20 7 7 7 8 9 7 7 7 7 7
11 4 37 11 11 11 11 11 12 14 11 11 10 10 7 11 11 11 12 10
12 1 47 16 17 16 16 10 6 3 18 17 16 15 14 16 15 14 11 8
13 1 32 13 14 13 13 14 10 9 14 14 14 14 11 14 12 12 13 11
14a 1 68 15 12 15 15 12 5 5 17 18 19 | 24 | 34 12 13 13 14 14
14b 8 38 14 15 14 14 17 21 26 13 13 13 13 16 15 16 16 18 21

*Minimum rank obtained from different mixtures when AR constraints around 100% FT weights are
incorporated.

**Maximum rank obtained from different mixtures when AR constraints around 100% FT weights
are incorporated.
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For the case of lower 16 programs of FT by examining Table 24, we observe that at
least 2 and at most 5 of the programs are no more ranked in lower 16 by SE, SXE
and M1 and the change of ranking is higher compared to top 15 programs in AR
case. The rank changes of the programs which are in the 85™-88" places and the

96™ place in FT ranking are observable.

Table 24. Ranks of Lower 16 Programs (with AR Constraints)

SE SXE M1

¥E *i £ E 2 e e
o = = I = O B O S e B B B B - IO B B B s
= 1 : = < w > w S < w > w S < w > w S

% > = N w [ —t a el ~ i~ a e} ~ S

| o) 7] o

= | =
85a | 22 | 100 | 84 | 87 | 84 | 84 | 80 | 72 | 63 | 87 | 87 | 88 | 88 | 93 87 | 85 | 84 | 81 77

85b | 44 | 95 | 76 | 72 | 76 | 76 | 78 | 719 | 76 | 72 | 72 | 71 | 68 | 67 | 72 | 15 | 77 | 76 | 78

87 | 51 | 94 | 8 | 8 | 8 | 86 | 91 | 92 | 95 | 88 | 88 | 87 | 87 | 86 | 86 | 82 | &1 | 79 | 76

88 | 41 | 97 | 90 | 83 | 90 | 90 | 85 | 81 [ 75 | 91 | 91 | 92 | 90 | 92 | 83 | 81 | 82 | 82 | 79

89 | 43 | 98 | 92 | 90 | 92 | 92 | 92 | 93 | 94 | 89 | 89 | 89 | 93 | 95 | 90 | 90 | 89 | 86 | 86

90 | 34 [100| 93 | 93 | 93 | 93 | 93 | 80 [ 64 | 94 | 95 | 95 | 95 | 91 [ 93 | 93 | 93 | 93 | 93

91 | 71 [ 100 | 96 | 94 | 96 | 96 | 96 | 97 | 96 | 95 | 94 | 93 | 91 | 87 | 94 | 94 | 94 | 94 | 92

92a | 57 [ 100 | 94 | 97 | 94 | 94 | 95 | 94 | 89 | 93 | 93 | 94 | 92 | 90 [ 97 | 95 | 95 | 95 | 94

92b | 38 | 98 | 89 | 84 | 89 [ 89 | 90 | 84 | 82 | 92 | 92 | 91 | 89 | 88 | &4 | 87 | 87 | 88 | &9

94 | 37 | 97 | 85 | 82 | 8 | 85 | 87 | 85 [ 85 [ 90 | 90 | 90 | 94 | 94 | 82 | 84 | 8 | 90 | 91

95 | 75 [ 100 | 99 | 96 | 99 | 99 | 97 | 96 | 98 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96 | 96

96 | 23 | 91 | 52 | 53 | 52 | 52 | 50 | 50 | 44 | 48 | 48 | 46 | 46 | 45 | 53 | 54 | 54 | 57 | 60

97 | 54 | 100 | 100 | 100 | 100 | 100 | 100 | 100 [ 97 | 98 | 98 | 98 | 98 | 98 | 100 | 100 | 100 | 100 | 98

98 | 72 [ 100 | 97 | 98 | 97 | 97 | 98 | 98 [ 100 | 97 | 97 | 97 | 97 | 97 | 98 | 99 | 99 | 99 | 100

99 | 36 [100| 95 | 99 | 95 | 95 | 94 | 95 | 92 | 99 | 100 | 100 | 100 | 100 | 99 | 98 | 97 | 97 | 97

100 | 70 | 100 | 98 | 95 | 98 | 98 | 99 | 99 | 99 [ 100 | 99 | 99 | 99 | 99 | 95 | 97 | 98 | 98 | 99

* Minimum rank obtained among different mixtures when AR constraints around 100% FT weights
are incorporated.
** Maximum rank obtained among different mixtures when AR constraints around 100% FT

weights are incorporated.

6.3.4 Illustrative Examples

In this section we provide some rankings that illustrate the specific properties of
MI1. We present some programs that are ranked differently by M1 compared to SE

and SXE rankings and explain the causes of differences in ranks. We select some of
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the programs that are ranked differently by M1 which are shown in Figure 23.
Programs that are better ranked are marked with empty rectangle and that are
ranked worse are marked with empty triangle. Although for 50% AR restricted case
the changes in the rankings of the programs are between 10 and 30, these changes
are considerably higher for the unconstrained case. The scores of programs that are
ranked better by M1 for both the unconstrained case and AR case are presented in
Table 25 and programs that are ranked worse are presented in Table 26. In the table
the bold entries stand for the criterion that a program has score that is in the first
quartile and gray background stands for programs that have scores in the lowest

quartile. This is based on descriptive statistics given in Appendix C.5.
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Figure 23. Some of the Alternatives Ranked Higher By M1

We can observe that the programs ranked high by M1 have very promising scores in
a high number of the criteria while not performing very poor in most of the others.
The programs with high score in criteria “career progress rank”, “international

faculty”, “international students”, “international board”, “international mobility”,
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“international experience rank”, “languages” and “FT doctoral rank” is more
emphasized by M1. In order to better rank by M1 programs shall have high

performances in these criteria and shall have not very low performance in others.
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Table 25. Alternatives Ranked Better by M1

G g" % E | ; S e = G
2 e 2 © = =
o B2 g o oh g BZER= I 2L L8| 25 909
2 53 - 2 s S 2 5 E 3 5T 0E|2 2 s
5 Z 8 = 2 S - ZBE |z5EZ|5EE%
5E 2 g Z 5§z 522 |[5%5 |®HPS
S p= o ° T /A M
Weighted Salary | 0.5453 | 0.3701 | 0.6519 | 0.2078 | 0.3555 03434 | 03434
Salarlynfrf;:;tage 03644 | 05763 | 04576 | 03644 | 05339 | 04831 | 04407
Value for Money Rank | 0.8200 | 0.9700 | 0.8500 | 0.5300 0.3400 0.9500 0.8100
Aims Achieved 0.8571 | 0.7857 | 0.7857 | 0.6071 0.6429 0.6429 | 0.6071
R Alumni 0.5600 | 0.7200 | 0.7600 | 0.1800 | 0.2600 0.1100 | 0.2300
ecommended Rank
Career Progress Rank | 0.7000 | 0.5300 | 0.9100 | 0.5700 0.5000 0.5500 0.7900
P la“’mg;lf“‘”e“ 0.4900 | 0.2500 | 0.3400 | 0.7400 | 0.5400 0.2200 | 0.1500
Fmployed AtThee |0 7368 | 0.5614 | 0.8070 | 0.9649 | 09298 | 0.8772 | 0.7895
Women Faculty 0.5000 | 0.5789 | 0.4737 | 0.2368 0.5789 0.8684 0.4737
Women Students | 0.2895 | 0.5000 | 0.1053 | 1.0000 | 0.8158 0.4211 | 0.0263
Women Board 0.5000 | 0.3167 | 0.7000 | 0.6500 | 0.1833 03333 | 0.4167
International Faculty | 0.6020 | 0.4592 | 0.2143 | 0.8980 | 0.0816 0.4490 | 0.3878
International Students | 0.9326 | 0.5056 | 0.6517 | 0.8989 | 0.4494 09101 | 0.7528
International Board | 0.4787 | 0.2979 | 0.2660 | 1.0000 | 0.0319 03511 | 0.3511
International Mobility | 0.8000 | 0.9100 | 0.6600 | 0.6700 | 0.4900 0.8300 | 0.6900
B International 0.8700 | 0.3800 | 0.2500 | 0.9400 | 0.4100 0.5100 | 0.5800
xperience Rank
Languages 0.0000 | 0.0000 | 0.5000 | 0.5000 | 0.0000 0.0000 | 0.5000
FSC““Y with 0.9615 | 0.7308 | 0.6154 | 1.0000 | 0.8846 0.6538 | 0.8077
octorates
FT Doctoral Rank | 0.9200 | 0.4100 | 0.6700 | 0.6000 | 0.7700 0.7300 | 0.3900
FT Research Rank | 0.4900 | 0.6100 | 0.1300 | 0.6500 | 0.6900 0.0900 | 0.1700
FT Rank 35 44 46 47b 61 65 82a
M1 Rank (AR %350) 27 37 36 38 52 49 67
Best Quartile” 8 5 8 9 4 5 6
Worst Quartile™ 3 4 4 4 3 4 5

* Number of criterion for which program is in best quartile
** Number of criterion for which program is in worst quartile
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Table 26. Alternatives Ranked Worse by M1

=T)] [=]
g . = £ = 5 B .
=] = - Gy )
2 §‘§§ g?ngb §n>, 288 | 2€.
Q g 0 & &5 S £ = z20s 223
= S22 | S22 | 28 | 282 | 239
= Oz = 2 £.2 S0
& S D Z =)
Weighted Salary 03595 | 04008 | 0.4347 | 04630 | 0.4168
Salary Percentage 0.9746 | 0.8814 | 0.5847 | 0.6950 | 0.5763
Increase
Value for Money Rank | 0-8300 | 0.7000 | 0.1300 | 02400 | 0.4000
Aims Achieved 0.8571 | 0.6786 | 0.6786 | 0.7860 | 0.7143
Alumni IECOEmended 0.4600 | 0.1700 | 04800 | 0.4500 | 0.2400
an
Career Progress Rank | 04600 | 0.1400 [ 02100 | 0.1600 | 0.4500
Placem}gmsuccess 0.7900 | 0.2900 | 0.6600 | 0.5800 | 0.5300
an
Employed At Three 0.8596 | 0.6842 | 0.8596 | 0.8950 | 0.7544
Months
Women Faculty 0.0263 | 03158 | 0.2368 | 04470 | 0.5000
Women Students 0.0000 | 0.5526 | 0.4474 | 02370 | 0.5526
Women Board 0.1500 | 0.1833 | 0.2167 | 02170 | 0.2333
International Faculty | 0-0000 | 0.1224 | 0.4694 | 0.0920 | 03776
International Students | 0:0000 | 02584 | 02921 | 0.1910 | 0.0899
International Board 0.1064 | 0.0000 | 0.0000 | 0.0320 | 0.0000
International Mobility | 0-1900 | 0.1200 | 02000 | 0.1400 | 0.0800
International 0.0800 | 0.2600 | 03400 | 0.6300 | 0.3200
Experience Rank
Languages 0.0000 | 0.0000 | 0.0000 0 0.0000
Faculty with 0.8974 | 0.9744 | 1.0000 | 0.8970 | 1.0000
Doctorates
FT Doctoral Rank 0.0100 | 0.0100 | 0.2900 | 0.0100 | 0.0100
FT Research Rank 0.4300 | 03000 | 0.8700 | 0.6900 | 0.4900
FT Rank 45 51 52a 59a 79
M1 Rank (AR 50%) 56 78 71 79 92
Best Quartile” 4 3 3 2 2
Worst Quartile™ 11 8 6 8 5

* Number of criterion for which program is in best quartile
** Number of criterion for which program is in worst quartile

78




The programs ranked by FT in the middle (44", 46", 47", 61% and 65™ as shown in
the Table 25) are ranked upper by M1. Programs which are also ranked in the
middle by FT (45", 51%, 52" and 59™ as shown Table 26) are ranked lower by M1.
the effect of the change of the ranking . Because the first set of programs have
considerably better performance than others compared to second set. This

contributes to their net flow and they rank better than the second set.

We analyze the rankings of “Stanford University: GSB”, “Purdue University:
Krannert” and “Washington University: Olin” to see the effects of different ranking

approaches.

Rankings of “Stanford University: GSB” is listed in Table 27. “Stanford University:
GSB” which is a high ranking program considering the FT Rank also having high
average scores for most of the criteria. We observe an equally good performance
with the SMART ranking. But it can not assume a good ranking position in SE
unconstrained case. In the financial (first to third in Appendix C.2) and career
related (fourth to eight in Appendix C.2) criteria, it performs well but is not
marginally different from other high ranking alternatives. Both SXE and M1
produces a better ranking for Stanford University GSB as it has high score in a quite
large number of criteria. Still the ranking is worse for no AR case as criteria

including financial and career related ones are more uniformly weighted in these

approaches.
Table 27. Ranks of Stanford University GSB
Rank
Ranking Method Constant No AR AR 100%

FT Rank 3 N/A N/A
Normalized Rank 5 N/A N/A
PROMETHEE Rank 5 N/A N/A

SE Rank N/A 60 12

SXE Rank N/A 8 4

Method 1 Rank N/A 21 4
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In the second case we examine the rankings of “Purdue University: Krannert” (See
Table 28). M1 produces a better ranking for the program than others in no AR case.
The program does not perform very poor in most of the criteria, and performance is
outstanding for the criteria such as “placement success rank” and “FT doctoral
rank”. So we had this school far better ranked by M1 then SXE. This program do
not have very low negative net flows for most of the criteria but have sufficiently

larger net flow for the others so it is ranked better by M1.

Table 28. Ranks of Purdue University: Krannert

Rank
Ranking Method Constant No AR AR 100%
FT Rank 77b N/A N/A
SMART Rank 70 N/A N/A
PROMETHEE Rank 66 N/A N/A
SE Rank N/A 62 81
SXE Rank N/A 64 73
Method 1 Rank N/A 47 72

“Washington University: Olin” ranks lower then FT, SMART and PROMETHEE in
all cases as shown in Table 29. The reason for the lower ranking obtained by SXE
and M1 is that it only ranks better than others in criteria “Faculty with Doctorates”
and the difference is not notable (the average is already so high). The programs do
not have high average performance for the other criteria this program performs well
so the evaluation will not be advantageous in the case of SXE. An examination of
the score shows that this program ranks in the lowest quartile for 6 of the criteria
and in second for most of the others. In the case of SE, it has a low rank as it is not

marginally different in any of the criteria from the other programs.
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Table 29. Ranks of Washington University: Olin

Rank

Ranking Method Constant No AR AR 100%
FT Rank 52a N/A N/A
Normalized Rank 56 N/A N/A
PROMETHEE Rank 58 N/A N/A
SE Rank N/A 75 68
SXE Rank N/A 70 60
Method 1 Rank N/A 82 82

6.4. Results

Finally we can conclude that each DEA based ranking methodology has different
characteristics. When no assurance region constraints are provided these
characteristics are more apparent but the introduction of assurance region
constraints forces methods to arrive a similar ranking very quickly. Basic DEA
CCR model could not rank the programs and even the classification of efficient and
inefficient set is very poor in case of large number of criteria. SE tends to rank
marginal programs very high but the marginality is defined locally and a few
programs having similar scores but very different from large set of programs may
not be ranked higher. We saw such a case for language criterion in the case study.
SXE on the other hand favors programs that score similar to most programs. In our
case most of the schools get similar scores from gender and international diversity
criterion so they are heavily weighted while programs that have high performance
in financial and career related criteria are ranked lower. The advantage of SXE is
that it produces a robust ranking for a fixed set of programs. Proposed method 1 can
rank programs higher that are significantly better than most of the programs in a
criterion or a set of criteria and also robust compared to SE method. Also note that
the selection of indifference and preference values by the DM has an effect on the
ranks of the programs. Proposed Method 1 increases its correlation with

PROMETHEE as AR constraints are imposed and becomes the most correlated
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approach. It is also shown that introducing moderate amount of uncertainty in the
thresholds does not affect the ranking of proposed method 1 and proposed methods

1 and 2 produce similar results.
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CHAPTER 7

CONCLUSION

In this thesis two methods are proposed based on PROMETHEE and outranking
methods. In these methods the outranking relations are aggregated using a method

similar to DEA cross-efficiency ranking. These methods can be used when:

i.  When outranking relations can be built but the weight information is not
available so the aggregation of these relations is a problem.
ii.  When there is only partial information about criterion weights, absolute
bounds or relative bounds on criterion weights can be specified.
iii.  When both information about the preference structure and weights are not
precise. The bounds on indifference and preference parameters and

constraints are used as inputs.

Also the effects of change of parameters of preference functions on net flow are
analyzed, which will provide benefit for future studies that examine the robustness

of PROMETHEE methods.

In a case study, the proposed methods together with some other ranking approaches
are applied to MBA program ranking problem. In this problem the proposed method
1, produced a robust ranking when there is imprecise information on weights.
Differences of ranking exist between the proposed method 1 and other DEA based
methods because proposed method 1 uses preference information taken from the

DM.
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As a future work, the approach can be applied for other real-life MCDM problems.
In our case study proposed method 2 is compared with proposed method 1 in order
to show that impreciseness introduced in thresholds has minor effects in ranking.
More detailed analysis of proposed method 2 will provide sensitivity of ranks to
thresholds. The preference information is taken to be a proportion of performance
range for the case study. If this information can be obtained from the DM the

advantages of the method will become more evident.

Also in the case study in the proposed method 2, lower bounds or upper bounds for
thresholds are used in calculating alternative scores. A more efficient algorithm for
the selection of thresholds is a problem to be addressed. Similarly the Gaussian
preference (type 6) function is not studied and used in our analysis and introducing

it will provide an approach that has a larger scope.
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APPENDIX A

PROOF OF THEOREM 1

Remark:
Let a,<b, a,<b,,a,<b,,...,ay,<b, fora,...a,,b,...by R,
Then for v, 20,

N

N
MaxZaivk SMalchbivk
1 i=1

VeV iz Vi €

Proof:
Let us define K(p,g) which is independent of weights (v4) and defined for
Values(p,g. N )e Gj

D (@ —Dy)
K(p]g‘7qkj) = (qﬁkj D) - e

n—1

K(p,;»q,) has an upper bound as the preference function definitions are limited to
one and number of alternatives is finite. There is a pair of values, let us call

(pkj*,qkj*) € G, such that

K(py-qy) < K(pyay) Vk.j
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Then by using the remark and preceeding result

m m
max ZV@K (Py>94) < max vgK(py »qy )
j j=1

vig €W;.(qy, Py )EC = W,

This is equivalent to:

, 2 (@7 =07 2 (@7 -0%)
max S| (@ - y) - | <max (Zm( max (@75 -Dy)-2E )
=1 Jj=1

vy M (ay.p)<G; n-1 vy, 121y V<G, n—1

Also for any value of (v, p,;,q,,) used in the right hand side just replacing these

values will provide the same result in the left hand side, so it is impossible for right

hand side to be greater. Then two sides should be equal and proof is completed.

. PINCNEL D . 2 (@7 =07y
max Zl:v,(/ (@ —Dy) - = max (kaf (%n;la))(gg( (@' -0 ) - )
= = G P )EC )

vy, (ag.piy)<G; 4 n—1 vy n-1
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APPENDIX B

PROOF OF THEOREM 2

To simplify the proof let us take an instance problem for a fixed j and k. Dropping
the corresponding indices, k stands for the index of the alternative that calculations

are done for and is fixed.

D (@i-D)
Max [ (D, -®, )T

(g ,p )eG2 n—1

Where flows are calculated by using the generic preference function for fixed k& and

J-
n S _S _ n n
o - —q
D T~ = N YRR >
i=1(Sy-S;2q Sy —S;<p prq) P T4 i=1,(Sy=S;>p ) i=1,8,-S;=p.p=q
n S _S _ n n
- i o —q
ST T == YIS
i=1(S;-Sy2q .S;-Sy<p .p2zq) P T9 i=1(S; =Sy >p)  i=L(S;~Sy=p .p=0)
n S _ S o q n n
ij lj
@, = ) S B I o
[=1(S;=S;2q ,S;=S;<p .p#q) P —q I=1(S;=S;>p ) [=L(S;=S;=p .p=9)
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O = Zn: M i anl i anl

I=1(S;~S;2q .S,~S;<p .p2zq) P —4 I=1,(8,-8;>p ) I=1(5,-8,>p .p=q)

There are n*n A’y value where a is the number of alternatives. Some of these values

may be same as different alternatives may have same value in that criterion. Now
let us form a set from these | A« | values. The set will have less then n(n—1)/2+1
members'. Then order these values such that:

Ny =min(A)
Aj(k) = min(Aj -1 A(l) Jsees A(k—l) 1)

Aj(n‘) = maX(Aj)

where n <n(n—-1)/2 +1

' The equivalence may be a result of negative differences.
Ni=S,-S =-A, Vk,i.So|Nul|=-Ni| Vk,i resulting n(n+1)/2 distinct
| AVii | values at most. Diagonals are equal to zero resulting n(n—1)/2+1 values at

most (A’ =0 Vk). Other then these, two alternatives may have same scores

resulting 0 differences as in case b. Two alternatives may have same scores

resulting equalities. If alternative k and I have the same scores than for every other
alternative (| A« | S; =S, =S, =S, = Nu| Viother then k [). Even the

alternative scores may result in different scores. There may be alternatives 1, k, 1, m
such that no two of them have same scores but resulting differences will be same

([ Ay [F1S; =S = S, =S, [F Ay 1)
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We have n intervals such that [Aju),Aj(z)], [Aj(z),Ajo)], s [Aj(n'—l),Aj(n')] covering
the [0, N (n')] interval. The q and p values which are positive may be valued between

one of these intervals or may be greater then | A/ (.

Then we can rewrite the set Gj as an intersection of sets based on the above

formulation as in Table 30. The gray area is discarded as only one point for the
entire union is feasible (p=g) which is also included in the diagonal set in that row

where q and p take upper bound values.

Table 30. Decomposition of Feasible Set into Intervals for q and p

(q,p) bounds |q in the 1st q in the kth q in the n’th
for subsets |interval interval interval
Pinthelst (lA ,A J) ooy (lA ,A J, ooy (lA . ,A 'J’
interval W22 A A (k> Sl (n=1)> )
lA(l)’Au)J) l o (2)J) [A(l)’A(Z)J) l o (2)J) lA(l)’Au)J)
e T Lo o e S |
pin the kih (lAmAmJ ............. ) |_A(k)A(k+1)J ([A(nAUJ
interval A ,A A ,A
I.A(k)’A(kH)J) l “ (kH)J [A(k)’A(kJrl)J l © (k+1)J [A(k)sA(ku)J)
O S | L) A e | vy
pin the n'th ([AA [ e : [AA+ [ e , ([A_A N
interval I_A(:)—l)ﬂz)(n')J) I.A(n'—l)’A(n')J (k) ..... ( .k..l) I.A(n'—l)’A(n')J I_A(i‘—ll)ﬂ A(i‘))J)

To maximize the objective, q and p will take values that will be in one of the

intervals given in white cells of Table 30.

i)

are not neighbor to diagonal elements).

For subspaces that are feasible and p is definitely greater then ¢ (elements that

i1) Neighborhood of diagonal elements p=q is possible only when p takes the
lowest and g takes the highest value.
i) For the diagonal intervals where p=¢ may be true for the all the set values in

the interval.
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Case i:

Given Ay < g < Ny, Nay< p<Nuan, then q is valued in the ith interval
(€[N, A ]) and p in the kth interval( p € [ ), Ay |) where i+2<k
and formulate the problem for this specific case. M(A«) is used for denoting the

N i values in the corresponding interval as explained.

___________ S I AR R
i A,
——o o—eo X
:P , A(z") (? A(i'+1) A(k')? A(k'+1)
j : ' i ' ; i I (Ni)=z
Ni(Mi) =t | Na(Ma) =ui Ny (A ) =wy Na (M) = x| jelfmn

N; (Ajki):}’l}

Figure 24. Illustration of the Feasible Subset Region for p Strictly Greater than q

For any alternative k, A'x will either positive or negative.

If A1 >0, then one of the below conditions hold for AVx ;
i) A >ANusy so it will contribute directly to positive outranking flow.
Assume there are z, such values.
ii) Ay < A < ANy so it will have proportional contribution to positive
outranking flow. Assume there are y, such values.

iii) A < N so it will not contribute to positive outranking flow. Assume

there are x, such values.

If A’ <0, then one of the below conditions hold for A’ ;

97



i) — Ay > N so it will contribute directly to negative outranking flow.
Assume there are ¢, such values.

ii) A1 <—ANw < Ny so it will have proportional contribution to negative
outranking flow. Assume there are u, such values.

iii) —Aw <A@y so it will not contribute to negative outranking flow.

Assume there are w, such values.

For any alternative k, x, + y, +z, +¢, +u, + w, =n will hold. Assuming p # gand

replacing equation we get:

n S = S _ n n A/ R
k q ki q
D = E -7~ 4 E 1 = E — 4z,
i=1(Sy-S;2q Sy-Sy<p p2q) P 4 =(Sy-S;7p ) =Wk N N P T4
n S_S_q n n _Ajki_q
_ I
D= = + D1 = > —+t,
i=1S-8y2q 5,-Sy<p 2y P 4 i=L(S;=Sy>p)  i=(Wad N, ~Nean) P d
n S. =S, —¢q n n Aj,-l—q
!
O = > ——— + 1 = > — 4z
I=1(8;-S;2q .S;~Sy<p .p2q) P T4 I=1(8;-8y>p ) I=A(Wae Ny N P T4
n S__S___ n n _Aj./_
- I q ir—¢q
o = E < ¥ - 4 E 1 = E —+t,
I=1(Sy-8;2q .S;=S;<p o2y P T4 I2L(S=S;>p ) I=l(Nie Ny, -Nan]) P T4

By replacing the result in the equation we arrive at the function:

z Ajki —-q Z —-q— Ajki
Max z, + > (—) - > (——) -4
i=1(A ki €[ A (1), A (50 ]) pP—9q =W g e[-A ey =N )] P—4q
. < Ni—q < —q—-Na
D> (z+ > (—)- > (———)-t)
i=Lizk I=U(N g [N My P4 1= (A e[-N oy~ ) P74
n—1

The z and t terms will not effect the function as long as (p, ¢) pair do not pass the

limits causing x, y, z, ¢, u, w to change.
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< N q % q Ny
D Y v D YR o S R
islW e N e P74 P~4 icwud-day,-aeny P74 P4

Sy Y (Mo y 4 Ay

i=li#k I=1(A g €[N 1y, A (k) ]) p—q pP—q I=1(A ye[-N iy, =N (741) ]) p—q p—q
n—1

Grouping similar terms we get:

Max z, +(

(Y@ - i(Aﬂ»))—(ﬁ(yk —u) -1,

i=W(N e[ N oy, Ny ) i=1(A ki e[=A () =N 1) ) -

S YW - Y@L w1

i=lizk P4 @it i M) I=1(Ay e[=A 1y =AM i) D) —4q

n—1

By rearranging:

n

Z (Zi_ti)

Max (z,—t,)-E——

n—1
n n . n X
Z ( ZAjil - ZA]ﬂ)
n n .
+ 1 (( z N yi— Ajki) _i=hizk I=W(Nae[ N s,8 0]) /:l(AjifE[—A/(k')s_N(t’H)]))
P=qd  icVudN o Nayl) =l (N el-N gy, =N ) n-1
n
q z (ui _y[)
i=Lizk
+( Wy, =y ) ——"——)
pP—q n-—1

Then let us replace the terms that can be calculated by available information in

order to simplify the formulation:

. i ( i Ni - Zn: Ni)

K =(( i Ny — z Ajki) _i=Ljzk =M a e[ Ny N D) =1 E[-A/lkm-A"uwl)]))
i=U (N g e[N Gy Ny ) =l ke[ -A (), =N ) n-1
n
z (u[ - yi)
L= —-y)- i:l’#; 1 )

A=Nuy, B=Niw, C=Ay D=7,
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This problem is a fractional programming problem.

+( gL
P—q9 P9

Subject to

A<gq

Max )

qg<B
C<p
p<D

p.g20

Solution can be found by first transforming it to an LP based on method of Charnes

et al.[14]. Noting than p-g always greater than 0 as p>gq. Letq'=q/(p—q),
p'=p/(p—q), z=1/(p—q) are the variables for the corresponding LP and S, are

the slack variables. The LP in standard form is given below:

Max Kz+q'L
Subject to

p=q'-1=0 (1
Az—q'+S, =0 (2)
q-Bz+S,=0 (3)
Cz—-p'+S,=0 4)
p—-Dz+S§,=0 (5)

r»q',220 (6)

Where p=p'/zandq=gq'/zare the optimal solution of the original fractional

problem.
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The maximum objective will be on one of the basic feasible solution. As there are 7
variables 5 constraints, there will be 21 basic solutions. However all these solution

will not be feasible, the feasibility of these solutions is shown in Table 31.

Table 31. Basic Solutions of the LP (Subproblem)

Basic Variables Solution
Feasible or Not, Objective
p'|q'|z|S1|S2|S3|S4| Constraints Causing Inf. p' a Fun. Value
- [N [V [V [V [No(1),6) - - -
VI-[Y [V [V [V [No(1),6) - - -
VIN][- [V Y [V [No(1).6) - - -
VIV |- [V [V [No(1).6) - - -
VNN [V - [Y [No(1),6) - - -
- [NV [V [V - [No(1),6) i -
v - [N [V [V [ [No (1),(5),(6) - - -
V- V- [V [V [V [No(1),2),5)(6) - ) _
V|- [V V[V [No (1),(3),(5).(6) - ] )
V|- [V]¥ [V [- [V |YesorNo 1 0 K
V- (VN NY Yes or No* 1 0 K
VIV]-1- [V [V ¥ [No(1),5).6) i ] .
VIV]-[Y [- [V [¥ [No(1),(5).6) i ] .
VINT-1Y [V |- [V [No(1),5).6) i ) ]
VIN]-TV [V [V - [No(1),(5)(6) i ) ]
VIVIV]- [- [V [V [No(2).3).6) i ] -
VIVIN- [V [- [V [Yes C/(C-A) | A/(C-A) | (K+L *A)/(C-A)
VIVINT- [V [ Yes D/(D-A) | A/(D-A) | (K+L *A)/(D-A)
VIVININ - - [V [Yes C/(C-B) | B/(C-B) | (K+L *B)/(C-B)
VIVININ - [V |- [Yes D/(D-B) | B/(D-B) | (K+L *B)/(D-B)
VIVINIY [V [- |- [No4).(5).6) - ] i

*These cases are only feasible when lower bound for g is equal to zero (A = 0), which will make the

solution equivalent with g=A.
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Therefore (p,q) pairs for the basic feasible solutions are (C,A), (D,A), (C,B) and
(D, B) which means the optimal point of the problem will occur these boundary

points depending on value of K and L.

So we can conclude that:

3 (@ -d) 2 (@7 -7
Max @, -0, )-L 1= Max (@, D, )L

(9 .p)€G2 (p>q) n—1 (9.0)€G3.(p>q) n—1

Case ii:

Given Ay < g < Ny, Nuy< p<Nuan, then q is valued in the jth interval
(g€ [Aj @y, AN (1 ]) and p in the kth interval( p [A’ ey, N (k'+1)]), as these intervals
are neighboorhood intervals we equate i+1=k and replace i, we have

qe [A'/(k'),A'/(k'—l)] and p e [Aj(k'),Aj(k'H)] as shown in Figure 25.

i i Lo

|
>
—~
=
+
=
=
R
B>
.
—
e N o m - -
-~
|
>
~.
—
i
L
=

D aRel - SEELCEE CEEEES TEEEEE

A -y ANan N
- : 4
Ni(Mw)=tc L N; (A k) =w Ny (M) =xic 6 (Ni) =12
N IAji - !- '
S Ns(Ajki):Yk

Figure 25. Illustration of the Feasible Subset Region for p and q in Neighborhood Intervals

If p#g the function to be maximized is:
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Z (z; -t,)

Max (z, —t,)— "2

n—1
n n ) n X
| . . Z ( z Ni— Z Nir)
" (( z Ajki— Z Ajki) _iELi#k =N a=N ) I=1(N =—N (k) )

p_q i:l(A’kFAj(A')) i=1(Ajkr=*Ai(k')]) n_l
Z (ui _yi)
_ _i=Lizk
yk) I’l—l )
Z (Zi _ti) 1 z Aji’(yi _ui)
Max (z, —t,)— 2 + WNu(y, —u ) -2
n—1 pP—q n—1
g Z (”[ _y[)
(= y) =)
-q n—1
Z (Zi _ti) ANy — z (yi _u[)(Aj” -9
= Max (z,—1,)- i=Lizk + (v, — 1) ki~ g islizk
n-1 P—q (n=1(p-q)
Wecancall A=Ay, and A= Ay =Ny
z (Zi _t)
A-q)
_Max 7 t)— i=l,i#k ( _
(z¢ —1,) 1 (p )(( w —U) (n _l)zlz#k(yl
M:((J’k_”k)+ Z -
l Li#k

Then if M < 0, to maximize objective, it is better to decrease the contribution of

second term to zero and equate g = A=A and p € [A/ ey, N (k'+1)] . As all p values
except p =A ) is feasible then the upper bound value for p may be selected which

is A sy
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If M > 0, then EA—(]; is to be maximized. The maximum will occur when p is
P—q

equated to A ( p = A=A ). In this case again q can be selected any feasible value

for instance ¢ = A/ .

If p=q, then using generic function the objective value is equal to:

i (Zi+yi_ui_ti)

(Zp + Ve —u, =) - EList

n—1

This value is also same with the M > 0 case. So we can conclude that the maximum
occurs one of the points (p,q) = (A w1y, N wy)( Ny, Nw-1y) or (N ey, N ). This
is a subset of combinations of boundary points of the region (g € [A-’ (@, N (i) ]),
(pe [Aj wy, N (k'+1)]) where k=i+1, so by iterating the maximum of the four distinct

boundary combinations, we can get the maximum for the continuous subspace.

Case iii:

Lastly let us examine the situation where ¢ and p are in the same interval illustrated

in Figure 26.
s R |
N i
) - .- A
~Nwsy =A@ Ny N
e 1 e
'qia'p q’,p
Ni(Ak) = ti i Nz(Ajki):Wk N3 (N ) = x¢ i N4(Ajki):Zk

Figure 26. Illustration of the Feasible Subset Region for p and q in the Same Interval
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By definition ‘A’ ki‘ ¢ ( Nwy, Nwy), so the function does not change value when p

and q is varied in the interval except boundary points. There will be two distinct

values function takes.

When Ay >qg=p =N

> (D -D7) > (z-t)
Ma.x ((Dk+ _q)k*) _ i=l,i#k — (Zk _tk) _ i=l,i#k

q [Agy D 1(P=q) n—1 n—1

When ¢ = p=AN . the function takes another distinct value. As one of these

values is simply greater we can state that:

n n

Y (@ -0 2 (@-0)
Max ((Dk+ _ (D;:) _ i=l,i#k — Max (q)k+ _ q)kf) _ i=l,i#k

(¢ .p)eG ,(p=q) n—1 (P=4=N (1), p=q=1 (k1)) n—1

For all three cases, the maximum occurs in the boundary points. So we can

conclude that

n n

D, (@ -Dy) D (@ -Dy)
max ([(@7 - @)~ ————)= max ((@%-DPy)-"F———)

(qy-Piy)EG; n-—1 (qy-Pig )EGD; n—1
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APPENDIX C

MBA PROGRAM RANKING DATA

Various institutions prepare league tables of full-time MBA programs for the MBA
applicants. The tables are formed by collecting information from schools and
alumni and generally smoothed over several years to prevent abrupt rank changes.
Also these tables do not provide the reader with the raw data and even for some
categories only rankings for individual criteria are provided. In Table 32 some of

these rankings are listed.

Table 32. MBA Program Rankings

Source No of No of Scope Website Free/Not
Programs | Criteria Free
Ranked
Bussiness | 30, 10 N/A Us, http://www.businessweek.com | Not Free
Week international | /bschools/05/geographic.htm
Financial | 100 20 Global http://media.ft.com/cms/c51a4 | Free
Times c7c-8f2d-11da-b430-
0000779¢2340.pdf
Forbes 67,18 7 US, non-US | http://www.forbes.com/2003/0 | Free
(Category) 9/24/bschooland.html
U.S News | 50 10 Global http://www.usnews.com/usne | Not Free
ws/edu/grad/rankings/mba/bri
ef/mbarank brief.php
WSIJ 10, 10,10 |5 Natiomal, http://www.careerjournal.com/ | Free
regional, reports/bschool/
international
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C.1 Financial Times MBA Ranking 2006 Data

Financial Times Data is reproduced from http://media.ft.com/cms/c51a4c7c-8f2d-

11da-b430-0000779e2340.pdf .

C.2 MBA Criteria Key

Key for Financial Times 2006 MBA rankings is reproduced from
http://www.ft.com/CareerAdvisor/MBARankings/pdf/2006_key mba.pdf. The

number in parenthesis is the FT weight of the criterion.

0) Salary Today: An average of salaries — three years after graduation — from the
2004, 2005 and 2006 surveys. The figure is in US dollars and is not used in the
ranking.

1) Weighted Salary (20): The average ‘salary today’ with adjustment for salary
variations between industry sectors. The figure is a weighted average of salaries
three years after graduation from the 2004, 2005 and 2006 surveys and is in US
dollars.

2) Salary percentage increase (20): The percentage increase in salary from the
beginning of the MBA to three years after graduation. The figure is a weighted
average of the increases from the 2004, 2005 and 2006 surveys.

3) Value for money (3): The value for money criterion is a short-term indicator
calculated using the salary earned by alumni three years after graduation and course
costs, including the opportunity cost of not working for the duration of the course.
4) Career progress (3): The degree to which alumni have moved up the career
ladder three years after graduating. Progression is measured through changes in
level of seniority and the size of company in which they are employed. The data in
this field has been combined with career progress results from the MBA 2005 and
MBA 2004 surveys.

5) Aims achieved (3): The extent to which alumni fulfilled their goals or reasons
for doing an MBA. This is measured as a percentage of total returns for a school.

6) Placement success (2): The percentage of alumni, who graduated in 2002, that

gained employment with the help of career advice. The data is presented as a rank.
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The figure behind the rank is a weighted average of the placement success results
from MBA 2004, 2005 and 2006.

7) Alumni recommendation (2): Alumni of 2002 were asked to name three
business schools from which they would recruit MBA graduates. The figure
represents the number of votes received by each school. The data is a weighted
average from the 2004, 2005 and 2006 surveys and is presented as a rank.

8) Employed at three months (2): The percentage of the most recent graduating
class that had gained employment within three months. The figure in brackets is the
percentage of the class on which the school was able to provide employment data.
9) Women faculty (2): Percentage of female faculty.

10) Women students (2): Percentage of female students.

11) Women board (1): Female members of the advisory board, as a percentage.

12) International faculty (4): The percentage of faculty whose nationality differs
from their country of employment.

13) International students (4): The percentage of international students.

14) International board (2): The percentage of the board whose nationality differs
from the country in which the business school is situated.

15) International mobility (6): A rating system that measures the degree of
international mobility based on the employment movements of alumni between
graduation and today.

16) International experience (2): Weighted average of four criteria that measure
international exposure during the course.

17) Languages (2): Number of additional languages required on completion of the
MBA. Where a proportion of students require a further language due to an
additional diploma, that figure is included in the calculations but not presented in
the final table.

18) Faculty with doctorates (5): Percentage of faculty with a doctoral degree.

19) FT Doctoral rating (5): Number of doctoral graduates from the last three
academic years with additional weighting for those graduates taking up a faculty

position at one of the top 50 schools in MBA 2005.
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20) FT Research rating (10): A rating of faculty publications in 40 international
academic and practitioner journals. Points are accrued by the business school at

which the author is presently employed. Adjustment is made for faculty size.
C.3 Correlation Analysis

The correlation among each pair of criteria is presented in Table 33. Only for the
first criterion is significantly correlated with the second which is not used by FT in

ranking and in the case study.
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C.4 Normalized Data

Table 34. Normalized Performance Values for MBA Programs

x I3) - Iy ) 9 ° 0 X |- 0 2 g o) —_ = <
5 £ s | g8l s [ £ | | ¢ |25k | 3 | & |5 | Eg| 8| To| E.| £ 9| €€l & | 5
& D35 o 1) —_ o c = o ho] o c 8\, c < €% c 5 c X ) L= R o
x > Na 28 = x =, |S @ x o x GE)?/:) TS S > m .g> 29 2< 2 £ '28 2 38 S x S
f E BS|388| 55| SE5E8| 25| 381238| 5€| 28| 5| ES| E5| P3| f3| f5| o 2% 88| &5
Q 2 £ V50 © 0 < o @ 89 (20 e @ £ g 2 T3S & O 83| 8% = o2 - o
S 3 s | a2 2 | E g 5 | TR lEE S E | g | EE| EG| E®| 7 |ES| S| &€8| & | &
2 = > < @ 3] w - = = a e
1| University of Pennsylvania: Wharton 0960 | 0.822 | 0.080 | 0.857 | 1.000 | 0.720 | 0.820 | 0.877 | 0.289 | 0.474 | 0.067 | 0.296 | 0.371 | 0.798 | 0.550 | 0.650 | 0.000 | 0.962 | 1.000 | 0.990
2| Harvard Business School 1.000 | 0.686 | 0290 | 0.714 | 0.990 | 0.830 | 0.650 | 0.912 | 0421 | 0.632 | 0.817 | 0.337 | 0.315 | 0.160 | 0.590 | 0.470 | 0.000 | 0.949 | 0.820 | 1.000
3| Stanford University GSB 0997 | 0729 | 0.070 | 0.786 | 0.980 | 0.760 | 0.810 | 0.930 | 0.289 | 0474 | 0.267 | 0.378 | 0.337 | 0.213 | 0.410 | 0.610 | 0.000 | 0.987 | 0.950 | 0.980
4| Columbia Business School 0.849 | 0915 | 0.230 | 0.750 | 0.930 | 0.620 | 0.840 | 0.877 | 0.184 | 0447 | 0133 | 0.571 | 0270 | 0.383 | 0.520 | 0.360 | 0.000 | 0.974 | 0.810 | 0.960
5 | London Business School 0722 | 0.720 | 0120 | 0.786 | 0960 | 0.710 | 0420 | 0.947 | 0184 | 0211 | 0.133 | 0.908 | 0.921 | 0638 | 0.970 | 0.910 | 0.500 | 0.987 | 0.710 | 0.920
6 | University of Chicago GSB 0809 | 0.814 | 0.200 | 0.750 | 0.950 | 0.470 | 0.970 | 0.895 | 0.184 | 0.368 | 0.367 | 0.357 | 0.258 | 0.191 | 0.380 | 0.690 | 0.000 | 0.974 | 0.830 | 0.970
7| New York University: Stern 0755 | 0.881 | 0.110 | 0.893 | 0900 | 0.250 | 0.900 | 0.860 | 0.342 | 0500 | 0.217 | 0408 | 0202 | 0.032 | 0.480 | 0.480 | 0.000 | 1.000 | 0.970 | 0.890
8 | Dartmouth College: Tuck 0934 | 0881 | 0260 | 0964 | 0.880 | 0.480 | 0.990 | 0.895 | 0.474 | 0447 | 0350 | 0.133 | 0.247 | 0.106 | 0.360 | 0570 | 0.000 | 0.949 | 0.010 | 0.870
9 | Insead 0774 | 0415 | 0.920 | 0.786 | 0.950 | 0.850 | 0.330 | 0.807 | 0.158 | 0.079 | 0.217 | 0.867 | 0.865 | 0.798 | 0.950 | 0.920 | 1.000 | 0.962 | 0.730 | 0.940
10| MIT: Sloan 0847 | 0712 | 0520 | 0.821 | 0.920 | 0580 | 0.850 | 0.930 | 0.158 | 0421 | 0.183 | 0.296 | 0270 | 0.255 | 0560 | 0.710 | 0.000 | 1.000 | 0.940 | 0.840
11_| Yale School of Management 0798 | 0.949 | 0.250 | 0.964 | 0.770 | 0.410 | 0.860 | 0.825 | 0.237 | 0526 | 0.300 | 0.296 | 0.202 | 0.074 | 0.530 | 0.330 | 0.000 | 0.974 | 0.350 | 0.750
12| Instituto de Empresa 0524 | 0932 | 0.900 | 0.750 | 0590 | 1.000 | 0.680 | 0.807 | 0.737 | 0579 | 0.367 | 0408 | 0.742 | 0.894 | 0.770 | 0.680 | 0.500 | 0.821 | 0.010 | 0.170
13| lese Business School 0454 | 0.890 | 0.190 | 0.714 | 0.820 | 0.840 | 0.720 | 0.982 | 0.184 | 0237 | 0167 | 0.327 | 0.742 | 0.926 | 0.940 | 1.000 | 0.500 | 0.974 | 0.530 | 0.530
14a_| IMD 0818 | 0.322 | 0.960 | 0.893 | 0.840 | 0.930 | 0.780 | 0.912 | 0.079 | 0211 | 0.167 | 1.000 | 1.000 | 0.809 | 1.000 | 0.450 | 1.000 | 0.949 | 0.010 | 0.430
14b_| University of Michigan: Ross 0714 | 0661 | 0500 | 0.893 | 0.910 | 0.220 | 0950 | 0.772 | 0526 | 0447 | 0683 | 0.296 | 0.281 | 0.117 | 0.440 | 0.440 | 0.000 | 0.936 | 0.890 | 0.940
16| UC Berkeley: Haas 0691 | 0619 | 0.310 | 0.786 | 0.850 | 0.740 | 0.870 | 0.877 | 0.421 | 0474 | 0.300 | 0.347 | 0.315 | 0.085 | 0.600 | 0.820 | 0.000 | 1.000 | 0.860 | 0.950
17| Northwestern University: Kellogg 0728 | 0593 | 0.350 | 0.786 | 0970 | 0520 | 0.980 | 0.877 | 0289 | 0.447 | 0.150 | 0.245 | 0.191 | 0.064 | 0.260 | 0.620 | 0.000 | 0.949 | 0.930 | 0.920
18 | York University: Schulich 0350 | 0.881 | 0.930 | 0.714 | 0.690 | 0.870 | 0.160 | 0.842 | 0.500 | 0.632 | 0.333 | 0.592 | 0.685 | 0.564 | 0.810 | 0.780 | 0.000 | 0.987 | 0.290 | 0.530
19| UCLA: Anderson 0769 | 0.636 | 0.370 | 0.750 | 0.860 | 0.750 | 0.830 | 0.912 | 0079 | 0500 | 0.167 | 0.214 | 0191 | 0.106 | 0.320 | 0.700 | 0.000 | 1.000 | 0.710 | 0.890
20| University of Oxford: Said 0733 | 0500 | 0.740 | 0.750 | 0.640 | 0.980 | 0.240 | 0.719 | 0.342 | 0237 | 0.233 | 0.469 | 0933 | 0.266 | 0.890 | 0550 | 0.000 | 1.000 | 0.310 | 0.560
21| Ceibs 0.826 | 0.949 | 0.010 | 0.607 | 0.380 | 0.360 | 0.600 | 0.965 | 0.079 | 0579 | 0.167 | 0.633 | 0.112 | 0.532 | 0.020 | 0.880 | 0.500 | 0.923 | 0.010 | 0.300
22a_| Manchester Business School 0499 | 0746 | 0550 | 0.857 | 0.700 | 0.820 | 0410 | 0.895 | 0.605 | 0.289 | 0.000 | 0.214 | 0.865 | 0.000 | 0.920 | 0.950 | 0.000 | 0.795 | 0.920 | 0.270
22b_| HEC Paris 0502 | 0.729 | 0.630 | 0.750 | 0.510 | 0.970 | 0.700 | 0.368 | 0.368 | 0.395 | 0.200 | 0.286 | 0.831 | 0.340 | 0.930 | 0.900 | 1.000 | 0.846 | 0.500 | 0.130
24a_| University of Virginia: Darden 0713 | 0.822 | 0.330 | 0893 | 0.870 | 0.730 | 0.960 | 0.912 | 0447 | 0263 | 0.350 | 0.010 | 0.191 | 0.064 | 0.300 | 0.200 | 0.000 | 0.936 | 0.390 | 0.390
24b_| University of Toronto: Rotman 0435 | 0.746 | 0.620 | 0.786 | 0810 | 0.310 | 0500 | 0.895 | 0.421 | 0289 | 0.633 | 0.592 | 0.404 | 0489 | 0.460 | 0.160 | 0.000 | 0.962 | 0.760 | 0.840
24c_| RSM Erasmus University 0523 | 0.653 | 0.670 | 0.464 | 0.620 | 0.920 | 0170 | 0.667 | 0.158 | 0.368 | 0.333 | 0.194 | 0.944 | 0.319 | 0.880 | 0.990 | 0.500 | 0.910 | 0.870 | 0.490
27a_| Duke University: Fuqua 0643 | 0669 | 0.020 | 0786 | 0.890 | 0.320 | 0940 | 0842 | 0421 | 0211 | 0.267 | 0.337 | 0.303 | 0.085 | 0.220 | 0560 | 0.000 | 0.936 | 0.620 | 0.920
27b_| Esade Business School 0387 | 0.873 | 0470 | 0571 | 0.630 | 0.940 | 0450 | 0.912 | 0579 | 0.158 | 0.367 | 0.153 | 0.753 | 0.830 | 0.860 | 0.960 | 1.000 | 0.667 | 0.460 | 0.090
29 | University of North Carolina: Kenan-Flagler | 0.585 | 0.737 | 0.450 | 0.786 | 0.830 | 0.180 | 0.880 | 0.772 | 0.289 | 0.316 | 0.083 | 0.265 | 0.213 | 0.053 | 0.350 | 0590 | 0.000 | 0.910 | 0.710 | 0.870
30 | Lancaster University Management School | 0.461 | 0.703 | 0.990 | 0.607 | 0.170 | 0.900 | 0.350 | 0.895 | 0.500 | 0.421 | 0.733 | 0.276 | 0.742 | 0.468 | 0.720 | 0.860 | 0.000 | 0.821 | 0.920 | 0.170
31a_| Michigan State University: Broad 0435 | 0.881 | 0.610 | 1.000 | 0470 | 0.030 | 1.000 | 0.930 | 0.395 | 0.500 | 0.533 | 0.061 | 0.360 | 0.000 | 0.180 | 0.290 | 0.000 | 0.936 | 0.500 | 0.750
31b_| University of Western Ontario: lvey 0441 | 0703 | 0710 | 0.786 | 0.800 | 0540 | 0.390 | 0.895 | 0.368 | 0.316 | 0.217 | 0.449 | 0629 | 0479 | 0.740 | 0.600 | 0.000 | 0.962 | 0.350 | 0.760
33| University of lowa: Tippie 0415 | 1.000 | 0.760 | 0.607 | 0.030 | 0.370 | 0570 | 0.737 | 0.368 | 0.474 | 0.283 | 0.153 | 0.506 | 0.074 | 0.500 | 0.050 | 0.000 | 0.910 | 0.470 | 0.390
34 | SDA Bocconi 0391 | 0.729 | 0.650 | 0179 | 0540 | 0.600 | 0.190 | 0632 | 1.000 | 0237 | 0.783 | 0.245 | 0461 | 0255 | 0.730 | 0.930 | 1.000 | 0.808 | 0.990 | 0.390
35 | University of Cambridge: Judge 0545 | 0.364 | 0.820 | 0.857 | 0.560 | 0.700 | 0490 | 0.737 | 0.500 | 0.289 | 0.500 | 0.602 | 0.933 | 0479 | 0.800 | 0.870 | 0.000 | 0.962 | 0.920 | 0.490
36a_| Georgetown University: McDonough 0578 | 0.864 | 0.270 | 0.786 | 0660 | 0.420 | 0.320 | 0807 | 0579 | 0.395 | 0.267 | 0.235 | 0.247 | 0117 | 0.390 | 0.520 | 0.000 | 0.897 | 0.010 | 0.390
36b_| Cornell University: Johnson 0663 | 0593 | 0.060 | 0.714 | 0.780 | 0.260 | 0.930 | 0.807 | 0553 | 0.342 | 0.250 | 0.388 | 0.281 | 0468 | 0.270 | 0.280 | 0.000 | 0.936 | 0.390 | 0.750
38| University of Maryland: Smith 0482 | 0695 | 0510 | 0.786 | 0.580 | 0.060 | 0.520 | 0.877 | 0.447 | 0.447 | 0100 | 0.255 | 0.326 | 0.160 | 0.420 | 0.040 | 0.000 | 1.000 | 0.760 | 0.790
39| University of lllinois at Urbana-Champaign | 0.368 | 0.729 | 0490 | 0.679 | 0.300 | 0.390 | 0.670 | 0.947 | 0447 | 0579 | 0.283 | 0.276 | 0.506 | 0.000 | 0.280 | 0.240 | 0.000 | 1.000 | 0.850 | 0.660
40| University of Rochester: Simon 0537 | 0.746 | 0.100 | 0679 | 0.390 | 0.200 | 0.760 | 0.807 | 0.184 | 0500 | 0.233 | 0.224 | 0.461 | 0479 | 0.580 | 0.210 | 0.000 | 0.859 | 0.410 | 0.530
41| Camegie Mellon: Tepper 0507 | 0.619 | 0.140 | 0643 | 0750 | 0.120 | 0.910 | 0825 | 0289 | 0211 | 0.250 | 0.378 | 0.236 | 0.085 | 0.290 | 0.370 | 0.000 | 0.949 | 0.890 | 0.800
42a_| Emory University: Goizueta 0583 | 0.602 | 0.050 | 0.714 | 0.680 | 0.670 | 0.800 | 0.895 | 0.579 | 0474 | 0.250 | 0.204 | 0.315 | 0.074 | 0.150 | 0.400 | 0.000 | 0.910 | 0.010 | 0.840
42b_| Pennsylvania State: Smeal 0446 | 0.805 | 0.540 | 0.643 | 0450 | 0.130 | 0690 | 0.789 | 0.342 | 0289 | 0.283 | 0.163 | 0270 | 0.021 | 0.240 | 0.430 | 0.000 | 0.846 | 0.540 | 0.690
44| McGill University 0370 | 0576 | 0.970 | 0.786 | 0.720 | 0530 | 0.250 | 0.561 | 0579 | 0500 | 0.317 | 0.459 | 0506 | 0.298 | 0.910 | 0.380 | 0.000 | 0.731 | 0410 | 0.610
45 | Brigham Young University: Marriott 0359 | 0.975 | 0.830 | 0.857 | 0460 | 0.460 | 0.790 | 0.860 | 0.026 | 0.000 | 0.150 | 0.000 | 0.000 | 0.106 | 0.190 | 0.080 | 0.000 | 0.897 | 0.010 | 0.430
46| Cranfield School of Management 0652 | 0458 | 0.850 | 0.786 | 0.760 | 0.910 | 0.340 | 0.807 | 0474 | 0.105 | 0.700 | 0.214 | 0652 | 0266 | 0.660 | 0.250 | 0.500 | 0.615 | 0.670 | 0.130
47a_| Imperial College London: Tanaka 0552 | 0.356 | 0.780 | 0.607 | 0430 | 0.770 | 0.300 | 0.754 | 0.395 | 0.526 | 0.667 | 0.735 | 0573 | 0.532 | 0.620 | 0.130 | 0.000 | 0.936 | 0.660 | 0.300
47b_| Hong Kong UST Business School 0208 | 0.364 | 0530 | 0.607 | 0180 | 0570 | 0.740 | 0.965 | 0.237 | 1.000 | 0.650 | 0.898 | 0.899 | 1.000 | 0.670 | 0.940 | 0.500 | 1.000 | 0.600 | 0.650
47c_| City University: Cass 0488 | 0508 | 0.840 | 0250 | 0.330 | 0.890 | 0.210 | 0.895 | 0.395 | 0.368 | 0.267 | 0.429 | 0.685 | 0.309 | 0.780 | 0.420 | 0.000 | 0.885 | 0.800 | 0.190
50 | Boston University School of Management | 0.504 | 0.653 | 0.040 | 0.357 | 0.430 | 0.960 | 0.100 | 0.877 | 0.500 | 0.684 | 0.267 | 0.245 | 0.348 | 0.149 | 0.470 | 0.540 | 0.000 | 0.833 | 0.460 | 0.560
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Table 34. Normalized Performance Values for MBA Programs (continued)
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51 College of William and Mary 0.401 0.881 0.700 0.679 0.170 0.140 0.290 0.684 0.316 0.553 0.183 0.122 0.258 0.000 0.120 0.260 0.000 0.974 0.010 0.300
52a | Washington University: Olin 0.435 0.585 0.130 0.679 0.480 0.210 0.660 0.860 0.237 0.447 0.217 0.469 0.292 0.000 0.200 0.340 0.000 1.000 0.290 0.870
52b | Warwick Business School 0.388 0.407 0.800 0.536 0.730 0.560 0.070 0.842 0.816 0.158 0.533 0.388 0.764 0.340 0.710 0.830 0.500 0.897 0.980 0.270
54a | University of Southern California: Marshall 0.509 0.559 0.030 0.893 0.610 0.230 0.890 0.737 0.553 0.421 0.167 0.245 0.146 0.085 0.160 0.530 0.000 0.744 0.530 0.840
54b | Thunderbird: Garvin 0.436 0.619 0.420 0.536 0.710 0.650 0.430 0.105 0.368 0.421 0.150 0.255 0.371 0.245 0.840 0.770 0.000 1.000 0.010 0.430
56 University of Georgia: Terry 0.352 0.703 0.860 0.500 0.290 0.510 0.560 0.877 0.395 0.684 0.000 0.092 0.292 0.000 0.130 0.140 0.000 0.923 0.850 0.390
57a | University of Minnesota: Carlson 0.382 0.610 0.220 0.643 0.410 0.040 0.750 0.965 0.421 0.342 0.250 0.184 0.348 0.021 0.450 0.190 0.000 0.923 0.660 0.790
57b | Boston College: Carroll 0.514 0.754 0.380 0.571 0.090 0.340 0.480 0.947 0.711 0.526 0.183 0.143 0.236 0.021 0.050 0.180 0.000 0.821 0.250 0.490
59a | University of Notre Dame: Mendoza 0.463 0.695 0.240 0.786 0.450 0.160 0.580 0.895 0.447 0.237 0.217 0.092 0.191 0.032 0.140 0.630 0.000 0.897 0.010 0.690
59b | Vanderbilt University: Owen 0.497 0.771 0.210 0.750 0.670 0.240 0.550 0.684 0.368 0.289 0.133 0.122 0.315 0.085 0.170 0.100 0.000 0.821 0.250 0.270
61 University of Washington Business School 0.355 0.534 0.340 0.643 0.260 0.500 0.540 0.930 0.579 0.816 0.183 0.082 0.449 0.032 0.490 0.410 0.000 0.885 0.770 0.690
62 University of Texas at Austin: McCombs 0.511 0.508 0.390 0.536 0.790 0.170 0.590 0.842 0.500 0.289 0.233 0.173 0.146 0.021 0.230 0.270 0.000 0.910 0.740 0.750
63a | Ashridge 0.880 0.203 0.590 0.714 0.080 0.810 0.130 0.579 0.526 0.211 1.000 0.592 0.461 0.426 0.540 0.850 0.000 0.449 0.010 0.270
63b | Case Western Reserve: Weatherhead 0.360 0.712 0.360 0.464 0.270 0.290 0.260 0.596 0.421 0.316 0.000 0.102 0.281 0.000 0.640 0.310 0.000 0.949 0.560 0.610
65 University of Bradford/Universiteit Nimbas 0.343 0.483 0.950 0.643 0.110 0.550 0.220 0.877 0.868 0.421 0.333 0.449 0.910 0.351 0.830 0.510 0.000 0.654 0.730 0.090
66 University of Cape Town 0.865 0.381 0.680 0.429 0.400 0.490 0.020 1.000 0.526 0.316 0.417 0.112 0.337 0.223 0.700 0.740 0.000 0.551 0.250 0.050
67a | Rice University: Jones 0.519 0.576 0.150 0.714 0.650 0.150 0.620 0.877 0.579 0.447 0.167 0.265 0.258 0.021 0.090 0.060 0.000 0.949 0.010 0.490
67b | Temple University: Fox 0.257 0.593 0.690 0.607 0.050 0.380 0.090 0.754 0.263 0.447 0.450 0.367 0.382 0.415 0.850 0.750 0.000 0.910 0.630 0.270
69 Melbourne Business School 0.497 0.373 0.580 0.107 0.550 0.400 0.050 0.491 0.447 0.289 0.450 0.643 0.854 0.096 0.900 0.670 0.000 1.000 0.220 0.490
70 Wake Forest University: Babcock 0.402 0.788 0.320 0.750 0.250 0.300 0.400 0.772 0.237 0.158 0.267 0.031 0.202 0.043 0.060 0.070 0.000 0.936 0.010 0.430
71 University of British Columbia: Sauder 0.247 0.407 0.640 0.679 0.350 0.690 0.460 0.860 0.289 0.526 0.333 0.694 0.607 0.117 0.820 0.730 0.000 0.833 0.640 0.610
72a | Ohio State University: Fisher 0.356 0.602 0.460 0.571 0.500 0.190 0.610 0.930 0.474 0.316 0.167 0.163 0.348 0.021 0.110 0.390 0.000 0.872 0.550 0.750
72b | Arizona State University: Carey 0.366 0.576 0.430 0.500 0.530 0.070 0.470 0.877 0.474 0.395 0.150 0.153 0.180 0.000 0.400 0.660 0.000 0.885 0.800 0.650
72c | SMU: Cox 0.481 0.644 0.170 0.500 0.520 0.350 0.370 0.842 0.474 0.579 0.217 0.122 0.315 0.011 0.250 0.510 0.000 0.872 0.010 0.270
75a | George Washington University 0.439 0.475 0.180 0.679 0.200 0.860 0.200 0.561 0.526 0.974 0.150 0.071 0.360 0.053 0.650 0.110 0.000 0.872 0.800 0.270
75b | Australian Graduate School of Man. 0.493 0.339 0.600 0.393 0.490 0.020 0.440 0.509 0.447 0.474 0.183 0.551 0.764 0.160 0.750 0.840 0.000 0.936 0.430 0.560
77a | Babson College: Olin 0.484 0.492 0.090 0.643 0.570 0.950 0.180 0.825 0.579 0.395 0.350 0.194 0.416 0.074 0.330 0.970 0.000 0.910 0.010 0.270
77b | Purdue University: Krannert 0.414 0.441 0.280 0.607 0.600 0.100 0.920 0.877 0.237 0.211 0.167 0.194 0.225 0.032 0.570 0.100 0.000 0.962 0.960 0.610
79 University of California: Davis 0.417 0.576 0.400 0.714 0.240 0.450 0.530 0.754 0.500 0.553 0.233 0.378 0.090 0.000 0.080 0.320 0.000 1.000 0.010 0.490
80a | Georgia Institute of Technology 0.352 0.636 0.660 0.607 0.320 0.590 0.630 0.842 0.289 0.263 0.217 0.316 0.146 0.000 0.370 0.230 0.000 0.923 0.320 0.390
80b | University of Wisconsin-Madison 0.405 0.449 0.410 0.571 0.370 0.660 0.770 0.877 0.395 0.553 0.433 0.173 0.146 0.021 0.210 0.040 0.000 0.974 0.570 0.650
82a | Edinburgh University Management School 0.343 0.441 0.810 0.607 0.230 0.790 0.150 0.789 0.474 0.026 0.417 0.388 0.753 0.351 0.690 0.580 0.500 0.808 0.390 0.170
82b | University of California at Irvine: Merage 0.375 0.466 0.300 0.607 0.280 0.090 0.640 0.842 0.658 0.474 0.183 0.337 0.348 0.138 0.070 0.170 0.000 0.923 0.420 0.790
82c | Leeds University Business School 0.205 0.517 0.870 0.571 0.060 0.330 0.060 0.947 0.447 0.553 0.150 0.296 0.787 0.234 0.790 0.300 0.000 0.897 0.590 0.610
85a | Trinity College Dublin 0.648 0.373 0.980 0.750 0.210 0.440 0.120 0.386 0.342 0.842 0.500 0.122 0.618 0.266 0.990 0.150 0.000 0.244 0.210 0.050
85b | Texas A & M University: Mays 0.332 0.610 0.890 0.500 0.320 0.080 0.360 0.965 0.474 0.105 0.100 0.051 0.124 0.000 0.340 0.640 0.000 0.859 0.620 0.620
87 Queen's School of Business 0.395 0.441 0.790 0.714 0.740 0.630 0.380 0.316 0.632 0.105 0.150 0.439 0.438 0.319 0.510 0.040 0.000 0.846 0.390 0.190
88 Birmingham Business School 0.278 0.415 0.940 0.071 0.010 0.640 0.510 0.298 0.737 0.737 0.750 0.296 0.899 0.777 0.760 0.220 0.000 0.782 0.440 0.100
89 University College Dublin: Smurfit 0.402 0.246 0.770 0.393 0.120 0.780 0.080 0.965 0.474 0.211 0.200 0.306 0.472 0.596 0.870 0.460 0.500 0.885 0.350 0.170
90 Incae 0.000 0.737 0.480 0.357 0.340 0.280 0.270 0.456 0.079 0.526 0.000 0.592 0.787 0.862 0.630 0.810 0.500 0.846 0.010 0.050
91 University of Tennessee at Knoxville 0.251 0.695 0.750 0.607 0.110 0.050 0.280 0.737 0.447 0.553 0.283 0.020 0.090 0.000 0.100 0.120 0.000 0.795 0.590 0.130
92a | Coppead 0.331 0.576 1.000 0.679 0.020 0.010 0.730 0.000 0.763 0.447 0.283 0.071 0.000 0.000 0.030 0.790 0.500 1.000 0.260 0.050
92b | National University of Singapore 0.156 0.364 0.720 0.571 0.190 0.270 0.030 0.789 0.395 0.316 0.250 0.439 0.955 0.404 0.960 0.890 0.000 0.936 0.270 0.390
94 University of Durham Business School 0.248 0.297 0.880 0.000 0.080 0.880 0.040 0.895 0.368 0.342 0.217 0.520 0.820 0.415 0.680 0.760 0.500 0.833 0.500 0.390
95 Pepperdine University: Graziadio 0.344 0.525 0.160 0.607 0.220 0.610 0.140 0.404 0.474 0.763 0.183 0.020 0.270 0.000 0.610 0.350 0.000 0.910 0.010 0.090
96 University of Florida 0.424 0.636 0.910 0.643 0.130 0.800 0.710 0.842 0.184 0.395 0.100 0.122 0.090 0.000 0.010 0.040 0.000 1.000 0.710 0.750
97 Ipade 0.175 0.890 0.440 0.429 0.370 0.990 0.310 0.807 0.000 0.132 0.283 0.071 0.011 0.000 0.040 0.720 0.500 0.000 0.010 0.050
98 University of Alberta 0.120 0.339 0.570 0.750 0.140 0.110 0.110 0.719 0.421 0.421 0.267 0.592 0.427 0.245 0.430 0.490 0.000 0.949 0.310 0.530
99 ESCP-EAP 0.259 0.000 0.560 1.000 0.040 0.680 0.230 0.614 0.500 0.868 0.117 0.347 0.899 0.777 0.980 0.980 0.500 0.679 0.200 0.090
100 | Nottingham University Business School 0.145 0.305 0.730 0.107 0.150 0.430 0.010 0.754 0.605 0.816 0.633 0.255 0.865 0.138 0.310 0.800 0.000 0.782 0.530 0.390
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C.5 Descriptive Statistics For the Data Set

Table 35. Descriptive Statistics for the Data Set

Criteria Mean | St.dev. | Minimum Q1 Median Q3 Maximum
Weighted
Salary 0.4958 0.2060 0.0000 0.3614 0.4576 0.6287 1.0000
Salary
Percentage
Increase 0.6165 0.1956 0.0000 0.4682 0.6186 0.7436 1.0000
Value for
Money Rank 0.5050 0.2901 0.0100 0.2525 0.5050 0.7575 1.0000
Aims Achieved | 0.6514 0.1940 0.0000 0.5714 0.6786 0.7857 1.0000
Alumni
Recommended
Rank 0.5058 0.2897 0.0100 0.2525 0.5050 0.7575 1.0000
Career
Progress Rank | 0.5050 0.2901 0.0100 0.2525 0.5050 0.7575 1.0000
Placement
Success Rank 0.5050 0.2901 0.0100 0.2525 0.5050 0.7575 1.0000
Employed At
Three Months 0.7858 0.1850 0.0000 0.7412 0.8421 0.8947 1.0000
Women
Faculty 0.4134 0.1826 0.0000 0.2895 0.4211 0.5000 1.0000
Women
Students 0.4153 0.1965 0.0000 0.2895 0.4211 0.5263 1.0000
Women Board 0.2920 0.1926 0.0000 0.1667 0.2500 0.3500 1.0000
International
Faculty 0.3154 0.2107 0.0000 0.1556 0.2806 0.4235 1.0000
International
Students 0.4463 0.2731 0.0000 0.2472 0.3483 0.7275 1.0000
International
Board 0.2448 0.2638 0.0000 0.0319 0.1383 0.3989 1.0000
International
Mobility 0.5050 0.2901 0.0100 0.2525 0.5050 0.7575 1.0000
International
Experience
Rank 0.5058 0.2890 0.0400 0.2525 0.5100 0.7575 1.0000
Languages 0.1250 0.2694 0.0000 0.0000 0.0000 0.0000 1.0000
Faculty with
Doctorates 0.8812 0.1492 0.0000 0.8462 0.9231 0.9615 1.0000
FT Doctoral
Rank 0.4920 0.3153 0.0100 0.2525 0.5150 0.7600 1.0000
FT Research
Rank 0.5221 0.2848 0.0500 0.2700 0.5300 0.7575 1.0000
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APPENDIX D

INFORMATION ON MIXTURE DESIGN

In this section we will provide details of the mixture design method that is used to
evaluate the variability of rankings based on linear aggregation of performance

values. Basic limitation of such an approach is the number factors which is high.

D.1 Simplex Lattice Design

First we will provide information on the mixture design based on simplex formed

by the constraint that sum of the criteria equals to unity:

For this problem we can use the simplex lattice design approach and MINITAB is
used for design of mixture. The degree of lattice is chosen as 2, so points other than
vertices of the simplex can be included. Also using augmentation 20 points and
center point of the simplex are added. In table we can summarize the points of the

design and their types:

Table 36. Number of Mixture Design Points for Each Type

Point Type No.
Vertex 20
Double Blend 190
Center Point 1
Axial Point 20
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Finally in the above table we selected a sample of 100 points from above design
points in order to ease calculation of Kendall’s Tau-b correlations.

D.2 D-Optimal Design

Now we add constraints on mixture weights such that the mixture proportion is
limited by imposing lower and upper bounds (AR) relaxing the FT weight of the
criterion j (F;) (given in Appendix 0) by 1%, 25%, 50%, 75%, 100%.

Design Expert is utilized and D-Optimal design is used to produce 100 points for
each relaxation. Linear model and coordinate exchange method is used to find the
points. Design-Expert uses the CONVERT algorithm to find vertices. (see Piepel,
Journal of Quality Technology, pp125-133, April, 1988.)
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APPENDIX E

RANKING RESULTS

Table 37. Ranking Results
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Table 37. Ranking Results (continued)
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Table 37. Ranking Results (continued.)
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APPENDIX F

RANK CORRELATIONS

Kendall’s Tau-b rank correlations for various rankings are provided in the following

tables.

Table 38. Correlation of Methods (No AR)

FT SMART | PROM | SE | SxE M1
FT 1.000 0.852 0.819 0.294 0.580 0.459
SMART 0.852  1.000 0.954 0324  0.666  0.554
. 0.819  0.954  1.000 0333  0.692  0.583
SE 0.294 0.324 0.333 1.000 0.439 0.450
SXE 0.580 0.666 0.692 0.439 1.000 0.676
M1 0.459 0.554 0.583 0.450 0.676 1.000

Table 39. Correlation of Methods (AR with 100% Relaxation around FT Weights)

FT | SMART [ PROM | SE | sSxE | M1
FT 1.000 0.852 0.819 0.761 0.847 0.806
SMART 0.852  1.000 0954 0798 0875  0.824
PROM 0.819 0954 1000 0796  0.860  0.825
SE 0.761 0.798 0.796 1.000 0.805 0.820
SXE 0.847 0875 0860  0.805  1.000  0.825
M1 0.806  0.824 0825  0.820  0.825  1.000
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Table 40. Correlation of Methods (AR with 75% Relaxation around FT Weights)

FT | SMART | PROM | SE SXE M1
FT 1.000 0.852 0.819 0.815 0.876 0.821
SMART 0.852  1.000 0954  0.870  0.923  0.867
PROM 0.819 0954 1000  0.861  0.901  0.870
SE 0.815 0.870 0861 1000 0877 0871
SXE 0.876 0923 0901 0877 1000  0.874
M1 0.821  0.867 0870 0871  0.874  1.000

Table 41. Correlation of Methods (AR with 50% Relaxation around FT Weights)

FT | SMART | PROM SE SXE M1
FT 1.000 0.852 0819 0857  0.883  0.827
SMART 0.852  1.000 0954 0932  0.955  0.907
PROM 0.819 0954 1000 0914 0918  0.917
SE 0.857 0.932 0.914 1.000 0.924 0.914
SXE 0.883 0.955 0.918 0.924 1.000 0.890
M1 0.827 0.907 0.917 0.914 0.890 1.000

Table 42. Correlation of Methods (AR with 25% Relaxation around FT Weights)

FT | SMART | PROM | SE SXE M1
ET 1.000 0.852 0.819 0.852 0.855 0.831
SMART 0.852  1.000 0954 1000  0.992  0.938
PROM 0.819 0954  1.000 0954  0.950  0.956
SE 0.852 1.000 0.954 1.000 0.992 0.938
SXE 0.855 0.992 0.950 0.992 1.000 0.935
M1 0.831 0938  0.956 0938 0935  1.000
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Table 43. Correlation of Methods (AR with 1% Relaxation around FT Weights)

FT | SMART | PROM | SE SXE M1
FT 1.000 0.852 0.819 0.852 0.852 0.818
SMART 0.852  1.000 0954 1000  1.000  0.952
PROM 0.819 0954  1.000 0954  0.954  0.998
SE 0.852 1.000 0.954 1.000 1.000 0.952
SXE 0.852 1.000 0.954 1.000 1.000 0.953
M1 0.818 0.952 0.998 0.952 0.953 1.000
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