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ABSTRACT 
 
 
 

ROBUST CONTROL CHARTS 
 
 
 

 
Çetinyürek, Aysun 

M. Sc., Department of Statistics 

Supervisor: Dr. Barış Sürücü 

Co-Supervisor: Assoc. Prof. Dr. Birdal Şenoğlu 

 

December 2006, 82 pages 
 
 
 
Control charts are one of the most commonly used tools in statistical process control. 

A prominent feature of the statistical process control is the Shewhart control chart 

that depends on the assumption of normality. However, violations of underlying 

normality assumption are common in practice. For this reason, control charts for 

symmetric distributions for both long- and short-tailed distributions are constructed 

by using least squares estimators and the robust estimators -modified maximum 

likelihood, trim, MAD and wave. In order to evaluate the performance of the charts 

under the assumed distribution and investigate robustness properties, the probability 

of plotting outside the control limits is calculated via Monte Carlo simulation 

technique.  

Keywords: Control chart, long-tailed symmetric distribution, short-tailed symmetric 
distribution, robustness, least squares estimators, modified maximum likelihood 
estimators, trim estimators, MAD estimators, wave estimators, outliers 
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Kalite kontrol grafikleri, istatistiksel kalite kontrolünde en çok kullanılan araçlardan 

biridir. İstatistiksel kalite kontrolünün en popüler özelliği normallik varsayımına 

dayanan Shewhart kontrol grafikleridir. Fakat normallik varsayımının ihlali ile  

uygulamada sık karşılaşılır. Bu nedenle, en küçük kareler tahmin edicileri ve sağlam 

(robust) tahmin edicilerden uyarlanmış en çok olabilirlik, budanmış, ortalama mutlak 

sapma (MAD) ve wave tahmin edicileri kullanılarak uzun ve kısa kuyruklu simetrik 

dağılımlar için kontrol grafikleri oluşturulmuştur. Bu grafiklerin, varsayılan dağılım 

için performansı ve istatistiksel sağlamlık özellikleri, Monte Carlo simulasyonu ile 

kontrol sınırları dışında olma olasılıkları elde edilerek değerlendirilmiştir. 

 
Anahtar Kelimeler: Kontrol grafikleri, uzun kuyruklu simetrik dağılım, kısa 
kuyruklu simetrik dağılım, istatistiksel sağlamlık, en küçük kareler tahmin edicileri, 
uyarlanmış en çok olabilirlik tahmin edicileri, budanmış tahmin edicileri, ortalama 
mutlak sapma tahmin edicileri, wave tahmin edicileri, aykırı değerler 
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CHAPTER 1 

 

INTRODUCTION 

 
History of quality control goes back to 1900s. However, the usage of statistical 

methods begun with Dr. Walter Shewhart. After the World War II, statistical quality 

control gained popularity in manufacturing industries. During the war, the need for 

statistical techniques for quality control purposes were realized. In 1950s and 1960s, 

reliability engineering begun to emerge. In 1980s, United States started to use more 

statistical methods for quality control purposes. 

 

Statistical process control has many advantages (Montgomery, 2001; Wheeler, 1995). 

These advantages can be listed as follows: 

 

• When the process is stable, its behaviour can be predicted. 

• A process in statistical control operates with less variability than a process 

having special causes. Lower variability has become an important tool of 

competition. 

• A process having special causes is unstable, and the excessive variation may 

hide the effect of changes being introduced to achieve improvement. 

• Knowing that a process is in statistical control is helpful for workers running 

the process. 

There are many statistical methods used for quality control purposes. Control charts 

are online monitoring techniques used for quality control. It was in 1920s when 

control charts were used for the first time in the Bell laboratories. Dr. Walter 
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Shewhart designed a control chart for quality control purpose and since then these 

type of charts are known as Shewhart charts and have wide usage in statistical 

process control. Sower et. al. (1999) stated that “Shewhart recognized the variation as 

the enemy of quality”. The control charts for the mean have common usage in 

statistical process control. “The control chart is a tool which provides a means of 

what type of variation is present in a process and whether a process is performing 

predictably” (Sower et. al. , 1999). The main function of a control chart is to define 

the variation present in the process and to find out if some adjustments can be done 

for the process.  

 

If a product is to meet requirements, the process should be operating with little 

variability around the target or nominal value of the product’s quality characteristic 

(Montgomergy, 2001). In any production process, there is an inherent variability 

regardless of how well the process is designed. This inherent variability cannot be 

economically identified and corrected (chance causes) (Alloway and Raghavachari, 

1991). The process that is operating with chance causes only, is said to be in-control 

(Montgomery, 2001). If, in contrast, there are some other causes affecting the process 

and making the process produce nonconforming units, these causes are known as 

assignable causes. This variability may be due to defective material, unadjusted or 

unproperly controlled machines or etc. The variability caused by assignable causes is 

not inherent in the process and can be taken under control. A process operating with 

assignable causes is said to be out-of control. For long time, production processes 

will operate in-control state and produce conforming products. Eventually, some 

assignable causes will occur and make the process produce out-of-control state. At 

this time, the assignable causes are tracked down, emergent precaution is taken to 

encounter the causes and the process is restored to its in-control state. Control chart is 

the most popular technique used for this purpose.  Control charts are commonly used 

for the reasons listed below: 
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 Effective in prevention of defects 

 Improve productivity 

 Provide diagnostic information 

 Prevent unnecessary process adjustment 

 

One of the main ideas used in control charts is rational subgrouping. Here the idea is 

to minimize the variability within the subgroups and maximize the variability 

between the subgroups, so it would be easy to detect the occurence of assignable 

causes. Time order is a good basis for rational subgrouping. Not only the means 

plotting outside the control limits but also the pattern of the sample means plotted 

between the control limits is important. Even if all the points are between the limits, 

the pattern of the points should be random without a trend. 

 

A control chart is a graph of a quality measurement plotted against time with control 

lines superimposed to show statistically significant deviations from the normal level 

of performance (Wood, 1995). A control chart consists of a center line, an upper 

control limit and a lower control limit. Center line represents average value of the 

quality characteristic when the process is in-control. The probability of plotting 

outside the control limits is 0.0027 if the underlying process distribution is normal. 

For other process distributions this probability more or less depends on the magnitude 

of the tails (Chan et. al. , 1988). This procedure allows one to find unusual subgroups 

that may indicate sporadic problems and also to detect components of variation that 

are not reflected in the within group variation (Rocke, 1989). Sometimes, even if the 

entire points plot inside the limits, most of the points may follow a pattern or may 

take place below or above the center line; this is an indication of something wrong 

with the process (Montgomery, 2001). 

Control charts are similar to hypothesis testing procedures (Chakraborti et. al., 2001). 

Control charts are means of testing the process for being in-control state. If a point 

plots outside the limits, this is equivalent to rejection of the null hypothesis. The 
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similarity of hypothesis testing and control charts is used to assess the performance of 

the control charts. 

 

There are two types of control charts which are determined with respect to the type of 

distribution of the quality characteristic of interest. For quality characteristics with 

discrete distributions, attributes control chart; for quality characteristics with 

continuous distributions, variables control chart is used. 

 

The variables control charts have the assumption that the quality characteristic of 

interest has normal distribution. However, normal distribution assumption is rarely 

met in practice (Tiku et. al. , 1986; Montgomery, 2001). For this reason some robust 

and nonparametric estimators are used in the literature to make the control charting 

procedure robust to deviations from normality assumption. 

 

Control charts are one of the seven tools used in statistical process control (SPC). 

These tools are very important in SPC to make improvements in quality. There are 

many control charts used for the process control. These are x  chart, CUSUM charts, 

EWMA charts, s chart, R chart, attributes control charts, etc. Control chart for x  is 

used for widget processes and for high value processes moving mange chart is used 

(Caulcutt, 1995). The main focus of this thesis is on x  control chart. 

 

1.1 x  Control Chart 

 

A control chart is defined as a graphical display of a quality characteristic, which is 

measured from a sample, versus time. The control charts are constructed in such a 

way that each has a central line (CL), which is the mean quality of the quality 

characteristic, lower control limit (LCL), and an upper control limit (UCL). In the 

quality control, for the quality characteristic of interest, it is assumed that the random 

variable X which represents the quality characteristic has normal distribution with 
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known mean μ  and variance 2σ . For a normally distributed random variable, 

99.73% of the values lie within 3σ  limits. That is, for a normally distributed random 

quality characteristic, incorrect out-of-control signal or false alarm will be generated 

in only 27 points out of 10,000 points. Hence, 3σ  limits above and below the mean 

are constructed as shown below: 

 

LCL=
n
σμ 3

−  

CL=μ            (1.1) 

UCL=
n
σμ 3

+  

 

However, the parameters μ  and σ  are rarely known in practice. For this reason, μ  

and σ  are estimated from samples. For a normal distribution, x  is unbiased 

estimator of μ  and is the most efficient estimator of μ . Thus μ  is replaced by x . 

For estimating σ , there are two different estimators used, standard deviation, s and 

range, R. R chart was formerly more popular due to easy computation. However, the 

technological advances help to overcome this problem. Nowadays, it is an easy task 

to estimate s. 2s is an unbiased estimator of 2σ , whereas s  is not an unbiased 

estimator of σ . When the distribution is normal, s estimates c4σ , where c4 depends 

only on n. That is, c4 is tabulated constant which is used to make the scale estimator 

unbiased. 

 

E σ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

4c
s . 

 

Values of c4 can be obtained using the following exact and the approximate formulas:  

  



 6

4
2 2

11
2

n

c
nn

⎛ ⎞Γ⎜ ⎟
⎝ ⎠=
−− ⎛ ⎞Γ⎜ ⎟

⎝ ⎠

 and  4
4( 1)
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nc
n
−

≅
−

, respectively. 

 

The control charts are formed as follows: 

 

UCL=
nc

sx
4

3
+ , 

CL= x , 

LCL= 
nc

sx
4

3
− . 

 

Shewhart suggested the use of rational subgroups to strengthen the control limits. 

Thus, g subsamples are taken so that the variation between the samples is maximized 

and variation within the samples is minimized, and hence, assignable causes would be 

easily detected.  Then, mean of subsample means can be written as  

 

 
1

g

i
i

x x
=

= ∑ ,   
1

g

i
i

s s
=

= ∑ , 

 

where ix  and is  are the sample mean and standard deviation. These are unbiased 

estimates of the corresponding parameters. Then, the control limits are constructed as: 

 

UCL=
nc

sxxVx
4

3)(3 +=+ , 

CL= x ,                         (1.2) 

LCL=
nc

sxxVx
4

3)(3 −=− . 
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As all the above calculations show, the procedure of deriving control limits entirely 

depends on the assumption of normality. When the distribution of quality 

characteristic of interest is normal, the control limits are located so that the 

probability of a sample mean of a quality characteristic plotting outside the control 

limits is 0.0027. This is obtained from the fact that for a normally distributed random 

variable, 99.73% of the observations lie inside the 6σ limits.  

 

Generally, Type I error rate is used to compare the chart performances. There is also 

another measure for comparing the performances of the chart performances, in-

control average run length (ARL) value,  

 

In-control ARL=
α
1 ,           (1.3) 

 

where 

{ } { }LCLxPUCLxP <+>=α . 

 

For an in-control process comparing the ARL or type I errors are the same. ARL 

value indicates the expected number of subsamples that should be taken before an 

out-of control signal occurs.   

 

In this thesis, while comparing the performances of the robust control limits and 

Shewhart control limits, both type I error rate and ARL are used. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

The fact that the distribution of many engineering processes is not normal, has been 

realized (Spedding and Rawlings, 1993; Castagliola, 2000). Despite this fact, the 

distribution of sample means follow the normal distribution. However, this is just 

proven for rectangular and right triangular distributions which do not show 

significant departures from normality (Spedding and Rawlings, 1993). Larger sample 

sizes are needed for more extreme population distributions to achieve normality. 

There is not much knowledge about the accuracy of the Central Limit Theorem with 

respect to sample size and the degree of non-normality (Spedding and Rawlings, 

1993). 

 

Caulcutt (1995) stated that violations of assumptions were the rule rather than the 

exception. Many distributions of process attributes that are likely to be encountered in 

practice have more or less mass in the tails than the normal distribution (Alloway and 

Raghavachari, 1991; Chakraborti et. al., 2001). If quality control charts are set up for 

samples drawn from non-normal populations using normal theory, probability levels 

will not equal to the true probability level (Moore, 1957). Thus performing the tests 

or procedures based on normality assumption, erroneous inferences could easily be 

made. In this case, there are different courses of action: 
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• Transformations 

• Nonparametric Control Charts 

• Robust Control Charts 

 

Transformations are not preferred in statistics because it makes difference in the scale 

of the distribution, the inferences made for the transformed data are not valid for 

untransformed data.  

 

For constructing nonparametric control charts the user does not need to specify any 

particular distribution for the underlying process. This robustness with respect to 

distribution could be an advantage (Chakraborti, 2004). However, nonparametric 

control charts perform better than parametric control charts in only certain conditions 

(when sampling from skewed or heavy tailed distributions) (Chakraborti, 2004). 

Chakraborti et. al. (2001) argued that using charts with the Hodges-Lehmann 

estimator, the mostly known nonparametric chart, as the control statistic was 

problematic, and they concluded that the Hodges-Lehmann estimator is of limited 

usefulness.   

 

Robust methods are preferred due to certain reasons. Robust estimators use the 

original data and hence the inferences are valid for the original data and also the 

robust estimators provide robustness to possible distortions, e.g. outliers and 

contaminations, and violations of assumptions which are very common in practice. 

Sometimes, the assumed distribution and the true distribution may be somewhat 

different. Therefore, a statistical procedure should be robust under plausible 

alternatives. Besides, robust procedures are not based on the assumption of normality 

like many of the other statistical tests. Parametric procedures which are based on the 

assumption of normality perform worse when the distribution is not normal; however, 

the robust procedures which are not based on the normality assumption perform well 

when the distribution is not met. 
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In 1920s, Shewhart control chart was proposed by Dr. Walter Shewhart. Since then, 

they have had wide usage in industry (Montgomery, 2001). 

 

Pearson and Haines (1935) made a research to study in when to replace standard 

deviation safely by range. They concluded that the standard deviation could easily be 

replaced by range, due to easy calculation and less loss of efficiency. However, they 

stated that this was made for practical purposes, and yet standard deviation was 

theoretically a more efficient estimator of variation. 

 

There are many studies on robustness of the control charts. Langenberg and Iglewitz 

(1986) proposed a control chart using trimmed mean and trimmed mean of sample 

ranges for controlling a quality characteristic. Lack of resistance of x  to extreme 

observation caused the control chart perform worse. They replaced mean of subgroup 

means ( x ) with trimmed mean of the subgroup means and R  with trimmed mean of 

the subgroup ranges. The proposed control chart was a Shewhart type chart, but they 

used an adjustment factor. They found that the proposed control limits and Shewhart 

charts lead to similar results when deviation from normality was moderate. When 

extreme departures from normality are observed, the proposed control charts are 

quicker to detect and signal an alarm for corrective measures. 

 

Choobineh and Ballard (1987) proposed a new heuristic method for setting limits. 

Their method led to same limits as Shewhart method when the underlying population 

was symmetric. When the underlying population was skewed, the new limits were 

adjusted in accordance with the direction of skewness by weighting the variance. 

They split the skewed probability density function (pdf) into two parts at its mean. By 

each segment they constructed symmetrical pdfs. The weighted variance method uses 

the two symmetrical distributions to establish the limits of the control chart. Their 

method provided an acceptable probability of coverage. 
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Chan et al. (1988) made a research to examine the effect of violation of the 

assumption of normality. They used Tukey’s λ  family of symmetric distributions 

while comparing the probabilities lying outside 3-standard deviation and 2-standard 

deviation control limits. The reason for using Tukey’s λ  family of symmetric 

distributions was that the family contains distributions with variety tail areas. The 

constant required for constructing the control charts are obtained for Tukey’s λ  

family. It was found that control charts which based on the normality assumption do 

not give appropriate results when the distribution is heavy tailed. 

 

Rocke (1989) compared six procedures for control limits from the point of 

robustness. The six procedures were mean and range, trimmed mean and range, 

median of means and range, mean and IQR, trimmed mean and IQR, mean of 

medians and IQR. Mean and IQR is found to be the most efficient and robust of the 

six procedures. Robust control charts do better when there are outliers but the 

distribution is normal. He mentioned that when the error distribution is symmetric but 

long tailed and the extreme observations are not to be considered outliers, then the 

robust procedures used in this paper will reject too many subgroups when there is no 

special cause. 

 

Alloway and Raghavachari (1991) proposed a control chart based on the Hodges-

Lehmann estimator. The proposed chart was nonparametric and maintained the 

nominal type I error rate specified. Calculations of some control limits were 

simplified for certain conditions. The proposed control chart performs better than the 

traditional approach in the case of moderate sample sizes from long-tailed symmetric 

distributions. These properties make it well suited for early production runs of limited 

size when the distribution of the process is unknown. Not all processes are normally 

distributed. For this reason, nonparametric methods hold over a larger class of 

underlying distributions and maintain a specified type I error rate. Although 
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calculations to determine the non-parametric estimators are usually simple, they are 

often tedious. The more efficient estimators tend to involve more work. 

 

Yourstone and Zimmer (1992) examined the effect of skewness and kurtosis on the 

performance of control charts. A new method was proposed for non-normal 

distributions. They examined the effect of skewness and kurtosis on average run 

length (ARL) of symmetrical control charts and then proposed non-symmetrical 

control limits. They used Burr distribution while comparing symmetrical and non-

symmetrical control limits. They concluded that kurtosis has a more dramatic effect 

on the in-control ARL than skewness does. This is due to the effect of kurtosis in the 

area of tails. 

 

Spedding and Rawlings (1993) stated the problem of non-normality by using a 

system of distribution which is known as Johnson System of Distributions. The use of 

this family made many engineering processes to be modeled. The system allows 

transformations to and from normality. They concluded that in small samples where 

the skewness and kurtosis has large sampling errors, the use of traditional methods 

are recommended and it has been shown that assuming normal for a non-normal 

process has significant errors. Thus, they recommended the use of generalized 

systems of distributions such as Johnson. They also pointed out that Johnson family 

of distributions is more efficient than Pearson system of distributions because of 

transforming to and from normality. 

 

Wu (1996) proposed asymmetric control limits for skewed process distributions. 

Wu’s eventual goal was to reduce the scrap products falling outside the limits. The 

optimization was conducted based on the statistical distribution of the process and 

took both the control limits and specification limits into consideration. 
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Castagliola (2000) proposed a chart for monitoring the skew distributions. Scaled 

weighted variance chart is an improvement of the weighted variance method which 

was proposed by Choobineh and Ballard (1987). He compared the performance of the 

proposed control chart with Shewhart and weighted variance control chart for the 

process the distributions lognormal, gamma and Weibull. It was concluded that 

scaled weighted variance method gave a type I error closer to the nominal value and 

could replace the weighted variance method without increasing the amount of 

calculation. 

 

Chakraborti et. al. (2001) made an overview about the nonparametric or distribution 

free control charts. They pointed out both advantages and disadvantages of 

nonparametric control charts. Their aim was that their article led to a wider 

acceptance of distribution free control charts among practitioners. 

 

Chakraborti et. al. (2004) introduced some distribution free control charts. The 

control charts have all the same in-control run length distribution for all continuous 

process distributions. Distribution free or non-parametric control charts can be useful 

in statistical process control problems. Their advantage is that one does not need to 

assume a particular distribution for the process and the in-control probability 

calculations remains the valid for all continuous distributions. The distribution 

robustness is an advantage especially when the distribution is not known. Gibbons 

and Chakraborti (2003) showed that distribution free statistical tests could be more 

efficient than their parametric counterparts when sampling from skewed or heavy 

tailed distributions. Chakraborti et. al. examined the robustness of the charts via ARL. 

The charts they proposed have attractive ARL properties and may be useful where 

standard Shewhart charts are used. 

 

Shore (2004) used sample estimates of the first four moments to approximate the 

distribution and as an alternative he used the first two moments to deliver a better 
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representation to the underlying distribution. His aim was to address the problem of 

skew populations in process control. Three control charts were compared in terms of 

MSE and it was found that the mostly used method, Clements’ method needed to be 

re-thinking while using. 

 

Kocherlakota and Kocherlakota (1995) made a comparison study of 8 different 

control charts under normality. In their study, for constructing these control charts, 

seven estimators out of 25 estimators from Andrews’ et. al. (1972) study and Tiku’s 

modified maximum likelihood (MML) estimators are used. Their aim was to 

investigate the performance of the control charts under normality and to assess the 

effect of non-normality on these control charts. They compared eight control charts in 

terms of probability of plotting outside the control limits and width of control limits 

via Monte Carlo swindle technique. As would be expected, in the case that the quality 

characteristic has the normal distribution, least squares (LS) estimators and x  chart 

using R have the shortest width and the probability of plotting outside the control 

limits is equal to the prescribed value. However, robust control charts are not good in 

terms of probability of false alarms and width of the intervals. Under non-normal 

situations, performance of estimators varies. For t distribution with 3 degrees of 

freedom, all control charts have poor performance when n=5. When n increases, 

control chart using range gives probability of false alarm equal to prescribed value. 

For this model, MAD has the worst performance. When t distribution with 9 degrees 

of freedom is used, LS, Winsorized, MML and Wave estimators have good 

performance. For outlier model, LS, Winsorized, MML and Wave estimators have 

probability of false alarm close to 0.0027. For mixture distributions, none of the 

control charts produce acceptable levels of false alarm rates. For slash distribution, 

range and winsorized charts produce false alarm close to nominal value.  

Kocherlakota and Kocherlakota (1995), compared the performances of the LS, 

Trimmed mean and winsorized variance, MML, MAD estimators and Wave 

estimators (k=2.4) under normality via Monte Carlo simulation. Different from 
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Kocherlakota and Koceherlakota (1995), in this study, performances of control charts 

using the LS estimators, Trimmed mean and winsorized variance, MML, MAD and 

wave estimators (k=2.4) are compared for long-tailed symmetric distributions. 

However, we used the MML estimators specific to long-tailed symmetric family and 

they are different from Kocherlakota and Kocherlakota (1995). Also, control charts 

for short-tailed symmetric family are also compared along the same lines as the long-

tailed symmetric family.  In this case, all the estimators are the same with 

Kocherlakota and Kocherlakota (1995), but MML estimators are specific to short-

tailed symmetric distribution.  

  

Long-tailed family is a family which has kurtosis more than 3 for all p  and it covers 

symmetric distributions with kurtosis greater than 3. Short-tailed family always has 

kurtosis less than 3, depending on parameters, r  and d , short-tailed symmetric 

family covers symmetric distributions with kurtosis less than 3. By obtaining control 

limits for these two distributions, results will be generalized from normal to all 

symmetric distributions either with heavy or light tails. As will be noted in the later 

chapters, normal distribution is just a special case of long-tailed symmetric family for 

p =∞ .  
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CHAPTER 3 

 

 

CONTROL CHARTING PROCEDURE FOR LONG-TAILED 

SYMMETRIC DISTRIBUTIONS 
 

 

3.1. Long-Tailed Symmetric Distributions 

 

Many of the processes are not normally distributed (Ferrell, 1958, Langenberg and 

Iglewitz, 1986). Generally, the distributions of process attributes to be encountered in 

practice have more mass in the tails than the normal distribution. “Noble (1951) 

provides an excellent motivation for heavy tailed distributions by observing that 

assignable causes may not always economically feasible to eliminate” (Alloway and 

Raghavachari, 1991). Control charts based on the assumption of normality give 

inaccurate results when the tails of the underlying distribution are thin or thick (Chan 

et. al., 1988).    

 

For modeling heavy tailed distributions, long-tailed symmetric (LTS) distributions 

given by the following pdf 

  

,)(11),( 2

2 p

k
ypyf

−

⎭
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⎧ −
+∝
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σ
  ∞− < y <∞ ;    (3.1.1) 
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k =2 p -3 and p ≥2, are used (Tiku and Suresh, 1992). Here, mean and variance of 

the family are given in equation 3.1.2,  

 

E(y)=μ  and V(y)= 2σ .         (3.1.2) 

 

The kurtosis is defined as 

 

)2/5(
)2/3(32

2

4

−
−

=
p
p

μ
μ .        (3.1.3) 

 

The kurtosis values of the LTS distribution is shown in table 3.1 below. 

 

Table 3.1 Kurtosis values of  the LTS distribution for different values of p  

 

p 2.5 3.0 3.5 4.0 5.0 6.0 10.0 ∞ 

Kurtosis - 9.0 6.0 5.0 4.2 3.86 3.4 3.0

 

 

For 1 p≤ < 2, V(y) does not exist in which case σ  is a scale parameter.   For p =1, 

E(y) does not exist and μ  is a location parameter. The distribution of 

k
v

⎟
⎠
⎞

⎜
⎝
⎛ −

σ
μy  is the Student’s t with 2 1v p= −  degrees of freedom. LTS can 

approximate many symmetric distributions. LTS family is a symmetric family which 

has different tail areas depending on the parameter p . For p =∞ , LTS family 

reduces to the normal distribution. For p =5, it has the same first four moments as the 

logistic density. Thus, by achieving control limits for symmetric p family, the results 

will be generalized from normal to alternative symmetric distributions which have 

kurtosis greater than 3. 



 18

 

In quality control charting procedure, least squares (LS) estimators are frequently 

used. Despite this common usage, these estimators do not provide robustness to 

deviations from underlying assumptions. For this reason, modified maximum 

likelihood (MML) estimators, trimmed mean and winsorized variance (TRIM), MAD 

estimators and wave (W24) estimators are used for studying the behavior of the 

control charts under the assumed model and for deviations from the assumed model. 

In this study, four estimators’ performances are compared with LSE. The reason why 

these estimators are chosen is that W24, TRIM, MML and MAD estimators are used 

for LTS distributions and they provide robustness.  

 

3.2. Least Squares Estimators   

 

LS estimators of μ and σ are given in equation 3.2.1.  

 

n

y
y

n

i
i∑

== 1 ,  
1
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1

2

2

−

−
=
∑
=

n

yy
s

n

i
i

.     (3.2.1) 

  

y  is an unbiased estimator of μ  and has variance V( y )= 2 / nσ . y  is fully 

efficient and an ideal estimator of μ under normality assumption. Besides, s2 is an 

unbiased estimator of σ2.          

 

3.3. Modified Maximum Likelihood Estimators 

 

For the p  family (or long-tailed symmetric family), ML estimators can not be 

obtained because of the intractable terms in the likelihood equation. They can be 

solved by iterative methods but these methods may be problematic, especially for 
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small sample sizes. In this case, MML estimators are obtained. The MML estimators 

are: 

 

my i
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In order to obtain MML estimators, coefficients obtained from the expected values it  

are   
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The values of it  are available in Tiku and Kumra (1981) for p=2(0.5)10, n≤ 20; 

Vaughan (1992b) for p =1.5, n≤ 20. 

 

For p =1 (Cauchy distribution), the expected values and variances and covariances of 

the order statistics y(i), 3≤ i≤n-1 (n 6≥ ); are given in Vaughan (1994), the expected 
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values of the first two (and the last two) order statistics  are infinite (Tiku and 

Akkaya, 2004). 

 

It is shown that μ̂  is asymptotically fully efficient and it is also unbiased for all n. 
2 / Ms  is the asymptotic variance of μ̂  (Tiku and Akkaya, 2004).  

 

The estimator σ̂  is real and positive provided that 0≥iβ  for all i=1,2,….,n, and is 

highly efficient for all n. In fact, σ̂  is asymptotically fully efficient (Tiku and Suresh, 

1992; Vaughan 1992a) . If iβ <0 for some i, σ̂  can cease to be real. Since it  is 

decreasing sequence of values until the middle value and )1()( +−= ini tt , it follows that 

if iβ  is positive, then all the remaining iβ  coefficients are positive. For small values 

of p  ( 3≤p ) and large n, however, a few iβ  coefficients can be negative as a result 

of which σ̂  can cease to be real and positive. If 0<iβ for some i, then coefficients 

iα  and iβ  are replaced by (Tiku et. al., 2000) 

 

 0* =iα  and { }2
)(

* )/1(1/1 ii tk+=β .      (3.3.5) 

 

The constants given in equations 3.3.4 and 3.3.5 give smaller weights to tails and 

larger weights to middle observations and thus achieve robustness to long-tailedness.   

 

Asymptotic Properties: 

1. For large n, 
σ

μμ )ˆ( −M  is distributed as N (0, 1). 

2. 2

2ˆ)1(
σ

σ−n  is distributed as chi-square with n-1 degrees of freedom. 
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Tiku and Akkaya (2004) states that “non-normality comes from the tails and once the 

extreme order statistics are censored, there is hardly any difference between a normal 

and a non-normal sample.”. Thus they recommend the use of MML estimators in the 

framework of robustness. 

 

 

3.4. Trimmed Mean and Winsorized Standard Deviation 

 

Here, y(i) denotes the ith order statistic in a random sample of size n. Then ρ% 

trimmed sample mean is given by,  
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Here r=[ nρ +0.5] where [a] is the greatest integer less than or equal to a. When ρ=0.1, 

ˆTμ is called 10% trimmed sample mean. The estimator of σ which matches with ˆTμ  

is    

   

2 2 2 2
1

1

1ˆ ˆ ˆ ˆ( ) ( ) ( )
2 1

n r

T i T r T n r T
i r

y r y y
n r

σ μ μ μ
−

+ −
= +

⎧ ⎫⎡ ⎤= − + − + −⎨ ⎬⎣ ⎦− − ⎩ ⎭
∑ .    (3.4.2) 

 

Huber (1970) showed that under certain regularity conditions, 

ˆ ˆlim ( ( 2 ) var( ) / ( ) 1n T Tn r Eμ σ→∞ − =  for fixed q=r/n.    

 

 

3.5. Median and Median Absolute Deviation 
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MAD estimators of m and s  are given in 3.5.1,  

 

T=median (yi)  and S=MAD=median {|yi-T|}.    (3.5.1) 

       

Median is defined as the middle value of a sorted data set. Calculation of median 

depends on the sample size as given below: 
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3.6. Wave Estimators 

 

 Huber M-estimators are proposed under the assumption that the underlying 

distribution is a symmetric and long-tailed distribution. Huber M estimators use 

different functional forms. To illustrate, W24 estimators are a special form of Huber 

estimators obtained by using the wave function given below: 
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W24 estimators are given in equations 3.6.1 and 3.6.2 below:    

 

[ ]∑ ∑−+= )cos(/)sin(tan* 1
00 ii zzSkTT ,    (3.6.1) 
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k =2.4 and only the terms that ensure the condition π<iz  where 

)*/()( 00 SkTyz ii −= , are included in the summations in the equation 3.6.1 and 

3.6.2. Here 0T and 0S  represent the median and Median Absolute Deviation as given 

in Section 3.5.    

 

Other popular Huber M-estimators are bisquare estimators (BS82) and Hampel 

estimators (H22). W24, BS82 and H22 are found to be the most efficient of the Huber 

M-estimators as a result of a simulation study designed by Gross (1976). W24, BS82 

and H22 have similar efficiency and robustness properties; hence only W24 is used in 

our simulation study.  

 

W24 estimators are remarkably efficient for heavy tail distributions but not for skew 

or short-tailed distributions (Tiku and Akkaya, 2004). W24 provides robustness since 

it censors observations implicitly and the number of observations censored is not 

known. For symmetric distributions, Huber estimators of μ  are unbiased and 

uncorrelated with the matching estimators of σ  (Tiku et. al. , 1986).  

TRIM and W24 estimators are equally efficient for LTS distributions (Tiku et. al., 

1986). 

 

 

3.7. Construction of Control Limits 

 

Let T denote a robust location estimator and S the corresponding scale estimator for 

any estimation method, the control limits given in equation 1.2 become 

 

)(3 TVTUCL += , 

 CL T= ,         (3.7.1) 

 )(3 TVTLCL −= . 
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Here V(T) can be calculated as 
nA

cS  where A is the constant to make the scale 

estimator unbiased and c is the adjusting factor for standard deviation of location 

parameter. The reason for using c and A in the definition of V(T) is that S is not 

unbiased estimator of σ  and V(T) is not equal to the exact variance of location 

estimator T for small samples.  

 

 
nA

ScTUCL 3+= , 

 CL T= ,         (3.7.2) 

 
nA

ScTLCL 3−= . 

 

The estimators of μ  and σ , T and S, are calculated for each method given in 

Sections 3.2-3.6. To obtain the control limits, constant A particular to estimators are 

obtained via simulation by using the fact that E(S/A)=σ. In each case, a sample of size 

n is taken and value of S, the scale estimator, is determined. The constant A is found 

by averaging these values of S over 10,000 repetitions.     

 

 

3.8. Simulation Study 

 

The simulation study is performed for sample of sizes n=5, 7, 10, 15 and 20. In each 

simulation, number of subgroups denoted by g is taken as 20. Random numbers are 

generated from LTS distribution in equation 3.1.1 where σ=1.0, using t-distributed 

random variables. Simulation results are obtained over 10,000 repetitions. The 

estimation techniques taken into account are LS, MML, TRIM, MAD and W24. The 

formulas for calculating these estimators are explained in Sections 3.2-3.6.  
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In this simulation study, control charts are constructed using the simulation procedure 

below and probability of plotting outside the control limits (Type I error) and in-

control average run length (ARL) values are computed.   

 

Simulation procedure consists of the steps given below:  

 

1. g samples of size n are generated. 

2. For each sample, location and scale parameters, T and S, are calculated for all 

estimation techniques. 

3. Averages of each of the estimators are obtained over g groups. 

4. The control limits are formed as follows: 

 

 

UCL=
nA

ScT 3+ , 

CL=T , 

LCL=
nA

ScT 3− . 

 

5. Steps 1-4 are repeated N= 10,000 times. Thus, there are 10,000 control limits for 

each estimation procedure. Means of UCL and LCL are obtained.     

6. A further independent set of 10,000 samples of size n are generated which is 

called as testing sample. 

7. Mean, T , of each testing sample is calculated.  

8. To study the performances of control charts, the tail probabilities are calculated 

by comparing mean of each comparison sample with the mean of control limits 

obtained before using the following formula:  
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{ } )( LCLTPUCLTP iii <+>=α . 

 

9. ARL values are calculated by taking the inverse of Type I error rates obtained in 

this step using equation 1.2. 

 

Type I error rates and ARL values are not only calculated for some selected values of 

p  (i.e. p =2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 10.0) and n but also for some plausible models. 

These alternative models are given in Section 3.8. 

 

Firstly, expectations of scale estimators should be calculated before beginning the 

simulation study in order to make the scale estimators unbiased estimators of σ.  

Expectations of scale estimators are obtained via simulation by calculating the mean 

of each scale estimator. These constants are given in Table 3.2. Then, constants for 

adjusting the variance of location estimators for small sample sizes are obtained and 

they are given in Table 3.3. After obtaining the constants, type I error rates and ARL 

values are obtained by simulation procedure described in this section. Type I error 

rates and ARL values are given in Table 3.4.  
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Table 3. 2  Expectations of Scale Estimators Using LTS Distributions for Parameter 
p  

 n= 5 7 10 15 20 

LSE 0.8748 0.9078 0.9289 0.9465 0.9559 

MML 1.0959 1.0899 1.0880 1.0857 1.0683 

TRIM 0.7493 0.8343 0.7866 0.8692 0.8604 
MAD 0.4648 0.4905 0.4974 0.5086 0.5125 

p=2.5 

W24 0.7029 0.7641 0.7880 0.8144 0.8258 

LSE 0.9060 0.9258 0.9519 0.9620 0.9698 

MML 1.0660 1.0639 1.0538 1.0528 1.0514 

TRIM 0.7466 0.8291 0.7868 0.8683 0.8581 
MAD 0.4950 0.5167 0.5323 0.5429 0.5481 

p=3.0 

W24 0.7444 0.7985 0.8382 0.8625 0.8734 

LSE 0.9137 0.9380 0.9591 0.9702 0.9747 

MML 1.0424 1.0410 1.0398 1.0308 1.0232 

TRIM 0.7446 0.8316 0.7860 0.8701 0.8603 
MAD 0.5086 0.5412 0.5530 0.5657 0.5705 

p=3.5 

W24 0.7618 0.8268 0.8642 0.8909 0.8997 

LSE 0.9204 0.9437 0.9563 0.9748 0.9780 

MML 1.0315 1.0286 1.0260 1.0253 1.0194 

TRIM 0.7443 0.8329 0.7846 0.8714 0.8596 
MAD 0.5170 0.5465 0.5600 0.5809 0.5841 

p=4.0 

W24 0.7731 0.8364 0.8695 0.9091 0.9161 

LSE 0.9265 0.9448 0.9602 0.9770 0.9802 

MML 1.0040 1.0172 1.0160 1.0157 1.0149 

TRIM 0.7403 0.8290 0.7886 0.8698 0.8614 
MAD 0.5283 0.5556 0.5751 0.5950 0.5999 

p=5.0 

W24 0.7872 0.8481 0.8887 0.9243 0.9327 

LSE 0.9305 0.9484 0.9650 0.9774 0.9814 

MML 0.9985 1.0050 1.0122 1.0102 1.0010 

TRIM 0.7454 0.8303 0.7864 0.8696 0.8575 
MAD 0.5357 0.5654 0.5849 0.6042 0.6087 

p=6.0 

W24 0.7941 0.8589 0.9003 0.9332 0.9426 

LSE 0.9352 0.9551 0.9667 0.9809 0.9844 

MML 0.9741 0.9854 0.9909 0.9987 1.0000 

TRIM 0.7442 0.8228 0.7858 0.8679 0.8600 
MAD 0.5437 0.5774 0.5978 0.6175 0.6243 

p=10.0 

W24 0.8049 0.8754 0.9121 0.9491 0.9592 
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Table 3.3 Constants for Adjusting the Standard Deviation of Location Parameter for 

LTS Distribution 
p n MML TRIM MAD WAVE 

5 0.9008 1.2518 0.9268 0.9689 
7 0.8800 1.0036 0.8994 0.9560 

10 0.9154 0.8792 0.8819 0.9182 
15 0.8867 0.9382 0.8687 0.9477 

2.5 

20 0.8852 0.8667 0.8695 0.9326 
5 0.9424 1.2710 0.9698 1.0213 
7 0.9273 1.0467 0.9505 1.0305 

10 0.9041 0.9172 0.9275 0.9831 
15 0.9260 0.9901 0.9146 1.0121 

3.0 

20 0.9282 0.9037 0.9100 0.9966 
5 0.9576 1.2777 0.9830 1.0437 
7 0.9587 1.0650 0.9758 1.0675 

10 0.9469 0.9489 0.9587 1.0276 
15 0.9226 1.0022 0.9290 1.0490 

3.5 

20 0.9296 0.9260 0.9381 1.0397 
5 0.9766 1.2917 1.0131 1.0876 
7 0.9625 1.0813 0.9937 1.0836 

10 0.9590 0.9436 0.9575 1.0448 
15 0.9368 1.0212 0.9463 1.0738 

4.0 

20 0.9477 0.9576 0.9528 1.0722 
5 0.9923 1.3130 1.0293 1.1121 
7 0.9758 1.0957 1.0097 1.1182 

10 0.9732 0.9747 0.9876 1.0797 
15 0.9643 1.0429 0.9873 1.1145 

5.0 

20 0.9704 0.9844 0.9788 1.1064 
5 0.9874 1.3179 1.0431 1.1333 
7 0.9846 1.1003 1.0147 1.1326 

10 0.9839 0.9905 0.9982 1.1013 
15 0.9682 1.0724 0.9921 1.1426 

6.0 

20 0.9863 0.9752 0.9791 1.1231 
5 0.9965 1.3347 1.0639 1.1633 
7 0.9915 1.1221 1.0400 1.1729 

10 0.9951 1.0113 1.0262 1.1366 
15 0.9885 1.0871 1.0059 1.1823 

10.0 

20 0.9975 1.0011 1.0104 1.1609 
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Table 3.4 Type I Errors and ARL Values for LTS Distribution ( g =20) 

 
n= 5 7 10 15 20 
Control  
Chart 

Type I 
error ARL Type I 

error ARL Type I 
error ARL Type I 

error ARL Type I 
error ARL 

p=2.5 
LSE 0.0089 112.4 0.0075 133.3 0.0066 151.9 0.0047 214.3 0.0044 228.3 
MML 0.0058 172.4 0.0048 208.3 0.0041 243.9 0.0040 250.0 0.0038 263.2 
TRIM 0.0126 79.4 0.0179 55.8 0.0058 172.4 0.0164 61.0 0.0085 118.1 
MAD 0.0068 147.1 0.0055 181.8 0.0048 208.3 0.0044 228.3 0.0040 250.0 
W24 0.0067 149.3 0.0056 178.6 0.0047 212.8 0.0043 232.6 0.0039 256.4 

p=3.0 
LSE 0.0071 141.5 0.0060 166.7 0.0048 210.5 0.0045 221.3 0.0043 234.2 
MML 0.0056 178.6 0.0047 212.8 0.0039 256.4 0.0038 263.2 0.0034 294.1 
TRIM 0.0083 120.5 0.0111 90.1 0.0037 270.3 0.0098 102.0 0.0069 144.9 
MAD 0.0062 161.3 0.0055 181.8 0.0048 208.3 0.0041 243.9 0.0040 250.0 
W24 0.0060 166.7 0.0053 188.7 0.0041 243.9 0.0039 256.4 0.0038 263.2 

p=3.5 
LSE 0.0063 158.7 0.0045 222.2 0.0042 238.1 0.0034 298.5 0.0032 312.5 
MML 0.0050 200.0 0.0046 217.4 0.0038 263.2 0.0036 277.8 0.0033 303.0 
TRIM 0.0061 163.9 0.0100 100.0 0.0034 294.1 0.0077 129.9 0.0057 175.4 
MAD 0.0056 178.6 0.0053 188.7 0.0049 204.1 0.0044 227.3 0.0039 256.4 
W24 0.0054 185.2 0.0051 196.1 0.0047 212.8 0.0040 250.0 0.0038 263.2 

p=4.0 
LSE 0.0055 181.2 0.0045 224.7 0.0042 240.9 0.0031 322.6 0.0030 333.3 
MML 0.0043 232.6 0.0041 243.9 0.0037 270.3 0.0034 294.1 0.0029 344.8 
TRIM 0.0053 188.7 0.0076 131.6 0.0029 344.8 0.0068 147.1 0.0041 243.9 
MAD 0.0056 178.6 0.0049 204.1 0.0044 227.3 0.0040 250.0 0.0039 256.4 
W24 0.0052 192.3 0.0043 232.6 0.0041 243.9 0.0036 277.8 0.0032 312.5 

p=5.0 
LSE 0.0048 208.3 0.0041 243.9 0.0035 285.7 0.0031 327.8 0.0030 333.3 
MML 0.0041 243.9 0.0037 270.3 0.0034 294.1 0.0031 327.8 0.0029 344.8 
TRIM 0.0047 212.8 0.0072 138.9 0.0020 500.0 0.0054 185.2 0.0033 303.0 
MAD 0.0046 217.4 0.0043 232.6 0.0039 256.4 0.0037 270.3 0.0035 285.7 
W24 0.0049 204.1 0.0042 238.1 0.0037 270.3 0.0034 294.1 0.0028 357.1 

p=6.0 
LSE 0.0036 277.8 0.0035 285.7 0.0031 307.7 0.0030 333.3 0.0027 370.4 
MML 0.0038 263.2 0.0036 277.8 0.0032 312.5 0.0031 327.8 0.0028 357.1 
TRIM 0.0040 250.0 0.0058 172.4 0.0019 526.3 0.0051 196.1 0.0031 322.6 
MAD 0.0042 238.1 0.0041 243.9 0.0038 263.2 0.0034 294.1 0.0033 303.0 
W24 0.0047 212.8 0.0041 243.9 0.0037 270.3 0.0030 333.3 0.0029 344.8 

p=10.0 
LSE 0.0032 315.8 0.0029 344.8 0.0028 358.4 0.0027 375.0 0.0026 384.6 
MML 0.0036 277.8 0.0032 312.5 0.0031 322.6 0.0029 344.8 0.0027 370.4 
TRIM 0.0034 294.1 0.0042 238.1 0.0010 100.0 0.0044 227.3 0.0020 500.0 
MAD 0.0039 256.4 0.0036 277.8 0.0034 294.1 0.0033 303.0 0.0031 322.6 
W24 0.0045 222.2 0.0036 277.8 0.0033 303.0 0.0029 344.8 0.0028 357.1 
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LTS distribution is far from normal for small p . As p  increases LTS distribution 

gets closer to normal distribution. When p =2.5, where LTS distribution is far from 

normal distribution, all the control charts using 5 different estimators show some 

levels of inflated Type I error rates and hence produce less ARL values for small n. 

While for n less than 10, MML estimators are preferable, for n greater than 10, 

probability of plotting outside the limits decreases to acceptable levels especially for 

MAD and WAVE estimators. When n equals 20, MML estimators has the best 

performance with ARL value 263.2 which is less than nominal ARL value, 370; other 

estimators which does not have good performance for smaller n, have Type I error 

rates much closer to the nominal value.   

 

As seen in Table 3.4, the major effect of large kurtosis values for small sample sizes 

is an inappropriately large values of the false alarm rate. LTS ( p =3.0,σ) has kurtosis 

9, ARL values of each control chart is much less than the specified level. For smaller 

n, MML estimators have the best performance with probability of plotting outside the 

control limits close to 0.0027. However, an increase in sample size lead control charts 

using MAD and WAVE estimators to have better performance in terms of type I 

errors and ARL values. For n=20, MML, MAD and WAVE estimators are superior to 

other methods, where LS and TRIM estimators have greater Type I error rate and 

W24 has lower probability of plotting outside the limits than the nominal value.   

  

When LTS ( p =3.5, σ) is considered, where the kurtosis of the distribution is 6, the 

performance of control charts are poor for small n.  Particularly for n less than 15, 

MML is superior to other estimation methods. Following MML, WV24 has the 

second best performance. For n greater than 15, LSE and MML has similar type I 

error rates which is a little larger than the specified level. Probability of plotting 

outside the limits is less than the nominal values for W24 estimators when n is greater 

than 10.     
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If p  increases to 4, the performance of all estimators improved when judged in terms 

of ARL even for small n. However, the probabilities of false alarm, while being 

reduced to a large extent, deviate considerably from the prescribed value of 0.0027 

when n is small. While the best performance belongs to W24 estimator for n less than 

15, MML and LSE estimators have closer ARL values to nominal value than other 

methods for n greater than 15.   

 

When p =5.0, LTS distribution has the same first four moments with logistic 

distribution, LSE, W24 and MAD have the smallest type I error rates but still greater 

than the prespecified level for n=5. For n greater than 10, MML and W24 estimators 

have probabilities of type I error close to nominal value of 0.0027.  

 

For p =6.0, LS estimators are superior to other methods when judged in terms of 

ARL and type I error rates when n is less than 10, however as n increases to 20, the 

performance of, MML and W24 improves to the same level of LSE obtaining type I 

error rates very close to nominal value of 0.0027.   

 

LTS( p =10, σ) is similar to normal distribution with kurtosis 3.4. In this case, the 

performance of LS estimators is superior to other methods which is not an interesting 

result. Also, performance of MML method improves as n gets closer to 20. LS, 

MML, TRIM and W24 estimators give acceptable levels of type I error rates for n 

greater than 10.   

 

 

3.9.  Robustness 

 

Statistical inferences are based on the assumptions about the underlying situation. 

However these assumptions are not to be exactly true and many statistical procedures 

are sensitive to deviations from the assumptions. Therefore, robust procedures have 
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been proposed. A robust estimator is one that performs well even if its assumptions 

are violated by the true model from which the data were generated. Robust 

procedures should have reasonably good efficiency at the assumed model and they 

should maintain, in our case, Type I error rate close to nominal value when small 

deviations from the model assumptions is observed. Also, robust procedures should 

not lead a catastrophe for larger deviations from the assumed model (Huber, 1981).  

 

The performance of robust estimators is often better than traditional estimators for 

heavy tailed distributions. The estimators which are used in this study are compared 

in terms of robustness using the models below:   

 

The distribution with p =3.5 will be taken as the population model and will be 

denoted by (3.5, )LTS σ .  

 

Misspecification of the distribution: 

1. p =3.0 

2. p =5.0 

 

Dixon’s outlier model: n- r  come from (3.5, )LTS σ  and r (we do not know which) 

come from 

3. (3.5,2 )LTS σ  

r=[ nρ ]+1 where [a] is the greatest integer less than or equal to a. 

 

Mixture Model:  

4.  0.90 (3.5, )LTS σ + 0.10 (3.5,2 )LTS σ  

5. 0.90 (3.5, )LTS σ + 0.10 (3.5,4 )LTS σ  

Contamination Model:  

6. 0.90 (3.5, )LTS σ +0.10 ),( σ∞LTS  
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Table 3.5  Type I Errors and ARL Values for LTS Distribution under Sample  
 Models ( g =20) 

 
n= 5 7 10 15 20 
Control  
Chart 

Type I 
error ARL Type I 

error ARL Type I 
error ARL Type I 

error ARL Type I 
error ARL 

Model 1:Misspecification p=3.0 
LSE 0.0057 175.4 0.0056 178.6 0.0054 185.2 0.0041 243.9 0.0030 333.3 
MML 0.0051 196.1 0.0046 217.4 0.0040 250.0 0.0035 285.7 0.0026 384.6 
TRIM 0.0069 144.9 0.0094 106.4 0.0039 256.4 0.0104 96.2 0.0051 196.1 
MAD 0.0046 217.4 0.0043 232.6 0.0039 256.4 0.0037 270.3 0.0030 333.3 
W24 0.0054 185.2 0.0045 222.2 0.0040 250.0 0.0037 270.3 0.0029 344.8 
Model 2: Misspecification p=5.0 
LSE 0.0048 208.3 0.0043 232.6 0.0037 270.3 0.0031 322.6 0.0025 400.0 
MML 0.0050 200.0 0.0043 232.6 0.0035 285.7 0.0030 333.3 0.0027 370.4 
TRIM 0.0037 270.3 0.0063 158.7 0.0019 526.3 0.0068 147.1 0.0043 232.6 
MAD 0.0049 204.1 0.0046 217.4 0.0041 243.9 0.0037 270.3 0.0035 285.7 
W24 0.0042 238.1 0.0041 243.9 0.0039 256.4 0.0034 294.1 0.0031 322.6 
Model 3: Dixon’s Outlier Model 
LSE 0.0072 138.9 0.0059 169.5 0.0049 204.1 0.0043 232.6 0.0037 270.3 
MML 0.0043 232.6 0.0033 303.0 0.0028 357.1 0.0027 370.4 0.0024 416.7 
TRIM 0.0070 142.9 0.0087 114.9 0.0032 312.5 0.0087 114.9 0.0054 185.2 
MAD 0.0055 181.8 0.0046 217.4 0.0036 277.8 0.0034 294.1 0.0031 322.6 
W24 0.0054 185.2 0.0039 256.4 0.0034 294.1 0.0033 303.0 0.0031 322.6 
Model 4: Mixture1 
LSE 0.0079 126.6 0.0072 138.9 0.0058 172.4 0.0052 192.3 0.0048 208.3 
MML 0.0054 185.2 0.0049 204.1 0.0043 232.6 0.0035 285.7 0.0029 344.8 
TRIM 0.0087 114.9 0.0117 85.5 0.0031 322.6 0.0106 94.3 0.0045 222.2 
MAD 0.0069 144.9 0.0059 169.5 0.0050 200.0 0.0049 204.1 0.0043 232.6 
W24 0.0068 147.1 0.0054 185.2 0.0045 222.2 0.0040 250.0 0.0036 277.8 
Model 5: Mixture2 
LSE 0.0247 40.5 0.0201 49.8 0.0160 62.5 0.0140 71.4 0.0098 102.0 
MML 0.0086 116.3 0.0058 172.4 0.0030 333.3 0.0025 400.0 0.0021 476.2 
TRIM 0.0182 54.9 0.0194 51.5 0.0058 172.4 0.0168 59.5 0.0084 119.0 
MAD 0.0057 175.4 0.0050 200.0 0.0045 222.2 0.0043 232.6 0.0041 243.9 
W24 0.0070 142.9 0.0068 147.1 0.0062 161.3 0.0059 169.5 0.0057 175.4 
Model 6: Contamination 
LSE 0.0048 208.3 0.0047 212.8 0.0044 227.3 0.0036 277.8 0.0029 344.8 
MML 0.0053 188.7 0.0043 232.6 0.0034 294.1 0.0031 322.6 0.0026 384.6 
TRIM 0.0178 56.2 0.0076 131.6 0.0033 303.0 0.0076 131.6 0.0041 243.9 
MAD 0.0058 172.4 0.0050 200.0 0.0045 222.2 0.0043 232.6 0.0040 250.0 
W24 0.0075 133.3 0.0045 222.2 0.0040 250.0 0.0036 277.8 0.0029 344.8 
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As mentioned before, the control limits constructed should not be sensitive to 

deviations from underlying assumptions. The assumed model may always not be 

correct: it may be misspecified or outliers may be observed. Hence, the control limits 

constructed here should have robustness to such kind of situations.  

 

For investigating the effect of misspecification of the process distribution, p =3.0 and 

p =5.0 are used. For the first misspecification model, where the population is 

assumed to be LTS( p =3.5) and the sample come is assumed to come from 

LTS( p =3.0), MAD estimators are superior to other methods for small n. When n 

increases the performance of MML, W24 and MAD are similar and they give type I 

error very close to nominal value.   

 

Another scenario is that the population model is assumed to be LTS ( p =3.5) whereas 

the sample comes from LTS ( p =5.0). In this situation, all estimators give type I 

errors close to prespecified value. LS has the best performance for n less than 10, 

MML estimators and LS perform well for n greater than 10, whereas TRIM is inferior 

to other methods for all n.      

 

In the outlier model, when n is small MML is superior to other methods. However, as 

n increases, performance of W24 and LS improves. In this case for large n, W24 and 

MAD estimators may be preferred since it causes a little less ARL value than the 

nominal value.    

 

In the mixture model, two types of mixture distributions are used. In the first mixture 

model, 90% of the observations come from the assumed model, however, 10% of the 

observations has variance 2σ. In the second model, 10% of the observations come 

from long-tailed symmetric distribution with variance 4σ. In the first model, 

performance of MML estimators is good in terms of ARL values for n less than 20. 
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When n is equal to 20, MML has type I error rate close to  nominal value, however, 

type I error rate for W24 decreases to acceptable level; besides, TRIM performs 

poorly for all n.  

 

For the second mixture model, when n is small, MAD has the best performance 

among other estimators. As n gets larger, performance of MML, TRIM and W24 

improves. For moderate sample sizes, MML is superior to other methods. For larger 

sample sizes, MML can be used with ARL value close to nominal value of 370.  

 

With the disturbance induced by the contamination model from normal distribution 

with proportion of the contamination in the distribution being 0.1, MAD and MML 

seems to provide largest ARL value for small n. As n increases, performances of W24 

and LS improves. The performance of LS improves to the nominal value for n equal 

to 20. 

 

 

3.10. Conclusion 

 

Heavy tailed distributions are commonly confronted in practice. If a marked 

departure from normality is observed, there could be a serious effect on the 

performance of control limits derived from normality assumption. For this reason, 

estimators particularly designed for heavy tailed distributions should be preferred to 

LS estimators especially for small values of p , for all sample sizes. W24 estimators 

perform well relative to other methods used in this study for small sample size. For 

large sample sizes MML and W24 methods perform well.  

 

Hence, appropriate control chart should be chosen in order not to cause producing 

system give more false alarms than expected and continue properly.       
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CHAPTER 4 

 

 

CONTROL CHARTING PROCEDURE FOR SHORT-TAILED 

SYMMETRIC DISTRIBUTIONS 
 

 

4.1 Short-Tailed Symmetric Distribution 

 

In the quality control literature, many robustness studies are limited to heavy tailed 

distributions. However, some of the process distributions have lighter tails than 

normal distribution. There is not much work dealing with short tailed symmetric 

(STS) distributions but many data sets have short tailed symmetric distributions 

(Akkaya and Tiku, 2005). When the data sets from quality control literature are 

analyzed, some data sets are found to follow STS distributions. 

 

STS family is introduced by Tiku and Vaughan (1999) to model the samples 

containing inliers (Tiku et. al. , 2001). 

 
pr

y
k

y
r

yf
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −

+∝
2

1

2

2
11

2
11)(

σ
μ

σ
μλ

σ
 , ∞<<∞− y    (4.1.1) 

 

where r  is an integer, 
2
3,

2
3,, 1 +>−=>

−
= rpandpkdr

dr
rλ . σ  is scale 

parameter for the STS distribution family.  
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The mean of the distribution is zero and the variance is given by 
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STS family represents a wide variety of symmetric distributions. For a given r , when 

d  decreases, the kurtosis increases. While for d <0, the distributions are unimodal, 

for d >0, they are generally multimodal. The kurtosis values for this family are less 

than 3 for all p  (Tiku and Vaughan, 1999; Tiku et. al., 2001). 

 

In this thesis, our aim is to compare the performances of robust control limits for STS 

distributions using LS estimators and some robust estimators.  

 

4.2  Least Squares Estimators 

 

x  is calculated as usual in the normal case. However, s2 is calculated using an 

adjustment with the square root of the variance of short tailed symmetric random 

variates. LS estimators are given as 
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where 2μ  is the variance of the short tailed symmetric family and given in equation 

4.1.2.  
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4.3 Modified Maximum Likelihood Estimators 

 

The MML estimators of μ and σ are obtained exactly in the same way as the LTS 

distributions (Tiku and Akkaya, 2004) and they are given as  
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The coefficients used in the calculation of μ̂  and σ̂  are given in the equations below: 
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From 4.1.9, βi can be written as 

 

ii λγβ −= 1 .                           (4.3.4) 
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For λ≤  1, all 0≥iβ ; and hence the coefficients αi and βi in equations 4.3.3 and 4.3.4 

are used. However, for λ>1, some βi<0 (for some i), and hence αi and βi are replaced 

by *
iα  and *

iβ  (Tiku et. al. , 2001): 
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Realizing that )()(
**

iiiiii zz γαγα +≅+  since 0)()( ≅− ii tz (asymptotically), 

 
** 1 ii λγβ −=                      (4.3.6) 

 

is always positive if  λ >1. This alternative coefficients guarantee that the MML 

estimator of σ is always positive and real and higly efficient for all n. Otherwise σ̂  

fail to be real (Tiku and Suresh, 1992; Vaughan 1992a). 

 

The coefficients iβ ( ni ≤≤1 ) have inverted umbrella ordering, such that they 

decrease until the middle value and then increase in a symmetric fashion. Thus the 

order statistics in the middle receive small weights (Tiku and Akkaya, 2004). As 

mentioned before, STS family is used to model the distributions which contain 

inliers. Giving small weight to middle order statistics is helpful, handy in acquiring 

robustness to inliers. 

 

It is shown that μ̂  is asymptotically fully efficient and it is also unbiased for all n 

(Tiku and Akkaya, 2004). For large n, μ̂  is the minimum variance bound estimator 

of μ with variance V( μ̂ )
m

2σ
≅  which is a direct result of asymptotic equivalence of 
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likelihood and modified likelihood equations. MML estimators are known to be 

essentially as efficient as the LS estimators (Tan, 1985; Vaughan, 1992). 

 

For STS distribution, calculation of TRIM, MAD and W24 estimators are explained 

in Chapters 3.4-3.6. In this study, LS, MML, TRIM, MAD and W24 estimators are 

used.  

 

Construction of control limits are exactly the same as LTS distribution.    

 

4.4 Simulation Study 

 

Similar to LTS, n=5, 7, 10, 15 and 20 are used in the comparisons. For number of 

subgroups 15-30 are available in the literature (Montgomery, 2001; Wheeler, 1995). 

Hence, number of subgroups is taken as 20 and simulation results are obtained over 

10,000 repetitions. The estimation techniques taken into account are LS, MML, 

TRIM, MAD and W24. The formulas for calculating these estimators are explained in 

Sections 4.2, 4.3 and 3.4-3.6.  

 

The control limits for STS are obtained along the same lines LTS distribution  and 

probability of plotting outside the control limits (Type I error) and in-control average  

run length (ARL) values are computed for some selected values of r  and d .   

 

Before calculating probabilities of plotting outside the limits, expectations of scale 

estimators are calculated to make the scale estimators unbiased estimators of σ.  

Expectations of scale estimators are obtained by simulating mean of each scale 

estimator. These constants are given in Table 4.1. After obtaining these constants to 

make the scale estimators unbiased estimator of σ, Type I error rates are obtained via 

simulation. Type I error rates and ARL values are given in Table 4.2.  
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Table 4.1 Expectations of Scale Estimators using STS with Parameters r  and d . 
 n=5 n=7 n=10 n=15 n=20 

r=2 d=-0.5 

LSE 0.948149 0.964682 0.979187 0.985825 0.990019 

MML 0.876329 0.923379 0.952044 0.962654 0.977416 

TRIM 1.823936 1.607458 1.480476 1.419968 1.372860 

MAD 0.774599 0.831473 0.876297 0.919198 0.935494 

W24 1.125504 1.22971 1.291806 1.339228 1.355088 

r=2 d=0.0 

LSE 0.949064 0.965838 0.978200 0.986098 0.990027 

MML 0.879606 0.925729 0.954881 0.964812 0.979318 

TRIM 1.922570 1.699013 1.568870 1.507582 1.460271 

MAD 0.820690 0.895735 0.934673 0.956013 0.987924 

W24 1.191472 1.298046 1.385436 1.416484 1.431415 

r=2 d=0.5 

LSE 0.954072 0.970133 0.977666 0.987832 0.990810 

MML 0.921706 0.952678 0.968368 0.983072 0.986742 

TRIM 2.065557 1.819197 1.704690 1.629959 1.587649 

MAD 0.876092 0.959068 1.020148 1.080301 1.106305 

W24 1.281163 1.402298 1.466126 1.528138 1.542025 

r=4 d=-0.5 

LSE 0.949516 0.965716 0.979127 0.987322 0.990424 

MML 0.870615 0.912057 0.943474 0.964175 0.973664 

TRIM 2.067250 1.821165 1.689701 1.619329 1.568485 

MAD 0.876076 0.953651 1.003589 1.056566 1.074157 

W24 1.280013 1.398822 1.464674 1.524238 1.54002 

r=4 d=0.0 

LSE 0.952904 0.971152 0.979792 0.988287 0.992095 

MML 0.877834 0.929433 0.945995 0.969760 0.974618 

TRIM 2.168294 1.910452 1.785012 1.703680 1.652444 

MAD 0.932458 1.003725 1.063603 1.081733 1.119905 

W24 1.347111 1.472202 1.536487 1.600763 1.617588 

r=4 d=0.5 

LSE 0.955704 0.972088 0.980914 0.988386 0.993087 

MML 0.895427 0.933731 0.958700 0.974111 0.980579 

TRIM 2.290560 2.017799 1.894165 1.805072 1.759280 

MAD 0.977275 1.071531 1.128718 1.195550 1.224432 

W24 1.420078 1.561532 1.626511 1.692053 1.707677 
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Table 4.2 Constants for Adjusting the Standard Deviation of Location Parameter for 

STS Distribution 

 
 n MML TRIM MAD WAVE 

5 1.3419 1.8743 1.7341 1.5394 
7 1.3471 1.5956 1.7714 1.5015 
10 1.3367 1.4424 1.7311 1.4582 
15 1.3228 1.5705 1.8332 1.4398 

r=2 d=-0.5 

20 1.3246 1.4360 1.8002 1.4176 
5 1.4044 1.9515 1.8463 1.6180 
7 1.3981 1.6746 1.8961 1.5831 
10 1.3697 1.5223 1.8804 1.5442 
15 1.3731 1.6814 2.0196 1.5416 

r=2 d=0.0 

20 1.3522 1.5447 1.9972 1.5184 
5 1.4584 2.1283 2.0666 1.7871 
7 1.4411 1.8197 2.1361 1.7486 
10 1.4288 1.6580 2.1051 1.6833 
15 1.4073 1.7938 2.2773 1.6442 

r=2 d=0.5 

20 1.3967 1.6844 2.2895 1.6491 
5 1.5047 2.1214 1.9868 1.7551 
7 1.5004 1.7880 2.0111 1.6883 
10 1.4964 1.6278 1.9872 1.6443 
15 1.4706 1.7920 2.1233 1.6387 

r=4 d=-0.5 

20 1.4759 1.6623 2.1037 1.6335 
5 1.5518 2.2096 2.1192 1.8474 
7 1.5431 1.8986 2.1819 1.8074 
10 1.5339 1.7169 2.1340 1.7404 
15 1.5194 1.8687 2.2708 1.7075 

r=4 d=0.0 

20 1.5074 1.7446 2.2624 1.7080 
5 1.6105 2.3399 2.2776 1.9648 
7 1.5899 2.0300 2.3797 1.9411 
10 1.5458 1.8372 2.3193 1.8641 
15 1.5473 1.9890 2.4882 1.8175 

r=4 d=0.5 

20 1.5383 1.8469 2.4739 1.8012 
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Table 4.3 Type I Errors and ARL Values for STS Distribution ( g =20)  

 
n= 5 7 10 15 20 

 Type I 
Error ARL Type I 

Error ARL Type I 
Error ARL Type I 

Error ARL Type I 
Error ARL 

r=2 d=-0.5 (Kurtosis=2.56) 
LSE 0.0276 36.2 0.0276 36.2 0.0275 36.4 0.0256 39.1 0.0256 39.1 
MML 0.0030 333.3 0.0028 357.1 0.0028 357.1 0.0026 384.6 0.0025 400.0 
TRIM 0.0695 14.4 0.0283 35.3 0.0101 99.0 0.0084 119.0 0.0063 158.7 
MAD 0.0010 1000.0 0.0014 714.3 0.0018 555.6 0.0024 416.7 0.0026 384.6 
W24 0.0027 370.4 0.0031 322.6 0.0033 303.0 0.0037 270.3 0.0040 250.0 

r=2 d=0.0 (Kurtosis=2.43) 
LSE 0.0364 27.5 0.0358 27.9 0.0344 29.1 0.0344 29.1 0.0342 29.2 
MML 0.0031 322.6 0.0030 333.3 0.0028 357.1 0.0027 370.4 0.0026 384.6 
TRIM 0.0674 14.8 0.0253 39.5 0.0091 109.9 0.0078 128.2 0.0059 169.5 
MAD 0.0010 1000.0 0.0012 833.3 0.0013 769.2 0.0015 666.7 0.0016 625.0 
W24 0.0039 256.4 0.0036 277.8 0.0034 294.1 0.0033 303.0 0.0031 322.6 

r=2 d=0.5 (Kurtosis=2.26) 
LSE 0.0503 19.9 0.0465 21.5 0.0465 21.5 0.0464 21.6 0.0462 21.6 
MML 0.0039 256.4 0.0036 277.8 0.0034 294.1 0.0030 333.3 0.0029 344.8 
TRIM 0.0604 16.6 0.0123 81.3 0.0091 109.9 0.0082 122.0 0.0051 196.1 
MAD 0.0003 3333.3 0.0007 1428.6 0.0009 1111.1 0.0010 1000.0 0.0011 909.1 
W24 0.0040 250.0 0.0036 277.8 0.0034 294.1 0.0034 294.1 0.0031 322.6 

r=4 d=-0.5 (Kurtosis=2.46) 
LSE 0.0507 19.7 0.0505 19.8 0.0497 20.1 0.0492 20.3 0.0485 20.6 
MML 0.0031 322.6 0.0030 333.3 0.0029 344.8 0.0026 384.6 0.0025 400.0 
TRIM 0.0694 14.4 0.0345 29.0 0.0107 93.5 0.0087 114.9 0.0034 294.1 
MAD 0.0011 909.1 0.0013 769.2 0.0015 666.7 0.0017 588.2 0.0022 454.5 
W24 0.0043 232.6 0.0042 238.1 0.0040 250.0 0.0031 322.6 0.0021 476.2 

r=4 d=0.0 (Kurtosis=2.37) 
LSE 0.0627 15.9 0.0619 16.2 0.0618 16.2 0.0614 16.3 0.0613 16.3 
MML 0.0037 270.3 0.0034 294.1 0.0033 303.0 0.0029 344.8 0.0027 370.4 
TRIM 0.0693 14.4 0.0289 34.6 0.0100 100.0 0.0075 133.3 0.0055 181.8 
MAD 0.0006 1666.7 0.0010 1000.0 0.0011 909.1 0.0013 769.2 0.0014 714.3 
W24 0.0041 243.9 0.0038 263.2 0.0036 277.8 0.0034 294.1 0.0033 303.0 

r=4 d=0.5(Kurtosis=2.25) 
LSE 0.0786 12.7 0.0744 13.4 0.0741 13.5 0.0740 13.5 0.0704 14.2 
MML 0.0042 238.1 0.0038 263.2 0.0037 270.3 0.0033 303.0 0.0029 344.8 
TRIM 0.0646 15.5 0.0188 53.2 0.0089 112.4 0.0057 175.4 0.0036 277.8 
MAD 0.0004 2500.0 0.0007 1428.6 0.0009 1111.1 0.0010 1000.0 0.0011 909.1 
W24 0.0022 454.5 0.0026 384.6 0.0031 322.6 0.0038 263.2 0.0040 250.0 

 

 

A variety of short-tailed symmetric distributions are used in order to make a 

comparison of estimators in terms of probabilities of plotting outside the control 

limits and ARL values. Among these models, the one with parameters r =2, d =-0.5 

is closest to normal distribution with kurtosis 2.56. For constant r , as d  increases 

kurtosis of the distribution diminishes. For the first distribution ( r =2, d =-0.5), even 
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for small n, type I error rate is close to prespecified level for MML and W24 

estimators. When n gets closer to 20, type I error rate for MML gets closer to 0.0027, 

also the performance of other estimators improves but still much more than the 

nominal value. Among these estimators LS estimators has the worst performance in 

terms of type I error rates and MAD has good performance for n=20. For r =2, 

d =0.0, which has kurtosis 2.43, type I error rates obtained increases, but still MML 

has the best performance and W24 has good performance for all n. For large n, type I 

error rate MML achieves is close to nominal type I error rate, 0.0027. For r =2, 

d =0.5, the performance of MML worsens, however, LS method gives unacceptably 

high type I error rate.  

 

For r =4, d =-0.5, short-tailed distribution has kurtosis 2.46 and close to normal 

distribution. For this distribution, MML has the best performance for all n, especially 

for n greater than 10, type I error rate for MML is close to nominal value. LS 

estimators have the worst performance when compared with other methods in terms 

of ARL values and probabilities of plotting outside the control limits.  

 

For r =4, as d  increases to 0.0, the probability of plotting outside the control limits 

increases; however MML has still the best performance. Particularly, for large n (n 

greater than 10), type I error rates are closer to nominal value.  

 

When d =0.5 and r =4, performance of control charts diminishes, but MML still is 

superior to other methods in terms of probabilities of plotting outside the limits 

especially large n.  

   

4.5 Robustness 

 

The main reason for studying robustness is that assuming a particular distribution and 

believing that it is exactly correct may lead to erroneous conclusions. As mentioned 
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before, “robustness” provides efficiency for the assumed model, and maintains high 

efficiency for the plausible alternatives (Tiku et. al., 1986). 

 

While studying the robustness of the control limits, several models are used. The 

process distribution is assumed to be STS ( r =4, d =-0.5). Tukey’s λ family has been 

widely used in robustness studies (Chan et. al., 1988) since it can cover many short-

tailed distributions with kurtosis less than 3 with a variety of tail areas. Tukey’s λ 

family defined by transformation in (4.5.1) is used. 

 

(1 ) /l lx u u l⎡ ⎤= − −⎣ ⎦  where u is uniform(0,1).    (4.5.1) 

 

This assumed model has kurtosis 2.46. Listed distributions are chosen as plausible 

alternatives to assumed model: 

(1) r =4, d =0.0 

(2) r =2, d =-0.5 

(3) l =0.585 

(4) l =1.0 

(5) Normal(0,1) 
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Table 4.4 Type I Errors and ARL Values for STS Distribution under Sample  

 Models ( g =20) 

 
n= 5 7 10 15 20 

 Type I 
Error ARL Type I 

Error ARL Type I 
Error ARL Type I 

Error ARL Type I 
Error ARL 

r=4 d=0.0 (Kurtosis=) 
LSE 0.0511 19.6 0.0509 19.6 0.0508 19.7 0.0493 20.3 0.0488 20.5 

MML 0.0034 294.1 0.0034 294.1 0.0030 333.3 0.0029 344.8 0.0024 416.7 
TRIM 0.0644 15.5 0.0232 43.1 0.0119 84.0 0.0087 114.9 0.0049 204.1 
MAD 0.0005 2000.0 0.0005 2000.0 0.0012 833.3 0.0020 500.0 0.0022 454.5 
W24 0.0046 217.4 0.0040 250.0 0.0037 270.3 0.0033 303.0 0.0025 400.0 

r=2 d=-0.5 (Kurtosis=2.43) 
LSE 0.0543 18.4 0.0513 19.5 0.0512 19.5 0.0475 21.1 0.0470 21.3 

MML 0.0039 256.4 0.0038 263.2 0.0035 285.7 0.0035 285.7 0.0030 333.3 
TRIM 0.0714 14.0 0.0289 34.6 0.0107 93.5 0.0093 107.5 0.0039 256.4 
MAD 0.0011 909.1 0.0018 555.6 0.0019 526.3 0.0020 500.0 0.0024 416.7 
W24 0.0033 303.0 0.0033 303.0 0.0034 294.1 0.0031 322.6 0.0026 384.6 

Tukey λ=0.585 
LSE 0.0499 20.0 0.0498 20.1 0.0497 20.1 0.0490 20.4 0.0489 20.4 

MML 0.0012 833.3 0.0018 555.6 0.0020 500.0 0.0022 454.5 0.0023 434.8 
TRIM 0.0600 16.7 0.0249 40.2 0.0101 99.0 0.0063 158.7 0.0043 232.6 
MAD 0.0001 10000.0 0.0010 1000.0 0.0015 666.7 0.0021 476.2 0.0027 370.4 
W24 0.0061 163.9 0.0055 181.8 0.0043 232.6 0.0036 277.8 0.0034 294.1 

Tukey λ=1.00 
LSE 0.0469 21.3 0.0468 21.4 0.0465 21.5 0.0449 22.3 0.0436 22.9 

MML 0.0008 1250.0 0.0010 1000.0 0.0011 909.1 0.0012 833.3 0.0015 666.7 
TRIM 0.0583 17.2 0.0206 48.5 0.0082 122.0 0.0042 238.1 0.0032 312.5 
MAD 0.0001 10000.0 0.0004 2500.0 0.0008 1250.0 0.0016 625.0 0.0023 434.8 
W24 0.0068 147.1 0.054 18.5 0.0049 204.1 0.0037 270.3 0.0025 400.0 

Normal (0,1) 
LSE 0.0558 17.9 0.0556 18.0 0.0501 20.0 0.0495 20.2 0.0485 20.6 

MML 0.0058 172.4 0.0054 185.2 0.0047 212.8 0.0044 250.0 0.0033 303.0 
TRIM 0.0756 13.2 0.0313 31.9 0.0135 74.1 0.0098 102.0 0.0043 232.6 
MAD 0.0017 588.2 0.0019 526.3 0.0020 500.0 0.0021 476.2 0.0024 416.7 
W24 0.0038 263.2 0.0033 303.0 0.0030 333.3 0.0028 357.1 0.0024 416.7 

 

 

The performances of estimators are compared in terms of robustness under the 

models above. For the first model, even for small n, MML is superior to other 

estimators. As n increases to 20, probability of plotting outside the control limits gets 

closer to 0.0027 for MML. Also W24 has good performance as n increases. 

Probability of plotting outside the limits is much larger than the nominal value for 

other estimators.  
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When the second model is considered, ARL value is close to nominal value of 370 

even for small n for W24, as n increases to 20, ARL value of MML and W24 get 

closer to 370. Especially LS estimators perform poorly for all n.  

 

For Tukey lambda family ( l =0.585), whereas, type I error rate is less than the 

nominal value for n equal to 5 for MML, for other estimators, it is much more than 

the prespecified level for LS estimators.  

 

The results for model 4 ( l =1.0) does not produce satisfactory ARL values. For n=20, 

MAD, W24, TRIM have ARL values close to 370.4.  LS has ARL value much less 

than 370, should not be used.  

 

When normal distribution is used as plausible alternative to short-tailed distribution 

( r =4, d =-0.5), type I error rates of W24 and MML are larger than the nominal value 

for all n, however, type I error rates for MAD and W24 are close to nominal value.             

 

To sum up, STS distributions are frequently confronted in practice. While obtaining 

control limits for these distributions, LS estimators give inappropriately large values 

of Type I error rates. MML and W24 may be preferred to other estimators for all 

sample sizes for various values of parameters r  and d .       
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CHAPTER 5 

 

 

APPLICATIONS 
 

 

In this chapter, data sets from literature are analyzed in order to determine whther 

they follow long- or short-tailed symmetric distributions and control limits are 

constructed. Several data sets are investigated whether they follow normal 

distribution or not. For checking normality, firstly, skewness and kurtosis values are 

calculated and then Q-Q plots are plotted for suitable parameters. For a random 

sample 1 2, ,...., nx x x  from a location-scale distribution, population quantiles obtained 

from )1/()( += niF iθ  ni ≤≤1 . In order to construct Q-Q plot, ix  is plotted against 

iθ  ni ≤≤1 . Under the assumption of the underlying distribution, all points would lie 

on a straight line to be a plausible model for data. 

 

Many data sets are found to follow non-normal distributions. Control limits are 

constructed for data sets which have symmetric distributions using the robust 

estimators and ordinary LS method.  

 

Application 1:  (DeVor, Cheng and Sutherland, 1992) 

 

The first data set represents the depths of keyways collected in 28 samples of size 

n=5. Sample skewness estimate equals to -0.10072 and sample kurtosis estimate is 

2.18. For this data set, Q-Q plot based on short tailed symmetric distribution with 
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parameters r=4 and d=0.5 gives “closest to straight line” pattern for the data set 

(Figure 5.1).  

 

 
Figure 5.1: Q-Q Plot Based on STS Density for the Data of Application 1. 

 

For calculating control limits constants obtained in Table 4.1 are used. Then the 

control limits are constructed for the assumed distribution by using LS, MML, TRIM, 

MAD and W24 estimators respectively and given in Table 5.1.    

 

Table 5.1 Control Limits and Number of Samples Outside the Control Limits for 

Application 1 

Estimator LCL CL UCL 
Number 

outside the limits 

LSE 494.79 498.69 502.13 6 

MML 492.96 498.58 503.84 2 

TRIM 495.47 498.71 501.19 8 

MAD 496.98 499.25 506.53 0 

WAVE 494.25 498.94 504.02 1 
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Here the underlying distribution seems to be STS with r=4 and d=0.5. As mentioned 

before, for this distribution, MML and W24 have satisfactory performance of type I 

error rate and potentially effective in evaluating the process. Other methods produce 

more false alarms that cause the process to be stopped frequently. 

 

 

Application 2: (Montgomery, 2001)  

 

The second data set represents the readings from a chemical process on successive 

days. It consists of 18 subsamples of size 5. Sample kurtosis estimate equals to 1.998 

and sample skewness estimate is 0.255416. Q-Q plot based on short tailed symmetric 

distribution with parameters r=4 and d=0.5 gives “closest to straight line” pattern for 

the data set which indicates that STS( r =4, d =0.5) is a plausible model for the data 

(Figure 5.2).  

 

 
 

Figure 5.2: Q-Q Plot Based on STS Density for the Data of Application 2. 
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The control limits for all estimators are obtained and given in Table 5.2 below.  

 

Table 5.2 Control Limits and Number of Samples Outside the Control Limits for 

Application 2 

 

Estimator LCL CL UCL 
Number 

outside the limits 

LSE 86.23 89.47 93.01 3 

MML 85.44 89.45 93.51 1 

TRIM 87.32 89.48 91.63 4 

MAD 89.42 89.53 93.98 0 

W24 86.28 89.22 93.96 1 

 

 

In this application, the underlying distribution seems to be STS with r =4 and d =0.5. 

For this distribution, MML and W24 have good performance among other methods. 

MML and W24 do not produce false alarms which leads to unnecessary process 

adjustment by stopping the process that cause time and money consuming. 

 

 

Application 3: (DeVor et. al., 1992) 

 

The third data set represents the thickness of sheets in samples of size 5 (g=14). 

Sample kurtosis estimate equals to 2.22 and sample skewness estimate is 0.020816. 

Q-Q plot based on short tailed symmetric distribution with parameters r=4 and d=0 

gives “closest to straight line” pattern for the data set (Figure 5.3).  
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Figure 5.3 Q-Q Plot Based on STS Density for the Data of Application 3. 

 

 

Table 5.3 Control Limits and Number of Samples Outside the Control Limits for  

Application 3 

 

Estimator LCL CL UCL 
Number 

outside the limits 

LSE 0.04421 0.04496 0.04359 7 

MML 0.04367 0.04491 0.04615 2 

TRIM 0.04432 0.04497 0.04563 8 

MAD 0.04115 0.04507 0.04813 0 

WAVE NAN NAN NAN  01 

 

For this example, STS distribution with r=4 d=0.0 seems to be a reasonable model. 

For this model, when n is small, MML produces a little more false alarms than 
                                                 
1 Due to ties in data set, W24 can not be calculated.  
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prespecified value, however, other methods give type I error rates much more than 

nominal value.    

  

Application 4: (Montgomery, 2001) 

 

The data set represents the thickness of a printed circuit board in inches. Fifteen 

samples of size 5 are given. Sample kurtosis estimate equals to 3.77476 and sample 

skewness estimate is -0.2938. Q-Q plot based on long tailed symmetric distribution 

with parameter p=5.0 gives “closest to straight line” pattern for the data set which 

indicates that the model is a plausible model (Figure 5.4).  

 

 
Figure 5.4: Q-Q Plot Based on STS Density for the Data of Application 4. 
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Table 5.4: Control Limits and Number of Samples Outside the Control Limits for 

Application 4  

 

Estimator LCL CL UCL 
Number 

outside the limits 

LSE 0.06216 0.06295 0.06375 0 

MML 0.06220 0.06296 0.06371 1 

TRIM 0.06228 0.06297 0.06365 1 

MAD 0.06222 0.06295 0.06367 0 

W24 NAN NAN NAN 0 

 

For LTS distribution, when n=5, all methods lead to similar type I error rates. A 

disadvantage of W24 is that it can not be calculated when there are ties in the data 

and sample size is small. MML and TRIM have similar performances.  
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CHAPTER 5 

 

 

CONCLUSIONS 
 

 

Statistical process control is used for an in-process or real time monitoring tool for a 

process. SPC makes sure that the process is in control and prevents the production of 

defects. x control chart is one of the most commonly used techniques in SPC, the 

underlying assumption that may not be met in practical grounds; since, many process 

distributions are not normally distributed. In this thesis, quality control charts for the 

mean of process are constructed for non-normal symmetric distributions, long- and 

short-tailed symmetric distributions. The performances of these control charts are 

investigated via Monte Carlo simulation. Furthermore, some examples from literature 

are analyzed which either have long or short tailed symmetric distribution and control 

charts are constructed for these data sets. 

 

Ordinary control charting procedure is very easy and involved in much SPC software. 

The control charts using robust estimators lead to Type I error rates close to nominal 

value for long-tailed symmetric distributions. When the distribution is long-tailed 

symmetric, MML estimators should be preferred for small n, and MML and W24 

estimators are preferable for large n.  For short-tailed symmetric distribution, MML 

and W24 have good performance for all values of sample size and parameters r  and 

d .   
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Only the symmetric distributions are considered in this thesis, as a future work 

control charts for auto-correlated observations and skewed distributions will be 

studied.    
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APPENDIX A 

 

 

EXPECTED STS VARIATES FOR SHORT TAILED 

SYMMETRIC DISTRIBUTION 
 

 

       The tables are taken from Tiku and Akkaya (2004). 

       

      Table A.1. Expected STS variates  
r=2 a=0         

n i t(i) n i t(i) n i t(i) 
3 1 -1,07286 10 1 -1,93809 20 5 -1,12721 
 2 0  2 -1,39774  6 -0,91359 

4 1 -1,30734  3 -0,97094  7 -0,70706 
 2 -0,42316  4 -0,57758  8 -0,50396 

5 1 -1,47603  5 -0,19227  9 -0,30217 
 2 -0,70706 12 1 -2,04653  10 -0,10071 
 3 0  2 -1,54485 30 1 -2,5292210 

6 1 -1,60608  3 -1,16107  2 -2,1542550 
 2 -0,91359  4 -0,81765  3 -1,8957710 
 3 -0,30217  5 -0,48841  4 -1,6866680 

7 1 -1,71103  6 -0,16269  5 -1,5045740 
 2 -1,07286 15 1 -2,17306  6 -1,3390250 
 3 -0,52924  2 -1,71103  7 -1,1841870 
 4 0  3 -1,36911  8 -1,0364340 

8 1 -1,798496  4 -1,07286  9 -0,8933640 
 2 -1,200991  5 -0,79682  10 -0,7532978 
 3 -0,707064  6 -0,52924  11 -0,6150723 
 4 -0,235004  7 -0,26439  12 -0,4778767 

9 1 -1,87316  8 0  13 -0,3411770 
 2 -1,30734 20 1 -2,32714  14 -0,2046776 
 3 -0,85109  2 -1,90669  15 -0,0682259 
 4 -0,42316  3 -1,60608    
 5 0  4 -1,35427    
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Table A.1. Expected STS variates (continued) 

r=4 a=0      
n i t(i) n i t(i) n i t(i) 
3 1 -1,221075 10 1 -2,186975 20 5 -1,282530 
 2 0,0 2 -1,587048  6 -1,040592 

4 1 -1,485558 3 -1,105642  7 -0,805864 
 2 -0,482454 4 -0,658426  8 -0,574541 

5 1 -1,674709 5 -0,219231  9 -0,344524 
 2 -0,805864 12 1 -2,305889  10 -0,114832 
 3 0,000000 2 -1,751556 30 1 -2,829094 

6 1 -1,819782 3 -1,320763  2 -2,423515 
 2 -1,040592 4 -0,931635  3 -2,140427 
 3 -0,344524 5 -0,556822  4 -1,909332 

7 1 -1,936359 6 -0,185499  5 -1,706600 
 2 -1,221075 15 1 -2,444000  6 -1,521168 
 3 -0,603352 2 -1,936359  7 -1,346855 
 4 0,000000 3 -1,554947  8 -1,179857 

8 1 -2,033157 4 -1,221075  9 -1,017637 
 2 -1,365805 5 -0,907955  10 -0,858460 
 3 -0,805864 6 -0,603352  11 -0,701132 
 4 -0,267954 7 -0,301447  12 -0,544815 

9 1 -2,115536 8 0,000000  13 -0,389004 
 2 -1,485558 20 1 -2,611237  14 -0,233374 
 3 -0,969629 2 -2,152462  15 -0,077791 
 4 -0,482454 3 -1,819782    
 5 0,000000 4 -1,538277    
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APPENDIX B 

 

 

MATLAB PROGRAM FOR CALCULATION OF TAIL 

PROBAILITIES FOR LONG-TAILED SYMMETRIC 

DISTRIBUTION 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% A MATLAB PROGRAM WRITTEN BY 
% AYSUN ÇETINYUREK  
% ANKARA, 2006.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear 
g=20 
p=2.50 
 
nnn=[5 7 10 15 20] 
format long 
for i=5:5 
n=nnn(i) 
r=floor(0.5+0.1*n); 
simno=10000 
yno=10000 
    
%The “A” Constants Required To Calculate The Control Limits       
else if p==2.5 
        if n==5 
         c4=0.8748; 
         ctr=0.7493011; 
         cm=0.4648; 
         cw=0.7029; 
         cmml=1.0959; 
                else if n==7 
                    c4=0.9078; 
                    ctr=0.834351; 
                    cm=0.4905; 
                    cw=0.7641; 
                    cmml=1.0899; 
                            else if n==10 
                                c4=0.9289; 
                                ctr=0.786652; 
                                cm=0.4974; 
                                cw=0.7880; 
                                cmml=1.0880; 
                                    else if n==15 
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                                    c4=0.9465; 
                                    ctr=0.8692489; 
                                    cm=0.5086; 
                                    cw=0.8144; 
                                    cmml=1.0857; 
                                else if n==20 
                                    c4=0.9559; 
                                    ctr=0.860451; 
                                    cm=0.5125;  
                                    cw=0.8258; 
                                    cmml=1.0683; 
                                end 
                            end 
                        end 
 
else if p==3 
      if n==5 
                c4=0.9060; 
                ctr=0.746567; 
                cm=0.4950; 
                cw=0.7444; 
                cmml=1.0660; 
                    else if n==7 
                    c4=0.9258; 
                    ctr=0.829133; 
                    cm=0.5167; 
                    cw=0.7985; 
                    cmml=1.0639; 
                          else if n==10 
                                c4=0.9519; 
                                ctr=0.786778; 
                                cm=0.5323; 
                                cw=0.8382; 
                                cmml=1.0538; 
                                        else if n==15 
                                        c4=0.9620; 
                                        ctr=0.868291; 
                                        cm=0.5429; 
                                        cw=0.8625; 
                                        cmml=1.0528; 
                                    else if n==20 
                                            c4=0.9698; 
                                            ctr=0.85810756; 
                                            cm=0.5481; 
                                            cw=0.8734; 
                                            cmml=1.0514; 
                                        end 
                                    end 
                                end 
                     
else if p==3.5 
           if n==5 
                c4=0.9137; 
                ctr=0.744573; 
                cm=0.5086; 
                cw=0.7618; 
                cmml=1.0424; 
                else if n==6 
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                c4=0.9138 
                ctr=1.0462; 
                cm=0.5117; 
                cw=0.7954; 
                    else if n==7 
                    c4=0.9380; 
                    ctr=0.831633; 
                    cm=0.5412; 
                    cw=0.8268; 
                    cmml=1.0410; 
                            else if n==10 
                                c4=0.9591; 
                                ctr=0.786035; 
                                cm=0.5530; 
                                cw=0.8642; 
                                cmml=1.0398; 
                                        else if n==15 
                                        c4=0.9702; 
                                        ctr=0.8701316; 
                                        cm=0.5657; 
                                        cw=0.8909; 
                                        cmml=1.0308; 
                                    else if n==20 
                                            c4=0.9747; 
                                            ctr=0.86027; 
                                            cm=0.5705; 
                                            cw=0.8997; 
                                            cmml=1.0232; 
                                        end 
                                    end 
                                end 
                            end 
  else if p==4.0 
  if n==5 
            c4=0.9204; 
            ctr=0.744317; 
            cm=0.5170; 
            cw=0.7731; 
            cmml=1.0315; 
                else if n==7 
                        c4=0.9437; 
                        ctr=0.832949; 
                        cm=0.5465; 
                        cw=0.8364; 
                        cmml=1.0286; 
                        else if n==10 
                                c4=0.9563; 
                                ctr=0.7846089; 
                                cm=0.5600; 
                                cw=0.8695; 
                                cmml=1.0260; 
                            else if n==15 
                                    c4=0.9748; 
                                    ctr=0.8714; 
                                    cm=0.5809; 
                                    cw=0.9091; 
                                    cmml=1.0253; 
                                else if n==20 
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                                        c4=0.9780; 
                                        ctr=0.85963; 
                                        cm=0.5841; 
                                        cw=0.9161; 
                                        cmml=1.0194; 
                                   end 
                               end 
                        end 
                    end 
      
else if p==5 
if n==5 
                c4=0.9265; 
                ctr=0.740333; 
                cm=0.5283; 
                cw=0.7872; 
                cmml=1.0040; 
                    else if n==7 
                        c4=0.9448; 
                        ctr=0.829012; 
                        cm=0.5556; 
                        cw=0.8481; 
                             else if n==10 
                                    c4=0.9602; 
                                    ctr=0.788649; 
                                    cm=0.5751; 
                                    cw=0.8887; 
                                    cmml=1.0160; 
                                        else if n==15 
                                        c4=0.9770; 
                                        ctr=0.86981; 
                                        cm=0.5950; 
                                        cw=0.9243; 
                                        cmml=1.0157; 
                                    else if n==20 
                                            c4=0.9802; 
                                            ctr=0.86136; 
                                            cm=0.5999; 
                                            cw=0.9327; 
                                            cmml=1.0149; 
                                        end 
                                    end 
                                end 
                               end 
   else if p==6 
        if n==5 
                    c4=0.9305; 
                    ctr=0.7453958; 
                    cm=0.5357; 
                    cw=0.7941; 
                    cmml=0.9985; 
                       else if n==7 
                            c4=0.9484; 
                            ctr= 0.8303169; 
                            cm=0.5654; 
                            cw=0.8589; 
                            cmml=1.0050; 
                                else if n==10 
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                                        c4=0.9650; 
                                        ctr=0.7865487; 
                                        cm=0.5849; 
                                        cw=0.9003; 
                                        cmml=1.0122; 
                                         else if n==15 
                                            c4=0.9774; 
                                            ctr=0.8695905; 
                                            cm=0.6042; 
                                            cw=0.9332; 
                                            cmml=1.0102; 
                                        else if n==20 
                                                c4=0.9814; 
                                                ctr=0.8574635; 
                                                cm=0.6087; 
                                                cw=0.9426; 
                                                cmml=1.0010; 
                                            end 
                                        end 
                                    end 
                                end 
else if p==10 
           if n==5 
                c4=0.9352; 
                ctr=0.7441905; 
                cm=0.5437; 
                cw=0.8049; 
                cmml=0.9741; 
                    else if n==7 
                    c4=0.9551; 
                    ctr=0.8228023; 
                    cm=0.5774; 
                    cw=0.8754; 
                    cmml=0.9854; 
                         else if n==10 
                                c4=0.9667; 
                                ctr=0.7858148; 
                                cm=0.5978; 
                                cw=0.9121; 
                                cmml=0.9909; 
                                    else if n==15 
                                    c4=0.9809; 
                                    ctr=0.86793; 
                                    cm=0.6175; 
                                    cw=0.9491; 
                                    cmml=0.9987; 
                                else if n==20 
                                        c4=0.9844; 
                                        ctr=0.8599975; 
                                        cm=0.6243; 
                                        cw=0.9592; 
                                        cmml=1.0000; 
                                    end 
                                end 
                            end 
 
end 
end 
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end 
end 
end 
end 
end 
end 
 
v=2*p-1; 
k=2*p-3; 
 
%%%%% RANDOM SAMPLE TO COMPARE WITH THE LIMITS%%%%%%%%%%%% 
for j=1:yno 
    y=trnd(v,1,n); 
    y=sqrt(k/v)*y; 
   ym(j)=mean(y); 
   ymLTS(j)=LTS(y,p); 
   ymtr(j)=trim(y); 
   ymMAD(j)=MAD(y); 
   ymwave(j)=wave(y); 
     
end     
 
%%Calculation of Control Limits 
for i=1:simno 
    for  j=1:g 
 
  %%Generating LTS random numbers   
    x=trnd(v,1,n); 
    x=sqrt(k/v)*x; 
     
   xbar(j)=mean(x); 
   sdev(j)=std(x); 
     
    [m_mml v_mml M]=LTS(x,p); 
    mean_mml(j)=m_mml; 
    var_mml(j)=v_mml; 
    MMM=M; 
     
    [m_MAD v_MAD]=MAD(x); 
    meanMAD(j)=m_MAD; 
    varMAD(j)=v_MAD; 
     
   [m_tr v_tr]=trim(x); 
   meantr(j)=m_tr; 
    vartr(j)=v_tr; 
     
    [m_wv v_wv]=wave(x); 
    meanwv(j)=m_wv; 
    varwv(j)=v_wv; 
    end 
 
 xdbar=mean(xbar); 
 sbar=mean(sdev); 
 
%Control Limits Using LS Estimators 
 Ulse(i)=xdbar+3*sbar/(sqrt(n)*c4); 
 Llse(i)=xdbar-3*sbar/(sqrt(n)*c4); 
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meanmml_bar=mean(mean_mml); 
varmml_bar=mean(var_mml); 
 
varmuhed(i)=varmml_bar/sqrt(MMM); 
 
%Control Limits Using MML Estimators 
Umml(i)=meanmml_bar+3*varmml_bar/(sqrt(MMM)*cmml); 
Lmml(i)=meanmml_bar-3*varmml_bar/(sqrt(MMM)*cmml); 
 
meantrbar=mean(meantr); 
vartrbar=mean(vartr); 
 
%Control Limits Using TRIM Estimators 
Utr(i)=meantrbar+3*vartrbar/(sqrt(n)*ctr); 
Ltr(i)=meantrbar-3*vartrbar/(sqrt(n)*ctr); 
 
meanMADbar=mean(meanMAD); 
varMADbar=mean(varMAD); 
 
%Control Limits Using MAD Estimators 
UMAD(i)=meanMADbar+3*varMADbar/(sqrt(n)*cm); 
LMAD(i)=meanMADbar-3*varMADbar/(sqrt(n)*cm); 
 
meanwvbar=mean(meanwv); 
varwvbar=mean(varwv); 
 
%Control Limits Using W24 Estimators 
Uwv(i)=meanwvbar+3*varwvbar/(sqrt(n)*cw); 
Lwv(i)=meanwvbar-3*varwvbar/(sqrt(n)*cw); 
 
end  
 
%% MEAN OF CONTROL LIMITs will be found%%% 
 
%mUlse=mean(Ulse); 
%mLlse=mean(Llse); 
 
mUmml=mean(Umml); 
mLmml=mean(Lmml); 
 
%mUtr=mean(Utr); 
%mLtr=mean(Ltr); 
 
%mUMAD=mean(UMAD); 
%mLMAD=mean(LMAD); 
 
%mUwv=mean(Uwv); 
%mLwv=mean(Lwv); 
 
%%%%%%%%%% end of control limits %%%%%%%%% 
 
    alpu=find(ym>mUlse); 
    alpd=find(ym<mLlse); 
    alp=length(alpu)+length(alpd); 
  
    alpmmlu=find(ymLTS>mUmml); 
    alpmmld=find(ymLTS<mLmml); 
    alpmml=length(alpmmlu)+length(alpmmld); 
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    alptru=find(ymtr>mUtr); 
    alptrd=find(ymtr<mLtr); 
    alptr=length(alptru)+length(alptrd); 
 
   alpMADu=find(ymMAD>mUMAD); 
   alpMADd=find(ymMAD<mLMAD); 
    alpMAD=length(alpMADu)+length(alpMADd); 
 
    alpwaveu=find(ymwave>mUwv); 
    alpwaved=find(ymwave<mLwv); 
    alpwave=length(alpwaveu)+length(alpwaved); 
     
%Type I error rates and ARL values will be found 
 
alp=alp/yno 
ARLalp=1/alp 
 
alpmml=alpmml/yno 
ARLalpmml=1/alpmml 
 
alptr=alptr/yno 
ARLtr=1/alptr 
 
alpMAD=alpMAD/yno 
ARLMAD=1/alpMAD 
 
alpwave=alpwave/yno 
ARLwave=1/alpwave 
 
end 
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APPENDIX C 
 

 

MATLAB PROGRAM FOR CALCULATION OF TAIL 

PROBAILITIES FOR SHORT-TAILED SYMMETRIC 

DISTRIBUTION 
 

n=20 
rr=2 
aa=-0.50 
g=20 
format long 
if (rr==2&&aa==0) 
     if n==5 
            tvar=[-1.476030 -0.7070637 0.0 0.7070637 1.476030]; 
            c4=0.949064 
            tr4=1.92257 
            md4=0.820690 
            cw=1.191472 
            cmml=0.8796060 
         
            else if n==7 
                    tvar=[-1.711025 -1.072855 -0.5292416 0.0 0.5292416 1.072855 1.711025]; 
                    c4=0.965838 
                    tr4=1.699013 
                    md4=0.895735 
                    cw=1.298046 
                    cmml=0.925729 
                else if n==10 
                                tvar=[-1.938086 -1.397743 -0.9709358 -0.5775833 -0.1922703 0.1922703  0.5775833 
0.9709358 1.397743 1.938086]; 
                                c4=0.978200 
                                tr4=1.56887 
                                md4=0.934673 
                                cw=1.385435845 
                                cmml=0.954881 
                             
                                else if n==15 
tvar=[-2.173061 -1.711025 -1.369114 -1.072855 -0.7968235 -0.5292416 -0.2643871 0.0 0.2643871 
0.5292416 0.7968235 1.072855 1.369114 1.711025 2.173061]; 
                                        c4=0.986098 
                                        tr4=1.507582 
                                        md4=0.956013 
                                        cw=1.416484 
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                                        cmml=0.964812 
                                    else if n==20 
tvar=[-2.327137 -1.906691 -1.606083 -1.354265 -1.127214  -0.9135866 -0.7070637 -0.5039597 -0.3021717 
-0.1007128 0.1007128 0.3021717 0.5039597 0.7070637  0.9135866 1.127214 1.354265  1.606083  1.906691 
2.327137]; 
 
                                            c4=0.990027 
                                            tr4=1.4602713 
                                            md4=0.987924 
                                            cw=1.431415 
                                            cmml=0.979318 
                                        end 
                                        end 
                                    end 
                                end 
                            end 
    else if (rr==2&&aa==-0.5) 
     if n==5 
            tvar=[-1.382351 -0.6446648 0.0 0.6446648 1.382351]; 
            c4=0.9481489 
            tr4=1.823936 
            md4=0.774599 
            cw=1.125504 
            cmml=0.886329 
            else if n==7 
                    tvar=[-1.614885 -0.9904289 -0.4801178 0.0 0.4801178 0.9904289 1.614885]; 
                    c4=0.9646825 
                    tr4=1.607458 
                    md4=0.8314726 
                    cw=1.22971 
                    cmml=0.923379 
                else if n==10 
tvar=[-1.841602 -1.305475 -0.8930874 -0.5246353 -0.17733589 0.17733589  0.5246353 0.8930874 
1.305475 1.841602]; 
                                c4=0.979187 
                                tr4=1.480476 
                                md4=0.8762695 
                                cw=1.2918064 
                                cmml=0.952044 
                            else if n==15 
tvar=[-2.077694 -1.614885 -1.277447 -0.9904289 -0.7285786 -0.4801178 -0.2385902 0.0 0.2385902 
0.4801178 0.7285786 0.9904289 1.277447 1.614885 2.077694 ]; 
                                        c4=0.985 
                                        tr4=1.458035 
                                        md4=0.956013 
                                        cw=1.416484 
                                        cmml=0.962654 
                                    else if n==20 
tvar=[-2.233047 -1.81015 -1.510735 -1.262932 -1.042652  -0.8386421 -0.6446648 -0.4568958 -0.2728367 -
0.090742111 0.090742111 0.2728367 0.4568958 0.6446648 0.8386421 1.042652 1.262932 1.510735 
1.81015 2.233047]; 
                                            c4=0.990027 
                                            tr4=1.542014 
                                            md4=0.987924 
                                            cw=1.431415 
                                            cmml=0.977416 
 
                                        end 
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                                    end 
                                end 
                            end 
                        end 
                                                 
else if (rr==2 && aa==0.5) 
     if n==5 
            ty=[-1.611099 -0.8123684 ]; 
            tvar=[ty 0 sort(-ty)] 
            c4=0.954072 
            tr4=2.065557 
            md4=0.876092 
            cw=1.281163 
            cmml=0.921706 
        else if n==7 
                ty=[-1.844959 -1.201048 -0.615387]; 
                tvar=[ty 0 sort(-ty)] 
                    c4=0.970133 
                    tr4=1.819197 
                    md4=0.959068 
                    cw=1.402298 
                    cmml=0.952678 
                else if n==10 
                        ty=[-2.06892 -1.532526 -1.094713 -0.6694984 -0.227232]; 
                        tvar=[ty sort(-ty)] 
                            c4=0.977666 
                            tr4=1.70469 
                            md4=1.020148 
                            cw=1.466126 
                            cmml=0.968368 
                        else if n==15 
  ty=[-2.299519 -1.844959 -1.503687 -1.201048 -0.9096718 -0.615387 -0.3116989] 
                                    tvar=[ty 0 sort(-ty)] 
                                    c4=0.987832 
                                        tr4=1.629959 
                                        md4=1.080301 
                                        cw=1.528138 
                                        cmml=0.983072 
                                    else if n==20 
ty=[-2.450352 -2.03804 -1.740847 -1.488695 -1.257238 -1.034269 -0.8123684 -0.5869102 -0.3557014 -
0.1192665] 
                                            tvar=[ty sort(-ty)] 
                                            c4=0.98981 
                                            tr4=1.587649 
                                            md4=1.106305 
                                            cw=1.5420255 
                                            cmml=0.986742 
                                        end 
                                    end 
                                end 
                            end 
                        end 
    
  elseif (rr==4 && aa==0) 
    if n==5 
            tvar=[-1.674709 -0.8058643 0.0 0.8058643  1.674709]; 
            c4=0.952904 
            tr4=2.168294 
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            md4=0.932458 
            cw=1.342044 
            cmml=0.877834 
        else if n==7 
                    tvar=[-1.936359 -1.221075 -0.6033516 0.0 0.6033516 1.221075 1.936359]; 
                    c4=0.971152 
                    tr4=1.910452 
                    md4=1.003725 
                    cw=1.472202 
                    cmml=0.929433 
                else if n==10 
tvar=[-2.186975 -1.587048 -1.105642  -0.6584263 -0.2192307 0.2192307  0.6584263 1.105642 1.587048  
2.186975]; 
                                c4=0.978792 
                                tr4=1.7850122 
                                md4=1.063603 
                                cw=1.536487 
                                cmml=0.945995 
                            else if n==15 
tvar=[-2.444000 -1.936359 -1.554947 -1.221075 -0.9079552 -0.6033516 -0.3014469 0.0 0.3014469 
0.6033516 0.9079552  1.221075  1.554947 1.936359  2.444000]; 
                                        c4=0.988287 
                                        tr4=1.7036698 
                                        md4=1.081733 
                                        cw=1.600763 
                                        cmml=0.96976 
                                        else if n==20 
tvar=[-2.611237 -2.152462 -1.819782 -1.538277 -1.282530 -1.040592 -0.805864 -0.574541 -
0.344524 -0.114832 0.114832 0.344524 0.574541 0.805864 1.040592 1.282530 1.538277 1.819782
 2.152462 2.611237] 
                                            c4=0.992095 
                                            tr4=1.652444 
                                            md4=1.119905 
                                            cw=1.617588 
                                            cmml=0.974618 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                     
elseif (rr==4 && aa==-0.5) 
     if n==5 
         ty=[-1.583300 -0.7460564] 
         tvar=[ty 0 sort(-ty)] 
            c4=0.949516 
            tr4=2.06725 
            md4=0.876076 
            cw=1.280013 
            cmml=0.870615 
            else if n==7 
                    ty=[-1.842079 -1.141405 -0.5564499] 
                    tvar=[ty 0 sort(-ty)] 
                    c4=0.965716 
                    tr4=1.821165 
                    md4=0.953651 
                    cw=1.3988222 
                    cmml=0.912057 
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                        else if n==10 
ty=[-2.091894 -1.497192 -1.030579 -0.6078243 -0.2012539] 
                                tvar=[ty sort(-ty)] 
                                c4=0.979127 
                                tr4=1.689701 
                                md4=1.003589 
                                cw=1.464674 
                                cmml=0.943474 
                            else if n==15 
ty=[-2.349967 -1.842079 -1.465731 -1.141405 -0.8424282 -0.5564499 -0.2769089] 
                                    tvar=[ty 0 sort(-ty)] 
                                        c4=0.987322 
                                        tr4=1.619329 
                                        md4=1.056566 
                                        cw=1.524238 
                                        cmml=0.964175 
                                        else if n==20 
ty=[-2.517815 -2.05739 -1.726494 -1.449413 -1.200695 -0.9684277 -0.7460594 -0.529623 -0.3166103 -
0.1053619] 
                                                tvar=[ty sort(-ty)] 
                                            c4=0.990424 
                                            tr4=1.568485 
                                            md4=1.074157 
                                            cw=1.54002 
                                            cmml=0.973664 
                                        end 
                                    end 
                                end 
                            end 
                        end 
 elseif (rr==4 && aa==0.5) 
     if n==5 
         ty=[-1.789312 -0.8887577] 
         tvar=[ty 0 sort(-ty)] 
            c4=0.955704 
            tr4=2.29056 
            md4=0.977275 
            cw=1.420078 
            cmml=0.895427 
            else if n==7 
                    ty=[-2.05183 -1.326084 -0.6698513]; 
                    tvar=[ty 0 sort(-ty)] 
                    c4=0.972088 
                    tr4=2.017799 
                    md4=1.0715308 
                    cw=1.561532 
                    cmml=0.933731 
                        else if n==10 
                                ty=[-2.301235 -1.700726 -1.205978 -0.7297516 -0.2454662] 
                                tvar=[ty sort(-ty)] 
                                c4=0.980914 
                                tr4=1.894165 
                                md4=1.128718 
                                cw=1.626511 
                                cmml=0.9587 
                            else if n==15 
  ty=[-2.555676 -2.05183 -1.668177 -1.326084 -0.9976959 -0.6698513 -0.3371143] 
                                    tvar=[ty 0 sort(-ty)] 
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                                    c4=0.987386 
                                        tr4=1.805072 
                                        md4=1.19555 
                                        cw=1.692053 
                                        cmml=0.974111 
                                        else if n==20 
  ty=[-2.720776 -2.266978 -1.935196 -1.651258 -1.389618 -1.13781 -0.8887577 -0.6384087 -0.3849792 -
0.1287079] 
                                                tvar=[ty sort(-ty)] 
                                            c4=0.990087 
                                            tr4=1.75928 
                                            md4=1.224432 
                                            cw=1.707677 
                                            cmml=0.980579 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                            
 
end 
end 
end 
end 
 
if (rr==2 && aa==-0.5) 
    mu2=1.84199184; 
else if (rr==2&& aa==0.0) 
        mu2=2.03689984; 
    else if (rr==2&&aa==0.5) 
            mu2=2.33325625; 
        else if (rr==2&& aa==1) 
                mu2=2.81803369; 
            else if(rr==2&& aa==1.5) 
                    mu2=3.66684201; 
                else if(rr==4&&aa==-0.5) 
                        mu2=2.35960321; 
                    else if(rr==4&& aa==0) 
                            mu2=2.57634601; 
                        else if(rr==4&&aa==0.5) 
                                mu2=2.859481; 
                            else if(rr==4&&aa==1) 
                                    mu2=3.236401; 
                                else if(rr==4&&aa==1.5) 
                                        mu2=3.74732164; 
                                    else if (rr==4&&aa==2.0) 
                                            mu2=4.444541; 
                                    else if(rr==4&&aa==2.5) 
                                            mu2=5.37729721; 
                                        end 
                                    end 
                                end 
                            end 
                        end 
                    end 
                end 
            end 
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        end 
    end 
end 
end 
 
lamda=rr/(rr-aa); 
 
gmma1=1-(lamda/(2*rr))*tvar.^2; 
gmma2=(1+(lamda/(2*rr)).*(tvar.^2)).^2; 
gmma=gmma1./gmma2; 
b=1-lamda.*gmma; 
ff=find(b<0) 
count=length(ff) 
    
if (count==0) 
            ag=tvar.^2; 
            ag1=(1+(lamda/(2*rr)).*tvar.^2).^2; 
      alfa=((lamda/rr)*ag.*tvar)./ag1; 
            gmma=(1-(lamda/(2*rr))*tvar.^2)./ag1; 
      b=1-lamda.*gmma 
        else  
              ag3=tvar.^2; 
         ag2=(lamda/rr)*ag3.*tvar+(1-1/lamda).*tvar; 
         ag4=(1+(lamda/(2*rr))*tvar.^2).^2; 
         alfa=ag2./ag4; 
            ag5=(1/lamda)-(lamda/(2*rr))*tvar.^2; 
         gmma=ag5./ag4; 
         b=1-lamda.*gmma 
     end 
   
%%% Comparison sample are generated from STS   
yno=10000 
 
xc=stsrnd(aa,rr,n,yno); 
xxc=sort(xc); 
 
sumbbet=sum(b) 
for j=1:yno 
xxc1=xxc(:,j); 
 
sum3x=sum(b'.*xxc1); 
 
xmu(j)=sum3x/sumbbet;  
xbar(j)=mean(xxc1); 
xtr(j)=trim(xxc1); 
xMAD(j)=MAD(xxc1); 
xwave(j)=wave(xxc1); 
end 
 
simno=10000 
 
    y=stsrnd1(aa,rr,n,g,simno); 
    yy1=sort(y); 
 
%%%   CALCULATES MML FOR STS 
 
for k=1:simno 
    for j=1:g 
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        yy=yy1(:,j,k); 
         
sumbbet=sum(b); 
sum3=sum(b'.*yy); 
emu(j)=sum3/sumbbet; 
sum4=sum(alfa'.*yy); 
 
ob=lamda*sum4; 
sum5=sum(b'.*(yy.^2)); 
CC=sum5-sumbbet*emu(j).^2; 
sgm(j)=(-ob+sqrt((ob)^2+4*n*CC))/(2*sqrt(n*(n-1))); 
 
% CALCULATES LSE FOR STS 
my(j)=mean(yy); 
stdy(j)=sqrt(var(yy)/mu2); 
 
% CALCULATES TRIM FOR STS 
 [meantr stdtr]=trim(yy); 
mtr(j)=meantr; 
str(j)=stdtr; 
 
 %CALCULATES MADFOR STS 
 [meanMAD stdMAD]=MAD(yy); 
 mMAD(j)=meanMAD;  
 sMAD(j)=stdMAD; 
 
% CALCULATES W24 FOR STS 
 [meanwv stdwv]=wave(yy); 
 mwave(j)=meanwv; 
 swave(j)=stdwv; 
 
end  
 
meanmu=mean(emu); 
meansgm=mean(sgm); 
 
varmuhed(k)=meansgm/sqrt(sumbbet); 
 
%Control Limits Using MML); 
LCLmml(k)=meanmu-3.0*meansgm/(sqrt(sumbbet)*cmml); 
UCLmml(k)=meanmu+3.0*meansgm/(sqrt(sumbbet)*cmml); 
 
meanybar=mean(my); 
meanstd=mean(stdy); 
 
%Control Limits Using LSE; 
LCLlse(k)=meanybar-3*meanstd/(sqrt(n)*c4); 
UCLlse(k)=meanybar+3*meanstd/(sqrt(n)*c4); 
 
meanmtr=mean(mtr); 
meanstr=mean(str); 
 
%Control Limits Using TRIM; 
LCLtr(k)=meanmtr-3*meanstr/(sqrt(n)*tr4); 
UCLtr(k)=meanmtr+3*meanstr/(sqrt(n)*tr4); 
 
 meanmMAD=mean(mMAD); 
 meansMAD=mean(sMAD); 
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%Control Limits Using MAD; 
LCLMAD(k)=meanmMAD-3*meansMAD/(sqrt(n)*md4); 
UCLMAD(k)=meanmMAD+3*meansMAD/(sqrt(n)*md4); 
 
meanmwave=mean(mwave); 
meanswave=mean(swave); 
 
%Control Limits Using W24; 
LCLwv(k)=meanmwave-3*meanswave/(sqrt(n)*cw); 
UCLwv(k)=meanmwave+3*meanswave/(sqrt(n)*cw); 
 
end  
 
%Mean of Control Limits will be found  
mLCLmml=mean(LCLmml); 
mUCLmml=mean(UCLmml); 
 
mUCLlse=mean(UCLlse); 
mLCLlse=mean(LCLlse); 
mUCLtr=mean(UCLtr); 
mLCLtr=mean(LCLtr); 
 
mUCLMAD=mean(UCLMAD); 
mLCLMAD=mean(LCLMAD); 
 
mLCLwv=mean(LCLwv); 
mUCLwv=mean(UCLwv); 
 
% Probability Plotting Outside The limits will be calculated 
   ammlu=find(xmu>mUCLmml); 
   ammll=find(xmu<mLCLmml); 
   alpmml=length(ammlu)+length(ammll); 
    alseu=find(xbar>mUCLlse); 
    alsel=find(xbar<mLCLlse); 
    alp=length(alseu)+length(alsel); 
   atru=find(xtr>mUCLtr); 
   atrl=find(xtr<mLCLtr); 
   alptr=length(atru)+length(atrl); 
   aMADu=find(xMAD>mUCLMAD); 
   aMADl=find(xMAD<mLCLMAD); 
   alpMAD=length(aMADu)+length(aMADl); 
   awaveu=find(xwave>mUCLwv); 
    awavel=find(xwave<mLCLwv); 
    alpwave=length(awaveu)+length(awavel); 
 
%ARL Values and Type I errors are calculated 
alp=alp/yno 
ARLlse=1/alp 
 
alpmml=alpmml/yno 
ARLmml=1/alpmml 
 
alptr=alptr/yno 
ARLtr=1/alptr 
 
alpMAD=alpMAD/yno 
ARLMAD=1/alpMAD 
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alpwave=alpwave/yno 
ARLwave=1/alpwave 

 
 
 
 

 


