

A MEASUREMENT FRAMEWORK FOR COMPONENT ORIENTED
SOFTWARE SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

NAEL SALMAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

NOVEMBER 2006

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Doctor of Philosophy.

Prof. Dr. Ayşe KİPER
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Ali H. DOĞRU
 Supervisor

Examining Committee Members

Prof. Dr. Mehmet R. Tolun (Çankaya, CENG)

Assoc. Prof. Dr. Ali H. Doğru (METU, CENG)

Assoc. Prof. Dr. Veysi İşler (METU, CENG)

Assoc. Prof. Dr. Ferda N. Alpaslan (METU, CENG)

Assist. Prof. Dr. Reza Hassanpour (Çankaya, CENG)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name: Nael Salman

Signature :

 iv

ABSTRACT

A MEASUREMENT FRAMEWORK FOR COMPONENT ORIENTED
SOFTWARE SYSTEMS

Salman, Nael

Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali H. Doğru

November 2006, 116 pages

A measurement framework is presented for component oriented (CO) software

systems. Fundamental concepts in component orientation are defined. The factors

that influence CO systems’ structural complexity are identified. Metrics

quantifying and characterizing these factors are defined. A set of properties that a

CO complexity metric must satisfy are defined. Metrics are evaluated first using

the set of properties defined in this thesis and also using the set of properties

defined by Tian and Zelkowitz in [84]. Evaluation results revealed that metrics

satisfy all properties in both sets. Empirical validation of metrics is performed

using data collected from graduate students’ projects. Validation results revealed

that CO complexity metrics can be used as predictors of development effort,

Design effort, integration effort (characterizing system integrabiltiy), correction

effort (characterizing system maintainability), function points count

(characterizing system functionality), and programmer productivity. An

Automated metrics collection tool is implemented and integrated with a dedicated

CO modeling tool. The metrics collection tool automatically collects complexity

metrics from system models and performs prediction estimations accordingly.

 v

Keywords: Component Orientation, Complexity, Structural complexity, Metrics,

Metrics Automation.

 vi

ÖZ

BİLEŞENE YÖNELİK YAZILIM SİSTEMLERİ İÇİN BİR ÖLÇÜM
ÇERÇEVESİ

Salman, Nael

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali H. Doğru

Kasım 2006, 116 sayfa

Bu tez bileşene yönelik (BY) yazılım sistemleri için bir ölçüm çerçevesi

sunmaktadır. Bileşen yönelimindeki temel kavramlar açıklanmaktadır. BY

sistemlerinin yapısal karmaşıklığını etkileyen etkenler belirtilmektedir. Bu

etkenleri nicel ve nitel karakterlerini tanımlamaya yonelik ölçütler

tanımlanmaktadır. BY karmaşıklık metriğininin gereklerini karşılayan özellikler

tanımlanmaktadır. Ölçütler iki kere değerlendirilmektedir: İlk değerlendirmede bu

tezde tanımlanmış olan özellikler kulanıldı. İkinci değerlerndirmede ise Tian ve

Zelkowitz tarıfından tanımlanmış olan karmaşıklık ölçüt özellikleri [84] kullanıldı.

Değerlendirme sonuçları, her ikisindeki özelliklerin gerçekleştirildiğini ortaya

koymaktadır. Ölçütlerin görgül geçerliği yüksek lisans öğrencilerinin projelerinden

toplanan veriler üzerinde gerçekleştirilmiştir. Geçerlik sonuçları BY karmaşıklık

ölçütlerinin aşağıdaki parametreleri kestirim maksadı ile geliştirme sürecinde

kullanılabileceğini ortaya koymaktadır: Tasarım çabası, entegrasyon çabası (sistem

entegre edilebilirliğinin karakterizasyonu), düzeltme çabası (bakım yapılabilirlik

karakterizasyonu), FP (sistem işlevselliğinin karakterizasyonu), ve programcı

üretkenliği. Otomatik ölçüt toplama aracı gerçekleştirilmistir ve özgül bir BY

modelleme aracı ile entegre edilmiştir. Ölçüt toplama aracı otomatik olarak sistem

 vii

modellerinden karmaşıklık ölçütleri toplamakta ve öngörü kestirimini buna göre

gerçekleştirmektedir.

Anahtar Kelimeler: Bileşen yönelimi, Karmaşıklık, Yapısal karmaşıklık,

Ölçüt , Ölçüt Otomasyonu.

 viii

To My Parents, My Wife, and My Children with Love

 ix

ACKNOWLEDGMENTS

I express my deepest gratitude and appreciation to my supervisor Assoc. Prof. Dr.

Ali H. DOĞRU for his guidance, advice, criticism, encouragements, insight, and

patience throughout the research.

I also want to thank my committee members Prof. Dr. M. R. Tolun, Assoc. Prof.

Dr. Veysi İşler, Assoc. Prof. Dr. F. N. Alpaslan, and Assist. Prof. Dr. R.

Hassanpour for their invaluable suggestions and comments.

I am also thankful to the head of the Department of Computer Engineering –

METU Prof. Dr. Ayse Kiper and all professors in the department. Also, the

indefinite help and cooperation of the administrative staff members in the

department especially that of Sultan Arslan and Perihan Ilgun is greatly

acknowledged.

I am indebted to the head of Department of Computer Engineering – Çankaya

University Prof Dr. M. R. Tolun and the rest of staff members from the same

department for their continual encouragement and support.

The valuable technical suggestions and comments of Abdulkareem Abed, Cengiz

Togay, Dr. Çiğdem Gencel, and Assist. Prof. Dr. Tansel Özyer, are gratefully

acknowledged.

I would like also to thank students from the Department of Computer Engineering

in METU, classes of System Development Using Abstract Design (CENG 551) for

the fall semesters of 2002, 2003, and 2005. Their cooperation and provision of

projects data played a very important role in the successful completion of this

thesis.

 x

Last but not least, I would like to thank my beloved parents for their continual and

indefinite support and prayers. All of my love and thanks go to my beloved wife

and children (Marwa, Aseel, Safaa, and Mustafa). I hope that they have forgiven

me for my continual long-lasting absences.

 xi

TABLE OF CONTENTS

PLAGIARISM...iii

ABSTRACT .. iv

ÖZ ... vi

DEDICATION ..viii

ACKNOWLEDGMENTS.. ix

TABLE OF CONTENTS.. x

LIST OF TABLES... xiv

LIST OF FIGURES .. xv

CHAPTER

1. INTRODUCTION.. 1

1.1 Component Oriented Software Engineering... 2

1.2 The Need for Software Metrics ... 5

1.3 Motivation .. 7

1.4 Outline of the Thesis ... 11

2. BACKGORUND INFORMATION.. 12

2.1 Foundations of Software Engineering.. 12

2.2 Foundations of Software Measurement and Metrics 13

2.2.1 Direct counting approach of Software metrics 14

2.2.1.1 Metrics for Traditional Software...................................... 14

2.2.1.2 Metrics for Object Oriented Software 16

2.2.1.3 Metrics for Component Oriented Software 16

2.2.2 Information Theory Based Software Metrics 19

2.3 Metrics Evaluation and Validation Approaches 22

2.4 Different Views of Software Complexity.. 26

2.5 Summary.. 28

3. QUANTIFYING THE COMPLEXITY OF COMPONENT

ORIENTED SYSTEMS.. 30

 xii

3.1 A Glance on the Terminology.. 31

3.2 Steps of Our Approach .. 36

3.3 CO Software Systems Quantifiable Aspects..................................... 37

3.4 A Complexity Model for CO Software Systems 46

3.4.1 Level 1: Method Complexity... 46

3.4.2 Level 2: Component Complexity... 47

3.4.3 Level 3: System Structural Complexity 48

4. METRICS EVALUATION AND VALIDATION 49

4.1 Properties of CO Complexity Metrics .. 49

4.2 Metrics Evaluation .. 52

4.3 Metrics Validation: The Experiment .. 52

4.3.1 Data Sources.. 54

4.3.2 Developers Background... 55

4.3.3 Data Collection.. 55

4.3.4 Correctness Test .. 56

4.3.5 Regression Analyses .. 57

4.3.5.1 Total FP Count Regression Model................................ 60

4.3.5.2 FP Per Interface Regression Model............................... 62

4.3.5.3 Total Design Effort Regression Model 64

4.3.5.4 Design Effort Per Component Regression Model.......... 66

4.3.5.5 Correction Effort Regression Model 68

4.3.5.6 Correction Effort Per Component Regression Model 71

4.3.5.7 Integration Effort REGRESSION Models 73

4.3.5.8 Integration Effort per Component Regression Model.... 75

4.3.5.9 Productivity (FP/Person-Hour) Regression Model 77

4.3.5.10 Total Development Effort Regression Model................ 79

4.3.6 Summary of the Results ... 83

5. AUTOMATING METRICS COLLECTION PROGRAMS 89

5.1 The Need for Metrics Automation.. 89

5.2 Enabling Automated Metrics Collection in COSECASE.................. 91

6. CONCLUSION AND FUTURE WORK ... 94

6.1 Summary ... 94

6.2 Discussion of the Results ... 95

 xiii

6.3 Comparison with Related Works.. 97

6.4 Future Extensions and Open Research Areas 104

REFERENCES .. 104

APPENDICIES

A. METRICS COLLECTION FORMS USED IN 2002 AND 2003 113

B. METRICS COLLECTION FORMS USED IN 2005 115

VITA ... 116

 xiv

LIST OF TABLES

TABLES

Table 3.1 Optional Connector Symbols in COSEML .. 34

Table 3.2 Attributes, Metrics, and Metric Definitions.. 45

Table 4.1 Regressands and Their Intuitive Regressors Summary....................... 58

Table 4.2 List of Terms and Abbreviations Used in the Reg. Models 60

Table 4.3 FP Estimation Results ... 61

Table 4.4 FP per Interface Estimates ... 63

Table 4.5 Correlation Matrix between Model Variables 65

Table 4.6 Total Design Effort Estimates.. 65

Table 4.7 Design Effort per Component Estimates .. 67

Table 4.8 Correlation Matrix between Regression Variables 69

Table 4.9 Total Correction Effort Estimates .. 70

Table 4.10 Correction Effort per Component Estimates 72

Table 4.11 Total Integration Effort Estimates.. 74

Table 4.12 Integration Effort per Component Estimates 76

Table 4.13 Productivity Estimates... 78

Table 4.14 Total Development Effort Estimates.. 82

Table 4.15 Summary of the Regression Models .. 84

Table 4.16 Summary of Metrics Practical Applications 86

Table 6.1 Summary of Related Works... 101

 xv

LIST OF FIGURES

FIGURE

Figure 3.1.a A Component with Multiple Interfaces.. 32

Figure 3.1.b A Component with A Single Interface... 32

Figure 3.2 An Interface ... 33

Figure 3.3 Notation Used for Abstraction in COSEML 33

Figure 3.4 Simplified University System Prepared in COSEML........................ 35

Figure 3.5.a High WCT... 39

Figure 3.5.b High DCT ... 39

Figure 3.6 Coupled Components ... 39

Figure 3.7.a Zero Coupling ... 43

Figure 3.7.b Moderate Coupling ... 43

Figure 3.7.c Excessive Coupling ... 43

Figure 4.1 Total FP Regression Model Plot... 62

Figure 4.2 FP per Interface Regression Model Plot ... 64

Figure 4.3 Total Design Effort Regression Model Plot 66

Figure 4.4 Design Effort per Component Regression Model Plot 68

Figure 4.5 Total Correction Effort Regression Model Plot................................. 71

Figure 4.6 Correction Effort per Component Regression Model Plot................. 73

Figure 4.7 Total Integration Effort Regression Model Plot 75

Figure 4.8 Integration Effort per Component Regression Model Plot 77

Figure 4.9 Productivity Regression Model Plot ... 79

Figure 4.10 Total Development Effort Regression Model Plot 83

Figure 5.1 Metrics Collection and Estimation Tool ... 91

Figure 5.2 Screen Shoot from COSECASE with Estimations Options 92

Figure 5.3 Screen Shoot of Estimation Results Form... 93

 1

CHAPTER 1

INTRODUCTION

Computers are every where; transportation, education, medical, governmental, and

several many other fields nowadays are highly dependent on computer systems

[68]. A Computer system is mainly composed of a hardware subsystem and a

software subsystem. The well functioning of a computer system is dependent on

the well functioning of both its software and hardware subsystems. While the steps

of building efficient hardware systems remain beyond the scope of this research,

we will focus on evaluating features of software system that can lead to the

production of efficient and cost-effective software.

Development of software systems starts with system specification, proceeds with

design which mainly comprises building models of the real world and approaching

system complexity by decomposition. After that comes implementation of the

specified models and system building blocks using a programming language that

has constructs supporting the specified models. The last step in the development

process is integrating or unifying the implemented and tested system building

blocks. The key to approaching system complexity, managing performance,

security, maintainability, and other important system features is decomposing the

system into smaller units or modules which will in turn be the system building

blocks [81]. Use of Abstraction, as the key to the identification of system building

blocks or components, has been of great interest to software developers since the

early days of software development. The earliest work started with process

abstraction which was not powerful enough to build large and complex programs.

 2

Then appeared the data processing view, emphasizing function abstraction that

receives inputs when called, does processing in its body and yields a value as

output [74, 81]. Later, and more extensively, the object-oriented (OO) approach

appeared and introduced a different view of abstraction which encapsulates both

data and functions into its fundamental building block “the class” which is a

collection of objects, and hides information from its clients. The class abstraction

allows building large and complex systems as hierarchies of objects [74]. Most

recently, the component oriented (CO) system development approach with software

component as its principal building block. The aim of breaking the system into

smaller units (functions, classes, or components) is to manage the complexity in the

systems following the widely known rule “divide and conquer”. While the

traditional approach focuses on functions, the OO approach focuses on data and the

CO approach focuses on structure [34].

1.1 Component Oriented Software Engineering

“Reuse, reuse, and more reuse until finally you can develop large software systems

by integrating already available components rather than writing code from scratch”.

This is the main objective of the so many research centers, software development

organizations, and software customers as well. Everyone involved in the software

system development process looks forward to having software systems more

rapidly built and are more efficient.

Building software systems by integrating already available components has not

been successfully used before the 1990s [83]. Commercials-Of-The-Shelf (COTS)

components, Component Based Software Engineering (CBSE), and Component

Oriented Software Engineering (COSE) are all terms referring to the new and

rapidly growing approach of software development that mainly focuses on building

large, and efficient software systems mainly benefiting from reusability and

composition rather than code writing. Although the terms CBSE and COSE are

used interchangeably most of the time in the literature they are different in their

 3

entirety. The difference between these two terms is similar to the difference

between Object Based and Object Oriented development approaches. Dorgru and

Tanik [34] well-described the difference between CBSE and COSE as follows:

CBSE focuses on using pre-built components while the whole system can

be modeled using OO methodologies. That means CBSE considers components

only at the system integration phase. On the other hand COSE requires that all

stages of the development process must be component oriented. COSE suggests

that the analysis and design stages of the system must be CO in order to

successfully apply the idea of “build by integration rather than code writing”. In

this respect, traditional and object oriented paradigms fall into prescriptive category

where the idea is to write code; all the leading phases are geared towards

organizing the way how code will be written. Component Oriented development

considers integration rather than code writing. Also, Requirements and Design

stages are supported with abstract and practical concepts that correspond to

components, rather than prescriptive structures such as classes, objects, or

data/control structures. Component Based development is a hybrid approach where

code writing is supported as well as the incorporation of components; pre-coding

stages, however, are prescriptive namely Object Oriented. The component related

activities in such an approach are more bottom-up, concentrating on the "wiring

level" techniques for the composition of components to the hybrid system. The

Component Orientation as supported in this study and the guiding references differ

mainly in the integration view, and the promotion of component concept as the

fundamental building block, in all phases. The component and its abstract level

representations are the focus of modeling hence rendering the concept as a

consistent structure from requirements to run-time, as classes are for Object

Orientation.

Clements [24] listed the main advantages of applying component technologies as:

• Reduced development effort

• Increased reliability and efficiency.

• Increased flexibility and many alternatives offered to choose from.

Clements [24] also discussed the main issues and difficulties in applying COSE as:

 4

• Lack of standards describing ways of communications between components

coming from different environments.

• Component architectures and infrastructures should be identified

• Customers can receive no version support and evolution can be limited

Computer science and/or engineering departments in many universities initiated

research which shares a common objective of maximizing reusability and

minimizing code writing. The software industry practices related to components

can be put in two categories: While several market leading software development

organizations intensified their work on component platforms and component

technologies, other software development organizations focused on producing and

marketing components.

Microsoft is one of the leading organizations in creating component wiring

technologies. Microsoft first created COM wiring technology which then

improved to COM+, DCOM, and ActiveX/OLE infrastructures, and lastly provided

a wider support for components in its .NET CLR framework which adds the

interoperation of COM+ and Windows platform access services [59 and 83]. Sun

is another market leading software developing organization that has very important

contributions to the component technology. Although some java applets can be

sold as separate components, it is difficult to generalize that on all applets [83].

The major contribution of Sun Java™ to the component technology was the

introduction of the java bean (a bean is really a component) technology [49].

The Object Management Group (OMG) -a non-profit organization- is also working

on defining and developing infrastructure for the interoperability of objects at all

levels. OMG developed the Common Object Request Broker Architecture

(CORBA®), which was then refined in CORBA 1.1 and CORBA 1.2. CORBA2.0

marked a significant improvement over CORBA 1.x by enabling client portability.

CORBA infrastructure became mature only after the release of CORBA 2.0 which

was then followed by several successive version labeled as CORBA 2.x where each

version enhanced the version preceding it. Finally, OMG released CORBA3.0

 5

which marked a significant improvement on all previous versions and provided the

most support for component technology [62, 83].

On the other side, several software development organizations started developing

and marketing software components. Although several such organizations exist,

we will just list few such organizations. Our selection is pure subjective and does

not have an implication about quality, cost, technology, or any other aspects related

to the components developed or the developing organization:

1. Component Source: founded in 1996, produces components that serve several

disciplines such as accounting, data mining and databases, speech recognition,

image processing, CAD, web services, editing and word processing tools, and

several other disciplines [26].

2. Dev Direct: founded in 2003, Dev Direct is marketing components from a

variety of disciplines that work on almost all platforms. Dev Direct is an

intermediary between publishers and customers (software developers) [32].

The fast growth in the interest in CO software development in both academic and

business cycles is due to the several advantages it provides for building large and

efficient software systems. CO focuses mainly on integrating already available

components. Among the advantages of using component oriented software

development are: 1) economic necessity and saving in development costs, 2)

providing higher quality software, and more adaptable systems [9, 34, 75, and 83].

1.2 The need for Software metrics

Tom Demarco formulated the following about measurement “You can not control

what you can not measure” [38]. Tom De Marco best summarized what Lord

Kelvin (1824-1904), formulated about measurement “When you can measure what

you are speaking about, and express it into numbers, you know something about it;

but when you cannot measure it, when you cannot express it in numbers, your

knowledge is of a meager and unsatisfactory kind: It may be the beginning of

 6

knowledge, but you have scarcely in your thoughts advanced to the stage of

science” Quoted from Zuse’s website [95].

Metrics can be collected at different stages of the software development process.

What metrics to collect and when to collect them is an issue that still does not have

an agreed-upon answer yet. Hellerman supports that metrics are needed to

compare among different alternatives [45]. Software metrics have proven to be an

essential actor in the software development process and they are essential to have a

successful software development environment [58]. The most widely cited

viewpoints about the role(s) of software metrics can be summarized as follows:

Metrics can be used to build prediction models: El Emam [35] demonstrates that

metrics can be relied on to build predictions about software errors. He also found

that prediction models of errors based on metrics have error rates of about 9%

while savings in maintenance costs reaches up to 42%. Mendonça and Basili [58]

emphasized that software measurement is needed to characterize, control, predict,

and improve software development, management, and maintaining processes.

Metrics help managers to make decisions: A lot of organizations (Software

Engineering Labs at NASA and HP) use metrics to make managerial decisions

related to resource distribution, cost estimations, and building defect and

productivity models [10].

Use of metrics increases productivity: It has been noticed that productivity in

software development is dropping with a rate higher than that in any other industry;

it is estimated to have dropped by 10% from the year 1990 to the year 1995. The

most important reason behind this is the lack of benchmarks to make comparisons.

Productivity is found to be highly affected by the degree of connectivity which is a

measure of coupling [7].

Metrics can decrease software defects: Grady in his book about software metrics

[40] presented a generalized discussion of software metrics. He stated that good

metrics programs can decrease software defects by 50-75%. Grady, discussed

 7

some of the widely known metrics such as Cyclometic complexity [57] and

concluded that it is hardly worth the effort since it is derived from the code. He

suggested that metrics that are collected before the code is ready can be of higher

value. Defects found during inspection before the code is complete cost less than

one tenth of those found after the system delivery and furthermore affect negatively

the reputation of the organization. This follows the famous saying “Prevention is

better than cure”.

Metrics can be used as quality indicators: Schneidewind defines a metric as a

function whose inputs are software data, and its output is a numerical value that

describes the degree to which software possesses does or does not possess a given

quality aspect [73]. Blundell et al. [12] related software metrics to different quality

factors and found that design metrics can be used to: 1) evaluate current levels of

software design qualities within the project, 2) decompose the problem into an

acceptable set of components, and 3) identify the critical parts of the design [12].

Basili and his colleagues [10] provided empirical evidence that object-oriented

design metrics can be used as quality indicators.

Metrics may not accurately build prediction models: Fenton and Neil describe

two classes of software metrics; classical metrics that describe software attributes

using numbers and the other group of metrics which are used to predict external

features like cost and quality of software. The authors also stressed that one of the

major problems in the field of software measurement is the weak links between

industry practices and current research [37]. The authors also claim that

complexity and size measures are not enough to predict software defects

accurately. This viewpoint has been proven to be inaccurate through empirical

researches including the one described in this thesis.

1.3 Motivation

As new technologies appeared, engineering approaches to utilize them lagged in

the history. OO methodologies appeared years after OO languages. Similar

phenomenon is valid today, for CO approaches. There are many component-based

techniques and methods, and even some claimed to be Component Oriented.

 8

Nevertheless, they fail to be fully CO. Although this avenue may be crucially

important, a complete orientation towards components is missing that suggests a

paradigm shift in software development.

The metrics-based tools proposed in this dissertation claim to be instrumental in

enabling software development strategies of the possible near future. The targeted

orientation demands substantial improvement over existing software development

practices. For the new paradigm, that is “Build by Integration,” components only

appeared as enabling technologies. Including many component related approaches,

existing methodologies suggest different pre-coding activities for the similar goal:

code development. The CO understanding supported in this dissertation, however,

promotes development through integration of existing code components rather than

code writing, which is almost denied as part of the lifecycle.

Software Engineering has evolved with duplicating the hard engineering discipline

experiences in its infancy (such as through Waterfall Lifecycle). It progressed

through peculiar practices owing to the different nature of the intangible software

artifact. Before maturity, software practices are again turning back to hard

engineering disciplines for possible exploitation of the proven successes.

Component ideas, Software Product-line Engineering, and even Automated

Software Factories are example concepts for such a trend.

Given the size and complexity of the software systems in an ever-expanding market

of demands, it is already very difficult and it may soon become impossible to

generate code, one line at a time for practical sizes that are tens of millions of lines.

Other engineering disciplines are also moving to a higher-level of component-

based integration due to the trend toward value-added chains where every company

only contributes with its core-competency artifact – what it is best at. Considering

the risky business of code development and also the fact that all kinds of

algorithms have been coded before, the charm of re-inventing the wheel further

reduces. Of course for some cases code can be developed; we did not discard

teaching multiplication after the invention of hand-held calculators. Software

 9

industry needs urgently to move forward for less risky and bigger product assembly

in shorter time periods.

That is why it is believed that the near future for software engineering will be

dominated with the Build by Integration paradigm. To comply, the component

orientation approach that solely models components, their abstractions, and

integration is adopted. This orientation is a new understanding that not only

leverages on component technologies, but also introduces a more natural design

cognition that could be applied without components. Components are handy

because they make it possible to divide and conquer the problem definition on

“structure” basis, being supporting technologies that are developed with the

consideration of integration. Structure, being the most suitable one among the

three fundamental design dimensions that are data, function, and structure, makes it

easier to design bigger systems. The suitability is due to its being closest to a

tangible nature, when compared to data or function: they correspond to pieces of

code that is already functioning. So for complex problems now we have modules

that play very well along divide and conquer strategy. COSE also suggests this

decomposition should be hierarchical, based on Simon [113] design principles.

It is also possible to follow the COSE methods to develop code without

components. Of course, more benefit is expected for the cases where fine

specification of the code is not to be manipulated. A kind of an architectural look

to the holistic view should be maintained where the system is modeled as a

decomposition in a structural hierarchy. The procedural details of modules (that

replaces components in this case) can be left to any existing approach: OO or even

traditional. The immediate suspicion about the validity of such a paradigm shift

could be concerning the nature of the new model: This way, systems have to be

suitable for viewing them as looser coupled networks of “code islands.” However,

for complex systems such a view is a necessity, reminding us about the

fundamental design principle: cohesion. Keeping in mind the real difficulty in

traditional development being the integration, and even in modern approaches

composing huge systems, rather than coding the integrals of a defined module, this

new approach seems to be the answer.

 10

Most of the component related methods can be classified to be placed in the

“wiring level.” In other words, relatively lower-level technologies are devised for

the easier integration of components that are already defined for protocols that

support even run-time integration. The missing view is the one that should guide

the developers once a huge system is requested. There are very few academic

studies that suggest components as an orientation rather than being OO and

allowing components to be accommodated. They however, miss the holistic view,

and the simplicity that comes with the persuasion that code is not to be developed.

Unfortunately, there has been minimal improvement in the literature, after the

introduction of the idea in 2003 due to the difficulties in testing the paradigm. A

big software company has to accept to employ the methodology that is yet

experimental, for a huge project. Also, a complete test can only be possible after

the availability of a matured set of components in the application domain.

However, it is hoped that the component technologies and the demand in the

software industry will both develop in the direction that will enable a similar

methodology to come to practical life.

The metrics and measurement mechanisms proposed in this dissertation are

important because they support a radically different way of developing software. If

the industry adopts Build by Integration, COSE related methodologies will be very

important, together with many dimensions of a methodology, metrics and

measurement being among the important ones. This study is being accompanied

with other theses work in an effort toward defining different directions of such

approaches. As a summary, the mechanisms will make it possible to estimate and

measure various process and product properties related to software development,

where a software system is viewed as:

1. A decomposition of structural abstractions,

2. Connections among abstract and physical components, and

3. Integration of physical components.

So far, existing metrics approaches have been proposed for function (traditional)

and data (object oriented) centric software models only. Component related work

 11

is still mostly Object Oriented and available metrics tools are a derivation of related

OO techniques.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows: Chapter 2 presents a survey of the

literature of software engineering, software metrics, and metrics evaluation

approaches. Chapter 3 introduces a layered approach for quantifying component

oriented software system using metrics collected from the design documents of

these systems. Chapter 4 describes a new set of CO complexity metrics properties.

The metrics presented in chapter 3 are evaluated and validated in Chapter 4.

Chapter 5 discusses the need for metrics programs automation. Also, an automatic

metrics collection tool is introduced. Chapter 6 presents a summary of the most

significant concluding remarks, comparison of the obtained results with results

obtained in similar works, and potential extensions of the current study.

 12

CHAPTER 2

BACKGORUND INFORMATION

2.1 Foundations of Software Engineering

Software engineering is the engineering discipline that focuses on methods,

techniques, and procedures for building large and complex software system in a

cost-effective manner [38, 68]. The term software engineering was first used in

1968 in a NATO conference that was held to discuss what was known as the

software crisis [81]. The need for software engineering emerged after the

introduction of computer systems embodying integrated circuits. Informal methods

of software development developers were not enough to build large and complex

systems and resulted in delayed deliveries and failed projects [68].

Work on software engineering methods has been progressing rapidly during the

past three decades. During the 1970s and early 1980s software engineering

research was intensified mainly on function-oriented methods. Those methods

were mainly attempting to identify the system building block which was mainly

functions. Among the earliest software engineering methods was the work of

Dijkstra “Structured Programming" [33] where he defined the term structured

programming and emphasized that well-structuredness of the code is as important

as producing the correct answer and prevent errors. Parnas described the

fundamentals of modular programming and introduced the concept of information

hiding as the principle through which a system can be divided into modules [64].

In 1971 Niklaus Wirth described one of the earliest formal software development

processes in his work "Program Development by Stepwise Refinement" [90].

 13

Jackson described a method for program design based on data structures and

program flows [96]. In 1978 Demarco provided a detailed methodology for

structured programming (Structured design and structured analysis) [30]. While

several other researches appeared after then, one of the most remarkable is the

spiral model which forms the basis for evolutionary software development by

performing risk analysis at each stage of the development and making use of

software prototyping [14].

Object oriented methods started to appear late in the 1980s especially after the wide

adoption of C++ (very widely used powerful object oriented programming

language). Several OO methodologies have been developed and presented in

published papers and/or books. The most widely used OO oriented methodologies

include: Shlaer and Mellor [78, 79], Coad and Yourdon [28, 29], Wirfs-Brock et al

[89], Grady Booch [16], IBM [47], Rumbaugh et al [70], and Jacobson OOSE

methodology [48]. Lastly, and at around 1995 Jacobson unified his work with

Booch and Rumbaugh and developed the unified modeling language (UML) which

in 1997 became the standard object oriented methodology used everywhere.

2.2 Foundations of Software Measurement and Metrics

While some prefer to distinguish between the terms measure and metric, the terms

are mostly used as synonyms in the literature. Following from that, the terms

software metrics and software measurement are used interchangeably most of the

time. In the early days of software development people used to argue whether it is

necessary to measure software products or not. Nowadays the question has

changed from whether to measure or not to “how to measure?” So, software

measurement has become a fundamental activity of any software process.

Work on software metrics followed two different tracks. In one track metrics are

estimated simply by directly counting some features or by performing simple

arithmetic. In the other track information theory principles and mainly the concept

of entropy are used for measuring software system complexity. In the following

sections the mostly widely cited works in both tracks are briefly described.

 14

2.2.1 Direct Counting Approach of Software Metrics

In the direct counting (simple) approach of software measurement, metrics that

quantify some aspects of the software product like (size, complexity, connectivity,

functionality, etc..) are estimated by counting some attributes or performing simple

arithmetic. Following this principle, several metrics for traditional software

systems, object oriented software systems, and component oriented systems have

been proposed, evaluated, validated and practically applied and proved to be

successful.

2.2.1.1 Metrics for Traditional Software

Early measures focused mainly on size of the product. Number of lines of code

(LOC) may be considered as the earliest measure of software size or the earliest

measure ever used for software systems. LOC, although being used very

frequently and very easy to count, still has several drawbacks. Among them are: no

single definition to what a line of code is; whether to count the number of

executable statements or the number of physical lines. In some programming

languages it is possible to have several executable statements in one single line;

comments can also be included. Counting physical lines can easily lead to

confusing results.

Halstead’s work [41] is considered as one of the earliest researches that aimed at

quantifying software system complexity. It formed a strong basis from which most

of the research in software measurement was derived. Need for enhancements to

what Halstead introduced are due to the advancements in software development

approaches and paradigms i.e. the object-oriented and most recently the component

oriented paradigms. Halstead identified aspects of software (software programs

were mainly algorithmic based) that can be measured as:

• Number of distinct operators

• Number of Distinct operands

 15

• Total occurrence count of operators

• Total occurrence count of operands

• Frequencies of occurrences of operators and operands

After obtaining estimates for the mentioned aspects, Halstead introduced formulas

using these estimates to evaluate Program Length, Program Vocabulary, and

Program Size. Using these, Halstead presented a method for estimating

programming effort. Halstead’s work also has its reflections to modular

decomposition process.

McCabe presented another striking effort in software complexity evaluation by

introducing the Cyclometic complexity measure [57]. Cyclometic complexity has

been and still is a very important means for evaluating complexities of software

artifacts. McCabe suggests a graphical representation of the program and then

estimates program complexity as the number of linearly independent cycles in the

graph. Cyclometic complexity is calculated as:

 V(G) = e – n + p

Where e is the number of edges, n is the number of nodes and p is the number of

disjoint graphs. The main benefit of cyclometic complexity number is to determine

the number of distinct paths in an algorithm graph representation which is used to

determine the number of test cases to be used.

Researchers working in the field of software measurement have focused on

measuring the degree of interactions between different system components and

derive relationships between the values of interconnectedness and other product

and process aspects like maintenance effort, testing effort, development cost, defect

density, and other important product and process features of interest. One of the

earliest works in this field was that of Henry and Kafura [46]. They developed

measures to assess the degree of interactions between software system modules.

One of the important features of these measures is that they can be obtained early at

the design stage when it is possible to determine problematic modules before

implementation and redesign them. The two basic measures introduced are fan-in

 16

and fan-out. Fan-in of a procedure (a procedure is the fundamental module in

Henry and Kafura approach due to the fact that structured programming languages

in which procedure is the fundamental decomposition entity) is the number of local

flows into a procedure “A” plus the number of data structures from which

procedure “A” retrieves information. Fan-out of a procedure is the number of

local flows from the procedure plus the number of data structures which the

procedure updates.

From fan-in and fan-out estimates, a measure of procedure complexity can be

obtained as:

Length * (fan-in * fan-out)2 where length is the number of lines of code of a

procedure.

Albrecht and Gaffney introduced the function points (FP) [4] measure of software

functionality which is independent of the programming language used (FP count is

interpreted as a measure of size by some researchers in the field). FP’s can be

estimated by counting the number external inputs and outputs, number of user

interactions, number of internal files, and number of external interfaces. After

counting these attributes, a weighing process is carried out for each item. The

weighting factor values vary from 3 to 15 depending on the degree of the

complexity of the weighted item. Items are considered to having simple, average,

or complex weights. Then, items are multiplied by their weighing factor. A

single complexity value can be obtained from a specific combination of these

counts. The initial estimate of function points produced the so-called unadjusted

function points (UFP). UFP can further be modified by considering other attributes

of the system. Adjusting function points takes into consideration attributes like

performance, distribution, reuse, and some other factors as well.

2.2.1.2 Metrics for Object Oriented Software

The decade of 1980’s witnessed the real birth and wide adoption of the object-

oriented software development paradigm. Due to the new concepts and units of

abstractions, the object-oriented paradigm required a different approach towards

 17

metrics as well as it required a different approach of problem decomposition and

integration. One of the earliest and widely accepted object-oriented software

complexity measures was the metrics set introduced by Chidamber and Kemerer in

their work described in [20 and 21]. The metrics set later started to be known as

the CK metrics set named after the developers initials. The CK metrics set defines

six different metrics that give numerical estimations of different features of the

class and class interactions. These metrics and their definitions as given in the

original papers [20, 21] are:

Weighted Methods Per Class (WMC): The sum of the complexities of all methods

of a class.

Depth of Inheritance Tree (DIT): The maximum length from the node where the

class is in the inheritance hierarchy, to the root.

Number Of Children (NOC): Number of immediate subclasses subordinate to a

class in the class hierarchy.

Coupling Between Object classes (CBO): the count of the number of classes to

which a class is coupled.

Response For a Class (RFC): the set of methods in the class plus the set of methods

called from the methods of that class.

Lack of Cohesion in Methods (LCOM): the count of the “ method pairs” whose

similarity is 0 minus those whose similarity is not 0.

CK metrics set is not free of criticism. The most widely argued metric from the set

is the LCOM metric where no interpretation explanations are given to the possible

negative values that can be obtained. On the other hand, it is important to admit

that the CK metrics remain the most widely used and referenced object-oriented

design metrics. Recently, several automated collection tools of CK metrics have

been implemented and commercially used.

Several researches tackled CK metrics to detect their benefits from managerial and

technical perspectives. Subramanyam and Krishnan [82] considered a subset of

CK metrics (WMC, DIT, CBO). The outcomes they obtained revealed that a high

correlation was found between these metrics values and defect rates found during

acceptance testing. Chidamber et al. [24] found relationships between the CK

 18

metrics values and Productivity, Design Effort and Rework Effort. High levels of

coupling and low levels of cohesion were associated with low productivity, greater

rework, and greater design effort. The CK metrics have been empirically

evaluated to detect whether they have any power in discovering error proneness

classes. The results obtained were of interest to those who believe in metrics as

quality indicators. High error rates were associated with high WMC, DIT, CBO,

and RFC values. High values of NOC led to low probability of fault detection.

Although cohesion is a deemed design feature, LCOM appeared to be insignificant.

This can be attributed to the definition of the LCOM metric. Basili et al. [10]

suggest that CK metrics, in general, can be used as good indicators of fault

proneness.

Encapsulation and polymorphism are two among the very important object-

oriented principles. Encapsulation and Polymorphism measures have not been

considered in CK metrics set. Pons et al. [66] tackled polymorphism in object-

oriented systems. They introduced three definitions for three different levels of

polymorphism as follows:

Polymorphic methods: if they have same name and same signature.

Polymorphic Classes: if they define the same polymorphic methods.

Polymorphic hierarchies: if all of its classes share a core interface where a core

interface is a set of polymorphic methods.

The interesting outcome from this work is that the higher degrees of polymorphism

were associated with higher degrees of readability, extensibility, and

maintainability.

Another widely discussed object-oriented metrics set is the MOOD set [2]. The

MOOD set introduced six metrics to measure aspects of inheritance, encapsulation,

and coupling. The MOOD set has been tackled by several researchers later,

namely the work of Harrison et al. [42] where they showed that the MOOD set can

be used as an aid in the management process of software systems and can give an

overall assessment of the system. They also suggest that the MOOD set can work

efficiently at the system level and can be applied complementary to CK metrics

 19

which are more efficient at class level. The MOOD set has been theoretically

evaluated and empirically validated to be of valuable managerial use.

Chen and Lu [19] introduced object-oriented metrics to measure complexities of

operations, arguments, classes, and class interactions (couplings), and class

hierarchies. Chen and Lu stated that it is possible to obtain very different regression

models based on data from different data sets.

2.2.1.3 Metrics for CO Software

We have seen earlier that the CO software development requires a new approach

towards development. Due to that, it also requires a new approach towards

measurement. This is a natural consequence since new concepts are introduced and

system building blocks have changed. The principal unit of abstraction is the

component rather than the class in the OO approach and function in the traditional

approach. Components provide services through their interfaces. Several

components may communicate to provide some service(s). Metrics for CO

systems should mainly focus on the communications between components [76].

Several challenges face researches in the field of CO metrics. One of the most

important challenges is the unavailability of source code to examine and use in

metrics validation. Lack of experimental data makes the process of developing and

validating metrics for CO oriented systems a difficult task to achieve [76].

A review of the metrics literature reveals that very little serious CO metrics existed

before. That is of course due to the fact that CO software development is relatively

new. Also, in all other approaches (Traditional and OO), first development

methods and methodologies are defined then metrics are presented accordingly.

2.2.2 Information Theory Based Software Metrics

Entropy is the fundamental concept of information theory that attracted researches

in the field of software measurement. In communication systems Entropy

 20

corresponds to the relative degree of randomness. The higher the entropy value, the

higher the possibility of errors in the system. Shannon and Weaver found that

entropy of a system is usually related to and evaluated based on the information

content of that system [77].

The information theory-based approach or, as it is mostly called, the entropy-based

approach of software metrics tried to benefit from the definition of entropy (the

degree of uncertainty) to quantify some aspects of software products. This

approach did not receive interest as much as the simple (direct counting) approach.

Also, most of the proposed entropy-based metrics sets have not been empirically

validated. In industry practices entropy-based metrics do not have a significant

contribution as well. The most widely known entropy based metrics for traditional

software, object oriented software and component oriented software are briefly

outlined in the following paragraphs.

Entropy and amount of information in a communication system can be defined as

follows: Let X be a discrete random variable taking a finite number of possible

values x1, x2, .. , xn with probabilities p1, p2, …, pn respectively such that pi ≥ 0, i =

1,2, …, n, and 1=∑
n

ip . We attempt to arrive at a number that will measure the

amount of uncertainty and it is obtained as:

)(),...,,(
1

21 i

n

i
inn phppppH ∑

=

= Where h(pi) is the entropy of xi with probability pi

Thus),...,,(21 nn pppH is the average uncertainty removed by revealing the value

of X. This definition of entropy has been applied in software measurement mainly

to obtain a numerical estimation of the average information content of a software

module. Also, entropy-based metrics have been used to measure the flow of

information between system modules/components and overall system complexity.

One of the earliest attempts to obtain measures of some software aspects using

entropy is presented by Hellerman [45]. Hellerman described an entropy-based

estimation of the computational work of a boolean transformation. Hellerman’s

 21

measures may be used to compare the advantages of several alternatives of a

process implementation.

Allen et al. [5] developed measures for inter-module coupling, intra-module

coupling, and the degree of cohesiveness of a module. All of those measures are

based on the information content of the module. The metrics were evaluated using

coupling and cohesion metrics properties described in by Briand et al. [17]. The

metrics have been empirically validated using industrial projects data. The results

of the validation revealed that these entropy-based metrics are finer grained relative

to similar normal counting based metrics.

Harrison [43] presented information theory based estimation of program

complexity where the text of a program is considered as a message that is mainly

obtained by observing occurrences of special operators. Harrison stated that

“complexity of a program is inversely proportional to its information content”.

The results obtained by Harrison have demonstrated some practical power and have

been tested on commercial applications. The results of applying Harrison metrics

revealed that information content of a program is related to error frequency.

Ned Chapin developed an entropy-based metric that measures the complexities of

interactions in COTS based systems and focuses mainly on messages flowing in

and out of the system [18]. A similar work is presented in [51] which describe

entropy based measures of size, length, complexity, coupling, and cohesion.

Abd-El-Hafiz presented an approach for deriving entropy-based software

complexity measures [1]. Her approach focuses on function calls (in procedural

languages) or method invocations (in object-oriented languages). Abd-El-Hafiz

suggests that a system s can be represented as a set of elements E and Relationships

R such that for any Em in E, and Rm in R, then <Em, Rm> is a module of s.

Empirical validation of the metrics and their effects on understandability,

maintainability, and reliability was left as an open research problem.

One important contradictory point related to entropy based metrics is the

interpretations of the relationship between the terms complexity and entropy.

 22

While some findings relate increased complexity to increased entropy, other works

found that complexity is inversely proportional to entropy.

2.3 Metrics Evaluation and Validation Approaches

Metrics that are developed are of little value unless they are validated and

examined against measurement theory rules and principles. Also metrics should be

validated with real projects to check whether they meet the initial assumption of

their development. Different approaches to evaluate and validate metrics have

been described in the literature. We briefly describe the most widely cited works in

this respect.

Blundell et al. [12] argue that software metrics so far has failed to precisely

evaluate software quality due to: 1) Measured attributes are not clearly identified,

2) metrics are created before examining their relevance, and 3) metrics are not

objectively validated.

Alsharif et al. [6] stated the main objective as: Inter-module complexity resulting

from interactions between system models should not be larger than that of the

original problem complexity before decomposition. Basili et al emphasize [10]

that it is important to note that not every theoretically correct metric will have

practical relevance to the problem in hand.

Briand et al. [17] suggest that the first step in developing software metrics

programs is identifying classes of software characterization measures. The authors

defended that most of the inconsistencies and incomplete works in software

measurement field are due to the different understandings and interpretations of the

terms that are frequently handled like; size, complexity, cohesion, coupling, etc.

They proposed a specific set of properties against which the related concepts can be

evaluated. Each concept is evaluated against its property set. Size is evaluated

against size properties; complexity is evaluated against complexity properties, and

so on. The authors considered as examples, several previously developed and

widely known measures like Halstead’s metrics [41] where they suggested that

 23

length and size [41] of a program are measures that fall in two different categries.

While size is additive, length of a program is not. The cyclometic complexity [57]

was evaluated against complexity measure properties and failed to satisfy all

properties of complexity measures as they are defined in [17]. CK [21, 22] metrics

also were evaluated and found not to be complexity metrics. CBO metric of CK

satisfies the properties of a coupling measure and RFC metric satisfies the

properties of size and coupling measure properties.

Poels and Dedene [65] wrote some comments on [17]. The first of their critisizms

is that Briand et al. did not state that their properties of measure are enough to

validate. Second, some more properties are needed to be identified for different

attributes. Third, the definitions of the additivity and connectivity properties are

inconsistent and have some contradictions.

Mendonça and Basili [58] show that a good measurement framework is one that

measures all the software aspects needed to achieve the user goals consistently, and

measures only what is needed but not more. They identified the key components in

any measurement framework as: metrics and attributes, data, users of data, and

usage of data. They also suggest the use of GQM paradigm [11] to achieve these

purposes which can be summarized as follows:

- Define goals

- Refine goals a set of questions that can be measured

- Find metrics implied by questions.

Kitchenham et al. [53] presented an embracing work towards developing validation

approaches of software metrics. The authors claim that research in software

engineering lacks formality and compared to other engineering disciplines software

engineering is still immature. The measurement framework proposed focuses on

identifying the aspects of a software system to measure and the properties of these

aspects, defining these aspects while developing measures, and lastly identifying

the validation scheme to be applied. The validation framework steps can be

summarized as follows:

- Identify entities, attributes and their relationships.

 24

- Identify units, scale types and their relationships. Distinguish between

compound and scalar units.

- Identify values (numerical or not). Permissible and not permissible values

- Identify measurement instrument and calibrate it.

- Identify measurement protocols. Where a protocol must enable us measure a

specific attribute on a specific entity consistently and repeatedly.

- Distinguish between direct and indirect measures.

Validation of a metrics program means proving that all items listed above are valid.

Morasca et al [61] have strictly criticized the paper as misinterpreting Weyuker’s

properties [88].

Kitchenham, Pfleeger, and Fenton [55] partially accepted that they did a mistake in

evaluating Weyuker’s properties but insisted that Weyuker properties can not be

satisfied simultaneously by any useful measure and Weyuker properties 5 and 6 are

not relevant to a single view of complexity. In another work Kitchenham et al [56]

proposed a set of valuable guidelines that researcher working in the field of

empirical software engineering can follow to empower their research and validate

their results.

Weyuker [88] presented nine properties a complexity metric must posses in order

to be considered as a good complexity metric. Weyuker properties have been used

by several researchers [21, 71] and others as the main validation criteria of their

metrics. Weyuker’s properties have also been criticized by Kitchenham et al [55]

as not being relevant to a single view of complexity. Zuse [93] claims that two of

Weyuker’s properties are inconsistent.

Tian and Zelkowitz suggest that a measure must compare between a component

and a composite program [84]. The interesting outcome here is the authors’ claim

that complexity of a software system can be less than the complexity of any of its

components [84]. This outcome is interesting since it almost violates the majority

of software complexity views observed in the literature.

 25

Zelkowitz and Wallace [91 and 92] stressed that data collection is the key activity

in software experimentation. They also suggested experimentation methods can be

grouped into three classes as: Observational where data is collected as the project

develops Historical which depends on data from projects that have been

completed, and Controlled provide for multiple instances of an observation to

statistically validate the results. The authors surveyed all papers published in IEEE

Transactions on Software Engineering for the years 1985, 1990, and 1995 and

found that all the papers that exhibited experimentation followed one of the

presented methods.

Schneidewind [72] suggested that a metric is valid if its values can be shown/have

been shown to be statistically associated with some corresponding quality factor.

Schneidewind described an approach for relating metrics validation to quality

functions. Quality can be controlled by metrics if the metrics have discriminative

power and is capable of tracking changes. Also, quality can be controlled by

metrics if metrics have the predictability property. Repeatability property is

necessary for any metric to be used in any quality function. A metric can be valid

if we can establish a statistical relationship between that metric and some quality

factor and make sure that the metric provides a correct estimate of the intended

attribute [73].

Fenton introduced the necessary basis for measurement in software engineering,

guidelines and rules to follow, and tips to avoid [36]. There are two types of

measurement: Direct and indirect. While direct measurement of an attribute does

not depend on the measurement of any other attribute, indirect measurement

involves the measurement of one or more other attributes. Measurement can be

used for both assessing the software quality and predict its future behavior. The

first thing we need to do in a measurement program is setting our objectives; why

we measure? To assess or predict! What attributes should we measure? To answer

the later question we need to first identify our entities and their attributes. Then,

we need to determine how to signal an attribute as measured. We also have to keep

in our mind that there is no single number to characterize every aspect of quality.

 26

Zuse has presented the foundation of object oriented measures properties [94] and

evaluated CK [21, 22] against these properties.

Kitchenham [52] performed an experiment to examine the validity of structural

metrics fan-in and fan-out [46] from a practical perspective and detect whether they

can predict change-prone and error-prone modules at early stages of the

development. The results of the experiment revealed that these metrics are not

good quality predictors but are good to use for project control activities.

Clark presented eight issues and identified them as the secrets in software

measurement [23]. The most important of these are: we have to make well-use of

data coming from measurement activities; we need to know that applying metrics

require cultural change to the organization since people may resist metric

application, and variability in data provides a powerful decision tool.

IEEE standard [98] for software quality metrics methodology outlines the steps of a

software metric program as:

- Establishment of software quality requirements

- Identification of software metrics to be used

- Implementation of metrics

- Results analysis

- Validation of metrics: Do the empirical results coincide with the initial

assumptions? It is not necessary to obtain universally validated metrics.

2.4 Different Views of Software Complexity

Software complexity has been interpreted in completely different manners by

different authors. While some related complexity to size others related complexity

to understandability and readability. According to the view of complexity

described by Briand et al [17] Cyclomatic complexity [57] is not a complexity

measure, the fan-in and fan-out measure of [46] is a complexity measure and all of

CK [21 and 22] metrics are not complexity measures.

 27

Tian and Zelkowitz [84] considered software complexity as the aspect of software

that is used to predict external properties of the program (reliability,

understandability, maintainability) using internal measures like cyclomatic

complexity [57] or Halstead’s measures [41]. They also suggest that complexity of

software is measured to make choices between functionally equivalent solutions

[84].

Almost everyone involved in the software process agrees that software complexity

must be managed to ensure the development of efficient and cost effective software

systems. The main problem in managing software complexity is the existence of

too many different interpretations of the term complexity. Mainly, “Divide and

conquer” is the strategy that is followed by software developers to manage

complexity [30, 33, 50, 64, and 90]. Alsharif et al. [6] introduced a method for

evaluating the complexity of a module, inter-module complexity, and the

complexity of the whole system. Although there is no consensus on what software

complexity means it is generally accepted that decomposition reduces complexity.

New complexity will be a result of the inter-module connections.

It is globally accepted that decomposition, without going into the details of how to

decompose, is the means for well-controlled complexity. We will present a

summary of the different views of software complexity as they appear in the

literature.

Zuse considers complexity of software as some measure of the mental effort

required to understand that software [93]. According to Zuse, the complexity of a

system design can be estimated as a function of the relationships among all of the

external interfaces of the product. Complexity of architecture is a function of the

relationships among subsystems and complexity of a module is a function of the

relationships/connections among program instructions [93].

Visaggio introduced a layered approach to defining software complexity. Visaggio

described three levels of software complexity [86] and defines internal complexity

as the degree of difficulty of understanding the system through its code, intrinsic

 28

complexity as the degree of interconnectedness, and variety of implemented

aspects, and external complexity as the relative difficulty of understanding a

program with the availability of its documentation.

The principal tool for managing complexity is hierarchical decomposition and then

complexity will be a function of the number of modules in each level of the

hierarchy, number of levels, number of interfaces, and number of interconnections

[50]. Keating also provided some guidelines regarding the number of modules in

one level and stated that this number should be 7±2 since human beings can

concentrate on 7±2 chunks of information at the same time [60]. We can relate this

rule to software complexity and develop estimations of software complexity

resulting from interactions of system modules by benefiting from this rule.

2.5 Summary

The survey of the literature presented above can be summarized in two classes of

outcomes. The first class presents the current state-of-art which can be

summarized as follows:

1- Component Oriented Software Development is believed to reduce

development costs and lead to the construction of more efficient and

reliable software products.

2- Software Measurement is a necessary practice in order to efficiently

control, manage, and contrast software products, projects, and processes.

3- The principal factor to the success of any measurement program is the

availability of a good set of metrics.

4- Metrics are of little value unless they are validated against accepted and

proved to be correct set of attributes and properties.

5- Collecting metrics from software designs or source codes can be a costly

process.

6- Metrics programs can gain more importance if metrics results are related to

critical factors of software quality like: maintainability, reliability,

 29

performance, and process features such as design effort, development effort,

integration effort, etc.

7- Early estimations of metrics can lead to early detection of defect-prone

components which will in turn lead to reduction in maintenance costs.

8- Metrics collection must be a cost-effective process. If collecting metrics

from software designs or source codes will cost too much then no one will

be encouraged to use them.

The second set of outcomes describe the steps that need to be performed. These

points mainly focus on issues related to CO paradigm and can be summarized as

follows:

1- Attempts to provide measurement frameworks for component oriented

software systems do not have real existence.

2- Serious component anatomy to extract the quantitative aspects and quality

determinating attributes in a software component are not available.

3- A specialized method describing the validation criteria for component

oriented software metrics are not available yet.

4- Works trying to investigate the relationships between component oriented

complexity metrics and reliability, maintainability, and development effort

did not reach the community’s satisfaction level so far.

5- Dedicated CO software development CASE tools are still in trial phase or

are research projects in academic institutions.

6- Automatic metrics collection tools for component oriented software

engineering have not been encountered.

 30

CHAPTER 3

QUANTIFYING THE COMPLEXITY OF COMPONENT

ORIENTED SYSTEMS

The importance of measuring software and, particularly, software complexity has

been emphasized in details in chapter 1. We have seen clearly in Chapter 2 that

there is a lack of research on measurement methods for CO systems. Description

of measurement frameworks is one of the most important aspects to have a mature

software development process.

In a previous research we extended CK metrics [21, 22] to component-oriented

models and presented that in [71]. A set of properties for verifying and validating

component oriented metrics have been described in [104]. In another work the

relatedness of a subset of component oriented complexity described in [71] metrics

with design and correction efforts was explored and a direct relationship was found

[97, 103]. The same research also revealed that more research is still necessary in

the field. In this research we carry out a detailed analysis of component oriented

measurable features and metrics quantifying them. The research is divided into

three phases:

1) Identification of the most significant features of components to be quantified.

These features are identified based on their intuitive power in predicting some

process related aspect(s).

2) Metrics quantifying these aspects are defined. Initial viewpoints about the

potential impact of the metrics values on the process and/or the product are

presented. These viewpoints are presented based mainly on intuition,

 31

experience, and results appeared in other researches that considered other

metrics sets mainly for OO systems.

3) Extended evaluation and validation schemes are performed. To evaluate

metrics we used two sets of properties of complexity metrics. To validate

metrics, we used empirical data collected from graduate students projects.

3.1 A Glance on the Terminology

The terms used in this paper have been widely used by researchers in computer

science. Yet, the terms have been used to mean different things by different

authors. For example, the term software component, which is a fundamental term

in our research, is very widely used in software development cycles; the term has

several views and these different views are sometimes used interchangeably and in

a confusing manner. The term, viewed from an Object-oriented point of view is

used interchangeably with the term object (an instance of a class in object oriented

programming). The term component is used interchangeably with the term module

in modular programming environments (Modula-3). Little background in computer

science and particularly in programming paradigms lets someone know that the

terms module and object are too different constructs. In our research we are going

to use the term component as to what it means in the component oriented view

which is a third view different from both module and object in modular

programming and object oriented programming respectively. Besides having

some new features, the component oriented view of a “component” captures some

of its features from the object oriented view and some features from the modular

view. Not only the term component, but other terms of interest like component

orientation, component oriented systems, and component oriented modeling

languages, are not defined in a standardized manner in the industry and academic

practices. So, before any other step in our research, we are going to provide

definitions and introduce the component oriented view of these terms with major

reference to the work [23] which represent the pioneering research in the field.

- Component Orientation: A new software development paradigm. It focuses on

development by integrating already available components rather than writing

 32

from scratch [34]. The first step in system development is specifying the

structural decomposition of the system where components, components’

hierarchies, and intercmoponent relationships are defined. In Component

orientation, composition is the principal means for building large systems. A

component is mainly viewed as a black-box which can be accessed only

through its interfaces. In the rest of the paper we try to be loyal to the process

model described in [34] for a component oriented system. Also the notation

used is from the language COSEML which is also described there. Some basic

attributes are the as follows:

- Component: A Unit of independent deployment. A component builds upon

encapsulation, and polymorphism where “Complex” components can be

obtained through composition [83]. A component can implement several

interfaces, each abstracting a specific service. Components functionality is

implemented in methods and is provided through the interfaces only which can

be considered as the component’s access points. Figure 3.1.a describes the

notation used in COSEML [34] for a component with single interface and

Figure 3.1.b is the notation used for a component with multiple interfaces.

Figure 3.1.a: A Component with Multiple Figure 3.1.b: A Component with A Single

 Interfaces Interface

- Interface: Interfaces are components access points. Components’ services are

presented through interfaces. An interface is generally an abstraction of a

service. A component may implement single or multiple interfaces. Besides

Component

Interface1
Interface2

. . .

Component

Properties
Methods In

Methods Out
Events In

Events Out

 33

properties and In/Out methods, an interface can include lists of In/Out Events.

An output method is actually a request, and an input method is a service. The

notation used for an interface in COSEML is shown in Figure 3.2.

Figure 3.2: An Interface

- COSEML: A dedicated CO modeling language. Being a dedicated CO

modeling tool was the main reason behind its demand. COSEML presents

three types of entities: abstract components (Package, Data, Control, Function,

and Connector), physical or implemented components (Component, and

interface), and connections (Connector, Inheritance, Composition, Method

Link, Event Link, and Represents). The COSEML notations used for abstract

components are presented in Figure 3.3, physical components are a component

with single interface (see Figure 3.1.a), a component with multiple interfaces

(see Figure 3.1.b), or an interface (see Figure 3.2). Optional symbols can be

used for connectors to add more clarity on the type of the connection. The

different optional symbols that COSEML support are presented in Table 3.1.

 Figure 3.3: Notation Used for Abstractions in COSEML

Package

Connector Connector

Data Function Control

Interface

Properties

Methods In

Methods Out

Events In

Events Out

 34

Table 3.1: Optional Connector Symbols in COSEML

Link Symbol Link Name
 Composition
 Inheritance
 Method Link
 Event Link
 Represents

- Component Oriented System: A component oriented software system is a

software system that is developed based on a component oriented process

model (e.g. CO process model presented in [34]) where the development

process comprises the steps:

• Software system specification is performed; services and boundaries are

identified.

• Specifying the structural decomposition of the system which comprises

building decomposition hierarchy.

• The specifications of system components are prepared. This step may lead

to creating components from the scratch, search for already available

components, or adapt some ready-made components to match the

specifications in the system.

• The last step which comprises the integration of the components that are

specified and implemented in steps 2 and 3.

Figure 3.4 depicts a simplified university information system design that is

created using COSEML media.

 35

Figure 3.4: Simplified University System Prepared in COSEML

- Complexity: In section 2.4 different views of complexity from the literature

have been discussed. Most of complexity views relate it to the lack of structure

in software systems, difficulty to comprehend, to maintain, to test, etc. [8 and

40]. Others view complexity as the factor associated with higher probability of

defects. The IEEE standard [98] defines component or system complexity

degree to which the design or implementation is difficult to understand and

verify. The IEEE view of complexity is contrasted with simplicity which is the

University

Registration Department

Student
Table

Personal
Operations

Grading
Operations

Course
Operations

Academic
Operations Course Table

 Grade Table

Register Table Student

 Academic Ops.
 Personal Ops

Course

 Course Ops.
 Grading Ops

Student Faculty Course

Course Table

Add
Remove
View

Student Table

Update
View

Student Table

View grades
Add course
Drop course

Grade Table
Course Table

Set Grade
Update course
View grade

Course Ops. Academic Ops. Grading Ops. Personal Ops.

 36

degree to which a component or a system design is straightforward and easy to

understand. Our view of CO system complexity is not very different from these

views. In our view of complexity, CO software complexity is the aspect that is

related to the difficulty to understand, and then will increase design, correction,

integration, and maintenance costs of the system. Also, our view of complexity

suggests that complexity is a composite aspect that is evaluated from different

independent attributes that can be quantified from the system design models.

Thus complexity has a direct impact on overall quality of the system.

3.2 Defining the Steps of Our Approach

The steps in our measurement framework for CO software systems include the

following activities:

1- Identification of measurable product aspects.

2- Deriving metrics that can appropriately characterize the different aspects to

be measured.

3- Collecting Data that is needed to derive metrics and validate them.

4- Interpretation of the results.

5- Providing feedback according to the obtained results.

Our aim is to characterize software attributes which individually or collectively

affect complexity. Pressman [68] outlines the most important metrics that can be

collected during and after the design phase as:

1- metrics for characterizing architectural quality,

2- complexity of system building elements (components), and

3- characteristics of components and their interaction characteristics.

Earlier researches in the field suggest that the existence of a single metric that can

characterize the overall system complexity seems to be impossible [36, 99, 100].

Smith also has a similar argument about computer performance and suggests that a

single number to characterize computer performance can be misleading [80]. In our

research, though we believe that CO system complexity is a multidimensional

feature we are examining the possibility to come up with a single compound

measure that can characterize component oriented software complexity. To make it

 37

more clear, lets consider, as an example, the volume of a rectangular prism is

dependent on height, width, and length values of that rectangular prism but it s still

a single value that characterizes volume. A change to any of these values will

result in a change to the volume of the rectangular prism. We still believe that a

single value that characterizes CO oriented system complexity obtained from the

combination of several related values is still a very useful metric.

3.3 CO Software Systems Quantifiable Aspects

In the component oriented paradigm main focus is on system structure [34]. Due to

that, while requiring internal complexities of components, more attention will be

paid to the system’s overall structural complexity. The first question that needs an

answer is: what attributes of a CO system characterize its structural complexity? In

finding answer to this question we will first explore the attributes that are

known/believed to be related to system’s structural complexity. Our complexity

analysis will focus on features that characterize system’s structural complexity,

components’ internal complexity, and interfaces complexity.

1- System Structural Complexity: Software system structure is defined as the way

through which system building elements are organized with respect to each

other and with respect to their surroundings [39]. Software Architecture deals

with methods that can be applied to the structure to achieve maximized

reusability and reliability [24, 25, and 100]. Software structure is a design

decision: Two or more different design alternatives may result in multiple

structures. Measuring the degree of structuredness in software systems is an

important issue since system organization has its impact on maintainability

[86]. Also, it is intuitively clear that different structures of the same system will

certainly lead to different values of structural complexity. Clements et al [24]

emphasized the importance of evaluating software architecture at early stages

of development. They noted that evaluation of software architecture, besides

not being the only factor, plays an important role in evaluating the overall

system quality. Depending on the definitions of system structure described in

[24, 39] and building on our definition of a component oriented system (see

section 3.1) one can notice that a CO system structure is a function of that

 38

system’s Components, Connectors, and the Composition Tree. Below we will

define attribute metrics characterizing them. For each metric our initial

viewpoints about the potential impact on structural complexity, are also

included:

1.1 Depth of Composition Tree (DCT): Count of the number of distinct

level of the composition tree. Our selection of this attribute is based on

the following initial viewpoints:

a. The deeper the composition tree the better the system

decomposition is. Higher values of DCT are an indication that

system components are more specific and may have higher

potentials for inter-system reuse.

b. The deeper the DCT the more components we have.

Components, at levels closer to the root of the tree tend to be

having many sub-components making them more difficult to

compose and test.

1.2 Width of Composition Tree (WCT): There is usually a trade-off

between width and depth of the composition tree at the level close to the

root of the decomposition tree. While deeper trees may lead to more

integration effort, favoring wider trees will result in less integration

effort but may decrease chances of inter-system component reusability.

In Figures 3.5.a and 3.5.b, two decomposition alternatives for the same

system are described. For the model shown in Figure 3.5.a we need

eight time units to integrate (assuming equal times for integrating

different components) all the components, while in the model shown in

Figure 3.5.b we need 14 time units. On the other hand, we have 8

reusable components in the alternative shown in Figure 3.5.a while we

have 14 reusable components in the alternative shown in Figure 3.5.b.

The trade-off between reusability and effort is clear.

 39

 Figure 3.5.a: High WCT

 Figure 3.5.b: High DCT

1.3 Coupling Between Components: The degree of interdependence

between software modules [98]. In CO systems coupling is directly

affected by the degree of connectivity between system components.

Two components C1 and C2 are coupled if there is a connector linking

these components with each other. At the system level coupling

between system components is estimated by counting the number of

connections between system components. For the sample model shown

in Figure 3.6 the coupling value is equal to 15. Arrow directions

indicate service requests. Two different metrics are defined to

characterize coupling between components. The first metric is the

count Total Number of Connectors (abstract connectors plus messages).

This metric is a characterization of the overall system complexity. The

second metrics is Average Number of Connectors per Component. This

metric characterizes the potential impact of inter-component

dependencies on the overall structural complexity of the system.

Figure 3.6: Coupled Components

System

C1 C3 C4 C5 C6 C7 C8 C2

C1234 C5678

C12 C34 C56 C78

System

C1 C3 C4 C5 C6 C7 C8 C2

System

C1 C3 C4 C5 C6 C7 C8 C2

 40

1.4 Cohesion of System Components: The degree of cohesion of a system is

usually measured from the degree of relatedness of that system’s

building elements (components). Higher cohesion is a deemed feature

of system designs. It is important to note here that there is usually a

trade-off between coupling and cohesion values in a system design.

While zero coupling is impossible, very low coupling can be as bad as

excessive coupling and very high cohesion associated with very low

coupling may lead to undesirable results [99]. Measuring the degree of

cohesion in the system requires knowing which component presents

services that are related to the overall system functionality.

Components are accessed through their interfaces. So, if a component

implements interfaces which are never contacted by other components

in the system may be an indication of low cohesion. The number of

interfaces which have a fan-in value of zero indicates the lack of

cohesion in the system. In a typical system all implemented interfaces

should be used by other components, hence the best cohesion is in the

case where number of interfaces with zero fan-in is zero interfaces.

Taking the average of the number of used interfaces to the number of

total interfaces may provide an insight about the degree of cohesion in a

system. An average value of 0.8 means that 80% of interfaces provided

are accessed by other components of the system. For sure, high rate of

unused services of the system indicates that extra costs are paid for

unneeded functionality. It is just like adding and extra cost on a mobile

phone for the service of using it like a joystick. A service which is

rarely needed by users.

1.5 Total Number of Interfaces (TNI): In CO system interfaces play the

important role of being components’ access points. Number of

interfaces per component is an indication of the amount and diversity of

functionality delivered by the components. Components of a system

exchange services through their interfaces. Also interfaces are the main

means of integrating components with each other [8].

Viewpoints:

 41

a. Increased number of interfaces implies a wide set of services

since an interface usually presents one category of services for a

component. This may limit the possibilities of a component

reuse among systems as also, diversified interfaces indicate

specialized connections.

b. Increased number of interfaces implies increased fan-in value for

a component which means that it is supposed to be highly

dependable; it should be designed, implemented, and tested with

a lot of care. A bug that may exist in such a component may be

cascaded to several other dependent components.

c. On the other hand, increased number of interfaces of a

components could mean cleared service descriptions and then

would lead to less effort to integrate with other components.

1.6 Total Number of Methods (TNM): The count of the total number of

methods in the system. Components implement their functionality in

their methods. More methods in the system indicate increased

functionality. Two systems that deliver the same functionality where

one has less number of methods indicate that methods of the system

represent a wider range of services.

1.7 Total Number of Implemented Components (TNIC): The count of the

total number of implemented components only. Implemented

components are where system functionality is implemented.

1.8 Total Number of Components (TNC): According to the CO process

model described in [5] two groups of components can be seen in a CO

model. These two groups constitute abstract components that exist only

in the conceptual model and physical components that represent the

implemented ones. Total number of components in the systems is a

design decision. While some designers may favor relatively smaller

components, another design decision may favor a fewer number of

relatively larger components. So the total number of components in the

 42

system is a design issue that influences the overall structure of the

system.

Viewpoints:

a. Increased number of components implies that components are

more specific and every component delivers limited

functionality.

b. Since components are specific they have higher potential for

reuse.

c. More components indicate that more effort will be spent during

the integration stage.

2- Component Internal Complexity: Conte et al [27] found that the internal

structure of system building elements affects the overall complexity of the

system. Building on Conte et al findings, and after investigating the internal of

a component the following attributes can be identified as potential factors

influencing a component’s structural complexity.

2.1 Methods Complexity: In the previous discussion we have shown that a

component’s functionality is implemented in its methods. Methods

structural complexity is widely discussed in the literature. The two

principal influencing factors are again coupling between methods of a

component, cohesion of methods of a component. Figures 3.7.a, 3.7.b,

and 3.7.c present three different pictures that can be conceived from

methods inside a component. In Figure 3.7.a we have very high

cohesion and zero coupling, in Figure 3.7.b moderate levels of cohesion

and coupling between methods of a component and in Figure 3.7.c we

have excessive coupling and low cohesion. While zero coupling means

that every method implements all the functionality it requires inside

itself and is not dependent on any other methods, excessive coupling

indicates that methods are highly dependable on each other. For

example, in order to comprehend method m7 in Figure 3.7.c it is

necessary to also understand methods m2, m3, m4, m5, and m6 since all

these methods are invocated from m7 to complete a requested service.

 43

m1

m2

m3

m4

m5

m6

m7

m1

m2

m3 m4

m5

m6

m7

m1 m2

m3 m3

m7 m6

m5

Besides coupling and cohesion factors, the internal design of a method

has been proven to play an important role on the methods testing and

maintenance. McCabe Cyclomatic complexity [57] is being efficiently

used for more than two decades as a predictor of the testing effort of a

method. Cyclomatic complexity of methods, Coupling between

methods, and Cohesion of methods of a component are considered to

characterize methods in a component. Henry and Kafura described two

measures of coupling which are Fan-in and fan-out [Henry and Kafura].

These two measures have been widely discussed and empirically

validated. We suggest the use of Fan-in and fan-out of a component’s

methods as one indicator of the internal complexity of the component.

 Figure 3.7.a: Zero Coupling Figure 3.7.b: Moderate Coupling

 Figure 3.7.c: Excessive Coupling

 44

2.2 Interfaces Complexity: In the previous discussion we have mentioned

that interfaces are components’ access points. Number of interfaces per

component, number of methods per interface, interface fan-in counts are

important aspects to consider when tackling influence of interfaces on

component’s complexity. The actual influence of interface structures

on a component’s complexity can only be determined during the

experimental validation. The basic viewpoints about the potential

influences of the number of interfaces on a component complexity have

been discussed before. The following viewpoint is about the potential

impact of number of methods in an interfaces on the complexity of a

component.

a) The number of methods in an interface implies the breadth of

the service it supplies. Too many methods in an interface may

limit the possibilities of its use by other components. On the

other hand, zero methods in interfaces implies no service is

provided by that interface.

3- Interface Internal Complexity: Interfaces play principal role in CO software

development. They are considered as the components’ access points. Due to

their important role interfaces should be designed with a lot of care. While

experience and intuition help designers make decisions about alternative

interface designs, decision based on quantifiable aspects proved to be more

accurate and dependable. Interfaces’ complexity which is an indication of its

quality as well is a composite aspect that depends on the interface building

elements and its interactions with other interfaces. Gill and Grover [101, 102]

say that CO software complexity can be measured based on interface

characterization. That is due to the fact that better characterization of

component interfaces helps to easily understand and resolve components

problems [83]. We here present the elements and their quantifiable aspects in

interfaces.

3.1 Number of Methods of an Interface: Usually an interface represents a

service supplied by a component. Large number of methods in an

interface implies that the interface provides a wide service which may

limit the possibility of utilizing the interface in different systems. Also

 45

large number of methods in an interface indicates that its fan-in count

will be high which indicates that the interface is highly dependable and

extra effort for testing and implementing may be a consequence.

3.2 Events Out: Events out are the events the interfaces notifies others

about. Events our count is an indication of dependence on other

components.

3.3 Events In: Events in are the events that the interface is notified about

from other component interfaces. Count of events in indicates the

degree to which the interface is critical in the system and the intensity

in which it will respond to other components interface events.

System complexity spreads over system building elements. On one side, we have

complexity which is inherited from internal complexities of a system’s elements

and one the other side we have complexity resulting from the interactions between

these elements. In Table 3.2 we present a summary of the quantified attributes and

their metrics with the metrics definitions.

Table 3.2: Attributes, Metrics, and Metric Definitions

Attribute Metric Definition

TNC Total number of Components in the system

TNI Total Number of interfaces in the system

TNCO Total number of Connectors and messages in the system

DCT
Depth of the composition tree. Count of levels in the

composition tree

WCT
Width of the composition tree. Maximum width of the

composition tree.

TNIC Total number of implemented components only.

TNM Total number of methods in the system

Sy
st

em
 S

tr
uc

tu
re

CSC Cohesion of system components

NOCC Number of connectors per component

NOMC Number of methods per component

C
om

po
ne

nt
’s

In
te

rn
al

C
om

pl
ex

ity

NOIC Number of interfaces Per component

 46

Table 3.2 (Continued)
NOMI Number of methods per interface

NOEO Number of events out in an interface
In

te
rf

ac
es

In
te

rn
al

C
om

pl
ex

ity

NOEI Number of events in of an interface

CC Cyclomatic complexity from McCabe [57]

Fan-in Fan-in metric from Henry and Kafura [46]

M
et

ho
ds

In
te

rn
al

C
om

pl
ex

ity

Fan-out Fan-out metric from Henry and Kafura [46]

3.4 A Complexity Model for CO Software Systems

Based on the detailed metrics analysis presented in section 3.3, it became clear that

a complete complexity model can be built. Also, the metrics analyses have shown

that CO systems complexity is a multidimensional feature that spreads over

components, connectors, interfaces, methods, and other less significant elements.

We will define Complexity of CO systems in three levels. The first (lowest) level

complexity is a result of the complexities of the component’s methods. The second

level complexity is a result of the internal complexity of components. The third

(highest) level complexity is a result of components organization in the system.

3.4.1 Level 1: Method Complexity

Method Complexity (MCOM): The lowest level of complexity in a CO system is

the complexity of component methods. Methods are the functionality producing

units of a component. The complexity of a method can be characterized by two

metrics:

1.1 Cyclometic Complexity (CC). Cyclometic complexity [57] has been

used effectively as a count of the number of test cases required to test an

algorithm and then a measure of the testing effort required.

 47

1.2 Number of Calls to Other Methods (NCOM): This metric is estimated

as the count of methods called from this method. It is derived froim the

fan-out metric [46]. This metric is an indication of how much the

method is dependent on other methods. Dependency means that in

order for the method to provide its functionality some other methods are

required. Understanding, updating, and maintaining a method that is

dependent on other methods will necessarily require an understanding

of all these methods.

The Method COMplexity (MCOM) of a method m will be estimated as a function

of its CC number and its NCOM value and can be expressed as:

 MCOM (m) = f (CC, NCOM)

Since a method's complexity is affected mainly by the factors described above, the

function f can be the sum of the two values. Then, MCOM (mi) for any method mi

can be estimated as:

 MCOM (mi) = CC(mi) + NCOM(mi) for any method mi

The total method complexity of a component Cj (TMCOM) is the sum of all

complexities of individual methods and is estimated as:

TMCOM(Cj) =)(∑

i
imMCOM for all methods i in the component Cj

3.4.2 Level 2: Component Complexity

Component Complexity (CCOM): complexity of a software component can be

characterized as 1) complexity coming from the component's methods, 2)

complexity coming from the component’s interfaces, and 3) complexity resulting

from its dependency on other components. These three aspects will be estimated

using the following metrics:

The complexity of a software component C can be viewed as a function f that is

affected by all these three factors and can be expressed as:

 48

 CCOM (C) = f(TMCOM(C), NOI(C), NCO (C))

The total components' complexity (TCCOM) based on all components Cj in a

component-oriented software system S is estimated as:

TCCOM(S) = ∑

j
)(C CCOM j for all components Cj in S

3.4.3 Level 3: System Structural Complexity

This complexity mainly results from the organization and interactions between

system components. We will call this level complexity as Emergent System

Complexity (ESCOM). Emergent system complexity is a function of the structural

attributes of the system.

 ESCOM(S) = f (TNC, TNI, TNM, TNCO, DCT, WCT)

When considering or trying to evaluate Overall System Complexity (OSCOM) it is

necessary to consider both components of complexities and emergent system

complexity. That is because a CO system is a set of components and connectors

organized in some structure. The overall system complexity of a component-

oriented software system S can be evaluated as a function f of these types of

complexities and can be expressed as:

 OSCOM(S) = f(TCCOM(S), ESCOM(S))

Evaluation and validation of these metrics will be provided in Chapter 4.

 49

CHAPTER 4

METRICS EVALUATION AND VALIDATION

Several researches in the field presented properties that are used to characterize

good metrics from a mathematical and measurement theoretical perspectives [17,

36, 52, 72, 84, 88, 91, and 92]. The common features in all of these works can be

summarized as follows:

1- A metric must possess some desirable mathematical properties. Provide a scale

and range of values. Provide thresholds of good and bad behavior. Metrics value

should be observer independent.

2- A metric must be empirically valid: Can be used to make managerial and/or

engineering decisions. Also the metric must precisely characterize the attribute

of interest.

4.1 Properties of CO Complexity Metrics

The literature of metrics evaluation approaches does not present a globally

accepted set of properties of complexity metrics. Also, none of the described

properties have specifically tackled the particular and new aspects of component-

oriented software systems. Due to these two reasons, we introduce a set of

properties that a component-oriented system complexity metric must satisfy. The

properties defined here came as a result of investigating the properties described in

Weyuker [88], Briand et al. [17], Kitchenham et al. [55], Tian, and Zelkowitz, [84],

Schneidewind, [72], and Zuse, [94] and the viewpoints of others criticizing them.

The properties described here do not have a generic nature in the sense that we do

 50

not claim that they can apply to all types of complexity metrics. Proposed

properties are listed below:

Property 1: A complexity metric value can not be a negative number. For some

complexity metrics it is necessary to be even stricter, since a value of zero will not

always be accepted.

Interpretation guidelines: The meaning of a complexity metric value for a software

artifact (a software artifact can be a method, component, or the whole system) that

provides some functionality to be equal to zero is that the artifact is the least-

complex possible design that can provide that functionality. A lower complexity

value, for two functionally equal designs, is preferred over a higher value since

lower complexity is believed to be associated with less development, testing, and

maintenance efforts.

Property 2: A software complexity metric must provide a scale of values.

Comparison between different alternatives must be possible. For any two software

artifacts it must be possible to compare and then make managerial decisions

according to the metrics values. For any two functionally-equal components C1 and

C2, if Complexity(C1) > Complexity(C2) then C2 is preferred over C1 assuming that

we keep all other parameters constant. This is due to the fact that C2 will require

less development, less testing, less integration, and less maintenance efforts. Also,

metrics must provide enough information to help managers make business

decisions and compare different alternatives.

Property 3: The complexity of a single software unit S composed of two software

components can not be less than the sum of the complexities of the individual

components. So, for any CO system S and any two components C1 and C2

Complexity(S) >= Complexity(C1) + Complexity(C2)

According to the metrics described in section 4, the complexity of a component-

oriented software system is a function of the complexities of individual

components that make it up, and an added complexity will appear as a result of new

 51

interactions that may exist between the components. In the best case, when a

system is composed of two components and no new added interactions between the

components are available, the system's complexity will be equal to the sum of the

individual component complexities.

Property 4: If a component C is decomposed into two or more components C1,

C2, .., Cn then the sum of complexities of the resulting components is no more than

the overall complexity of the original component.

Complexity(C1) + Complexity(C2) + … + Complexity(Cn) <= Complexity(C)

The reason for this is that, according to our perception of the three-level

component-oriented software complexity, there is usually an added complexity

whenever two components are composed. The new complexity usually results

from the interactions between these components. So, when the component is

decomposed these links will disappear and only the component's intrinsic

complexity will remain.

Property 5: The complexity value of one component does not have a direct

relation to its functionality, i.e. for any two components C1 and C2, if

Complexity(C1) > Complexity(C2) then it is not necessary that C1 provides more

functionality than C2. The same functionality can be obtained by different designs

and then implementation. The complexity measures described in this article are

those that enable software developers and/or managers to take decisions and

contrast/compare different alternative solutions to the same problem. Of course,

any added functionality may introduce an added complexity. So, a complexity

metric does not consider evaluating functionality of the system or provide any

information about the system size.

Property 6: The complexity metric value is directly influenced by system

structure. Two different structures for the same functionality can result in two

different complexity values. A complexity measure of the system can have

different values for different alternative architectures of the same functionality.

 52

4.2 Metrics Evaluation

The proposed metrics have been evaluated against Tian and Zelkowitz axioms of a

good complexity metrics [84]. Tian and Zelkowitz described and approach for both

evaluating metrics and another approach to make choice between alternative

metrics that qualify. The set of axioms defines five properties that a complexity

metric must possess in order to qualify for adoption. These properties can be briefly

described as follows:

1- Property 1: A complexity metric must have the capability to compare between

functionally equivalent alternative systems.

2- Property 2: A complexity metric must have the capability to compare between

components and composites.

3- Property 3: A complexity metrics must possess a discriminative power and can

produce different values to different programs.

4- Property 4: A measure must not have a region where all values cluster around.

5- Property 5: A measure is a complexity measure if it satisfies properties 1-4.

Tian and Zelkowitz also introduced a metrics classification approach which defines

a boundary condition that can be used to reject inappropriate metrics. They also

suggest that a metric’s discriminative power can be evaluated according to that

metric’s predictive power, simplicity, and the value of information it embodies.

We evaluated the proposed complexity measures against these properties. All of

the proposed metrics are qualified to be considered as complexity metrics. In

making selection between different alternatives we followed a mixed approach

where simplicity is important but also focused more on the predictive power of the

metric.

4.3 Metrics Validation: The Experiment

It is widely accepted that software metrics are useless unless they can be of some

practical use. Metrics can be of practical use for users, developers, managers, and

team leaders.

 53

For developers, managers, and team leaders metrics are useful in making

predictions about some process features (e.g. cost/effort estimation, resources,

etc..). Also metrics can be used to make predictions about the potential behavior of

the system (Performance, reliability, efficiency, maintainability, etc..). Metrics

help developers and managers detect the more complex components early at the

design stage and take decisions to redesign these components. On the other hand,

customers/users can use metrics values to make comparison between several

alternatives, and identify the ones with higher quality.

Our validation approach comprises checking the potential of using metrics values

in predicting one or more of the followings: design effort, correction effort,

integration effort, and productivity. We do not claim that if a metric does not have

direct influence on one or more of these process factors should be considered

invalid. That is because this metric still can have some influence on some other

product nonfunctional attributes like reliability, performance, or any other factor

whose examination requires experimenting implemented systems.

In the study, we have considered both cases where 1: a complete component

orientation with assumed available components and also 2: the case where some

component development is necessary. To remove any ambiguity that may arise on

the reader side, before proceeding any further, we will provide the definitions of

the terms: Design Effort, correction effort, integration effort, and productivity:

Design Effort: Design is the process of defining the system abstractions,

components, interfaces, data structures, and the working relationships among

components [98]. The design process results in a document that contains system

models in some design description language (e.g. COSEML). The system design

should be described detailed enough to be implemented. Design effort is the time

spent to transform system specifications into design models including editing of the

models.

Correction Effort: The time that is spent to make any changes affecting methods,

interfaces, properties, or relationships of the component after being initially

 54

designed. Total correction effort is the total correction effort spent on all

components.

Integration Effort: the time spent to define components relationships with other

components, including the designing of connectors and their specifications.

Productivity: Developer productivity (FP/Person-Hour) is estimated as the total

function point count divided by the total time spent on design, correction,

integration, modeling, and editing the design models.

4.3.1 Data Sources

Data has been collected from 40 student projects developed in three different

semesters (Fall 2002, Fall 2003, and Fall 2005). All projects have been designed

for component oriented software development using the dedicated CO software

modeling language COSEML. The majority of the projects have been designed as

a term project in a graduate level course ‘System development using abstract

design’ at the Middle East Technical University (METU) in Ankara. Eight out of

the forty projects were designed by senior students in the same department. One

project was prepared as the main part of a master’s thesis in the department. That

project was the largest in terms of number of components and function points

(FP)’s counts. Projects were designed in teams of one, two, or three students and

vary in their sizes based on the number of team members enrolled. To have a

feeling of project sizes, we collected Function Points [4] and the total number of

boxes (abstractions and implementation level components) values for every project.

As of the Function points count, the largest project has 510 FPs and the largest

project in terms of the count of boxes has 287 boxes and 16 physical components

with 33 interfaces. The project with the least FP value has 24 FPs and the same

project has a total of 12 boxes with only 3 components and 3 interfaces.

 55

4.3.2 Developers’ Backgrounds

The developers of the projects were all students at the Department of Computer

Engineering in METU. Some of the developers were research assistants while the

majority were working as software engineers in the industry. All of the developers

had previous programming and system analysis and design experiences in OO

software engineering using C++ and/or Java. On the other hand, none of the

developers had any previous experience in CO software modeling and design using

COSEML modeling language before enrolling to the class.

4.3.3 Data Collection

Contribution to project metrics was completely a voluntary job. Directly after

students submitted their project proposals we performed a one-hour lecture in

which we described the followings:

1) Benefits of metrics on the overall software development process were

described.

2) The metrics to be collected were defined. Example metrics estimations

were demonstrated.

3) Students were informed that their projects data will be used in a serious

research so those who do not want to contribute are free in that.

4) Also the terms design effort, correction effort, and integration effort were

defined to students.

5) Metrics collection forms fields were described field by field.

6) Online material was posted. Contact information e.g. email address, phone

number, and street addresses were available to developers so that they

were free to contact anytime.

7) Students have been assured that metrics will never be used to evaluate

their performance or be used while grading their projects.

Data has been collected by the developers themselves. The metrics collection

forms that have been used by the classes of fall, 2002, and fall, 2003 are available

in Appendix A. The metrics set has been further refined. Some metrics were

eliminated, new metrics were added. So, for the class of fall 2005 we distributed

 56

two separate forms; one includes metrics for the project as a whole and the other

contains metrics to estimate for every component separately. The two metrics

forms are available in Appendix B. A document containing a detailed discussion

of the metrics, their definitions, and their estimations were available online for the

developers’ free access. Every possible effort has been expended in instructing the

developers to ensure a clean data collection with least number of errors.

4.3.4 Correctness Test

Data collection is important; to be useful it must provide the correct data. We

applied the following procedure to eliminate inconsistencies and casual defects that

existed in the data:

1) Six projects have been eliminated from the study because they included

data that violates intuition and well known facts of software engineering.

Examples of these inconsistencies include- but not limited to: in one

project developers reported the total design effort as 1800 person hours

which is more than the total period (days x 24 hours) allocated for the

project design, unfortunately we could not return to the developers to

inquire about the correctness of this number. In another project developers

reported that number of components is more than the number of

interfaces, this violates the fundamentals of CO since every component

must have at least one interface.

2) Three projects were removed from the experiment due to inconsistencies

that seemed to be a result of misunderstanding of the terms e.g. one of

these projects reported the total number of interfaces as 9 and the average

number of methods per interfaces 3 while the total number of methods

was reported as 11 methods.

3) Four projects were removed because the developers reported that they

could not estimate the effort they spent on preparing the design,

correction, integration.

4) Two projects have been removed because developers demonstrated very

unexpected system decomposition. In one project the total number of

 57

components, interfaces, and abstractions was 9 while the estimated

function points value was 535.

We have carried walkthroughs to make sure that maximum effort was used to

eliminate error in data. We found some errors in function points estimations.

Error-prone locations have been handled and new values have replaced the old

ones.

4.3.5 Regression Analyses

The aim of the regression analysis is to investigate whether metrics can help in

making predictions about the followings:

1) Complexity related to Size: Function Points (FP) [4] is a widely accepted

size related measure. We are investigating the relationships between CO

metrics and FP counts in using single regression and multiple regression

models.

2) Complexity resulting from Connectivity and its influence on Effort: Henry

and Kafura [46] evaluated system complexity resulting from connectivity

using mainly two metrics; Fan-in and Fan-out. In a CO software system

the degree of connectivity is related to:

a. Number of interfaces.

b. Number of connectors.

The potential influences of these factors on Design effort, correction

effort, integration effort, and developer productivity is explored.

3) Complexity resulting from Structure and its influence on Effort: A CO

system is structured in a hierarchy in several levels. High levels usually

include system abstractions while lower levels represent implementation

level components. The potential influence of system structure on design,

correction and/or integration efforts is explored.

Regressors that are intuitively believed to have an impact on the different

regressands are first identified. A summary of the regressands and the intuitively

influential regressor sets are presented in Table 4.1.

 58

Table 4.1: Regressands and Their Intuitive Regressors Summary

No. Regressand Description Intuitively Influential
Regressors

1 FP Total count of unadjusted function
points (Abretch and Gaffney, 1979,
1983)

of Components,
of Methods
of Imp.. Components
of Methods
of Connectors

2 FP/Interface Total count of unadjusted function
points (Abretch and Gaffney, 1979,
1983) divided by the total number of
interfaces

of Methods/Interface
of Connections/Interface
of Events/Interface

3 Design Effort Total Effort in person hours spent on
building system models using
COSEML

of Components
of Methods
of Imp. Components
of Methods
of Connectors
of Connectors/Comp.
of Methods/Comp.
of interfaces/ Comp.
Depth of Composition Tree

4 Design Effort/
Component

Total Effort in person hours spent on
building system models using
COSEML divided by the total number
of components

of Components
of Methods
of Imp. Components
of Methods
of Connectors
of Connectors/Comp.
of Methods/Comp.
of interfaces/ Comp.
Depth of Composition Tree

5 Correction
Effort

Total Person hours spent on making
changes affecting methods, interfaces,
properties, or relationships of the
components after being initially
designed.

of Components
of Methods
of Imp. Components
of Methods
of Connectors
of Connectors/Comp.
of Methods/Comp.
of interfaces/ Comp.
Depth of Composition Tree

6 Correction
Effort/
Component

Person hours spent on making changes
affecting methods, interfaces,
properties, or relationships of the
components after being initially
designed divided by the number of
components.

of Components
of Methods
of Imp. Components
of Methods
of Connectors
of Connectors/Comp.
of Methods/Comp.
of interfaces/ Comp.
Depth of Composition Tree

7 Integration
Effort

Total person hours spent on defining
components’ relationships with other
components.

of Components
of Methods
of Imp. Components
of Methods
of Connectors
of Connectors/Comp.
of Methods/Comp.
of interfaces/ Comp.
Depth of Composition Tree

 59

Table 4.1 (Continued)
8 Integration

Effort/
Component

Total person hours spent on defining
components’ relationships with other
components divided by the total
number of components.

of Components
of Methods
of Imp. Components
of Methods
of Connectors
of Connectors/Comp.
of Methods/Comp.
of interfaces/ Comp.
Depth of Composition Tree

9 Productivity Estimated as the ratio of FP/Person
hour.

of Components
of Methods
of Imp. Components
of Methods
of Connectors
of Connectors/Comp.
of Methods/Comp.
of interfaces/ Comp.
Depth of Composition Tree

10 Total
Development
Effort

Total person hours spent on system
development.

of Components
of Methods
of Imp. Components
of Methods
of Connectors
of Connectors/Comp.
of Methods/Comp.
of interfaces/ Comp.
Depth of Composition Tree

Ten different regression models are obtained. For each model the regression

equation, model plot, and a Table of regressand’s actual values and predicted

values are presented. For every regression equation the coefficients’ p-values are

presented below them. The p-values are presented to provide a feeling of the

statistical significance of the corresponding variable. Also the practical importance

of every model is discussed and supported by the average error estimates of the

predicted values. To remove any confusion that may arise, we present in Table 4.2

a list of the terms and abbreviations with their corresponding descriptions as they

appeared in the regression models.

 60

Table 4.2: List of Terms and Abbreviations Used in the Regression Models

Term or Abbreviation Description

Component or Comp. Number of Components (abstractions, implementation

level components, and interfaces)

PComponent Number of Implementation (Physical) level components

(not including interfaces)

Interface or Int. Number of Interfaces

Methods or Meth. Number of Method

Connector or Conn. Number of links between two components or two

interfaces

FP Function Points count

4.3.5.1 Total FP Count Regression Model

In order to find a generalized model for predicting FP count in the system, potential

influencing regressors have been identified first (See Table 4.1). A forward

addition approach has been used to test the regressands one by one. The resulting

generalized model is given as:
 FP = 0.8 * (Components) + 4.3 * (PComponents) – 1.8 * (Interfaces) + 0.5 * (Connectors) + 12.7
 (p = 0.01) (p = 0.03) (p = 0.06) (p = 0.1) (p = 0.02)

The model demonstrated a good prediction level with an average error rate of %21

in the worst case and %8 when the outliers were excluded. The complete list of

actual and predicted FP values with the corresponding error rates are presented in

Table 4.3. The most surprising and, perhaps, “unexpected” finding is that the

number of FPs decreases as the total number of interfaces increases. This finding

violates intuition since in a CO system a component’s functionality is presented

through its interfaces. So, more interfaces should lead to more functionality and

more FP count in the system. The reason(s) for this contradictory result may be

related to one or more of the followings:

1) Due to the inclusion of implementation components “PComponents” whose

count is highly correlated with the count of Interfaces with a correlation

 61

coefficient value 0f 0.97. The coefficient value of PComponents is quite high

relative to the coefficient value of Interfaces. So, the negative sign for the

Interfaces coefficient may be to balance the high positive value of the

coefficient of PComponents in the model.

2) The fact that system developer had their first CO software design with the

projects used in this research may be a reason for coming up with low quality

designs.

 The curve fitting plot of the model is given in Figure 4.1.

Table 4.3: FP Estimation Results
Actual Estimated Residual %Error

142 128.06 13.94 9.82
146 130.54 15.46 10.59
108 96.77 11.23 10.40
85 87.45 -2.45 -2.88
66 62.16 3.84 5.82

113 82.83 30.17 26.70
65 54.29 10.71 16.48
44 56.22 -12.22 -27.77
28 35.97 -7.97 -28.47
66 62.34 3.66 5.55
76 102.55 -26.55 -34.94
58 55.54 2.46 4.24
95 79.24 15.76 16.59
66 94.15 -28.15 -42.65

110 99.96 10.04 9.13
72 72.51 -0.51 -0.71

102 107.47 -5.47 -5.36
70 66.86 3.14 4.48
44 51.87 -7.87 -17.89
38 54.79 -16.79 -44.20
69 71.03 -2.03 -2.94
93 95.15 -2.15 -2.31
60 61.19 -1.19 -1.98
48 51.32 -3.32 -6.91

510 513.76 -3.76 -0.74

 62

Model a*x1+b*x2+c*x3+d*x4+e

FP
 C

ou
nt

Components, PComponents, Interfaces, Connectors

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

550.0

0.0 5.0 10.0 15.0 20.0 25.0

Figure 4.1: Total FP Regression Model Plot

4.3.5.2 FP Per Interface Regression Model

Returning to the definition of a CO software system, we can see that components

implement interfaces to provide services to their clients. So finding the factors that

influence the count of FP in an interface becomes a necessity. Also, here a forward

addition approach has been followed to find the influencing factors with reference

to the intuitive relationships presented in Table 4.1. The result of the regression

analysis is the following model:

FP/Interface = – 8.5/ (Methods/Interface) + 0.94 * (Connectors/Interface) + 5.2
 (p = 0.007) (p = 0.04) (p = 0.004)

While the R2 value is relatively low “0.45”, the model demonstrated an acceptable

level of average error rates with an initial value of 22% and 17% after removing the

outliers. Also the model is statistically significant in the confidence interval of

95%. The highest p-value is 0.04 and prob(F) is 0.0.

Looking deeply in the model we can see that the FPs in an interface increases with

the increase in the numbers of methods and/or connectors in that interface. These

 63

results are practically important for us since they both meet intuitive thinking and

are practically applicable. A detailed list of the actual and predicted FP/Interface

values with the corresponding residual and estimated error rates is presented in

Table 4.4. The curve fitting plot of the model is shown in Figure 4.2.

Table 4.4: FP Per Interface Estimates
Actual Value Estimated Value Residual %Error

4.30 3.79 0.51 11.84
11.23 7.51 3.72 33.09
6.35 4.73 1.62 25.49
7.08 4.40 2.68 37.89
7.33 6.52 0.81 11.10
9.42 7.72 1.70 18.06
7.22 6.78 0.44 6.07
5.50 6.26 -0.76 -13.79
3.50 4.39 -0.89 -25.52
7.33 8.48 -1.15 -15.70
5.43 6.13 -0.70 -12.84
8.29 6.72 1.56 18.86
5.00 4.50 0.50 9.91
3.14 3.92 -0.78 -24.78
5.00 3.63 1.37 27.45
4.50 6.22 -1.72 -38.29
5.37 5.28 0.09 1.66
4.38 5.68 -1.31 -29.91
2.44 5.03 -2.59 -105.96
4.75 6.20 -1.45 -30.43
4.93 5.64 -0.71 -14.36
4.89 4.87 0.02 0.44
4.29 5.18 -0.89 -20.87
5.33 6.12 -0.79 -14.83
6.22 7.51 -1.29 -20.67

 64

Model a+b/x1+c*x2

FP
/In

te
rfa

ce

FP
/In

te
rfa

ce

Connections/Interface

Methods/Interface 5.0
4.5

4.0
3.5

3.0
2.5

2.0

2.03.04.05.06.07.08.0
2.0
3.0
4.0
5.0
6.0
7.0

8.0
9.0
10.0
11.0
12.0

2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0

4.3.5.3 Total Design Effort Regression Model

The necessity of obtaining a general model for evaluating Design effort using some

product measures is widely recognized. One of the main advantages of having such

a model is that it can help in building a rather more generalized model for

predicting total development effort benefiting from the relatedness of design effort

to the total development effort. The obtained regression model is described as

follows:
 Design Effort = -0.65*(Comp.) + 0.83*(meth.) + 0.73*(Conn.) – 33.9* (Meth./Comp)
 (p = 0.0004) (p = 0.0) (p = 0.0006) (p = 0.0004)

The model is statistically significant at the confidence interval of 99% with highest

p-value of 0.0006 and p(F) of 0.0. The model has a high R2 value of 0.98. The

model is not without unexpected features. Two unexpected features available in

the model are:

1) Design effort decrease when the total number of components increases.

2) Design effort decrease when the average number of methods per component

increases.

Figure 4.2: FP per Interface Regression Model Plot

 65

The reason(s) to these unexpected features in the model can be due to one or more

of the following:

1) High degree of correlation is observed between the variables included in the

model. The correlation matrix between Components, Methods, and Connections

which are included in the model is presented in Table 4.5.

Table 4.5: Correlation Matrix between Model Variables

 Components Methods Connections Methods/Comp.
Components 1
Methods 0.95 1
Connections 0.95 0.96 1
Methods/Comp. -0.03 0.27 0.11 1

The high degree of correlation between model variables (multicollinearity) can

lead to a situation like what encountered in our model.

Also a possible explanation is that: providing a solution with bigger components

providing rich services, design becomes easier; connection design is easier: most of

the job is being handled inside the components.

The predicted results are practically interesting. The average error rates are 27%

for the initial estimate and 15% when excluding the outliers. The list of actual and

predicted values of total design effort with the corresponding residual and average

error rate are presented in Table 4.6 and the model plot is shown in Figure 4.3.

Table 4.6: Total Design Effort Estimates
Actual Value Predicted Value Residual (Actual - Predicted) %Error

38 57.68 -19.68 -51.78
32 43.01 -11.01 -34.42
24 24.03 -0.03 -0.11
16 3.48 12.52 78.26
24 25.56 -1.56 -6.48
42 46.26 -4.26 -10.15
20 26.72 -6.72 -33.58
26 22.64 3.36 12.91
19 6.03 12.97 68.24
24 45.58 -21.58 -89.91

 66

Model a*x1+b*x2+c*x3+d*x4

To
ta

l D
es

ig
n

E
ffo

rt

Components, PComponents, Interfaces, Methods/Comp

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0.0 5.0 10.0 15.0 20.0 25.0

Table 4.6 (Continued)
32 31.05 0.95 2.97
24 18.38 5.62 23.42
34 35.56 -1.56 -4.60
32 37.05 -5.05 -15.79
44 35.48 8.52 19.36
40 49.17 -9.17 -22.94
46 36.81 9.19 19.97
38 38.98 -0.98 -2.58
76 40.95 35.05 46.12
24 17.60 6.40 26.66
22 39.50 -17.50 -79.56
45 34.86 10.14 22.52
32 30.84 1.16 3.64
20 20.06 -0.06 -0.32
525 522.08 2.92 0.56

Figure 4.3: Total Design Effort Regression Model Plot

4.3.5.4 Design Effort Per Component Regression Model

In the previous section we presented a prediction model for total design effort and

we have seen the influencing factors. A prediction model for design effort per

component is as import as that for total design effort. The necessity of a prediction

model for design effort per component emanates from the need to find the factors

that can explain increasing effort per added component. A forward addition

 67

approach is followed to identify the statistically significant influencing factors. The

set of potentially influential variables has been identified and variables are added

when p-value is less than or equal to 0.05. The resulting regression model takes an

exponential curve with four variables as follows:
Des. Effort/Comp.= e^ (-0.03*TNC)+0.13*(TNIC)+0.46*(TNI/TNC)+0.32*(TNM/TNC)- 1.48)
 (p = 0.0) (p = 0.0) (p = 0.0) (p = 0.0) (p =0.0)

The model demonstrates a high statistical significance with all p-values being equal

to 0.0. Also, the value of R2 is quite good for adoption of the model.

From a practitioner’s point of view the model is not encouraging due to its

exponential nature. This makes it difficult to make predictions about potential

change when a variable value is changed. The interesting thing about the model is

that it meets intuitive thinking. Additional effort to system design increases when a

component is added, number of interfaces a component implements increases, when

there are more connections, and when the number of methods increases.

The predictive power of the model is quite good to recommend for application.

The average error rates are %17 and 13% for initial estimate and estimate after

excluding outliers respectively. A complete list of actual and predicted values with

their corresponding residual and error estimates is presented in Table 4.7. The

model plot diagram is shown in Figure 4.4.

Table 4.7: Design Effort per Component Estimates
Actual Value Estimated Value Residual %Error

0.46 0.72 -0.26 -56.17
0.40 0.29 0.10 26.10
0.37 0.48 -0.11 -30.63
0.27 0.31 -0.04 -16.71
0.83 0.92 -0.10 -11.66
1.56 1.45 0.11 6.81
0.71 0.91 -0.20 -28.02
0.90 0.87 0.03 2.86
1.58 1.20 0.38 24.01
0.80 1.03 -0.23 -28.40
0.57 0.47 0.11 18.58
0.80 0.65 0.15 19.10
0.76 0.92 -0.17 -21.97

 68

Model exp(a*x1+b*x2+c*x3+d*x4+e)

D
es

ig
n

E
ffo

rt
P

er
 C

om
po

ne
nt

Component, PComponent, IntPerComp, MethPerComp

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 5.0 10.0 15.0 20.0 25.0

Table 4.7 (Continued)
0.64 0.89 -0.25 -39.67
0.77 0.73 0.04 5.41
1.14 1.18 -0.03 -2.92
0.68 0.46 0.21 31.31
0.81 0.80 0.01 1.65
2.53 1.73 0.80 31.56
0.92 0.86 0.06 6.52
0.44 0.65 -0.21 -47.89
0.69 0.56 0.14 19.66
1.00 0.92 0.08 7.89
1.00 0.93 0.07 7.23
1.83 1.72 0.11 6.11

Figure 4.4: Design Effort per Component Regression Model Plot

4.3.5.5 Correction Effort Regression Model

In general, maintainability in software systems is one of the most important quality

indicators. Maintainability can be quantified as the average time required to fix an

error [81]. It is possible to build prediction models for maintainability only if data

from implemented and operational systems’ are available. The data used in this

research has been collected from projects which are only designed but never

implemented and put into operation. For this reason actual maintainability

prediction models are not possible, at least, for the time being. We looked for

another factor that can be used to give an indication about maintainability. We

 69

used the term correction-effort in our research to provide some sense about

maintainability. In Table 4.1 we identified the different variables (quantified

features) of a system model that can have influence (positive or negative) on

correction effort. In the regression analysis the variables have been added in a

forward addition manner where variables are added if they satisfy the 0.05

confidence interval. The regression analysis produced the following model:

Correction-Effort = 0.08 * (# of Components) - 1.5 / (# of Methods/Component) + 2.13
 (p = 0.0) (p = 0.02) (p = 0.0)
The model demonstrates a high statistical significance with maximum p-value 0f

0.02 and R2 0f 0.95. Besides being statistically significant, the model also is

practically significant due to at least the following reasons:

1) The coefficient variables do not violate intuition since it is intuitive that

correction effort should increase as the number of components and the average

number of methods per component increase.

2) The average error rates are encouraging to recommend the model for practical

use with a value of 19% for the initial error rate which drops to 13% when

removing the outliers. The complete lists of actual and predicted value with the

corresponding residual and error rates are presented in Table 4.9. The plot of

the regression model is shown in Figure 4.5.

Other variables are believed to have influence on correction effort. The reason(s)

behind this violation can be one or more of the followings:

1) High multicollinearity between the different variables. Table 4.8 presents a

complete correlation matrix of all the variables that have been fed to the model.

Multicollinearity is a common problem that encounters researchers carrying out

such researches.

Table 4.8: Correlation Matrix between Regression Variables

C
om

p.

M
et

h.

P
co

m
p

In
t.

C
on

n/
In

t

C
on

n.

In
./C

om
p

M
et

h/
C

o
m

p

C
on

n.
/C

o
m

p.

M
et

h.
/In

t.

D
C

T

Comp. 1.00

Meth. 0.95 1.00

Pcomp 0.98 0.97 1.00

 70

Table 4.8 (Continued)
Int. 0.96 0.92 0.97 1.00

Conn/Int 0.09 0.17 0.14 0.05 1.00

Conn. 0.95 0.96 0.98 0.97 0.27 1.00

Int./Comp -0.21 -0.20 -0.25 -0.04 -0.20 -0.12 1.00

Meth/Comp -0.03 0.27 0.07 0.00 0.29 0.11 -0.05 1.00

Meth/Comp -0.15 -0.07 -0.14 -0.03 0.53 0.06 0.71 0.16 1.00

Conn./Comp. 0.18 0.36 0.18 0.04 0.23 0.14 -0.43 0.74 -0.18 1.00

Meth./Int. 0.55 0.47 0.51 0.53 -0.14 0.46 -0.16 -0.09 -0.26 0.08 1.00

2) Lack of experience in CO software system design may be a reason to having

such results.

Table 4.9: Total Correction Effort Estimates
Actual Value Estimated value Residual %Error

6 7.24 -1.24 -20.68
6 7.29 -1.29 -21.46
5 5.94 -0.94 -18.76
5 4.36 0.64 12.87
5 3.75 1.25 24.93
6 3.62 2.38 39.70
3 3.67 -0.67 -22.42
3 3.81 -0.81 -27.05
2 2.21 -0.21 -10.37
4 3.99 0.01 0.29
5 4.73 0.27 5.44
3 3.69 -0.69 -22.97
5 4.58 0.42 8.31
4 4.60 -0.60 -14.98
5 4.86 0.14 2.74
4 4.17 -0.17 -4.27
8 5.99 2.01 25.17
4 4.74 -0.74 -18.43
5 3.85 1.15 23.07
2 3.47 -1.47 -73.33
6 5.33 0.67 11.23
6 6.17 -0.17 -2.77
4 3.50 0.50 12.45
2 2.69 -0.69 -34.30

25 24.77 0.23 0.90

 71

Model a+b*x1+c/x2

To
ta

l C
or

re
ct

io
n

Ef
fo

rt

To
ta

l C
or

re
ct

io
n

E
ffo

rt

Methods/Component
Components 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6

0.050.0100.0150.0200.0250.0 0.0

5.0

10.0

15.0

20.0

25.0

0.0

5.0

10.0

15.0

20.0

25.0

4.3.5.6 Correction Effort Per Component Regression Model

Knowing the features of a component that may increase the correction effort is a

very important issue. Once these features are identified it is possible to favor

alternative designs where the correction effort elevating features are avoided. A

forward addition approach has been followed where variables have been added if

they satisfy a 0.05 or less confidence interval. It is our preference to obtain a model

that uses more variables since that will better describe the relationships between the

dependent variable and independent variables. The obtained model takes an

exponential form which can be a practical disadvantage for the model. The model

uses only three variables and it is defined as follows:
Correction/Component = exp(-0.02*Components + 0.07* PComp. + 0.2 * (Methods/Comp) – 2.37)
 (p = 0.003) (p = 0.008) (p = 0.04) (p = 0.0)

In the model, all p-values are less than 0.05 which means the model is statistically

significant. The R2 value of 0.54 is obtained which is not too high but the average

error rate results encourage the adoption of the model. Average rates started with

an initial value of 18% which dropped to 12% when the outlier values are excluded

from the average error estimation.

Figure 4.5: Total Correction Effort Regression Model Plot

 72

The model violates intuitive thinking and initial expectations in at least one or more

of the followings:

1) Correction effort per component decrease as total number of components

increases.

2) Some variables that are intuitively believed to increase correction effort per

component have not been included in the model. Among these variables are the

total number of connections, and number of connections per component. It is

natural to spend more time on making corrections when the component exhibit

high connectivity.

The complete list of values of actual and predicted correction effort per component

values with their corresponding residual values and error rates are presented in

Table 4.10. The plot of the model is shown in Figure 4.6.

Table 4.10: Correction Effort per Component Estimates
Actual Value Estimated Value Residual %Error

0.07 0.08 -0.01 -17.02
0.07 0.07 0.01 7.34
0.08 0.08 -0.01 -7.89
0.08 0.07 0.02 19.65
0.17 0.14 0.03 17.37
0.22 0.18 0.04 17.52
0.11 0.13 -0.02 -18.12
0.10 0.14 -0.03 -33.48
0.17 0.14 0.02 14.45
0.13 0.14 0.00 -2.72
0.09 0.09 0.00 4.30
0.10 0.11 -0.01 -14.07
0.11 0.11 0.00 -2.01
0.08 0.11 -0.03 -40.01
0.09 0.10 -0.01 -10.17
0.11 0.13 -0.02 -16.33
0.12 0.08 0.04 34.53
0.09 0.08 0.01 8.30
0.17 0.13 0.03 20.88
0.08 0.14 -0.06 -77.68
0.12 0.09 0.03 21.51
0.09 0.09 0.01 6.52
0.13 0.11 0.02 14.67
0.10 0.13 -0.03 -26.33
0.09 0.09 0.00 -3.16

 73

Model exp(a*x1+b*x2+c*x3+d)

C
or

re
ct

io
n

Ef
fo

rt
Pe

r C
om

po
ne

nt

Components, PComponents, Methods/Component

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.0 5.0 10.0 15.0 20.0 25.0

Figure 4.6: Correction Effort per Component Regression Model Plot

4.3.5.7 Integration Effort Regression Model

The CO software development paradigm focuses on building large systems by

integrating pre-built components [34, 83]. Following from this, it can be clear that

integration effort is a very critical factor when making a choice between alternative

components. Identifying the features of a component or a CO system and their

weighing factors in increasing or decreasing integration effort is a practical need.

Obtaining accurate integration effort records is a necessary prerequisite to building

integration effort prediction models. Also, having accurate integration effort

records is only possible if implemented and composable components are available.

Such components were not available during the time when this study took place.

We used a different estimate of integration effort which is the effort spent on

identifying component relationships, connections, and interfaces with other

components. Although this is not the exact record of integration effort, it is highly

related to the actual integration effort. The model is obtained as a result of applying

variables in a forward addition approach. Only one variable in the model is with a

 74

p-value that is less than or equal to 0.05. The model uses only the total number of

connectors measure. We believe that some other variables must be related to

integration effort e.g. number of interfaces but even with a p-value of less than or

equal to 0.1 this measure could not be added. The reason for that is mostly related

to strong multicollinearity between the different variables. The obtained model has

the following form:
Integration Effort = 0.1 * (Connectors) + 2.6

 (p = 0.0) (p = 0.0)

Despite the fact that the model contains only one variable, it still bears both

statistical and practical significance. Both the p-value of the variable coefficient

and the constant are equal to 0.0. R2 has a value of 0.91 which is also quite high to

encourage the adoption of the model. Average error rates are 17% and 11% for the

initial estimate and the estimate without outliers respectively. A complete listing of

the actual and predicted integration effort estimates with their corresponding

residual and error rate values are presented in Table 4.11 and the model plot is

shown in Figure 4.7.

Table 4.11: Total Integration Effort Estimates
Actual Value Estimated Value Residual %Error

7 11.09 -4.09 -58.43
5 7.89 -2.89 -57.87
4 5.87 -1.87 -46.73
4 5.55 -1.55 -38.74
6 5.23 0.77 12.84
8 8.43 -0.43 -5.33
5 5.55 -0.55 -10.99
5 4.48 0.52 10.32
4 4.91 -0.91 -22.76
7 6.93 0.07 0.93
8 8.43 -0.43 -5.33
4 4.70 -0.70 -17.43

11 7.25 3.75 34.05
8 8.53 -0.53 -6.66

10 8.96 1.04 10.41
8 8.21 -0.21 -2.66

10 8.43 1.57 15.74
8 7.68 0.32 4.00

10 7.25 2.75 27.46
4 4.70 -0.70 -17.43

 75

Model a*x+b

In
te

gr
at

io
n

E
ffo

rt

Connections

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0.0 50.0 100.0 150.0 200.0 250.0 300.0

Table 4.11 (Continued)
8 5.44 2.56 31.96
8 6.30 1.70 21.31
7 7.36 -0.36 -5.15
6 6.30 -0.30 -4.92

35 34.53 0.47 1.34

Figure 4.7: Total Integration Effort Regression Model Plot

4.3.5.8 Integration Effort per Component Regression Model

As well as total integration effort, integration effort per component is a measure of

great practical importance. Besides the deemed functionality and performance

requirements, one of the main factors for making a decision whether to buy a pre-

built component or not is whether it is easy to be integrated with other components

or not. The degree of easiness to integrate can be best quantified by estimating the

time spent on integrating the component. In this part we tried to identify the factors

that increase or decrease integration effort of a component and their weights in a

backward elimination approach. We started with all variables in the model and

 76

eliminated all variables that have p-values greater than 0.05. The final model with

all variables having a p-value less than or equal to 0.05 is defined as follows:
Integration/Component =-0.003 * (TNI) + 0.08 * (TNM/TNC)+ 0.02 * (TNCO/TNC) + 0.11
 (p = 0.01) (p = 0.0) (p = 0.001) (p = 0.01)

It is clear that the model is statistically significant since all p-values are less than

0.02. The model meets intuitive thinking in that integration effort of a component

increases when both the number of methods and/or the number of connections in

that component increase. One problem of the model is that integration effort per

component decreases as the total number of interfaces increases. It is also possible

to interpret the result as: A well planned component framework should dedicate

more interfaces for composability. According to this interpretation, increasing

number of interfaces may reduce integration effort as they provide help in

integration. Also, the coefficient value is too small (0.003) making its effect to be

insignificant in the model.

The average error estimates are 16% and 8% for the initial estimate and the second

estimate (after removing outliers) respectively. A complete list of the actual and

predicted results with their corresponding residual and error rate values are

presented in Table 4.12. The model plot is shown in Figure 4.8.

Table 4.12: Integration Effort per Component Estimates

Actual Value Estimated Value Residual %Error
0.14 0.24 -0.09 -66.46
0.20 0.27 -0.07 -34.82
0.14 0.23 -0.08 -59.01
0.20 0.22 -0.02 -9.04
0.38 0.34 0.03 8.98
0.36 0.39 -0.02 -6.28
0.36 0.39 -0.03 -8.93
0.36 0.34 0.01 3.81
0.33 0.36 -0.03 -7.91
0.50 0.49 0.01 1.65
0.33 0.28 0.06 16.98
0.33 0.33 0.00 1.25
0.38 0.28 0.10 26.66
0.24 0.26 -0.01 -5.77
0.29 0.25 0.04 14.88
0.33 0.38 -0.05 -15.41
0.33 0.26 0.07 20.52
0.38 0.41 -0.02 -6.44

 77

Model a*x1+b*x2+c*x3+d

In
te

gr
at

io
n

E
ffo

rt
P

er
 C

om
po

ne
nt

Row

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.0 5.0 10.0 15.0 20.0 25.0

Table 4.12 (Continued)
0.42 0.41 0.00 0.71
0.29 0.33 -0.04 -15.16
0.38 0.31 0.07 17.81
0.27 0.25 0.02 7.70
0.35 0.36 -0.01 -2.60
0.43 0.37 0.06 13.23
0.24 0.23 0.01 5.30

Figure 4.8: Integration Effort per Component Regression Model Plot

4.3.5.9 Productivity (FP/Person-Hour) Regression Model

Developer productivity is one of the most important features that influence total

development effort. Finding out the system features that influence developer

productivity has been a critical issue since the early days of software engineering.

In our research we identified the intuitive system features that may potentially

affect productivity and followed a backward elimination approach in which

variables with p-values that are greater than 0.05 are eliminated. The final model is

defined as follows:

 78

Productivity = 5.41 - 0.82 * (TNM/TNC) – 0.95 * (TNI/TNC)
 (p = 0.0) (p = 0.04) (p = 0.01)

The model shows that increased number of methods in a component is favored over

increased number of interfaces. It suggests that interfaces with more methods are

better than having too many interfaces with small number of methods.

Despite the fact that the model variables are all statistically significant, the model

did not produce good practical results. Average error rates are 34% and 23% for

the initial and second (after excluding outliers) estimates respectively. A complete

list of the results is presented in Table 4.13 and the model plot is shown in Figure

4.9.

Table 4.13: Productivity Estimates
Actual Value Estimated Value Residual %Error

3.74 2.84 0.90 24.08
4.56 3.52 1.04 22.82
4.50 3.17 1.33 29.54
5.31 3.63 1.68 31.58
2.75 2.42 0.33 12.00
2.69 2.42 0.27 10.11
3.25 2.00 1.25 38.61
1.69 2.22 -0.53 -31.21
1.47 2.18 -0.71 -48.29
2.75 1.49 1.26 45.73
2.38 3.52 -1.14 -48.11
2.42 2.64 -0.22 -9.19
2.79 2.66 0.13 4.59
2.06 3.07 -1.01 -49.21
2.50 3.15 -0.65 -25.90
1.80 2.00 -0.20 -11.08
2.22 3.13 -0.91 -41.13
1.84 1.60 0.24 12.98
0.58 0.98 -0.40 -68.54
1.58 2.49 -0.91 -57.35
3.14 2.13 1.01 32.19
2.07 2.85 -0.78 -37.50
1.88 2.33 -0.45 -23.90
2.40 2.60 -0.20 -8.21
0.97 2.30 -1.33 -137.55

 79

4.3.5.10 Total Development Effort Regression Model

The importance of predicting development effort at early stages of the development

process is very clear [81]. Several cost estimation methods have been proposed in

the literature. These methods vary in their nature. Some methods are parametric

like Putnams model (SLIM) first described in [67] , and PRICE-S which has been

partially described in [63] and used by the DoD and NASA in their project

estimations. Another widely cited cost estimation method is the COCOMO model

which was first described in [14] and then revised to address the new changes in the

software development life cycle and released as COCOMO II [15].

Expert judgment is one other approach that has been applied in software cost

estimation techniques. In this approach software cost estimation is done based on

the previous experience and practices in software development. Expertise makes

predictions based on outcomes of his/her past projects. One known expert

judgment technique is Delphi as described in [44].

Model a+b*x1+c*x2

P
ro

du
ct

iv
ity

(F
P

/P
er

so
n-

H
ou

rs
)

Pr
od

uc
tiv

ity
(F

P
/P

er
so

n-
H

ou
rs

)

Interfaces/Component

Methods/Component 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6

1.0
1.5

2.0
2.5

3.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Figure 4.9: Productivity Regression Model Plot

 80

Learning oriented techniques for cost estimation have been proposed. These

models are mainly dependent on neural networks models that are based on previous

experiences.

Regression-Based techniques have been successfully used in software cost

estimation. The common features in these methods depend on Least Squares

regression where a set of independent variables (regressors) are identified and a

prediction model is obtained based on previous projects data. Boehm used

regression models to calibrate COMOMO II.

In this study we built a regression based model for effort prediction based on effort

estimation data obtained by a comparative estimations tool prepared by the

International Software Benchmarking Standards Group (ISBSG). ISBSG is a non-

profit organization whose main aim is providing help to improve the management

of IT resources. It maintains two repositories for: 1) Software Development and

Enhancement and 2) Software Maintenance and Support. The repositories maintain

data of more than 3000 projects sponsored by software development organizations

mostly from USA, Japan, Australia, and several other countries. The effort

estimation tool performs predictions based mainly on FP counts. Other parameters

are also necessary to make accurate predictions. These parameters are:

• functional size range
• development type
• development platform
• business area type
• application type
• maximum team size
• language type
• primary programming language
• user base – business units
• user base – locations
• user base – concurrent users
• used CASE tool
• used methodology
• how methodology was acquired

 81

While using the tool, for all projects the following parameters were set to “match

none”:

• language type
• primary programming language
• user base – business units
• user base – locations
• user base – concurrent users
• used CASE tool

The development type parameter was set to “new development”. The development

platform parameter was set to “PC”. The maximum team parameter size was set to

“2” since all system models were prepared by teams of two. The used methodology

parameter was set to “Yes” since all developers followed the component oriented

software development approach. And the how methodology was acquired

parameter was set to “built in-house”.

The regression model is obtained with a significance level of 85% and is defined as:

Development Effort = 2.4 * (# Comp.) + 26.9 *(# PComp) – 6.2 * (# Int) + 9.8 *(Conn./Comp)
 (p = 0.05) (p = 0.001) (p = 0.15) (p = 0.04)

Besides being statistically significant, the model also bears great practical

importance due to the following reasons:

1. The model has prediction power with an average error rate of 9% only.

2. Predicting development effort using complexity metrics that can be

collected at the design phase of the system development process will enable

managers and developers to make better decisions related to the product and

process.

The predicted values compared to actual values with their corresponding estimated

residual and error percentage are presented in Table 4.14. The estimated error rates

are 17% and 9% for both the initial estimate and the second estimate after

removing the outliers. The model plot is shown in Figure 4.10.

 82

Table 4.14: Total Development Effort Estimates

Actual Values Predicted Values Residual Error%
480 481.43 -1.43 -0.30
559 485.36 73.64 13.17
365 380.23 -15.23 -4.17
287 324.86 -37.86 -13.19
253 239.89 13.11 5.18
391 315.89 75.11 19.21
225 203.46 21.54 9.57
152 213.58 -61.58 -40.52
133 141.81 -8.81 -6.62
223 234.01 -11.01 -4.94
204 375.89 -171.89 -84.26
220 205.22 14.78 6.72
364 306.38 57.62 15.83
235 362.87 -127.87 -54.41
421 377.40 43.60 10.36
349 268.12 80.88 23.17
495 396.68 98.32 19.86
268 246.56 21.44 8.00
167 196.25 -29.25 -17.52
145 209.36 -64.36 -44.39
246 263.97 -17.97 -7.30
356 371.32 -15.32 -4.30
230 227.85 2.15 0.93
184 197.23 -13.23 -7.19
1953 1948.67 4.33 0.22

 83

 Figure 4.10: Total Development Effort Regression Model Plot

4.3.7 Summary of the Results

Ten different models have been developed. While building all of these models,

both statistical significance and practical importance have been taken into

consideration. For statistical significance purposes, apart from the first model, in

all of the models variables were only added if their corresponding p-values were

less than or equal to 0.05. In the first model a variable (# of connectors) is added

while its corresponding p-value is equal to 0.1 and in the total development effort

prediction model a variable with p-value is added to the model with p-value of

0.15. The reason behind this exception is due to the believed inherent importance

of the variable in the estimation of FPs count. We have considered practical

perspectives, such as average error rates and simplicity of the model. In two

models exponential functions have been used since they had the lowest average

error rates compared to the alternatives. A summary of all the developed regression

models with their corresponding R2 values and average error rates are presented in

Table 4.15.

Model a*x1+b*x2+c*x3+d*x4

To
ta

l D
ev

el
op

m
en

t E
ffo

rt
(P

er
so

n-
H

ou
rs

)

Components, PComponents, Interfaces, Conn./Component

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

2000.0

0.0 5.0 10.0 15.0 20.0 25.0

 84

Table 4.15: Summary of the Regression Models

Es
tim

at
ed

Fa

ct
or

U
se

d
El

em
en

ts

R
eg

re
ss

io
n

M
od

el

C
or

re
la

tio
n

%
Er

ro
r

1

%
Er

ro
r

2

FP
 C

O
U

N
T

 ALL
Componets,
PComponents,
Interfaces,
Connectors

0.8 * (# Components) + 4.3 * (# PComponents) -
 (p = 0.01) (p = 0.03)
 1.8 * (# of Interfaces) + 0.5 * (#Connectors) + 12.7
 (p = 0.06) (p = 0.1) (p = 0.02)

0.97 21 8

FP
/I

nt
er

fa
ce

Methods/ Int
Connections/
Interface

5.2 – 8.5/(Methods/Int)+ 0.94 * (Connectors/Int)
 (p = 0.004) (p = 0.007) (p = 0.04) 0.43 22 17

T
ot

al
 D

es
ig

n
E

ff
or

t

All
Components,
Methods,
Connections,
Methods/
Component

-0.65 * (# Comp.) + 0.83 * (#methods)
 (p = 0.0004) (p = 0.0)
 + 0.73 * (# of Connectors) – 33.9 * (Meth./Comp)
 (p = 0.0006) (p = 0.0004)

0.98 27 15

A
ve

ra
ge

 D
es

ig
n

E
ff

or
t/C

om
po

ne
nt

 All
Components,
PComponents,
Interfaces/
Component,
Methods/
Component

exp(-0.03*Components) + 0.13*(PComponents) +
 (p = 0.0) (p = 0.0)
0.46 * (Int. / Comp) + 0.32 *(Meth / Comp) - 1.48)
 (p = 0.0) (p = 0.0) (p =0.0)

0.79 20 13

T
ot

al
 C

or
re

ct
io

n
E

ff
or

t

All
Components,
Methods/
Component

0.08 * (# Comp.) - 1.5 / (Meth./Component) + 2.13
 (p = 0.0) (p = 0.02) (p = 0.0)

0.95 19 13

C
or

re
ct

io
n

E
ff

or
t/C

om
po

ne
nt

 All

Components,

PComponents,

Methods/

Component

exp(-0.02 * (# Comp) + 0.07* (PComp)
 (p = 0.003) (p = 0.008)
 + 0.2 * (Methods/Comp) – 2.37)
 (p = 0.04) (p = 0.0)

0.54 18 12

 85

Table 4.15 (Continued)

In
te

gr
at

io
n

Ef
fo

rt

Connectors 0.1 * (Connectors) + 2.6
 (p = 0.0) (p = 0.0)

0.91 18 11
In

te
gr

at
io

n
Ef

fo
rt

/P
C

om
po

ne
nt

Interfaces,

Methods/

Component,

Connections/

Components

-0.003 * (# Interfaces) + 0.08 * (Meth./Comp)
 (p = 0.01) (p = 0.0)
+ 0.02 * (Conn./Comp.) + 0.11
 (p = 0.001) (p = 0.01)

0.67 16 8

Pr
od

uc
tiv

ity
 (F

P/
H

ou
r)

Methods/
component,
interfaces/
component

- 0.82 * (Meth./Comp.) – 0.95 * (Int./Comp) + 5.41
 (p = 0.04) (p = 0.01) (p = 0.0)

0.35 34 23

T
ot

al

D
ev

el
op

m
en

t
E

ff
or

t

Components,
Pcomponents,
Interfasces,
Connections/
Component

2.4 * (# Comp.) + 26.9 *(# Pcomp) – 6.2 * (# Int) +
 (p = 0.05) (p = 0.001) (p = 0.15)
9.8 *(Conn./Comp)
 (p = 0.04)

0.96 17 9

The results obtained from the experiment can be classified into three broad classes

as follows:

1. Meeting initial (intuitive) view points: regressors described regressands in a

manner meeting intuitive thinking (e.g. FP should increase with increased

number of methods).

2. Violating initial view points: the relationships between regressands and

regressors do not meet intuitive thinking (e.g. an increase in the total

number of interfaces results in a decrease in the total FP count).

 86

3. No results (unexpected behavior): No relationship –with statistical

significance- could be detected between regressands and regressors which

are intuitively believed to be related.

The results obtained from the regression analysis revealed that complexity metrics

collected from the design models can be great managerial and practical use. While

some of the results slightly violate initial expectations, most of the obtained results

sound reasonable. Some metrics which are intuitively believed to be related to

some process features (regressands in our study) could not be added to the

regression models due to their corresponding p-values which were above the

maximum acceptable value of 0.1. In Table 4.16 we present a summary of the

metrics collected form the projects used in our study with their practical influences.

In the column Influence the symbol “↑” is used to mean that when the metric value

increases the estimated feature value increases as well. The symbol “↓” means that

the estimated feature value decreases when the metric value increases. In the

column Comments we comment on whether the metrics use meets initial

expectation that are built based on intuition. If the metrics use violates the initial

expectations then a short reasoning is provided when relevant.

Table 4.16: Summary of Metrics Practical Applications

No Metric Name Used Model Influence Comments

Total FP Count ↑ Agrees with Intuition

Total Design Effort ↓ Violates intuition due

to multicollinearity

Design Effort/ Comp. ↓ Violates intuition due

to multicollinearity

Total Correction

Effort
↑ Agrees with Intuition

1
Total Number of

Components

Correct. Effort/ Comp. ↓ Violates intuition due

to multicollinearity

 87

Table 4.16 (Continued)

Total FP Count ↑ Agrees with Intuition

Design Effort/Comp ↑ Agrees with Intuition 2

Total Number of

Implementation

Components
Total Correct. Effort ↑ Agrees with Intuition

Total FP Count ↓ Violates intuition due

to multicollinearity
3

Total Number of

Interfaces Total Integration

Effort
↑ Agrees with Intuition

4
Total Number of

Methods
Total Design Effort ↑ Agrees with Intuition

Total FP Count ↑ Agrees with Intuition

Total Design Effort ↑ Agrees with Intuition 5
Total Number of

Connections
Total Integration

Effort
↑ Agrees with Intuition

6
Total Number of

Events In
Not used in any model - Events In are not

utilized in the models

7
Total Number of

Events out
Not used in any model - Events Out are not

utilized in the models

8

Maximum Depth of

the Composition

Tree (DCT)

Not used in any model -

Almost all projects

have similar DCT

value. DCT lost its

discriminative power

9

Maximum Width of

the Composition

Tree (WCT)

Not used in any model -

Almost all projects

have close WCT

value. WCT lost its

discriminative power

 88

Table 4.16 (Continued)

Design Effort/ Comp. ↑ Agrees with intuition

10

Average number of

Interfaces Per

Component
Productivity

(FP/Person-Hour)
↓ Agrees with intuition

Total Design Effort ↓
Violates intuition due

to correlation with #

of interfaces

Design Effort/Comp ↑ Agrees with intuition

Integ. Effort/ Comp. ↑ Agrees with intuition

11

Average Number of

Methods Per

Component

Productivity ↓ Agrees with Intuition

12

Average Number

Connections Per

Component

Total Integration

Effort
↑ Agrees with intuition

13

Average Number of

methods Per

Interface

Average FP count per

Interface
↑ Agrees with intuition

14

Average number of

Connectors per

Interface

Average FP count per

Interface
↑ Agrees with intuition

In all of our models we used average values rather than exact values per

component. We tried the possibility of analyzing individual components and

examine the relatedness of complexity metrics with productivity, design-effort,

correction-effort, and integration-effort based on records of individual components.

This part could not be completed successfully due to the fact that developers could

not provide exact records for the design, integration, and correction efforts they

spent on individual components.

 89

CHAPTER 5

AUTOMATING METRICS COLLECTION PROGRAMS

5.1 The Need for Metrics Automation

Computer Aided Software Engineering (CASE) is a generic term that is widely

used for the different tools used in software development. CASE tools play an

important role in modern software engineering practices and have an important

influence in the production of cost-effective and efficient software systems. Today,

CASE tools are used in the different stages of the software process. Project

planning and scheduling tools help in scheduling and organizing activities in the

software process (e.g. MS Project® from Microsoft, and ManagePro™ from

Performance Solutions Technology). Effort estimation tools are used at early stages

and particularly during and just after the requirements definition of the software

process to make predictions about total development effort ad then total cost (e.g.

Effort Estimation Toolkit from ISBSG). System modeling tools are used during the

requirements specifications and system and software design stages of the software

process. Several modeling tools have been developed and widely used by

software developers. Among the most widely used modeling tools is IBM

Rational Rose that is used for creating UML models for OO systems. Besides

being a powerful modeling tool, Rational Rose also supports both reverse

engineering and automatic code generation. Another UML modeling tool is

Visio® from Microsoft. Several other types of CASE tools can be used at different

stages of the development process like report generating tools. Integrated

development environments (IDEs) help in automating many programming

 90

processes. Debugging, system integration, and testing tools are also available in

many flavors.

Use of product complexity metrics in software engineering as a primary means for

making process and product related decisions has been utilized mostly in the last

few years. Automatic metrics collection tools have developed for OO software

development and particularly for CK (Chidamber and Kemerer, 1994) metrics.

Some of these tools have been embedded into modeling tools and enabled

automatic metrics collections directly from the system models.

On the other hand, lack of dedicated CASE tools for COSE is obvious. Apart from

some extensions to OO modeling tools, no commercial dedicated CASE tools for

COSE ever existed. COSECASE is a dedicated COSE tool which is developed in

consecutive versions each of which was a part of a master thesis work in the

department computer engineering in the Middle East Technical University-Turkey.

Each new version introduced represents an enhancement to its predecessor version.

The last version of COSECASE is functional. It enables model creation, and

performs rule violations checks in the following situations: 1) when creating a

relationship between components, 2) removing a component from the model, 3)

adding a new component to the model. The final version of the tool was lacking

some usability related enhancements. As part of the research described in this

thesis, some usability related enhancements have been added to the tool. Our

contributions to the tool can be summarized in three main groups:

1) Usability Enhancements: The enhancements to the tool usability include the

followings:

a. Enabling automatic resizing of components in the model

b. More nice-looking connectors.

c. Deleting using keyboard delete key in addition to mouse right button.

d. Dialogue boxes of components properties have been modified.

2) Automatic metrics collection: Complexity metrics defined in Chapter 3 are

automatically collected during model creation.

 91

3) Producing estimation results: Prediction models that are developed based on

complexity metrics in Chapter 4 are used to make process related estimations.

The tool automatically produces estimations based on these models and the

product metrics and can target the results to both screen and/or a text file. Also

for system models prepared using other tools it is possible to produce

estimations after manually estimating the complexity metrics and entering their

values in the corresponding fields if the form that is appearing in Figure 5.1.

Figure 5.1: Metrics Collection and Estimation Tool

5.2 Enabling Automated Metrics Collection in COSECASE

COSECASE provides a good environment for creating COSE system models only

based on the COSEML (Dogru and Tanik, 2003) notation. Screen shot of the tool

is shown in Figure 5.2.

 92

Figure 5.2: Screen Shoot from COSECASE with Estimations Options

After creating or loading an already existing COSEML model, a user will be able

to obtain predicted estimations by just selecting “Display Predicted Estimates”

menu item from the “Tools” menu. The results of estimations are displayed in a

form as shown in Figure 5.3. The user will have the chance to save results by just

clicking on the “Save Results” button.

 93

Figure 5.3: Screen Shoot of Estimation Results Form

 94

CHAPTER 6

CONCLUSION AND FUTURE WORK

A measurement framework for Component Oriented Software Engineering has

been developed and investigated. This was to support the newly developing radical

Software Engineering approaches that are expected to offer a long waited answer.

Besides the lacking industrial experimentation, our results obtained through

statistical analyses over academic case studies that extended three years, yield

valuable conclusions. Some relations among process and product properties and

proposed metrics have been founded. Besides, the converging analysis results in

many aspects are an indication of the validity of the foundation.

6.1 Summary

Quantifiable aspects of CO systems are identified. Then, metrics to measure these

aspects are defined. Relationships of metrics with the aspects they are intended to

quantify have been defined. For every defined metric, its potential impacts on the

product and the process have been presented. These potential impacts represent the

initial viewpoints based on intuition, previous experiences of software metrics, and

related work on software metrics performed by other researches in the field. A set

of properties that a CO complexity metrics must possess are defined and justified.

The proposed metrics have been evaluated against the properties defined in this

thesis and then evaluated against another set of properties defined in [84]; all

defined metrics qualified and satisfied all properties in both sets.

A Complexity model has been defined for CO software system in three levels. At

the lowest level, complexity aspect related to methods is included. At the

intermediate level, component-related complexity aspects are included. The

highest level of complexity in CO systems is the Overall System Complexity

 95

(OSC). OSC is the complexity that can be estimated from quantified aspects of

components plus an added complexity resulting from bringing the components

together into a single system.

To explore the validity of metrics from a practical perspective an experiment has

been performed. Complexity metrics are important because they are known to be

important players when making process and/or product related decisions. Metrics-

based regression models are developed. These regression models are all prediction

models that enable making predictions about: Size (as a function of FP count),

development effort (Person-hours), integrability (as a function integration effort),

and maintainability (as a function of correction effort). While the experiment

revealed that metrics can be highly dependable in making process and product

related predictions, it suggests that further research covering more project data

should continue.

6.2 Discussion of the Results

The significantly notable (expected or unexpected) results can be summarized in

the following points:

1. Total number of components of a system is an important factor in

predicting Total FP count, Total development effort, and Total correction

effort, of that system. This result meets initial viewpoints and expectations.

Fixing all other parameters, “Total design effort” decreases when total

number of components increases. This outcome seems to violate initial

expectations and even intuition. On the other hand, assuming the same

overall functionality, a system with more components may take less effort

to design, when compared to another with less components. In some cases,

the integration among a few components may be difficult, probably due to

increased fan of services and their connections. A bigger set of smaller

connections would be less complex than a small set of bigger (complexity)

connections. This follows the famous complexity relation which states that

the overall complexity is conserved but it is possible to be moved to where

it is easier to manage.

 96

2. Total number of interfaces in a system is an important factor in predicting

total integration effort. An increase in total number of interfaces increases

total integration effort. This result is within expectation and meets intuitive

thinking; hence more interfaces in a system means more relationships exist

between components and then more effort will be required to integrate

them. On the other hand, the detected relationship between total FP cont

and total number of interfaces is unexpected and violates intuitive thinking.

An increase in the total number of interfaces results in a decrease to the

total FP count in a system. This outcome needs to be further examined and

validated. This result also may imply tendency to reduce interfaces, as total

complexity increases: The experimentation considered declared (created)

components rather than being industry-wide available. Students may have

chosen simpler connections for bigger projects. A natural consequence

would be expecting well established domains where complex systems will

be built by highly cohesive and relatively larger-grained components that

require less connectivity.

3. No relationship between the depth of the composition tree and any of the

checked regressands could be detected. The reason behind that can be due

to the fact that all projects included in the experiment have almost similar

values for depth of the composition tree metric. An opportunist speculation

would advise developers to freely choose their preferred decomposition.

Their ideal decomposition would not affect the complexity.

4. Total number of connectors’ relationship with total FP count, total design

effort, total integration effort, and total development effort meets intuitive

thinking and within expectations. An increase in the total number of

connectors in a system results in an increase in all values of these variables.

5. Numbers of Events In/Out in a system are not used in any regression model.

The reason can be due to the fact that uses of events in and events out were

not utilized well in all designs used in the study.

While developing all of the regression models attention was paid to both statistical

significance and practical importance of the model. Statistical significance has

been monitored through R2 values and coefficients corresponding p-values.

 97

Practical importance of each model has been assessed through average error rates

in the predicted values when compared to actual values. Even in the worst case,

average error estimates remained below those obtained in similar studies.

Sommerville [81] reported that during the design phase cost estimation techniques

can have an error rate of 50%. In all of the regression models we developed

average error rates were less than 25% when removing the outliers. The most

important two challenges we encountered during the research are the unavailability

of industrial projects and the lack of standard definitions to the terms of interest.

6.3 Comparison with Related Works

Component Orientation is a new trend towards software development. The process

model described by Dogru and Tanik [34] and the COSEML language represent

one of the earliest and serious works in the field. The work presented in this thesis

focused mainly on identifying a metrics set characterizing complexity in CO

systems that are developed using the COSE approach. The metrics are validated

using experimental data and the results of the validation showed that metrics can be

of great value in predicting several critical and important process and product

features. The literature of software measurement presents several trials of

evaluating software complexity and other works for relating systems complexity

with one or more process or product aspects. The following reasons are enough to

enhance the originality of this work:

1) A survey of the literature revealed that there is no complete pure CO

measurement framework that aims at characterizing software complexity in

CO systems and find its relationship with process and product features.

2) The works presented in the literature were either considering black-box

reusability or white-box reusability of software components while in our

methodology we defined metrics for both cases. Complexity is

characterized with a set of metrics in the case of black-box reuse and

another set of metrics is used for white-box reuse.

3) The approach presented here can not be generalized to all component

methodologies. It is specific to COSEML only. Among several others, we

 98

believe that COSE paradigm will be the future trend of CO software

development.

In the following discussion we will describe the most widely known CO related

metrics and their similarities and differences with our model.

1) Chidamber, Darcy, and Kemerer [22] investigated the relationships between

programmer productivity, design effort, and re-work effort and the OO

complexity metrics widely known as CK [20, 21]. The results obtained in

their research support the idea of that complexity metrics can be used as

predictors of some critical and process aspects. The main outcome of this

work is that lower productivity, greater re-work effort, and greater design

effort are highly associated with high coupling and low cohesion values.

These outcomes meet intuition and strengthen the arguments of that

excessive coupling is not a good design feature while cohesion is a deemed

feature. The main problem with the outcomes is that they are highly

dependent on the LCOM metric which is widely known to be ill-defined.

The main similarity of this work with our work is that both works try to

build prediction models of process features using complexity metrics

collected during the design phase of system development. The main

difference between this work and our work is that Chidamber et al. [22]

findings are OO specific while our findings are CO specific. In our

methodology it is revealed that high connectivity (a measure of coupling) is

also associated with more rework and development efforts.

2) Cho, Kim, and Kim [112] proposed metrics for measuring complexity of

software components. They assumed white-box reuse of components and

measure complexity mainly based on the Cyclomatic complexity [57]. The

method does not assume pure component orientation; it rather views a

software component more similar to a class as defined in OO software

development. Four types of component complexity are defined but the

influence of these complexities on product and process features is not

discussed making interpretation difficult to achieve. The similarity between

this method and our method is that it considers high connectivity between

 99

components as a dangerous feature which will influence maintainability,

reliability, and other product aspects.

3) Goulao and Abreu [106] proposed metrics that cover composition of

components. They defined metrics for measuring the ratio of used services

to total services provided by the component and for measuring the

interaction density between components. The method is similar to our work

in that it suggests that high interaction density between components

increases overall system complexity. This result is validated for our model

while it is left without validation in the other model. The method is specific

only to CORBA components and cannot be generalized to other component

models. This fact makes the method different from ours since our method

is specific to COSEML approach that is more generic.

4) Mahmood and Lai [107] presented a model for measuring complexity in

UML components. The model assumes only black-box reuse of

components and thus focusing on characterizing system complexity only

using component interface specifications and interactions with other

components. The main difference between this method and ours is that is

UML specific while our method is COSEML Specific. Another difference

is valuable to discuss that is our method deals with both black-box and

white-box reuse while this method deals only with black-box reuse. The

metrics are not validated using project data. It also lacks interpretation

guidelines.

5) Banker, Datar, Kemerer, and Zweig [108] investigated the influence of

several complexity metrics on maintenance costs and found that complexity

measures significantly affect maintenance costs. The study considered

several complexity measures defined for traditional software development.

The main similarity between this method and ours is that in both methods is

that high complexity is highly related with rework effort.

6) Lindval, Tvedt, and Cost [109] presented an approach for detecting the

relationship between system architecture and its maintainability. The

method characterizes system architecture at two phases of the development.

Early architecture is the system architecture at the design phase and late

architecture is the system architecture after development. They defined

 100

new metrics of system architecture based on the CBO metric from CK set

[20, 21]. The metrics they defined differentiate between inter-module

coupling and intra-module coupling. The method is described for classes

for OO development and module (close to component definition). The

main outcome shows that loosely coupled designs are easier to maintain.

This result meets our results for COSEML where we assume high

connectivity increases rework effort.

7) Darcy, Kemerer, Slaughter, Tomayko [100] examined different measures of

system structural complexity based on coupling and cohesion. Both this

method and our method are similar in that they focus on structure. This

method completely ignores algorithmic complexity while our method

considers algorithmic complexity for the case of which-box reuse of

components. Also the view of a component in this model is close to the

class concept in object orientation while our model relates to pure

component orientation. Results obtained in both our model and this model

are similar in that they both suggest high coupling negatively influences

maintenance effort. Darcy et al. [100] found that coupling and cohesion

should be considered jointly and suggest that individual measures of

coupling and cohesion can be useless.

8) Keating [50] introduced a model of complexity based on system structure

and hierarchy. The system complexity is evaluated based on the degree of

connectivity. Keating proposed some guidelines that will decrease

complexity by imposing limitations on the number of modules at any level

to 7±2. Keating findings were not supported by experimental investigations

making them less dependable.

9) Qiam, Liu, and Tsui [110] proposed a metric for evaluating decoupling for

service components. The model assumes pure black-box reuse of service

components. They evaluated decoupling using metrics of state dependency

that tells the degree to which the service is stateless and dependency on

other services. Although the authors claim that these metrics can be used to

measure understandability, maintainability, reliability, testability, and

reusability of service components, this claim remained without empirical

validation. The metrics are well defined but no interpretation guidelines

 101

were provided. The importance of these metrics is mainly due to the fact

that they are among the few metrics that assume pure component

orientation.

10) Braha and Maimon [111] introduced two measures for structural

complexity and functional complexity of modules. The structural

complexity is used to estimate total assembly effort (assembly effort can be

related to integration effort in our model). The method is not proposed for

component orientation and deals with white-box reuse only.

11) Dumke and Winkler [114] described a framework of measurement in

component based software development. The described framework is

dependent on OO software development where software components are

used during the system integration phase. The framework is mainly

validated for Java-based software development. Dumke and Winkler

suggest the measurement process should start with the selection of metrics,

then, the identification of thresholds for metrics values should follow.

Then, the selected metrics should be adapted and refined to fit to the given

paradigm. The last step in measurement is identified as the automation of

the measurement process and experimental validation of the metrics. The

measurement framework proposed is not for component oriented systems. It

is for component based products and processes that rely on the OO

paradigm.

A summary of these methods and their comparison to our method is given in Table

6.1.

Table 6.1: Summary of Related Works

No. Brief description Support
for CO

Similarities Differences Weaknesses

1 Estimates Productivity,
design effort and
rework effort using
OO complexity
metrics

No Use metrics to
estimate productivity,
design and rework
efforts

Not CO.

Depend on
LCOM
metric which
is not well-
defined

2 Measures four types of
complexity in
components

Partially Characterization of
complexity

Not empirically
validated
Not pure CO

Assumes
only white-
box reuse

3 Measure of
composition of
CORBA components

Partially Both methods suggest
that high connectivity
increases complexity

CORBA specific
while ours is
COSEML specific

No empirical
validation

 102

Table 6.1 (Continued)
4 Measures complexity

of UML components
based on interface
specifications

Partially Both characterize
complexity using
interfaces and inter
component links

Does not consider
white box reuse.
No empirical
validation

Not
empirically
validated

5 Investigates the
influence of several
metrics on
maintenance costs.

No Maintenance effort is
negatively influenced
by complexity

This method is for
traditional SW
development

-

6 A model for detecting
the relationship
between software
architecture and
maintainability

Partially Loosely coupled
designs enhance
maintainability

Not CO No clear
definition of
the system
building unit
under
consideratio
n.

7 Detect the influence of
coupling and cohesion
on complexity.

No High connectivity
increases complexity

Not CO;
Coupling and
cohesion must be
jointly measured

-

8 A model for system
complexity based on
system structure and
hierarchy.

Partially Structural complexity
is influenced by
connections and
number of modules in
each level of the
hierarchy.

Not CO Not
empirically
validated

9 Defines a measure of
decoupling for service
components

Yes Characterizes the
degree of
independence

Relationship with
process features not
discussed

No clear
interpretatio
n guidelines.

10 Describes models of
structural and
functional
complexities of
modules.

Partially Relates complexity to
integration effort

Assumes white-box
reuse only

-

11 Introduces a
measurement
framework for
component based
software engineering

Partially Identifies the steps
measurement in
component
development

Not pure component
oriented. Based on
the OO paradigm

Highly
dependable
on the OO
paradigm

As a summary it can be said that there is no comprehensive measurement approach

for a comprehensive COSE methodology, to support the build by integration

paradigm. Among these approaches only the work of Qiam, Liu, and Tsui [110]

can be seen as relevant for a meaningful comparison. The rest of the other works

lack the Component Orientation philosophy that was described in the Introduction

section of this thesis. Due to that they do not appear to be relevant for a

meaningful comparison.

 103

6.4 Future Extensions and Open Research Areas

One of the most important challenges we encountered during this research is the

lack of industrial projects to use for metrics validation. The availability of such

data is believed to enable further experimental validation. Also, the presence of

data collected from operational projects will necessarily help in detecting important

relationships between complexity metrics and product quality factors such as:

reliability, performance, efficiency, and maintainability. These product features are

critical and important to both the developer and the customer. Although student’s

projects are widely used in Academia as the principal means of practical validation,

it is believed that considering industry practices in addition to students’ projects

will strengthen the validity of the results. Trying to consider industry practices as a

validation means will be encountered with serious difficulties due to the following

reasons:

1. Lack of standards for the definitions of the term component, component

interface, component communication principles. The terms are handled

differently by different practitioners.

2. Although component based software development is widely used, still real

component orientated software development is not encountered.

3. Even with the availability of industry practices, obtaining the data will be

another problem by its own.

According to the previous discussion future extensions to the research presented in

this thesis should include some implemented projects data, and industry practices.

The relationships between a component’s complexity and its composability,

reliability, performance, efficiency are still open research areas in this field.

 104

REFERENCES

[1] S. K. Abd-El-Hafiz, “Entropies as Measures of Software Information,” Proc.
of ICSM, IEEE Computer Society, 2001, pp. 110-117.

[2] F. B. Abreu, “The MOOD Metrics Set,” Proc. ECOOP'95 Workshop on

Metrics, 1995.

[3] A. J. Albrecht, “Measuring Application Development Productivity,”
Proceedings of the IBM Application Development Symposium, Monterey,
California, October 1979, pp. 83-92.

[4] A.J. Albrecht and J. E. Gaffney, “Software Function, Source Lines of Code,

and Development Effort Prediction: A Software Science Validation,” IEEE
Transactions on Software Engineering , vol. SE-9 , 1983 , pp. 639-648

[5] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen, “Measuring Coupling and

Cohesion of Software Modules: An Information-Theory Approach,” in Proc.
7th IEEE Symp. Software Metrics, Metrics 2001, pp. 124-134.

[6] M. Alsharif, P. Bond, and T. Al-Otaiby, “Assessing the complexity of

software architecture,” In Proc. Of the 42nd Annual ACM Southeast
Conference, Huntsville, Alabama, 2004, pp. 98-193.

[7] D. Anselmo and H. Ledgard, “Measuring Productivity in the Software

Industry,” Communications of the ACM, vol. 46, No. 11, 2003, pp. 121-125.

[8] V. R. Basili, “Quantitative Software Complexity Models: A panel summary,”

Tutorial on Models and Methods for Software Management and Engineering,
IEEE Computer Society Press, 1980.

[9] V. R. Basili and B. Boehm, “COTS-Based Systems Top 10 List,” IEEE

Computer, vol. 34, No. 5, 2001, pp. 91-93.

[10] V. R. Basili, L. C. Briand, and W. L. Melo, “A Validation of Object-Oriented
Design Metrics as Quality Indicators,” IEEE Transactions on Software
Engineering, vol. 22. No. 10, 1996, pp. 751-761.

[11] V. R. Basili and D. M. Weiss, “A Methodology for Collecting Valid Software

Engineering Data,” IEEE Transactions on Software Engineering, vol. 10, no.
6, 1984, pp. 728-738.

 105

[12] J. K. Blundell, M. L. Hines, and J. Stach, “The Measurement of Software

Design Quality,” Annals of Software Engineering, vol. 4, iss. 1, 1997, pp.
235-255.

[13] B. Boehm, “A spiral model of software development and enhancement,”

IEEE Computer, Vol 21, 1988, pp. 61-72.

[14] B. Boehm, “Software Engineering Economics,” Prentice Hall. 1981, ISBN:

0138221227

[15] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R. Selby,

“Cost Models for Future Software Life-cycle Processes: COCOMO 2.0,”
Annals of Software Engineering Special Volume on Software Process and
Product Measurement, Vol 1, 1995, pp. 45-60.

[16] G. Booch, “Object-Oriented Design With Applications,” 2nd ed., Addison-

Wesley Professional, 1993, ISBN: 0805353402.

[17] L. C. Briand, S. Morasca, V. R. Basili, “Property-Based Software Engineering

Measurement,” IEEE Transactions on Software Engineering, vol. 22, No. 1,
1996, pp. 68-86.

[18] N. Chapin, “Entropy-Metric for Systems With COTS Software,” Proc. of the

8th IEEE Symposium of Software Metrics (METRICS’02), IEEE Computer
Society, 2002, pp. 173-181.

[19] J-Y Chen, J-F Lu, “A new Metric for Object-oriented Design,” Butterworth-

Heinemann Ltd, Information and Software Technology, vol. 35, No. 4, 1993
pp. 232-240.

[20] S. R. Chidamber and C. F. Kemerer, “Towards a Metrics Suite for Object-

Oriented Design,” Proc. Conf. Object-oriented Programming Systems,
Languages, and Applications (OOPSLA’91), vol. 26, No. 11, 1991, pp. 197-
211.

[21] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object-Oriented

Design,” IEEE Transactions on Software Engineering, vol. 20, No. 6, 1994,
pp. 476-493.

[22] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, “Managerial Use of

Metrics for Object-Oriented Software: An Exploratory Analysis,” IEEE
Transactions on Software Engineering, vol. 24, No. 8, 1998, pp. 629-639.

[23] B. Clark, “Eight Secrets of Software Measurement,” IEEE Software, vol. 19,

No. 5, 2002, pp. 12-14.

[24] P. C. Clements, “From Subroutines to Subsystems: Component-Based
Software Development,” American Programmer, vol. 8, no. 11, 1995.

 106

[25] P. C. Clements, L. Bass, R. Kazman, and G. Abowd, “Predicting Software

Quality by Architecture-Level Evaluation,” Proceedings of the Fifth
International Conference of Software Quality, Austinx, Tx, October, 1995.

[26] Component Source homepage, URL: http://www.componentsource.com,

February 2006.

[27] S. D. Conte, H. E. Dunsmorem, and V. Y. Shen, “Software Engineering

Metrics and Models,” Benjamin-Cummings Pub. Co., Inc, 1986.

[28] P. Coad and E. Yourdon, “Object-Oriented Analysis,” 2nd Ed., Prentice Hall,

1990, ISBN: 0136299814.

[29] P. Coad and E. Yourdon, “Object-Oriented Design,” 1st ed., Prentice Hall,
1991, ISBN: 0136300707

[30] T. DeMarco and P. J. Plauger, “Structured Analysis and System

Specification,” Yourdon Press, Prentice Hall, 1979, ISBN: 0138543801.

[31] T. DeMarco, “Controlling Software Projects: Management, Measurement,

and Estimation,” 1st ed., Englewood Cliffs, NJ: Prentice Hall, 1986, ISBN:
0131717111

[32] Dev Direct Website, URL: http://www.devdirect.com/Content/More.aspx,

February 2006

[33] E. W. Dijkstra, “Structured Programming,” Originally in a report on a

conference sponsored by the NATO Science Committee, 1969.

[34] A. H. Dogru and M. Tanik, “A Process Model for Component Oriented

Software Engineering,” IEEE Software, March/April, 2003, pp. 34-41.

[35] K. El Emam, “A Primer on Object-Oriented Measurement,” IEEE Metrics

2001, London, England, 2001, pp. 185-187.

[36] N. E. Fenton, “Software Measurement: A Necessary Scientific Basis,” IEEE
Transactions on Software Engineering, vol. 20. No. 3, 1994, pp. 199-206.

[37] N. E. Fenton and M. Neil, “Software Metrics: Successes, Failures, and New

Directions,” The Journal of Systems and Software, Elsevier Sciences, vol. 47,
1999, pp. 149-157.

[38] C. Chezzi, M. Jazayeri, and D. Mandrioli, , “Fundamentals of Software

Engineering,” 2nd ed., Prentice Hall, 2003, ISBN: 013099183-X.

[39] N. Gorla and R. Ramakrishnan, “Effect of Software Structure Attributes on
Software Development Productivity,” Journal of Systems and Software, vol.
36, 1997, pp. 191-199.

http://www.componentsource.com
http://www.devdirect.com/Content/More.aspx

 107

[40] R. B. Grady, “Practical Software Metrics for Project Management and

Process Improvement,” Prentice-Hall, 1992, ISBN: 0137203845.

[41] M. Halstead, “Elements of Software Science,” Elsevier Computer Science
Library, 1977, ISBN: 0444002057

[42] R. Harrison, S. J. Counsell, and R. V. Nithi, “An Evaluation of the MOOD

Set of Object-Oriented Software Metrics,” IEEE Transactions on Software
Engineering, vol. 24, No. 6, 1998, pp. 491-496.

[43] W. Harrison, “An Entropy-Based Measure of Software Complexity,” IEEE

Transactions on Software Engineering, vol. 18, No. 11, 1992, pp. 1025-1029.

[44] O. Helmer, “Social Technology,” Basic Books, NY. , 1966, ASIN:
B0007FBAWA

[45] L. Hellerman, “A Measure of Computational Work,” IEEE Transactions on

Computers, vol. c-21, No. 5, 1972, pp. 439-446.

[46] S. Henry and D. Kafura, “Software Structure Metrics Based on Information
Flow,” IEEE Transactions on Software Engineering, Vol. 7, No. 5, 1981, pp.
510-518.

[47] IBM International Technical Support Centers, Object-Oriented Design: A

Preliminary Approach-Document GG24-3647-00. IBM International

[48] I. Jacobson, “Object Oriented Software Engineering: A Use Case Driven

Approach,” 1st ed., Addison Wesley, 1992, ISBN: 0201544350

[49] Sun Developer Network (The Source for Java Developers), URL:

http://java.sun.com, February 2006.

[50] M. Keating, “Measuring Design Quality by Measuring Design Complexity,”

1st International Symposium on Quality of Electronic Design (ISQED 2000),
IEEE, San Jose, CA, USA, 2000, pp. 103-108.

[51] T. M. Khoshgaftaar and E. B. Allen, “Empirical Assessment of A software

Metric: The Information Content of Operators,” Software Quality Journal,
Kluwer Academic Publishers, no. 9, 2001, pp. 99-112.

[52] B. Kitchenham, “An Evaluation of Software Structure Metrics,” Proc. 12th

Int'l Computer Software and Applications Conf. (COMPSAC `88), IEEE,
1988, pp. 369-376.

[53] B. Kitchenham, S. L. Pfleeger, and N. Fenton, “Towards a Framework for

Software Measurement Validation,” IEEE Transactions on Software
Engineering, vol. 21, No. 12, 1995, pp. 929-944.

http://java.sun.com

 108

[54] B. Kitchenham and S. L. Pfleeger, “Software Quality: The Elusive Target,”
IEEE Software, vol. 13, no. 1, 1996, pp: 12-21

[55] B. Kitchenham, S. L. Pfleeger, and N. Fenton, “Reply to: Comments on

“Towards a Framework for Software Measurement Validation”,” IEEE
Transactions on Software Engineering, vol. 23, No. 3, 1997, pp. 189.

[56] B. Kitchenham, S. L Pfleeger, L. M. Pickard, P W. Jones, D. C. Hoaglin, K.

El Emam, and J. Rosenberg, “Preliminary Guidelines for Empirical Research
in Software Engineering,” IEEE Transactions on Software Engineering, vol.
28, No. 8, 2002, pp. 721-734.

[57] T. J. McCabe, “A complexity Measure,” IEEE Transactions on Software

Engineering, Vol. 2, No. 4, 1976, pp. 308-320.

[58] M. G. Mendonça and V. R. Basili, “Validating of an Approach for Improving
Existing Measurement Frameworks,” IEEE Transactions on Software
Engineering, vol. 26, No. 6, 2000, pp. 484-499.

[59] COM, COM+m and DCOM Architectures from MSDN Library, URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnanchor/html/componentdevelopmentank.asp, February 2006

[60] G. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits to

Our Capacity for Processing Information,” The Psychological Review, vol. 63,
1956, pp. 81-97.

[61] S. Morasca, L. C. Briand, V. R. Basili, E. J. Weyuker, and M. V. Zelkowitz,

“Comments on: Towards a Framework for Software Measurement
Validation,” IEEE Transactions on Software Engineering, vol. 23, No. 3,
1997, pp. 187-188.

[62] CORBA FAQ From Object Management Group (OMG) homepage, URL:

http://www.omg.org/gettingstarted/corbafaq.htm, February 2006

[63] R. Park, “The Central Equations of the PRICE Software Cost Model,” 4th

COCOMO Users’ Group Meeting, 1988.

[64] D. L. Parnas, “On the Criteria to be Used in Decomposing Systems into

Modules,” Communications of the ACM, Vol. 15, No. 12, 1972, pp. 1053 -
1058.

[65] G. Poels and G. Dedene, “Comments on Property-Based Software

Engineering Measurement: Refining the Additivity Properties,” IEEE
Transactions on Software Engineering, vol. 23, No. 3, 1997, pp. 190-195.

[66] C. Pons, L. Olsina, and M. Prieto, “A formal Mechanism for Assessing

Polymorphism in Object-Oriented Systems,” First Asia-Pacific Conference
on Quality Software, IEEE, 2000, pp. 53-62.

http://msdn.microsoft.com/library/default.asp?url=/library/en
http://www.omg.org/gettingstarted/corbafaq.htm

 109

[67] L. Putnam and W. Myers, “Measures for Excellence,” Yourdon Press

Computing Series, 1992, ISBN: 0963186809.

[68] R. S. Pressman, “Software Engineering A Practitioner’s Approach,” 6th ed.,

McGraw-Hill, 2005, ISBN: 007-123840-9

[69] T. Ravichandran, and M. Rothenberger, “Software Reuse Strategies and

Component Markets,” Communications of the ACM, vol. 46, No. 8, 2003, pp.
109-114.

[70] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, “Object-

Oriented Modeling and Design,” Prentice Hall, 1991.

[71] N. Salman, “Extending Object-oriented Metrics to Components,” Proceedings

of the Sixth Biennial World Conference on Integrated Design and Process
Technology, Pasadena, California, 2002.

[72] N. F. Schneidewind, “Methodology for Validating Software Metrics,” IEEE

Transactions on Software Engineering, vol. 18, No. 5, 1992, pp. 410-422.

[73] N. F. Schneidewind, “Software Metrics for Quality Control,” Proc. Of the 4th
international Software Metrics Symposium, IEEE CS Press, Los Alamitos,
CA, 1997, pp. 127-136.

[74] R. W. Sebesta, “Concepts of Programming Languages,” 7th Ed., Addison

Wesley, 2006, ISBN: 0321312511.

[75] S. Sedigh-Ali, A. Ghafoor, and R. A. Paul, “Software Engineering Metrics for
COTS-Based Systems,” IEEE Computer, vol. 34, No. 6, 2001, pp. 44-50.

[76] R. Seker and M. Tanik, “An Information-Theoritical Framework for

Modeling Component-Based Systems,” IEEE Transactions on Systems, Man,
and Cybernetics-Part C: Applications and Reviews, vol. 34, No. 4, 2004, pp.
475-484.

[77] C. E. Shannon and W. Weaver, “The Mathematical Theory of

Communication,” University of Illinois Press. 1949, ISBN: 0252725484.

[78] S. Shlaer, and S. J. Mellor, “Object-Oriented Systems Analysis: Modeling the

World In Data,” Yourdon Press: Prentice Hall, 1988, ISBN: 013629023X

[79] S. Shlaer and S. J. Mellor, “Object-Oriented Systems Analysis: Modeling the
World In States,” Yourdon Press: Prentice Hall, 1991, ISBN: 0136299407.

[80] J. E. Smith, “Characterizing Computer Performance with A Single number,”

Comm. of the ACM, vol. 31, no. 10, 1988, pp. 1202-1206.

 110

[81] I. Sommerville, “Software Engineering,” Seventh Edition, Addison Wesley,
2004.

[82] R. Subramanyam, M. S. Krishnan, “Empirical Analysis of CK Metrics for

Object-Oriented Design Complexity: Implications for Software Defects,”
IEEE Transactions on Software Engineering, vol. 29, No. 4, 2003, pp. 297-
310.

[83] C. Szyperski, D. Gruntz, and S. Murer, S., “Component Software - Beyond

Object-Oriented Programming,” 2nd Ed. Addison-Wesley / ACM Press.,
2002, ISBN: 0201745720.

[84] J. Tian and M. V. Zelkowitz, “Complexity Measure Evaluation and

Selection,” IEEE Transactions on Software Engineering, vol. 21, No. 8, 1995,
pp. 641-650.

[85] P. Vitharana, F. M. Zahedi, and H. Jain, “Design Retrieval and Assembly in

Component-Based Software Development,” Communications of the ACM,
vol. 46, No. 11, 2003, pp. 97-102.

[86] G. Visaggio, “Structural Information as a Quality Metric in Software Systems

Organization,” Proceeding of ICSM, 1997, pp. 92-99.

[87] D. A. Watt, W. Findlay, and J. Hughes, “Programming Language Concepts
and Paradigms,” Prentice Hall, 1990, ISBN: 0137288743

[88] E. J. Weyuker, “Evaluating Software Complexity Measures,” IEEE

Transactions on Software Engineering, vol. 14, No. 9, 1988, pp. 1357-1365.

[89] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, “Designing Object-Oriented
Software,” Prentice Hall, 1990.

[90] Wirth, N., 1971, “Program Development by Stepwise refinement,”

Communications of the ACM, Vol. 14, No. 4, pp. 221- 227.

[91] M. V. Zelkowitz and D. Wallace, “Experimental Validation on Software

Engineering,” Information and Software Technology, Elsevier Sciences, vol.
39, 1997, pp. 735–743.

[92] M. V. Zelkowitz and D. Wallace, “Experimental Models for Validating

Technology,” IEEE Computer, Vol.31, No.5, 1998, pp. 23-31.

[93] H. Zuse, “Criteria for Program Comprehension Derived from Software
Complexity Metrics,” Proc. of the Second Int. Workshop on Software
Comprehension, IEEE, Capri/Italy, 1993, pp. 8-16.

[94] H. Zuse, “Foundations of Object-Oriented Software Measures,” IEEE

Proceedings of METRICS’96, 1996, pp. 75-88.

 111

[95] H. Zuse homepage, URL: http://irb.cs.tu-berlin.de/~zuse/metrics/3-

hist.html, March 2006

[96] M. A. Jackson, “Principles of Program Design,”
Academic Press, New York, 1995.

[97] N. Salman, and A. H. Dogru, “Design Effort Estimation Using Complexity

Metrics,” Transactions of SDPS, 2004.

[98] ____, “IEEE Standard for a Software Quality Metrics Methodology,” IEEE

Std 1061, IEEE, 1998, pp. 1-20.

[99] J. M. Bieman,, L. M. Ott, “Measuring Functional Cohesion,” IEEE

Transactions on Software Engineering, Vol 20, no 8, 1994, pp. 644-657.

[100] D. P. Darcy, C. F. Kemerer, S. A. Slaughter, and J. E. Tomayko, “The

structural complexity of software: An experimental test,” IEEE Transactions
on Software Engineering, Vol 31, no. 11, 2005, pp. 982-995.

[101] N. S. Gill, and P. S. Grover, “Component-Based Measurement: Few Useful

Guidelines,” ACM SIGSOFT Software Engineering Notes, vol 28, no 6, 2003.

[102] N. S. Gill, and P. S Grover, “Component-Based Measurement: Few Important

Considerations for Deriving Interface Complexity Metric for Component-
Based Systems,” ACM SIGSOFT Software Engineering Notes, vol 29, no 2,
2004.

[103] N. Salman and A. H. Dogru, “Design Effort Estimation Using Component

Oriented Complexity Metrics,” Proc. of the Work in Progress Session 29th
EUROMICRO Conf. EUROMICRO 2003 and the EUROMICRO Symp. On
Digital System Design DSD 2003, Belek, Turkey.

[104] N. Salman, “Metrics and Metrics Validation Approaches for Component

Oriented Software Engineering,” Proc. of UYMS’05, Ankara, Turkey, 2005.
(In Turkish).

[105] N. Salman and A. H. Dogru, “Complexity and Development Effort Prediction

Models Using Component Oriented Complexity Metrics,” Proc. of Int. Conf.
on Software Product and Process Measurement (MESURA2006), Cadiz,
Spain, Nov. 2006. (Accepted for presentation and publication).

[106] M. Goulao, F. B. e Abreu, “Composition Assessment Metrics for CBSE,”

Proc. Of the 2005 31st EUROMICRO Conf. of Software Eng. And Adv.
Applications. EUROMICRO-SEAA’05. 2005

http://irb.cs.tu-berlin.de/~zuse/metrics/3

 112

[107] S. Mahmood, R. Lai, “Measuring Complexity of a UML Component
Specification,” Proc. Of the Fifth Int. Conf. on Quality Software (QSIC’05).
2005.

[108] R. D. Banker, S. M. Datar. C. F. Kemerer, and D. Zweig, “ Software

Complexity and Maintenance Costs,” Comm. Of the ACM, Vol. 36. No. 11.
1993.

[109] M. Lindvall, R. T. Tvedt, and P. Costa, “An Empirically-Based process for

Software Architecture Evaluation,” Empirical Software Engineering, 8, 2003.

[110] K. Qian, J. Liu, and F. Tsui, “ Decoupling Metrics for Services

Composition,” Proc. Of the 5th IEEE/ACIS Int. Conf. on Computer and Inf.
Sci. and 1st IEEE/ACIS Int. Workshop on Component-Based Software
Engineering, Software Arch. And Reuse (ICIS-COMSAR’06). 2006.

[111] D. Braha and O. Maimon, “The Measurement of a Design Structural and

Functional Complexity,” IEEE Trans. On Systems, Man and Cybernetisc-
Part A: Systems and Humans, vol. 28, no. 4, 1998.

[112] E. S. Cho, M.S. Kim , and S. D. Kim, “ Component metrics to measure

component quality,” Software Engineering Conference, APSEC 2001. Eighth
Asia-Pacific. 2001

[113] H. A. Simon, “Sciences of the Artificial,” MIT Press, Cambridge,

Massachusetts, 1969.

[114] R. R. Dumke and A. S. Winkler, “Managing the Component-Based

Engineering with Metrics,” Proc. of the 5th International Symposium on
Assessment of Software Tools (SAST’97), 1997.

 113

APPENDIX A

METRICS COLLECTION FORMS USED IN 2002 AND 2003

Number of people in the team:

Total person-hours:

Member 1 name: Person hours:

Member 2 name: Person-hours:

Total person-hours spent for modification:

person-hours for an average maintenance (correction):

Complexity of the Model:

Number of boxes (total- abstractions, components, interfaces..):

Number of Components:

Number of Interfaces:

Number of Connectors:

Number of event links:

Number of method links:

Number of methods:

Average number of methods per component:

Average number of input events per component:

Average number of interfaces per component:

Average number of methods per interface:

Maximum depth of the composition tree:

Maximum width of the composition tree:

Average NOC (Number of Children in the composition tree):

Average DCT *(Depth of composition tree):

Average CBC* (coupling = cardinality of methods called from outside):

Average RFC (Response for a Component):

Average Mean LCOM* (mean values averaged for Lack of Cohesion in Methods):

Please give a grade (5: strongly agree; 1: strongly disagree)

It was easy to model your problem using COSEML:

Your model is an understandable representation of the problem:

 114

Sample Metrics of a project Components

Component Name # of
Methods

of
eventsIn

of
interfaces

NOC DCT CBC RFC LCOM

WebSite 0 0 0 4 1 0 0 0
Accounting 0 0 0 1 1 0 0 0
Cargo 1 0 0 1 1 1 1 1
Inventory 1 0 0 0 1 0 1 1
Delivery 0 0 2 0 2 1 2 1
Register 0 0 2 0 2 0 0 0
Login 0 0 2 0 2 0 0 0
Search 0 0 3 1 2 0 0 0
Buy 0 0 2 0 2 0 0 0
Pay 0 0 3 0 2 0 0 0
Catalog 0 0 3 0 3 0 0 0
ShopCard 3 2 0 0 3 0 3 -3
CreditCard 0 2 0 0 4 0 0 0
Order 0 2 0 0 4 0 0 0
Product 0 2 0 0 4 0 0 0
CustDB 3 2 0 0 4 3 3 -3
ProdDb 3 2 0 0 4 3 3 -3
InventoryDB 3 2 0 0 4 3 3 -3
RegisterUI 2 2 0 0 4 3 5 2
LogUI 2 2 0 0 4 2 2 0
SearchUI 2 2 0 0 4 4 7 3
BuyUI 2 2 0 0 4 5 6 2
PAyUI 2 2 0 0 4 3 4 1

 115

APPENDIX B

METRICS COLLECTION FORMS USED IN 2005

Project title and brief description:

Total person-hours

Total person-hours spent for correcting design errors

Total person-hours spent for Integrating components

Complexity of the Model

Total Function Points (FP)

Total number of boxes (total- abstractions, components, interfaces..)

Total number of Components

Total number of Interfaces

Total number of Connectors

Total number of inter-component method links

Total number of methods

Depth of the structure tree

Component name and a brief description:

Total Person-hours (For designing this component and all of its
related elements only)

Total person-hours spent for correcting design errors (for this
component)

Total person-hours spent for Integrating the component to the
system (for this component)

Number of sub-components

Number of methods

Number of events

Number of interfaces

Number of methods per
interface

Number of methods called from outside

Number of Inter-Component method calls

Number of Intra-Component method calls

 116

VITA

Nael Salman was born in Nablus-Palestine on May 14, 1970. He received the B.Sc.

degree in computer engineering from Bogazici University (Istanbul-Turkey) in

July, 1995. He worked as an instructor in the department of Computer Software

and Databases in Palestine Technical College (Toulkarem-Palestine) between 1996

and 1999. In October, 2000 Mr. Salman started working as an instructor in the

Department of Computer Engineering at Cankaya University (Ankara-Turkey).

Mr. Salman received his M.Sc. degree in computer engineering from Middle East

Technical University (METU) in January, 2002. His research interests involve

software engineering, software measurement and metrics, component oriented

software development, object oriented software development, and database

systems.

