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ABSTRACT

A MEASUREMENT FRAMEWORK FOR COMPONENT ORIENTED
SOFTWARE SYSTEMS

Salman, Nael
Ph.D., Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Ali H. Dogru

November 2006, 116 pages

A measurement framework is presented for component oriented (CO) software
systems. Fundamental concepts in component orientation are defined. The factors
that influence CO systems dtructural complexity are identified.  Metrics
quantifying and characterizing these factors are defined. A set of properties that a
CO complexity metric must satisfy are defined. Metrics are evaluated first using
the set of properties defined in this thesis and also using the set of properties
defined by Tian and Zelkowitz in [84]. Evaluation results revealed that metrics
satisfy all properties in both sets. Empirical validation of metrics is performed
using data collected from graduate students projects. Validation results revealed
that CO complexity metrics can be used as predictors of development effort,
Design effort, integration effort (characterizing system integrabiltiy), correction
effort (characterizing system maintainability), function points count
(characterizing system functionality), and programmer productivity. An
Automated metrics collection tool is implemented and integrated with a dedicated
CO modeling tool. The metrics collection tool automatically collects complexity
metrics from system models and performs prediction estimations accordingly.



Keywords: Component Orientation, Complexity, Structural complexity, Metrics,
Metrics Automation.



0z

BILESENE YONELIK YAZILIM SISTEMLERI ICIN BIR OLCUM
CERCEVESI

Salman, Nael
Doktora, Bilgisayar Muhendisligi BolUmu
Tez Yoneticisi: Dog. Dr. Ali H. Dogru

Kasim 2006, 116 sayfa

Bu tez bilesene yonelik (BY) yazilim sistemleri icin bir 6lgim cergevesi
sunmaktadir. Bilesen yonelimindeki temel kavramlar agiklanmaktadir. BY
sistemlerinin  yapisal karmasikligimi etkileyen etkenler belirtilmektedir.  Bu
etkenleri  nicel ve nitel karakterlerini  tammlamaya yonelik  Olgitler
tanmmlanmaktadir. BY karmasiklik metrigininin gereklerini karsilayan ozellikler
tanimlanmaktadhr. Olgiitler iki kere degerlendirilmektedir: ilk degerlendirmede bu
tezde tammlanmus olan 6zellikler kulanildi. Ikinci degerlerndirmede ise Tian ve
Zelkowitz tarifindan tammlanmig olan karmasiklik 6lgit 6zellikleri [84] kullanildh.
Degerlendirme sonuclari, her ikisindeki oOzelliklerin gergeklestirildigini ortaya
koymaktadir. Olgiitlerin gorgil gegerligi yiiksek lisans 6grencilerinin projelerinden
toplanan veriler Uzerinde gerceklestirilmistir. Gegerlik sonuclart BY karmagiklik
OlcUtlerinin asagidaki parametreleri kestirim maksadi ile gelistirme sirecinde
kullanlabilecegini ortaya koymaktadir: Tasarim cabasi, entegrasyon cabasi (sistem
entegre edilebilirliginin karakterizasyonu), dizeltme cabasi (bakim yapilabilirlik
karakterizasyonu), FP (sistem islevselliginin karakterizasyonu), ve programci
Uretkenligi. Otomatik olclt toplama aract gerceklestirilmistir ve 6zgul bir BY
modelleme araci ile entegre edilmistir. Olglit toplama araci otomatik olarak sistem
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modellerinden karmasiklik olcitleri toplamakta ve ongort kestirimini buna gore

gerceklestirmektedir.

Anahtar Kelimeler: Bilesen yonelimi, Karmasiklik, Yamsal karmasiklik,
Olgiit , Olgiit Otomasyonu.
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CHAPTER 1

INTRODUCTION

Computers are every where; transportation, education, medical, governmental, and
several many other fields nowadays are highly dependent on computer systems
[68]. A Computer system is mainly composed of a hardware subsystem and a
software subsystem. The well functioning of a computer system is dependent on
the well functioning of both its software and hardware subsystems. While the steps
of building efficient hardware systems remain beyond the scope of this research,
we will focus on evaluating features of software system that can lead to the

production of efficient and cost-effective software.

Development of software systems starts with system specification, proceeds with
design which mainly comprises building models of the real world and approaching
system complexity by decomposition. After that comes implementation of the
specified models and system building blocks using a programming language that
has constructs supporting the specified models. The last step in the development
process is integrating or unifying the implemented and tested system building
blocks. The key to approaching system complexity, managing performance,
security, maintainability, and other important system features is decomposing the
system into smaller units or modules which will in turn be the system building
blocks [81]. Use of Abstraction, as the key to the identification of system building
blocks or components, has been of great interest to software developers since the
early days of software development. The earliest work started with process
abstraction which was not powerful enough to build large and complex programs.



Then appeared the data processing view, emphasizing function abstraction that
receives inputs when called, does processing in its body and yields a value as
output [74, 81]. Later, and more extensively, the object-oriented (OO) approach
appeared and introduced a different view of abstraction which encapsulates both
data and functions into its fundamental building block “the class’ which is a
collection of objects, and hides information from its clients. The class abstraction
allows building large and complex systems as hierarchies of objects [74]. Most
recently, the component oriented (CO) system development approach with software
component as its principal building block. The aim of breaking the system into
smaller units (functions, classes, or components) is to manage the complexity in the
systems following the widely known rule “divide and conquer”. While the
traditional approach focuses on functions, the OO approach focuses on data and the
CO approach focuses on structure [34].

1.1 Component Oriented Software Engineering

“Reuse, reuse, and more reuse until finally you can develop large software systems
by integrating already available components rather than writing code from scratch”.
This is the main objective of the so many research centers, software development
organizations, and software customers as well. Everyone involved in the software
system development process looks forward to having software systems more

rapidly built and are more efficient.

Building software systems by integrating already available components has not
been successfully used before the 1990s [83]. Commercials-Of-The-Shelf (COTS)
components, Component Based Software Engineering (CBSE), and Component
Oriented Software Engineering (COSE) are all terms referring to the new and
rapidly growing approach of software development that mainly focuses on building
large, and efficient software systems mainly benefiting from reusability and
composition rather than code writing. Although the terms CBSE and COSE are
used interchangeably most of the time in the literature they are different in their



entirety. The difference between these two terms is similar to the difference
between Object Based and Object Oriented development approaches. Dorgru and
Tanik [34] well-described the difference between CBSE and COSE as follows:
CBSE focuses on using pre-built components while the whole system can
be modeled using OO methodologies. That means CBSE considers components
only at the system integration phase. On the other hand COSE requires that all
stages of the development process must be component oriented. COSE suggests
that the analysis and design stages of the system must be CO in order to
successfully apply the idea of “build by integration rather than code writing”. In
this respect, traditional and object oriented paradigms fall into prescriptive category
where the idea is to write code;, all the leading phases are geared towards
organizing the way how code will be written. Component Oriented development
considers integration rather than code writing. Also, Requirements and Design
stages are supported with abstract and practical concepts that correspond to
components, rather than prescriptive structures such as classes, objects, or
data/control structures. Component Based development is a hybrid approach where
code writing is supported as well as the incorporation of components; pre-coding
stages, however, are prescriptive namely Object Oriented. The component related
activities in such an approach are more bottom-up, concentrating on the "wiring
level" techniques for the composition of components to the hybrid system. The
Component Orientation as supported in this study and the guiding references differ
mainly in the integration view, and the promotion of component concept as the
fundamental building block, in all phases. The component and its abstract level
representations are the focus of modeling hence rendering the concept as a
consistent structure from requirements to run-time, as classesare for Object

Orientation.

Clements [24] listed the main advantages of applying component technologies as:
e Reduced development effort
e Increased reliability and efficiency.
e Increased flexibility and many alternatives offered to choose from.
Clements [24] also discussed the main issues and difficulties in applying COSE as:



e Lack of standards describing ways of communications between components
coming from different environments.
e Component architectures and infrastructures should be identified

e Customers can receive no version support and evolution can be limited

Computer science and/or engineering departments in many universities initiated
research which shares a common objective of maximizing reusability and
minimizing code writing. The software industry practices related to components
can be put in two categories. While several market leading software development
organizations intensified their work on component platforms and component
technologies, other software development organizations focused on producing and

marketing components.

Microsoft is one of the leading organizations in creating component wiring
technologies.  Microsoft first created COM wiring technology which then
improved to COM+, DCOM, and ActiveX/OLE infrastructures, and lastly provided
a wider support for components in its .NET CLR framework which adds the
interoperation of COM+ and Windows platform access services [59 and 83]. Sun
is another market leading software developing organization that has very important
contributions to the component technology. Although some java applets can be
sold as separate components, it is difficult to generalize that on all applets [83].
The major contribution of Sun Java™ to the component technology was the
introduction of the java bean (a bean isreally a component) technology [49].

The Object Management Group (OMG) -a non-profit organization- is also working
on defining and developing infrastructure for the interoperability of objects at all
levels. OMG developed the Common Object Request Broker Architecture
(CORBA®), which was then refined in CORBA 1.1 and CORBA 1.2. CORBA2.0
marked a significant improvement over CORBA 1.x by enabling client portability.
CORBA infrastructure became mature only after the release of CORBA 2.0 which
was then followed by several successive version labeled as CORBA 2.x where each
version enhanced the version preceding it. Finaly, OMG released CORBA3.0



which marked a significant improvement on all previous versions and provided the
most support for component technology [62, 83].

On the other side, several software development organizations started developing

and marketing software components. Although several such organizations exist,

we will just list few such organizations. Our selection is pure subjective and does
not have an implication about quality, cost, technology, or any other aspects related
to the components developed or the developing organization:

1. Component Source: founded in 1996, produces components that serve several
disciplines such as accounting, data mining and databases, speech recognition,
image processing, CAD, web services, editing and word processing tools, and
several other disciplines [26].

2. Dev Direct: founded in 2003, Dev Direct is marketing components from a
variety of disciplines that work on amost all platforms. Dev Direct is an
intermediary between publishers and customers (software developers) [32].

The fast growth in the interest in CO software development in both academic and
business cycles is due to the several advantages it provides for building large and
efficient software systems. CO focuses mainly on integrating already available
components. Among the advantages of using component oriented software
development are: 1) economic necessity and saving in development costs, 2)
providing higher quality software, and more adaptable systems [9, 34, 75, and 83].

1.2 The need for Software metrics

Tom Demarco formulated the following about measurement “You can not control
what you can not measure” [38]. Tom De Marco best summarized what Lord
Kelvin (1824-1904), formulated about measurement “When you can measure what
you are speaking about, and express it into numbers, you know something about it;
but when you cannot measure it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind: It may be the beginning of



knowledge, but you have scarcely in your thoughts advanced to the stage of
science” Quoted from Zuse' s website [95].

Metrics can be collected at different stages of the software development process.
What metrics to collect and when to collect them is an issue that ill does not have
an agreed-upon answer yet. Hellerman supports that metrics are needed to
compare among different aternatives [45]. Software metrics have proven to be an
essential actor in the software development process and they are essential to have a
successful software development environment [58]. The most widely cited
viewpoints about the role(s) of software metrics can be summarized as follows:

Metrics can be used to build prediction models: El Emam [35] demonstrates that
metrics can be relied on to build predictions about software errors. He aso found
that prediction models of errors based on metrics have error rates of about 9%
while savings in maintenance costs reaches up to 42%. Mendonga and Basili [58]
emphasized that software measurement is needed to characterize, control, predict,

and improve software development, management, and maintaining processes.

Metrics help managers to make decisions: A lot of organizations (Software
Engineering Labs at NASA and HP) use metrics to make managerial decisions
related to resource distribution, cost estimations, and building defect and
productivity models[10].

Use of metrics increases productivity: It has been noticed that productivity in
software development is dropping with arate higher than that in any other industry;
it is estimated to have dropped by 10% from the year 1990 to the year 1995. The
most important reason behind this is the lack of benchmarks to make comparisons.
Productivity is found to be highly affected by the degree of connectivity which isa

measure of coupling [7].

Metrics can decrease software defects: Grady in his book about software metrics
[40] presented a generalized discussion of software metrics. He stated that good
metrics programs can decrease software defects by 50-75%. Grady, discussed

6



some of the widely known metrics such as Cyclometic complexity [57] and
concluded that it is hardly worth the effort since it is derived from the code. He
suggested that metrics that are collected before the code is ready can be of higher
value. Defects found during inspection before the code is complete cost less than
one tenth of those found after the system delivery and furthermore affect negatively
the reputation of the organization. This follows the famous saying “ Prevention is

better than cure” .

Metrics can be used as quality indicators: Schneidewind defines a metric as a
function whose inputs are software data, and its output is a numerical value that
describes the degree to which software possesses does or does not possess a given
quality aspect [73]. Blundell et al. [12] related software metrics to different quality
factors and found that design metrics can be used to: 1) evaluate current levels of
software design qualities within the project, 2) decompose the problem into an
acceptable set of components, and 3) identify the critical parts of the design [12].
Basili and his colleagues [10] provided empirical evidence that object-oriented
design metrics can be used as quality indicators.

Metrics may not accurately build prediction models. Fenton and Neil describe
two classes of software metrics; classical metrics that describe software attributes
using numbers and the other group of metrics which are used to predict external
features like cost and quality of software. The authors also stressed that one of the
major problems in the field of software measurement is the weak links between
industry practices and current research [37]. The authors also claim that
complexity and size measures are not enough to predict software defects
accurately. This viewpoint has been proven to be inaccurate through empirical
researches including the one described in this thesis.

1.3 Motivation

As new technologies appeared, engineering approaches to utilize them lagged in
the history. OO methodologies appeared years after OO languages. Similar
phenomenon is valid today, for CO approaches. There are many component-based

techniqgues and methods, and even some claimed to be Component Oriented.
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Nevertheless, they fail to be fully CO. Although this avenue may be crucially
important, a complete orientation towards components is missing that suggests a

paradigm shift in software development.

The metrics-based tools proposed in this dissertation claim to be instrumenta in
enabling software development strategies of the possible near future. The targeted
orientation demands substantial improvement over existing software development
practices. For the new paradigm, that is “Build by Integration,” components only
appeared as enabling technologies. Including many component related approaches,
existing methodologies suggest different pre-coding activities for the similar goal:
code development. The CO understanding supported in this dissertation, however,
promotes development through integration of existing code components rather than
code writing, which isamost denied as part of the lifecycle.

Software Engineering has evolved with duplicating the hard engineering discipline
experiences in its infancy (such as through Waterfall Lifecycle). It progressed
through peculiar practices owing to the different nature of the intangible software
artifact. Before maturity, software practices are again turning back to hard
engineering disciplines for possible exploitation of the proven successes.
Component ideas, Software Product-line Engineering, and even Automated
Software Factories are example concepts for such a trend.

Given the size and complexity of the software systems in an ever-expanding market
of demands, it is aready very difficult and it may soon become impossible to
generate code, one line at atime for practical sizes that are tens of millions of lines.
Other engineering disciplines are also moving to a higher-level of component-
based integration due to the trend toward value-added chains where every company
only contributes with its core-competency artifact — what it is best at. Considering
the risky business of code development and also the fact that al kinds of
algorithms have been coded before, the charm of re-inventing the wheel further
reduces. Of course for some cases code can be developed; we did not discard

teaching multiplication after the invention of hand-held calculators. Software



industry needs urgently to move forward for less risky and bigger product assembly
in shorter time periods.

That is why it is believed that the near future for software engineering will be
dominated with the Build by Integration paradigm. To comply, the component
orientation approach that solely models components, their abstractions, and
integration is adopted. This orientation is a new understanding that not only
leverages on component technologies, but also introduces a more natural design
cognition that could be applied without components. Components are handy
because they make it possible to divide and conquer the problem definition on
“structure” basis, being supporting technologies that are developed with the
consideration of integration. Structure, being the most suitable one among the
three fundamental design dimensionsthat are data, function, and structure, makes it
easier to design bigger systems. The suitability is due to its being closest to a
tangible nature, when compared to data or function: they correspond to pieces of
code that is already functioning. So for complex problems now we have modules
that play very well along divide and conquer strategy. COSE also suggests this
decomposition should be hierarchical, based on Simon [113] design principles.

It is also possible to follow the COSE methods to develop code without
components. Of course, more benefit is expected for the cases where fine
gpecification of the code is not to be manipulated. A kind of an architectural look
to the holistic view should be maintained where the system is modeled as a
decomposition in a structural hierarchy. The procedural details of modules (that
replaces components in this case) can be left to any existing approach: OO or even
traditional. The immediate suspicion about the validity of such a paradigm shift
could be concerning the nature of the new model: This way, systems have to be
suitable for viewing them as looser coupled networks of “code islands.” However,
for complex systems such a view is a necessity, reminding us about the
fundamental design principle: cohesion. Keeping in mind the real difficulty in
traditional development being the integration, and even in modern approaches
composing huge systems, rather than coding the integrals of a defined module, this

new approach seemsto be the answer.



Most of the component related methods can be classified to be placed in the
“wiring level.” In other words, relatively lower-level technologies are devised for
the easier integration of components that are already defined for protocols that
support even run-time integration. The missing view is the one that should guide
the developers once a huge system is requested. There are very few academic
studies that suggest components as an orientation rather than being OO and
allowing components to be accommodated. They however, miss the holistic view,
and the simplicity that comes with the persuasion that code is not to be developed.
Unfortunately, there has been minimal improvement in the literature, after the
introduction of the idea in 2003 due to the difficulties in testing the paradigm. A
big software company has to accept to employ the methodology that is yet
experimental, for a huge project. Also, a complete test can only be possible after
the availability of a matured set of components in the application domain.
However, it is hoped that the component technologies and the demand in the
software industry will both develop in the direction that will enable a similar

methodology to come to practical life.

The metrics and measurement mechanisms proposed in this dissertation are
important because they support aradically different way of developing software. 1f
the industry adopts Build by Integration, COSE related methodologies will be very
important, together with many dimensions of a methodology, metrics and
measurement being among the important ones. This study is being accompanied
with other theses work in an effort toward defining different directions of such
approaches. As a summary, the mechanisms will make it possible to estimate and
measure various process and product properties related to software development,
where a software system is viewed as.

1. A decomposition of structural abstractions,

2. Connections among abstract and physical components, and

3. Integration of physical components.

So far, existing metrics approaches have been proposed for function (traditional)
and data (object oriented) centric software models only. Component related work
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is still mostly Object Oriented and available metrics tools are a derivation of related

OO techniques.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows: Chapter 2 presents a survey of the
literature of software engineering, software metrics, and metrics evaluation
approaches. Chapter 3 introduces a layered approach for quantifying component
oriented software system using metrics collected from the design documents of
these systems. Chapter 4 describes a new set of CO complexity metrics properties.
The metrics presented in chapter 3 are evaluated and validated in Chapter 4.
Chapter 5 discusses the need for metrics programs automation. Also, an automatic
metrics collection tool is introduced. Chapter 6 presents a summary of the most
significant concluding remarks, comparison of the obtained results with results
obtained in similar works, and potential extensions of the current study.
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CHAPTER 2

BACKGORUND INFORMATION

2.1 Foundations of Software Engineering

Software engineering is the engineering discipline that focuses on methods,
techniques, and procedures for building large and complex software system in a
cost-effective manner [38, 68]. The term software engineering was first used in
1968 in a NATO conference that was held to discuss what was known as the
software crisis [81]. The need for software engineering emerged after the
introduction of computer systems embodying integrated circuits. Informal methods
of software development developers were not enough to build large and complex
systems and resulted in delayed deliveries and failed projects [68].

Work on software engineering methods has been progressing rapidly during the
past three decades. During the 1970s and early 1980s software engineering
research was intensified mainly on function-oriented methods. Those methods
were mainly attempting to identify the system building block which was mainly
functions. Among the earliest software engineering methods was the work of
Dijkstra “Structured Programming” [33] where he defined the term structured
programming and emphasized that well-structuredness of the code is as important
as producing the correct answer and prevent errors. Parnas described the
fundamentals of modular programming and introduced the concept of information
hiding as the principle through which a system can be divided into modules [64].
In 1971 Niklaus Wirth described one of the earliest formal software development

processes in his work "Program Development by Stepwise Refinement” [90].
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Jackson described a method for program design based on data structures and
program flows [96]. In 1978 Demarco provided a detailed methodology for
structured programming (Structured design and structured analysis) [30]. While
several other researches appeared after then, one of the most remarkable is the
spiral model which forms the basis for evolutionary software development by
performing risk analysis at each stage of the development and making use of
software prototyping [14].

Object oriented methods started to appear late in the 1980s especially after the wide
adoption of C++ (very widely used powerful object oriented programming
language). Several OO methodologies have been developed and presented in
published papers and/or books. The most widely used OO oriented methodologies
include: Shlaer and Mellor [78, 79], Coad and Y ourdon [28, 29], Wirfs-Brock et a
[89], Grady Booch [16], IBM [47], Rumbaugh et al [70], and Jacobson OOSE
methodology [48]. Lastly, and at around 1995 Jacobson unified his work with
Booch and Rumbaugh and developed the unified modeling language (UML) which
in 1997 became the standard object oriented methodology used everywhere.

2.2 Foundations of Software M easurement and Metrics

While some prefer to distinguish between the terms measure and metric, the terms
are mostly used as synonyms in the literature. Following from that, the terms
software metrics and software measurement are used interchangeably most of the
time. Inthe early days of software development people used to argue whether it is
necessary to measure software products or not. Nowadays the question has
changed from whether to measure or not to “how to measure?’ So, software
measurement has become a fundamental activity of any software process.

Work on software metrics followed two different tracks. In one track metrics are
estimated simply by directly counting some features or by performing simple
arithmetic. In the other track information theory principles and mainly the concept
of entropy are used for measuring software system complexity. In the following
sections the mostly widely cited works in both tracks are briefly described.
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2.2.1 Direct Counting Approach of Software Metrics

In the direct counting (simple) approach of software measurement, metrics that
guantify some aspects of the software product like (size, complexity, connectivity,
functionality, etc..) are estimated by counting some attributes or performing simple
arithmetic.  Following this principle, several metrics for traditional software
systems, object oriented software systems, and component oriented systems have
been proposed, evaluated, validated and practically applied and proved to be
successful.

2.2.1.1 Metricsfor Traditional Software

Early measures focused mainly on size of the product. Number of lines of code
(LOC) may be considered as the earliest measure of software size or the earliest
measure ever used for software systems. LOC, athough being used very
frequently and very easy to count, still has several drawbacks. Among them are: no
single definition to what a line of code is; whether to count the number of
executable statements or the number of physical lines. In some programming
languages it is possible to have several executable statements in one single lineg;
comments can also be included. Counting physical lines can easily lead to

confusing results.

Halstead's work [41] is considered as one of the earliest researches that aimed at
guantifying software system complexity. It formed a strong basis from which most
of the research in software measurement was derived. Need for enhancements to
what Halstead introduced are due to the advancements in software development
approaches and paradigms i.e. the object-oriented and most recently the component
oriented paradigms. Halstead identified aspects of software (software programs
were mainly algorithmic based) that can be measured as:

e Number of distinct operators

e Number of Distinct operands
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e Total occurrence count of operators
e Tota occurrence count of operands

e Frequencies of occurrences of operators and operands

After obtaining estimates for the mentioned aspects, Halstead introduced formulas
using these estimates to evaluate Program Length, Program Vocabulary, and
Program Size. Using these, Halstead presented a method for estimating
programming effort. Halstead's work also has its reflections to modular
decomposition process.

McCabe presented another striking effort in software complexity evaluation by
introducing the Cyclometic complexity measure [57]. Cyclometic complexity has
been and till is a very important means for evaluating complexities of software
artifacts. McCabe suggests a graphical representation of the program and then
estimates program complexity as the number of linearly independent cycles in the
graph. Cyclometic complexity is calculated as:

V(G)=e—-n+p
Where e is the number of edges, n is the number of nodes and p is the number of
digioint graphs. The main benefit of cyclometic complexity number isto determine
the number of distinct paths in an algorithm graph representation which is used to

determine the number of test cases to be used.

Researchers working in the field of software measurement have focused on
measuring the degree of interactions between different system components and
derive relationships between the values of interconnectedness and other product
and process aspects like maintenance effort, testing effort, development cost, defect
density, and other important product and process features of interest. One of the
earliest works in this field was that of Henry and Kafura [46]. They developed
measures to assess the degree of interactions between software system modules.
One of the important features of these measures is that they can be obtained early at
the design stage when it is possible to determine problematic modules before
implementation and redesign them. The two basic measures introduced are fan-in
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and fan-out. Fan-in of a procedure (a procedure is the fundamental module in
Henry and Kafura approach due to the fact that structured programming languages
in which procedure is the fundamental decomposition entity) is the number of local
flows into a procedure “A” plus the number of data structures from which
procedure “ A" retrieves information. Fan-out of a procedure is the number of
local flows from the procedure plus the number of data structures which the

procedure updates.

From fan-in and fan-out estimates, a measure of procedure complexity can be
obtained as:
Length * (fan-in * fan-out)> where length is the number of lines of code of a

procedure.

Albrecht and Gaffney introduced the function points (FP) [4] measure of software
functionality which is independent of the programming language used (FP count is
interpreted as a measure of size by some researchers in the field). FP's can be
estimated by counting the number external inputs and outputs, number of user
interactions, number of internal files, and number of external interfaces. After
counting these attributes, a weighing process is carried out for each item. The
weighting factor values vary from 3 to 15 depending on the degree of the
complexity of the weighted item. Items are considered to having simple, average,
or complex weights. Then, items are multiplied by their weighing factor. A
single complexity value can be obtained from a specific combination of these
counts. The initial estimate of function points produced the so-called unadjusted
function points (UFP). UFP can further be modified by considering other attributes
of the system. Adjusting function points takes into consideration attributes like
performance, distribution, reuse, and some other factors as well.

2.2.1.2 Metricsfor Object Oriented Software

The decade of 1980’'s witnessed the real birth and wide adoption of the object-
oriented software development paradigm. Due to the new concepts and units of
abstractions, the object-oriented paradigm required a different approach towards
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metrics as well as it required a different approach of problem decomposition and
integration. One of the earliest and widely accepted object-oriented software
complexity measures was the metrics set introduced by Chidamber and Kemerer in
their work described in [20 and 21]. The metrics set later started to be known as
the CK metrics set named after the developers initials. The CK metrics set defines
six different metrics that give numerical estimations of different features of the
class and class interactions. These metrics and their definitions as given in the
original papers[20, 21] are:

Weighted Methods Per Class (WMC): The sum of the complexities of all methods
of a class.

Depth of Inheritance Tree (DIT): The maximum length from the node where the
classisin the inheritance hierarchy, to the root.

Number Of Children (NOC): Number of immediate subclasses subordinate to a
classin the class hierarchy.

Coupling Between Object classes (CBO): the count of the number of classes to
which aclassis coupled.

Response For a Class (RFC): the set of methods in the class plus the set of methods
called from the methods of that class.

Lack of Cohesion in Methods (LCOM): the count of the “ method pairs’ whose

smilarity is O minus those whose similarity is not O.

CK metrics set is not free of criticism. The most widely argued metric from the set
isthe LCOM metric where no interpretation explanations are given to the possible
negative values that can be obtained. On the other hand, it is important to admit
that the CK metrics remain the most widely used and referenced object-oriented
design metrics. Recently, several automated collection tools of CK metrics have
been implemented and commercially used.

Several researches tackled CK metrics to detect their benefits from managerial and
technical perspectives. Subramanyam and Krishnan [82] considered a subset of
CK metrics (WMC, DIT, CBO). The outcomes they obtained revealed that a high
correlation was found between these metrics values and defect rates found during
acceptance testing. Chidamber et al. [24] found relationships between the CK

17



metrics values and Productivity, Design Effort and Rework Effort. High levels of
coupling and low levels of cohesion were associated with low productivity, greater
rework, and greater design effort. = The CK metrics have been empirically
evaluated to detect whether they have any power in discovering error proneness
classes. The results obtained were of interest to those who believe in metrics as
quality indicators. High error rates were associated with high WMC, DIT, CBO,
and RFC values. High values of NOC led to low probability of fault detection.
Although cohesion is a deemed design feature, LCOM appeared to be insignificant.
This can be attributed to the definition of the LCOM metric. Basili et al. [10]
suggest that CK metrics, in general, can be used as good indicators of fault

proneness.

Encapsulation and polymorphism are two among the very important object-
oriented principles. Encapsulation and Polymorphism measures have not been
considered in CK metrics set. Pons et al. [66] tackled polymorphism in object-
oriented systems. They introduced three definitions for three different levels of
polymorphism as follows:

Polymor phic methods: if they have same name and same signature.

Polymorphic Classes: if they define the same polymorphic methods.

Polymorphic hierarchies: if all of its classes share a core interface where a core
interface is a set of polymorphic methods.

The interesting outcome from this work is that the higher degrees of polymorphism
were associated with higher degrees of readability, extensibility, and
maintainability.

Another widely discussed object-oriented metrics set is the MOOD set [2]. The
MOOD set introduced six metrics to measure aspects of inheritance, encapsulation,
and coupling. The MOOD set has been tackled by several researchers later,
namely the work of Harrison et al. [42] where they showed that the MOOD set can
be used as an aid in the management process of software systems and can give an
overall assessment of the system. They also suggest that the MOOD set can work
efficiently at the system level and can be applied complementary to CK metrics
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which are more efficient at class level. The MOOD set has been theoretically
evaluated and empirically validated to be of valuable managerial use.

Chen and Lu [19] introduced object-oriented metrics to measure complexities of
operations, arguments, classes, and class interactions (couplings), and class
hierarchies. Chen and Lu stated that it is possible to obtain very different regression
models based on data from different data sets.

2.2.1.3Metricsfor CO Software

We have seen earlier that the CO software development requires a new approach
towards development. Due to that, it also requires a new approach towards
measurement. Thisisa natural consequence since new concepts are introduced and
system building blocks have changed. The principal unit of abstraction is the
component rather than the class in the OO approach and function in the traditional
approach. Components provide services through their interfaces.  Several
components may communicate to provide some service(s). Metrics for CO
systems should mainly focus on the communications between components [76].
Several challenges face researches in the field of CO metrics. One of the most
important challenges is the unavailability of source code to examine and use in
metrics validation. Lack of experimental data makes the process of developing and
validating metrics for CO oriented systems a difficult task to achieve [76].

A review of the metrics literature reveals that very little serious CO metrics existed
before. That is of course due to the fact that CO software development is relatively

new. Also, in al other approaches (Traditional and OO), first development
methods and methodologies are defined then metrics are presented accordingly.

2.2.2 Information Theory Based Software Metrics

Entropy is the fundamental concept of information theory that attracted researches
in the field of software measurement. In communication systems Entropy
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corresponds to the relative degree of randomness. The higher the entropy value, the
higher the possibility of errors in the system. Shannon and Weaver found that
entropy of a system is usually related to and evaluated based on the information
content of that system [77].

The information theory-based approach or, as it is mostly called, the entropy-based
approach of software metrics tried to benefit from the definition of entropy (the
degree of uncertainty) to quantify some aspects of software products. This
approach did not receive interest as much as the simple (direct counting) approach.
Also, most of the proposed entropy-based metrics sets have not been empirically
validated. In industry practices entropy-based metrics do not have a significant
contribution as well. The most widely known entropy based metrics for traditional
software, object oriented software and component oriented software are briefly
outlined in the following paragraphs.

Entropy and amount of information in a communication system can be defined as
follows. Let X be a discrete random variable taking a finite number of possible
values xi, Xz, .., Xn With probabilities p;, p2, ..., pn respectively such that pi>0, i =
12, ... n,and > p, =1. We attempt to arrive at a number that will measure the

amount of uncertainty and it is obtained as:

H. (P Pose-s Py) = z p.h(p,) Where h(p;) isthe entropy of x; with probability p;

i=1

Thus H,.(p,, p,.---, P,) IS the average uncertainty removed by revealing the value

of X. This definition of entropy has been applied in software measurement mainly
to obtain a numerical estimation of the average information content of a software
module. Also, entropy-based metrics have been used to measure the flow of
information between system modules/components and overall system complexity.

One of the earliest attempts to obtain measures of some software aspects using
entropy is presented by Hellerman [45]. Hellerman described an entropy-based
estimation of the computational work of a boolean transformation. Hellerman's
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measures may be used to compare the advantages of several aternatives of a
process implementation.

Allen et al. [5] developed measures for inter-module coupling, intra-module
coupling, and the degree of cohesiveness of a module. All of those measures are
based on the information content of the module. The metrics were evaluated using
coupling and cohesion metrics properties described in by Briand et al. [17]. The
metrics have been empirically validated using industrial projects data. The results
of the validation revealed that these entropy-based metrics are finer grained relative
to similar normal counting based metrics.

Harrison [43] presented information theory based estimation of program
complexity where the text of a program is considered as a message that is mainly
obtained by observing occurrences of special operators. Harrison stated that
“complexity of a program is inversely proportional to its information content”.
The results obtained by Harrison have demonstrated some practical power and have
been tested on commercial applications. The results of applying Harrison metrics
revealed that information content of a program isrelated to error frequency.

Ned Chapin developed an entropy-based metric that measures the complexities of
interactions in COTS based systems and focuses mainly on messages flowing in
and out of the system [18]. A similar work is presented in [51] which describe

entropy based measures of size, length, complexity, coupling, and cohesion.

Abd-El-Hafiz presented an approach for deriving entropy-based software
complexity measures [1]. Her approach focuses on function calls (in procedural
languages) or method invocations (in object-oriented languages). Abd-El-Hafiz
suggests that a system s can be represented as a set of elements E and Relationships
R such that for any E, in E, and Ry, in R, then <E,, Ry> is a module of s.
Empirical validation of the metrics and their effects on understandability,

maintainability, and reliability was left as an open research problem.

One important contradictory point related to entropy based metrics is the
interpretations of the relationship between the terms complexity and entropy.
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While some findings relate increased complexity to increased entropy, other works
found that complexity is inversely proportional to entropy.

2.3 Metrics Evaluation and Validation Approaches

Metrics that are developed are of little value unless they are validated and
examined against measurement theory rules and principles. Also metrics should be
validated with real projects to check whether they meet the initial assumption of
their development. Different approaches to evaluate and validate metrics have
been described in the literature. We briefly describe the most widely cited worksin
this respect.

Blundell et a. [12] argue that software metrics so far has failed to precisely
evaluate software quality due to: 1) Measured attributes are not clearly identified,
2) metrics are created before examining their relevance, and 3) metrics are not
objectively validated.

Alsharif et al. [6] stated the main objective as. Inter-module complexity resulting
from interactions between system models should not be larger than that of the
original problem complexity before decomposition. Basili et al emphasize [10]
that it is important to note that not every theoretically correct metric will have
practical relevance to the problem in hand.

Briand et al. [17] suggest that the first step in developing software metrics
programs is identifying classes of software characterization measures. The authors
defended that most of the inconsistencies and incomplete works in software
measurement field are due to the different understandings and interpretations of the
terms that are frequently handled like; size, complexity, cohesion, coupling, etc.
They proposed a specific set of properties against which the related concepts can be
evaluated. Each concept is evaluated against its property set. Size is evaluated
against size properties; complexity is evaluated against complexity properties, and
so on. The authors considered as examples, several previously developed and
widely known measures like Halstead's metrics [41] where they suggested that
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length and size [41] of a program are measures that fall in two different categries.
While size is additive, length of a program is not. The cyclometic complexity [57]
was evaluated against complexity measure properties and failed to satisfy all
properties of complexity measures asthey are defined in[17]. CK [21, 22] metrics
also were evaluated and found not to be complexity metrics. CBO metric of CK
satisfies the properties of a coupling measure and RFC metric satisfies the

properties of size and coupling measure properties.

Poels and Dedene [65] wrote some comments on [17]. The first of their critisizms
is that Briand et al. did not state that their properties of measure are enough to
validate. Second, some more properties are needed to be identified for different
atributes. Third, the definitions of the additivity and connectivity properties are
inconsistent and have some contradictions.

Mendonca and Basili [58] show that a good measurement framework is one that
measures all the software aspects needed to achieve the user goals consistently, and
measures only what is needed but not more. They identified the key componentsin
any measurement framework as: metrics and attributes, data, users of data, and
usage of data. They also suggest the use of GQM paradigm [11] to achieve these
purposes which can be summarized as follows:

- Definegoals

- Refine goals a set of questions that can be measured

- Find metrics implied by questions.

Kitchenham et al. [53] presented an embracing work towards developing validation
approaches of software metrics. The authors claim that research in software
engineering lacks formality and compared to other engineering disciplines software
engineering is still immature. The measurement framework proposed focuses on
identifying the aspects of a software system to measure and the properties of these
aspects, defining these aspects while developing measures, and lastly identifying
the validation scheme to be applied. The validation framework steps can be
summarized as follows:

- ldentify entities, attributes and their relationships.
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- ldentify units, scale types and their relationships. Distinguish between
compound and scalar units.
- ldentify values (numerical or not). Permissible and not permissible values
- ldentify measurement instrument and calibrate it.
- ldentify measurement protocols. Where a protocol must enable us measure a
specific attribute on a specific entity consistently and repeatedly.
- Distinguish between direct and indirect measures.
Validation of a metrics program means proving that all items listed above are valid.
Morasca et a [61] have gtrictly criticized the paper as misinterpreting Weyuker’'s
properties [88].

Kitchenham, Pfleeger, and Fenton [55] partially accepted that they did a mistake in
evaluating Weyuker’s properties but insisted that Weyuker properties can not be
satisfied simultaneously by any useful measure and Weyuker properties 5 and 6 are
not relevant to a single view of complexity. In another work Kitchenham et al [56]
proposed a set of valuable guidelines that researcher working in the field of
empirical software engineering can follow to empower their research and validate
their results.

Weyuker [88] presented nine properties a complexity metric must posses in order
to be considered as a good complexity metric. Weyuker properties have been used
by several researchers [21, 71] and others as the main validation criteria of their
metrics. Weyuker’s properties have also been criticized by Kitchenham et al [55]
as not being relevant to a single view of complexity. Zuse [93] claims that two of

Weyuker’s properties are inconsistent.

Tian and Zelkowitz suggest that a measure must compare between a component
and a composite program [84]. The interesting outcome here is the authors claim
that complexity of a software system can be less than the complexity of any of its
components [84]. This outcome is interesting since it almost violates the majority
of software complexity views observed in the literature.
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Zelkowitz and Wallace [91 and 92] stressed that data collection is the key activity
in software experimentation. They also suggested experimentation methods can be
grouped into three classes as: Observational where data is collected as the project
develops Historical which depends on data from projects that have been
completed, and Controlled provide for multiple instances of an observation to
statistically validate the results. The authors surveyed all papers published in IEEE
Transactions on Software Engineering for the years 1985, 1990, and 1995 and
found that all the papers that exhibited experimentation followed one of the
presented methods.

Schneidewind [72] suggested that a metric is valid if its values can be shown/have
been shown to be statistically associated with some corresponding quality factor.
Schneidewind described an approach for relating metrics validation to quality
functions. Quality can be controlled by metrics if the metrics have discriminative
power and is capable of tracking changes. Also, quality can be controlled by
metrics if metrics have the predictability property. Repeatability property is
necessary for any metric to be used in any quality function. A metric can be valid
if we can establish a statistical relationship between that metric and some quality
factor and make sure that the metric provides a correct estimate of the intended
attribute [73].

Fenton introduced the necessary basis for measurement in software engineering,
guidelines and rules to follow, and tips to avoid [36]. There are two types of
measurement: Direct and indirect. While direct measurement of an attribute does
not depend on the measurement of any other attribute, indirect measurement
involves the measurement of one or more other attributes. Measurement can be
used for both assessing the software quality and predict its future behavior. The
first thing we need to do in a measurement program is setting our objectives, why
we measure? To assess or predict! What attributes should we measure? To answer
the later question we need to first identify our entities and their attributes. Then,
we need to determine how to signal an attribute as measured. We also have to keep

in our mind that there is no single number to characterize every aspect of quality.
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Zuse has presented the foundation of object oriented measures properties [94] and
evaluated CK [21, 22] against these properties.

Kitchenham [52] performed an experiment to examine the validity of structural
metrics fan-in and fan-out [46] from a practical perspective and detect whether they
can predict change-prone and error-prone modules at early stages of the
development. The results of the experiment revealed that these metrics are not
good quality predictors but are good to use for project control activities,

Clark presented eight issues and identified them as the secrets in software
measurement [23]. The most important of these are: we have to make well-use of
data coming from measurement activities; we need to know that applying metrics
require cultural change to the organization since people may resist metric
application, and variability in data provides a powerful decision tool.

| EEE standard [98] for software quality metrics methodology outlines the steps of a
software metric program as:

- Establishment of software quality requirements

- ldentification of software metricsto be used

- Implementation of metrics

- Resultsanalysis

- Validation of metrics: Do the empirical results coincide with the initial

assumptions? It is not necessary to obtain universally validated metrics.

2.4 Different Views of Software Complexity

Software complexity has been interpreted in completely different manners by
different authors. While some related complexity to size others related complexity
to understandability and readability. According to the view of complexity
described by Briand et a [17] Cyclomatic complexity [57] is not a complexity
measure, the fan-in and fan-out measure of [46] is a complexity measure and all of

CK [21 and 22] metrics are not complexity measures.

26



Tian and Zelkowitz [84] considered software complexity as the aspect of software
that is used to predict external properties of the program (reliability,
understandability, maintainability) using internal measures like cyclomatic
complexity [57] or Halstead’s measures [41]. They also suggest that complexity of
software is measured to make choices between functionally equivalent solutions
[84].

Almost everyone involved in the software process agrees that software complexity
must be managed to ensure the development of efficient and cost effective software
systems. The main problem in managing software complexity is the existence of
too many different interpretations of the term complexity. Mainly, “Divide and
conquer” is the strategy that is followed by software developers to manage
complexity [30, 33, 50, 64, and 90]. Alsharif et al. [6] introduced a method for
evaluating the complexity of a module, inter-module complexity, and the
complexity of the whole system. Although there is no consensus on what software
complexity means it is generally accepted that decomposition reduces complexity.
New complexity will be aresult of the inter-module connections.

It is globally accepted that decomposition, without going into the details of how to
decompose, is the means for well-controlled complexity. We will present a
summary of the different views of software complexity as they appear in the
literature.

Zuse considers complexity of software as some measure of the mental effort
required to understand that software [93]. According to Zuse, the complexity of a
system design can be estimated as a function of the relationships among all of the
external interfaces of the product. Complexity of architecture is a function of the
relationships among subsystems and complexity of a module is a function of the
relationships/connections among program instructions [93].

Visaggio introduced a layered approach to defining software complexity. Visaggio
described three levels of software complexity [86] and defines internal complexity
as the degree of difficulty of understanding the system through its code, intrinsic
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complexity as the degree of interconnectedness, and variety of implemented
aspects, and external complexity as the relative difficulty of understanding a
program with the availability of its documentation.

The principal tool for managing complexity is hierarchical decomposition and then
complexity will be a function of the number of modules in each level of the
hierarchy, number of levels, number of interfaces, and number of interconnections
[50]. Kesating also provided some guidelines regarding the number of modules in
one level and stated that this number should be 7+2 since human beings can
concentrate on 7+2 chunks of information at the same time [60]. We can relate this
rule to software complexity and develop estimations of software complexity
resulting from interactions of system modules by benefiting from this rule.

2.5 Summary
The survey of the literature presented above can be summarized in two classes of

outcomes. The first class presents the current state-of-art which can be

summarized as follows:

1- Component Oriented Software Development is believed to reduce

development costs and lead to the construction of more efficient and

reliable software products.

2- Software Measurement is a necessary practice in order to efficiently
control, manage, and contrast software products, projects, and processes.

3- The principal factor to the success of any measurement program is the
availability of agood set of metrics.

4- Metrics are of little value unless they are validated against accepted and
proved to be correct set of attributes and properties.

5- Collecting metrics from software designs or source codes can be a costly
process.

6- Metrics programs can gain more importance if metrics results are related to

critical factors of software quality like: maintainability, reliability,
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performance, and process features such as design effort, development effort,
integration effort, etc.

Early estimations of metrics can lead to early detection of defect-prone
components which will in turn lead to reduction in maintenance costs.
Metrics collection must be a cost-effective process. If collecting metrics
from software designs or source codes will cost too much then no one will

be encouraged to use them.

The second set of outcomes describe the steps that need to be performed. These

points mainly focus on issues related to CO paradigm and can be summarized as

follows:

Attempts to provide measurement frameworks for component oriented
software systems do not have real existence.

Serious component anatomy to extract the quantitative aspects and quality
determinating attributes in a software component are not available.

A specialized method describing the validation criteria for component
oriented software metrics are not available yet.

Works trying to investigate the relationships between component oriented
complexity metrics and reliability, maintainability, and development effort
did not reach the community’ s satisfaction level so far.

Dedicated CO software development CASE tools are still in trial phase or
are research projects in academic institutions.

Automatic metrics collection tools for component oriented software
engineering have not been encountered.
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CHAPTER 3

QUANTIFYING THE COMPLEXITY OF COMPONENT
ORIENTED SYSTEM S

The importance of measuring software and, particularly, software complexity has
been emphasized in details in chapter 1. We have seen clearly in Chapter 2 that
there is a lack of research on measurement methods for CO systems. Description
of measurement frameworks is one of the most important aspects to have a mature
software development process.

In a previous research we extended CK metrics [21, 22] to component-oriented
models and presented that in [71]. A set of properties for verifying and validating
component oriented metrics have been described in [104]. In another work the
relatedness of a subset of component oriented complexity described in [71] metrics
with design and correction efforts was explored and a direct relationship was found
[97, 103]. The same research also revealed that more research is still necessary in
the field. In this research we carry out a detailed analysis of component oriented
measurable features and metrics quantifying them. The research is divided into
three phases:

1) Identification of the most significant features of components to be quantified.
These features are identified based on their intuitive power in predicting some
process related aspect(s).

2) Metrics quantifying these aspects are defined. Initial viewpoints about the
potential impact of the metrics values on the process and/or the product are
presented. These viewpoints are presented based mainly on intuition,
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experience, and results appeared in other researches that considered other
metrics sets mainly for OO systems.

3) Extended evaluation and validation schemes are performed. To evaluate
metrics we used two sets of properties of complexity metrics. To validate
metrics, we used empirical data collected from graduate students projects.

3.1 A Glance on the Terminology

The terms used in this paper have been widely used by researchers in computer
science. Yet, the terms have been used to mean different things by different
authors. For example, the term software component, which is a fundamental term
in our research, is very widely used in software development cycles; the term has
several views and these different views are sometimes used interchangeably and in
a confusing manner. The term, viewed from an Object-oriented point of view is
used interchangeably with the term object (an instance of a class in object oriented
programming). The term component is used interchangeably with the term module
in modular programming environments (Modula-3). Little background in computer
science and particularly in programming paradigms lets someone know that the
terms module and object are too different constructs. In our research we are going
to use the term component as to what it means in the component oriented view
which is a third view different from both module and object in modular
progranming and object oriented programming respectively.  Besides having
some new features, the component oriented view of a “component” captures some
of its features from the object oriented view and some features from the modular
view. Not only the term component, but other terms of interest like component
orientation, component oriented systems, and component oriented modeling
languages, are not defined in a standardized manner in the industry and academic
practices. So, before any other step in our research, we are going to provide
definitions and introduce the component oriented view of these terms with major
reference to the work [23] which represent the pioneering research in the field.

- Component Orientation: A new software development paradigm. It focuses on
development by integrating already available components rather than writing
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from scratch [34]. The first step in system development is specifying the
structura  decomposition of the system where components, components
hierarchies, and intercmoponent relationships are defined. In Component
orientation, composition is the principal means for building large systems. A
component is mainly viewed as a black-box which can be accessed only
through its interfaces. In the rest of the paper we try to be loyal to the process
model described in [34] for a component oriented system. Also the notation
used is from the language COSEML which is also described there. Some basic
attributes are the as follows:

Component: A Unit of independent deployment. A component builds upon
encapsulation, and polymorphism where “Complex” components can be
obtained through composition [83]. A component can implement several
interfaces, each abstracting a specific service. Components functionality is
implemented in methods and is provided through the interfaces only which can
be considered as the component’s access points. Figure 3.1.a describes the
notation used in COSEML [34] for a component with single interface and
Figure 3.1.b is the notation used for a component with multiple interfaces.

Component Component
Properties
Interfacel I Methods In
Interface? Methods Out
: EventsIn
Events Out
Figure 3.1.a: A Component with Multiple Figure3.1.b: A Component with A Single
I nterfaces Interface

Interface: Interfaces are components access points. Components services are
presented through interfaces. An interface is generally an abstraction of a
service. A component may implement single or multiple interfaces. Besides
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properties and In/Out methods, an interface can include lists of In/Out Events.
An output method is actually a request, and an input method is a service. The
notation used for an interface in COSEML is shown in Figure 3.2.

|:| Interface H

Properties
MethodsIn
M ethods Out

EventsIn

Events Out

Figure 3.2: An Interface

COSEML: A dedicated CO modeling language. Being a dedicated CO
modeling tool was the main reason behind its demand. COSEML presents
three types of entities: abstract components (Package, Data, Control, Function,
and Connector), physical or implemented components (Component, and
interface), and connections (Connector, Inheritance, Composition, Method
Link, Event Link, and Represents). The COSEML notations used for abstract
components are presented in Figure 3.3, physical components are a component
with single interface (see Figure 3.1.8), a component with multiple interfaces
(see Figure 3.1.b), or an interface (see Figure 3.2). Optional symbols can be
used for connectors to add more clarity on the type of the connection. The
different optional symbols that COSEML support are presented in Table 3.1.

[ —
Package Data @

[ [
Connector

Connector

Figure 3.3: Notation Used for Abstractionsin COSEM L
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Table 3.1: Optional Connector Symbolsin COSEM L

Link Symboal Link Name
e O Composition
——J> | Inheritance
_— Method Link
_— Event Link

Represents

Component Oriented System: A component oriented software system is a
software system that is developed based on a component oriented process
model (e.g. CO process model presented in [34]) where the development
process comprises the steps:

Software system specification is performed; services and boundaries are

identified.

e Specifying the structural decomposition of the system which comprises
building decomposition hierarchy.

e The specifications of system components are prepared. This step may lead
to creating components from the scratch, search for already available
components, or adapt some ready-made components to match the
specifications in the system.

e The last step which comprises the integration of the components that are
specified and implemented in steps 2 and 3.

Figure 3.4 depicts a simplified university information system design that is

created using COSEML media.
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Figure 3.4: Smplified University System Prepared in COSEM L
- Complexity: In section 2.4 different views of complexity from the literature

have been discussed. Most of complexity views relate it to the lack of structure

in software systems, difficulty to comprehend, to maintain, to test, etc. [8 and

40]. Othersview complexity as the factor associated with higher probability of

defects.

The IEEE gandard [98] defines component or system complexity

degree to which the design or implementation is difficult to understand and

verify. The |IEEE view of complexity is contrasted with simplicity which is the
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degree to which a component or a system design is straightforward and easy to
understand. Our view of CO system complexity is not very different from these
views. Inour view of complexity, CO software complexity is the aspect that is
related to the difficulty to understand, and then will increase design, correction,
integration, and maintenance costs of the system. Also, our view of complexity
suggests that complexity is a composite aspect that is evaluated from different
independent attributes that can be quantified from the system design models.
Thus complexity has a direct impact on overall quality of the system.

3.2 Defining the Steps of Our Approach

The steps in our measurement framework for CO software systems include the
following activities:

1- Identification of measurable product aspects.

2- Deriving metrics that can appropriately characterize the different aspectsto

be measured.

3- Collecting Datathat is needed to derive metrics and validate them.

4- |nterpretation of the results.

5- Providing feedback according to the obtained results.

Our aim is to characterize software attributes which individually or collectively
affect complexity. Pressman [68] outlines the most important metrics that can be
collected during and after the design phase as:

1- metrics for characterizing architectural quality,

2- complexity of system building elements (components), and

3- characteristics of components and their interaction characteristics.
Earlier researches in the field suggest that the existence of a single metric that can
characterize the overall system complexity seems to be impossible [36, 99, 100].
Smith also has a similar argument about computer performance and suggests that a
single number to characterize computer performance can be misleading [80]. In our
research, though we believe that CO system complexity is a multidimensional
feature we are examining the possibility to come up with a single compound
measure that can characterize component oriented software complexity. To make it
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more clear, lets consider, as an example, the volume of a rectangular prism is
dependent on height, width, and length values of that rectangular prism but it s till
a single value that characterizes volume. A change to any of these values will
result in a change to the volume of the rectangular prism. We till believe that a
single value that characterizes CO oriented system complexity obtained from the

combination of several related valuesiis still a very useful metric.

3.3 CO Software Systems Quantifiable Aspects

In the component oriented paradigm main focus is on system structure [34]. Dueto
that, while requiring internal complexities of components, more attention will be
paid to the system’'s overall structural complexity. The first question that needs an
answer is: what attributes of a CO system characterize its structural complexity? In
finding answer to this question we will first explore the attributes that are
known/believed to be related to system’s structural complexity. Our complexity
analysis will focus on features that characterize system’s structural complexity,
components’ internal complexity, and interfaces complexity.

1- System Structural Complexity: Software system structure is defined as the way
through which system building elements are organized with respect to each
other and with respect to their surroundings [39]. Software Architecture deals
with methods that can be applied to the structure to achieve maximized
reusability and reliability [24, 25, and 100]. Software structure is a design
decision: Two or more different design alternatives may result in multiple
structures. Measuring the degree of structuredness in software systems is an
important issue since System organization has its impact on maintainability
[86]. Also, it isintuitively clear that different structures of the same system will
certainly lead to different values of structural complexity. Clements et al [24]
emphasized the importance of evaluating software architecture at early stages
of development. They noted that evaluation of software architecture, besides
not being the only factor, plays an important role in evaluating the overall
system quality. Depending on the definitions of system structure described in
[24, 39] and building on our definition of a component oriented system (see
section 3.1) one can notice that a CO system structure is a function of that
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system’s Components, Connectors, and the Composition Tree. Below we will
define attribute metrics characterizing them. For each metric our initial
viewpoints about the potential impact on structural complexity, are also
included:

1.1 Depth of Composition Tree (DCT): Count of the number of distinct
level of the composition tree. Our selection of this attribute is based on
the following initial viewpoints:

a The deeper the composition tree the better the system
decomposition is. Higher values of DCT are an indication that
system components are more specific and may have higher
potentials for inter-system reuse.

b. The deeper the DCT the more components we have.
Components, at levels closer to the root of the tree tend to be
having many sub-components making them more difficult to
compose and test.

1.2 Width of Composition Tree (WCT): There is usually a trade-off
between width and depth of the composition tree at the level close to the
root of the decomposition tree. While deeper trees may lead to more
integration effort, favoring wider trees will result in less integration
effort but may decrease chances of inter-system component reusability.
In Figures 3.5.a and 3.5.b, two decomposition alternatives for the same
system are described. For the model shown in Figure 3.5.a we need
eight time units to integrate (assuming equal times for integrating
different components) all the components, while in the model shown in
Figure 3.5.b we need 14 time units. On the other hand, we have 8
reusable components in the alternative shown in Figure 3.5.a while we
have 14 reusable components in the alternative shown in Figure 3.5.b.
The trade-off between reusability and effort is clear.
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Figure 3.5.b: High DCT

1.3 Coupling Between Components: The degree of interdependence
between software modules [98]. In CO systems coupling is directly
affected by the degree of connectivity between system components.
Two components C1 and C2 are coupled if there is a connector linking
these components with each other. At the system level coupling
between system components is estimated by counting the number of
connections between system components. For the sample model shown
in Figure 3.6 the coupling value is equal to 15. Arrow directions
indicate service requests. Two different metrics are defined to
characterize coupling between components. The first metric is the
count Total Number of Connectors (abstract connectors plus messages).
This metric is a characterization of the overall system complexity. The
second metrics is Average Number of Connectors per Component. This
metric characterizes the potential impact of inter-component
dependencies on the overall structural complexity of the system.

Figure 3.6: Coupled Components

39



1.4 Cohesion of System Components. The degree of cohesion of asystem is
usually measured from the degree of relatedness of that system’'s
building elements (components). Higher cohesion is a deemed feature
of system designs. It is important to note here that there is usually a
trade-off between coupling and cohesion values in a system design.
While zero coupling is impossible, very low coupling can be as bad as
excessive coupling and very high cohesion associated with very low
coupling may lead to undesirable results [99]. Measuring the degree of
cohesion in the system requires knowing which component presents
services that are related to the overall system functionality.
Components are accessed through their interfaces. So, if a component
implements interfaces which are never contacted by other components
in the system may be an indication of low cohesion. The number of
interfaces which have a fan-in value of zero indicates the lack of
cohesion in the system. In atypical system all implemented interfaces
should be used by other components, hence the best cohesion is in the
case where number of interfaces with zero fan-in is zero interfaces.
Taking the average of the number of used interfaces to the number of
total interfaces may provide an insight about the degree of cohesion in a
system. An average value of 0.8 means that 80% of interfaces provided
are accessed by other components of the system. For sure, high rate of
unused services of the system indicates that extra costs are pad for
unneeded functionality. It isjust like adding and extra cost on a mobile
phone for the service of using it like a joystick. A service which is
rarely needed by users.

1.5 Total Number of Interfaces (TNI): In CO system interfaces play the
important role of being components access points. Number of
interfaces per component is an indication of the amount and diversity of
functionality delivered by the components. Components of a system
exchange services through their interfaces. Also interfaces are the main
means of integrating components with each other [8].

Viewpoints:
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a. Increased number of interfaces implies a wide set of services
since an interface usually presents one category of services for a
component. This may limit the possibilities of a component
reuse among systems as also, diversified interfaces indicate
specialized connections.

b. Increased number of interfaces implies increased fan-in value for
a component which means that it is supposed to be highly
dependable; it should be designed, implemented, and tested with
alot of care. A bug that may exist in such a component may be
cascaded to several other dependent components.

Cc. On the other hand, increased number of interfaces of a
components could mean cleared service descriptions and then
would lead to less effort to integrate with other components.

1.6 Total Number of Methods (TNM): The count of the total number of
methods in the system. Components implement their functionality in
their methods. More methods in the system indicate increased
functionality. Two systems that deliver the same functionality where
one has less number of methods indicate that methods of the system
represent awider range of services.

1.7 Total Number of Implemented Components (TNIC): The count of the
total number of implemented components only. I mplemented
components are where system functionality is implemented.

1.8 Total Number of Components (TNC): According to the CO process
model described in [5] two groups of components can be seen in a CO
model. These two groups constitute abstract components that exist only
in the conceptual model and physical components that represent the
implemented ones. Tota number of components in the systems is a
design decision. While some designers may favor relatively smaller
components, another design decision may favor a fewer number of

relatively larger components. So the total number of components in the
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system is a design issue that influences the overall structure of the
system.
Viewpoints:

a. Increased number of components implies that components are
more specific and every component delivers limited
functionality.

b. Since components are specific they have higher potential for
reuse.

c. More components indicate that more effort will be spent during
the integration stage.

2- Component Internal Complexity: Conte et a [27] found that the interna
structure of system building elements affects the overall complexity of the
system. Building on Conte et a findings, and after investigating the internal of
a component the following attributes can be identified as potential factors

influencing a component’s structural complexity.

2.1 Methods Complexity: In the previous discussion we have shown that a
component’s functionality is implemented in its methods. Methods
structural complexity is widely discussed in the literature. The two
principal influencing factors are again coupling between methods of a
component, cohesion of methods of a component. Figures 3.7.a, 3.7.b,
and 3.7.c present three different pictures that can be conceived from
methods inside a component. In Figure 3.7.a we have very high
cohesion and zero coupling, in Figure 3.7.b moderate levels of cohesion
and coupling between methods of a component and in Figure 3.7.c we
have excessive coupling and low cohesion. While zero coupling means
that every method implements all the functionality it requires inside
itself and is not dependent on any other methods, excessive coupling
indicates that methods are highly dependable on each other. For
example, in order to comprehend method m7 in Figure 3.7.c it is
necessary to also understand methods m2, m3, m4, m5, and m6 since all
these methods are invocated from m7 to complete a requested service.
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Besides coupling and cohesion factors, the internal design of a method
has been proven to play an important role on the methods testing and
maintenance. McCabe Cyclomatic complexity [57] is being efficiently
used for more than two decades as a predictor of the testing effort of a
method. Cyclomatic complexity of methods, Coupling between
methods, and Cohesion of methods of a component are considered to
characterize methods in a component. Henry and Kafura described two
measures of coupling which are Fan-in and fan-out [Henry and Kafura].
These two measures have been widely discussed and empirically
validated. We suggest the use of Fan-in and fan-out of a component’s

methods as one indicator of the internal complexity of the component.

Figure3.7.a: Zero Coupling Figure 3.7.b: Moderate Coupling

Figure 3.7.c: Excessive Coupling
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2.2 Interfaces Complexity: In the previous discussion we have mentioned
that interfaces are components access points. Number of interfaces per
component, number of methods per interface, interface fan-in counts are
important aspects to consider when tackling influence of interfaces on
component’s complexity. The actual influence of interface structures
on a component’s complexity can only be determined during the
experimental validation. The basic viewpoints about the potential
influences of the number of interfaces on a component complexity have
been discussed before. The following viewpoint is about the potential
impact of number of methods in an interfaces on the complexity of a
component.

a) The number of methods in an interface implies the breadth of
the service it supplies. Too many methods in an interface may
limit the possibilities of its use by other components. On the
other hand, zero methods in interfaces implies no service is
provided by that interface.

3- Interface Internal Complexity: Interfaces play principal role in CO software
development. They are considered as the components access points. Due to
their important role interfaces should be designed with a lot of care. While
experience and intuition help designers make decisions about aternative
interface designs, decision based on quantifiable aspects proved to be more
accurate and dependable. Interfaces complexity which is an indication of its
quality as well is a composite aspect that depends on the interface building
elements and its interactions with other interfaces. Gill and Grover [101, 102]
say that CO software complexity can be measured based on interface
characterization. That is due to the fact that better characterization of
component interfaces helps to easily understand and resolve components
problems [83]. We here present the elements and their quantifiable aspects in
interfaces.

3.1 Number of Methods of an Interface: Usually an interface represents a
service supplied by a component. Large number of methods in an
interface implies that the interface provides a wide service which may
[imit the possibility of utilizing the interface in different systems. Also
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large number of methods in an interface indicates that its fan-in count
will be high which indicates that the interface is highly dependable and
extra effort for testing and implementing may be a consequence.

3.2 Events Out: Events out are the events the interfaces notifies others
about. Events our count is an indication of dependence on other
components.

3.3 Events In: Events in are the events that the interface is notified about
from other component interfaces. Count of events in indicates the
degree to which the interface is critical in the system and the intensity

inwhich it will respond to other components interface events.

System complexity spreads over system building elements. On one side, we have

complexity which is inherited from internal complexities of a system’'s elements

and one the other side we have complexity resulting from the interactions between

these elements. In Table 3.2 we present a summary of the quantified attributes and

their metrics with the metrics definitions.

Table 3.2: Attributes, Metrics, and Metric Definitions

Attribute Metric Definition
TNC Total number of Components in the system
TNI Total Number of interfacesin the system
TNCO Total number of Connectors and messages in the system
)]
5 Depth of the composition tree. Count of levels in the
B DCT L
3 composition tree
7 Width of the composition tree. Maximum width of the
& WCT B
% composition tree.
TNIC Total number of implemented components only.
TNM Total number of methods in the system
CsC Cohesion of system components
” NOCC Number of connectors per component
E= Py
5T 3
5 t & NOMC Number of methods per component
EE
§ =
O © NOIC Number of interfaces Per component
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Table 3.2 (Continued)

g _ > NOMI Number of methods per interface

..g § é NOEO Number of events out in an interface

E = § NOEI Number of eventsin of an interface

w > CcC Cyclomatic complexity from McCabe[57]
g g é_ Fan-in Fan-in metric from Henry and Kafura [46]
z = § Fan-out Fan-out metric from Henry and Kafura [46]

3.4 A Complexity M odel for CO Software Systems

Based on the detailed metrics analysis presented in section 3.3, it became clear that
a complete complexity model can be built. Also, the metrics analyses have shown
that CO systems complexity is a multidimensional feature that spreads over
components, connectors, interfaces, methods, and other less significant elements.
We will define Complexity of CO systems in three levels. The first (lowest) level
complexity is aresult of the complexities of the component’s methods. The second
level complexity is a result of the internal complexity of components. The third
(highest) level complexity is aresult of components organization in the system.

3.4.1Level 1: Method Complexity

Method Complexity (MCOM): The lowest level of complexity in a CO system is
the complexity of component methods. Methods are the functionality producing
units of a component. The complexity of a method can be characterized by two

metrics:
1.1 Cyclometic Complexity (CC). Cyclometic complexity [57] has been

used effectively as a count of the number of test cases required to test an
algorithm and then a measure of the testing effort required.
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1.2 Number of Calls to Other Methods (NCOM): This metric is estimated
as the count of methods called from this method. It is derived froim the
fan-out metric [46]. This metric is an indication of how much the
method is dependent on other methods. Dependency means that in
order for the method to provide its functionality some other methods are
required. Understanding, updating, and maintaining a method that is
dependent on other methods will necessarily require an understanding
of all these methods.

The Method COMplexity (MCOM) of a method m will be estimated as a function
of its CC number and its NCOM value and can be expressed as.
MCOM (m) = f (CC, NCOM)

Since a method's complexity is affected mainly by the factors described above, the
function f can be the sum of the two values. Then, MCOM (m;) for any method m
can be estimated as:

MCOM (m;) = CC(m;) + NCOM(m;) for any method my

The total method complexity of a component C; (TMCOM) is the sum of all
complexities of individual methods and is estimated as:

TMCOM(C)) = > MCOM (m) for al methodsi in the component C;

3.4.2 Level 2: Component Complexity

Component Complexity (CCOM): complexity of a software component can be
characterized as 1) complexity coming from the component's methods, 2)
complexity coming from the component’s interfaces, and 3) complexity resulting
from its dependency on other components. These three aspects will be estimated

using the following metrics:

The complexity of a software component C can be viewed as a function f that is
affected by all these three factors and can be expressed as:
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CCOM (C) = f(TMCOM(C), NOI(C), NCO (C))

The total components complexity (TCCOM) based on all components C; in a
component-oriented software system S is estimated as:

TCCOM(S) = > CCOM (C)) for all componentsC;in S
]

3.4.3 Level 3: System Structural Complexity

This complexity mainly results from the organization and interactions between
system components. We will call this level complexity as Emergent System
Complexity (ESCOM). Emergent system complexity is a function of the structural
attributes of the system.

ESCOM(S) = f (TNC, TNI, TNM, TNCO, DCT, WCT)

When considering or trying to evaluate Overall System Complexity (OSCOM) it is
necessary to consider both components of complexities and emergent system
complexity. That is because a CO system is a set of components and connectors
organized in some structure. The overall system complexity of a component-
oriented software system S can be evaluated as a function f of these types of
complexities and can be expressed as:
OSCOM(S) = f( TCCOM(S), ESCOM(S))
Evaluation and validation of these metrics will be provided in Chapter 4.
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CHAPTER 4

METRICSEVALUATION AND VALIDATION

Several researches in the field presented properties that are used to characterize

good metrics from a mathematical and measurement theoretical perspectives [17,

36, 52, 72, 84, 88, 91, and 92]. The common features in all of these works can be

summarized as follows:

1- A metric must possess some desirable mathematical properties. Provide a scale
and range of values. Provide thresholds of good and bad behavior. Metrics value
should be observer independent.

2- A metric must be empirically valid: Can be used to make managerial and/or
engineering decisions. Also the metric must precisely characterize the attribute
of interest.

4.1 Properties of CO Complexity Metrics

The literature of metrics evaluation approaches does not present a globaly
accepted set of properties of complexity metrics. Also, none of the described
properties have specifically tackled the particular and new aspects of component-
oriented software systems. Due to these two reasons, we introduce a set of
properties that a component-oriented system complexity metric must satisfy. The
properties defined here came as a result of investigating the properties described in
Weyuker [88], Briand et al. [17], Kitchenham et a. [55], Tian, and Zelkowitz, [84],
Schneidewind, [72], and Zuse, [94] and the viewpoints of others criticizing them.

The properties described here do not have a generic nature in the sense that we do
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not clam that they can apply to al types of complexity metrics. Proposed
properties are listed below:

Property 1: A complexity metric value can not be a negative number. For some
complexity metrics it is necessary to be even stricter, since a value of zero will not
always be accepted.

Interpretation guidelines: The meaning of a complexity metric value for a software
artifact (a software artifact can be a method, component, or the whole system) that
provides some functionality to be equal to zero is that the artifact is the least-
complex possible design that can provide that functionality. A lower complexity
value, for two functionally equal designs, is preferred over a higher value since
lower complexity is believed to be associated with less development, testing, and

maintenance efforts.

Property 2: A software complexity metric must provide a scale of values.
Comparison between different alternatives must be possible. For any two software
artifacts it must be possible to compare and then make managerial decisions
according to the metrics values. For any two functionally-equal components C; and
Cy, if Complexity(C,;) > Complexity(C,) then C, is preferred over C; assuming that
we keep all other parameters constant. This is due to the fact that C, will require
less development, less testing, less integration, and less maintenance efforts. Also,
metrics must provide enough information to help managers make business

decisions and compare different alternatives.

Property 3: The complexity of a single software unit S composed of two software
components can not be less than the sum of the complexities of the individual
components. So, for any CO system S and any two components C1 and C2

Complexity(S) >= Complexity(C;) + Complexity(Cy)

According to the metrics described in section 4, the complexity of a component-
oriented software system is a function of the complexities of individual
components that make it up, and an added complexity will appear as aresult of new
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interactions that may exist between the components. In the best case, when a
system is composed of two components and no new added interactions between the
components are available, the system's complexity will be equal to the sum of the

individual component complexities.

Property 4: If a component C is decomposed into two or more components C1,
C2, .., Cnthen the sum of complexities of the resulting components is no more than
the overall complexity of the original component.

Complexity(C;) + Complexity(Cy) + ... + Complexity(C,) <= Complexity(C)

The reason for this is that, according to our perception of the three-level
component-oriented software complexity, there is usually an added complexity
whenever two components are composed. The new complexity usually results
from the interactions between these components.  So, when the component is
decomposed these links will disappear and only the component's intrinsic

complexity will remain.

Property 5: The complexity value of one component does not have a direct
relation to its functionality, i.e. for any two components C; and C,, Iif
Complexity(C;) > Complexity(C,) then it is not necessary that C; provides more
functionality than C,. The same functionality can be obtained by different designs
and then implementation. The complexity measures described in this article are
those that enable software developers and/or managers to take decisions and
contrast/compare different alternative solutions to the same problem. Of course,
any added functionality may introduce an added complexity. So, a complexity
metric does not consider evaluating functionality of the system or provide any

information about the system size.

Property 6: The complexity metric value is directly influenced by system
structure. Two different structures for the same functionality can result in two
different complexity values. A complexity measure of the system can have
different values for different alternative architectures of the same functionality.
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4.2 Metrics Evaluation

The proposed metrics have been evaluated against Tian and Zelkowitz axioms of a
good complexity metrics [84]. Tian and Zelkowitz described and approach for both
evaluating metrics and another approach to make choice between alternative
metrics that qualify. The set of axioms defines five properties that a complexity
metric must possess in order to qualify for adoption. These properties can be briefly
described as follows:
1- Property 1: A complexity metric must have the capability to compare between
functionally equivalent alternative systems.
2- Property 2: A complexity metric must have the capability to compare between
components and composites.
3- Property 3: A complexity metrics must possess a discriminative power and can
produce different values to different programs.
4- Property 4: A measure must not have aregion where al values cluster around.
5- Property 5: A measure is a complexity measure if it satisfies properties 1-4.

Tian and Zelkowitz also introduced a metrics classification approach which defines
a boundary condition that can be used to reject inappropriate metrics. They also
suggest that a metric’s discriminative power can be evaluated according to that

metric’s predictive power, simplicity, and the value of information it embodies.

We evaluated the proposed complexity measures against these properties. All of
the proposed metrics are qualified to be considered as complexity metrics. In
making selection between different alternatives we followed a mixed approach
where simplicity is important but also focused more on the predictive power of the

metric.

4.3 Metrics Validation: The Experiment

It is widely accepted that software metrics are useless unless they can be of some
practical use. Metrics can be of practical use for users, developers, managers, and

team leaders.
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For developers, managers, and team leaders metrics are useful in making
predictions about some process features (e.g. cost/effort estimation, resources,
etc..). Also metrics can be used to make predictions about the potential behavior of
the system (Performance, reliability, efficiency, maintainability, etc..). Metrics
help developers and managers detect the more complex components early at the
design stage and take decisions to redesign these components. On the other hand,
customers/users can use metrics values to make comparison between several
alternatives, and identify the ones with higher quality.

Our validation approach comprises checking the potential of using metrics values
in predicting one or more of the followings: design effort, correction effort,
integration effort, and productivity. We do not claim that if a metric does not have
direct influence on one or more of these process factors should be considered
invalid. That is because this metric still can have some influence on some other
product nonfunctional attributes like reliability, performance, or any other factor

whose examination requires experimenting implemented systems.

In the study, we have considered both cases where 1: a complete component
orientation with assumed available components and also 2: the case where some
component development is necessary. To remove any ambiguity that may arise on
the reader side, before proceeding any further, we will provide the definitions of
the terms: Design Effort, correction effort, integration effort, and productivity:

Design Effort: Design is the process of defining the system abstractions,
components, interfaces, data structures, and the working relationships among
components [98]. The design process results in a document that contains system
models in some design description language (e.g. COSEML). The system design
should be described detailed enough to be implemented. Design effort is the time
gpent to transform system specifications into design models including editing of the
models.

Correction Effort: The time that is spent to make any changes affecting methods,
interfaces, properties, or relationships of the component after being initially
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designed. Total correction effort is the total correction effort spent on all

components.

Integration Effort: the time spent to define components relationships with other
components, including the designing of connectors and their specifications.

Productivity: Developer productivity (FP/Person-Hour) is estimated as the total
function point count divided by the total time spent on design, correction,
integration, modeling, and editing the design models.

4.3.1 Data Sources

Data has been collected from 40 student projects developed in three different
semesters (Fall 2002, Fall 2003, and Fall 2005). All projects have been designed
for component oriented software development using the dedicated CO software
modeling language COSEML. The majority of the projects have been designed as
a term project in a graduate level course ‘System development using abstract
design’ at the Middle East Technical University (METU) in Ankara. Eight out of
the forty projects were designed by senior students in the same department. One
project was prepared as the main part of a master’s thesis in the department. That
project was the largest in terms of number of components and function points
(FP)'s counts. Projects were designed in teams of one, two, or three students and
vary in their sizes based on the number of team members enrolled. To have a
feeling of project sizes, we collected Function Points [4] and the total number of
boxes (abstractions and implementation level components) values for every project.
As of the Function points count, the largest project has 510 FPs and the largest
project in terms of the count of boxes has 287 boxes and 16 physical components
with 33 interfaces. The project with the least FP value has 24 FPs and the same
project has atotal of 12 boxes with only 3 components and 3 interfaces.



4.3.2 Developers Backgrounds

The developers of the projects were all students at the Department of Computer
Engineering in METU. Some of the developers were research assistants while the
majority were working as software engineers in the industry. All of the developers
had previous programming and system analysis and design experiences in OO
software engineering using C++ and/or Java. On the other hand, none of the
developers had any previous experience in CO software modeling and design using
COSEML modeling language before enrolling to the class.

4.3.3 Data Collection

Contribution to project metrics was completely a voluntary job. Directly after
students submitted their project proposals we performed a one-hour lecture in
which we described the followings:

1) Benefits of metrics on the overall software development process were
described.

2) The metrics to be collected were defined. Example metrics estimations
were demonstrated.

3) Students were informed that their projects data will be used in a serious
research so those who do not want to contribute are free in that.

4) Also the terms design effort, correction effort, and integration effort were
defined to students.

5) Metrics collection forms fields were described field by field.

6) Online material was posted. Contact information e.g. email address, phone
number, and street addresses were available to developers so that they
were free to contact anytime.

7) Students have been assured that metrics will never be used to evaluate
their performance or be used while grading their projects.

Data has been collected by the developers themselves. The metrics collection
forms that have been used by the classes of fall, 2002, and fall, 2003 are available
in Appendix A. The metrics set has been further refined. Some metrics were
eliminated, new metrics were added. So, for the class of fall 2005 we distributed
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two separate forms; one includes metrics for the project as a whole and the other

contains metrics to estimate for every component separately. The two metrics

forms are available in Appendix B. A document containing a detailed discussion

of the metrics, their definitions, and their estimations were available online for the

developers free access. Every possible effort has been expended in instructing the

developersto ensure a clean data collection with least number of errors.

434 Correctness Test

Data collection is important; to be useful it must provide the correct data We

applied the following procedure to eliminate inconsistencies and casual defects that
existed in the data:

1)

2)

3)

4)

Six projects have been eliminated from the study because they included
data that violates intuition and well known facts of software engineering.
Examples of these inconsistencies include- but not limited to: in one
project developers reported the total design effort as 1800 person hours
which is more than the total period (days x 24 hours) allocated for the
project design, unfortunately we could not return to the developers to
inquire about the correctness of this number. In another project developers
reported that number of components is more than the number of
interfaces, this violates the fundamentals of CO since every component
must have at least one interface.

Three projects were removed from the experiment due to inconsistencies
that seemed to be a result of misunderstanding of the terms e.g. one of
these projects reported the total number of interfaces as 9 and the average
number of methods per interfaces 3 while the total number of methods
was reported as 11 methods.

Four projects were removed because the developers reported that they
could not estimate the effort they spent on preparing the design,
correction, integration.

Two projects have been removed because developers demonstrated very

unexpected system decomposition. In one project the total number of
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components, interfaces, and abstractions was 9 while the estimated
function points value was 535.
We have carried walkthroughs to make sure that maximum effort was used to
eliminate error in data. We found some errors in function points estimations.
Error-prone locations have been handled and new values have replaced the old

ones.

4.3.5 Regression Analyses

The aim of the regression analysis is to investigate whether metrics can help in
making predictions about the followings:

1) Complexity related to Size: Function Points (FP) [4] is awidely accepted
size related measure. We are investigating the relationships between CO
metrics and FP counts in using single regression and multiple regression
models.

2) Complexity resulting from Connectivity and its influence on Effort: Henry
and Kafura [46] evaluated system complexity resulting from connectivity
using mainly two metrics; Fan-in and Fan-out. In a CO software system
the degree of connectivity isrelated to:

a. Number of interfaces.

b. Number of connectors.
The potential influences of these factors on Design effort, correction
effort, integration effort, and developer productivity is explored.

3) Complexity resulting from Structure and its influence on Effort: A CO
system is structured in a hierarchy in several levels. High levels usually
include system abstractions while lower levels represent implementation
level components. The potential influence of system structure on design,

correction and/or integration effortsis explored.
Regressors that are intuitively believed to have an impact on the different

regressands are first identified. A summary of the regressands and the intuitively

influential regressor sets are presented in Table 4.1.
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Table4.1: Regressandsand Their Intuitive Regressors Summary

No.

Regressand

Description

Intuitively Influential

Regressors
1 FP Total count of unadjusted function | # of Components,
points (Abretch and Gaffney, 1979, | # of Methods
1983) # of Imp.. Components
# of Methods
# of Connectors
2 FP/Interface Total count of unadjusted function | # of Methodd/Interface
points (Abretch and Gaffney, 1979, | # of Connections/Interface
1983) divided by the total number of | # of EventsInterface
interfaces
3 Design Effort Total Effort in person hours spent on | # of Components
building system modes using | # of Methods
COSEML # of Imp. Components
# of Methods
# of Connectors
# of Connectors/Comp.
# of Methods/Comp.
# of interfaces/ Comp.
# Depth of Composition Tree
4 Design Effort/ | Total Effort in person hours spent on | # of Components
Component building system models using | # of Methods
COSEML divided by the total number | # of Imp. Components
of components # of Methods
# of Connectors
# of Connectors/Comp.
# of Methods/Comp.
# of interfaces/ Comp.
# Depth of Composition Tree
5 Correction Total Person hours spent on making | # of Components
Effort changes affecting methods, interfaces, | # of Methods
properties, or relationships of the | # of Imp. Components
components after being initially | # of Methods
designed. # of Connectors
# of Connectors/Comp.
# of Methods/Comp.
# of interfaces/ Comp.
# Depth of Composition Tree
6 Correction Person hours spent on making changes | # of Components
Effort/ affecting methods, interfaces, | # of Methods
Component properties, or relationships of the | # of Imp. Components
components after being initially | # of Methods
designed divided by the number of | # of Connectors
components. # of Connectors/Comp.
# of Methods/Comp.
# of interfaces/ Comp.
# Depth of Composition Tree
7 Integration Total person hours spent on defining | # of Components

Effort

components' relationships with other
components.

# of Methods

# of Imp. Components

# of Methods

# of Connectors

# of Connectors/Comp.

# of Methods/Comp.

# of interfaces/ Comp.

# Depth of Composition Tree
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Table 4.1 (Continued)

8 Integration
Effort/
Component

Total person hours spent on defining
components' relationships with other
components divided by the tota
number of components.

# of Components

# of Methods

# of Imp. Components

# of Methods

# of Connectors

# of Connectors/Comp.

# of Methods/Comp.

# of interfaces/ Comp.

# Depth of Composition Tree

9 Productivity

Estimated as the ratio of FP/Person
hour.

# of Components

# of Methods

# of Imp. Components

# of Methods

# of Connectors

# of Connectors/Comp.

# of Methods/Comp.

# of interfaces/ Comp.

# Depth of Composition Tree

10 | Total
Development
Effort

Total person hours spent on system
development.

# of Components

# of Methods

# of Imp. Components

# of Methods

# of Connectors

# of Connectors/Comp.

# of Methods/Comp.

# of interfaces/ Comp.

# Depth of Composition Tree

Ten different regression models are obtained. For each model the regression

equation, model plot, and a Table of regressand's actual values and predicted

values are presented. For every regression equation the coefficients' p-values are

presented below them. The p-values are presented to provide a feeling of the

statistical significance of the corresponding variable. Also the practical importance

of every model is discussed and supported by the average error estimates of the

predicted values. To remove any confusion that may arise, we present in Table 4.2

a list of the terms and abbreviations with their corresponding descriptions as they

appeared in the regression models.
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Table4.2: List of Termsand Abbreviations Used in the Regression M odels

Term or Abbreviation Description

Component or Comp. Number of Components (abstractions, implementation
level components, and interfaces)

PComponent Number of Implementation (Physical) level components
(not including interfaces)

Interface or Int. Number of Interfaces

Methods or Meth. Number of Method

Connector or Conn. Number of links between two components or two
interfaces

FP Function Points count

4.3.5.1 Total FP Count Regression M odel

In order to find a generalized model for predicting FP count in the system, potential
influencing regressors have been identified first (See Table 4.1). A forward
addition approach has been used to test the regressands one by one. The resulting
generalized model is given as:

FP =0.8* (Components) + 4.3 * (PComponents) — 1.8 * (Interfaces) + 0.5 * (Connectors) + 12.7
(p=10.01) (p= 0.03) (p=0.06) (p=101) (p=0.02)

The model demonstrated a good prediction level with an average error rate of %21
in the worst case and %8 when the outliers were excluded. The complete list of
actual and predicted FP values with the corresponding error rates are presented in
Table 4.3. The most surprising and, perhaps, “unexpected” finding is that the
number of FPs decreases as the total number of interfaces increases. This finding
violates intuition since in a CO system a component’s functionality is presented
through its interfaces. So, more interfaces should lead to more functionality and
more FP count in the system. The reason(s) for this contradictory result may be
related to one or more of the followings:
1) Due to the inclusion of implementation components “PComponents’ whose
count is highly correlated with the count of Interfaces with a correlation
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coefficient value Of 0.97. The coefficient value of PComponents is quite high
relative to the coefficient value of Interfaces. So, the negative sign for the
Interfaces coefficient may be to balance the high positive value of the
coefficient of PComponents in the model.

2) The fact that system developer had their first CO software design with the
projects used in this research may be a reason for coming up with low quality

designs.

The curve fitting plot of the model is given in Figure 4.1.

Table4.3: FP Estimation Results

Actual |Estimated|Residual | %Error
142 128.06 13.94 9.82
146 130.54 15.46 10.59
108 96.77 11.23 10.40
85 87.45 -2.45 -2.88
66 62.16 3.84 5.82
113 82.83 30.17 26.70
65 54.29 10.71 16.48
44 56.22 -12.22 -27.77
28 35.97 -7.97 -28.47
66 62.34 3.66 5.55
76 102.55 -26.55 -34.94
58 55.54 2.46 4.24
95 79.24 15.76 16.59
66 94.15 -28.15 -42.65
110 99.96 10.04 9.13
72 72.51 -0.51 -0.71
102 107.47 -5.47 -5.36
70 66.86 3.14 4.48
44 51.87 -7.87 -17.89
38 54.79 -16.79 -44.20
69 71.03 -2.03 -2.94
93 95.15 -2.15 -2.31
60 61.19 -1.19 -1.98
48 51.32 -3.32 -6.91
510 513.76 -3.76 -0.74
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Model a*x1+b*x2+c*x3+d*x4+e

FP Count

Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
0.0 5.0 10.0 15.0 20.0 25.
Components, PComponents, Interfaces, Connectors

Figure4.1: Total FP Regression Modédl Plot

4.3.5.2 FP Per Interface Regression M odel
Returning to the definition of a CO software system, we can see that components
implement interfaces to provide services to their clients. So finding the factors that
influence the count of FP in an interface becomes a necessity. Also, here aforward
addition approach has been followed to find the influencing factors with reference
to the intuitive relationships presented in Table 4.1. The result of the regression
analysis is the following model:
FP/Interface = — 8.5/ (Methods/Interface) + 0.94 * (ConnectordInterface) + 5.2

(p = 0.007) (p= 0.04) (p= 0.004)
While the R? value is relatively low “0.45”, the model demonstrated an acceptable
level of average error rates with an initial value of 22% and 17% after removing the
outliers. Also the model is statistically significant in the confidence interval of
95%. The highest p-value is 0.04 and prob(F) is 0.0.

Looking deeply in the model we can see that the FPs in an interface increases with
the increase in the numbers of methods and/or connectors in that interface. These
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results are practically important for us since they both meet intuitive thinking and
are practically applicable. A detailed list of the actual and predicted FP/Interface
values with the corresponding residual and estimated error rates is presented in
Table 4.4. The curve fitting plot of the model is shown in Figure 4.2.

Table 4.4: FP Per Interface Estimates

Actual Value | Estimated Value | Residual | %Error
4.30 3.79 0.51 11.84
11.23 7.51 3.72 33.09
6.35 4.73 1.62 25.49
7.08 4.40 2.68 37.89
7.33 6.52 0.81 11.10
9.42 7.72 1.70 18.06
7.22 6.78 0.44 6.07
5.50 6.26 -0.76 -13.79
3.50 4.39 -0.89 -25.52
7.33 8.48 -1.15 -15.70
5.43 6.13 -0.70 -12.84
8.29 6.72 1.56 18.86
5.00 4.50 0.50 9.91
3.14 3.92 -0.78 -24.78
5.00 3.63 1.37 27.45
4.50 6.22 -1.72 -38.29
5.37 5.28 0.09 1.66
4.38 5.68 -1.31 -29.91
2.44 5.03 -2.59 -105.96
4.75 6.20 -1.45 -30.43
4.93 5.64 -0.71 -14.36
4.89 4.87 0.02 0.44
4.29 5.18 -0.89 -20.87
5.33 6.12 -0.79 -14.83
6.22 7.51 -1.29 -20.67
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Figure 4.2: FP per Interface Regresson M odel Plot

4.3.5.3 Total Design Effort Regression M odel

The necessity of obtaining a general model for evaluating Design effort using some
product measures is widely recognized. One of the main advantages of having such
a model is that it can help in building a rather more generalized model for
predicting total development effort benefiting from the relatedness of design effort
to the total development effort. The obtained regression model is described as
follows:

Design Effort = -0.65* (Comp.) + 0.83*(meth.) + 0.73*(Conn.) — 33.9* (Meth./Comp)
(p= 0.0004) (p=0.0) (p = 0.0006) (p = 0.0004)

The model is statistically significant at the confidence interval of 99% with highest
p-value of 0.0006 and p(F) of 0.0. The model has a high R2 value of 0.98. The
model is not without unexpected features. Two unexpected features available in
the model are:

1) Design effort decrease when the total number of components increases.

2) Design effort decrease when the average number of methods per component

increases.



The reason(s) to these unexpected features in the model can be due to one or more

of the following:

1) High degree of correlation is observed between the variables included in the
model. The correlation matrix between Components, Methods, and Connections
which are included in the model is presented in Table 4.5.

Table4.5: Correlation M atrix between M odel Variables

Components| Methods | Connections [Methods/Comp.
Components 1
Methods 0.95 1
Connections 0.95 0.96 1
Methods/Comp. -0.03 0.27 0.11 1

The high degree of correlation between model variables (multicollinearity) can
lead to a situation like what encountered in our model.
Also a possible explanation is that: providing a solution with bigger components
providing rich services, design becomes easier; connection design is easier: most of

the job is being handled inside the components.

The predicted results are practically interesting. The average error rates are 27%
for the initial estimate and 15% when excluding the outliers. The list of actual and
predicted values of total design effort with the corresponding residual and average
error rate are presented in Table 4.6 and the model plot is shown in Figure 4.3.

Table 4.6: Total Design Effort Estimates

Actual Value | Predicted Value | Residual (Actual - Predicted) | %Error
38 57.68 -19.68 -51.78
32 43.01 -11.01 -34.42
24 24.03 -0.03 -0.11
16 3.48 12.52 78.26
24 25.56 -1.56 -6.48
42 46.26 -4.26 -10.15
20 26.72 -6.72 -33.58
26 22.64 3.36 12.91
19 6.03 12.97 68.24
24 45.58 -21.58 -89.91
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Table 4.6 (Continued)

32 31.05 0.95 2.97
24 18.38 5.62 23.42
34 35.56 -1.56 -4.60
32 37.05 -5.05 -15.79
44 35.48 8.52 19.36
40 49.17 -9.17 -22.94
46 36.81 9.19 19.97
38 38.98 -0.98 -2.58
76 40.95 35.05 46.12
24 17.60 6.40 26.66
22 39.50 -17.50 -79.56
45 34.86 10.14 22.52
32 30.84 1.16 3.64
20 20.06 -0.06 -0.32
525 522.08 2.92 0.56

Model a*x1+b*x2+c*x3+d*x4
600.0

500.0

400.0

300.0

200.0

Total Design Effort

100.0

0.0 5.0 10.0 15.0 20.0 25.0

Components, PComponents, Interfaces, Methods/Comp

Figure 4.3: Total Design Effort Regression M odel Plot

4.3.5.4 Design Effort Per Component Regression M odel

In the previous section we presented a prediction model for total design effort and
we have seen the influencing factors. A prediction model for design effort per
component is as import asthat for total design effort. The necessity of a prediction
model for design effort per component emanates from the need to find the factors

that can explain increasing effort per added component. A forward addition
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approach is followed to identify the statistically significant influencing factors. The
set of potentially influential variables has been identified and variables are added
when p-value is less than or equal to 0.05. The resulting regression model takes an

exponential curve with four variables as follows:

Des. Effort/Comp.= e" (-0.03* TNC)+0.13* (TNIC)+0.46* (TNI/TNC)+0.32* (TNM/TNC)- 1.48)
(p=0.0) (p=10.0) (p=0.0) (p=0.0) (p =0.0)

The model demonstrates a high statistical significance with all p-values being equal
t0 0.0. Also, the value of R? is quite good for adoption of the model.

From a practitioner’s point of view the model is not encouraging due to its
exponential nature. This makes it difficult to make predictions about potential
change when a variable value is changed. The interesting thing about the model is
that it meets intuitive thinking. Additional effort to system design increases when a
component is added, number of interfaces a component implements increases, when
there are more connections, and when the number of methods increases.

The predictive power of the model is quite good to recommend for application.
The average error rates are %17 and 13% for initial estimate and estimate after
excluding outliers respectively. A complete list of actual and predicted values with
their corresponding residual and error estimates is presented in Table 4.7. The
model plot diagram is shown in Figure 4.4.

Table4.7: Design Effort per Component Estimates

Actual Value | Estimated Value | Residual %Error
0.46 0.72 -0.26 -56.17
0.40 0.29 0.10 26.10
0.37 0.48 -0.11 -30.63
0.27 0.31 -0.04 -16.71
0.83 0.92 -0.10 -11.66
1.56 1.45 0.11 6.81
0.71 0.91 -0.20 -28.02
0.90 0.87 0.03 2.86
1.58 1.20 0.38 24.01
0.80 1.03 -0.23 -28.40
0.57 0.47 0.11 18.58
0.80 0.65 0.15 19.10
0.76 0.92 -0.17 -21.97
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Table 4.7 (Continued)

0.64 0.89 -0.25 -39.67
0.77 0.73 0.04 541
1.14 1.18 -0.03 -2.92
0.68 0.46 0.21 31.31
0.81 0.80 0.01 1.65
2.53 1.73 0.80 31.56
0.92 0.86 0.06 6.52
0.44 0.65 -0.21 -47.89
0.69 0.56 0.14 19.66
1.00 0.92 0.08 7.89
1.00 0.93 0.07 7.23
1.83 1.72 0.11 6.11

Model exp(a*x1+b*x2+c*x3+d*x4+e)

Design Effort Per Component
=
[@)]
IIIIIIIIIIIIIIIIIIIIIIIIIIIII

0.0 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0.0 5.0 10.0 15.0 20.0 25.

Component, PComponent, IntPerComp, MethPerComp

Figure 4.4: Design Effort per Component Regression M oddl Plot

4.3.5.5 Correction Effort Regresson M odel

In general, maintainability in software systems is one of the most important quality
indicators. Maintainability can be quantified as the average time required to fix an
error [81]. It is possible to build prediction models for maintainability only if data
from implemented and operational systems are available. The data used in this
research has been collected from projects which are only designed but never
implemented and put into operation. For this reason actual maintainability
prediction models are not possible, at least, for the time being. We looked for
another factor that can be used to give an indication about maintainability. We
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used the term correction-effort in our research to provide some sense about

maintainability. In Table 4.1 we identified the different variables (quantified

features) of a system model that can have influence (positive or negative) on

correction effort. In the regression analysis the variables have been added in a

forward addition manner where variables are added if they satisfy the 0.05

confidence interval. The regression analysis produced the following model:

Correction-Effort = 0.08 * (# of Components) - 1.5/ (# of Methods/Component) + 2.13

(p=0.0) (p=0.02) (p=0.0)

The model demonstrates a high statistical significance with maximum p-value Of

0.02 and R?* Of 0.95. Besides being statistically significant, the model also is

practically significant dueto at least the following reasons:

1) The coefficient variables do not violate intuition since it is intuitive that
correction effort should increase as the number of components and the average
number of methods per component increase.

2) The average error rates are encouraging to recommend the model for practical
use with a value of 19% for the initial error rate which drops to 13% when
removing the outliers. The complete lists of actual and predicted value with the
corresponding residual and error rates are presented in Table 4.9. The plot of
the regression model is shown in Figure 4.5.

Other variables are believed to have influence on correction effort. The reason(s)

behind this violation can be one or more of the followings:

1) High multicollinearity between the different variables. Table 4.8 presents a
complete correlation matrix of all the variables that have been fed to the model.
Multicollinearity is a common problem that encounters researchers carrying out

such researches.

Table 4.8: Correlation Matrix between Regression Variables

a = g 13 |8 £
= < e = c E |Q g = =
E|l B3| | E| | 5| 8|sglcsg| |9
o 5] = < Q O |gE|lcE| S a
5] = g S O o g S %
= @)
Comp. 1.00

Meth. 0.95]| 1.00
Pcomp 0.98 | 0.97 | 1.00
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Table 4.8 (Continued

Int. 0.96 [ 0.92 | 0.97 | 1.00
Conn/Int | 0.09|0.17 | 0.14 | 0.05 | 1.00
Conn. 0.950.96 | 0.98 | 0.97 | 0.27 | 1.00
Int./Comp |-0.21(-0.20|-0.25|-0.04(-0.20|-0.12| 1.00
Meth/Comp [-0.03| 0.27 | 0.07 | 0.00 | 0.29 | 0.11 |-0.05| 1.00
Meth/Comp |-0.15/-0.07|-0.14|-0.03| 0.53 | 0.06 | 0.71 | 0.16 | 1.00
Conn./Comp.| 0.18 | 0.36 | 0.18 | 0.04 | 0.23 | 0.14 |-0.43| 0.74 |-0.18|1.00
Meth./Int. | 0.55|0.47 | 0.51| 0.53 |-0.14| 0.46 |-0.16|-0.09|-0.26|0.08|1.00

2) Lack of experience in CO software system design may be a reason to having
such results.
Table 4.9: Total Correction Effort Estimates

Actual Value | Estimated value | Residual | %Error
6 7.24 -1.24 -20.68
6 7.29 -1.29 -21.46
5 5.94 -0.94 -18.76
5 4.36 0.64 12.87
5 3.75 1.25 24.93
6 3.62 2.38 39.70
3 3.67 -0.67 -22.42
3 3.81 -0.81 -27.05
2 2.21 -0.21 -10.37
4 3.99 0.01 0.29
5 4.73 0.27 5.44
3 3.69 -0.69 -22.97
5 4.58 0.42 8.31
4 4.60 -0.60 -14.98
5 4.86 0.14 2.74
4 417 -0.17 -4.27
8 5.99 2.01 25.17
4 474 -0.74 -18.43
5 3.85 1.15 23.07
2 3.47 -1.47 -73.33
6 5.33 0.67 11.23
6 6.17 -0.17 -2.77
4 3.50 0.50 12.45
2 2.69 -0.69 -34.30

25| 24.77 0.23 0.90
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Model a+b*x1+c/x2
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Figure4.5: Total Correction Effort Regresson M odel Plot

4.3.5.6 Correction Effort Per Component Regression M odel

Knowing the features of a component that may increase the correction effort is a
very important issue. Once these features are identified it is possible to favor
alternative designs where the correction effort elevating features are avoided. A
forward addition approach has been followed where variables have been added if
they satisfy a 0.05 or less confidence interval. It isour preference to obtain a model
that uses more variables since that will better describe the relationships between the
dependent variable and independent variables. The obtained model takes an
exponential form which can be a practical disadvantage for the model. The model

uses only three variables and it is defined as follows:

Correction/Component = exp(-0.02* Components + 0.07* PComp. + 0.2 * (MethodsyComp) — 2.37)
(p = 0.003) (p = 0.008) (p=0.04) (p=0.0)

In the model, all p-values are less than 0.05 which means the model is statistically
significant. The R? value of 0.54 is obtained which is not too high but the average
error rate results encourage the adoption of the model. Average rates started with
an initial value of 18% which dropped to 12% when the outlier values are excluded

from the average error estimation.
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The model violates intuitive thinking and initial expectationsin at least one or more

of the followings:

1) Correction effort per component decrease as total number of components
increases.

2) Some variables that are intuitively believed to increase correction effort per
component have not been included in the model. Among these variables are the
total number of connections, and number of connections per component. It is
natural to spend more time on making corrections when the component exhibit
high connectivity.

The complete list of values of actual and predicted correction effort per component
values with their corresponding residual values and error rates are presented in

Table 4.10. The plot of the model is shown in Figure 4.6.

Table 4.10: Correction Effort per Component Estimates

Actual Value [Estimated Value | Residual %Error
0.07 0.08 -0.01 -17.02
0.07 0.07 0.01 7.34
0.08 0.08 -0.01 -7.89
0.08 0.07 0.02 19.65
0.17 0.14 0.03 17.37
0.22 0.18 0.04 17.52
0.11 0.13 -0.02 -18.12
0.10 0.14 -0.03 -33.48
0.17 0.14 0.02 14.45
0.13 0.14 0.00 -2.72
0.09 0.09 0.00 4.30
0.10 0.11 -0.01 -14.07
0.11 0.11 0.00 -2.01
0.08 0.11 -0.03 -40.01
0.09 0.10 -0.01 -10.17
0.11 0.13 -0.02 -16.33
0.12 0.08 0.04 34.53
0.09 0.08 0.01 8.30
0.17 0.13 0.03 20.88
0.08 0.14 -0.06 -77.68
0.12 0.09 0.03 21.51
0.09 0.09 0.01 6.52
0.13 0.11 0.02 14.67
0.10 0.13 -0.03 -26.33
0.09 0.09 0.00 -3.16
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Model exp(a*x1+b*x2+c*x3+d)
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Figure 4.6: Correction Effort per Component Regression M odel Plot

4.3.5.7 Integration Effort Regresson M odel

The CO software development paradigm focuses on building large systems by
integrating pre-built components [34, 83]. Following from this, it can be clear that
integration effort is a very critical factor when making a choice between alternative
components. ldentifying the features of a component or a CO system and their
weighing factors in increasing or decreasing integration effort is a practical need.
Obtaining accurate integration effort records is a necessary prerequisite to building
integration effort prediction models. Also, having accurate integration effort
records is only possible if implemented and composable components are available.
Such components were not available during the time when this study took place.
We used a different estimate of integration effort which is the effort spent on
identifying component relationships, connections, and interfaces with other
components. Although this is not the exact record of integration effort, it is highly
related to the actual integration effort. The model is obtained as a result of applying
variables in a forward addition approach. Only one variable in the model is with a
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p-value that is less than or equal to 0.05. The model uses only the total number of
connectors measure. We believe that some other variables must be related to
integration effort e.g. number of interfaces but even with a p-value of less than or
equal to 0.1 this measure could not be added. The reason for that is mostly related
to strong multicollinearity between the different variables. The obtained model has

the following form:

Integration Effort = 0.1 * (Connectors) + 2.6
(p=0.0) (p=0.0)

Despite the fact that the model contains only one variable, it still bears both
statistical and practical significance. Both the p-value of the variable coefficient
and the constant are equal to 0.0. R? has a value of 0.91 which is also quite high to
encourage the adoption of the model. Average error rates are 17% and 11% for the
initial estimate and the estimate without outliers respectively. A complete listing of
the actual and predicted integration effort estimates with their corresponding
residual and error rate values are presented in Table 4.11 and the model plot is

shown in Figure 4.7.

Table4.11: Total Integration Effort Estimates

Actual Value | Estimated Value| Residual | %Error
7 11.09 -4.09 -58.43
5 7.89 -2.89 -57.87
4 5.87 -1.87 -46.73
4 5.55 -1.55 -38.74
6 5.23 0.77 12.84
8 8.43 -0.43 -5.33
5 5.55 -0.55 -10.99
5 4.48 0.52 10.32
4 491 -0.91 -22.76
7 6.93 0.07 0.93
8 8.43 -0.43 -5.33
4 4.70 -0.70 -17.43
11 7.25 3.75 34.05
8 8.53 -0.53 -6.66
10 8.96 1.04 10.41
8 8.21 -0.21 -2.66
10 8.43 1.57 15.74
8 7.68 0.32 4.00
10 7.25 2.75 27.46
4 4.70 -0.70 -17.43
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Table 4.11 (Continued)

8 5.44 2.56 31.96
8 6.30 1.70 21.31
7 7.36 -0.36 -5.15
6 6.30 -0.30 -4.92
35 34.53 0.47 1.34
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Figure4.7: Total Integration Effort Regresson M odel Plot

4.3.5.8 Integration Effort per Component Regression M odel

As well as total integration effort, integration effort per component is a measure of
great practical importance. Besides the deemed functionality and performance
requirements, one of the main factors for making a decision whether to buy a pre-
built component or not is whether it is easy to be integrated with other components
or not. The degree of easiness to integrate can be best quantified by estimating the
time spent on integrating the component. In this part we tried to identify the factors
that increase or decrease integration effort of a component and their weights in a
backward elimination approach. We started with all variables in the model and
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eliminated all variables that have p-values greater than 0.05. The final model with

all variables having a p-value less than or equal to 0.05 is defined as follows:

Integration/Component =-0.003 * ( TNI) + 0.08 * (TNM/TNC)+ 0.02 * (TNCO/TNC) + 0.11
(p=0.01) (p=0.0) (p= 0.001) (p=0.01)

It is clear that the model is statistically significant since all p-values are less than
0.02. The model meets intuitive thinking in that integration effort of a component
increases when both the number of methods and/or the number of connections in
that component increase. One problem of the model is that integration effort per
component decreases as the total number of interfaces increases. It is also possible
to interpret the result as: A well planned component framework should dedicate
more interfaces for composability. According to this interpretation, increasing
number of interfaces may reduce integration effort as they provide help in
integration. Also, the coefficient value is too small (0.003) making its effect to be
insignificant in the model.

The average error estimates are 16% and 8% for the initial estimate and the second
estimate (after removing outliers) respectively. A complete list of the actual and
predicted results with their corresponding residual and error rate values are
presented in Table 4.12. The model plot is shown in Figure 4.8.

Table 4.12: Integration Effort per Component Estimates

Actual Value | Estimated Value| Residual %Error
0.14 0.24 -0.09 -66.46
0.20 0.27 -0.07 -34.82
0.14 0.23 -0.08 -59.01
0.20 0.22 -0.02 -9.04
0.38 0.34 0.03 8.98
0.36 0.39 -0.02 -6.28
0.36 0.39 -0.03 -8.93
0.36 0.34 0.01 3.81
0.33 0.36 -0.03 -7.91
0.50 0.49 0.01 1.65
0.33 0.28 0.06 16.98
0.33 0.33 0.00 1.25
0.38 0.28 0.10 26.66
0.24 0.26 -0.01 -5.77
0.29 0.25 0.04 14.88
0.33 0.38 -0.05 -15.41
0.33 0.26 0.07 20.52
0.38 0.41 -0.02 -6.44
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Table 4.12 (Continued)

0.42 0.41 0.00 0.71
0.29 0.33 -0.04 -15.16
0.38 0.31 0.07 17.81
0.27 0.25 0.02 7.70
0.35 0.36 -0.01 -2.60
0.43 0.37 0.06 13.23
0.24 0.23 0.01 5.30

Model a*x1+b*x2+c*x3+d

.30k

Integration Effort Per Component
o

Row

Figure 4.8: Integration Effort per Component Regression M odel Plot

4.3.5.9 Productivity (FP/Person-Hour) Regresson M odel

Developer productivity is one of the most important features that influence total
development effort. Finding out the system features that influence developer
productivity has been a critical issue since the early days of software engineering.
In our research we identified the intuitive system features that may potentially
affect productivity and followed a backward elimination approach in which
variables with p-values that are greater than 0.05 are eliminated. The final model is

defined as follows:
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Productivity = 541 - 0.82* (TNM/TNC) —0.95* (TNI/TNC)
(p=0.0) (p=0.04) (p=0.01)
The model shows that increased number of methods in a component is favored over
increased number of interfaces. It suggests that interfaces with more methods are
better than having too many interfaces with small number of methods.

Despite the fact that the model variables are all statistically significant, the model
did not produce good practical results. Average error rates are 34% and 23% for
the initial and second (after excluding outliers) estimates respectively. A complete
list of the results is presented in Table 4.13 and the model plot is shown in Figure
4.9.

Table 4.13: Productivity Estimates

Actual Value | Estimated Value | Residual | %Error
3.74 2.84 0.90 24.08
4.56 3.52 1.04 22.82
4.50 3.17 1.33 29.54
5.31 3.63 1.68 31.58
2.75 2.42 0.33 12.00
2.69 2.42 0.27 10.11
3.25 2.00 1.25 38.61
1.69 2.22 -0.53 -31.21
1.47 2.18 -0.71 -48.29
2.75 1.49 1.26 45.73
2.38 3.52 -1.14 -48.11
2.42 2.64 -0.22 -9.19
2.79 2.66 0.13 4.59
2.06 3.07 -1.01 -49.21
2.50 3.15 -0.65 -25.90
1.80 2.00 -0.20 -11.08
2.22 3.13 -0.91 -41.13
1.84 1.60 0.24 12.98
0.58 0.98 -0.40 -68.54
1.58 2.49 -0.91 -57.35
3.14 2.13 1.01 32.19
2.07 2.85 -0.78 -37.50
1.88 2.33 -0.45 -23.90
2.40 2.60 -0.20 -8.21
0.97 2.30 -1.33 -137.55
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Model a+b*x1+c*x2

Figure 4.9: Productivity Regresson Model Plot

4.3.5.10 Total Development Effort Regression M odel

The importance of predicting development effort at early stages of the development
process is very clear [81]. Several cost estimation methods have been proposed in
the literature. These methods vary in their nature. Some methods are parametric
like Putnams model (SLIM) first described in [67] , and PRICE-S which has been
partially described in [63] and used by the DoD and NASA in their project
estimations. Another widely cited cost estimation method is the COCOMO model
which was first described in [14] and then revised to address the new changes in the
software development life cycle and released as COCOMO 11 [15].

Expert judgment is one other approach that has been applied in software cost
estimation techniques. In this approach software cost esimation is done based on
the previous experience and practices in software development. Expertise makes
predictions based on outcomes of higher past projects. One known expert
judgment technique is Delphi as described in [44].
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Learning oriented techniques for cost estimation have been proposed. These
models are mainly dependent on neural networks models that are based on previous

experiences.

Regression-Based techniques have been successfully used in software cost
estimation. The common features in these methods depend on Least Squares
regression where a set of independent variables (regressors) are identified and a
prediction model is obtained based on previous projects data Boehm used
regression modelsto calibrate COMOMO 1.

In this study we built aregression based model for effort prediction based on effort
estimation data obtained by a comparative estimations tool prepared by the
International Software Benchmarking Standards Group (ISBSG). I1SBSG is a non-
profit organization whose main aim is providing help to improve the management
of IT resources. It maintains two repositories for: 1) Software Development and
Enhancement and 2) Software Maintenance and Support. The repositories maintain
data of more than 3000 projects sponsored by software development organizations
mostly from USA, Japan, Australia, and several other countries. The effort
estimation tool performs predictions based mainly on FP counts. Other parameters
are also necessary to make accurate predictions. These parameters are:

functional size range

devel opment type

devel opment platform

business area type

application type

maximum team size

language type

primary programming language
user base — business units

user base — locations

user base — concurrent users
used CASE tool

used methodol ogy

how methodol ogy was acquired
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While using the tool, for all projects the following parameters were set to “match

none”:

language type

primary programming language
user base — business units

user base — locations

user base — concurrent users
used CASE tool

The development type parameter was set to “new development”. The development
platform parameter was set to “PC”. The maximum team parameter size was et to
“2" since all system models were prepared by teams of two. The used methodology
parameter was set to “Yes’ since all developers followed the component oriented
software development approach. And the how methodology was acquired
parameter was set to “built in-house”.

The regression model is obtained with a significance level of 85% and is defined as:

Development Effort = 2.4 * (# Comp.) + 26.9 *(# PComp) — 6.2 * (# Int) + 9.8 *(Conn./Comp)
(p=0.05) (p=0.001) (p=0.15) (p=0.09)

Besides being statistically significant, the model also bears great practical
importance due to the following reasons:

1. The model has prediction power with an average error rate of 9% only.

2. Predicting development effort using complexity metrics that can be
collected at the design phase of the system development process will enable
managers and developers to make better decisions related to the product and
process.

The predicted values compared to actual values with their corresponding estimated
residual and error percentage are presented in Table 4.14. The estimated error rates
are 17% and 9% for both the initial estimate and the second estimate after

removing the outliers. The model plot is shown in Figure 4.10.
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Table 4.14: Total Development Effort Estimates

Actual Values/Predicted Vaues|Residual| Error%
480 481.43 -1.43 -0.30
559 485.36 73.64 | 13.17
365 380.23 -15.23 | -4.17
287 324.86 -37.86 | -13.19
253 239.89 13.11 5.18
391 315.89 75.11 | 19.21
225 203.46 2154 | 957
152 213.58 -61.58 | -40.52
133 141.81 -8.81 | -6.62
223 234.01 -11.01 | -4.94
204 375.89 -171.89| -84.26
220 205.22 14.78 6.72
364 306.38 57.62 | 15.83
235 362.87 -127.87| -54.41
421 377.40 43.60 | 10.36
349 268.12 80.88 | 23.17
495 396.68 98.32 | 19.86
268 246.56 2144 | 8.00
167 196.25 -29.25 | -17.52
145 209.36 -64.36 | -44.39
246 263.97 -17.97 | -7.30
356 371.32 -15.32 | -4.30
230 227.85 2.15 0.93
184 197.23 -13.23 | -7.19
1953 1948.67 4.33 0.22

82




Model a*x1+b*x2+c*x3+d*x4
2000.0

1800.0;
1600.0;
1400.0;
1200.0?—

1000.0

Total Development Effort (Person-Hours)
[oe]
o
o
)
T

0.0 5.0 10.0 15.0 20.0 25.0
Components, PComponents, Interfaces, Conn./Component

Figure 4.10: Total Development Effort Regression M odel Plot

4.3.7 Summary of the Results

Ten different models have been developed. While building all of these models,
both statistical significance and practical importance have been taken into
consideration. For datistical significance purposes, apart from the first model, in
al of the models variables were only added if their corresponding p-values were
less than or equal to 0.05. In the first model a variable (# of connectors) is added
while its corresponding p-value is equal to 0.1 and in the total development effort
prediction model a variable with p-value is added to the model with p-value of
0.15. The reason behind this exception is due to the believed inherent importance
of the variable in the estimation of FPs count. We have considered practical
perspectives, such as average error rates and simplicity of the model. In two
models exponential functions have been used since they had the lowest average
error rates compared to the alternatives. A summary of all the developed regression
models with their corresponding R2 values and average error rates are presented in
Table 4.15.
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Table 4.15: Summary of the Regression M odels
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Table 4.15 (Continued)
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The results obtained from the experiment can be classified into three broad classes

as follows:

1. Meeting initial (intuitive) view points: regressors described regressands in a

2.

manner meeting intuitive thinking (e.g. FP should increase with increased

number of methods).

Violating initial view points: the relationships between regressands and

regressors do not meet intuitive thinking (e.g. an increase in the total

number of interfaces results in a decrease in the total FP count).
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3. No results (unexpected behavior): No relationship —with statistical
significance- could be detected between regressands and regressors which
are intuitively believed to be related.

The results obtained from the regression analysis revealed that complexity metrics
collected from the design models can be great managerial and practical use. While
some of the results slightly violate initial expectations, most of the obtained results
sound reasonable. Some metrics which are intuitively believed to be related to
some process features (regressands in our study) could not be added to the
regression models due to their corresponding p-values which were above the
maximum acceptable value of 0.1. In Table 4.16 we present a summary of the
metrics collected form the projects used in our sudy with their practical influences.
In the column Influence the symbol “1” is used to mean that when the metric value
increases the estimated feature value increases as well. The symbol “|” means that
the estimated feature value decreases when the metric value increases. In the
column Comments we comment on whether the metrics use meets initial
expectation that are built based on intuition. If the metrics use violates the initial

expectations then a short reasoning is provided when relevant.

Table 4.16: Summary of Metrics Practical Applications

No Metric Name Used Model Influence Comments

Total FP Count T |Agreeswith Intuition|

_ Violates intuition dug
Total Design Effort ! S
to multicollinearity

Violates intuition due
1 Total Number of Design Effort/ Comp. | | S
Total Correction ) o
T |Agreeswith Intuition|
Effort

- O IIII ’.
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Table 4.16 (Continued)

Total Number of
I mplementation
Components

Total FP Count

Agrees with Intuition

Design Effort/Comp

Agrees with Intuition|

Total Correct. Effort

Agrees with Intuition|

Total Number of
Interfaces

Total FP Count

Violates intuition due
to multicollinearity

Total Integration
Effort

Agrees with Intuition|

Total Number of
Methods

Total Design Effort

Agrees with Intuition|

Total Number of

Connections

Total FP Count

Agrees with Intuition|

Total Design Effort

Agrees with Intuition|

Total Integration
Effort

Agrees with Intuition|

Total Number of
Eventsin

Not used in any model

Events In are not
utilized in the models

Total Number of
Events out

Not used in any model

Events Out are not
utilized in the models

Maximum Depth of
the Composition
Tree (DCT)

Not used in any model

Almost all projects
have similar DCT
value. DCT lost its

discriminative power

Maximum Width of
the Composition
Tree (WCT)

Not used in any model

Almost all projects
have close WCT
value. WCT lost its

discriminative power
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Table 4.16 (Continued)

Average number of | Design Effort/ Comp. Agrees with intuition
10 Interfaces Per —
Productivity A th intuiti
Component grees with intuition
P (FP/Person-Hour)
Violates intuition due
Total Design Effort to correlation with #
of interfaces
Average Number of
11 Methods Per Design Effort/Comp Agrees with intuition
Component
Integ. Effort/ Comp. Agrees with intuition
Productivity Agrees with Intuition|
Average Number _
_ Total Integration o
12 | Connections Per Agrees with intuition
Effort
Component
Average Number of
Average FP count per S
13 methods Per Agrees with intuition
Interface
Interface
Average number of
Average FP count per S
14 Connectors per Agrees with intuition
Interface
Interface

In all of our models we used average values rather than exact values per

component.

We tried the possibility of analyzing individual components and

examine the relatedness of complexity metrics with productivity, design-effort,

correction-effort, and integration-effort based on records of individual components.

This part could not be completed successfully due to the fact that developers could

not provide exact records for the design, integration, and correction efforts they

spent on individual components.
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CHAPTER 5

AUTOMATING METRICSCOLLECTION PROGRAMS

5.1 The Need for M etrics Automation

Computer Aided Software Engineering (CASE) is a generic term that is widely
used for the different tools used in software development. CASE tools play an
important role in modern software engineering practices and have an important
influence in the production of cost-effective and efficient software systems. Today,
CASE tools are used in the different stages of the software process. Project
planning and scheduling tools help in scheduling and organizing activities in the
software process (e.g. MS Project® from Microsoft, and ManagePro™ from
Performance Solutions Technology). Effort estimation tools are used at early stages
and particularly during and just after the requirements definition of the software
process to make predictions about total development effort ad then total cost (e.g.
Effort Estimation Toolkit from ISBSG). System modeling tools are used during the
requirements specifications and system and software design stages of the software
process.  Several modeling tools have been developed and widely used by
software developers.  Among the most widely used modeling tools is IBM
Rational Rose that is used for creating UML models for OO systems. Besides
being a powerful modeling tool, Rational Rose also supports both reverse
engineering and automatic code generation. Another UML modeling tool is
Visio® from Microsoft. Several other types of CASE tools can be used at different
stages of the development process like report generating tools. Integrated
development environments (IDEs) help in automating many programming
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processes. Debugging, system integration, and testing tools are also available in

many flavors.

Use of product complexity metrics in software engineering as a primary means for
making process and product related decisions has been utilized mostly in the last
few years. Automatic metrics collection tools have developed for OO software
development and particularly for CK (Chidamber and Kemerer, 1994) metrics.
Some of these tools have been embedded into modeling tools and enabled
automatic metrics collections directly from the system models.

On the other hand, lack of dedicated CASE tools for COSE is obvious. Apart from
some extensions to OO modeling tools, no commercial dedicated CASE tools for
COSE ever existed. COSECASE is a dedicated COSE tool which is developed in
consecutive versions each of which was a part of a master thesis work in the
department computer engineering in the Middle East Technical University-Turkey.
Each new version introduced represents an enhancement to its predecessor version.
The last version of COSECASE is functional. It enables model creation, and
performs rule violations checks in the following situations: 1) when creating a
relationship between components, 2) removing a component from the model, 3)
adding a new component to the model. The final version of the tool was lacking
some usability related enhancements. As part of the research described in this
thesis, some usability related enhancements have been added to the tool. Our
contributions to the tool can be summarized in three main groups:
1) Usability Enhancements: The enhancements to the tool usability include the
followings:

a. Enabling automatic resizing of components in the model

b. More nice-looking connectors.

c. Deleting using keyboard delete key in addition to mouse right button.

d. Dialogue boxes of components properties have been modified.

2) Automatic metrics collection: Complexity metrics defined in Chapter 3 are

automatically collected during model creation.
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3) Producing estimation results: Prediction models that are developed based on
complexity metrics in Chapter 4 are used to make process related estimations.
The tool automatically produces estimations based on these models and the
product metrics and can target the results to both screen and/or atext file. Also
for system models prepared using other tools it is possible to produce
estimations after manually estimating the complexity metrics and entering their

values in the corresponding fields if the form that is appearing in Figure 5.1.

£ Metrics Collection Form

Mumber of Events In

Project Name |5tudent Fegistration System |
Total Number of Components |65 |
Humber of Implemented Components |1 2 |
Humber of Inerfaces I1 g |
Total Humber of Methods |66 |
Humber of Intercomponent Links !34 |
Humber of Events Out 4 |
|
|
|

[

|

|
Depth of the Composition Tree !4
Width of the Composition Tree I

Estimate Clear Form

Figure5.1: Metrics Collection and Estimation Tool

5.2 Enabling Automated Metrics Collection in COSECASE

COSECASE provides a good environment for creating COSE system models only
based on the COSEML (Dogru and Tanik, 2003) notation. Screen shot of the tool

is shown in Figure 5.2.
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£ coseml - C:\Documents and Settingsinael\Desktoplcoseml _10.05.2006_caglaricosemlimodel.cml ... g@|g|
File Wiew Edit BGEEES Help

O = H @ ) Displfayi'ed.ictéd E_stimates .rl : Main Diagram

= A

Fimplified University Jpstem

Departmsant Ztudsnt B——— 4 ey Regiztration Faculty

Dapartment Opsrations

Componentl F_/_/_,. Course Ops
Roademic Opol Grading Ops

Etudant Table Course

Grade Table Courze Table

Personal Ops

I:Personal OP:H I:chdemic Dpst‘ .J Grading Ops E I] Course Ops H

Student Table Ztudent Table _Grnde Table ] Coursse Takble
Tpdate View Grades Course Table ndd
iens Rdd Course Set Grade R

Drop Course Update Course -‘-T:i.ew

L b € ) e T B Ty g B g B e

Figure5.2: Screen Shoot from COSECASE with Estimations Options

After creating or loading an already existing COSEML model, a user will be able
to obtain predicted estimations by just selecting “Display Predicted Estimates’
menu item from the “Tools’ menu. The results of estimations are displayed in a
form as shown in Figure 5.3.  The user will have the chance to save results by just
clicking on the “ Save Results’ button.
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£ predicted Results

Total Development Effort =

Total Function Points Count =

Total Design Effort =

Total Correction Effort =

Total Integration Effort =

Function Points Per Interface =
Design Effort Per Component =
Correction Effort Per Component =
Integration Effort Per Component =

Programmer Productivity =

321,6 Person Hours

85,7 Function Points

J1.44 Person Hours

5,2 Person Hours

6 Person Hours

1,89 Function Points

0,27 Person Hours
0,3 Person Hours
0,25 Person Hours

5,41 FPPerson Hours

Save Results

Exit

Figure5.3: Screen Shoot of Estimation Results Form
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CHAPTER 6

CONCLUSION AND FUTURE WORK

A measurement framework for Component Oriented Software Engineering has
been developed and investigated. This was to support the newly developing radical
Software Engineering approaches that are expected to offer a long waited answer.
Besides the lacking industrial experimentation, our results obtained through
statistical analyses over academic case studies that extended three years, yield
valuable conclusions. Some relations among process and product properties and
proposed metrics have been founded. Besides, the converging analysis results in
many aspects are an indication of the validity of the foundation.

6.1 Summary

Quantifiable aspects of CO systems are identified. Then, metrics to measure these
aspects are defined. Relationships of metrics with the aspects they are intended to
guantify have been defined. For every defined metric, its potential impacts on the
product and the process have been presented. These potential impacts represent the
initial viewpoints based on intuition, previous experiences of software metrics, and
related work on software metrics performed by other researches in the field. A set
of properties that a CO complexity metrics must possess are defined and justified.
The proposed metrics have been evaluated against the properties defined in this
thesis and then evaluated against another set of properties defined in [84]; all
defined metrics qualified and satisfied all properties in both sets.

A Complexity model has been defined for CO software system in three levels. At
the lowest level, complexity aspect related to methods is included. At the
intermediate level, component-related complexity aspects are included. The
highest level of complexity in CO systems is the Overall System Complexity
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(OSC). OSC is the complexity that can be estimated from quantified aspects of
components plus an added complexity resulting from bringing the components

together into asingle system.

To explore the validity of metrics from a practical perspective an experiment has
been performed. Complexity metrics are important because they are known to be
important players when making process and/or product related decisions. Metrics-
based regression models are developed. These regression models are all prediction
models that enable making predictions about: Size (as a function of FP count),
development effort (Person-hours), integrability (as a function integration effort),
and maintainability (as a function of correction effort). While the experiment
revealed that metrics can be highly dependable in making process and product
related predictions, it suggests that further research covering more project data
should continue.

6.2 Discussion of the Results

The significantly notable (expected or unexpected) results can be summarized in
the following points:

1. Tota number of components of a system is an important factor in
predicting Total FP count, Total development effort, and Total correction
effort, of that system. This result meetsinitial viewpoints and expectations.
Fixing all other parameters, “Total design effort” decreases when total
number of components increases. This outcome seems to violate initial
expectations and even intuition. On the other hand, assuming the same
overall functionality, a system with more components may take less effort
to design, when compared to another with less components. In some cases,
the integration among a few components may be difficult, probably due to
increased fan of services and their connections. A bigger set of smaller
connections would be less complex than a small set of bigger (complexity)
connections. This follows the famous complexity relation which states that
the overall complexity is conserved but it is possible to be moved to where
it is easier to manage.
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2. Total number of interfaces in a system is an important factor in predicting
total integration effort. An increase in total number of interfaces increases
total integration effort. Thisresult is within expectation and meets intuitive
thinking; hence more interfaces in a system means more relationships exist
between components and then more effort will be required to integrate
them. On the other hand, the detected relationship between total FP cont
and total number of interfaces is unexpected and violates intuitive thinking.
An increase in the total number of interfaces results in a decrease to the
total FP count in a system. This outcome needs to be further examined and
validated. Thisresult also may imply tendency to reduce interfaces, astotal
complexity increases. The experimentation considered declared (created)
components rather than being industry-wide available. Students may have
chosen simpler connections for bigger projects. A natural consequence
would be expecting well established domains where complex systems will
be built by highly cohesive and relatively larger-grained components that
reguire less connectivity.

3. No relationship between the depth of the composition tree and any of the
checked regressands could be detected. The reason behind that can be due
to the fact that all projects included in the experiment have almost similar
values for depth of the composition tree metric. An opportunist speculation
would advise developers to freely choose their preferred decomposition.
Their ideal decomposition would not affect the complexity.

4. Total number of connectors relationship with total FP count, total design
effort, total integration effort, and total development effort meets intuitive
thinking and within expectations. An increase in the total number of
connectors in a system results in an increase in all values of these variables.

5. Numbers of Events In/Out in a system are not used in any regression model.
The reason can be due to the fact that uses of events in and events out were
not utilized well in all designs used in the study.

While developing all of the regression models attention was paid to both statistical

significance and practical importance of the model. Statistical significance has

been monitored through R? values and coefficients corresponding p-values,
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Practical importance of each model has been assessed through average error rates
in the predicted values when compared to actual values. Even in the worst case,
average error estimates remained below those obtained in similar studies.
Sommerville [81] reported that during the design phase cost estimation techniques
can have an error rate of 50%. In all of the regression models we developed
average error rates were less than 25% when removing the outliers.  The most
important two challenges we encountered during the research are the unavailability
of industrial projects and the lack of standard definitions to the terms of interest.

6.3 Comparison with Related Works

Component Orientation is a new trend towards software development. The process
model described by Dogru and Tanik [34] and the COSEML language represent
one of the earliest and serious works in the field. The work presented in this thesis
focused mainly on identifying a metrics set characterizing complexity in CO
systems that are developed using the COSE approach. The metrics are validated
using experimental data and the results of the validation showed that metrics can be
of great value in predicting several critical and important process and product
features. The literature of software measurement presents several trials of
evaluating software complexity and other works for relating systems complexity
with one or more process or product aspects. The following reasons are enough to

enhance the originality of this work:

1) A survey of the literature revealed that there is no complete pure CO
measurement framework that aims at characterizing software complexity in
CO systems and find its relationship with process and product features.

2) The works presented in the literature were either considering black-box
reusability or white-box reusability of software components while in our
methodology we defined metrics for both cases. Complexity is
characterized with a set of metrics in the case of black-box reuse and
another set of metrics is used for white-box reuse.

3) The approach presented here can not be generalized to al component
methodologies. It is specific to COSEML only. Among several others, we
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believe that COSE paradigm will be the future trend of CO software
development.

In the following discussion we will describe the most widely known CO related

metrics and their similarities and differences with our model.

1)

2)

Chidamber, Darcy, and Kemerer [22] investigated the relationships between
programmer productivity, design effort, and re-work effort and the OO
complexity metrics widely known as CK [20, 21]. The results obtained in
their research support the idea of that complexity metrics can be used as
predictors of some critical and process aspects. The main outcome of this
work is that lower productivity, greater re-work effort, and greater design
effort are highly associated with high coupling and low cohesion values.
These outcomes meet intuition and strengthen the arguments of that
excessive coupling is not a good design feature while cohesion is a deemed
festure. The main problem with the outcomes is that they are highly
dependent on the LCOM metric which is widely known to be ill-defined.
The main similarity of this work with our work is that both works try to
build prediction models of process features using complexity metrics
collected during the design phase of system development. The main
difference between this work and our work is that Chidamber et al. [22]
findings are OO specific while our findings are CO specific. In our
methodology it is revealed that high connectivity (a measure of coupling) is
also associated with more rework and development efforts.

Cho, Kim, and Kim [112] proposed metrics for measuring complexity of
software components. They assumed white-box reuse of components and
measure complexity mainly based on the Cyclomatic complexity [57]. The
method does not assume pure component orientation; it rather views a
software component more similar to a class as defined in OO software
development. Four types of component complexity are defined but the
influence of these complexities on product and process features is not
discussed making interpretation difficult to achieve. The similarity between
this method and our method is that it considers high connectivity between
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3)

4)

5)

6)

components as a dangerous feature which will influence maintainability,
reliability, and other product aspects.
Goulao and Abreu [106] proposed metrics that cover composition of
components. They defined metrics for measuring the ratio of used services
to total services provided by the component and for measuring the
interaction density between components. The method is similar to our work
in that it suggests that high interaction density between components
increases overall system complexity. Thisresult is validated for our model
while it is left without validation in the other model. The method is specific
only to CORBA components and cannot be generalized to other component
models. This fact makes the method different from ours since our method
is specific to COSEML approach that is more generic.
Mahmood and Lai [107] presented a model for measuring complexity in
UML components. The model assumes only black-box reuse of
components and thus focusing on characterizing system complexity only
using component interface specifications and interactions with other
components. The main difference between this method and ours is that is
UML specific while our method is COSEML Specific. Another difference
is valuable to discuss that is our method deals with both black-box and
white-box reuse while this method deals only with black-box reuse. The
metrics are not validated using project data. It also lacks interpretation
guidelines.
Banker, Datar, Kemerer, and Zweig [108] investigated the influence of
several complexity metrics on maintenance costs and found that complexity
measures significantly affect maintenance costs. The study considered
several complexity measures defined for traditional software development.
The main similarity between this method and ours s that in both methods is
that high complexity is highly related with rework effort.
Lindval, Tvedt, and Cost [109] presented an approach for detecting the
relationship between system architecture and its maintainability. The
method characterizes system architecture at two phases of the development.
Early architecture is the system architecture at the design phase and late
architecture is the system architecture after development. They defined
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7)

8)

9)

new metrics of system architecture based on the CBO metric from CK set
[20, 21]. The metrics they defined differentiate between inter-module
coupling and intra-module coupling. The method is described for classes
for OO development and module (close to component definition). The
main outcome shows that loosely coupled designs are easier to maintain.
This result meets our results for COSEML where we assume high
connectivity increases rework effort.
Darcy, Kemerer, Slaughter, Tomayko [100] examined different measures of
system structural complexity based on coupling and cohesion. Both this
method and our method are similar in that they focus on structure. This
method completely ignores algorithmic complexity while our method
considers algorithmic complexity for the case of which-box reuse of
components. Also the view of a component in this model is close to the
class concept in object orientation while our model relates to pure
component orientation. Results obtained in both our model and this model
are similar in that they both suggest high coupling negatively influences
maintenance effort. Darcy et al. [100] found that coupling and cohesion
should be considered jointly and suggest that individual measures of
coupling and cohesion can be useless.
Keating [50] introduced a model of complexity based on system structure
and hierarchy. The system complexity is evaluated based on the degree of
connectivity.  Keating proposed some guidelines that will decrease
complexity by imposing limitations on the number of modules at any level
to 7+2. Keating findings were not supported by experimental investigations
making them less dependable.
Qiam, Liu, and Tsui [110] proposed a metric for evaluating decoupling for
service components. The model assumes pure black-box reuse of service
components. They evaluated decoupling using metrics of state dependency
that tells the degree to which the service is stateless and dependency on
other services. Although the authors claim that these metrics can be used to
measure understandability, maintainability, reliability, testability, and
reusability of service components, this claim remained without empirical
validation. The metrics are well defined but no interpretation guidelines
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10) Braha and Maimon [111]

were provided. The importance of these metrics is mainly due to the fact
that they are among the few metrics that assume pure component
orientation.

introduced two measures for structural
complexity and functional complexity of modules. The structura
complexity is used to estimate total assembly effort (assembly effort can be
related to integration effort in our model). The method is not proposed for

component orientation and deals with white-box reuse only.

11) Dumke and Winkler [114] described a framework of measurement in

component based software development. The described framework is
dependent on OO software development where software components are
used during the system integration phase. The framework is mainly
validated for Javarbased software development. Dumke and Winkler
suggest the measurement process should start with the selection of metrics,
then, the identification of thresholds for metrics values should follow.
Then, the selected metrics should be adapted and refined to fit to the given
paradigm. The last step in measurement is identified as the automation of
the measurement process and experimental validation of the metrics. The
measurement framework proposed is not for component oriented systems. It

is for component based products and processes that rely on the OO

paradigm.
A summary of these methods and their comparison to our method is given in Table
6.1.
Table 6.1: Summary of Related Works
No. | Brief description Support | Similarities Differences Weaknesses
for CO

1 |Estimates Productivity, No Use metrics to|Not CO. Depend on
design effort and estimate productivity, LCOM
rework effort using design and rework metric which
0o complexity efforts is not well-
metrics defined

2 |Measuresfour types of | Partialy | Characterization  of | Not empirically | Assumes
complexity in complexity validated only white-
components Not pure CO box reuse

3 |Measure of | Partially | Both methods suggest | CORBA specific| No empirical
composition of that high connectivity | while ours validation
CORBA components increases complexity | COSEML specific
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Table 6.1 (Continued)

4 |Measures complexity| Partidly | Both characterize| Does not consider | Not
of UML components complexity using | white box reuse. empirically
based on interface interfaces and inter| No empirical | validated
specifications component links validation

5 |Investigates the No Maintenance effort is| This method is for |-
influence of severa negatively influenced | traditiona SwW
metrics on by complexity development
maintenance costs.

6 |A moded for detecting| Partidly | Loosdy coupled | Not CO No clear
the relationship designs enhance definition of
between software maintainability the system
architecture and building unit
maintainability under

consideratio
n.

7 | Detect the influence of No High connectivity | Not CO; -
coupling and cohesion increases complexity | Coupling and
on complexity. cohesion must be

jointly measured

8 |A modd for system| Partially | Structural complexity | Not CO Not
complexity based on is influenced by empirically
system dtructure and connections and validated
hierarchy. number of modulesin

each levd of the
hierarchy.

9 |De€fines a measure of Yes |Characterizes the| Relationship  with|No clear
decoupling for service degree of | process features not | interpretatio
components independence discussed n guidelines.

10 |Describes models of | Partially | Relates complexity to| Assumes white-box | -
structural and integration effort reuse only
functional
complexities of
modules.

11 |Introduces a| Partialy |ldentifies the steps|Not pure component | Highly
measurement measurement in|oriented. Based on |dependable
framework for component the OO paradigm on the OO
component based development paradigm

software engineering

Asasummary it can be said that there is no comprehensive measurement approach

for a comprehensive COSE methodology, to support the build by integration

paradigm. Among these approaches only the work of Qiam, Liu, and Tsui [110]

can be seen as relevant for a meaningful comparison. The rest of the other works

lack the Component Orientation philosophy that was described in the Introduction

section of this thesis. Due to that they do not appear to be relevant for a

meaningful comparison.
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6.4 Future Extensions and Open Research Areas

One of the most important challenges we encountered during this research is the
lack of industrial projects to use for metrics validation. The availability of such
data is believed to enable further experimental validation. Also, the presence of
data collected from operational projects will necessarily help in detecting important
relationships between complexity metrics and product quality factors such as:
reliability, performance, efficiency, and maintainability. These product features are
critical and important to both the developer and the customer. Although student’s
projects are widely used in Academia as the principal means of practical validation,
it is believed that considering industry practices in addition to students projects
will strengthen the validity of the results. Trying to consider industry practices as a
validation means will be encountered with serious difficulties due to the following
reasons:

1. Lack of standards for the definitions of the term component, component
interface, component communication principles. The terms are handled
differently by different practitioners.

2. Although component based software development is widely used, still real
component orientated software development is not encountered.

3. Even with the availability of industry practices, obtaining the data will be
another problem by its own.

According to the previous discussion future extensions to the research presented in
this thesis should include some implemented projects data, and industry practices.
The relationships between a component’s complexity and its composability,
reliability, performance, efficiency are still open research areas in this field.
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APPENDIX A

METRICSCOLLECTION FORMSUSED IN 2002 AND 2003

Number of people in the team:

Total person-hours:

Member 1 name: | | Person hours:

Member 2 name: I I Person-hours:

Total person-hours spent for modification:

person-hours for an average maintenance (correction):

Complexity of the Model:

Number of boxes (total- abstractions, components, interfaces..):

Number of Components:

Number of Interfaces:

Number of Connectors:

Number of event links:

Number of method links:

Number of methods:

Average number of methods per component:

Average number of input events per component:

Average number of interfaces per component:

Average number of methods per interface:

Maximum depth of the composition tree:

Maximum width of the composition tree:

Average NOC (Number of Children in the composition tree):

Average DCT *(Depth of composition tree):

Average CBC* (coupling = cardinality of methods called from outside):

Average RFC (Response for a Component):

Average Mean LCOM* (mean values averaged for Lack of Cohesion in Methods!:

Please give a grade (5: strongly agree; 1: strongly disagree)

It was easy to model your problem using COSEML:

Your model is an understandable representation of the problem:

L O O
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Sample Metrics of a project Components

Component Name # of # of # of NOC | DCT | CBC | RFC | LCOM
Methods | eventsln | interfaces

WebSite 0 0 0 4 1 0 0 0
Accounting 0 0 0 1 1 0 0 0
Cargo 1 0 0 1 1 1 1 1
Inventory 1 0 0 0 1 0 1 1
Ddivery 0 0 2 0 2 1 2 1
Register 0 0 2 0 2 0 0 0
Login 0 0 2 0 2 0 0 0
Search 0 0 3 1 2 0 0 0
Buy 0 0 2 0 2 0 0 0
Pay 0 0 3 0 2 0 0 0
Catalog 0 0 3 0 3 0 0 0
ShopCard 3 2 0 0 3 0 3 -3
CreditCard 0 2 0 0 4 0 0 0
Order 0 2 0 0 4 0 0 0
Product 0 2 0 0 4 0 0 0
CustDB 3 2 0 0 4 3 3 -3
ProdDb 3 2 0 0 4 3 3 -3
InventoryDB 3 2 0 0 4 3 3 -3
RegisterUl 2 2 0 0 4 3 5 2
LogUl 2 2 0 0 4 2 2 0
SearchUI 2 2 0 0 4 4 7 3
BuyUI 2 2 0 0 4 5 6 2
PAyUI 2 2 0 0 4 3 4 1
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APPENDIX B

METRICSCOLLECTION FORMSUSED IN 2005

Project title and brief description:

Total person-hours

Total person-hours spent for correcting design errors

Total person-hours spent for Integrating components

Complexity of the Model

Total Function Points (FP)

Total number of boxes (total- abstractions, components, interfaces..)

Total number of Components

Total number of Interfaces

Total number of Connectors

Total number of inter-component method links

Total number of methods

Depth of the structure tree

Component name and a brief description:

Total Person-hours (For designing this component and all of its
related elements only)

Total person-hours spent for correcting design errors (for this
component)

Total person-hours spent for Integrating the component to the
system (for this component)

Number of sub-components

Number of methods

Number of events

Number of interfaces

Number of methods per
interface

Number of methods called from outside

Number of Inter-Component method calls

Number of Intra-Component method calls
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