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ABSTRACT 
 
 

A MEASUREMENT FRAMEWORK FOR COMPONENT ORIENTED 
SOFTWARE SYSTEMS 

 
 
 

Salman, Nael 

Ph.D., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Ali H. Doğru 

  
 

November 2006, 116 pages 
 
 
 
 
A measurement framework is presented for component oriented (CO) software 

systems. Fundamental concepts in component orientation are defined.  The factors 

that influence CO systems’ structural complexity are identified.  Metrics 

quantifying and characterizing these factors are defined.  A set of properties that a 

CO complexity metric must satisfy are defined.  Metrics are evaluated first using 

the set of properties defined in this thesis and also using the set of properties 

defined by Tian and Zelkowitz in [84].  Evaluation results revealed that metrics 

satisfy all properties in both sets.  Empirical validation of metrics is performed 

using data collected from graduate students’ projects.  Validation results revealed 

that CO complexity metrics can be used as predictors of development effort, 

Design effort, integration effort (characterizing system integrabiltiy), correction 

effort (characterizing system maintainability),  function points count 

(characterizing system functionality), and programmer productivity.  An 

Automated metrics collection tool is implemented and integrated with a dedicated 

CO modeling tool.  The metrics collection tool automatically collects complexity 

metrics from system models and performs prediction estimations accordingly.  
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ÖZ 

 
 

BİLEŞENE YÖNELİK YAZILIM SİSTEMLERİ İÇİN BİR ÖLÇÜM 
ÇERÇEVESİ 

 
 
 

Salman, Nael 

Doktora, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Doç.  Dr. Ali H. Doğru 

  
 

Kasım 2006, 116 sayfa 
 
 
 
 

Bu tez bileşene yönelik (BY)  yazılım sistemleri için bir ölçüm çerçevesi 

sunmaktadır. Bileşen yönelimindeki temel kavramlar açıklanmaktadır. BY 

sistemlerinin yapısal karmaşıklığını etkileyen etkenler belirtilmektedir.  Bu 

etkenleri nicel ve nitel karakterlerini tanımlamaya yonelik ölçütler 

tanımlanmaktadır. BY karmaşıklık metriğininin gereklerini karşılayan özellikler 

tanımlanmaktadır. Ölçütler iki kere değerlendirilmektedir: İlk değerlendirmede bu 

tezde tanımlanmış olan özellikler kulanıldı.  İkinci değerlerndirmede ise Tian ve 

Zelkowitz tarıfından tanımlanmış olan karmaşıklık ölçüt özellikleri [84] kullanıldı. 

Değerlendirme sonuçları, her ikisindeki özelliklerin gerçekleştirildiğini ortaya 

koymaktadır.  Ölçütlerin görgül geçerliği yüksek lisans öğrencilerinin projelerinden 

toplanan veriler üzerinde gerçekleştirilmiştir. Geçerlik sonuçları BY karmaşıklık 

ölçütlerinin aşağıdaki parametreleri kestirim maksadı ile geliştirme sürecinde 

kullanılabileceğini ortaya koymaktadır: Tasarım çabası, entegrasyon çabası (sistem 

entegre edilebilirliğinin karakterizasyonu), düzeltme çabası (bakım yapılabilirlik 

karakterizasyonu), FP (sistem işlevselliğinin karakterizasyonu), ve programcı 

üretkenliği.  Otomatik ölçüt toplama aracı gerçekleştirilmistir ve özgül bir BY 

modelleme aracı ile entegre edilmiştir.  Ölçüt toplama aracı otomatik olarak sistem 
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modellerinden karmaşıklık ölçütleri toplamakta ve öngörü kestirimini buna göre 

gerçekleştirmektedir. 

 

Anahtar Kelimeler: Bileşen yönelimi, Karmaşıklık, Yapısal karmaşıklık,  

Ölçüt , Ölçüt Otomasyonu. 
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CHAPTER 1 

 
 

INTRODUCTION 
 

 

 
Computers are every where; transportation, education, medical, governmental, and 

several many other fields nowadays are highly dependent on computer systems 

[68].  A Computer system is mainly composed of a hardware subsystem and a 

software subsystem.   The well functioning of a computer system is dependent on 

the well functioning of both its software and hardware subsystems.  While the steps 

of building efficient hardware systems remain beyond the scope of this research, 

we will focus on evaluating features of software system that can lead to the 

production of efficient and cost-effective software.  

 

Development of software systems starts with system specification, proceeds with 

design which mainly comprises building models of the real world and approaching 

system complexity by decomposition. After that comes implementation of the 

specified models and system building blocks using a programming language that 

has constructs supporting the specified models.  The last step in the development 

process is integrating or unifying the implemented and tested system building 

blocks.  The key to approaching system complexity, managing performance, 

security, maintainability, and other important system features is decomposing the 

system into smaller units or modules which will in turn be the system building 

blocks [81].  Use of Abstraction, as the key to the identification of system building 

blocks or components, has been of great interest to software developers since the 

early days of software development.  The earliest work started with process 

abstraction which was not powerful enough to build large and complex programs.  
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Then appeared the data processing view, emphasizing function abstraction that 

receives inputs when called, does processing in its body and yields a value as 

output [74, 81].   Later, and more extensively, the object-oriented (OO) approach 

appeared and introduced a different view of abstraction which encapsulates both 

data and functions into its fundamental building block “the class” which is a 

collection of objects, and hides information from its clients.  The class abstraction 

allows building large and complex systems as hierarchies of objects [74].  Most 

recently, the component oriented (CO) system development approach with software 

component as its principal building block.  The aim of breaking the system into 

smaller units (functions, classes, or components) is to manage the complexity in the 

systems following the widely known rule “divide and conquer”.  While the 

traditional approach focuses on functions, the OO approach focuses on data and the 

CO approach focuses on structure [34].  

 

1.1 Component Oriented Software Engineering 

 

“Reuse, reuse, and more reuse until finally you can develop large software systems 

by integrating already available components rather than writing code from scratch”. 

This is the main objective of the so many research centers, software development 

organizations, and software customers as well.  Everyone involved in the software 

system development process looks forward to having software systems more 

rapidly built and are more efficient.  

 

Building software systems by integrating already available components has not 

been successfully used before the 1990s [83].  Commercials-Of-The-Shelf (COTS) 

components, Component Based Software Engineering (CBSE), and Component 

Oriented Software Engineering (COSE) are all terms referring to the new and 

rapidly growing approach of software development that mainly focuses on building 

large, and efficient software systems mainly benefiting from reusability and 

composition rather than code writing.  Although the terms CBSE and COSE are 

used interchangeably most of the time in the literature they are different in their 
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entirety.  The difference between these two terms is similar to the difference 

between Object Based and Object Oriented development approaches. Dorgru and 

Tanik [34] well-described the difference between CBSE and COSE as follows: 

CBSE focuses on using pre-built components while the whole system can 

be modeled using OO methodologies.  That means CBSE considers components 

only at the system integration phase.  On the other hand COSE requires that all 

stages of the development process must be component oriented.  COSE suggests 

that the analysis and design stages of the system must be CO in order to 

successfully apply the idea of “build by integration rather than code writing”.   In 

this respect, traditional and object oriented paradigms fall into prescriptive category 

where the idea is to write code; all the leading phases are geared towards 

organizing the way how code will be written.  Component Oriented development 

considers integration rather than code writing.  Also, Requirements and Design 

stages are supported with abstract and practical concepts that correspond to 

components, rather than prescriptive structures such as classes, objects, or 

data/control structures.  Component Based development is a hybrid approach where 

code writing is supported as well as the incorporation of components; pre-coding 

stages, however, are prescriptive namely Object Oriented.  The component related 

activities in such an approach are more bottom-up, concentrating on the "wiring 

level" techniques for the composition of components to the hybrid system.  The 

Component Orientation as supported in this study and the guiding references differ 

mainly in the integration view, and the promotion of component concept as the 

fundamental building block, in all phases.  The component and its abstract level 

representations are the focus of modeling hence rendering the concept as a 

consistent structure from requirements to run-time, as classes are for Object 

Orientation. 

   

Clements [24] listed the main advantages of applying component technologies as: 

• Reduced development effort 

• Increased reliability and efficiency. 

• Increased flexibility and many alternatives offered to choose from. 

Clements [24] also discussed the main issues and difficulties in applying COSE as: 



 4 

• Lack of standards describing ways of communications between components 

coming from different environments. 

• Component architectures and infrastructures should be identified 

•  Customers can receive no version support and evolution can be limited  

  

Computer science and/or engineering departments in many universities initiated 

research which shares a common objective of maximizing reusability and 

minimizing code writing.   The software industry practices related to components 

can be put in two categories:  While several market leading software development 

organizations intensified their work on component platforms and component 

technologies, other software development organizations focused on producing and 

marketing components.   

 

Microsoft is one of the leading organizations in creating component wiring 

technologies.  Microsoft first created COM wiring technology which then 

improved to COM+, DCOM, and ActiveX/OLE infrastructures, and lastly provided 

a wider support for components in its .NET CLR framework which adds the 

interoperation of COM+ and Windows platform access services [59 and 83].   Sun 

is another market leading software developing organization that has very important 

contributions to the component technology.   Although some java applets can be 

sold as separate components, it is difficult to generalize that on all applets [83].  

The major contribution of Sun Java™ to the component technology was the 

introduction of the java bean (a bean is really a component) technology [49].   

 

The Object Management Group (OMG) -a non-profit organization- is also working 

on defining and developing infrastructure for the interoperability of objects at all 

levels.   OMG developed the Common Object Request Broker Architecture 

(CORBA®), which was then refined in CORBA 1.1 and CORBA 1.2.  CORBA2.0 

marked a significant improvement over CORBA 1.x by enabling client portability.  

CORBA infrastructure became mature only after the release of CORBA 2.0 which 

was then followed by several successive version labeled as CORBA 2.x where each 

version enhanced the version preceding it.   Finally, OMG released CORBA3.0 
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which marked a significant improvement on all previous versions and provided the 

most support for component technology [62, 83]. 

 

On the other side, several software development organizations started developing 

and marketing software components.  Although several such organizations exist, 

we will just list few such organizations.  Our selection is pure subjective and does 

not have an implication about quality, cost, technology, or any other aspects related 

to the components developed or the developing organization: 

1. Component Source: founded in 1996, produces components that serve several 

disciplines such as accounting, data mining and databases,  speech recognition, 

image processing, CAD, web services, editing and word processing tools, and 

several other disciplines [26]. 

2. Dev Direct: founded in 2003, Dev Direct is marketing components from a 

variety of disciplines that work on almost all platforms.  Dev Direct is an 

intermediary between publishers and customers (software developers) [32]. 

 

The fast growth in the interest in CO software development in both academic and 

business cycles is due to the several advantages it provides for building large and 

efficient software systems.  CO focuses mainly on integrating already available 

components.  Among the advantages of using component oriented software 

development are: 1) economic necessity and saving in development costs, 2) 

providing higher quality software, and more adaptable systems [9, 34, 75, and 83].   

 

1.2 The need for Software metrics  

 

Tom Demarco formulated the following about measurement “You can not control 

what you can not measure” [38].  Tom De Marco best summarized what Lord 

Kelvin (1824-1904), formulated about measurement “When you can measure what 

you are speaking about, and express it into numbers, you know something about it; 

but when you cannot measure it, when you cannot express it in numbers, your 

knowledge is of a meager and unsatisfactory kind: It may be the beginning of 
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knowledge, but you have scarcely in your thoughts advanced to the stage of 

science” Quoted from Zuse’s website [95].  

 

Metrics can be collected at different stages of the software development process.   

What metrics to collect and when to collect them is an issue that still does not have 

an agreed-upon answer yet.  Hellerman supports that metrics are needed to 

compare among different alternatives [45].  Software metrics have proven to be an 

essential actor in the software development process and they are essential to have a 

successful software development environment [58].  The most widely cited 

viewpoints about the role(s) of software metrics can be summarized as follows: 

 

Metrics can be used to build prediction models: El Emam [35] demonstrates that 

metrics can be relied on to build predictions about software errors.   He also found 

that prediction models of errors based on metrics have error rates of about 9% 

while savings in maintenance costs reaches up to 42%.  Mendonça and Basili [58] 

emphasized that software measurement is needed to characterize, control, predict, 

and improve software development, management, and maintaining processes.   

 

Metrics help managers to make decisions: A lot of organizations (Software 

Engineering Labs at NASA and HP) use metrics to make managerial decisions 

related to resource distribution, cost estimations, and building defect and 

productivity models [10]. 

 

Use of metrics increases productivity: It has been noticed that productivity in 

software development is dropping with a rate higher than that in any other industry; 

it is estimated to have dropped by 10% from the year 1990 to the year 1995.  The 

most important reason behind this is the lack of benchmarks to make comparisons.  

Productivity is found to be highly affected by the degree of connectivity which is a 

measure of coupling [7]. 

 

Metrics can decrease software defects: Grady in his book about software metrics 

[40] presented a generalized discussion of software metrics.  He stated that good 

metrics programs can decrease software defects by 50-75%.  Grady, discussed 
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some of the widely known metrics such as Cyclometic complexity [57] and 

concluded that it is hardly worth the effort since it is derived from the code.  He 

suggested that metrics that are collected before the code is ready can be of higher 

value.  Defects found during inspection before the code is complete cost less than 

one tenth of those found after the system delivery and furthermore affect negatively 

the reputation of the organization.  This follows the famous saying “Prevention is 

better than cure”.  

 

Metrics can be used as quality indicators: Schneidewind defines a metric as a 

function whose inputs are software data, and its  output is a numerical value that 

describes the degree to which software possesses does or does not possess a given 

quality aspect [73].  Blundell et al. [12] related software metrics to different quality 

factors and found that design metrics can be used to: 1) evaluate current levels of 

software design qualities within the project, 2) decompose the problem into an 

acceptable set of components, and 3) identify the critical parts of the design [12].  

Basili and his colleagues [10] provided empirical evidence that object-oriented 

design metrics can be used as quality indicators.   

 

Metrics may not accurately build prediction models: Fenton and Neil describe 

two classes of software metrics; classical metrics that describe software attributes 

using numbers and the other group of metrics which are used to predict external 

features like cost and quality of software.  The authors also stressed that one of the 

major problems in the field of software measurement is the weak links between 

industry practices and current research [37].   The authors also claim that 

complexity and size measures are not enough to predict software defects 

accurately.  This viewpoint has been proven to be inaccurate through empirical 

researches including the one described in this thesis. 

1.3 Motivation 

As new technologies appeared, engineering approaches to utilize them lagged in 

the history.  OO methodologies appeared years after OO languages.  Similar 

phenomenon is valid today, for CO approaches.  There are many component-based 

techniques and methods, and even some claimed to be Component Oriented.  
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Nevertheless, they fail to be fully CO.  Although this avenue may be crucially 

important, a complete orientation towards components is missing that suggests a 

paradigm shift in software development. 

 

The metrics-based tools proposed in this dissertation claim to be instrumental in 

enabling software development strategies of the possible near future.  The targeted 

orientation demands substantial improvement over existing software development 

practices.  For the new paradigm, that is “Build by Integration,” components only 

appeared as enabling technologies.  Including many component related approaches, 

existing methodologies suggest different pre-coding activities for the similar goal: 

code development.  The CO understanding supported in this dissertation, however, 

promotes development through integration of existing code components rather than 

code writing, which is almost denied as part of the lifecycle. 

 

Software Engineering has evolved with duplicating the hard engineering discipline 

experiences in its infancy (such as through Waterfall Lifecycle).  It progressed 

through peculiar practices owing to the different nature of the intangible software 

artifact.  Before maturity, software practices are again turning back to hard 

engineering disciplines for possible exploitation of the proven successes.  

Component ideas, Software Product-line Engineering, and even Automated 

Software Factories are example concepts for such a trend. 

 

Given the size and complexity of the software systems in an ever-expanding market 

of demands, it is already very difficult and it may soon become impossible to 

generate code, one line at a time for practical sizes that are tens of millions of lines.  

Other engineering disciplines are also moving to a higher-level of component-

based integration due to the trend toward value-added chains where every company 

only contributes with its core-competency artifact – what it is best at.  Considering 

the risky business of code development and also the fact that all kinds of 

algorithms have been coded before, the charm of re-inventing the wheel further 

reduces.  Of course for some cases code can be developed; we did not discard 

teaching multiplication after the invention of hand-held calculators.  Software 
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industry needs urgently to move forward for less risky and bigger product assembly 

in shorter time periods.   

 

That is why it is believed that the near future for software engineering will be 

dominated with the Build by Integration paradigm.  To comply, the component 

orientation approach that solely models components, their abstractions, and 

integration is adopted.  This orientation is a new understanding that not only 

leverages on component technologies, but also introduces a more natural design 

cognition that could be applied without components.  Components are handy 

because they make it possible to divide and conquer the problem definition on 

“structure” basis, being supporting technologies that are developed with the 

consideration of integration.  Structure, being the most suitable one among the 

three fundamental design dimensions that are data, function, and structure, makes it 

easier to design bigger systems.  The suitability is due to its being closest to a 

tangible nature, when compared to data or function: they correspond to pieces of 

code that is already functioning.  So for complex problems now we have modules 

that play very well along divide and conquer strategy.  COSE also suggests this 

decomposition should be hierarchical, based on Simon [113] design principles.   

 

It is also possible to follow the COSE methods to develop code without 

components.  Of course, more benefit is expected for the cases where fine 

specification of the code is not to be manipulated.  A kind of an architectural look 

to the holistic view should be maintained where the system is modeled as a 

decomposition in a structural hierarchy.  The procedural details of modules (that 

replaces components in this case) can be left to any existing approach: OO or even 

traditional.  The immediate suspicion about the validity of such a paradigm shift 

could be concerning the nature of the new model:  This way, systems have to be 

suitable for viewing them as looser coupled networks of “code islands.”  However, 

for complex systems such a view is a necessity, reminding us about the 

fundamental design principle: cohesion.  Keeping in mind the real difficulty in 

traditional development being the integration, and even in modern approaches 

composing huge systems, rather than coding the integrals of a defined module, this 

new approach seems to be the answer.   
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Most of the component related methods can be classified to be placed in the 

“wiring level.”  In other words, relatively lower-level technologies are devised for 

the easier integration of components that are already defined for protocols that 

support even run-time integration.  The missing view is the one that should guide 

the developers once a huge system is requested.  There are very few academic 

studies that suggest components as an orientation rather than being OO and 

allowing components to be accommodated.  They however, miss the holistic view, 

and the simplicity that comes with the persuasion that code is not to be developed.  

Unfortunately, there has been minimal improvement in the literature, after the 

introduction of the idea in 2003 due to the difficulties in testing the paradigm.  A 

big software company has to accept to employ the methodology that is yet 

experimental, for a huge project.  Also, a complete test can only be possible after 

the availability of a matured set of components in the application domain.  

However, it is hoped that the component technologies and the demand in the 

software industry will both develop in the direction that will enable a similar 

methodology to come to practical life. 

 

The metrics and measurement mechanisms proposed in this dissertation are 

important because they support a radically different way of developing software.  If 

the industry adopts Build by Integration, COSE related methodologies will be very 

important, together with many dimensions of a methodology, metrics and 

measurement being among the important ones.  This study is being accompanied 

with other theses work in an effort toward defining different directions of such 

approaches.  As a summary, the mechanisms will make it possible to estimate and 

measure various process and product properties related to software development, 

where a software system is viewed as: 

1. A decomposition of structural abstractions, 

2. Connections among abstract and physical components, and 

3. Integration of physical components. 

 

So far, existing metrics approaches have been proposed for function (traditional) 

and data (object oriented) centric software models only.  Component related work 
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is still mostly Object Oriented and available metrics tools are a derivation of related 

OO techniques. 

1.4 Outline of the Thesis 

The rest of the thesis is organized as follows: Chapter 2 presents a survey of the 

literature of software engineering, software metrics, and metrics evaluation 

approaches.  Chapter 3 introduces a layered approach for quantifying component 

oriented software system using metrics collected from the design documents of 

these systems.  Chapter 4 describes a new set of CO complexity metrics properties. 

The metrics presented in chapter 3 are evaluated and validated in Chapter 4.  

Chapter 5 discusses the need for metrics programs automation.  Also, an automatic 

metrics collection tool is introduced.  Chapter 6 presents a summary of the most 

significant concluding remarks, comparison of the obtained results with results 

obtained in similar works, and potential extensions of the current study.  
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CHAPTER 2 

 

 

BACKGORUND INFORMATION 
 
 

 

2.1  Foundations of Software Engineering 

 

Software engineering is the engineering discipline that focuses on methods, 

techniques, and procedures for building large and complex software system in a 

cost-effective manner [38, 68].  The term software engineering was first used in 

1968 in a NATO conference that was held to discuss what was known as the 

software crisis [81].  The need for software engineering emerged after the 

introduction of computer systems embodying integrated circuits.  Informal methods 

of software development developers were not enough to build large and complex 

systems and resulted in delayed deliveries and failed projects [68].   

Work on software engineering methods has been progressing rapidly during the 

past three decades.  During the 1970s and early 1980s software engineering 

research was intensified mainly on function-oriented methods.  Those methods 

were mainly attempting to identify the system building block which was mainly 

functions.   Among the earliest software engineering methods was the work of 

Dijkstra “Structured Programming" [33] where he defined the term structured 

programming and emphasized that well-structuredness of the code is as important 

as producing the correct answer and prevent errors.  Parnas described the 

fundamentals of modular programming and introduced the concept of information 

hiding as the principle through which a system can be divided into modules [64].  

In 1971 Niklaus Wirth described one of the earliest formal software development 

processes in his work "Program Development by Stepwise Refinement" [90].  
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Jackson described a method for program design based on data structures and 

program flows [96].  In 1978 Demarco provided a detailed methodology for 

structured programming (Structured design and structured analysis) [30].  While 

several other researches appeared after then, one of the most remarkable is the 

spiral model which forms the basis for evolutionary software development by 

performing risk analysis at each stage of the development and making use of 

software prototyping [14].  

Object oriented methods started to appear late in the 1980s especially after the wide 

adoption of C++ (very widely used powerful object oriented programming 

language).   Several OO methodologies have been developed and presented in 

published papers and/or books.  The most widely used OO oriented methodologies 

include: Shlaer and Mellor [78, 79], Coad and Yourdon  [28, 29], Wirfs-Brock et al 

[89],  Grady Booch [16], IBM [47], Rumbaugh et al [70], and Jacobson OOSE 

methodology [48].   Lastly, and at around 1995 Jacobson unified his work with 

Booch and Rumbaugh and developed the unified modeling language (UML) which 

in 1997 became the standard object oriented methodology used everywhere.  

 

2.2 Foundations of Software Measurement and Metrics 

 

While some prefer to distinguish between the terms measure and metric, the terms 

are mostly used as synonyms in the literature.  Following from that, the terms 

software metrics and software measurement are used interchangeably most of the 

time.  In the early days of software development people used to argue whether it is 

necessary to measure software products or not.  Nowadays the question has 

changed from whether to measure or not to “how to measure?”  So, software 

measurement has become a fundamental activity of any software process. 

 

Work on software metrics followed two different tracks.  In one track metrics are 

estimated simply by directly counting some features or by performing simple 

arithmetic.  In the other track information theory principles and mainly the concept 

of entropy are used for measuring software system complexity.   In the following 

sections the mostly widely cited works in both tracks are briefly described. 
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2.2.1 Direct Counting Approach of Software Metrics 

 

In the direct counting (simple) approach of software measurement, metrics that 

quantify some aspects of the software product like (size, complexity, connectivity, 

functionality, etc..) are estimated  by counting some attributes or performing simple 

arithmetic.  Following this principle, several metrics for traditional software 

systems, object oriented software systems, and component oriented systems have 

been proposed, evaluated, validated and practically applied and proved to be 

successful.  

 

2.2.1.1 Metrics for Traditional Software 

 

Early measures focused mainly on size of the product.  Number of lines of code 

(LOC) may be considered as the earliest measure of software size or the earliest 

measure ever used for software systems.  LOC, although being used very 

frequently and very easy to count, still has several drawbacks.  Among them are: no 

single definition to what a line of code is; whether to count the number of 

executable statements or the number of physical lines.  In some programming 

languages it is possible to have several executable statements in one single line; 

comments can also be included.  Counting physical lines can easily lead to 

confusing results.  

 

Halstead’s work [41] is considered as one of the earliest researches that aimed at 

quantifying software system complexity. It formed a strong basis from which most 

of the research in software measurement was derived. Need for enhancements to 

what Halstead introduced are due to the advancements in software development 

approaches and paradigms i.e. the object-oriented and most recently the component 

oriented paradigms. Halstead identified aspects of software (software programs 

were mainly algorithmic based) that can be measured as:  

• Number of distinct operators 

• Number of Distinct operands 
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• Total occurrence count of operators 

• Total occurrence count of operands 

• Frequencies of occurrences of operators and operands 

 

After obtaining estimates for the mentioned aspects, Halstead introduced formulas 

using these estimates to evaluate Program Length, Program Vocabulary, and 

Program Size. Using these, Halstead presented a method for estimating 

programming effort. Halstead’s work also has its reflections to modular 

decomposition process.  

 

McCabe presented another striking effort in software complexity evaluation by 

introducing the Cyclometic complexity measure [57].  Cyclometic complexity has 

been and still is a very important means for evaluating complexities of software 

artifacts. McCabe suggests a graphical representation of the program and then 

estimates program complexity as the number of linearly independent cycles in the 

graph.  Cyclometic complexity is calculated as:  

    V(G) = e – n + p 

Where e is the number of edges, n is the number of nodes and p is the number of 

disjoint graphs. The main benefit of cyclometic complexity number is to determine 

the number of distinct paths in an algorithm graph representation which is used to 

determine the number of test cases to be used.  

 

Researchers working in the field of software measurement have focused on 

measuring the degree of interactions between different system components and 

derive relationships between the values of interconnectedness and other product 

and process aspects like maintenance effort, testing effort, development cost, defect 

density, and other important product and process features of interest.  One of the 

earliest works in this field was that of Henry and Kafura [46].  They developed 

measures to assess the degree of interactions between software system modules. 

One of the important features of these measures is that they can be obtained early at 

the design stage when it is possible to determine problematic modules before 

implementation and redesign them.  The two basic measures introduced are fan-in 
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and fan-out. Fan-in of a procedure (a procedure is the fundamental module in 

Henry and Kafura approach due to the fact that structured programming languages 

in which procedure is the fundamental decomposition entity) is the number of local 

flows into a procedure “A” plus the number of data structures from which 

procedure “A” retrieves information.  Fan-out of a procedure is the number of 

local flows from the procedure plus the number of data structures which the 

procedure updates.  

 

From fan-in and fan-out estimates, a measure of procedure complexity can be 

obtained as: 

Length * (fan-in * fan-out)2  where length is the number of lines of code of a 

procedure. 

 

Albrecht and Gaffney introduced the function points (FP) [4] measure of software 

functionality which is independent of the programming language used (FP count is 

interpreted as a measure of size by some researchers in the field).  FP’s can be 

estimated by counting the number external inputs and outputs, number of user 

interactions, number of internal files, and number of external interfaces.  After 

counting these attributes, a weighing process is carried out for each item. The 

weighting factor values vary from 3 to 15 depending on the degree of the 

complexity of the weighted item.  Items are considered to having simple, average, 

or complex weights.  Then, items are multiplied by their weighing factor.    A 

single complexity value can be obtained from a specific combination of these 

counts.  The initial estimate of function points produced the so-called unadjusted 

function points (UFP).  UFP can further be modified by considering other attributes 

of the system.  Adjusting function points takes into consideration attributes like 

performance, distribution, reuse, and some other factors as well.   

 

2.2.1.2 Metrics for Object Oriented Software 

 

The decade of 1980’s witnessed the real birth and wide adoption of the object-

oriented software development paradigm.  Due to the new concepts and units of 

abstractions, the object-oriented paradigm required a different approach towards 
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metrics as well as it required a different approach of problem decomposition and 

integration.  One of the earliest and widely accepted object-oriented software 

complexity measures was the metrics set introduced by Chidamber and Kemerer in 

their work described in [20 and 21].  The metrics set later started to be known as 

the CK metrics set named after the developers initials.  The CK metrics set defines 

six different metrics that give numerical estimations of different features of the 

class and class interactions.  These metrics and their definitions as given in the 

original papers [20, 21] are: 

Weighted Methods Per Class (WMC):  The sum of the complexities of all methods 

of a class.  

Depth of Inheritance Tree (DIT): The maximum length from the node where the 

class is in the inheritance hierarchy, to the root. 

Number Of Children (NOC): Number of immediate subclasses subordinate to a 

class in the class hierarchy. 

Coupling Between Object classes (CBO): the count of the number of classes to 

which  a class is coupled. 

Response For a Class (RFC): the set of methods in the class plus the set of methods 

called from the methods of that class. 

Lack of Cohesion in Methods (LCOM): the count of the “ method pairs” whose 

similarity is 0 minus those whose similarity is not 0. 

 

CK metrics set is not free of criticism.  The most widely argued metric from the set 

is the LCOM metric where no interpretation explanations are given to the possible 

negative values that can be obtained.  On the other hand, it is important to admit 

that the CK metrics remain the most widely used and referenced object-oriented 

design metrics.  Recently, several automated collection tools of CK metrics have 

been implemented and commercially used.     

 

Several researches tackled CK metrics to detect their benefits from managerial and 

technical perspectives.  Subramanyam and Krishnan [82] considered a subset of 

CK metrics (WMC, DIT, CBO). The outcomes they obtained revealed that a high 

correlation was found between these metrics values and defect rates found during 

acceptance testing.  Chidamber et al. [24] found relationships between the CK 
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metrics values and Productivity, Design Effort and Rework Effort.  High levels of 

coupling and low levels of cohesion were associated with low productivity, greater 

rework, and greater design effort.   The CK metrics have been empirically 

evaluated to detect whether they have any power in discovering error proneness 

classes.  The results obtained were of interest to those who believe in metrics as 

quality indicators.  High error rates were associated with high WMC, DIT, CBO, 

and RFC values.  High values of NOC led to low probability of fault detection.  

Although cohesion is a deemed design feature, LCOM appeared to be insignificant.  

This can be attributed to the definition of the LCOM metric.  Basili et al. [10] 

suggest that CK metrics, in general, can be used as good indicators of fault 

proneness.  

 

Encapsulation and polymorphism are two among the very important object-

oriented principles. Encapsulation and Polymorphism measures have not been 

considered in CK metrics set. Pons et al. [66] tackled polymorphism in object-

oriented systems. They introduced three definitions for three different levels of 

polymorphism as follows: 

Polymorphic methods: if they have same name and same signature. 

Polymorphic Classes: if they define the same polymorphic methods.  

Polymorphic hierarchies: if all of its classes share a core interface where a core 

interface is a set of polymorphic methods. 

 

The interesting outcome from this work is that the higher degrees of polymorphism 

were associated with higher degrees of readability, extensibility, and 

maintainability. 

 

Another widely discussed object-oriented metrics set is the MOOD set [2]. The 

MOOD set introduced six metrics to measure aspects of inheritance, encapsulation, 

and coupling.  The MOOD set has been tackled by several researchers later, 

namely the work of Harrison et al. [42] where they showed that the MOOD set can 

be used as an aid in the management process of software systems and can give an 

overall assessment of the system.  They also suggest that the MOOD set can work 

efficiently at the system level and can be applied complementary to CK metrics 
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which are more efficient at class level. The MOOD set has been theoretically 

evaluated and empirically validated to be of valuable managerial use. 

 

Chen and Lu [19] introduced object-oriented metrics to measure complexities of 

operations, arguments, classes, and class interactions (couplings), and class 

hierarchies. Chen and Lu stated that it is possible to obtain very different regression 

models based on data from different data sets.  

 

2.2.1.3 Metrics for CO Software 

 

We have seen earlier that the CO software development requires a new approach 

towards development.  Due to that, it also requires a new approach towards 

measurement.  This is a natural consequence since new concepts are introduced and 

system building blocks have changed.  The principal unit of abstraction is the 

component rather than the class in the OO approach and function in the traditional 

approach. Components provide services through their interfaces.  Several 

components may communicate to provide some service(s).  Metrics for CO 

systems should mainly focus on the communications between components [76].  

Several challenges face researches in the field of CO metrics.  One of the most 

important challenges is the unavailability of source code to examine and use in 

metrics validation.  Lack of experimental data makes the process of developing and 

validating metrics for CO oriented systems a difficult task to achieve [76].  

 

A review of the metrics literature reveals that very little serious CO metrics existed 

before.  That is of course due to the fact that CO software development is relatively 

new.  Also, in all other approaches (Traditional and OO), first development 

methods and methodologies are defined then metrics are presented accordingly.  

 

2.2.2 Information Theory Based Software Metrics 

 
Entropy is the fundamental concept of information theory that attracted researches 

in the field of software measurement. In communication systems Entropy 
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corresponds to the relative degree of randomness. The higher the entropy value, the 

higher the possibility of errors in the system.  Shannon and Weaver found that 

entropy of a system is usually related to and evaluated based on the information 

content of that system [77].   

 

The information theory-based approach or, as it is mostly called, the entropy-based 

approach of software metrics tried to benefit from the definition of entropy (the 

degree of uncertainty) to quantify some aspects of software products.  This 

approach did not receive interest as much as the simple (direct counting) approach.  

Also, most of the proposed entropy-based metrics sets have not been empirically 

validated.  In industry practices entropy-based metrics do not have a significant 

contribution as well.  The most widely known entropy based metrics for traditional 

software, object oriented software and component oriented software are briefly 

outlined in the following paragraphs. 

Entropy and amount of information in a communication system can be defined as 

follows: Let X be a discrete random variable taking a finite number of possible 

values x1, x2, .. , xn with probabilities p1, p2, …, pn respectively such that pi ≥ 0, i = 

1,2, …, n, and 1=∑
n

ip . We attempt to arrive at a number that will measure the 

amount of uncertainty and it is obtained as:  
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=  Where h(pi) is the entropy of xi with probability pi 

Thus ),...,,( 21 nn pppH  is the average uncertainty removed by revealing the value 

of X.  This definition of entropy has been applied in software measurement mainly 

to obtain a numerical estimation of the average information content of a software 

module.  Also, entropy-based metrics have been used to measure the flow of 

information between system modules/components and overall system complexity. 

One of the earliest attempts to obtain measures of some software aspects using 

entropy is presented by Hellerman [45].   Hellerman described an entropy-based 

estimation of the computational work of a boolean transformation. Hellerman’s 
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measures may be used to compare the advantages of several alternatives of a 

process implementation.  

Allen et al. [5] developed measures for inter-module coupling, intra-module 

coupling, and the degree of cohesiveness of a module.  All of those measures are 

based on the information content of the module.   The metrics were evaluated using 

coupling and cohesion metrics properties described in by Briand et al. [17].  The 

metrics have been empirically validated using industrial projects data.  The results 

of the validation revealed that these entropy-based metrics are finer grained relative 

to similar normal counting based metrics.  

Harrison [43] presented information theory based estimation of program 

complexity where the text of a program is considered as a message that is mainly 

obtained by observing occurrences of special operators.  Harrison stated that 

“complexity of a program is inversely proportional to its information content”.  

The results obtained by Harrison have demonstrated some practical power and have 

been tested on commercial applications.  The results of applying Harrison metrics 

revealed that information content of a program is related to error frequency.   

Ned Chapin developed an entropy-based metric that measures the complexities of 

interactions in COTS based systems and focuses mainly on messages flowing in 

and out of the system [18].  A similar work is presented in [51] which describe 

entropy based measures of size, length, complexity, coupling, and cohesion.   

Abd-El-Hafiz presented an approach for deriving entropy-based software 

complexity measures [1].  Her approach focuses on function calls (in procedural 

languages) or method invocations (in object-oriented languages).   Abd-El-Hafiz 

suggests that a system s can be represented as a set of elements E and Relationships 

R such that for any Em in E, and Rm in R, then <Em, Rm> is a module of s.  

Empirical validation of the metrics and their effects on understandability, 

maintainability, and reliability was left as an open research problem. 

 

One important contradictory point related to entropy based metrics is the 

interpretations of the relationship between the terms complexity and entropy.  
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While some findings relate increased complexity to increased entropy, other works 

found that complexity is inversely proportional to entropy. 

 

2.3 Metrics Evaluation and Validation Approaches 

 

Metrics that are developed are of little value unless they are validated and 

examined against measurement theory rules and principles.  Also metrics should be 

validated with real projects to check whether they meet the initial assumption of 

their development.  Different approaches to evaluate and validate metrics have 

been described in the literature.  We briefly describe the most widely cited works in 

this respect.  

 

Blundell et al. [12] argue that software metrics so far has failed to precisely 

evaluate software quality due to: 1) Measured attributes are not clearly identified, 

2) metrics are created before examining their relevance, and 3) metrics are not 

objectively validated. 

 

Alsharif et al. [6] stated the main objective as: Inter-module complexity resulting 

from interactions between system models should not be larger than that of the 

original problem complexity before decomposition.  Basili et al emphasize [10] 

that it is important to note that not every theoretically correct metric will have 

practical relevance to the problem in hand.  

 

Briand et al. [17] suggest that the first step in developing software metrics 

programs is identifying classes of software characterization measures.  The authors 

defended that most of the inconsistencies and incomplete works in software 

measurement field are due to the different understandings and interpretations of the 

terms that are frequently handled like; size, complexity, cohesion, coupling, etc. 

They proposed a specific set of properties against which the related concepts can be 

evaluated.  Each concept is evaluated against its property set.  Size is evaluated 

against size properties; complexity is evaluated against complexity properties, and 

so on.  The authors considered as examples, several previously developed and 

widely known measures like Halstead’s metrics [41] where they suggested that 
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length and size [41] of a program are measures that fall in two different categries. 

While size is additive, length of a program is not.  The cyclometic complexity [57] 

was evaluated against complexity measure properties and failed to satisfy all 

properties of complexity measures as they are defined in [17].  CK  [21, 22] metrics 

also were evaluated and found not to be complexity metrics.  CBO metric of CK 

satisfies the properties of a coupling measure and RFC metric satisfies the 

properties of size and coupling measure properties.  

 

Poels and Dedene [65] wrote some comments on [17].  The first of their critisizms 

is that Briand et al. did not state that their properties of measure are enough to 

validate.  Second, some more properties are needed to be identified for different 

attributes.  Third, the definitions of the additivity and connectivity properties are 

inconsistent and have some contradictions.   

 

Mendonça and Basili [58] show that a good measurement framework is one that 

measures all the software aspects needed to achieve the user goals consistently, and 

measures only what is needed but not more.  They identified the key components in 

any measurement framework as: metrics and attributes, data, users of data, and 

usage of data.  They also suggest the use of GQM paradigm [11] to achieve these 

purposes which can be summarized as follows: 

- Define goals 

- Refine goals a set of questions that can be measured 

- Find metrics implied by questions. 

 

Kitchenham et al. [53] presented an embracing work towards developing validation 

approaches of software metrics. The authors claim that research in software 

engineering lacks formality and compared to other engineering disciplines software 

engineering is still immature.  The measurement framework proposed focuses on 

identifying the aspects of a software system to measure and the properties of these 

aspects, defining these aspects while developing measures, and lastly identifying 

the validation scheme to be applied.  The validation framework steps can be 

summarized as follows:  

- Identify entities, attributes and their relationships. 
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- Identify units, scale types and their relationships. Distinguish between 

compound and scalar units. 

- Identify values (numerical or not). Permissible and not permissible values 

- Identify measurement instrument and calibrate it. 

- Identify measurement protocols. Where a protocol must enable us measure a 

specific attribute on a specific entity consistently and repeatedly. 

- Distinguish between direct and indirect measures. 

Validation of a metrics program means proving that all items listed above are valid.  

Morasca et al [61] have strictly criticized the paper as misinterpreting Weyuker’s 

properties [88].  

 

Kitchenham, Pfleeger, and Fenton [55] partially accepted that they did a mistake in 

evaluating Weyuker’s properties but insisted that Weyuker properties can not be 

satisfied simultaneously by any useful measure and Weyuker properties 5 and 6 are 

not relevant to a single view of complexity.  In another work Kitchenham et al [56] 

proposed a set of valuable guidelines that researcher working in the field of 

empirical software engineering can follow to empower their research and validate 

their results.   

 

Weyuker [88] presented nine properties a complexity metric must posses in order 

to be considered as a good complexity metric.  Weyuker properties have been used 

by several researchers [21, 71] and others as the main validation criteria of their 

metrics.  Weyuker’s properties have also been criticized by Kitchenham et al [55] 

as not being relevant to a single view of complexity.  Zuse [93] claims that two of 

Weyuker’s properties are inconsistent.  

 

Tian and Zelkowitz suggest that a measure must compare between a component 

and a composite program [84].  The interesting outcome here is the authors’ claim 

that complexity of a software system can be less than the complexity of any of its 

components [84].  This outcome is interesting since it almost violates the majority 

of software complexity views observed in the literature.  
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Zelkowitz and Wallace [91 and 92] stressed that data collection is the key activity 

in software experimentation.  They also suggested experimentation methods can be 

grouped into three classes as: Observational where data is collected as the project 

develops Historical which depends on data from projects that have been 

completed, and Controlled provide for multiple instances of an observation to 

statistically validate the results.  The authors surveyed all papers published in IEEE 

Transactions on Software Engineering for the years 1985, 1990, and 1995 and 

found that all the papers that exhibited experimentation followed one of the 

presented methods.  

 

Schneidewind [72] suggested that a metric is valid if its values can be shown/have 

been shown to be statistically associated with some corresponding quality factor.  

Schneidewind described an approach for relating metrics validation to quality 

functions.  Quality can be controlled by metrics if the metrics have discriminative 

power and is capable of tracking changes.  Also, quality can be controlled by 

metrics if metrics have the predictability property.  Repeatability property is 

necessary for any metric to be used in any quality function.  A metric can be valid 

if we can establish a statistical relationship between that metric and some quality 

factor and make sure that the metric provides a correct estimate of the intended 

attribute [73]. 

 

Fenton introduced the necessary basis for measurement in software engineering, 

guidelines and rules to follow, and tips to avoid [36].  There are two types of 

measurement: Direct and indirect.  While direct measurement of an attribute does 

not depend on the measurement of any other attribute, indirect measurement 

involves the measurement of one or more other attributes.   Measurement can be 

used for both assessing the software quality and predict its future behavior.  The 

first thing we need to do in a measurement program is setting our objectives; why 

we measure?  To assess or predict!  What attributes should we measure? To answer 

the later question we need to first identify our entities and their attributes.  Then, 

we need to determine how to signal an attribute as measured.  We also have to keep 

in our mind that there is no single number to characterize every aspect of quality.   
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Zuse has presented the foundation of object oriented measures properties [94] and 

evaluated CK [21, 22] against these properties.     

 

Kitchenham [52] performed an experiment to examine the validity of structural 

metrics fan-in and fan-out [46] from a practical perspective and detect whether they 

can predict change-prone and error-prone modules at early stages of the 

development.  The results of the experiment revealed that these metrics are not 

good quality predictors but are good to use for project control activities.  

 

Clark presented eight issues and identified them as the secrets in software 

measurement [23].  The most important of these are: we have to make well-use of 

data coming from measurement activities; we need to know that applying metrics 

require cultural change to the organization since people may resist metric 

application, and variability in data provides a powerful decision tool. 

 

IEEE standard [98] for software quality metrics methodology outlines the steps of a 

software metric program as: 

- Establishment of software quality requirements 

- Identification of software metrics to be used 

- Implementation of metrics 

- Results analysis 

- Validation of metrics: Do the empirical results coincide with the initial 

assumptions? It is not necessary to obtain universally validated metrics.  

 

2.4 Different Views of Software Complexity  

 

Software complexity has been interpreted in completely different manners by 

different authors.  While some related complexity to size others related complexity 

to understandability and readability.  According to the view of complexity 

described by Briand et al [17] Cyclomatic complexity [57] is not a complexity 

measure, the fan-in and fan-out measure of [46] is a complexity measure and all of 

CK [21 and 22] metrics are not complexity measures.   
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Tian and Zelkowitz [84] considered software complexity as the aspect of software 

that is used to predict external properties of the program (reliability, 

understandability, maintainability) using internal measures like cyclomatic 

complexity [57] or Halstead’s measures [41]. They also suggest that complexity of 

software is measured to make choices between functionally equivalent solutions 

[84].   

 

Almost everyone involved in the software process agrees that software complexity 

must be managed to ensure the development of efficient and cost effective software 

systems. The main problem in managing software complexity is the existence of 

too many different interpretations of the term complexity.  Mainly, “Divide and 

conquer” is the strategy that is followed by software developers to manage 

complexity [30, 33, 50, 64, and 90]. Alsharif et al. [6] introduced a method for 

evaluating the complexity of a module, inter-module complexity, and the 

complexity of the whole system.  Although there is no consensus on what software 

complexity means it is generally accepted that decomposition reduces complexity.  

New complexity will be a result of the inter-module connections.   

 

It is globally accepted that decomposition, without going into the details of how to 

decompose, is the means for well-controlled complexity.  We will present a 

summary of the different views of software complexity as they appear in the 

literature. 

 

Zuse considers complexity of software as some measure of the mental effort 

required to understand that software [93].  According to Zuse, the complexity of a 

system design can be estimated as a function of the relationships among all of the 

external interfaces of the product.  Complexity of architecture is a function of the 

relationships among subsystems and complexity of a module is a function of the 

relationships/connections among program instructions [93]. 

 

Visaggio introduced a layered approach to defining software complexity.  Visaggio 

described three levels of software complexity [86] and defines internal complexity 

as the degree of difficulty of understanding the system through its code, intrinsic 
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complexity as the degree of interconnectedness, and variety of implemented 

aspects, and external complexity as the relative difficulty of understanding a 

program with the availability of its documentation.  

 

The principal tool for managing complexity is hierarchical decomposition and then 

complexity will be a function of the number of modules in each level of the 

hierarchy, number of levels, number of interfaces, and number of interconnections 

[50].  Keating also provided some guidelines regarding the number of modules in 

one level and stated that this number should be 7±2 since human beings can 

concentrate on 7±2 chunks of information at the same time [60]. We can relate this 

rule to software complexity and develop estimations of software complexity 

resulting from interactions of system modules by benefiting from this rule. 

 

2.5 Summary 

 

The survey of the literature presented above can be summarized in two classes of 

outcomes.  The first class presents the current state-of-art which can be 

summarized as follows: 

 

1- Component Oriented Software Development is believed to reduce 

development costs and lead to the construction of more efficient and 

reliable software products. 

2- Software Measurement is a necessary practice in order to efficiently 

control, manage, and contrast software products, projects, and processes. 

3- The principal factor to the success of any measurement program is the 

availability of a good set of metrics. 

4- Metrics are of little value unless they are validated against accepted and 

proved to be correct set of attributes and properties. 

5- Collecting metrics from software designs or source codes can be a costly 

process.  

6- Metrics programs can gain more importance if metrics results are related to 

critical factors of software quality like: maintainability, reliability, 
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performance, and process features such as design effort, development effort, 

integration effort, etc.  

7- Early estimations of metrics can lead to early detection of defect-prone 

components which will in turn lead to reduction in maintenance costs. 

8- Metrics collection must be a cost-effective process.  If collecting metrics 

from software designs or source codes will cost too much then no one will 

be encouraged to use them. 

 

The second set of outcomes describe the steps that need to be performed.  These 

points mainly focus on issues related to CO paradigm and can be summarized as 

follows: 

 

1- Attempts to provide measurement frameworks for component oriented 

software systems do not have real existence. 

2- Serious component anatomy to extract the quantitative aspects and quality 

determinating attributes in a software component are not available. 

3- A specialized method describing the validation criteria for component 

oriented software metrics are not available yet. 

4- Works trying to investigate the relationships between component oriented 

complexity metrics and reliability, maintainability, and development effort 

did not reach the community’s satisfaction level so far. 

5- Dedicated CO software development CASE tools are still in trial phase or 

are research projects in academic institutions. 

6- Automatic metrics collection tools for component oriented software 

engineering have not been encountered. 
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CHAPTER 3 

 

 

QUANTIFYING THE COMPLEXITY OF COMPONENT 

ORIENTED SYSTEMS 

 

 
The importance of measuring software and, particularly, software complexity has 

been emphasized in details in chapter 1.  We have seen clearly in Chapter 2 that 

there is a lack of research on measurement methods for CO systems.  Description 

of measurement frameworks is one of the most important aspects to have a mature 

software development process.  

 

In a previous research we extended CK metrics [21, 22] to component-oriented 

models and presented that in [71].  A set of properties for verifying and validating 

component oriented metrics have been described in [104]. In another work the 

relatedness of a subset of component oriented complexity described in [71] metrics 

with design and correction efforts was explored and a direct relationship was found 

[97, 103].   The same research also revealed that more research is still necessary in 

the field.   In this research we carry out a detailed analysis of component oriented 

measurable features and metrics quantifying them.  The research is divided into 

three phases:  

1) Identification of the most significant features of components to be quantified.  

These features are identified based on their intuitive power in predicting some 

process related aspect(s).  

2) Metrics quantifying these aspects are defined.  Initial viewpoints about the 

potential impact of the metrics values on the process and/or the product are 

presented.  These viewpoints are presented based mainly on intuition, 
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experience, and results appeared in other researches that considered other 

metrics sets mainly for OO systems. 

3) Extended evaluation and validation schemes are performed.  To evaluate 

metrics we used two sets of properties of complexity metrics.  To validate 

metrics, we used empirical data collected from graduate students projects.   

 

3.1 A Glance on the Terminology 

 

The terms used in this paper have been widely used by researchers in computer 

science.  Yet, the terms have been used to mean different things by different 

authors.  For example, the term software component, which is a fundamental term 

in our research, is very widely used in software development cycles; the term has 

several views and these different views are sometimes used interchangeably and in 

a confusing manner.  The term, viewed from an Object-oriented point of view is 

used interchangeably with the term object (an instance of a class in object oriented 

programming).  The term component is used interchangeably with the term module 

in modular programming environments (Modula-3). Little background in computer 

science and particularly in programming paradigms lets someone know that the 

terms module and object are too different constructs.  In our research we are going 

to use the term component as to what it means in the component oriented view 

which is a third view different from both module and object in modular 

programming and object oriented programming respectively.   Besides having 

some new features, the component oriented view of a “component” captures some 

of its features from the object oriented view and some features from the modular 

view.  Not only the term component, but other terms of interest like component 

orientation, component oriented systems, and component oriented modeling 

languages, are not defined in a standardized manner in the industry and academic 

practices.  So, before any other step in our research, we are going to provide 

definitions and introduce the component oriented view of these terms with major 

reference to the work [23] which represent the pioneering research in the field.  

 

- Component Orientation: A new software development paradigm. It focuses on 

development by integrating already available components rather than writing 
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from scratch [34]. The first step in system development is specifying the 

structural decomposition of the system where components, components’ 

hierarchies, and intercmoponent relationships are defined. In Component 

orientation, composition is the principal means for building large systems.  A 

component is mainly viewed as a black-box which can be accessed only 

through its interfaces. In the rest of the paper we try to be loyal to the process 

model described in [34] for a component oriented system. Also the notation 

used is from the language COSEML which is also described there.  Some basic 

attributes are the as follows: 

 

- Component: A Unit of independent deployment. A component builds upon 

encapsulation, and polymorphism where “Complex” components can be 

obtained through composition [83].  A component can implement several 

interfaces, each abstracting a specific service.  Components functionality is 

implemented in methods and is provided through the interfaces only which can 

be considered as the component’s access points. Figure 3.1.a describes the 

notation used in COSEML [34] for a component with single interface and 

Figure 3.1.b is the notation used for a component with multiple interfaces. 

 

 

 
 
 

 
 
 
 

 
 
Figure 3.1.a: A Component with Multiple       Figure 3.1.b: A Component with A Single 
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- Interface: Interfaces are components access points.  Components’ services are 

presented through interfaces. An interface is generally an abstraction of a 

service.  A component may implement single or multiple interfaces.  Besides 
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properties and In/Out methods, an interface can include lists of In/Out Events.  

An output method is actually a request, and an input method is a service. The 

notation used for an interface in COSEML is shown in Figure 3.2.  

 

 

 

 

 

 

 

Figure 3.2: An Interface 

 

- COSEML: A dedicated CO modeling language.  Being a dedicated CO 

modeling tool was the main reason behind its demand.  COSEML presents 

three types of entities: abstract components (Package, Data, Control, Function, 

and Connector), physical or implemented components (Component, and 

interface), and connections (Connector, Inheritance, Composition, Method 

Link, Event Link, and Represents). The COSEML notations used for abstract 

components are presented in Figure 3.3, physical components are a component 

with single interface (see Figure 3.1.a), a component with multiple interfaces 

(see Figure 3.1.b), or an interface (see Figure 3.2). Optional symbols can be 

used for connectors to add more clarity on the type of the connection. The 

different optional symbols that COSEML support are presented in Table 3.1.  

 
 
 
 
 
 
 
    
  
  
  
  
  

   Figure 3.3: Notation Used for Abstractions in COSEML 
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Table 3.1: Optional Connector Symbols in COSEML 

Link Symbol Link Name 
 Composition 
 Inheritance 
 Method Link 
 Event Link 
 Represents 

 
 

- Component Oriented System: A component oriented software system is a 

software system that is developed based on a component oriented process 

model (e.g. CO process model presented in [34]) where the development 

process comprises  the steps:  

• Software system specification is performed; services and boundaries are 

identified. 

• Specifying the structural decomposition of the system which comprises 

building decomposition hierarchy.  

• The specifications of system components are prepared. This step may lead 

to creating components from the scratch, search for already available 

components, or adapt some ready-made components to match the 

specifications in the system.  

• The last step which comprises the integration of the components that are 

specified and implemented in steps 2 and 3.   

Figure 3.4 depicts a simplified university information system design that is 

created using COSEML media. 
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Figure 3.4: Simplified University System Prepared in COSEML 
 
 
 
- Complexity:  In section 2.4 different views of complexity from the literature 

have been discussed.  Most of complexity views relate it to the lack of structure 

in software systems, difficulty to comprehend, to maintain, to test, etc. [8 and 

40].  Others view complexity as the factor associated with higher probability of 

defects.   The IEEE standard [98] defines component or system complexity 

degree to which the design or implementation is difficult to understand and 

verify.  The IEEE view of complexity is contrasted with simplicity which is the 
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degree to which a component or a system design is straightforward and easy to 

understand.  Our view of CO system complexity is not very different from these 

views.  In our view of complexity, CO software complexity is the aspect that is 

related to the difficulty to understand, and then will increase design, correction, 

integration, and maintenance costs of the system. Also, our view of complexity 

suggests that complexity is a composite aspect that is evaluated from different 

independent attributes that can be quantified from the system design models. 

Thus complexity has a direct impact on overall quality of the system.    

 

3.2 Defining the Steps of Our Approach 

 

The steps in our measurement framework for CO software systems include the 

following activities:  

1- Identification of measurable product aspects. 

2- Deriving metrics that can appropriately characterize the different aspects to 

be measured. 

3- Collecting Data that is needed to derive metrics and validate them.   

4- Interpretation of the results. 

5- Providing feedback according to the obtained results. 

 

Our aim is to characterize software attributes which individually or collectively 

affect complexity.  Pressman [68] outlines the most important metrics that can be 

collected during and after the design phase as:  

1- metrics for characterizing architectural quality,  

2- complexity of system building elements (components), and 

3- characteristics of components and their interaction characteristics.  

Earlier researches in the field suggest that the existence of a single metric that can 

characterize the overall system complexity seems to be impossible [36, 99, 100]. 

Smith also has a similar argument about computer performance and suggests that a 

single number to characterize computer performance can be misleading [80]. In our 

research, though we believe that CO system complexity is a multidimensional 

feature we are examining the possibility to come up with a single compound 

measure that can characterize component oriented software complexity.  To make it 
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more clear, lets consider, as an example, the volume of a rectangular prism is 

dependent on height, width, and length values of that rectangular prism but it s still 

a single value that characterizes volume.  A change to any of these values will 

result in a change to the volume of the rectangular prism.  We still believe that a 

single value that characterizes CO oriented system complexity obtained from the 

combination of several related values is still a very useful metric.     

 

3.3 CO Software Systems Quantifiable Aspects 

 
In the component oriented paradigm main focus is on system structure [34].  Due to 

that, while requiring internal complexities of components, more attention will be 

paid to the system’s overall structural complexity.  The first question that needs an 

answer is: what attributes of a CO system characterize its structural complexity?  In 

finding answer to this question we will first explore the attributes that are 

known/believed to be related to system’s structural complexity.  Our complexity 

analysis will focus on features that characterize system’s structural complexity,  

components’ internal complexity, and interfaces complexity.  

1- System Structural Complexity:  Software system structure is defined as the way 

through which system building elements are organized with respect to each 

other and with respect to their surroundings [39].  Software Architecture deals 

with methods that can be applied to the structure to achieve maximized 

reusability and reliability [24, 25, and 100].  Software structure is a design 

decision: Two or more different design alternatives may result in multiple 

structures. Measuring the degree of structuredness in software systems is an 

important issue since system organization has its impact on maintainability 

[86]. Also, it is intuitively clear that different structures of the same system will 

certainly lead to different values of structural complexity.  Clements et al [24] 

emphasized the importance of evaluating software architecture at early stages 

of development.  They noted that evaluation of software architecture, besides 

not being the only factor, plays an important role in evaluating the overall 

system quality.  Depending on the definitions of system structure described in 

[24, 39] and building on our definition of a component oriented system (see 

section 3.1) one can notice that a CO system structure is a function of that 
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system’s Components, Connectors, and the Composition Tree.  Below we will 

define attribute metrics characterizing them.  For each metric our initial 

viewpoints about the potential impact on structural complexity, are also 

included:   

 

1.1 Depth of Composition Tree (DCT): Count of the number of distinct 

level of the composition tree.  Our selection of this attribute is based on 

the following initial viewpoints: 

a. The deeper the composition tree the better the system 

decomposition is. Higher values of DCT are an indication that 

system components are more specific and may have higher 

potentials for inter-system reuse.  

b. The deeper the DCT the more components we have.  

Components, at levels closer to the root of the tree tend to be 

having many sub-components making them more difficult to 

compose and test.   

 

1.2 Width of Composition Tree (WCT): There is usually a trade-off 

between width and depth of the composition tree at the level close to the 

root of the decomposition tree.  While deeper trees may lead to more 

integration effort, favoring wider trees will result in less integration 

effort but may decrease chances of inter-system component reusability.   

In Figures 3.5.a and 3.5.b, two decomposition alternatives for the same 

system are described.  For the model shown in Figure 3.5.a we need 

eight time units to integrate (assuming equal times for integrating 

different components) all the components, while in the model shown in 

Figure 3.5.b we need 14 time units.  On the other hand, we have 8 

reusable components in the alternative shown in Figure 3.5.a while we 

have 14 reusable components in the alternative shown in Figure 3.5.b.  

The trade-off between reusability and effort is clear.    
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   Figure 3.5.a: High WCT 
 
 

                                                     Figure 3.5.b: High DCT 

 
1.3 Coupling Between Components: The degree of interdependence 

between software modules [98]. In CO systems coupling is directly 

affected by the degree of connectivity between system components.  

Two components C1 and C2 are coupled if there is a connector linking 

these components with each other.  At the system level coupling 

between system components is estimated by counting the number of 

connections between system components. For the sample model shown 

in Figure 3.6 the coupling value is equal to 15.  Arrow directions 

indicate service requests.   Two different metrics are defined to 

characterize coupling between components.  The first metric is the 

count Total Number of Connectors (abstract connectors plus messages).  

This metric is a characterization of the overall system complexity.  The 

second metrics is Average Number of Connectors per Component.  This 

metric characterizes the potential impact of inter-component 

dependencies on the overall structural complexity of the system.   
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1.4 Cohesion of System Components: The degree of cohesion of a system is 

usually measured from the degree of relatedness of that system’s 

building elements (components).  Higher cohesion is a deemed feature 

of system designs.  It is important to note here that there is usually a 

trade-off between coupling and cohesion values in a system design.  

While zero coupling is impossible, very low coupling can be as bad as 

excessive coupling and very high cohesion associated with very low 

coupling may lead to undesirable results [99].  Measuring the degree of 

cohesion in the system requires knowing which component presents 

services that are related to the overall system functionality.  

Components are accessed through their interfaces.  So, if a component 

implements interfaces which are never contacted by other components 

in the system may be an indication of low cohesion.  The number of 

interfaces which have a fan-in value of zero indicates the lack of 

cohesion in the system.  In a typical system all implemented interfaces 

should be used by other components, hence the best cohesion is in the 

case where number of interfaces with zero fan-in is zero interfaces.  

Taking the average of the number of used interfaces to the number of 

total interfaces may provide an insight about the degree of cohesion in a 

system.   An average value of 0.8 means that 80% of interfaces provided 

are accessed by other components of the system.  For sure, high rate of 

unused services of the system indicates that extra costs are paid for 

unneeded functionality.  It is just like adding and extra cost on a mobile 

phone for the service of using it like a joystick.  A service which is 

rarely needed by users.  

1.5 Total Number of Interfaces (TNI):  In CO system interfaces play the 

important role of being components’ access points.  Number of 

interfaces per component is an indication of the amount and diversity of 

functionality delivered by the components.   Components of a system 

exchange services through their interfaces.  Also interfaces are the main 

means of integrating components with each other [8].  

Viewpoints:  
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a. Increased number of interfaces implies a wide set of services 

since an interface usually presents one category of services for a 

component.  This may limit the possibilities of a component 

reuse among systems as also, diversified interfaces indicate 

specialized connections. 

b. Increased number of interfaces implies increased fan-in value for 

a component which means that it is supposed to be highly 

dependable; it should be designed, implemented, and tested with 

a lot of care.  A bug that may exist in such a component may be 

cascaded to several other dependent components. 

c. On the other hand, increased number of interfaces of a 

components could mean cleared service descriptions and then 

would lead to less effort to integrate with other components. 

 

1.6 Total Number of Methods (TNM): The count of the total number of 

methods in the system.  Components implement their functionality in 

their methods.   More methods in the system indicate increased 

functionality.  Two systems that deliver the same functionality where 

one has less number of methods indicate that methods of the system 

represent a wider range of services.   

1.7 Total Number of Implemented Components (TNIC):  The count of the 

total number of implemented components only.  Implemented 

components are where system functionality is implemented. 

 

1.8 Total Number of Components (TNC): According to the CO process 

model described in [5] two groups of components can be seen in a CO 

model.  These two groups constitute abstract components that exist only 

in the conceptual model and physical components that represent the 

implemented ones.  Total number of components in the systems is a 

design decision.  While some designers may favor relatively smaller 

components, another design decision may favor a fewer number of 

relatively larger components.  So the total number of components in the 
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system is a design issue that influences the overall structure of the 

system.  

Viewpoints:  

a. Increased number of components implies that components are 

more specific and every component delivers limited 

functionality. 

b. Since components are specific they have higher potential for 

reuse. 

c. More components indicate that more effort will be spent during 

the integration stage. 

 

2- Component Internal Complexity: Conte et al [27] found that the internal 

structure of system building elements affects the overall complexity of the 

system.  Building on Conte et al findings, and after investigating the internal of 

a component the following attributes can be identified as potential factors 

influencing a component’s structural complexity.   

 

2.1 Methods Complexity: In the previous discussion we have shown that a 

component’s functionality is implemented in its methods.  Methods 

structural complexity is widely discussed in the literature. The two 

principal influencing factors are again coupling between methods of a 

component, cohesion of methods of a component.  Figures 3.7.a, 3.7.b, 

and 3.7.c present three different pictures that can be conceived from 

methods inside a component.  In Figure 3.7.a we have very high 

cohesion and zero coupling, in Figure 3.7.b moderate levels of cohesion 

and coupling between methods of a component and in Figure 3.7.c we 

have excessive coupling and low cohesion.  While zero coupling means 

that every method implements all the functionality it requires inside 

itself and is not dependent on any other methods, excessive coupling 

indicates that methods are highly dependable on each other.  For 

example, in order to comprehend method m7 in Figure 3.7.c it is 

necessary to also understand methods m2, m3, m4, m5, and m6 since all 

these methods are invocated from m7 to complete a requested service.  
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Besides coupling and cohesion factors, the internal design of a method 

has been proven to play an important role on the methods testing and 

maintenance.  McCabe Cyclomatic complexity [57] is being efficiently 

used for more than two decades as a predictor of the testing effort of a 

method. Cyclomatic complexity of methods, Coupling between 

methods,  and Cohesion of methods of a component are considered to 

characterize methods in a component.  Henry and Kafura described two 

measures of coupling which are Fan-in and fan-out [Henry and Kafura].  

These two measures have been widely discussed and empirically 

validated.  We suggest the use of Fan-in and fan-out of a component’s 

methods as one indicator of the internal complexity of the component. 

 

 

 

 

 

 

 

            

 

           Figure 3.7.a: Zero Coupling           Figure 3.7.b: Moderate Coupling    
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2.2 Interfaces Complexity: In the previous discussion we have mentioned 

that interfaces are components’ access points.  Number of interfaces per 

component, number of methods per interface, interface fan-in counts are 

important aspects to consider when tackling influence of interfaces on 

component’s complexity.  The actual influence of interface structures 

on a component’s complexity can only be determined during the 

experimental validation.  The basic viewpoints about the potential 

influences of the number of interfaces on a component complexity have 

been discussed before.  The following viewpoint is about the potential 

impact of number of methods in an interfaces on the complexity of a 

component. 

a) The number of methods in an interface implies the breadth of 

the service it supplies.  Too many methods in an interface may 

limit the possibilities of its use by other components.  On the 

other hand, zero methods in interfaces implies no service is 

provided by that interface.     

3- Interface Internal Complexity: Interfaces play principal role in CO software 

development. They are considered as the components’ access points.  Due to 

their important role interfaces should be designed with a lot of care.  While 

experience and intuition help designers make decisions about alternative 

interface designs, decision based on quantifiable aspects proved to be more 

accurate and dependable.  Interfaces’ complexity which is an indication of its 

quality as well is a composite aspect that depends on the interface building 

elements and its interactions with other interfaces.  Gill and Grover [101, 102] 

say that CO software complexity can be measured based on interface 

characterization.  That is due to the fact that better characterization of 

component interfaces helps to easily understand and resolve components 

problems [83].  We here present the elements and their quantifiable aspects in 

interfaces.  

3.1 Number of Methods of an Interface: Usually an interface represents a 

service supplied by a component.  Large number of methods in an 

interface implies that the interface provides a wide service which may 

limit the possibility of utilizing the interface in different systems.  Also 
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large number of methods in an interface indicates that its fan-in count 

will be high which indicates that the interface is highly dependable and 

extra effort for testing and implementing may be a consequence.   

3.2 Events Out: Events out are the events the interfaces notifies others 

about.  Events our count is an indication of dependence on other 

components.   

3.3 Events In: Events in are the events that the interface is notified about 

from other component interfaces.  Count of events in indicates the 

degree to which the interface is critical in the system and the intensity 

in which it will respond to other components interface events. 

System complexity spreads over system building elements. On one side, we have 

complexity which is inherited from internal complexities of a system’s elements 

and one the other side we have complexity resulting from the interactions between 

these elements.  In Table 3.2 we present a summary of the quantified attributes and 

their metrics with the metrics definitions. 

 

Table 3.2: Attributes, Metrics, and Metric Definitions 

Attribute Metric Definition 

TNC Total number of Components in the system 

TNI Total Number of interfaces in the system 

TNCO Total number of Connectors and messages in the system 

DCT 
Depth of the composition tree.  Count of levels in the 

composition tree 

WCT 
Width of the composition tree. Maximum width of the 

composition tree. 

TNIC Total number of implemented components only. 

TNM Total number of methods in the system 
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CSC Cohesion of system components 

NOCC Number of connectors per component 

NOMC Number of methods per component 
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NOIC Number of interfaces Per component 
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Table 3.2 (Continued) 
NOMI Number of methods per interface 

NOEO Number of events out in an interface 
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NOEI Number of events in of an interface 

CC Cyclomatic complexity from McCabe [57] 

Fan-in Fan-in metric from Henry and Kafura [46] 
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Fan-out Fan-out metric from Henry and Kafura [46] 

 

 
3.4 A Complexity Model for CO Software Systems 

 
Based on the detailed metrics analysis presented in section 3.3, it became clear that 

a complete complexity model can be built.  Also, the metrics analyses have shown 

that CO systems complexity is a multidimensional feature that spreads over 

components, connectors, interfaces, methods, and other less significant elements.   

We will define Complexity of CO systems in three levels.  The first (lowest) level 

complexity is a result of the complexities of the component’s methods.  The second 

level complexity is a result of the internal complexity of components.  The third 

(highest) level complexity is a result of components organization in the system.  

 

3.4.1 Level 1: Method Complexity 

 

Method Complexity (MCOM):  The lowest level of complexity in a CO system is 

the complexity of component methods.  Methods are the functionality producing 

units of a component. The complexity of a method can be characterized by two 

metrics: 

 

1.1 Cyclometic Complexity (CC).  Cyclometic complexity [57] has been 

used effectively as a count of the number of test cases required to test an 

algorithm and then a measure of the testing effort required.  
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1.2 Number of Calls to Other Methods (NCOM):  This metric is estimated 

as the count of methods called from this method.  It is derived froim the 

fan-out metric [46]. This metric is an indication of how much the 

method is dependent on other methods.  Dependency means that in 

order for the method to provide its functionality some other methods are 

required.  Understanding, updating, and maintaining a method that is 

dependent on other methods will necessarily require an understanding 

of all these methods. 

 

The Method COMplexity (MCOM) of a method m will be estimated as a function 

of its CC number and its NCOM value and can be expressed as: 

 
   MCOM (m) = f (CC, NCOM) 
    
Since a method's complexity is affected mainly by the factors described above, the 

function f can be the sum of the two values.  Then, MCOM (mi) for any method mi 

can be estimated as: 

 
   MCOM (mi) = CC(mi) + NCOM(mi)   for any method mi 
 
The total method complexity of a component Cj (TMCOM) is the sum of all 

complexities of individual methods and is estimated as: 

 
TMCOM(Cj) = )(∑

i
imMCOM  for all methods i in the component Cj 

 

3.4.2 Level 2: Component Complexity 

 

Component Complexity (CCOM): complexity of a software component can be 

characterized as 1) complexity coming from the component's methods, 2) 

complexity coming from the component’s interfaces, and 3) complexity resulting 

from its dependency on other components.  These three aspects will be estimated 

using the following metrics: 

 

The complexity of a software component C can be viewed as a function f that is 

affected by all these three factors and can be expressed as: 
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  CCOM (C) = f(TMCOM(C), NOI(C), NCO (C)) 
 
The total components' complexity (TCCOM) based on all components Cj in a 

component-oriented software system S is estimated as: 

 
TCCOM(S) = ∑

j
 )(C CCOM j  for all components Cj in S 

 

 

3.4.3 Level 3: System Structural Complexity 

 

This complexity mainly results from the organization and interactions between 

system components.  We will call this level complexity as Emergent System 

Complexity (ESCOM).  Emergent system complexity is a function of the structural 

attributes of the system.  

 

   ESCOM(S) = f (TNC, TNI, TNM, TNCO, DCT, WCT) 

 

When considering or trying to evaluate Overall System Complexity (OSCOM) it is 

necessary to consider both components of complexities and emergent system 

complexity.  That is because a CO system is a set of components and connectors 

organized in some structure. The overall system complexity of a component-

oriented software system S can be evaluated as a function f of these types of 

complexities and can be expressed as: 

   OSCOM(S) = f( TCCOM(S), ESCOM(S)) 

Evaluation and validation of these metrics will be provided in Chapter 4. 
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CHAPTER 4 

 

 

METRICS EVALUATION AND VALIDATION 
 

 

Several researches in the field presented properties that are used to characterize 

good metrics from a mathematical and measurement theoretical perspectives [17, 

36, 52, 72, 84, 88, 91, and 92].  The common features in all of these works can be 

summarized as follows:  

1- A metric must possess some desirable mathematical properties. Provide a scale 

and range of values. Provide thresholds of good and bad behavior. Metrics value 

should be observer independent.  

2- A metric must be empirically valid: Can be used to make managerial and/or 

engineering decisions. Also the metric must precisely characterize the attribute 

of interest.  

 

 
4.1 Properties of CO Complexity Metrics  
 
 
The literature of metrics evaluation approaches does not present a globally 

accepted set of properties of complexity metrics.  Also, none of the described 

properties have specifically tackled the particular and new aspects of component-

oriented software systems.  Due to these two reasons, we introduce a set of 

properties that a component-oriented system complexity metric must satisfy.  The 

properties defined here came as a result of investigating the properties described in  

Weyuker [88], Briand et al. [17], Kitchenham et al. [55], Tian, and Zelkowitz, [84], 

Schneidewind, [72], and Zuse, [94] and the viewpoints of others criticizing them.  

The properties described here do not have a generic nature in the sense that we do 
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not claim that they can apply to all types of complexity metrics.  Proposed 

properties are listed below:  

 

Property 1: A complexity metric value can not be a negative number.   For some 

complexity metrics it is necessary to be even stricter, since a value of zero will not 

always be accepted.   

Interpretation guidelines:  The meaning of a complexity metric value for a software 

artifact (a software artifact can be a method, component, or the whole system) that 

provides some functionality to be equal to zero is that the artifact is the least-

complex possible design that can provide that functionality.  A lower complexity 

value, for two functionally equal designs, is preferred over a higher value since 

lower complexity is believed to be associated with less development, testing, and 

maintenance efforts. 

 

Property 2: A software complexity metric must provide a scale of values.  

Comparison between different alternatives must be possible.  For any two software 

artifacts it must be possible to compare and then make managerial decisions 

according to the metrics values. For any two functionally-equal components C1 and 

C2, if Complexity(C1) > Complexity(C2) then C2 is preferred over C1 assuming that 

we keep all other parameters constant.  This is due to the fact that C2 will require 

less development, less testing, less integration, and less maintenance efforts.  Also, 

metrics must provide enough information to help managers make business 

decisions and compare different alternatives.  

 

Property 3: The complexity of a single software unit S composed of two software 

components can not be less than the sum of the complexities of the individual 

components.  So, for any CO system S and any two components C1 and C2 

 

Complexity(S) >= Complexity(C1) + Complexity(C2) 

 

According to the metrics described in section 4, the complexity of a component-

oriented software system is a function of the complexities of individual 

components that make it up, and an added complexity will appear as a result of new 
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interactions that may exist between the components.  In the best case, when a 

system is composed of two components and no new added interactions between the 

components are available, the system's complexity will be equal to the sum of the 

individual component complexities. 

 

Property 4: If a component C is decomposed into two or more components C1, 

C2, .., Cn then the sum of complexities of the resulting components is no more than 

the overall complexity of the original component. 

 

Complexity(C1) + Complexity(C2) + … + Complexity(Cn) <= Complexity(C) 

 

The reason for this is that, according to our perception of the three-level 

component-oriented software complexity, there is usually an added complexity 

whenever two components are composed.  The new complexity usually results 

from the interactions between these components.   So, when the component is 

decomposed these links will disappear and only the component's intrinsic 

complexity will remain. 

 

Property 5: The complexity value of one component does not have a direct 

relation to its functionality, i.e. for any two components C1 and C2, if 

Complexity(C1) > Complexity(C2) then it is not necessary that C1 provides more 

functionality than C2.  The same functionality can be obtained by different designs 

and then implementation.  The complexity measures described in this article are 

those that enable software developers and/or managers to take decisions and 

contrast/compare different alternative solutions to the same problem.  Of course, 

any added functionality may introduce an added complexity.  So, a complexity 

metric does not consider evaluating functionality of the system or provide any 

information about the system size. 

 

Property 6: The complexity metric value is directly influenced by system 

structure.  Two different structures for the same functionality can result in two 

different complexity values.  A complexity measure of the system can have 

different values for different alternative architectures of the same functionality. 
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4.2 Metrics Evaluation 
 
The proposed metrics have been evaluated against Tian and Zelkowitz axioms of a 

good complexity metrics [84].  Tian and Zelkowitz described and approach for both 

evaluating metrics and another approach to make choice between alternative 

metrics that qualify.  The set of axioms defines five properties that a complexity 

metric must possess in order to qualify for adoption. These properties can be briefly 

described as follows: 

1- Property 1: A complexity metric must have the capability to compare between 

functionally equivalent alternative systems. 

2- Property 2: A complexity metric must have the capability to compare between 

components and composites. 

3- Property 3: A complexity metrics must possess a discriminative power and can 

produce different values to different programs. 

4- Property 4: A measure must not have a region where all values cluster around.  

5- Property 5: A measure is a complexity measure if it satisfies properties 1-4.  

 

Tian and Zelkowitz also introduced a metrics classification approach which defines 

a boundary condition that can be used to reject inappropriate metrics.  They also 

suggest that a metric’s discriminative power can be evaluated according to that 

metric’s predictive power, simplicity, and the value of information it embodies.   

 

We evaluated the proposed complexity measures against these properties.  All of 

the proposed metrics are qualified to be considered as complexity metrics.  In 

making selection between different alternatives we followed a mixed approach 

where simplicity is important but also focused more on the predictive power of the 

metric.   

    

4.3 Metrics Validation: The Experiment 

 

It is widely accepted that software metrics are useless unless they can be of some 

practical use.  Metrics can be of practical use for users, developers, managers, and 

team leaders.   
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For developers, managers, and team leaders metrics are useful in making 

predictions about some process features (e.g. cost/effort estimation, resources, 

etc..).  Also metrics can be used to make predictions about the potential behavior of 

the system (Performance, reliability, efficiency, maintainability, etc..).  Metrics 

help developers and managers detect the more complex components early at the 

design stage and take decisions to redesign these components.  On the other hand, 

customers/users can use metrics values to make comparison between several 

alternatives, and identify the ones with higher quality.   

 

Our validation approach comprises checking the potential of using metrics values 

in predicting one or more of the followings: design effort, correction effort, 

integration effort, and productivity.  We do not claim that if a metric does not have 

direct influence on one or more of these process factors should be considered 

invalid.  That is because this metric still can have some influence on some other 

product nonfunctional attributes like reliability, performance, or any other factor 

whose examination requires experimenting implemented systems.   

 

In the study, we have considered both cases where 1: a complete component 

orientation with assumed available components and also 2: the case where some 

component development is necessary.  To remove any ambiguity that may arise on 

the reader side, before proceeding any further, we will provide the definitions of 

the terms: Design Effort, correction effort, integration effort, and productivity:  

 

Design Effort: Design is the process of defining the system abstractions, 

components, interfaces, data structures, and the working relationships among 

components [98].  The design process results in a document that contains system 

models in some design description language (e.g. COSEML). The system design 

should be described detailed enough to be implemented. Design effort is the time 

spent to transform system specifications into design models including editing of the 

models.   

 

Correction Effort: The time that is spent to make any changes affecting methods, 

interfaces, properties, or relationships of the component after being initially 
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designed.  Total correction effort is the total correction effort spent on all 

components.  

 

Integration Effort: the time spent to define components relationships with other 

components, including the designing of connectors and their specifications. 

 

Productivity:  Developer productivity (FP/Person-Hour) is estimated as the total 

function point count divided by the total time spent on design, correction, 

integration, modeling, and editing the design models. 

 

4.3.1 Data Sources 

 

Data has been collected from 40 student projects developed in three different 

semesters (Fall 2002, Fall 2003, and Fall 2005).  All projects have been designed 

for component oriented software development using the dedicated CO software 

modeling language COSEML.  The majority of the projects have been designed as 

a term project in a graduate level course ‘System development using abstract 

design’ at the Middle East Technical University (METU) in Ankara. Eight out of 

the forty projects were designed by senior students in the same department.  One 

project was prepared as the main part of a master’s thesis in the department.  That 

project was the largest in terms of number of components and function points 

(FP)’s counts.  Projects were designed in teams of one, two, or three students and 

vary in their sizes based on the number of team members enrolled.  To have a 

feeling of project sizes, we collected Function Points [4] and the total number of 

boxes (abstractions and implementation level components) values for every project.  

As of the Function points count, the largest project has 510 FPs and the largest 

project in terms of the count of boxes has 287 boxes and 16 physical components 

with 33 interfaces.  The project with the least FP value has 24 FPs and the same 

project has a total of 12 boxes with only 3 components and 3 interfaces.   
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4.3.2 Developers’ Backgrounds 

 

The developers of the projects were all students at the Department of Computer 

Engineering in METU. Some of the developers were research assistants while the 

majority were working as software engineers in the industry.  All of the developers 

had previous programming and system analysis and design experiences in OO 

software engineering using C++ and/or Java.  On the other hand, none of the 

developers had any previous experience in CO software modeling and design using 

COSEML modeling language before enrolling to the class.     

 

4.3.3 Data Collection 

 

Contribution to project metrics was completely a voluntary job.  Directly after 

students submitted their project proposals we performed a one-hour lecture in 

which we described the followings: 

1) Benefits of metrics on the overall software development process were 

described.  

2) The metrics to be collected were defined. Example metrics estimations 

were demonstrated.  

3) Students were informed that their projects data will be used in a serious 

research so those who do not want to contribute are free in that. 

4) Also the terms design effort, correction effort, and integration effort were 

defined to students. 

5) Metrics collection forms fields were described field by field. 

6) Online material was posted.  Contact information e.g. email address, phone 

number, and street addresses were available to developers so that they 

were free to contact anytime. 

7) Students have been assured that metrics will never be used to evaluate 

their performance or be used while grading their projects.  

Data has been collected by the developers themselves.  The metrics collection 

forms that have been used by the classes of fall, 2002, and fall, 2003 are available 

in Appendix A. The metrics set has been further refined.  Some metrics were 

eliminated, new metrics were added.  So, for the class of fall 2005 we distributed 
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two separate forms; one includes metrics for the project as a whole and the other 

contains metrics to estimate for every component separately.  The two metrics 

forms are available in Appendix B.  A document containing a detailed discussion 

of the metrics, their definitions, and their estimations were available online for the 

developers’ free access.  Every possible effort has been expended in instructing the 

developers to ensure a clean data collection with least number of errors.  

 

4.3.4 Correctness Test 

 

Data collection is important; to be useful it must provide the correct data.  We 

applied the following procedure to eliminate inconsistencies and casual defects that 

existed in the data: 

1) Six projects have been eliminated from the study because they included 

data that violates intuition and well known facts of software engineering. 

Examples of these inconsistencies include- but not limited to: in one 

project developers reported the total design effort as 1800 person hours 

which is more than the total period (days x 24 hours) allocated for the 

project design, unfortunately we could not return to the developers to 

inquire about the correctness of this number. In another project developers 

reported that number of components is more than the number of 

interfaces, this violates the fundamentals of CO since every component 

must have at least one interface. 

2) Three projects  were removed from the experiment due to inconsistencies 

that seemed to be a result of misunderstanding of the terms e.g. one of 

these projects reported the total number of interfaces as 9 and the average 

number of methods per interfaces 3 while the total number of methods 

was reported as 11 methods.  

3) Four projects were removed because the developers reported that they 

could not estimate the effort they spent on preparing the design, 

correction, integration. 

4) Two projects have been removed because developers demonstrated very 

unexpected system decomposition.  In one project the total number of 



 57 

components, interfaces, and abstractions was 9 while the estimated 

function points value was 535.  

We have carried walkthroughs to make sure that maximum effort was used to 

eliminate error in data.  We found some errors in function points estimations.  

Error-prone locations have been handled and new values have replaced the old 

ones. 

 

4.3.5 Regression Analyses 

 

The aim of the regression analysis is to investigate whether metrics can help in 

making predictions about the followings: 

1) Complexity related to Size:  Function Points (FP) [4] is a widely accepted 

size related measure.  We are investigating the relationships between CO 

metrics and FP counts in using single regression and multiple regression 

models. 

2) Complexity resulting from Connectivity and its influence on Effort: Henry 

and Kafura [46] evaluated system complexity resulting from connectivity 

using mainly two metrics; Fan-in and Fan-out.  In a CO software system 

the degree of connectivity is related to: 

a. Number of interfaces. 

b. Number of connectors. 

The potential influences of these factors on Design effort, correction 

effort, integration effort, and developer productivity is explored. 

3) Complexity resulting from Structure and its influence on Effort:  A CO 

system is structured in a hierarchy in several levels. High levels usually 

include system abstractions while lower levels represent implementation 

level components.  The potential influence of system structure on design, 

correction and/or integration efforts is explored.  

 

Regressors that are intuitively believed to have an impact on the different 

regressands are first identified.  A summary of the regressands and the intuitively 

influential regressor sets are presented in Table 4.1.   
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Table 4.1: Regressands and Their Intuitive Regressors Summary 

No. Regressand Description Intuitively Influential 
Regressors 

1 FP Total count of unadjusted function 
points (Abretch and Gaffney, 1979, 
1983) 

# of Components,  
# of Methods 
# of Imp.. Components 
# of Methods 
# of Connectors 

2 FP/Interface Total count of unadjusted function 
points (Abretch and Gaffney, 1979, 
1983) divided by the total number of 
interfaces 

# of Methods/Interface 
# of Connections/Interface 
# of Events/Interface 

3 Design Effort Total Effort in person hours spent on 
building system models using 
COSEML  

# of Components 
# of Methods 
# of Imp. Components 
# of Methods 
# of Connectors 
# of Connectors/Comp. 
# of  Methods/Comp. 
# of interfaces/ Comp. 
# Depth of Composition Tree  

4 Design Effort/ 
Component 

Total Effort in person hours spent on 
building system models using 
COSEML divided by the total number 
of components  

# of Components 
# of Methods 
# of Imp. Components 
# of Methods 
# of Connectors 
# of Connectors/Comp. 
# of  Methods/Comp. 
# of interfaces/ Comp. 
# Depth of Composition Tree  

5 Correction 
Effort 

Total Person hours spent on making 
changes affecting methods, interfaces, 
properties, or relationships of the 
components after being initially 
designed. 

# of Components 
# of Methods 
# of Imp. Components 
# of Methods 
# of Connectors 
# of Connectors/Comp. 
# of  Methods/Comp. 
# of interfaces/ Comp. 
# Depth of Composition Tree  

6 Correction 
Effort/ 
Component 

Person hours spent on making changes 
affecting methods, interfaces, 
properties, or relationships of the 
components after being initially 
designed divided by the number of 
components.  

# of Components 
# of Methods 
# of Imp. Components 
# of Methods 
# of Connectors 
# of Connectors/Comp. 
# of  Methods/Comp. 
# of interfaces/ Comp. 
# Depth of Composition Tree  

7 Integration 
Effort 

Total person hours spent on defining 
components’ relationships with other 
components. 

# of Components 
# of Methods 
# of Imp. Components 
# of Methods 
# of Connectors 
# of Connectors/Comp. 
# of  Methods/Comp. 
# of interfaces/ Comp. 
# Depth of Composition Tree  
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Table 4.1 (Continued) 
8 Integration 

Effort/ 
Component 

Total person hours spent on defining 
components’ relationships with other 
components divided by the total 
number of components. 

# of Components 
# of Methods 
# of Imp. Components 
# of Methods 
# of Connectors 
# of Connectors/Comp. 
# of  Methods/Comp. 
# of interfaces/ Comp. 
# Depth of Composition Tree  

9 Productivity Estimated as the ratio of FP/Person 
hour. 

# of Components 
# of Methods 
# of Imp. Components 
# of Methods 
# of Connectors 
# of Connectors/Comp. 
# of  Methods/Comp. 
# of interfaces/ Comp. 
# Depth of Composition Tree  

10 Total 
Development 
Effort 

Total person hours spent on system 
development. 

# of Components 
# of Methods 
# of Imp. Components 
# of Methods 
# of Connectors 
# of Connectors/Comp. 
# of  Methods/Comp. 
# of interfaces/ Comp. 
# Depth of Composition Tree 

 
 
Ten different regression models are obtained.  For each model the regression 

equation, model plot, and a Table of regressand’s actual values and predicted 

values are presented.  For every regression equation the coefficients’ p-values are 

presented below them.  The p-values are presented to provide a feeling of the 

statistical significance of the corresponding variable.  Also the practical importance 

of every model is discussed and supported by the average error estimates of the 

predicted values.  To remove any confusion that may arise, we present in Table 4.2 

a list of the terms and abbreviations with their corresponding descriptions as they 

appeared in the regression models. 
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Table 4.2: List of Terms and Abbreviations Used in the Regression Models 

Term or Abbreviation Description 

Component or Comp. Number of Components (abstractions, implementation 

level components, and interfaces) 

PComponent Number of Implementation (Physical) level components 

(not including interfaces) 

Interface or Int. Number of Interfaces 

Methods or Meth. Number of  Method 

Connector or Conn. Number of links between two components or two 

interfaces 

FP Function Points count 

 

 

 

4.3.5.1 Total FP Count Regression Model 

 

In order to find a generalized model for predicting FP count in the system, potential 

influencing regressors have been identified first (See Table 4.1).  A forward 

addition approach has been used to test the regressands one by one.  The resulting 

generalized model is given as: 
 FP = 0.8 * (Components) + 4.3 * (PComponents) – 1.8 * (Interfaces) + 0.5 * (Connectors) + 12.7 
           (p = 0.01)                         (p = 0.03)               (p = 0.06)                     (p = 0.1)        (p = 0.02) 
  
The model demonstrated a good prediction level with an average error rate of %21 

in the worst case and %8 when the outliers were excluded.   The complete list of 

actual and predicted FP values with the corresponding error rates are presented in 

Table 4.3. The most surprising and, perhaps, “unexpected” finding is that the 

number of FPs decreases as the total number of interfaces increases.  This finding 

violates intuition since in a CO system a component’s functionality is presented 

through its interfaces.  So, more interfaces should lead to more functionality and 

more FP count in the system.  The reason(s) for this contradictory result may be 

related to one or more of the followings: 

1) Due to the inclusion of implementation components “PComponents” whose 

count is highly correlated with the count of Interfaces with a correlation 



 61 

coefficient value 0f 0.97.  The coefficient value of PComponents  is quite high 

relative to the coefficient  value of Interfaces.  So, the negative sign for the 

Interfaces coefficient may be to balance the high positive value of the 

coefficient of PComponents in the model.   

2) The fact that system developer had their first CO software design with the 

projects used in this research may be a reason for coming up with low quality 

designs. 
                            
 The curve fitting plot of the model is given in Figure 4.1.  
 

Table 4.3:  FP Estimation Results 
Actual Estimated Residual %Error 

142 128.06 13.94 9.82 
146 130.54 15.46 10.59 
108 96.77 11.23 10.40 
85 87.45 -2.45 -2.88 
66 62.16 3.84 5.82 

113 82.83 30.17 26.70 
65 54.29 10.71 16.48 
44 56.22 -12.22 -27.77 
28 35.97 -7.97 -28.47 
66 62.34 3.66 5.55 
76 102.55 -26.55 -34.94 
58 55.54 2.46 4.24 
95 79.24 15.76 16.59 
66 94.15 -28.15 -42.65 

110 99.96 10.04 9.13 
72 72.51 -0.51 -0.71 

102 107.47 -5.47 -5.36 
70 66.86 3.14 4.48 
44 51.87 -7.87 -17.89 
38 54.79 -16.79 -44.20 
69 71.03 -2.03 -2.94 
93 95.15 -2.15 -2.31 
60 61.19 -1.19 -1.98 
48 51.32 -3.32 -6.91 

510 513.76 -3.76 -0.74 
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Figure 4.1:  Total FP Regression Model Plot 
 

 

4.3.5.2 FP Per Interface Regression Model 

Returning to the definition of a CO software system, we can see that components 

implement interfaces to provide services to their clients.  So finding the factors that 

influence the count of FP in an interface becomes a necessity.  Also, here a forward 

addition approach has been followed to find the influencing factors with reference 

to the intuitive relationships presented in Table 4.1.  The result of the regression 

analysis is the following model: 

FP/Interface = – 8.5/ (Methods/Interface) + 0.94 * (Connectors/Interface) +   5.2 
                      (p = 0.007)                         (p = 0.04)                             (p = 0.004) 
 
While the R2 value is relatively low “0.45”, the model demonstrated an acceptable 

level of average error rates with an initial value of 22% and 17% after removing the 

outliers.  Also the model is statistically significant in the confidence interval of 

95%.  The highest p-value is 0.04 and prob(F) is 0.0. 

 

Looking deeply in the model we can see that the FPs in an interface increases with 

the increase in the numbers of methods and/or connectors in that interface.  These 
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results are practically important for us since they both meet intuitive thinking and 

are practically applicable.  A detailed list of the actual and predicted FP/Interface 

values with the corresponding residual and estimated error rates is presented in 

Table 4.4.  The curve fitting plot of the model is shown in Figure 4.2.  

 

Table 4.4: FP Per Interface Estimates 
Actual Value Estimated Value  Residual %Error 

4.30 3.79 0.51 11.84 
11.23 7.51 3.72 33.09 
6.35 4.73 1.62 25.49 
7.08 4.40 2.68 37.89 
7.33 6.52 0.81 11.10 
9.42 7.72 1.70 18.06 
7.22 6.78 0.44 6.07 
5.50 6.26 -0.76 -13.79 
3.50 4.39 -0.89 -25.52 
7.33 8.48 -1.15 -15.70 
5.43 6.13 -0.70 -12.84 
8.29 6.72 1.56 18.86 
5.00 4.50 0.50 9.91 
3.14 3.92 -0.78 -24.78 
5.00 3.63 1.37 27.45 
4.50 6.22 -1.72 -38.29 
5.37 5.28 0.09 1.66 
4.38 5.68 -1.31 -29.91 
2.44 5.03 -2.59 -105.96 
4.75 6.20 -1.45 -30.43 
4.93 5.64 -0.71 -14.36 
4.89 4.87 0.02 0.44 
4.29 5.18 -0.89 -20.87 
5.33 6.12 -0.79 -14.83 
6.22 7.51 -1.29 -20.67 
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4.3.5.3 Total Design Effort Regression Model 

 

The necessity of obtaining a general model for evaluating Design effort using some 

product measures is widely recognized.  One of the main advantages of having such 

a model is that it can help in building a rather more generalized model for 

predicting total development effort benefiting from the relatedness of design effort 

to the total development effort.   The obtained regression model is described as 

follows: 
 Design Effort = -0.65*(Comp.) + 0.83*(meth.) + 0.73*(Conn.) – 33.9* (Meth./Comp) 
                              (p = 0.0004)        (p = 0.0)         (p = 0.0006)        (p = 0.0004) 
  
The model is statistically significant at the confidence interval of 99% with highest 

p-value of 0.0006 and p(F) of 0.0.  The model has a high R2 value of 0.98.   The 

model is not without unexpected features.  Two unexpected features available in 

the model are:  

1) Design effort decrease when the total number of components increases. 

2) Design effort decrease when the average number of methods per component 

increases.   

Figure 4.2: FP per Interface Regression Model Plot 
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The reason(s) to these unexpected features in the model can be due to one or more 

of the following: 

1) High degree of correlation is observed between the variables included in the 

model.  The correlation matrix between Components, Methods, and Connections 

which are included in the model is presented in Table 4.5. 

 

Table 4.5: Correlation Matrix between Model Variables 

 Components Methods Connections Methods/Comp. 
Components 1    
Methods 0.95 1   
Connections 0.95 0.96 1  
Methods/Comp. -0.03 0.27 0.11 1 

 

 

The high degree of correlation between model variables (multicollinearity) can 

lead to a situation like what encountered in our model.  

Also a possible explanation is that: providing a solution with bigger components 

providing rich services, design becomes easier; connection design is easier: most of 

the job is being handled inside the components. 

 

The predicted results are practically interesting.  The average error rates are 27% 

for the initial estimate and 15% when excluding the outliers.  The list of actual and 

predicted values of total design effort with the corresponding residual and average 

error rate are presented in Table 4.6 and the model plot is shown in Figure 4.3.       
        

Table 4.6: Total Design Effort Estimates 
Actual Value Predicted Value Residual (Actual - Predicted) %Error 

38 57.68 -19.68 -51.78 
32 43.01 -11.01 -34.42 
24 24.03 -0.03 -0.11 
16 3.48 12.52 78.26 
24 25.56 -1.56 -6.48 
42 46.26 -4.26 -10.15 
20 26.72 -6.72 -33.58 
26 22.64 3.36 12.91 
19 6.03 12.97 68.24 
24 45.58 -21.58 -89.91 
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Table 4.6 (Continued) 
32 31.05 0.95 2.97 
24 18.38 5.62 23.42 
34 35.56 -1.56 -4.60 
32 37.05 -5.05 -15.79 
44 35.48 8.52 19.36 
40 49.17 -9.17 -22.94 
46 36.81 9.19 19.97 
38 38.98 -0.98 -2.58 
76 40.95 35.05 46.12 
24 17.60 6.40 26.66 
22 39.50 -17.50 -79.56 
45 34.86 10.14 22.52 
32 30.84 1.16 3.64 
20 20.06 -0.06 -0.32 
525 522.08 2.92 0.56 

 

 

 
Figure 4.3: Total Design Effort Regression Model Plot 

 

4.3.5.4 Design Effort Per Component Regression Model 

 

In the previous section we presented a prediction model for total design effort and 

we have seen the influencing factors.  A prediction model for design effort per 

component is as import as that for total design effort.  The necessity of a prediction 

model for design effort per component emanates from the need to find the factors 

that can explain increasing effort per added component.  A forward addition 
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approach is followed to identify the statistically significant influencing factors.  The 

set of potentially influential variables has been identified and variables are added 

when p-value is less than or equal to 0.05. The resulting regression model takes an 

exponential curve with four variables as follows: 
Des. Effort/Comp.= e^ (-0.03*TNC)+0.13*(TNIC)+0.46*(TNI/TNC)+0.32*(TNM/TNC)- 1.48) 
                                            (p = 0.0)         (p = 0.0)             (p = 0.0)         (p = 0.0)             (p =0.0)     
 

The model demonstrates a high statistical significance with all p-values being equal 

to 0.0.  Also, the value of R2 is quite good for adoption of the model.   

 

From a practitioner’s point of view the model is not encouraging due to its 

exponential nature.  This makes it difficult to make predictions about potential 

change when a variable value is changed.  The interesting thing about the model is 

that it meets intuitive thinking.  Additional effort to system design increases when a 

component is added, number of interfaces a component implements increases, when 

there are more connections, and when the number of methods increases.   

The predictive power of the model is quite good to recommend for application.  

The average error rates are %17 and 13% for initial estimate and estimate after 

excluding outliers respectively. A complete list of actual and predicted values with 

their corresponding residual and error estimates is presented in Table 4.7.  The 

model plot diagram is shown in Figure 4.4.  

 

Table 4.7: Design Effort per Component Estimates 
Actual Value Estimated Value Residual %Error 

0.46 0.72 -0.26 -56.17 
0.40 0.29 0.10 26.10 
0.37 0.48 -0.11 -30.63 
0.27 0.31 -0.04 -16.71 
0.83 0.92 -0.10 -11.66 
1.56 1.45 0.11 6.81 
0.71 0.91 -0.20 -28.02 
0.90 0.87 0.03 2.86 
1.58 1.20 0.38 24.01 
0.80 1.03 -0.23 -28.40 
0.57 0.47 0.11 18.58 
0.80 0.65 0.15 19.10 
0.76 0.92 -0.17 -21.97 
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Table 4.7 (Continued) 
0.64 0.89 -0.25 -39.67 
0.77 0.73 0.04 5.41 
1.14 1.18 -0.03 -2.92 
0.68 0.46 0.21 31.31 
0.81 0.80 0.01 1.65 
2.53 1.73 0.80 31.56 
0.92 0.86 0.06 6.52 
0.44 0.65 -0.21 -47.89 
0.69 0.56 0.14 19.66 
1.00 0.92 0.08 7.89 
1.00 0.93 0.07 7.23 
1.83 1.72 0.11 6.11 

 

 

Figure 4.4: Design Effort per Component Regression Model Plot 
 

4.3.5.5 Correction Effort Regression Model 

 

In general, maintainability in software systems is one of the most important quality 

indicators.  Maintainability can be quantified as the average time required to fix an 

error [81].  It is possible to build prediction models for maintainability only if data 

from implemented and operational systems’ are available.  The data used in this 

research has been collected from projects which are only designed but never 

implemented and put into operation.  For this reason actual maintainability 

prediction models are not possible, at least, for the time being.  We looked for 

another factor that can be used to give an indication about maintainability.  We 
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used the term correction-effort in our research to provide some sense about 

maintainability.  In Table 4.1 we identified the different variables (quantified 

features) of a system model that can have influence (positive or negative) on 

correction effort.  In the regression analysis the variables have been added in a 

forward addition manner where variables are added if they satisfy the 0.05 

confidence interval.  The regression analysis produced the following model: 
 
Correction-Effort = 0.08 * (# of Components)  -  1.5 / (# of Methods/Component) + 2.13 
                                      (p = 0.0)                            (p = 0.02)                             (p = 0.0) 
The model demonstrates a high statistical significance with maximum p-value 0f 

0.02 and R2 0f 0.95.  Besides being statistically significant, the model also is 

practically significant due to at least the following reasons: 

1) The coefficient variables do not violate intuition since it is intuitive that 

correction effort should increase as the number of components and the average 

number of methods per component increase.   

2) The average error rates are encouraging to recommend the model for practical 

use with a value of 19% for the initial error rate which drops to 13% when 

removing the outliers.  The complete lists of actual and predicted value with the 

corresponding residual and error rates are presented in Table 4.9.  The plot of 

the regression model is shown in Figure 4.5.  

Other variables are believed to have influence on correction effort.  The reason(s) 

behind this violation can be one or more of the followings: 

1) High multicollinearity between the different variables.  Table 4.8 presents a 

complete correlation matrix of all the variables that have been fed to the model.  

Multicollinearity is a common problem that encounters researchers carrying out 

such researches.   

 

Table 4.8: Correlation Matrix between Regression Variables 
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Table 4.8 (Continued) 
Int. 0.96 0.92 0.97 1.00        

Conn/Int 0.09 0.17 0.14 0.05 1.00       

Conn. 0.95 0.96 0.98 0.97 0.27 1.00      

Int./Comp -0.21 -0.20 -0.25 -0.04 -0.20 -0.12 1.00     

Meth/Comp -0.03 0.27 0.07 0.00 0.29 0.11 -0.05 1.00    

Meth/Comp -0.15 -0.07 -0.14 -0.03 0.53 0.06 0.71 0.16 1.00   

Conn./Comp. 0.18 0.36 0.18 0.04 0.23 0.14 -0.43 0.74 -0.18 1.00  

Meth./Int. 0.55 0.47 0.51 0.53 -0.14 0.46 -0.16 -0.09 -0.26 0.08 1.00 
  

 

2) Lack of experience in CO software system design may be a reason to having 

such results. 

Table 4.9: Total Correction Effort Estimates 
Actual Value Estimated value Residual %Error 

6 7.24 -1.24 -20.68 
6 7.29 -1.29 -21.46 
5 5.94 -0.94 -18.76 
5 4.36 0.64 12.87 
5 3.75 1.25 24.93 
6 3.62 2.38 39.70 
3 3.67 -0.67 -22.42 
3 3.81 -0.81 -27.05 
2 2.21 -0.21 -10.37 
4 3.99 0.01 0.29 
5 4.73 0.27 5.44 
3 3.69 -0.69 -22.97 
5 4.58 0.42 8.31 
4 4.60 -0.60 -14.98 
5 4.86 0.14 2.74 
4 4.17 -0.17 -4.27 
8 5.99 2.01 25.17 
4 4.74 -0.74 -18.43 
5 3.85 1.15 23.07 
2 3.47 -1.47 -73.33 
6 5.33 0.67 11.23 
6 6.17 -0.17 -2.77 
4 3.50 0.50 12.45 
2 2.69 -0.69 -34.30 

25 24.77 0.23 0.90 
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4.3.5.6 Correction Effort Per Component Regression Model 

 
Knowing the features of a component that may increase the correction effort is a 

very important issue.  Once these features are identified it is possible to favor 

alternative designs where the correction effort elevating features are avoided.  A 

forward addition approach has been followed where variables have been added if 

they satisfy a 0.05 or less confidence interval.  It is our preference to obtain a model 

that uses more variables since that will better describe the relationships between the 

dependent variable and independent variables.  The obtained model takes an 

exponential form which can be a practical disadvantage for the model.  The model 

uses only three variables and it is defined as follows: 
Correction/Component = exp(-0.02*Components +  0.07* PComp. + 0.2 * (Methods/Comp) – 2.37) 
                                                (p = 0.003)                (p = 0.008)               (p = 0.04)              (p = 0.0) 
                                                                         
In the model, all p-values are less than 0.05 which means the model is statistically 

significant.  The R2 value of 0.54 is obtained which is not too high but the average 

error rate results encourage the adoption of the model.  Average rates started with 

an initial value of 18% which dropped to 12% when the outlier values are excluded 

from the average error estimation.   

 

Figure 4.5: Total Correction Effort Regression Model Plot 
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The model violates intuitive thinking and initial expectations in at least one or more 

of the followings: 

1) Correction effort per component decrease as total number of components 

increases.  

2) Some variables that are intuitively believed to increase correction effort per 

component have not been included in the model.  Among these variables are the 

total number of connections, and number of connections per component.  It is 

natural to spend more time on making corrections when the component exhibit 

high connectivity.  

 

The complete list of values of actual and predicted correction effort per component 

values with their corresponding residual values and error rates are presented in 

Table 4.10.  The plot of the model is shown in Figure 4.6.    

 

Table 4.10: Correction Effort per Component Estimates 
Actual Value Estimated Value Residual %Error 

0.07 0.08 -0.01 -17.02 
0.07 0.07 0.01 7.34 
0.08 0.08 -0.01 -7.89 
0.08 0.07 0.02 19.65 
0.17 0.14 0.03 17.37 
0.22 0.18 0.04 17.52 
0.11 0.13 -0.02 -18.12 
0.10 0.14 -0.03 -33.48 
0.17 0.14 0.02 14.45 
0.13 0.14 0.00 -2.72 
0.09 0.09 0.00 4.30 
0.10 0.11 -0.01 -14.07 
0.11 0.11 0.00 -2.01 
0.08 0.11 -0.03 -40.01 
0.09 0.10 -0.01 -10.17 
0.11 0.13 -0.02 -16.33 
0.12 0.08 0.04 34.53 
0.09 0.08 0.01 8.30 
0.17 0.13 0.03 20.88 
0.08 0.14 -0.06 -77.68 
0.12 0.09 0.03 21.51 
0.09 0.09 0.01 6.52 
0.13 0.11 0.02 14.67 
0.10 0.13 -0.03 -26.33 
0.09 0.09 0.00 -3.16 
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Figure 4.6: Correction Effort per Component Regression Model Plot 
 
 

4.3.5.7 Integration Effort Regression Model 
 

The CO software development paradigm focuses on building large systems by 

integrating pre-built components [34, 83].  Following from this, it can be clear that 

integration effort is a very critical factor when making a choice between alternative 

components.  Identifying the features of a component or a CO system and their 

weighing factors in increasing or decreasing integration effort is a practical need.  

Obtaining accurate integration effort records is a necessary prerequisite to building 

integration effort prediction models.  Also, having accurate integration effort 

records is only possible if implemented and composable components are available.  

Such components were not available during the time when this study took place.  

We used a different estimate of integration effort which is the effort spent on 

identifying component relationships, connections, and interfaces with other 

components.  Although this is not the exact record of integration effort, it is highly 

related to the actual integration effort.  The model is obtained as a result of applying 

variables in a forward addition approach.  Only one variable in the model is with a 
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p-value that is less than or equal to 0.05.  The model uses only the total number of 

connectors measure.  We believe that some other variables must be related to 

integration effort e.g. number of interfaces but even with a p-value of less than or 

equal to 0.1 this measure could not be added.  The reason for that is mostly related 

to strong multicollinearity between the different variables.  The obtained model has 

the following form: 
Integration Effort = 0.1 * (Connectors) + 2.6 

                                           (p = 0.0)                   (p = 0.0) 
 

Despite the fact that the model contains only one variable, it still bears both 

statistical and practical significance.  Both the p-value of the variable coefficient 

and the constant are equal to 0.0.  R2 has a value of 0.91 which is also quite high to 

encourage the adoption of the model.   Average error rates are 17% and 11% for the 

initial estimate and the estimate without outliers respectively.  A complete listing of 

the actual and predicted integration effort estimates with their corresponding 

residual and error rate values are presented in Table 4.11 and the model plot is 

shown in Figure 4.7. 

 

Table 4.11: Total Integration Effort Estimates 
Actual Value Estimated Value Residual %Error 

7 11.09 -4.09 -58.43 
5 7.89 -2.89 -57.87 
4 5.87 -1.87 -46.73 
4 5.55 -1.55 -38.74 
6 5.23 0.77 12.84 
8 8.43 -0.43 -5.33 
5 5.55 -0.55 -10.99 
5 4.48 0.52 10.32 
4 4.91 -0.91 -22.76 
7 6.93 0.07 0.93 
8 8.43 -0.43 -5.33 
4 4.70 -0.70 -17.43 

11 7.25 3.75 34.05 
8 8.53 -0.53 -6.66 

10 8.96 1.04 10.41 
8 8.21 -0.21 -2.66 

10 8.43 1.57 15.74 
8 7.68 0.32 4.00 

10 7.25 2.75 27.46 
4 4.70 -0.70 -17.43 
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8 5.44 2.56 31.96 
8 6.30 1.70 21.31 
7 7.36 -0.36 -5.15 
6 6.30 -0.30 -4.92 

35 34.53 0.47 1.34 
 
 
 

Figure 4.7: Total Integration Effort Regression Model Plot 
 

 

4.3.5.8 Integration Effort per Component Regression Model 

 

As well as total integration effort, integration effort per component is a measure of 

great practical importance.  Besides the deemed functionality and performance 

requirements, one of the main factors for making a decision whether to buy a pre-

built component or not is whether it is easy to be integrated with other components 

or not.  The degree of easiness to integrate can be best quantified by estimating the 

time spent on integrating the component.  In this part we tried to identify the factors 

that increase or decrease integration effort of a component and their weights in a 

backward elimination approach.  We started with all variables in the model and 
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eliminated all variables that have p-values greater than 0.05.  The final model with 

all variables having a p-value less than or equal to 0.05 is defined as follows: 
Integration/Component =-0.003 * ( TNI) + 0.08 * (TNM/TNC)+ 0.02 * (TNCO/TNC) + 0.11 
                                                 (p = 0.01)           (p = 0.0)                     (p = 0.001)        (p = 0.01)                 
  
It is clear that the model is statistically significant since all p-values are less than 

0.02.  The model meets intuitive thinking in that integration effort of a component 

increases when both the number of methods and/or the number of connections in 

that component increase.  One problem of the model is that integration effort per 

component decreases as the total number of interfaces increases.  It is also possible 

to interpret the result as: A well planned component framework should dedicate 

more interfaces for composability. According to this interpretation, increasing 

number of interfaces may reduce integration effort as they provide help in 

integration.  Also, the coefficient value is too small (0.003) making its effect to be 

insignificant in the model. 

The average error estimates are 16% and 8% for the initial estimate and the second 

estimate (after removing outliers) respectively.  A complete list of the actual and 

predicted results with their corresponding residual and error rate values are 

presented in Table 4.12.  The model plot is shown in Figure 4.8.  

 

Table 4.12: Integration Effort per Component Estimates 

Actual Value Estimated Value Residual %Error 
0.14 0.24 -0.09 -66.46 
0.20 0.27 -0.07 -34.82 
0.14 0.23 -0.08 -59.01 
0.20 0.22 -0.02 -9.04 
0.38 0.34 0.03 8.98 
0.36 0.39 -0.02 -6.28 
0.36 0.39 -0.03 -8.93 
0.36 0.34 0.01 3.81 
0.33 0.36 -0.03 -7.91 
0.50 0.49 0.01 1.65 
0.33 0.28 0.06 16.98 
0.33 0.33 0.00 1.25 
0.38 0.28 0.10 26.66 
0.24 0.26 -0.01 -5.77 
0.29 0.25 0.04 14.88 
0.33 0.38 -0.05 -15.41 
0.33 0.26 0.07 20.52 
0.38 0.41 -0.02 -6.44 
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Table 4.12 (Continued) 
0.42 0.41 0.00 0.71 
0.29 0.33 -0.04 -15.16 
0.38 0.31 0.07 17.81 
0.27 0.25 0.02 7.70 
0.35 0.36 -0.01 -2.60 
0.43 0.37 0.06 13.23 
0.24 0.23 0.01 5.30 

 

 

Figure 4.8: Integration Effort per Component Regression Model Plot 

 

4.3.5.9 Productivity (FP/Person-Hour) Regression Model 

 

Developer productivity is one of the most important features that influence total 

development effort.  Finding out the system features that influence developer 

productivity has been a critical issue since the early days of software engineering.  

In our research we identified the intuitive system features that may potentially 

affect productivity and followed a backward elimination approach in which 

variables with p-values that are greater than 0.05 are eliminated.  The final model is 

defined as follows: 



 78 

Productivity =  5.41   -     0.82 * (TNM/TNC) – 0.95 * (TNI/TNC) 
                    (p = 0.0)      (p = 0.04)                           (p = 0.01) 
 

The model shows that increased number of methods in a component is favored over 

increased number of interfaces.  It suggests that interfaces with more methods are 

better than having too many interfaces with small number of methods.       

 

Despite the fact that the model variables are all statistically significant, the model 

did not produce good practical results.  Average error rates are 34% and 23% for 

the initial and second (after excluding outliers) estimates respectively.  A complete 

list of the results is presented in Table 4.13 and the model plot is shown in Figure 

4.9.     

 

Table 4.13: Productivity Estimates 
Actual Value Estimated Value Residual %Error 

3.74 2.84 0.90 24.08 
4.56 3.52 1.04 22.82 
4.50 3.17 1.33 29.54 
5.31 3.63 1.68 31.58 
2.75 2.42 0.33 12.00 
2.69 2.42 0.27 10.11 
3.25 2.00 1.25 38.61 
1.69 2.22 -0.53 -31.21 
1.47 2.18 -0.71 -48.29 
2.75 1.49 1.26 45.73 
2.38 3.52 -1.14 -48.11 
2.42 2.64 -0.22 -9.19 
2.79 2.66 0.13 4.59 
2.06 3.07 -1.01 -49.21 
2.50 3.15 -0.65 -25.90 
1.80 2.00 -0.20 -11.08 
2.22 3.13 -0.91 -41.13 
1.84 1.60 0.24 12.98 
0.58 0.98 -0.40 -68.54 
1.58 2.49 -0.91 -57.35 
3.14 2.13 1.01 32.19 
2.07 2.85 -0.78 -37.50 
1.88 2.33 -0.45 -23.90 
2.40 2.60 -0.20 -8.21 
0.97 2.30 -1.33 -137.55 
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4.3.5.10 Total Development Effort Regression Model 

 

The importance of predicting development effort at early stages of the development 

process is very clear [81].  Several cost estimation methods have been proposed in 

the literature.  These methods vary in their nature.  Some methods are parametric 

like Putnams model (SLIM) first described in [67] , and PRICE-S which has been 

partially described in [63] and used by the DoD and NASA in their project 

estimations.  Another widely cited cost estimation method is the COCOMO model 

which was first described in [14] and then revised to address the new changes in the 

software development life cycle and released as COCOMO II [15].     

 

Expert judgment is one other approach that has been applied in software cost 

estimation techniques.   In this approach software cost estimation is done based on 

the previous experience and practices in software development.   Expertise makes 

predictions based on outcomes of his/her past projects.  One known expert 

judgment technique is Delphi as described in [44].  

Model a+b*x1+c*x2

P
ro

du
ct

iv
ity

(F
P

/P
er

so
n-

H
ou

rs
)

Pr
od

uc
tiv

ity
(F

P
/P

er
so

n-
H

ou
rs

)

Interfaces/Component

Methods/Component 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6

1.0
1.5

2.0
2.5

3.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Figure 4.9: Productivity Regression Model Plot 
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Learning oriented techniques for cost estimation have been proposed.  These 

models are mainly dependent on neural networks models that are based on previous 

experiences.   

 

Regression-Based techniques have been successfully used in software cost 

estimation. The common features in these methods depend on Least Squares 

regression where a set of independent variables (regressors) are identified and a 

prediction model is obtained based on previous projects data.  Boehm used 

regression models to calibrate COMOMO II.   

 

In this study we built a regression based model for effort prediction based on effort 

estimation data obtained by a comparative estimations tool prepared by the 

International Software Benchmarking Standards Group (ISBSG).  ISBSG is a non-

profit organization whose main aim is providing help to improve the management 

of IT resources.  It maintains two repositories for: 1) Software Development and 

Enhancement and 2) Software Maintenance and Support.  The repositories maintain 

data of more than 3000 projects sponsored by software development organizations 

mostly from USA, Japan, Australia, and several other countries.  The effort 

estimation tool performs predictions based mainly on FP counts.  Other parameters 

are also necessary to make accurate predictions.  These parameters are: 

 
• functional size range 
• development type 
• development platform 
• business area type 
• application type 
• maximum team size 
• language type 
• primary programming language 
• user base – business units 
• user base – locations 
• user base – concurrent users 
• used CASE tool 
• used methodology 
• how methodology was acquired 
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While using the tool, for all projects the following parameters were set to “match 

none”: 

• language type 
• primary programming language 
• user base – business units 
• user base – locations 
• user base – concurrent users 
• used CASE tool 

 

The development type parameter was set to “new development”.  The development 

platform parameter was set to “PC”.  The maximum team parameter size was set to 

“2” since all system models were prepared by teams of two.  The used methodology 

parameter was set to “Yes” since all developers followed the component oriented 

software development approach.  And the how methodology was acquired 

parameter was set to “built in-house”.  

The regression model is obtained with a significance level of 85% and is defined as: 
 
Development Effort = 2.4 * (# Comp.) + 26.9 *(# PComp) – 6.2 * (# Int) + 9.8 *(Conn./Comp) 
                                     (p = 0.05)             (p = 0.001)               (p = 0.15)            (p = 0.04) 
 

Besides being statistically significant, the model also bears great practical 

importance due to the following reasons: 

 

1. The model has prediction power with an average error rate of 9% only. 

2. Predicting development effort using complexity metrics that can be 

collected at the design phase of the system development process will enable 

managers and developers to make better decisions related to the product and 

process. 

The predicted values compared to actual values with their corresponding estimated 

residual and error percentage are presented in Table 4.14.  The estimated error rates 

are 17% and 9% for both the initial estimate and the second estimate after 

removing the outliers.  The model plot is shown in Figure 4.10.  
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Table 4.14: Total Development Effort Estimates 

Actual Values Predicted Values Residual Error% 
480 481.43 -1.43 -0.30 
559 485.36 73.64 13.17 
365 380.23 -15.23 -4.17 
287 324.86 -37.86 -13.19 
253 239.89 13.11 5.18 
391 315.89 75.11 19.21 
225 203.46 21.54 9.57 
152 213.58 -61.58 -40.52 
133 141.81 -8.81 -6.62 
223 234.01 -11.01 -4.94 
204 375.89 -171.89 -84.26 
220 205.22 14.78 6.72 
364 306.38 57.62 15.83 
235 362.87 -127.87 -54.41 
421 377.40 43.60 10.36 
349 268.12 80.88 23.17 
495 396.68 98.32 19.86 
268 246.56 21.44 8.00 
167 196.25 -29.25 -17.52 
145 209.36 -64.36 -44.39 
246 263.97 -17.97 -7.30 
356 371.32 -15.32 -4.30 
230 227.85 2.15 0.93 
184 197.23 -13.23 -7.19 
1953 1948.67 4.33 0.22 
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 Figure 4.10: Total Development Effort Regression Model Plot 
 

 

4.3.7 Summary of the Results 

 

Ten different models have been developed.  While building all of these models, 

both statistical significance and practical importance have been taken into 

consideration.  For statistical significance purposes, apart from the first model, in 

all of the models variables were only added if their corresponding p-values were 

less than or equal to 0.05.  In the first model a variable (# of connectors) is added 

while its corresponding p-value is equal to 0.1 and in the total development effort 

prediction model a variable with p-value is added to the model with p-value of 

0.15.  The reason behind this exception is due to the believed inherent importance 

of the variable in the estimation of FPs count.  We have considered practical 

perspectives, such as average error rates and simplicity of the model.  In two 

models exponential functions have been used since they had the lowest average 

error rates compared to the alternatives.  A summary of all the developed regression 

models with their corresponding R2 values and average error rates are presented in 

Table 4.15. 
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Table 4.15: Summary of the Regression Models 
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Connectors 

0.8 * (# Components) + 4.3 * (# PComponents) -  
    (p = 0.01)                  (p = 0.03) 
 1.8 * (# of Interfaces) + 0.5 * (#Connectors) + 12.7 
   (p = 0.06)                     (p = 0.1)             (p = 0.02) 
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Table 4.15 (Continued) 
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2.4 * (# Comp.) + 26.9 *(# Pcomp) – 6.2 * (# Int) +  
  (p = 0.05)             (p = 0.001)             (p = 0.15) 
9.8 *(Conn./Comp) 
    (p = 0.04) 
 

0.96 17 9 

 

 

 

The results obtained from the experiment can be classified into three broad classes 

as follows: 

1. Meeting initial (intuitive) view points: regressors described regressands in a 

manner meeting intuitive thinking (e.g. FP should increase with increased 

number of methods).  

2. Violating initial view points: the relationships between regressands and 

regressors do not meet intuitive thinking (e.g.  an increase in the total 

number of interfaces results in a decrease in the total FP count). 
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3. No results (unexpected behavior): No relationship –with statistical 

significance- could be detected between regressands and regressors which 

are intuitively believed to be related.  

 

The results obtained from the regression analysis revealed that complexity metrics 

collected from the design models can be great managerial and practical use.  While 

some of the results slightly violate initial expectations, most of the obtained results 

sound reasonable.  Some metrics which are intuitively believed to be related to 

some process features (regressands in our study) could not be added to the 

regression models due to their corresponding p-values which were above the 

maximum acceptable value of 0.1.  In Table 4.16 we present a summary of the 

metrics collected form the projects used in our study with their practical influences.  

In the column Influence the symbol “↑” is used to mean that when the metric value 

increases the estimated feature value increases as well.  The symbol “↓” means that 

the estimated feature value decreases when the metric value increases.  In the 

column Comments  we comment on whether the metrics use meets initial 

expectation that are built based on intuition.  If the metrics use violates the initial 

expectations then a short reasoning is provided when relevant.    

 

Table 4.16: Summary of Metrics Practical Applications 

No Metric Name Used Model Influence Comments 

Total FP Count ↑ Agrees with Intuition 

Total Design Effort ↓ Violates intuition due 

to multicollinearity 

Design Effort/ Comp. ↓ Violates intuition due 

to multicollinearity 

Total Correction 

Effort 
↑ Agrees with Intuition 

1 
Total Number of 

Components 

Correct. Effort/ Comp. ↓ Violates intuition due 

to multicollinearity 
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Table 4.16 (Continued) 

Total FP Count ↑ Agrees with Intuition 

Design Effort/Comp ↑ Agrees with Intuition 2 

Total Number of 

Implementation 

Components 
Total Correct. Effort ↑ Agrees with Intuition 

Total FP Count ↓ Violates intuition due 

to multicollinearity 
3 

Total Number of 

Interfaces Total Integration 

Effort 
↑ Agrees with Intuition 

4 
Total Number of 

Methods 
Total Design Effort ↑ Agrees with Intuition 

Total FP Count ↑ Agrees with Intuition 

Total Design Effort ↑ Agrees with Intuition 5 
Total Number of 

Connections 
Total Integration 

Effort 
↑ Agrees with Intuition 

6 
Total Number of 

Events In 
Not used in any model - Events In are not 

utilized in the models 

7 
Total Number of 

Events out 
Not used in any model - Events Out are not 

utilized in the models 

8 

Maximum Depth of 

the Composition 

Tree (DCT) 

Not used in any model - 

Almost all projects 

have similar DCT 

value.  DCT lost its 

discriminative power 

9 

Maximum Width of  

the Composition 

Tree (WCT) 

Not used in any model - 

Almost all projects 

have close WCT 

value.  WCT lost its 

discriminative power 
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Table 4.16 (Continued) 

Design Effort/ Comp. ↑ Agrees with intuition 

10 

Average number of 

Interfaces Per 

Component 
Productivity 

(FP/Person-Hour) 
↓ Agrees with intuition 

Total Design Effort ↓ 
Violates intuition due 

to correlation with # 

of interfaces 

Design Effort/Comp ↑ Agrees with intuition 

Integ. Effort/ Comp. ↑ Agrees with intuition 

11 

Average Number of 

Methods Per 

Component 

Productivity ↓ Agrees with Intuition 

12 

Average Number 

Connections Per 

Component 

Total Integration 

Effort 
↑ Agrees with intuition 

13 

Average Number of 

methods Per 

Interface 

Average FP count per 

Interface 
↑ Agrees with intuition 

14 

Average number of 

Connectors per 

Interface 

Average FP count per 

Interface 
↑ Agrees with intuition 

 

In all of our models we used average values rather than exact values per 

component.  We tried the possibility of analyzing individual components and 

examine the relatedness of complexity metrics with productivity, design-effort, 

correction-effort, and integration-effort based on records of individual components.  

This part could not be completed successfully due to the fact that developers could 

not provide exact records for the design, integration, and correction efforts they 

spent on individual components.   
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CHAPTER 5 

 
 
 

AUTOMATING METRICS COLLECTION PROGRAMS 
 
 

 

5.1 The Need for Metrics Automation 

 
Computer Aided Software Engineering (CASE) is a generic term that is widely 

used for the different tools used in software development.  CASE tools play an 

important role in modern software engineering practices and have an important 

influence in the production of cost-effective and efficient software systems.  Today, 

CASE tools are used in the different stages of the software process.  Project 

planning and scheduling tools help in scheduling and organizing activities in the 

software process (e.g. MS Project® from Microsoft, and ManagePro™ from 

Performance Solutions Technology). Effort estimation tools are used at early stages 

and particularly during and just after the requirements definition of the software 

process to make predictions about total development effort ad then total cost (e.g. 

Effort Estimation Toolkit from ISBSG). System modeling tools are used during the 

requirements specifications and system and software design stages of the software 

process.   Several modeling tools have been developed and widely used by 

software developers.   Among the most widely used modeling tools is IBM 

Rational Rose that is used for creating UML models for OO systems.  Besides 

being a powerful modeling tool, Rational Rose also supports both reverse 

engineering and automatic code generation.  Another UML modeling tool is 

Visio® from Microsoft.  Several other types of CASE tools can be used at different 

stages of the development process like report generating tools.  Integrated 

development environments (IDEs)  help in automating many programming 
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processes.  Debugging, system integration, and testing tools are also available in 

many flavors.  

 

Use of product complexity metrics in software engineering as a primary means for 

making process and product related decisions has been utilized mostly in the last 

few years.  Automatic metrics collection tools have developed for OO software 

development and particularly for CK (Chidamber and Kemerer, 1994) metrics. 

Some of these tools have been embedded into modeling tools and enabled 

automatic metrics collections directly from the system models. 

 

On the other hand, lack of dedicated CASE tools for COSE is obvious.  Apart from 

some extensions to OO modeling tools, no commercial dedicated CASE tools for 

COSE ever existed.   COSECASE is a dedicated COSE tool which is developed in 

consecutive versions each of which was a part of a master thesis work in the 

department computer engineering in the Middle East Technical University-Turkey.  

Each new version introduced represents an enhancement to its predecessor version.  

The last version of COSECASE is functional.  It enables model creation, and 

performs rule violations checks in the following situations: 1) when creating a 

relationship between components, 2) removing a component from the model, 3) 

adding a new component to the model.   The final version of the tool was lacking 

some usability related enhancements.   As part of the research described in this 

thesis, some usability related enhancements have been added to the tool.   Our 

contributions to the tool can be summarized in three main groups: 

1) Usability Enhancements:  The enhancements to the tool usability include the 

followings:  

a. Enabling automatic resizing of components in the model 

b. More nice-looking connectors.  

c. Deleting using keyboard delete key in addition to mouse right button. 

d. Dialogue boxes of components properties have been modified. 

  

2) Automatic metrics collection:  Complexity metrics defined in Chapter 3 are 

automatically collected during model creation. 
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3) Producing estimation results: Prediction models that are developed based on 

complexity metrics in Chapter 4 are used to make process related estimations.  

The tool automatically produces estimations based on these models and the 

product metrics and can target the results to both screen and/or a text file.  Also 

for system models prepared using other tools it is possible to produce 

estimations after manually estimating the complexity metrics and entering their 

values in the corresponding fields if the form that is appearing in Figure 5.1.   

 

 

 

Figure 5.1: Metrics Collection and Estimation Tool 

 

5.2 Enabling Automated Metrics Collection in COSECASE 

COSECASE provides a good environment for creating COSE system models only 

based on the COSEML (Dogru and Tanik, 2003) notation.  Screen shot of the tool 

is shown in Figure 5.2.    
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Figure 5.2: Screen Shoot from COSECASE with Estimations Options 

 
After creating or loading an already existing COSEML model, a user will be able 

to obtain predicted estimations by just selecting “Display Predicted Estimates” 

menu item from the “Tools”  menu.  The results  of estimations are displayed in a 

form as shown in Figure 5.3.   The user will have the chance to save results by just 

clicking on the “Save Results” button. 
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Figure 5.3: Screen Shoot of Estimation Results Form 
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CHAPTER 6 
 
 

CONCLUSION AND FUTURE WORK 
 
 
 
A measurement framework for Component Oriented Software Engineering has 

been developed and investigated.  This was to support the newly developing radical 

Software Engineering approaches that are expected to offer a long waited answer.  

Besides the lacking industrial experimentation, our results obtained through 

statistical analyses over academic case studies that extended three years, yield 

valuable conclusions.  Some relations among process and product properties and 

proposed metrics have been founded.  Besides, the converging analysis results in 

many aspects are an indication of the validity of the foundation.     

6.1 Summary 

Quantifiable aspects of CO systems are identified.  Then, metrics to measure these 

aspects are defined.  Relationships of metrics with the aspects they are intended to 

quantify have been defined.   For every defined metric, its potential impacts on the 

product and the process have been presented.  These potential impacts represent the 

initial viewpoints based on intuition, previous experiences of software metrics, and 

related work on software metrics performed by other researches in the field.  A set 

of properties that a CO complexity metrics must possess are defined and justified.  

The proposed metrics have been evaluated against the properties defined in this 

thesis and then evaluated against another set of properties defined in [84]; all 

defined metrics qualified and satisfied all properties in both sets.     

 

A Complexity model has been defined for CO software system in three levels.  At 

the lowest level, complexity aspect related to methods is included.  At the 

intermediate level, component-related complexity aspects are included.  The 

highest level of complexity in CO systems is the Overall System Complexity 
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(OSC).  OSC is the complexity that can be estimated from quantified aspects of 

components plus an added complexity resulting from bringing the components 

together into a single system.      

 

To explore the validity of metrics from a practical perspective an experiment has 

been performed.  Complexity metrics are important because they are known to be 

important players when making process and/or product related decisions.  Metrics-

based regression models are developed.  These regression models are all prediction 

models that enable making predictions about: Size (as a function of FP count), 

development effort (Person-hours), integrability (as a function integration effort), 

and maintainability (as a function of correction effort). While the experiment 

revealed that metrics can be highly dependable in making process and product 

related predictions, it suggests that further research covering more project data 

should continue.   

 

6.2 Discussion of the Results  

 

The significantly notable (expected or unexpected) results can be summarized in 

the following points: 

1. Total number of components of a system is an important factor in 

predicting Total FP count, Total development effort, and Total correction 

effort, of that system.  This result meets initial viewpoints and expectations.  

Fixing all other parameters, “Total design effort” decreases when total 

number of components increases.  This outcome seems to violate initial 

expectations and even intuition.  On the other hand, assuming the same 

overall functionality, a system with more components may take less effort 

to design, when compared to another with less components. In some cases, 

the integration among a few components may be difficult, probably due to 

increased fan of services and their connections.  A bigger set of smaller 

connections would be less complex than a small set of bigger (complexity) 

connections.  This follows the famous complexity relation which states that 

the overall complexity is conserved but it is possible to be moved to where  

it is easier to manage. 
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2. Total number of interfaces in a system is an important factor in predicting 

total integration effort.  An increase in total number of interfaces increases 

total integration effort.  This result is within expectation and meets intuitive 

thinking; hence more interfaces in a system means more relationships exist 

between components and then more effort will be required to integrate 

them.  On the other hand, the detected relationship between total FP cont 

and total number of interfaces is unexpected and violates intuitive thinking.  

An increase in the total number of interfaces results in a decrease to the 

total FP count in a system.  This outcome needs to be further examined and 

validated.  This result also may imply tendency to reduce interfaces, as total 

complexity increases: The experimentation considered declared (created) 

components rather than being industry-wide available.  Students may have 

chosen simpler connections for bigger projects.  A natural consequence 

would be expecting well established domains where complex systems will 

be built by highly cohesive and relatively larger-grained components that 

require less connectivity. 

3. No relationship between the depth of the composition tree and any of the 

checked regressands could be detected.  The reason behind that can be due 

to the fact that all projects included in the experiment have almost similar 

values for depth of the composition tree metric. An opportunist speculation 

would advise developers to freely choose their preferred decomposition.  

Their ideal decomposition would not affect the complexity.   

4. Total number of connectors’ relationship with total FP count, total design 

effort, total integration effort, and total development effort meets intuitive 

thinking and within expectations.  An increase in the total number of 

connectors in a system results in an increase in all values of these variables.  

5. Numbers of Events In/Out in a system are not used in any regression model.  

The reason can be due to the fact that uses of events in and events out were 

not utilized well in all designs used in the study. 

 

While developing all of the regression models attention was paid to both statistical 

significance and practical importance of the model.  Statistical significance has 

been monitored through R2 values and coefficients corresponding p-values.  



 97 

Practical importance of each model has been assessed through average error rates 

in the predicted values when compared to actual values.   Even in the worst case, 

average error estimates remained below those obtained in similar studies.  

Sommerville [81] reported that during the design phase cost estimation techniques 

can have an error rate of 50%.  In all of the regression models we developed 

average error rates were less than 25% when removing the outliers.  The most 

important two challenges we encountered during the research are the unavailability 

of industrial projects and the lack of standard definitions to the terms of interest. 

6.3 Comparison with Related Works 

Component Orientation is a new trend towards software development.  The process 

model described by Dogru and Tanik [34] and the COSEML language represent 

one of the earliest and serious works in the field.  The work presented in this thesis 

focused mainly on identifying a metrics set characterizing complexity in CO 

systems that are developed using the COSE approach.  The metrics are validated 

using experimental data and the results of the validation showed that metrics can be 

of great value in predicting several critical and important process and product 

features.  The literature of software measurement presents several trials of 

evaluating software complexity and other works for relating systems complexity 

with one or more process or product aspects.  The following reasons are enough to 

enhance the originality of this work: 

 

1) A survey of the literature revealed that there is no complete pure CO 

measurement framework that aims at characterizing software complexity in 

CO systems and find its relationship with process and product features. 

2) The works presented in the literature were either considering black-box 

reusability or white-box reusability of software components while in our 

methodology we defined metrics for both cases. Complexity is 

characterized with a set of metrics in the case of black-box reuse and 

another set of metrics is used for white-box reuse. 

3) The approach presented here can not be generalized to all component 

methodologies. It is specific to COSEML only.  Among several others, we 
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believe that COSE paradigm will be the future trend of CO software 

development. 

 

In the following discussion we will describe the most widely known CO related 

metrics and their similarities and differences with our model. 

 

1) Chidamber, Darcy, and Kemerer [22] investigated the relationships between 

programmer productivity, design effort, and re-work effort and the OO 

complexity metrics widely known as CK [20, 21].  The results obtained in 

their research support the idea of that complexity metrics can be used as 

predictors of some critical and process aspects.  The main outcome of this 

work is that lower productivity, greater re-work effort, and greater design 

effort are highly associated with high coupling and low cohesion values. 

These outcomes meet intuition and strengthen the arguments of that 

excessive coupling is not a good design feature while cohesion is a deemed 

feature.  The main problem with the outcomes is that they are highly 

dependent on the LCOM metric which is widely known to be ill-defined.  

The main similarity of this work with our work is that both works try to 

build prediction models of process features using complexity metrics 

collected during the design phase of system development.  The main 

difference between this work and our work is that Chidamber et al. [22] 

findings are OO specific while our findings are CO specific.  In our 

methodology it is revealed that high connectivity (a measure of coupling) is 

also associated with more rework and development efforts. 

2) Cho, Kim, and Kim [112] proposed metrics for measuring complexity of 

software components.  They assumed white-box reuse of components and 

measure complexity mainly based on the Cyclomatic complexity [57]. The 

method does not assume pure component orientation; it rather views a 

software component more similar to a class as defined in OO software 

development.  Four types of component complexity are defined but the 

influence of these complexities on product and process features is not 

discussed making interpretation difficult to achieve.  The similarity between 

this method and our method is that it considers high connectivity between 
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components as a dangerous feature which will influence maintainability, 

reliability, and other product aspects. 

3) Goulao and Abreu [106] proposed metrics that cover composition of 

components.  They defined metrics for measuring the ratio of used services 

to total services provided by the component and for measuring the 

interaction density between components. The method is similar to our work 

in that it suggests that high interaction density between components 

increases overall system complexity.  This result is validated for our model 

while it is left without validation in the other model.  The method is specific 

only to CORBA components and cannot be generalized to other component 

models.  This fact makes the method different from ours since our method 

is specific to COSEML approach that is more generic. 

4) Mahmood and Lai [107] presented a model for measuring complexity in 

UML components.  The model assumes only black-box reuse of 

components and thus focusing on characterizing system complexity only 

using component interface specifications and interactions with other 

components.  The main difference between this method and ours is that is 

UML specific while our method is COSEML Specific.  Another difference 

is valuable to discuss that is our method deals with both black-box and 

white-box reuse while this method deals only with black-box reuse.  The 

metrics are not validated using project data.  It also lacks interpretation 

guidelines. 

5) Banker, Datar, Kemerer, and Zweig [108] investigated the influence of 

several complexity metrics on maintenance costs and found that complexity 

measures significantly affect maintenance costs.  The study considered 

several complexity measures defined for traditional software development.  

The main similarity between this method and ours is that in both methods is 

that high complexity is highly related with rework effort. 

6) Lindval, Tvedt, and Cost [109] presented an approach for detecting the 

relationship between system architecture and its maintainability.  The 

method characterizes system architecture at two phases of the development.  

Early architecture is the system architecture at the design phase and late 

architecture is the system architecture after development.  They defined 
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new metrics of system architecture based on the CBO metric from CK set 

[20, 21].  The metrics they defined differentiate between inter-module 

coupling and intra-module coupling.  The method is described for classes 

for OO development and module (close to component definition).  The 

main outcome shows that loosely coupled designs are easier to maintain.  

This result meets our results for COSEML where we assume high 

connectivity increases rework effort. 

7) Darcy, Kemerer, Slaughter, Tomayko [100] examined different measures of 

system structural complexity based on coupling and cohesion.  Both this 

method and our method are similar in that they focus on structure.  This 

method completely ignores algorithmic complexity while our method 

considers algorithmic complexity for the case of which-box reuse of 

components.  Also the view of a component in this model is close to the 

class concept in object orientation while our model relates to pure 

component orientation.  Results obtained in both our model and this model 

are similar in that they both suggest high coupling negatively influences 

maintenance effort.  Darcy et al. [100] found that coupling and cohesion 

should be considered jointly and suggest that individual measures of 

coupling and cohesion can be useless.  

8) Keating [50] introduced a model of complexity based on system structure 

and hierarchy.  The system complexity is evaluated based on the degree of 

connectivity.  Keating proposed some guidelines that will decrease 

complexity by imposing limitations on the number of modules at any level 

to 7±2.  Keating findings were not supported by experimental investigations 

making them less dependable.   

9) Qiam, Liu, and Tsui [110] proposed a metric for evaluating decoupling for 

service components.  The model assumes pure black-box reuse of service 

components. They evaluated decoupling using metrics of state dependency 

that tells the degree to which the service is stateless and dependency on 

other services.  Although the authors claim that these metrics can be used to 

measure understandability, maintainability, reliability, testability, and 

reusability of service components, this claim remained without empirical 

validation.  The metrics are well defined but no interpretation guidelines 
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were provided.  The importance of these metrics is mainly due to the fact 

that they are among the few metrics that assume pure component 

orientation.  

10) Braha and Maimon [111] introduced two measures for structural 

complexity and functional complexity of modules.  The structural 

complexity is used to estimate total assembly effort (assembly effort can be 

related to integration effort in our model).  The method is not proposed for 

component orientation and deals with white-box reuse only. 

11) Dumke and Winkler [114] described a framework of measurement in 

component based software development.  The described framework is 

dependent on OO software development where software components are 

used during the system integration phase.  The framework is mainly 

validated for Java-based software development.  Dumke and Winkler 

suggest the measurement process should start with the selection of metrics, 

then, the identification of thresholds for metrics values should follow.  

Then, the selected metrics should be adapted and refined to fit to the given 

paradigm.  The last step in measurement is identified as the automation of 

the measurement process and experimental validation of the metrics.  The 

measurement framework proposed is not for component oriented systems. It 

is for component based products and processes that rely on the OO 

paradigm.     

A summary of these methods and their comparison to our method is given in Table 

6.1. 

Table 6.1: Summary of Related Works 

No. Brief description Support 
for CO 

Similarities  Differences Weaknesses 

1 Estimates Productivity, 
design effort and 
rework effort using 
OO complexity 
metrics 

No Use metrics to 
estimate productivity, 
design and rework 
efforts 

Not CO. 
 

Depend on 
LCOM 
metric which 
is not well-
defined 

2 Measures four types of 
complexity in 
components  

Partially Characterization of 
complexity 

Not empirically 
validated 
Not pure CO 

Assumes 
only white-
box reuse 

3 Measure of 
composition of 
CORBA components 

Partially Both methods suggest 
that high connectivity 
increases complexity 

CORBA specific 
while ours is 
COSEML specific  

No empirical 
validation 
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Table 6.1 (Continued) 
4  Measures complexity 

of UML components 
based on interface 
specifications 

Partially Both characterize 
complexity using 
interfaces and inter 
component links 

Does not consider 
white box reuse. 
No empirical 
validation 

Not 
empirically 
validated 

5 Investigates the 
influence of several 
metrics on 
maintenance costs.  

No Maintenance effort is 
negatively influenced 
by complexity 

This method is for 
traditional SW 
development 

- 

6 A model for detecting 
the relationship 
between software 
architecture and 
maintainability 

Partially Loosely coupled 
designs enhance 
maintainability 

Not CO  No clear 
definition of 
the system 
building unit 
under 
consideratio
n. 

7 Detect the influence of 
coupling and cohesion 
on complexity. 

No High connectivity 
increases complexity 

Not CO; 
Coupling and 
cohesion must be 
jointly measured 

- 

8 A  model for system 
complexity based on 
system structure and 
hierarchy. 

Partially Structural complexity 
is influenced by 
connections and  
number of modules in 
each  level of the 
hierarchy. 

Not CO Not 
empirically 
validated 

9 Defines a measure of 
decoupling for service 
components 

Yes Characterizes the 
degree of 
independence 

Relationship with 
process features not 
discussed 

No clear 
interpretatio
n guidelines. 

10 Describes models of 
structural and 
functional 
complexities of 
modules. 

Partially Relates complexity to 
integration effort 

Assumes white-box 
reuse only  

- 

11 Introduces a 
measurement 
framework for 
component based 
software engineering 

Partially Identifies the steps 
measurement in 
component 
development 

Not pure component 
oriented.  Based on 
the OO paradigm 

Highly 
dependable 
on the OO 
paradigm 

 

As a summary it can be said that there is no comprehensive measurement approach 

for a comprehensive COSE methodology, to support the build by integration 

paradigm.  Among these approaches only the work of Qiam, Liu, and Tsui [110] 

can be seen as relevant for a meaningful comparison. The rest of the other works 

lack the Component Orientation philosophy that was described in the Introduction 

section of this thesis.  Due to that they do not appear to be relevant for a 

meaningful comparison. 
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6.4 Future Extensions and Open Research Areas 

One of the most important challenges we encountered during this research is the 

lack of industrial projects to use for metrics validation.   The availability of such 

data is believed to enable further experimental validation.  Also, the presence of 

data collected from operational projects will necessarily help in detecting important 

relationships between complexity metrics and product quality factors such as: 

reliability, performance, efficiency, and maintainability.  These product features are 

critical and important to both the developer and the customer.  Although student’s 

projects are widely used in Academia as the principal means of practical validation, 

it is believed that considering industry practices in addition to students’ projects 

will strengthen the validity of the results.  Trying to consider industry practices as a 

validation means will be encountered with serious difficulties due to the following 

reasons:  

1. Lack of standards for the definitions of the term component, component 

interface, component communication principles.  The terms are handled 

differently by different practitioners. 

2. Although component based software development is widely used, still real 

component orientated software development is not encountered. 

3. Even with the availability of industry practices, obtaining the data will be 

another problem by its own. 

According to the previous discussion future extensions to the research presented in 

this thesis should include some implemented projects data, and industry practices.  

The relationships between a component’s complexity and its composability, 

reliability, performance, efficiency are still open research areas in this field. 
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APPENDIX A 
 
 
 

METRICS COLLECTION FORMS USED IN 2002 AND 2003 
 
 

Number of people in the team:  

Total person-hours:  

Member 1 name:  Person hours:  

Member 2 name:  Person-hours:  

Total person-hours spent for modification:  

person-hours for an average maintenance (correction):  

Complexity of the Model:  

Number of boxes (total- abstractions, components, interfaces..):  

Number of Components:  

Number of Interfaces:  

Number of Connectors:  

Number of event links:  

Number of method links:  

Number of methods:  

Average number of methods per component:   

Average number of input events per component:   

Average number of interfaces per component:   

Average number of methods per interface:   

Maximum depth of the composition tree:  

Maximum width of the composition tree:  

Average NOC (Number of Children in the composition tree):   

Average DCT *(Depth of composition tree):   

Average CBC*  (coupling = cardinality of methods called from outside):  

Average RFC (Response for a Component):  

Average Mean LCOM* (mean values averaged for Lack of Cohesion in Methods):  

Please give a grade (5: strongly agree;   1: strongly disagree)  

It was easy to model your problem using COSEML:  

Your model is an understandable representation of the problem:  
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Sample Metrics of a project Components 
 

Component Name # of 
Methods 

# of 
eventsIn 

# of    
interfaces 

NOC DCT CBC RFC LCOM 

WebSite 0 0 0 4 1 0 0 0 
Accounting 0 0 0 1 1 0 0 0 
Cargo 1 0 0 1 1 1 1 1 
Inventory 1 0 0 0 1 0 1 1 
Delivery 0 0 2 0 2 1 2 1 
Register 0 0 2 0 2 0 0 0 
Login 0 0 2 0 2 0 0 0 
Search 0 0 3 1 2 0 0 0 
Buy 0 0 2 0 2 0 0 0 
Pay 0 0 3 0 2 0 0 0 
Catalog 0 0 3 0 3 0 0 0 
ShopCard 3 2 0 0 3 0 3 -3 
CreditCard 0 2 0 0 4 0 0 0 
Order 0 2 0 0 4 0 0 0 
Product 0 2 0 0 4 0 0 0 
CustDB 3 2 0 0 4 3 3 -3 
ProdDb 3 2 0 0 4 3 3 -3 
InventoryDB 3 2 0 0 4 3 3 -3 
RegisterUI 2 2 0 0 4 3 5 2 
LogUI 2 2 0 0 4 2 2 0 
SearchUI 2 2 0 0 4 4 7 3 
BuyUI 2 2 0 0 4 5 6 2 
PAyUI  2 2 0 0 4 3 4 1 
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APPENDIX B 
 
 

METRICS COLLECTION FORMS USED IN 2005 
 
 
 

Project title and brief description: 
 

 

Total person-hours  

Total person-hours spent for correcting design errors  

Total person-hours spent for Integrating components  

Complexity of the Model  

Total Function Points (FP)  

Total number of boxes (total- abstractions, components, interfaces..)  

Total number of Components  

Total number of Interfaces  

Total number of Connectors  

Total number of inter-component method links  

Total number of methods  

Depth of the structure tree  

 
 

Component name and a brief description: 
 
 

Total Person-hours (For designing this component and all of its 
related elements only) 

 

Total person-hours spent for correcting design errors (for this 
component) 

 

Total person-hours spent for Integrating the component to the 
system (for this component) 

 

Number of sub-components  

Number of methods   

Number of events   

Number of interfaces   

Number of methods per 
interface  

      

Number of methods called from outside  

Number of Inter-Component method calls  

Number of Intra-Component method calls  
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