

A P2P BASED FAILURE DETECTION MODEL FOR DISTRIBUTED SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CELAL KAVUKLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2006

Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan Özgen
 Director

I certified that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Ayşe Kiper
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Ali Hikmet Doğru
 Supervisor

Examining Committee Members

Assoc. Prof. Dr. Nihan K.Çiçekli (CENG, METU)

Assoc. Prof. Dr. Ali Doğru (CENG, METU)

Dr. Ali Arifoğlu (II, METU)

Dr. Tolga Can (CENG, METU)

Dr. Aysu Betin Can (II, METU)

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name : Celal Kavuklu

Signature :

 iii

 ABSTRACT

A P2P BASED FAILURE DETECTION MODEL FOR DISTRIBUTED SYSTEMS

Kavuklu, Celal

M. S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Hikmet Doğru

August 2006, 84 pages

A comprehensive failure detection model is proposed to detect service failures

in asynchronous distributed systems. The proposed model takes advantage of P2P

technology to provide required functionality. When compared to similar studies in

failure detection, the presented failure detection model is more autonomous in

resolving service dependencies, embodies more flexibility in providing different

failure detection functions (like unreliable failure detectors, membership services) and

offers more security. A failure detection library is developed using JXTA P2P

framework to show realization of such a model.

Keywords: Failure Detection, P2P, Asynchronous Distributed Systems, Unreliable

Failure Detector, Membership Service, Service Dependency Resolution.

 iv

 ÖZ

DAĞITIK SİSTEMLER İÇİN P2P’YE DAYALI HATA BULMA MODELİ

Kavuklu, Celal

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Danışman: Doç. Dr. Ali Hikmet Doğru

Ağustos 2006, 84 sayfa

Asenkron dağıtık sistemlerde oluşan servis hatalarının yakalanabilmesi için bir

hata yakalama modeli sunulmuştur. Sunulan model, gerekli fonksiyonaliteyi sağlamak

için P2P teknolojisini kullanmaktadır. Sunulan hata yakalama modeli, hata yakalama

alanında yapılan benzer çalışmalara oranla, servis bağımlılık çözümlemesinde daha

otonomdur, farklı hata yakalama mekanizmalarını (güvenilmeyen hata yakalayıcılar,

üyelik sistemleri) desteklemekte daha esnektir ve daha güvenlidir. Sunulan modeli

gerçekleyen ve JXTA P2P mimarisini kullanan bir hata yakalama kütüphanesi

geliştirilmiştir.

Anahtar Kelimeler: Hata Yakalama, P2P, Asenkron Dağıtık Sistemler, Hata

Yakalayıcılar, Üyelik Sistemleri, Servis Bağımlılık Çözümlemesi.

 v

To My Family,

 vi

 ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Dr. Ali Hikmet Doğru, for his

guidance throughout the research. I also wish to thank to Mr. Levent Alkışlar, director

of RADAR & Electronic Warfare Software Engineering Department, on behalf of

ASELSAN Inc. for his guidance and motivation for the completion of this thesis. To

my colleagues in Test Engineering Department and RADAR & Electronic Warfare

Software Engineering Department; my parents Muharrem and Güler Kavuklu, my

sister Aslı Kavuklu, I offer sincere thanks for their emotional support.

 vii

 TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ.. v

ACKNOWLEDGEMENTS... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES.. xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS... xiii

CHAPTERS... 1

1. INTRODUCTION... 1

1.1. Scope of this work .. 2

1.2. Organization of the Thesis.. 2

2. BACKGROUND... 4

2.1. System Service ... 4

2.2. Failure Detection Model ... 4

2.3. Asynchronous Distributed System ... 5

2.4. Peer-to-Peer (P2P) Architecture ... 6

2.5. Failure Detection (FD).. 6

2.5.1. Unreliable Failure Detectors ... 6

2.5.2. Membership Service.. 6

3. REQUIREMENTS AND LOGICAL VIEW OF A FAILURE DETECTION
MODEL... 8

3.1. Requirements .. 8

3.1.1. Failure Detection Service .. 8

 viii

3.1.2. Management .. 9

3.1.3. Communication ... 9

3.2. Logical View of a Failure Detection Model ... 10

4. RELATED WORK.. 12

4.1. Logical Blocks of a Failure Detection Model.. 12

4.1.1. Failure Detection Service Block... 12

4.1.2. Communication Block .. 15

4.2. Existing Failure Detection Models .. 18

4.2.1. FUSE .. 18

4.2.2. Failure Detection Service API .. 20

5. P2P BASED FAILURE DETECTION MODEL .. 22

5.1. P2P Based Failure Detection Model Architecture.................................... 22

5.1.1. Peers.. 23

5.1.2. Peer Groups .. 24

5.1.3. Services... 27

5.1.4. Messages... 29

5.2. Analysis of the Model... 31

5.2.1. Failure Detection Block.. 32

5.2.2. Communication Block .. 39

6. REALIZATION OF P2P BASED FAILURE DETECTION MODEL 43

6.1 Realization.. 43

6.1.1. Interaction with Distributed System Processes............................... 43

6.1.2. P2P Platform... 44

6.2 Sample Implementation.. 45

6.2.1. Constraints & Assumptions .. 45

6.2.2. Failure Detection Library ... 46

7. CONCLUSION ... 52

7.1. Work Conducted.. 52

 ix

7.2. Comments.. 53

7.3. Future Work... 53

REFERENCES .. 54

APPENDICES... 61

A. FAILURE DETECTION LIBRARY DESIGN.. 61

B. Project JXTA, P2P FRAMEWORK... 71

C. JXTA CALLS FOR FAILURE DETECTION API FUNCTIONS 78

 x

 LIST OF TABLES

TABLES

1. Comparison of Failure Detection Block Characteristics................................. 38

2. Comparison of Communication Block Characteristics................................... 41

 xi

 LIST OF FIGURES

FIGURES

1. Logical View of a failure detection architecture... 10

2. Architecture of P2P based failure detection model... 24

3. Architecture of Worker Group.. 25

4. Architecture of EPM Group.. 25

5. Architecture of Failure Detection Service Group ... 26

6. Architecture of Failure Detection Category Group... 27

7. Services in P2P Based Failure Detection Model... 29

8. Messages in P2P Based Failure Detection Model... 30

9. Broadcast Based Unreliable Failure Detector ... 33

10. P2P Based Unreliable Failure Detector .. 34

11. Membership Based Failure Detection Service.. 36

12. Inactive Members to Resolve Service Dependencies 37

13. Multicast Service in P2P Based Failure Detection Model 40

14. Failure Detection Library Mapping Processes to Peers 44

15. Worker Peer API Transforms Processes to Worker Peers 47

16. Creation of a Failure Detection Service in FD Library................................... 47

17. Client Peer API Transforms Processes to Client Peers 50

18. Rendezvous Peer API Transforms Processes to Rendezvous Peers 51

 xii

 LIST OF ABBREVIATIONS

ACL Access Control List

API Application Programming Interface

DNS Domain Name System

DoS Denial Of Service

GAUTH Group Authority

IP Internet Protocol

LAN Local Area Network

NAT Network Address Translation

OS Operating System

OWL Web Ontology Language

P2P Peer to Peer

QoS Quality Of Service

RDF Resource Description Framework

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

XML Extensible Markup Language

 xiii

 CHAPTER 1

INTRODUCTION

The role of distributed systems in our daily life increases constantly. These

systems include many types of hardware and software components which cooperate to

provide distributed system services like internet services (such as messengers, search

engines, etc.), command control applications, computing grids, telecom applications,

etc. Components of such distributed systems are generally spread over large scale

asynchronous networks like the Internet.

Parallel to the exponential increase in complexity of these systems, management

costs also increase. The primary cost of managing a system stems from the need of

providing availability of its services. Failure detection and recovery mechanisms have

been extensively studied in the area of availability of distributed systems and services.

Failure detection is the primary step of providing availability for these systems where

after recovery mechanisms can be applied.

The services provided by a distributed system are provided by hierarchical

cooperation of various hardware and software components of the system. To achieve

availability of these services, we need to monitor the status of these services which in

turn requires monitoring the status of distributed components forming service

functionality. In a complex distributed environment, determining the status of these

components and merging them to derive the status of system services they provide is a

hard job. If we think of the scenario where failure of one disk drive can

catastrophically result in the failure of transaction services of OS which in turn cause

online banking system unavailability or malfunctioning as a chain reaction; we get a

better understanding about the complexity of this task. Failures should be carefully

analyzed throughout the system to determine the affected parts/services.

 1

Efficient and autonomous failure detection algorithms, analysis and

communication services are needed to detect service failures in these systems.

Autonomous operation is needed to isolate human errors at failure decisions [10].

1.1. Scope of this work

The purpose of this thesis is to establish a comprehensive failure detection

model to derive service failures in asynchronous distributed systems by providing an

infrastructure to implement various types of failure detection mechanisms. Realization

of this model with a proof-of-concept implementation is presented. The model takes

advantage of P2P technology to derive failures of distributed system services that

depend on failed/unhealthy processes. It provides dedicated peer group services as

failure detection services for each distributed system. It is argued that, in addition to

providing required functionality compared to its rivals, such a model is more flexible

in employing different failure detection mechanisms (like unreliable failure detectors

or group membership services) which makes it more suitable for many types of

distributed systems having different failure detection requirements, more autonomous

in resolving service failures and more secure.

The reference implementation is a failure detection library developed using

JAVA as a programming language and Project JXTA as a P2P platform. The failure

detection library checks aliveness of distributed system processes which are realized

as peers and analyzes these results in failure detection services which are realized as

peer group services in JTXA framework. JTXA framework is a Sun Microsystems,

Inc. incubated P2P platform and has a decentralized architecture, without a single

point of failure, scalable and supporting frequent node arrivals and departures.

1.2. Organization of the Thesis

Beyond this introductory chapter, the thesis is organized as follows: In Chapter

2, necessary background on distributed systems, distributed system service concept,

failure detection and P2P are included. Chapter 3 describes the general requirements

of a failure detection model and presents a logical view of such a model. In chapter 4,

related work in the failure detection literature is presented in the light of the logical

view of a failure detection model. Chapter 5 presents P2P based failure detection

model that has been proposed in the thesis. In Chapter 6, realization of the model is

presented with realization decisions and a sample implementation. Chapter 7 provides

 2

conclusions and further work for this study. Sample implementation provided is

modelled with Unified Modelling Language (UML) and implemented using JTXA

P2P platform. Documentation for the design is represented in Appendix A. JTXA P2P

framework is presented in Appendix B. Documentation for JXTA calls necessary to

provide main functionality in the sample implementation is provided in Appendix C.

 3

 CHAPTER 2

BACKGROUND

2.1. System Service

In [17], authors define a taxonomy where a service is described as the behaviour

of the system (service provider) perceived by the users which is another system

receiving the service. Service delivery takes place in service interface where the

perceivable face of the service provider is called as external state and the rest as

internal state.

2.2. Failure Detection Model

Failure terminology defined in [17] is used in this study:

• A failure occurs when a service deviates from its correct behaviour, for some

definition of correctness.

• An error is the deviation of total state of a service from the correct service

state

• A fault is the determined cause of an error

It is worth to emphasize that an error may not affect the external state of a

service so may not cause a failure. If an error caused a service failure, it should have

affected at least one external state of the service.

It should also be noted that in a complex distributed system, what is considered

as a failure in one layer might be considered as a fault that causes an error and maybe

another failure in another layer. For example, a CPU might crash (failure) because of a

malfunctioning heat controller (error) which is caused by a bug in its firmware (fault).

At a higher level, the failure of the CPU (fault) can prevent access to hard disks (error)

of the computer and stop providing any service (failure) to users. This example also

 4

explains the complex dependency relations in a distributed system and the challenge

of understanding and reasoning about the error.

In this thesis, the failure of a process means that either a process is fail-stopped

which means it permanently transits to a state that allows other components to detect

that it has failed (for instance, by ceasing to send heartbeat messages) or declare

failure of itself due to malfunctioning (for instance, because of accumulating unparsed

messages in its interfaces or exceptions from memory modules).

2.3. Asynchronous Distributed System

The failure detection model presented in this thesis is based on an asynchronous

network model where there is no assumption about the message transfer delays or the

speed of objects execution. Although it might be possible to construct a synchronous,

fixed and reliable network in some scenarios such as for sensors on an airplane wing,

such a network model would not be realistic for real world such as the Internet.

An asynchronous distributed system is a distributed system

composed by a set of m >= 1 hosts {H1,. . . , Hm} where execute

concurrently k >= 1 distributed protocols { A1 , . . . , Ak } . Each

protocol Ai is carried out by nAi >= 1 objects that cooperate through

message exchanging. Each of those objects resides on one of the host

in {H1, . . . , Hm}. Multiple objects can then execute on the same host.

Network is reliable i.e., messages are eventually delivered by the

network to the intended receiver. There is no assumption about the

message transfer delays or the speed of objects execution, so this

makes the distributed system asynchronous [15].

In the scope of this thesis, these objects can be an application or individual

tasks/components/threads/processes of an application. These objects cooperatively

work to provide the distributed functions of the system {F1 , . . . , Fh}, where h>=1.

For example, a distributed system in a radar provides many functions like

broadcasting, antenna rotation, friend or foe interrogation, etc. These functions are

provided by the cooperative work between these individual objects.

 5

2.4. Peer-to-Peer (P2P) Architecture

A peer-to-peer (P2P) architecture is defined for distributed applications. A P2P

network can be described as peer groups, which are formed with peers with a common

interest, that build a self-organizing overlay network on top of an already existing

network architecture. Overlay networks provide an abstraction over the underlying

network topology and architecture.

Peer Group is a virtual network space consisting of a subset of all devices

accessible via an overlay network. These groups provide meeting points for the peers

having same concerns and provide peer group services that operate in the scope of a

peer group and provide services for the group members.

2.5. Failure Detection (FD)

2.5.1. Unreliable Failure Detectors

An unreliable failure detector is a distributed oracle that

provides objects hints about the behaviour of other objects. An

unreliable failure detector can make mistakes by considering correct

objects as crashed because of the asynchronous nature of the network

(difference between a slow process and a dead process) [15].

There exist two important characteristics of an unreliable failure detector:

accuracy and completeness [11]. Various unreliable failure detectors are proposed

according to these two properties which outline their mistakes [12]. Accuracy property

enables failure detectors to remove suspected label from a healthy process after some

time. Completeness property enables failure detectors to permanently label crashed

processes as suspected after some time.

2.5.2. Membership Service

The membership services are used to reach a consensus on membership of

processes in a process group. Membership of a process group changes when its

processes (members) join/leave (voluntarily or because of a failure) the group [26].

View of a group membership is the list of processes that are currently members of this

group. Membership services transmit these views to their live members in case of

updates to their views. This way, live members are informed about failed, recovered

and newly joined members. According to view consistency of members, membership
 6

services can be classified into two groups: weakly consistent membership services and

strongly consistent membership services.

 7

 CHAPTER 3

REQUIREMENTS AND LOGICAL VIEW OF A

FAILURE DETECTION MODEL

In this chapter, requirements for a comprehensive failure detection model are

presented. Logical blocks of such a model providing necessary requirements are

presented at the end of this chapter.

3.1. Requirements

Requirements for a failure detection model are grouped into three categories:

failure detection service, management requirements, and communication

requirements.

3.1.1. Failure Detection Service

In [16], authors define scalability, adaptability, QoS and flexibility as primary

requirements for a failure detection service:

• Scalability: A failure detection service for a distributed system should be

designed in a scalable way because distributed systems can span hundreds of

computing platforms [2]. Scalable failure detection algorithms should provide

efficient detection performance even in widely physically distributed

environments. It should not cause message explosions by flooding all network

and resilient to message losses in the case of network node failures.

• Adaptability: The adaptability of failure detection should be perceived as its

adaptation to various network situations. For example, a failure detection

service should adapt itself by dynamically adjusting the timeout when waiting

for a heartbeat message [12].

 8

• Flexibility: A failure detection service should be flexible enough to provide

different failure detection services for different types of applications.

• Quality of Service: A failure detection service should provide QoS guarantees

[39]. A service providing QoS guarantees should be dynamically configured

by applications to maintain a certain QoS level at runtime. The proposals to

increase the QoS of a failure detection service are generally based on

monitoring the QoS metrics of the service, and, if required, tuning the service

by adjusting some control variables (e.g. the rate of heartbeat messages) so

that it maintains QoS to the levels required by the application. In a heartbeat

based strategy, for instance, if the detection latency is higher than desired, the

frequency of heartbeat sending should be increased as a function of the

difference between the desired and the measured detection latencies. Some

QoS metrics for failure detection services are as follows: detection time

(Speed to detect failures), query accuracy probability (Accuracy for failure

detection), mistake rate (Accuracy for failure detection), etc.

3.1.2. Management

• Security: In [8], authors emphasize the need for security in large scale failure

detection services. The failure detection service should be able to provide

various types of security requirements.

• Dependency Analysis: A failure detection model should be autonomous

enough to take care of system dependencies when deriving health of

distributed system services. Analysing dependencies in failures is essential for

deriving statuses of distributed system services which in turn increase system

reliability. The model should be able to analyse dependency relation of a

process on a resource and a service on a process.

3.1.3. Communication

• Low Communication Overhead: In order not to increase communication

overhead in failure detection and to increase QoS, low-level communication

primitives should be used by a failure detection model. These low-level

communication primitives can include protocol tests, heartbeats, SNMP

codes, etc.

 9

• Adaptability to different topologies in the network: A flexible failure detection

model should adapt to different topologies in the network by providing

efficient broadcasting and unicasting communication protocols that support

various types of distributed systems and networks. For instance: a multicast

communication in a LAN environment, application level broadcast in wide

area networks, a transparent unicast communication through a firewall in wide

area networks, etc.

• Adaptability to dynamism of the network: A failure detection model operating

in wide area network should adapt to dynamism of the network by providing

fault-tolerant communication primitives in case of failure of intermediate

nodes in a communication path.

3.2. Logical View of a Failure Detection Model

A failure detection model is logically partitioned into two semantic blocks

Failure Detection Service and Communication blocks as shown in Figure 3.1:

 Clients Communication

Failure Messages
Communication

Messages

Failure

Detection Service

Figure 3.1 Logical View of a failure detection architecture

These blocks should be perceived as logical containers of the functionality

necessary to provide mentioned requirements.

 10

Failure detection service block includes failure semantics. In the scope of this

block, requirements for a failure detection service and requirements to manage failure

detection service should be satisfied.

Communication block includes functionality necessary to provide requirements

listed for communication. These communication services include group

communication primitives (multicast service, membership services, etc), point-to-

point communication primitives (unicast services), and adaptability to underlying

network conditions/system scale.

 11

 CHAPTER 4

RELATED WORK

In this chapter, first an overview of the previous work that has been produced in

failure detection area is presented in the scope of the logical blocks of a failure

detection model. Afterwards, existing failure detection models are presented.

4.1. Logical Blocks of a Failure Detection Model

4.1.1. Failure Detection Service Block

Recall that, this block embodies failure detection semantics. It detects failures in

the distributed system and manages the failure detection service.

4.1.1.1. Determining Process Failures

In an asynchronous distributed system which is subject to even a single crash

failure, it is well known that distributed consensus (agreeing on the same result, a

process failure) cannot be solved deterministically. This result is called as

impossibility result. In such environments, at best, a process can be suspected of

having failed by an agreement, but no process can ever be known to have crashed

because real crashes are indistinguishable from slow processes/communication delays

[15].

In literature, there exist two types of atomic broadcast mechanisms, Unreliable

failure detectors and group membership services, to solve agreement problem on

process failures in asynchronous distributed systems [49]. Both mechanisms provide

estimates about the set of crashed processes in the system. The main difference

between a failure detector and group membership service is that a failure detector

provides inconsistent information about failures, whereas a group membership service

provides consistent information [23][49]. These mechanisms and their

 12

implementations have different levels of scalability, adaptability, flexibility and QoS

properties [23].

4.1.1.1.1. Unreliable Failure Detectors

In [11], the concept of unreliable failure detectors is introduced to reach

distributed consensus in asynchronous distributed systems. Unreliable failure detectors

can erroneously add correct processes to suspects list at one time or another for a

certain period of time, however eventually no correct process is suspected as crashed.

Following the work in [11], various types of unreliable failure detectors have

been proposed so far [59][12][60][61][62] each aiming to extend certain

characteristics of failure detection like scalability [63][64][65], adaptability

[39][62][61], flexibility [61] and QoS [39].

4.1.1.1.2. Group Membership Service

Membership service paradigm is highly studied in scope of failure detection

[18][26][27][28]. Membership services are categorized into two according to their

strength in consistency:

• Weakly consistent membership services: In weakly consistent membership

services, each member of a group may have a different membership view;

which causes inconsistencies in membership views. Weakly consistent

membership services have also been the subject of an extensive body of work

[6][14][15]. This work can be broadly classified as differing in speed of

failure detection, accuracy, message load, and completeness Epidemic and

gossip-style algorithms have been used to build highly scalable

implementations of this service [8][29].

• Strongly consistent membership services: Strongly consistent membership

services use membership list and guarantee that all nodes in the system always

see a consistent list through the use of atomic updates. Such membership

services are used to build virtual synchrony (virtual synchrony guarantees that

membership changes within a process group are observed in the same order

by all the group members that remain connected). However, a limitation of

 13

virtual synchrony is that it has only been shown to perform well at small

scales, such as five node systems [8].

4.1.1.2. Managing Failure Detection Service

4.1.1.2.1. Security

Managing a failure detection service includes applying fine-grained access

control policies for the failure detection services it provides. These security

mechanisms should remove security vulnerabilities in the system and filter malicious

security attacks.

Malicious nodes can attack failure detection service to cause Denial of Service

by constantly pumping failure notifications to these groups to cause false alarms / by

not sending (or not replying) heartbeats to cause false alarms / by abusing ACID

(Atomicity, Consistency, Isolation and Durability) properties of the communication.

Security is an overlooked topic in failure detection and is not extensively

studied in failure detection literature. This may be because:

• Failure detection services are generally designed for local area networks

• It causes a performance bottleneck in service. A comprehensive study about

this bottleneck is proposed in [30]. A complementary study to this is proposed

in [31], where authors explain different designs of security architectures on

group communication systems.

In [48], security is listed as a problem for failure detectors through which denial

of service (DoS) attacks can be made. A DoS attack to a failure detection service can

be done by continuously sending failure messages / heartbeat messages to failure

detection service which would eventually cause malfunctioning or unavailability. In

[8], the authors provide alternative implementations of their failure notification system

to remove its security vulnerabilities. The idea behind these alternatives is to decrease

responsibility of each node; in this way, the overall system is not affected too much

because of a malicious node. However, to the best of my knowledge, no study exists in

the literature providing a comprehensive infrastructure to apply fine-grained access

controls in the scope of failure detection in distributed systems.

 14

4.1.1.2.2. Dependency Analysis

The motivating and inspirational idea behind dependency analysis is the work

proposed in [6], Sentinel, a P2P based distributed network monitoring system. The

authors propose that, distributed system service dependencies in a distributed system

can be handled by distributed monitoring peer group services. These monitoring

services are aware of each other and their hierarchy represents the dependencies in the

services of the system. For example, a web monitoring module should be aware of the

health of DNS monitoring module which in turn should be aware of the network

monitoring module. Authors argue that their model create more accurate alarms,

reduce resource usage, and eliminate the need of a complex and central analysis

module. In the proposed solution, however, authors do not mention how they detect

failures in the system and resolve dependencies.

4.1.2. Communication Block

4.1.2.1. Multicast Communication

Group communication is the concept of a set of processes communicating

through a group abstraction (by multicasting/broadcasting). The idea behind it is

multicast groups. A multicast group is identified by its logical name and created /

destroyed on the fly by application join/leave requests. A message sent to this group is

broadcasted to all live group members. This communication schema depends on

transport layer communication.

The problem of group communication is its scalability and dependency on

underlying topology. When the group size increases, group communication based

algorithms do not scale well. Also groups are generally formed according to

underlying topology since they use multicasting for communication. This approach

makes group communication dependent on the underlying topology.

Several software toolkits are available to support the construction of reliable

distributed systems using group communication mechanisms. Some packages are

Horus, Transis, and Totem [38][37][36]. Applications using these toolkits are

provided with high-level primitives for creating and managing process groups. These

include: a group membership protocol which manages the formation and maintenance

of a process group, dealing with node arrivals and departures and high-level group

 15

communication services. A process may be removed from a process group because it

failed, voluntarily requested to leave, or was forcibly expelled by other members of

the group. A group membership protocol must manage these dynamic changes in a

coherent manner.

Group communication is a very popular and extensively-studied method of

detecting failures in distributed systems. Both unreliable failure detectors and group

membership service use group communication and provide processes with estimates

about the set of crashed processes in a process group. [26][27][28].

4.1.2.1.1. P2P

P2P systems include protocols that provide multicast communication semantics

to route information between nodes. However, in order to provide a group

communication system on top of these protocols, a group communication schema is

needed. In [3], authors, in addition to presenting an effective self organizing publish

subscribe middleware based on P2P infrastructure, provide a valuable discussion

about how current P2P technologies can be designed/used to provide efficient group

communication schemas.

4.1.2.2. Point-to-Point Communication

As mentioned, in large scale, group membership becomes inefficient as the

number of processors or processes in a group increases. Although many systems have

been based on group communication services, a gossip-style protocol to share health

information of the system turns out to be a more scalable method which is based on

point-to-point communication. The gossip protocols have been proved to be an

effective protocol for failure detection in distributed systems [18][19][25][13].

An analogy is made with Epidemic, or gossip, based protocols and transmission

of a contiguous disease in [16]; dissemination of information in these protocols uses

the same randomized way as an infected transmits its illness to others. In the scope of

failure detection, all processes in distributed system using epidemic protocols

exchange their failure information with randomly picked processes. As opposed to

initial idea about this may cause a chaos; after a certain period of time, with high

probability, all processes in distributed system obtain any piece of failure information

[12]. The primary advantage of gossip-based protocols for failure detection is that they

 16

are completely transparent to the underlying topology as opposed to group

communication based ones which rely on multicasting [12]. As a result of point-to-

point messages, the gossip protocols have little communication overhead. In other

words, this class of failure detectors is completely resilient to topology changes,

without requiring any additional mechanism [12][21]. However, since gossip based

protocols need certain period of time to inform every process about failures,

distributed consensus is achieved slower than it would with a group communication

based approach.

Hybrid solutions are proposed in the literature to take advantage of both types

of communications. Gossip-based protocols are tuned to be applied to group

communication paradigm. For instance, a gossip based protocol for group

communication could be to randomly select gossip targets from group members and

transmit gossips to those targets [13][19].

4.1.2.3. Adaptability to Underlying Network Conditions

There exist several problems in providing communication services for wide area

networks. Major problems are network heterogeneity / dynamism / topology

differences.

• Dynamism of the network: In wide are networks, network is very dynamic in

the sense that: at any time many routers are included in the network, the ones

which are in the route of communication may fail, packets lost, etc.

• Different topologies in the network: There exist several types of topologies in

the network which may affect communication protocols. For instance:

processes which need to cooperate to provide a service of the distributed

system may have different networking conditions: one of them may be in an

enterprise network and behind firewalls, whereas another connected to

internet using dial-up connections with a dynamic IP, etc.

To provide a certain level of abstraction over existing complex network

conditions/topologies, overlay networks are used. It is widely accepted that, usage of

overlay networks can greatly help to solve network dynamism / heterogeneity /

topology difference problems plus improve some QoS constraints by separating

unrelated traffic. For instance: usage of overlay networks for routing content over the

 17

underlying Internet has proven to be an effective methodology with the examples of

MBONE for multicast, the 6BONE for IPv6 traffic [9]. P2P systems provide

overlaying networks to constitute dynamic and adaptable networks of peers [24].

Therefore, usage of P2P infrastructure provides us with an overlaying reducing

dynamism and heterogeneity of underlying physical network. Various

implementations of such P2P overlay networks have been provided in the literature:

Chord, Can, Pastry, Tapestry, SkipNet [34][35][20][33][32].

4.2. Existing Failure Detection Models

To the best of the current knowledge, no comprehensive failure detection model

satisfying all requirements for failure detection exists in the literature. However, there

exist failure detection frameworks providing a subset of functionality that must be

provided by a comprehensive model.

4.2.1. FUSE

FUSE is proposed as a lightweight failure notification service for building

distributed systems [8]. It uses failure detection semantics similar to unreliable failure

detectors however provides stronger distributed agreement. It depends on the

membership service paradigm where all live members of a FUSE group will hear a

failure notification within a bounded period of time whenever a failure notification is

triggered in distributed system. The most appealing ideas behind FUSE are:

• It transmits failure notifications irrespective of node or communication

failures which make it adaptable to topology changes and dynamism in the

network. FUSE uses a P2P based overlay network (SkipNet [32]) for this

adaptation.

• It provides the assumption of detecting failures is a shared responsibility

between FUSE and the application which allows applications to implement

their own definitions of failure.

• It assures to transmit failure notifications in a bounded period of time

regardless of system scale. It provides this facility by the functionality

provided by its overlay network where this functionality checks the

connectivity of FUSE nodes without using any extra messaging (like

heartbeats) but pinging.

 18

FUSE provides group abstraction for failure notifications. Member of a FUSE

group that wishes to declare its failure sends a failure notification to the group which

is transmitted to all live members of the group. FUSE system can also send failure

notifications to a FUSE group whenever a member of the group faces a connectivity

failure or node crash.

4.2.1.1. Failure Detection Service Block

• Failure Detection Service: FUSE is a lightweight failure detection service

and uses unreliable failure detector semantics. It satisfies scalability and

adaptability requirements for a failure detection service but lacks flexibility.

• Managing Security: FUSE satisfies security (by providing secure

implementation alternatives) and performance constraints (failure

transmissions in bounded period of time) but does not provide any semantics

for QoS constraints.

• Managing Dependency: FUSE does not provide dependency semantics

directly to detect service level failures. However, dependency semantic can be

setup on FUSE system by the clients using the system in the following way: if

for each system service and each dependency a FUSE group is created /

managed by some management processes, then manually this dependency

semantic can be established. However, since this functionality is not inherent

in the system, this approach increases overall cost to manage the system.

4.2.1.2. Communication Block

FUSE uses application-level multicasting as a group communication primitive

and group membership services to transmit failure notifications. FUSE uses SkipNet

overlay network which makes it adaptable to underlying network conditions and

scalable. It uses unique FUSE_ID to locate fuse groups, instead of any IP based

addressing. However, since it does not support any unicast communication services,

FUSE members can not send any direct message to another FUSE member.

FUSE provides alternative topological solutions to the security problems:

dropped legitimate failure notifications or unnecessarily generated failure

 19

notifications. The authors do not mention authentication/authorization of nodes and

any communication security protocol.

4.2.2. Failure Detection Service API

In [16], a failure detection service API is proposed. It uses unreliable failure

detection semantics complemented with a hierarchical communication. It consists of

three entities, monitorables, monitors and notifiables. The monitor instances monitor

monitorable instances and notify notifiable instances in case of failures in

monitorables. Monitor instances are also monitorables and form a hierarchical

structure between them. The most appealing ideas behind failure detection service

API:

• It employs mechanisms to improve scalability, adaptability and QoS of failure

detection service.

• It uses pull style of communication to control rate of communication

messages. As opposite to push style of communication where monitorables

continuously send monitoring information to monitors; in pull style of

communication, monitors query monitorables and therefore can control the

rate of communication messages dynamically.

• It uses a hierarchical communication infrastructure.

4.2.2.1. Failure Detection Service Block

• Failure Detection Service: Failure detection service API uses unreliable

failure detector semantics. It generates notification events when probability of

failure of a monitorable entity is below a confidence level. It addresses

scalability by using pull style of communication and a hierarchical structure

which constructs notifications domains. It addresses adaptability requirements

by providing a statistical layer at each monitor responsible for calculating

average and standard deviation of heartbeat arrival times. This provides an

adaptable failure detection service in dynamic asynchronous networks.

Flexibility, however, is not supported by the API. Failure Detection service

API provides a QoS layer to provide QoS related requirements. QoS layer

 20

monitors QoS metrics and if necessary adjust service control parameters to

support required level of quality in failure detection.

• Managing Security: Failure detection service API does not address any

security issues.

• Managing Dependency: Failure detection service API does not provide

dependency semantics inherently to detect service level failures. To derive

dependency failures from the API, complex relations are needed to be set up

manually.

4.2.2.2. Communication Block

Failure detection service API uses an event based communication infrastructure

to transmit failure messages. The communication infrastructure consists of: event

channels, event sources, event listeners, and notification contexts. The event channel

is a distributed communication pipe where event sources release events to and event

listeners filter and dispatch events from. Notification context is a domain abstraction

for efficient transmission of events by using underlying native multicast support.

The communication service of the failure detection service API is not based on

an overlay network which makes it vulnerable to the underlying physical network

failures. The service does not provide any application level multicast service which

limits its operation area to small networks; since in wide are networks native multicast

support is not provided thoroughly. The API does not provide any communication

level security semantic.

 21

 CHAPTER 5

P2P BASED FAILURE DETECTION MODEL

In this chapter, a failure detection model based on P2P concepts is presented.

The core of the model is the usage of services localized to peer-groups which are used

as distributed failure detection services existing for each distributed system service to

detect their failures. The processes of distributed system are mapped to peers in the

model for failure detection among the members of the group.

The motivating idea to use P2P based services as failure detection services is

the studies in [4][6]. In [4], a distributed network management framework based on a

self organizing P2P overlay network is proposed to monitor health of network nodes.

In [6], P2P based services are used as distributed network monitors where external

state of a service is monitored to decide whether it is healthy or not. However, in the

P2P based failure detection model proposed in this thesis, failure of a service is

derived from its internal states (like health of its processes, resources, etc) using P2P

services.

5.1. P2P Based Failure Detection Model Architecture

The model presented in this thesis references [40] to provide a dependable

architecture which hosts highly available failure detection services. Conscientia

architecture [40], which is based on service oriented architecture specification [1],

aims to provide a dependable architecture ([5] identifies characteristics of a

dependable P2P system) for generic P2P applications. The model maps generic

concepts of [40] to failure detection domain.

The Conscientia architecture is composed of three types of groups: a super

group, category subgroups and service groups. The super group act as a container of

other groups in the system. All service groups are categorized in category subgroups.

 22

The category groups are used to scope search context and improve performance for

service queries.

The Conscientia architecture identifies three types of peers: rendezvous peers,

worker peers and client peers. Rendezvous (RV) peers provide access points for

groups in the system and exist in each group in the architecture. The peers who

provide a service (worker peers) register themselves with a RV peer by joining a

group where service requesting peers (client peers) make a search through. The

worker peers provide the main functionality of peer group services. Client peers are

simple peers providing an interface to the clients of this framework to discover / query

and get results from the services provided.

5.1.1. Peers

• Worker peer: Worker peer concept in [40] is mapped to peers who provide

failure detection mechanisms in their service groups in the failure detection

model. Having many worker peers forming worker groups to provide a failure

detection service provides redundancy which removes hotspots from the

system. These worker groups exchange their failure information between

them by using communication services provided by their service group.

• Client peer: This concept is mapped to peers who play a bridge role between

system processes cooperating to provide distributed system services and

failure detection services. This role includes checking aliveness of the

processes, transmitting failure detection messages (failure notifications /

heartbeats) between processes and adapting to control messages (to tune

parameters of failure detection service) received from failure detection

services (like heartbeat intervals, security parameters, etc). In the model, a

process can also fire its failure via client peers.

• Rendezvous peer: This concept is used as it is defined in [40]. It provides

entry point and monitoring services.

 23

Figure 5.1 Architecture of P2P based failure detection model

 (Adapted from [40])

The proposed failure detection services register themselves into related super

groups / service categories / service groups where they are discovered by client peers.

5.1.2. Peer Groups

• Worker group: This concept is used for grouping worker peers in the scope of

a service group. Each worker peer in a worker group provides the same failure

detection mechanism which constitutes overall failure detection service

provided by the group. Worker groups provide communication services to

replicate information among their worker peers.

 24

Figure 5.2 Architecture of Worker Group

• Entry Point & Monitor (EPM) group: This concept is used for grouping

rendezvous peers in the scope of a service group. This group provides load

balancing and self-healing primitives in the model. Clients are connected to

best available worker group and best available worker peer in the worker

group by members of this group.

Figure 5.3 Architecture of EPM Group

• Service group: This concept is abstracted as a failure detection group existing

for each distributed system service in the model. The service group forms a

unique failure detection service access scope for a distributed system service.

Client peers need to join this group to access the required failure detection

service for their processes. For instance, the model in Figure 5.4 represents an

activity where the failure of distributed system service A is detected by failure

detection service group A (FD Service Group A). To use failure detection

service A, client peers 1 and 2 which monitor health of processes 1 and 2
 25

respectively become members of the failure detection service group A. After

being a member, client peers use failure detection mechanisms provided by

worker peers of failure detection worker group (FD Worker Group) in failure

detection service group A.

Figure 5.4 Architecture of Failure Detection Service Group

• Category group: This concept is used to scope search contexts for failure

detection service groups. Similar failure detection services are grouped into

the same category group. Figure 5.5 represents the modelling where failure

detection groups for the services A and B are categorized under category C.

Distributed system services A and B can be thought of as data mining and

data transaction services and C as database category.

 26

Figure 5.5 Architecture of Failure Detection Category Group

5.1.3. Services

The model includes several services to provide necessary functionality. These

include both services of the reference Conscientia architecture and additionally core

P2P services [40].

 27

5.1.3.1. Conscientia Core Services

The model includes core services of Conscientia architecture: Entry Point,

Monitoring service and Worker service. These services are used to control the self-

healing, self-managing and load balancing functionality of the architecture.

• Entry Point Service: It runs in all rendezvous peers of a service group and

handles all queries. Being in all rendezvous peers provides redundancy and

removes hotspots in the model. When a client sends a query to a rendezvous

peer, this service distributes the query to worker peers according to optimal

distribution strategy. The query caching technique provided by this service

ensures responding to every query even in case of selected worker peer failure

which is informed by the monitoring service.

• Monitoring service: It has a module in each group of the system to keep a

health table for each peer in the system and analyze loads; queries scheduled

and network delays of the peers. It ensures core services availability with this

information.

• Worker service: It runs on worker peers in the system and provides main

services like responding to queries, sending query results, etc. It dynamically

adjusts to the network and service load by automatically providing a load

balancing service. The P2P based failure detection model adds a new

functionality to this service to make it offer heartbeat statistics to worker peers

according to service and network conditions. These statistics include new

heartbeat intervals or new heartbeat arrival times.

5.1.3.2. P2P Based Services

The model is named as P2P based failure detection model since it is based on

the core P2P services. Although protocols of these core services can differ from

implementation to implementation, idea behind these services are generally the same.

For instance:

• Communication service, discovery service and location services (resolver

service) are used to map a given identifier (a unique key) to a node in P2P

systems and route some content towards it.

 28

• Membership services are used to authenticate members of peer groups which

scope peers/nodes in P2P systems having separate concerns

• Security services provide secure communication primitives and access control

decisions in P2P systems.

Core P2P services run on every peer of the model and management of these services

are done via dedicated API calls to underlying P2P system. Figure 5.6 visualizes the

relationship between the services and the peers of the model.

Figure 5.6 Services in P2P Based Failure Detection Model

5.1.4. Messages

The model provides two types of communication messages in the system:

failure messages and control messages as shown in Figure 5.7. The model does not

 29

explicitly define structure of these messages whereas XML based semantic mark-up

languages like RDF or OWL can be used to represent the semantic in failure and

control messages.

• Failure Messages: The failure messages in the model include failure

semantics like heartbeats, heartbeat queries, failure notifications, etc.

• Control Messages: Control messages in the model are used to send system

control parameter values to client peers to autonomously tune failure detection

system. These parameters include heartbeat sending interval, group keys for

security in peer groups, failure detection mechanism types, etc.

Figure 5.7 Messages in P2P Based Failure Detection Model

 30

5.2. Analysis of the Model

The model is first analyzed according to the requirements listed for a failure detection

model. Afterwards, a discussion about the model in the scope of its logical blocks is

provided.

• Scalability: In the model, failure detection services are abstracted as localized

services of a service group. The reference architecture of the model ensures

scalability and fault-tolerance of these services by self-healing, self-managing

and load balancing functionality of its core services: entry point, monitoring

and worker services. The load and health of peers in the model is monitored

constantly and an optimal selection strategy is applied which increase

scalability of the services provided.

• Adaptability: Failure detection services should adapt itself to changing

conditions of the network and service where for instance, fluctuating network

traffic can cause false alarms in case of late arriving heartbeats. The offerings

of the modified worker service in the model are transmitted to clients of the

failure detection service by service control parameter messages. This

approach provides an autonomous adaptability to network and service

conditions

• Flexibility: Worker peers in a service group can be configured to provide

different failure detection methods like unreliable failure detectors /

membership services. This type of flexibility provides distributed systems to

use separate failure detection methods for their services. For instance, failure

detection service group for service A of the distributed system can include

worker peers keeping suspect lists (unreliable failure detection) according to

heartbeats received from client peers which query processes cooperating to

provide service A; where as failure detection service group for service B of

the same system can include worker peers keeping membership views

(membership service) for the processes of service B

• Quality of Service: The proposed model includes two methods to provide

required infrastructure for QoS aware failure detection approaches which try

to keep a certain level of QoS in failure detection: tuning failure detection

 31

service parameters (heartbeat intervals, heartbeat querying/sending) and

changing dissemination method of failure information.

o Tuning failure detection service parameters: Worker peers in the

model employ different failure detection methods like, weakly or

strongly consistent membership services, different type of unreliable

failure detectors. These peers use worker services to get statistical

information about heartbeats and tune their service parameters

according to these statistics. Changes in service parameters are

transmitted to client peers by control messages in the model. For

instance: Worker peers of a failure detection service can change their

heartbeat interval from T0 to T1 to provide certain level of QoS and

transmit the new value to client peers using communication services.

o Dissemination method of failure information: Dissemination of failure

information (suspect lists, membership lists, and failure notifications)

can affect QoS of failure detection service provided. A broadcasting

strategy can be preferable in small scales whereas in large scales this

strategy should be replaced with a gossiping style strategy to keep

QoS at a certain level. In gossiping based strategies, failure

information is sent to randomly picked client peers by unicast style

communication. This results in inconsistencies in failure information

throughout the distributed system clients but can have a positive effect

on performance. Performance of several gossip-based protocols is

studied in [25]. Use of P2P based membership service provides a

good means to employ gossip-based protocols where randomly

picking in the protocol is done among members of this service.

5.2.1. Failure Detection Block

5.2.1.1. Determining Process Failures

5.2.1.1.1. Unreliable Failure Detectors

Unreliable failure detection can be provided in several ways by the model.

Some approaches to provide unreliable failure detection in the model are listed below.
 32

They differ in several QoS parameters like: failure detection time, query accuracy

probability, etc.

1. The failure detection service uses communication services to multicast

received heartbeats together with suspect lists received from a member to all

other members of the group. Each member updates its suspect list itself and

derives failures of the service. In this approach, however, for each heartbeat

interval, the number of messages transmitted and received can go up to the

order of O(n2) where n is the number of members in the group. In case of

frequent heartbeat exchange, these heartbeat messages can flood network and

cause poor QoS. Figure 5.8 depicts this approach where the initial numbers in

the messages indicate sequence of these messages. At first step, client peer1

sends its heartbeat and suspect list to failure detection service C (provided in

FD Service Group C) which are broadcasted to client peers 2, 3 and 4

respectively as a second step.

Figure 5.8 Broadcast Based Unreliable Failure Detector

2. The members receive membership list from failure detection service of the

group which interact with membership service to get required information.

Since the architecture is P2P based, each member interacts with other

 33

members (whose contact information is extracted from membership list) in a

peer-to-peer basis and sends heartbeat and suspect lists to other members. The

members derive failures of the service from these suspect lists and transmit

this failure to group. This failure information is then broadcasted to all group

members by worker service.

Figure 5.9 P2P Based Unreliable Failure Detector

3. The failure detection service itself updates a suspect list from received

heartbeats. In case of suspected members, the service multicasts this list to

members with contact information of suspected members as proposed for

failure detection in the scope of grid environments in [47]. The members

contact with suspected member in a peer-to-peer manner and query their

aliveness. The experimental results in [47] show that, this approach provides a

good solution in large scale grid environments. Although our environment is

not a grid, structured P2P overlays provide a similar infrastructure for this

approach.

 34

5.2.1.1.2. Group Membership Service

In membership based failure detection, membership information which can be

derived from membership services in the model is used to detect failures of services.

The membership based failure detection mechanisms are deployed to worker peers as

localized peer group services, interact with membership service of the group and

inform members of the group about the failures of the service using existing

communication services.

In this type of failure detection, P2P approach is very useful in the sense that

most P2P implementations provide an inherent membership messaging in their

protocols. Therefore, no additional heartbeat messaging is necessary.

Weakly and strongly consistent membership services can be provided in several

ways in the model. Basic approaches to provide group membership services for failure

detection in the model are listed below:

1. Membership service of most P2P implementations is a weakly consistent

membership service by default. To improve scalability, membership service of

a peer group generally does not employ heartbeat based strategies to verify

that its members are live which result in erroneous information about

members of the group. To provide a weakly consistent membership service, it

is enough for failure detection service to use inherent P2P based membership

service and communication services of the group to inform members about

membership failures.

2. To provide stronger semantics, an additional heartbeat/membership view

messaging can be provided by the model. In this approach, failure detection

service of the model itself provides a membership service with stronger

semantics by analyzing heartbeat messages received from members and if any

failures are detected notifies members of the group with its current

membership view. Figure 5.10 in the next page depicts this approach.

 35

Figure 5.10 Membership Based Failure Detection Service

5.2.1.2. Managing Failure Detection Service

• Security: Security is ensured by the core P2P services in the model which

provides secure communication and fine-grained access control decisions

(like authorization, etc) in the scope of peer groups to prevent malicious

attacks (capture and replay / denial of service) or performance degrading

caused by malicious peers or applications. The motivation about securing peer

groups is well addressed in [22]. Access control policies provide authorization

control at the group level and prevent authenticated peers to falsify system.

Independent peer group services in the model enable separate admission

control techniques [42] to be implemented at each service group for different

security requirements of system services. For instance, for a distributed

system service which is provided by only 2 processes (and surely 2 client

peers in the model), a static key exchange protocol and an Access Control

Lists (ACL) based admission control policy is fairly enough. However, for a

service which has many processes cooperating to provide the service (and so

many numbers of clients in the failure detection model) and dynamically

leaving/joining failure detection service groups, a dynamic key exchange

protocol [41] with a Group Authority (GAUTH) based admission control

 36

policy is necessary. The transmission of security parameters like group charter

and certificate are possible via control messages in the model.

• Dependency Analysis: The P2P based failure detection model uses a similar

approach with [6], to resolve service dependencies in the distributed system.

This approach requires failure detection service group of a distributed system

service to be an inactive member of the failure detection service group of the

service it depends on. Inactive members just receive messages (failure

notifications) from the group. Figure 5.11 represents this approach.

Figure 5.11 Inactive Members to Resolve Service Dependencies

 37

In the figure, there exists a distributed system which has three services A, B and

C where A has a dependency on both B and C. Failure of services B and/or C

implicitly means that service A also fails. In the model, this dependency is resolved by

making failure detection peer group service of A to be an inactive member of peer

group of B and C (represented as dotted line). This way, failure detection service for A

is notified by failure of services B or C.

5.2.1.3. Evaluation

Table 1 presents the failure detection block characteristics of the related studies

and the proposed model.

Table 1 Comparison of Failure Detection Block Characteristics

 FUSE

Failure

Detection

Service API

Proposed Model

Scalability Yes Yes Yes

Adaptability No Yes Yes

Flexibility No No Yes

Quality of

Service

Failure notifications

in bounded period of

time.

Yes Yes

Security

Addresses only

secure

implementation

alternatives.

No Yes

Dependency

Analysis

Manually Setup Manually

Setup

Autonomous

 38

It can be seen from Table 1 that the proposed model provides better flexibility,

security and dependency resolution than its rivals. The main feature of the proposed

model, which put it one step forward from its rivals, is that it takes advantage of using

dedicated failure detection services (in scope of peer groups) for each distributed

system service. Separate peer groups enable specialized failure detection services to be

deployed for each distributed system service which in turn provides flexibility. The

membership services in peer groups provide a suitable environment for both applying

security policies which increase security in the system and setting up inactive

membership concept for autonomous dependency analysis.

5.2.2. Communication Block

The P2P based failure detection model is based on P2P communication

services. P2P communication services provide a good QoS for the underlying

communication channel because of their advanced routing and fault tolerant

mechanisms. The necessary communication for a failure detection block to work

properly is in two forms: Broadcasting and Unicasting.

5.2.2.1. Multicast Communication

Broadcasting is handled by the multicast service provided in P2P based

communication services. The P2P based communication services provide multicast

communication services for group communication which is visualized in Figure 5.12.

This multicasting service should not be confused with TCP/IP multicasting which is

blocked while penetrating through corporate networks / internet service providers /

firewalls / NAT. P2P technology provides us with several mechanisms (like peer

discovery, relay peers, etc) to broadcast a message to multiple listeners in different

networks. Since P2P protocols generally run in application level, this type of

multicasting is referred to as application level multicasting where broadcasting a

message can include both multicast and unicast approaches. In the P2P based failure

detection model, application level multicasting service enables peers to be in separate

networks and even behind firewalls.

 39

Figure 5.12 Multicast Service in P2P Based Failure Detection Model

5.2.2.2. Point-to-Point Communication

Point-to-point communication is implemented by the unicast services provided

in P2P based communication services. The unicast communication in P2P

communication services provides peer-to-peer communication functionality. P2P

provides several mechanisms (like discovery services / resolver services) to enhance

its abstraction from IP / DNS naming based addressing. This enables peers to send

messages without knowing IP’s of target peers.

5.2.2.3. Adaptability to Underlying Network Conditions

Core P2P communication services provide an overlay network which abstracts

them from physical network conditions and failures. The model does not specify

topology of underlying P2P network since all P2P networks provide a certain level of

fault-tolerance for underlying network failures. Resources at [51][52][53] discuss the

 40

level of fault-tolerance in routing/communication in P2P networks having different

topologies.

5.2.2.4. Evaluation

Table 2 presents the communication block characteristics of the related studies

and the proposed model.

Table 2 Comparison of Communication Block Characteristics

 FUSE

Failure

Detection

Service API

Proposed Model

Low

Communication

Overhead

Yes (P2P based

overlay network

requires no

additional liveness-

verifying traffic

beyond that already

needed to maintain

the overlay)

Implementation

Dependent

Yes (Based on

membership service

of the underlying P2P

system).

Adaptability to

different

topologies in

the network

Yes (P2P based

overlay network)

No (Does not

support

application

level

multicasting)

Yes (P2P based

overlay network)

Adaptability to

dynamism of

the network

Yes (P2P based

overlay network)

No (Vulnerable

to underlying

physical

network

failures)

Yes (P2P based

overlay network)

 41

Using P2P based overlay networks provide great advantages in adapting to underlying

physical networks as can be seen from Table 2. Communication blocks of both the

proposed model and FUSE satisfy required functionality in adapting to underlying

network by taking advantage of using P2P based overlay networks.

 42

 CHAPTER 6

REALIZATION OF P2P BASED FAILURE

DETECTION MODEL

In this chapter, realization of the proposed model is explained together with a

sample proof-of-concept implementation which aims to provide a small-scaled failure

detection framework using the proposed P2P based failure detection model.

6.1 Realization

6.1.1. Interaction with Distributed System Processes

The implementation of the model (which provides a failure detection

framework for distributed systems) should provide necessary interfaces to distributed

system processes to notify about failures / to query heartbeats, etc. Type of interfaces

(inter-process communication, socket interfaces, programming level interfaces)

between failure detection framework and system processes can vary according to

packaging of the implementation. Several alternative approaches can be used to

package and deploy the implementation (such as a middleware [16][46], a user space

library, an OS level service, etc) whereas it is not in the scope of this thesis to discuss

advantages/disadvantages of these alternatives.

The sample implementation provided in this thesis is packaged in a user space

library (FD library) to remove extra communication overhead between processes of

distributed system and failure detection framework. Every process in the distributed

system should load an instance of the library and implement required interfaces for

communication to use the failure detection framework. Figure 6.1 in the next page

represents the transformation of processes through the FD library.

 43

Figure 6.1 Failure Detection Library Mapping Processes to Peers

6.1.2. P2P Platform

The model is based on core P2P Services. Therefore, it should be implemented

on a P2P framework supporting these services. Such a framework can be formed by:

• Building efficient infrastructures on top of existing P2P based overlay

networks. Such infrastructures enable these P2P overlays with efficient

querying [45], application level multicasting [50][57] and security [54]][56]

functionality. For instance:

o In [44], authors build their massively multiplayer game applications

on Pastry overlay network donated with multicast infrastructure

proposed in [50] for efficient transmission of game states to players.

o In [7], a distributed information management system, XDM, is

proposed which enhances its P2P overlay with data management,

topic-based publish/subscribe communication and query processing

capabilities.

• Using a comprehensive P2P framework. The open-source Project JXTA [55]

is a comprehensive peer-to-peer framework originally conceived by Sun

Microsystems Inc. Project JXTA is selected as the P2P backbone of reference

implementation of the model because it provides a virtual network overlay

and:

 44

o Provides and standardizes core P2P protocols,

o Provides required semantic to manage P2P networks,

o Provides required semantic to enable peers to manage peer groups,

o Provides a platform independent of programming languages (such as

C or the Java programming language), system platforms (such as the

Microsoft Windows and UNIX operating systems) and network

protocols (such as TCP/IP or Bluetooth). The Project JXTA protocols

can be implemented on any device having a network heartbeat,

including sensors, appliances, network routers, desktop computers,

and storage systems which make it suitable [43].

6.2 Sample Implementation

The sample implementation aims to detect service failures of small-scaled

distributed systems using the proposed P2P based failure detection model. The

implementation is able to detect failures of services of a distributed system by

applying different types of failure detection methods and service dependency

resolution.

6.2.1. Constraints & Assumptions

The implementation is a proof-of-concept implementation of the model and

does not aim to provide high availability of failure detection services in large scales

and high load conditions where setting up test and simulation environments for that

case is a complex job.

The sample implementation provides necessary failure detection and

management APIs for worker peers, rendezvous peers and client peers of the model.

Although several approaches (as a layered middleware [16], OS service, a user space

library) can be used to package and deploy the API, it is not in the scope of this thesis

to discuss pros and cons of these approaches.

Implementation of Conscientia architecture was unavailable at the time of the

development phase of this sample; therefore, functionality of its services which

provide scalability and adaptability is coded in a degraded manner in the

implementation:

 45

• The sample implementation employs a single RV peer per group instead of an

EPM group as in the model.

• The sample implementation employs a single worker peer per group instead of

worker groups as in the model.

• The sample implementation does not employ category groups as in the model.

• The sample implementation does not employ point-to-point communication.

• The sample implementation does not support monitoring service. However,

this service can be easily implemented using peer info service of JXTA for

monitoring and metering [58].

6.2.2. Failure Detection Library

The implemented failure detection library provides necessary functionality for

the proposed failure detection model. This functionality is wrapped by a shell which

provides functions as API interfaces to library users (processes). Necessary JXTA

calls for these API interfaces are provided in Appendix – C.

6.2.2.1. Worker Peer API

Failure detection library enables processes to act as worker peers within the

failure detection model. With the worker peer API provided, worker peers manage

failure detection groups for services of distributed system and send/receive

failure/control messages. The management of failure detection groups include creating

failure detection groups, defining security levels, identifying failure detection

methods, deciding the dissemination of failure information. These processes can either

be distributed system processes (processes cooperating to provide distributed system

services) or separate processes dedicated for failure detection purposes.

 46

Figure 6.2 Worker Peer API Transforms Processes to Worker Peers

In Figure 6.2, the worker API enables a failure detection process to act as a

worker peer in the failure detection model. Creation of failure detection services using

this API is represented in Figure 6.3.

Figure 6.3 Creation of a Failure Detection Service in FD Library

 47

To create a failure detection service in the model, certain steps should be

followed. The steps required to create a failure detection service are presented below:

1. create_FD_group(groupName): In JXTA, creation of a group is done by

preparing the advertisement for the group and publishing it to the discovery

service through which client peers can search for.

2. create_FD_services(groupName, serviceName, failureDetectionType):

Failure Detection services are provided as localized services in a peer group.

Creating services for a peer group is done by first creating/publishing of

module class/spec advertisements of the service to the discovery service of the

target peer group and then creating communication channels (pipes) for the

service using the pipe service of the target peer group.

Although not implemented in this sample, in the scope of a failure detection

service, module and specification advertisements for a failure detection

service can be used to carry control messages specifying the published failure

detection service type and parameters.

The pipes specify input/output interfaces for a service. For a failure detection

service, two pipes should be deployed: an incoming pipe and an outgoing

pipe. An incoming pipe provides input for the service whereas an outgoing

pipe outputs results of the service. In the scope of the model, failure messages

(heartbeats stemming from client peers, failure messages from peer groups of

dependent services) are received through incoming pipes and control

messages and detected failures are sent through outgoing pipes. Types of

incoming and outgoing pipes created for failure detection services in the

model are propagate types in Project JXTA which provides a broadcast style

communication. It connects one output pipe to multiple input pipes.

After creating the service by specifying its input/output interfaces as pipes,

failure detection mechanisms are implemented in this service according to

failureDetectionType parameter.

3. while(FD_group(groupName) dependsOn FD_group(serviceGroups))

4. join_as_Inactive_Member(serviceGroups): An inactive member joins to a

target peer group and uses only outgoing pipe of the failure detection service

 48

declared in that group. This way, the inactive member is only notified with

outgoing pipe messages (service control messages and detected failures) of

dependent failure detection services.

In these steps, incoming pipe of failure detection service declared at step 2 is

connected to outgoing pipes of dependent failure detection services. The

dependency relation between distributed system services (and failure detection

services) can be either retrieved from static configuration files or from service

advertisements.

6.2.2.2. Client Peer API

Failure detection library enables processes of distributed system services to act

as client peers as represented in Figure 6.4 in the next page. With the client peer API

provided, client peers can join failure detection service groups, discover localized

failure detection services for service groups, and join their pipes for communication

with these services.

 49

Figure 6.4 Client Peer API Transforms Processes to Client Peers

In the Figure 6.4, process1 of a distributed system provides necessary

functionality (probably cooperating with other processes) for distributed system

services A and C. The client API enables this process to join to failure detection

groups created to detect failures of system services A and C, use failure detection

services provided in these groups. Using failure detection services for a group includes

providing required behaviour for the service which includes obeying service

requirements (like heartbeat intervals, failure detection types) received through control

messages. Below is the algorithm for joining a failure detection service in the library:

 50

1. discover_FD_group(groupName): In JXTA, discovery of a group is done by

first sending group discovery messages using discovery service and

afterwards locating required group by its advertisement.

2. join_ as_Active_Member (groupName): An active member joins to a target

peer group and uses both incoming and outgoing pipes of the failure detection

service declared in that group.

6.2.2.3. Rendezvous Peer API

Failure detection library enables processes to act as rendezvous peers as shown

in Figure 6.5. There is no specific API function for this interface in the library.

Processes that load failure detection library and do not create/join failure detection

groups, automatically become a rendezvous peer.

Figure 6.5 Rendezvous Peer API Transforms Processes to Rendezvous Peers

 51

 CHAPTER 7

CONCLUSION

In this chapter, conclusions and further work for this study is presented.

Conclusions include the conducted work together with the comments on this work.

7.1. Work Conducted

In this thesis, requirements of a comprehensive failure detection model for

asynchronous distributed systems have been collected from corresponding studies in

literature. To satisfy these requirements, logical blocks are defined which cooperate to

provide necessary functionality. Existing failure detection frameworks have been

analyzed in the scope of these logical blocks.

A P2P based failure detection model is presented to address service failures in

asynchronous distributed systems. In the model, failure detection services are

abstracted as lightweight peer group services and dependency between services is

resolved by the peer group membership concept in P2P. Analysis of this model is

presented in the presence of requirements and logical blocks of a comprehensive

failure detection model.

Evaluation of the model is presented. The model satisfies functionality provided

by its competitors. Furthermore, the model outperforms its competitors in flexibility,

autonomous service dependency resolution and security areas.

A failure detection library is developed to realize the model using JXTA P2P

framework. Developed failure detection library is able to support a subset of

functionality required for a comprehensive failure detection framework. Realization

discussions on implementing the model are included as a guidance material.

 52

7.2. Comments

Although the study provides a model to detect service failures in asynchronous

distributed systems, it does not define in what situations failure detection is needed or

should be done. The considerations about failure detection need and choice of failure

detection method is left to developers.

Provided failure detection model defines several approaches to implement

failure detection mechanisms by using P2P technologies. However, these are not the

only approaches that can be implemented using P2P technology. Developers or system

analysts can implement their own specific approaches based on P2P concepts that are

not mentioned in this thesis, to satisfy required functionality for their needs.

Although developed failure detection library has the mentioned limitations, it is

a valuable source of information for future studies addressing performance of the

model, P2P techniques, efficiency of failure detection mechanisms, effect of choice of

deployment type on performance, etc.

7.3. Future Work

The failure detection library developed to realize the presented P2P based

failure detection model in this thesis uses an unstructured overlay network (based on

JXTA overlay network), provides sample failure detection mechanisms and is

designed as a user space library to be used in small scales. As a future study,

performance analysis of this library can be performed.

Studies addressing to perform QoS analysis of separate implementations of the

model in different scales, with different failure detection mechanism implementations,

using different P2P technologies (using structured, unstructured P2P overlay

networks) and choice of deployment types (as a middleware, as a user space library,

etc) can guide the implementation of efficient failure detection frameworks.

 53

 REFERENCES

[1] Olivia Das, C. M. Woodside. “Failure Detection and Recovery Modelling for

Multi-layered Service Systems”. In Proc. of PMMCCS-5, Erlangen, September

2001.

[2] Florin Sultan, Aniruddha Bohra, Yufei Pan, Stephen Smaldone, Iulian Neamtiu,

Pascal Gallard, and Liviu Iftode. “Non-intrusive Failure Detection and

Recovery for Internet Services Using Backdoors”. Technical Report, URL:

http://citeseer.ist.psu.edu/633879.html, June 2006.

[3] Markus Oliver Junginger, Yugyung Lee. “A Self-Organizing Publish/Subscribe

Middleware for Dynamic Peer-to-Peer Networks”. IEEE Network, pp. 4-6,

January/February 2004.

[4] Andreas Binzenh¨ofer, Kurt Tutschku, Bjorn auf dem Graben, Markus Fiedler,

and Patrik Carlsson. “A P2P-based Framework for distributed network

management”. University of Wurzburg Institute of Computer Science Research

Report Series, Report No: 351, January 2005.

[5] James Walkerdine, Lee Melville, Ian Sommerville. “Dependability within Peer-

to-Peer Systems”. Workshop on Architecting Dependable Systems, ICSE 2004,

May 2004.

[6] Sentinel Project. URL: http://sentinel.jxta.org, June 2006.

[7] DELIS Project. “Requirements for a P2P platform for dynamic management of

large scale networks”. Deliverable D2.3.1, February 2005.

[8] John Dunagan, Nicholas J. A. Harvey, Marvin Theimer, Michael B. Jones, Alec

Wolman, and Dejan Kostic. “FUSE: Lightweight Guaranteed Distributed

Failure Notification”. In Proc. of OSDI 2004, December 2004.

 54

[9] Luis Felipe Cabrera, Michael B. Jones, Marvin Theimer. “Herald: Achieving a

Global Event Notification Service”. In Proc. of 8th workshop on Hot Topics in

Operating Systems, Elmau, German, May 2001.

[10] Armando Fox, Emre Kıcıman, David Patterson, Randy Katz, Michael Jordan,

and Ion Stoica. “Statistical Monitoring + Predictable Recovery = Self-*”. ACM,

ISSN: 1-58113-989-6/04/0010, 2004.

[11] Tushar Deepak Chandra and Sam Toueg. “Unreliable Failure Detectors for

Reliable Distributed Systems”. Journal of the Association for Computing

Machinery, Vol. 43, No. 2, March 1996.

[12] Xavier Défago, Naohiro Hayashibara, and Takuya Katayama. “On the Design

of a Failure Detection Service for Large-Scale Distributed Systems”. In Proc. of

Int’l. Symp. Towards Peta-Bit Ultra-Networks (PBit 2003), pp.88–95, Ishikawa,

Japan, Sept. 2003.

[13] Krishnakanth Sistla, Alan D. George, and Robert W. Todd. “Experimental

Analysis of a Gossip-based Service for Scalable, Distributed Failure Detection

and Consensus”. Cluster Computing 6, Volume 6, Issue 3, pp.237-251, July

2003.

[14] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao, Robert

E. Strom, and Daniel C. Sturman. “An Efficient Multicast Protocol for Content-

Based Publish-Subscribe Systems”. In Proc. of International Conference on

Distributed Computing System, 1999.

[15] Roberto BALDONI, Fabio ZITO. “Designing a Service of Failure Detection in

Asynchronous Distributed Systems”. IEEE, ISBN 0-7695-1089-2/01, 2001.

[16] Bruno G. Catǎo , Francisco V. Brasileiro ,and Ana Cristina A. Oliveira.

“Engineering a Failure Detection Service for Widely Distributed Systems”. In

Proc. of SBRC’05, Brazil, 2005.

[17] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. “Fundamental

Concepts of Dependability”. In Third Information Survivability Workshop,

October, 2000.

 55

[18] W. Vogels and C. Re. “WS-Membership - Failure Management in a Web-

Services World”. In Intl. World Wide WebConference (WWW), 2003.

[19] R. van Renesse, Y. Minsky, and M. Hayden. “A Gossip-Style Failure Detection

Service”. In Proc. Of Middleware’98, pp.55-70, IFIP, The Lake District, UK,

1998.

[20] Antony Rowstron1 and Peter Druschel. “Pastry: Scalable, decentralized object

location and routing for large-scale peer-to-peer systems”. In Proc. of the 18th

IFIP/ACM International Conference on Distributed Systems Platforms

(Middleware 2001). Heidelberg, Germany, November 2001.

[21] Indranil Gupta, Robbert van Renesse, and Kenneth P. Birman. “Scalable Fault-

Tolerant Aggregation in Large Process Groups”. IEEE, ISBN 0-7695-1101-5/0,

2001.

[22] Zupeng Li, Yuguo Dong, Lei Zhuang, and Jianhua Huang. “Implementation of

Secure Peer Group in Peer-to-Peer Network”. In Proc. of ICCT, 2003.

[23] André Schiper. “Failure Detection vs Group Membership in Fault-Tolerant

Distributed Systems: Hidden Trade-Offs”. In Proc. Of PAPM-ProbMiv’02,

LNCS 2399, 2002.

[24] B. Pourebrahimi K. Bertels S. Vassiliadis. “A Survey of Peer-to-Peer

Networks”. Proc. of 16th Annual Workshop on Circuits, Systems and Signal

Processing, ProRisc2005, November 2005.

[25] Mark W. Burns, Alan D. George, and Brad A. Wallace. “Simulative

Performance Analysis of Gossip Failure Detection for Scalable Distributed

Systems”. High-performance Computing and Simulation (HCS) Research

Laboratory, Department of Electrical and Computer Engineering, University of

Florida, 2000.

[26] Aleta M.Ricciardi and Kenneth P.Birman. “Using Process Groups to Implement

Failure Detection in Asynchronous Environments”. ACM, ISBN 0-89791-439-

2/91/0007/0341, 1991.

[27] Mishra, L. L. Peterson, and R. D. Schlichting. “A Membership Protocol Based

on Partial Order”. Technical report, University of Arizona, 1990.

 56

[28] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. “Processor Membership in

Asynchronous Distributed Systems”. University of California at Santa Barbara,

Extended Abstract, 1990.

[29] Richard Andrew Golding. “Weak-consistency group communication and

membership”. PhD Thesis, University of California Santa Cruz, December

1992.

[30] Cristina Nita-Rotaru. “The Cost of Adding Security Services to Group

Communication Systems”. Technical Report, CNDS-2000-3, Computer Science

Department, John Hopkins University, March 2000.

[31] Yair Amir, Cristina Nita-Rotaru, Jonathan Stanton, and Gene Tsudik. “Scaling

Secure Group Communication Systems: Beyond Peer-to-Peer”. In Proc. of

DISCEX3, Washington DC, April 2003.

[32] Nicholas J.A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and

Alec Wolman. “SkipNet: A Scalable Overlay Network with Practical Locality

Properties”. In Proc. of 4th USENIX Symposium on Internet Technologies and

Systems, March 2003.

[33] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. “Tapestry: An

Infrastructure for Fault-tolerant Wide Area Location and Routing”. Report No.

UCB/CSD-01-1141, Computer Science Department, U.C. Berkeley, April 2001

[34] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. “Chord: A Scalable Peertopeer Lookup Service for Internet

Applications”. ACM, ISBN 1581134118/01/0008, 2001

[35] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. “A Scalable Content-Addressable Network”. Proc. of SIGCOMM’01

ACM Conference on Applications, Technologies Architectures, and Protocols

for Computer Communication, August 2001.

[36] L.E.Moser, P.M.Melliar Smith, D.A.Agarwal, R.K.Budhia, and C.A.Lingley-

Papadopoulos. “Totem: A Fault Tolerant Multicast Group Communication

System”. Communications of the ACM, Volume:9, Number:4, pp.54-63, 1996.

 57

[37] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. “Transis: A

Communication Sub-System for High Availability”. In Proc. of 22nd

International Symposium on Fault-Tolerant Computing, pp.76-84, IEEE

Computer Society Press, July 1992.

[38] Robbert Van Renesse, Takako M.Hickey, and Kenneth P.Birman. “Design and

Performance of Horus: A Lightweight Group Communications System”.

Technical Report, Department of Computer Science, TR94-1442, Cornell

University, Ithaca, NY, 1994.

[39] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. “On the Quality of

Service of Failure Detectors”. IEEE, ISBN 0018-9340/02, 2002.

[40] Muhammad Asif Jan, Fahd Ali Zahid, Mohammad Moazam Fraz, and Arshad

Ali. “Exploiting peer group concept for adaptive and highly available services”.

In Computing in High Energy and Nuclear Physics, La Jolla California, 24-28

March 2003.

[41] M. Steiner, G. Tsudik, and M. Waidner. “Key agreement in dynamic peer

groups”. IEEE Transactions on Parallel and Distributed Systems, Volume:11,

Number:8, pp.769-780, August 2000.

[42] Yongdae Kim, Daniele Mazzocchi, and Gene Tsudik. “Admission Control in

Peer Groups”. In IEEE NCA, 2003.

[43] Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz, Mike Duigou, Carl

Haywood, Jean-Christophe Hugly, Eric Pouyoul, and Bill Yeager. “Project

JXTA 2.0 Super-Peer Virtual Network”. Sun Microsystems Inc., URL:

www.jxta.org/docs/, May 2006.

[44] Björn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. “Peer-to-Peer

Support for Massively Multiplayer Games”. In Proc. of INFOCOM’04, 2004.

[45] Ryan Huebsch, Brent Chun, Joseph M. Hellerstein, Boon Thau Loo, Petros

Maniatis, Timothy Roscoe, Scott Shenker, Ion Stoica and Aydan R.

Yumerefendi. “The Architecture of PIER: an Internet-Scale Query Processor”.

In Proc. of the 2005 CIDR Conference, 2005.

 58

[46] Jan Gerke, and Burkhard Stiller. “A Service-Oriented Peer-to-Peer

Middleware., In 14. Fachtagung Komminikationen Verteilten Systemen 2005

(KiVS05), LNCS, Kaiserslautern, Germany, 2005.

[47] Amit Jain and R.K. Shyamasundar. “Failure Detection and Membership

Management in Grid Environments”. In Proc. of the Fifth IEEE/ACM

International Workshop on Grid Computing (GRID’04), IEEE, ISBN 1550-

5510/04, 2004.

[48] Naohiro Hayashibara, Adel Cherif, and Takuya Katayama. “Failure Detectors

for Large-Scale Distributed Systems”. IEEE, ISBN 1060-9857/02, 2002.

[49] Péter Urbán, Ilya Shnayderman, and Andre Schiper. “Comparison of Failure

Detectors and Group Membership: Performance Study of Two Atomic

Broadcast Algorithms (Extended Version)”. Technical Report IC/2003/15,

Faculté d’Informatique et Communications (I&C) École Polytechnique Fédérale

de Lausanne (EPFL), 2003.

[50] Antony Rowstron1, Anne-Marie Kermarrec1, Miguel Castro1, and Peter

Druschel. “SCRIBE: The design of a large-scale event notification

infrastructure”. In Proc. of 3rd International Workshop on Networked Group

Communication (NGC2001), UCL, London, UK, November 2001.

[51] Leonardo Mariani. “Fault-tolerant routing for p2p systems with unstructured

topology”. In Proc. of the 2005 International Symposium on Applications and

the Internet (SAINT 2005), IEEE Computer Society, February 2005.

[52] K.P. Gummadi, R. Gummadi, S.D. Gribble, S. Ratnasamy, S. Shenker, and

I.Stoica. “The Impact of DHT Routing Geometry on Resilience and Proximity”.

ACM SIGCOMM, Karlsruhe, Germany, August 25–29, 2003.

[53] Zhiyu Liu, Guihai Chen, Chunfeng Yuan, Sanglu Lu, and Chengzhong Xu.

“Fault Resilience of Structured P2P Systems”. In Proc. of 5th International

Conference on Web Information Systems Engineering, Brisbane, Australia,

November 22-24, 2004.

[54] The Peer-to-Peer Trusted Library Project. URL:

http://sourceforge.net/projects/ptptl/, June 2006.

 59

[55] The Project JXTA: P2P Framework. URL: http://www.jxta.org/, May 2006.

[56] P. McDaniel, A. Prakash, and P. Honeyman. “Antigone: A flexible framework

for secure group communication”. In Proc. of 8th USENIX Security

Symposium, pages 99–114, Aug. 1999.

[57] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, James

W. O'Toole. “Overcast: Reliable Multicasting with an Overlay Network”. Proc.

of 4th Symposium on Operating System Design and Implementation, San

Diego, 2000.

[58] JXTA Metering and Monitoring Project. URL: http://meter.jxta.org, May 2006.

[59] Felber, P., Guerraoui, R., D´efago, X., and Oser, P.. “Failure detector as first

class objects”. In International Symposium on Distributed Objects and

Applications (DOA), pages 132–141, Scotland, 1999.

[60] Stelling, P., DeMatteis, C., Foster, I. T., Kesselman, C., Lee, C. A., and von

Laszewski. “A fault detection service for wide area distributed computations”.

Cluster Computing, 2(2):117–128, 1999.

[61] Hayashibara, N., D´efago, X., and Katayama, T.. “The φ accrual failure

detector”. In Symposiumon Reliable Distributed Systems (SRDS’2004), pages

66–78, Florian´opolis, Brazil, 2004.

[62] Bertier, M., Marin, O., and Sens, P.. “Implementation and performance

evaluation of an adaptable failure detector”. In DSN ’02: Proceedings of the

2002 International Conference on Dependable Systems and Networks, pages

354–363. IEEE Computer Society, 2002.

[63] Gemmell, J.. “Scalable reliable multicast using erasure-correcting re-sends”.

Technical report, msr-tr-97-20, Microsoft Research Center, 1997.

[64] Chu, Y.-H., Rao, S. G., and Zhang, H.. “A case for end system multicast”. In

Measurement and Modeling of Computer Systems, pages 1–12, 2000.

[65] Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and Minsky, Y..

“Bimodal multicast”. ACM Transactions on Computer Systems, 17(2):41–88,

1999.

 60

 APPENDIX A

FAILURE DETECTION LIBRARY DESIGN

A.1. Class Diagram

 61

 62 62

 63 63

 64 64

A.2. Message Sequence Diagrams

Message sequence diagrams in the design of the library are presented below.

These diagrams realize the main scenarios in the library: creating/joining/configuring

failure detection services, adapting to service control parameters, and registering for

failure notifications.

 65

 66

 67 67

 68

 69 69

 70

 APPENDIX B

Project JXTA, P2P FRAMEWORK

Information (both textual and visual) in this section is mainly compiled from

[43].

B.1. Peer Architecture

In addition to simple peers in P2P paradigm, rendezvous and relay peer

concepts are introduced in Project JXTA.

• Rendezvous Super-Peers: Project JXTA proposes rendezvous peers which use

a resolver infrastructure to find advertisements of resources. Rendezvous

conceptually corresponds to well-known advertisement locations to search for

a resource and resolution infrastructure provides discovery of these resource

advertisements. Rendezvous super-peers can also organize themselves into a

rendezvous network to provide efficient bootstrapping and high availability of

advertisements.

 71

• Relay Super-Peers: The Project JXTA proposes relay super-peers to play a

bridge role between peers that do not have direct physical connectivity (NAT,

firewalls). Playing the bridge role includes spooling messages for unreachable

edge peers. Usage of relay peers in message routes is handled by JXTA

protocols and transparent to applications.

In the figure above, Peer A wants to send a message to Peer B. Since Peer B

is behind a NAT (Peer B address is not reachable from Peer A), Peer A

cannot send a message directly to Peer B. Peer B uses the relay Peer D to

make itself reachable.

B.2. Peer Group Architecture

Peers in the Project JXTA network self-organize into peer groups where peer

groups represent dynamic sets of peers that have a common set of interests, and have

agreed upon a common set of policies (membership, content exchange, etc.). The

creation, publishing and discovering of these peer groups are specified in Project

JXTA.

 72

In the above figure, PeerGroup A shows a peer group that is a subset of a

physical firewall domain.

PeerGroup B shows a peer group that is spanning multiple physical domains.

Peergroup C shows a peer group that is exactly mapping the boundary of a NAT

domain. A peer can belong to multiple peer groups at the same time.

A peer becomes a member of NetPeerGroup at boot time which acts as the root

peer group in Project JXTA. Peer groups typically publish a set of services called

peergroup services with associated protocols (discovery, resolver, pipe, peer info, and

rendezvous). Advertisements of peer groups include the list of all peer group services.

Creators of these peer groups customize their peer group services to according to their

needs. Peer group services are composed of a collection of instances of this service

which run on each member of the peer group. These instances can work autonomously

as replicas or by cooperate with each other to provide the service. This type of

abstraction provides highly available services in the scope of a peer group. If one peer

fails in the peer group, the overall service is not affected as far as it is available in

another peer member.

B.3. JXTA Virtual Overlay Network

The Project JXTA protocols establish a virtual network overlay that allow peers

to directly interact and self-organize independently regardless of their network

connectivity and topology (behind firewalls, NATs, non-IP networks). Project JXTA

 73

provides a configurable overlay policy. As a default, it provides a loosely-coupled

unstructured policy but peer group creators have the ability to overwrite the default policy

and define their own policies. Loosely coupled unstructured form is designed for highly

fluctuating and unpredictable environments. A detailed description of overlaying policy of

Project JXTA can be found in [43].

B.4. Identification of Resources

To identify resources and services in Project JXTA, JXTA IDs and

advertisement mechanisms are used.

• JXTA IDs: The Project JXTA addresses its network resources (peer, pipe,

data, peer group, etc.) in a uniform and location independent way. Every

network resource in a Project JXTA network is assigned a unique JXTA ID.

Any resource in the Project JXTA network is accessed by using its JXTA ID.

• Resource Advertisements: All network resources in the Project JXTA network,

such as peers, peer groups, pipes, and services are represented by

advertisements. Project JXTA uses advertisements which are represented as

language-neutral metadata structures in XML documents to describe

resources. Project JXTA standardizes advertisements for the following core

JXTA resources: peer, peer group, pipe, service, metering, route, content,

rendezvous, peer endpoint, transport. Below is a sample Project JXTA peer

group advertisement.

 74

B.5. Communication

Project JXTA uses a binary wire format for communication between peers. This

format supports both XML and binary payloads to be sent. The messages are sent

through virtual communication channels called Pipes in Project JXTA. It is a virtual

communication abstraction between peers where peers can send and receive messages

through. They can connect one or more peers. The pipe ends are referred as input pipe

(receiving messages through) and output pipe (sending messages through). Pipes are

categorized into two modes of communication in Project JXTA:

• Point-to-point pipe: It provides a unicast style communication. It connects

exactly two pipe ends with a unidirectional and asynchronous channel. In

these types of pipes, no reply or acknowledgment operation is supported.

• Propagate pipe: It provides a broadcast style communication. It connects one

output pipe to multiple input pipes. The propagate message is sent to all input

pipe ends in the current peer group context. In implementations of this type of

communication.

o IP multicast can be used if propagation scope maps to an underlying

physical IP based subnet.

o Point-to-Point communication cans be used on transport where

multicast is not provided (e.g. HTTP).

 75

B.6. Security

Project JXTA allows peers to own their certificate authorities and provides

strong cipher algorithms where default cipher suite is RSA1024 with 3DES and SHA-

1. It provides secure communication (also called as secure pipes) between peers by

using Transport Layer Security (TLS). The model instantiates a virtual TLS transport

after resolving endpoints of secure pipes where the instantiated transport bi-

directionally secures communication with TLS support, and is independent of

underlying network topology. (It may go through JXTA relays and pass between

different network topologies). To support bi-directional security, virtual transport

requires each communication peer to possess X509.V3 root certificates.

 76

In the scope of peer groups, Project JXTA security model can be used to

implement an authentication mechanism based on X509.V3 certificates. When a peer

wants to join a peer group, it receives the root certificate of peer group creator through

a secure TLS connection. To be a member, it then acquires a group membership

X509.V3 certificate which is signed with the private key of group creator's root

certificate. These certificates are locally stored on peer and guarded with a password

phrase.

 77

 APPENDIX C

JXTA CALLS FOR FAILURE DETECTION API
FUNCTIONS

C.1. Worker Peer API

Create_FD_Group:

Description: Creation of a group is done by constructing the group and

publishing it to the discovery service through which client peers can search for:

Synopsis:

//Construction of a group

ModuleImplAdvertisement implAdv = parent.getAllPurposePeerGroupImplAdvertisement();

parent.newGroup(null, implAdv, groupName, "FD group adv descr");

//Publishing the group

parent.getDiscoveryService().remotePublish(adv);

Create_FD_Services:

Description: In JXTA, creating services for a peer group is done by first

creating/publishing of module class/spec advertisements of the service to the

discovery service of the target peer group and then creating communication channels

(pipes) for the service using the pipe service of the target peer group.

Synopsis:

Creating/Publishing module class advertisements of the service:

// Publishing Module Class advertisements

 78

ModuleClassAdvertisement mcadv = (ModuleClassAdvertisement)

 AdvertisementFactory.newAdvertisement(

 ModuleClassAdvertisement.getAdvertisementType());

mcadv.setName("JXTAMOD:" + advName);

mcadv.setDescription("FD Service X");

mcID = IDFactory.newModuleClassID();

mcadv.setModuleClassID(mcID);

discovery.publish(mcadv);

discovery.remotePublish(mcadv);

/*

…

*/

// Publishing Module Spec advertisements

ModuleSpecAdvertisement mdadv =

(ModuleSpecAdvertisement)AdvertisementFactory.newAdvertisement(

ModuleSpecAdvertisement.getAdvertisementType());

mdadv.setName("JXTASPEC:" + advName);

mdadv.setVersion("Version 1.0");

mdadv.setCreator("sun.com");

mdadv.setModuleSpecID(IDFactory.newModuleSpecID(mcID));

mdadv.setSpecURI("http://www.jxta.org/Ex1");

pipeAdvertisement = createPipeAdvertisement(advName,pipeType);

mdadv.setPipeAdvertisement(pipeAdvertisement);

discovery.publish(mdadv);

discovery.remotePublish(mdadv);

 79

Creating communication channels (pipes) by publishing pipe advertisements to

discovery service of the target peer group.

//Publishing pipe advertisements

ModuleClassID mcID = publishModuleClassAdvertisement(discovery,serviceName);

try {

 pipes.createInputPipe(publishModuleSpecAdvertisement(discovery,serviceName,mcID,PipeService.P

ropagateType),this);

} catch (IOException e) {

e.printStackTrace();

}

Implementing unreliable failure detector semantics in failure detection services:

//Receive failure messages from incoming pipe as pipe message notifications

 Message.ElementIterator en =

((PipeMsgEvent)arg0).getMessage().getMessageElements();

 MessageElement msgElement =

((PipeMsgEvent)arg0).getMessage().getMessageElement(null, "FailureMessageTag");

 notificationInt.notify(msgElement.toString());

/*Keep a suspect list according to received failure messages from members. If any consensus is

reached on failure of a process, broadcast its failure to all members. If no consensus is reached, broadcast

suspect list to all active members.*/

//Broadcast failure messages through outgoing pipe

Message msg = new Message();

StringMessageElement sme = new StringMessageElement("FailureMessageTag ", data , null);

msg.addMessageElement(null, sme);

((OutputPipe)outPipe).send (msg);

 80

Implementing membership semantics in failure detection services:

//Receive membership messages from incoming pipe as pipe message notifications

 Message.ElementIterator en =

((PipeMsgEvent)arg0).getMessage().getMessageElements();

 MessageElement msgElement =

((PipeMsgEvent)arg0).getMessage().getMessageElement(null, "FailureMessageTag");

 notificationInt.notify(msgElement.toString());

/*

Analyze membership view according to received membership messages. If any change occurs in

membership view, broadcast membership views to members.

*/

//Broadcast failure messages through outgoing pipe

Message msg = new Message();

StringMessageElement sme = new StringMessageElement("FailureMessageTag ", data , null);

msg.addMessageElement(null, sme);

((OutputPipe)outPipe).send (msg);

C.2. Client Peer API

Discover_FD_Group:

Description: In JXTA, discovery of a group is done by first sending group

discovery messages using discovery service and afterwards locating required group by

its advertisement.

Synopsis:

Sending group discovery message using discovery service:

// group discovery message

discovery.getRemoteAdvertisements(null, DiscoveryService.GROUP,null, null, 5);

 81

Locating required group by its advertisement:

//Locating the group

Enumeration en = res.getAdvertisements();

while (en.hasMoreElements()) {

 adv = (PeerGroupAdvertisement) en.nextElement();

 if(adv.getName().equals(requiredServiceGroupName)){

 PeerGroup newPeerGroup = parent.newGroup(adv);

 }

}

A sample failure detection group advertisement:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jxta:PGA><jxta:PGA xmlns:jxta="http://jxta.org">

<GID> urn:jxta:uuid-19CED815D57D4337891B9AD1D182816D02</GID>

<MSID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000010306</MSID>

<Name>Service A</Name>

<Desc> Failure Detection Group for System Service A</Desc>

</jxta:PGA>

Join_FD_Group:

Description: In JXTA, joining to a peer group is done by authenticating to

membership services of the group. It is done by following calls to JXTA constructs.

Synopsis:

 82

Joining a failure detection group

//Joining a FD group

MembershipService membership = group.getMembershipService();

AuthenticationCredential authenticationCred = new AuthenticationCredential(group, null,

credentials);

Authenticator authenticator = membership.apply(authenticationCred);

 if (authenticator.isReadyForJoin())

 Credential myCred = membership.join(authenticator);

else

 ; //Failure

Use_FD_Service:

Description: In JXTA, using a service is done by first sending service discovery

messages using discovery service, locating service by its advertisement and

connecting to incoming and/or outgoing pipes of the service.

Synopsis:

Sending service discovery messages:

//Sending service discovery messages

discovery.getRemoteAdvertisements(null, DiscoveryService.ADV, "Name",

serviceSpecificationAdvertisement,1, null);

Locating and connecting to Service:

//Extracting pipe advertisements from service advertisements

ModuleSpecAdvertisement mdsadv = (ModuleSpecAdvertisement) en.nextElement();

PipeAdvertisement pipeAdvertisement = mdsadv.getPipeAdvertisement();

 83

//Using pipe advertisements to use service pipes

pg.getPipeService().createInputPipe(pipeAdvertisement, this);

pg.getPipeService().createOutputPipe (pipeAdvertisement, this);

A sample outgoing pipe advertisement for a failure detection service:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">

<Id>urn:jxta:uuid-

1C5D9D10A3534F23A480FAB85D61EEF07AC5B4603161405887F1D0DE7078F14604 </Id>

<Type>JxtaPropagate</Type>

<Name>OUTGOING_PIPE</Name>

<Desc> Outgoing Pipe Advertisement for Failure Detection Service A</Desc>

</jxta:PipeAdvertisement>

 84

	INTRODUCTION
	Scope of this work
	Organization of the Thesis

	BACKGROUND
	System Service
	Failure Detection Model
	Asynchronous Distributed System
	Peer-to-Peer (P2P) Architecture
	Failure Detection (FD)
	2.5.1. Unreliable Failure Detectors
	2.5.2. Membership Service

	REQUIREMENTS AND LOGICAL VIEW OF A FAILURE DETECTION MODEL
	Requirements
	3.1.1. Failure Detection Service
	3.1.2. Management
	Communication

	Logical View of a Failure Detection Model

	RELATED WORK
	4.1. Logical Blocks of a Failure Detection Model
	4.1.1. Failure Detection Service Block
	4.1.1.1.1. Unreliable Failure Detectors
	4.1.1.1.2. Group Membership Service
	4.1.1.2.1. Security
	4.1.1.2.2. Dependency Analysis

	4.1.2. Communication Block
	4.1.2.1.1. P2P

	4.2. Existing Failure Detection Models
	4.2.1. FUSE
	4.2.2. Failure Detection Service API

	P2P BASED FAILURE DETECTION MODEL
	P2P Based Failure Detection Model Architecture
	5.1.1. Peers
	5.1.2. Peer Groups
	5.1.3. Services
	5.1.4. Messages

	Analysis of the Model
	5.2.1. Failure Detection Block
	5.2.1.1.1. Unreliable Failure Detectors
	5.2.1.1.2. Group Membership Service

	5.2.2. Communication Block

	REALIZATION OF P2P BASED FAILURE DETECTION MODEL
	6.1 Realization
	6.1.1. Interaction with Distributed System Processes
	6.1.2. P2P Platform

	6.2 Sample Implementation
	6.2.1. Constraints & Assumptions
	6.2.2. Failure Detection Library

	CONCLUSION
	7.1. Work Conducted
	7.2. Comments
	7.3. Future Work
	FAILURE DETECTION LIBRARY DESIGN
	A.1. Class Diagram
	A.2. Message Sequence Diagrams

	Project JXTA, P2P FRAMEWORK
	B.1. Peer Architecture
	B.2. Peer Group Architecture
	B.3. JXTA Virtual Overlay Network
	B.4. Identification of Resources
	B.5. Communication
	B.6. Security

	JXTA CALLS FOR FAILURE DETECTION API FUNCTIONS
	C.1. Worker Peer API
	C.2. Client Peer API

