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ABSTRACT 
 
 
 

NEW DESIGN METHODS FOR POLYHEDRAL LINKAGES 
 
 
 

Kiper, Gökhan 

 

M.Sc., Mechanical Engineering Department 

 

Supervisor      : Prof. Dr. Eres Söylemez 

Co-Supervisor: Assoc. Prof. Dr. A. U. Özgür Kişisel 

 

September 2006, 115 pages 
 
 
 
This thesis analyses the existing types of polyhedral linkages and presents new 

linkage types for resizing polyhedral shapes. First, the transformation 

characteristics, most specifically, magnification performances of existing 

polyhedral linkages are given. Then, methods for synthesizing single degree-

of-freedom planar polygonal linkages are described. The polygonal linkages 

synthesized are used as faces of polyhedral linkages. Next, the derivation of 

some of the existing linkages using the method given is presented. Finally, 

some designs of cover panels for the linkages are given. The Cardan Motion is 

the key point in both analyses of existing linkages and synthesis of new 

linkages. 

 
 
Keywords: Deployable Structures, Polyhedral Linkages, Cardan Motion 
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ÖZ 
 
 
 

ÇOK YÜZLÜ MEKANİZMALARI İÇİN YENİ TASARIM YÖNTEMLERİ 
 
 
 

Kiper, Gökhan 

 

Yüksek Lisans, Makine Mühendisliği Bölümü 

 

Tez Yöneticisi : Prof. Dr. Eres Söylemez 

Ortak Tez Yöneticisi : Doç. Dr. A. U. Özgür Kişisel 

 

Eylül 2006, 115 sayfa 
 
 
 
Bu tez çalışmasında mevcut çok yüzlü mekanizmaları analiz edilmekte ve yeni 

çok yüzlü mekanizması çeşitleri sunulmaktadır. İlk olarak, mevcut çok yüzlü 

mekanizmalarının dönüşüm karakteristikleri, özellikle büyütme performansları 

verilmektedir. Sonra, tek serbestlik dereceli düzlemsel çokgen mekanizmaları 

için tasarım yöntemleri anlatılmaktadır. Bu çokgen mekanizmaları çok yüzlü 

mekanizmalarının yüzleri olarak kullanılmaktadır. Daha sonra, bazı mevcut 

mekanizmaların sunulan yöntemlerle türetilmesine yer verilmektedir. Son 

olarak, mekanizmalar için kaplama paneli tasarımları verilmektedir. Hem 

mevcut mekanizmaların analizinde, hem de yeni mekanizmaların tasarımında 

Cardan hareketi anahtar rol oynamaktadır. 

 
 
Anahtar kelimeler: Açılır-kapanır Yapılar, Çok Yüzlü Mekanizmalar, Cardan 

Hareketi 
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CHAPTER 1 
 

INTRODUCTION 
 

 

Umbrellas, eye glasses, tents, foldable chairs, tables, ladders… Some goods 

need to be collapsible for transportability or storage purposes. Also satellite 

wings and retractable roofs for pools and sports centers must be deployable. In 

all these movable constructions, the aim is not motion but to transform rigid 

bodies from a stable state to another. Hence, such systems are termed as 

deployable structures. 

 

Recently, functionality, cost reduction and ease-of-use requirements of 

applications for which deployable structures can be used accelerated the 

researches on development of new deployable systems. Even a symposium on 

deployable structures was held in Cambridge in 1998 [1]. 

 

Among many type of deployable structures, this thesis deals with the 

polyhedral linkages. Polyhedral linkages are the deployable structures used for 

spatial deployment, where a shape transformation between certain polyhedral 

shapes is realized. This type of linkages finds application in spatial 

magnification of objects, virus modeling, architecture and toy industry. 

 

In this chapter, some basic terminology and theory and the recent studies on 

deployable structures will be presented. In Chapter 2, the polyhedral linkages 

of various designers are analyzed in detail. New design methods for polyhedral 

linkages are presented in Chapter 3. Conclusions and discussions are given in 

Chapter 4. Also there is a section about polyhedral geometry in the appendices. 
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1.1 Some Basics of Polyhedral Geometry 

 

 

A polygon is a closed planar region bounded by straight lines. The line 

segments constituting the boundaries are called the sides of a polygon, while 

the intersection points of the sides are called the vertices of a polygon. In 

general, only two edges intersect at a vertex. Generally, degenerate cases where 

more than two edges intersect at a vertex are disregarded. Polygons are usually 

named by the number of sides, such as pentagon, hexagon, etc. As two special 

cases, polygons with three sides are called triangles and polygons with four 

sides are called quadrilaterals. Also some polygons may have special names 

due to special geometry, such as a parallelogram or an isosceles triangle. If any 

line segment drawn between two inner points of a polygon totally remains in 

the inner region, then such a polygon is called a convex polygon.  Otherwise, 

the polygon is a concave polygon. Convex polygons with equal side lengths 

and angles are called regular polygons. If all vertices of a polygon are on a 

circle, the polygon is called a cyclic polygon [2]. 

 

A polyhedron is a closed spatial region bounded by planes. The name 

polyhedron comes from the two Latin words poly, meaning many, and hedron, 

meaning face. The plural form is polyhedra. The planar boundaries of the 

polyhedra, which are indeed polygons, are called faces, while the line segments 

that are the intersections of the faces are called the edges and the intersection 

points of the edges are called the vertices. If an edge is intersection of more 

than two faces or if there is shrinkage at a vertex, the polyhedral shape is 

degenerate. Physically interpreting, an object with a small but finite volume 

must be able to freely travel inside a polyhedron, otherwise, the polyhedron is 

said to be degenerate. Degenerate polyhedra are generally disregarded. If any 

line segment drawn between two inner points of a polyhedron totally remains 
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in the inner region, then such a polyhedron is called a convex polyhedron, and 

otherwise a concave polyhedron. If all vertices of a polyhedron are on a sphere, 

the polyhedron is called a spherical polyhedron [2]. 

 

The number of edges meeting at a vertex is termed as the valency of a vertex. 

The angle between two adjacent edges on a polygonal face is called a plane 

angle. The angle between two neighboring faces is called the dihedral angle. A 

small neighborhood around a vertex is called the solid angle of a vertex. As 

angles are measured by distances on a unit circle, solid angles are measured by 

areas on unit spheres and the unit of measure is steradians [2]. 

 

Polyhedra are named according to the number of faces, such as tetrahedron, 

octahedron, decahedron, etc. Again, some special names due to special 

geometry exist. If a convex polyhedron has only regular polygons of the same 

type as the faces and the solid angles of all the vertices are the same, then the 

polyhedron is a regular polyhedron (Platon Solid). There are five regular 

polyhedra: the regular tetrahedron, the cube, the regular octahedron, the regular 

dodecahedron and the regular icosahedron (Figure 1.1). Some other well 

known special polyhedra are the Prism, Antiprisms, Archimedean Solids (Semi-

regular Polyhedra), Catalan Solids (duals of Archimedean Solids) and Johnson 

Solids [2]. 
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Figure 1.1 The five Platonic solids: tetrahedron, cube, octahedron, dodeca-

hedron, icosahedron 

 

 

 

Most of the time, polyhedra are classified according to the symmetries they 

preserve (See Appendix for the details of symmetry groups of polyhedra). The 

symmetry groups of polyhedra obviously constitute equivalence classes. 

Usually, two elements of a class can be obtained from one another by either 

truncating or expanding. Truncation is cutting pyramids on the vertices of a 

polyhedron and expansion is adding pyramids on the faces of a polyhedron, 

while preserving the symmetries. Archimedean solids can be obtained If one 

continuously truncates a polyhedron until the cuts finally meet or expands until 

two neighboring faces become coplanar, the dual (reciprocal) of the original 

polyhedron is found. The dual of a polyhedron is obtained by interchanging the 

vertices with faces and vice versa. Every polyhedron has a dual and the dual of 

the dual of a polyhedron is itself. Specifically, the tetrahedron is self-dual, the 

cube and the octahedron are duals and the dodecahedron and the icosahedron 

are duals [2].  
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1.2 Cardan Motion 

 

 

The Cardan motion plays an important role in this thesis, as it appears in 

analysis and synthesis of many linkages. To define and analyze Cardan motion, 

some basic definitions are necessary. 

 

Consider a fixed plane Γf  and a moving plane Γm. If Γm is not in pure 

translation, at any instant, there exists a fixed point on Γm and this point is 

called the pole or the instantaneous center. The curve traced by the pole in Γf is 

called the fixed centrode and the curve tracked by the pole in Γf is called the 

moving centrode. In general, the fixed centrode envelopes the moving 

centrode. If the centrodes are both circles with fixed centrode diameter twice of 

moving centrode diameter, then the circles are called the Cardan circles and 

the motion is called the Cardan motion [3]. 

 

A general point in the moving centrode has an elliptic trajectory in Γf, hence 

the Cardan motion is also referred as the elliptic motion (trajectory of point E 

and F in Figure 1.2). The center of such an ellipse is the center of the fixed 

centrode. As a limiting case, if the point of interest is on the moving centrode 

in Γm, the path of this point is a straight line passing through the center of the 

fixed centrode (Trajectory of point S in Figure 1.2). As a special case, the path 

of the center of the moving centrode in Γf is a circle with the same radius as the 

moving centrode and center coincident with the center of the fixed centrode 

(trajectory of point O in Figure 1.2) [3]. 

 

The Cardan motion most simply can be visualized as the rolling of a circle 

inside a circle with diameter twice larger. If these circles are gears, the 
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planetary gear pair obtained realizes the Cardan motion. Other two well known 

Cardan motion mechanisms are the isosceles slider-crank mechanism (equal 

crank and coupler length) (Figure 1.3.a) and a double slide along two 

intersecting lines (Figure 1.3.b) [3]. For the isosceles slider-crank mechanism, 

one joint of the coupler link traces a circle while the other one traces a straight 

line. Since the motion of a plane can be fully described by two distinct points, 

the motion of the coupler link is the Cardan motion. Similarly, both joints of 

the double slider trace a straight line, hence the motion is the Cardan motion. 

 

 

 

 
 

Figure 1.2 Possible trajectories of points in Cardan motion 

O’

S 

r/2
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centrode,

Γf 
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a)  b)  

 

Figure 1.3 a) Isosceles slider-crank OCS and b) Double slide AB 

 

 

 

The analysis of the double slider is necessary in the following chapter. 

Consider the double slide AB in Figure 1.3. A coupler point C has the 

coordinates 

 

 sin cos
tan

cX h pθ θ
α

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

   and   sin cosY q hθ θ= +        (1.1a, b) 

 

Solving (1.1a) and (1.1b) for cosθ and sinθ, by the Pythagorean Theorem the 

following ellipse equation is obtained 

 
2 2

2 2 2 2 22
tan tan tan

c q chb X p h Y c h XY pq h
α α α

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + − + = − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

         (1.2) 

 

For h = -bcosα and p = q = bsinα (1.2) is a circle equation with radius a = b 

and for 
2 2

2 2 2

tan tan
q qb p h c h

α α
⎡ ⎤⎛ ⎞ ⎛ ⎞+ + = +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
 (1.2) is a straight line equation. 

S(X, 0)

C 

X

Y 

Ο 

r r

p

q 

h 

a 

b 

A

B C(X, Y) 

X

Y

θ α 
Ο 

c = p + q 
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1.3  Recent Studies on Deployable Structures 

 

 

In this section a brief summary of previous work on deployable structures is 

presented. 

 

The very systematic studies on deployable structures were started by Prof. 

Sergio Pellegrino when he founded the Deployable Structures Laboratory 

(DSL) at the University of Cambridge in 1990 [4]. Pellegrino et al. study on 

folding conditions for two-dimensional and three-dimensional structures with 

scissors joints, packaging conditions for thin membranes, computational tools 

to identify singular configurations (kinematic bifurcations) along a deployment 

path, shape optimization methods for variable geometry trusses [5]. 

 

Among various projects of the DSL, retractable roofs need to be paid attention 

as far as this thesis is concerned. A detailed review of past work relating 

retractable roofs can be obtained from [5]. 

 

The Spanish engineers Pinero, Escrig and Zeigler used scissor hinges for 

retracting roofs [6]. Rather new designs shown in Figures 1.4-1.6 belong to 

Hoberman. The Iris dome (Figure 1.4) is constructed from a number of 

angulated elements (Figure 1.7) arranged on concentric circles. These form a 

circular shape and the circles are connected to each other by joints connecting 

the end nodes of the angulated elements, creating a series of pin-jointed 

parallelograms. This allows the structure to retract towards its perimeter thus 

creating a central opening at the center when retracted [7]. Some of 

Hoberman’s models were built (Figure 1.8). 
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Figure 1.4 The Iris Dome of Hoberman [8] 

 

 

 

   
 

Figure 1.5 A conic retractable dome of Hoberman which uses angulated 

scissor hinges [9] 
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Figure 1.6 A planar arch structure making use of angulated elements [9] 

 

 

 

 
 

Figure 1.7 An angulated scissor element [4] 
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a)       b)   

 

Figure 1.8 Hoberman outside structures: a) the iris dome used in EXPO 

2000, Hannover b) the gate used in 2002 Olympic Winter 

Games, Utah [7] 

 

 

 

Back to the retractable domes, the next development was by You and 

Pellegrino with the multi-angulated elements [10]. Each multi-angulated 

element is composed of a number of bars, which are rigidly connected to each 

other, instead of separate angulated elements as used by Hoberman [4]. 

Examples of such deployable structures are given in Figure 1.9. The 

mechanism in this figure consists of 24 identical angulated elements, each of 

which is a bar having 3 bends. There is a revolute joint at each bend. Also You 

and Pellegrino present noncircular foldable structures in [10], as illustrated in 

Figure 1.10. Kovacs and Tarnai studied foldable spherical bar structures [11]. 

 

 

 

http://www.sportsvenue-technology.com/projects/saltlakecity/index.html#saltlakecity9
http://www.sportsvenue-technology.com/projects/saltlakecity/index.html
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Figure 1.9 You and Pellegrino’s planar and spherical retractable roof 

designs [5] 

 

 

 

    
 

Figure 1.10 Noncircular retractable roof design examples [10] 
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Based on studies of You and Pellegrino, Kokawa proposed a new type of 

retractable dome structure (Figure 1.11). Kokawa also worked on a deployable 

tent design (Figure 1.12).  

 

 

 

       

 
Figure 1.11 Kokawa’s roof design [12] 

 

 

 

   
 

Figure 1.12 Kokawa’s arch-marionettic structure design [13] 

 

 

 

By further studies of Kassabian and Pellegrino cover elements were designed 

to cover the surface spanned by the multi-angulated elements (Figures 1.13, 

1.14). The main idea that allows the design was the fact that if a rigid body 
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rotation of the structure is allowed, then the motion of each angulated element 

is a pure rotation about a fixed point and hence can be described by a circle. 

Therefore it is possible to support the structure on a number of fixed points 

each corresponding to the centre of one of these circles [4]. The design details 

of these cover plates can be found in [5]. Later, Buhl, Jensen and Pellegrino 

studied on shape optimization of these cover elements [14]. 

 

 

 

a)       b)       

           
 

 

 

 

Figure 1.13 Kassabian and Pellegrino’s two spherical covered retractable 

roof designs [4]  
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a)        

b)        

 

Figure 1.14 Kassabian and Pellegrino’s two planar covered retractable roof 

designs [4]  
 
 

  

Some other active research areas of DSL are tensegrity structures [15, 16], 

solid surface deployable antenna, mesh reflector [17], bi-stable shells with 

embedded actuators, deployable Synthetic Aparture Radar (SAR) systems [18], 

wrinkling of membrane surfaces [19], dynamic analysis of catenary mooring 

cables, design and actuation of multi-stable structures and foldable composite 

structures. 

 

Another way to build deployable structures is to make use of Bennett linkages. 

Synthesis of Bennett linkages can be reviewed in [20]. Chen and You used 

these linkages as unit elements for deployable structures [21]. The Bennett 

linkage consists of a chain of four rigid links connected by four revolute, axes 

of which are neither parallel nor concurrent. The linkage is the only 4R linkage 
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with this property [20]. Some examples of deployable networks of Bennett 

linkages are illustrated in Figures 1.15, 1.16 [21]. Notice that Bennett linkages 

are joined to each other not at the joints of the linkages, but by revolute joints 

at the bars, constructing some small scale Bennett linkages in the neighborhood 

of the joints. Chen and You also used 6R linkages, specifically the Bricard 

linkages to synthesize deployable structures [22]. 

 

 

 

 
 

Figure 1.15 Example of a single-layer network of Bennett linkages [21] 
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Figure 1.16 Deployment sequence of a deployable arch [21] 

 

 

 

Another academic group studying deployable structures is the Kinetic Design 

Group (KDG) of Massachusetts Institute of Technology. The group studies 

deployable structures-related subjects such as folding egg and transforming 

partitions [23] (See Figures 1.17, 1.18).  
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Figure 1.17 A prototype for the transforming partitions project of KDG [23] 

 

 

 

     
 

Figure 1.18 A student project of KDG [23] 

 

 

 

1.4 Polyhedral Linkages 

 

Although, the term polyhedral linkage is defined as “space linkages made 

entirely of rigid plates hinged together” by Michael Goldberg in 1942 [24], this 

term refers to a more general class today, where only the shape is of concern 
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while the joint type is not limited to the hinged joints:  Polyhedral linkages are 

the deployable structures used for spatial deployment, where a shape 

transformation between certain polyhedral shapes is realized. In this thesis, 

only a special class of polyhedral linkages for which the linkages transform 

between similar polyhedral shapes with variable size will be considered. 

 

The present polyhedral linkages will be introduced in this section, however, 

detailed analysis is given in Chapter 2. 

 

First serious work on this type of polyhedral linkages is probably R. Fuller 

Buckminster’s discovery: the jitterbug [25]. The jitterbug is a polyhedral 

linkage which consists of eight equilateral triangular shaped links. The joints at 

the vertices of the triangles allow the linkage to have a one degree-of-freedom 

(dof) motion (Figure 1.19). The special thing about the linkage is that the 

triangular faces rotation and radial expansion (dilation symmetry) motion along 

the four three-fold symmetry axes of the octahedron. Later on, many jitterbug-

like linkages were discovered and Verheyen fully defined and classified these 

linkages giving them a new name: the dipolygonids [25]. 

 

 

 

     
 

Figure 1.19 Jitterbug’s motion: an octahedron – an icosahedron – a 

cuboctahedron – an icosahedron – an octahedron (simulation 

prepared using MSC.visualNastran 4D 2002) 
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Another important design of Fuller is the Fulleroid (Figure 1.20). Fulleroid 

contains isosceles triangle shaped links. The twelve link pairs connected by 

revolute joints remain coplanar on the faces of a fictitious rhombic 

dodecahedron at all configurations. The rhombic dodecahedron shape can be 

fully visualized in the minimal configuration. In 1997 Wohlhart presented the 

kinematic and dynamic analysis of the Fulleroid [26]. 

 

 

 

              
  

Figure 1.20 Fulleroid’s motion: the planar link pairs always remain on a 

rhombic dodecahedron [26] 

 

 

 

Recently, the famous Hoberman toys called attention to polyhedral linkages. 

The Hoberman toys retract and contract via linkages constructed in radial 

symmetry or by frames on the surface of polyhedra. Hoberman uses angulated 

scissor elements, polygonal link groups or geared joints for the expansion 

motion (Figure 1.21). Usually he uses spherical polyhedra, i.e. polyhedra 

having all the vertices on a sphere, with many faces so that the final 

configuration is almost a sphere (Figure 1.22) 
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Figure 1.21 The scissor elements and geared joints used in Hoberman 

designs [27, 28] 

 

 

 

           
   

 
 

Figure 1.22 Hoberman’s expanding polyhedra designs [27, 28, 29] 
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The scientific studies relating polyhedral linkages became more popular in the 

last few years. Among the latest studies, some of the most important studies 

belong to Karl Wohlhart. In 2001, Wohlhart proposed regular polyhedral 

linkages, where regular polyhedra are defined as all polyhedra which have 

similar arrangements of non-intersecting regular plane polygonal faces of two 

or more types about each vertex with all edges of equal length [30]. In this 

paper Wohlhart first defines the characteristics of the linkages and applies a 

mobility analysis to illustrate the overconstraintness of the linkages. Basically, 

Wohlhart synthesizes planar link groups on the faces of the polyhedron and 

interconnects these groups by special gussets. Later, Wohlhart gives the 

synthesis details of the linkages. Also the numerical details of the linkages 

having the shapes of the five Platonic solids are given (Figure 1.23). For the 

Archimedean solids, Wohlhart compares two different mechanisms: the 

linkages with planar link groups proposed in [30] and spatial link groups 

proposed in [31] (Figure 1.24). Finally Wohlhart presents linkage complexes 

which are obtained by combining same type of linkages (Figure 1.25).  
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Figure 1.23 Wohlhart’s linkages with the shapes of the Platonic solids 

proposed in [30] 
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Figure 1.24 Truncated icosahedral linkages with planar and spatial link 

groups [30] 
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Figure 1.25 Polyhedral linkage complexes: a hexagonal prism and a linkage 

complex having unit cell as the cubic linkage [30] 
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The same year, Wohlhart proposed new regular polyhedral linkages, this time 

with a new synthesis method [32]. Closed kinematic chains are used on the 

faces with triangular links interconnected with revolute joints (Figure 1.26). 

 

Contrary to the construction of the previous linkages [30], the vertices of the 

polyhedra in [32] are not located on the linkage but are blank. However, the 

gussets have simpler shapes in these new designs. 

 

Wohlhart’s later work [33] proposes design of irregular polyhedral linkages. 

As for the regular polyhedra, planar linkages can be designed for the faces of 

irregular polyhedra and gussets can be used to combine the faces. The planar 

link groups are like the ones used in [30] and the gussets are the same as in 

[30]. Figure 1.27 illustrates some of these designs. 

 

Another similar design study of Wohlhart relates double pyramidal linkages 

[34]. Double pyramids are obtained by attaching two identical pyramids at the 

bases, hence all the faces of the resulting polyhedra are triangular. Wohlhart 

proposes two different types of face-bound planar link groups for double 

pyramidal linkages: one with four links (an open chain) and other with six links 

(a closed chain). The second type is same as the type proposed in [32]. The 

first type involves less links and less revolute joints, but the resulting polyhedra 

are shakier than the second type. For both types, gussets are no different than 

the gussets introduced in [32]. Some linkage examples are given in Figure 

1.28. 
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Figure 1.26 Wohlhart’s linkages with the shapes of the Platonic solids 

proposed in [32] 
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Figure 1.27 Some irregular polyhedral linkages: A frustum pyramid linkage, 

a Catalan solid linkage and a toroidal linkage complex [33] 

 

 

 

 
 

       
 

Figure 1.28 Two octahedral double pyramidal linkages of the two types [34] 
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Another design method of Wohlhart involves scissor mechanisms at edges of 

Platonic polyhedra [35]. Wohlhart names these linkages as Zig-Zag linkages. 

Some of the resulting linkages are given in Figure 1.29. 

 

 

 

      
 

Figure 1.29 The cubic and the octahedral linkages of [35] 

 

 

 

A different design approach for the polyhedral linkages was developed by 

Agrawal, Kumar and Yim [36]. They simply use prismatic joints along the 

edges of polyhedra. In [36], only the polyhedra which have regular faces and 
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same valency at all vertices are considered. These polyhedra are the Platonic 

solids, Archimedean solids, cube faced prisms and equilateral triangle faced 

antiprisms (Figure 1.30). 

 

 

 

 
 

Figure 1.30 Exploded form of a tetrahedral linkage with prismatic joints [36] 

 

 

 

The idea is simple, but the applications are very interesting. Using these 

linkages as unit cells, any object of any shape can be approximated and 

becomes an expanding structure. Also different kinds of meshes are introduced 

in [36]. Figure 1.31 illustrates some mesh examples. A chair approximated 

using two alternative meshes is given in Figure 1.32. 
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Figure 1.31 Some alternative meshes: vertex mating (tetrahedra as the 

example), face mating (closed pack meshes; cubes as the 

example), edge mating (icosahedra, tetrahedra and dodecahedra 

as the examples) [36] 

 

 

 

   
 

Figure 1.32 Two different kinds of meshes used to approximate a chair [36] 
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Agrawal et al. also gives a dynamic analysis methodology for all kind of 

meshes. Lagrange’s dynamic equations are used and masses are assumed to be 

lumped at the vertices. The actuation force necessary can be calculated from 

these equations [36]. 

 

Some scientists make use of polyhedral linkages in modeling polyhedral 

viruses. First of the publications on this subject concentrates on viruses having 

truncated icosahedral shape [37]. The motion of the virus of interest is a 

nonlinear screw motion of the pentagonal faces of a dodecahedron finally 

constituting a truncated icosahedron (Figure 1.33). This continuous 

transformation from the dodecahedron to the truncated icosahedron is an 

example of the leapfrog transformation in fullerene chemistry [38]. This screw 

motion of the faces is also the subject of the later publications relating 

polyhedral linkage models of viruses [39 - 42]. [39] investigates the mobility 

and symmetries of the linkage given in Figure 1.33. It is notable that the 

mobility analysis is made using group theory so that the symmetries are taken 

into account. [40] additionally investigates the relative motion of the faces of 

the same linkage.  
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Figure 1.33 A cardboard model and computer simulation demonstrating the 

expansion process of a polyhedral virus [39, 40] 

 

 

 

Two other studies [41, 42] introduce a new linkage type for the leapfrog 

transformation. In these linkages, the faces are connected by two parallel bars 

(Figure 1.34). The mobility analysis of these new kinds of linkages is given in 

[41]. The analysis is done by the method described in [40]. [41] explains how 

to construct a mechanical model of a cowpea chlorotic mottle virus. 
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Figure 1.34 A realistic model for the motion of cowpea chlorotic mottle 

virus and a mechanical model for the same virus [41] 
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CHAPTER 2 
 

TRANSFORMATION CHARACTERISTICS OF PRESENT 

POLYHEDRAL LINKAGES 
 

 

In this chapter, the motion characteristics of present polyhedral linkages are 

analyzed. As far as polyhedral linkages are concerned, the main aim is to 

magnify a given polyhedral shape or transform a polyhedral shape to another 

one. To relate polyhedral shapes corresponding to different configurations of 

such a linkage one needs to make use of not only isometric (length preserving) 

transformations, but also some special non-isometric transformations. These 

motion classes are introduced before the details about the linkage types. 

 

Almost all of the present polyhedral linkages have a single dof and this motion 

can be described by a single transformation. It is desired that the linkage 

performs a large amount of magnification. Hence, magnification capabilities of 

the linkages are investigated and a comparison is given at the end of the 

chapter. 

 

 

2.1 Linear Similarity Transformations in 3D Space 

 

 

Isometries of the 3-dimensional Euclidean space are translations, rotations, 

reflections or combination of these three transformations. There are no other 

isometries in 3D space. Translations and rotations (and their combinations) are 



 36

considered to be the rigid body motions of the space (or sense preserving 

isometries) [43]. 

 

In scaling an object, not only translations and rotations, but also magnifications 

should be taken into account. Magnifications are similarity transformations that 

preserve parallelism and relative length (other than length ratio 1; that would 

be a translation) and direction of line segments (See Figure 2.1). All linear 

similarity transformations are combinations of isometries and magnifications. 

Every magnification leaves a point invariant and this point is called the center 

of magnification. The measure of magnification is termed as the ratio of 

magnification [43]. 

 

 

 

 
 

Figure 2.1 Magnification of a triangle ABC about a magnification center O 

 

 

 

These three motion types, and their combinations, are sufficient to explain the 

motion of polyhedral linkages. As a special name, a magnification plus a 

rotation is called a spiral similarity [43]. 

 

0 

A
A’

C

B
B’

C’ 
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2.2 Motion Characteristics of Present Polyhedral Linkages 

 

 

2.2.1 Dipolygonids 

 

 

The complete list of dipolygonids is given by Verheyen in [25]. The key point 

of these linkages is the translation and rotation of the faces along the symmetry 

axes. In [25], these linkages are constructed by starting from two polygons. 

These polygons are obtained by imaging a point P via two rotations A and B 

along two intersecting axes (Figure 2.2). Verheyen names such a pair of 

polygons as a dipolygon. A dipolygonid is defined as the image of a dipolygon 

over the group of rotations generated by A and B. Figure 2.3 illustrates an 

example for construction of a dipolygonid. 

 

 

 
 

 
 

Figure 2.2 An example of a dipolygon – A is a 120º rotation and B is a 90º 

rotation about two intersecting axes with a seperation of angle θ 

P 

A(P) 

A B 

B(P) 
θ
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Figure 2.3 A possible way of construction of the dipolygonid 8{3} + 6{4}| 

54º44′08′′ (8 triangles, 6 squares, θ = 54º44′08′′) 

 

 

 

 

P 

A A 

A 

P P 
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steps 
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Observing that if one allows the polygons of a dipolygon move along the 

rotation axes, the vertices of the polygons move along two cylinders, axes of 

which are the rotation axes of A and B. Then the dipolygon has a single dof 

motion (Figures 2.4, 2.5).  In Figure 2.5, Point P moves along the intersection 

of the cylinders while the polygons rotate and translate along the rotation axis. 

This motion is still realized for a dipolygonid [25]. Verheyen names this 

motion as the uniform motion of the dipolygon. During the uniform motion, the 

sense of rotation and translation of the polygons change at some certain 

positions. These positions and the consequences of these sense reversions are 

discussed in [25] in detail.  

 

 

 

     
 

 

Figure 2.4 The motion of the Jitterbug (4{3} + 4{3}| 70º31′44′′): 

transforms from an octahedron to a cuboctahedron, and vice 

versa. In between the icosahedron is realized 
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Figure 2.5 The circumscribing cylinders for the uniform motion of a 

dipolygon 

 

 

 

Using thin walled plates as linkages and joints such as given in Figure 2.6, one 

may construct many dipolygonids as single dof polyhedral linkages. A position 

analysis is presented in [25]. 
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Figure 2.6 Joints allowing rotation of plates while keeping the angle 

between the planes of the plates constant [25] 

 

 

 

The dipolygonids seem to be transforming between different polyhedral 

shapes. However, they can also be thought to be magnifying a certain shape. If 

the planes of the polygonal links are intersected, the volume inside will always 

be the same polyhedron at any configuration (Figure 2.7). 

 

 

 

                 
 

Figure 2.7 12{2} + 6{3}| 45º has its polygonal faces on a cube at any 

configuration 

θ
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Lastly, the magnification ratio between the minimal and maximum physically 

realizable configurations shall be found. Note that the polyhedral shape defined 

by the polygonal faces is considered to be magnified, hence only the centers of 

polygons of a dipolygonid are subjected to a magnification. The other points on 

the polygon are subject to a spiral similarity. For ease of calculations, the 

center of magnification shall be chosen as the intersection point of the axes of 

A and B – point O in Figure 2.5. 

 

Given a dipolygon with the rotations A, B and radii rA, rB as shown in Figure 

2.5, consider a right-handed frame (x, y, z) with origin at O, z-axis along axis of 

A and y-axis such that axis of B is contained in the yz-plane. Without loss of 

generality, choose A such that rA ≥ rB. Intersection point O and the angle θ 

between rotation axes are fixed once A and B are defined. Once rA ≥ rB and z is 

selected along the axis of A, the y component of P, Py, always has the same 

sign. Choose the sense of y and z such that Py is always positive. With this 

frame, the magnification ratio between the minimal and maximal 

configurations can be easily found as the ratio of elevations of the polygon 

defined by the rotation A at the maximal and minimal configurations. This ratio 

is also equal to the ratio of the z components of P at these configurations. 

 

For the dipolygonids, the minimal configuration is when the edges of two 

neighboring polygons of a dipolygon meet. At this configuration, the plane 

constituted by the rotation axes of A and B (yz plane in Figure 2.5) is a 

symmetry axis for the common edge [43]. Notice that there are two such 

configurations and are reflection images of one another with respect to plane 

yz. The maximal configuration is when the generating point P is on yz plane 

[43]. Although the trajectory of P, which is an ellipse – being intersection of 

two cylinders, intersects yz plane at two points, the one that is more distant to 

point O corresponds to the maximal configuration. At the maximal 



 43

configuration, obviously the distance of P to the rotation axes are rA and rB. At 

the minimal configuration, the intersection point of the meeting edge and yz 

plane, say point M, is hA and hB distant to the axes of rotations, where hA and hB 

are the radius of the inscribing circles of the polygons of the dipolygon. The 

reason to this is that the polygons are regular and point M is the midpoint of an 

edge. hA and hB can be related to rA and rB as (Figure 2.8) 

 

hA = rA cos(π/nA)        (2.1) 

 

hB = rB cos(π/nB)        (2.2) 

 

where nA and nB are the orders of A and B. 

 

 

 

 
Figure 2.8 The distance of a vertex and an edge of a regular n-gon 
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Finally the z components of P at the maximal and minimal configurations can 

be found with a little geometry on yz plane (Figure 2.9). The y components of 

P at the minimal and maximal configuration are 

 

yP,min = hA         (2.3) 

 

yP,max = rA         (2.4) 

 

 

 

 
 

Figure 2.9 The projection of P on yz plane at the minimal configuration 

(Mmin) and the maximal configuration (Pmax) 

 

 

 

Distance of Mmin and Pmax to axis of B yields 

 

|(yP,min, zP,min) × (sinθ, cosθ)| = hB          (2.5) 
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|(yP,max, zP,max) × (sinθ, cosθ)| = rB          (2.6) 

 

Hence, by (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6), the ratio of magnification is 

found as 

 

,max

,min

cos

cos cos cos

P A B

P
A B

A B

z r r
z r r

n n

θ
π πθ

+
=

+
          (2.8) 

 

As a special case for nA = nB = n the ratio of magnification is simply sec(π/n). 

The ratio is 2 for the tetrahedron, the octahedron (the Jitterbug) and the 

icosahedron, 1.414 for the cube and 1.236 for the dodecahedron. 

 

 

2.2.2 The Fulleroid 

 

 

The Fulleroid, named after R. Buckminster Fuller, is a linkage that has its faces 

of the polygonal links on a rhombic dodecahedron (Figure 2.10) [26]. Johannes 

Kepler was the first to give special importance to this polyhedron by 

classifying it as a half-regular polyhedron [26]. Today, the rhombic 

dodecahedron is known to be a Catalan solid, being the dual of the 

cuboctahedron - an Archimedean/semi-regular solid [44]. 
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Figure 2.10 The expansion/contraction motion of the Fulleroid between the 

two limit configurations [26] 

 

 

 

Notice that, the Fulleroid seems more likely magnifying a certain polyhedral 

shape, rather than transforming a polyhedral shape to another one (Figure 

2.11). 

 

 

 

 
 

Figure 2.11 Polygonal faces of the Fulleroid on rhombic dodecahedron [26] 

 

 

 

A position analysis for the Fulleroid is presented in [26], but an angular 

displacement is used as the parameter. Instead of making use of this position 
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data one may make use of the size of a diagonal of a face at the extreme 

configurations. Since a single parameter suffices to define a continuous 

magnification, magnification of a face or a line or even a point fully determines 

the magnification of a spatial object. The minimal and maximal configurations 

of a pair of links constituting a face is given in [26] as in Figure 2.12. 

 

 

 

 
 

Figure 2.12 A pair of coplanar links at the face of a Fulleroid – at extreme 

configurations 

 

 

 

In [26] the angle between sort diagonal of the rhombic face and a link is 

calculated as 1 5tan
2 2

ϕ −= , so     

 
5 2 2sin and cos
33 33

ϕ ϕ= =     (2.8) 

 

By sine theorem 
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1
3 sin

sin
sl ϕ

α
=          (2.9) 

 

( )2
2 sin

sin
sl α ϕ
α

= +                  (2.10) 

 

2 1sin ,cos
3 3

α α= = , hence by (2.8) 

 

 ( ) 3sin sin cos sin cos
11

α ϕ α ϕ ϕ α+ = + =               (2.11)  

 

Then by (2.8), (2.9), (2.10) and (2.11), the total magnification of the short 

diagonal is 

 

1 2 33 2.031
2 8

l l
s

+
= =                  (2.12) 

 

Hence the total magnification of the Fulleroid is slightly larger than 2. 

 

 

2.2.3 Hoberman Designs 

 

 

Hobeman’s success on deployable structures is built upon the discovery of the 

so called angulated element. In most of the designs angulated elements are the 

building blocks (Figure 2.13.a), but in some designs gear joints (Figure 2.13.b) 

or polygonal link groups are used. However, the designs using gear joints 

(Figure 2.14) are kinematically equivalent to the star transformers of Wohlhart 
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(See Section 2.4.1) and the designs with polygonal link groups either obtained 

by variations of angulated elements or are dipolygonids (Figure 2.15). 

 

 

 

a)  b)  

  

Figure 2.13 a) The scissor elements [27] b) Geared joints [28] 

 

 

 

a) b) c)  

 

Figure 2.14 An octahedral symmetric linkage with gear joints a, c) in two 

possible folded configurations b) in an expanded configuration 

[28] 
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Figure 2.15 A design constructed with polygonal elements [29] – a 

dipolygonid: 20{3} + 20{3}| 41º48′37′′ 

 

 

 

An angulated element consists of two bent beams with three kinematic 

elements on each – two on the ends and one at the bend. The beams are 

connected via a revolute joint at the bends of the beams and the kinematic 

elements at the ends are for connection with other angulated elements (Figure 

2.15.a). The main feature of the angulated element is that if the four ends of the 

element is bound to two straight lines, the linkage is movable (Figure 2.16). A 

mechanism as in Figure 2.17 has 3(3 – 5 – 1) + (1 + 4 · 2) = 0 dof in general, 

but for some special link dimensions the mechanism becomes movable. 

Hoberman states these special dimensions as 

 

|AE| = |CE|, |BE| = |DE| and ∠AEB = ∠CED = π – α             (2.13) 

 

where, α is the angle between the straight lines being traced (Figure 2.17) [45]. 

Later, You and Pellegrino showed that a general angulated element can have 

either of the following proportions [10]: 
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|AE| = |CE|, |BE| = |DE|                (2.14) 

 

|AE| / |CE| = |BE| / |DE| and ∠AEB = ∠CED = π – α             (2.15) 

 

 

 

a)           b)    

 

Figure 2.16 A general angulated scissor element in two configurations [8] 

 

 

 

 
 

Figure 2.17 A mechanism with an angulated scissor element  
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As shall be proved in the next chapter, the special dimensions given by (2.13), 

(2.14) and (2.15) just guarantee the motion of the angulated element through a 

constant angle but do not provide a magnification, that is |OB|/|OC| varies 

during the motion. But if all link dimensions are equal as a special case of 

(2.13), a magnification is realized. Hoberman designed many linkages using 

angulated elements (Figures 2.18, 2.19). 

 

 

 

   
 

Figure 2.18 The famous Hoberman sphere [27] 
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Figure 2.19 A polyhedral linkage making use of angulated elements – 

magnifies a truncated icosahedron [45] 

 

 

 

By the nature of magnification, only an angulated element shall be analyzed for 

the magnification capability of a polyhedral linkage made up of only one type 

of angulated element. Consider an angulated element with dimensions |AE| = 

|CE| =|BE| = |DE| = l and ∠AEB = ∠CED = π – α. Then the maximum 

configuration is when C, E and B are collinear as will be proved in the next 

chapter (Figure 2.20.a). The minimum physically realizable configuration is 

when A, D and O are coincident, because the angulated element interferes with 

the other angulated elements after this position (Figure 2.20.b). Then the ratio 

of magnification between these two extreme configurations is 

 

sin
2 cosec

2 cos
2

l

l

α

α
α

=                  (2.16) 

 

So the magnification ratio is inversely proportional with sinα, that is a better 

magnification is achieved for smaller angles. If angulated elements are used as 
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edges to construct a regular polyhedral linkage, the ratio of magnification is 

3 2 4 1.061≅  for a tetrahedron or a cube, 5 2 1.118≅  for the icosahedron 

and 3 2 1.500=  for the dodecahedron. For the octahedron, these elements 

cannot be used for magnification purposes, because the ratio of magnification 

turns out to be 1. For the Hoberman sphere the ratio is 2 and for a truncated 

icosahedron (Figure 2.19) the ratio is ( ) ( )29 9 5 6 6 5 2.53+ + ≅ . 

 

 

  

 
 

Figure 2.20 The maximal and minimal positions of an angulated element 

with |AE| = |CE| =|BE| = |DE| = l and ∠AEB = ∠CED = π – α 

 
   

 

 

2.2.4 Wohlhart Designs 

 

 

Wohlhart’s polyhedral linkage designs involve five types of linkages: 

polyhedral star-transformers for regular polyhedra, linkages with multiple 

slider-cranks, linkages with planar link groups that have central links for 
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double pyramids, linkages with planar link loops for regular polyhedra and 

polyhedral zigzag linkages. 

 

 

2.2.4.1 Polyhedral Star-Transformers 

 

 

Star-transformers of Wohlhart (Figure 2.21) and Hoberman designs with gear 

joints (Figure 2.22) are kinematically identical designs, hence both designers 

should be acknowledged. In these linkages, the main aim is not magnification, 

but some sort of expansion transformation (see Section 1.1). By the nature of 

the assembly technique used, the faces are necessarily cyclic, hence the 

resulting polyhedral shape is mostly spherical. It will be proved in the next 

chapter that a sufficient condition for a polyhedron with cyclic faces to be 

spherical is that all the vertices have valency 3. In these linkages, two minimal 

configuration and two maximal configurations exists. If one considers the 

outward-pointing hubs as vertices of a polyhedral shape (Figure 2.22.a, b), then 

the two possible small configurations turn out to be the duals of each other, i.e. 

as if the faces and the vertices of one another are interchanged. 
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Figure 2.21 Polyhedral star-transformer for the truncated icosahedron [30] 

 

 

 

a)     b)      c)  

 

Figure 2.22 A design of Hoberman a, b) minimal configurations with (a) 5-

valent vertices pointing outward and (b) 3-valent vertices 

pointing outward c) an intermediate configuration between two 

maximal configurations [28] 

 

 

 

The vertex hubs are furthest to the center when the inner hubs become coplanar 

with the neighboring hubs. This is the fact, because if the inner hubs further 

move outwards, the vertices start shrinking towards the center. Examples show 
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that the maximal configuration is not unique. Indeed, for Platonic solids duals 

with faces having same circumscribing circle radii turn out to have the same 

circumscribing sphere radius. Whether this is the case for other spherical 

polyhedra with cyclic faces is an open problem. 

 

The intermediate configurations, as well as the largest configuration belong to 

the truncation-extension series of dual polyhedra. See [46] for a better 

understanding of truncation-extension series of polyhedra. 

 

Notice that for both of the smallest configurations among the two possibilities 

the outer hubs are equally distant to the inner hubs and this distance is the 

length of a link, being equal to the radius of the circumscribing sphere. For 

Platonic solids, in the maximal configuration, the link length becomes the 

radius of a circumscribing circle of a face. Then ratio of magnification is the 

ratio of the radius of a circumscribing circle of a face to the radius of the 

circumscribing sphere. This ratio depends on the dihedral angle, γ, and the 

number of sides of a face, n (Figure 2.23): 

 

( )

( ) ( )
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            (2.17) 
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Figure 2.23 Relating circumscribing circle of a face to the circumscribing 

sphere for a Platonic solid 

 

 

 

The total ratio of magnification is 5 4 1.061≅  for the tetrahedron, 

3 2 1.225≅  for the cube-octahedron pair and ( )15 3 5 8 1.647+ ≅  for the 

dodecahedron-icosahedron pair. 

 

 

2.2.4.2 Linkages with Multiple Slider-Cranks 

 

  

These linkages involve multiple slider-cranks on the faces as planar link groups 

(Figure 2.24). Then these planar link groups can be assembled together via 

some special gussets to obtain a spatial linkage of any polyhedral shape. For 

regular faces, if a totally closed form of the polyhedral shape is desired, the 

lengths of the connecting rods must be the same as a side length of the central 

link, so that there are no cavities in the minimal configuration. In a general 

linkage, at any configuration the vertices of the polyhedral shape are realized 

V

O
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as the gussets, while the edges remain blank and faces are realized partially 

(Figures 2.25-2.27). 

 

 

 

 
 

Figure 2.24 A planar link groups for an irregular pentagon [33] 

 

 

 

     
 

Figure 2.25 The magnification of the vertices are fully realized, but the 

edges are missing and the faces have blanks 
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Figure 2.26 Platonic solids by implementing planar link groups with 

multiple slider cranks on the faces [30] 

 

 

 

   
 

Figure 2.27 An irregular tetrahedral linkage [33] 
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For the polyhedral linkages with regular faces, i.e. the 5 Platonic solids, the 13 

Archimedean solids, the 92 Johnson solids, the regular prisms and the regular 

antiprisms, the coupler lengths are preferably equal to the crank lengths, hence 

the total ratio of magnification is 2. For the irregular linkages, the ratio of 

magnification is bound to the avoidance of the interferences of the gussets with 

the central links. It is hard to deduce a general statement for the ratio of 

magnification of all irregular polyhedral shapes, but at least one may guarantee 

that 2 is an upper bound for the ratio. 

 

 

2.2.4.3 Linkages with Planar Link Groups for Double Pyramids 

 

 

A double pyramid, or a dipyramid, is obtained by uniting two pyramids with 

bases of same geometry. So, all the faces of a dipyramid are triangular. The 

linkages for dipyramids proposed by Wohlhart comprise planar link groups 

with 4 links in each link group (Figure 2.28) [34]. The linkages have dextro 

and leavo parts, hence only dipyramids with a base of even number of edges 

can be magnified. Also, not mentioned in [34], but, since all polygons can be 

triangulated, these link groups can be used for polyhedral shapes other than 

dipyramids. The triangles can be arbitrarily dissected as in Figure 2.28.a.  

Notice that this open chain has 4 dofs in a planar affine space, but the three 

linearity constraints applied on the free vertices of the outer triangles force the 

chain to have single dof (Figure 2.28.b). The linearity constraint is obtained 

with assembling the neighboring link groups spatially (Figure 2.29). This dof 

reducing idea can be used to synthesize many linkages. Indeed, another 

example is the subject of Section 2.4.4. During the motion of this group of 

linkages, the vertices remain blank. The edges are realized by two joints and 

the faces are partially blank (Figure 2.20). 
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a)   b)      

 

Figure 2.28 The two types of link groups proposed in [34] 

 

 

 

 

 

             
 

Figure 2.29 An octahedral linkage [34] 

 

 

 

          
 

Figure 2.30 The edges and faces realized partially [34] 
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In [34], a set of transcendental equations in terms of angular deviations of the 

outer triangles from the sides (ϕ 1, ϕ 2 and ϕ 3 in Figure 2.28.b) are given and 

numerical solution of these is proposed. Here, another way of position analysis 

will be proposed. 

 

If a reference frame is fixed at a vertex of the magnifying triangle, an outer 

triangle experiences a Cardan motion (Figure 2.31). Then, when the outer links 

are constrained such that a continuous magnification of a triangle is realized, 

all joints of the central triangle track an ellipse with respect to the moving 

frames at the vertices of the triangle magnified. 

 

 

 

 
 

Figure 2.31 The motion of the joint connecting an outer triangle and the 

central triangle with respect to frame (O, x, y) 
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As was obtained in the previous chapter, the motion of a joint connecting an 

outer triangle and the central triangle with respect to a frame located at the 

corresponding vertex of the magnified triangle is 

 
2 2

2 2 2 2 22
tan tan tan

c c chb X p h Y ph q h XY pq h
α α α

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + − + + = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
(2.18) 

 

where, a, b, h, p, q and α are as shown in Figure 2.31 and c = p + q (See 

Section 1.3). Then the elliptic trajectory with respect to (O, x, y) is fully 

defined by 
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                 (2.21) 

 

where, d = c/tana, e and f are the semiminor and semimajor axes lengths and f 

is the angular displacement of the major axis from horizontal [47]. 

 

If the reference frame is translated to the center of the circumscribing circle of 

the central triangle, i.e. frame (F, X, Y) in Figure 2.13, the position of point R is 

given by 
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( ) ( )( )
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( )
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where, (XA,i, YA,i) is the position of A with respect to (F, X, Y) at the minimal 

configuration and k is the ratio of magnification. Since C tracks a circular path 

with respect to (F, X, Y), (2.22) may be written as 

 

( ) ( )( )
( )( )( )

( )
2 22 2 2

22, ,

, ,

cos 2 sin
2 cos sin

A i A i

A i A i

b r kX a d dh r kY
pq h dh

ch dq r kX r kY
θ θ

θ θ
⎡ ⎤− + + + −

= − −⎢ ⎥− + − −⎣ ⎦
        (2.23) 

 

where, r is the radius of the circumscribing circle of the central triangle and θ 

is the inclination of FC
uuur

 from positive X. (2.23) involves two variable 

parameters: k and θ. If (2.23) is rearranged as 
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from which k can be solved in terms of θ using the quadratic formula. 

 

For the most simple case consider an equilateral triangle dissected at the 

midpoints of the sides with one side length 2. Then the fixed parameters are     

a = b = c = 1, p = q = ½, h = 3 2 , r = 1 3 XA,i = -1, YA,i = 1 3−  and           

d = 1 3. Then (2.24) yields 

( )2 24 2 3cos sin 4sin 2 3sin2 6 0k kθ θ θ θ+ + + − − =               (2.25) 
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Hence, 

 

k = 2cos(θ –θ0)                   (2.26) 

 

where, 0 5 6θ π=  is the angle θ at the minimal configuration. (2.26) is plotted 

using Mathcad 12® for the physically realizable motion range and the plot if 

presented in Figure 2.32. The maximum ratio of magnification is 2. 
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Figure 2.32 Ratio of magnification versus central link rotation for an 

equilateral triangular linkage 
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2.2.4.4 Linkages with Planar Link Loops for Regular Polyhedra 

 

 

These linkages magnify polyhedra with regular faces by means of closed loop 

planar link groups (Figure 2.33) [32]. Every chain on a face is a single loop and 

consists of 2n identical triangular links connected by 2n revolute joints for an 

n-gon. As was for the linkages of Section 2.4.4, also in these linkages the 

vertices of the polyhedral shape are blank and the edges and the faces are 

partially realized (Figure 2.34). 

 

 

 

 
 

Figure 2.33 Faces magnified as an opening flower [32] 
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Figure 2.34 Vertices blank, edges through two points, faces partially blank 

 

 

 

Again, the Cardan motion plays an important role for these linkages. If the 

center of the regular polygon is fixed and the inner vertices of the triangular 

links are linearly constrained, the outer vertices of the links realize a Cardan 

motion (Figure 2.35).  

 

 

 

 
 

Figure 2.35 The Cardan motion of a link pair 
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In [32], the maximum ratio of magnification is obtained using geometric 

relations and found as 

 

( )
221

sin 2
k

nπ
⎡ ⎤= +⎢ ⎥⎣ ⎦

                  (2.27) 

 

where, n is the number of sides of the regular polygon. Hence, the ratio of 

magnification is 2.517 for an equilateral triangle, 2.236 for a square, 2.329 for 

a regular pentagon and 2.517 for a regular hexagon. 

 

 

2.2.4.5 Polyhedral Zigzag Linkages 

 

 

This design of Wohlhart is for the five Platonic solids only. The expansion is 

achieved with the scissor mechanism as well as some special connection 

mechanisms. These connections, or articulations, are of 4 type (Figures 2.36-

2.37). The connection mechanisms are spatial mechanisms with their centers 

corresponding to the vertices of the polyhedral shape. The torsion of the edges 

from the vertices is achieved by special gussets. The scissor edges are either 

towards the center of the polyhedra (as for the tetrahedron, the cube and the 

icosahedron) or do not interfere the inner part of the polyhedra (as for the 

octahedron and the dodecahedron). The type of the articulation used for the 

octahedral and the icosahedral linkages is named by Wohlhart as the flat ring 

articulation, while the others are named as the rotor shield articulation for the 

tetrahedral linkage, the parallel plate articulation for the cubic linkage and the 

coronal articulation for the dodecahedral linkage [35]. 
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Figure 2.36 Articulations for tetrahedral, cubic, dodecahedral linkages [35] 
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Figure 2.37 Articulations for octahedral and icosahedral linkages [35] 

 

 

 

For these linkages, the edges are described by the scissor mechanisms, the 

vertices are by the articulations, but the faces remain blank. 
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Neglecting the thicknesses of the scissor elements in the formulae given in 

[35], the maximum ratio of magnification is 5 for the tetrahedral linkage, 7.544 

for the cubic linkage, 2.121 for the octahedral linkage, 2.674 for the 

dodecahedral linkage and 1.854 for the icosahedral linkage. 

 

 

2.2.5 Agrawal et. al. Designs 

 

 

There is not much ingenuity in these designs. The idea is to use prismatic joints 

along edges of polyhedral shapes while preserving the solid angles rigidly. The 

very outcomes of this kind of design are that there are less number of kinematic 

elements when compared to the other designs and the vertices and the edges 

are realized throughout the expansion process. The resulting linkages are single 

dof except for some polyhedra. For example, the cube becomes 3-dof when its 

edges are mobilized by prismatic joints. In this case, Agrawal et al. proposes 

triangulation of some faces until the mechanism becomes a single dof one 

(Figure 2.38). Although these designs seem to be advantageous due to the 

vertices and edges perceived at all configurations, they bring serious problems 

such as binding due to friction [36].  

 

 

 

    
 

Figure 2.38 The tetrahedral, the cubic and the dodecahedral linkages [36] 
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The maximum ratio of magnification is less than two if a single prismatic joint 

is used along the edges. The ratio can be increased if telescoping elements are 

used, instead. However, in this case, dynamical problems would increase. 

 

 

2.2.6 Kovács et al. Designs 

 

 

Kovács et al. use dipolygonids and a new type of polyhedral linkage, which 

they call the double link expandohedra, to model the motions of polyhedral 

viruses (Figure 2.39) [41, 42]. The dipolygonids used involve a digon and an n-

gon. The double link expandohedra look similar to the dipolygonids but there 

are two rods instead of one to join the polygonal faces. The double link 

expandohedra are used for polyhedral shapes with only trivalent vertices. 

Although [41] and [42] suggest spherical joints, two dof joints shall be used to 

achieve a single dof linkage. A rod joins the vertex of a polygon with the 

midpoint of the edge of the adjacent polygon. During the motion, the faces are 

partially realized, while the edges and the vertices remain blank (Figure 2.40). 
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Figure 2.39 A cubic double link expandohedra [42] 

 

 

 

         
 

Figure 2.40 Vertices and edges blank, faces partially realized 

 

 

 

The motion of the double link expandohedra also is similar to the motion of a 

dipolygonid. However, the rotational sense of the polygonal faces does not 

change as does for the dipolygonids. For the Platonic solids, the maximal 

configuration is when the opposite vertices of two corresponding edges meet, 
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hence the ratio of magnification is the ratio of the radius of the circumscribing 

circle to the inscribing circle, which is equal to sec(π/n) for an  for n-gonal 

faces. This ratio is the same for the dipolygonids with same regular faces. The 

ratio is 2 for the tetrahedron, 1.414 for the cube and 1.236 for the 

dodecahedron. 

 

 

2.3 Comparison of the Present Designs 

 

 

Some properties of the polyhedral linkages covered in this chapter are 

summarized in Table 2.1. The partially realized and not realized parts of the 

polyhedral shape being magnified and the maximum ratio of magnification are 

listed in the table. The ratio for the Fulleroid is for the rhombic dodecahedron, 

the ratio for the linkages with planar link groups for diyramids is for the 

octahedron, the ratio range for the double link expandohedra is for the trivalent 

Platonic solids and the ratio ranges for the other linkages are for the Platonic 

solids. 

 

Considering the perception of the polyhedral shape, the Hoberman sphere, the 

polyhedral zigzag linkages and the linkages with prismatic joints are the most 

effective linkages. However, the linkages with prismatic joints are more likely 

to malfunction and the Hoberman sphere and the polyhedral zigzag linkages 

have the most critical clearance effects during the motion. The linkages that 

have the greatest capability of magnification are the polyhedral zigzag 

linkages. While the Fulleroid is only for a single polyhedral shape, the linkages 

with prismatic joints can be used for any polyhedral shape. The less link-

requiring linkages are the linkages with prismatic joints with requiring vertex 

number of links or the dipolygonids with requiring face number of links (not 
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all the dipolygonids). The most link-requiring linkages are the polyhedral 

zigzag linkages. 

 

 

 

Table 2.1 Summary of some properties of the present polyhedral linkages 

 

Designer Design Name Not realized 
parts 

Partially 
Realized Parts 

Maximum 
Ratio of Mag.

Fuller / 
Verheyen 

Jitterbug / 
Dipolygonids 

Vertices, 
Edges Faces 1.24 – 2 

Fuller Fulleroid Vertices, 
Edges Faces 2.03 

Hoberman Hoberman Sphere Faces - 1 – 1.5 

Wohlhart Polyhedral 
Star-Transformer Edges Faces 1.06 – 1.65 

 
Wohlhart 

Linkages With 
Multiple Slider-

Cranks 

 
Edges 

 
Faces 

 
1.06 – 1.65 

 
Wohlhart 

Linkages With 
Planar Link 
Groups for 
Diyramids 

 
Vertices 

 
Edges, Faces 

 
2 

 
Wohlhart 

Linkages With 
Planar Link Loops 

for Regular 
Polyhedra 

 

Vertices 
 

Edges, Faces 
 

 
2.24 – 2.52 

Wohlhart Polyhedral Zigzag 
Linkages Faces - 1.85 – 7.54 

Agrawal 
et. al 

Linkages With 
Prismatic Joints Faces - 2 

Kovács et 
al. 

Double Link 
Expandohedra 

Vertices, 
Edges Faces 1.24 - 2 
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CHAPTER 3 
 

NEW DESIGN METHODS FOR POLYHEDRAL LINKAGES 
 

 

In this chapter, new linkage types for resizing polygonal and polyhedral shapes 

are presented. First, single dof planar linkages are synthesized in order to 

obtain planar link groups for the faces of polyhedral shapes. The planar 

linkages involve only revolute joints. Then the polyhedral linkages are 

assembled by interconnecting the planar linkages with links at the vertices to 

retain the solid angles of the polyhedral shape of interest. 

 

In the first section, the systematic approach to the problem is given. Then a link 

group is considered for the required task and a solution is obtained. Afterwards, 

different types of linkages are derived from the resulting linkages. Finally, the 

spatial linkages are presented and the linkages are illustrated by examples. 

 

 

3.1 Sectioning Polyhedra 

 

 

Using magnifications, it can be shown that scaling (magnifying) a polyhedron 

is equivalent to scaling its faces with the same scaling factor while preserving 

the shape, i.e. keeping proper edges of the faces in touch. The scaling problem 

for a polygon can be simplified into the scaling problem for a triangle, because 

polygons can be triangulated. Among many possible triangulations, a suitable 

one for magnification purposes is to choose a point inside the polygon and 

connect it to the vertices by line segments (Figure 3.1). 
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Figure 3.1 A triangulation of a pentagon 

 

 

 

Consider an arbitrary triangle ¹OPmaxRmax of side lengths l, p and r (Figure 3.2). 

Applying a magnification with center O and magnification ratio k (< 1), the 

triangle is mapped to a new, similar triangle ¹OPR (Fig. 2). A linkage that will 

perform this transformation is to be designed. 

 

 

 

 
 

Figure 3.2 Magnification of a triangle centered at one of its vertices 
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Magnification is a special linear similarity transformation, yet is not an 

isometry. To physically realize such a transformation by means of linkages, the 

first thing that comes into mind is to use prismatic joints along the edges of the 

shape of interest, as investigated by Agrawal et. al. [36]. As stated in [36], use 

of prismatic joints has practical problems such as binding due to friction. 

Alternatively, the transformation can be partly realized using revolute joints 

only. In such systems, one cannot magnify the whole shape of interest, but 

vertices of the polygon can be scaled. From here on, a triangle, or in general a 

polygon or a polyhedron, will be considered to be fully defined by its vertices. 

Of course the connectivity information between the vertices is also necessary 

to define a polygon or polyhedron, but this aspect is out of concern when 

similarity transformations are considered. Since the vertices are used to define 

a polygon, during the design of linkages, the magnification of the sides will be 

kept out of scope. 

 

Considering the motion of the vertices during a continuous magnification of a 

triangle, once the magnification center is chosen as one of the vertices, the 

other two vertices must realize a straight line motion. Consider two slider-

crank mechanisms OSQ and OTQ with coupler points P and R on links 2 and 4, 

respectively (Figure 3.3). There are no sliders along the sides of the triangles, 

but coupler points P and R must have a linear motion for a continuous 

magnification of the triangle. The aim is to keep ¹OPR similar to ¹OPmaxRmax at 

any configuration. The location of point Qmax will be discussed in the following 

sections, but for now, its location can be assumed to be arbitrary on line 

PmaxRmax. During the motion, Q will not necessarily be on edge PR. 
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Figure 3.3 A six link kinematic chain which is supposed to scale a triangle 

 

 

 

For further simplification of the problem, consider the slider-crank mechanism 

OSQ only (Figure 3.4). Fictitiously Q is constrained by a slot. Note that the 

mechanism has a single dof. Dimensional synthesis of such a mechanism to 

obtain a straight line motion is performed in the following section. 

 

 

 

 
 

Figure 3.4 Simplified mechanism for half of a triangle 
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3.2 Synthesizing Linkages for the Triangular Sections 

 

 

For a triangle ¹OPmaxQmax, let ∠PmaxOQmax = α, |OPmax| = r and |QmaxPmax| = lP 

(Figure 3.5). For any triangle similar to ¹OPmaxQmax, α and the ratio r/lP is 

invariant. |OS| = a1, |SQ| = a2, |QP| = |QmaxPmax| = lP and ∠SQP = γ are the link 

parameters of the mechanism. θ1, θ2 and s2, shown in Figure 3.6, are the joint 

parameters. a1, a2 and γ are to be determined such that P traces a straight line. 

 

 

 

 

 

Figure  3.5 The known parameters of the system 

 

 

 

 
 

Figure 3.6 The link parameters and the joint parameters of the mechanism 
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Loop equations for the mechanism can be written as 

 

 a1cosθ1 + a2cosθ2 = s2        (3.1) 

 

 a1sinθ1 + a2sinθ2 = 0        (3.2) 

 

In order for the point P to be on line OPmax, the following must be satisfied 

 

Py = Pxtan(α)         (3.3) 

 

Writing x and y components of P 

 

Px = s2 + lPcos(θ2 – π – γ)      (3.4) 

 

Py = lPsin(θ2 – π – γ)        (3.5) 

 

Substituting (3.4) and (3.5) in (3.3) 

 

lPsin(θ2 – π – γ) = [s2 + lPcos(θ2 – π – γ)]tanα     (3.6) 

 

Manipulating (3.6) 

 

lPsin(α + γ − θ2) = s2sinα       (3.7) 

 

At the extended position of the mechanism, ds2/dθ2 = 0, so differentiating (3.7) 

with respect to θ2 gives 

 

cos(α + γ +θ2) = 0        (3.8) 
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For θ2 = 2π, i.e. at the extended position, by (3.8) 

 

γ = π/2 − α         (3.9) 

 

Also for θ2 = 2π (3.8) yields γ + α = 3π/2, but since at the extended position α 

and γ are the inner anglers of a triangle, (3.9) is the only realizable solution. 

 

Also, at the extended position, by (3.1), (3.7) and (3.9) 

 

1 2

sin Pl
a a

α =
+

                  (3.10) 

 

Reconsidering (3.7) for θ2 = 2π – α  and using (3.1), (3.9) and (3.10)  

 

(a1 + a2)lPcosα  = lP(a1cosθ1 + a2cosα)              (3.11) 

 

Using (3.2) and Pythagorean Theorem in (3.11) 

 

a1cosα = 2 2 2
1 2 sina a α−                 (3.12) 

 

Squaring both sides of (3.12) and using (3.10) 

 

1 2 2sin
Pla a

α
= =                   (3.13)  

 

Then by (3.2) and (3.13) 

 

θ1 + θ2 = π                  (3.14) 
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The design parameters are found in terms of the link parameters by (3.9) and 

(3.13), but still there are some restrictions on these design parameters due to 

the task requirements. First, π/2 is an upper bound for ∠OPmaxQmax, because at 

the maximal configuration, ∠OPmaxQmax < π – α – γ  = π/2 by (3.9). Second, to 

realize a magnification, one must have |OP|/|OR| constant at any configuration 

(See Figure 3.3), so location of Qmax cannot be arbitrary. Let |QmaxRmax| = lR. To 

have |OP|/|OR| constant, one must ensure at s2 = 0 

 

P

R

lOP r
OR l p

= =                   (3.15) 

 

For |QmaxRmax| = p and lP + lR = |PmaxRmax| = l (Figure 3.7), by (3.15) 

 

P
rll

p r
=

+
                  (3.16) 

 

and 

 

R
pll

p r
=

+
                  (3.17) 
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Figure 3.7 The largest desired size of ¹OPR 

 

 

 

So, the location of point Q is not arbitrary. Also the location of O may depend 

on system parameters. For O, the most critical configuration is when P, Q and 

R are collinear, i.e. when P, Q and R are instantaneously coincident with Pmax, 

Qmax and Rmax, respectively (Fig. 3.7). Let ∠RmaxOQmax = β, ∠OQmaxPmax = ψ. 

Writing sine theorem for ¹PmaxOQmax and ¹RmaxOQmax and by (3.16) and (3.17): 

 

sin sin
Pl r
α ψ

=                   (3.18) 

 

and 

 

( )sin sin
Rl r
β π ψ

=
−

                 (3.19) 
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Note that sinψ = sin(π – ψ) and that α + β < π, so by (3.15), (3.18) and (3.19) 

 

α = β                   (3.20) 

 

It must be checked whether |OP|/|OR| is kept constant at all configurations. Let 

∠QOS = θP (CCW) and ∠QOT = θR (CW) (Figure 3.8). Then by (3.3) 

 

( )
( )

tan

tan
y y

y y

P POP
R ROR

α

α

+
=

+

2 22

2 2 2
                (3.21) 

 

 

 

 
 

Figure 3.8 The mechanism revised 
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By (3.15) and (3.21) 

 

 y P

y R

P l
R l

=                   (3.22) 

 

Considering (3.9) rewriting y-component of P 

 

( )siny P PP l θ γ= +                  (3.23) 

 

Similarly, the y-component of R can be obtained as  

 

( )siny R RR l θ γ= − +                  (3.24) 

 

(3.22), (3.23) and (3.24) yield, at all configurations 

 

θP = θR                                  (3.25) 

 

or 

 

θP + θR = 2α                  (3.26) 

 

But, |OQ| = lPcosθP/sinα = lRcosθR/sinα, that is θR and θP have the same sign, 

hence (3.26) cannot be correct for all configurations. (3.25) yields the correct 

result. 

 

Next, considering (3.1), (3.13) and (3.14) one obtains 

 

|OS| = |OT| = |SQ| = |TQ| = p/2 = r/2               (3.27) 
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(3.27) is quite an important restriction to possible types of triangles that can be 

scaled by means of the linkage of concern: only isosceles triangles can be 

scaled by using a linkage as shown in Figure 3.3. Notice that, by this fact, 

∠OQmaxPmax = ∠OQmaxRmax = π/2 and cranks are along the sides OPmax and 

ORmax at this configuration. 

 

This completes the requirements for the scaling task of a triangle. To 

summarize, given an isosceles triangle, defined by the angle 2α and side 

lengths r and l, the link parameters of the mechanism designed that realizes the 

scaling of a triangle is such that lp = l/2, γ = π/2 – α, a1 = a2 = r/2 (Figure 3.9). 

 

 

 

 
 

Figure 3.9 The designed scissor linkage for an isosceles triangle OPmaxRmax 
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point O will remain stationary in the plane of motion even if it is not connected 

to a fixed link by a revolute joint. Similarly, in the final system when the slider 

is removed, point Q will still be on straight line OQmax. 

 

 

3.3 On the Motion of the Designed Mechanism 

 

 

The mechanism in Figure 3.9 is an in-line isosceles or folding slider-crank 

mechanism. The coupler link motion is the well known Cardan Motion (See 

Section 1.2). The moving and fixed centrodes of the coupler motion are circles 

with the moving centrode radius equal to the crank length with center at S 

and/or T and the fixed centrode of twice the radius of the moving centrode with 

center at O. Furthermore, a point on the coupler link selected on the 

circumference of the moving centrode traces a straight line path which passes 

through O (Figure 3.10). Notice that at the extended position of the slider-

crank, the center of the moving centrode is on the slider axis, hence at this 

configuration ∠OPQ must be π/2, which can also be obtained using (3.9). As a 

result, the straight line motion of the vertices P and R can be realized provided 

that the links containing these points perform Cardan Motion such that the 

vertices are on the circumference of the respective moving centrodes (Figure 

3.10). 
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Figure 3.10 Cardan Motion for single slider - The motion of the moving 

centrode with respect to the fixed centrode 

 

 

 

Cardan Motion can also be obtained by a series of isosceles slider-crank 

mechanisms as shown in Figure 3.11. Notice that, not all isosceles slider-crank 

mechanisms need to be of the same length. There exists one free design 

parameter for the mechanism in Fig. 3.11(a), such that |OS| = |SU| = a1,      

|UW| = |WQ| = a2 and 2a1+ 2a2 = r. In general, 2a1+ … + 2an = r (Figure 

3.11(b)). s – 1 free design parameters exist for a multiple slider assembly of s 

sliders. Below, it is proved that segment PQ makes a Cardan Motion when 

multiple sliders are used. 
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Figure 3.11 Segment PQ makes a Cardan Motion when connected to a 

multiple slider assembly 

 

 

 

Consider a multiple slider assembly as shown in Figure 3.12. Let             

|OQext| = 2a1+ … + 2an = r, where Qext is the position of Q when all the links 

are collinear. At any configuration, where the crank is rotated by an angle θ, 

one can draw a circle passing through O and Q with diameter r. Denote this 

circle by Γθ, and let the center of this circle be Cθ. At such a configuration, 

|OQ| = 2a1cosθ + … + 2ancosθ = rcosθ. Since the center of Γθ is on the 

perpendicular bisector of OQ and Γθ has radius r/2, ∠QOCθ = ∠ΟQCθ = θ. 

Consider point P on Γθ located such that ∠QCθP = 2α. At any configuration of 

the mechanism, ∠QCθP = 2α, so by the inscribed angle theorem P is on the 

straight line through O with an inclination of α from OQ, regardless of θ. 

Therefore, P traces this straight line. Hence Γθ is the moving centrode of link 
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QP. The fixed centrode for these two moving centrodes is a circle with radius 

OQext and center at O. 

 

 

 

 
 

Figure 3.12 Geometrical illustration for maintaining a Cardan Motion with 

multiple slider assemblies 

 

 

 

Actually, when the crank is rotated by an angle θ, the circle passing through O 

and Q with diameter r is not unique. There are two of such circles in mirror 

symmetrical positions (Figure 3.13). The points P u and P v on Γθ
 u and Γθ

 v 

located such that ∠QCθ
 uP u = ∠QCθ
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Figure 3.13 Two possible mechanisms to realize a specified straight line 

coupler path  

 

 

 

This short analysis reveals that it is also possible to obtain a straight line 

motion for the counterclockwise rotation of the segment QP. Assembling 

symmetrical linkages as in Figure 3.14(a), isosceles triangles can be magnified. 

Cθ
v

2α 

Γθ
 v 

α
2π -θ 

P v

O Q

O 

P u

Cθ
u 2α 

Γθ
u

Qα
θ



 94

In Figure 14(b) additional coupler points that realize straight line motion are 

introduced. Actually, the symmetrical coupler links obtained this way are 

nothing but the “angulated elements”, as named by Hoberman [45]. Once these 

sublinkages are assembled, the resulting polygon scaling linkage will be further 

redundantly constrained if angulated elements are used. Also the cranks can be 

removed if the linkages are already constrained by angulated elements [10]. 

 

 

 

 
 

Figure 3.14 Possible constructions for triangle scaling linkages 

 

 

 

Another important point is that not only the coupler link realizes the Cardan 

Motion, but also does the intermediate links. However, obviously, different 

moving and fixed centrodes correspond to each link. The fixed centrodes 

appear as concentric circles while the moving centrodes appear in alternating 

order in terms of being over or under the slider axes and the moving centrodes 

of the symmetrical slider chains are located mirror symmetrically with respect 

to the slider axis (Figure 3.15). So, some coupler points may be added to the 

intermediate links and still the linkage moves with a single dof.  

(a) (b)
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Figure 3.15 The fixed and moving centrodes for the coupler and 

intermediate links for a three-slider-linkage 

 

 

 

3.4 Polygon Scaling 

 

 

The triangles, which are obtained by triangulating a polygon, can be 

reassembled to obtain the whole link group representing the polygon. Next, the 

types of polygons that can be magnified by these link groups shall be 

investigated. 
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In order for isosceles triangles to assemble to form a polygon such as in Figure 

3.1, all the distances from the selected inner point to the vertices should be 

equal. Hence only cyclic polygons can be triangulated using isosceles triangles 

by a triangulation as shown in Figure 3.1. As a result, O cannot be an arbitrary 

inner point, but must be the center of the circumscribing circle of the cyclic 

polygon. The converse is obviously true: a cyclic polygon can be triangulated, 

as in Figure 3.1, such that the triangles are all isosceles. As an example, a 

regular hexagonal assembly is illustrated in Figure 3.16. 

 

 

 

 
 

Figure 3.16 Magnification of the vertices of a hexagon 

 

 

 

Another form of assembly is when the slider axes pass through the vertices. A 

similar analysis performed for the linkages with slider axes intersecting the 

edges reveals that slider axes through vertices also work only for cyclic 

polygons. In either case, the resulting linkages have a single degree of freedom 

and the radially assembled sublinkages all realize a Cardan Motion. As an 

example, a regular hexagonal assembly with slider axes passing through the 

vertices is illustrated in Figure 3.17. 
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Figure 3.17 Magnification of the vertices of a hexagon by using the linkages 

with slider axes through the vertices 

 

 

 

3.5 Some Modifications – Relations with Existing Polygonal Linkages  

 

 

Various modifications in the design of the polygon magnifying linkages 

mentioned in the previous section are possible. As a first modification, 

consider additional kinematic elements that further constrain the linkages as 

illustrated in Fig. 3.14(b). Such linkages were designed by Hoberman [56]. 

Notice that, since clockwise rotating and counter clockwise rotating cranks 

rotate at the same angular velocity for regular polygons, it is possible to 

connect these two sets of cranks (Figure 3.18).  
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Figure 3.18 Some of Hoberman’s designs [48] 

 

 

 

Once the additional kinematic pairs are introduced, the sliders can be totally 

omitted. Such linkages were synthesized by the Deployable Structures 

Laboratory members of the University of Cambridge [10] (Figure 3.19). The 

dashed and solid pairs of angulated elements in Figure 3.19 correspond to the 

gray and black angulated elements in Figure 3.14(b). You, et. al. also 

introduces additional angulated elements, which can be rigidly connected to 

each other as illustrated in Figure 3.20. By this modification, concentric rings 

of rhombi are obtained instead of a single ring of rhombi (Figure 3.20) [10]. 

 

 

 

         
 

Figure 3.19 Foldable ring structures of You et. al. [10] 
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Figure 3.20 Linkages obtained by rigidly connected angulated elements [10] 

 

 

 

The polygonal linkages of Wohlhart are interesting in that, not symmetrical 

parts are used for each subpart of the polygon as in Figure 3.14, but a single 

slider is used for each subpart (Figure 3.21). The symmetrical parts of Figure 

3.14 are, actually, necessary to keep a slider axis, but in Wohlhart’s design, the 

slider axes are kept straight by assembling planar link groups with each other 

to form a polyhedral shape. In [30], also the cranks are combined in a single 

link and angulated elements are not used (Figure 3.21(a)). This simplification 

makes it possible to magnify some irregular polyhedra, because the coupler 

points are suppressed and hence equation (3.15) is not necessary anymore [33]. 

In [32], central slider-crank sub-linkages are absent, planar linkage groups are 

linked at tip points of the angulated elements and these planar link groups are 

connected to each other at mid points of the angulated elements (Figure 

3.21(b)). In all these designs, the common point is that Cardan Motion is used 

to realize the straight line motion of a coupler point. 
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Figure 3.21 Wohlhart’s linkages [30, 32] 

 

 

 

3.6 Cover Plates for Planar Linkages 

 

 

The links constituting the planar linkages can be designed such that the area 

spanned by the linkage is covered at some or all configurations. One possible 

construction for a two-slider-linkage is to arrange the linkages as shown in 

Figure 3.22. Of course, various other designs are possible ([5] presents such a 

design). Also, geometric optimization must be considered in cover element 

design ([14] optimizes the geometry of the cover plates proposed in [5]). As an 

example, a linkage, scaling a square with these extensions is illustrated in 

Figure 3.23. Also a linkage for a square with single sliders is constructed and is 

shown in Figure 3.24. 
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Figure 3.22 Some extensions for the links to cover the faces 

 

 

 

   
 

                      

 

Figure 3.23 Phases of magnification of a square with links covering the 

surface fully at the maximal and the minimal configurations 

(simulation prepared using MSC.visualNastran 4D 2002) 
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Figure 3.24 A K’nex® model of a linkage magnifying a square 
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3.7 Solid Angle Preserving Links and Polyhedron Scaling 

 

 

The planar linkages can be assembled in order to obtain a desired polyhedral 

shape of concern. One may simply use a link at each vertex constituting n 

kinematic elements for a vertex of valency n. Such a link can be realized by 

means of a solid base which has the shape of the part of the polyhedron in the 

neighborhood of the vertex of concern and n pins coming out of the small scale 

faces of the base (Figure 3.25). The resulting linkage has a single dof, because, 

continuous magnification is a single dof process. 

 

 

 

 
 

Figure 3.25 A link that can be used to connect a cubic vertex 

 

 

 

As an example, a linkage for scaling a cube is given in Figure 3.26. 
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Figure 3.26 A cubic linkage (simulation prepared using MSC.visualNastran 

4D 2002) 
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A necessary condition for a polyhedron to be magnified by means of the 

linkages proposed is that the polygonal faces of the polyhedron should have a 

circumscribing circle. For polyhedra with cyclic polygonal faces, limited 

information shall be given here. It can be proven that polyhedra with cyclic 

polygonal faces are circumscribed by a sphere, i.e. all the vertices of the 

polyhedron lie on a sphere if all the vertices are 3-valent. The outline of the 

proof is as follows: consider two neighboring cyclic polygons, sharing an edge. 

The perpendiculars drawn at the circumcenters intersect at a point, say O. For a 

3-valent vertex, the perpendiculars corresponding to the three pairs of 

neighboring faces intersect at a common point (Figure 3.27). If all the vertices 

are 3-valent, the proof can be concluded by induction. For polyhedra having 

vertices with valency grater than 3, the polyhedron needs not be circumscribed 

by a sphere. An obvious counter example is the gyro-elongated square 

dipyramid (Figure 3.28). 
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Figure 3.27 Right cones intersecting at the tip for a 3-valent vertex 

 
 

Figure 3.28 The gyro-elongated square dipyramid 

 

 

 

Trivially, the maximum ratio of magnification of the linkages given in this 

chapter is the same as Hoberman’s linkages with the angulated elements. The 

ratio is cosecα for α being the minimum of the central angles on the faces.   
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CHAPTER 4 
 

DISCUSSION AND CONCLUSIONS 
 

 

This thesis work mainly deals with developing design methods for polyhedral 

linkages, which is the main subject of the Chapter 3. Chapter 1 is an 

introductory chapter including some basic definitions and theory together with 

the description of some previous studies related to the deployable structures.  

Chapter 2 focuses on polyhedral linkages, analyses the motion characteristics 

of them, determines the maximum ratio of magnification for each type of 

linkage and finally gives a comparison between the linkages.  

 

Some of the analysis methods in Chapter 2 are new. First of all, in a big class 

of deployable structures, the motion of certain links are found to be the Cardan 

Motion, and this idea is totally new as far as polyhedral linkages are 

considered. Specifically, Cardan motion can be encountered in the motion of 

Wohlhart’s linkages with planar link groups for double pyramids (Section 

2.2.4.3) and linkages with planar link loops for regular polyhedra (Section 

2.2.4.4) as specified in Chapter 2 and in Hoberman’s linkages with angulated 

elements (Section 2.2.3) as revealed in the Chapter 3. The Cardan motion also 

can be visualized in the other designs as well, but this kind of approach was not 

included in Chapter 2, lacking the necessity in the analyses. Since the edges of 

the polyhedral shapes are magnified, if one fixes a frame at the vertices, the 

motion of the links moving along the edges would be a Cardan motion, as in 

the dipolygonids (Section 2.2.1), the Fulleroid (Section 2.2.2), Wohlhart’s 

linkages with multiple slider-cranks (Section 2.2.4.2). The Cardan motion 

appears as the motion of the radially deploying/expanding links in the 

polyhedral star-transformers (Section 2.2.4.1). 
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Also, some of the linkage types presented in Chapter 2 can be considered to be 

the members of a family of linkages. The linkages of Wohlhart with multiple 

slider-cranks, planar link groups for double pyramids and planar link loops for 

regular polyhedra can be considered to be synthesized by constraining n + 1 

dof linkages spatially for n-gonal faces. Many other linkages can be 

synthesized using the same idea, but this is behind the scope of this thesis. 

 

Chapter 3 presents planar linkages to magnify polygonal shapes. These planar 

linkages are assembled spatially to obtain polyhedral linkages. In the other 

polyhedral linkages constructed by implementing planar linkages on the faces 

(the Fulleroid and the linkages of Wohlhart with multiple slider-cranks, planar 

link groups for double pyramids and planar link loops for regular polyhedra ) 

all have multi-dof planar link groups, but the planar linkages presented in 

Chapter 3 are single dof. This fact increases the overconstrainedness of the 

linkages, but provides the opportunity to design the links such that the whole 

surfaces of the polyhedral linkages are covered at all or some configurations. 

 

The linkages of Chapter 3 are not much successful in magnifying the 

polyhedral shapes in large scales. However, these linkages are advantageous in 

that the vertices are realized at all configurations and the edges and the faces 

are fully or partially realized at all configurations. It can be said that these 

linkages are the most successful linkages resembling the polyhedral shape of 

interest.  

 

Although the planar linkages synthesized are used as the faces of the 

polyhedral linkages, they can be used individually for certain tasks, as well. 

Since the linkages of Hoberman and DSL of the University of Cambridge 

(Section 1.3) appear as a special case of the linkages synthesized in Chapter 3, 

the other types can be used in similar applications as for the existing linkages. 
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The linkages can either be used as planar linkages or can be projected on some 

surface, depending on the application. These applications include retractable 

roofs, satellite reflectors and toys. 

 

The most critical contribution of this thesis work to deployable structures is the 

introduction of Cardan motion in the analysis and synthesis of the linkages. 

Although only a certain type of mechanism, i.e. the isosceles slider-crank 

mechanism, is used as a starting point in the synthesis of the new type of 

linkages in this thesis, many different mechanisms realizing the Cardan motion 

can be used to synthesize deployable structures. The Cardan motion can be 

used in planar linkages, as was done in Chapter 3, but the Cardan motion can 

also be used in spherical-symmetric structures as well. Research on such 

designs can be counted as the further possible studies for this thesis. 
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APPENDIX 

 

SYMMETRY GROUPS OF POLYHEDRA 
 

 

A rotation of 2π/n is called an n-fold rotation. An axis of n-fold rotational 

symmetry is an n-fold axis. For n = 1, the identity symmetry is obtained 

(identity symmetry can also be obtained by repeated reflections) [44].  

 

Rotational symmetries also have subcategories: cyclic symmetries (Cn – 

isomorphic to the cyclic group), dihedral symmetries (Dn – isomorphic to the 

dihedral group), tetrahedral symmetries (T – isomorphic to the alternating 

group A4), octahedral symmetries (O – isomorphic to the symmetric group S4), 

icosahedral symmetries (I – isomorphic to the alternating group A5). The 

details of these symmetries will not be discussed here, but it should be noted 

that these are the only rotational symmetries [44]. 

 

Reflection symmetries are subdivided into bilateral symmetry (Cs), prismatic 

symmetries (Dnh, Dnv, Dn, Cnh, Cnv, Cn; h is for horizontal mirror planes, v is for 

vertical mirror planes), compound symmetries (S2n, Ci,), cubic symmetries (Oh, 

O, Th, Td, T) and icosahedral symmetries (Ih, I). An asymmetric polyhedron is 

denoted by C1. A polyhedron shall have one of these 17 types of symmetries 

[44]. Cromwell gives an algorithm to determine the symmetry of a polyhedron: 
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Figure A.1 An algorithm to find the symmetry group of a polyhedron [44] 
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