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ABSTRACT

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF
TWO-PHASE FLOW DISTRIBUTION THROUGH MULTIPLE
OUTLETS FROM A HORIZONTAL DRUM

Pezek, Enis
Ph.D.; Department of Mechanical Engineering
Supervisor: Prof. Dr. A. Orhan Yesin

March 2006, 187 pages

In CANDU reactors, under normal operating conditions, the inlet headers
collect and distribute single-phase liquid flow (heavy water) to the fuel cool-
ing channels via the feeders. However, under some postulated loss of coolant
accidents, the inlet headers may receive two-phase fluid (steam/water) and
the fluid forms a stratified region inside the header. To predict the thermal-
hydraulic behaviour of headers for the reactor safety analysis, the two-phase
flow distribution within the headers and through the feeders must be mod-
elled. In order to analyse the two-phase flow behaviour of a scaled CANDU
inlet header; a transparent and instrumented version of a header with 5
feeders was previously built in the Mechanical Engineering Department of
Middle East Technical University (METU-Two Phase Flow Test Facility /
METU-TPFTF).

The aim of this study is to investigate two-phase flow distribution through

v



multiple outlets from such a horizontal drum both numerically and experi-
mentally.

For this purpose, three-dimensional incompressible finite difference equa-
tions in cylindrical coordinates were derived by using two-fluid model to
simulate adiabatic two-phase flow (air/water) in the header numerically.

The discretized equations were then programmed into a computer code
which was developed specifically for modelling the header type geometry. A
method based on the principles of Implicit Multi Field (IMF) technique has
been utilised to solve those equations. The solution algorithm was tested by
using some numerical benchmark problems.

A number of experimental tests covering single and two-phase flow distri-
bution through outlet pairs from the header were performed. Void fractions
and flow rates obtained from these tests are in good agreement with the code
results. The code also predicts the void fraction and pressure distribution in

the header satisfactorily.

Keywords: two-fluid model, CANDU inlet header, two-phase flow, implicit
multifield technique, METU-Two Phase Flow Test Facility



0Z

YATAY BIR SILINDIRIN COKLU CIKIS AGIZLARINDAN OLAN
IKI-FAZLI AKIS DAGILIMININ SAYISAL VE DENEYSEL OLARAK
INCELENMESI

Pezek, Enis
Doktora, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. A. Orhan Yegin

Mart 2006, 187 sayfa

CANDU reaktorlerinde, normal igletme kogullarinda, sogutucu dagitma
hazneleri (inlet header) tek-fazli akisi (agir su) toplamakta ve yakit sogutma
kanallarina kendisine bagh besleme borulari (feeder) aracihgiyla dagitmakta-
dir. Fakat, olabilecegi 6ngoriilen baz sogutucu kaybi kazalarinda, bu hazneler
iki-fazli (buhar/su) akiga maruz kalabilir ve akigkan, haznelerin iginde ayrik
akig bolgesi olugturabilir. Reaktor giivenlik analizleri i¢in sogutucu dagitma
haznelerinin 1s1lhidrolik davranigini tespit etmek amaciyla, sogutucu dagitma
haznesi ve besleme borularindaki iki-fazli akig dagiliminin modellenmesi gerek-
mektedir. Olceklendirilmig bir CANDU sogutucu dagitma haznesinin iki-fazl
akig altindaki davranigini incelemek icin saydam ve 6l¢iim cihazlariyla do-
natilmig bir benzeri, bagl 5 besleme borusuyla birlikte, daha 6nce Ortadogu
Teknik Universitesi Makina Miihendisligi Boliimii’nde (METU—iki Fazli Akig
Test Diizenegi/METU-TPEFTF) tesis edilmigti.
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Bu caligmanin amaci1 boyle bir yatay silindirin coklu cikig agizlarindan
olan iki-fazh akig dagilimini sayisal ve deneysel olarak incelemektir.

Bu amagla, dagitma haznesinde, iki-fazh akigin (hava/su) modellenmesi
i¢in iki-akigkan modeli kullanmilarak, lic-boyutlu silindirik koordinatlarda si-
kigtirilamaz fazlar icin sonlu farklar denklemleri tiiretilmigtir.

Kesikli hale getirilen denklemler daha sonra programlanarak haznelerin
kendine has geometrisi icin bu caligmada 6zel olarak geligtirilmig bir bilgisa-
yar programinda ¢Oziilmektedir. Bu denklemleri ¢ézmek igin Ortiik Coklu
Alan (IMF) tekniginin prensiplerinden yararlanan bir ¢oziim yontemi olug-
turulmugtur. Bu ¢oziim yontemi baz sayisal dogrulama problemleriyle test
edilmigtir.

Dagitma haznesi bilegeninin farkli kombinasyonlarda ¢iftler halinde agilan
¢ikig agizlarindan olan tek-fazli(su) ve iki-fazh (hava/su) akig dagilimini tespit
etmek amaciyla birtakim deneysel testler gerceklegtirilmigtir. Bu testlerden
elde edilen bogluk oranlar1 ve akig hizlar bilgisayar programi tarafindan or-
taya konulan sonuglarla uyum halindedir. Program, hazne icindeki bosgluk

orani ve basin¢ dagilimini memnun edici surette hesaplamaktadir.

Anahtar Kelimeler: Tki-akigkan modeli, sogutucu dagitma haznesi, iki-fazh

akig, Ortitk Coklu Alan Teknigi, METU-Iki Fazli Akig Test Diizenegi.
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CHAPTER 1

INTRODUCTION

Flow of two different fluids occurs in a wide range of modern engineering
processes, such as condensation of steam in power plants, two-phase flow in
jets and fluidized beds, boiling flow in heat exchangers, air-water flow in a
cooling tower. The study of two-phase flows is necessary to evaluate and
to optimize the performances of these kind of processes. The understanding
and accurate modelling of two-phase flow phenomena is also very important

for design studies and safety analysis of nuclear reactors.

Another field of study in two-phase research is drums, headers, which
distribute or collect a fluid to or from small multiple branch pipes and are

commonly used in boilers, in heat exchangers and also in heat transport

systems of nuclear reactors (e.g. CANDU, VVER).

In addition to experimental investigations, the numerical simulation is
also an important method of study for such processes. In order to simulate
a two-phase flow numerically, a number of sets of differential equations gov-
erning the motion of each phase including velocities, temperatures, masses,
densities etc, at each location in the two-phase domain are required. Solving
these equations for the simulation of two-phase flow characteritics are rather

complicated [70].



This dissertation describes the numerical modelling of two-phase flow dis-
tribution through multiple outlets of a horizontal drum (a scaled model of
a CANDU reactor inlet header). It contains details about coding of the nu-
merical model and validation studies of this code with some selected bench-
mark problems. Finally, code verification with the experiments conducted in
METU Two Phase Flow Test Facility (METU-TPFTF) are also presented.

In this first chapter, an introduction is made to CANDU Heat Transport
System and to its important components, “inlet headers”. This introduction
emphasises the importance of flow characteristics of those headers and moti-
vation behind this thesis. A literature survey made on numerical modelling

of two-phase will follow them.

1.1 Background

This work was part of a project funded by the Atomic Energy of Canada Lim-
ited (AECL), Middle East Technical University (METU) and Turkish Atomic
Energy Authority (TAEK) to investigate the two-phase flow behaviour of a
scaled CANDU reactor header similar to that used in RD-14M Test Facility.
One of the objective of this project is to understand two-phase flow phenom-
ena occuring under different flow conditions and to provide experimental data
to validate for safety analysis.

Some basic information about CANDU Heat Transport System and about
design and flow characteristics of inlet headers will be given in the following

sections.

1.1.1 CANDU Heat Transport System

CANDU reactor is fuelled with natural uranium. The reactor consists of a
large horizontal cylindrical tank, named calandria, which contains the DyO
moderator at low pressure. This tank is penetrated by 380 channels which

contain the fuel. Each six meter long fuel channel contains 12 fuel bundles.
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Figure 1.1: CANDU HTS

Two parallel Heat Transport System (HTS) coolant loops are provided
in a CANDU-6 reactor. The heat from half of the fuel channels in the core
is removed by each loop. The HTS circulates pressurized DsO coolant (at
a pressure of about 10 MPa) through the fuel channels to remove the heat
produced by the nuclear fission in the fuel. The coolant passes from the
reactor to a header and then to a steam generator where steam is produced.
The coolant then returns to the reactor, passing in the opposite direction
through an adjacent fuel channel, where it is heated again before flowing to
the second steam generator (Figure 1.1).

Each HTS loop has a “figure of 8” configuration and has one “inlet” and
one “outlet” header at each end of the reactor core. Coolant is fed to each
of the fuel channels through individual “feeder” pipes from the inlet headers
and is returned from each channel through outlet headers as shown in Fig-

ure 1.2.
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Figure 1.2: Inlet and Outlet Headers with Feeders

1.1.2 Inlet Header Design and Flow Characteristics

Typically, an inlet header of a CANDU-6 reactor consists of a large horizontal
pipe (approximately 6-m long and 0.356 to 0.406 m. i.d.) closed on both
ends. The flow enters from a number openings at the top of this pipe and
exits through banks of feeders at various axial locations and angles along
the header. These ”inlet” feeders bring the coolant from the header to the
fuel channels (see Figure 1.2). Each feeder bank consists of five 50.8 mm i.d.
tubes attached to the header at angles 0°,45°, 90°, 145°, 180° measured from
a horizontal line [45].

Under normal operating conditions, inlet headers distribute single-phase

liquid flow to the heated channels via the feeders. Under some postulated



loss of coolant accidents, electrical power to the pumps are lost and pumps
run down. Consequently, the flow in the fuel channels decreases. After the
pumps have run down completely, decay heat is removed from the reactor
core by single or two-phase natural circulation of the primary coolant to the
steam generators. This flow is possible because the steam generators are
located above the core. The flow is induced by the difference in the density
of the hot and cold coolant in the vertical sections of the piping on the
inlet and outlet sides of the core. As the primary flow decreases, the inlet
headers receive a two-phase fluid which forms a stratified region inside the
header [45]. How the phases are distributed within the headers can effect
the thermalhydraulic behaviour of the header and other components like the
channels and the steam generators during two-phase flow conditions [105].
When the two-phases in a header are stratified, cooling of a fuel channel may
be influenced by the elevation of its feeder connection on the header. Some
feeders may receive water while some of them may receive steam. Therefore,

special models/tools must be developed to treat this problem.

1.2 Motivation

Since almost all feeder pairs in a CANDU primary heat transport loop (see
Figure 1.2) differ, feeder geometry and elevation effects must be addressed in
test facilities in order to extrapolate the experimental results to a full scale
CANDU reactor.

One of the test facility investigates header behaviour is RD-14M located
at Atomic Energy of Canada Limited (AECL)’s Whiteshell Laboratories
(Manitoba, Canada). RD-14M is a multiple heated channel, full elevation,
scaled test facility possessing the key components of a CANDU Primary
Heat Transport System. It is arranged standart CANDU two-pass ”figure-
of-eight” configuration.

Experiments have been conducted in this facility to determine the phase



distribution within the header and the flow and phase distribution in each
feeders [105]. However, RD-14M headers was not well instrumented and
tests in RD-14M have provided limited data to determine the header be-
haviour [57]. Test data obtained from RD-14M indicated that the void distri-
bution inside the header is extremely complex [57] and flow and void through
feeders at the same cross section and elevation significantly differed. There-
fore, the phase and flow distributions within the headers and the feeders
must be better understood to improve the understanding of the two-phase
flow [105, 125].

To provide experimental data to improve understanding of header/feeder
behaviour, a transparent RD-14M header was installed with full instrumen-
tation and with connected feeders as a test facility at the The Department
of Mechanical Engineering of the METU [67, 52]. Details about this facility
can be found in Chapter 6.

Developing a numerical analysis tool to simulate experimental findings is
also an important part of two-phase studies. Although, the one-dimensional
numerical models are generally practical and widely used in describing two-
phase flow systems, few of the papers in the literature dealt directly with
three-dimensional modelling of two-phase flow. However, there is a need for
accurate multi-dimensional prediction capability for optimising the design
of components, for evaluating their performances, and for improving under-
standing of complex two-phase flow phenomena inside them [126]. This is
also the case for describing flow dynamics of a drum having header-type
geometry used in the present study.

Existing several multi-purpose computational fluid dynamics (CFD) pro-
grams could be used to model and to simulate the header type geometries,
however, no computational model is available which deals specifically with
the headers.

Therefore, in this study, a three dimensional computer code is developed

to obtain numerical solutions of two-phase flow through the horizontal drum



(header) having multiple outlets. The study also covers the verification of the
code with the data obtained from the tests conducted in the METU TPFTF

by using air-water flow.

1.3 Literature Survey

The history of computational efforts for modeling of two-phase flow phenom-

ena will be reviewed in this section.

1.3.1 Numerical Models of Two-phase Flows

In the literature, formulations of the equations governing the flow of a two-
phase mixture may generally be categorised under two fundamentally differ-

ent groups as [37, 90, 13]:
1. One-fluid models (interface tracking methods) and

2. Two-fluid models.

In the first group, there exist methods that track the motion of the inter-
face between the two phases specifically. Since they solve one set of momen-
tum equations for all fluids, this type of methods are called as “one-fluid”
models.

The most widely used one-fluid method is known as “Volume Of Fluid
Method (VOF) developed by Hirt and Nichols [49]. In VOF method, track-
ing of interface(s) between phases is accomplished by solution of a volume
fraction continuity equation for each phase. This method is considered to be
appropriate for motion of large bubbles in a liquid and for steady or transient
tracking of any liquid-gas interface, but is considered to be inappropriate for
flows involving small bubbles. Therefore, VOF is more suitable for flow where
immiscible fluids have a clearly defined interface [74].

There are other one-fluid methods; “Front Tracking Method” introduced
by Unverdi and Tryggvason [129] and “The Level Set Method” introduced



by Osher and Sethian [101] whose solution algorithms are so similar to that
of Volume of Fluid Method.

In 1965, Harlow and Welch developed the “Marker and Cell (MAC)”
method for incompressible multiphase flows [44]. MAC was one of the first
interface tracking methods. This method with its successors has subsequently
been improved [5, 37, 68]. SOLA-VOF method [95] can be given as an
example of a MAC successor which coupled the SOLA (SOLution Algorithm)
methodology with a volume tracking method for fluid interfaces [68].

However, one-fluid methods have limited applicabilities. They are still
under development and their advantages have to be further assessed. These
are ideal models for separated flows or free surfaces, because in most of the
two-phase cases flows are too mixed, e.g. bubbly flows, and the number
of interfaces is too large to track for that interface tracking methods to be
suitable [11]. To model this type of flows, it is clear that another strategy is
needed [65, 11, 37]. It is widely accepted in the literature that “Two-Fluid
Model” is more appropriate for modeling gas-liquid or liquid-liquid flows and
is generally employed when the exact position of the interface is not followed
specifically.

In this second group, averaged behaviors of both phases are treated by
continuum approximation. Sometimes, “two-fluid model” is called as the
“interpenetrating-continua approach” or “Eulerian-Eulerian approach” since
each phase is seen from an Eulerian point of view.

Two-fluid is one of the most successful model. Ishii [58] established the
mathematical foundation of this model. This formulation is supported by an
extensive literature found in the area of multi-phase flows and is widely used
in the simulation of two-phase flows.

In this study, two-fluid model is considered to be better suited for the
purposes and it is chosen for modelling the header in the METU-TPFTF.

Harlow and Amsden [43] developed the Implicit Continuous-fluid Eulerian
(ICE) method to solve multidimensional flows. With Semi-Implicit Method



for Pressure-Linked Equations method (SIMPLE), developed by Patankar
and Spalding [106], ICE method established a basis for early two-fluid flow
codes [92]. After extention of SIMPLE algorithm to two-phase flow by Spald-
ing it has been called as IPSA (InterPhase-Slip Algorithm) [30].

However, detailed numerical modeling of multiphase flows especially for
reactor safety analysis began in 1974 with the development of the KACHINA
code by Harlow and Amsden [3]. KACHINA was the first code to provide
stable numerical solutions for multidimensional two-phase flow [2].

In 1977, Rivard and Torrey developed a code named K-FIX [110] for
three-dimensional flow of two compressible phases. This code is based on the
Implicit MultiField (IMF) method developed by Harlow and Amsden [41] for
KACHINA [3].

Examples of early two-fluid solution schemes are variants of these IMF
Method and the InterPhase Slip Algorithm (IPSA). Several commercial CFD
codes uses such semi-implicit methods.

Some selected important studies in two-phase modelling which were utilised
in the present study can be given as follows;

In 1997, Enwald and Peirano developed the finite difference GEMINI
code [23] which uses the IMF numerical algorithm [3]. Same year, Peirano
modified GEMINI to take gas and particle turbulence into account [23].

In 1999, Uchiyama [127] proposed an upstream finite element method for
gas-liquid two-phase flow, based on an incompressible two-fluid model. He
used Petrov-Galerkin method for two-dimensional geometry in his study. He
applied this method to the computation of air-water two-phase flows around
a rectangular cylinder.

Latsa et al. [76] used two-phase flow model for the simulation of one or
two-dimensional batch sedimentation processes in vertical or inclined settling
tanks by solving the continuity and momentum equations for the pure-clear
liquid and the sludge phases. They used IPSA algorithm by using TFLOW-

2D code to solve the conservation equations in staggered grid.



In 2001, Pain et al. [104] attempted to model gas-solid particle fluidized
beds using the two-fluid solution method, assuming both gas and solid phases
are incompressible. A transient mixed finite element formulation was used
to discretize the equations.

Snider [117] presented a three-dimensional, incompressible, multiphase
particle-in-cell (PIC) method for dense particle flows. He used a numerical
technique which solves the governing equations of the liquid phase using a
continuum model and those of the particle phase using a Lagrangian model.
In this model, particles were implicitly coupled to the liquid phase, and the
liquid momentum and pressure equations are implicitly solved. He also tested
his algorithm with four different types of the problem.

Uchiyama [128] proposed a two-fluid model for solving incompressible
gas-liquid two-phase flow including moving boundaries based on ALE finite
element form. Solution algorithm was parallel to a fractional step method.
Galerkin method was employed for the formulation. He applied this method
to calculate the flow around a circular cylinder, which is forced to oscillate
in a quiescent air-water two-phase mixture.

Friberg [30] constructed a three-dimensional mathematical model in cylin-
drical dimensions to use in simulations of large-scale, impeller stirred biore-
actors. In order to evaluate this model, he made simulations for a bubble col-
umn, a single phase impeller stirred vessel and a two-phase impeller stirred.
These results are then compared with experimental data from literature. He
used IPSA algorithm to solve finite volume representations of the governing
equations.

In 2003, Andrianov [6] investigated several systems of two-phase flow
equations analytically and numerically. He used a combination of Godunov
and Roe schemes by using the approach of Saurel and Abgrall [113]. He
worked on several benchmark studies by using those schemes.

Gallouet et al. [31] studied on numerical modeling of two-phase flows

by using two-fluid model with two-pressure approach. However they used
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Godunov and Rusanov schemes as finite volume methods.

Development of multiphase computational techniques and the studies for
the application of these techniques to practical problems is still an ongoing
effort. Also, many number of computing tools have been developed to solve

two-phase problems. Some of them are described in the following section.

1.3.2 Two-Fluid Computer Codes

In 1980s and 1990s, thermalhydraulics two-fluid system codes such as RE-
LAP5, TRAC-PF1, CATHARE, ATHLET, CATHENA(AECL) were devel-
oped for nuclear reactor analysis during a simulated accident [2, 97]. Exten-
sive validation and development carried out over the last 25 years have made
these codes reliable tools for safety analysis in both operating and acciden-
tal conditions [126]. Generally, various thermal-hydraulic components of a
nuclear reactor are modelled as one-dimensional components by these codes.

Among them, the RELAP5 (one-dimensional) and RELAP5-3D (three-
dimensional version of RELAP5) [55] codes employ a transient, two-fluid
model for flow of a two-phase vapor/gas-liquid mixture. The system model
is solved numerically using a semi-implicit finite-difference technique [54].

CATHENA was developed by AECL for the safety and licencing anal-
ysis of postulated accident conditions in CANDU reactors and for the de-
signs of future CANDU reactors. It has been also used in the design and
analysis of the multiple experimental (Multipurpose Applied Physics Lat-
tice Experiment-MAPLE) class of reactors and in the analysis of thermalhy-
draulic test facilities (e.g. RD-14M) conducted by AECL [40].

CATHARE uses a fully implicit formulation [120] and solves by a Newton-
Raphson iterative method in one-dimensional geometry. As in CATHENA,
CATHARE uses donor formulations for the mass and energy flux terms to

enhance stability and is based on a staggered difference mesh.

Recently, Stadtke et al. [121] have undertaken an EU shared-cost action
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“ASTAR Project”. They have been developing characteristic-based upwind
differencing numerical methods and their application to transient two-phase
flow using a single-pressure two-fluid model.

Nuclear Reactor Division of CEA developed TRIO-U Code [69] which is
3-dimensional thermal-hydraulic tool to simulate two-phase flow based on
finite volume formulation.

CFX, FLUENT and PHOENICS codes can also be given as examples to

other commercial multiphase codes.

1.4 Dissertation Outline

In Chapter 1, the background and motivation of the present work is given.
Also a relevant literature survey on numerical models of two-phase flows is
presented.

The general two-fluid model differential equations that form the basis for
the hydrodynamic model of the header and assumptions are presented in
Chapter 2.

The development of a convenient form of the differential equations that is
used as the basis for the numerical solution scheme is presented in Chapter
3. The semi-implicit finite difference equations, together with a discussion of
the solution procedure are also given in Chapter 3.

Chapter 4 gives an overview of the structure and important features of
the computer code that was developed to solve the two-fluid model of the
header.

Chapter 5 provides the definition of the three benchmark problems se-
lected to validate the solution algorithm. The results of the computer code’s
simulation is given.

Chapter 6 gives detailed information about the experimental facility em-
ploying a scaled RD-14M inlet header with attached feeders established in
METU-TPFTF.

12



Comparison of the experimental results with the calculated results is given
in Chapter 7.
Chapter 8 presents the conclusions of the thesis study and gives the rec-

ommendations for the future works.
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CHAPTER 2

THREE DIMENSIONAL TWO-FLUID
MODEL

In this chapter, general forms of three-dimensional conservation equations
of the two-fluid model in cylindrical coordinates with corresponding closure

and constitutive relations are presented.

2.1 Introduction

Two-fluid model treats each “phase” as a separate “continuum”. Separate
treatment of the two phases and detailed considerations of phase interactions
allow the two-fluid model describe the two-phase flow system more accurately
among available models.

This approach can be applied to liquid, gas and solid phases. Each point
in the flow domain is occupied simultaneously in variable proportions by
both phases. Separate sets of partial differential equations expressing the
mass, momentum and energy conservation equations are described for each
phase. Since each fluid is treated separately, the two-fluid model handles
multiple velocities due to the existence of the relative motion of one phase

with respect to the other in the same spatial location at the same time.
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Two-fluid model relies on averaging procedure of the single-phase equa-
tions. In the literature, there are several types of averaging. These are time
averaging [58, 73|, volume averaging [73]. Therefore, two-fluid model can
provide information only on the average flow behaviour [82]. It is simply
assumed that the phases are dispersed enough over a control volume that
assuming average properties would be accurate. Thus the method used in
this study assumes volume averaged values. However, all the averaging pro-
cedures yields averaged equations which formally have the same structure.
Therefore, conservation equations used in the computational fluid dynamics
literature is more or less the same, regardless of what averaging technique is
used [30].

Averaging leads to the appearance of a new variable, “volume fraction”,
f,, defined as the proportion of volume occupied at each point by a given
phase of q, to characterise each phase [82, 35].

Since the phases are separated by interfaces, the averaging also results in
additional terms which couple the transport of mass, momentum and energy
across the interface [59]. Because, information at the interface separating the
two phases is lost during such averaging processes [120].

As a starting point of the present work, the “traditional” forms of the
conservation equations describing the two-phase flow will be given in the

following section.

2.2 General Two-Fluid Model

The two-fluid system is presented here in its most general form. The general
objective of the two-fluid system is to determine unknown velocities, volume
fractions and temperatures of each phase as well as the pressure. A set of
partial differential equations can be written which represent the conservation
of mass, momentum, and energy for each phase. The equations are coupled

through the terms expressing the interfacial transfer of mass, momentum and
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energy.
First of all, continuity equation for each phase q (q=I or g representing
liquid and gas phases respectively) can be written as [60, 59, 121, 78|,
9(04p4)

ot + V- (6gpqtig) = Tg (2.1)

where p,, 6, and uj are the density, volume fraction and velocity of phase
q respectively, while I'; is the volumetric mass transfer rate due to phase
change (condensation,evaporation) of phase q. Here, unlike single phase flow,
two-phase continuity equations have this source term, I'y, that accounts for
interphase mass transfer due to phase change.

Summation over both phases leads to the overall continuity equation:

Z (% +V- (ququ_;l)> =0 (2:2)

g=1

The right hand side of the above equation is equal to zero signifying that

there is no net creation or destruction of mass. Therefore, the gas generation

term is the negative of the liquid generation, that is, Iy = —I;, [83, 54, 121].
Momentum equation for phase q can be written as [110, 78, 23, 34]:

0 . L .
a(eql)quq) +[V- (eqpquq“q)] = V. (eqTq) + 04049 — (eqqu)

+My; + Tyily (2.3)

where i represents the value at the interface.

The first term (transient term) on the left in the above equation repre-
sents the net rate of momentum increase in the volume, while the second
term (convection term) on the left represents the net rate of convection of

momentum into the volume. The first term (viscous stress term) on the right
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represents the transport of momentum from the viscosity, while the second
term (gravity term) represents body force acting on the volume. Third term
(pressure gradient term) on the right represents the pressure force acting
on the volume. Fourth term (drag term) represents the momentum trans-
fer between the two phases [123, 116]. The last term, I';i,;, represents the
momentum gained or lost between the phases due to interfacial mass transfer.

Energy equation for phase q can be written in simplified form by Ishii

and Mishima [60] as;

0 . D
a(ngqu) +[V- (ququuq)] = V. gq(Q(I + qu) + HQH;PQ
+H,T, + q"qi/Ls +®, (2.4)

Here Hy, qq,q4" s Hyiy ¢" qi» @g> Ls are the specific enthalpy of phase q, laminar
heat flux, turbulent heat flux, the specific enthalpy of phase q evaluated at
the interface, the interfacial heat flux, dissipation and the lenght scale at
the interface, respectively [60, 82]. Left hand side represents the convective
terms and the first term on the right hand side is the rates of heat diffusion,
second term is the rate of work of compression, and the last term is the rate

of viscous dissipation.

2.3 Modeling Assumptions

In their most general forms, as shown in Equations 2.1, 2.3 and 2.4, the con-
servation equations apply to a wide variety of fluid flow and heat transfer
situations. However, these equations could be reduced to several forms of
simpler models as can be found in the literature by making certain assump-
tions to limit them to the problem of particular interest.

In this section, such kind of modelling assumptions are discussed, and
then the final set of governing equations with all assumptions applied is

given.
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Considering a viscous flow occupying a domain, two-phase flows are de-
scribed by some variables, i.e., void fraction 6, pressure P, liquid and gas
phase velocities 4; and ug. To simulate the horizontal drum in the experi-
mental facility used for the present study, following assumptions are made

due to system properties and limitations;

e The flow is modeled as three-dimensional unsteady flow.
e Both phases are treated as Newtonian fluids.

e Viscosity of each phase is assumed to be constant at average tempera-

ture of 22°C.

e The velocities of the phases are not equal.

Also,
e The header wall is adiabatic.
e The system is isothermal, therefore phases are at thermal equilibrium.

Therefore, the flow is taken as incompressible, that is, the density of each

phase (air, water) assumed to be constant [39, 72, 71]. Also,

e Since there is no change of phase (evaporation or condensation) in the
system, the mass transfer between liquid and gas phases does not exist.
Therefore, interfacial mass transfer term, I'y(I'y and IT';) in Equations

2.1, 2.3 and 2.4 is taken as zero.

e The phasic pressures are assumed all equal (“single pressure approxi-
mation”). This assumption is a common modeling basis because of the

local equilibrium between the two fields [3, 42, 70].

Considering the incompressibility, the phasic continuity equation 2.1 re-

duces to conservation of volume [16, 131, 117, 119];
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0(0,) L
o TV (07g) = 0 (2.5)

With applying these assumptions, incompressibility (p,=constant) and
single pressure field for both phases (P, = P), momentum equation 2.3

reduces to [16, 131, 117, 119],

a o Ve(Bm) . (6,VP) My
—(04,) + [V - (040,410,)] = —+L + 0,5 — ~—~ + -
57 0470) + 19 - O] = 0,5 O T

However, due to isothermal and adiabatic flow assumptions, it is not

(2.6)

needed to consider the energy equation 2.4 in solving the system of equations

in this study [84, 32, 84].

2.4 Three-Dimensional Conservation Equations

The equations expressing the balance of mass and momentum required for the
description of the two-phase flow in the header are presented in this section
for three-dimensional cylindrical coordinates appropriate to the geometric
properties of the header.

The dependent variables to be computed are the velocity and the volume
fractions of each phase and the pressure. The independent variables are
time(t) and distance (r, ¢, z for cylindrical geometry).

Since, the velocity vector is @ = Ui+ Vj + Wk where 7,7 and k are unit
vectors and U, V and W are the velocity components in r, z and ¢ directions,
respectively, one can have three momentum equations for each phase (totally
six equations) and two continuity equations. An equation for the gas and
liquid volumetric fractions (6,46, = 1) are needed to represent the adiabatic
two-phase (air/water) flow concerned in this study.

The governing equations in their explicit forms are as follows:

2.4.1 Conservation Of Mass

Continuity equation for the gas phase is [111, 10, 23],
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5,
ot
and that for the liquid phase is [111, 10, 23],

+ V- (,u,) =0 (2.7)

00 —
a—tl + V. (9lul) =0 (28)

Here, the volume fractions (6,,6;) are defined as the fraction of a control

volume occupied by a given phase.

2.4.2 Conservation Of Momentum

The time-dependent, three dimensional phasic (q=g,]) momentum equations
are given as follows [111, 10, 23],

in r-direction;

0 . 1 N 1
E(%Ug) = [V (0,u5U,)] + —V - (0,7y) + 604G, — —(0,V P)
Py Py
K
K-y (29)
Py
0 . 1 o 1
a(‘glUl) = =[V-(0mU)]+ —V - (0im) + 6,g- — — (0, VP)
P P
K
+= (U, - U) (2.10)
P
in z-direction;
0 . 1 . 1
a(egvg) = —[V-(0,u5Vy)] + =V - (0,7) +0,5. — —(0,VP)
Pg Pg
K
+—Vi—-Vp) (2.11)
Py
0 . 1 . 1
E(Q,V}) = —[V . (01’&1%)] + —V- (017'1) + ngz — —(HNP)
1Y) Pu
K
+,0_(Vq — Vi) (2.12)
]
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while in ¢ direction;

0 N 1 . 1
a(egWg) = _[V : (eg“gWg)] +—V- (Gng) + 99945 - —(GQVP)
Py Pg
K
+— (W, — W) (2.13)
Py
0 . 1 B 1
&(elWl) = —[V-(0uW)] + =V - (0im) + 0igy — —(6,VP)
P P
K
(W, = W) (2.14)
)

Last terms in the above equations represent the interfacial force (M)
exerted by the other phase on the one under consideration. It is modelled by
use of a drag function (K) multiplying the relative phase velocity (i, — ;)
for liquid phase equations and (@, — @) for gas phase equations [38].

For a Newtonian fluid, viscous stress tensors has the following form;

oS

tro = i rar (o) 4 15021 (2:16)
o OO )
Tage = uq{%%—‘g + a;zq} (2.18)

() = {250 - S0 L 18 T g

(Tqr2) = uq{% + %} (220)
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here p, is the fluid dynamic viscosities [9].

The resulting equations (equations 2.7 through 2.14) are not closed. There
are 9 unknown variables which are P, 8,,0;,U,, U, V,, Vi, W,, W, while having
8 equations. Since such a system contains more unknowns than equations,
some additional relations must be specified.

In the following section, the closure and constitutive relations that are

necessary to form a closed set of equations are discussed.

2.4.3 Closure Relations

For incompressible multi-phase flow, the closure relation include the geo-
metric conservation equation which means that the volume fractions must
sum up to unity [91]. Dinh et al. [19] and Oliveira and Issa [99] define this
equation as the “compatibility equation”.

N

0, =1 (2.21)

n=1

where N is the total number of phases. Since in the present case, there are

two phases (gas and liquid) altogether following equation

0,46, =1 (2.22)

must be satisfied.
With the assumption of incompressibility, the equations of state are also
trivially reduced into constant values of phase densities p, and p; [19, 96].

2.4.4 Constitutive Relations

Although two-fluid model does not treat interface, the effects of interface be-

haviour on the flow are taken into account by emprical relations. Completion
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of the analysis requires “constitutive” relations that describe these interac-
tions. However, as pointed out by many authors [60, 120, 11], the weakest
link in the multifluid model formulation is the constitutive equations which
are deduced from experiments. The number of these constitutive relation-
ships is really large and complex.

Constitutive relations generally include the state-of-the-art physical mod-
els for the flow regime modelling, interfacial energy and mass transfer, interfa-
cial forces, wall momentum exchange, wall heat transfer and thermodynamic
and transport properties of the fluids [115].

Although the exact expressions for the transfer terms are usually uncer-
tain and still questions of debate, for the two-fluid model to be reliable, the
interfacial interaction terms must be accurate [59, 94]. It is generally agreed
that much more detailed experimental information are necessary to develop
models and reliable relations [13, 60, 6].

In this work, is is considered only the interfacial momentum transfer by
including the drag force terms, K, in the momentum equations which arise
because of the relative motion between the phases [39]. Several models have
been developed for the interfacial momentum transfer terms. In general, the
drag function K depends on the flow regime, void fraction, gas and liquid
densities, Reynolds number and phase velocities. The following form which
is commonly used in the literature to model the interphase drag force acting
on phase « due to phase [ is inserted into the momentum equations instead

of M,; notation.

My = Ko (Us = U) (2.23)

As a summary, a two-fluid model consists of conservation equations, clo-
sure and constitutive relations. Naturally, initial and boundary conditions

are also needed to solve them.
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CHAPTER 3

NUMERICAL SOLUTION OF TWO-FLUID
MODEL

In order to solve the governing nonlinear equations described in Chapter 2,
the finite difference method is used in this study. As a solution algorithm
Implicit MultiField (IMF) which is classified as a point relaxation technique
by Rivard and Torrey [110] and Broadus et al. [10], is selected to solve the
resulting finite difference equations.

In this chapter, finite difference form of the governing equations and their
numerical solution technique are presented which are based on the work of

Rivard and Torrey [110].

3.1 Numerical Algorithm

The two-fluid equations are discretised by finite difference technique and
are solved by using the principles of IMF (Implicit Multifield) algorithm as
applied in the K-FIX code [110]. IMF method, which is an extention of
the Implicit Continuous-fluid Eulerian (ICE) technique developed for single-
phase flows [110, 2, 16], was developed by Harlow and Amsden [41], and was
implemented in the K-FIX code [110]. Rivard and Torrey later extended this
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method to perform three dimensional calculations [112].

IMF method is based on the finite difference approximations to the mass,
momentum and energy equations. However, due to the restrictive assump-
tions made in this study, 2-continuity (2.7 and 2.8)and 6-momentum equa-
tions (2.9 through 2.14) are to be solved along with the required constitutive
relations in space and time for 3-dimensional cylindrical coordinates.

The main features of IMF Method can be summarised as follows:

e [t is a semi-implicit finite difference method based on a staggered grid.
That is, scalar variables such as volume fractions and pressure are cell-
centered quantities, whereas velocities are cell-edge quantities located

on the sides of the cells.

e Implicitness is used for the velocity in the mass convection terms,
for the pressure gradient and interface mass and momentum exchange

terms.

e Convective terms are discretised by a donor-cell differencing(first-order

upwind scheme).

Several codes based on this method have been developed for different
investigations. Among them, KACHINA [3] was the first one which has a
solution capability in axisymmetric two-dimensional geometry. Later on, K-
FIX was developed by Rivard and Torrey [110]. It is a three-dimensional
code capable of simulating in cartezian, cylindrical and spherical geometries
and treats mass, momentum and energy exchange terms between two-phases
in fully implicit way.

Amsden and Harlow developed a two-dimensional K-TIF code [4] for nu-
merical solution of the transient dynamics of steam and water in a pressurized
water reactor downcomer.

BEACON/MOD3 code was also developed by Broadus et al. [10] whose

solution algorithm is about the same as that of K-FIX. It is a contain-
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ment analysis code used to predict environmental conditions under short-
term transients within Pressurised Water Reactor (PWR) dry containment
systems. However, it can simulate transient, one or two-dimensional, two-
phase(gas-liquid) flow.

In 2002, FLUFIX/MOD2 code was developed by using IMF technique
settled in K-FIX code. This code solves the conservation equations in two-
dimensional cartesian and axisymmetric cylindrical coordinates for isother-
mal fluid-solids hydrodynamics and finds an application area in simulations
of fluidized bed combustors [84].

MFIX code by Syamlal et al. [122, 124] was also developed based on
the same technique implemented in the K-FIX code, however to describe
chemical reactions and heat transfer in dense or dilute fluid-solids flows in
three dimensional cartesian or cylindrical geometries and used in simulations
of energy conversion and chemical systems.

Gomez et al. [36] used MULTIFIX code which is defined as an extention
of the K-FIX code. They used MULTIFIX in simulating gas-solid two-phase
flow in the riser of the circulating fluidized beds.

There are also some works in the literature which uses IMF technique
and/or K-FIX code as a numerical solution algorithm in their studies as
follows;

Lee [78] developed a stable semi-implicit numerical scheme for solving
nonequilibrium two-phase flow problems. Lee used IMF technique to solve
governing two-dimensional two-fluid equations in cylindrical coordinates. He
simulated two-phase jet impinged on vertical plate in his work.

Lee and Shah [81] developed a computer program TWOP to obtain num-
cerical solutions of three-dimensional, transient two-phase flow system by
employing IMF technique and applied it to high pressure jet impingement
and separation of steam and water problems.

Huilin et al. [53] used K-FIX code in simulating bubble behaviour in a

two-dimensional bubbling fluidized bed by implementing the granular kinetic
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theory and the granular equations into this code.

Davidson [16] analysed isothermal two-phase flow resulting from bottom
gas injection into an axisymmetric liquid bath by using K-FIX code after
adapting it to include some extra equations (e.g. virtual mass, particle lift).
The predicted steady void fraction and gas velocity distributions were com-
pared with the experimental results. He assumed both phases are incom-

pressible and no phase change occurance.

Lee and Lyczkowski [80] studied 5 different two-phase flow equation sets
which are all solved by using the same finite differencing technique (IMF),
numerical scheme, and computer code structure. It was realized that almost
the same results could be obtained from all these models. They also presented

more stable numerical scheme to solve those equation sets in their paper.

Hong et al. [50] solved the problem of inclined jet penetration lenght in
a gas-solid fluidized bed by using IMF method and compared the numerical

results with experimental data.

3.2 Finite Difference Formulation

In this section, Equations 2.7 through 2.14 will be written in finite difference
forms in three-dimensional (3-D) cylindrical geometry for the quantities for
their numerical solution at time ¢t = (n+1)dt. There are eight (two mass, six
momentum) differential equations and one closure relation (Equation 2.22)
for the nine dependent variables; the volume fractions, 6, 6;; the pressure,
P; the gas velocity components Uy, Vg, W, and the liquid velocity compo-
nents U;, V;, W; in the r, z and ¢ directions, respectively. The details about

discretization strategy can be found in the following sections.
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3.2.1 Control Volume Discretization Method in Cylindrical Co-

ordinates

Conservation equations have been discretized for a staggered grid, widely
used in two-fluid codes, as in the K-FIX scheme by using control volume

approach in which mass and momentum being conserved over finite volumes.

or

&P > %

jﬁz

77777
[/ ]]

L]

Figure 3.1: Control Volume Discretization

The geometric region of interest is divided into many finite-sized and
space fixed (Eulerian mesh) zones in r,z and ¢ directions as shown in Figure
3.1

Figure 3.2 shows a typical computational unit cell and the relative spatial
locations of the variables that appear in the finite difference equations with
the cell indices. Computational cells are distinguished along the r-axis by
subscript i, along the z-axis by subscript j, and along the ¢-axis by subscript
k. Cell centers are labeled with the indices (i,j,k) while the cell-edge location
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indices are represented by half integers (i.e. i+ 3,7 + 3,k + 3).

, Uply

Figure 3.2: Unit Cell Representation in Cylindrical Coordinates

For a given cell, having central coordinates of (; ; ), the vector quantities
(velocity components, Uy, V,, W, in 1, z and ¢ directions respectively) for
each phase (q=g,]) are defined at the midpoints of cell faces normal to them,
whereas the scalar variables (volume fraction, ,, and pressure, P) are defined
in the cell center as indicated in Figure 3.2 [42, 10, 110].

This means that the equations for scalar variables (pressure, void fraction)
are going to be solved at the cell centers, while the momentum equations for

the phasic velocity components are going to be solved at the cell boundaries.

3.2.1.1 Discrete Forms of Continuity Equations

If the basic continuity equations (Equations 2.7 and 2.8) are expanded in

three-dimensional cylindrical geometry,
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a0, 10 10

0
BT o OUr) + 5 (0V) + 5 (0,W,) = 0 (3.1)
80[ 8 8

are obtained for both phases. They are differenced fully implicitly as follows
[4, 110, 32];

—< 0,"M Uy >

n+ly,s n+l
.5,k < 09 V‘J >

;0T - 0z

b,k

(eg)zzli = (‘9 ) i3,k + &{

n+1 n+1
< 0" Wo" ™" >, (3.3)
T:0¢
@) = @), + 5t{_< O UM >ign <OV >y
75 75 ;0T 0z
0n+1Wn+1 o
< 0 l >Z,J,k‘ (34)
Ti0¢

[13e}]

Here, 0t denotes the time step. The superscripts “n” and “n+1” represent
the values at the respective time levels t and ¢t + d¢t. The cell centers are
labeled with the indices (i,j,k).

In the IMF method, convective terms (flux quantities) denoted symbol-
ically by angular brackets < i > in the gas continuity equation (Equation
3.3), are expanded by using upwinding (donor-cell differencing) scheme, i.e.

the gradients are calculated using upstream values [110, 3, 32]. For instance;

0,. . if U >0
9ij.k 9i+l ik Z
<OUgr >0 = Ugi—f—ljlcri-l-%{ " "
27 b}
09i+1,j,k if U, i+ 15k <0

-0,

Ogiyp if U >0
i—1,5,k gZ——,],k -
-"i—%,j,kri—%{ i (3.5)

Hgi,j,k it Uy, <0

25]:
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0.V — v Ooije 1 Voijizp =0
< VgV Zigk = Veijilk .
Ogijare 1 Voigirn <0
0, it vV, . >0
_V;;ij . k{ 94,5—1,k gz,]—%,k - (36)
WJ T .
Ogije 1 Voij15 <0
6, . if W,.. 1>0
g g = =
< 9 W >Z k — W o l Z)]vk Z:]7k+2
g g9 5T gl,j,k+2 .
Ogijuet T Woijpes <0
Ogs iy if Wy 1 >0
’L,],k—l gz:]ak__ -
_ngﬂzk_%{ . ? (37)

The upwind scheme applied to liquid phase continuity equation (Equation

3.4) is defined similarly and is presented in Appendix A.1.

3.2.1.2 Discrete Forms of Momentum Equations

The momentum equations are differenced over a staggered mesh of compu-
tational cells semi-implicitly as suggested in K-FIX code [110].
Writing the gas phase momentum equations (2.9, 2.11 and 2.13) in a more

open form gives;

2(0,U,) S 1(10 10 T,
é‘}t 9 = \V4 (OgUgUg) + p—g (; (gg T!]M') + ;8—¢(997'gr¢) %
. 0,0P K
+8 (Gngm)> + HggT QE + p_g(Ul — Ug) (3 8)
0(6,V, . 1 0 10
(a!]t g) = Vv (Ggung) + p— <_8 ((gg’f'Tgrz) + ;%(997}@2)
)
6,0P K
0,752z 0,3, 1 +— .
b)) + 00— 2+ Koy oo
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(o, W. ) 1(10 19
% = =V (0,U,W,) + — (7"2 ar (057 Tgre) + ;8_¢(09Tg¢¢)
9 __16,0P K
+a O + 00~ 1258+ w10

These equations (3.8, 3.9 and 3.10) after a time discretization according to

the IMF method, can be expressed semi-implicitly as follows [4, 32, 110, 42],

egn-f-l (Pn-l-l Pn-i—l)
n+1 _ i+5,0,k i+1,7,k 1,9,k
(0 U )z-}—z,],k - (0 U )Z+ Jok + 6t{ p967.
K (Ul;bJrl —U ;1+1 )
i+1,5,k +pj, 9it 1.5k } (3'11)
9
Ogrt )ty (P )
n+1 _ 'L,]-i——,k) 7.]+1 k Z:]ak
(Hg‘/;,)i’ﬂ%’k = (0 V) i+ Lk + (5t{ — 3 ™
n+1 _ n+1
+K’J+2’k(v JJ;;”“ ngﬂ’k)} (3.12)
9
Ot (PR — PR
n+1 _ Z,],k+ 1.77k+1 1.77k
(0 W, ) ihk+: T (0 ) i5k+3 + &{ g0
n+1 n+1
7J;k+2 (I/Ifl 7.75kp+_ WgZ7]7k+%) } (313)
9
Writing similar equations for the liquid phase results;
0(6,U, . 1(10 10 0,7
(8lt ) _ =V - (0, Up) + E(;a—(eﬂ“ﬁw) + ;%(@w) - Z;M
0 L, 0 8P K
+£(0l7'lrz)> + 0,g, — i or (U Ul) (314)
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20,V } 1(10 10
O = v @)+ (20 O - 1 0me)
0 . 60oP K
_&(elnzz)> + 619, — Ea + E(th -V) (3.15)
oo W, . 1(10 10
O0) — =9 @) + - (2 Orne) + 1 Omeo
0 10,0P K
e Jp — ——-+ —(Wy - 1
+8z (elTlcbz)) + 619 " o1 00 + p (Wy—W,)  (3.16)

discretising those liquid phase equations similarly gives the following equa-

tions [4, 42, 110];

91n+1 (Pn+1 § = Pn—|—1)

ntl  _ TaTn itk HLak " bk
(elUl)H%’j’k = (HlUl)i+§,j,k+(5t{_ 00T
K", (UM —urtt
+ Z+%ﬂ],k( gZ"’%:Jak lz—}—%"],k)} (317)
P
001, L (PIf — PIR)
n+1 _ 17.]+§’k Lyt 1k bgik
(ele)iﬁ%’k = (elVl)z‘,j+%,k+5t{_ 0102
K" RTINS 1
pipkVoigegn ~ Vijian) } (3.18)
P
00 (PR — P
n+1 T A _ ligoktg N gk bk
(elWl)i,j,H% - (GZVVI)"J”“J’%—’_&{ piTiOP
K™ (Wt — WL )
i 4,9,k+3 Z’]J;Jlr2 bkt } (319)

As can be easily seen in the momentum equations above that pressure
gradient term and the interface momentum exchange (drag terms) are im-

plicitly discretized [114, 32, 36, 124]. Also note that interfacial drag force
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terms are linearly implicit in the velocities which provides a coupling between
the phases [32, 23].

Here, the terms that do not directly proportional to the velocity differ-
ence between the two phases or to the pressure gradient are grouped into
one explicit term denoted by a superscript overline [38, 42]. That approach
provides a faster computation [114]. These overlined quantities account for
the effects of momentum convection, gravity and viscous stress through the

following relations [4, 10, 32, 42, 110];

<OGUSUGT >i11 ik

OuU)i1 i = OU) 1, —|—5t{ 9V Yy :
2 2 i—|—1 T

i+ 5.0,k

6 (Wg'

2 n n n n
;) ]i+%,j,k n [r i+199i+1,j,k79m+1,j,k = Tigi ;1 Torri k)
Titd PgTis 10T

071

n
9itl ik 1Tgre; 1 'k_l]
1+ 35,0,k—3 t+35,0,k—3

+

[9

gZ+2,J k+2 Tgrqﬁz_'_ 5 ,],k+2
Py i+15¢
/R

gi4+1 i1 kTgTzﬂ 1, 1 lc]
Z+2,.7 2 1+2,] 3

[0

9i+1 ,J+2J€T9”'L+ gLk
Pg02

+ 04711 J,kgr} (3.20)

[0

gz+2 2J>k 9¢¢z+2 ,],k‘]

,Og ’H‘g

<OV,"U,"r >. . 1
g’9 g ’L,J+§,k
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< OgVe' Vy" >ijatn <OGVE"W" > 5.1,
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Pz

+ 9l;fj+%,kg;} (3.24)

I R77A) <OWPUMT >, 5 pin
OW); ks = O pops + 5t{ SR Jok+y

bjikts ;0T
n ny/n I T L nu" "
SOV >ijary  <OWIWE >ijepy OO Wi
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Pﬂ“z‘Z
n n n n
n [eli,j,k+17—l¢¢i,j,k+1 - ali,j,kn‘i"bi,j,k]
piridQ
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pidz
n b
+01i’j,k+%g¢} (3.25)

Each of the convective terms represented by brackets “<>” in the equa-
tions 3.20 through 3.25 are expanded in finite difference form by using the
donor-cell treatment [110, 23, 38] as performed in Section 3.2.1.1. How-
ever, the discrete forms of the convection terms are more complicated than
those obtained in discretizing of the continuity equations. For example, they

U

contain two velocities (e.g. U, 9i+14.k

ik ) defined on two different grids.

Therefore, in order to give an idea about the procedure for evaluating these

terms, only the terms found in the radial component of the gas momentum

equation (3.11) are presented below [110, 23, 88];

9i+1,5,k =

0Ug) iy if U, >0
+_a.]ak
< B,U,Ugr Zitlik = ng'+1,j,kr'i+1{ : .

gUg)z‘+%,j,k if ng‘+1,j,k <0

“Thuser| OsUs)i e 1 Voise 205 o,
9i,j ki . .
(egUg)H%,j,k if Ug; ;) <0
0,U, itl s it V.. .. Z 0
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0,Up);1 i qp if Vi1 1,>0
—‘ng%,j—%,k{ e s (3.27)
< 0,U,W, > - W OUs)icyin A Woirginiy 20
9Y9" e Zitggk T VOt k] ,
(egUg)ijL%,j,kfl if WgH_l,j,k_l >0
_Wgz+%,],k7% . ? ? (328)
(egUg)i—k%,j,k if Wg <0

i+3.5,k—1

Taking equation 3.26 into consideration, if the flow is positive in a cell of
(i,j,k) or (i,j4+1,k), the velocity at the nearest point (at the left boundary of
the cell) should be used. If the flow is negative, the velocity at the nearest
point (at the right boundary of the cell) should be used.

The upwind scheme applied to the convection quantities of gas momentum
equations (3.17, 3.12) for the other directions (z, ¢) can be found in Appendix
A.2.1 and A.2.2. Similar equations (3.18, 3.13 and 3.19) for the liquid phase
in all directions can also be found in Appendix A.2.3, A.2.4 and A.2.5.

The viscous stress components appeared in equations 2.15 through 2.20,
denoted as 7,, are calculated at the time level (n) [10, 110, 23, 66]. Here,

some discretised viscous terms are given as an example below;

n n " i
(T )n = W 2( qi"‘%,j;k - UqH—%,j,k) 2 (qu+%,j,kri+% — qu+%’j,kri+%
rr)q N 2
o : or 3 Tip10T
n _ n i ~ "
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All the remaining viscous terms referenced in r,z and ¢ momentum equa-
tions for each phase are calculated similarly and can be found in Appendix
A.3.

Although continuity equations does not involve such terms, some quan-
tities in the discretized momentum equations described so far are used on
grid points where they are not directly computed. Linear interpolations are
performed in evaluating such kind of terms at these points [23, 110]. For

example, value of 6, at the cell face, (i + %, J, k), is determined as;
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Oistin = i+ Ogiirjn) /2 (3.35)

Similarly, some velocities not positioned normal to the cell edges are obtained

by simple averaging of the two adjacent quantities [10, 23, 5], e.g.;

Ugiri i = (U9i+g,j,k + ng’—l—%,j,k)/Q (3.36)
Voirljsle = (V‘]i,j—ké,k + V%+1,j+§,k)/2 (3.37)
ng-l—%,j,k-l—% = (ng,j,k+§ + ng+1,j,k+%)/2 (3.38)

3.3 Interfacial Momentum Transfer Term

General two-fluid model defined in Chapter 2 has the capacity to predict
phasic interactions such as interfacial mass, momentum and energy transfer,
which is not possible with more simplified mixture models [59]. Therefore,
one of the most important work in deriving the two-phase flow equations is
the modeling of these interfacial effects which provide coupling between the
equations.

As it was mentioned before, only the exchange of the momentum due to
drag force between both phases were considered in this study. This exchange
arises because the two phases do not travel at the same velocity [83].

A number of correlations have been proposed to formulate the drag terms
in the literature, but it seems that none of them has been recognised as a
standart formulation. In this study, two different formulation of K function

are used.

3.3.1 Lee and Shah’s Formulation

It is a simple equation given by Lee and Shah [81]. It defines K function as;
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K=C-f(,) (3.39)

where C is some coefficient, and

1 + 102000001=05)  when 6, < 0.01
f(bg) = { 1 when 0.01 < 6 < 0.99
1+ 102000085—0-9)  when 6, > 0.99

Lee and Shah [81] gave some values of 10%,10* and 10° kg/m?>s in their
simulations for the problem of separation of steam and water. However
they appointed the values of 2.0x10%, 2.0x10'* and 2.0x10'? kg/m3s to K in
simulating high pressure jet impingement problem. Lee [78] used K values of
2.2x108, 2.0x107 and 2.2x108 kg/m?s in his study on two-phase jet impinged

on vertical plate.

3.3.2 Schiller-Naumann Formulation

It is more elaborate form of K and is known as “Schiller-Naumann Drag
Model”. It is one of the most common formulations used in the literature.

The drag force, M,;, in the momentum equation 2.3 is defined as [7, 41, 107];

3Cp

AQFZZTT%MW}—Q)UQ—QQ (3.40)

therefore, K function becomes,

_3Cp

K =~ 0gpu | g — i | (3.41)

Equation 3.41 models the viscous and pressure forces acting on spherical

bubbles of diameter d in the direction of the relative velocity g, —; between
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the liquid and gas phase and includes a drag coefficient C'p that is based on

the Reynolds number as follows [77, 50, 53, 99]:

20(1 4 0.15Re®$7)  if Re < 1000 d
Cp = where Re = M
0.44 if Re > 1000 ’

where subscript ¢ represents continuous phase, while subscript d is for dis-
persed phase. Here, the coefficient of drag is determined using relations
developed by Ishii and Zuber [61] for dispersed two-phase flows based on the

Reynolds number.

3.4 Initial and Boundary Conditions

In order to completely specify the two-fluid model numerically, the conser-
vation equations and the closure relations already defined, should be sup-
plemented by appropriate initial and boundary conditions expressing the

particular situation to be investigated as in the following sections:

3.4.1 Initial Conditions

To start the solution of the finite difference equations in time domain, initial
conditions should be specified for each cell. Uniform initial conditions for
velocities are defined by specifying values for U, = U, V, =V, W, = W/.
However, in order to avoid numerical solution problems, all variables are
given a small positive/negative value are given to all variables (especially to
void fraction values) initially in the whole computational domain as recom-
mended by Friberg [30] who used 0.01 for void fraction in his study. For
pressure, hydrostatic pressure distribution can be defined as an initial con-

dition where it is needed.
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3.4.2 Boundary Conditions

A solution of the equations also requires accurate specification of conditions
at the boundaries of the domain. The boundary condition specifications
utilized in this work are described in this section.

There are many references to the boundaries of computational domain
in finite difference equations. Therefore, proper boundary conditions for the
variables around the computing mesh have been numerically defined.

Boundary conditions are more easily implemented if the computing mesh
shown in Figure 3.3 in fixed angular direction, is surrounded by a belt of
fictitious cells represented by dashed lines lying outside the boundries. This
is called as “ghost (or dummy) cell” approach [110, 3, 123]. Cells in this fic-
titious area are called boundary cells and the use of such approach simplifies

the definition of boundary conditions especially those relating to velocities [5].
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Figure 3.3: Ghost Cell Definitions in r and z Directions

Since the first order upwind schemes are used in finite differencing, only
one row of ghost cells is enough to be used along each boundaries of the

computational domain [23]. Therefore, boundary conditions are applied by
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setting the values in these single rows of ghost cells.

3.4.3 Slip Boundary Conditions

Slip boundary conditions are often employed in hydrodynamic simulations
at solid internal/external impermeable boundaries. The main idea behind
using slip boundary conditions is that the normal velocities are set to zero
while the tangential velocity components is specified either as a no-slip or as

a free-slip condition as explained below.

3.4.3.1 Free-Slip Boundary Conditions

A free-slip boundary represents an axial centerline or a plane of symmetry
at which it can be assumed that there is a mirror image of the fluid flow on
the opposite side of the plane [3, 110, 5]

As an example to show how to treat these type of boundary conditions,
the fluid velocity component in the r-direction at the left boundary of the
unit cell shown in Figure 3.2 is given as an example.

The normal velocity component of each phases vanishes at the left bound-
ary of the cell according to free-slip boundary condition definition meaning

that velocity normal to the wall is set to zero [5, 16];

® qu_l

§7j’k = 0

While the free-slip condition states for the other directions [5];

* v Ve

i~Ljtg.k = ity ok

o Wy, W,

gok+i = "Vaigktl

so that the gradient of the tangential velocity component at the wall is
zero namely Neumann type condition [16, 110].

The cell-centered variables, 6, and P, are treated the same as in above
equations written for V. and W, meaning that there is no gradient across the

boundary [3, 16];
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® 0 15k ="0ijk

o Pi*la];k = Pi,jyk

3.4.3.2 No-Slip Boundary Conditions

“No-slip” is the most common type of wall boundary condition implementa-
tion. Amsden and Harlow [5] defines a no-slip boundary as a viscous bound-
ary that exerts a drag upon the fluid. This is accomplished by forcing the
tangential velocity to go to zero at the wall.

Now suppose that, the right wall of the same unit cell is a no-slip bound-

ary. Normal velocity at the wall must be zero [5], e.g.,

o U1

Lk =0

so that no through flow at the right face of the cell occur. For the other
velocity components, no slip boundary conditions specifies zero velocity along

the wall and by using linear interpolation;

® Vitrjtn = “Vigrin

i+1,5k+3 = _Wz',j,k+§

are obtained (Dirichlet type condition).
The variables # and P are treated similarly as it is done for a free-slip

boundary.
® Oiv1,56 = Oijk
® Piiijk = Pijk

3.4.4 Flow Boundary Conditions

Two types of flow boundary condition are defined in this study. One type is
for inlet and the other type for outlets of the domain. Each will be considered

in turn.
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3.4.4.1 Constant Pressure Boundary Condition

Boundaries that have flow leaving the grid domain are known as outflow
boundaries. One of the most commonly used condition for the outflow bound-
ary is specified “constant pressure” condition at the outlets [123, 71]. Gavage
et al. [33] states that especially for a subsonic outflow, prescribing the pres-
sure, works perfectly well.

As its name implies, constant pressure boundary condition states that
the pressure on the boundary, considering top face of the unit cell, is fixed

at a specified value throughout the computations;
o Piivipg=PFijr=Pou

A zero gradient condition (Neumann type) is applied to the velocities by
extrapolating the velocity components of U, V;,, W, from the interior cells

53, 1, 66, 5];
® Upptjvig = Uipljn

¢ V;,j+§,k = V%,j+%,k

® Wijriket = Wijnis

Volume fractions are also considered in the same logic as,

o

Qij+1k HCIi,j,k

3.4.4.2 Inflow Boundary Conditions

An inflow boundary is described as a boundary which allows fluid to move
into the domain at a prescribed inlet velocity distribution, ug, as well as at a
prescribed value of ,’s [71]. If the bottom face of the unit cell is considered

as inflow boundary;

o UH—%,jfl,k =U;
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hd maj_lak+§ = VI/Z

o 0

9i,i—1,k — Ydin

where subscript “in” refers to specified inlet value. However, the pressure
at the inlet is unknown and a boundary value is extrapolated from the interior

of the flow domain;
d 'Pi’j_lak = 'Piajak

In contrast to constant pressure boundary condition, outflow of the fluid

is not permitted in inflow boundary condition.

3.4.5 Periodic Boundary Condition

Since cylindrical coordinates is used in the discretization, a periodic condition
appears in the angular direction of ¢. Such a condition must be set to provide
a coupling between the variables at the first and last cells exist in the angular
sweep.

Periodic boundary condition states for velocity components, volume frac-

tions and pressure, in the aft and fore cells respectively;

=U,

Uq ’ Uq = Uq

i+3,5,2 9i+1,j,kmaz+1 i+3,j,kmaz i+1,4,1
® V;;z',j+§,2 = ti,j+%,kmam+1 ) V;]i,j—f—%,kmaac = qu‘,j+%,1
o qu,j,% = qu,j,kmaac+% , qu,j,kmaz+g = qu,j,g
b 0‘1z’,j,2 = 0‘1i,j,kmax+1 ) H(Ii,j,lcmam = 0‘1i,j,1
L Pi,j,Z = Pi,j,kma:c—|—1 ’ Pi,j,kmaw = f)i,j,l
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3.5 Solution Procedure

Before starting to construct a computer program (code) which will help to
solve those finite difference equations, a solution algorithm as shown in Figure
3.4 is to be outlined according to the technique similar to that proposed by
Harlow and Amsden [41] in IMF method and as it is applied in K-FIX code
[110]. The resulting finite difference equations are semi-implicit and are
solved by an implicit point relaxation technique [110, 16] as outlined in this
section.

The iteration procedure [80, 81] is described simply below in the same
order as the computation is performed. As can be seen in Figure 3.4, after

setting the initial velocities and void fraction,

1. the pressure distribution at time ¢ + At is guessed,

2. the momentum equations will be solved to compute initial estimation of
the three velocity components of each of the two phases, for a guessed

pressure distribution,

3. phasic volume fraction, 6, is estimated from the continuity equation of

liquid (gas),

4. then it is checked if gas(liquid) continuity equation is satisfied with
this estimation. If satisfied, a new timestep is chosen and steps 1 to 4
are repeated. If the equation is not satisfied, the pressure is corrected
iteratively by using an equation derived from the gas(liquid) continuity
equation. Velocities are updated and steps 3 to 4 are repeated. This
iteration procedure is continued until the mass residuals are less than
the specified convergence criterion, ¢, in all the computational cells

simultaneously .

To be a more specific, the details of this iterative procedure are given

below [110, 10, 36];
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Figure 3.4: Solution Algorithm
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a.The overlined (explicit) quantities are calculated using equations 3.20 through
3.25.

b.The drag coefficients are calculated explicitly.

c.New time level (n+1) velocities are estimated by using following equations.
These velocities which are derived algebraically from equations 3.11 through
3.13 and from equations 3.17 through 3.19 on the right, top and aft bound-
aries are calculated for both phases as [4, 110, 42, 10, 32];

ot
n+1 . n+1 n+1 _ n+1
UQH-%,]',]C = { (Pg (HgUy)H%,j,k Sr 091+2,],k(f)i+17j7k Pwk )>

+1

( 9111 gk +6thn+2,], ) +5th+ gk(pl(glUl)H%,j,k
+1 n+1 n+1

_ﬁelﬁ%,j,k(})ﬁm, P,J, )>}

/< 09?+ jk{plalH— gk T O Jk}+5tpl9l?:lijn M) (3.42)

ot
n+1 Y pntl n+1 _ pn+l
Vql’ﬁ'z’k { (py(egvg)i,ﬂ-%,k 52 egi,ﬂ_%,k (Pz J+1,k Pi,j,k ))

(pltger—l o OKT k) +OtKT,, k( (A
_Egl’zn,ji k(Psz++11 k Pz?jfkl))}

/(pgﬁgz;: k{plglnﬂ + 0tK ”+ k} + (5th01 Kznﬁwk) (3.43)

ot
n+1 n+1 n+ n+1
Wgz,g,k+2 {( (9 ) igk+3 Ti5¢99i,j,k+ (P ,3,k+1 - P,J, ))
(Pl91?+’1+1 + 5thn] k+1 ) + (5tK id, k—|— (pl(elVVl)i,j,k—k%
ot n+1 n+1 n+1
_Ti(gqﬁgli,j,ﬂ% (Fijrer = Pie ))

/( 99?] fad {0191, L + 6tKZn] ket d } + (stplgl:t;—kl:_{_ Kznj ka ) (344)
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- 5t
Ul {(pz(el Ut)iss g = Eolifélmk(mt}j”“ ik ))

i+3.5k

+1
(Pabors s+ 0T 10 ) + 00Ty (20O

9i+1.4,
_ﬁe n+1 ( n+1 o n—l—l)
or 9i+1,5,k\" i1,k 1,9,k
n+1 n+1 n n+1 n
/ <9999i+§,j,k{pleli+§,j,k +ot z’+§,j,k} + 5tpl€li+§,j,kKi+§,j,k) (3.45)

ot
n+1 _ _ 2" pntl n+l _ pn+l

1
(pge L+ (5tK'7,Lj+%,k> + LK (pg(g"%)i’j+%’k

9i,j+1 .k i
(% n+1

n+1 n+1
_gggi’j+%’k(Pi,j+l,k — Pk )) }

/(ng n+1 {plelm—l + 5tKZj+%,k} + 5tﬂl9l2ﬁ%,kK2j+%,k) (3.46)

9i,j+3.k ij+g.k

T ot
an-l-l _ o n+1 n+1 - n+1
bijk+l = {(Pl(el Wl)i,j,kJr% T—'5¢9li’j,k+%(Pi,j,k+1 Pz;k ))

]

+1
(/’gegzg'm% * ‘5th‘",j,k+%) +OtK s </’9(99W9)z‘,j,k+%

_ ot 0 n+1 1( n+l n+1)>
T16¢ gl,],k-l-i zv]ak"f_l Za]vk

n

+1 +1 n +1
/ <p909?,j,k+§ {plel?,jm% + 5th‘,j,k+§} + 5tplele,k+§Kz,j,k+é> (3.47)

d.A new variable, ; ; 1, is calculated from the following equation [42];

O(Di,j, k)1 "
Bijk = [%} (3.48)

1,9,k

in which the partial derivatives are calculated by means of the following

equations:
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*

in case of Oy, ., <07,

2
(8Dl)n+1 _ ot [T‘- gt 4 g+ ]
it5 litd gk -3 bi-1 4k

OP /iik  prior’ p
5.{/_2 [ " a[Ug - Ul]?_:—%l’j,k K’n a[Ug - Ul]:&j%l,]’k]
+Ti57“pz Titd iyl ik apﬂfkl ERREE ST R apl?’szl
512
n+1 n+1
5220, [Gli,ﬂ%,k + eli,j—é,k]
n+1 n+1
. Vs — W]z’j—i—%,k n Ve — Vl]ij-%,k
52py [ ij+ak aPin;rkl T -tk aPinj-}—kl }
65t
n+1 n+1
+ oiri2(09)? [elz‘,j,lwré + H’i,j,k—%]
n+1 n+1
S PPk B L1415
ridop kT O WP |
where
o, - Ul 5 o007 1 (o1 = pyg) 3.50)
api?jjrkl (0" pg (0" p + K76t) + elnHPlK"&)HéJ,k '
8[Ug - Ul]?__’—;j’k B g—:(ﬁg@z)?j%l,j,k(ﬂg - pl) (3 51)
oVy —Vi Z;Li%,k %(Ogel)Z;i%,k(Pl — Pyg) (3.52)
OPLf (0 g (07 pu + Kn6t) + 0T K6t) sy
vy = Vil 3 (00077 1 (pg — p1) 553
8Pi7,1j4,»k1 (egn+lpg(0ln+lpl + K”ét) + eln+1len6t)i,j_%,k .
oW, — W, ZI,;_% B %(Qﬁl)z;;+%(ﬂl = Py) (3.54)
OPfy (05" pg (" py + K6t) + 0" o K"6t), 51
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a[Wg - VVI]ZI;_%

§
ﬁ(egel)zzi_% (pg — p1)

oP

275

while similarly for ng.j k= 0%k

ot

= (egn+1pg(01n+1pl + K’n‘ét) + Hln+1len5t)

(3.55)

i:jak_%

O0Dg\n+1
— ) n+1 +1
( 9P )i,j,k pyTioT? [TZ+%99z'+§,j,k + Ti—%egy—é,j,k}
9 . n+1
ot [7“- KM, U, Ug]zq_%,j,k KT o, — Ug]?j;,j,k
ri&;pg i+3 7 i,k 513,-7?;61 i—g i1k aPz'Z‘J,rkl ]
ot n
+1 n+1
+522pg [egi,j+%,k + ogi,j—é,k]
+1
O (e Vi = Vliiaw Vi = Vilij s
5ng ij+5.k 8Pz‘7,1;1c1 ij— 1.k P ir’bjj»kl ]
+ 6t2 0 n+1 n+1
pyTi2(66)2 [ 9igk+ T Ggi,j,k—%]
+1
n 5t? [ n oW, — Wg]Zj,k.q.% oW — Wg]lei_l
00 i, k+3 n+l T Pgk—3 n+1 2] (3.56)
i0PPg P T OP; j+k
where

o, — U, ™t

4
ﬁ(gggl)?_:—%l,j,k (pg - pl)

it3.0k
n+1 - n n n :
oP% (05" pg (O pu + Kt) + O pK6t)4 1 (3:57)
— n+1 n
8[Ul Ug]i,%yj,k _ g_f«(egol)ij;j,k(ﬂl - pg)
n+1 - n n n '
0P (05" pg (O pu + K6t) + 0" pK6t); 1 (359
_ n+1 n
a[w th i,j—l—%,k _ %(egel)i;i%,k(/og - pl)
n+1 - n n n :
OP; (65" pg (B o1 + K™6) + 6, +1len5t)i,j+%,k (3:59)
— n+1 n
8[‘/2 Vg]i,j,%,k _ %(eggl)i,;,léyk(pl - pg)
8Pz'T,Lj—j_lc1 (9gn+1pg(91n+1,01 + K"&t) + Hln—i—llen(St)i,j,l . (360)
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8[VVI - Wg]n+1 i(ggel)m—1 (pg - pl)

i,j,k+% _ ;00 iyj)k'l’% (3 61)
GP&T,CI (0, pg (0" py + Kn6t) + 9ln+lle"5t)i,j,k+%
8P&Tk1 (9gn+1pg (Oz"sz + Kn6t) + Hlnﬂsz"(St)i,j,k—% )

Here, [ represents the derivatives of the residue D, ; related to the pres-
sure, and is analytically obtained from the fluid continuity and momentum
equations [42, 36]. Rivard and Torrey [110] derived g for two-dimensional
cylindrical coordinates by including drag function. Later, they added one
term to this equation to include the third dimension, ¢ directional effect [112].
Lee and Lyczkowski [80] ignored the momentum exchange terms, K (uy — u;)
and K (u; — uy) in the derivations of equations 3.49 and 3.56. They found
that these formulations result in greater stability for pressure calculations
for the problems that they had been investigated. Also, Lee and Shah [81]
obtained 3, but in cartesian three-dimensional equations by ignoring drag
terms. Gomez et al. [36] found S for two-dimensional cylindrical coordinates
by neglecting K term. Lee [78] gave the detailed derivation of these derivative
terms in 2-D cylindrical coordinates of r and z.

By using Lee’s approach, the derivaties of % (for q=g,l) are rederived
by including the drag terms (K’s), for incompressible equations in three-
dimensional cylindrical geometry by considering ¢ direction terms. Amsden
and Harlow [3] found that calculation and storage of f3; ; before entering
into iteration step and holding them invariant throughout this stage makes
help to enhance computer efficiency.

e.Pressure is adjusted iteratively in a cell in order to ensure mass conser-
vation in the flow, that is to minimize the residual of the continuity equation

below convergence criteria [42, 23, 24, 110] or until the number of iterations
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exceed a predefined “inner iterations limit” defined for pressure convergence.
The computations proceed until the entire computational domain is covered
(32].

Gamwo et al. [32] and Syamlal [124] sets a value of 5 iterations for this
inner iteration limit. Broadus et al. [10] recommends this number to be 5 or
greater.

The residues are calculated from the following equations in a fully implicit
way for different cases of the 6, value as used in K-FIX [110]. Gamwo et al.,
Enwald and Peirano [24, 23] uses only D, in the iteration steps. If § < 6*,
D, is calculated from the following equation [10, 4, 23];

n n ot n o
(Dl)z,;:li = I:(ol)z;:l (el)z_ﬂc] T 5 [(elUﬂ‘) + (0 Ulr) +§1,],k]
Ot )
5 [(QIV)JJ&% e CAD) ;L_ll k]
ot n i
+7«i5¢ [(Hlm)i,zli+ — (O}, 1] (3.63)

or if § > 6*, D, is discretised as in the liquid equation above [10, 36, 23],

(Doligs = [O0)ifi = Oo)isu] + -5 [OUsr)iEL = OV ]
5t n n
ORI O e
5 n n
66 [(9 Wo); ,;L,;ﬂ (0,W,); ,ﬁ——] (3.64)

At the end of such a computational sweep, if convergence was not obtained
in any of the cells, the sweeps are repeated. If a pressure adjustment is
necessary in any of the cells, the procedure is repeated until simultaneous
convergence in all of the cells is obtained. The number of such sweeps are
restricted by specifying maximum allowable number of iterations called as

“outer iterations limit” defined for convergence during a time step [36]. If
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this number is exceeded, iterative process terminates and current values of
P,0,,U,,V,, W, are considered to be satisfactory and the calculations proceed
to the next time step, [124]. Amsden and Harlow reported that this number
is set to 100 and the usual number of iterations per cycle seldom exceeded
10 in their calculations [3]. However, in [124] it is set to a value of 500, while
Lee [78] used 100 steps.

The calculation sequence of the pressure iteration for a single cell involves
the following steps:
e.L.If | Dy | or | Dy |> €, the pressure, P[!, is adjusted. Initial pressure ad-
justments (corrections) are performed using Newton’s point iteration method

in each cells as [24, 23, 80, 110, 36];

P = P" 4+ 6P, (3.65)
by defining 0 P; ; as,
6P;.77 (IBD ) 1]3 (366)
gives, for Og”k < 9”,6,
D
n+l __ n lZaJak
Paja Pa]’ (@)n—l—l (367)
P Jijk
and for 0y, ., > 07,
D,. .
n+l _ pn 94,5,k
Pa]a - Pﬂ]: (%)ﬂ‘i‘l (368)
P ik

meaning that the new pressure field becomes the sum of the old pressure field

and the pressure correction.
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Here, w is an over/under relaxation parameter of order unity [4]. Amsden
and Harlow [3] stated that since a relaxation procedure based on Jacobi’s
method is used in this algorithm, the iteration will converge only if 0 < w < 1.
Lee and Lyczkowski [80] used w=0.95 in their calculations. A value of 1.0 is
used in the present study as it was used by Rivard and Torrey in [110].

Newton’s method is continued until D;;, changes sign, [110, 32, 36].
After D;;, changes sign, the next pressure correction is done by using a
constrained two-sided secant method [80, 110]. This method is explained in

detail in section 3.6.

e.2. By using equations 3.42 through 3.47 the new time velocities are
calculated on the right, top and aft boundaries for both phases. The velocities
on the left, bottom and fore boundaries are calculated similarly as described

in step ¢ and not mentioned here.

e.3. After that, new gas or liquid mass fluxes (convection terms) depend-

ing on whether 6 < 6* or # > 6* are determined. Then,

ed. Case (i) if 8 < 6*: Equation 3.64 is solved for 03“ by putting
D, = 0. Then 6, is calculated from 6, =1 — 0,. If D; < ¢, it is proceeded to
the next cell, otherwise new liquid mass fluxes are computed using latest 6,

and velocities, and steps e.1 through e.3 are repeated.

Case (ii)if @ > 0*: Equation 3.63 is solved for ; by putting D; = 0. Then,
f,is calculated from 0, = 1. — 6;. If D, < ¢, it is proceeded to the next cell,
otherwise new gas mass fluxes are computed using latest 6, and velocities,

and steps e.1 through e.3 are repeated.

The pressure iteration is complete when the maximum value of (Dy);
or (Dy);jx, for all cell elements, is below a pre-defined value. When this
condition is achieved, the pressure value is considered to be correct and
complete solution to the continuity and the momentum equations has been

obtained. This completes a computational cycle [10, 110].
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3.5.1 Convergence Criteria

Iteration algorithm, which was mentioned in the previous section, also checks
for the convergence criteria and determines how well continuity equations
are satisfied [32]. The pressure is adjusted in the computing cells until |
D, | or | Dy | depending on #*, is less than a specified small quantity, €,
simultaneously in all cells. The value of the convergence criterion is defined

similarly as in [110, 10] and taken as;

I e(Oy)n,, for (0,)7,, > 67

ijk =

Gamwo et al. [32] who uses same numerical algorithm assumed ¢, as
5+ 107%. Broadus et al. [10] made a restriction that this value should be
1075 or less in their code (Beacon).

Here 6* called as “switch void fraction (SVF) parameter” is defined to
determine whether to solve the liquid or gas mass continuity equation in the
solution procedure. If the void fraction in a cell is smaller than SVF, the
liquid continuity equation is solved, otherwise, the gas continuity equation is
solved. Rivard and Torrey [110] states that the use of SVF ensures that D is
computed in a pure liquid cell and D, in a pure gas cell. Lee and Lyczkowski

[80], Lee and Shah [81] used 6* = 0.001 in their calculations.

3.6 Secant Method for Pressure Adjustment

As mentioned in the previous sections, pressure-adjustment algorithm is
based on the calculation of discrepancies in both gas (D,) and liquid (D;)
continuity equations. When D; or D, fails to satisfy the convergence criteria
in cell; j x, the pressure in that cell is needed to be adjusted [110].

Pressure adjustments are done by using a constrained two-sided secant
method which is a combination of the secant method and bisection method

after D; ;i changes sign in the iteration loop of the solution algorithm. The

o7



principles of this method is described in detail by Rivard and Torrey in [110]

and rewritten here:

2.1)

Dq ]

Figure 3.5: Pressure Adjustment Technique [110]

According to this method (see Figure 3.5), given the three points 1,2 and
3, of which 1 and 2 bracket the desired pressure 3 which lies between them,
the pressure P4, and Pp are determined by straight line extrapolation and
interpolation, respectively. The new estimate of the advanced time pressure
is then computed as i’;?fkl = 0.5 % (P4 + Pg). If the pressure P4 should lie
outside the interval P; to P, it is given the value 0.5 % (P, + Ps). After Pznfkl
is estimated, point 2 is discarded and points 1 and 3 are retained as improved
bounds for the next pressure estimate. This method requires knowledge of

two pressures that bracket the desired pressure [110].

3.7 Stability

The numerical difference equations are subject to numerical stability condi-

tions that a volume of fluid cannot move more than one control volume in
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one time step that is assured by Courant-Friedrichs-Lewy (CFL) condition
described as follows [30].

U | 6t < 6z (3.69)

In other words, the amount of fluid which leaves a cell in one time step
is no more than the amount of fluid that was originally in the cell.

.. . . . . A
CFL condition is described by a dimensionless number, M*A&, Courant

z
Number, and it determines maximum allowable time step for stability [14]. Tt
is well known that the Courant number, should be less than one for accurate
results. In FLOW-3D [48], it is stated that if Courant number is allowed to
exceed this value, then the convective term will become unstable, i.e., the
error will grow with successive iterations.

However, satisfaction of the CFL condition is a necessary condition for

stability, but is not sufficient to guarantee stability. Therefore it is a common

procedure to select the Courant number < 1 [21].
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CHAPTER 4

COMPUTER CODE

In Chapters 2 and 3, a detailed discussion of the governing equations and a
description of the numerical technique that will be used to simulate header
component in METU-TPFTF were given.

In order to solve all those separate sets of conservation equations which
describe three-dimensional two-phase gas/liquid flow, a two-fluid computer
program(code) was developed. This code solves the governing equations in
the same order as defined in Chapter 3. In this chapter, outlines of this code

are given.

4.1 Programming Environment

The code is written in Fortran-77 language and is compiled by g77 compiler in
LINUX environment. All calculations are performed with 3.0 GHz Pentium-

IV processor.

4.2 Program Structure

In this section general structure of the code is described. Main program
contains following subprograms which have special functions as tabulated in

Table 4.1.
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Table 4.1: Computer Code Subroutines and Their Functions

‘ Subroutine H Function

BNDRY applies boundary conditions

DRAG computes the drag force term, K

DTCALC computes maximum allowable timestep interval based on
CFL condition

EXPLCT calculates explicit terms in the gas and liquid phase mo-
mentum equations

FLAG sets flags for the cells at which boundary conditions will be
applied

GASD calculates discrepancy in gas mass equation

IMPLCT controls the iterations, checks for the convergence criteria
and updates all variables

INITTAL defines initial conditions of all variables

LIQD calculates discrepancy in the liquid mass equation

MAIN sequences execution of input data processing and transient
computation

MFLUXG calculates mass flux terms for the gas phase

MFLUXL calculates mass flux terms for the liquid phase

NEWVELS | calculates advanced time velocity components and velocity
estimates on the faces of the cells

NFLAG defines the flags for neighbour cells of each cells

PINTP calculates new time pressure level from three (P, D,) points

PDERIV computes discrepancy, qu.yj,k, derivatives with respect to
pressure

PPSHR calculates 7, ¢ terms

PRSHR calculates 7, terms

PZSHR calculates 7, 4, berms

RRSHR calculates 7, terms

RZSHR calculates 7, terms

UGFLX calculates gas phase momentum flux terms in r direction

ULFLX calculates liquid phase momentum flux terms in r direction

VGFLX calculates gas phase momentum flux terms in z direction

VLFLX calculates liquid phase momentum flux terms in z direction

WGFLX calculates gas phase momentum flux terms in ¢ direction

WLFLX calculates liquid phase momentum flux terms in ¢ direction

Z7ZSHR calculates 7, terms
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The program calculation sequence starts with the MAIN program where
the input data are read. MAIN program initializes system geometrical prop-
erties, physical properties of two phases and also settles 1 inlet and 5 outlet
nozzles connected to the main body of the header. Then subroutine INITTAL
sets the initial values of pressure, void fraction and velocities of each phases.
The control then passes to subroutine FLAG. FLAG assigns values to the
cells including ghost ones that is used to distinguish the various types of cells
in the computing mesh. The flags of the each cells are designated according

to the Table 4.2.

Table 4.2: Flag Definitions

‘ FLAG ‘ Cell Type

Fluid Cell

Free-Slip Boundary

No-slip Boundary

Inflow Boundary

Constant Pressure Boundary
Periodic Boundary

| O = W DN —

Except from the ghost cells which describe boundary conditions, all cells
are assigned value of 1 to indicate being a “fluid cell”. After that, subroutine
NFLAG is called and flags of each 6 neighbour cells (top, right, bottom, left,
aft and fore cells) are put into arrays for each computational cells.

Subroutine BNDRY, then checks for NFLAG arrays and sets the bound-
ary conditions around the computational mesh perimeter. If BNDRY finds
a boundary cell in any mesh sweep operation for cell; j, during the calcu-
lations, it sets boundary values for related variables for the fictitious cells
around cell; ; 1.

Table 4.3 summarizes available boundary types defined in the code by
use of ghost cells surrounding the computational grid. For example, con-

stant pressure outflow boundary can be prescribed along the top, right and
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left boundaries, while inflow can be prescribed along the bottom and right
boundaries. Due to three-dimensional computation, tens of different combi-

nations specifying boundary cells have been defined in the code.

Table 4.3: Available Boundary Condition Flags for Cells

Cell Face Flags
B

Top -

3
\/
Bottom - V
\/
v

Right -
Left V4
Aft -
Fore - - - -

)
Y,
\/ -
VIV | -
. Y,

The momentum flux terms (convective terms) for the gas field are then
evaluated in subroutine UGFLX, VGFLX, WGFLX, whereas those for the
liquid field are evaluated in subroutines ULFLX, VLFLX and WLFLX. The
viscous stress terms were calculated in 6 separate subroutines named ZZSHR,
PZSHR, RZSHR, RRSHR, PRSHR, PPSHR.

EXPLCT puts all explicit terms came from the convection, gravity and
viscous stress terms into a single term for all cells. The gas and liquid con-
vection terms are then computed by using advanced time velocities obtained
from flux routines, are calculated by calling MFLUXG and MFLUXL, respec-
tively. In addition K™ is also computed by DRAG subroutine. PDERIV then

1
Bi,j,k

Subroutine IMPLCT takes the control of the iterative part of the solution.
When needed, the pressure is adjusted in IMPLCT by calling PINTP in the

calculates the values of that may be later used for pressure iterations.

cells until D, or D; in equations 3.64 and 3.63 depending on whether 6 > 6*
or < 0%, is less than a specified small quantity, e;ore;, simultaneously in
all cells as the methodology applied in K-FIX and BEACON codes [110, 10].
It has also some calls to NEWVELS, MFLUXL, MFLUXG to calculate n+1
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time level quantities for the velocity and volume fractions during iterations.

To have a physically realistic solution, the void fraction must be kept
within the physical range of zero to one during the iterations. In IMPLCT,
following procedure is installed as used in most of the two-fluid algorithms

8, 99].

0, = MIN|MAX(6,,0.0),1.0] (4.1)

Finally, subroutine DTCALC determines the time step size based on CFL
criteria for the next time iteration which is described in the following section.
At the end of the calculations, MAIN takes the control again and displays
the time, time step size, and last iteration number on the output in order to

control the program execution.

4.3 Time Step Control

In time step control algorithm a maximum 4t is calculated to allow a good
time convergence of the code predictions. Since the solution algorithm is
semi-implicit, the Courant-Friedrichs-Lewy (CFL) limit check is done before
a time advancement takes place [10]. This limit is evaluated by finding
maximum velocities (Upaz, Vinazs Wmaz) Which are the absolute maximum
velocities in each volume of i,j,k in r,z and ¢ directions for each phase of q

(e.g., Unaz = ma:c(UgH%’j,k, Uli+%,j,k)), respectively [10, 54, 62].
ar 0z ri0p

Umam ) Vmam’ Wmam

Then the code finds a Atgppvalue among minimum of

stating that;

Atoprp < min(Az/ | u ) (4.2)

Broadus et al. stated in [10] that to obtain best numerical results, timestep

should be less than a tenth of Courant timestep or less.
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In the code, first time step is specified by the user as At;yp. Time step
control module DTCALC calculates the next time step value, At"*!, by tak-
ing minimum of At;yp and Atgpp found from Equation 4.2. Computations

continue until the time exceeds tsrop.

4.4 Steady-State Convergence

Steady-state convergence of the transient solution can be characterized by a

Ly norm of error (root mean square error) defined as [97];

n+l _ n |2
Xt — Xy |

ik
L, = oL 4.3
2 \l Nor (4.3)

where x, is the corresponding cell variable (uy, 8, or P) at the cell; j 5. n and
n+1 represents two preceeding time steps. NV;ji, is a number of computational
nodes used. After reaching the steady-state there is no need to continue
further in computation. An algorithm which calculates such errors for each
variable at each time step is placed into the code to observe whether the

solution approaches to steady-state or not.
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CHAPTER 5

NUMERICAL BENCHMARK STUDIES

5.1 Introduction

The numerical modelling described in the previous chapters will be applied
to numerical experiments (numerical benchmark tests) to verify the relevance
and the validity of the scheme. In this chapter, the results obtained from the
benchmark tests of “Water Faucet Problem”, “Pure Radial Symmetric Flow

Problem” and “R — ¢ Symmetric Flow Problem” are reported, respectively.

5.2 Water Faucet Problem

Water Faucet Problem is actually a one-dimensional problem which simulates
resolution of volume fraction waves. This test case was first introduced by
Ransom [109] in 1987 and Ransom has proposed an approximate analytical
solution to the problem.

This problem has previously been used by several authors [25, 14, 13,
102, 108, 34] for testing the ability of their proposed numerical schemes and
has been established as a well-known standart numerical benchmark for the
performance evaluation of numerical methods developed for the two-fluid

model. So it was selected to test the present numerical solution method.
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Objectives of this benchmark problem are defined by Ransom [109] and
Nae et al. [93] as;

e Testing the interaction of the body force term with the temporal and

convective acceleration terms in the momentum formulation.
e Testing the void fraction characteristic.
e Testing the stability and convergence.

e Testing the diffusive character of the numerical scheme since a dis-
continuity in the void fraction is formed and propogated through the

solution domain.

Testing the boundary conditions.

5.2.1 Definition of the Problem

In this problem, a water column surrounded by air, flows at a constant ve-
locity of 10 m/s and a void fraction of 0.2 into the top of a vertical tube of
12 m lenght and 1 m in diameter [109, 65].

Top of the tube is close to the air flow while the tube is open to ambient
pressure at the bottom. The system is isothermal and adiabatic [109].

A gravity field g = 9.8m/s? is applied upon the simulation start (t=0),
resulting the water column to accelerate. The water column gets thinner due
to acceleration. Several stages of the process are shown in Figure 5.1. This
figure shows the propagation of the void profile down the tube until the wave
has completely passed out of the tube and the steady-state profile remains.

The initial conditions of this problem are tabulated in Table 5.1, while
boundary conditions are shown in Table 5.2 . Implied velocities are defined
as inflow and constant pressure of 10°Pa is defined as outflow boundary con-
ditions. At the outlet, the remaining variables u;’s and 6,’s at the boundaries

are determined by simple extrapolation.

67



Inflow —

Qutflow —

Initial Conditions

t=0 sec.

Intermediate State
t>0=ec.

Steady state

t»= 0 sec.

Figure 5.1: Water Faucet Problem: Schematic of Time Evolution of Liquid
Column

Table 5.1: Initial Conditions of Water Faucet Problem

liquid phase | gas phase
(water) (air)
density 1000kg/m? | 1kg/m?
pressure 10° Pa 10° Pa
velocity 10 m/s 0m/s
volume fraction | 0.8 0.2

Table 5.2: Boundary Conditions of Water Faucet Problem

‘ ‘ Water ‘ Air
Inflow (top) velocity 10 m/s 0m/s
volume fraction | 0.8 0.2
Outflow (bottom) | pressure 10° Pa 10° Pa
volume fraction | extrapolated | extrapolated
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If pressure variation is ignored [13, 27|, under the assumption that the
liquid is incompressible , this problem has an approximate analytical solution
for this problem was given by Ransom [109] for the liquid velocity and void

fraction as:

V.2 4+ 29z for z < Vyt+ gt?/2
Ve t) = v 9z f gt*/

Vo + gt otherwise.

0,(1+ 292V, %)% for z < Vt+ gt2/2
O4(2,t) =

0, otherwise.

This analytical solution is used to test the code’s predictions. For sim-
plicity, interfacial drag force is neglected in this problem as suggested by

Gallouet et al. [31] and suggested in Relap5/Mod3 [115].

5.2.2 Numerical Results

The code’s predictions of the gas volume fraction, 6,, and liquid velocity, V;,
are compared with the exact solutions obtained from the above equations.
An increasing number of cells were used in five numerical tests with 40, 80,
160, 320 and 480 cells in the z direction. The calculation was carried out
until a steady-state flow profile is obtained.

Figure 5.2 shows the numerical results by comparing the analytical solu-
tion of this problem for gas volume fraction at time=0.4 s while Figure 5.3
shows the liquid velocity at t=0.4 s. Both figures were obtained by using
Courant number(CFL)=0.1. It is seen that especially at the cells near the
inflow opening, consistent results with the analytical solutions are obtained.
Near the discontinuity, a small undershot is observed which becomes more
noticable when using finer grids above 320 cells. Such phenomenon is also
reported by Paillere [102] and Karni et al. [65] in using finer grids.

Grid refinement resulted in good improvements on the void fraction and

liquid velocity. However it seems that after 480 cells not much improvement
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Water Faucet Problem (Time=0.4 s., CFL=0.1)
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Figure 5.2: Transient Void Fraction Profile for 40, 80, 160, 320, 480 Cells at
t=0.4 sec.

Water Faucet Problem (Time=0.4 s., CFL=0.1)
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Figure 5.3: Transient Liquid Velocity Profile for 40,80,160 and 320, 480 Cells
at t=0.4 sec.
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is expected and undershot near the discontinuity is expected to grow. Bound-
ary conditions are working well and no instability oscillations were observed
during numerical solution stage.

In order to test the effect of using smaller time steps, CFL number is
reduced to 0.01 and tested for 40 through 480 cells. The results are more
satisfactory than that of obtained for CFL=0.1 at t=0.4 s as can be seen
in Figure 5.4 and Figure 5.5. Small undershots observed in Figure 5.2 in
using finer grids are disappeared by reducing the time step. Figure 5.6 shows
the void fraction evolution for 480 cells in z direction. Contact discontinu-
ity is propogated along the tube and completely passed out of the tube as
expected. Finally, the steady-state profile is attained. The code seems to

simulate this behaviour reasonably good.

Water Faucet Problem (Time=0.4 s., CFL=0.01)

0.45 , , | : |
80 Ce”s ........
0.4 160 cellg e |
c 480 cells === ===
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% 035 i
o
L
€ 03 _ i
3 :
~
> b
@ 025 . N
0]
0.2 f
0.15 ! L | | |
0 2 4 6 8 10 12

Distance (m)

Figure 5.4: Transient Void Fraction Profile for 40, 80, 160, 320 and 480 Cells
at t=0.4 sec.

Those results obtained in simulating water faucet benchmark problem are
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Water Faucet Problem (Time=0.4 s., CFL=0.01)
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Figure 5.5: Transient Liquid Velocity Profile for 40, 80, 160, 320 and 480

Cells at t=0.4 sec.
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also in good agreement with so many works found in the literature presented
below.

In 1997, Coquel et al. [13] used a constant ratio, dt/dx = 5.0 * 1074, in
their simulations of faucet problem by using upwind scheme and Roe scheme.
They used 12 through 200 cells. They showed that using finer grids resulted
more closer results. However they observed some discrepancies near channel
inlet.

In 1999, Paillere et al. [103] tested three schemes namely AUSM+, VFFC
and Roe with this problem and found that results are virtually indistinguish-
able from one another.

In 2000, Paillere [102] obtained very close results with the analytical
solution by using AUSM+ scheme. He presented the results for t=0.5 s.
which show the behaviour of void fraction and liquid velocities for 20 to 1280
cells. Only in the case of 1280 cells case, a small overshoot and undershot
has been observed before and after discontinuity respectively.

Ramos [108] studied water faucet problem and obtained results for t=0.5
s. by using 100 to 4500 points in one-dimensional grid. He showed that grid
refinement has resulted more accurate results for void fraction and liquid
velocity. He did not observe any over/undershoots near discontinuity.

In 2001, Ghidaglia et al. [35] and Kumbaro et al. [69] tested and gave
the results for 192 cells (Figure 5.7) using central differenced finite volume
discritization. They also showed that using fine grids resulted more closer
results. However, they found that numerically unstable results obtained when
so small dx is used.

In 2002, Cortes [14] used a finite volume explicit numerical method and
density perturbation method to simulate two-phase multidimensional flow.
He tested this model with faucet problem by using 120 and 480 cells and
observed that results were in good agreement with the analytical solution
especially in finer grids. He used constant CFL number having a value of

0.98.
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Figure 5.7: Void Fraction Profile at t=0.6 s., Ghidaglia et al. [35].

Nourgaliev et al. [97] introduced a new characteristic-based semi-implicit
two-phase flow model and tested it with faucet problem by using two differ-
ent liquid velocities (10 m/s and 15 m/s). They showed that higher-order
schemes (ENO,WENO) are superior than the first-order accurate scheme in
capturing discontinuity. The first-order scheme produced oscillatory solution
with grid refinement.

Dinh et al. [19] gave the simulation results for faucet problem by using
incompressible and isothermal two-fluid model for 100 nodes. With grid
refinement (1000 nodes) the numerical solution sharpened and an overshoot
became evident at a later time moment.

Evje and Flatten [25] presented the results of AUSMD, AUSMV and Roe
schemes for void fraction and liquid velocity profile at t=0.6 s by refining
mesh (using 24 through 1200 cells). They obtained more closer results by
using ROE scheme.
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In 2004, Karni et al. [65] tested their upwind schemes on the water faucet
problem and found the results are in very good agreement with the exact so-
lution. But in using finer grids, they saw over and undershootings (Figure

5.8) around the discontinuity line.
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Figure 5.8: Void Fraction Profile at t=0.4 s., Karni et al. [65].

As a summary; the presented two-fluid model is tested with the water
faucet benchmark problem and convergent and stable results are obtained
with mesh refinement and decreasing of CFL number for overall transient
behaviour. The numerical results are in good agreement with the analytical
solution proposed by Ransom [109]. The results showed somehow deviations
from the exact solutions especially near the discontinuity, but almost all
studies in the literature shows more or less the same behaviour. Gravity
effect, void propogation and diffusive character of the numerical scheme are
observed in the present study. Also boundary conditions worked very well

during the simulation.
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5.3 Pure Radial Symmetric Flow Problem

Pure Radial Symmetric Problem has been used to test Relap5-Mod3 [56]. It
is used to demonstrate that the equations in radial coordinates have been
correctly coded and is used to validate numerical algorithm. This problem
represents a hollow cylinder with a symmetric flow pattern (Figure5.9) in the
radial direction in which the flow is assumed to be steady and incompressible.
In order to simulate this problem, a one dimensional version of the code was
generated by not making any change to the IMF numerical algorithm for
gaining cpu time and for responding more faster to the problems that might

occured during simulations.

r; H.' Uo

o

é_—_—_

Figure 5.9: Pure Radial Symmetric Flow Problem Geometry

This problem has an analytical solution for velocity from the continu-
ity equation and an analytical solution for pressure from the r-momentum

equations. The analytical solutions can be written as;

Uy =U,(ry/7) (5.1)
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All azimuthal velocities are set to 0 m/s, pressure at the 1 m. radius
position is 5x10° Pa, and radial velocity at the 7.5m radius position is 0.8667
m/s. (from outside to inside). Therefore, constant pressure boundary is de-
fined for the left side (FLAG=5) of the innermost cells, while radial inflow
boundary conditions are defined for the right side (FLAG=4) of the outer-

most cells.

Table 5.3: Two-Fluid Parameters Used to Simulate Single-Phase Flows

Assumptions | liquid density | gas density | void fraction
(kg/m?) (kg/m?)
Set-1 1000.0 999.999 any

Set-2 1000.0 1.0 0.001

Since this problem is defined actually as a single-phase problem, the two-
fluid model is used to simulate single-phase flow in two sets of assumption
by using parameters shown in Table 5.3.

Both assumptions summarised in Table 5.3 are tested and gave very close
results to each other, therefore here only the results obtained from Set-2 are

presented.

5.3.1 Numerical Results

Figure 5.10 and 5.11 compares the numerical results with the analytical ones.
Code results are in good agreement with the analytical solution. Radial
velocity profile obtained by using 1040 cells in radial direction overlapped
the exact solution curve.

Pressure adjustment algorithm worked very well and pressure profile ob-
tained by using 520 and 1040 cells in radial direction is shown in Figure 5.11.

As can be seen in this figure, using fine grids gave more satisfatory results.
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Pure Radial Symmetric Flow Problem
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Figure 5.10: Radial Liquid Velocity Profile (520, 1040 Cells in Radial Direc-
tion)
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Figure 5.11: Radial Pressure Profile (520, 1040 Cells in Radial Direction)
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Pure Radial Symmetric Flow Problem
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Figure 5.12: Convergence History (1040 Cells in Radial Direction)

Convergence history of the problem can be seen in Figure 5.12 for 1040
cells. In simulating this problem, the code is successively run from initial

conditions through steady-state solution iteratively.

5.4 R-¢ Symmetric Flow Problem

R-¢ Symmetric Flow Problem has also been used to test Relap5-3D [56]. It is
used to demonstrate that the equations in radial and azimuthal coordinates
have been correctly coded cooperatively and it is used to test the numerical
algorithm. This problem again represents a hollow cylinder with a symmet-
ric flow pattern in both radial and azimuthal directions as shown in Figure
5.13. To simulate this problem, a two-dimensional version of the code was
generated by not making any change to IMF numerical algorithm for the

same reasons stated previously.
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Figure 5.13: R-¢ Symmetric Flow Problem Geometry

In this problem, the azimuthal velocity at the 6.5 m radius position is 1
m /s, while pressure at the 1 m. radius is set to 5x10° Pa. Radial velocity
is defined as 0.8667 m/s at the 7.5 m radius position from outside to inside.
Parameters defined in Set-1 of Table 5.3 is used to simulate this problem.
Constant pressure boundary is defined for the left side (FLAG=5) of the
innermost cells, while radial inflow boundary conditions are defined for the
right side (FLAG=4) of the outermost cells. Periodic boundary conditions
(FLAG=6) are imposed to the cells found next to the start and finish lines
of each angular sweep.

The analytical solutions can be written as;

Ul = Uo(ro/r) (53)

VVl = Ww(Tw/T) (54)
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/Ol[(UOTO)2 + (erw)2](ri2 - TZ)
2(r;r)?

P="P - (5.5)

5.4.1 Numerical Results

219 cells in r-direction and 55 cells in ¢-direction are used to simulate this
benchmark problem. Figure 5.14 compares the radial velocity profile ob-
tained from code’s simulation with the exact solution expressed by Equation
5.3. While Figure 5.15 gives the calculated azimuthal velocity profile in
comparison with the analytical solution (Equation 5.4). Numerical results
indicate that both velocity profiles are in good agreement with the analytical
solution. Pressure profile (Figure 5.16) is also found to be very close to that
of exact solution, Equation 5.5. Convergence of the variables to steady-state
can be seen in Figure 5.17.

The code simulated this two-dimensional problem reasonably good. Peri-
odic boundary condition implementation in angular direction is tested with
this problem and worked very well in combination with the other type of
boundary conditions. The numerical algorithm is successively tested in two
dimensional, r and ¢, geometry.

Considerable experience has been gained in the benchmark studies;

to reduce the code running failures,

to implement various, problem specific boundary conditions correctly,

to test all momentum equations one by one,

to validate pressure adjustment algorithm with continuity equations.
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Figure 5.14: Radial Liquid Velocity Profile, 219 x 55 Cells
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Figure 5.15: Azimuthal Liquid Velocity Profile, 219 x 55 Cells
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The two-fluid numerical algorithm also worked properly for simulating
single-phase problems by using two-phase equations in one and two dimen-
sions with the help of assumptions given in Table 5.3. The code’s verification
studies in three-dimensional geometry under single and two-phase conditions

will be presented in Chapter 7.
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CHAPTER 6

EXPERIMENTAL STUDIES

A number of tests have been done to predict two-phase flow distribution
through the outlets of the header component in METU Two-Phase Flow
Test Facility (METU TPFTP). The results obtained from these tests will

provide a data set for validating the code’s capability.

As mentioned in Chapter 1, knowledge of two-phase flow discharging
through multiple branches is essential for the design and/or performance
prediction of such header/feeder systems. However the studies reported on

two-phase distribution in those systems are limited in number.

In 1997, Hassan et al. [45] presented experimental data for the mass flow
rate and quality during single, dual and triple discharge from a stratified
air-water region through small side branches (d=6.35 mm) installed on a
semicircular wall. They conducted tests at two system pressures of 316 kPa
and 517 kPa. They showed the effect of wall curvature on the mass flow rates
of both phases and qualities. But they did not make an attempt to correlate
those data.

An important contribution came from the studies of Parrott [105] in 1999.
He conducted a series of tests on the RD-14M inlet header to determine the

phase distribution within the header and flow and phase distribution in each
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of the five feeders. They found asymmetric phase distribution in the header
in both axial and latitudinal directions which causes uncover of feeder nozzles
and void presence in the feeders. He also performed water only and steam
only single-phase tests under different test conditions.

Ingham et al. [57] conducted single- and two-phase natural circulation
experiments in the RD-14M facility and studied on the steam bubble en-
trainment and flashing mechanisms of void penetration of inflow headers.

In 1999, Osakabe et al. [100] studied on the flow distribution mechanism
of the horizontal header for water with or without air and proposed a predic-
tion method for water distribution behavior in horizontal header (40 mm x
40 mm in cross section) with four vertical branch pipes (10 mm i.d.) located
at constant intervals (130mm). The prediction results agreed well with the
experimental water distribution at a small amount of bubbles. They also
concluded that the bubble contamination significantly affects the flow dis-
tribution in the header and if a uniform flow distribution to branch pipes is
intended to achieve, it is recommended to avoid the contamination of bubbles
in the header.

In 2000, Lee and Lee [79] investigated the two-phase flow behavior at
the header-channel junctions simulating the corresponding parts of compact
heat exchangers. The flow configuration in the square shaped header was
upward co-current flow and the 6 number of rectangular parallel channels
were connected to the header horizontally. The experiments were carried out
for the annular flow regime at the header inlet. They analysed the effect of
intrusion depth on flow distribution for this type of geometry.

In 2001, Maier et al. [86, 85] investigated the phenomenon of the onset
of the liquid entrainment for the condition of the simultaneous discharge
from a stratified air-water two-phase region through two horizontal branches
mounted on a vertical wall theoretically and experimentally.

In 2002, Chandraker et al. [12] developed a mathematical model to evalu-

ate the flow distribution in the feeders and the pressure distribution, however,
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in the outlet header. They used continuity and momentum equations and
also a discharge equation for the lateral flow through feeders to solve these
distributions numerically by assuming incompressible flow in the header. The
model has been validated with experimental data and they reported the flow
distribution in the channels is dependent mainly on the header pressure dis-
tribution and the hydraulic resistances of the individual coolant channels and
connected feeders.

In 2003, Teclemariam et al. [125] investigated two-phase (air-water) flow
distribution in a scaled CANDU horizontal header (484.8 mm long, 38.1 mm
i.d.) with two inlet turrets (36.2 mm i.d.) and six banks of five feeder pipes
(6.4 mm i.d.) experimentally. They tested both one and two inlet turret
injections in 16 tests. Outlet flow rates of air and water were measured in all
of the feeders under the condition of equal pressure drop across all feeders.
They concluded that the phase distribution in the header affected the gas
and liquid flows in the feeders, and phase and flow distributions in the feeders
were strongly affected by the inlet gas and liquid flow rates.

In 2004, Horiki et al. [51] studied on the flow distribution mechanism
of a horizontal thin flow header with four vertical pipes to distribute feed
water for a compact heat exchanger. They modified the prediction method
of Osakabe et al. [100] with the simple iteration procedure for distribution
behaviour to take account of the frictional pressure loss in the header. They
presented the results of experimental study conducted with several kinds of
thin rectangular and small square headers.

Most of these studies showed that two-phase flow distribution is uneven
among the multiple outlet branches and there is a need to perform more
studies for predicting two-phase flow distribution experimentally and espe-
cially numerically. The results were also seemed geometry specific and the
effects of more parameters (distance between the branches, relative angular
locations of the nozzles etc.) should be analysed [125, 86].

In the following sections, detailed information about experimental studies
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performed on the METU-TPFTF is given.

6.1 Experimental Test Facility

Schematic diagram of the METU TPFTF used in the present study is shown
in Figures 6.1. The facility consists of a cylindrical header (19.4 cm i.d. and
1.1 m lenght) with 5 feeders which were made of transparent PVC and acrylic
for the observation purposes (see Figure 6.2). Each feeder connects to the
lower half of the header through nozzles at different elevations and different
angles. As shown in Table 6.1 there are two horizontal nozzles (2 and 6), two
nozzles (4 and 5) 36° down from horizontal, and one nozzle (nozzle-3) 72°
down from horizontal feeders. Also an injection nozzle (nozzle-1) is placed
on near one end of the header (See Figure 6.1). Air and distilled water is

used as the test fluids in this facility.

Table 6.1: Feeder Geometries

Nozzles | Inner Diameter (cm) | Connection Angle
with Vertical Axis
Inlet 7.79 90°
Feeder-2 3.45 0°
Feeder-3 3.45 288
Feeder-4 2.54 324°
Feeder-5 2.54 216°
Feeder-6 2.54 180°

The facility consists of a WILO-MHI 405 series water-circulating pump
which is connected to the bottom of a 100 liters of water-storage tank. Water
is drawn from this storage tank by means of the pump and introduced into
the water line. After pump, there is a by-pass line which is used to arrange
flow rate of water. The pipes in water supply line are made of plastic and

have inlet diameters of 38 mm.
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Figure 6.2: The Header, Mixing Section and The Feeders

On the other hand, there is also an air supply line which consists of 3 air
storage tanks connected to a compressor. The compressed air is injected into
the air supply line by means of a regulator valve (Figure 6.1). The pipes in

air supply line are made of plastic and have inlet diameters of 25.4 mm.

In order to produce air-liquid mixed flow, a special mixer having small
holes around its periphery was mounted just before the inlet nozzle of the
header (Figure 6.1). Air comes from air supply line mixes with water flow in
the mixer and the two-phase air/water mixture then flows downward through

the header.

All feeders discharge into the water storage tank for recirculation of water.
A globe valve is placed in each feeder to simulate the flow resistance of the

channel and to obtain the required flow distribution in the feeders.
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6.1.1 Instrumentation

METU-TPFTF has been supplied with instruments for measurement of test
parameters. Table 6.2 shows the locations and properties of all the instru-

ments of the test facility.

Table 6.2: The Instrumentation of the Test Facility

Instrumentation Lines Total | Accuracy /
Number | Measurement Range
Turbine Type Water Line 1 +1%/
Flowmeter 0.15-10 m/s
Differential Pressure | All Feeders 5 +015% /
Transmitters 0-6.89 bars
Orificemeter Air Line 1 +0.15 % /
0-0.24 bars
Impedance Probes All Feeders 5 +61%/
0-100 % void fraction
Rotameter Air Line 1 +26%/
1.19-15.5 m3/h
Water Line 1 +04%/
Pressure Transducers | Air Line 1 0-6.89 bars
Mixing Line 1

Air flow rate is measured by using orificemeter which consist of two el-
ements: an orifice plate to cause a pressure drop and a differential pressure
transmitter (OMEGA-PX771-100WDI) measuring pressure drop at down-
stream and upstream of the orifice which is a simple plate with a hole having
5.9 mm.

Water flow rate is measured by CHEMLINE PLASTIC’s 2110TM model
turbine flow meter. Volumetric flow rate values measured in air and water
lines are used in the calculation of void fraction at the header inlet.

In order to calculate two-phase flow rate through each feeder, pressure

drops across the globe valves treated as orifices in each feeder lines are mea-
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sured by OMEGA-PX771-100DI type differential pressure transmitters.

Gage pressures are measured with OMEGA-PX605-100GI type pressure
transducers at three points of the system, just before and after of the mixing
section. There are also other conventional instruments including Bourdon
pressure gages and temperature gages in both air and water lines of the
system.

In the present work, the average void fraction in each of the feeders are
measured with the impedance probes whose tips are placed at the centerlines
of each feeder. Impedance probe measuring principle is based on the fact that
a difference between excitation voltage and sensed voltage according to the
electrical impedance (resistance and capacitance) occurs due to variation of

void fraction around a sensor, as shown in Figure 6.3 [118, 52].

4 = Ve
_, —
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—l:LU—U
Do B
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(\D ""’rexc \
Two-Phase
Mixture

Figure 6.3: Impedance Probe Circuit

This voltage difference from the following equation can be interpreted as

the void fraction [118, 52].

V;,acc' ‘ Z robe ‘
V,=1-7 = P
2 probe ‘ mebe + RP ‘

Hosanoglu [52] investigated sensitivity of the impedance probes by ana-

(6.1)

lyzing the effects of pre-resistance value, excitation frequency, flow regime,

water temperature and found optimum values presented in Table 6.3 for those
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probes. In the present study these parameters are used without change. Kaya

[67] also used those probes in his study previously.

Table 6.3: Parameters Used In Each of Impedance Probes

Impedance Probe | Excitation | Excitation | Pre-determined
Voltage | Frequency Resistance
Feeder-2 3.54 'V 500 Hz 409 k€2
Feeder-3 3.54 'V 500 Hz 371 k2
Feeder-4 3.54V 500 Hz 238 k€2
Feeder-5 3.54V 500 Hz 238 k€2
Feeder-6 3.54 'V 500 Hz 287 k€2

An AC excitation voltage source with variable frequency set (500Hz-
20kHz) was used for these probes. Electronics for this sensor were based
on power supply, signal generator, resistive divider and non-inverting am-
plifier, RMS to DC Converter and Bias Shift and Gain Blocks [52]. The
outputs of impedance probes were set to 9 Volts and 0 Volts in the case of 0
and 100% void fraction, respectively. The sensor differs from those presented
in the literature and the details about the principles and structures of the
probes and their electronics can be found in [52].

Impedance probes are commonly employed for average void fraction deter-
mination in the literature. Many studies have been carried out on impedance
probes to determine void fractions. Impedance probes were used by Fossa et
al. [29], Lamarre and Melville [75], Devia and Fossa [18], Mi et al. [89] in
their studies.

Mi et al. [89] supplied 100 kHz to the electrode of the impedance probes.
Welter et al. [130] used impedance probes for measuring of the two-phase
stratified liquid level in their study of liquid entrainment in a tee-junction
with an upward-oriented vertical branch. They used 10 kHz signal and a

voltage output from 2 to 9 V was obtained. Fieno et al. [26] used data
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from impedance probe in their study to identify flow-regime by using neural
networks.

As stated by several authors [75, 63, 118, 52|, for frequency, f < 1M Hz,
the fluid becomes resistive (inverse of conductivity) and for f > 1M Hz it
becomes capacitive meaning that excitation frequency determines the char-
acteritics (conductance or capacitance) of a measured impedance. Therefore
both type of probes could be used theoretically to measure void fraction.

Research using capacitance measurements include those by Jaworek et al.
(63, 64] who used capacitance sensor operating at radio frequency of 80 MHz
for void fraction measurements and also tested five different electrode con-
figurations in their studies. Elkow and Rezkallah [22] used two different type
of capacitance probes operating at 1 MHz excitation frequency to measure
void fraction in gas-liquid flow.

With reference to the conductance measuring probes, Fossa [28] used
conductance sensors by using 20 kHz of frequency for measuring void fraction
in two-phase mixtures. Hibiki et al. [46, 47] used a multi-sensor conductivity
probe to measure void fraction under the structure of a vertical downward
bubbly flow. Ishii and Kim [59] used double-sensor conductivity probe in
their study. Also, Dong et al. [20] used conductance probes in their studies.
Song et al. [118] developed a conductance void meter with multi-channels to
measure void fraction. They used 10 kHz as an excitation frequency.

All instruments of the facility are connected to the Data Acqusition Sys-
tem (DAS) which consists of 2 amplifier-multiplexer cards (OMEGA PCLD-
789) and one Analog/Digital I/O Card (OMEGA PCL-812PG). The system
is capable of reading 32 differential input channels. All instruments, except
impedance probes, generate signals between 4-20 mA and then converted to
1-5 Volt signals and then fed into the DAS. Data Acquisition System consist
of an Celeron-433 based computer with 768 MB RAM. A software (Advan-
tech GENIE) was used to read, to display and to log the data coming from

the instruments during test runs.
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6.1.2 Calibration of Instrumentation

All differential pressure transmitters, pressure transducers, impedance probes,
orificemeter and turbine-type flow meter exist in the facility were calibrated
before testing began.

Orificemeter (an orifice plate with a differential pressure transmitter) was
calibrated for different air flow rates from 1.2 m3/h to 15.5 m3/h by using
OMEGA-FL-4611 type rotameter. While turbine flow-meter was calibrated
by collecting and weighting water discharging from one of the feeders. Cal-
ibration procedure of orificemeter and turbine flow meter are described in
detail by Kaya [67]. Three number of pressure transducers were also cali-
brated by using air line flow and pressure gages.

Impedance probes located on each feeders were calibrated in their original
locations for different void fractions by adjusting flow rates of air and water.
Void fractions below 12 % could not be obtained due to system limitations.
Therefore the probes have been calibrated for void fractions between 12%
and 40%. The homogeneous flow model assumption is used in this study
in calibration procedures of differential pressure transmitters and impedance
probes. Calibration procedure of the impedance probes was described in
detail by Hosanoglu [52].

The function of 6,-Voltage relation based on polynomial regression can
be obtained from the calibration tests. If the form of the function is defined

as;

0, = asx* + a32® + a97® + a1z + aq (6.2)

where x represents voltage signals from impedance probes, the calibration
results gives the following regression constants for each feeders in Table 6.4.

These functions can be used to estimate the void fraction of a two-phase flow.
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Table 6.4: Constants of Polynomials For Calibration Curves of Impedance
Probes

Impedance | a4 as Qo aq ag Void Fraction
Probe Range
Feeder-2 0.0 1.470 | -1.750 | 1.030 | 0.105 0.0-0.39
Feeder-3 0.0 | 0.187 | -0.553 | 0.625 | 0.007 0.0-0.39
Feeder-4 0.0 | 0.388 | -0.956 | 0.849 | -0.024 0.0-0.39
Feeder-5 -38.4 | 43.200 | -16.800 | 3.230 | -0.018 0.0-0.40
Feeder-6 0.0 | 5.999 | -5.243 | 1.922 | -0.011 0.0-0.47

After that, differential pressure transmitters on each feeder lines were
calibrated by arranging each globe valves for different flow rates of air/water
and void fraction values. Globe valve characteristics were also examined for
small and large diameters and separate calibration curves were obtained for
differential pressure transmitters in large and small diameter lines. However,
it seemed difficult to develop such a regression function for determination of
flow rates. In the following section, another methodology offered to correlate

those varibles will be described.

6.1.3 Neural Network Representation of Calibration and Test Data

In this study, neural network approaches were used to determine intermediate
values that will be obtained from instruments (especially from differential
pressure transmitters) during test runs instead of finding emprical relations
between void fraction, valve opening ratio and differential pressure signal
with two-phase mass flow rate. The number of variables makes it difficult to
describe this relation emprically.

In the literature, Oliveira and Sousa [98] formed a neural network system
to correlate water mass flux term from pressures and flow rates of both air and
water and also to correlate heat transfer coefficient from surface temperature

and water mass flux. Malayeri et al. [87] correlated void fraction from
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input data of volumetric flow ratio, density change and the Weber number
by using neural network methodology and predicted void fraction with an
overall average error of 3.6%.

The central idea behind neural network approach is that connections
(weights and biases) between input and output elements can be adjusted so
that a particular input leads to a specific target output. Thus, the neural net-
work can be trained to do a particular job (in the present study, interpolation
of calibration data) by adjusting the weight and bias parameters.

This is done in two main steps written below:

1. The training/learning phase, in which a set of known input-output
patterns are presented to the network. The weights and biases are
adjusted between the nodes until the desired output is provided by the

system.

2. The test phase in which the trained network model is subjected to a
set of new input patterns for which it was not trained before and whose
outputs are known, but having the same format as the array used for
the training . The performance of the network is also monitored in this

phase [87].

Once the network is trained, data from test/calibration runs could be
easily input to get approximate values of desired quantities (e.g. single-
phase/two-phase flow rates). In the present case, about 85%-90% of calibra-
tion data were separated from the whole database for training the network
and then rest of the data set (10%-15% of calibration data) were used to test
the ability of the network to associate input-output pairs for which it has
not been trained.

In this study, Neural Network Toolbox of MATLAB software [17] were
used to perform neural network computations. Figure 6.4, generated by

MATLAB shows the neural network system designed to calculate two-phase
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flow rate from the inputs of void fraction, valve opening ratio and differential
pressure signals. It includes two hidden-layers and one output layer since it
was observed that multiple-layer networks were quite powerful rather than
using single layer. A similar designation was also developed for determination
of single-phase flow rate except having two-layers instead of three.

It is possible to utilize 16 learning algorithms in MATLAB. Many of them
have been tried, however, Levenberg-Marquardt algorithm is found to be
the most efficient among other learning algorithms and used for this study.
Moreover, most commonly used transfer functions of tangent-sigmoid was
used in hidden-layers and pure-linear function was used in output-layer for

both single-phase and two-phase flow rate calculations as shown in Figure 6.4.

Input Hidden Layer Hidden Layer Qutput Layer

void fraction - >
valve opening ratio—
dP signal-————>

al — tansig (IWup +hy) a2 = tansig (IWipt +h) a® —purelin (LWziat +hz)

Figure 6.4: Neural Network Diagram for Two-Phase Data

All inputs and targets were scaled so that they always fall within a range
of [-1,1] before introducing them into the network. This preprocessing made
neural network training more efficient as recommended in [17].

Table 6.5 shows the test-phase (validation) results of such a neural system
shown in Figure 6.4. First three columns shows the inputs of testing sets
which are not used in training phase. Here, valve opening ratio represents the
number of turn from the closed position divided by number of turn required

to fully open the globe valves. For the valves located on the large diameter
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feeders, turn number for fully opening is 3, while for small ones it is 4. Here
feeder-3 was taken as a representative of large diameter feeders. For small
diameter ones, different calibration data sets were collected from the Test
Facility and were separated into two groups for training and testing phases.

Neural network estimated two-phase flow rate successively when com-
pared with experimental (measured) target data. The maximum error ob-
served as 6.31%. Inlet void fraction values above 0.28 and low flow rates
showed a relatively high error which might be a result of insufficient data

above this range.

Table 6.5: Neural Network Design for Determination of Two-Phase Flow
Rate Through Feeder-3

Inputs Output
Two-phase Mass Flow Rate (kg/s)
Valve Void dpP Measured Neural Error
Opening | Fraction | Signal Network (%)

Ratio (Volt) Estimation

1.000 0.159 0.569 2.183 2.183 2.29
1.000 0.172 0.562 2.039 2.050 0.49
1.000 0.206 0.547 1.814 1.814 0.01
1.000 0.254 0.518 1.181 1.147 2.72
0.500 0.167 0.630 2.119 2.125 0.24
0.500 0.200 0.603 1.883 1.875 0.38
0.500 0.233 0.578 1.633 1.653 1.25
0.500 0.283 0.545 1.197 1.272 6.31
0.375 0.186 0.707 2.061 2.058 0.17
0.375 0.199 0.672 1.894 1.889 0.36
0.375 0.219 0.634 1.683 1.706 1.33
0.375 0.286 0.571 1.297 1.256 3.16
0.250 0.187 0.823 1.969 1.978 0.41
0.250 0.244 0.681 1.481 1.497 1.14
0.125 0.217 1.001 1.292 1.294 0.25
0.125 0.320 0.701 0.861 0.847 1.76

The network performance is controlled with a coefficient of determina-
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tion, B2, which shows the accuracy of the model. A perfect fit would result
in R? value of 1, a very good fit near 1 and a poor fit near 0. In Figure 6.5
it can be seen that correlation coefficient (R-value) between the outputs and
targets is very close to 1 representing how well the variaton in the output is

explained by the targets.
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Figure 6.5: R? Value for Validation Data Set For Two-Phase Flow Calibra-
tion Test Through Feeder-3

Throughout this study several programs in MATLAB were also developed

to perform the following neural network computations:

e Neural network training/learning

e Testing of a trained network

e Implementation to estimate single-phase/two-phase flow rates
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6.2 Experimental Results

After getting a useful tool for relating the experimental data, a series of
tests were performed. In principle, configurations having two feeders opened
while the other feeders are closed by globe valves were studied (dual discharge
tests). For this purpose, a number of single-phase and two-phase test with
feeder-2,3,4 and feeder-5 under various paired combinations. These tests are
used for validation of the code’s results.

Working range of system parameters of the METU-TPFTF in these tests

are summarized in Table 6.6.

Table 6.6: Working Range of System Parameters

Water Pressure at Pump Outlet 0-2.6 bar

Air Pressure Before Orificemeter 0-2.6 bar
Minimum Void Fraction at the Inlet Nozzle | 0.12

Air Flow Rate 1.2-15.5 m*®/h
Water Flow Rate 0.4-8.2 m®/h
Water Temperature 18-24 C

Air Temperature 22-24 C

6.2.1 Single Phase and Two Phase Dual Discharge Tests

In the first tests, feeder-3 and feeder-5 which have different diameters con-
nected to the header at different elevations and at different z-planes were
selected. The results of the tests analysing the phase and flow distribution
through both feeders are shown in Table 6.7.

In all single and two-phase tests, feeder-3 received more flow rate than
feeder-5 as expected since the diameter of feeder-3 is larger than that of
feeder-5. In all two-phase tests, no void is observed in feeder-3, therefore
all void was observed in feeder-5 which seemed to divert more flow through

feeder-3.
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Table 6.7: Flow Distribution Through Feeder-3 and Feeder-5

Test | Time | Inlet | Inlet Void Mass Flow Flow
No Scan | Flow | Void Fraction Rate Split
(s) | Rate | Frac. (kg/s) Ratio

(kg/s) F-3 | F-5 | F-3 | F-5 | (1hg/rns)

G000 || 30 | 2.211 [0.000 [ 0.000 [ 0.000 | 1.329 [ 0.950 | 1.40
G005 || 90 | 2.183 [ 0.140 [ 0.000 | 0.239 | 1.407 | 0.865 | 1.63
G006 || 90 | 2.169 | 0.179 | 0.000 | 0.330 | 1.468 | 0.786 | 1.87
G007 ]| 90 | 1.933 [ 0.000 [ 0.000 [ 0.000 | 1.121 [ 0.843 | 1.33
G008 || 90 | 1.892 [ 0.158 | 0.000 | 0.260 | 1.235 | 0.778 | 1.59
G009 || 90 | 1.875 | 0.201 | 0.000 | 0.443 | 1.285 | 0.550 | 2.34
| G001 | 30 | 1.664 | 0.000 | 0.000 | 0.000 | 0.916 | 0.725 | 1.26

Then the other larger diameter nozzle (feeder-2) is selected instead of
feeder-3 and the results in Table 6.8 were obtained. Feeder-2 is at a higher
level than feeders 3 and 5 and is far away from the inlet nozzle even beyond

feeder-3 referring to Figure 7.1.

Table 6.8: Flow Distribution Through Feeder-2 and Feeder-5

Test | Time | Inlet | Inlet Void Mass Flow Flow
No Scan | Flow | Void Fraction Rate Split
(s) | Rate | Frac. (kg/s) Ratio
(kg/s) F-2| F-5 | F-2 | F-5 | (rhg/ms)
H002 | 90 2211 | 0.0 | 00| 0.0 |1.283|0.933 1.38
H003 | 90 2.181 | 0.140 | 0.0 | 0.251 | 1.348 | 0.849 1.59
H004 | 90 2.169 | 0.179 | 0.0 | 0.379 | 1.448 | 0.695 2.08

As observed in previous tests, feeder-2 received more flow rate than feeder-
5 for single and two-phase tests. For about the same inlet flow rate, again
same flow split ratios are seen in both large and small diameter feeders. In
the two-phase tests, no void is observed in feeder-2.

In order to investigate the effect of the symmetry, feeder-4 and feeder-5
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were selected. Both feeders have same diameters and connected to the drum
at the same angle with vertical direction and at the same z-plane from the
inlet.

In all tests, it can be said that flow is splitted into two feeders approx-
imately equal in single-phase tests (J000,J007). However, in all two-phase
tests, more flow was observed in feeder-4 while more void was observed in

feeder-5.

Table 6.9: Flow Distribution Through Feeder-4 and Feeder-5

Test | Time | Inlet | Inlet Void Mass Flow Flow
No Scan | Flow | Void Fraction Rate Split
(s) | Rate | Frac. (kg/s) Ratio

(kg/s) F-4 ‘ F-5 F-4 ‘ F-5 | (1hg/ms)

JO0O | 90 2.164 | 0.000 | 0.000 | 0.000 | 1.125 | 1.128 0.99
J002 | 90 2.106 | 0.191 | 0.143 | 0.234 | 1.078 | 1.044 1.03
JO03 | 90 2.081 | 0.228 | 0.149 | 0.264 | 1.110 | 1.027 1.08
J0o4 | 90 2.075 | 0.254 | 0.145 | 0.305 | 1.120 | 0.993 1.13

JOo7 | 90 1.839 | 0.000 | 0.000 | 0.000 | 0.946 | 0.933 1.01
J008 | 90 1.781 | 0.166 | 0.137 | 0.227 | 0.930 | 0.892 1.04
J009 | 90 1.761 | 0.220 | 0.124 | 0.267 | 0.866 | 0.855 1.01
JO10 | 90 1.744 | 0.253 | 0.170 | 0.351 | 0.975 | 0.798 1.22

After that, feeder-3 and feeder-4 were selected (Table 6.10). In every case,
feeder-3, received more flow rate than feeder-4. Voids go through feeder-4
which is closer to the inlet nozzle than feeder-3.

The mass balance between inlet and total outlet flow rates are tabulated
in Table 6.11. It is seen that the neural network simulation results are satis-
factory in mass balance for two-phase flow tests. Maximum errors are found
to be 7.2% and 10.1% in the last two tests, K003 and K006, respectively.
However, it seems meaningful since the void fractions in the feeder-3 deter-
mined from regression analysis as 0.052 and 0.032, respectively, are below

the measurable lower limit of void fraction, 0.12, in the facility.
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Table 6.10: Flow Distribution Through Feeder-3 and Feeder-4

Test | Time | Inlet | Inlet Void Mass Flow Flow
No Scan | Flow | Void Fraction Rate Split
(s) | Rate | Frac. (kg/s) Ratio
(kg/s) F-3 ‘ F-4 F-3 ‘ F-4 | (mg/my)
K001 | 30 2.111 | 0.000 | 0.000 | 0.000 | 1.209 | 0.903 1.34
K002 | 30 2.078 | 0.146 | 0.000 | 0.151 | 1.307 | 0.879 1.49
K003 | 30 2.167 | 0.171 | 0.052 | 0.176 | 1.414 | 0.909 1.56
K005 | 90 1.797 | 0.000 | 0.000 | 0.000 | 0.974 | 0.760 1.28
K006 | 90 1.739 | 0.169 | 0.032 | 0.155 | 1.103 | 0.810 1.36
Table 6.11: Mass Balance
Test Inlet Mass Total Outlet Difference
No Flow Rate(kg/s) | Mass Flow Rate(kg/s)
G000 2.211 2.279 +3.1 %
G005 2.183 2.272 +4.1 %
G006 2.169 2.254 +3.9 %
G007 1.933 1.964 +1.6 %
G008 1.892 2.013 +6.4 %
G009 1.875 1.835 21 %
G001 1.664 1.641 -14 %
H002 2.211 2.216 +0.2 %
H003 2.181 2.197 +0.8 %
H004 2.169 2.143 1.2 %
J000 2.164 2.253 +4.1 %
J002 2.106 2.122 +0.8 %
J003 2.081 2.138 +2.8 %
J004 2.075 2.113 +1.8 %
J007 1.839 1.879 +2.2 %
JO08 1.781 1.822 +2.3 %
J009 1.761 1.721 -2.3 %
J010 1.744 1.772 +1.6 %
K001 2.111 2.112 0.0 %
K002 2.078 2.186 +5.2 %
K003 2.167 2.323 +7.2 %
K005 1.797 1.734 -3.5 %
K006 1.739 1.914 +10.1%
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As a summary, following results were obtained for single-phase liquid

tests;

e Neural network model supplied good data (maximum 4.1 % error was

seen in mass balance, J000).

e In all 6 tests, large diameter feeders (2 and 3) received more flow rate
(about 33-40 % higher for high flow cases) than small diameter ones (4
and 5).

e Decreasing flow rate leads to more homogeneous distribution between

the selected feeders.

e Flow was equally shared by two small and symmetric diameter feeder-

pairs (4 and 5)
while for two-phase air/water tests;

e Neural network model supplied good data (maximum 10.1 % error was

seen in mass balances)

e In all tests done with feeders 3,4 and 5, air seemed to flow preferably

through feeders closer to the inlet nozzle.

e Testing with equal diameter feeders (4 and 5) showed that more void
was observed in feeder-5 (about two times more than that of feeder-
4). Decreasing the inlet flow rate caused more voidage in feeder-5.
This observation which is also reported by Parrott [105] in the tests
performed in RD-14M Test Facility by using all five feeders might be

due to the centrifugal force effect.
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CHAPTER 7

NUMERICAL MODELLING OF HEADER

The code was modified for header’s specific 3-dimensional geometry as shown
in Figure 7.1. Radial outflow boundary conditions are defined for 5 feeder
connections, while injection line (nozzle-1) is defined as radial inflow bound-
ary condition. At the dead ends of the header, that is at z=0 and z=1.1
m, no-slip boundary conditions are defined. A switching algorithm is imple-
mented into the code to open or to close selected feeder connections which
makes it possible to simulate single, dual or if required multiple discharges
from the header.

Since the header’s geometry is horizontal, a non-symmetric flow is ex-
pected to occur around the centerline, » — 0. In order to make a reasonable
assumption at » — 0, no-slip boundary condition is specified for the left side
of the cells which are placed around the centerline meaning that a solid cylin-
der having a very small radius, e.g. 0.0001 m., is put along the centerline.
Such an assumption is also needed to be made in order to overcome code
running difficulties. The outer solid walls of the drum r = 0.097m are also

defined as no-slip boundaries as usual.
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For simplicity, the grid is formed by using 22 volumes in z-direction for
1.1 m lenght of the drum. In ¢ direction, the grid is divided into 10 volumes,
36° for each. There is not any restriction on the number of volumes defined
in radial direction, however 10 is used at the present study. Therefore, totaly
2200 cells (10x10x22) are used to form the numerical modelling of header.

Some of the tests results which are used to verify the code’s performance

are presented in the following section.

7.1 Comparison with Experimental Data

As explained before, the code requires constant pressure condition for outflow
boundaries placed at the nozzle connection points. However, METU-TPFTF
has no pressure transducers mounted on the feeder lines. To overcome this

difficulty, the following procedure is applied in order;

o A test matrix is formed by selecting one of the sequential single-phase

and two-phase experimental tests given in Tables 6.7, 6.8, 6.9 and 6.10.

e Pressure measured at the mixing section, before inlet nozzle, is ap-
plied to one of the corresponding outlet nozzle as a constant pressure

boundary condition.

e The pressure at the other outlet nozzle is adjusted until the code con-
verges and finally matches with the measured single-phase flow split

ratio (FSR) by a trial process.

e Then, the specified inlet void fraction and mass flow rate (measured
experimentally) is forced to enter into the computational domain to
start a two-phase flow transient (The predicted velocity and pressure
distributions in the previous step is used as the initial conditions for

the transient calculations)
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Finally, two-phase transient ends when mass residuals converges to
a value below 1072 kg/s. Predicted mass flow rates, void fractions
and pressure are considered to be the final steady-state solution to the

selected two-phase test.

This procedure seems to be appropriate, because it is also in agreement

with the procedure applied when performing such tests. In all experiments

performed, single-phase tests were performed at first and then air enters into

the drum without changing upstream conditions (e.g. globe valve openings)

of the corresponding nozzles.

In order to give an example;

Test Matrix-G1 is formed with the data of Tests G000 (single-phase)
and G005 (two-phase) in Table 6.7.

The measured inlet nozzle pressure of 135 kPa is applied to nozzle-3.

The pressure of the nozzle-5 is adjusted to achieve flow split ratio of 1.40
measured in Test-G000. At t=10 s, steady-state is reached, 134.75 kPa
(250 Pa pressure difference with the nozzle-3) is found and is asigned

as the present value to nozzle-5.

Then, void fraction of 0.140 and mass flow rate of 2.183 kg/s is ap-
pointed as initial conditions to start the simulation of Test-G005 (Fig-
ure 7.2.

After about 105 seconds, two-phase transient ends (Figure 7.3) and re-
sulting mass flow rates, void fractions through the feeders and pressure
and void distributions inside the drum is considered to be the final

steady-state solution for the Test Matrix-G1.

Above procedure is applied to all other test matrices simulated in Section

7.1.2.
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7.1.1 Sensitivity Analysis for Drag Function

As stated in Chapter 2 the weakest point in the two-fluid model is the in-
terfacial exchange terms, in the present study, it is the drag function, since
it is based on emprical relations derived from the experiments. Therefore a
convenient form of the drag function should be selected for the simulation of

two-phase flow through the header.

In Section 3.3, two expressions are defined and coded, one Lee and Shah’s
formulation and the other Schiller and Naumann’s formulation, and in this
study, these two expressions were tested for Test-Matrix G1 before going into

detailed investigation of two-phase flow simulations.

Use of Schiller and Naumann’s formulation has encountered some code
running problems and the code did not converge to any solution. In all tests
performed, bubbly flow was not observed but stratified flow at various lev-
els occured in the drum which is thought to be resulted from the buoyancy
and slow air/water velocities. The formulation of Schiller and Naumann is
applicable to bubbly flow which requires the droplet/bubble radius. Ther-
fore, droplet/bubble radius could only be guessed which would introduce

uncertanities in the model.

Lee and Shah’s formulation was then tested with the same test matrix.
Different values for C are applied to Equation 3.39 and steady-state results
are shown in Figure 7.4 through 7.9 for different z-planes. As can be seen from
these figures, value of K has an effect on the void distribution and pressure
inside the header. The use of C=5x10% kg/m3s increased the separation of
both phases. Air moved to the upper part of the drum and a separated
flow having water only and air only regions occured. Essentially no void is
predicted through both nozzles(F-3 and F-5). These predictions are not fully
supported by the experimental tests, especially near the inlet section. Flow
split ratio increased to 1.518 in comparison with the experimental value of

1.627. The code does not seem to fully converge while using C=5x10% kg/m?>s
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and lower values.

However, using greater value of C=5x10* kg/m?s resulted more heterege-
nous flow inside and void is predicted in the nozzles 3 and 5 as it was observed
experimentally. Void fraction is calculated as 0.063 for nozzle-3 and 0.189 for
nozzle-5. In the experimental tests, all voids flew through nozzle-5 possibly
due to its location at the same z-plane with the inlet nozzle. More liquid flew
through nozzle-3 which has larger diameter. Flow split ratio is predicted as
1.548, where its experimental value is 1.627. No code running problems oc-
cured with Lee and Shah’s formulation. All results are summarised in Table

7.1.

Table 7.1: Flow Distribution Through Feeder-3 and Feeder-5, Test Matrix
G1

| TEST MATRIX G1 |

Single Phase (G000)
C Oin, Min 03 05 ms ms | FSR
(ke/s) (ke/s) | (kg/s)
Exper. 0.000 | 2.211 | 0.000 | 0.000 | 1.329 | 0.950 | 1.399
Numer. | 5x10% | 0.001 | 2.211 | 0.000 | 0.000 | 1.293 | 0.920 | 1.405
Numer. || 5x10* | 0.001 | 2.211 | 0.000 | 0.000 | 1.293 | 0.920 | 1.405

Two Phase (G005)
C Oin Min, 03 05 mg ms FSR
(kg/s) (ke/s) | (kg/s)
Exper. 0.140 | 2.183 | 0.000 | 0.239 | 1.407 | 0.865 | 1.627
Numer. || 5x10% | 0.140 | 2.183 | 0.010 | 0.006 | 1.324 | 0.872 | 1.518
Numer. | 5x10* | 0.140 | 2.183 | 0.063 | 0.189 | 1.327 | 0.857 | 1.548

In the literature, Lee and Shah [81] determined the effect of interfacial
drag on the high pressure jet impingement problem by using IMF model.
In this problem, they made a sensitivity study of variations of C by using
2.0x10%, 2.0x10'% and 2.0x10'? kg/m3s and reached a good agreement be-
tween the experimental data and calculated results with the value of 2.0x10'2

kg/m?3s.
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Lee and Shah [81] also studied on the separation of steam and water
problem by using same numerical model (IMF). They carried out numerical
computation for 103, 10* and 10° kg/m3s and found out that the rate of
separation increased with the decrease in the value of interfacial drag as it is
observed in the current study.

As Lee [78] stated, it is found that convergence is sensitive to the interfa-
cial drag term K. Lee made a conclusion that by doing sensitivity study, the
lower bound values of drag function was approximately equal to 10% kg/m?s.
When using value of K lower than this limits, he did not obtain a stable solu-
tion. He concluded that a stable solution could only be obtained for certain
ranges of K. Present study showed very similar findings with those of Lee
[78] such that below 5x10? it is getting harder for the code to converge to a
steady-state profile.

Therefore simulations described in the following sections were performed
with Lee and Shah’s formulation with a value of 5x10* kg/m3s for C. In the
following sections, the code’s results are compared with the experimental test

data presented in Chapter 6 in order.
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Figure 7.9: Pressure Distribution-I, Test Matrix-G1, K=5.0x10* kg/m3s
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7.1.2 Simulation Results
7.1.2.1 Test Matrix-G2 (G000, G006)

After selection of C=5x10%, a new test matrix (G2) is formed for further
investigation of the two-phase flow through Feeders 3 and 5. Tests numbered
G000 and G006 are chosen. Transient is started at t=5 s. from the single-
phase converged solution (Test-G000) by imposing void fraction of 0.179
and mass flow rate of 2.169 kg/s to the inflow boundary conditions. Figure
7.11 shows the mass flow rates of two-phase flow at the inlet and at two
outlets (F-3, F-5). Total outflow represents the sum of the flow rates through
corresponding nozzles. Figure 7.12 reflects the convergence history for the
mass residual. It approaches to zero (steady-state) after about 90 seconds of
the transient. This figure gives an idea about the convergence on satisfaction

of mass conservation.

Table 7.2: Flow Distribution Through Feeder-3 and Feeder-5, Test Matrix
G2

| TEST MATRIX G2 |

Single Phase (G000)
Oin M, 65 05 ms ms FSR
(kg/s) (kg/s) | (ke/s)
Experimental || 0.000 | 2.211 | 0.000 | 0.000 | 1.329 | 0.950 | 1.399
Numerical 0.001 | 2.211 | 0.000 | 0.000 | 1.293 | 0.920 | 1.405

Two Phase (G006)
Om mm 93 05 mg m5 FSR
(kg/s) (kg/s) | (kg/s)
Experimental || 0.179 | 2.169 | 0.000 | 0.330 | 1.468 | 0.786 | 1.868
Numerical 0.179 | 2.169 | 0.070 | 0.241 | 1.329 | 0.840 | 1.582

Figure 7.10 gives the convergence history of Ly norm of the corresponding
variables. As shown in Table 7.2, the void fraction is calculated as 0.070 for
nozzle-3 and 0.241 for nozzle-5. More voids preferably flow through nozzle-
5, however void fraction into nozzle-3 has not been changed significantly

(0.070) compared with the perivous G1 test result (0.063) under the same
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initial conditions. However flow split ratio is increased to 1.582. Nozzle-3
does not receive more liquid flow. Numerical solution shows the same trend
increasing with the experimental results.

The void distribution at z=0.075 m. and at z=0.175 m. where the inlet
nozzle and feeder-5 are located are presented in Figure 7.13. As observed in
all of the tests, such a chaotic behaviour is seen in the numerical solutions for
void fractions at both locations. The void distribution at z=0.075 m. seem
to be effected largely from the inlet and outlet (feeder-5) sections which are
in the vicinity. Such a behaviour are not observed for the far away points
beyond z=0.375 m. as shown in Figures 7.15 and 7.17 in which almost the
same void and pressure distributions are predicted. Void fraction graphics
also give an idea that a certain level of water occurs below an air region which
is in agreement with the experimental observations. This is also reflected by
pressure distribution graphics as shown in Figures 7.14, 7.16 and 7.18 for six
different locations. Pressure increases while moving to the bottom part of
the drum due to presence of higher liquid fraction. As in the previous test
(Matrix-G1), existance of feeder-3 at z=0.375 m. (See Figures 7.15, 7.16)

causes a distortion in both void and pressure distributions.
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Figure 7.10: Root-Mean-Square Error, Test Matrix-G2
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Figure 7.17: Void Distribution-III, Test Matrix-G2
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Pressure Distribution (in kPa) at z=0.625 m.
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7.1.2.2 Test Matrix-J1 (J000, J002)

In this section, two-phase flow through Feeders 4 and 5 is investigated. Tests
numbered JOOO and J002 combined to form Test Matrix-J1. After obtaining
the single-phase converged solution (Test-J000) for inlet mass flow rate of
2.164 kg/s, transient is started at t=10 s. by imposing void fraction of
0.191 and mass flow rate of 2.106 kg/s to the inflow boundary conditions.
Figure 7.19 shows the mass flow rates of two-phase flow at the inlet and the
two outlets and total outflow, sum of the flow rates through corresponding
nozzles. The convergence history for the mass residual is reflected by Figure
7.20. It approaches to zero after about 110 seconds of the transient meaning
that total outflow is matched with the inflow in this simulation beyond 100

seconds from the initiation of air injection into the domain.

As shown in Table 7.3, void fraction is calculated as 0.154 for nozzle-4
and 0.152 for nozzle-5. While the symmetric prediction is similar for mass
flow rates. Flow is equally distributed to both nozzles (1.054 vs. 1.053
kg/s). These results deviated from the experimental observations, in void
fractions, since more void fraction was observed in feeder-5 than feeder-4
actually. However it can be concluded that the numerical simulation results
seems reasonable. Since both nozzles are placed at the same elevations and
the flow areas of both of the feeders are the same, the code showed symmet-
rical behaviour in the solution for both nozzles (flow split ratio is found to
be 1.001). Such a behaviour is understandable, because of the definitions of
boundary conditions. Inflow and outflow boundary conditions are defined by
only radial direction velocities. Such a definition forces the solution to a fully
symmetric one around the vertical axis. This Symmetry is preserved also for
the two-phase flow test (J002), which actually gives an idea that numerical
algorithm and the computer code works reasonably well in 3-dimensional
geometry without distorting any variable’s behaviour and without causing

nonsymmetric solutions in the whole domain.
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Table 7.3: Flow Distribution Through Feeder-4 and Feeder-5, Test Matrix
J1

| TEST MATRIX J1 |

Single Phase (J000)
Oin M, 04 05 on ms FSR
(ke/s) (kg/s) | (ke/s)
Experimental || 0.000 | 2.164 | 0.000 | 0.000 | 1.125 | 1.128 | 0.997
Numerical 0.001 | 2.164 | 0.000 | 0.000 | 1.084 | 1.085 | 0.999

Two Phase (J002)
Oin Min 64 05 my ms FSR
(kg/s) (kg/s) | (ke/s)
Experimental || 0.191 | 2.106 | 0.143 | 0.234 | 1.078 | 1.044 | 1.033
Numerical 0.191 | 2.106 | 0.154 | 0.152 | 1.054 | 1.053 | 1.001

The void distribution is presented in Figure 7.21 for the points at z=0.075
m and at z=0.175 m planes on which inlet nozzle and feeder 4 and 5 are
located. Different formations with respect to the other sections of the header
(e.g. Figures 7.23 and 7.25) occur at both locations. Pressure distributions
are shown in Figures 7.22, 7.24 and 7.26 for six different locations. Beyond
z=0.375 m, almost the same void and pressure distributions are predicted.
Void fraction and pressure graphics also give an idea that a certain level of
water occurs below an air region as observed in the tests performed. Expected
symmetric solution can be easily seen in all pressure graphics, increasing
downwards. They also reflect the locations of nozzles 4 and 5 which distorts

the pressure profile at their own locations at z=0.175 m (Figure 7.22).
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Figure 7.20: Mass Residual, Test Matrix-J1
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Void Distribution at z=0.075 m.
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Void Distribution at z=0.375 m.
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Figure 7.23: Void Distribution-II, Test Matrix-J1
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Void Distribution at z=0.625 m.
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Figure 7.25: Void Distribution-III, Test Matrix-J1
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Figure 7.26: Pressure Distribution-III, Test Matrix-J1
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7.1.2.3 Test Matrix-J2 (J000, J004)

Two-phase flow through Feeders 4 and 5 is further investigated in this section,
with almost the same inlet mass flow rate but higher inlet void fraction. Test
Matrix-J2 is formed by using Test-JOOO and Test-J004. Initial conditions
are obtained by converging the single-phase solution (Test-J004) for inlet
mass flow rate of 2.164 kg/s at t=10 s. Then, two-phase fluid having void
fraction of 0.254 and mass flow rate of 2.075 kg/s are forced to enter into the
computational domain of header.

Convergence history of the variables can be seen in Figure 7.27. Mass
flow rates of the two-phase flow at the inlet and at the two outlets (F-4, F-5)
and total outflow are shown in Figure 7.28. The mass residual goes to zero

at about 70 seconds after injection of two-phase mixture.
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Figure 7.27: Root-Mean-Square Error, Transient Test-J2

As shown in Table 7.4, void fraction is calculated as 0.194 for nozzle-4

and 0.199 for nozzle-5, which are higher than those found in Test Matrix-J1

138



(0.154 and 0.152 respectively) as expected. Symmetric prediction is con-
served again for mass flow rates. Flow is distributed to both nozzles almost
equally (1.042 vs. 1.036 kg/s) while test results were 1.120 vs. 0.993 kg/s
respectively. Applying more void fraction at the inlet did not make any ef-
fect on the flow rates and on the outlet void fractions. This prediction is not
fully compliant with the experimental results that showed more voids to go
to feeder-5 by increasing the inlet void fraction. Flow split ratio is predicted

to be around 1.

Table 7.4: Flow Distribution Through Feeder-4 and Feeder-5,Test Matrix J2

| TEST MATRIX J2 |

Single Phase (J000)
em mm 94 (95 My m5 FSR
(kg/s) (kg/s) | (kg/s)
Experimental || 0.000 | 2.164 | 0.000 | 0.000 | 1.125 | 1.128 | 0.997
Numerical 0.001 | 2.164 | 0.000 | 0.000 | 1.084 | 1.085 | 0.999

Two Phase (J004)
O;n, Min, 04 s My ms FSR
(kg/s) (kg/s) | (kg/s)
Experimental || 0.254 | 2.075 | 0.145 | 0.305 | 1.120 | 0.993 | 1.128
Numerical 0.254 | 2.075 | 0.194 | 0.199 | 1.042 | 1.036 | 1.006

Introduction of more voids into the domain resulted the void distribution
profile as presented by Figure 7.30 for the points at z=0.075 m. and at
z=0.175 m. planes. Contours showed similar complex behaviour at these
planes. The other sections of the header beyond z=0.375 m. (Figures 7.32
and 7.34) have similar formations. Pressure distribution contours are shown
in Figures 7.31, 7.33 and 7.35. Almost constant lines can be seen especially
at the bottom region, proving the existance of the more liquid and less air.
The effect of nozzles 4 and 5 locations can be seen in Figure 7.31 where
their existance distorts the pressure profile to the right-downward and to the

left-downward directions respectively.
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Figure 7.31: Pressure Distribution-I, Test Matrix-J2
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Void Distribution at z=0.375 m.
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Figure 7.32: Void Distribution-II, Test Matrix-J2
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Figure 7.33: Pressure Distribution-II, Test Matrix-J2
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Void Distribution at z=0.625 m.
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Figure 7.34: Void Distribution-III, Test Matrix-J2

145

rsin@ (cm)

rsin@ (cm)



154.8
154.7 —
154.6 —
154.4
154.3
154.1 —

154.8
154.7 —
154.6 —
154.4
154.3
1541 —

Figure 7.35: Pressure Distribution-III, Test Matrix-J2
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7.1.2.4 Test Matrix-K1 (K001, K002)

Feeders 3 and 4 are selected to form Test Matrix-K1 by taking the data ob-
tained from Test-K001 and Test-K002. Test-K001 is used to obtain initial
pressure profile inside the drum. Single-phase Test-K001 conditions are ap-
plied until the code is reached to steady solutions at t=10 s. for inlet mass
flow rate of 2.111 kg/s. Then, by changing void fraction from 0.001 to 0.146
and mass flow rate from 2.111 to 2.078 kg/s, two-phase transient starts.

Figure 7.36 shows the steady-state convergence of the variables. Resulting
mass flow rates at the inlet and at the two outlets (F-3, F-4) and total outflow
are shown in Figure 7.37. Mass residual goes to zero at about 120 seconds
after injection of two-phase mixture at t=10 s. (See Figure 7.38).

The curves in Figure 7.37 gives a convergent mass flow rates of 1.243
kg/s and 0.837 kg/s for feeder-3 and feeder-4 respectively. Flow split ratio
is found to be about 1.485. It increased from initial value of 1.339. Exper-
imental results also showed similar behaviour by reaching to 1.487. It can
be said that the code’s prediction gives a very close results to the test’s re-
sults in Test-Matrix-K1. Table 7.5 summarises the comparison between the

experimentally measured data and numerically predicted data.

Table 7.5: Flow Distribution Through Feeder-3 and Feeder-4, Test Matrix
K1

| TEST MATRIX K1 |

Single Phase (K001)
Om mm 93 04 mg un FSR
(kg/s) (ke/s) | (kg/s)
Experimental || 0.000 | 2.111 | 0.000 | 0.000 | 1.209 | 0.903 | 1.339
Numerical 0.001 | 2.111 | 0.000 | 0.000 | 1.209 | 0.903 | 1.339

Two Phase (K002)
Oin M, 65 04 ms My FSR
(kg/s) (kg/s) | (ke/s)
Experimental || 0.146 | 2.078 | 0.000 | 0.151 | 1.307 | 0.879 | 1.487
Numerical 0.146 | 2.078 | 0.066 | 0.194 | 1.243 | 0.837 | 1.485
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Void fraction is calculated as 0.066 for nozzle-3 and 0.194 for nozzle-4,
which are somewhat higher values than that of measured ones (0.000 and
0.151 respectively). The code predicted higher void fraction and lower flow
rate in the feeder-4 as expected, possibly due to its location closer to the
inlet nozzle and the smaller flow area than feeder-3.

The void distribution contours are predicted as represented by Figure
7.39 for the points at z=0.075 m. and at z=0.175 m. planes. Since feeder-3
and feeder-4 are at different locations but having angles between 270° and
360°. The distortions at the pressure contours are observed in the right-lower
parts of the Figure 7.40 at z=0.175 m and of the Figure 7.42 at z=0.375 m.
Beyond z=0.525 m almost similar contours are found for void and pressure

distributions (Figures 7.41, 7.42, 7.43, 7.44).
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Figure 7.36: Root-Mean-Square Error, Test Matrix-K1
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Void Distribution at z=0.375 m.
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Figure 7.41: Void Distribution-II, Test Matrix-K1
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Figure 7.42: Pressure Distribution-II, Test Matrix-K1
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Void Distribution at z=0.625 m.
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Figure 7.43: Void Distribution-I1I, Test Matrix-K1
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Pressure Distribution (in kPa) at z=0.625 m.
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7.1.2.5 Test Matrix-K2 (K001, K003)

Two-phase flow through Feeders 3 and 4 is further investigated in this sec-
tion, with almost the same inlet mass flow rate but with higher inlet void
fraction. After obtaining the single-phase converged solution (Test-K001) for
inlet mass flow rate of 2.111 kg/s, transient is started at t=10 s. by imposing
void fraction of 0.171 and mass flow rate of 2.167 kg/s to the inflow boundary
conditions. Figure 7.45 shows the steady-state convergence of the variables.
Figure 7.46 shows the mass flow rates of two-phase flow at the inlet and at
the outlets (F-3, F-4) and the total outflow. The convergence history for the
mass residual is reflected by Figure 7.47. It approaches to zero after about
90 seconds of the transient.

Table 7.6 summarises the comparison between the experimentally mea-
sured data and numerically predicted data. Code predicts mass flow rates of
1.303 kg/s and 0.865 kg/s for feeder-3 and feeder-4 respectively. Flow split
ratio is found to be about 1.506. It increased from the initial value of 1.338.
Experimental results also showed similar trend by reaching to 1.556. As in
Test Matrix-K1, it can be said that the code’s prediction is very close to the

test’s results.

Table 7.6: Flow Distribution Through Feeder-3 and Feeder-4, Test Matrix
K2

| TEST MATRIX K2 |

Single Phase (K002)
Oin Min 05 04 mg my FSR
(kg/s) (kg/s) | (kg/s)
Experimental || 0.000 | 2.111 | 0.000 | 0.000 | 1.209 | 0.903 | 1.339
Numerical 0.001 | 2.111 | 0.000 | 0.000 | 1.211 | 0.905 | 1.338

Two Phase (K003)
em mm 93 (94 mg m4 FSR
(kg/s) (kg/s) | (kg/s)
Experimental || 0.171 | 2.167 | 0.052 | 0.176 | 1.414 | 0.909 | 1.556
Numerical 0.171 | 2.167 | 0.067 | 0.227 | 1.303 | 0.865 | 1.506
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Void fraction is calculated as 0.067 for nozzle-3 and 0.227 for nozzle-
4, which are somewhat higher values than those of measured ones (0.052
and 0.176 respectively). Increase in inlet void fraction compared with Test
Matrix-K1, resulted an increase in the void fraction prediction for feeder-4.
The code predicted higher void fraction and lower flow rate in the feeder-4
as expected due to the same reasons stated in the previous Section 7.1.2.4.

Introduction of more voids into the domain resulted the void distribution
profile as presented by Figure 7.48 at z=0.075 m and at z=0.175 m planes.
At the other sections of the header beyond z=0.325 m (Figures 7.50 and
7.52) similar formations are predicted. Pressure distribution contours are
presented in Figures 7.49, 7.51 and 7.53. These figures shows constant isobars

near the bottom sections as predicted in the previous section.
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Figure 7.45: Root-Mean-Square Error, Test Matrix-K2
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Pressure Distribution (in kPa) at z=0.075 m.
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Pressure Distribution (in kPa) at z=0.625 m.
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CHAPTER 8

CONCLUSIONS

The aim of this study is to investigate two-phase (air and water) flow dis-
tribution through the outlets from the horizontal cylindrical header compo-
nent of the Middle East Technical University Two-Phase Flow Test Facility
(METU-TPFTF) both numerically and experimentally.

First of all, three-dimensional incompressible finite-difference equations
in cylindrical dimensions were derived by using two-fluid model. Then a nu-
merical solution algorithm was established by using the principles of Implicit
Multifield Model(IMF) of Harlow and Amsden [41]. After that, a computer
code was written to solve those derived governing equations using the bound-

ary conditions.

The solution algorithm was tested by three benchmark problems. First
one was a one-dimensional problem, “Water Faucet Problem”, solved in
z-direction and the numerical results obtained in simulating this problem
demonstrated the capability of the code to accurately predict the void wave
propogation. Very similar transient simulation results were obtained as com-
pared with the studies found in the literature. Decreasing time step size and
mesh refinement gave more satisfactory results. No numerical instability

problems have been encountered.
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The second one was “Pure Radial Symmetric Flow Problem” defined in r-
direction only. A one-dimensional version of the code was generated and the
simulation of this problem gave very close results to analytical ones. Radial
momentum equations were tested in the numerical algorithm.

The third one was “R-¢ Symmetric Flow Problem” in r and ¢ direc-
tions. A two-dimensional version of the code was generated to simulate this
problem. Both radial and azimuthal momentum equations were tested and
the results were found to be in agreement with that of exact solution. Pe-
riodic boundary condition implementation in angular direction resulted in
overcoming the code running problems very well.

After making calibration tests for all of the instrumentation of the Test
Facility, a number of tests covering single and two phase flow distibution
through different combinations of outlet pairs from the header were per-
formed. A multi-layered neural network system was developed to process
the calibration and experimental data in this study. The results obtained
from the neural network system trained by calibration data were in good
agreement with the test results. This methodology has provided a useful
tool to calculate the two-phase flow rate in each of the feeders under con-
sideration without measuring it directly or without developing complicated
emprical relations.

The specific header’s three-dimensional geometry was then imposed to
the code in order to give a possibility to model the single/dual/multiple
discharges from the header region. A sensitivity analysis was performed for
the drag function and, Lee and Shah’s [81] formulation was found to be better
suited for the present study and it was selected for use in all simulations.

After that, the code results were compared with the results of six experi-
mental test matrices. Some simulation results, especially performed with the
nozzles 3 and 4, showed very similar behaviours with the experimental re-
sults. Some of them are, especially performed with the symmetrically located

nozzles 4 and 5, somehow deviated from the measurements. Some physical
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phonemon like the occurance of stratified flow and formation of chaotic dis-
tribution of void at/near the inlet section in the experimental tests are also
predicted numerically in this study.

This study provided a three-dimensional computational tool for two-phase
analysis of the header in the METU-TPFTF. This code, however, can also
be used to simulate other problems in cylindrical geometry in various dimen-
sions. IMF model of Harlow and Amsden [41] was tested successively with
three benchmark studies for incompressible flow.

In this study also some data were obtained for the single and two phase
flow experiments which were performed in METU-TPFTF. The Code pre-
dicted the void fraction and pressure distibution in any section of the header.

With the help of brilliant ideas of Camlikaya [15], some improvements
were made especially in the data acquisition system of the test facility which
provided more reliable measurements. This study also provided an experi-
mental data processing system which was developed by using neural network

approach.

8.1 Suggestions for Future Work
This study would be extended for the following studies;

e Experimental tests might be done to cover a large range of tests having

different combinations of dual/multiple discharges.

e The code might be simplified and optimized to make the computations

faster.

e Modelling of all five feeder lines might be coupled to the Code in order
to simulate the whole system in METU-TPFTF which is essential to

analyze combined effects of the discharging nozzles.

e Studies might be done to find a more reliable drag function applicable

for stratified flow occuring in the header.
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e The design of the impedance probes might be updated or a new design
might be developed to provide more reliable void fraction measure-

ments.

e Neural Network Toolbox and Data Acquisition Toolbox of MATLAB
[17] can be combined with the Data Acquisition System for gathering

data from the instruments faster in future experimental tests.

e Code results might be compared with the CATHENA [40] or other
CFD codes e.g. FLUENT, CFX.
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APPENDIX A

A.1 Convection Terms In The Liquid Phase Continu-
ity Equation
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A.2 Convection Terms In The Momentum Equations

A.2.1 Z-Direction Equations For Gas Phase
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A.2.3 R-Direction Equations For Liquid Phase
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A.2.4 Z-Direction Equations For Liquid Phase
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A.3 Viscous Terms

in the Momentum Equations
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