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ABSTRACT

3-D GRASPING DURING SERPENTINE MOTION

WITH A SNAKE-LIKE ROBOT

Atakan, Barış

M.Sc., Department of Electrical and Electronics Engineering

                                     Supervisor: Prof. Dr. İsmet Erkmen

Co-Supervisor: Prof. Dr. Aydan M. Erkmen

December 2005, 106 pages

In this thesis, we introduce our lasso-type grasping scheme. This 3-D lasso-type

grasping scheme, different from the previously performed grasping schemes

which are either planar or fixed base, is the novelty of our approach where the

snake robot grasps an object with any of its body links which are at close

proximity to the object while undergoing its serpentine motion with the remaining

links and dragging the grasped object. Since our snake robot has the pitch motion

for every link, we can  ensure that the links do not run into each other as they

wrap around the object. A lasso-type power grasp is then possible for our 15-link

snake robot as seen in the simulation results of this thesis.
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Furthermore we develop the kinematic and control models for lasso-type grasping

and for dragging the grasped object to a desired state. This control model includes

an adaptively changing feedback gain which prevents excessively large inputs to

corrupt the serpentine locomotion control. According to our lasso-type grasping

model, while the snake robot can grasp the object beginning with the any body

link at close proximity of the object, the contact points can be controlled to

generate the curvilinear grasping curve by using our lasso-type grasping

procedure. For dragging the grasped object, we define a scheme which can

determine the appropriate desired state to drag the grasped object to a desired

position.

The stability of the grasped object is important to resist the disturbance forces as

well as the force closure grasping is important to counteract the disturbance force.

To analyze the stability of the lasso-type grasping, we introduce a stability model

of lasso-type grasping based on contact stiffness matrices that faces the snake to

regrasp when gone unstable.

Keywords:  Lasso-type grasping, grasping during locomotion, snake robots,

grasping in snake robots.
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ÖZ

YILANA BENZEYEN BİR ROBOT İLE SÜRÜNGEN HAREKETİ

SIRASINDA ÜÇ BOYUTLU KAVRAMA

Atakan, Barış

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Aydan M. Erkmen

Aralık 2005, 106 sayfa

Bu tezde, kement tipi kavrama yöntemimizi ortaya koyuyoruz. Daha önce yapılan

düzeysel yada sabit tabanlı kavrama yöntemlerinden farklı olan üç boyutlu kement

tipi kavrama yöntemimiz yılan robotun cisme en yakın halkasının cisme sarılırken

kalan halkalarının sürüngen hareketine devam ettiği ve kavranılan cismi

sürüklediği bir yöntemdir. Yılan robotumuz alçalma ve yükselme hareketine sahip

olduğu için halkaların cismin etrafına sarıldıkça birbirlerine çarpmayacağından

emin olabiliriz. Böylece bir kement tipi güçlü kavrama on beş halkalı yılan

robotumuz için tezin simülasyon sonuçlarında görüldüğü gibi mümkündür.

Ayrıca kement tipi kavrama için ve kavranılan cismi arzulanan duruma çekmek

için hareket ve kontrol modelleri geliştiriyoruz. Bu kontrol modeli yılansı hareket

kontrolünü bozan aşırı büyük girdileri engelleyen adapte olarak değişen bir geri

besleme kazancı içermektedir. Kement tipi kavrama modelimize göre, yılan robot

cisme yakın olan herhangi bir halkasından başlayarak cismi kavrayabilirken,

kontak noktaları kement tipi kavrama modelimizi kullanarak lineer kavrama
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eğrisini oluşturmak için kontrol edilebiliyor. Kavranılan cismi  arzu edilen

duruma çekmek için uygun durumları belirleyen bir plan tanımlıyoruz.

Kavranılan cismin kararlılığı bozucu kuvvetlere karşı direnebilmesi için önemli.

Aynı zamanda kuvvet kapatan kavrama da bozucu kuvvetlere karşı koyabilmek

için önemli. Kement tipi kavramanın kararlılığını analiz etmek için kontak sertlik

matrisine dayalı kavrama karasızlaştığında yeniden kavrayabilen bir kararlılık

modeli tanıtıyoruz.

Anahtar Kelimeler: Kement tipi kavrama, hareket sırasında kavrama, yılan

robotlar, yılan robotlarda kavrama.
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CHAPTER 1

INTRODUCTION

1.1 Serpentine Robots

Hyper-redundant systems are kinematically redundant mechanisms, in which the

number of degrees of freedom is very large or infinite. Such systems when serial

manipulators identify themselves to snakes or tentacles in nature, are often

refered to as serpentine robots in the robotics field. The design of hyper-

redundant mechanisms vary as a result of different objectives like locomotion,

inspection and manipulation [1] [2] [3] [4]. The advantages of such system can be

found in their flexibility in constrained environments and have led caused to the

emergence of new challenging fields of robotics. Search and rescue (SAR)

Robotics is such new and challenging area, dealing with tasks in extremely

hazardous and complex disaster environments [5]. Since natural complexities

have to be handled, biologically inspired mobile robots and, in particular

serpentine mechanisms have turned out to be widely used, providing effective,

immediate and reliable responses to many SAR operations.

Difficulties of manipulating objects in such SAR environments have prompted

researchers to explore increasingly sophisticated manipulator designs to improve

grasping and object manipulation [3] [4]. Grasping while locomotion has been a

critical need in Search and Rescue (SAR) robot missions to enlarge passages

around victims, or for any  need of passing through during pure navigation or

transportation. Hyper-redundant robots analogous in morphology to snakes,

tentacles and elephant trunks have found wide usage as SAR robotic devices
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which need not only to be able to pass through narrow passages but also may

need to enlarge a pathway, to bring  back a sample, or  transport  vital support to

a victim. Such a device should not have a sharp saliency which is violated when

equipped  with manipulators which, in this case, would mean more probability of

getting stuck among rubbles. Figure (1.1) shows an example of a serpentine

system built for navigation and inspection of earthquake debris [6].

Figure (1.1) Search and Rescue Demonstration by a Serpentine Robot [6].

1.2 Lasso-Type Grasping

Snake-robots different from wheeled and legged robots use their entire bodies for

locomotion. Since this supplies the great capability of traction and manipulability

in complex environments, a new manipulation technique is needed to increase the

versatility of such robots in object handling. In the literature, grasping with

snake-robot is found to be performed either planarly or with fixed base hyper-

redundant mechanism [7] [8] [9]. In the planar examples, grasping has been done

using the head link and the consecutive links just in the rear of the head link.

This, however, prevents any serpentine motion of the snake robot during

grasping. In the fixed base examples, the fixed base arise as a big handicap in

taking away the grasped object to any desired new distant location. So, the lasso-

type grasping is a novel concept to investigate.
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1.3 Objective and Goals

The aim of this thesis with a specific focus a SAR robotics, is a lasso-type

grasping by a snake like robot during its serpentine motion within the highly

unstructured environments of disaster areas. To meet this objective, we had to

extend the snake-like robot grasping to 3-D and expand our novelty in grasping to

undertaking it during a serpentine motion.

1.4 Contributions and Methodology

Since previous works in the literature about the snake-like robot locomotion

highlight the imitation of natural snake gait generated by the sinusoidal functions,

kinematic and control models already exist for serpentine motion and

constructing curvilinear wave gaits. So, when we extend the planar snake-robot

grasping to 3-D lasso-type grasping, firstly we do the kinematic and control

adaptations on previously existing serpentine locomotion models. As the basic

novelty of our approach, the snake-robot grasps an object with any of its body

link which is at close proximity to the object while undergoing its serpentine

motion with the remaining links and dragging the grasped object. Since our snake

robot has the pitch motion for every link, we can ensure that the links do not run

into each other as they wrap around the object making a lasso-type power grasp.

This is possible for a highly redundant snake-like robot which has 15-links in our

thesis work when we carry on our simulation.

Furthermore we develop the kinematic and control models for lasso-type grasping

and for dragging the grasped object to a desired state. This control model includes

an adaptively changing feedback gain which prevents excessively large inputs to

corrupt the serpentine locomotion control. According to our lasso-type grasping

model, while the snake robot can grasp the object beginning with the any body

link at close proximity of the object, the contact points can be controlled to

generate the curvilinear grasping curve by using our lasso-type grasping

procedure. For dragging the grasped object, we define a scheme which can
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determine the appropriate desired state to drag the grasped object to a desired

position.

The stability of the grasped object is important to resist the disturbance forces as

well as the force closure grasping is important to counteract the disturbance force.

To analyze the stability of the lasso-type grasping, we introduce a stability model

of lasso-type grasping based on contact stiffness matrices that faces the snake to

regrasp when gone unstable.

1.5 Outline of the Thesis

In the first chapter, we give the introduction focusing on the motivation behind

the thesis work providing the objective and goals together with the contributions

of the present work. In the second chapter of thesis, firstly we give the brief

overviews to previously designed snake-robots, the natural snake-gaits, and

previously used control mechanism for snake-robot control. Secondly previously

performed hyper-redundant grasping schemes for the fixed based and for the

snake-like robots are overviewed. Thirdly a 3-D model of snake-robot and a

stability model of grasped object used in this thesis are given. In the third chapter,

we give our contributions. Firstly, we adopt the model given in Chapter 2 for our

lasso-type approach. Secondly, we develop the kinematic and control models for

lasso-type grasping and for dragging the grasped object to a desired state.

Thirdly, we give the stability analysis of object in lasso-type grasping. In fourth

chapter, we analyse our approaches given in Chapter 3 with the comparatively

manner by showing the graphical and demonstrative examples and we give some

performance analysis. Chapter 5 concludes the thesis work by also providing a

suggestion for future works.
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CHAPTER 2

LITERATURE SURVEY

2.1 Snake-Like Robots

The word “redundant” is used in the context of robotic manipulators to indicate

that the number of actuated degrees of freedom exceeds the minimal number

required to perform a particular task. For instance, a manipulator required to

position and orient an object in space needs six actuated degrees of freedom, and

so a manipulator with seven or more actuated degrees of freedom is redundant

with respect to this task.  Hyper-redundant mechanisms are kinematically

redundant manipulators, in which the number of degrees of freedom is very large

or infinite. Such system are analogous to serpents or tentacles, and are often

refered to as serpentine robots. The advantages of such system can be found in

their flexibility in constrained environments.

In recent years, biological systems began to serve as great inspiration for robotic

creation. Greater knowledge about biological systems facilitates more accurate

and efficient robotic systems. Designs that accurately mimic body structure and

movements began to produce robust and controllable systems and snake-like

robotresearch and application gained emphasis. History has shown that robotic

navigation system have dominantly used the tracked and legged mobility

methods. Commonly, robotic vehicles use a wheel and axle propulsion system,

but this is often debilitating when traveling on variable terrain. For instance,

wheel-based propulsion system must be specifically designed to ascend steps.

Successful propulsion systems are often similar to motion methods of animals.
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Leg-based mobility is the most common method but it is difficult and inefficient

to reproduce mechanically. Snakes can use their entire body for propulsion. The

large surface area of the body provides great traction. Snakes remain in close

contact with the ground. This produces a low center of gravity which improves

stability. This stability is reduced in leg and wheel based system. The body

structure of  biological snakes can be modeled as a series of independently

controlled joints. Each joints has many degrees of freedom. These freedoms allow

the snake to raise body sections over obstacles. The snake could elevate onto or

above a step or an obstruction. This task would be difficult if not impossible

using wheeled propulsion.

As shown in Figure (2.1), the biological snake is an omni-body that articulates at

joints formed between vertebras. Ribs extend downward on both sides of each

vertebra. Snakes lack appendages simplifying their body structure. Constant

contact with the ground also provides excellent traction that the snake

manipulates when moving. Forward propulsion is achieved by changing body

position and manipulating its contact with the ground. The snake obtains mobility

by repeatedly altering its body shape. Motion patterns are formed by repeating

certain shapes. This patterns borrowed from legged motion are called “gaits”.

Figure (2.1) Snake Skeletal Structure

Biological snakes utilize several different gaits such as lateral undulation,

concertina, and side winding. Controlling these gaits, a snake is able to achieve

directional mobility. Biological snake most commonly use the lateral undulation

gait which produces propulsion by varying body shape in a horizontal, sinusoidal

pattern. This oscillatory motion has both a tangential and a normal component
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relative to the forward direction. The normal force component is in a direction

perpendicular to the forward direction. As undulation changes polarity cancel

each other. The tangential forces are in the direction of forward motion and add

up to each other in order to propell the snake forward. Lateral undulation

Figure(2.2) is not successful on low-friction surfaces and less effective for shorter

body lengths and for heavier snakes [10].

Figure (2.2) Lateral Undulation Motion

The concertina gait uses a progressive body extension pattern where the body

folds and unfolds in a posture similar to an accordion. Extending a front section,

the snake reaches forward while the back sections remain stationary. These

stationary sections provide a fix base for the moving section. The extension

remains fixed, as the snake begins to unfold its body and its back section moves

forward. In this phase, the front section acts as the fix base, while the back

section is in motion. The motion alternates between pushing against a back fix

base and pulling against a front fix base. This gait is useful on low-friction

surfaces. Figure (2.3) shows the concertina motion of biological snake.

Figure (2.3) Concertina Motion
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The side winding gait uses continuous waves of lateral bending to move in a

lateral direction. The segments not in contact with the surface are lifted and move

to the side and then become the new contact points. Repeating this pattern, the

snake moves in a direction to its side. Since sections must be lifted, the snake

moves in both horizontal and vertical planes. The side winding gait Figure (2.4)

which is very useful on low-friction surfaces requires more complex muscular

and skeletal structures to facilitate the two degrees of freedom.

Figure (2.4) Side Winding Motion

Much of the preliminary work about snake-like robot have been done by Shigeo

Hirose who has investigated snake robots and natural snakes. Most of his research

is focused on the locomotion and gait analysis of such systems, employing an

active chord mechanism (ACM). Hirose’s active cord mechanism (Figure (2.5)), a

chain of serially connected and wheel-based segments, can generate a net forward

force by applying the appropriate torques along the length of its body. He models

the snake by a link mechanism with no side slip and suggested that the actuating

joints with sinusoidal inputs generate typical winding motion of natural snakes

[11]. The purpose of the first steps of Hirose’s research is as follows: 1-) Design a

snake robot which can creep forward and apply the modern control theory to

realize a robot with a position control. Check whether the trace can be

approximated by the serpenoid function. 2-) Derive some control method which

can create an exact serpenoid trace if any, and see what happens with the

magnitude and distribution of the control inputs. 3-) Using these results, find the

best model of snake robots which use the least energy to move.
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Figure (2.5) Hirose’s ACM III

Another discrete morphology snake-robot, called GMD-Snake (Figure(2.6)), is

constructed by Riner Worst and Ralf  Linnemann [1]. It uses its body instead of

wheels, legs or arms for locomotion as well as handling items. It may be used for

inspection and manipulation in areas where motion is restricted. The GMD-Snake

is assembled of same uniform sections, each one consisting of  two rubber joints.

The joints can be bent in arbitrary directions, thus making the robot’s body very

flexible. To imitate closely a real snake and to study different ways of movement,

appropriate control software which manages the harmonious motion of all the

section was given by investigators. Therefore, the individual sections are

connected to an external processor via special type of field bus such that the

GMD-snake undergoes its locomotion according to predefined commands.

Succeeding the GMD-snake, Bernhard Klaassen, Karl L. Paap present the next

generation GMD-Snake2, a robot for inspection task in areas difficult to access by

humans [2]. They try to imitate the natural scale-driven propulsion of a snake by

wheels around the body and concentrated on a method for motion control. This

method allows a very flexible and consistent method of path planning and

calculation where smooth curves are desired. Mathematically, it is based on an

enhancement of the clothoid curve which is applicable not only to snake-like

movement but to any wheeled robot which is able to control the curvature of its

path.
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Figure (2.6) GMD Robotic Snake

Jet Propulsion Laboratory (JPL) has developed a serpentine robot to test the

feasibility of robotic inspection of restricted areas [3]. The robot has 11 degrees of

freedom. All joints are direct-drive motor controlled, and all motors are mounted

internally (Figure (2.7)). Inspection capability is provided by a fiber-optics

borescope transfers images to a camera at the base of the arm and illuminates the

inspection site. The goal is to use this robot as an inspection tool to be picked up

by one of the large manipulators. The combined macro/micro arm will have 21

degrees of freedom. Algorithms have been developed to guide this arm through

small openings in such a way that the rest of the arm automatically follows the

tip’s path, thus avoiding collisions with the environment. This technology can be

used in industry and medical applications.

Figure (2.7) The Jet Propulsion Laboratory 12-DOF Serpentine Robot

In 1995, the giant Japanese electronics company, NEC, announced the

development of a snake robot which was dubbed ‘The Quake Snake’ and designed

to enter the rubble strewn aftermath of  earthquakes and explosions to search for

survivors. The device, called Orochi, utilized an active universal joint, a novel

form of a Hooke’s joint designed by Ikeda and Takanashi [12]. The seven
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segment device is shown in Figure (2.8) [4]. Control is done manually and the

single gait used is akin to a rectilinear or inchworm gait. This class of mechanism

has great promise for serpentine robots in real applications.

Figure (2.8) The Nec  7-Segment ‘Quake Snake’

Research in structural resonance control for large space structures produced the

original Variable Geometry Truss (VGT) (Figure (2.9)). First, Chirikjian and

Burdick built a 30-DOF VGT composed of 10 identical 3- DOF truss modules

[13]. The truss modules contain three prismatic joints, creating planar parallel

manipulators. The prismatic joints are operated with direct current servo motors

and lead screw drives, and can vary in length from 12 to 18 inches. The method

for kinematic analysis which does not rely upon the manipulator Jacobian matrix

have been introduced by Chirikjian and Burdick [14]. In their approach, a

continuous curve model was used to describe the macroscopic truss geometry and

a method to analyze the kinematics and inverse kinematics of planar continuous

and discrete morphology of nonextensible (fixed-length) hyper redundant

manipulators was presented. These methods are based on an intrinsic

parameterization of a ‘backbone curve’ which captures the macroscopic geometric

features of the manipulator. Control of hyper redundant robots using continuous

backbone curves has been well studied. This approaches scales very well to large

numbers of modules and is of particular interest in hierarchical control approaches

with kinematic constraints. Furthermore, Chirikjian and Burdick present a

approach, termed “tunneling” to the obstacle avoidance problem which is applied
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to planar hyper redundant manipulators [15]. Each joint of a snake-robot cannot

be simply operated individually because there are too many. These robots require

a motion planning algorithm. Motion planning for snake robots is difficult

because the robots have many internal degrees of freedom that have to be

coordinated to achieve purposeful motion. Chirikjian and Burdick investigated

serpentine control with a geometric approach to motion planning [16]. While their

analysis was a big step in demonstrating the use of VGTMs, that work has several

drawback. First, for spatial manipulators, a curve alone is not sufficient to

describe manipulator configuration. Second, unless the curve used to describe the

manipulator is parameterized with meaningful physical variables, additional

computations are required to specify a desired distribution of actuator

displacements. Lastly while special algorithms deal exclusively with VGTMs, it is

not clear how they would apply to other types of hyper redundant manipulators.

Figure (2.9) Burdick’s Snake, a VGT-style hyper-redundant manipulator and

locomotor

Munerato presented a flexible mini-robot designed for pipe inspection [17]

consisting of twenty a mechanism segments, each with a 30-mm diameter and 50-

mm length summing up to a total of 60-DOF to be controlled. Each 3-DOF

module is constructed of two platforms linked by three extensible lengths,

providing two twist angles of up to 20° amplitude, and extension equal to one-

third the total length of the module (Figure (2.10)) enabling an earthworm type
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displacement. The earthworm displacement was categorized as “extension in a

horizontal plane”, with the sole disadvantage being necessary module elongation.

                                
Figure (2.10) The Flexible Mini-Robot designed by Munerato et al

In continuous morphology systems, actuation is distributed throughout the

manipulator. The aim of this approach is to create a system comparably efficient

to those found in nature, namely muscle tissue. Muscle distributed along the

length of a bone has the ability to elongate and contract, allowing for the actuation

of limbs through wide ranges of motion. Optimally, a serpentine robot would be

actuated with “muscles” just the way a real snake is. Most of the continuous

morphology systems are based on the use of pneumatic and hydraulic actuators

and chemomechanical materials, or electrorheological (ER) fluids.

Kinetic Science Incorporate (KSI) has built and tested a hybrid electric pneumatic

robot called the KSI Tentacle Manipulator [18], utilizing a folding hood actuator

and three tendon cables for bending any direction the manipulator in such a

tentacle manipulator has six degrees of freedom and can extend more than five

times its contracted length (Figure (2.11)). The KSI manipulator is a two-part

system: the folding hoods become stiff with increased pressure, while contraction

and bending is achieved through electric motor servo winches controlling the

tendon cables. This particular design is advantageous, when compliant grasping is

required, and is more conducive to manipulate fragile items than rigid mechanism

are.
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Figure (2.11) The KSI Tentacle Manipulator

Two broad classes of control methods have been used with snake robots [19]. The

first class can be described as trajectory-tracking control using predefined gait

patterns, usually computed as sine waves, that are tracked with a feedback

controller (e.g. a PID controller). Typically, the control is open-loop: the set

points of the joints are calculated and sent to the motor controllers without any

form of feedback (the only feedback present in the system is the one used by the

PID controller). Hirose used this type of control. He suggested that actuating the

joints with sinusoidal inputs generate typical winding motion of natural snakes

[11]. A trace of such winding motion is called a serpenoid curve. He applied some

control based on the serpenoid curve. In this method, though singular postures can

always be avoided, the gait of the robot is fixed beforehand and exact control of

the position is difficult.

As another example of trajectory-tracking control, Ma, Araya and Li in their work

developped a snake-like robot that can achieve creeping locomotion only by

adjusting the relative angles between adjacent links [20] that allow the robot’s

shape to form along the Serpenoid curve.

The other class can be described as online gait generation control. In this case,

gaits are not predefined in advance, but generated online during locomotion.
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These approaches that are generally model-based, i.e. they rely on a kinematic or

dynamic model of the robot’s locomotion in order to design control laws for the

gait generation can, therefore, better deal with perturbations and irregular terrains.

As an example of online gait generation control based on the dynamic model,

Prautsch and Mita showed a dynamical position control of the snake robot and

discussed the effect of constraining  trace of the head to a serpenoid curve [21].

They proposed an autonomous locomotion control of the head position based on

Lyapunov function method. In this method, winding motion is generating

autonomously in real time and exact position control can be achieved. However,

when the number of link is large, amplitude of winding motion tends to decrease,

namely, tends to have a singular postures. Hence it is difficult to design a

controller satisfying keeping good posture and tracking to a desired trajectory.

As another example of online gait generation control based on the dynamic

model, Date, Hoshi and Sampei achieve tracking to a desired  trajectory, avoiding

singular postures without giving any gait beforehand [22]. They utilize a notion of

dynamic manipulability to evaluate the locomotability with consideration of the

side force wheels discussing an autonomous locomotion control of a snake like

robot which consists of multiple links with passive wheels and active joints and

also propose a control method of locomotion control based on this manipulability.

As another example of  online gait generation control based on kinematic model,

Ostrowski and Burdick examine a model for a snake robot [23] based on the

ACM-III built by Hirose [24]. By using the intrinsic invariances of the constraints,

they realize the three-segment model as a principal kinematic system. The three

wheel constraints define a kinematic connection and so fully determine the effect

of internal shape changes on net serpentine locomotion. They utilize this fact to

control additional segments which are constrained to “follow” the lead of  the

three-segment kinematic system. By formulating the motion of the system in

terms of a connection, they can highlight the important factors which contribute to
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the serpentine locomotion. Using sinusoidal inputs which are phase-delayed down

the length of the snake robot, they are able to simulate various possible gaits,

including a serpentine gait and two rotate gaits.

2.2 Snake-Robot Grasping

A multitude of studies have been done  about  snake like robots on their kinematic

models [9] [25] [26], path planning [2], singular configuration avoidance [27]

[28], obstacle avoidance [15] [29], and serpentine locomotion control [19-23] [27]

[30]. But very few studies exist about snake like robot grasping or lasso-type

grasping. Some investigators developed tentacle and elephant trunks  based robot

manipulators for grasping, in the form of massively redundant manipulation

devices being alternative to conventional robot arm/hand combination. They

focused on grasping by wrapping the device links around an object in the same

manner as an octopus would do. This grasping method is advantageous because

these manipulators become an all-in-one arm and such gripping devices are

capable of a wide variety of grasp configurations, while still utilizing the

mechanics of serial manipulators.

Pettinato and Stephanou proposed a 4-link revolute joint tentacle module [7]

(Figure (2.12)) that uses a yaw-pitch-pitch-pitch configuration which allows it to

curl around objects. By attaching several of these prototypes together, this curling

action is enhanced. 9, 13 and 17 link tentacles can be  formed by attaching

together two, three and four 4 link modules together respectively and adding a roll

to the base. The roll is added to increase the manipulability in the angular z
direction. A 21 link tentacle appending five of these modules together with a roll

is shown in Figure (2.13)

Figure (2.12) Schematic Diagram of a Four Link Tentacle
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Figure (2.13) Schematic Diagram of a Twenty One Link Tentacle

Pettinato and Stephanou simulated the grasping scheme by the 21-link tentacle

arm and  gave their tentacle grasping in an algorithmically simple and uniform

manner as follows:

1. Position linkage system so that the last link to contact the object is in

position

    above it (Figure (2.14), slide 1).

2. Move joint until the link comes in contact with object.

3. Repeat step 2 until all links used for grasping contact object.

4. Adjust torque at each joint until there is no contact slippage.

Figure (2.14) Time Lapse Illustration of a Tentacle Grasp

Furthermore, Pettinato and Stephanou applied a power grasping to an object by

wrapping its links around it multiple times as shown in Figure (2.15). To ensure

that the links do not run into each other as they wrap around the object, they used

the yaw motion of  each module to offset each encirclement of the object.

Figure (2.15) Time Lapse Illustration of a Power Grasp Using a Tentacle
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Since tentacle and elephant trunks based manipulator is a hyper-redundant

mechanism and analogous in morphology to a snake like robot mechanism, the

grasping with these redundant manipulators was poineers of the snake-like robot

grasping studies. In one of such leading works, Chirikjian and Burdick applied

some of the locomotion ideas to the kinematics of grasping on a 30-DOF Variable

Geometry Truss, and considered the novel combination of a hyper-redundant

grasp with a locomotion wave used to reorient the object [9]. In this work, they

considered only the kinematic aspect of grasping and object reorientation with a

grasping and locomotion wave (GALWA) method that they propese for

manipulating objects consists of the following steps:

• Shape Initialization: The hyper-redundant mechanism wraps around the object.

The section of the manipulator in contact with the object is termed the grasp

contact segment.

• First Phase: A section of the mechanism which is outside of the grasp contact

segment distorts to a wave form. As a result, the object will be displaced by a

small amount. This is shown in Figure (2.16-a ).

• Second Phase: The wave generated in the first phase travels along the robot

toward the distal end without changing the position or orientation of the object

over which it passes. This phase (shown in Figure (2.16-b)) is similar to traveling

wave locomotion where the manipulated object is the terrain. When the wave has

traveled to the distal end of the manipulator, the grasp contact segment will be

longer (by an amount refered to as stride length in locomotion terminology).

• Third Phase: The manipulator ‘unwraps’ part of the grasp contact segment from

the object by straightening a small part of the grasp contact segment as shown in

Figure (2.16-c). This results in a rotation an displacement of the object.

For the case where the object to be manipulated is a cylinder, the displacements

resulting from the first and third phases cancel, leaving only a net rotation. When

the third phase is complete, the cycle repeats starting with the first phase. This

repetition results in repeated object rotations, the magnitude of which depend on

the size of the wave. The cycle shown in Figure (2.16) can be used to cause
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counter-clockwise rotations. Alternately, the cycle can be reversed to yield

clockwise rotations. For arbitrary objects, net translations can also occur from

cycle to cycle.

Figure (2.16) Hyper-Redundant Grasping of a Cylinder

IS robotics developed a planar serpentine robot named Kaa [8], shown in Figure

(2.17). The Kaa robot has 12 degrees of freedom. The robot does not have any

external sensors; however, it can sense the torque in each motor. The robot is

completely autonomous, that is, power and computation are on board.

Figure (2.17) IS robotics’ Kaa.

One set of behaviours explored using Kaa is mobility among parallel pipes, i.e.

the ability to reposition the robot body in a field of parallel vertical pipes (Figure

(2.19)). The vertical pipes present a simple circular cross-section to the robot.
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This overall behavior is diagrammed in Figure (2.18). The cross-sections of

vertical pipes are labeled A, B, and C. The basic behavior steps are as follows:

1) Kaa begins with its left arm wrapped around pipe A, as in Figure (2.18-a).

2) It acquires pipe B by swinging its body in counter-clockwise direction,

using the left most joint not involved in the grasp of pipe A, as in Figure

(2.18-b,c).

3) The left arm unwraps and folds back parallel with the body, as in Figure

      ( 2.18-d,e).

4) Kaa uses its right arm to swing its body clockwise a few degrees, as in

Figure (2.18-f).

5) The right arm unfolds on the opposite side of the pipe and ready to grasp a

new pipe, as in Figure (2.18-g).

6) This sequence is repeated with the right arm, starting at step 3.

Grasping, folding, and unfolding are three important sub-behavior of this

sequence. Grasping is the ability to acquire and grip an object. Folding and

unfolding are a means of moving the arm through a tight space.

Figure (2.18) A diagram of Kaa’s planar mobility sequence steps a-g.
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Figure (2.19) Kaa Robot gripping two pipes

In Kaa, a simple set of behaviors implements a robust grasping action. Objects of

various sizes and shapes and various positions along the arm can be grasped. Each

joint is controlled by a set of processes. Each set of processes is identical and is

connected to its neighbors. To grasp an object, a wave of activation is passed from

the central link to the joint closest to object on one side. This wave of activation

spreads joint by joint to the arm tip. The resulting action is that the arm swings out

and when it encounters an object, it wraps around it, very much like the action of

an elephant’s trunk. The specific steps in the grasping behavior are as follows:

1) The arm is moved into a straight position; each joint angle is set to zero as

shown in Figure (2.20).

2) A wave of activation is initiated at the central link and is passed to the next

nearest link, on the side of the robot which grasping is occuring.

3) When a joint is activated, it moves in the direction of the object to be

grasped. ( This causes all of the arm from this link to the tip to move in

that direction.)

4) This motion continues until a position limit is reached or a force is

detected (via motor torque for this joint).

5) The joint then goes into a force servoing control mode. It then activates the

next joint further out on the arm which repeats the actions outlined in step

3.
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Figure (2.20) A traveling wave moves Kaa on a flat surface

Hirose’s soft gripper is a snake-like mechanism that can flexibly grasp an

optionally shaped object [11] [31]. To flexibly grasp an object, it must be possible

to create a uniform grasping force on all the gripper surfaces while wrapping

around the object. This was accomplished in the action of the soft gripper in the

following way.

First, Hirose consideres the bending moment M(s) which is created on the inside

part of the member when adding a distributed load to a cantilever beam. This may

be reduced in terms of  secondary functions as in Figure (2.21). From this, if the

gripper is assumed to be a kind of beam which has countless motors, when

considering the moment in which there are secondary function changes by these

motors facing from the base toward the tip, this moment generates a uniform force

along the beam to the exterior part. However, using countless motors cannot be

done.

                  
Figure (2.21) Relationship of the uniform load )(sω  applied to the beam

Thus, Hirose and coworker develop the soft gripper mechanism shown in Figure

(2.22), in which the joints and pulleys are all connected to rotate independently,

and the wire fixed to the head joint is pulled by coiling around all the pulleys. In
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this mechanism, when the wire is pulled, a bending moment proportional to the

radius of the pulley is generated on each joint. For that reason, when the pulley

radius is designed to change in terms of  secondary functions and the wire coiling

around the pulley is pulled, the moment of distribution described above is

obtained, and uniform grasping is possible. The grip release motion is conducted

by pulling the series of pulleys of the same radius in the opposite direction.

Figure (2.22-a) The flexible gripping action of the Soft Gripper I

Figure (2.22-b) The flexible gripping action of the Soft Gripper I

Figure (2.22) Hirose’s Soft Gripper I

Figure (2.22) indicates the conditions by which the primary model grasps from the

housed state. Figure (2.23) indicates a large-scale model that was developed as a

gripper for a robot assisted by a human command to grasp and hold up a human

body. Drive systems for vertical grasping and for horizontal grasping are

provided. Figure (2.24) is belt driven type three-fingered model.
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Figure (2.23) The flexible gripping action by the Soft Gripper II on a human body

Figure (2.24) The belt driven Soft Gripper III

2.3 Grasping Stability

Since the grasping stability is the quantitative ability of a manipulator to

compensate for finite disturbances and maintain zero slippage at its points of

contact with an object without destroying the object through excessive internal

forces, the measure of grasping stability is important to consider the grasping

ability of manipulator. There are some way of measuring the stability of grasping.

For this purpose, Pettinato and Stephanou used the grasp matrix G  which relates

the velocities at the contact points to the overall twist being applied to the object

[7]. The grasp matrix is given as;
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where fiT  are the transforms between contact frame and body frame, and iB  is a

unit matrix of contact twists. With the grasp matrix representation, the stability

measure )( sµ  denotes the ability to resist wrenches.   

                                                                                                      [ ]T
s GGdet=µ                          (2.2)

Pollard and Perez approach stability as satisfying equilibrium [32]. Focusing on

the use of a three-fingered hand, stability is achieved when the three contact

forces are in equilibrium. A “grasp focus” is defined as the intersection of the

three contact forces. Similarly, Park and Starr describe a stable grasp as a force

closure grasp [33], where force closure has the property of completely

constraining an object, compensating for any force through the finger forces at the

contacts. Construction of such a grasp is reduced to finding contact locations such

that ( in the case of a three-fingered hand) the three force directions create force

closure. Park and Starr extend their analysis to create a heuristic function that

evaluates the grasp quality in terms of the force direction arrangement, the grasp

points, the grasp locations with respect to the object centroid, the number of

convex vertices, and the number of grasp points located near  the end of an edge.

Although force closure and stability are often used interchangeably, it should be

noted that force closure is not always sufficient for achieving stability. By

utilizing the grasp matrix, Hsu, Li and Sastry define stability for a multi-fingered

robotic hand as the existence of a choice of joint torque to balance every wrench

applied to the body. This approach is devided into two quality measures; one in

twist space and the other in wrench space. A three-measure system for evaluating

stability is also proposed, consisting of a “minmax” measure, a volumetric

measure, and task-oriented measure. All three are numerically computable and

exist in the force domain, allowing grasp selection to be treated as an optimization

problem [34].

In this thesis, we use the Howard and Kumar’s model for the analysis of grasping

stability. This model gives the expressions for the changes in the contact forces as

a function of the rigid body relative motion between the contact points and the
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grasped object in terms of contact stiffness matrices [35]. So, we can analyse the

contact forces as well as the grasped object stability. This model given in the

following Section (2.3.1) is analyzed for the multifingered robot hand, but it is

applicable for the other types of grasping as lasso-type grasping.

2.3.1 Derivation of the Contact Stiffness Matrix

At the point of contact, a second-order model describing the surface of the finger

is given by

                                  02 22 =++ AvAuA yKxKz
AA

     (2.3)

where Ax  and Ay  are aligned with the principal axes of curvature of the finger.

AuK  is the curvature ( the signed inverse of the radius of curvature, positive for

convex

curves) along the Ax  axis, 
AvK  is the curvature along the Ay  axis, and Az  is the

outwardly pointing normal as seen in Figure (2.25). Ax , Ay , and Az  define an

orthogonal coordinate system, fixed in space, which will be refered to as Ao . The

orthogonal curvilinear coordinate system (coordinates u , v ) is defined on each

surface. As seen in Figure (2.25-c), the coordinates Au  and Av  describe the

location of the points on the finger, Ax  is tangent to the coordinate curve,

=Av constant, passing through the origin, and Ay  is tangent to the coordinate

curve, =Au constant, passing through the origin. A similar definition is made for

the grasped object, using the subscript “ B ”. The angle ψ  specifies the orientation

about the common normal of one body with respect to the other. In figure (2.25-

b), this angle is defined such that a positive (counterclockwise) rotation of Ax

about Az  through ψ  aligns the axes Ax  and Bx . In general, .0≠ψ  That is, the

principal axes of curvature of the finger and grasped object are not, in general,

aligned.
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Figure (2.25) Parameterization of two bodies in contact [35]

2.3.1.1 Kinematic of Contacts

A small displacement of the grasped object is given by the twist

[ ]TzAyAxAAAA zyx θθθ ∆∆∆∆∆∆  in the fixed frame Ao . The relationship

between the change in the location of contact point on the finger and the

movement of the grasped object can be written as;
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As seen in Figure (2.25-a), an additional contact coordinate, w  have to be defined

as the maximum rigid body penetration between the two contacting bodies.

                                                          zw ∆−=∆  (2.6)

2.3.1.2 Compliant Contact

If the contacts are nonconformal and the strains are small, the relationship

between the normal force, nF , and the gross rigid body motion along the line

joining the centers of curvature of the contacting bodies (which according to

terminology is the penetration w ) can be given by

                                          23* ),,,,( wEKKKKfF
BBAA vuvun ≈                          (2.7)

Where *E  is a function of the material properties of the contacting bodies.

Equation (2.7) can be linearized to give

                                                    wkFF nnon ∆+=     (2.8)

Where noF  is the nominal contact force and nonn FFF −=∆  is change in the

contact force. The constant of proportionality, nk , is the linearized spring

constant. This equation is valid if the small changes in the generalized coordinates

caused by the disturbance twist result in a relative rigid body motion, w∆ , such

that ww <<∆ .

2.3.1.3 Normal Forces

When there is a relative rigid body motion, the rigid body penetration, w∆ ,

changes and the contacts move across the surface of the contacting objects. Thus

the normal force changes in magnitude and in direction, and further, its line of

action changes. The change in direction about the Ax  axis is given by the small

angle Av vK
A
∆− . Thus, in the Ao  frame, the change in the normal force is given by
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                                                       wkF nz ∆=∆     (2.10)
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Because the contact point moves through a small displacement given by

[ ]TAA wvu ∆−∆∆ , the resulting moments, expressed in Ao  are given by

                          )()( yyzzAx FFwFFvM ∆+∆+∆+∆=∆             (2.11)

                                               Ano vF ∆≈

                          )()( xxzzAy FFwFFuM ∆+∆−∆+∆−=∆           (2.12)

                                                Ano uF ∆≈

2.3.1.4 Tangential Forces

Tangential contact forces arise due to firiction. The tangential force lies in the

AA yx −  plane, and in general has components in both the Ax  and Ay  directions.

These two components are refered as txoF  and tyoF , respectively and the tangential

force is defined as [ ]Ttyotxoto FFF = . When a relative motion occurs between two

objects which remain in contact, the movement is a combination of rolling,

twisting, and sliding. Pure rolling and pure twisting about the contact normal do

not affect the magnitude of the frictional force, because there is no relative motion

between the points in contact. If there is a relative tangential motion at the contact,

this motion induces a tangential deformation. The expressions for the change in

tangential forces and moments on the grasped object, expressed in Ao , can be

written as
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                         )()( yyzzAx FFwFFyM ∆+∆+∆+∆=∆           (2.14)

                                                 wFtyo∆≈

                         )()( xxzzAy FFwFFxM ∆+∆−∆+∆−=∆          (2.15)

                                                 wFtxo∆−≈

                          )()( xxAyyAz FFyFFxM ∆+∆−∆+∆=∆          (2.16)

                                                 AtxoAtyo yFxF ∆−∆≈
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2.3.1.5 Moments About the Contact Normal

oM  denotes the torsional moment applied to the grasped object at equilibrium. A

rotation about the contact normal will produce a change in the moment

proportional to the torsional stiffness, θk . Because a relative displacement

produces a change in the angle of the contact normal, a relative displacement will

also cause a change in the moment about the Ax  and Ay  axes. In Cartesian

coordinates, the change in moments on the grasped object can be expressed as
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                                            ψθ∆−=∆ kM z                                         (2.18)

2.3.1.6 The Contact Stiffness Matrix

At each contact, the above equations can be combined into a single equation,

referenced to the local contact frame Ao , given by

                                    Ac xF ∆−=∆ κ                                      (2.19)

where F∆  is the change in the force, Ax∆  is the rigid body motion measured in

Ao , and cκ  is the 66×  contact stiffness matrix given the below.   
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If the contact is frictionless, or a frictional contact, cκ  must be altered as follows:

Frictionless contact : 0=toF  and 0=== to kkM θ

Frictional hard contact: 0== θkM o .

2.3.2 Multiple Contact Point Grasp

In the prior section, the equations for the changes in forces and moments at a

single contact point in response to an arbitrary motion are formulated. In this

section, the individual contributions at each of the multiple contacts into a single

expression are combined.

2.3.2.1 Constant External Forces

The constant external forces such as gravitational forces are denoted as g . While

these forces are constant, the vector representation of the wrench in a particular

coordinate system does depend on the changes in configuration of the system.

Consider an external force on the grasped object acting through the center of

gravity. The coordinate system is fixed in space, cgo , whose axes are aligned such

that the external force acts in the cgz  direction. A rigid body motion of the

grasped object will not change the force, but will result in changes in the moment

of the external force about the origin of  cgo . If mg  denotes the external force,

this result is given by
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                                            cgcg xF ∆−=∆ κ                                     (2.21)
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2.3.2.2 Coordinate Transformations of the Stiffness Matrix

When the multiple contacts are modelled, the leading subscript is used to denote

the contact. For example, c
iκ  would be the stiffness matrix cκ  for the i -th contact

and A
io  is the fixed frame at the i -th contact. Note further that Ax∆  and Ay∆

refer to the contact frame, but they can be related to other reference frames

through appropriate transformations. The fixed frame, O , is used at an arbitrary

point. ( )z
i

y
i

x
i ddd  is the coordinates of the frame O  as seen from the fixed

frame for the i -th contact, A
io , then the change in force at O  for any infinitesimal

rotation or displacement, due to contact i , is given by

                                           o
i

c
iTi xTTF ∆=−∆ κ                                (2.22)

    where in the spatial case
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0  is the 33×  zero matrix, and Ri  is the 33×  rotation matrix that transforms

vectors in frame O  to the reference frame A
io .

2.3.2.3 The Intrinsic Stiffness Matrix

oκ  is defined as the intrinsic stiffness matrix, referenced to the world frame O ,

given by

                                                  oo xF ∆−=∆ κ                                 (2.23)
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  where

           ∑
=

+=
N

i
cgcg

T
cg

i
c

iTi
o TTTT

1
κκκ

A grasp will be stable if oκ  is positive definite (whether or not the grasp is force

closed).

2.4 Physical Model of a Snake-Like Robot

The choice and arrangement of a hyper-redundant robot’s actuators and

mechanical structure are important to realize a task. The selection of a particular

morphology will obviously depend heavily upon the functional and operational

requirements of a particular application. The snake-like robot (Figure (2.26)) used

in [27] is selected as a model that we heavily modify for lasso-type grasping in

this thesis. Each link of its has the 2-DOF joint equipped with two torque

actuators (motor) and two passive wheels on the two side of the links. These

wheels are used to decrease the friction between the surface and snake-like robot

in tangential directions. Each link is rigid with uniformly distributed mass.

Figure (2.26) Physical Model of Snake-Like Robot Used in [26]
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Since the physical morphology of snake-like robot can be changed under

particular task achieved by snake-like robot, some physical arrangements must be

done to be achieved the particular task. For this thesis, this task is the lasso-type

grasping of the snake-like robot. Because of theoretical reasons given in Chapter

3, needed physical arrangements of the model given in Figure (2.26) have to be to

achieve the lasso-type grasping as follows.

• The front links involve in the grasping task should be the wheelless links.

• The weight of front links involve in the grasping task should be so light

that their motions which construct the grasping curve can not corrupt the

stability of the last wheeled links.

Under these arrangements, the snake-like robot that we use in this thesis is seen as

in Figure (2.27). The front links involved in grasping task are wheelless links and

are less heavy than the last wheeled links. This prevents the corruption of last

wheeled links stability during the motion of front wheelless links when grasping

the object.

         Figure (2.27) Physical Model of Snake-Like Robot Under Some Physical

Arrangements
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2.4.1 Friction Model of Snake-Like Robot

For this physical model, the key property of snake-like robot in achieving

serpentine locomotion is the friction between the links and horizontal surface.

Therefore we must model the frictional equation of motion.

                            

Figure (2.28) The model of the fornt wheelless links

Using the concept given in [36], we can model the friction of the snake-like robot.

Let us consider the snake-like robot depicted in Figure (2.28), which consist of n

links connected through 1−n  joints. As given in [36], we give the some notation

to model the friction of the snake-like robot as follows.

Fix yx −  axes in the inertial frame and consider the i -th link of the snake-like

robot. The link is of mass im , length il , and moment of inertia )12/( 2
iii mJ l= .

Let ),( fifi yx  and iφ  be the coordinates of the center of gravity and the angle

between the link and the −x axis, respectively. Denote by yx, , and φ  the

−n dimensional vectors whose i -th entries are ,, fifi yx  and iφ , respectively.
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),sin,...,(sin: 1 ndiagS φφφ =        )cos,...,(cos: 1 ndiagC φφφ =

),,...,(: 1 nJJdiagJ =   ),,...,(: 1 nmmdiagM =    )2/,...,2/(: 1 ndiagL ll=

,)(: 11 ALDDMLAH TT −−=           ALDDMDMN TT 111 )(: −−−=

         φφφφ HCCHSSJ ++=Γ : , ,: φφφφ HSCHCS −=Λ   [ ]TTT NCNS φφη −=:

                      ,: 1 TDDB −Γ=   ,: 11 −−Γ= BDTκ   )/(1: eeTΓ=ρ ,  ee ρρ =:

In the above, the symbols D  and A  stand for the “difference” and the “addition”

operators, respectively. The vector e  is a basis of the kernel of D . It can be

shown that the matrices Γ  and Λ  depend on the relative angles φD  only, and

thus are determined by the shape of the snake robot.

Consider the free-body diagram for the i th link depicted in Figure (2.29), where

if  and iτ  are the force and torque due to the friction between the link and

horizontal surface, ig  and 1−ig  are constraint forces from the adjacent links, and

iu  and 1−iu  are the joint torques from the actuators. Let nℜ∈τ  be the vector

whose i th entry is iτ , and similarly for n
yx ff ℜ∈,  and 1,, −ℜ∈ n

yx ugg , where

),( yixi ff  are the ),( yx  components of the friction force vector if . Finally, the

total friction force vector f  and the whole position vector z  can be defined as
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                   Figure (2.29) Free body diagram for the i -th link
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Figure (2.30) Infinitesimal segment on the i th link

2.4.1.1 Simple Friction Model

Consider the i th link of the snake robot depicted in Figure (2.30). The coordinates

of the infinitesimal segment ds  are given by
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Taking to derivative with respect to the time, we have the velocity vector in the

yx −  frame:
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The tangential and normal components of the velocity vector ip&  are given by
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where
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Now assume that the friction force is modeled in the body )( nt −  frame as

mi
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where tic  and nic  are the friction coefficients and idm  is the mass of the

infinitesimal segment (i.e., iii dsmdm l/)(= . Transforming the coordinates, the

friction force in the inertial frame is
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Integrating over the link, the total friction force is given by
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Finally, the total friciton torque around the center of mass of the link is

∫ −=−== iiniini
ii

nii Jccmsdf φφτ &&l

12

2

where the positive direction is counterclockwise.

We now consider the whole system of connected links. It can be verified that the

total friciton force and torque acting on the system can be expressed as

zDf T
f &φφ ΩΩ−=

                                                    φτ τ
&D−=                                           (2.26)

Where
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2.4.1.2 Frictional Equations of Motion

Applying the principle to the free-body diagram of the i th link in Figure (2.29)

and assembling into the n -link snake-robot, we obtain the equations of

translational motion.
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x gDfxM +=&&

and the equation of rotational motion
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The equations of motion in terms of the absolute φ  and the positon of the center

of gravity can be given as
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In view of Figure (2.28), the vectors yx, , and φ  are constrained by
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From the definition of w  and Equation (2.29), we have
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Solving these equations for x  and y , and taking the time derivatives, the

translational velocity can be given by

wEz &&& += φη

where

[ ]eDDMDMT TT 1111 )( −−−− =

Next the equations of translational motion Equation (2.27) is decomposed into

two parts: expressions for the center of mass acceleration w&&  and the constraint

forces xg  and yg . Multiplying Equation (2.27) with 1−TM  from the left, we have

                                   






 +
=








=

−−

mfe
gDDMfDM

w
xD

xT
x

T
x

T
x

x /

11

&&

&&
&&              (2.30)

For the x  coordinate and similarly for the y  coordinate. Solving for xg  and yg ,

we have
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where we noted from Equation (2.29) that

)( 2 φφ φφ
&&&&& SCALxD +=            )( 2 φφ φφ

&&&&& CSALyD += .

Substituting Equation (2.31) into Equation (2.28), and using the second row of

Equation (2.30), we have

fuD TT ητφφ ++=Λ+Γ 2&&&

                                                   fEwm T=&&                                                (2.32)

The complete set of equations of motion is now derived
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And τD  and fD  are defined by Equation (2.26).

2.5 Kinematics and Control of Snake-Like Robot

Let us remember again the model of the 3-dimensional snake-like robot (Figure

(2.31)) formed by serially connected links that we will adopt in this thesis.

Figure (2.31) Model of a 3-dimensional snake-like robot
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                                Figure (2.32) Link and Joint Model

2.5.1 Model of a Snake-Like Robot

The link number is n  and each joint has two degrees of freedom rotated around

the axes 3ℜ∈yie  and 3ℜ∈zie  with the angles yiθ  and ziθ . As shown in Figure

(2.32), il  is the link vector ( l  is the link length) and the axes  zie , yie  can be

described by
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where 0yθ and 0zθ  are the posture of the head link, yjE θ  and  zkE θ  are the rotation

matrices around the axes y  and z , respectively. The position of the wheel

mounted onto the link i , [ ] )(3 T
fifififi zyxP =ℜ∈ , and its velocity

[ ] )(3 T
fifififi zyxP &&&& =ℜ∈ , are thus derived as
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where [ ] )( 0000
TzyxP =  is the head position of the snake robot, fil  is the

vector from the joint to the wheel, and iw  is the rotation velocity vector.

If the non-holonomic constraint is assumed, the normal direction slip does not

happen at the contact point of the wheel with the ground, the following constraint

must be established.

                             0cossin =−= ifiififi
T
i yxPh φφ &&&                           (2.40)

where [ ]Tiiih 0cossin φφ −= , and iφ  is the absolute angle of the link i

mapped onto the XY  plane, as shown in Figure (2.32).

Figure (2.33) Non-holonomic constraint of the link contacted with the ground

From Equation (2.38) and (2.40), we can have the non-holonomic constraint

equation of the robot. It is given by
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                                                                                                                    (2.41)

2.5.2 Control of Snake-Like Robot

The head of the snake-like robot must be possibly controlled to a given position or

along a designed path in addition of its creeping locomotion, while the robot
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performs 3-dimensional motion. For the purpose of future analysis of the 3-

dimensional motion of the robot, a control loop for possible control of the head of

the robot, its wheel-heights and the oscillating joint used for avoiding the

singularity is built.

2.5.2.1 Control of head position and orientation

We know that if the m wheels contact with the ground and so, m  active non-

holonomic constraints are established, we have the system Equation (2.41) with

the input vector of the joint velocities

[ ] )......( )1(1)1(1
)1(2 T

nzznyy
nu −−
− =ℜ∈ θθθθ &&&& , and the output vector of head

position and orientation [ ] )( 0000
4

0
T

zyyxw θθ=ℜ∈ . And therefore, from

the non-holonomic constraint and derivative of the wheel position, the head

position and orientation can be well controlled.

                                                      uw 000 Β=Α &                                     (2.42)
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Since m  is smaller than )1(2 −n  for the case 2>n , the system (2.42) is always
controllable.

 2.5.2.2 Control of link rise

Link rise in link i  is the difference between the z-component of head link )( 0z

and the z -component of i -th link )( fiz . To control the link rise, we can derive the

vertical velocity of position of the wheel mounted onto the links and pick the z-

components from Equation (2.38) by

                                           fifi
T
z zPh && =    )1~1( −= ni                           (2.43)

where [ ]Tzh 100= , the relation between the z-component of the velocities and

the rotation velocities of joints is given by
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The system equation for controlling the link rise is described by

                                                       uzw zz Β=+Α && 0                                     (2.45)

where [ ] 1
0)1(01 ... −

− ℜ∈−−= nT
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2.5.2.3 Avoiding singular configuration            

 In order to avoid the singular configuration of the robot, the relative angle iψ  of

the vector that is the mapped one of the link [ ] )1~0,( −== nillll T
ziyixii  onto

the XY plane can be controlled. The equation to show the relation of iψ&  and the

rotation velocities of links can be derived, an given by

                                                             1−−= iii φφψ &&&                                       (2.46)
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The control system equation of the robot shape on the XY  plane is expressed by

                                                       uw i ψψ ψ Β=+Α && 0                                    (2.49)
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The system equations for controlling the head position and orientation, the link

rises, and the robot shape on the XY  plane, can thus be derived from all of the

system equations as follows;

                                                               uw Β=Α &                                           (2.50)

            where
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and Ι  is the unit matrix, Ο  is the zero matrix or vector.

2.5.2.4 Controller design

If 2−≤ nm , the matrix Β  in Equation (2.50) has row full rank except at singular

configuration. The system (2.50) is thus controllable and has redundant degrees of

freedom while 2−< nm . The control input u  to control the head position and

orientation, the link rises, and the robot shape mapped on the XY  plane, w , can

thus be derived from Equation (2.50), and given by

                                           )}({ wwwu dd −Κ+ΑΒ= + &                             (2.51)

where +Β  is the pseudo- inverse of the matrix Β  derived by 1)( −ΒΒΒ=Β TT , Κ

is the gain matrix given by }{ iKdiag=Κ , and dd ww &&  are the commanded

input. Figure (2.36) shows the block diagram of the controller.

Figure (2.34) Block diagram of the controller
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In computer simulation, while we have the control input u , the link rises and the

robot shape mapped onto the XY  plane can be derived from the joint angles

obtained through integrating the joint velocities u . The head position and

orientation 0w , however, can be only derived by integrating

[ ]Tzyyxw 00000 θθ &&&&& = , that is the inverse solution of the system (2.52), given

by

                                                        uw 000 ΒΑ= +&                                         (2.52)

Where TT
0

1
000 )( ΑΑΑ=Α −+ .

In order to have solution of the head position and orientation (or make the system

observable), the matix Α  (or the matrix 0Α ) must be column full rank. That is,

                                        4+≥+ nnm      ⇒       4≥m                    (2.53)

To make system controllable and observable, the number of wheels, that contact

with the ground must controlled for satisfying 24 −≤≤ nm .

This model given in Section (2.5) has to be modified in order to provide

1.) Enabling 3-D snake-like robot grasping starting from the any links nearest

to the object.

2.)  Showing that it is possible to drag the grasp object to a desired state

during serpentine motion of snake-like robot.

for our lasso-type snake-like robot grasping. Our approach that builds and uses

this modified model is developped in Chapter 3.
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CHAPTER 3

OUR LASSO-TYPE GRASPING APPROACH

     3.1 Snake Kinematic Model Adaptation

When the snake grasps objects, it raises some parts of its body together with its

head, and wraps around the object while undergoing serpentine motion. If we

maintain the non-holonomic constraint which prevents the side-slip of the

wheels active for all of the links, the curvilinear snake body motion which is

necessary for the lasso-type wrapping becomes difficult if not impossible. So,

some changes should be made to the  kinematic and control models introduced

in Chapter 2. Links under non-holonomic constraints move under the effect of

absolute joint angles. However, during grasping they will have to move into the

direction of side slip of the wheels violating the non-holonomic constraints.

Such motion during grasping are illustrated in Figure (3.1).

                                                                                    

                                     y
                                            x
                                                                              head link

Figure (3.1) Grasping trajectories of the links

In the Figure (3.1), the black arrows indicate the direction of wheels with respect

to non-holonomic constraint, the dotted arrows indicate the needed links

trajectories for the curvilinear motion during grasping and the green (gray in

“black and white” picture) arrows indicate the wheel direction with respect to the
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curved motion. Therefore, we need to modify the kinematic equation of the model

as:

0)cos()sin( =−= ifiififi
T
i yxPh φφ &&&

                                                      )tan( i
fi

fi

x
y

φ=
&

&
                                         (3.1)

i. If  2/0 πφ <≤ i  and 2/3πφπ <≤ i  , 0)tan( ≥iφ and fix  and fiy  increase or

decrease during locomotion.

ii. If πφπ <≤ i2/  and πφπ 22/3 <≤ i , 0)tan( ≤iφ  therefore, while fix

increases, fiy  decreases or vice versa during locomotion.

In Figure (3.1), for the head link if 2/0 πφ <≤ i , 0fx  and 0fy   decrease or

increase with respect to the non-holonomic constraint. But from Figure (3.1), to

begin grasping the object, the head link must increase in 0fy  and  decrease in 0fx .

So, the non-holonomic constraint of head link should be removed when  gasping

is initiated. Since link 1 and 2  are similar to head link, the non-holonomic

constraint of these links should also be removed.

For link 3 and 4, if πφπ <≤ 4,32/ , 4,3fx  increases while 4,3fy  decreases with

respect to non-holonomic constraint. But from Figure (3.1), to begin grasping the

object, 4,3fx  must decrease while 4,3fy  must increase. Thus, here also the non-

holonomic constraint of link 3,4 should be removed during gasping. Since

removing the non-holonomic constraints of the links engaged in grasping the

object affects the controllability of the system, the minimum number of links

whose non-holonomic constraints are active should be determined to obtain a

controllable system. This number )(m  will be determined in Chapter 3.2. Thus we

first have to find the links involved in the grasping and remove their non-

holonomic constraints during their wrapping motion, beginning from the head.
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For our computer simulation, 9 links from the head link to link 8 are determined

as the links that can be involved in grasping and their non-holonomic constraints

can be momentarily removed when the snake robot uses some of these links as the

wrapping effector. Other links from the 9-th link  to link 14 are determined as the

links whose non-holonomic constraints are always  active, and are equipped with

wheels.

Moreover, the singular configuration avoidance for the system expressed in

Equation (2.50) is achieved by means of an oscillating joint. Since the oscillating

joint results from the difference of absolute angles of two consecutive links, we

should  investigate the effect of oscillating joints for the lasso-type grasping.

Firstly, to investigate the effect of oscillating  joints Equation (2.49) can be

changed as follows:
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The system expressed in Equation (3.2) is an observable system, while systems

(3.4) and (3.5) are not observable. So, for these systems, iφ&  and 1−iφ&  can not be

uniquely determined. However the links which have the absolute angles 1−iφ&  and

iφ&   can effect the absolute angles and the motion direction of the other links

whose non-holonomic constraints are removed. In this case, undetermined iφ&  and

1−iφ&  corrupt the homogeneity of  the grasping curve. As shown in Figure (3.3),
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while links at the end of the snake robot oscillate to avoid singular configuration,

the grasping curve is corrupted by oscillating links and these links prevent the

grasping of  snake robot. This problem is not encountered in Figure (3.4) the case

without oscillating joint. So far we can conclude that although the joint angle that

oscillates to avoid the singular configuration can be well controlled by the above

system, the absolute angles of consecutive links can not be controlled by the

system (3.5). Because of the above result, singular configuration avoidance with

the oscillating joint is not appropriate for grasping.

Figure (3.2) Initial configuration of snake robot

Figure (3.3) Grasping of snake robot of snake robot
with oscillating joint

Figure (3.4) Grasping of snake robot without oscillating joint



53

Therefore, for the lasso-type grasping we have to further modify system (2.50) as:

                                             uw Β′=′Α′ &                               (3.6)
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Now we are ready to adjust our control to the modified model we have expressed

in Equation (3.6).

3.2 Control Strategy Changes under the Modified Model

In order to make the system (3.6) controllable and observable, if 1−≤ nm , the

matrix Β′  in system (3.6) has  full row rank except at singular configuration, and

the system is controllable; and if  31 +≥−+ nnm , that is 4≥m , the matrix Α′  in

system (3.6) has full column rank, and the system is observable. If for system

(3.6), the criterions of the controllablity and observablity are combined, we obtain

the condition:

                                      14 −≤≤ nm                                    (3.7)

For 1−< nm , the system (3.6) has redundant degrees of freedom. A manipulator

is said to have redundancy if it has more degrees of freedom than are necessary to

perform a given task. If a given task is complex, adopting the divide and conquer

concept, this task given to a manipulator can be broken down into several subtasks

with priority order. Each subtask is then performed by using the degrees of

freedom that remain after all the subtasks with higher  priority have been

implemented. So, our control approach for our snake-like robot uses also the
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subtask method by regarding a task to be done by our snake-like robot as the

subtask with first priority and regarding the reason for using the redundancy as the

subtask with second priority. We give the second subtask in the form of a cost

function  for describing the subtask. In some appropriate postures, the snake-

robots can locomote using the constraining force of wheels against sideslip

arising from actuating joints. On the contrary, there exist singular postures in

which the snake-robots can not move in some direction. A singular posture arises

when the snake’s body is in a shape such as a straight line or a parabolic curve. In

these postures the snake is helpless and can not move out of this shape.

Essentially, the singularity represents an instability of the snake’s motion. Thus, it

is necessary to design a control scheme that will maintain stability and avoid these

singular postures. Hence the locomotion ability of the robot largely depends on

its posture and it is important to keep some suitable posture to control the

locomotion. So, singular configuration avoidance is again an important problem

for our robotic hyper redundant snake locomotion/lasso-type grasp system. In

system (3.6), singular configuration avoidance has not been performed yet.

Consequently, since for 1−< nm , the system (3.6) has redundant degrees of

freedom, the singular configuration avoidance here, can be the second subtask for

system (3.6), thus we expanded the second subtask with a second input as

                                          uw Β′=′Α′ &       21 uuu +=                     (3.8)

In order to make system (3.6) redundancy controllable, using concepts in [28], we

must have 3)1(2 +>− nn , 1)1(2 −+>− nmn , full column rankness of matrix

Α′ , full row rankness of matrix Β′ , existance of an input 1u  which accomplishes

the main objective of the convergence of the vector w′  to the desired state dw′

),( dd wwww && ′→′′→′  and an input 21 uuu +=  which accomplishes the increase

(or decrease) of a cost function V , which is related to the second subtask and

which does not disturb the main objective. If the criteria of redundancy

controllable are integrated in system (3.6), the condition making system (3.6)

redundancy controllable can be written as
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                                                14 −<≤ nm                                           (3.9)

In order to have a solution for system (3.6), we can write from [28]:

                                 αη)()}({ Β′Β′−Ι+′−′Κ+′Α′Β′= ++
kdd wwwu             (3.10)

             [ ]Tnzznyy VVVVqV )1(1)1(1 ......)( −− ∂∂∂∂∂∂∂∂=∇= θθθθη θ

Where η  is the gradient of the cost function  V  with respect to the vector θ

related to the input vector u , +Β′  is a pseudo-inverse matrix of  Β′ ,  and 0≥α ,

0>Κ . The first term of the right side of  Equation (3.10) is the control input term

to accomplish the main objective of  the convergence of the state vector w′  to the

desired value dw′ . The second term accomplishes the increase of the cost function

V .

3.3 Grasping Strategy

With these model changes of Sections 3.1 and 3.2, our snake robot can now

perform serpentine motion with some of its links by using head position-

orientation, changing  the link rises, while grasping with the remaining links. But

this can corrupt  the homogeneity of the snake shape and  prevent the

controllability of the snake robot shape. So, we need to also generate a grasping

strategy as

1) Orient the head link so that the shape of snake robot turn into the

enwrapping curve on the object. Figure (3.5) shows the initial configuration and

Figure (3.6)   shows the curve formed from this initial configuration.

2) Position and orient the head link to approach the links, nearest to the

object.This is shown in Figure (3.7).

3) Raise  the links used for grasping and wrap the object from the head

position to the grasping links. This 3-D enwrapment of the cylindrical

object is shown in Figure (3.8).
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Figure (3.5) Initial configuration of snake robot

Figure (3.6) Formed curve

Figure (3.7) Approaching to the object

Figure (3.8) Wrapping the object

Figure (3.9) shows the lasso-type grasping of more complex prismatic object with

our grasping strategy. The above steps of our grasping strategy are  hereby

followed.
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    Figure (3.9-a)  Initial configuration of snake-like robot

Figure (3.9-b) Formed curve

Figure (3.9-c) Approaching to the object

Figure (3.9-d) Wrapping the object

Figure (3.9) Lasso-type grasping of a prismatic object.

Since our snake robot has the pitch motion for every link, we can ensure that the

links do not run into each other as they wrap around the object. Multiple



58

enwrapments for a lasso-type power grasp is then possible for our 15-link snake

robot. This can be seen in Figure (3.10). Figure (3.10-a) shows the enwrapment of

the snake-like robot. Figure (3.10-b,c) shows the snake sliding its body around the

object in a forward direction while enwrapping it in a lasso-type. Figure (3.10-d)

demonstrates the power grasp of the snake robot by a lasso-type enwrapment. In

figure (3.10-e), a second enwrapment of the object is executed to secure further

the power grasp.

Figure (3.10-a) Grasping of the object

Figure (3.10-b) Snake body sliding on the enwrapped object

Figure (3.10-c) End of snake body sliding
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Figure (3.10-d) Getting in position for beginning second enwrapment

Figure (3.10-e) Power grasp of the snake robot
with double enwrapment of the object

Figure (3.10) Lasso-type grasping with power grasp and serpentine motion

3.4 Model of Lasso-Type Snake Robot Grasping and Dragging
Now we have to further adapt the system given in Equation (3.6) to a lasso-type

grasping where contacts change position along links as the grasp tightens yielding

also the dragging control. Grasping with wheeled and legged train of vehicles or

multi-fingered robot hands can be achieved by controlling the contact point

changes on the grasped object. Similarly, for our lasso type grasping using the

body links of the snake-robot, the  link contact point changes must be determined

and controlled to grasp and drag the object to a desired positon during serpentine

motion of the snake robot. Moreover, according to the kinematic model of

grasping in Equation (3.6), the head link motion of the snake robot and thus the

entire snake robot motion  are generated by the last wheeled links which have

non-holonomic constraint. Therefore, the contact points must be generated as a

result of the these last wheeled links having non-holonomic constraints so that the

grasped object can be moved as the result of  entire snake robot motion. For this
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purpose, the relative position of the contact points 0xx fi −  and 0yy fi −  should be

controlled with respect to the head link motion and thus with respect to the entire

snake-robot motion. Here fix  and fiy  are the respective x  and y -components of

i th contact point, 0x  and 0y  are the  respective x  and y -components of the head

position. For simplicity, we assume that the middle point of the contact links can

undergo point contact. For any contact on links, the system equations can be

derived for controling the 0xx fi −  and 0yy fi −  of  contact points as follows.
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where [ ]Txh 001= , [ ]Tyh 010= . So, the system equations for controlling

the fix and fiy  of contact points can be described by

                                                        uxw xx Β=+Α && 0                                     (3.13)
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The system model given in Equation (3.6) can be further modified by adding the

matrices yyxx ΒΑΒΑ ,,,  to matrices Β′Α′,  given in Equation (3.6) and by adding

the vectors yx,  to state vector w′  given in Equation (3.6). So, the further

modified model can be written as:

                                                            uw Β ′′=′′Α ′′ &                                    (3.15)
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where Ι  is the unit matrix and Ο  is the zero matrix or vector. If  12 −≤+ nrm ,

the system given in Equation (3.15) is the controllable and has full row rank

except at singular configuration, and this system has redundant degrees of

freedom for which inequality 12 −<+ nrm . Furthermore since it is necessary to

find inverse solution of this system for controling the snake robot motion, the

system given in Equation (3.15)  must be invertiable as:
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                                       uw Β ′′Α ′′=′′ +&                                   (3.16)

where TT Α ′′Α ′′Α ′′=Α ′′ −+ 1)( , If 43212 ≥⇒++≥−++ mrnrnm , the matrix Α ′′

has full column rank and the Equation (3.15) has an inverse solution.

3.5   Lasso-Type Grasping: Constructing the Grasping Curve

The model derived in Equation (3.15) enables us to control the contact points as

the function of entire snake-like robot motion which can be determined by the

position and orientation of the head link. Therefore, the appropriate desired states

dw ′′  which construct the grasping curve should be defined to control the generation

of grasping curve through  ( ){ }wwwu dd ′′−′′Κ+′′Α ′′Β ′′= + &  just as Equation (2.51), by the

new model matrices Α ′′  and Β ′′  of  Equation(3.15).

Figure (3.11) Two state of snake-robot during lasso-type grasping

We give the procedure for determining the desired state dw ′′  which constructs the

enwrapment grasping curve. Figure (3.11) shows the two state of snake-robot

during lasso-type grasping, where [ ]0000 zyxP =  is present position of the

head link, [ ]000 zbyaxPn ++=  is the any next position of head link, (the

head is not rising) [ ]fififi zyxPc =  is the first contact point of snake robot,

[ ]0bad =  is the difference vector between the present position of head link

( 0P ) and the next position of head link ( Pn ), [ ]0000 zzyyxxS fififi −−−=

is the difference vector between Pc  and 0P . 0P  and 0S  are determined from

the present state of snake-robot, found from Equation (3.15) as:

Pc

0P

0SPn
d

Sn

x

y
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[ ]000)1(0010000 ...... yyxxzzzzzzyxw fifinffifzy −−−−−=′′ −θθ

or

[ ])2(0)1(0...)3(0...)2(0)1(0 0)1(0100 SSzzSzzPPw nffzy −−=′′ −θθ

To determine the desired state dw ′′  which construct the grasping curve, we should

find Sn  which is equal to ( dS −0 ) or  ( PnPc − ). So, the desired state which

construct the grasping curve is as follows.

[ ]byyaxxzzzzzzbyaxw fifinffifzyd −−−−−−−++=′′ − 000)1(0010000 ......θθ

or

[ ])2()1(...)3(...)2()1( 0)1(0100 SnSnzzSnzzPnPnw nffzyd −−=′′ −θθ

While the snake-robot tracks this desired state, it constructs the grasping curve,

until the second contact. After the second contact and for the other contacts from

3 to r , the desired states which construct the grasping curve can be determined

similarly as above. But the limiting number of contact points ( 12 −<+ nrm )

found in Equation (3.15) should not be exceeded to control the system. Figure

(3.12) shows a demonstrative example of our lasso-type grasping scheme where

contact by contact the desired state dw ′′  is found as just described and control

system of Equation (3.15) runs to enwrap the object in a control manner. Figure

(3.12-a) to Figure (3.12-e) show the lasso-type enwrapment periods with one

contact point which is on the seventh link. Figure (3.12-f) to Figure (3.12-h) show

lasso-type enwrapment with two contact points, first contact point being on the

seventh link and the second on the sixth link. After the second contact point, the

grasping curve is constructed for two contact point by means of our lasso-type

grasping procedure given above. Figure (3.12-i) shows the lasso type grasping

with three contact points. Third contact point is on the fifth link. With this contact

point, the lasso-type grasping is concluded.
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Figure (3.12-a) Initial state of snake-robot

Figure (3.12-b) Snake robot stars the grasping with one contact point

Figure (3.12-c) Snake robot continues the grasping with one contact point

Figure (3.12-d) Snake robot continues the grasping with one contact point
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Figure (3.12-e) Snake robot continues the grasping with one contact point

Figure (3.12-f) Snake robot continues the grasping with two contact point

Figure (3.12-g) Snake robot continues the grasping with two contact point

Figure (3.12-h) Snake robot continues the grasping with two contact point
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Figure (3.12-f) Snake robot concludes the grasping with third contact point

Figure (3.12) A Demonstrative Example of the Lasso-Type Grasping Procedure

Since the lasso-type grasping procedure depends on the determination of desired

states dw ′′  running the control system of Equation (3.15), different desired states

will yield different grasping curve for the lasso-type enwrapment. Figure (3.13)

shows another demonstrative example of the lasso-type grasping. Figure (3.13-a)

to Figure (3.13-e) again show the lasso-type grasping with one contact point

which is on the seventh link. Figure (3.13-f) to Figure (3.13-h) show the lasso-

type grasping with two contact points. Second contact point is on the sixth link.

Figure (3.13-i) shows the lasso-type grasping with three contact points. Third

contact point is on the fifth link. Having such a possibility to autonomously

construct grasping curve with different manner is important for grasping in a

complex environment where the snake may be generating grasping curves that fit

to passages among obstacles. As shown in Figure (3.13) different from Figure

(3.12), snake-like robot has the ability of constructing the grasping curve in

different manner without changing the contact point positions after their first

contact on the object. By using this, snake-robot can grasp the object regardless of

the head position and this provides that it is not necessary to construct the

curvilinear grasping curve. Although initial states are same in Figure (3.12) and

Figure (3.13), while the grasping curve is constructed by changing the head

position in leftward and upward directions in Figure (3.12-b), the grasping curve

can be constructed by changing the head position in rightward and upward

directions in Figure (3.13-b) too. From Figure (3.12-b) to Figure (3.12-c), ssnake-

robot continues to grasp the object and construct the grasping curve by changing
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the head position in rightward and upward directions. Similarly, from Figure

(3.13-b) to Figure (3.13-c), snake-robot can continue to grasp the object and

construct the grasping curve by changing the head position in leftward and

upward directions too. This can be easily tracked in other figures from Figure

(3.12,13-d) to Figure (3.12,13-i) and as shown in these figures, this ability result

from that by using our lasso-type grasping scheme, snake-robot can control the

contact points after their first contact on the grasped object and keep the contact

point positions in the same position on the object during the lasso-type grasping

and this provides that while the contact point positions remain same, the front part

of contact points can construct the grasping curve according to head link motion.

Figure (3.13-a) Initial state of snake robot

Figure (3.13-b) Snake robot starts the grasping with one contact point
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Figure (3.13-c) Snake robot continues the grasping with one contact point

Figure (3.13-d) Snake robot continues the grasping with one contact point

Figure (3.13-e) Snake robot continues the grasping with one contact point

Figure (3.13-f) Snake robot continues the grasping with two contact point
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Figure (3.13-g) Snake robot continues the grasping with two contact point

Figure (3.13-h) Snake robot continues the grasping with two contact point

Figure (3.13-a) Snake robot concludes the grasping with third contact point

Figure (3.13) A Demonstrative Example of the Lasso-Type Grasping Procedure

3.6 Dragging the Grasped Object: Modelling the Motion

Since the snake-like robot can now control the position of contact-points as a

function of the entire snake-robot  motion, it can drag the grasped object to a

desired position. For that, it is necessary to move the contact points harmoniously

in dragging the grasped object to a desired location. For this purpose, we generate

the desired state of the snake-like robot which drags the grasped object.
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Figure (3.14) Two state of lasso-type grasping during serpentine motion.

Figure (3.14) shows the two states of lasso-type grasping during serpentine

motion. This figure is considered for three contact points but, this number of

contact points can be increased. In Figure (3.14), [ ]0000 zyxP =  is the

position of head link, [ ]fififi zyxP =1 , [ ])1()1()1(2 +++= ififif zyxP  and

[ ])2()2()2(3 +++= ififif zyxP  are the contact point positions, 011 PPC −= ,

022 PPC −=  and 033 PPC −=  are the difference vectors between contact

points and head position. With the vectors 3,2,1 CCC  and the head position 0P ,

we can determine the initial state of snake-robot as follows;

[ 0)2(0)1(0010000 ... zzzzzzzzyxw ififfifzy −−−−=′′ ++θθ

]0)2(0)1(00)2(0)1(0... yyyyyyxxxxxx ififfiififfi −−−−−− ++++

or

[ )3(3)3(2)3(1...)2(0)1(0 0100 CCCzzPPw fzy −=′′ θθ
])2(3)2(2)2(1)1(3)1(2)1(1... 0)1( CCCCCCzz nf −−

While the snake-robot moves, appropriate contact point velocities should be

calculated to drag the grasped object to a desired position without corruption of

grasping. In Figure (3.14), [ ]0000 zbyaxP ++=′  is the new position of the

head link,  [ ]0bad =  is the difference vector between the present position of

head link ( 0P ) and the next position of head link ( 0′P ), 3,2,1 ′′′ PPP  are the new

Head link ( 0P )

1P
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1P

2′P 3′P
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position of contact points, 011 ′−′=′ PPC , 022 ′−′=′ PPC  and 033 ′−′=′ PPC

are the difference vectors between new contact points and new head position.

Now, we can determine the desired state of the snake-robot which can drag the

grasped object to a desired position as follows;

[ 0)2(0)1(0010000 ... zzzzzzzzbyaxw ififfifzyd −−−−++=′′ ++θθ
]0)2(0)1(00)2(0)1(0... yyyyyyxxxxxx ififfiififfi −−−−−− ++++

or

[ )3(3)3(2)3(1...)2(0)1(0 0100 CCCzzPPw fzyd −′′=′′ θθ
])2(3)2(2)2(1)1(3)1(2)1(1... 0)1( CCCCCCzz nf −−

As shown in the desired state, only the head position of the snake-robot changes,

the other parameters remain the same as in the initial state. With this desired state,

snake-robot starts the motion and while the head link reaches the desired state, the

contact points can harmoniously track the head link trajectory as a result of the

serpentine motion of the links having non-holonomic constraint. Consequently,

contact points 3,2,1 PPP  reach the new state dPP +=′ 11 , dPP +=′ 22 ,

dPP +=′ 33  respectively while the difference vector 3,2,1 CCC  remain the same

that is 33,22,1'1 CCCCCC =′=′= . With the scheme given above, the different

motion patterns which can drag the grasped object to a desired position without

the corruption of grasping can be generated as a result of serpentine motion of the

snake-robot. Figure (3.15) shows the different motion patterns of the snake-robot

that has grasped an object. Figure (3.15-a) shows the initial state of the snake

robot. Figure (3.15-b,c,d) shows the dragging of the grasped object to the different

directions starting from the same initial state shown in Figure (3.15-a). Figure (15-

b) shows the dragging of grasped object in leftward and downward directions. In

this motion, while head orientation remains the same as initial state shown in

Figure (15-a), head position changes in leftward and downward directions. So the

grasped object can be dragged in leftward and downward directions. Figure (15-c)

shows the dragging of grasped object in upwards direction. In this motion, while

head orientation and position change, the grasped object can be dragged to

upward direction starting from the initial state shown in Figure (15-a). Figure (15-

d) shows the dragging of grasped object in leftward and downward directions. In
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this motion, while head orientation changes, head position remains the same as

initial state shown in Figure (15-a). So, the orientation of head pulls the object to

itself and the grasping links drag the object closer to snake body as a snug fitting.

This is achieved by controlling the relative position changes of contact points.

Figure (3.15-a) Initial state of snake-like robot

Figure (3.15-b) Dragging the grasped object in leftward and downward direction

Figure (3.15-c) Dragging the grasped object in upward direction
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Figure (3.15-d) Snake-like robot drags the grasped object to itself as a snug fitting

Figure (3.15) Demonstrative examples of Dragging the Grasped Object

3.7 Generating the Control Strategy

During and after the lasso-type grasping we observe that some joint inputs of

snake-robot may become excessively large trying to maintain the desired

trajectory for example when the snake-robot becomes close to some undesired

configuration, the system that drags the object while moving becomes the unstable

with the control output corrupted. Figure (3.16) shows the state in which the snake

robot generates a large input to maintain the desired trajectory during dragging the

grasped object and the snake becomes a knot.

                                                                   

Figure (3.16) Corruption of serpentine locomotion control with excessively large
inputs

To overcome this problem of destabilization, we propose an adaptively changing

feedback gain to eliminate the excessively large inputs which prevent the

serpentine locomotion control in the solution of Equation (3.15) which is:

                                                 )}({ wwwu dd ′′−′′Κ+′′Α ′′Β ′′= + &                                     (3.17)

For the matrix Α ′′Β ′′ + , ( )T))((det Α ′′Β ′′Α ′′Β ′′ ++  is a quantitative measure of loss

manipulability of the system and of the singular configuration. In fact, the case in



75

which some joints of snake-robot generate excessively large input is the state

which is close to a singular configuration. We therefore have to handle such states

in order to prevent excessively large inputs corrupting the serpentine locomotion

control. The adaptation law of the feedback gain is defined as a logarithmic

function of quantitative measures of manupulability.
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where  ( )Tp ))((det Α ′′Β ′′Α ′′Β ′′ ++  is the present value of ( )T))((det Α ′′Β ′′Α ′′Β ′′ ++ ,

( )Tf ))((det Α ′′Β ′′Α ′′Β ′′ ++  is its former value, fΚ  is the former value of the

feedback gain Κ . As seen in Equation (3.18), the feedback gain Κ  tracks the

logarithmic changes in ( )T))((det Α ′′Β ′′Α ′′Β ′′ ++  such that when the logarithmic

change in ( )T))((det Α ′′Β ′′Α ′′Β ′′ ++  increases, the feedback gain Κ  decreases

exponentially or viceversa. Furthermore, the normalization with fΚ  is needed,

because the exponential increase or decrease in Κ  depends on its previous values.

Having large Κ  values in consecutive steps helps preserve values of Κ  around

previous ones so, around large ones. Similar argument would hold for small

consecutive values of Κ . Therefore big changes in gain and inputs are prevented.

Figure (3.17-a) shows the enwrapment motion of the snake robot with adaptively

changed feedback gain. Figure (3.17-b) shows the lasso-type grasping during

dragging the grasped object with adaptively changed feedback gain. As shown in

these figures, with the adaptively changed feedback gain, the serpentine

locomotion control can not be corrupted by excessively large inputs.
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Figure (3.17-a) Lasso-type grasping with adaptively changing feedback gain

Figure (3.17-b) Dragging of grasped object with adaptively changing feedback
gain

Figure (3.17) Serpentine motion during grasping with adaptively changing
feedback gain

3.8 Stability of Lasso-Type Grasping
Force closed grasps are defined as grasps in which any disturbance force can be

counteracted by a suitable linear combination of the applied contact forces. Force-

closed grasps have the important property of being stable. Adopting the concept in

[35] for our case, the contacts in the lasso-type grasping can be modelled by

stiffness matrices. With this way, the lasso-type grasping stability can be analyzed

and we can derive the expression for changes in contact forces as a function of the

relative motion between the contacts and the grasped object.
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3.8.1 Derivation of the Contact Siffness Matrix of the Snake-Robot

We first assume that the contact link has the reference frame Ao  at the contact

point. With respect to Ao , Ax  and Ay  are aligned with the principal axes of

contact link and Az  with the outwardly pointing normal. We further assume that

the location of contact points on the object do not change while contacts apply

forces along the contact points and all contacts are considered as point contact

with firiction. With these assumptions if [ ]zAyAxAAAA zyx θθθ ∆∆∆∆∆∆  is

the twist in the reference frame Ao , the changes of the contact forces and moments

in the reference frame Ao  are given by:

                                                              Anz zkF ∆−=∆                                              (3.20)
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                                                         Atyx zFM ∆−≈∆
0

                                             (3.22)

                                                Atxy zFM ∆≈∆
0

                                       (3.23)

                                         AtxAtyx yFxFM ∆−∆−≈∆
00

                            (3.24)

where [ ]Ttytxt FFF
000

= are the tangential contact forces arising due to friction.

The tangential force lies in the AA yx −  plane, and in general has components in

both Ax  and Ay  directions. nk  and tk  are the stiffness coefficients of contact link.

At each contact, the above equations can be combined into a single equation in the

local contact reference frame A
io ,

                                                   A
i

c
ii XF ∆=−∆ κ                                   (3.25)

The leading subscript denotes contact i  such that c
iκ  is the stiffness matrix cκ  for

the i -th contact and A
io  is the fixed frame at the i th contact, Fi∆  is the change in

forces and moments in i th contact, A
i X∆  is the rigid body motion measured in

A
io .
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Since c
iκ  does not have full row rank, A

i X∆  is spanned by only the linearly

independent row vectors of matrix c
iκ  in the pseudo-inverse solution of Equation

(3.25). As shown in the Equation (3.26), the columns of c
iκ  from 4th to 6th are

zero column vector and A
i X∆  is spanned by three of linearly independent row

vector of  c
iκ . In these row vectors, the last 3 components representing the

orientation of contact points are zero. So, the contact forces and moments are

generated by only contact position and not by contact orientation. This is due to

our assumptions that the contact points on the object do not change while the

contact forces are applied and that all contacts are frictional point contacts.

3.8.2 The Intrinsic Stiffness Matrix for Lasso-Type Grasping

Above equations are for the changes in forces and moments at a single contact

point in response to an arbitrary motion. To find the all contributions of contacts,

it is necessary to combine the all equations of contact like above for a single

equation. The single equation for all system is given by:

                                                           oo xF ∆−=∆ κ                                               (3.27)

                                                     ∑
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where oκ  is the intrinsic stiffness matrix, reference to world frame O , ox∆  is the

object twist in reference frame O . A grasp will be stable if oκ  is positive definite

(whether or not the grasp is force closed). We will discuss stability with
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demonstrative example in Chapter 4. Since in the previous section we have

generated Fi∆  in contact frame A
io , we have to represent it here in the universal

frame O  through appropriate coordinate transformation.

3.8.2.1 Coordinate Transformation of the Stiffness Matrix

If  ( )fi
i

fi
i

fi
i zyx  is the coordinates of the frame O  as seen from the fixed

frame for the i th contact, A
io , then the change in force o

i F∆  at O  for any

infinitesimal displacement, due to the contact i , is given by

                                                               o
i

c
iTi

o
i xTTF ∆=−∆ κ                                      (3.30)

where in the spatial case
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Di  is a 33×  skew-symmetric matrix of i th contact. 0  is the 33×  zero matrix, Ri

is the 33×  rotation marix that transforms vectors in frame O  to the reference

frame A
io .

3.8.2.2 Constant External Force

In  the lasso-type grasping, because of the gravitational forces, there exists an

external force on the grasped object acting through the center of gravity and a

coordinate system, cgo  can be attached to it whose axes are aligned such that the

external force acts in the cgz  direction. A rigid body motion of the grasped object

will not change the force, but will result in changes in the moment of the external

force about the origin of cgo . If the external force is denoted by mg , the following

matrix representation can be written:
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                                                              cgcg xF ∆−=∆ κ                                                   (3.31)

The same type of coordinate transformation in Section 3.8.2.1 can be applied here

yielding ocgcg
T

cg xTTF ∆=∆ κ .

In this chapter, we have derived the kinematic and control model for lasso-type

grasping and dragging grasped object to a desired position. The demonstrative

results using these derived models will be obtained in Chapter 4. In Chapter 4,

firstly we will show that the results of the redundancy controllable system derived

in Chapter (3.2) with demonstrative examples. Secondly, we will demonstrate the

results of adaptively changing feedback gain in serpentine motion during grasping

with and without adaptively changing feedback gain. Thirdly, we will demonstrate

the results of grasping stability and show that it is possible to regrasp the object

when the grasped object stability is corrupted by a external force. Finally, we will

evaluate the performance of system derived in Chapter 3.



81

CHAPTER 4

SIMULATION RESULTS

4.1 Results of Lasso-Type Grasping

In the simulation, we consider a 15-link snake robot, with 6 wheeled links

)6( =m  that is, their non-holonomic constraints are active and other links whose

non-holonomic constraints are removed and are not  wheeled. We assume that the

size of  object to be grasped does not involve more than 10 numbers of links in the

snake robot. We set the cost function as:

                                 )det()det( TT baV Β′Β′+Α′Α′=                           (4.1)

The first term in Equation (4.1) implies the measure of the singular configuration

while the second term is related to the manipulability of the system. The

manipulability measure can be consider as a quantitative measure of the capability

of a manipulator to move its end effector freely in any direction. This measure can

also be regarded as an index of the distance from a singular configuration. Hence

the manipulability measure can be used as the cost function when the second

subtask is the avoidance of singularities [37].

Figure (4.1) Initial configuration of the snake robot
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Figure (4.2) Desired configuration of the snake robot

We run the simulation with and without singular configuration avoidance to

demonstrate its importance in the efficiency in our modified model. The initial

configurations given below belong to a robot posture given in Figure (4.1).

[ ]000000000000002000)0( π=′w

[ ]000000000000000)0( =yθ

[ ]1500000000000002)0( ππθ =z

.2=K

The desired configuration corresponds to a snake posture is given in Figure (4.2).
[ ]3.03.03.03.03.03.03.03.03.03.03.02.015.01.0305.05.0 −−−−−−−−−−−−−−=′ πdw

[ ]000000000000000000=′dw&

Figure (4.3) shows the simulation result of the control of the robot head

position/orientation and link rise without the singular configuration avoidance

)0( =α . In this case, the controller does not use the redundancy. Figure (4.3-

a,b,c,d) shows the link rise error, head position error and head orientation error

respectively. As shown in these figures, the snake robot is able to track the desired

state because all of the errors convergence to zero. Figure (4.3-e) demonstrates the

input which becomes zero, that is the snake robot converges to the straight line

which is known as singular configuration. This implies reaching a singular

configuration for the case of not putting a  singular configuration avoidance in the

control system )0( =α .
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Figure (4.3-a) Link rise error

Figure (4.3-b) Head-position error

Figure (4.3-c) Head-position error

        Figure (4.3-d) Head-orientation error
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Figure (4.3-e) The input of two joints )0,,( 1412 =++⇒⇒ αzz uoou

Figure (4.3) Simulation results without singular configuration avoidance

Figure (4.4) shows the simulation result of the control of the robot head

position/orientation and link rise with the singular configuration avoidance

)15( =α . In this case, the controller uses the snake redundancy. We set
610,10 −== ba . The figure shows that the snake head and the link rise track each

their desired states and the input does not become zero. Figure (4.4-d,e,c,b) gives

the link rise error, head position error and head orientation error respectively. As

seen from these figures, the snake robot tracks the desired state because all of the

errors convergence zero. Figure (4.4-a) demonstrates that the input which

fluctuates around zero, never becomes zero during motion. While the error

decreases, the fluctuations around zero decrease too. Consequently, when the

error is zero, the fluctuations finish and input becomes zero. This implies that the

singular configuration is avoided )15( =α .

Figure (4.4-a) The input of two joints )15,,( 1412 =++⇒⇒ αzz uoou
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Figure (4.4-b) Head orientation error

Figure (4.4-c) Head position error

Figure (4.4-d) Head position error

Figure (4.4-e) Link rise error

           Figure (4.4) Simulation results with singular configuration avoidance
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These simulations given by Figure (4.3) and Figure (4.4) deal with low-error

performance where snake head makes small amount of position and orientation.

To show the effectiveness of our control strategy  we can also evaluate the high-

error performance. For high error performance simulations, we consider high

amount of orientation error ( ))4()4( wwd −  which is also seen in the parameters of

simulation given in Figure (4.5) and the initial and desired state of snake robot

which we take as:
[ ]6.06.06.06.06.06.04.035.03.025.02.015.01.005.066.3008.885.6 −−−−−−−−−−−−−−−=w

[ ]6.06.06.06.06.06.04.035.03.025.02.015.01.005.042.9008.885.6 −−−−−−−−−−−−−−−=dw

10,20,10 === baα .

Figure (4.5) shows the head orientation error and the inputs which belong the two

joints with and without singular configuration avoidance. From Figure (4.5-c) to

Figure (4.5-d), we find out that the snake robot tracks the desired state with and

without singular configuration avoidance because the error converges to zero in

either case. But  Figure (4.5-a) demonstrates that in lack of the singular

configuration avoidance )0( =α , the input  becomes zero after 0.6  seconds, that

is the snake robot converges to the straight line which is known as singular

configuration. In Figure (4.5-b), however, the input fluctuates around zero, and

never becomes zero during motion, thus singular configuration is always avoided

)10( =α .

Figure (4.5-a) The input of two joints )0,,( 2726 =++⇒⇒ αzz uoou
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Figure (4.5-b) The input of two joints )10,,( 2726 =++⇒⇒ αzz uoou

                                   

Figure (4.5-c) Head orientation error 0),( 00 =− αθθ zdz

                                           

Figure (4.5-d) Head orientation error 10),( 00 =− αθθ zdz

Figure (4.5) Simulation results of the high-error performance with and without

singular configuration avoidance
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4.2 Results of Serpentine Motion During Grasping

In Equation (3.15), it is important to control the position of contact points,

position and orientation of head link and link rises of the links simultaneously for

dragging the object which is wrapped in lasso-type. As said in Chapter 3, the

position of contact points should move as a result of the entire snake body motion

to drag the grasped object. Furthermore, since the entire snake-robot motion

results from the motion of last links having non-holonomic constraint, the contact

points motion  and so, the grasped object motion is also generated from the

motion of last links having non-holonomic constraint. So, while the head link

moves, the contact points and grasped object can move as a result of the head link

motion and so, the entire snake body motion. Let us recall that in the simulation,

we consider a 15-link snake robot, with 6 wheeled links )6( =m  that is, their non-

holonomic constraints are active. The other links have non-holonomic constraints

removed (are not  wheeled). We assume that the perimeter of the object to be

grasped does not surpass the length of 8 links in the snake robot. Firstly we set the

feedback gain Κ  as a constant 1=Κ  to test the system in Equation (3.15) for

constant gain and we set the initial and desired state as follows.

[ 4.035.03.025.02.015.01.005.07572.505077.50139.2 −−−−−−−−−=′′w

]7967.22926.36418.31689.28029.14154.26.06.06.06.06.045.0 −−−−−−

[ 4.035.03.025.02.015.01.005.07572.505077.40139.0 −−−−−−−−−=′′dw
]7967.22926.36418.31689.28029.14154.26.06.06.06.06.045.0 −−−−−−

                                                       1=Κ , 6=m .

This desired state is determined by the scheme given in Chapter (3.6). Figure (4.6-

a) shows the initial state of the snake-robot and Figure (4.6-b) shows the final

state in which some joints have excessively large input which prevents the

serpentine locomotion control during dragging the grasped object as seen in a

knotted snake confguration.
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Figure (4.6-a) Initial state of snake-like robot

Figure (4.6-b) Final state of snake-like

Figure (4.6) Serpentine motion during grasping without adaptively changed

feedback gain

Figure (4.7) shows that the joint angles of the last four links having non-

holonomic constraint, have discontinuities in which these joints exhibit excessive

large input for the controller, and corrupt the serpentine locomotion control during

dragging the grasped object.

Figure (4.7) Joint angle of the four links having non-holonomic constraint
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Now let us consider the effect of adaptively changing feedback gain. Figure (4.8)

shows that the joint angles of  last four links having non-holonomic constraint do

not exhibit the discontinuities that was seen in Figure (4.7). Figure (4.9-a) shows

the initial state of snake-robot being the same as in Figure (4.6-a), Figure (4.9-b)

shows the final state of the snake-robot. As shown in Figure (4.9-b), the

serpentine motion of last six links having non-holonomic constraint can not be

corrupted with excessively large inputs as it was previously.

Figure (4.8) Joint angle of the four links having non-holonomic constraint

Figure (4.9-a) Initial state of the snake-robot

Figure (4.9-b) Final state of the snake-robot
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Figure (4.9) Serpentine motion during grasping with adaptively changed feedback

gain

Figure (4.10-a) shows that the head position errors converge to zero. Because of

the adaptively changed feedback gain, it does not have homogeneous convergence

in which snake-robot converges the desired state with the step having the same

amount of displacements. Figure (4.10-b,c,d) shows the position error of the

contact points. As shown in Figure (4.10-b,c,d), ( ))()( 00 xxxx fidfid −−− ,

( ))()( 00 yyyy fidfid −−−  and ( ))()( 00 zzzz fidfid −−−  are equal to zero for all

contact points, that is, all contact points are able to track the head link movement.

Furthermore, as shown in Figure (4.10-e,f,g), all contact points track the head-link

movement which was given in Figure (4.10-a). Although in Figure (4.10-e,f,g),

the contact points do not have homogeneous convergence, all contact points have

same trajectory. This situation is verified by Figure (4.10-b,c,d) because

( ))()( 00 xxxx fidfid −−− , ( ))()( 00 yyyy fidfid −−−  and ( ))()( 00 zzzz fidfid −−−

are equal to zero for all contact points during the snake-robot motion.  So, all

contact points and the grasped object track the head link movement. Since the

head link movement results from the serpentine motion of the last six links which

have the non-holonomic constraint, the contact points and the grasped object

movement also result from serpentine motion of the last six links having the non-

holonomic constraint and the grasped object can not be corrupted by the motion of

contact points.

Figure (4.10-a) The head position errors,

⇒− )( 00 xx d blue graph, ⇒− )( 00 yy d red graph.
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Figure (4.10-b) The position errors of first contact point,

⇒−−− )()( 0505 xxxx fddf blue graph, ⇒−−− )()( 0505 yyyy fddf  red graph,

⇒−−− )()( 0505 zzzz fddf green graph.

Figure (4.10-c) The position errors of second contact point,

⇒−−− )()( 0606 xxxx fddf blue graph, ⇒−−− )()( 0606 yyyy fddf red graph,

⇒−−− )()( 0606 zzzz fddf green graph.

Figure (4.10-d) The position errors of third contact point,

⇒−−− )()( 0707 xxxx fddf  blue graph, ⇒−−− )()( 0707 yyyy fddf  red graph,

⇒−−− )()( 0707 zzzz fddf  green graph.
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Figure (4.10-e) The movement of first contact point,

⇒5fx  blue graph, ⇒5fy  red graph, ⇒5fz  green graph.

Figure (4.10-f) The movement of second contact point,

⇒6fx blue graph, ⇒6fy red graph, ⇒6fz green graph.

Figure (4.10-g) The movement of third contact point,

⇒7fx  blue graph, ⇒7fy  red graph, ⇒7fz  green graph.

Figure (4.10) Simulation results of serpentine motion during grasping with

adaptively changed feedback gain
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4.3 Results of Grasping Stability

While the grasped object is dragged by the snake-robot, the stability of grasping is

an  important quantity to counteract under disturbance forces. Since the stability

of the grasped object can be corrupted by the external disturbance forces,

regrasping is necessary to restore stability. To show the regrasping of the object,

we set the )( cκ  of the contact points as follows;

5011 == nt kk , 5022 == nt kk , 5033 == nt kk

[ ]01201 −=tF , [ ]10202 −=tF , [ ]10203 −=tF , 40=mg .

Since oκ  derived with these parameters is a positive definite matrix, the grasping

is a stable grasping. If we apply a small external force to the object, the change of

grasped object position can be found by solving the pseudo-inverse solution of

Equation (3.27). If we select the small external force, exF ,  as [ ]025.1=exF ,

we can find the change of the grasped object position, chd , as

[ ]0918.00012.01823.0=chd . If we give this velocity to contact points of the

snake robot by using the scheme given in Chapter (3.6), the snake-robot is faced

to regrasp the object to restore stability if possible. Figure (4.11-a) shows the

unstable grasped object whose position is corrupted by a small external force exF .

As shown in Figure (4.11-b), the snake robot regrasps the object to obtain again a

stable grasp.

Figure (4.11-a) Corruption of grasping with the external disturbance force
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Figure (4.11-b) Regrasping of object for again  gaining the grasping stablity

Figure (4.11) Regrasping of the snake-robot

4.4 Performance Analysis

4.4.1 Performance Analysis of Redundancy Controllable System

The performance analysis in robotic applications is needed to select the system

parameters most effectively. In this thesis,  the system parameters are evaluated to

determine their appropriate values. Firstly, the system parameter α  given in

Equation (3.10) for the solution of redundancy controllable system will be

evaluated. α  should be a positive constant according to the concept given in [28].

But α  should be selected for effectively running of our lasso-type grasp system.

For this purpose, we set the initial and desired state of the system and the

coefficients of cost function given in Equation (4.1) as follows.

[ ]′=′ 000000000000003/000 πw ,

[ ]′−=′ 000000000000003/2075.2 πdw ,

.100,100 == ba

We run the redundancy controllable system for two different values of α . Firstly,

we set the α  as 1=α . Figure (4.12) shows the two joint inputs of redundancy

controllable system for 1=α . As shown in this figure, although the redundancy

controllable system run to avoid the singular configuration, the inputs converge

zero, that is, the snake robot converges to straight line which is known as singular

configuration.
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Figure (4.12) Joint inputs )25(zu  and )26(zu  of redundancy controllable system

for 1=α .

When we change α  as 15=α , we observe that the redundancy controllable

system can avoid singular configurations. Figure (4.13) shows the two joint inputs

of redundancy controllable system for 15=α . As shown in this figure, the inputs

never becomes zero. This implies the singular configuration avoidance of snake

robot.

Figure (4.13) Joint inputs )25(zu  and )26(zu  of redundancy controllable system

for 1=α 5.

As a result, α  for the solution of redundancy controllable system given in

Equation (3.10) should be big enough as that the redundancy controllable system

can avoid the singular configurations.
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Secondly, the system parameter a , b  given in Equation (4.1) as a cost function

coefficients of redundancy controllable system will be evaluated. a , b  is given in

[27] as a positive constant. But a , b  should be selected for effectively running of

our lasso-type grasp system. For this purpose, we set the initial and desired state

of system and the coefficient α  given in Equation (3.10) as follows.

[ ]′=′ 000000000000003/000 πw ,

[ ]′−=′ 000000000000003/2075.2 πdw

15=α .

We run the redundancy controllable system for two different values of a  and b .

Firstly, we set the a  and b  as 1=a , 1=b . Figure (4.14) shows the two joint

inputs of redundancy controllable system for 1=a , 1=b . As shown in this

figure, although the redundancy controllable system run to avoid the singular

configuration, the inputs converge zero, that is, the snake robot converges to

straight line which is known as singular configuration.

Figure (4.14) Joint inputs )25(zu  and )26(zu  of redundancy controllable system

for 1=a , 1=b .

When we change a  and b  as 50=a , 100=b , we observe that the redundancy

controllable system can avoid from singular configurations. Figure (4.15) shows

the two joint inputs of redundancy controllable system for 50=a , 100=b . As
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shown in this figure, the inputs never becomes zero. This implies the singular

configuration avoidance of snake robot.

Figure (4.15) Joint inputs )25(zu  and )26(zu  of redundancy controllable system

for 50=a , 100=b .

As a result, a  and b   for the cost function of redundancy controllable system

given in Equation (4.1) should be selected as large values around 100,20 ≤≤ ba

so that the redundancy controllable system can avoid the singular configuration.

4.4.2 Performance Analysis of Serpentine Motion During Grasping

As a performance analysis of serpentine motion during grasping, we analyse the

high error performance evaluation of the control scheme based on the adaptively

changing feedback gain given in Equation (3.18). Low error performance of this

control scheme has been given in Section (4.2). To analyse the high error

performance, we set the same initial state given in Section (4.2) and the desired

state including the high error as follows.

[ 4.035.03.025.02.015.01.005.07572.505077.50139.2 −−−−−−−−−=′′w

]7967.22926.36418.31689.28029.14154.26.06.06.06.06.045.0 −−−−−−

[ 4.035.03.025.02.015.01.005.02832.605077.20139.3 −−−−−−−−−−−=′′dw
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]7967.22926.36418.31689.28029.14154.26.06.06.06.06.045.0 −−−−−−

, 6=m .

This desired state having high head position errors is determined by the scheme

given in Chapter (3.6). Figure (4.16) shows that the joint angles of the last four

links having non-holonomic constraint, have discontinuities in which these joints

exhibit excessive large input for the controller, and corrupt the serpentine

locomotion control during dragging the grasped object.

Figure (4.16) Joint angle of the four links having non-holonomic constraint

As a result, we can say that the control scheme based on the adaptively changing

feedback gain given in Equation (3.18) may generate the excessively large inputs

which corrupt the serpentine locomotion control for the high error performance.

4.4.3 Performance Analysis of Grasping Stability

Stability is a important quantity to analyse the grasping performance. We analyse

the lasso-type grasping stability by means of matrix oκ  given in Equation (3.29).

oκ  is a positive definite matrix for a stable grasp. By changing the weight of

grasped object, we will analyse the lasso-type grasping performance. Firstly we

give a stable grasping configuration as follows.

111 == nt kk , 222 == nt kk , 533 == nt kk

[ ]211 =tF , [ ]322 =tF , [ ]3.05.03 −=tF , 4=mg .
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The matrix oκ  is a positive definite matrix having positive and real eigen values

for stable grasping [35].  For this configuration, since the matrix oκ  has the

positive and real eigen values (719.8844, 787.5844, 0.0949, 2.9273, 8.2893,

7.1409),  the lasso-type grasping is a stable grasping.

While the weight of grasped object is increased for the same configuration, we

can observe that the lasso-type grasping stability goes to instability. If we select

the weight of grasped object as 9=mg , the matrix oκ  has the non-real eigen

values 1.0e+002 *( 7.0826, 7.9665, 0.0018, 0.0801 + 0.0035i, 0.0801 - 0.0035i,

0.0480)  and so, the lasso-type grasping is a instable grasping.

As a result, we can say that an appropriate weight of grasped object should be

selected for a lasso-type grasping in which grasped object can be dragged without

the corruption of grasping stability because of the grasped object weight.
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CHAPTER 5

CONCLUSION

Although the concepts are fully extendible to three dimensional using the snake’s

head to grasp an intended object, grasping studies of snake-like robot in the

literature have been performed as either the planar examples or the fixed base

hyper-redundant manipulators. In this thesis, we extend the snake robot grasping

to 3-D with a grasping ability using not only just the head, but any body links

while undertaking a serpentine motion. This is the novelty of our approach where

the snake robot grasps an object with any of its body link which is at close

proximity to the object while undergoing its serpentine motion with the remaining

links and dragging the grasped object. Since our snake robot has the pitch motion

for every link, we can  ensure that the links do not run onto each other as they

wrap around the object. A lasso-type power grasp is then possible for our  15-link

snake robot as seen in the simulation results of this thesis.

Furthermore we develop the kinematic and control models for lasso-type grasping

and for dragging the grasped object to a desired state. This control model includes

an adaptively changing feedback gain which prevents excessively large inputs to

corrupt the serpentine locomotion control. According to our lasso-type grasping

model, while the snake robot can grasp the object beginning with the any body

link at close proximity of the object, the contact points can be controlled to

generate the curvilinear grasping curve by using our lasso-type grasping

procedure. For dragging the grasped object, we define a scheme which can

determine the appropriate desired state to drag the grasped object to a desired

position.
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Since the stability of the grasped object is important to resist the disturbance

forces as well as the force closure grasping is important to counteract the

disturbance force, to analyze the stability of the lasso-type grasping, we introduce

a stability model of lasso-type grasping based on contact stiffness matrices that

faces the snake to regrasp when gone unstable.

As the general results, we can say that snake-like robot can grasp the any objects

which should have the appropriate weight providing the positive and real

eigenvalues in oκ  and have the perimeter which can be covered by the number of

links constrainted with the inequality 12 −≤+ nrm . For dragging of grasped

object, we can say that snake-like robot can drag the grasped object which should

have the appropriate weight providing the positive and real eigenvalues in oκ  and

appropriate desired state consisting of low error performance have to be defined to

drag the grasped object to a this desired state by using our dragging procedure.

5.1 Future Work

As the future works, the intelligent approaches can be proposed for the lasso-type

enwrapment and dragging of the grasped object during the motion planning. Our

grasping and dragging procedures can generate the appropriate desired to grasp or

drag the object or grasped object respectively in a known environment but in a

unknown environment snake robot have to learn generating the appropriate

desired state providing the object grasping and dragging of grasped object to a

desired position without collision. Furthermore, since snake-like robot can handle

the low error performance during the dragging of grasped object to a desired

position, the intelligent gait selection can be attached to our system to determine

the appropriate gaits of last links having non-holonomic constraint for

transporting the grasped object to any position because the last links having non-

holonomic constraint have the redundant degree of freedom to generate the

appropriate gaits.
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