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abstract

sub-graph approach in
iterative sum-product

algorithm

BAYRAMOG̃LU, Muhammet Fatih

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Buyurman BAYKAL

Co-Advisor: Asst. Prof. Dr. Ali Özgür YILMAZ

September 2005, 75 pages

Sum-product algorithm can be employed for obtaining the marginal prob-

ability density functions from a given joint probability density function (p.d.f.).

The sum-product algorithm operates on a factor graph which represents the

dependencies of the random variables whose joint p.d.f. is given. The sum-

product algorithm can not be operated on factor-graphs that contain loops.

For these factor graphs iterative sum-product algorithm is used.

A factor graph which contains loops can be divided in to loop-free sub-

graphs. Sum-product algorithm can be operated in these loop-free sub-graphs

and results of these sub-graphs can be combined for obtaining the result of

the whole factor graph in an iterative manner.

This method may increase the convergence rate of the algorithm signif-

icantly while keeping the complexity of an iteration and accuracy of the

output constant.
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A useful by-product of this research that is introduced in this thesis is

a good approximation to message calculation in factor nodes of the inter-

symbol interference (ISI) factor graphs. This approximation has a complexity

that is linearly proportional with the number of neighbors instead of being

exponentially proportional. Using this approximation and the sub-graph idea

we have designed and simulated joint decoding-equalization (turbo equaliza-

tion) algorithm and obtained good results besides the low complexity.

Keywords: Sum-Product Algorithm, Divide and Conquer, LDPC Codes,

Turbo Codes, Joint Equalization and Decoding
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öz

iteratif topla-çarp
algoritmasında alt ag̃

yaklaşımı

BAYRAMOG̃LU, Muhammet Fatih

Yüksek Lisans, Elektrik ve Elektronik Mühendislig̃i Bölümü

Tez Yöneticisi: Prof. Dr. Buyurman BAYKAL

Yardımcı Danışman: Yrd. Doç. Dr. Ali Özgür YILMAZ

Eylül 2005, 75 sayfa

Topla-çarp algoritması verilen bir tümleşik olasılık yog̃unluk işlevinden

marjinal olasılık yog̃unluk işlevlerini bulmak için kullanılabilir. Topla-çarp

algoritması rastgele deg̃işkenlerin birbirlerine olan bag̃ıntılarını gösteren bir

faktör ag̃ üzerinde çalışır. Topla-çarp algoritması, döngü içeren faktör ag̃lar

için kullanılamaz. Bu tür ag̃lar için iteratif topla-çarp algoritması kullanılmak-

tadır.

Döngü içeren bir faktör ag̃, döngü içermeyen alt-ag̃lara bölünebilir. Topla-

çarp algoritması döngü içermeyen bu alt-ag̃larda çaliştırılır ve sonuçlar iter-

atif bir yöntemle birleştirilirse bütün faktör ag̃ için bir sonuç elde edilebilir.

Bu yöntem algoritmanın karmaşıklıg̃ını ve sonucun dog̃rulug̃unu azalt-

madan yakınsama hızını ciddi ölcüde arttırabilir.

Bu tezde sunulan, araştırmamızın bir yan ürünü de semboller-arası girişim
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faktör ag̃larında mesaj hesaplamayla ilgili bir yaklaştırımdır. Bu yaklaştırımın

karmaşıklıg̃ı komşu sayısı ile üstel olmak yerine dog̃ru orantılıdır. Bu yaklaştırı-

mı ve alt ag̃ fikrini kullanarak tasarladıg̃ımız bütünleşik kod çözme-denkleştir-

me (turbo denkleştirme) algoritmamız düşük karmaşıklıg̃a sahip olmasının

yanında iyi sonuç verdi.

Anahtar sözcükler: Topla-çarp algoritması, parçala ve fethet yöntemi, LDPC

kodlar, turbo kodlar, bütünleşik kod çözme ve denkleştirme
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chapter 1

introduction and motivation

Obtaining the marginal probability density function of a random variable

from a given joint density function is an important problem in communi-

cation as in many other disciplines of science and technology. For some

joint density functions which can be factored into smaller density functions,

factor-graphs (FGs) and sum-product (SP) algorithm provides a useful and

efficient tool for this purpose[1]. Since marginalization is a very common

problem in different disciplines of science, this algorithm has been invented

many times with different names during the history[11]. The well known

BCJR [3, 1] algorithm, Pearl’s belief propagation algorithm [14], Gallager’s

probablistic decoding algorithm of low-density parity-check (LDPC) codes[5]

are all instances of the SP algorithm. Two specific instances of the SP algo-

rithm, turbo and LDPC decoding algorithms, increased the interest on the

algorithm recently[12].

Sum-product algorithm can be applied to the factor graphs which do not

contain any loop. In the original sum-product algorithm, every node cal-

culates its message according to a schedule. However, if the factor graph

contain loops then obtaining such a schedule becomes impossible. Therefore,

iterative sum-product algorithm is used [1]. Marginal density functions ob-

tained from the iterative SP algorithm is not exact but approximate. A more

severe problem of the iterative sum-product algorithm is that convergence of

the algorithm is not guaranteed. Moreover, algorithm may require large num-
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ber of iterations to converge, which may be prohibitive especially for mobile

or delay sensitive applications. Research on the sum-product algorithm is

focused on mainly these three problems [1, 2, 12].

1.1 Previous Work

In order to improve the accuracy of the output and increase the convergence

rate Yedidia et. al. and McEliece et. al. have been proposed generalized

belief propagation or equivalently belief propagation on partially ordered sets

(poset belief propagation) algorithms [8, 9, 10]. In their approach they send

joint beliefs instead of single beliefs between group of nodes rather than two

single nodes. Although these studies achieve their goals, they increase the

complexity of a single iteration a lot.

Our definition of a “sub-graph” may look similar to the “region-graph”

definition of Yedidia et. al. The most significant difference between two

definitions is that, loops may exist within a “region-graph”, however, our

“sub-graphs” should be loop free. Another difference is that, two region

graphs may share a common factor-node. On the contrary, in our algorithm

a factor node can be resident in only a single sub-graph. Although the def-

initions may look like similar, generalized belief propagation algorithm and

our sub-graph SP algorithm is very different from each other. In the gen-

eralized belief propagation, compound (joint) messages (beliefs) are passed

between group of nodes. On the other hand, sets of single messages are

passed between sub-graphs in sub-graph SP algorithm. Dealing with joint

messages increases both the memory and time complexity. Generalized be-

lief propagation algorithms also increase the convergence rate and accuracy.

However, complexity of a single iteration is increased. On the contrary, in

2



the sub-graph SP algorithm complexity of an iteration is kept the same as

the iterative SP algorithm.

Worthen et. al [7] have proposed unified receiver factor graphs. Colavolpe

et. al. [13] have dealt with the ISI factor graphs. They had proposed a

method for how to obtain a factor graph for ISI channels having girth larger

than four. Although their method keeps the computational complexity at

the same order of magnitude, memory complexity of their method increases

exponentially.

1.2 Motivation

Our focus on this research is devoted to improving both the convergence rate

and the accuracy of the SP algorithm. Our main approach is interpreting

the whole FG as a combination of small loop-free sub-graphs. We remind

that SP algorithm obtains the actual solution on loop-free sub-graphs non-

iteratively. Then cascade and parallel connections of sub-graphs are formed.

These connection types define the information exchange rules between sub-

graphs. Through this framework a loopy FG is transformed to cascade,

parallel, or mixed connections of loop-free sub-graphs. Results obtained in

each iteration is supplied as an input to the next iteration just as in any

other iterative algorithm.

The algorithm proposed in this study is a modification of the iterative

SP algorithm. As its origin, instances of our algorithm was invented before

with different names. However, our algorithm is a general form of all those

algorithms and allows designing new iterative algorithms in a systematic way.

The two most famous examples of the known instances of our algorithm are

the turbo and the LDPC decoding algorithms. Turbo decoding algorithm

3



can be viewed as a cascade connection of two subgraphs. On the other hand,

the LDPC decoding algorithm can be viewed as a parallel connection of a

number of sub-graphs. Our experimental results show that the sub-graphs

connected in the cascade form have faster convergence rate than the sub-

graphs connected in parallel. That is the reason why turbo codes have faster

convergence rate than the LDPC codes. We have experimentally verified

that if we connect the sub-graphs of the LDPC decoder in the cascade form

convergence rate increases significantly. As a result, this research closes the

gap between LDPC codes and turbo codes one step further.

When our work is compared with the previous work which aimed to in-

crease the accuracy and/or the convergence rate, almost all of the methods

include combining the messages or the variable nodes in order to deal with

the adverse effects of the loops. These methods increase the memory and/or

computational complexity of the algorithm exponentially. In our method we

just change the message calculation schedule of the factor nodes.

Sub-graph approach also allows deeper understanding of iterative sum-

product algorithm. Especially this approach shows clearly and apparently

how to make convergence rate faster. Secondly, after our experimental re-

sults we now have a better understanding of the factors which degrades the

accuracy of the output.

1.3 Organization

This thesis is organized as follows. Chapter 2 is a brief introduction to factor

graphs and sum product algorithm. Definition of the sub-graph SP algorithm

is given in Chapter 3. We discuss different design choices of the sub-graph

SP algorithm in Chapter 4. We present different examples of applications of

4



the sub-graph SP algorithm together with some simulation results in Chapter

5. Our useful approximation for ISI factor graphs is also explained in this

chapter. Final chapter is not a simple conclusion but also includes some

important comments on the convergence and accuracy characteristics of the

sub-graph SP algorithm.
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chapter 2

factor graphs and

sum-product algorithm

In this chapter factor graphs and sum-product algorithm will be summarized,

and notation used throughout the thesis will be introduced. For further

information about factor graphs and sum-product algorithm [1] and [2] are

authoritative references.

2.1 Factor Graphs

Although more general definitions of a factor graph exist in literature, for

this thesis we will restrict ourselves to factor graphs for calculating marginal

probability density functions from a given joint probability density function.

Definition 2.1. Factor Graph of joint probability density functions: Let X

be a set of random variables x1,x2, . . . ,xn . Let the joint density function

of the random variables in X, fX(X) , can be factored into functions of Xi,

gi(Xi), where Xis are subsets of X. In other words:

fX(X) =
∏

gi(Xi) (2.1)

Then a factor graph is defined as a bipartite graph consisting of factor nodes

assigned to each factor function gi(Xi) and variable nodes assigned to each

6



random variable xi. There is an edge between the ith factor node and kth

variable node if and only if xk ∈ Xi.

Note that in this definition gi(Xi)’s do not have to be probability density

functions. Also if there exists a priori information about some of the random

variables, they are represented by factor functions, gi(Xi)’s.

Example 2.1. As an example, consider a (4,2) code which has the following

parity check matrix.

H =


1 1 1 0

0 0 1 1




Assume that a codeword ,(x1x2x3x4) is transmitted through a memoryless

channel and the vector (y1y2y3y4) is received. The problem of finding the

marginal a posteriori densities of x1,x2, . . . ,x4 can be represented with factor

graph.

fx1,x2,...,x4
(x1, x2, x3, x4|y1, y2, y3, y4) =

1

Z
fx1

(x1|y1)fx2
(x2|y2)fx3

(x3|y3)fx4
(x4|y4)p1(x1, x2, x3)p2(x3, x4) (2.2)

where Z is a normalization constant and p1(x1, x2, x3) and p2(x3, x4) are

the factor functions corresponding to parity check equations. They can be

defined as follows:

p1(x1, x2, x3) =
{ 1, x1 ⊕ x2 ⊕ x3 = 0

0, x1 ⊕ x2 ⊕ x3 6= 0

p2(x3, x4) =
{ 1, x3 ⊕ x4 = 0

0, x3 ⊕ x4 6= 0

where ⊕ denotes addition in modulo 2.

7



fx3
fx4

p2

x1 x2 x3 x4

fx1
fx2

p1

Figure 2.1: Factor graph representing the problem given in Example 2.1.

Note that factor nodes are represented with squares and variable nodes are

represented with circles

2.2 Sum-Product Algorithm

After we have defined what a factor graph is, now we can define sum-product

algorithm. Sum-product algorithm is a message passing algorithm which op-

erates on factor graphs. Messages that are sent by nodes during the sum-

product algorithm are some kind of probability density functions. These

messages are called as “belief”s sometimes. Similarly the sum-product algo-

rithm may be called “belief propagation”. The belief that a variable node

sends to factor node is its probability density function, calculated by using

the messages it has received from all of the neighboring nodes except the tar-

get node. On the other hand, a belief that a factor node sends to a variable

node is the probability density function of the target variable node calculated

by using the messages from all the neighboring nodes except the target node.

It is important to emphasize that a message sent by a node is independent

from the message it has received from the target node.

Conventional sum-product algorithm defines the message calculation sched-

ule of the nodes and the content of the messages formally. Before giving the

definition of the sum-product algorithm we should introduce some notations.
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In our notation we assume that all of the variable nodes and factor nodes are

numbered starting from 1. We also assume that ith variable node represents

the thi random variable.

• Let vi denote the ith variable node in factor graph and pi denote the

ith factor node in the factor graph.

• Let mi→j(xi) be the message function from vi to pj and ni→j(xj) be the

message function from pi to vj.

• Let Mi be the set of the indices of the neighbor nodes of the vi, and Ni

be the set of the indices of the neighbor nodes of the pi.

• Let Xi be a set of variables which are represented by the neighbors of

the ith factor node and Xi\j means that all of the variables in Xi except

the one represented by vj.

Then standard sum-product algorithm can be defined as follows [1]:

Definition 2.2. Sum-Product Algorithm (Belief propagation): Given a fac-

tor graph of a joint probability density function, sum product algorithm can

be defined on that factor graph as follows:

• Message Calculation Schedule

– Any node p (factor node or variable node) waits for messages

from its neighbors until only one neighbor remains yet to send its

message.

– If any node p has received messages from all of its neighbors except

neighbor r, p sends a message to r, and starts to wait for a message

from r.

9



– When the node p receives a message from r, then it sends messages

to all the remaining neighbors.

– Message passing terminates when two messages pass across all the

edges in the factor graph in both directions.

• Message Content:

– mi→j(xi) is calculated by point-by-point multiplication of the in-

coming message functions to vi excluding the one coming from pj,

i.e.,

mi→j(xi) =
∏

k∈Mi\{j}

nk→i(xi) (2.3)

– ni→j(xj) can be calculated in two steps. In the first step all of the

messages received by pi except the one coming from vj is multiplied

together with the factor function that pi represents, fi(Xi), and

intermediate function, p̃i(Xi),is obtained. i.e.

p̃i(Xi) = fi(Xi)
∏

k∈Ni\{j}

mk→i(xk) (2.4)

In the second step p̃i(Xi) is marginalized on to xj and ni→j(xj) is

obtained.

ni→j(xj) =
∑

∀Xi\j

p̃i(Xi) (2.5)

If the random variables of the factor graph are of continuous type

rather than discrete type then the sum operator in Equation (2.5)

can be replaced by the integral operator.

• Finalization:

Final step of the algorithm is obtaining the marginal density functions

of the variables that the factor graph represent. This task can be

10



accomplished by multiplying all of the received messages at a variable

node and then normalizing it as in the below equation.

fxi
(xi) =

∏
k∈Mi

nk→i(xi)∑
xi

∏
k∈Mi

nk→i(xi)
(2.6)

In an informal fashion sum-product algorithm can be summarized as fol-

lows:

• A message from node p to r does not depend on the message node r

sends to p. However, it depends on all the other messages that node p

receives.

• Messages are calculated when they are able to be calculated, i.e. all of

the necessary messages to calculate that message are received.

• The message that is sent from a variable node v to a factor node p,

is the belief of node v about its density given all the other messages

except from node p.

• The message that is sent from a factor node p to a variable node v is

the belief of node p about the density of the node v given all the other

messages except from node v.

2.3 Iterative Sum-Product Algorithm

There is an apparent restriction in the definition of the sum-product algo-

rithm. If the factor graph contains loops this algorithm does not work. We

will explain this fact with the help of an example. Figure 2.2 illustrates a

factor graph which contains a loop. Let us try to apply message calcula-

tion schedule of the SP algorithm. Variable nodes v3 and v4 have just one

11



p1 p2

p3

p4

v1

v2 v3v4 v5

Figure 2.2: An example factor graph which includes a loop

neighbor. Therefore they do not need anything to calculate their messages.

Thus they calculate their messages and send to p3 and p1 respectively. p3

has two neighbors and receives the message from one of them. Factor node

p3 calculates its message for v2 and sends, after receiving its message from

v3. After this point algorithm stalls. None of the nodes resident on the loop

receive messages from two of their neighbors. Therefore, neither of them can

calculate any message. This phenomenon is valid for all of the factor graphs

that contain loop. A node resident on a loop can never receive messages

from two of its neighbors with which it shares the loop. As a result a node

which lay on a loop can never calculate its messages and the conventional

sum-product algorithm does not work.

Solution to this problem is to change the message calculation schedule

of the sum-product algorithm. Resulting algorithm is the iterative sum-

product algorithm. Message content and the finalization of the iterative sum-

product algorithm is the same as the conventional sum-product algorithm.

Therefore we only give message calculation schedule of the iterative sum-

product algorithm.

Definition 2.3. Iterative Sum-Product Algorithm

• Step 1: All of the variable nodes send uniform density functions as
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messages.

• Step 2: All of the factor nodes calculate their messages using the mes-

sages they receive at the previous step and send to variable nodes.

• Step 3: All of the variable nodes calculate their messages using the

messages they receive at the previous step and send to factor nodes.

• Step 4: Go to step 2, until a fixed number of iterations is reached or a

specific termination condition is satisfied.

It should be emphasized that a message received by a node p through an

edge e at iteration i, is independent from the message sent by p through edge

e at iteration i − 1.

Although convergence of this algorithm is not guaranteed, it has found

many application areas. The most important application of this algorithm is

probably the decoding algorithm of the LDPC codes.

There exists more complex schedules than the one given in the above

definition in the literature. One of those complex schedules is the flooding

schedule [15]. In this schedule variable nodes and factor nodes calculate their

messages at the same time instant. In the next time instant all of the nodes

calculate their messages based on the messages they receive in the previous

time instant. This schedule suits parallel implementation better.

If the iterative sum-product algorithm is run on a loop free factor graph,

after a certain number of iterations, which is determined by the longest dis-

tance between two nodes, exactly the same result of the conventional sum-

product algorithm is obtained. If the complexities of the two algorithms are

compared it is observed that complexity of the conventional SP algorithm

is equivalent to the complexity of the one iteration iterative SP algorithm.
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The reason for this fact can be explained as follows; complexity of these al-

gorithms is dominated by the message calculation. For the conventional SP

algorithm two messages pass across an edge during the whole algorithm. On

the other hand, in the iterative SP algorithm two messages pass across an

edge during just one iteration. Therefore, complexity of the conventional SP

algorithm is equivalent to the complexity of the one iteration of the iterative

SP algorithm. The dual of this statement is that iterative SP algorithm re-

quires some number of iterations to converge, on the other hand conventional

SP algorithm converges in just a single iteration.

Our sub-graph sum-product algorithm is actually just a different schedul-

ing to the iterative sum-product algorithm. Our algorithm allows more com-

plex schedules in a very systematic way. Next chapter explains this method

in detail.
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chapter 3

sub-graph sum product

algorithm

As it is stated in the closing parts of the last chapter conventional SP al-

gorithm can be viewed as a kind of iterative SP algorithm which converges

in just a single iteration. However, this algorithm is restricted to only loop

free factor graphs. However, many of the factor graphs that we encounter

in practice contains loops. For example, decoding factor graph of an LDPC

code contains long cycles, an ISI cancellation factor graph contains many

short cycles. The idea of sub-graph sum-product algorithm that we propose

arises from the question how can those fast convergence characteristics of

the conventional SP algorithm can be applied to loopy factor graphs. One

answer to this question is given by dividing the factor graph into sub-graphs

which do not contain any loops. Since these sub-graphs are loop free, the

conventional SP algorithm can be applicable. However, the ways to combine

the information obtained from those sub-graphs, should be well defined. This

chapter starts by defining the rules of partitioning a factor graph into such

sub-graphs. Then definition of the interconnection of these sub-graphs will

be discussed.
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3.1 Sub-Graphs

The phrase “sub-graph” can be used to refer to any portion of a graph in gen-

eral. However, in this context we assign a special meaning to “sub-graph”.

What we mean by a sub-graph is a portion of a factor graph on which con-

ventional SP algorithm can be run.

Before giving a formal definition of the sub-graph, we shall explain its

mathematical basis. The factorization equation should be reconsidered for

this purpose. Assume that the global function is factored into n functions,

and R1, R2, . . . , Rk are mutually exclusive subsets of the set of numbers from

1 to n such that
⋃

∀i Ri = {1, 2, . . . , n}. Then we can modify the Equation

(2.1) as below:

fX(X) =
n∏

i=1

gi(Xi)

=
∏

i∈R1

gi(Xi)
∏

i∈R2

gi(Xi) . . .
∏

i∈Rk

gi(Xi)

=
k∏

i=1

ri(X̂i) (3.1)

where X̂i =
⋃

l∈Ri
Xl and

ri(X̂i) =
∏

l∈Ri

gl(Xl) (3.2)

Equation (3.2) shows that ri’s are functions which can be factored into

functions of smaller number of arguments. Thus, marginalization problem of

ri’s can be represented with factor graphs. The original factor graph, which

represents the marginalization problem of fX(X) is the superposition of these

newly formed small factor graphs, which will be called “sub-graphs” from now

on. In other words the problem has been divided into pieces of the same kind.

However, a method is required to combine the results of the sub-graphs to
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obtain the result of the whole problem. Sub-graph sum product algorithm

provides an iterative solution for combining the solutions of the sub-graphs.

Another problem is how to solve the marginalization problem for these sub-

graphs. Since these sub-graphs are actually factor-graphs, conventional sum-

product algorithm or iterative sum-product algorithm can be used to solve

this problem. It is reasonable to choose Ri’s such that the resulting sub-

graphs are loop-free. In this case conventional sum-product algorithm, which

is computationally efficient, can be employed to solve the marginalization

problem of the sub-graphs. If the resulting sub-graphs contain loops, iterative

sum product can be employed in a trivial way. A more interesting option

could be applying the sub-graph sum-product algorithm to those sub-graphs

which contain loops in a recursive fashion. In this chapter we will force

sub-graphs to be loop-free.

Definition 3.1. Sub-graph: A sub-graph, represented by S, is a region of a

factor graph which does not contain any loop, and if factor node p is included

in a sub-graph S all of the variable nodes connected to p should be included

in S.

This definition is a direct consequence of Equations (3.1) and (3.2). A

factor graph can be partitioned into sub-graphs in many different ways. How-

ever, not all of the different partitioning schemes are appropriate. Therefore

we should define which partitioning schemes are proper.

Definition 3.2. Proper partitioning of a factor graph: A partitioning of

factor graph is proper if and only if all factor nodes in the factor graph is

contained in a sub-graph, and only one sub-graph.

This definition is a result of the fact that Ri’s should be mutually exclusive

and complete.
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A question that may arise is whether a proper partitioning exists for

every factor graph. The answer is positive. First of all, there exists a trivial

partitioning, in which every sub-graph is composed of just a single factor

node and all of the variable nodes connected to it. In other words every

subset Ri = {i}. Depending on the factor graph, other partitioning schemes

may exist. Different partitioning methods will result in different convergence

and accuracy characteristics. These subjects will be explained in Chapter 4

and Chapter 5 in detail.

Example 3.1. Figure 3.1 shows an example of partitioning a factor graph

into sub-graphs. The trivial partitioning is shown in part (b) of the figure.

Part (c) and part (d) of the figure shows different partitioning schemes. We

will name these partitioning schemes as all-accessible partitioning and non-

accessible partitioning respectively in Section 4.

Up to this point we have defined sub-graphs and proper partitioning. In

other words we have defined how to divide the problem into smaller pieces.

Since we force sub-graphs to be loop-free, we can use the standard sum-

product algorithm method to solve the problem for these smaller pieces. The

only remaining part is how to construct the solution of the whole problem

from the solutions of these sub-graphs. We will use block diagram repre-

sentation while explaining our sub-graph sum-product algorithm which is

intended to combine the results from sub-graphs.
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p1 p2 p3 p4

v1 v2 v3 v4

(a) The original factor graph

p4

v3 v4

p1

v1 v2

Sub-Graph 1
p2

v1 v3

Sub-Graph 2

v1 v2 v3

p3

Sub-Graph 3 Sub-Graph 4

(b) The trivial partitioning

p1 p3

v1 v2 v3 v4 v1 v3 v4

p2 p4

Sub-Graph 1 Sub-Graph 2

(c) Another proper partitioning

p1 p4

v1 v2 v3 v4 v1 v3

p2

v3 v4v2

p3

Sub-Graph 1 Sub-Graph 2 Sub-Graph 3

(d) Another proper partitioning

Figure 3.1: An example of partitioning a factor graph into sub-graphs
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S1 S2

S3

S4

S5

D

Figure 3.2: A simple flow graph of sub-graphs. In this figure Sis represent

subgraphs and D represents a delay element.

3.2 Block Diagram Representation of Sub-

Graphs

Block diagrams make the understanding of many systems much simpler.

Therefore, we will use block diagrams for representing sub-graphs and sub-

graph sum-product algorithm. The blocks are connected in cascade or in

parallel or a mixture of these two to form a directed flow graph. Since our

algorithm is an iterative one, we should represent the iterations. An iteration

will be represented by feeding the output of the flow graph back to input of

the flow graph through a delay element. Figure 3.2 shows a simple flow graph

of sub-graphs.

Our block diagram representation is a little bit more complex than the

block diagram representations that may be encountered in literature. In

the usual block diagram representations, blocks have inputs and they gen-

erate outputs. On the other hand, sub-graph blocks have also states in our

representation. In each iteration they store the information that they have

generated in order to use it in the next iteration. Another way of saying this

is that sub-graph blocks have two inputs and two outputs, and one of the
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S

D

Figure 3.3: Showing the hidden state of sub-graph block

outputs is fed back to the one of the inputs through a delay element. This

idea is depicted in Figure 3.3. However, in order to simplify the representa-

tion we will hide the state, and assume that it exists inside a subgraph block

as in Figure 3.2.

Signals flowing through the edges of these flow graphs are vectors of beliefs

about the variable nodes included in the factor graph. Basically input and

state of a sub-graph will be used as a priori information and sum-product

algorithm will be run. The output of the SP algorithm will determine both

the output and the state. Details of this process will be explained in Section

3.3 in detail.

Another important point to be emphasized is that the signals flowing

through the edges are beliefs about all variables included in the whole factor

graph. Possibly, there will exist some sub-graphs which do not include all of

the variable nodes. In this case they will have been received some information

about a variable which they do not include. In order to solve this problem, we

enforce all of the variable nodes to be included in all sub-graphs. However,

a variable node included in the sub-graph does not have to be connected

to some factor node. Note that this enforcement does not conflict with our

definition of sub-graph.
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3.3 Structure and Operation of a Sub-Graph

Block

In this section we will describe in detail what happens when a sub-graph

block is invoked.

The basic idea is that an input received by a sub-graph is a combina-

tion of beliefs which are generated by other sub-graphs and the information

generated by this sub-graph during the previous iteration. The information

generated by other sub-graphs will be used as a priori information for this

sub-graph. However, input contains also the information generated by this

sub-graph during previous iteration. This information should be separated

from the input. If it is not, this causes to converge to a wrong point. There-

fore, every sub-graph should store the information that it has generated.

The sub-graph will separate the information from the input it received at

the next iteration. This idea is similar to the“extrinsic information” idea in

turbo decoding literature, Output of a sub-graph is the result of the standard

sum-product algorithm.

While explaining the algorithm with the help of block diagram represen-

tation, we need some notation for the signals of the flow graph. Remember

that these signals are vectors of beliefs, or in other words vectors of proba-

bility density functions. We will denote the vectors of beliefs with boldface

capital letters with a ( ˜ ) sign on top of them. Input to the jth sub-graph

will be denoted by Ĩj, output of that sub-graph will be denoted by Õj, and

finally state of that sub-graph will be denoted by X̃j. In other words,

Ĩ = (bin1(x1), bin2(x2), . . . , bini
(xi)) (3.3)

Õ = (bout1(x1), bout2(x2), . . . , bouti(xi)) (3.4)

X̃ = (bst1(x1), bst2(x2), . . . , bsti(xi)) (3.5)
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where, bin’s represent input beliefs, bout’s represent output beliefs, and bst’s

represent state beliefs. Finally, if we apply Ĩ as input to a sub-graph S having

state X̃ and output Õ then we represent it with

Ĩ
(S,X̃)−−−→ Õ.

Sometimes we may drop the state in this representation and write

Ĩ
S−→ Õ.

We also need two operations defined on these vectors. One of them is the

combination operation and will be denoted by ⊗ and the other one is the

separation operation and will be denoted by ®. If we denote jth component

of a vector by (.)j(xj) then

(Ã ⊗ B̃)j(xj) =
(Ã)j(xj)(B̃)j(xj)∑
[(Ã)j(xj)(B̃)j(xj)]

∀j (3.6)

(Ã ® B̃)j(xj) =
(Ã)j(xj)/(B̃)j(xj)∑
[(Ã)j(xj)/(B̃)j(xj)]

∀j (3.7)

In other words, combination operation is the normalized point by point mul-

tiplication, and separation operation is the normalized point by point divi-

sion. With the help of this representation, we can define the operation of a

sub-graph more clearly and more formally.

The first operation that a sub-graph should perform is to separate the

information generated by the other sub-graphs from its input. Let R̃ denote

the information generated by other sub-graphs. Then R̃ can be obtained by

the following equation:

R̃ = Ĩ ® D(X̃) (3.8)

where D(.) is the delay operator.

Then the elements of R̃ will be used as a priori information for this sub-

graph. Recall that in Chapter 2 we have stated that a priori information for
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a random variable is nothing but a factor function, thus it can be represented

by a factor node. Therefore, artificial factor nodes will be included in the

sub-graphs, one for each variable node, in order to represent the a priori

information. An artificial factor node representing the belief (R̃)j(xj) will

be connected to the jth variable node only. Since artificial factor nodes are

connected to a single variable node, it is guaranteed that sub-graphs are still

loop-free.

Now sub-graphs are ready to operate the standard sum-product algo-

rithm. After sum product algorithm operates, we obtain bout’s. Note that,

the output of the standard sum-product algorithm is not called beliefs, they

are marginal density functions. However, we call the output of the sum-

product algorithm operating on a sub-graph as beliefs, since the sub-graph

is not the complete factor graph but a portion of it. Therefore, obtained re-

sults may not be true, and calling them as beliefs is reasonable. These bouts

are used for obtaining the output vector, Õ, as in Equation (3.4). The only

remaining vector that is not explained is the state vector, X̃. Remember

that, the purpose of the vector X̃ is to hold the information generated by

the sub-graph. Now think of the jth element of the vector Õ. As Equation

(2.6) shows (Õ)j(xj) is the multiplication of the incoming messages from

factor nodes and a normalization constant. One of these factor nodes is the

artificial factor node representing (R̃)j(xj). Then we can write (Õ)j(xj) as

(Õ)j(xj) =
1

Z
(R̃)j(xj)

∏

i

ni→j(xj) (3.9)

The information generated in this sub-graph is the
∏

i ni→j(xj) part. This

is the part that the vector X̃ should hold. It can be simply obtained by the

following equation.

X̃ = Õ ® R̃ (3.10)

24



Figure 3.4 depicts the structure and operation of a sub-graph block schemat-

ically.

3.4 Connection Types of Sub-Graphs

When the sub-graph sum-product algorithm is represented with block dia-

grams we should also define the connection rules between these sub-graph

blocks. Basically there are two connection types, which are cascade and

parallel connection.

3.4.1 Cascade Connection

Cascade connection type is very simple and obvious. Basically, this connec-

tion type consists of connecting the Õ vector of a sub-graph to Ĩ vector of

the next sub-graph. We will denote connecting two sub-graphs in cascade

with the → sign.

When sub-graphs connected in cascade they form a chain of sub-graphs.

Chains can be composed of any number of sub-graphs. We will name chains

with letter C. For instance if we form a chain C by connecting sub-graphs

S1 and S2 in cascade such that S1 operates before S2 as in Figure 3.5, it will

be denoted by C = S1 → S2. Chains can also include parallel connection of

chains, which will be defined in Section 3.4.2.

3.4.2 Parallel Connection

Parallel connection is more complex than the cascade connection. Figure

3.6 shows a simple parallel connection of two chains. This figure shows that

when chains are connected in parallel, there exists a signal fork and a signal
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Figure 3.4: Structure of a sub-graph block
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S1 S2

C

Figure 3.5: Cascaded connection of two sub-graphs to form a chain

I

I1

I2 O2

O1

O

Figure 3.6: An example parallel connection of sub-graphs

junction. Signal forks are common to almost all block diagram representa-

tions. They mean simply that all forked signals are equal to the input signal,

which is the same as our case. On the other hand signal junction points

on other signal flow diagram representations usually makes some operations,

such as addition or multiplication. In our sub-graph flow diagrams signal

junction points also perform an operation, but this is not shown on the dia-

gram extrinsicly, since it is always the same operation. In the sub-graph flow

diagrams junction points does not combine any two signals but they combine

two signals which are originated from same fork point.

We denote the parallel connection of two sub-graphs or chain of sub-

graphs with ‖ sign. For example if we connect S1 and S2 in cascade and S3

in parallel to these two, then we represent it with (S1 → S2) ‖ S3.

Definition 3.3. Parallel Connection of Chains: Let two chains C1 and C2
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are connected in parallel. Let these two chains have inputs Ĩ1 and Ĩ2 and

output Õ1 and Õ2 respectively. Let Ĩ be the signal before the fork point and

Õ be the signal after the junction point, i.e.

Ĩ1
C1−→ Õ1

Ĩ2
C2−→ Õ2

and

Ĩ
C1‖C2−−−→ Õ

Then Ĩ1 ,̃I2, and Õ is given by

Ĩ1 = Ĩ (3.11)

Ĩ2 = Ĩ (3.12)

Õ = Õ1 ⊗ Õ2 ® Ĩ (3.13)

Theorem 3.1. ‖ operation is associative. In other words, if

Ĩ
(C1‖C2)‖C3−−−−−−−→ Õ

then

Ĩ
C1‖(C2‖C3)−−−−−−−→ Õ

.

Proof: It is obvious that all of the chains have the same input Ĩ. Let

Ĩ
C1−→ Õ1, Ĩ

C2−→ Õ2, Ĩ
C3−→ Õ3, Ĩ

C1‖C2−−−→ Õ4, and Ĩ
C2‖C3−−−→ Õ5 . Then ;

Õ4 = Õ1 ⊗ Õ2 ® Ĩ (3.14)

Õ5 = Õ2 ⊗ Õ3 ® Ĩ (3.15)
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Let Ĩ
(C1‖C2)‖C3−−−−−−−→ Õ6 and Ĩ

C1‖(C2‖C3)−−−−−−−→ Õ7. We should prove that Õ6 = Õ7.

Õ6 = Õ4 ⊗ Õ3 ® Ĩ

= Õ1 ⊗ Õ2 ® Ĩ ⊗ Õ3 ® Ĩ (3.16)

and

Õ7 = Õ1 ⊗ Õ5 ® Ĩ

= Õ1 ® Ĩ ⊗ Õ2 ⊗ Õ3 ® Ĩ

= Õ1 ⊗ Õ2 ® Ĩ ⊗ Õ3 ® Ĩ (3.17)

Since Equation (3.16) is equal to Equation (3.17) proof has been completed.

Theorem 3.1 allow us to connect any number of chains in parallel.

3.5 Result of the Sub-Graph Sum-Product

Algorithm

Sub-graph sum-product algorithm is an iterative algorithm. After some cer-

tain number of iterations or when a specific termination condition is satis-

fied, the algorithm stops. After the algorithm stops, output vector of the last

sub-graph, i.e. the one just before the delay element, gives the result of the

sub-graph sum-product algorithm. Elements of this vector can be considered

as the marginalized probability density functions of the random variables.

Our experimental results show that when the sub-graph sum-product

converges, output vector of each sub-graph is equal to its input vector. This

means that any vector at the main branch of the algorithm can be considered

as the output vector. However, this requires convergence of the algorithm. If

iterations are stopped for a specific reason, for instance all of the parity check
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equations are satisfied in LDPC decoding problem, then only the output of

the last sub-graph should be taken as the result of the algorithm.

3.6 Summary of the Sub-Graph Sum-Product

Algorithm

In this chapter the sub-graph sum-product algorithm is explained with all

details. Before closing the chapter the sub-grah sum-product algorithm will

be summarized.

For a given factor graph, the first step of the sub-graph sum-product

algorithm is partitioning the sub-graph into loop-free sub-graphs. Secondly,

a flow graph sub-graphs should be constructed. Then this flow should be

operated for each iteration. Finally the result of the algorithm is obtained

as in Section 3.5.
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chapter 4

variations of the sub-graph

sum-product algorithm

We have to decide on some parameters while designing a specific sub-graph

sum-product algorithm. These parameters include how to partition the factor

graph into sub-graphs and how to connect these sub-graphs. These variations

are explained in this chapter.

4.1 Partitioning a Factor Graph into Sub-Graphs

Deciding on which factor node is included in which sub-graph is one of the

most important problems in designing a sub-graph sum-product algorithm

for a given factor-graph. Remember that this process should obey the rules

given in definitions 3.1 and 3.2. It is apparent that there exist many different

solutions for this problem. It is a very difficult task to choose the best solution

in this case, since there are too many of them. Even determining the number

of possible choices of sub-graphs is a difficult problem. Moreover, we do

not have an efficient method to evaluate and compare the different solutions

other than simulation.

On the other hand the way of partitioning into sub-graphs affects the

accuracy and the convergence characteristics of the algorithm considerably.

Therefore, we should somehow analyze this problem.

31



Our approach for this case is to analyze some specific sub-graph parti-

tioning strategies which will provide us a deeper understanding of the sub-

graph sum-product algorithm. We think that the most important criterion

is the accessibility property of sub-graphs. What we mean by accessibility

is how many different factor nodes can be accessed from a factor node in a

sub-graph. The two extreme type of sub-graphs are all-accessible and non-

accessible sub-graphs. We have made our simulations with these two type of

sub-graphs.

4.1.1 All-Accessible Sub-Graphs

In an all-accessible sub-graph partitioning there exists a path between any

two factor nodes included in that sub-graph. Again, there may be several

different choices of sub-graph partitioning for a given factor graph such that

every resulting sub-graph is all-accessible. We did not delve into the subject

of how to choose among all-accessible solutions. We have designed a simple

and efficient algorithm to find all-accessible sub-graph partitioning from a

given factor graph.

Definition 4.1. All-accessible sub-graph construction algorithm:

• Step 1 (Initialization):

– Sub-step 1 : Make a list of factor nodes.

– Sub-step 2 : Construct an initial empty sub-graph.

– Sub-step 3 : Pick a factor node from the factor node list and add

it to the sub-graph together with the variable node neighbors of

it, and delete the factor node from the factor-node list.

• Step 2 :Pick a factor node from the factor node list.
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• Step 3 :Find a suitable sub-graph for the factor node.

– Sub-step 1 : Set i = 1.

– Sub-step 2 : Check if the factor node is connected to a variable

node included in the ith sub-graph. If the answer is negative go

to sub-step 4.

– Sub-step 3 : Check if the factor node is connected to at most one

variable node included in the ith sub-graph.

∗ If the result is positive add factor node to the ith sub-graph

together with the variable node neighbors of it, and delete it

from the factor node list and go to step 5.

∗ If the result is negative go to sub-step 4.

– Sub-step 4 : Increment i until i reaches the number of sub-graphs.

• Step 4 :Construct a new sub-graph and add the factor node to this

newly formed sub-graph together with the variable node neighbors of

it.

• Step 5 :Go to step 2 until factor node list becomes empty.

4.1.2 Non-Accessible Sub-Graphs

Non-accessible sub-graphs are the opposite of the all-accessible sub-graphs.

In non accessible sub-graphs there are no paths between any two factor node.

Similar to the all-accessible sub-graphs there may be several different solu-

tions for forming non-accessible sub-graphs. We have designed a similar

algorithm to that defined in definition 4.1.

Definition 4.2. Non-accessible sub-graph construction algorithm:
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• Step 1 (Initialization) :

– Sub-step 1 : Make a list of factor nodes.

– Sub-step 2 : Construct an initial empty sub-graph.

– Sub-step 3 : Pick a factor-node from the factor node list and add

it to the sub-graph together with the variable node neighbors of

it, and delete from the factor-node list.

• Step 2:Pick a factor node-from the factor node list.

• Step 3:Find a suitable sub-graph from the factor node.

– Sub-step 1 : Set i = 1.

– Sub-step 2 : Check if the factor node is connected to a variable

node included in ith sub-graph. If the answer is negative add

the factor node to this sub-graph together with the variable node

neighbors of it, and delete it from the factor node list. Go to step

5.

– Sub-step 3 : Increment i until i reaches the number of sub-graphs.

• Step 4 :Construct a new sub-graph and add the factor node to this

newly formed sub-graph together with the variable node neighbors of

it, and delete it from the factor node list.

• Step 5 :Go to step 2 until factor node list is empty.

The algorithms that we have defined in definitions 4.1 and 4.2 are guar-

anteed to find a proper partitioning.

34



4.2 Connecting Sub-Graphs

Another important design parameter is deciding on the connection pattern

of sub-graphs. Two different connection types of sub-graphs are available

while constructing a flow graph of sub-graphs. These two connection types

are cascade and parallel connection as explained in Chapter 3. These two

connection types allows to construct lots of different types of sum-product

algorithms.

Our experimental results show that convergence rate of the cascade con-

nection is usually better than parallel connection. However, connecting sub-

graphs in cascade form may degrade the accuracy of the output. These

experimental results will be presented in Chapter 5 in detail.

4.3 Non-Homogeneous Flow Graph of Sub-

Graphs

For some problems, using a non-homogeneous flow-graph of sub-graphs may

yield better results. Joint decoding and equalization problem may be an

example for this case. We call a flow graph non-homogeneous if it contains

more than one instance of a sub-graph. Instances of a sub-graph may exist

more than once in a flow graph of sub-graphs, if some conditions is satisfied.

First condition is same sub-graph may not be encountered in parallel

chains. In other words, if chains C1 and C2 are connected in parallel, or

some larger chains which include C1 and C2 are connected in parallel these

two chains cannot include same sub-graph. If this condition is violated, an

instance of the same sub-graph will use the output of another instance of the
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same sub-graph as a priori information. This will lead to convergence to a

wrong point.

Second condition is that all instances of a sub-graph should share the

same state. An instance which is invoked later, should use the state which

is determined by another instance which was invoked previously. If this

condition is violated, the result will be the same as in the first condition.
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chapter 5

applications and numerical

results

We will present different applications of sub-graph sum-product algorithm

and numerical simulation results in this chapter. The possible applications of

sub-graph sum-product algorithm are not restricted to the applications that

will be presented in this chapter. The sub-graph sum-product algorithm is

a so general algorithm that it can be applied to any problem that can be

represented by a factor graph.

This chapter starts with showing that the well known iterative sum-

product and turbo decoding algorithms are instances of sub-graph sum-

product algorithm. After these sections we will present decoding of LDPC

codes with different forms of our sub-graph sum-product algorithm. Fi-

nally we will apply sub-graph sum-product algorithm to a joint equalization-

decoding scheme.

5.1 Turbo Decoding Algorithm as an Instance

of Sub-Graph Sum-Product Algorithm

Turbo codes, which are discovered by Berrou et. al. at 1993 [4], is a very

big step in coding theory. Turbo codes have showed that near Shannon
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Figure 5.1: Block diagram of a parallel concatenated turbo encoder
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Figure 5.2: Block diagram of a parallel concatenated turbo decoder. (Delay

element, which is shown by D in the figure, represents an iteration of the

decoder.)

limit coding is possible with concatenating two convolutional encoders and

a simple iterative decoder.

Figure 5.1 depicts the block diagram of the encoder of a parallel con-

catenated turbo code. Input symbols, xk’s, are first fed to a convolutional

encoder, ENC1, and y1k’s are obtained. Input symbols are also fed to a

second convolutional encoder, ENC2, through an interleaver π and y2k’s are

obtained. Then these three symbol streams are combined, probably with

some puncturing, and the codeword is obtained.
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In the turbo decoder literature usually log-likelihood ratios are used. Log-

likelihood ratio of xk, Λ(xk), is defined as:

Λ(xk) = log
Pr(xk = 1)

Pr(xk = 0)
(5.1)

Figure 5.2 shows the decoder of a parallel concatenated turbo code. As it

can be seen from the figure, turbo decoder consists of two separate decoders

that exchange log-likelihood ratios between them iteratively. Decoder 1 cal-

culates Λ1(xk)’s using x′
k’s, y′

1k’s, and Λ2ext(xk)’s. The symbols x′
k’s and y′

1k’s

are the received symbols when xk’s and y1k’s are passed through a memo-

ryless channel. These received symbols supply the channel information to

Decoder 1. Λ2ext(xk)’s are the information generated by Decoder 2 and is

used as a priori information by Decoder 1. Berrou et. al. showed that Λ1(xk)

is addition of three terms [4]. First term is information generated by the De-

coder 1 using the channel information (x′
k and y′

1k’s) supplied to it. Second

term is the information generated by using the Λ2ext(xi)’s, such that i 6= k,

through the structure of the code. Final term is directly the Λ2ext(xk). First

term is common in every decoder. Second term enhances the performance of

the decoder a lot. However, final term makes the decoder to converge to a

wrong point. Therefore it should be subtracted as in Equation (5.2).

Λ1ext(xk) = Λ1(xk) − D(Λ2ext(xk)) (5.2)

Λ1ext(xk) is called extrinsic information generated by Decoder 1. A similar

argument is true for Decoder 2, and Λ2ext(xk) is obtained in a similar way as

in Equation (5.3).

Λ2ext(xk) = Λ2(xk) − Λ1ext(xk) (5.3)

Note that there is no delay operator in Equation (5.3), however, a delay

operator exists in Equation (5.2). The reason is that Decoder 1 uses the

Λ2ext(xk)’s which are generated in the previous iteration.
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Figure 5.3: Modified turbo decoding schematic

After a brief introduction to turbo codes and turbo decoding, now we

can start to show that turbo decoding is an instance of sub-graph sum-

product algorithm. As a first step, we modify the schematic diagram of

turbo decoding ,which is shown in Figure 5.2, as in Figure 5.3.

We shall start with showing that the decoder shown in Figure 5.3 is

equivalent to the decoder shown in Figure 5.2. We have represented the

outputs of the decoders Λi(xk) in both figures. We have removed the signals

Λi,ext(xk), i = 1, 2, in Figure 5.3, and add new signals namely Λi,rec(xk)

and Λ′
i,ext(xk)) for i = 1, 2. In order to prove that these two schematic

diagrams are equivalent we should show that inputs of the decoders in these

two different schematic diagrams are equal. In other words, we should show

that Λ1rec(xk) = D(Λ2ext(xk)) and Λ2rec(xk) = Λ1ext(xk) for all k. We begin

with two assumptions such that

Λ′
1ext(xk)

?
= Λ1ext(xk) ∀k (5.4)

Λ′
2ext(xk)

?
= Λ2ext(xk) ∀k (5.5)
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Figure 5.3 depicts that

Λ1rec(xk) = D(Λ2(xk)) − D(Λ′
1ext(xk)) (5.6)

Λ1rec(xk) = D(Λ2(xk) − Λ′
1ext(xk)) (5.7)

Λ1rec(xk) = D(Λ2(xk) − Λ1ext(xk)) (5.8)

Λ1rec(xk) = D(Λ2ext(xk)) (5.9)

We have obtained Equation (5.8) by using the assumption given in Equation

(5.4) and Equation (5.9) by using Equation (5.3). This completes the first

part of the proof.

Similarly starting from the Figure 5.3 we can complete the second part

of the proof.

Λ2rec(xk) = Λ1(xk) − D(Λ′
2ext(xk)) (5.10)

Λ2rec(xk) = Λ1(xk) − D(Λ2ext(xk)) (5.11)

Λ2rec(xk) = Λ1ext(xk) (5.12)

The last thing we should do before completing the proof is validating the

assumptions. Figure 5.3 and 5.2 show that

Λ′
1ext(xk) = Λ1(xk) − Λ1rec(xk) (5.13)

= Λ1(xk) − D(Λ2ext) (5.14)

= Λ1ext(xk) (5.15)

Λ′
2ext(xk) = Λ2(xk) − Λ2rec(xk) (5.16)

= Λ2(xk) − Λ1ext(xk) (5.17)

= Λ2ext(xk) (5.18)

After showing that Figures 5.2 and 5.3 are two different schematic rep-

resentations of the same turbo decoding algorithm, we should show that
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Figure 5.4: Zoomed portion of Figure 5.3

Decoder 1 and Decoder 2 are sub-graphs. We zoom to a region of Figure 5.3

that is shown in Figure 5.4.

If Figure 5.4 is inspected carefully it can be seen that each component

structure of Decoder 1 together with its peripherals looks like the structure

of a sub-graph block that was represented in Figure 3.4. A significant differ-

ence between two diagrams is that, vectors of probability density functions

flow inside a sub-graph structure, on the other hand vectors of log-likelihood

ratios flow through the edges of the turbo decoder structure. Log-likelihoods

represent only a special case of random variables which is the binary random

variable. However, our representation and formulation can be applicable to

any discrete type of random variable including the binary random variables.

Separation operation in our probability density function domain is the gen-

eralized form of the subtraction operation in the log-likelihood domain. We

will prove this argument in Theorem 5.1.

Theorem 5.1. Subtraction operation in log-likelihood domain is a special

case of the separation operation in probability density function domain. In

other words; let x1 be a random variable having probability density func-
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tion fx1
(x1) and x2 be a random variable having probability density func-

tion fx2
(x2). If x3 is a random variable having probability density function

fx3
(x3) = fx1

(x1) ® fx2
(x2) then

Λ(x3) = Λ(x1) − Λ(x2)

Proof: Let

fx1
(x1) =

{ a, x = 0

b, x = 1

and

fx2
(x2) =

{ 1
c
, x = 0

1
d
, x = 1

Then

fx3
(x3) = fx1

(x1) ® fx2
(x2)

=
fx1

(x1)/fx2
(x2)∑

x=0,1 fx1
(x1)/fx2

(x2)

=
fx1

(x1)/fx2
(x2)

ac + bd

=
{ ac

ac+bd
, x = 0

bd
ac+bd

, x = 1
(5.19)

Then

Λ(x3)
∆
= log

Pr(x3 = 1)

Pr(x3 = 0)

= log
fx3

(1)

fx3
(0)

= log
ac

bd

= log
a

b
− log

d

c

= Λ(x1) − Λ(x2), (5.20)

which completes the proof.
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We can easily make a one-to-one matching between the signals represented

in Figure 5.4 and Figure 3.4. The signals Λ1in(xk), Λ1rec(xk), Λ1ext′(xk), and

Λ1(xk) in Figure 5.4 can be matched to the signals Ĩ, R̃, X̃, and Õ in Figure

3.4 respectively.

Up to this point we have modified the turbo decoder structure without

altering its characteristics. Then we have showed that subtraction operation

in log-likelihood ratio domain is a special case of separation operation in

probability density function domain. We should also show that component

decoders, i.e. Decoder 1 and Decoder 2, employs sum-product algorithm on

a loop free factor graph. However, this is done many times in literature.

Component decoders in a turbo decoder employs the BCJR algorithm [4, 3].

It is shown in literature in many times that BCJR algorithm is an instance

of the sum-product algorithm on a loop-free factor graph [1, 18].

When BCJR algorithm of the component decoders is represented by a

factor graph, x′
k’s, y′

1k’s, and y′
2ks’s affect the factor functions of the factor

nodes in that factor graph. When a new set of data is received by the decoder,

the factor functions of the factor nodes are changed. However, structure of

the factor graph remains the same.

An important detail in this structure is that x′
k’s are applied to the De-

coder 1 only in Figure 5.2. This means that the factor nodes corresponding to

x′
k’s exist only in the factor graph structure of Decoder 1. This fact complies

with our definition of proper partitioning, which is given in Definition 3.2.

Proper partitioning rule states that a factor node can be a node of only one

sub-graph. This rule is satisfied by applying x′
k’s to the Decoder 1 only. Ap-

plying the x′
k’s to only Decoder 1 is not a modification to the turbo decoding

algorithm we made, but it is the original form of the algorithm [4].

As a final step, representation of the turbo decoder structure with sub-
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Figure 5.5: Representation of the turbo decoder structure with sub-graphs

graphs is shown in Figure 5.5. In this representation we embed the interleaver

and deinterleaver blocks that exist in Figure 5.3 in the second sub-graph. As

it can be seen from the Figure 5.5 that the turbo decoding algorithm is just

a simple instance of the sub-graph sum-product algorithm.

In this section we have showed how the decoding algorithm of the parallel

concatenated turbo codes is an instance of sub-graph sum-product algorithm.

Using very similar but a little bit more complicated arguments we can show

that decoding of serial concatenated turbo codes and turbo equalization al-

gorithms are also instances of sub-graph sum-product algorithm.

It should be noted that, we did not design the sub-graph sum-product

algorithm to be a generalization of the turbo decoding algorithm. While de-

voloping the sub-graph sum-product algorithm, we have realized that turbo

decoding algorithm is an instance of the sub-graph sum-product algorithm.

However, we have inspired a lot from the idea of “extrinsic information”

during the development of the sub-graph sum-product algorithm. The idea

of “extrinsic information” and turbo codes is a big step in coding theory.

Therefore, inventors of the turbo decoding algorithm deserve a great appre-

ciation.
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5.1.1 Possible Improvements on Turbo Codes Using

Sub-Graph Sum-Product Algorithm

After putting the turbo decoding algorithm on to sub-graph sum-product

algorithm basis, we can build more floors on top of the turbo decoding algo-

rithm using the sub-graph idea. For instance, connecting the sub-graphs in

parallel may be investigated.

A more interesting option may be using multiple concatenated turbo

codes and decode them with the sub-graph sum-product algorithm. Mul-

tiple concatenated turbo codes are the turbo codes which consist of more

than two component codes, and their encoder consists of more than two

convolutional encoders as shown in Figure 5.6.

Multiple concatenated turbo codes are proposed [16] in 1995. Their de-

coding algorithm is different than the turbo decoding algorithm. By using

the sub-graph methodology we can propose very simple decoding algorithm
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for multiple concatenated turbo codes. Decoders of the component codes

can be considered as sub-graphs similar to the Section 5.1. Then these sub-

graphs can be connected in cascade or in parallel form to construct a decoder

of multiple concatenated turbo code.

Probably the multiple concatenated turbo codes together with the de-

coder that we propose in the previous paragraph, will perform better than

the standard turbo codes of the same rate. A standard turbo decoder has

a factor graph structure composed of two BCJR factor graphs connected

through an interleaver. On the other hand, a multiple concatenated turbo

code composed of N component codes has a factor graph structure consisting

of N BCJR factor graphs connected through N − 1 interleavers. In order

to preserve the code rate, the multiple concatenated turbo code should be

punctured more than a standard turbo code. Puncturing corresponds to re-

moving some of the factor nodes in the BCJR factor graphs, consequently

breaking some loops or making the length of some loops longer. In other

words the factor graph structure of a multiple concatenated turbo decoder

contains less number of loops which are longer than the loops on standard

turbo decoder. This fact will definitely increase the performance of the mul-

tiple concatenated code.

The random coding idea may be an other way of showing that perfor-

mance of multiple concatenated turbo codes is better than the standard

turbo codes. The output samples of a more punctured multiple concate-

nated turbo code are obviously less correlated than the output samples of

the standard turbo code. Being less correlated means being more random,

hence a better code.

The turbo codes are already very good codes which approach the Shan-

non limit. Therefore, multiple concatenated turbo codes are not expected to
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improve BER-SNR characteristics of the codes. However, multiple concate-

nated turbo codes may improve the error floor characteristics of the turbo

codes.

This sub-section is a future research proposal. Verifying the arguments

in this subsection experimentally, is out of the scope of this thesis. If the

multiple concatenated turbo codes together with the sub-graph sum product

algorithm lowers the error floor of the turbo codes then the gap between

turbo codes and LDPC codes will be closed one step further.

5.2 Iterative Sum-Product Algorithm as an

Instance of Sub-Graph Sum-Product Al-

gorithm

The iterative sum-product algorithm can be considered as an instance of the

sub-graph sum-product algorithm. Proving this idea is much more simpler

than showing that turbo decoding algorithm is an instance of the sub-graph

sum-product algorithm.

One of the most important properties of the iterative sum-product algo-

rithm is every factor node operates in parallel. If a sub-graph sum-product

algorithm is constructed with a parallel connection of non-accessible sub-

graphs, then all of the factor nodes in the sub-graph sum-product algorithm

may also operate in parallel. Therefore parallel connection of non-accessible

sub-graphs seems to be a candidate for the equivalent of the iterative sum-

product algorithm.

Let vi be the ith variable node in a factor graph which contain loops.

Remember from Section 2.2 that Mi represents the set of the indices of the
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neighbors of vi. Assume that iterative sum-product algorithm is running on

this factor graph. The message function from vi to pj, where j ∈ Mi, at the

tth iteration is given by

mi→j, t(xi) =
∏

k∈Mi\{j}

nk→i,t−1(xi) (5.21)

Now we shall calculate the same message in the sub-graph sum-product

algorithm which has a flow graph of parallel connection of non-accessible

sub-graphs. Since sub-graphs are non-accessible all of the neighbors of vi

lie in different sub-graphs. During the (k − 1)th iteration all of these factor

node neighbors send their messages to the instances of vi. Each one of the

sub-graphs store a copy of this message in their state. Then these messages

are combined at the junction point of the flow graph. Let m̄i,k−1(xi) be the

message function about the ith variable node after the combination operation.

Then m̄i,k−1(xi) is given by:

m̄i,k−1(xi) =

∏
k∈Mi

nk→i,t−1(xi)∑
∀xi

∏
k∈Mi

nk→i,t−1(xi)
(5.22)

=
1

Z1

∏

k∈Mi

nk→i,t−1(xi) (5.23)

The function m̄i,k−1(xi) will be distributed to each sub-graph. Then inside

the sub-graphs, each sub-graph will separate the message function which they

hold in their states from m̄i,k−1(xi). Remember that separation operation is

nothing but a normalized point by point division. Result of the separation

operation will determine the message that factor nodes receive from ith vari-

able node. For instance, for the jth factor node it is given by the following

equations.

mi→j, t(xi) =
m̄i,k−1(xi)/nj→i,k−1(xi)∑
∀xi

m̄i,k−1(xi)/nj→i,k−1(xi)
(5.24)

=
1

Z1

1

Z2

∏

k∈Mi\{j}

nk→i,t−1(xi) (5.25)
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The only difference between two message functions which are calculated

in Equation (5.21) and Equation (5.25) is the normalization constants Z1 and

Z2. It is not a big problem since these normalization constants will be added

to the results of the iterative sum-product algorithm at the finalization step.

Therefore, the messages calculated in Equation (5.21) and Equation (5.25)

can be considered as equivalent. Hence, iterative sum product algorithm is

equivalent to an instance of the sub-graph sum-product algorithm which is

constructed by parallel connection of non-accessible sub-graphs.

5.3 Different LDPC Decoding Strategies with

Sub-Graph Sum-Product Algorithm and

Simulation Results

The iterative sum-product algorithm is the default LDPC decoding algorithm

in literature. We are able to propose different LDPC decoding algorithms

by the help of sub-graph approach. There exists thousands of partitioning

choices for a factor graph of a given LDPC code. Moreover, for the chosen

partitioning there exists again hundreds of different types of flow graphs.

Analyzing all of these different choices is almost impossible. Therefore, we

have conducted our simulations with the extreme types of LDPC decoders.

As mentioned in Chapter 4, there are two extreme types of sub-graph par-

titioning, namely all-accessible and non-accessible. In terms flow graphs, we

have only analyzed the all-parallel and all-cascade connected sub-graphs. As

a result we have constructed and simulated four different kinds of LDPC de-

coders. Our first decoder is composed of parallel connection of non-accessible

sub-graphs. Note that this decoder is equivalent to the standard LDPC de-
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coder as shown in Section 5.2. Second decoder is the cascade connection of

non-accessible sub-graphs. Our third and fourth decoders are cascade and

parallel connection of all-accessible sub-graphs. In other words we simulate

and compare three new LDPC decoding algorithms with the standard LDPC

decoding algorithm.

We have used a randomly generated LDPC code of length 2000 in our

simulations. The code is a regular LDPC code, having row weight 6 and

column weight 3. Hence, the code rate is R = 1
2
. We have used the same

code for all of the four decoders.

All of the four decoders are allowed to make at most 200 iterations. If

all of the parity check equations are satisfied before achieving 200 iterations

then the iteration process is terminated. The resulting decoded codeword

is compared with the transmitted codeword. If the decoded codeword was

not equal to the transmitted codeword then it would mean that the decoder

made an undetected error. However, we did not observed any undetected

errors during our simulations for all of the four decoders. All of the errors

were detected in which the decoder reaches 200th iteration.

Encoding of LDPC codes is a difficult and separate research problem.

Therefore, encoders are not used while conducting a research about the per-

formance of LDPC codes. Instead it is assumed that an all zero codeword

is transmitted, which guarantees that all of the parity check equations are

satisfied. Since LDPC codes are linear codes, probability of error when the

all zero codeword is transmitted, is equal to the probability of error when

any codeword is transmitted. We have adopted this approach and always

used the all zero codeword.

During the rest of the thesis, we have used abbreviated names for de-

coders. We have used the abbreviations “PAR-NON”,“CAS-NON”,“PAR-
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ALL”, and “CAS-ALL” for the decoders parallel connection of non-accessible

sub-graphs, cascade connection of non-accessible sub-graphs, parallel con-

nection of all-accessible sub-graphs, and cascade connection of all-accessible

sub-graphs respectively.

We have modulated coded symbols with binary phase shift keying (BPSK)

modulation and transmit them through additive white Gaussian noise (AWGN)

channel.

In Figure 5.7 we have presented frame error rate (FER) vs. signal to noise

ratio (SNR) characteristics of all these four decoders. This figure shows that

the decoders which consist of non-accessible sub-graphs perform approxi-

mately 2dB better than the decoders which consist of all-accessible sub-

graphs. Connection type of the sub-graphs does not affect the FER-SNR

characteristics much. For a deeper inspection, FER-SNR characteristics of

the all-accessible and non-accessible decoders are drawn separately in Figures

5.8 and 5.9 respectively. Both of these figures show that decoders constructed

by connecting the sub-graphs in cascade are slightly better than the decoders

which are constructed by connecting the sub-graphs in parallel. This result

is quite important since one of the new decoders, CAS-NON, is a little bit

better than the standard LDPC decoding algorithm which is the PAR-NON.

Figure 5.10 depicts the average number of iterations required to converge

for each decoder. While calculating these averages only the correctly decoded

codewords are taken into account. Firstly, this figure shows that limiting the

number of iterations to 200 for this code is reasonable since at the lowest

SNR in which decoder can receive some correct codewords the average num-

ber of iterations is at most 40 for all decoders. The second result that can

be deduced from this figure is that the convergence rate of the decoders in

which sub-graphs are connected in cascade is higher. The number of average
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Figure 5.7: FER. vs. SNR characteristics of all of the four decoders.
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iterations required to converge for CAS-NON decoder is nearly half of the

standard (PAR-NON) decoder. Figures 5.11 and 5.12 also supports this fact.

These figures show the performance of non-accessible decoders at 2dB and

all-accessible decoders at 4dB w.r.t maximum number of iterations allowed.

This is a very important result when combined with FER-SNR character-

istics. The CAS-NON decoder convergence twice as fast as the PAR-NON

(standard) decoder without altering the FER-SNR characteristics.

5.4 Joint Decoding and Equalization with Sub-

Graph Sum-Product Algorithm

Another problem that we have applied our sub-graph sum-product algorithm

is the joint decoding and equalization problem. This section starts with an
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introduction to obtaining factor graph for a signal transmission through an

inter-symbol interference (ISI) channel.

5.4.1 Factor Graphs of ISI Channels

Assume that an independent identically distributed (i.i.d.) equally likely

sequence of elements of a symbol set A, (x0, x1, . . . , xn), is passed through

a discrete time channel with memory. The impulse response of the channel

is represented with (h0, h1, . . . , hL−1) and hi = 0 for i < 0, i ≥ L. White

Gaussian noise is added to the samples, ni, at this stage and received symbols

yi’s are obtained. In other words

yi =
L−1∑

k=0

xi−khk + ni (5.26)
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Finding the marginal a posteriori probability densities of xi’s given yi’s, i.e.

fxi
(x|y0, y1, . . . , yL+n−1), is a problem which can be represented with factor

graphs. fxi
(x|y0, y1, . . . , yL+n−1) can be obtained from the joint a posteri-

ori density function of xi’s through the marginalization sum as in Equation

(5.27).

fxi
(x|y0, y1, . . . , yL+n) =

∑

∀(x0,x1,...,xn)|xi=x

fx0,x1,...,xn
(x0, . . . , xn|y0, . . . , yn+L−1) (5.27)

In order to show that this problem can be represented with factor graphs,

we should show that the joint a posteriori density function

fx0,x1,...,xn
(x0, x1, . . . , xn|y0, y1, . . . , yL+n−1) can be factorized into functions

which have smaller number of xi’s as arguments.

Using Bayes Theorem we can obtain

fx0,x1,...,xn
(x0, x1, . . . , xn|y0, y1, . . . , yL+n−1) =

fx0,x1,...,xn
(x0, x1, . . . , xn)fy0,y1,...,yL+n−1

(y0, y1, . . . , yL+n−1|x0, x1, . . . , xn)

· 1

fy0,y1,...,yL+n−1
(y0, y1, . . . , yL+n−1)

(5.28)

For a given (y0, y1, . . . , yL+n−1), fy0,y1,...,yL+n−1
(y0, y1, . . . , yL+n−1) is constant.

Moreover, since (x0, x1, . . . , xn) is an i.i.d and equally likely sequence

fx0,x1,...,xn
(x0, x1, . . . , xn) is constant for any (x0, x1, . . . , xn). These facts sim-

plify the Equation (5.28) as below:

fx0,x1,...,xn
(x0, x1, . . . , xn|y0, y1, . . . , yL+n−1) =

1

Z
fy0,y1,...,yL+n−1

(y0, y1, . . . , yL+n−1|x0, x1, . . . , xn) (5.29)

yi’s are conditionally independent given x0, x1, . . . , xn. Therefore, Equation
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(5.29) can be simplified further as follows:

fx0,x1,...,xn
(x0, x1, . . . , xn|y0, y1, . . . , yL+n−1) =

1

Z

L+n−1∏

i=0

fyi
(yi|x0, x1, . . . , xn) (5.30)

A received sample yi depends only the past L transmitted samples. Therefore

Equation (5.30) can be rewritten as below:

fx0,x1,...,xn
(x0, x1, . . . , xn|y0, y1, . . . , yL+n−1) =

1

Z

L+n−1∏

i=0

fyi
(yi|xi−L+1, xi−L+2, . . . , xi) (5.31)

For a given received symbol yi, fyi
(yi|xi−L+1, xi−L+2, . . . , xi) is a function of

xi−L+1, xi−L+2, . . . , xi. If this function is denoted by gi, Equation (5.31) can

be written as

fx0,x1,...,xn
(x0, x1, . . . , xn|y0, y1, . . . , yL+n−1) =

1

Z

L+n−1∏

i=0

gi(xi−L+1, xi−L+2, . . . , xi) (5.32)

We have been written the joint a posteriori density function as a product of

L+n functions which have at most L arguments by Equation (5.32). There-

fore, now we can represent this problem with a factor graph. The factor graph

of this problem, consists of n variable nodes, one for each xi and L+n factor

nodes one for each yi where each factor function gi(xi−L+1, xi−L+2, . . . , xi)

can be calculated by Equation (5.33).

gi(xi−L+1, xi−L+2, . . . , xi) =
1√

2πσ2
e−

(yi−
PL−1

j=0
xi−jhj)2

2σ2 (5.33)

Where σ is the variance of ni.
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Example 5.1. An ISI factor graph: Figure 5.13 shows an example ISI factor

graph. In this factor graph the channel has length 3 and block length is 7

symbols. Different possible partitioninigs of the factor graph are also shown

in Figure 5.13

Exact Message Passing

After deriving the factor functions, exact message functions can be calcu-

lated. In this section we will present the expressions of the exact mes-

sage functions. We assume that ith variable node represents the ith trans-

mitted symbol, xi, and the jth factor node represents the factor function

gj(xj−L+1, xj−L+2, . . . , xj).

We start with the messages from variable nodes to factor nodes. Due to

the structure of the factor graph the ith variable node is connected to only

ith, (i + 1)th, . . . , (i + L− 1)th factor nodes. If j ∈ {i, i + 1, . . . , i + L− 1} the

message function from ith variable node to the jth factor node is given by the

expression

mi→j(x) =
∏

k∈{i,i+1,...,i+L−1}\{j}

nk→i(x). (5.34)

Similarly, jth factor node is connected to the jth, (j−1)th, . . . , (j−L+1)th

variable nodes. If i ∈ {j, j−1, . . . , j−L+1} then the message function from

jth factor node to the ith variable node is given by the expression

nj→i(x) =
∑

∀(xj−L+1,xj−L+2,...,xj)|xi=x

gj(xj−L+1, xj−L+2, . . . , xj).

∏

k∈{j−L+1,j−L+2,...,j}\{i}

mk→j(x) (5.35)

Expressions given in Equations (5.34) and (5.35) are direct applications

of the sum-product algorithm defined in Definition 2.2.

59



p1 p2 p3 p4 p5 p6 p7 p8 p9

v1 v2 v3 v4 v5 v6 v7

(a) The factor graph

p1

p2

p3

p4

p5

p6

p7

p8

p9

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

Sub-graph 1

Sub-graph 2

(b) All-accessible partitioning

p1

p2

p3

p4

p5

p6

p7

p8

p9

v1 v2 v3 v4 v5 v6 v7

v1 v2

v1 v2 v3

v3 v4

v4

v5

v5

v6

v6

v7

v7

Sub-graph 1

Sub-graph 2

Sub-graph 3

(c) Non-accessible partitioning

Figure 5.13: An ISI factor graph corresponding to a channel of length 3, and

possible sub-graph partitionings
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5.4.2 An Approximation to Message Calculation for

ISI Factor-Graphs

In this section we introduce a message calculation simplification in ISI factor

graphs. Message calculation in variable nodes has complexity O(|A|L) as

can be ssen from Equation (5.34). However, message calculation at the factor

nodes has complexity O(|A|L) due to the marginalization sum in the Equation

(5.35). In order to decrease the total complexity, complexity of the message

calculation at the factor nodes should be decreased. Therefore, we make an

approximation for message calculation at the factor nodes.

We will show the derivation of the approximation for only sending a

message to the Lth neighbor of an ISI factor node, for the sake of simplicity

in the notation. However, our derivation is general, and can be applied to

any neighbor.

Remember the factor function gi(xi−L+1, xi−L+2, . . . , xi) that we have de-

rived in Equation (5.33). Note that this function is also a function of a linear

combination of its arguments as shown in Equation (5.36). In Equation (5.37)

we simplify the argument of the function gi.

gi(xi−L+1, xi−L+2, . . . , xi) =
1√

2πσ2
e−

(y−
PL−1

j=0
xi−jhj)2

2σ2

= gi(
L−1∑

j=0

xi−jhj) (5.36)

= gi(r) (5.37)
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Now let’s calculate the following convolution:

gi(r) ∗ mi−L+1→i(
r

hL−1

) ∗ mi−L+2→i(
r

hL−2

) ∗ · · · ∗ mi−1→i(
r

h1

) =

(
∑

∀(xi−L+1)

gi(r − hL−1xi−L+1)m0→i(xi−L+1))

∗ mi−L+2→i(
r

hL−2

) ∗ · · · ∗ mi−1→i(
r

h1

) =

(
∑

∀(xi−L+1,xi−L+2)

gi(r − hL−1xi−L+1 − hL−2xi−L+2)

mi−L+1→i(xi−L+1)mi−L+2→i(xi−L+2))

∗ mi−L+3→i(
r

hL−3

) ∗ · · · ∗ mi−1→i(
r

h1

) =

...

=
∑

∀(xi−L+1,xi−L+2,...,xi−1)

(gi(r −
L−1∑

j=1

xi−jhj)

L−1∏

j=1

mi−j→i(xi−j)) (5.38)

Now if we replace r in the equation above with −x h0 we can obtain the

message function ni→i(x) which is defined in Equation (5.35).

ni→i(x) =
∑

∀(xi−L+1,xi−L+2,...,xi)|xi=x

(g(−
L−1∑

j=0

xi−jhj)

L−1∏

j=1

mj→i(xj)) (5.39)

We have seen in these preceding two equations that a factor node of an

ISI factor graph actually convolves the message function it receives with its

factor function. The summation operator in front of Equation (5.39) causes

the complexity to be O(|A|L). If we had a simpler method for calculating this

convolution, complexity of the message calculation would decrease. We will

propose a simple approximation which simplifies obtaining this convolution.
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Let w(r) be the result of the convolution that we obtain in Equation

(5.38), i.e.:

w(r) =
∑

∀(xi−L+1,xi−L+2,...,xi−1)

(gi(r −
L−1∑

j=1

xi−jhj)

L−1∏

j=1

mi−j→i(xi−j)) (5.40)

Let’s make a simple approximation at this step. Assume that w(r) has a

Gaussian density form, i.e.:

w(r) ≈ 1√
(2πσ2

w)
e
−

(r−µw)2

2σ2
w (5.41)

Making such an approximation is reasonable. Because, we have obtained

w(r) by convolving some probability density functions (mi−j→i(r/hj)’s) and

a Gaussian density function (g(r)). Central limit theorem states that if these

density functions belong to independent random variables -we assume to be

so- w(r) will converge to a Gaussian density function.

Just knowing σ2
w and µw is enough for specifying w(r). Calculating these

two parameters is easy. Convolution in probability density functions (p.d.f.)

domain corresponds to addition in the random variable domain. Therefore,

w(r) is the p.d.f. of addition of some random variables. The first one of these

random variables is the Gaussian random variable with p.d.f. g(r). This

random variable has mean y and variance σ2 as can be seen from Equations

(5.36) and (5.37). We convolve g(r) with density functions mi−j→i(r/hj)’s.

These p.d.f.’s correspond to random variables hjxi−j. After identifying ran-

dom variables whose p.d.f.’s are convolved, then we can easily calculate the

parameters specifying w(r). From probability theory we know that, when

two random variables are added their means and variances are added, and

when a random variable is multiplied with a scalar its mean is multiplied
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with that scalar and its variance is multiplied with the square of that scalar.

From this basic information, we can calculate σ2
w and µw as follows:

σ2
w = σ2 +

L−1∑

j=1

h2
jσ

2
i−j (5.42)

µw = y −
L−1∑

j=1

hjµi−j (5.43)

where µi−j and σ2
i−j are the mean and variances of xi−j calculated using

mi−j→i(xi−j) as their p.d.f. as in Equations (5.44) and (5.45).

µi−j =
∑

∀x∈A

x mi−j→i(x) (5.44)

σ2
i−j =

∑

∀x∈A

(x − µi−j)
2mi−j→i(x) (5.45)

Now calculating the message function that will be sent to Lth neighbor is

easy.

ni→i(xi) = w(−h0xi)

We have showed the approximation in the above derivations for the Lth

neighbor only for the sake of simplicity. Our derivation is general. For

calculating the message for L − kth neighbor expressions can be generalized

as follows:

σ2
w = σ2 +

∑

j∈{0,1,...L−1}\{k}

h2
jσ

2
i−j (5.46)

µw = y −
∑

j∈{0,1,...L−1}\{k}

hjµi−j (5.47)

and

ni→i−k(xi−k) = w(−hkxi−k). (5.48)

Means µi−j’s and variances σ2
i−j are calculated as in Equations (5.44) and

(5.45) again.
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In this new, approximate method we got rid of the marginalization sum

that exist in Equation (5.38). Instead, we should calculate L − 1 means

and variances. Calculating mean and variance of discrete random variable,

given its p.d.f. has complexity O(|A|) where |A| is the alphabet size. In

this procedure we do this L − 1 times for calculating a message. Therefore

complexity reduces to O(|A|L) from O(|A|L) which is an important reduction.

However, one should not forget that we made this approximation based

on an assumption. We have assumed that w(r) is almost Gaussian, which

requires that x0,x1, . . . ,xn are independent. Therefore, this approximation

could not be used in a pure ISI factor graph, since ISI factor graphs con-

tain short cycles. However, this approximation may be useful in a joint

equalization-decoding scheme, in which dependency of the neighbors of the

same factor node reduces due to existence of the code factor graph.

5.4.3 Simulation Results

Our aim in these simulations was not implementing an optimum joint decoding-

equalization scheme or finding the best code for a given channel. Such studies

exist in literature. Our main aim was evaluating our approximation for ISI

factor graphs.

While simulating joint equalization-decoding schemes, our first observa-

tion was that the regular LDPC codes having column weight 3 were not as

successful as in the pure decoding problem. We have observed that the codes

having average column weights around 2.5 were more successful. Therefore,

we have used a code of length 1000 and average column weight 2.5 and rate

R = 1
2

. The code used in the simulation is randomly generated. However,

in order to make the whole factor graph 4-cycle free, we have prevented the

variable nodes which are connected to same ISI factor node to be connected
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Figure 5.14: The flow graph of the joint decoder-equalizer

to same parity check factor node.

We have modulated the symbols with the binary phase shift keying (BPSK)

modulation. The channel we have used in the simulations has three taps. The

channel coefficients are (0.408, 0.817, 0.408).

We have used a non-homogeneous flow graph structure for joint decoding-

equalization problem. The flow-graph we have used is depicted in Figure

5.14. Both ISI and code sub-graphs are non-accessible type in order to obtain

better performance. We have simulated also a turbo equalizer using the same

LDPC code as its code in order to use it as a benchmark. The turbo equalizer

employs BCJR algorithm as its equalizer and cascade-connected sub-graph

sum-product algorithm as its decoder with same sub-graph partitioning. The

flow graph that is shown in Figure 5.14 has made 9 iterations during the

simulations. If the flow graph makes 9 iterations, each code sub-graph is

invoked 27 times. In order to make fair comparison between the benchmark

turbo equalizer, turbo equalizer conducted 27 iterations.

Figure 5.4.3 shows the simulation results of our approximate message

passing algorithm. On the ∼ 10−3 frame error rate level, which corresponds

to ∼ 10−5 bit error rate level, our approximate message passing algorithm has

a performance very similar to the exact message passing algorithm. Both of

the algorithms are around 0.3dB worse than turbo equalizer algorithm which
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employs the optimum equalizer with complexity O(AL). These results show

that our approximation works well when used with a code.
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chapter 6

discussion and conclusion

In this chapter we will summarize and try to explain some of the results

that we have obtained in the thesis. We should note that, ideas that we will

present in this chapter are just conjectures, they are not proven to be facts

yet.

6.1 Why Convergence Rate Increases?

We have shown in Section 5.3 that CAS-NON decoder converges in less num-

ber of iterations than the standard LDPC decoder. In this section, this fact

will be explained qualitatively.

If there exists a path between a factor node and a variable node in a

factor graph, then the factor node has some information about the variable

node. For instance there is a path between p1 and v3 in Figure 6.1. This

p1 p2 p3 p4

v1 v2 v3

Figure 6.1: A simple factor graph with a loop
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p1 p2p3 p4

v1 v2 v3 v2 v3v1 v2

Sub-Graph1 Sub-Graph2 Sub-Graph3

Figure 6.2: Partitioned form of the factor graph that is shown in Figure 6.1

means that p1 has some valuable information for v3. If iterative sum-product

algorithm runs on this factor graph, v3 receives its information from p1 at the

third iteration. However, if we partition this factor graph into sub-graphs

as shown in Figure 6.2 and connect those sub-graphs in cascade, v3 receives

a portion of information from p1 through p4 during the first iteration, and

the remaining portion of the information through p3 in the second iteration.

This example shows that sub-graph sum-product algorithm may increase the

message propagation speed.

In general, in iterative sum-product algorithm, an information travels at

most two edges during an iteration through its target . However, in sub-

graph sum-product algorithm such a limitation does not exist. If the factor

graph is carefully partitioned then an information originating from a factor

node can even travel the whole graph.

The factor graph of a given problem is fixed. Therefore, we cannot make

two nodes closer. However, we can increase the speed of message propagation

as in the example above in order to increase the convergence rate.

The speed of message propagation is not the sole factor which determines

the convergence rate. If the speed of message propagation was the only factor
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which determines the convergence rate then CAS-ALL and PAR-ALL LDPC

decoding algorithms should have higher convergence rates. However, as we

have observed in Section 5.3 this is not the case. Probably these algorithms’

poor performance in accuracy, affects their convergence performance as well.

From this idea we may conclude that partitioning into sub-graphs increase

the convergence rate if the accuracy is not degraded.

6.2 Why All-Accessible Sub-Graphs Have Worse

Accuracy?

Message calculation at factor nodes depends on an assumption that incoming

messages are independent. An all-accessible sub-graph makes many variable

nodes to depend on each other. Therefore, the factor nodes which operate

after an all-accessible sub-graph will generate erroneous output messages.

This fact will degrade the accuracy of a flow graph composed of all-accessible

sub-graphs.

While showing that turbo decoding algorithm is an instance of sub-graph

sum-product algorithm we have said that each component decoder runs the

BCJR algorithm. BCJR algorithm is an instance of sum-product algorithm

tuns on an all-accessible factor-graph. Although, turbo decoding algorithm

consists of all-accessible sub-graphs, it is known that turbo decoding algo-

rithm has good performance. This fact seems to conflict with our idea. How-

ever it is not the case because of the structure of the BCJR factor graph.

The BCJR factor graph has a fixed repetitive structure which is shown in

Figure 6.3. This structure is first proposed by Wiberg [18] in his Ph.D. disser-

tation and explained in [1]. There is a different kind of node in this structure

which are represented by double circles. These nodes are called “hidden state
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Figure 6.3: Structure of a BCJR factor graph

nodes”. Actually they are variable nodes which represent some joint random

variables. What is important for our case is that in the BCJR factor graph

there exist at least four edges between any two variable nodes. Therefore,

even if these factor graphs are connected, they are loosely connected. We

believe that this is the reason why turbo decoding algorithm is so successful

even if it consists of two connected sub-graphs.

This idea supports our proposal on multiple concatenated turbo codes.

Since multiple concatenated turbo codes will be more punctured, the loosely

connected factor graph of the BCJR algorithm will be broken and sub-graphs

will look like more non-accessible. Hence, hopefully their performance will

increase.

6.3 Conclusion

The most important contribution of this thesis is the sub-graph sum-product

algorithm which determines an efficient schedule for factor graphs having

loops. By using the sub-graph idea we develop a decoding algorithm for

LDPC codes which converges twice as fast as the standard LDPC decoding

algorithm without sacrificing from BER performance. This decoder is the

second important contribution of the thesis. Final important contribution is
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an approximation for message calculation in ISI factor graphs. This approx-

imation transforms the complexity from exponential order to linear order

while decreasing the performance only 0.3dB.

6.4 Future Work

After this work, multiple concatenated turbo codes should be revisited. It is

very probable that better turbo codes can be developed by using the ideas

presented in this thesis.

Sub-graph sum-product algorithm can be employed in receivers of multi-

carrier, multi-user, or multi-antenna systems.

Better algorithms could be developed for partitioning a factor graph into

sub-graphs. By better partitioning better convergence rates can be obtained.

Some analytical methods can be developed for analyzing the sub-graph

sum-product algorithm. Especially partitioning a factor graph into sub-

graphs should be analyzed in an analytic manner.
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