
JDP: A TOOL TO SUPPORT PAIR PROGRAMMING IN DISTRIBUTED
ENVIRONMENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

HASAN TURAN KARAPINAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

JULY 2005

ii

Approval of the Graduate School of Informatics

 Assoc. Prof. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Assoc. Prof. Onur DEM RÖRS

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Semih B LGEN

 Supervisor

Examining Committee Members

Assoc. Prof. Onur DEM RÖRS (METU, IS) ____________________________

Prof. Dr. Semih B LGEN (METU, EE) ____________________________

Dr. Ali ARIFO LU (METU, IS) ____________________________

Dr. Cüneyt F. BAZLAMAÇCI (METU, EE) ____________________________

Dr. Altan KOÇY T (METU, IS) ____________________________

iii

PLAGIARISM

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Hasan Turan KARAPINAR

iv

ABSTRACT

JDP: A TOOL TO SUPPORT PAIR PROGRAMMING IN DISTRIBUTED

ENVIRONMENTS

Karap nar, Hasan Turan

M.S., Department of Information Systems

Supervisor: Prof. Dr. Semih B LGEN

July 2005, 57 pages

This thesis focuses on the development of a distributed pair programming tool that

enables two programmers to generate code together in JBuilder editor over the web.

First, software development processes are generally reviewed and Extreme

Programming, Distributed Extreme Programming, and Distributed Pair

Programming issues are examined. The tools that enable Distributed Pair

Programming are compared. This thesis also specifies the functional requirements

of the newly presented tool and includes information about its design and

implementation processes. Finally, an evaluation is given by indicating the positive

and negative sides of the tool.

Keywords: JDP, Distributed Pair Programming, JBuilder plug-in, Distributed

Extreme Programming.

v

ÖZ

JDP: DA ITIK ORTAMDA E PROGRAMLAMAYI DESTEKLEYEN B R

ARAÇ

Karap nar, Hasan Turan

Yüksek Lisans, Bili im Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Semih Bilgen

Temmuz 2005, 57 sayfa

Bu tez, dünyan n farkl yerlerinde bulunan iki programc n JBuilder editörünü

kullanarak e li programlama yapabilmesine imkan sa layan bir arac n

geli tirilmesini hedeflemi tir. Ba lang çta, yaz m geli tirme süreçleri genel olarak

incelenmi , Uç Programlama (XP), Da k Uç Programlama (DXP) ve Da k E li

Programlama (DPP) konular ele al nm r. Da k E li Programlama yapmaya

olanak veren di er araçlar/ programlar de erlendirilmi ve kar la lm r.

Geli tirilen yaz n gereksinimleri vurgulanm , tasar m ve geli tirilme

süreçleriyle ilgili bilgiler verilmi tir. Son olarak, sunulan arac n olumlu ve olumsuz

yanlar belirtilerek genel de erlendirmesi yap lm r.

Anahtar Kelimeler: JDP, Da k E li Programlama, JBuilder program eklemesi,

Da k Uç Programlama.

vi

To my wife Yasemin and daughter Ça la,

vii

ACKNOWLEDGEMENTS

I first thank my advisor Prof. Dr. Semih B LGEN for providing guidance,

encouragement and patience, which promoted this study. I am grateful to Prof. Dr.

Semih B LGEN for his inspiration and desire.

I am forever indebted to my wife, Yasemin, for her support and endless patience. I

express exceptional thanks to Mustafa KUB LAY for his technical assistance and

ideas.

Finally, words cannot truly express my deepest gratitude to my mother and father

who always gave me their love and emotional support.

viii

TABLE OF CONTENTS

PLAGIARISM.. iii

ABSTRACT ..iv

ÖZ ..v

ACKNOWLEDGEMENTS ..vii

TABLE OF CONTENTS.. viii

LIST OF TABLES..x

LIST OF FIGURES ...xi

LIST OF ABBREVIATIONS AND ACRONYMS ...xii

CHAPTER 1 Introduction...1

1.1 Problem Statement...2

1.2 Thesis Structure...3

CHAPTER 2 Related Research ...4

2.1 Software Development Processes ..4

2.2 Extreme Programming...7

2.3 Distributed Extreme Programming...10

2.4 Importance of Pair-Programming...12

2.5 Distributed Pair Programming ...14

2.6 Tool Support for DXP/ DPP ..15

2.6.1 MILOS: ...16

2.6.2 VNC: ...18

2.6.3 ClearCase: ...19

2.6.4 TUKAN:..20

ix

2.6.5 MASE: ..21

2.6.6 CUSeeMe and MS NetMeeting:...23

2.6.7 Ugur Oksay’s DPP Plug-in: ...23

CHAPTER 3 JBuilder DPP Plug-in (JDP)...26

3.1 Problem Statement...26

3.2 Purpose and Scope...28

3.3 The Summary of the Work Done ...29

3.4 Functional Requirements for JBuilder DPP Plug-in (JDP):30

3.5 JBuilder DPP Plug-in (JDP) Design and Implementation31

3.5.1 Decomposition Description..32

3.5.2 Dependency Description ..32

3.5.3 Detailed Description ..37

3.5.4 Interface Description..39

3.6 Sequence Diagram...43

3.7 Restrictions..43

CHAPTER 4 Evaluation of JDP..44

4.1 General Evaluation of JDP...44

4.2 The Positive Aspects of JDP..45

4.3 The Negative Aspects of JDP: ...46

4.4 Comparison of JDP with other Pair-Programming Tools........................46

CHAPTER 5 Conclusion ..49

5.1 General Discussion about the Tool...49

5.2 What Can Be Done to Improve JDP? - Future Work..............................50

REFERENCES ...53

APPENDIX ..57

x

LIST OF TABLES

Table 1 DXP Tool Types and Examined Tools..16

Table 2 Distributed Extreme Programming Tools Comparison Summary..............25

Table 3 The interface description for ConnectThread Class...................................39

Table 4 The interface description for EditorStatsDialog Class40

Table 5 The interface description for ListenThread Class42

xi

LIST OF FIGURES

Figure 1 XP Project Model [www.extremeprogramming.org]9

Figure 2 ConnectThread class diagram..33

Figure 3 EditorStatsDialog Class Diagram - A ..34

Figure 4 EditorStatsDialog Class Diagram - B ..35

Figure 5 ListenThread Class Diagram ...36

Figure 6 The sequence diagram of JDP ...43

http://www.extremeprogramming.org

xii

LIST OF ABBREVIATIONS AND ACRONYMS

API: Application Programming Interface

CASE: Computer Aided Software Engineering

CMM: Capability Maturity Model

DPP: Distributed Pair Programming

DXP: Distributed Extreme Programming

IDE: Integrated Development Environment

JDP: JBuilder DPP Plug-in

MILOS: Minimally Invasive Long-term Organizational Support

MS: Microsoft

RPP: Remote Pair Programming

SCM: Software Configuration Management

TCP/IP: Transmission Control Protocol / Internet Protocol

VNC: Virtual Network Computing

XP: Extreme Programming

1

CHAPTER

Introduction

Agile software development methods are becoming more popular day by day

because of their different approach to software engineering compared to classical

methods. Extreme Programming (XP) is the leading one among agile

methodologies.

XP has twelve rules/ key practices one of which is pair-programming. It

advocates the idea that in order to increase the quality of the software, two

programmers should generate code side by side at one computer. Some

advantages of pair programming are listed as economics, design quality, and

satisfaction according to an experiment at the University of Utah [Cockburn and

Williams, 2000]. The results show that the percentage of increase in time (15%)

of the pairs is the same as the percentage of the decrease in the number of defects

compared to individual programmers. Since the cost of fixing defects is high, pair

programming is economic. Second advantage, better design, is indicated by fewer

lines of code. The high satisfaction of the programmers is also understood from

the interviews.

1

2

“Increasingly, programmers are working in geographically distributed teams. The

trends toward teleworking, distance education, and globally distributed

organizations are making these distributed teams an absolute necessity. These

trends are beneficial in many ways, particularly for those in geographically

disadvantaged areas [Baheti, 2002].” The demand of virtual teams, whose

members work from different places, about using pair programming due to its

effectiveness led to born “Distributed Pair Programming-DPP”. It is defined in

[Baheti, 2002] as “collaborate on the same design or code, but from different

locations”.

1.1 Problem Statement

This study aims to develop a practical tool to support distributed pair

programming. While this may constitute the core of a general Distributed

Extreme Programming (DXP) tool, our aim was confined to pair programming

only. Although there are other professional tools to enable Distributed Pair

Programming (DPP), JBuilder Distributed Pair Programming Plug-in (JDP) has

some advantages due to being a plug-in to JBuilder.

The dilemma in distributed pair programming is that the commercial DPP tools

do not have software development capabilities as much as the commercial

software development environments and the software development tools do not

have extended distributed pair programming facilities.

According to the pair programming concept, the two programmers, driver and

navigator should be responsible for different issues, i.e. the driver for writing

code and the navigator for observing the larger picture and evaluating the driver’s

code [Baheti, 2002]. So, the navigator should see the written code of the driver,

but should not intervene, and should be able to guide the driver. Another issue is

3

the ability of working locally and trying two different ideas at their own

computers without loosing time.

The research problem tackled in this study is the development of a practical tool

to support this fundamental need. As this is intended simply as an “illustration of

concept” study, rather than a field evaluation of the developed tool by usage in

professional environments, a straightforward comparison of the goals and the

implemented facilities has been attempted in lieu of a formal validation exercise.

1.2 Thesis Structure

This study is composed of five chapters:

Chapter 2 presents research about software development processes, extreme

programming, distributed extreme programming, pair-programming, distributed

pair programming and tool support for DXP/ DPP.

In Chapter 3, the purpose, scope and functional requirements of JDP are

presented; the design is documented, implementation and restrictions are

described.

Chapter 4 consists of an evaluation of JDP. The positive and negative sides of it

are examined and a comparison between JDP and other evaluated tools is made.

As the fundamental aim of the study is simply to present a working, albeit

restricted, tool to support the needs of DPP, the evaluation consists of a

comparison of the needs stated in Chapter 3 with the achievements realized by

the implemented tool.

In Chapter 5, as a conclusion, a general discussion about JDP is presented and

some clues about improving JDP as a future work are given.

4

CHAPTER 2

Related Research

This chapter reviews the main issues about software development processes,

extreme programming, distributed extreme programming, pair-programming,

distributed pair programming and tool support for DXP/ DPP. At the end of the

chapter, a comparison table of the examined tools is given.

2.1 Software Development Processes

In the early years of computing, software was quite small, generally developed by

one person to use himself. At those times, there were no methodologies except

code-and-fix. The crisis in software industry led developers to handle software by

more sophisticated methodologies.

Sorensen observes that the Waterfall Model was the first documented life cycle

model. This model emphasizes completing a phase of the development before

proceeding to the next phase [Sorensen, 1995]. It is formal and a type of top-

down development. The steps of waterfall model can be listed as:

5

1. feasibility study

2. requirements analysis and specification

3. design and specification

4. coding and module testing

5. integration and system testing

6. delivery and maintenance [Scacchi, 2001]

The waterfall model can be effective only in the situations that the requirements

are clear and well understood.

The need of using the software as soon as possible and saving time led to another

methodology: incremental development. In this model, “the overall requirements

of the final system or product are known at the start of the development, however

a limited set of requirements is allocated to each increment and with each

successive (internal) release more requirements are addressed until the final

(external) release satisfies all requirements” [Wallin,2002]. We can simply

explain this method as follows: If the whole software is a circle, for example, in

the first increment, the first quarter is released, and so on. The quarter is working

software, but only a small part of the whole. After four increments, the circle is

established, that is, the software is completed.

Above two methods can only be used if the requirements are known from the

beginning. For the projects in which the requirements are not known definitely or

change rapidly, a new model is more suitable: evolutionary model. In this model,

“initially the requirements are partly defined and then refined and extended with

each successive (internal) release as the requirements picture mature and until a

satisfactory solution is reached” [Wallin,2002]. Usually, prototypes are used in

order to discard misunderstandings. This model works like an artist, making a

statue from rock and showing the result to the customer every day and getting

feedback until it finishes.

6

Another model is the spiral model proposed by Boehm, in 1988. “The spiral

model uses concepts of prototyping and evolutionary system implementation to

primarily identify and evaluate risk and cost” [Davidson, 2002]. “This model

divides the development activities into four quadrants through which the effort

proceeds. Each time a quadrant is visited, the scope is increased based on go/no-

go decisions made in the previous efforts. Thus, an expanding spiral effect that

finally leads to a deliverable system is created” [Davidson, 2002].

Agile software development methods emerged as a reaction to traditional ways of

developing software. In [Beck, et. al., 2001], it is admitted that there is a “need

for an alternative to documentation driven, heavyweight software development

processes”. Jim Highsmith defines being agile as being able to “Deliver quickly.

Change quickly. Change often” [Highsmith, et. al., 2000]. Some of the agile

programming methods are: Extreme Programming, Scrum, Crystal Methods,

Feature Driven Development, Lean Development, and Dynamic Systems

Development Methodology [Cohen, 2003]. One of the most popular agile

methods, Extreme Programming, is explained in detail in Section 2.2.

The demand for measuring the level of assurance of software quality provided by

developer organizations led to the Capability Maturity Model, becoming a de-

facto standard in this area. This model is “a five-level model that describes good

engineering and management practices and prescribes improvement priorities for

software organizations” [Paulk, 2001]. The model defines some key process areas

and goals for organizations in order to classify them. For being in Level-5, that is

called “Optimized”, an organization should succeed in 18 key process areas and

52 goals. According to [Cohen, 2003], most of the software organizations in the

world are in CMM Level-1, which is called Chaotic and only a few are

Optimized (CMM level 5). CMM is focused on the processes and procedures

instead of the software produced. The importance given to procedures and

7

documentation of CMM was criticized in 1990’s as being too formal and for that

reason being big and slow by some software engineers who later declared a new

approach: “agile” [Boehm, 2002], [Cohen, 2003], [Paulk, 2001], [Paulk,2002],

[Glazer, 2001], [Highsmith, 2002b].

2.2 Extreme Programming

Extreme Programming is the most popular Agile Method which emerged in

recent years. “Introduced by Beck, Jeffries, et. al., in 1998 [The C3 Team, 1998]

and further popularized by Beck’s ‘Extreme Programming Explained: Embrace

Change’ in 1999 and numerous articles since, XP owes much of its popularity to

developers disenchanted with traditional methods [Highsmith, 2002] looking for

something new, something extreme” [Cohen, 2003].

Extreme Programming is most suitable for small (generally 2-10) and co-located

teams. [www.extremeprogramming.org] The more members of the team after

ten, the more need for communication and the coordination, which will have a

negative effect on the project.

XP is usually considered most suitable for projects whose requirements are not

clearly defined or changing continuously.

XP methodology emphasizes team work and customer involvement throughout

software development. Communication and feedback are main points in Extreme

Programming. Communication is advocated not just between the customer and

the analyst but also between the customer and the developers and within the

development team. Feedback is achieved through early and continual testing.

“Extreme Programming is asserted that its benefits include faster time to market,

higher quality software, better customer satisfaction, and highly motivated

development teams” [Smith, 2001].

http://www.extremeprogramming.org

8

Extreme Programming has 12 rules/ key practices [Cohen, 2003]:

The Planning Game: At the start of each iteration, customers, managers, and

developers meet to flesh out, estimate, and prioritize requirements for the next

release. The requirements are called “user stories” and are captured on “story

cards” in a language understandable by all parties.

Small Releases: An initial version of the system is put into production after the

first few iterations. Subsequently, working versions are put into production

anywhere from every few days to every few weeks.

Metaphor: Customers, managers, and developers construct a metaphor, or set of

metaphors after which to model the system.

Simple Design: Developers are urged to keep design as simple as possible, “say

everything once and only once” [Beck, 1999].

Tests: Developers work test-first; that is, they write acceptance tests for their

code before they write the code itself. Customers write functional tests for each

iteration and at the end of each iteration, all tests should run.

Refactoring: As developers work, the design should be evolved to keep it as

simple as possible.

Pair Programming: Two developers sitting at the same machine write all code.

Continuous Integration: Developers integrate new code into the system as often

as possible. All functional tests must still pass after integration or the new code is

discarded.

Collective ownership: The code is owned by all developers, and they may make

changes anywhere in the code at anytime they feel necessary.

On-site customer: A customer works with the development team at all times to

answer questions, perform acceptance tests, and ensure that development is

progressing as expected.

40-hour Weeks: Requirements should be selected for each iteration such that

developers do not need to put in overtime.

9

Open Workspace: Developers work in a common workspace set up with

individual workstations around the periphery and common development

machines in the center.

Together with the twelve key practices, XP methodology is based on four

principles: Communication, simplicity, feedback and courage. In XP

methodology, the rules and practices must support in each other.

A general view of XP project is in the Figure 1.

Figure 1 XP Project Model [www.extremeprogramming.org]

User stories are written by the customers. They are scenarios declared in natural

rather than technical language. Developers estimate how long the stories might

take to implement. Each story will get a 1-3 week estimate under normal

circumstances. Then a release plan is created. Acceptance tests are created from

user stories. These tests ensure the functionality of the software developed. At

this phase, customers should participate in the process actively by verifying the

correctness of the tests. Small releases become outputs of iterations after

customer approval.

http://www.extremeprogramming.org

10

Despite the fact that XP has some principles and key practices, it is not a static

but adaptive methodology. Moreover, in [Hayes, 2001], it is claimed that no XP

projects are expected to look exactly the same.

2.3 Distributed Extreme Programming

XP advocates a strong level of communication among team members and pair

programming, both of which requires physically being near and in the same

location, ideally in the same room. However, due to individual constraints, cost,

mobility, convenient customer involvement, or other reasons, it may not be

feasible to have team members physically located close to each other. Kircher, in

[Kircher, et.al, 2001], proposed a customized version of XP called Distributed

Extreme Programming (DXP). He defines DXP as “Extreme Programming with

certain relaxations on the requirements of close physical proximity of the team

members” [Kircher, et.al, 2001]. DXP accepts all the XP principles but propose

to use XP in distributed and mobile team environments.

In order not to loose effectiveness in DXP compared to XP, such tools and

communication devices should be established that not only the team members

and pairs, but also the customer representative should not hesitate to

communicate.

DXP has some assumptions beyond the assumptions of XP. These are shortly:

connectivity, e-mail, configuration management, application sharing, video

conferencing, and familiarity [Kircher, et.al, 2001].

Kircher classifies the key practices of XP (defined in 2.2) whether they require

co-located team or not. Four key practices, planning game, pair programming,

continuous integration and on-site customer, are affected from the location. So,

11

these four practices should be handled and customized. Kircher handles them as

follows[Kircher, et.al, 2001]:

Planning Game - For the planning game with the customer being remote, video

conferencing and application sharing software support is needed. Ideally more

than two participants should be supported.

Pair Programming - For pair programming between team members in different

locations, Remote Pair Programming (RPP) should be used. This requires video

conferencing and application sharing support, to share the Integrated

Development Environment (IDE).

Continuous Integration - Because a remote team member cannot move to a

separate integration machine, a workaround needs to be defined. If one team

member is working at the central team site, he/she can invite the other remote

team member to do common integration at that machine.

On-site Customer - Video conferencing should be used to involve remote

customers.

The DXP faces some challenges because of not being co-located. These are:

a. Communication: The pair shall not be able to read the body language like

gestures, the face, and the voice.

b. Coordination: Synchronizing availability, adjusting time differences, and

coordinating distribution may cause some problems.

c. Infrastructure: Available software and hardware, bandwidth of connecting

network is a must for DXP.

d. Availability: Distributed members may be available at different times.

e. Management: Trust of the senior manager must be in high level [Kircher,

2001].

One of the main features of DXP is pair programming from different locations.

The “pair programming” key practice of XP is now called “Remote Pair

Programming-RPP” or “Distributed Pair Programming-DPP” in DXP. Pair-

12

programming and distributed pair programming (DPP) is focused in the next two

parts.

2.4 Importance of Pair-Programming

 “Pair programming is a style of programming in which two programmers work

side by side at one computer, continuously collaborating on the same design,

algorithm, code or test” [Baheti, 2002]. “One of them, called the driver, is in

control of the keyboard and mouse. The other, called the navigator, observes

what the driver is doing and offers advice. It is the driver’s job to write the code.

The navigator has a chance to observe the larger picture, evaluating the driver’s

code for correctness of design and implementation” [Gehringer, 2003]. Briefly,

the driver is responsible for writing more; the navigator is responsible for

thinking more. They unite their powers by brainstorming at any time. The pairs

exchange their jobs at certain time intervals. In an effective pair-programming

relationship, pairs should be active, that is they should communicate from 45

seconds to 1 minute [Baheti, 2002].

Researchers have indicated that pair programming is better than individual

programming in a collocated environment [Williams, 2000], [Nosek, 1998]. “It

has been observed that the code resulting from pair programming is more defect

free, does not take significantly more time to develop than if developed by one

member, yields fewer lines of code, and is more satisfying to programmers”

[Cockburn and Williams, 2000]. Advantages and disadvantages, main concepts,

best practices, and practical advice to successful pair programming are discussed

in a paper based on an experiment at the University of Utah where one third of

the class developed the projects individually and the rest developed in pairs. The

results were analyzed from the point of views of economics, satisfaction, and

design quality [Cockburn and Williams, 2000]:

13

Economics: The results showed that the pairs only spent 15% more time to

program than the individuals and the code produced by pairs had 15% fewer

defects. Thus, pair programming can be justified purely on economic grounds

since the cost of fixing defects is high.

Satisfaction: Results from interviews with individuals who tried pair

programming were analyzed. Although some were skeptical and did not feel

comfortable at first, most programmers enjoyed the experience.

Design quality: In the Utah study, the pairs not only completed their projects

with better quality but also implemented the same functionality in fewer lines of

code. This is an indication of better design.

Other benefits of pair programming are continuous reviews, problem solving,

learning, and staff and project management [Cockburn and Williams, 2000]:

Continuous reviews: Pair programming serves as a continual design and code

review that helps the removal of defects.

Problem solving: The teams found that, by developing in pairs, they had the

ability to solve problems faster.

Learning: The teams emphasized how much they learned from each other by

doing pair programming. Pair programmers often mention that they also learned

to discuss and work together, improving team communications and effectiveness.

“Extreme Programming demonstrates that programmers can not only work well

in pairs but also learn much from discussing code and design with another

person” [Smith, 2001].

Staff and project management: From the staff and project management point of

view, since people are familiar with each piece of code, staff-loss risks are

reduced.

14

In an organization, the issue of how much training is required is also important

while deciding which methodology to use. “Pair programming helps minimize

what is needed in terms of training, because people mentor each other. This kind

of mentoring (by some referred to as tacit knowledge transfer) is argued to be

more important than explicit training” [Cohen, 2003].

Many researchers [Williams et al, 2000], [Cockburn and Williams, 2000],

[Kalermo, 2002], [Cohen, 2003] emphasize one point: It is hard to convince some

programmers to do pair programming at the beginning. After convincing, it is

observed that programmers were not comfortable at first times. But later, they

were used to the new methodology and even liked it, started to work naturally

and efficiently with his/her partner.

The pair programming concept is becoming more popular as the positive sides

emerge and the effectiveness is proved.

2.5 Distributed Pair Programming

“Increasingly, programmers are working in geographically distributed teams.

Escalating trends in teleworking, distance education, and globally distributed

organizations are making these distributed teams an absolute necessity” [Baheti,

2002]. What if programmers working in geographically different places want to

have the benefits of pair- programming? Surely they can use pair-programming,

but with the help of some technical facilities. At least, they should be able to see

the same screen and share comment in a conversation environment.

By using either the tools presented in Section 2.6 or some other tools, it can be

said that pair programming is possible, but is it as effective as co-located pair

programming? In one research, [Canfora, 2003], it was concluded that only

screen sharing applications without audio or video support does not work,

15

because after some time distributed pairs tended to stop cooperating and began to

work as two single programmers. In [Baheti, 2002], the results of another

research about distributed pair programming are presented. According to it,

“Collocated teams did not produce statistically significantly better results than the

distributed teams” and “the experiment is a first indication that distributed pair

programming is a feasible and efficient method for dealing with team projects”.

With the objective of providing a catalyst for the methodology, this thesis and the

presented tool is focused on Distributed Pair Programming - DPP.

2.6 Tool Support for DXP/ DPP

In this part, the tools that support Distributed Extreme Programming or

Distributed Pair Programming are focused.

The tools that are supposed to be used in DXP projects should be easy to use and

integrate in the working environment. They could also be supported on multiple

platforms. A video conferencing and application sharing software should be used.

In the hardware side, every computer should have a microphone, speakers, and a

web cam. An internet connection (as fast as possible) should be established.

DXP tools are generally video conferencing & application sharing tools and

distributed programming tools as seen in Table 1. Ideally, the tools supposed to

support DXP should have the following properties:

1. Project coordination support,

2. Synchronous communication,

3. Active notifications and information routing,

4. Integrate process execution with knowledge management: [Maurer, 2002]

16

Table 1 DXP Tool Types and Examined Tools.

Tool Type Tool Name

Distributed programming

tools

MILOS, VNC, ClearCase, TUKAN, MASE

Video conferencing &

application sharing tools

CUseeMe, NetMeeting.

Below, these tools will be described and comparatively evaluated with the aim of

determining the requirements for the tool to be developed within the framework

of this study.

2.6.1 MILOS:

MILOS is a process-support environment that helps software development teams

to maintain XP practices in a distributed setting. MILOS stands for “Minimally

Invasive Long-term Organizational Support”. The overall goal of the MILOS

approach is to support process execution and organizational learning for virtual

software development teams [Bowen, Maurer, 2002].

MILOS is Web-based and accessible as a web service on the MILOS web site

(http://sern.ucalgary.ca/~milos) from any machine connected to the Internet using

a standard Web browser. Team members are allowed to use facilities after login

to the system. Users may retrieve the list of current projects, user stories,

currently available tasks, task estimation, and pair programming facilities.

Release & iteration planning is handled as follows [Maurer, Martel, 2002]: After

the creation of an initial project and the assignment of a project manager to it, the

17

customer is supposed to enter story cards into the MILOS system. The

programmers can then contact the customer, either through the MILOS

framework or by conventional means, and discuss the story with them if needed.

They can revise the description of the user story – creating a new version of the

existing card. In addition, they can then add notes to the story card pertaining to

implementation details and split up the story into several smaller stories if the

scope is too large. They would then proceed to decompose the story into specific

programming task that will be needed to satisfy the next build. The workflow

engine of MILOS handles the creation and changes of tasks. For each user story,

the MILOS system automatically creates a top-level process “Design and

implement user story”. The input of this process is the newly created user story.

Then the programmer can decompose the user story into smaller and more

concrete tasks.

After having decomposed user stories into concrete programming task, the

programmer may describe the task in more detail using the workflow engine user

interface. Tasks are associated with specific projects and can be assigned to

various team members. For each task, the manager enters planned start and end

dates. In addition, the users are able to define the inputs and outputs of processes.

The story card automatically becomes an input of all subtasks. Furthermore, the

users are able to specify the information flow between tasks by defining the

output of one process to become the input of another.

Specifying the information flow allows the MILOS system to provide access to

input information that was created as the output of another task: the output of a

task, e.g. a source code file, is transferred to the MILOS server and stored in a

version management system. From there, any successor task may access the

current version as well as older versions.

18

The programmer is able to estimate the effort and the forecasted end dates. The

effort simply consists of the total number of workdays needed to complete the

task (measured in ideal engineering time). To set the forecasted end date, the

developer takes the required effort as well as his overall workload into account.

Synchronous communication is enabled via NetMeeting. Using Microsoft

NetMeeting, MILOS provides an audio and video link between two developers

and the ability to share the desktop between them. These capabilities are used to

support pair programming in a distributed setting. The MILOS system keeps

track of who is logged on to the system and provides the possibility to contact the

responsible team member for a task or any other team member that is currently

logged in. [Maurer, Martel, 2002], [Bowen, Maurer, 2002].

2.6.2 VNC:

This tool is based on the open source screen sharing application Virtual Network

Computing (VNC). VNC allows a user’s desktop to be replicated onto multiple

computers (in particular, two in the case of pair programming). Application

output is displayed on both computers, while keyboard and mouse input from

either computer is sent to the applications.

Being “screen-sharing” brings the advantage of sharing single user applications

by multiple users without modification. It is critical for a distributed pair of

developers to be able to use their preferred development tools, and the screen

sharing approach supports this requirement [Hanks, 2004].

VNC is not designed for DXP, but only supports DPP, distributed pair

programming. Therefore, release and iteration planning facilities are not

available. It enables synchronous communication in pair-programming via

“Voice over IP” applications (like Messenger).

19

Despite the fact that VNC can be used as a DPP tool, it is not ideal for this. “Both

users have active keyboards and mice. If both partners use the keyboard

simultaneously, their keystrokes are interlaced into an unintelligible stream.

There is also only one cursor, which makes it difficult for the navigator to point at

areas of the screen” [Hanks, 2004]. But this disadvantage is tried to be overcome

by designing a gesture mode, so the cursors are managed.

2.6.3 ClearCase:

ClearCase is a Software Configuration Management (SCM) system. “That means

it keeps track of which versions of which files were used for each release (even

internal releases) and also which combinations were used in builds (including

engineer builds, nightly and release builds). ClearCase also provides a rich and

robust set of tools to allow a company to craft their engineering environment to

their own requirements”[www.timefold.com/atria/10quest.html]

Every programmer on an XP project must be able to change code and ensure that

it works, not just for unit tests but also for acceptance tests. This requires frequent

builds. In order for it to really work, powerful configuration management tools

are needed. The ClearCase provides general guidelines for continuous

integration. [http://www.therationaledge.com/content/mar_01/f_xp_gp.html]. The

"anyone can change anything" philosophy in XP makes a configuration

management program like ClearCase necessary, especially in distributed

environments. ClearCase supports distributed development (including distributed

pair programming) by managing the versions of the documents [Kircher, 2001].

Due to the fact that ClearCase is designed for managing versions of the software,

the using area of it is not limited to XP or pair-programming. Therefore, the

planning issues and synchronous communication facilities of XP are not available

http://www.timefold.com/atria/10quest.html
http://www.therationaledge.com/content/mar_01/f_xp_gp.html

20

in ClearCase. But it should not be forgotten that other synchronous/ asynchronous

communication tools (like e-mail, chat, Messenger, etc.) can be used separately.

2.6.4 TUKAN:

TUKAN is “a synchronous distributed team programming environment, which

applies groupware research results to the XP domain and solves the problems

which arise when XP is carried out by distributed teams” [Schümmer&

Schümmer, 2001].

TUKAN is an enhancement of VisualWorks / ENVY Smalltalk. ENVY provides

a shared code repository with a sophisticated distributed version management and

simple user management for code ownership. TUKAN adds awareness

information, communication channels, and synchronous collaboration

mechanisms to ENVY. It uses an extended model to arrange the software artifacts

in a virtual environment.

Unlike application sharing systems like NetMeeting, TUKAN works on shared

replicated objects and requires only a low network bandwidth [Schümmer&

Schümmer, 2001].

Teams are supported in the planning activity by the activity explorer. It may be

used simultaneously by programmers and customers to play the planning game in

a distributed setting.

“TUKAN combines many of the techniques:

TUKAN provides basic communication support (chat and audio).

TUKAN is a coordination system since it helps to plan and co-ordinate activities

in the planning game.

TUKAN integrates a version management system (ENVY).

21

In supporting the planning game, TUKAN is also a group decision support

system.

TUKAN includes multi-user editors for code editing and for annotating story

cards in the planning game” [Schümmer& Schümmer, 2001].

TUKAN supports Distributed Pair Programming, not only with one person, but

also by inviting other people to the environment. “TUKAN uses a separate

browser to provide additional information about what change caused the conflict

or who is currently working nearby. If the work of another user is of interest to a

programmer's task, she can decide to switch to tighter collaboration and enter a

pair programming or integration session using the cooperative class browser”.

One can invite other to join the pair programming session by pressing the invite-

Button of the browser and selecting his name from a list of available users.

“When accepting the invitation, the author also sees the pair programming

browser on his machine and is a partner with equal permissions within the

session” [Schümmer& Schümmer, 2001].

2.6.5 MASE:

“MASE is a web-based collaboration and knowledge sharing tool for agile teams.

Web technology makes the tool accessible anytime anywhere by users with a web

browser in their computing environment. The tool does not distinguish users

working at the same place from those who work at different places. Hence,

MASE is capable of supporting collaboration for both co-located and distributed

teams”. [Chau, Maurer, 2004].

MASE enables any users to access, browse, create, structure, and update any web

pages in real-time using a web browser only. Each of these web pages, known as

a wiki page, acts like an electronic bulletin board discussion topic with a unique

name.

22

MASE supports synchronous work through its integration with the real-time

collaboration tool, Microsoft NetMeeting. Every time when a team member logs

into MASE, MASE tracks the network address of that team member’s computer.

Through a plug-in (ListUser), MASE displays which members of a team are

currently using the system, thus making all online team members aware of each

other’s presence. This is important for team members to establish informal and

spontaneous communication with one another at ease.

MASE facilitates the following agile practices: release and iteration planning,

distributed pair programming, collaborative design, and daily meetings [Chau,

Maurer, 2004]

MASE supports agile practices through its library of plug-ins. “Project managers

and customers can create iterations and user stories. MASE keeps track of all

estimates made by the development team and suggests to both the development

team and customers the appropriate size for the next iteration based on the

developers’ estimation accuracy from the previous iteration. Using the suggested

iteration size, customers can prioritize user stories and move them from iteration

to iteration or move them back to the product backlog. During the course of the

project, both the customers and development team can track work progress at

various granularities (project, iteration, user story) using the Whiteboard plug-in

and view effort metrics for a particular individual or for the entire team” [Chau,

Maurer, 2004].

“Leveraging MASE’s integration with NetMeeting, developers can also perform

distributed pair programming by sharing their code editor and collaborate on a

design together using the shared whiteboard” [Chau, Maurer, 2004]. Using the

video and audio conferencing and multi-user text-chat features of NetMeeting,

23

distributed team members who work at the same time can perform daily

meetings.

2.6.6 CUSeeMe and MS NetMeeting:

CUSeeMe is an application that enables videoconferencing. The software was

developed by Cornell University and White Pine as an attempt to create

affordable and workable desktop videoconferencing. With this program, one can

see and talk to someone at the same time. CUSeeMe can be used via web

browsers.

 [http://www.cortland.edu/flteach/methods/obj1/cuseeme.html].

NetMeeting is a Microsoft product for internet communication with multi-point

data conferencing, text chat, whiteboard, and file transfer, as well as point-to-

point audio and video [http://www.microsoft.com/windows/netmeeting].

NetMeeting enables distributed pair-programming by program sharing, that is,

both sides open an application program, see and even edit the data displayed.

[http://www.departments.dsu.edu/disted/netmeeting]

Despite the fact that CUSeeMe and NetMeeting can be used in XP / DXP

projects, they are not merely intended for these methodologies, so the planning

issues (like release & iteration planning) are not handled. These two tools can be

used as a supporting tool in synchronous communication.

2.6.7 Ugur Oksay s DPP Plug-in:

This is not a professional tool as the others mentioned in this section. However, it

has served as a starting point for the work within the scope of this study. Oksay

[Oksay, 2004] has built an elementary facility that opens a dialog box from

JBuilder and transmits the inputs from one side to the other. No specific editor or

http://www.cortland.edu/flteach/methods/obj1/cuseeme.html
http://www.microsoft.com/windows/netmeeting
http://www.departments.dsu.edu/disted/netmeeting

24

JBuilder functionality is shared, but the single character-based transfer facility

has provided motivation for our work.

A summary of the comparison of these tools, based on the descriptions and

considerations outlined in sections 2.6.1 through 2.6.6 is summarized in Table 2.

25

 Tool
Property

Tool Name

Design
Architecture

Release & Iteration Planning Synchronous
Communication

via Audio & Video

Pair Programming Support

MILOS Web-based Enabled,

The list of current projects, user stories,
currently available tasks and task estimation
can be retrieved. The programmers can
create and modify user cards.

Enabled by MS

NetMeeting

Enabled by MS NetMeeting

VNC Screen-sharing Disabled,
No planning issue is handled.

Enabled by Voice over
IP applications

Supported by synchronizing the screens.
The management of active keyboards and mouse is
needed.

ClearCase Software
Configuration
Management

Disabled,
Continuous integration is accomplished
only.

Disabled,
Communication is not
handled within the tool.

Supported by managing the versions of the software.

TUKAN Shared replicated
objects &
version
management

Enabled,
Teams are supported in the planning
activity by the activity explorer. It may be
used simultaneously by programmers and
customers to play the planning game in a
distributed setting.

Chat & Audio enabled Supported,
It is not limited to one peer; instead more than two
people can share the code. No difference between the
navigator and the driver.

MASE Web-based Enabled,
Project managers and customers can create
iterations and user stories.

Enabled by MS
NetMeeting

Supported,
Displays which members of a team are currently
using the system, thus making all online team
members aware of each other’s presence. Enables
sharing the code editor and collaborate on a design
together using the shared whiteboard.

CUSeeMe,
NetMeeting

Desktop video-
conferencing and
program sharing.

Disabled,
Planning, specifically in the context of XP,
is not explicitly handled.

Enabled,
Used actively for
synchronous
communication.

Supported by an editor which is not a compiler.

Table 2 Distributed Extreme Programming Tools Comparison Summary

Table 2
Distributed Extrem

e Program
m

ing Tools C
om

parison Sum
m

ary

25

26

CHAPTER 3

JBuilder DPP Plug-in (JDP)

In Chapter 3, firstly, the problems of distributed pair programming and the

examined tools are specified and in the next part the solutions of these problems

are proposed with the purpose and scope of the study. After the functional

requirements are listed, the structure of JDP is explained with design and

implementation issues. This chapter finishes with the restrictions of the tool

3.1 Problem Statement

The dilemma in distributed pair programming is that; the commercial tools that

support DPP including the tools mentioned in Section 2.6 do not have software

development capabilities as much as the commercial software development

environments (e.g. Borland JBuilder) and the software development tools do not

have extended distributed pair programming facilities. MS NetMeeting,

Messenger or some other communicating programs can be used in distributed

pair programming, but the editors of such programs are generally dummy editors

or serve the facilities such as emoticon insertion that programmers seldom need.

27

One of the two ways to tackle this problem is to extend communicating programs

by adding DPP software development capability, while the other one is extending

software development environments by adding DPP facility. The approach

preferred in this study has been latter, namely, the very popular software

development environment, JBuilder, has been extended with a plug-in software

module to provide DPP support. Briefly, the technology of software development

environments and compilers should merge with distributed pair programming

methodology.

The second issue is enabling alternation of the driver and navigator roles in the

DPP process. The tools mentioned in Section 2.6 do not give a specific role to the

driver and navigator, and authorize them in the same level which is not

appropriate in the scope of pair programming. The driver should be responsible

for writing the code while the navigator should observe and evaluate the driver’s

code. The driver and the navigator should be able to exchange their roles in

certain time intervals [Baheti, 2002], [Gehringer, 2003]. According to DPP

concept, only the driver should type the code, possibly concentrating on low-level

details, while the navigator should not have ability and authority to write code so

that s/he can possibly ignore low level details while keeping the larger scale

design and architecture issues in mind. This role differentiation should be

explicit, even when they are not co-located. The main reason of such a restriction

is to focus on software from different detail levels in order to prevent defects in

the coding phase.

The third issue is that, the driver and the navigator need not only to communicate

and share the same code, but also they must be able to work locally. The driver /

navigator may want to try a small change in the code which is not needed to be

seen by the navigator / driver. Enabling local changes may have benefits like

saving time and trying two different ideas by both the navigator and the driver at

their own editors without interrupting each other.

28

The fourth issue is the time wasted in the process. Other candidates for DPP, e.g.

MS NetMeeting or Messenger, send the written line by a trigger which is

generally a “Send” button or “Enter” key. While the driver edits, the navigator

can not see the written line up to the time of executing the trigger, i.e. pressing

the “Send” button or “Enter” key. This time includes not only the typing time but

also implicitly the “thinking” and “text-arranging” time.

3.2 Purpose and Scope

The purpose of this study is to handle the problems stated in the previous section

in the light of the DPP methodology. The software development environment to

be augmented for DPP functionality is selected as Borland JBuilder 9.0.

The problem of merging a software development environment with distributed

pair programming methodology is handled by adding a DPP plug-in facility to

JBuilder. This plug-in enables distributed pair programming between the driver

and the navigator who are using two different computers connected to Internet at

two different places via a plug-in interface.

The need for differentiating the roles of driver and navigator and the ability to

exchange them in certain time intervals is accomplished as follows: Two roles are

defined by the system as the driver and the navigator. The sending operation is

limited only from driver to navigator, i.e. every action performed by the navigator

is local and does not have any effect on the driver editor. Exchanging the roles is

accomplished by simply signing out and logging in to the system with the

opposite role.

Working locally is handled by differentiating the way of using the facilities, i.e.

by mouse or by keyboard. The most frequently used editor functions of the

29

driver, including cut, copy, paste and selection are replicated at the navigator side

when carried out by the driver using keyboard shortcuts such as CTRL-X, CTRL-

C, etc. When either side performs these operations using explicitly menu item

selections, the operation is carried out locally.

Characters entered by the sender should be replicated at the driver’s screen

immediately.

3.3 The Summary of the Work Done

At the beginning phase of the study, what kind of a tool shall be developed was

specified. Functional requirements of the planned tool were listed.

In the second phase, Oksay’s work [Oksay, 2004], which has provided motivation

for ours, was examined. This phase has included a meeting with Oksay.

The next phase was to improve Oksay’s software which was taking the characters

written into a textbox and sending it to the other side without any sequence when

pressed a button. Firstly, a sequential sending operation was established.

Sequential means sending the words as they are and in “First in First Out” order.

At the end of the phase, the output was the software which sends the characters

sequentially to the same line at the other side by clicking the “Send” button.

The goal of the next phase was to preserve the line numbers and spacing, that is,

to handle the characters like “Enter”, “Space” and “Backspace”. After it was

done, adding the “Send” button to the toolbar was intended, but because of

finding a better solution, the route changed to another way; simultaneous sending.

In this way, no button would be needed because the send operation should be

done at the time of pressing the key.

30

The next phase was to cancel the text box and write to /read from JBuilder editor

instead. Handling the JBuilder editor was a milestone because of beginning to use

the local facilities of JBuilder.

In the next iteration, mouse events in the editor were handled. Although all

mouse events were handled, only “mouseClicked” event was set to send the

cursor position.

In the last phase, Cut, Copy, Paste, Select-All and text selection by mouse were

handled. Cut, Copy, Paste and Select-All facilities were attended to known

“Control” characters.

The approach taken in implementing this software was close to XP. General XP

rules like small releases, simple design, and continuous integration were applied

except inapplicable rules like pair-programming. Iterations were divided into

small tasks and every week a small release was presented.

3.4 Functional Requirements for JBuilder DPP Plug-in (JDP):

1. The system shall be a plug-in to Borland JBuilder.

2. The system shall work on Microsoft Windows XP operating system.

3. The driver and navigator shall communicate over the Internet, i.e. the

software shall operate over TCP/ IP.

4. Users shall be able to login to the system either as the driver or the

navigator.

5. The system shall check the versions of the Borland J++ Builder of two

sides; continue only if they are identical.

6. The system shall enable navigator and driver to choose the file to modify.

31

7. The system shall send the alphanumeric characters from the driver to the

navigator.

8. The following special characters shall be sent from the driver to the

navigator with their same functions:

a. Backspace: Deletes the previous character.

b. Enter: Go to the new/ next line.

c. Delete: Deletes the selected characters.

d. Space: Puts a blank character.

9. The following editor functions, when performed by the driver, shall be

replicated on the navigator’s editor.

a. Select-All: Ctrl-A, selects the whole characters in the editor.

b. Cut: Ctrl-X, deletes the selected characters and holds it in the

clipboard.

c. Copy: Ctrl-C, holds the selected characters in the clipboard.

d. Paste: Ctrl-V, puts the characters in the clipboard to the place of

the cursor.

10. The system shall send the characters synchronously, that is, at the time the

characters are pressed on the keyboard.

3.5 JBuilder DPP Plug-in (JDP) Design and Implementation

JDP uses the OpenTools technology of Borland JBuilder. The OpenTools

application programming interface (API) contains the classes and interfaces to

extend JBuilder.

The structure of JDP is based on sending the characters and mouse events of the

driver JBuilder editor to the navigator JBuilder editor. This sending operation is

designed to execute at the time of the occurrence of the event.

32

JDP is designed as three main classes which are described in next sections in

detail and two supporting classes one of which is the EditorStats class to open a

new JBuilder screen and the other is an empty class to use as a default editor.

3.5.1 Decomposition Description

The JDP software is developed with one package: OpenToolsAPI. This package

includes user and session related classes. Package includes the classes that do the

main control, socket management and editor activities.

Package: OpenToolsAPI

Identification : OpenToolsAPI

Type : Package

Purpose : To provide a framework for classes of JDP.

Function : Performs customize operations for JDP

3.5.2 Dependency Description

Dependency description involves classes as design entities, and provides details

related to classes of OpenToolsAPI package by addressing identification, type,

purpose, function, subordinates, dependencies, and resources design entity

attributes [IEEE, Std 1016-1998]

Figure-2, Figure-3, Figure-4, and Figure-5 shows dependencies among classes in

form of a class diagram.

33

 Figure 2 ConnectThread class diagram

34

Figure 3 EditorStatsDialog Class Diagram - A

35

Figure 4 EditorStatsDialog Class Diagram - B

36

Figure 5 ListenThread Class Diagram

37

3.5.3 Detailed Description

a. Class: ConnectThread:

Identification : ConnectThread

Type : Class

Superclass : Thread class

Purpose : This class handles the connection to driver by the

navigator and arranges the editor functions of the

navigator.

Function : Generates a navigator demand to the listening driver,

handles the editor functions in the navigator side

Subordinates : Properties and methods.

Please refer to Section 3.5.4

Dependencies : OpenToolsAPI.EditorStatsDialog

Resources : java.io

java.lang

java.net

java.util

b. Class EditorStatsDialog:

Identification : EditorStatsDialog

Type : Class

Superclass : JDialog Class

Purpose : This class supplies the user interface of JDP, specifies

the role of the programmer, and handles editor

38

functionalities.

Function : It enables selecting the user the role of the driver or the

navigator. Cut, Copy, Paste and Select-All Actions,

mouse click events and driver editor facilities are

handled.

Subordinates : Properties and methods.

Please refer to Section 3.5.4

Dependencies : OpenToolsAPI.ConnectThread

OpenToolsAPI.ListenThread

Resources : javax.swing

java.awt

com.borland.primetime.editor

java.lang

java.awt.event

c. Class ListenThread:

Identification : ListenThread

Type : Class

Superclass : Thread Class

Purpose : This class opens the driver socket for listening.

Function : Starts a thread where socket is continuously listened for

the incoming messages. Handles the driver editor

facilities.

Subordinates : Properties and methods.

Please refer to Section 3.5.4

Dependencies : OpenToolsAPI.EditorStatsDialog

Resources : com.borland.primetime.editor

39

java.net

java.io

java.lang

3.5.4 Interface Description

Interface description involves classes as design entities, and provides access

signatures related to subordinates (properties and methods) of classes in

OpenToolsAPI package.

a. Class: ConnectThread:

Table 3 The interface description for ConnectThread Class

Subordinate Description

Access

allowed

by

Access via signature

ConnectThread method All public ConnectThread

(EditorPane tempEditor)

run method All Run():void

WriteToEditor method All WriteToEditor():void

40

b. Class EditorStatsDialog:

Table 4 The interface description for EditorStatsDialog Class

Subordinate

Descrip-

tion

Access

allowed by Access via signature

actionPerformed Method All Public void actionPerformed

(java.awt.event.ActionEvent e)

EditorStats

Dialog

Method All public EditorStatsDialog

(java.awt.Frame frame,

java.lang.String title,

boolean modal)

actionPerformed Method All public void

actionPerformed(java.awt.even

t.ActionEvent e)

jbInit Method All void jbInit()

mouseClicked Method All Public void actionPerformed

(java.awt.event.MouseEvent e)

clientButton_

actionPerformed

Method All Public void

clientButton_actionPerformed

(ActionEvent e)

doneButton_

actionPerformed

Method All Public void

doneButton_actionPerformed

(ActionEvent e)

Nerdeyim Method All Public void nerdeyim (String

eventDescription, MouseEvent

e)

(java.awt.event.MouseEvent e)

41

Table 5 The interface description for EditorStatsDialog Class (continued)

saySomething Method All (String eventDescription,

MouseEvent e)

(java.awt.event.MouseEvent e)

(java.awt.event.MouseEvent e)

serverButton_

actionPerformed

Method All Public void serverButton_

actionPerformed (ActionEvent

e)

DoKesAction_

actionPerformed

Method All Public static void

DoKesAction_

actionPerformed

(java.awt.event.ActionEvent e)

DoKopyalaAction

_actionPerformed

Method All Public static void

DoKopyalaAction_

actionPerformed

(java.awt.event.ActionEvent e)

DoSomething

Action_

actionPerformed

Method All Public static void

DoSomethingAction_

actionPerformed

(java.awt.event.ActionEvent e)

DoYapistirAction

_actionPerformed

Method All Public static void

DoYapistirAction_

actionPerformed

(java.awt.event.ActionEvent e)

42

c. Class ListenThread:

Table 6 The interface description for ListenThread Class

Subordinate Description

Access

allowed

by

Access via signature

ListenThread Method All public ListenThread(EditorPane

tempEditor)

run Method All public void run()

SendData Method All public void SendData(String

sData)

43

3.6 Sequence Diagram

Figure 6 The sequence diagram of JDP

3.7 Restrictions

JDP is a tool to enable Distributed Pair Programming, but it does not claim to be

a professional tool. Despite the facilities mentioned in Section 3.4, it has some

challenges below:

1. The scope of this tool is limited to characters specified in Section 3.2

which does not include function keys (F1 to F12), page-down, page-up

insert, pause, and print-screen.

2. The sending of the format (the font type, font size, bold, italic, etc.) of the

code text to the other side is not implemented.

44

CHAPTER 4

Evaluation of JDP

In this chapter, the developed tool is evaluated. After a general evaluation, the

positive and negative aspects of JDP tool are examined and a comparison

between JDP and other evaluated DPP tools is given.

4.1 General Evaluation of JDP

JDP is a tool which customizes Borland JBuilder for the purpose of enabling

distributed pair programming.

Distributed pair programming is a specific usage of pair programming which is a

key practice of Extreme Programming. Design of JDP complies with the main

methodology which advocates to generate code with two programmers one of

which is the driver who is responsible for writing, editing and typing the code

while the other programmer, navigator, is responsible for evaluating the larger

design picture and guiding the driver. A natural result of this concept is to restrict

the navigator from editing the code written by the driver. The only duty of the

45

navigator is to follow the code of the driver and navigate him/her by different

means of communication tools, e.g. chat, teleconference, mail, etc. which are not

in the scope of this study and should be supplied at the beginning of the process.

The navigator can try some activities which will remain local.

Preserving the integrity of the shared code is an issue that needs to be addressed

here: The driver can always synchronize the working file at both sides by simply

selecting his whole file and pasting it over the editor area. This clearly gives

supremacy to the driver, which is an intended feature of DPP, as discussed in

Chapter 3.

File operations such as save, open, etc. are not addressed by JDP and remain

within the set of functionalities offered by JBuilder. That is, both users should

save, restore, and open their own files independently. This way, while code level

driver-navigator hierarchy is implemented, file level independence of the two

parties is preserved.

4.2 The Positive Aspects of JDP

1. JDP supports Borland JBuilder. It uses the facilities that JBuilder serves.

2. Communication bandwidth usage is limited to character transmission

only. JDP uses the bandwidth at an amount of sending the characters

typed by the driver.

3. The navigator and the driver can use the editor facilities locally.

4. Character entry at the driver is replicated synchronously at the navigator,

serving DPP functionality needs specified in Section 3.3.

5. JDP permits users to preserve the integrity of the shared code if local

changes are prevented.

46

4.3 The Negative Aspects of JDP:

1. Most of the JDP tools, as described in section 2.6, are supported by other

types of communication facilities like chat, e-mail, audio / video

communication (NetMeeting, Messenger) or Voice-over-IP applications.

Because JDP focuses on coding phase, it does not handle extra

communication issues. Adding such facilities to JDP would increase the

effectiveness of the tool.

2. JDP has not been tested and used in any software development environment

in real life by professional programmers. For this reason, possible problems

while using it cannot be observed and the subjective issues like user-

friendliness can not be assessed.

4.4 Comparison of JDP with Other Pair-Programming Tools

JDP is not a professional tool compared to the tools presented in Section 2.6. A

brief comparison of JDP and other presented tools is presented below:

MILOS: In this tool, the system keeps track of the team members who are

currently logged in. A developer is able to pair up with one of them using the

application sharing and audio/video capabilities of MS NetMeeting [Maurer,

2002]. MILOS does not have a specific DPP facility, but uses MS NetMeeting

facilities in Distributed Pair Programming while JDP is intended to support the

operations after pair-up. In MILOS the navigator inspects the code and can

comment on it using audio/video conferencing. The navigator may also take over

and edit the method from his machine. JDP allows role exchange by logging off

and re-logging in with a different role.

47

VNC: It is a screen sharing application while JDP is based on sending the

characters from the driver to the navigator. “VNC allows a user’s desktop to be

replicated onto multiple computers (in particular, two in the case of pair

programming). Application output is displayed on both computers, while

keyboard and mouse input from either computer is sent to the applications”

[Hanks, 2004]. The output of the process of JDP is the code which is sent from

the driver to the navigator. In VNC; both users have active keyboards and mice

which make it difficult to handle keystrokes and cursors [Hanks, 2004] while

such a problem does not occur in JDP.

ClearCase is a Software Configuration Management (SCM) system. Continuous

integration which is one of the key practices of XP is provided with ClearCase. In

pair programming, if both the navigator and the driver are authorized to access

and edit the code, the versions should be managed and logged. Configuration

management is kept outside the scope of JDP.

TUKAN is a synchronous distributed team programming environment. TUKAN

works on shared replicated objects. It includes a version management system.

JDP is character-based and does not include any version management system.

TUKAN provides basic communication support while JDP should be supported

by commercial tools to communicate. TUKAN enables planning and coordinating

facility in the scope of “planning game” key practice of XP while JDP has

nothing about the planning issues. TUKAN supports Distributed Pair

Programming, not only with one person, but also by inviting other people to the

environment. JDP is designed according to one pair only. In TUKAN, all users

are allowed to edit the written code, i.e. there is not any difference between the

navigator and driver from the point of the tool facilities, but in JDP only the

driver has authority to edit the code.

48

MASE, as described in detail in Section 2.6.5, enables any user to access, browse,

create, structure, and update any web pages in real-time using a web browser

only. Each of these web pages acts like an electronic bulletin board discussion

topic with a unique name. JDP uses JBuilder editor instead of web pages. MASE

tracks the team member’s availability to arrange pair for the people looking for a

pair. JDP is designed for only one peer and selection is not available. MASE’s

integration with MS NetMeeting enables “sharing the code” and “collaborate on a

design using the shared whiteboard”, i.e. distributed pair programming [Chau,

Maurer, 2004].

CUSeeMe and MS NetMeeting are commercial programs that enable

synchronous communicating. CUSeeMe is audio/video conferencing software

that allows Internet users to connect one-to-one, many-to-many, or any

combination with the use of a reflector which allows others to join the

conference. MS NetMeeting is a commercial program that enables

videoconferencing, chat, file transfer, etc. NetMeeting enable distributed pair

programming by program sharing which means allow one person to work in the

shared program. JDP does not need any program sharing apart from JBuilder.

CUSeeMe and MS NetMeeting can be used to support the communication in

JDP.

49

CHAPTER 5

Conclusion

This chapter begins with a general discussion about the tool and ends with the

improvement issues as a future work.

5.1 General Discussion about the Tool

JDP is a tool which is a plug-in to Borland JBuilder. It is based on sending the

characters and some mouse events to the peer programmer who is geographically

in any other part of the world. It is a synchronous tool in which the code of the

programmer is sent to the other side without any trigger. JDP aims to have the

same java file at both sides at the end of the distributed pair programming

session.

The asymmetric character of JDP, that is; only sending information from driver to

navigator, complies with the pair-programming concept as described in Chapter

3.

50

Another issue is real-life-usage. How effective JDP will be cannot be predicted

because of lack of any testing team experiment. Like other DPP tools, JDP needs

to be supported and enhanced by synchronous communication facilities like video

conferencing, chat or Voice-over-IP applications. It has, however, been discussed

in Chapter 4, that JDP responds to the needs stated in Chapter 3.

5.2 What Can Be Done to Improve JDP? - Future Work

This tool does not claim to be a professional one. In order to develop this tool, the

following issues can be considered:

1. Handling the characters which are out of the scope of JDP, like function-

keys, insert, page-down and page-up keys.

2. Capturing the menu facilities and enabling of seeing the other side menu

events at the time of the call by mouse click.

3. Handling the file management operations like “Save” in order to work on the

right document, provide integrity and specify the access permissions.

4. Sending of the format (the font type, font size, bold, italic, etc.) of the code

text to the other side.

5. Enabling the helping facility of JBuilder editor, which lists the possible

classes or alias and completes the word if pressed Enter key after the first

characters are typed, at both sides.

6. Adding a module to send the necessary files to the other side.

7. Testing of JDP by a programming team and getting feedback to improve the

tool, increasing the user friendliness level.

8. Adding more editor functionalities like undo, redo, etc.

51

JDP is only designed for distributed pair programming. It can be also enhanced

by extensions towards a full scale XP tool. In order to transform JDP to an XP

tool, the following facilities should be available:

1. Enable iteration and release planning,

2. Enable synchronous and asynchronous communication via commercial tools

like MS NetMeeting or different means of communication.

3. Provide continuous integration by enabling code unification of more than

two group members.

4. Do the acceptance tests according to the given orders.

5. Establish a database to store the necessary information about the project and

integrated code.

6. Enable creation and changes of tasks.

7. Retrieve from or add to the current project user stories and available tasks.

In order to transform JDP to a tool that serves Distributed Software Engineering

projects, the following facilities should be added to the above properties:

1 Enable configuration management,

2 Enable Authentication and access control ,

3 Support “Computer Aided Software engineering” (CASE) tools and source

code analysis tools.

4 Support Validation and Verification tools.

5 Support Quality Measurement tools

6 Enable design and testing software.

“JBuilder Distributed Pair Programming Plug-in” (JDP) tool opened a gateway

for distributed pair programming on a common commercial IDE like Borland

52

JBuilder. JDP enables many useful facilities that will make pair programming

easier in distributed environments, however, it needs to be improved. The author

hopes that the future studies on JDP will make it more adaptive, useful and easy-

to-use tool.

53

REFERENCES

 [Baheti, 2002], Baheti, P., Gehringer, E., Scotts, D. “Exploring the efficacy of
distributed pair programming”, NC State University, 2002

[Beck, 1999], Beck, K., "Embrace Change with Extreme Programming,", IEEE
Computer, 1999

[Beck, et. al., 2001], Beck, K., Cockburn, A., Jeffries, R., and Highsmith, J.,
“Agile Manifesto”, http://www.agilemanifesto.org, 2001

[Boehm, 2002], Boehm, B., “Get Ready for Agile Methods, With Care”,
Software Development, 2002

[Bowen, Maurer, 2002], Bowen, S., Maurer, F., “Using Peer-to-Peer Technology
to Support Global Software Development – Some Initial Thoughts”, University
of Calgary, 2002

[Canfora, 2003], Canfora, G., Cimitile, A., Visaggio, C.A., “Lessons learned
about distributed pair programming: What are the knowledge needs to address?”,
2003

[Chau, Maurer, 2004], Chau, T., Maurer, F. “Knowledge Sharing in Agile
Software Teams”, University of Calgary, 2004

[Cockburn and Williams, 2000], Cockburn, A., Williams, L., "The Costs and
Benefits of Pair Programming”, 2000

http://www.agilemanifesto.org

54

[Cohen, 2003], Cohen, D., Lindvall, M., Costa, P., “Agile Software
Development, A DACS State-of-Art Report”, Fraunhofer Center for
Experimental Software Engineering Maryland and the University of Maryland,
2003

[Davidson, 2002], Davidson, P., Hedrich, R., Leavy, T., Sharp, W., and Wilson,
N., “Information Systems Development Techniques and Their Application to the
Hydrologic Database Derivation Application”, USBR Upper Colorado Regional
Office, 2002

[Gehringer, 2003], Gehringer, E.F., “A Pair Programming Experiment in a Non-
Programming Course”, NC State University, 2003

[Glazer, 2001], Glazer, H., “Dispelling the Process Myth: Having a Process Does
Not Mean Sacrificing Agility or Creativity” Crosstalk, The Journal of Defense
Software Engineering, 2001

[Hanks, 2004], Hanks, B.F., “Distributed Pair Programming; An empirical
study”, University of California, 2004

[Hayes, 2001], Hayes, S., “An Introduction to Extreme Programming”, Khatovar
Technology, 2001

[Highsmith, 2002], Highsmith, J., “Agile Software Development Ecosystems”,
Boston, MA, Addison-Wesley, 2002

[Highsmith, 2002b], Highsmith, J:, “What Is Agile Software Development?”,
Crosstalk, The Journal of Defense Software Engineering, 2002

[Highsmith, et. al., 2000], Highsmith, J., Orr, K., and Cockburn, A., "Extreme
Programming", E-Business Application Delivery, 2000

[IEEE, Std 1016-1998], IEEE Std 1016-1998, Recommended Practice for
Software Design Descriptions, 1998

[Kalermo, 2002], Kalermo, J., Rissanen, J., “Agile Software Development in
Theory and Practice”, 2002

55

[Kircher, et.al, 2001], Kircher, M.; Prashant, J. Corsaro, A.; Levine, D.,
“Distributed Extreme Programming”, Siemens AG, 2001

[Maurer, 2002], Maurer F., “Supporting Distributed Extreme Programming”,
University of Calgary, 2002

[Maurer, Martel, 2002], Maurer F, Martel, S. “Process Support for Distributed
Extreme Programming Teams”, 2002

[Nosek, 1998], Nosek, J.T., “The Case for Collaborative Programming”,
Communications of the ACM, 1998

[Oksay, 2004], Oksay, U., “SM589 Project Report”, Middle East Technical
University, 2004

[Paulk, 2001], Paulk, M.C., “Extreme Programming from a CMM Perspective”,
Paper for XP Universe, 2001

[Paulk,2002] , Paulk, M.C., “Agile Methodologies and Process Discipline ”,
Software Engineering Institute, 2002

[Scacchi, 2001], Scacchi, W., “Process Models in Software Engineering”,
Institute for Software Research, University of California , 2001

[Schümmer& Schümmer, 2001], Schümmer, T., Schümmer, J., “Support for
Distributed Teams in Extreme Programming”, German National Research Center
for Information Technology, 2001

[Smith, 2001], Smith, S., Stoecklin, S., “What We Can Learn From Extreme
Programming”, Converse College, 2001

[Sorensen, 1995], Sorensen, R., “A Comparison of Software Development
Methodologies”, Software Technology Support Center, 1995

[The C3 Team, 1998], The C3 Team, "Chrysler Goes to Extremes", Distributed
Computing, 1998

56

[Wallin,2002], Wallin, C., Land, R., “Software Development Lifecycle Models,
The Basic Types”, ABB Corporate Research, 2002 gvu

[Williams, 2000], Williams, L., Kessler, R. R., Cunningham, W., and Jeffries, R.,
"Strengthening the case for pair programming", 2000

Web References

[http://www.cortland.edu/flteach/methods/obj1/cuseeme.html]. www survey,
Retrieved May 8, 2005 from
http://www.cortland.edu/flteach/methods/obj1/cuseeme.html

[http://www.departments.dsu.edu/disted/netmeeting] www survey, Retrieved
May 8, 2005 from http://www.departments.dsu.edu/disted/netmeeting

[http://www.extremeprogramming.org] www survey, Retrieved May 4, 2005
from http://www.extremeprogramming.org

[http://www.microsoft.com/windows/netmeeting] www survey, Retrieved May
20, 2005 from http://www.microsoft.com/windows/netmeeting

[http://www.therationaledge.com/content/mar_01/f_xp_gp.html]. www survey,
Retrieved May 8, 2005 from
http://www.therationaledge.com/content/mar_01/f_xp_gp.html

[http://www.timefold.com/atria/10quest.html] www survey, Retrieved May 13,
2005 from http://www.timefold.com/atria/10quest.html

http://www.cortland.edu/flteach/methods/obj1/cuseeme.html
http://www.cortland.edu/flteach/methods/obj1/cuseeme.html
http://www.departments.dsu.edu/disted/netmeeting
http://www.departments.dsu.edu/disted/netmeeting
http://www.extremeprogramming.org
http://www.extremeprogramming.org
http://www.microsoft.com/windows/netmeeting
http://www.microsoft.com/windows/netmeeting
http://www.therationaledge.com/content/mar_01/f_xp_gp.html
http://www.therationaledge.com/content/mar_01/f_xp_gp.html
http://www.timefold.com/atria/10quest.html
http://www.timefold.com/atria/10quest.html

57

APPENDIX

Code CD is attached.

