
A COMPARATIVE STUDY OF TREE ENCODINGS FOR EVOLUTIONARY
COMPUTING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ESİN SAKA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF COMPUTER ENGINEERING

JULY 2005

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Ayşe Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully ade-
quate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. İsmail Hakkı Toroslu
Co-Supervisor

Assoc. Prof. Dr. Göktürk Üçoluk
Supervisor

Examining Committee Members

Assoc. Prof. Dr. İsmail Hakkı Toroslu(ODTU-CENG)

Assoc. Prof. Dr. Göktürk Üçoluk (ODTU-CENG)

Dr. Onur Tolga Şehitog̃lu (ODTU-CENG)

Dr. Meltem Turhan Yöndem (ODTU-CENG)

Y. Müh. Arslan Arslan (LOGO)

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results
that are not original to this work.

Name, Last Name: ESİN SAKA

Signature :

iii

ABSTRACT

A COMPARATIVE STUDY OF TREE ENCODINGS FOR EVOLUTIONARY

COMPUTING

SAKA, ESİN

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Göktürk Üçoluk

Co-Supervisor: Assoc. Prof. Dr. İsmail Hakkı Toroslu

JULY 2005, 82 pages

One of the most important factors on the success of evolutionary algorithms (EAs) about

trees is the representation of them. The representation should exhibit efficiency, locality and

heritability to enable effective evolutionary computing. Neville proposed three different meth-

ods for encoding labeled trees. The first one is similar with Prüfer’s encoding. In 2001, it is

reported that, the use of Prüfer numbers is a poor representation of spanning trees for evo-

lutionary search, since it has low locality for random trees. In the thesis Neville’s other two

encodings, namely Neville branch numbers and Neville leaf numbers, are studied. For their

performance in EA their properties and algorithms for encoding and decoding them are also

examined. Optimal algorithms with time and space complexities of
�������

, where
�

is the

number of nodes, for encoding and decoding Neville branch numbers are given. The locali-

ties of Neville’s encodings are investigated. It is shown that, although the localities of Neville

branch and leaf numbers are perfect for star type trees, they are low for random trees. Neville

branch and Neville leaf numbers are compared with other codings in EAs and SA for four

problems: ’onemax tree problem’, ’degree-constrained minimum spanning tree problem’, ’all

spanning trees problem’ and ’all degree constrained spanning trees problem’. It is shown that,

neither Neville nor Prüfer encodings are suitable for EAs. These encodings are suitable for

iv

only tree enumeration and degree computation. Algorithms which are timewise and space-

wise optimal for ’all spanning trees problem’ (ASTP) for complete graphs, are given by using

Neville branch encoding. Computed time and space complexities for solving ASTP of com-

plete graphs are
�������
	��
�

and
�������

if trees are only enumerated and
�������
	����

and
�������

if

all spanning trees are printed , respectively, where
�

is the number of nodes. Similarly, ’all

degree constrained spanning trees problem’ of a complete graph is solvable in
�������
	����

time

and
�������

space.

Keywords: evolutionary algorithms, genetic algorithms, tree representation, one-max tree

problem, degree constrained minimum spanning tree problem, all spanning trees problem

v

ÖZ

EVRİMSEL ALGORİTMALAR İÇİN AG̃AÇ YAPILARININ KARŞILAŞTIRMALI

ÇALIŞMASI

SAKA, ESİN

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Assoc. Prof. Dr. Göktürk Üçoluk

Ortak Tez Yöneticisi: Assoc. Prof. Dr. İsmail Hakkı Toroslu

TEMMUZ 2005, 82 sayfa

Ağaçlarla ilgili evrimsel algoritmaların başarısıdaki en önemli faktörlerden birisi ağaç

yapılarının gösterimidir. Etkin bir evrimsel hesaplama için, gösterim verimlilik, bölgesellik

ve atasallık özelliklerini barındırmalıdır. Neville, etiketli ağaç yapılarının kodlanması için üç

çeşit metod sunmuştur. Bunlardan birincisi, Prüfer kodlaması ile benzerdir. 2001 yılında, ağaç

yapılarının gösterimi için Prüfer sayılarının kullanımının, Prüfer sayılarının rastgele ağaçlar

için düşük bölgeselliği nedeniyle, evrimsel aramada yetersiz bir yöntem olduğu önerilmiştir.

Bu tezde, Neville’in diğer iki kodlama yöntemi, yani Neville dal numaraları ve Neville yaprak

numaraları çalışıldı. Evrimsel algoritmalardaki performansları için özellikleri, kodlama ve

kodlanmış yapıyı oluşturma algoritmaları incelendi. Neville dal numaralarının kodlanması ve

kodlanmış yapının oluşturulması için,
�

düğüm sayısı iken,
�������

’lik zaman ve yer karmaşıklı-

ğına sahip optimal algoritmalar verildi. Neville’in kodlanmışlarının bölgeselliği araştırıldı.

Neville dal ve yaprak numaralarının bölgeselliğinin yıldız tipi ağaçlar için mükemmel ol-

masına rağmen, rastgele ağaçlar için düşük olduğu gösterildi. Neville dal ve Neville yaprak

numaraları evrimsel algoritmalardaki diğer kodlamalarla dört problem üzerinde karşılaştırıldı:

’bir fazla ağaç problemi’, ’derece kısıtlı en küçük tüm ağaç problemi’, ’bütün tüm ağaçlar

vi

problemi’ ve ’derece kısıtlı bütün tüm ağaçlar problemi’. Ne Neville ne de Prüfer kodla-

malarının evrimsel algoritmalar için uygun olduğu gösterildi. Bu kodlamalar sadece derece

hesaplamalarında ve ağaçların birer birer sayımında uygundur. Bütün tüm ağaçlar problemi

(ASTP) için zaman ve yer bakımından tam ağaçlarda optimal algoritmalar, Neville’in dal kod-

laması kullanılarak verildi.
�

düğüm sayısını gösterirken, tam ağaçlarda ASTP’yi çözmek

için hesaplanan zaman ve yer karmaşıklıkları, sırasıyla, ağaçlar sadece kod olarak basılırsa����� ��	�� �
ve
�������

; ağaçların kendisi basılırsa
����� ��	�� �

ve
�������

’dir. Benzer şekilde, tam

ağaçlarda ’derece kısıtlı bütün tüm ağaçlar problemi’.
����� ��	�� �

’lik zaman ve
�������

’lik yerde

çözülebilir.

Anahtar Kelimeler: evrimsel algoritmalar,genetik algoritmalar, ağaç yapılarının gösterimi, bir

fazla ağaç problemi, derece kısıtlı en küçük tüm ağaç problemi, bütün tüm ağaçlar problemi,

derece kısıtlı bütün tüm ağaçlar problemi

vii

To science...

viii

ACKNOWLEDGEMENTS

I would like to thank Göktürk ÜÇOLUK and Hakkı TOROSLU for their precious supervision

and Onur Tolga ŞEHİTOĞLU for his valuable patience to my questions. You were very

important for the very early steps of my academic life.

That was the smiling faces and infinite support of my friends that made me not to give up

at the difficult times.

Without love, support, encouragement and trust of my family, I wouldn’t do MSc, and

this study would not exist at all.

ix

TABLE OF CONTENTS

PLAGIARISM . iii

ABSTRACT . iv

ÖZ . vi

DEDICATON . viii

ACKNOWLEDGEMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiv

LIST OF FIGURES . xv

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 5

2.1 EVOLUTIONARY ALGORITHMS 5

2.1.1 FITNESS FUNCTION 6

2.1.2 CROSSOVER . 6

2.1.2.1 K-POINT CROSSOVER 7

2.1.2.2 UNIFORM CROSSOVER 7

2.1.2.3 RANDOM SELECTION 7

2.1.2.4 ROULETTE WHEEL SELECTION 8

2.1.3 MUTATION . 8

2.1.4 SELECTION . 9

2.1.4.1 (�����) SELECTION 9

2.1.4.2 (�����) SELECTION 9

2.2 SIMULATED ANNEALING . 9

2.3 TREE ENCODINGS . 11

x

2.3.1 CRITERIA TO SELECT TREE REPRESENTATIONSIN
EVOLUTIONARY ALGORITHMS 11

2.3.1.1 EFFICIENCY 11

2.3.1.2 LOCALITY 12

2.3.1.3 HERITABILITY 12

2.3.1.4 CLOSURE 12

2.3.2 TREE REPRESENTATIONS 13

2.3.2.1 ARC LIST REPRESENTATION 13

2.3.2.2 ARC VECTOR REPRESENTATION 13

2.3.2.3 PREDECESSOR REPRESENTATION 13

2.3.2.4 ORIENTED TREE REPRESENTATION . . . 13

2.3.3 PRÜFER’S ENCODING 13

2.3.3.1 ENCODING A TREE BY USING PRÜFER
NUMBERS 14

2.3.3.2 DECODING PRÜFER NUMBERS 14

2.3.3.3 PROPERTIES OF PRÜFER NUMBERS . . . 15

2.3.4 NEVILLE’S ENCODINGS 16

2.3.4.1 NEVILLE’S BRANCH ENCODING 16

Encoding Neville Branch 16

Decoding Neville Branch 17

2.3.4.2 NEVILLE’S LEAF ENCODING 17

Encoding Neville Leaf 17

Decoding Neville Leaf 19

2.4 PROBLEMS . 20

2.4.1 ONE-MAX TREE PROBLEM 20

2.4.2 DEGREE CONSTRAINED MINIMUM SPANNING TREE
PROBLEM . 20

2.4.3 ALL SPANNING TREES PROBLEM 21

3 NEVILLE’S TREE REPRESENTATIONS 22

3.1 NEVILLE’S BRANCH ENCODING 22

3.1.1 ENCODING NEVILLE BRANCH 22

3.1.2 DECODING NEVILLE BRANCH 23

3.1.3 LOCALITY OF NEVILLE BRANCH NUMBERS 24

3.1.3.1 RANDOM WALKS 24

3.1.3.2 ANALYSIS OF NEIGHBORHOOD 26

xi

3.2 NEVILLE’S LEAF ENCODING 29

3.2.1 LOCALITY OF NEVILLE LEAF NUMBERS 29

3.2.1.1 RANDOM WALKS 29

3.2.1.2 ANALYSIS OF NEIGHBORHOOD 29

3.2.2 PROPERTIES OF NEVILLE NUMBERS 30

3.3 COMPARISON OF PROPERTIES OF PRÜFER’S AND NEVILLE’S
ENCODINGS . 31

4 APPLICATIONS . 37

4.1 ONE-MAX TREE PROBLEM . 37

4.1.1 METHODOLOGY . 38

4.1.2 EXPERIMENTS . 38

4.1.2.1 EA . 38

4.1.2.2 SA . 46

4.2 DEGREE CONSTRAINED MINIMUM SPANNING TREE PROB-
LEM . 49

4.2.1 METHODOLOGY . 49

4.2.2 EXPERIMENTS . 49

4.2.2.1 EA . 49

4.2.2.2 SA . 52

4.3 ALL SPANNING TREES PROBLEM 55

4.3.1 METHODOLOGY . 55

4.3.2 ENUMERATE ALL SPANNING TREES 55

4.3.3 ENUMERATE AND OUTPUT ALL SPANNING TREES 56

4.4 ALL DEGREE CONSTRAINED SPANNING TREES PROBLEM . 57

4.4.1 DISCUSSIONS . 57

5 CONCLUSIONS . 60

REFERENCES . 61

APPENDIX

A DATA SETS . 64

B PARAMETERS . 65

B.1 OMTP . 65

B.1.1 EA . 65

B.1.2 SA . 66

B.2 DCMSTP . 66

xii

B.2.1 EA . 66

B.2.2 SA . 66

xiii

LIST OF TABLES

TABLE

B.1 Parameters of OMTP with EA. 65
B.2 Parameters of OMTP with SA. 66
B.3 Parameters of DCMSTP with EA. 66
B.4 Parameters of DCMSTP with SA. 66

xiv

LIST OF FIGURES

FIGURES

2.1 Example tree . 15

3.1 Distribution of phenotypic distances for neighboring Neville branch numbers
on 16 and 32 node trees. 27

3.2 Distribution of phenotypic distances for neighboring Neville branch numbers
on 16 and 32 node trees for specific tree types. 28

3.3 Distribution of phenotypic distances for neighboring Neville leaf numbers on
16 and 32 node trees. 33

3.4 Distribution of phenotypic distances for neighboring Neville leaf numbers on
16 and 32 nodes for specific tree types. 34

3.5 Distribution of phenotypic distances for neighboring Prüfer numbers on 16
and 32 nodes. 35

3.6 Distribution of phenotypic distances for neighboring Prüfer numbers on 16
and 32 node trees for specific tree types. 36

4.1 Performances of Prüfer’s and Neville’s encodings with EA for 8 node OMTP
with random trees. 40

4.2 Performances of Prüfer’s and Neville’s encodings with EA for 16 node OMTP
with random trees. 41

4.3 Performances of Prüfer’s and Neville’s encodings with EA for 16 node OMTP
with random trees with random selection for crossover. 42

4.4 Performances of Prüfer’s and Neville’s encodings with EA for 16 node OMTP
with random trees with limit on duplication. 43

4.5 Performances of Prüfer’s and Neville’s encodings with EA for 32 node OMTP
with random trees. 44

4.6 Performances of Prüfer’s and Neville’s encodings with EA for 32 node OMTP
with star type trees. 45

4.7 Performances of Prüfer’s and Neville’s encodings with SA for 8 node OMTP
with random trees. 47

4.8 Performances of Prüfer’s and Neville’s encodings with SA for 32 node OMTP
with star type trees. 48

4.9 Performances of Prüfer’s and Neville’s encodings with EA for 8 node DC-MST. 51
4.10 Performances of Prüfer’s and Neville’s encodings with SA for 8 node DC-

MST (fitness). 53
4.11 Performances of Prüfer’s and Neville’s encodings with SA for 8 node DC-

MST (cost). 54

xv

List of Algorithms

1 The evolutionary algorithm. 6

2 Random Selection (for crossing) . 8

3 Roulette Wheel Selection . 8

4 The simulated annealing search algorithm. 10

5 The Construction of the Prüfer Number from a Tree 14

6 The Construction of the Tree from Prüfer Number 15

7 The Construction of the Neville Branch Number from a Tree 17

8 The Construction of the Tree from Neville Branch Number 18

9 The Construction of the Neville Leaf Number from a Tree 18

10 The Construction of the Tree from Neville Leaf Number 19

11 Algorithm to Construct Neville Branch Number of a Tree with
�������

Time

and Space Complexity . 23

12 Algorithm to Construct Tree from Neville Branch Number with
�������

Time

and Space Complexity . 25

13 Enumerate All Spanning Trees . 56

14 Output All Spanning Trees . 57

15 All Degree Constrained Spanning Trees . 58

xvi

CHAPTER 1

INTRODUCTION

An evolutionary algorithm (EA) works on populations of candidate solutions to a given prob-

lem. If an encoding/decoding based EA is used, the way you represent a genome deeply

affects the performance. It is expected that the representation exhibits efficiency, locality,

heritability and closure.

Labeled trees are used in several practical and theoretical areas of computer science. For

example, in some networks, like Ethernet, each terminal must be connected to any other

terminal and no cycles can exist. Furthermore, since every terminal is uniquely identified,

labeling the nodes is necessary. Many algorithms require generating spanning trees of labeled

graphs. In 1918, Prüfer showed a mapping between any n-node labeled tree structure and

(n-2)-tuples of node labels. This mapping is one-to-one and onto. In other words, there is

a unique code for each labeled tree and each code represents a unique labeled tree. This

mapping is also used for the proof of Cayley’s theorem ([4]). In 1953, Neville proposed

three different labeled tree encodings[15]. Neville’s first encoding style is similar to Prüfer’s

encoding. The most studied one is Prüfer coding. In 2001, it is reported that, Prüfer technique

is a poor representation of spanning trees for evolutionary search [8].

This thesis studies Neville’s uninvestigated encodings, namely Neville branch numbers

and Neville leaf numbers. It analyzes the properties of Neville’s encodings, examines algo-

rithms for encoding and decoding them, investigates the localities by random walks, inspects

suitability of these techniques for EAs, and compares Neville numbers with other codings in

EAs and simulated annealing (SA) for four problems:

� One-max tree problem (OMTP).

1

� Degree-constrained minimum spanning tree problem (DCMSTP).

� All spanning trees problem (ASTP).

� All degree constrained spanning tree problem (ADCSTP).

Neville’s techniques have some benefits. Firstly, there is a unique bijective mapping be-

tween the sets of Neville branch numbers and labeled trees and also between the sets of

Neville leaf numbers and labeled trees. Thus, Neville numbers are closed under classical EA

operations. In other words, after classical mutation and crossover, what you get is again a tree.

But if graph is not complete, then encoded tree may not be a valid tree. Secondly, computa-

tion of degrees of nodes are simple. Degree of a node of encoded tree is one more than the

number of times the node appears in Neville’s encodings. Therefore, Neville’s encodings has

an advantage in degree constraint computation. This computation is valid for all prüfer-like

encodings.

However, Neville’s encoding have some problems: low locality and heritability: Locality

of an encoding is the relatedness of the phenotype (the code) and the genotype (the tree). If a

small change in genotype results in a small change in phenotype, a coding has high locality.

High locality means, coding is suitable for evolutionary search. Heritability is the relatedness

of parent phenotypes and children phenotypes. If children are similar to parents, a code is said

to have high heritability with respect to crossover operator. Heritability is low where locality

is low. Unfortunately, experiments showed that, Neville numbers have low locality. Locality

analysis for Neville branch numbers and Neville leaf numbers are done by random walks.

Firstly random walks through the search space of Neville’s encodings of random trees are

performed. Low locality is observed. Then the search space is explored whether the locality

changes according to the structure of goal tree or not. This research showed that although

both Neville branch numbers and Neville leaf numbers have perfect locality with stars, their

locality is low for random trees. Therefore Neither Neville nor Prüfer numbers are suitable

for EAs.

In the last years there is an increase in the interest to the Prüfer-like encodings. However,

the success of encoding depends on the problem. To figure out the negative effect of low

locality properties and show when these encodings can be useful, experiments were done on

OMTP, DCSTP, ASTP and ADCSTP. With OMTP Neville’s numbers performed perfect with

stars. However, Neville’s numbers are not successful when problem size is increased and goal

2

is not a star. Thus, Neville numbers are not suitable for OMTP.

As mentioned above, although degree constraint computation is simple with Neville’s

encodings, low locality caused Neville numbers be unsuccessful with solving DCMSTP with

EAs and SA. Since the degree constraint in DCMSTP decreases the probability of having a

star as best solution, Neville’s encodings are not suitable for DCMSTP, also.

The bijection property of Neville’s encodings makes them good choices for tree enumer-

ation. Generating a code has
�������

time and
�������

space complexities, where
�

is the number

of nodes of complete graph � . Since Neville numbers are closed, when all numbers of size��� �
are generated, it means that, all spanning trees of � are enumerated with

��������	��
�
time

and
�������

space complexities. The best known algorithm has
���"! � � � # � time and

����� �$# �
space complexities [25], where

!
is the number of spanning trees and # is the number of edges.

For a complete graph, since
!&%'� �
	��

, time and space complexities become
����� �
	�� �

and����� �(# � , respectively. Both algorithms have the same time complexity but our algorithm is

better at space complexity. If all spanning trees are printed, each code is decoded. There were

no reported algorithms for encoding and decoding Neville branch numbers and Neville leaf

numbers. At Section 3.1.1, the pseudo-code given at Algorithm 12 is an algorithm to decode

a Neville branch number and at Section 3.1.1 the pseudo-code given at Algorithm 11 is an

algorithm to encode a Neville branch number with
�������

time and space complexities. These

are the best encoding and decoding algorithms for Neville branch numbers. When Neville

branch numbers are used, time and space complexities of our solution to ASTP and printing

all spanning trees are
����� �
	�� �

and
�������

, respectively. The optimal algorithm which enu-

merates all spanning trees by outputting all edges of each spanning tree was reported to have���"!
� � � �)# � time and
����� �)# � space complexities [5]. For a complete graph, the time

and space complexities becomes:
�������
	�� � � �*# � and

����� �+# � , respectively. Thus our

algorithm is better for complete graphs. When degree constraint is added, ADCSTP is solved

with
����� �
	�� �

and
�������

time and space complexities and resulting trees are printed or ADC-

STP is solved with
����� �
	�� �

and
�������

time and space complexities and only codes are given.

So, time and space optimal algorithms for ASTP and ADCSTP of weighted or unweighted

complete graphs are presented by using Neville branch numbers at Sections 4.3 and 4.4. But

when the graph is an incomplete sparse graph, they are not the optimal solutions.

The thesis is structured as follows: Chapter 2 includes the background information on

EAs and SA, existing encodings, history of Prüfer’s and Neville’s encodings and definitions

3

of problems studied. Existing encodings for labeled trees are given at section 2.3. Chapter

3 contains properties, encoding and decoding algorithms and locality analysis of Neville’s

encodings. Applications and results are given at Chapter 4. Finally, Chapter 5 concludes

the thesis and presents possible future directions. In the Appendices A and B, data set and

parameters used are given, respectively.

4

CHAPTER 2

BACKGROUND

2.1 EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EAs) are search methods. They take inspiration from evolution in

the biological world. EAs simulate the evolution of individual by processes of selection and

reproduction. EAs are used in both search and learning. Instead of one potential solution,

they involve search from a group of solutions. This is why they are different from traditional

optimization techniques. Individual is a candidate solution to a problem. Population is the set

of individuals.

An EA starts with an initial population. At each time step, new individuals are generated

by crossover and mutation. New generation is selected according to a fitness function and

selection mechanism. In summary, a typical EA runs the pseudo-code given in Algorithm 1.

There are a variety of EAs ([26], [11]):

� Genetic programming (GP): Evolves programs.

� Evolutionary programming(EP): Focuses on optimizing continuous functions with-

out crossover.

� Evolutionary strategies(ES): Focuses on optimizing continuous functions with crossover.

� Genetic algorithms(GAs): Focuses on optimizing general combinatorial problems.

5

Algorithm 1 The evolutionary algorithm.
inputs: a problem

outputs:a solution state

1: generation no = 0

2: randomly generate initial population

3: while generation no , MAXIMUM GENERATION NO do

4: generation no = generation no + 1

5: generate children (includes crossover and mutation)

6: select next generation

7: statistics

8: end while

2.1.1 FITNESS FUNCTION

Fitness function is one of the major parameters which affects the success of EAs deeply. It

plays the role of the environment, computes a fitness value for a given individual and quanti-

fies the optimality of the solution. It measures the (potential for) reproductive success of the

individual in a given environment and the individual is ranked against all the other individuals

depending on the fitness value. Also, selection is basically based on the fitness.

The fitness function may additionally depend on different side conditions/constraints and

stochastic influences (fitness noise/noisy fitness). The hope is that fitness function correlates

closely with the algorithm’s goal and there is a correlation between the fitness of the parents

and offspring. Otherwise the search would be essentially a random walk search. Also, fitness

function should be computed quickly. Because, speed of execution is very important, as a

typical EA iterates several times in order to produce a usable result for a non-trivial problem.

2.1.2 CROSSOVER

Crossover is an information exchange between individuals[1]. In a crossover routine, two

individuals are selected. They are called parents. Two parents generates individuals, which

are called offsprings.

6

2.1.2.1 K-POINT CROSSOVER

Simple one-point crossover proceeds in two steps. Firstly, two parents in the mating pool

are mated. Secondly, these parents exchange genes as follows: randomly a position - , where.0/ - /*132547698&6 ! 698 #
:<; �9=�>@? � . , is selected. Two new individuals are created by swapping

all genes between position -�� . and
1A2B476C8&6 ! 698 #9:D; �C=E>@? . For example, let F � % .HG ��IKJ

and F � %*J�� .LG0G be two mated parents. and let - % G be the cross point, which is indicated

by the separator symbol M . Then the parents are:

F � % .LG � M I�J
F � %*J�� . M G0G

The children are: N
� % .HG � M G�GN
� %*J0� . M IKJ

If it is a multi-point crossover, multiple random points are used, instead of one. For

example for the above parents F � and F � , a
G

point crossover with - � % . , - � % G and -PO %*I
is:

F � % . M G � M I M J
F � %*J M � . M G M G

The children are: N
� % . M � . M I M GN
� %*J M G � M G M J

2.1.2.2 UNIFORM CROSSOVER

Uniform crossover combines genes sampled uniformly from the two parents. The crossover

mask is generated as a random bit string with each bit chosen at random from either parent

and independent of other genes.

Parents for crossover can be selected by different selections mechanisms. Two of them

are random selection and roulette wheel selection.

2.1.2.3 RANDOM SELECTION

Randomly two individuals are selected as parents.

7

Algorithm 2 Random Selection (for crossing)
input: population size and population

output: the id of individual selected as parent

return a random integer i such that
.H/RQS/ - 6 -�TPUWV
X QY6 �Z! QY[#

2.1.2.4 ROULETTE WHEEL SELECTION

Parents are selected according to their fitness values. Fitter individuals have higher probability

for being chosen as a parent.

In the Algorithm 3, sum of the fitnesses of all individuals are computed. Partial sum is

a value depending on fitnesses of individuals. Partial sum of first individual is, it’s fitness

value. If partial sum of
�Z>@?

individual is \ � , then partial sum of
� � . >@? individual is the

sum of partial sum of
�Z>@?

individual and fitness value of
� � . >@? individual. According to the

given procedure, partial sums are evaluated for each individual. A random rational number

is generated between] and the sum of the fitnesses. The individual which has corresponding

partial sum is chosen as a parent.

Algorithm 3 Roulette Wheel Selection
input: population size, sum of fitnesses and population

output: the id of individual selected as parent

partial sum is a real number with initial value 0.0

rand out is a real number

i is an integer

rand out = a random real number greater than or equal to] and less than sum of the

fitnesses

for i=1, partsum=0; i
/

population size and partial sum , rand out; i++ do

partsum += pop[i].fitness;

end for

i = i - 1

return i

2.1.3 MUTATION

Mutation is an operator which slightly changes the genotype. Randomly choosing a gene and

randomly assigning a new value is basic mutation. Mutation is mostly important for local

8

search. Mutation probability defines the occurrence frequency.

2.1.4 SELECTION

Selection is making a decision for the individual for the next generation. It relies on the fitness

function used and selection mechanism applied.

2.1.4.1 (�����) SELECTION

(�^�+�) selection is a deterministic selection, in which only the fittest individuals survive.

Deterministic selections leads to a fast convergence. The population size is represented as

� and the number of children generated as � . In (�&�+�) selection, the best � individual,

which have higher fitnesses among the (�_�)�) individuals, are selected to continue to the

next generation by a competition, between both parents and children.

2.1.4.2 (�����) SELECTION

(�����) selection is similar to (�`� �) selection. Similarly, � children is generated,
� ����� � selec-

tion again chooses the best � , however the competition is only among the children. Parents

are thrown away.

2.2 SIMULATED ANNEALING

Simulated annealing (SA) is a kind of search algorithm. Initially a solution is generated. At

each step, randomly a solution candidate is generated. If the new one has higher fitness value,

then it is better and it is assigned as current solution. If it is not better, it is assigned as the

current solution with a probability depending on the difference between the solutions and the

time step. This probability depending on temperature a is the metropolis probability:

\ � a �b% #BcedWf�g h�iDgjc�dWkWkml9nWoEpYpqdWc�g h�iDgjc�dWkWkr
In summary, a typical simulated-annealing algorithm runs the following pseudo-code:

9

Algorithm 4 The simulated annealing search algorithm.
inputs: a problem and schedule which is a mapping from time to temperature a
outputs: a solution state

step count = 0

initialize initial population

while goal not found or maximum step count is not reached do

step count = step count + 1

temperature = schedule(step count)

if temperature is 0 then

return current solution

end if

randomly generate next solution

if next fitness s current fitness then

current solution=next solution

else

current solution=next solution with probability

\ � a ��% # c�dWf�g h�iDgjced�kWkmltn�o�pqpqdWc�g h�iDgjced�kWkr
end if

statistics

end while

10

2.3 TREE ENCODINGS

A tree is an undirected fully connected graph which does not contain any closed cycles. There

are many problems in terms of finding the optimal tree satisfying some given constrains within

a graph. EAs can be used for these problems provided that a suitable representation is chosen,

since in EAs, the way a tree is represented strongly affects the success and efficiency of finding

the solution.

Suppose that a tree has
�

nodes (vertices). If these nodes are named from
.

to
�

, this

tree is a labeled tree. In other words, suppose a %u�Wv ��w � is a tree, where
vx% . �3yzyzyz� � is

the set of
�

nodes (vertices) and w % . �3yzyzyz� �$� . is the set of edges (arcs). Since the nodes

are named from
.

to
�

, the tree is called labeled tree. Many algorithms require generating

spanning trees of labeled graphs. Since every tree can be represented as a labeled tree, from

now on, the word tree is used instead of labeled tree.

A tree can be represented as a list of edges, as a vector of edges, according to predecessors

and/or brothers or by encoding based on neighborhood. Representing tree as a list of numbers,

ie. representing a tree as a code, makes it suitable for evolutionary algorithms, since, this code

code can be used for the genotype, in other words as the chromosome, for the evolutionary

algorithm. Choosing such a linear representation enables the use of a GA. So we can make

use of classical versions of evolutionary operators like cross-over and mutation.

This section firstly provides some criteria to evaluate tree representations, especially for

EA, continues with descriptions of some possible representations and lastly includes some

prüfer-like encodings, which are studied in this thesis, in more detail.

2.3.1 CRITERIA TO SELECT TREE REPRESENTATIONS IN EVOLUTIONARY

ALGORITHMS

The representation deeply affects the performance of a solution algorithm. If a representa-

tion is being searched for an EA, efficiency, locality, heritability and closure properties are

considered.

2.3.1.1 EFFICIENCY

Efficiency is the cost compared to what is gained. It this section, efficiency expectations are

analyzed according to evolutionary computation.

11

If an encoding is used, computations about it should be with minimum cost.

When considering an encoding efficient or not, three complexity analysis should be done:

� The cost of computing fitness.

� The cost of computing the genotype from the phenotype.

� The cost of computing the phenotype from the genotype.

The evaluation of fitness depends on the problem. This is why, some encodings are effi-

cient on some problems. The cost of computing genotype and phenotype are two characteris-

tics of encoding scheme.

2.3.1.2 LOCALITY

Locality of an encoding can be described as the relatedness of the phenotype (the code) and

the genotype (the tree). If a small change in genotype results in a small change in phenotype, a

coding has high locality. High locality means, coding is suitable for evolutionary search. Be-

cause with each mutation, a new individual similar to mutant comes out and search advances

step by step.

2.3.1.3 HERITABILITY

If offspring phenotypes consist mostly of parents’ phenotypes, a code is said to be have high

heritability with respect to crossover operator.

2.3.1.4 CLOSURE

If after crossover and mutation, children are still valid individual representations, representa-

tion is said to be closed according to the problem. For example, let a � and a � be two trees.

After applying crossover operator on them, if children are again trees, the representation is

closed. But if the children are graphs which may contain cycles, then representation is not

closed. If a representation is not closed under defined crossover and mutation, at least the cost

of defining suitability and removing or deleting the individual should be small.

Before describing the encodings studied in the thesis, let us provide descriptions of some

other possible tree encodings.

12

2.3.2 TREE REPRESENTATIONS

First let us give four different representations [17] and [13], which are not closed under clas-

sical GA operators.

2.3.2.1 ARC LIST REPRESENTATION

In this representation, a list w % . �3yzyzyz� �{� . keeps the id’s of edges in the tree. Suppose, w is

used as a genotype and crossover operation is applied on it. It is not guaranteed that, resulting

children will be trees, they may include cycles.

2.3.2.2 ARC VECTOR REPRESENTATION

This is another simple representation. A vector w has an entry for each edge in the graph � .

If spanning tree a of � includes an edge, its entry is 1, 0 otherwise. Clearly,
� � .

elements

of w need to have value of 1.

2.3.2.3 PREDECESSOR REPRESENTATION

It is also possible to designate a node
4

as the root node of the tree. Then encode the tree

according to the immediate predecessors. Let
Q

be a node in the tree. For each
Q

keep - � Q � ,
which is the immediate predecessor in the path from

4
to
Q
.

2.3.2.4 ORIENTED TREE REPRESENTATION

In this representation, two predecessor pointers are associated with each node
Q
, |~} 6 ��� Q � and��� 476 X 2 � Q � . |~} 6 ��� Q � is the left most son of

Q
and
��� 476 X 2 � Q � is the rightmost son of

Q
. A leaf

node has an |�} 6 ��� Q �`%�� Q and A particular node which is the last node in one level of this

structure tree has its
��� 476 X 2 � Q � as the negative of its parent (predecessor) in the rooted tree.

2.3.3 PRÜFER’S ENCODING

One mostly known encoding of a tree is Prüfer’s encoding. Suppose a %��Wv ��w � is a tree

where
v % . �3yzyzyz� � is the set of

�
nodes and w % . �3yzyzyz� �{� . is the set of

��� .
edges.

The Prüfer number, \ � a � , is the
� ���

digit number which encodes the tree a with Prüfer’s

encoding scheme [18]. Digits of Prüfer number are between
.

and
�

.

13

If there is an edge between all nodes, the graph is called complete. In 1889, Cayley

proved that the number of spanning trees of an undirected complete graph with
�

vertices is���
	��
([4], pp.103-104). In 1918, Prüfer introduced a one-to-one mapping between spanning

trees and Prüfer numbers. This mapping proved the Cayley’s theorem more elegantly ([4],

pp.104-106).

If a tree-code is a sequence of (n-2) node labels and the code is computed by iteratively

deleting the leaves of the tree in some deterministic order, the tree-code is called Prüfer-like.

2.3.3.1 ENCODING A TREE BY USING PRÜFER NUMBERS

The degree of a node � is the number of edges connected to � . Any node which has degree.
is called leaf. A tree can be encoded as a Prüfer number by the Algorithm 5. If there exist

less than
G

nodes, the algorithm is trivial. At step 3 of the algorithm, since
Q

is a leaf, there

exists exactly one � . An algorithm, by Kilingsberg, for constructing a tree with
�

nodes from

its Prüfer number can also be adopted to encode the tree by its Prüfer numbers [3], [16] (p.

271).

Algorithm 5 The Construction of the Prüfer Number from a Tree
input: the labeled tree a of order

�
.

output: the
�&���

digit Prüfer number \ � a � of a , where
.H/(��Q"��Q X / � .

1: while There exists more than
�

nodes do

2: Let
Q

be the lowest numbered leaf in a .

3: Let � be the node connected to
Q
. Add label of � as the rightmost digit of \ � a � .

4: Remove
Q

and the edge connecting
Q

and � from a and from further considerations.

5: end while

There exists an efficient implementation of Algorithm 5 with time complexity
����� U 6C� ��� .

It uses a priority queue implemented in a heap to hold the leaf nodes [19].

Let us demonstrate Algorithm 5 with a brief example. Let us generate Prüfer number of

tree a given at Figure 2.1. The smallest labeled leaf is
�
. Remove

�
and record � , \ � a ��% � .

Then the smallest node is
G

with neighbor
I
, so, \ � a ��% � I Similarly, remove

I�JL���
one

by one and record
. ��� .

respectively. Thus, \ � a ��% � I . ��� . .
2.3.3.2 DECODING PRÜFER NUMBERS

It is possible to decode Prüfer number and get the unique tree by the Algorithm 6.

14

� �
� �����

��

� .����
��

� I� � � �
� �

� G� � � �
� �

��
�� ������
�J ���

���

Figure 2.1: Example tree

Let us demonstrate the construction for the example tree in Figure2.1. Given \ � a �0%
� I . �0� . , The lowest eligible no is

�
. So a %��"� �E� � � becomes eligible. Then the next low-

est eligible node is
G
, so add

� G � I
� to a . a %��"� �E� � � � G � I
� . I becomes eligible. Then take
I
.

a %��"� �E� � � � G � I
� � ��I � . � but 1 is still not eligible. Similarly add edges
�"J � ��� , �q� � ��� and

�"� � . � .
Then

.
and � remains eligible, add

� . �E� � . So a %��"� �E� � � � G � I
� � ��I � . � � �qJ � ��� � �q� � ��� � �"� � . � � � . ��� �
Algorithm 6 The Construction of the Tree from Prüfer Number
input: a Prüfer number \ � a � with

�&���
digits, where

.L/(��Q"�
Q X / �
output: the labeled tree a of order

�
.

1: Let all node labels not part of \ � a � be designated as eligible for consideration.

2: while There exists more than] digits in \ � a � do

3: Let
Q

be the lowest eligible node label. Let � be the leftmost digit of \ � a � .
4: Add the edge

� Q �Y� � to a .

5: Designate
Q

as no longer eligible and remove left most digit � from \ � a � .
6: if � does not occur anywhere in \ � a � then

7: Designate � as eligible.

8: end if

9: end while

10: There are exactly
�

node labels , � and U , which are eligible. Add the edge � and U to a .

2.3.3.3 PROPERTIES OF PRÜFER NUMBERS

As mentioned, a tree of
�

nodes is encoded as an
�$���

digit Prüfer number. Each digit can

get values between
.

and
�

. So, there exist
� �
	��

Prüfer numbers for a graph of
�

nodes.

Prüfer numbers have some benefits. Every tree can be represented by a unique Prüfer

15

number. Every Prüfer number represents exactly one tree. Only trees are represented by

Prüfer numbers. All trees are equally represented. Degree of a node is one more than the

number of times the node appears at Prüfer number.

However, they also have some disadvantages. They have low locality and low heritability.

The definition of locality is given in Section 2.3.1.2. A coding has high locality if small

changes in genotype (code) -like mutation- changes the corresponding phenotype (tree) slightly.

Several researches like [17], [20], [21], [19] pointed out that Prüfer numbers has poor locality

with respect to conventional position-by-position mutation.But in fact it is seen that Prüfer

numbers only have high locality if they encode stars [19].

2.3.4 NEVILLE’S ENCODINGS

Neville proposed three different methods for encoding trees, in 1952 [15]. These methods also

prove Cayley’s theorem. The first method is similar to Prüfer’s method. Other two methods

differ in the order of removing leaves. Some studies call these encodings as Neville’s second

or third encoding[3]. However, these numbers can be confused. Thus, they are named as

Neville branch encoding and Neville leaf encoding, according to the approaches they use

when removing leaves.

2.3.4.1 NEVILLE’S BRANCH ENCODING

This method is the second one given in the Neville’s study [15] and named as third encoding

at paper [3]. In this method, firstly the leaf with smallest label is chosen. It is removed and it’s

neighbor is recorded. If the neighbor becomes a leaf, same procedure is applied. Otherwise,

the smallest leaf on the remaining tree is searched and the above process is applied on it. This

methods deletes the leaves branch by branch. So it is called Neville branch encoding. Codes

generated are Neville branch numbers.

Encoding Neville Branch A tree can be encoded as a Neville branch number by the Algo-

rithm 7. If there exist less than
G

nodes, the algorithm is trivial. At step 3 of the algorithm,

since
Q

is a leaf, there exists exactly one � .
When the Algorithm 7 is applied in the example tree of Figure 2.1, The nodes are removed

in the order of
�
, � , G , I , . , J and � , . , I , . , � , � , is recorded respectively. So

v � � a ��%
� . I . �0� .

16

Algorithm 7 The Construction of the Neville Branch Number from a Tree
input: the labeled tree a of order

�
.

output: the
�&���

digit Neville branch number \ � a � of a , where
.�/(��Q"�
Q X / � .

1: Let
� 69� # X 6 � # 4 # 8&6C� # � be the lowest numbered leaf in a .

2: while There exists more than
�

nodes do

3: Let � be the node connected to
� 6t� # X 6 � # 4 # 8&6C� # � . Add label of � as the rightmost

digit of \ � a � .
4: Remove

� 6t� # X 6 � # 4 # 8&69� # � and the edge connecting
� 6t� # X 6 � # 4 # 8&69� # � and �

from a and from further considerations.

5: if � becomes a leaf then

6: Let
� 6t� # X 6 � # 4 # 8&69� # � be � .

7: else

8: Let
� 6t� # X 6 � # 4 # 8&69� # � be the lowest numbered leaf in a .

9: end if

10: end while

Decoding Neville Branch The Algorithm 8 decodes Neville branch numbers.

2.3.4.2 NEVILLE’S LEAF ENCODING

This encoding technique is given at Neville’s paper as third method [15] and named as

Neville’s second method by Deo and Micikevicius [3] This technique sorts the available leaves

according to their labels. After removing all of the them, again sorts the available leaves and

continues this procedure until one edge remains. Since the technique deletes nodes leaves by

leaves, it is called Neville leaf encoding. Code generated by Neville leaf encoding technique

is called Neville leaf numbers.

Encoding Neville Leaf A tree can be encoded as a Neville leaf number by the Algorithm 9.

If there exist less than
G

nodes, the algorithm is trivial. At step 5 of the algorithm, since
Q

is a

leaf, there exists exactly one � .
When the Algorithm 7 is applied in the example tree of Figure 2.1, The nodes are removed

in the order of
�
,
G
,
J
,
�
,
I
,
�

and � , I , � , � , . , . , is recorded respectively. So
v | � a �0%

� I���� .0. .
17

Algorithm 8 The Construction of the Tree from Neville Branch Number
input: a Neville leaf number

v � � a � with
�&���

digits, where
.H/(��Q"��Q X / � .

output: the labeled tree a of order
�

.

1: Let all node labels not part of
v � � a � be designated as eligible for consideration.

2: Let
� 69� # 4 # 8&69� # � be the lowest eligible node label.

3: while There exists more than] digits in
v � � a � do

4: Let � be the leftmost digit of
v � � a � .

5: Add the edge
��� 6t� # 4 # 8&69� # � �Y� � to a .

6: Designate
� 6t� #
�3# 8&69� # � as no longer eligible and remove left most digit � fromv � � a � .

7: if � does not occur anywhere in
v � � a � then

8: Let
� 6t� # 4 # 8&69� # � be � .

9: else

10: Let
� 6t� # 4 # 8&69� # � be the lowest eligible node label.

11: end if

12: end while

13: There are exactly
�

node labels , � and U , which are eligible. Add the edge � and U to a .

Algorithm 9 The Construction of the Neville Leaf Number from a Tree
input: the labeled tree a of order

�
.

output: the
�&���

digit Neville leaf number
v | � a � of a , where

.�/(��Q"��Q X / � .

1: while There exists more than
�

nodes do

2: Let | be the set of leaves of a .

3: while | is not empty and there exists more than
�

nodes in a do

4: Let
� 6t� # X 6 � # 4 # 8&69� # � be the lowest numbered leaf in | .

5: Let � be the node connected to
� 6t� # X 6 � # 4 # 8&69� # � . Add label of � as the right-

most digit of \ � a � .
6: Remove

� 69� # X 6 � # 4 # 8&69� # � and the edge connecting
� 6t� # X 6 � # 4 # 8&69� # � and

� from a , | and from further considerations.

7: end while

8: end while

18

Decoding Neville Leaf Algorithm 10 can be used to construct a tree from a Neville leaf

number.

Algorithm 10 The Construction of the Tree from Neville Leaf Number
input: a Neville leaf number

v | � a � with
�&���

digits, where
.�/(��Q"��Q X / �

output: the labeled tree a of order
�

.

1: Let all node labels be designated as unused.

2: while There exists more than] digits in
v | � a � do

3: Let all node labels not part of
v | � a � and unused be designated as eligible for con-

sideration.

4: Let | be the set of eligible node labels.

5: while | is not empty and there exists more than] digits in
v | � a � do

6: Let
� 6t� # 4 # 8&69� # � be the lowest eligible node label in | .

7: Let � be the leftmost digit of
v | � a � .

8: Add the edge
��� 6t� #��A# 8&69� # � �Y� � to a .

9: Designate
� 6t� # 4 # 8&69� # � as used.

10: Remove
� 69� # 4 # 8&69� # � from | .

11: Remove left most digit � from
v | � a � and from further considerations.

12: end while

13: end while

14: There are exactly
�

node labels , � and U , which are unused. Add the edge � and U to a .

19

2.4 PROBLEMS

Four different kinds of problems are studied:

� One-max tree problem.

� Degree constrained minimum spanning tree problem.

� All minimum spanning trees problem.

� All degree constrained minimum spanning trees problem.

2.4.1 ONE-MAX TREE PROBLEM

Suppose a is a given goal tree. Trying to reach a is defined as one-max tree problem (OMTP),

by Routlauf [22]. One-max tree problem (OMTP) is defined by Rothlauf as one-min problem

at [20] and one-max tree problem at [22]. Both of them tries to reach any determined tree.

There are differences between defining the goal tree and fitness. Both of them uses a distance

between two trees to compute fitness. The definition of distance, so fitness, changes according

to the representation of tree. Both has fitness as] for the best solution.

In this thesis, our problem definition is similar: One-max tree problem is defined as trying

to reach to a given optimum solution. The goal is given. Initially a solution or solution set is

generated. Iteratively, goal is tried to be reached. There is a difference in defining the fitness

with previous definitions [20] and [22]. The better a solution, the more fitness it has. In other

word, one solution with higher fitness value is better. Goal has the maximum fitness.

OMTP is especially good for locality analysis. Being successful in OMTP means higher

locality.

2.4.2 DEGREE CONSTRAINED MINIMUM SPANNING TREE PROBLEM

A
8^Q � Qq8 T 8 ! -�V ��� Q � � X 4 #�# of a weighted graph is a set of edges (arcs) connecting all nodes

(vertices) such that the sum of weights of the edges are smaller than or equal to any other set

of edges connecting all nodes.

The degree of a node x is the number of edges incident to x.

With the definitions above and the definition of complete graph at given at Section 2.3.3,

suppose � %��Wv ��w � is an undirected complete graph, where
v % . �3yzyzyz� � is the set of n

nodes and w % . �3yzyzyz� 8 is the set of edges. The
� # ��4 #�# 1e6 �Z! X 4 V Q � # �H8^Q � Qq8 T 8 ! -PV ��� Q � �

20

X 4 #�#�- 476t� U"# 8 (DCMSTP) is finding the spanning tree of � with minimum total cost and all

nodes with degree less than or equal to a given degree bound
�
.

DCMSTP is NP-hard [6]. So, as the number of nodes and edges increases, any exact

solution approach becomes inefficient. So there are a variety of applications on getting better

solutions.

Encodings given at section 2.3 has an advantage at computing the degrees of nodes. So,

they may be successful at DCMSTP.

2.4.3 ALL SPANNING TREES PROBLEM

Given the definition of complete graph at Section 2.4.2, suppose � %x�Wv ��w � is an undi-

rected complete graph, where
v % . �3yzyzyz� � is the set of n nodes and w % . �3yzyzyz� 8 is the

set of edges. All spanning trees problem, ASTP, is finding } , such that } % X 2 # ! #3X 67¡
V¢UWU�X 2 # ! -PV ��� Q � � X 4 #�# ! 67¡ � .

If � is also a weighted graph and all spanning trees with minimum total cost is searched,

then the problem is called all minimum spanning trees problem, AMSTP.

Also, some additional constraints often makes the problem harder. For example, a bound

on the degree: Finding all the spanning trees of G with minimum total cost and all nodes with

degree less than or equal to a given degree bound is called all degree constrained minimum

spanning trees problem, ADCMSTP.

Since 1965, the spanning tree enumeration problem have been studied and many algo-

rithms have been proposed [14]. One approach , which is used by many early algorithms, is

backtracking. It is used mostly when listing the subgraphs. By backtracking approach, an

algorithm with
��� M v M��£M w¤M��£M¥}`MzM v M � time and

��� M v M
��M w¤M � space outputs all spanning

trees [14]. Recently, another technique have been developed by Kapoor and Ramesh [12],

Matsui [14], and Shioura and Tamura [24]. These algorithms find a new spanning tree by

changing one edge of current one. Instead of outputting the sequence of entire spanning tree,

they output a list of spanning trees in compact form. They just output the relative difference

of each consecutive two spanning trees. Their optimal one has
��� M v M��¦M w¤M��§M¥}`M � time and��� M v M
�§M w¤M � space complexities [25].

21

CHAPTER 3

NEVILLE’S TREE REPRESENTATIONS

As mentioned at 2.3, representing tree as a list of numbers, makes it suitable for evolutionary

algorithms. And also, as mentioned in section 2.3, there are several alternatives for repre-

senting a tree as a chromosome. Prüfer’s encoding is introduced in Section 2.3.3. In this

chapter, the remaining two representations are analyzed; namely, Neville’s branch encoding

and Neville’s leaf encoding, (will be called Neville branch, and Neville leaf ,respectively, for

simplicity).

3.1 NEVILLE’S BRANCH ENCODING

No algorithm with complexity analysis for encoding and decoding Neville branch numbers

are reported. This section presents algorithms for encoding and decoding Neville branch

numbers with
�������

time and space complexity. Section continues with locality analysis.

3.1.1 ENCODING NEVILLE BRANCH

A tree can be encoded as a Neville branch number by the Algorithm 11 with
�������

time and

space complexity.

The loop on lines 1 through 5 adds the leaves of the given tree to the stack in descending

order of their labels. The loop on lines 6 through 13 records the code of the tree. The node

to be deleted next is selected on line 7. Node
�

adjacent to the selected node T , is appended

to the tree code on line 8. After node T is deleted from the tree on line 9, the degree of
�

is

checked on line 10. If
�

becomes a leaf, it is added to the top of stack.

22

It is assumed that all node degrees are computed and stored in an array when the nodes

are examined in the loop on lines 1-5. This requires
�������

time, since each edge has to be

examined twice when adjacency list data structure is used to store a tree. Each call to degree

function can therefore execute in
��� . �

time. Since only nodes with degree 1 are removed

on line 9, the degree of one other node has to be updated each time. Thus, removing a node

requires
��� . �

time. So, tree encoding requires
�������

time.

Algorithm 11 Algorithm to Construct Neville Branch Number of a Tree with
�������

Time and

Space Complexity
uses a stack S, tree is an adjacency list T.

time and space complexity: O(n) input: E(T), the edge set of the encoded tree

output: C, code of length (n-2)

1: for i from n to 1 do

2: if degree of i is 1 then

3: add i to S

4: end if

5: end for

6: for i from 1 to n-2 do

7: remove u from top of S

8: C[i] ¨ v, where v is the node adjacent to u

9: remove u from T

10: if degree of v is 1 then

11: add v to S

12: end if

13: end for

3.1.2 DECODING NEVILLE BRANCH

A tree can be decoded from a Neville branch number by the Algorithm 12 with
�������

time

and space complexity. An array UWV ! X T ! # � keeps the last appearance of a node on code. It

is assigned on lines 1 through 6. This requires
�������

time. On lines 7 through 11, leaves are

pushed into the stack in descending order of their labels. On lines 12 through 18, edges are

added by joining the top of stack with the leftmost digit of code. If it is the last appearance of

leftmost digit on the code, digit

N�© Qqª
is pushed onto the top of stack. When all digits of

N
is

23

traced, there exits two nodes in the stack, representing the last edge. The last edge is formed

by joining the two last edges in the stack. Operations in loops can be implemented in constant

time. Loops requires
�������

time. Thus, Algorithm 12 needs
�������

time.

Two arrays of size
�

and one array of size
� �«�

is used. Therefore, Algorithm 12 needs�������
space.

3.1.3 LOCALITY OF NEVILLE BRANCH NUMBERS

The locality of Neville branch numbers are examined by random walks through the search

space and neighborhood analysis.

3.1.3.1 RANDOM WALKS

Given a labeled tree a and its Neville branch number
v � � a � with

�_���
digits, random walk

through
v � � a � means, that one digit of the

v � � a � is changed by a randomly chosen digit
�
,

such that
.�/(�¤/ �

, and the change of edges in a is examined.

For evaluating the locality of Neville branch numbers, computer simulations are pre-

sented. Figure 3.1 presents the results of computer simulations for random walks on the

search space of Neville branch numbers. For this purpose, a random code is generated, which

is the initial individual. To gain statistically significant information independent of initial in-

dividual, 400 steps (mutations) were performed on the individual. This procedure is applied

for 100 independent runs. So, 40000 steps are carried out in the search space. At the end of

these steps the count of edge changes for one digit change is evaluated and percentages are

computed. These experiments are done for 16 node trees and 32 node trees.

When walking through the genotypic search space, the plots in Figure 3.1 shows that,

only about 20% of all one digit changes result in a change of one edge in the phenotype.

Interestingly, the percentage of two edge changes per one digit change is apparently extremely

less than the percentages of 1 change and 3 changes per digit.

The random walks through genotypic search space shown that the locality of the Neville

branch number representation is low. Small changes in the genotype result in high changes

in the phenotype. In the following, whether the locality is uniformly low everywhere in the

search space, or there exist some areas of high locality is investigated.

24

Algorithm 12 Algorithm to Construct Tree from Neville Branch Number with
�������

Time

and Space Complexity
uses a stack S and a last used array

time complexity: O(n)

space complexity: O(n)

input: C, code of length (n-2)

output: E(T), the edge set of the encoded tree

1: for i from 1 to n do

2: last used[i] ¨ 0

3: end for

4: for i from 1 to n-2 do

5: last used[C[i]] ¨ i

6: end for

7: for i from n to 1 do

8: if last used[i]
%L%

0 then

9: push i onto the top of S

10: end if

11: end for

12: for i from 1 to n-2 do

13: pop v off the top of S

14: E(T) ¨ E(T) U v, C[i]

15: if last used[C[i]] == i then

16: push C[i] onto the top of S

17: end if

18: end for

19: pop v off the top of S

20: pop u off the top of S

21: E(T) ¨ E(T) U v,u

25

3.1.3.2 ANALYSIS OF NEIGHBORHOOD

The results of random walks showed that the locality of Neville branch encoding is low.

Therefore, whether the structure of the tree affects the locality or not is further investigated.

To explore whether the locality of encoding is different for different areas of the search

space, an individual X­¬ with specific properties is chosen and mutation is applied on it. The

number of edges that got changed is recorded. This procedure is run for 1000 independent

experiments. A frequency analysis is carried out on the results.

To examine the neighborhood of an individual, three different types of trees are used:

� Star: A tree with one node of degree
�^� .

and
�^� .

nodes of degree
.
.

� List: A tree with two nodes of degree
.

(the first and last nodes of list) and
���$�

nodes

of degree
�
.

� Random tree: An arbitrary tree.

Figure 3.2 examines the neighborhood of star, list and random tree on 16 and 32 node

trees. Figure shows the percentage of changed edges versus total edges when one digit is

changed on the encoding.

Figure 3.2 shows that, the neighborhood of genotype depends on the structure of the

encoded tree. If a star is encoded, exactly one edge changes for every digit change. This

means that, locality of Neville branch number is perfect for stars. If a list is encoded, the

possibility of less than 5 edge changes per one digit change is nearly zero. But the possibility

of one edge change per one digit change is also low, it is about 20%. Independent of number

of nodes, mostly probable number of edge changes per one digit change is
G
. Nearly half

of the simulations resulted in
G

different edges for list type trees. When the tree structure is

random, there is no dominant number for number of changes. But for a tree of
�

nodes, the

possibility of more than
��®t�

edge changes is near to zero. In all cases, the percentage of
�

changes is interestingly low compared to the percentages of
.

and
G
.

The results show that, the locality of Neville branch number is dependent on the pheno-

typic structure of the encoded tree and is highly irregular. If the encoded tree is a list or a

random tree, the locality is very low. Most genotypic neighbors of Neville branch number are

phenotypically very different. However, if a star type tree is encoded, the locality of Neville

branch number is perfect. A genotypic neighbor of a star is also a phenotypic neighbor.

26

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12 14 16

fre
qu

en
cy

phenotypic distance to parent

(a) 16 nodes

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 5 10 15 20 25 30 35

fre
qu

en
cy

phenotypic distance to parent

(b) 32 nodes

Figure 3.1: Distribution of phenotypic distances for neighboring Neville branch numbers on
16 and 32 node trees.
Random walks through Neville branch numbers are performed and graphs show how many
links are different in the tree if one digit of the Neville branch number is changed.

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

fre
qu

en
cy

phenotypic distance to parent

star
random

list

(a) 16 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

fre
qu

en
cy

phenotypic distance to parent

star
random

list

(b) 32 nodes

Figure 3.2: Distribution of phenotypic distances for neighboring Neville branch numbers on
16 and 32 node trees for specific tree types.
Random walks through Neville branch numbers are performed and graphs show how many
edges are different in a tree if one digit of Neville leaf number is changed for star, list and
random type trees.

28

3.2 NEVILLE’S LEAF ENCODING

This section presents the locality analysis for Neville leaf encoding.

3.2.1 LOCALITY OF NEVILLE LEAF NUMBERS

The locality of Neville leaf numbers are examined in a similar way to the locality analysis

of Neville branch numbers. Again, random walks through the search space of Neville leaf

numbers are performed and neighbors are analyzed according to the tree structure.

3.2.1.1 RANDOM WALKS

Figure 3.3 plots the results of computer simulations for locality analysis of Neville leaf num-

bers.

The simulation results given at Figure 3.3 present that, only 20% of all one digit differ-

ences in genotype result in a phenotypic distance of one. The results are similar to the results

of random walks through Neville branch numbers. Besides, again, there exists a strict fall

down at the percentage of
�

different edges per
.

difference in Neville leaf number.

So, the random walks through genotypic search space of Neville leaf numbers revealed

that the locality of the Neville leaf number representation is also low. Small changes in the

genotype cause high changes in the phenotype. Neighborhood analysis of Neville branch

number showed that, locality of Neville branch number changes according to the structure of

the tree encoded. Following, the relation between locality of Neville leaf numbers and the

structure of encoded tree is examined.

3.2.1.2 ANALYSIS OF NEIGHBORHOOD

The results of random walks indicate that the locality of Neville leaf numbers is low. Besides,

neighborhood analysis of Neville branch encoding show that, locality is affected by the struc-

ture of the encoded tree. Thus, whether the structure of the tree affects the locality of Neville

leaf numbers or not is investigated.

The method used for analyzing neighborhood of Neville leaf numbers is the same with the

method used in Section 3.1.3. Figure 3.4 plots the percentage of the number of the changed

edges are for one digit is change on the encoding. These simulations are performed for 14

and 30 digit Neville leaf numbers.

29

Figure 3.4 gives the results of neighborhood analysis for Neville leaf number. Locality is

best for encodings of star like trees. One difference in the Neville leaf encoding means one

difference in the tree structure. But if the tree structure is list, nearly 50% of the Neville leaf

numbers have neigbors of phenotypic distance
G
. Only 20% of list encodings have neighbors

with phenotypic distance of
.
. Locality for list encoding Neville leaf numbers is very low. But

the possibility of getting a totally different phenotype with a mutation on genotype is zero.

For random trees, a wider range for phenotypic distance is observed. But the percentages of

observed distances are closer and low. Again only 20% of genomes have phenotypic distance

of
.
. For all tree types, percentage of

�
changes is interestingly low compared to percentages

of
.

and
G

and for any tree of
�

nodes, the possibility of more than
��®t�

edge changes is near

to zero.

3.2.2 PROPERTIES OF NEVILLE NUMBERS

The properties of Neville numbers are similar to the properties of Prüfer numbers. Similarly,

benefits and disadvantages can be listed as:

� Every tree can be represented by a unique Neville number.

� Every Neville number represents exactly one tree.

� Only trees are represented by Neville numbers.

� All trees are equally represented.

� Neville numbers are closed under classical EA operations.

� Degree of a node is one more than the number of times the node appears at Neville

number.

Disadvantages:

� Low locality.

� Low heritability.

Although these properties are similar, Neville branch number has an advantage. Since it

does not include sorting of leaves, encoding and decoding functions are simpler and needs

less time and storage.

30

3.3 COMPARISON OF PROPERTIES OF PRÜFER’S AND NEVILLE’S EN-

CODINGS

As given at Section 2.3.3, Prüfer’s encoding has low locality. To make a comparison between

encoding styles, similar experiments are done on Prüfer’s encoding. Figure 3.5 presents the re-

sults for random walks. A starting chromosome is chosen randomly and one digit is changed.

The count of changed edges is recorded. Each randomly generated chromosome is mutated

400 times. Each run is performed 100 times, independently.

Figure 3.6 presents results of random walks according to tree structure. Prüfer encoding

also performs best with star type networks.

All encodings encode star network as same code. For an
�

node tree a , there exist n

different stars and
�

different encodings. In a star, one node has degree
�¯� .

, let us call it

root
4

and others have degree
.
. If one node is connected to a node except root on phenotype,

one digit in genotype will change: Let us prove this: Let } be a star type tree. Let the edge

to be removed be
� Q � 4 � and edge to be inserted

� Q �Y� � . If
Q

is the smallest labeled leaf, then

the first digit of encoding will change from
4

to � . Else, if
Q

is not the smallest labeled leaf:

There exist � leaves with smaller label than
Q
, where

._/ � / ���¯� G � in the mutated tree.

Remove � leaves. The first � digit of code will be
4
, which is same for the code of } . If

�{, ����� G � , it means that, degrees of
4

and � are greater than
.

and
Q

is the leaf with smallest

label. Remove
Q

and
� ��� . �°> 2 digit of code will be � . The remaining tree will be coded same

with } . If � %±���$� G � , then a list like tree remains, with edges
� Q �Y� � and

� �7� 4 � . If
Q , 4 , 4

will be removed and last digit will be � . Else,
Q

will be removed and last digit will be again � .
Therefore, in all cases, only one digit of code will change if one edge changes for a star. This

is why all encodings have perfect locality with stars. Neville branch and leaf encodings have

nearly the same results for locality analysis. Prüfer numbers performs better for list type trees.

For random trees, Prüfer numbers percentage of one different edge per one different digit is

nearly two times Neville numbers. But, mutation on Prüfer numbers can result in much more

different trees in phenotype. Neville’s encodings does not produce so many different edges

with one digit change. When EAs are considered, Prüfer numbers locality properties seems

better. Because, Prüfer numbers generate much more different phenotypes with mutation.

This makes a wider search area. Besides, when the optimum solution is near, small changes

in the phenotype are not to miss the optimum solution. Neville’s branch and leaf encodings

do not produce very different mutants but may miss the optimum solution since percentage of

31

phenotypic distance of
.

is less compared to Prüfer’s encoding. If Neville’s encoding is used

in EAs, less fit individuals should also be kept. Because one less fit individual may become

fitter with one mutation.

In overall, simulations show that both Prüfer numbers and Neville numbers have low

locality.

32

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12 14 16

fre
qu

en
cy

phenotypic distance to parent

(a) 16 nodes

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25 30 35

fre
qu

en
cy

phenotypic distance to parent

(b) 32 nodes

Figure 3.3: Distribution of phenotypic distances for neighboring Neville leaf numbers on 16
and 32 node trees.
Random walks through Neville leaf numbers are performed and graphs show how many links
are different in a tree if one digit of Neville leaf number is changed.

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

fre
qu

en
cy

phenotypic distance to parent

star
random

list

(a) 16 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

fre
qu

en
cy

phenotypic distance to parent

star
random

list

(b) 32 nodes

Figure 3.4: Distribution of phenotypic distances for neighboring Neville leaf numbers on 16
and 32 nodes for specific tree types.
Random walks through Neville leaf numbers are performed and graphs show how many edges
are different in a tree if one digit of Prüfer number is changed for different tree structures.

34

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

fre
qu

en
cy

phenotypic distance to parent

(a) 16 nodes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30 35

fre
qu

en
cy

phenotypic distance to parent

(b) 32 nodes

Figure 3.5: Distribution of phenotypic distances for neighboring Prüfer numbers on 16 and
32 nodes.
Random walks through Prüfer numbers are performed and graphs show how many edges are
different in tree if one digit of Prüfer number is changed.

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

fre
qu

en
cy

phenotypic distance to parent

star
random

list

(a) 16 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

fre
qu

en
cy

phenotypic distance to parent

star
random

list

(b) 32 nodes

Figure 3.6: Distribution of phenotypic distances for neighboring Prüfer numbers on 16 and
32 node trees for specific tree types.
Random walks through Prüfer numbers are performed and graphs show how many edges are
different in tree if one digit of Prüfer number is changed for star, list and random type trees.

36

CHAPTER 4

APPLICATIONS

In this chapter, performances of Prüfer’s and Neville’s encodings on EAs and SAs are inves-

tigated empirically with the following four problems:

� OMTP

� DCSTP

� ASTP

� ADCSTP

All EAs used are based on Goldberg’s simple genetic algorithm [7], given at Section 2.1.

Experiments on OMTP show that, locality affects the performance of encodings on EA

and SA. In addition, heritability is also low if locality is low. Thus, Neville’s and Prüfer’s

encodings are very successful if the tree to be encoded is star type. Although degree com-

putation is very easy with these encodings, since locality of the encodings is low for random

trees, these encodings are not successful in simple EA operations. However it is observed that,

Neville branch number representation gives the best solution for both ASTP and ADCSTP.

4.1 ONE-MAX TREE PROBLEM

Experiments performed in OMTP show that, neither Prüfer nor Neville encodings perform

well for the search spaces with low locality.

OMTP is suitable for locality and heritability analysis. As mentioned previously, if local-

ity and heritability is high, this means that encoding is suitable for evolutionary algorithms.

37

4.1.1 METHODOLOGY

For OMTP,
�

different algorithms are tested, namely EA and SA. In order to compare the

success of the encoding, a greedy solution is used.

At the initial state, for a given number of nodes
�

, goal is generated randomly. Since

any permutation can be decoded as a tree with the encodings in Section 2.3, a permutation

of length
�(�+�

is randomly generated. This is used as the goal chromosome. Locality

analysis in Chapter 3 showed that, encodings have different locality properties for different

tree structures. Because of this, experiments are done for
G

different tree types: star, list and

random.

For the greedy solution, distance represents the number of differences in permutations.

For the encodings, distance defined as the number of edges different in the decoded tree.

4.1.2 EXPERIMENTS

4.1.2.1 EA

In this subsection, results for EA on OMTP are presented. For each test,
.]7] independent

runs were performed and each run is terminated after the population is fully converged. In

all simulations one-point crossover with crossover probability
.

and mutation probability]²y J
is used. Each of the figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 include

I
sub-figures. The only

difference between the algorithms used in sub-figures are the fitness functions used. Each

sub-figure shows the result of a different fitness function. The first sub-figure, called geno-

typic distance comparison, is the results of an EA which uses genotypic distance as fitness

function. For an
�

node OMTP, an individual is a
�³�R�

digit number. In order to compute

the fitness value of an individual, the goal chromosome is compared with the individual chro-

mosome. The fitness value is the number of same digits in two encodings. So, the maximum

of fitness value of genotypic distance comparison for a
�

node OMTP is
� ���

. When
�&���

is reached as the fitness value, the problem is solved. Other three sub-figures use Neville’s

and Prüfer’s encodings for fitness function. The code is decoded and phenotypic distance is

used to evaluate fitness. The number of the same edges with the goal tree is assigned as the

fitness value. An individual is a
�¤�{�

digit number, for an
�

node OMTP. Fitness value of an

individual is the number of same edges between goal chromosome and the individual.

All the sub-figures include 3 plots, MIN, MAX, AVARAGE. MAX plots the maximum

38

fitness value available for the current generation. Similarly, MIN plots the minimum fitness

value found in the given generation, and finally AVARAGE plots the average fitness value of

the generation. Each plot is the average of 100 independent runs.

Figure 4.1 shows the performances of Prüfer’s and Neville’s encodings with EA for 8

node OMTP with random trees.
� �¤�´� � selection is used with � % � %'J]7] . Parents are

chosen for crossover by roulette wheel selection. When the value
�

is reached as the fitness

value for genotypic distance comparison, it means that, the goal is reached. Similarly,
�

is

the goal fitness value if Prüfer’s and Neville’s encodings are used. The plots show minimum,

maximum and average fitness values for each
� # � # 4 V�X QY6 � . Experiments show that, population

size is important in finding the optimum solution. For example, optimum solution cannot be

reached if the population size is
.]7] . Figure 4.1 show that, Prüfer numbers and Neville

numbers can solve only small size OMTPs. The locality and heritability properties of Prüfer

numbers are also similar to the locality and heritability properties of Neville branch numbers

Figure 4.2 shows fitness value of individual for each
! X�#­- 1e6 T � X for 16 node OMTP with

random trees.
� �^�+� � selection is used with � % � %�J]7] . Roulette wheel selection is

used for mating parents. When the problem size get larger, EAs suffer from sticking on a

local maximum. Figure 4.2 shows that, none of the encodings can solve a 16 node OMTP for

random trees. Prüfer numbers perform better than Neville numbers.

Figure 4.3 shows the effect of selecting mates for crossover. In a roulette wheel selection,

fitter parents are chosen more often than the less fit ones. In addition to roulette wheel selec-

tion, random selection is also tested. It is seen that, when random selection is used, encodings

converge faster.

On the simulations of 4.4, a limit on the duplicate members selected for the next gener-

ation is applied. Let
Q

be an individual chosen for the next generation. Let � be a candidate

to be chosen for the next generation, such that it has the highest fitness among the remaining

candidates. If
Q

and � are the same chromosomes, then � is omitted and a new individual is

searched for selection. So, an individual can fill at most half of the population. From this

technique, no improvement is observed.

In figures 4.5 and 4.6, simulations are the same except the input types.
� �S�K� � selection is

used with � % � % .]7]7] in both of them. Roulette wheel selection is used to select parents.

Genotypic distance comparison finds the solution when fitness is 30. Neville and Prüfer

numbers find the solution when fitness is 31. However, Figure 4.5 uses random type trees

39

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(a) Genotypic distance comparison

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(b) Neville branch numbers

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(c) Neville leaf numbers

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(d) Prüfer numbers

Figure 4.1: Performances of Prüfer’s and Neville’s encodings with EA for 8 node OMTP with
random trees.

and Figure 4.6 uses star type trees. The comparison shows that, tree structure determines the

success. If tree is star type, solution is found as efficiently as in the genotypic fitness approach,

because Neville and Prüfer numbers have perfect locality with star type trees.

40

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(a) Genotypic distance comparison

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(b) Neville branch numbers

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(c) Neville leaf numbers

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(d) Prüfer numbers

Figure 4.2: Performances of Prüfer’s and Neville’s encodings with EA for 16 node OMTP
with random trees.

41

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(a) Genotypic distance comparison

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(b) Neville branch numbers

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(c) Neville leaf numbers

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(d) Prüfer numbers

Figure 4.3: Performances of Prüfer’s and Neville’s encodings with EA for 16 node OMTP
with random trees with random selection for crossover.

42

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(a) Genotypic distance comparison

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(b) Neville branch numbers

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(c) Neville leaf numbers

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(d) Prüfer numbers

Figure 4.4: Performances of Prüfer’s and Neville’s encodings with EA for 16 node OMTP
with random trees with limit on duplication.

43

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(a) Genotypic distance comparison

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(b) Neville branch numbers

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(c) Neville leaf numbers

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(d) Prüfer numbers

Figure 4.5: Performances of Prüfer’s and Neville’s encodings with EA for 32 node OMTP
with random trees.

44

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(a) Genotypic distance comparison

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(b) Neville branch numbers

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(c) Neville leaf numbers

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(d) Prüfer numbers

Figure 4.6: Performances of Prüfer’s and Neville’s encodings with EA for 32 node OMTP
with star type trees.

45

4.1.2.2 SA

SA given in Section 2.2 is used for the SA tests. Initially a random solution is generated,

which is called as current. Then, mutation is applied to current and next is obtained. If next is

better that current, next is assigned to the current. Otherwise, next is assigned to the current

with a probability depending on temperature a as follows:

\ � a �b% #BcedWf�g h�iDgjc�dWkWkml9nWoEpYpqdWc�g h�iDgjc�dWkWkr
where a is initially maximum and decreases with step count. a is computed as:

a % a�µ ��! X­#�- a¶µ � a�· ¬ �t¸ : ¹ > ;»º ¼q½°¾ �9>¡�Q � V¢U ! X­#�- 1A6 T � X±¿ 2 # 4 #3a¶µ % . V � � a�· ¬ �t¸ : ¹ > ;�º ¼Y½m¾ �C> %]
Each figure consists of 8 sub-figures. Genotypic fitness approach obtains the best solution

when fitness
�L�¤�

is reached, where
�

is the number of nodes. Other three approaches, which

use Neville’s and Prüfer’s encodings, need to obtain
�¯� .

as fitness to reach the goal. For

each fitness approach, plots show the fitness values of the current individual and the potential

current individual, ie. next individual, versus step. For each problem 20 independent runs

were performed.

In the experiments of Figure 4.7, 6000 steps were run. When the number of nodes in-

creases to 32 in Figure 4.8, steps are increased to
. �]7]7] . Figures 4.7 and 4.8 show that, if the

optimal solution is star, SA can find it. However, if the optimal tree is not a star, even if it is a

small sized tree, it is not guaranteed that the optimal tree will be reached.

46

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000

fit
ne

ss
step count

CURRENT

(a) Genotypic distance comparison -
current

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000

fit
ne

ss

step count

NEXT

(b) Genotypic distance comparison -
next

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000

fit
ne

ss

step count

CURRENT

(c) Neville branch numbers - current

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000
fit

ne
ss

step count

NEXT

(d) Neville branch numbers - next

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000

fit
ne

ss

step count

CURRENT

(e) Neville leaf numbers - current

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000

fit
ne

ss

step count

NEXT

(f) Neville leaf numbers - next

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000

fit
ne

ss

step count

CURRENT

(g) Prüfer numbers - current

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000

fit
ne

ss

step count

NEXT

(h) Prüfer numbers - next

Figure 4.7: Performances of Prüfer’s and Neville’s encodings with SA for 8 node OMTP with
random trees.

47

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000

fit
ne

ss
step count

CURRENT

(a) Genotypic distance comparison -
current

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000

fit
ne

ss

step count

NEXT

(b) Genotypic distance comparison -
next

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000

fit
ne

ss

step count

CURRENT

(c) Neville branch numbers - current

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000
fit

ne
ss

step count

NEXT

(d) Neville branch numbers - next

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000

fit
ne

ss

step count

CURRENT

(e) Neville leaf numbers - current

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000

fit
ne

ss

step count

NEXT

(f) Neville leaf numbers - next

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000

fit
ne

ss

step count

CURRENT

(g) Prüfer numbers - current

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000

fit
ne

ss

step count

NEXT

(h) Prüfer numbers - next

Figure 4.8: Performances of Prüfer’s and Neville’s encodings with SA for 32 node OMTP
with star type trees.

48

4.2 DEGREE CONSTRAINED MINIMUM SPANNING TREE PROBLEM

Since degree of a node of a tree, represented by prüfer-like codes is one more than the number

of times the node appears in the code, and there is a degree constraint at the problem, prüfer-

like codes might perform well.

4.2.1 METHODOLOGY

Two different algorithms are used for degree constrained minimum spanning tree problem:

� Evolutionary algorithm.

� Simulated annealing.

Problem is tested by a 8 node random tree with degree bound 4. Data set is given in the

Appendices A.

Each experiment is performed for each of Neville’s and Prüfer’s encoding styles. For a

graph � , cost is the sum of weights of edges used. Mutation and crossover operators are

applied on genomes and fitness is calculated according to the phenotypes: Let
� -À¬ be] if� # ��4 #�# 67¡ � 69� # QÁ/�� # ��4 #�# �e6 T � � and

� # ��4 #�# 67¡ � 69� # Q � � # �
4 #C# �e6 T � � otherwise. Also, let� - > ½ >@¸ : be the sum of
� ¬ s for all nodes. Then degree penalty is defined as

� - > ½ >@¸ :BÂ ���&����� Â�ÃKwÁ� � wLw \Hw v{Ä |�a�Å
N ��v }�a ÄÆv a

where n is the number of nodes DEGREE PENALTY CONSTANT is determined according

to the size of the problem. For an 8 node DCMSTP, it is assigned as
.]7] . Then, the fitness

function is defined as:

X 6 X°V¢U 1e6 ! X 67¡P��4 V�- 2 � X 6 X­V
U 1A6 ! X 67¡ X 4 #�#9� �"Ç¦Ä�È Ã¤w�� � wÉw \Hw v{Ä |�a�Å � � # ��4 #�# -�# � V
U�X°Ê �
where MAX DEGREE PENALTY is assigned as

J]7]7] .
4.2.2 EXPERIMENTS

4.2.2.1 EA

In EA, initial population is randomly generated. A selection is done according to the fitness

value, defined at Section 4.2.1. Individuals with nodes having degrees more than degree

bound are possible but since degree penalty is applied, the possibility is small. The plots

49

in Figure 4.9 show minimum, maximum and average fitness values for each
� # � # 4 V�X QY6 � .

Neville and Prüfer numbers find the solution when fitness is
�
.
� �L��� � selection is used with

� % � %ËJ]7] . Roulette wheel selection is used for crossover. Crossover probability is 1.

Mutation probability is 0.5. 100 independent runs were performed and each run was stopped

after the population was fully converged. Optimum cost for given sample is 43.

Experiments showed that all encodings can hardly solve even simple DCMSTP problems.

When the problem gets bigger, they become far away from finding the optimal solution.

50

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40

co
st

generation no

MIN_COST
MAX_COST

AVARAGE_COST

(a) Neville branch numbers - cost

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0 5 10 15 20 25 30 35 40

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(b) Neville branch numbers - fitness

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40

co
st

generation no

MIN_COST
MAX_COST

AVARAGE_COST

(c) Neville leaf numbers - cost

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0 5 10 15 20 25 30 35 40

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(d) Neville leaf numbers - fitness

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40

co
st

generation no

MIN_COST
MAX_COST

AVARAGE_COST

(e) Prüfer numbers - cost

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0 5 10 15 20 25 30 35 40

fit
ne

ss

generation no

MIN
MAX

AVARAGE

(f) Prüfer numbers - fitness

Figure 4.9: Performances of Prüfer’s and Neville’s encodings with EA for 8 node DC-MST.

51

4.2.2.2 SA

Figure 4.11 plots fitness values of the current individual and the next individual for each
! X�#­- .

and Figure 4.10 plots the cost values of the current individual and the next individual for each! X­#�- , for the same experiment. The same sample input with EA on DCMSTP is used. Neville

and Prüfer numbers find the solution when fitness is 7. 6000 steps are run. For each problem

20 independent runs were performed. Figures 4.11 and 4.10 show that, node of the encodings

can solve the problem.

52

 5200

 5400

 5600

 5800

 6000

 6200

 6400

 6600

 0 50 100 150 200 250 300 350 400 450 500

fit
ne

ss

step count

CURRENT

(a) Neville branch numbers - current

 5200

 5400

 5600

 5800

 6000

 6200

 6400

 6600

 0 50 100 150 200 250 300 350 400 450 500

fit
ne

ss

step count

CURRENT

(b) Neville branch numbers - next

 5500

 5600

 5700

 5800

 5900

 6000

 6100

 6200

 6300

 6400

 6500

 6600

 0 50 100 150 200 250 300 350 400 450 500

fit
ne

ss

step count

CURRENT

(c) Neville leaf numbers - current

 5500

 5600

 5700

 5800

 5900

 6000

 6100

 6200

 6300

 6400

 6500

 6600

 0 50 100 150 200 250 300 350 400 450 500

fit
ne

ss

step count

CURRENT

(d) Neville leaf numbers - next

 5200

 5400

 5600

 5800

 6000

 6200

 6400

 6600

 0 50 100 150 200 250 300 350 400 450 500

fit
ne

ss

step count

CURRENT

(e) Prüfer numbers - current

 5200

 5400

 5600

 5800

 6000

 6200

 6400

 6600

 0 50 100 150 200 250 300 350 400 450 500

fit
ne

ss

step count

CURRENT

(f) Prüfer numbers - next

Figure 4.10: Performances of Prüfer’s and Neville’s encodings with SA for 8 node DC-MST
(fitness).

53

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

co
st

step count

CURRENT COST

(a) Neville branch numbers - current

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

co
st

step count

NEXT COST

(b) Neville branch numbers - next

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

co
st

step count

CURRENT COST

(c) Neville leaf numbers - current

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

co
st

step count

NEXT COST

(d) Neville leaf numbers - next

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

co
st

step count

CURRENT COST

(e) Prüfer numbers - current

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

co
st

step count

NEXT COST

(f) Prüfer numbers - next

Figure 4.11: Performances of Prüfer’s and Neville’s encodings with SA for 8 node DC-MST
(cost).

54

4.3 ALL SPANNING TREES PROBLEM

In this section, optimum algorithms for all spanning trees problem (ASTP) of a (weighted

or unweighted) complete graph is given. Note that, any weighted graph can be written as

a weighted complete graph. If there is not an edge between two nodes, it is enough to add

an edge with infinite weight, in order to obtain a weighted complete graph from a weighted

graph.

4.3.1 METHODOLOGY

There are
�

different applications of ASTP:

� Do not output entire spanning tree, just enumerate trees.

� Output entire trees.

In the first application, entire trees are not printed. They stay printable when necessary.

For example, suppose that a spanning tree with specific properties is searched. An encoding

satisfies the constraints. Then the entire tree is printed. The second application outputs entire

trees. This increases the time and space complexities.

4.3.2 ENUMERATE ALL SPANNING TREES

In 1889, Cayley proved that the number of spanning trees of an undirected complete graph �
with

�
vertices is

� ��	��
, (see Section 2.3.3). Prüfer’s and Neville’s encodings span the tree

space of � completely. Each encoding is a one-to-one and onto mapping between labeled

tress and encodings. So, to enumerate all spanning trees, we only need to generate all codes

one by one.

The algorithm 13 will generate
� ��	��

spanning trees. Time complexity is
����� �
	�� �

. If }
is the set of all spanning trees of � and M¥}�M %*! , time complexity can be written as

!
. A code

is a number with
�0�&�

digits. Thus, space complexity is
�������

. To the best of our knowledge,

best known algorithm has
���"! � � �R# � time and

����� �(# � [25] For a complete graph, since!H%+����	��
, complexities become

�����Z��	��
�
and
����� �(# � , respectively. Both algorithms have

the same time complexity but our algorithm is better at space complexity.

Any code is decodable by any of the algorithms 8, 10, 6. Due to the simplicity and low

complexities, Neville’s branch encoding is suggested.

55

Algorithm 13 Enumerate All Spanning Trees
input: A complete graph � with

�
nodes.

output: The set of all encodings which represents the set of all spanning trees of � .

1: len=
� ���

2: code=empty

3: if len =] then

4: print code

5: end if

6: for
��Qq��Q X =1 to n do

7: Add
��Q"�
Q X as the leftmost digit of code.

8: len = len - 1

9: goto 3

10: end for

The Algorithm 13 can also be applied to incomplete graphs with a validity check. Since

Neville’s and Prüfer’s encodings are mappings between codes and spanning trees of complete

graphs, codes with unavailable edges will be generated. At the 4th step, validity can be

checked. If code includes any edge not available, code is omitted. Checking if any unavailable

edge exists in the code can be done by decoding the code. So, if Neville branch technique is

used, time complexity of validity check will be
�������

. This will result in a time complexity of��������	����
. Also, the set of edges w is needed to check the existence of edges. This results in

a space complexity of
����� �(# � , where # % M w¤M . Thus, enumerating all spanning trees of an

incomplete graph can be done in
�������
	��E�

time and
����� �R# � space.

4.3.3 ENUMERATE AND OUTPUT ALL SPANNING TREES

The above algorithm 13 generates but does not print the spanning trees. If instead of printing

the code, it is decoded, all spanning trees can be printed.

Complexity analysis of Algorithm 14 depends on Step 4, decoding operation. Neville

branch decoding is suggested. Decoding of Neville branch number has time complexity
�������

(see Algorithm 12) and space complexity
�������

. So, Algorithm 14 will output all spanning

trees with a time complexity of
��������	����

and space complexity of
�������

.

The optimal algorithm which enumerates all spanning trees by outputting all edges of

each spanning tree was reported to have
���"!�� � � �$# � time and

����� �$# � space complexities

56

Algorithm 14 Output All Spanning Trees
input: A complete graph � with

�
nodes.

output: The set of all spanning trees of � .

1: len=
� ���

2: code=empty

3: if len =] then

4: Decode code

5: end if

6: for
��Qq��Q X =1 to n do

7: Add
��Q"�
Q X as the leftmost digit of code.

8: len = len-1

9: goto 3

10: end for

[5]. For a complete graph, the complexities becomes:
�����Ì��	�� � � �R# � . Thus our algorithm

is better.

Similarly, Algorithm 14 can be applied to incomplete weighted or unweighted graphs with

a validity check.

4.4 ALL DEGREE CONSTRAINED SPANNING TREES PROBLEM

Adopting the algorithms 13 and 14 for checking the degree constraint is quite easy. We

only need to count the occurrences of digits. As presented at Sections 3.2.2, and 2.3.3.3

degree constrained is evaluated in
�������

. Moreover, degree constraints can be controlled

before generating the code.

Degree constraint adds no complexity to ASTP. Similarly, if trees are given as output,

time complexity is
����� �
	�� �

and space complexity is
�������

. If only codes are given as output,

time complexity
����� ��	�� �

is and space complexity is
�������

.

4.4.1 DISCUSSIONS

The experiments on OMTP show that, the structure of the best solution has a large influence

on the performance of EAs and SA. If locality is high, heritability is also high. So, if the best

solution is a star, EAs and SA perform well. If the best solution is in a form of a list or a

57

Algorithm 15 All Degree Constrained Spanning Trees
input: A complete graph � with

�
nodes, a degree bound

�
.

output: The set of all degree constrained spanning trees of � .

1: len=
� ���

2: code=empty

3:
� # ��4 #�# 1e6 T � Xm¬ = 0, where

.L/RQS/ �
.

4: if len =] then

5: Print or Decode code.

6: end if

7: for
��Qq��Q X =1 to n do

8: while
� # ��4 #�# 1A6 T � X­Í ¬ = ¬ > , bound do

9: Add
��Q"��Q X as the leftmost digit of code.

10:
� # �
4 #C# 1A6 T � X­Í ¬ = ¬ > ++

11: len–

12: goto 4

13: end while

14:
� # ��4 #C# 1A6 T � X°Í ¬ = ¬ > =

� # �
4 #C# 1A6 T � X­Í ¬ = ¬ > - 1

15: end for

58

random tree, neither EA nor SA can solve even simple large OMTP instances.

Although degree computation is easy for Neville’s and Prüfer’s encodings, because of

low locality, neither Neville’s nor Prüfer’s encoding techniques can solve even simple large

DCMSTPs.

When ASTP and ADCSTP are considered, given algorithms have optimum time and space

complexities with Neville branch numbers only for complete graphs. So, our algorithms have

best time and space complexities only for weighted and unweighted complete graphs.

59

CHAPTER 5

CONCLUSIONS

This thesis presents the study of the Neville’s encoding techniques. There were no previously

reported algorithms for encoding and decoding two of the Neville’s encoding techniques.

Both time-wise and space-wise optimal algorithms for Neville branch encoding technique are

given in Algorithm 11 and Algorithm 12. with
�������

time and space complexities. Properties

of Neville’s encodings are analyzed in detail using EAs and SA. Neville’s tree encoding tech-

niques have some benefits. Firstly, every tree can be represented by unique Neville branch and

leaf numbers and every Neville branch and leaf number encodes exactly one tree. Classical

crossover and mutation operations on Neville encodings produce new valid Neville encod-

ings. Thus, Neville encodings are closed under classical EA operations. If Neville encodings

are used to represent a tree in a graph which is not complete, then encoded tree may not be

a valid tree. Secondly, computation of degrees of nodes is very simple. Degree of a node of

encoded tree is one more than the number of times the node appears in Neville’s encodings.

Therefore, Neville’s encodings can be used for degree constraint computations.

Despite the benefits of the encodings, they also have some disadvantages: Neville en-

codings have poor locality and heritability. Locality analysis are done by random walks and

neighborhood analysis through the search spaces of Neville’s encodings. Analysis showed

that, although locality becomes maximal when the encoded tree is a star, locality of Neville’s

encodings is low for random type trees. Heritability is also low when locality is low, and

encodings perform well on EAs and SA only when the locality is high. Thus, none of the

Neville’s encodings are suitable for EAs and SA.

It is shown that locality properties affect the performance of encodings on problems.

60

OMTP experiments are successful only when goal tree is star type or small. Otherwise,

Neville’s encodings are not suitable for OMTP. Also, although for small and simple inputs

the degree constraint computation is simple for Neville’s encodings, Neville’s encodings can-

not solve DCMSTP of random trees, because of their poor locality.

Neville’s encodings are successful only for degree constrained computation and tree enu-

meration of complete graphs. Generating a code has
�������

time and
�������

space complexities,

where
�

is the number of nodes of complete graph � . The best known algorithm for ASTP,

which only enumerates spanning trees but does not prints them, has
���"! � � �Î# � time and����� ��# � space complexities [25], where

!
is the number of spanning trees and # is the num-

ber of edges. For a complete graph, since
!^%'���
	��

, time and space complexities become��������	��
�
and
����� �¤# � , respectively. Though, we presented time and space optimal algorithm

Algorithm 13, to enumerate all spanning trees of complete graph � with
�����b�
	��
�

time and�������
space complexities. Both algorithms have the same time complexity but our algorithm

is better for space complexity. If all spanning trees are printed, each code needs to be de-

coded. When Neville branch encoding is used, time and space complexities of our solution

to ASTP and printing all spanning trees have
����� ��	�� �

and
�������

complexities, respectively.

The optimal algorithm which enumerates all spanning trees by outputting all edges of each

spanning tree was reported to have
���"!�� � � �+# � time and

����� �*# � space complexities

[5]. For a complete graph, the time and space complexities becomes:
�����b�
	�� � � �(# � and����� �´# � , respectively. Thus our algorithm Algorithm 14 is better for complete graphs. For

ADCSTP, degree constraint adds no complexity to the ASTP algorithm. When degree con-

straint is added, ADCSTP is solved to output entire spanning trees with
�����b�
	����

and
�������

time and space complexities. If only codes are given as output, time complexity is
����� �
	�� �

and space complexity is
�������

. As a result, time and space optimal algorithms for ASTP and

ADCSTP of weighted or unweighted complete graphs are presented by using Neville branch

encodings. However, when the graph is an incomplete sparse graph, these solutions are not

optimal.

In this thesis, locality properties of Neville’s encodings are given. New problems, for

which Neville’s encodings are suitable, may be searched and performances of encodings can

be analyzed on different problems. Moreover, locality analysis are done according to basic

mutation. New mutation and crossover algorithms can be searched for better locality and

heritability.

61

REFERENCES

[1] R. K. Ahuja, J. B. Orlin, A. Tiwari, A Greedy Genetic Algorthm for the Quadtatic As-
signment Problem, Computers and Operations Research, vol.27, pp. 917-934, 2000.

[2] T. Bäck, H.-P. Schwefel, Evolution Strategies I: Variants and their computational imple-
mentation, Genetic Algorithms in Engineering and Computer Science, Proceedings of the
First Short Course EUROGEN’95, Wiley, 1995

[3] N. Deo, P. Micikevicius, Prufer-like codes for labeled trees, Congressus
Numerantium,151:65-73, 2001.

[4] S. Even, Algorithmic Combinatorics, New York: The Macmillan Company, pp. 104-106,
1973.

[5] H. N. Gabow, E. W. Myers, Finding All Spanning Trees of Directed and Undirected
Graphs, SIAM J. Comput., 24, pp.280-287, 1978.

[6] M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Publishing Company, 1989.

[8] J. Gottlieb, B. A. Julstrom, G. R. Raidl, and F. Rothlauf, Prüfer numbers: A poor represen-
tation of spanning trees for evolutionary search, In L. Spector et al., editors, Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO) 2001, pp. 343-350,
Morgan Kaufmann, 2001.

[9] J. Gottlieb, B. A. Julstrom, G. R. Raidl, and F. Rothlauf, Prüfer numbers: A poor rep-
resentation of spanning trees for evolutionary search, Technical Report 2001001, Illinois
Genetic Algorithms Laboratory (IlliGAL), University of Illinois at UrbanaChampaign,
2001.

[10] J. Gottlieb, B. A. Julstrom, G. R. Raidl, and F. Rothlauf, Prüfer numbers: A poor repre-
sentation of spanning trees for evolutionary search, Working Paper 12/2000, Department
of Information Systems, University of Bayreuth, 2000.

[11] P. Gray, W. Hart, L. Painton, C. Phillips, M. Trahan, J. Wagner, A Survey of Global
Optimization Methods, Sandia National Laboratories, 1997.

[12] S. Kapoor, H. Ramesh, Algorithms for Enumerating All Spanning Trees of Undirected
and Weighted Graphs, SIAM J. Comput., 1995

62

[13] M. Krishnamoorthy, A.T. Ernst, Y.M. Sharaiha, Comparison of Algorithms for the De-
gree Constrained Minimum Spanning Tree, Journal of Heuristics, vol. 7, num 6, pp.
587-611, 2001.

[14] T. Matsui, A Flexible Algorithm for Generating All the Spanning Trees in Undirected
Graphs, Algorithmica, vol. 18, pp. 530-544, 1997.

[15] E. H. Neville. The codifying of tree-structure. Proceedings of Cambridge Philosophical
Society, vol. 49, pp. 381-385, 1953.

[16] A. Nijenhuis, H.S. Wilf, Combinatorial Algorithms for Computers and Calculators, New
York, Academic Press, 1978.

[17] C.C. Palmer, A. Kershenbaum, Representing Trees in Genetic Algorithms, Proceedings
of the First IEEE International Conference on Evolutionary Computation, vol. 1, pp.
379-384, 1994.

[18] H. Prüfer, Neuer Beweis eines Satzes ueber Permutationen, Archiv für Methematik und
Physik, 27:742-744, 1918.

[19] F. Rothlauf, Representations for Genetic and Evolutionary Algorithms, Physica-Verlag,
2002.

[20] F. Rothlauf, D.E. Goldberg, Pruefernumbers and Genetic Algorithms: A Lesson How
The Low Locality Of An Encoding Can Harm The Performance Of GAs, Illegal Report
No. 2000011, Illinois Genetic Algorithms Laboratory, 2000.

[21] F. Rothlauf, D.E. Goldberg, Tree Network Design with Genetic Algorithms-An Inves-
tigation in the Locality of the Pruefernumber Encoding, In S. Brave and A. S. Wu eds.,
Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference,
pp. 238-243, Orlando, FL, 1999.

[22] F. Rothlauf, D.E. Goldberg, A. Heinzl, Network Random Keys -A Tree Representation
Scheme for Genetic nad Evolutionary Algorithms, Evolutionary Computation, vol 10, pp.
75-97, 2002.

[23] S. Russell, P. Norvig, Artificial Intelligence A Modern Approach, Prentice Hall Interna-
tional Editions, 1995.

[24] A. Shioura, A. Tamura, Efficiently Scanning All Spanning Trees of an Undirected
Graph, J. Oper. Res. Soc. Japan, 38, pp. 331-334, 1995.

[25] A. Shioura, A. Tamura, T. Uno, An Optimal Algorithm for Scanning All Spanning Trees
of an Undirected Graphs, SIAM J COMPUT., vol. 26, no 3. pp. 678-692, 1997.

[26] W. M. Spears, K. A. De Jong, Th. Back, D. B. Fogel, H. de Garis, An overview of
evolutionary computation, In P. B. Brazdil, editor, Machine Learning: ECML-93, volume
667 of Lecture Notes in Articial Intelligence, pp. 442-459, Springer, Berlin, 1993.

63

APPENDIX A

DATA SETS

First data set with best solution 43:

8 2
100 4 100 100 100 100 3 4
4 100 8 100 100 100 6 100
100 8 100 7 100 4 100 100
100 100 7 100 9 14 100 100
100 100 100 9 100 10 100 100
100 100 4 14 10 100 100 100
3 6 100 100 100 100 100 5
4 100 100 100 100 100 5 100

64

APPENDIX B

PARAMETERS

B.1 OMTP

Parameters of experiments on OMTP are given in two section, for EAs and SA.

B.1.1 EA

All EAs used are based on Goldberg’s simple genetic algorithm [7], given at Section 2.1. For

each test,
.]7] independent runs were performed and each run is terminated after the popu-

lation is fully converged. In all simulations one-point crossover with crossover probability
.

and mutation probability]²y J is used. As selection scheme,
� �Á�«� � selection is applied.

Table B.1: Parameters of OMTP with EA.

Figure number of nodes tree type parent selection � � limit on duplication
4.1 8 random roulette wheel 500 500 no
4.2 16 random roulette wheel 500 500 no
4.3 16 random random 500 500 no
4.4 16 random roulette wheel 500 500 yes
4.5 32 random roulette wheel 1500 1500 no
4.6 32 star roulette wheel 1500 1500 no

65

B.1.2 SA

SA given in Section 2.2 is used for the SA tests. a is computed as:

a % a µ ��! X­#�- a¶µ � a�· ¬ �t¸ : ¹ > ;»º ¼q½°¾ �9>¡�Q � V¢U ! X­#�- 1A6 T � X ¿ 2 # 4 #3a µ % . V � � a�· ¬ �t¸ : ¹ > ;�º ¼Y½m¾ �C> %]
For each problem 20 independent runs were performed.

Table B.2: Parameters of OMTP with SA.

Figure number of nodes tree type step
4.7 8 random 6000
4.8 32 star 12000

B.2 DCMSTP

B.2.1 EA

Similar to OMTP experiments, all EAs used are based on Goldberg’s simple genetic algorithm

[7], given at Section 2.1. For each test,
.]7] independent runs were performed and each run is

terminated after the population is fully converged. In all simulations one-point crossover with

crossover probability
.

and mutation probability]²y J is used. As selection scheme,
� ���´� �

selection is applied.

Table B.3: Parameters of DCMSTP with EA.

Figure number of nodes tree type parent selection � � limit on duplication
4.9 8 random roulette wheel 500 500 no

B.2.2 SA

SA given in Section 2.2 is used for the SA tests. same function given at Section B.1.2 is used

to compute a . For each problem 20 independent runs were performed.

Table B.4: Parameters of DCMSTP with SA.

Figure number of nodes tree type step
4.10 & 4.11 8 random 6000

66

