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ABSTRACT 
 
 

MEMETIC ALGORITHMS FOR TIMETABLING PROBLEMS  
IN PRIVATE SCHOOLS 

 
 
 

Aldoğan, Deniz 

M.S., Department of Computer Engineering 

Supervisor : Associate Prof. Ferda Nur Alpaslan 

Co-Supervisor :  Assistant Prof. Ender Özcan 

 

June 2005, 156 pages 
 
The aim of this study is to introduce a real-world timetabling problem 

that exists in some private schools in Turkey and to solve such problem 

instances utilizing memetic algorithms.  

 

Being a new type of problem and for privacy reasons, there is no real 

data available. Hence for benchmarking purposes, a random data 

generator has been implemented. Memetic algorithms (MAs) combining 

genetic algorithms and hill climbing are applied to solve synthetic 

problem instances produced by this generator. 

 

Different types of recombination and mutation operators based on the 

hierarchical structure of the timetabling problem are proposed. A 

modified version of the violation directed hierarchical hill climbing method 

(VDHC), introduced by A. Alkan and E. Ozcan, coordinates the process of 

12 different low-level hill climbing operators grouped in two distinct 

arrangements that attempt to resolve corresponding constraint violations. 

VDHC is an adaptive method advocating cooperation of hill climbing 

operators. In addition, MAs with VDHC are compared with different 

versions of multimeme algorithms and pure genetic algorithms. 

  



 v 

Experimental results on synthetic benchmark data set indicate the 

success of the proposed MA.     

 
 
      
Keywords: Evolutionary Computing, Memetic Algorithms, Timetabling 
Problems 
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ÖZ 
 
 

ÖZEL OKULLARDAKİ ZAMAN ÇİZELGELEME PROBLEMİ İÇİN  
MEMETİK ALGORİTMALAR 

 
 
 

Aldoğan, Deniz 

Y. Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi           :  Doçent Ferda Nur Alpaslan 

Ortak Tez Yöneticisi  :  Yardımcı Doçent Ender Özcan 

 
Haziran 2005, 156 sayfa 

 
 
Bu çalışmanın amacı, Türkiye’de bazı özel okullarda var olan  gerçek bir 

zaman çizelgeleme problemini tanıtmak ve memetik algoritmalardan 

yararlanarak bu tip problem örneklerini çözmektir.  

 

Yeni bir problem tipi olmasi ve gizlilik nedenleri dolayısıyla kullanilabilir 

gerçek data mevcut değildir. Bu nedenle, karşılaştırma amaçları için 

rastgele veri yaratan bir program gerçekleştirilmiştir. Genetik 

algoritmaları ve tepe-tırmanmayı birleştiren memetik algoritmalar, bu 

programla üretilmiş sentetik örnekleri çözmek için uygulanmıştır.  

 

Zaman çizelgeleme probleminin hiyerarşik yapısına dayanan farklı 

rekombinasyon ve mutasyon operatörleri önerilmiştir. A. Alkan ve E. 

Ozcan tarafından tanıtılan bozulma güdümlü hierarşik tepe tırmanma 

yönteminin(VDHC) değişik bir versiyonu, iki farklı düzenleme ile 

gruplanmış, ilişkin kısıtlama bozulmalarını çözmeye çalışan 12 değişik 

aşağı seviye tepe tırmanma operatörlerini koordine eder. VDHC, tepe-

tırmanma operatörlerinin işbirliğini koruyan uyarlanabilir bir yöntemdir. 

Ek olarak, VDHC ile beraber memetik algoritmalar multimeme 

algoritmalarin değişik versiyonlari ve saf genetik algoritmalar ile 

karşılaştırılmıştır.  



 vii 

Sentetik ölçüm verileri kümesi üzerindeki deneysel sonuçlar önerilen 

memetik algoritmanin başarısını göstermektedir. 

 
 
 
Anahtar Kelimeler: Evrimsel Hesaplama, Memetik Algoritmalar, Zaman 
Çizelgeleme Problemleri 
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CHAPTER 1 

 

INTRODUCTION 

 

 

The aim of this thesis is to introduce a new timetabling problem, namely 

the timetabling problem for private schools (or test preparation schools), 

and to apply memetic algorithms for the solution of this problem. In 

addition, different crossover and mutation operators are proposed and 

compared with traditional genetic operators. 

 

In the proposed framework, different low level hill climbing operators 

specific to the considered timetabling problem instances are developed 

and coordinated by a higher-order method, the VDHC method. This 

method has been implemented and used for several timetabling problems 

involving a single hierarchical organization in their structure. In this 

study, this method has been extended to work for a different timetabling 

problem that comprises two different hierarchical trees in its structure. 

Accordingly, the proposed low-level hill climbers belong to one of the two 

hierarchical organizations.  Comparison of the proposed memetic 

algorithm with multimeme algorithms and pure genetic algorithms on 

synthetic benchmark data is  also performed.   

 

Chapter 1 introduces the timetabling problem. Chapter 2 presents a new 

class of timetabling problems. Chapter 3 summarizes previous research 

on high-school timetabling problems since they most resemble the new 

timetabling problem introduced. Chapter 4 gives an overview of 

evolutionary algorithms. Chapter 5 discusses the basics and possible 

design methods of memetic algorithms. Sample studies on timetabling 

problems with memetic algorithms are also mentioned in this chapter. 

Chapter 6 gives a brief overview of multimeme algorithms. Chapter 7 
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discusses the proposed memetic algorithm framework in detail. Chapter 8 

explains the multimeme side of the framework. In chapter 9, the random 

data generator for creating synthetic data for the newly introduced 

timetabling problems is explained. Chapter 10 summarizes the 

experiments and discusses the results. Chapter 11 summarizes the work 

done and the conclusions drawn  in this study.  

 

1.1 The Timetabling Problem 

 

The timetabling problem aims to achieve feasible assignments for a 

collection of events that are required to take place within a finite period 

of time such that necessary constraints are satisfied. Among all the 

possible constraints that may be defined for a timetabling problem 

instance, a very fundamental constraint requires that no two events 

corresponding to the same resource must be scheduled at the same time. 

For instance, no two different lecture hours of the same instructor can be 

assigned at the same time slot for a course timetabling problem. 

Generally, constraints for a timetabling problem can be classified as hard 

and soft constraints. All of the hard constraints must be satisfied for a 

solution instance to be feasible, i.e to be put into use, whereas soft 

constraints denote preferences and their violations may be tolerated to 

some extent. As a consequence, a high-quality solution for the 

timetabling problem is the one that contains no hard constraint violations 

and a minimum number of soft constraint violations.   

 

The timetabling problem can be modelled in terms of various concepts 

such as graph theory or integer programming. In the work of Burke et. 

al. (1995c), it is mentioned that the problem of assigning events, i.e 

exams in their case, to time slots is equivalent to the problem of 

assigning colors to vertices in a graph. If each event in the timetabling 

problem is drawn as a vertex in the graph, conflicting events, i.e events 

that must not be scheduled at the same time, can be identified as 

follows: an edge is created between each pair of two vertices that denote 

a pair of conflicting events and vertices that have an edge between them 
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are assigned to different colors while coloring all the vertices. If each 

color represents a different period, we make sure that no conflicting 

events are assigned at the same time slot with this coloring scheme. 

Figure 1 displays a sample case, where different shapes for the events 

indicate different colors assigned to them. In that graph,   there are 8 

edges, which means there are 8 pairs of conflicting events. Time slots are 

assigned to events according to these edge constraints. For instance, 

event 1 is assigned to a different period than the periods assigned to 

event 2, 4 or 5. 

 

In the study of Burke et. al. (1995c), several studies such as that of 

Welsh et. al. (1967) that attempt to solve the timetabling problem by 

means of graph coloring are referred.  

 

 

 

 

 

Figure 1.1 Equivalence of Timetabling Problems with Edge Constraints 

and Graph Coloring 

 

 

 

Timetabling problems, which are real-world constraint optimization 

problems, are NP-complete problems (Even et. al. 1976). Therefore, a 

timetabling problem such as many optimization problems cannot be 

solved by optimizing the value of each variable while neglecting the 

others. The reason for this can be traced to the interactions between 

several parameters of the problem.  

Event 1 

Event 3 

Event 2 

 

Event 4 

 

Event 5 
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There are several categories for timetabling problems such as nurse 

rostering problems, university course timetabling problems, university 

final exam timetabling problems and high-school timetabling problems. 

In nurse rostering problems, shift assignments and rest days of the 

nurses must be satisfactorily placed in the timetable. In fact, nurse 

rostering is a subproblem of a broader range of timetabling problems, 

namely the employee timetabling problems. University course or exam 

timetabling involve scheduling a set of courses or exams given a set of 

constraints. High-school timetabling problems differ from these two 

problems since achieving a minimum number of gaps, i.e empty slots, is 

a main requirement for such problems. This constraint is also necessary 

for the newly introduced private school timetabling problem. Hence, a 

literature survey on methods for solving high-school timetabling 

problems becomes necessary in this study. 
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CHAPTER 2 

 

THE TIMETABLING PROBLEM FOR PRIVATE SCHOOLS IN TURKEY 

 

 

This section aims to introduce the notion of private schools in Turkey and 

outline the timetabling problem for them. Firstly, the need for such 

institutions is figured out. Then, their basic organization is described. 

After that, a more formal definition for the timetabling problem of private 

schools is discussed along with the possible constraints that may be 

involved in the problem.  

 

2.1 The Need for Private Schools – OSYM  

The universities, which are the principal higher education institutions in 

Turkey, all accept their students in accordance with the results of an 

examination organized by The Student Selection and Placement 

Center(OSYM). OSYM aims fair access to higher education programs by 

providing a centralized system for admission of students to the 

institutions of higher education. The entrance examination system is 

essentially based on a one-stage examination, namely the Student 

Selection Examination(OSS), which is held throughout the country once a 

year. So, every year the bulk of the students for undergraduate programs 

of the universities(i.e., those admitting students with a high school 

diploma or its equivalent) are selected and placed by this centrally 

administered examination system.  

OSS comprises of two tests. One of them is prepared to measure mainly 

the candidates’ verbal abilities, and the other, their quantitative abilities. 

After the completion of score transformations, three different composite 

scores are calculated for each candidate and used in selection of those 

candidates who will be considered for placement in the undergraduate 
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programs. These scores are verbal, quantitative and equally weighted 

OSS scores. Every department in all of the universities accepts students 

according to a specific type of OSS scores. Hence, each student tries to 

maximize one of the three types of those OSS scores to access to his/her 

desired department in a university. As a result, private schools that 

prepare students for OSS in Turkey generally assign their students to one 

of the three different divisions, each of which prepares a student to 

maximize one of his/her verbal, quantitative or equally-weighted scores. 

Therefore, each division of a private school is devoted to a specific score 

type. 

OSS is not the only centralized examination held by OSYM. There are 

many other such examinations. In accordance, there are many private 

schools that prepare students to various examinations held by OSYM. 

Those institutions offer several programs, each of which is dedicated to a 

specific examination. In this study, a possible program for OSS of such 

an institution will be introduced for illustration purposes, but a similar 

description can be applied to other program instances as well. 

 

2.2 Private Schools in Turkey 

 

A private school has a number of instructors employed, a number of 

students registered and several branches, each of which are located in 

different buildings. Each branch of the private school is divided into 

different grades. A grade identifies which high school class a student 

attends to or whether he/she is a high school graduate. Hence, the 

curriculum of a second-year high school student in a private school differs 

from that of a third-year high school student. Those grades are further 

divided into divisions. For instance, a private school branch that prepares 

students for OSS can have three types of divisions, each of which has a 

curriculum to improve one of the verbal, quantitative or equally weighted 

OSS scores of students. Also, divisions are divided into sections(i.e 

classes). Students in each section attend to lectures for a number of 

hours on a number of days in a week. All the students in a section have 



 7 

 

 

the same weekly timetable. In addition, a specific timetable for every 

section that the private school offers must be constructed. There are a 

number of courses offered to students of a private school. Courses are 

divided into course-sections, each of which is assigned to a specific 

section of a private school. Therefore, the number of course-sections of a 

course is equal to the number of sections whose students must attend to 

the course. In addition, the weekly number and length of meetings for 

each of those course-sections are given. Usually, the number and length 

of meetings for a course-section(i.e total hours for a course-section) 

increase with the difficulty of the course. These predefined values are 

generally the same among all sections of the same division since a 

discrimination among them is often avoided.   

 

A section must be assigned to several course-sections according to its 

division. To illustrate, a section for third-year high school students that 

are in the quantitative division take mathematics courses, courses in 

natural sciences and Turkish language courses. All the students that are 

in the verbal or equally weighted divisions take courses in social sciences 

such as geography or history as well as mathemathics and Turkish 

language courses. However, the number and lenght of meetings that 

must be assigned to the sections of different divisions can differ. To 

illustrate, a section of the equally weighted division may have 4 meetings 

of Geography lectures, whereas a section of verbal division may have 6 

meetings of Geography assigned.  

 

The students of each section are registered to a specific branch and 

attend their courses only in that location. However, instructors may give 

lectures at several different branches of the institution. The organization 

of a private school is displayed in Figure 2.1. 
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Figure 2.1 The Organization of a private school 
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2.3 The Private School Timetabling Problem 

 

Generally, a timetable problem can be described as in the work of Corne 

(1994). There is a finite set of events E= {e1, e2, ..., ev}, a finite set of 

potential fixed-length periods for these events T= {t1, t2, ..., tn}, a finite 

set of places where the events can occur P= {p1, p2, ..., pn} and a finite 

set of agents A= {a1, a2, ..., am} that act in a subset of the events. In the 

private school timetabling problem, events correspond to meetings of 

each course-section, periods are the available teaching hours defined by 

the private school, places are the classrooms belonging to a specific 

branch and agents are the instructors. Here, it should be noted that the 

set of events in private school timetabling cover all the course-sections 

that are offered for all the sections in the branches of the private school. 

Each specific course-section meeting has a length and each classroom 

has a capacity. In addition, travelling times between classrooms in 

different branches must be considered. 

 

An assignment in the timetabling problem is an ordered 4-tuple (a,b,c,d), 

where a Є E, b Є T, c Є P, d Є A. The interpretation of this assignment in 

terms of private school timetabling problem is: “Course-section meeting 

a starts at time b in room c, and is taught by instructor d”. So, the 

private school timetabling problem is to produce a feasible timetable, a 

collection of assignments one per course-section meeting, with minimum 

number of constraint violations.  

 

Since each course section is offered for a particular section, i.e a class, 

we needn’t produce assignments of course-sections to sections in the 

timetabling problem. Also, instructor assignments for each course-section 

meeting of all courses is usually given in advance. Therefore, the problem 

generally boils down to figuring out feasible time assignments for each of 

the events.  

 

In order to solve the private school timetabling problem, the timetables 

for all the sections must be produced by assigning their course-section 
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meetings to time periods. The timetables for each specific section cannot 

be solved in isolation from the other sections. Otherwise, there is no way 

of controlling whether an instructor is assigned to two or more course-

sections at the same time period.  

 

2.4 Private School Constraints 

 

The types of constraints for the timetabling problem of a private school 

can be listed as follows.  

 

2.4.1 Unary Constraints 

 

Unary constraints involve just one event and appear in the form of preset 

or exclusion constraints. An exclusion indicates which of the resources 

are unavailable for an event, whereas a preset constraint represents the 

predefined allocation of a resource(or resources). Constraints in this 

group are: 

 

1) Meetings of course-sections can be assigned to predefined hours in 

predefined days(CS_PRE). 

2) Meetings of course-sections should be assigned to allowable hours of 

the corresponding sections(S_PRE, S_EXC). 

 

2.4.2 Binary Event Constraints 

 

Binary constraints appear because of the restrictions involving the 

assignments of a pair of events. Constraints of this type can be 

summarized as juxtaposition or ordering constraints that restrict the 

order and time gap between two events. A subset of juxtaposition 

constraints are the edge constraints, which require that no overlapping of 

resources must occur for the assignments of two events. These are the 

most crucial constraints that contribute to the feasibility of a timetable. 

Such constraints are:  
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1) Each section is assigned to at most one course-section at a given time 

period(EC1). 

2) Each instructor is assigned to at most one course-section at a given 

time period(EC2). 

3) Each classroom is assigned to at most one course-section at a given 

time period(EC3). 

 

2.4.3 Event-spread Constraints 

 

Event-spread constraints restrict how events should be spread out in the 

timetable. Below are such constraints: 

 

1) Each meeting of a course-section should be assigned to different days  

    in a week (ES1). 

2) An even distribution of verbal and quantitative courses should be 

achieved by assigning minimum and maximum hours for each course 

type in a day for the sections. These constraints are named as 

S_DIVMAXWL, daily maximum workload of all the courses from a 

specific division,  and S_DIVMINWL, daily minimum work of all the 

courses from a specific division, respectively. To illustrate, these 

constraints can be defined for a section as follows: Students of section 

Si can have maximum 6, minimum 3 hours of courses offered from 

the verbal division in a day.  

3) There should be a minimum number of gaps between course-sections 

assigned to a section in a day unless stated otherwise(i.e there can be 

a one-hour lunch break). Hence, compactness of the daily timetable 

for a section should be achieved(S_MINGAP). 

4) Course-sections assigned to an instructor in a day should be 

consecutive and should contain a minimum number of gaps. This 

constraint is necessary so that instructors who are paid for each 

lecture hour can finish their work at the private school in a shorter 

period. So, compactness of the instructor daily timetables can also be 

required(I_MINGAP). 
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5) Number of hours of course-sections assigned to a section in a day 

should be within predetermined minimum and maximum 

hours(S_MAXWL, S_MINWL). For example, we can define these 

constraints as follows: Students of section Si can have maximum 6, 

minimum 3 hours of courses in a day.  

6) Courses requiring more intellectual activity should be placed earlier in 

the timetables than the ones that are generally accepted as being 

rather easier. For example, courses of natural sciences should be held 

earlier in the morning, whereas a Turkish language course can be 

placed in the afternoon or evening according to the predefined 

available hours. We can take this constraint as an ordering constraint 

as well(ES2). 

 

2.4.4 Instructor Constraints 

 

Finally, there are some instructor constraints as described below.   

 

1) The specifications involving allowable hours of instructors should be 

satisfied (I_EXC). 

2) Since a private school can have several branches each in different 

buildings, travelling times of instructors between these buildings should 

be minimized. In private schools, this is generally achieved by restricting 

the number of different branches at which an instructor lectures in a day 

(I_MAXLOC).  

3) Number of hours of course-sections assigned to an instructor in a day 

should also be within predetermined minimum and maximum 

hours(I_MINWL, I_MAXWL). 

4) Travelling times of instructors should also be considered when 

assigning course-sections to them in a day. To illustrate, there should be 

at least one hour travelling time left between two course-sections that 

will be offered to sections of different branches in different locations by 

the same instructor(I_TRAVEL). 
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2.5 How Difficult is Private School Timetabling? 

 

The factors that contribute to the difficulty of a specific timetabling 

problem, namely the examination timetabling, have been revealed in a 

survey by Burke et.al (1995b). In this survey, they intended to bring 

together all variations of the exam timetabling problem in British 

Universities, which was stated to be the first step of the unification of all 

timetabling problems.  

 

They considered how several aspects such as the number and length of 

exams, number of students, number of departments, number and length 

of periods, availability of rooms and invigilators affected the difficulty of 

exam timetabling. In addition, they figured out the average importance 

of common constraints of the problem. As in any timetabling problem, 

the difficulty brought about by the variables boils down to the constraints 

defined in the private school timetabling problem. Hence, we cannot 

estimate the complexity of any timetabling data without regarding the 

constraints.  

 

The difficulty of solving a private school timetabling data can be altered 

by the values and ratios of the variables in the problem. The interactions 

of such variables are considered by the aid of several such ratios defined 

in the following sections. 

 

2.5.1 The Effect of Instructors 

 

It becomes more difficult to achieve feasible assignments of course 

sections to available time periods as the ratio of average number of 

instructors for a course over the average number of course sections for a 

course decreases. The reason is that there is more possibility of assigning 

two course sections with the same instructor to the same time slot. In 

fact, the number of course sections for a specific course is exactly equal 

to the summation of number of sections that take the course according to 

the curriculum of their divisions. Hence the ratio above can also be stated 
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as the average number of instructors for a course over the average 

number of sections that take the course.   

 

To be more specific, the total number of meetings or hours for course 

sections can replace the denominator of the described ratio. This is 

because the actual events to be assigned to time slots are course section 

meetings in the private school timetabling.  

 

Another ratio involving the number of instructors can be stated as 

follows: the number of branches over the number of instructors. If we 

keep the total number of instructors constant, assignments of instructors 

to course sections held at different branches will be inevitable as the 

number of branches, therefore the number of course sections at these 

branches, increases. Therefore, the number of travelling instructors will 

be increased, which will put more burden on achieving the feasibility of 

the timetable while more travelling times to be considered are 

introduced.   

 

In conclusion, average number of assigned time slots for an instructor 

gives us insight to reveal the difficulty of the current problem since there 

will be more event clashes due to instructor assignments if the average 

workload of an instructor increases. This ratio, i.e total number of course 

meeting hours over total number of instructors, is defined as the average 

occupancy for instructors in the study of Alkan et. al. (2003). 

 

2.5.2 The Effect of Students 

 

The number of students registered in a branch of a private school 

determine how many sections will be offered at that branch. As the 

number of sections increases, figuring out feasible assignments of 

course-sections for these sections to time slots will get harder since 

accomodation of sections will also be a problem as well.  
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2.5.3 The Effect of Course Section Meetings 

 

Increasing the total number of meetings for course sections will make it 

more difficult to construct the timetables of corresponding sections. This 

is simply because the number of events to be scheduled will increase. 

Therefore, an increase in the ratio of number of meetings for all courses 

over the number of time slots will cause more difficulties in the time 

assignments of events.  

 

Besides, the average number of assigned hours for a section can be used 

to figure out the difficulty of the problem instance since there will be 

more event clashes due to section assignments if the average workload 

of a section increases.  

 

2.5.4 The Effect of Constraints 

 

The density of conflicting events in the timetabling problem gives us 

insight to reveal the difficulty of the problem. In the private school 

timetabling case, the most crucial constraints that must be satisfied for 

the feasibility of the solution are the edge constraints. They make sure 

that no two course section meetings that are assigned to the same class, 

i.e section, or instructor should overlap. So, if two events in the private 

school timetabling have the same instructor assigned or if they belong to 

the same section, they are in fact two conflicting events.  

 

All the events defined in a private school timetabling problem have the 

possibility of conflicting due to instructor assignments. For instance, a 

course section offered for second grade students may conflict with 

another course for third grade students if the same instructor is assigned 

to both of the course sections. Therefore, while deriving the density of 

conflicting events in the private school timetabling, we need to consider 

all the events in the problem.  
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Assuming there are N events, i.e course section meetings, for the 

problem instance, there can be at most N(N – 1)/2 conflicting events. By 

counting the number of conflicting course section meetings and dividing 

them by the total number of conflicts that may exist, we acquire edge-

constraint density(Table 2.1). 

 

 

 

Table 2.1 Calculation of Conflict Density for Edge Constraints 

 

Conflict Density Calculation (ParameterSet p) 
p->ConflictCount =0  
//p->EventNo gives the number of course section meetings, i.e events 
for i=0 to p->EventNo do 
  for j=i+1 to p->EventNo do 
    if  p->CourseSections[i].InstructorID==p->CourseSections[j].InstructorID  
      OR 
    p->CourseSections[i].SectionID==p->CourseSections[j].SectionID 
    then   
      p->Conflict_Count++; 
    end if 
  end for 
end for    
p->ConflictDensity = p->ConflictCount/((p->EventNo)(p->EventNo - 1)/2); 

 

 

 

2.5.5 Conflict Density Analysis 

 

Assume that there are totally N sections in a private school timetabling 

problem. Then, the conflict density for EC1 becomes: 

   N 

   Σ Ms (Ms - 1)(1/2)  

           s=1                                                                  

              _________________________     (2.1) 
    
    E (E - 1)(1/2)  

     

where Ms is the number of meetings for section s and E is the total 

number of meetings in the problem. Furthermore, let M denote the 
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average number of course section meetings, i.e events, assigned to a 

section. The total number of events in this problem is then approximately 

NM. Therefore, the maximum number of edge constraints defined for 

sections, say EC1_MAX, can be defined as follows: 

 

   EC1_MAX ≈  (N M)(N M-1)(1/2)   (2.2) 

   

Since each section with M events introduce M(M-1)(1/2) EC1 constraints, 

the number of EC1 constraints will infact be approximately  

NM(M-1)(1/2). Hence, the conflict density of EC1 constraints will 

generally be approximately (M-1)/(NxM-1) which is always lower than 

1/(N-1) for (N+M)>2 , since (NM-1)+2-(N+M) equals to (N-1)(M-1). As a 

result, for problems where section number is reasonably large, i.e N>10, 

conflict density of EC1 constraints will always be less than 0.1 and thus 

the density of those constraints are bounded. 

 

A similar analysis can be performed for bounding EC2 constraint density. 

This time, assume that there are totally P instructors, where the average 

number of course section meetings assigned to an instructor is Q. In this 

case, the total number of events in this problem will be approximately 

PQ. Therefore, there can be at most (PQ)(PQ-1)(1/2) edge constraints 

defined for instructors(EC2). Since each instructor with Q events 

introduce Q(Q-1)(1/2) EC2 constraints, the number of EC2 constraints is 

infact PQ(Q-1)(1/2). Hence, the conflict density of EC2 constraints will 

generally be approximately (Q-1)/(PQ -1) which is always lower than 

1/(P-1) for (P+Q)>2 again since (PQ-1)+2-(P+Q) equals to (P-1)(Q-1). 

 

As a result, for problems where number of instructors is reasonably large, 

i.e P>10, conflict density of EC2 constraints will always be less than 0.1 

and thus the density of those constraints are bounded. To conclude, the 

conflict density due to edge constraints in a private school problem 

instance will generally be less than 0.2. However, this does not indicate 

that private school problems are rather trivial timetabling problems since 
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many other constraints contribute to the difficulty of the problem such as 

minimum gap or workload constraints.  
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CHAPTER 3 

 

LITERATURE REVIEW FOR HIGH SCHOOL TIMETABLING 

 

 

This thesis aims to solve the timetabling problem for a private school. 

The nature of such a problem resembles the high school timetabling 

problem more than university or exam timetabling problem due to 

several reasons. Firstly, both private schools and high school students 

are grouped in classes. Generally, these groups of students are disjoint. 

Each student belonging to a class takes the courses that are listed in the 

fixed curriculum of this class. Therefore, these students do not have the 

freedom for selecting most of their courses, whereas university students 

do. Secondly, compactness of the resulting timetable for each class and 

achieving a timetable for teachers with a minimum number of gaps are 

also crucial constraints for both private institutions and high schools. 

Therefore, this section is devoted to the summaries of previous work on 

high school timetabling.   

 

In the early studies on the automation of high school timetabling, it is 

observed that lectures are sorted from the most constrained lecture, the 

most difficult lecture to place on the timetable, to the least constrained 

one. Then those lectures are placed on the timetable succesively 

beginning from the most constrained lecture up to the least constrained 

one by applying certain heuristics. In the work of Schaerf (1996), all such 

techniques are called direct heuristics and sample studies are illustrated 

(Schmidt 1979, Junginger 1986). Successive augmentation, the method 

of extending a partial timetable until all lectures are placed on it, has also 

been improved by the addition of local search and backtracking (Müller 

2002).   
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Many techniques such as constraint programming, simulated annealing, 

tabu search, genetic algorithms and hybrid approaches have been applied 

to the problem of high school timetabling.  

 

3.1 Constraint-Programming  

 

Marte (2003) described and experimented with several constraint-based 

solvers in his work to solve the timetabling problem at German secondary 

schools of the gymnasium type. As stated in the work of Marte (2000), 

the details about constraint programming can be found in the study of 

Hentenryck et. al. (1997).   

 

As Marte (2003) summarizes, a study that combines constraint 

propagation with a greedy algorithm along with local repair was carried 

out for the timetabling problem at Japanese high schools and was 

reported in [Yoshikawa 96].  

 

In his statement of high school timetabling problem, the number of 

classes is low and each class has its own room. Hence, there is no need 

for the determination of room assignment except for lessons that require 

physical education equipment, science labs, etc. It is also assumed that 

all the lessons are taught in one building, which causes travelling times to 

be neglected.  

 

Marte (2003) mentions that gymnasiums resemble high schools in the 

lower grades and universities in the higher grades although compactness 

should still be achieved.  

 

In the study of Marte (2003), the fundamental aim is to transform the 

high-level timetabling problem into constraint models in terms of finite 

constraint networks, especially  by the use of global constraints. As input 

data, a problem generator was developed and fed with the detailed 

school descriptions of ten schools, which caused a sample of 1000 

problems to be generated for each school.  
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Constraint programming requires defining constraints over variables to 

solve a combinatorial problem. These constraints restrict the values that 

subsets of variables can take simultaneously. After achieving a constraint 

model with constraints and variables to describe a problem, a search 

strategy is employed. Assigning a depth-first manner during the search 

leads to chronological-backtracking, where search nodes represent partial 

assignments to decision variables. In the application for the timetabling 

problem, Marte (2003) describes that at each such node, a task is chosen 

and scheduled and rooms are allocated.  

 

Constraint propagation is also combined with this search technique to 

reduce the computational cost of the search. It takes place after each 

commitment that is issued to the constraint solver and is performed in a 

fixed-point manner (Marte 2003). 

 

In the work of Marte (2003), a track parallelization problem was 

examined and two reductions for this problem inference in school 

timetabling was proposed. This helped to modify the existing model 

generator and to produce enhanced constraint models. The model 

generator was combined with a suitable timetabling engine to form a 

problem solver giving statistically reliable and practically relevant results.   

 

3.2 Local Search 

 

Local search techniques basically aim to improve the current problem 

instance iteratively until a stopping condition is met or a satisfying result 

is reached. However, they don’t guarantee to find the optimal solution for 

the problem at hand.  

 

3.2.1 Simulated Annealing 

 

Simulated annealing is a local search technique that simulates the cooling 

of a collection of hot vibrating atoms. In simulated annealing, a random 

solution is created initially. Then the algorithm enters a loop to navigate 
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the search space. This navigation is guided by a parameter called 

temperature. At the beginning, temperature is set to a high value and it 

decreases in each iteration, which is called the cooling scheme. At each 

step of the algorithm, a move that will modify the current solution is 

generated and it is executed according to the following rule: If the move 

improves the current solution, it is accepted. Otherwise, it is accepted 

according to the time decreasing probability, i.e the temperature. When 

the temperature decreases to a value very close to 0, a move that 

worsens the current solution has approximately no chance to be 

executed. The system then enters a so-called frozen state and the 

solution at that state is a local optimum solution. Abramson (1991a) 

applied simulated annealing to school timetabling problem. In the study 

of Schaerf (1996), it is reported that experiments were carried out with 

simulated annealing and tabu search for the high-school timetabling 

problem and the results of those experiments can be found in the study 

of Schaerf et. al. (1995). Those results showed that the performance of 

tabu search for high-school timetabling had a quite clear dominance over 

that of simulated annealing.  

 

3.2.2 Tabu Search Techniques 

 

Tabu search algorithm starts with an initial solution on the search space 

and it enters a loop to navigate the search space. At each step of the 

loop, it explores a portion of the neighbourhood of the current solution. 

The exploration of a neighbour solution is performed via a move, i.e. a 

modification that transforms the current solution to the neighbour 

solution. The examined neighbour with the best value of the objective 

function is assigned as the current solution.  

 

A tabu list, which contains moves that are forbidden to make, is 

maintained at each step to prevent the algorithm from cycling. This list is 

implemented as a fixed-size queue where a predefined number of the last 

accepted moves are kept in reverse order. When a new accepted move is 



 23 

 

 

added to the queue, the oldest move of the queue is discarded and it can 

again be used for further exploration of the algorithm.  

 

The maintenance of a tabu list may prevent good moves from being 

made. Therefore, a movement is allowed to loose its tabu status if 

improves the best solution found so far. This option is enabled by the 

application of an aspiration function. In addition, despite the use of a 

tabu list, the search process may become trapped in certain regions of 

the search space. Schaerf (1996) uses adaptive relaxation, where costs 

involved in the objective function are dinamically altered to navigate the 

search process to unexplored regions of the search space. Some other 

extensions for tabu search can be found in the work of Schaerf et. al. 

(2001).  

 

In the study of Schaerf (1996), the results of application of tabu search 

algorithm to high-schools were compared with a hybrid algorithm 

employing both tabu search and randomized non-ascendent 

method(RNA). In RNA, a random neighbour solution is chosen at each 

step of the search algorithm, if it is better or equal to the current 

solution. The experiments showed that the use of RNA greatly improves 

the performance of the algorithm, even more significantly for larger 

schools. The authors report that their algorithm was able to find a 

feasible solution in a reasonable amount of time in all practical cases. The 

details of this hybrid algorithm can be found in the next subsection.  

 

Santos et. al. (2004) applied a new tabu search heuristic with memory 

based diversification strategies to the timetabling problem in Brazilian 

high schools. They experimented with the set of instances originated 

from the work of Souza et. al. (2003).   

 

They used a requirements matrix, where each element rij of the matrix 

indicates the number of lessons that teacher i shall teach for a class j. In 

their instances, compactness of the timetable is mandatory for all 

classes, whereas it is a desired feature for teachers. As another hard 
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constraint, teachers should be assigned lectures only on their available 

periods. Totally, Santos et.al. (2004) define 4 hard constraints and 3 soft 

constraints. Their objective function is calculated by the aid of weights 

that reflect the relative importance of their constraints.  

Before the tabu search, they use a greedy randomized constructive 

procedure to create the initial solution to commence tabu search. They 

apply the principle of placing the most urgent lessons to the most 

appropriate periods during the constructive process (Santos et. al. 2004). 

After the construction phase, tabu search with a short-term memory, i.e. 

the tabu list, an aspiration criteria and a long-term memory is employed. 

The long-term memory contains the frequency of moves involving a given 

teacher and class. Each move, which is a swap of two values in the 

timetable of a teacher, resembles the atomic moves explained in the 

work of Schaerf (1996). The frequency of these moves are stored to be 

used in the diversification strategy for stimulating the execution of few 

explored moves.  As a second diversification strategy, they also consider 

the teacher workload to bias moves involving teachers whose timetable 

changes can produce bigger modifications in the current solution.  

 

The authors report three sets of experiments carried out in the work of 

Santos et. al. (2004). The implementation in the first set of experiments 

lacks a diversification strategy. The implementation in the second set of 

experiments only takes into account the frequency ratio of transitions, 

whereas the implementation in the third set of experiments also 

considers the workload of teachers for the diversification strategies. The 

second and third set of experiments outperformed the first set of 

experiments and the previous results on the same data, which were 

reported in the work of Souza et. al. (2003). Hence, the addition of 

informed diversification strategies to tabu search brought about a simple 

design, while it produced better results and performed faster than the 

hybrid algorithm proposed in the study of Souza et. al. (2003).   
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3.2.2.1 Hybrid Local Search Employing Hill Climbing and Tabu 

Search 

 

Schaerf (1999) applied local search techniques such as hill climbing  and 

tabu search to several versions of the educational timetabling problems. 

Among all, a technique employing hill climbing and tabu search one after 

another in a cycle and executing this tandem search in a specified 

number of cycles performed best over real world high-school data.  

 

Hill climbing approach suffers from the possibility of getting stuck in a 

local optimum point in the search space since the cost function of an 

instance is always improved or left unchanged after each iteration. The 

notion of worsening the moves is introduced in simulated annealing and 

tabu search techniques, each of which are explained with possible 

extensions in the study of Schaerf et. al. (2001).  

 

Schaerf et.al. (2001) examine school, course and examination 

timetabling problems. Among these problems, the school timetabling 

problem has additional constraints such as combining lectures of two or 

more classes, two or more teachers participating in a lecture and 

compactness of class schedule. Compactness of a class schedule requires 

that the timetable created for that class must not involve gaps between 

lectures. This is an extremely hard constraint to satisfy and is one of the 

aspects that make school timetabling different from university course or 

exam timetabling.  

 

Schaerf et.al. report the results of the work of Schaerf (1999), where 

they experimented with local search techniques for the high school 

timetabling problem, in their work (Schaerf et. al. 2001). They assume 

that the timetable is an integer-valued matrix, in which rows represent 

different teachers and columns represent the weekly periods. Each entry 

contains the index of the class the teacher is teaching at that period.    
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Schaerf uses a mutation like swapping operator called an ‘atomic move’, 

which swaps the classes assigned to two different periods of a teacher 

(Schaerf 1996). Also, a ‘double move’, which is the application of two 

atomic moves sequentially, is defined on the directly represented 

timetable instance. In this operator, the second move tries to resolve the 

infeasibility created by the application of the first move.     

 

The hybrid search strategy, which applies hill climbing and tabu search 

one after another and which is used in the work of Schaerf (1999), is 

explained in the work of Schaerf et.al. (2001). In this strategy, firstly, 

random initialization of the timetable occurs, while considering the 

requirement matrix. Then, hill climbing search uses double moves on the 

timetable instance during a predefined number of iterations until no 

further improvement is achieved. After hill climbing search is over, tabu 

search is carried out by using atomic moves. Once it makes a given 

number of moves without improving, it stops and the hybrid search 

algorithm continues with hill climbing. This cycle involving both search 

techniques can be repeated until a stopping criteria is met.  

 

This hybrid search starts with hill climbing instead of tabu search since 

hill climbing produces good solutions within a shorter time. Hill climbing 

is also used after tabu search since it modifies the solution in a way even 

if it cannot improve it. Therefore, tabu search achieves a different 

direction to improve the solution. Schaerf et. al. state that their 

application of local search techniques worked well with high school 

timetabling problems, the details of which can be found in the study of 

Schaerf (1999).  

 

3.3 Evolutionary Approach 

 

3.3.1 Genetic Algorithm with Local Search 

 

Colorni et. al. (1990) used genetic algorithms with local search for the 

timetabling problem at a Italian high-school. They represented the 
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individuals of the genetic algorithm as matrices. They applied their 

versions of generalized genetic operators on those matrices. They 

compared their algorithm with various versions of tabu search and 

simulated annealing and concluded that genetic algorithm with local 

search outperformed simulated annealing and genetic algorithm without 

local search, whereas their results on the given data were competing with 

those of tabu search with relaxation.  

 

An individual in their GA was represented as a matrix where each row 

corresponds to a teacher and each column corresponds to an hour. Each 

element of this matrix was defined as a gene, whose allele could take 

values among the set of jobs specific to the teacher. They defined the 

infeasibilities of a timetable and used a filtering algorithm to totally or 

partially remove the infeasibilities caused by the application of their 

genetic operators.   

 

In the work of Colorni (1990), a hierarchical structure for the objective 

function is achieved by dividing the constraints into three levels, i.e 

feasibility conditions, management conditions, single teachers conditions. 

User defined weights were assigned to the three levels of constraint 

violations according to their relevance in the objective function. During 

calculation, individuals with infeasibilities were given high penalties to 

use selective pressure to reduce the number of individuals with 

infeasibilities.  

 

Their GA performs a fitness-based selection for mating. They defined a 

crossover operator suitable for their matrix representation. During 

crossover, they calculate local fitness functions, each of which evaluates 

the fitness of a single row of the timetables contained in the parents. 

Then, they take the fitter rows of the fitter parent and fill the remaining 

timetable of the new individual with rows from the latter parent. The 

second son is created using the remaining unused rows from both 

parents.  

 



 28 

 

 

Their first mutation operator, called mutation of order k, swaps two sets 

of k contiguous genes found in a single row and performs this operation 

for each row of the timetable. The second mutation operator, day 

mutation, swaps the two days belonging to a teacher in the timetable.  

 

Finally, they introduce a local search operator that swaps hours and days 

in the timetable to move it to a local optimum point in the search space.  

 

They conducted experiments with different probabilities for mutation and 

crossover operators, with and without local search and with high or low 

penalty values for infeasibilities. They reported that GA with local search 

and with low infeasibility penalties is definitely superior to the other 

versions tested. Low infeasibility penalties are preferred since they allow 

more infeasible timetables to exist in the population and broaden the 

search region by maintaining more diversity among individuals.  

 

3.3.2 Hybrid Evolutionary Algorithm With a Timetable Builder and 

Local Search  

  

Bufe et. al. (2001) used a hybrid evolutionary approach that also 

employs local search techniques in the form of specific mutation 

operators to solve the timetabling problem at a German high school.  

 

In their definition of the high school timetabling problem, an event (i.e. a 

course meeting) has a number of weekly hours and must be assigned a 

room and a time period for each of these required hours.  

 

Two seperate events may be participated by the pupils of the same class 

and therefore should be scheduled within the same time periods. So, 

event groupings are introduced to allow such occurings. Also, more than 

one teacher may participate in an event. When constraints are defined, 

these two cases are taken into consideration.   
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In the study of Bufe et. al. (2001), Bufe et. al classify constraints as hard 

and soft constraints. Hard constraints require that each class, teacher 

and room must be assigned to at most one event per time slot. The 

unavailabilities of teachers, classes and rooms for certain periods are 

kept and dealt with as hard constraints. Infact, these hard constraints are 

what we generally come across as exclusion or preset constraints. There 

are also 6 soft constraints defined.   

 

Bufe et. al. state that a feasible timetable must meet all the hard 

constraints. In addition, they point out that using direct representation 

for the individuals of the evolutionary algorithm leads to infeasible 

timetables. And the application of a genetic repair function on those 

timetable instances lowers the correlation between the parent timetables 

and the offsprings. Hence, Bufe et. al. employ a timetable builder to 

create a feasible timetable from the permutations of events stored in an 

individual. The individual contains the permutations of the events in its 

first half and the created timetable in its second half. The deterministic 

placing algorithm within the timetable builder also attempts to satisfy the 

soft constraints and may produce valid but partial timetables.  

 

In the hybrid approach, some mutation operators act on the high-level 

representation of the timetables in the timetable builder, whereas some 

others are applied to the individuals in the population of event 

permutations.  

 

The evolutionary algorithm has a swap mutation and a partial matching 

crossover. The high-level mutation operators in the timetabler builder are 

applied after the timetable is created from an individual and before it is 

placed in the second half of the individual. Those operators don’t harm 

the feasibility of the timetable produced but may violate soft constraints. 

They aim to place the unplaced events after unplacing, placing or 

replacing an event or part of an event in the timetable. The authors claim 

that those operators perform an extensive parallel hill climbing search on 

the better individuals.  
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The evolutionary algorithm applies uniform parental selection and 

replaces the worst 40 percent of the population in each generation.  

 

The fitness function tries to minimize the number of unplaced events, the 

number of violations for the soft constraints and the standard deviation 

concerning the soft constraints. Only soft constraints are considered in 

this function since the timetable builder algorithm produces only feasible 

timetables that meet all the hard constraints and the high-level mutation 

operators applied thereafter may only violate soft constraints.  

 

In their experiments (Bufe et. al. 2001), Bufe et. al. created 4000 

generations each time and kept a population size of 20. They had to 

suffer from an 12-hour long computation time due to their expensive 

fitness function. They carried out three types of experiments. In the first 

type of experiments,  they only used the genotype operations of the 

evolutionary algorithm. In the second type, they employed the genotype 

only operations in the first 1200 generations and used only the 

phenotype mutations of the timetable builder in the next generations. In 

the last type, they only experimented with phenotypic mutation 

operators. The second type of experiments reached the best results. In 

these results, best fitness values, zero number of unplaced events, 

minimum number of gaps in class’ and teachers’ timetables were 

achieved. Bufe et. al. commented that the initial usage of genotype 

operations in the experiments results in better starting points stored in 

the individuals for the timetable builder, whereas the application of 

phenotype mutations helps to place almost all events and fills the gaps in 

the timetables. Hence, the hybrid approach used in the second type of 

experiments appears to be more useful, while still not good enough to be 

used in daily school practice as stated by the authors of Bufe et. al. 

(2001).   
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3.3.3 Constructive Evolutionary Approach  

 

Filho et. al. (2001) attempted the timetabling problem for public schools 

in Brazil by a constructive genetic algorithm. As stated in the work of 

Filho et. al. (2001), the details of constructive genetic algorithm can be 

found in the study of Furtado et. al (1998).  

 

In their list of constraints, compactness of room usage is stated as 

necessary. Therefore, they require that all rooms are occupied at any 

time slot. In addition, teachers should have minimum number of gaps in 

their timetables, which is identified as a soft constraint in their study. As 

other soft constraints, they define preset constraints for the teacher 

timetables. They assign and experiment with different weight values for 

those soft constraints. Furthermore, they divide the teachers into three 

priority levels according to their number of classes and overall time 

dedicated to school. Teachers in a higher level has a more chance of 

having their constraints satisfied.  

 

Filho et. al. (2001) state the high school timetabling problem as a 

clustering problem to apply constructive genetic algorithm. They aim to 

map valid teacher-class pairs to each of the time slots. They represent 

those pairs as binary columns. In addition, they use schemata to 

represent individuals of the genetic algorithm, where the length of these 

strings is equal to the number of possible teacher-class pairs. Their 

genetic operators and evaluation functions work directly on the schemata 

represetation of individuals. The initial population contains 100 schemata 

that are generated randomly. 

 

Filho et. al. (2001) claim that their results were promising for the real 

world high school data they experimented with. This data contained 4 

problems: morning, afternoon, evening timetables for Gabriel school and 

a morning timetable for Massaro high school. There were 5x5, 5x5, 5x4, 

5x4 timeslots and 220,377,386,122 preference constraints for the 

problems respectively. The satisfaction of total preferences was 
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approximately between %80 and %90 in the resulting timetables. The 

number of windows, i.e gaps in teacher timetables, was very low for the 

teachers in the first level as well.      
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CHAPTER 4 

 

INTRODUCTION TO EVOLUTIONARY ALGORITHMS 

 

 

Evolutionary algorithms (EAs) are inspired from the biological 

observations beginning from Charles Darwin’s discoveries in the 19th 

century. According to Darwin’s findings, biological organisms evolve as 

they breed new generations, which causes them to adapt to their 

environment. EAs try to mimic this procedure to solve optimization 

problems.    

 

EAs search through a solution space by using a population of possible 

solutions and by evolving them to determine the optimal solution. In this 

way, an optimization problem can be transformed into a search of the 

best individuals within a population by encoding potential solutions of the 

problem on simple chromosome-like data structures(i.e individuals of the 

population). This encoding is called the representation.  

 

4.1 Overview Of Genetic Algorithms 

 

Genetic algorithms (GAs), which were introduced in the study of Holland 

(1975), are specific instances of evolutionary algorithms. The GA begins 

with the random creation of a set of possible solutions. Each individual in 

this population is commonly called a chromosome. Atomic elements that 

make up a chromosome are called genes. The value a gene can take is 

called the allele of that gene.  

 

After initialization phase, each individual in the population is evaluated 

according to the quality of the solution it encodes. Then, better 

individuals in the population are stochastically chosen to be mated to 
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create new individuals with recombined genetic material. Those newly 

created individuals can further be mutated with a certain probability. As 

the size of the population increases in size, a process that mimics natural 

selection takes place so that fitter individuals have more chance to 

survive. This sequence of actions are iterated in a cycle.    

 

The fitness of each individual in GA is explicitly determined by the 

application of a fitness function over the individual. Hence, how good a 

possible solution in the form of an individual is calculated. This step of 

calculations take place in the beginning of the evolutionary cycle 

mentioned above. Then, the reproduction operator, which allows fitter 

individuals to mate, is applied to the population. Therefore, the 

recombination of genes achieved by mating is performed among 

chromosomes that contribute most to the overall fitness. After the 

application of the reproduction operator, crossover and mutation 

operators, which create new individuals from old ones, are used. All the 

processes in GA aim to perform a search on the solution space by means 

of modifying the content of the population and to move the population to 

the areas of the search space where better solutions, i.e fitter individuals, 

can be found.  

 

The generic GA with selection, crossover and mutation can be described 

in pseudocode as in Table 4.1. Below, the main components of GA are 

described in more detail. 

 

4.2 Reproduction 

 

After the mating of individuals occurs within an iteration of the GA, the 

population size is increased by the addition of newly produced offsprings. 

Generally, the GA tends to keep the population size constant not to 

increase its computational cost. Therefore, a reproduction scheme is 

applied to decide who will survive in the next generation among the 

current crowded population. Two common reproduction techniques used 

are generational reproduction and steady state reproduction.  
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4.2.1 Generational Reproduction 

 

Generational reproduction allows merely offsprings to be alive in the next 

generation at each iteration. Therefore, the whole population is replaced 

by the offsprings. If GA produces two new offsprings after each mating of 

two individuals, this mating process should be carried on as much as half 

the population size. Hence, an offspring pool is created to replace with 

the old generation. Elitism, which is allowing some of the fittest 

individuals of each generation to survive, may be used with this 

reproduction scheme. This prevents the loss of the best individuals in the 

old generation by replacement.  

 

4.2.2 Steady-State Reproduction 

 

In steady-state reproduction, only the individuals with the worst 

performance are replaced. More specificly, the family created after 

mating of two individuals is added to the current generation and the 

worst two individuals are destroyed.   

 

4.3 Selection  

 

In GAs, determining which individuals will be selected for mating has 

resulted in several different selection techniques. Since the whole 

operation of GA is infact a search of the best individual(i.e. the best 

solution) in the space of possible individuals, it should both explore new 

areas of this search space and try to improve better individuals. This 

trade-off between exploration and exploitation of the search space must 

be dealt with by the selection method.  Individual performance, its rank 

among the population or its spatial ordering may be respected for 

selection and decide the direction for the search. The following 

subsections summarize the main selection methods.  
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Table 4.1 The Basic Genetic Algorithm  

 

//Initialize a population P of p chromosomes by choosing an allele for each  
//gene in each chromosome 
For i=1 to p do 

Pi = GenerateChromosome(i); 

//Evaluate fitness value fi of each chromosome i in P  

For i=1 to p do 

 fi= FitnessFunction(Pi); 

//Continue the evolutionary cycle until the stopping criterion is met 

while (max {f1,..,fp} < FitnessThreshold) do 

//Probabilistically select s<p members of P to create a subpopulation  

//P’ where fitter chromosomes have higher chance for being selected 

For i=1 to s do 

 P’i= SelectChromosome(P); 

//Probabilistically select (p-s)/2 pairs of chromosomes from P  

//where fitter chromosomes have higher chance for being selected 

 For i=1 to (p-s)/2 do 

 Begin 

 c1= SelectChromosome(P); 

  c2= SelectChromosome(P); 

  //For each selected pair of chromosomes, generate two    

                 //offsprings by the application of a recombination operator, i.e  

                 //crossover 

  //Add the new chromosomes to the subpopulation P’  

P’s+i = ApplyCrossover(c1,c2).FirstOffspring; 

  P’s+i+1 = ApplyCrossover(c1,c2).SecondOffspring; 

 End 

 //Probabilistically select a fraction m of p chromosomes in P’  

//for mutation 

 For i=1 to m.p do 

                 ApplyMutation(SelectChromosome(P’));  

 //Update the current population 

 P = P’ 

 //Evaluate fitness value fi of each chromosome i in P’ 

 For i=1 to p do 

 fi= FitnessFunction(Pi) 

end while 
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4.3.1 Fitness-proportionate Selection 

 

In fitness-proportionate selection, which also appears as fitness-based 

selection or roulette-wheel selection, each individual has a chance of 

mating directly proportional to its performance, i.e fitness. If we think of 

individuals of GA as slots in a roulette-wheel, this approach resembles 

selecting a slot by spinning this roulette-wheel, where the size of each 

slot is proportional with its fitness. The fitness values of individuals 

should be scaled so that the range of fitness values do not have a 

negative effect in the selection (Fang 1994).    

 

4.3.2 Tournament Selection 

 

The basic idea of tournament selection is to choose randomly a 

predefined number of individuals among the population and to select the 

best of them for mating with a high probability. Choosing merely among 

a portion of the population aims to decrease the computational cost of 

the selection procedure. 

 

4.3.3 Rank selection 

 

Instead of using the absolute fitness values for selection and coping with 

scaling them, the individuals of the population may be ranked according 

to their fitness values and their chance of mating becomes directly 

proportional with their ranking among the population. The study of Fang 

(1994) reports that Whitley (1989) introduced a bias term, which can be 

applied to increase the effect of ranking so that the fittest members have 

much more chance for mating then before. Also, in this way, the chance 

of less fit individuals for mating becomes lower.    

 

4.4 Genetic Operators 

 

The two traditional global search operators of a genetic algorithm are 

crossover and mutation operators, both of which are explained below. 
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4.4.1 Crossover 

 

Crossover operator adjusts the genetic inheritance of the mating process. 

It decides how segments of parent chromosomes will be distributed over 

offspring chromosomes. During crossover, the genes of parent 

chromosomes are passed on to offsprings without distortion. The aim of 

crossover is both to preserve and combine the genes causing high fitness 

and create new individuals with different gene combinations to maintain 

diversity.     

 

4.4.1.1 One-point Crossover 

 

As the name implies, a point is chosen randomly over the parents’ 

chromosomes.  The first offspring inherits the first portion of the first 

parent’s chromosome up to the seperation point and the second portion 

of the second parent’s chromosome. The second offspring inherits the 

other uninherited portions of the parents’ chromosomes. As the length of 

the chromosome increases, the diversity brought about by this operation 

decreases. Therefore, merely using such a crossover operator with a low 

mutation rate may not lead to an efficient search on the search space of 

possible individuals.       

  

4.4.1.2 Two-point Crossover 

 

In two-point crossover, two points are chosen this time over the parents’ 

chromosomes. The first offspring inherits the first and last portion of the 

first parent’s chromosome and the middle portion of the second parent’s 

chromosome. The second offspring again inherits the uninherited portions 

of the parents’ chromosomes. More generally, instead of two points, GA 

can choose up to a predefined number of points and follow a similar 

procedure to distribute parents’ chromosome portions over the 

offsprings.  
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4.4.1.3 Uniform Crossover 

 

The basic unit of inheritance in uniform crossover is a gene. Each gene of 

the first offspring is chosen among one of its parents’ genes in the same 

place probabilistically. The second offspring inherits the genes not chosen 

for the first offspring. So, whether a gene of a parent will be transmitted 

to the first child will be determined by a probability p, where the gene of 

the latter parent has a probability of being passed (1-p). Uniform 

crossover is able to produce more diversed individuals, which improves 

the exploration capability of the GA. However, it may also disrupt gene 

segments causing high fitness, which may become an obstacle for further 

exploiting areas of the search space with fitter solutions. This 

disadvantage can be overcome by employing smart operators for local 

search of such areas.    

  

4.4.2 Mutation 

 

Generally, mutation operator chooses a gene and assign it a new allele, 

i.e a new value for that gene. In this way, individuals can obtain the 

alleles that do not appear in the initial population or alleles that were lost 

during selection. Mutation is often applied after crossover with a low 

probability. Assigning probabilities to the application of genetic operators 

enables non-deterministic search through the solution space. With the 

application of mutation operator, no subspace of the search space can 

have zero probability of being investigated. However, as stated in the 

study of Miranda et. al. (1999), a high probability of mutation(i.e a 

mutation probability of 0.5) can be harmful since it always leads to 

random search independently of crossover operator.  

 

4.5 Fitness Function 

 

The fitness function generally arises from the objective function of the 

optimization problem. For instance, in a timetabling problem, fitness 

function can be calculated by summing the frequency of violated 
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constraints. Then, the fitness function descreases with the desirability of 

the solutions.  

 

4.6 Parameters 

 

Population size, probabilities assigned to genetic operators, number of 

individuals selected, etc. are all crucial parameters whose settings 

determine the performance of the GA to a great extent. It is commonly 

accepted that a low population number, high crossover and low mutation 

probabilities offer better solutions. 

 

4.7 The Schemata Theorem 

 

A schema is a template to describe similar subsets of genes at certain 

chromosome positions. From the schemata theorem, we can infer that a 

particular schema is replicated in the next generation with respect to its 

relative average fitness function value in the population. So, new 

generations will have more copies of fitter schemata, whereas they will 

be comprised of less copies of schemata with average fitness below the 

population average. The survival of a schemata under recombination and 

mutation operators is also dependent upon whether their average fitness 

values are below or above population average. The schemata theorem 

arises from the building block hypothesis, which states that highly fit 

(and with short defining length) schemata form partial solutions to a 

problem and a GA will combine these building blocks leading to a better 

performance and to the optimum of the problem (Miranda et. al. 1999).   
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CHAPTER 5 

 

LITERATURE REVIEW ON MEMETIC ALGORITHMS 

 

 

5.1 Overview Of Memetic Algorithms  

 

The term, memetic algorithm, was first used by Moscato et. al. (1992) to 

describe evolutionary algorithms that employ local improvement of 

individuals heavily for fine tuning the search, which is essential especially 

in complex combinatorial spaces. The basic idea that inspires memetic 

algorithms can be traced to the difference between a meme and a gene. 

Genes of an individual pass to the next generation according to the 

application of genetic operators such as reproduction, crossover and 

mutation without being  processed or refined by the individual. However, 

the existance of memes bring about the adaptation of units of 

information by the individual during its life-time. This individual 

optimization or learning is achieved by intensive local refinement in 

memetic algorithms.  

 

The concept of learning for an individual can be categorized into two 

main approaches. The first one is Lamarckian learning, where the genetic 

content of an individual can be modified by local optimization during its 

lifetime. In the second approach, local optimization is carried out merely 

to bias the search without changing the genetic material of individuals 

directly.  

 

Memes, i.e local search operators, can be static, adaptive or self-

generating. In the first case, the local search always performs the same 

operations, whereas in the latter case its parameters can be adapted. As 

a last option ,a meme can be generated from stratch.   
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The most basic MA can be pseudocoded as in the work of Krasnogor 

(2002b), which is shown in table 5.1. 

 

 

 

Table 5.1 The Basic Memetic Algorithm 

 

Memetic_Algorithm() 
Begin 
 t=0  /*Initialize generations*/ 
 Generate an initial population P(t) 
 Repeat Until (Termination Criteria is met) 
 Begin 
  Recombine 
  Mutate 
  Improve by Local Search 
  Select for Next Generation 
  t=t+1 
 End Repeat 
 Return the Best Solution(s) 
End  

 

  

 

In memetic algorithms, a local optimizer can be applied to every offspring 

before it is inserted into the population. Or, local search can be 

performed before or after mutation as displayed in figure 5.1 taken from 

the study of Krasnogor (2003b). 

 

In this way, if an offspring is outside the subspace of local optima, it can 

be repaired by the local search operator so that it lies at a local optimum 

(Radcliffe et. al. 1994). Figure 5.2 has been taken from the study of 

Radcliffe et.al. After recombination of parents X and Y, the child Z’ lies 

outside the subspace of local optima. Therefore, a local optimizer is 

employed to repair the child and modify it so that it becomes Z, which 

lies at a local optima. This constitutes the basic idea of memetic 

algorithms. 
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Figure 5.1 Diagramatic Representation of a Memetic Algorithm 

 

 

 

 

 

Figure 5.2 Memetic Algorithms’ Search over the Subspace of Local 

Optima 
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Employing local search operators enable EAs to zoom-in good solutions 

by increasing their exploitation capabilities.  However, MAs can suffer 

from premature convergence since local search may end up focusing a 

few good solution instances. 

 

There are various strategies such as choosing which individuals to apply 

local search instead of applying it to whole population or using special 

operators to maintain diversity among the population.  

 

The most crucial aspect to keep in mind when employing memes along 

with an evolutionary algorithm is that the act of memes and genes should 

be synergistic  not detriemental.  

In the work of Radcliffe et. al. (1994), a representation-independent form 

of a memetic algorithm along with N-point crossover, patching and hill 

climbing operators was introduced. Their simulation based on the 

application of the memetic algorithm to travelling salesman problem 

performed very well, whereas genetic algorithms were unsuccessful in 

solving the problem instances. 

 

The main design issues for MAs, which are taken from the work of 

Krasnogor (2002a), can be listed as below: 

 

1) When will we apply local search? 

2) Which individuals will be applied local search? In the study of 

Krasnogor (2002b), it is pointed out that it could be a waste to apply 

local search operators to individuals far away from a global optimum.   

3) How long will the local search be? 

4) What acceptance criteria will the local search use? 

5) How will the standard genetic operators be integrated with local 

search? 

6) Shall we use a Balwinian or Lamarckian model for optimization? 

7) How will we cope with multi-objective problems? 

8) How can be avoid premature convergence? 
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The answers for these questions are discussed in the next section. 

 

5.2 Design Of Memetic Algorithms For Timetabling Problems 

 

In the work of Burke et. al. (2004), several frequently used strategies 

that can be applied to design memetic algorithms for timetabling and 

scheduling problems are discussed. Memetic algorithms speed up the 

process of exploitation with the aid of local search. The trade-off between 

this intensification and further exploration is achieved by maintaining a 

population in the algorithm.  

 

Timetabling and scheduling problems are very difficult to solve because 

of several factors such as having huge search spaces, being highly 

constrained and difficult to represent and suffering from very-time 

consuming fitness evaluation. Therefore, the notion of self-improvement 

brought about by local search along with effective exploration owing to 

keeping a population of candidate solutions may help to cope with the 

difficulties of such problems.  

 

As a first step in memetic algorithm design, Burke et.al discuss the 

decision of whether to allow infeasible solution instances or not. As stated 

in Erben's study (1995) they refer, genetic and local search operators 

that create only feasible instances or an eloborate representation such as 

representing groups of events in a gene can be employed if the first 

approach is chosen. However, they also mention that only working on the 

feasible regions of the search space may limit the explorative ability of 

the memetic algorithm.  

 

As another way of dealing with infeasibility, repairing heuristics that are 

easy to implement and that do not reverse the changes made by other 

operators of the algorithm can be applied. As a last strategy to follow 

when infeasible solutions can be created by the genetic and local search 

operators, they mention heavily penalising infeasible solutions by a 

penalty allocating fitness function. Hence, such solutions have much less 
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chance to survive and thus to reproduce in the population. By referencing 

their previous studies (Burke et. al. 2001a, Burke et. al. 2001b), Burke 

et.al. claim that relatively low penalties for infeasibility should be 

assigned to prevent local search from recovering feasibility first and 

causing a potential increase in the violation of soft constraints. They also 

illustrate that penalty values can be adapted, i.e increased with the 

number of hard constraint violations.   

 

In the work of Burke et. al. (2004), the authors discuss multi-phased 

strategies, delta evaluation for fitness functions and fitness landscape 

analysis for memetic algorithm design. They also emphasize that the 

application of genetic and local search operators should be balanced so 

that these two different sets of operators work in cooperation instead of 

working against each other. They figure out three main perspectives to 

adjust such a balance. These perspectives are listed as follows: the 

complexity of genetic and local search operators with respect to each 

other, the selection of solutions to apply each such group of operators 

and the execution time dedicated to each of those groups. For instance, 

their local search operators in their previous work, (Burke et. al. 2001b) 

were not powerful enough to improve newly created solutions since their 

recombination operators  combined large parts from the parents. On the 

contrary, a local search that is too powerful can dominate the search and 

limit exploration. To overcome this, it can be decided to apply local 

search operators only on some better individuals or only after a number 

of generations.   

 

Burke et.al also discuss that acceptance probability of solutions can be 

altered adaptively during the search. To illustrate, this probability can be 

dynamically adjusted as in the study of Burke et. al. (2001a) so that it 

decreases as the solutions in the population are more diversed and 

increases otherwise, i.e when the population converges. In this way, only 

better solutions are accepted when the spread of fitness is maintained 

whereas more non-improving solutions are accepted to cause 

diversification in case the population converges. Therefore, both 
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improvement on the fitness of individuals and prevention from premature 

convergence of population can be achieved.  

 

By referencing the work of Alkan et. al. (2003), Burke et. al. state that 

different local search operators can be designed for each specific 

constraint or group of constraints. In addition, probability of applying a 

local search operator can be adapted dynamically according to the 

success of its previous progress. Moreover, a hyper-heuristic that 

determines the application of low-order heuristics can be assigned to 

decide which heuristic to use during the search. 

 

Another idea for memetic algorithm design that Burke et. al. discuss is 

called the cooperative local seach which was proposed in the study of 

Landa Silva (2003). In this approach, each individual performs local 

search until it gets stuck and then recombines with some parts from the 

gene pool. Therefore, the notion of reproduction within generations is 

replaced by the self-improving life cycle of individuals, which also 

employs asynchronous cooperation, i.e recombination, between 

individuals.   

 

Another study, (Burke et. al. 2003) discusses the usage of hyper-

heuristics, which may be used to guide the low-order local search 

operators in a memetic algorithm. 

 

 

5.2.1 Hyper-heuristics  

 

In their work (2003), Burke et. al discuss the usage of hyper-heuristics 

as a way to handle a wider range of problem domains instead of 

customizing heuristics for a particular subset of problem instances. 

Hyper-heuristics operate at a higher level of abstraction with no 

knowledge of the domain and act on lower-level heuristics by deciding 

which heuristics to employ in a given situation. In this way, new problem 
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domains can be attempted by replacing the set of low level heuristics 

provided that an efficient hyper-heuristic algorithm has been developed.    

 

The authors state that traditional meta-heuristics are either too simple to 

perform well or too knowledge-intensive to implement easily.  However, 

it is the application of heuristics that bring about speed by narrowing the 

search space. The concept of hyper-heuristics arises from the idea of 

combining different heuristics in a way so that each of them compensates 

for the weaknesses of others. 

 

Burke et. al references the work of Terashima et. al. (1999), which 

applies hyper-heuristic approach to large-scale university exam 

timetabling problems. In this work, they assumed a two-phase 

timetabling building algorithm. Genetic algorithms were employed to 

evolve the choices of heuristics used in the underlying algorithm and the 

condition that determines when to switch to a different phase of the 

timetable construction. The method was reported to solve even very 

large exam timetabling problems.   

 

Another hyper-heuristic approach that Burke et. al discussed used an 

adaptive heuristic to improve on an initial heuristic ordering for exam 

timetabling problem. Initially, a solution was constructed by scheduling 

exams as determined by the original heuristic. If it was the case that an 

exam cannot be scheduled properly, it was scheduled by the order in a 

sunsequent construction. The process continued until all exams were 

acceptably scheduled or until a predefined time limit. The method could 

improve the quality when compared to the original heuristic.     

 

Burke et.al conclude their work by commenting that employing the 

genetic algorithm for searching for a good algorithm might be better than 

employing it for searching a specific solution to a specific problem in 

timetabling.  
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5.3 Memetic Algorithms For Timetabling 

 

Memetic algorithms have been successfully applied to various timetabling 

problems. Sections below summarize the most highlighting examples.  

 

5.3.1 Mutation Operators of Varied Complexity and a Hill Climber 

for University Exam Timetabling 

 

In the study of Burke et. al.(1995a), a memetic algorithm is used for 

university exam timetabling. In their study, they state that memetic 

algorithms can be more advantageous than genetic algorithms. As they 

illustrate, a possible solution instance, which was mutated to be brought 

in the scope of a local optima, can further be improved to reach local 

optima by the application of local search. They claim that the 

computational expense brought about by the execution of local search 

can be compensated by the reduction in the search areas that must be 

explored to reach a local optimum.  

 

In their work, a timetable instance in the population is comprised of 

memes, each of which holds which exams are placed in each room in a 

period. In addition, there is a last meme that contains the unscheduled 

events since feasible but incomplete timetables can exist in the 

population.  

 

They use the term meme instead of gene to refer to the unit of 

information on the chromosome. They state that memes are adapted by 

the individual whereas genes are passed unaltered. Since the units of a 

chromosome are altered by a hill climber after the application of genetic 

operators in their memetic algorithm, they do not use the term gene in 

their chromosome representation. They used heuristics along with 

random assignment to create an initial population that contains feasible 

instances with less penalties while maintaining sufficient diversity for the 

GA.  
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In their algorithm, light and heavy random mutations, i.e small and large 

scale alterations, are directly followed by a hill climbing operator. There is 

no recombination operator used. Instead, one of the two mutation 

operators is chosen to be applied on the individual. The light mutation 

operator picks a number of events from any period at random to 

reschedule them at other legal periods. The heavy mutation operator 

randomly reschedules all the exams in some periods of a timetable 

instance. This operator reveals well constructed periods and leaves them 

intact while considering each period of the instance in turn. Their 

deterministic hill climbing operator applies to each period of the timetable 

instance in a loop. At each step of the loop, the penalty of scheduling 

each event of the current period to every other period is calculated 

unless the scheduling causes any hard constraint violations. After that, 

each event is placed in the period causing least penalty. This operator 

also tries to schedule the unscheduled events.  

 

Mutation and hill climbing operators are applied to create new individuals 

until the population expands to a specific size. Then, classic roulette-

wheel selection is employed to choose individuals to generate a new 

population from the old expanded one. The fitness of each individual is 

directly proportional with the number of scheduled events and inversely 

proportional with the number of unscheduled events and conflicts 

between periods, which causes students to have exams one after another 

in the same day.  

 

They experimented with real-life data taken from several universities. 

They observed that local search introduced to GA helps to find better 

solutions more quickly than random descent method. However, they also 

point out that the algorithm they proposed performs worse on more 

constrained problems.   
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5.3.2 Improving Evolutionary Timetabling with Delta Evaluation 

and Directed Mutation 

 

In their study, Ross et. al (1994a) present a class of violation-directed 

mutation operators as main operators for memetic algorithms. In this 

work, they also describe the delta evaluation and how to measure the 

computational complexity of a timetabling EA in terms of what they call 

“evolutionary equivalents” instead of number of evaluations. In the study 

of Ross et. al. (1994a), they ignore constraints involving agents or places 

since they are easy to handle once the events/times timetable has been 

constructed in the exam timetabling case. However, they refer their work  

(Ross et. al. 1994b) for lecture timetabling, where such constraints 

become crucial.  

 

Ross et. al. (1994a) use direct representation and a penalty-allocating 

fitness function. A penalty assigned for a constraint violation increases 

with the importance of the corresponding constraint. Ross et. al claim 

that delta evaluation employed during the fitness function calculations 

causes a significant speed up. In delta evaluation, the fitness function of 

a solution, i.e timetable th, is calculated by using an already-evaluated 

fitness belonging to one of its parents tg (or a single parent if only 

mutation was used) and weighted sums of constraints involving a set of 

events whose assignments differ in tg and th.   

 

In their EA configuration, they always kept a population of size 1000. At 

each cycle of reproduction, they selected a parent and applied mutation 

on it. The new individual replaced the least fit one in the population 

provided that it was fitter than the worst among the population. With a 

probability of 0.2, they employed simple gene-wise mutation on the 

selected individual. This meant to consider each gene of the individual in 

turn and randomly reassign an allele to it with a very low probability 

(0.02). With probability 0.8, they applied their violation-directed 

mutation operator with a tournament size of 6.  
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Violation-directed mutation operators presented by Ross et. al. maintain 

violation scores for each event and its allele during fitness evaluation. 

This helps to reveal which events (alleles) in a timetable cause (would 

cause) more constraint violations and contribute (would contribute) more 

to the decrease in the overall fitness of the timetabling instance. Their 

directed mutation operators each choose a single event to mutate and an 

allele to mutate to. In case of events, this selection can either be 

choosing randomly among the worst events (i.e best candidates for 

mutation) or a probabilistic selection that is biased towards genes with 

higher violation scores. If the event is purely randomly selected, the 

directedness is expected to be achieved by allele selection. Allele 

selection can be made by using tournament selection among a set of k 

alleles to avoid the computational complexity brought about by other 

selection schemes.    

 

The application of violation-directed mutation operators was held on a 

real-world examination timetabling data taken from a university. The 

problems involved assignments of events to available timeslots and the 

following constraints: exclusions, edge constraints and event-spread 

constraints. They also generated random problems both from random 

complete timetables and from real timetabling problems. To generate 

random problems from stratch, they initially construct a random 

complete timetable of 50 events scheduled within a predefined set of 

slots. Then, they generate edge and exclusion constraints that are 

satisfied in the timetable at hand. Finally, they construct the resulting 

problem by filtering some of the constraints generated.  

  

In their study, Ross et.al (1994a) experimented with several variants of 

violation-directed mutation operators in a typical real-world exam 

timetabling problem and evaluated the performance of best such variants 

in randomly-generated problems as the number of constraints in the 

problem varied.  
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The results of experiments showed that choosing the allele in a 

stochastically biased way in directed mutation was obviously superior to 

applying other variants. This biased probabilistic allele selection turned 

out to give directed mutation its real power and effect, whereas the event 

selection need not be directed at all. In their experiments, the EA with 

directed mutation operators greatly overwhelmed the version with 

uniform crossover operator.  

 

In their work, Ross et.al (1994a) describe the general 

examination/lecture timetabling problem and apply evolutionary 

algorithms on 5 real-world and 32 randomly generated timetabling data.  

 

For the timetabling problem, they again use direct representation, where 

an assignment for each event is denoted by three consecutive genes on 

the chromosome. These three genes refer to time, place and agent 

assignments of the corresponding event. Their fitness function is 

inversely proportional with the weighted sum of occurences of constraint 

violations for each constraint type.  

 

They suggest that constraints should be decomposed into lower order 

constraints (i.e constraints involving one or two events only) to prevent 

the fitness landscape from flattening. To illustrate, they point out that the 

constraint “no two exams that share common students should class” 

should be decomposed into seperate constraints as many as pairs of 

exams that share students. In addition, the penalty for each of those 

constraints must be arranged according to the number of students 

sharing the given exams.   

 

Throughout their fitness evaluations, they use delta evaluation (Ross et. 

al. 1994a), which considers an already-evaluated similar timetable and 

changes in-between when calculating the fitness function of a new 

timetable. They employed a variant of violation-directed mutation 

operators examined in the study of Ross et. al. (1994a). In this operator, 

an event is randomly chosen and a new allele is assigned to it according 
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to the result of a tournament selection among 10 alleles for the event. 

The fitness of each allele in this tournament is assigned with respect to 

the degree to which they reduce the constraint violations on the event.   

 

Their highly constrained real-world timetabling problems arise from 

examinations at two universities. Each of those problems had more than 

400 edge-constraints on the average, while some of them also had a 

similar amount of event-spread or exclusion constraints. The EA 

configuration was the same as that explained in the work of Ross et. al. 

1994a). 

 

Ross et. al. (1994a) report the results of experiments with the particular 

EA they described. Those results reveal that their algorithm quickly finds 

perfect timetables for each of the real examination timetabling problems. 

They also emphasize the importance of their randomly-generated data as 

highly-constrained benchmark problems, especially for comparing 

techniques all of which have been successful in the real-world problems.  

 

5.3.3 Violation Directed Hierarchical Hill Climbing For Timetabling  

 

In [Alpay 03], memetic algorithms including violation directed mutations, 

crossovers and a violation directed hierarchical hill climbing(VDHC) 

method have been applied to the university course timetabling problem. 

Those new operators were introduced to prevent premature convergence 

that had occured in their real-world data. They considered only time 

assignments of course sections along with 7 types of constraints whose 

overall sum reaches up to approximately 3000. Each of those constraint 

types are one of the exclusion, preset constraints, edge-constraints or 

event-spread constraints.   

 

They used direct representation, where each gene identifies a course 

section. In the chromosome, a hierarchical structure involving all course 

sections meetings grouped with respect to their courses, terms and 

finally departments is represented. Their fitness function allocates 
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weighted penalties multiplied by the occurences of  constraint violations 

for each constraint in each constraint type. The initial population involves 

randomly created individuals all of which obey all the preset, exclusion 

and a specific type of event-spread constraints defined for course 

sections.  

 

They named and experimented with new violation directed mutation 

operators in addition to the traditional mutation operator. Those directed 

mutation operators  choose a term by rank selection, where the fitness of 

each term is based on the number of violations it contains. Then 

traditional mutation is applied on the term chosen. A variant of these 

operators uses rank selection to choose the allele for the gene to mutate, 

where the fitness of each allele is based on the number of violations it 

would cause in the term.   

 

Since their timetable representation involved a hierarchy, they defined 

one-point and uniform crossover operators that treated certain blocks of 

genes (i.e a term) as a single gene in addition to the traditional crossover 

operators. Besides, they  defined an operator that applied crossover only 

inside a single term. That single term was again chosen by rank selection 

and traditional crossover operators were applied to it once it was 

selected. Hence, they introduced several violation directed crossover 

operators that acted on different groupings of genes for their hierarchical 

representation.  

 

The VDHC method proposed employs different operators for four of the 

constraint types. To apply the method on an individual, one of the four 

operators is chosen by a selection strategy biased towards those whose 

constraint type has more violations in the individual. Then the chosen 

operator attempts to resolve its corresponding violations with respect to 

the current resolution level of the VDHC method. The initial level of 

resolution requires that all the violations due to the related type of 

constraint be removed, whereas the second level considers violations in a 

selected block of genes and the third level merely attempts a single gene 
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in a block of genes. The selection scheme for those blocks is again biased 

towards ones causing more violations due to the constraint type of the 

operator. The resolution level is narrowed each time the operator fails to 

produce a better individual on the current resolution level. If the 

application of the VDHC method succeeds, it is reapplied on the 

individual.  

 

In their EA configuration, they used elitism so that maximum fitness of 

the population can never reduce in next generations. On the real-world 

university timetable data, they experimented with different sets of their 

MA oparators by using both steady-state and trans-generational 

approaches. In this way, they aimed to figure out the best replacement 

strategy as well as the best set of MA operators. According to their 

results, the traditional crossover operator performed best among others, 

while the violation directed mutation operator that applied traditional 

mutation operator on a term rather than the individual overwhelmed its 

variants. Trans-generational approach for replacement produced much 

better results, where the average number of violations in the final 

generations of all runs was decreased to 0.2-0.3 with the best set of MA 

operators. Although the steady-state approach was rather successful with 

the VDHC, it couldn’t find a solution in any of the runs without the VDHC 

operator no matter how many different strategies such as crowding, 

using weights during initialization were practised.   

 

In the study of Ozcan et. al. (2005a), VDHC method was successfully 

applied to university final examination scheduling. In their application, 

there were three types of constraints defined. The first of these 

constraints required that no student should have conflicting 

examinations. The second type of constraints required that there must be 

a free slot between two examinations of a student when these two 

examinations are assigned on the same day. The last constraint imposed 

that maximum seat capacity must not be exceeded during a period. In 

the memetic algorithm proposed in the work of Ozcan et. al. (2005a), 
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random initialization of population, traditional one-point crossover, 

random mutation and swap operators are employed.  

 

In the first stage experiments, Ozcan et.al. revealed that tournament 

mate selection, random mutation and trans-generational replacement 

strategy produce the best results when compared to their alternatives, 

which are ranking strategy, swap operator and steady-state replacement 

strategy respectively.  

 

Having obtained the most successful configuration, the authors test the 

VDHC method on more data and report averaged success rates per run of 

approximately 100 percent for 10 different test cases.    
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CHAPTER 6 

 

 INTRODUCTION TO MULTIMEME ALGORITHMS 

 

 

Memetic algorithms are evolutionary algorithms that employ an additional 

local search strategy as well as the common genetic operators such as 

crossover and mutation during the evolutionary cycle. Multimeme 

algorithms differ from memetic algorithms in that they self-adaptively 

choose which local search operator to use from the set of local searchers 

for different stages of the search or individuals in the population. 

Multimeme evolutionary algorithms were introduced in the work of 

Krasnogor et. al. (2001). In this study, they show how their multimeme 

algorithm is able to learn the best local search operator to apply to the 

individuals at different stages of the search. So, the optimum local search 

operator to apply is learnt during the evolutionary process. They also 

employ their algorithm to figure out which mutation operators to apply to 

individuals, where they regard their algorithm as an adaptive GA 

algorithm. In the work of Krasnogor et. al. (2001), they experiment with 

One-Max, NK-Landscapes and Travelling Salesman Problems(TSP). For 

the first two of these problems, their multimeme algorithm adaptively 

decides which mutation operators to use. For the last problem, optimum 

local search strategy is learnt by the algorithm.  

 

In a multimeme algorithm, an individual comprises of both its genetic 

content and its memetic content. The genetic content represents a 

possible solution for the problem instance as in traditional evolutionary 

algorithms with direct representation. At any time during the evolutionary 

cycle of the multimeme algorithm, an individual also carries its own 

meme. The memes of an individual carry information that specifies which 

local improvement operators will be applied to the individual. They may 
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also specify the probability and/or the number of times for the application 

of such operators. All these composed memes in the individual make up 

the memeplex (Krasnogor 2002b). In the work of Krasnogor et. al. 

(2001), they also included the acceptance strategy to be employed in the 

local searcher in the meme for the multimeme algorithm solving the TSP 

problem. The acceptance strategy embedded in the meme of an 

individual can be one of the first-improvement or best-improvement 

acceptance strategies. In the best-improvement acceptance strategy, the 

local search operator is applied on the whole chromosome gene after 

gene, whereas the first-improvement strategy ceases once unsuccess 

occurs. The best-improvement strategy, however, takes backs its moves 

and continues with the next gene in case of unsuccess.  In a multimeme 

algorithm, crossover and mutation operators are applied for genetic 

exchange and variety. Moreover, these operators also affect the memetic 

content of individuals as well as their genetic content. So, crossover 

operators of multimeme algorithms enable meme transmission, while 

their mutation operators can override the meme of an individual and 

assign a random local searcher among the set of available local search 

operators. During mutation, the frequency of this meme mutation is 

determined by a parameter, namely the innovation rate(IR) parameter. If 

this parameter is set to 0, a meme lost during meme transmission can 

never be re-introduced in the population. Therefore, IR value is set to a 

small value in the range [0,1] to guarantee a minimum level of 

exploration of the memetic space.   

 

6.1 Meme Transmission 

 

There are several ways of meme transmission in a population maintained 

by a multimeme algorithm as described in the work of Krasnogor 

(2002b). The first main way of meme transmission is called as vertical 

transmission or simple inheritance mechanism(SIM), where the offsprings 

inherit the memes of their fitter parent.  algorithm for this process is 

given in the study of Krasnogor et. al. (2001) as in Table 6.1.  
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Table 6.1  Algorithm for SIM.   
 

Individual_Level_Crossover(Parent p1, Parent p2, Offspring o1, 
Offspring o2) 
Begin 
 CrossParentsGeneticMaterial(p1,p2,o1,o2) 
 If  EqualMemes(p1->meme,p2->meme)) then 
       begin 
  CopyMeme(o1->meme,  p1->meme) 
  CopyMeme(o2->meme,  p1->meme)   
 End  
 Else if p1->fitness==p2->fitness then 
       Begin 
  If FlipCoin() then 
                  Begin 
   CopyMeme(o1->meme,  p1->meme) 
   CopyMeme(o2->meme,  p1->meme)   
  End 
  Else 
                 Begin  
   CopyMeme(o1->meme,  p2->meme) 
   CopyMeme(o2->meme,  p2->meme)   
  End 
 End 
 Else if (p1->fitness > p2->fitness) then 
       Begin 
  CopyMeme(o1->meme,  p1->meme) 
  CopyMeme(o2->meme,  p1->meme)   
 End 
 Else  
       Begin 
  CopyMeme(o1->meme,  p2->meme) 
  CopyMeme(o2->meme,  p2->meme)   
 End 
End 
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If the fitness of the parents are comparable and their memes differ, a 

random selection is made. In the second way, which is named 

longitudinal transmission, offsprings obtain memes from the individuals 

other than their parents. However, those memes can possibly bring about 

harm to their genetic content. The memes of an individual have an effect 

on its genes since they determine the application of local search 

operators on them.   

 

6.2 Self-Generating Memetic Algorithms 

 

In MAs, the local search operators can either pre-exist or be created and 

co-evolved by the MA (Krasnogor et. al 2003a). In the latter case, not 

only chromosomes, which represent  possible solution instances as in any 

other EAs, but also local search operators, i.e memes, are evolved. In the 

work of Krasnogor et. al. (2003a), Krasnogor et.al. experiment with 

Maximum Contact Map Overlap Problem(MAX-CMO) to demonstrate the 

performance of self-generating memetic algorithms. In their study, they 

aim to provide local search with a new role: not merely a fine-tuner but a 

supplier of building-blocks.  

 

The contact map they refer is an undirected graph that represents a 

protein's 3D fold, where each element that makes up the protein is a 

node and there is an edge between two nodes if they are neighbors. The 

problem they study, i.e MAX-CMO, tries to maximize the overlap number 

of two contact maps, which arises from an alignment between the two 

contact maps.  

 

In order to figure out a metaheuristic that creates from scratch the 

appropriate local searcher to use under different circumtances, they 

explore the space of all possible memes by using a formal grammer that 

describes memeplexes. They also use genetic programming to evolve 

sentences generated from that grammer. In their study, they conclude 

that the success of their algorithm can be traced to a continuous supply 
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of building blocks and thus providing a more cooperative operation of 

local searchers and genetic operators.   
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CHAPTER 7 

 

PROPOSED MEMETIC ALGORITHM FRAMEWORK 

FOR PRIVATE SCHOOL TIMETABLING 

 

 

In this section, the details of the components for the memetic 

algorithm(MA) framework are explained. The main components of the MA 

that determine its success to solve an optimization problem are the 

representation of solution instances, initialization heuristics, the 

evaluation of violations for each type of constraints, a penalty-allocating 

fitness function, a replacement strategy, a mate selection method along 

with choices for other parameters and finally a set of useful local 

searchers in addition to the genetic operators. This last component 

mentioned is the main additional mechanism of memetic algorithms and 

it introduces a kind of intelligence to the search process. Basically, there 

can be only one local search method that is employed during a memetic 

algorithm. In this framework, there are 12 different local search 

operators, i.e hill climbers, that are applied to all the individuals of the 

population after mutation.  In the proposed framework, local optimizers 

are controlled by a violation-directed hierarchical hill climbing 

operator(VDHC) as introduced in the studies of Alkan et.al. (2003) and  

Ozcan et. al. (2005a).  

 

7.1 Representation 

 

The application of evolutionary algorithms(EA), i.e genetic algorithms or 

memetic algorithms, to an optimization problem requires the appropriate 

choice of representation for the individuals in the population. In the 

below subsections, aspects that effect this choice in the proposed 

framework are discussed.  
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7.1.1 Direct vs. Indirect Representation 

 

For the private school timetabling problem, this representation can be 

direct or indirect. When we use direct representation, each individual 

denotes a timetable. Hence, the genetic algorithm performs a search in 

the space of possible timetables directly. In the indirect representation, 

we can assign parameters to individuals to construct a timetable and 

then employ a timetable builder to create feasible timetables by using the 

individuals. In this framework, direct representation is used to avoid from 

the computational cost brought about by employing a timetable builder.  

 

The usage of direct representation for any timetabling problem introduces 

two different choices. Each gene in the chromosome can refer to either a 

time slot or an event. If a gene refers to a timeslot and contains an event 

identification as an allele, we need genes as many as time slots in the 

chromosome. However, we then have the risk of losing or even 

duplicating certain events after the application of genetic operators. 

Hence, the individuals of the population tend to contain partial or invalid 

timetables, which causes a repair process to be employed. Fang (1994) 

addresses the problem of losing events in the timetables as label 

replacement problem and references (Abramson et. al. 1991b). In the 

proposed framework of this study, each course section meeting, i.e an 

event of the private school timetabling problem, is assigned to a place on 

the chromosome and has a value indicating its time slot mapping.  

 

7.1.2 Determination of a Gene and Its Allele  

 

In private school timetabling, the set of all course section meetings of the 

problem instance, i.e the set of all the events, is considered as a variable 

set. As stated before, private school timetabling problem is to assign 

feasible time mappings to each of those events while achieving a 

minimum number of constraint violations. As proposed in the study of 

Alkan et. al. (2003), the chromosome presents a hierararchical structure 

by preserving groupings within groupings. Course section meetings are at 
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the lowest level of this hierarchy. They are grouped with respect to their 

course sections, sections, divisions, grades and then branches (Figure 

7.1). We can think each of those groupings as a classifier (Ozcan et. al. 

2005a). With this hierarchical structure of the chromosome in mind, the 

content of a gene should be determined. A gene may be composed of all 

the course section meetings for a specific course section or merely a 

course section meeting. In this study, the first choice is applied to 

improve the performance of initialization heuristics as well as genetic 

operators.   

 

The pair of each gene and its allele in the chromosome denotes the time 

slot assignments for meetings of a specific course section.  

 

Either binary or integer values can be used to denote time mappings in 

the chromosome. This study chooses the latter approach since integer 

usage and operators defined accordingly have shown no deficiency when 

compared to those of binary values.   

 

If we consider only time slots and neglect other resources such as rooms 

for any timetabling problem, the allele of each gene can be chosen 

among valid time slots. However, the need to assign available rooms to 

events as well as time slots causes a new dilemma. As a first method, 

each gene for an event mapping can contain a time-room tuple. In this 

way, supposing there are T time slots in a week and R rooms in a 

building, there are T x R possible mappings for an event. So, the allele of 

each gene is chosen among the set of integers beginning from 0 up to 

TxR-1. Hence, the computational cost is aimed to be reduced by dealing 

with only one integer instead of a tuple for an event.  As a second 

method, we can alternatively divide the chromosome into two segments. 

In this second method, the first of the segments contains the time slot 

mappings for events, whereas the second half is comprised of room 

mappings for the events whose genes are allocated in the same order.  

Since room assignments do not cause significant problems in private 

school timetabling, they have been ignored in this study.    
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Figure 7.1 Individual Representation.  
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7.2 Initialization  

 

At the beginning of the MA, a population that is comprised of possible 

timetable solutions for the problem instance is created. Individuals in the 

population are constructed by the initialization heuristics. According to 

those heuristics, individuals obey all kinds of preset and exclusion 

constraints(CS_PRE, S_EXC, S_PRE, I_EXC) as well as the first event-

spread constraint(ES1), which requires that all meetings of a course 

section should be held at different days.  

 

Firstly, a domain of available time slots for each course section is 

determined by examining its preset constraints, preset and exclusion 

constraints of its section, i.e its class, along with exclusions of its 

instructor. The allele assignment for a course section in the chromosome 

is then made by using its corresponding domain. Therefore, exclusion 

constraints for instructors and sections as well as preset constraints for 

sections and course sections are all met in the initial population. This is 

further explained in the next section. The aim of this approach is 

obviously to reduce the size of the search space, which becomes 

extremely large in the timetabling problems.  

 

After the population is created, VDHC operator is applied over all the 

individuals. After that, the loop of producing next generations 

commences. 

 

3. Constraints 

 

As in other timetabling problems, there are two types of constraints in 

the private school timetabling. These are hard constraints, all of which 

must be satisfied for the timetable to be feasible, and soft constraints 

that denote preferences. Hard constraints for the private school 

timetabling can be determined as preset constraints, exclusions, edge 

constraints(EC1, EC2), the first event-spread constraint(ES1), workload 

constraints and most instructor constraints(I_MAXLOC, I_TRAVEL). The 
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remaining two constraints, namely minimum gap constraints for students 

and instructors, can be set as soft constraints and their violations may be 

permitted to some extent in the private school timetabling. In addition, 

the random data generator that is implemented and utilized for testing 

the proposed memetic framework produces problem instances that have 

at least one feasible solution satisfying all kinds of constraints except the 

minimum gap constraints. In other words, the solution produced by the 

random data generator normally does not have any hard constraint 

violations in it. However, in this solution, there may be gaps, i.e empty 

slots for the instructors or students, between the meetings assigned to 

them. Therefore, the MA implemented attempts to find a solution by 

giving equal importance to the satisfaction of all hard constraint types, 

whereas violation of minimum gap constraints may be permitted to some 

extent.   

  

The definition and representation of constraints in the framework for 

timetabling greatly affects the computational burden put by the fitness 

evaluation. Among many others, there are two main methods for 

achieving the satisfaction of constraints. The first method assures that 

individuals of the population all satisfy certain constraints such as 

exclusions or preset constraints in each generation. This is guaranteed by 

initialization heuristics. Furthermore, the genetic operators and local 

searchers applied afterwards are designed so that they do not produce 

individuals that violate these constraints. For instance, common 

crossover operators such as one-point crossover or uniform crossover do 

not violate preset and exclusion constraints once they are satisfied in the 

initial generation. Besides, mutation operators are also designed so that 

they choose new alleles among available time slots for the gene to 

mutate. The second method leaves the computational burden of 

constraint evaluations to a penalty-allocating fitness function. This 

method is employed for edge constraints, most event-spread and 

instructor constraints. Both of these methods are applied as explained 

below.  
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7.3.1 Exclusions and Preset Constraints 

    

There may be exclusion and/or preset constraints defined for instructors,  

sections or course sections. The basic idea to deal with such constraints 

is to minimize the search space as much as possible by the aid of 

initialization heuristics and appropriate implementation of genetic and 

local search operators. 

 

The approach used is to construct a domain of mapping, i.e a domain 

that contains all the available time slots, for each course section while 

removing the excluded time slots from this domain. The domain of a 

course section is thus created by examining the excluded time slots of 

course section's instructor, the preset and excluded time slots of the 

course section's section and the course section itself. To illustrate, 

suppose there is a course PHYSICS-I offered to  section M-1 by the 

instructor I11. Then, the pair (PHYSICS-I, M-1) denotes a specific course 

section, say CS_PHYSICS_M1. If the instructor I11 excludes time slots 

from si to sj and the available time slots of section M-1 are the set of time 

slots from tk to tl, the domain of time slots for CS_PHYSICS_M1 becomes 

{tk, ..., tl} - {si, ..., sj}.  

 

Furthermore, the allele of the gene for each course section is made up of 

time slots from the course section’s domain of mapping throughout all 

the operations of the genetic algorithm such as crossover or mutation as 

well as initialization, which was also applied in the study of Fang (1994). 

In the work of Alkan et. al. (2003), preset constraints, exclusions and 

even a type of event spread constraints were satisfied during the 

initialization of the population.  

 

This approach is supposed to work well if exclusion and preset constraints 

are defined as hard constraints that are not allowed to be violated in any 

case. However, if it’s not possible to create a timetable that satisfies all 

the given exclusion/preset constraints as well as other hard constraints 

and some of the exclusion/preset constraints appear as soft constraints, 
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we may leave their evaluation to the fitness function by the aid of weight 

assignments instead of the former direct approach. Nevertheless, 

removing burden on the fitness function evaluation by restricting the 

alleles for genes is considered to be a very efficient technique and is 

applied throughoutly in this framework. 

  

7.3.2 Edge Constraints 

 

Edge constraints in private school timetabling assure that each section 

(EC1) and each instructor (EC2) are assigned to at most one course-

section at a given time period. These constraints are allowed to be 

violated on the individuals. If only those timetables that satisfy all the 

edge constraints are kept in the population, EA performance can be 

degraded. As stated in the work of Collingwood et. al. (1997), infeasible 

regions in the fitness landscape can help the search by providing inclined 

gradients towards good feasible solutions.   

 

The violation of these constraints, whose number of occurings is 

calculated in the evaluation function, add up to the penalty assigned to 

the host individual. Therefore, the fitness of the individual is worsened, 

which makes it difficult for the individual to survive and thus to 

reproduce. Hence, natural selection simulated by the evolutionary 

algorithm causes the population to contain individuals with less number 

of violations for these constraint types.    

 

Efficient methods to calculate the violations of these constraints are 

implemented. Generally, in a timetabling problem, a constraint matrix 

can be constructed to denote conflicting events, which are pairs of events 

that have an edge constraint defined on them. Then each event is paired 

with all the other events. If the paired events are conflicting and have the 

same allele for their time mappings, then the number of edge constraint 

violations is increased by one. The computational complexity of the 

overall check becomes proportional to N2 if the total number of events is 

N.  However, in the private school timetabling problem, we can design 
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another method whose computational complexity is proportional to N 

without the use of a constraint matrix.   

 

To illustrate, the number of EC1 violations can be checked in one pass 

over the chromosome by counting the number of same time-slots used in 

the allele set of each section. All EC1 constraints belonging to a section 

can be satisfied if and only if every course section meeting of this section 

is assigned a unique time slot among the set of assigned time slots for 

this section.   

 

The number of EC2 violations for an instructor can be found in a similar 

way by counting the instructor's course section meetings that are 

assigned at the same time slot.     

 

7.3.3 Event-Spread Constraints 

 

The first event-spread constraint (ES1), which requires that each meeting 

of a course section should be assigned to different days in a week, is 

satisfied during initialization of the population and after the application of 

genetic and local search operators.  

 

Other event-spread constraints are checked as follows: While the edge 

constraint violations for a section are being calculated, a timetable is 

constructed for the section with its current time assignments. Within this 

timetable structure, all the constraint violations for the types mentioned 

above can be figured out.  

 

7.3.4 Instructor Constraints 

 

Violations for instructor constraints can be calculated by a method similar 

to the one for the other event-spread constraints. While the edge 

constraint violations for an instructor are being calculated, a timetable is 

constructed for the instructor with his/her current time assignments. 
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Within this timetable structure, all the constraint violations for the types 

mentioned above can be figured out.  

 

7.4 Fitness Function 

 

In memetic algorithms for timetabling problems, violation of constraints 

contribute to a decrease in the performance of the individual. Therefore, 

the performance of individuals can be calculated in terms of a penalty-

allocating fitness function. This function is computed by assigning 

degrees of penalty in the form of weights for various types of constraint 

violations. Therefore, different types of constraint violations are penalized 

according to their relative importance. The fitness function then becomes  

               N  

   f(p) = 1 / (1 + Σ wi ci (p))   (7.1) 

           i=1  

where p is an individual, N is the number of different constraint types, wi 

is the penalty assigned to the ith constraint type and ci(p) is the number 

of violations for constraint type i on individual p. In the study of Fang 

(1994), it is stated that assigning higher penalty settings for a constraint 

type increases the artificial evolutionary pressure to remove such 

constraints from the population. Hence, higher penalty values can be 

assigned to hard constraints, which determine the feasibility of a solution, 

whereas relatively lower values may be assigned to soft constraints. 

Thus,  penalty values of 1.0 are assigned for each hard constraint type 

and penalty values of 0.01 are assigned for minimum gap constraints in 

the proposed framework. 

 

7.4.1 Fast Fitness Evaluation  

 

The evaluation of individuals and the calculation of the fitness function is 

the bottleneck of evolutionary algorithms especially when timetabling 

problems are considered. In the timetabling problem, all the constraint 

violations that take place in the solution embedded in the individual must 

be figured out. In the work of Ross et. al. (1994a), delta evaluation, 
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which simplifies the computation for finding the number of constraint 

violations in the chromosome, is discussed. In their study, Ross et. al. 

(1994a) explain delta evaluation by considering two timetables g and h, 

which differ only in the assignments made to some subset D of the 

events E. If PC(t) is the weighted sum of violations belonging to C 

constraints for timetable t and CD is the subset of constraints C which 

involve one or more events from the subset D of E, then P(h) can be 

calculated as: 

  

   PC(h) = PC(g) - PCD(g) + PCD(h)   (7.2)  

   

Therefore, the number of violations in timetable h can be expressed 

solely in terms of number of violations in timetable g and violations 

involving the D events. This idea is applied to the proposed framework as 

follows: The violations of constraints in the newly created individual after 

a hill climbing step can be calculated in terms of the violations in the 

initial individual before hill climbing, the initial number of violations in the 

portion of the chromosome to which the hill climber was applied and the 

new number of violations in that portion.  

 

As it will be explained in the proceeding sections, the VDHC algorithm 

determines which hill climber will be applied to which portion of the 

individual during the local search phase. So, if we keep all the constraint 

violations that belong to each classifier located in the whole hierarchy, we 

can reduce the number of calculations for the fitness function. For 

instance, suppose the VDHC algorithm has chosen a specific instructor, 

say Ij, and the chosen hill climber will be applied to merely that 

instructors' genes on the current individual. After the application of the 

hill climber, only the contents of the individual for instructor Ij have 

changed. Let us denote the previous total number of constraint violations 

for instructors by CVi(I), where i refers to a constraint type among C 

constraint types, the new total number of constraint violations for 

instructors after hill climbing by CVi(I)', the previous number of violations 

for Ij by CVi(Ij), and the newly calculated number of violations for Ij by 
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CVi(Ij)'. Then, the following calculation is sufficient to find out all the 

constraint violations of instructors in the chromosome: 

   C 

   Σ  CVi(I)' = CVi(I) - CVi(Ij)' + CVi(Ij)  (7.3) 

   i=1 

As a result, owing to the VDHC operator that constrains the working area 

of hill climbers, we can only evaluate constraint violations in that area 

and calculate the whole number of violations by merely considering those 

violations since the remainings areas were left untouched during the local 

search. So, we needn't reevaluate the number of violations in those areas 

for the fitness evaluation after each local search step.  

 

7.5 Genetic Operators 

 

The two types of traditional genetic operators, namely crossover and 

mutation, are employed in the framework. The traditional crossover 

operators implemented are uniform crossover, one-point and two-point 

crossover operators. As explained before, they treat a course section with 

all its meetings as a single gene. The mutation operator applies the same 

approach. Moreover, while assigning a new allele to the randomly chosen 

gene, it chooses an allele that does not violate exclusion or preset 

constraints. In addition, this allele also obeys the first event-spread 

constraint(ES1).  

 

In additional to the traditional genetic operators, new types of crossover 

and mutation operators have been implemented by making use of the 

hierarchical organization in the chromosome as explained in the study of 

Ozcan et. al. (2005a). These operators have been listed in Table 7.1 and 

Table 7.2.  

 

The basic idea that authors of Ozcan et. al. (2005a) address is that a 

classifier at any level of an arrangement can be chosen as a single unit. 

For instance, all the course section meetings of an instructor or all the 

course section meetings of a section can be chosen as a single gene. 
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Hence, operators can be applied on such a classifier as if it were a single 

gene. In the first set of mutation operators implemented in the 

framework, a static subgrouping on the chromosome, i.e a classifier, is 

randomly chosen as the area of concern for the operator. To illustrate, 

branches, grades, divisions, sections or instructors are each used for 

these grouping of genes, i.e course section meetings or shortly events. 

Then, traditional mutation is applied within that classifier of length L with 

mutation rate equal to 1/L.  The second set of mutation operators  are 

similar to the first set except that they apply traditional mutation in each 

of their corresponding classifiers rather than choosing only one. The third 

set of mutation operators are violation-directed. In other words, the 

probability of choosing a classifier to operate on is proportional to the 

number of its constraint violations in it. Firstly, the subgroup that causes 

more violations is identified via a selection strategy, namely the 

tournament selection, then the genetic operator is applied on only the 

regions belonging to the subgrouping. For example, VD_INSTRUCTOR_MT 

chooses an instructor whose course section meetings cause more number 

of violations and applies traditional mutation with mutation probability 

1/L on them, where L is the number of course sections that the chosen 

instructor teaches.  

 

In the new one-point crossover operators defined as violation-directed 

operators, crossover points are chosen among the ones that cause more 

constraint violations. In both new uniform and one-point crossover 

operators listed, a grouping within the chromosome is regarded as a gene 

and operators are applied accordingly. Branches, grades, divisions or 

sections are used for these grouping of genes, i.e course section 

meetings or shortly events. For instance, if the basic unit for uniform 

crossover is chosen as a section, i.e a class, then offsprings are produced 

as follows: For each section, the whole section of a probabilistically 

chosen parent is copied to one of the offsprings and the corresponding 

section on the other parent is copied to the other offspring. In short, this 

process treats each section as a gene. A similar approach is also  

implemented for other possible groupings such as branches, grades, etc.  
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Table 7.1 New Mutation Operators in the Framework 

 

Operator Name Single Unit  Choice of a Unit Applies 

to All Units 

COURSESECTION_MT Course Section random yes 

RAND_SECTION_MT Section random no 

RAND_DIVISION_MT Division random no 

RAND_GRADE_MT Grade random no 

RAND_BRANCH_MT Branch random no 

RAND_INSTRUCTOR_MT Instructor random no 

ALL_SECTION_MT Section all units yes 

ALL_DIVISION_MT Division all units yes 

ALL_GRADE_MT Grade all units yes 

ALL_BRANCH_MT Branch all units yes 

ALL_INSTRUCTOR_MT Instructor all units yes 

VD_SECTION_MT Section violation-directed no 

VD_DIVISION_MT Division violation-directed no 

VD_GRADE_MT Grade violation-directed no 

VD_BRANCH_MT Branch violation-directed no 

VD_INSTRUCTOR_MT Instructor violation-directed no 
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Table 7.2 New Crossover Operators in the Framework. The UX suffix in 

the operator name denotes that the operator is a uniform crossover and 

the 1PTX suffix shows the operator is a one-point crossover.  

 

Operator Name Single Unit CP Choice 

COURSESECTION_UX Course section  

COURSESECTION_1PTX Course section - 

SECTION_UX Section  - 

DIVISION_UX Division - 

GRADE_UX Grade - 

BRANCH_UX Branch - 

I_UX Instructor - 

VD_COURSESECTION_1PTX Course Section violation-directed 

VD_SECTION_1PTX Section  violation-directed 

VD_DIVISION_1PTX Division violation-directed 

VD_GRADE_1PTX Grade violation-directed 

VD_BRANCH_1PTX Branch violation-directed 

VD_I_1PTX Instructor violation-directed 
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Each of the above operator types mentioned above are implemented and 

their contribution to the overall memetic framework is investigated during 

the experiments. 

 

7.6 Mate Selection and Replacement Strategies 

 

In several studies (Alkan et. al. 2003, Ozcan et. al. 2005a), it is reported 

that tournament mate selection performed better than ranking strategy 

for timetabling problem instances. In addition, trans-generational 

replacement strategy, where the entire population except two best 

individuals is replaced with the offspring pool in each generation, 

outperfomed steady-state replacement, where only two individuals are 

selected and two offsprings are produced. Hence, these successful 

strategies, namely the tournament mate selection method and trans-

generational replacement strategy, are used in this study.   

 

7.7 Low-order Local Search Operators (Hill Climbers) 

 

There are 12 different local search operators in the framework. Their 

execution is controlled by the VDHC operator, which chooses one of the 

hill climbers to apply on the current individual. The VDHC operator also 

decides which portion of the current chromosome will be given to the hill 

climber as its work area.  

 

Each of the hill climbers attempts to resolve constraints of its type. Once 

a hill climber is invoked with a part of the individual's chromosome, it 

processes the course sections in the given chromosome part one by one. 

It chooses the next course section, i.e gene, to consider in a random 

fashion. Firstly, it counts the number of constraints belonging to its target 

constraint type. For instance, if the hill climber is HC_S_MINGAP, which 

tries to minimize the number of gaps between course section meetings of 

a section, i.e a class, it counts the number of gaps that are next to the 

meetings of the current course section. The aim here is to figure out the 

contribution of the current course section to the constraint violations of 
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the hill climber's constraint type. Then, the hill climber attempts to 

resolve its corresponding constraint violations caused by the current 

course section via intelligent reassignments of its meetings. After this 

process, the hill climber again counts the number of constraint violations 

that belong to its target constraints and that are caused by the current 

course section. If the course section now causes less violations of target 

constraint type for the hill climber, the moves of the hill climber on the 

current gene is accepted. Otherwise, the moves are taken back and the 

initial assignments for the current course section are preserved. 

Afterwards, a new course section is chosen randomly and the hill climbing 

moves continue to perform on the given chromosome portion. While 

considering the success of a hill climber's move, overall fitness evaluation 

is not performed since it would greatly increase the computational time.  

 

The generic algorithm for the implemented hill climbers is given in table 

7.3. The hill climbers all have different hill climbing moves. A naive 

approach is to randomly reassing the meetings of the current course 

section. However, the implemented hill climbers have far more intelligent 

moves than merely random assignments.  

 

In its hill climbing move, HC_EC1 tries to assign a course section's 

meetings to empty slots on it's section's timetable if they clash with other 

meetings of the the  section. This operator marks all the slots that are 

occupied by the other meetings of the current section and tries to assign 

the meetings of the current course section to unmarked available slots 

for the section. This hill climber, like all the other hill climber operators, 

obeys all kinds of preset and exclusion constraints as well as the first 

event-spread constraint(ES1) while performing reassignments for the 

current course section. As a hill climbing move, HC_EC2 assigns a course 

section's meetings to empty slots on it's instructor's timetable if they 

clash with the other meetings of the instructor. 

 

Before the reassignments for a course section, HC_S_MAXWL finds the 

workload of the current course section's section for each of its days. It 
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then sorts the section's days in increasing order according to their 

workloads. Then, if a meeting of the current course section is on a day 

whose daily workload exceeds the section's maximum daily workload, 

that meeting is reassigned to an empty time slot on a day having less 

workload on the section's timetable. Therefore, heavy workload on days 

is relaxed by assigning the meetings on those days to other slots where 

the workload is less for the section. HC_I_MAXWL operates in the same 

way, whereas it considers the maximum workload of the current course 

section's instructor.    
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Table 7.3  Generic Algorithm of a Hill Climber in the Framework. 

 

HillClimber(CurrentLevel) 
//The Current Level indicates a specific classifier,  
//a course section, a section, a division, a grade, a branch or an  
//instructor 
 
// A course section with its meetings comprise a gene.  
Gene TempGene 
Gene CurrentEvent 
 
For i=0 to EventNo in current level do 
 //Choose an event to consider 
 CurrentEvent = ChooseEvent(CurrentLevel)  
  
 //Count number of violations that violate hill climber's target   
       //constraints and that are caused by the current event 
 PreviousViolations = CountViolations(CurrentEvent); 
 
 Copy CurrentEvent's Gene to TempGene 
 
 //Attempt to resolve violations that violate hill climber's target   
       //constraints and that are caused by the current event by heuristically 
 //reassigning meetings 
 HillClimbingMove(CurrentEvent) 
 
 //Count number of violations of hill climber's target constraints 
 //caused by the current event 
 NewViolations = CountViolations(CurrentEvent); 
 if NewViolations >= PreviousViolations then //No Improvement 
  Copy TempGene to Event i's Gene  
End for  
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HC_S_MINWL also finds the daily workloads of the current course 

section's  section. If a meeting of the current course section is on a day 

that has workload below the minimum daily workload defined for the 

section, another meeting that belongs to a different course section of the 

current section and that is on a day that has more daily workload is 

chosen. That meeting is assigned to an available slot on the day of the 

current course section's meeting. Therefore, this hill climber tries to 

increase workload on days that have daily workload below minimum. The 

operation of HC_S_MAXWL and HC_S_MINWL thus coorporate.   

 

HC_I_MINWL is similar to HC_S_MINWL. However, it considers the 

minimum daily workload of the current course section's instructor. 

 

HC_S_DIVMAXWL endeavors to resolve violations of divisional maximum 

daily workload constraints defined for the sections. To perform its hill 

climbing move, the hill climber finds the divisional daily workload values 

belonging to the division D that offers the current course section for the 

section. Once those values are found, the operation is similar to that of 

HC_S_MAXWL. In this case, a meeting of the current course section is 

reassigned to an empty time slot on a day having less divisional workload 

for D on the section's timetable if it is on a day whose total divisional 

workload for D exceeds the section's maximum divisional workload for D. 

For instance, suppose, in a day, a section can be assigned to at most 3 

meetings of courses offered from the verbal division. If the total number 

of meetings of courses offered by the verbal division for this section 

exceeds 3 on a day, one of those meetings is reassigned to another day 

where there are less courses from the verbal division in one move of 

HC_S_DIVMAXWL.  

 

HC_S_DIVMINWL also calculates the daily divisional workload values in 

the timetable of the section that is assigned to the current course section 

chosen in the hill climbing process. Again, if a meeting of this course 

section offered from division D is on a day, say day 0, where the 

workload belonging to its division D is low than the minimum value 
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allowed for D, a meeting of another course section that is assigned to a 

day where the workload caused by courses of D is larger is found. That 

meeting is assigned to day 0.  

 

Other hill climbers that make use of heuristics in their moves are 

HC_S_MINGAP and HC_I_MINGAP, whose moves are similar to each 

other. In their hill climbing move, if a meeting of the current course 

section is next to a gap, i.e an empty slot for its section(or for its 

instructor in  HC_I_MINGAP),  it is reassigned so that the gap is 

removed. If the gap is below the meeting's slot, the meeting is assigned 

to an earlier slot to remove the gap. If the gap is above the slot assigned 

for the meeting, the meeting is assigned to a later slot, which will remove 

the gap. If there is gap both below and above the meeting considered, a 

random choice is made. According to this random choice, the meeting is 

assigned to either an earlier or a later slot and the gap is removed.   

 

7.8 The VDHC Method 

 

This method is applied to all the individuals of the population after 

initialization and after the application of genetic operators during each 

generation. This method has been successfully applied to various 

timetabling problems such as nurse rostering, final exam scheduling and 

university course timetabling in many studies (Alkan et. al. 2003, Ozcan 

et. al. 2005a, Ozcan et. al. 2005b). For the implementation of this 

method to solve the private school timetabling problem, a hill climbing 

operator, i.e a local searcher, is defined for each constraint type whose 

violations are summed in the fitness function. For instance, there are 

different hill climbers for EC1 and EC2 constraints. The VDHC operator, 

which can be comprehended as an upper-level local search operator, 

coordinates the process of lower-level hill climbers. It decides when a 

specific hill climbing operator will act on the chromosome of the individual 

that is being improved. It also determines the region of the chromosome 

that the hill climbing operator will act on. The chosen hill climber 

endeavors to resolve its type of constraints on each course section by 
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choosing them randomly. If it is unable to resolve violations for a course 

section, it takes its moves back for that course section and passes on to 

the next course section. Therefore, the hill climbers in the framework 

have been implemented somewhat in a random-move fashion. After the 

process of the current hill climber finishes, VDHC evaluates the modified 

individual. If its fitness is improved after the modification of the hill 

climber, VDHC accepts this modification and the individual has changed. 

Otherwise, VDHC preserves the initial individual. As a result, the 

application of VDHC operator to the individual cannot reduce its overall 

fitness value.    

 

The part of the chromosome where the chosen hill climber will be applied 

depends on the current resolution level of the algorithm. The initial 

resolution level contains the whole chromosome. While the current hill 

climber performs successfully on the individual, the algorithm stays in the 

same level and endeavors to improve the whole individual. If the hill 

climber fails to improve the overall fitness of the individual after it has 

completed its work, the resolution level is lowered by one. Therefore, the 

current resolution level now denotes a specific branch of the private 

school. Thus, only that part of the chromosome is fed to the chosen hill 

climber. The highest resolution level indicates the whole chromosome and 

the lowest level denotes merely a course section. As a result, the chosen 

local optimizer initially attempts to improve the current portion of the 

chromosome. If it fails, it acts on a smaller portion and so on. A new hill 

climber operator can be employed after the process of the previous 

operator. In this case, a hilclimber that tries to resolve constraints that 

are higher in number on the current individual is chosen.  

 

To analyze how a hill climber is choicen for the private school  timetabling 

problem, we should further consider the organization of a private school 

timetabling instance. In the private school timetabling problem, the 12 

constraint types whose violations are allocated in the fitness evaluation 

can be divided into two groups. These groups are constraints for sections 

and constraints for instructors. Similarly, the 12 hill climbers used in the 
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private school timetabling framework can be divided into two groups as 

well. The first group of hill climbers all attempt to resolve violations of 

constraints defined on sections. Those constraints are edge constraints, 

workload constraints and minimum number of gap constraints for 

sections. The second group of hill climbers try to resolve constraints 

defined for the instructors such as edge constraints, workload, minimum 

gap or minimum travelling times constraints. Therefore, the organization 

of the chromosome infact encloses two different types of hierarchy levels. 

The first of these hierarchies groups course sections into sections, 

divisions, grades and branches. The second one groups course sections 

into instructors. Hence, classifiers of group 0 are course sections,  

sections, divisions, grades and branches. Classifiers of group 1 are course 

sections and instructors. Once the organizational aspects are understood, 

we can analyze the function that chooses a hill climber(Table 7.4). The 

VDHC steps continue until a predefined number of iterations. Maximum 

number of unsuccessful iterations is kept as 10. Maximum number of 

successful iterations is kept as the chromosome length. The VDHC 

algorithm is summarized in tables 10.5 and 10.6.  
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Table 7.4  Algorithm for Choosing a Hill Climber in VDHC 

 

HillClimber_ID ChooseHillClimber(p, temp_i, current_level) 
//The choose function below performs a tournament selection  
//with tour size 2.  
 
//It chooses a constraint type that is more often violated on the  
//inputted portion of the chromosome and returns its  
//corresponding hill climber. 
 
Begin 
 if current_level is whole_chromosome then 
           Choose a constraint type that is more often violated 
                on the chromosome and return its hill climber 

else if current_level is a classifier of group 0  
(i.e a branch is specified) then 

 begin 
  if there are violations of constraints belonging to  
               group 0 in current level then  
   Choose a constraint type that is more often  
                          violated on the specified classifier and return its   
                          hill climber(a group 0 hill climber) 
  else 
  begin 
    initialize current level to whole chromosome  
   Choose a constraint type that is more often  
                          violated on the chromosome and return its  
                          hill climber  
  end  
 end 

else if current_level is a classifier of group 1  
(i.e an instructor is specified) then 

 begin 
  if there are violations of constraints belonging to  
               group 1 in current level then  
  begin 

               Choose a constraint type that is more often  
               violated on the specified classifier and  
               return its hill climber (a group 1 hill climber) 

  end 
  else 
  begin 
    initialize current level to whole chromosome  
   Choose a constraint type that is more often  
                          violated on the chromosome and return its  
                          hill climber  
  end  
 end 
End 
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Table 7.5  The VDHC Method  

VDHC(Individual i, Parameters p) 
begin 
 CopyIndividual(i, temp_i)  //Copy the individual to temp_i 
 EvaluateIndividual(temp_i)  //Evaluate the fitness of the individual 
 previous_fitness = temp_i->fitness_value 
  
 //The initial level of the algorithm is the highest level that   
     //corresponds to the whole chromosome   
 
 current_level = whole_chromosome    
 current_successful_iterations = 0 
 current_unsuccessful_iterations = 0 
 max_successful_iterations = p->chromosome_length 
 max_unsuccessful_iterations = 10  
 while(current_successful_iterations <max_successful_iterations and 
            current_unsuccessful_iterations <max_unsuccessful_iterations) do
   
 begin 
    // Choose a HC Method that tries to resolve constraints that  
    //have more violations on the current level of the individual    
      CurrentHillClimbingMethod = ChooseHillClimber(p, temp_i,   
                             current_level)    
    //Current level denotes which portion of the chromosome will be  
        //attempted for optimization 
 
    temp_i = ApplyCurrentHillClimber(p, current_level,    
        CurrentHillClimbingMethod,    
                                                          temp_i) 
    EvaluateIndividual(temp_i) 
    if( Better(temp_i->fitness, previous_fitness)) then 
    begin 
     CopyIndividual(temp_i, i) 
                prev_fitness = temp_i->fitness_value 
  current_successful_iterations++ 
    end 
    else 
    begin 
  //Current application of hill climber may have corrupted the   
  //individual, so take its moves back and acquire the content of 
           //the individual that has been achieved after the last successful 
  //modification 
  CopyIndividual(i, temp_i); 
  current_unsuccessful_iterations++; 
  //Find a sublevel that causes more violations for the current   
  //constraint type to be improved 
  //In other words, restrict the area of concern 
 
  current_level = LowerLevelByOne(CurrentHillClimbingMethod,  
     current_level); 
    end  
 end while 
end VDHC 
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Table 7.6  Function That Restricts the Portion of Current Chromosome in 
VDHC. 
 

 
LowerLevelByOne(HillClimberInfo CurrentHillClimbingMethod,  
                          LevelInfo current_level) 
begin 
 if current_level is already the lowest level(i.e a course section) then 
  Assign current_level to whole chromosome 
 else if CurrentHillClimbingMethod is of group 0 
     (i.e a HC for a constraint defined on a section) then 
 begin 
  Find a classifier in current level that has more violations of  
           constraints belonging to group 0. 
  Assign current_level to this classifier 
 end 
 else if CurrentHillClimbingMethod is of group 1 
     (i.e a HC for a constraint defined on an instructor) then 
 begin 
  Find a classifier in current level that has more violations of   
                constraints belonging to group 1. 
  Assign current_level to this classifier 
 end  
end 
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CHAPTER 8 

 

MULTIMEME ALGORITHM FOR PRIVATE SCHOOL TIMETABLING 

 

 
Multimeme algorithms have also been implemented for the private school 

timetabling problem. In the proposed framework, there are two versions 

of multimeme algorithms applied. In the first implementation, each 

individual carries only one meme from the pool of available memes. This 

meme denotes the hill climber to apply to the individual and the number 

of maximum unsuccessful iterations the hill climber will be applied to the 

individual. Since there are 12 different hill climbers and the unsuccessful 

iteration limit is kept between 5 and 10 during the creation of a random 

meme, there are 72 different meme configurations in the meme pool.  

 

In the second implementation, the memeplex of an individual contains as 

many memes as the number of different local search operators. During 

initialization, a local search operator is assigned randomly to each meme 

in the memeplex. Each meme again contains information about how 

many times its corresponding local search operator can be applied 

unsuccessfully. As in the VDHC implementation, the maximum number of 

successful iterations is kept as the chromosome length. The improvement 

strategy to use for the operator and the probability of applying the local 

search operator can also be embedded in meme information. However, 

the random improvement strategy and a probability of 1.0 for applying 

the local search operator have been chosen for the multimeme 

algorithms. The memeplexes of individuals are evolved during the 

evolutionary cycle with crossover and mutation operators. After mutation, 

each of the individuals go through a hill climbing process (Table 8.1). In 

this process, all the local searchers that are referred in the memeplex of 

the individual are applied to the individual a number of times.   
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Table 8.1  The Hill Climbing Process for the Multimeme Algorithm 

 

 

 

 

 

MMA_HillClimb(Individual i, Parameters p) 
begin 
 CopyIndividual(i, temp_i)           //Copy the individual to temp_i 
 EvaluateIndividual(temp_i)        //Evaluate the fitness of the   
                                                         //individual 
 previous_fitness = temp_i->fitness_value  
          for x=0 to p->NoOfMemesInIndividual do 
 begin 
               current_successful_iterations = 0 
        current_unsuccessful_iterations = 0 
       max_successful_iterations = p->chromosome_length 
       max_unsuccessful_iterations =  
                            i->memeplex[x].HCMethod_NoOfTimes 
                CurrentHillClimbingMethod =  
                            i->memeplex[x].HCMethod_ID                                                          
               while(current_successful_iterations    
                       < max_successful_iterations and  
              current_unsuccessful_iterations   
                       <max_unsuccessful_iterations) do 
        begin  
         temp_i = ApplyCurrentHillClimber(p,  
                                                   whole_chromosome,       
                                                   CurrentHillClimbingMethod,  
                                                   temp_i); 
              EvaluateIndividual(temp_i); 
             if( Better(temp_i->fitness, previous_fitness)) then 
    begin 
                   CopyIndividual(temp_i, i); 
                                     prev_fitness := temp_i->fitness_value; 
                   current_successful_iterations++; 
             end 
             else 
            //Current application of hillclimber may have  
                                     //corrupted the  individual, so take its moves   
                                     //back and acquire the content of  the   
                                     //individual that has been achieved after the last  
                                     //successful modification 
                CopyIndividual(i, temp_i); 
                  current_unsuccessful_iterations++; 
            end  
       end while 
 end for 
end 
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CHAPTER 9 

 

RANDOM DATA GENERATION FOR PRIVATE SCHOOL TIMETABLING 

 

 

This chapter explains the random data generator implemented to obtain 

synthetic problem instances for the private school timetabling. 

  

9.1 Overview of a Possible Random Data Generation Method 

 

Corne et. al. implemented a random problem generator for university 

exam timetabling. This program initially creates a random solution that 

contains a predefined number of exams. In the solution, all the exams 

are randomly assigned to available time slots. After that, all the 

constraints that are satisfied in the created solution instance are defined. 

In other words, if two exams are assigned different time slots in the 

solution, an edge constraint is defined between them. Such edge 

constraints are defined for all non-conflicting exams so that the set of 

edge constraints make the solution at hand the only solution. Then, some 

of those constraints are probabilistically removed to increase the number 

of possible solutions for the current problem. So, the problem instance 

becomes ready. In this way, it is assured that the generated problem has 

at least one solution. A similar approach can be employed to create 

syntatic problems for the private school timetabling.  

 

9.2 The Process of Generating Random Data for Private 

School Timetabling 

 

The below subsections discuss the creation of random data in detail. This 

process involves the determination of main aspects, namely the global 
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curriculum, problem size, temporal structure, event assignments and 

finally the constraints. 

 

9.2.1 Creation of a Global Curriculum 

 

During interviews with several private school authorities and instructors, 

it has been revealed that a private school has one commonly used 

curriculum. This curriculum is followed in all the branches belonging to 

the private school. It specifies the number of possible grades that a 

branch can offer, number of divisions available in each such grade and 

information about courses in the curriculum of each division defined. For 

instance, grades in a private school can be defined as Lycee 1, Lycee 2 

and Lycee 3, while divisional choices for Lycee 1 can be the quantitative 

division or the verbal division. The students from each grade and division, 

i.e Lycee 2 verbal division students, have the same curriculum in all the 

branches of the private school. In the random data generator (RDG) for 

private school, initially a curriculum is constructed.  

 

Each choice while generating the curriculum, i.e deciding how many 

grades will be available or how many courses will be assigned to a 

specific division, is made by choosing random values between realistic 

minimum and maximum parameters. In this way, statistically sound 

assignments can be achieved. Employing logically defined ranges in the 

form of maximum and minimum parameters for determining the numbers 

in the problem instance is applied throughout the RDG.  

 

The curriculum also defines how many courses there will be for a specific 

division. It determines the number and length of meetings, the division 

that offers the course and the course name for each of those courses. 

Students from a particular division can be assigned to courses offered 

from other divisions as well. To illustrate, Lycee 2 students from verbal 

division  usually take natural science courses, which are offered by the 

quantitative division. However, the number and length of meetings for 

the corresponding course sections are rather decreased since very low 
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coefficients are used when calculating exam scores belonging to 

questions on natural sciences for students from verbal division.     

 

9.2.2 Determination of Problem Size 

 

After the curriculum has been established in the RDG, values that specify 

the size of the problem instance are chosen. These values are listed 

below: 

 

 1. Number of branches  

 2. Number of grades in each branch 

 3. Number of divisions in each grade 

 4. Number of sections, i.e classes, in each division 

 

Thus, the problem instance represents a hierarchical organization. 

Branches are divided into grades, grades are divided into divisions and 

finally divisions are divided into many sections, i.e classes. The size of 

the problem is determined by the listed values above and the curriculum. 

The number of course sections for each section, the meetings of those 

course sections are all determined according to the curriculum. As an 

event to be assigned in terms of private school timetabling is indeed a 

course section meeting, the size of the problem instance increases with 

increasing number of sections and course sections assigned to them as 

stated in the curriculum.   

 

9.2.3 Definition for Temporal Structure 

 

Each branch defines available time slots for each of its grades. Thus, a 

section belonging to a specific grade of the branch uses set of the 

available time slots for its grade. Although this set is same for all the 

sections of a specific grade, each  section is assigned to slots from a 

subset of it. For instance, in a possible private school program, Lycee 2 

students may attend to classes in the evenings, whereas Lycee graduates 

come to the private school at the weekends. In addition, some sections of 
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Lycee 2 students(or seventh grade students) may be attending to 

lectures from 6 to 8 pm, while some other sections of Lycee 2 students 

attend to lectures from 7 to 9 pm. Private schools generally provide such 

options for the students.  

 

9.2.4 Slot and Instructor Assignments for the Events 

 

Once the curriculum, the assignment of values representing the size of 

the problem and the temporal structure is ready, course sections for each 

of the  sections are assigned to time slots. Meanwhile, the information on 

those course sections is obtained from the curriculum. After all the 

meetings for a course section has been assigned to time slots, an 

instructor is assigned to that course section. This instructor can be either 

a newly generated instructor or a previously generated instructor whose 

course sections don't have conflicts with the currently assigned course 

section. So, instructors are generated as necessary course sections for 

sections are created. After this process, number of instructors employed 

and total number of course sections in the problem instance is available. 

In addition, a possible solution for the generated problem instance that 

involves all the instructor and time assignments has been created. 

Furthermore, this solution involves some constraints already defined in it. 

This will become more clear in the following section.  

 

9.2.5 Creation of Constraints 

 

In the problem instance, some constraints are satisfied while the possible 

solution is being built, while some others are generated once the solution 

has been created. The method of solution generation with respect to 

certain constraints is not used in the sample random data generator of 

Corne et. al. They randomly created the possible solution and defined 

edge constraints thereafter. This approach doesn't appear to be efficient 

for the private school random data generation since the number of 

different constraint types is much larger.   
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The constraints defined in the problem instance along with the approach 

for generating them is listed in the next subsections.  

 

9.2.5.1 Unary Event Constraints 

 

1)Meetings of course-sections can be assigned to predefined hours in 

predefined days(CS_PRE): There is a parameter in the RDG that specifies 

the probability that a course section predefines time slots for its 

meetings. After the solution has been created, a subset of course 

sections are chosen probabilistically and their assigned slots in the 

solution instance are given as preset time slots for the problem instance. 

 

2) Meetings of course-sections should be assigned to allowable hours of 

the corresponding sections(S_PRE, S_EXC): While each grade of a branch 

is generated, allowable time slots for this grade are also generated. 

During time assignments for course sections of a section that belongs to 

a specific grade, time slots to assign to meetings are chosen among the 

set of allowed time slots defined for the section's grade. Furthermore, 

there are several parameters in the RDG that specify the probabilities 

that a section excludes some time slots. Hence, a subset of sections are 

chosen probabilistically and some slots that are available for their grade 

but that are not used by the section in the solution at hand are given as 

excluded slots for that section.    

 

9.2.5.2 Binary Event Constraints 

 

1) Each section is assigned to at most one course-section at a given time 

period(EC1). While assigning a course section meeting for a section 

during the creation of the possible solution, a time slot that has not been 

used in the assignments for the events of the current section is chosen. 

Therefore, all constraints of this type are satisfied during the creation of 

the possible solution.    

2) Each instructor is assigned to at most one course-section at a given 

time period(EC2). While assigning an instructor for a course section 
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during the creation of the possible solution, all the previously generated 

instructors are checked. If there is no instructor whose assigned course 

section meetings do not conflict with those of the current course section, 

a new instructor is generated and the total number of instructors 

increases by one. Therefore, all constraints of this type are satisfied in 

the possible solution.    

3) Each classroom is assigned to at most one course-section at a given 

time period(EC3). The assignments of course sections to classrooms are 

not considered in the RDG since classroom assignments tend to be rather 

trivial due to sufficient allocation facilities in the private school 

timetabling problem.  

 

9.2.5.3 Event-spread Constraints 

 

1) Each meeting of a course-section should be assigned to different days 

in a week (ES1). While assigning time slots for each of the meetings 

belonging to a course section, it is checked that this constraint is 

satisfied.  

2) An even distribution of verbal and quantitative courses should be 

achieved by assigning minimum and maximum hours for each course 

type in a day(S_DIVMINWL, S_DIVMAXWL). After the solution has been 

generated, minimum and maximum hours for courses offered from each 

division in the solution is calculated for a subset of sections which are 

probabilistically chosen. Then, the calculated values for those sections 

give the constaints for this constraint type.   

3) There should be a minimum number of gaps between course-sections 

assigned to a section in a day unless stated otherwise.(i.e there can be a 

one-hour lunch break.) Hence, compactness of the daily timetable for a 

section should be achieved(S_MINGAP). Meetings of course sections  for 

a section are not assigned to time slots in a way that satisfies this 

constraint. Therefore, there may be gaps in timetables for sections in the 

created solution instance.    

4) Course-sections assigned to an instructor in a day should be 

consecutive and should contain a minimum number of gaps. This 



 97 

 

 

constraint is necessary so that instructors who are paid for each lecture 

hour can finish their work at the private school in a shorter period. So, 

compactness of the instructor daily timetables can also be 

required(I_MINGAP). This constraint is  implemented neither while 

generating the solution nor once the solution has been constructed. 

Minimizing the number of gaps for instructors and sections is not 

considered in the sample solution of the RDG but is dealt with in the 

penalty-allocating fitness function of the proposed framework. Therefore, 

the memetic algorithm implemented attempts to find a timetable with 

minimum number of gaps on instructors' timetables(and on sections' 

timetables as well). 

5) Number of hours of course-sections assigned to a section in a day 

should be within predetermined minimum and maximum 

hours(S_MINWL, S_MAXWL). After the solution has been generated, 

minimum and maximum values for daily assigned hours in the solution 

for a subset of sections are calculated. Those  sections are 

probabilistically chosen. Then, the calculated values for those  sections 

give the constaints for this constraint type.   

6) Courses requiring more intellectual activity should be placed earlier in 

the timetables than the ones that are generally accepted as being rather 

easier(ES6). The type of each course section is determined by the 

division that offers it. Constraints of this type are not dealt with in RDG 

or the proposed framework. 

 

9.2.5.4 Instructor Constraints 

 

1) The specifications involving allowable hours of instructors should be 

satisfied (I_EXC). After the solution has been generated, a subset of 

instructors are chosen probabilistically. For each such instructor, several 

time slots which remain unassigned for them in the solution are again 

stochastically chosen and given as excluded time slots for the instructor. 

2) Since a private school can have several faculties in different buildings, 

travelling times of instructors between these buildings should be 

minimized(I_MAXLOC). While assigning instructors to course sections, it 
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is always satisfied that an instructor gives lectures at maximum two 

branches on a day. Since the course section assignments for branches 

are performed in order, this constraint is already satisfied in the 

generated solution. 

3) Number of hours of course-sections assigned to an instructor in a day 

should also be within predetermined minimum and maximum 

hours(I_MINWL, I_MAXWL). After the solution has been generated, a 

subset of instructors are chosen probabilistically. Their minimum and 

maximum values for daily assigned hours in the solution is calculated. 

Then, the calculated values for those instructors give the constaints for 

this constraint type.   

4) Travelling times of instructors should also be considered when 

assigning course-sections to them in a day(I_TRAVEL). During instructor 

assignments for creating the solution instance, it is satisfied that there is 

at least one hour travelling time left between two course-sections that 

will be offered to sections of different branches in different locations by 

the same instructor.  

  

9.3  Assumptions for the RDG 

 

Default assumptions for the OSS program of a private school are listed 

below: 

 

1) A problem instance has a predefined number of branches, grades, 

divisions and sections. Each branch has several grades. Each of 

those grades are divided into divisions. Finally, each such division 

has several sections, i.e classes.  

 

2)  All sections within the same division and grade, i.e all Lycee 2 

students from the quantitative division, have the same curriculum. 

Therefore, a global curriculum, which determines which courses a 

section should attend to according to its division and grade, should 

be followed in all branches of the private school. This curriculum 

keeps the number and lengths of meetings for the courses as well. 
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3) The division number and grade number pair of a section uniquely 

identifies with courses the section should take. Sections from a 

division may be assigned to courses from other divisions as well. 

To illlustate, a section of the verbal division can have courses from 

the quantitative division. This fact results from the score 

calculation of the OSS examination.  

 

4)  Each grade has a set of available time slots. These time slot 

assignments for the grades may vary from branch to branch. 

However, all the sections belonging to a specific grade in a specific 

branch have the same set of available time slots. Besides, not all 

such sections may use the same time slot subset from this set. 

Therefore, timetables of different sections in the same grade may 

differ slightly according to their exclusion constraints defined.  

 

5)  Each instructor is assigned to a number of course sections. Each 

meeting of the same course-section is always taught by the same 

instructor. 

 

These assumptions readily apply to different programs of the private 

schools other than the OSS program. They stem from the interviews and 

investigations on the private school in Turkey.   

 

9.4 Parameters for the RDG 

 

There are several parameters such as number of time slots, number of 

instructors, etc. to be assigned for the problem generation. All the 

parameters are assigned values that are suitable for private school 

timetabling. Those values are randomly selected among a range of 

statistically appropriate choices. Therefore, minimum and maximum 

limits for each such parameter is given to the random data generator. 

Those parameters are listed in the appendix. 
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9.5  Pseudocode for the RDG 

 

The pseudocode for the RDG is as displayed in Table 9.1. The RDG code 

creates a synthetic problem instance and solves it by satisfying all the 

edge constraints defined in the problem. Then, it defines several 

additional constraints on the problem as stated before. Below is a 

summary.  

 

1) Preset constraints for course sections, exclusions for sections and 

instructors, event-spread constraints about the daily workloads of 

instructors and sections are set once the random solution has been 

created.  

2) Other constraints(edge constraints, other event-spread constraints 

and other instructor constraints) are satisfied owing to heuristics 

employed during time slot and instructor assignments. 

 

9.6  Output of the RDG 

 

The output of the RDG consists of an input file where the problem is 

written with its constraints, a file containing a sample solution and a file 

containing the analysis of the created problem instance. A sample input 

and analysis file can be found in the appendix. 

 

 

 

 

 

 

 

 

 

 

 

 



 101 

 

 

Table 9.1 The algorithm for RDG 

 

//First generate the global curriculum 
Generate available grades  
For each grade available 
 Generate available divisions 
 For each division available 
  Choose available courses from own division 
  courses := courses  U courses from other divisions 
  For each course 
   Generate number and length of meetings 
//Generate the sections and  
//Assign the necessary course sections to a generated section 
Generate a number of branches  
For each branch 
 Choose a number of grades 
 For each grade 
  Generate available time slots 
  Choose a number of divisions  
  For each division 
   Generate a number of sections    
   For each section  
    Create course sections according to the curriculum
    For each course section 
     Assign available time slots of its grade to  
      each of the meetings of course section 
     Assign an instructor available to course 
section 

  //Once the problem is set and its solution has been created 
   Generate exclusion constraints for some instructors and sections among their   
   unused time slots in the solution 
   Generate workload constraints for some instructors and sections   
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CHAPTER 10 

 

EXPERIMENTS AND DISCUSSION 

 

 

10.1 Test Data 

 

Eight different private school problem instances have been produced by 

the implemented random data generator. Table 10.1 displays the analysis 

of each of those test cases. In this table, the total number of events, 

sections, divisions, grades, instructors, etc. are all listed for each problem 

instance. In addition, the average number(ρ) and maximum number of 

total workload for instructors and sections are displayed in the table. The 

values for conflict densities of edge constraints in test cases, denoted as 

CF in the table, are rather small. However, this does not imply that the 

problem instances are easy to solve. As explained in section 2.5.5, the 

conflict density for any private school timetabling problem where more 

than 10 sections and  instructors are involved cannot be greater than 

0.2. Therefore, achieving a minimum number of gaps, i.e empty slots 

between lecture hours for students and instructors, becomes the 

constraint that is most difficult to satisfy. Besides, none of the test cases 

experimented with in this study have a feasible timetable solution with no 

gaps for all the instructors and students involved. For all the problem 

instances, there are 8 days and 10 daily hours in the timetable. In each 

of these problems, percent of course sections that define preset slots is 

about %5. The problem instances presented in Table 10.1 each have 

different properties, i.e different number of branches, instructors or work 

loads. Memetic algorithm employing violation-directed hierarchical hill 

climbing and newly proposed genetic operators, pure genetic algorithm 

and multimeme algorithms are experimented on the randomly generated 

test cases. The following sections present and discuss the  
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Table 10.1 Analysis of Test Data. ρ refers to the average occupancy 

rate(Alkan et. al. 2003), which means the average number of assigned 

hours for instructors or sections.  

 

 

 

 

 

 

 

 

 

 

 Test 1 Test 

2 

Test 

3 

Test 

4 

Test 

5 

Test 

6 

Test 

7 

Test 8 

Meetings 186 312 232 108 378 188 408 438 

Course  
sections 

39 62 99 18 66 51 83 88 

Sections 5 14 22 4 9 7 9 18 

Divisions 5 14 22 2 6 6 9 18 

Grades 2 6 9 2 6 5 3 6 

Branches 1 2 3 1 2 3 1 2 

Instructors 12 17 13 8 21 14 17 21 

CF 0.26 0.12 0.11 0.33 0.14 0.19 0.16 0.09 

ρ 
(sections) 

47.20 27.28 13.18 35.00 50.66 32.42 57.11 29.77 

ρ 
(instructors) 

19.66 22.47 22.30 17.50 21.71 16.21 30.24 25.52 

Max.  
section 

58 32 16 39 52 34 67 
 

40 

Max. 
instructor 

34 33 33 25 32 23 41 41 

Percent of  
sections 
defining 
workload  
constraints 

80.00 57.14 50.00 50.00 66.66 57.14 33.33 33.33 

Percent of  
instructors 
defining 
workload  
constraints 

66.66 41.17 61.53 62.50 42.85 50.00 41.17 47.61 
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results for those algorithms and aim to figure out the algorithm with best 

performance on the private school timetabling problem instances.   

 

10.2  Experimental Settings 

 

There are 3 sets of experiments performed in this study. The first set of 

experiments were done to reveal the performance of the proposed 

memetic algorithm. In this set, experiments were carried out to figure 

out  

 

1. the combination of which proposed crossover and mutation 

operators perform the best with the implemented VDHC method,  

2. the success of VDHC method without using the crossover operator, 

3. the success of the 12 different low-level hill climbers without the 

management of the VDHC method. 

 

Once these experiments were accomplished, the results for the VDHC 

method along with the best combination of crossover and mutation 

operators among the set of newly proposed operators were compared 

with those for pure genetic algorithms and multimeme algorithms in the 

next sets of experiments.  

 

The second set of experiments aims to reveal the performance of the 

pure genetic algorithm on the problem instances. In order to compare 

traditional genetic algorithm and the proposed memetic algorithm 

appropriately, either maximum number of generations allowed or the 

population size for the genetic algorithm must be more than those for the 

memetic algorithm. If both algorithms are processed within the same 

number of maximum generations allowed and the same population size, 

an unfair comparison arises. The memetic algorithm searches states, i.e 

different individuals or possible solutions, at least as many as maximum 

number of unsuccessful hill climbing steps, say N steps, during a local 

search phase for an individual. So, if there are P individuals for the 

memetic algorithm with transgenerational replacement strategy, there 
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will be at least N(P-2) states evaluated in each generation. However, the 

genetic algorithm with no local optimization phase searches P-2 states in 

each generation. As a result,  keeping the number of generations for the 

two algorithms constant and comparing best solutions thereafter would 

not lead to a successful comparison in this case. Instead, it should be 

maintained that the average number of evaluations per run for the 

genetic algorithm must be at least as much as the number of evaluations 

for the memetic algorithm. The fitness evaluation is the most time-

consuming process for evolutionary algorithms. Moreover, the memetic 

algorithm implementation utilizes fast fitness evolution after each hill 

climbing step by only considering the violations in the modified regions of 

the chromosome. So, if the genetic algorithm performs evaluations at 

least as many as the memetic algorithm, it will be allowed to execute at 

least as long as the memetic algorithm and will have enough chance to 

exhibit its performance.     

 

In the third set of experiments, the multimeme algorithm is applied. In 

the first phase of these experiments, the individuals in the population 

each carry merely one meme that identifies the hill climber to apply to 

the individual. In the second phase, again multimeme approach is applied 

but this time an individual carries memes as many as the number of 

different hill climbers. In one local search step, those hill climbers are 

applied to the individual in the order their corresponding memes are 

located in the individual's memeplex.  

 

Transgenerational replacement strategy and tournament selection 

method with a tour size of 4 for mate selection were employed in the 

experiments. Maximum number of unsuccessful hill climbing steps during 

the local optimization phase of an individual is kept as 10. The next 

section presents and discusses the results of each set of experiments. 
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10.3  Results 

 

10.3.1 Results for Memetic Algorithms 

 

The first set of experiments aims to determine the combination of which 

crossover and mutation operators among the set of newly proposed 

operators gives the best results for the data instances. These 

experiments are performed in two steps. In the first step, the best 

mutation operator is determined and it is used while identifying the best 

crossover operator in the second step. Then experiments without utilizing 

a crossover operator and experiments without the VDHC method are 

performed to indicate the contribution of each of those methods to the 

memetic algorithm. 

 

Unless otherwise stated, an experiment in the first set of experiments 

consists of 30 runs each with 2000 generations by utilizing a specific 

crossover and mutation operator and the VDHC method is kept on. 

Population size is 50 for test cases from 1 to 6 and 100 for the remaining 

cases. In the first-step experiments, all the 16 newly introduced mutation 

operators are tested both with traditional uniform crossover and 

traditional one-point crossover operators. From the studies of Alkan et. 

al. (2003) and Ozcan et. al. (2005a), it is known that traditional 

crossover and mutation operators perform at least as well as the genetic 

operators designed to act on a certain level of the hierarchy on the 

chromosome rather than the whole chromosome for several timetabling 

problems. Therefore, in the first step of the initial experiments, both 

uniform and one-point crossover operators are used while testing all the 

new mutation operators. So, 32 different experiments are performed for 

each data instance in the first step of this set of experiments. The 

duration of each experiment varies approximately between 70 minutes to 

6,5 hours according to the size of the problem instance that is being 

tested. Therefore, a duration varying between 1,5 and 8,6 days is 

necessary to perform all the first-step experiments on a data instance. In 

order to shorten this duration, about 40 computers with Windows ME  
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Table 10.2 Results for new mutation operators when used with traditional 

crossover operators 

 

Test1 
UX 1PTX 

 

σ β σ β 

COURSESECTION_MT 29.80 0 30.00 0 
RAND_SECTION_MT 27.16 0 29.33 0 
RAND_DIVISION_MT 30.60 0 30.66 0 
RAND_GRADE_MT 28.60 0 30.93 0 
RAND_BRANCH_MT 28.86 0 29.90 0 
RAND_INSTRUCTOR_MT 31.40 0 34.96 0 
ALL_SECTION_MT 198.80 0.2 177.06 0 
ALL_DIVISION_MT 208.76 0.1 173.76 0 
ALL_GRADE_MT 71.83 0 51.80 0 
ALL_BRANCH_MT 28.80 0 32.40 0 
ALL_INSTRUCTOR_MT 239.86 3.53 253.13 3.13 
VD_SECTION_MT 27.16 0 29.46 0 
VD_DIVISION_MT 27.56 0 28.23 0 
VD_GRADE_MT 27.96 0 31.06 0 
VD_BRANCH_MT 28.73 0 28.36 0 
VD_INSTRUCTOR_MT 27.86 0 26.63 0 

 

 

Test2 
UX 1PTX 

 

σ β σ β 

COURSESECTION_MT 101.73 0 111.10 0 
RAND_SECTION_MT 98.66 0 104.76 0 
RAND_DIVISION_MT 104.53 0 107.40 0 
RAND_GRADE_MT 97.13 0 111.20 0 
RAND_BRANCH_MT 100.36 0 110.56 0 
RAND_INSTRUCTOR_MT 104.70 0 109.96 0 
ALL_SECTION_MT 584.10 11.4 574.80 10.56 
ALL_DIVISION_MT 586.33 11.9 598.96 10.46 
ALL_GRADE_MT 523.70 2.43 490.10 1.03 
ALL_BRANCH_MT 166.73 0 152.10 0 
ALL_INSTRUCTOR_MT 573.70 11.63 592.36 11.33 
VD_SECTION_MT 100.00 0 108.90 0 
VD_DIVISION_MT 99.43 0 103.80 0 
VD_GRADE_MT 101.83 0 106.96 0 
VD_BRANCH_MT 99.30 0 111.60 0 
VD_INSTRUCTOR_MT 96.56 0 107.43 0 
 

 



 108 

 

 

Table 10.2 (cont’d) Results for new mutation operators when used with 

traditional crossover operators 

 

Test 3 
UX 1PTX 

 

σ β σ β 

COURSESECTION_MT 22.86 0 24.20 0 
RAND_SECTION_MT 23.03 0 23.66 0 
RAND_DIVISION_MT 23.06 0 24.20 0 
RAND_GRADE_MT 24.06 0 23.50 0 
RAND_BRANCH_MT 24.13 0 24.03 0 
RAND_INSTRUCTOR_MT 26.50 0 26.96 0 
ALL_SECTION_MT 374.60 3.13 360.53 2.93 
ALL_DIVISION_MT 374.60 3.13 382.36 3.06 
ALL_GRADE_MT 345.56 0.30 305.66 0 
ALL_BRANCH_MT 101.0 0 74.10 0 
ALL_INSTRUCTOR_MT 374.50 1.33 353.23 0.36 
VD_SECTION_MT 22.66 0 23.73 0 
VD_DIVISION_MT 22.66 0 22.36 0 
VD_GRADE_MT 22.16 0 23.30 0 
VD_BRANCH_MT 23.03 0 22.90 0 
VD_INSTRUCTOR_MT 22.03 0 23.23 0 

 

 

Test 4 
UX 1PTX 

 

σ β σ β 

COURSESECTION_MT 4.80 0 4.53 0 
RAND_SECTION_MT 4.76 0 5.03 0 
RAND_DIVISION_MT 4.93 0 3.26 0 
RAND_GRADE_MT 4.03 0 4.73 0 
RAND_BRANCH_MT 4.30 0 4.30 0 
RAND_INSTRUCTOR_MT 7.60 0 4.96 0 
ALL_SECTION_MT 56.06 0 44.33 0 
ALL_DIVISION_MT 22.76 0 12.03 0 
ALL_GRADE_MT 22.10 0 16.00 0 
ALL_BRANCH_MT 4.16 0 3.86 0 
ALL_INSTRUCTOR_MT 86.46 0 83.70 0 
VD_SECTION_MT 3.50 0 3.60 0 
VD_DIVISION_MT 5.20 0 5.63 0 
VD_GRADE_MT 2.96 0 5.46 0 
VD_BRANCH_MT 4.00 0 4.86 0 
VD_INSTRUCTOR_MT 5.36 0 4.06 0 
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Table 10.2 (cont’d) Results for new mutation operators when used with 

traditional crossover operators 

 

Test 5 
UX 1PTX 

 

σ β σ β 

COURSESECTION_MT 168.93 0 183.90 0 
RAND_SECTION_MT 170.76 0 182.20 0 
RAND_DIVISION_MT 172.53 0 191.76 0 
RAND_GRADE_MT 175.86 0 186.73 0 
RAND_BRANCH_MT 171.76 0 182.43 0 
RAND_INSTRUCTOR_MT 183.63 0 184.46 0 
ALL_SECTION_MT 500.63 22.26 508.16 18.50 
ALL_DIVISION_MT 498.20 14.66 491.33 8.86 
ALL_GRADE_MT 504.06 14.70 493.36 8.73 
ALL_BRANCH_MT 289.23 0 244.56 0 
ALL_INSTRUCTOR_MT 524.56 27.23 511.43 26.43 
VD_SECTION_MT 170.16 0 181.56 0 
VD_DIVISION_MT 169.80 0 178.,63 0 
VD_GRADE_MT 168.63 0 179.43 0 
VD_BRANCH_MT 170.86 0 187.53 0 
VD_INSTRUCTOR_MT 172.76 0 183.53 0 
 

 

Test 6 
UX 1PTX 

 

σ β σ β 

COURSESECTION_MT 58.00 0 62.43 0 
RAND_SECTION_MT 60.70 0 59.36 0 
RAND_DIVISION_MT 56.10 0 62.10 0 
RAND_GRADE_MT 56.63 0 59.30 0 
RAND_BRANCH_MT 55.66 0 59.20 0 
RAND_INSTRUCTOR_MT 62.70 0 63.30 0 
ALL_SECTION_MT 315.53 3.33 310.40 1.56 
ALL_DIVISION_MT 298.16 1.90 277.90 0.73 
ALL_GRADE_MT 270.93 0.63 231.83 0.1 
ALL_BRANCH_MT 159.06 0 132.40 0 
ALL_INSTRUCTOR_MT 337.76 8.40 324.96 7.33 
VD_SECTION_MT 54.36 0 55.83 0 
VD_DIVISION_MT 55.16 0 58.23 0 
VD_GRADE_MT 53.00 0 60.53 0 
VD_BRANCH_MT 56.53 0 56.60 0 
VD_INSTRUCTOR_MT 56.80 0 56.53 0 
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Table 10.2 (cont’d) Results for new mutation operators when used with 

traditional crossover operators 

 

Test 7 
UX 1PTX 

 

σ β σ β 

COURSESECTION_MT 128.66 0 137.33 0 
RAND_SECTION_MT 132.16 0 138.10 0 
RAND_DIVISION_MT 123.36 0 132.40 0 
RAND_GRADE_MT 126.26 0 135.63 0 
RAND_BRANCH_MT 129.73 0 136.10 0 
RAND_INSTRUCTOR_MT 133.10 0 136.86 0 
ALL_SECTION_MT 430.20 34.60 434.93 28.56 
ALL_DIVISION_MT 434.83 34.40 436.93 29.06 
ALL_GRADE_MT 409.43 9.93 305.86 0.13 
ALL_BRANCH_MT 129.50 0 137.33 0 
ALL_INSTRUCTOR_MT 436.10 40.26 451.30 37.26 
VD_SECTION_MT 124.00 0 133.26 0 
VD_DIVISION_MT 126.93 0 133.73 0 
VD_GRADE_MT 126.70 0 138.03 0 
VD_BRANCH_MT 126.50 0 138.40 0 
VD_INSTRUCTOR_MT 124.70 0 133.00 0 

 

 

 Test 8 
 UX 1PTX 
 σ β σ β 

COURSESECTION_MT 155.46 0 164.93 0 
RAND_SECTION_MT 154.16 0 167.46 0 
RAND_DIVISION_MT 158.76 0 163.50 0 
RAND_GRADE_MT 150.73 0 167.30 0 
RAND_BRANCH_MT 154.16 0 167.90 0 
RAND_INSTRUCTOR_MT 165.30 0 174.16 0 
ALL_SECTION_MT 793.53 26.36 776.10 25.4 
ALL_DIVISION_MT 791.53 25.9 776.10 25.4 
ALL_GRADE_MT 750.76 13.80 728.63 4.73 
ALL_BRANCH_MT 318.06 0 248.90 0 
ALL_INSTRUCTOR_MT 793.86 27 794.23 25.46 
VD_SECTION_MT 148.06 0 152.36 0 
VD_DIVISION_MT 148.36 0 163.73 0 
VD_GRADE_MT 146.13 0 170.43 0 
VD_BRANCH_MT 158.80 0 164.16 0 
VD_INSTRUCTOR_MT 148.20 0 162.86 0 
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installed and 256MB RAM utilized were used for the first and second step 

experiments. Thus, different experiments for the same problem instance 

were spread-out on different computers of equal capacity.  

 

The long duration of the first-step experiments resulted in using rather 

small-sized test data instances for the experiments. However, these 

instances have different properties, i.e different number of branches or 

conflict densities, etc. So, the results are expected to adequately reflect 

the performance of  the newly proposed global search operators.   

 

Table 10.2 shows the results for all the mutation operators both with 

uniform crossover(UX) and one-point crossover(1PTX) on the eight test 

cases. The symbols σ and β denote the average number of soft and hard 

constraint violations in the best individual found after 2000 generations. 

All the results in the table are averaged over 30 runs. Results in bold 

indicate the top three configurations for each test instance. From these 

results, it can be inferred that the traditional mutation operator, namely 

COURSESECTION_MT, performs not far worse than the newly proposed 

operators. Indeed, it performs much better than the type of the new 

mutation operators that apply traditional mutation to all of their 

corresponding classifiers. These operators are far more destructive. To 

illustrate, ALL_INSTRUCTOR_MT, which applies traditional mutation to 

the genes of each  instructor, can be examined. This operator randomly 

chooses a course section of each instructor and mutates it. It appears as 

the most destructive and also the worst-performing operator among the 

set of the mutation operators.     

 

Another type of the mutation operators, which randomly choose their 

corresponding classifier and apply traditional mutation on that part of the 

chromosome, are approximately as good as the traditional mutation 

operator for many test cases. Besides, violation-directed mutation 

operators seem to be more promising than the other types among the 

newly introduced mutation operators. A violation-directed mutation 

operator chooses its corresponding classifier with tournament selection 
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and randomly mutates a gene in the chosen classifier. In the tournament 

selection, a classifier's chance of being selected increases with the 

number of constraint violations contained in the subsolution it represents. 

When the results for random mutations and violation-directed mutations 

are compared, it can be claimed that the utilization of tournament 

selection for choosing a classifier slightly improves the performance of 

the mutation operator for most of the test cases. Test 1, 4 and 7 contain 

merely one branch in their private school organization. Therefore, 

COURSESECTION_MT, RAND_BRANCH_MT and ALL_BRANCH_MT apply 

the same operation on the chromosome for those instances. Since there 

is one branch for those instances, RAND_BRANCH_MT and 

ALL_BRANCH_MT both act on the whole chromosome just as 

COUSESECTION_MT, i.e the traditional mutation operator that mutates a 

gene, which is a course section including all its meetings in the proposed 

framework. Corresponding results in table 10.2 indicate that the number 

of soft constraint violations reached for these three types of mutation 

operators are very similar for test cases 1, 4 and 7.  

 

Mutation operators that apply traditional mutation to all of the 

corresponding classifiers in the chromosome have the worst performance. 

Their implementation appears rather useless but it reflects the fact that 

the degree of modification for mutation must be limited not to corrupt the 

individual that has already been improved to some extent by global and 

local search. Traditional mutation operator, random boundary mutations, 

i.e mutation operators that randomly choose a classifier to mutate one of 

its genes randomly, and violation-directed mutations have very similar 

outcomes. In detail, violation-directed mutations appear as slightly better 

mutation operators when the overall performance of the operators for all 

the instances are compared.  

 

Figure 10.1 compares the best individuals in each generation for 

VD_GRADE_MT, RAND_BRANCH_MT, traditional mutation (or 

COURSESECTION_MT) and ALL_BRANCH_MT on test 6 data instance.  
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Figure 10.1 Comparison of best mutation operators among their group for 

test case 6. Solid, dashed, dotted and dashed-dotted lines represent 

results for VD_GRADE_MT, RAND_BRANCH_MT, COURSESECTION_MT 

and ALL_BRANCH_MT respectively.  
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These are the best operators among their corresponding group of 

mutations for this problem. For instance, VD_GRADE_MT has the best 

result among the other violation-directed mutation operators for this test 

case. Similarly, RAND_BRANCH_MT gives the least average soft 

constraint violations among all the mutation operators that choose a 

random classifier and mutates one of its gene. 

 

ALL_BRANCH_MT appears as the least destructive and thus most 

successful mutation among the set of operators that apply traditional 

mutation to every classifier they correspond to. As Figure 10.1 illustrates, 

VD_GRADE_MT, whose results are drawn with solid lines, performs 

slightly better than RAND_BRANCH_MT and traditional mutation. 

Generally, violation-directed mutations have slightly better performance. 

Hence, the second-step experiments are performed by using one of 

them, namely VD_GRADE_MT, as the mutation operator. VD_GRADE_MT 

selects a grade that has more constraint violations on the chromosome 

and mutates a randomly chosen gene in the selected grade. In other 

words, it acts as if the selected grade were the  whole chromosome at 

hand.  13 different crossover operators are each tested on the eight data 

instances. During these second-step experiments, again memetic 

algorithm that employs VDHC is employed. The results that are averaged 

over 30 runs are displayed in table 10.3. Again, σ and β denote the 

average number of soft and hard constraint  violations found in the best 

individual after 2000 generations. All the results in the table are  

averaged over 30 runs. The results in table 10.3 show that uniform 

crossover generally perform better than the newly proposed operators. 

The new operators can only compete with traditional one-point crossover 

operator.  

 

The uniform crossover operators that treat each of their corresponding 

classifiers as a gene, i.e the operators that end with the UX suffix, are 

not good alternatives for the traditional uniform crossover. Therefore, it  
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Table 10.3 Results for new crossover operators when used with 

VD_GRADE_MT mutation operator 

 

Test 1 Test 2  Crossover Operator 
 σ β σ β 
SECTION_UX                   14 29.86 0 108.46 0 
DIVISION_UX                  13 30.20 0 98.10 0 

GRADE_UX                      12 32.93 0 103.76 0 

BRANCH_UX                    11 X X 113.86 0 
I_UX                               15 30.40 0 105.86 0 
VD_COURSESECTION_1PTX9 32.10 0 110.03 0 
VD_SECTION_1PTX          8 31.63 0 104.96 0 
VD_DIVISION_1PTX         7 33.60 0 109.80 0 
VD_GRADE_1PTX            6 31.16 0 104.76 0 

VD_BRANCH_1PTX          5 X X 113.06 0 
VD_I_1PTX                    10 30.50 0 105.83 0 

 

 

Test 3 Test 4 Crossover Operator 
 σ β σ β 
SECTION_UX 22.43 0 3.90 0 

DIVISION_UX 23.33 0 4.53 0 
GRADE_UX 23.03 0 5.00 0 
BRANCH_UX 23.96 0 X  
I_UX 23.36 0 4.33 0 

VD_COURSESECTION_1PTX 23.53 0 4.50 0 

VD_SECTION_1PTX 24.06 0 5.16 0 
VD_DIVISION_1PTX 24.80 0 4.93 0 
VD_GRADE_1PTX 22.80 0 4.93 0 
VD_BRANCH_1PTX 23.40 0 X  
VD_I_1PTX 23.86 0 4.80 0 
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Table 10.3 (cont’d) Results for new crossover operators when used with 

VD_GRADE_MT mutation operator 

 

Test 5 Test 6  Crossover Operator 
 σ β σ β 
SECTION_UX 180.40 0 60.33 0 
DIVISION_UX 178.80 0 59.10 0 
GRADE_UX 181.16 0 60.86 0 
BRANCH_UX 182.70 0 60.16 0 
I_UX 173.76 0 61.43 0 
VD_COURSESECTION_1PTX 177.40 0 59.63 0 
VD_SECTION_1PTX 179.06 0 58.36 0 

VD_DIVISION_1PTX 182.06 0 59.70 0 
VD_GRADE_1PTX 185.66 0 57.80 0 

VD_BRANCH_1PTX 183.00 0 57.50 0 

VD_I_1PTX 183.36 0 59.76 0 

 

 

 

Test 7 Test 8 Crossover Operator 
 σ β σ β 
SECTION_UX 136.66 0 156.43 0 

DIVISION_UX 133.06 0 156.43 0 

GRADE_UX 137.76 0 166.90 0 
BRANCH_UX X  174.20 0 
I_UX 130.60 0 164.16 0 
VD_COURSESECTION_1PTX 136.70 0 164.53 0 
VD_SECTION_1PTX 138.40 0 165.46 0 
VD_DIVISION_1PTX 136.90 0 169.46 0 
VD_GRADE_1PTX 139.33 0 163.23 0 

VD_BRANCH_1PTX X  170.83 0 
VD_I_1PTX 140.13 0 169.03 0 
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is best to keep the unit of inheritance as genes, or course sections, rather 

than larger groupings such as sections or grades, etc.  The violation-

directed one-point crossover operators choose their corresponding 

classifier among the ones with more constraint violations via tournament 

selection and take this classifier as the crossover point. To illustrate, 

VD_SECTION_1PTX selects a section with more constraint violations and 

assigns it as the crossover point during the recombination process. Unlike 

the case in mutation, this violation-directed selection process does not 

improve the results at all. BRANCH_UX and VD_BRANCH_1PTX cannot 

work on data instances with only one branch. Therefore, such cases are 

marked with an X symbol on table 10.3.  

 

Table 10.4 displays the results of the memetic algorithm employing the 

VDHC method and traditional genetic operators for each data instance.  

These results are listed again along with the average number of 

evaluations per run to identify the success brought about by VDHC 

method and crossover. Tables 10.5 and 10.6 display the results of the 

best individual for the memetic algorithm when only crossover operation 

and only VDHC method are disabled respectively.  

 

When crossover is not utilized, all the genes of a parent pass to one 

offspring and all the genes of the second parent pass to the other 

offspring. So, the genetic contents of the parents are directly copied to 

the offsprings. Results in table 10.5 indicate that disabling recombination 

process does not cause any hard constraint violations in the best 

individual. However, the number of soft constraint violations significantly 

increases for each of the test cases. Therefore, we can conclude that the 

recombination operation is still necessary while VDHC method 

coordinates the low-level hill climbers. 

 

In order to state the performance improvement of the memetic algorithm 

brought about by the VDHC method, hill climbers are experimented on 

the  
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Table 10.4 Results for memetic algorithm utilizing uniform crossover and 

traditional mutation along with VDHC Method 

 

Test Case Avg. No. of Soft 
Constraint 
Violations 

Avg. No. of Hard 
Constraint 
Violations 

Avg. No. of 
Evaluations 

Test 1 29.80 0 1,215,225.93 
Test 2 101.73 0 1,181,180.50 
Test 3 22.86 0 1,175,149.46 
Test 4 4.80 0 1,230,088.16 
Test 5 168.93 0 1,170,519.13 
Test 6 58.00 0 1,177,595.96 
Test 7 128.66 0 2,415,368.03 
Test 8 155.46 0 2,396,330.70 

 

Table 10.5 Results for memetic algorithm without crossover operator 

while still utilizing VDHC method 

 

Test Case Avg. No. of Soft 
Constraint 
Violations 

Avg. No. of Hard 
Constraint 
Violations 

Avg. No. of 
Evaluations 

Test 1 33.66 0 1,199,002.03 
Test 2 116.70 0 1,170,189.80 
Test 3 27.43 0 1,161,541.46 
Test 4 5.46 0 1,243,200.93 
Test 5 193.53 0 1,157,900.46 
Test 6 70.40 0 1,166,520.76 
Test 7 144.50 0 2,365,706.96 
Test 8 185.26 0 2,358,542.80 

 

Table 10.6 Results for memetic algorithm without VDHC operator while 

traditional genetic operators are employed 

 

Test Case Avg. No. of Soft 
Constraint 
Violations 

Avg. No. of Hard 
Constraint 
Violations 

Avg. No. of 
Evaluations 

Test 1 40.43 0 1,204,912,20 
Test 2 220.90 0 1,170,424,70 
Test 3 42.13 0 1,166,600,36 
Test 4 9.80 0 1,254,634,60 
Test 5 236.50 0 1,159,236,00 
Test 6 81.53 0 1,180,109,90 
Test 7 153.63 0 2,402,756,66 
Test 8 283.36 0 2,402,954.86 
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test cases when VDHC method is not employed and the low-level hill 

climbers are randomly chosen in the local search phase. In this case, no 

level, i.e work area, is specified for any hill climber and they act on the 

whole chromosome. 

 

Results in table 10.6 are clear indications for the necessity of the VDHC 

method since leaving the operation of hill climbers to randomness leads 

to much more soft constraint violations in each of the test cases.  

 

Figure 10.2 displays the average best individual fitness in each 

generation for different configurations of the memetic algorithm, which 

are employing both VDHC method and traditional genetic operators, 

disabling only the crossover operation and disabling only the VDHC 

method respectively. The results belong to test case 8. Since tables 10.4, 

10.5 and 10.6 show that similar graphs would be drawn for the rest of 

the test cases, only the results of one data instance have been 

represented as a graph for illustration purpuses.  

 

As figure 10.2 displays, the utilization of the VDHC method greatly 

enhances the memetic algorithm. In addition, memetic algorithm is 

significantly enhanced by the application of recombination operation.  

 

It can be argued that the comparison offered by tables 10.4, 10.5 and 

10.6 is fair enough since the average number of evaluations per run for 

each of the three configurations discussed are close to each other for 

each of the test cases.  

 

In an evolutionary algorithm, the fitness of the best individual must be 

observed as generations pass since it may stop increasing and may even 

start to decrease after certain number of generations. Thus, the stopping 

criteria for an evolutionary algorithm must also take this into account.  

 

Figure 10.3 displays the fitness of best individual vs. generations for the 

memetic algorithm with VDHC method, uniform crossover and traditional  
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Figure 10.2 Comparison of results for different combinations of VDHC and 

crossover utilization on test case 8 
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mutation. Number of constraint violations of the best individual after 

2000 generations  resulted in these experiments are listed in table 10.4. 

Figure 10.3 reveals that only the best individuals for test case with the 

least number of events, namely test case 4, begin to have less fitness 

values even before 1000 generations. However, the fitness for best 

individuals continue increasing for the remaining test cases. So, using at 

least 2000 generations is necessary for them.  

 

As figure 10.3 displays, problem instance of test case 4 is easiest to solve 

for the memetic algorithm among all the test cases although its conflict 

density of edge constraints is higher. Therefore, the complexity of a 

problem instance for private school timetabling is highly dependant upon 

the size of the data, i.e the number of meetings involved, rather than the 

intensity of edge constraints. The problem instances with larger sizes, 

test cases 5, 7 and 8, have all less fitness values for best individuals 

during each generation when compared with other data instances. 

 

Figure 10.4 shows similar results for the memetic algorithm in the 

absence of the VDHC method. When VDHC method does not coordinate 

the process of low-level hill climbers, the overall best individual fitness 

values in each generation for the test cases significantly reduce. In this 

case, best individual fitness values for test case 4 merely continue 

improving as figure 10.4 illustrates. This shows that it will take more 

number of generations for the results of this test case to reach  their 

maximum values and then begin falling as illustrated in figure 10.3.  

 

As discussed in section 7.7, there are 12 different low-level hill climbers 

implemented to resolve the violations of a specific constraint type for the 

private school timetabling problem. The VDHC method determines which 

hill climber will be applied to which portion of the current individual’s 

chromosome in the local search phase. The hill climbers are divided into 

two groups. The 6 hill climbers in the first group aim to resolve the 

constraint violations corresponding to sections, i.e students, 
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Figure 10.3 Best individual fitness in generations for the memetic 

algorithm with VDHC method and traditional genetic operators 
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Figure 10.4 Best individual fitness in generations for the memetic 

algorithm employing traditional genetic operators without utilizing VDHC 

method 
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while the other 6 second group hill climbers attempt to resolve 

instructors’ constraint violations. When the modification brought about by 

a hill climber improves the fitness of the individual, the success rate of 

the hill climber increases. However, if the hill climber’s process has 

corrupted the individual and thus reduced its fitness value, the previous 

genetic content of the individual is maintained and the success rate of the 

hill climber reduces.  

 

The success rate of each hill climber averaged over all runs is displayed 

in figures 10.5 and 10.6. The success rates on each test case in figures 

10.5 and 10.6 belong to first and second group hill climbers respectively.   

 

As figure 10.5 illustrates, the hill climbers that attempt to resolve the 

violations arising from maximum daily workload specifications for 

sections perform the best for all the test cases. The ones resolving 

minimum workload constraints have less success rates. The hill climber 

that slides meetings in a section’s timetable to remove gaps is the worst 

performer among the first group hill climbers. Among second group hill 

climbers, the ones that aim to resolve violations of instructor daily 

workload constraints again have better success rates. The hill climber 

that endeavors to assign at least one empty hour for travelling time 

between the lectures that are held at different branches for an instructor, 

i.e HC_I_TRAVEL, and the hill climber that tries to assure that an 

instructor gives lectures in at most 2 different locations, i.e branches, 

have 0 success rates for test cases with only one branch. Both of the hill 

climbers that slide meetings of sections and instructors to remove gaps 

have the least success rates since they are the most destructive 

operators. They apply the sliding process to each meeting of the course 

section at hand in case the assignment of the meeting causes gaps in the 

timetable of the current instructor or section. This would surely lead to 

more violations of other constraint types. Thus, the overall fitness of the 

current individual is reduced and the hill climber becomes unsuccessful.  
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Figure 10.5 Average success rates of first group hill climbers  
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Figure 10.6 Average success rates of second group hill climbers  
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Hill climbers that resolve workload constraints reassign meetings to time 

slots where daily workload is less. They apply this procedure only to a 

randomly chosen meeting of the current course section. So, they are less 

destructive and thus better performers.  

 

10.3.2 Results for Pure Genetic Algorithms 

 

In the second set of experiments, the pure genetic algorithm merely 

employing standard genetic operators without local search is applied to 

the problem instances. 50 runs were carried out for each test data while 

allowing a maximum number of 20000 generations in each run. The 

population size was taken to be 100 for test cases from 1 to 6 and 200 

for test 7 and 8. Since the genetic algorithm was unable to find a 

timetable with no hard constraint violations and no gaps in neither of the 

runs, each run lasted for 20000 generations. Figure 10.7 shows the 

average best individual fitness per run after 20000 generations for each 

test case. From figure 10.7, it can be argued that allowing the genetic 

algorithm to create more generations than 20000 would lead to better 

results since the results for the fitness of best individuals in each 

generation increases until 20000 generations. However, this many 

generations allowed are sufficient to compare the genetic algorithm with 

the proposed memetic method.  

 

 

Table 10.7 Results for Pure Genetic Algorithm 

 

 Avg. No. of Soft 
Constraint 
Violations 

Avg. No. 
of Hard 
Constraint 
Violations 

Avg. No. of 
Evaluations 

Test 1 95.36 0.06 1,944,786.66 
Test 2 199.34 0 1,944,918.54 
Test 3 34.66 0 1,944,955.96 
Test 4 50.80 0 1,944,935.94 
Test 5 341.38 0.48 1,944,757.68 
Test 6 91.70 0.06 1,944,916.10 
Test 7 281.08 5.30 3,944,744.26 
Test 8 275.34 0.04 3,944,591.74 
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Figure 10.7 Best individual fitness in generations for pure genetic 

algorithm 
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Table 10.7 summarizes the results obtained from the second set of 

experiments. The first and second columns give the number of soft and 

hard constraint violations found in the best individual after 20000 

generations. The results shown in the table are averaged over all runs.  

The average number of evaluations per run are also displayed in the 

table.  

 

When tables 10.4 and 10.6 are compared, it is clear that pure genetic 

algorithm performs much poorer than the memetic algorithm with VDHC 

method for each test case although it is allowed to carry out much more 

evaluations and thus to visit much more states than the memetic 

algorithm. Therefore, the memetic algorithm with VDHC method 

obviously outperforms the pure genetic algorithm, which indicates the 

necessity of well managed local optimization phase.       

 

10.3.3 Results for Multimeme Algorithms 

 

Multimeme algorithms were experimented on 8 randomly generated test 

cases. The six of these problem instances have sizes varying between 

108 and 378. For them, population size is 50. The other two instances 

have larger sizes, i.e total number of meetings, 408 and 438. For them, 

the population size is kept as 100. These population sizes are the same 

values as those kept during the experiments utilizing memetic algorithm.  

Each of the experiments were carried on for 50 runs and the results to be 

mentioned are averaged over the 50 runs.  

 

In order to investigate the benefits of the utilization of the self-

inheritance mechanism(SIM), the experiments for the multimeme 

algorithm are performed in two steps. In the first-step experiments, the 

memes for the offsprings are chosen randomly from the memes of their 

parents. In the second-step experiments, SIM, which requires that the 

offsprings acquire the memes of the fitter parent, is employed during 

meme crossover.  
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Each of the first-step multimeme experiments were carried out both with 

uniform and one-point crossover methods employed as global searchers.  

The second-step experiments which utilize SIM employed traditional 

uniform crossover since that recombination operator generally gives the 

best results. 

 

In the first group of first and second step multimeme experiments, each 

individual in the population contains merely one meme. In the second 

group of these experiments, each individual owns memes as many as the 

number of different hill climbers. A meme in all of the mutimeme 

experiments denotes the hill climber to apply to the individual and the 

maximum number of unsuccessful applications of the hill climber to be 

allowed on the individual. All multimeme approaches employ traditional 

genetic operators during their evolutionary cycles.  

 

In tables 10.8 and 10.9, UX and 1PTX refer to traditional uniform 

crossover and one-point crossover, respectively. Tables 10.8 and 10.9 

show the average number of constraint violations along with average 

number of evaluations per run for the multimeme algorithm without 

utilizing SIM. Tables 10.10 and 10.11 show the results obtained from the 

multimeme algorithm with SIM. Tables 10.8 and 10.10 show results with 

merely one meme contained in an individual. In the experiments to 

obtain these results, each run continued for 5000 generations. Tables 

10.9 and 10.11 show the case where an individual carries memes as 

many as the number of hill climbers, i.e 12 memes. In the corresponding  

experiments, each run continued for 500 generations. This less number 

of generations for this version of the multimeme algorithm is necessary 

since this implementation of the multimeme algorithm with memeplex 

size 12 performs approximately 12 times more number of evaluation and 

hill climbing steps than the multimeme algorithm with memeplex size 

equal to 1. In order to compare the algorithms better, they should be 

given equal chances and this is best reflected in terms of number of 

evaluations performed in each run.  
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Table 10.8 Results for multimeme algorithm with 1 meme in an individual 
 

Avg. Soft 
Constraint 
Violations 

 

Avg. Hard 
Constraint 
Violations 

Avg. No. of Evaluations 
 

 

UX 1PTX UX 1PTX UX 1PTX 

Test 1 63.62 71.56 0 0 1,974,548.76 1,975,130.44 
Test 2 243.94 251.68 0 0 1,974,574.90 1,969,633.68 
Test 3 51.96 53.36 0 0 1,952,355.34 1,955,005.92 
Test 4 23.76 27.52 0 0 1,983,440.62 1,983,951.04 
Test 5 273.56 279.94 0 0 1,973,980.68 1,976,328.20 
Test 6 103.22 109.04 0 0.02 1,971,461.48 1,967,877.28 
Test 7 187.18 196.32 0 0 4,040,929.48 4,031,781.16 
Test 8 313.14 322.70 0 0 4,025,267.64 4,019,501.58 

 

 
 
 
Table 10.9 Results for multimeme algorithm with 12 memes in individual 
 

Avg. Soft 
Constraint 
Violations 

Avg. Hard 
Constraint 
Violations 

Avg. No. of Evaluations 
 

 

UX 1PTX UX 1PT
X 

UX 1PTX 

Test 1 64.88 67.80 0 0 2,083,265.88 2,072,503.00 
Test 2 282.56 283.22 0 0 2,079,223.08 2,072,609.20 
Test 3 86.92 91.84 0 0 2,069,506.30 2,064,981.90 
Test 4 17.2 17.44 0 0 2,098,220.42 2,083,963.26 
Test 5 307.30 315.48 0 0.02 2,076,575.90 2,066,322.98 
Test 6 131.70 132.64 0 0 2,074,890.22 2,069,059.00 
Test 7 239.32 235.08 0 0 4,268,116.20 4,218,375.50 
Test 8 385.94 377.40 0 0 4,278,337.70 4,234,603.44 
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Table 10.10 Results for multimeme algorithm utilizing SIM with 1 meme 

in individual 

 

 Avg. Soft 
Constraint 
Violations 

Avg. Hard 
Constraint 
Violations 

Avg. No. of Evaluations 

Test 1 68.26 0 1,962,226.12 
Test 2 243.10 0 1,968,741.84 
Test 3 50.30 0 1,954,309.56 
Test 4 22.36 0 1,987,404.34 
Test 5 275.38 0 1,971,033.34 
Test 6 105.54 0.02 1,972,612.30 
Test 7 187.78 0 4,035,978.30 
Test 8 312.34 0 4,010,079.84 

 

 

 

Table 10.11 Results for multimeme algorithm utilizing SIM with 12 

memes in individual 

 

 Avg. Soft 
Constraint 
Violations 

Avg. Hard 
Constraint 
Violations 

Avg. No. of Evaluations 

Test 1 68.54 0 2,085,621.96 
Test 2 282.48 0 2,082,281.04 
Test 3 89.86 0 2,072,443.30 
Test 4 17.52 0 2,095,085.42 
Test 5 314.00 0 2,074,950.94 
Test 6 132.10 0 2,075,960.52 
Test 7 239.06 0 4,272,457.92 
Test 8 378.70 0 4,280,366.48 
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This conclusion can also be drawn from the fact that evaluation of 

individuals is the bottleneck of genetic algorithms. 

 

The first thing to notice from the tables belonging to the multimeme 

algorithm is that all versions of the multimeme algorithm implemented 

have outcomes worse than those of the memetic algorithm for all the test 

cases.  

 

Secondly, the utilization of SIM for the multimeme algorithm does not 

enhance the overall performance in most of the cases. The fitness of best 

individuals is even slightly degraded while employing SIM. Figure 10.8 

provides means for better comprehension of the meme concentration in 

each generation for random and SIM versions of the multimeme 

algorithm with one meme in an individual. The meme configurations with 

top 5 average concentrations are displayed. All these memes denote the 

hill climber HC_EC1 and they have values from 5 to 9 for the maximum 

number of unsuccessful iterations. Blue lines refer to the results when 

SIM is utilized, while red lines show the results for random inheritance of 

memes in the population. The figure reveals that there is little difference 

between the concentrations belonging to the most intensive 5 memes for 

the two versions of the algorithm. The approximately equal meme 

concentration gives an explanation for the approximately equal results 

obtained while utilizing SIM or random meme inheritance.  

 

Figure 10.9 shows the best individual fitness vs. generations both for SIM 

utilization and random inheritance on test case 1. The slight degregation 

of results brought about by SIM is clearly observed from the figure. 

Therefore, for private school timetabling problem, inheriting the memes 

of the fitter parent to offsprings does not improve the performance of the 

algorithm. The result can be traced to the fact that memes of the parents 

resemble each other as time passes.  

 

Figure 10.10 compares the results of the multimeme experiments with 1 

and 12 memes for an individual on test 8 problem instance. It displays  
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Figure 10.8 Meme concentration in first 1000 generations for multimeme 

algorithm with 1 meme on test case 1. Memes with top 5 average 

concentration are displayed. Blue lines indicate utilization of SIM. Red 

lines denote the results for random meme inheritance.  
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Figure 10.9 Best individual fitness in generations for multimeme 

algorithm with 1 meme in individual for test case 1. 
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the fitness of the best individual in each generation for the two 

algorithms.  

 

When we try to compare best fitness values in terms of number of 

generations passed, the multimeme algorithm where an individual has 12 

memes seems to be doing better. However, this way of comparison leads 

to a wrong interpretation of results. Hence, Figure 10.10 is obviously 

misleading and has been intentionally put in this study to point out the 

mistake of comparing two such algorithms in terms of generations.  

 

In a generation of an evolutionary algorithm with local search, each 

individual enters through a local optimization phase. In the multimeme 

algorithm with memeplex size equal to 1, each individual is applied only 

one hill climbing operator. However, in the other version of the algorithm 

where each individual has 12 memes, each newly created individual is 

applied possibly different 12 hill climbing operators. If we keep the 

maximum number of unsuccessful applications of a hill climber in a 

meme constant, it is clear that there will be much more individual 

evaluations during a generation of the multimeme algorithm with 

memeplex size equal to 12 than the multimeme algorithm with 

memeplex size equal to 1. Here, it is assumed that the memeplex is 

composed of the memes that the individual carry and thus its size refers 

to the number of memes belonging to each individual. Therefore, the 

average number of evaluations per run should be consulted for the real 

performance of the two versions of multimeme algorithms.  

 

By examining the tables for the results of the multimeme algorithm, the 

following observation can be made: In the results for most of the test 

instances, multimeme algorithm with memeplex size equal to 12 found 

best timetables with more number of soft constraint violations although it 

performed more number of evaluations than the multimeme algorithm 

with memeplex size equal to 1. Therefore, increasing the number of 

memes in an individual cannot lead to a performance increase in the 

private school timetabling.  
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Figure 10.10 Best fitness vs. generations for multimeme algorithms on 
test 8 data.  
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Figure 10.11 Best fitness vs. generations for multimeme algorithm with 
memeplex size 1 on test 8 data.  
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Figure 10.11 also contributes to the indication of the success of 

multimeme algorithm with only one meme in each individual over the 

other multimeme algorithm with memeplex size equal to 12 on test 8 

problem instance. The fitness value of the best individual that the first 

algorithm reaches after 5000 generations is better than that of the latter 

after 500 generations. However, although the first one went through 

5000 generations, the number of evaluations it performed during a run 

on the average is 4,010,079.84, which is less than the number of 

evaluations the latter performed, namely 4,280,366.48.   
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CHAPTER 11 

 

 CONCLUSION 

 

In this study, a new timetabling problem for private schools in Turkey 

have been discussed. A memetic algorithm employing VDHC method has 

been designed to solve the synthetic instances of this problem. The 

experiments for the randomly generated private school timetabling 

problem instances have been attempted with pure genetic algorithms and 

multimeme algorithms as well as the proposed memetic algorithm.  

 

Among the new global search operators proposed, violation-directed 

mutations gave slightly better results than the traditional mutation 

operator. However, uniform crossover gave the best results among all 

the newly proposed crossover operators.  

 

The results obtained clearly reveal that the utilization of VDHC method 

for memetic algorithms greatly enhances the results for all the test cases. 

This can be traced to the fact that the success rates of the hill climbers 

are most increased with the application of the VDHC method. The VDHC 

method provides hill climbers with effective management and 

coordination. It chooses the hill climbers whose corresponding violations 

are more concentrated on the chromosome and guides them to the areas 

of the chromosome where there are more violations for them to resolve.  

 

Although the pure genetic algorithm is allowed to evaluate more states in 

the search space than those for the memetic algorithm per run, it turns 

out to give worse results for all the test cases.  
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The results for multimeme algorithms are even worse than those of the 

memetic algorithm where hill climbers to act on the individual are 

randomly chosen without the utilization of VDHC method.  

 

As a result, memetic algorithms come out as the best choice for the 

private school timetabling problem, especially when their low-level 

operators are managed by efficient hyper-heuristics.  
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APPENDIX A.  
 
 

A.1 Parameters for RDG 
 
 
Table A.1 Parameters of Problem Instance Size for RDG 

 

Parameter  Name 
 

Description 

min_grade_no 
 

minimum number of available grades in a branch 

max_grade_no 
 

maximum number of available grades in a branch 

min_div_no 
 

minimum number of available divisions in a grade 

max_div_no 
 

maximum number of available divisions in a grade 

min_course_no minimum number of available courses for students in a 
division 
 

max_course_no maximum number of available courses for students in a 
division 
 

min_meeting_no 
 

minimum number of available meetings in a course 

max_meeting_no 
 

maximum number of available meetings in a course 

min_meeting_length 
 

minimum available meeting length in a course 

max_meeting_length 
 

maximum available meeting length in a course 

min_branch_no 
 

minimum number of branches in a problem instance 

max_branch_no 
 

maximum number of branches in a problem instance 

min_section_no 
 

minimum number of sections in a division 

max_section_no 
 

maximum number of sections in a division 
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Table A.2 Curricular Parameters for RDG 

 

Parameter Name Description 

min_own_div_course_no minimum number of courses taken 
from its own division for a section 

max_own_div_course_no maximum number of courses taken 
from its own division for a section 

min_other_divs_no minimum number of other divisions 
that a section takes course from 

max_other_divs_no maximum number of other divisions 
that a section takes course from 

min_other_div_course_no minimum number of courses taken 
from a division other than its own for 
a section 

max_other_div_course_no maximum number of courses taken 
from a division other than its own for 
a section 

min_offered_courses_no minimum number of courses offered 
from a division 

max_offered_courses_no maximum number of courses offered 
from a division 

 

 

 Table A.3 Instructor Parameters for RDG 

 

Parameter Name 
 

Description 

min_assigned_course_no minimum number of different courses 
an instructor can teach 

max_assigned_course_no maximum number of different courses 
an instructor can teach 
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Table A.4 Temporal Parameters for RDG 

 

Parameter Name 
 

Description 

min_daily_hour_no minimum number of daily available 
hours in a problem instance 

max_daily_hour_no maximum number of daily available 
hours in a problem instance 

min_slot_no 
 

minimum number of total slots for a 
term 

max_slot_no 
 

maximum number of total slots for a 
term 

min_daily_assigned_slot_no minimum number of assigned slots 
for a grade in a day 

max_daily_assigned_slot_no 
 

maximum number of assigned slots 
for a grade in a day 

min_begin_hour minimum daily beginning hour for 
assigned meetings of a section 

max_begin_hour minimum daily beginning hour for 
assigned meetings of a section 

min_grade_day_no minimum number of days available 
for a grade 

max_grade_day_no maximum number of days available 
for a grade 

min_day_no minimum number of defined days for 
a problem instance 

max_day_no maximum number of defined days for 
a problem instance 
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Table A.5  Parameters  of Constraint Density for RDG 

 

Parameter Name 
 

Description 

instructor_exclusion_probability probability that determines 
whether an instructor defines 
exclusion slots 

instructor_slot_exclusion_probability probability that determines 
which slots an instructor will 
exclude 

instructor_workload_constraint_probability probability that determines 
whether an instructor defines 
workload constraints 

course_section_preset_probability probability that determines 
whether a course section defines 
preset time slots 

section_exclusion_probability probability that determines 
whether a section defines 
exclusion slots 

section_daily_exclusion_probability probability that determines 
which days of the section will 
have excluded slots 

section_hourly_exclusion_probability probability that determines 
which hours of the section will 
be excluded in a chosen day 

section_daily_workload_constraint_probability probability that determines 
whether a  section defines 
workload constraints 
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A.2 Output for the RDG 
 
The output file will begin with the initial information in the format 

displayed in Table A.6.  

 

 

 

Table A.6 Representation of Initial Points in the Problem Instance 

 

 
There is(are) 2 branch(es) 
In Branch 0 
 There is(are) 4 grade(s) 
 In Grade 0 
  There is(are) 4 division(s) 
  In Division 0 
   There is(are) 4 section(s) 
   Section(s) is(are):  
    S 0 S 1 S 2 S 3  
    S 0 is assigned to 4 course sections 
      These course sections are CS 0 CS 1 CS 2 CS 

3 
    ... 
  In Division 1 
    ... 
 In Grade 1 
  ... 
 

 

 

 

As seen above, the information about the size of the problem will be 

listed in a hierarchical way. Every branch, grade and division has an 

identification number that is unique among the set it is contained. To 

ilustrate, every branch has a unique number. Every grade in a branch 

have identification numbers that are unique among the set of grades for 

the current branch.  Similarly, the identification numbers of every division 

in a specific grade at a particular branch, i.e each division of grade 1 at 

branch 0, differ from each other. However,  sections have identification 

values that are unique among the set of all the  sections belonging to the 

problem instance. The same property applies for the course sections as 

well. 
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The curricular information is outputted as displayed in Table A.7. 

Table A.7 Representation of Curricular Information in the Problem 

Instance 

 

 

There is(are) 5 possible grade(s) 
In Grade 0 
 There is(are) 4 possible-division(s) 
 In Division 0 
  There is(are) 4 course(s) 
  In Course 6 offered by division 0 
   There is(are) 4 meeting(s) 
   Meeting_Length(s) is(are): 2 2 1 1  
  In Course 1 offered by division 0 
   There is(are) 2 meeting(s) 
   Meeting_Length(s) is(are): 2 1  
  In Course 3 offered by division 0 
   There is(are) 3 meeting(s) 
   Meeting_Length(s) is(are): 2 1 1  
  In Course 4 offered by division 0 
   There is(are) 3 meeting(s) 
   Meeting_Length(s) is(are): 1 1 1  
 In Division 1 
 ... 
In  Grade 1 
 ... 

 

 

 

The curricular information defines the possible grades to be offered and 

the possible divisions in each of the grades. The courses listed for a 

division show the curriculum of sections that belong the current grade 

and division.  

 

Each division offers a number of courses to the sections that are from 

different divisions as well as the ones that belong to it.  Each course has 

a unique identification within the set of courses that are also offered from 

its division.  For instance, course 6 offered from division 0 can be 

interpreted as "Physics course from quantitative division". It is 

maintained via parameters that the number of courses offered from its 

own division are more in number, have more meetings and/or have 
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longer meetings in the curriculum for a section. To illustrate, a  section 

from verbal division have more courses offered from the verbal division 

such as geography, etc. The number of days and daily hours defined are 

outputted as in Table A.8. 

 

 

 

Table A.8 Representation of Temporal Structure in the Problem Instance 

 

 

There is(are) 7 day(s) 
There is(are) 11 daily_hour(s) 

   In Branch 0 
   Grade 0 has 53 slots 
   1 2 3 4 5 6 7 8 11 12 13 14 15 16 17 18 24 25 26 27 28 29 30 31 32 45 46     
   47 48 49 50 51 52 53 54 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71   
   72 73 
   Grade 1 has 55 slots 
   2 3 4 5 6 7 8 9 10 13 14 15 16 17 18 19 20 21 25 26 27 28 29 30 31 32 35    
   36 37 38 39 40 41 42 43 45 46 47 48 49 50 51 52 53 54 56 57 58 59 60 61    
   62 63 64 65 
   ... 

 

 

 

 

Then, the available time slots for all the grades in each of the branches 

are listed. The time slots are numbered from 0 to (number of days x daily 

hours). It is revealed via interviews with private school authorities that all 

the grades in a particular branch have a predefined set of time slots and 

each section belonging to that grade is assigned to course section 

meetings from that set. Instructor assignments are listed for all the 

instructors as in Table A.9 
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Table A.9 Representation of Instructor Assignments in the Problem 

Instance 

 

 
Instructor 0 from division 0 teaches 3 course section(s) 
He(She) teaches course sections CS 0 CS 5 CS 456 

 

 

 

Every instructor belongs to a specific division and can lecture only 

courses from that division. There is a maximum limit defined on the 

number of different courses an instructor can teach. 

Preset and exclusion constraints are the constraints that indicate the 

specified time slots for course sections or excluded time slots for sections 

or instructors. Knowing that each slot in the timetable is enumerated, 

each of those constraints are listed for the sections, course sections and 

instructors that have defined such constraints. Those sections, course 

sections and instructors are probabilistically chosen by the aid of 

parameters.  Below are some portions of the output file that display a few 

of the preset and exclusion constraints.  

 

 

 

Table A.10 Representation of Exclusions and Specifications in the Problem 

Instance 

 

... 
Meetings of Course Section 53 should be held at slots: 46 57 67 4 13 
... 
Section S 0 excludes 8 slots  
These slots are 15 16 17 18 26 28 29 30 
... 
Instructor 6 excludes 11 slots  
These slots are  6 8 11 31 34 51 55 61 63 73 75 
Instructor 7 excludes 0 slots 
... 
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Binary event constraints, i.e the edge constraints are not reproduced in 

the output file since they are present in the definition of the problem. The 

event spread constraints below are listed in the output file for each of the 

instructors or sections that have them. Those sections and instructors are 

probabilistically chosen by the aid of parameters.   

 

 

 

Table A.11 Representation of Event-spread Constraints in the Problem 

Instance 

 

... 
Instructor 56 should lecture minimum 1 maximum 4 hours a day 
... 
Instructor 172 should lecture minimum 2 maximum 3 hours a day 
... 
In a day, Section S 64 can be assigned Maximum 7 minimum 5 hours totally 
In a day, this section can be assigned to courses from at most 2 divisions 
There should be  
 Maximum 5 minimum 3 hours for courses offered by division 1 
 Maximum 3 minimum 1 hours for courses offered by division 2 
... 
 

 

 

 

The instructor constraints other than the instructor exclusion constraints 

and workload constraints are not reproduced in the output file since they 

are present in the definition of the problem. 

 

The sample file in Table A.12 returns the analysis of a specific problem 

instance created by the RDG.  
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Table A.12 Analysis of the Randomly Generated Data 

 
 
There are 8 days 
There are 10 daily hours 
There are 960 course section meetings 
There are 384 course sections 
There are 108 sections 
There are 27 divisions 
There are 9 grades 
There are 3 branches 
 
Conflict Density between course section meetings is 0.043904 
Conflict Count(Edge Constraints only EC1 3084, only EC2 16358, both 768) 
between course section meetings is 20210 
Percent of course sections that have preset slots for their meetings is 
6.250000 
Percent of meetings whose time slots have been predefined is 6.041667 
 
Total number of Sections is 108 
Average number of course sections for a section is 3.555556 
Average number of meetings for a section is 8.888889 
Average number of hours for a section is 10.444444 
Max. number of meetings for a section is 11 
Max. number of hours for a section is 12 
Average number of available slots for a section is 79.814815 
Percent of  Sections who define slot exclusions is 100.000000 
Average number of excluded slots for those sections is 0.185185 
Percent of  Sections who define workload constraints is 48.148148 
Percent of  Sections who define workload constraints for courses from each 
offering division is 48.148148 
 
Total number of Instructors is 29 
Average number of meetings for an instructor is 33.103448 
Average number of hours for an instructor is 38.896552 
Max. number of meetings for an instructor is 53 
Max. number of hours for an instructor is 59 
Average number of available slots for an instructor is 79.241379 
Percent of Instructors who define slot exclusions is 6.896552 
Average number of excluded slots for those instructors is 11.000000 
Percent of Instructors who define workload constraints is 55.172414 
 
 

 

 

 

 

 

 


