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ABSTRACT 

 

ESTIMATION IN THE SIMPLE LINEAR 

REGRESSION MODEL WITH ONE-FOLD NESTED 

ERROR 

 
 

Ülgen, Burçin Emre 

M.S., Department of Statistics 

Supervisor : Assoc. Prof. Dr. Bilgehan Güven 

 

May 2005, 71 pages 
 
 

In this thesis, estimation in simple linear regression model with one-fold nested 

error is  studied. 

To estimate the fixed effect parameters, generalized least squares and 

maximum likelihood estimation procedures are reviewed. Moreover, Minimum 

Norm Quadratic Estimator (MINQE), Almost Unbiased Estimator (AUE) and 

Restricted Maximum Likelihood Estimator (REML) of variance of primary units 

are derived. 

Also, confidence intervals for the fixed effect parameters and the variance 

components are studied. Finally, the aforesaid estimation techniques and 

confidence intervals are applied to a real-life data and the results are presented. 

 

 

Keywords: Least Squares Estimation, Maximum Likelihood Estimation, 

Estimation for Variance Components, Confidence Intervals 
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ÖZ 

 

İÇ İÇE GEÇMİŞ HATA TERİMLİ BASİT DOĞRUSAL 

REGRESYON MODELİNDE TAHMİN YÖNTEMLERİ 

 

Ülgen, Burçin Emre 

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Doç. Dr. Bilgehan Güven 

 

Mayıs 2005, 71 sayfa 

 

 

Bu tezde, iç içe geçmiş hata terimli doğrusal regresyon modelinde tahmin 

yöntemleri esas olarak çalışılmıştır. 

Sabit etki parametrelerini tahmin etmek için, Genelleştirilmiş En Küçük 

Kareler Yöntemi ve En Çok Olabilirlik Tahmin Yöntemi prosedürleri 

sunulmuştur. Ayrıca, birinci aşama birimlerin varyansının En Küçük Norm 

Karesel Tahmin Edicisi,  Hemen Hemen Yansız Tahmin Edicisi ve Kısıtlı En Çok 

Olabilirlik Tahmin Edicisi bulunmuştur. 

Sabit etki parametreleri ve varyans bileşenleri için güven aralıkları da 

çalışılmıştır. Son olarak, adı geçen tahmin yöntemleri ve güven aralıkları bir  veri 

setine uygulanmış ve bu uygulamanın sonuçları sunulmuştur. 

 

 

Anahtar Kelimeler: En Küçük Kareler Tahmini, En Çok Olabilirlik Tahmini, 

Varyans Bileşenlerinin Tahmini, Güven Aralıkları 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Preliminaries  

 

The one-fold nested error structure is appropriate when there is some form of 

subsampling from primary sampling, i.e., observations followed by randomly 

selected primary groups. Particular cases in which the data sets arise are : (i) 

observational studies with two-stage sampling structure, i.e., random selection of 

whole units followed by random selection of several subunits within each of the 

whole units, and the researcher is interested in the regression of correlated response 

variables (ii) experiments designed as split-plot or repeated measures designs and (iii) 

experiments designed as incomplete blocks where the block effect is random. 

Suppose for each observation jkY , we have a covariate jkx  and JK   

observations are collected by selecting J  primary units followed by taking K  

measurements from each primary unit. Since we look for regression of observations 

on the covariate and assume that there is only one observational error jke  

independently and identically distributed, we have J  regression equations such that 

each of them has the same intercept parameter but different slope parameters. 

However, when we fit the same regression equation to all J  primary units, a new 

error term which we call a primary unit error ja  arises. In this situation our model 

which is called the simple linear regression model with one-fold nested error structure 

is  

 

jkjjkjk eaxY +++= βµ , Jj ,...,2,1= ; Kk ,...,2,1=  
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where ja  and jke  are independently distributed with zero means and variances 2

aσ  

and 2

eσ  respectively (these variances are also referred as variance components). The 

term ja  represents an error component associated with primary units and jke  

represents an error component associated with the subunit. A classical example of the 

simple linear regression model with one-fold nested error structure is two stage 

sampling with random selection of J  primary units followed by the selection of 

K subunits within each primary unit, i.e., an experiment on J  selected individuals 

with  K  measurements taken on each individual. 

A factor is defined as fixed if its levels consist of the entire population of 

possible levels. Otherwise, i.e., if its levels consist of a random sample of levels from 

a population of possible levels, a factor is called random. In a classification by 

Eisenhart (1947), a model is defined as : 

- fixed or fixed effects model if all the factors in the treatment structure are 

fixed effects,   

- random or random effects model if all the factors in the treatment structure 

are random effects and   

- mixed or mixed effects model if some of the factors in the treatment 

structure are fixed effects and some are random effects. 

  Since the simple linear  regression model with one-fold nested error structure 

consists of two fixed effects µ , β  and two random effects ja , jke , the model is a 

linear mixed model which is a type of the mixed analysis of variance models. Thus, 

the estimation techniques for mixed analysis of variance models can be used for the 

estimation of unknown parameters of a simple linear regression model with one-fold 

nested error structure. 

1.2  Review of Literature 

 

Mixed models are an extension of linear models for which covariance structure 

is based on random effects and their covariance parameters. The use of such models 
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has increased dramatically in the past decade. For example, they are now the main 

vehicle for analysis of longitudinal data (e.g. Diggle, Heagarty, and Zeger, 2002). 

Their use in semiparametric regression is advocated in some recent literature (e.g. 

Ruppert, Wand & Carroll, 2003). The popularity of linear mixed models has been 

accompanied by vigorous research on analytic results and computational methods. 

After Eisenhart (1947) distinguished fixed, random and mixed models, 

Henderson (1953) proposed a method for estimating variance components by 

equating each computed reduction in sums of squares (due to fitting different 

subgroups of factors in the model) to its expected value. Hartley and Rao (1967) 

described the maximum likelihood estimation of the fixed effects and variance 

components in the general mixed analysis of variance model and established some 

properties of these estimators. Corbeil and Searle (1976) modified Hartley and Rao’s 

solution by applying a transformation to the likelihood function partitioned into two 

parts, one being free of fixed effects. Maximizing this part yields what are called the 

restricted maximum likelihood estimates (REML). A comprehensive survey of 

maximum likelihood approaches to variance component estimation  were given by 

Harville (1977).  

Rao (1970) proposes minimum norm estimation technique for variance 

components. The resulting estimator is the so-called Minimum Norm Quadratic 

Unbiased Estimators (MINQUE) for a model with unequal error variances. Moreover, 

Rao (1972) describes niminum norm and minimum variance quadratic unbiased 

estimators (MINQUE and MIVQUE) in a general setting. Henderson (1975) also 

gave the method of obtaining generalized least squares estimates in a general mixed 

model and described the mixed model  and developed best linear unbiased estimators. 

Rao and Chaubey (1978) obtained nonnegative estimators (including Minimum 

Norm Quadratic Estimator) for the variance components by ignoring the condition for 

unbiasedness in the principle of Minimum Norm Quadratic Unbiased Estimation.   

Moreover, Horn, Horn and Duncan (1975) and Horn and Horn (1975) compared the 

estimators of variance components along with the estimator they obtained which is 

called Almost Unbiased Estimator (AUE). Searle (1977) gave a comprehensive 
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review on  variance components estimation. An excellent summary of developments 

concerning the mixed models is provided by McCulloch and Searle (2000). 

Having reviewed more cited studies about the mixed models, we now 

summarize the former studies concerning the simple linear regression model with 

one-fold nested error structure as follows. 

Tong and Cornelius (1989, 1991) treat the simple linear regression model with 

one-fold nested error as an analysis of a one way classification, in which treatment 

effects are random, and compared the four estimators of the slope β  (ordinary least 

squares, maximum likelihood, estimated generalized least squares and the covariance 

estimators) with respect to their mean squared errors in a Monte Carlo simulation 

study. They also constructed and compared six hypothesis testing procedures for the 

slope β  with respect to Type I error and power of test in a Monte Carlo simulation 

study.  

Park and Burdick (1994) derived exact and approximate confidence intervals 

for the regression coefficient in the simple linear regression model with the one-fold 

nested error structure and compared these confidence intervals using computer 

simulation. Park and Hwang (2002) also derived the exact and approximate 

confidence intervals for the mean response for a given level of the independent 

variable in the simple linear regression with one-fold nested error structure and 

compared them by simulation. 

The generalized least squares (GLS) estimator for the linear model with a 

nested error is given by Fuller and Battese (1973). They suggest a transformation 

depending on the variance components for the nested error model. The transformation 

is simply based on multiplying an observation vector by the square root of its 

covariance matrix and the transformed observations are uncorrelated. In order to get 

the GLS estimator of the fixed effect parameters, ordinary least squares (OLS) 

estimation is applied to the transformed observations. They use Henderson’s Method 

3 (Henderson, 1953) to estimate the variance components since it seems better than 

both of Henderson’s other two methods since it provides estimators of the variance 

components which are invariant to the design matrix.  
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Restricted maximum likelihood estimation (Corbeil and Searle, 1976)  was 

been applied to simple linear regression model with one-fold nested error structure by 

Tong and Cornelius (1989).  

Güven (1995) studied the maximum likelihood estimation in simple linear 

regression with one-fold nested error structure differently than restricted maximum 

likelihood estimation and derived the exact maximum likelihood estimates of the four 

unknown parameters together. Moreover, for this model Güven (1998) combined two 

independent unbiased estimators for the slope β  and obtained the unbiased estimator 

of β  whose variance is less than the variances of either, which is called uniformly 

better unbiased estimator. 

 

1.2 Aims and Scope of the Study 

 

The primary aim of this thesis study is to review the estimation of fixed-effect 

parameters and variance components of the simple linear regression model with one-

fold nested error. We present a comprehensive summary of what has been done up to 

date along and apply them into a real-life data. 

 The definition and a brief introduction of simple linear regression models with 

one-fold nested error are presented in this chapter. 

 Chapter 2 focuses on estimation techniques for fixed effect parameters in the 

simple linear regression model  with one-fold nested error. It covers the estimated 

generalized least squares and maximum likelihood estimation of fixed-effect 

parameters. 

 Chapter 3 gives the estimation of the primary unit variance and involves 

Minimum Norm Quadratic Estimator (MINQE), Almost Unbiased Estimator (AUE) 

and Restricted Maximum Likelihood Estimator (REML). Among the different 

variance component estimators (summarized by Searle, 1977) we choose these four 

estimators since  the exact mean squared errors (MSEs) of them can be derived. In 

addition to the derivations of these estimators, we also obtained the exact mean 
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squared errors (MSEs) of them in order to compare these variance component 

estimators with respect to their MSEs in the last section of this chapter. 

 Chapter 4 covers the exact and approximate confidence intervals for the fixed 

effect parameters and the variance components of the model. 

 In Chapter 5, the application of all of these estimation techniques and 

confidence intervals to a real life data taken from Vonesh and Carter (1987) is 

presented.  

 Finally, in Chapter 6, summary and conclusions on the findings are given.  

 

1.4 Simple Linear Regression Model with One-Fold Nested 

Error 

 

We consider the model : 

jkjjkjk eaxY +++= βµ  ,,...,2,1 Jj =  Kk ,...,2,1=  

where jkY  denotes the observation from the thk  second stage sampling unit in the thj  

first-stage unit; jkx  denotes the value of a nonstochastic regressor variable measured 

on the thk  second stage sampling unit in the thj  first-stage unit; βµ,  are parameters 

to be estimated; ja  and jke  are unobservable random effects, where ja  is an error 

associated with the thj first-stage unit and jke  with the thk  second-stage sampling 

unit in the thj  first-stage unit. The “errors” ja  and jke  are independent normal 

random variables with zero mean and variances 2

aσ  and 2

eσ , respectively, where 

02 ≥aσ , and 02 >eσ . Under these assumptions, the covariance structure for the 

observed variables jkY  is as follows : 









≠

≠=

==+

=

'0

','

','

),( 2

22

''

jjif

kkjjif

kkjjif

YYCov a

ea

kjjk σ

σσ
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The observation jkY  for the thk  element of the thj  unit can be written as 

follows : 

jkjjkjk eayEY ++= ][  where jkjk xYE βµ +=][  . 

We can write the linear model, in matrix form, as follows : 

eUaXαY ++=  

where  

 



























=

J

2

1

Y

.

.

.

Y

Y

Y ,



























=

KK

2K

1K

X1

..

..

..

X1

X1

X   , 



























=

J

2

1

a

.

.

.

a

a

a  

with T

jKj2j1j )Y,...,Y,(YY = , T

jKj2j1j )x,...,x,(xX = , T

jKj2j1j )e,...,e,(ee =  for  

Jj ,...2,1= , KJ 1IU ⊗= ,  K1  is a 1×K  vector whose elements are all 1, ⊗  denotes 

the Kronecker matrix product, T
β)(µα ,= , the vector e  is defined similar to Y . 

It follows from the independence of J21 Y,...,Y,Y  that ),(~ ΛXαY JKN where 

 ΣIΛ J ⊗= JK

T

KKJ I)11(IΛ
22

ea σσ +⊗== ,        (1.4.1)  

and Σ  is the variance-covariance matrix of  LY  for JL ,...,2,1=  which is given by 

K

T

KK I11Σ
22

ea σσ += . 

Let us define some quantities which will occur in formulas for estimation of 

parameters and variance components. All of these quantities are easily obtained from 

a one-way analysis of covariance of x and Y. Let xxaS , xyaS  and yyaS  be the among 

primary unit sum of squares and cross products, defined as,  

∑
=

−=
J

j

jxxa xxKS
1

2

... )( ,      (1.4.2) 
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∑
=

−−=
J

j

jjxya YYxxKS
1

.... ..))(( ,     (1.4.3) 

and 

∑
=

−=
J

j

jyya YYKS
1

2

... )( ,      (1.4.4) 

where KYY
K

k

jkj /
1

. ∑
=

=  , Kxx
K

k

jkj /
1

. ∑
=

= , )/(
1 1

.. JKYY
J

j

K

k

jk∑∑
= =

=  and 

)/(
1 1

.. JKxx
J

j

K

k

jk∑∑
= =

= . 

Similarly, let xxeS , xyeS  and yyeS  be the within primary unit sums of squares 

and cross products, i.e.,  

∑∑
= =

−=
J

j

K

k

jjkxxe xxS
1 1

2

. )( ,      (1.4.5) 

∑∑
= =

−−=
J

j

K

k

jjkjjkxye YYxxS
1 1

.. ))(( ,     (1.4.6) 

and 

∑∑
= =

−=
J

j

K

k

jjkyye YYS
1 1

2

. )( .      (1.4.7) 

 

It follows that the the total sum of squares and cross products xxtS , xytS  and 

yytS  can be written as : 

∑∑
= =

−=+=
J

j

K

k

jkxxexxaxxt xxSSS
1 1

2

.. )(  ,    (1.4.8) 

∑∑
= =

−−=+=
J

j

K

k

jkjkxyexyaxyt YYxxSSS
1 1

.... ))(( ,   (1.4.9) 

and 

∑∑
= =

−=+=
J

j

K

k

jkyyeyyayyt YYSSS
1 1

2

.. )(  .    (1.4.10) 
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Moreover xxtS , xytS , yytS  xxaS , xyaS  , yyaS , xxeS , xyeS  and yyeS can be 

rewritten, in a matrix form, as follows : 









−








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j

K

k

jjkjjkxye

1
))((

1 1

..

          (1.4.18) 

and 

( )YPIYY11IIY J

TT

KKKJ

T ⊗=















−⊗=−=∑∑

= = K
YYS

J

j

K

k

jjkyye

1
)(

1 1

2

. . 

(1.4.19) 
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Having found the matrix representations of xyaS  and xyeS , it can easily be 

shown that, under our model assumptions : 

))(,(~ 22

aexxaxxaxya KSSNS σσβ +  and   ),(~ 2

exxexxexye SSNS σβ  

since 

)(
11

)( Y1111IX
T

JKJK

T

KKJ

T E
JKK

SE xya 







−⊗=  

βµ X1111IX11111IX
T

JKJK

T

KKJ

T

K

T

KK

T

KK

T








−⊗+








−⊗=

JKKJKK
J

1111

βxxaS=  , 







−⊗= Y1111IX

T

JKJK

T

KKJ

T )
11

()(
JKK

VSV xya  

X1111IX
T

KK

T

JJJ

T









⊗







−+=

KJ
KS axxae

1122 σσ  

)( 22

aexxa KS σσ += , 

)(
1

)( Y11IIX
T

KKKJ

T E
K

SE xye 















−⊗= βX11IIX

T

KKKJ

T

















−⊗=
K

1

 βxxeS= , 

and 

























−⊗= Y11IIX T

KKKJ

T

K
VSV xye

1
)(  

X1111IIXX11IIX
T

KK

T

KKKJ

TT

KKKJ

T

















−⊗+
















−⊗=

KK
ae

11 22 σσ

 2

exxeS σ= . 
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CHAPTER 2 

 

ESTIMATION TECHNIQUES FOR FIXED EFFECT 

PARAMETERS 

 

 

In this chapter, we review the estimated generalized least squares 

estimation of the unknown parameters of the model given by Fuller and Battese 

(1973), Tong and Cornelius (1991) and maximum likelihood estimation of the 

unknown parameters of the model given by Güven (1995). 

 

2.1 Estimated Generalized Least Squares Estimation 

 

Fuller and Battese (1973) obtained the estimated generalized least squares 

estimators of the fixed effect parameters after they find the estimators of the 

variance components. Since the model can be considered as an analysis of 

covariance model of the one way classification model in which the treatment 

(primary) effects are random, Henderson’s method 3 (Henderson, 1953) can be 

used for obtaining the variance components. This method uses reduction in sum of 

squares due to fitting different subgroup of factors in the model, i.e., it estimates 

the variance components by equating each computed reduction to its expected 

value. For our model, we use; 

 

(i) the sum of squares from the primary units adjusted for regression on X, 

),|( βµaR , to estimate 2

aσ  

(ii) the residual sum of squares in the one way covariance model, RSS  to 

estimate 2

eσ . 
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We have 

( ) ( ) ( )βµβµβµ ,,,,| RaRaR −=     (2.1.1) 

)(

)(
),,(

2

xxexxa

xyexya

SS

SS
aR

+

+
−= βµ  

and    

( ) ( ) ( )βµβµ RaRaR += ,,,      (2.1.2) 

xxe

xye

yya
S

S
S

2

+=  

where ( )aR ,µ  is the sum of squares from the one way analysis of variance model 

and ( )βR  is the sum of squares of covariance. Substituting (2.1.2) into (2.1.1), we 

have  

( ) ( ) ( )βµβµβµ ,)(,,| RRaRaR −+=    (2.1.3) 

where ( )βµ,R  is the sum of squares for the primary units. Then we have, 

( )
)(

)(
,|

22

xxexxa

xyexya

xxe

xye

yya
SS

SS

S

S
SaR

+

+
−+=βµ  

22

)( 







−

+
+−= xyexya

xxa

xxe

xxexxaxxe

xxa

xxa

xya

yya SS
S

S

SSS

S

S

S
S  (2.1.4) 

where xxaS , xyaS , yyaS , xxeS , xyeS  are given in (1.4.2)-(1.4.6) 

We can rewrite (2.1.4) as follows : 

( ) 22

2

2 )ˆ(
)ˆˆ(

)ˆ(,| daa

xxexxa

xxexxaae

aa SS
SS

SS
SaR +=

+

−
+= β

ββ
ββµ  (2.1.5) 

where 

xxa

xya

yyaaa
S

S
SS

2

2 )ˆ( −=β ,      (2.1.6) 

2

2

)( 







−

+
= xyexya

xxa

xxe

xxexxaxxe

xxa

d SS
S

S

SSS

S
S  

xxexxa

xxexxaae

SS

SS

+

−
=

2)ˆˆ( ββ
 ,       (2.1.7) 

xxa

xya

a
S

S
=β̂  ,        (2.1.8) 
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xxe

xye

e
S

S
=β̂ .       (2.1.9) 

aβ̂  is distributed according to a normal distribution with the mean β  and 

the variance 
xxaae SK /)( 22 σσ +  since ( ))(,~ 22

aexxaxxaxya KSSNS σσβ + . Also, we 

can rewrite aβ̂  and )ˆ(2 aaS β as follows : 

 
J.

T

J.

J.

T

J.

PXX

PYX
=aβ̂       (2.1.10) 

∑
=

−−−=
J

j

jajaa xxYYKS
1

2

......

2 ))(ˆ()ˆ( ββ  

)ˆ()ˆ( J.J.J.J. XYPXY a

T

aK ββ −−=     (2.1.11) 

where the symmetric and idempotent matrix P is defined as : 







−= T

JJJ 11IP
J

1
       (2.1.12) 

and T

Jxxx ),...,,( ..2.1=j.X  , T

JYYY ),...,,( ..2.1=j.Y  

Substituting the matrix representation of aβ̂  (2.1.10) into )ˆ(2 aaS β (2.1.11) 

, we obtain :  









−








−= J.

J.

T

J.

J.

T

J.

J.J.

J.

T

J.

J.

T

J.

J. X
PXX

PYX
YPX

PXX

PYX
Y

T

aa KS )ˆ(2 β  

J.

J.

T

J.

T

J.J.T

J. Y
PXX

PXPX
PY 








−= K      (2.1.13) 

where P  is given in (2.1.12) 

Let )ae,...,ae,a(ea)(eu jJ.22.11.

T

J.

T

J. +++=+= , then  

J.J.JJ. uX1Y ++= βµ  Then the quadratic form )ˆ(2 aaS β becomes 

J.

J.

T

J.

T

J.J.T

J. u
PXX

PXPX
Pu 








−= KS aa )ˆ(2 β     (2.1.14) 

since 0=JP1 , 0=







− J

J.

T

J.

T

J.J. 1
PXX

PXPX
P  and 0=








− J.

J.

T

J.

T

J.J. X
PXX

PXPX
P  
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Since the quadratic form )ˆ(2 aaS β is of the form  

J.

T

J.Ruu=)ˆ(2 aaS β  

where the symmetric and idempotent matrix R is defined as, 









−=

J.

T

J.

T

J.J.

PXX

PXPX
PR       (2.1.15) 

We can use the theory of the distribution of the quadratic forms to find the 

distribution of J.

T

J.Ruu=)ˆ(2 aaS β . It can be proved that )/()ˆ( 222

aeaa KS σσβ + is 

distributed as a chi square with degrees of freedom )(Rtr where  

( )PXPX
PXX

P
PXX

PXPX
PR

T

J.J.

J.

T

J.J.

T

J.

T

J.J. trtrtrtr
1

)()( −=







−=  

( ) 2
1

)( −=−= Jtrtr J.

T

J.

J.

T

J.

PXX
PXX

P  

Also, it can easily be showed that 2

dS  in (2.1.7) is distributed as 

2

1

2
2 χ

σ
σ 









+
+

xxexxa

axxe
e

SS

KS
 as follows. Since ),(~ˆ 2

xxeee SN σββ  and 

)))(,(~ˆ 22

xxaaea SKN σσββ + , it follows that : 

2

1

222

2 ~)ˆˆ( χ
σσσ

ββ 






 +
+−

xxa

ae

xxe

e

ea
S

K

S
 

2

1

2

2

2

2 ~
)ˆˆ(

χ
σ

σ
ββ












+
+

+

−
=

xxexxa

axxe

e

xxexxa

xxexxaae

d
SS

KS

SS

SS
S  

where aβ̂  and eβ̂  are given in (2.1.8) and (2.1.9) respectively. Hence the 

expectation of ( )βµ,|aR  is ; 

( )[ ] 








+
+−+−=

xxexxa

xxe
ae

SS

S
JKJaRE )2()1(,| 22 σσβµ  (2.1.16) 

Also, we can rewrite eβ̂  and )ˆ(2 eeS β as follows: 

 
QXX

QYX

T

T

=eβ̂        (2.1.17) 

∑∑
= =

−−−=
J

j

K

k

jjkejjkee xxYYS
1 1

2

..

2 ))(ˆ()ˆ( ββ  
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)ˆ()ˆ( XYQXY e

T

e ββ −−=      (2.1.18) 

where the symmetric and idempotent matrix Q  is defined as : 









−⊗= T

KKKJ 11IIQ
K

1
     (2.1.19) 

Substituting the matrix representation of eβ̂  (2.1.17) into )ˆ(2 eeS β (2.1.18), 

we obtain 









−








−= X

QXX

QYX
YQX

QXX

QYX
Y

T

T
T

T

T

)ˆ(2 eeS β      

Y
QXX

QQXX
QY

T

T
T









−=      (2.1.20) 

where e)a1(IX1Y KJJK +⊗++= βµ . Then the quadratic form )ˆ(2 eeS β becomes 

e
QXX

QQXX
Qe

'

T
T









−=)ˆ(2 eeS β ,    (2.1.21) 

where 0=







− JKT

T

1
QXX

QQXX
Q  and then 0=⊗








− )1(I

QXX

QQXX
Q KJT

T

, 

0=







− X

QXX

QQXX
Q

T

T

 since  0=JKQ1  and 0=⊗ )1Q(I KJ . 

Since the quadratic form )ˆ(2 eeS β is of the form , 

See
T=)ˆ(2 eeS β ,      

where the symmetric and idempotent matrix S is defined as, 









−=

QXX

QQXX
QS

T

T

.      (2.1.22) 

We can use the theory of the distribution of the quadratic forms to find the 

distribution of See
T=)ˆ(2 eeS β . It can be proved that 22 /)ˆ( eeeS σβ is distributed as a 

chi square variable with degrees of freedom )(Str where 

( )QQXX
QXX

Q
QXX

QQXX
QS

T

TT

T

trtrtrtr
1

)()( −=







−=

 1)1(1)( −−=−= KJtr Q . 

Hence the expectation of RSS  is ; 
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[ ] ( ) 21)1( eKJRSSE σ−−= .     (2.1.23) 

By equating each sum of squares to its expected value, we have the 

following estimator equations for the variance components (Fuller and Battese, 

1973): 

2~)1)1(( eKJRSS σ−−=      (2.1.24)  

( ) 








+
+−+−=

xxexxa

xxe

ae
SS

S
JKJaR )2(~~)1(,| 22 σσβµ  (2.1.25) 

Solving (2.1.24) and (2.1.25), the following variance component 

estimators can be obtained : 

1)1(

~ 2

−−
=

KJ

RSS
eσ ,      (2.1.26) 

and 






























+
+−

−−
=

xxaxxe

xxe

e

a

SS

S
JK

JaR

)2(

~)1(),|(
,0max~

2

2 σβµ
σ ,   (2.1.27) 

where the variances of 2~
eσ  and 2~

aσ  are calculated as follows : 

1)1(

2
))ˆ((

)1)1((

1
)~(

4

2

2

2

−−
=

−−
=

KJ
SV

KJ
V e

eee

σ
βσ  ,   (2.1.28) 

and 

( )2

2

2 ~)1(),|(

)2(

1
)~( e

xxexxa

xxe

a JaRV

SS

S
JK

V σβµσ −−


















+
+−

=  .  

         (2.1.29)  

From the distributional properties of our model, we know that )ˆ(2 aaS β and  

)ˆ(2 eeS β  are independent. Moreover,  it is obvious that 2

dS  and )ˆ(2 eeS β  are also 

independent since aβ̂ , eβ̂  and )ˆ(2 eeS β  independent. As a result, )ˆ(2 aaS β , 

)ˆ(2 eeS β and 2

dS  are independent, thus we can rewrite (2.1.29) as follows: 

))~()1()())ˆ((.()~( 22222

edaae VJSVSVcV σβσ −++= ,  (2.1.30) 
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where 
2

)2(

1


















+
+−

=

xxexxa

xxe

SS

S
JK

c . 

Using the distributional properties of )ˆ(2 aaS β  and )ˆ(2 eeS β ,  substituting (2.1.28) 

into (2.1.30), we have : 















−−

−
+









+
++−+=

1)1(

)1(
)2)((2)~(

42
2

2

2222

KJ

J

SS

SK
JKcV e

xxaxxe

xxea

eaee

σσ
σσσσ . 

 Having obtained the estimators of variance components, Fuller and 

Batesse (1973) found the estimated generalized least squares of fixed effect 

parameters. In a vector form, we can write, 

( ) YΣXXΣXα
1T11T −−−=








=

~~
~

~
~

β

µ
, 

where )11(IIΣ T

KKJJK ⊗+= 22 ~~~
ae σσ , 2~

eσ  and 2~
aσ  are given in (2.1.14) and 

(2.1.15) respectively. 

( )
















−

−
+

++

+
=

∑ ∑= =−−

1

~

~~

)~~(~
)~~(~~

..

..2

1

2

1

22

222

222

x

x
JK

SKx

SKS

K

e

J

j xxea

K

k jke

xxeaexxae

aee

σ

σσ

σσσ

σσσ11T
XΣX  



















+
+

=

∑ ∑

∑ ∑

= =

= =

−

J

j

K

k xyeajkjke

J

j

K

k jke

aee
SKYx

Y

K

1 1

22

1 1

2

222

~~

~

)~~(~
1~

σσ

σ

σσσ
YΣX

1T  .  

 

Then, we have 





















++

++

−

=
















=

xxeaexxae

xyeaexyae

SKSS

SKSS

xY

)~~(~

)~~(~

~

~

~

~

222

222

....

σσσ

σσσ

β

β

µ

α  .   (2.1.31) 
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2.2 Maximum Likelihood Estimation 

 

Güven (1995) derived the exact maximum likelihood estimates of 

unknown parameters of the simple linear regression with the one-fold nested error 

structure. The procedure can be summarized as follows.  

Consider the column vector T

jKjj YYY ),...,,( 21=jY  , Jj ,...,2,1= . Then 

jY  is distributed as a K-dimensional multivariate normal with mean vector 

jK X1 βµ +  where T

jKjj xxx ),...,,( 21=jX and covariance matrix 

KK JI
22

aeσ σ+=∑  where T

KKK 11J = . So, we have an independent but not 

identically distributed sample of size J . The likelihood function of J21 Y,...,Y,Y  

is given by  

     









−−∑−−−∑= ∑

=

−−−
J

j

TJJKL
1

2/2/ )()()2/1(exp)2( jKj

1

jKj X1YX1Y βµβµπ , 

         (2.2.1) 

We can rewrite ∑  as follows after reparametrizing the variance 

components by 222

ea σσσ +=  and 22 σσρ a=  

( )KKKK JIJI ρρσσσ +−=+=∑ )1(222

ae  









−−+








−−= KKK JJI

K
K

K

1
))1(1(

1
)1(2 ρρσ  

where 







− KK JI
K

1
 and KJ

K

1
 are symmetric, idempotent matrices that are 

mutually orthogonal. Thus, 



















−+
+

−









−

=∑ −−

))1(1(

1

)1(

1

2

ρρ
σ

K

KK KKK

1

JJI

, 

which is equal to : 










−+
−

−
=∑−

KK

1 JI
))1(1()1(

1
2 ρ

ρ

σρ K
. 
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So, the exponent term can be rewritten as :  

=−−








−+
−−−

−
∑

=

J

j

T

K1
2

)(
)1(1

)(
)1(

1
jKjKKjKj X1YJIX1Y βµ

ρ

ρ
βµ

σρ
         

 









−−

−+
−−−

−
= ∑∑ ∑

= = =

J

j

K

k

J

j

jjjkjk xYK
K

xY
1 1 1

2

..

22

2
)(

))1(1(
)(

)1(

1
βµ

ρ

ρ
βµ

σρ
 

         (2.2.2) 

 

Since  the two sum of squares in the exponent term (2.2.2) can be expanded as 

follows : 

∑∑ ∑∑∑
= = == =

−−+−−−=−−
J

j

K

k

J

j

jjjjkjjk

J

j

K

k

jkjk xyKxxYYxY
1 1 1

2

..

2

..

1 1

2 )())(()( βµββµ

and 

=−−
−+

∑
=

J

j

jj xYK
K 1

2

..

2 )(
)1(1(

βµ
ρ

ρ
 

2

....

2

1

2

......

2 )(
)1(1(

))()((
))1(1(

xYJK
K

xxYYK
K

J

j

jj βµ
ρ

ρ
β

ρ

ρ
−−

−+
+−−−

−+
= ∑

=

The exponent term (2.2.2) can be simplified to 

2

2

....

1
2

2

......

1 1
2

2

..

))1(1(

)(

))1(1(

))((

)1(

))((

σρ

βµ

σρ

β

σρ

β

−+

−−
+

−+

−−−
+

−

−−−
∑∑∑

== = K

xYJK

K

xxYY
K

xxYY J

j

jj
J

j

K

k

jjkjjk

  

          (2.2.3) 

Substituting (2.2.3) into it, the likelihood function given in (2.2.1)  becomes : 

2/2/)1(2/22/ ))1(1()1()()2( JKJJKJK KL −−−−− −+−= ρρσπ  






















−+

−−
+

−+
+

−
−×

))1(1(

)(

))1(1(

)(

)1(

)(
)2/1(exp

2

....

22

2

ρ

βµ

ρ

β

ρ

β
σ

K

xYJK

K

SS ae , 

         (2.2.4) 

where 

∑∑
= =

−−−=
J

j

K

k

jjkjjke xxYYS
1 1

2

..

2 ))(()( ββ ,    (2.2.5) 

and 



 20

∑
=

−−−=
J

j

jja xxYYKS
1

2

......

2 ))(()( ββ .    (2.2.6) 

Hence, the log likelihood function Lln  of the observations J21 Y,...,Y,Y  is 

)1ln()2/)1((ln)2/(2ln)2/(ln 2 ρσπ −−−−−= KJJKJKL









−+

−−
+

−+
+

−
−+−+−

))1(1(

)(

))1(1(

)(

)1(

)(
)2/1())1(1ln()2/(

2

....

22
2

ρ

βµ

ρ

β

ρ

β
σρ

K

xyJK

K

SS
KJ ae

 .  

          (2.2.7) 

Fixing β , ρ , and maximizing Lln  with respect to µ , the maximum 

likelihood estimate of µ  is : 

....)(ˆ xY ββµ −=  .       (2.2.8) 

Substituting )(ˆ βµ into Lln  yields : 

)1ln()2/)1((ln)2/(2ln)2/(ln 2 ρσπ −−−−−= KJJKJKL

 








−+
+

−
−+−+−

))1(1(

)(

)1(

)(
)2/1())1(1ln()2/(

22

2

ρ

β

ρ

β
σρ

K

SS
KJ ae  .   

 Fixing β , ρ , and maximizing Lln   with respect to 2σ  gives : 










−+
+

−
=

))1(1(

)(

)1(

)(1
),(ˆ

22

2

ρ

β

ρ

β
ρβσ

K

SS

JK

ae  .     (2.2.9) 

Finally, substituting )(ˆ βµ  and )(ˆ 2 βσ (given in (2.2.8) and (2.2.9)) into 

Lln , the likelihood function becomes: 






















−+
+

−
−−=

))1(1(

)(

1

)(1
ln)2/(2ln)2/(ln

22

ρ

β

ρ

β
π

K

SS

JK
JKJKL ae

 2/))1(1ln()2/()1ln()2/)1(( JKKJKJ −−+−−−− ρρ . 

Fixing β  and maximizing the log likelihood function Lln  with respect to ρ , after 

substituting )(ˆ βµ  and ),(ˆ 2 ρβσ  into Lln  yields: 

)(

1

)(
)(

)(ˆ
2

2
2

β

β
β

βρ
T

e
a

S

K

S
S

−
−

=       (2.2.10) 

where ∑∑
= =

−−−=+=
J

j

K

k

jkjkeaT xxYYSSS
1 1

2

....

222 ))(()()()( ββββ , )(2 βaS  and  

)(2 βeS  are given in (2.2.5) and (2.2.6). 
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When 1)(ˆ0 << βρ  we take )(ˆ βρ  as the maximum likelihood estimate of 

ρ  instead of 0 since Lln  is greater than 0 at )(ˆ βρ , which can be shown as 

follows; 

)2/(
)(

ln)2/(2ln)2/(ln
2

JK
JK

S
JKJKL T −








−−=

β
π   when 0)(ˆ =βρ  

))(ˆ1ln(
2

)1(
)2/(

)(
ln)2/(2ln)2/(ln

2

βρ
β

π −
−

−−







−−=

KJ
JK

JK

S
JKJKL T  

  ))(ˆ)1(1ln(
2

βρ−+− K
J

 when 0)(ˆ >βρ . 

The difference between the likelihood function Lln  at )(ˆ βρ  and the likelihood 

function Lln  at 0 is  

))(ˆ)1(1ln(
2

))(ˆ1ln(
2

)1(
βρβρ −+−−

−
− K

JKJ
. 

Consider a function  

))1(1ln(
2

)1ln(
2

)1(
)( ρρρ −+−−

−
−= K

JKJ
d   10 << ρ , 

The derivative of )(ρd is 

0
))1(1)(1(2

)1(
)(' >









−+−

−
−=

ρρ

ρ
ρ

K

KKJ
d           for 10 << ρ . 

So it has been shown that the difference between the likelihood function 

Lln  at )(ˆ βρ  and the likelihood function Lln  at 0 is an increasing function of 

)(ˆ βρ , indicating that ))(ˆ(ln)0(ln βρLL ≤ . Since the likelihood function Lln  is 

maximized at 0=ρ  when 0)(ˆ <βρ , Güven (1995) took )(ˆ βρ  as follows : 



















−
−

=
)(

1

)(
)(

,0max)(ˆ
2

2

2

β

β
β

βρ
T

e

a

S

K

S
S

.    (2.2.11) 

 By substituting )(ˆ βρ  into ),(ˆ 2 ρβσ  given in (2.2.9) when ρ̂  is zero will yield : 

JK

ST )(
)(ˆ

2
2 β

βσ =  

It is obvious that if 0ˆ >ρ , substituting )(ˆ βρ  into ),(ˆ 2 ρβσ  will yield the 

same result since; 
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


























 −−
−+

+








 −−
−

=

)(

)1/()()(
)1(1

)(

)(

)1/()()(
1

)(1
)(ˆ

2

22

2

2

22

2
2

β

ββ

β

β

ββ

β
βσ

T

ea

a

T

ea

e

S

KSS
K

S

S

KSS

S

JK

 
JK

S

SJK

SS

KJKS

SS T

a

Ta

e

Te )(

)(

)()(

))1/(11)((

)()( 2

22

22

2

22 β

β

ββ

β

ββ
=+

−+
=  .  

Utilizing the information that 22 ρσσ =a  and 22 )1( σρσ −=e , Güven 

(1995) derived the maximum likelihood estimators of 2

aσ  and 22 )1( σρσ −=e  by 

using the invariance property of the maximum likelihood estimation : 

[ ]



−>−−

−≤
==

1/)()1/()()()/1(

1/)(0
)(ˆ)(ˆ)(ˆ

2222

22

22

KSSifKSSJK

KSSif

eaea

ea

a
βββ

β
βσβρβσ  

         (2.2.12) 





>−

=
=−=

0)(ˆ))1(/()(

0)(ˆ/)(
)(ˆ))(ˆ1()(ˆ

22

22

22

βσβ

βσβ
βσβρβσ

ae

aT

e
ifKJS

ifJKS
 

         (2.2.13) 

Substituting )(ˆ βµ , )(ˆ βρ  and )(ˆ 2 βσ  into the log likelihood function Lln  

given in (2.2.7) will give : 










−
−−








−+−=

)1(

)(
ln)2/)1((

)(
ln)2/()2ln1)(2/()(

22

1
KJ

S
KJ

J

S
JJKL ea ββ

πβ

if )1/()()( 22 −> KSS ea ββ  









−+−=

JK

S
JKJKL T )(

ln)2/()2ln1)(2/()(
2

2

β
πβ  

if )1/()()( 22 −≤ KSS ea ββ  

         (2.2.14) 

  When )1/()()( 22 −≤ KSS ea ββ  , maximizing )(2 βL with respect to β  

yields; 

xxt

xyt

T
S

S
=β̂  

where ∑∑
= =

−−=
J

j

K

k

jkjkxyt YYxxS
1 1

.... ))((  , ∑∑
= =

−=
J

j

K

k

jkxxt xxS
1 1

2

.. )(  
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When )1/()()( 22 −> KSS ea ββ , maximizing )(1 βL  with respect to β  

gives  the following derivative equation; 

0
)(

))(1(

)(

)(
)(

22
=

−−
+

−
=

β

β

β

β
β

e

xxexye

a

xxaxya

S

SSKJ

S

SSJ
f , 

where ∑
=

−−=
J

j

jjxya YYxxKS
1

...... ))(( , ∑∑
= =

−−=
J

j

K

k

jjkjjkxye YYxxS
1 1

.. ))(( . 

Multiplying both sides of the derivative equation by 
J

SS ea )()( 22 ββ
, 

Güven(1995) obtained; 

)())(1()()(/)()( 2222 ββββββ axxexyeexxaxyaea SSSKSSSJfSSg −−+−==  

( ) 23 )12()1( ββ xyaxxexxaxyexxaxxe SSKSSKSKS −+++−=  

( ) ( ) 0)1()1(2 =−++−++− xyeyyaxyayyeyyaxxexyexyayyexxa SSKSSSSKSKSSS β

          

(2.2.15) 

 The previous equation is a third degree polynomial equation in β . One of 

the real roots of this equation which maximizes )(1 βL is the maximum likelihood 

estimate of β . When 0>xxaxxeSS , dividing the polynomial equation into the 

coefficient of 3β  and multiplying it by –1, obtain the following polynomial 

equation can be obtained :  

23
ˆ)12(ˆ)1()(

)( β
ββ

β
β

β 











 −++
−=−=

K

KK

SKS

g
P ae

xxexxa

 

0
ˆ)1(ˆ)1(ˆˆ2

=












 −+
−













 −++
+

K

K

K

KK eaaeaaee βγβγ
β

γββγ
 

 

         (2.2.16) 

where 
xxa

xya

a
S

S
=β̂ , 

xxe

xye

e
S

S
=β̂ , 

xxa

yya

a
S

S
=γ  and 

xxe

yye

e
S

S
=γ . 

  Güven (1995) developed an algorithm to sort out to the roots of )(βP in 

order to find  the maximum likelihood estimate of β . 
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CHAPTER 3 

 

ESTIMATION TECHNIQUES FOR THE VARIANCE OF 

PRIMARY UNITS 

 

 

In this chapter, Minimum Norm Quadratic Estimator (MINQE) (Rao & 

Chaubey, 1978),  Almost Unbiased Estimator (AUE) (Horn & Horn, 1975) and 

Restricted Maximum Likelihood Estimator (REML) (Corbeil & Searle, 1976) of the 

variance of primary units, 2

aσ  are derived in the simple linear regression model with 

the one-fold nested error structure. Among the different variance component 

estimators summarized by Searle (1977), we choose these four estimators since  the 

exact mean squared errors (MSEs) of them can be derived. In the last section of this 

chapter, these estimators are compared with respect to their Mean Squared Errors 

(MSEs). 

 

3.1 Minimum Norm Quadratic Estimator (MINQE) 

 

Rao and Chaubey (1978) introduced the principle of MINQE for the variance 

components of a linear model, where the model is 

εXβY += , 

and Y  is an n - vector of observations, X  is a known nxm  matrix, β  is an m -vector 

of fixed-effect parameters. Here ε  is of the form : 

KK2211 ξU...ξUξUε +++= . 

and iU  is an inxn  matrix of known constants, iξ  is an in -vector with mean zero and 

dispersion I2iσ . Thus, ε  has zero mean and dispersion : 
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 k2 VVVΛ 22

21

2

1 ... kσσσ +++=   with iUUV ii
′= . 

Rao and Chaubey (1978) derived the MINQE for the i-th variance component 

2

iσ in the following form : 

i

i

i
n

eVe i
′

=
4

2ˆ
α

σ ,       (3.1.1) 

where iα  is a priori weight, RYe = , WQR = , 1

*VW −= , 

k2* VVVV 22

21

2

1 ... kααα +++=  and PIQ −= , WXWX)XX(P ′′= − . 

For our model, we can write ε  as follows : 

2JK1KJ2211 ξI)ξ1(IξUξUε +⊗=+= . 

We know that ε  has zero mean and dispersion 

JKKJ21 I)J(IVVΛ 2222

eaea σσσσ +⊗=+= . 

Thus,  using (3.1.1), we can derive the MINQE of  2

aσ   given by : 

)RYJ(IRY KJ ⊗′′=
J

a

a

4

0,2ˆ
σ

σ ,     (3.1.2) 

where  2

0,aσ  is the a priori information and P)(IΛR 1

0 −= − with,  

KJKKJ

1

0 J
K

1
IJ

K

1
IIΛ ⊗

+
+







−⊗=−

)1(

11
2

0,

2

0, ρσσ Kee

  and 

1

0

1

0 ΛXX)ΛXX(P −−− ′′= . Here ρ  is the ratio of the variance components 

defined as 
2

0,

2

0,

e

a

σ

σ
ρ = . 

After simplifying (3.1.2), we find the MINQE of  2

aσ  as follows: 

∑
=

−
+

=
J

j

JJa YYK
KJ 1

2

..

2

2

2
2 )ˆ(

)1(
ˆ

ρ

ρ
σ )ˆ(

)1(

2

2

2

GLSaS
KJ

K
β

ρ

ρ

+
=   (3.1.3) 

where GLSβ̂  is the generalized least squares estimator of β  given in (2.1.31) and 

2

..

1

....

2 ))(ˆ()ˆ( xxYYKS
J

j

jGLSjGLSa −+−= ∑
=

ββ  . 
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To evaluate the expected value and the variance of 2ˆ
aσ  for finding the MSE of 

it, we use a decomposition of )ˆ(2 GLSaS β . It is possible to write )ˆ(2 GLSaS β  as a linear 

combination of AR  and 1R  as follows : 

1

2 )()ˆ( RgRS AGLSa ρβ +=       (3.1.4) 

where xxaxyayyaA SSSR /2−= , ( )[ ]21 // xyexyaxxaxxexxexxa SSSSSSR −= , 

22 ))1(/()1()( xxexxaxxe SKSSKg ρρρ +++= .   

The assumption that the error terms ja  and jke  are independent normal 

variables with zero means and variances 2

aσ  and 2

eσ  respectively yields that 

2

2

22 )(~ −+ JaeA KR χσσ  and 2

1

222

1 ])[(~ χσσσ xxaexxeae SSKR ++ . As a result of the two 

facts, the expectation and variance of   )ˆ(2 GLSaS β  are : 

)()()())ˆ(( 1

2 REgRESE AGLSa ρβ += ,     (3.1.5) 

)())(()())ˆ(( 1

22 RVgRVSV AGLSa ρβ +=     (3.1.6) 

where )2)(()( 22 −+= JKRE aeA σσ , )2(2)()( 222 −+= JKRV aeA σσ , 

 ])[()( 222

1 xxaexxeae SSKRE σσσ ++= , 2222

1 ])[(2)( xxaexxeae SSKRV σσσ ++= . 

          (3.1.7) 

Thus, we can state the MSE of 2ˆ
aσ  as follows : 

22222 ))ˆ(()ˆ()ˆ( aaaa EVMSE σσσσ −+=  

( )
2

2

12

2

1

2

42

42

)()()((
)1(

))())(()((
)1(









−+

+
++

+
= aAA REgRE

KJ

K
RVgRV

KJ

K
σρ

ρ

ρ
ρ

ρ

ρ

 

          (3.1.8) 

where 22 ))1(/()1()( xxexxaxxe SKSSKg ρρρ +++= , )( ARE , )( ARV , )( 1RE  and 

)( 1RV  are given in (3.1.7). 
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3.2 Almost Unbiased Estimator (AUE) 

 

 Horn, Horn and Duncan (1975) and Horn and Horn (1975) defined the AUE 

for the variance component 2

iσ as : 

RYRVY
trRV

i

i

′= i
i

α
σ 2~       (3.2.1) 

where iα  is a priori weight, RYe = , WQR = , 1

*VW −= , 

k21* VVVV 22

2

2

1 ... kααα +++= , PIQ −= , WXWX)XX(P ′′= − , iV  is defined as in 

the previous section.  The superscript “-” denotes the generalized inverse of any 

matrix. For our model, we can derive the AUE of the variance of primary units. It is 

given by: 

RYJRIY
)JtrR(I

KJ

KJ

⊗′
⊗

=

2

0,2~ a

a

σ
σ     (3.2.2) 

where  2

0,aσ  is the a priori information to 2

aσ , and P)(IΛR 1

0 −= − with  

KJKKJ

1

0 J
K

1
IJ

K

1
IIΛ ⊗

+
+







−⊗=−

)1(

11
2

0,

2

0, ρσσ Kee

, 
2

0,

2

0,

e

a

σ

σ
ρ =   

and 1

0

1

0 ΛXX)ΛXX(P −−− ′′= . 

After some algebra, the expression (3.2.2) is simplified to :  

CJ

S

K

GLSa

a
−−+

=
1

)ˆ(

1

~
2

2 β

ρ

ρ
σ      (3.2.3) 

where 
xxexxa

xxa

SKS

S
C

)1( ρ++
= , GLSβ̂  is the generalized least squares estimator of β  

given in (2.1.31) and 2

..

1

....

2 ))(ˆ()ˆ( xxYYKS
J

j

jGLSjGLSa −+−= ∑
=

ββ . 

To evaluate the expected value and the MSE of 2~
aσ , we use a decomposition 

of )ˆ(2 GLSaS β  given in (3.1.4). Using (3.1.4) with (3.1.5) and (3.1.6), the )~( 2

aMSE σ  is 

written as 
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++
−−+

=−+= ))())(()((
)1()1(

))~(()~()~( 1

2

22

2
22222 RVgRV

CJK
EVMSE Aaaaa ρ

ρ

ρ
σσσσ

 

( )
2

2

1 )()()((
)1)(1(









−+

−−+
+ aA REgRE

CJK
σρ

ρ

ρ ,    (3.2.4) 

where 22 ))1(/()1()( xxexxaxxe SKSSKg ρρρ +++= , 
xxexxa

xxa

SKS

S
C

)1( ρ++
= , and  

)( ARE , )( ARV , )( 1RE  and )( 1RV  are given in (3.1.7). 

 

3.3 Restricted Maximum Likelihood Estimator (REML) 

 

Corbeil and Searle(1976) studied the restricted maximum likelihood estimation of 

variance components in the mixed model and obtained the following estimator 

equations for r-variance components : 

( ){ } { }r
0iii

r

0iii

1 RYVRVYVVΛtr
==

− ′′=′      (3.3.1) 

where  Λ  is the variance structure of   Y , r is the number of variance components,  

P)(IΛR 1 −= − , 1−−− ′′= ΛXX)ΛXX(P 1  and iV  is defined in section 3.1. We have 

extended these results for our model as follows :  

If we write the estimator equations given in (3.3.1) for our model, they will be  

RYJRIYJIΛ KJKJ

1 ⊗′=⊗− )(tr      (3.3.2) 

 RYRIYIΛ JKJK

1 ′=− )(tr       (3.3.3) 

The expressions (3.3.2) and (3.3.3) are simplified to: 

)ˆ(
)ˆˆ(ˆˆ

2

2222 GLSa

aeae

S
K

KJK
β

σσσσ +
=

+
,     (3.3.4) 

and 
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1
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ˆ
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ˆˆˆ
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2

4222 GLSa

ae

GLSe

eaee

S
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S
K

JKJ
β

σσ
β

σσσσ +
+=

+
+

−
, (3.3.5) 
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respectively  where 2

..

1

....

2 ))(ˆ()ˆ( xxYYKS
J

j

jGLSjGLSa −+−= ∑
=

ββ , 

∑∑
= =

−−−=
J

j

K

k

jjkGLSjjkGLSe xxYYS
1 1

2

..

2 ))(ˆ()ˆ( ββ and GLSβ̂  is the generalized least 

squares estimator of β  given in (2.1.31). Solving these equations, we find the REML 

of 2

aσ  as follows : 















−
−=

)1(

ˆ()ˆ(1
ˆ

)

22

2

KJ

S

J

S

K

GLSeGLSa
a

ββ
σ .     (3.3.6) 

  To evaluate the expected value and the MSE of 2~
aσ , we use the 

decompositions of )ˆ(2 GLSaS β  and )ˆ(2 GLSeS β  where the decomposition of )ˆ(2 GLSaS β  is 

given in (3.1.4). Moreover, it is possible to write )ˆ(2 GLSeS β  as a linear combination of 

ER  and 1R  as shown : 

 1

2 )()ˆ( RfRS EGLSe ρβ +=       (3.3.7) 

where xxexyeyyeE SSSR /2−= , ( )[ ]21 // xyexyaxxaxxexxexxa SSSSSSR −=  and 

2))1(/()( xxexxaxxa SKSSf ρρ ++= . 

The assumption that the error terms ja  and jke  are independent normal 

variables with zero means and variances 2

aσ  and 2

eσ  respectively yields that 

2

1

2~ −−JJKeER χσ  and 2

1

222

1 ])[(~ χσσσ xxaaxxeae SSKR ++ . As a result of the two facts, 

the expectation and variance of   )ˆ(2 GLSeS β  will be : 

)()()())ˆ(( 1

2 REfRESE EGLSe ρβ += ,     (3.3.8) 

)())(()())ˆ(( 1

22 RVfRVSV EGLSE ρβ +=     (3.3.9) 

where )1()( 2 −−= JJKRE eE σ , 4)1(2)( eE JJKRV σ−−=    (3.3.10) 

 ])[()( 222

1 xxaexxeae SSKRE σσσ ++= , 2222

1 ])[(2)( xxaexxeae SSKRV σσσ ++=  

  Thus, we obtain the MSE (of 2ˆ
aσ ) where it is : 
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22222 ))ˆ(()ˆ()ˆ( aaaa EVMSE σσσσ −+=      (3.3.11) 

with 
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))ˆ(())ˆ((
)ˆ( 22

22222
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+=
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222
RVfgKRVRVK

KKJ
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−
= , 

and 

)1(

)()()()()()(
)ˆ( 112

−

+
−

+
=

KJK

REfRE

JK

REgRE
E EA

a

ρρ
σ . 

where )( ARE , )( ARV , )( 1RE  and )( 1RV  are given in (3.1.7), )( ERE  and )( ERV  are 

given in (3.3.10). 

 

3.4 Comparison of the Estimators for the Primary Unit 

Variance  

 

To compare the three estimators (MINQE, AUE and REML) of  the variance of 

primary units, we calculated the exact MSE’s given in (3.1.8), (3.2.4) and (3.3.11) 

along with the ANOVA estimator of 2

aσ  , 








−−
−

− 12 JJK

R

J

R EA  under various 

values of the following quantities by the computer programs listed in Appendix B: 

  

1) Values considered for ),( xxexxa SS  pairs were (0.83,0.17), (0.66,0.34), (0.34,0.66) 

and (0.17,0.83). 

2) The ratio of variance components 
2

2

e

a

σ

σ
ρ =  were taken as 0.1, 0.5, 1, 2 and 5. 

3) The pair (J,K) indicating both the number of primary sampling units and the 

number of secondary sampling units is (4,7) for all cases.  
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As it is expected, Table 3.4.1 indicates that the MINQE of 2

aσ  has the 

superiority over the other presented three estimators of 2

aσ . Both the REML 

estimator and the AUE of 2

aσ  have smaller MSE than the ANOVA estimator of 2

aσ . 

Therefore, it is concluded that both the REML estimator and the AUE have the 

superority over the ANOVA estimator.   

When ρ  is equal to 0.1 and 0.5, the MSE of the AUE of 2

aσ  is smaller than 

the MSE of the REML estimator of 2

aσ . However this statement is reversed when ρ  

is equal to 1, 2 and 5. It yields that the AUE has the superiority over the REML 

estimator for small values of ρ . But for large values of ρ , the REML has the 

superiority over the AUE. 
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Table 3.4.1 : MSE values of ANOVA, MINQE, REML and AUE estimates of 2

aσ  for given values of ρ , xxaS  and xxeS . 

 

 

 

  

 

 

 
ρ =0,1 

 
ρ =0,5 

 
ρ =1 

 
ρ =2 

 
ρ =5 

ANOVA 

 

0.0607 0.4150 1.3078 4.5936 26.4507 

MINQE 

 

0.0063 0.1091 0.4103 1.6296 10.4459 

REML 0.0274 0.1742 0.5418 1.9131 11.2306 

 

xxaS =0,83 

 

xxeS =0,17 AUE 0.0081 0.1713 0.6945 2.7090 16.7239 

ANOVA 

 

0.0607 0.4150 1.3078 4.5936 26.4507 

MINQE 

 

0.0060 0.1035 0.4027 1.6395 10.5729 

REML 0.0257 0.1713 0.5462 1.9485 11.4001 

xxaS =0,66 

 

xxeS =0,34 

AUE 0.0072 0.1708 0.6731 2.6750 16.6767 

ANOVA 0.0607 0.4150 1.3078 4.5936 26.4507 

MINQE 

 

0.0056 0.1006 0.4033 1.6570 10.6591 

REML 0.0253 0.1757 0.5603 1.9857 11.5117 

xxaS =0,34 

 

xxeS =0,66 

AUE 0.0067 0.1670 0.6672 2.6673 16.6674 

ANOVA 

 

0.0607 0.4150 1.3078 4.5936 26.4507 

MINQE 

 

0.0055 0.1002 0.4043 1.66259 10.6805 

REML 0.0259 0.1782 0.5656 1.9964 11.5390 

xxaS =0,17 

 

xxeS =0,83 

AUE 0.0066 0.1667 0.6667 2.6667 16.6667 
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CHAPTER 4 

 

CONFIDENCE INTERVALS 

 

 

In this chapter, we describe the exact and approximate confidence intervals 

for the four unknown parameters ),,,( 22

ea σσβµ of the model. In addition to the 

two exact confidence intervals given by Park and Burdick (1994), an exact 

confidence interval for β  is constructed. Also, we constructed one approximate 

and one exact confidence interval for µ  by obtaining two unbiased estimators of 

µ  where one is depending on aβ̂  and the other is depending on eβ̂ , and aβ̂  and 

eβ̂  are given in (2.1.8) and (2.1.9) respectively .  Also,  the confidence intervals 

for 
2

aσ  and 2

eσ  are given.  

 

4.1 Confidence Intervals for β  

 

Park and Burdick (1994) derived the exact  confidence interval for β  by 

usng the best linear unbiased estimator (BLUE) of β , which was obtained by 

Tong and Cornelius (1989).  

xxexxa

xyexya

BLU
SS

SS

+

+
=

φ

φ
β̂          

where )( 222

aee Kσσσφ += , xxaS , xyaS , xxeS  and xyeS  are given in (1.2.2)-(1.2.6).  

Let )( xxexxaxxa SSS += φφω , then BLUβ̂   can be written as the convex 

combination of two unbiased estimators, aβ̂  and eβ̂  of β̂  as follows : 

eaBLU βωβωβ ˆ)1(ˆˆ −+=        
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Since ( )xxaaea SKN )(,~ˆ 22 σσββ +  and ),(~ˆ 2

xxeee SN σββ  where aβ̂  and eβ̂  

are independent,  it is obvious that BLUβ̂  is distributed as normal distribution with 

mean β  and the following variance : 

xxexxa

e

xxe

e

xxa

e

BLU
SSSS

V
+

=







−+








=

φ

σσ
ω

φ

σ
ωβ

22

2

2

2 )1()ˆ( . 

 Assuming that φ  is known and utilizing 
2

2

−
=
JK

R
S B
B  as the estimator of 

2

eσ , where ( ) )ˆ()1)1(()ˆ( 2222

eedaaB SrSSR βφφβφ ++−+= . Here 2r  is defined as 

)(2

xxexxaxxa SSSr += , )ˆ(2 aaS β , 2

dS  and )ˆ(2 eeS β   are  given in (2.1.6), (2.1.7) 

and (2.1.18) respectively,   Park and Burdick (1994) derived the following 

)21( α− two-sided exact confidence interval  

 
xxexxa

B
JKBLU

SS

S
t

+
± −

φ
β α

2

2:
ˆ .     (4.1.1)  

Also, the length of this interval can be stated as follows : 

xxexxa

B
JK

SS

S
tL

+
= −

φ
α

2

2:1 2 . 

Using )/,(~ˆ 2

xxeee SN σββ  and 2

1)1(

22 ~)ˆ( −−KJeeeS χσβ , Park and Burdick 

(1994) derived another )21( α− two-sided exact  confidence interval by estimating 

2

eσ  by 2

ES  : 

xxe

E
KJe

S

S
t

2

1)1(:
ˆ

−−± αβ  ,      (4.1.2) 

where 
1)1(

)ˆ(22

−−
=

KJ

S
S ee

E

β
,  eβ̂  and  )ˆ(2 eeS β   are given in (2.1.9) and (2.1.18) 

respectively. The length of this confidence interval is as follows : 

xxe

E
KJ

S

S
tL

2

1)1(:2 2 −−= α  . 

Moreover, we modify the preceding technique by using 

)/)(,(~ˆ 22

xxaaea SKN σσββ +  and 2

2

222 )(~)ˆ( −+ Jaeaa KS χσσβ   and obtain the 

following interval is :  
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xxa

A
Ja

S

S
t

2

2:
ˆ

−± αβ ,       (4.1.3) 

where 
2

)ˆ(22

−
=
J

S
S aa

A

β
, where aβ̂  and )ˆ(2 aaS β  is  given in (2.1.8) and (2.1.6) 

respectively. Also we can state the length of this interval as follows : 

xxa

A
J

S

S
tL

2

2:3 2 −= α  

 

4.2 Confidence Intervals for µ  

By using aβ̂  and eβ̂  of the estimator of β  seperately, we can construct 

two different confidence intervals for µ . 

4.2.1 By using eβ̂  as the estimator of β  

The unbiased estimator of µ , depending on eβ̂ , is of the form : 

....
ˆˆ xY ee βµ −=        (4.2.1.1) 

where eβ̂  is given in (2.1.9). Observe that 

0)(
11

)ˆ,( 22

.. =+=







=

QXX

QX1

QXX

QYX
Y,1

T

T

JK

T

T

T

JK eae K
JKJK

CovYCov σσβ  

where PIQ J ⊗= , 
KK
J

K

1
IP −=  and 0Q1

T

JK = . Thus, the variance of (4.2.1.1) 

is 

xxe

eae

e
S

x
JK

K
V

2

2

..

22

)ˆ(
σσσ

µ +
+

= , 

since 
JK

K
YV ae

22

.. )(
σσ +

=  and 
xxe

e

e
S

V
2

)ˆ(
σ

β = . 

We now find the standard error of ....
ˆˆ xY ee βµ −=  Since 

2

)ˆ(2

−J

S aa β
 and 

1

)ˆ(2

−− JJK

S ee β
 are unbiased estimators of 22

ae Kσσ +  and 2

eσ  respectively, the 

unbiased estimator of )ˆ( eV µ  is 
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1

)ˆ(1

2

)ˆ(1
2

2

..

2

−−
+

− JJK

S

S
x

J

S

JK

ee

xxe

aa ββ
. 

In order to construct a confidence interval for µ , depending on eβ̂ , we 

have to find an approximate distribution for the estimates of the variance 

components.  Using Satterthwhaite’s approximation (Satterthwaite, (1946)) we 

can say that the distribution of 


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S
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S
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S

JK
m σσσ

ββ
 

can be approximated by a chi-square distribution with m  degrees of freedom 

where m  is obtained by the following formula ; 

12

)(
1

)(
1

2

2
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22
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..22
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
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xxe
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. 

Substituting the unbiased estimators   
2

)ˆ(2

−J

S aa β
 and 

1

)ˆ(2

−− JJK

S ee β
 into 

22

ae Kσσ +  and 2

eσ  respectively in m , we’ll obtain the estimated m which we 

denote it by m̂ . It is given by  

2

2

2

2

..

2

2

2

2
22

..

2

)1(

)ˆ(

)2(

)ˆ(
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.   (4.2.1.2) 

It follows that an approximate α21−  confidence interval for µ  is 

1

)ˆ(

2

)ˆ(1
ˆ

22

..

2

ˆ,
−−

+
−

±
JJK

S

S

x

J

S

JK
t ee

xxe

aa

me

ββ
µ α .   (4.2.1.3) 

where eµ̂  , m̂ , )ˆ(2 aaS β  and )ˆ(2 eeS β   are  given in (4.2.1.1), (4.2.1.2), (2.1.6) and 

(2.1.18) respectively. The length of this confidence interval can be stated as 

follows : 
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1
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4.2.2 By using aβ̂  as the estimator of β  

The unbiased estimator of µ , depending on aβ̂ , is of the form : 

....
ˆˆ xY aa βµ −=       (4.2.2.1) 

where aβ̂  is given in (2.1.8). We have 

0)(
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)ˆ,( 22
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1
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



−= . Then, the variance of aµ̂  is : 
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xxa
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)ˆ(
σσ

β
+

= . 

)ˆ( aV µ  can be estimated by using the distributional property that 

2

2

222 )(~)ˆ( −+ Jaeaa KS χσσβ . Then, we can construct an exact α21−  confidence 

interval for µ . It is given by 

xxa
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SxJKS
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β
µ α     (4.2.2.2) 

where )ˆ(2 aaS β  is  given in (2.1.6) . The length of this confidence interval can be 

found by : 

xxa

aaxxa

J
SJJK

SxJKS
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22
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−

+
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β
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4.3 Confidence interval for 2

aσ  

In order to construct a confidence interval for
2

aσ , we use a method 

suggested by  Williams (1962) which constructs a confidence interval from 
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experimental data by combining two or more intervals about the functions of the 

parameter of interest and nuisance parameters.  

Since 2

2

222 )(~)ˆ( −+ Jaeaa KS χσσβ  as proved in section 2.1, we can state 

that; 

αχ
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and it follows from that : 
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where )ˆ(2 aaS β  is given in (2.1.6) . 

Let 21 −= JV  and 1)1(2 −−= KJV . Then  
)ˆ(

)ˆ(

)( 2

2

22

1

2

2

ee

aa

ae

e

S

S

KV

V

β

β

σσ

σ

+
 is 

distributed according to the F-distribution with degrees of freedom 1V  and 2V  

since it is shown that 2

1)1(

22 ~)ˆ( −−KJeeeS χσβ  in section 2.1,  where )ˆ(2 eeS β   is  

given in (2.1.18). 

Hence, we have the following confidence interval : 
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         (4.3.2) 

For any fixed 2

eσ , the two confidence intervals given in (4.3.1) and (4.3.2) 

together yield  : 
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        (4.3.4) 

Equating the left and right hand sides of (4.3.3) and (4.3.4) to each other, 

we have the following ; 
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 Substituting (4.3.5) into (4.3.4), we obtain the following two-sided 

confidence interval for 2

aσ  with probability )1( α− ; 
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where the length of the interval is : 
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 4.4 Confidence interval for 2

eσ  

We derive an exact confidence interval for 
2

eσ  by using the distributional 

property that 2

1)1(2

2

~
)(

−−KJ

e

eeS χ
σ

β
(shown in section 2.1)  where )ˆ(2 eeS β   is 

(2.1.18). Thus, we can state  : 
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which can be written as a )21( α− two sided exact confidence interval for 2

aσ  as 

follows : 
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where the length of the confidence interval can be stated as follows : 
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CHAPTER 5 

 

APPLICATION 

 

 

For the application of all of the estimation techniques and confidence intervals 

we’ve mentioned in this study, we  use the data from Vonesh and Carter (1987) to 

provide an example for the simple linear regression with one-fold nested error 

structure. A study was done to evaluate the in vivo ultrafiltration characteristics of a 

group of hollow fiber dialyzers. Ultrafiltration rates were measured at four different 

transmembrane pressures for each of 17 dialyzers. The actual data are shown in Table 

5.1 where jkx  shows the transmembrane pressures and jky  shows the ultrafiltration 

rates. Here, in addition to  the observational error jke , dialyzer is the random effect 

since 17 dialyzers are randomly selected. Figure 1 shows the individual ultrafiltration 

rate (ml/hr) profiles for these 17 dialyzers. 

Our goal is to estimate the linear relationship between ultrafiltration rate 

(ml/hr) and transmembrane  pressure (mmHg). We apply the following model into 

the data :  

 

jkjjkjk eaxY +++= βµ ,  17,...,2,1=j , 4,3,2,1=k  

 

Quantities occuring in formulas for the estimation are computed through the 

computer programs listed in Appendix A. 

The data summary is 

 

76.158881=yyaS , 27.4096=xyaS , 93.330=xxaS , 

16728030=yyeS , 25.3783722=xyeS , 62.858087=xxeS . 
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Table 5.1 : Ultrafiltration Data for 17 dialyzers  

 

j          k 1  2  3  4  

Dialyzer 
jkx  jky  jkx  jky  jkx  jky  jkx  jky  

1 160.0 600.0 265.0 1026.0 365.0 1470.0 454.0 1890.0 

2 164.0 516.0 260.5 930.0 355.0 1380.0 451.0 1770.0 

3 156.0 480.0 260.0 900.0 363.0 1380.0 466.0 1860.0 

4 160.0 528.0 259.0 930.0 361.0 1410.0 462.0 1872.0 

5 157.0 540.0 258.0 978.0 359.0 1410.0 471.0 1920.0 

6 161.0 564.0 264.0 996.0 359.0 1422.0 466.0 1920.0 

7 161.0 564.0 263.0 1062.0 363.0 1500.0 468.0 1980.0 

8 158.0 492.0 255.0 900.0 360.0 1392.0 461.0 1860.0 

9 161.0 1516.0 263.0 960.0 361.0 1380.0 462.0 1800.0 

10 155.0 528.0 255.0 930.0 355.0 1356.0 455.0 1860.0 

11 158.0 564.0 267.0 1020.0 360.0 1380.0 464.0 1884.0 

12 165.0 618.0 263.0 1056.0 362.0 1500.0 461.0 1920.0 

13 158.0 564.0 263.0 1038.0 367.0 1410.0 464.0 1770.0 

14 162.0 552.0 268.0 1014.0 360.0 1440.0 465.0 1944.0 

15 171.0 624.0 256.0 978.0 357.0 1440.0 466.0 1980.0 

16 158.5 468.0 263.0 930.0 361.0 1332.0 460.0 1860.0 

17 162.0 480.0 263.0 900.0 356.0 1272.0 463.0 1758.0 
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Individual UFR profiles 
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Figure 5.1 : Individual UFR Profiles for 17 dialyzers 

 

5.1 Estimation of Fixed Effect Parameters 

5.1.1 Maximum Likelihood Estimation 

 

For this data, the second degree equation, given by (2.2.15) becomes, 

06.1625137532.754286679.857094 2 =−+− ββ  

and has the roots 3.76 and 5.03. Thus the log likelihood function of β , given in 

(2.2.14) is  as follows; 

( ] [



∞∪∞−∈

∈
=

),03.576.3,)(

)03.5,76.3()(
)(

2

1

ββ

ββ
β

ifL

ifL
L  
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The following figure is the log likelihood function L  of β  for this example when 

115 ≤≤− β  ; 

 

 

 

Figure 5.1.1 Graph of the log likelihood function of β   when 115 ≤≤− β   

 

For this data, the third degree equation given in (2.2.16) becomes 

007.164811.47417.27 23 =−+− βββ  

which has one real root with two complex roots. Its real root is 4098.4ˆ =Mβ . Since 

041.114598)1/()ˆ()ˆ( 22 >=−− KSS MeMa ββ ,  the maximum likelihood estimate of β   

is 40.4ˆ =Mβ . Then, ....
ˆ)(ˆ xY ββµ −=  the maximum likelihood estimate of µ  can be 

computed by using the previous formula and the estimated linear equation will be : 

jkjk xy 40.491.173ˆ +−= . 

 

5.1.2 Estimated Generalized Least  Squares Estimation  

 

The estimated generalized least squares estimates of µ  and β  given in (2.1.31) is  

computed through the program listed in Appendix A using   as follows : 

91.173ˆ −=GLSµ , 40.4ˆ =GLSβ . 
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Thus the estimated linear equation will be jkjk xy 40.491.173ˆ +−= . The following 

four graphs give actual and estimated values of the first four UFR profiles for 

dialyzers. 
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Figure 5.1.2 : Graph of actual and estimated values of the UFR profile of dialyzer 1 
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Figure 5.1.3 : Graph of actual and estimated values of the UFR profile of dialyzer 2 
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Figure 5.1.4 : Graph of actual and estimated values of the UFR profile of dialyzer 3 
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Figure 5.1.5 : Graph of actual and estimated values of the UFR profile of dialyzer 4 
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5.2 Estimation of Variance Components 

5.2.1 Maximum Likelihood Estimation 

 

Since 041.114598)1/()ˆ()ˆ( 22 >=−− KSS MeMa ββ , the maximum likelihood estimate 

)(ˆ 2 βσ a  of 2

aσ  given in (2.2.12) is ; 

72.1685)(ˆ 2 =βσ a , 

where 56.129189)ˆ(2 =MaS β  56.43773)ˆ(2 =MeS β  

We found that 0)(ˆ 2 >βσ a , thus the maximum likelihood estimate )(ˆ 2 βσ e  of 2

eσ  given 

in (2.2.13) is : 

30.858)(ˆ 2 =βσ e . 

 

5.2.2 Estimated Generalized Least  Squares Estimation  

 

The estimated generalized least squares estimates of 2

aσ  and 2

eσ  given in (2.1.26) 

and (2.1.27) are computed through the program listed in Appendix A as follows : 

66.1799ˆ 2 =aσ  , 46.875ˆ 2 =eσ  

 

5.2.3 MINQE, AUE and REML 

 

Utilizing the a priori information that 2=ρ , the MINQE, AUE and REML estimates 

of 2

aσ  given in (3.1.3), (3.2.3) and (3.3.6) respectively are computed as follows : 

11.1501ˆ 2

, =MINQEaσ , 

 30.1794ˆ 2

, =AUEaσ , 

and 

 27.1685ˆ 2

, =REMLaσ . 
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5.3 Confidence Intervals 

5.3.1 Confidence Intervals for β  

 

For this data, the exact %  95 confidence intervals for β  given in (4.1.2) and (4.1.3) 

will become  

  47.434.4 ≤≤ β  

and 

 32.2242.2 ≤≤ β  

respectively. 

 

5.3.2 Confidence Intervals for µ  

 

For this data, if we use eβ̂  as the estimator of  β , the % 95 confidence interval  for 

µ  given in (4.2.1.3) becomes   

20.11236.235 −≤≤− µ  

When we use aβ̂  as the estimator of  β , the % 95 confidence interval for µ  given in 

(4.2.2.2) becomes :   

16.44201.5748 ≤≤− µ  

 

5.3.3 Confidence Intervals for 2

aσ  and 2

eσ  

For this data, % 95 confidence intervals for 2

aσ  and 2

eσ (given in 4.3.6 and 4.4.1) will 

yield : 

02.180118.1492 2 ≤≤ aσ   and 75.88324.851 2 ≤≤ eσ . 
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CHAPTER 6 

 

SUMMARY AND CONCLUSIONS 

 

 

Data sets with one-fold nested error structure occur in situations where 

there has been some form of subsampling from primary sampling units. An 

experiment from split-plot, one-restrictional lattice, incomplete block designs and 

cases of more than one “measurement” taken on each “subject” are examples of 

the simple linear regression model with one-fold nested error structure. 

 In this thesis, we mainly study the estimation techniques for fixed-effect 

parameters, µ  and β  and variance components, 2

a
σ  and 2

e
σ  for the simple linear 

regression model with one-fold nested error.  

 In the first part of the thesis, the definition and a brief introduction of 

simple linear regression models with one-fold nested error are presented. Chapter 

2 gives the review of estimated generalized least squares estimation (Fuller and 

Battese, (1973)) and maximum likelihood estimation (Güven, (1995)) of fixed-

effect parameters of the simple linear regression model with one-fold nested error.  

Generalized least squares estimators are known as unbiased, more efficient 

than least squares estimators, asymptotically consistent and asymptotically 

normal. Concerning the optimality properties of maximum likelihood estimators, 

Güven (1995) showed the consistency, asymptotic normality and asymptotic 

efficiency properties of maximum likelihood estimation in the mixed analysis of 

variance models. Estimated generalized least squares estimators of fixed effect 

parameters are easy to compute and non-iterative in the nature, however they are 

not exact but “estimated” generalized least squares estimators since in order to 

find them, first we have to estimate the variance components. On the other hand, 

in the maximum likelihood estimation, sorting out the roots of the polynomial 

(given in 2.2.16) looks problematic but an algorithm to sort out the roots of this 
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polynomial in order to find the maximum likelihood estimate of the slope term 

was developed which can be found in the unpublished doctorate thesis of  Güven 

(1992). Also we have to note that the resulting maximum likelihood estimators are 

the exact roots of the likelihood function. 

Chapter 3 considers the estimation of variance components and presents 

the Minimum Norm Quadratic Estimator (MINQE), the Almost Unbiased 

Estimator (AUE) and the Restricted Maximum Likelihood Estimator (REML) of 

the variance of primary units.  Among the different variance component 

estimators summarized by Searle (1977) we choose these four estimators since  

they have exact MSEs.  

After deriving the estimators and their MSEs, we computed the exact 

MSEs of these four estimators under various values of  the pair ),(
xxexxa
SS  and 

the ratio of variance components 
2

2

e

a

σ

σ
ρ =  along with the MSE of ANOVA 

estimator. The results are summarized in Table 3.4.1. It indicates that the MINQE 

of 2

a
σ  has the superiority over the other presented three estimators of 2

a
σ  where 

both the REML estimator and the AUE of 2

a
σ  have smaller MSE than the MSE of 

the ANOVA estimator of 2

a
σ . Hence, we conclude that both the REML estimator 

and the AUE have the superority over the ANOVA estimator. When we compare 

the REML estimator and AUE of 2

a
σ , it can be seen that the MSE of the AUE of 

2

a
σ  is smaller than the MSE of the REML estimator when ρ  is equal to 0,1 and 

0,5. However this statement is reversed when ρ  is equal to 1, 2 and 5. Thus, we 

can conclude that the AUE has the superiority over the REML estimator for small 

values of ρ  whereas for large values of ρ , the REML has the superiority over 

the AUE. 

We  covered exact and approximate confidence intervals for the fixed 

effect parameters and the variance components of the model in Chapter 4. In 

addition to the two exact confidence intervals given by Park and Burdick (1994) , 

we constructed an exact confidence interval for β . When we compare these 

confidence intervals for β , we can infer that the ones obtained by Park and 
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Burdick are more reliable since their lengths are smaller than the one which we 

constructed but one of them given in (4.1.1) is generally not applicable since it 

assumes  that )( 222

aee
Kσσσφ +=  is known. Moreover in Chapter 4, we 

constructed one approximate and one exact confidence interval for µ  by 

obtaining two unbiased estimators of µ . One is depending on 
e

β̂  whereas the 

other is depending on 
a

β̂ . By comparing their lengths, we can infer that the 

confidence interval using ....
ˆˆ xY
ee

βµ −=  as the unbiased estimator of µ  is more 

reliable than the one which employs ....
ˆˆ xY
aa

βµ −=   as the unbiased estimator of 

µ . In addition to these, the last section of this chapter gives the confidence 

intervals for 
2

a
σ  and 2

e
σ . 

 The last chapter of this thesis is devoted to the application of all of these 

estimation techniques and confidence intervals into a real life data we’ve covered 

in this study to a real life data set. Some of the conclusions that we mentioned in 

thiesis can be verified by the numerical results obtained in Chapter 5.  
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APPENDIX A 

 

COMPUTER PROGRAM FOR ESTIMATION 

PROCEDURES AND CONFIDENCE INTERVALS 

 

 

Description : 

 

This program computes the necessary quantities which will occur in the formulas for 

the estimation of fixed effect parameters and variance components in addition to the 

quantities which will occur in the formulas of the confidence intervals for the data 

taken from Vonesh & Carter (1987) mentioned in section 5. 

 

Outputs : 

MEANX(I) : Kxx
K

k

iki /
1

. ∑
=

=  

 MEANY(I) : KYY
K

k

iki /
1

. ∑
=

=  

 GRANDMEANX : )/(
1 1

.. JKxx
J

j

K

k

jk∑∑
= =

=  

 GRANDMEANY : )/(
1 1

.. JKYY
J

j

K

k

jk∑∑
= =

=  

 SXXA : xxaS  given in (1.2.2) 

 SYYA : yyaS  given in (1.2.4) 

 SXYA : xyaS  given in (1.2.3) 

 SXXE : xxeS  given in (1.2.5) 
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 SYYE : yyeS  given in (1.2.7) 

 SXYE : xyeS  given in (1.2.6) 

 RA : )ˆ(2 aaS β given in (2.1.6) 

 R1 : 2

dS  given in (2.1.7) 

 RE : )ˆ(2 eeS β  given in (2.1.18) 

 GLS_SIGMA_A_SQUARE : 2~
aσ  given in (2.1.27) 

 GLS_SIGMA_E_SQUARE : 2~
eσ  given in (2.1.26) 

 BETA_GLS : β
~
 given in (2.1.31) 

 MU_GLS : µ~  given in (2.1.31) 

 SAB : )(2 βaS given in (2.2.6) 

 SEB : )(2 βeS given in (2.2.5) 

 P1 : Coefficient of second degree term in the polynomial (2.2.16) 

 P2 : Coefficient of first degree coefficient in the polynomial (2.2.16) 

 P3 : Constant term in the polynomial (2.2.16)  

 

Program Listing : 

 

THE OUTPUTS OF THIS PROGRAM ARE STORED IN FILE ‘NESTED.txt’ 

 

PROGRAM NESTED 

 PARAMETER (NCX=4,NCY=4,NRX=17,NRY=17) 

 DOUBLE PRECISION 

X(NRX,NCX),Y(NRY,NCY),SUMX(17),MEANX(17),SUMY(17) 

 DOUBLE PRECISION 

GRANDSUMX,GRANDMEANX,GRANDSUMY,GRANDMEANY,SXXA 
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 DOUBLE PRECISION 

SYYA,SXYA,SXXE,MEANY(17),SYYE,SXYE,SA_SQUARE 

 DOUBLE PRECISION 

ANOVA_SIGMA_E_SQUARE,RO_HEAD,Y_N(17,4),X_N(17,4) 

 DOUBLE PRECISION 

GRANDSUMX_N,GRANDSUMY_N,GRANDMEANX_N,GRANDMEANY_N 

 DOUBLE PRECISION SXYT_N,SXXT_N,BETA_N,MU_N,YFIT_N(17,4) 

 DOUBLE PRECISION 

RESID_N(17,4),BETA_A,BETA_E,GLS_SIGMA_A_SQUARE 

 DOUBLE PRECISION 

GLS_SIGMA_E_SQUARE,C,D,E,F,BETA_GLS,MU_GLS 

 DOUBLE PRECISION 

A,B,GAMMA_A,GAMMA_E,C1,C2,C3,P0,P1,P2,P3 

 DOUBLE PRECISION 

SE_SQUARE,ANOVA_SIGMA_A_SQUARE,SEB,SAB 

 EXTERNAL WRRRN 

 

 OPEN(2,FILE="NESTED.txt") 

 

C SET VALUES FOR X AND Y 

 DATA ((X(I,J),J=1,4),I=1,17)/160.0,265.0,365.0,454.0,164.0,260.5, 

     &  355.0,451.0,156.0,260.0,363.0,466.0,160.0,259.0,361.0,462.0, 

     &  157.0,258.0,359.0,471.0,161.0,264.0,359.0,466.0, 

     &  161.0,263.0,363.0,468.0,158.0,255.0,360.0,461.0, 

     &  161.0,263.0,361.0,462.0,155.0,255.0,355.0,455.0, 

     &  158.0,267.0,360.0,464.0,165.0,263.0,362.0,461.0, 

     &  158.0,263.0,367.0,464.0,162.0,268.0,360.0,465.0, 

     &  171.0,256.0,357.0,466.0,158.5,263.0,361.0,460.0, 

     &  162.0,263.0,356.0,463.0/ 

 DATA ((Y(K,L),L=1,4),K=1,17)/600.0,1026.0,1470.0,1890.0,516.0, 



 59

     &  930.0,1380.0,1770.0,480.0,900.0,1380.0,1860.0,528.0,930.0, 

     &  1410.0,1872.0,540.0,978.0,1410.0,1920.0,564.0,996.0,1422.0, 

     &  1920.0,564.0,1062.0,1500.0,1980.0,492.0,900.0,1392.0,1860.0, 

     &  516.0,960.0,1380.0,1800.0,528.0,930.0,1356.0,1860.0, 

     &  564.0,1020.0,1380.0,1884.0,618.0,1056.0,1500.0,1920.0, 

     &  564.0,1038.0,1410.0,1770.0,552.0,1014.0,1440.0,1944.0, 

     &  624.0,978.0,1440.0,1980.0,468.0,930.0,1332.0,1860.0, 

     &  480.0,900.0,1272.0,1758.0/ 

 CALL WRRRN('X',NRX,NCX,X,NRX,0) 

 CALL WRRRN('Y',NRY,NCY,Y,NRY,0) 

 

C CALCULATING PRIMARY UNIT MEANS AND GRAND MEANS  

 DO 10 I=1,17 

 DO 20 J=1,4 

 SUMX(I)=SUMX(I)+X(I,J) 

 SUMY(I)=SUMY(I)+Y(I,J) 

20 CONTINUE 

 MEANX(I)=SUMX(I)/4 

 MEANY(I)=SUMY(I)/4 

10 CONTINUE 

 PRINT*,'MEANX',MEANX 

 WRITE(2,*)'MEANX',MEANX 

 PRINT*,'MEANY',MEANY 

 WRITE(2,*)'MEANY',MEANY 

 DO 50 I=1,17 

 DO 50 J=1,4 

 GRANDSUMX=GRANDSUMX+X(I,J) 

 GRANDSUMY=GRANDSUMY+Y(I,J) 

50 CONTINUE 

 GRANDMEANX=GRANDSUMX/68 
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 GRANDMEANY=GRANDSUMY/68 

 PRINT*,'GRANDMEANX=',GRANDMEANX 

 WRITE(2,*)'GRANDMEANX=',GRANDMEANX 

 PRINT*,'GRANDMEANY=',GRANDMEANY 

 WRITE(2,*)'GRANDMEANY=',GRANDMEANY 

 

C CALCULATING SXXA, SYYA, SXYA, SXXE, SYYE, SXYE 

 DO 70 I=1,17 

 SXXA=SXXA+((MEANX(I)-GRANDMEANX)**2) 

 SYYA=SYYA+((MEANY(I)-GRANDMEANY)**2) 

 SXYA=SXYA+((MEANX(I)-GRANDMEANX)*(MEANY(I)-

GRANDMEANY)) 

70 CONTINUE 

 SXXA=4*SXXA 

 PRINT*,'SXXA=',SXXA 

 WRITE(2,*),'SXXA=',SXXA 

 SYYA=4*SYYA 

 PRINT*,'SYYA=',SYYA 

 WRITE(2,*),'SYYA=',SYYA 

 SXYA=4*SXYA 

 PRINT*,'SXYA=',SXYA 

 WRITE(2,*),'SXYA=',SXYA 

 DO 100 I=1,17 

 DO 100 J=1,4 

 SXXE=SXXE+((X(I,J)-MEANX(I))**2) 

 SYYE=SYYE+((Y(I,J)-MEANY(I))**2) 

 SXYE=SXYE+((X(I,J)-MEANX(I))*(Y(I,J)-MEANY(I))) 

100 CONTINUE 

 PRINT*,'SXXE=',SXXE 

 WRITE(2,*),'SXXE=',SXXE 
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 PRINT*,'SYYE=',SYYE 

 WRITE(2,*),'SYYE=',SYYE 

 PRINT*,'SXYE=',SXYE 

 WRITE(2,*)'SXYE=',SXYE 

 

C CALCULATING RA, RE AND R1 

 RA=SYYA-((SXYA**2)/SXXA) 

 RE=SYYE-((SXYE**2)/SXXE) 

 R1=(SXXA/(SXXE*(SXXE+SXXA)))*((((SXXE*SXYA)/SXXA)-

SXYE)**2) 

 PRINT*,'RA=',RA 

 WRITE(2,*)'RA=',RA 

 PRINT*,'RE=',RE 

 WRITE(2,*)'RE=',RE 

 PRINT*,'R1=',R1 

 WRITE(2,*)'R1=',R1 

 

C COMPUTING THE GENERALIZED LEAST SQUARES ESTIMATES

 GLS_SIGMA_E_SQUARE=RE/(68-17-1) 

 BETA_A=SXYA/SXXA 

 BETA_E=SXYE/SXXE 

 RB=RA+R1 

 A=RB-(16*GLS_SIGMA_E_SQUARE) 

 B=4*(15+(SXXE/(SXXA+SXXE))) 

 GLS_SIGMA_A_SQUARE=A/B 

 PRINT*,'GLS_SIGMA_A_SQUARE=',GLS_SIGMA_A_SQUARE 

 WRITE(2,*)'GLS_SIGMA_A_SQUARE=',GLS_SIGMA_A_SQUARE 

 PRINT*,'GLS_SIGMA_E_SQUARE=',GLS_SIGMA_E_SQUARE 

 WRITE(2,*)'GLS_SIGMA_E_SQUARE=',GLS_SIGMA_E_SQUARE 

C=GLS_SIGMA_E_SQUARE*SXYA 
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 D=(GLS_SIGMA_E_SQUARE+(4*GLS_SIGMA_A_SQUARE))*SXYE 

 E=GLS_SIGMA_E_SQUARE*SXXA 

 F=(GLS_SIGMA_E_SQUARE+(4*GLS_SIGMA_A_SQUARE))*SXXE 

 BETA_GLS=(C+D)/(E+F) 

 MU_GLS=GRANDMEANY-(BETA_GLS*GRANDMEANX) 

 PRINT*,'BETA_GLS=',BETA_GLS 

 WRITE(2,*)'BETA_GLS=',BETA_GLS 

 PRINT*,'MU_GLS=',MU_GLS 

 WRITE(2,*)'MU_GLS=',MU_GLS 

 

 

C CALCULATIONS CONCERNING THE MAXIMUM LIKELIHOOD 

ESTIMATION  

 GAMMA_A=SYYA/SXXA 

 GAMMA_E=SYYE/SXXE 

 P1=((5*BETA_E)+(7*BETA_A))/-4 

 P2=(GAMMA_E+(8*BETA_A*BETA_E)+(3*GAMMA_A))/4 

 P3=((GAMMA_E*BETA_A)+(3*GAMMA_A*BETA_E))/-4 

 DO 180 I=1,17 

 DO 180 J=1,4 

 SEB=SEB+((Y(I,J)-MEANY(I)-(4.40982*(X(I,J)-MEANX(I))))**2) 

180 CONTINUE 

 DO 190 I=1,17 

 SAB=SAB+((MEANY(I)-GRANDMEANY-(4.40982*(MEANX(I)-

GRANDMEANX)))**2) 

190 CONTINUE 

 SAB=4*SAB 

 PRINT*,'P1=',P1 

 WRITE(2,*)'P1=',P1 

 PRINT*,'P2=',P2 
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 WRITE(2,*)'P2=',P2 

 PRINT*,'P3=',P3 

 WRITE(2,*)'P3=',P3 

 PRINT*,'SEB=',SEB 

 WRITE(2,*)'SEB=',SEB 

 PRINT*,'SAB=',SAB 

 WRITE(2,*)'SAB=',SAB 

 END 
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APPENDIX B 

 

COMPUTER PROGRAMS FOR CALCULATING MSE’S 

OF MINQE, AUE AND REML OF 2

aσ  

 

 

Description :  

 

This  program computes the MSE of MINQE of 2

aσ  given in (3.1.8) under the 

conditions given in section 3.4. 

 

Inputs : 

  

SXXA : xxaS  given in (1.2.2) 

 SXXE : xxeS  given in (1.2.5) 

 RO : 
2

2

e

a

σ

σ
ρ =  

 

Outputs :  

 

 MSEMINQE : MSE of MINQE of 2

aσ  given in (3.1.8) 

 

Program Listing 
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THE OUTPUTS OF THIS PROGRAM ARE STORED IN FILE ‘MINQE.txt’ 

 

 PROGRAM MINQE 

 DOUBLE PRECISION 

SIGMA_A_SQUARE,SIGMA_E_SQUARE,RO,SXXA,SXXE,MSE1 

 DOUBLE PRECISION J,K,A,B,C,D,E,F 

 OPEN(2,FILE="MINQE.txt") 

C TAKING THE VALUES OF INPUTS 

J=4 

 K=7 

 PRINT*,'SXXA=' 

 READ*,SXXA 

 PRINT*,'SXXE=' 

 READ*,SXXE 

 PRINT*,'RO=' 

 READ*,RO 

 SIGMA_E_SQUARE=1 

 SIGMA_A_SQUARE=RO*SIGMA_E_SQUARE 

C COMPUTING THE MSE OF MINQE BY PARTITONING THE 

EXPRESSION AND CALCULATING THESE PARTS 

 A=(K*(RO**2)*SIGMA_E_SQUARE)/(J*(1+(K*RO))) 

 B=J-2 

 C=((1+(K*RO))*SXXE)/(SXXA+((1+(K*RO))*SXXE)) 

 D=(2*(A**2))*(B+(C**2)) 

 E=A*(B+C) 

 F=(E-SIGMA_A_SQUARE)**2 

 MSEMINQE=D+F 

 PRINT*,'MSEMINQE=',MSEMINQE 

 WRITE(2,*),'MSEMINQE=',MSEMINQE 

 END 
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Description : 

 

This program compute the MSE of AUE of 2

aσ  given in  (3.2.4) under the conditions 

given in section 3.4. 

 

Inputs : 

  

SXXA : xxaS  given in (1.2.2) 

 SXXE : xxeS  given in (1.2.5) 

 RO : 
2

2

e

a

σ

σ
ρ =  

 

Outputs :  

 

 MSEAUE : MSE of AUE of 2

aσ  given in (3.2.4) 

 

Program Listing : 

 

THE OUTPUTS OF THIS PROGRAM ARE STORED IN FILE ‘AUE.txt’ 

 

PROGRAM AUE 

 DOUBLE PRECISION 

SIGMA_A_SQUARE,SIGMA_E_SQUARE,RO,SXXA,SXXE 

 DOUBLE PRECISION J,K,ERA,ER1,VRA,VR1,GR,EREML,VAUE 
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 DOUBLE PRECISION MSEAUE,SIGMA_B_SQUARE,EAUEN,EAUED 

 OPEN(2,FILE="AUE.txt") 

C  TAKING THE VALUES OF INPUTS 

 J=4 

 K=7 

 PRINT*,'SXXA=' 

 READ*,SXXA 

 PRINT*,'SXXE=' 

 READ*,SXXE 

 PRINT*,'RO=' 

 READ*,RO 

 SIGMA_E_SQUARE=1 

 SIGMA_A_SQUARE=RO*SIGMA_E_SQUARE 

 SIGMA_B_SQUARE=SIGMA_E_SQUARE+(K*SIGMA_A_SQUARE) 

C COMPUTING THE EXPECTED VALUES AND VARIANCES OF THE 

RA AND R1 

 ERA=SIGMA_B_SQUARE*(J-2) 

 ER1=(SIGMA_B_SQUARE*SXXE)+(SIGMA_E_SQUARE*SXXA) 

 VRA=(SIGMA_B_SQUARE**2)*2*(J-2) 

 VR1=(((SIGMA_B_SQUARE*SXXE)+(SIGMA_E_SQUARE*SXXA))**2)

*2 

C COMPUTING THE MSE OF AUE BY PARTITIONING THE 

EXPRESSION AND CALCULATING THESE PARTS SEPERATELY 

GR=(((1+(K*RO))**2)*SXXE)/((SXXA+((1+(K*RO))*SXXE))**2) 

 C=SXXA/(SXXA+((1+(K*RO))*SXXE)) 

 EAUEN=(RO*(ERA+(GR*ER1))) 

 EAUED=((1+(K*RO))*(J-1-C)) 

 EAUE=EAUEN/EAUED 

 VAUE=((RO**2)*(VRA+((GR**2)*VR1)))/(((1+(K*RO))*(J-1-C))**2) 

 MSEAUE=((EAUE-SIGMA_A_SQUARE)**2)+VAUE 
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 PRINT*,'MSEAUE=',MSEAUE 

 WRITE(2,*),'MSEAUE=',MSEAUE 

 END 
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Description : 

 

This programs computes the MSE of  REML of 2

aσ  given in (3.3.1.1) under the 

conditions given in section 3.4. 

 

Inputs : 

  

SXXA : xxaS  given in (1.2.2) 

 SXXE : xxeS  given in (1.2.5) 

 RO : 
2

2

e

a

σ

σ
ρ =  

 

Outputs :  

 

 MSEREML : MSE of REML of 2

aσ  given in (3.3.1.1) 

 

Program Listing : 

 

THE OUTPUTS OF THIS PROGRAM ARE STORED IN FILE ‘REML.txt’ 

  

PROGRAM REML 

 DOUBLE PRECISION 

SIGMA_A_SQUARE,SIGMA_E_SQUARE,RO,SXXA,SXXE 

 DOUBLE PRECISION 

J,K,ERA,ER1,ERE,VRA,VR1,VRE,FR,GR,EREML,VREMLN 
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 DOUBLE PRECISION 

VREMLD,VREML,MSEREML,SIGMA_B_SQUARE 

 OPEN(2,FILE="REML.txt") 

C TAKING THE VALUES OF INPUTS 

 J=4 

 K=7 

 PRINT*,'SXXA=' 

 READ*,SXXA 

 PRINT*,'SXXE=' 

 READ*,SXXE 

 PRINT*,'RO=' 

 READ*,RO 

 SIGMA_E_SQUARE=1 

 SIGMA_A_SQUARE=RO*SIGMA_E_SQUARE 

 SIGMA_B_SQUARE=SIGMA_E_SQUARE+(K*SIGMA_A_SQUARE) 

C COMPUTING THE EXPECTED VALUES AND VARIANCES OF RA, 

RE AND R1 

 ERA=SIGMA_B_SQUARE*(J-2) 

 ER1=(SIGMA_B_SQUARE*SXXE)+(SIGMA_E_SQUARE*SXXA) 

 ERE=SIGMA_E_SQUARE*((J*K)-J-1) 

 VRA=(SIGMA_B_SQUARE**2)*2*(J-2) 

 VR1=(((SIGMA_B_SQUARE*SXXE)+(SIGMA_E_SQUARE*SXXA))**2)

*2 

 VRE=(SIGMA_E_SQUARE**2)*2*((J*K)-J-1) 

C COMPUTING THE MSE OF REML BY PARTITONING THE 

EXPRESSION AND CALCULATING THESE PARTS SEPERATELY 

FR=SXXA/((SXXA+((1+(K*RO))*SXXE))**2) 

 GR=(((1+(K*RO))**2)*SXXE)/((SXXA+((1+(K*RO))*SXXE))**2) 

 EREML=(((K-1)*ERA)+((((K-1)*GR)-FR)*ER1)-ERE)/((J*K)*(K-1)) 

 VREMLN=(((K-1)**2)*VRA)+(((((K-1)*GR)-FR)**2)*VR1)+VRE 



 71

 VREMLD=(((J*K)**2)*((K-1)**2)) 

 VREML=VREMLN/VREMLD 

 MSEREML=((EREML-SIGMA_A_SQUARE)**2)+VREML 

 PRINT*,'MSEREML=',MSEREML 

 WRITE(2,*),'MSEREML=',MSEREML 

 END 


