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ABSTRACT

ESTIMATION IN THE SIMPLE LINEAR
REGRESSION MODEL WITH ONE-FOLD NESTED
ERROR

Ulgen, Burcin Emre
M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Bilgehan Giiven

May 2005, 71 pages

In this thesis, estimation in simple linear regression model with one-fold nested
error is studied.

To estimate the fixed effect parameters, generalized least squares and
maximum likelihood estimation procedures are reviewed. Moreover, Minimum
Norm Quadratic Estimator (MINQE), Almost Unbiased Estimator (AUE) and
Restricted Maximum Likelihood Estimator (REML) of variance of primary units
are derived.

Also, confidence intervals for the fixed effect parameters and the variance
components are studied. Finally, the aforesaid estimation techniques and

confidence intervals are applied to a real-life data and the results are presented.

Keywords: Least Squares Estimation, Maximum Likelihood Estimation,

Estimation for Variance Components, Confidence Intervals

iv



(0Y/

IC ICE GECMIS HATA TERIMLI BASIT DOGRUSAL
REGRESYON MODELINDE TAHMIN YONTEMLERI

Ulgen, Burgin Emre
Yiiksek Lisans, Istatistik Boliimii

Tez Yoneticisi: Dog. Dr. Bilgehan Giiven

Mayis 2005, 71 sayfa

Bu tezde, i¢ ice gecmis hata terimli dogrusal regresyon modelinde tahmin
yontemleri esas olarak caligilmistir.

Sabit etki parametrelerini tahmin etmek i¢in, Genellestirilmis En Kiigiik
Kareler Yontemi ve En Cok Olabilirlik Tahmin Yontemi prosediirleri
sunulmustur. Ayrica, birinci asama birimlerin varyansinin En Kii¢ciik Norm
Karesel Tahmin Edicisi, Hemen Hemen Yansiz Tahmin Edicisi ve Kisitli En Cok
Olabilirlik Tahmin Edicisi bulunmustur.

Sabit etki parametreleri ve varyans bilesenleri i¢cin giiven araliklar1 da
calisilmigtir. Son olarak, ad1 gecen tahmin yontemleri ve giiven araliklar1 bir veri

setine uygulanmig ve bu uygulamanin sonuglar1 sunulmustur.

Anahtar Kelimeler: En Kiiciik Kareler Tahmini, En Cok Olabilirlik Tahmini,

Varyans Bilesenlerinin Tahmini, Giiven Araliklari
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries

The one-fold nested error structure is appropriate when there is some form of
subsampling from primary sampling, i.e., observations followed by randomly
selected primary groups. Particular cases in which the data sets arise are : (i)
observational studies with two-stage sampling structure, i.e., random selection of
whole units followed by random selection of several subunits within each of the
whole units, and the researcher is interested in the regression of correlated response
variables (i1) experiments designed as split-plot or repeated measures designs and (iii)
experiments designed as incomplete blocks where the block effect is random.

Suppose for each observation Y,, we have a covariate x, and JK

observations are collected by selecting J primary units followed by taking K
measurements from each primary unit. Since we look for regression of observations

on the covariate and assume that there is only one observational error e,

independently and identically distributed, we have J regression equations such that
each of them has the same intercept parameter but different slope parameters.
However, when we fit the same regression equation to all J primary units, a new

error term which we call a primary unit error a, arises. In this situation our model

which is called the simple linear regression model with one-fold nested error structure

is

Yfk :ﬂ+ﬁxjk +aj +ejk9 .]:19273']’ k:1527"'aK



where a, and e, are independently distributed with zero means and variances o’

and o respectively (these variances are also referred as variance components). The
term a, represents an error component associated with primary units and e,

represents an error component associated with the subunit. A classical example of the
simple linear regression model with one-fold nested error structure is two stage
sampling with random selection of J primary units followed by the selection of
K subunits within each primary unit, i.e., an experiment on J selected individuals
with K measurements taken on each individual.

A factor is defined as fixed if its levels consist of the entire population of
possible levels. Otherwise, i.e., if its levels consist of a random sample of levels from
a population of possible levels, a factor is called random. In a classification by
Eisenhart (1947), a model is defined as :

- fixed or fixed effects model if all the factors in the treatment structure are
fixed effects,

- random or random effects model if all the factors in the treatment structure
are random effects and

- mixed or mixed effects model if some of the factors in the treatment
structure are fixed effects and some are random effects.

Since the simple linear regression model with one-fold nested error structure

consists of two fixed effects £, £ and two random effects a i € the model is a

linear mixed model which is a type of the mixed analysis of variance models. Thus,
the estimation techniques for mixed analysis of variance models can be used for the
estimation of unknown parameters of a simple linear regression model with one-fold

nested error structure.

1.2 Review of Literature

Mixed models are an extension of linear models for which covariance structure

is based on random effects and their covariance parameters. The use of such models
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has increased dramatically in the past decade. For example, they are now the main
vehicle for analysis of longitudinal data (e.g. Diggle, Heagarty, and Zeger, 2002).
Their use in semiparametric regression is advocated in some recent literature (e.g.
Ruppert, Wand & Carroll, 2003). The popularity of linear mixed models has been
accompanied by vigorous research on analytic results and computational methods.

After Eisenhart (1947) distinguished fixed, random and mixed models,
Henderson (1953) proposed a method for estimating variance components by
equating each computed reduction in sums of squares (due to fitting different
subgroups of factors in the model) to its expected value. Hartley and Rao (1967)
described the maximum likelihood estimation of the fixed effects and variance
components in the general mixed analysis of variance model and established some
properties of these estimators. Corbeil and Searle (1976) modified Hartley and Rao’s
solution by applying a transformation to the likelihood function partitioned into two
parts, one being free of fixed effects. Maximizing this part yields what are called the
restricted maximum likelithood estimates (REML). A comprehensive survey of
maximum likelihood approaches to variance component estimation were given by
Harville (1977).

Rao (1970) proposes minimum norm estimation technique for variance
components. The resulting estimator is the so-called Minimum Norm Quadratic
Unbiased Estimators (MINQUE) for a model with unequal error variances. Moreover,
Rao (1972) describes niminum norm and minimum variance quadratic unbiased
estimators (MINQUE and MIVQUE) in a general setting. Henderson (1975) also
gave the method of obtaining generalized least squares estimates in a general mixed
model and described the mixed model and developed best linear unbiased estimators.

Rao and Chaubey (1978) obtained nonnegative estimators (including Minimum
Norm Quadratic Estimator) for the variance components by ignoring the condition for
unbiasedness in the principle of Minimum Norm Quadratic Unbiased Estimation.
Moreover, Horn, Horn and Duncan (1975) and Horn and Horn (1975) compared the
estimators of variance components along with the estimator they obtained which is
called Almost Unbiased Estimator (AUE). Searle (1977) gave a comprehensive

3



review on variance components estimation. An excellent summary of developments
concerning the mixed models is provided by McCulloch and Searle (2000).

Having reviewed more cited studies about the mixed models, we now
summarize the former studies concerning the simple linear regression model with
one-fold nested error structure as follows.

Tong and Cornelius (1989, 1991) treat the simple linear regression model with
one-fold nested error as an analysis of a one way classification, in which treatment

effects are random, and compared the four estimators of the slope £ (ordinary least

squares, maximum likelihood, estimated generalized least squares and the covariance
estimators) with respect to their mean squared errors in a Monte Carlo simulation
study. They also constructed and compared six hypothesis testing procedures for the

slope # with respect to Type I error and power of test in a Monte Carlo simulation

study.

Park and Burdick (1994) derived exact and approximate confidence intervals
for the regression coefficient in the simple linear regression model with the one-fold
nested error structure and compared these confidence intervals using computer
simulation. Park and Hwang (2002) also derived the exact and approximate
confidence intervals for the mean response for a given level of the independent
variable in the simple linear regression with one-fold nested error structure and
compared them by simulation.

The generalized least squares (GLS) estimator for the linear model with a
nested error is given by Fuller and Battese (1973). They suggest a transformation
depending on the variance components for the nested error model. The transformation
is simply based on multiplying an observation vector by the square root of its
covariance matrix and the transformed observations are uncorrelated. In order to get
the GLS estimator of the fixed effect parameters, ordinary least squares (OLS)
estimation is applied to the transformed observations. They use Henderson’s Method
3 (Henderson, 1953) to estimate the variance components since it seems better than
both of Henderson’s other two methods since it provides estimators of the variance

components which are invariant to the design matrix.



Restricted maximum likelihood estimation (Corbeil and Searle, 1976) was
been applied to simple linear regression model with one-fold nested error structure by
Tong and Cornelius (1989).

Giiven (1995) studied the maximum likelihood estimation in simple linear
regression with one-fold nested error structure differently than restricted maximum
likelihood estimation and derived the exact maximum likelihood estimates of the four
unknown parameters together. Moreover, for this model Giiven (1998) combined two

independent unbiased estimators for the slope S and obtained the unbiased estimator
of B whose variance is less than the variances of either, which is called uniformly

better unbiased estimator.

1.2 Aims and Scope of the Study

The primary aim of this thesis study is to review the estimation of fixed-effect
parameters and variance components of the simple linear regression model with one-
fold nested error. We present a comprehensive summary of what has been done up to
date along and apply them into a real-life data.

The definition and a brief introduction of simple linear regression models with
one-fold nested error are presented in this chapter.

Chapter 2 focuses on estimation techniques for fixed effect parameters in the
simple linear regression model with one-fold nested error. It covers the estimated
generalized least squares and maximum likelihood estimation of fixed-effect
parameters.

Chapter 3 gives the estimation of the primary unit variance and involves
Minimum Norm Quadratic Estimator (MINQE), Almost Unbiased Estimator (AUE)
and Restricted Maximum Likelihood Estimator (REML). Among the different
variance component estimators (summarized by Searle, 1977) we choose these four
estimators since the exact mean squared errors (MSEs) of them can be derived. In

addition to the derivations of these estimators, we also obtained the exact mean
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squared errors (MSEs) of them in order to compare these variance component
estimators with respect to their MSEs in the last section of this chapter.

Chapter 4 covers the exact and approximate confidence intervals for the fixed
effect parameters and the variance components of the model.

In Chapter 5, the application of all of these estimation techniques and
confidence intervals to a real life data taken from Vonesh and Carter (1987) is
presented.

Finally, in Chapter 6, summary and conclusions on the findings are given.

1.4 Simple Linear Regression Model with One-Fold Nested

Error

We consider the model :

Y, =,u+ﬁxjk+aj+ejk j=12,...J, k=12,..K
where Y, denotes the observation from the k" second stage sampling unit in the ;"
first-stage unit; x ;, denotes the value of a nonstochastic regressor variable measured
on the k" second stage sampling unit in the ;j” first-stage unit; 4, B are parameters
to be estimated; a; and e, are unobservable random effects, where a is an error
associated with the ;" first-stage unit and e, with the k™ second-stage sampling
unit in the ;" first-stage unit. The “errors” a, and e, are independent normal
random variables with zero mean and variances o and o, respectively, where
0> >0,and o, >0 . Under these assumptions, the covariance structure for the

observed variables Y, is as follows :

o,+o; if j=j, k=k
COV(Y/kBY;"k') = 0-2 lf‘ ] :j'a k#:k'

a

0 if j*J



The observation Y, for the k" element of the j” unit can be written as

follows :
Y, =Ely,l+a,+e, where E[Y,]=pu+ fx, .

We can write the linear model, in matrix form, as follows :

Y=Xa+Ua+e
where
_Yl 1 _lK Xl ] _al 1
Y2 1K XZ al
Y= , X = ,a=
_YJ_ _1K XK_ _aJ_

with Y, = (Y, Y00 Yir)'s X = (XX X)) 5 € =(€),€5mme )" for
j=12,.J,U=1,®1,, 1, isa K xI vector whose elements are all 1, ® denotes
the Kronecker matrix product, a = (u,p)", the vector e is defined similar to Y .

It follows from the independence of Y,,Y,,...,Y, that Y ~ N . (Xa, A) where

A=1,®X=A=0.(I,®1, 1)) +01,,, (1.4.1)

and X is the variance-covariance matrix of Y, for L =1,2,...,J which is given by
=0 115 +0.1,.

Let us define some quantities which will occur in formulas for estimation of

parameters and variance components. All of these quantities are easily obtained from

S,. and S be the among

xxa xya

a one-way analysis of covariance of x and Y. Let S

primary unit sum of squares and cross products, defined as,

J
Sxxa = KZ(XJ _x)2 > (142)
j=1



J —_— —
Sxya :KZ()_C/ _f)(Y] _Y)a (143)
=
and

J — —
S, =KD (Y, -Y), (1.4.4)
j=1

Il
M\
M~

where Y, =>Y,/K ., X, =>x,/K, Y Y, /(JK)  and
k=1

bt
1l
—_
~.
L
=~
LN

J

X = Zf:x 4 I(JK) .

J=1 k=

Similarly, let S, ,, S, and S, be the within primary unit sums of squares

xye

and cross products, i.e.,

J K

Sxxezzlkl(xjk_xj_)zﬁ (145)
j=1 k=
J K _ .

Sxye:Z;kz;(xjk_xj_)(yjk_Yj‘)a (146)
j=1 k=

and

J K —

S}yGZZZ(ij_Y/,) . (147)
Jj=1 k=1

It follows that the the total sum of squares and cross products S, S, and
S, can be written as :
J K
St =S 8 =2, 0 (x; =X )7, (1.4.8)
j=1 k=1
J K . .
Sxyt :Sxya +Sxye zzz(xjk _x,,)(ij _Y_,)a (149)
Jj=1 k=1
and
J K —
Sy = S0 T80 :ZZ(YJk_Y-) . (1.4.10)
j=1 k=1



S8, S

xxt xyt > = yyt xxa >

Moreover S S S S

S, and §  can be

xya O yya 2 xxe > xye

rewritten, in a matrix form, as follows :

J K . 1 r 1
S = Z;(Xﬂc _x..)2 =(X_J_K1JK1}K Xj (X_J_KIJKl}KXj

j=1 k=1

:XT(IJK —JLKIJKIIK]X, (1.4.11)
J K . _ T 1 T
Sxyt = ZZ(xjk _x..)(ij —Y)=X" Ik —— 11 |Y, (1.4.12)
j=1 k=l JK
S 7 \2 T 1 T
S sy :zz(yjk —Y) =Y | Ly ——1, 1 |Y, (1.4.13)
e JK
P —\2 T 1 T 1 T
A\ =KJZ=1:( ; —xu) =X"1I, ®E1K1K _ﬁlmlm X, (1.4.14)
e - v v T 1 T 1 T
Sxya = KZ(X‘/. _'x..)(Yj. _Y~-) =X IJ ®E1K1K _J_KIJKIJK Y,
Jj=1
(1.4.15)
_ 2 2 _ T 1 T 1 T
Syya _KJZ_:,( J. —Y) =Y'|I ®E1K1K _J_KIJKIJK Y, (1.4.16)
J K 1
Spe =0 (x, —%,) = XT(IJ ®[1K —Elklﬁnxz X"(1, ®P)X
=1 k=1
(1.4.17)
) 1 T
Wlth P :IK —EIKIK .

J K _ _ 1
Sxye = ZZ(xjk _xj.)(Y/'k - Y/) = XT(IJ ®[IK _ElKlijJY = XT(IJ ® P)Y
| (1.4.18)

and

J K
S e = ZZ(YJk - _1)2 = YT(IJ ®(IK _%IKIE ij :YT(IJ ®P)Y-

(1.4.19)



Having found the matrix representations of S, and §_,, it can easily be

xye >

shown that, under our model assumptions :

2 2 2
Sxya ~ N(Sxxaﬂ’ Sxxa (O-e + Ko-a )) and Sxye ~ N(S\:xeﬂ’ Sxxeo-e )

since

xya

E(S,,)= XT(IJ ®%1K1; —JiKlJKle jE(Y)

= XT(IJ ®%1K1§ —JLKIKIEJ;LIK +XT(IJ ®%1K1§ —JLKIJKIIK jXﬂ

= Sxxa ﬁ >

xya

1 1
V(s,,)= V[XT(IJ ®— Il —J—KlJKl}K )Y}

e xxa

1 1
=028, + KO'jXT((IJ —71J1}j®?1K1§(]X

=S (0} +Ko?),

xxa

_ wT _i T _xT _i T
ES,)=X (IJ ®(IK K1K1KDE(Y) X (IJ ®(IK . IKIKDXﬂ
=S

V(S,.) = V{XT(IJ ®(1K —LIKI;NY}
K

= anT(IJ ®(IK —%IKIEDX+ anTLIJ @)[IK —%IKIEJIKIEJX

=S _o’.

xxe e

and

10



CHAPTER 2

ESTIMATION TECHNIQUES FOR FIXED EFFECT
PARAMETERS

In this chapter, we review the estimated generalized least squares
estimation of the unknown parameters of the model given by Fuller and Battese
(1973), Tong and Cornelius (1991) and maximum likelihood estimation of the

unknown parameters of the model given by Giiven (1995).

2.1 Estimated Generalized Least Squares Estimation

Fuller and Battese (1973) obtained the estimated generalized least squares
estimators of the fixed effect parameters after they find the estimators of the
variance components. Since the model can be considered as an analysis of
covariance model of the one way classification model in which the treatment
(primary) effects are random, Henderson’s method 3 (Henderson, 1953) can be
used for obtaining the variance components. This method uses reduction in sum of
squares due to fitting different subgroup of factors in the model, i.e., it estimates
the variance components by equating each computed reduction to its expected

value. For our model, we use;

(1) the sum of squares from the primary units adjusted for regression on X,
R(a|u,p), to estimate o>
(i1) the residual sum of squares in the one way covariance model, RSS to

estimate o7 .

11



We have

Rla|u, B)=R(u B,a)-R(u, B) (2.1.1)
_ R poa) (Sya +S5.)°
(Swa + )
and
R(u, B,a)= R(u,a)+ R(B) (2.1.2)

Xxe

where R(u,a) is the sum of squares from the one way analysis of variance model

and R(f) is the sum of squares of covariance. Substituting (2.1.2) into (2.1.1), we

have
R(a|u. )= R(u.a)+ R(B) - R(u. ) (2.13)
where R(u, B) is the sum of squares for the primary units. Then we have,
Spe  (Sya+8,.)°

R PB)=8, , +——
(a|ﬂ IB) yva S (wa_i_Sxxe)

xxe

Sjva S)C‘Ca SXX
- 4 2
w S Sxxe (S + SXX(:‘ ) S)CX

xxa

2
S Sm] (2.1.4)

xxa a

where S__, S_, S S ., S aregivenin (1.4.2)-(1.4.6)

xxa > xya > yya 2 xxe > xye

We can rewrite (2.1.4) as follows :

(Bg _lBa)ZSxanxxe
S tS

R(a|p.B)=5S2(B,)+ =82(B.)+S? (2.1.5)

where

R S?

S;(B)=S,, —S—} (2.1.6)
2

Sim s s

SXX@ (SXXG + SXX@) SXXU 3 ’

Po R \2

— (lBe ;ﬂa—)}_ 5xanxxe , (217)
N S e
b, = S, , (2.1.8)

12



B.=——. (2.1.9)

ﬁa is distributed according to a normal distribution with the mean B and

the variance (67 +Ko?)/S,, since S, ~N(S,, B, S..(0>+Ka?)). Also, we

A

can rewrite B, and S’ ( ,Ba) as follows :

a

~ X, PY,
=J " J 2.1.10
b=Xirx @.1.10)
201 S v 2 2
SiBI=KX (Y, =Y = B,(x, -%)
j=1
=K(Y, - B.X)"P(Y, - 5.X,) (2.1.11)
where the symmetric and idempotent matrix P is defined as :
P:{IJ—%IJII} (2.1.12)

and Xj. = (fl"fzﬂ'"’)_c‘/.)T ) Yj. = (YHYZ.""’YJ.)T

Substituting the matrix representation of ,Ba (2.1.10) into S (,Ba) (2.1.11)

, we obtain :
. X'PY ! X"PY
Sj(ﬂa):K YJ _%XJ P YJ _%XJ
- XJ.PXJ. . ) XJ.PXJ. -
PX, X P
=KY; | P-—2—2— Y, (2.1.13)
. XJ.PXJ.
where P is given in (2.1.12)
Let u; =(e, +a)" =(e, +a,,e, +a,,...,e; +a,), then
Y, = ul, + X, +u, Then the quadratic form S ( ,Ba) becomes
- PX X P
S? =Kul|P-—2"1 Wy 2.1.14
. (B.) J.( XTPX, j ; ( )

PX X'P PX X'P
since P1; =0, | P——*—— 11, =0 and | P——*—2— |X; =0
XJ.PXJ. XJ.PXJ. ’
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Since the quadratic form S2(/3,) is of the form
S; (Ba) = u}.RuJ.

where the symmetric and idempotent matrix R is defined as,

T
r-(p_ PXXIP 0115
XJ.PXJ.

We can use the theory of the distribution of the quadratic forms to find the
distribution of S’ (,Ba) =u, Ru, . It can be proved that S’ (,Ba) (o? +Ko?) is

distributed as a chi square with degrees of freedom #(R) where

PX, X P
tr(R):n{P—%J:tr(P)— L (ex,xTP)
XJ.PXJ. XJ.PXJ.

1 T
= tr(P) - ————r(XIPX, )= J -2
J. J.

Also, it can easily be showed that §; in (2.1.7) is distributed as

2

K 2
(0'5 +SS"+?')}[12 as follows. Since S, ~N(B, o /S.) and
+

xxa xxe

B, ~N(B, (6+Kc?)/S,,)), it follows that :

P o’ o’+Ko?
(ﬂa—ﬁe)%(se s ”Jzﬁ

xxe xxa

Sa

Z(Be_ﬁa)zsxxasxxeN(GZ_i_ KSxxeo-j J 2

SX,\‘(I + SXXL’ ‘ SXJ(E + SX,\‘L’ l
where ,Ba and ,Be are given in (2.1.8) and (2.1.9) respectively. Hence the

expectation of R(a | u, ) is ;

S

xxa

E[R(a| i, B)= (J -Do? +K0'j((J—2) +%J (2.1.16)

Also, we can rewrite Be and S7( ,5’6) as follows:

B = X Qv (2.1.17)
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=(Y-5,X)"Q(Y - 5.X) (2.1.18)
where the symmetric and idempotent matrix Q is defined as :

Q:1J®(1K—%1K1;j (2.1.19)

Substituting the matrix representation of ,Be (2.1.17) into S7( B(,) (2.1.18),

we obtain
X X'Qvy ) X'QY
Se(By=|Y -5 X | QY-T5-—X
X' QX X' QX
T
=Y" Q—w Y (2.1.20)
X' QX
where Y = ul . + X+ (I, ®1,)a+e. Then the quadratic form S’ (,Be) becomes
. XX"'Q
s (p)=e'| Q- BX Q| 2.1.21
. (B.) (Q X'0OX ) ( )
QXX'Q QXX'Q
where (Q—XT—Q)( lJKZO and then Q—W (IJ ®1K):0’
QXX'Q .
(Q_XT—QX X =0 since Ql,;, =0 and Q(I, ®1,)=0.
Since the quadratic form S7( Be) is of the form ,
S:(B.)=¢"Se,
where the symmetric and idempotent matrix S is defined as,
T
S= Q—QXTLQ . (2.1.22)
X'QX

We can use the theory of the distribution of the quadratic forms to find the
distribution of S’ ( ,bA’e) =e'Se. It can be proved that S ( ,Be)/cre2 is distributed as a

chi square variable with degrees of freedom #(S) where

#(S) = n{Q—%} - r(Q) -

=tr(Q)-1=J(K-1)—1.

1

O (QXX"Q)

Hence the expectation of RSS is;

15



E[RSS|=(J(K -1)-1)5?. (2.1.23)

By equating each sum of squares to its expected value, we have the
following estimator equations for the variance components (Fuller and Battese,
1973):

RSS =(J(K-1)-1)&? (2.1.24)

R(a|u, B)=(J =16 + K&? (J—2)+L (2.1.25)
S t+S..

Solving (2.1.24) and (2.1.25), the following variance component
estimators can be obtained :

— RSS

0, =———, (2.1.26)
J(K-1)-1
and
R -(J -G
& =max| 0, _R@lh) (Js .| (2.1.27)
K| (J-2)+—=—
S)C)Cé‘ +SXXLI
where the variances of &7 and & are calculated as follows :
1 5 20
V(G)=————-V(S! =—2) 2.1.28
(6;7) JEK-D-1) (5. (6.) JK-1)-1 ( )
and
> 1 ~2
V(e = V(R 1. )~ -135?).
K (J_2)+%
SXXH +SXX€

(2.1.29)

From the distributional properties of our model, we know that S’ (,Bu)and
S? (,36) are independent. Moreover, it is obvious that S; and S’ (,Be) are also
independent since f,, S, and S?(f.) independent. As a result, S2(f3,),
S2(B.)and S? are independent, thus we can rewrite (2.1.29) as follows:

V(E2) = c(V(S2(B)+V(SH)+(J-1)*V(5?)), (2.1.30)
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where ¢ =

-
K -2+ Sm
S)C)Cd + SXXL’

Using the distributional properties of S>( Ba) and S’ (ﬁe) , substituting (2.1.28)
into (2.1.30), we have :

2 : N2 4
V() =20 (02 + Ko2 ) =2)+| 02 4+ KuSwe |, =D 0, |
S +8w ) J(K-1)-1

Having obtained the estimators of variance components, Fuller and
Batesse (1973) found the estimated generalized least squares of fixed effect

parameters. In a vector form, we can write,
= [%) = (x"Ex)"XTE Y,

where X =&, +6>(I,®1,1%), &> and & are given in (2.1.14) and
(2.1.15) respectively.

GIY D x +KElS

~=2 =2 ~2 - k a ™ xxe
Soov )l o.(0c,+Ko)) k=1 J B
O <\, a — X,
( ) G!S,, +(3.+K&E))S,,, /Ko,
’ -X 1
~2 J K
o, Zj:le:lek
X's1Yy !
G2(67 +K&

) J K
e a’ll ~2 ~2
o, Z j=1 Zk:l Yk ij +Ko, Sx,ve

Y - px

e , 2.131
T 7| ass,, + (32 +KEDS,, (2.1.31)

G2SS. . +(62+KG)S,,

17



2.2 Maximum Likelihood Estimation

Gliven (1995) derived the exact maximum likelihood estimates of
unknown parameters of the simple linear regression with the one-fold nested error

structure. The procedure can be summarized as follows.
Consider the column vector Y, :(Y].I,Y].Z,...,YiK)T , j=12,..,J. Then
Y, is distributed as a K-dimensional multivariate normal with mean vector

_ T . .
uly + X, where X, =(x;1,X 55X ) and covariance matrix

jre
Y=0l,+0.J, where J,=1.1y. So, we have an independent but not
identically distributed sample of size J . The likelihood function of Y,,Y,,...,Y;

is given by

-J/2

L=0m)"" % eXp(— (1/2)Z(Yj =l = BX)" ZT(Y, - pd —ﬂXj)J,

(2.2.1)

We can rewrite Y as follows after reparametrizing the variance
components by 6> =o> +0” and p=0" /0’

2= O_ele +O-a2JK = 0-2((1_:0)IK +pJK)
=a{(l—p)(lk —%JK}(l—(K—l)p)%JK]

1 1 .. .
where (IK _EJ Kj and EJ x are symmetric, idempotent matrices that are

mutually orthogonal. Thus,

1 j 1
I,—-——1J —J
T =g ( . i K *

(1-p) (1+(K-1)p) |

which is equal to :
_ 1 o,
)OI TR ) |— a—
(1—p>02£" (1+(K=1p) J

18



So, the exponent term can be rewritten as :

J

; _ _ T _L 3 B _
(I—P)GZJZ::‘(Y" =A%) (I" 1+(K—1)pJKj(Yj = PXy)

| R A el R e |

(2.2.2)

Since the two sum of squares in the exponent term (2.2.2) can be expanded as

follows :

Mk

Z( Jk ' ﬁx/k ZZ(Y]'/(_)7j._16(‘xjk_fj_))z—i_KZ(yj__ﬂ_ﬁxj_)z

and

P N oy 2 _
(1+(K—1)pK ;(Y,; u=px;)

v - _= P 20y 2

(Y, =Y)=B(x, -X))" + JK*(Y —p—fr)
(1+(K np) Z / (+(K-1)p

The exponent term (2.2.2) can be simplified to

ii(yjk_?j._ﬂ(xjkz_’?j.))z K 4 (Y Y ,b’(x —-X )) JK(Y,.‘#‘&..ZZ
(1-p)o S (+(K-Dp)o®  (+(K-Dp)o

(2.2.3)
Substituting (2.2.3) into it, the likelihood function given in (2.2.1) becomes :

L =(27[)_JK/2(O'2)_JK/2(1—p)_J(K_l)/z(l+(K—1),0)_J/2

XeXp{(—1/2o-2)(SL2(,B) + Sj(ﬂ) +JI<(}7 —ﬂ_l&“)z j}’
(I-p) A+(K-Dp) (A+(K-Dp)

(2.2.4)
where
Sf(ﬂ)éZ_ZZ_:(Y,»k -, =BG, -%,)), (2.2.5)
and
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S.B) =KD (Y, =Y = B(x, =%))’. (2.2.6)

Hence, the log likelihood function In L of the observations Y,,Y,,...,Y; is

InL=—(JK/2)In2zx —(JK/2)Inc* - (J(K —=1)/2)In(1- p)
SXB),  SiB K —u—ﬁff}
(=p) (+(K-Dp)  (1+(K-1p)

—(J/2)In(1+ (K -1)p) + (—1/202){

(2.2.7)

Fixing £, p, and maximizing InL with respect to x, the maximum
likelihood estimate of u is :

B)=Y - f . (2.2.8)

Substituting (/) into In L yields :

InL=—(JK/2)In27 —(JK/2)Inc?* = (J(K —1)/2)In(1 - p)
S:B),  Si(B) }
(1-p)  (1+(K-Dp)

—(J/2)In(l+ (K = 1)p) + (—1/202){

Fixing B, p, and maximizing In L with respect to o gives :

o _ 1| 8XP) S:(B)
6 (B.p)= JK{(I—p)+(1+(K—1)p)} . (2.2.9)

Finally, substituting A(8) and &°(f)(given in (2.2.8) and (2.2.9)) into

In L, the likelihood function becomes:

lnL:—(JK/2)ln27r—(JK/2)ln{L(SEZ(’B)+ Sa(P) j}

JK{ 1-p (A+(K-1p)
-(J(K-1)/2)In(1-p)—=(J/2)In(1+ (K -1)p)—JK /2.
Fixing £ and maximizing the log likelihood function In L with respect to p, after

substituting () and &° (3, p) into InL yields:

s:p) -2
o(f)=——>— 2.2.10
P =535, (2.2.10)
where S} (8) = S2(B)+S2(B)= 2D (¥, =T~ flx, ~%))',  SI(P) and

S2(f) are given in (2.2.5) and (2.2.6).
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When 0 < p(f) <1 we take p(f) as the maximum likelihood estimate of

p instead of O since InL is greater than 0 at P(f), which can be shown as

follows;

lnL=—(JK/2)1n27z—(JK/Z)ln(Sig)]—(JK/z) when () =0

InL=-(JK/2)In27z —(JK/2) ln(S?(’B)J—(JKQ) - In(1 - p(B))

JK-1)
JK 2
—%ln(l+ (K —1)p(B)) when p(B)>0.

The difference between the likelihood function InL at p(f) and the likelihood

function InL at 0 is

= E D p() - L+ (K D).
Consider a function
d(p):—J(Kz_l)1n(1—p)—§1n(1+(K—l)p) 0<p<l,

The derivative of d(p)is

o JK=D Kp
d'(p)= 5 ((l—p)(l+(K—1)p)j>O for 0< p<1.

So it has been shown that the difference between the likelihood function

InL at p(f) and the likelihood function InZ at 0 is an increasing function of
P(B), indicating that In L(0) <1n L(p(f)) . Since the likelihood function InL is
maximized at p =0 when p(f) <0, Giiven (1995) took p(f) as follows :
S:
s:p)-5: )
p(B)=max| 0,— K=11 (2.2.11)
S;(B)

By substituting A(f) into 6 (8, p) given in (2.2.9) when p is zero will yield :

S7(B)

6% (B)= K

It is obvious that if p > 0, substituting p() into 6°(f3, p) will yield the

same result since;
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55 =L S:(B) N 52 ()
K 1_(53(ﬁ)—S5(ﬁ)/(K—l)j 1+(K_l)(Sf(ﬁ)—Sf(ﬁ)/(K—l)]
S:(B) S:(B)
__ SXPSIB) SiBSiB) _SiB)
JKS*(B)(A+1/(K-1)) JK?S*(B)  JK

Utilizing the information that o = po’ ando. =(1-p)o’, Giiven
(1995) derived the maximum likelihood estimators of o> and o’ = (1- p)o’ by

using the invariance property of the maximum likelihood estimation :
0 if Sj(,B)SSf/K—l
LIS (B)-S2(BIUK D] if S2(B)>S? /K -1
(2.2.12)

6.(B)=pP(B6” (B) ={

I T
(2.2.13)
Substituting 2(B), A(B) and &°(B) into the log likelihood function In L
given in (2.2.7) will give :

L(B)=—(JK/2)A+In27)—(J/2) ln( Ss 5,3)

J —(J(K=1)/2) 1n[&j

J(K -1)
if S2(8)>S2(B)/I(K~1)

L,(B) = ~(JK /2)(1+1n27) - (JK /2) m[_S : (ﬁ)]
JK
if S2(B)< S2(B)/(K-1)

(2.2.14)
When S2(B)<S2(B)/(K—-1) , maximizing L,(f)with respect to S

yields;
A S,
75
J K _ J K s
Where Sxyt = Zz(xjk _)_C)(ij _Y) H Sxxt = Zz(xjk _)_C)
J=1 k=1 j=1 k=1
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When S2(8)>S2(B)/(K —1), maximizing L,(S) with respect to S

gives the following derivative equation;

S ge =B | JE =Sy, = Bue) _ 0
S.:(B) S:(B)

f(p)=

b

J _ _ J _ _
where S, =K (X, =X ), =), S, =2 > (x, =% )Y, ~¥)).

J=1 J=l k=1

2 2
Multiplying both sides of the derivative equation by 3.(P)5.(P) (B )JSE (B ),

Giiven(1995) obtained,;
gB =SS (BT =(S,, = B5.)SL (B)+ (K =1)(S,, = f5..)S; (B)
=—KS,.S..B +(K+1S,,S., +QK-DS,.S,, )5

xye'= xxa

~ (8.8, +2KS S, +(K-DS_S, . )B+(S, .S, +(K-1S, .S, . )=0

xxa™ yye xya' xye xxe™ yya

(2.2.15)
The previous equation is a third degree polynomial equation in . One of
the real roots of this equation which maximizes L,(/£) is the maximum likelihood

estimate of #. When S__S__ >0, dividing the polynomial equation into the

xXxe — xxa

coefficient of #° and multiplying it by —1, obtain the following polynomial
equation can be obtained :

gB) o [(K+DB. +QK-DS, | .
KS_S =h ( K Jﬁ

xxa xXxe

P(B) =~

+(n +2KB. B, +(K -1y, ]ﬂ_{nﬁa +(1<—1m/3’eJ:0
K K

(2.2.16)

where B = Sxya B = Sxye ¥ :M and y, = yye
a S > e S H a S e S .

xxa Xxe xxa xxe

Giiven (1995) developed an algorithm to sort out to the roots of P(f)in

order to find the maximum likelihood estimate of £ .
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CHAPTER 3

ESTIMATION TECHNIQUES FOR THE VARIANCE OF
PRIMARY UNITS

In this chapter, Minimum Norm Quadratic Estimator (MINQE) (Rao &
Chaubey, 1978), Almost Unbiased Estimator (AUE) (Horn & Horn, 1975) and
Restricted Maximum Likelihood Estimator (REML) (Corbeil & Searle, 1976) of the

variance of primary units, o are derived in the simple linear regression model with

the one-fold nested error structure. Among the different variance component
estimators summarized by Searle (1977), we choose these four estimators since the
exact mean squared errors (MSEs) of them can be derived. In the last section of this
chapter, these estimators are compared with respect to their Mean Squared Errors

(MSEs).

3.1 Minimum Norm Quadratic Estimator (MINQE)

Rao and Chaubey (1978) introduced the principle of MINQE for the variance
components of a linear model, where the model is

Y=XB+e,
and Y is an n - vector of observations, X is a known nxm matrix, p is an m -vector
of fixed-effect parameters. Here ¢ is of the form :

e=UgE +Ug, +..+UE,.

and U, is an nxn, matrix of known constants, &, is an »,-vector with mean zero and

dispersion ¢1. Thus, € has zero mean and dispersion :
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A=0}V,+0;V,+..+0.V, with V,=U,U’.
Rao and Chaubey (1978) derived the MINQE for the i-th variance component

o’ in the following form :

., a'eVe
6] = ,

n.

1

3.1.1)

where @ is a priori weightt e=RY, R=WQ, W=V,
V.=V, +;V,+..+aV, and Q=1-P, P = X(X'WX) X'W.
For our model, we can write & as follows :
=Ug, +U.E, =1, ®1,)&, +1,.E,.
We know that € has zero mean and dispersion
A=0.V,+0’V,=0.(I, ®J )+ 01,

Thus, using (3.1.1), we can derive the MINQE of & given by :

4

A2_O-a,0 7
;== Y'R'(I, ®J,)RY, (3.12)

where o7, is the a priori information and R = Aj' (I - P) with,

A, :LZIJ ®(IK —lJK}r%IJ ®iJK and
o, K o,,(1+Kp) K

e,

P =XX'A,'X)"X’A;'. Here p is the ratio of the variance components

o,
defined as p =

0.0

e,

After simplifying (3.1.2), we find the MINQE of o as follows:

2

62 = Y, oo Kp”
‘ J(1+Kp) : 2 J(1+Kp)®

J=

S2(Bes) (3.1.3)

where ,BGLS is the generalized least squares estimator of £ given in (2.1.31) and

Sf (BGLS) = KZ(?, _7.. +BGLS (fj, _J_C..))z
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To evaluate the expected value and the variance of & for finding the MSE of
it, we use a decomposition of S’ (,BGLS). It is possible to write S’ (,BGLS) as a linear
combination of R, and R, as follows :

S (Baus) =R, + (PR, (3.14)

where RA = Syya _S2 /S (Sxxe /S )Sxya _Sxye]z’

xya xxa 2

Rl = Sxxa /Sxxe xxa

g(p)=(1+Kp)’S, (S, +(1+Kp)S, )"

The assumption that the error terms a; and e, are independent normal
variables with zero means and variances o. and o~ respectively yields that
R,~(cl+Kol)y;, and R ~[(0. +Ko)S_, +0.S . 1x . As aresult of the two

xxe e xxa

facts, the expectation and variance of §2(/,,,) are :
E(S; (Bous) = E(R,) +g(P)ER)). (3.15)

V(S: (Bors) =V (R)+(2(P)V(R,) (3.1.6)

where E(R,)=(0.+Ko2)J-2), V(R,))=(0.+Ko>) 2(J-2),

E(Rl) = [(O-ez +KO—§)Sxxe +O-€2S.an]’ V(Rl) = 2[(0-3 +KO—¢3)Sxxe +0-62Sxxa]2 *
(3.1.7)

Thus, we can state the MSE of & as follows :

MSE(62) =V(62)+(E(G2) - 02)?

—& 2 Kp® s
= 1+ Kp) V(R )+ (g(P) V(R))+ Tar KoY ((E(R,)+g(p)E(R)))-0"

(3.1.8)

where g(p)=(1+Kp)*S_, /(S +(+Kp)S ), ER,), V(R,), E(R,) and

xxe xxa

V(R,) are given in (3.1.7).
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3.2 Almost Unbiased Estimator (AUE)

Horn, Horn and Duncan (1975) and Horn and Horn (1975) defined the AUE

for the variance component o7 as :

& =% _yRVRY (32.1)
trRV

i

where @ is a priori weightt e=RY, R=WQ, W=V,
V.=a/V,+a&V,+..+a,V,, Q=1-P, P=XXWX) X'W, V, is defined as in
the previous section. The superscript “-” denotes the generalized inverse of any

matrix. For our model, we can derive the AUE of the variance of primary units. It is

given by:

2

o
6)=— " YRI, ®J, RY (3.2.2)
trR(I, ®J, )

where o7, is the a priori information to ¢, and R = A;' (I - P) with

1 1 1 1 o’
A =—1,0| 1, —J, |[+——m 1, ®—J, , p=—2°
’ 62,0 ! ( B ¢ KJ Gez,o (I+Kp) S [ p O-ez,o

and P =XX"A,'X)" XA,
After some algebra, the expression (3.2.2) is simplified to :

5 = P Saz(BGLS)
“ 1+Kp J-1-C

(3.2.3)

S

xxa

S .. +(1+Kp)S

where C = , /%zs is the generalized least squares estimator of f

xxe

A J —_— —_— A
givenin (2.1.31) and §;(Bs) =KD (Y, =Y + Bis(X, =X))".

J=1

To evaluate the expected value and the MSE of &, we use a decomposition

of S’ (/?GLS) given in (3.1.4). Using (3.1.4) with (3.1.5) and (3.1.6), the MSE(G’) is

written as
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2

N _ _ P 2
MSE@)) =V @)+ (E(@) ~0)" = ol VR )+ (2o V(R )+

; o2 324
+{(1+KP)(J—1—C) (E(R,)+ g(p)E(R))) ga} ( )
where g(p)=(1+Kp)’S_. /S, +(+Kp)S ), C= 5 (ffaKp)Sw o

ER,),V(R,), E(R)) and V(R,) are given in (3.1.7).
3.3 Restricted Maximum Likelihood Estimator (REML)

Corbeil and Searle(1976) studied the restricted maximum likelihood estimation of
variance components in the mixed model and obtained the following estimator

equations for r-variance components :

(A v,V )}, ={YRV,VRY}, (3.3.1)
where A is the variance structure of Y, r is the number of variance components,
R=A"'I-P), P=XXA"'X) XA and V, is defined in section 3.1. We have

extended these results for our model as follows :

If we write the estimator equations given in (3.3.1) for our model, they will be
r(A7'1, ®J,)=YRI, ®J, RY (3.3.2)
tr(A7'1,, ) = YR, RY (3.3.3)

The expressions (3.3.2) and (3.3.3) are simplified to:

JK K o
= S : 33.4
57167 (@ +ker) P (334)
and
J(K - 1) J 1 A 1 A
5 Tarvke or o P G gy Sifas), G39)
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~ J — p— ~
respectively where S7(f,,¢) = KZ Y, -Y + Bors (x; =X, ),

J=1

(¥, =Y, = Bos(x, —%,))> and By is the generalized least

1

L J K
S e (ﬁGLS) =

j=l k=
squares estimator of B given in (2.1.31). Solving these equations, we find the REML

of o’ as follows :

52 = l[sj(ﬂam) _ S. ('BGLS) ] (3.3.6)

‘K J J(K-1)
To evaluate the expected value and the MSE of &;, we use the

decompositions of S2(f,,;) and S?(B,,s) where the decomposition of S2(f,,;) is

given in (3.1.4). Moreover, it is possible to write S’ (BGLS) as a linear combination of

R, and R, as shown:
S2(Bos) =R, + f(P)R, (3.3.7)

where R, =S, —§ 2 /S (Sm /S e )S =S e ]2 and

xye xxe 2

f(P) =8, (S +(1+ Kp)S..)".

The assumption that the error terms a, and e, are independent normal

Rl = S xxa / S xxe xya

variables with zero means and variances o. and o respectively yields that

R, ~0 x5, and R ~[(c> +Ko)S ., +0.S 1% . As aresult of the two facts,

xxe a xxa

the expectation and variance of S ( BGLS) will be :

E(S?(Bes)) = E(R,) + f(P)E(R,), (3.3.8)
V(S2(Bes) =V (R)+(f(P)'V(R) (3.3.9)
where E(R,)=02(JK—-J-1), V(R,)=2(JK—-J-1)c’ (3.3.10)

ER)=[(0; +Ko})S,, +0.S,.,1, V(R)=2(c; +Ko,)S,, +0.S,,T

e = xxa e~ xxa

Thus, we obtain the MSE (of &) where it is :
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MSE(62)=V(6)+(E(8))—02)’ (3.3.11)

with

VS Bas) | VSiBeys)) 2
J’K? JPK*(K-1)? JK*(K-1)

[(K DV (R)+V(R,)+((K ~Dg(p) = f(P)*V(R)],

V(62)= Cov(S? (Bess), S2(Bess))
s (K
and

ER)+8(PER,) ER;)+f(PER,)

E(6,)=
JK JK(K -1)

where E(R,), V(R,), E(R)) and V(R,) are given in (3.1.7), E(R,) and V(R,) are
given in (3.3.10).

3.4 Comparison of the Estimators for the Primary Unit

Variance

To compare the three estimators (MINQE, AUE and REML) of the variance of

primary units, we calculated the exact MSE’s given in (3.1.8), (3.2.4) and (3.3.11)
R, _ Ry

J=2 JK-J-1

along with the ANOVA estimator of o , [ ] under various

values of the following quantities by the computer programs listed in Appendix B:

1) Values considered for (S, _,S. ) pairs were (0.83,0.17), (0.66,0.34), (0.34,0.66)

xxa % xxe

and (0.17,0.83).

2
2) The ratio of variance components p = G‘; were taken as 0.1, 0.5, 1, 2 and 5.
o

e

3) The pair (J,K) indicating both the number of primary sampling units and the

number of secondary sampling units is (4,7) for all cases.
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As it is expected, Table 3.4.1 indicates that the MINQE of o has the
superiority over the other presented three estimators of o.. Both the REML

estimator and the AUE of o have smaller MSE than the ANOVA estimator of o .

Therefore, it is concluded that both the REML estimator and the AUE have the
superority over the ANOVA estimator.

When p is equal to 0.1 and 0.5, the MSE of the AUE of o is smaller than
the MSE of the REML estimator of o> . However this statement is reversed when p

is equal to 1, 2 and 5. It yields that the AUE has the superiority over the REML
estimator for small values of p. But for large values of p, the REML has the

superiority over the AUE.
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Table 3.4.1 : MSE values of ANOVA, MINQE, REML and AUE estimates of o> for given values of p, S__and S_.

P =0,1 P =05 P =1 P =2 P =5
ANOVA 0.0607 0.4150 1.3078 4.5936 26.4507
S ra =0.83 MINQE 0.0063 0.1091 0.4103 1.6296 10.4459
REML 0.0274 0.1742 0.5418 1.9131 11.2306
S e =0,17 AUE 0.0081 0.1713 0.6945 2.7090 16.7239
S _0.66 ANOVA 0.0607 0.4150 1.3078 4.5936 26.4507
MINQE 0.0060 0.1035 0.4027 1.6395 10.5729
S 034 REML 0.0257 0.1713 0.5462 1.9485 11.4001
AUE 0.0072 0.1708 0.6731 2.6750 16.6767
S o34 ANOVA 0.0607 0.4150 1.3078 4.5936 26.4507
MINQE 0.0056 0.1006 0.4033 1.6570 10.6591
S...—0.66 REML 0.0253 0.1757 0.5603 1.9857 11.5117
AUE 0.0067 0.1670 0.6672 2.6673 16.6674
S 017 ANOVA 0.0607 0.4150 1.3078 4.5936 26.4507
MINQE 0.0055 0.1002 0.4043 1.66259 10.6805
S 0,83 REML 0.0259 0.1782 0.5656 1.9964 11.5390
AUE 0.0066 0.1667 0.6667 2.6667 16.6667
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CHAPTER 4

CONFIDENCE INTERVALS

In this chapter, we describe the exact and approximate confidence intervals
for the four unknown parameters (4, 3,0.,0")of the model. In addition to the

two exact confidence intervals given by Park and Burdick (1994), an exact

confidence interval for £ is constructed. Also, we constructed one approximate

and one exact confidence interval for ¢ by obtaining two unbiased estimators of
4 where one is depending on ,5’a and the other is depending on ,Be, and ﬁa and
Be are given in (2.1.8) and (2.1.9) respectively . Also, the confidence intervals

2 .
for o, and o’ are given.

4.1 Confidence Intervals for £

Park and Burdick (1994) derived the exact confidence interval for 8 by
usng the best linear unbiased estimator (BLUE) of A, which was obtained by
Tong and Cornelius (1989).

IB _ wxya + Sxye
BLU —
&S‘xxa + Sxxe

where ¢ =07 /(07 +K0?), S.us Syus Sue and S, are given in (1.2.2)-(1.2.6).

xxa > xya > xxe

Let w=¢S_, /(S ., +S,..), then ,BBLU can be written as the convex

xxe

combination of two unbiased estimators, Ba and ﬁe of B as follows :

BBLU = a)Ba +(1- a))B(’
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Since 3, ~N(B, (62 +Kkc?)/S..)and B, ~ N(B, o©2/S..) where 3, and j,

are independent, it is obvious that /3 v 18 distributed as normal distribution with
mean [ and the following variance :

A . o8 N2 o, \_ o,
V(ﬂmu)—w(&g J"‘(l o) ES ]—¢Sm+Sm-

xxe

xxa

R )
5 as the estimator of

Assuming that ¢ is known and utilizing S, =

o2, where R, = ¢S>(B,)+(¢S2 /(> (0= 1) +1))+ S2(B,). Here r* is defined as
rr=S8 /(S +S..), SX(B,), S2 and S>(B.) are given in (2.1.6), (2.1.7)

and (2.1.18) respectively,  Park and Burdick (1994) derived the following

(1-2a) two-sided exact confidence interval

R S?2
IBBLUita:JK—ZN,w i_S . (4.1.1)

Also, the length of this interval can be stated as follows :

S2
L =2t , |—2—.
1 e wxxa + Sxxe

) and S?(B,)~ 02 4]« » Park and Burdick

xXxe

Using S, ~ N(B,062/S
(1994) derived another (1-2a)two-sided exact confidence interval by estimating

ol by S;:

, (4.1.2)

s
where S? =M, B and S2(B,) aregivenin (2.1.9) and (2.1.18)

respectively. The length of this confidence interval is as follows :

SZ
L, :2ta:J(K—1)—l S_E

Moreover, we modify the preceding technique by using
B. ~N(B,(c>+Ko?)/S,,) and S>(B.)~(c>+Ko )y?, and obtain the

following interval is :
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B, tt,, , 5 (4.1.3)
2 _ Sj (,Ba) o 2/ 0 . . .
where S = 5 where B, and S;(f,) is givenin (2.1.8) and (2.1.6)
respectively. Also we can state the length of this interval as follows :
S2
Ly=2t,,, S :

xxa

4.2 Confidence Intervals for #

By using ,Ba and ,36 of the estimator of S seperately, we can construct

two different confidence intervals for u .
4.2.1 By using A, as the estimator of S
The unbiased estimator of #, depending on ,[A)’e , is of the form :
f.=Y -p3 (42.1.1)
where ,Be is given in (2.1.9). Observe that

1;,QX 0

1 X"QY 1 )
X"'QXx

Cov(Y ,B.)=Cov| —1" Y, ~—~~ |=—(Ko> + 0~
( . ﬂe) (JK JK XTQX JK( a e)

where Q=1,®P, P=1, —%JK and 1}, Q = 0. Thus, the variance of (4.2.1.1)
is

o’ +Ko’ L o’

Via,)= —,
(4,) K .
. o +Ko! r. O
since V(Y )=—*—* and V =—=
(T)="="2 (B)=5-
A
We now find the standard error of 2, =Y —3,X Since S}(’B ;) and

S2(B.)

K1 are unbiased estimators of o> + Ko and o respectively, the

unbiased estimator of V' (4,) is
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1SHB), 2 1 SHB)
JK J-2 8., JK-J-1

In order to construct a confidence interval for 4, depending on ,bA’e , We

have to find an approximate distribution for the estimates of the variance
components. Using Satterthwhaite’s approximation (Satterthwaite, (1946)) we
can say that the distribution of

201 2013
m LSu(ﬁa)_i_fz 1 Se(ﬂe) L(O'jﬁ'KO'j)‘f')_CZLO-Lz
JK J-2 S, JK-J-1]/ JK S

xxe

can be approximated by a chi-square distribution with m degrees of freedom

where m is obtained by the following formula ;

_, 2
[1(0}2 +Kaf)+;“afj

JK xXxe
m= .
1 (62 +Ko?) ’ )_C..Z o2 ’
—(0o, +Ko - O,
JK ¢ ) S
J=-2 JK —J -1
2010 201
Substituting the unbiased estimators S”(—'B“) and _S.(B) into
J-=2 JK-J -1

o’ +Ko? and o respectively in m, we’ll obtain the estimated m which we

denote it by m . It is given by

200 =2 2/ 2
RIRHUAINE R RS
JK J-2 S JK-J-1

1 s\ X on .
1« . S
(JK S (ﬁa)j +[Sm L(ﬁe)]
(J —2) (JK —J —1)

m=

(4.2.1.2)

It follows that an approximate 1—2¢ confidence interval for u is

ﬂ+L_L$%gx?$%>
cT\JK J-2 S JK-J-1

(4.2.1.3)

where £, , i, S2(f,) and S2(f,) are givenin (4.2.1.1), (4.2.1.2), (2.1.6) and

(2.1.18) respectively. The length of this confidence interval can be stated as

follows :
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Sz P =2 Sz P
L4=2ta,ﬁ L a(ﬁa)-f- s e(ﬁe)
"VJK J-2 S, JK-J-1

4.2.2 By using }, as the estimator of f

The unbiased estimator of &, depending on ,Ba , 1s of the form :

i, =Y -px 4.22.1)
where ,Bu is given in (2.1.8). We have
A ! 15, WX
Cow(y ,f,) = Cov| LIIKY,w = L(KO'j +ol)- XK _— =0
i JK X'WX ) JK X QX

1 1 . A
where W :(IJ —EJJJ®EJK. Then, the variance of f, is:

V(A )Y=VI )+xV(B)= ,
a,)=Vxy)+xvp, S K

K 2 R 2 K 2

%% and V(ﬁa):u_

S

xxa

since V(Y ) = 9. TR0
i JK
V(f,) can be estimated by using the distributional property that

S:? (,Ba) ~ (02 +Ko2)y;.,. Then, we can construct an exact 1—2a confidence

interval for u . It is given by

2N 02/ A
1,210, (Suua * KT )S, (P (4.2.2.2)
JK(J-2)S_,

where S ( Ba) is given in (2.1.6) . The length of this confidence interval can be

found by :

(S, +JKx*)S2(B,)
Ls =2 a.J-2
JK(J-2)S .,

4.3 Confidence interval for o’
In order to construct a confidence interval for & , we use a method

suggested by Williams (1962) which constructs a confidence interval from
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experimental data by combining two or more intervals about the functions of the

parameter of interest and nuisance parameters.

Since S (Ba) ~(02+Kol)y;, as proved in section 2.1, we can state

that;
S:(B)
P[Zi—Z,L < m < Zﬁ—z,U =l-a,
and it follows from that :
2/ 0 2/ 0
P[—S“Z(’B”) <ol +Ko! < S"z(’B“)J=1—a 4.3.1)
Xiu J-2,L

where S2(f,) is given in (2.1.6) .

v,o:  SXB,) .
266 a(ﬂa) is

Let V,=J-2 and V,=J(K-1)—-1. Then > > =
Vi(o, +Ko,) S:(f.)

distributed according to the F-distribution with degrees of freedom ¥V, and V,
since it is shown that S’ (,Be) ~ 0'5){‘?(,“)71 in section 2.1, where S’ (Be) is

given in (2.1.18).

Hence, we have the following confidence interval :

vV o’ S*(/
P F,,, <zt——< "2("2“) <F 0 |=l-a
I/l (Ge +Ko-a) Se (ﬁe)

which can be rewritten as :
2/ 0 2 2/
AL(nsiy 1 ) ot 1(nsidy 1)),
K I/1 S(,B) FVI,VZ,U O-e K Vl Se (;Be) FVl,VZ,L

(4.3.2)

For any fixed o, the two confidence intervals given in (4.3.1) and (4.3.2)

together yield :
200 208
LS8 s lcgr < L[5l 2| (4.33)
K ZJ—Z,U K ZJ*Z,L
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(nsiB) 1 | e L[SiB) 1 )
K VlSe'z(ﬂe)FVl,Vz,U ’ Tk

(434
Equating the left and right hand sides of (4.3.3) and (4.3.4) to each other,

we have the following ;
S%(B.)F,
ol = KLZ”I”Z ) (4.3.5)
v, V4%
Substituting (4.3.5) into (4.3.4), we obtain the following two-sided

confidence interval for o with probability (1-a);

. VS*B)F . VS*B)F
L SR B (At
Kl w,U Vz KZ VL Vz
(4.3.6)

where the length of the interval is :

I = 1 $2(3 V1Se2 (BL )FVI,VZ,U 1 2/ P VlSe2 (BQ)FVI’VZ’L
6 2 a(ﬁa)_ + 2 Sa(ﬁa)_
KIV] U V2 KZ‘H L V2

4.4 Confidence interval for o

We derive an exact confidence interval for O'e2 by using the distributional

S.(B.)

O

e

property that ~ }(5(,(_1)_1 (shown in section 2.1) where S’ (,Be) is

(2.1.18). Thus, we can state :

S2(B.)
P(Z?(K—l)—l,L < P < Zi(K—l)—l,U =l-a

which can be written as a (1-2a)two sided exact confidence interval for o as
follows :

[S<_ﬁ> Mjl @4

2 e 2
Xik-n-1u Xik-n-1L
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where the length of the confidence interval can be stated as follows :
2013 S? 2
Lo SR | SHB)

-2 2
Xik-nv  Xrk-1-iL
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CHAPTER 5

APPLICATION

For the application of all of the estimation techniques and confidence intervals
we’ve mentioned in this study, we use the data from Vonesh and Carter (1987) to
provide an example for the simple linear regression with one-fold nested error
structure. A study was done to evaluate the in vivo ultrafiltration characteristics of a
group of hollow fiber dialyzers. Ultrafiltration rates were measured at four different
transmembrane pressures for each of 17 dialyzers. The actual data are shown in Table

5.1 where x, shows the transmembrane pressures and y, shows the ultrafiltration

rates. Here, in addition to the observational error e ,, dialyzer is the random effect

ko
since 17 dialyzers are randomly selected. Figure 1 shows the individual ultrafiltration
rate (ml/hr) profiles for these 17 dialyzers.

Our goal is to estimate the linear relationship between ultrafiltration rate
(ml/hr) and transmembrane pressure (mmHg). We apply the following model into

the data :

Y,=pu+px, +a, +e,, j=12,..,17, k=1234

Quantities occuring in formulas for the estimation are computed through the
computer programs listed in Appendix A.

The data summary is

S,.=158881.76, S, =4096.27, S =330.93,
S,.=16728030, S, =378372225, S, =858087.62.
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Table 5.1 : Ultrafiltration Data for 17 dialyzers

T~k | 1 2 3 4

Dialyzer | = x Yk X Yk X i Y jk X i Y jk
1 160.0 600.0 | 265.0 1026.0 | 365.0 1470.0 | 454.0 1890.0
2 164.0 516.0 | 260.5 930.0 | 355.0 1380.0 | 451.0 1770.0
3 156.0 480.0 | 260.0 900.0 363.0 1380.0 | 466.0 1860.0
4 160.0 528.0 | 259.0 930.0 361.0 1410.0 | 462.0 1872.0
5 157.0 540.0 | 258.0 978.0 | 359.0 1410.0 | 471.0 1920.0
6 161.0 564.0 | 2640 996.0 | 359.0 1422.0 | 466.0 1920.0
7 161.0 5640 | 263.0 1062.0 | 363.0 1500.0 | 468.0 1980.0
8 158.0 492.0 | 255.0 900.0 360.0 1392.0 | 461.0 1860.0
9 161.0 1516.0 | 263.0 960.0 | 361.0 1380.0 | 462.0 1800.0
10 155.0 528.0 | 255.0 930.0 | 355.0 1356.0 | 455.0 1860.0
11 158.0 564.0 | 267.0 1020.0 | 360.0 1380.0 | 464.0 1884.0
12 1650 618.0 | 263.0 1056.0 | 362.0 1500.0 | 461.0 1920.0
13 158.0 564.0 | 263.0 1038.0 | 367.0 1410.0 | 464.0 1770.0
14 162.0 552.0 | 268.0 1014.0 | 360.0 1440.0 | 465.0 1944.0
15 171.0 6240 | 256.0 978.0 357.0 1440.0 | 466.0 1980.0
16 158.5 468.0 | 263.0 930.0 361.0 1332.0 | 460.0 1860.0
17 162.0 480.0 | 263.0 900.0 | 356.0 1272.0 | 463.0 1758.0
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Individual UFR profiles
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Figure 5.1 : Individual UFR Profiles for 17 dialyzers

5.1 Estimation of Fixed Effect Parameters

5.1.1 Maximum Likelihood Estimation

For this data, the second degree equation, given by (2.2.15) becomes,

—857094.79 8% + 7542866.32 8 —16251375.6 =0
and has the roots 3.76 and 5.03. Thus the log likelihood function of S, given in
(2.2.14) is as follows;

LB — L(B) if Be(3.76,5.03)
(h)= L(B) if Pe(-o,3.76]U[5.03,c)
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The following figure is the log likelihood function L of A for this example when
—-5<p<11;

=25 F
-300 |
-3z5F
-450 F
475 F

_.5|:| -

-5 " -5 E_E [ 7.8 1n

Figure 5.1.1 Graph of the log likelihood function of # when —5< <11

For this data, the third degree equation given in (2.2.16) becomes
B’ =27.175% +474.115-1648.07 =0

which has one real root with two complex roots. Its real root is /3 , = 4.4098. Since
S? (,BM)— S? (,BM)/(K —1)=114598.41> 0, the maximum likelihood estimate of S

is ﬁM =4.40. Then, 2(B)=Y - B)? ~ the maximum likelihood estimate of 4 can be

computed by using the previous formula and the estimated linear equation will be :

Py =—173.91+4.40x .

5.1.2 Estimated Generalized Least Squares Estimation

The estimated generalized least squares estimates of ¢ and £ givenin (2.1.31) is
computed through the program listed in Appendix A using as follows :

fos =—17391, B, =440,
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Thus the estimated linear equation will be y, =-173.91+4.40x , . The following

four graphs give actual and estimated values of the first four UFR profiles for

dialyzers.
2000
E -
£ 1000
"4
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=)
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0 T T T T
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Figure 5.1.2 : Graph of actual and estimated values of the UFR profile of dialyzer 1
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Figure 5.1.3 : Graph of actual and estimated values of the UFR profile of dialyzer 2

45



2000

1500

1000

UFR(ml/hr)

500

0 T T T T
0 100 200 300 400 500

TMP(mmHg)

—e—Actual Values ---a--- Least Squares Estimates

Figure 5.1.4 : Graph of actual and estimated values of the UFR profile of dialyzer 3
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Figure 5.1.5 : Graph of actual and estimated values of the UFR profile of dialyzer 4



5.2 Estimation of Variance Components

5.2.1 Maximum Likelihood Estimation

Since S2(B,,)—S*(B,,) /(K —1) =114598.41 > 0, the maximum likelihood estimate
62(p) of o givenin (2.2.12) is ;

62(B)=1685.72,
where S2(f,,)=129189.56 S*(f,,)=43773.56

We found that 62 () > 0, thus the maximum likelihood estimate 67 (/) of o given
in(2.2.13) is:
62(B) =858.30.

5.2.2 Estimated Generalized Least Squares Estimation
The estimated generalized least squares estimates of o and o given in (2.1.26)

and (2.1.27) are computed through the program listed in Appendix A as follows :
62 =1799.66 , 6> =875.46

5.2.3 MINQE, AUE and REML

Utilizing the a priori information that p =2, the MINQE, AUE and REML estimates

of o given in (3.1.3), (3.2.3) and (3.3.6) respectively are computed as follows :

62 s = 150111,
62 e =179430,

a,AUE
and

G piay, =1685.27 .
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5.3 Confidence Intervals

5.3.1 Confidence Intervals for g

For this data, the exact % 95 confidence intervals for S given in (4.1.2) and (4.1.3)

will become

434< <447
and

242< <2232
respectively.

5.3.2 Confidence Intervals for u

For this data, if we use /3, as the estimator of /3, the % 95 confidence interval for
M given in (4.2.1.3) becomes

—23536<u<-112.20
When we use ,Ba as the estimator of /3, the % 95 confidence interval for ¢ given in

(4.2.2.2) becomes :
—5748.01 < u<442.16

5.3.3 Confidence Intervals for o’ and o’

For this data, % 95 confidence intervals for o> and o (given in 4.3.6 and 4.4.1) will
yield :
1492.18 < o2 <1801.02 and 851.24 <o’ <883.75.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

Data sets with one-fold nested error structure occur in situations where
there has been some form of subsampling from primary sampling units. An
experiment from split-plot, one-restrictional lattice, incomplete block designs and
cases of more than one “measurement” taken on each “subject” are examples of
the simple linear regression model with one-fold nested error structure.

In this thesis, we mainly study the estimation techniques for fixed-effect

parameters, 4 and S and variance components, . and o for the simple linear

regression model with one-fold nested error.

In the first part of the thesis, the definition and a brief introduction of
simple linear regression models with one-fold nested error are presented. Chapter
2 gives the review of estimated generalized least squares estimation (Fuller and
Battese, (1973)) and maximum likelihood estimation (Giiven, (1995)) of fixed-
effect parameters of the simple linear regression model with one-fold nested error.

Generalized least squares estimators are known as unbiased, more efficient
than least squares estimators, asymptotically consistent and asymptotically
normal. Concerning the optimality properties of maximum likelihood estimators,
Giiven (1995) showed the consistency, asymptotic normality and asymptotic
efficiency properties of maximum likelihood estimation in the mixed analysis of
variance models. Estimated generalized least squares estimators of fixed effect
parameters are easy to compute and non-iterative in the nature, however they are
not exact but “estimated” generalized least squares estimators since in order to
find them, first we have to estimate the variance components. On the other hand,
in the maximum likelihood estimation, sorting out the roots of the polynomial

(given in 2.2.16) looks problematic but an algorithm to sort out the roots of this
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polynomial in order to find the maximum likelihood estimate of the slope term
was developed which can be found in the unpublished doctorate thesis of Giiven
(1992). Also we have to note that the resulting maximum likelihood estimators are
the exact roots of the likelihood function.

Chapter 3 considers the estimation of variance components and presents
the Minimum Norm Quadratic Estimator (MINQE), the Almost Unbiased
Estimator (AUE) and the Restricted Maximum Likelihood Estimator (REML) of
the variance of primary units. Among the different variance component
estimators summarized by Searle (1977) we choose these four estimators since
they have exact MSEs.

After deriving the estimators and their MSEs, we computed the exact

S ) and

xxa ® ™ xxe

MSEs of these four estimators under various values of the pair (S

2

the ratio of variance components p = G‘; along with the MSE of ANOVA
o

e

estimator. The results are summarized in Table 3.4.1. It indicates that the MINQE

of o has the superiority over the other presented three estimators of o> where
both the REML estimator and the AUE of ¢ have smaller MSE than the MSE of

the ANOVA estimator of o . Hence, we conclude that both the REML estimator

and the AUE have the superority over the ANOVA estimator. When we compare
the REML estimator and AUE of o, it can be seen that the MSE of the AUE of

o is smaller than the MSE of the REML estimator when p is equal to 0,1 and
0,5. However this statement is reversed when p is equal to 1, 2 and 5. Thus, we

can conclude that the AUE has the superiority over the REML estimator for small
values of p whereas for large values of p, the REML has the superiority over
the AUE.

We covered exact and approximate confidence intervals for the fixed
effect parameters and the variance components of the model in Chapter 4. In
addition to the two exact confidence intervals given by Park and Burdick (1994) ,

we constructed an exact confidence interval for f. When we compare these

confidence intervals for #, we can infer that the ones obtained by Park and
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Burdick are more reliable since their lengths are smaller than the one which we

constructed but one of them given in (4.1.1) is generally not applicable since it
assumes that ¢=0./(c’+Ko?) is known. Moreover in Chapter 4, we

constructed one approximate and one exact confidence interval for 4 by
obtaining two unbiased estimators of 4. One is depending on ,6: whereas the
other is depending on ﬁa. By comparing their lengths, we can infer that the
confidence interval using 2, =Y — Be‘f“ as the unbiased estimator of 4 is more
reliable than the one which employs 2, =Y — ,5’“)?“ as the unbiased estimator of
4. In addition to these, the last section of this chapter gives the confidence

intervals for . and o2.

The last chapter of this thesis is devoted to the application of all of these
estimation techniques and confidence intervals into a real life data we’ve covered
in this study to a real life data set. Some of the conclusions that we mentioned in

thiesis can be verified by the numerical results obtained in Chapter 5.
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APPENDIX A

COMPUTER PROGRAM FOR ESTIMATION
PROCEDURES AND CONFIDENCE INTERVALS

Description :

This program computes the necessary quantities which will occur in the formulas for
the estimation of fixed effect parameters and variance components in addition to the
quantities which will occur in the formulas of the confidence intervals for the data

taken from Vonesh & Carter (1987) mentioned in section 5.

Outputs :

K
MEANX(): X, =) x, /K

_ K
MEANY(]): ¥, =) Y, /K
K
GRANDMEANX : X =Y > x, /(JK)

_ J K
GRANDMEANY : Y =>">"Y, /(JK)

SXXA: S_ givenin (1.2.2)

xxa

SYYA: S, givenin (1.2.4)

SXYA: S_, givenin (1.2.3)

xya

SXXE: §_ givenin (1.2.5)

xxe
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SYYE: S givenin (1.2.7)

e
SXYE: §,, givenin (1.2.6)

RA : S2(8,) given in (2.1.6)

R1: S} givenin (2.1.7)

RE : S2(4.) given in (2.1.18)

GLS _SIGMA_ A SQUARE: & givenin (2.1.27)
GLS_SIGMA_E SQUARE : & given in (2.1.26)
BETA_GLS: S givenin (2.1.31)

MU _GLS: g givenin (2.1.31)

SAB : S2(f)given in (2.2.6)

SEB: S () given in (2.2.5)

P1 : Coefficient of second degree term in the polynomial (2.2.16)
P2 : Coefficient of first degree coefficient in the polynomial (2.2.16)
P3 : Constant term in the polynomial (2.2.16)

Program Listing :

THE OUTPUTS OF THIS PROGRAM ARE STORED IN FILE ‘NESTED.txt’

PROGRAM NESTED
PARAMETER (NCX=4,NCY=4,NRX=17,NRY=17)
DOUBLE PRECISION
X(NRX,NCX),Y(NRY,NCY),SUMX(17),MEANX(17),SUMY(17)
DOUBLE PRECISION
GRANDSUMX,GRANDMEANX,GRANDSUMY,GRANDMEANY,SXXA
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DOUBLE PRECISION
SYYA,SXYA,SXXE,MEANY(17),SYYE,SXYE.SA SQUARE

DOUBLE PRECISION
ANOVA SIGMA E SQUARE,RO HEAD,Y N(17,4),X N(17,4)

DOUBLE PRECISION
GRANDSUMX_N,GRANDSUMY N,GRANDMEANX N,GRANDMEANY N

DOUBLE PRECISION SXYT N,SXXT N,BETA N,MU N,YFIT N(17.,4)

DOUBLE PRECISION
RESID N(17,4),BETA_A,BETA E,GLS SIGMA A SQUARE
DOUBLE PRECISION
GLS SIGMA_E SQUARE,C,D,E,F.BETA_ GLS,MU_GLS
DOUBLE PRECISION
A,B,GAMMA A,GAMMA E,C1,C2,C3,P0,P1,P2,P3
DOUBLE PRECISION
SE_SQUARE,ANOVA_SIGMA_A SQUARE,SEB,SAB
EXTERNAL WRRRN

OPEN(2,FILE="NESTED.txt")

C  SET VALUES FORX AND Y

DATA ((X(1,J),J=1,4),I=1,17)/160.0,265.0,365.0,454.0,164.0,260.5,
355.0,451.0,156.0,260.0,363.0,466.0,160.0,259.0,361.0,462.0,
157.0,258.0,359.0,471.0,161.0,264.0,359.0,466.0,
161.0,263.0,363.0,468.0,158.0,255.0,360.0,461.0,
161.0,263.0,361.0,462.0,155.0,255.0,355.0,455.0,
158.0,267.0,360.0,464.0,165.0,263.0,362.0,461.0,
158.0,263.0,367.0,464.0,162.0,268.0,360.0,465.0,
171.0,256.0,357.0,466.0,158.5,263.0,361.0,460.0,
162.0,263.0,356.0,463.0/

DATA ((Y(K,L),L=1,4),K=1,17)/600.0,1026.0,1470.0,1890.0,516.0,

R R R RR
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20

10

50

R RRR

930.0,1380.0,1770.0,480.0,900.0,1380.0,1860.0,528.0,930.0,
1410.0,1872.0,540.0,978.0,1410.0,1920.0,564.0,996.0,1422.0,
1920.0,564.0,1062.0,1500.0,1980.0,492.0,900.0,1392.0,1860.0,
516.0,960.0,1380.0,1800.0,528.0,930.0,1356.0,1860.0,
564.0,1020.0,1380.0,1884.0,618.0,1056.0,1500.0,1920.0,
564.0,1038.0,1410.0,1770.0,552.0,1014.0,1440.0,1944.0,
624.0,978.0,1440.0,1980.0,468.0,930.0,1332.0,1860.0,
480.0,900.0,1272.0,1758.0/
CALL WRRRN('X',NRX,NCX,X,NRX,0)
CALL WRRRN("Y',NRY,NCY,Y,NRY,0)

CALCULATING PRIMARY UNIT MEANS AND GRAND MEANS
DO 10 1=1,17
DO 20 J=1,4
SUMX(1)=SUMX(I)+X(LJ)
SUMY(I)=SUMY (I)+Y(LJ)
CONTINUE
MEANX(I)=SUMX(I)/4
MEANY (1)=SUMY (I)/4
CONTINUE
PRINT*,/MEANX',MEANX
WRITE(2,*)MEANX',MEANX
PRINT*'MEANY' MEANY
WRITE(2,*)MEANY',MEANY
DO 50 I=1,17
DO 50 J=1,4
GRANDSUMX=GRANDSUMX+X(L,J)
GRANDSUMY=GRANDSUMY+Y(L,J)
CONTINUE
GRANDMEANX=GRANDSUMX/68
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GRANDMEANY=GRANDSUMY/68
PRINT*GRANDMEANX='GRANDMEANX
WRITE(2,*)GRANDMEANX="'GRANDMEANX
PRINT*GRANDMEANY=',GRANDMEANY
WRITE(2,*))GRANDMEANY=',GRANDMEANY

CALCULATING SXXA, SYYA, SXYA, SXXE, SYYE, SXYE
DO 70 1=1,17
SXXA=SXXA+(MEANX(I)-GRANDMEANX)**2)
SYYA=SYYA+(MEANY(I)~GRANDMEANY)**2)
SXYA=SXYA+(MEANX(I)-GRANDMEANX)*(MEANY(I)-

GRANDMEANY))

70

100

CONTINUE

SXXA=4*SXXA
PRINT*,'SXXA="SXXA
WRITE(2,%),'SXXA=',SXXA
SYYA=4*SYYA
PRINT*,SYYA="SYYA
WRITE(2,%),'SYYA=',SYYA
SXYA=4*SXYA
PRINT*,SXYA='SXYA
WRITE(2,%),'SXYA=',SXYA

DO 100 I=1,17

DO 100 J=1,4
SXXE=SXXE+((X(IJ)-MEANX(I))**2)
SYYE=SYYE+(Y(IJ)-MEANY(I))**2)
SXYE=SXYE+((X(LJ)-MEANX(I))*(Y(LJ)-MEANY(I)))
CONTINUE

PRINT*,'SXXE=",SXXE

WRITE(2,*), SXXE=',SXXE
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PRINT*,'SYYE=,SYYE
WRITE(2,*),'SYYE=",SYYE
PRINT*,'SXYE="SXYE
WRITE(2,*)'SXYE=",SXYE

CALCULATING RA, RE AND R1
RA=SYYA-((SXYA**2)/SXXA)

RE=SYYE-((SXYE**2)/SXXE)
RI=(SXXA/(SXXE*(SXXE+SXXA)))*(((SXXE*SXYA)/SXXA)-

SXYE)**2)

PRINT* 'RA="RA
WRITE(2,*)RA="RA
PRINT*,'RE=',RE
WRITE(2,*)RE=',RE
PRINT*,R1='R1
WRITE(2,*)R1="R1

COMPUTING THE GENERALIZED LEAST SQUARES ESTIMATES

GLS SIGMA_E SQUARE=RE/(68-17-1)

BETA A=SXYA/SXXA

BETA_E=SXYE/SXXE

RB=RA+R]1

A=RB-(16*GLS_SIGMA E SQUARE)
B=4*(15+(SXXE/(SXXA+SXXE)))

GLS_SIGMA_ A SQUARE=A/B

PRINT*GLS SIGMA A SQUARE=,GLS SIGMA A SQUARE
WRITE(2,*)'GLS_SIGMA A SQUARE='GLS_SIGMA A SQUARE
PRINT*'GLS SIGMA E SQUARE=,GLS SIGMA E SQUARE
WRITE(2,*)'GLS_SIGMA_E_SQUARE='GLS_SIGMA_E_SQUARE
C=GLS_SIGMA E SQUARE*SXYA
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C

D=(GLS_SIGMA_E SQUARE+(4*GLS_SIGMA A SQUARE))*SXYE
E=GLS_SIGMA_E SQUARE*SXXA

F=(GLS SIGMA E SQUARE+(4*GLS SIGMA A SQUARE))*SXXE
BETA_GLS=(C+D)/(E+F)
MU_GLS=GRANDMEANY-(BETA_GLS*GRANDMEANX)
PRINT*'BETA_GLS=,BETA GLS
WRITE(2,*YBETA_GLS=',BETA_GLS

PRINT*/'MU GLS='MU GLS

WRITE(2,*)MU_GLS="MU_GLS

CALCULATIONS CONCERNING THE MAXIMUM LIKELIHOOD

ESTIMATION

180

GAMMA_A=SYYA/SXXA

GAMMA E=SYYE/SXXE

P1=((5*BETA_E)+(7*BETA_A))/-4
P2=(GAMMA_E+(8*BETA_A*BETA_E)+(3*GAMMA_A))/4
P3=(GAMMA_E*BETA_A)+(3*GAMMA_A*BETA_E))/-4

DO 180 I=1,17

DO 180 J=1,4

SEB=SEB+((Y(I,J)-MEANY (I)-(4.40982*(X(L,J)-MEANX(I))))**2)
CONTINUE

DO 190 I=1,17

SAB=SAB+((MEANY (I)-GRANDMEANY-(4.40982*(MEANX(I)-

GRANDMEANX)))**2)

190

CONTINUE
SAB=4*SAB
PRINT*,P1=',P1
WRITE(2,*)'P1=",P1
PRINT*,P2="P2
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WRITE(2,*)'P2=",P2
PRINT*,'P3=",P3
WRITE(2,*)'P3=",P3
PRINT*,'SEB=',SEB
WRITE(2,*)'SEB=",SEB
PRINT*,'SAB=",SAB
WRITE(2,*)'SAB=",SAB
END
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APPENDIX B

COMPUTER PROGRAMS FOR CALCULATING MSE’S
OF MINQE, AUE AND REML OF o¢;

Description :

This program computes the MSE of MINQE of o’ given in (3.1.8) under the

conditions given in section 3.4.
Inputs :
SXXA: §_, givenin (1.2.2)

SXXE: §,, givenin (1.2.5)

0_2

RO: p= 0'_:2
Outputs :

MSEMINQE : MSE of MINQE of & given in (3.1.8)
Program Listing
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THE OUTPUTS OF THIS PROGRAM ARE STORED IN FILE ‘MINQE.txt’

PROGRAM MINQE
DOUBLE PRECISION

SIGMA_A SQUARE,SIGMA_E_SQUARE,RO,SXXA,SXXE,MSE1

C

DOUBLE PRECISION J,K,A,B,C,D,E,F
OPEN(2,FILE="MINQE.txt")

TAKING THE VALUES OF INPUTS

J=4

K=7

PRINT*,'SXXA="

READ*,SXXA

PRINT*,'SXXE='

READ* SXXE

PRINT*,RO='

READ*RO

SIGMA_E_SQUARE=1

SIGMA A SQUARE=RO*SIGMA_E_SQUARE
COMPUTING THE MSE OF MINQE BY PARTITONING THE

EXPRESSION AND CALCULATING THESE PARTS

A=(K*(RO**2)*SIGMA_E_SQUARE)/(J*(1+(K*RO)))
B=I-2
C=((1+H(K*R0O))*SXXE)/(SXXA+((1+HK*RO0))*SXXE))
D=(2*(A**2))*(B+(C**2))

E=A*(B+C)

F=(E-SIGMA_A_SQUARE)**2

MSEMINQE=D+F
PRINT*,'MSEMINQE=',MSEMINQE

WRITE(2,*), MSEMINQE=',MSEMINQE

END
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Description :

This program compute the MSE of AUE of o given in (3.2.4) under the conditions

given in section 3.4.

Inputs :

SXXA: S _ givenin (1.2.2)

xxa

SXXE: S__ givenin (1.2.5)

xxe

o,

RO: p=

2
e

Outputs :

MSEAUE : MSE of AUE of ¢ given in (3.2.4)

Program Listing :

THE OUTPUTS OF THIS PROGRAM ARE STORED IN FILE ‘AUE.txt’

PROGRAM AUE
DOUBLE PRECISION
SIGMA A SQUARE,SIGMA_E SQUARE,RO,SXXA,SXXE
DOUBLE PRECISION J,K,ERA,ER1,VRA,VR1,GR,EREML,VAUE
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C

DOUBLE PRECISION MSEAUE,SIGMA_B_SQUARE,EAUEN,EAUED
OPEN(2,FILE="AUE.txt")

TAKING THE VALUES OF INPUTS

J=4

K=7

PRINT*,'SXXA='

READ*,SXXA

PRINT*,'SXXE="

READ*,SXXE

PRINT*,RO='

READ* RO

SIGMA_E SQUARE=1

SIGMA_ A SQUARE=RO*SIGMA_E SQUARE

SIGMA_B SQUARE=SIGMA_E_SQUARE+(K*SIGMA_A_SQUARE)
COMPUTING THE EXPECTED VALUES AND VARIANCES OF THE

RA AND R1

*2
C

ERA=SIGMA B _SQUARE*(J-2)
ERI=(SIGMA_B_SQUARE*SXXE)+(SIGMA_E_SQUARE*SXXA)
VRA=(SIGMA B_SQUARE**2)*2%(]-2)
VRI=(((SIGMA_B_SQUARE*SXXE)+(SIGMA_E_SQUARE*SXXA))**2)

COMPUTING THE MSE OF AUE BY PARTITIONING THE

EXPRESSION AND CALCULATING THESE PARTS SEPERATELY

GR=(((1+(K*R0))**2)*SXXE)/((SXXA+((1+(K*R0))*SXXE))**2)
C=SXXA/(SXXA-+((1+(K*RO))*SXXE))
EAUEN=(RO*(ERA+(GR*ER1)))
EAUED=((1+(K*R0))*(J-1-C))
EAUE=EAUEN/EAUED
VAUE=((RO**2)*(VRA+((GR**2)*VR1)))/(((1+(K*R0))*(J-1-C))**2)
MSEAUE=((EAUE-SIGMA A SQUARE)**2)+VAUE
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PRINT*'MSEAUE='MSEAUE
WRITE(2,*),MSEAUE=',MSEAUE
END
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Description :

This programs computes the MSE of REML of o given in (3.3.1.1) under the

conditions given in section 3.4.
Inputs :

SXXA: S_ givenin (1.2.2)

xxa

SXXE: S _, givenin (1.2.5)

xxe

2

RO: p=2s

Outputs :

MSEREML : MSE of REML of o’ given in (3.3.1.1)
Program Listing :
THE OUTPUTS OF THIS PROGRAM ARE STORED IN FILE ‘REML.txt’
PROGRAM REML
DOUBLE PRECISION
SIGMA A SQUARE,SIGMA E SQUARE,RO,SXXA,SXXE
DOUBLE PRECISION

JLLK,ERALERTLERE,VRA,VR1,VRE,FR,GR,EREML,VREMLN
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DOUBLE PRECISION

VREMLD,VREML,MSEREML,SIGMA B SQUARE

OPEN(2,FILE="REML.txt")

C  TAKING THE VALUES OF INPUTS
J=4
K=7
PRINT*,'SXXA="
READ*,SXXA
PRINT*,'SXXE='
READ* SXXE
PRINT*,RO='
READ*RO
SIGMA_E_SQUARE=1
SIGMA A SQUARE=RO*SIGMA_E SQUARE
SIGMA_B SQUARE=SIGMA_E_SQUARE+(K*SIGMA_A_ SQUARE)
C  COMPUTING THE EXPECTED VALUES AND VARIANCES OF RA,
RE AND R1
ERA=SIGMA B_SQUARE*(J-2)
ERI=(SIGMA_B_SQUARE*SXXE)+(SIGMA_E_SQUARE*SXXA)
ERE=SIGMA_E SQUARE*((J*K)-J-1)
VRA=(SIGMA_B_SQUARE**2)*2%(J-2)
VRI=(((SIGMA_B_SQUARE*SXXE)+(SIGMA_E_SQUARE*SXXA))**2)
)
VRE=(SIGMA_E_SQUARE**2)*2*((J*K)-J-1)
C  COMPUTING THE MSE OF REML BY PARTITONING THE

EXPRESSION AND CALCULATING THESE PARTS SEPERATELY

FR=SXXA/((SXXA+((1+(K*RO))*SXXE))**2)
GR=(((1+(K*R0))**2)*SXXE)/((SXXA+((1+(K*R0O))*SXXE))**2)
EREML=(((K-1)*ERA)*+((((K-1)*GR)-FR)*ER1)-ERE)/((J*K)*(K-1))
VREMLN=(((K-1)**2)*VRA)+(((((K-1)*GR)-FR)**2)*VR1)+VRE
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VREMLD=(((J*K)**2)*((K-1)**2))
VREML=VREMLN/VREMLD
MSEREML=((EREML-SIGMA_A_SQUARE)**2)+VREML
PRINT* 'MSEREML=MSEREML

WRITE(2,*), MSEREML="MSEREML

END
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