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ABSTRACT 
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In the first part of this study, two entropy methods under different 

distribution assumptions are examined on a network of stream gauging 

stations located in Kızılırmak Basin to rank the stations according to their 

level of importance. The stations are ranked by using two different entropy 

methods under different distributions. Thus, showing the effect of the 

distribution type on both entropy methods is aimed.  
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In the second part of this study, autoregressive models with asymmetric 

innovations and an artificial neural network model are introduced.  

Autoregressive models (AR) which have been developed in hydrology are 

based on several assumptions. The normality assumption for the 

innovations of AR models is investigated in this study. The main reason of 

making this assumption in the autoregressive models established is the 

difficulties faced in finding the model parameters under the distributions 

other than the normal distributions. From this point of view, introduction 

of the modified maximum likelihood procedure developed by Tiku et. al. 

(1996) in estimation of the autoregressive model parameters having non-

normally distributed residual series, in the area of hydrology has been 

aimed. It is also important to consider how the autoregressive model 

parameters having skewed distributions could be estimated.   

 

Besides these autoregressive models, the artificial neural network (ANN) 

model was also constructed for annual and monthly hydrologic time series 

due to its advantages such as no statistical distribution and no linearity 

assumptions.   

 

The models considered are applied to annual and monthly streamflow 

data obtained from five streamflow gauging stations in Kızılırmak Basin. It 

is shown that AR(1) model with Weibull innovations provides best 

solutions for annual series and AR(1) model with generalized logistic 

innovations provides best solution for monthly as compared with the 

results of artificial neural network models.  

 

Keywords: Entropy method, Autoregressive model, Asymmetric 

innovations, Modified maximum likelihood, Artificial neural network 
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ÖZ 
 

 

 

AKIM VERİLERİNİN DEĞERLENDİRİLMESİ VE MODELLENMESİ: 

ENTROPİ METODU, SİMETRİK OLMAYAN HATA TERİMLİ 

OTOREGRESSİF MODELLER VE YAPAY SİNİR AĞLARI 

 

 

Şarlak, Nermin 

      Doktora, İnşaat Mühendisliği Bölümü 

                                Tez Yöneticisi: Prof. Dr. A. Ünal ŞORMAN 

 

           Haziran 2005, 171 sayfa 

 

 

Çalışmanın ilk kısmında, iki ayrı Entropi yöntemi farklı dağılım 

varsayımları altında Kızılırmak havzasında yer alan akım gözlem ağındaki 

istasyonları önem seviyelerine göre sıralamak için irdelenmiştir. Farklı 

dağılımlar için Yöntem 1 ve Yöntem 2’den istasyon sıralamaları elde 

edilmiştir. Böylece, dağılım tiplerinin her iki yöntem üzerindeki etkilerinin 

gösterilmesi amaçlanmıştır.   

 

Çalışmanın ikinci kısmında, simetrik olmayan hata terimli otoregressif 

modeller ve yapay sinir ağları tanıtılmıştır. Hidrolojik zaman serilerini 
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modellemek için hidrolojide geliştirilen otoregressif modeller (AR) çeşitli 

varsayımlara dayanmaktadır. Bu çalışmada, otoregressif modellerin 

dayandığı başlıca varsayım olan artık serilerin normal dağıldığı varsayımı 

irdelenmiştir. Kurulan otoregressif modellerde bu varsayımın 

yapılmasının başlıca nedeni normal dağılım dışındaki dağılımlarda da 

model parametrelerinin bulunmasında karşılaşılan zorluklardır. Bu 

bakımdan, normal dağılıma uymayan artık serilere sahip otoregressif 

modellerin parametrelerini tahmin etmede Tiku ve diğerleri (1996) 

tarafından geliştirilen “uyarlanmış en çok olabilirlik” yönteminin hidroloji 

alanına tanıtımı amaçlanmıştır. Çarpık dağılımlara sahip otoregressif 

modellerin parametrelerinin nasıl tahmin edilebileceğinin gözönüne 

alınması da önemlidir.  

 

Otoregressif modellerin yanısıra istatistiksel dağılım ve lineer ilişki 

varsayımları içermeyen yapay sinir ağları modeli (YSA) de yıllık ve aylık 

hidrolojik zaman serileri için kurulmuştur.   

 

Dikkate alınan modeller, Kızılırmak havzasındaki beş akım gözlem 

istasyonları yıllık ve aylık veri setlerine uygulanmıştır. Yapay sinir ağları 

modelleri sonuçları ile kıyaslandığında yıllık akım verileri için Weibull 

hata terimli AR(1) modeli en iyi sonucu verirken, aylık akım verileri için 

genel lojistik hata terimli AR(1) modeli en iyi sonucu vermiştir. 

 

Anahtar kelimeler: Entropi yöntemi, Otoregressif model, Simetrik olmayan 

hata terimleri, Uyarlanmış en çok olabilirlik, Yapay sinir ağı 
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PART I 

EVALUATION OF STREAMFLOW DATA BY USING 
ENTROPY METHOD 

CHAPTER 1 

 
 
 

INTRODUCTION 
 

 

 

1.1 GENERAL INFORMATION 

 
Entropy concept can be best explained by spontaneous processes. A 

spontaneous process is a physical change that occurs by itself.  It requires 

no continuining outside agency to make it happen. For example, a rock at 

the top of a hill rols down. Heat flows from a hot object to a cold one. An 

iron object rusts in moist air. These processes occur spontaneously, or 

naturally, without requring an outside force or agency. They continue until 

equilibrium is reached. If these processes happen in the opposite direction, 

they would be nonspontaneous. Such that the rolling of a rock uphill by 

itself is not a natural process; it is nonspontaneous. The rock could be 

moved to the top of the hill, but work would have to be expended. Heat 
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can be made to flow from a cold to a hot object, however a heat pump is 

needed. Rust can be converted to iron, but the process requires chemical 

reactions used in the manufacture of iron from its ore (iron oxide) (Ebbing 

and Gammon, 1999). 

 

The second law of thermodynamics provides a way to answer questions 

about spontaneity of a reaction. The second law is expressed in terms of 

quantity called as entropy. Entropy is a thermodynamic quantity that is a 

measure of molecular disorder, or molecular randomness. As a system 

becomes disordered, the positions of the molecules become less predictable 

and the entropy increases. For example, while the entropy of a substance is 

lowest in the solid phase, it is highest in the gas phase.  

 

The molecules of a substance in solid phase continually oscillate, creating 

an uncertainty about their positions. These oscillating molecules become 

completely motionless when absolute temperature is zero. There is no 

uncertainty about the state of the molecules at that instant. Therefore, from 

a microscopic point of view, the entropy of a system increases whenever 

the molecular randomness or uncertainty of a system increases (Çengel , 

1997). 

 

Boltzmann gave a new definition for entropy concept by analyzing 

microscopic states of a thermodynamic system (McMurry and Fay, 2001). 

Boltzmann’s definition is related to the total number of possible 

microscopic states of that system. This relation is expressed as (Çengel , 

1997): 

 

S = s a                                                                                                             (1.1) nl
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where S is the entropy, s is the Boltzmann constant and a is the 

thermodynamic probability. 

 

Shannon (1948) adopted Boltzmann’s definition by probability 

distribution. He described that entropy is the amount of uncertainty in any 

probability distribution. Thus, entropy concept can be used as a measure of 

uncertainty and indirectly as a measure of information in probabilistic 

terms. He considered the transmission of signals through a communication 

channel as to be a stochastic process. He expressed the concept of 

information as “entropy” since his mathematical formula for the concept is 

similar to the entropy function defined in statistical mechanics.  

 

According to Shannon, information is accomplished only when there is 

uncertainty about an event. This uncertainty points out the presence of 

alternative results the event may assume and the action of making 

selections among them. Alternatives with a high probability of occurrence 

convey little information and vice versa. So, the probability of occurrence 

of a certain alternative is the measure of uncertainty or the degree of 

expectedness of a sign, symbol or number. It is this uncertainty that 

Shannon refers to as “entropy”. 

 

When a signal is sent in a communication process, it assumes a certain 

value among the original series of alternatives; its uncertainty is reduced, 

thus it brings information as much as its uncertainty is removed. So, the 

information gained is indirectly measured as the amount of reduction of 

uncertainty or of entropy. According to Shannon, signals must have a 

“surprise value” to create information. If this is not valid, signals convey 

no information.  
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Sampling data in hydrology is basically a way of communicating with the 

natural system which is uncertain prior to the making of any observation. 

Each collected sample actually represents a signal from the natural system. 

Redundant information does not help us to reduce the uncertainty further; 

it only increases the costs of obtaining data. On the basis of this analogy, a 

methodology based on the entropy concept of information theory has been 

developed for the evaluation of hydrological data networks (Özkul, 1996). 

Therefore, entropy is a measure of the degree of uncertainty of random 

hydrological processes. Since the reduction of uncertainty by means of 

making observations is equal to the amount of information gained, the 

entropy criterion indirectly measures the information content of a given 

series of data. Once the statistical structure of a process is known, its 

entropy can be computed and expressed in specific units (bits, napier or 

decibel) (Harmancıoğlu, 1981).  

 
 

1.2 LITERATURE SURVEY 

 
Amorocho, J. and Espildora, B., (1973), considered that the entropy 

concept, as defined by Shannon, gave satisfactory results in the 

comparison between various mathematical models developed for the same 

hydrological process and in the selection of the most appropriate model. 

 

The concept of a hydrologic network as a communication channel which is 

designed for transmitting hydrologic information was introduced in 

Caselton, W. F. and Husain T., (1980). 

 

Harmancıoğlu, N.B. and Yevjevich, V., (1987), carried out studies using 

entropy method on monthly observed data of a highly polluted river basin. 
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They used entropy-based measures in their study to evaluate the goodness 

of information transfer by regression. The results of their study have 

basically revealed that the association between most of the water quality 

variables is insignificant. 

 

Husain, T., (1989), presented a simple methodology, using the entropy 

concept, to estimate regional hydrologic uncertainty and information at 

both gauged and ungauged grids in a basin. The computation formulas of 

single and joint entropy terms depend on single and multivariable 

probability density functions were derived for the gamma distributions.  

  

Yang, Y. and Burn, D. H., (1994), developed a new methodology for data 

collection network design. The approach employed a measure of the 

information flow between gauging stations in the network which was 

referred as the directional information transfer. Non-parametric estimation 

was used to approximate the multivariate probability density functions 

which were required in the entropy calculations. The directional 

information transfer was found useful in a network study to measure the 

association between gauging stations.  

 

Harmancıoğlu, N.B., Fistikoglu, O. and Özkul, S., (2003), discussed an 

entropy-based approach for the assessment of combined spatial/temporal 

frequencies of monitoring networks. The results were demonstrated in the 

case of water quality data observed along the Mississippi River in 

Louisiana. The authors emphasized that the entropy method used in this 

study was best to utilize different techniques in combination and to 

investigate network features from different perspectives before a final 

decision was made for network assessment and redesign.  
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1.3 SCOPE OF THIS STUDY 

 
In recent years, it is realized that the reserves of the world’s water 

resources with regard to both quantity and quality are limited.  In order to 

enhance the economic situation of a developing country like Turkey, the 

water resources systems should be planned much more effectively. Water 

resources engineers should determine the amount of existing water 

potential from the observed values of hydrological variables measured at 

different points in time and space. The duty of the engineer is to extract the 

maximum amount of information conveyed through these data which are 

used in the design and operation of water resources systems. In Turkey, 

these measurements are being conducted by mainly Electrical Power 

Resources Survey and Development Administration (EIEI), State 

Hydraulic Works (DSI) and General Directorate of Rural Services (KHGD). 

The gauging stations of EIEI are mainly located on the main rivers of large 

catchments whereas the ones of DSI are generally installed on the main 

streams and their tributaries. Some stations operate for relatively short 

time and they are closed as soon as their functions are over.  

 

The above mentioned three governmental agencies collect data from their 

stream gauging stations. These data are published yearly for 

corresponding water year. Although there are a lot of collected hydrologic 

data useful information conveyed by these data are insufficient, which 

makes the data redundant or unuseful. Therefore, to prevent the collection 

of unnecessary data, it is necessary to monitor the performance of the 

existing networks with respect to cost-efficiency. The result of such an 

evaluation should then lead to redesign stream-gauging network for 

assuring an optimal network.  
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Study of literature survey indicated that entropy method gives reliable 

means for evaluating the performance of the existing stream-gauging 

networks. According to these studies, entropy method can be used to select 

appropriate stations so as to avoid redundant information. That is, entropy 

method is suitable for use in the design of sampling stations. The concept 

of entropy methods for univariate, bivariate and multivariate cases are 

introduced in Chapter 2.  

 

In this study, two entropy methods are presented to design stream- 

gauging network according to the importance of the information level of 

stations. The first entropy method is based on the combination of stations 

with the least transinformation and was developed with normal and 

lognormal distributions. The second method is based on ranking the 

stations and applying normal, log-normal and gamma distributions.  

 

The aim of this study is to investigate the effect of distribution types on the 

two entropy methods. To achieve this objective, these entropy methods 

were applied under different distributions for the annual observations of 

five runoff stations in the Kızılırmak basin. The results are given in 

Chapter 3. It was found out that rating positions of the selected stations 

were changed for each distribution type. This indicates that the designer 

should be very careful in selecting the type of distribution that he (or she) 

will use in the calculations.  
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CHAPTER 2 
 

 
 

ENTROPY METHODS 
 

 

 

2.1 INTRODUCTION 

 
The methodology based on entropy principle is considered in this study 

due to the advantages of the method in network design problems. In the 

following sections, the brief introduction is presented to describe the 

entropy principle. Therefore, the derived mathematical formulations for 

univariate, bivariate, multivariate and continuous processes are given from 

the principles of information theory.  

 
 

2.2 ENTROPY CONCEPT FOR UNIVARIATE CASE 

 
Marginal entropy is the measure of the total amount of uncertainty or it is 

the indirect measure of the total amount of information content of a single 

process, X. According to information theory, the amount of uncertainty 

reduced is equal the amount of information gained. Thus H(X) is 

delimitated as “marginal entropy” of X. The entropy of a discrete random 

variable X with N elementary events of probability defined in information 
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theory is calculated using the appropriate distribution function from Eq. 

(2.1).  

 

[∑
=

=
N

1n
nn )x(p/1og)x(ps)X(H l ]                                                                           (2.1) 

 

where the probability p(xn) is based on the empirical frequency of variable 

X. The entropy concept of H(X) is defined in (bits) for logarithms to the 

base 2, in (napier) to the base e, or in (decibel) to the base 10. The value, s 

can be taken as 1 (Harmancıoğlu, 1981). The probabilities p(xn) can be 

approximated as: 

 

x)x(f)x(p nn Δ=                                                                                                (2.1a) 

 

in which ∆x intervals are chosen to be sufficiently small and f(x) is the 

density function of any distribution (Ang and Tang, 1975). 

 
 

2.3 ENTROPY CONCEPT FOR BIVARIATE CASE 

 
When two random processes X and Y occur at the same time, the total 

entropy or the total amount of information conveyed by these independent 

random variables is equal to the sum of their marginal entropies: 

 

H(X,Y)=H(X)+H(Y)                                                                                           (2.2) 

 

When significant stochastic dependence exists between variables X and Y, 

the total entropy is less than the total entropy of Eq. (2.2):  
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[∑∑
= =

=
N

1n

N

1n
nnnn )y,x(p/1og)y,x(ps)Y,X(H l ]                                                      (2.3) 

 

which p(xn,yn) is a probability of an outcome for X and Y. The total entropy 

is also expressed as (Harmancıoglu, 1981): 

 

H(X,Y) = H(X) + H(Y/X)                                                                                 (2.4) 

 

H(X,Y) = H(Y) + H(X/Y)                                                                                 (2.5) 

 

in which H(X/Y) or H(Y/X) is the conditional entropy. The concept of 

“conditional entropy” has to be introduced as a function of conditional 

probabilities of X and Y with respect to each other: 

 

∑
=

−=
N

1n
nnnn )y/x(ogp)y,x(ps)Y/X(H l                                                            (2.6) 

 

∑
=

−=
N

1n
nnnn )x/y(ogp)y,x(ps)X/Y(H l                                                            (2.7) 

 

where p(xn/yn) or p(yn/xn) (n=1,2,...,N) defines the conditional 

probabilities of the values xn and yn.   The conditional entropy H(X/Y) 

defines the amount of uncertainty that still remains in X, even if Y is 

known, and the same amount of information can be gained by observing X.  

 

Therefore, the total entropy H(X,Y) of dependent X and Y will be less than 

the total entropy if the processes were independent: 

 

H(X,Y) < H(X) + H(Y)                                                                                       (2.8) 

 10



Transinformation is another entropy measure which measures the 

redundant or mutual information between X and Y. It is described as the 

difference between the total entropy and joint entropy of dependent X and 

Y (Harmancıoglu et. al., 2003). 

 

T(X,Y)=H(X)+H(Y)-H(X,Y)                                                                              (2.9) 

 

Since transinformation represents the amount of information that is 

repeated in X and Y, the total uncertainty is reduced in the amount of 

T(X,Y) which is common to both processes when stochastic dependence 

exists between X and Y. In other words, transinformation defines the 

amount of uncertainity that can be reduced in one of the processes when 

the outcomes of the other processes are known. 

  

By replacing the term H(X,Y) in Eq. (2.9) with its definition given in Eq. 

(2.4) or (2.5), transinformation can be formulated as: 

 

T(X, Y) =H(Y) – H(Y/X)                                                                                 (2.10) 

 

T(X, Y) =H(X) – H(X/Y)                                                                                 (2.11) 

 

Transinformation and the other concepts of the entropy, always assumes 

positive values:  

 

T(X, Y) ≥ 0                                                                                                        (2.12) 
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When two variables have no information in common, that is when they are 

independent of each other; it is obvious that transinformation equals to 

zero (Harmancıoğlu, 1981; Özkul, 1996). 

 
 

2.4 ENTROPY CONCEPT FOR CONTINUOUS CASE 

 
The formulation of entropy concept introduced in the previous sections for 

any random variable may be applied to hydrological variables which are 

basically stochastic in nature. However hydrological process is generally 

represented by a continuous random variable and the probability 

distribution function of the variable is assumed to be known. Therefore, 

the summation procedures of Eq. (2.1) are usually replaced by integrals: 

 

[ dx)x(f/1og)x(f)X(H nn∫
∞

∞−

= l ]                                                                         (2.13) 

 

Similarly the total entropy of X and Y and the conditional entropy of X 

with respect to Y can be expressed for continues case as: 

 

[ ]dxdy)y,x(f/1og)y,x(f)Y,X(H nnnn∫ ∫
∞

∞−

∞

∞−

= l          and                                 (2.14) 

 

dxdy)y/x(ogf)y,x(f)YX(H nnnn∫ ∫
∞

∞−

∞

∞−

= l .                                                     (2.15) 
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2.5 PROBABILITY DISTRIBUTIONS 

 
Among a number of probability density functions, only those which have 

bivariate density function in literature are described in subsequent 

sections. 

 
 
 
2.5.1 Normal Probability Distribution  

 
The normal probability density function of a random variable X is obtained 

as:  

 

⎥
⎦

⎤
⎢
⎣

⎡
σ
μ−

−
πσ

= 2

2

2
)x(exp

2
1)x(f                                                                           (2.16) 

 

where μ is the mean and σ is the standard deviation of the sample being 

equal to population descriptions. Eq. (2.16) is usually symbolized by 

N(μ,σ) (Ang and Tang, 1975).  

 

The joint probability function of the normal distribution is known stated 

as: 

 

2q

2
yx

e
12

1)y,x(f −

ρ−σπσ
=  ,   -∞< x <∞ , -∞< y <∞                                  (2.17) 

 

where 
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where X is N(μx,σx2), Y is N(μy,σy2) and ρ is the correlation coefficient of X 

and Y. 

 
 

2.5.2 Gamma Distribution  

 
The probability density function of gamma distribution is: 

( )
α

−
−

⎟
⎠
⎞

⎜
⎝
⎛
αΓα

=α
x

1k

ex
k

1)k,,x(f                                                                           (2.18) 

 
where, α is the scale parameter; k is the shape parameter, and Γ(k) is the 
gamma function which is defined as (Husain, 1989): 

 

( ) dxexk
0

x1k∫
∞

−−=Γ .                                                                                            (2.19) 

 
 

2.6 ENTROPY CONCEPT FOR MULTIVARIATE CASE 

 
There are two methods in order to design network problems in 

multivariate case. The first method, Method 1, is proposed by 

Harmancıoğlu (1981). The objective of this method is to minimize the 

transinformation by an appropriate choice of the number of monitoring 

stations by stochastic approach in spatial orientation in order to design 

network stations. The combination of stations with the least 

transinformation reflects the variability of the quality variable along the 

river without producing redundant information.  Such an approach 
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foresees the monitoring of a variable at points where it is the most variable 

or the most uncertain. Accordingly, existing sampling sites can be sorted in 

the order of decreasing uncertainty or decreasing informativeness. Thus, 

the first station is the one where the highest uncertainty occurs about the 

variable. The following stations serve to reduce this uncertainty further so 

that the last station brings the least amount of information.  

 

On the other hand, a new concept of entropy which is emphasized as a 

Method 2 was developed for normal and log-normal distributions by 

Markus et al., 2003. The entropy approach is applied for information 

theory to evaluate stations through their information transmission to and 

from other stations.   

 

The following procedures for both Method 1 and Method 2 are applied to 

select the best combination of stations for multivariate case. 

 

Method 1: 

The stochastic dependence between two processes causes their 

marginal entropies and the total entropy to decrease. The same is true for 

more than two variables which are stochastically dependent to each other. 

 

For the multivariate case, the total entropy of M stochastically independent 

variables Xm (m=1,…,M) is: 

 

∑
=

=
M

1m
MM21 )X(H)X,...,X,X(H                                                                          (2.20) 
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If significant stochastic dependence occurs between the variables, the total 

entropy has to be expressed in terms of conditional entropies added to the 

marginal entropy of one of the variables (Özkul, 1996): 

 

)X,...,XX(H)X(H)X,...,X,X(H 1m1m

M

2m
1M21 −

=
∑+=                                         (2.21) 

 

As it is mentioned, entropy is a function of probability distribution of a 

process. Therefore, the multivariate joint and conditional probability 

distribution functions of M variables should be determined to compute the 

related entropies: 

 

M21M1M1M21 dx...dxdx)x,...,x(ogf).x,...,x(f..)X,...,X,X(H ∫ ∫
∞

∞−

∞

∞−

−= l              (2.22) 

 

m211m1mM11m1m dx...dxdx)x,...,xx(ogf).x,...,x(f..)X,...,XX(H −

∞

∞−

∞

∞−
− ∫ ∫−= l .   (2.23) 

 

For a single process, the marginal entropy defined by Eq. (2.1) represents 

the total uncertainty of the variable without removing the effect of any 

serial dependence. Nevertheless, if the ith value of variable X or xi is 

significantly correlated to values xi-k, k being the time lag, knowledge on 

these previous values xi-k will make it possible to predict the value of xi. In 

this case, the marginal entropy of X reduces (Harmancıoğlu, 1981).  

 

The next step in the computation of total, marginal or conditional entropies 

is to determine the type of probability distribution function which best fits 

the analyzed process. Harmancıoğlu (1981) proposed the multivariate 

normal or log-normal probability distribution functions because of 

 16



simplicity in the mathematical computations. If a multivariate normal 

distribution is assumed, the joint entropy of X is obtained using Eq. (2.24) 

(Harmancıoğlu, 1981): 

 

2/MCn)2/1(2n)2/M()X(H ++π= ll                                                           (2.24) 

 

where M is the number of variables and C  is the determinant of the 

covariance matrix C. Eq. (2.24) gives a single value for the entropy of M 

variables and the unit of entropy is napier since logarithms are taken to the 

base e. If logarithms of observed values are taken, the same procedure can 

be applied for log-normal distribution.   

 

In the above formula, the covariance matrix C involves the cross 

covariances, Cij of M different variables: 

 

)M*M(MM2M1M

M22221

M11211

C...CC
......

C...CC
C...CC

C

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=                                                               (2.25) 

 

For a single variable, covariance matrix includes the autocovariances as a 

measure of the serial dependence within the process. When both the serial 

and cross covariance are considered, the matrix includes both the auto and 

cross covariances (Harmancıoğlu, 1981 and Özkul, 1996): 
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The covariance matrix given in Eq. (2.26), is a nonsingular, positive- 

definite and symmetric matrix.  

 

Eq. (2.24) can also be used in the calculation of conditional entropies as the 

difference between joint entropies for three variables: 

 

( ) ( ) )Z,Y(HZ,Y,XHZ,YXH −=                                                                     (2.27) 

 

Consequently in Method 1, existing stations in a basin are listed in the 

order of priority. The benefits for each combination of sampling sites are 

measured in terms of the least transinformation or the highest conditional 

entropy produced by that combination. In a manner of this, addition or 

elimination of new stations lead to decrease or increase in transinformation 

and conditional entropies (Özkul, 1996). 

 

Method 2: 

Marcus et al. (2003), defined a new concept of entropy. This is a 

fractional reduction of entropy of X by R(X, Y): 

 

)X(H
)Y,X(T)Y,X(R =                                                                                            (2.28) 
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which also can be viewed as a reduction of uncertainty of X if Y is known, 

or information received by X from Y. Similarly, the information sent 

(transmitted) from X to Y is defined as: 

 

)Y(H
)Y,X(T)Y,X(S = .                                                                                           (2.29) 

 

Eqs. (2.28) and (2.29) which describe the relationship between two 

variables, X and Y are adapted to the network of stream gauges (Markus et 

al., 2003). Using these equations information received and sent at station m 

is defined as: 

 

R(m) = R(X(m), )                                                                                   (2.30) )m(X̂

 

S(m) = S(X(m), )                                                                                    (2.31) )m(X̂

 

where X(m) represents the data at site m. The quantity, at station m is 

obtained by multiple linear regression as 

)m(X̂

 

∑
−

=

+=
1M

1j
jj )m(b).m(Y)m(a)m(X̂                                                                        (2.32) 

 

where Yj(m) is a matrix of data from all other stations, a(m) and b(m) 

parameters of the multiple regression between site m and all other sites 

and M is the number of stations. As the relations between data at different 

sites are found to be linear or close to linear, this assumption of linearity is 

deemed appropriate.  
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In this method the concept of entropy is used to determine the stations 

with the highest amounts of S(m) and R(m). If R(m) is large relative to 

other stations, it indicates that the station denoted as m receives a lot of 

information. On the other hand, stations sending more information, having 

larger S(m), are considered to be more valuable and to remain active. 

Finally, the net information transfer, N(m), is defined as the difference 

between S(m) and R(m): 

 

N(m) = S(m) – R(m)                                                                                        (2.33) 

 

Stations with positive N(m) are considered to be more valuable in regional 

analysis. If the number of stations in the network is to be reduced, such a 

station is more likely to be retained in the network than a station with a 

negative N(m) (Markus et al.,2003).  

 

Method 2 can be applied for normal, log-normal, and gamma distributions. 

The marginal and joint entropy terms are calculated using the Eqs. (2.1) 

and (2.3). The computation of these terms for normal and log-normal 

distributions is straightforward. Appropriate probability density functions 

of the distributions are then incorporated to the related equations. In the 

case of gamma distribution, the parameters; α and k can be calculated 

using the derived method of moment estimators: 

 

i. The expected value of X:  k)X(1 α=μ                                  (2.34a) 

 

ii. The variance of X:                                           (2.34b) k)X( 2
2 α=μ

 

The marginal entropy of the gamma probability density function was 

defined as (Husain, 1989): 
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H(X) = -(λ-1) ψ(k) + Γ(k+1)/ Γ(k) +  (αΓ(k))                                          (2.35) nl

 

where ψ(k) is the digamma function: 

 

( ) ( )( )knk/k Γ∂∂=ψ l .                                                                                       (2.36) 

 

Due to limitations in the derivation of bivariate gamma distribution 

functions and complexities in their mathematical computations, 

application of bivariate gamma distribution function is very limited. 

However, the bivariate gamma distribution, as proposed by Husain (1989), 

can be transformed to normalized variates z and w.  The information 

transmission relationship is defined by the Eq. (2.37a) and (2.37b): 

 

∫∫ α=π
∞−

−
X

0
xx

z
t5.0 dt)k,;t(fdte21
2

                                                                 (2.37a) 

 

∫∫ α=π
∞−

−
Y

0
yy

w
t5.0 dt)k,;t(fdte21
2

                                                                  (2.37b) 

 

In the above expressions, X and Y are variables with univariate gamma 

distributions with parameters (αx, kx) and (αy, ky), respectively, z and w are 

normalized variates of X and Y, respectively, with a mean of zero and 

standard deviation of unity. If zwρ is the correlation coefficient between z 

and w, then the information transmitted by variable Y about X, i.e., T(X,Y) 

or by variable X about Y, i.e., T(Y, X) is simplified as (Husain, 1989): 

 

( )2
zw1n

2
1)X,Y(T)Y,X(T ρ−−== l .                                                                (2.38) 
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CHAPTER 3 
 

 
 

CASE STUDY ON KIZILIRMAK BASIN 
 

 

 

3.1 INTRODUCTION 

 
Streamflow gauging stations located on the Kızılırmak River are selected 

as the data set used in this study for application of the entropy methods, 

since more water monitoring stations exist with longer length of historical 

records. In fact Kızılırmak River is the longest river in Turkey. It has a 

length of 1355 km and the basin covers an area of 122 277 km2. The river 

originates around Kızıldağ region in Sivas’s sub-province, Zara and flows 

through Sivas around Kayseri, Nevşehir, and Kırşehir Provinces up to the 

reservoir of Hirfanlı Dam. After passing Kesikköprü and Kapulukaya 

Dams and Kırıkkale Province, it joins with the tributaries Acı Creek which 

collects the water of Çankırı Region, Delice River coming from Yozgat 

region and the Devres Creek at the north. Meanwhile it makes a wide 

curvature toward the north when it flows in the direction of the west. After 

joining with the Gökırmak Creek, it enters the reservoir of Altınkaya Dam. 

The river also feeds the reservoir of Derbent Dam which is located at the 

downstream of Altınkaya Dam. Eventually Kızılırmak reaches the Black 

Sea at the north of Bafra.  
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The Kızılırmak River is extremely rich with respect to soil and water 

resources. In order to perform measurements, DSI and EIE have 

constructed a number of gauging stations on the main river and the 

tributaries.  

 

Figure 3.1 shows the locations of the selected streamflow gauging stations. 

As seen from the Figure 3.1, the EIE 1501 is located at the upstream of 

Hirfanlı, Kesikköprü and Kapulukaya Dams. The other station, EIE 1541 is 

located on the tributary (Delice) of the main river, which is the most 

important stream of Kızılırmak River. The remaining stations, EIE 1503, 

EIE 1528 and EIE 1536 are located at the downstream of these dams (Figure 

3.1).  

 

The above mentioned gauging stations within the Kızılırmak Basin have 

been monitored since 1955 by EIE. The available records at the existing five 

runoff stations cover a period of 41 years between the years 1955 and 1995 

(EIEI water year books).  

 

Since the three streamflow stations, EIE1503, EIE 1528 and EIE 1536 have 

been affected by existing dams, records from these stations are converted 

to natural streamflow characteristics. The streamflow gauging station (i.e. 

EIE 1501) located on the upstream of these dams is used as the reference to 

obtain the natural values (unaffected form) of the downstream streamflow 

characteristics at these three stations. For this reason, seasonal correlations 

of the streamflow values, which has been observed before the construction 

of the existing structures, are obtained both for the affected and the 

unaffected gauging stations. Using these seasonal correlation coefficients,  
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Figure 3.1 Kızılırmak Basin and Location of the Streamflow Gauging Stations



streamflow values of the affected gauging stations are adjusted by 

regression equation in order to obtain the natural records. The inflow and 

outflow data of the dam reservoirs are collected for processing from The 

State Hydraulic Works (DSI).  It is used to obtain the change in storage of 

the reservoirs (±ΔS) of the dams so that the corrected streamflow values 

can be checked. 

 

After obtaining (±ΔS), these values are compared with the differences of 

affected and natural streamflows in order to find out whether there is a 

correlation between them. The correlation results obtained from statistical 

analysis are given in Table 3.1. As shown in this table, the affected flows 

converted into natural flows are assumed to be acceptable.  

 

Table 3.1. Comparasion with the Differences of Affected and Natural 
Streamflows  

 
Station 

no. 

The Name of the Hydraulic Structures Correlation 

coefficient, R2

1503 Hirfanlı, Kesikköprü and 

Kapulukaya 

0.85 

1528 Hirfanlı, Kesikköprü and 

Kapulukaya 

0.83 

1536 Hirfanlı, Kesikköprü and 

Kapulukaya 

0.84 
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3.2 CASE STUDY FOR ENTROPY METHODS 

 

3.2.1 Method 1 for Normal and Log-normal Distributions 

 
The methodology described for Method 1 in Section 2.6 is applied to the 

annual streamflow values of five stream gauging stations in Kızılırmak 

River according to the normal and log-normal distributions. Although the 

period of observation varied for each station, a common period of 41 years 

between 1955 and 1995 is considered for all stations. The procedure of 

Method 1 is summarized below to select the best combination of stations 

based on minimum transinformation principle of normal distribution. 

Taking the logarithm of data set, the same procedure is also followed to 

log-normal distribution case. 

 

i. Since five stream gauging stations are considered in this study, 

the data set for each station is represented by Xm where m 

(m=1,…,M) represents the station number.  

 

ii. The marginal entropy H (Xm) of the variable for each station is 

computed first by using Eq. (2.24) where M is replaced by 1. As 

it can be seen from Table 3.2, the marginal entropy value of EIE 

1536 streamflow gauging station is greater than the marginal 

entropy value of the other stations, that means, the highest 

uncertainty occurred about the variable at this location. Hence 

station EIE 1536 is selected as the first priority station, X1, to 

continue its observations.  
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iii. Next, the selected station EIE 1536 is coupled with every other 

station in the network to select the pair that leads to the least 

transinformation. EIE 1541 station that fulfills this condition is 

marked as the second priority location X2. A pair of stations is 

selected that has the highest joint entropy and the least 

transinformation. Accordingly, these stations produce the 

highest amount of information when they operate together.  

 

iv. As the third step, the conditional entropies and 

transinformations of the (X1, X2) pair with every other station in 

the network are computed to select a triple station with the least 

transinformation. 

 

v. The same procedure is continued by considering successive 

combinations of 4 and 5 stations and selecting the combination 

that produces the least transinformation and minimum 

redundant information.  

 

vi. The stations are ranked according to their priority orders. For 

example, higher rank (r=5) represents the first priority order 

which means that this station is necessary for this network to 

remove the uncertainty.  

 

The priority orders of the selected stations using Method 1 for normal and 

log-normal distributions are presented in Table 3.2 and Table 3.3, 

respectively. As it is seen in Table 3.2 station EIE 1536 is the most 

important station to continue its observations with rank 5, and station EIE 

1503 is the least important station. On the other hand in Table 3.3 for log-

normal distribution, station EIE 1541 becomes the most important station. 
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Table 3.2. Selection of Sampling Stations for Normal Distribution  
 

Station 

Added 

Marginal 

Entropy 

Joint 

Entropy 

Conditional 

Entropy 

Transinfor

-mation 

Rank (r) Station 

no. 

(M) (napier) (napier) (napier) (napier) - 

1536 1 8.74  8.74 - - 5 

1541 2 5.88 12.82  6.94 1.795 4 

1501 3 7.56 18.06 10.50 2.319 3 

1528 4 8.47 22.89 14.42 3.630 2 

1503 5 7.97 25.83 17.85 5.039 1 

 

When each distribution type of annual streamflow series are assumed to be 

normally distributed, EIE 1536 which is the most downstream station 

located on the main river is selected as the most priority station using 

Method 1. Moreover the applied procedure selects the most upstream 

station on the tributary as the second station in the priority list. 

Accordingly, EIE 1536 and EIE 1541 constitute the pair with the least 

amount of redundant information. The third location is station EIE 1501 

which is the most upstream station on the main river. As it can be seen in 

Table 3.2, the joint entropy and transinformation values increase 

contributing the other station at the network. The percentages of 

redundant information varied with the addition of each new station to the 

combination. Planner can decide discontinued stations in the network 

according to amount of transinformation which is determined beforehand. 

 

 

 

 

 

 

 28



Table 3.3. Selection of Sampling Stations for Log-normal Distribution 
  

Station 

Added 

Marginal 

Entropy 

Joint 

Entropy 

Conditional 

Entropy 

Transinfor-

mation 

Rank 

(r) 

Station 

no. 

(M) (napier) (napier) (napier) (napier) - 

1541 1 -2.08  -2.08 - - 5 

1501 2 -2.58  -5.79  -3.22 1.14 4 

1536 3 -3.06 -10.40  -7.34 1.54 3 

1503 4 -2.88 -17.12 -14.24 3.84 2 

1528 5 -3.08 -30.10 -27.03 9.91 1 

 

The results of Method 1 under log normal distribution which is similar to 

normal distribution for computations are given in Table 3.3 for this 

network. It is observed from Table 3.3 that EIE 1541 and EIE 1501 stations 

are selected as the first and the second priority stations. As was expected, 

due to their locations, being in the most downstream of the basin, stations 

EIE 1536 and EIE 1528 have produced high redundant information. 

Therefore, looking at Table 3.3 it would be logical to close station EIE 1528 

as it is ranked 1, and keep station EIE 1536 which is ranked 3.  

 

However, the amount of transinformation values show differences under 

normal and log normal distributions. This emphasizes that the selection of 

an appropriate distribution type is very important before any analysis. On 

the other hand, rank of stations which is retained in the network are 

reasonable under both normal and log normal distributions.   

 

Figure 3.2 shows station ranking using annual discharge time series for 

normal and log normal distributions. 
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Figure 3.2. Station ranking based on minimum transinformation for 

                           normal and log-normal distributions using annual   

discharges 

 

3.2.2 Method 2 for Normal and Log-normal Distributions 

 
The Method 2, which is based on entropy principle, is also applied for 

Kızılırmak Basin using Eq. (2.1) for marginal entropy, Eq. (2.3) for joint 

entropy and Eq. (2.10) or Eq. (2.11) for transinformation. The normal 

probability density function given by Eqs. (2.16) and (2.17) are substituted 

in mathematical formulations of these measures which are based on 

entropy. Later Eqs. (2.28) and (2.30) are used to compute the total 

information received by a station m; R (m). Eqs. (2.29) and (2.31) are then 

used to compute the total information sent by a station m; S (m). Finally, 

Eq. (2.33) is used to compute the total net information transfer for station 

m; N (m).  
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As it has been mentioned above, if logarithms of observed values are 

taken, the same procedure can be used for log-normal distribution. The 

information transfer parameters S (m), R (m) and N (m) as well as the 

station ranks, based on these parameters, are shown in Table 3.4 and 

Figure 3.3 for normal and in Table 3.5 and in Figure 3.3 for log normal 

distributions. 

 

The stations having the lowest rank (r =1 or r =2) are less important in the 

information transfer process. It is not necessary to continue observation at 

these stations. On the other hand the stations having higher ranks (r =4 or r 

=5) should be retained in the network according to this method.  

 

Table 3.4. Station Ranking According to Information Transmitted, S(m) 
Information Receieved, R(m) and Net Information, N(m) for 
Normal Distribution  

 
Information transfer       Rank (r) 

Send Received Net Send Received Net 

Station 

no. 

S(m) R(m) N(m) S(m) R(m) N(m) 

 (napier) (napier) (napier) - - - 

1501 0.9229 0.9228 0.0002 2 2 2 

1503 0.9251 0.9238 0.0013 3 3 5 

1541 0.9181 0.9178 0.0004 1 1 4 

1528 1.2347 1.2350 -0.0003 5 5 1 

1536 1.0896 1.0894 0.0002 4 4 3 
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Table 3.5. Station Ranking According to Information Transmitted, S(m) 
Information Receieved, R(m) and Net Information, N(m) for 
Log- normal Distribution  

 
          Information transfer                  Rank (r) 

Send Received Net Send Received Net 

Station 

no. 

S(m) R(m) N(m) S(m) R(m) N(m) 

 (napier) (napier) (napier) - - - 

1501  -96.05  -96.91 0.139 5 5 4 

1503 -358.21 -358.57 -0.358 3 3 2 

1541 -118.05 -117.50 0.551 4 4 5 

1528 -2320.40 -2320.92 -0.524 1 1 1 

1536 -1892.09 -1892.38 -0.287 2 2 3 

 

While EIE1536 station is selected as a first priority station by Method 1 

under normal distribution assumption, the same station is selected as the 

third prior station which must be remained in the streamflow gauging 

network by Method 2 according to net information. Similarly EIE 1503 

station which is chosen as the last priority station by Method 1 with 

normal distribution is selected as the most important station by Method 2 

with normal distribution.  

 

Nonetheless, it is observed that while the results of the two methods are 

changed under normal distribution assumption, the results for both 

methods are the same under log-normal distribution. 

 

3.2.3 Method 2 for Gamma Distribution 

 
The Method 2 for gamma distribution is applied using Eq. (2.35) for 

marginal entropy and Eq. (2.38) for transinformation. The rest of the 
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procedure of Method 2 for gamma distribution is exactly same as it is for 

the other distributions. Finally, the information transfer parameters S (m), 

R (m) and N (m) are shown in Table 3.6 and Figure 3.3 for gamma 

distribution.   

 

Table 3.6. Station Ranking According to Information Transmitted, S(m) 
Information Receieved, R(m) and Net Information, N(m) for 
Gamma Distribution  

 
               Information transfer                Rank (r) 

Send Received Net Send Received Net 

Station 

no. 

S(m) R(m) N(m) S(m) R(m) N(m) 

 (napier) (napier) (napier) - - - 

1501 0.6349 0.6350 -0.000121 1 1 1 

1503 0.6903 0.6902 0.000098 2 2 5 

1541 0.7200 0.7201 -0.000096 3 3 2 

1528 1.0479 1.0479 0.000006 5 5 3 

1536 0.9935 0.9935 0.000025 4 4 4 

 

According to the method 2 which is obtained from gamma distribution, 

EIE 1503 station is the most important station in this network to be kept. 

Moreover EIE 1501 station which is the most upstream station is selected as 

the least important station for the information transfer process. 
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Figure 3.3 Station ranking based on N(m) for normal, log-normal and 

gamma distributions using annual discharges 

  

As it was mentioned earlier, stations ranking vary for both methods under 

different distributions. However only for log-normal distribution the 

stations ranking are similar. Nevertheless, it is observed that these 

ordering under log normal distribution are quite reasonable if it is 

compared with the results of the other distributions. Since the most 

upstream stations located at different tributaries (EIE 1501 and EIE 1541) 

have the highest uncertainty, these stations are selected as the second and 

the third priority stations for this network as it can be expected.  

 34



CHAPTER 4 
 

 
 

SUMMARY AND CONCLUSIONS 

 

 

 

In this part of the study, two entropy methods are applied on a network of 

gauging stations located in the Kızılırmak Basin. The aim of this study is to 

rank the stations according to the amount of their information 

contribution. Once the first priority station is selected according to the 

marginal entropy (as explained in Section 3.2), then the next station to be 

combined is selected according to the minimum transinformation. The first 

station selected in this method is the station having the highest priority, 

which means that this station must be retained in the network. 

 

The stations are also ranked by Method 2. As also used in the literature the 

station with the lowest rank is the least information contributing station, 

hence the station with low rank could be discontinued. Higher ranks 

indicate the stations that should be retained in the network.  

 

For Method 1, it is required to apply the multivariate density function, 

whereas for Method 2 the bivariate density function of distribution is 

found to be adequate. Although the mathematical development of entropy 

is easily made for skewed distributions in bivariate cases, the development 

 35 



 36 

becomes much more difficult when multivariate distributions are 

considered. 

 

Because of the difficulties involved in the mathematical development of 

multivariate distributions, Method 1 is applied for just normal and log-

normal distributions, while Method 2 is applied for normal, log-normal 

and gamma distributions. 

 

In order to demonstrate the effect of the distribution type on each entropy 

method, ranking of stations obtained by using Method 1 and Method 2 

with different distributions are summarized in Table 4.1. As it is seen from 

Table 4.1, the importance level of each station on the existing stream 

gauging network is changed for different distribution types. Rankings 

obtained by normal distribution showed anomalies in Method 1 and 

Method 2, whereas rankings obtained by log-normal distribution were 

consistent in the two methods. 

 

As a result, determination of appropriate distribution for streamflow series 

is an important point to rely on the results which can be obtained from 

entropy methods. For example it is obvious that planning stream gauging 

network system under normal distribution for data set having right 

skewed distribution may not be reliable.  

 

From this point of view, the selection of appropriate distributions for 

variables is the crucial part of any issue in which the optimum network 

system is to be planned with entropy methods. For that reason, the author 

emphasized that the distribution types for data series should be 

determined properly before applying two entropy methods. 
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          Table 4.1.  Ranking of Stations Using Method 1 and Method 2 with Different Distributions  

 
Entropy Method 1 

Ranking based on min. transinformation 

Entropy Method 2 

Ranking based on net information transfer, N(i) 

 

Station 

no. 

 

Distribution types Distribution types 

(i) Normal Log-normal Normal Log-normal Gamma 

1501 3 4 2 4 1 

1503 1 2 5 2 5 

1541 4 5 4 5 2 

1528 2 1 1 1 3 

1536 5 3 3 3 4 

 



PART II 

MODELING OF STREAMFLOW DATA USING AUTOREGRESSIVE 
MODELS WITH ASYMMETRIC INNOVATIONS AND ARTIFICIAL 

NEURAL NETWORKS 

CHAPTER 1 
 
 

 

INTRODUCTION 
 

 

 

1.1 GENERAL INFORMATION 

 
Modeling streamflow data has become important to the water resources 

planner, since it allows him to evaluate proposed system designs more 

thoroughly. Early civil engineers have realized that the flow patterns of 

different streams vary considerably and that the history of flows in a 

particular stream provides a very valuable clue to the future behavior of 

that stream. If the flow of this year is low, it is likely, although not certain, 

that the flow of next year will also be lower than average. Similarly, high 

flows tend to follow high flows. Thus the history of a stream provides 

valuable information about probable future flows. In reality, a set of 

historical or synthetic flows for a stream is a sequence of numbers or 

 38



values produced by a random process in a succession of time intervals; 

such a sequence is called a time series. Several time series models such as 

autoregressive models (AR), fractional gaussian noise models (FGN), 

autoregressive moving-average models (ARMA), broken-line models,  

shot-noise models, model of intermittent processes, disaggregation, 

ARMA– Markov models and general mixture models have been proposed 

for modeling hydrologic data (Salas et. al., 1980). 

  

Traditionally, AR models have been the most widely used statistical 

method for modeling hydrologic process, since the autoregressive form has 

an intuitive type of time dependence which the value of a variable at the 

present time depends on the values at previous times and they are the 

simplest models to use. 

 

The autoregressive time series models are typically of the following form,  

 

∑
=

− ε+φ=
p

1j
ijiji xx  ,               i=1,2,…,n                                                           (1.1) 

 

where φj are autoregression coefficients and p is the lag of the model. In Eq. 

(1.1) while φjxi-j is a deterministic part of the model, εi is the random 

component of the generating scheme.  

 

In previous hydrological time series models, the innovations or residuals, 

εi, are generally assumed to be normally distributed N (0, σ2). Classical 

autoregressive and moving average models require transformation of the 

original series into normal. That is to say that, if the hydrologic variable, xi 

is not normal, an appropriate method is used to transform it to normal or 

near-normal. Thus, the distribution of εi becomes normal. Taking the 
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logarithm of the series is one of the transformation methods. Logarithmic 

transformation makes positively skewed sample series symmetrical or 

slightly negatively skewed.   

 

In fact both of the annual and monthly streamflow series are generally 

positively skewed. In the past few years, AR type models with skewed 

marginal distributions have been developed and applied to hydrologic 

time series. These models are more realistic than previous ones.  

 

In this part of the thesis, autoregressive models (AR(1)) with asymmetric 

innovations represented by gamma, generalized logistic (GL) and weibull 

distributions  are introduced in Chapter 2. Then, alternatively the artificial 

neural network (ANN) model has been proposed in Chapter 2 for 

modeling hydrologic time series data, since it does not require any 

assumption about linearity and statistical distribution. The above models 

are applied for the annual and monthly observations of five runoff stations 

in the Kızılırmak basin in Chapter 3.  
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CHAPTER 2 
 

 
 

AUTOREGRESSIVE MODELS 

WITH NON-NORMAL INNOVATIONS AND ARTIFICIAL 

NEURAL NETWORK 

 

 

 

2.1 HISTORICAL REVIEW 

 
In modeling the streamflow time series, the asymmetry of the marginal 

distribution creates some problems. The problem of skewed streamflows 

or residuals has been handled by a number of methods. A widely used 

technique is to use transformations to render a series close to normal as 

said earlier (Box and Jenkins, 1976). Another approach is to find the 

statistical properties of the residuals. In this approach, the variable 

transformation is not required as do the classical models. For this aim, 

firstly Wilson-Hilferty transformations which were only valid for gamma 

distribution were used by Thomas and Fiering (1962), McMahon and 

Miller (1971) and O’Connel (1974). Although the coefficient of skewness 

can be reproduced by this approach, the underlying variable is not gamma.  

 

During recent years, a number of non-Gausian models with AR-type 

correlation structure have been proposed. The simplest of this kind of 

 41



models corresponds to the so-called exponential autoregressive (EAR(1)) 

model (Gaver and Lewis, 1980). They showed that there was an innovation 

process {εi} such that the sequence of random variables {xi} generated by 

the linear additive first order autoregressive scheme xi=φxi-1+εi were 

marginally distributed as gamma variables if 0≤φ ≤1. They claimed that 

this first order autoregressive gamma sequence was useful for modeling a 

wide range of observed phenomena. Properties of sums of random 

variables from this process were also studied.  

 

A new exponential autoregressive model, NEAR(1) was presented by 

Lawrance and Lewis (1981). They used the NEAR(1) model to 

accommodate uniform marginal distribution by using an exponential 

transformation. 

 

Obeysekera and Yevjevich (1985) reported a procedure for generation of 

samples of an autoregressive scheme that had an exact gamma marginal 

distribution with given mean, variance and skewness. They gave proper 

modifications in Gaver and Lewis (1980) method to produce the gamma 

marginal distribution with given mean, variance and skewness.  

 

Fernandez and Salas (1986) developed and tested a new class of time series 

models capable of reproducing the covariance structure normally found in 

periodic streamflow time series under non-Gaussian marginal distribution. 

Specially the models could be either linear or non-linear or a combination 

of both and assume a gamma marginal and a lag-one autoregressive 

correlation structure. Five series of weekly streamflow were used for 

applications and comparisons of the proposed models. The results showed 

that the new class of gamma models compared favorably with respect to 
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the normal models in reproducing the basic statistics usually analyzed for 

streamflow simulation.  

 

Sim (1987), considered a time series model which can be used for 

simulating stationary river flow sequences with high skewness and the 

long-term correlation structure of an ARMA(1,1). The model parameters 

under gamma distribution were estimated by using the method of 

moments. 100 sequences of monthly streamflows were simulated from this 

model. He observed that the simulated data bear a close resemblance to the 

historical data in terms of the autocorrelation structure, skewness, mean, 

and standard deviation. 

 

Fernandez and Salas (1990) studied the gamma autoregressive models for 

streamflow simulation also. Since moment estimators are biased for 

dependent and non-normal variables, they emphasized that some kind of 

correction is needed to make them unbiased. A procedure to obtain 

unbiased estimators of parameters for a stationary, first order gamma-

autoregressive model, capable of reproducing the mean, variance and 

skewness structure of the available historical streamflow data was 

presented in this study. Applications of the proposed procedure to annual 

streamflow series of several rivers were done. They claimed that the 

GAR(1) model was an attractive alternative for synthetic streamflow 

simulation. 

 

Lawrance and Lewis (1990) introduced the idea of reversed pth- order 

autoregressive residuals and developed some of their properties. The use 

of reversed residuals was illustrated on a series of deseasonalized montly 

river flow data in which it was shown that there was non-linear first order 

autoregressive dependence. 
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Cığızoğlu and Bayazıt (1998), used GAR(1) model to determine the 

statistical run and range parameter values of the annual flow series and 

applied to the 10 Turkish rivers. They found out that the analyses based on 

the GAR(1) model emphasized that the bias adjustments was very 

important to obtain the run and range parameters. 

 

A more interesting generalization of the preceding above models, at least 

from the hydrologic point of view, consists of using a marginal gamma 

distribution. In these studies, model parameters were estimated by using 

the method of moment (MOM). The MOM procedure does not have 

general properties as good as the maximum likelihood method (ML) which 

is another parameter estimation technique.  However, ML solution is not 

always possible for whole distribution types. In recent years, Tiku et. al. 

(1996) have proposed the modified maximum likelihood (MML) procedure 

to estimate the model parameters under non-Gausian distributions. 

 

Tiku et.al. (1996) considered AR(p) models in time series with non-normal 

innovations represented by a member of a wide family of symmetric 

distributions (Student’s t type). Since the ML estimators are intractable, 

they derived the MML estimators of the parameters and showed that they 

were remarkably efficient, robust and powerful. 

 

The first order autoregressive model, AR(1) with asymmetric innovations 

of the gamma type considered in Tiku et al., (1999a) (the generalized 

logistic case was also briefly discussed).  The same model has been 

considered in Tiku et al., (2000) with symmetric non-normal innovations of 

the Student’s t type. The simple regression model with first order 

autoregressive errors with asymmetric innovations was considered in 

Akkaya and Tiku, (2001a). The model in Tiku et. al. (1999a) is a special case 
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of the model in Akkaya and Tiku, (2001a) with no regression component. 

Turker, (2002) extended the methodology under non-normality to various 

independent sources of information and developed robust and efficient 

statistics for testing whether parameter vector remains the same from one 

source to another. Akkaya and Tiku (2005) also studied AR(1) models 

under short-tailedness and inliers. 

 

There are also numerous studies related to the application of ANN to 

various problems frequently encountered in water resources. In time series 

analysis, stochastic models are fitted one more of the time series describing 

the system for purposes which include forecasting, generating synthetic 

sequences for use in simulation studies, and investigating and modeling 

the underlying characteristics of the system under study. Most of the 

monthly time series modeling procedures fall within the framework of 

multivariate autoregressive moving average (ARMA) models (Raman and 

Sunilkumar, 1995). 

 

ANNs have been successfully applied in a number of diverse fields 

including water resources. In order to optimally fit an AR and ARMA type 

models to a time series, the data must be stationary and follow a normal 

distribution (Hipel, 1986). Lorrai and Sechi (1995) verified the possibility of 

utilizing ANNs to predict rainfall-runoff (R-R) when only information 

about the variation of the basic input variables, namely rainfall and 

temperature, is available. Cheng and Noguchi (1996) obtained better 

results modeling the R-R process with ANNs using previous rainfall, soil 

moisture deficits, and runoff values as model inputs, when compared with 

that from a R-R model. Smith and Eli (1995) applied ANNs to convert 

remotely sensed, spatially distributed rainfall patterns into rainfall rates, 

and hence into runoff for a given river basin. 
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Hsu et al. (1995) showed that a non-linear ANN model provided better 

representation of the R-R relationship of the medium-sized Leaf River 

basin near Collins, Mississippi, than the linear ARMAX (autoregressive 

moving average with exogenous inputs) time series approach or the 

conceptual SAC-SMA (Sacromento soil moisture accounting) model 

(Sorooshian et. al., 1993). In the hydrological forecasting context, recent 

experiments have reported that ANNs may offer a promising alternative 

for rainfall-runoff modeling (Zhu and Fujita, 1994; Smith and Eli, 1995; 

Hsu et al., 1995; Yapo et al., 1996; Shamseldin, 1997; Sajikumar and 

Thandaveswara, 1999; Tokar and Johnson, 1999, Tokar and Markus, 2000, 

Rajurkar et al.,  2004), streamflow prediction (Kang et al., 1993; Karunanithi 

et al., 1994; Thirumalaiah and Deo, 1998; Clair and Ehrman, 1998; Zealand 

et al., 1999; Campolo et al., 1999; Chang and Chen, 2001; Sivakumar et al., 

2002; Kişi, 2003; Castellona-Mendez et al., 2004, Moradkhani et. al., 2004), 

reservoir inflow forecasting (Saad et al., 1996; Jain et al., 1999), prediction 

of water quality parameters (Maier and Dandy, 1996), regional drought 

analysis (Shin and Salas, 2000), real time forecasting (Kitanidis and Bras, 

1980; Thirumalaiah and Deo, 2000) and estimating evapotranspiration 

(Kumar et al., 2002).  

 
 

2.2 PARAMETER ESTIMATION METHODS FOR 

AUTOREGRESSIVE MODELS 

 
One of the main objectives of mathematical statistics is to estimate reliable 

model parameters through estimation methods. If the estimated 

parameters obtained from a sample are good, then it will be possible to 

extract wider information on synthetic data. The most commonly used 
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parameter estimation methods in autoregressive models are given below in 

order of increasing efficiency: 

 

1. Method of Moments (MOM) 

2. Least- Squares Method (LS) 

3. Maximum Likelihood Method (ML) 

4. Modified Maximum Likelihood Method (MML) 

 

2.2.1 Method of Moments (MOM) 

 
The method of moments (MOM) is a natural and relatively easy parameter 

estimation method. This method relates the derived moments to the 

parameters of the distribution. The relation can simply be that the mean is 

equal to the first moment about origin, variance is the second central 

moment and the coefficient of skewness is the third central moment 

divided by the second central moment with a power of 3/2. However, 

MOM estimates are usually inferior in quality and generally are not as 

efficient as the ML estimates, especially for distributions with large 

number of parameters (three or more), because higher order moments are 

more likely to be highly biased in relatively small samples (Haan, 1977). In 

general, moment estimators are inefficient. They are efficient only for 

normal and near-normal populations. 

 

2.2.2 Least- Squares Method (LS) 

 
If no distributional assumption is made about the random errors of a linear 

model then the LS methodology can be used in estimating the parameters 

of this model. That means least square method does not utilize the prior 
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information about the distribution of the data. This method states that the 

sum of squares of all deviations from the AR(1) model is to be minimized: 

 

minimize                                                     (2.1) ( ) ∑∑
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− ε=λ−φ−=
n
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2
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1ii xxSE

 

To obtain the minimum sum of squares, Eq.(2.1) is partially differentiated 

with respect to the best estimates of model parameters as λ,  and α: φ
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As it is known if the series has normal distribution, the least-square 

estimators are equal to maximum likelihood estimators. 

 

2.2.3 Maximum Likelihood Method (ML) 

 
The maximum likelihood (ML) method is considered the most efficient 

method since it provides the smallest sampling variance of the estimated 

parameters. Maximum likelihood estimation begins with writing a 

mathematical expression known as the likelihood function of the sample 

 48



data. The likelihood expression contains the unknown model parameters. 

The values of these parameters that maximize the sample likelihood are 

known as the maximum likelihood estimators. The likelihood function is 

defined as a function of the unknown model parameters: 

 

∏
=

αλφε=
n

1i
i ),,,(pL                                                                                             (2.3) 

 

where ),,,(p i αλφε  is a probability function of ε with φλ,  and α being a 

model parameters to be estimated. 

 

To estimate  and α logarithmic L should be maximized by 

differentiating it with respect to each parameter and equating to zero: 

φλ,

 

0Lln
=

λ∂
∂                                                                                                           (2.4a) 

 

0Lln
=

φ∂
∂                                                                                                           (2.4b) 

 

0Lln
=

α∂
∂                                                                                                           (2.4c) 

 

which are called the maximum likelihood functions (Ang and Tang, 1975). 

 

2.2.4 Modified Maximum Likelihood Method (MML) 

 
The error terms have a non-normal distribution with respect to the real life 

situation. However LS, used to estimate unknown parameters in the 

model, are inefficient with non-normal cases (Tiku et.al., 1999a). Similarly 
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another well known procedure, which is ML procedure, becomes also 

unsuccessful in numerous situations since explicit solutions from the 

likelihood equations cannot be obtained and iterative methods have to be 

used. There are some difficulties in solving likelihood function iteratively. 

These difficulties are in general (Tiku et al., 1999a): 

 

i. The iteration may converge very slowly, 

ii. They may converge to local maximum values, 

iii. They may not converge at all. 

 

If data contain outliers, the iterations with likelihood equations might 

never converge. In addition the successes of the iteration methods depend 

on the shape of the function. For instance if function is concave, Newton- 

Raphson method has poor result. Steepest Ascent method may give more 

reliable solution than the former; however, it converges very slowly 

(Hamilton 1994). Thereby estimators based on iterative methods are not 

optimal. At this point it is obvious that a robust estimator technique while 

the error terms are not normally distributed is needed. Hence, the 

modified maximum likelihood (MML) method has been developed by 

Tiku (1967) and applied to some non-normal time series models. This 

method is based on linearization of intractable terms of the log-likelihood 

function for a location scale family of innovations. These intractable terms 

are linearized by using first-order Taylor series expansion.  

 

This procedure can be summarized as below: 

 

i. Express ML equations in terms of the ordered variates, 

ii. Replace the intractable terms by their Taylor series expansion, 

iii. Solve the resulting equations to get the MML estimators.  
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In fact, published time series applications of this method in the literature 

have shown that the estimated parameters using this method are highly 

efficient, robust and superior to the least squares (LS) estimators. Although 

this methodology applies to any location-scale distribution, three 

distributions are considered in this study as gamma, weibull and 

generalized logistic.  

 

The procedures of three parameter estimation methods under non-normal 

distributions are given in detail in the following sections. 

 
 

2.3 GAMMA AUTOREGRESSIVE MODELS 

 
The first order gamma autoregressive model with the usual structure of an 

additive process is: 

 

i1ii xx ε+φ+λ= −                                                                                                (2.5) 

 

where λ is the location parameter, xi is the streamflow during time interval 

t, φ is the autoregression coefficient, and εi is the independent random 

variable or error terms. The only difference with the well-known AR(1) 

model lies on the fact that xi or εi has a marginal distribution given by a 

three-parameter gamma density function: 
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where  α and k are the scale and shape parameters, respectively and Γ(.) is 

the gamma function.  

 

2.3.1 Parameter Estimation Procedure with Method of Moments  

 
In this procedure, xi in Eq. (2.5) is assumed to be gamma distributed.  The 

model which estimate the model parameters by using method of moment 

procedure is known in literature as GAR(1) model. Fernandez and Salas 

(1990) derived the following relationships between the parameters of 

model and the population moments of the underlying variable xi using the 

method of moments (MOM) procedure: 

 

α+λ=μ k                                                                                                            (2.7) 

 
22 kα=σ                                                                                                              (2.8) 

 

k
2

=γ                                                                                                                 (2.9) 

 

ρ1 = φ                                                                                                                 (2.10) 

 

where μ is the mean, σ2 is the variance, γ is the coefficient of skewness, and 

ρ1 is the lag- one autocorrelation coefficient. These population moments 

can be estimated based on the sample data x1, x2, …,xn, using the following 

relationships: 
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where x  is the estimator of μ, s is the estimator of σ, g1 is the estimator of γ, 

r1 is the estimator of ρ and n is the sample size. 

 

Since these estimators are biased for dependent and non-normal variables, 

some kind of correction needs to be made before using them in the system 

of Eqs. (2.11) - (2.14) to estimate the parameters of the GAR(1) model. 

Estimator of the expected value (μ) can be used without a correction factor 

(Fernandez and Salas,1990). These corrections are: 

 

Correction for r1 

Wallis and O’Connell (1972) suggested the following correction to 

obtain an unbiased estimator of ρ1 for an autoregressive AR(1) model: 

4
1ˆ 1

1 −
+

=
n
nrρ                                                                                                         (2.15) 

 

where r1 is the lag-one autocorrelation coefficient. 

 

Correction for s2

If the series is uncorrelated, the estimator of the variance of the 

process obtained from Eq. (2.12) is unbiased. For correlated streamflow 

series, an unbiased estimator of the variance can be obtained from: 
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and s2 and 1ρ̂  are given by Eqs. (2.12) and (2.15), respectively. 

Correction for g 

The unbiased estimator of the skewness can be obtained from: 
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g1 is given by Eq. (2.13). 
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It may be observed that, f=1 if ρ1=0 for independent values. 

 

Therefore, the general procedure to estimate the parameters of a stationary 

GAR(1) model to be used in simulation studies based on available sample 

series should be as follows: 

 

i. Values of the mean; x , variance; s2, coefficient of skewness; g1, and 

lag-one autocorrelation coefficient; r1 are obtained from Eqs. (2.11)-

(2.14), respectively. 

ii. The unbiased autocorrelation coefficient, 1ρ̂ , variance, and 

skewness,  are calculated from Eqs. (2.15)-(2.17), respectively  

2σ̂

γ̂

iii. The set of model parameters; α, k, λ and φ are determined by using 

Eqs. (2.7)-(2.10), respectively (Fernandez and Salas, 1990). 

 

2.3.2 Parameter Estimation Procedure with Modified Maximum 

Likelihood  

 
While the marginal distribution of xi in Eq. (2.5) is assumed to be gamma 

under GAR(1) model, the marginal distribution of error terms εi is 

assumed to be gamma for AR(1) model in time series with asymmetric 

innovations. This model is generally called as AR(1) model with gamma 

innovations. Therefore the gamma density function (k>2) is represented by 
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This family represents positively skewed distributions with kurtosis β2 ≥3. 

In fact, β2=3+1.5β1; 2
242 μμ=β  and 3

2
2
31 μμ=β  (Akkaya and Tiku, 2001b). 

 

The shape parameter k is not known. Here, the likelihood function of 

gamma distribution is:  
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where αλ−φ−=ε= − /)xx(z 1iiii . Differentiating Eq. (2.20) with respect to 

λ, φ and α and setting the derivatives equal to zero gives the following 

equations: 
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These equations are functions in terms of zi-1 and they have no explicit 

solutions. Thus, they have to be solved by iterative methods which can be 
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problematic. The MML method which has explicit solutions is used here. 

To obtain the explicit solution, we order εi (for a given φ) in order of 

increasing magnitude and ordered ε- values by ε(i)=(x[i]-φx[i]-1-λ), 1≤ i ≤n. It 

may be noted that (x[i], x[i]-1) is that pair of (xi, xi-1) observations which 

corresponds to the ordered ε(i). Therefore, x[i] are the concomitants of ε(i) 

(Tiku et al.,1999a). Hence the Eqs. (2.21)- (2.23) become, 
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Modified likelihood equations are obtained by linearizing the intractable 

terms in likelihood equations. First two terms of a Taylor series expansion 

is used to linearize the intractable term g(z(i)) = z(i)-1 (Tiku et.al., 1996): 
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where   νi = 2 t(i)-1, βi = t(i)-2    and   t(i) = E{z(i)} (1≤ i ≤ n).                 
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The coefficients t(i) may be obtained from: 
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Eq. (2.28) is incorporated in Eqs. (2.24) - (2.26). Then by solving the 

resulting equations the following MML estimators (Akkaya and Tiku, 

2001b) are obtained. 
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Computations: To start ordering of εi, it is required to estimate initial value 

of the autoregression parameter of the model. The Least- square (LS) 

methodology which involves minimizing the error in the sum of squares 

was proposed for estimating the initial parameters. The LS estimators are: 
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Using the initial concomitants in (x[i]- x0φ̂ [i]-1- ), the MML estimates 

 and  are calculated from Eq. (2.30) and (2.32), respectively with . 

The MML estimate φ  is then calculated from Eq. (2.31). A second iteration 

is carried out with , 

0λ̂

λ̂ α̂ 0
ˆˆ φ=φ

ˆ

0λ̂ 0α̂  and  replaced by , 0φ̂ λ̂ α̂  and , respectively. 

This is done a number of times till the estimates stabilize. In all our 

computations, no more than three iterations are needed for the estimates to 

stabilize (Akkaya and Tiku, 2001a). 

φ̂

In this procedure, since the shape parameter k is not known, it is chosen 

initially by either using Q-Q (quantile - quantile probability) plots or 

considering the coefficient of skewness and kurtosis for error terms (Tiku 

et. al., 1996). Q-Q plots graphically compare the distribution of a given 

variable to the desired distributions (represented by a straight line). These 

plots are constructed by plotting the ordered residuals against t(i) (1 ≤ i ≤ n) 

which are calculated by using the Eq. (2.29). Q-Q plots are obtained for 

different shape parameter values.  The shape parameter value which gives 

closest to a straight line pattern can be chosen as an initial shape 

parameter. The straight line shows what our data would look like, if it 

were perfectly the desired distributed. To determine the shape parameter 

of distribution, the coefficient of skewness and kurtosis from the residual 

for comparing the theoretical coefficient of skewness and kurtosis can be 
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obtained also. The shape parameter which closes the theoretical values can 

be selected as an initial shape parameter. 

A more formal method is to calculate the likelihood function for a series of 

values of k. The value that maximizes L (or lnL) is chosen as the exact (or 

nearest) value of k.   

 
 

2.4 AUTOREGRESSIVE MODELS WITH WEIBULL INNOVATIONS 

 
The time series AR(1) model given by Eq. (2.5), εi  have a Weibull 

distribution. The Weibull distribution with shape (p) and scale (α) 

parameters has the density function (p>0): 
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To have an idea about the nature of the Weibull W(p,σ), some of the 

theoretical values of its skewness 3
2

2
3 μμ  and kurtosis 2

24 μμ  are given in 

Table 2.1 (Tiku and Akkaya, 2004). 

 

Table 2.1 The Theoretical Skewness and Kurtosis Values for Weibull 
Distribution for Some Shape Parameters 

 
b(shape parameter) 1.5 2 2.5 3 4 6 

β1(coeff. of skewness) 1.064 0.631 0.358 0.168 -0.087 -0.158 

β2 (kurtosis ) 4.365 3.246 2.858 2.705  2.752  2.538 
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2.4.1 Parameter Estimation Procedure with Modified Maximum 

Likelihood  

When εi’s are iid (identically and independent distributed) and have 

Weibull distribution, the likelihood function is: 
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zi = (1/α)(xi - φxi-1-λ). Differentiating Eq. (2.38) with respect to λ, φ and α 

and setting the derivatives equal to zero gives the following equations 

(Akkaya and Tiku, 2005):  
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Modified likelihood equations are obtained by linearizing the intractable 

terms,  and  in likelihood equations using the first two terms of a 

Taylor series expansion:  

1
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The coefficients ti are determined by the equations F(t(i);b)=qi, qi=i /(n+1) 

where F(.) is the cumulative distribution function of weibull: 
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Then putting these new terms on the likelihood equations and solving the 

resulting equations simultaneously, the following MML estimators of ,  

and  are obtained: 
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LS estimators of Weibull distribution: 
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2.5 AUTOREGRESSIVE MODELS WITH GENERALIZED LOGISTIC 

INNOVATIONS 

 
Consider the time series AR(1) model given by Eq. (2.5), εi have a 

generalized logistic (GL) distribution. The GL distribution with shape (b) 

and scale (α) parameters has the density function: 

 

( ) 1b

e1

ebf:),b(GL +
α

ε−

α
ε−

⎟
⎠
⎞⎜

⎝
⎛ +

α
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This distribution is negatively skewed for b < 1, and positively skewed for 

b > 1. For b = 1, it reduces to the logistic which is a symmetric distribution. 

The theoretical coefficient of skewness and kurtosis according to different 

shape parameters are summarized in Table 2.2 (Tiku and Akkaya, 2004).  
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Table 2.2 The Theoretical Skewness and Kurtosis Values for Generalized 
Logistic Distribution for Some Shape Parameters 

 
b (shape parameter) 0.50 1 2 4 6 8 

β1 (coeff. of skewness) -0.86 0 0.58 0.87 0.96 1.05 

β2 (kurtosis ) 5.40 4.20 4.33 4.76 4.95 5.20 

 
 

2.5.1 Parameter Estimation Procedure with Modified Maximum 

Likelihood  

 
When εi’s are iid and have generalized logistic distribution, the likelihood 

function is: 
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zi = (1/α)(xi - φxi-1-λ). Differentiating Eq. (2.53) with respect to λ, φ and α 

and setting the derivatives equal to zero gives the following equations:  
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Modified likelihood equations are obtained by linearizing the intractable 

term in likelihood equations using the first two terms of a Taylor series 

expansion:  
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The coefficients ti are determined by the equations F(t(i);b)=qi, qi=i /(n+1) 

where F(.) is the cumulative distribution function of generalized logistic: 
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Then putting these new terms on the likelihood equations and solving the 

resulting equations simultaneously, the following MML estimators of ,  

and  are obtained (Akkaya and Tiku, 2001b): 
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LS estimators of generalized logistic distribution: 

 

( ) ([ 1bˆˆ
0 ψ−ψα−κ=λ )],                                                                                    (2.63) 

 68



2n

1i
1i

n

1i

2
1i

n

1i
1i

n

1i
i

2n

1i
1i

n

1i

2
1i

n

1i
i1i

0

xxn

xx

xxn

xxn
ˆ

⎟
⎠

⎞
⎜
⎝

⎛
−

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛

−

⎟
⎠

⎞
⎜
⎝

⎛
−

⎟
⎠

⎞
⎜
⎝

⎛

=φ

∑∑

∑∑

∑∑

∑

=
−

=
−

=
−

=

=
−

=
−

=
−

,                                       (2.64) 

and 

}{
( ) ( )[ ]1b)2n(

ˆ

n

1i

2
i

0 ψ′+ψ′−

κ−κ
=α

∑
=                                                                              (2.65) 

 

where   and 1)i()i()i( xˆx −φ−=κ
n

n

1i
i∑

=

κ
=κ .  

 

The computation procedures of MML estimators for weibull and 

generalized logistic distributions are exactly the same way as for the 

procedure of the gamma distribution.  

 
 

2.6 GENERATING RANDOM COMPONENTS OF SKEWED 

HYDROLOGIC VARIABLES FOR AR(1) MODEL WITH 

ASYMMETRIC INNOVATIONS 

 
After model parameters are estimated, the generation of samples of 

stochastic processes of a given autocorrelation structure and marginal 

distribution is a current problem in stochastic hydrology. As mentioned 

earlier, the innovations, εi, are generally assumed to be normally 

distributed N (0, σ2) in hydrological time series model because of the 

regenerative property of the normal distribution under additive linear 

models. By means of this property, the addition of normal variates 

generates other Gaussian variables. This property is not valid for the other 
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distributions. This creates problems during identification stage. For 

example, even if xi are distributed approximately as gamma with mean x , 

variance σ2, and skewness γx, the skewness of the random component, γε,  is 

different from the skewness of the flows or vice versa. This is due to the 

sum of gamma variates, not nearly as attractive as those of normal variates, 

are not necessarily gamma (Fiering and Jackson, 1971). The reason of this 

situation is explained in infinite moving-average form of εi by Hamilton 

(1994).   

 

If the series are assumed to be gamma distribution as GAR(1) model, this 

situation must be considered for generation of synthetic events. Since if the 

model parameters are estimated by means of method of moment 

procedure used in the GAR(1) model, this must simply require substitution 

of sample moments x , r1 and s for population moments μ, ρ and σ. 

Therefore keep in mind that these statistics are random variables and can 

be expected to vary when estimated from different samples (Bras and 

Rodriguez- Iturbe, 1985). Because of sampling uncertainty, there is no 

assurance that the moments of the underlying populations are preserved. 

To preserve the coefficient of skewness of historical time series in 

simulated time series under gamma distribution, there are several 

alternatives which have been proposed to overcome this problem using 

gamma distribution.  

 

In this part of the study, the procedures of the generation of autoregressive 

synthetic series that preserve the first three moments of the recorded flows 

under gamma distribution is introduced and the papers related with 

gamma distribution are briefly reviewed. 
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One method using the gamma distribution was proposed by Wilson and 

Hilferty (1931). In this method, the skewness of the random component 

was modified. Let ζi be normally distributed with a mean of zero and a 

variance of one. Then the modified random sampling variate εi was 

defined by Wilson and Hilferty (1931) as: 

 

ε

εε

ε γ
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ γ
−

ζγ
+

γ
=ε

2
366

12
32

i
i                                                                         (2.66) 

 

where the skewness of ε, (γε), is related to the estimate of the skewness of x, 

(γx), by 
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γ=γ ε                                                                                              (2.67) 

 

Eq. (2.66) was distributed approximately as gamma with a mean of zero, 

variance of one, and coefficient of skewness, γε. Moreover, its use 

preserved the third moment of the recorded flows.  

 

McMahon and Miller (1971) stated that simulation model using the 

Wilson-Hilferty approximation can not reproduce the observed statistical 

moments of highly skewed hydrologic variables. They claimed that the 

Wilson-Hilferty approximation was adequate only when the skewness was 

less than about 4.0. Thus, Kirby (1974) proposed the modified Wilson- 

Hilferty transformation that preserved the first three moments of the 

Pearson Type III distribution (gamma distribution with three parameters). 

This transformation was, 
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The corresponding value of H was; 31)}A/)/2((B{H εγ−= . The other 

parameters were given a tabular form up to γε=9.75 (Kirby, 1972).  

 

Obeysekera and Yevjevich (1985) showed the limitations of the modified 

Wilson Hilferty transformation. Acording to this study, although this 

information preserved the first three moments, it can deviate significantly 

from the gamma distribution it was intended to reproduce. They found out 

that this deviation can be significiantly for large skewness values for which 

εimodified was suggested to be applicable (skewness of < 9.0). 

 

Another method which generated AR(1) samples with an exact gamma 

marginal distribution was proposed by Lawrance and Lewis (1981). This 

method was used by both Obeysekera and Yevjevich, (1985) and 

Fernandez and Salas (1990). In this method, the random component, εi can 

be obtained by using two alternative approaches namely integer and non-

integer values of shape parameter, k: 

 

i) for integer values of k, ε of Eq (2.5) was given by (Gaver and 

Lewis,1980): 
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where ηj = 0, with probability φ; ηj = exp (α), with probability 

(1−φ); and exp(α) = an exponentially distributed random variable 
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with expected value 1/α. This approach is valid for coefficient of 

skewness less than or equal to 2.0. 

 

ii) for non-integer values of  k, based on the shot-noise process, ε  can 

be obtained by: 

 

    ε = λ(1−φ)+ η                                                                                       (2.70) 

    where 

 

    η =0                                    if Μ =0                                                      (2.71) 

     

     and  

 

            if M > 0                                                                 (2.72) jU
M

1j
j )(Y φ=η ∑

=

 

where M is an integer random variable with Poisson distribution of 

mean value – )(nk φl . The set (Uj) is independent, identically 

distributed, random variables with uniform distribution in (0,1). The 

variable (Yj) is also independent, identically distributed; random 

variables with exponential distribution of mean value 1/α (Fernandez 

and Salas,1990). The above schemes are valid only for positive 

autoregression coefficient (Obeysekera and Yevjevich, 1985).  

 
If the modified maximum likelihood procedure is used for any location-

scale distribution, there is no need to preserve the skewness value of the 

historical data to generate the random variate. In addition, the model 

parameters are estimated from residuals in this method. Since the 

population moments are not used to estimate the model parameters, the 
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inverse transform method is used to generate a random variate for any 

distribution due to this property of this method. Let F-1 denote the inverse 

of the cumulative distribution function, F of any distribution. Then, an 

algorithm for generating a random variate having distribution function F is 

as follows: 

 

i.  Generate random variate U~U(0,1) 

ii. Return random variable = F-1(U) 

 

where U is pseudorandom number uniformly distributed on the interval 

[0, 1]. F-1 is obtained by setting U= F and solving for random variable. 

Thus, to generate the desired random variate, U~U(0,1) is generated firstly 

and then the random variate is obtained by using F-1(U) of related 

distribution. The inverse cumulative density functions to generate the 

desired random variate are given below for gamma, weibull and 

generalized logistic distributions. These techniques will be used to obtain 

generated and forecasting streamflow data for relating distribution in 

Chapter 3. 

 

Gamma Innovation: 

The inverse cumulative distribution function of gamma distribution is: 
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Weibull Innovation: 

The inverse cumulative distribution function of Weibull distribution is: 
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Generalized Logistic Innovation: 

The inverse cumulative distribution function of GL is: 

 

[ ]1Ulnˆ)U(F b1
it

1 −α−=ζ= −− .                                                                           (2.75) 

 
 

2.7 ARTIFICIAL NEURAL NETWORK 

 
As it has been mentioned before, the above techniques for time series 

analysis assume linear relationships among variables. In the real world, 

however, temporal variations in data are difficult to analyze and predict 

accurately. Artificial neural networks (ANN) which are suited to complex 

nonlinear models be used for the analysis of real world temporal data. 

Besides the linearity assumption, to use the time series model in the 

literature, the distribution types to be fitted to given data series must be 

determined before any analysis. However, there is no need to make any 

statistical distribution assumption for ANN model. Therefore, it is not 

necessary to know whether a feature set is of a normal or gamma or 

generalized logistic distributions to estimate the model parameters for this 

model. 

 

An ANN is an information processing technique of artificial intelligence 

which is inspired by the biological brain model and formed by numerous 

interconnected neurons. It is a simplified mathematical representation of 

this biological neural network. 
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2.7.1 Methodology of Artificial Neural Network 

 
In this chapter, the information about neural networks is not given in 

detail. However, only main concepts have been introduced.  

Artificial neural networks (ANN) are parallel computing systems whose 

original development was based on the structure and function of brain as 

said earlier (Imrie et al., 2000). In an ANN, the unit is known as the 

processing element (PE). Each PE receives inputs through connections with 

other elements and multiplies every input by its interconnection weight, 

sums the product, and then passes the sum through a transfer function to 

produce its result. A neural network is a combination of a number of 

processing elements organized in layers. Typically there are two layers 

connected to the external environment, an input layer where the data is 

presented to the network and output layer that holds the response of the 

network to the given input. Layers in between are called hidden layers 

which provide the nonlinearity relationships for the network. Each layer is 

made up of several nodes. The pattern of connectivity and the number of 

processing units in each layer may vary within some constraints. No 

communication is permitted between the processing units within a layer, 

but the processing units in each layer may send their output to the 

processing units in the succeeding layers. The neurons in each layer are 

connected to the neurons in a subsequent layer by a weight w, which may 

be adjusted during training. A three layer which has input, output and 

hidden layers, feed-forward ANN is shown in Figure 2.1. The data passing 

through the connections from one neuron to another are multiplied by 

weights. When these are modified, the data transferred through the 

network changes; consequently, the network output also changes.   
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 Figure 2.1 A Three-layer ANN Architecture  

 

There are several activation functions that can be used in ANN such as 

step, sigmoid, threshold, linear, etc. The sigmoid function to give the 

neural network output values is commonly used as an activation function 

in ANN.  

 

The input values, xi are multiplied by the first interconnection weights wij, 

j=1,…,h at the hidden nodes, and the products are summed over the index, 

i, and become the inputs to the hidden layers i.e.;  

 

∑
=

=
k

1i
ijij xwH   j=1,…,h                                                                                   (2.76) 

 

where Hj is the input to the jth hidden node, wij is the connection weight 

from the ith processing element (PE) to the jth PE. Each hidden node is 

transformed through a sigmoid function to produce a hidden node output, 

HOj and is defined as mathematically (Raman and Sunılkumar, 1995): 
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where Hj is the input to the node, f(Hj) is the node output. The output, HOj 

serves as the input to succeeding layer and this produce is continued until 

the output layer is reached. This is referred to as forward activation flow. 

The input to the m output nodes, IOn, is expressed as: 
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These input values are processed using the sigmoid function until 

obtaining the output values On. A portrayal of a unit and its function is 

given in Figure 2.2. 

net input Hj 
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Figure 2.2 Portrayals of a Unit and Its Function 

 

The subsequent weight adoption or learning process is accomplished by 

the back propagation learning algorithm. The On at the output layer will 
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not be the same as the target value, Tn. For each input pattern, the root 

mean square error, RMSE for the pth input pattern is calculated by using 

Eq. (2.79): 

 

∑
=

−=
m

1n

2
nn )OT(

N
1RMSE .                                                                           (2.79) 

 

The aim of the back propagation learning algorithm is to minimize 

iteratively the average squared error between values of the output, On, at 

the output layer and the correct value, Tn, provided by teaching (Dikmen, 

2001).  
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CHAPTER 3 
 

 
 

CASE STUDY ON KIZILIRMAK BASIN 
 

 

 

3.1 INTRODUCTION 

 
As a part of this study, Kızılırmak River Basin is taken into account. The 

annual and monthly data sets are chosen from five streamflow gauging 

stations located on Kızılırmak River.   

 

The streamflow series from Kızılırmak Basin consist of time-dependent 

variables. Therefore, time series models are to be used in the examination 

of data. The autoregressive time series are the most commonly used 

models in hydrology.  GAR(1) and AR(1) models with asymmetric 

innovations are proposed in the literature for the series not normally 

distributed. In contrast to GAR(1), AR(1) model with asymmetric 

innovations  is a more advantageous model considering the varsity of its 

applications to different distributions. Although there are studies showing 

the application of GAR(1) model to hydrological data, the application of 

AR(1) model with asymmetric innovations is not yet examined for non-

normal hydrological time series. In this chapter, the results from GAR(1) 

model are compared with the results from AR(1) model with asymmetric 

 80



innovations and the advantages of AR(1) model are examined. AR(1) 

model with asymmetric innovations is found to be more advantageous 

since it can be used with different distribution whereas GAR(1) model can 

be used with only gamma distribution.   

 

Synthetic series are required to be generated during the planning phase of 

dams. The choice of model in the representation of investigated series is 

important for the reliability of the synthetic streamflow series to be 

generated. The selected model leads to the generation of synthetic series 

which affects the dimensions of the dam, and in turn affects the stability of 

the dam with some social and economical consequences. To this end, the 

reliable synthetic series generation from observed data is one of the main 

research issues in hydrology since 1950s. 

 

In order to construct an appropriate model for the present data sets it was 

necessary to identify the distribution types of the error terms. Weibull 

distribution is determined as a good fit for the annual data sets. On the 

other hand, the errors of the monthly data sets are found to be best 

represented by the generalized logistic distribution.  Next, the model 

parameters for annual and monthly data are needed to be estimated by 

MML method for selected distributions. Then, the synthetic generation and 

forecasting series are obtained with estimated model parameters set using 

AR(1) model and compared with real observed data set for the respective 

stations. Forecasting is done for only station EIE 1501 to find out the 

reliability of the generated model. The parameters of the model were 

found by using the first 40 years of data and the forecasting series was 

calculated for comparing with the extra seven years of observed data. 
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Moreover, ANN models are developed for annual and monthly series.  The 

results from ANN models are compared with the results from AR(1) with 

asymmetric innovation models for one streamflow gauging station (EIE 

1501).  

 

 

3.2 GAR(1) AND AR(1) MODEL WITH GAMMA INNOVATIONS 

FOR ANNUAL STREAMFLOW DATA 

 
Gamma autoregressive model, GAR(1), was developed and applied to 

annual streamflow data for the case that the gamma distribution 

representing streamflow data better than the normal distribution.  

However, in the previous studies on GAR(1) model such as Fernandez and 

Salas (1990), the Gamma distribution was studied only as an assumption. 

The identification of the distribution type was not based on any statistical 

investigation on real data. The previous study used the method of 

moments procedure in estimating the model parameters.  

 

In this study, however, AR(1) model with gamma innovations is set up as 

presented by Tiku et. al., (1996). Model parameters under gamma 

distribution assumption are estimated by means of modified maximum 

likelihood method, rather than using method of moments.  

 

It is found in this study that the gamma likelihood function cannot be 

maximized for all model parameters for the data set examined. However, 

maximum likelihood procedure is based on maximization of the likelihood 

function by all of the model parameters.  Therefore, we can say that the 

errors of these data sets cannot be represented with Gamma distribution. 
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Since both residual series of the annual data and monthly data do not fit to 

the Gamma distributions, the statistical results corresponding to the 

gamma distribution methodology were not included here. 

 
 

3.3 AR(1) MODEL WITH WEIBULL INNOVATIONS FOR ANNUAL 

STREAMFLOW DATA 

 
The autoregressive models are constructed using 40 years of streamflow 

data series for four gauging stations located on the main river. Although, 

41 years of data (1955- 1995) are available for five stations, the 

autoregressive models are based on 40 years of data for EIE 1501, EIE 1503, 

EIE 1528 and EIE 1536 gauging stations. The monitored data for EIE 1541 

streamflow gauging station show drastically decreasing trend in the last 

two years. In order to avoid some measuring error or inconsistent factors, 

autoregressive model is set up using 38 years of data for the this station.  

The starting data for each station is used as an initial value for estimating 

the MML parameters.  

 

In the implementation of AR(1) model, first, the normality of historical 

series and error terms (residuals) are tested and the coefficient of skewness 

and kurtosis are calculated. The residuals are obtained firstly from Eq. (2.5) 

by using the least squares (LS) estimators of autoregressive coefficient. The 

coefficient of skewness and kurtosis for historical series and residuals are 

presented in Table 3.1.  
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Table 3.1. The Coefficient of Skewness and Kurtosis Values of Historical 
Series and Residuals at Various Runoff Stations 

 
Coefficient  of 

Skewness  
Kurtosis      

Stations 
Historical 

series 
residuals Historical 

series 
residuals

EIE1501 0.70 0.63 3.09 2.99 
EIE1503 0.85 0.78 3.37 3.25 

EIE1541 0.48 0.98 2.77 3.18 

EIE1528 0.72 0.61 3.15 3.05 

EIE1536 0.72 0.60 3.14 3.05 

 

As seen in Table 3.1, the coefficients of skewness and kurtosis for each 

series are far from the theoretical skewness and kurtosis values of a normal 

distribution, zero and three respectively. Therefore, these values clearly 

indicate the non-normalities of both distributions of historical series and 

residuals.  

 

Jarque-Bera statistics (Bowman and Shenton, 1975) can be used to test the 

normality.  This method measures the difference of the skewness and 

kurtosis of the series with those from the normal distribution. The statistic 

is computed as  
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⎠
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⎛ −
+

−
=−
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6
uNBeraJarque

2
2                                        (3.1) 

 

where u represents the number of estimated coefficients used to create the 

series. Under the null hypothesis of a normal distribution, the Jarque-Bera 

statistic is distributed as chi-square statistic with 2 degrees of freedom (one 

for skewness one for kurtosis). The calculated Jarque-Bera test statistics for 

 84



each runoff data set are shown in Table 3.2. The critical value at 99.95 % 

level for 2 degrees of freedom is 0.103.  

Table 3.2 Jarque-Bera Statistic Values for Each Runoff Data Set 

Stations Jarque-Bera statistic 
for historic series 

Jarque-Bera statistic 
for residuals 

Critical value 

EIE1501 3.12 2.51 < 0.103 
EIE1503 4.79 3.95 < 0.103 
EIE1541 1.54 6.14 < 0.103 
EIE1528 3.32 2.36 < 0.103 
EIE1536 3.31 2.28 < 0.103 

 

These values are not smaller than the critical value. Therefore, according to 

Jarque-Bera statistic the null hypothesis of normal distribution is rejected 

indicating that residuals are not from a normal distribution. 

 

After verifying the non-normality and right-skewed distribution with the 

above procedures, Weibull distributions are decided to be used to set the 

AR(1) model in order to obtain the synthetic series for each station. 

Furthermore the coefficient of skewness and kurtosis values obtained from 

observed data are similar to theoretical values of Weibull distribution. To 

further examine whether the error distributions fit to the Weibull 

distributions or not, Q-Q plots and goodness of fit tests are used.  Q-Q 

plots for each station are constructed for different shape parameter values. 

 

Only one of these Q-Q plots for the station EIE1501 is represented in Figure 

3.1 for the shape parameter, p=1.5. The other Q-Q plots for other stations 

are given in Appendix A1. 
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 Figure 3.1 Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovations for EIE 1501 (p=1.5) 

 

Q-Q plots pointed out that the Weibull distribution is suitable to represent 

streamflow data. On the other hand, the goodness of fit tests are used to 

decide whether the residuals come from a population represented by 

Weibull distribution or not. There are two goodness of fit tests for Weibull 

distribution. The first was developed by Tiku and Singh (1981). Their test 

statistics is presented here in Eq.(3.2). The second test was developed by 

Evans et. al. (1989). Their results showed that the Anderson- Darling 

statistics is the most sensitive to the lack of fit to a two-parameter Weibull 

distribution, and the correlation statistics of the Shapiro-Wilk type (see Eq. 

(3.4)) is the most sensitive to departures from a three-parameter Weibull 

distribution. Because of the fact that the number of parameters are three in 

our model of the residuals for each station, the correlation statistics of the 

Shapiro-Wilk type are used to test the goodness of fit to the Weibull 

distribution.  We here introduce in detail the two goodness of fit test 

statistics mentioned above.  
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Testing the Weibull Distribution by Tiku test 

 
         Tiku’s goodness of fit statistics is defined as (Tiku and Singh, 1981): 

 

∑
−

=

−

=

−−−=
2n

1i

1n

1i
ii

* G)2n(G)i1n(2Z ∑ .                                                                (3.2) 

 

By using Z* values, the fitness to the Weibull distribution can be tested as 

follows: 

 

i. From the n number of observations Yi = inεl , i=1,…,n, calculate 

the statistics Z*, with )/)YY(G n:in:1ii1ii μ−μ−= ++ , where μr:n is 

the expected value of the rth order statistic in a random sample 

size n. Before using this test, residuals are ordered in ascending 

magnitudes. 

 

ii. The null distribution of Z* does not depend on the shape 

parameter.  

 

iii. To calculate the statistic, the values of the expected values μr:n 

are needed.  These values are obtained from Eq. (3.3). 

 

)
)25.0n(
)50.0i(1log(log(n:r +

−
−−=μ      (i=1,…,n).                                  (3.3) 

 

iv. Substituting the Gi values in Eq. (3.3), Z* values for each station 

are obtained and represented with tabulated values in Table 3.2. 

When these values are compared with the tabulated lower and 

upper limits with a certain level of confidence, the null 
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hypotheses are accepted at 5% significance level for all stations. 

The tabulated values were given in Tiku and Singh (1981). 

 

The results of goodness of fit test using Tiku Statistics are shown in Table 

3.3. Stations EIE 1501 and EIE 1541 pass the test while station EIE 1503 fails 

the test. Stations EIE 1528 and EIE 1536 pass the test just on the lower limit. 

 

Table 3.3 Goodness of Fit Test for Weibull Distribution Using Tiku Test 
 

Critical Value, Z*Stations Computed 

values 

Z*

95% 

confidence 

level 

lower limit 

95% 

confidence 

level 

upper limit 

Overall decision 

EIE 1501 0.87 0.84 1.16 Accepted 

EIE 1503 0.81 0.84 1.16 Rejected 

EIE 1541 0.93 0.81 1.10 Accepted 

EIE 1528 0.84 0.84 1.16 Accepted 

EIE 1536 0.84 0.84 1.16 Accepted 

 

Shapiro-Wilk type correlation statistic 

 
Evans et. al. (1989) modified a simplified form of Shapiro- Wilk 

statistics to develop a goodness of fit test for Weibull distribution. Shapiro- 

Wilk statistics had been used earlier to test the goodness of fit of normal 

distribution.  Modified goodness of fit test for Weibull distribution is given 

below: 

 

i. Let ε(1),  ε(2),…, ε(n) denote an ordered residual sample of size n 

from the population of interest. If a variable ε has the three 
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parameter Weibull distribution, the variable Yε = ε has an 

extreme value distribution (Evans et. al., 1989). Thus for three 

parameter Weibull distributions, the correlation type statistic 

R

nl
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where p is the shape parameter of this distribution.  

 

ii. Tests are carried out to check the goodness of each fit using the 

techniques of correlation statistics of the Shapiro-Wilk type 

under confidence levels of 90%, 95% and 99%. The overall 

decisions for fits according to selected shape parameter value are 

considered to be acceptable if any one of the test results is 

acceptable. Critical values of this test at the 0.10, 0.05 and 0.01 

significance levels by adding the shape parameter are: 

 

(R2WES ) 0.10={0.994111418-(1.81407/n)+(12.38547217/n2)-0.00705129 

                  +[0.003971786(shape)]-[0.000508929(shape)(shape)]}2              (3.6) 

(R2WES ) 0.05={0.99229032-(2.24194/n)+(16.33414042/n2)-0.00551925 

                   + [0.00348(shape)]-[0.000492187(shape)(shape)]}2                    (3.7) 
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(R2WES ) 0.01={0.98757887-(3.37283/n)+(26.99680370/n2)+0.001807429 

                   + [0.0006810714(shape)]-[0.000299107(shape)(shape)]}2          (3.8) 

iii. The hypothesis that a three parameter Weibull fits the data if 

R2we is less than the critical value is rejected. The assumed 

theoretical distribution is accepted otherwise.  

 

The results of goodness of fit test using Shapiro-Wilk statistics are shown 

in Table 3.4.  

 
Table 3.4 Goodness of Fit Test for Weibull Distribution Using Shapiro-Wilk 

Test 
 

Critical Value, (R2WES )  Stations Shape 

parameter 

Computed 

value 

R2we

90% 95% 99% 

Overall 

decision 

EIE 1501 1.8 0.95510 0.9119 0.8942 0.8504 Accepted 

EIE 1503 1.5 0.93784 0.9106 0.8931 0.8506 Accepted 

EIE 1541 1.5 0.96927 0.9077 0.8896 0.8458 Accepted 

EIE 1528 1.8 0.95722 0.9119 0.8942 0.8504 Accepted 

EIE 1536 1.8 0.95862 0.9119 0.8942 0.8504 Accepted 

 

According to the results presented in Table 3.3 and Table 3.4, the null 

hypothesis is accepted indicating that error terms come from Weibull 

distribution. As a result, the Weibull distribution is proven to be a good fit 

to represent the residuals of annual data sets of each station.  

 

3.3.1 MML Estimators for the Model Parameters  

 
The shape parameter is not known in this procedure. Q-Q plots can also be 

used to determine the initial shape parameter. The closest values to the 
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straight line are chosen as the initial shape parameters.  The theoretical 

coefficient of skewness and kurtosis values for Weibull distribution 

represented in Table 2.1 are compared to the computed values to select the 

initial shape parameter values as a second procedure. According to this, it 

is found out that the shape parameter (p) values for each station can be 

selected between 1.5 and 2.2. As seen in the Q-Q plots in Figure 3.1 and in 

the Appendix A1, these values are 1.8 for EIE1501, EIE1528 and EIE1536 

and 1.5 for EIE1503 and EIE1541 stream gauging stations. The goodness of 

fit test for Weibull using Shapiro-Wilk test support these conclusions. 

 

After determining the distribution types according to Q-Q plots and 

goodness of fit test and shape parameters for each runoff station, the MML 

method is used to estimate the model parameters at the respective stations 

in Kızılırmak Basin.  

 

To apply MML procedure, all the least square estimators are needed to 

order variates ε(i) (1≤i≤n). There are two kinds of least square estimators 

used here. The first one is denoted by  and represents the autoregression 

coefficient and the other is 

0φ̂

0α̂ , representing scale parameter for AR(1) 

model. They are computed using Eqs. (2.49)–(2.50) for each stream gauging 

station and presented in Table 3.5 in the second and the third columns.  

 

Using these initial values, the ordered variates ε(i) (1≤i≤n) and the 

corresponding concomitants (x[i] and x[i]-1) are obtained. From these values, 

MML estimators are calculated and then LS estimators are replaced with 

MML estimators. This procedure is repeated until the estimates stabilize. 

The corresponding MML estimates shown in Table 3.5 (the forth and 

seventh columns) are obtained explicitly from Eqs. (2.46)-(2.48). A Fortran 

program given in Appendix B is prepared and run for these computations.   
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Table 3.5. Estimated Parameters from AR(1) Model with Weibull 
Innovations for Each Gauging Station  

 
LS Estimators MML Estimators 
Autoreg. Scale Shape Location Autoreg. Scale 

Stations 

( ) 0φ̂ ( 0α ) (p) (λ)  ( ) φ̂ (α) 
EIE 1501 0.1019 42.63 1.8 32.04 0.0043 42.33 

EIE 1503 0.0954 43.84 1.5 56.32 0.0014 45.26 

EIE 1541 0.5364 13.86 1.5 7.88 0.1333 15.52 

EIE1528 0.1965 66.93 1.8 76.98 0.0134 66.83 

EIE1536 0.1971 76.52 1.8 87.04 0.0134 76.50 

 

Next, the aim is to find out whether the initially specified shape 

parameters are correct or not.  It needs to be checked whether the 

likelihood function for Weibull distribution is maximized or not by other 

estimated model parameters, which are λ, φ  and ˆ α̂ . As known, maximum 

likelihood procedure is based on maximization of the likelihood function 

by all of the parameters.  

 
The log-likelihood functions for Weibull distribution are given in Figures 

3.2-3.6. Therefore it can be said that the assumptions mentioned earlier for 

shape parameters are correct. 
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Figure 3.2 Weibull Log-likelihood Function with respect to the Different 

Shape Parameters for EIE 1501 
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Figure 3.3 Weibull Log-likelihood Function with respect to the Different 

Shape Parameters for EIE 1503 
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Figure 3.4 Weibull Log-likelihood Function with respect to the Different 

Shape Parameters for EIE 1541 
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 Figure 3.5 Weibull Log-likelihood Function with respect to the Different 

Shape Parameters for EIE 1528 

 

 94



-60000

-50000

-40000

-30000

-20000

-10000

0

0 1 2 3 4 5 6 7 8 9
p (shape parameter)

lo
g 

lik
el

ih
oo

d 
fu

nc
tio

n

 
 

Figure 3.6 Weibull Log-likelihood Function with respect to the Different 

Shape Parameters for EIE 1536 

 

As a result of MML procedure, all of the model parameters (p, λ, φ and α) 

are estimated. In addition, the estimated modeling parameters are 

unbiased, efficient and robust from the statistical point of view as seen in 

the previous studies such as Akkaya and Tiku, (2001a), Tiku and Akkaya 

(2004) and Akkaya and Tiku (2005) etc. Since the aim of the study is to 

introduce and apply an alternative modeling procedure in hydrology, and 

since the previous studies showed that the model parameters are unbiased, 

efficient and robust, therefore, the present study did not elaborate on these 

matters.  

 

Consequently, the model parameters are estimated explicitly by using the 

MML method. The AR(1) model can now be constructed with the 

estimated parameters. 
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3.3.2 Generation Annual Data Using AR(1) Model with Weibull 

Innovations 

 
Once the parameters of the AR(1) model are determined, the 

autoregressive model are used in order to generate synthetic annual series. 

The first value in annual data is used as an initial value, x0 for simulation 

part. The value of 1ζ  which is an independent Weibull variable is 

randomly selected from a Weibull distribution by using Eq. (2.74). With the 

starting data, x0 and ε1 (= 1αζ ) values, Eq. (3.9) yields a value for x1, the first 

synthetic event by using estimated parameters; , α and λ φ̂

 

101 xˆx αζ+φ+λ= .                                                                                            (3.9) 

 

The summation of the x1 and random number, ε2 (= 2αζ ) has given us a 

new value for x2 as the second synthetic event. This procedure is repeated 

n times for each station. The mean and standard deviation of generated 

series from AR(1) models are calculated in order to compare with the 

values of historical series for each stream gauging station.  

 

Following the above procedure, a sufficiently large number of synthetic 

series each having the length of the historical series, which is 1000, are 

decided to be generated.  For each one of the generated synthetic series, the 

mean and standard deviation are determined. In fact, the synthetically 

generated series is expected to conserve some of the statistical properties of 

the historical data because of the stationarity condition of autoregressive 

models. This implies that mean is not a function of time. Similarly, the 

variance and correlation coefficient will also be independent of time (Bras 

and Rodriguez-Iturbe, 1985).  
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However, this is only true (especially for the case of correlation 

coefficients) when the method of moments is used for estimating the 

parameters of the model. Nevertheless, when the estimation method of 

maximum likelihood is used, the model correlogram will not necessarily 

be the same as the historical correlogram. In conclusion, one can not say in 

general that the AR(1) model “preserves” the first serial correlation 

coefficient (Salas et.al., 1980). For this aim, Table 3.6 shows the mean values 

of the computed moments (mean and standard deviation) based on the 

1,000 series for each stream gauging station.  

 

Table 3.6 Mean Values of Moments Derived from Generated Series Based 
on AR(1) Model with Weibull Innovations 

 
Generated Synthetic 

Series 

    Historical Series Stations 

Mean Std. dev. Mean Std. dev. 

EIE 1501   69.89  21.57   69.21 21.63 

EIE 1503   97.22   27.75   96.08 26.65 

EIE 1541   25.14    9.54   24.71   9.75 

EIE 1528 138.08 34.10 136.91 34.46 

EIE 1536 157.44 39.25 155.63 39.41 

 

 

The first two moments (mean and standard deviation) computed from the 

synthetic data are compared with the respective moment values of the 

historical series using relative errors. The relative error values in 

percentages (Table 3.7) are obtained by subtracting the historical moment 

value from generated moment value and dividing by generated moment 

value, multiplying by 100.   

 

 97



Table 3.7 Relative Errors between Generated and Historical Moment 
Values for Annual Data 

 
     Relative errors Stations 

Mean (%) Std. dev. (%) 

EIE 1501 0.97 0.27 

EIE 1503 1.17 -3.96 

EIE 1541 1.71           -2.20 

EIE 1528 0.85 -1.06 

EIE 1536 1.15 -0.40 

 

It is seen that the relative error values given as percentages for AR(1) 

model are relatively low. There is only one error value for standard 

deviation higher than 3 percent on one station. This error also is quite 

small.  

 

These results show that AR(1) model with Weibull innovations 

satisfactorily preserve the mean and standard deviation of a historical 

series when the model parameters are estimated by using MML procedure. 

 

3.3.3 Forecasting Annual Data Using AR(1) Model with Weibull 

Innovations 

 
The second important application in time series model is in forecasting or 

predicting future events.  For this purpose, we use the seven years of 

annual data observed at EIE 1501 station after 1995 which was not used to 

set up the AR(1) model with Weibull innovations. These seven years are 

utilized to see how the model forecast the future annual runoff data. The 

annual 1995 data is utilized as initial value for synthetic forecasting data. 
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Then the same procedure explained in section 3.3.2 is followed to generate 

data. Forecasting and observed annual data series for EIE 1501 station are 

plotted in Figure 3.7 for comparison.   

 

As seen in Fig. 3.7, AR(1) model with Weibull innovations based before 

1995 data forecast closely the observed hydrograph ordinates after 1995.  
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Figure 3.7 Forecasted Annual Data Series and Observed Annual Data 

Series for EIE 1501 Stream Gauging Station 

 

The AR(1) model with Weibull innovations predicted peak flow is 97.03 

m3/s with an underestimation of 3.0%. The predicted lowest flow is 38.86 

m3/s with an overestimation of 54.5%.  Although there is only one value 

which is overestimated, model performance can be evaluated as good 

according to the differences between observed and AR(1) modeled with 

Weibull innovations.  

 

To evaluate the overall forecasting performance for seven years, the root 

mean square error (RMSE) term is used. RMSE between forecasting and 

observed values is calculated as 6.00 from Eq. (2.79). This test shows a 
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good forecasting performance. This test is chosen to illustrate the 

difference between forecasting and observed rather than the error, because 

there is a significant uncertainty in the measured parameter. As a part of 

conclusion, the Table 3.6 and Figure 3.7 show that AR(1) with Weibull 

innovations model estimates are consistent with the observed values with 

small root mean square error terms.  

 

The results suggest that proposed model may provide a superior 

alternative to the AR(1) model for developing simulation and forecasting 

models in situations that do not require modeling of the internal structure 

of the basin.  

 
 

3.4 AR(1) MODEL FOR MONTHLY STREAMFLOW DATA 

 
Periodic hydrological data such as seasonal, monthly, weekly and daily 

series generally have periodicity in the mean and in the standard deviation 

(Salas et. al., 1980).  

 

In this study, 480 (40 years*12) monthly streamflow data for each station 

are used.  

 

Monthly time series denoted as xv,τ, v=1,...,n and τ=1,...,w, where n is the 

total number of years of data and w is the number of time intervals within 

a year (w=12 for monthly data) are plotted for each station and shown in 

Figures 3.8-3.12. These figures show that streamflows during the spring 

and early part of the summer are generally higher than the rest of the year; 

this situation repeats itself every year in a periodic manner. 
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 Figure 3.8 Time Series of Monthly Streamflow of EIE 1501 for the Period of 

1956-1995. 
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 Figure 3.9 Time Series of Monthly Streamflow of EIE 1503 for the Period of 

1956-1995. 

 

 101



0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456 480
 months

xv
,t

 
 Figure 3.10 Time Series of Monthly Streamflow of EIE 1541 for the Period 

of 1956-1995. 
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 Figure 3.11 Time Series of Monthly Streamflow of EIE 1528 for the Period 

of 1956-1995. 

 

 102



0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456 480

months

xv
,t

 
  Figure 3.12 Time Series of Monthly Streamflow of EIE 1536 for the Period 

of 1956-1995. 

 

Periodicities of the streamflow series need to be eliminated to be able to 

use deseasonalized models. For this purpose, periodic mean and periodic 

standard deviation are estimated by computing the sample mean τx  and 

the sample standard deviation sτ for each time interval τ=1,...,w 

respectively.  

 

In this way, the streamflow series are deseasonalized by the author first by 

subtracting the monthly mean value and then dividing it by seasonal 

standard deviations to fit to the AR(1) model as calculated below;  

 

τ

ττ
τ

−
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As a result, the periodicities of the original series are removed. Afterwards, 

the coefficient of skewness and kurtosis values for deseasonalized monthly 

data and residuals are computed and given in Table 3.8 to have an idea 

about the distribution of residuals.  

 

Table 3.8.  The Coefficient of Skewness and Kurtosis Values of 
Deseasonalized Monthly   Historical Series and Residuals  

 
Coefficient of Skewness  Kurtosis      

Stations Historical 
series 

Residuals Historical 
series 

Residuals 

EIE1501 1.33 1.60 5.19 9.09 

EIE1503 1.81 2.19 7.45 13.00 

EIE1541 1.18 1.08 4.42 5.62 

EIE1528 1.51 1.81 6.07 10.70 

EIE1536 1.52 1.82 6.11 10.79 

 

The above tabulated values indicate non-normality of the residual 

distribution. Using again Jarque-Bera test, normality assumption is rejected 

as seen in Table 3.9. From tables critical value at 5% level for 2 degrees of 

freedom is 5.99.  

Table 3.9. Jarque-Bera Statistic Values for Each Runoff Data Set 

Stations Jarque-Bera 
statistic for historic 

series 

Jarque-Bera 
statistic for 
residuals 

Critical value 

EIE1501 241.89   964.31 < 5.99 
EIE1503             670.48 2428.38 < 5.99 
EIE1541 154.56  234.92 < 5.99 
EIE1528 377.86 1475.04 < 5.99 
EIE1536 385.37 1506.40 < 5.99 
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The residual distribution is not normal and positively right skewed. 

Therefore, the generalized logistic distribution is selected to set AR(1) 

model for monthly series.  

 

To further examine whether the error distributions fit to the generalized 

logistic distribution or not, Q-Q plots are used by employing Eq. 2.29.  Q-Q 

plots for each station are constructed for different shape parameter values. 

 

Only one of these Q-Q plots for the station EIE1501 is represented in Figure 

3.13 for the shape parameter, b=8. The other Q-Q plots for other stations 

were given in Appendix A2. Q-Q plots pointed out that the Generalized 

logistic distribution is viable.  
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 Figure 3.13 Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovations for EIE 1501 (b=8) 
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Examining the Q-Q plots, the three largest data are suspected to be outliers 

for all stations except for EIE 1541 station. Hence these three data are 

removed from the data set as outliers.  

 

Q-Q plots are replotted for the rest of data. As seen in Figures 3.14 and 

A24-A30 at the Appendix A3, the resulting correlation coefficients are 

higher than the previous values. This situation supports that three 

removed data are outliers.  
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Figure 3.14  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovations for EIE 1501 (b=8) Without Outliers 

 

The coefficient of skewness and kurtosis values are given in Table 3.10 for 

the reduced data set. As compared with the values in Table 3.8, the 

coefficient of skewness and kurtosis values are reduced. 
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Table 3.10. The Coefficient of Skewness and Kurtosis Values of Residuals 
without Outlier Data  

  
    
Stations 

Coefficient of Skewness 
for residuals 

Kurtosis for 
residuals 

EIE1501 1.04 5.50 

EIE1503 1.33 6.41 

EIE1528 1.02 5.19 

EIE1536 1.02 5.21 

 

According to Jarque- Bera test, this residual also do not come from normal 

distribution. The results of this test are given in Table 3.11. 

Table 3.11. Jarque-Bera Statistic Values for Each Runoff Data Set 

Stations Jarque-Bera 
statistic for 
residuals 

Critical value 

EIE1501   214.61 < 5.99 
EIE1503    379.53 < 5.99 
EIE1528    181.77 < 5.99 
EIE1536    183.55 < 5.99 

 

Therefore, it can be accepted that residual series of the monthly data fit 

better to the generalized logistic distribution (GL). 

 

3.4.1 MML Estimators for the Model Parameters 

 
The procedure of the AR(1) model application for GL distribution is 

exactly the same procedure as in Weibull distribution. The obvious 

alteration is to use formulas for GL distribution. Similarly, the model 

parameters are estimated by MML procedure. The initial shape parameter 

values can be selected between 8 and 10 values when the theoretical 
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coefficient of skewness and kurtosis for generalized logistic distribution 

given in Table 2.2 are compared to the computed values. These values are 

chosen as 8 for EIE1501, EIE1541, EIE1528 and EIE1536 and 10 for EIE1503 

according to Q-Q plots for each station. All of the model parameters are 

presented in Table 3.12 with LS estimators. 

 
Table 3.12. Estimated Parameters from AR(1) Model with Generalized 

Logistic Innovations for Each Gauging Station  
 

LS Estimators MML Estimators Stations 
(λ0)  ( ) 0φ̂ ( 0α ) (b) (λ)  ( ) φ̂ (α) 

EIE 1501 -1.4476 0.6575 0.5544 8   -1.3420 0.5257 0.5142 

EIE 1503 -1.5942 0.6304 0.5591 10 -1.4187 0.4630 0.4940 

EIE1541 -1.3930 0.7240 0.5365  8 -1.2788 0.5878 0.4898 

EIE1528 -1.3804 0.6880 0.5285 8 -1.2696 0.5387 0.4828 

EIE1536 -1.3814 0.6872 0.5289 8 -1.2697 0.5375 0.4827 

 

It is found that all of the estimated parameters maximize the log-likelihood 

function with initial shape parameter under generalized logistic 

distribution for each streamflow station. The log-likelihood functions are 

given for generalized logistic distribution in the Figures 3.15-3.19. 
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  Figure 3.15 Generalized Logistic Log-likelihood Function with  

                       respect to the Different Shape Parameters for EIE 1501 
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 Figure 3.16 Generalized Logistic Log-likelihood Function with  

                      respect to the Different Shape Parameters for EIE 1503 
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 Figure 3.17 Generalized Logistic Log-likelihood Function with  

                      respect to the Different Shape Parameters for EIE 1541 
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 Figure 3.18 Generalized Logistic Log-likelihood Function with  

                      respect to the Different Shape Parameters for EIE 1528 
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 Figure 3.19 Generalized Logistic Log-likelihood Function with  

                      respect to the Different Shape Parameters for EIE 1536 
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3.4.2 Generation Monthly Data Using AR(1) Models with Generalized 

Logistic Innovations 

 
Having estimated the parameters of the model, the synthetic periodic time 

series are now generated by substituting the estimated parameters into the 

Eq. (3.11). As a result, the original seasonal series xv,τ is obtained from: 

 

ττττ += syxx ,v,v                                                                                                 (3.11) 

 

The computations yv,τ can be done either using constant autoregression 

coefficients or periodic autoregression coefficients. The constant 

autoregression coefficients are used here in constructing the synthetic time 

series by the following formula:  

 

τ−ττ ζα+φ= ,v1,v,v ˆyˆy                                                                                          (3.12) 

 

where τζ ,v  is an independent generalized logistic variable computed by Eq. 

(2.75). Thus, Eq. (3.11) and Eq. (3.12) are used to generate the synthetic 

periodic series xv,τ. The actual generating procedure is practically the same 

as in the case of generating annual time series section (3.3.2).  

 

As done before, 1000 series are generated from the AR(1) model with 

generalized logistic innovations, each having the length of the historical 

series. The averages of the generated series are presented together with the 

historical values in the Table 3.13.  
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Table 3.13 Mean Values of Moments Derived from Generated Monthly 
Series Based on AR(1) Model with Generalized Logistic 
Innovations 

 
Generated 

Synthetic Series 

Historical Series 

 

Stations 

Mean Std. dev. Mean Std. dev. 

EIE 1501 68.39 74.23 68.58 78.92 

EIE 1503 93.69 87.85 95.31 96.35 

EIE 1541 23.92 21.34 23.89 23.43 

EIE 1528 133.82 107.8 136.01 116.97 

EIE 1536 152.15 126.43 154.59 136.813 

 

The relative error values are also computed for the monthly data set in 

order to show the reliability of this model as seen in the Table 3.14. 

 

Table 3.14 Relative Errors between Generated and Historical Moment    
Values for Monthly Data 

 
Relative errors Stations 

Mean 

(%) 

Std. dev. 

(%) 

EIE 1501 -0.27 -6.32 

EIE 1503 -1.73 -9.68 

EIE 1541 0.12 -9.79 

EIE 1528 -1.64 -8.51 

EIE 1536 -1.60 -8.21 

 

The Table 3.14 indicates that the developed models tend to produce a more 

conservative decision since the moment values from the model are close to 

historical values. 

 112



3.4.3 Forecasting Monthly Data Using AR(1) Models with Generalized 

Logistic Innovations 

 
For EIE 1501 station, we still have 84 monthly data observed after 1995. 

This data is not used in setting up the model but used to assess the 

forecasting performance of the proposed methodology. Similar procedure 

used for the case of annual data will be followed now forecasting the 

observed monthly data set.  

 

Forecasting monthly data series and the observed monthly data series are 

plotted together against the time axis for comparison in Figure 3.20.   
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Figure 3.20 Forecasted Monthly Data Series and Observed Monthly Data  

                     Series for EIE 1501 Stream Gauging Station 

 

Figure 3.20 shows the performance of AR(1) model with generalized 

logistic innovations to be a very good fit to the data. This model predicted 
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the first peak flow as 222.96 m3/s, while the observed value was 318.8 

m3/s, hence an underestimation of 28.53%. Therefore, AR(1) model with 

generalized logistic innovations approaches yield reasonably good 

forecasts for 1-month ahead forecast. The root mean square error (RMSE) 

term is determined as 28.46 from Eq. (2.79) for the forecasted series. This 

RMSE value can be considered to indicate a good fit.  

 

Therefore, as a result, this model offers a reasonable alternative for 

univariate modeling of water resources time series.  

 
 

3.5 APPLICATION OF ARTIFICIAL NEURAL NETWORK 

 
Using the main concepts of ANN model defined in Section 2.7, following 

procedures are some of the major principles that have been considered 

during model development; 

 

• Three-layer FNN used in this study contains two hidden layers. 

Since the ANN model are used to obtain the annual and monthly 

simulation streamflow values at time i, the previous flow values at 

time i-1 are defined as input values of the input layer. The 

streamflow values at time i are delimited as output values of the 

output layer. In other words one previous annual or monthly flow 

are used to simulate the next yearly or monthly mean flows (one 

time ahead simulating). 

 

• The selection of number of hidden nodes appropriate for the 

particular application is the most difficult task with ANN model. 

Since there is no theory yet to tell how many hidden nodes are 
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needed to approximate any given function, the common trial and 

error method to select the number of hidden nodes is used. The 

optimum number of hidden nodes is found as two with trial and 

error methods. It is observed that an addition of a further node(s) do 

not provide any improvement. 

 

• The sigmoid function Eq. (2.77) is used as the hidden nodes and the 

output node activation function. Since the validation of sigmoid 

function is bounded between 0 and 1, the input data are 

standardized and scaled to fall in range [0.1, 0.9] before applying the 

ANN. After the data presented to the model, “MinMax” tables are 

formed by the software according to sigmoid function selection. If a 

tanh transfer function is used, the data should be transformed in a 

bipolar range (eg. -1 and 1).The river flow xi is standardized by the 

following formula: 

 

1.0)x24.1/x(x maxs +=                                                                          (3.13) 

 

where xs= standardized flow; and xmax= maximum of the flow 

values. After standardizing the flow values, the network should be 

trained by using a set of the learning cases. In the literature, it is 

proposed that 75% of the training set is used for training or learning. 

In this application, 40 annual data and 491 monthly data are selected 

separately for training and 7 annual data and 84 monthly data are 

used for testing case to obtain the synthetic series from ANN model.  

 

• Learning rate, which is the rate at which weights are modified 

during backpropagation, should be high enough to speed up 

learning. However, although high learning rate means rapid 
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learning, it may push training towards a local minimum or may 

cause oscillation. On the other hand, small learning rate requires a 

longer time to reach a minimum value and one could be training 

forever.  

 

• To solve this problem, a momentum factor is proposed to be applied 

which is multiplied by the previous weight change so that while 

learning rate is kept low, changes are still rapid. It is proposed that 

by choosing different learning rate coefficients for each layer, one 

can optimize the network performance. 

 

Backpropagation requires that learning rates approaching to zero 

should be used but as it has mentioned previously, smaller rates 

increases the training time. To decrease the initial learning rates, 

learning coefficient ratio is used in neuralware program. Learning 

coefficient is reduced from the initial learning coefficient by an 

amount corresponding to learning coefficient ratio until training 

time. Hence, initially high learning rates are selected as 0.3 for 

hidden layer and 0.15 for output layer. However after a training 

time it is observed that the learning rates are 0.00001 for hidden 

layer and 0.00117 for output layer for EIE 1501.   

 

• Training time is application specific and also depends on 

performance level expected from the network. Testing phase is one 

way of determining how well the network had learned. Thus, root 

mean square error (RMSE) is used to measure how well the network 

performance. This method is measured and monitored performance 

of the model during both training and testing. RMSE of the error is 

calculated using Eq. (2.79). Smaller the error represents the better 
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performance. However, RMSE do not always mean superior 

performance because of “overtraining”. Overtraining could be 

detected when RMS error of training is high but testing error is 

substantially lower than this. If this situation occurs, the training 

data set is changed. Then the training set is used in testing stage to 

evaluate the accuracy of the ANN models. After construction of the 

initial ANN model, the testing set is introduced to model to test the 

performance of the ANN model. Obtained data from the testing 

stage are determined as forecasting data from the model. 

 

Considering the above criteria, forecasting annual and monthly data series 

are obtained by using neural ware packet program. Firstly, data set are 

standardized by using Eq. (3.13). Secondly, input file and test file are 

constituted for using the neural ware program. After determining the 

learning coefficient and momentum coefficient, the neural ware program is 

run in order to obtain forecasting data.  

 

The outputs of test file are accepted as forecasting data set. After that, 

obtained standardized series are converted to annual and monthly data set 

by using Eq. (3.13).    

 

Seasonal effects are also removed from monthly data set before using it in 

ANN model.  

 

Forecasted series and observed annual and monthly data series for EIE 

1501 station are plotted together against the time axis, separately in Figures 

3.21-3.22.   

 

 117



20

30

40

50

60

70

80

90

100

110

1995 1996 1997 1998 1999 2000 2001 2002 2003

years

di
sc

ha
rg

e 
(m

3 /s
)

observed data
generated data from ANN model

 
Figure 3.21 Forecasted Annual Data Series and Observed Annual Data  

                     Series for EIE 1501 Stream Gauging Station from ANN Model 
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Figure 3.22 Forecasted Monthly Data Series and Observed Monthly Data  

                    Series for EIE 1501 Stream Gauging Station from ANN Model 

 

The Figures 3.21 and 3.22 represent the plots of the observed and the 

computed annual and monthly data set obtained from ANN model. The 

root mean square error (RMSE) terms for ANN model were as 24.66 for 
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annual series and 38.58 for monthly series.  Both RMSE values for ANN 

model are higher than the RMSE values of previous models. For the given 

data set, AR(1) model with asymmetric innovations for both annual and 

monthly series fit better than ANN model for 1-time ahead forecast.  

 

To further assess the ANN model, it can be seen from these figures that 

ANN estimates for monthly data better than the annual data. This result 

may not mean that ANN works better for monthly data.  This situation 

may be resulted from the nature of annual data set taken. More explicitly 

in the annual observed values, the correlation coefficient between the input 

and output values for the system is found to be around 0.1.  We further 

anticipate that if this correlation value were higher, ANN could provide as 

better results for annual values. 

 

On the other hand, the fact is that the correlation coefficients between the 

previous and the successor streamflow values in monthly case are 

naturally expected to be higher with respect to the annual correlations. As 

a result, the ANN model for monthly data naturally better captures the 

monthly extreme streamflow values than the annual extreme values.  

 

Looking at Figs. 3.21 and 3.22 the forecasting results from ANN procedure 

are not satisfactory as there is a big difference between the forecast and the 

observed data. 
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CHAPTER 4 
 

 
 

 
SUMMARY AND CONCLUSIONS 

 

 

 
Autoregressive models are stochastic in nature. They have been utilized in 

hydrology for a long time. In autoregressive models, all influential 

physical parameters are not required in modeling the occurrences of the 

events. Applying time series approach to only one variable enables the 

stochastic model for forecasting the past and future events. Some 

assumptions are required to be made to express and model the 

hydrological events to be resolved.  

 

In most research, the autoregressive models are based upon one major 

assumption that the residual series distribute normally. The main reason of 

making this assumption is the difficulties faced in finding the model 

parameters in the distributions when the distribution is not normal.  In this 

study, the non-normality case has been investigated thoroughly. 

 

There are various parameter estimation methods utilized in finding the 

model parameters. As of one these methods, maximum likelihood 

procedure is more unbiased and more efficient than the other procedures 

in finding the model parameters. However, if the distributions are not 
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normal, model parameters can not be found out exactly by maximum 

likelihood method.  Iterative solution is required. Still problems arise in 

iterative methods such as the drawback of convergence of the model 

parameters to their real values. Maximum likelihood procedure as shown 

by Tiku et al. can be modified in a way that iterative method is not needed.  

 

In this study, the modified maximum likelihood procedure is introduced 

into the area of hydrology to estimate the autoregressive model parameters 

of non-normally distributed series. We examine necessary formulations for 

the autoregressive model parameters with skew distributions such as 

gamma, Weibull and generalized logistic distributions.  

 

Furthermore, this study looks into artificial neural network models as 

another stochastic model utilized in the generation of synthetic series 

without requiring normality assumption and compares with the 

autoregressive models.  

 

After introducing these models in hydrology, consequently, they are 

applied for the annual and monthly streamflow data of five streamflow 

gauging stations located in Kızılırmak basin.  

 

The conclusions of this study may be summarized as follows: 

 

• Normality assumption in autoregressive models is not an 

appropriate assumption either for annual or monthly hydrological 

data utilized in this study. The fact that the data are quite skewed 

result in questioning how reliably forecasting the streamflow 

values can be done by using the models with normality 

assumption.  
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• In sum, for reliability which is an essential issue in the dam 

planning, the skewness of the streamflow series needs to be 

seriously taken into account in setting up their corresponding 

models. 

  

• GAR(1) model was generally proposed to represent non-normally 

distributed streamflow data.  The observed data from Kızılırmak 

Basin is not normally distributed and moreover, do not come from 

gamma distribution.  Therefore, GAR(1) model does not function as 

a viable alternative to study the Kızılırmak Basin data. In such 

cases, AR(1) model with asymmetric innovations is proved to work 

better to represent streamflow data series. 

 

• It is found out that while the error terms obtained from annual data 

set for selected streamflow gauging stations in Kızılırmak basin are 

fit to Weibull distribution by means of goodness of the fit tests, the 

error terms for monthly series are fit to generalized logistic 

distribution. 

 

• It is shown that all of the estimated model parameters under 

Weibull distribution for each annual streamflow series and 

generalized logistic distribution for each monthly streamflow series 

maximize the likelihood function with initial shape parameter. As 

known, likelihood function is based on the assumption of 

maximization of the likelihood function by all parameters. 

 

• The model parameters pertaining to the aforementioned 

distributions can be determined by means of MML method in an 
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unbiased, efficient and robust manner (Akkaya and Tiku, 2001;  

2005).  

 

• When the moment values are compared for the synthetic series 

determined in generation section with the ones of the historical 

data, it is obtained that they are quite close to each other. 

 

• In forecasting section, studying the observed data not utilized in 

setting up of the model parameters, both visual (Figure 4.7 and 

4.20) and statistical procedures are applied for comparison of 

synthetic and historical series. The root mean square error values 

for AR(1) model are calculated for the purpose of statistical 

comparison. The error amount is found to be low. This result points 

out that the deviation of the minimum and maximum streamflow 

values are low. In reality, the root mean square error amount is not 

expected to come out as zero. Therefore, the water structure 

systems to be constructed by making use of this system will be 

reasonably acceptable.  

 

• It is found out that the values determined by means of AR(1) 

models are better than the ANN model in especially the annual 

streamflow data. 

 

• As a final conclusion, it can be stated that AR(1) model with 

asymmetric innovations constructed by making use of MML 

method is pretty good in determining the synthetic and forecasting 

streamflow values, and is a unprecedented and reliable  method in 

the area of stochastic hydrology. 
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SUGGESTED FUTURE STUDIES 
 

 
 

In this thesis, two entropy methods under non-normal distribution, AR(1) 

model with asymmetric innovations and ANN model were applied to 

annual and monthly streamflow series in Kızılırmak basin. The following 

studies may also be suggested as future research topics: 

 

• Entropy methods can also be applied for unaffected natural series 

for selected basins using more number of streamflow gauging 

stations after determining appropriate distribution(s) for streamflow 

series. 

 

• The formulations of bivariate density functions for some 

distributions (generalized logistic etc.) can be developed and 

applied. 

 

• AR(1) model with asymmetric innovations may be applied to daily 

unaffected streamflow series (natural) and compared with ANN 

model. 

 

• The sensibility analysis can be made to evaluate the model 

performance. For this aim, the error values are plotted together 

against the time or forecasting series axis.  
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• The AR(1) models considered here include only one variable. They 

need to be extended to more than one variable. In fact, this 

extension will be of enormous interest from a hydrological point of 

view. 

 

• AR(p) and ARMA(p,q) models with asymmetric innovations can be 

applied to annual and monthly streamflow series. 

 

• Annual, monthly or daily streamflow data can be forecasted 

considering with physical parameters (precipitation, evaporation 

and etc.) by using ANN model.  

 

• When the streamflow values for two stations located upstream have 

exceeded a threshold level, the streamflow values at the 

downstream station exceeding a threshold level can be computed by 

using ANN model and by using bivariate and multivariate 

conditional probability approach. Therefore the flood discharges of 

the downstream station in case flood occurs in the runoff stations 

located at two different upstream branches can be determined. 
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APPENDIX A1 
 

 

 

Q-Q PLOTS FOR AR(1) MODEL WITH WEIBULL INNOVATION 
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Figure A.1 Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1501 (p=1.8) 
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Figure A.2 Q-Q Plot of Residuals from AR(1) Model with Weibull    

Innovation for   EIE 1501 (p=2.1) 
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Figure A.3 Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1503 (p=1.5) 
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Figure A.4 Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1503 (p=1.8) 
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Figure A.5 Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for  EIE 1503 (p=2.1) 
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Figure A.6 Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1541 (p=1.5) 
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Figure A.7 Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1541 (p=1.8) 
 
 

 141



R2 = 0.954

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30 35 40ε i

t i

 
 
Figure A.8 Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1541 (p=2.1) 
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Figure A.9 Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1528 (p=1.5) 
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Figure A.10  Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1528 (p=1.8) 
 
 
 

R2 = 0.9724

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250ε i

t i

 
 
Figure A.11  Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1528 (p=2.1) 
 

 143



R2 = 0.9719

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250ε i

t i

 
 
Figure A.12  Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1536 (p=1.5) 
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Figure A.13  Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1536 (p=1.8) 
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Figure A.14  Q-Q Plot of Residuals from AR(1) Model with Weibull 

Innovation for EIE 1536 (p=2.1) 
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APPENDIX A2 

 

 

 

Q-Q PLOTS FOR AR(1) MODEL WITH GENERALIZED LOGISTIC 

INNOVATION 
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Figure A.15  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation for EIE 1501 (b=10) 
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Figure A.16  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation for EIE 1503 (b=8) 
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Figure A.17  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic  Innovation for EIE 1503 (b=10) 
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Figure A.18  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation for EIE 1541 (b=8) 
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Figure A.19  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation for EIE 1541 (b=10) 
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Figure A.20  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation for EIE 1528 (b=8) 
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Figure A.21  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation for EIE 1528 (b=10) 
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Figure A.22  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation for EIE 1536 (b=8) 
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Figure A.23  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation for EIE 1536 (b=10) 
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APPENDIX A3 
 

 

 

Q-Q PLOTS FOR AR(1) MODEL WITH GENERALIZED LOGISTIC 

INNOVATION WITHOUT OUTLIER 
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Figure A.24  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation without outlier for EIE 1501 (b=10) 
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Figure A.25  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation without outlier for EIE 1503 (b=8) 
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Figure A.26  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation without outlier for EIE 1503 (b=10) 
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Figure A.27  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation without outlier for EIE 1528 (b=8) 
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Figure A.28  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation for without outlier EIE 1528 (b=10) 
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Figure A.29  Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation without outlier for EIE 1536 (b=8) 
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Figure A.30 Q-Q Plot of Residuals from AR(1) Model with Generalized 

Logistic Innovation without outlier for EIE 1536 (b=10) 
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APPENDIX B 
 

 

 

 COMPUTER PROGRAM FOR THE PARAMETER ESTIMATION OF 

AR(1) MODEL WITH WEIBULL INNOVATION FROM MML 

PROCEDURE  

 

 

 

USE numerical_libraries 

INTEGER    I,NOUT,J,N,M 

REAL    P, VALUE1, VALUE2, MBET, DEL, YORT, Y1ORT, AB2, AB3, FI, 

SIG, K, D, BF, C      

REAL  Y(1000), S(1000), T(1000), BET1(1000), ALF2(1000), BET2(1000), 

ALF(1000), BET(1000), W(1000), Y11(1000), ZEN(1000), SIG2(1000), 

FI2(1000), MU2(1000), Z(1000), AB4(1000), AP1(1000), LIK(1000),VG(1000), 

VGORT 

 

OPEN (1,FILE='ANNUALDATA.txt') 

OPEN (2,FILE='FISIGMU.txt') 

OPEN (3,FILE='LSFI.txt') 

OPEN (7,FILE='LIK.txt') 

N=number of data 

M=(number of data -1) 
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P=shape parameter 

VALUE1 = GAMMA(1.+(2./P)) 

VALUE2 = GAMMA(1.+(1./P)) 

DO 1 I=1,N 

READ (1,1000,END=33) Y(I) 

1 CONTINUE 

33 CLOSE(1)  

 

!calculation of alpha and beta 

SUM74=0; SUM75=0 

DO 2 I=2,N 

S(I)=(I-1.)/N 

T(I)=(-ALOG(1.- S(I)))**(1.0/P) 

ALF1(I)=2./T(I) 

BET1(I)= 1./(T(I)**2.) 

ALF2(I)=(2.-P)*(T(I)**(P-1.)) 

BET2(I)=(P-1.)*(T(I)**(P-2.)) 

ALF(I)=(P-1.)*ALF1(I)-P*ALF2(I) 

BET(I)=(P-1.)*BET1(I)+P*BET2(I) 

SUM74=SUM74+ALF(I) 

SUM75=SUM75+BET(I) 

2 CONTINUE 

DEL=SUM74 

MBET=SUM75 

 
! calculation of LS estimators 
AB1=0;AB2=0;AB3=0;AB4=0 

DO 3 I=2,N 

AB1=AB1+Y(I)*Y(I-1) 

AB2=AB2+Y(I) 
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AB3=AB3+(Y(I-1))**2 

AB4=AB4+Y(I-1) 

3 CONTINUE 

FI= (M*AB1-AB2*AB4)/(M*AB3-AB4**2) 

TG=0. 

DO 4 I=2,N 

VG(I)=Y(I)-FI*Y(I-1) 

TG=TG+VG(I) 

4 CONTINUE 

VGORT=TG/M 

TS=0. 

DO 5 I=2,N 

TS=TS+(VG(I)-VGORT)**2 

5 CONTINUE 

SIG=SQRT(TS/((M-2.)*(VALUE1-(VALUE2**2)))) 

WRITE(3,*) 'FI:',FI, 'SIG:',SIG  

 

!calculation of concomitant      

DO 6 L=1,5 

   DO 7 I=2,N 

   W(I)= (Y(I)-FI*Y(I-1)) 

   7 CONTINUE  

   DO 8 I=2,N 

   Y11(I)=Y(I) 

   ZEN(I)= Y(I-1) 

   8 CONTINUE        

   DO 9 I=2,N 

              DO 10 J=I+1,N 

   IF (W(I).GT.W(J)) THEN 
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   Q= W(I);W(I)=W(J);W(J)=Q 

   Q=Y11(I);Y11(I)=Y11(J);Y11(J)=Q 

   Q=ZEN(I);ZEN(I)=ZEN(J); ZEN(J)=Q 

              ENDIF 

   10 CONTINUE  

   9 CONTINUE  

 

!calculation of MU, FI and SIGMA 

AS1=0;AS2=0;AS3=0;AS76=0;AS77=0;AS78=0;AS79=0 

DO 11 I=2,N 

AS1= AS1+ (BET(I)*(Y11(I)-FI*ZEN(I))) 

AS76=AS76+(BET(I)*Y11(I)*ZEN(I)) 

AS77=AS77+(BET(I)*Y11(I)) 

AS78=AS78+(BET(I)*ZEN(I)) 

AS2= AS2+ (BET(I)*(ZEN(I)**2))  

AS3= AS3+((((DEL*BET(I))/MBET)-ALF(I))*ZEN(I)) 

11 CONTINUE  

K= (AS76-((1/MBET)*AS77*AS78))/(AS2-((1/MBET)*(AS78**2))) 

D= AS3/(AS2-(1/MBET)*(AS78**2)) 

AS4=0;AS5=0 

DO 12 I=2,N 

AS4=AS4+ALF(I)*((Y11(I)-FI*ZEN(I))-((1/MBET)*AS1)) 

AS5=AS5+ BET(I)*((Y11(I)-FI*ZEN(I))-((1/MBET)*AS1))**2 

12 CONTINUE 

BF=AS4 

C= AS5 

 

! calculation of MML estimators 

SIG2(L)= (-BF+SQRT(BF**2+4*M*C))/(2*SQRT((M)*(M-1))) 
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FI2(L)= K-(D*SIG2(L)) 

MU2(L)=((1/MBET)*(AS1-SIG2(L)*DEL)) 

FI=FI2(L) 

SIG=SIG2(L) 

MU=MU2(L) 

6 CONTINUE 

WRITE(2,*) 'FI:',FI, 'SIG:',SIG, 'MU:',MU 

 

!calculation of likelihood function 

AB4(P)=0;AP1(P)=0 

DO 13 P=1,10 

DO 14 I=2,N 

Z(I)= (Y11(I)-FI*ZEN(I))/SIG 

AB4(P)=AB4(P)+(Z(I)**P) 

AP1(P)=AP1(P)+ALOG(Z(I)) 

14 CONTINUE 

13 CONTINUE 

 

DO 15 P=1,10 

LIK(P)=-M*ALOG(SIG)+((P-1)*AP1(P))-AB4(P) 

WRITE (7,*) LIK(P) 

15 CONTINUE 

 

1000 FORMAT(F8.8)  

2000 FORMAT (I8)  

STOP 

END 
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APPENDIX C 
 

 

 

      COMPUTER PROGRAM FOR GENERATION OF AR(1) MODEL WITH 
WEIBULL INNOVATION 

 
 
 
 

USE numerical_libraries 

INTEGER    I, NOUT,J,SR,NE, L 

REAL      YS1, F, ALF, MU, BET1, RNUNF, B, ORT, VAR, SKEW      

REAL EPS(1000,1000), Y(1000,1000), ORTX(1000), VARX(1000), 

SKEWX(1000)  

 

OPEN (1,FILE='EPS.txt') 

OPEN (2,FILE='moment.txt') 

SR=  NUMBER OF DATA     

 

! generation of Y values  

NE=1000  

   DO 1 J=1,NE 

   YS1=first value of the data 

              DO 2 K=1,SR 

              CALL UMACH (2, NOUT) 

DO 3 L=1,1000 
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   F= MML ESTIMATOR OF FI                                

             ALF= MML ESTIMATOR OF ALF                                

              MU= MML ESTIMATOR OF LA                                  

   B=SHAPE PARAMETER 

             EPS(J,K)=ALF*(-ALOG(1.- RNUNF()))**(1.0/B) 

3 CONTINUE 

Y(J,K)=F*YS1+EPS(J,K)+MU 

YS1=Y(J,K) 

WRITE(1,*) Y(J,K) 

2 CONTINUE 

 

! calculation of moment value for generated series 

SUM1=0 

DO 4 K=1,SR 

SUM1=SUM1+Y(J,K) 

4 CONTINUE 

ORTX(J)= SUM1/SR 

 

TOP1=0 

DO 5 K=1,SR 

TOP1 = TOP1+(Y(J,K)-ORTX(J))**2 

5 CONTINUE 

VARX(J)= TOP1/(SR-1) 

 

CAR=0 

DO 6 K=1,SR 

CAR= CAR+ (Y(J,K)-ORTX(J))**3 

6 CONTINUE 

SKEWX(J) = (CAR*SR)/((SR-1)*(SR-2)*VARX(J)**1.5) 
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1 CONTINUE 

SUM2=0;SUM3=0; SUM5=0 

DO 7 J=1,NE 

SUM2=SUM2+ORTX(J) 

SUM3=SUM3+VARX(J) 

SUM5=SUM5+SKEWX(J) 

7 CONTINUE 

ORT=SUM2/NE 

VAR=SUM3/NE 

SKEW=SUM5/NE 

 

WRITE(2,*) 'ORT:',ORT, 'VAR:',VAR,'SKEW:',SKEW 

 

1000 FORMAT(F5.2)  

2000 FORMAT (I2)  

STOP 

END 
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APPENDIX D 
 

 

 

COMPUTER PROGRAM FOR THE PARAMETER ESTIMATION OF 

AR(1) MODEL WITH GENERALIZED LOGISTIC INNOVATION 

FROM MML PROCEDURE  

 

 

 

USE numerical_libraries 

INTEGER    I, NOUT, J, N, M 

REAL      MUL, B, MBET, DEL, FI, VGORT, PSISB, PSIBIRS, PSIB, PSIBIR, 

SIG, NU, VORT, K, D, BF, C    

REAL       Y(1000), P(1000), T(1000), ALF(1000), BET(1000), VG(1000), 

W(1000), Y11(1000), ZEN(1000), V(1000), SIG2(1000), FI2(1000), NU2(1000), 

Z(1000), LIK(1000) 

 

OPEN (1,FILE='monthly.txt') 

OPEN (2,FILE='FISIGHATA.txt') 

OPEN (4,FILE='LSFI.txt') 

OPEN (6,FILE='LIK.txt') 

N=NUMBER OF DATA 

M= (NUMBER OF DATA-1) 

MUL=2.*SQRT(M*(M-1.)) 
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B=SHAPE PARAMETER 

DO 1 I=1,N 

READ (1,1000,END=33) Y(I) 

1 CONTINUE 

33 CLOSE(1)  

 

!calculation of alpha and beta 

AT2=0;AT3=0 

DO 2 I=1,M 

P(I)=I/(M+1.) 

T(I)=-ALOG(P(I)**(-1./B)-1.) 

ALF(I)=(1+EXP(T(I))+T(I)*EXP(T(I)))/(1+EXP(T(I)))**2 

BET(I)= EXP(T(I))/(1+EXP(T(I)))**2 

AT2=AT2+BET(I) 

AT3=AT3+(ALF(I)-(1./(B+1.))) 

2 CONTINUE 

MBET=AT2 

DEL=AT3 

 

! calculation of LS estimators 

AB1=0;AB2=0;AB3=0;AB4=0 

DO 3 I=2,N 

AB1=AB1+Y(I)*Y(I-1) 

AB2=AB2+Y(I) 

AB3=AB3+(Y(I-1))**2 

AB4=AB4+Y(I-1) 

3 CONTINUE 

FI= (M*AB1-AB2*AB4)/(M*AB3-AB4**2) 

TG=0. 
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DO 4 I=2,N 

VG(I)=Y(I)-FI*Y(I-1) 

TG=TG+VG(I) 

4 CONTINUE 

VGORT=TG/M 

TS=0. 

DO 5 I=2,N 

TS=TS+(VG(I)-VGORT)**2 

5 CONTINUE 

PSISB=  (1./B)+(1./(2.*(B**2.)))+(1./(6.*(B**3.)))-  

(1./(30.*(B**5.)))+(1./(42.*(B**7.)))-(1./(30.*(B**9.))) 

PSIBIRS= (1./1.)+(1./(2.*(1.**2.)))+(1./(6.*(1.**3.)))-

(1./(30.*(1.**5.)))+(1./(42.*(1.**7.)))-(1./(30.*(1.**9.))) 

PSIB= ALOG(B)-(1./(2.*B))-(1./(12.*(B**2)))+(1./(120.*(B**4)))-

(1./(252.*(B**6))) 

PSIBIR=ALOG(1.)-(1./(2.*1.))-(1./(12.*(1.**2)))+(1./(120.*(1.**4)))-

(1./(252.*(1.**6))) 

SIG=SQRT(TS/((M-2.)*(PSIBS+PSIBIRS))) 

NU=VGORT-(SIG*(PSIB-PSIBIR)) 

WRITE(4,*) 'FI:',FI,'SIG:',SIG,'NU:',NU 

 

!calculation of concomitant      

DO 6 L=1,5 

   DO 7 I=2,N 

   W(I)= ((Y(I)-FI*Y(I-1))-NU) 

   7 CONTINUE  

   DO 8 I=2,N 

   Y11(I)=Y(I) 

   ZEN(I)= Y(I-1) 
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   8 CONTINUE        

   DO 9 I=2,N 

              DO 10 J=I+1,N 

   IF (W(I).GT.W(J)) THEN 

   Q= W(I);W(I)=W(J);W(J)=Q 

   Q=Y11(I);Y11(I)=Y11(J);Y11(J)=Q 

   Q=ZEN(I);ZEN(I)=ZEN(J); ZEN(J)=Q 

              ENDIF 

   10 CONTINUE  

   9 CONTINUE  

 

! calculation of MML estimators 

AT1=0;AS1=0;AS2=0;AS3=0;AS4=0;AS5=0 

DO 11 I=2,N 

V(I)=Y11(I)-(FI*ZEN(I)) 

AT1=AT1+BET(I-1)*V(I) 

11 CONTINUE 

VORT=AT1/MBET 

DO 12 I=2,N 

AS1= AS1+ (BET(I-1)*Y11(I)*ZEN(I)) 

AS2= AS2+ (BET(I-1)*ZEN(I))  

AS3= AS3+ (BET(I-1)*Y11(I)) 

AS4= AS4+ (BET(I-1)*ZEN(I)**2)  

AS5= AS5+((ALF(I-1)-(1./(1.+ B)))-(DEL/MBET)*BET(I-1))*ZEN(I) 

12 CONTINUE  

K= (AS1-((1./MBET)*AS2*AS3))/(AS4-((1./MBET)*(AS2**2))) 

D= AS5/(AS4-((1./MBET)*(AS2**2))) 

AS6=0;AS7=0 

DO 13 I=2,N 
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AS6=AS6+(ALF(I-1)-(1./(1.+ B)))*(V(I)-VORT) 

AS7=AS7+ BET(I-1)*(V(I)-VORT)**2 

13 CONTINUE 

BF=(B+1.)*AS6 

C=(B+1.)*AS7 

SIG2(L)= (-BF+SQRT(BF**2+4*M*C))/(MUL) 

FI2(L)= K-(D*SIG2(L)) 

NU2(L)=VORT-(SIG2(L)*(DEL/MBET)) 

FI=FI2(L) 

SIG=SIG2(L) 

NU=NU2(L) 

6 CONTINUE 

 

!calculation of likelihood function 

AB4=0;AP1=0 

DO 14 I=2,N 

Z(I)= (Y(I)-FI*Y(I-1)-NU)/SIG 

AB4=AB4+Z(I) 

AP1=AP1+ALOG(1+EXP(-Z(I))) 

14 CONTINUE 

DO 15 C=1,20 

LIK(C)=M*ALOG(C)-M*ALOG(SIG)-AB4-((C+1)*AP1) 

WRITE (6,*) LIK(C) 

15 CONTINUE 

WRITE(2,*) 'FI:',FI,'SIG:',SIG,'NU:',NU 

1000 FORMAT(F8.8)  

2000 FORMAT (I8)  

STOP 

END 
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APPENDIX E 
 

 

 

COMPUTER PROGRAM FOR GENERATION OF AR(1) MODEL WITH 

GENERALIZED LOGISTIC INNOVATION 

 

 

USE numerical_libraries 

INTEGER    I,  J, SR, NE, L 

REAL     YS1, F, ALF, LA, BET1, BET2, RNUNF, ORT, VAR, SKEW   

REAL    XM(1000), XS(1000), EPS(1000,1000), Y(1000,1000), SY(1000,1000), 

ORTX(1000), VARX(1000), SKEWX(1000) 

OPEN (2,FILE='Y.txt') 

OPEN (3,FILE='mean.txt') 

OPEN (4,FILE='stddev.txt') 

OPEN (5,FILE='moment.txt') 

SR=NUMBER OF DATA        

NE=1000   

DO 1 I=1,SR 

READ (3,1000,END=33) XM(I) 

READ (4,1000,END=34) XS(I) 

1 CONTINUE 

33 CLOSE(3)  

34 CLOSE(4) 
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! generation of Y values    

 

DO 2 J=1,NE 

   YS1= first value of the deaseasonalized monthly data 

              DO 3 K=1,SR 

             CALL UMACH (2, NOUT) 

             DO 4 L=1,NE 

   F= MML ESTIMATOR OF FI                                

             ALF= MML ESTIMATOR OF ALF                                

              LA= MML ESTIMATOR OF LA                                  

   BET1=SHAPE PARAMETER 

              BET2=1./BET1 

   EPS(J,K)=-ALF*ALOG((1/(RNUNF())**BET2)-1) 

4 CONTINUE 

 

Y(J,K)=F*YS1+EPS(J,K)+LA 

SY(J,K)=Y(J,K)*XS(K)+XM(K) 

YS1=Y(J,K) 

3 CONTINUE 

 

! calculation of moment value for generated series 

SUM1=0 

DO 5 K=1,SR 

SUM1=SUM1+SY(J,K) 

5 CONTINUE 

ORTX(J)= SUM1/SR 

TOP1=0 

DO 6 K=1,SR 

TOP1 = TOP1+(SY(J,K)-ORTX(J))**2 
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6 CONTINUE 

VARX(J)= TOP1/(SR-1) 

 

CAR=0 

DO 7 K=1,SR 

CAR= CAR+ (SY(J,K)-ORTX(J))**3 

7 CONTINUE 

SKEWX(J) = (CAR*SR)/((SR-1)*(SR-2)*VARX(J)**1.5) 

2 CONTINUE 

 

SUM2=0;SUM3=0; SUM5=0 

DO 8 J=1,NE 

SUM2=SUM2+ORTX(J) 

SUM3=SUM3+VARX(J) 

SUM5=SUM5+SKEWX(J) 

8 CONTINUE 

 

ORT=SUM2/NE 

VAR=SUM3/NE 

SKEW=SUM5/NE 

 

WRITE(5,*) 'ORT:',ORT, 'VAR:',VAR,'SKEW:',SKEW 

 

1000 FORMAT(F5.2)  

2000 FORMAT (I2)  

STOP 

END 
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