
 

WEB BASED IONOSPHERIC FORECASTING USING NEURAL NETWORK 
AND NEUROFUZZY MODELS 

 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 

YUSUF İBRAHİM ÖZKÖK 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN 

ELECTRICAL AND ELECTRONIC ENGINEERING 
 
 
 
 
 

APRIL 2005 
 



 

Approval of the Graduate School of Natural and Applied Sciences 
 
 
 
 
                                                                          Prof Dr. Canan ÖZGEN 

                                                                                                Director 

 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science. 
 
 
 

 
                                                                           Prof. Dr. İsmet ERKMEN 

                                                                                           Head of Department 

 
 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 
 
 
 
 
                                                                         Prof Dr. Ersin TULUNAY 

                 Supervisor 

 
Examining Committee Members 
 
 
Prof. Dr. Önder YÜKSEL (METU-EE) _____________________ 
 
Prof. Dr. Ersin TULUNAY (METU-EE) _____________________ 
 
Prof. Dr. Yurdanur TULUNAY (METU-AE) _____________________ 
 
Prof. Dr. Aydan ERKMEN (METU-EE) _____________________ 
 
Prof. Dr. Tayfun AKIN (METU-EE) _____________________ 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 

 
 
 
     Name, Last name: Yusuf İbrahim ÖZKÖK 
  

 
Signature    : 

 
 
 

 



 

iv 

 

ABSTRACT 

WEB BASED IONOSPHERIC FORECASTING USING NEURAL 

NETWORK AND NEUROFUZZY MODELS 

 

 

 

ÖZKÖK, Yusuf İbrahim 

MSc. Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Ersin Tulunay 

April 2005, 145 pages 

 

 

 

 

This study presents the implementation of Middle East Technical University 

Neural Network (METU-NN) models for the ionospheric forecasting together with 

worldwide usage capability of the Internet. Furthermore, an attempt is made to 

include expert information in the Neural Network (NN) model in the form of 

neurofuzzy network (NFN). Middle East Technical University Neurofuzzy Network 

(METU-NFN) modeling approach is developed which is the first attempt of using 

a neurofuzzy model in the ionospheric forecasting studies. The Web based 

applications developed in this study have the ability to be customized such that 

other NN and NFN models including METU-NFN can also be adapted.  

 

The NFN models developed in this study are compared with the previously 

developed and matured METU-NN models. At this very early stage of employing 

neurofuzzy models in this field, ambitious objectives are not aimed. Applicability 



 

v 

of the neurofuzzy systems on the ionospheric forecasting studies is only 

demonstrated. Training and operating METU-NN and METU-NFN models under 

equal conditions and with the same data sets, the cross correlation of obtained 

and measured values are 0.9870 and 0.9086 and the root mean square error 

(RMSE) values of 1.7425 TECU and 4.7987 TECU are found by operating METU-

NN and METU-NFN models respectively. The results obtained by METU-NFN 

model is close to those found by METU-NN model. These results are reasonable 

enough to encourage further studies on neurofuzzy models to benefit from 

expert information. 

 

Availability of these models which already attracted intense international 

attention will greatly help the related scientific circles to use the models. The 

models can be architecturally constructed, trained and operated on-line. To the 

best of our knowledge this is the first application that gives the ability of on-line 

model usage with these features.  

 

Applicability of NFN models to the ionospheric forecasting is demonstrated. 

Having ample flexibility the constructed model enables further developments and 

improvements. Other neurofuzzy systems in the literature might also lead to 

better achievements. 

 

 

Keywords: Ionospheric forecasting, METU-NN Model, METU-NFN Model, METU-

IFS, neural network models, neurofuzzy models. 



 

vi 

 

ÖZ 

SİNİRSEL AĞ VE SİNİRSEL BULANIK BENZEKLER 

KULLANILARAK WEB TABANLI İYONKÜRESEL ÖNGÖRÜ 

 

 

 

ÖZKÖK, Yusuf İbrahim 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Ersin Tulunay 

Nisan 2005, 145 pages 

 

 

 

 

Bu çalışma iyonküresel öngörü amaçlı geliştirilen Orta Doğu Teknik Üniversitesi 

Sinirsel Ağ (METU-NN) benzeklerinin iyonküresel öngörüler için olan bir 

uygulamasını internetin dünya çapında kullanım olanağıyla birlikte sunar. Bundan 

başka, Sinirsel Ağ (NN) benzeklere uzman bilgisini Sinirsel Bulanık Ağ (NFN) 

yapısında dahil etmek için bir girişimde bulunulmuştur. İyonküresel öngörü 

çalışmalarında bir sinirsel bulanık benzek kullanılarak yapılan ilk girişim olan Orta 

Doğu Teknik Üniversitesi Sinirsel Bulanık Ağ (METU-NFN) benzekleme yöntemi 

geliştirilmiştir. Bu tezde geliştirilen ağ tabanlı uygulamalar, daha sonra METU-NFN 

de içinde olmak üzere geliştirilebilecek yeni NN ve NFN benzeklerinin 

eklenebilmesine de olanak tanımaktadır.  

 



 

vii 

Bu çalışmada geliştirilen NFN benzekleri daha önce geliştirilmiş ve olgunluğa 

erişmiş METU-NN benzekleri ile karşılaştırıldı. Sinirsel bulanık ağların bu alanda 

kullanılması çok erken evresinde olduğu için büyük hedefler amaçlanmamıştır. 

Sinirsel bulanık dizgelerin iyonküresel öngörü çalışmalarına uygulanabilirliği 

gösterilmiştir. METU-NN ve METU-NFN benzekleri eşit koşullar altında ve aynı 

verilerle eğitilip işletilerek, METU-NN ve METU-NFN benzekleri için sırasıyla olmak 

üzere, elde edilen ve ölçülen değerler arasındaki çapraz ilişki, 0.9870 ve 0.9086 

ve kök ortalama kare yanılgı (RMSE) değerleri 1.7425 TECU ve 4.7987 TECU 

bulunmuştur. METU-NFN benzeği ile elde edilen sonuçlar METU-NN benzeği ile 

bulunanlara yakındır. Bu sonuçlar sinirsel bulanık benzekler üzerinde uzman 

bilgiden yararlanmak için yapılacak ilerki çalışmaları özendirmeye yetecek 

derecede onaylanabilir çıkmıştır. 

 

Şimdiden uluslararası çevrelerin yoğun ilgisini çeken bu benzeklere kolayca 

erişilebilmesi, ilgili bilimsel çevrelerin benzekleri kullanabilmesine yardımcı 

olacaktır. Bu benzekler uzaktan erişim ile döngü içi yapılandırılabilecek, 

eğitilebilecek ve işletilebilecektir. Bildiğimiz kadarıyla bu, uzaktan erişimle döngü 

içi benzek kullanımı yeteneğini sağlayan  ilk uygulamadır.  

 

BSA benzeklerinin iyonküresel öngörüler için uygulanabilirliği gösterilmiştir. Geniş 

esnekliğe sahip olması sayesinde kurulan benzek daha da geliştirilebilir. 

Yazımdaki öteki sinirsel bulanık dizgelerin kullanılması daha başarılı sonuçlara 

götürebilir. 

 

 

Anahtar Kelimeler: İyonküresel öngörü, METU-NN Benzeği, METU-NFN Benzeği, 

METU-IFS, sinirsel ağ benzekleri, sinirsel bulanık benzekler. 



 

viii 

 

 

 

 

 

 

 

To My Parents 



 

ix 

ACKNOWLEDGEMENTS 

I would like to express my gratitude to my supervisor Prof. Dr. Ersin Tulunay for 

his suggestions, support and guidance throughout this thesis. I also would like to 

thank my committee members Prof. Dr. Önder Yüksel , Prof. Dr. Yurdanur 

Tulunay, Prof. Dr. Aydan Erkmen, and Prof. Dr. Tayfun Akın for their times and 

valuable comments on my thesis. 

 

I’m also grateful to ASELSAN Inc. for the resources let me use. I wish to thank to 

my chief engineer Reyhan Ergün for her tolerance during the study.  

 

Thanks to my friends for their encouragement, support, patience and 

understanding throughout this study.  

 

Last, but not least my sincere thanks go to my parents, Ekrem and Jale Özkök 

bringing me today and for giving me the strength and courage to finish this 

study. If I have a writing skill I owe it to my dad. 



 

x 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................... iv 
ÖZ...............................................................................................................vi 
ACKNOWLEDGEMENTS ................................................................................. ix 
TABLE OF CONTENTS ....................................................................................x 
LIST OF TABLES .......................................................................................... xii 
LIST OF FIGURES ....................................................................................... xiii 
LIST OF ABBREVIATIONS AND TERMS .......................................................... xv 
Chapter 1 INTRODUCTION............................................................................ 1 
1.1 Review of Previous Work ...................................................................... 2 
1.1.1 HF Propagation.............................................................................. 3 
1.1.2 foF2 Prediction, Forecasting and Nowcasting.................................... 5 

1.2 Models................................................................................................ 8 
1.2.1 Mathematical Models...................................................................... 8 
1.2.2 Data Driven Models........................................................................ 9 
1.2.3 Expert Aided and Data Driven Models (Hybrid Models) .....................11 

1.3 METU Neural Network Ionospheric Forecasting Software........................12 
Chapter 2 NEURAL NETWORKS AND Training ALGORITHMS............................14 
2.1 A Brief Description of Neural Networks .................................................14 
2.1.1 Multilayer Feedforward Neural Network ..........................................15 
2.1.2 Basic Properties of Neural Networks ...............................................17 
2.1.3 METU-IFS Implementation of Neural Networks ................................19 
2.1.3.1 Backpropagation Algorithm......................................................19 
2.1.3.2 Levenberg Marquardt Modification............................................22 

2.1.4 Tests and Verification of METU-IFS Implementation of METUNN Models
...........................................................................................................26 

Chapter 3 NEUROFUZZY METHODS...............................................................35 
3.1 General Description of Neurofuzzy Networks .........................................35 
3.2 Fuzzy Inference Systems (FIS).............................................................36 
3.3 Combining Advantages of Both Fuzzy Logic and Neural Networks Methods
..............................................................................................................39 
3.4 Neurofuzzy Systems in Literature .........................................................40 
3.5 ANFIS ................................................................................................40 
3.6 ASMOD ..............................................................................................43 
3.7 Curse of Dimensionality.......................................................................47 
3.7.1 Overcoming Curse of Dimensionality: ANFIS ...................................47 
3.7.2 Overcoming Curse of Dimensionality: ASMOD .................................47 

3.8 METU Neurofuzzy Network (METU-NFN) Design ....................................50 
3.8.1 Reanalysis of the problem to determine the fuzzy inputs ..................51 
3.8.2 METU-NFN Main Structure .............................................................52 
3.8.3 Design of fuzzy components ..........................................................54 



 

xi 

3.8.3.1 Defuzzification Method ............................................................62 
3.9 Comparison of Various NN and NFN models Applied to Ionospheric 
Forecasting Problem .................................................................................64 

Chapter 4 METU IONOSPHERIC FORECASTING SOFTWARE DESIGN ................70 
4.1 Introduction to METU Ionospheric Forecasting Software (METU-IFS).......70 
4.2 Web Based Client-Server Applications...................................................71 
4.2.1 Installation and Maintenance .........................................................71 
4.2.2 Security .......................................................................................72 
4.2.3 Cost effective development............................................................72 
4.2.4 Accessibility..................................................................................72 

4.3 Software Design .................................................................................73 
4.3.1 Three-Tier Architecture .................................................................73 
4.3.2 Client Side....................................................................................74 
4.3.2.1 Main Properties ......................................................................74 
4.3.2.2 Authorization Module ..............................................................76 
4.3.2.3 Neural Network Builder and Selector Module .............................78 
4.3.2.4 Training Parameters Settings Module........................................80 
4.3.2.5 Operation Settings Module.......................................................82 
4.3.2.6 Plotter Module........................................................................83 

4.3.3 Server Side ..................................................................................86 
4.3.3.1 Main Properties ......................................................................86 
4.3.3.2 Listener Module ......................................................................87 
4.3.3.3 Client Handle Module ..............................................................88 
4.3.3.4 Training Abstract Module.........................................................88 
4.3.3.4.1 Weight Randomization ......................................................88 

4.3.3.5 LM Module .............................................................................89 
4.3.3.6 GD Module .............................................................................90 
4.3.3.7 New User Definition Module.....................................................90 

4.3.4 Database Design...........................................................................91 
4.3.4.1 USERINFOTABLE ....................................................................91 
4.3.4.2 NNSTRUCTURETABLE .............................................................92 
4.3.4.3 TRAININGPARAMETERSTABLE.................................................93 
4.3.4.4 TRAININGRESULTSTABLE .......................................................94 
4.3.4.5 WEIGHTSTABLE .....................................................................95 

4.3.5 Development Environment.............................................................96 
4.3.5.1 Software Environment.............................................................96 
4.3.5.2 Hardware Environment............................................................96 

Chapter 5 CONCLUSION...............................................................................97 
REFERENCES...............................................................................................99 
A. METU-IFS SRS DOCUMENT.....................................................................104 
B. DURATION AND EFFORT ESTIMATION OF METU-IFS................................124 
 



 

xii 

LIST OF TABLES 

Table 2.1-1: Training Results Report – 1........................................................27 
Table 2.1-2: Training Results Report - 2 ........................................................29 
Table 2.1-3: Comparison of the training and operation results of MATLAB and 

METU-IFS. ............................................................................................34 
Table 3.8-1: Boundaries of the regions of diurnal variations ............................59 
Table 3.8-2: Defuzzification methods comparison [58] ....................................63 
Table 3.9-1: Data sets organization...............................................................65 
Table 3.9-2: Summary of Comparison Results ................................................65 
Table 4.3-1: Authorization Module structure...................................................78 
Table 4.3-2: USERINFO database table..........................................................92 
Table 4.3-3: NNSTRUCTURETABLE database table .........................................92 
Table 4.3-4: A sample entry for NNSTRUCTURETABLE table............................93 
Table 4.3-5: TRAININGPARAMETERSTABLE database table .............................93 
Table 4.3-6: TRAININGRESULTSTABLE database table....................................94 
Table 4.3-7: A sample entry forNNSTRUCTURETABLE table.............................94 
Table 4.3-8: WEIGHTSTABLE database table .................................................95 
Table 4.3-9: WEIGHTSTABLE database table .................................................95 



 

xiii 

 

LIST OF FIGURES 

Figure 1.2-1: Architecture of METUNN models [26].........................................10 
Figure 2.1-1: Desicion regions; a single perceptron divides O1 and O2 planes into 

two regions [26]. ..................................................................................17 
Figure 2.1-2: Variations graph for test – 1. ....................................................28 
Figure 2.1-3: Scatter diagram for test – 1. .....................................................28 
Figure 2.1-4: Variations graph for METU-IFS – 2. ...........................................30 
Figure 2.1-5: Scatter diagram – 2..................................................................30 
Figure 2.1-6: Scatter diagram; observed values are obtained by MATLAB NN 

toolbox.................................................................................................31 
Figure 2.1-7: Scatter diagram; observed values are obtained by METU-IFS.......32 
Figure 2.1-8: Variations graph obtained by MATLAB NN toolbox. .....................33 
Figure 2.1-9: Variations graph obtained by METU-IFS. ....................................33 
Figure 3.2-1: Fuzzy inference system. ...........................................................37 
Figure 3.2-2: Commonly used fuzzy if-then rules and fuzzy reasoning 

mechanisms. ........................................................................................39 
Figure 3.5-1: (a) Takagi-Sugeno fuzzy reasoning; (b) ANFIS structure. ............41 
Figure 3.6-1: Typical B-spline associative memory network [55]. .....................44 
Figure 3.6-2: B-spline fuzzy membership functions. ........................................45 
Figure 3.7-1: Illustration of additive ANOVA decomposition of AMNs [56]. ........48 
Figure 3.8-1: Characteristic diurnal variation of TEC........................................52 
Figure 3.8-2: METU-NFN main structure. .......................................................53 
Figure 3.8-3: Structure of the NN block with fuzzy inputs. ...............................53 
Figure 3.8-4: Fuzzy inference system for magnetic disturbance; 1 input, 1 output, 

2 rules. ................................................................................................55 
Figure 3.8-5: Input membership functions for Kp............................................56 
Figure 3.8-6: Output membership functions for Kp. ........................................57 
Figure 3.8-7: Fuzzy inference system for diurnal variation; 1 input, 1 output, 5 

rules. ...................................................................................................58 
Figure 3.8-8: Regions of diurnal variations. ....................................................59 
Figure 3.8-9: Input membership functions for fuzzification of the diurnal 

variations. ............................................................................................60 
Figure 3.8-10: Output membership functions for fuzzification of diurnal variations.

...........................................................................................................61 
Figure 3.8-11: Defuzzification with CoM.........................................................63 
Figure 3.9-1: Scatter diagram obtained by operating NFN 2NN. .......................66 
Figure 3.9-2: Scatter diagram obtained by operating NFN 1NN. .......................67 
Figure 3.9-3: Scatter diagram obtained by operating NN + Kp.........................68 
Figure 3.9-4: Scatter diagram obtained by operating NN + Kpf........................69 
Figure 3.9-5: Scatter diagram obtained by operating METU-NN. ......................69 



 

xiv 

Figure 4.3-1: METU-IFS main window............................................................75 
Figure 4.3-2: METU-IFS “About” window........................................................76 
Figure 4.3-3: Connection error window..........................................................76 
Figure 4.3-4: Login window. .........................................................................77 
Figure 4.3-5: NN structure selection window. .................................................79 
Figure 4.3-6: NN structure building window. ..................................................80 
Figure 4.3-7: Training parameters selection window when LM is selected as an 

algorithm..............................................................................................81 
Figure 4.3-8: Training parameters selection window when GD is selected as an 

algorithm..............................................................................................82 
Figure 4.3-9: Operation settings window........................................................83 
Figure 4.3-10: Browser window.....................................................................83 
Figure 4.3-11: A training error graph scaled to 0.2. ........................................84 
Figure 4.3-12: A training error graph scaled to 0.02........................................85 
Figure 4.3-13: A scatter diagram window of METU-IFS. ..................................86 
Figure 4.3-14: Main window of server............................................................87 
Figure 4.3-15: The window to define a new user. ...........................................90 



 

xv 

LIST OF ABBREVIATIONS AND TERMS 

ANFIS : Adaptive Network based Fuzzy Inference System 

ASMOD : Adaptive Spline Modeling of Observation Data 

Client : A computer system or process that requests a service of 

another computer system or process (a "server") using 

some kind of protocol and accepts the server's responses. 

A client is part of a client-server software architecture. 

COST : Cooperation in Scientific and Technical Research 

FIS : Fuzzy Inference System 

HF : High Frequency 

MSE : Mean Square Error 

METU-IFS : Middle East Technical University Ionospheric Forecasting 

Software 

METU-NFN : Middle East Technical University Neurofuzzy Network 

METU-NN : Middle East Technical University Neural Network 

NF : Neurofuzzy 

NFN : Neurofuzzy Network 

NN : Neural Network 

RMSE : Root Mean Square Error 

Server : A program which provides some service to other (client) 

programs. 

SRS : Software Requirements Specifications 

TEC : Total Electron Content 

TECU : Total Electron Content Unit (el/sqm *1016) 

 

 



 

1 

CHAPTER 1                                                  

INTRODUCTION 

The researches have already so improved that the ionospheric forecasting results 

can effectively be used in the real world problems today. There seems to be, 

however, no saturation point yet, there is still room for improvement. All over the 

world some research groups have developed some web pages to publish 

ionospheric forecasting results which are obtained offline using their own data in 

their own models. Therefore, such forecasts or predictions are reliable and 

dependable as far as user’s and publisher’s data match with each other, seriously 

limiting the benefits the interested parties wish to get in most cases. In this study 

an application has been developed to promote widespread use of the models that 

are known to have made the best ionospheric forecasts. The fact that it is 

possible to make our models serve the scientific circles in the entire world 

through the Internet is the primary benefit and advantage this application 

provides. A mass amount of accumulated data to be collected through such 

widespread worldwide participation of interested parties is expected to contribute 

significantly to more advanced models to be developed by METU-NN and METU-

NFN. Moreover, the ability to integrate with itself the models to be developed in 

future is it’s another noteworthy feature. To be able to develop this application 

previous work on the subject is studied in detail. This chapter gives a summary 

of the previous work of Turkish research group which was done in the scope of 

European Union Cooperation in Scientific and Technical Research (COST) 251: 

The Improved Quality of Service in Ionospheric Telecommunication Systems 

Planning and Operation (IITS) and COST 271 actions. Furthermore, this chapter 

also discusses some models developed for the ionospheric forecasting, including 

METU-NN models since they are used in METU-IFS. Chapter 2 discusses in detail 



 

2 

the neural networks and the training algorithms which are implemented in METU-

IFS, and Chapter 4 the design details of METU-IFS. 

 

In addition to this application, neurofuzzy systems have also been reviewed 

hoping to go beyond the point attained by neural network based ionospheric 

forecasting models and develop neurofuzzy models with all their possible 

advantages [1]. 

 

A review of the literature indicates that neurofuzzy systems are still a long way 

from reaching maturity, and new developments and improvements on them are 

following one another day by day. The most common widespread feature of the 

neurofuzzy applications is that they all have fuzzy but well covered information. 

So, it indicates that fuzzy but well covered information is amongst the 

requirements for us to develop a neurofuzzy model. Moreover, applicability of the 

neurofuzzy techniques seems to be decreased due to the fact that a large 

number of inputs makes the problem more difficult to be defined and reduces the 

control over the expert knowledge. Amongst the many neurofuzzy systems in 

literature research groups only focus on two systems that are known as ANFIS 

and ASMOD. The primary distinctive feature which is distinguishing them from 

the others is their being relatively more well defined. The problems arisen from a 

large number of inputs are also dealt with and discussed in these systems [2]. 

Reviewing these neurofuzzy systems, METU-NFN system is developed in this 

study. The main objective of this work is to prove the applicability of the 

neurofuzzy systems to the ionospheric forecasting studies. Chapter 3 presents a 

review of the neurofuzzy systems and discusses METU-NFN model. 

1.1 Review of Previous Work 

This section presents a review of the previous work on the ionospheric 

forecasting studies. The studies on HF propagation related to the ionospheric 

forecasting is first reviewed and then the terms “prediction”, “forecasting”, and 

“nowcasting” are discussed. 



 

3 

1.1.1 HF Propagation 

The research and studies on the influence of the near-Earth space on 

telecommunication do not go back a long way. The scientific and technical 

research activities have been going on since early 1990s [3][4][5][6]. For the 

common advantage of different research groups in solving the problems, an 

initiative known as Cooperation in Scientific and Technical Research (COST) was 

formed in the European Union, opening possibilities of cooperation to the 

researchers from different member states. COST Action 238, ‘Prediction and 

Retrospective Ionospheric Modeling over Europe’ (PRIME) [7] was officially 

signed in March 1991 as a four-year project, aiming to develop improved models 

of the European Ionosphere for telecommunication applications. This project, 

PRIME, had been implemented in 1995 with the participation of thirty-one 

organizations from seventeen countries. Following COST 238 another action, 

COST 251, ‘The Improved Quality of Service in Ionospheric Telecommunication 

Systems Planning and Operation’ (IITS) was given a start in 1995. And the most 

recent action, COST 271 has the objectives to stimulate international co-

operation in predicting and forecasting the ionosphere and plasmasphere; to 

develop and implement new communication services; to minimize the effects 

ionospheric perturbations have on communications systems; and to collect new 

data for now-casting and forecasting. 

 

The Turkish contributions to these three actions, COST 238, COST 251, and 

COST271 are also important and noteworthy, which are on the topics of ‘Total 

Electron Content (TEC) Variation during the eclipse of the sun on 29th of April, 

1976’ and ‘The HF Link Experiment during the eclipse of the sun on  11th of 

August, 1999’ [8], and reporting the ionospheric TEC over Ankara on 29th of April, 

1976, and the effects of the ionosphere on HF radio wave during its propagation 

over 700 km between Ankara and Elazig on 11th of August, 1999. The first 

research, the ionospheric TEC measurement in Ankara was done by Ertac and 

Tulunay, Y, in 1979 [9]. The effect of increasing magnetic activity is proven to be 

produced as a result of the diurnal variation in the ionospheric TEC prior to the 

solar eclipse. As the daily sum of the three-hour planetary magnetic activity 



 

4 

index, Kp, increases, pronounced rises occurred in the ionospheric TEC, reaching 

peak values at noon. 

 

Over some 700 km distance between Ankara (400 N, 330 E) and Elazig (380 N, 

390 E), an HF radio wave was transmitted during the period of the total eclipse of 

the sun on 11th of Agust, 1999. Making good use of that very opportunity of 

August 11, the effect of the eclipse on the ionosphere, and thus, the changes in 

signal strength that the disturbed ionosphere causes in HF radio waves 

propagating during the time period of the eclipse were observed and analyzed 

through this experiment of HF Signal Strength Measurement. The results proved 

a clear decrease of the strength during the eclipse, reaching a minimum as 

getting closer to total eclipse over Elazig. After the total eclipse the strength 

began to increase to a value observed at the beginning of the eclipse. 

 

Thus, it was proven that the signal strength dropped due to the effects on the 

ionosphere caused by the solar eclipse of August 11. So an inference or 

conclusion can be drawn from this result; an opposite effect, a rise in the signal 

strength is expected, because the rate of absorption in the ionosphere falls due 

to the decrease of the photoelectrons in the shadow of the moon. A portion of 

the HF waves is believed to be transmitted into space rather than being reflected 

back to the Earth due to the thinning of the ionosphere, since the HF radio wave 

frequency of 18.111 MHz is close to the natural ionospheric critical frequency.   

 

One of the two methods [10] to model HF propagation is a neural network model 

as trained with data obtained through the results of a linear model simulating the 

behavior of the ionosphere for a particular choice of path. The other one is a 

neural network model as trained with data obtained through actual 

communication link of signal strengths. The models are trained with R12 which is 

a temporal data, the twelve month mean of the international monthly mean 

relative sunspot number, and also with foF2 data. The signal to noise strength 

ratio, SNR, is predicted by the neural networks [11] for which the data sets of 

testing and training are introduced to train the neural networks and the 

predictions are given in [10]. The physical phenomena affecting HF propagation 



 

5 

is modeled in this study, and an emphasis is placed on the importance of foF2 , 

and preliminary studies on the selection of channel depending on time is aimed. 

1.1.2 foF2 Prediction, Forecasting and Nowcasting 

In order to forecast ionospheric parameters a variety of methods, some linear, 

some non-linear, have been developed within the European Union COST 251 

Action framework. It seems that, applying the non-linear methods and especially 

neural network techniques, the efforts to make improvements in ionospheric 

forecasting capacity are very promising [12]. 

 

Before going further, it should be noted here that the terms ‘prediction’, 

‘forecasting’ and ‘nowcasting’ are usually confused in literature. So a distinction is 

needed to be made between them to avoid confusion. The term ‘prediction’ 

refers to the estimation of the foF2 values through the median figures of the 

data available whereas the term ‘forecasting’ through the actual hourly figures. 

The term ‘nowcasting’ is nothing but the estimation of the foF2 values for data 

gaps, i.e. a kind of short-term forecasting.  

 

Neural networks had already been employed to study various aspects of 

geophysics such as the applications in forecasting of the magnetic storms [13]. 

However, for the purpose of one hour - advance forecasting of foF2, neural 

network was first used by Altınay, et al. [14][15], proving the advantages. 

Ionospheric prediction and short term forecasting [16], modeling of noon-day 

variations of foF2 [17], preliminary studies for the prediction of monthly median 

foF2 values [18], prediction of noon value  of  foF2 [19] are also noteworthy 

studies associated with the methods based on the neural network, which only 

consider the temporal variation of the foF2 values.  

 

Making use of the root mean square error between the measured and predicted 

values of foF2 as a criterion in determination of the optimum indices of solar and 

magnetic activity, Williscroft was the first to apply neural networks for the 

prediction of foF2 [19]. It is known that the ionospheric electron density is a 

function of latitude, longitude, season, local time, solar and magnetic activities. 



 

6 

Selecting the noon value of foF2 for Grahamstown as the target value, latitude, 

longitude and local time variables are eliminated. The remaining three variables, 

namely, season, solar activity and magnetic activity, serve as input or in other 

words, data for training of the neural network, which once trained can predict 

the daily noon value of foF2 in Grahamstown with an absolute error of 0.95 MHz. 

 

In another study on foF2 forecasting based on neural network done by Tulunay, 

Y., Tulunay, E., and Senalp, E., the influence of the electron density trough is 

further analyzed and data generated by using statistical relationships are used to 

train the neural network and the trained network is used to forecast one-hour-

advance foF2 values under the conditions where the influence of the trough is 

expected to be high. 

 

In this study it is emphasized that more advanced and novel neural network 

based models for more reliable forecasting of foF2 values is a matter of concern 

for scientists and system operators. Because a highly non-linear problem, both in 

space and time, and an extensively disturbed process pose a real challenge. To 

represent finer variations of foF2, which are usually, lost when taking averages, 

better understanding of the process rather than modeling is believed to promote 

a more promising and challenging approach.  

 

The influence of the electron density trough at which the altitudes at the foF2 is 

measured cannot be ignored in forecasting foF2 values. Therefore, the models 

proposed to forecast foF2 must include the trough effect. In this study, a neural-

network- based model has been constructed attempting to include some 

characterizing behavior of the trough. The statistical behavior of the trough was 

determined by considering the temporal and magnetic conditions so that there is 

some probability that trough can be observed in the ionosphere above the 

Slough and Uppsala. For both conditions, the daytime disturbed and nighttime –

quiet, the neural network model did successfully forecast the foF2 values one-

hour in advance for Slough and Uppsala. 

 



 

7 

The electron density trough exhibits abrupt gradients of electron densities within 

relatively short horizontal distances and in time, in particular, over the 

midlatitude ionospheric regions in both hemispheres. Since the foF2 values are 

directly reflecting the variations of ambient electron densities, in the HF 

communication process, the behavior and influence of the trough have to be 

modeled. But the trough is such a complex nonlinear reality that it is almost 

impossible to model its behavior and influence with analytical methods. It is, 

however, demonstrated here that a data-driven model, such as the neural-

network-based approach, proves to be successful.  

 

The neural network model was employed with foF2 values of Slough and Uppsala 

for the trough case and for the general case in which foF2 values are clearly free 

from the influence of the trough and for randomly chosen foF2 values of similar 

size in order to compare these three groups in terms of the errors. It was 

successfully concluded and demonstrated that the smallest error was obtained by 

operating the neural network that was trained by using the restricted data set, 

which reflects the characteristics of the trough. The other two groups had larger 

errors than the errors obtained for the trough case. 

 

Would the neural network systems have the ability to  learn the shape of any 

inherent nonlinear variations if they can be properly constructed and trained? 

This work, by successfuly employing this ability to meet such an intellectual 

challenge of a highly nonlinear and extensively disturbed processes, has proven 

that there is such an ability in neural network systems.  

 

The neural network system obtained high correlation coefficients between the 

observed and forecasted values of foF2, and approached the desired operating 

point, giving rise to some small errors. 

 

The neural network model proposed in this work is also very useful in filling the 

data gaps. During abrupt density gradients or during severe magnetic 

disturbances data are missing most of the time. Since such cases often occur in 



 

8 

nature, filling the missing data gaps is a primary feature to be expected from a 

reliable model. 

1.2 Models 

This section discusses some models developed to employ on the ionospheric 

forecasting studies. These models are mainly divided into three groups which are 

namely mathematical models, data driven models and hybrid models. 

1.2.1 Mathematical Models 

For a single station prediction and one-hour advance forecasting of the 

ionospheric critical frequency foF2, a study was done by Bilge and Tulunay, Y. 

using a novel on-line mathematical method that is based on applying feedback 

on predicted monthly median values of foF2 for each hour [20]. A parabolic 

dependency on R12 superimposed by a trigonometric expansion in terms of the 

harmonics of annual variation and linearly modulated by R12 is all what makes the 

basic model for the prediction of monthly medians. Applying the basic model over 

a sliding data window, hourly monthly medians can be predicted. For prediction, 

‘sliding data windows’ and for forecasting, ‘feedback’ are used as the main tools 

of the method. 

 

Making use of the past data and some predictable parameters, one-hour advance 

forecasting of foF2 can be formulated by estimating a non-stationary time series 

with deterministic slow variations together with some irregular fast variations. 

Amongst the variations influencing foF2 the slowest one, with a period of 11 

years, is the variation which is due to solar activity. All these effects are taken 

into account in the model by a parabolic dependency in R12, although a linear fit 

also works for one-hour advance forecasting purposes. Even though their 

amplitudes depend on the level of solar activity, the medium range variations of 

the order of months are the periodicities corresponding to the harmonics of the 

annual variation. Depending on solar activity a trigonometric expansion with 

linear coefficients is used to model these variations [21]. Applying this basic 



 

9 

model to a sliding data window using immediate past information for prediction is 

the novelty of the approach [20]. 

 

An estimate for foF2 for each hour of the day of the forthcoming month is 

obtained by applying the prediction model to the monthly medians of foF2 for 

each hour. The predicted hourly median values, thus obtained, are arranged in a 

time series denoted by foF2p. The deviations from the predicted values are 

forwarded to the feedback; the difference between the actual and the predicted 

values of foF2 is computed at each hour and an appropriate fraction of this error 

is subtracted from the predicted value of foF2 for the next hour. The resulting 

time series denoted by foF2 gives the one-hour advance forecast of foF2 as  

( ) ( ) ( )∑
=

















++++=

6

1
12012112

212

.2
sin..,*

i

ii m
i

RcbaRamRf
ππ

 

( )∑
=

















+++

5

1
12

212

.2
cos.

i

ii m
i

Red
ππ

                                  (1.2.1) 

The method of sliding window and the feedback technique were proven to be 

comparable with the forecasting methods based on neural network and superior 

to autocovariance prediction [20][22][23]. The models with more sophisticated 

functional dependencies provide only a little advantage of a minor increase in the 

overall performance, while the hysterisis effects are eliminated and prediction 

errors reduced considerably by the restriction of simpler models to shorter 

periods of time [24]. Although such models are useful in short term forecasting 

or nowcasting, they can hardly be used for long term predictions. 

 

Given its simplicity, the performance of the method can be regarded satisfactory, 

but not in the presence of strong irregular variations like solar storms. Further 

improvements can be made introducing more sophisticated signal processing 

techniques as well as other physical parameters into the model [20]. 

1.2.2 Data Driven Models 

Data driven models that are implemented in METU-IFS application are given in 

this section. Results of Neural Networks applications on highly nonlinear and 



 

10 

complex real world processes are very promising. Previous studies on 

Ionospheric forecasting also demonstrated the applicability of neural network 

models on this area with very successful results [25][26][27]. Basic structure and 

properties of neural networks are briefly explained in second chapter quoted 

from a well structured paper on neural networks [26]. 

 

In this study previously developed Neural Network models named as METU-NN, 

Middle East Technical University Neural Network, models are used. As a reason 

METU-NN models will briefly be described here. 

 

The METU-NN models have got one input layer, one hidden layer and one output 

layer. The basic architecture of the models is demonstrated in Figure 1.2-1 

[26][27]. 

 

 

Figure 1.2-1: Architecture of METUNN models [26]. 

 

Hyperbolic tangent sigmoid functions are used as the activation functions, in the 

hidden layer and pure linear transfer function is used as the activation function, 

in the output layer. 

 



 

11 

  ( ) ( )
( )

1
.2exp1

21 −
−+

==
n

nTANSIGnf              (1.2.2) 

 

  ( ) ( ) nanPURELINnf .2 ==                (1.2.3) 

 

One of the models implemented is the one employed to forecast foF2. The basic 

inputs to the model are the temporal inputs, spatial inputs, and inputs related to 

the history of foF2. 

 

The basic inputs related to the history of the foF2 are: f(h): the value of foF2 at 

time instant h, present value; ∆1(h) = f(h) – f(h-1): First difference; ∆2(h) = 

∆1(h) - ∆1(h-1): Second difference; R ∆(h) = ∆1(h) / f(h): Relative difference. And 

the output f(h+1) is the forecast value of foF2. These definitions are for the 

model which can forecast foF2 one hour in advance. The definitions can easily be 

converted for 24 hour in advance forecasting by simply changing ones to twenty 

fours [25]. 

 

For temporal inputs, basically The Universal Time (UT) data and time, coded 

hour, coded day or hour and day trigonometric components to take the 

adjacency of 24 and 1 for hour 30 and  1 for day into account are used. 

 

Descriptions of training algorithms used to train this model with the training and 

operation results obtained by using METU-IFS are given in Chapter 2. 

1.2.3 Expert Aided and Data Driven Models (Hybrid Models) 

The main advantages of using NNs are their flexibility and ability to model 

nonlinear relationships. In contrast to knowledge-based techniques, no explicit 

knowledge is needed for the application of neural nets. And the results of 

Ionospheric forecasting studies based on neural networks are promising. 

However, despite these advantages, NNs have often been criticized for acting as 

“black boxes”. The knowledge contained in an NN model is kept in the form of a 

weight matrix that is hard to interpret and can be misleading at times. 

 



 

12 

One way to overcome many of these shortcomings is to use neurofuzzy models 

which are known as expert aided systems. Neurofuzzy systems combine the 

semantic transparency of rule-based fuzzy systems with the learning capability of 

neural networks. So the models developed based on neurofuzzy systems are 

sometimes named as Hybrid Models. They can be trained to perform an 

input/output mapping, just as with an NN, but with the additional benefit of 

being able to provide the set of rules on which the model is based. This gives 

further insight into the process being modeled [28]. 

 

Given the facts, neurofuzzy systems are worth to be put on trial on the 

Ionospheric Forecasting studies. As an early step in this work neurofuzzy systems 

are reviewed. Amongst the many neurofuzzy systems, ASMOD and ANFIS 

systems are examined in detail. A hybrid system is then developed mixing the 

advantages of these systems with our intellectual aggregation on the subject of 

ionospheric forecasting. Neurofuzzy systems reviewed and our neurofuzzy 

network system design is discussed in detail in Chapter 3. 

1.3 METU Neural Network Ionospheric Forecasting Software 

Middle East Technical University Ionospheric Forecasting Software (METU-IFS) 

has been developed to make it possible that various neural network and 

neurofuzzy models can be used over the Internet with a user friendly interface. 

The Neural Network models introduced on the previous sections have been 

implemented and the design studies of this software initiated with the 

preparation of the SRS (Software Requirements Specifications) document and 

progressed to the function point analysis. Chapter 4 gives the details of the 

software design. 

 

With this software, ionospheric forecasting models are made to be available for 

the service of the interested scientific circles. Designing new neural network or 

neurofuzzy architectures, training previously designed ones and operating 

previously trained ones are the main features of METU-IFS. Remote access to 

these features is one of the primary objectives of this software. It also possesses 



 

13 

a database to store a vast variety of data to be collected while the software is 

serving. The data to be collected from so many different sources all over the 

world while the models are being trained or operated are expected to be useful 

to improve the models for future researches. 



 

14 

 

CHAPTER 2                                                              

NEURAL NETWORKS AND TRAINING ALGORITHMS 

Neural networks have been employed in the ionospheric forecasting models 

developed in the earlier works as detailed in the preceding chapter. In this 

chapter neural networks and training algorithms will be overviewed first, and 

then we will discuss how we have implemented in this study the Backpropagation 

and Levenberg Marquardt algorithms. The implementation is verified by 

comparing METU-IFS results with those obtained from MATLAB code, as it is 

shown in the last part of this chapter. 

2.1 A Brief Description of Neural Networks 

A neuron is an information-processing unit consisting of connecting links, adder 

and activation function. The adder is for summing bias and the input signals 

weighted in the neuron’s connecting links. It follows an activation function for 

limiting the amplitude of the neuron’s output [29]. An artificial neural network is 

a system of inter-connected computational elements, the neurons, operating in 

parallel, arranged in patterns similar to biological neural nets and modeled after 

the human brain [30]. Individual neurons are characterized by 

 

  )( iii xfO =        (2.1.1) 

 

and 

 



 

15 

  ∑
=

+==
iN

j

ijijii Ownetx
1

θ                                           (2.1.2) 

 

 

where Oi, is the output of neuron i, xi is the sum of the weighted inputs or net 

output of neuron i, fi(.) is the activation function of neuron i, wij is the weight of 

the arc from neuron j to neuron i, Oj is the output from the jth neuron of the 

previous layer. It is also the input to neuron i from neuron j. hi is the internal 

threshold, bias or offset for node i, and Ni is the number of inputs to neuron i. A 

neuron thus forms a weighted sum of Ni inputs and passes the result through a 

linear or nonlinear activation function. A node with a hard limiting activation 

function is sometimes called as thresholding unit. Sigmoid units are more 

complicated but more powerful than hard limiting units because, the sigmoid is 

an increasing, continuous function. It has non-zero derivatives, which makes it 

useful in gradient descent learning methods [30]. The linear model has 

limitations and is not useful in hidden layers, because a linear multi-layer neural 

network can always be represented as an equivalent linear single layer network 

[30]. 

 

The architecture of a neural network is formed by determination of the neuron 

structures and their connections. In a layered neural network the neurons are 

organized in the form of layers. In multi-layer feed forward neural networks the 

input layer of source nodes projects onto a hidden layer consisting of hidden 

neurons. If there are more than one hidden layers in the architecture, then the 

hidden layer projects onto another hidden layer consisting of hidden neurons. 

The last hidden layer in the architecture projects onto an output layer of nodes. 

Those networks are strictly feedforward or acyclic type. Also they are fully 

connected in the sense that every neuron in each layer of the network is 

connected to every other neuron in the adjacent forward layer [29]. 

2.1.1 Multilayer Feedforward Neural Network 

The capabilities of multi-layer neural networks can be understood as a result of a 

theorem based on the 13th problem of Hilbert and proved by Kolmogorov 



 

16 

[31][32]. This theorem states that any continuous function of N variables f(xi , …, 

xN) can be written using only linear summations and nonlinear but continuously 

increasing functions Φpq (xp) in only one variable 

 

  ( ) ( )∑ ∑
+

= =










=

12

1 1

,,
N

q

N

p

ppqqNi xgxxf φK                                    (2.1.3) 

 

Thus it is seen that, any continuous function of N variables can be computed by 

using a three-layer network with N(2N+1) nodes having continuously increasing 

nonlinearities. However, the theorem does not show how weights and 

nonlinearities must be selected or how sensitive the output function is to 

variations in the weights and internal functions [31]. 

  

Virtually all multi-layer applications have used two hidden layers or less [33]. As 

the number of layers increases, data storage efficiency, ability of the network to 

generalize, and the fail-safe nature of the network increases. A more layered and 

more highly connected network can generally store the same data in fewer 

neurons.  

 

The capabilities of perceptrons can be seen by investigating the decision regions 

they can form in the space defined by the inputs. As a simple example, consider 

the single unit i defined by Eq. (2.1.2) and hard limiting activation function for 

the case of two inputs O1 and O2. It is seen that this unit divides the O1, O2 plane 

into two decision regions separated by the line 

 

  ∑
=

=++=+=
iN

j

iiiijiji OwOwOwnet
1

2211 0θθ   (2.1.4) 

 



 

17 

 

Figure 2.1-1: Desicion regions; a single perceptron divides O1 and O2 planes into 
two regions [26]. 

 

as shown in Figure 2.1-1. Suppose input pattern A causes the right hand side of 

Eq. (2.1.2) to be positive. Then the output of the unit is 1. If input pattern B 

causes the right hand side to be negative then the unit will output 0. Thus the 

unit decides whether the input pattern belongs to class A or class B as shown in 

Figure 2.1-1. In general neti in Eq. (2.1.4) is the equation of a Ni, dimensional 

hyperplane. This hyperplane partitions the space defined by the inputs to that 

node into two parts. Any point on one part of this hyperplane corresponds to the 

input class that causes output 1 and any point on the other part corresponds to 

the input class that causes output 0. The effect of the weights Wij is to stretch or 

compact the axes of the hyperspace. The offset or threshold θi corresponds to 

the minimum distance the partitioning hyperplane passes from the origin. By 

using nonlinear but continuous sigmoid units as activation functions various 

useful curves can be created for partitioning the hyperspace [33]. Further useful 

variations in partitions can be obtained by using multiple output nodes. In multi-

layer feed-forward neural networks there are connections between the elements 

of successive layers. There are no interlayer connections. 

2.1.2 Basic Properties of Neural Networks 

Conventional signal processing techniques are algorithmic in nature. However, 

neural networks can perform non-algorithmic signal processing. Neural nets 



 

18 

provide high computation rates because, of their massively parallel nature. 

Provided that suitable hardware is available, neural networks can be 

implemented. Thus on-line operations may be possible. Neural nets provide a 

greater degree of robustness, fault tolerance or fail safety compared to classical 

sequential computing systems, because, the information is contained in the 

weighted wiring diagram in the distributed form with nodes having primarily local 

connections. Presentation of information often contains redundancies. Thus any 

damage in a few nodes or links or any invalid information contained in these 

does not impair overall performance significantly. Associative storage and 

retrieval of knowledge is possible in neural networks. Unlike other classical large 

scale dynamic systems, the uniform rate of convergence toward a steady state of 

neural networks is essentially independent of the number of neurons in the 

network [33]. 

 

At present there are also some problems associated with using or designing 

neural networks: 

1. There is no general way of deciding about the network topology to perform a 

certain task. 

2. The convergence of most of the important learning algorithms used in neural 

networks is not guaranteed. 

 

It is also important to see that the necessary hardware is not presently ready to 

be used for taking full benefit of the high speed of neural computation.  

 

The problem areas for which neural networks may provide some advantages can 

be pinpointed by considering the advantages and disadvantages of neural 

networks. The problems involving complexity, redundancy and speed can be 

solved more satisfactorily by using neural networks. So far results involving 

neural networks have been reported in the areas of learning, associative 

memory, decisions in optimization, adaptive pattern recognition, fuzzy sets, 

expert systems, adaptive filtering, numeric to symbolic conversion and control. It 

has already been demonstrated that the neural network based modeling for 



 

19 

forecasting the ionospheric critical frequency, foF2 is a promising approach 

[34][26][35][36][37]. 

2.1.3 METU-IFS Implementation of Neural Networks 

In METU-IFS application a multi layer feedforward type of neural network 

structure was implemented. Since Java programming language was used, an 

object oriented design came out naturally. All the work related to the neural 

network structure was collected in a single module to enable the maintenance to 

be done further ahead. By this module any type of feed forward neural network 

structure can be built from scratch to be trained with a selected training 

algorithm. Further details related to the design are given in Chapter 4. 

Levenberg-Marquardt Algorithm is capable of dealing with huge size of input 

data. For networks having up to a few hundreds of weights it’s a very efficient 

algorithm [38]. The same algorithm is also used to train METU-NN. Given all 

these considerations, Levenberg Marquardt algorithm was preferred for METU-

IFS. 

 

Since Levenberg-Marquardt algorithm [38] is a version of Backpropagation 

algorithm, it can be considered that Backpropagation is still employed in METU-

IFS, although the implementation of Levenberg-Marquardt algorithm is the actual 

requirement. In the sub sections Backpropagation algorithm is first introduced, 

and then Levenberg-Marquardt algorithm described based on Backpropagation 

algorithm. The details of the implementation is not included here, the related 

theory, however, is discussed. For the implementation and design details see 

Chapter 4. 

2.1.3.1 Backpropagation Algorithm 

Consider a multilayer feedforward network with p(i) as inputs, t(i) as target 

outputs, wk(i, j) as weights, and b k(i) as bias for unit i in layer k, n k+1(i) as net 

input to unit i in layer (k+1), and a k+1 (i) as output of unit i as follows: 

 

                                ( ) ),()().,( 11

1

1
ibjajiwin

kkk
s

j

k
k

++

=

+ +=∑               (2.1.5) 



 

20 

                        ( ) ( )( )infia kkk 111 +++ =                                  (2.1.6) 

 

The system equations in matrix form for an M layer network: 

pa =
0 ,     (2.1.7) 

( )1111 . ++++
+=

kkkkk
baWfa    (2.1.8) 

k=0, 1… M-1  

 

The performance index for the network is 

 

( ) ( ) ( )∑∑
==

⋅=−−=
Q

q

q

T

q

M

qq

TQ

q

M

qq eeatatV
11 2

1

2

1
  (2.1.9) 

 

where M

qe is the output of the network when the qth input,
q

p , is applied, and qe  

is the error. An approximate steepest descent rule is employed for basic 

Backpropagation algorithm. To approximate the performance index ( )V , the total 

sum of squares is replaced by squared errors for a single input/output pair as 

 

q

T

q eeV
2

1
=              (2.1.10) 

The approximate steepest (gradient) descent algorithm then: 

 

( )
( )jiw

V
jiw

k

k

,
,

∂

∂
−=∆ α ,           (2.1.11) 

 

( )
( )ib

V
ib

k

k

∂

∂
−=∆ α             (2.1.12) 

 

where α is the learning rate. The sensitivity of the performance index to changes 

in the net input of unit i in layer k is: 

  



 

21 

( )in

V
k

k

∂

∂
≡δ ,              (2.1.13) 

 

( ) ( )
( )

( )
( ) ( )jai

jiw

in

in

V

jiw

V kk

k

k

kk

1.
,,

−=
∂

∂

∂

∂
=

∂

∂
δ ,          (2.1.14) 

 

( ) ( )
( )
( )

( )i
ib

in

in

V

ib

V k

k

k

kk
δ=

∂

∂

∂

∂
=

∂

∂
.           (2.1.15) 

 

Sensitivities satisfy the following recurrence relation: 

 

( ) 11 ++=
kkkkk T

WnF δδ & ,            (2.1.16) 

 

( )

( )( )
( )( )

( )( )



















=

k

k

k

k

kk

Snf

nf

nf

nF

&L

MOMM

L&

L&

&

00

020

001

,          (2.1.17) 

 

( ) ( )
dn

ndf
nf

k
k =& .              (2.1.18) 

 

The recurrence relation is initialized at the final layer as  

 

( )( )qq

MMM
atnF −−= &δ .             (2.1.19) 

 

The overall Backpropagation algorithm proceeds as follows; first propagate the 

input forward using (2.1.7), (2.1.8); next, propagate the sensitivities back using 

(2.1.19) and (2.1.16); and finally, update the weights and offsets using (2.1.11), 

(2.1.12), (2.1.14), and (2.1.15). 



 

22 

2.1.3.2 Levenberg Marquardt Modification 

While Backpropagation is a steepest descent algorithm, the Levenberg-Marquardt 

algorithm is an approximation to Newton’s method [38]. Newton’s method to 

minimize a function ( )xV  with respect to the parameter vector x is:  

 

( )[ ] ( )xVxVx ∇∇−=∆
−12              (2.1.20) 

 

where ( )xV2∇  is the Hessian matrix and ( )xV∇ is the gradient. If we 

assume ( )xV as a sum of squares function as 

 

( ) ( )xexV
N

i

i∑
=

=
1

2 ,              (2.1.21) 

 

( ) ( ) ( )xexJxV T=∇ ,              (2.1.22) 

 

( ) ( ) ( ) ( )xSxJxJxV T +=∇2 ,             (2.1.23) 

 

where ( )xJ  is the Jacobian matrix: 

 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
























∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
∂

∂

∂

∂

∂

∂

=

n

NNN

n

n

x

xe

x

xe

x

xe

x

xe

x

xe

x

xe

x

xe

x

xe

x

xe

xJ

L

MOMM

L

L

21

2

2

2

1

2

1

2

1

1

1

,           (2.1.24) 

 

( ) ( ) ( )xexexS i

N

i

i

2

1

∇=∑
=

.             (2.1.25) 

 

For the Gauss- Newton method it is assumed that ( ) 0≈xS  and the update 

(2.1.20) is: 



 

23 

 

( ) ( )[ ] ( ) ( )xexJxJxJx TT 1−
=∆  .             (2.1.26) 

 

The Levenberg-Marquardt modification to the Gauss-Newton method is: 

 

( ) ( )[ ] ( ) ( )xexJIxJxJx
TT 1−

+=∆ µ  .            (2.1.27) 

 

The parameter µ is multiplied by some factor ( )β  whenever a step would result 

in an increased ( )xV . When a step reduces ( )xV , µ is divided by β . When µ is 

large the algorithm becomes steepest descent with step µ1 , while for small 

µ the algorithm becomes Gauss-Newton. For the neural network mapping 

problem the terms in the Jacobian matrix can be computed by a simple 

modification to the Backpropagation algorithm. The performance index for the 

mapping is given by (2.1.9). This is equivalent in form to (2.1.21). For the 

elements in the Jacobian matrix that are needed to calculate terms like: 

 

( )
( )jiw

me
k

q

,∂

∂
 ,               (2.1.28) 

 

These terms can be calculated using the standard Backpropagation algorithm 

with one modification in the final layer as  

 

  ( )MMM
nF&−=∆  .              (2.1.29) 

 

Each column of the matrix in (2.1.29) is a sensitivity vector that must be 

backpropagated through the network to produce one row of the Jacobian. 

 

The Levenberg-Marquardt modification to the Backpropagation algorithm thus 

proceeds as [38]: 



 

24 

1) Present all inputs to the network and compute the corresponding 

network outputs (using (2.1.7) and (2.1.8), and errors ( )M

qqq ate −= . 

Compute the sum of squares of errors over all inputs ( )( )xV . 

2) Compute the Jacobian matrix (using (2.1.29), (2.1.16), (2.1.14), 

(2.1.15), and (2.1.24)). 

3) Solve (2.1.27) to obtain x∆ . 

4) Compute the sum of squares of errors again using xx ∆+ . If this new 

sum of squares is smaller than that computed in step 1, then reduce µ by 

β , let xxx ∆+=  and go back to step 1. If the sum of the squares is not 

reduced , then increase µ by β and go back to step 3. 

5) The algorithm is assumed to have converged when the norm of the 

gradient (2.1.22) is less than some predetermined value, or when the 

sum of squares has been reduced to some error goal. 

 

Newton’s method is faster and more accurate near an error minimum, so the aim 

is to shift towards Newton’s method as quickly as possible. Thus, µ  is decreased 

after each successful step (reduction in performance function) and is increased 

only when a tentative step would increase the performance function. In this way, 

the performance function will always be reduced at each iteration of the 

algorithm. 

 

The construction work of the neural network based model was carried out in two 

modes, namely the “development mode” and “the operation mode”. The 

development mode is composed of “training or learning phase” and “test phase”. 

Not to hurt generalization independent data sets are used for the phases of 

training, test and validation. 

 

As the training advances, the training error starts to decrease and eventually, 

goes to zero that corresponds to the memorization which means the loss of 

generalization capability of the neural network. To prevent memorization the 

training should be interrupted when the training error falls while the validation 



 

25 

error tends to rise. In METU-IFS application, a safety lag of response is 

employed. METU-IFS starts to count number of epochs when this condition first 

occurs and interrupts the training after five successive repeats. 

 

The following error cross correlation coefficient definitions, are used in the 

operation mode to measure the performance of the models: 

 

i. Root Mean Square Error: 

 

    
[ ]

N

of

ErrorRMS

N

i

ii∑
=

−

= 1

2

_  ,          (2.1.30) 

 

ii. Normalized Error: 

 

    

( )

N

o

of

ErrorN

N

i i

ii∑
=

−

= 1_  ,           (2.1.31) 

 

iii. Absolute Error: 

 

    
( )

N

of

ErrorAbs

N

i

ii∑
=

−

= 1_  ,           (2.1.32) 

 

where :i Forecast time order, :if Forecast foF2 value at time i , :io Observed 

foF2 value at time i , and :N Total number of forecast or observed foF2 instants, 

 

iv. Cross Correlation Coefficient of forecast and observed foF2 values ( ):for  

 

    
( )

( ) ( )ooCffC

ofC
rfo

,.,

,
=  ,           (2.1.33) 

 



 

26 

where :C The covariance, :f Forecast foF2 values, and :o Observed foF2 

values. 

2.1.4 Tests and Verification of METU-IFS Implementation of METUNN 

Models 

Implementation of METU-NN model is tested and verified by comparing it with 

the results obtained from MATLAB code. The same neural network architecture 

with 8 inputs, 1 hidden layer including 4 neurons, is built in both METU-IFS side 

and MATLAB side. As it is determined in METU-NN model, the activation function 

of hidden layer and the output layer is selected as “Tansig” and “Linear” 

respectively.  Both applications are driven with normalized TEC data sets. 

  

Firstly, the results of the two different trainings and the two different operations, 

which are all performed by METU-IFS, are demonstrated. Both training processes 

are repeatedly driven with the same TEC data, but one of them with a validation 

stop, the other without. 

 

The report taken from METU-IFS after training is shown in Table 2.1-1. Training 

conditions and results are listed in this report. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 

Table 2.1-1: Training Results Report – 1. 

Trained with ValSet_1 

Operated with TrSet_1 

    

*** Training Results ***  

Sun Jul 25 17:48:29 EEST 2004  

  

Training Algorithm :  LMO 

Number Of Inputs :  8 

Number Of Neurons in HLayer1 :  4 

Number Of Outputs :  1 

Act Func For Hidden Layers :  Tansig 

Act Func For Output Layer :  Linear 

Bias Ex(0)/Inc(1) :  0 

Initial Momentum :  0.01 

Scale Factor (Beta) :  10 

Target Error :  1.00E-05 

Final MSE :  6.49E-04 

Final Epoch No :  75 

Average Training Duration :  4706ms/epoch 

Performance 

Max Error= 0.162666 

Min Error= -0.16129 

Max SE= 0.02646 

Min SE= 0 

SSE= 4.669275 

MSE= 0.000543 

RMSE= 0.023296 

*** End Of Training Results ***  

 

After a successful training, the network is operated with a different set of TEC 

values. A variation graph, in which the target and the obtained values are plotted 

on the same diagram, is in Figure 2.1-2. A scatter diagram is plotted in Figure 

2.1-3. 



 

28 

Target Vs Obtained

0

0.2

0.4

0.6

0.8

1

1.2

1 673 1345 2017 2689 3361 4033 4705 5377 6049 6721 7393 8065

Target

Obtained

 

Figure 2.1-2: Variations graph for test – 1. 

Target Vs Obtained

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
Obtained

T
a

rg
e

t

Target Vs Obtained

 

Figure 2.1-3: Scatter diagram for test – 1. 

 
The report of the training results for the second test is shown in Table 2.1-2. In 

this test, the operation set is also used as the validation set. The variations graph 

and the scatter diagram for this test are plotted respectively in Figure 2.1-4 and 

in Figure 2.1-5. 

 



 

29 

Table 2.1-2: Training Results Report - 2 

Trained with TrSet_1 

Validated with Val_set_1 

Operated with Val_set_1 

  

*** Training Results ***  

Mon Jul 26 17:26:22 EEST 2004  

  

Training Algorithm :  LMO 

Number Of Inputs :  8 

Number Of Neurons in HLayer1 :  4 

Number Of Outputs :  1 

Act Func For Hidden Layers :  Tansig 

Act Func For Output Layer :  Linear 

Bias Ex (0)/Inc(1) :  0 

Initial Momentum :  0.01 

Scale Factor (Beta) :  10 

Target Error :  1.00E-04 

Final MSE :  5.61E-04 

Final Epoch No :  10 

Average Training Duration :  5573ms/epoch 

Performance 

Max Error= 0.172181704 

Min Error= -0.353880184 

Max SE= 0.125231185 

Min SE= 8.61902E-13 

SSE= 6.398002964 

MSE= 0.000743608 

RMSE= 0.027269176 

*** End Of Training Results ***  

 



 

30 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 678 1355 2032 2709 3386 4063 4740 5417 6094 6771 7448 8125

Target

Obtained

 

Figure 2.1-4: Variations graph for METU-IFS – 2. 

 

Target Vs Obtained

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.2 0 0.2 0.4 0.6 0.8 1

Target

O
b

ta
in

e
d

Target Vs Obtained

 

Figure 2.1-5: Scatter diagram – 2. 

 

The same two sets of TEC data, one set for training and the other set for 

operation are used in both METU-IFS and MATLAB to compare the results 

obtained by METU-IFS with those obtained by MATLAB. All the other conditions, 

related to the training parameters and the neural network structure, are also 



 

31 

kept constant. Since the same model and same training algorithm is used, it is 

expected to obtain the same results with a little difference which may be caused 

by implementing different programs. 

 

After the training processes, MATLAB has reached a RMSE value of 0.02917 while 

METU-IFS a value of 0.02727. These values are close to each other as expected. 

However, it should also be noted that METU-IFS gives a better result. 

Below in Figure 2.1-6 and Figure 2.1-7, for MATLAB and METU-IFS respectively, 

plotted are the scatter diagrams obtained by operating both programs with the 

same data set. Again the diagrams look similar as expected.  

-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5
Forecast vs Observed:Blue Dots,linear fit:Red line

Observed TEC values (el/sqm *1e16)

1
 h

 a
h
e
a
d
 F

o
re

c
a
s
t 

T
E

C
 v

a
lu

e
s
 (

e
l/
s
q
m

 *
1
e
1
6
)

 

Figure 2.1-6: Scatter diagram; observed values are obtained by MATLAB NN 
toolbox. 



 

32 

-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5
Forecast vs Observed:Blue Dots,linear fit:Red line

Observed TEC values (el/sqm *1e16)

1
 h

 a
h
e
a
d
 F

o
re

c
a
s
t 

T
E

C
 v

a
lu

e
s
 (

e
l/
s
q
m

 *
1
e
1
6
)

 

Figure 2.1-7: Scatter diagram; observed values are obtained by METU-IFS. 

 
The similar results appear on the variations graphs. In Figure 2.1-8 and Figure 

2.1-9 plotted are the variation graphs for MATLAB and METU-IFS respectively. 



 

33 

0 1 2 3 4 5 6 7 8 9

x 10
4

-0.2

0

0.2

0.4

0.6

0.8

1
Observed(blue,dotted),1 h ahead Forecast(red,solid) TEC (Chilbolton, m:04:05, y:2001)

time for whole period(minute)

T
E

C
 (

e
l/
s
q

m
 *

1
e

1
6

)

 

Figure 2.1-8: Variations graph obtained by MATLAB NN toolbox. 

1 2 3 4 5 6 7 8 9

x 10
4

-0.2

0

0.2

0.4

0.6

0.8

1
Observed(blue,dotted),1 h ahead Forecast(red,solid) TEC (Chilbolton, m:04:05, y:2001)

time for whole period(minute)

T
E

C
 (

e
l/
s
q

m
 *

1
e

1
6

)

 

Figure 2.1-9: Variations graph obtained by METU-IFS. 



 

34 

 

Table 2.1-3 tabulates a summary of this comparison. This table gives the RMSEs, 

obtained after the training, as well as the cross correlation coefficients of 

forecasted and observed TEC values, calculated after the operation. This test 

shows that the results obtained by the implementation of training algorithms and 

METU-NN model is not worse than those by the implementation of MATLAB, on 

the contrary, they look even better.  

 

Table 2.1-3: Comparison of the training and operation results of MATLAB and 
METU-IFS. 

 

 MATLAB METU-IFS 

The root mean square error for 1h ahead 

forecasting by the net for whole time period: 

(el/sqm *1016) 

0.02917 0.02727 

Absolute error: (el/sqm *1016) 0.01837 0.01838 

Cross correlation coefficient of Forecast and 

Observed TEC values: 
0.98399 0.98613 



 

35 

 

CHAPTER 3                                                                

NEUROFUZZY METHODS 

This chapter discusses the steps in developing a neurofuzzy model. It gives the 

general description of neurofuzzy concept as an introduction and then points out 

the advantages and disadvantages of neurofuzzy methods over neural network 

methods. In the literature there are many neurofuzzy systems developed to 

model a range of problems in a variety of fields, some of which are reviewed in 

this chapter. Finally METU-NFN model is compared with METU-NN models 

developed before. 

3.1 General Description of Neurofuzzy Networks 

Both neural networks and fuzzy systems are motivated by imitating human 

reasoning processes. Neural Networks have been used extensively in modeling 

real problems with nonlinear characteristics. In most of these applications, feed-

forward networks that are trained with the back-propagation algorithm have 

been used. The main advantages of using NNs are their flexibility and ability to 

model nonlinear relationships. In contrast to knowledge-based techniques, no 

explicit knowledge is needed for the application of NNs.  However, despite these 

advantages, NNs have often been criticized for acting as “black boxes”. The 

knowledge contained in an NN model is kept in the form of a weight matrix that 

is hard to interpret and can be misleading at times. In NNs, the relations are not 

explicitly given, but are ‘coded’ in the network and its parameters whereas in 

fuzzy systems, relationships are represented explicitly in the form of if–then 

rules. The efficiency of NN models is also another point of concern. Since it is not 

always possible to determine the significance of the input variables in advance, 



 

36 

any potential candidate may be included in the model. This is particularly 

important in cases where a large number of potential input variables exist but 

only a subset of them would actually affect the output. It is therefore important 

to identify and exclude those input variables that do not have a significant 

contribution. This would lead to a more efficient model. It is also beneficial to 

have the ability to insert any available knowledge or expertise into the model if 

necessary. 

 

One way to overcome many of these shortcomings is to use neurofuzzy models. 

Neurofuzzy systems combine the semantic transparency of rule-based fuzzy 

systems with the learning capability of neural networks. In other words, these 

models combine the transparent, linguistic representation of a fuzzy system with 

the learning ability of NNs. Therefore, they can be trained to perform an 

input/output mapping, just as with an NN, but with the additional benefit of 

being able to provide the set of rules on which the model is based. This gives 

further insight into the process being modeled [28]. Several merger types of NNs 

and fuzzy systems have been reported in the literature. They include various 

representations and architectures and therefore are suitable for different 

applications (Nauck et al. 1997). The most widely used neurofuzzy models are 

adaptive network based fuzzy inference systems (ANFIS) and B-spline associative 

memory networks (AMNs) [39]. 

3.2 Fuzzy Inference Systems (FIS) 

For a better understanding of neurofuzzy systems we need to comprehend FIS. 

Because FIS is an important element in a neurofuzzy system, which is to be used 

to improve ionospheric forecasting studies. So, at least a brief discussion on FIS 

seems to be a necessary first step before going into details of outlining a 

neurofuzzy model. 

 



 

37 

 

Figure 3.2-1: Fuzzy inference system. 

 

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy 

models, fuzzy associative memories (FAM), or fuzzy controllers when used as 

controllers. Basically a fuzzy inference system is composed of five functional 

blocks (Figure 3.2-1) [40]: 

 

• a rule base containing a number of fuzzy if-then rules; 

• a database which defines the membership functions of the fuzzy sets 

used in the fuzzy rules; 

• a decision-making unit which performs the inference operations on the 

rules; 

• a fuzzification interface which transforms the crisp inputs into degrees of 

match with linguistic values; 

• a defuzzification interface which transform the fuzzy results of the 

inference into a crisp output. 

 

Usually, the rule base and the database are jointly referred to as the knowledge 

base. 

 

Several types of fuzzy reasoning [41][42] have been proposed in the literature. 

Depending on the types of fuzzy reasoning and fuzzy if-then rules employed, 

most fuzzy inference systems can be classified into three types (Figure 3.2-2): 

 



 

38 

Type 1: The overall output is the weighted average of each rule’s crisp output 

induced by the rule’s firing strength (the product or minimum of the degrees of 

match with the premise part) and output membership functions. The output 

membership functions used in this scheme must be monotonically non-

decreasing [43]. 

Type 2: The overall fuzzy output is derived by applying “max” operation to the 

qualified fuzzy outputs (each of which is equal to the minimum of firing strength 

and the output membership function of each rule). Various schemes have been 

proposed to choose the final crisp output based on the overall fuzzy output; 

some of them are center of area, bisector of area, mean of maxima, maximum 

criterion, etc [41][42]. 

Type 3: Takagi and Sugeno’s fuzzy if-then rules are used [44]. The output of 

each rule is a linear combination of input variables plus a constant term, and the 

final output is the weighted average of each rule’s output. 

Figure 3.2-1 utilizes a two-rule two-input fuzzy inference system to show 

different types of fuzzy rules and fuzzy reasoning mentioned above. Be aware 

that most of the differences lie in the specification of the consequent part 

(monotonically non-decreasing or bell-shaped membership functions, or crisp 

function) and thus the defuzzification schemes (weighted average, centroid of 

area, etc) are also different. 

 



 

39 

 

Figure 3.2-2: Commonly used fuzzy if-then rules and fuzzy reasoning 
mechanisms. 

3.3 Combining Advantages of Both Fuzzy Logic and Neural 

Networks Methods 

Multilayer feedforward neural networks with an arbitrary large number of units in 

the hidden layer can approximate any real continuous function [45]. This good 

training ability is always considered for modeling nonlinear functions. The back 

propagation (BP) algorithm allows multilayer feedforward neural networks to 

learn input-output pairs from training samples. However, it is possessed of the 

disadvantage of slow convergence and the disadvantage of being a complete 

black box model. Many researches combine fuzzy set theory with neural network 

configurations for improving the disadvantages. 

 

Neurofuzzy (NF) computing is a popular framework for solving complex 

problems. If we have knowledge expressed in linguistic rules, we can build a FIS, 

and if we have data, or can learn from a simulation (training) then we can use 

NNs. For building a FIS, we have to specify the fuzzy sets, fuzzy operators and 

the knowledge base. Similarly for constructing a NN for an application the user 

needs to specify the architecture and learning algorithm. An analysis reveals that 



 

40 

the drawbacks pertaining to these approaches seem complementary and 

therefore it is natural to consider building an integrated system combining the 

concepts. While the learning capability is an advantage from the viewpoint of 

FIS, the formation of linguistic rule base will be advantage from the viewpoint of 

NNs [46]. 

3.4 Neurofuzzy Systems in Literature 

Neurofuzzy systems are simply developed by the way of applying a learning 

algorithm to a fuzzy system. A common way to apply a learning algorithm to a 

fuzzy system is to represent it in a special NN like architecture. However the 

conventional NN learning algorithms (gradient descent) cannot be applied 

directly to such a system as the functions used in the inference process are 

usually non differentiable. This problem can be overcome by using differentiable 

functions in the inference system. FIS has potential to easily apply a learning 

rule. As a consequence of attraction of researchers many models developed. 

Some of the major woks in this area are GARIC [47], FALCON [48], ANFIS [49], 

NEFCON [48], FUN [33], SONFIN [50], FINEST [51], EFuNN [52], dmEFuNN [52], 

evolutionary design of neurofuzzy systems [53], and many others [46]. 

 

And another attention attractive type of neurofuzzy system in literature is ASMOD 

(Adaptive Spline Modeling of Observation Data) which is structurally different 

from the ones listed above [54]. 

3.5 ANFIS 

Adaptive Network based Fuzzy Inference System (ANFIS) is a FIS based 

neurofuzzy system. Other systems similar to ANFIS are listed in the previous 

section. Among them ANFIS is selected for applying to ionospheric forecasting 

problems and is one of the candidates for METU NF model. 

 

ANFIS was first proposed by Jang (1993) [40]. A basic ANFIS is shown in Figure 

3.5-1. Functionally, there are almost no constraints on the node functions of 

ANFIS except piecewise differentiability. Structurally, the only limitation of 



 

41 

network configuration is that it should be of feedforward type. These are the 

general restrictions, coming from Backpropagation learning rule. 

 

 

 

Figure 3.5-1: (a) Takagi-Sugeno fuzzy reasoning; (b) ANFIS structure. 

 

For the sake of simplicity, it’s assumed that the fuzzy inference system under 

consideration has two inputs x and y and one output z. And it’s supposed that 

the rule base contains two fuzzy if then rules of Takagi-Sugeno type [44].  

 

 Rule 1: If x is A1 and y is B1 then f 1 = p1x + q1y + r1  (3.5.1) 

Rule 2: If x is A2 and y is B2 then f 2 = p2x + q2y + r2  (3.5.2) 

 

The fuzzy reasoning and the corresponding equivalent ANFIS architecture are 

shown respectively in Figure 3.5-1 (a) and Figure 3.5-1 (b). 

 

Layer 1 

Every node i in this layer is an adaptive node, representing membership functions 

described by generalized bell functions, e.g. 



 

42 

 
( ) 12

11

1,1
/1

1
)(

bi

acx
xO

−+
== µ ,     (3.5.3) 

 

where X is input to the node and a1, b1, and c1 are adaptable variables known as 

premise parameters. The outputs of this layer are the membership values of the 

premise part. 

 

Layer 2 

Every node in this layer is a fixed node with the task of multiplying incoming 

signals and sending the product out. This product represents the firing strength 

of a rule. For example, in Figure 3.5-1 (b) 

 

 ( ) ( )yxwO 4111,2 µµ== ,      (3.5.4) 

 

Layer 3 

Every node in this layer is a fixed node which calculates the ratio of the i-th rules 

firing strength to the sum of all rules’ firing strengths 

 

 
4321

1
11,3

wwww

w
wO

+++
== ,     (3.5.5) 

 

Layer 4 

Nodes of this layer are all adaptive with node functions 

 

 ( )1111111,4 ryqxpwfwO ++== ,     (3.5.6) 

 

where w1 = output of Layer 3 and {pi, qi, ri } parameter set. Parameters of this 

layer are referred to as consequent parameters. 

 

Layer 5 

The single fixed node of this layer computes the final output as the summation of 

all incoming signals.  



 

43 

 

A two-step process may be used for the learning or adjustment of the network 

parameters. This process is known as hybrid learning [40]. In the first step, the 

premise parameters are kept fixed and the information is propagated forward in 

the network to Layer 4, where the consequent parameters are identified by a 

least-squares estimator. In the second step, the backward pass, the consequent 

parameters are held fixed while the error is propagated, and the premise 

parameters are modified using gradient descent. The only user-specified 

information is the number of membership functions for each input and, the input-

output training information.  

3.6 ASMOD 

ASMOD is the other type of neurofuzzy system in the literature. It was first 

proposed by Kavli on June 1993 [54]. ASMOD is an acronym for Adaptive Spline 

Modeling of Observation Data. ASMOD is based on Associative Memory Networks 

(AMNs). AMNs have the ability to approximate any continuous function, given 

sufficient degrees of freedom [55]. A set of multidimensional overlapping basis 

functions covers the input space of AMNs (Figure 3.6-1). The size, shape, and 

overlap of the basis functions determine the model structure and the complexity. 

The basis functions can take a number of forms, including B-spline and Gaussian 

functions. It has been shown that B-spline AMNs and certain types of fuzzy 

models are learning equivalent [55]. Consequently, B-spline AMNs are a 

particular type of neurofuzzy model. This model is also valuable to be applied to 

ionospheric forecasting problems. 

 

 



 

44 

 

Figure 3.6-1: Typical B-spline associative memory network [55]. 

 

B-spline functions (Figure 3.6-2) are piecewise polynomials of order k which have 

been widely used in surface fitting applications. They have also been used to 

represent fuzzy membership functions as they have several desirable properties 

[55]. 

• The degree of membership can be evaluated using simple, fast, and 

stable recurrence relationship. 

• The output of the function is nonzero in only a small part of the input 

space which means that knowledge is stored locally across only a small 

number of basis functions. 

• The basis functions form a partition of unity as: ∑ =
≡

p

i A
xu t1

1)(  thus 

producing accurate smooth approximation. 

 



 

45 

 

Figure 3.6-2: B-spline fuzzy membership functions. 

 

The order of the B-spline functions determines the smoothness. They can be 

used to implement crisp fuzzy sets (k=1) or the standard triangular fuzzy 

membership functions (k=2) or other smoother representations. A univariate B-

spline function of order k is nonzero only over k intervals which are generated by 

a (k+1) knots. A multivariate B-spline function can be formed by taking the 

tensor product of n univariate functions [55]. 

 

The output of a B-spline AMN can be represented by the following equation: 

  ∑
=

==
p

i

T

ii wxawaf
1

)(   

 

where f=output; a(x)=[a1(x),...,ap(x)]=vector of basis function outputs when 

presented by input x=(x1 ,...xn); and w=(w1 ,...wp)=vector of network weights. 

The power behind this type of network comes from the direct equivalence 

between the unions of a set of fuzzy rules in the following form: 

 

  IF (x is Ai) THEN (y is Bj)cij  

 

and the weighted sum of the multidimensional fuzzy input membership functions 

given in Eq.(3.6.1). Where (x is Ai) and (y is Bj)=linguistic expressions for the 

input and output respectively and cij =rule confidence which relates the i-th fuzzy 

input set to the j-th fuzzy output set. In other words, rule confidence indicates 

the degree to which the above rule has contributed to the output. This means 

(3.6.1) 

(3.6.2) 



 

46 

that a weight can be fuzzified to produce a rule confidence vector ci which can 

then be defuzzified to produce the original weight. This relationship allows the 

network to be trained in a weight space leading to considerable reduction in 

computational cost (the network’s output is linearly dependent on the weight 

set), while explaining the output with linguistic rules and the associated rule 

confidences. 

 

Various training algorithms such as the Backpropagation can be applied to 

ASMOD model. The output might be compared with the actual measured output 

to obtain a correction error. Using this error and implementing a learning rule the 

neurofuzzy network adjusts its weights and determines its fuzzy parameters (i.e. 

fuzzy sets and fuzzy rules). In literature The Least Mean Squared (LMS) and the 

Normalized Least Mean Squared (NLMS) learning algorithms are generally used 

to update the weights [55]. As part of these algorithms, Eq. 3.6.3, and Eq. 3.6.4, 

respectively, can be used to adjust the weights for the LMS and NLMS algorithms 

[56]: 

 

 )())()(ˆ()1()( tatytytwtw iii −+−= η  

 )()
)(

)()(ˆ
()1()(

2

2

ta
ta

tyty
twtw i

i

ii

−
+−= η  

 

where η  is learning rate; and ŷ is desired output. 

 

As mentioned on the previous sections the major feature of a neurofuzzy 

network is that expert knowledge can be incorporated into the model. In the 

case of ASMOD, existing engineering knowledge can be incorporated into the 

trained network to optimize model performance and to enhance the 

interpretation of a constructed model by optimizing the membership functions. 

Optimization of membership functions can also be done at the beginning of the 

training to help training process but this may not help to decrease final error. 

(3.6.3) 

(3.6.4) 



 

47 

3.7 Curse of Dimensionality 

One major disadvantage of neurofuzzy networks is that the number of potential 

fuzzy rules is exponentially dependent on the dimension of the input space. This 

is often referred to as the ‘‘curse of dimensionality’’ [55]. This exponential growth 

of fuzzy rules with a number of inputs makes it impractical to use most existing 

neurofuzzy architectures for problems of high dimensionality. To illustrate this 

‘‘curse,’’ one may consider a fuzzy system with N input variables each of which 

having M membership functions. In such a system, as many as, MN combinations 

(potential fuzzy rules) would exist. To overcome the curse of dimensionality 

neurofuzzy models usually employ some sort of a dimension reduction technique. 

3.7.1 Overcoming Curse of Dimensionality: ANFIS 

Jang (1996) proposed a quick and straightforward way to do input selection for 

ANFIS modeling. According to this method, the designer should establish 

different ANFIS models using a pool of candidate inputs and select the best one 

(the one with the smallest root mean squared error). Jang (1996) argues that 

since the least-squares method is the main drive behind the training and gradient 

descent contributes to the tuning of membership functions, therefore ANFIS can 

usually generate good results after one epoch of training. For example, using this 

approach, if we have a modeling problem with ten candidate inputs and we need 

to find the most influential three inputs to ANFIS, we can construct C103 = 5120 

ANFIS models and train them with a single pass of the least-squares method. The 

ANFIS model with the smallest training error is then chosen for further training 

using the hybrid learning rule to tune the membership functions as well [57][39]. 

However, it is obvious that this approach can be exhaustive for high-

dimensionality problems and it is not guaranteed to produce optimal results. 

3.7.2 Overcoming Curse of Dimensionality: ASMOD 

As described earlier, the number of potential fuzzy rules in a neurofuzzy system 

is an exponential function of the dimension of the input space. In reality, many of 

these rules would be redundant for modeling purposes, and therefore a suitable 

technique should start from a simple architecture and build on it as necessary. 



 

48 

One such approach to reduce the dimensionality of B-spline AMNs is the analysis 

of variance [56] for decomposition of the output function of dimension n as 

 

 )(),()()( ,,2,1
1

1

1
,0 xfxxfxffxf n

n

i

n

i

n

ij

jijiii L
L++++= ∑ ∑∑

=

−

+=

 

 

in which 0f is constant (the function bias) and other terms are univariate, 

bivariate, and other sub functions. In many instances, the majority of the higher-

order terms are negligible and the input/output mapping can be approximated 

using a limited number of subnetworks of reduced dimensions. An example of 

such an additive decomposition is shown in Figure 3.7-1, where a five 

dimensional function is decomposed into a one-dimensional and two two-

dimensional subnetworks. It should be noted that each of these subnetworks 

represents a separate AMN, the output of which are summed to produce the 

overall model output. 

 

   

Figure 3.7-1: Illustration of additive ANOVA decomposition of AMNs [56]. 

 

A fuzzy rule within each subnetwork may have the following form: 

 

IF (x2 is large AND x3 is small) THEN (y is small) with confidence c 

 

where c=rule confidence. A rule confidence of zero indicates that the rule is not 

contributing to the output while a rule confidence of one indicates 100% 

(3.7.2.1) 



 

49 

contribution. Values between zero and one allow the rules to partially fire. The 

number of fuzzy rules used in each subnetwork depends on the number of 

membership functions that are used to fuzzify the inputs of that subnetwork. In 

the above example, assuming that five membership functions are used for each 

variable, the first, second, and third subnetwork consist of 5, 25, and 25 fuzzy 

rules, respectively. The consequent part of all the rules will be ORed (i.e., 

summed in this case) together. 

 

The optimum structure of a B-spline AMN is achieved through the selection of the 

smallest number of model inputs and the smallest number of basis functions for 

these inputs. ASMOD (Kavli 1993) is an algorithm that uses the above 

decomposition to arrive at this optimal structure. Among the other alternative 

approaches for automatically determining the optimum structure of B-Spline 

AMNs, the ASMOD algorithm is more commonly used. 

 

In the ASMOD algorithm, for any model structure (i.e., specific combination of 

subnetworks, the number and location of Splines), one can use the training data 

to calculate the mean square error (MSE) of the output. The algorithm starts 

from the simplest structure (e.g., only the first variable in one subnetwork with 

two triangular splines) and iteratively refines its structure until some stop criteria 

is satisfied. In each step among a number of potential (single) changes to the 

structure, the one with the best performance is selected and the process 

continues. The addition of a new input, combining an existing input to a 

subnetwork, splitting a subnetwork, and deleting an input are all possible 

changes to the structure. 

 

The ASMOD algorithm uses the training data to automatically determine the 

model inputs and the number of basis functions. However, the order of basis 

functions has to be determined a priori. Higher-order functions result in smoother 

model outputs, but increase computational cost and can lead to over fitting of 

the data [55]. 



 

50 

3.8 METU Neurofuzzy Network (METU-NFN) Design 

Ionospheric Forecasting problem has been studied in a highly detailed manner 

for many years. In previous works, NNs are employed for the ionospheric 

forecasting, and quite promising results have been obtained. By these works, 

data being used for the ionospheric forecasting are studied in detail. In many 

years a huge amount of well organized and directly usable data for an NN system 

has been collected by the ionosonda stations all over the world. Normally having 

a huge amount of data is a reason for employing an NN model instead of 

neurofuzzy systems. In this work, the benefits of having such a large amount of 

data is tried to be kept while expert knowledge is being integrated into the 

model. A new neurofuzzy network designed for the ionospheric forecasting will 

be introduced here. To the best of our knowledge this will be the first trial 

application of the NFN systems on the ionospheric forecasting studies. 

 

In this trial we will fuzzify two of the parameters which are “Kp” and “Hour of 

day”.  Kp is a parameter which defines the level of disturbance in the ionosphere. 

Solar disturbance may change the characteristics of the Near Earth Space both in 

quantity and quality. To quantify the magnetic disturbance or quietness we have 

chosen the 3h-planatary magnetic index Kp. For the sake of simplicity we 

identified two different levels of magnetic activity which determines the state of 

the period to be as “quiet” and “disturbed”. Therefore, it will be sufficient to train 

only two NNs of which the contribution ratio will be determined by fuzzified Kp. 

In other words, the same architecture will be trained by two different target sets 

of data representing the “quiet and “disturbed” conditions. 

 

For this exercise, referring to the inherent diurnal variation in TEC and foF2, we 

have chosen the “hour of day” as the second parameter which is to be employed 

to enrich the NN by introducing additional expert information in addition to 3h-

planetary indices of Kp. 

 



 

51 

Those magnetic and diurnal variations have well defined characteristic, therefore, 

such information when employed as expert knowledge, notable results may come 

out. 

3.8.1 Reanalysis of the problem to determine the fuzzy inputs 

As a first step of developing a fuzzy system, fuzzy parameters have to be 

identified. Therefore, in order to identify the fuzzy parameters, the physics of the 

ionosphere and affecting environmental variables are studied. Since it is a 

different discipline of science, knowledge of the ionosphere experts is needed. 

So, in order to find out some fuzzy variables influencing TEC and foF2 values I 

have consulted and studied with Prof. Dr. Yurdanur Tulunay from METU 

Department of Aerospace Engineering, the renowned scientist on the physics of 

ionosphere, based on such expertise of her over twenty years of highly qualified 

experience on the ionospheric researches, three different parameters are 

determined. These are “magnetic disturbance”, “diurnal variations”, and 

“seasonal variations”.  Since a little more detailed study is needed to identify the 

exact characteristics of “seasonal variation” compared to other two parameters, 

we decided to exclude it in this first attempt of NFN application on the subject of 

this study, and include only “magnetic disturbance” and “diurnal variations” as 

fuzzy parameters. 

 

Magnetic disturbance is caused by the solar system, mainly by sun storms. 

Magnetic disturbance may change the characteristics of the Near Earth Space, 

both in quantity and quality. One of the measurement units of Magnetic 

disturbance is 3h-planatary magnetic index which is abbreviated as Kp. Kp is 

scaled between 0 and 9. The Kp scale is divided into 27 level. These levels are 

named as follows; 0, 1-, 1, 1+, 2-, 2, 2+,…… 8+, 9-, 9. 

 

The linguistic equivalent of Kp is quietness or disturbance. Linguistically an expert 

can say that; “Magnetic condition of the ionosphere is quiet.”, “Magnetic 

condition of the ionosphere is disturbed.”, “Magnetic condition of the ionosphere 

is almost quiet.” or “Magnetic condition of the ionosphere is almost disturbed.” 

Therefore this parameter can be fuzzified based on these linguistic terms. 



 

52 

 

Sunlight has a significant effect on the ionosphere. This effect is best observed 

on Diurnal variations of TEC or foF2. A Characteristic diurnal variation of TEC can 

be seen in Figure 3.8-1. At dawn and sunrise TEC and foF2 values begin to 

increase sharply, and at sunset and dusk, decrease steeply. During the night time 

TEC and foF2 values continue to decrease on a smaller slope. At midday they 

stay stable for a short period of time. 

 

 

Figure 3.8-1: Characteristic diurnal variation of TEC. 

 
The fuzzification and defuzzification processes of magnetic disturbance and 

diurnal variations are described in the following sections. 

3.8.2 METU-NFN Main Structure 

The whole NFN system is composed of two NNs of which the contribution to the 

output is controlled by fuzzified Kp, four raw inputs and two fuzzy inputs are 

added to these NNs as inputs. The fuzzy inputs are first processed by the fuzzy 

logic controller units then entered to NNs. 



 

53 

 

Figure 3.8-2: METU-NFN main structure. 

 

The structure of each NN component in Figure 3.8-2 is depicted in Figure 3.8-3. 

As seen in the figure the “Hour of day” and the “Kp” are fuzzy inputs. Other four 

raw inputs which are present values, the first difference, the second difference 

and the relative difference, are inherited from the METU-NN model. 

 

Figure 3.8-3: Structure of the NN block with fuzzy inputs. 

 
NN for Quiet 
Condition 

 
NN for Disturbed 

Condition 

 + 

Fuzzy Logic 
Controller for Kp 
(without 
defuzzification) 

% 

Kp 

y’ 

y’’ 

y’ = k.y 
y’’ = (1-k).y 
y = y’ + y’’ 
 
 

k 

 y 

 
 
 
 
 
 

NN 

Hour of day 
Fuzzy Logic 
Controller 

Fuzzy Logic 
Controller Kp 

Present Value 

First difference 

Second difference 

Relative difference 



 

54 

 

The network will be trained with a mixed data set including both quiet and 

disturbed conditions. This data set should also include Kp values for each entry. 

This set will be applied to both NNs. The contribution ratios of each NN will be 

determined by the fuzzified Kp. The target values for each entry in the training 

set will also be scaled by Kp. Each NN will be trained with this scaled target 

value. The actual output of the system will be calculated by simply summing 

each NNs’ outputs. The training algorithm is the inherited Levenberg Marquardt 

algorithm. 

 

Fuzzy logic controller components are designed by employing the expert 

knowledge for the fuzzy inputs. The design of fuzzy components is described in 

section 3.8.3. 

3.8.3 Design of fuzzy components 

Magnetic disturbance of the ionosphere and diurnal variations of TEC or foF2 are 

potential fuzzy variables. For each of these two parameters a fuzzy component is 

employed. Block diagrams of these fuzzy components are shown in Figure 3.8-4 

and Figure 3.8-7. These fuzzy components consisted of a fuzzification layer, a 

fuzzy inference system and a defuzzification layer. A crisp input value entered to 

the fuzzifier layer. In the fuzzifier, the crisp value is converted to the fuzzy value 

to enter into the fuzzy inference system. The fuzzy inference system is composed 

of the fuzzy rules. These rules connect the fuzzy inputs to the fuzzy outputs. The 

fuzzy output is the input of the defuzzifier. In the defuzzifier fuzzy inputs are 

converted to crisp values by using a defuzzification method. Having passed 

through the fuzzy inference system, the obtained crisp values are entered to the 

NNs in the whole system, which is described in the previous section and depicted 

in Figure 3.8-2 and Figure 3.8-3. 



 

55 

 

Figure 3.8-4: Fuzzy inference system for magnetic disturbance; 1 input, 1 output, 
2 rules. 

 

The main structure of the fuzzy component for the Magnetic disturbance is 

depicted in Figure 3.8-4. The level of magnetic disturbance is quantified by Kp as 

described previously on section 3.8.1. Kp index is normally quantified into 27 

levels. Having consulted with the experts I quantified Kp with two fuzzy terms. 

These terms are “Quiet” and “Disturbed”. If Kp is equal or lower than 2.3, it is 

absolutely quiet. If Kp is equal or greater than 6, it’s absolutely disturbed. Levels 

between 2.3 and 6 can linguistically be called as “almost quiet” or “almost 

disturbed”. These linguistic terms also determine the input membership 

functions. Since we have two linguistic terms, one for each, there are two input 

membership functions. The graphical representation of input membership 

functions for Kp can be seen in Figure 3.8-5. For the sake of simplicity linear 

trapezoidal membership functions have been preferred. 

 



 

56 

 

Figure 3.8-5: Input membership functions for Kp. 

 

The output has also two membership functions. The fuzzified output of Kp is 

used to select the contribution ratio of the NNs to the output of the system as 

depicted in Figure 3.8-2. Input and output layers are connected through a fuzzy 

inference system which is composed of fuzzy rules. Output membership functions 

are also linear functions and linguistically define the contribution ratio of the NNs.  

 



 

57 

 

Figure 3.8-6: Output membership functions for Kp. 

 

There are two fuzzy rules for Kp, which are: 

 

1. If Kp is Quiet then Output is NNQuiet. 

2. If Kp is Disturbed then Output is NNDisturbed. 

 

The main structure of the fuzzy component for the diurnal variations of TEC or 

foF2 is depicted in Figure 3.8-7. The hour of day determines the level of diurnal 

variations. Therefore, the hour of day is the crisp input to the fuzzy component 

and is fuzzified in the fuzzification layer.   



 

58 

 

Figure 3.8-7: Fuzzy inference system for diurnal variation; 1 input, 1 output, 5 
rules. 

 

For the fuzzification and the subsequent defuzzification processes, input and 

output membership functions should be determined. Input and output 

membership functions are produced from the characteristic graph of the diurnal 

variations (Figure 3.8-1). This graph is divided into four regions, determined by 

the solar time of the day. This graph is shown in Figure 3.8-8. As it is shown on 

the graph, the hour of day is divided into four regions: late-night, morning, 

midday, and afternoon. These regions also represent the fuzzy terms of the input 

variable. Corresponding diurnal variation regions are negative-low, positive-high, 

zero, and negative-high. 



 

59 

 

Figure 3.8-8: Regions of diurnal variations. 

 
Hour of day is the crisp input to the fuzzifier layer. In the fuzzifier layer hours of 

a day are represented by membership functions. These membership functions 

are depicted in Figure 3.8-9 and the boundaries are given in Table 3.8-1. 

Table 3.8-1: Boundaries of the regions of diurnal variations 

Region Absolute Time Quite Time 
 Late night 21:00 – 04:00 04:00 –  07:00 
 Morning 07:00 04:00–07:00, 07:00–12:00 
 Midday 12:00 07:00–12:00, 12:00–16:00 
 Afternoon 16:00 12:00–16:00, 16:00–21:00 
 



 

60 

 

Figure 3.8-9: Input membership functions for fuzzification of the diurnal 
variations. 

 
The fuzzifier layer produces a fuzzy output corresponding to the crisp input. For 

example if the hour is 03:00 o’clock, then the fuzzy output will simply be 100% 

latenight. In other words 3 o’clock is linguistically expressed as “late night”. For 

example if the hour is 11 o’clock, then the fuzzy output will be 80% midday and 

20% morning. Similarly it is linguistically expressed as “just midday” or “late 

morning”. 

 

Fuzzy outputs are processed in the fuzzy inference system which is composed of 

fuzzy rules. In this fuzzy inference system four fuzzy rules are employed to 

convert fuzzy input to fuzzy output. These rules are listed below. 

 

Fuzzy rules for fuzzy inference system of diurnal variations: 

 

1. If hour of day is “latenight” then rate is “neglow” 

2. If hour of day is “morning” then rate is “pozhigh” 



 

61 

3. If hour of day is “midday” then rate is “zero” 

4. If hour of day is “afternoon” then rate is “neghigh” 

 

By using these rules output membership functions are selected in the defuzzifier 

layer with a ratio determined in the fuzzifier layer. Defuzzifier layer consists of 

output membership functions and a defuzzification engine. The output 

membership functions are determined examining the diurnal variations graph in 

Figure 3.8-8. 

 

Similar to input membership functions, the regions on the graph represent the 

fuzzy terms of output of the defuzzifier layer. These terms are also used as 

output membership functions, which are organized by defining the boundary 

regions as depicted in Figure 3.8-10. 

 

Figure 3.8-10: Output membership functions for fuzzification of diurnal 
variations. 

 



 

62 

In Figure 3.8-10, x axis represents the crisp value of the rate of the diurnal 

variations. A defuzzification method has to be used to find out this crisp value. 

Fuzzy output of the fuzzy inference system is something like that; 80% midday, 

20% morning. This fuzzy information is the input of defuzzification layer. In the 

defuzzification layer by using output membership functions in Figure 3.8-10 and 

the defuzzification method as described on the section 3.8.3.1 a crisp value is 

obtained. The rate is chosen between 0 and 1 because of the other inputs to the 

NNs are normalized between 0 and 1. Therefore there is no need to normalize 

these crisp values. 

 

That is the final step of fuzzy component used in the model. This crisp value is 

utilized in NNs as similar to the other inputs. 

3.8.3.1 Defuzzification Method 
The conversion of a linguistic (fuzzy) result to a real (crisp) value is called as 

defuzzification. Fuzzy logic mimics the human decision and evaluation process. 

Therefore a well established defuzzification method should approximate this 

approach. Defuzzification is usually a two step process. In the first step a typical 

value is computed for each term in the linguistic variable. In the second step, the 

“best compromise” is determined by balancing out the results. For the sake of 

computational efficiency “Center of Maximum” (CoM) defuzzification method is 

used in this study. A comparison chart of defuzzification methods is given in 

Table 3.8-2 [58]. 

 

 

 

 

 

 

 

 

 

 



 

63 

Table 3.8-2: Defuzzification methods comparison [58] 

 Center of Area 
(CoA, CoG) 

Center of Maximum 
(CoM) 

Mean Of 
Maximum (MoM) 

Linguistic 
Characteristic 

“Best Compromise” “Best Compromise” “Most plausible 
solution” 

Fit with Intuition 

Implausible various 
MBF shapes and 
strong overlap 

MBFs 

Good Good 

Continuity YES YES NO 

Computational 
Efficiency 

Very low High Very High 

Applications 
Control, decision 
support, data 

analysis 

Control, decision 
support, data analysis 

Pattern recognition, 
dicision support 

 

 

Figure 3.8-11: Defuzzification with CoM. 

 

An example of CoM defuzzification method is depicted in Figure 3.8-11. As an 

example lets say that the fuzzy output of our fuzzy inference system be 0.8 



 

64 

neghigh and 0.2 zero. The maximum value of zero is 0.32 and neghigh is 0.68. 

Then the crisp value by using CoM will come out 0.68x0.8 + 0.32x0.2 = 0.608. 

3.9 Comparison of Various NN and NFN models Applied to 

Ionospheric Forecasting Problem 

In this section, NFN models developed in this study will be compared to NN 

models. NN systems are far more mature compared to neurofuzzy systems. And 

the application of NN systems to the problem of ionospheric forecasting, as a 

result the METU-NN model produced very successful results. In this thesis an 

attempt is made to develop an NFN model for ionospheric forecasting for the first 

time. The aim is to make use of the raw data and expert knowledge both, in the 

same system. In the literature it’s usually assumed that having plentiful usable 

data to train an NN system is the reason to use an NN system instead of a 

neurofuzzy system [40][54][47][59]. It’s expected that the results of NFN model 

developed during this study may not reach the performance of NN models. But if 

reasonable results may be obtained it will show that NFN models can be 

applicable and worth to study on. To obtain better results the physical domain of 

the problem has to be examined in more detail. All the expert knowledge should 

be collected and organized to develop much more appropriate NFN models. For 

this study we only used readily available expert knowledge on Magnetic 

disturbance and diurnal variations of TEC and foF2, to develop an NFN system to 

just see what kind of result would be obtained in a short time. 

 

Five different architectures are prepared to compare. These architectures are as 

follows 

1. METU-NN : The model described in section 1.2.2 and depicted in Figure 

1.2-1 

2. METU-NN with additional Kp column : Kp is added as an extra input. 

3. METU-NN with additional Kpf column : Fuzzified Kp is added as an extra 

input. 

4. METU-NFN 6 Inputs double NN : The NFN model described in the section 

3.8.2  



 

65 

5. METU-NFN 6 Inputs single NN : Single NN is used instead of double NN. 

 

For the comparisons all other variables except the model should be equal. 

Therefore in each model NNs’ have the same properties. That is each NN has 4 

hidden neurons with Tansig activation functions and one output neuron with 

linear activation function. Levenberg Marquardt training algorithm is used as a 

training algorithm. Three different sets of data are prepared to use in training, 

validation, and operation phases of each model. These are the TEC data sets 

which are obtained under the conditions given in [60]. Organization of data sets 

is given in Table 3.9-1. All the data sets are GPS TEC data having 10 minute 

intervals. 

Table 3.9-1: Data sets organization 

 Month Year Station 

Training Set 
1 April – 31 

May 
2000 

Chilbolton (51.8º N; 1.26º 

W) 

Validation Set 
1 April – 31 

May 
2001 

Chilbolton (51.8º N; 1.26º 

W) 

Operation Set 
1 April – 31 

May 
2002 Hailsham (50.9º N; 0.3º E) 

 

The Kp data is retrieved from the ftp site of The National Geophysical Data 

Center,USA. 

(ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/). The data 

gabs in the Kp data are filled with linear interpolation. Under these conditions the 

summary of the results are tabulated in Table 3.9-2. 

Table 3.9-2: Summary of Comparison Results 

  NN + Kp NN + Kpf NFN 2NN NFN 1NN METU-NN 

Cross correlation 0.986790 0.982862 0.908643 0.983900 0.987037 

MSE 3.730893 4.022666 23.028308 3.770725 3.036461 

RMSE 1.931552 2.005659 4.798782 1.941836 1.742545 
Average Absolute 
Error (TECU) 1.348231 1.387980 3.630039 1.319473 1.162553 

Average Epoch 
Duration (ms) 3999 4094 3537 1717 3233 

 



 

66 

Interpreting the results, the best performance is obtained by METU-NN model 

with the RMSE of 1.7425. “NN + Kp” and NFN with single NN models produced 

similar results with RMSE of 1.9315 and 1.9418 respectively. Adding a fuzzified 

Kp input to the METU-NN model slightly decreased the performance compared to 

the model with a raw Kp input added to METU-NN model. The NFN model 

described in 3.8.2 produced the worst performance with the RMSE of 4.7987. A 

RMSE value below 2 is accepted for a usable system. However, both the cross 

correlation value of 0.90 and the RMSE value of 4.7 are very reasonable results 

and even can be considered promising for the first attempt of a new model. It 

should be noted that, the worse results are expected at the beginning. These 

results show us that, it’s worth to study physical details of the ionosphere to 

obtain more comprehensive expert knowledge to develop more advanced 

neurofuzzy models.   

 

After training phases all the models are operated with the operation data set. For 

each type of model scatter diagrams are plotted with METU-NFN Software and 

the obtained scatter diagrams are printed below.   

 

 

Figure 3.9-1: Scatter diagram obtained by operating NFN 2NN. 



 

67 

 

 

Figure 3.9-2: Scatter diagram obtained by operating NFN 1NN. 

 



 

68 

 

Figure 3.9-3: Scatter diagram obtained by operating NN + Kp. 

 



 

69 

 

Figure 3.9-4: Scatter diagram obtained by operating NN + Kpf. 

 

 

Figure 3.9-5: Scatter diagram obtained by operating METU-NN. 



 

70 

 

CHAPTER 4                                                                    

METU IONOSPHERIC FORECASTING SOFTWARE DESIGN 

The knowledge gained through many years of theoretical studies on the 

ionospheric forecasting finally produced a mature NN model, which is made 

usable over the Web by developing METU-IFS for the first time in this study with 

such remarkable features. This chapter discusses the outstanding properties of 

this software and the design details. 

4.1 Introduction to METU Ionospheric Forecasting Software 

(METU-IFS) 

Middle East Technical University Ionospheric Forecasting Software (METU-IFS) 

has been developed to make usable various neural network and neurofuzzy 

models over the Internet with a user friendly interface. Availability of these 

models will greatly help the related scientific circles. Designing new neural 

network or neurofuzzy architectures, training previously designed ones and 

operating previously trained ones are the main features of METU-IFS. Access to 

these features is protected with a three level of authorization. According to this 

authorization mechanism, users are divided into three groups which are namely 

“Power User”, “Researcher” and “Ordinary User”. All the data collected during the 

usage of METU-IFS is saved into a database. This data will be received from a 

wide variety of the users all over the world while the models presented with this 

software are trained or operated. The data may prove useful for improving the 

models to be developed in future researches. 

 



 

71 

In developing METU-IFS, Java is chosen as a software language, due to platform 

independence and powerful object oriented structure of this language. METU-IFS 

is designed as a client-server application based on “three-tier” architecture. 

Details of design are given in the following sections.  

4.2 Web Based Client-Server Applications 

METU-IFS is a kind of web based client-server application. Main terminologies to 

be seen in the following the sections and the technologies applied in the design 

of this software are explained here. Besides that, some advantages of the client-

server applications are also discussed. 

 

In software engineering, a web application is the one delivered to users from a 

web server over the World Wide Web. Users can have access to the applications 

from any computer connected to the Internet via a secure, password-protected 

login page. Though other varieties are possible, a web application is commonly 

structured as a three-tiered application. In its most common form, a web 

browser or a client software is the first tier, an engine created using some 

dynamic web content technology (e.g., CGI, PHP, Java servlets or Active Server 

Pages) is the middle tier which is generally called as server, and a database is 

the third tier. The client sends requests to the middle tier, which services them 

by processing request data, making queries and updates against the database, in 

some cases generating a user interface and responding to the client with end 

data [61]. 

 

Web-based applications are becoming so popular in our daily life that not a single 

day we pass without having any connection to them. These applications range 

from simple to more sophisticated ones, where millions of dollars in revenue are 

made. Below several pros are listed, which make them so popular. 

4.2.1 Installation and Maintenance 

Installation and maintenance are not complicated. All the intelligence is collected 

in a server side application. Once a new version or upgrade is installed on the 



 

72 

server, all the users can have access to it straight away. There is no need to 

upgrade each client PC with all the related migration problems that it might bring 

forth. And as the upgrades on the server are only performed by an experienced 

professional, the results are more predictable and reliable. 

 

Increasing processor capacity also becomes a far simpler operation. If an 

application requires more power to perform tasks, only the server hardware 

needs to be upgraded. 

4.2.2 Security 

The server application which includes all the intelligence will be deployed on a 

dedicated secure server, which is monitored and maintained by experienced 

server administrators. This is far more effective than monitoring hundreds or 

even thousands of client computers, as is the case with new standalone desktop 

applications. And besides that, clients are authorized with a password controlled 

login mechanism. Thus, the clients may be distributed into several user groups to 

restrict accesses to the server side application. 

4.2.3 Cost effective development 

With web-based applications, users have access to the system via a uniform 

environment, the web browser, where there’s no need to test the application on 

all possible operating system versions and configurations. This also makes 

troubleshooting much easier. 

 

Using internet technologies based on industry-wide standards, it is possible to 

achieve a far greater level of interoperability between applications than with 

isolated desktop systems. This means that it is possible to rapidly integrate them 

within existing infrastructures and platforms. 

4.2.4 Accessibility 

Unlike traditional applications, web systems are accessible anytime, anywhere, 

via a PC with an Internet connection. 



 

73 

4.3 Software Design 

Design of METU-IFS is started with production of a Software Requirements 

Specifications (SRS) document in which all the requirements are listed. This SRS 

document is given in appendix-A. Following the SRS document, a function point 

analysis (or cost estimation analysis) based on COCOMO model is done at the 

very beginning of the thesis. The planned software was a very light version of 

the software we have actually realized. The analysis has shown that the 

estimated software size would be about 6000 LOC (Lines Of Code).  The man-

hour required to complete the project is estimated to be 14.7 person-month. 

Duration required to complete the project is estimated to be 7 months which 

means that, with an average of 2 full time men effort the project duration is 7 

months. This function point analysis is given in appendix-B. The realizations are 

as follows; size of the realized software is about 10000 LOC, duration is about 12 

months with one part time staff. 

  

Generally the development of web-based applications can at least be divided in 

two parts such as a content presentation part which is known as client side, and 

behind the scene, a data processing part which is known as the server side. This 

approach is known as Three-Tier architecture. METU Ionospheric Forecasting 

Software (METU-IFS) is also designed based on Three-Tier architecture. 

4.3.1 Three-Tier Architecture 

The three-tier model is a software architecture and a software design pattern. 

The three tier architecture is used when an effectively distributed client/server 

design is needed, which provides increased performance, flexibility, 

maintainability, reusability, and scalability while hiding the complexity of 

distributed processing from the user. These characteristics make three layer 

architectures a popular choice for Internet applications and net-centric 

information systems. 

 

In computing, three-tier is a client-server architecture in which the user interface, 

functional process logic ("business rules") and data storage and data access are 



 

74 

developed and maintained as independent modules, most often on separate 

platforms. The term "three-tier" or "three-layer", as well as the concept of multi-

tier architectures, seems to have originated from Rational Software or Microsoft.  

 

Apart from the usual advantages of modular software with well defined 

interfaces, the three-tier architecture is intended to allow any of the three tiers to 

be upgraded or replaced independently as requirements and/or 

technology change. For example, an upgrade of desktop operating system from 

Microsoft Windows to UNIX would only affect the user interface code. 

4.3.2 Client Side 

This section discusses the properties of the client side and gives the design 

details. 

4.3.2.1 Main Properties 

The client side of METU-IFS is designed actually as a dummy user interface. No 

intelligent processing is done on the client side. That is, algorithms or models, 

which are intellectual assets, are not implemented on the client software. In the 

software world it is a common problem that executable software files may be 

reverse engineered to obtain the source code. And it is relatively easier if a 

programming language such as Java is used where the executables run on a 

virtual machine. This virtual machine in Java is called Java Runtime Environment 

(JRE). By this design our intellectual assets are protected against such attacks. 

 

Client application is mainly designed as graphical user interface (GUI) of the 

whole portion of METU-IFS.  The User interface is built on runtime by selecting 

one of the three predefined graphical user interfaces (GUI). Users are collected 

into three groups which are named as “Power User”, “Researcher” and “Ordinary 

User”. Since each user has different access rights the GUI is also differs by user 

type. GUI design related to each user type will be described later. 

 

Client application mainly runs around a main thread and a connection thread. 

While all the GUI related work is handled with main thread, all the 



 

75 

communication related work is handled with connection thread. The main 

advantage of this design is that, user interface is not blocked in case of a 

probable communication delay or even communication problems. The main 

screen of METU-IFS can be seen in Figure 4.3-1. And the “About” window is in 

Figure 4.3-2. 

 

 

Figure 4.3-1: METU-IFS main window. 



 

76 

 

Figure 4.3-2: METU-IFS “About” window. 

4.3.2.2 Authorization Module 

Authorization is the first step of all the rest. When the application is started this 

module first reads the server address and port number from a configuration file 

and tries to connect to the server. If the connection is successful, a “Login 

Window” (Figure 4.3-4) pops up, otherwise a warning message (Figure 4.3-3) is 

displayed that says to the user to check the internet connection.  

 

 

Figure 4.3-3: Connection error window. 

 

After a connection is established with the server the user enters its user name 

and the password into the “Login Window” to authorize. This user name and 

password will be e-mailed to the user for a first time usage. The first time the 

user is connected to the server, a new password is sent to the server which is 

generated by using “Ethernet address” (that is also known as Mac address) of 

the user’s PC and the given password. For the later connections this password is 

saved in the database of METU-IFS. With this authentication mechanism METU-



 

77 

IFS Client application will be PC locked and would not be moved to any other PC 

without the administrators’ knowledge and permission. 

 

 

Figure 4.3-4: Login window. 

 

Server sends the user type to the client application, if the user name and 

password is verified. As soon as the client receives user type, it builds up the GUI 

according to user type. So clients can access the services served by the server as 

long as their rights allow. Authorization module with its main methods is 

summarized in Table 4.3-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

78 

Table 4.3-1: Authorization Module structure 

Authorization Module 

ConnectServer Method 

Call by Main frame 

Input Name Input Type Input Source 

Server Address string 

Port Number integer 

Configuration 

File 

Output Name Output Type 

Connection Status as Boolean 

Login Method 

Call by Authorization Module 

Input Name Input Type Input Source 

User Name String 

Password String 

User Input 

Output Name Output Type 

Authorization Status as Boolean 

User Type String 

4.3.2.3 Neural Network Builder and Selector Module 

This module is used to build or select a neural network architecture. Each of the 

three user types has different accesses to this module that is reflected to the GUI 

also. A “Power User” user has all the rights of building a new architecture and 

selecting a previously built or trained architecture. The GUI for a “Power User” to 

select an architecture and to build a new architecture is respectively shown in 

Figure 4.3-5 and Figure 4.3-6. “Power User” user can also save its newly built NN 

structure. 

 

“Researcher” user has only rights to select a previously built architecture. It can 

select a NN architecture whether it is trained or not. 

 

An “Ordinary” user can only select previously trained architectures in order to 

operate them. 



 

79 

 

Figure 4.3-5: NN structure selection window. 

 



 

80 

 

Figure 4.3-6: NN structure building window. 

 

The neural network structures list and each structures training results list are 

retrieved from database of METU-IFS through the server. Just before this module 

is loaded the server is asked to send these lists. Client application receives these 

lists and then just lists them to the user. If the user leaves this module by 

accepting a NN structure, according to the users’ modifications or selections this 

NN structure is saved into a local structure. 

4.3.2.4 Training Parameters Settings Module 

This module is designed to select training parameters. This module is forbidden 

for “Ordinary” type of users. The GUI design for the module is shown in Figure 

4.3-7. In this module all the parameters related to the training algorithm are 

defined. Training and validation data sets are also entered within this module.  



 

81 

 

 

Figure 4.3-7: Training parameters selection window when LM is selected as an 
algorithm. 

 



 

82 

 

Figure 4.3-8: Training parameters selection window when GD is selected as an 
algorithm. 

 

4.3.2.5 Operation Settings Module 

In this module operation settings are retrieved from user. Operation set files are 

selected by the user. And the name of the file to save operation results is 

entered by the user. 

 



 

83 

 

Figure 4.3-9: Operation settings window. 

 

 

Figure 4.3-10: Browser window. 

 

4.3.2.6 Plotter Module 

This module is employed to display training results and operation results with 

graphs. The training error graph and the scatter diagram can be plotted. Some 

sample plots are shown below. A training error graph scaled 0.2 is shown in 

Figure 4.3-11, and a scatter diagram is in Figure 4.3-13. 

 

This plotter module is mainly developed by Joseph A. Huwaldt, and distributed as 

a free software library. In METU-IFS this library is used by writing some glue 



 

84 

code. This library was not supporting scatter diagrams. So some modifications 

have been made for scatter diagram plots. 

 

 

 

Figure 4.3-11: A training error graph scaled to 0.2. 



 

85 

 

 

Figure 4.3-12: A training error graph scaled to 0.02. 

 



 

86 

 

Figure 4.3-13: A scatter diagram window of METU-IFS. 

 

4.3.3 Server Side 

This section describes the properties of the server side. 

4.3.3.1 Main Properties 

The server side of METU-IFS is actually the core of whole application. All training 

algorithms and models are implemented in the server application. When the 

server is started running, it listens to the predefined port of the server machine. 



 

87 

As soon as a client requests a connection, server creates a thread dedicated to 

the client, than continues to listen to the port for the other clients. All of the 

server services are shared by the threads dedicated to the clients. That means, 

when a service is busy for another client, the client should wait it to be 

completed. 

 

Although it is not needed, a simple GUI is designed for the server (Figure 

4.3-14). The server administrators can use this GUI to monitor, what is going on 

the server. Besides, new users can be created by using this GUI. 

 

 

Figure 4.3-14: Main window of server. 

 

4.3.3.2 Listener Module 

This module runs in an infinite loop and listens to the socket for if any client is 

requesting a connection. When a client requests a connection this module 

catches it and creates a new thread dedicated to this client. The listener module 



 

88 

continues to listen to other clients and a dedicated thread is created to take care 

of the client. 

4.3.3.3 Client Handle Module 

This module is created by Listener module as soon as a client requests a 

connection. The Client Handler Module runs in an infinite loop as a separated 

thread until the connection is closed by the client. This module listens to the 

client’s requests and performs requested tasks such as “Authorize”, “Save NN”, 

“Train NN”, “Get NN List”, “Operate NN”, “Save Training Results” etc.   

4.3.3.4 Training Abstract Module 

The common methods for “TrainLM” and “TrainGD” are implemented in this 

module while the other algorithm specific methods are stored as abstract 

methods. The common methods are “BuildNetwork”, “UpdateWeights”, 

“RandomizeWeights”, “CalculateActivation”, “CalculateDerivativeOfActivation”, 

“FindNumOfWeights”, “SetWeights”, and “OperateWholeSet”. 

  

Among these methods, “BuildNetwork” is the most important one. It takes an 

“NNStructure” type parameter which defines the network structure, and builds 

the network according to this structure. Since the network information is 

independent of training algorithm it is hold in this module. Most of the other 

methods implemented in this module are also network structure related methods. 

All other training algorithm related methods are implemented in the related 

training algorithm module.  

4.3.3.4.1 Weight Randomization 

This method is called before the training starts. NN weights are randomized in 

this module. Two kinds of randomization algorithm are implemented. One of 

them is just randomizes the weights uniformly between -1 and 1. The other 

randomization algorithm is called as Nguyen-Widrow Randomization algorithm. 

Nguyen and Widrow developed a randomization formula by analyzing two-layer 

neural networks to improve the learning speed [62]. This randomization 

algorithm randomizes the weights depending on the number of neurons in the 

hidden layer and the number of inputs. Nguyen-Widrow randomization algorithm 



 

89 

is used if the related check box in the “Set Training Parameters” window (Figure 

4.3-7) is checked. 

4.3.3.5 LM Module 

In this module Levenberg Marquardt training algorithm is implemented as 

described in the famous paper of Hagan (1994) [38]. In training the first thing to 

be done is to calculate the Jacobian Matrix which is given in Eq. (2.1.24). The 

calculation is done in “calculateJacobianMatrix” method. In this method 

“ForwardPass” and “BackwardPass” methods are called in a loop. For each 

training set, a forward pass is performed to calculate the error vector, and than a 

backward pass operation is performed. In “ForwardPass” each neurons net inputs 

and outputs are calculated as in Eq.(2.1.5) and Eq.(2.1.6). In “BackwardPass” 

sensitivity factor (Eq.(2.1.16)) of each neuron is calculated by calling 

“CalculateSensitivityFactorsLM” method. Then a row of Jacobian matrix is built in 

“BackwardPass”. So for each training set, a row of Jacobian matrix is built. 

 

After the completion of calculating Jacobian matrix, the code enters into a loop. 

In this loop, performance of the network will be calculated. The loop starts by 

calculating the initial performance of the network and updating the weights 

temporarily. If the sum of squares of errors, is not decreased in a turn, than 

momentum is decreased by beta. For each successful turn (i.e. sum of squares of 

errors is decreased) “DW” matrix is updated that is weights are updated as Eq. 

(2.1.27). If it’s not a successful turn, momentum is decreased by beta and 

“try_number” is decremented. If the “try_number” exceeds the MAXTRYNUMBER, 

then regardless the turn is successful or not, weights are updated. That is the 

tricky point which is not described in the algorithm [38]. If the algorithm is 

implemented as it is described, then the program may be blocked sometimes. 

Finally, completion of the loop with a successful turn ends the epoch. 

 

In this module there are much more sub methods which are not mentioned here, 

but the idea is as described. 



 

90 

4.3.3.6 GD Module 

In this module Backpropagation training algorithm is implemented as described 

in the famous paper of Hagan (1994) [38]. The implementation of 

Backpropagation is straight forward. Batch and online training issue is also 

handled in this module. If “online” training is selected, then after each set 

operated, the weights are updated. If “online” training is not selected, the errors 

are added incrementally until all sets are operated, and then the weights are 

updated as in Eq.(2.1.11). 

 

The main methods of this module are “Train”, “ForwardPass”, 

“CalculateSensitivityFactorsGD”, and “CalculateDeltaWeights”.  

4.3.3.7 New User Definition Module 

A server administrator can define new users by using this module. This module 

has a GUI (Figure 4.3-15) to easily define new users.  A user is defined by its 

“user name”, “user type” and with a temporary password.  

 

 

 

Figure 4.3-15: The window to define a new user. 

 



 

91 

4.3.4 Database Design 

METU-IFS has a database on the server PC to store various data. METU-IFS 

database is developed on MS Access Environment. It is assumed that Server 

application will run on a MS Windows operating system. METU-IFS Java program 

is then connected to this database over JDBC-ODBC Bridge. 

In this database different kinds of data are stored in 5 different tables. These 

tables are named as follows:  

 

NNSTRUCTURETABLE : Stores neural network structure related data  

 TRAININGPARAMETERSTABLE : Stores training parameters 

 TRAININGRESULTSTABLE  : Stores training results 

 WEIGHTSTABLE   : Stores weights 

 USERSINFO    : Stores information of users 

 

New entries for NNSTRUCTURETABLE, TRAININGPARAMETERSTABLE and 

USERINFO can be stored into the database independently. But 

TRAININGRESULTS and WEIGHTSTABLE entries are dependent on other three 

tables. Basic design decisions for each table are given in the subsections. 

4.3.4.1 USERINFOTABLE 

In this table user information is stored. When a new user is defined by 

administrator, a new entry is created in this table. To create a new user 

UserName, TempPassword and UserType should be entered by administrator. 

“isActivated” field is set to “false” at the beginning. As soon as the client is 

connected to the server a password sent by client application is set into 

Password field besides setting “isActivated” field to “false”. Data types and field 

details are shown below in Table 4.3-2. 

 

 

 

 

 

 



 

92 

Table 4.3-2: USERINFO database table 

Field Name Data Type Description 

UserName Text A unique User Name. 

TempPassword Text Temporary password. 64bit hashed.  

Password Text Password. 64 bit hashed. 

isActivated Boolean Status flag to hold if user activated or 

not. 

UserType Text User Type; “PowerUser”, 

“OrdinaryUser”, “Researcher” 

 

4.3.4.2 NNSTRUCTURETABLE  

In this table neural network structures are stored. Each NN table is labeled with 

an ID which is generated on runtime by METU-IFS and a name which is given by 

user. Each field of this table, data types and field details are shown below in 

Table 4.3-3 and a sample entry is given for this table below in Table 4.3-4. 

Table 4.3-3: NNSTRUCTURETABLE database table 

Field Name Data Type Description 

ID Long Integer ID number of the entry starting from 1. 

NNStName Text NN Structure Name that is optionally 

defined by user 

TrainingStatus Boolean A status flag, holds if the nn structure is 

trained once. 

InputNumber Integer  

OutputNumber Integer  

IncludeBias Boolean  

HiddenLayerNumber Integer  

NeuronNumberInHL1 Integer  

NeuronNumberInHL2 Integer  

UserType Text  

 

 



 

93 

Table 4.3-4: A sample entry for NNSTRUCTURETABLE table 

NNSTRUCTURETABLE 

I

D 
NNStName 

TrainSta

tus 

InputNu

mber 

OutputN

umber 

Include

Bias 

HiddenLayer

Number 

NeuronNum

berInHL1 

Neuron

Numbe

rInHL2 

1 foF2Train No 8 1 No 1 4 0 

2 XOR Yes 2 1 No 1 3 0 

 

4.3.4.3 TRAININGPARAMETERSTABLE  

In this table all training parameters are stored for each training. Each field of this 

table is described by data types and field names, as shown below in Table 4.3-5. 

Table 4.3-5: TRAININGPARAMETERSTABLE database table 

Field Name Data Type Description 

ID Long Integer ID number of the entry starting from 1. 

Name Text Entry Name that is optionally defined by 

user 

Algorithm Text "LM" Stands for "Levenberg Marquardt", 

"GDB" Stands for "Gradient Descent" 

with batch, "GDO" for "Gradient 

Descent" with online. 

OutputLayerAF Text "LINEAR", "SIGMOID" or "TANSIG" 

HiddenLayerAF Text "LINEAR", "SIGMOID" or "TANSIG" 

BiasValue Double  

EpochNumber Integer  

Momentum Double  

LearningRate  Double Available only when GD* selected. 

ScaleFactor Double Available only when LM* selected. 

TargetError Double  

UseRandAlgorithm Boolean If "yes" Nguyen-Widrow Randomization 

algortihm is used. 

UseValidationStop Boolean  

 



 

94 

4.3.4.4 TRAININGRESULTSTABLE 

In this table training results are stored for each training. Each field of this table is 

described by data types and field names, as shown below in Table 4.3-6 and a 

sample entry is given for this table below in Table 4.3-7. 

 

Table 4.3-6: TRAININGRESULTSTABLE database table 

Field Name Data Type Description 

ID Long Integer ID number of the entry starting from 1. 

Name Text Entry Name that is optionally defined by 

user 

NNStructureID Long Integer Trained NNStructure ID 

TrainingParametersID Long Integer ID of TrainingParameters used for 

training 

WeightsID Long Integer Weights ID related with the training 

results 

Performance Double Final performance value 

EpochNo Integer Last epoch number before training 

ended. 

StopType Integer 2 - Succeeded, 3 - Validation Stop, 1 - 

Epoch No Exceeded 

AvarageEpochDuration Integer integer value in milliseconds 

 

Table 4.3-7: A sample entry forNNSTRUCTURETABLE table 

TRAININGRESULTSTABLE 

ID Name 

NNStr

ucture

ID 

TrainingP

arametersI

D 

Weigh

tsID 
Performance 

EpochN

o 

StopTyp

e 

AvarageE

pochDurat

ion 

1 foF2_Tr1 1 1 1 5.6127531E-04 10 3 5573 

 



 

95 

4.3.4.5 WEIGHTSTABLE 

In this table, weights of each trained neural network are stored.  Each field of 

this table is described by data types and field names, as shown below in Table 

4.3-8. 

Table 4.3-8: WEIGHTSTABLE database table 

Field Name Data Type Description 

ID Long Integer ID number of the entry 

starting from 1. 

WeightValue Double  

 

WEIGHTSTABLE design is a bit tricky. It is described below with an example. 

Assume that we have two training results for two different neural networks; one 

of them has 6 weights and other has 4 weights. Then we have to have two 

different weight sets. These weight sets are stored in WEIGHTSTABLE as seen in 

Table 4.3-9. 

Table 4.3-9: WEIGHTSTABLE database table 

WEIGHTSTABLE 

ID WeightValue 

1 -0.802363337698952 

1 -0.397536062176062 

1 0.118202085389262 

1 -0.164606526196443 

1 0.536329574689754 

1 0.234299343344433 

2 0.039930293493029 

2 0.299384872456362 

2 -0.112343876483726 

2 0.548938294493828 

 



 

96 

4.3.5 Development Environment 

This section describes the development environment used while developing 

METU-IFS. 

4.3.5.1 Software Environment 

This application is developed on Borland Java Builder 9.0 Integrated 

Development Environment (IDE). The database is developed on MS Office 

Access. MS Windows XP is used as an operating system. 

4.3.5.2 Hardware Environment 

This application is developed on an x386 architecture with an AMD2500 CPU and 

512 MBs of Ram. 



 

97 

 

CHAPTER 5                                                       

CONCLUSION 

In this thesis, the previous studies on Ionospheric Forecasting are reviewed, 

contributing greatly to our knowledge we need to develop a successful 

application of our own. The realization of putting the models into service over the 

Internet is demonstrated with this application, the models of which we have 

developed successfully and those developed previously. Some security concerns 

are also taken into account during the development. That is, when the models 

are in service over the Internet, it is ensured that the intellectual assets are 

safely kept in a secure environment. A manageable database is developed 

besides the application. All the data are stored in that database, enabling us to 

further analyze them on various environments such as MS Excel or MATLAB. 

Design considerations for both the database and the application are given in 

Chapter 4. The application is realized in full conformity with all the requirements 

stated in the SRS document (Appendix-A). 

 

The models and neural network algorithms are implemented efficiently. METU-

IFS is verified by comparing it with MATLAB, obtaining even slightly better 

results, and thus  verifying the correctness of the implementation of the 

algorithms as well.  This comparison is shown in Chapter 2.  

 

An attempt is made to develop new Ionospheric Forecasting models based on 

neurofuzzy systems, and their applicability on ionospheric forecasting is 

discussed in Chapter 3. After a review of two neurofuzzy system ASMOD and 

ANFIS, METU-NFN system is introduced. METU-NFN is developed as the first 

attempt of a neurofuzzy system that has ever been applied to ionospheric 



 

98 

studies. Operating the developed neurofuzzy systems, reasonable results are 

obtained. Some variations of NN and NFN models are compared. The results of 

neurofuzzy models developed during this study seem to be less successful and 

remain behind the results obtained by NN models at the first glance. However, 

considering that the success of a neurofuzzy system is directly dependent on the 

interpretation of the physical infrastructure of the problem and considering that 

the application of neurofuzzy models to the ionospheric studies is quite young 

yet, the results should be accepted as quite successful. The comparison results 

showed that neurofuzzy systems are applicable to the ionospheric studies. A little 

more detailed study on the physics of the ionosphere to develop a neurofuzzy 

system may result in much better performance values.  

 

For further studies, METU-IFS application can be improved by adding new 

models in future studies. Moreover, the feedback from users can also contribute 

to make further improvement on the user interface. It is also possible to build 

online learning capabilities into the models.  

 

Eliminating ineffective inputs while imposing more specified expert knowledge, 

METU-NFN models can be improved further. For a very early work seasonal 

variations can be studied to add new fuzzy inputs to the METU-NFN model. Then 

some other indexes or parameters having an influence on TEC or foF2 should be 

studied. Moreover, completely different neurofuzzy models may be developed to 

obtain better results. That is the fact that the model developed in this thesis is a 

preliminary work. 

 

Although the neural network methods are widely used and produced promising 

results, and neurofuzzy methods tend to be developed as a second alternative 

with some apparent advantages, the horizons can further be broadened by trying 

some other newly developing methods like genetic algorithms. 



 

99 

 

REFERENCES 

1. O. Huwendiek, W. Brockmann, “On the applicability of the NetFAN-
approach to function approximation Fuzzy Systems,” Proceedings of the 
Sixth IEEE International Conference on Fuzzy Systems, volume 1, 1-5 July 
1997, pages 477 – 482, 1997. 

2. M. Brown, K. M. Bossley, D. J. Mills, and C. J. Harris, “High dimensional 
neurofuzzy systems: overcoming the curse of dimensionality,” Proceedings 
of IEEE International Conference on Fuzzy Systems, volume 4, pages 2139 
– 2146, Yokohama, Japan, 1995. 

3. E. Tulunay, “Non-Linear Systems and with Reference to Some Geophysical 
Processes,” EGS XXIV General Assembly, The Hague, ND, 19-23 April 1999. 

4. A. J. Gibson, et al., “Characteristics of Fading of HF Signal and Noise 
Intensities on Three Paths Between the UK and Turkey,” Radio Science, 
volume 30, no. 3, pages 649-658, May-June 1995. 

5. L. J. Lanzerotti, D. J. Thomson, C. G. Maclennan, “Engineering Issues in 
Space Weather,” Modern Radio Science, Oxford University Press, 1999. 

6. G. Siscone, “The Space Weather Enterprise: Past, Present, and Future,” 
Atmospheric and Solar-Terrestrial Phys., volume 62, pages 1223-1232, 
2000.  

7. O. Altinay, “Nonlinear Blackbox Modeling of Ionospheric Critical Frequency 
Process Using Neural Networks,” MSc. Thesis, Middle East Technical 
University, Department of Electrical and Electronics Engineering, Ankara, 
Turkey, June 1996. 

8. E. Tulunay, Y. Tulunay, C. Ozkaptan, E. T Senalp, M. Aydogdu, O. Ozcan, 
E. Guzel, Y. Aydogdu, A. Yesil, I. Unal, M. Canyilmaz, E. Ipekcioglu, “Two 
Solar Eclipses Observations in Turkey,” IL NUOVO CIMENTO, Nuovo 
Cimento Della Societa Italiana Di Fisica C-Geophysics and Space Physics, 25 
C, N.2, pages 251-258, Publisher: Editrice Compositori Bologna, Siena, 
March – April 2002. 

9. E. Ertac, Y. Tulunay, “Ionospheric Total Electron Content Measurements 
from Turkey During the Solar Eclipse of 29 April1976,” Advanced Study 
Institute on Dynamical, Neutral and Ionized Atmospheres, Nord Torpa, 
Norway, 1979. 

10. C. Ozkaptan, “Modeling of Ionospheric Propagation in the HF Band Using 
Neural Networks: HF Propagation Modeling,” MSc. Thesis, Middle East 



 

100 

Technical University, Department of Electrical and Electronics Engineering, 
Ankara, Turkey, December 1999. 

11. E. T. Senalp, E. Tulunay, Y. Tulunay, C. Ozkaptan, “Neural Network Based 
Signal to Noise Ratio Prediction of a HF Radio Link Using Temporal and 
Geophysical Parameters,” Nordic HF 01, Faro, Sweeden, 2001. 

12. E. Tulunay, “Non-Linear Systems and with Reference to Some Geophysical 
Processes,” EGS XXIV General Assembly, The Hague, ND, 19-23 April 1999. 

13. H. Lundstedt, “AI Techniques in Geomagnetics Storm Forecasting,” 
Magnetic Storms, AGU Geophysical Monograph 97, Washington, USA, 1997. 

14. O. Altinay, E. Tulunay, Y. Tulunay, “Prediction of Ionospheric Critical 
Frequency Using Neural Networks,” COST 251 (Improved Quality of 
Ionospheric Telecommunication Systems Planning and Operation), 3rd 
Management Committee Meeting, COST 251 TD (96)016, Erice, Italy, 5-9 
March 1996. 

15. Y. Tulunay, “Neural Network Based foF2 Process Modeling,” Report 
submitted to WG3 Development of Models, WP 3.4.4 Forecast Models, 3rd 
Management Comitte Meeting, COST 251 DOC 3052, Erice, Italy, 5.9 March 
1996. 

16. L. R. Cander, X. Lamming, “Neural Networks in Ionospheric Prediction and 
Short Term Forecasting,” 10th International Conference on Antennas and 
Propagation, Edinburg, 14-17 April 1997, IEE Conference Publications, 436, 
2.27,2.30, 1997. 

17. N. M. Francis, A. G. Brown, A. Akram, P. S. Cannon, D. S. Broomhead, 
“Non-Linear Prediction of the Ionospheric Parameter foF2,” AI Applications 
in Solar-Terrestial Physics, Lund, Sweeden, 29-31 July 1997, ESA WPP-148, 
pages 219-223, 1998. 

18. X. Lamming, L. R. Cander, “Appropriatness of the Neural Network Approach 
for Monthly Median Ionospheric Prediction,” COST 251 4th Management 
Committee Meeting, COST 251 DOC 402, September 1996. 

19. L. A. Williscroft, A. W. V. Poole, “Neural Networks, foF2, Sunspot Number 
and Magnetic Activity,” Geophysical Researches Letters 23, pages 3659-
3662, 1996. 

20. A. H. Bilge, Y. Tulunay, “A Novel On-Line Method For Single Station 
Prediction and Forecasting of the Ionospheric Critical Frequency foF2 One 
Hour Ahead,” Geophysical Research Letters, volume 27, no. 9, pages 1383-
1386, May 1, 2000. 

21. L. F. Alberca, G. Juchnikowski, S. S. Kouris, A. V. Mikhailov, V. V. Mikhailov, 
G. Miro, B. Morena, P. Muhtarov, D. Pancheva, G. J. Sole, I. Stanilawska, T. 
Xenos, “Comparison of Various foF2 Single Station Models for European 
Area,” Acta Geophys. Pol., volume 47, pages 42-56, 1999. 

22. L. R. Cander, “Artificial Neural Network Applications In Ionospheric 
Studies,” Annali di Geofisica, volume 41, pages 757-766, 1998. 



 

101 

23. I. Stanislawska, “A Single Station Prediction Models as a Contribution to 
Instaneous Mapping,” Annali di Geofisica, volume 37, pages 153-157, 1994. 

24. A. H. Bilge, Y. Tulunay, F. Ozdemir, “Semi Empirical Single Station Modeling 
of foF2 Variations: Spectral Analysis,” Poster presented at the 23rd General 
Assembly of European Geophysical Society, Nice, France, 1998. 

25. E. T. Senalp, “Neural Network Based Forecasting For Telecomunications Via 
Ionosphere,” MSc. Thesis, Middle East Technical University, Department of 
Electrical and Electronics Engineering, Ankara, Turkey, August 2001. 

26. Y. Tulunay, E. Tulunay, E. T. Senalp, “The Neural Network Technique-1: A 
General Exposition, Advances in Space Research,” Publisher: Elsevier, 
volume 33/6 pages 983-987, 2004. 

27. Y. Tulunay, E. Tulunay, E. T. Senalp, “The Neural Network Technique-2: An 
Ionospheric Example Illustrating Its Application,” Advances in Space 
Research, Publisher: Elsevier, volume 33/6 pages 988-992, 2004. 

28. T. Sayed, and A. Razavi, “Comparison of neural and conventional 
approaches to mode choice analysis,” J. Comput. Civ. Eng., volume 14(1), 
pages 23–30, 2000. 

29. S. Haykin, “Neural Networks: A Comprehensive Foundation,” Second 
Edition, Prentice-Hall Inc., pages 2, 83-84, 169, 215, 1999. 

30. E. Tulunay, “Introduction to Neural Networks and Their Applications to 
Process Control,” one chapter in the book, Neural Networks Advances and 
Applications, pp.241-273, Ed. E. Gelenbe, Elsevier Science Publishers B. V., 
North Holland, 1991. 

31. R. P. Lippmann, “An Introduction to Computing with Neural Networks,” 
IEEE ASSP Magazine, pages. 4-22, 1987. 

32. G. G. Lorentz, “The 13th problem of Hilbert,” Proceedings of Symposia in 
Pure Mathematics,” volume 28, pages 419-430, 1976. 

33. S. M. Sulzberger, N. N. Tschicholg-Gurman, S. J. Vestli, “FUN: Optimization 
of Fuzzy Rule Based Systems Using Neural Networks,” In Proceedings of 
IEEE Conference on Neural Networks, San Francisco, pages 312-316, March 
1993. 

34. O. Altinay, E. Tulunay, Y. Tulunay, “Forecasting of Ionospheric Critical 
Frequency Using Neural Networks,” Geophysical Research Letter, pages 
1467-1470, June 1997. 

35. Y. Tulunay, E. Tulunay, E. T. Senalp, “An Attempt to Model the Influence of 
the Trough on HF Communication by Using Neural Network,” Radio 
Science, volume 36, no. 5, pages 1027-1041, Publisher: American 
Geophysical Union, Washington, September – October 2001. 

36. A. Kumluca, E Tulunay, I. Topalli, Y. Tulunay, “Temporal and spatial 
forecasting of ionospheric critical frequency using neural networks,” Radio 
Science volume 34 (6), pages 1497-1506, 1999. 



 

102 

37. E. Tulunay, C. Ozkaptan, Y. Tulunay, “Temporal and spatial forecasting of 
the foF2 values up to twenty-four hours in advance,” Phys. Chem. Earth (C) 
volume 25 (4), pages 281–285, 2000. 

38. M. T. Hagan, M. B. Menhaj, “Training Feed Forward Networks with the 
Marquardt Algorithm,” IEEE transactions on Neural Networks, volume 5(6), 
989-993, November 1993. 

39. T. Sayed, A. Tavakoli, A. Razavi, “Comparison of Adaptive Network Based 
Fuzzy Inference Systems and B-spline Neuro-Fuzzy Mode Choice Models,” 
Journal of Computing in Civil Engineering, April 2003. 

40. J. -S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference systems,” 
IEEE Trans. Systems, Man and Cybernetics. volume 23 (03) pages 665–
685, 1993. 

41. C. -C. Lee, “Fuzzy logic in control systems: fuzzy logic controller-part 1,” 
IEEE Trans. on Systems, Man, and Cybernetics, volume 20(2), pages 404–
418, 1990. 

42. C. -C. Lee, “Fuzzy logic in control systems: fuzzy logic controller-part 2,” 
IEEE Trans. on Systems, Man, and Cybernetics, volume 20(2) pages 419–
435, 1990. 

43. Y. Tsukamoto, “An approach to fuzzy reasoning method,” In Madan M. 
Gupta, Rammohan K. Ragade, and Ronald R. Yager, editors, Advances in 
Fuzzy Set Theory and Applications, pages 137–149, North-Holland, 
Amsterdam, 1979. 

44. T. Takagi and M. Sugeno, “Derivation of fuzzy control rules from human 
operator’s control actions,” Proc. Of the IFAC Symp. on Fuzzy Information, 
Knowledge Representation and Decision Analysis, pages 55–60, July 1983. 

45. Funahashi, “On the approximate realization of continuous mappings by 
neural networks,” Neural Networks, volume 2, pages 183–192, 1989. 

46. A. Abraham, “Neuro Fuzzy Systems: State-of-the-art Modeling Techniques,” 
In Proceedings of the Sixth International Work Conference on Artificial and 
Natural Neural Networks, IWANN 2001, Granada, Springer Verlag Germany, 
June 2001. 

47. H. R. Bherenji, and P. Khedkar, “Learning and Tuning Fuzzy Logic 
Controllers through Reinforcements,” IEEE Transactions on Neural 
Networks, volume 3, pages 724-740, 1992. 

48. C. T. Lin, C. S. G. Lee, “Neural Network based Fuzzy Logic Control and 
Decision System,” IEEE Transactions on Comput., volume 40 (12) pages 
1320-1336, 1991. 

49. R. Jang, “Neuro-Fuzzy Modeling: Architectures, Analyses and Applications,” 
PhD Thesis, University of California, Berkeley, July 1992. 

50. C. F. Juang, C. T. Lin, “An Online Self Constructing Neural Fuzzy Inference 
Network and its Applications,” IEEE Transactions on Fuzzy Systems, volume 
6, no. 1, pages 12-32, 1998. 



 

103 

51. S. Tano, T. Oyama, T. Arnould, “Deep combination of Fuzzy Inference and 
Neural Network in Fuzzy Inference,” Fuzzy Sets and Systems, volume 82 
(2) pages 151-160, 1996. 

52. N. Kasabov, and Q. Song, “Dynamic Evolving Fuzzy Neural Networks with 
'm-out-of-n' Activation Nodes for On-line Adaptive Systems,” Technical 
Report TR99/04, Department of information science, University of Otago, 
1999. 

53. A. Abraham, B. Nath, “Evolutionary Design of Neuro-Fuzzy Systems – A 
Generic Framework,” In Proceedings of the 4th Japan – Australia joint 
Workshop on Intelligent and Evolutionary Systems, Japan, November 2000. 

54. T. Kavli, “ASMOD, an algorithm for Adaptive Spline Modelling of 
Observation Data,” International Journal of Control, volume 58, pages 947-
967, 1993. 

55. M. Brown, and C. Harris, “Neurofuzzy Adaptive Modelling and Control,” 
Prentice Hall, New York, 1994. 

56. M. Brown, and C. Harris, “A perspective and critique of adaptive neurofuzzy 
systems used for modeling and control applications,” Int J Neural Systems, 
volume 6(2) pages 197–220, 1995. 

57. J. Jang, and C. Sun, “Neuro-fuzzy modeling and control,” Proc. IEEE, 
volume 83(3), pages 378–406, 1995. 

58. C. Von Altrock, “Fuzzy Logic and Neurofuzzy Applications Explained,” 
Prentice Hall, 1995. 

59. L. Jouffe, “Fuzzy Inference System Learning by Reinforcement Methods,” 
IEEE Transactions on Systems, Man, And Cybernetics – Part C: Applications 
And Reviews, volume 28, no. 3, pages 338-354, August 1998. 

60. COST271 WG 4 STM, 2002. Effects of the Upper Atmosphere on Terrestrial 
and Earth-Space Communications, Short term scientific mission (STM) work 
on the TEC data available at RAL to organize the input data for the METU 
NN model by Mr. E.T. Senalp under the supervision of Dr. Lj. Cander who 
provided the GPS data during the STM as a joint action between UK and 
Turkey, Terms of Reference, COST 271 Action, WG 4, 30 June 2002 – 7 
July 2002, RAL, Chilton, Didcot, U.K. 

61. Webster online dictionary, http://www.webster-dictionary.org, last 
accessed on 18/01/2005. 

62. D. Nguyen, B. Widrow, “Improving the learning speed of 2-layer neural 
networks by choosing initial values of the adaptive weights,” Proc. of the 
Int. Joint Conference on Neural Networks, volume 3, pages 21–26, 1990. 



METU-IFS Software Requirements Specifications 

 

METU-EE 104 01/12/03 

 

APPENDIX A 

METU IONOSPHERIC FORECASTING SOFTWARE  

SOFTWARE REQUIREMENTS SPECIFICATIONS 

DOCUMENT 



METU-IFS Software Requirements Specifications 

 

METU-EE 105 01/12/03 

 

 

 

 

 

 

 

 

Prepared By 

Yusuf İbrahim Özkök 

 

 

 

Reviewed By 

Prof Dr. Ersin Tulunay 

Erdem Türker Şenalp 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



METU-IFS Software Requirements Specifications 

 

METU-EE 106 01/12/03 

 

 

Revision History 

*A - Added  C - Changed  D - Deleted 

No Revision 
Date 

Location * 
 

Comments Rev 

1 01/12/03   First Release AA 

2 25/06/04 All ACD Revised after reviews AB 

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

 



METU-IFS Software Requirements Specifications 

 

METU-EE 107 01/12/03 

 

CONTENTS 

 

1. SCOPE....................................................................................................................... 108 

2. REFRENCE DOCUMENTS ...................................................................................... 108 

3. REQUIREMENTS..................................................................................................... 108 

3.1. Modes ................................................................................................................. 108 

3.2. Unit Requirements............................................................................................... 109 

3.2.1. Training Mode Requirements.......................................................................... 109 

3.2.2. Validation Requirements................................................................................. 110 

3.2.3. Operation Mode Requirements........................................................................ 110 

3.2.4. User Interface Requirements ........................................................................... 111 

3.2.5. Database Requirements................................................................................... 111 

3.3. EXTERNAL INTERFACE REQUIREMENTS................................................... 111 

3.4. INTERNAL INTERFACE REQUIREMENTS.................................................... 111 

3.5. INTERNAL DATA REQUIREMENTS .............................................................. 112 

3.6. EXTERNAL DATA REQUIREMENTS ............................................................. 113 

3.7. SECURITY REQUIREMENTS .......................................................................... 113 

3.8. COMPUTER RESOURCES REQUIREMENTS ................................................. 114 

3.8.1. Computer Resources Usage Requirements ...................................................... 114 

3.8.2. Communication Requirements ........................................................................ 114 

3.9. LOGISTIC REQUIREMENTS............................................................................ 114 

3.10. OTHER REQUIREMENTS ................................................................................ 114 

3.11. PRIORITIES OF REQUIREMENTS................................................................... 114 

4. OBSERVABILITY AND EVALUATION TECHNIQUES........................................ 114 

5. ABBREVITIONS ...................................................................................................... 114 

6. ATTACHMENTS ...................................................................................................... 115 

6.1. Database Structure............................................................................................... 115 

6.2. User Interface ...................................................................................................... 116 

6.3. Use Cases Message Sequence Charts................................................................... 118 

 



METU-IFS Software Requirements Specifications 

 

METU-EE 108 01/12/03 

 

1. SCOPE 

This document defines the requirements of “Metu NeuroFuzzy Ionospheric 
Forecasting System Software” 

Project No : 

Project Name :  Metu NeuroFuzzy Ionospheric Forecasting System 
Software Project 

Software Name: Metu NeuroFuzzy Ionospheric Forecasting System 
Software 

This software will perform training-validation and operation processes of a fuzzy 
neural network (FNN) system for the sake of forecasting most popular parameters 
of ionosphere which are TEC and foF2 values. 

At the rest of this document the name of this software will be called as “MNFIFS” 

2. REFRENCE DOCUMENTS 

 

No Reference Name Document No Rev Date Location 

1      

3. REQUIREMENTS 

3.1. Modes 

 This Software will have three major operation modes. These modes are; 
• User Login Mode 

• Training and Validation Mode 

• Operation Mode 

 Users will login to the system by using “User Login Mode” Each user will 
have unique ID. There will be three types of users. These types are; Admin 
User, Super user, Normal User. An admin user can use all properties of the 
software. Super users can define new neural network structures and can train 
and validate them. They also can use the Operation Mode. Normal users can 
only use the Operation Mode.  

 In the training mode user will build a neural network architecture by using 
selectable architectural elements. After building the network, user will give the 
data sets for training and validation. Then software will perform the training 
process. By the completion of the training phase the values of the weights will 
be finalized and saved in the name of architecture.  



METU-IFS Software Requirements Specifications 

 

METU-EE 109 01/12/03 

 

 In the operation mode user will select one of the previously trained and 
validated neural network structures. Then user will give an input data set which 
is arranged for the selected network. The network will calculate an output, by 
using this data set. 

 The software has a secure and a non secure part. The non secure part is the 
user interface part. The secure part is the part which contains all neurofuzzy 
algorithms and works to generate outputs. 

 

3.2. Unit Requirements 

 The software is divided into logical units. Requirements for the software 
are grouped in these units. 

3.2.1. Training Mode Requirements 

1. MNFIFS software will enable user to build a fuzzy neural network 
structure. 

2. MNFIFS software will restrict the user to build only FeedForward 
Networks. 

3. MNFIFS software will enable the user to select number of inputs of the 
neural network. 

4. MNFIFS software will restrict the number of inputs with 14 inputs at 
most. 

5. MNFIFS software will enable the user to select the number of layers. 

6. MNFIFS software will enable to design a neural network with at most 3 
hidden layers and at most 7 neurons in each layer. 

7. MNFIFS software will enable user to select the type of output. These 
outputs would represent TEC or foF2. 

8. MNFIFS software will enable to design an architecture with at most one 
output at the same time. 

9. MNFIFS software will list all possibly selectable activation functions to 
the user. 

10. MNFIFS software will list the following activation functions to the user; 

• Sigmoidal activation :  g(a ) = [1 + exp (-a)]-1 

• Tansig activation :  TANSIG(n)=[2/(1+exp(-2n)]-1 

• Pure Linear activation : PURELIN(n)=a.n 



METU-IFS Software Requirements Specifications 

 

METU-EE 110 01/12/03 

 

11. MNFIFS software will enable the user to select one of the listed 
activation functions. 

12. MNFIFS software will enable the user to select different activation 
functions for each layer. 

13. MNFIFS software will use supervised learning algorithm for training. 

14. MNFIFS software will need the data for training. 

15. MNFIFS software will enable the user to enter the training data in the 
text format. 

16. MNFIFS software will accept only predefined formats, which is defined 
in part “3.5. External Data Requirements”, for data entry. 

17. MNFIFS software will accept only correctly arranged data sets for the 
constructed neural network.  

18. MNFIFS software will adjust the weights between the neurons by using 
Backpropagation rule with Levenberg Marquartd Learning algorithm. 

19. MNFIFS software will use the epoch number which is entered by user in 
an edit box. 

20. MNFIFS software will use the initial learning rate which is entered by 
user in an edit box. 

21. MNFIFS software will enable the user to initialize the weights. 

3.2.2. Validation Requirements 

22. MNFIFS software will enable the user to enter a validation data set. 

23. MNFIFS software will automatically stop training when the validation 
error begins rising while training error is decreasing. 

3.2.3. Operation Mode Requirements 

24. MNFIFS software will enable the user to select one of the previously 
trained and validated Fuzzy Neural Networks. 

25. MNFIFS software will list available inputs for the selected 
architecture. 

26. MNFIFS software will operate with the inputs which will be entered 
by the user.  

27. MNFIFS software will calculate the output by using Backpropagation 
Algorithm. 



METU-IFS Software Requirements Specifications 

 

METU-EE 111 01/12/03 

 

28. MNFIFS software will calculate a single output for each neural 
network architecture.  

3.2.4. User Interface Requirements 

29. MNFIFS software will have a user friendly GUI based on Java Swing 
class. 

30. MNFIFS software GUI drafts are explained in the attachments of this 
document (6.2). 

3.2.5. Database Requirements 

31. MNFIFS software will access to a database which is defined in the 
attachments of this document in “Database Structure”. 

32. MNFIFS software will save user information in a database. 

33. MNFIFS software will recall user information from the database. 

34. MNFIFS software will save FNN architectures in a database with the 
architect ID.  

35. MNFIFS software will save completed and uncompleted architectures 
in separate tables. 

36. MNFIFS software will save results of operations related with the used 
architecture and with inputs and operator ID, in a table. 

3.3. EXTERNAL INTERFACE REQUIREMENTS 

37. MNFIFS software user interface side will get training and validation 
data files. 

3.4. INTERNAL INTERFACE REQUIREMENTS 

38. MNFIFS software will have a communication interface between user 
interface side and server side. 

39. MNFIFS software user interface side and server side will 
communicate by using TCP/IP protocol. 

40. MNFIFS software user interface side will send user login information 
to server side. 

41. MNFIFS software user interface side will send the built FNN 
architecture data to the server side. 



METU-IFS Software Requirements Specifications 

 

METU-EE 112 01/12/03 

 

42. MNFIFS software user interface side will send a data file for training 
and validation purposes to the server side. 

43. MNFIFS software user interface side will send inputs to for the 
selected FNN architecture for operation to the server side. 

44. MNFIFS software server side will send user information to the user 
interface side. 

45.  MNFIFS software server side will send the IDs of the trained and non 
trained FNN architectures. 

46. MNFIFS software server side will send the obtained results after a 
forecasting operation. 

3.5. INTERNAL DATA REQUIREMENTS 

47. MNFIFS software will define a FNN by the following data structure 

 

Architecture of a FNN 

Item Name Data Type Comment 

Name of The FNN String  

Number Of Inputs Java Integer  Defined as “n” 

Number Of Hidden Layers Java Integer  

Number Of Hidden Layers Java Integer  

Number Of neurons in Hidden 
Layer-1 

Java Integer  

… Java Integer  

Number Of neurons in Hidden 
Layer “n” 

Java Integer  

Activation Function Code For 
Input Layer 

Activation Function Code For 
Output Layer 

Activation Function Code For 
Hidden Layer 1 

.. 

Activation Function Code For 

Enumerated 
Number 

0:Sigmoid 

1:Tansig 

2:Linear 



METU-IFS Software Requirements Specifications 

 

METU-EE 113 01/12/03 

 

Hidden Layer “n”   

End Of File    

 

3.6. EXTERNAL DATA REQUIREMENTS 

48. MNFIFS software will accept training and validation data set in the 
following format. 

 

Data Set File Header 

Name of the Item Data Type Comment 

Number of inputs Java Integer  

Input 1 Type 

… 

Input n Type 

Output Type 

Enumerated 
number 

0:character 

1:decimal number 

2:floating number 

End of Header 

Name of the Item Data Type Comment 

Input 1 Value  

Input 2 Value  

.  

Input n Value  

Output Value 

As defined in 
header. 

 

 

3.7. SECURITY REQUIREMENTS 

49. MNFIFS software will have two separately executable file, one of 
them will be responsible for user interface and the other will be 
responsible for algorithms. 

50. MNFIFS software algorithm part will be secure in the manner of 
source code accessibility. 



METU-IFS Software Requirements Specifications 

 

METU-EE 114 01/12/03 

 

3.8. COMPUTER RESOURCES REQUIREMENTS 

3.8.1. Computer Resources Usage Requirements 

51. MNFIFS software will work on any platform 

52. MNFIFS software will require the latest java runtime environment and 
virtual machine be installed on the target system. 

3.8.2. Communication Requirements 

53. MNFIFS software will communicate by using TCP/IP protocol. 

54. MNFIFS software will need TCP/IP connection. 

3.9. LOGISTIC REQUIREMENTS 

55. MNFIFS software will have an installation program for user interface 
part. 

56. MNFIFS software installation program will be downloaded over 
internet. 

3.10. OTHER REQUIREMENTS 

  

3.11. PRIORITIES OF REQUIREMENTS 

 Every requirement has the same priority. 

4. OBSERVABILITY AND EVALUATION TECHNIQUES 

 Every unit of the software will be tested by the designer in the manner of 
unit testing. After integration of each tested unit the whole system will be tested 
by testers. In this phase a black box testing method will be used. In this black box 
test every requirement will be observed and tested. 

5. ABBREVITIONS 

 

MNFIFS Metu NeuroFuzzy Ionospheric Forecasting System Software 

FNN Fuzzy Neural Network 

TEC Total Electron Content 

foF2 Critical Frequency of F2 Layer 



METU-IFS Software Requirements Specifications 

 

METU-EE 115 01/12/03 

 

 

6. ATTACHMENTS 

6.1. Database Structure 

 

 Tables; 

• User List Table: This table will hold all the user with their Access rights 

User Name Access Right Password 

yozkok Admin ***** 

esenalp Super User ***** 

userx Operator ***** 

    

 
• Cooked Architectures Table: This table will hold NN architectures which 

have been trained and ready to operate. Each entry in this table will have 
an architecture name, the user name or ID who build this architecture. 

• Active Architectures Table: This table will hold the NN architecture which 
is already in development phase. The developer name and architecture 
name will be hold in the table. 

• Operation results tables: When architecture is signed as cooked by the 
developer of the architecture, a results table will be opened for this 
architecture. In this operation phase the selected architectures results table 
will be filled with the inputs, ID of the operator, date and time of the 
operation and the obtained result. 

Operator’s 
user Name 

Input 1 Input 2 . . . Input n Date Time foF2 or 
TEC 

         

         

  



METU-IFS Software Requirements Specifications 

 

METU-EE 116 01/12/03 

 

6.2. User Interface 

 In this part user interface of MNFIFS software will be described. In the 
descriptions user interface windows will be pictured, but these windows may 
change later.  

 Login Interface: Every user first of all has to login to the system to use 
the software. Every user name has to be defined on the database. 

  

  

 

 Main Menu: After entering a valid password user will drop into the main 
menu. This menu will dynamically be organized related with the user type which 
has dropped into. For an administrator every item in this window will be 
accessible. User will be routed into other menus related with the choice done in 
this menu. There will be four selections in this menu. These are listed as follows; 

• Build a new FNN 

• Continue with a previous FNN 

• Train a FNN 

• Forecasting (Operate a FNN) 

 By the selections in this menu user will be faced with the following 
menus. 

 Build a new FNN : When the user selects this item in the main menu, he 
will drop into this menu. This item will be accessible for only super users and 
administrators. In this menu user can build a new FNN and can save this network 
into the database with a name. Later these FNNs can be called for training and 
operation if trained. The user interface properties for this menu are listed below. 

• Enter Number of Inputs 

• Enter Number of Hidden Layers 

• Enter Number of neurons in each Hidden Layer. 

• Define Output Type (TEC, foF2) 



METU-IFS Software Requirements Specifications 

 

METU-EE 117 01/12/03 

 

• Select Activation Function For each layer. 

• Save the architecture with a unique name. 

   

 

 

 Train a FNN: This item will be accessible for only super users and 
administrators. In this menu the user will select one of the previously built FNNs 
from a list. After the FNN selection the user will import an appropriate training 
and validation data files. Then training parameters such as epoch number, desired 
error, and initial learning rate will be determined by the user. Basic elements of 
this menu are listed below; 

• Select an Architecture 

• Import Training Data File 

• Import Validation Data File 

• Set Initial Learning rate 

• Set Epoch Number 

• Set Desired Error 

 



METU-IFS Software Requirements Specifications 

 

METU-EE 118 01/12/03 

 

  

 

 

 Forecasting (Operation) Menu: There will not be any restriction for the 
accessibility of this menu. Every user may use this property of the software. But 
there should be at least one trained FNN architecture in the system. In this menu 
the user first of all will select one of the previously trained FNNs. Then the input 
types for this architecture will be displayed. Then the user will fill up all these 
inputs with appropriate values. And finally the operation will be started. After the 
completion of the operation the obtained results will be displayed and also this 
result will be stored into the database with the inputs for this result and by relating 
with the name of the FNN. 

• Select a previously trained FNN 

• Enter all input values 

• Start Operation 

 

6.3. Use Cases Message Sequence Charts 

 Building a new FNN: 

  



METU-IFS Software Requirements Specifications 

 

METU-EE 119 01/12/03 

 

MNFIFSUser

Identify User

1

1if architecture name is not unique

Connect to server

MSC MNFIFSBuild

Open Build New FNN Window

Enter Name Of the Architecture

Select Build New FNN

Enter User Name and Password.

Send an error message to rename the architecture

Save the Architecture

Write hidden layer properties to temp data structure

Save every selection

Enter Number Of Inputs

Enter Number Of Hidden Layers

Fill Hidden Layer Properties Combo Box

Select Output Type

Select The Activation Funcs and Number of inputs for each hidden layer

 



METU-IFS Software Requirements Specifications 

 

METU-EE 120 01/12/03 

 

 

1

Write the new architecture to the Database

Defining a new architecture is completed

User MNFIFS

 

 

 

 Train A FNN: 



METU-IFS Software Requirements Specifications 

 

METU-EE 121 01/12/03 

 

MNFIFSUSER

2

2else

1

1If illelgal

Save the data file to send server

Check Data Format

Identify User

MSC TrainFNN

Send an Error Message

Import Training Data

Enter Target Error

Enter Initial Learning Rate

Enter epoch number

Select one of the previous Architectures

Open Train New FNN Window

Select Train a FNN

Enter User Name and Password.

 



METU-IFS Software Requirements Specifications 

 

METU-EE 122 01/12/03 

 

Perform Training

Check Data Format

Save the data file to send server

2

2else

1

1If illelgal

1

Press "Start Training" Button

Import Validation Data

Send an Error Message

USER MNFIFS

 

 

 Operate a FNN: 



METU-IFS Software Requirements Specifications 

 

METU-EE 123 01/12/03 

 

User MNFIFS

Write the result and all inputs 
to the database

Perform Operation

Do a sanity check for entered inputs

Identify User

MSC OperationMSC

Display The result

Enter User Name and Password.

Select Operation

Open Operation Window

Select a FNN

Display Input types

Enter inputs

return a message to show the status

Press "Start Operation" Button

 



 124

APPENDIX B 

 

DURATION AND EFFORT ESTIMATION OF METU-IFS 

 

 

 This document presents the estimation of duration and effort for the 

METU-IFS software. As a first step the lines of code should be estimated. For this 

purpose, all Function Point Analysis (FPA) will be done firstly. Then the 

Unadjusted Function Point Analysis (UFPA) will be done in the second part. At 

the third part Lines Of Code (LOC) will be estimated by using the results of the 

previous analysis. And finally at the fourth part, effort and duration will be 

calculated according to the basic COCOMO model.  

 

1. Function Point Analysis 

1.1. Total Unadjusted Function Point Calculation 

1.1.1. Unadjusted Function Point Calculation for Server 

1.1.1.1 External Inputs Of Server 

  

No Input Name From Weighting 

1 Neural Net Structure Client Avarage 

2 Training and Validation Data Client Simple 

3 NN inputs for forecasting Client Simple 

4 User Login Inputs Client Simple 

 

1.1.1.2 External Outputs of Server 

No Output Name To Weighting 

1 Previous NN Structures Client Avarage 



 125

2 Types of Activation functions Client Simple 

3 Operation Result Client Simple 

4 Connection Type Client Simple 

 

1.1.1.3 File Storage 

No File Info From Weighting 

2 NN Structures Client Simple 

4 Trainning and Validation Data files Client Simple 

 

 

1.1.1.4 External SW Interfaces 

No Interface Name From Weighting 

1 TCP/IP Data transfer interface (Between clients and 

server) 

Clients Simple 

 

1.1.1.5 External Query Types 

No Query Type Weighting 

1 User Types Simple 

2 NN Structures Simple 

3 Operation Results Simple 

 

Measurement 

Parameter
Simple Average Complex Total S A C

External Inputs 3 1 0 13 3 4 6

External Outputs 3 1 0 17 4 5 7

File Storage 2 0 0 14 7 10 15

External SW

Interfaces

1 0 0 5
5 7 10

External Inquiries 3 0 0 9 3 4 6

58

Weighting Factor

Count Total

Weighting

 



 126

Table-1 Unadjusted function points for server 

 

Total unadjusted function points for server, came out to be 58. 

 

1.1.2. Unadjusted Function Point Calculation for Client 

 

1.1.2.1. External Inputs Of Client 

No Input Name From Weighting 

1 Login Input User Simple 

2 Main Menu User Simple 

3 Building a new NN Structure User Simple 

4 Training inputs User Simple 

5 Inputs for Forecasting window User Simple 

 

1.1.2.2. External Outputs 

No Output Name To Weighting 

2 Activation functions combo box User Simple 

3 Previous NNs User Simple 

4 Operation Results User Simple 

5  Trained neural nets combo box User Simple 

 

1.1.2.3. File Storage 

 

No File Info From Weighting 

1 New NNs structure User Simple 

2 NN inputs for operation  User Simple 

3 Training and validation file sets User Simple 



 127

 

1.1.2.4. External SW Interfaces 

No Interface Name With Weighting 

1 TCP/IP Data transfer interface (Between clients and 

server) 

Server Simple 

2 User Interface User Simple 

 

1.1.2.5. External Query Types 

 No query 

 

Measurement 

Parameter
Simple Average Complex Total S A C

External Inputs 5 0 0 15 3 4 6

External Outputs 4 0 0 16 4 5 7

File Storage 3 0 0 21 7 10 15

External SW

Interfaces

2 0 0 10
5 7 10

External Inquiries 0 0 0 0 3 4 6

62

Weighting Factor

Count Total

Weighting

 

Table-2 Unadjusted function points for client 

 

Total unadjusted function points for client came out to be 62.  

2. Adjusted Function Point Calculation 

The function point count is adjusted for the complexity of the software by 

assessing each of the answers to the following questions on a scale of 0 to 5. 

 

 

 

 

 

 



 128

 

 Fi value 

None 0 

Slightly 1 

Present 2 

Medium level 3 

Important 4 

Vital 5 

Table-3 Questions and values 

 

 

1. Data Communications Present 2

2. Distributed Processing Slightly 1

3. Performance Requirements Present 2

4. Operational Configuration Load Slightly 1

5. Transaction Rate None 0

6. Online Data Input Present 2

7. End User Quality Medium level 3

8. Online File Update Present 2

9. Algorithmic Complexity Present 2

10. Reusability Slightly 1

11. Ease of Installation Slightly 1

12. Operational Ease Present 2

13. Multi-site System None 0

14. Maintainability Slightly 1  

Table 4 Questions and answers for adjusted function point calculation 

 

These 14 complexity adjustment values are summed to give the value of Σ (Fi). 

    

ΣΣΣΣ (Fi) =  20 

Adjusted Function points = Count Total * (0.65 + 0.01 * Σ (Fi))  

        =(58+62)*0.67 = 80,4 



 129

3. Lines of Code Estimation 

 The total adjusted function points came out to be 80,4 for the MNFIFS 

application(including both server and client). For estimating lines of code the 

Table 5 below can be used.   

 

Language LOC/FP (Low & Jeffery 1990)

C 150

C++ 80

Java 70

C# 75

 

Table-5 Estimated LOC for each FP. 

 

Language LOC/FP (Low & Jeffery 1990) LOC for WB

C 150 12060

C++ 80 6432

Java 70 5628

C# 75 6030

Adjusted 

FP
80,4

 

Table-6  LOC calculation. 

For Java Software language, the results are came up to be 5628 LOC according to 

Low & Jeffery 1990. 

 

4. Effort and Duration Estimation 

 In this part effort and duration will be estimated according to Basic 

COCOMO model by using the lines of code which has been estimated at the 

previous part. 

 For the Basic COCOMO model effort and duration are calculated as the 

following way; 

 E = ab(KLOC)
b

b   E: Effort (person-month) 

 D = cb(E)
d

b    D: Duration (months) 

    KLOC: estimated thousand lines of codes 

 

 



 130

 The constants are as following;  

 ab bb cb db 

Organic 2.4 1.05 2.5 0.38 

Semi-detached 3.0 1.12 2.5 0.35 

Embedded 3.6 1.2 2.5 0.32 

 

 For MNFIFS Software effort and duration will be calculated by using the 

constants for Organic type of software. Because the software will be desined and 

implemented in an object oriented environment. 

 So the Effort and Duration cames out as following; 

  

 E = 2.4*(5,628)
1.05

 = 14,7 (person-month) 

 D = 2.5*(14,7)
0,38 

= 6,94 months  

 Avarage staffing = 14.7(person – months)/6.94(months) = 2.11 ~2 

 This means that with 2 full time person each month the duration will be 

about 7 months.  


