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ABSTRACT

WEB BASED IONOSPHERIC FORECASTING USING NEURAL
NETWORK AND NEUROFUZZY MODELS

0zKOK, Yusuf Ibrahim
MSc. Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Ersin Tulunay
April 2005, 145 pages

This study presents the implementation of Middle East Technical University
Neural Network (METU-NN) models for the ionospheric forecasting together with
worldwide usage capability of the Internet. Furthermore, an attempt is made to
include expert information in the Neural Network (NN) model in the form of
neurofuzzy network (NFN). Middle East Technical University Neurofuzzy Network
(METU-NFN) modeling approach is developed which is the first attempt of using
a neurofuzzy model in the ionospheric forecasting studies. The Web based
applications developed in this study have the ability to be customized such that
other NN and NFN models including METU-NFN can also be adapted.

The NFN models developed in this study are compared with the previously
developed and matured METU-NN models. At this very early stage of employing

neurofuzzy models in this field, ambitious objectives are not aimed. Applicability
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of the neurofuzzy systems on the ionospheric forecasting studies is only
demonstrated. Training and operating METU-NN and METU-NFN models under
equal conditions and with the same data sets, the cross correlation of obtained
and measured values are 0.9870 and 0.9086 and the root mean square error
(RMSE) values of 1.7425 TECU and 4.7987 TECU are found by operating METU-
NN and METU-NFN models respectively. The results obtained by METU-NFN
model is close to those found by METU-NN model. These results are reasonable
enough to encourage further studies on neurofuzzy models to benefit from

expert information.

Availability of these models which already attracted intense international
attention will greatly help the related scientific circles to use the models. The
models can be architecturally constructed, trained and operated on-line. To the
best of our knowledge this is the first application that gives the ability of on-line

model usage with these features.

Applicability of NFN models to the ionospheric forecasting is demonstrated.
Having ample flexibility the constructed model enables further developments and
improvements. Other neurofuzzy systems in the literature might also lead to

better achievements.

Keywords: Ionospheric forecasting, METU-NN Model, METU-NFN Model, METU-

IFS, neural network models, neurofuzzy models.



0z

SINIRSEL AG VE SINIRSEL BULANIK BENZEKLER
KULLANILARAK WEB TABANLI IYONKURESEL ONGORU

0zKOK, Yusuf Ibrahim
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Bolimi
Tez Yoneticisi: Prof. Dr. Ersin Tulunay
Nisan 2005, 145 pages

Bu calisma iyonkiiresel 6ngdrii amagh gelistirilen Orta Dogu Teknik Universitesi
Sinirsel AJ (METU-NN) benzeklerinin iyonkiiresel ongoriler icin olan bir
uygulamasini internetin diinya capinda kullanim olanadiyla birlikte sunar. Bundan
baska, Sinirsel A§ (NN) benzeklere uzman bilgisini Sinirsel Bulanik A§ (NFN)
yapisinda dahil etmek icin bir girisimde bulunulmustur. Iyonkiiresel 6ngoérii
calismalarinda bir sinirsel bulanik benzek kullanilarak yapilan ilk girisim olan Orta
Dogu Teknik Universitesi Sinirsel Bulanik A (METU-NFN) benzekleme y&ntemi
gelistirilmistir. Bu tezde gelistirilen ag tabanli uygulamalar, daha sonra METU-NFN
de icinde olmak (zere gelistirilebilecek yeni NN ve NFN benzeklerinin

eklenebilmesine de olanak tanimaktadir.
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Bu calismada gelistirilen NFN benzekleri daha once gelistirilmis ve olgunluda
erismis METU-NN benzekleri ile karsilastirildi. Sinirsel bulanik adlarin bu alanda
kullanilmasi ¢ok erken evresinde oldudu icin bliylik hedefler amaglanmamistir.
Sinirsel bulanik dizgelerin iyonkiiresel 6ngorli calismalarina uygulanabilirligi
gosterilmistir. METU-NN ve METU-NFN benzekleri esit kosullar altinda ve ayni
verilerle egitilip isletilerek, METU-NN ve METU-NFN benzekleri icin sirasiyla olmak
Uzere, elde edilen ve olclilen dederler arasindaki capraz iliski, 0.9870 ve 0.9086
ve kok ortalama kare yanilgi (RMSE) dederleri 1.7425 TECU ve 4.7987 TECU
bulunmustur. METU-NFN benzedi ile elde edilen sonuclar METU-NN benzedi ile
bulunanlara yakindir. Bu sonuglar sinirsel bulanik benzekler (izerinde uzman
bilgiden yararlanmak icin yapilacak ilerki calismalarn &6zendirmeye yetecek

derecede onaylanabilir cikmstir.

Simdiden uluslararasi cevrelerin yodun ilgisini ceken bu benzeklere kolayca
erisilebilmesi, ilgili bilimsel gevrelerin benzekleri kullanabilmesine yardimci
olacaktir. Bu benzekler uzaktan erisim ile déngl ici yapilandirilabilecek,
editilebilecek ve igletilebilecektir. Bildigimiz kadariyla bu, uzaktan erisimle dongu

igi benzek kullanimi yetenegini saglayan ilk uygulamadir.

BSA benzeklerinin iyonkiiresel éngoriler icin uygulanabilirli§i gosterilmistir. Genis
esneklie sahip olmasi sayesinde kurulan benzek daha da gelistirilebilir.
Yazimdaki 6teki sinirsel bulanik dizgelerin kullaniimasi daha basarili sonuclara

go6turebilir.

Anahtar Kelimeler: Iyonkiiresel 6ngérii, METU-NN Benzegdi, METU-NFN Benzegi,

METU-IFS, sinirsel ag benzekleri, sinirsel bulanik benzekler.
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CHAPTER 1

INTRODUCTION

The researches have already so improved that the ionospheric forecasting results
can effectively be used in the real world problems today. There seems to be,
however, no saturation point yet, there is still room for improvement. All over the
world some research groups have developed some web pages to publish
ionospheric forecasting results which are obtained offline using their own data in
their own models. Therefore, such forecasts or predictions are reliable and
dependable as far as user’s and publisher’s data match with each other, seriously
limiting the benefits the interested parties wish to get in most cases. In this study
an application has been developed to promote widespread use of the models that
are known to have made the best ionospheric forecasts. The fact that it is
possible to make our models serve the scientific circles in the entire world
through the Internet is the primary benefit and advantage this application
provides. A mass amount of accumulated data to be collected through such
widespread worldwide participation of interested parties is expected to contribute
significantly to more advanced models to be developed by METU-NN and METU-
NFN. Moreover, the ability to integrate with itself the models to be developed in
future is it's another noteworthy feature. To be able to develop this application
previous work on the subject is studied in detail. This chapter gives a summary
of the previous work of Turkish research group which was done in the scope of
European Union Cooperation in Scientific and Technical Research (COST) 251:
The Improved Quality of Service in Ionospheric Telecommunication Systems
Planning and Operation (IITS) and COST 271 actions. Furthermore, this chapter
also discusses some models developed for the ionospheric forecasting, including
METU-NN models since they are used in METU-IFS. Chapter 2 discusses in detail



the neural networks and the training algorithms which are implemented in METU-
IFS, and Chapter 4 the design details of METU-IFS.

In addition to this application, neurofuzzy systems have also been reviewed
hoping to go beyond the point attained by neural network based ionospheric
forecasting models and develop neurofuzzy models with all their possible

advantages [1].

A review of the literature indicates that neurofuzzy systems are still a long way
from reaching maturity, and new developments and improvements on them are
following one another day by day. The most common widespread feature of the
neurofuzzy applications is that they all have fuzzy but well covered information.
So, it indicates that fuzzy but well covered information is amongst the
requirements for us to develop a neurofuzzy model. Moreover, applicability of the
neurofuzzy techniques seems to be decreased due to the fact that a large
number of inputs makes the problem more difficult to be defined and reduces the
control over the expert knowledge. Amongst the many neurofuzzy systems in
literature research groups only focus on two systems that are known as ANFIS
and ASMOD. The primary distinctive feature which is distinguishing them from
the others is their being relatively more well defined. The problems arisen from a
large number of inputs are also dealt with and discussed in these systems [2].
Reviewing these neurofuzzy systems, METU-NFN system is developed in this
study. The main objective of this work is to prove the applicability of the
neurofuzzy systems to the ionospheric forecasting studies. Chapter 3 presents a

review of the neurofuzzy systems and discusses METU-NFN model.

1.1 Review of Previous Work

This section presents a review of the previous work on the ionospheric
forecasting studies. The studies on HF propagation related to the ionospheric
forecasting is first reviewed and then the terms “prediction”, “forecasting”, and

“nowcasting” are discussed.



1.1.1 HF Propagation

The research and studies on the influence of the near-Earth space on
telecommunication do not go back a long way. The scientific and technical
research activities have been going on since early 1990s [3][4][5][6]. For the
common advantage of different research groups in solving the problems, an
initiative known as Cooperation in Scientific and Technical Research (COST) was
formed in the European Union, opening possibilities of cooperation to the
researchers from different member states. COST Action 238, ‘Prediction and
Retrospective Ionospheric Modeling over Europe’ (PRIME) [7] was officially
signed in March 1991 as a four-year project, aiming to develop improved models
of the European Ionosphere for telecommunication applications. This project,
PRIME, had been implemented in 1995 with the participation of thirty-one
organizations from seventeen countries. Following COST 238 another action,
COST 251, ‘The Improved Quality of Service in Ionospheric Telecommunication
Systems Planning and Operation’ (IITS) was given a start in 1995. And the most
recent action, COST 271 has the objectives to stimulate international co-
operation in predicting and forecasting the ionosphere and plasmasphere; to
develop and implement new communication services; to minimize the effects
ionospheric perturbations have on communications systems; and to collect new

data for now-casting and forecasting.

The Turkish contributions to these three actions, COST 238, COST 251, and
COST271 are also important and noteworthy, which are on the topics of ‘Total
Electron Content (TEC) Variation during the eclipse of the sun on 29 of April,
1976’ and ‘The HF Link Experiment during the eclipse of the sun on 11" of
August, 1999’ [8], and reporting the ionospheric TEC over Ankara on 29" of April,
1976, and the effects of the ionosphere on HF radio wave during its propagation
over 700 km between Ankara and Elazig on 11" of August, 1999. The first
research, the ionospheric TEC measurement in Ankara was done by Ertac and
Tulunay, Y, in 1979 [9]. The effect of increasing magnetic activity is proven to be
produced as a result of the diurnal variation in the ionospheric TEC prior to the

solar eclipse. As the daily sum of the three-hour planetary magnetic activity



index, Kp, increases, pronounced rises occurred in the ionospheric TEC, reaching

peak values at noon.

Over some 700 km distance between Ankara (40° N, 33° E) and Elazig (38° N,
39°E), an HF radio wave was transmitted during the period of the total eclipse of
the sun on 11" of Agust, 1999. Making good use of that very opportunity of
August 11, the effect of the eclipse on the ionosphere, and thus, the changes in
signal strength that the disturbed ionosphere causes in HF radio waves
propagating during the time period of the eclipse were observed and analyzed
through this experiment of HF Signal Strength Measurement. The results proved
a clear decrease of the strength during the eclipse, reaching a minimum as
getting closer to total eclipse over Elazig. After the total eclipse the strength

began to increase to a value observed at the beginning of the eclipse.

Thus, it was proven that the signal strength dropped due to the effects on the
ionosphere caused by the solar eclipse of August 11. So an inference or
conclusion can be drawn from this result; an opposite effect, a rise in the signal
strength is expected, because the rate of absorption in the ionosphere falls due
to the decrease of the photoelectrons in the shadow of the moon. A portion of
the HF waves is believed to be transmitted into space rather than being reflected
back to the Earth due to the thinning of the ionosphere, since the HF radio wave

frequency of 18.111 MHz is close to the natural ionospheric critical frequency.

One of the two methods [10] to model HF propagation is a neural network model
as trained with data obtained through the results of a linear model simulating the
behavior of the ionosphere for a particular choice of path. The other one is a
neural network model as trained with data obtained through actual
communication link of signal strengths. The models are trained with R;, which is
a temporal data, the twelve month mean of the international monthly mean
relative sunspot number, and also with 7f0F2 data. The signal to noise strength
ratio, SNR, is predicted by the neural networks [11] for which the data sets of
testing and training are introduced to train the neural networks and the

predictions are given in [10]. The physical phenomena affecting HF propagation



is modeled in this study, and an emphasis is placed on the importance of fof2,

and preliminary studies on the selection of channel depending on time is aimed.

1.1.2 foF2 Prediction, Forecasting and Nowcasting

In order to forecast ionospheric parameters a variety of methods, some linear,
some non-linear, have been developed within the European Union COST 251
Action framework. It seems that, applying the non-linear methods and especially
neural network techniques, the efforts to make improvements in ionospheric

forecasting capacity are very promising [12].

Before going further, it should be noted here that the terms ‘prediction’,
‘forecasting’ and ‘nowcasting’ are usually confused in literature. So a distinction is
needed to be made between them to avoid confusion. The term ‘prediction’
refers to the estimation of the /0F2 values through the median figures of the
data available whereas the term ‘forecasting’ through the actual hourly figures.
The term ‘nowcasting’ is nothing but the estimation of the 70F2 values for data

gaps, i.e. a kind of short-term forecasting.

Neural networks had already been employed to study various aspects of
geophysics such as the applications in forecasting of the magnetic storms [13].
However, for the purpose of one hour - advance forecasting of foFZ2, neural
network was first used by Altinay, et al [14][15], proving the advantages.
Ionospheric prediction and short term forecasting [16], modeling of noon-day
variations of foF2 [17], preliminary studies for the prediction of monthly median
foF2 values [18], prediction of noon value of /7oF2 [19] are also noteworthy
studies associated with the methods based on the neural network, which only

consider the temporal variation of the f0F2 values.

Making use of the root mean square error between the measured and predicted
values of foFZ2 as a criterion in determination of the optimum indices of solar and
magnetic activity, Williscroft was the first to apply neural networks for the
prediction of foF2 [19]. It is known that the ionospheric electron density is a

function of latitude, longitude, season, local time, solar and magnetic activities.



Selecting the noon value of 7of2 for Grahamstown as the target value, latitude,
longitude and local time variables are eliminated. The remaining three variables,
namely, season, solar activity and magnetic activity, serve as input or in other
words, data for training of the neural network, which once trained can predict

the daily noon value of fof2in Grahamstown with an absolute error of 0.95 MHz.

In another study on foFf2 forecasting based on neural network done by Tulunay,
Y., Tulunay, E., and Senalp, E., the influence of the electron density trough is
further analyzed and data generated by using statistical relationships are used to
train the neural network and the trained network is used to forecast one-hour-
advance fof2 values under the conditions where the influence of the trough is

expected to be high.

In this study it is emphasized that more advanced and novel neural network
based models for more reliable forecasting of fof2 values is a matter of concern
for scientists and system operators. Because a highly non-linear problem, both in
space and time, and an extensively disturbed process pose a real challenge. To
represent finer variations of fof2, which are usually, lost when taking averages,
better understanding of the process rather than modeling is believed to promote

a more promising and challenging approach.

The influence of the electron density trough at which the altitudes at the foF2 is
measured cannot be ignored in forecasting foF2 values. Therefore, the models
proposed to forecast foF2 must include the trough effect. In this study, a neural-
network- based model has been constructed attempting to include some
characterizing behavior of the trough. The statistical behavior of the trough was
determined by considering the temporal and magnetic conditions so that there is
some probability that trough can be observed in the ionosphere above the
Slough and Uppsala. For both conditions, the daytime disturbed and nighttime —
quiet, the neural network model did successfully forecast the 7oF2 values one-

hour in advance for Slough and Uppsala.



The electron density trough exhibits abrupt gradients of electron densities within
relatively short horizontal distances and in time, in particular, over the
midlatitude ionospheric regions in both hemispheres. Since the 7of2 values are
directly reflecting the variations of ambient electron densities, in the HF
communication process, the behavior and influence of the trough have to be
modeled. But the trough is such a complex nonlinear reality that it is almost
impossible to model its behavior and influence with analytical methods. It is,
however, demonstrated here that a data-driven model, such as the neural-

network-based approach, proves to be successful.

The neural network model was employed with 702 values of Slough and Uppsala
for the trough case and for the general case in which foF2 values are clearly free
from the influence of the trough and for randomly chosen 70F2 values of similar
size in order to compare these three groups in terms of the errors. It was
successfully concluded and demonstrated that the smallest error was obtained by
operating the neural network that was trained by using the restricted data set,
which reflects the characteristics of the trough. The other two groups had larger

errors than the errors obtained for the trough case.

Would the neural network systems have the ability to learn the shape of any
inherent nonlinear variations if they can be properly constructed and trained?
This work, by successfuly employing this ability to meet such an intellectual
challenge of a highly nonlinear and extensively disturbed processes, has proven

that there is such an ability in neural network systems.

The neural network system obtained high correlation coefficients between the
observed and forecasted values of fof2, and approached the desired operating

point, giving rise to some small errors.

The neural network model proposed in this work is also very useful in filling the
data gaps. During abrupt density gradients or during severe magnetic

disturbances data are missing most of the time. Since such cases often occur in



nature, filling the missing data gaps is a primary feature to be expected from a

reliable model.

1.2 Models

This section discusses some models developed to employ on the ionospheric
forecasting studies. These models are mainly divided into three groups which are

namely mathematical models, data driven models and hybrid models.

1.2.1 Mathematical Models

For a single station prediction and one-hour advance forecasting of the
ionospheric critical frequency foFZ, a study was done by Bilge and Tulunay, Y.
using a novel on-line mathematical method that is based on applying feedback
on predicted monthly median values of fof2 for each hour [20]. A parabolic
dependency on Rj; superimposed by a trigonometric expansion in terms of the
harmonics of annual variation and linearly modulated by R, is all what makes the
basic model for the prediction of monthly medians. Applying the basic model over
a sliding data window, hourly monthly medians can be predicted. For prediction,
‘sliding data windows’ and for forecasting, ‘feedback’ are used as the main tools
of the method.

Making use of the past data and some predictable parameters, one-hour advance
forecasting of fof2 can be formulated by estimating a non-stationary time series
with deterministic slow variations together with some irregular fast variations.
Amongst the variations influencing fof2 the slowest one, with a period of 11
years, is the variation which is due to solar activity. All these effects are taken
into account in the model by a parabolic dependency in R;,, although a linear fit
also works for one-hour advance forecasting purposes. Even though their
amplitudes depend on the level of solar activity, the medium range variations of
the order of months are the periodicities corresponding to the harmonics of the
annual variation. Depending on solar activity a trigonometric expansion with

linear coefficients is used to model these variations [21]. Applying this basic



model to a sliding data window using immediate past information for prediction is

the novelty of the approach [20].

An estimate for fof2 for each hour of the day of the forthcoming month is
obtained by applying the prediction model to the monthly medians of foF2 for
each hour. The predicted hourly median values, thus obtained, are arranged in a
time series denoted by foFZ,. The deviations from the predicted values are
forwarded to the feedback; the difference between the actual and the predicted
values of fof2is computed at each hour and an appropriate fraction of this error
is subtracted from the predicted value of fof2 for the next hour. The resulting
time series denoted by foF2 gives the one-hour advance forecast of foF2 as

f*(Rmm) =(a1 Ry, +a0)+i((bi +¢ -R12)Sif(2ﬂ-j m+”D

i=1 1 2 2

> 2ri V4
+Z((di+ei.R12)cos(Em+5D (1.2.1)

i=1
The method of sliding window and the feedback technique were proven to be
comparable with the forecasting methods based on neural network and superior
to autocovariance prediction [20][22][23]. The models with more sophisticated
functional dependencies provide only a little advantage of a minor increase in the
overall performance, while the hysterisis effects are eliminated and prediction
errors reduced considerably by the restriction of simpler models to shorter
periods of time [24]. Although such models are useful in short term forecasting

or nowcasting, they can hardly be used for long term predictions.

Given its simplicity, the performance of the method can be regarded satisfactory,
but not in the presence of strong irregular variations like solar storms. Further
improvements can be made introducing more sophisticated signal processing

techniques as well as other physical parameters into the model [20].

1.2.2 Data Driven Models

Data driven models that are implemented in METU-IFS application are given in

this section. Results of Neural Networks applications on highly nonlinear and



complex real world processes are very promising. Previous studies on
Ionospheric forecasting also demonstrated the applicability of neural network
models on this area with very successful results [25][26][27]. Basic structure and
properties of neural networks are briefly explained in second chapter quoted

from a well structured paper on neural networks [26].

In this study previously developed Neural Network models named as METU-NN,
Middle East Technical University Neural Network, models are used. As a reason
METU-NN models will briefly be described here.

The METU-NN models have got one input layer, one hidden layer and one output
layer. The basic architecture of the models is demonstrated in Figure 1.2-1
[26][27].

Input Hidden Layer Qutput Layer
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Figure 1.2-1: Architecture of METUNN models [26].
Hyperbolic tangent sigmoid functions are used as the activation functions, in the

hidden layer and pure linear transfer function is used as the activation function,

in the output layer.
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f'(n)=TANSIG(n) = T 1 (1.2.2)

f*(n)= PURELIN (n) = a.n (1.2.3)

One of the models implemented is the one employed to forecast /0F2. The basic
inputs to the model are the temporal inputs, spatial inputs, and inputs related to
the history of foF2.

The basic inputs related to the history of the foF2 are: f(h): the value of foF2 at
time instant h, present value; A;(h) = f(h) — f(h-1): First difference; A,(h) =
A;(h) - Ay(h-1): Second difference; R A(h) = A;(h) / f(h): Relative difference. And
the output f(h+1) is the forecast value of fof2. These definitions are for the
model which can forecast /0F2 one hour in advance. The definitions can easily be
converted for 24 hour in advance forecasting by simply changing ones to twenty
fours [25].

For temporal inputs, basically The Universal Time (UT) data and time, coded
hour, coded day or hour and day trigonometric components to take the

adjacency of 24 and 1 for hour 30 and 1 for day into account are used.

Descriptions of training algorithms used to train this model with the training and
operation results obtained by using METU-IFS are given in Chapter 2.

1.2.3 Expert Aided and Data Driven Models (Hybrid Models)

The main advantages of using NNs are their flexibility and ability to model
nonlinear relationships. In contrast to knowledge-based techniques, no explicit
knowledge is needed for the application of neural nets. And the results of
Ionospheric forecasting studies based on neural networks are promising.
However, despite these advantages, NNs have often been criticized for acting as
“black boxes”. The knowledge contained in an NN model is kept in the form of a

weight matrix that is hard to interpret and can be misleading at times.
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One way to overcome many of these shortcomings is to use neurofuzzy models
which are known as expert aided systems. Neurofuzzy systems combine the
semantic transparency of rule-based fuzzy systems with the learning capability of
neural networks. So the models developed based on neurofuzzy systems are
sometimes named as Hybrid Models. They can be trained to perform an
input/output mapping, just as with an NN, but with the additional benefit of
being able to provide the set of rules on which the model is based. This gives

further insight into the process being modeled [28].

Given the facts, neurofuzzy systems are worth to be put on trial on the
Ionospheric Forecasting studies. As an early step in this work neurofuzzy systems
are reviewed. Amongst the many neurofuzzy systems, ASMOD and ANFIS
systems are examined in detail. A hybrid system is then developed mixing the
advantages of these systems with our intellectual aggregation on the subject of
ionospheric forecasting. Neurofuzzy systems reviewed and our neurofuzzy

network system design is discussed in detail in Chapter 3.

1.3 METU Neural Network Ionospheric Forecasting Software

Middle East Technical University Ionospheric Forecasting Software (METU-IFS)
has been developed to make it possible that various neural network and
neurofuzzy models can be used over the Internet with a user friendly interface.
The Neural Network models introduced on the previous sections have been
implemented and the design studies of this software initiated with the
preparation of the SRS (Software Requirements Specifications) document and
progressed to the function point analysis. Chapter 4 gives the details of the

software design.

With this software, ionospheric forecasting models are made to be available for
the service of the interested scientific circles. Designing new neural network or
neurofuzzy architectures, training previously designed ones and operating
previously trained ones are the main features of METU-IFS. Remote access to

these features is one of the primary objectives of this software. It also possesses

12



a database to store a vast variety of data to be collected while the software is
serving. The data to be collected from so many different sources all over the
world while the models are being trained or operated are expected to be useful

to improve the models for future researches.
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CHAPTER 2

NEURAL NETWORKS AND TRAINING ALGORITHMS

Neural networks have been employed in the ionospheric forecasting models
developed in the earlier works as detailed in the preceding chapter. In this
chapter neural networks and training algorithms will be overviewed first, and
then we will discuss how we have implemented in this study the Backpropagation
and Levenberg Marquardt algorithms. The implementation is verified by
comparing METU-IFS results with those obtained from MATLAB code, as it is

shown in the last part of this chapter.

2.1 A Brief Description of Neural Networks

A neuron is an information-processing unit consisting of connecting links, adder
and activation function. The adder is for summing bias and the input signals
weighted in the neuron’s connecting links. It follows an activation function for
limiting the amplitude of the neuron’s output [29]. An artificial neural network is
a system of inter-connected computational elements, the neurons, operating in
parallel, arranged in patterns similar to biological neural nets and modeled after

the human brain [30]. Individual neurons are characterized by

0, = fi(x;) (2.1.1)

and
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N;
X; = net, zzwijOj +6. (2.1.2)

Jj=1

where O, is the output of neuron i, x; is the sum of the weighted inputs or net
output of neuron i, fi(.) is the activation function of neuron i, w; is the weight of
the arc from neuron j to neuron i, O; is the output from the jth neuron of the
previous layer. It is also the input to neuron i from neuron j. hi is the internal
threshold, bias or offset for node i, and Ni is the number of inputs to neuron i. A
neuron thus forms a weighted sum of Ni inputs and passes the result through a
linear or nonlinear activation function. A node with a hard limiting activation
function is sometimes called as thresholding unit. Sigmoid units are more
complicated but more powerful than hard limiting units because, the sigmoid is
an increasing, continuous function. It has non-zero derivatives, which makes it
useful in gradient descent learning methods [30]. The linear model has
limitations and is not useful in hidden layers, because a linear multi-layer neural
network can always be represented as an equivalent linear single layer network
[30].

The architecture of a neural network is formed by determination of the neuron
structures and their connections. In a layered neural network the neurons are
organized in the form of layers. In multi-layer feed forward neural networks the
input layer of source nodes projects onto a hidden layer consisting of hidden
neurons. If there are more than one hidden layers in the architecture, then the
hidden layer projects onto another hidden layer consisting of hidden neurons.
The last hidden layer in the architecture projects onto an output layer of nodes.
Those networks are strictly feedforward or acyclic type. Also they are fully
connected in the sense that every neuron in each layer of the network is

connected to every other neuron in the adjacent forward layer [29].

2.1.1 Multilayer Feedforward Neural Network

The capabilities of multi-layer neural networks can be understood as a result of a

theorem based on the 13" problem of Hilbert and proved by Kolmogorov
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[31][32]. This theorem states that any continuous function of N variables f(x;, ...,
Xn) can be written using only linear summations and nonlinear but continuously

increasing functions ®,, (X,) in only one variable

Flxexy )= jg{z%(xp )J (2.1.3)

p=l

Thus it is seen that, any continuous function of N variables can be computed by
using a three-layer network with N(2N+1) nodes having continuously increasing
nonlinearities. However, the theorem does not show how weights and
nonlinearities must be selected or how sensitive the output function is to

variations in the weights and internal functions [31].

Virtually all multi-layer applications have used two hidden layers or less [33]. As
the number of layers increases, data storage efficiency, ability of the network to
generalize, and the fail-safe nature of the network increases. A more layered and
more highly connected network can generally store the same data in fewer

neurons.

The capabilities of perceptrons can be seen by investigating the decision regions
they can form in the space defined by the inputs. As a simple example, consider
the single unit i defined by Eq. (2.1.2) and hard limiting activation function for
the case of two inputs O, and O,. It is seen that this unit divides the O; O, plane

into two decision regions separated by the line

N;
net, =y w,0,+6, =w,0, +w,,0, +6, =0 (2.1.4)

Jj=1

16



0 0, \ 0,
Hi‘

Figure 2.1-1: Desicion regions; a single perceptron divides O; and O, planes into
two regions [26].

as shown in Figure 2.1-1. Suppose input pattern A causes the right hand side of
Eg. (2.1.2) to be positive. Then the output of the unit is 1. If input pattern B
causes the right hand side to be negative then the unit will output 0. Thus the
unit decides whether the input pattern belongs to class A or class B as shown in
Figure 2.1-1. In general net; in Eq. (2.1.4) is the equation of a N;, dimensional
hyperplane. This hyperplane partitions the space defined by the inputs to that
node into two parts. Any point on one part of this hyperplane corresponds to the
input class that causes output 1 and any point on the other part corresponds to
the input class that causes output 0. The effect of the weights Wij is to stretch or
compact the axes of the hyperspace. The offset or threshold 6; corresponds to
the minimum distance the partitioning hyperplane passes from the origin. By
using nonlinear but continuous sigmoid units as activation functions various
useful curves can be created for partitioning the hyperspace [33]. Further useful
variations in partitions can be obtained by using multiple output nodes. In multi-
layer feed-forward neural networks there are connections between the elements

of successive layers. There are no interlayer connections.

2.1.2 Basic Properties of Neural Networks

Conventional signal processing techniques are algorithmic in nature. However,

neural networks can perform non-algorithmic signal processing. Neural nets
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provide high computation rates because, of their massively parallel nature.
Provided that suitable hardware is available, neural networks can be
implemented. Thus on-line operations may be possible. Neural nets provide a
greater degree of robustness, fault tolerance or fail safety compared to classical
sequential computing systems, because, the information is contained in the
weighted wiring diagram in the distributed form with nodes having primarily local
connections. Presentation of information often contains redundancies. Thus any
damage in a few nodes or links or any invalid information contained in these
does not impair overall performance significantly. Associative storage and
retrieval of knowledge is possible in neural networks. Unlike other classical large
scale dynamic systems, the uniform rate of convergence toward a steady state of
neural networks is essentially independent of the number of neurons in the
network [33].

At present there are also some problems associated with using or designing
neural networks:

1. There is no general way of deciding about the network topology to perform a
certain task.

2. The convergence of most of the important learning algorithms used in neural

networks is not guaranteed.

It is also important to see that the necessary hardware is not presently ready to

be used for taking full benefit of the high speed of neural computation.

The problem areas for which neural networks may provide some advantages can
be pinpointed by considering the advantages and disadvantages of neural
networks. The problems involving complexity, redundancy and speed can be
solved more satisfactorily by using neural networks. So far results involving
neural networks have been reported in the areas of learning, associative
memory, decisions in optimization, adaptive pattern recognition, fuzzy sets,
expert systems, adaptive filtering, numeric to symbolic conversion and control. It

has already been demonstrated that the neural network based modeling for
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forecasting the ionospheric critical frequency, foF2 is a promising approach
[34][26][35][361[37].

2.1.3 METU-IFS Implementation of Neural Networks

In METU-IFS application a multi layer feedforward type of neural network
structure was implemented. Since Java programming language was used, an
object oriented design came out naturally. All the work related to the neural
network structure was collected in a single module to enable the maintenance to
be done further ahead. By this module any type of feed forward neural network
structure can be built from scratch to be trained with a selected training
algorithm. Further details related to the design are given in Chapter 4.
Levenberg-Marquardt Algorithm is capable of dealing with huge size of input
data. For networks having up to a few hundreds of weights it's a very efficient
algorithm [38]. The same algorithm is also used to train METU-NN. Given all
these considerations, Levenberg Marquardt algorithm was preferred for METU-
IFS.

Since Levenberg-Marquardt algorithm [38] is a version of Backpropagation
algorithm, it can be considered that Backpropagation is still employed in METU-
IFS, although the implementation of Levenberg-Marquardt algorithm is the actual
requirement. In the sub sections Backpropagation algorithm is first introduced,
and then Levenberg-Marquardt algorithm described based on Backpropagation
algorithm. The details of the implementation is not included here, the related
theory, however, is discussed. For the implementation and design details see
Chapter 4.

2.1.3.1 Backpropagation Algorithm

Consider a multilayer feedforward network with p(7) as inputs, {(7) as target
outputs, WA(j j) as weights, and b (i) as bias for unit 7in layer k, n (i) as net

input to unit 7in layer (k+1), and a **? (i) as output of unit /as follows:
nt (@)= WG pat ()b ), (2.1.5)
j=1
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ak+l(l-)= fk+l(nk+l(i)) (2.1.6)

The system equations in matrix form for an M layer network:

0

a"=p, (2.1.7)

_fk+1(W]<+1 bk+1) (218)
k=0, 1... M-1

The performance index for the network is
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where e is the output of the network when the g™ input, P, is applied, and ¢,

is the error. An approximate steepest descent rule is employed for basic
Backpropagation algorithm. To approximate the performance index (\7), the total

sum of squares is replaced by squared errors for a single input/output pair as

V=—tce (2.1.10)

” v

AW (i, j) aawk(i,j) (2.1.11)
4

Ab* (i) = aab"(i) (2.1.12)

where « is the learning rate. The sensitivity of the performance index to changes

in the net input of unit /7in layer kis:
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Sensitivities satisfy the following recurrence relation:
o = Fk@k)w’”” 5, (2.1.16)
fHn@) o 0
‘ k Y
pl)e| O SR 0 (2.1.17)
0 0 Flt(s,))
k
)= L) (2.1.18)
dn
The recurrence relation is initialized at the final layer as
8" =—F"ln" e, - a,). (2.1.19)

The overall Backpropagation algorithm proceeds as follows; first propagate the
input forward using (2.1.7), (2.1.8); next, propagate the sensitivities back using
(2.1.19) and (2.1.16); and finally, update the weights and offsets using (2.1.11),
(2.1.12), (2.1.14), and (2.1.15).
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2.1.3.2 Levenberg Marquardt Modification

While Backpropagation is a steepest descent algorithm, the Levenberg-Marquardt
algorithm is an approximation to Newton’s method [38]. Newton’s method to

minimize a function V(g) with respect to the parameter vector xis:
Ax=-[VV (] 'VV(x) (2.1.20)

where V*V(x) is the Hessian matrix and VV(x)is the gradient. If we

assumeV (x)as a sum of squares function as

V(z)=ze?(zc), (2.1.21)
VV(x)=7"(x)e(x), (2.1.22)
VAV (x)=J"(x)J (x)+ S(x), (2.1.23)

where J(x) is the Jacobian matrix:

[de(x) delx)  delx)]
ox, ox, ox,
de, (E) de, (l) de, (E)
J)=|"ax, o, ax, | (2.1.29)
de(x) deylx) | dey(x)
| ox, ox, ox, |
5()=3 e Ve, (x). (2.1.25)

i=1

For the Gauss- Newton method it is assumed that S(x)=0 and the update

(2.1.20) is:
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Ax=[1" @I @] T (elx) - (2.1.26)

The Levenberg-Marquardt modification to the Gauss-Newton method is:

Ax=[" @0 @)+ w7 (@) . (2.1.27)

The parameter u is multiplied by some factor () whenever a step would result
in an increased V(x). When a step reduces V(x), uis divided by B. When uis
large the algorithm becomes steepest descent with step 1/x, while for small
uthe algorithm becomes Gauss-Newton. For the neural network mapping

problem the terms in the Jacobian matrix can be computed by a simple
modification to the Backpropagation algorithm. The performance index for the
mapping is given by (2.1.9). This is equivalent in form to (2.1.21). For the

elements in the Jacobian matrix that are needed to calculate terms like:

Oe,lm) (2.1.28)
ow' (i, j)

These terms can be calculated using the standard Backpropagation algorithm
with one modification in the final layer as

A =—F" (") (2.1.29)

Each column of the matrix in (2.1.29) is a sensitivity vector that must be

backpropagated through the network to produce one row of the Jacobian.

The Levenberg-Marquardt modification to the Backpropagation algorithm thus

proceeds as [38]:
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1) Present all inputs to the network and compute the corresponding

network outputs (using (2.1.7) and (2.1.8), and errors (gq :zq—gf).

Compute the sum of squares of errors over all inputs (V(x)).

2) Compute the Jacobian matrix (using (2.1.29), (2.1.16), (2.1.14),
(2.1.15), and (2.1.24)).
3) Solve (2.1.27) to obtain Ax.

4) Compute the sum of squares of errors again using x+ Ax. If this new
sum of squares is smaller than that computed in step 1, then reduce u by
B, let x=x+Ax and go back to step 1. If the sum of the squares is not
reduced , then increase u by fand go back to step 3.

5) The algorithm is assumed to have converged when the norm of the
gradient (2.1.22) is less than some predetermined value, or when the

sum of squares has been reduced to some error goal.

Newton’s method is faster and more accurate near an error minimum, so the aim

is to shift towards Newton’s method as quickly as possible. Thus, u is decreased

after each successful step (reduction in performance function) and is increased
only when a tentative step would increase the performance function. In this way,
the performance function will always be reduced at each iteration of the

algorithm.

The construction work of the neural network based model was carried out in two
modes, namely the “development mode” and “the operation mode”. The
development mode is composed of “training or learning phase” and “test phase”.
Not to hurt generalization independent data sets are used for the phases of

training, test and validation.

As the training advances, the training error starts to decrease and eventually,
goes to zero that corresponds to the memorization which means the loss of
generalization capability of the neural network. To prevent memorization the

training should be interrupted when the training error falls while the validation
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error tends to rise. In METU-IFS application, a safety lag of response is

employed. METU-IFS starts to count number of epochs when this condition first

occurs and interrupts the training after five successive repeats.

The following error cross correlation coefficient definitions, are used in the

operation mode to measure the performance of the models:

Root Mean Square Error:

RMS _Error = , (2.1.30)
Normalized Error:
i (f,~0)
N_Errorzi , (2.1.31)
N
Absolute Error:
N
Z(fz - Oi)
Abs_Error:i:lT , (2.1.32)

where i:Forecast time order, f;:Forecast foF2 value at time i, o, :Observed

foF2value at time i, and N :Total number of forecast or observed foF2 instants,

iv.

Cross Correlation Coefficient of forecast and observed 7oF2 values (rﬁ,):

___CU.o) 2.1.33
"= I f)Clo0) ! (2:1:33)
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where C:The covariance, f :Forecast /oF2 values, and o:Observed 7ofF2

values.

2.1.4 Tests and Verification of METU-IFS Implementation of METUNN

Models

Implementation of METU-NN model is tested and verified by comparing it with
the results obtained from MATLAB code. The same neural network architecture
with 8 inputs, 1 hidden layer including 4 neurons, is built in both METU-IFS side
and MATLAB side. As it is determined in METU-NN model, the activation function
of hidden layer and the output layer is selected as “Tansig” and “Linear”

respectively. Both applications are driven with normalized TEC data sets.

Firstly, the results of the two different trainings and the two different operations,
which are all performed by METU-IFS, are demonstrated. Both training processes
are repeatedly driven with the same TEC data, but one of them with a validation

stop, the other without.

The report taken from METU-IFS after training is shown in Table 2.1-1. Training

conditions and results are listed in this report.
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Table 2.1-1: Training Results Report — 1.

Trained with ValSet_1

Operated with TrSet_1

*** Training Results ***

Sun Jul 25 17:48:29 EEST 2004

Training Algorithm : LMO

Number Of Inputs :

Number Of Neurons in HLayer1 :

Number Of Outputs : 1
Act Func For Hidden Layers : Tansig

Act Func For Output Layer : Linear

Bias Ex(0)/Inc(1) : 0
Initial Momentum : 0.01
Scale Factor (Beta) : 10
Target Error : 1.00E-05
Final MSE : 6.49E-04
Final Epoch No : 75
Average Training Duration : 4706ms/epoch
Performance

Max Error= 0.162666
Min Error= -0.16129
Max SE= 0.02646
Min SE= 0
SSE= 4.669275
MSE= 0.000543
RMSE= 0.023296
*** End Of Training Results ***

After a successful training, the network is operated with a different set of TEC
values. A variation graph, in which the target and the obtained values are plotted
on the same diagram, is in Figure 2.1-2. A scatter diagram is plotted in Figure
2.1-3.
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Figure 2.1-2: Variations graph for test — 1.
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Figure 2.1-3: Scatter diagram for test — 1.

The report of the training results for the second test is shown in Table 2.1-2. In

this test, the operation set is also used as the validation set. The variations graph

and the scatter diagram for this test are plotted respectively in Figure 2.1-4 and

in Figure 2.1-5.

28




Table 2.1-2: Training Results Report - 2

Trained with TrSet_1
Validated with Val_set_1
Operated with Val_set_1

*** Training Results ***

Mon Jul 26 17:26:22 EEST 2004

Training Algorithm : LMO

Number Of Inputs :

Number Of Neurons in HLayer1 :

Number Of Outputs : 1
Act Func For Hidden Layers : Tansig

Act Func For Output Layer : Linear

Bias Ex (0)/Inc(1) : 0
Initial Momentum : 0.01
Scale Factor (Beta) : 10
Target Error : 1.00E-04
Final MSE : 5.61E-04
Final Epoch No : 10
Average Training Duration : 5573ms/epoch
Performance

Max Error= 0.172181704
Min Error= -0.353880184
Max SE= 0.125231185
Min SE= 8.61902E-13
SSE= 6.398002964
MSE-= 0.000743608
RMSE= 0.027269176

*** End Of Training Results ***
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Figure 2.1-5: Scatter diagram — 2.

The same two sets of TEC data, one set for training and the other set for
operation are used in both METU-IFS and MATLAB to compare the results
obtained by METU-IFS with those obtained by MATLAB. All the other conditions,

related to the training parameters and the neural network structure, are also
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Below in Figure 2.1-6 and Figure 2.1-7, for MATLAB and METU-IFS respectively,
Forecast vs Observed:Blue Dots,linear fit:Red line

METU-IFS a value of 0.02727. These values are close to each other as expected.
plotted are the scatter diagrams obtained by operating both programs with the

expected to obtain the same results with a little difference which may be caused
After the training processes, MATLAB has reached a RMSE value of 0.02917 while

kept constant. Since the same model and same training algorithm is used, it is
However, it should also be noted that METU-IFS gives a better result.

same data set. Again the diagrams look similar as expected.

by implementing different programs.
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Figure 2.1-7: Scatter diagram; observed values are obtained by METU-IFS.

The similar results appear on the variations graphs. In Figure 2.1-8 and Figure
2.1-9 plotted are the variation graphs for MATLAB and METU-IFS respectively.
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Figure 2.1-8: Variations graph obtained by MATLAB NN toolbox.
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Table 2.1-3 tabulates a summary of this comparison. This table gives the RMSEs,
obtained after the training, as well as the cross correlation coefficients of
forecasted and observed TEC values, calculated after the operation. This test
shows that the results obtained by the implementation of training algorithms and
METU-NN model is not worse than those by the implementation of MATLAB, on
the contrary, they look even better.

Table 2.1-3: Comparison of the training and operation results of MATLAB and
METU-IFS.

MATLAB | METU-IFS

The root mean square error for 1h ahead

forecasting by the net for whole time period: 0.02917 0.02727
(el/sqm *10%°)
Absolute error: (el/sqm *10%) 0.01837 0.01838

Cross correlation coefficient of Forecast and

0.98399 0.98613
Observed TEC values:
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CHAPTER 3

NEUROFUZZY METHODS

This chapter discusses the steps in developing a neurofuzzy model. It gives the
general description of neurofuzzy concept as an introduction and then points out
the advantages and disadvantages of neurofuzzy methods over neural network
methods. In the literature there are many neurofuzzy systems developed to
model a range of problems in a variety of fields, some of which are reviewed in
this chapter. Finally METU-NFN model is compared with METU-NN models

developed before.

3.1 General Description of Neurofuzzy Networks

Both neural networks and fuzzy systems are motivated by imitating human
reasoning processes. Neural Networks have been used extensively in modeling
real problems with nonlinear characteristics. In most of these applications, feed-
forward networks that are trained with the back-propagation algorithm have
been used. The main advantages of using NNs are their flexibility and ability to
model nonlinear relationships. In contrast to knowledge-based techniques, no
explicit knowledge is needed for the application of NNs. However, despite these
advantages, NNs have often been criticized for acting as “black boxes”. The
knowledge contained in an NN model is kept in the form of a weight matrix that
is hard to interpret and can be misleading at times. In NNs, the relations are not
explicitly given, but are ‘coded’ in the network and its parameters whereas in
fuzzy systems, relationships are represented explicitly in the form of if-then
rules. The efficiency of NN models is also another point of concern. Since it is not

always possible to determine the significance of the input variables in advance,
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any potential candidate may be included in the model. This is particularly
important in cases where a large number of potential input variables exist but
only a subset of them would actually affect the output. It is therefore important
to identify and exclude those input variables that do not have a significant
contribution. This would lead to a more efficient model. It is also beneficial to
have the ability to insert any available knowledge or expertise into the model if

necessary.

One way to overcome many of these shortcomings is to use neurofuzzy models.
Neurofuzzy systems combine the semantic transparency of rule-based fuzzy
systems with the learning capability of neural networks. In other words, these
models combine the transparent, linguistic representation of a fuzzy system with
the learning ability of NNs. Therefore, they can be trained to perform an
input/output mapping, just as with an NN, but with the additional benefit of
being able to provide the set of rules on which the model is based. This gives
further insight into the process being modeled [28]. Several merger types of NNs
and fuzzy systems have been reported in the literature. They include various
representations and architectures and therefore are suitable for different
applications (Nauck et a. 1997). The most widely used neurofuzzy models are
adaptive network based fuzzy inference systems (ANFIS) and B-spline associative

memory networks (AMNs) [39].

3.2 Fuzzy Inference Systems (FIS)

For a better understanding of neurofuzzy systems we need to comprehend FIS.
Because FIS is an important element in a neurofuzzy system, which is to be used
to improve ionospheric forecasting studies. So, at least a brief discussion on FIS
seems to be a necessary first step before going into details of outlining a

neurofuzzy model.
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Figure 3.2-1: Fuzzy inference system.

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy

models, fuzzy associative memories (FAM), or fuzzy controllers when used as

controllers. Basically a fuzzy inference system is composed of five functional

blocks (Figure 3.2-1) [40]:

¢ arule base containing a number of fuzzy if-then rules;

e a database which defines the membership functions of the fuzzy sets

used in the fuzzy rules;

e a decision-making unit which performs the inference operations on the

rules;

e a fuzzification interface which transforms the crisp inputs into degrees of

match with linguistic values;

e a defuzzification interface which transform the fuzzy results of the

inference into a crisp output.

Usually, the rule base and the database are jointly referred to as the knowledge

base.

Several types of fuzzy reasoning [41][42] have been proposed in the literature.

Depending on the types of fuzzy reasoning and fuzzy if-then rules employed,

most fuzzy inference systems can be classified into three types (Figure 3.2-2):
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Type 1: The overall output is the weighted average of each rule’s crisp output
induced by the rule’s firing strength (the product or minimum of the degrees of
match with the premise part) and output membership functions. The output
membership functions used in this scheme must be monotonically non-
decreasing [43].

Type 2: The overall fuzzy output is derived by applying “max” operation to the
qualified fuzzy outputs (each of which is equal to the minimum of firing strength
and the output membership function of each rule). Various schemes have been
proposed to choose the final crisp output based on the overall fuzzy output;
some of them are center of area, bisector of area, mean of maxima, maximum
criterion, etc [41][42].

Type 3: Takagi and Sugeno’s fuzzy if-then rules are used [44]. The output of
each rule is a linear combination of input variables plus a constant term, and the
final output is the weighted average of each rule’s output.

Figure 3.2-1 utilizes a two-rule two-input fuzzy inference system to show
different types of fuzzy rules and fuzzy reasoning mentioned above. Be aware
that most of the differences lie in the specification of the consequent part
(monotonically non-decreasing or bell-shaped membership functions, or crisp
function) and thus the defuzzification schemes (weighted average, centroid of

area, etc) are also different.
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Figure 3.2-2: Commonly used fuzzy if-then rules and fuzzy reasoning
mechanisms.

3.3 Combining Advantages of Both Fuzzy Logic and Neural
Networks Methods

Multilayer feedforward neural networks with an arbitrary large number of units in
the hidden layer can approximate any real continuous function [45]. This good
training ability is always considered for modeling nonlinear functions. The back
propagation (BP) algorithm allows multilayer feedforward neural networks to
learn input-output pairs from training samples. However, it is possessed of the
disadvantage of slow convergence and the disadvantage of being a complete
black box model. Many researches combine fuzzy set theory with neural network

configurations for improving the disadvantages.

Neurofuzzy (NF) computing is a popular framework for solving complex
problems. If we have knowledge expressed in linguistic rules, we can build a FIS,
and if we have data, or can learn from a simulation (training) then we can use
NNs. For building a FIS, we have to specify the fuzzy sets, fuzzy operators and
the knowledge base. Similarly for constructing a NN for an application the user

needs to specify the architecture and learning algorithm. An analysis reveals that
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the drawbacks pertaining to these approaches seem complementary and
therefore it is natural to consider building an integrated system combining the
concepts. While the learning capability is an advantage from the viewpoint of
FIS, the formation of linguistic rule base will be advantage from the viewpoint of
NNs [46].

3.4 Neurofuzzy Systems in Literature

Neurofuzzy systems are simply developed by the way of applying a learning
algorithm to a fuzzy system. A common way to apply a learning algorithm to a
fuzzy system is to represent it in a special NN like architecture. However the
conventional NN learning algorithms (gradient descent) cannot be applied
directly to such a system as the functions used in the inference process are
usually non differentiable. This problem can be overcome by using differentiable
functions in the inference system. FIS has potential to easily apply a learning
rule. As a consequence of attraction of researchers many models developed.
Some of the major woks in this area are GARIC [47], FALCON [48], ANFIS [49],
NEFCON [48], FUN [33], SONFIN [50], FINEST [51], EFuNN [52], dmEFuNN [52],

evolutionary design of neurofuzzy systems [53], and many others [46].

And another attention attractive type of neurofuzzy system in literature is ASMOD
(Adaptive Spline Modeling of Observation Data) which is structurally different

from the ones listed above [54].

3.5 ANFIS

Adaptive Network based Fuzzy Inference System (ANFIS) is a FIS based
neurofuzzy system. Other systems similar to ANFIS are listed in the previous
section. Among them ANFIS is selected for applying to ionospheric forecasting

problems and is one of the candidates for METU NF model.

ANFIS was first proposed by Jang (1993) [40]. A basic ANFIS is shown in Figure
3.5-1. Functionally, there are almost no constraints on the node functions of

ANFIS except piecewise differentiability. Structurally, the only limitation of
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network configuration is that it should be of feedforward type. These are the

general restrictions, coming from Backpropagation learning rule.

! T --____-.:fffr‘-ﬁ::::: wf fj’ = pj’x +qf}‘ +r1.

L \} /‘ \?,,r f=W1ff+“'hf2
Az F B W, t W
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Figure 3.5-1: (a) Takagi-Sugeno fuzzy reasoning; (b) ANFIS structure.

For the sake of simplicity, it's assumed that the fuzzy inference system under
consideration has two inputs x and y and one output z. And it's supposed that

the rule base contains two fuzzy if then rules of Takagi-Sugeno type [44].

Rule 1: If xisAlandy isBl thenf;_pxx+ quy + 1 (3.5.1)
Rule 2: If x isA2 and y isB2 then f ,_px + QY + 1> (3.5.2)

The fuzzy reasoning and the corresponding equivalent ANFIS architecture are

shown respectively in Figure 3.5-1 (a) and Figure 3.5-1 (b).

Layer 1
Every node i in this layer is an adaptive node, representing membership functions

described by generalized bell functions, e.g.
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1+|(x—cl)/a1|

0, = 1t,(x) = (3.5.3)

2, !

where X is input to the node and a;, by, and ¢; are adaptable variables known as
premise parameters. The outputs of this layer are the membership values of the

premise part.

Layer 2
Every node in this layer is a fixed node with the task of multiplying incoming
signals and sending the product out. This product represents the firing strength

of a rule. For example, in Figure 3.5-1 (b)
0,,=w =1ul(x) 4()’): (3.5.4)

Layer 3
Every node in this layer is a fixed node which calculates the ratio of the i-th rules

firing strength to the sum of all rules’ firing strengths

0,,=w, = M , (3.5.5)
wtw, +wy +w,

Layer 4

Nodes of this layer are all adaptive with node functions

O0,, =wf, :"_Vl(p1x+%y+r1): (3.5.6)

where w; = output of Layer 3 and {p;, q, r; } parameter set. Parameters of this

layer are referred to as consequent parameters.

Layer 5
The single fixed node of this layer computes the final output as the summation of

all incoming signals.
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A two-step process may be used for the learning or adjustment of the network
parameters. This process is known as hybrid learning [40]. In the first step, the
premise parameters are kept fixed and the information is propagated forward in
the network to Layer 4, where the consequent parameters are identified by a
least-squares estimator. In the second step, the backward pass, the consequent
parameters are held fixed while the error is propagated, and the premise
parameters are modified using gradient descent. The only user-specified
information is the number of membership functions for each input and, the input-

output training information.

3.6 ASMOD

ASMOD is the other type of neurofuzzy system in the literature. It was first
proposed by Kavli on June 1993 [54]. ASMOD is an acronym for Adaptive Spline
Modeling of Observation Data. ASMOD is based on Associative Memory Networks
(AMNs). AMNs have the ability to approximate any continuous function, given
sufficient degrees of freedom [55]. A set of multidimensional overlapping basis
functions covers the input space of AMNs (Figure 3.6-1). The size, shape, and
overlap of the basis functions determine the model structure and the complexity.
The basis functions can take a number of forms, including B-spline and Gaussian
functions. It has been shown that B-spline AMNs and certain types of fuzzy
models are learning equivalent [55]. Consequently, B-spline AMNs are a
particular type of neurofuzzy model. This model is also valuable to be applied to

ionospheric forecasting problems.
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Figure 3.6-1: Typical B-spline associative memory network [55].

B-spline functions (Figure 3.6-2) are piecewise polynomials of order k which have
been widely used in surface fitting applications. They have also been used to
represent fuzzy membership functions as they have several desirable properties
[55].
e The degree of membership can be evaluated using simple, fast, and
stable recurrence relationship.
e The output of the function is nonzero in only a small part of the input
space which means that knowledge is stored locally across only a small

number of basis functions.

P

e The basis functions form a partition of unity as: Zi:lu o (=1 thus

producing accurate smooth approximation.
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Figure 3.6-2: B-spline fuzzy membership functions.

The order of the B-spline functions determines the smoothness. They can be
used to implement crisp fuzzy sets (k=1) or the standard triangular fuzzy
membership functions (k=2) or other smoother representations. A univariate B-
spline function of order k is nonzero only over k intervals which are generated by
a (k+1) knots. A multivariate B-spline function can be formed by taking the
tensor product of n univariate functions [55].

The output of a B-spline AMN can be represented by the following equation:

f =Za,»w,» =a(x)"w (3.6.1)

where f=output; a(x)=[al(x),...,ap(x)]=vector of basis function outputs when
presented by input x=(x1 ,...xn); and w=(w1 ,...wp)=vector of network weights.
The power behind this type of network comes from the direct equivalence

between the unions of a set of fuzzy rules in the following form:
IF (x is A)) THEN (y is B;)c; (3.6.2)

and the weighted sum of the multidimensional fuzzy input membership functions
given in Eq.(3.6.1). Where (x is Ai) and (y is Bj)=linguistic expressions for the
input and output respectively and ¢; =rule confidence which relates the i-th fuzzy
input set to the j-th fuzzy output set. In other words, rule confidence indicates

the degree to which the above rule has contributed to the output. This means
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that a weight can be fuzzified to produce a rule confidence vector ¢; which can
then be defuzzified to produce the original weight. This relationship allows the
network to be trained in a weight space leading to considerable reduction in
computational cost (the network’s output is linearly dependent on the weight
set), while explaining the output with linguistic rules and the associated rule
confidences.

Various training algorithms such as the Backpropagation can be applied to
ASMOD model. The output might be compared with the actual measured output
to obtain a correction error. Using this error and implementing a learning rule the
neurofuzzy network adjusts its weights and determines its fuzzy parameters (i.e.
fuzzy sets and fuzzy rules). In literature The Least Mean Squared (LMS) and the
Normalized Least Mean Squared (NLMS) learning algorithms are generally used
to update the weights [55]. As part of these algorithms, Eq. 3.6.3, and Eq. 3.6.4,
respectively, can be used to adjust the weights for the LMS and NLMS algorithms
[56]:

w (1) =w,(t =1)+7(3(1) = y(®))a, (1) (3.6.3)

y() = y(t)

w, () = w, (t=1)+7)( .
Ja; @]

)a; (t) (3.6.4)

where 7 is learning rate; and y is desired output.

As mentioned on the previous sections the major feature of a neurofuzzy
network is that expert knowledge can be incorporated into the model. In the
case of ASMOD, existing engineering knowledge can be incorporated into the
trained network to optimize model performance and to enhance the
interpretation of a constructed model by optimizing the membership functions.
Optimization of membership functions can also be done at the beginning of the

training to help training process but this may not help to decrease final error.
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3.7 Curse of Dimensionality

One major disadvantage of neurofuzzy networks is that the number of potential
fuzzy rules is exponentially dependent on the dimension of the input space. This
is often referred to as the “curse of dimensionality” [55]. This exponential growth
of fuzzy rules with a number of inputs makes it impractical to use most existing
neurofuzzy architectures for problems of high dimensionality. To illustrate this
“curse,” one may consider a fuzzy system with N input variables each of which
having M membership functions. In such a system, as many as, M" combinations
(potential fuzzy rules) would exist. To overcome the curse of dimensionality

neurofuzzy models usually employ some sort of a dimension reduction technique.

3.7.1 Overcoming Curse of Dimensionality: ANFIS

Jang (1996) proposed a quick and straightforward way to do input selection for
ANFIS modeling. According to this method, the designer should establish
different ANFIS models using a pool of candidate inputs and select the best one
(the one with the smallest root mean squared error). Jang (1996) argues that
since the least-squares method is the main drive behind the training and gradient
descent contributes to the tuning of membership functions, therefore ANFIS can
usually generate good results after one epoch of training. For example, using this
approach, if we have a modeling problem with ten candidate inputs and we need
to find the most influential three inputs to ANFIS, we can construct C'% = 5120
ANFIS models and train them with a single pass of the least-squares method. The
ANFIS model with the smallest training error is then chosen for further training
using the hybrid learning rule to tune the membership functions as well [57][39].

However, it is obvious that this approach can be exhaustive for high-

dimensionality problems and it is not guaranteed to produce optimal results.

3.7.2 Overcoming Curse of Dimensionality: ASMOD

As described earlier, the number of potential fuzzy rules in a neurofuzzy system
is an exponential function of the dimension of the input space. In reality, many of
these rules would be redundant for modeling purposes, and therefore a suitable

technique should start from a simple architecture and build on it as necessary.
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One such approach to reduce the dimensionality of B-spline AMNs is the analysis

of variance [56] for decomposition of the output function of dimension n7 as

n=1 n

f)=f, +iﬁ(xi)+z Do fii X))t fio () (3.7.2.1)

i j=i+l

in which fis constant (the function bias) and other terms are univariate,

bivariate, and other sub functions. In many instances, the majority of the higher-
order terms are negligible and the input/output mapping can be approximated
using a limited number of subnetworks of reduced dimensions. An example of
such an additive decomposition is shown in Figure 3.7-1, where a five
dimensional function is decomposed into a one-dimensional and two two-
dimensional subnetworks. It should be noted that each of these subnetworks
represents a separate AMN, the output of which are summed to produce the

overall model output.
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Figure 3.7-1: Illustration of additive ANOV A decomposition of AMNs [56].
A fuzzy rule within each subnetwork may have the following form:
IF (X2 is large AND x3 is small) THEN (y is small) with confidence ¢

where c=rule confidence. A rule confidence of zero indicates that the rule is not

contributing to the output while a rule confidence of one indicates 100%
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contribution. Values between zero and one allow the rules to partially fire. The
number of fuzzy rules used in each subnetwork depends on the number of
membership functions that are used to fuzzify the inputs of that subnetwork. In
the above example, assuming that five membership functions are used for each
variable, the first, second, and third subnetwork consist of 5, 25, and 25 fuzzy
rules, respectively. The consequent part of all the rules will be ORed (i.e.,

summed in this case) together.

The optimum structure of a B-spline AMN is achieved through the selection of the
smallest number of model inputs and the smallest number of basis functions for
these inputs. ASMOD (Kavli 1993) is an algorithm that uses the above
decomposition to arrive at this optimal structure. Among the other alternative
approaches for automatically determining the optimum structure of B-Spline

AMNs, the ASMOD algorithm is more commonly used.

In the ASMOD algorithm, for any model structure (i.e., specific combination of
subnetworks, the number and location of Splines), one can use the training data
to calculate the mean square error (MSE) of the output. The algorithm starts
from the simplest structure (e.g., only the first variable in one subnetwork with
two triangular splines) and iteratively refines its structure until some stop criteria
is satisfied. In each step among a number of potential (single) changes to the
structure, the one with the best performance is selected and the process
continues. The addition of a new input, combining an existing input to a
subnetwork, splitting a subnetwork, and deleting an input are all possible

changes to the structure.

The ASMOD algorithm uses the training data to automatically determine the
model inputs and the number of basis functions. However, the order of basis
functions has to be determined a priori. Higher-order functions result in smoother
model outputs, but increase computational cost and can lead to over fitting of
the data [55].
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3.8 METU Neurofuzzy Network (METU-NFN) Design

Ionospheric Forecasting problem has been studied in a highly detailed manner
for many years. In previous works, NNs are employed for the ionospheric
forecasting, and quite promising results have been obtained. By these works,
data being used for the ionospheric forecasting are studied in detail. In many
years a huge amount of well organized and directly usable data for an NN system
has been collected by the ionosonda stations all over the world. Normally having
a huge amount of data is a reason for employing an NN model instead of
neurofuzzy systems. In this work, the benefits of having such a large amount of
data is tried to be kept while expert knowledge is being integrated into the
model. A new neurofuzzy network designed for the ionospheric forecasting will
be introduced here. To the best of our knowledge this will be the first trial

application of the NFN systems on the ionospheric forecasting studies.

In this trial we will fuzzify two of the parameters which are “Kp” and “Hour of
day”. Kp is a parameter which defines the level of disturbance in the ionosphere.
Solar disturbance may change the characteristics of the Near Earth Space both in
quantity and quality. To quantify the magnetic disturbance or quietness we have
chosen the 3h-planatary magnetic index Kp. For the sake of simplicity we
identified two different levels of magnetic activity which determines the state of
the period to be as “quiet” and “disturbed”. Therefore, it will be sufficient to train
only two NNs of which the contribution ratio will be determined by fuzzified Kp.
In other words, the same architecture will be trained by two different target sets

of data representing the “quiet and “disturbed” conditions.

For this exercise, referring to the inherent diurnal variation in TEC and fof2, we
have chosen the “hour of day” as the second parameter which is to be employed
to enrich the NN by introducing additional expert information in addition to 3h-

planetary indices of Kp.
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Those magnetic and diurnal variations have well defined characteristic, therefore,
such information when employed as expert knowledge, notable results may come
out.

3.8.1 Reanalysis of the problem to determine the fuzzy inputs

As a first step of developing a fuzzy system, fuzzy parameters have to be
identified. Therefore, in order to identify the fuzzy parameters, the physics of the
ionosphere and affecting environmental variables are studied. Since it is a
different discipline of science, knowledge of the ionosphere experts is heeded.
So, in order to find out some fuzzy variables influencing TEC and foF2 values I
have consulted and studied with Prof. Dr. Yurdanur Tulunay from METU
Department of Aerospace Engineering, the renowned scientist on the physics of
ionosphere, based on such expertise of her over twenty years of highly qualified
experience on the ionospheric researches, three different parameters are
determined. These are “magnetic disturbance”, “diurnal variations”, and
“seasonal variations”. Since a little more detailed study is needed to identify the
exact characteristics of “seasonal variation” compared to other two parameters,
we decided to exclude it in this first attempt of NFN application on the subject of
this study, and include only “magnetic disturbance” and “diurnal variations” as

fuzzy parameters.

Magnetic disturbance is caused by the solar system, mainly by sun storms.
Magnetic disturbance may change the characteristics of the Near Earth Space,
both in quantity and quality. One of the measurement units of Magnetic
disturbance is 3h-planatary magnetic index which is abbreviated as Kp. Kp is
scaled between 0 and 9. The Kp scale is divided into 27 level. These levels are
named as follows; 0, 1-, 1, 1+, 2-, 2, 2+,...... 8+, 9-, 9.

The linguistic equivalent of Kp is quietness or disturbance. Linguistically an expert
can say that; “Magnetic condition of the ionosphere is quiet.”, “Magnetic
condition of the ionosphere is disturbed.”, *“Magnetic condition of the ionosphere
is almost quiet.” or “"Magnetic condition of the ionosphere is almost disturbed.”

Therefore this parameter can be fuzzified based on these linguistic terms.
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Sunlight has a significant effect on the ionosphere. This effect is best observed
on Diurnal variations of TEC or foF2. A Characteristic diurnal variation of TEC can
be seen in Figure 3.8-1. At dawn and sunrise TEC and foF2 values begin to
increase sharply, and at sunset and dusk, decrease steeply. During the night time
TEC and fof2 values continue to decrease on a smaller slope. At midday they
stay stable for a short period of time.

TEC

10 | I I |
o] 5 10 15 20 25

Hour Of Day

Figure 3.8-1: Characteristic diurnal variation of TEC.

The fuzzification and defuzzification processes of magnetic disturbance and

diurnal variations are described in the following sections.

3.8.2 METU-NFN Main Structure

The whole NFN system is composed of two NNs of which the contribution to the
output is controlled by fuzzified Kp, four raw inputs and two fuzzy inputs are
added to these NNs as inputs. The fuzzy inputs are first processed by the fuzzy
logic controller units then entered to NNs.
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Figure 3.8-2: METU-NFN main structure.

The structure of each NN component in Figure 3.8-2 is depicted in Figure 3.8-3.
As seen in the figure the “Hour of day” and the “Kp” are fuzzy inputs. Other four
raw inputs which are present values, the first difference, the second difference

and the relative difference, are inherited from the METU-NN model.

Fuzzy Logic
Hour of day ——»{ Controller

A 4

Fuzzy Logic
Kp —»{ Controller > NN
Present Value >
First difference >

Second difference

A 4

Relative difference

A 4

Figure 3.8-3: Structure of the NN block with fuzzy inputs.
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The network will be trained with a mixed data set including both quiet and
disturbed conditions. This data set should also include Kp values for each entry.
This set will be applied to both NNs. The contribution ratios of each NN will be
determined by the fuzzified Kp. The target values for each entry in the training
set will also be scaled by Kp. Each NN will be trained with this scaled target
value. The actual output of the system will be calculated by simply summing
each NNs' outputs. The training algorithm is the inherited Levenberg Marquardt

algorithm.

Fuzzy logic controller components are designed by employing the expert
knowledge for the fuzzy inputs. The design of fuzzy components is described in

section 3.8.3.

3.8.3 Design of fuzzy components

Magnetic disturbance of the ionosphere and diurnal variations of TEC or fof2 are
potential fuzzy variables. For each of these two parameters a fuzzy component is
employed. Block diagrams of these fuzzy components are shown in Figure 3.8-4
and Figure 3.8-7. These fuzzy components consisted of a fuzzification layer, a
fuzzy inference system and a defuzzification layer. A crisp input value entered to
the fuzzifier layer. In the fuzzifier, the crisp value is converted to the fuzzy value
to enter into the fuzzy inference system. The fuzzy inference system is composed
of the fuzzy rules. These rules connect the fuzzy inputs to the fuzzy outputs. The
fuzzy output is the input of the defuzzifier. In the defuzzifier fuzzy inputs are
converted to crisp values by using a defuzzification method. Having passed
through the fuzzy inference system, the obtained crisp values are entered to the
NNs in the whole system, which is described in the previous section and depicted

in Figure 3.8-2 and Figure 3.8-3.
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Fuzzifier

Fuzzy System Defuzzifier
Ii”ﬁf Fuzzy METUNFNKp Fuzzy Crisp
P , Input Output Output
(mamdani)
2 rules
output1 (2)

Kp (2)

Figure 3.8-4: Fuzzy inference system for magnetic disturbance; 1 input, 1 output,
2 rules.

The main structure of the fuzzy component for the Magnetic disturbance is
depicted in Figure 3.8-4. The level of magnetic disturbance is quantified by Kp as
described previously on section 3.8.1. Kp index is normally quantified into 27
levels. Having consulted with the experts I quantified Kp with two fuzzy terms.
These terms are “Quiet” and “Disturbed”. If Kp is equal or lower than 2.3, it is
absolutely quiet. If Kp is equal or greater than 6, it's absolutely disturbed. Levels
between 2.3 and 6 can linguistically be called as “almost quiet” or “almost
disturbed”. These linguistic terms also determine the input membership
functions. Since we have two linguistic terms, one for each, there are two input
membership functions. The graphical representation of input membership
functions for Kp can be seen in Figure 3.8-5. For the sake of simplicity linear

trapezoidal membership functions have been preferred.
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Figure 3.8-5: Input membership functions for Kp.

The output has also two membership functions. The fuzzified output of Kp is
used to select the contribution ratio of the NNs to the output of the system as
depicted in Figure 3.8-2. Input and output layers are connected through a fuzzy
inference system which is composed of fuzzy rules. Output membership functions

are also linear functions and linguistically define the contribution ratio of the NNs.
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Figure 3.8-6: Output membership functions for Kp.

There are two fuzzy rules for Kp, which are:

1. If Kp is Quiet then Output is NNQuiet.
2. If Kp is Disturbed then Output is NNDisturbed.

The main structure of the fuzzy component for the diurnal variations of TEC or
foF2 is depicted in Figure 3.8-7. The hour of day determines the level of diurnal
variations. Therefore, the hour of day is the crisp input to the fuzzy component

and is fuzzified in the fuzzification layer.
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Fuzzy System Defuzzifier
Crisp Fuzzy METUNFN2 Fuzzy Crisp
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(mamdani) _— e
5 rules
rate (4)

hour (5)

Figure 3.8-7: Fuzzy inference system for diurnal variation; 1 input, 1 output, 5
rules.

For the fuzzification and the subsequent defuzzification processes, input and
output membership functions should be determined. Input and output
membership functions are produced from the characteristic graph of the diurnal
variations (Figure 3.8-1). This graph is divided into four regions, determined by
the solar time of the day. This graph is shown in Figure 3.8-8. As it is shown on
the graph, the hour of day is divided into four regions: late-night, morning,
midday, and afternoon. These regions also represent the fuzzy terms of the input
variable. Corresponding diurnal variation regions are negative-low, positive-high,
zero, and negative-high.
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Figure 3.8-8: Regions of diurnal variations.

Hour of day is the crisp input to the fuzzifier layer. In the fuzzifier layer hours of
a day are represented by membership functions. These membership functions

are depicted in Figure 3.8-9 and the boundaries are given in Table 3.8-1.

Table 3.8-1: Boundaries of the regions of diurnal variations

Region Absolute Time Quite Time

Late night 21:00 — 04:00 04:00 - 07:00

Morning 07:00 04:00-07:00, 07:00-12:00
Midday 12:00 07:00-12:00, 12:00-16:00
Afternoon 16:00 12:00-16:00, 16:00-21:00
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Figure 3.8-9: Input membership functions for fuzzification of the diurnal
variations.

The fuzzifier layer produces a fuzzy output corresponding to the crisp input. For
example if the hour is 03:00 o'clock, then the fuzzy output will simply be 100%
latenight. In other words 3 o'clock is linguistically expressed as “late night”. For
example if the hour is 11 o'clock, then the fuzzy output will be 80% midday and
20% morning. Similarly it is linguistically expressed as “just midday” or “late

morning”.

Fuzzy outputs are processed in the fuzzy inference system which is composed of
fuzzy rules. In this fuzzy inference system four fuzzy rules are employed to

convert fuzzy input to fuzzy output. These rules are listed below.

Fuzzy rules for fuzzy inference system of diurnal variations:

1. If hour of day is "latenight” then rate is "neglow”

2. If hour of day is "morning” then rate is "pozhigh”
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3. If hour of day is "midday” then rate is "zero”

4. If hour of day is ‘afternoon” then rate is "neghigh”

By using these rules output membership functions are selected in the defuzzifier
layer with a ratio determined in the fuzzifier layer. Defuzzifier layer consists of
output membership functions and a defuzzification engine. The output
membership functions are determined examining the diurnal variations graph in
Figure 3.8-8.

Similar to input membership functions, the regions on the graph represent the
fuzzy terms of output of the defuzzifier layer. These terms are also used as
output membership functions, which are organized by defining the boundary

regions as depicted in Figure 3.8-10.
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Figure 3.8-10: Output membership functions for fuzzification of diurnal
variations.
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In Figure 3.8-10, x axis represents the crisp value of the rate of the diurnal
variations. A defuzzification method has to be used to find out this crisp value.
Fuzzy output of the fuzzy inference system is something like that; 80% midday,
20% morning. This fuzzy information is the input of defuzzification layer. In the
defuzzification layer by using output membership functions in Figure 3.8-10 and
the defuzzification method as described on the section 3.8.3.1 a crisp value is
obtained. The rate is chosen between 0 and 1 because of the other inputs to the
NNs are normalized between 0 and 1. Therefore there is no need to normalize

these crisp values.

That is the final step of fuzzy component used in the model. This crisp value is

utilized in NNs as similar to the other inputs.

3.8.3.1 Defuzzification Method
The conversion of a linguistic (fuzzy) result to a real (crisp) value is called as

defuzzification. Fuzzy logic mimics the human decision and evaluation process.
Therefore a well established defuzzification method should approximate this
approach. Defuzzification is usually a two step process. In the first step a typical
value is computed for each term in the linguistic variable. In the second step, the
“best compromise” is determined by balancing out the results. For the sake of
computational efficiency “Center of Maximum” (CoM) defuzzification method is
used in this study. A comparison chart of defuzzification methods is given in
Table 3.8-2 [58].
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Table 3.8-2: Defuzzification methods comparison [58]

Center of Area | Center of Maximum Mean Of
(CoA, CoG) (CoM) Maximum (MoM)
Llngwst.m. “Best Compromise”| “Best Compromise” Most pI_a US:,Ib|e
Characteristic solution
Implausible various
Fit with Intuition MBF shapes and Good Good
strong overlap
MBFs
Continuity YES YES NO
Computational . .
Efficiency Very low High Very High
o Control, decision Control, decision Pattern recognition,
Applications support, data . .
) support, data analysis | dicision support
analysis
pozhigh Zero neghigh neglow
1 L
na .
=
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Figure 3.8-11: Defuzzification with CoM.

An example of CoM defuzzification method is depicted in Figure 3.8-11. As an

example lets say that the fuzzy output of our fuzzy inference system be 0.8

63



neghigh and 0.2 zero. The maximum value of zero is 0.32 and neghigh is 0.68.
Then the crisp value by using CoM will come out 0.68x0.8 + 0.32x0.2 = 0.608.

3.9 Comparison of Various NN and NFN models Applied to
Ionospheric Forecasting Problem

In this section, NFN models developed in this study will be compared to NN
models. NN systems are far more mature compared to neurofuzzy systems. And
the application of NN systems to the problem of ionospheric forecasting, as a
result the METU-NN model produced very successful results. In this thesis an
attempt is made to develop an NFN model for ionospheric forecasting for the first
time. The aim is to make use of the raw data and expert knowledge both, in the
same system. In the literature it's usually assumed that having plentiful usable
data to train an NN system is the reason to use an NN system instead of a
neurofuzzy system [40][54][47][59]. It's expected that the results of NFN model
developed during this study may not reach the performance of NN models. But if
reasonable results may be obtained it will show that NFN models can be
applicable and worth to study on. To obtain better results the physical domain of
the problem has to be examined in more detail. All the expert knowledge should
be collected and organized to develop much more appropriate NFN models. For
this study we only used readily available expert knowledge on Magnetic
disturbance and diurnal variations of TEC and fof2, to develop an NFN system to

just see what kind of result would be obtained in a short time.

Five different architectures are prepared to compare. These architectures are as
follows
1. METU-NN : The model described in section 1.2.2 and depicted in Figure
1.2-1
2. METU-NN with additional Kp column : Kp is added as an extra input.
3. METU-NN with additional Kpf column : Fuzzified Kp is added as an extra
input.
4. METU-NFN 6 Inputs double NN : The NFN model described in the section
3.8.2
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5. METU-NFN 6 Inputs single NN : Single NN is used instead of double NN.

For the comparisons all other variables except the model should be equal.

Therefore in each model NNs' have the same properties. That is each NN has 4

hidden neurons with Tansig activation functions and one output neuron with

linear activation function. Levenberg Marquardt training algorithm is used as a

training algorithm. Three different sets of data are prepared to use in training,

validation, and operation phases of each model. These are the TEC data sets

which are obtained under the conditions given in [60]. Organization of data sets
is given in Table 3.9-1. All the data sets are GPS TEC data having 10 minute

intervals.
Table 3.9-1: Data sets organization
Month Year Station
o 1 April — 31 Chilbolton (51.8° N; 1.26°
Training Set 2000
May W)
1 April — 31 Chilbolton (51.8° N; 1.26°
Validation Set 2001
May W)
. 1 April — 31
Operation Set M 2002 Hailsham (50.99 N; 0.3° E)
ay

The Kp data is retrieved from the ftp site of The National Geophysical Data

Center,USA.

(ftp://ftp.ngdc.noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/KP_AP/). The data
gabs in the Kp data are filled with linear interpolation. Under these conditions the
summary of the results are tabulated in Table 3.9-2.

Table 3.9-2: Summary of Comparison Results

NN + Kp | NN + Kpf | NFN 2NN NFN 1NN METU-NN
Cross correlation 0.986790 | 0.982862 0.908643 0.983900 0.987037
MSE 3.730893 | 4.022666 | 23.028308 3.770725 3.036461
RMSE 1.931552 | 2.005659 4.798782 1.941836 1.742545
Average Absolute
Error (TECU) 1.348231 | 1.387980 3.630039 1.319473 1.162553
Average Epoch
Duration (ms) 3999 4094 3537 1717 3233
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Interpreting the results, the best performance is obtained by METU-NN model
with the RMSE of 1.7425. "NN + Kp” and NFN with single NN models produced
similar results with RMSE of 1.9315 and 1.9418 respectively. Adding a fuzzified
Kp input to the METU-NN model slightly decreased the performance compared to
the model with a raw Kp input added to METU-NN model. The NFN model
described in 3.8.2 produced the worst performance with the RMSE of 4.7987. A
RMSE value below 2 is accepted for a usable system. However, both the cross
correlation value of 0.90 and the RMSE value of 4.7 are very reasonable results
and even can be considered promising for the first attempt of a new model. It
should be noted that, the worse results are expected at the beginning. These
results show us that, it's worth to study physical details of the ionosphere to
obtain more comprehensive expert knowledge to develop more advanced

neurofuzzy models.

After training phases all the models are operated with the operation data set. For
each type of model scatter diagrams are plotted with METU-NFN Software and
the obtained scatter diagrams are printed below.

(@ Plot Window M=

Scatter Diagram
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Figure 3.9-1: Scatter diagram obtained by operating NFN 2NN.
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Figure 3.9-2: Scatter diagram obtained by operating NFN 1NN.

67



& plot Window M((=](E3

Scatter Diagram

0.

Measured =

e

0.z

Obtained

Figure 3.9-3: Scatter diagram obtained by operating NN + Kp.
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Figure 3.9-4: Scatter diagram obtained by operating NN + Kpf.
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Figure 3.9-5: Scatter diagram obtained by operating METU-NN.
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CHAPTER 4

METU IONOSPHERIC FORECASTING SOFTWARE DESIGN

The knowledge gained through many years of theoretical studies on the
ionospheric forecasting finally produced a mature NN model, which is made
usable over the Web by developing METU-IFS for the first time in this study with
such remarkable features. This chapter discusses the outstanding properties of

this software and the design details.

4.1 Introduction to METU Ionospheric Forecasting Software
(METU-IFS)

Middle East Technical University Ionospheric Forecasting Software (METU-IFS)
has been developed to make usable various neural network and neurofuzzy
models over the Internet with a user friendly interface. Availability of these
models will greatly help the related scientific circles. Designing new neural
network or neurofuzzy architectures, training previously designed ones and
operating previously trained ones are the main features of METU-IFS. Access to
these features is protected with a three level of authorization. According to this
authorization mechanism, users are divided into three groups which are namely
“Power User”, “Researcher” and “Ordinary User”. All the data collected during the
usage of METU-IFS is saved into a database. This data will be received from a
wide variety of the users all over the world while the models presented with this
software are trained or operated. The data may prove useful for improving the

models to be developed in future researches.
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In developing METU-IFS, Java is chosen as a software language, due to platform
independence and powerful object oriented structure of this language. METU-IFS
is designed as a client-server application based on “three-tier” architecture.

Details of design are given in the following sections.

4.2 Web Based Client-Server Applications

METU-IFS is a kind of web based client-server application. Main terminologies to
be seen in the following the sections and the technologies applied in the design
of this software are explained here. Besides that, some advantages of the client-

server applications are also discussed.

In software engineering, a web application is the one delivered to users from a
web server over the World Wide Web. Users can have access to the applications
from any computer connected to the Internet via a secure, password-protected
login page. Though other varieties are possible, a web application is commonly
structured as a three-tiered application. In its most common form, a web
browser or a client software is the first tier, an engine created using some
dynamic web content technology (e.g., CGI, PHP, Java servlets or Active Server
Pages) is the middle tier which is generally called as server, and a database is
the third tier. The client sends requests to the middle tier, which services them
by processing request data, making queries and updates against the database, in
some cases generating a user interface and responding to the client with end
data [61].

Web-based applications are becoming so popular in our daily life that not a single
day we pass without having any connection to them. These applications range
from simple to more sophisticated ones, where millions of dollars in revenue are

made. Below several pros are listed, which make them so popular.

4.2.1 Installation and Maintenance

Installation and maintenance are not complicated. All the intelligence is collected

in a server side application. Once a new version or upgrade is installed on the
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server, all the users can have access to it straight away. There is no need to
upgrade each client PC with all the related migration problems that it might bring
forth. And as the upgrades on the server are only performed by an experienced

professional, the results are more predictable and reliable.

Increasing processor capacity also becomes a far simpler operation. If an
application requires more power to perform tasks, only the server hardware

needs to be upgraded.

4.2.2 Security

The server application which includes all the intelligence will be deployed on a
dedicated secure server, which is monitored and maintained by experienced
server administrators. This is far more effective than monitoring hundreds or
even thousands of client computers, as is the case with new standalone desktop
applications. And besides that, clients are authorized with a password controlled
login mechanism. Thus, the clients may be distributed into several user groups to

restrict accesses to the server side application.

4.2.3 Cost effective development

With web-based applications, users have access to the system via a uniform
environment, the web browser, where there’s no need to test the application on
all possible operating system versions and configurations. This also makes

troubleshooting much easier.

Using internet technologies based on industry-wide standards, it is possible to
achieve a far greater level of interoperability between applications than with
isolated desktop systems. This means that it is possible to rapidly integrate them

within existing infrastructures and platforms.

4.2.4 Accessibility

Unlike traditional applications, web systems are accessible anytime, anywhere,

via a PC with an Internet connection.
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4.3 Software Design

Design of METU-IFS is started with production of a Software Requirements
Specifications (SRS) document in which all the requirements are listed. This SRS
document is given in appendix-A. Following the SRS document, a function point
analysis (or cost estimation analysis) based on COCOMO model is done at the
very beginning of the thesis. The planned software was a very light version of
the software we have actually realized. The analysis has shown that the
estimated software size would be about 6000 LOC (Lines Of Code). The man-
hour required to complete the project is estimated to be 14.7 person-month.
Duration required to complete the project is estimated to be 7 months which
means that, with an average of 2 full time men effort the project duration is 7
months. This function point analysis is given in appendix-B. The realizations are
as follows; size of the realized software is about 10000 LOC, duration is about 12

months with one part time staff.

Generally the development of web-based applications can at least be divided in
two parts such as a content presentation part which is known as client side, and
behind the scene, a data processing part which is known as the server side. This
approach is known as Three-Tier architecture. METU Ionospheric Forecasting

Software (METU-IFS) is also designed based on Three-Tier architecture.

4.3.1 Three-Tier Architecture

The three-tier model is a software architecture and a software design pattern.
The three tier architecture is used when an effectively distributed client/server
design is needed, which provides increased performance, flexibility,
maintainability, reusability, and scalability while hiding the complexity of
distributed processing from the user. These characteristics make three layer
architectures a popular choice for Internet applications and net-centric

information systems.

In computing, three-tier is a client-server architecture in which the user interface,

functional process logic ("business rules") and data storage and data access are

73



developed and maintained as independent modules, most often on separate
platforms. The term "three-tier" or "three-layer", as well as the concept of multi-

tier architectures, seems to have originated from Rational Software or Microsoft.

Apart from the usual advantages of modular software with well defined
interfaces, the three-tier architecture is intended to allow any of the three tiers to
be upgraded or replaced independently as requirements and/or
technology change. For example, an upgrade of desktop operating system from

Microsoft Windows to UNIX would only affect the user interface code.

4.3.2 Client Side

This section discusses the properties of the client side and gives the design
details.

4.3.2.1 Main Properties

The client side of METU-IFS is designed actually as a dummy user interface. No
intelligent processing is done on the client side. That is, algorithms or models,
which are intellectual assets, are not implemented on the client software. In the
software world it is a common problem that executable software files may be
reverse engineered to obtain the source code. And it is relatively easier if a
programming language such as Java is used where the executables run on a
virtual machine. This virtual machine in Java is called Java Runtime Environment

(JRE). By this design our intellectual assets are protected against such attacks.

Client application is mainly designed as graphical user interface (GUI) of the
whole portion of METU-IFS. The User interface is built on runtime by selecting
one of the three predefined graphical user interfaces (GUI). Users are collected
into three groups which are named as “Power User”, “Researcher” and “Ordinary
User”. Since each user has different access rights the GUI is also differs by user

type. GUI design related to each user type will be described later.

Client application mainly runs around a main thread and a connection thread.
While all the GUI related work is handled with main thread, all the
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communication related work is handled with connection thread. The main
advantage of this design is that, user interface is not blocked in case of a
probable communication delay or even communication problems. The main

screen of METU-IFS can be seen in Figure 4.3-1. And the “About” window is in
Figure 4.3-2.

& METU NN lonoshperic Forecast

File Training Tools Help
Connected to Host:  ¥ezkok ’
2l Connect

Server Messages |
***Training Results #+#
Performance : 5.062755630599262ZE-4
Epoch Number : 50
Ararage Epoch Duration @ 2560
Build M Plotter Properties:

Select Mh Structure | Max Error. 0.2

Error Graph =~
Set Training Parameters |
Scale
Train |
Hicle: Plotter
Plot Scatter Diagram |
Status Logs .
Socket created: i‘
contecting to server vozkok:3901
[

Figure 4.3-1: METU-IFS main window.
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== METU lonospheric Forecasting Software
= 00.01.02.150105.1654

Copyright (o) 2005

Pleaze report any bugs to viozkoki@ginail com

Figure 4.3-2: METU-IFS “About” window.

4.3.2.2 Authorization Module

Authorization is the first step of all the rest. When the application is started this
module first reads the server address and port number from a configuration file
and tries to connect to the server. If the connection is successful, a “Login
Window"” (Figure 4.3-4) pops up, otherwise a warning message (Figure 4.3-3) is

displayed that says to the user to check the internet connection.

Can not Conhect to serwver!
Check vour network connection.

(0]

Figure 4.3-3: Connection error window.

After a connection is established with the server the user enters its user name
and the password into the “Login Window” to authorize. This user name and
password will be e-mailed to the user for a first time usage. The first time the
user is connected to the server, a new password is sent to the server which is
generated by using “Ethernet address” (that is also known as Mac address) of
the user’s PC and the given password. For the later connections this password is
saved in the database of METU-IFS. With this authentication mechanism METU-
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IFS Client application will be PC locked and would not be moved to any other PC

without the administrators’ knowledge and permission.

i

d Pleze enter wour user name and password below

U=zer Marme : |yinzknk

Pazzwiord - |7fﬂ'ﬂ'ﬁ"ﬁ'ﬁ'ﬂ'7f|

Login | Cancel

Figure 4.3-4: Login window.

Server sends the user type to the client application, if the user name and
password is verified. As soon as the client receives user type, it builds up the GUI
according to user type. So clients can access the services served by the server as
long as their rights allow. Authorization module with its main methods is
summarized in Table 4.3-1.
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Table 4.3-1: Authorization Module structure

Authorization Module

ConnectServer Method

Call by Main frame

Input Name Input Type Input Source
Server Address string Configuration
Port Number integer File

Output Name Output Type

Connection Status as Boolean

Login Method

Call by Authorization Module

Input Name Input Type Input Source
User Name String User Input
Password String

Output Name Output Type

Authorization Status as Boolean

User Type String

4.3.2.3 Neural Network Builder and Selector Module

This module is used to build or select a neural network architecture. Each of the
three user types has different accesses to this module that is reflected to the GUI
also. A “Power User” user has all the rights of building a new architecture and
selecting a previously built or trained architecture. The GUI for a “Power User” to
select an architecture and to build a new architecture is respectively shown in
Figure 4.3-5 and Figure 4.3-6. “Power User” user can also save its newly built NN

structure.

“Researcher” user has only rights to select a previously built architecture. It can

select a NN architecture whether it is trained or not.

An “Ordinary” user can only select previously trained architectures in order to

operate them.
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& Build Meural Metwork Structure E]

Butiled Mesne |

Previous MHS Mest NS |

Train List of foF2Train

faF2 Tr3
foF2 Tr fhd|

PN Structure Mame: foF 2Train
Mumber Of Inputs: 3 il
Murnber Of Cutputs: 1 -

Inc/Exc Bias: Exc -

Muriber Of Hoayers: 1 -

Fill Humber Of Heurons In Each Hidden Layer

Hiddlen Layers: HLayer! =
Murmber Of Meurons: |4 R

Accept | | Cancel

Figure 4.3-5: NN structure selection window.
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& Build Meural Metwork Structure @

| Select From List

Previous MHS ‘ Mest NS |

Train List of foF2Train

i
£l

PN Structure Mame: fof 2Train
Mumber Of Inputs: E ~
Mutnber Of Outputs: [ i

Inc/Exc Bias: s -

Mutnber Of HLayers: -

Fill Humber Of Heurons In Each Hidden Layer
Hidden Layers: F"—EWEH -

Add Meurons
Mumber Of Meurons: |E -

Accept | Accept & Save DE | Cancel |

Figure 4.3-6: NN structure building window.

The neural network structures list and each structures training results list are
retrieved from database of METU-IFS through the server. Just before this module
is loaded the server is asked to send these lists. Client application receives these
lists and then just lists them to the user. If the user leaves this module by
accepting a NN structure, according to the users’ modifications or selections this

NN structure is saved into a local structure.

4.3.2.4 Training Parameters Settings Module

This module is designed to select training parameters. This module is forbidden
for “Ordinary” type of users. The GUI design for the module is shown in Figure
4.3-7. In this module all the parameters related to the training algorithm are

defined. Training and validation data sets are also entered within this module.

80



& Set Training Parameters E]

Training Params D~ |fof2 |

H-&.ctivation Func: Sigmoid ™

i

Q- Activation Func: Linear =

L]

Training Algorithmm: L

.

Epoch Mumber:

=
=
=

Initizl Momernturn:
Scale Factor:
Target Error;

Bias Walue:

pﬂ

Training Sets: Cther

EBrowvze For Input Set

Erowese For Target Set

[+ Randomization
[ spply Mouyen-widrow Randomization
[+ Walidstion Stop
Brovwze For Walidation nput Set |
Browse For “alidation Target Set |

Accept Cancel

Figure 4.3-7: Training parameters selection window when LM is selected as an
algorithm.
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& Set Training Parameters

Traiting Params 1D |foF2 Tr2
H-Activation Func: Sigrmaid ¥

Q- Activation Func: Linear =

Trainirg Slgarithen: |GD ﬂ |B ﬂ

Epoch Murmber: 1000

Initial Momentum: 0

Learning Rate: U.T"l

Target Error: 0.00Mm

Bias Value: 0.1

Training Sets: Im

EBrowvze For Input Set |
Erowese For Target Set |

[+ Randomization
[ spply Mouyen-widrow Randomization
v Walidation Stop
Brovwze For Walidation nput Set |
Browse For “alidation Target Set |

Accept Cancel

Figure 4.3-8: Training parameters selection window when GD is selected as an
algorithm.

4.3.2.5 Operation Settings Module

In this module operation settings are retrieved from user. Operation set files are
selected by the user. And the name of the file to save operation results is

entered by the user.
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Save Operation Results [

Operation Results File Marme: |fu:uF2_Training_Resurts

Select Operation Inputs |

Select Target Set |

[0].4 Cancel

Figure 4.3-9: Operation settings window.

& Select Target Set @

Loak ir: |[ﬁ Trainingsets ﬂ ﬂ
[ﬁ diabetes m Yalidation_inputs oat
[ﬁ WOR m Walidation_target dat
@ Diabetes xlz

B Train_inputs dai

B Train_inputsReduced dat
B Train_target clat

B Train_targetReduced dat

File name: |Train_inputs.dat CIpen
Files af type:  |ul Files | cancel

Figure 4.3-10: Browser window.

4.3.2.6 Plotter Module

This module is employed to display training results and operation results with
graphs. The training error graph and the scatter diagram can be plotted. Some
sample plots are shown below. A training error graph scaled 0.2 is shown in
Figure 4.3-11, and a scatter diagram is in Figure 4.3-13.

This plotter module is mainly developed by Joseph A. Huwaldt, and distributed as
a free software library. In METU-IFS this library is used by writing some glue
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code. This library was not supporting scatter diagrams. So some maodifications

have been made for scatter diagram plots.

@ Plot Window M(=1E3

Training Error Graph
Dz 1 1 1 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 |
X} -
015
%01
-
0.05 |
I:I L L L W W e e W W W e e e W W e W e W W e W W i e
0 10 20 30 40 =0
X Axis

Figure 4.3-11: A training error graph scaled to 0.2.
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Figure 4.3-12: A training error graph scaled to 0.02.




& Plot Window Q@E

Scatter Diagram
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Figure 4.3-13: A scatter diagram window of METU-IFS.

4.3.3 Server Side

This section describes the properties of the server side.

4.3.3.1 Main Properties

The server side of METU-IFS is actually the core of whole application. All training
algorithms and models are implemented in the server application. When the

server is started running, it listens to the predefined port of the server machine.
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As soon as a client requests a connection, server creates a thread dedicated to
the client, than continues to listen to the port for the other clients. All of the
server services are shared by the threads dedicated to the clients. That means,
when a service is busy for another client, the client should wait it to be
completed.

Although it is not needed, a simple GUI is designed for the server (Figure
4.3-14). The server administrators can use this GUI to monitor, what is going on
the server. Besides, new users can be created by using this GUI.

& METL NN Forecast Server Q@E|

Server Machine Mame :
Yuzkuﬂ

Status:

Server started:
listening on port 3901

Adding Client:
vozkok: 1388

hMessage SequUence:

received redquestiave NN 3cructure into database
received redquestlet Available NN ID for the user
receiwved requestTrain NN

received requestOperate NN

receiwved requestiGet ALwailable NN ID for the user

Listen Define Meww User

Figure 4.3-14: Main window of server.

4.3.3.2 Listener Module

This module runs in an infinite loop and listens to the socket for if any client is
requesting a connection. When a client requests a connection this module
catches it and creates a new thread dedicated to this client. The listener module
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continues to listen to other clients and a dedicated thread is created to take care

of the client.

4.3.3.3 Client Handle Module

This module is created by Listener module as soon as a client requests a
connection. The Client Handler Module runs in an infinite loop as a separated
thread until the connection is closed by the client. This module listens to the
client’s requests and performs requested tasks such as “Authorize”, “Save NN”,
“Train NN”, “"Get NN List”, “Operate NN”, “*Save Training Results” etc.

4.3.3.4 Training Abstract Module

The common methods for “TrainLM” and “TrainGD” are implemented in this
module while the other algorithm specific methods are stored as abstract
methods. The common methods are “BuildNetwork”, “UpdateWeights”,
“RandomizeWeights”, “CalculateActivation”, “CalculateDerivativeOfActivation”,
“FindNumOfWeights”, “SetWeights”, and “OperateWholeSet".

Among these methods, "BuildNetwork” is the most important one. It takes an
“"NNStructure” type parameter which defines the network structure, and builds
the network according to this structure. Since the network information is
independent of training algorithm it is hold in this module. Most of the other
methods implemented in this module are also network structure related methods.
All other training algorithm related methods are implemented in the related

training algorithm module.

4.3.3.4.1 Weight Randomization

This method is called before the training starts. NN weights are randomized in
this module. Two kinds of randomization algorithm are implemented. One of
them is just randomizes the weights uniformly between -1 and 1. The other
randomization algorithm is called as Nguyen-Widrow Randomization algorithm.
Nguyen and Widrow developed a randomization formula by analyzing two-layer
neural networks to improve the learning speed [62]. This randomization
algorithm randomizes the weights depending on the number of neurons in the

hidden layer and the number of inputs. Nguyen-Widrow randomization algorithm
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is used if the related check box in the “Set Training Parameters” window (Figure
4.3-7) is checked.

4.3.3.5 LM Module

In this module Levenberg Marquardt training algorithm is implemented as
described in the famous paper of Hagan (1994) [38]. In training the first thing to
be done is to calculate the Jacobian Matrix which is given in Eq. (2.1.24). The
calculation is done in “calculateJacobianMatrix” method. In this method
“ForwardPass” and “BackwardPass” methods are called in a loop. For each
training set, a forward pass is performed to calculate the error vector, and than a
backward pass operation is performed. In “ForwardPass” each neurons net inputs
and outputs are calculated as in Eq.(2.1.5) and Eq.(2.1.6). In “BackwardPass”
sensitivity factor (Eq.(2.1.16)) of each neuron is calculated by calling
“CalculateSensitivityFactorsLM” method. Then a row of Jacobian matrix is built in

“BackwardPass”. So for each training set, a row of Jacobian matrix is built.

After the completion of calculating Jacobian matrix, the code enters into a loop.
In this loop, performance of the network will be calculated. The loop starts by
calculating the initial performance of the network and updating the weights
temporarily. If the sum of squares of errors, is not decreased in a turn, than
momentum is decreased by beta. For each successful turn (i.e. sum of squares of
errors is decreased) "DW” matrix is updated that is weights are updated as Eq.
(2.1.27). If it's not a successful turn, momentum is decreased by beta and
“try_number” is decremented. If the “try_number” exceeds the MAXTRYNUMBER,
then regardless the turn is successful or not, weights are updated. That is the
tricky point which is not described in the algorithm [38]. If the algorithm is
implemented as it is described, then the program may be blocked sometimes.

Finally, completion of the loop with a successful turn ends the epoch.

In this module there are much more sub methods which are not mentioned here,

but the idea is as described.
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4.3.3.6 GD Module

In this module Backpropagation training algorithm is implemented as described
in the famous paper of Hagan (1994) [38]. The implementation of
Backpropagation is straight forward. Batch and online training issue is also
handled in this module. If “online” training is selected, then after each set
operated, the weights are updated. If “online” training is not selected, the errors
are added incrementally until all sets are operated, and then the weights are
updated as in Eq.(2.1.11).

The main methods of this module are “Train”, “ForwardPass”,
“CalculateSensitivityFactorsGD"”, and “CalculateDeltaWeights”.

4.3.3.7 New User Definition Module

A server administrator can define new users by using this module. This module
has a GUI (Figure 4.3-15) to easily define new users. A user is defined by its

“user name”, “user type” and with a temporary password.

& Define New Liser @
Please enter user information
below

U=ser Mame : |yinzknk

THAFTTTITN
Pazzword |

FTEEHEEFTN
Re-Erter Passwword ; |

Uzer Type : |F‘|:uwerLlser ﬂ

Cancel

Figure 4.3-15: The window to define a new user.
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4.3.4 Database Design
METU-IFS has a database on the server PC to store various data. METU-IFS

database is developed on MS Access Environment. It is assumed that Server
application will run on a MS Windows operating system. METU-IFS Java program
is then connected to this database over JDBC-ODBC Bridge.

In this database different kinds of data are stored in 5 different tables. These

tables are named as follows:

NNSTRUCTURETABLE : Stores neural network structure related data

TRAININGPARAMETERSTABLE : Stores training parameters
TRAININGRESULTSTABLE : Stores training results
WEIGHTSTABLE : Stores weights
USERSINFO : Stores information of users

New entries for NNSTRUCTURETABLE, TRAININGPARAMETERSTABLE and
USERINFO can be stored into the database independently. But
TRAININGRESULTS and WEIGHTSTABLE entries are dependent on other three

tables. Basic design decisions for each table are given in the subsections.

4.3.4.1 USERINFOTABLE

In this table user information is stored. When a new user is defined by
administrator, a new entry is created in this table. To create a new user
UserName, TempPassword and UserType should be entered by administrator.
“isActivated” field is set to “false” at the beginning. As soon as the client is
connected to the server a password sent by client application is set into
Password field besides setting “isActivated” field to “false”. Data types and field

details are shown below in Table 4.3-2.
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Table 4.3-2: USERINFO database table

Field Name Data Type Description

UserName Text A unique User Name.

TempPassword Text Temporary password. 64bit hashed.

Password Text Password. 64 bit hashed.

isActivated Boolean Status flag to hold if user activated or
not.

UserType Text User Type; “PowerUser”,

“OrdinaryUser”, “Researcher”

4.3.4.2 NNSTRUCTURETABLE

In this table neural network structures are stored. Each NN table is labeled with

an ID which is generated on runtime by METU-IFS and a name which is given by

user. Each field of this table, data types and field details are shown below in

Table 4.3-3 and a sample entry is given for this table below in Table 4.3-4.

Table 4.3-3: NNSTRUCTURETABLE database table

Field Name Data Type Description
ID Long Integer | ID number of the entry starting from 1.
NNStName Text NN Structure Name that is optionally

defined by user

TrainingStatus Boolean A status flag, holds if the nn structure is
trained once.

InputNumber Integer

OutputNumber Integer

IncludeBias Boolean

HiddenLayerNumber | Integer

NeuronNumberInHL1 | Integer

NeuronNumberInHL2 | Integer

UserType Text
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Table 4.3-4: A sample entry for NNSTRUCTURETABLE table

NNSTRUCTURETABLE
Neuron
I TrainSta| InputNu |OutputN| Include [HiddenLayer| NeuronNum
NNStName Numbe
D tus mber umber Bias Number berinHL1
rinHL2
1[foF2Train No 8 1 No 1 4 0
2|XOR Yes 2 1 No 1 3 0

4.3.4.3 TRAININGPARAMETERSTABLE

In this table all training parameters are stored for each training. Each field of this

table is described by data types and field names, as shown below in Table 4.3-5.

Table 4.3-5: TRAININGPARAMETERSTABLE database table

Field Name Data Type Description

ID Long Integer | ID number of the entry starting from 1.

Name Text Entry Name that is optionally defined by
user

Algorithm Text "LM" Stands for "Levenberg Marquardt",
"GDB" Stands for "Gradient Descent"
with batch, "GDO" for "Gradient
Descent" with online.

OutputLayerAF Text "LINEAR", "SIGMOID" or "TANSIG"

HiddenLayerAF Text "LINEAR", "SIGMOID" or "TANSIG"

BiasValue Double

EpochNumber Integer

Momentum Double

LearningRate Double Available only when GD* selected.

ScaleFactor Double Available only when LM* selected.

TargetError Double

UseRandAlgorithm Boolean If "yes" Nguyen-Widrow Randomization
algortihm is used.

UseValidationStop Boolean
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4.3.4.4 TRAININGRESULTSTABLE

In this table training results are stored for each training. Each field of this table is

described by data types and field names, as shown below in Table 4.3-6 and a

sample entry is given for this table below in Table 4.3-7.

Table 4.3-6: TRAININGRESULTSTABLE database table

Field Name Data Type Description

ID Long Integer | ID number of the entry starting from 1.

Name Text Entry Name that is optionally defined by
user

NNStructureID Long Integer | Trained NNStructure ID

TrainingParametersID | Long Integer

ID of TrainingParameters used for

training

WeightsID Long Integer | Weights ID related with the training
results

Performance Double Final performance value

EpochNo Integer Last epoch number before training
ended.

StopType Integer 2 - Succeeded, 3 - Validation Stop, 1 -

Epoch No Exceeded

AvarageEpochDuration | Integer

integer value in milliseconds

Table 4.3-7: A sample entry forNNSTRUCTURETABLE table

TRAININGRESULTSTABLE
NNStr | TrainingP . AvarageE
Weigh EpochN |StopTyp
IDf Name |ucture|arametersl Performance pochDurat
tsiD o e
ID D ion
1|foF2_Tr1 1 1|5.6127531E-04 10 3 5573
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4.3.4.5 WEIGHTSTABLE

In this table, weights of each trained neural network are stored. Each field of

this table is described by data types and field names, as shown below in Table

4.3-8.
Table 4.3-8: WEIGHTSTABLE database table
Field Name Data Type Description
ID Long Integer ID number of the entry
starting from 1.
WeightValue Double

WEIGHTSTABLE design is a bit tricky. It is described below with an example.

Assume that we have two training results for two different neural networks; one

of them has 6 weights and other has 4 weights. Then we have to have two

different weight sets. These weight sets are stored in WEIGHTSTABLE as seen in

Table 4.3-9.

Table 4.3-9: WEIGHTSTABLE database table

WEIGHTSTABLE

ID WeightValue

1|-0.802363337698952

1|-0.397536062176062

1| 0.118202085389262

1|-0.164606526196443

1| 0.536329574689754

1| 0.234299343344433

0.039930293493029

0.299384872456362

-0.112343876483726

‘ 0.548938294493828
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4.3.5 Development Environment

This section describes the development environment used while developing
METU-IFS.

4.3.5.1 Software Environment

This application is developed on Borland Java Builder 9.0 Integrated
Development Environment (IDE). The database is developed on MS Office

Access. MS Windows XP is used as an operating system.

4.3.5.2 Hardware Environment

This application is developed on an x386 architecture with an AMD2500 CPU and
512 MBs of Ram.
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CHAPTER 5

CONCLUSION

In this thesis, the previous studies on Ionospheric Forecasting are reviewed,
contributing greatly to our knowledge we need to develop a successful
application of our own. The realization of putting the models into service over the
Internet is demonstrated with this application, the models of which we have
developed successfully and those developed previously. Some security concerns
are also taken into account during the development. That is, when the models
are in service over the Internet, it is ensured that the intellectual assets are
safely kept in a secure environment. A manageable database is developed
besides the application. All the data are stored in that database, enabling us to
further analyze them on various environments such as MS Excel or MATLAB.
Design considerations for both the database and the application are given in
Chapter 4. The application is realized in full conformity with all the requirements
stated in the SRS document (Appendix-A).

The models and neural network algorithms are implemented efficiently. METU-
IFS is verified by comparing it with MATLAB, obtaining even slightly better
results, and thus verifying the correctness of the implementation of the

algorithms as well. This comparison is shown in Chapter 2.

An attempt is made to develop new Ionospheric Forecasting models based on
neurofuzzy systems, and their applicability on ionospheric forecasting is
discussed in Chapter 3. After a review of two neurofuzzy system ASMOD and
ANFIS, METU-NFN system is introduced. METU-NFN is developed as the first

attempt of a neurofuzzy system that has ever been applied to ionospheric
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studies. Operating the developed neurofuzzy systems, reasonable results are
obtained. Some variations of NN and NFN models are compared. The results of
neurofuzzy models developed during this study seem to be less successful and
remain behind the results obtained by NN models at the first glance. However,
considering that the success of a neurofuzzy system is directly dependent on the
interpretation of the physical infrastructure of the problem and considering that
the application of neurofuzzy models to the ionospheric studies is quite young
yet, the results should be accepted as quite successful. The comparison results
showed that neurofuzzy systems are applicable to the ionospheric studies. A little
more detailed study on the physics of the ionosphere to develop a neurofuzzy

system may result in much better performance values.

For further studies, METU-IFS application can be improved by adding new
models in future studies. Moreover, the feedback from users can also contribute
to make further improvement on the user interface. It is also possible to build

online learning capabilities into the models.

Eliminating ineffective inputs while imposing more specified expert knowledge,
METU-NFN models can be improved further. For a very early work seasonal
variations can be studied to add new fuzzy inputs to the METU-NFN model. Then
some other indexes or parameters having an influence on TEC or foF2 should be
studied. Moreover, completely different neurofuzzy models may be developed to
obtain better results. That is the fact that the model developed in this thesis is a

preliminary work.

Although the neural network methods are widely used and produced promising
results, and neurofuzzy methods tend to be developed as a second alternative
with some apparent advantages, the horizons can further be broadened by trying

some other newly developing methods like genetic algorithms.
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1. SCOPE

This document defines the requirements of “Metu NeuroFuzzy Ionospheric
Forecasting System Software”

Project No

Project Name : Metu NeuroFuzzy Ionospheric Forecasting System
Software Project

Software Name: Metu NeuroFuzzy Ionospheric Forecasting System
Software

This software will perform training-validation and operation processes of a fuzzy
neural network (FNN) system for the sake of forecasting most popular parameters
of ionosphere which are TEC and foF2 values.

At the rest of this document the name of this software will be called as “MNFIFS”

2. REFRENCE DOCUMENTS

No Reference Name Document No Rev Date Location

1

3. REQUIREMENTS

3.1. Modes

This Software will have three major operation modes. These modes are;
e User Login Mode

¢ Training and Validation Mode
e  Operation Mode

Users will login to the system by using “User Login Mode” Each user will
have unique ID. There will be three types of users. These types are; Admin
User, Super user, Normal User. An admin user can use all properties of the
software. Super users can define new neural network structures and can train
and validate them. They also can use the Operation Mode. Normal users can
only use the Operation Mode.

In the training mode user will build a neural network architecture by using
selectable architectural elements. After building the network, user will give the
data sets for training and validation. Then software will perform the training
process. By the completion of the training phase the values of the weights will
be finalized and saved in the name of architecture.
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In the operation mode user will select one of the previously trained and

validated neural network structures. Then user will give an input data set which
is arranged for the selected network. The network will calculate an output, by
using this data set.

The software has a secure and a non secure part. The non secure part is the

user interface part. The secure part is the part which contains all neurofuzzy
algorithms and works to generate outputs.

3.2,

Unit Requirements

The software is divided into logical units. Requirements for the software

are grouped in these units.

3.2.1.

1.

Training Mode Requirements

MNFIFS software will enable user to build a fuzzy neural network
structure.

MNFIFS software will restrict the user to build only FeedForward
Networks.

MNFIFS software will enable the user to select number of inputs of the
neural network.

MNFIFS software will restrict the number of inputs with 14 inputs at
most.

MNFIFS software will enable the user to select the number of layers.

MNFIFS software will enable to design a neural network with at most 3
hidden layers and at most 7 neurons in each layer.

MNFIFS software will enable user to select the type of output. These
outputs would represent TEC or foF2.

MNFIFS software will enable to design an architecture with at most one
output at the same time.

MNFIFS software will list all possibly selectable activation functions to
the user.

10. MNFIFS software will list the following activation functions to the user;

METU-EE

e Sigmoidal activation : gla)=1[1+exp (-a)]
e Tansig activation : TANSIG(n)=[2/(1+exp(-2n)]-1
e Pure Linear activation : PURELIN(n)=a.n
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11

12

13
14.
15.

16.

17.

18.

19.

20.

21.

3.2.2.

22.
23.

3.2.3.

24.

25.

26.

27.

METU-EE
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. MNFIFS software will enable the user to select one of the listed

activation functions.

. MNFIFS software will enable the user to select different activation

functions for each layer.

. MNFIFS software will use supervised learning algorithm for training.

MNFIFS software will need the data for training.

MNFIFS software will enable the user to enter the training data in the
text format.

MNFIFS software will accept only predefined formats, which is defined
in part “3.5. External Data Requirements”, for data entry.

MNFIFS software will accept only correctly arranged data sets for the
constructed neural network.

MNFIFS software will adjust the weights between the neurons by using
Backpropagation rule with Levenberg Marquartd Learning algorithm.

MNFIFS software will use the epoch number which is entered by user in
an edit box.

MNFIFS software will use the initial learning rate which is entered by
user in an edit box.

MNFIFS software will enable the user to initialize the weights.

Validation Requirements

MNFIFES software will enable the user to enter a validation data set.

MNFIFES software will automatically stop training when the validation
error begins rising while training error is decreasing.

Operation Mode Requirements

MNFIFES software will enable the user to select one of the previously
trained and validated Fuzzy Neural Networks.

MNFIFS software will list available inputs for the selected
architecture.

MNFIFES software will operate with the inputs which will be entered
by the user.

MNEFIFES software will calculate the output by using Backpropagation
Algorithm.

110

01/12/03




28.

3.24.

29.

30.

3.2.5.

31.

32.
33.
34.

35.

36.

3.3.

37.

3.4.

38.

39.

40.

41.
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MNFIFS software will calculate a single output for each neural
network architecture.

User Interface Requirements

MNFIFES software will have a user friendly GUI based on Java Swing
class.

MNFIFES software GUI drafts are explained in the attachments of this
document (6.2).

Database Requirements

MNFIFS software will access to a database which is defined in the
attachments of this document in “Database Structure”.

MNFIFES software will save user information in a database.
MNFIFS software will recall user information from the database.

MNFIFS software will save FNN architectures in a database with the
architect ID.

MNFIFES software will save completed and uncompleted architectures
in separate tables.

MNFIES software will save results of operations related with the used
architecture and with inputs and operator ID, in a table.

EXTERNAL INTERFACE REQUIREMENTS

MNFIFS software user interface side will get training and validation
data files.

INTERNAL INTERFACE REQUIREMENTS

MNFIFS software will have a communication interface between user
interface side and server side.

MNFIFS software user interface side and server side will
communicate by using TCP/IP protocol.

MNFIFES software user interface side will send user login information
to server side.

MNFIFS software user interface side will send the built FNN
architecture data to the server side.
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42.

43.

44.

45.

46.

3.5.

47.
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MNFIFES software user interface side will send a data file for training
and validation purposes to the server side.

MNFIFS software user interface side will send inputs to for the
selected FNN architecture for operation to the server side.

MNFIFS software server side will send user information to the user
interface side.

MNFIFES software server side will send the IDs of the trained and non
trained FNN architectures.

MNFIFS software server side will send the obtained results after a
forecasting operation.

INTERNAL DATA REQUIREMENTS

MNEFIFES software will define a FNN by the following data structure

Architecture of a FNN

Item Name Data Type Comment
Name of The FNN String

Number Of Inputs Java Integer Defined as “n”
Number Of Hidden Layers Java Integer

Number Of Hidden Layers Java Integer

Number Of neurons in Hidden

Layer-1 Java Integer

Java Integer

Number Of neurons in Hidden
e Java Integer
Layer “n

Activation Function Code For

Input Layer
Activation Function Code For 0:Sigmoid
Output Layer Enumerated .

b 1:Tansig
Activation Function Code For Number '
Hidden Layer 1 2:Linear

Activation Function Code For
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Hidden Layer “n”

End Of File

3.6. EXTERNAL DATA REQUIREMENTS

48.

MNFIFES software will accept training and validation data set in the

following format.

Data Set File Header

Name of the Item

Data Type

Comment

Number of inputs

Java Integer

Input 1 Type

O:character

Enumerated .

b 1:decimal number

Input n Type number
2:floating number
Output Type
End of Header
Name of the Item Data Type Comment
Input 1 Value As defined in
header.

Input 2 Value

Input n Value

Output Value

3.7. SECURITY REQUIREMENTS

49.

50.

METU-EE

MNFIFS software will have two separately executable file, one of
them will be responsible for user interface and the other will be

responsible for algorithms.

MNFIFES software algorithm part will be secure in the manner of

source code accessibility.
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3.8. COMPUTER RESOURCES REQUIREMENTS

3.8.1.

Computer Resources Usage Requirements

51. MNFIFES software will work on any platform

52.  MNFIFS software will require the latest java runtime environment and
virtual machine be installed on the target system.

3.8.2.

Communication Requirements

53. MNFIFS software will communicate by using TCP/IP protocol.
54. MNFIFS software will need TCP/IP connection.

3.9. LOGISTIC REQUIREMENTS

55. MNFIFS software will have an installation program for user interface

part.

56. MNFIFS software installation program will be downloaded over

internet.

3.10. OTHER REQUIREMENTS

3.11. PRIORITIES OF REQUIREMENTS

Every requirement has the same priority.

4. OBSERVABILITY AND EVALUATION TECHNIQUES

Every unit of the software will be tested by the designer in the manner of
unit testing. After integration of each tested unit the whole system will be tested
by testers. In this phase a black box testing method will be used. In this black box
test every requirement will be observed and tested.

S. ABBREVITIONS

MNFIFS
FNN
TEC
foF2

METU-EE

Metu NeuroFuzzy lonospheric Forecasting System Software
Fuzzy Neural Network
Total Electron Content

Critical Frequency of F2 Layer
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6. ATTACHMENTS

6.1. Database Structure

° [TJislgfi;st Table: This table will hold all the user with their Access rights
User Name Access Right Password
yozkok Admin etttk
esenalp Super User EF LT
userx Operator sesfesteoskok

e Cooked Architectures Table: This table will hold NN architectures which
have been trained and ready to operate. Each entry in this table will have
an architecture name, the user name or ID who build this architecture.

e Active Architectures Table: This table will hold the NN architecture which
is already in development phase. The developer name and architecture
name will be hold in the table.

e QOperation results tables: When architecture is signed as cooked by the
developer of the architecture, a results table will be opened for this
architecture. In this operation phase the selected architectures results table
will be filled with the inputs, ID of the operator, date and time of the
operation and the obtained result.

Operator’s
user Name

Input 1

Input 2

Input n | Date Time

foF2
TEC

or

METU-EE
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6.2. User Interface

In this part user interface of MNFIFS software will be described. In the

descriptions user interface windows will be pictured, but these windows may
change later.

Login Interface: Every user first of all has to login to the system to use
the software. Every user name has to be defined on the database.

x|

Please Enter rour User Mame and Pazzsword

Izer Marme: I.'r"I'Zl‘UI'k

Fassword: Immmi

OF. I Cahcel |

Main Menu: After entering a valid password user will drop into the main
menu. This menu will dynamically be organized related with the user type which
has dropped into. For an administrator every item in this window will be
accessible. User will be routed into other menus related with the choice done in
this menu. There will be four selections in this menu. These are listed as follows;

¢ Build a new FNN

¢ Continue with a previous FNN
e Train a FNN
e Forecasting (Operate a FNN)

By the selections in this menu user will be faced with the following
menus.

Build a new FNN : When the user selects this item in the main menu, he
will drop into this menu. This item will be accessible for only super users and
administrators. In this menu user can build a new FNN and can save this network
into the database with a name. Later these FNNs can be called for training and
operation if trained. The user interface properties for this menu are listed below.

e Enter Number of Inputs

e Enter Number of Hidden Layers
e Enter Number of neurons in each Hidden Layer.

e Define Output Type (TEC, foF2)

METU-EE 116
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e Select Activation Function For each layer.

e Save the architecture with a unique name.

Build New FNM |

Mame of the Architecture; IMFNN

Murnber OF [nputs: |-|-|

Mumber OF Hidden Layers: |1

Select Output Type: Ifu:uF2 j

— Hidden Layer Properties

Select Layer : ILa_I,Ier-1 j

Select Activation Funchion: IBipu:uIar Sigrnoid j

Select Mumnber of Meurons: |?1

Save |

Save I Cancel |

Train a FNN: This item will be accessible for only super users and
administrators. In this menu the user will select one of the previously built FNNs
from a list. After the FNN selection the user will import an appropriate training
and validation data files. Then training parameters such as epoch number, desired
error, and initial learning rate will be determined by the user. Basic elements of
this menu are listed below;

e Select an Architecture

Import Training Data File

¢ Import Validation Data File
e Set Initial Learning rate

e Set Epoch Number

o Set Desired Error
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x
Select &n Architecture: IMFNN ]v

Epoch Mumber: 200

Initial Learning R ate: IEI.E
T arget Errar: IEI.EI1|

Training Data: |rpaort |
Y alidation D ata; |rpaort |

Start Training I Cloze |

Forecasting (Operation) Menu: There will not be any restriction for the
accessibility of this menu. Every user may use this property of the software. But
there should be at least one trained FNN architecture in the system. In this menu
the user first of all will select one of the previously trained FNNs. Then the input
types for this architecture will be displayed. Then the user will fill up all these
inputs with appropriate values. And finally the operation will be started. After the
completion of the operation the obtained results will be displayed and also this
result will be stored into the database with the inputs for this result and by relating
with the name of the FNN.

e Select a previously trained FNN

e Enter all input values

e Start Operation

6.3. Use Cases Message Sequence Charts

Building a new FNN:
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MSC MNFIFSBuild

User MNFIFS

Enter User Name and Password.

e

Select Build New FNN Identify User

 ;

Open Build New FNN Window

-

Enter Name Of the Architecture

Enter Number Of Inputs

e

Enter Number Of Hidden Layers

 »

Fill Hidden Layer Properties Combo Box

—
i}

Select Output Type

 ;

Select The Activation Funcs and Number of inputs for each hidden layer

Save every selection

Write hidden layer properties to temp data structure

Save the Architecture

Connect to server

if architecture name is not uniqueJ 1

Send an error message to rename the architecture
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User

MNFIFS

Write the new archite

cture to the Database

Defining a new architecture is completed

METU-EE

Train A FNN:
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MSC TrainFNN

USER MNFIFS
Enter User Name and Password.

-

Identify User

Select Train a FNN

 »

Open Train New FNN Window

Select one of the previous Architectures

 »

Enter epoch number

 ;

Enter Initial Learning Rate

 »

Enter Target Error

 ;

Import Training Data

 »

Check Data Format

If illelgal 1

Send an Error Message

4/ _
else) 2

Save the data file to send server
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USER MNFIFS

Import Validation Data

 »

Check Data Format

If illelgal 1

Send an Error Message

o e

elsel

Save the data file to send server

Press "Start Training" Button

 ;

Perform Training

METU-EE

Operate

a FNN:
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MSC OperationMSC

User

Enter User Name and Password.

m——

MNFIFS

Identif

y User

Select Operation

Open Operation Window

Select a FNN

e

Display Input types

Enter inputs

 ;

Do a sanity check

for entered inputs

return a message to show the status

| memeenmies

Press "Start Operation" Button

 »

Perform Operation

Write the result and all inputs
to the database

Display The result

o e

METU-EE
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calculated according to the basic COCOMO model.

1.

1.1. Total Unadjusted Function Point Calculation

1.1.1. Unadjusted Function Point Calculation for Server

APPENDIX B

DURATION AND EFFORT ESTIMATION OF METU-IFS

This document presents the estimation of duration and effort for the
METU-IFS software. As a first step the lines of code should be estimated. For this
purpose, all Function Point Analysis (FPA) will be done firstly. Then the
Unadjusted Function Point Analysis (UFPA) will be done in the second part. At
the third part Lines Of Code (LOC) will be estimated by using the results of the
previous analysis. And finally at the fourth part, effort and duration will be

Function Point Analysis

1.1.1.1 External Inputs Of Server

No | Input Name From Weighting
1 | Neural Net Structure Client Avarage

2 | Training and Validation Data Client Simple

3 | NN inputs for forecasting Client Simple

4 | User Login Inputs Client Simple
1.1.1.2 External Outputs of Server

No | Output Name To Weighting
1 | Previous NN Structures Client Avarage
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2 | Types of Activation functions Client Simple
3 | Operation Result Client Simple
4 | Connection Type Client Simple
1.1.1.3 File Storage
No | File Info From Weighting
2 | NN Structures Client Simple
4 | Trainning and Validation Data files Client Simple
1.1.1.4 External SW Interfaces
No | Interface Name From Weighting
1 | TCP/IP Data transfer interface (Between clients and | Clients Simple
server)
1.1.1.5 External Query Types
No | Query Type Weighting
1 | User Types Simple
2 | NN Structures Simple
3 | Operation Results Simple
Weighting Factor Weighting |
xiis;z:;ent Simple | Average | Complex Total SJ]A|C
External Inputs 3 1 0 13 3141 6
External Outputs 3 1 0 17 41517
File Storage 2 0 0 14 7110] 15
e L T sl
External Inquiries 3 0 0 9 3]4] 6
Count Total 58
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Table-1 Unadjusted function points for server

Total unadjusted function points for server, came out to be 58.

1.1.2. Unadjusted Function Point Calculation for Client

1.1.2.1. External Inputs Of Client

No | Input Name From Weighting
1 | Login Input User Simple

2 | Main Menu User Simple

3 | Building a new NN Structure User Simple

4 | Training inputs User Simple

5 | Inputs for Forecasting window User Simple
1.1.2.2. External Outputs

No | Output Name To Weighting
2 | Activation functions combo box User Simple

3 | Previous NNs User Simple

4 | Operation Results User Simple

5 | Trained neural nets combo box User Simple
1.1.2.3. File Storage

No | File Info From Weighting
1 | New NNs structure User Simple

2 | NN inputs for operation User Simple

3 | Training and validation file sets User Simple
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1.1.2.4. External SW Interfaces

No | Interface Name With Weighting
1 | TCP/IP Data transfer interface (Between clients and | Server Simple
server)
2 | User Interface User Simple
1.1.2.5. External Query Types
No query
Weighting Factor Weighting |
Measurement Simple | Average | Complex Total SJ]A|C
[Parameter
External Inputs 5 0 0 15 31416
External Outputs 4 0 0 16 41517
File Storage 3 0 0 21 7 110] 15
External SWi 2 0 0 10 517110
Interfaces
External Inquiries 0 0 0 0 314] 6
Count Total 62
Table-2 Unadjusted function points for client

Total unadjusted function points for client came out to be 62.

2. Adjusted Function Point Calculation

The function point count is adjusted for the complexity of the software by
assessing each of the answers to the following questions on a scale of O to 5.

127




F; value

None 0

Slightly 1

Present 2

Medium level |3

Important 4

Vital 5

Table-3 Questions and values

1. Data Communications Present 2
2. Distributed Processing Slightly 1
3. Performance Requirements Present 2
4. Operational Configuration Load Slightly 1
5. Transaction Rate None 0
6. Online Data Input Present 2
7. End User Quality Medium level 3
8. Online File Update Present 2
9. Algorithmic Complexity Present 2
10. Reusability Slightly 1
11. Ease of Installation Slightly 1
12. Operational Ease Present 2
13. Multi-site System None 0
14. Maintainability Slightly 1

Table 4 Questions and answers for adjusted function point calculation

These 14 complexity adjustment values are summed to give the value of X (F).

X(Fp=20

Adjusted Function points = Count Total * (0.65 + 0.01 * X (F}))
=(58+62)*0.67 = 80,4
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3. Lines of Code Estimation

The total adjusted function points came out to be 80,4 for the MNFIFS
application(including both server and client). For estimating lines of code the
Table 5 below can be used.

Language LOC/FP (Low & Jeffery 1990)

C 150
C++ 80
Java 70
C# 75

Table-5 Estimated LOC for each FP.

Language LOC/FP (Low & Jeffery 1990) LOC for WB

C 150 12060
C++ 80 6432
Java 70 5628
C# 75 6030
Adjusted

Ep 80,4

Table-6 LOC calculation.

For Java Software language, the results are came up to be 5628 LOC according to
Low & Jeffery 1990.

4. Effort and Duration Estimation

In this part effort and duration will be estimated according to Basic
COCOMO model by using the lines of code which has been estimated at the
previous part.

For the Basic COCOMO model effort and duration are calculated as the
following way;

E= ab(KLOC)b,3 E: Effort (person-month)
D= cb(E)db D: Duration (months)

KLOC: estimated thousand lines of codes
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The constants are as following;

ap | by cp | dp

Organic 2411.05|25(0.38

Semi-detached | 3.0 | 1.12 | 2.5 | 0.35

Embedded 3612 25032

For MNFIFS Software effort and duration will be calculated by using the
constants for Organic type of software. Because the software will be desined and
implemented in an object oriented environment.

So the Effort and Duration cames out as following;

E = 2.4%(5,628)"" = 14,7 (person-month)
D = 2.5%(14,7)"** = 6,94 months
Avarage staffing = 14.7(person — months)/6.94(months) = 2.11 ~2

This means that with 2 full time person each month the duration will be
about 7 months.
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