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ABSTRACT 

 

UNCONSTRAINED MOTION 
AND 

CONSTRAINED FORCE AND MOTION 
CONTROL OF 

ROBOTS WITH FLEXIBLE LINKS 
 

 

Kilicaslan, Sinan 

Ph.D., Department of Mechanical Engineering 

Supervisor : Prof. Dr. S. Kemal Ider 

Co-Supervisor : Prof. Dr. M. Kemal Ozgoren 

 

February 2005, 412 pages 

 

 

New control methods are developed for the unconstrained motion and constrained 

force and motion control of flexible robots. The dynamic equations of the flexible 

robots are partitioned as pseudostatic equilibrium equations and deviations from 

them. The pseudostatic equilibrium considered here is defined as a hypothetical 

state where the tip point variables have their desired values while the modal 

variables are instantaneously constant. Then, the control torques for the 

pseudostatic equilibrium and for the stabilization of the deviation equations are 

formed in terms of tip point coordinates, modal variables and contact force 

components. The performances of the proposed methods are illustrated on a planar 

two-link robot and on a spatial three-link robot. Unmodeled dynamics and 

measurement noises are also taken into consideration. Performance of the 

proposed motion control method is compared with the computed torque method. 

 

 



 v 
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ÖZ 

 

ESNEK KOLLU ROBOTLARIN 
SINIRLANDIRILMAMIŞ HAREKET 

VE 
SINIRLANDIRILMIŞ KUVVET VE HAREKET 

DENETİMİ 
 

 

Kılıçaslan, Sinan 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. S. Kemal İder 

Ortak Tez Yöneticisi : Prof. Dr. M. Kemal Özgören 

 

Şubat 2005, 412 sayfa 

 

 

Esnek robotların sınırlandırılmamış hareket ve sınırlandırılmış kuvvet ve hareket 

denetimi için yeni denetim yöntemleri geliştirilmiştir. Dinamik denklemler sanal 

statik denge denklemleri ve bunlardan sapma denklemleri olarak ayrıştırılmıştır. 

Burada gözönüne alınan sanal statik denge, uç nokta değişkenlerinin istenen 

değerleri aldığı, bu sırada da modal değişkenlerin anlık sabit olduğu varsayımsal 

bir durumdur. Sonra, denetim torkları sanal statik denge ve sapma denklemlerinin 

kararlılığı için uç nokta koordinatları, modal değişkenler ve temas kuvveti 

bileşenleri cinsinden oluşturulmuştur. Önerilen yöntemlerin başarıları düzlemsel 

iki kollu bir esnek robot ve uzaysal üç kollu bir esnek robot üzerinde 

gösterilmiştir. Modellenmemiş dinamik ve ölçüm gürültüleri de gözönüne 

alınmıştır. Önerilen hareket denetim metodunun başarısı hesaplanmış torklar 

metodu ile karşılaştırılmıştır. 

 

 



 vii

Anahtar Kelimeler: Hareket Denetimi, Yörünge İzleme Denetimi, Kuvvet ve 

Hareket Denetimi, Esnek Robotlar, Esnek Manipulatörler, Sanal Statik Dinamik 

Denklemler, Modellenmemiş Dinamik, Ölçüm Gürültüleri. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Conventional industrial manipulators are usually made stiff and bulky to avoid 

vibrations and hence to achieve precision in motion control. Several 

considerations such as lower arm cost, higher motion speeds, higher accuracy in 

operations, better energy efficiency, safer operation and improved mobility 

resulted in a new generation of manipulators with lightweight, flexible links. 

 

Robot manipulators with flexible links include lightweight manipulators and/or 

large articulated structures that are encountered in a variety of conventional and 

nonconventional settings. Very long arms needed for accessing hostile 

environments such as nuclear sites, underground waste deposits, deep sea, space, 

etc. or automated crane devices for building construction can be considered as 

actual applications in the real life. The ultimate challenge is the design of 

mechanical arms made of light materials that are suitable for complex industrial 

manipulation tasks, such as pick-and-place, arc welding, spray painting, laser 

cutting, grinding, deburring, assembly, or surface finishing. 

 

In complex industrial tasks (e.g., grinding, deburring, assembly) robots usually 

operate in a constrained environment. Good control performance in these 

applications can hardly be achieved using conventional point-to-point control 

strategies. Thus, simultaneous motion tracking and force control are required in 

this type of applications. 

 

Robot manipulators will play an important role in future space missions as the 

important demand for low-energy consumption and limitation of carrying 

capacity of space rockets, links of the space manipulators, as well as other space 
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structures, are required to be light. However, as a result of the elasticity of the 

arms and the structures, undesirable low frequency vibrations may occur. In the 

case of constructing large space structures, for example, a space station, using 

space robot manipulators, it is necessary to control not only the position and 

vibration of the manipulators but also the force exerted by the hand on the 

working surface. 

 

Robot arms with flexible links have an infinite number of degrees of freedom. A 

reduced-order model, which is still highly nonlinear and complex, is typically 

used for purposes of simulation and controller design. The inherent difficulty of 

the control problem can be ascribed to the fact that the number of controlled 

variables is strictly less than the number of mechanical degrees of freedom. 

Moreover, the dynamic relation between the input torques of the joint actuators 

and the tip position reveals a behavior which is the nonlinear counterpart of the 

nonminimum phase phenomenon of linear systems. Hence, inversion-based 

control strategies would normally lead to instability in the closed loop. This is 

shown on a simple example in the next section. 

 

A brief review of the studies related to the motion control and force and motion 

control of robots with flexible links is given in sections 1.2 and 1.3, respectively. 

Discussions on these studies are presented in section 1.4. 

 

 

1.1 An Example to Nonminimum Phase Systems 

 

To show that the trajectory tracking of the manipulator is non-minimum phase, 

distributed parameter model of a flexible single link manipulator in translational 

motion is taken into consideration. 
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Figure 1.1 Distributed parameter model of the flexible single link manipulator in 

translational motion. 

 

Figure 1.1 represents the distributed parameter model of the manipulator. In the 

figure, m is the mass, L is the length, F is the applied force, ζ is the translational 

displacement of the beam, u  is the deformation displacement vector of point P. 

The first fixed free bending mode will be used here to represent the vibration of 

the beam. The dynamic equations of the model have the form 

 

fKyyM ====++++&&  (1.1) 

 

where M is the generalized mass matrix, K is the generalized stiffness matrix, y is 

the vector of generalized coordinates, f is the vector of generalized forces and 

they are given as 
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where η is the elastic (modal) coordinate of the link. The dynamic equations of 

the manipulator can be written as 
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If the Laplace transform of the Equations (1.6) and (1.7) are taken, the following 

equations are obtained as 
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From Equation (1.8), η(s) can be written as 
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If Equation (1.10) is substituted into Equation (1.9) and the necessary 

arrangements are done, the following equation is obtained 
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Equation (1.11) can be written as 
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If Equation (1.11) is substituted into Equation (1.10) one obtains the following 

equation 

 









+

−
=

η

3

2

L

EI
92.47ms5.1

1

)s(F

)s(
 (1.13) 

 

The tip position of the manipulator defined in the base frame can be written as 

 

)L(ux +ζ=  (1.14) 

 

which can be expressed as 

 

η+ζ= )L(Yx  (1.15) 

 

where Y(L) is shape function matrix of the link evaluated at the end of the link. If 

the first fixed-free bending mode shape function is evaluated at the end of the 

link, Y(L) is found as 6.075. Therefore, Equation (1.15) becomes 

 

η+ζ= 075.6x  (1.16) 

 

If Equations (1.12) and (1.13) are substituted into Equation (1.16), Equation 

(1.16) becomes 
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Equation (1.17) represents the forward dynamics transfer function of the 

manipulator. In other words, for given force input, the end position of the 

manipulator is found. It is seen from the equation that forward dynamics transfer 

function has a positive zero. When the inverse dynamics of this manipulator is 

taken into consideration, the input becomes the desired end point trajectory and 

the output becomes the force that satisfies this trajectory. In other words, the 

forward dynamics transfer function is reversed in the case of inverse dynamics. 

Therefore, in this case, positive zero of the forward dynamics becomes the 

positive pole of inverse dynamics. Thus, inverse dynamics problem becomes 

unstable. This means that trajectory tracking control of flexible link manipulator 

has non-minimum phase property. 

 

 

1.2 Literature Review on Motion Control of Flexible Robots 

 

Some researchers considered point-to-point position control or regulation of single 

link and multilink robots in which the main task is to suppress the residue 

vibrations. It was shown that independent joint control is stable for positioning and 

that stability does not depend on explicitly on the system parameters. However it 

can be shown that when the trajectory tracking is concerned independent joint 

control may become unstable. In many applications, however, tip trajectory 

tracking is required. Tip tracking control of flexible link manipulators has the 

difficulty of the non-minimum phase property due to the finite speed of 

propagation of the mechanical wave along the links since the joint actuators are 

non-collocated. In the literature, various modeling and controller design schemes 

have been proposed for motion of the manipulator. A brief review of them is given 

in the following paragraphs. 

 

Goldenberg and Rakhsha [1] utilized the computed torque technique to control a 

single-link flexible robot. It was assumed that the arm could rotate in a horizontal 

plane and the link flexibility produced in-plane bending. The single flexible link 

was modeled as a continuous beam by using Euler-Bernoulli formulation with 

small deflections (relative to length) and all terms involving the square of joint 
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variable were neglected. The technique was implemented by calculating, for a 

given trajectory, the nominal torque from the rigid body model of the robot. The 

technique provided feedforward compensation which introduces an additional 

zero of the closed-loop system transfer function. Using a PD feedback 

compensator in addition to the feedforward one almost pole-zero cancellation of 

the dominant closed-loop poles of the system was done. Luca and Siciliano [2] 

considered the trajectory tracking control problem for a one link flexible arm 

described by a nonlinear model. The arm was assumed to move on a horizontal 

plane. The link was modeled as Euler-Bernoulli beam. Two system outputs were 

chosen; namely, the joint angle and the angular position of a suitable point along 

the link. Based on the input-output inversion algorithm, a state-feedback control 

law was designed that enabled tracking of any smooth trajectory specified for the 

output. In the closed loop an unobservable dynamics naturally arised, related to 

the variables describing the arm's distributed flexibility. Kwon and Book [3] 

addressed inverse dynamic trajectory planning issues of a single-link flexible 

manipulator. To derive the equations of motion of the manipulator, they described 

the position of a point on the beam with virtual rigid-body motion and deflection 

with respect to the rigid-body coordinate by using Euler-Bernoulli beam model. 

The virtual rigid body motion was represented by the motion of the moving 

coordinate attached to the beam. The inverse dynamic equation of a single-link 

flexible manipulator was solved in the time-domain. The inverse dynamic method 

calculated the feedforward torque and the trajectories of all state variables that did 

not excite structural vibrations for a given end-point trajectory. Zhu et al. [4] 

studied tip tracking control of a single-link flexible robot. The controller 

investigated was of a two-loop PD type, which was deduced from a control 

approach originally developed for elastic joint robots. A very simple model, with 

the flexible link of the robot being lumped to a spring-mass unit, was employed 

for the controller design. Bounded Input and Bounded Output (BIBO) stable tip 

tracking was obtained. Parameter uncertainty was also taken into consideration. 

The design of feedforward controllers to control the position of single-link 

flexible arms was developed by Feliu and Rattan [5]. The dynamic inversion of 

the single-link flexible arm was studied from a discrete point of view. A method 

to obtain a feedforward controller was developed, even in the case when the 
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system transfer function was of non-minimum phase. Ge et al. [6] derived a 

nonlinear dynamic model of a flexible manipulator through finite element method 

associated with Lagrange approach. The single link flexible manipulator was 

modeled as an Euler-Bernoulli beam driven by a motor at its base and with a point 

mass tip payload. The generalized coordinates of the system were selected to be 

the displacements and rotations of the nodes on the considered flexible beam, and 

such that a state space model was obtained. Based on this model, a nonlinear 

feedback controller was developed to control the tip position. Yeung and Chen [7] 

designed the controller of a single-link flexible manipulator moving in a vertical plane. 

The equations of the manipulator were obtained by using Lagrangian formulation. The 

controller was designed in two steps: linearization of the rigid part of its dynamic 

equation, and stabilization of the overall linearized system with conventional linear 

techniques. For the linearization, they employed the sliding-mode technique to arrive 

at a desired linear equation. To avoid chatterings, a sliding layer function was used 

to replace the sign function. In the stabilization step, PD/PID compensations were 

used to stabilize the system. The parameters of the PD/PID compensators were 

determined from pole placement. The locations of the poles have to be carefully 

selected in order to arrive at adequate insensitivity against payload variations. A 

controller design for controlling a flexible one link manipulator based on variable 

structure theory was presented by Qian and Ma [8]. The link was assumed to 

move on a horizontal plane and governing partial differential equation was 

obtained by applying Hamilton’s principle. The discontinuous control law based 

on the variable structure system theory for the non-collocated manipulator tip 

position control was designed. The position state variables were obtained directly 

from the inversion of the output submatrix multiplied by the sensor 

measurements. The velocity state variables were estimated through decoupled 

estimators -a separate first-order observer for each of the system's modes under 

consideration. 

 

Luca et al. [9] gave a framework for computing the torques that were needed for 

moving a flexible arm along a given trajectory. This torque computation required a 

dynamic generator system and could be accomplished both in an open- or in a 

closed-loop fashion. In the open-loop case, the dynamic generator was the full or 
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reduced order inverse system associated to the arm dynamics and outputs. In order 

to successfully invert the arm dynamics, the torque generator should be a stable 

system. The stability properties depended on the chosen system output, that was on 

the robot variables (e.g., joint or end effector) to be controlled. The same inversion 

technique could be applied for closed-loop trajectory control of flexible robots. A 

simple nonlinear dynamic model of a one link flexible arm was used to illustrate 

the control strategies. A technique was presented for solving the inverse dynamics 

and kinematics of multilink flexible robots by Bayo et al. [10]. The proposed 

method found the joint torques necessary to produce a specified end effector 

motion. Since the inverse dynamic problem in elastic manipulators was closely 

coupled to the inverse kinematic problem, the solution of the first also rendered the 

displacements and rotations at any point of the manipulator, including the joints. 

The Timoshenko beam theory was used to model the elastic characteristics, and 

the resulting equations of motion were discretized using the finite element method. 

An iterative solution scheme was proposed that relies on local linearization of the 

problem. The solution of each linearization was carried out in the frequency 

domain. A two link flexible manipulator which was on a horizontal plane was used 

as an example. Experimental study was also conducted. The inverse dynamics of 

robot manipulators based on flexible arm models were also considered by Asada et 

al. [11]. Actuator torques required for a flexible arm to track a given trajectory 

were formulated and computed by using special moving coordinate systems, called 

virtual rigid link coordinates. Dynamic deformations of the flexible arm can be 

represented in a simple and compact form with use of the virtual coordinate 

systems. They focused on the feedforward compensation based on inverse 

dynamics of flexible arm models. The formulation was applied to a two link arm 

which was constrained in a horizontal plane. Xi [12] combined the kinematics of a 

flexible link manipulator with its dynamics. Based on this combination, a 

numerical method was proposed for analyzing the inverse dynamics of a spatial 

two link flexible manipulator. The manipulator was modeled as Euler-Bernoulli 

beam. A linearized solution of flexible manipulator dynamics was demonstrated by 

Gawronski et al. [13]. Based on this approach, the inverse dynamics problem was 

defined and solved. The forward compensation torques were determined, with the 

joint angles in the flexible body configuration were matched to the angles in the 
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rigid body configuration. The combined feedforward compensation and feedback 

control was used. A two link flexible manipulator was considered as an example. 

Moallem et al. [14] presented an inverse dynamics control strategy for a class of 

multilink structurally flexible manipulators. This was done by defining new 

outputs near the end points of the arms as well as by augmenting the control inputs 

by terms that ensure stable operation of the closed loop system under specific 

conditions. The controller was designed in a two-step process. First, an output was 

defined such that the zero dynamics of the original system were stabilized. Next, 

the control input was modified such that stable asymptotic tracking of the new 

output or approximate tracking of the actual output might be obtained. This was 

illustrated for the case of single link and two link flexible manipulators. 

 

A rigid and flexible motion controller based on integral plus state feedback 

controller was derived by Chalhoub and Ulsoy [15]. In the controller, they 

introduced additional damping into the flexible motion. This was done by using 

additional sensors to measure the compliant link vibrations and fed them back to 

the controller. The performance of the controller was tested on a dynamic model 

for a spherical coordinate two link robot arm which had two revolute joints and 

one prismatic joint. The last link of the robot only was considered to be flexible. 

Baruh and Tadikonda [16] presented an approach similar to the component mode 

and substructure synthesis methods to derive the equations of motion, and both 

open loop and closed loop control of the manipulator arm considered, where in the 

latter the feedback quantities were calculated by using the output of spatially 

distributed sensors. A two link manipulator that had three degree of freedom was 

taken as an illustration. Carusone and D’Eleuterio [17] presented a feedback 

control strategy for the end effector position and orientation tracking of 

structurally flexible manipulators free of external forces as in space applications. 

The fully feedback-driven approach employed an augmented dynamical 

description in which derivatives of the control inputs were included in the state. 

The feedback law used gain scheduling of a series of steady-state regulators 

derived by considering the manipulator at intermediate (nominally rigid and 

stationary) configurations along the desired trajectory. The performance of the 

control method was demonstrated in simulations of a planar three link manipulator 
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system. Ider et al. [18] developed a method for end effector trajectory tracking 

control of robots with flexible links. In order to cope with the non-minimum phase 

property of the system, the closed-loop poles were placed at desired locations 

using full state feedback. The dynamic equations were linearized about the rigid 

motion. A composite control law was designed to track the desired trajectory while 

at the same time the internal dynamics was stabilized. A two link planar 

manipulator was considered whose upperarm was rigid and forearm was flexible. 

 

A reference-oriented procedure for controlling elastic robots was presented by 

Pfeiffer [19]. This afforded, in a first step, an optimal path planning method 

generating the reference trajectory. It was realized by a classical feedforward 

decoupling scheme. The elastic deviations from this reference were corrected 

within the feedforward loop by calculation of the joint correction angles putting 

back the endpoint to its nominal position. In a final step, elastic vibrations of the 

arms were damped by an additional joint output control system, which used as an 

input joint kinematics and strain gauge measurements of the elastic curvatures. 

Three link robot with two flexible arm was used. The design of inversion-based 

nonlinear control laws solving the problem of trajectory tracking for robot arms 

having flexible links was considered by Luca and Siciliano [20]. Links were 

modeled as Euler-Bernoulli beams. The interaction between the 

Lagrangian/assumed modes modeling approach and the complexity of the 

resulting inversion control laws was stressed. The control was composed of a 

nonlinear state feedback compensation term and of a linear feedback stabilization 

term. A feedforward strategy for the nonlinear part was also investigated. 

Simulation results were presented for a planar manipulator with two flexible links. 

Li [21] presented a control design for the tip position trajectory tracking of a two 

link manipulator arm with a flexible forearm. The control design was based on 

two steps. First, input-output linearization was applied to decouple the shoulder 

arm dynamics from the forearm dynamics, which transformed the trajectory 

tracking control of the nonlinear non-minimum phase system into the trajectory 

tracking control of two linear subsystems. Then trajectory tracking control design 

of each subsystem was carried out in the second design step. Yim [22] treated the 

end point trajectory control of a flexible manipulator based on the nonlinear 
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inversion technique. The manipulator had two rigid links and the third link was 

elastic. A parameterization of the Cartesian coordinates of a point close to the end 

effector position was suggested. Using these coordinates as output variables, an 

inverse feedback control law was derived for tracking reference Cartesian 

trajectories. The stability of the zero dynamics associated with the end point 

motion control was examined. It was shown that inverse control of the end point 

caused divergent oscillatory flexible modes. In addition, for regulating the end 

point to a fixed position, a linear stabilizer was designed to damp the elastic 

vibration. Zhao and Chen [23] developed a tracking control strategy for a two link 

flexible manipulator. The Euler-Bernoulli beam was assumed. Horizontal planar 

maneuver of the manipulator was assumed. The controller used a feedforward 

signal generated by stable inversion and a stabilizing signal from a feedback 

stabilizer. 

 

Chen and Yeung [24] presented a work which was a continuation of the Yeung 

and Chen [7] studies. This work presented an extension of the sliding-mode 

control design method to multilink flexible manipulators. As for the dynamic 

analysis, a clamped loaded Euler-Bernoulli beam was selected as an approximate 

model for each link in the presence of lateral deformation. Coupling effects 

caused by flexibilities between the two links were neglected. There were two 

main steps in the design procedure, linearization and stabilization. In the 

linearization step, the sliding-mode technique was used to replace the rigid part of 

the dynamic equations by a set of linear equations which were determined by the 

switching surfaces. In the stabilization step, conventional PD/PID compensations 

were adopted to stabilize the linearized time-invariant system. Two link flexible 

manipulator was used in simulations. Nathan and Singh [25] treated the question 

of control of an elastic robotic arm of two links based on variable structure system 

(VSS) theory and pole assignment technique for stabilization. A discontinuous 

joint angle control law, based on variable structure system theory, was designed 

for the asymptotic decoupled joint angle trajectory tracking. In the closed-loop 

system, the trajectories were attracted toward a chosen hypersurface in the state 

space and then slided along it. Although, joint angles were controlled using 

variable structure control law, the flexible modes of the links were excited. Using 
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center manifold theory, it was shown that the closed-loop system, including the 

sliding mode controller, was stable. Based on a linearized model about the 

terminal state, a stabilizer was designed using pole assignment technique to 

control the elastic oscillations of the links. A control logic was included which 

switched the stabilizer at the instant when the joint angle trajectory entered a 

specified neighborhood of the terminal state. Moallem et al. [26] considered a 

control strategy based on nonlinear inversion for a class of multilink, structurally 

flexible manipulators. New outputs near the end points of the arms were defined. 

By using the concept of a sliding surface in variable structure control (VSC), the 

nonlinear plant's error dynamics were drived onto a sliding surface. In order to 

avoid over-excitation of higher frequency flexural modes due to control 

chattering, the discontinuous functions normally used in classical variable 

structure control were replaced by saturation 

 

A nonlinear tracking controller for the link tip positions and velocities of a 

multilink flexible robot arm was designed by Vandegrift et al. [27]. The controller 

had three parts: a model-based trajectory generator, an inner loop based on input-

output feedback linearization, and an outer loop that stabilized the internal 

dynamics (e.g., the flexible modes) using a singular perturbation design. A two 

link spatial arm whose second link was modeled by using Euler-Bernoulli beam 

model was taken into consideration. A robust control strategy for the trajectory 

tracking control of elastic robot manipulators was proposed by Morita et al. [28]. 

The controller was designed to be robust against both of the structured uncertainty 

and the unstructured uncertainty arising from modeling errors. The model 

consisting of the rigid-body modes and the elastic modes was decomposed into 

the slow model and the fast model by using an integral manifold approach. By 

using the slow model, slow controller was designed based on the VSS theory and 

the stability of the closed loop system was shown via Liapunov theory. On the 

other hand, the fast controller was designed for the fast model on the basis of H-

infinity control theory. A two link flexible robot manipulator moving on a vertical 

plane was used. Moallem et al. [29] developed a nonlinear control strategy for tip 

position trajectory tracking of a class of structurally flexible multilink 

manipulators. Using the concept of integral manifolds and singular perturbation 
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theory, the full-order flexible system was decomposed into corrected slow and 

fast subsystems. The tip-position vector was similarly partitioned into corrected 

slow and fast outputs. The corrected slow subsystem was augmented by a 

dynamical controller in such a way that the resulting closed-loop zero dynamics 

were linear and asymptotically stable. The tracking problem was then redefined as 

tracking the slow output and stabilizing the corrected fast subsystem by using 

dynamic output feedback. A two link planar manipulator with flexible forearm 

was considered as an example. 

 

An adaptive self-tuning control scheme was developed for end-point position 

control of flexible manipulators by Bodur and Sezer [30]. The effect of flexibility 

was included in the dynamic model by approximating flexible links with a 

number of rigid sublinks connected at fictitious joints. The relatively high 

stiffness of the fictitious joints was shown to result in a decomposition of the 

model into two subsystems operating at different rates. This allowed for 

stabilization of the oscillatory modes associated with the flexible links by a fast 

feedback control in addition to a slower control for trajectory tracking. The 

control was constructed from measurements of the end-point position and 

deformations of the flexible links, with the manipulator parameters required to 

form the control obtained using a recursive least-squares estimation algorithm. 

The control scheme was tested by digital simulation of a two link manipulator 

with flexible first link. Pham et al. [31] presented a nonlinear, model-based 

control of flexible link robots. The control task was formulated requiring rigid 

joints variables to track reference time-varying trajectory and elastic deflection to 

be damped. The stability and robustness properties of the control scheme were 

analyzed from a passive energy consideration. A direct adaptive version was also 

proposed. This approach was performed using a single-flexible-link and a two-

flexible-link horizontal robot. Another controller for solving the tracking problem 

of flexible robot arms was presented by Arteaga and Siciliano [32]. In order to 

achieve this goal, the desired trajectory for the link (flexible) coordinates was 

computed from the dynamic model of the robot arm and was guaranteed to be 

bounded, and the desired trajectory for the joint (rigid) coordinates could be 

assigned arbitrarily. The proposed control law based on the well-known approach 
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with filtered reference velocity at the basis of passivity-based and adaptive 

controllers. The case of no internal damping was also considered, and a robust 

control technique was used to enhance the damping of the system. In order to test 

the controllers, a planar two link flexible robot modeled as Euler-Bernoulli beam 

was used. 

 

Morgul [33] considered a flexible beam clamped to a rigid base at one point and 

free at the other end. He assumed that the rigid base rotated with a constant 

angular frequency and that the motion of the flexible beam took place on a plane. 

To stabilize the beam vibrations, he proposed a dynamic boundary force control 

applied to the free end of the beam. He showed that, with the proposed control, 

when the rigid base angular frequency was sufficiently small, the beam vibrations 

exponentially decayed to zero. Morgul [34] again considered a flexible structure 

modeled as a rigid body which rotated in inertial space; a flexible beam was 

clamped to the rigid body at one end and free at the other. He assumed that the 

flexible beam performed only planar motion. He posed two control problems, 

namely, the orientation and stabilization of the system. It was shown that suitable 

boundary controls applied to the free end of the beam and suitable control torques 

applied to the rigid body solved the problems posed above. The proofs were 

obtained by using the energy of the system as a Lyapunov functional. 

 

 

1.3 Literature Review on Force and Motion Control of Flexible Robots 

 

A limited number of studies for simultaneous force and motion control of robots 

with flexible links has been found in the literature. A brief review of them is given 

in the following paragraphs. 

 

Unconstrained and constrained motion control of a planar two link structurally 

flexible robotic manipulator were considered by Choi and Krishnamurthy [35]. 

The dynamic model was obtained by using the extended Hamilton's principle and 

the Galerkin criterion. A method was presented to obtain the linearized equations 

of motion in Cartesian space for use in designing the control system. The 
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approach to solving the control problem was to use feedforward and feedback 

control torques. The feedforward torques maneuvered the flexible manipulator 

along a nominal trajectory and the feedback torques minimized any deviations 

from the nominal trajectory. The feedforward and feedback torques were obtained 

by solving the inverse dynamics problem for the rigid manipulator and designing 

linear quadratic Gaussian with loop transfer recovery (LQG/LTR) compensators, 

respectively. The LQG/LTR design methodology was exploited to design a robust 

feedback control system that could handle modeling errors and sensor noise, and 

operate on Cartesian space trajectory errors. Matsuno et al. [36] have considered 

the problem of hybrid position/force control of a planar two link flexible 

manipulator. They derived the dynamic model of the constrained flexible 

manipulator by introducing the Lagrange multiplier. They assumed that the elastic 

deformations of the links were small compared to their lengths; the densities of 

the links materials and tip point lumped mass so small that rigid body variables in 

the equations of the vibrations of the flexible links could be neglected and the 

angular rotation of link 2 due to deformation of the link was negligibly small 

compared to the rigid body rotation of link 2. On the basis of these assumptions 

they derived the quasi-static equation and designed the hybrid position/force 

controller by using these quasi-static equations. PD type control plus force 

feedback control was used. An implicit force control scheme for flexible link 

manipulators was considered by Borowiec and Tzes [37]. The control output was 

composed of a feedforward and a feedback term. The feedforward torque 

component compensated the underlying rigid arm dynamics along the desired 

trajectory. The feedback component regulated the joint coordinate error 

perturbations. The minimization of a linear quadratic frequency-shaped cost 

functional yielded the time-varying feedback controller gains. The frequency 

shaping dependence was included to eliminate undesirable effects associated with 

control and observation spillover. The proposed control scheme was employed in 

simulation studies on a planar two link rigid flexible manipulator. Shi et al. [38] 

proposed a multivariable controller for the force and motion control of a planar 

two link rigid-flexible manipulator moving in a horizontal plane. The static tip 

deflection of the flexible link was allowed in order to maintain the contact force 

between the end effector and the constrained path. The controller consisted of a 
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feedforward term which contributed the torque for the expected joint angles and 

the contact force, and a feedback term with the time varying optimal gains 

obtained from the Matrix Riccati equation. A two-stage interaction control 

scheme for a flexible arm whose tip was in contact with a compliant surface has 

been proposed by Siciliano and Villani [39]. The first stage was in charge of 

solving the inverse kinematics problem to compute the desired vectors of the joint 

and the deflection variables that placed the flexible arm tip at the desired position 

with the desired contact force. The solution was based on the transpose of a 

suitably modified arm Jacobian so as to account for the static effects due to 

gravity and contact force. The computed variables were used as the set-points for 

the second stage, which was a simple PD joint regulator. The scheme was tested 

in a simulation case study for a planar two link flexible manipulator.  

 

Hu and Ulsoy [40] reported the results of a study of the combined joint motion 

control, vibration control, and force control of a spatial two link rigid-flexible 

constrained robot arm. A robust controller design technique was proposed by 

Corless and Leitmann, and further developed by Corless, for the tracking control 

of uncertain mechanical systems. This technique, incorporating contact force, 

feedback, was used as the first method of design for a nonlinear controller. This 

method assumed that only information on the rigid-body motion is available, and 

treated the effects of flexible motion as uncertainties on the rigid system. A 

second method, a modified version of the Corless-Leitmann technique suggested 

by Yigit and Ulsoy, includes the feedback of the flexible-body motion of a robot 

arm, but utilizes no control actuator for the degree of freedom of the flexible-body 

motion. This second method (modified Corless-Leitmann controller) was 

employed, to design a controller for improving the suppression of the flexible 

vibration. Yim and Singh [41] were considered the position and force control of a 

spatial three link rigid-rigid-flexible manipulator on a constraint surface based on 

nonlinear inversion of an input-output map and linear feedback stabilization. 

Unlike the rigid robots, the feedback linearizing control of end point motion gave 

rise to unstable zero dynamics. Instability of zero dynamics was avoided by 

controlling a parameterized output vector corresponding to a point close to the 
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end point of the arm. Zero dynamics were stable or almost stable as long as the 

parameter in the output vector did not exceed a critical value. Using the inverse 

controller, the control of the force and the position of the end point was possible 

while the end effector moved on the constraint surface. However, this excited the 

elastic modes. For the final capture of the terminal state and vibration 

suppression, a linear stabilizer was designed. Choi et al. [42] proposed an 

approach employing the framework of constraint Hamiltonian system for the 

compliant control of a planar two link rigid-flexible manipulator with surface 

constraints. Two nonlinear controllers consisting of force part and position part 

were derived from a constrained Hamiltonian system, followed by the formulation 

of corresponding linear feedback controllers that satisfied the Lyapunov stability 

of the total Hamiltonian system which possessed the nonlinear controllers. The 

compliant control strategy was accomplished by steering the end effector of the 

flexible manipulator onto the constraint surface with the linear controllers, and 

subsequently by executing imposed desired motion with the nonlinear controllers.  

 

Kim et al. [43] presented a control strategy for the position and force control of 

flexible manipulators exploiting the characteristics of actuators fabricated from 

smart materials. The governing equations of motion of a planar two link flexible 

manipulator which featured piezoceramic actuators and piezofilm sensors bonded 

on each flexible link were derived via Hamilton's principle. A nominal control 

torque of the motor to command the desired position and force was determined by 

a sliding mode controller based on the rigid-mode dynamics. In order to take 

uncertainties into account, the sliding mode controller with perturbation 

estimation was adopted. The routine was then incorporated with the fuzzy 

technique to determine the appropriate control gains while maintaining the 

stability of the system. A set of fuzzy parameters and control rules was then 

obtained from the estimated perturbation. During the commanded motion, 

undesirable oscillations were suppressed by applying feedback control voltages to 

the piezoceramic actuators. These feedback voltages were determined by the 

sliding mode controller with perturbation estimation. 
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Matsuno and Yamamoto [44] have considered the problem of dynamic hybrid 

position/force control of a planar two link rigid-flexible manipulator. B-spline 

functions were used for an approximation of the elastic deformation of the 

flexible link. On the basis of the singular perturbation method, the model was 

reduced to a slow subsystem and a fast subsystem. A composite controller for the 

dynamic hybrid position/force control of the flexible manipulator was designed. 

Although the system matrices of the fast subsystem depended on the manipulator 

configuration, the controller for the fast subsystem was designed on the basis of 

the fixed matrices, which were obtained for a specific manipulator configuration. 

For the fast subsystem, state feedback control was used. For the slow subsystem, 

PD type control plus force feedback was used. 

 

 

1.4 Discussions on Previous Studies 

 

In this section, a discussion is made on previously mentioned studies and 

drawbacks of some of the studies are mentioned. 

 

In the studies of Luca and Siciliano [2], Feliu and Rattan [5], Qian and Ma [8], 

Asada et al. [11], Gawronski et al. [13], Chalhoub and Ulsoy [15], Moallem et al. 

[26] and Bodur and Sezer [30], flexible one link was examined and most of them 

proposed the control strategies for this specific case. The flexible one link case is 

too simple to capture the coupling effects between rigid body and deformation 

dynamics. 

 

Zhu et al. [4], Ge et al. [6], Luca et al. [9], Xi [12], Chalhoub and Ulsoy [15], 

Carusone and D'Eleuterio [17], Chen and Yeung [24], Nathan and Singh [25], 

Pham et al. [31], Choi and Krishnamurthy [35], Siciliano and Villani [39] and Hu 

and Ulsoy [40] designed the controllers based on joint variables. Joint space 

motion control of the manipulator may be easier, but for a flexible arm, it is more 

meaningful to directly control the end effector trajectory so that the tip position 

error will be minimum. 
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In the studies of Luca et al. [9], Bayo et al. [10], Ider et al. [18], Yim [22], Chen 

and Yeung [24], Nathan and Singh [25], Arteaga and Siciliano [32], Shi et al. [38], 

Yim and Singh [41] and Choi et al. [42], the rigid body dynamics and/or 

deformation dynamics linearization required. When the degree of freedom of the 

robot increases, linearization most probably becomes harder. 

 

Actually tip positioning was taken into consideration by Siciliano and Villani [39]. 

When the desired tip position is time varying, a different Lyapunov argument 

should be worked out in the algorithms. In the algorithms, the inverse kinematics 

problem was formulated in differential terms by deriving a Jacobian that related 

the joint and deflection rates to the tip rate. In the solution algorithms, the Jacobian 

was employed, but it might not exactly be suitable for this case as it was originally 

developed for rigid manipulators even though the Jacobian employed in the 

algorithm was obtained by correcting it with two terms that accounted for the static 

deflection due to gravity and contact force. 

 

In the study of Matsuno et al. [36], no controller was designed for the deviation 

from the quasi-static equations to guarantee the stability of the system. Link 

densities and tip point mass were assumed so small to simplify the equations, but 

this is not always the case. Derivation of the dynamic equations and the controller 

developed were very dependent to the robot taken into consideration. It was also 

assumed that tip deflection of link 1 was very small compared to the tip deflection 

of link 2. Tracking errors in the transient responses of the joint angles were 

observed in the case study results. The errors were most probably caused by this 

deflection approximation. 

 

Singular perturbation approach was used by Ge et al. [6], Moallem et al. [14], 

Vandegrift et al. [27] and Matsuno and Yamamoto [44]. In this method, the link 

stiffness is assumed to be large enough so that a two-time scale model of the 

flexible manipulator is derived. In other words, the flexible motion of the link 

cannot affect the rigid motion of the link as the link stiffness is large. However, in 

flexible arms, the flexible motion of the link affects the rigid motion of the link. 
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1.5 The Outline of the Thesis 

 

In this thesis, alternative control methods are developed for the unconstrained 

motion and constrained force and motion control of robots having flexible links. 

 

The main advantage of the developed control methods is that no linearization of 

the dynamic equations is required but conventional linear control techniques are 

used based on the fact that the system can be rendered “slowly varying” with 

proper closed loop pole locations [49], [50]. Thus, implementation of the 

developed control methods are easy which is especially important for high degree 

of freedom robots having flexible arms. The developed control methods are 

designed based on the tip point variables, therefore better tracking quality is 

obtained compared to the control methods designed based on the joint variables 

assuming that the tip point variables are measured precisely. 

 

The thesis is organized as five chapters. Contents of each chapter are summarized 

below. 

 

Following Chapter 1, the control methods, their stability and controllability 

analyses are given in Chapter 2. The dynamic equations of a flexible robot are 

partitioned as pseudostatic equilibrium equations and deviations from them. The 

pseudostatic equilibrium considered here is defined as a hypothetical state where 

the tip point variables have their desired values while the modal variables are 

instantaneously constant. Then, the control torques for the pseudostatic 

equilibrium and for the stabilization of the deviation equations are formed in terms 

of tip point coordinates, modal variables and contact force components. In the 

constrained force and motion control method, the tip point coordinates are 

expressed in terms of the contact surface coordinates using the constraint 

equations. These coordinates describe the position of the tip point on the contact 

surface. 
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For the closed loop system to be asymptotically stable it must be slowly varying 

as defined in references [49], [50]. The stability condition is achieved by placing 

the poles at a sufficient distance from the imaginary axis [50]. 

 

Avoiding from the singularities is a necessary condition to obtain a controllable 

system. However, it may not be sufficient alone. Actually, the necessary and 

sufficient condition is that the controllability matrix be of full rank, where the 

controllability matrix is defined based on the state space representation of the 

system. 

 

An incremental rotary optical encoder is the most popular sensor to monitor a 

joint variable of a robot. Typically, encoder angular resolutions ranging from 1.44 

degrees down to 0.0036 degrees are achievable [45]. Strains are measured to 

calculate the modal variables. Probably the most sensitive strain gauge is the 

semiconductor gauge for this aim. A 1±  % accuracy is typical, and this is a 

fundamental limit on accuracy in stress analysis applications [46]. On a flexible 

link, strains can be measured at those locations where the maximum stresses 

occur for each mode. These locations can be determined from the mode shapes of 

the flexible link. Contact force sensors generally placed between the end effector 

and last joint of the manipulator. Such a sensor consists of a mechanical structure 

instrumented with strain gauges which can measure the forces and torques acting 

on the end effector. Typically, these sensors also have ± 1 % accuracy [47]. 

Optical devices may also be used to measure the position of the tip point [48], 

[10]. It is recommended that they should be kept close to the tip point as much as 

possible. New technologies continue to improve the sensitivities of the sensors. 

The rates of the position and modal variables can be obtained by numerically 

differentiating their measured values. 

 

Chapter 3 is devoted to model the flexible multibody systems. Different modeling 

approaches for flexible multibody systems and different discretization methods 

for flexible arms are used while modeling the planar and spatial robots. Planar 

two link robot with flexible forearm is modeled by using the relative coordinates 

approach and its flexible arm is discretized by using the assumed modes method. 
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On the other hand, spatial three link robot with two flexible arms is modeled by 

using the absolute coordinates approach and its flexible arms are discretized by 

using the finite element method. Then, an alternative form of dynamic equations, 

which has necessary and sufficient number of generalized coordinates and 

equations, is given for the controller design. 

 

Applications of the control methods investigated in Chapter 2 are given in 

Chapters 4 and 5. A ninth order hermite polynomial is used to describe the 

reference motion trajectory and a cycloidal rise, a constant level and a cycloidal 

return constitute the reference variation for the contact force. Simulations are 

performed by programs written in MATLAB
®

. 

 

Planar robot simulations are presented in Chapter 4. Uncontrolled motion of the 

planar robot is simulated to verify the dynamic equations. In order to determine the 

effectiveness of the control methods the unconstrained motion and constrained 

force and motion control simulations are presented for the planar robot. 

Unmodeled dynamics of higher order is taken into consideration to illustrate the 

performance of the control method in such a case. Then, unconstrained motion and 

constrained force and motion control simulations are presented again. Motion 

control of the planar flexible robot by using the computed torque method with the 

rigidity assumption is also simulated for a comparison with the proposed method. 

 

Spatial robot simulations are presented in Chapter 5. Uncontrolled motion of the 

spatial robot is simulated to verify the dynamic equations. After that, 

unconstrained motion and constrained force and motion control simulations are 

presented for the spatial robot. As a next step, measurement noises are taken into 

consideration. Then, by filtering the measured variables, unconstrained motion and 

constrained force and motion control simulations are presented again to illustrate 

the performance of the control method with the presence of measurement noises. 

 

Finally, Chapter 6 gives the concluding remarks and also discusses possible further 

extensions of this work. 
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CHAPTER 2 

 

 

CONTROLLER DESIGNS FOR UNCONSTRAINED MOTION AND 

CONSTRAINED FORCE AND MOTION OF FLEXIBLE ROBOTS 

 

 

In this section, new control methods are proposed for the motion control and force 

and motion control of flexible robots. In these methods, the dynamic equations of a 

flexible robot are partitioned as pseudostatic equilibrium equations and deviations 

from them. The pseudostatic equilibrium considered here is defined as a 

hypothetical state where the tip point variables have their desired values while the 

modal variables are instantaneously constant. Then, the control torques for the 

pseudostatic equilibrium and for the stabilization of the deviation equations are 

formed in terms of tip point coordinates, modal variables and contact force 

components. 

 

 

2.1 Motion Control Method for Flexible Robots 

 

The dynamic equations of the unconstrained motion of a robotic manipulator with 

flexible links can be written as 

 

( ) ( ) ( ) ( ) ( )ββββββββηηηηββββββββββββββββββββ egs, fffCM =+++ &&&&  (2.1) 

 

where ββββ is the vector of generalized coordinates of the system and is given more 

explicitly as 

 









=β

ηηηη

q
 (2.2) 
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q  is the vector of joint variables and is expressed as 
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θ
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2

1

M
q  (2.3) 

 

where n is the number of joint variables. ηηηη is the vector of the elastic deflection 

variables (also called as modal variables) of all the links and is expressed as 
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where m is the number of the modal variables. ( )ββββM  is the generalized mass 

matrix, ( )ββββββββ &,C  is the matrix corresponding to the generalized Coriolis and 

centrifugal force vector, ( )ηηηηs
f , ( )ββββg

f  and ( )ββββe
f  are the generalized structural 

stiffness, gravitational and external force vectors, respectively. The dynamic 

equations of the unconstrained motion of the robotic system can be partitioned in 

the form of 
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 (2.5) 

 

where subscripts r and e refer to the rigid and elastic partitions, respectively, K is 

the matrix corresponding to the structural stiffnesses of the links, T is the vector of 

the actuating forces and torques, L is the matrix corresponding to T and T is 

expressed as 
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









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



=

n

2

1

T

T

T

M
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The tip point position of the manipulator can be written in terms of the joint and 

elastic deflection variables as 

 

( )ηηηη,qPP =  (2.7) 

 

The derivative of the above equation can be expressed as 

 

ηηηη&&& HqJP +=  (2.8) 

 

where the Jacobian matrices J and H are given as 

 

q

P
J

∂

∂
=  (2.9) 

ηηηη∂

∂
=

P
H  (2.10) 

 

As long as ( ) 0det ≠J , i.e. in the absence of any kinematic singularity, q&  can be 

obtained from Equation (2.8) as follows 

 

( )ηηηη&&& HPJq −= −1  (2.11) 

 

The second derivative of Equation (2.7) can be expressed as 

 

ηηηηηηηη &&&&&&&&&& HqJHqJP +++=  (2.12) 

 

By using Equations (2.12) and (2.11), q&&  can be obtained as 
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( )ηηηηηηηη &&&&&&&&&&& HHJJJPJJJHJPJq −+−−= −−−−−− 111111  (2.13) 

 

If Equations (2.11) and (2.13) are substituted into Equation (2.5), the dynamic 

equations of the unconstrained motion of the robotic system are obtained in terms 

of the tip point position and modal variables as 

 

TLGVPVNPN rrrerrrerr =++++ ηηηηηηηη &&&&&&  (2.14) 

TLGKVPVNPN eeeeeeereeer =+++++ ηηηηηηηηηηηη &&&&&&  (2.15) 

 

where rrN , reN , erN , eeN , rrV , reV , erV  and eeV  are expressed as  

 

−1= JMN rrrr  (2.16) 

rerrre MHJMN +−= −1  (2.17) 

−1= JMN erer  (2.18) 

eeeree MHJMN +−= −1  (2.19) 

1

rr

1

rrrr

−−−1 +−= JCJJJMV &  (2.20) 

( ) re

1

rr

1

rrre CHJCHHJJJMV +−−= −−−1 &&  (2.21) 

1

er

1

erer

−−−1 +−= JCJJJMV &  (2.22) 

( ) ee

1

er

1

eree CHJCHHJJJMV +−−= −−−1 &&  (2.23) 

 

The tip point position, the modal and the actuating input variables can be 

partitioned as 

 

PPP ′+= *  (2.24) 

ηηηη++++ηηηηηηηη ′= *  (2.25) 

ΤTΤ ′= ++++*  (2.26) 

 

where *P  denotes the desired tip point position, P′  denotes the deviation from the 

desired tip point position, *ηηηη  consists of the pseudostatic modal variables, ηηηη′  

denotes the deviation from the pseudostatic modal variables, *T  is the vector of 
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pseudostatic torques and T′  is the vector of stabilization torques applied to 

minimize the deviation from the desired tip point trajectory. 

 

The pseudostatic equilibrium is defined as a state such that Nij, Vij, Kii, Gi, and Li 

are assumed to be frozen at their instantaneous values and *ηηηη  is determined as the 

instantaneously constant elastic deflection vector corresponding to *P&& , *P& , and 

gravitational acceleration, g. Thus, the following equations can be written at the 

pseudostatic equilibrium: 

 

*ηηηηηηηη =   (2.27) 

0≅ηηηη&   (2.28) 

0≅ηηηη&&   (2.29) 

 

Therefore, at the pseudostatic equilibrium, the dynamic equations given in 

Equations (2.14) and (2.15) take the following form 

 

*

rr

*

rr

*

rr TLGPVPN =++ &&&  (2.30) 

*

ee

*

ee

*

er

*

er TLGKPVPN =+++ ηηηη&&&  (2.31) 

 

*T  and *ηηηη  can be expressed in terms of *P&& , *P& , and g from Equations (2.30) and 

(2.31) as 
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provided that the indicated inverse matrix exists. Otherwise, the manipulator will 

be in an actuation singularity. If Equation (2.30) is subtracted from Equation (2.14) 

and Equation (2.31) is subtracted from Equation (2.15), the following deviation 

equations are obtained 

 

( )*

re

*

rerrerrrerr ηηηηηηηηηηηηηηηη &&&&&&&&& VN-TLVPVNPN +′=′+′+′+′  (2.33) 
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( )*

ee

*

eeeeeeeereeer ηηηηηηηηηηηηηηηηηηηη &&&&&&&&& VN-TLKVPVNPN +′=′+′+′+′+′  (2.34) 

 

The above equations can be called as the deviation equations from the pseudostatic 

equilibrium. The terms in parentheses can be considered as the disturbances. 

Therefore, T′  is selected to stabilize the deviation equations (Equations (2.33) and 

(2.34)) according to the following feedback control action: 
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By using this input vector with a properly determined gain matrix S, a stable 

solution can be obtained for the deviation equations (Equations (2.33) and (2.34)). 

S may be determined either by minimizing a performance index or by using the 

pole placement method, which is preferred here. Equations (2.33) and (2.34) can 

also be written as 
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Hence, the state space representation of the deviation equations can be obtained as 

 

WTFxEx +′+′=′&  (2.37) 

 

where ( )mn2 +ℜ∈′x  is the state vector, ( ) ( )mn2mn2 +×+ℜ∈E  is the system matrix, 

( ) nmn2 ×+ℜ∈F  is the input matrix, nℜ∈′T  is the control vector and ( )mn2 +ℜ∈W  is 

the bias vector. They are defined as 
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If Equation (2.35) is substituted into Equation (2.37), the following equation is 

obtained 

 

( ) WxFS-Ex +′=′&  (2.42) 

 

Therefore, S has to be chosen such that the poles of Equation (2.42) are placed 

properly for stability. 

 

In the first method, a pole placement algorithm is utilized in order to determine S 

that corresponds to the selected pole locations. 

 

In the other method, S is found by using the optimal control theory. The 

performance index to be minimized may be selected as 

 

( )dtJ
0

TT

∫
∞

′′+′′= TRTxQx  (2.43) 

 

where Q and R are appropriate positive definite symmetric matrices. The feedback 

control law is given by 

 



 31 

xDFRT ′−=′ − T1  (2.44) 

 

where D is the solution of the associated Riccati equation given as 

 

0DEQDFDFRDED =++−+ − TT1&  (2.45) 

 

Equation (2.44) can be written as 

 

xST ′−=′  (2.46) 

 

where S is given as 

 

DFRS T1−=  (2.47) 

 

 

2.2 Force and Motion Control Method for Flexible Robots 

 

The dynamic equations of the constrained motion of a robotic system with flexible 

links can be written as 

 

( ) ( ) ( ) ( ) ( ) ( )ββββββββββββηηηηβββββββββ,β,β,β,ββββββββ cegs
ffffCM +=+++ &&&&&  (2.48) 

 

where ( )ββββc
f  is the generalized constraint force vector. The dynamic equations of 

the constrained motion of the robotic system can be partitioned in the following 

form  
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where λλλλ  is the vector of Lagrange multipliers which are perpendicular to the 

constraint surface and Z is the matrix corresponding to λλλλ . 

 

Similar to the unconstrained motion control, the dynamic equations of the 

constrained motion of the robotic system are obtained in terms of the tip point 

position and modal variables as 

 

λλλληηηηηηηη rrrrerrrerr ZTLGVPVNPN +=++++ &&&&&&  (2.50) 

λλλληηηηηηηηηηηη eeeeeeeereeer ZTLGKVPVNPN +=+++++ &&&&&&  (2.51) 

 

where rrN , reN , erN , eeN , rrV , reV , erV  and eeV  are expressed as  

 

−1= JMN rrrr  (2.52) 

rerrre J MHMN +−= −1  (2.53) 

−1= JMN erer  (2.54) 

eeeree MHJMN +−= −1  (2.55) 

1

rr

1

rrrr

−−−1 +−= JCJJJMV &  (2.56) 

( ) re

1

rr

1

rrre CHJCHHJJJMV +−−= −−−1 &&  (2.57) 

1

er

1

erer

−−−1 +−= JCJJJMV &  (2.58) 

( ) ee

1

er

1

eree CHJCHHJJJMV +−−= −−−1 &&  (2.59) 

 

Constraint equations can be written in terms of tip point position variables as 

 

( ) 0P =φφφφ  (2.60) 

 

where kℜ∈φφφφ , k is the number of constraint equations and bℜ∈P , b is the 

dimension of the tip point position vector. The derivative of Equation (2.60) can be 

expressed as  

 

0P =Φ &  (2.61) 
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where bk×ℜ∈ΦΦΦΦ  is given as 

 

P∂

∂
=Φ

φφφφ
 (2.62) 

 

The tip point velocity components can be related to the rates of the contact surface 

coordinates as 

 

sP && ΨΨΨΨ=  (2.63) 

 

where k-bℜ∈s&  represents the velocity vector tangent to the contact surface and 

( )k-bbxℜ∈ΨΨΨΨ . If Equation (2.63) is substituted into Equation (2.61), the following 

equation is obtained. 

 

0s =&ΦΨΦΨΦΨΦΨ  (2.64) 

 

Since s&  is not identically equal to zero, Equation (2.64) is satisfied iff 

 

0=ΦΨΦΨΦΨΦΨ  (2.65) 

 

The derivative of Equation (2.63) gives P&&  as 

 

ssP &&&&&& ΨΨΨΨΨΨΨΨ +=  (2.66) 

 

If Equations (2.63) and (2.66) are substituted into Equations (2.50) and (2.51), the 

following equations are obtained 

 

λλλληηηηηηηη rrrrerrrerr ZTLGYsYRsR +=++++ &&&&&&  (2.67) 

λλλληηηηηηηηηηηη eeeeeeeereeer ZTLGKYsYRsR +=+++++ &&&&&&  (2.68) 

 

where rrR , reR , erR , eeR , rrY , reY , erY  and eeY  are expressed as  
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ΨΨΨΨrrrr NR =  (2.69) 

rere NR =  (2.70) 

ΨΨΨΨerer NR =  (2.71) 

eeee NR =  (2.72) 

ΨΨΨΨΨΨΨΨ rrrrrr VNY += &  (2.73) 

rere VY =  (2.74) 

ΨΨΨΨΨΨΨΨ ererer VNY += &  (2.75) 

eeee VY =  (2.76) 

 

The vectors of contact surface coordinates, the modal variables, the actuating 

inputs and the Lagrange multipliers can be partitioned as 

 

sss ′+= *  (2.77) 

ηηηη++++ηηηηηηηη ′= *  (2.78) 

ΤTΤ ′+= *  (2.79) 

λλλλ++++λλλλλλλλ ′= *  (2.80) 

 

where *s  denotes the desired trajectory, s′  denotes the deviation from the desired 

trajectory, *ηηηη  is the vector of pseudostatic modal variables, ηηηη′  is the deviation 

from *ηηηη , *T  is the vector of pseudostatic torques and T′  is the vector of 

deviational stabilization torques, *λλλλ  is the vector of desired Lagrange multipliers 

and λλλλ′  is the deviation from *λλλλ . 

 

As before, at the pseudostatic equilibrium, the following equations can be written: 

 

*ηηηηηηηη =   (2.81) 

0≅ηηηη&   (2.82) 

0≅ηηηη&&   (2.83) 
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Therefore, at the pseudostatic equilibrium, the dynamic equations given in 

Equations (2.67) and (2.68) take the following form 

 

*

r

*

rr

*

rr

*

rr λλλλZTLGsYsR +=++ &&&  (2.84) 

*

e

*

ee

*

ee

*

er

*

er λλλληηηη ZTLGKsYsR +=+++ &&&  (2.85) 

 

*T  and *ηηηη  can be expressed in terms of *s&& , *s& , *λλλλ  and g from Equations (2.84) and 

(2.85) as 
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 (2.86) 

 

provided that the indicated inverse matrix exists. If Equation (2.84) is subtracted 

from Equation (2.67) and Equation (2.85) is subtracted from Equation (2.68), the 

following equations are obtained 

 

( )*

re

*

rerrrerrrerr ηηηηηηηηλλλληηηηηηηη &&&&&&&&& YR-ZTLYsYRsR +′+′=′+′+′+′  (2.87) 

( )*

ee

*

eeeeeeeeereeer ηηηηηηηηλλλληηηηηηηηηηηη &&&&&&&&& YR-ZTLKYsYRsR +′+′=′+′+′+′+′  (2.88) 

 

The above equations can be called as deviation equations from the pseudostatic 

equilibrium. The terms in parentheses can be considered as the disturbances. 

Therefore, T′  is selected to stabilize the deviation equations (Equations (2.87) and 

(2.88)). For the determination of Τ′ , methods similar to those given in the 

previous section can be used. 

 

Equations (2.87) and (2.88) can be written in augmented form as 
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
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 (2.89) 

 

This equation can also be written as 
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Therefore, the state space representation of the deviation equations can be obtained 

as 

 

WTFxEx +′+′=′&  (2.91) 

 

where ( )( )kmn2 −+ℜ∈′x  is the state vector, ( )( ) ( )( )kmn2kmn2 −+×−+ℜ∈E  is the system 

matrix, ( )( ) nkmn2 ×−+ℜ∈F  is the input matrix, nℜ∈′T  is the control vector and 

( )( )kmn2 −+ℜ∈W  is the bias vector. They are defined as follows: 
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where µµµµ′  is the impulse of λλλλ′ , i.e. 

 

λλλλµµµµ ′=′&   (2.93) 
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2.3 Measuring Systems 

 

The success of controlling robots effectively depends on being able to obtain 

precise position and velocity information about the joints and/or the end effector. It 

is therefore necessary to have devices that provide such information. In particular, 

position, velocity, modal variables and contact force in constrained motion (or at 

least analog or digital representations of these quantities) must be measured to 

ensure that the robotic manipulator moves and applies force in a desired manner. 

 

An incremental rotary optical encoder is the most popular sensor to monitor a joint 

variable of a robot. As the encoder shaft turns, the device outputs two square wave 

pulse trains 90 degrees out of phase. The shaft angle is determined by counting the 

number of pulses, and the direction of rotation is determined by the relative phase 

of the two square waves. The incremental encoder in its simplest form consists of a 

disk, a light emitting diode (LED), and a corresponding set of light receivers (e.g., 

phototransistors). The resolution of an encoder containing such a disk is normally 

defined as the number of lines, N. This implies that the encoder can resolve an 

angular position equal to 360 degrees/N. Typically, encoders with resolutions of 

250, 512, 1000, 1024, even up to 100000 lines are available, meaning that angular 

resolutions ranging from 1.44 degrees down to 0.0036 degrees are achievable [45]. 
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Strains are measured to calculate the modal variables. Probably the most sensitive 

strain gauge is the semiconductor gauge for this aim. The principle underlying the 

operation of a strain gauge is that a mechanical deformation produces a change in 

resistance of strain gauge. A Wheatstone bridge circuit is used to sense the change 

in gauge resistance and produce a voltage output as a result. Gauge is one arm of a 

Wheatstone bridge. A difficulty with this type of sensor is that variations in 

ambient temperature to change the gauge resistance, thereby causing the bridge to 

become unbalanced. It is possible to overcome such a problem by either 

(automatically) rebalancing the bridge periodically or by utilizing two gauges (and 

two bridges) and using the difference of their outputs as the actual sensing signal. 

The latter technique requires more circuitry but makes temperature drift a second 

order effect. A 1±  percent accuracy is typical, and this is a fundamental limit on 

accuracy in stress analysis applications [46]. On a flexible link, strains can be 

measured at those locations where the maximum stresses occur for each mode. 

These locations can be determined from the mode shapes of the flexible link. 

 

Contact force sensors generally placed between the end effector and last joint of 

the manipulator. These sensors are usually referred to as wrist sensors. Such a 

sensor consists of a mechanical structure instrumented with strain gauges which 

can measure the forces and torques acting on the end effector. Generally, 

semiconductor strain gauges are used in place of the foil types in these sensors to 

provide increased sensitivity. These sensors are capable of measuring from three to 

six components of the force/torque vector acting on the end effector. Typically, 

these sensors also have ± 1 percent accuracy [47]. 

 

Optical devices may also be used to measure the position of the tip point [48], 

[10]. It is recommended that they should be kept close to the tip point as much as 

possible. For example, Bayo et al. [10] mount a small infrared LED emitter at the 

tip point of the robot. A photodetector (optical xy position encoder) is hung 

approximately one meter above the arm and gives xy position of the robot tip 

point, by monitoring the movements of the mounted infrared LED. The optical 

position encoder uses lateral effect photodiode technology to encode the xy 

position of an infrared (440 nm - 1100 nm) point source. The output of the encoder 
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is filtered by the circuit (OP - EYE) and gives a resulting accuracy of better than 

±0.025 mm. 

 

New technologies continue to improve the sensitivities of the sensors. The rates of 

the position and modal variables can be obtained by numerically differentiating 

their measured values. 

 

 

2.4 Stability Considerations 

 

As seen in the preceding sections, the control systems considered in this thesis have 

linear structures with variable coefficient matrices. Therefore, the following 

stability analysis validates the proposed controller designs based on the pole 

placement method. To investigate the stability of a linear time varying control 

system, consider the homogeneous equation associated with Equations (2.37) 

and (2.91), which can be written as 

 

ΞΞΞΞΞΞΞΞ )t(Γ=&  (2.97) 

 

where Γ is given as 

 

FSEΓ −≡  (2.98) 

 

It is known that stability is not ensured by having only 00 >σ  such that [49] 

 

0t,i   0)t(Re 0i ≥∀∀<σ−≤κ  (2.99) 

 

where iκκκκ , i = 1,…,2n are the closed loop eigenvalues of the system. However it can 

be shown that such a system is asymptotically stable when the variation of Γ is 

sufficiently slow as described in [49]-[51]. Desoer [50] showed that a time varying 

system is asymptotically stable at large if 
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4

c

2

0
M

m3

σ
≤Γ&  (2.100) 

 

where σ0 is as given by Equation (2.99), MΓ&  is given as 

 

( )tsup 0tM Γ&&
≥=Γ  (2.101) 

 

and mc is a constant that satisfies 

 

( ) ( )
00,t     eme

2

c

t 0 ≥τ∀≥∀≤ στ−τΓ  (2.102) 

 

To see how σ0 affects Equation (2.100) consider how MΓ&  varies with σ0. The 

eigenvalue problems of Equations (2.37) and (2.91) can be written as 

 

(E - FS)hi = κihi (2.103) 

 

where hi are the corresponding eigenvectors of eigenvalues κi. Equation (2.103) can 

also be expressed in the form 

 

(E - κiI)hi = Fγγγγi (2.104) 

 

where γγγγi stands for 

 

γγγγi = (Shi) (2.105) 

 

S can then be expressed as S = f(κκκκ, γγγγ, t) where f is a function such that the effect of κκκκ 

on S is in the order of κκκκ. In order to express MΓ& , one can write 

 

t∂

∂
+

∂

∂
+

∂

∂
=

f
γ
γ

ff
S &&& κκκκ

κκκκ
 (2.106) 
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Like κκκκ, κκκκ&  is also arbitrary, hence it can be chosen so that its dependence on κκκκ is 

in the order of κκκκ. Also since γγγγ and γ&  are arbitrary they can be chosen independently 

of κκκκ. Therefore the effect of κκκκ on S&  is also in the order of κκκκ. Then, 

 

SFSFEΓ &&&& −−=  (2.107) 

 

Equation (2.107) implies that the effect of κκκκ on Γ&  is in the order of κκκκ. On the other 

hand, 

 

10t0 Remin κ=σ ≥  (2.108) 

 

where κ1 is the most dominant eigenvalue. Therefore the effect of σ0 on MΓ
&  is in the 

order of σ0, while the effect of σ0 on the right hand side of Equation (2.100) is in the 

order of σ0
2
. Hence by choosing a sufficiently large σ0, one can achieve asymptotic 

stability in the large. 

 

As for the disturbance-like bias terms W in Equations (2.37) and (2.91), they 

involve *ηηηη&  and *ηηηη&& , i.e. the first and second derivatives of the pseudostatic modal 

variables. Referring to the defining equations (Equations (2.30), (2.31) and 

Equations (2.84), (2.85)), it is seen that the most critical term that affects the 

magnitude of *ηηηη  is the acceleration of the desired motion ( *P&&  or *s&& ). This implies 

that the desired motion must be specified to be continuous up to its second order 

jerk (i.e. up to 4*4 dtd P  or 4*4 dtd s ) so that even *ηηηη&&  becomes a smoothly 

varying function of time. In addition to this continuity condition, it is 

recommended that the desired motion be selected to be slowly varying so that  

 

4

104

*4

k
dt

d
κ≤

P
     for all f0 ttt ≤≤  (2.109) 

 

or 
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4

104

*4

k
dt

d
κ

′
≤

s
     for all f0 ttt ≤≤  (2.110) 

 

where 0k  and 
′

0k  are suitably selected constants. Then, all what W causes is a 

bounded offset which can be suppressed to a desired level by means of sufficiently 

large control gains. 

 

 

2.5 Controllability Considerations 

 

Equations (2.11) and (2.32) indicate that the system will be controllable under the 

following necessary conditions: 

 

( ) 0det ≠J  (2.111) 

( ) 0det ≠ΛΛΛΛ  (2.112) 

 

where 

 


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




−
=

eee

r

KL

0L
ΛΛΛΛ  (2.113) 

 

Here, ( ) 0det =J  occurs in the case of kinematic singularities and ( ) 0det =ΛΛΛΛ  

occurs in the case of actuating singularities. On the other hand, if the matrices J 

and ΛΛΛΛ  are not singular, then the controllability of the system can only be checked 

by looking at the rank of the controllability matrix defined as 

 

( )[ ]FEEFFCM
1mn2 −+= L  (2.114) 

 

If F has full rank n, then instead of looking at the rank of CM one may also check 

the controllability of the system by looking at the rank of the matrix CI defined as 

[52] 
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( )[ ]FEEFFCI
nmn2 −+= L  (2.115) 

 

In other words, checking the rank of CM or CI is the necessary and sufficient 

condition for the controllability of the system. Note that the size of CI is smaller 

than that of CM. So, it is more convenient to use. 

 

As done in this thesis, a practical way of trajectory planning is to propose a 

candidate trajectory that satisfies the necessary conditions given in Equations 

(2.111) and (2.112), which are much easier to satisfy than the necessary and 

sufficient condition on the matrix CM or CI. Then, during the simulation if all the 

poles are placed as desired and if the proposed trajectory is successfully tracked, it 

is concluded that CM or CI condition is also satisfied on that trajectory. Thus, it 

can be used in an actual application. 
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CHAPTER 3 

 

 

MODELING OF FLEXIBLE MULTIBODY SYSTEMS 

 

 

3.1 Introduction 

 

There are two basic approaches to model a mechanical system composed of rigid 

and flexible bodies. In the first approach, the motion of each body is formulated 

seperately with respect to a fixed frame in terms of its absolute rigid body and 

elastic degrees of freedom. Then, the interconnections of the bodies are defined 

through a set of constraint equations. The second approach involves a recursive 

modeling in terms of the joint coordinates and elastic deformation variables. The 

formulation using the second approach results in a fewer number of equations but 

the expressions become longer. In this thesis, the mathematical modeling of planar 

two link flexible manipulator and spatial three link flexible manipulator are 

derived. The planar manipulator is modeled by using the latter method while the 

spatial manipulator is modeled by using the former method. Therefore, the 

expressions obtained for spatial manipulator are not too long. 

 

For each flexible body, the elastic deformations are described relative to a body 

reference frame. The elastic deformation can be modeled by using assumed modes 

method or finite element method. Here, assumed modes method is used for the 

modeling of elastic deformations of the planar manipulator, while finite element 

method is used for the modeling of elastic deformations of the spatial manipulator. 

By using finite element method, any types of link geometry can be modeled. 
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3.2 Dynamic Modeling of Planar Two Link Manipulator with Flexible 

Forearm by Using Relative Coordinates 

 

The planar two link manipulator with revolute joints depicted in Figure 3.1 is 

composed of a rigid upper arm and a flexible forearm. n is fixed frame, ( )1n  is 

Body 1 reference frame and ( )2n  is Body 2 reference frame. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Planar two link manipulator with flexible forearm. 

 

The dynamic equations are derived by using the relative coordinates approach. The 

flexible forearm is assumed to be Euler-Bernoulli beam (thin beam). By 

considering that the deformation displacement of the forearm is small enough to 

stay in the elastic range, it can be written as a sum of position dependent assumed 

mode shapes multiplied by the corresponding time dependent modal coordinates. 

 

In the formulation, the numbers in parenthesis and the letter k as superscripts 

represent the body number. The overbar denotes that related variable is defined in 

related body reference frame. The vectors are column vectors. Boldface letters 

represent matrix or vector. 
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3.2.1 Position Vectors of Arbitrary Points of Each Body 

 

The position vector of an arbitrary point of each body is obtained by summing the 

relative position vectors of the successive bodies. The position vector of an 

arbitrary point P of Body 1 can be written as 

 

)1()1( rP =  (3.1) 

 

which can be written in the matrix form in Body 1 reference frame as  
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where )1(r  is the position of point P of Body 1 with respect to Body 1 reference 

frame and ( )1x  and ( )1y  are the position components of point P of Body 1 in 
( )1

1n  

and 
( )1

2n  axes, respectively. The position vector can be written in fixed frame as 

 

)1((1))1(  rTP =  (3.3) 

 

where )1(T  is the transformation matrix from Body 1 reference frame to fixed 

frame and it is given as 
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where c stands for cosine and, s stands for sine and 1θ  is the joint angle of Body 1. 

The position vector of an arbitrary point P of Body 2 can be written as; 

 

)2((1))2(  qdP +=  (3.5) 
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(1)d  is the position vector from A to B. ( )2
q  is the position vector from B to P 

including undeformed position vector )2(r  and the deformation vector )2(u . 

 

)2()2()2(  urq +=  (3.6) 

 

Then, Equation (3.5) can be given in the following form in fixed frame 

 

)2()2((1))1()2(  qTdTP +=  (3.7) 

 

where 
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where L1 is the length of Body 1. 

 

)2()2()2(  urq +=  (3.9) 

 

where 
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where )2(r  is the position of point P of Body 2 with respect to Body 2 reference 

frame at undeformed state and )2(x  and )2(y  are the position components of point 

P of Body 2 at undeformed state in 
)2(

1n  and 
)2(

2n  axes, respectively. 

 

)2()2()2( ηηηηφφφφ=u  (3.11) 

 

where )2(u  represents the deformation displacement of Body 2 with respect to 

Body 2 reference frame, )2(φφφφ  represents the shape function matrix of Body 2 and 
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)2(ηηηη  represents the vector of modal variables of Body 2. Thus, )2(P  can be written 

in the following form 

 

( ))2()2()2()2()1()1()2( ηηηηφφφφ++= rTdTP  (3.12) 

 

where )2(T  represents the transformation matrix from Body 2 reference frame to 

fixed frame and is given by 

 

)21()1()2( −= TTT  (3.13) 

 

where )21( −T  is the transformation matrix from Body 2 reference frame to Body 1 

reference frame and is denoted as 
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where 2θ  is the joint angle of Body 2. Thus, )2(T  takes the following form 
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where 12θ  is given as 

 

2112 θ+θ=θ  (3.16) 

 

3.2.2 Velocities of Arbitrary Points of Each Body 

 

Translational velocity of an arbitrary point P of Body k is obtained by taking the 

time derivative of position vector of point P. It can be represented in the following 

form 
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ηηηηυυυυΩΩΩΩξξξξ && kkk +=v   (3.17) 

 

where kξξξξ  is the influence coefficient matrix related to the rigid body motion of 

Body k, ΩΩΩΩ&  is the generalized speed vector related to the rigid body motion, kυυυυ  is 

the influence coefficient matrix related to the elastic motion of Body k and ηηηη&  is 

the derivative of vector of modal variables. Above equation can be written in the 

following form 

 

xv &
kk µµµµ=  (3.18) 

 

where kµµµµ  is the velocity influence coefficient matrix of Body k and given by  

 

[ ]kkk υυυυξξξξµµµµ =  (3.19) 

 

In Equation (3.18), x&  is the time derivative of generalized coordinates x  which is 

given by 

 









=

ηηηη

ΩΩΩΩ
x  (3.20) 

 

Velocity of an arbitrary point P of Body 1 is obtained by taking the time derivative 

of position vector of the arbitrary point P of Body 1 (Equation (3.3)) as follows 

 

( ) )1()1(1 rTv &=  (3.21) 

 

)1(T& can be written as 

 

1

)1()1( θ= θ
&& TT  (3.22) 

 

where 
)1(

θT  is given as 
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








θ−θ

θ−θ−
=θ

11

11)1(

sc

cs
T  (3.23) 

 

Therefore, )1(v  takes the following form  

 

( ) ( ) ( )
1

111 θ= θ
&rTv  (3.24) 

 

Equation (3.24) can be expressed as  

 

( ) ( )ΩΩΩΩξξξξ &11 =v  (3.25) 

 

where ( )1ξξξξ  is the influence coefficient matrix related to the rigid body motion of 

Body 1 and is given as  

 

( )[ ]0rT )1(1)1(

θ=ξξξξ  (3.26) 

 

ΩΩΩΩ&  is given as 

 










θ

θ
=

2

1

&

&
&ΩΩΩΩ  (3.27) 

 

Velocity of an arbitrary point P of Body 2 is obtained by taking the time derivative 

of position vector Body 2 (Equation (3.12)) as follows 

 

)2()2()2()2()2()1()1()2( ηηηηφφφφ &&&& TqTdTv ++=  (3.28) 

 

)2(T&  can be represented as 

 

( )21

)2()2( θ+θ= θ
&&& TT  (3.29) 

 

where 
)2(

θT  is denoted as 
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








θ−θ

θ−θ−
=θ

1212

1212)2(

sc

cs
T  (3.30) 

 

Thus, )2(v  becomes 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )222

21

22

1

11)2( ηηηηφφφφ &&&& TqTdTv +θ+θ+θ= θθ  (3.31) 

 

Equation (3.31) can be denoted as 

 

ηηηηυυυυΩΩΩΩξξξξ && )2()2()2( +=v  (3.32) 

 

where )2(ξξξξ  is the influence coefficient matrix related to the rigid body motion of 

Body 2 and is denoted as  

 

[ ])2()2()2()2()1()1()2( qTqTdT θθθ +=ξξξξ  (3.33) 

 

)2(υυυυ  is the influence coefficient matrix related to the elastic motion of Body 2 and 

is denoted as  

 

)2()2()2( φφφφυυυυ T=  (3.34) 

 

ηηηη&  is denoted as 

 

)2(ηηηηηηηη && =  (3.35) 

 

3.2.3 Accelerations of Arbitrary Points of Each Body 

 

Acceleration of an arbitrary point P of Body k is obtained by taking the time 

derivative of velocity vector of Body k. Acceleration of Body k can be represented 

in the following form 
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xxa &&&&
kkk µµµµµµµµ +=  (3.36) 

 

where kµµµµ&  and x&&  are given as 

 

[ ]kkk υυυυξξξξµµµµ &&& =  (3.37) 









=

ηηηη

ΩΩΩΩ

&&

&&
&&x  (3.38) 

 

Acceleration of an arbitrary point P of Body 1 is obtained by taking the time 

derivative of Equation (3.25) as follows  

 

[ ] [ ] 








θ

θ
+








θ

θ
= θθ

2

1)1()1(

2

1)1()1()1(

&&

&&

&

&
& 0rT0rTa  (3.39) 

 

)1(

θT&  is found as  

 

( )
1

1)1(
θθθθ&& TT −=θ  (3.40) 

 

Thus, Equation (3.39) can be represented as 

 

ΩΩΩΩξξξξΩΩΩΩξξξξ &&&& )1()1()1( +=a  (3.41) 

 

where )1(ξξξξ&  is the rate of the influence coefficient matrix related to the rigid body 

motion of Body 1 and is given as 

 

[ ]0rT 1

)1()1()1( - θθθθξξξξ && =  (3.42) 

 

Ω&&  is the rate of the generalized speeds vector related to the rigid body motion and 

is given as 
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








θ

θ
=

2

1

&&

&&
&&ΩΩΩΩ  (3.43) 

 

Acceleration of an arbitrary point P of Body 2 is obtained by taking the time 

derivative of Equation (3.32) as follows  

 

[ ] +








θ

θ
+++= θθθθθ

2

1)2()2()2()2()2()2()2()2()2()2()1()1()2(

&

&
&&&&& ηηηηφφφφηηηηφφφφ TqTTqTdTa  

( ) ( )[ ][ ] [ ] [ ][ ])2()2()2(

2

1)2()2()2()2()1()1()2(22 ηηηηφφφφηηηηφφφφ &&
&&

&&
&& TqTqTdTT +









θ

θ
++ θθθ  (3.44) 

 

)2(

θT&  can be written as 

 

( )( )21

2)2(
θθθθθθθθ &&& +−=θ TT  (3.45) 

 

Hence, Equation (3.44) can be written as 

 

ηηηηυυυυΩΩΩΩξξξξηηηηυυυυΩΩΩΩξξξξ &&&&&&&& )2()2()2()2()2( +++=a  (3.46) 

 

where )2(ξξξξ&  is the rate of the influence coefficient matrix related to the rigid body 

motion of Body 2 and is given as 

 

)2(ξξξξ& = ( )[ )2()2()2(

21

)2()2(

1

)1()1(- ηηηηφφφφ &&&&
θ+θ+θ−θ TqTdT  

( ) ])2()2()2(

21

)2()2( ηηηηφφφφ &&&
θ+θ+θ− TqT  (3.47) 

 

)2(υυυυ&  is the rate of the influence coefficient matrix related to the elastic motion of 

Body 2 and is given as 

 

( )21

)2()2()2( θθθθθθθθφφφφυυυυ &&& += θT  (3.48) 
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ηηηη&&  is the second derivative of the vector of modal variables and is given as  

 

(2)ηηηηηηηη &&&& =  (3.49) 

 

3.2.4 Equations of Motion 

 

The equations of motion of the flexible multibody system can be expressed by 

using the Kane’s equations as follows [53] 

 

0fff =++ s*  (3.50) 

 

where *f , f and sf  are the generalized inertia, external and structural stiffness 

forces, respectively. These terms are considered in detail in the following sections. 

 

3.2.5 Generalized Inertia Forces 

 

The generalized inertia forces due to inertias of the bodies are  

 

( )∑ ∫
=

ρ−=
2

1k V

k

k

Tk*

k

dVaf µµµµ  (3.51) 

 

where kρ  represents the density of Body k and Vk stands for the volume of Body 

k. By using Equation (3.36), the above equation can be expressed in the following 

form 

 

QxMf +−= &&
*  (3.52) 

 

where M  is the generalized mass matrix of the whole system given by 

 

k
2

1k

MM ∑
=

=  (3.53) 
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where kM  is the generalized mass matrix of Body k, 

 

∫ρ=
kV

kΤk

k

k dVµµµµµµµµM  (3.54) 

 

and Q  is the generalized Coriolis and centrifugal force vector of the whole system 

given by 

 

∑
=

=
2

1k

kQQ  (3.55) 

 

where k
Q  is the generalized Coriolis and centrifugal force matrix of Body k,  

 

∫ρ−=
kV

kΤk

k

k dVxQ &&µµµµµµµµ  (3.56) 

 

Equation (3.54) can be written as 

 

dV
kTkkTk

kTkkTk

V

k

k

k











ρ= ∫

υυυυυυυυξξξξυυυυ

υυυυξξξξξξξξξξξξ
M  (3.57) 

 

In order to deal with each term seperately, the submatrices of kM  are labeled as 

below 

 












=

k

ee

Tk

er

k

er

k

rrk

MM

MM
M  (3.58) 

 

The submatrices of kM  for each body are obtained as follows: 

 

The submatrices of Body 1 are as follows 
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( ) ( )

∫











ρ=

1V

1T1

1

)1(

rr dV
00

0rr
M  (3.59) 

0M =
)1(

er  (3.60) 

0M =
)1(

ee  (3.61) 

 

The submatrices of Body 2 are as follows 

 












=

)2(

rr

)2(

rr

)2(

rr

)2(

rr)2(

rr

2221

1211

MM

MM
M  (3.62) 

+













ρ+














ρ= ∫∫ θθ dVdV

22

11

V

)2(

2

)2(T)1(T)1()1(T)1(

V

2

)2(

rr qTTdddM  

( ) dVdV )2(

V

T2

2

)1()1(T)2(

V

T)2(

2

22

qqdTTq ∫∫ ρ+













ρ θθ  (3.63) 

dVdV )2(

V

T)2(

2

V

)2(

2

)2(T)1(T)1()2(

rr

22

12
qqqTTdM ∫∫ ρ+














ρ= θθ  (3.64) 

( )T)2(

rr

)2(

rr 1221
MM =  (3.65) 

( )
dV)2(

V

T)2(

2

2

rr

2

22
qqM ∫ρ=  (3.66) 

( )

( )











=

2

er

2

er)2(

re

2

1

M

M
M  (3.67) 

dVdV )2()2(
T)2(

V

T)2(

2

V

)2(

2

)2(
T)1(T)1()2(

er

22

1
φφφφφφφφ TTqTTdM θθ ∫∫ ρ+














ρ=  (3.68) 

dV)2()2(
T)2(

V

T)2(

2

)2(

er

2

2
φφφφTTqM θ∫ρ=  (3.69) 

dV)2(

V

T)2(

2

)2(

ee

2

φφφφφφφφ∫ρ=M  (3.70) 

 

Equation (3.56) can be written as  
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dV

kV
kTk

kTk

k

k

∫











ρ−=

x

x
Q

&&

&&

µµµµυυυυ

µµµµξξξξ
 (3.71) 

 

In order to deal with each term seperately, the submatrices of k
Q  are labeled as 

follows 

 









=

k

e

k

rk

Q

Q
Q  (3.72) 

 

The submatrices of k
Q  for each body are obtained as follows: 

 

The submatrices of Body 1 are as follows 

 

( )
Ω
















θ













ρ

= ∫ θ &
&
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0Vd 1

V

)1()1(
T)1(T)1(

1

r
1

rTTr
Q  (3.73) 

0Q =
)1(

e  (3.74) 

 

The submatrices of Body 2 are given by 

 

( )
( )

( )











=

2

r

2

r2

r

2

1

Q

Q
Q  (3.75) 

( ) ( )−θ+θ













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
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




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
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
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( ) ( ) +

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
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
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 (3.76) 
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3.2.6 Generalized External Forces 

 

The external forces applied to the body are classified in two groups: 

 

a) Consider a torque acting on Body k. Then, the generalized forces due to external 

torque T are 

 

T
i

Tk
ke

i
x

f
∂

∂
=

ωωωω
                          i = 1,2,...,n+m (3.79) 
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where n is the number of rigid generalized coordinates, m is the number elastic 

coordinates and kωωωω  is the angular velocity of the frame attached to the point of 

application of torque T. 1T  and 2T  are considered to be actuator torques applied to 

Body 1 and Body 2, respectively. 

 

Generalized external force due to torque T1 is 

 

( )

1

i

T1
e

i
x

f T
∂

∂
=

ωωωω
 (3.80) 

 

Equation (3.80) becomes 

 

1

i

1e

i T
x

f
∂

θ∂
=

&
 (3.81) 

 

In matrix form the following equation is obtained 

 

( )

















=

0

f 0

T1

Te 1  (3.82) 

 

Generalized external force due to torque T2 is 

 

( ) ( )

2

i

T1

2

i

T2
e

i
xx

f TT
∂

∂
−

∂

∂
=

ωωωωωωωω
 (3.83) 

 

This equation leads to 

 

2

i

2e

i T
x

f
∂

θ∂
=

&
 (3.84) 
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Equation (3.84) yields the following equation 

 

( )

















=

0

f 2

Te
T

0

2  (3.85) 

 

Thus, total generalized external forces due to external forces are the summation of 

( )1Te
f  and 

( )2Te
f  which leads to 
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
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
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



=

0

f 2

1

e T

T

 (3.86) 

 

b) Consider the gravitational force (body force). As the gravitational force applied 

to Body k, the total force on Body k is found to be 

 

( )∫ ρ=
kV

k

Tkkg dVgsf µµµµ  (3.87) 

 

where g is gravitational acceleration and s is the unit vector along gravitational 

acceleration in fixed frame, i.e., 

 









=

1-

0
s  (3.88) 

 

As submatrices, Equation (3.87) can be obtained as 
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 (3.89) 
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In order to deal with each term seperately, the submatrices of 
kgf  are labelled as 

follows 

 












=

kg

e

kg

r
kg

f

f
f  (3.90) 

 

The submatrices of generalized external forces of each body due to gravitational 

force are as follows: 

 

The submatrices of Body 1 are as follows 

 

( )
( )

( )













=

1g

r

1g

r1g

r

2

1

f

f
f  (3.91) 

( ) ( ) ( )
∫ θρ=

1

1

V

T1T1

1

1g

r dVg sTrf  (3.92) 

( )
0

1g

r2
=f  (3.93) 

( )
0f =

1g

e  (3.94) 

 

The submatrices of Body 2 are as follows 
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( )

( )













=

2g

r
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r2g

r

2

1

f

f
f  (3.95) 

( ) ( ) ( ) ( ) ( )
sTqsTdf

T2

V

T2

2

T1T1

V

2

2g

r

22

1
dVgdVg θθ 













ρ+














ρ= ∫∫  (3.96) 

( ) ( ) ( )
sTqf

T2

V
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2

2g

r

2

2
dVg θ













ρ= ∫  (3.97) 

( ) ( ) ( )
sTf

T2

V
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2
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e

2

dVg













ρ= ∫ φφφφ  (3.98) 
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Thus, total generalized external force due to gravitational force is the summation 

of each body contribution which can be represented as 

 

∑
=

=
2

1k

kgg ff  (3.99) 

 

3.2.7 Generalized Structural Stiffness Forces 

 

Generalized structural stiffness forces are found from the work done by the 

stiffness forces which is equal to the negative of the strain energy of the Body k. 

Negative of the strain energy is written as 

 

dxIE
x2

1
W

k

3

k

2
L

0

k

3k

s ∫ 










∂

θ∂
−=  (3.100) 

 

where E
k
 is the modulus of elasticity of Body k, I3

k
 is the second moment of area 

of the cross section of Body k about n3
k
 and ( )t,x

k

3θ  refers to the rotation of the 

centerline of Body k in its frame, which is given by 

 

k

2

k

3
t
δ

∂

∂
=θ  (3.101) 

 

where 
k

2δ  is the bending of centerline of Body k which can be expressed as 

 

mm2211

k

2 YYY η++η+η=δ K  (3.102) 

 

where iY  (i = 1,...,m) is the ith bending mode of Body k. Hence, 
( )2sf  takes the 

following form 
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( )
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Equation (3.103) can be written as 

 

( )

( )

( )

( )

( ) ( )















−=



























=

η

η

η

22

2s

2s

2s

2s 0

0

f

f

f

0

0

m

2

1

ηηηηK

f

M

 (3.104) 

 

where ( )2K  represents the structural stiffness matrix of Body 2. 

 

 

3.3 Dynamic Modeling of Spatial Three Link Manipulator with Two 

Flexible Arms by Using Absolute Coordinates 

 

The spatial three link manipulator is depicted in Figure 3.2. Body 1 (or Link 1) is 

assumed to be rigid while Body 2 and Body 3 are taken as flexible. Lumped 

masses mA, mB and mC are considered at points A, B and C, respectively. They 

represent actuators at points A and B and end effector and payload at point C. 

 

The dynamic equations are derived by using the absolute coordinate approach. The 

flexible bodies are assumed to be Euler-Bernoulli beam. The deformation 

displacements of the flexible bodies are considered small so that they stay in the 

elastic range. The finite element method is used for the modeling of elastic 

deformation of the flexible bodies. The beams are discretized by two node beam 
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elements. The nodal variables are centerline deformation displacements and 

deformation rotations. The element axis frame n
ki

 is located at one of the nodes. 

Since the beams are straight, the body reference frame and the element frames 

have same orientation at the undeformed state. Beam element shape functions are 

given in Appendix A. 

 

In the formulation, the numbers in parenthesis and the letter k as superscripts 

represent the body number. The overbar and double overbar denote that related 

variable is defined in related body reference frame and related element frame, 

respectively. The vectors are column vectors. Boldface letters represent matrix or 

vector. 
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Figure 3.2 Spatial three link manipulator with two flexible arms. 

 

3.3.1 Kinematic and Dynamic Equations of Each Body 

 

Body 1 

 

Position vector to arbitrary point P of Body 1 can be written as 

 

)1()1( rR =  (3.105) 

n1 

n1
(1) 

O 

n1
(3) 

n2, n2
(1) 

n1
(2) 

n2
(2) 

n2
(3) 

T3 

T2 

T1 

A 

B 

C 

n1
2i 

n2
2i 

element i 
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3i 

n1
3i 

element i 
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Using components in fixed frame, )1(R  can be written as 

 

)1()1()1()1(
rTrR ==  (3.106) 

 

where )1(r  is the position of point P of Body 1 expressed in fixed frame and )1(r  is 

the position of point P of Body 1 expressed in Body 1 reference frame and is given 

as  
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( ) 









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)1(

2

)1(

1

)1(

z

y

x

r

r

r

r  (3.107) 

 

where 
)1(

1r ,
)1(

2r  and 
)1(

3r  and ( )1x , ( )1y  and ( )1z  are the position components of 

point P of Body 1 in 
( )1

1n , 
( )1

2n  and 
( )1

3n  axes, respectively. )1(T  is the 

transformation matrix from Body 1 reference frame to fixed frame. It can be 

expressed in terms of Euler angles, eg. by using the roll-pitch-yaw (1-2-3) 

sequence. Euler angles of Body 1 reference frame can be written in columnwise 

form as 

 

















γ

β

α

=

1

1

1

)1(αααα  (3.108) 

 

where 1α , 1β  and 1γ  are the roll, pitch, yaw Euler angles of Body 1 reference 

frame, respectively. It should be noted that roll and yaw motions do not occur for 

Body 1 reference frame. Therefore, )1(T  can be written as 

 

















ββ−

ββ

=

11
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c0s
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s0c

T  (3.109) 
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where c and s stand for cosine and sine, respectively. Generalized coordinates of 

Body 1, )1(x  can be chosen as Euler angles of Body 1 reference frame. Therefore, 

)1(x can be written as 

 

)1()1( αααα=x  (3.110) 

 

Velocity of point P of Body 1 is obtained by taking the time derivative of position 

vector of point P of Body 1 as 

 

)1()1()1( rTv &=  (3.111) 

 

Here )1()1( rT&  can be written in the following form 

 

)1()1()1()1()1( ~
ωωωωrTrT =&  (3.112) 

 

where )1(~
r  is the skew symmetric matrix of the vector )1(r , )1(ωωωω  is the angular 

velocity of Body 1 reference frame expressed in the same frame and it can be 

written in terms of derivative of Euler angles of Body 1 reference frame as 

 

)1()1()1( ααααωωωω &D=  (3.113) 

 

where )1(αααα&  is the derivative of Euler angles of Body 1 reference frame in 

columnwise form and is given as 

 

















γ

β

α

=

1

1

1

)1(

&

&

&

&αααα  (3.114) 

 

)1(D  is a transformation matrix from derivative of Euler angles of Body 1 

reference frame to the angular velocity of Body 1 reference frame. It is expressed 

in Body 1 reference frame and is denoted as 
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















β

β

=

10s

010

00c

1

1

)1(
D  (3.115) 

 

Therefore, Equation (3.112) can also be written as  

 

)1()1()1()1()1()1( ~
αααα&& DrTrT =  (3.116) 

 

One can choose a linear combination of the generalized coordinate derivatives as 

the generalized speeds of the body. For the rigid body rotation degrees of freedom, 

)1(ωωωω  is the alternative to the Euler angle derivatives )1(αααα& . Since )1(ωωωω  yields simpler 

dynamic equations, it is chosen as the rotational generalized speeds. For this 

reason, )1(v  is written as below 

 

)1()1()1()1( ~
ωωωωrTv =  (3.117) 

 

Seperating the coefficients of the generalized speeds, one has 

 

)1()1()1(
yv µµµµ=  (3.118) 

 

where )1(µµµµ  is the velocity influence coefficient matrix of Body 1 and is given as 

 

)1()1()1( ~
rT=µµµµ  (3.119) 

 

)1(
y  is the generalized speed vector of Body 1 and is given as  

 

)1()1( ωωωω=y  (3.120) 

 

Derivative of the generalized coordinates vector of Body 1 can be obtained from 

the generalized speed vector of Body 1 as 
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)1(1(1))1( ωωωωαααα
−

= D&  (3.121) 

 

where inverse of the )1(D  is given as 
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1

1

1
1(1)D  (3.122) 

 

2/1 π±=β  and 2/31 π=β  are the singularities of the roll-pitch-yaw (1-2-3) 

sequence. At such positions, another sequence has to be used. 

 

Acceleration of point P of Body 1 is obtained by taking the time derivative of the 

velocity vector of point P of Body 1 as 

 

)1()1()1()1()1()1()1( ~~
ωωωωωωωω rTrTa && +=  (3.123) 

 

which can be shortly written as 

 

)1()1()1()1()1(
yya µµµµµµµµ && +=  (3.124) 

 

where )1(
y&  is the generalized acceleration vector of Body 1 and is given as 

 

)1()1( ωωωω&& =y  (3.125) 

 

)1()1(
y&µµµµ  consists of the terms involving the generalized accelerations as shown 

below 

 

)1()1()1()1()1( ~
ωωωωµµµµ && rTy =  (3.126) 

 

)1()1(
yµµµµ&  involves the second order velocity terms, as shown below 
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)1()1()1()1()1()1( ~~
ωωωωωωωωµµµµ rTy −=&  (3.127) 

 

The dynamic equations of Body 1 can be derived by using the above kinematic 

expressions. Kane’s equations are given as [53] 

 

( ) ( )
0ffff =+++

)1(

m

1*

m

)1(1*

AA
 (3.128) 

 

where 
( )1*f  and )1(f  are the generalized inertia and external forces of Body 1, 

respectively. 
( )1*

mA
f  and 

)1(

mA
f  are the generalized inertia and external forces of 

lumped mass mA at point A of Body 1, respectively. 

 

The generalized inertia forces of Body 1 can be written as 

 

( ) ( )dV)1(

1

V

T)1(1*

1

af ρ−= ∫µµµµ  (3.129) 

 

where 1ρ  represents the density of Body 1 material and 1V  stands for the volume 

of Body 1. Equation (3.129) can be expressed as the following form 

 

( ) )1()1()1(1*
QyMf +−= &  (3.130) 

 

where )1(M  is the generalized mass matrix of Body 1 and is given as 

 

dV

1V

)1(Τ)1(

1

)1(

∫ρ= µµµµµµµµ &M  (3.131) 

 

)1(
Q  is the generalized Coriolis and centrifugal force vector of Body 1 and is given 

as  
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dV

1V

)1()1(Τ)1(

1

)1(

∫ρ−= yQ µµµµµµµµ &  (3.132) 

 

)1(M  can be written in terms of the generalized coordinates of Body 1 by 

substituting the partitioned form of )1(µµµµ into Equation (3.131) as follows 

 

dV
~~

1V

)1(Τ)1(

1

)1(

∫ρ= rrM  (3.133) 

 

which equals to 

 

)1()1( IM =  (3.134) 

 

where )1(I  is the moment of inertia of Body 1 about its reference frame. 

 

)1(
Q  can be written in terms of the generalized coordinates and the generalized 

speeds by substituting the partitioned form of )1(µµµµ  into Equation (3.132) as follows 

 

)1(

V

)1()1(Τ)1(

1

)1(

1

dV
~~~

ωωωωωωωω∫ρ= rrQ  (3.135) 

 

It can be shown that by multiplying all matrices and rearranging terms, the above 

equation can be expressed as 

 

)1()1()1()1( ~
ωωωωωωωω IQ =  (3.136) 

 

The generalized external force due to weight of Body 1 can be expressed as 

 

( ) ( )dVg

1V

1

T)1(1g

∫ ρ= sf µµµµ  (3.137) 
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where g represents the gravitational acceleration and s is a unit vector along 

gravitational acceleration in fixed frame and expressed as 

 

















−=

0

1

0

s  (3.138) 

 

After substituting )1(µµµµ into Equation (3.137), it becomes 

 

( ) ( )
sTrf

T1

V

T)1(
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1g
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dV
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g













= ∫ρρρρ  (3.139) 

 

The generalized external force due to torque T1 can be expressed as 

 

( )( ) )1(

1

T)1(1Te 1 Tf ΩΩΩΩ=  (3.140) 

 

where 
)1(

1T  is the torque vector applied to Body 1 due to actuator at point O 

expressed in Body 1 reference frame and can be written as 
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=
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T
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1

)1(

1T  (3.141) 

 

where 1T  is the magnitude of the torque generated by the actuator at point O. 

 

)1(ΩΩΩΩ  is the angular velocity influence coefficient matrix of Body 1 and it can be 

obtained as 
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If Equations (3.141) and (3.142) are substituted into Equation (3.140), the 

following equation is obtained 

 

( )( )






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
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=

0

T

0

1
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The generalized external force due to torque T2 can be expressed as 

 

( )( ) )1(

2

T)1(1Te 2 Tf ΩΩΩΩ=  (3.144) 

 

where 
)1(

2T  is the torque vector applied to Body 1 due to actuator at point A 

expressed in Body 1 reference frame and can be written as 
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where 2T  is the magnitude of the torque generated by the actuator at point A. If 

Equations (3.142) and (3.145) are substituted into Equation (3.144), the following 

equation is obtained 

 

( )( )












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

=
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The generalized inertia forces due to lumped mass Am  at point A of Body 1 can be 

written as 

 

( ) ( )A

A

TA
1*

m m
A

af −= µµµµ  (3.147) 

 



 74 

where Aµµµµ  is the velocity influence coefficient matrix of point A of Body 1 and Aa  

is the acceleration of point A of Body 1. Equation (3.147) can be expressed as 

 

( ) )1(

m

)1()1(

m

1*

m AAA
QyMf +−= &  (3.148) 

 

where 
)1(

mA
M  is the generalized mass matrix of lumped mass Am and is given as 

 

11

A

ATA

A

)1(

m

~~
m rrM =  (3.149) 

 

where 1A
r  is the position vector of point A of Body 1 and 1A~

r  is the skew 

symmetric matrix of the vector 1A
r . 

)1(

mA
Q  is the generalized Coriolis and 

centrifugal force vector of lumped mass Am  and is given as 

 

( ) ( ) ( )1A1TA

A

1

m
11

A

~~~
m ωωωωωωωω rrQ =  (3.150) 

 

The generalized external force due weight of lumped mass Am  can be expressed 

as 

 

( )
( )sf gmA

TA
1g

mA
µµµµ=  (3.151) 

 

If Aµµµµ  is substituted into above equation, the following equation is obtained 

 

( )
sTrf g

~
m

T)1(TA

A

1g

m
1

A
=  (3.152) 

 

Body 2 

 

Position vector to arbitrary point P of element i of Body 2 can be written as  

 

( ) i22i2
qR += ζζζζ  (3.153) 
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Using components in fixed frame, R
2i

 can be written as  

 

i2)2()2(i2
qTR += ζζζζ  (3.154) 

 

where )2(ζζζζ is the position vector from fixed frame to Body 2 reference frame. Here 

it is a constant vector and is denoted as 
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)2(ζζζζ  (3.155) 

 

where 1L  stands for the length of Body 1. )2(T  is the transformation matrix from 

Body 2 reference frame to fixed frame. It can be expressed in terms of Euler 

angles, eg. by using the roll-pitch-yaw (1-2-3) sequence. Euler angles of Body 2 

reference frame can be written in columnwise form as 
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)2(αααα  (3.156) 

 

where 2α , 2β  and 2γ are the roll, pitch, yaw Euler angles of Body 2 reference 

frame, respectively. It should be noted that roll motion is not required for Body 2 

reference frame. Therefore, )2(T  takes the following form 

 


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)2(

csscs
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ssccc

T  (3.157) 

 

i2
q  represents the position vector from Body 2 reference frame to point P of 

element i of Body 2 at deformed state expressed in Body 2 reference frame and is 

given as 
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i2i2i2i2
urbq ++=  (3.158) 

 

where i2b  represents the position vector from Body 2 reference frame to element i 

reference frame expressed in Body 2 reference frame, i2r  represents the position 

vector from element i frame to point P at undeformed state expressed in Body 2 

reference frame and i2u  is the deformation displacement vector of point P of 

element i of Body 2 expressed in Body 2 reference frame and is given as 

 

i2i2i2 ααααφφφφ=u  (3.159) 

 

where i2φφφφ  is given as 

 

Ti2i2i2i2
RsT=φφφφ  (3.160) 

 

where i2T  is the transformation matrix from element i of Body 2 frame to Body 2 

reference frame and i2R  is given as 

 

















=
i2

i2

i2

T0

0T

R O  (3.161) 

 

Since all element frames and Body 2 reference frame are selected in the same 

orientation, at undeformed position i2T  is 3 by 3 identity matrix and therefore i2R  

is 12 by 12 identity matrix. i2s  is the shape function matrix of element i of Body 2. 

i2αααα  is the vector of nodal variables of element i of Body 2 expressed in Body 2 

reference frame and it can be written as 

 

)2(i2i2 αααααααα B=  (3.162) 
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where )2(αααα  is the vector of nodal variables of Body 2 expressed in Body 2 

reference frame and i2B  is the Boolean matrix of element i of Body 2 that relates 

)2(αααα  to i2αααα . Therefore, Equation (3.159) can be written as 

 

)2(i2i2i2 ααααφφφφ Bu =  (3.163) 

 

To decrease the number of elastic coordinates of Body 2, nodal modal 

transformation can be done as follows 

 

)2()2()2( ηηηηχχχχαααα =  (3.164) 

 

where )2(χχχχ  is the modal matrix of Body 2. Each column of this matrix is the 

eigenvector of Body 2 and represents the mode shape of Body 2. )2(ηηηη  is the vector 

of modal variables of Body 2. Therefore, Equation (3.154) takes the following 

form 

 

( ))2()2(i2i2i2i2)2()2(i2 ηηηηχχχχφφφφζζζζ BrbTR +++=  (3.165) 

 

Generalized coordinates of Body 2, )2(x , can be chosen as Euler angles of Body 2 

reference frame and modal variables of Body 2. Therefore, )2(x  can be written as 

 









=

)2(

)2(

)2(

ηηηη

αααα
x  (3.166) 

 

Velocity of point P of element i of Body 2 is obtained by taking the time derivative 

of the position vector of element i of Body 2 as 

 

)2()2(i2i2)2()2(i2)2(i2 ~
ηηηηχχχχφφφφωωωω &BTqTv +=  (3.167) 

 

where )2(ηηηη&  is the derivative of vector of modal variables of Body 2, i2~
q  is the 

skew symmetric matrix of vector i2
q  and )2(ωωωω  is the angular velocity of Body 2 
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reference frame expressed in the same frame and it can be written in terms of 

derivative of Euler angles of Body 2 reference frame as 

 

)2()2()2( ααααωωωω &D=  (3.168) 

 

where )2(αααα&  is the derivative of Euler angles of Body 2 reference frame in 

columnwise form and is given as 
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2

2
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& )2(αααα  (3.169) 

 

)2(D  is a transformation matrix from derivative of Euler angles of Body 2 

reference frame to the angular velocity of Body 2 reference frame. It is expressed 

in Body 2 reference frame and is denoted as 

 


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D  (3.170) 

 

Choosing )2(ωωωω  as the rotational generalized speeds of Body 2, v
2i

 is written as 

 

)2(i2i2
yv µµµµ=  (3.171) 

 

where i2µµµµ  is the velocity influence coefficient matrix of Body 2 and is given as 

 

[ ])2(i2i2)2(i2)2(i2 ~
χχχχφφφφµµµµ BTqT=  (3.172) 

 

)2(
y  is the generalized speed vector of Body 2 and is given as 
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&
y  (3.173) 
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Derivative of the generalized coordinates vector of Body 2 can be obtained from 

the generalized speeds vector of Body 2 as 
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 (3.174) 

 

where I is an identity matrix and inverse of the )2(D  is given as 
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2/2 π±=β  and 2/32 π=β  are the singularities of the roll-pitch-yaw (1-2-3) 

sequence. At such positions, another sequence has to be used. 

 

Acceleration of point P of element i of Body 2 is obtained by taking the time 

derivative of the velocity vector of element i of Body 2 as 

 

+++= )2(i2)2()2()2(i2i2)2()2(i2)2(i2 ~~
ωωωωηηηηχχχχφφφφωωωω qTBTqTa &&&&  

        )2()2(i2i2)2()2(i2)2( ~
ηηηηχχχχφφφφωωωω &&&

BTqT +  (3.176) 

 

which can be written shortly as 

 

)2(i2)2(i2i2
yya µµµµµµµµ && +=  (3.177) 

 

where )2(
y&  is the generalized acceleration vector of Body 2 and is given as 
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)2(i2
y&µµµµ  consists of the terms involving the generalized accelerations as shown 

below 

 

)2()2(i2i2)2()2(i2)2()2(i2 ~
ηηηηχχχχφφφφωωωωµµµµ &&&& BTqTy +=  (3.179) 

 

)2(i2
yµµµµ&  includes the Coriolis and centripetal accelerations as shown below 

 

)2()2(i2i22)2(22i)2()2()2(i2 ~
2

~~
ηηηηχχχχφφφφωωωωωωωωωωωωµµµµ && BTqTy

)()( −−=  (3.180) 

 

The dynamic equations of Body 2 can be derived by using the above kinematic 

expressions. Kane’s equations are given as [53] 

 

( ) ( ) ( ) ( )
0fffff =++++

2

m

2*

m

2s)2(2*

BB
 (3.181) 

 

where 
( )2*f , ( )2f  and 

( )2sf  are the generalized inertia, external, and stiffness forces 

of Body 2, respectively. 
( )2*

mB
f  and 

( )2

mB
f  are the generalized inertia and external 

forces of lumped mass Bm  at point B of Body 2, respectively. 

 

The generalized inertia forces of Body 2 can be written as 

 

( ) ( )dVi2

i2

V

Ti22*

i2

af ρ−= ∫µµµµ  (3.182) 

 

where i2ρ  represents the density of element i of Body 2 material and i2V  stands 

for the volume of element i of Body 2. Equation (3.182) can be expressed as the 

following form 

 

( ) )2()2()2(2*
QyMf +−= &  (3.183) 

 

where )2(M  is the generalized mass matrix of Body 2 and is given as 
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∑ ∫
=

ρ=
2

2i

N

1i V

i2Τi2

2i

)2( dVµµµµµµµµM  (3.184) 

 

where 2N  is the number of finite elements in Body 2. )2(
Q  is the generalized 

Coriolis and centrifugal force vector of Body 2 and is given as 
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1i V
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)2( dVyQ µµµµµµµµ &  (3.185) 

 

)2(M  can be written in terms of the generalized coordinates of Body 2 by 

substituting the partitioned form of i2µµµµ  into Equation (3.184) as follows 
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In order to deal with each term seperately, the submatrices of )2(M  corresponding 

to rotation and elastic deformation are labelled as below 

 












=

)2(

ee

T)2(

re

)2(

re

)2(

rr)2(

MM

MM
M  (3.187) 

 

The submatrices of )2(M  can be obtained in the following forms 
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)2(
Q  can be written in terms of the generalized coordinates and the generalized 

speeds by substituting the partitioned form of i2µµµµ  into Equation (3.185) as follows 
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  (3.191) 

 

In order to deal with each term seperately, the subvectors of )2(
Q  corresponding to 

rotation and elastic deformation are labelled as below 
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The subvectors of )2(
Q can be obtained in the following forms 
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The generalized external force due to weight of Body 2 can be expressed as 
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If i2µµµµ  is substituted into above equation, 
( )2gf  becomes 
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In order to deal with each term seperately, the subvectors of 
( )2gf  corresponding to 

rotation and elastic deformation are labelled as below 
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The subvectors of 
( )2gf  can be obtained as follows 
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The generalized external force due to torque T2 can be expressed as 

 

( )( )
2

ATAA2Te 2222 Tf ΩΩΩΩ=  (3.200) 

 

where 2

A2 T  is the torque vector applied to Body 2 due to actuator at point A 

expressed in joint frame 2A  and is written as 
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22 AA ΩΩΩΩ  is the influence coefficient matrix of angular velocity of joint frame at 

point A of Body 2 expressed in the same frame and it can be obtained as 

 

[ ])2(r2A2A2ATAA 22222 χχχχΨΨΨΨΩΩΩΩ BTT
−−=  (3.202) 

 

where 
2A2 −

T  is the transformation matrix from Body 2 reference frame to the joint 

frame at 2A  due to angular deformation of Body 2. Angular deformation of 

element i of Body 2 expressed in Body 2 reference frame, i2γγγγ , can be written as 

 

)2()2(i2i2i2 ηηηηχχχχΨΨΨΨγγγγ B=  (3.203) 

 

where i2ΨΨΨΨ  is given as 
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where 
i2

rots  is the rotation shape function matrix of element i of Body 2. Since i2γγγγ  

are small angles vector (therefore, 1c,s
i2

j

i2

j

i2

j ≈≈ γγγγγγγγγγγγ  for 3,2,1j = ), 
2A2 −

T  can 

be expressed in terms of Euler angles by using the roll-pitch-yaw sequence as 
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where 2Aγγγγ  is the value of i2γγγγ evaluated at point 2A . 2AΨΨΨΨ  is the value of i2ΨΨΨΨ  

evaluated at point 2A  and r2B is the Boolean matrix of the element of Body 2 that 

includes point A. 

 

Therefore, 
( )( )2Te 2f can be written as 
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In order to deal with each term seperately, the subvectors of 
( )( )2Te 2f  corresponding 

to rotation and elastic deformation are labelled as below 
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The subvectors of 
( )( )2Te 2f  can be obtained as follows 
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The generalized external force due to torque T3 can be expressed as 

 

( )( )
3

BTBB2Te 2223 Tf ΩΩΩΩ=  (3.210) 

 

where 3

B2 T  is the torque vector applied to Body 2 due to actuator at point B 

expressed in joint frame 2B  and is written as 
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where 3T  is the magnitude of the torque generated at actuator at point B. 22 BB ΩΩΩΩ  is 

the influence coefficient matrix of angular velocity of joint frame at point B of 

Body 2 expressed in the same frame and it can be obtained as 

 

[ ])2(r2B2B2BBB 22222 χχχχΨΨΨΨΩΩΩΩ BTT
−−=  (3.212) 
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where 
2B2 −

T  is the transformation matrix from Body 2 reference frame to the joint 

frame at B2 due to angular deformation of Body 2 and it can be expressed as 
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where 2Bγγγγ  is the value of i2γγγγ  evaluated at point 2B . 2BΨΨΨΨ  is the value of i2ΨΨΨΨ  

evaluated at point 2B  and r2B  is the Boolean matrix of the element of Body 2 that 

includes point B. 

 

Therefore, 
( )( )2Te 3f  can be written as 

 

( )( )
3

B

T2BTBTr2T)2(

T2B
2Te 2

22

2

3 T
TB

T
f












=

−

−

ΨΨΨΨχχχχ
 (3.214) 

 

In order to deal with each term seperately, the subvectors of 
( )( )2Te 3f  corresponding 

to rotation and elastic deformation are labelled as below 
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The subvectors of 
( )( )2Te 3f can be obtained as follows 
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Generalized structural stiffness forces of Body 2, 
( )2sf , are found from the work 

done by the stiffness forces of Body 2 which is equal to the negative of the strain 

energy of Body 2. Therefore, 
( )2sf  can be obtained as follows 
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where )2(K  is the structural stiffness matrix of Body 2 and it can be formed as 
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where i2K  is the structural stiffness matrix of element i of Body 2 expressed in 

Body 2 reference frame and is given as 

 

Ti2i2i2i2 RHRK =  (3.220) 

 

where i2H  is the structural stiffness matrix of element i of Body 2 expressed in 

element i frame. 

 

The generalized inertia forces due to lumped mass Bm  at point B of Body 2 can be 

written as 
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where Bµµµµ  is the velocity influence coefficient matrix of point B of Body 2 and Ba  

is the acceleration of point B of Body 2. Equation (3.221) can be expressed as 
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where 
)2(

mB
M  is the generalized mass matrix of lumped mass Bm  and is given as 
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)2(

mB
Q  is the generalized Coriolis and centrifugal force vector of lumped mass Bm  

and is given as 
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)2(

mB
M  can be written in terms of the generalized coordinates of Body 2 by 

substituting the partitioned form of Bµµµµ  into Equation (3.223) as follows 
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where 2B~
q  is the skew symmetric matrix of the vector 2B

q , 2B
q  is the position 

vector from Body 2 reference frame to point B of Body 2 at deformed state 

expressed in Body 2 reference frame, 2Bφφφφ  is the value of i2φφφφ  at point B of Body 2 

and r2B  is the Boolean matrix of the element of Body 2 that includes point B. 

 

In order to deal with each term seperately, the submatrices of 
)2(

mB
M  

corresponding to rotation and elastic deformation are labelled as below 

 














=

)2(

m

T)2(

m

)2(

m

)2(

m)2(

m

eeBreB

reBrrB

B

MM

MM
M  (3.226) 

 

The submatrices of 
)2(

mB
M can be obtained in the following forms 
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22

rrB

BTB

B

)2(

m

~~
m qqM =  (3.227) 

)2(r2BTB

B

)2(

m
22

reB

~
m χχχχφφφφ BqM =  (3.228) 

)2(r2BTBTr2T)2(

B

)2(

m
22

eeB
m χχχχφφφφφφφφχχχχ BBM =  (3.229) 

 

)2(

mB
Q  can be written in terms of the generalized coordinates and the generalized 

speeds by substituting the partitioned form of Bµµµµ  into Equation (3.224) as follows 

 













+

+
=

)2()2(r2B)2(TBTr2T)2()2(B)2(TBTr2T)2(

)2()2(r2B)2(TB)2(B)2(TB

B

)2(

m
2222

2222

B ~
2

~~

~~
2

~~~

m
ηηηηχχχχφφφφωωωωφφφφχχχχωωωωωωωωφφφφχχχχ

ηηηηχχχχφφφφωωωωωωωωωωωω

&

&

BBqB

Bqqq
Q (3.230) 

 

In order to deal with each term seperately, the subvectors of 
)2(

mB
Q  corresponding 

to rotation and elastic deformation are labelled as below 

 














=

)2(

m

)2(

m)2(

m

eB

rB

B Q

Q
Q  (3.231) 

 

The subvectors of 
)2(

m
rB

Q  can be obtained in the following forms 

 

)2()2(r2B)2(TB

B

)2(B)2(TB

B

)2(

m
2222

rB

~~
m2

~~~
m ηηηηχχχχφφφφωωωωωωωωωωωω &BqqqQ +=  (3.232) 

)2()2(r2B)2(TBTr2T)2(

B

)2(B)2(TBTr2T)2(

B

)2(

m
2222

eB

~
m2

~~
m ηηηηχχχχφφφφωωωωφφφφχχχχωωωωωωωωφφφφχχχχ &BBqBQ +=  (3.233) 

 

The generalized external force due to weight of lumped mass Bm can be expressed 

as 

 

)gm( B

TB
)2(g

mB
sf µµµµ=  (3.234) 

 

If Bµµµµ  is substituted into above equation 
)2(g

mB
f

 
becomes 
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( )

( )
s

TB

Tq
f g

~

m
T2TBTr2T)2(

T2TB

B

)2(g

m
2

2

B












=

φφφφχχχχ
 (3.235) 

 

In order to deal with each term seperately, the subvectors of 
)2(g

mB
f

 
corresponding 

to rotation and elastic deformation are labelled as below 

 














=

)2(g

m

)2(g

m)2(g

m

eB

rB

B

f

f
f  (3.236) 

 

The subvectors of 
)2(g

mB
f

 
can be obtained as follows 

 

( )
sTqf g

~
m

T2TB

B

)2(g

m
2

rB
=  (3.237) 

( )
sTBf gm

T2TBTr2T)2(

B

)2(g

m
2

eB
φφφφχχχχ=  (3.238) 

 

Body 3 

 

Position vector to arbitrary point P of element i of Body 3 can be written as 

 

( ) i33i3
qR += ζζζζ  (3.239) 

 

Using components in fixed frame, i3R  can be written as 

 

( ) ( ) i333i3
qTR += ζζζζ  (3.240) 

 

where ( )3ζζζζ  is the position vector from fixed frame to Body 3 reference frame. ( )3T  

is the transformation matrix from Body 3 reference frame to fixed frame. It can be 

expressed in terms of Euler angles, eg. by using the roll-pitch-yaw (1-2-3) 
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sequence. Euler angles of Body 3 reference frame can be written in columnwise 

form as 

 

















γ

β

α

=

3

3

3

)3(αααα  (3.241) 

 

where α3, β3 and γ3 are the roll-pitch-yaw Euler angles of Body 3 reference frame, 

respectively. Therefore, ( )3T  takes the following form 

 

















βαγα+γβαγβα−γα

βα−γβα−γαγβα+γα

βγβ−γβ

=

333333333333

333333333333

33333

cccsssccscss

csssscccsssc

ssccc
)3(

T  (3.242) 

 

i3
q  represents the position vector from Body 3 reference frame to point P of 

element i of Body 3 at deformed state expressed in Body 3 reference frame and is 

given as 

 

i3i3i3i3
urbq ++=  (3.243) 

 

where i3b  represents the position vector from Body 3 reference frame to element i 

reference frame expressed in Body 3 reference frame, i3r  represents the position 

vector from element i frame to point P at undeformed state expressed in Body 3 

reference frame and i3u  is the deformation displacement vector of point P of 

element i of Body 3 expressed in Body 3 reference frame and is given as 

 

i3i3i3 ααααφφφφ=u  (3.244) 

 

where φφφφ3i
 is given as 

 

Ti3i3i3i3
RsT=φφφφ  (3.245) 
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where T
3i

 is the transformation matrix from element i of Body 3 frame to Body 3 

reference frame and R
3i

 is given as 

 

















=
i3

i3

i3

T0

0T

R O  (3.246) 

 

Since all element frames and Body 3 reference frame are in the same orientation, 

then T
3i

 is 3 by 3 identity matrix and therefore R
3i

 is 12 by 12 identity matrix. s
3i

 is 

the shape function matrix of element i of Body 3. i3αααα  is the vector of nodal 

variables of element i of Body 3 expressed in Body 3 reference frame and it can be 

written as 

 

)3(i3i3 αααααααα B=  (3.247) 

 

where )3(αααα  is the vector of nodal variables of Body 3 expressed in Body 3 

reference frame and B
3i

 is the Boolean matrix of element i of Body 3 that relates 

)3(αααα  to i3αααα . Therefore, Equation (3.244) can be written as 

 

( )33ii3i3 ααααφφφφ Βu =  (3.248) 

 

To decrease the number of elastic coordinates of Body 3, nodal modal 

transformation can be done as follows 

 

( ) ( )33)3( ηηηηχχχχαααα =  (3.249) 

 

where ( )3χχχχ  is the modal matrix of Body 3. Each column of this matrix is the 

eigenvector of Body 3 and represents the mode shape of Body 3. ( )3ηηηη  is the vector 

of modal variables of Body 3. Therefore, Equation (3.240) takes the following 

form 

 

( ) ( ) ( ) ( )( )33i3i3i3i333i3 ηηηηχχχχφφφφζζζζ BrbTR +++=  (3.250) 
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Generalized coordinates of Body 3, x
(3)

, can be chosen as position vector of Body 

3 reference frame, Euler angles of Body 3 reference frame and modal variables of 

Body 3. Therefore, x
(3)

 can be written as 

 

( )

( )

( )

( ) 















=
3

3

3

3

ηηηη

αααα

ζζζζ

x  (3.251) 

 

Velocity of point P of element i of Body 3 is obtained by taking the time derivative 

of the position vector of element i of Body 3 as 

 

( ) ( ) ( ) ( ) ( ) ( )33i3i333i333i3 ~
ηηηηχχχχφφφφωωωωζζζζ && BTqTv ++=  (3.252) 

 

where ( )3ζζζζ&  is the derivative of the position vector from fixed frame to Body 3 

reference frame, ( )3ηηηη&  is the derivative of vector of modal variables of Body 3, i3~
q  

is the skew symmetric matrix of vector i3
q  and ( )3ωωωω  is the angular velocity of 

Body 3 reference frame expressed in the same frame and it can be written in terms 

of derivative of Euler angles of Body 3 reference frame as 

 

)3()3()3( ααααωωωω &D=  (3.253) 

 

where )3(αααα&  is the derivative of Euler angles of Body 3 reference frame in 

columnwise form and is given as 

 

















γ

β

α

=

3

3

3

&

&

&

& )3(αααα  (3.254) 

 

)3(D  is a transformation matrix from derivative of Euler angles of Body 3 

reference frame to the angular velocity of Body 3 reference frame. It is expressed 

in Body 3 reference frame and is denoted as 
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















β

γγβ−

γγβ

=

3

333

333

10s

0csc

0scc
)3(

D  (3.255) 

 

Choosing )3(ωωωω  as the rotational generalized speeds of Body 3, v
3i

 is written as 

 

( )3i3i3
yv µµµµ=  (3.256) 

 

where i3µµµµ  is the velocity influence coefficient matrix of Body 3 and is given as 

 

[ ])3(i3i3)3(i3)3(i3 ~
χχχχφφφφµµµµ BTqTI=  (3.257) 

 

where I is an identity matrix. )3(
y  is the generalized speed vector of Body 3 and is 

given as 

 

















=
)3(

)3(

)3(

)3(

ηηηη

ωωωω

ζζζζ

&

&

y  (3.258) 

 

Derivative of the generalized coordinates vector of Body 3 can be obtained from 

the generalized speeds vector of Body 3 as 
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
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




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
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
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)3(

)3(

1)3(

)3(

)3(

)3(

ηηηη

ωωωω

ζζζζ

ηηηη
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ζζζζ
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&

&

&

&

I00

0D0

00I

 (3.259) 

 

where I is an identity matrix and inverse of the )3(D  is given as 
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
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
















β

γβ

β

γβ
−

γγ
β

γ
−

β

γ

=

33

−

1
c

ss

c

cs

0cs

0
c

s

c

c

3

3

3

3

33

3

3

3

3

1)3(D  (3.260) 

 

2/3 π±=β  and 2/33 π=β  are the singularities of the roll-pitch-yaw (1-2-3) 

sequence. At such positions, another sequence has to be used. 

 

Acceleration of point P of element i of Body 3 is obtained by taking the time 

derivative of the velocity vector of element i of Body 3 as 

 

+++= )3()3(i3i3)3()3(i3)3()3(i3 ~
ηηηηχχχχφφφφωωωωζζζζ &&&&& BTqTa  

         )3()3(i3i3)3()3(i3)3()3(i3)3( ~~
ηηηηχχχχφφφφωωωωωωωω &&&& BTqTqT ++  (3.261) 

 

which can be written shortly as 

 

)3(i3)3(i3i3
yya µµµµµµµµ && +=  (3.262) 

 

where )3(
y&  is the generalized acceleration vector of Body 3 and is given as 

 

















=
)3(

)3(

)3(

)3(

ηηηη

ωωωω

ζζζζ

&&

&

&&

&y  (3.263) 

 

)3(i3
y&µµµµ  consists of the terms involving the generalized accelerations as shown 

below 

 

)3()3(i3i3)3()3(i3)3()3()3(i3 ~
ηηηηχχχχφφφφωωωωζζζζµµµµ &&&&&& BTqTy ++=  (3.264) 

 

)3(i3
yµµµµ&  includes the Coriolis and centripetal accelerations as shown below 
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)3()3(i3i3)3()3()3(i3)3()3()3(i3 ~
2

~~
ηηηηχχχχφφφφωωωωωωωωωωωωµµµµ && BTqTy −−=  (3.265) 

 

The dynamic equations of Body 3 can be derived by using the above kinematic 

expressions. Kane’s equations are given as [53] 

 

( ) ( ) ( ) ( )
0fffff =++++

3

m

3*

m

3s)3(3*

CC
 (3.266) 

 

where 
( )3*f , )3(f  and 

( )3sf  are the generalized inertia, external and stiffness forces 

of Body 3, respectively. 
( )3*

mC
f  and 

)3(

mC
f  are the generalized inertia and external 

forces of lumped mass Cm  at point C of Body 3, respectively. 

 

The generalized inertia forces of Body 3 can be written as 

 

( ) ( )dVi3

i3

V

Ti33*

i3

af ρ−= ∫µµµµ  (3.267) 

 

where i3ρ  represents the density of element i of Body 3 material and i3V  stands 

for the volume of element i of Body 3. Equation (3.267) can be expressed as the 

following form 

 

( ) )3()3()3(3*
QyMf +−= &  (3.268) 

 

where )3(M  is the generalized mass matrix of Body 3 and is given as 

 

∑ ∫
=

ρ−=
3

3i

N

1i V

i3Τi3

3i

)3( dVµµµµµµµµM  (3.269) 

 

where 3N  is the number of finite elements in Body 3. )3(
Q  is the generalized 

Coriolis and centrifugal force vector of Body 3 and is given as 
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∑ ∫
=

ρ−=
3

3i

N

1i V

)3(i3Τi3

3i

)3( dVyQ µµµµµµµµ &  (3.270) 

 

)3(M  can be written in terms of the generalized coordinates of Body 3 by 

substituting the partitioned form of i3µµµµ  into Equation (3.269) as follows 

 

∑ ∫
= 
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~
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BBqBTB

BqqqTq

BTqTI

M

 (3.271) 

 

In order to deal with each term seperately, the submatrices of )3(M  corresponding 

to translation, rotation and elastic deformation are labelled as below 
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M  (3.272) 

 

The submatrices of )3(M  can be obtained in the following forms 

 

dV
3

3i

N

1i V

3i

)3(

tt IM ∑ ∫
=

ρ=  (3.273) 

∑ ∫
=

ρ=
3

3i

N

1i
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V
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tr dV
~
qTM  (3.274) 
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∑ ∫
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BqM  (3.277) 
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BBM  (3.278) 

 

)3(
Q  can be written in terms of generalized coordinates and the generalized speeds 

by substituting the partitioned form of i3µµµµ  into Equation (3.270) as follows 

 

dV
~

2
~~

~~
2

~~~

~
2

~~

3

3i

N

1i V )3()3(i3i33Τi3Τi3Τ)3(33i3Τi3Τi3Τ)3(

)3()3(i3i33Τ3i33i3Τ3i

)3()3(i3i33(3)33i)3()3(

3i

)3( ∑ ∫
= )()()(

)()()(

)()(

















+

+

+

ρ=

ηηηηχχχχφφφφωωωωφφφφχχχχωωωωωωωωφφφφχχχχ

ηηηηχχχχφφφφωωωωωωωωωωωω

ηηηηχχχχφφφφωωωωωωωωωωωω

&

&

&

BBqB

Bqqq

BTqT

Q (3.279) 

 

In order to deal with each term seperately, the subvectors of )3(
Q  corresponding to 

translation, rotation and elastic deformation are labelled as below 
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Q  (3.280) 

 

The subvectors of )3(
Q  can be obtained in the following forms 
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The generalized external force due to weight of Body 3 can be expressed as 

 

( ) ( )dVg
3

3i

N

1i

i3

V

Τi33g ∑ ∫
=

ρ= sf µµµµ  (3.284) 

 

If i3µµµµ is substituted into above equation, 
( )3gf  becomes 
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In order to deal with each term seperately, the subvectors of 
( )3gf  corresponding to 

translation, rotation and elastic deformation are labelled as below 

 

( )

( )

( )

( )



















=
3g

e

3g

r

3g

t

3g

f

f

f

f  (3.286) 

 

The subvectors of 
( )3gf  can be obtained as follows 
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( )
sTBf gdV

T)3(
N

1i V

T3i

i3

Ti3T)3(
3g

e

3

3i

























ρ= ∑ ∫

=

φφφφχχχχ  (3.289) 

 



 100 

The generalized external force due to torque T3 can be expressed as 

 

( )( )
3

BTBB3Te 3333 Tf ΩΩΩΩ=  (3.290) 

 

where 3

B3 T  is the torque vector applied to Body 3 due to actuator at point B 

expressed in joint frame 3B  and is written as 

 

















=

3

3

B

T

0

0

3 T  (3.291) 

 

33 BB ΩΩΩΩ  is the influence coefficient matrix of angular velocity of joint frame at point 

B of Body 3 expressed in the same frame and it can be obtained as 

 

[ ])3(r3B3B3BBB 33333 χχχχΨΨΨΨΩΩΩΩ BTT0
−−=  (3.292) 

 

where 
3B3 −

T  is the transformation matrix from Body 3 reference frame to the joint 

frame at 3B  due to angular deformation of Body 3. Angular deformation of 

element i of Body 3 expressed in Body 3 reference frame, i3γγγγ , can be written as 

 

)3()3(i3i3i3 ηηηηχχχχΨΨΨΨγγγγ B=  (3.293) 

 

where i3ΨΨΨΨ  is given as 

 

Ti33i

rot

i3i3 RsT=ΨΨΨΨ  (3.294) 

 

where 
i3

rots  is the rotation shape function matrix of element i of Body 3. Since i3γγγγ  

are small angles vector (therefore, 1c,s
i3

j

i3

j

i3

j ≈≈ γγγγγγγγγγγγ  for 3,2,1j = ), 
3B3 −

T  can be 

expressed in terms of Euler angles by using the roll-pitch-yaw sequence as 
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T  (3.295) 

 

where 3Bγγγγ  is the value of i3γγγγ evaluated at point 3B . 3BΨΨΨΨ  is the value of i3ΨΨΨΨ  

evaluated at point 3B  and r3B  is the Boolean matrix of the element of Body 3 that 

includes point B. 

 

Therefore, 
( )( )3Te 3f  can be written as 
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 (3.296) 

 

In order to deal with each term seperately, the subvectors of 
( )( )3Te 3f  corresponding 

to translation, rotation and elastic deformation are labelled as below 
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The subvectors of 
( )( )3Te 3f  can be obtained as follows 

 

( )( )
0f =

3Te

t
3  (3.298) 

( )( )

3

BT3B3Te

r
333 TTf

−=  (3.299) 

( )( )

3
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e
3333 TTBf

−= ΨΨΨΨχχχχ  (3.300) 
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Generalized structural stiffness forces of Body 3, 
( )3sf , are found from the work 

done by the stiffness forces of Body 3 which is equal to the negative of the strain 

energy of Body 3. Therefore, 
( )3sf  can be obtained as follows 
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f  (3.301) 

 

where )3(K  is the structural stiffness matrix of Body 3 and it can be formed as 

 

∑
=

=
3

i

N
i3i3T3)3(

1i

BKBK  (3.302) 

 

where i3K  is the structural stiffness matrix of element i of Body 3 expressed in 

Body 3 reference frame and is given as 

 

Ti3i3i3i3 RHRK =  (3.303) 

 

where i3H  is the structural stiffness matrix of element i of Body 3 expressed in 

element i frame. 

 

The generalized inertia forces due to lumped mass Cm  at point C of Body 3 can be 

written as 

 

( ) ( )C

C

TC
3*

m m
C

af −= µµµµ  (3.304) 

 

where Cµµµµ  is the velocity influence coefficient matrix of point C of Body 3 and Ca  

is the acceleration of point C of Body 3. Equation (3.304) can be expressed as 
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( ) )3(

m

)3()3(

m

3*

m CCC
QyMf +−= &  (3.305) 

 

where 
)3(

mC
M  is the generalized mass matrix of lumped mass Cm  and is given as 

 

CTC

C

)3(

m m
C

µµµµµµµµ=M  (3.306) 

 

( )3

mC
Q  is the generalized Coriolis and centrifugal force vector of lumped mass Cm  

and is given as 

 

)3(CTC

C

)3(

m m
C

yQ µµµµµµµµ &−=  (3.307) 

 

)3(

mC
M  can be written in terms of the generalized coordinates of Body 3 by 

substituting the partitioned form of Cµµµµ  into Equation (3.306) as follows 
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BqqqTq
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 (3.308) 

 

where 3C~
q  is the skew symmetric matrix of the vector 3C

q , 3C
q  is the position 

vector from Body 3 reference frame to point C of Body 3 at deformed state 

expressed in Body 3 reference frame, 3Cφφφφ  is the value of i3φφφφ  at point C of Body 3 

and r3B  is the Boolean matrix of the element of Body 3 that includes point C. 

 

In order to deal with each term seperately, the submatrices of 
)3(

mC
M  

corresponding to translation, rotation and elastic deformation are labelled as below 
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The submatrices of 
)3(

mC
M  can be obtained in the following forms 
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)3(

mC
Q  can be written in terms of the generalized coordinates and the generalized 

speeds by substituting the partitioned form of Cµµµµ  into Equation (3.307) as follows 
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In order to deal with each term seperately, the subvectors of 
)3(

mC
Q  corresponding 

to translation, rotation and elastic deformation are labelled as below 
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The subvectors of 
)3(

mC
Q  can be obtained in the following forms 



 105 
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The generalized external force due to weight of lumped mass Cm can be expressed 

as 

 

( )
( )sf gmC

ΤC
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µµµµ=  (3.321) 

 

If Cµµµµ  is substituted into above equation 
( )3g
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f  becomes 
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In order to deal with each term seperately, the subvectors of 
( )3g

mC
f  corresponding 

to translation, rotation and elastic deformation are labelled as 
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The subvectors of 
( )3g

mC
f  can be obtained as follows 
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( )
sTBf gm

Τ)3(ΤCΤr3Τ)3(

C

3g

m
3

eC
φφφφχχχχ=  (3.326) 

 

The time and space dependent quantities have to be seperated so that the space 

integrals can be evaluated. In the following equations superscript k refers to Body 

k. 
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where subscript j refers to the j th row of the corresponding matrix or vector. 
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where subscript t refers to the t th row of corresponding matrix or vector. 
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 (3.333) 
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The inertia properties of the beam element used for the spatial robot are given in 

Appendix B. 

 

3.3.2 Constraint Equations 

 

7 possible constraint equations can be written for the robot in consideration. The 

velocity level constraint equations can be written as follows: 

 

Two scalar equations can be written for the revolute joint at point A by equating 

the first and second components of the angular velocity vector of point A of Body 

1, 1Aωωωω , and the angular velocity vector of point A of Body 2, 2Aωωωω . 

 

The angular velocity of joint frame at point A of Body 1 can be expressed in the 

same frame as follows 

 

1

AA

0

1

0

11 β

















= &ωωωω  (3.339) 

 

The angular velocity of joint frame at point A of Body 2 can be expressed in the 

same frame as follows 
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)2()2(r2A2A)2(2AAA 22222 ηηηηχχχχψψψψωωωωωωωω &BTT
−− +=  (3.340) 

 

On the other hand, the angular velocity of joint frame at point A of Body 2 can be 

expressed in joint frame at point A of Body 1 as follows 

 

222121 AAAAAA ωωωωωωωω −= T  (3.341) 

 

where 21 AA −
T  is the transformation matrix from the joint frame at point A of Body 

2 to the joint frame at point A of Body 1 and it can be expressed as 

 



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
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

γγ

γ−γ

=−

100

0cs

0sc

22

22

AA 21T  (3.342) 

 

Therefore, the following two constraint equations can be written 

 

2111
A

1

AA

1

A ωωωωωωωω =  constraint equation (1) (3.343) 

2111
A

2

AA

2

A ωωωωωωωω =  constraint equation (2) (3.344) 

 

Three scalar equations can be written for the revolute joint at point B by equating 

the components of the velocity vector of point B of Body 2, 2B
v , and the velocity 

vector of point B of Body 3, 3B
v . 

 

The velocity of point B of Body 2 can be expressed in fixed frame as 

 

)2()2(r2B)2()2(B)2(B 222
~

ηηηηχχχχφφφφωωωω &BTqTv +=  (3.345) 

 

The velocity of point B of Body 3 can be expressed in fixed frame as 

 

)3()3(r3B)3()3(B)3()3(B 333
~

ηηηηχχχχφφφφωωωωζζζζ && BTqTv ++=  (3.346) 
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where 3B~
q  is the skew symmetric matrix of the vector 3B

q , 3B
q  is the position 

vector from Body 3 reference frame to point B of Body 3 at deformed state 

expressed in Body 3 reference frame, 3Bφφφφ  is the value of i3φφφφ  at point B of Body 3 

and r3B  is the Boolean matrix of the element of Body 3 that includes point B. 

 

Therefore, the following three constraint equations can be written 

 

32 B

1

B

1 vv =  constraint equation (3) (3.347) 

32 B

2

B

2 vv =  constraint equation (4) (3.348) 

32 B

3

B

3 vv =  constraint equation (5) (3.349) 

 

Two scalar equations can be written for the revolute joint at point B by equating 

the first and second components of the angular velocity vector of point B of Body 

2, 2Bωωωω , and the angular velocity vector of point B of Body 3, 3Bωωωω . 

 

The angular velocity of joint frame at point B of Body 2 can be expressed in the 

same frame as follows 

 

)2()2(r2B2B)2(2BBB 22222 ηηηηχχχχψψψψωωωωωωωω &BTT
−− +=  (3.350) 

 

The angular velocity of joint frame at point B of Body 3 can be expressed in the 

same frame as follows 

 

)3()3(r3B3B)3(3BBB 33333 ηηηηχχχχψψψψωωωωωωωω &BTT
−− +=  (3.351) 

 

On the other hand, the angular velocity of joint frame at point B of Body 3 can be 

expressed in joint frame at point B of Body 2 as follows 

 

333232 BBBBBB ωωωωωωωω −= T  (3.352) 
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where 32 BB −
T  is the transformation matrix from the joint frame at point B of Body 

3 to the joint frame at point B of Body 2 and it can be expressed as 
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100
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33
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BB 32T  (3.353) 

 

where 3θ  is the joint angle of Body 3. 

 

Therefore, the following two constraint equations can be written 

 

3222
B

1

BB

1

B ωωωωωωωω =  constraint equation (6) (3.354) 

3222
B

2

BB

2

B ωωωωωωωω =  constraint equation (7) (3.355) 

 

The constraint equations at acceleration level can be obtained by taking the 

derivative of velocity level constraint equations as 

 

2111
A

1

AA

1

A ω=ω &&   (3.356) 

2111
A

2

AA

2

A ω=ω &&   (3.357) 

32 B

1

B

1 vv && =   (3.358) 

32 B

2

B

2 vv && =   (3.359) 

32 B

3

B

3 vv && =   (3.360) 

3222
B

1

BB

1

B ω=ω &&   (3.361) 

3222
B

2

BB

2

B ω=ω &&   (3.362) 

 

The derivative of the necessary equations to form the acceleration level constraint 

equations can be obtained as 
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+−− )2()2(r2A2AAA 2221 ηηηηχχχχψψψψ && BTT
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 (3.364) 

 

where 21 AA −
T&  and 

2A2 −
T&  are given as 
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where 2Aγγγγ&  is expressed as 

 

)2()2(r2AA 22 ηηηηχχχχψψψψγγγγ && B=  (3.367) 
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where 
2B2 −

T& is given as 
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where 2Bγγγγ&  is expressed as 

 

)2()2(r2BB 22 ηηηηχχχχψψψψγγγγ && B=  (3.372) 
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where 32 BB −
T&  and 

3B3 −
T&  are given as 
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where 3Bγγγγ& is expressed as 

 

)3()3(r3BB 33 ηηηηχχχχψψψψγγγγ && B=  (3.376) 

 

3.3.3 Equations of Motion 

 

Equations of motion of all bodies can be written considering the joint forces 

 

csge
ffffQyM ++++=&  (3.377) 

 

where M is the generalized mass matrix of the system, y is the generalized speed 

vector of the system, Q, e
f , gf  and sf  are the generalized Coriolis and 

centrifugal, external, gravitational and structural stiffness force vectors of the 

system, respectively. They are formed as follows 
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cf  is the generalized constraint forces due to joint forces. In general, the constraint 

equations at velocity level can be written as 

 

c,...,1p0yB mm

n

1m

pm ==∑
=

  (3.384) 

 

where n is the dimension of vector y and c is the number of constraint equations. 

Above equation can be written in matrix form as 

 

By = 0 (3.385) 
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Then cf  can be expressed as 

 

λλλλTc Bf =  (3.386) 

 

where λλλλ  is c dimensional vector of constraint forces at the joints. If Equation 

(3.386) is substituted into Equation (3.377), the following equation is obtained 

 

sgeT
fffQByM +++=− λλλλ&  (3.387) 

 

Equation (3.387) has n scalar equations but n+c unknowns. Constraint equations 

can be written at acceleration level as 

 

yByB && −=  (3.388) 

 

Equation (3.388) has c scalar equations with the same n unknowns. If Equations 

(3.387) and (3.388) are augmented, the following system of equations are obtained 
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 (3.389) 

 

 

3.4 An Alternative Form of Dynamic Equations for Controller Design 

 

The equations of motion of a multibody system derived by using absolute 

coordinates may have many equations especially when the number of body 

increases and body flexibilities are taken into consideration. The number of 

equations can be reduced from n+c to n by substituting velocity level constraint 

equations into the dynamic equations of the multibody system. 

 

The tip point position vector and elastic variables of the bodies are sufficient to 

describe the dynamics of a flexible robotic system completely. The tip point 

position vector is the variable to be controlled for flexible robotic systems. 
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Therefore, by using the constraint equations, the remaining variables can be 

expressed in terms of tip point position vector and elastic variables of the bodies. 

 

The system of equations of a multibody system is written here once more 

 

sgeT
fffQByM +++=− λλλλ&  (3.390) 

yByB && −=  (3.391) 

 

The generalized speed vector can be rearranged in the following order 
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where 13×ℜ∈ζζζζ& , 1m×ℜ∈ηηηη& , ( ) ( )32 mmm += , 1c×ℜ∈κκκκ . ( )2m  and ( )3m  are the number 

of modal coordinates of Body 2 and Body 3, respectively. These variables are 

given as 
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The vectors ζζζζ&  and ηηηη&  are called as primary variables and the vector κκκκ  is called as 

secondary variables. The system of equations can be arranged according to the 

new ordered generalized speed vector as follows 

 

s

m

g

m

e

mmm

T

mmm fffQByM +++=− λλλλ&  (3.396) 

mmmm yByB && −=  (3.397) 
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where subscript m means that the order of the rows and/or columns of the related 

matrix or vector are modified. Equation (3.396) and (3.397) can be written in 

partitioned form as follows 

 

g
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mmmm ζζζκζηζζζζκζηζζ
++++=−++ fTHCCCMMM κκκκηηηηζζζζλλλλΒΒΒΒκκκκηηηηζζζζ &&&&&&&  (3.398) 
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0000κκκκηηηηζζζζ =++
κηζ mmm BBB &&  (3.401) 

 

where matrices Cm, Sm and Hm stand for the partitioned forms of Qm, fm
s
 and fm

e
, 

respectively. T is the vector of actuating input. 

 

The secondary variables can be obtained in terms of primary variables by using 

Equation (3.401) as 

 

( )ηηηηζζζζκκκκ &&
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−
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m BBB  (3.402) 

 

The acceleration level constraint equations can be partitioned as 
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−−−=++ mmmmmm BBBBBB &&&&&&&&&&  (3.403) 

 

Rate of the secondary variables can be obtained in terms of primary variables and 

their rates by using Equations (3.403) and (3.402) as 
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By substituting Equations (3.402) and (3.404) into Equations (3.398), (3.399) and 

(3.400), the secondary variables and their rates can be eliminated from the 

dynamic equations. Therefore, the dynamic equations take the following form 
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ζ

ηηηηζζζζλλλλΒΒΒΒηηηηζζζζ &&&&&& T

m  (3.405) 

TYGKVVNN ηηηηηηηζηηηζ =++++−+
η

ηηηηηηηηζζζζλλλλΒΒΒΒηηηηζζζζ &&&&&& T

m  (3.406) 

TYGVVNN κκκηκζκηκζ =+++−+
κ
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m  (3.407) 

 

where ζζN , ζηN , ηζΝ , ηηN , κζN , κηN , ζζV , ζηV , ηζV , ηηV , κζV , κηV , ηηK , 

ζG , ηG , κG , ζY , ηY  and κY  are expressed as 
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1

mmmm

1

mmm

1

mm BBCCBBBBBMV &&  (3.418) 

( )
ηκκκκηηκκηκκκ

−−−

κη +−−−= m

1

mmmm

1

mmm

1

mm BBCCBBBBBMV &&  (3.419) 

ηη
−=ηη mSK  (3.420) 

g

mζ
−=ζ fG  (3.421) 

g

mη
−=η fG  (3.422) 
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g

m κ
−=κ fG  (3.423) 

ζ
=ζ mHY  (3.424) 

η
=η mHY  (3.425) 

κ
=κ mHY  (3.426) 

 

Vector of constraint forces can be expressed in terms of primary variables and 

their rates by using Equation (3.407) 

 

( ) ( )TYGVVNNB κκκηκζκηκζ

−

−++++=
κ

ηηηηζζζζηηηηζζζζλλλλ &&&&&&
1T

m  (3.427) 

 

By substituting Equation (3.427) in Equations (3.405) and (3.406), vector of 

constraint forces can be eliminated from the dynamic equations. Therefore, the 

dynamic equations take the following form 

 

TEDBBAA ζζζηζζζηζζ =++++ ηηηηζζζζηηηηζζζζ &&&&&&  (3.428) 

TEDKBBAA ηηηηηηηζηηηζ =+++++ ηηηηηηηηζζζζηηηηζζζζ &&&&&&  (3.429) 

 

where ζζA , ζηA , ηζA , ηηA , ζζB , ζηB , ηζB , ηηB , ζD , ηD , ζE  and ηE  are 

expressed as 

 

( ) κζ

−

ζζζζ κζ
−= NBBNA

1T

m

T

m  (3.430) 

( ) κη

−

ζηζη κζ
−= NBBNA

1T

m

T

m  (3.431) 

( ) κζ

−

ηζηζ κη
−= NBBNA

1T

m

T

m  (3.432) 

( ) κη

−

ηηηη κη
−= NBBNA

1T

m

T

m  (3.433) 

( ) κζ

−

ζζζζ κζ
−= VBBVB

1T

m

T

m  (3.434) 

( ) κη

−

ζηζη κζ
−= VBBVB

1T

m

T

m  (3.435) 

( ) κζ

−

ηζηζ κη
−= VBBVB

1T

m

T

m  (3.436) 
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( ) κη

−

ηηηη κη
−= VBBVB

1T

m

T

m  (3.437) 

( ) κ

−

ζζ κζ
−= GBBGD

1T

m

T

m  (3.438) 

( ) κ

−

ηη κη
−= GBBGD

1T

m

T

m  (3.439) 

( )
κκζζ

−

ζ −= m

1T

m

T

mm HBBHE  (3.440) 

( )
κκηη

−

η −= m

1T

m

T

mm HBBHE  (3.441) 

 

Therefore, Equations (3.428) and (3.429) describe the systems of equations of the 

multibody system in terms of only primary variables. 
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CHAPTER 4 

 

 

NUMERICAL SIMULATIONS FOR PLANAR ROBOT 

 

 

In this section, planar two degrees of freedom robot with flexible forearm is taken 

into consideration to test the performance of the proposed controllers. Numerical 

simulations are carried out in three parts. In the first part, uncontrolled motion of 

planar robot is simulated. In the second part, motion control of the tip point is 

simulated. In the third part, force and motion control of the tip point is simulated. 

 

In the first part, the uncontrolled motion of the robot as a flexible double pendulum 

is simulated for the verification of the dynamic equations. 

 

In the second part, firstly, the motion control of the tip point is simulated by using 

the proposed method. In this simulation, the same number of modes are used both 

in the dynamic equations and the controller. Secondly, unmodeled dynamics is 

taken into consideration to test the performance of the control method even as 

such. So, the motion control of the tip point with unmodeled dynamics is also 

simulated and compared with the previous simulation. After that, the motion 

control of the tip point is simulated by using the computed torque method applied 

as if the robot is rigid. This provides another comparison. 

 

In the third part, firstly, the force and motion control of the tip point is simulated. 

In this simulation, the same number of modes are also used for both the dynamic 

equations and the controller. Then, as the next stage, the force and motion control 

of the tip point with unmodeled dynamics is simulated for similar reasons as in the 

second part. 

 

In the simulations, Runge-Kutta fourth-order numerical integration method is used 

to solve the ordinary differential equations that describe the dynamics of the 
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system with suitable sampling frequency. Computer codes are written in 

MATLAB
®

 [54]. 

 

The closed loop poles are classified as dominant poles and inherent poles. The 

dominant poles are selected based on the desired response of the system more or 

less like a robot with rigid links. The inherent poles are selected with norms close 

to the natural frequencies of the system due to the link flexibilities. However, their 

angles from the imaginary axis are increased so that artificial damping is added to 

the flexible modes of the system. A similar closed loop poles selection is made by 

Yeung and Chen [7], [24]. 

 

 

4.1 Numerical Simulation of Uncontrolled Motion of Planar Robot 

 

The dynamic equations of the robot with flexible arms have long and complicated 

expressions. Therefore, it is very important to verify the dynamic equations before 

applying the proposed control methods to the robot. 

 

To verify the derivation of the dynamic equations and the code written for them, 

the numerical simulation of the uncontrolled motion of the planar robot with 

flexible forearm is presented in this section. The numerical simulation is obtained 

for the uncontrolled motion of the flexible robot as a double pendulum. 

 

In the simulations, the axial deformations are assumed to be negligible and the 

bending deformations are approximated by the first two bending modes for the 

forearm. Fixed-free boundary conditions are used. In fact a beam has an infinite 

number of mode shapes, all with different natural frequencies. However, typically 

the lowest frequency modes have the largest amplitudes and are the most effective 

to approximate the deflection of the forearm. The mode shape functions are as 

follows [55]. 

 

( )( )+β−ββ−β= xsinhxsinLsinhLsin)x(Y ii2i2ii  

( )( )xcoshxcosLcoshLcos ii2i2i β−ββ+β                i=1,2 (4.1) 



 124 

 

where 

 

2

1
L

875.1
=β  (4.2) 

2

2
L

694.4
=β  (4.3) 

 

The natural frequencies associated with the natural modes are  

 

( )
3

22

2

2ini
Lm

EI
Lβ=ω                i=1,2 (4.4) 

 

Therefore, mode shape function matrix and vector of modal variables of Body 2 

have the following form  

 

( )








=

)x(Y)x(Y

00

21

2φφφφ  (4.5) 

( )









η

η
=

2

12ηηηη  (4.6) 

 

As a result of this, the degree of the freedom of the system is four which is the 

total number of the joint angles and the modal variables. The inertia properties of 

the planar robot are given in Appendix C. 

 

The physical parameters of the planar robot are given in Table 4.1. 
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Table 4.1 Physical parameters of the planar robot. 

 

 

 

 

 

 

 

 

The numerical values of the natural frequencies associated with natural modes are 

13.5316 rad/s and 84.8075 rad/s, respectively. It is assumed that the robot starts its 

motion from rest with no initial deflections. The initial joint angular positions are 

taken as 801 =θ  degrees and 52 =θ  degrees. The sampling frequency is taken as 

6000 Hz. The simulation results are given in Figures 4.1 - 4.8. 
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Figure 4.1 Angular position of joint 1. 

 

Parameter Value 

Length of link 1 (m) 

Length of link 2 (m) 

Mass of link 1 (kg) 

Mass of link 2 (kg) 

Elastic rigidity of link 2 (Nm
2
) 

1 

1.5 

1 

1 

50 
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Figure 4.2 Angular position of joint 2. 
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Figure 4.3 Angular velocity of joint 1. 



 127 

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (s)

A
n
g
u
la

r 
V

e
lo

c
it
y
 o

f 
J
o
in

t 
2
 (

ra
d
/s

)

 

Figure 4.4 Angular velocity of joint 2. 
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Figure 4.5 First modal coordinate. 
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Figure 4.6 Second modal coordinate. 
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Figure 4.7 Derivative first modal coordinate. 
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Figure 4.8 Derivative second modal coordinate. 

 

When Figures 4.1 - 4.8 are examined, it is seen that they are as expected. 

 

 

4.2 Numerical Simulation of Motion Control of Planar Robot 

 

In this section, the numerical simulation of motion control of planar robot with 

flexible forearm is presented by using the motion control method proposed at 

Chapter 2. The tip point is required to track a straight line. 

 

The reference motion on the required tip point trajectory is supposed to be 

described as a smooth time function. Here, it is formed by ninth-order Hermite 

polynomials providing the continuous boundary conditions for position, velocity, 

acceleration, jerk and snap (derivative of jerk). The position time history for such a 

motion is given by [56] 
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( ) ( ) 









+−+−−+= 5

5

f

6

6

f

7

7

f

8

8

f

9

9

f

*

0

*

f

*

0

* t
t

126
t

t

420
t

t

540
t

t

315
t

t

70
t PPPP  (4.7) 

 

where *P  is the desired tip point position vector, 
*

0P  is the desired initial tip point 

position vector, 
*

fP  is the desired final tip point position vector and ft  is the time 

to complete motion. 

 

After a few trials, proper closed loop natural frequencies and damping ratios are 

obtained as 5 rad/s, 15 rad/s, 30 rad/s, 85 rad/s, 0.85, 0.85, 0.85 and 0.85. The 

corresponding closed loop poles are given in Table 4.2. 

 

Table 4.2 Closed loop poles used in motion control of planar robot. 

Closed Loop Poles 

j6339.22500.4p1 +−=  

j6339.22500.4p2 −−=  

j9017.77500.12p3 +−=  

j9017.77500.12p4 −−=  

j8035.155000.25p5 +−=  

j8035.155000.25p6 −−=  

j7765.442500.72p7 +−=  

j7765.442500.72p8 −−=  

 

During the simulations, the sampling frequency can be taken as 200 Hz or above. 

Here the sampling frequency is taken as 2500 Hz to compare the simulation results 

with those obtained by using computed torque method. The simulation results are 

presented in Figures 4.9 - 4.35. 
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Figure 4.9 Tip point position component in n1 direction. 
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Figure 4.10 Tip point position component in n2 direction. 



 132 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Tip Point Position Component in n
1
 Direction (m)

T
ip

 P
o
in

t 
P

o
s
it
io

n
 C

o
m

p
o
n
e
n
t 

in
 n

2
 D

ir
e
c
ti
o
n
 (

m
)

actual

reference

workspace boundary

workspace boundary

 

Figure 4.11 Workspace and tip point position. 
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Figure 4.12 Tip point velocity component in n1 direction. 
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Figure 4.13 Tip point velocity component in n2 direction. 
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Figure 4.14 Deviation of tip point position component in n1 direction. 
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Figure 4.15 Deviation of tip point position component in n2 direction. 
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Figure 4.16 Deviation of tip point velocity component in n1 direction. 
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Figure 4.17 Deviation of tip point velocity component in n2 direction. 
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Figure 4.18 First modal coordinate. 
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Figure 4.19 Second modal coordinate. 
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Figure 4.20 Derivative of first modal coordinate. 
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Figure 4.21 Derivative of second modal coordinate. 
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Figure 4.22 Pseudostatic value of first modal coordinate. 
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Figure 4.23 Pseudostatic value of second modal coordinate. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-6

-5

-4

-3

-2

-1

0

1
x 10

-3

Time (s)

D
e
ri
v
a
ti
v
e
 o

f 
P

s
e
u
d
o
s
ta

ti
c
 V

a
lu

e
 o

f 
F

ir
s
t 

M
o
d
a
l 
C

o
o
rd

in
a
te

 

Figure 4.24 Derivative of pseudostatic value of first modal coordinate. 
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Figure 4.25 Derivative of pseudostatic value of second modal coordinate. 
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Figure 4.26 Deviation from pseudostatic value of first modal coordinate. 
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Figure 4.27 Deviation from pseudostatic value of second modal coordinate. 
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Figure 4.28 Deviation from derivative of pseudostatic value of first modal 

coordinate. 
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Figure 4.29 Deviation from derivative of pseudostatic value of second modal 

coordinate. 
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Figure 4.30 Pseudostatic torque applied at joint 1. 
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Figure 4.31 Pseudostatic torque applied at joint 2. 
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Figure 4.32 Stabilization torque applied at joint 1. 
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Figure 4.33 Stabilization torque applied at joint 2. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

12

14

16

18

20

22

24

26

28

30

Time (s)

O
v
e
ra

ll 
T

o
rq

u
e
 A

p
p
lie

d
 a

t 
J
o
in

t 
1
 (

N
m

)

 

Figure 4.34 Overall torque applied at joint 1. 
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Figure 4.35 Overall torque applied at joint 2. 

 

It is seen from Figures 4.9 and 4.10 that there is tip point position error due to the 

deflection of the forearm, but is compensated in about 1 s for the initial deviations 

of about 35 mm during the motion. There is a reverse action at the beginning of the 

motion as seen in the tip point position and velocity which are given in Figures 

4.14 - 4.17. The maximum tip point position tracking error components along the 

trajectory after the tip point settles on the trajectory are 1.5935x10
-4

 m and –

1.3340x10
-4

 m in 1n  and 2n  directions, respectively. The tip point position error 

components at the end of the motion are 3.6058x10
-5 

m and –9.6852x10
-6

 m in 1n  

and 2n  directions, respectively. The maximum overall torques applied to the joints 

are in small magnitudes which is in the order of 28 Nm as seen from Figures 4.34 

and 4.35. 
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4.3 Numerical Simulation of Motion Control of Planar Robot with 

Unmodeled Dynamics 

 

To test the performance of the proposed control algorithm, unmodeled dynamics is 

taken into consideration. The dynamics of the robot is modeled by using the first 

two modes while the motion is simulated, but they are modeled by using only the 

first mode while the control torques are generated. In other words the plant 

dynamics is modeled by representing the link flexibility with the first two modes, 

while the controller is designed by representing the link flexibility with the first 

mode. The numerical simulation of motion control of the planar robot with 

unmodelled dynamics is obtained by using the motion control method proposed at 

Chapter 2. The same reference trajectory given in the previous section is used. 

 

After a few trials, proper closed loop natural frequencies and damping ratios are 

obtained as s/rad5 , s/rad15 , s/rad30 , 85.0 , 85.0  and 85.0 . The 

corresponding closed loop poles are given in Table 4.3. 

 

Table 4.3 Closed loop poles used in motion control of planar robot with 

unmodeled dynamics. 

Closed Loop Poles 

j6339.22500.4p1 +−=  

j6339.22500.4p2 −−=  

j9017.77500.12p3 +−=  

j9017.77500.12p4 −−=  

j8035.155000.25p5 +−=  

j8035.155000.25p6 −−=  

 

The sampling frequency is taken as 2500 Hz. The simulation results are given in 

Figures 4.36 - 4.62. 
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Figure 4.36 Tip point position component in n1 direction. 
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Figure 4.37 Tip point position component in n2 direction. 
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Figure 4.38 Workspace and tip point position. 
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Figure 4.39 Tip point velocity component in n1 direction. 
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Figure 4.40 Tip point velocity component in n2 direction. 
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Figure 4.41 Deviation of tip point position component in n1 direction. 
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Figure 4.42 Deviation of tip point position component in n2 direction. 
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Figure 4.43 Deviation of tip point velocity component in n1 direction. 
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Figure 4.44 Deviation of tip point velocity component in n2 direction. 
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Figure 4.45 First modal coordinate. 
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Figure 4.46 Second modal coordinate. 
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Figure 4.47 Derivative of first modal coordinate. 
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Figure 4.48 Derivative of second modal coordinate. 
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Figure 4.49 Pseudostatic value of first modal coordinate. 
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Figure 4.50 Pseudostatic value of second modal coordinate. 
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Figure 4.51 Derivative of pseudostatic value of first modal coordinate. 
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Figure 4.52 Derivative of pseudostatic value of second modal coordinate. 
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Figure 4.53 Deviation from pseudostatic value of first modal coordinate. 
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Figure 4.54 Deviation from pseudostatic value of second modal coordinate. 
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Figure 4.55 Deviation from derivative of pseudostatic value of first modal 

coordinate. 
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Figure 4.56 Deviation from derivative of pseudostatic value of second modal 

coordinate. 
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Figure 4.57 Pseudostatic torque applied at joint 1. 
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Figure 4.58 Pseudostatic torque applied at joint 2. 
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Figure 4.59 Stabilization torque applied at joint 1. 
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Figure 4.60 Stabilization torque applied at joint 2. 
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Figure 4.61 Overall torque applied at joint 1. 
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Figure 4.62 Overall torque applied at joint 2. 

 

When the figures are examined, it is seen that it takes about 1 s in settling the tip 

point to the desired trajectory for the initial deviations of about 35 mm. There is 

reverse action at the beginning of the motion as seen in tip point position and 

velocity which are given in Figures 4.41 - 4.44. The maximum tip point position 

tracking error components along the trajectory after the tip point settles on the 

trajectory are 5.0190x10
-4

 m and –7.4560x10
-4

 m in 1n  and 2n  directions, 

respectively. The tip point position error components at the end of the motion are –

3.5691x10
-5

 m and 2.2783x10
-5

 m in 1n  and 2n  directions, respectively. The 

maximum overall torques applied to the joints are in small magnitudes which is in 

the order of 22 Nm as seen from Figures 4.61 and 4.62. The results show that the 

proposed control method works satisfactorily even though only the first mode is 

taken into consideration in the controller design. 
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4.4 Numerical Simulation of Motion Control of Planar Robot by Using 

Computed Torque Method 

 

The computed torque method (control) is one of the conventional control methods 

used in robot control. It is known also under the name of inverse dynamics control. 

In this section, numerical simulation of motion control of the planar robot with 

flexible forearm is presented by using the computed torque method designed as if 

the robot is rigid. In other words, the plant dynamics are modeled by using the 

flexible robot with two modes, while the controller is designed by the robot as if it 

is rigid. 

 

The equations of motion of a rigid robot can be expressed as 

 

( ) ( ) ( ) TqGqqq,CqqM =++ &&&&  (4.8) 

 

where ( )qM  is the mass matrix, ( )qq,C &  is the Coriolis and centrifugal force term 

matrix, ( )qG  is the gravitational vector, T is the external torque vector and q is the 

vector of joint variables. Equation (4.8) can be written as 

 

( ) ( ) Tqq,BqqM =+ &&&  (4.9) 

 

where ( )qq,B &  is given as 

 

( ) ( ) ( )qGqqq,Cqq,B += &&&  (4.10) 

 

To cancel the nonlinear terms and to decouple the dynamics of each link computed 

torque control can be selected in the form of  

 

( ) ( )qq,BuqMT &+=  (4.11) 

 

where u is an auxiliary control input to be designed. If Equation (4.11) is 

substituted into Equation (4.9), the following equation is obtained 
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uq =&&  (4.12) 

 

A typical choice for u is 

 

( ) ( )qqKqqKqu −+−+= *

p

*

d

*
&&&&  (4.13) 

 

where superscript * stands for the desired values, Kp and Kd are the proportional 

and derivative control gains. If Equation (4.12) is substituted into Equation (4.13) 

the following equation is obtained. 

 

0KK =++ εεεεεεεεεεεε pd
&&&  (4.14) 

 

Where εεεε  is given as 

 

( )qq −= *εεεε  (4.15) 

 

Equation (4.14) represents a set of second order differential equations. Therefore, 

Kp and Kd can be selected as 

 

( )2

nip diagK ω=       n,,1i K=  (4.16) 

( )niid 2diagK ωζ=       n,,1i K=  (4.17) 

 

where 
inω  and iζ  are the desired natural frequencies and damping ratios of the 

closed loop system and n is the degree of the freedom of the robot. 

 

The first two of the four closed loop natural frequencies and damping ratios given 

in Section 4.2 are used for the values required by the Equations (4.16) and (4.17). 

It is done so in order to obtain comparable responses. In other words, the closed 

loop natural frequencies and damping ratios are taken as 5 rad/s, 15 rad/s, 0.85 and 
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0.85 for this simulation. The corresponding closed loop poles are given in Table 

4.4. 

 

Table 4.4 Closed loop poles used in motion control of planar robot by using 

computed torque method. 

Closed Loop Poles 

j6339.22500.4p1 +−=  

j6339.22500.4p2 −−=  

j9017.77500.12p3 +−=  

j9017.77500.12p4 −−=  

 

The same reference trajectory given in Section 4.2 is used. The robot motion 

cannot be simulated when the sampling frequency is smaller than 2220 Hz. So, the 

sampling frequency is taken as 2500 Hz. The simulation results are given in 

Figures 4.63 - 4.77. 
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Figure 4.63 Tip point position component in n1 direction. 
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Figure 4.64 Tip point position component in n2 direction. 
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Figure 4.65 Workspace and tip point position. 
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Figure 4.66 Tip point velocity component in n1 direction. 
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Figure 4.67 Tip point velocity component in n2 direction. 
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Figure 4.68 Deviation of tip point position component in n1 direction. 
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Figure 4.69 Deviation of tip point position component in n2 direction. 
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Figure 4.70 Deviation of tip point velocity component in n1 direction. 
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Figure 4.71 Deviation of tip point velocity component in n2 direction. 
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Figure 4.72 First modal coordinate. 
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Figure 4.73 Second modal coordinate. 



 168 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Time (s)

D
e
ri
v
a
ti
v
e
 o

f 
F

ir
s
t 

M
o
d
a
l 
C

o
o
rd

in
a
te

 

Figure 4.74 Derivative of first modal coordinate. 
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Figure 4.75 Derivative of second modal coordinate. 
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Figure 4.76 Torque applied at joint 1. 
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Figure 4.77 Torque applied at joint 2. 
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The maximum tip point position tracking error components along the trajectory are 

0.1388 m and –0.0582 m in 1n  and 2n  directions, respectively. The tip point 

position error components at the end of the motion are –6.0119x10
-3

 m and –

9.9180x10
-4

 m, respectively. The maximum overall torques applied to the joints 

are in the order of 22 Nm as seen from Figures 4.76 and 4.77. 

 

When the Figures 4.14, 4.68 and 4.15, 4.69 are compared, it is seen that the tip 

point tracking performance is greatly improved when the proposed control method 

is used. It should be also noted that the proposed method can be simulated by 

taking the sampling frequency 200 Hz or above, but the computed torque method 

can be simulated by taking the sampling frequency 2220 Hz or above for the robot 

considered here. 

 

 

4.5 Numerical Simulation of Force and Motion Control of Planar 

Robot 

 

In this section, the numerical simulation of the force and motion control of planar 

robot with flexible forearm is presented by using the force and motion control 

method proposed at Chapter 2. The tip point is required to track a circular arc. The 

constraint equation can be written in terms of the tip point variables as 

 

( ) ( ) ( ) 0RPPPPP,P 22

22

2

1121 CC
=−−+−=φ  (4.18) 

 

This equation represents a circular trajectory in the plane of motion. 
C1P  and 

C2P  

represent the center coordinates of the circle in P1 and P2 directions respectively 

with respect to the fixed frame and R is the radius of the circle. Therefore, the tip 

point position components in fixed frame can be expressed in terms of a trajectory 

length variable (s) as follows: 
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Here, s is the distance covered on the trajectory. The required variation of the 

Lagrange multiplier (i.e. the contact force) is formed so that it is composed of a 

cycloidal rise, a constant level and a cycloidal return. This function also provides 

continuous boundary conditions and it is represented as 
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where ∗λλλλ  is the desired Lagrange multiplier, 
*

0λλλλ  is its desired constant value, 1t  

is the time for the end of cycloidal rise motion, 2t  is the time for the beginning of 

the cycloidal return motion and tf is the time to complete the motion. The same 

function for the reference tip point trajectory given in Section 4.2 is used in this 

simulation, too. 

 

After a few trials, proper closed loop natural frequencies and damping ratios are 

obtained as 15 rad/s, 20 rad/s, 30 rad/s, 85 rad/s, 0.85, 0.85, 0.85 and 1. The 

corresponding closed loop poles are given in Table 4.5. 
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Table 4.5 Closed loop poles used in force and motion control of planar robot. 

Closed Loop Poles 

j9017.77500.12p1 +−=  

j9017.77500.12p2 −−=  

j5357.100000.17p3 +−=  

j5357.100000.17p4 −−=  

0000.30p5 −=  

j7765.442500.72p6 +−=  

j7765.442500.72p7 −−=  

 

For the desired Lagrange multiplier profile, cycloidal rise and cycloidal return 

periods are taken as 1.5 s constant level period is taken as 7 s and the desired 

constant value of the Lagrange multiplier is taken as 50 N. The sampling 

frequency is taken as 500 Hz. The simulation results are given in Figures 4.78 - 

4.104. 
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Figure 4.78 Tip point position on the constraint surface. 
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Figure 4.79 Workspace and tip point position. 
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Figure 4.80 Tip point velocity on the constraint surface. 
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Figure 4.81 Impulse of Lagrange multiplier. 
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Figure 4.82 Lagrange multiplier. 
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Figure 4.83 Deviation of tip point position on the constraint surface. 
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Figure 4.84 Deviation of tip point velocity on the constraint surface. 
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Figure 4.85 Deviation of impulse of Lagrange multiplier. 
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Figure 4.86 Deviation of Lagrange multiplier. 
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Figure 4.87 First modal coordinate. 
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Figure 4.88 Second modal coordinate. 
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Figure 4.89 Derivative of first modal coordinate. 
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Figure 4.90 Derivative of second modal coordinate. 
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Figure 4.91 Pseudostatic value of first modal coordinate. 
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Figure 4.92 Pseudostatic value of second modal coordinate. 
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Figure 4.93 Derivative of pseudostatic value of first modal coordinate. 
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Figure 4.94 Derivative of pseudostatic value of second modal coordinate. 
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Figure 4.95 Deviation from pseudostatic value of first modal coordinate. 
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Figure 4.96 Deviation from pseudostatic value of second modal coordinate. 
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Figure 4.97 Deviation from derivative of pseudostatic value of first modal 

coordinate. 
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Figure 4.98 Deviation from derivative of pseudostatic value of second modal 

coordinate. 
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Figure 4.99 Pseudostatic torque applied at joint 1. 
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Figure 4.100 Pseudostatic torque applied at joint 2. 
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Figure 4.101 Stabilization torque applied at joint 1. 
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Figure 4.102 Stabilization torque applied at joint 2. 
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Figure 4.103 Overall torque applied at joint 1. 
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Figure 4.104 Overall torque applied at joint 2. 
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It is seen from Figure 4.83 that there is tip point position error on the constraint 

surface due to the mispositioning, but is compensated in about 2 s for the initial 

deviations of about 50 mm during the motion. There is a reverse action at the 

beginning of the motion in the tip point position and velocity on the constraint 

surface as well as the Lagrange multiplier and its impulse which are given in 

Figures 4.83 - 4.86. The maximum tip point position tracking error on the 

constraint surface along the trajectory after the settling time is 1.0952x10
-3

 m. The 

corresponding maximum tip point position tracking error components are –

1.0944x10
-3

 m and 4.1090x10
-5

 m in 1n  and 2n  directions, respectively. The 

maximum Lagrange multiplier error after the settling time is 0.1046 N. The 

maximum overall torques applied to the joints are in small magnitudes in the order 

of 32 Nm as seen in Figures 4.103 and 4.104. 

 

 

4.6 Numerical Simulation of Force and Motion Control of Planar 

Robot with Unmodeled Dynamics 

 

The plant dynamics are modeled by representing the link flexibility with the first 

two modes, while the controller is designed by representing the link flexibility 

with the first mode. The numerical simulation of force and motion control of 

planar robot with unmodeled dynamics is obtained by using the force and motion 

control method proposed at Chapter 2. For the tip point, the same reference 

trajectory and reference Lagrange multiplier considered in the previous section are 

used. 

 

After a few trials, closed loop natural frequencies and damping ratios that give 

acceptable response are obtained as 13.5 rad/s, 27 rad/s, 40 rad/s, 0.85, 0.85 and 1. 

However, the simulation results indicate that, although the steady state errors are 

reasonably small, the maximum Lagrange multiplier error and the maximum start 

up torque happen to be quite large in the order of 787 N and 5644 Nm, 

respectively. 
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In order to obtain smaller start up torques and smaller Lagrange multiplier error, 

gain scheduling is made for the closed loop natural frequencies by increasing them 

from small values to their final values as a function of tip point position tracking 

error according to the following exponential expression: 
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where ( )εωni  represents the closed loop natural frequency that is scheduled at an 

instant where error is ε , 
s

niω  and 
f

niω  represent the smallest and largest values of 

niω , mε  stands for the initial error in absolute value, k is the constant coefficient of 

the exponential expression. In the simulations, it is taken as 2. 

 

Besides obtaining smaller start up torques and smaller initial Lagrange multiplier, 

smaller settling time and smaller maximum overshoot are also obtained as a result 

of the gain scheduling. 

 

After a few trials, it has been found that reasonable Lagrange multiplier error and 

start up torques are obtained by the application of the gain scheduling even to only 

one of the dominant closed loop natural frequencies. Proper initial and final closed 

loop natural frequencies and damping ratios are obtained as 5.131n =ω  rad/s, 

5
s

2n =ω  rad/s, 27
f

2n =ω  rad/s, 403n =ω  rad/s, 85.01d =ζ , 85.02d =ζ , 13d =ζ . 

The corresponding closed loop poles are given in Table 4.6. 
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Table 4.6 Closed loop poles used in force and motion control of planar robot with 

unmodeled dynamics. 

Closed Loop Poles 

j1116.74750.11p1 +−=  

j1116.74750.11p2 −−=  

j6339.22500.4p
s

3 +−=  

j2231.149500.22p
f

3 +−=  

j6339.22500.4p
s

4 −−=  

j2231.149500.22p
f

4 −−=  

0000.40p5 −=  

 

The sampling frequency is taken as 500 Hz. The simulation results are given in 

Figures 4.105 - 4.131. 
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Figure 4.105 Tip point position on the constraint surface. 
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Figure 4.106 Workspace and tip point position. 
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Figure 4.107 Tip velocity on the constraint surface. 
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Figure 4.108 Impulse of Lagrange multiplier. 
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Figure 4.109 Lagrange multiplier. 
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Figure 4.110 Deviation of tip point position on the constraint surface. 
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Figure 4.111 Deviation of tip point velocity on the constraint surface. 
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Figure 4.112 Deviation of impulse of Lagrange multiplier. 
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Figure 4.113 Deviation of Lagrange multiplier. 
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Figure 4.114 First modal coordinate. 
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Figure 4.115 Second modal coordinate. 
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Figure 4.116 Derivative of first modal coordinate. 
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Figure 4.117 Derivative of second modal coordinate. 
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Figure 4.118 Pseudostatic value of first modal coordinate. 
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Figure 4.119 Pseudostatic value of second modal coordinate. 
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Figure 4.120 Derivative of pseudostatic value of first modal coordinate. 
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Figure 4.121 Derivative of pseudostatic value of second modal coordinate. 
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Figure 4.122 Deviation from pseudostatic value of first modal coordinate. 
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Figure 4.123 Deviation from pseudostatic value of second modal coordinate. 
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Figure 4.124 Deviation from derivative of pseudostatic value of first modal 

coordinate. 
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Figure 4.125 Deviation from derivative of pseudostatic value of second modal 

coordinate. 
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Figure 4.126 Pseudostatic torque applied at joint 1. 
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Figure 4.127 Pseudostatic torque applied at joint 2. 
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Figure 4.128 Stabilization torque applied at joint 1. 
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Figure 4.129 Stabilization torque applied at joint 2. 
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Figure 4.130 Overall torque applied at joint 1. 
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Figure 4.131 Overall torque applied at joint 2. 
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It is seen from the figures that there is a delay in settling to the desired trajectory 

compared to the previous simulation. The tip point position error on the constraint 

surface due to the mispositioning is about 50 mm as seen from Figure 4.83. There 

is a reverse action at the beginning of the motion as seen in the tip point position 

and velocity on the constraint surface and the Lagrange multiplier and its impulse 

which are given in Figures 4.110 - 4.113. The maximum tip point position tracking 

error on the constraint surface along the trajectory after the settling time is –

3.9177x10
-3

 m. The corresponding maximum tip point position tracking error 

components are 2.8074x10
-3

 m and 2.7325x10
-3

 m in 1n  and 2n  directions, 

respectively. The maximum Lagrange multiplier error after the settling time is 

0.145 N. The maximum overall torques applied to the joints are in small 

magnitudes in the order of 32 Nm as seen from Figures 4.130 and 4.131. 
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CHAPTER 5 

 

 

NUMERICAL SIMULATIONS FOR SPATIAL ROBOT 

 

 

In this section, a spatial three degrees of freedom robot with two flexible links is 

taken into consideration. Similar to the previous chapter, the numerical simulations 

are carried out in three parts. 

 

In the first part, the uncontrolled motion of the robot as a flexible double pendulum 

is simulated for the verification of the dynamic equations. 

 

In the second part, firstly, the motion control of the tip point is simulated by using 

the proposed method. Then, the measurement noises are taken into consideration 

and the motion control of the robot including measurement noises is simulated. 

 

In the third part, firstly, the force and motion control of the tip point is simulated. 

Then, the measurement noises are again taken into consideration and the force and 

motion control of the robot including measurement noises is simulated. 

 

 

5.1 Numerical Simulation of Uncontrolled Motion of Spatial Robot 

 

The dynamic equations of the spatial robot with two flexible arms have very long 

and complicated expressions. Therefore, it is important to verify the dynamic 

equations before applying the proposed control methods to the robot. To verify the 

derivation of the dynamic equations and the code written for dynamic equations, 

the numerical simulation of the uncontrolled motion of the spatial robot with two 

flexible arms is presented in this section. The numerical simulation is obtained for 

the motion of the flexible robot as a double pendulum. 
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In the simulations, the axial, torsional and shear deformations are assumed to be 

negligible. The bending deformations are approximated by taking the first two 

bending modes in xy and xz planes for link 2 and link 3. Therefore, the vector of 

the modal variables has the following form 

 

( )
( )

( )








η

η
=

2

2

2

12ηηηη  (5.1) 

( )
( )

( )








η

η
=

3

2

3

13ηηηη  (5.2) 

 

Fixed-free boundary conditions are used for both links. The links are assumed to 

have square cross section. Link 2 and link 3 are divided into five finite elements. 

The physical parameters of the three link spatial robot with flexible two arms 

considered here are given in Table 5.1. 

 

Table 5.1 Physical parameters of the spatial robot used in uncontrolled motion. 

Parameter Value 

Length of link 1 (m) 1 

Length of link 2 (m) 1.5 

Length of link 3 (m) 1.4 

Mass of link 1 (kg) 1 

Mass of link 2 (kg) 1 

Mass of link 3 (kg) 1 

Density of link 1 (kg/m
3
) 7860 

Density of link 2 (kg/m
3
) 2710 

Density of link 3 (kg/m
3
) 2710 

Modulus of elasticity of link 2 (Pa) 70x10
9
 

Modulus of elasticity of link 3 (Pa) 70x10
9
 

Lumped mass at point A (kg) 2 

Lumped mass at point B (kg) 1.5 

Lumped mass at point C (kg) 5 
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The numerical values of the natural frequencies associated with natural modes are 

35.9598 rad/s, 225.4660 rad/s in xy plane and 35.9598 rad/s, 225.4660 rad/s in xz 

plane for Body 2 and 42.7293 rad/s, 267.9101rad/s in xy plane and 42.7293 rad/s, 

267.9101 rad/s in xz plane for Body 3, respectively. It is assumed that the robot 

starts its motion from rest with no initial deflections. The initial joint angular 

positions are taken as 01 =θ  degree, 2802 =θ  degrees and 53 =θ  degrees. The 

sampling frequency is taken as 6000 Hz. The simulation results are given in 

Figures 5.1 - 5.22. 
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Figure 5.1 Angular position of joint 2. 
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Figure 5.2 Angular position of joint 3. 
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Figure 5.3 Angular velocity of joint 2. 
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Figure 5.4 Angular velocity of joint 3. 
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Figure 5.5 First modal coordinate of body 2. 
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Figure 5.6 Second modal coordinate of body 2. 
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Figure 5.7 First modal coordinate of body 3. 
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Figure 5.8 Second modal coordinate of body 3. 
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Figure 5.9 Derivative of first modal coordinate of body 2. 
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Figure 5.10 Derivative of second modal coordinate of body 2. 
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Figure 5.11 Derivative of first modal coordinate of body 3. 
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Figure 5.12 Derivative of second modal coordinate of body 3. 
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Figure 5.13 Tip point position component in n1 direction. 
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Figure 5.14 Tip point position component in n2 direction. 
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Figure 5.15 Tip point velocity component in n1 direction. 
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Figure 5.16 Tip point velocity component in n2 direction. 
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Figure 5.17 Euler angle γ2. 
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Figure 5.18 Euler angle γ3. 
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Figure 5.19 Derivative of Euler angle γ2. 



 215 

0 1 2 3 4 5 6 7 8 9 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

D
e
ri
v
a
ti
v
e
 o

f 
E

u
le

r 
A

n
g
le

  γ
3
 (

ra
d
/s

)

 

Figure 5.20 Derivative of Euler angle γ3. 
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Figure 5.21 Deformation displacement component of point B of body 2 in n2
(2)

 

direction. 
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Figure 5.22 Deformation displacement component of point B of body 2 in n2
(3)

 

direction. 

 

When Figures 5.1 - 5.22 are examined, it is seen that they are as expected. Since 

the only external force on the robot is the gravitational force which is in xy plane, 

there is no motion in xz plane. Therefore, angular position of joint 1 remains 

constant and modal coordinates in xz plane for Body 2 and Body 3 are zero. The 

time derivatives of these variables are also zero. As a result of that the variables 

relating to these situations are not plotted. 

 

 

5.2 Numerical Simulation of Motion Control of Spatial Robot 

 

In this section, the numerical simulation of motion control of the spatial robot with 

flexible two arms is presented by using the motion control method proposed at 

Chapter 2. The tip point is required to track a straight line. The same function for 

the reference tip point trajectory given in Chapter 4 is used. 
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The physical parameters of the three link spatial robot with flexible two arms used 

in the controlled motion simulations are given in Table 5.2. 

 

Table 5.2 Physical parameters of the spatial robot used in controlled motion. 

Parameter Value 

Length of link 1 (m) 0.5 

Length of link 2 (m) 1.5 

Length of link 3 (m) 1.4 

Mass of link 1 (kg) 1 

Mass of link 2 (kg) 1.5 

Mass of link 3 (kg) 1 

Density of link 1 (kg/m
3
) 7860 

Density of link 2 (kg/m
3
) 2710 

Density of link 3 (kg/m
3
) 2710 

Modulus of elasticity of link 2 (Pa) 70x10
9
 

Modulus of elasticity of link 3 (Pa) 70x10
9
 

Lumped mass at point A (kg) 1.5 

Lumped mass at point B (kg) 1 

Lumped mass at point C (kg) 2 

 

The numerical values of the natural frequencies associated with natural modes are 

44.042 rad/s, 276.14 rad/s in xy plane and 44.042 rad/s, 276.14 rad/s rad/s in xz 

plane for Body 2 and 42.7293 rad/s, 267.9101rad/s in xy plane and 42.7293 rad/s, 

267.9101 rad/s in xz plane for Body 3, respectively. 

 

After a few trials, proper closed loop natural frequencies and damping ratios are 

obtained as 5 rad/s, 10 rad/s, 15 rad/s, 43 rad/s, 43 rad/s, 44 rad/s, 44 rad/s, 268 

rad/s, 268 rad/s, 276 rad/s, 276 rad/s, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 

0.85, 0.85 and 0.85. The corresponding closed loop poles are given in Table 5.3. 
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Table 5.3 Closed loop poles used in motion control of spatial robot. 

Closed Loop Poles 

j6339.22500.4p1 +−=  

j6339.22500.4p2 −−=  

j2678.55000.8p3 +−=  

j2678.55000.8p4 −−=  

j9017.77500.12p5 +−=  

j9017.77500.12p6 −−=  

j6517.225500.36p 8,7 +−=  

j6517.225500.36p 10,9 −−=  

j1784.234000.37p 12,11 +−=  

j1784.234000.37p 14,13 −−=  

j1778.1418000.227p 16,15 +−=  

j1778.1418000.227p 18,17 −−=  

j3920.1456000.234p 20,19 +−=  

j3920.1456000.234p 22,21 −−=  

 

The sampling frequency is taken as 500 Hz. The simulation results are presented in 

Figures 5.23 - 5.91. 
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Figure 5.23 Tip point position component in n1 direction. 
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Figure 5.24 Tip point position component in n2 direction. 
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Figure 5.25 Tip point position component in n3 direction. 
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Figure 5.26 Tip point velocity component in n1 direction. 
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Figure 5.27 Tip point velocity component in n2 direction. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Time (s)

T
ip

 P
o
in

t 
V

e
lo

c
it
y
 C

o
m

p
o
n
e
n
t 

in
 n

3
 D

ir
e
c
ti
o
n
 (

m
/s

)

actual

reference

 

Figure 5.28 Tip point velocity component in n3 direction. 
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Figure 5.29 Deviation of tip point position component in n1 direction. 
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Figure 5.30 Deviation of tip point position component in n2 direction. 
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Figure 5.31 Deviation of tip point position component in n3 direction. 
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Figure 5.32 Deviation of tip point velocity component in n1 direction. 
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Figure 5.33 Deviation of tip point velocity component in n2 direction. 
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Figure 5.34 Deviation of tip point velocity component in n3 direction. 
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Figure 5.35 First modal coordinate of body 2 for bending in xy plane. 
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Figure 5.36 Second modal coordinate of body 2 for bending in xy plane. 
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Figure 5.37 First modal coordinate of body 2 for bending in xz plane. 
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Figure 5.38 Second modal coordinate of body 2 for bending in xz plane. 
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Figure 5.39 First modal coordinate of body 3 for bending in xy plane. 
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Figure 5.40 Second modal coordinate of body 3 for bending in xy plane. 
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Figure 5.41 First modal coordinate of body 3 for bending in xz plane. 
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Figure 5.42 Second modal coordinate of body 3 for bending in xz plane. 
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Figure 5.43 Derivative of first modal coordinate of body 2 for bending in xy plane. 
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Figure 5.44 Derivative of second modal coordinate of body 2 for bending in xy 

plane. 
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Figure 5.45 Derivative of first modal coordinate of body 2 for bending in xz plane. 
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Figure 5.46 Derivative of second modal coordinate of body 2 for bending in xz 

plane. 
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Figure 5.47 Derivative of first modal coordinate of body 3 for bending in xy plane. 
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Figure 5.48 Derivative of second modal coordinate of body 3 for bending in xy 

plane. 
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Figure 5.49 Derivative of first modal coordinate of body 3 for bending in xz plane. 
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Figure 5.50 Derivative of second modal coordinate of body 3 for bending in xz 

plane. 
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Figure 5.51 Pseudostatic value of first modal coordinate of body 2 for bending in 

xy plane. 
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Figure 5.52 Pseudostatic value of second modal coordinate of body 2 for bending 

in xy plane. 
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Figure 5.53 Pseudostatic value of first modal coordinate of body 2 for bending in 

xz plane. 
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Figure 5.54 Pseudostatic value of second modal coordinate of body 2 for bending 

in xz plane. 
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Figure 5.55 Pseudostatic value of first modal coordinate of body 3 for bending in 

xy plane. 
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Figure 5.56 Pseudostatic value of second modal coordinate of body 3 for bending 

in xy plane. 
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Figure 5.57 Pseudostatic value of first modal coordinate of body 3 for bending in 

xz plane. 
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Figure 5.58 Pseudostatic value of second modal coordinate of body 3 for bending 

in xz plane. 
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Figure 5.59 Derivative of pseudostatic value of first modal coordinate of body 2 

for bending in xy plane. 
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Figure 5.60 Derivative of pseudostatic value of second modal coordinate of body 2 

for bending in xy plane. 
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Figure 5.61 Derivative of pseudostatic value of first modal coordinate of body 2 

for bending in xz plane. 
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Figure 5.62 Derivative of pseudostatic value of second modal coordinate of body 2 

for bending in xz plane. 
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Figure 5.63 Derivative of pseudostatic value of first modal coordinate of body 3 

for bending in xy plane. 
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Figure 5.64 Derivative of pseudostatic value of second modal coordinate of body 3 

for bending in xy plane. 
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Figure 5.65 Derivative of pseudostatic value of first modal coordinate of body 3 

for bending in xz plane. 
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Figure 5.66 Derivative of pseudostatic value of second modal coordinate of body 3 

for bending in xz plane. 
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Figure 5.67 Deviation from pseudostatic value of first modal coordinate of body 2 

for bending in xy plane. 
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Figure 5.68 Deviation from pseudostatic value of second modal coordinate of body 

2 for bending in xy plane. 
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Figure 5.69 Deviation from pseudostatic value of first modal coordinate of body 2 

for bending in xz plane. 
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Figure 5.70 Deviation from pseudostatic value of second modal coordinate of body 

2 for bending in xz plane. 
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Figure 5.71 Deviation from pseudostatic value of first modal coordinate of body 3 

for bending in xy plane. 
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Figure 5.72 Deviation from pseudostatic value of second modal coordinate of body 

3 for bending in xy plane. 
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Figure 5.73 Deviation from pseudostatic value of first modal coordinate of body 3 

for bending in xz plane. 
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Figure 5.74 Deviation from pseudostatic value of second modal coordinate of body 

3 for bending in xz plane. 



 245 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (s)

D
e
v
ia

ti
o
n
 f

ro
m

 D
e
ri
v
a
ti
v
e
 o

f 
P

s
e
u
d
o
s
ta

ti
c
 V

a
lu

e
 o

f 
F

ir
s
t 

M
o
d
a
l 
C

o
o
rd

in
a
te

 o
f 

B
o
d
y
 2

Bending in xy Plane

 

Figure 5.75 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 2 for bending in xy plane. 
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Figure 5.76 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 2 for bending in xy plane. 
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Figure 5.77 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 2 for bending in xz plane. 
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Figure 5.78 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 2 for bending in xz plane. 



 247 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

D
e
v
ia

ti
o
n
 f

ro
m

 D
e
ri
v
a
ti
v
e
 o

f 
P

s
e
u
d
o
s
ta

ti
c
 V

a
lu

e
 o

f 
F

ir
s
t 

M
o
d
a
l 
C

o
o
rd

in
a
te

 o
f 

B
o
d
y
 3

Bending in xy Plane

 

Figure 5.79 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 3 for bending in xy plane. 
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Figure 5.80 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 3 for bending in xy plane. 
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Figure 5.81 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 3 for bending in xz plane. 
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Figure 5.82 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 3 for bending in xz plane. 
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Figure 5.83 Pseudostatic torque applied at joint 1. 
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Figure 5.84 Pseudostatic torque applied at joint 2. 
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Figure 5.85 Pseudostatic torque applied at joint 3. 
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Figure 5.86 Stabilization torque applied at joint 1. 
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Figure 5.87 Stabilization torque applied at joint 2. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-2

0

2

4

6

8

10

Time (s)

S
ta

b
ili

z
a
ti
o
n
 T

o
rq

u
e
 A

p
p
lie

d
 a

t 
J
o
in

t 
3
 (

N
m

)

 

Figure 5.88 Stabilization torque applied at joint 3. 
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Figure 5.89 Overall torque applied at joint 1. 
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Figure 5.90 Overall torque applied at joint 2. 



 253 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

16

18

20

22

24

26

28

30

32

34

36

38

Time (s)

O
v
e
ra

ll 
T

o
rq

u
e
 A

p
p
lie

d
 a

t 
J
o
in

t 
3
 (

N
m

)

 

Figure 5.91 Overall torque applied at joint 3. 

 

As seen from Figures 5.23 - 5.25 the initial error due to the mispositioning of the 

tip point is 0.03 m, –0.05 m and –0.02 m in 1n , 2n  and 3n  directions, respectively. 

However, the effect of initial mispositioning can be compensated in about 1 s. 

There is a reverse action at the beginning of the motion as seen in the tip point 

velocity which is given in Figures 5.32 - 5.34. The maximum tip point position 

tracking error components along the trajectory after the tip point settles on the 

trajectory are 4.2849x10
-5

 m, –8.6660x10
-6

 m and –9.5643x10
-5

 m in 1n , 2n  and 

3n  directions, respectively. The tip point position error components at the end of 

the motion are –3.4359x10
-5

 m, 2.1104x10
-6

 m and –5.6728x10
-5

 m in 1n , 2n  and 

3n  directions, respectively. The maximum overall torques applied to the joints are 

in the order of 109 Nm as seen from Figures 5.89 - 5.91. 
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5.3 Numerical Simulation of Motion Control of Spatial Robot with 

Measurement Noises 

 

In this section, the numerical simulation of the motion control of the spatial robot 

including measurement noises is presented by using the motion control method 

proposed at Chapter 2. The measurement noises are considered for the state 

variables that are used for the generation of the stabilizing control torques (i.e., the 

measured variables). They are the tip point coordinates and their rates and the 

modal variables of Body 2 and Body 3 and their rates. 

 

The measurement noises are generated by using normally distributed random 

numbers with zero mean and specific standard deviation. 1 % deviation from the 

mean value of each variable is assumed to obtain the standard deviation for each 

variable. 

 

A first order low pass filter whose transfer function given below is used to filter 

the measured variables. 

 

( )
c

c

s
sG

ω+

ω
=  (5.3) 

 

Where ωc stands for the crossover frequency. Other types of filters, eg. Kalman 

filters, can also be used to filter the measured variables. 

 

The same reference tip point trajectory considered in the previous section is used. 

After a few trials, closed loop natural frequencies and damping ratios that give 

acceptable response are obtained as 20 rad/s, 25 rad/s, 30 rad/s, 43 rad/s, 43 rad/s, 

44 rad/s, 44 rad/s, 268 rad/s, 268 rad/s, 276 rad/s, 276 rad/s, 0.85, 0.85, 0.85, 0.85, 

0.85, 0.85, 0.85, 0.85, 0.85, 0.85 and 0.85. The simulation results give the 

maximum start up torque in the order of 156 Nm and the order of 59 Nm of it is 

used for stabilization. Thefore, the maximum start up torque can be decreased by 

reducing the stabilization part of it. 
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In order to obtain smaller start up torque, gain scheduling is applied to all of the 

dominant natural frequencies. After a few trials, proper initial and final closed loop 

natural frequencies and damping ratios are obtained as 5
s

1n =ω  rad/s, 20
f

1n =ω  

rad/s, 10
s

2n =ω  rad/s, 25
f

2n =ω  rad/s, 15
s

3n =ω  rad/s, 30
f

3n =ω  rad/s, 

435,4n =ω  rad/s, 447,6n =ω  rad/s, 2689,8n =ω  rad/s, 27611,10n =ω  rad/s and 

85.0di =ζ  (i = 1,2,…,11). The corresponding closed loop poles are given in Table 

5.4. 
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Table 5.4 Closed loop poles used in motion control of spatial robot with 

measurement noises. 

Closed Loop Poles 

j6339.22500.4p
s

1 +−=  

j5357.100000.17p
f

1 +−=  

j6339.22500.4p
s

2 −−=  

j5357.100000.17p
f

2 −−=  

j2678.55000.8p
s

3 +−=  

j1696.132500.21p
f

3 +−=  

j2678.55000.8p
s

4 −−=  

j1696.132500.21p
f

4 −−=  

j9017.77500.12p
s

5 +−=  

j8035.155000.25p
f

5 +−=  

j9017.77500.12p
s

6 −−=  

j8035.155000.25p
f

6 −−=  

j6517.225500.36p 8,7 +−=  

j6517.225500.36p 10,9 −−=  

j1784.234000.37p 12,11 +−=  

j1784.234000.37p 14,13 −−=  

j1778.1418000.227p 16,15 +−=  

j1778.1418000.227p 18,17 −−=  

j3920.1456000.234p 20,19 +−=  

j3920.1456000.234p 22,21 −−=  

 

The sampling frequency is taken as 500 Hz. After a few trials, a proper crossover 

frequency for the filter is found as 276 rad/s. The simulation results are presented 

in Figures 5.92 - 5.182. 
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Figure 5.92 Tip point position component in n1 direction. 
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Figure 5.93 Tip point position component in n2 direction. 
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Figure 5.94 Tip point position component in n3 direction. 
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Figure 5.95 Tip point velocity component in n1 direction. 
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Figure 5.96 Tip point velocity component in n2 direction. 
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Figure 5.97 Tip point velocity component in n3 direction. 
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Figure 5.98 Deviation of tip point position component in n1 direction. 
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Figure 5.99 Deviation of tip point position component in n2 direction. 
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Figure 5.100 Deviation of tip point position component in n3 direction. 
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Figure 5.101 Deviation of tip point velocity component in n1 direction. 
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Figure 5.102 Deviation of tip point velocity component in n2 direction. 
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Figure 5.103 Deviation of tip point velocity component in n3 direction. 
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Figure 5.104 First modal coordinate of body 2 for bending in xy plane. 
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Figure 5.105 Second modal coordinate of body 2 for bending in xy plane. 
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Figure 5.106 First modal coordinate of body 2 for bending in xz plane. 
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Figure 5.107 Second modal coordinate of body 2 for bending in xz plane. 
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Figure 5.108 First modal coordinate of body 3 for bending in xy plane. 
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Figure 5.109 Second modal coordinate of body 3 for bending in xy plane. 
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Figure 5.110 First modal coordinate of body 3 for bending in xz plane. 
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Figure 5.111 Second modal coordinate of body 3 for bending in xz plane. 
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Figure 5.112 Derivative of first modal coordinate of body 2 for bending in xy 

plane. 
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Figure 5.113 Derivative of second modal coordinate of body 2 for bending in xy 

plane. 
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Figure 5.114 Derivative of first modal coordinate of body 2 for bending in xz 

plane. 
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Figure 5.115 Derivative of second modal coordinate of body 2 for bending in xz 

plane. 
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Figure 5.116 Derivative of first modal coordinate of body 3 for bending in xy 

plane. 
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Figure 5.117 Derivative of second modal coordinate of body 3 for bending in xy 

plane. 
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Figure 5.118 Derivative of first modal coordinate of body 3 for bending in xz 

plane. 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Time (s)

D
e
ri
v
a
ti
v
e
 o

f 
S

e
c
o
n
d
 M

o
d
a
l 
C

o
o
rd

in
a
te

 o
f 

B
o
d
y
 3

Bending in xz Plane

 

Figure 5.119 Derivative of second modal coordinate of body 3 for bending in xz 

plane. 
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Figure 5.120 Pseudostatic value of first modal coordinate of body 2 for bending in 

xy plane. 
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Figure 5.121 Pseudostatic value of second modal coordinate of body 2 for bending 

in xy plane. 
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Figure 5.122 Pseudostatic value of first modal coordinate of body 2 for bending in 

xz plane. 
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Figure 5.123 Pseudostatic value of second modal coordinate of body 2 for bending 

in xz plane. 
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Figure 5.124 Pseudostatic value of first modal coordinate of body 3 for bending in 

xy plane. 
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Figure 5.125 Pseudostatic value of second modal coordinate of body 3 for bending 

in xy plane. 
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Figure 5.126 Pseudostatic value of first modal coordinate of body 3 for bending in 

xz plane. 
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Figure 5.127 Pseudostatic value of second modal coordinate of body 3 for bending 

in xz plane. 
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Figure 5.128 Derivative of pseudostatic value of first modal coordinate of body 2 

for bending in xy plane. 
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Figure 5.129 Derivative of pseudostatic value of second modal coordinate of body 

2 for bending in xy plane. 



 276 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Time (s)

D
e
ri
v
a
ti
v
e
 o

f 
P

s
e
u
d
o
s
ta

ti
c
 V

a
lu

e
 o

f 
F

ir
s
t 

M
o
d
a
l 
C

o
o
rd

in
a
te

 o
f 

B
o
d
y
 2

Bending in xz Plane

 

Figure 5.130 Derivative of pseudostatic value of first modal coordinate of body 2 

for bending in xz plane. 
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Figure 5.131 Derivative of pseudostatic value of second modal coordinate of body 

2 for bending in xz plane. 
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Figure 5.132 Derivative of pseudostatic value of first modal coordinate of body 3 

for bending in xy plane. 
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Figure 5.133 Derivative of pseudostatic value of second modal coordinate of body 

3 for bending in xy plane. 
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Figure 5.134 Derivative of pseudostatic value of first modal coordinate of body 3 

for bending in xz plane. 
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Figure 5.135 Derivative of pseudostatic value of second modal coordinate of body 

3 for bending in xz plane. 
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Figure 5.136 Deviation from pseudostatic value of first modal coordinate of body 

2 for bending in xy plane. 
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Figure 5.137 Deviation from pseudostatic value of second modal coordinate of 

body 2 for bending in xy plane. 



 280 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-3

Time (s)

D
e
v
ia

ti
o
n
 f

ro
m

 P
s
e
u
d
o
s
ta

ti
c
 V

a
lu

e
 o

f 
F

ir
s
t 

M
o
d
a
l 
C

o
o
rd

in
a
te

 o
f 

B
o
d
y
 2

Bending in xz Plane

 

Figure 5.138 Deviation from pseudostatic value of first modal coordinate of body 

2 for bending in xz plane. 
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Figure 5.139 Deviation from pseudostatic value of second modal coordinate of 

body 2 for bending in xz plane. 
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Figure 5.140 Deviation from pseudostatic value of first modal coordinate of body 

3 for bending in xy plane. 
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Figure 5.141 Deviation from pseudostatic value of second modal coordinate of 

body 3 for bending in xy plane. 
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Figure 5.142 Deviation from pseudostatic value of first modal coordinate of body 

3 for bending in xz plane. 
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Figure 5.143 Deviation from pseudostatic value of second modal coordinate of 

body 3 for bending in xz plane. 
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Figure 5.144 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 2 for bending in xy plane. 
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Figure 5.145 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 2 for bending in xy plane. 
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Figure 5.146 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 2 for bending in xz plane. 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.01

-0.005

0

0.005

0.01

Time (s)

D
e
v
ia

ti
o
n
 f

ro
m

 D
e
ri
v
a
ti
v
e
 o

f 
P

s
e
u
d
o
s
ta

ti
c
 V

a
lu

e
 o

f 
S

e
c
o
n
d
 M

o
d
a
l 
C

o
o
rd

in
a
te

 o
f 

B
o
d
y
 2

Bending in xz Plane

 

Figure 5.147 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 2 for bending in xz plane. 
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Figure 5.148 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 3 for bending in xy plane. 
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Figure 5.149 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 3 for bending in xy plane. 



 286 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.01

-0.005

0

0.005

0.01

Time (s)

D
e
v
ia

ti
o
n
 f

ro
m

 D
e
ri
v
a
ti
v
e
 o

f 
P

s
e
u
d
o
s
ta

ti
c
 V

a
lu

e
 o

f 
F

ir
s
t 

M
o
d
a
l 
C

o
o
rd

in
a
te

 o
f 

B
o
d
y
 3

Bending in xz Plane

 

Figure 5.150 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 3 for bending in xz plane. 
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Figure 5.151 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 3 for bending in xz plane. 
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Figure 5.152 Pseudostatic torque applied at joint 1. 
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Figure 5.153 Pseudostatic torque applied at joint 2. 
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Figure 5.154 Pseudostatic torque applied at joint 3. 
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Figure 5.155 Stabilization torque applied at joint 1. 
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Figure 5.156 Stabilization torque applied at joint 2. 
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Figure 5.157 Stabilization torque applied at joint 3. 
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Figure 5.158 Overall torque applied at joint 1. 
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Figure 5.159 Overall torque applied at joint 2. 
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Figure 5.160 Overall torque applied at joint 3. 
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Figure 5.161 Measurement noise of tip point position component in n1 direction. 
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Figure 5.162 Measurement noise of tip point position component in n2 direction. 
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Figure 5.163 Measurement noise of tip point position component in n3 direction. 
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Figure 5.164 Measurement noise of tip point velocity component in n1 direction. 
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Figure 5.165 Measurement noise of tip point velocity component in n2 direction. 
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Figure 5.166 Measurement noise of tip point velocity component in n3 direction. 
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Figure 5.167 Measurement noise of first modal coordinate of body 2 for bending 

in xy plane. 
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Figure 5.168 Measurement noise of second modal coordinate of body 2 for 

bending in xy plane. 
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Figure 5.169 Measurement noise of first modal coordinate of body 2 for bending 

in xz plane. 
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Figure 5.170 Measurement noise of second modal coordinate of body 2 for 

bending in xz plane. 
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Figure 5.171 Measurement noise of first modal coordinate of body 3 for bending 

in xy plane. 
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Figure 5.172 Measurement noise of second modal coordinate of body 3 for 

bending in xy plane. 
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Figure 5.173 Measurement noise of first modal coordinate of body 3 for bending 

in xz plane. 
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Figure 5.174 Measurement noise of second modal coordinate of body 3 for 

bending in xz plane. 
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Figure 5.175 Measurement noise of derivative of first modal coordinate of body 2 

for bending in xy plane. 
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Figure 5.176 Measurement noise of derivative of second modal coordinate of body 

2 for bending in xy plane. 
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Figure 5.177 Measurement noise of derivative of first modal coordinate of body 2 

for bending in xz plane. 
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Figure 5.178 Measurement noise of derivative of second modal coordinate of body 

2 for bending in xz plane. 
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Figure 5.179 Measurement noise of derivative of first modal coordinate of body 3 

for bending in xy plane. 
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Figure 5.180 Measurement noise of derivative of second modal coordinate of body 

3 for bending in xy plane. 
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Figure 5.181 Measurement noise of derivative of first modal coordinate of body 3 

for bending in xz plane. 
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Figure 5.182 Measurement noise of derivative of second modal coordinate of body 

3 for bending in xz plane. 

 

As seen from Figures 5.98 - 5.100 the initial error due to the mispositioning of the 

tip point is 0.03 m, –0.05 m and –0.02 m in 1n , 2n  and 3n  directions, respectively. 

However, the effect of initial mispositioning can be compensated in about 1 s. 

There is a reverse action at the beginning of the motion as seen in the tip point 

velocity which is given in Figures 5.101 - 5.103. The maximum tip point position 

tracking error components along the trajectory after the tip point settles on the 

trajectory are –1.1436x10
-3

 m, 3.8068x10
-4

 m and –4.9839x10
-4

 m in 1n , 2n  and 

3n  directions, respectively. The tip point position error components at the end of 

the motion are –1.0087x10
-4

 m, 1.1554x10
-4

 m and –4.9244x10
-5

 m in 1n , 2n  and 

3n  directions, respectively. The maximum overall torques applied to the joints are 

in the order of 107 Nm as seen from Figures 5.158 - 5.160. Note that the 

measurement noises do not cause any noticeable increase in the control torques as 

compared to the case without noises. 
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As seen from the Figures 5.98 - 5.100, the errors in the tip point position 

components are all in acceptable levels considering the 1 % sensor uncertainty in 

the measured mean values of the variables. On this occasion, it is worth to point 

out that if the tip point coordinates are to be measured optically it is recommended 

that the optical sensor should be kept close to the tip point as much as possible in 

order to minimize measurement errors. 

 

 

5.4 Numerical Simulation of Force and Motion Control of Spatial 

Robot 

 

In this section, the numerical simulation of the force and motion control of the 

spatial robot with two flexible arms is presented by using the force and motion 

control method proposed at Chapter 2. The tip point is required to track a 

trajectory on a spherical surface. The constraint equation can be written in terms of 

the tip point coordinates as 

 

( ) ( ) ( ) ( ) 0RPPPPPPP,P,P 22

33

2

22

2

11321 CCC
=−−+−+−=φ  (5.4) 

 

which represents a motion on a spherical surface. 
C1P , 

C2P and 
C3P  represent the 

center coordinates of the sphere in P1, P2 and P3 directions, respectively with 

respect to the fixed frame and R is the radius of the sphere. Therefore, the tip point 

Cartesian coordinates in fixed frame and the spherical coordinates s1 and s2 can be 

related as 

 

( ) ( )1211 ssinscosRPP
C

+=  (5.5) 

( )222 ssinRPP
C

+=  (5.6) 

( ) ( )1233 ssinscosRPP
C

−=  (5.7) 

 

Here, s1 and s2 are known as the azimuth angle and the elevation angle coordinates 

of the tip point, respectively. 
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The same functions for the reference Lagrange multiplier and the reference tip 

point trajectory given in Chapter 4 are used. 

 

After a few trials, proper closed loop natural frequencies and damping ratios are 

obtained as 10 rad/s, 20 rad/s, 30 rad/s, 43 rad/s, 43 rad/s, 44 rad/s, 44 rad/s, 268 

rad/s, 268 rad/s, 276 rad/s, 276 rad/s, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 

0.85, 0.85,and 1. The corresponding closed loop poles are given in Table 5.5. 

 

Table 5.5 Closed loop poles used in force and motion control of spatial robot. 

Closed Loop Poles 

j2678.55000.8p1 +−=  

j2678.55000.8p2 −−=  

0000.17p3 −=  

j5357.100000.17p4 +−=  

j5357.100000.17p5 −−=  

j6517.225500.36p 7,6 +−=  

j6517.225500.36p 9,8 −−=  

j1784.234000.37p 11,10 +−=  

j1784.234000.37p 13,12 −−=  

j1778.1418000.227p 15,14 +−=  

j1778.1418000.227p 17,16 −−=  

j3920.1456000.234p 19,18 +−=  

j3920.1456000.234p 21,20 −−=  

 

The sampling frequency is taken as 500 Hz. The simulation results are presented in 

Figures 5.183 - 5.251. 
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Figure 5.183 Azimuth angle coordinate of tip point. 
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Figure 5.184 Elevation angle coordinate of tip point. 
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Figure 5.185 Derivative of azimuth angle coordinate of tip point. 
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Figure 5.186 Derivative of elevation angle coordinate of tip point. 
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Figure 5.187 Impulse of Lagrange multiplier. 

 

0 2 4 6 8 10 12
-10

0

10

20

30

40

50

60

Time (s)

L
a
g
ra

n
g
e
 M

u
lt
ip

lie
r 

(N
)

actual

reference

 

Figure 5.188 Lagrange multiplier. 
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Figure 5.189 Deviation of azimuth angle coordinate of tip point. 
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Figure 5.190 Deviation of elevation angle coordinate of tip point. 
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Figure 5.191 Deviation of derivative of azimuth angle coordinate of tip point. 
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Figure 5.192 Deviation of derivative of elevation angle coordinate of tip point. 
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Figure 5.193 Deviation of impulse of Lagrange multiplier. 
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Figure 5.194 Deviation of Lagrange multiplier. 
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Figure 5.195 First modal coordinate of body 2 for bending in xy plane. 
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Figure 5.196 Second modal coordinate of body 2 for bending in xy plane. 
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Figure 5.197 First modal coordinate of body 2 for bending in xz plane. 
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Figure 5.198 Second modal coordinate of body 2 for bending in xz plane. 
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Figure 5.199 First modal coordinate of body 3 for bending in xy plane. 
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Figure 5.200 Second modal coordinate of body 3 for bending in xy plane. 
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Figure 5.201 First modal coordinate of body 3 for bending in xz plane. 
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Figure 5.202 Second modal coordinate of body 3 for bending in xz plane. 
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Figure 5.203 Derivative of first modal coordinate of body 2 for bending in xy 

plane. 
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Figure 5.204 Derivative of second modal coordinate of body 2 for bending in xy 

plane. 
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Figure 5.205 Derivative of first modal coordinate of body 2 for bending in xz 

plane. 
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Figure 5.206 Derivative of second modal coordinate of body 2 for bending in xz 

plane. 
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Figure 5.207 Derivative of first modal coordinate of body 3 for bending in xy 

plane. 
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Figure 5.208 Derivative of second modal coordinate of body 3 for bending in xy 

plane. 
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Figure 5.209 Derivative of first modal coordinate of body 3 for bending in xz 

plane. 
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Figure 5.210 Derivative of second modal coordinate of body 3 for bending in xz 

plane. 
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Figure 5.211 Pseudostatic value of first modal coordinate of body 2 for bending in 

xy plane. 
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Figure 5.212 Pseudostatic value of second modal coordinate of body 2 for bending 

in xy plane. 
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Figure 5.213 Pseudostatic value of first modal coordinate of body 2 for bending in 

xz plane. 
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Figure 5.214 Pseudostatic value of second modal coordinate of body 2 for bending 

in xz plane. 
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Figure 5.215 Pseudostatic value of first modal coordinate of body 3 for bending in 

xy plane. 
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Figure 5.216 Pseudostatic value of second modal coordinate of body 3 for bending 

in xy plane. 
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Figure 5.217 Pseudostatic value of first modal coordinate of body 3 for bending in 

xz plane. 
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Figure 5.218 Pseudostatic value of second modal coordinate of body 3 for bending 

in xz plane. 
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Figure 5.219 Derivative of pseudostatic value of first modal coordinate of body 2 

for bending in xy plane. 
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Figure 5.220 Derivative of pseudostatic value of second modal coordinate of body 

2 for bending in xy plane. 
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Figure 5.221 Derivative of pseudostatic value of first modal coordinate of body 2 

for bending in xz plane. 
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Figure 5.222 Derivative of pseudostatic value of second modal coordinate of body 

2 for bending in xz plane. 
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Figure 5.223 Derivative of pseudostatic value of first modal coordinate of body 3 

for bending in xy plane. 
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Figure 5.224 Derivative of pseudostatic value of second modal coordinate of body 

3 for bending in xy plane. 
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Figure 5.225 Derivative of pseudostatic value of first modal coordinate of body 3 

for bending in xz plane. 
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Figure 5.226 Derivative of pseudostatic value of second modal coordinate of body 

3 for bending in xz plane. 
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Figure 5.227 Deviation from pseudostatic value of first modal coordinate of body 

2 for bending in xy plane. 
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Figure 5.228 Deviation from pseudostatic value of second modal coordinate of 

body 2 for bending in xy plane. 
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Figure 5.229 Deviation from pseudostatic value of first modal coordinate of body 

2 for bending in xz plane. 
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Figure 5.230 Deviation from pseudostatic value of second modal coordinate of 

body 2 for bending in xz plane. 
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Figure 5.231 Deviation from pseudostatic value of first modal coordinate of body 

3 for bending in xy plane. 
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Figure 5.232 Deviation from pseudostatic value of second modal coordinate of 

body 3 for bending in xy plane. 
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Figure 5.233 Deviation from pseudostatic value of first modal coordinate of body 

3 for bending in xz plane. 
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Figure 5.234 Deviation from pseudostatic value of second modal coordinate of 

body 3 for bending in xz plane. 
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Figure 5.235 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 2 for bending in xy plane. 
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Figure 5.236 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 2 for bending in xy plane. 
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Figure 5.237 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 2 for bending in xz plane. 
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Figure 5.238 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 2 for bending in xz plane. 
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Figure 5.239 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 3 for bending in xy plane. 
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Figure 5.240 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 3 for bending in xy plane. 
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Figure 5.241 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 3 for bending in xz plane. 
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Figure 5.242 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 3 for bending in xz plane. 
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Figure 5.243 Pseudostatic torque applied at joint 1. 
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Figure 5.244 Pseudostatic torque applied at joint 2. 
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Figure 5.245 Pseudostatic torque applied at joint 3. 
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Figure 5.246 Stabilization torque applied at joint 1. 
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Figure 5.247 Stabilization torque applied at joint 2. 
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Figure 5.248 Stabilization torque applied at joint 3. 
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Figure 5.249 Overall torque applied at joint 1. 
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Figure 5.250 Overall torque applied at joint 2. 
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Figure 5.251 Overall torque applied at joint 3. 

 

The maximum azimuth and elevation angle errors of the tip point along the 

trajectory after the settling time are 0.0493 degrees and 0.0206 degrees, 

respectively. The maximum Lagrange multiplier error after the settling time is –

0.588 N. The maximum overall torques applied to the joints are in the order of 168 

Nm as seen from Figures 5.249 - 5.251. 

 

 

5.5 Numerical Simulation of Force and Motion Control of Spatial 

Robot with Measurement Noises 

 

In this section, the numerical simulation of the force and motion control of the 

spatial robot including measurement noises is presented by using the force and 

motion control method proposed at Chapter 2. The measurement noises are 

considered for the state variables that are used for the generation of the 

stabilization control torques (i.e., the measured variables). They are the azimuth 

and elevation angles and their rates, the modal variables of Body 2 and Body 3 and 
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their rates and the impulse of the Lagrange multiplier. In a real system, the 

Lagrange multiplier is measured instead of its impulse. Due to this reason, the 

measurement noise generated for the Lagrange multiplier is integrated before it is 

added to the impulse of the Lagrange multiplier. 

 

The measurement noises are generated by using normally distributed random 

numbers with zero mean and specific standard deviation. 1 % deviation from the 

mean value of each variable is assumed to obtain the standard deviation for each 

variable. 

 

The first order low pass filter whose transfer function given in Equation (5.3) is 

used again to filter the measured variables. 

 

The same reference Lagrange multiplier, the same reference tip point trajectory 

and the same closed loop natural frequencies and damping ratios given in Section 

5.4 are used. After a few trials, a proper crossover frequency for the filter is found 

as 276 rad/s. The sampling frequency is taken as 500 Hz. The simulation results 

are presented in Figures 5.252 - 5.341. 

 



 341 

0 2 4 6 8 10 12
10

20

30

40

50

60

70

80

90

Time (s)

A
z
im

u
th

 A
n
g
le

 C
o
o
rd

in
a
te

 o
f 

T
ip

 P
o
in

t 
(d

e
g
re

e
)

actual

reference

 

Figure 5.252 Azimuth angle coordinate of tip point. 
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Figure 5.253 Elevation angle coordinate of tip point. 
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Figure 5.254 Derivative of azimuth angle coordinate of tip point. 
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Figure 5.255 Derivative of elevation angle coordinate of tip point. 
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Figure 5.256 Impulse of Lagrange multiplier. 
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Figure 5.257 Lagrange multiplier. 
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Figure 5.258 Deviation of azimuth angle coordinate of tip point. 
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Figure 5.259 Deviation of elevation angle coordinate of tip point. 
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Figure 5.260 Deviation of derivative of azimuth angle coordinate of tip point. 
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Figure 5.261 Deviation of derivative of elevation angle coordinate of tip point. 
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Figure 5.262 Deviation of impulse of Lagrange multiplier. 
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Figure 5.263 Deviation of Lagrange multiplier. 
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Figure 5.264 First modal coordinate of body 2 for bending in xy plane. 
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Figure 5.265 Second modal coordinate of body 2 for bending in xy plane. 
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Figure 5.266 First modal coordinate of body 2 for bending in xz plane. 
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Figure 5.267 Second modal coordinate of body 2 for bending in xz plane. 
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Figure 5.268 First modal coordinate of body 3 for bending in xy plane. 
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Figure 5.269 Second modal coordinate of body 3 for bending in xy plane. 
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Figure 5.270 First modal coordinate of body 3 for bending in xz plane. 
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Figure 5.271 Second modal coordinate of body 3 for bending in xz plane. 
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Figure 5.272 Derivative of first modal coordinate of body 2 for bending in xy 

plane. 
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Figure 5.273 Derivative of second modal coordinate of body 2 for bending in xy 

plane. 
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Figure 5.274 Derivative of first modal coordinate of body 2 for bending in xz 

plane. 
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Figure 5.275 Derivative of second modal coordinate of body 2 for bending in xz 

plane. 
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Figure 5.276 Derivative of first modal coordinate of body 3 for bending in xy 

plane. 
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Figure 5.277 Derivative of second modal coordinate of body 3 for bending in xy 

plane. 
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Figure 5.278 Derivative of first modal coordinate of body 3 for bending in xz 

plane. 
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Figure 5.279 Derivative of second modal coordinate of body 3 for bending in xz 

plane. 
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Figure 5.280 Pseudostatic value of first modal coordinate of body 2 for bending in 

xy plane. 
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Figure 5.281 Pseudostatic value of second modal coordinate of body 2 for bending 

in xy plane. 
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Figure 5.282 Pseudostatic value of first modal coordinate of body 2 for bending in 

xz plane. 
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Figure 5.283 Pseudostatic value of second modal coordinate of body 2 for bending 

in xz plane. 
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Figure 5.284 Pseudostatic value of first modal coordinate of body 3 for bending in 

xy plane. 
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Figure 5.285 Pseudostatic value of second modal coordinate of body 3 for bending 

in xy plane. 
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Figure 5.286 Pseudostatic value of first modal coordinate of body 3 for bending in 

xz plane. 
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Figure 5.287 Pseudostatic value of second modal coordinate of body 3 for bending 

in xz plane. 
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Figure 5.288 Derivative of pseudostatic value of first modal coordinate of body 2 

for bending in xy plane. 
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Figure 5.289 Derivative of pseudostatic value of second modal coordinate of body 

2 for bending in xy plane. 



 360 

0 2 4 6 8 10 12
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (s)

D
e
ri
v
a
ti
v
e
 o

f 
P

s
e
u
d
o
s
ta

ti
c
 V

a
lu

e
 o

f 
F

ir
s
t 

M
o
d
a
l 
C

o
o
rd

in
a
te

 o
f 

B
o
d
y
 2

Bending in xz Plane

 

Figure 5.290 Derivative of pseudostatic value of first modal coordinate of body 2 

for bending in xz plane. 
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Figure 5.291 Derivative of pseudostatic value of second modal coordinate of body 

2 for bending in xz plane. 
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Figure 5.292 Derivative of pseudostatic value of first modal coordinate of body 3 

for bending in xy plane. 
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Figure 5.293 Derivative of pseudostatic value of second modal coordinate of body 

3 for bending in xy plane. 
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Figure 5.294 Derivative of pseudostatic value of first modal coordinate of body 3 

for bending in xz plane. 
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Figure 5.295 Derivative of pseudostatic value of second modal coordinate of body 

3 for bending in xz plane. 
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Figure 5.296 Deviation from pseudostatic value of first modal coordinate of body 

2 for bending in xy plane. 
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Figure 5.297 Deviation from pseudostatic value of second modal coordinate of 

body 2 for bending in xy plane. 
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Figure 5.298 Deviation from pseudostatic value of first modal coordinate of body 

2 for bending in xz plane. 
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Figure 5.299 Deviation from pseudostatic value of second modal coordinate of 

body 2 for bending in xz plane. 
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Figure 5.300 Deviation from pseudostatic value of first modal coordinate of body 

3 for bending in xy plane. 
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Figure 5.301 Deviation from pseudostatic value of second modal coordinate of 

body 3 for bending in xy plane. 
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Figure 5.302 Deviation from pseudostatic value of first modal coordinate of body 

3 for bending in xz plane. 
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Figure 5.303 Deviation from pseudostatic value of second modal coordinate of 

body 3 for bending in xz plane. 
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Figure 5.304 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 2 for bending in xy plane. 
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Figure 5.305 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 2 for bending in xy plane. 
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Figure 5.306 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 2 for bending in xz plane. 
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Figure 5.307 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 2 for bending in xz plane. 



 369 

0 2 4 6 8 10 12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time (s)

D
e
v
ia

ti
o
n
 f

ro
m

 D
e
ri
v
a
ti
v
e
 o

f 
P

s
e
u
d
o
s
ta

ti
c
 V

a
lu

e
 o

f 
F

ir
s
t 

M
o
d
a
l 
C

o
o
rd

in
a
te

 o
f 

B
o
d
y
 3

Bending in xy Plane

 

Figure 5.308 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 3 for bending in xy plane. 
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Figure 5.309 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 3 for bending in xy plane. 
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Figure 5.310 Deviation from derivative of pseudostatic value of first modal 

coordinate of body 3 for bending in xz plane. 
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Figure 5.311 Deviation from derivative of pseudostatic value of second modal 

coordinate of body 3 for bending in xz plane. 
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Figure 5.312 Pseudostatic torque applied at joint 1. 
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Figure 5.313 Pseudostatic torque applied at joint 2. 
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Figure 5.314 Pseudostatic torque applied at joint 3. 
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Figure 5.315 Stabilization torque applied at joint 1. 
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Figure 5.316 Stabilization torque applied at joint 2. 
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Figure 5.317 Stabilization torque applied at joint 3. 
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Figure 5.318 Overall torque applied at joint 1. 
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Figure 5.319 Overall torque applied at joint 2. 
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Figure 5.320 Overall torque applied at joint 3. 
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Figure 5.321 Measurement noise of azimuth angle coordinate of tip point. 
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Figure 5.322 Measurement noise of elevation angle coordinate of tip point. 
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Figure 5.323 Measurement noise of derivative of azimuth angle coordinate of tip 

point. 
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Figure 5.324 Measurement noise of derivative of elevation angle coordinate of tip 

point. 
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Figure 5.325 Measurement noise of first modal coordinate of body 2 for bending 

in xy plane. 
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Figure 5.326 Measurement noise of second modal coordinate of body 2 for 

bending in xy plane. 
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Figure 5.327 Measurement noise of first modal coordinate of body 2 for bending 

in xz plane. 
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Figure 5.328 Measurement noise of second modal coordinate of body 2 for 

bending in xz plane. 
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Figure 5.329 Measurement noise of first modal coordinate of body 3 for bending 

in xy plane. 
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Figure 5.330 Measurement noise of second modal coordinate of body 3 for 

bending in xy plane. 
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Figure 5.331 Measurement noise of first modal coordinate of body 3 for bending 

in xz plane. 
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Figure 5.332 Measurement noise of second modal coordinate of body 3 for 

bending in xz plane. 
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Figure 5.333 Measurement noise of derivative of first modal coordinate of body 2 

for bending in xy plane. 
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Figure 5.334 Measurement noise of derivative of second modal coordinate of body 

2 for bending in xy plane. 
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Figure 5.335 Measurement noise of derivative of first modal coordinate of body 2 

for bending in xz plane. 
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Figure 5.336 Measurement noise of derivative of second modal coordinate of body 

2 for bending in xz plane. 
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Figure 5.337 Measurement noise of derivative of first modal coordinate of body 3 

for bending in xy plane. 
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Figure 5.338 Measurement noise of derivative of second modal coordinate of body 

3 for bending in xy plane. 
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Figure 5.339 Measurement noise of derivative of first modal coordinate of body 3 

for bending in xz plane. 
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Figure 5.340 Measurement noise of derivative of second modal coordinate of body 

3 for bending in xz plane. 
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Figure 5.341 Integral of measurement noise of Lagrange multiplier. 
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The maximum azimuth and elevation angle errors of the tip point along the 

trajectory after the settling time are 0.3968 degrees and 0.2173 degrees, 

respectively. The maximum Lagrange multiplier error after the settling time is –

7.7696 N. The maximum overall torques applied to the joints are in the order of 

170 Nm as seen from Figures 5.318 - 5.320. Note that the measurement noises do 

not cause any noticeable increase in the control torques as compared to the case 

without noises. 

 

As seen from the Figures 5.258, 5.259 and 5.262 the errors in the azimuth and 

elevation angles of the tip point and the Lagrange multiplier are all in acceptable 

levels considering the 1 % sensor uncertainty in the measured mean values of the 

variables. 
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CHAPTER 6 

 

 

CONCLUSIONS AND FURTHER WORKS 

 

 

In this thesis, alternative control methods are proposed for the unconstrained 

motion and constrained force and motion control of flexible robots. The 

performances of the proposed methods are illustrated firstly on a planar two link 

robot with a flexible forearm. Then, a more complex example which is a spatial 

three link robot with two flexible arms are taken into consideration. 

 

The main advantage of the proposed control methods is that no linearization of the 

dynamic equations is required but conventional linear control techniques are still 

used based on the fact that the system can be rendered “slowly varying” with 

proper placement of the closed loop poles [49], [50]. Therefore, implementation of 

the proposed control methods are easy which is especially important for high 

degree of freedom robots with flexible arms. The proposed control methods are 

designed based on the tip point variables, therefore better tracking quality is 

obtained compared to the control methods designed based on the joint variables 

assuming that the tip point variables are measured precisely. 

 

In the application of the proposed methods, the dynamic equations of a flexible 

robot are partitioned as pseudostatic equilibrium equations and deviations from 

them. The pseudostatic equilibrium considered here is defined as a hypothetical 

state where the tip point variables have their desired values while the modal 

variables are instantaneously constant. Then, the control torques for the 

pseudostatic equilibrium and for the stabilization of the deviation equations are 

formed in terms of tip point coordinates, modal variables and the contact force 

components. In the constrained force and motion control method, the tip point 
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position variables are replaced with the contact surface coordinates by using the 

constraint equations before applying the control method. 

 

In order to have asymptotic stability in the large, the closed-loop system must be 

slowly varying [49], [50]. It is shown that this stability condition is satisfied by 

placing the poles sufficiently away from the imaginary axis. 

 

Avoiding from the singularities is a necessary condition to obtain a controllable 

system. However, it may not be sufficient alone. Actually, the necessary and 

sufficient condition is that the controllability matrix be of full rank, where the 

controllability matrix is defined based on the state space representation of the 

system. 

 

An incremental rotary optical encoder is the most popular sensor to monitor a joint 

variable of a robot. Typically, encoder angular resolutions ranging from 1.44 

degrees down to 0.0036 degrees are achievable [45]. Strains are measured to 

calculate the modal variables. Probably the most sensitive strain gauge is the 

semiconductor gauge for this aim. A 1±  % accuracy is typical, and this is a 

fundamental limit on accuracy in stress analysis applications [46]. On a flexible 

link, strains can be measured at those locations where the maximum stresses occur 

for each mode. These locations can be determined from the mode shapes of the 

flexible link. Contact force sensors generally placed between the end effector and 

last joint of the manipulator. Such a sensor consists of a mechanical structure 

instrumented with strain gauges which can measure the forces and torques acting 

on the end effector. Typically, these sensors also have ± 1 % accuracy [47]. 

Optical devices may also be used to measure the position of the tip point [48], 

[10]. It is recommended that they should be kept close to the tip point as much as 

possible. New technologies continue to improve the sensitivities of the sensors. 

The rates of the position and modal variables can be obtained by numerically 

differentiating their measured values. 

 

Different modeling approaches for the flexible multibody systems and different 

discretization methods for the flexible arms are used while modeling the planar 
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and spatial robots. Planar two link robot with flexible forearm is modeled by using 

the relative coordinates approach and its flexible arm is discretized by using the 

assumed modes method. On the other hand, spatial three link robot with two 

flexible arms is modeled by using the absolute coordinates approach and its 

flexible arms are discretized by using the finite element method. Then, an 

alternative form of the dynamic equations, which has necessary and sufficient 

number of generalized coordinates and equations, is given for the controller 

design. 

 

A ninth order hermite polynomial is used for the reference motion trajectory and a 

profile that consists of a cycloidal rise, a constant level and a cycloidal return is 

used for the reference Lagrange multiplier. Simulations are performed by 

programs written in MATLAB
®

. 

 

Uncontrolled motion of the planar robot is simulated to verify the dynamic 

equations. In order to determine the effectiveness of the control methods, the 

unconstrained motion and constrained force and motion control simulations are 

presented firstly for the planar robot. Unmodeled dynamics is taken into 

consideration to illustrate the performance of the control method even in the case 

of unmodeled dynamics, then unconstrained motion and constrained force and 

motion control simulations are presented again. Motion control of the planar 

flexible robot by using the computed torque method with the rigidity assumption is 

also simulated for a comparison with the proposed method. After that, the 

uncontrolled motion of the spatial robot is simulated. The unconstrained motion 

and constrained force and motion control simulations are this time presented for 

the spatial robot. Measurement noises are also taken into consideration and the 

unconstrained motion and constrained force and motion control simulations are 

presented again by filtering the measured variables in order to illustrate the 

performance of the control method in the presence of measurement noises. It can 

be said from the simulation results that the proposed control methods work 

satisfactorily. 
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In some applications, the robot may pass from the unconstrained motion to the 

constrained force and motion and/or from the constrained force and motion to the 

unconstrained motion. While the motion type of the robot is changing, there may 

be an impact force. Therefore, the impact force is also taken into consideration in 

such combined motions. A very limited study is available on this type of problem. 

Thus, this type of problem can be considered as a further work. 

 

Another subject to work on in future is the actuating singularity analysis that arises 

in determining the pseudostatic torques in association with the pseudostatic values 

of the modal variables. 
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APPENDIX A 

 

 

BEAM ELEMENT SHAPE FUNCTIONS 

 

Let the beam Bk be modeled by one dimensional beam elements. Consider an 

element with nodes A and B. Let δi and γi, 3,2,1i =  denote the deformation 

displacements and rotations respectively of axis frames fixed along the centroidal 

line of the element, and iu denote the deformation displacements of arbitrary 

points in the element. 

 

δi and γi are expressed in terms of the nodal variables jα  by utilizing polynomials 

of appropriate order [57] as 

 

jiji s α=δ      3,2,1i =      12,,1j K=  (A.1) 

 

and 

 

jijroti s α=γ  (A.2) 

 

where αj are the displacements of rotations at the nodes, 
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and the element shape functions neglecting shear deformation are given by 
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and 
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where 

 

ξ−=1a1  (A.6) 

ξ=2a  (A.7) 
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8

2
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In Equations (A.6) to (A.14), 
L

x
=ξ  where x is measured from the element axis 

fixed at node A and L is the length of the element. 

 

Using δi and γi, the displacement field for arbitrary points in the beam element, 

ui(x,y,z,t) can be derived for small rotations, using references [57], [58] and 

extending its two dimensional representation to three dimensions, such that 

 

( ) ( ) ( ) ( )t,xyt,xzt,xt,z,y,xu 3211 γ−γ+δ=  (A.15) 

( ) ( ) ( )t,xzt,xt,z,y,xu 122 γ−δ=  (A.16) 

( ) ( ) ( )t,xyt,xt,z,y,xu 133 γ+δ=  (A.17) 
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Using Equations (A.1) and (A.2) and the relations given by Equations (A.15), 

(A.16) and (A.17), ui is obtained as 

 

jiji su α=      3,2,1i =      12,,1j K=  (A.18) 

 

where the consistent mass shape function s becomes 
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If the cross section dimensions are small, then the terms involving y and z in 

Equation (A.19) can be neglected. Thus, the shape function matrix simplifies to 

Equation (A.4). 
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APPENDIX B 

 

 

INERTIA PROPERTIES OF SPATIAL ROBOT 

 

 

In this section, the inertia properties of the beam element used for the spatial robot 

can be obtained as 

 



 400 























−

−=ρ∫

0L
12

1
0

2

1
000L

12

1
0

2

1
00

L
12

1
000

2

1
0L

12

1
000

2

1
0

00000
2

1
00000

2

1

mdV

kiki

kikiki

V

ki

ki

ki

φφφφ  (B.1) 























−

−=ρ∫

0L
20

1
0L

20

7
000L

30

1
0L

20

3
00

L
20

1
000L

20

7
0L

30

1
000L

20

3
0

00000L
3

1
00000L

6

1

mdVx

2

kiki

2

kiki

2

kiki

2

kiki

kiki

ki

V

kiki

ki

ki

φφφφ  (B.2) 



 401 















































=ρ∫

000000000000

00000000000

0000000000

000000000

00000000
3

1
00000

6

1

000000

00000

sym0000

000

00
3

1

mdV ki

V

ki

1

Tki

1ki

ki

φφφφφφφφ  (B.3) 



 402 















































−−

=ρ∫

00000L
20

1
00000L

30

1
000000000000

000000000000

000000000000

00000
20

7
00000

20

3
000000000000

00000L
30

1
00000L

20

1
000000000000

000000000000

000000000000

00000
20

3
00000

20

7
000000000000

mdV

kiki

kiki

ki

V

ki

2

Tki

1ki

ki

φφφφφφφφ  (B.4) 



 403 















































−−

=ρ∫

000000000000

00000L
20

1
00000L

30

1
000000000000

00000
20

7
00000

20

3
000000000000

000000000000

000000000000

00000L
30

1
00000L

20

1
000000000000

00000
20

3
00000

20

7
000000000000

000000000000

mdV

kiki

kiki

ki

V

ki

3

Tki

1ki

ki

φφφφφφφφ  (B.5) 



 404 

















































−−−

=ρ∫

2

kiki

2

kiki

ki

2

kiki

ki

V

ki

2

Tki

2ki

L
105

1
000L

210

11
0L

140

1
000L

420

13
0

00000000000

0000000000

000000000
35

13
0L

420

13
000

70

9
0

0000000

L
105

1
000L

210

11
0

00000

sym0000

000
35

13
0

0

mdV

ki

φφφφφφφφ  (B.6) 



 405 















































−

−

−−−

−

=ρ∫

000000000000

L
105

1
000L

210

11
0L

140

1
000L

420

13
0

000000000000

L
210

11
000

35

13
0L

420

13
000

70

9
0

000000000000

000000000000

000000000000

L
140

1
000L

420

13
0L

105

1
000L

210

11
0

000000000000

L
420

13
000

9

7
0L

210

11
000

35

13
0

000000000000

000000000000

mdV

2

kiki

2

kiki

kiki

2

kiki

2

kiki

kiki

ki

V

ki

3

Tki

2ki

ki

φφφφφφφφ  (B.7) 



 406 

















































−

−

−

=ρ∫

000000000000

L
105

1
0L

210

11
000L

140

1
0L

420

13
00

0000000000
35

13
000L

420

13
0

70

9
00

00000000

0000000

000000

L
105

1
0L

210

11
00

sym0000
35

13
00

00

0

mdV

2

kiki

2

kiki

ki

2

kiki

ki

V

ki

3

Tki

3ki

ki

φφφφφφφφ  (B.8) 



 407 































































−−−

−

−

−

=ρ∫

2

kiki

2

kiki

2

kiki

2

kiki

ki

ki

2

kiki

2

kiki

ki

V

kiTki

ki

L
105

1
000L

210

11
0L

140

1
000L

420

13
0

L
105

1
0L

210

11
000L

140

1
0L

420

13
00

0000000000
35

13
000L

420

13
0

70

9
00

35

13
0L

420

13
000

70

9
0

3

1
00000

6

1

L
105

1
000L

210

11
0

L
105

1
0L

210

11
00

sym0000
35

13
00

35

13
0

3

1

mdV

ki

φφφφφφφφ

 (B.9) 



 408 













































































−

−

−

−

−−

−

−

=

ki

ki

33ki

2

ki

ki

33ki

ki

ki

33ki

2

ki

ki

33ki

ki

ki

22ki

2

ki

ki

22ki

ki

ki

22ki

2

ki

ki

22ki

ki

ki

ki

ki

ki

ki

3

ki

ki

22ki

2

ki

ki

22ki

3

ki

ki

22ki

3

ki

ki

33ki

2

ki

ki

33ki

3

ki

ki

33ki

ki

kiki

ki

kiki

ki

ki

33ki

2

ki

ki

33ki

ki

ki

22ki

2

ki

ki

22ki

ki

ki

ki

3

ki

ki

22ki

3

ki

ki

33ki

ki

kiki

ki

L

IE4
000

L

IE6
0

L

IE2
000

L

IE6
0

L

IE4
0

L

IE6
000

L

IE2
0

L

IE6
00

L

JG
00000

L

JG
000

L

IE12
000

L

IE6
0

L

IE12
00

L

IE12
0

L

IE6
000

L

IE12
0

L

EA
00000

L

AE

L

IE4
000

L

IE6
0

L

IE4
0

L

IE6
00

sym
L

JG
000

L

IE12
00

L

IE12
0

L

AE

H

 



 409 

 (B.10) 

 

where Lki is the length of element i  of Body k, Aki is the cross sectional area of 

element i  of Body k, Eki is the modulus of elasticity of element i of Body k, Gki is 

the shear modulus of elasticity of Body k, 
ki

22I  is the second moment of area of 

element i  of Body k about 
ki

2n  axis, 
ki

33I  is the second moment of area of 

element i  of Body k about 
ki

3n  axis, kiJ  is the area polar moment of inertia of 

element i  of Body k. 
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APPENDIX C 

 

 

INERTIA PROPERTIES OF PLANAR ROBOT 

 

The necessary inertia properties for obtaining the dynamics of the planar robot can 

be obtained as 
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where 1m  is the mass of Body 1 

 

( )






=ρ∫ 0

2

Lm
dV 22

V

T2

2

1

r  (C.3) 

 

where 2m  is the mass of Body 2 
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~

 is given as 
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