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ABSTRACT

UNCONSTRAINED MOTION
AND
CONSTRAINED FORCE AND MOTION
CONTROL OF
ROBOTS WITH FLEXIBLE LINKS

Kilicaslan, Sinan
Ph.D., Department of Mechanical Engineering
Supervisor : Prof. Dr. S. Kemal Ider
Co-Supervisor : Prof. Dr. M. Kemal Ozgoren

February 2005, 412 pages

New control methods are developed for the unconstrained motion and constrained
force and motion control of flexible robots. The dynamic equations of the flexible
robots are partitioned as pseudostatic equilibrium equations and deviations from
them. The pseudostatic equilibrium considered here is defined as a hypothetical
state where the tip point variables have their desired values while the modal
variables are instantaneously constant. Then, the control torques for the
pseudostatic equilibrium and for the stabilization of the deviation equations are
formed in terms of tip point coordinates, modal variables and contact force
components. The performances of the proposed methods are illustrated on a planar
two-link robot and on a spatial three-link robot. Unmodeled dynamics and
measurement noises are also taken into consideration. Performance of the

proposed motion control method is compared with the computed torque method.

Y



Keywords: Motion Control, Trajectory Tracking Control, Force and Motion
Control, Flexible Robots, Flexible Manipulators, Pseudostatic Dynamic Equations,

Unmodeled Dynamics, Measurement Noises.



oz

ESNEK KOLLU ROBOTLARIN
SINIRLANDIRILMAMIS HAREKET
VE
SINIRLANDIRILMIS KUVVET VE HAREKET
DENETIMI

Kiligaslan, Sinan
Doktora, Makina Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. S. Kemal Ider

Ortak Tez Yoneticisi : Prof. Dr. M. Kemal Ozgoren

Subat 2005, 412 sayfa

Esnek robotlarin sinirlandirilmamis hareket ve sinirlandirilmig kuvvet ve hareket
denetimi i¢in yeni denetim yOntemleri gelistirilmistir. Dinamik denklemler sanal
statik denge denklemleri ve bunlardan sapma denklemleri olarak ayristirilmistir.
Burada gozoniine alinan sanal statik denge, u¢ nokta degiskenlerinin istenen
degerleri aldigi, bu sirada da modal degiskenlerin anlik sabit oldugu varsayimsal
bir durumdur. Sonra, denetim torklar1 sanal statik denge ve sapma denklemlerinin
kararlili@i i¢in u¢ nokta koordinatlari, modal degiskenler ve temas kuvveti
bilesenleri cinsinden olusturulmustur. Onerilen yontemlerin basarilar1 diizlemsel
iki kollu bir esnek robot ve uzaysal ii¢ kollu bir esnek robot iizerinde
gosterilmistir. Modellenmemis dinamik ve Ol¢iim giirtiltileri de go&zoniine
almmistir. Onerilen hareket denetim metodunun basarist hesaplanmis torklar

metodu ile karsilastirilmastir.
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Hareket Denetimi, Esnek Robotlar, Esnek Manipulatorler, Sanal Statik Dinamik

Denklemler, Modellenmemis Dinamik, Ol¢iim Giiriiltiileri.
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CHAPTER 1

INTRODUCTION

Conventional industrial manipulators are usually made stiff and bulky to avoid
vibrations and hence to achieve precision in motion control. Several
considerations such as lower arm cost, higher motion speeds, higher accuracy in
operations, better energy efficiency, safer operation and improved mobility

resulted in a new generation of manipulators with lightweight, flexible links.

Robot manipulators with flexible links include lightweight manipulators and/or
large articulated structures that are encountered in a variety of conventional and
nonconventional settings. Very long arms needed for accessing hostile
environments such as nuclear sites, underground waste deposits, deep sea, space,
etc. or automated crane devices for building construction can be considered as
actual applications in the real life. The ultimate challenge is the design of
mechanical arms made of light materials that are suitable for complex industrial
manipulation tasks, such as pick-and-place, arc welding, spray painting, laser

cutting, grinding, deburring, assembly, or surface finishing.

In complex industrial tasks (e.g., grinding, deburring, assembly) robots usually
operate in a constrained environment. Good control performance in these
applications can hardly be achieved using conventional point-to-point control
strategies. Thus, simultaneous motion tracking and force control are required in

this type of applications.

Robot manipulators will play an important role in future space missions as the
important demand for low-energy consumption and limitation of carrying

capacity of space rockets, links of the space manipulators, as well as other space



structures, are required to be light. However, as a result of the elasticity of the
arms and the structures, undesirable low frequency vibrations may occur. In the
case of constructing large space structures, for example, a space station, using
space robot manipulators, it is necessary to control not only the position and
vibration of the manipulators but also the force exerted by the hand on the

working surface.

Robot arms with flexible links have an infinite number of degrees of freedom. A
reduced-order model, which is still highly nonlinear and complex, is typically
used for purposes of simulation and controller design. The inherent difficulty of
the control problem can be ascribed to the fact that the number of controlled
variables is strictly less than the number of mechanical degrees of freedom.
Moreover, the dynamic relation between the input torques of the joint actuators
and the tip position reveals a behavior which is the nonlinear counterpart of the
nonminimum phase phenomenon of linear systems. Hence, inversion-based
control strategies would normally lead to instability in the closed loop. This is

shown on a simple example in the next section.

A brief review of the studies related to the motion control and force and motion
control of robots with flexible links is given in sections 1.2 and 1.3, respectively.

Discussions on these studies are presented in section 1.4.

1.1 An Example to Nonminimum Phase Systems

To show that the trajectory tracking of the manipulator is non-minimum phase,

distributed parameter model of a flexible single link manipulator in translational

motion is taken into consideration.
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Figure 1.1 Distributed parameter model of the flexible single link manipulator in
translational motion.

Figure 1.1 represents the distributed parameter model of the manipulator. In the
figure, m is the mass, L is the length, F is the applied force, { is the translational
displacement of the beam, u is the deformation displacement vector of point P.
The first fixed free bending mode will be used here to represent the vibration of

the beam. The dynamic equations of the model have the form
My + Ky =f (1.1)
where M is the generalized mass matrix, K is the generalized stiffness matrix, y is

the vector of generalized coordinates, f is the vector of generalized forces and

they are given as

Y=F} (1.2)
n

m 2.38m
M= (1.3)
2.38m 9.23m



0 0
K=\ 114.06% (1.4)

f—F (1.5)
=1, )

where 1 is the elastic (modal) coordinate of the link. The dynamic equations of

the manipulator can be written as

m(t) +2.38mij(t) = F(t) (1.6)

2.38mE (1) +9.23mij(t) +1 14.06%11(0 =0 (1.7)

If the Laplace transform of the Equations (1.6) and (1.7) are taken, the following

equations are obtained as

ms>{(s) +2.38ms 1 (s) = F(s) (1.8)

2.38ms>{(s) +9.23ms’(s) + 1 14.06%71@) =0 (1.9)

From Equation (1.8), n(s) can be written as

F

_C+ 5

_ ms
ne) YT (1.10)

If Equation (1.10) is substituted into Equation (1.9) and the necessary

arrangements are done, the following equation is obtained

(l.Sms4 + 47.92232};(5) = (3.8852 +47.92 EI3 jF(s) (1.11)
L mL

Equation (1.11) can be written as



£s) 3.88s° +47.92 EI3
- mL (1.12)

F(s) s,2(1.5ms,2 +47.9253IJ

If Equation (1.11) is substituted into Equation (1.10) one obtains the following

equation

nes) _ -1 = (1.13)
F(s) [1.5ms2+47.92L3j

The tip position of the manipulator defined in the base frame can be written as
x={+u(L) (1.14)
which can be expressed as

x=0+Y(L)m (1.15)
where Y(L) is shape function matrix of the link evaluated at the end of the link. If
the first fixed-free bending mode shape function is evaluated at the end of the

link, Y(L) is found as 6.075. Therefore, Equation (1.15) becomes

x =L +6.075m (1.16)

If Equations (1.12) and (1.13) are substituted into Equation (1.16), Equation
(1.16) becomes

~2.18057 +47.92
xE) mL, (1.17)

F(s) sz[l.Smsz +47.921EJ3IJ




Equation (1.17) represents the forward dynamics transfer function of the
manipulator. In other words, for given force input, the end position of the
manipulator is found. It is seen from the equation that forward dynamics transfer
function has a positive zero. When the inverse dynamics of this manipulator is
taken into consideration, the input becomes the desired end point trajectory and
the output becomes the force that satisfies this trajectory. In other words, the
forward dynamics transfer function is reversed in the case of inverse dynamics.
Therefore, in this case, positive zero of the forward dynamics becomes the
positive pole of inverse dynamics. Thus, inverse dynamics problem becomes
unstable. This means that trajectory tracking control of flexible link manipulator

has non-minimum phase property.

1.2 Literature Review on Motion Control of Flexible Robots

Some researchers considered point-to-point position control or regulation of single
link and multilink robots in which the main task is to suppress the residue
vibrations. It was shown that independent joint control is stable for positioning and
that stability does not depend on explicitly on the system parameters. However it
can be shown that when the trajectory tracking is concerned independent joint
control may become unstable. In many applications, however, tip trajectory
tracking is required. Tip tracking control of flexible link manipulators has the
difficulty of the non-minimum phase property due to the finite speed of
propagation of the mechanical wave along the links since the joint actuators are
non-collocated. In the literature, various modeling and controller design schemes
have been proposed for motion of the manipulator. A brief review of them is given

in the following paragraphs.

Goldenberg and Rakhsha [1] utilized the computed torque technique to control a
single-link flexible robot. It was assumed that the arm could rotate in a horizontal
plane and the link flexibility produced in-plane bending. The single flexible link
was modeled as a continuous beam by using Euler-Bernoulli formulation with

small deflections (relative to length) and all terms involving the square of joint



variable were neglected. The technique was implemented by calculating, for a
given trajectory, the nominal torque from the rigid body model of the robot. The
technique provided feedforward compensation which introduces an additional
zero of the closed-loop system transfer function. Using a PD feedback
compensator in addition to the feedforward one almost pole-zero cancellation of
the dominant closed-loop poles of the system was done. Luca and Siciliano [2]
considered the trajectory tracking control problem for a one link flexible arm
described by a nonlinear model. The arm was assumed to move on a horizontal
plane. The link was modeled as Euler-Bernoulli beam. Two system outputs were
chosen; namely, the joint angle and the angular position of a suitable point along
the link. Based on the input-output inversion algorithm, a state-feedback control
law was designed that enabled tracking of any smooth trajectory specified for the
output. In the closed loop an unobservable dynamics naturally arised, related to
the variables describing the arm's distributed flexibility. Kwon and Book [3]
addressed inverse dynamic trajectory planning issues of a single-link flexible
manipulator. To derive the equations of motion of the manipulator, they described
the position of a point on the beam with virtual rigid-body motion and deflection
with respect to the rigid-body coordinate by using Euler-Bernoulli beam model.
The virtual rigid body motion was represented by the motion of the moving
coordinate attached to the beam. The inverse dynamic equation of a single-link
flexible manipulator was solved in the time-domain. The inverse dynamic method
calculated the feedforward torque and the trajectories of all state variables that did
not excite structural vibrations for a given end-point trajectory. Zhu et al. [4]
studied tip tracking control of a single-link flexible robot. The controller
investigated was of a two-loop PD type, which was deduced from a control
approach originally developed for elastic joint robots. A very simple model, with
the flexible link of the robot being lumped to a spring-mass unit, was employed
for the controller design. Bounded Input and Bounded Output (BIBO) stable tip
tracking was obtained. Parameter uncertainty was also taken into consideration.
The design of feedforward controllers to control the position of single-link
flexible arms was developed by Feliu and Rattan [5]. The dynamic inversion of
the single-link flexible arm was studied from a discrete point of view. A method

to obtain a feedforward controller was developed, even in the case when the



system transfer function was of non-minimum phase. Ge et al. [6] derived a
nonlinear dynamic model of a flexible manipulator through finite element method
associated with Lagrange approach. The single link flexible manipulator was
modeled as an Euler-Bernoulli beam driven by a motor at its base and with a point
mass tip payload. The generalized coordinates of the system were selected to be
the displacements and rotations of the nodes on the considered flexible beam, and
such that a state space model was obtained. Based on this model, a nonlinear
feedback controller was developed to control the tip position. Yeung and Chen [7]
designed the controller of a single-link flexible manipulator moving in a vertical plane.
The equations of the manipulator were obtained by using Lagrangian formulation. The
controller was designed in two steps: linearization of the rigid part of its dynamic
equation, and stabilization of the overall linearized system with conventional linear
techniques. For the linearization, they employed the sliding-mode technique to arrive
at a desired linear equation. To avoid chatterings, a sliding layer function was used
to replace the sign function. In the stabilization step, PD/PID compensations were
used to stabilize the system. The parameters of the PD/PID compensators were
determined from pole placement. The locations of the poles have to be carefully
selected in order to arrive at adequate insensitivity against payload variations. A
controller design for controlling a flexible one link manipulator based on variable
structure theory was presented by Qian and Ma [8]. The link was assumed to
move on a horizontal plane and governing partial differential equation was
obtained by applying Hamilton’s principle. The discontinuous control law based
on the variable structure system theory for the non-collocated manipulator tip
position control was designed. The position state variables were obtained directly
from the inversion of the output submatrix multiplied by the sensor
measurements. The velocity state variables were estimated through decoupled
estimators -a separate first-order observer for each of the system's modes under

consideration.

Luca et al. [9] gave a framework for computing the torques that were needed for
moving a flexible arm along a given trajectory. This torque computation required a
dynamic generator system and could be accomplished both in an open- or in a

closed-loop fashion. In the open-loop case, the dynamic generator was the full or



reduced order inverse system associated to the arm dynamics and outputs. In order
to successfully invert the arm dynamics, the torque generator should be a stable
system. The stability properties depended on the chosen system output, that was on
the robot variables (e.g., joint or end effector) to be controlled. The same inversion
technique could be applied for closed-loop trajectory control of flexible robots. A
simple nonlinear dynamic model of a one link flexible arm was used to illustrate
the control strategies. A technique was presented for solving the inverse dynamics
and kinematics of multilink flexible robots by Bayo et al. [10]. The proposed
method found the joint torques necessary to produce a specified end effector
motion. Since the inverse dynamic problem in elastic manipulators was closely
coupled to the inverse kinematic problem, the solution of the first also rendered the
displacements and rotations at any point of the manipulator, including the joints.
The Timoshenko beam theory was used to model the elastic characteristics, and
the resulting equations of motion were discretized using the finite element method.
An iterative solution scheme was proposed that relies on local linearization of the
problem. The solution of each linearization was carried out in the frequency
domain. A two link flexible manipulator which was on a horizontal plane was used
as an example. Experimental study was also conducted. The inverse dynamics of
robot manipulators based on flexible arm models were also considered by Asada et
al. [11]. Actuator torques required for a flexible arm to track a given trajectory
were formulated and computed by using special moving coordinate systems, called
virtual rigid link coordinates. Dynamic deformations of the flexible arm can be
represented in a simple and compact form with use of the virtual coordinate
systems. They focused on the feedforward compensation based on inverse
dynamics of flexible arm models. The formulation was applied to a two link arm
which was constrained in a horizontal plane. Xi [12] combined the kinematics of a
flexible link manipulator with its dynamics. Based on this combination, a
numerical method was proposed for analyzing the inverse dynamics of a spatial
two link flexible manipulator. The manipulator was modeled as Euler-Bernoulli
beam. A linearized solution of flexible manipulator dynamics was demonstrated by
Gawronski et al. [13]. Based on this approach, the inverse dynamics problem was
defined and solved. The forward compensation torques were determined, with the

joint angles in the flexible body configuration were matched to the angles in the



rigid body configuration. The combined feedforward compensation and feedback
control was used. A two link flexible manipulator was considered as an example.
Moallem et al. [14] presented an inverse dynamics control strategy for a class of
multilink structurally flexible manipulators. This was done by defining new
outputs near the end points of the arms as well as by augmenting the control inputs
by terms that ensure stable operation of the closed loop system under specific
conditions. The controller was designed in a two-step process. First, an output was
defined such that the zero dynamics of the original system were stabilized. Next,
the control input was modified such that stable asymptotic tracking of the new
output or approximate tracking of the actual output might be obtained. This was

illustrated for the case of single link and two link flexible manipulators.

A rigid and flexible motion controller based on integral plus state feedback
controller was derived by Chalhoub and Ulsoy [15]. In the controller, they
introduced additional damping into the flexible motion. This was done by using
additional sensors to measure the compliant link vibrations and fed them back to
the controller. The performance of the controller was tested on a dynamic model
for a spherical coordinate two link robot arm which had two revolute joints and
one prismatic joint. The last link of the robot only was considered to be flexible.
Baruh and Tadikonda [16] presented an approach similar to the component mode
and substructure synthesis methods to derive the equations of motion, and both
open loop and closed loop control of the manipulator arm considered, where in the
latter the feedback quantities were calculated by using the output of spatially
distributed sensors. A two link manipulator that had three degree of freedom was
taken as an illustration. Carusone and D’Eleuterio [17] presented a feedback
control strategy for the end effector position and orientation tracking of
structurally flexible manipulators free of external forces as in space applications.
The fully feedback-driven approach employed an augmented dynamical
description in which derivatives of the control inputs were included in the state.
The feedback law used gain scheduling of a series of steady-state regulators
derived by considering the manipulator at intermediate (nominally rigid and
stationary) configurations along the desired trajectory. The performance of the

control method was demonstrated in simulations of a planar three link manipulator
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system. Ider et al. [18] developed a method for end effector trajectory tracking
control of robots with flexible links. In order to cope with the non-minimum phase
property of the system, the closed-loop poles were placed at desired locations
using full state feedback. The dynamic equations were linearized about the rigid
motion. A composite control law was designed to track the desired trajectory while
at the same time the internal dynamics was stabilized. A two link planar

manipulator was considered whose upperarm was rigid and forearm was flexible.

A reference-oriented procedure for controlling elastic robots was presented by
Pfeiffer [19]. This afforded, in a first step, an optimal path planning method
generating the reference trajectory. It was realized by a classical feedforward
decoupling scheme. The elastic deviations from this reference were corrected
within the feedforward loop by calculation of the joint correction angles putting
back the endpoint to its nominal position. In a final step, elastic vibrations of the
arms were damped by an additional joint output control system, which used as an
input joint kinematics and strain gauge measurements of the elastic curvatures.
Three link robot with two flexible arm was used. The design of inversion-based
nonlinear control laws solving the problem of trajectory tracking for robot arms
having flexible links was considered by Luca and Siciliano [20]. Links were
modeled as Euler-Bernoulli beams. The interaction between the
Lagrangian/assumed modes modeling approach and the complexity of the
resulting inversion control laws was stressed. The control was composed of a
nonlinear state feedback compensation term and of a linear feedback stabilization
term. A feedforward strategy for the nonlinear part was also investigated.
Simulation results were presented for a planar manipulator with two flexible links.
Li [21] presented a control design for the tip position trajectory tracking of a two
link manipulator arm with a flexible forearm. The control design was based on
two steps. First, input-output linearization was applied to decouple the shoulder
arm dynamics from the forearm dynamics, which transformed the trajectory
tracking control of the nonlinear non-minimum phase system into the trajectory
tracking control of two linear subsystems. Then trajectory tracking control design
of each subsystem was carried out in the second design step. Yim [22] treated the

end point trajectory control of a flexible manipulator based on the nonlinear
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inversion technique. The manipulator had two rigid links and the third link was
elastic. A parameterization of the Cartesian coordinates of a point close to the end
effector position was suggested. Using these coordinates as output variables, an
inverse feedback control law was derived for tracking reference Cartesian
trajectories. The stability of the zero dynamics associated with the end point
motion control was examined. It was shown that inverse control of the end point
caused divergent oscillatory flexible modes. In addition, for regulating the end
point to a fixed position, a linear stabilizer was designed to damp the elastic
vibration. Zhao and Chen [23] developed a tracking control strategy for a two link
flexible manipulator. The Euler-Bernoulli beam was assumed. Horizontal planar
maneuver of the manipulator was assumed. The controller used a feedforward
signal generated by stable inversion and a stabilizing signal from a feedback

stabilizer.

Chen and Yeung [24] presented a work which was a continuation of the Yeung
and Chen [7] studies. This work presented an extension of the sliding-mode
control design method to multilink flexible manipulators. As for the dynamic
analysis, a clamped loaded Euler-Bernoulli beam was selected as an approximate
model for each link in the presence of lateral deformation. Coupling effects
caused by flexibilities between the two links were neglected. There were two
main steps in the design procedure, linearization and stabilization. In the
linearization step, the sliding-mode technique was used to replace the rigid part of
the dynamic equations by a set of linear equations which were determined by the
switching surfaces. In the stabilization step, conventional PD/PID compensations
were adopted to stabilize the linearized time-invariant system. Two link flexible
manipulator was used in simulations. Nathan and Singh [25] treated the question
of control of an elastic robotic arm of two links based on variable structure system
(VSS) theory and pole assignment technique for stabilization. A discontinuous
joint angle control law, based on variable structure system theory, was designed
for the asymptotic decoupled joint angle trajectory tracking. In the closed-loop
system, the trajectories were attracted toward a chosen hypersurface in the state
space and then slided along it. Although, joint angles were controlled using

variable structure control law, the flexible modes of the links were excited. Using
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center manifold theory, it was shown that the closed-loop system, including the
sliding mode controller, was stable. Based on a linearized model about the
terminal state, a stabilizer was designed using pole assignment technique to
control the elastic oscillations of the links. A control logic was included which
switched the stabilizer at the instant when the joint angle trajectory entered a
specified neighborhood of the terminal state. Moallem et al. [26] considered a
control strategy based on nonlinear inversion for a class of multilink, structurally
flexible manipulators. New outputs near the end points of the arms were defined.
By using the concept of a sliding surface in variable structure control (VSC), the
nonlinear plant's error dynamics were drived onto a sliding surface. In order to
avoid over-excitation of higher frequency flexural modes due to control
chattering, the discontinuous functions normally used in classical variable

structure control were replaced by saturation

A nonlinear tracking controller for the link tip positions and velocities of a
multilink flexible robot arm was designed by Vandegrift et al. [27]. The controller
had three parts: a model-based trajectory generator, an inner loop based on input-
output feedback linearization, and an outer loop that stabilized the internal
dynamics (e.g., the flexible modes) using a singular perturbation design. A two
link spatial arm whose second link was modeled by using Euler-Bernoulli beam
model was taken into consideration. A robust control strategy for the trajectory
tracking control of elastic robot manipulators was proposed by Morita et al. [28].
The controller was designed to be robust against both of the structured uncertainty
and the unstructured uncertainty arising from modeling errors. The model
consisting of the rigid-body modes and the elastic modes was decomposed into
the slow model and the fast model by using an integral manifold approach. By
using the slow model, slow controller was designed based on the VSS theory and
the stability of the closed loop system was shown via Liapunov theory. On the
other hand, the fast controller was designed for the fast model on the basis of H-
infinity control theory. A two link flexible robot manipulator moving on a vertical
plane was used. Moallem et al. [29] developed a nonlinear control strategy for tip
position trajectory tracking of a class of structurally flexible multilink

manipulators. Using the concept of integral manifolds and singular perturbation
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theory, the full-order flexible system was decomposed into corrected slow and
fast subsystems. The tip-position vector was similarly partitioned into corrected
slow and fast outputs. The corrected slow subsystem was augmented by a
dynamical controller in such a way that the resulting closed-loop zero dynamics
were linear and asymptotically stable. The tracking problem was then redefined as
tracking the slow output and stabilizing the corrected fast subsystem by using
dynamic output feedback. A two link planar manipulator with flexible forearm

was considered as an example.

An adaptive self-tuning control scheme was developed for end-point position
control of flexible manipulators by Bodur and Sezer [30]. The effect of flexibility
was included in the dynamic model by approximating flexible links with a
number of rigid sublinks connected at fictitious joints. The relatively high
stiffness of the fictitious joints was shown to result in a decomposition of the
model into two subsystems operating at different rates. This allowed for
stabilization of the oscillatory modes associated with the flexible links by a fast
feedback control in addition to a slower control for trajectory tracking. The
control was constructed from measurements of the end-point position and
deformations of the flexible links, with the manipulator parameters required to
form the control obtained using a recursive least-squares estimation algorithm.
The control scheme was tested by digital simulation of a two link manipulator
with flexible first link. Pham et al. [31] presented a nonlinear, model-based
control of flexible link robots. The control task was formulated requiring rigid
joints variables to track reference time-varying trajectory and elastic deflection to
be damped. The stability and robustness properties of the control scheme were
analyzed from a passive energy consideration. A direct adaptive version was also
proposed. This approach was performed using a single-flexible-link and a two-
flexible-link horizontal robot. Another controller for solving the tracking problem
of flexible robot arms was presented by Arteaga and Siciliano [32]. In order to
achieve this goal, the desired trajectory for the link (flexible) coordinates was
computed from the dynamic model of the robot arm and was guaranteed to be
bounded, and the desired trajectory for the joint (rigid) coordinates could be

assigned arbitrarily. The proposed control law based on the well-known approach
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with filtered reference velocity at the basis of passivity-based and adaptive
controllers. The case of no internal damping was also considered, and a robust
control technique was used to enhance the damping of the system. In order to test
the controllers, a planar two link flexible robot modeled as Euler-Bernoulli beam

was used.

Morgul [33] considered a flexible beam clamped to a rigid base at one point and
free at the other end. He assumed that the rigid base rotated with a constant
angular frequency and that the motion of the flexible beam took place on a plane.
To stabilize the beam vibrations, he proposed a dynamic boundary force control
applied to the free end of the beam. He showed that, with the proposed control,
when the rigid base angular frequency was sufficiently small, the beam vibrations
exponentially decayed to zero. Morgul [34] again considered a flexible structure
modeled as a rigid body which rotated in inertial space; a flexible beam was
clamped to the rigid body at one end and free at the other. He assumed that the
flexible beam performed only planar motion. He posed two control problems,
namely, the orientation and stabilization of the system. It was shown that suitable
boundary controls applied to the free end of the beam and suitable control torques
applied to the rigid body solved the problems posed above. The proofs were

obtained by using the energy of the system as a Lyapunov functional.

1.3 Literature Review on Force and Motion Control of Flexible Robots

A limited number of studies for simultaneous force and motion control of robots
with flexible links has been found in the literature. A brief review of them is given

in the following paragraphs.

Unconstrained and constrained motion control of a planar two link structurally
flexible robotic manipulator were considered by Choi and Krishnamurthy [35].
The dynamic model was obtained by using the extended Hamilton's principle and
the Galerkin criterion. A method was presented to obtain the linearized equations

of motion in Cartesian space for use in designing the control system. The
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approach to solving the control problem was to use feedforward and feedback
control torques. The feedforward torques maneuvered the flexible manipulator
along a nominal trajectory and the feedback torques minimized any deviations
from the nominal trajectory. The feedforward and feedback torques were obtained
by solving the inverse dynamics problem for the rigid manipulator and designing
linear quadratic Gaussian with loop transfer recovery (LQG/LTR) compensators,
respectively. The LQG/LTR design methodology was exploited to design a robust
feedback control system that could handle modeling errors and sensor noise, and
operate on Cartesian space trajectory errors. Matsuno et al. [36] have considered
the problem of hybrid position/force control of a planar two link flexible
manipulator. They derived the dynamic model of the constrained flexible
manipulator by introducing the Lagrange multiplier. They assumed that the elastic
deformations of the links were small compared to their lengths; the densities of
the links materials and tip point lumped mass so small that rigid body variables in
the equations of the vibrations of the flexible links could be neglected and the
angular rotation of link 2 due to deformation of the link was negligibly small
compared to the rigid body rotation of link 2. On the basis of these assumptions
they derived the quasi-static equation and designed the hybrid position/force
controller by using these quasi-static equations. PD type control plus force
feedback control was used. An implicit force control scheme for flexible link
manipulators was considered by Borowiec and Tzes [37]. The control output was
composed of a feedforward and a feedback term. The feedforward torque
component compensated the underlying rigid arm dynamics along the desired
trajectory. The feedback component regulated the joint coordinate error
perturbations. The minimization of a linear quadratic frequency-shaped cost
functional yielded the time-varying feedback controller gains. The frequency
shaping dependence was included to eliminate undesirable effects associated with
control and observation spillover. The proposed control scheme was employed in
simulation studies on a planar two link rigid flexible manipulator. Shi et al. [38]
proposed a multivariable controller for the force and motion control of a planar
two link rigid-flexible manipulator moving in a horizontal plane. The static tip
deflection of the flexible link was allowed in order to maintain the contact force

between the end effector and the constrained path. The controller consisted of a
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feedforward term which contributed the torque for the expected joint angles and
the contact force, and a feedback term with the time varying optimal gains
obtained from the Matrix Riccati equation. A two-stage interaction control
scheme for a flexible arm whose tip was in contact with a compliant surface has
been proposed by Siciliano and Villani [39]. The first stage was in charge of
solving the inverse kinematics problem to compute the desired vectors of the joint
and the deflection variables that placed the flexible arm tip at the desired position
with the desired contact force. The solution was based on the transpose of a
suitably modified arm Jacobian so as to account for the static effects due to
gravity and contact force. The computed variables were used as the set-points for
the second stage, which was a simple PD joint regulator. The scheme was tested

in a simulation case study for a planar two link flexible manipulator.

Hu and Ulsoy [40] reported the results of a study of the combined joint motion
control, vibration control, and force control of a spatial two link rigid-flexible
constrained robot arm. A robust controller design technique was proposed by
Corless and Leitmann, and further developed by Corless, for the tracking control
of uncertain mechanical systems. This technique, incorporating contact force,
feedback, was used as the first method of design for a nonlinear controller. This
method assumed that only information on the rigid-body motion is available, and
treated the effects of flexible motion as uncertainties on the rigid system. A
second method, a modified version of the Corless-Leitmann technique suggested
by Yigit and Ulsoy, includes the feedback of the flexible-body motion of a robot
arm, but utilizes no control actuator for the degree of freedom of the flexible-body
motion. This second method (modified Corless-Leitmann controller) was
employed, to design a controller for improving the suppression of the flexible
vibration. Yim and Singh [41] were considered the position and force control of a
spatial three link rigid-rigid-flexible manipulator on a constraint surface based on
nonlinear inversion of an input-output map and linear feedback stabilization.
Unlike the rigid robots, the feedback linearizing control of end point motion gave
rise to unstable zero dynamics. Instability of zero dynamics was avoided by

controlling a parameterized output vector corresponding to a point close to the
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end point of the arm. Zero dynamics were stable or almost stable as long as the
parameter in the output vector did not exceed a critical value. Using the inverse
controller, the control of the force and the position of the end point was possible
while the end effector moved on the constraint surface. However, this excited the
elastic modes. For the final capture of the terminal state and vibration
suppression, a linear stabilizer was designed. Choi et al. [42] proposed an
approach employing the framework of constraint Hamiltonian system for the
compliant control of a planar two link rigid-flexible manipulator with surface
constraints. Two nonlinear controllers consisting of force part and position part
were derived from a constrained Hamiltonian system, followed by the formulation
of corresponding linear feedback controllers that satisfied the Lyapunov stability
of the total Hamiltonian system which possessed the nonlinear controllers. The
compliant control strategy was accomplished by steering the end effector of the
flexible manipulator onto the constraint surface with the linear controllers, and

subsequently by executing imposed desired motion with the nonlinear controllers.

Kim et al. [43] presented a control strategy for the position and force control of
flexible manipulators exploiting the characteristics of actuators fabricated from
smart materials. The governing equations of motion of a planar two link flexible
manipulator which featured piezoceramic actuators and piezofilm sensors bonded
on each flexible link were derived via Hamilton's principle. A nominal control
torque of the motor to command the desired position and force was determined by
a sliding mode controller based on the rigid-mode dynamics. In order to take
uncertainties into account, the sliding mode controller with perturbation
estimation was adopted. The routine was then incorporated with the fuzzy
technique to determine the appropriate control gains while maintaining the
stability of the system. A set of fuzzy parameters and control rules was then
obtained from the estimated perturbation. During the commanded motion,
undesirable oscillations were suppressed by applying feedback control voltages to
the piezoceramic actuators. These feedback voltages were determined by the

sliding mode controller with perturbation estimation.
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Matsuno and Yamamoto [44] have considered the problem of dynamic hybrid
position/force control of a planar two link rigid-flexible manipulator. B-spline
functions were used for an approximation of the elastic deformation of the
flexible link. On the basis of the singular perturbation method, the model was
reduced to a slow subsystem and a fast subsystem. A composite controller for the
dynamic hybrid position/force control of the flexible manipulator was designed.
Although the system matrices of the fast subsystem depended on the manipulator
configuration, the controller for the fast subsystem was designed on the basis of
the fixed matrices, which were obtained for a specific manipulator configuration.
For the fast subsystem, state feedback control was used. For the slow subsystem,

PD type control plus force feedback was used.

1.4 Discussions on Previous Studies

In this section, a discussion is made on previously mentioned studies and

drawbacks of some of the studies are mentioned.

In the studies of Luca and Siciliano [2], Feliu and Rattan [5], Qian and Ma [8],
Asada et al. [11], Gawronski et al. [13], Chalhoub and Ulsoy [15], Moallem et al.
[26] and Bodur and Sezer [30], flexible one link was examined and most of them
proposed the control strategies for this specific case. The flexible one link case is
too simple to capture the coupling effects between rigid body and deformation

dynamics.

Zhu et al. [4], Ge et al. [6], Luca et al. [9], Xi [12], Chalhoub and Ulsoy [15],
Carusone and D'Eleuterio [17], Chen and Yeung [24], Nathan and Singh [25],
Pham et al. [31], Choi and Krishnamurthy [35], Siciliano and Villani [39] and Hu
and Ulsoy [40] designed the controllers based on joint variables. Joint space
motion control of the manipulator may be easier, but for a flexible arm, it is more
meaningful to directly control the end effector trajectory so that the tip position

error will be minimum.
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In the studies of Luca et al. [9], Bayo et al. [10], Ider et al. [18], Yim [22], Chen
and Yeung [24], Nathan and Singh [25], Arteaga and Siciliano [32], Shi et al. [38],
Yim and Singh [41] and Choi et al. [42], the rigid body dynamics and/or
deformation dynamics linearization required. When the degree of freedom of the

robot increases, linearization most probably becomes harder.

Actually tip positioning was taken into consideration by Siciliano and Villani [39].
When the desired tip position is time varying, a different Lyapunov argument
should be worked out in the algorithms. In the algorithms, the inverse kinematics
problem was formulated in differential terms by deriving a Jacobian that related
the joint and deflection rates to the tip rate. In the solution algorithms, the Jacobian
was employed, but it might not exactly be suitable for this case as it was originally
developed for rigid manipulators even though the Jacobian employed in the
algorithm was obtained by correcting it with two terms that accounted for the static

deflection due to gravity and contact force.

In the study of Matsuno et al. [36], no controller was designed for the deviation
from the quasi-static equations to guarantee the stability of the system. Link
densities and tip point mass were assumed so small to simplify the equations, but
this is not always the case. Derivation of the dynamic equations and the controller
developed were very dependent to the robot taken into consideration. It was also
assumed that tip deflection of link 1 was very small compared to the tip deflection
of link 2. Tracking errors in the transient responses of the joint angles were
observed in the case study results. The errors were most probably caused by this

deflection approximation.

Singular perturbation approach was used by Ge et al. [6], Moallem et al. [14],
Vandegrift et al. [27] and Matsuno and Yamamoto [44]. In this method, the link
stiffness is assumed to be large enough so that a two-time scale model of the
flexible manipulator is derived. In other words, the flexible motion of the link
cannot affect the rigid motion of the link as the link stiffness is large. However, in

flexible arms, the flexible motion of the link affects the rigid motion of the link.
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1.5 The Outline of the Thesis

In this thesis, alternative control methods are developed for the unconstrained

motion and constrained force and motion control of robots having flexible links.

The main advantage of the developed control methods is that no linearization of
the dynamic equations is required but conventional linear control techniques are
used based on the fact that the system can be rendered ‘“‘slowly varying” with
proper closed loop pole locations [49], [50]. Thus, implementation of the
developed control methods are easy which is especially important for high degree
of freedom robots having flexible arms. The developed control methods are
designed based on the tip point variables, therefore better tracking quality is
obtained compared to the control methods designed based on the joint variables

assuming that the tip point variables are measured precisely.

The thesis is organized as five chapters. Contents of each chapter are summarized

below.

Following Chapter 1, the control methods, their stability and controllability
analyses are given in Chapter 2. The dynamic equations of a flexible robot are
partitioned as pseudostatic equilibrium equations and deviations from them. The
pseudostatic equilibrium considered here is defined as a hypothetical state where
the tip point variables have their desired values while the modal variables are
instantaneously constant. Then, the control torques for the pseudostatic
equilibrium and for the stabilization of the deviation equations are formed in terms
of tip point coordinates, modal variables and contact force components. In the
constrained force and motion control method, the tip point coordinates are
expressed in terms of the contact surface coordinates using the constraint
equations. These coordinates describe the position of the tip point on the contact

surface.
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For the closed loop system to be asymptotically stable it must be slowly varying
as defined in references [49], [50]. The stability condition is achieved by placing

the poles at a sufficient distance from the imaginary axis [50].

Avoiding from the singularities is a necessary condition to obtain a controllable
system. However, it may not be sufficient alone. Actually, the necessary and
sufficient condition is that the controllability matrix be of full rank, where the
controllability matrix is defined based on the state space representation of the

system.

An incremental rotary optical encoder is the most popular sensor to monitor a
joint variable of a robot. Typically, encoder angular resolutions ranging from 1.44
degrees down to 0.0036 degrees are achievable [45]. Strains are measured to
calculate the modal variables. Probably the most sensitive strain gauge is the
semiconductor gauge for this aim. A *1 % accuracy is typical, and this is a
fundamental limit on accuracy in stress analysis applications [46]. On a flexible
link, strains can be measured at those locations where the maximum stresses
occur for each mode. These locations can be determined from the mode shapes of
the flexible link. Contact force sensors generally placed between the end effector
and last joint of the manipulator. Such a sensor consists of a mechanical structure
instrumented with strain gauges which can measure the forces and torques acting
on the end effector. Typically, these sensors also have =1 % accuracy [47].
Optical devices may also be used to measure the position of the tip point [48],
[10]. It is recommended that they should be kept close to the tip point as much as
possible. New technologies continue to improve the sensitivities of the sensors.
The rates of the position and modal variables can be obtained by numerically

differentiating their measured values.

Chapter 3 is devoted to model the flexible multibody systems. Different modeling
approaches for flexible multibody systems and different discretization methods
for flexible arms are used while modeling the planar and spatial robots. Planar
two link robot with flexible forearm is modeled by using the relative coordinates

approach and its flexible arm is discretized by using the assumed modes method.
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On the other hand, spatial three link robot with two flexible arms is modeled by
using the absolute coordinates approach and its flexible arms are discretized by
using the finite element method. Then, an alternative form of dynamic equations,
which has necessary and sufficient number of generalized coordinates and

equations, is given for the controller design.

Applications of the control methods investigated in Chapter 2 are given in
Chapters 4 and 5. A ninth order hermite polynomial is used to describe the
reference motion trajectory and a cycloidal rise, a constant level and a cycloidal
return constitute the reference variation for the contact force. Simulations are

performed by programs written in MATLAB®.

Planar robot simulations are presented in Chapter 4. Uncontrolled motion of the
planar robot is simulated to verify the dynamic equations. In order to determine the
effectiveness of the control methods the unconstrained motion and constrained
force and motion control simulations are presented for the planar robot.
Unmodeled dynamics of higher order is taken into consideration to illustrate the
performance of the control method in such a case. Then, unconstrained motion and
constrained force and motion control simulations are presented again. Motion
control of the planar flexible robot by using the computed torque method with the

rigidity assumption is also simulated for a comparison with the proposed method.

Spatial robot simulations are presented in Chapter 5. Uncontrolled motion of the
spatial robot is simulated to verify the dynamic equations. After that,
unconstrained motion and constrained force and motion control simulations are
presented for the spatial robot. As a next step, measurement noises are taken into
consideration. Then, by filtering the measured variables, unconstrained motion and
constrained force and motion control simulations are presented again to illustrate

the performance of the control method with the presence of measurement noises.

Finally, Chapter 6 gives the concluding remarks and also discusses possible further

extensions of this work.
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CHAPTER 2

CONTROLLER DESIGNS FOR UNCONSTRAINED MOTION AND
CONSTRAINED FORCE AND MOTION OF FLEXIBLE ROBOTS

In this section, new control methods are proposed for the motion control and force
and motion control of flexible robots. In these methods, the dynamic equations of a
flexible robot are partitioned as pseudostatic equilibrium equations and deviations
from them. The pseudostatic equilibrium considered here is defined as a
hypothetical state where the tip point variables have their desired values while the
modal variables are instantaneously constant. Then, the control torques for the
pseudostatic equilibrium and for the stabilization of the deviation equations are
formed in terms of tip point coordinates, modal variables and contact force

components.

2.1 Motion Control Method for Flexible Robots

The dynamic equations of the unconstrained motion of a robotic manipulator with

flexible links can be written as

MB)3+C(B.B)B+£(n)+£:(B)=£<(B) @.1)

where B is the vector of generalized coordinates of the system and is given more

explicitly as

B= m (22)
n
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q is the vector of joint variables and is expressed as
q=| (2.3)

where n is the number of joint variables. 1 is the vector of the elastic deflection

variables (also called as modal variables) of all the links and is expressed as

n,
n= nf (2.4)

where m is the number of the modal variables. M(B) is the generalized mass
matrix, C(B,B) is the matrix corresponding to the generalized Coriolis and

centrifugal force vector, £'(n), ££(B) and £°(B) are the generalized structural

stiffness, gravitational and external force vectors, respectively. The dynamic
equations of the unconstrained motion of the robotic system can be partitioned in

the form of

}[chn(q,q,n,n) gm(q,qnmf])}{q}+

C.(q.q.n%) C.lg.4.n1)]"

I

where subscripts r and e refer to the rigid and elastic partitions, respectively, K is

the matrix corresponding to the structural stiffnesses of the links, T is the vector of
the actuating forces and torques, L is the matrix corresponding to T and T is

expressed as
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T=]| . (2.6)

The tip point position of the manipulator can be written in terms of the joint and

elastic deflection variables as

P=P(q,n) 2.7)

The derivative of the above equation can be expressed as

P=Jq+Hn (2.8)

where the Jacobian matrices J and H are given as

oP
_oP 2.9
J % 2.9
g=of (2.10)
an

As long as det(J)#0, i.e. in the absence of any kinematic singularity, ¢ can be

obtained from Equation (2.8) as follows

q=J"(P-Hn) @.11)
The second derivative of Equation (2.7) can be expressed as

P = J§+Hij+ Jq+ Hn (2.12)

By using Equations (2.12) and (2.11), q can be obtained as
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G=J"P-JHA-J I P+ (I H-H) (2.13)

If Equations (2.11) and (2.13) are substituted into Equation (2.5), the dynamic
equations of the unconstrained motion of the robotic system are obtained in terms

of the tip point position and modal variables as

N P+N_§{+V P+V 7+G =L.T (2.14)
N P+N_{+V. P+V N+K n+G =LT (2.15)
where N, N, N, N_, V., V., V., and V_ are expressed as

N, =M,J" (2.16)
N.=-M_J 'H+M,, (2.17)
N,=M.J" (2.18)
N,.=-M_J'H+M,_ (2.19)
V,=-M_J'JJ"'+C_J" (2.20)
V. =M_J'(JJ"H-H)-C_J'H+C, 2.21)
vV, =-M_JJJ"'+CJ" (2.22)
V. =M_J"'(JJ7"H-H)-C_J'H+C,_ (2.23)

The tip point position, the modal and the actuating input variables can be

partitioned as

P=P +P (2.24)
n=n"+1 (2.25)
T=T +T (2.26)

where P° denotes the desired tip point position, P” denotes the deviation from the

desired tip point position, | consists of the pseudostatic modal variables, 1’

denotes the deviation from the pseudostatic modal variables, T" is the vector of
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pseudostatic torques and T  is the vector of stabilization torques applied to

minimize the deviation from the desired tip point trajectory.

The pseudostatic equilibrium is defined as a state such that Nj;, Vy, Ky, Gj, and L;
are assumed to be frozen at their instantaneous values and 1 is determined as the
instantaneously constant elastic deflection vector corresponding to P, P*, and

gravitational acceleration, g. Thus, the following equations can be written at the

pseudostatic equilibrium:

(2.27)
(2.28)

N

=:
N
<

(2.29)

Therefore, at the pseudostatic equilibrium, the dynamic equations given in

Equations (2.14) and (2.15) take the following form

NP +VP +G, =LT (2.30)
N P +V. P +K _n'+G,=L.T (2.31)

T  and M’ can be expressed in terms of P*, P*, and g from Equations (2.30) and

(2.31) as
T] [L, 0 TNB +V P +G, 232
n| |L. -K.| [NP°+V_ P +G, ’

provided that the indicated inverse matrix exists. Otherwise, the manipulator will
be in an actuation singularity. If Equation (2.30) is subtracted from Equation (2.14)
and Equation (2.31) is subtracted from Equation (2.15), the following deviation

equations are obtained

N P+N_{+V.P+V 4 =LT-(NA+V.7) (2.33)
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Nerpl—i_ Neeﬁ,—i_ VBI‘P, + Veef], + Keen, = LeT, - (Neeﬁ* + Vee‘n* ) (2'34)

The above equations can be called as the deviation equations from the pseudostatic
equilibrium. The terms in parentheses can be considered as the disturbances.
Therefore, T’ is selected to stabilize the deviation equations (Equations (2.33) and

(2.34)) according to the following feedback control action:

(2.35)

By using this input vector with a properly determined gain matrix S, a stable
solution can be obtained for the deviation equations (Equations (2.33) and (2.34)).
S may be determined either by minimizing a performance index or by using the
pole placement method, which is preferred here. Equations (2.33) and (2.34) can

also be written as

oyl ol e
= + |+ T+ (2.36)
ul By Dy 0| [0 Dy B, By

Hence, the state space representation of the deviation equations can be obtained as
X =ExX'+FT'+W (2.37)

n+m) n+m)><2(n+m)

where x e R is the state vector, Ee R is the system matrix,
Fe R2 s the input matrix, T'e R" is the control vector and W e R2Am) g

the bias vector. They are defined as
(2.38)
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0O I 0 O
0 A, C. C
E= v Sk v (2.39)
0 0 0 I
0 B, D, D,
)
A
F=| *© 2.40
0 (2.40)
_BL
0
A
w=| v (2.41)
0
BW

If Equation (2.35) is substituted into Equation (2.37), the following equation is

obtained
¥=(E-FS)x'+W (2.42)

Therefore, S has to be chosen such that the poles of Equation (2.42) are placed
properly for stability.

In the first method, a pole placement algorithm is utilized in order to determine S

that corresponds to the selected pole locations.

In the other method, S is found by using the optimal control theory. The

performance index to be minimized may be selected as
T=[(x"Qx’+T"RT’)dt (2.43)
0

where Q and R are appropriate positive definite symmetric matrices. The feedback

control law is given by
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T'=—-R"'F'Dx’ (2.44)
where D is the solution of the associated Riccati equation given as
D+DE-DFR'F'D+Q+E'D=0 (2.45)
Equation (2.44) can be written as

T =-Sx’ (2.46)
where S is given as

S=R'F'D (2.47)

2.2 Force and Motion Control Method for Flexible Robots

The dynamic equations of the constrained motion of a robotic system with flexible

links can be written as
M()3+C(B, BB+t (n)+£2(B)=r(B)+(B) (2.48)

where f “([3) is the generalized constraint force vector. The dynamic equations of

the constrained motion of the robotic system can be partitioned in the following

form

}[chn(q,q,n,n) gm(qn,q,n,n)}{c‘n}+

C.(q.q.n%n) C.lg.4.nM)] "

Rt b
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where A is the vector of Lagrange multipliers which are perpendicular to the

constraint surface and Z is the matrix corresponding to A .

Similar to the unconstrained motion control, the dynamic equations of the
constrained motion of the robotic system are obtained in terms of the tip point

position and modal variables as

N P+N_ fj+V,P+V N+G, =L T+Z A (2.50)
N, P+N_fji+V. P+V_/+K _n+G =L T+ZA (2.51)
where N_, N., N, N_, V., V., V., and V_ are expressed as

N, =M_J" (2.52)
N_=-M_J'H+M_ (2.53)
N, =M, J" (2.54)
N_=-M_J'H+M, (2.55)
V,=-M_J'JJ"'+C,J" (2.56)
V. =M_J"'(JJ"H-H)-C J 'H+C, (2.57)
V,=-M_JJJ"'+C,J" (2.58)
V. =M_J'(JJ"H-H)-C_J'H+C,_ (2.59)

Constraint equations can be written in terms of tip point position variables as
o(P)=0 (2.60)
where ¢e R*, k is the number of constraint equations and Pe R°, b is the
dimension of the tip point position vector. The derivative of Equation (2.60) can be
expressed as

PP =0 (2.61)
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where ®e R is given as

_9%
¢=20 (2.62)

The tip point velocity components can be related to the rates of the contact surface

coordinates as
P=ws (2.63)

where §e R"* represents the velocity vector tangent to the contact surface and

Pe ROV f Equation (2.63) is substituted into Equation (2.61), the following

equation is obtained.

PPs=0 (2.64)
Since s is not identically equal to zero, Equation (2.64) is satisfied iff

d¥ =0 (2.65)
The derivative of Equation (2.63) gives P as

P=P§+W¥s (2.66)

If Equations (2.63) and (2.66) are substituted into Equations (2.50) and (2.51), the

following equations are obtained

R S+R N+Y $+Y N+G, =L T+ZA (2.67)
R S+R N+Y.$+Y N+K . n+G =LT+ZA (2.68)
where R_, R_, R_, R_, Y , Y., Y, and Y, are expressed as
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R _=N_¥ (2.69)

R, =N, (2.70)
R, =N%¥ (2.71)
R.. =N, (2.72)
Y, =N ¥+V¥ (2.73)
Y. =V, (2.74)
Y, =N ¥+V ¥ (2.75)
Y =V (2.76)

ee ee

The vectors of contact surface coordinates, the modal variables, the actuating

inputs and the Lagrange multipliers can be partitioned as

s=s +s (2.77)
n=n +7n (2.78)
T=T+T (2.79)
A=A"+) (2.80)

where s~ denotes the desired trajectory, s” denotes the deviation from the desired

trajectory, M is the vector of pseudostatic modal variables, N is the deviation
from n°, T is the vector of pseudostatic torques and T is the vector of

deviational stabilization torques, A" is the vector of desired Lagrange multipliers

and A is the deviation from A".

As before, at the pseudostatic equilibrium, the following equations can be written:

=n (2.81)
=0 (2.82)
=0 (2.83)
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Therefore, at the pseudostatic equilibrium, the dynamic equations given in

Equations (2.67) and (2.68) take the following form

RS +Y$+G. =L T +Z\ (2.84)

R, s+Y,$ +K, N +G,=LT +ZA\A (2.85)

T  and M’ can be expressed in terms of § ,§ ,A" and g from Equations (2.84) and

(2.85) as
T] [L, 0 | [RE§+Y$+G,-ZA'

. — r rr‘s.* rré* r rx* (2.86)
n L. -K.| |[R,§ +Y §+G . -ZA

provided that the indicated inverse matrix exists. If Equation (2.84) is subtracted
from Equation (2.67) and Equation (2.85) is subtracted from Equation (2.68), the

following equations are obtained

R§+R {+Y §+Y 7 =LT+ZN-R. A +Y.7) (2.87)
R§+R AW +Y.8+YH+K.n=LT+ZX-R.H{ +Y.7) (2.88)
The above equations can be called as deviation equations from the pseudostatic
equilibrium. The terms in parentheses can be considered as the disturbances.
Therefore, T’ is selected to stabilize the deviation equations (Equations (2.87) and
(2.88)). For the determination of T’, methods similar to those given in the

previous section can be used.

Equations (2.87) and (2.88) can be written in augmented form as
Rrr Rre - Zr Y4 Yrr Yre s/ 0 0 S/
T] + ./ + ’ =
Rer RCC - ZC 7\’/ Yer Yee Tl 0 Kee Tl

35



|: l’:|r[\’_|:Rre’rl>.< +Yren*:| (2.89)
Le Reeﬁl + Yeef]

This equation can also be written as

§ Ay Dy, 0 Dy |, Ay Ay
i|=|B, E, {S}r 0 E, {S,} B, T'+|B, (2.90)
v le, B o r VY e | |y

Therefore, the state space representation of the deviation equations can be obtained

as
X' =Ex'+FT'+W (2.91)

n+m)-k) n+m)-k X(2(n+m)-k)

where x'e R is the state vector, Ee R™ is the system
matrix, Fe RO g the input matrix, T'e R" is the control vector and

W e REEm) i the bias vector. They are defined as follows:

s
S/

x=1 (2.92)
1-1/
]

where W is the impulse of A, i.e.

W= (2.93)
0 I 0 0 O]
0 A, D, D, 0

E=(0 0 0 I 0 (2.94)
0 B, EiL E, 0
0 C, F, F, 0
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>
o r o

(2.95)

O =
o

W= 0 (2.96)

2.3 Measuring Systems

The success of controlling robots effectively depends on being able to obtain
precise position and velocity information about the joints and/or the end effector. It
is therefore necessary to have devices that provide such information. In particular,
position, velocity, modal variables and contact force in constrained motion (or at
least analog or digital representations of these quantities) must be measured to

ensure that the robotic manipulator moves and applies force in a desired manner.

An incremental rotary optical encoder is the most popular sensor to monitor a joint
variable of a robot. As the encoder shaft turns, the device outputs two square wave
pulse trains 90 degrees out of phase. The shaft angle is determined by counting the
number of pulses, and the direction of rotation is determined by the relative phase
of the two square waves. The incremental encoder in its simplest form consists of a
disk, a light emitting diode (LED), and a corresponding set of light receivers (e.g.,
phototransistors). The resolution of an encoder containing such a disk is normally
defined as the number of lines, N. This implies that the encoder can resolve an
angular position equal to 360 degrees/N. Typically, encoders with resolutions of
250, 512, 1000, 1024, even up to 100000 lines are available, meaning that angular

resolutions ranging from 1.44 degrees down to 0.0036 degrees are achievable [45].
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Strains are measured to calculate the modal variables. Probably the most sensitive
strain gauge is the semiconductor gauge for this aim. The principle underlying the
operation of a strain gauge is that a mechanical deformation produces a change in
resistance of strain gauge. A Wheatstone bridge circuit is used to sense the change
in gauge resistance and produce a voltage output as a result. Gauge is one arm of a
Wheatstone bridge. A difficulty with this type of sensor is that variations in
ambient temperature to change the gauge resistance, thereby causing the bridge to
become unbalanced. It is possible to overcome such a problem by either
(automatically) rebalancing the bridge periodically or by utilizing two gauges (and
two bridges) and using the difference of their outputs as the actual sensing signal.
The latter technique requires more circuitry but makes temperature drift a second
order effect. A £1 percent accuracy is typical, and this is a fundamental limit on
accuracy in stress analysis applications [46]. On a flexible link, strains can be
measured at those locations where the maximum stresses occur for each mode.

These locations can be determined from the mode shapes of the flexible link.

Contact force sensors generally placed between the end effector and last joint of
the manipulator. These sensors are usually referred to as wrist sensors. Such a
sensor consists of a mechanical structure instrumented with strain gauges which
can measure the forces and torques acting on the end effector. Generally,
semiconductor strain gauges are used in place of the foil types in these sensors to
provide increased sensitivity. These sensors are capable of measuring from three to
six components of the force/torque vector acting on the end effector. Typically,

these sensors also have t 1 percent accuracy [47].

Optical devices may also be used to measure the position of the tip point [48],
[10]. It is recommended that they should be kept close to the tip point as much as
possible. For example, Bayo et al. [10] mount a small infrared LED emitter at the
tip point of the robot. A photodetector (optical xy position encoder) is hung
approximately one meter above the arm and gives xy position of the robot tip
point, by monitoring the movements of the mounted infrared LED. The optical
position encoder uses lateral effect photodiode technology to encode the xy

position of an infrared (440 nm - 1100 nm) point source. The output of the encoder
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is filtered by the circuit (OP - EYE) and gives a resulting accuracy of better than
+0.025 mm.

New technologies continue to improve the sensitivities of the sensors. The rates of
the position and modal variables can be obtained by numerically differentiating

their measured values.

2.4 Stability Considerations

As seen in the preceding sections, the control systems considered in this thesis have
linear structures with variable coefficient matrices. Therefore, the following
stability analysis validates the proposed controller designs based on the pole
placement method. To investigate the stability of a linear time varying control
system, consider the homogeneous equation associated with Equations (2.37)

and (2.91), which can be written as

E=T(HE (2.97)
where I' is given as

r=E-FS (2.98)
It is known that stability is not ensured by having only 6, >0 such that [49]

Rex, (t)<-0,<0 Vi, Vt=0 (2.99)
where X, 1=1,...,2n are the closed loop eigenvalues of the system. However it can
be shown that such a system is asymptotically stable when the variation of I' is

sufficiently slow as described in [49]-[51]. Desoer [50] showed that a time varying

system is asymptotically stable at large if
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I, < . (2.100)
where o is as given by Equation (2.99), I}, is given as

Ty = sup,s,|1(1)] (2.101)
and m. is a constant that satisfies

eV <m e vt>0,v120 (2.102)

To see how oy affects Equation (2.100) consider how I"M varies with cy. The

eigenvalue problems of Equations (2.37) and (2.91) can be written as
(E - FS)h; = x;h; (2.103)

where h; are the corresponding eigenvectors of eigenvalues k;. Equation (2.103) can

also be expressed in the form

(E - xiDh; = Fy, (2.104)
where %; stands for

¥ = (Shy) (2.105)

S can then be expressed as S = f(x, v, t) where f is a function such that the effect of

on S is in the order of k. In order to express I,,, one can write

L L +§ (2.106)

g_of L of
x oy T
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Like k, x is also arbitrary, hence it can be chosen so that its dependence on K is

in the order of k. Also since Yand y are arbitrary they can be chosen independently

of k. Therefore the effect of kon S is also in the order of K. Then,
I'=E-FS-FS (2.107)

Equation (2.107) implies that the effect of & on I is in the order of k. On the other
hand,

G, = min . [Rek, | (2.108)

where K| is the most dominant eigenvalue. Therefore the effect of oy on r v 18 in the

order of oy, while the effect of oy on the right hand side of Equation (2.100) is in the
order of o,°. Hence by choosing a sufficiently large oo, one can achieve asymptotic

stability in the large.

As for the disturbance-like bias terms W in Equations (2.37) and (2.91), they
involve " and 1", i.e. the first and second derivatives of the pseudostatic modal

variables. Referring to the defining equations (Equations (2.30), (2.31) and
Equations (2.84), (2.85)), it is seen that the most critical term that affects the

magnitude of M" is the acceleration of the desired motion (P* or §"). This implies
that the desired motion must be specified to be continuous up to its second order
jerk (i.e. up to d4P*/dt4 or d4s*/dt4) so that even %" becomes a smoothly

varying function of time. In addition to this continuity condition, it is

recommended that the desired motion be selected to be slowly varying so that

d‘P’
dt*

<k|ic|" forall t,<t<t, (2.109)

or
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*

d*s
dt*

<k, i forall t,<t<t, (2.110)

’

where k, and k, are suitably selected constants. Then, all what W causes is a

bounded offset which can be suppressed to a desired level by means of sufficiently

large control gains.

2.5 Controllability Considerations

Equations (2.11) and (2.32) indicate that the system will be controllable under the

following necessary conditions:

det(J)=0 (2.111)
det(A)#0 (2.112)
where
L 0
A=l (2.113)
|:Le _Keej|

Here, det(J)=0 occurs in the case of kinematic singularities and det(A)=0

occurs in the case of actuating singularities. On the other hand, if the matrices J
and A are not singular, then the controllability of the system can only be checked

by looking at the rank of the controllability matrix defined as
CM=[F EF .. E0™f] (2.114)

If F has full rank n, then instead of looking at the rank of CM one may also check
the controllability of the system by looking at the rank of the matrix CI defined as
[52]
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CI=[F EF .. EX~mp] 2.115)

In other words, checking the rank of CM or CI is the necessary and sufficient
condition for the controllability of the system. Note that the size of CI is smaller

than that of CM. So, it is more convenient to use.

As done in this thesis, a practical way of trajectory planning is to propose a
candidate trajectory that satisfies the necessary conditions given in Equations
(2.111) and (2.112), which are much easier to satisfy than the necessary and
sufficient condition on the matrix CM or CI. Then, during the simulation if all the
poles are placed as desired and if the proposed trajectory is successfully tracked, it
is concluded that CM or CI condition is also satisfied on that trajectory. Thus, it

can be used in an actual application.
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CHAPTER 3

MODELING OF FLEXIBLE MULTIBODY SYSTEMS

3.1 Introduction

There are two basic approaches to model a mechanical system composed of rigid
and flexible bodies. In the first approach, the motion of each body is formulated
seperately with respect to a fixed frame in terms of its absolute rigid body and
elastic degrees of freedom. Then, the interconnections of the bodies are defined
through a set of constraint equations. The second approach involves a recursive
modeling in terms of the joint coordinates and elastic deformation variables. The
formulation using the second approach results in a fewer number of equations but
the expressions become longer. In this thesis, the mathematical modeling of planar
two link flexible manipulator and spatial three link flexible manipulator are
derived. The planar manipulator is modeled by using the latter method while the
spatial manipulator is modeled by using the former method. Therefore, the

expressions obtained for spatial manipulator are not too long.

For each flexible body, the elastic deformations are described relative to a body
reference frame. The elastic deformation can be modeled by using assumed modes
method or finite element method. Here, assumed modes method is used for the
modeling of elastic deformations of the planar manipulator, while finite element
method is used for the modeling of elastic deformations of the spatial manipulator.

By using finite element method, any types of link geometry can be modeled.
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3.2 Dynamic Modeling of Planar Two Link Manipulator with Flexible

Forearm by Using Relative Coordinates

The planar two link manipulator with revolute joints depicted in Figure 3.1 is

composed of a rigid upper arm and a flexible forearm. n is fixed frame, n" is

Body 1 reference frame and n'? is Body 2 reference frame.

C

Figure 3.1 Planar two link manipulator with flexible forearm.

The dynamic equations are derived by using the relative coordinates approach. The
flexible forearm is assumed to be Euler-Bernoulli beam (thin beam). By
considering that the deformation displacement of the forearm is small enough to
stay in the elastic range, it can be written as a sum of position dependent assumed

mode shapes multiplied by the corresponding time dependent modal coordinates.

In the formulation, the numbers in parenthesis and the letter k as superscripts
represent the body number. The overbar denotes that related variable is defined in
related body reference frame. The vectors are column vectors. Boldface letters

represent matrix or vector.
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3.2.1 Position Vectors of Arbitrary Points of Each Body
The position vector of an arbitrary point of each body is obtained by summing the

relative position vectors of the successive bodies. The position vector of an

arbitrary point P of Body 1 can be written as
PO —pO® 3.1)

which can be written in the matrix form in Body 1 reference frame as

_ ) —
PV =r" Z{X(L)}z{?u)} (3.2)
y L

where T is the position of point P of Body 1 with respect to Body 1 reference

frame and x" and y" are the position components of point P of Body 1 in n,"

(1)

and n, ' axes, respectively. The position vector can be written in fixed frame as

PO =TO §® 3.3)

where T is the transformation matrix from Body 1 reference frame to fixed

frame and it is given as

T = {Cel _Sel} (3.4)
sO, ¢,

where c stands for cosine and, s stands for sine and 0, is the joint angle of Body 1.

The position vector of an arbitrary point P of Body 2 can be written as;

P? =d" +q®? 3.5)
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d" is the position vector from A to B. q(z) is the position vector from B to P

including undeformed position vector r*” and the deformation vector u® .

q? =r® +u® (3.6)

Then, Equation (3.5) can be given in the following form in fixed frame

P@ =TVd® + T?q? 3.7
where

_ — | L

d® :AB:{OL} (3.8)

where L is the length of Body 1.

q?=r? +a®? (3.9

(2) =)
_ X T
F@ :L(”}:{‘l(zi (3.10)
L,

where T” is the position of point P of Body 2 with respect to Body 2 reference

frame at undeformed state and x® and y are the position components of point

2

P of Body 2 at undeformed state in n, " and n2(2) axes, respectively.

u® =¢¥n® (3.11)

@

where u'® represents the deformation displacement of Body 2 with respect to

Body 2 reference frame, ¢'> represents the shape function matrix of Body 2 and
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N represents the vector of modal variables of Body 2. Thus, P* can be written

in the following form
P — V@V £+ T® (f<2> +¢(2>n<2>) (3.12)

where T'® represents the transformation matrix from Body 2 reference frame to

fixed frame and is given by
T® =TT (3.13)

where T is the transformation matrix from Body 2 reference frame to Body 1

reference frame and is denoted as

-2 :{C% _Sez} (3.14)
where 0, is the joint angle of Body 2. Thus, T'” takes the following form

T(2>:{C912 _8912} (3.15)
s0,, ¢0,,

where 0,, is given as
0,=6,+6, (3.16)
3.2.2 Velocities of Arbitrary Points of Each Body

Translational velocity of an arbitrary point P of Body k is obtained by taking the
time derivative of position vector of point P. It can be represented in the following

form
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vE =E*Q+o") (3.17)

where &" is the influence coefficient matrix related to the rigid body motion of

Body k, Q is the generalized speed vector related to the rigid body motion, v* is

the influence coefficient matrix related to the elastic motion of Body k and 1 is

the derivative of vector of modal variables. Above equation can be written in the

following form
v =pfx (3.18)
where p* is the velocity influence coefficient matrix of Body k and given by

Ty (3.19)

In Equation (3.18), x is the time derivative of generalized coordinates x which is

given by
Q

X= [ } (3.20)
n

Velocity of an arbitrary point P of Body 1 is obtained by taking the time derivative
of position vector of the arbitrary point P of Body 1 (Equation (3.3)) as follows

v = TOF® (3.21)

T can be written as

TV =T,"8, (3.22)

1 . .
where T," is given as
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T _ -s0, —cb,
(0 = (3.23)
cO, -—s6,

Therefore, v takes the following form

v =T,"F 1, (3.24)

v =W (3.25)

where g“) is the influence coefficient matrix related to the rigid body motion of

Body 1 and is given as
g0 =[r,"%" o] (3.26)

Q is given as
. 16
Q= { ! } (3.27)

Velocity of an arbitrary point P of Body 2 is obtained by taking the time derivative
of position vector Body 2 (Equation (3.12)) as follows

v® =T0d0 +TOg? + TP (3.28)
T® can be represented as

T =12, +6,) (3.29)

2) .
where T, is denoted as
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T,? :[_5612 _Celz} (3.30)
c

Thus, v'* becomes

v = Te(l)a(l)él + Te(z)ﬁ(z) (61 +6, )+ T (3.31)
Equation (3.31) can be denoted as

v? =EPQ+1vq (3.32)

where £ is the influence coefficient matrix related to the rigid body motion of

Body 2 and is denoted as
g(z) — [Te(l)a(l) +T9(2)q(2> Te(Z)qu)] (3-33)

1" is the influence coefficient matrix related to the elastic motion of Body 2 and

is denoted as
0®? = T(2>¢(2> (3.34)
1M is denoted as

n=1" (3.35)

3.2.3 Accelerations of Arbitrary Points of Each Body
Acceleration of an arbitrary point P of Body k is obtained by taking the time

derivative of velocity vector of Body k. Acceleration of Body k can be represented

in the following form
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a“ =pfx+px (3.36)

where [1* and X are given as

e =g o] (3.37)
K= [Q} (3.38)
]

Acceleration of an arbitrary point P of Body 1 is obtained by taking the time

derivative of Equation (3.25) as follows

a® = [Tea)fm 0]{91
0

2

e of?

} (3.39)
2

T," is found as

T,” =—1"$, (3.40)
Thus, Equation (3.39) can be represented as

aV =EVQ+EVD (3.41)

where € is the rate of the influence coefficient matrix related to the rigid body

motion of Body 1 and is given as
EW = [_ TOFVH 0] (3.42)

Q is the rate of the generalized speeds vector related to the rigid body motion and

is given as
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Q= P} (3.43)

Acceleration of an arbitrary point P of Body 2 is obtained by taking the time

derivative of Equation (3.32) as follows

e o . o 16
a(2) :[Te(l)d(l) +Te(2)q(2)+Te(2)¢(2)n(2) Te(z)q(2)+Te(2)¢(2)n(2) |:91 +
2

[T(2)¢(2)][f](2)]+[Te(l)a(l) +T9(2)ﬁ(2) TG(Z)E(Z)]EI}+[T(2)¢(2)][ﬁ(2)] (3.44)

2
T, can be written as
T2 =-1%(9, +9,) (3.45)
Hence, Equation (3.44) can be written as
a? =£PQ+0"N+EPQ+vH (3.46)

where &(2) is the rate of the influence coefficient matrix related to the rigid body

motion of Body 2 and is given as

£ = [ TV —T?q? (91 +6, )+ T, 262n®

Toq 0,1 g o4

v? is the rate of the influence coefficient matrix related to the elastic motion of

Body 2 and is given as

1-)(2) — Te(2)¢(2) (61 +é2) (348)
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1} is the second derivative of the vector of modal variables and is given as

f=H" (3.49)
3.2.4 Equations of Motion

The equations of motion of the flexible multibody system can be expressed by

using the Kane’s equations as follows [53]
f +f+f° =0 (3.50)

where £, f and f* are the generalized inertia, external and structural stiffness

forces, respectively. These terms are considered in detail in the following sections.
3.2.5 Generalized Inertia Forces

The generalized inertia forces due to inertias of the bodies are

2
£-3 ' boa) as
k=ly,

k

where p, represents the density of Body k and Vi stands for the volume of Body

k. By using Equation (3.36), the above equation can be expressed in the following

form
f =-Mx+Q (3.52)

where M is the generalized mass matrix of the whole system given by

M=>M" (3.53)
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where M" is the generalized mass matrix of Body k,

M" = [p ' pt dv (3.54)

Vi

and Q is the generalized Coriolis and centrifugal force vector of the whole system

given by

Q=3 Q" (3.55)

2
k=

where Q" is the generalized Coriolis and centrifugal force matrix of Body k,

QF =—[pput pixav (3.56)

Vi

Equation (3.54) can be written as
kTgk kT, k
M* = [p, 5 T& 5 o lav (3.57)
0" E" v

In order to deal with each term seperately, the submatrices of M* are labeled as

below
M M-
M* :{ ”kT M“’ } (3.58)

The submatrices of M"* for each body are obtained as follows:

The submatrices of Body 1 are as follows
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The submatrices of Body 2 are as follows

(2) (2)
M 2 _ Mrr“ Mrr12
o (2) (2)
M M

1Ty Ty

Mmlm :(J‘pdeJamTam +au)TTe(l)TTem{J‘pﬁ(z)dv}_

v, v,

(J.pz 2) dVJ (2) T(l)d(l)_l_J'pzq q(2)dV

v,

—mT T _ — (T
M, 7 =d" T Tem[f qu(Z)dV]+ [p.a? q™av

v, v,

M (2):(M <2>)T

M Ip q<2> _(Z)dV
()
M @ _ Mrel
re Mre7(2)
M, ?=d"'T," T<2>£ [P, ¢(2)dV}+ [p.a®'T,” T®¢dv

M ?= J'pzq@)TTe(z)TT(z)q)(z)dV

\Z!

2) _ J'p2¢<2)T¢<2>dV
\Z!

Equation (3.56) can be written as
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(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)



Q' =—]pk[§k ”ﬂd\’ (3.71)

kT . k.
v, V I.LX

In order to deal with each term seperately, the submatrices of Q" are labeled as

follows

«|Qf

Q = " (3.72)
{Qj

The submatrices of Q" for each body are obtained as follows:

The submatrices of Body 1 are as follows

=0T O =) : ‘
Q. = (j pr T, " TOF dv]e1 0l 3.73)

Vi
0 0

Q.0 =0 (3.74)

The submatrices of Body 2 are given by

Q ()

o)

@)
Q.0 = {er } (3.75)

\Z

Q,” l[f pdeJH“”TJ“TT“>a<”'el +a<'>TT;”TT”’U pﬁ”)“](el +0,)-
Va

J— T T . _ T T I .
ao Te(l) Tﬁa){jpzq)(z)dVJn(z)_,_Ljpzq(z) dVJTe(Z) T(”d(”el +

v, \Z!

—)T T — , A —)T .
[f p.a” ' T,” g av |6, +92)—{I P.q” ¢(”dV]n(”

\Z! \Z

— T T _ . . — T T .
av'r,” T@( [p.a®av |6,+6,)-d"'T," Te‘”[ J pz¢<2>van<2>+

\Z! v,
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j p.q?'T,”" q<2>dv](él+e [ [p.a® ¢<2>de <2>}9+

_au)TTe(”TTe(Z)[ [ p2¢(2)dV}(91 +62)—[Ipzﬁ“ﬂ¢(”d\’}(91 +92)]f1

\Z! \Z

(3.76)

Q ![jpzqm dVJT @t TVd"8, —{IPZ_(Z) T (Z)TT(Z)Tz)dVJ(GI +92)_

_ T o . .
Ipzqm ¢<2)dV - (2) [Jpz T T<2> T(z)q@)dvj(el_,_ez)_

2

Ipzq(z)Tq)@)dV n(z)} [ [J‘p q(z) ¢(2)dVJ(9 +6 )}] (3.77)

\Z! \Z

Qe(z) - [.[p2¢(2)TdV}T(2’TT(“H(”GI _{ J‘pzq)(z)Tﬁ(z)dV](él +6, )_

A2 Va

jp2¢(2)TT(2’TT9(2)¢(2)dV 1'](2) [jpztl)(z)Tﬁde}(él +6, )_

A2 A&

J'p2¢<2>TT<2>TTe(2)¢<2>dV 1-1(2)]S'ZJr

A2

_[I Pz¢(”TT<2>TTJ”¢(”‘W](91 +6, )]"1 (3.78)

A&
3.2.6 Generalized External Forces

The external forces applied to the body are classified in two groups:

a) Consider a torque acting on Body k. Then, the generalized forces due to external

torque T are

fiek _ aka
ox.

1

T 1=1,2,...,n+m (3.79)
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where n is the number of rigid generalized coordinates, m is the number elastic

coordinates and ®" is the angular velocity of the frame attached to the point of

application of torque T. T, and T, are considered to be actuator torques applied to

Body 1 and Body 2, respectively.

Generalized external force due to torque T} is

mT
£o o 0w
0x.

1

Tl

Equation (3.80) becomes

f° :%T]
ox,

In matrix form the following equation is obtained

T
fe(T]) — O

=

Generalized external force due to torque T is

This equation leads to

fie :a&Tz
ox,
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(3.81)

(3.82)

(3.83)

(3.84)



Equation (3.84) yields the following equation
0
£e(™) — T, (3.85)

Thus, total generalized external forces due to external forces are the summation of

£ and £™) which leads to

=

(3.86)

L8]

=

b) Consider the gravitational force (body force). As the gravitational force applied

to Body k, the total force on Body k is found to be

fe* = jukT(pkgs)dv (3.87)
Vi

where g is gravitational acceleration and s is the unit vector along gravitational

acceleration in fixed frame, i.e.,

_|° (3.88)
s= p .

As submatrices, Equation (3.87) can be obtained as

k

fg_

g_[pkE.adeVS
gjpkl)deVs
Vk

(3.89)
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In order to deal with each term seperately, the submatrices of f =" are labelled as

follows

gk fgk
fef = (3.90)
£

The submatrices of generalized external forces of each body due to gravitational

force are as follows:

The submatrices of Body 1 are as follows

(1)
f &
frg(l) _l: I (1)] (3.91)
f g

£ =g [pr"avT,"'s (3.92)
g (3.93)
e o (3.94)

@)
@ |f°
pe :[ lg(z)} (3.95)
{ IpdeJ s+g( [p.a® dVJT e (3.96)
v,

[ [p.q" J T,”'s (3.97)
= g( | pz¢‘2’TdVJT‘2)Ts (3.98)
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Thus, total generalized external force due to gravitational force is the summation

of each body contribution which can be represented as
fe=>fe" (3.99)

3.2.7 Generalized Structural Stiffness Forces

Generalized structural stiffness forces are found from the work done by the
stiffness forces which is equal to the negative of the strain energy of the Body k.

Negative of the strain energy is written as
L k)2
w :—lj %, E*I,*dx (3.100)
‘ 29\ ox

where E¥ is the modulus of elasticity of Body k, ng is the second moment of area
of the cross section of Body k about n;* and 63k (x,t) refers to the rotation of the

centerline of Body k in its frame, which is given by

0, =—3§," (3.101)
where Szk is the bending of centerline of Body k which can be expressed as

8, =Ym, +Yn, +..+Y.1n, (3.102)

where Y, (i = 1,...,m) is the ith bending mode of Body k. Hence, f (@) takes the

following form
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£ =| gw @ (3.103)

0
0
¢ s(2) 0
3(2) n
7= "ol=4 o0 (3.104)
fa. K 2
@
_fnm i

where K? represents the structural stiffness matrix of Body 2.

3.3 Dynamic Modeling of Spatial Three Link Manipulator with Two

Flexible Arms by Using Absolute Coordinates

The spatial three link manipulator is depicted in Figure 3.2. Body 1 (or Link 1) is
assumed to be rigid while Body 2 and Body 3 are taken as flexible. Lumped
masses my, mg and mc are considered at points A, B and C, respectively. They

represent actuators at points A and B and end effector and payload at point C.

The dynamic equations are derived by using the absolute coordinate approach. The
flexible bodies are assumed to be Euler-Bernoulli beam. The deformation
displacements of the flexible bodies are considered small so that they stay in the
elastic range. The finite element method is used for the modeling of elastic

deformation of the flexible bodies. The beams are discretized by two node beam
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elements. The nodal variables are centerline deformation displacements and
deformation rotations. The element axis frame n* is located at one of the nodes.
Since the beams are straight, the body reference frame and the element frames
have same orientation at the undeformed state. Beam element shape functions are

given in Appendix A.

In the formulation, the numbers in parenthesis and the letter k as superscripts
represent the body number. The overbar and double overbar denote that related
variable is defined in related body reference frame and related element frame,
respectively. The vectors are column vectors. Boldface letters represent matrix or

vector.
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Figure 3.2 Spatial three link manipulator with two flexible arms.
3.3.1 Kinematic and Dynamic Equations of Each Body

Body 1

Position vector to arbitrary point P of Body 1 can be written as

RO =¢® (3.105)
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Using components in fixed frame, R®” can be written as
RO = p® O F® (3.106)

where r" is the position of point P of Body 1 expressed in fixed frame and " is
the position of point P of Body 1 expressed in Body 1 reference frame and is given

as
X

=" |= y(1) (3.107)
Z

where fl(l),fz(l) and f3(1) and x", y(l) and z" are the position components of

0 ) 0

point P of Body 1 in mn,”’, n,  and mn, axes, respectively. T" is the

transformation matrix from Body 1 reference frame to fixed frame. It can be
expressed in terms of Euler angles, eg. by using the roll-pitch-yaw (1-2-3)

sequence. Euler angles of Body 1 reference frame can be written in columnwise

form as
(X‘l

a =| B, (3.108)
if

where o,, B, and vy, are the roll, pitch, yaw Euler angles of Body 1 reference
frame, respectively. It should be noted that roll and yaw motions do not occur for

Body 1 reference frame. Therefore, T can be written as

cf, 0 sB
TV =| 0 1 0 (3.109)
—-sB, 0 cp,
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where ¢ and s stand for cosine and sine, respectively. Generalized coordinates of
Body 1, x' can be chosen as Euler angles of Body 1 reference frame. Therefore,

(

x'Y can be written as

x = g® (3.110)

Velocity of point P of Body 1 is obtained by taking the time derivative of position

vector of point P of Body 1 as

v = TOFO 3.111)

Here Tt can be written in the following form

TOFO = TOFOGH® (3.112)

(" is the skew symmetric matrix of the vector ¥, @" is the angular

where T
velocity of Body 1 reference frame expressed in the same frame and it can be

written in terms of derivative of Euler angles of Body 1 reference frame as

B =DV (3.113)

where & is the derivative of Euler angles of Body 1 reference frame in

columnwise form and is given as

(.X‘l
a” =| B, (3.114)
T

D" is a transformation matrix from derivative of Euler angles of Body 1
reference frame to the angular velocity of Body 1 reference frame. It is expressed

in Body 1 reference frame and is denoted as
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cf, 0 O
D=0 1 0 (3.115)
sB, 0 1

Therefore, Equation (3.112) can also be written as

TOFO = TOFOPDO gD (3.116)

One can choose a linear combination of the generalized coordinate derivatives as
the generalized speeds of the body. For the rigid body rotation degrees of freedom,
®" is the alternative to the Euler angle derivatives & . Since ®" yields simpler
dynamic equations, it is chosen as the rotational generalized speeds. For this

" is written as below

reason, v

v = TOFOG® (3.117)

Seperating the coefficients of the generalized speeds, one has

v =pOy® (3.118)
where p” is the velocity influence coefficient matrix of Body 1 and is given as
n® = TOFD (3.119)
y"" is the generalized speed vector of Body 1 and is given as

vy =g® (3.120)

Derivative of the generalized coordinates vector of Body 1 can be obtained from

the generalized speed vector of Body 1 as
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o =DV /" (3.121)

where inverse of the D is given as

— ) cB,
D = 0 1 0 (3.122)
By

B,=1m/2 and B, =3mw/2 are the singularities of the roll-pitch-yaw (1-2-3)

sequence. At such positions, another sequence has to be used.

Acceleration of point P of Body 1 is obtained by taking the time derivative of the

velocity vector of point P of Body 1 as

a® = TOFORY + TOVFOea® (3.123)

which can be shortly written as

a® =puy O 4pOy® (3.124)

where y is the generalized acceleration vector of Body 1 and is given as

vy =g® (3.125)

n"y® consists of the terms involving the generalized accelerations as shown

below

pny" =TOFOG" (3.126)

11y involves the second order velocity terms, as shown below
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nOy® = _TOGYFOH® (3.127)

The dynamic equations of Body 1 can be derived by using the above kinematic

expressions. Kane’s equations are given as [53]

e r 0, e, O =0 (3.128)

#(1 . . .
where £ and £© are the generalized inertia and external forces of Body 1,
respectively. f, ~ and fmA(l) are the generalized inertia and external forces of

lumped mass my at point A of Body 1, respectively.

The generalized inertia forces of Body 1 can be written as

= [u" (pa® v (3.129)

Vi

where p, represents the density of Body 1 material and V, stands for the volume

of Body 1. Equation (3.129) can be expressed as the following form

N

£V = MOy £ QO (3.130)

where M is the generalized mass matrix of Body 1 and is given as

M® = [pu® pdv (3.131)

Vi

Q" is the generalized Coriolis and centrifugal force vector of Body 1 and is given

as
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Q" =—[p " 1y v (3.132)

Vi

M® can be written in terms of the generalized coordinates of Body 1 by

substituting the partitioned form of p"” into Equation (3.131) as follows

M® = Iplr(‘)T?('>dV (3.133)
Vi

which equals to
MO = ® (3.134)
where I is the moment of inertia of Body 1 about its reference frame.

Q" can be written in terms of the generalized coordinates and the generalized

speeds by substituting the partitioned form of " into Equation (3.132) as follows

= (I)T:

Qa) _ _[911' o ’rYdva? (3.135)
Vi

It can be shown that by multiplying all matrices and rearranging terms, the above

equation can be expressed as
QY = 1"%" (3.136)

The generalized external force due to weight of Body 1 can be expressed as

e = RO (p,eshv (3.137)
Vi
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where g represents the gravitational acceleration and s is a unit vector along

gravitational acceleration in fixed frame and expressed as
s=|—-1 (3.138)

After substituting pu"” into Equation (3.137), it becomes

gl = gUpl%(l)TdVJT“)Ts (3.139)

Vi
The generalized external force due to torque T, can be expressed as
fe(Tl)(l) _ Qa)TTl(l) (3.140)

where Tl(” is the torque vector applied to Body 1 due to actuator at point O

expressed in Body 1 reference frame and can be written as

0

TV =T (3.141)
0

where T, is the magnitude of the torque generated by the actuator at point O.

Q" is the angular velocity influence coefficient matrix of Body 1 and it can be

obtained as

000
Q=0 1 0 (3.142)
000
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If Equations (3.141) and (3.142) are substituted into Equation (3.140), the

following equation is obtained

0
g i (3.143)
0

The generalized external force due to torque T, can be expressed as
o)) _ Qa)TTz(l) (3.144)

where Tz(” is the torque vector applied to Body 1 due to actuator at point A

expressed in Body 1 reference frame and can be written as

T, =| 0 (3.145)

where T, is the magnitude of the torque generated by the actuator at point A. If

Equations (3.142) and (3.145) are substituted into Equation (3.144), the following

equation is obtained

0
g 1 (3.146)
0

The generalized inertia forces due to lumped mass m, at point A of Body 1 can be

written as

£, " =p* (-m,a") (3.147)
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where p* is the velocity influence coefficient matrix of point A of Body 1 and a*

is the acceleration of point A of Body 1. Equation (3.147) can be expressed as

f *(I)Z_MmA(l)y(1)+QmA(l) (3.148)

my

where MmA(l) is the generalized mass matrix of lumped mass m, and is given as
~p T
M, V=m, " (3.149)

where T™ is the position vector of point A of Body 1 and r™ is the skew

M

my

symmetric matrix of the vector T*. Q is the generalized Coriolis and

centrifugal force vector of lumped mass m, and is given as

QmA(l) =m,t" @"F a" (3.150)

as
o) AT

f, % =p* (m,gs) (3.151)

If u* is substituted into above equation, the following equation is obtained

¢ s

my

=m, " TV gs (3.152)

Body 2
Position vector to arbitrary point P of element 1 of Body 2 can be written as

R% = C(z) +q? (3.153)
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Using components in fixed frame, R* can be written as
RY = C<2> +T(2>qﬁ (3.154)

where {'”is the position vector from fixed frame to Body 2 reference frame. Here

it is a constant vector and is denoted as

0
¢ =|L, (3.155)
0

where L, stands for the length of Body 1. T is the transformation matrix from

Body 2 reference frame to fixed frame. It can be expressed in terms of Euler
angles, eg. by using the roll-pitch-yaw (1-2-3) sequence. Euler angles of Body 2

reference frame can be written in columnwise form as

OCZ
a? =|B, (3.156)
Y,

where o,, B, and 7, are the roll, pitch, yaw Euler angles of Body 2 reference
frame, respectively. It should be noted that roll motion is not required for Body 2

reference frame. Therefore, T takes the following form

CBzc'Yz _CBZSYZ sBz
T® =| sy, Y, 0 (3.157)

—sP,cy,  sBysy, B,
q” represents the position vector from Body 2 reference frame to point P of

element i of Body 2 at deformed state expressed in Body 2 reference frame and is

given as
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q2i —b¥ 4t (3.158)

where b* represents the position vector from Body 2 reference frame to element i

reference frame expressed in Body 2 reference frame, ' represents the position

vector from element i frame to point P at undeformed state expressed in Body 2
reference frame and @’ is the deformation displacement vector of point P of

element i of Body 2 expressed in Body 2 reference frame and is given as

e (3.159)

2i - .
where ¢~ is given as

¢2i :TzisziRziT (3.160)

where T? is the transformation matrix from element i of Body 2 frame to Body 2

reference frame and R* is given as

T 0
RY = (3.161)
0 T2i

Since all element frames and Body 2 reference frame are selected in the same

orientation, at undeformed position T* is 3 by 3 identity matrix and therefore R*

is 12 by 12 identity matrix. s> is the shape function matrix of element i of Body 2.
2i

o 1s the vector of nodal variables of element 1 of Body 2 expressed in Body 2

reference frame and it can be written as

o’ =B*a? (3.162)
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where ®'” is the vector of nodal variables of Body 2 expressed in Body 2
reference frame and B* is the Boolean matrix of element i of Body 2 that relates

a® to &” . Therefore, Equation (3.159) can be written as
ﬁZi — ¢2iB2ia(2) (3. 163)

To decrease the number of elastic coordinates of Body 2, nodal modal
transformation can be done as follows

(2)

a? =yx®n® (3.164)

where % is the modal matrix of Body 2. Each column of this matrix is the

(2)

eigenvector of Body 2 and represents the mode shape of Body 2. '~ is the vector

of modal variables of Body 2. Therefore, Equation (3.154) takes the following

form
R =+ T® (b + 7 + "B n®) (3.165)

Generalized coordinates of Body 2, x*, can be chosen as Euler angles of Body 2

@

reference frame and modal variables of Body 2. Therefore, x ) can be written as

o?
@ _
X _{ (2)} (3.166)

Velocity of point P of element i of Body 2 is obtained by taking the time derivative

of the position vector of element i of Body 2 as
V2i — T(Z)aziE(Z) + T(2)¢2iB2ix(2)1;.l(2) (3. 167)

~(2)

where 1" is the derivative of vector of modal variables of Body 2, ﬁzi is the

skew symmetric matrix of vector ¢~ and ®" is the angular velocity of Body 2
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reference frame expressed in the same frame and it can be written in terms of

derivative of Euler angles of Body 2 reference frame as

B2 =D?¢? (3.168)

(2)

where @'~ is the derivative of Euler angles of Body 2 reference frame in

columnwise form and is given as
a? =| B, (3.169)

D™ is a transformation matrix from derivative of Euler angles of Body 2
reference frame to the angular velocity of Body 2 reference frame. It is expressed

in Body 2 reference frame and is denoted as

cPyey, sy, 0
D® =|-cB,sy, cy, O (3.170)
sB, 0 1

Choosing @ as the rotational generalized speeds of Body 2, v* is written as
vi=pty® (3.171)
where p* is the velocity influence coefficient matrix of Body 2 and is given as
w =12 T2¢"BYy?] (3.172)

y? is the generalized speed vector of Body 2 and is given as

(—0(2)
§ = L‘f” } (3.173)
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Derivative of the generalized coordinates vector of Body 2 can be obtained from

the generalized speeds vector of Body 2 as

4 (2) O =3(2)
[2(2)}:?0 (j m@)} (3.174)
where I is an identity matrix and inverse of the D is given as
h o sh ]
- cB, cf,
D? =| sy, cy, O (3.175)
_ By, sP.sys 1
L cf, cB, i

B,=%n/2 and PB,=3m/2 are the singularities of the roll-pitch-yaw (1-2-3)

sequence. At such positions, another sequence has to be used.

Acceleration of point P of element i of Body 2 is obtained by taking the time

derivative of the velocity vector of element i of Body 2 as

~

a2 :T(z)azi;m(z)+T(2)¢21B21x(2)1-;](2) +T(2)q216(2>+

T(”ﬁZiE(z) +T@¢2 B2y @ (3.176)
which can be written shortly as
2’ =2y @ +ply®@ (3.177)

where y* is the generalized acceleration vector of Body 2 and is given as
e

. | @

T Lim }

(3.178)
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n>'y® consists of the terms involving the generalized accelerations as shown

below
uZiy(Z) :T(Z)ﬁZi;m(Z) +T(2)¢21B21x(2)ﬁ(2) (3.179)

[1°'y® includes the Coriolis and centripetal accelerations as shown below

nZiy(Z) — _T(Z)ﬁ(Z)aZia(Z) _ 2T(2)6(2)¢21B2ix(2)f](2) (3.180)

The dynamic equations of Body 2 can be derived by using the above kinematic

expressions. Kane’s equations are given as [53]

£ g @ ap, Pop P (3.181)

mg mg

where f +(2) , f @ and £ 5(2) are the generalized inertia, external, and stiffness forces
(2
of Body 2, respectively. f, © and me(z) are the generalized inertia and external

forces of lumped mass m; at point B of Body 2, respectively.

The generalized inertia forces of Body 2 can be written as

A TR S\ (3.182)
\

where p,, represents the density of element i of Body 2 material and V,, stands

for the volume of element 1 of Body 2. Equation (3.182) can be expressed as the

following form

(

£ - M2y 1 Q® (3.183)

where M is the generalized mass matrix of Body 2 and is given as
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N2 . .
M? =3 | NTRRTEN\Y (3.184)

i=l v,

where N, is the number of finite elements in Body 2. Q* is the generalized

Coriolis and centrifugal force vector of Body 2 and is given as

Q¥ == [P iy eV (3.185)

i=l V21

M® can be written in terms of the generalized coordinates of Body 2 by

substituting the partitioned form of pu* into Equation (3.184) as follows

—21T 2i =T 2iT52i., (2)
B
M = ZIP{ a ¢ By }AV (3.186)

11V2 (Z)TBZI ¢ qu x(Z) B21 ¢21 ¢21B21x(2)

In order to deal with each term seperately, the submatrices of M> corresponding

to rotation and elastic deformation are labelled as below
M?® M®
M® = w re (3.187)

(2)

The submatrices of M'~ can be obtained in the following forms

M”(Z) _[leq qz‘dV (3.188)
i=l Vi
M, = { { [pua” &dv}a }x“) (3.189)
i=1
N, . . . .
Mee(Z) :XQ)T{ZBZIT( Ip21¢21T¢21dVJB21 }X(Z) (3.190)
i=l Vy
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Q" can be written in terms of the generalized coordinates and the generalized

speeds by substituting the partitioned form of p* into Equation (3.185) as follows

~9iT~ () =2i—— ~9iT~ i
@ _ q21 (o(Z)q210)(2)+2q21 m(2)¢21B21x(2)n(2)
Q Z I p21 (2)T

In order to deal with each term seperately, the subvectors of Q' corresponding to

rotation and elastic deformation are labelled as below
)
Q= {Qf } (3.192)

The subvectors of Q'* can be obtained in the following forms

(2) {Z J‘p21q21 m(2)q21dv}m(2) +

11V2

- =i == i i .
2{2( | P, q% B¢ dV]BZ }x(”n‘” (3.193)
=\ Vs

N2 . . ~ ~ .
Qe(z) — X(Z)T{ZBZIT( J.p2i¢21T6(2)a2ldV]}(_o(2) +

i=l Vai

N, T , ,
2x(2)T{ZB”T[ J pZi¢21T6<2’¢2’dV}B 21 }X”)ﬂ@’ (3.194)

i=l Vai

The generalized external force due to weight of Body 2 can be expressed as

N, ‘
=3 [r" (preshv (3.195)

=l vy,
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. ) ) . 2
If uz‘ is substituted into above equation, f @ becomes

P =i T2y T
@ _ < q’ T
f _iz__ll\;[ipﬁ x(2>TBziT¢2iTT(2)T gsdV (3.196)

In order to deal with each term seperately, the subvectors of f* ®) corresponding to

rotation and elastic deformation are labelled as below

o [
f = r (2) (3.197)
f g

The subvectors of f* @ can be obtained as follows

N, _
£ = [Z [ m“dVJTngs (3.198)

=l v,

N, ) .

i=l Vi
The generalized external force due to torque T, can be expressed as
fe(Tz)(2):A2 QAzT Ay T2 (3200)

where 2T, is the torque vector applied to Body 2 due to actuator at point A

expressed in joint frame A, and is written as

0
A, =] 0 (3.201)
T2
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2 Q™ s the influence coefficient matrix of angular velocity of joint frame at

point A of Body 2 expressed in the same frame and it can be obtained as
A, QAZT — [TAZ—Z TA2_2 IPAzBer(Z):I (3.202)

where T**7* is the transformation matrix from Body 2 reference frame to the joint

frame at A, due to angular deformation of Body 2. Angular deformation of

element i of Body 2 expressed in Body 2 reference frame, ¥, can be written as
Y =¥"Bx*n® (3.203)
where W* is given as

w2 =T%s R¥ (3.204)

where srm21 is the rotation shape function matrix of element i of Body 2. Since ¥
are small angles vector (therefore, s?fi z?fi, c?fi =] for j=1,2,3), T2 can

be expressed in terms of Euler angles by using the roll-pitch-yaw sequence as

A,

1 _73A2 72
TA: 72 = 73A2 1 _7IA2 (3.205)

A

_72A2 71 ’ 1

where ¥* is the value of ¥ evaluated at point A,. ¥* is the value of ¥*
evaluated at point A, and B* is the Boolean matrix of the element of Body 2 that

includes point A.

Therefore, f «()? Can be written as
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T
o(,)@) _ T A,
f B l:x(Z)TBerlPAQT AT T, (3.206)

In order to deal with each term seperately, the subvectors of f o(1:)) corresponding

to rotation and elastic deformation are labelled as below

o(1,)(2)
pem)® _ {fr } (3.207)

The subvectors of f o(1,)(?) can be obtained as follows

£ e _pa-2Ta, T, (3.208)

T

£ o(T,)@) _ x(z)TBZrT\PAzT TA2—2T A, T, (3.209)

[

The generalized external force due to torque T3z can be expressed as
fe(T3)(2) B QBzT By T3 (3.210)

where ®:T, is the torque vector applied to Body 2 due to actuator at point B

expressed in joint frame B, and is written as

2| 0 (3.211)
_T3

where T, is the magnitude of the torque generated at actuator at point B. *2 Q" is

the influence coefficient matrix of angular velocity of joint frame at point B of

Body 2 expressed in the same frame and it can be obtained as

BB — [TB2—2 TB:72 \.PBszrx(z)] (3.212)
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where T is the transformation matrix from Body 2 reference frame to the joint

frame at B, due to angular deformation of Body 2 and it can be expressed as

_BZ _BZ

1 —Y; Y>
L AR S

~ B2 & B2 1

Y

(3.213)

where ¥ is the value of ¥ evaluated at point B,. ¥ is the value of ¥*

evaluated at point B, and B* is the Boolean matrix of the element of Body 2 that

includes point B.

Therefore, f «)) Can be written as

per)@ _| T BT
- X(z)TBer‘PBZT 82" 3

In order to deal with each term seperately, the subvectors of f e(r,)?)

to rotation and elastic deformation are labelled as below

The subvectors of f e(T3)(2)can be obtained as follows

g e _pp,2Ts, T,

T

£ o(1)(2) _ x(z)TBer\PBZT B 2" B T,

[
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corresponding

(3.215)

(3.216)

(3.217)



Generalized structural stiffness forces of Body 2, f 5(2) , are found from the work

done by the stiffness forces of Body 2 which is equal to the negative of the strain

energy of Body 2. Therefore, f o) can be obtained as follows

fr =- (3.218)

)T (2)py (2)n (2)
X K7x '

where K is the structural stiffness matrix of Body 2 and it can be formed as

K(z) =ZB21TK21B21 (3’219)

i=1

where K* is the structural stiffness matrix of element i of Body 2 expressed in

Body 2 reference frame and is given as
K* =R*H*R*’ (3.220)

where H is the structural stiffness matrix of element i of Body 2 expressed in

element 1 frame.

The generalized inertia forces due to lumped mass m; at point B of Body 2 can be

written as
£ " =p* (-mya®) (3.221)

where u” is the velocity influence coefficient matrix of point B of Body 2 and a®

is the acceleration of point B of Body 2. Equation (3.221) can be expressed as

f *(Z)Z_MmB(z)y(2)+QmB(2) (3.222)

mg
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2) - . . . .
where MmB( " is the generalized mass matrix of lumped mass m; and is given as

M, @ =m,u® p® (3.223)
QmB(z) is the generalized Coriolis and centrifugal force vector of lumped mass m,

and is given as
Q,,” =-myp” 1y (3224)

M B(z) can be written in terms of the generalized coordinates of Body 2 by

m

substituting the partitioned form of u” into Equation (3.223) as follows

~p,T~p =B,T B, p2rn, (2)
o_ |47 q” q° ¢°B7y

M My x(Z)TBZrTq)BZTaBZ x(2)TB2rT¢B2T¢B2B2rx(2)

mp

(3.225)

where q® is the skew symmetric matrix of the vector q™, @ is the position
vector from Body 2 reference frame to point B of Body 2 at deformed state

expressed in Body 2 reference frame, ¢ is the value of ¢ at point B of Body 2

and B*" is the Boolean matrix of the element of Body 2 that includes point B.

In order to deal with each term seperately, the submatrices of MmB(z)

corresponding to rotation and elastic deformation are labelled as below

o Mm (2) Mm (2)
M, @ = M (3.226)

The submatrices of MmBm can be obtained in the following forms
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M. ?=m,q" ¢" (3.227)

me

M @= mBﬁBqu,Bngrx(z) (3.228)

mBrc

M@= me<z>TB2rT¢B2T¢BzBzrxm (3.229)

mBee

QmB(z) can be written in terms of the generalized coordinates and the generalized

speeds by substituting the partitioned form of u® into Equation (3.224) as follows

(2)
Qm =m

B

g Bm® B, T25(2) 4By 3 21 (202 (2)
{q 0?q™®? +2q™ @?¢™B Y (3.230)

x<2> Bzr ¢B Tg)quzm(z)Jer(z) Bzr ¢B2 m<2>¢B2B2rX<2>n<z>

In order to deal with each term seperately, the subvectors of QmB(z) corresponding

to rotation and elastic deformation are labelled as below

QmB (2)
QmB(Z) _[Q e (3.231)
The subvectors of Q,, ’ can be obtained in the following forms
Q, 7 =m,q™ @3>0 +2m,q™ @2¢B>Y>q? (3.232)

T T T T T~
Q,, ” =myx® B 0" VG @ +2mx® B 9™ V"B N> (3.233)

The generalized external force due to weight of lumped mass mj can be expressed

as
£ =? =p*" (m,es) (3.234)

mg

. . . . @
If u® is substituted into above equation meg becomes
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~g.T T
o gt T?
£, _mB{x(z)TBerq)BZTT(Z)T gs (3.235)

. ) .
In order to deal with each term seperately, the subvectors of meg corresponding

to rotation and elastic deformation are labelled as below

e

o (3.236)

)
I'I'IBe

(@ f

f -
f

g

(@) .
The subvectors of meg can be obtained as follows

merg(Z) _ mBﬁBZTT(Z)TgS (3.237)
£, g® _ me(2>TB2rT¢B2TT(2)TgS (3.238)
Body 3

Position vector to arbitrary point P of element 1 of Body 3 can be written as

R = C(a) +q° (3.239)
Using components in fixed frame, R* can be written as

RY =¢% + TG (3.240)
where §(3) is the position vector from fixed frame to Body 3 reference frame. T®

is the transformation matrix from Body 3 reference frame to fixed frame. It can be

expressed in terms of Euler angles, eg. by using the roll-pitch-yaw (1-2-3)
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sequence. Euler angles of Body 3 reference frame can be written in columnwise

form as
(X3

o =|B, (3.241)
Y;

where a3, B3 and 73 are the roll-pitch-yaw Euler angles of Body 3 reference frame,

respectively. Therefore, T® takes the following form

ey, —cP,sy, sB,
TV = COLySY; +80;8B5CY;  cOyey; —s0usPisy;  —souyef, (3.242)

S0L;8Y; —colsPacy;  cousPisy; +saey;  coep,
q” represents the position vector from Body 3 reference frame to point P of

element i of Body 3 at deformed state expressed in Body 3 reference frame and is

given as

G =b¥ +F 1@’ (3.243)

where b™ represents the position vector from Body 3 reference frame to element i

reference frame expressed in Body 3 reference frame, T represents the position

vector from element i frame to point P at undeformed state expressed in Body 3
reference frame and U is the deformation displacement vector of point P of

element i of Body 3 expressed in Body 3 reference frame and is given as
o= ¢3ia3i (3.244)
where (])3i is given as

¢3i _ T3is3iR3iT (3.245)
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where T is the transformation matrix from element i of Body 3 frame to Body 3

reference frame and R” is given as

T 0
RY = (3.246)
0 T3i

Since all element frames and Body 3 reference frame are in the same orientation,
then T* is 3 by 3 identity matrix and therefore R is 12 by 12 identity matrix. s is
the shape function matrix of element i of Body 3. @ is the vector of nodal
variables of element i of Body 3 expressed in Body 3 reference frame and it can be

written as
a3i — B3ia(3) (3247)

where & is the vector of nodal variables of Body 3 expressed in Body 3
reference frame and B is the Boolean matrix of element i of Body 3 that relates

o to @’ Therefore, Equation (3.244) can be written as
ﬁ3i — ¢31B3ia(3) (3248)

To decrease the number of elastic coordinates of Body 3, nodal modal

transformation can be done as follows
a® = x(3)n(3) (3.249)

where x(3) is the modal matrix of Body 3. Each column of this matrix is the

eigenvector of Body 3 and represents the mode shape of Body 3. 11(3) is the vector

of modal variables of Body 3. Therefore, Equation (3.240) takes the following

form
RY :C(3)+T(3)(Bsi L +¢31B31x(3)n(3)) (3.250)
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Generalized coordinates of Body 3, x¥, can be chosen as position vector of Body
3 reference frame, Euler angles of Body 3 reference frame and modal variables of

Body 3. Therefore, x¥ can be written as

x? = o® (3.251)

Velocity of point P of element i of Body 3 is obtained by taking the time derivative

of the position vector of element i of Body 3 as
V3i — C(3) +T(3)a3ic—o(3) +T(3)¢31B3ix(3)1-.l(3) (3.252)

where §(3) is the derivative of the position vector from fixed frame to Body 3

reference frame, 1) is the derivative of vector of modal variables of Body 3, q*

is the skew symmetric matrix of vector q* and ®" is the angular velocity of

Body 3 reference frame expressed in the same frame and it can be written in terms

of derivative of Euler angles of Body 3 reference frame as
%% =D®a?® (3.253)

where @& is the derivative of Euler angles of Body 3 reference frame in

columnwise form and is given as

(x3
a® = 83 (3.254)
15
DY is a transformation matrix from derivative of Euler angles of Body 3
reference frame to the angular velocity of Body 3 reference frame. It is expressed

in Body 3 reference frame and is denoted as
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D® =|-cB,sy; cy; O (3.255)
sB; 0 1
Choosing @ as the rotational generalized speeds of Body 3, v° is written as

v :u3iy(3) (3.256)
where n* is the velocity influence coefficient matrix of Body 3 and is given as
Wi = [I TOF T(3)¢31B31x(3)] (3.257)

where I is an identity matrix. y* is the generalized speed vector of Body 3 and is

given as
¢o

vy = @? (3.258)
7>

Derivative of the generalized coordinates vector of Body 3 can be obtained from

the generalized speeds vector of Body 3 as

C(3) I 0 0 C(3)
a® =0 DO ofa® (3.259)
1:.l(3) 0 0 I 1:](3)

where I is an identity matrix and inverse of the D" is given as
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on o _sh

— cB, cf,
D =|8Y; Y,

_sBscy;  sBisys
cB; cP,

-

(3.260)

[S—

B,=%*n/2 and B,=3n/2 are the singularities of the roll-pitch-yaw (1-2-3)

sequence. At such positions, another sequence has to be used.

Acceleration of point P of element i of Body 3 is obtained by taking the time

derivative of the velocity vector of element i of Body 3 as

aSi :¢(3) +T(3)63ia;)(3)+T(3)¢3iB3ix(3)ﬁ(3)+

T(3>6316(3) + T(3)a316(3) + T(3)¢3iB 3ix(3)1:](3) (3261)
which can be written shortly as
aSi — uSin) +l-l3iy(3) (3262)

where y is the generalized acceleration vector of Body 3 and is given as

go
v = @@ (3.263)

.o (3)
l

p’'y® consists of the terms involving the generalized accelerations as shown

below
u3iy(3) — C@) +T(3)a3i(;o(3) +T(3)¢3iB3ix<3>ﬁ<3> (3.264)

'y includes the Coriolis and centripetal accelerations as shown below
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piy® = -TOBVGF®Y - 2TV ® V9 By Vn (3:265)

The dynamic equations of Body 3 can be derived by using the above kinematic

expressions. Kane’s equations are given as [53]

00 p® e Pip Oy (3.266)

mc mc

where f *(3), £ and f ) are the generalized inertia, external and stiffness forces
. +(3) . . .
of Body 3, respectively. f, =~ and fmC(S) are the generalized inertia and external

forces of lumped mass m. at point C of Body 3, respectively.

The generalized inertia forces of Body 3 can be written as

f*(3) _ Iu3iT(_p3ia3i )dV (3.267)
V3

where p,; represents the density of element i of Body 3 material and V,; stands

for the volume of element 1 of Body 3. Equation (3.267) can be expressed as the

following form

(

£V = MOy + QY (3.268)

where M is the generalized mass matrix of Body 3 and is given as

M ==Y [pu* p'dv (3.269)

=l vy

where N, is the number of finite elements in Body 3. QY is the generalized

Coriolis and centrifugal force vector of Body 3 and is given as
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QV =3 [p.n iy av (3:270)

=l vy

M® can be written in terms of the generalized coordinates of Body 3 by

substituting the partitioned form of pu* into Equation (3.269) as follows

. I T(3)a3i T(3>¢31B31x(3)
(3) : =3iT3)T ~3iT=3; =3iT | 3igp3in, (3)
MO = [p, QT q'q q" ¢"B7x
i=l v, x(s)TB3iT¢3iTT(3)T x(3)TB3iT¢31Tﬁ3i x(3)TB3iT¢3iT¢3iB3ix(3)

(3.271)

In order to deal with each term seperately, the submatrices of M corresponding

to translation, rotation and elastic deformation are labelled as below

Mn(3) Mtr(3) M 3)
M@ =M, M© M. (3.272)
M T M T M 3)

te re

The submatrices of M can be obtained in the following forms

N;
Mn(3) — Z J-P;IIdV (3273)
=l vy
N, o
M, @ :T<3>z IpSia3ldV (3.274)
=l vy
N ) .
M, = T“){Z[ J p31¢3‘dV]B3‘}x“> (.279
=1 vy,
M @ = N 3T S5 gy 3.276
w = ZI: '[p3iq q (3.276)
=V
< =3T3 i
M, —{ZL [pu@" ¢’ dVJB3 }x(” (3.277)
=LA Vs
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.

Q" can be written in terms of generalized coordinates and the generalized speeds

by substituting the partitioned form of p* into Equation (3.270) as follows

. T(a)m(3)q31m(3)+2T(3)ﬁ(3)¢3iB31x(3)1:](3)
3 ~3 i ~3iT~ i i .
QY =3 [p,| T BT®Y +23" BV By dV (3.279)
il v To3iT, 3T~ T3iT 3T ity 3i - (3
1 v, x(3) B3 ¢2 m(%)qnmw) +2x(3) B* ¢? 0)(3)(1)3 B31x(3)n(‘)

In order to deal with each term seperately, the subvectors of Q' corresponding to

translation, rotation and elastic deformation are labelled as below
QV=|Q,"” (3.280)

The subvectors of Q' can be obtained in the following forms

=l vy

Q.” = T%m{i jp3iﬁ3idV}F)(3’ +

V}i

Ny .
2T(3>ﬁ(3){2[ [ps¢dv ]B31 }x“)n(” (3-281)
i=1

(3) {Z J-le (3) sldv} o +

11V2

N3 ~ ~ .
2{2( J‘p3iq3lT6(3)¢31dVJB3l }x@)n(s) (3.282)
i=1

Vi

i=1 \A

Q. —x““{ZBﬁ [I P 0" m“)q%w} " +
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N3 —~ . .
% {ZBMT( [P0 B¢ dv JB31 }X“)ﬂ@ (3.283)

i=l Vi

The generalized external force due to weight of Body 3 can be expressed as

N, ‘
== | p* (p,eskV (3.284)

=1 vy
i s . . . 3
If u* is substituted into above equation, f e becomes

I

N, o
== o, @ T gsdV (3.285)
i=l v, x(s)TB3iT¢3iTT(3)T

In order to deal with each term seperately, the subvectors of f ) corresponding to

translation, rotation and elastic deformation are labelled as below

3)
£

pe | g (3.286)
N

The subvectors of f 5¢) can be obtained as follows

0 [ &
£ = > [puldV |es (3.287)

=l vy,

N; -
r = {Z I Paiﬁdev}T(a)Tgs (5.285)

=l vy

N3 ) .
= x“)T{ZB&T[ J p.ei¢3'TdV}}T(3”gs (3.289)
i=1

VSi
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The generalized external force due to torque T3z can be expressed as
fe(Ts)B) —B; QBsT B; T3 (3.290)

where ®T, is the torque vector applied to Body 3 due to actuator at point B

expressed in joint frame B, and is written as

0
BT, =] 0 (3.291)
T3

%1 Q" is the influence coefficient matrix of angular velocity of joint frame at point

B of Body 3 expressed in the same frame and it can be obtained as
BQb =0 TV T whBY] (3.292)

where T is the transformation matrix from Body 3 reference frame to the joint

frame at B, due to angular deformation of Body 3. Angular deformation of

element i of Body 3 expressed in Body 3 reference frame, _'fi , can be written as
Y =¥'B“n"” (3.293)
where W' is given as

gl =% YRY (3.294)

where s, is the rotation shape function matrix of element i of Body 3. Since ¥"
are small angles vector (therefore, s?fi = 7j3i, C7j3i =1 for j=1,2,3), T can be

expressed in terms of Euler angles by using the roll-pitch-yaw sequence as
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B3 Iy, B3

1 - 73 Y2
T3 = 7333 1 _71]33 (3.295)

~ B3 ~ B3 1

e f Y

where ¥ is the value of ¥’ evaluated at point B,. W™ is the value of ¥*

evaluated at point B, and B” is the Boolean matrix of the element of Body 3 that

includes point B.

Therefore, f o()1Y can be written as

0
fe(Ts)(3) — TBs—3T Bs T, (3.296)
vanl S S

In order to deal with each term seperately, the subvectors of f o(1:)%) corresponding

to translation, rotation and elastic deformation are labelled as below

e _ | p o) (3.297)

The subvectors of f o(1,)0% can be obtained as follows

fte(Ts)(3) — 0 (3298)
frem)@) BB (3.299)
fee(Tz)(s) _ x(3)TB3rT\PB3TTB3—3T B, (3.300)
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Generalized structural stiffness forces of Body 3, f 5(3), are found from the work

done by the stiffness forces of Body 3 which is equal to the negative of the strain

energy of Body 3. Therefore, f s©) can be obtained as follows

(3.301)

=
©c o o o o o

) T3 (3)ny (3)aa (3)
X7 K7 |

where K" is the structural stiffness matrix of Body 3 and it can be formed as
N, T . .

K?=%B* K'B* (3.302)
i=1

where K is the structural stiffness matrix of element i of Body 3 expressed in

Body 3 reference frame and is given as
K¥ =R*H*RY’ (3.303)

where H? is the structural stiffness matrix of element i of Body 3 expressed in

element 1 frame.

The generalized inertia forces due to lumped mass m. at point C of Body 3 can be

written as
£ 7 =p"(-m.aC) (3.304)

where u° is the velocity influence coefficient matrix of point C of Body 3 and a“

is the acceleration of point C of Body 3. Equation (3.304) can be expressed as
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f +(3) :_Mmc(3)y(3)+ch(3) (3.305)

me

3) . . . . .
where Mmc( " is the generalized mass matrix of lumped mass m. and is given as

M, @ =mp pC (3.306)

mc

Q.. ) is the generalized Coriolis and centrifugal force vector of lumped mass m_

and is given as
Q" =-mep py” (3307)

M_ @ can be written in terms of the generalized coordinates of Body 3 by

mc

substituting the partitioned form of u° into Equation (3.306) as follows

1 T(3)qcz T(3)¢C3B3rx(3)
3 ~c,T T ~c, T~ ~c. T
Mmc( ) =m, qc3 T qc3 qc3 qc3 ¢C3B3rx(3)
T T T T T T T~ T T T
x(s) B (I)c3 T x(s) B ¢C3 qc3 x(3) B ¢C3 ¢C3B3rx(3)

(3.308)

where q© is the skew symmetric matrix of the vector q<*, @< is the position
vector from Body 3 reference frame to point C of Body 3 at deformed state

expressed in Body 3 reference frame, ¢ is the value of ¢ at point C of Body 3

and B is the Boolean matrix of the element of Body 3 that includes point C.

In order to deal with each term seperately, the submatrices of Mmco)

corresponding to translation, rotation and elastic deformation are labelled as below
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(3) M (3) M (3)

Mcy Mcy, Mc
3) _ 3T 3) 3)
MmC = Mmclr Mmc,, Mmcm (3.309)
37T 37T 3)
MmClc Mmcm Mmc-c

The submatrices of Mmc(3) can be obtained in the following forms

ne, | =mcl (3.310)
M, = m T9q" (3.311)
M, " =m TV By (3.312)
M, ¥ =mg"q" (3.313)
M, ©=m.q® ¢“By” (3.314)
M, ¥ =my® B ¢ ¢“BY” (3.315)

ch(3> can be written in terms of the generalized coordinates and the generalized
speeds by substituting the partitioned form of u° into Equation (3.307) as follows
TORYG " + 2TV V9 B %V

~

~c T~ _ ~c. T~ .
ch(3) =m, qC,z m(3)qcsm(3)+2qcs m(3)¢C3B3rx(3).n(3) (3316)
x(s)TB3rT¢choz)(3)ac36(3) +2x(3)TB3rT¢C3Tol)(3’¢C3B3rx(3)1'1(3)

In order to deal with each term seperately, the subvectors of chm corresponding

to translation, rotation and elastic deformation are labelled as below

QmC[(?’)
Q,.”=Q,. " (3.317)
Q 3)

The subvectors of ch(3) can be obtained in the following forms
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Q,. "V =m IVBVGBY +2m TGV By O (3.318)

Qo = m@® FOTOD + 2m G FOCB YR (3319

Cr

Q.. 3 _ mcx(3)TB3rT¢C3Tﬁ)(3)ﬁc3(_0(3) +2mcx(3)TB3rT¢C"T6(3)¢C3B3rx(3)1"|(3) (3.320)

Ce

The generalized external force due to weight of lumped mass m.can be expressed

as
f, ¢ =p° (m.gs) (3.321)

. . . . ()
If u¢ is substituted into above equation fmcg becomes

I
f g(3) _ mc ﬁC3TT(3)T gs (3'322)

mc
x<3>TB3rT¢CaTT(3)T

. (3) .
In order to deal with each term seperately, the subvectors of fmcg corresponding

to translation, rotation and elastic deformation are labelled as

R P (3.323)

f_* =m.Igs (3.324)

=m.q" T gs (3.325)
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fmc‘g(S) _ mcx(3)TB3rT¢c3TT(3)TgS (3.326)

The time and space dependent quantities have to be seperated so that the space

integrals can be evaluated. In the following equations superscript k refers to Body

K.
0 [pu@ av - jpkiqz“dv
Vki
[puatav= —fpkﬁak‘dV 0 [ 3"V (3.327)
Vi V,.
jpqu;“dv - [puadv 0
[paaav= jpklb +i kv [pu0 avBim =123 (3328)

Vii Vii

where subscript j refers to the j th row of the corresponding matrix or vector.

— kiT— ki — kiT— ki
kaiq3k q3de+kaiqzk qzde

J'pkiakiTﬁkidV _ J'pkl— kT kldv
Vki

- kai@kl q;ﬂdv

— kT«
- jpkiqzk qlk dv

Vii
— kiT— ki —kiT— ki
kaiqak q3kdv+jpkiq1k qlde

Vki

) — kT— K
_jpkiqzk q3de

Vi

I puT," G 'dV ]
_ kal_ e (3.329)
kalqz qgkldV+ J-pqulkl qlkldv
Vi ; |
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jpquj g.hdv = jpk(b ) RS

jpk b+ o, MdVBUxnt +

nc x< BY | pkitbj‘“T(Etki +E v +
Vki
leTkaBkiT J‘pkiq)jknq)tkidVBkixknk j, t= 1,2’3 (3‘330)

Vii

where subscript t refers to the t th row of corresponding matrix or vector.

J.pkl_ Wt ¢2kldV+ ka]_ Wt ¢3kldv
Vi
~uT , « — kT, ki — kT,
[puat gty = jpkl ¢,“dV - [p, " ¢,"av (3331)
Vii Vi
J.pkl_ K ¢1kldv+ kal_ W ¢2k1dV
Vi |

kal_kl 0. "av = [p, (6, +7" Jp, av +

Vii
N B [p0 0V jit=123 (3.332)
Vii
(0 J‘pquzkl — kldV 0)1 J'pkl— kT— kldV
~ T k=i i i 17—~ K
kaiqk O)qudV— — O, ka1q3 qsk dV-o, kalql q3de o, jpqu3k de
Vi, Vi, Vi,
— kT— ki —kiT— ki
o, kaiqZ q; “dv+® ®, '[pquZ q, dV"'('01 kal q, dV
Vki k Vk

— — iT_ i J— — iT — ki'— ki
O)sk kaiqsk Q3k dv + wzk kaiQ2k q; “dvV+o o, J.pkl ut q i\
Vii Vii Vi

- (’3 J'pkl_lkiTQSkidV +6 ‘ J.pqu;iT_ kidV

- o, kaf"‘ 3. V-0, kaqz‘“ qMdv -, kal"“ A\

107



_ 0)3 jpkl_ kiT qzkldv (02 ka— kiT qzkldV (01 kal_ kT — kldV

o, J.pqul q, dV+0) J.pqu:i q, dV"'ml jpkiql qlkldV

Vii

®, kal‘ VgV -, kal‘ g v

(3.333)

(03 _[pkl_ Wt ¢1kldv+m2 kal_ ut ¢1kldV_
Vi \7

[pua" @ ¢"dv =|-o, jpkr“ 0,"dV +®," kar o, v+

vk)

—603 J‘pkl_ ut ¢1kldv _0)3 kal_ ut ¢2kldv+

Vi Vi

@ J P, 0,74V -, I P ,"dV

(D J.pkl— kT ¢2k1dv (’) J'pkl— kiT ¢3kidV (3334)

@, kaf Vo, av +w I P 9,"dV

k k B

J.pkl_k‘ ¢tkidV=ka (b + ),V +
Vki

,nkakTBkiT .[pkiq)jkiTq)tkidV j, t= 1’2’3 (3.335)

Vki

iT~ =T T T L
kai¢k 0'q" dV=|-0, ka¢1k Sdv e _[pk¢3k Ndv -

Vii Vii

0)2 ka1¢]kl q kldv+ (D kal¢2k1 — kldV

Vi

0‘) J.pqu)Zk1 q kldV+(’0 J-pqu);(1 q kldV+

Vii

— iT_ — iT__ i
mzk kai¢1k qlk dV_("~)1k kaiq)zk qlk dv

vki Vki

_ iT_ ki — iT_ ki
O)3k kaiq)zk Chk dv - mzk jpki¢3k qzk dv+
Vi Vii

— iT_ ki _ T ki
(D3k J.pkiq)lk qlk dv - mlk kai¢3k qlk dv (3.336)

Vii Vi
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kai¢jkithkidv = kaiq)jkiT (Btki +ftki )dV+

Vki Vki

J.pki ¢jkiT¢tkidVBkiXlek jv t=123

Vki

iT=k ki — iT ki — iT
[pud" @ 0dV=-0," [p,6," ¢,"dV+3" [p,0," ¢, dV+
Vi

Vki Vkl

_ iT i _ i T ;
(’33k jpkiq)lk ¢2k dv - ('olk _|.pki¢3k ¢2k dv -

Vi Vii

— iT ki — iT ki
" [P 0,"dV+0" [p,0," ¢, v
Vi Vii

(3.337)

(3.338)

The inertia properties of the beam element used for the spatial robot are given in

Appendix B.

3.3.2 Constraint Equations

7 possible constraint equations can be written for the robot in consideration. The

velocity level constraint equations can be written as follows:

Two scalar equations can be written for the revolute joint at point A by equating

the first and second components of the angular velocity vector of point A of Body

1, ®", and the angular velocity vector of point A of Body 2, ®*:.

The angular velocity of joint frame at point A of Body 1 can be expressed in the

same frame as follows

0
At =1 Bl
0

(3.339)

The angular velocity of joint frame at point A of Body 2 can be expressed in the

same frame as follows

109



A, mAz — TA2*26(2) + TAzfzwAszrx(z)f](z) (3340)

On the other hand, the angular velocity of joint frame at point A of Body 2 can be

expressed in joint frame at point A of Body 1 as follows

Al = TA As s (3.341)

where T* ™ is the transformation matrix from the joint frame at point A of Body

2 to the joint frame at point A of Body 1 and it can be expressed as

cy, —-sy, O
T " =|sy, ¢y, 0 (3.342)
0 0 1

Therefore, the following two constraint equations can be written

A OJIA‘ = (DlA2 constraint equation (1) (3.343)

A COZA‘ = 0)2A2 constraint equation (2) (3.344)

Three scalar equations can be written for the revolute joint at point B by equating
the components of the velocity vector of point B of Body 2, v"2, and the velocity

vector of point B of Body 3, v™.

The velocity of point B of Body 2 can be expressed in fixed frame as

VB =T @ + T 9% B>y *n® (3.345)

The velocity of point B of Body 3 can be expressed in fixed frame as

vE = §(3) + T(3)ﬁB36(3) + T(3)¢33B3rx(3)1:](3) (3.346)
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where @™ is the skew symmetric matrix of the vector g, q® is the position
vector from Body 3 reference frame to point B of Body 3 at deformed state

expressed in Body 3 reference frame, ¢™ is the value of ¢ at point B of Body 3

and B” is the Boolean matrix of the element of Body 3 that includes point B.

Therefore, the following three constraint equations can be written

VlBz = VlBS constraint equation (3) (3.347)
V2B2 = V2BS constraint equation (4) (3.348)
V3BZ = V3Bz constraint equation (5) (3.349)

Two scalar equations can be written for the revolute joint at point B by equating

the first and second components of the angular velocity vector of point B of Body

2, ®”, and the angular velocity vector of point B of Body 3, ®" .

The angular velocity of joint frame at point B of Body 2 can be expressed in the

same frame as follows

B = T® 2% + T 2y® B>y ¥y ? (3.350)

The angular velocity of joint frame at point B of Body 3 can be expressed in the

same frame as follows

By =T o + TB3_3\|IB3B3rx(3)f|(3) (3.351)

On the other hand, the angular velocity of joint frame at point B of Body 3 can be

expressed in joint frame at point B of Body 2 as follows

Pt =T B (3.352)
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where T":™® is the transformation matrix from the joint frame at point B of Body

3 to the joint frame at point B of Body 2 and it can be expressed as

c; —s6, O
T =8, ¢0, O (3.353)
0 0 1

where 0, is the joint angle of Body 3.

Therefore, the following two constraint equations can be written

B, . B2

0> =" o> constraint equation (6) (3.354)

B2 0)232 =" 0)233 constraint equation (7) (3.355)

The constraint equations at acceleration level can be obtained by taking the

derivative of velocity level constraint equations as

Mg M=t @™ (3.356)
A, =M g, (3.357)
v =v (3.358)
v, =y, (3.359)
v = v, (3.360)
By ” =P ™ (3.361)
B2 p, ™ =P2 p,™ (3.362)

The derivative of the necessary equations to form the acceleration level constraint

equations can be obtained as
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0
A (bA] — 1 Bl
0

Al (:oAz :TAFAZTArZ;m(Z) +TAFAzTAzfzwAzBZTX(Z)ﬁ(Z)+
TAl_AzTAz—za(Z) + TAI—AZTAz—za)(Z)_l_

TAI—AZTA2—2\IIA2B2rx(2),I;.I(2) n TA,—AZTAZ—Z\VAzBZr

where T*™*: and T*:™* are given as

-sy, —¢y, O
T % = cy, -sv, 0|7,
0 0 0

A
"7 = ;'Y3A2 0 _;’YIAZ
_72A2 71A2 0

where ¥*? is expressed as

~ (2)p(2)

'YAZ :\IfAszrx ,n
“,Bz :T(Z)ﬁBz(T)Q) +T(2)¢B2B2rx(2)f|(2) +T(2)aBza(2) _

=~ (2)=B,—< ~ . (2
T(Z)m(2)qB_ (0(2) _ T(2)m(2)¢BzB2rx(2),n( )

“,Bz :§(3) +T(3)aBsa;)(3) +T(3)¢33B3rx(3)1':](3) +T(3)ﬁ336(3) _

TG)EG)QB“ 6(3) _ T(3)6(3)¢B3 B 3fx(3),"-|(3)

B pB = T2 + TszlIIBszrx(z)ﬁ(z) +T5 2% + TBrzWBZBzrx(z)h(z)

BB, -2 .
where T “is given as

A
%7 = ;YsBz 0 _;'Y1B2

- ;'Ysz ;'Yle 0
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(3.364)

(3.365)

(3.366)

(3.367)

(3.368)

(3.369)
(3.370)

(3.371)



where 2 is expressed as

~By _ B 2rp, (2) o (2)

Y =yrBTY M

B, (bB3 :TBZ—B3TB3—3;0)(3) +TBZ—B3TB3—3\|IB3B3rx(3),i;](3) +
TBz—BzTB3—36(3)+ TBZ_B3TB3_36(3)+

TBz—B3 TB3—3\|’B3 B 3rx(3),'-.l(3) + TBZ—B3 TB3—3\IIB3 B3rx(3)1;](3)

B,-B B, — .
where T% ™" and T™ ™ are given as

-s0, —-cO, O
T =| c8, -s0, 016,
0 0 0

0 _73]33 ;72]33

TB3—3_ ;,YB3 0 _;,YB;,
- 3 1
_;'Ysz ;'Y]BS 0

=B, -
where ¥ is expressed as

A7 3y 3)

T7 =y BN

3.3.3 Equations of Motion

(3.372)

(3.373)

(3.374)

(3.375)

(3.376)

Equations of motion of all bodies can be written considering the joint forces

My =Q+f°+f* +f° +f°

(3.377)

where M is the generalized mass matrix of the system, y is the generalized speed

vector of the system, Q, f°, f® and f° are the generalized Coriolis and

centrifugal, external, gravitational and structural stiffness force vectors of the

system, respectively. They are formed as follows
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M= M® (3.378)

y=|y®? (3.379)

Q=Q? (3.380)

fe=f (3.381)

fe=|f (3.382)

f'=f (3.383)

f° is the generalized constraint forces due to joint forces. In general, the constraint

equations at velocity level can be written as
Zprmym =0, p=1...c (3.384)

where n is the dimension of vector y and c is the number of constraint equations.

Above equation can be written in matrix form as

By =0 (3.385)
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Then £ can be expressed as
f°=B"A (3.386)

where A is ¢ dimensional vector of constraint forces at the joints. If Equation

(3.386) is substituted into Equation (3.377), the following equation is obtained
My -B'A=Q+f° +f& +f° (3.387)

Equation (3.387) has n scalar equations but n+c unknowns. Constraint equations
can be written at acceleration level as

By = -By (3.388)

Equation (3.388) has c scalar equations with the same n unknowns. If Equations

(3.387) and (3.388) are augmented, the following system of equations are obtained
M -B' ||y +E°+F5+£°
V|- @t (3.389)
B 0 ||A —By

3.4 An Alternative Form of Dynamic Equations for Controller Design

The equations of motion of a multibody system derived by using absolute
coordinates may have many equations especially when the number of body
increases and body flexibilities are taken into consideration. The number of
equations can be reduced from n+c to n by substituting velocity level constraint

equations into the dynamic equations of the multibody system.
The tip point position vector and elastic variables of the bodies are sufficient to

describe the dynamics of a flexible robotic system completely. The tip point

position vector is the variable to be controlled for flexible robotic systems.
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Therefore, by using the constraint equations, the remaining variables can be

expressed in terms of tip point position vector and elastic variables of the bodies.
The system of equations of a multibody system is written here once more

My -B"A=Q+f+£% +f° (3.390)

By =By (3.391)

The generalized speed vector can be rearranged in the following order

Y. =M (3.392)

where {e R>, e R™, m = m? +m®, ke R, m® and m" are the number

of modal coordinates of Body 2 and Body 3, respectively. These variables are

given as
¢=¢0 (3.393)
[ (2)
= :(3) (3.394)
B,
x=|®"? (3.395)
6(3)

The vectors C and M are called as primary variables and the vector k is called as

secondary variables. The system of equations can be arranged according to the

new ordered generalized speed vector as follows

M,y,-B, A, =Q, +f +f 5 +f° (3.396)

B.V.=-B.y. (3.397)
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where subscript m means that the order of the rows and/or columns of the related
matrix or vector are modified. Equation (3.396) and (3.397) can be written in

partitioned form as follows

M, {+M, #+M, k-B,'A=C, {+C, 1+C, x+H, T+f, * (3.398)
M, {+M, #i+M, k-B, 'A=C, {+C, 7+C, K+S, n+

H, T+f,* (3.399)
M, L+M, f§+M, k-B, "A=C, {+C, 1+C, x+H, T+f, ¢ (3.400)

B, (+B, 7+B, k=0 (3.401)

where matrices Cy,, Sy, and H,, stand for the partitioned forms of Q, f,’ and f.,°,

respectively. T is the vector of actuating input.

The secondary variables can be obtained in terms of primary variables by using

Equation (3.401) as

x=8B, '[-B,t-B, 1) (3.402)
The acceleration level constraint equations can be partitioned as

B,{+B, +B, k=-B, {-B, 1-B, x (3.403)

Rate of the secondary variables can be obtained in terms of primary variables and

their rates by using Equations (3.403) and (3.402) as

k=8, '{B, ¢-B i-B, -8B, B, B, k-B, -8, B, "B, Jif 3404
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By substituting Equations (3.402) and (3.404) into Equations (3.398), (3.399) and
(3.400), the secondary variables and their rates can be eliminated from the

dynamic equations. Therefore, the dynamic equations take the following form

N L+N,ii-B, A+ V L+ V N+G = YT (3.405)
N, £+N,ii-B, "A+V, +V, 1+K, n+G, =Y,T (3.406)
N L+Nii-B, A+V . {+V N+G =Y,T (3.407)
where Ny, Ny, Noow NoUNG, NV, Ve, Vo Ve Ve Ve, K
Gc , Gn , G, Yc , Yn and Y, are expressed as

N.=M, -M, B, "B, (3.408)
N,=M, -M, B, B, (3.409)
N.=M, -M, B, "B, (3.410)
N,=M, -M, B, "B, (3.411)
N.=M, -M, B, "B, (3.412)
N,=M, -M, B, "B, (3.413)
v.=-M, B, (8, -B,B, "B, )-C, +C, B, B, (3.414)
v,=-M, B, (B, -B,B,"B,)-C, +C, B, "B, (3.415)
v,=-M, B, ", -B,B,"B,)-C, +C, B, B (3.416)
v,=-M, B, "B, -B,B, B, ]-C, +C, B, B, (3.417)
V,=-M, B, (B, -B,B,"B,)-C, +C, B, B, (3.419)
K, =-S,. (3.420)
G =-A," (3.421)
G,=-,* (3.422)
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G =f,* (3.423)

Y = ng (3.424)
Y, = Hmn (3.425)
Y =H_ (3.426)

Vector of constraint forces can be expressed in terms of primary variables and

their rates by using Equation (3.407)
A=, ") (NL+N {+V L+V 1+G, ~Y,T) (3.427)

By substituting Equation (3.427) in Equations (3.405) and (3.406), vector of
constraint forces can be eliminated from the dynamic equations. Therefore, the

dynamic equations take the following form

Agl+A,f+B L +B,N+D =ET (3.428)
A C+A fi+B (+B 7+K, n+D, =E T (3.429)
where ACC’ ACn’ Ané’ ATm, ng, Bgn’ Bnﬁ’ Bnn’ Dg, Dn’ EC and En are
expressed as
Ay=Ng-B,'(B,"]'N (3.430)
(O €8 mg my kC .
T T\!

Ay =N, -B,, (Bmk ) N (3.431)
A, =N_-B "B, ")'N (3.432)
ng T ng m, m, 3¢ .

T TY!
Ann:Nnn_an (BmK ) N, (3.433)
T TY!
By =V, -B, (Bmk ) Vi (3.434)
T T\!
B, =V —B., B,)'v, (3.435)
-1
Bnc:Vnc_anT(BmKT) Vi (3.436)
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B,,=V,,~B, B,)'V, (3.437)
D.=G.-B,'B,")'G, (3.438)
D,=G,-B,'B,")'G, (3.439)
E =H,-B "B, J'H, (3.440)
E,=H, -B,'B,")'H, (3.441)

Therefore, Equations (3.428) and (3.429) describe the systems of equations of the

multibody system in terms of only primary variables.
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CHAPTER 4

NUMERICAL SIMULATIONS FOR PLANAR ROBOT

In this section, planar two degrees of freedom robot with flexible forearm is taken
into consideration to test the performance of the proposed controllers. Numerical
simulations are carried out in three parts. In the first part, uncontrolled motion of
planar robot is simulated. In the second part, motion control of the tip point is

simulated. In the third part, force and motion control of the tip point is simulated.

In the first part, the uncontrolled motion of the robot as a flexible double pendulum

is simulated for the verification of the dynamic equations.

In the second part, firstly, the motion control of the tip point is simulated by using
the proposed method. In this simulation, the same number of modes are used both
in the dynamic equations and the controller. Secondly, unmodeled dynamics is
taken into consideration to test the performance of the control method even as
such. So, the motion control of the tip point with unmodeled dynamics is also
simulated and compared with the previous simulation. After that, the motion
control of the tip point is simulated by using the computed torque method applied

as if the robot is rigid. This provides another comparison.

In the third part, firstly, the force and motion control of the tip point is simulated.
In this simulation, the same number of modes are also used for both the dynamic
equations and the controller. Then, as the next stage, the force and motion control
of the tip point with unmodeled dynamics is simulated for similar reasons as in the

second part.

In the simulations, Runge-Kutta fourth-order numerical integration method is used

to solve the ordinary differential equations that describe the dynamics of the
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system with suitable sampling frequency. Computer codes are written in

MATLAB® [54].

The closed loop poles are classified as dominant poles and inherent poles. The
dominant poles are selected based on the desired response of the system more or
less like a robot with rigid links. The inherent poles are selected with norms close
to the natural frequencies of the system due to the link flexibilities. However, their
angles from the imaginary axis are increased so that artificial damping is added to
the flexible modes of the system. A similar closed loop poles selection is made by

Yeung and Chen [7], [24].

4.1 Numerical Simulation of Uncontrolled Motion of Planar Robot

The dynamic equations of the robot with flexible arms have long and complicated
expressions. Therefore, it is very important to verify the dynamic equations before

applying the proposed control methods to the robot.

To verify the derivation of the dynamic equations and the code written for them,
the numerical simulation of the uncontrolled motion of the planar robot with
flexible forearm is presented in this section. The numerical simulation is obtained

for the uncontrolled motion of the flexible robot as a double pendulum.

In the simulations, the axial deformations are assumed to be negligible and the
bending deformations are approximated by the first two bending modes for the
forearm. Fixed-free boundary conditions are used. In fact a beam has an infinite
number of mode shapes, all with different natural frequencies. However, typically
the lowest frequency modes have the largest amplitudes and are the most effective
to approximate the deflection of the forearm. The mode shape functions are as

follows [55].

Y, (x) = (sinB,L, —sinhB.L, )(sin B,x —sinh B,x )+
(cosPB,L, +coshB.L, )(cosB.x —coshP.x) i=1,2 4.1)
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=— 4.2

B, L, (4.2)
4.694

_ 4.3
P, L, (4.3)
The natural frequencies associated with the natural modes are
0, =L, [ i=1.2 (4.4

m,L,

Therefore, mode shape function matrix and vector of modal variables of Body 2

have the following form

¢<2’:{ ; 0 } (4.5)
Y (%) Y,(%)

(2 _| M 4.6
= 46)

As a result of this, the degree of the freedom of the system is four which is the
total number of the joint angles and the modal variables. The inertia properties of

the planar robot are given in Appendix C.

The physical parameters of the planar robot are given in Table 4.1.
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Table 4.1 Physical parameters of the planar robot.

Parameter Value
Length of link 1 (m) 1
Length of link 2 (m) 1.5
Mass of link 1 (kg) 1
Mass of link 2 (kg) 1

Elastic rigidity of link 2 (Nm?) 50

The numerical values of the natural frequencies associated with natural modes are
13.5316 rad/s and 84.8075 rad/s, respectively. It is assumed that the robot starts its
motion from rest with no initial deflections. The initial joint angular positions are

taken as 0, =80 degrees and 0, =5 degrees. The sampling frequency is taken as

6000 Hz. The simulation results are given in Figures 4.1 - 4.8.
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Angular Position of Joint 1 (degree)
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0

Figure 4.1 Angular position of joint 1.

125



Angular Velocity of Joint 1 (rad/s)
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Figure 4.3 Angular velocity of joint 1.
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Angular Velocity of Joint 2 (rad/s)
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Figure 4.4 Angular velocity of joint 2.
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Figure 4.5 First modal coordinate.
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Derivative of First Modal Coordinate

Second Modal Coordinate
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Figure 4.7 Derivative first modal coordinate.
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Derivative of Second Modal Coordinate

Figure 4.8 Derivative second modal coordinate.

When Figures 4.1 - 4.8 are examined, it is seen that they are as expected.

4.2 Numerical Simulation of Motion Control of Planar Robot

In this section, the numerical simulation of motion control of planar robot with
flexible forearm is presented by using the motion control method proposed at

Chapter 2. The tip point is required to track a straight line.

The reference motion on the required tip point trajectory is supposed to be
described as a smooth time function. Here, it is formed by ninth-order Hermite
polynomials providing the continuous boundary conditions for position, velocity,
acceleration, jerk and snap (derivative of jerk). The position time history for such a

motion is given by [56]
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8 7 6 5

P'()=P, +(p, —p, | 2313 3905 4206 126, (4.7)
tf tf tf tf tf

where P’ is the desired tip point position vector, PO* is the desired initial tip point

position vector, Pf* is the desired final tip point position vector and t, is the time

to complete motion.
After a few trials, proper closed loop natural frequencies and damping ratios are
obtained as 5 rad/s, 15 rad/s, 30 rad/s, 85 rad/s, 0.85, 0.85, 0.85 and 0.85. The

corresponding closed loop poles are given in Table 4.2.

Table 4.2 Closed loop poles used in motion control of planar robot.

Closed Loop Poles
p, =—4.2500+2.6339]j

p, =—4.2500-2.6339j
p; =—12.7500+7.9017;
p, =—12.7500-7.9017;
ps =-25.5000+15.8035j
ps =—25.5000—-15.8035j
p, =—72.2500+44.7765]

ps =—72.2500-44.7765]

During the simulations, the sampling frequency can be taken as 200 Hz or above.
Here the sampling frequency is taken as 2500 Hz to compare the simulation results
with those obtained by using computed torque method. The simulation results are

presented in Figures 4.9 - 4.35.
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Tip Point Position Component in n Direction (m)

Tip Point Position Component in n, Direction (m)
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Figure 4.9 Tip point position component in n; direction.
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Figure 4.10 Tip point position component in n; direction.
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Tip Point Velocity Component in n, Direction (m/s)
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Figure 4.12 Tip point velocity component in n; direction.
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Tip Point Velocity Component in n, Direction (m/s)

Deviation of Tip Point Position Component in n, Direction (m)

1 ]
—— actual

--=- reference

2.5 3 4.5 5
Time (s)

Figure 4.13 Tip point velocity component in n, direction.
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Figure 4.14 Deviation of tip point position component in n; direction.
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Deviation of Tip Point Position Component in n, Direction (m)

Deviation of Tip Point Velocity Component in n, Direction (m/s)
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Figure 4.15 Deviation of tip point position component in n, direction.

T T T T T T T T T T
0.2 -
0.15H -
0.1H -
0.05H -

ol

-0.05F E
-0.1F -

_015 L L L L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Time (s)

Figure 4.16 Deviation of tip point velocity component in n; direction.
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Deviation of Tip Point Velocity Component in n, Direction (m/s)
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Figure 4.17 Deviation of tip point velocity component in n, direction.
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Figure 4.18 First modal coordinate.
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Second Modal Coordinate

Derivative of First Modal Coordinate
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Figure 4.19 Second modal coordinate.
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Derivative of Second Modal Coordinate

Pseudostatic Value of First Modal Coordinate

N

-10 L L L L L L L L L L
0.5 1 25 45
Time (s)

Figure 4.21 Derivative of second modal coordinate.
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Figure 4.22 Pseudostatic value of first modal coordinate.
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Pseudostatic Value of Second Modal Coordinate
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Figure 4.23 Pseudostatic value of second modal coordinate.
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Figure 4.24 Derivative of pseudostatic value of first modal coordinate.
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Figure 4.26 Deviation from pseudostatic value of first modal coordinate.
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Figure 4.27 Deviation from pseudostatic value of second modal coordinate.
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Figure 4.28 Deviation from derivative of pseudostatic value of first modal
coordinate.
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Figure 4.29 Deviation from derivative of pseudostatic value of second modal
coordinate.
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Figure 4.30 Pseudostatic torque applied at joint 1.
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Pseudostatic Torque Applied at Joint 2 (Nm)

Stabilization Torque Applied at Joint 1 (Nm)
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Figure 4.31 Pseudostatic torque applied at joint 2.
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Figure 4.32 Stabilization torque applied at joint 1.
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Stabilization Torque Applied at Joint 2 (Nm)

Overall Torque Applied at Joint 1 (Nm)
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Figure 4.33 Stabilization torque applied at joint 2.
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Figure 4.34 Overall torque applied at joint 1.
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Overall Torque Applied at Joint 2 (Nm)

Figure 4.35 Overall torque applied at joint 2.

It is seen from Figures 4.9 and 4.10 that there is tip point position error due to the
deflection of the forearm, but is compensated in about 1 s for the initial deviations
of about 35 mm during the motion. There is a reverse action at the beginning of the
motion as seen in the tip point position and velocity which are given in Figures
4.14 - 4.17. The maximum tip point position tracking error components along the
trajectory after the tip point settles on the trajectory are 1.5935x10* m and —

1.3340x10* m in n, and n, directions, respectively. The tip point position error
components at the end of the motion are 3.6058x10” m and —9.6852x10° m in n,
and n, directions, respectively. The maximum overall torques applied to the joints

are in small magnitudes which is in the order of 28 Nm as seen from Figures 4.34

and 4.35.
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4.3 Numerical Simulation of Motion Control of Planar Robot with

Unmodeled Dynamics

To test the performance of the proposed control algorithm, unmodeled dynamics is
taken into consideration. The dynamics of the robot is modeled by using the first
two modes while the motion is simulated, but they are modeled by using only the
first mode while the control torques are generated. In other words the plant
dynamics is modeled by representing the link flexibility with the first two modes,
while the controller is designed by representing the link flexibility with the first
mode. The numerical simulation of motion control of the planar robot with
unmodelled dynamics is obtained by using the motion control method proposed at

Chapter 2. The same reference trajectory given in the previous section is used.

After a few trials, proper closed loop natural frequencies and damping ratios are

obtained as Srad/s, 15rad/s, 30rad/s, 0.85, 0.85 and 0.85. The

corresponding closed loop poles are given in Table 4.3.

Table 4.3 Closed loop poles used in motion control of planar robot with
unmodeled dynamics.

Closed Loop Poles
p, =—4.2500+2.6339]

p, =—4.2500-2.6339j

p; =—12.7500+7.9017]
p, =—12.7500-7.9017;
ps =—25.5000+15.8035j

ps =—25.5000-15.8035j

The sampling frequency is taken as 2500 Hz. The simulation results are given in

Figures 4.36 - 4.62.
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Tip Point Position Component in n Direction (m)

Tip Point Position Component in n, Direction (m)
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Figure 4.36 Tip point position component in n; direction.
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Figure 4.37 Tip point position component in n; direction.
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Tip Point Velocity Component in n, Direction (m/s)
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Figure 4.39 Tip point velocity component in n; direction.
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Deviation of Tip Point Position Component in n, Direction (m)

Tip Point Velocity Component in n, Direction (m/s)
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Figure 4.40 Tip point velocity component in n, direction.
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Figure 4.41 Deviation of tip point position component in n; direction.
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Deviation of Tip Point Position Component in n, Direction (m)

Deviation of Tip Point Velocity Component in n, Direction (m/s)
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Figure 4.42 Deviation of tip point position component in n, direction.
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Figure 4.43 Deviation of tip point velocity component in n; direction.
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Figure 4.44 Deviation of tip point velocity component in n, direction.
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Figure 4.45 First modal coordinate.
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Second Modal Coordinate
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Figure 4.47 Derivative of first modal coordinate.
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Figure 4.46 Second modal coordinate.
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Derivative of Second Modal Coordinate

Pseudostatic Value of First Modal Coordinate
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Figure 4.48 Derivative of second modal coordinate.
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Figure 4.49 Pseudostatic value of first modal coordinate.
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Pseudostatic Value of Second Modal Coordinate
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Figure 4.50 Pseudostatic value of second modal coordinate.
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Figure 4.51 Derivative of pseudostatic value of first modal coordinate.
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Derivative of Pseudostatic Value of Second Modal Coordinate
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Figure 4.53 Deviation from pseudostatic value of first modal coordinate.
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Figure 4.54 Deviation from pseudostatic value of second modal coordinate.
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Figure 4.55 Deviation from derivative of pseudostatic value of first modal
coordinate.
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Figure 4.56 Deviation from derivative of pseudostatic value of second modal
coordinate.
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Figure 4.57 Pseudostatic torque applied at joint 1.
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Pseudostatic Torque Applied at Joint 2 (Nm)
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Figure 4.58 Pseudostatic torque applied at joint 2.
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Figure 4.59 Stabilization torque applied at joint 1.
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Figure 4.60 Stabilization torque applied at joint 2.
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Figure 4.61 Overall torque applied at joint 1.
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Overall Torque Applied at Joint 2 (Nm)

Figure 4.62 Overall torque applied at joint 2.

When the figures are examined, it is seen that it takes about 1 s in settling the tip
point to the desired trajectory for the initial deviations of about 35 mm. There is
reverse action at the beginning of the motion as seen in tip point position and
velocity which are given in Figures 4.41 - 4.44. The maximum tip point position
tracking error components along the trajectory after the tip point settles on the
trajectory are 5.0190x10* m and —7.4560x10* m in m, and mn, directions,
respectively. The tip point position error components at the end of the motion are —
3.5691x10° m and 2.2783x10” m in n, and n, directions, respectively. The
maximum overall torques applied to the joints are in small magnitudes which is in
the order of 22 Nm as seen from Figures 4.61 and 4.62. The results show that the

proposed control method works satisfactorily even though only the first mode is

taken into consideration in the controller design.
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4.4 Numerical Simulation of Motion Control of Planar Robot by Using

Computed Torque Method

The computed torque method (control) is one of the conventional control methods
used in robot control. It is known also under the name of inverse dynamics control.
In this section, numerical simulation of motion control of the planar robot with
flexible forearm is presented by using the computed torque method designed as if
the robot is rigid. In other words, the plant dynamics are modeled by using the
flexible robot with two modes, while the controller is designed by the robot as if it

is rigid.

The equations of motion of a rigid robot can be expressed as

M(q)ij+Cl(q,q)q+G(q)=T 4.8)

where M(q) is the mass matrix, C(q,q) is the Coriolis and centrifugal force term
matrix, G(q) is the gravitational vector, T is the external torque vector and q is the

vector of joint variables. Equation (4.8) can be written as

M(q)i+B(g,q)=T (4.9)

where B(q,q) is given as

B(q,4)=C(q,9)a+G(q) (4.10)

To cancel the nonlinear terms and to decouple the dynamics of each link computed

torque control can be selected in the form of

T =M(q)u+B(q,q) (4.11)

where u is an auxiliary control input to be designed. If Equation (4.11) is

substituted into Equation (4.9), the following equation is obtained
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q=u 4.12)
A typical choice for u is
u=§ +K,(d" -4q)+K,(q" -q) (4.13)

where superscript * stands for the desired values, K, and Ky are the proportional
and derivative control gains. If Equation (4.12) is substituted into Equation (4.13)

the following equation is obtained.

E+Ke+K e=0 (4.14)
Where € is given as

e=(q —q) (4.15)

Equation (4.14) represents a set of second order differential equations. Therefore,

K, and Kj can be selected as

K, =diagl® ?) i=L...n (4.16)
K, =diag(2{, ) i=1....n (4.17)
where ©, and €, are the desired natural frequencies and damping ratios of the

closed loop system and n is the degree of the freedom of the robot.

The first two of the four closed loop natural frequencies and damping ratios given
in Section 4.2 are used for the values required by the Equations (4.16) and (4.17).
It is done so in order to obtain comparable responses. In other words, the closed

loop natural frequencies and damping ratios are taken as 5 rad/s, 15 rad/s, 0.85 and
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0.85 for this simulation. The corresponding closed loop poles are given in Table

4.4.

Table 4.4 Closed loop poles used in motion control of planar robot by using
computed torque method.

Closed Loop Poles
p, =—4.2500+2.6339]

p, =—4.2500—2.6339]
p, =—12.7500+7.9017]

p, =—12.7500—7.9017]

The same reference trajectory given in Section 4.2 is used. The robot motion
cannot be simulated when the sampling frequency is smaller than 2220 Hz. So, the
sampling frequency is taken as 2500 Hz. The simulation results are given in

Figures 4.63 - 4.77.
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Figure 4.63 Tip point position component in n; direction.
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Tip Point Position Component in n, Direction (m)
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Figure 4.64 Tip point position component in n, direction.
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Figure 4.65 Workspace and tip point position.
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Tip Point Velocity Component in n, Direction (m/s)
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Figure 4.67 Tip point velocity component in n, direction.
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Deviation of Tip Point Position Component in n, Direction (m)

Deviation of Tip Point Position Component in n, Direction (m)
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Figure 4.68 Deviation of tip point position component in n; direction.
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Figure 4.69 Deviation of tip point position component in n, direction.
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Deviation of Tip Point Velocity Component in n, Direction (m/s)

Deviation of Tip Point Velocity Component in n, Direction (m/s)
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Figure 4.71 Deviation of tip point velocity component in n, direction.
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First Modal Coordinate
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Figure 4.72 First modal coordinate.
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Figure 4.73 Second modal coordinate.
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Derivative of First Modal Coordinate
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Figure 4.74 Derivative of first modal coordinate.
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Figure 4.75 Derivative of second modal coordinate.
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Torque Applied at Joint 1 (Nm)
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Figure 4.76 Torque applied at joint 1.

Torque Applied at Joint 2 (Nm)
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Figure 4.77 Torque applied at joint 2.

169




The maximum tip point position tracking error components along the trajectory are
0.1388 m and —0.0582 m in n, and n, directions, respectively. The tip point

position error components at the end of the motion are —6.0119x10” m and —
9.9180x10™* m, respectively. The maximum overall torques applied to the joints

are in the order of 22 Nm as seen from Figures 4.76 and 4.77.

When the Figures 4.14, 4.68 and 4.15, 4.69 are compared, it is seen that the tip
point tracking performance is greatly improved when the proposed control method
is used. It should be also noted that the proposed method can be simulated by
taking the sampling frequency 200 Hz or above, but the computed torque method
can be simulated by taking the sampling frequency 2220 Hz or above for the robot

considered here.

4.5 Numerical Simulation of Force and Motion Control of Planar
Robot

In this section, the numerical simulation of the force and motion control of planar
robot with flexible forearm is presented by using the force and motion control
method proposed at Chapter 2. The tip point is required to track a circular arc. The

constraint equation can be written in terms of the tip point variables as
¢(P1’P2):(P1_Plc)2+(P2_P2C)2_R2:O (4.18)

This equation represents a circular trajectory in the plane of motion. P, and P,

represent the center coordinates of the circle in P, and P, directions respectively
with respect to the fixed frame and R is the radius of the circle. Therefore, the tip
point position components in fixed frame can be expressed in terms of a trajectory

length variable (s) as follows:
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P =P +Rcos( (4.19)

|
N——

| o

P,=P, +Rsin( j (4.20)

Here, s is the distance covered on the trajectory. The required variation of the
Lagrange multiplier (i.e. the contact force) is formed so that it is composed of a
cycloidal rise, a constant level and a cycloidal return. This function also provides

continuous boundary conditions and it is represented as

}"_OKt—t—‘sinEt] forO<t<t,
t, 2t ot
A(t)=49A, fort, <t<t, 4.21)
A, A (t_tz)_(tf —tz)Sin 2n(t—t,) for t, <t<t,
(tf _tz) 2n (tf _tz)

where A" is the desired Lagrange multiplier, 7»0* is its desired constant value, t,

is the time for the end of cycloidal rise motion, t, is the time for the beginning of

the cycloidal return motion and tf is the time to complete the motion. The same
function for the reference tip point trajectory given in Section 4.2 is used in this

simulation, too.
After a few trials, proper closed loop natural frequencies and damping ratios are

obtained as 15 rad/s, 20 rad/s, 30 rad/s, 85 rad/s, 0.85, 0.85, 0.85 and 1. The

corresponding closed loop poles are given in Table 4.5.
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Table 4.5 Closed loop poles used in force and motion control of planar robot.

Closed Loop Poles
p, =-12.7500+7.9017]

p, =—12.7500—7.9017]
p, =—17.0000+10.5357]
p, =—17.0000-10.5357]
p, =—30.0000

p, =—72.2500+44.7765]
p, =—72.2500—44.7765]

For the desired Lagrange multiplier profile, cycloidal rise and cycloidal return
periods are taken as 1.5 s constant level period is taken as 7 s and the desired
constant value of the Lagrange multiplier is taken as 50 N. The sampling

frequency is taken as 500 Hz. The simulation results are given in Figures 4.78 -

4.104.
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Figure 4.78 Tip point position on the constraint surface.
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Tip Point Velocity on the Constraint Surface (m/s)
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Figure 4.79 Workspace and tip point position.
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Figure 4.80 Tip point velocity on the constraint surface.
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Impulse of Lagrange Multiplier (Ns)
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Figure 4.81 Impulse of Lagrange multiplier.
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Figure 4.82 Lagrange multiplier.
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Deviation of Tip Point Position on the Constraint Surface (m)

Deviation of Tip Point Velocity on the Constraint Surface (m/s)
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Figure 4.84 Deviation of tip point velocity on the constraint surface.
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Deviation of Impulse of Lagrange Multiplier (Ns)
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Figure 4.86 Deviation of Lagrange multiplier.
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First Modal Coordinate
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Figure 4.88 Second modal coordinate.
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Derivative of First Modal Coordinate
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Figure 4.90 Derivative of second modal coordinate.
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Figure 4.89 Derivative of first modal coordinate.
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Pseudostatic Value of First Modal Coordinate
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Figure 4.92 Pseudostatic value of second modal coordinate.
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Figure 4.94 Derivative of pseudostatic value of second modal coordinate.
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Figure 4.96 Deviation from pseudostatic value of second modal coordinate.
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Figure 4.97 Deviation from derivative of pseudostatic value of first modal

coordinate.
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Figure 4.98 Deviation from derivative of pseudostatic value of second modal
coordinate.
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Pseudostatic Torque Applied at Joint 1 (Nm)

Pseudostatic Torque Applied at Joint 2 (Nm)
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Figure 4.100 Pseudostatic torque applied at joint 2.

183



Stabilization Torque Applied at Joint 1 (Nm)

Stabilization Torque Applied at Joint 2 (Nm)
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Figure 4.102 Stabilization torque applied at joint 2.
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Overall Torque Applied at Joint 2 (Nm)

Overall Torque Applied at Joint 1 (Nm)

35

Figure 4.104 Overall torque applied at joint 2.
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It is seen from Figure 4.83 that there is tip point position error on the constraint
surface due to the mispositioning, but is compensated in about 2 s for the initial
deviations of about 50 mm during the motion. There is a reverse action at the
beginning of the motion in the tip point position and velocity on the constraint
surface as well as the Lagrange multiplier and its impulse which are given in
Figures 4.83 - 4.86. The maximum tip point position tracking error on the
constraint surface along the trajectory after the settling time is 1.0952x10” m. The
corresponding maximum tip point position tracking error components are —

1.0944x10° m and 4.1090x10° m in m, and n, directions, respectively. The

maximum Lagrange multiplier error after the settling time is 0.1046 N. The
maximum overall torques applied to the joints are in small magnitudes in the order

of 32 Nm as seen in Figures 4.103 and 4.104.

4.6 Numerical Simulation of Force and Motion Control of Planar

Robot with Unmodeled Dynamics

The plant dynamics are modeled by representing the link flexibility with the first
two modes, while the controller is designed by representing the link flexibility
with the first mode. The numerical simulation of force and motion control of
planar robot with unmodeled dynamics is obtained by using the force and motion
control method proposed at Chapter 2. For the tip point, the same reference
trajectory and reference Lagrange multiplier considered in the previous section are

used.

After a few trials, closed loop natural frequencies and damping ratios that give
acceptable response are obtained as 13.5 rad/s, 27 rad/s, 40 rad/s, 0.85, 0.85 and 1.
However, the simulation results indicate that, although the steady state errors are
reasonably small, the maximum Lagrange multiplier error and the maximum start
up torque happen to be quite large in the order of 787 N and 5644 Nm,

respectively.
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In order to obtain smaller start up torques and smaller Lagrange multiplier error,
gain scheduling is made for the closed loop natural frequencies by increasing them
from small values to their final values as a function of tip point position tracking

error according to the following exponential expression:

s f -k f s

0. —0.c . —O. _

wm_ (8): ni n;( +( ni km Je ke/e, (422)
1-e" 1-e

where ® (€) represents the closed loop natural frequency that is scheduled at an

instant where error is €, ® " and (yomf represent the smallest and largest values of

®, ., € stands for the initial error in absolute value, k is the constant coefficient of

ni *

the exponential expression. In the simulations, it is taken as 2.

Besides obtaining smaller start up torques and smaller initial Lagrange multiplier,
smaller settling time and smaller maximum overshoot are also obtained as a result

of the gain scheduling.

After a few trials, it has been found that reasonable Lagrange multiplier error and
start up torques are obtained by the application of the gain scheduling even to only
one of the dominant closed loop natural frequencies. Proper initial and final closed

loop natural frequencies and damping ratios are obtained as , =13.5 rad/s,

n

®,,’ =5 rad/s, ,, =27 radls, ® =40 rad/s, {, =085, {,,=0.85, {,=1.

n

The corresponding closed loop poles are given in Table 4.6.
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Table 4.6 Closed loop poles used in force and motion control of planar robot with
unmodeled dynamics.

Closed Loop Poles
p, =-11.4750+7.1116]

p, =—11.4750-7.1116
p,’ =—4.2500+2.6339j
p, =-22.9500+14.2231j
p,’ =—4.2500-2.6339j

p, =—22.9500-14.2231j
ps =—40.0000

The sampling frequency is taken as 500 Hz. The simulation results are given in

Figures 4.105 - 4.131.
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Figure 4.105 Tip point position on the constraint surface.
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Tip Point Velocity on the Constraint Surface (m/s)
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Figure 4.106 Workspace and tip point position.
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Figure 4.107 Tip velocity on the constraint surface.
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Impulse of Lagrange Multiplier (Ns)
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Figure 4.108 Impulse of Lagrange multiplier.
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Figure 4.109 Lagrange multiplier.
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Deviation of Tip Point Position on the Constraint Surface (m)

Deviation of Tip Point Velocity on the Constraint Surface (m/s)
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Figure 4.111 Deviation of tip point velocity on the constraint surface.
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Deviation of Impulse of Lagrange Multiplier (Ns)
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Figure 4.113 Deviation of Lagrange multiplier.
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Figure 4.115 Second modal coordinate.
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Derivative of First Modal Coordinate

-0.02

-0.04

-0.06

-0.08

Derivative of Second Modal Coordinate

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11
Time (s)
Figure 4.116 Derivative of first modal coordinate.
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Figure 4.117 Derivative of second modal coordinate.
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Pseudostatic Value of First Modal Coordinate

0.005

-0.005

-0.01

-0.015

-0.02

-0.025 -
-0.03 -
-0.035 L L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10 11
Time (s)
Figure 4.118 Pseudostatic value of first modal coordinate
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Figure 4.119 Pseudostatic value of second modal coordinate.
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Figure 4.121 Derivative of pseudostatic value of second modal coordinate.
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Figure 4.123 Deviation from pseudostatic value of second modal coordinate.
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Deviation from Derivative of Pseudostatic Value of First Modal Coordinate

Figure 4.124 Deviation from derivative of pseudostatic value of first modal
coordinate.
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Figure 4.125 Deviation from derivative of pseudostatic value of second modal
coordinate.
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Pseudostatic Torque Applied at Joint 1 (Nm)

Pseudostatic Torque Applied at Joint 2 (Nm)
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Figure 4.127 Pseudostatic torque applied at joint 2.
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Stabilization Torque Applied at Joint 1 (Nm)

Stabilization Torque Applied at Joint 2 (Nm)
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Figure 4.129 Stabilization torque applied at joint 2.
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Overall Torque Applied at Joint 2 (Nm)

Overall Torque Applied at Joint 1 (Nm)

35

Figure 4.131 Overall torque applied at joint 2.
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It is seen from the figures that there is a delay in settling to the desired trajectory
compared to the previous simulation. The tip point position error on the constraint
surface due to the mispositioning is about 50 mm as seen from Figure 4.83. There
is a reverse action at the beginning of the motion as seen in the tip point position
and velocity on the constraint surface and the Lagrange multiplier and its impulse
which are given in Figures 4.110 - 4.113. The maximum tip point position tracking
error on the constraint surface along the trajectory after the settling time is —
3.9177x10”° m. The corresponding maximum tip point position tracking error

components are 2.8074x10”° m and 2.7325x10” m in n, and n, directions,

respectively. The maximum Lagrange multiplier error after the settling time is
0.145 N. The maximum overall torques applied to the joints are in small

magnitudes in the order of 32 Nm as seen from Figures 4.130 and 4.131.
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CHAPTER 5

NUMERICAL SIMULATIONS FOR SPATIAL ROBOT

In this section, a spatial three degrees of freedom robot with two flexible links is
taken into consideration. Similar to the previous chapter, the numerical simulations

are carried out in three parts.

In the first part, the uncontrolled motion of the robot as a flexible double pendulum

is simulated for the verification of the dynamic equations.

In the second part, firstly, the motion control of the tip point is simulated by using
the proposed method. Then, the measurement noises are taken into consideration

and the motion control of the robot including measurement noises is simulated.

In the third part, firstly, the force and motion control of the tip point is simulated.
Then, the measurement noises are again taken into consideration and the force and

motion control of the robot including measurement noises is simulated.

5.1 Numerical Simulation of Uncontrolled Motion of Spatial Robot

The dynamic equations of the spatial robot with two flexible arms have very long
and complicated expressions. Therefore, it is important to verify the dynamic
equations before applying the proposed control methods to the robot. To verify the
derivation of the dynamic equations and the code written for dynamic equations,
the numerical simulation of the uncontrolled motion of the spatial robot with two
flexible arms is presented in this section. The numerical simulation is obtained for

the motion of the flexible robot as a double pendulum.

203



In the simulations, the axial, torsional and shear deformations are assumed to be
negligible. The bending deformations are approximated by taking the first two
bending modes in xy and xz planes for link 2 and link 3. Therefore, the vector of

the modal variables has the following form

_Tl (2)

n” = 1(2)} (5.1)
1M
[ 6

n® = m@)} (52
RYP

Fixed-free boundary conditions are used for both links. The links are assumed to
have square cross section. Link 2 and link 3 are divided into five finite elements.
The physical parameters of the three link spatial robot with flexible two arms

considered here are given in Table 5.1.

Table 5.1 Physical parameters of the spatial robot used in uncontrolled motion.

Parameter Value
Length of link 1 (m) 1
Length of link 2 (m) 1.5
Length of link 3 (m) 1.4
Mass of link 1 (kg) 1
Mass of link 2 (kg) 1
Mass of link 3 (kg) 1
Density of link 1 (kg/m’) 7860
Density of link 2 (kg/m”) 2710
Density of link 3 (kg/m”) 2710

Modulus of elasticity of link 2 (Pa) 70x10°
Modulus of elasticity of link 3 (Pa) 70x10°

Lumped mass at point A (kg) 2
Lumped mass at point B (kg) 1.5
Lumped mass at point C (kg) 5
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The numerical values of the natural frequencies associated with natural modes are
35.9598 rad/s, 225.4660 rad/s in xy plane and 35.9598 rad/s, 225.4660 rad/s in xz
plane for Body 2 and 42.7293 rad/s, 267.9101rad/s in xy plane and 42.7293 rad/s,
267.9101 rad/s in xz plane for Body 3, respectively. It is assumed that the robot
starts its motion from rest with no initial deflections. The initial joint angular

positions are taken as 0, =0 degree, 0, =280 degrees and 6, =5 degrees. The

sampling frequency is taken as 6000 Hz. The simulation results are given in

Figures 5.1 - 5.22.
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Figure 5.1 Angular position of joint 2.
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Figure 5.3 Angular velocity of joint 2.
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Figure 5.4 Angular velocity of joint 3.
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Figure 5.5 First modal coordinate of body 2.
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Figure 5.6 Second modal coordinate of body 2.
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Figure 5.7 First modal coordinate of body 3.
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Derivative of First Modal Coordinate of Body 2
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Figure 5.8 Second modal coordinate of body 3.
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Figure 5.9 Derivative of first modal coordinate of body 2.
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Derivative of Second Modal Coordinate of Body 2
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Figure 5.11 Derivative of first modal coordinate of body 3.
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Derivative of Second Modal Coordinate of Body 3

Tip Point Position Component in n, Direction (m)
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Figure 5.13 Tip point position component in n; direction.

211



Tip Point Position Component in n, Direction (m)
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Figure 5.14 Tip point position component in n, direction

Figure 5.15 Tip point velocity component in n; direction.
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Tip Point Velocity Component in n, Direction (m/s)
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Figure 5.17 Euler angle v,.
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Figure 5.19 Derivative of Euler angle 7».
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Figure 5.21 Deformation displacement component of point B of body 2 in n,®

direction.
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Figure 5.22 Deformation displacement component of point B of body 2 in n,*’

direction.

When Figures 5.1 - 5.22 are examined, it is seen that they are as expected. Since
the only external force on the robot is the gravitational force which is in xy plane,
there is no motion in xz plane. Therefore, angular position of joint 1 remains
constant and modal coordinates in xz plane for Body 2 and Body 3 are zero. The
time derivatives of these variables are also zero. As a result of that the variables

relating to these situations are not plotted.

5.2 Numerical Simulation of Motion Control of Spatial Robot

In this section, the numerical simulation of motion control of the spatial robot with
flexible two arms is presented by using the motion control method proposed at
Chapter 2. The tip point is required to track a straight line. The same function for

the reference tip point trajectory given in Chapter 4 is used.
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The physical parameters of the three link spatial robot with flexible two arms used

in the controlled motion simulations are given in Table 5.2.

Table 5.2 Physical parameters of the spatial robot used in controlled motion.

Parameter Value
Length of link 1 (m) 0.5
Length of link 2 (m) 1.5
Length of link 3 (m) 1.4
Mass of link 1 (kg) 1
Mass of link 2 (kg) 1.5
Mass of link 3 (kg) 1
Density of link 1 (kg/m’) 7860
Density of link 2 (kg/m”) 2710
Density of link 3 (kg/m”) 2710

Modulus of elasticity of link 2 (Pa) 70x10°
Modulus of elasticity of link 3 (Pa) 70x10°

Lumped mass at point A (kg) 1.5
Lumped mass at point B (kg) 1
Lumped mass at point C (kg) 2

The numerical values of the natural frequencies associated with natural modes are
44.042 rad/s, 276.14 rad/s in xy plane and 44.042 rad/s, 276.14 rad/s rad/s in xz
plane for Body 2 and 42.7293 rad/s, 267.9101rad/s in xy plane and 42.7293 rad/s,
267.9101 rad/s in xz plane for Body 3, respectively.

After a few trials, proper closed loop natural frequencies and damping ratios are
obtained as 5 rad/s, 10 rad/s, 15 rad/s, 43 rad/s, 43 rad/s, 44 rad/s, 44 rad/s, 268
rad/s, 268 rad/s, 276 rad/s, 276 rad/s, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85,
0.85, 0.85 and 0.85. The corresponding closed loop poles are given in Table 5.3.
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Table 5.3 Closed loop poles used in motion control of spatial robot.

Closed Loop Poles
p, =—4.2500+2.6339]j

p, =—4.2500—2.6339]
p, =—8.5000+5.2678;

p, =—8.5000—5.2678;

p, =—12.7500+7.9017]

p, =—12.7500-7.9017

Py s =—36.5500+22.6517]
Poo =—36.5500—22.6517
Py = —37.4000+23.1784]
P15 1 = —37.4000—23.1784j
Dis 1o = —227.8000+141.1778]
D115 =—227.8000—141.1778]
Pro0 = —234.6000+145.3920]

Pai =—234.6000-145.3920j

The sampling frequency is taken as 500 Hz. The simulation results are presented in

Figures 5.23 - 5.91.
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Tip Point Position Component in n, Direction (m)
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Figure 5.23 Tip point position component in n; direction.
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Figure 5.24 Tip point position component in n; direction.
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Tip Point Position Component in Ny Direction (m)

Tip Point Velocity Component in n, Direction (m/s)
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Figure 5.25 Tip point position component in n3 direction.
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Figure 5.26 Tip point velocity component in n; direction.
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Tip Point Velocity Component in n, Direction (m/s)
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Figure 5.27 Tip point velocity component in n, direction.
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Figure 5.28 Tip point velocity component in n3 direction.
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Deviation of Tip Point Position Component in n, Direction (m)

Deviation of Tip Point Position Component in n, Direction (m)
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Figure 5.29 Deviation of tip point position component in n; direction.
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Figure 5.30 Deviation of tip point position component in n, direction.
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Deviation of Tip Point Position Component in ng Direction (m)

Deviation of Tip Point Velocity Component in n, Direction (m/s)

0.005r T T T T T T T T T
oF

-0.005} -
-0.01f -
-0.015} -
-0.02 -

-0.025 L L L L 1 1 L 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

Figure 5.31 Deviation of tip point position component in n3 direction.
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Figure 5.32 Deviation of tip point velocity component in n; direction.
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Deviation of Tip Point Velocity Component in n, Direction (m/s)
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Figure 5.33 Deviation of tip point velocity component in n, direction.
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Figure 5.35 First modal coordinate of body 2 for bending in xy plane.
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Figure 5.36 Second modal coordinate of body 2 for bending in xy plane.
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Figure 5.37 First modal coordinate of body 2 for bending in xz plane.
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Figure 5.38 Second modal coordinate of body 2 for bending in xz plane.
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Figure 5.39 First modal coordinate of body 3 for bending in xy plane.
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Figure 5.40 Second modal coordinate of body 3 for bending in xy plane.
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Figure 5.41 First modal coordinate of body 3 for bending in xz plane.
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Figure 5.42 Second modal coordinate of body 3 for bending in xz plane.
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Figure 5.43 Derivative of first modal coordinate of body 2 for bending in xy plane.
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Figure 5.44 Derivative of second modal coordinate of body 2 for bending in xy
plane.
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Figure 5.45 Derivative of first modal coordinate of body 2 for bending in xz plane.
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Figure 5.46 Derivative of second modal coordinate of body 2 for bending in xz
plane.
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Figure 5.47 Derivative of first modal coordinate of body 3 for bending in xy plane.
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Figure 5.48 Derivative of second modal coordinate of body 3 for bending in xy
plane.
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Figure 5.49 Derivative of first modal coordinate of body 3 for bending in xz plane.
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Figure 5.50 Derivative of second modal coordinate of body 3 for bending in xz
plane.
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Figure 5.51 Pseudostatic value of first modal coordinate of body 2 for bending in
Xy plane.
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Figure 5.52 Pseudostatic value of second modal coordinate of body 2 for bending
in Xy plane.
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Figure 5.53 Pseudostatic value of first modal coordinate of body 2 for bending in
xz plane.
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Figure 5.54 Pseudostatic value of second modal coordinate of body 2 for bending
in xz plane.
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Figure 5.55 Pseudostatic value of first modal coordinate of body 3 for bending in
Xy plane.
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Figure 5.56 Pseudostatic value of second modal coordinate of body 3 for bending
in Xy plane.
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Figure 5.57 Pseudostatic value of first modal coordinate of body 3 for bending in
xz plane.
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Figure 5.58 Pseudostatic value of second modal coordinate of body 3 for bending
in xz plane.
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Figure 5.59 Derivative of pseudostatic value of first modal coordinate of body 2
for bending in xy plane.
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Figure 5.60 Derivative of pseudostatic value of second modal coordinate of body 2
for bending in xy plane.
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Figure 5.61 Derivative of pseudostatic value of first modal coordinate of body 2
for bending in xz plane.
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Figure 5.62 Derivative of pseudostatic value of second modal coordinate of body 2
for bending in xz plane.

238



N

T T
Bending in xy Plane

1k ]

Derivative of Pseudostatic Value of First Modal Coordinate of Body 3
w
1
1

Figure 5.63 Derivative of pseudostatic value of first modal coordinate of body 3
for bending in xy plane.
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Figure 5.64 Derivative of pseudostatic value of second modal coordinate of body 3
for bending in xy plane.
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Figure 5.65 Derivative of pseudostatic value of first modal coordinate of body 3
for bending in xz plane.
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Figure 5.66 Derivative of pseudostatic value of second modal coordinate of body 3
for bending in xz plane.
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Figure 5.67 Deviation from pseudostatic value of first modal coordinate of body 2
for bending in xy plane.
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Figure 5.68 Deviation from pseudostatic value of second modal coordinate of body
2 for bending in xy plane.
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Figure 5.69 Deviation from pseudostatic value of first modal coordinate of body 2
for bending in xz plane.
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Figure 5.70 Deviation from pseudostatic value of second modal coordinate of body
2 for bending in xz plane.
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Figure 5.71 Deviation from pseudostatic value of first modal coordinate of body 3
for bending in xy plane.
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Figure 5.72 Deviation from pseudostatic value of second modal coordinate of body
3 for bending in xy plane.
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Figure 5.73 Deviation from pseudostatic value of first modal coordinate of body 3
for bending in xz plane.

I

T T
Bending in xz Plane

Deviation from Pseudostatic Value of Second Modal Coordinate of Body 3

Figure 5.74 Deviation from pseudostatic value of second modal coordinate of body
3 for bending in xz plane.
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Figure 5.75 Deviation from derivative of pseudostatic value of first modal
coordinate of body 2 for bending in xy plane.
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Figure 5.76 Deviation from derivative of pseudostatic value of second modal
coordinate of body 2 for bending in xy plane.

245



004 T T T T T T T T T T
Bending in xz Plane

Deviation from Derivative of Pseudostatic Value of First Modal Coordinate of Body 2

0.5 1 1.5 2 25 3 3.5 4 4.5 5

Figure 5.77 Deviation from derivative of pseudostatic value of first modal
coordinate of body 2 for bending in xz plane.
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Figure 5.78 Deviation from derivative of pseudostatic value of second modal
coordinate of body 2 for bending in xz plane.
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Figure 5.79 Deviation from derivative of pseudostatic value of first modal
coordinate of body 3 for bending in xy plane.
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Figure 5.80 Deviation from derivative of pseudostatic value of second modal
coordinate of body 3 for bending in xy plane.
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Figure 5.81 Deviation from derivative of pseudostatic value of first modal
coordinate of body 3 for bending in xz plane.
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Figure 5.84 Pseudostatic torque applied at joint 2.
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Pseudostatic Torque Applied at Joint 3 (Nm)
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Figure 5.85 Pseudostatic torque applied at joint 3.
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Figure 5.86 Stabilization torque applied at joint 1.
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Stabilization Torque Applied at Joint 2 (Nm)
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Figure 5.87 Stabilization torque applied at joint 2.
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Figure 5.88 Stabilization torque applied at joint 3.

251

4.5




Overall Torque Applied at Joint 1 (Nm)
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Figure 5.89 Overall torque applied at joint 1.
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Figure 5.90 Overall torque applied at joint 2.
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Figure 5.91 Overall torque applied at joint 3.

As seen from Figures 5.23 - 5.25 the initial error due to the mispositioning of the

tip point is 0.03 m, —0.05 m and -0.02 m in n,, n, and n, directions, respectively.

However, the effect of initial mispositioning can be compensated in about 1 s.
There is a reverse action at the beginning of the motion as seen in the tip point
velocity which is given in Figures 5.32 - 5.34. The maximum tip point position
tracking error components along the trajectory after the tip point settles on the

trajectory are 4.2849x10” m, —8.6660x10° m and —9.5643x10° m in n,, n, and
n, directions, respectively. The tip point position error components at the end of
the motion are —3.4359x10” m, 2.1104x10° m and —5.6728x10” m in n,, n, and
n, directions, respectively. The maximum overall torques applied to the joints are

in the order of 109 Nm as seen from Figures 5.89 - 5.91.
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5.3 Numerical Simulation of Motion Control of Spatial Robot with

Measurement Noises

In this section, the numerical simulation of the motion control of the spatial robot
including measurement noises is presented by using the motion control method
proposed at Chapter 2. The measurement noises are considered for the state
variables that are used for the generation of the stabilizing control torques (i.e., the
measured variables). They are the tip point coordinates and their rates and the

modal variables of Body 2 and Body 3 and their rates.

The measurement noises are generated by using normally distributed random
numbers with zero mean and specific standard deviation. 1 % deviation from the
mean value of each variable is assumed to obtain the standard deviation for each

variable.

A first order low pass filter whose transfer function given below is used to filter

the measured variables.

G(s)=—= (5.3)

Where . stands for the crossover frequency. Other types of filters, eg. Kalman

filters, can also be used to filter the measured variables.

The same reference tip point trajectory considered in the previous section is used.
After a few trials, closed loop natural frequencies and damping ratios that give
acceptable response are obtained as 20 rad/s, 25 rad/s, 30 rad/s, 43 rad/s, 43 rad/s,
44 rad/s, 44 rad/s, 268 rad/s, 268 rad/s, 276 rad/s, 276 rad/s, 0.85, 0.85, 0.85, 0.85,
0.85, 0.85, 0.85, 0.85, 0.85, 0.85 and 0.85. The simulation results give the
maximum start up torque in the order of 156 Nm and the order of 59 Nm of it is
used for stabilization. Thefore, the maximum start up torque can be decreased by

reducing the stabilization part of it.
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In order to obtain smaller start up torque, gain scheduling is applied to all of the

dominant natural frequencies. After a few trials, proper initial and final closed loop

natural frequencies and damping ratios are obtained as ®,° =5 rad/s, mn]f =20

rad/s, ®, =10 rad/s, ®, =25 rad/s, o =15 radls, o, =30 rad/s,

g0 =268 rad/s, ®,,,, =276 rad/s and

®,,s =43 radls, ®,,=44 rad/s, ®

n n

€, =0.85 (i=1,2,...,11). The corresponding closed loop poles are given in Table

54.
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Table 5.4 Closed loop poles used in motion control of spatial robot with
measurement noises.

Closed Loop Poles

p,” =—4.2500+2.6339j

p,' =—17.0000+10.5357]

p, =-4.2500—2.6339j

p,’ =-17.0000-10.5357]

p,’ =-8.5000+5.2678;

p, =-21.2500+13.1696]

p, =-8.5000-5.2678]

p, =-21.2500-13.1696]

ps’ =—12.7500+7.9017]

ps' =-25.5000+15.8035]

p, =—12.7500~7.9017]

P, =-25.5000-15.8035]
P, g =—36.5500+22.6517]
Do = —36.5500—22.6517]
P> =—37.4000+23.1784;
Pis1s = —37.4000—23.1784]
Pis1e = —227.8000+141.1778;
Pir1s = —227.8000—141.1778;
P10 20 = —234.6000+145.3920j

P21 =—234.6000-145.3920j

The sampling frequency is taken as 500 Hz. After a few trials, a proper crossover
frequency for the filter is found as 276 rad/s. The simulation results are presented

in Figures 5.92 - 5.182.
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Figure 5.92 Tip point position component in n; direction.
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Figure 5.93 Tip point position component in n; direction.
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Tip Point Position Component in Ny Direction (m)
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Figure 5.94 Tip point position component in n3 direction.
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Figure 5.95 Tip point velocity component in n; direction.
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Tip Point Velocity Component in n, Direction (m/s)
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Figure 5.97 Tip point velocity component in n3 direction.
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Deviation of Tip Point Position Component in n, Direction (m)
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Figure 5.98 Deviation of tip point position component in n; direction.
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Figure 5.99 Deviation of tip point position component in n, direction.
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Figure 5.100 Deviation of tip point position component in n3 direction.
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Figure 5.101 Deviation of tip point velocity component in n; direction.
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Figure 5.103 Deviation of tip point velocity component in n3 direction.
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Figure 5.104 First modal coordinate of body 2 for bending in xy plane.
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Figure 5.105 Second modal coordinate of body 2 for bending in xy plane.
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Figure 5.107 Second modal coordinate of body 2 for bending in xz plane.
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Figure 5.108 First modal coordinate of body 3 for bending in xy plane.
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Figure 5.109 Second modal coordinate of body 3 for bending in xy plane.
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Figure 5.110 First modal coordinate of body 3 for bending in xz plane.
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Figure 5.111 Second modal coordinate of body 3 for bending in xz plane.
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Figure 5.112 Derivative of first modal coordinate of body 2 for bending in xy
plane.
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Figure 5.113 Derivative of second modal coordinate of body 2 for bending in xy
plane.
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Figure 5.114 Derivative of first modal coordinate of body 2 for bending in xz
plane.
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Figure 5.115 Derivative of second modal coordinate of body 2 for bending in xz
plane.
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Figure 5.116 Derivative of first modal coordinate of body 3 for bending in xy
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Figure 5.117 Derivative of second modal coordinate of body 3 for bending in xy
plane.
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Figure 5.118 Derivative of first modal coordinate of body 3 for bending in xz
plane.
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Figure 5.119 Derivative of second modal coordinate of body 3 for bending in xz
plane.
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Figure 5.120 Pseudostatic value of first modal coordinate of body 2 for bending in
Xy plane.
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Figure 5.121 Pseudostatic value of second modal coordinate of body 2 for bending
in xy plane.
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Figure 5.122 Pseudostatic value of first modal coordinate of body 2 for bending in
xz plane.
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Figure 5.123 Pseudostatic value of second modal coordinate of body 2 for bending
in xz plane.
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Figure 5.124 Pseudostatic value of first modal coordinate of body 3 for bending in
Xy plane.
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Figure 5.125 Pseudostatic value of second modal coordinate of body 3 for bending
in xy plane.
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Figure 5.126 Pseudostatic value of first modal coordinate of body 3 for bending in
xz plane.
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Figure 5.127 Pseudostatic value of second modal coordinate of body 3 for bending
in xz plane.
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Figure 5.128 Derivative of pseudostatic value of first modal coordinate of body 2
for bending in xy plane.
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Figure 5.129 Derivative of pseudostatic value of second modal coordinate of body
2 for bending in xy plane.
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Figure 5.130 Derivative of pseudostatic value of first modal coordinate of body 2
for bending in xz plane.
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Figure 5.131 Derivative of pseudostatic value of second modal coordinate of body
2 for bending in xz plane.
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Figure 5.132 Derivative of pseudostatic value of first modal coordinate of body 3
for bending in xy plane.
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Figure 5.133 Derivative of pseudostatic value of second modal coordinate of body
3 for bending in xy plane.
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Figure 5.134 Derivative of pseudostatic value of first modal coordinate of body 3
for bending in xz plane.
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Figure 5.135 Derivative of pseudostatic value of second modal coordinate of body
3 for bending in xz plane.
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Figure 5.136 Deviation from pseudostatic value of first modal coordinate of body
2 for bending in xy plane.
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Figure 5.137 Deviation from pseudostatic value of second modal coordinate of
body 2 for bending in xy plane.
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Figure 5.138 Deviation from pseudostatic value of first modal coordinate of body
2 for bending in xz plane.
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Figure 5.139 Deviation from pseudostatic value of second modal coordinate of
body 2 for bending in xz plane.
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Figure 5.140 Deviation from pseudostatic value of first modal coordinate of body
3 for bending in xy plane.
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Figure 5.141 Deviation from pseudostatic value of second modal coordinate of
body 3 for bending in xy plane.
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Figure 5.142 Deviation from pseudostatic value of first modal coordinate of body
3 for bending in xz plane.
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Figure 5.143 Deviation from pseudostatic value of second modal coordinate of
body 3 for bending in xz plane.
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Figure 5.144 Deviation from derivative of pseudostatic value of first modal
coordinate of body 2 for bending in xy plane.

006 T T T T T T T T T T
Bending in xy Plane

Deviation from Derivative of Pseudostatic Value of Second Modal Coordinate of Body 2

-0.06 H -
-0.08H -
0.1 -
_012 L L L L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (s)

Figure 5.145 Deviation from derivative of pseudostatic value of second modal
coordinate of body 2 for bending in xy plane.
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Figure 5.146 Deviation from derivative of pseudostatic value of first modal
coordinate of body 2 for bending in xz plane.
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Figure 5.147 Deviation from derivative of pseudostatic value of second modal
coordinate of body 2 for bending in xz plane.
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Figure 5.148 Deviation from derivative of pseudostatic value of first modal
coordinate of body 3 for bending in xy plane.
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Figure 5.149 Deviation from derivative of pseudostatic value of second modal
coordinate of body 3 for bending in xy plane.
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Figure 5.150 Deviation from derivative of pseudostatic value of first modal
coordinate of body 3 for bending in xz plane.
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Figure 5.151 Deviation from derivative of pseudostatic value of second modal
coordinate of body 3 for bending in xz plane.
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Figure 5.153 Pseudostatic torque applied at joint 2.
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Figure 5.154 Pseudostatic torque applied at joint 3.
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Figure 5.155 Stabilization torque applied at joint 1.
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Stabilization Torque Applied at Joint 2 (Nm)
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Figure 5.156 Stabilization torque applied at joint 2.
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Figure 5.157 Stabilization torque applied at joint 3.
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Overall Torque Applied at Joint 1 (Nm)
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Figure 5.159 Overall torque applied at joint 2.
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Figure 5.160 Overall torque applied at joint 3.
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Figure 5.161 Measurement noise of tip point position component in n; direction.
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Figure 5.162 Measurement noise of tip point position component in n; direction.
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Figure 5.163 Measurement noise of tip point position component in n3 direction.
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Figure 5.164 Measurement noise of tip point velocity component in n; direction.
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Figure 5.165 Measurement noise of tip point velocity component in n; direction.
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Figure 5.166 Measurement noise of tip point velocity component in n3 direction.
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Figure 5.167 Measurement noise of first modal coordinate of body 2 for bending
in xy plane.
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Figure 5.168 Measurement noise of second modal coordinate of body 2 for
bending in xy plane.
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Figure 5.169 Measurement noise of first modal coordinate of body 2 for bending
in xz plane.
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Figure 5.170 Measurement noise of second modal coordinate of body 2 for
bending in xz plane.
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Figure 5.171 Measurement noise of first modal coordinate of body 3 for bending
in xy plane.
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Figure 5.172 Measurement noise of second modal coordinate of body 3 for
bending in xy plane.

T T T T T T T T T T
Bending in xz Plane
1}k -

Measurement Noise of First Modal Coordinate of Body 3

L L L L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (s)

Figure 5.173 Measurement noise of first modal coordinate of body 3 for bending
in xz plane.
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Figure 5.174 Measurement noise of second modal coordinate of body 3 for
bending in xz plane.
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Figure 5.175 Measurement noise of derivative of first modal coordinate of body 2
for bending in xy plane.
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Figure 5.176 Measurement noise of derivative of second modal coordinate of body
2 for bending in xy plane.
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Figure 5.177 Measurement noise of derivative of first modal coordinate of body 2
for bending in xz plane.
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Figure 5.178 Measurement noise of derivative of second modal coordinate of body
2 for bending in xz plane.
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Figure 5.179 Measurement noise of derivative of first modal coordinate of body 3
for bending in xy plane.
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Figure 5.180 Measurement noise of derivative of second modal coordinate of body

Measurement Noise of Derivative of First Modal Coordinate of Body 3

3 for bending in xy plane.
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Figure 5.181 Measurement noise of derivative of first modal coordinate of body 3

for bending in xz plane.
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Figure 5.182 Measurement noise of derivative of second modal coordinate of body
3 for bending in xz plane.

As seen from Figures 5.98 - 5.100 the initial error due to the mispositioning of the
tip point is 0.03 m, —0.05 m and -0.02 m in n,, n, and n, directions, respectively.
However, the effect of initial mispositioning can be compensated in about 1 s.
There is a reverse action at the beginning of the motion as seen in the tip point
velocity which is given in Figures 5.101 - 5.103. The maximum tip point position
tracking error components along the trajectory after the tip point settles on the

trajectory are —1.1436x10” m, 3.8068x10™* m and —4.9839x10* m in n,, n, and
n, directions, respectively. The tip point position error components at the end of
the motion are —1.0087x10* m, 1.1554x10* m and —4.9244x10” m in n,, n, and
n, directions, respectively. The maximum overall torques applied to the joints are

in the order of 107 Nm as seen from Figures 5.158 - 5.160. Note that the
measurement noises do not cause any noticeable increase in the control torques as

compared to the case without noises.
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As seen from the Figures 5.98 - 5.100, the errors in the tip point position
components are all in acceptable levels considering the 1 % sensor uncertainty in
the measured mean values of the variables. On this occasion, it is worth to point
out that if the tip point coordinates are to be measured optically it is recommended
that the optical sensor should be kept close to the tip point as much as possible in

order to minimize measurement errors.

5.4 Numerical Simulation of Force and Motion Control of Spatial
Robot

In this section, the numerical simulation of the force and motion control of the
spatial robot with two flexible arms is presented by using the force and motion
control method proposed at Chapter 2. The tip point is required to track a
trajectory on a spherical surface. The constraint equation can be written in terms of

the tip point coordinates as
¢(P1’P2’P3): (Pl _P1C )2 + (Pz _ch )2 +(P3 _Psc )2 -R*=0 (5.4)

which represents a motion on a spherical surface. P, , P, and P, represent the

center coordinates of the sphere in P;, P, and Ps directions, respectively with
respect to the fixed frame and R is the radius of the sphere. Therefore, the tip point

Cartesian coordinates in fixed frame and the spherical coordinates s; and s, can be

related as

P =P +R cos(s, )sin(s, ) (5.5)
P, =P, +Rsin(s,) (5.6)
P, =P, —Rcos(sz)sin(sl) (5.7)

Here, s; and s, are known as the azimuth angle and the elevation angle coordinates

of the tip point, respectively.
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The same functions for the reference Lagrange multiplier and the reference tip

point trajectory given in Chapter 4 are used.

After a few trials, proper closed loop natural frequencies and damping ratios are
obtained as 10 rad/s, 20 rad/s, 30 rad/s, 43 rad/s, 43 rad/s, 44 rad/s, 44 rad/s, 268
rad/s, 268 rad/s, 276 rad/s, 276 rad/s, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85,
0.85, 0.85,and 1. The corresponding closed loop poles are given in Table 5.5.

Table 5.5 Closed loop poles used in force and motion control of spatial robot.

Closed Loop Poles
p, =—8.5000+5.2678]

p, =—8.5000—5.2678;
p, =—17.0000

p, =—17.0000+10.5357j

p; =—17.0000—10.5357

Py =—36.5500+22.6517]
Pgo =—36.5500-22.6517]
Pros; = —37.4000+23.1784]
D113 = —37.4000—23.1784j
Pus s = —227.8000+141.1778j
Pie1r =—227.8000—141.1778]
Pis 1o = —234.6000+145.3920j

Paoor =—234.6000-145.3920j

The sampling frequency is taken as 500 Hz. The simulation results are presented in

Figures 5.183 - 5.251.

304



Azimuth Angle Coordinate of Tip Point (degree)

Elevation Angle Coordinate of Tip Point (degree)

90

51

—— actual
--- reference []

10
0

10 12

Figure 5.183 Azimuth angle coordinate of tip point.
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Figure 5.184 Elevation angle coordinate of tip point.
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Figure 5.185 Derivative of azimuth angle coordinate of tip point.
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Figure 5.186 Derivative of elevation angle coordinate of tip point.
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Figure 5.187 Impulse of Lagrange multiplier.
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Figure 5.188 Lagrange multiplier.
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Figure 5.190 Deviation of elevation angle coordinate of tip point.
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Figure 5.191 Deviation of derivative of azimuth angle coordinate of tip point.
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Figure 5.192 Deviation of derivative of elevation angle coordinate of tip point.
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Deviation of Impulse of Lagrange Multiplier (Ns)
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Figure 5.193 Deviation of impulse of Lagrange multiplier.
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Figure 5.194 Deviation of Lagrange multiplier.
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Figure 5.195 First modal coordinate of body 2 for bending in Xy plane.
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Figure 5.196 Second modal coordinate of body 2 for bending in xy plane.
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Figure 5.197 First modal coordinate of body 2 for bending in xz plane.
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Figure 5.198 Second modal coordinate of body 2 for bending in xz plane.
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Figure 5.200 Second modal coordinate of body 3 for bending in xy plane.
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Figure 5.201 First modal coordinate of body 3 for bending in xz plane.
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Figure 5.202 Second modal coordinate of body 3 for bending in xz plane.
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Figure 5.203 Derivative of first modal coordinate of body 2 for bending in xy
plane.
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Figure 5.204 Derivative of second modal coordinate of body 2 for bending in xy
plane.
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Figure 5.205 Derivative of first modal coordinate of body 2 for bending in xz

plane.
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Figure 5.206 Derivative of second modal coordinate of body 2 for bending in xz
plane.
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Figure 5.207 Derivative of first modal coordinate of body 3 for bending in xy
plane.

T
Bending in xy Plane

Derivative of Second Modal Coordinate of Body 3

Figure 5.208 Derivative of second modal coordinate of body 3 for bending in xy
plane.
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Figure 5.209 Derivative of first modal coordinate of body 3 for bending in xz
plane.
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Figure 5.210 Derivative of second modal coordinate of body 3 for bending in xz
plane.
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Figure 5.211 Pseudostatic value of first modal coordinate of body 2 for bending in
Xy plane.
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Figure 5.212 Pseudostatic value of second modal coordinate of body 2 for bending
in xy plane.
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Figure 5.213 Pseudostatic value of first modal coordinate of body 2 for bending in
xz plane.
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Figure 5.214 Pseudostatic value of second modal coordinate of body 2 for bending
in xz plane.
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Figure 5.215 Pseudostatic value of first modal coordinate of body 3 for bending in
Xy plane.
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Figure 5.216 Pseudostatic value of second modal coordinate of body 3 for bending
in xy plane.
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Figure 5.217 Pseudostatic value of first modal coordinate of body 3 for bending in
xz plane.
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Figure 5.218 Pseudostatic value of second modal coordinate of body 3 for bending
in xz plane.
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Figure 5.219 Derivative of pseudostatic value of first modal coordinate of body 2
for bending in xy plane.
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Figure 5.220 Derivative of pseudostatic value of second modal coordinate of body
2 for bending in xy plane.
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Figure 5.221 Derivative of pseudostatic value of first modal coordinate of body 2
for bending in xz plane.
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Figure 5.222 Derivative of pseudostatic value of second modal coordinate of body
2 for bending in xz plane.
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Figure 5.223 Derivative of pseudostatic value of first modal coordinate of body 3
for bending in xy plane.
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Figure 5.224 Derivative of pseudostatic value of second modal coordinate of body
3 for bending in xy plane.
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Figure 5.225 Derivative of pseudostatic value of first modal coordinate of body 3
for bending in xz plane.
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Figure 5.226 Derivative of pseudostatic value of second modal coordinate of body
3 for bending in xz plane.
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Figure 5.227 Deviation from pseudostatic value of first modal coordinate of body

2 for bending in xy plane.
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Figure 5.228 Deviation from pseudostatic value of second modal coordinate of
body 2 for bending in xy plane.
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Figure 5.229 Deviation from pseudostatic value of first modal coordinate of body
2 for bending in xz plane.
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Figure 5.230 Deviation from pseudostatic value of second modal coordinate of
body 2 for bending in xz plane.
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Figure 5.231 Deviation from pseudostatic value of first modal coordinate of body
3 for bending in xy plane.
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Figure 5.232 Deviation from pseudostatic value of second modal coordinate of
body 3 for bending in xy plane.
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Figure 5.233 Deviation from pseudostatic value of first modal coordinate of body
3 for bending in xz plane.
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Figure 5.234 Deviation from pseudostatic value of second modal coordinate of
body 3 for bending in xz plane.
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Figure 5.235 Deviation from derivative of pseudostatic value of first modal
coordinate of body 2 for bending in xy plane.
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Figure 5.236 Deviation from derivative of pseudostatic value of second modal
coordinate of body 2 for bending in xy plane.
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Figure 5.237 Deviation from derivative of pseudostatic value of first modal
coordinate of body 2 for bending in xz plane.
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Figure 5.238 Deviation from derivative of pseudostatic value of second modal
coordinate of body 2 for bending in xz plane.
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Figure 5.239 Deviation from derivative of pseudostatic value of first modal
coordinate of body 3 for bending in xy plane.
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Figure 5.240 Deviation from derivative of pseudostatic value of second modal
coordinate of body 3 for bending in xy plane.
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Figure 5.241 Deviation from derivative of pseudostatic value of first modal
coordinate of body 3 for bending in xz plane.
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Figure 5.242 Deviation from derivative of pseudostatic value of second modal
coordinate of body 3 for bending in xz plane.
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Pseudostatic Torque Applied at Joint 1 (Nm)
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Figure 5.243 Pseudostatic torque applied at joint 1.
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Figure 5.244 Pseudostatic torque applied at joint 2.
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Pseudostatic Torque Applied at Joint 3 (Nm)
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Figure 5.246 Stabilization torque applied at joint 1.
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Figure 5.248 Stabilization torque applied at joint 3.
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Figure 5.249 Overall torque applied at joint 1.
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Figure 5.250 Overall torque applied at joint 2.
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Figure 5.251 Overall torque applied at joint 3.

The maximum azimuth and elevation angle errors of the tip point along the
trajectory after the settling time are 0.0493 degrees and 0.0206 degrees,
respectively. The maximum Lagrange multiplier error after the settling time is —
0.588 N. The maximum overall torques applied to the joints are in the order of 168

Nm as seen from Figures 5.249 - 5.251.

5.5 Numerical Simulation of Force and Motion Control of Spatial

Robot with Measurement Noises

In this section, the numerical simulation of the force and motion control of the
spatial robot including measurement noises is presented by using the force and
motion control method proposed at Chapter 2. The measurement noises are
considered for the state variables that are used for the generation of the
stabilization control torques (i.e., the measured variables). They are the azimuth

and elevation angles and their rates, the modal variables of Body 2 and Body 3 and
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their rates and the impulse of the Lagrange multiplier. In a real system, the
Lagrange multiplier is measured instead of its impulse. Due to this reason, the
measurement noise generated for the Lagrange multiplier is integrated before it is

added to the impulse of the Lagrange multiplier.

The measurement noises are generated by using normally distributed random
numbers with zero mean and specific standard deviation. 1 % deviation from the
mean value of each variable is assumed to obtain the standard deviation for each

variable.

The first order low pass filter whose transfer function given in Equation (5.3) is

used again to filter the measured variables.

The same reference Lagrange multiplier, the same reference tip point trajectory
and the same closed loop natural frequencies and damping ratios given in Section
5.4 are used. After a few trials, a proper crossover frequency for the filter is found
as 276 rad/s. The sampling frequency is taken as 500 Hz. The simulation results

are presented in Figures 5.252 - 5.341.
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Figure 5.252 Azimuth angle coordinate of tip point.
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Figure 5.253 Elevation angle coordinate of tip point.
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Figure 5.254 Derivative of azimuth angle coordinate of tip point.
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Figure 5.255 Derivative of elevation angle coordinate of tip point.
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Figure 5.257 Lagrange multiplier.
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Figure 5.259 Deviation of elevation angle coordinate of tip point.
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Figure 5.260 Deviation of derivative of azimuth angle coordinate of tip point.
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Figure 5.261 Deviation of derivative of elevation angle coordinate of tip point.
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Deviation of Impulse of Lagrange Multiplier (Ns)
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Figure 5.263 Deviation of Lagrange multiplier.
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Figure 5.264 First modal coordinate of body 2 for bending in xy plane.
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Figure 5.265 Second modal coordinate of body 2 for bending in xy plane.
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Figure 5.266 First modal coordinate of body 2 for bending in xz plane.
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Figure 5.267 Second modal coordinate of body 2 for bending in xz plane.
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Figure 5.269 Second modal coordinate of body 3 for bending in xy plane.
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Figure 5.271 Second modal coordinate of body 3 for bending in xz plane.

350



0.15 T T T T T
Bending in xy Plane

Derivative of First Modal Coordinate of Body 2

Figure 5.272 Derivative of first modal coordinate of body 2 for bending in xy
plane.
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Figure 5.273 Derivative of second modal coordinate of body 2 for bending in xy
plane.
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Figure 5.274 Derivative of first modal coordinate of body 2 for bending in xz
plane.
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Figure 5.275 Derivative of second modal coordinate of body 2 for bending in xz
plane.
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Figure 5.276 Derivative of first modal coordinate of body 3 for bending in xy
plane.
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Figure 5.277 Derivative of second modal coordinate of body 3 for bending in xy
plane.
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Figure 5.278 Derivative of first modal coordinate of body 3 for bending in xz
plane.
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Figure 5.279 Derivative of second modal coordinate of body 3 for bending in xz
plane.
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Figure 5.280 Pseudostatic value of first modal coordinate of body 2 for bending in
Xy plane.
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Figure 5.281 Pseudostatic value of second modal coordinate of body 2 for bending
in xy plane.
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Figure 5.282 Pseudostatic value of first modal coordinate of body 2 for bending in
xz plane.
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Figure 5.283 Pseudostatic value of second modal coordinate of body 2 for bending
in xz plane.
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Figure 5.284 Pseudostatic value of first modal coordinate of body 3 for bending in
Xy plane.
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Figure 5.285 Pseudostatic value of second modal coordinate of body 3 for bending
in xy plane.
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Figure 5.286 Pseudostatic value of first modal coordinate of body 3 for bending in
xz plane.
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Figure 5.287 Pseudostatic value of second modal coordinate of body 3 for bending
in xz plane.
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Figure 5.288 Derivative of pseudostatic value of first modal coordinate of body 2
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Figure 5.289 Derivative of pseudostatic value of second modal coordinate of body
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Figure 5.290 Derivative of pseudostatic value of first modal coordinate of body 2
for bending in xz plane.
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Figure 5.291 Derivative of pseudostatic value of second modal coordinate of body
2 for bending in xz plane.
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Figure 5.292 Derivative of pseudostatic value of first modal coordinate of body 3
for bending in xy plane.
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Figure 5.293 Derivative of pseudostatic value of second modal coordinate of body
3 for bending in xy plane.
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Figure 5.294 Derivative of pseudostatic value of first modal coordinate of body 3
for bending in xz plane.
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Figure 5.295 Derivative of pseudostatic value of second modal coordinate of body
3 for bending in xz plane.
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Figure 5.296 Deviation from pseudostatic value of first modal coordinate of body

2 for bending in xy plane.
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Figure 5.297 Deviation from pseudostatic value of second modal coordinate of
body 2 for bending in xy plane.
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Figure 5.298 Deviation from pseudostatic value of first modal coordinate of body
2 for bending in xz plane.
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Figure 5.299 Deviation from pseudostatic value of second modal coordinate of
body 2 for bending in xz plane.
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Figure 5.300 Deviation from pseudostatic value of first modal coordinate of body
3 for bending in xy plane.
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Figure 5.301 Deviation from pseudostatic value of second modal coordinate of
body 3 for bending in xy plane.
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Figure 5.302 Deviation from pseudostatic value of first modal coordinate of body
3 for bending in xz plane.
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Figure 5.303 Deviation from pseudostatic value of second modal coordinate of
body 3 for bending in xz plane.
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Figure 5.304 Deviation from derivative of pseudostatic value of first modal
coordinate of body 2 for bending in xy plane.
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Figure 5.305 Deviation from derivative of pseudostatic value of second modal
coordinate of body 2 for bending in xy plane.
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Figure 5.306 Deviation from derivative of pseudostatic value of first modal
coordinate of body 2 for bending in xz plane.
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Figure 5.307 Deviation from derivative of pseudostatic value of second modal
coordinate of body 2 for bending in xz plane.
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Figure 5.308 Deviation from derivative of pseudostatic value of first modal
coordinate of body 3 for bending in xy plane.
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Figure 5.309 Deviation from derivative of pseudostatic value of second modal
coordinate of body 3 for bending in xy plane.
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Figure 5.310 Deviation from derivative of pseudostatic value of first modal
coordinate of body 3 for bending in xz plane.
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Figure 5.311 Deviation from derivative of pseudostatic value of second modal
coordinate of body 3 for bending in xz plane.
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Figure 5.312 Pseudostatic torque applied at joint 1.
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Figure 5.313 Pseudostatic torque applied at joint 2.
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Figure 5.315 Stabilization torque applied at joint 1.
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Figure 5.317 Stabilization torque applied at joint 3.
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Figure 5.318 Overall torque applied at joint 1.
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Figure 5.319 Overall torque applied at joint 2.
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Figure 5.320 Overall torque applied at joint 3.
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Figure 5.321 Measurement noise of azimuth angle coordinate of tip point.
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Measurement Noise of Elevation Angle Coordinate of Tip Point (degree)

Measurement Noise of Derivative of Azimuth Angle Coordinate of Tip Point (rad/s)

Figure 5.323 Measurement noise of derivative of azimuth angle coordinate of tip
point.
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Measurement Noise of Derivative of Elevation Angle Coordinate of Tip Point (rad/s)

Figure 5.324 Measurement noise of derivative of elevation angle coordinate of tip
point.

25 T T T T T
Bending in xy Plane

Measurement Noise of First Modal Coordinate of Body 2

Figure 5.325 Measurement noise of first modal coordinate of body 2 for bending
in xy plane.
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Measurement Noise of Second Modal Coordinate of Body 2

Figure 5.326 Measurement noise of second modal coordinate of body 2 for
bending in xy plane.
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Measurement Noise of First Modal Coordinate of Body 2

Figure 5.327 Measurement noise of first modal coordinate of body 2 for bending
in xz plane.
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Measurement Noise of Second Modal Coordinate of Body 2

Figure 5.328 Measurement noise of second modal coordinate of body 2 for
bending in xz plane.
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Figure 5.329 Measurement noise of first modal coordinate of body 3 for bending
in xy plane.
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Figure 5.330 Measurement noise of second modal coordinate of body 3 for
bending in xy plane.
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Figure 5.331 Measurement noise of first modal coordinate of body 3 for bending
in xz plane.
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Measurement Noise of Second Modal Coordinate of Body 3

Figure 5.332 Measurement noise of second modal coordinate of body 3 for
bending in xz plane.
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Measurement Noise of Derivative of First Modal Coordinate of Body 2

Figure 5.333 Measurement noise of derivative of first modal coordinate of body 2
for bending in xy plane.
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Measurement Noise of Derivative of Second Modal Coordinate of Body 2
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Figure 5.334 Measurement noise of derivative of second modal coordinate of body

2 for bending in xy plane.
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Figure 5.335 Measurement noise of derivative of first modal coordinate of body 2

for bending in xz plane.
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Measurement Noise of Derivative of Second Modal Coordinate of Body 2

Figure 5.336 Measurement noise of derivative of second modal coordinate of body
2 for bending in xz plane.
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Figure 5.337 Measurement noise of derivative of first modal coordinate of body 3
for bending in xy plane.
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Figure 5.338 Measurement noise of derivative of second modal coordinate of body
3 for bending in xy plane.
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Figure 5.339 Measurement noise of derivative of first modal coordinate of body 3
for bending in xz plane.
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Figure 5.340 Measurement noise of derivative of second modal coordinate of body
3 for bending in xz plane.
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Figure 5.341 Integral of measurement noise of Lagrange multiplier.
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The maximum azimuth and elevation angle errors of the tip point along the
trajectory after the settling time are 0.3968 degrees and 0.2173 degrees,
respectively. The maximum Lagrange multiplier error after the settling time is —
7.7696 N. The maximum overall torques applied to the joints are in the order of
170 Nm as seen from Figures 5.318 - 5.320. Note that the measurement noises do
not cause any noticeable increase in the control torques as compared to the case

without noises.

As seen from the Figures 5.258, 5.259 and 5.262 the errors in the azimuth and
elevation angles of the tip point and the Lagrange multiplier are all in acceptable
levels considering the 1 % sensor uncertainty in the measured mean values of the

variables.
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CHAPTER 6

CONCLUSIONS AND FURTHER WORKS

In this thesis, alternative control methods are proposed for the unconstrained
motion and constrained force and motion control of flexible robots. The
performances of the proposed methods are illustrated firstly on a planar two link
robot with a flexible forearm. Then, a more complex example which is a spatial

three link robot with two flexible arms are taken into consideration.

The main advantage of the proposed control methods is that no linearization of the
dynamic equations is required but conventional linear control techniques are still
used based on the fact that the system can be rendered “slowly varying” with
proper placement of the closed loop poles [49], [SO]. Therefore, implementation of
the proposed control methods are easy which is especially important for high
degree of freedom robots with flexible arms. The proposed control methods are
designed based on the tip point variables, therefore better tracking quality is
obtained compared to the control methods designed based on the joint variables

assuming that the tip point variables are measured precisely.

In the application of the proposed methods, the dynamic equations of a flexible
robot are partitioned as pseudostatic equilibrium equations and deviations from
them. The pseudostatic equilibrium considered here is defined as a hypothetical
state where the tip point variables have their desired values while the modal
variables are instantaneously constant. Then, the control torques for the
pseudostatic equilibrium and for the stabilization of the deviation equations are
formed in terms of tip point coordinates, modal variables and the contact force

components. In the constrained force and motion control method, the tip point
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position variables are replaced with the contact surface coordinates by using the

constraint equations before applying the control method.

In order to have asymptotic stability in the large, the closed-loop system must be
slowly varying [49], [50]. It is shown that this stability condition is satisfied by

placing the poles sufficiently away from the imaginary axis.

Avoiding from the singularities is a necessary condition to obtain a controllable
system. However, it may not be sufficient alone. Actually, the necessary and
sufficient condition is that the controllability matrix be of full rank, where the
controllability matrix is defined based on the state space representation of the

system.

An incremental rotary optical encoder is the most popular sensor to monitor a joint
variable of a robot. Typically, encoder angular resolutions ranging from 1.44
degrees down to 0.0036 degrees are achievable [45]. Strains are measured to
calculate the modal variables. Probably the most sensitive strain gauge is the
semiconductor gauge for this aim. A 1 % accuracy is typical, and this is a
fundamental limit on accuracy in stress analysis applications [46]. On a flexible
link, strains can be measured at those locations where the maximum stresses occur
for each mode. These locations can be determined from the mode shapes of the
flexible link. Contact force sensors generally placed between the end effector and
last joint of the manipulator. Such a sensor consists of a mechanical structure
instrumented with strain gauges which can measure the forces and torques acting
on the end effector. Typically, these sensors also have 1 % accuracy [47].
Optical devices may also be used to measure the position of the tip point [48],
[10]. It is recommended that they should be kept close to the tip point as much as
possible. New technologies continue to improve the sensitivities of the sensors.
The rates of the position and modal variables can be obtained by numerically

differentiating their measured values.

Different modeling approaches for the flexible multibody systems and different

discretization methods for the flexible arms are used while modeling the planar
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and spatial robots. Planar two link robot with flexible forearm is modeled by using
the relative coordinates approach and its flexible arm is discretized by using the
assumed modes method. On the other hand, spatial three link robot with two
flexible arms is modeled by using the absolute coordinates approach and its
flexible arms are discretized by using the finite element method. Then, an
alternative form of the dynamic equations, which has necessary and sufficient
number of generalized coordinates and equations, is given for the controller

design.

A ninth order hermite polynomial is used for the reference motion trajectory and a
profile that consists of a cycloidal rise, a constant level and a cycloidal return is
used for the reference Lagrange multiplier. Simulations are performed by

programs written in MATLAB®.

Uncontrolled motion of the planar robot is simulated to verify the dynamic
equations. In order to determine the effectiveness of the control methods, the
unconstrained motion and constrained force and motion control simulations are
presented firstly for the planar robot. Unmodeled dynamics is taken into
consideration to illustrate the performance of the control method even in the case
of unmodeled dynamics, then unconstrained motion and constrained force and
motion control simulations are presented again. Motion control of the planar
flexible robot by using the computed torque method with the rigidity assumption is
also simulated for a comparison with the proposed method. After that, the
uncontrolled motion of the spatial robot is simulated. The unconstrained motion
and constrained force and motion control simulations are this time presented for
the spatial robot. Measurement noises are also taken into consideration and the
unconstrained motion and constrained force and motion control simulations are
presented again by filtering the measured variables in order to illustrate the
performance of the control method in the presence of measurement noises. It can
be said from the simulation results that the proposed control methods work

satisfactorily.
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In some applications, the robot may pass from the unconstrained motion to the
constrained force and motion and/or from the constrained force and motion to the
unconstrained motion. While the motion type of the robot is changing, there may
be an impact force. Therefore, the impact force is also taken into consideration in
such combined motions. A very limited study is available on this type of problem.

Thus, this type of problem can be considered as a further work.
Another subject to work on in future is the actuating singularity analysis that arises

in determining the pseudostatic torques in association with the pseudostatic values

of the modal variables.
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APPENDIX A

BEAM ELEMENT SHAPE FUNCTIONS

Let the beam By be modeled by one dimensional beam elements. Consider an

element with nodes A and B. Let §; and ¥, i=1,2,3 denote the deformation

displacements and rotations respectively of axis frames fixed along the centroidal
line of the element, and u.denote the deformation displacements of arbitrary

points in the element.

d; and v; are expressed in terms of the nodal variables o; by utilizing polynomials

of appropriate order [57] as

d, =8, i=123 j=L...,12 (A.1)
and
Vi =S (A.2)

where o are the displacements of rotations at the nodes,
a:[slA 82A 83A YIA 'YzA Y3A 81B 82B 83B YIB 'YzB Y3B]T (A.3)

and the element shape functions neglecting shear deformation are given by

a, 0 0 0 0 0 a, 0 0 0 O O
s=[0 b, 0 0O 0O b, O b, 0 0 0 b, (A.4)
0 0 b, 0bb 0 0 0 b, 0 b 0
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and

0 0 0O a4 OO OO O a O O
S =0 0 ¢ 0 ¢, 0 0O O ¢, 0 ¢, O (A.5)
0O c, 00 O c, O0cg O O O c,

where

a, =1-& (A.6)
a,=¢ (A7)
b, =1-3&* +2&’ =b, (A.8)
b, =L(- 287 +&")=—b, (A9)
b, =38 -28’ =b, (A.10)
b, =L(-&+&%)=—b, (A.11)
c1=%(—§+%2)=—c3=—c5=c7 (A.12)
c,=1-45+3&° =¢, (A.13)
c, =2E+3E% =¢, (A.14)

In Equations (A.6) to (A.14), &,:% where x is measured from the element axis

fixed at node A and L is the length of the element.

Using §; and v, the displacement field for arbitrary points in the beam element,
ui(x,y,z,t) can be derived for small rotations, using references [57], [58] and

extending its two dimensional representation to three dimensions, such that

u, (x,y,2,8) =8, (x, 1)+ 27, (x,t) = yy5 (x,t) (A.15)
u,(x,y,z,t)=8,(x,t)—zy,(x,t) (A.16)
u3(x,y,z,t)= d, (x,t)+ yyl(x,t) (A.17)
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Using Equations (A.1) and (A.2) and the relations given by Equations (A.15),

(A.16) and (A.17), u; is obtained as

u, =s.o0. 1=123 j=1,...,12

where the consistent mass shape function s becomes

a, —-y¢ —z¢; 0 ¢, TYC a3, ¥

s=|0 b, 0 -—za, O b, 0 b,
0 O b, ya, —-b, 0 0 O

(A.18)

—Yyc,

b,
0
(A.19)

If the cross section dimensions are small, then the terms involving y and z in

Equation (A.19) can be neglected. Thus, the shape function matrix simplifies to

Equation (A.4).
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APPENDIX B

INERTIA PROPERTIES OF SPATIAL ROBOT

In this section, the inertia properties of the beam element used for the spatial robot

can be obtained as
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where Ly is the length of element i of Body k, Ay is the cross sectional area of

element i of Body k, Ey is the modulus of elasticity of element iof Body k, Gy is

the shear modulus of elasticity of Body k, 122ki is the second moment of area of
element 1 of Body k about n2ki axis, 133ki is the second moment of area of

element i of Body k about n3ki axis, J* is the area polar moment of inertia of

element i of Body k.
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APPENDIX C

INERTIA PROPERTIES OF PLANAR ROBOT

The necessary inertia properties for obtaining the dynamics of the planar robot can

be obtained as

)
i _EPLY 1140579 —1.5759 e
L,> | -15759 1.4490x10°

J plf(‘)TdV{ml—L‘ O} (C.2)
\2 2
where m, is the mass of Body 1
\2 2
where m, is the mass of Body 2
[p,0dV =m 0 0 (C.4)
0 ?|-2.3783 —23.7069 '
I 0Tz 172

p,r’ r’dV=—m,L, (C.5)
\2 3
J‘ =@T=(2) gy = L 2

p,r’ r’dv=-m,L, (C.6)
Y 3
[p.x® 9% av =[o 0] (C.7)
A

4
Oy Ogy o | 92262 4.6486x10 c8

V{ P90 *| 4.6486x107*  2.9845x10° €9
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IPZF(”TTq)‘”dV =m,L,[-1.7872 —4.9593]

\Z

where I is given as
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