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ABSTRACT 
 

 

THE NONEXTENSIVE GENERALIZATION OF BOLTZMANN-GIBBS 

STATISTICS AND ITS APPLICATIONS 

 

 

Bağcı, G. B. 

Ph. D., Department of Physics 

Supervisor: Prof. Dr. Ramazan Sever 

 

January 2005, 76 pages 

 

 

This thesis analyzes the nonextensive generalization of Boltzmann-Gibbs statistics and 

study its applications to some physical models such as isotropic rigid and non-rigid 

rotators. The thesis will also try to show what kind of internal energy constraint must 

be chosen for entropy optimization in a mathematically consistent manner. 

 

 

Keywords: Nonextensive Statistics, Isotropic Rigid Rotator, Non-rigid Rotator, 

Constraints  
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ÖZ 
 

 

BOLTZMANN-GİBBS İSTATİSTİĞİNİN NONEKSTENSİF 

GENELLEŞTİRİLMESİ VE UYGULAMALARI 

 

 

Bağcı, G. B. 

Doktora, Fizik Bölümü 

Tez Yöneticisi: Prof. Dr. Ramazan Sever 

 

Ocak 2005, 76 sayfa 

 

 

Bu tez Boltzmann-Gibbs istatistiğinin nonekstensif bir şekilde genelleştirilmesini 

çözümler ve bu genelleştirmenin, katı ve katı olmayan dönücü gibi bazı fiziksel 

modellere uygulanmasını çalışır. Tez, entropi optimizasyonu için matematiksel yapıyı 

bozmadan, hangi tür enerji konstraintlerinin de seçilmesi gerektiğini göstermeye 

çalışacaktır.  

 

 

Anahtar Kelimeler: Nonekstensif istatistik , İsotropik Katı Dönücü, Katı Olmayan 

Dönücü, Konstraintler  
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CHAPTER 1 

     INTRODUCTION 

 
If we would be asked about the universality of Newtonian mechanics, we would 

answer no justifiably. If the same question would be directed to a nineteenth century 

physicist, he would say yes to this question convinced that Newtonian mechanics is to 

be the ultimate theory. Today we know that Newtonian mechanics has to be replaced 

by quantum mechanics when the involved masses are very small, by special relativity if 

the involved speeds are very high compared to speed of light, or by general relativity if 

the masses are very large. As Tsallis writes: “ … It is our present understanding that 

only in the ( )0,0,0(),/1, →Gcm  limit, Newtonian mechanics appears to be strictly 

correct” [1]. 

The same kind of question may be asked about Boltzmann-Gibbs (BG) statistical 

mechanics and standard thermodynamics: Are they universal? In the first page of the 

second part of his Vorlesungen ueber Gastheorie [2], Ludwig Boltzmann qualifies the 

concept of ideal gas by writing: “When the distance at which two gas molecules 

interact with each other noticeably is vanishingly small relative to the average distance 

between a molecule and its nearest neighbor-or, as one can also say, when the space 

occupied by the molecules is neglible compared to the space filled by the gas-…”. If he 

would be our comtemparary, he would perhaps tell us that he was addressing systems 

with short range interactions. Tisza, in his book on thermodynamics [3], writes: “The 

situation is different for the additivity postulate…, the validity of which cannot be 

inferred from general principles. We have to require  that the interaction energy 

between thermodynamic systems be neglible. This assumption is closely related to the 

homogeneity postulate… From the molecular point of the view, additivity and 

homogeneity can be expected to be reasonable aproximations for systems containing 

many particles, provided that the intermolecular forces have a short range character,…” 

when referring to the usual thermodynamic functions such as internal energy, entropy 

etc. Also, Peter Landsberg, in his Statistical Mechanics and Thermodynamics [4], 
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writes: ”The presence of long-range forces causes important amendments to 

thermodynamics, some of which are not fully investigated as yet”. 

We now can cite some other examples from different areas of physics which shows 

clearly the need for a generalization of BG statistics. For example, A. M. Salzberg [5], 

in 1965, writes: “The exact equilibrium statistical mechanics of one and two 

dimensional gases, in which the particles interact through gravitational forces, is 

obtained. It is found that these systems are characterized by nonextensive 

thermodynamics leading to behaviour somewhat reminiscent of the formation of a star 

from interstellar dust… One interesting complication which arises in these gases is the 

nonextensive nature of the thermodynamic functions”. W. C. Saslaw writes [6]: ”This 

equation of state also illustrates another important general aspects of gravitational 

thermodynamics. When interactions are important, the thermodynamic parameters may 

lose their simple intensive and extensive properties for subregions of a given system”. 

Also, R. Balian [7] writes along these lines, asserting: ”Important development have 

taken place in mathematical physics. The conditions for the validity of the 

thermodynamic limit have been established, showing under what circumstances the 

entropy is an extensive quatity. This enables us to understand the limitations that exist, 

for instance in astrophysics…”. 

Some other objections opposed to universality of BG statistical mechanics are 

directed from black hole thermodynamics and superstrings. Landsberg writes [8]: “If 

two identical black holes are merged, the presence of long-range forces in the form of 

gravity leads to a more complicated situation, and the entropy is not extensive”. 

Likewise, D. Pavon [9], in his book called Thermodynamics of Superstrings published 

in 1987, writes: “Superstring entropy is neither homogeneous i.e., S (kE) ≠ k S(E) nor 

concave but it is superadditive. Superaditivity means that the enropy of a composite 

system must be greater than the combined entropies of the subsystems making up the 

total system”. 

Another example might be cited from economics although it is not a physical 

science. The interaction between physics and economics is not new, indeed a good 

example can be cited to be the work by von Neumann and Morgenstern [10]. In 1992, 

economists Dow and Werlang states [11]: “With a nonadditive probability measure, the 
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“probability” that either of two mutualy exclusive events will occur is not necessarily 

equal to the sum of their two “probabilities”. If it is less than the sum, the expected-

utility calculations using this probability measure will reflect uncertainty aversion as 

well as (possibly) risk aversion. The reader may be disturbed by the “probabilities” that 

do not sum to one”. 

Having cited these general examples related to a need of generalization of BG 

statistical mechanics, we will outline such an idea in the next chapter. In Chapter 3, we 

will apply this form of generalization to isotropic rigid and non-rigid rotators. In 

Chapter 4, we will discuss some issues related to constraints and relative entropy. 

Conclusion will form Chapter 5.      
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CHAPTER 2 
 

THEORY OF NONEXTENSIVE STATISTICS 

 

2.1 Outline of the Theory 

 
In 1988, C. Tsallis [12] postulated the following form of generalized entropy: 

Sq ≡  k 
1

1

−

−∑
q

p
i

q
i

                      (q R∈ ; ∑ =
i

ip )1 ,              (2.1) 

or, in general, 

Sq ≡  k 
1

1
−

−
q
Tr qρ ,        (2.2) 

where k is a positive constant, {pi} are the probabilities of microscopic states, and ρ  

the corresponding density operator. The parameter q is called nonextensivity parameter 

or entropic index. This new entropy formula recovers the usual Boltzmann-Gibbs 

entropy in the q 1→  limit which has the form: 

SBG = -k i
i

i pp ln
1
∑
=

.        (2.3) 

The reason that q is called the nonextensivity parameter is due to following pseudo-

additivity rule: 

Sq (A+B) = Sq(A)+Sq(B)+(1-q)
k

BSAS qq )()(
,     (2.4) 

where A and B are two independent systems in the sense that the probabilities A+B 

factorize into those of A and B. Since Sq 0≥  for all values of q, we can say that q<1, 

q=1 and q>1 correspond to superextensivity, extensivity and subextensivity 

respectively.  

Another important property is the following. Suppose that the set of W possibilities 

is arbitrarily separated into two subsets having respectively WL and WM possibilities 

(WL+WM = W). We define 
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pL = ∑ =

LW

i ip
1

.         (2.5)    

and 

pM = ∑ +=

W

Wi i
L

p
1

.        (2.6) 

so that 

Sq({pi}) = Sq(pL, pM) + pL
q Sq({pi / pL}) + pM

q Sq({pi / pM}),   (2.7) 

where the sets {pi / pL} and {pi / pM} are the conditional probabilities. This would be 

the famous Shannon’s property if there would occur pL and pM instead of pL
q and pM

q 

respectively. The equation (2.7) is a new property of Tsallis statistics. Since the 

probabilities {pi} are numbers betwee zero and unity, we will have 

pi
q > pi    for q<1       (2.8)  

and  

pi
q < pi    for q>1       (2.9)  

Therefore, q<1 and q>1 will respectively privilegiate the rare and the frequent events. 

This simple property lies at the heart of nonextensive statistics proposed by Tsallis. 

Another interesting property is the following: The Boltzmann-Gibbs entropy SBG 

satisfies the following relation 

-k [ ∑
=

W

i
ip

d
d

1

α

α
] α=1 = -k ∑

=

W

i
ii pp

1
ln ≡SBG.     (2.10) 

F. Jackson [13] had introduced in 1909 the following generalized differential 

operator (applied to an arbitrary function f(x)): 

Dq f(x) ≡  
xqx

xfqxf
−
− )()( ,       (2.11) 

which recovers the usual derivative in the limit q 1→ .  Sumiyoshi Abe [14] showed 

that  

 -k [ Dq ∑
=

W

i
ip

1

α ]α = 1 = k 
1

1

−

−∑
q

p
i

q
i

≡Sq.     (2.12) 

Sq has, with regard to {pi}, a definite concavity for all values of q: It is concave for 

q>0, and convex for q<0. In this sense, it differs from Renyi entropy. 

Having introduced this new form of nonextensive entropy, we must now proceed in 

derivation of nonextensive partition function, internal energy and heat capacity 
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expressions. But, in order to be able to derive equations related to thermodynamic 

observables such as heat capacity, we must define the form of constraint which we will 

use in nonextensive entropy extremization (maximize for q>0 and minimize for q<0). 

For the microcanonical ensemble (isolated system) there will be only one constraint, 

namely 

∑
=

W

i
ip

1
=1.         (2.13) 

In this case, the optimization of Sq yields to equiprobability, i.e., pi = 1/W for i∀ , 

hence 

Sq = k lnq W,         (2.14) 

with    

lnq x ,
1

11

q
x q

−
−

≡
−

         (2.15) 

thus generalizing the celebrated Boltzmann’s formula. Note that 

lnq x = ln x    as q .1→        (2.16) 

The inverse function of lnq x is eq
x which is defined as 

eq
x ≡  [1+(1-q)x]1/(1-q).        (2.17) 

As is being expected, eq
x = ex as q .1→  The problem arises in the canonical (i.e. the 

case in which the system is in thermal contact with a reservoir) and grand canonical 

cases (we will not address grand canonical case due to its resembance to the canonical 

case). Historically, there did exist three choices for the internal energy constraint, 

which might be named as the first, second and third choices. The first choice [15] has 

been made right at the beginning of nonextensive formalism (NEXT hereafter) which 

happens to be 

∑
=

W

i
iip

1

ε = U(1),         (2.18) 

 

where the superindex (1) stands for first choice and the {εi} are the eigenvalues of the 

(quantum) Hamiltonian of the system. In other words, the standard definition of 

internal energy has been maintained within generalization. It quickly became evident 

that this choice of internal energy constraint was inadequate for handling the serious 
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mathematical difficulties present in a variety of anomalous systems such as the Levy 

superdiffusion. Then, the second choice became the natural way out of the difficulties 

[16]. This choice is 

∑
=

W

i
i

q
ip

1

ε  = Uq
(2),         (2.19) 

where the superindex (2) stands for the second choice. The extremization of Sq now 

yields 

pi
(2) = )2(

)1/(1])1(1[

q

q
i

Z
q −−− βε

,       (2.20) 

with the generalized partition function given by 

)1/(1

1

)2( ])1(1[)( q
W

j
jq qZ −

=
∑ −−≡ βεβ ,      (2.21) 

which coincides with the result produced by the first choice excepting for the fact that 

now (1-q) plays the role that was before played by (q-1). The parameter β is the 

Lagrange parameter associated with the internal energy. 

    Inspection of Equations (2.20) and (2.21) shows us two main notions about NEXT 

formalism: First, these two equations recover the usual Boltzmann-Gibbs counterpart in 

the limit q .1→  Second, as can be seen immediately by Equation (2.20), pi depends on 

the microscopic energy as a power law instead of the familiar exponential. This 

distribution presents a cut-off (i.e., vanishing probabilities for energy levels high 

enough to produce a negative value for the argment of the eq function) for all values of 

q<1, whereas this phenomenon occurred, in the first choice, for q>1. The present 

equilibrium distribution can be conveniently written as 

pi
(2) = 

∑
=

−

−

W

j
q

q

j

i

e

e

1

βε

βε

,         (2.22) 

which formally resembles the Boltzmann-Gibbs result. In fact, this resemblance to 

Boltzmann-Gibbs formalism will be present along the entire formalism. By introducing 

T
βk
1

≡ ,         (2.23) 
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We write, for the temperature as an observable, 

)2(

1

q

q

U
S

T ∂

∂
= ,         (2.24) 

Similarly,  we have 

Fq
(2) ≡  Uq

(2)-TSq= - )2(ln1
qq Z

β
,      (2.25) 

Uq
(2) = 

β∂
∂

−
)2(ln qq Z

,         (2.26) 

and 

Cq
(2) 2

)2(2)2(

T
F

T
T

U
T
S

T qqq

∂

∂
−=

∂

∂
=

∂

∂
≡ ,      (2.27) 

for free energy, internal energy and heat capacity respectively. As can be seen, 

Legendre structure remains valid for all values of q. In spite of its sucsesses, this choice 

implies three strange consequences: The first consequence is that the distribution given 

by Eqs. (2.20) and (2.21) is not invariant through uniform translation of the energy 

spectrum {εi}, i.e., the thermodynamical results depend on the choice of the origin of 

energies. In practice, this point can be avoided by choosing the ground energy as the 

zero point for the energies. But, theoretically, this point is disturbing.  The second 

consequence is related to q-expectation values i.e.,  

Oq
(2) ≡  < Oi>q ≡ i

W

i

q
i Op∑

=1
,       (2.28) 

where {Oi} are the eigenvalues associated with an arbitrary observable O ( we assume 

that the observable commutes with the density operator for simplicity). According to 

the definition above, we get 

<1>q = ∑
=

W

i

q
ip

1
.         (2.29) 

This simple observation shows that the expectatin value of 1 is not equal to 1 if we 

go on using the choice expressed in Eq. (2.19). This point is not easy to interpret 

indeed. 
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Finally, the third unfamiliar consequence is that, if two systems A and B satisfy  

pij
A+B = pi

A pj
B ; εij

A+B = εi
Aε jB ,      (2.30) 

then we have 

Uq
(2)

 (A+B) = Uq
(2)

 (A)+ Uq
(2)

 (B)+(1-q)[ Uq
(2)

 (A)
k
BSq )(

+ Uq
(2)

 (B)
k

ASq )(
],(31) 

which generally differs from  Uq
(2) (A)+ Uq

(2) (B). In other words, the first principle of 

thermodynamics ( conservation of energy) does not preserve macroscopically the same 

form it has microscopically. One can argue that, if we are willing to consider 

nonadditivity of entropy, why is it so strange to accept the same for the energy? The 

point is that entropy is an informational quantity whereas energy is a mechanical one. 

Since NEXT formalism does not at all alter things at the level of the dynamics, it is 

kind of against intuition to have a break-down of energy conservation in this case.  

We now discuss the third choice of constraint [17]. To be able to remedy all 

previous difficulties, we introduce the last internal energy constraint as follows:  

∑

∑

=

=
W

i

q
i

W

i
i

q
i

p

p

1

1
ε

 = Uq
(3),        (2.32) 

i.e., we weigh the Hamiltonian eigenvalues with the set of probabilities on the left hand 

side of the Equation above. These probabilities are referred to as escort probabilities 

[18] in the literature. The superscript (3) stands for third choice. The optimization of Sq 

now yields 

pi
(3) = 

∑ ∑

∑

= =

−

=

−

−−

−−

W

i

W

j

qq
jqiq

W

j

qq
jqiq

pU

pU

1 1

)1/(1)3()3(

1

)1/(1)3()3(

])(/)([exp

])(/)([exp

εβ

εβ
,    (2.33) 

where the denominator is nothing but the corresponding partition function denoted by 
)3(

qZ (β). It can be shown that 

 )3(

1

q

q

U
S

T ∂

∂
= ,         (2.34) 
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and 

Fq
(3) ≡  Uq

(3)-TSq=  Uq
(3)- 

)3(
ln1

qq Z
β

,      (2.35) 

hence 

Sq = k lnq 
)3(

qZ .         (2.36) 

We notice that 
)3(

qZ refers to the energy levels {εi} with regard to Uq
(3). In order to use, 

instead, zero as the reference energy, we can define Zq
(3) through  

lnqZq
(3) = lnq

)3(
qZ - βUq

(3).       (2.37) 

Finally, we have 

Fq
(3) = - )3(ln1

qq Z
β

        (2.38) 

and 

Uq
(3) = 

β∂
∂

−
)3(ln qq Z

.         (2.39) 

For specific heat expression, we have 

Cq
(3) 2

)3(2)3(

T
F

T
T

U
T
S

T qqq

∂

∂
−=

∂

∂
=

∂

∂
≡ .      (2.40) 

Obviously, this last choice too preserves the Legendre structure. It is also the remedy 

for all our previous difficulties. 

First, if we add a constant ε0 to all {εi} we have that Uq
(3) becomes Uq

(3) + ε0 which 

leaves invariant the differences {εi - Uq
(3)}, which, in turn leaves invariant the set of 

probabilities {pi
(3)}, hence all thermostatistical quantities. 

Second, the definition of Uq
(3) suggests the following normalized q-expectation 

values: 

Oq
(3) ≡  <<Oi>>q ≡  

∑

∑

=

=
W

i

q
i

W

i
i

q
i

p

Op

1

1 =
q

qiO
><

><

1
,     (2.41) 

where O is any observable. It is trivial now to show that <<1>>q = 1 for q∀ .  

Third, it is also trivial to show that, for systems A and B mentioned previously [19], 
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Uq
(3) (A+B) =  Uq

(3) (A) + Uq
(3) (B),      (2.42) 

thus recovering the standard thermodynamics. 

One important remark to be made is that if we take out as factors, in both numerator 

and denominator of Eq. (2.33), the quantity ∑
=

−−
W

j

q
jqiq pU

1

)3()3( ])(/)([exp εβ , and then 

cancel them, we obtain 

pi
(3) (β) = )'3(

'

q

q

Z
e iεβ−

         (2.43) 

with 

β ′= 
)3(

1

)3( )1()( q

W

j

q
j Uqp β

β

−+∑
=

.      (2.44) 

Therefore, by defining T ′ ≡1/(kβ ′ ) and using the following relation 

∑
=

−=
W

i

q
q

q
i Zp

1

1)3()3( )()( ,       (2.45) 

We get 

kTUqTZTTT q
q

q /))(()1())](([)( )3(1)3( ββ −+=′ − .    (2.46) 

We can immediately check that 

pi
(3) (β) = pi

(2) ( )β ′         (2.47) 

and 

)()( )2()3( ββ ′=′
qq ZZ .        (2.48) 

In other words, the equilibrium probabilities associated with the third choice 

coincide with those asociated with the second choice but with a renormalized 

temperature given by Eq. (2.48). This is the reason for which all the theorems which do 

not explicitly use the specific temperature dependence of the involved thermostatistical 

quantities (but rather only use that the system is at some fixed arbitrary fine 

temperature) remain valid. Moreover, all the systems for which the second-choice 

formalism was successful in providing satisfactory theoretical and/or experimental 

results such as anomalous diffusions and turbulence are also successful in the third-

choice formalism because they do not involve specific thermal dependences. 
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The main change about this last internal energy constraint is that we made use of 

what is called escort probabilities. Let us make some important observations about the 

escort probabilities {Pi
(q)} defined through 

Pi
(q)≡

∑
=

W

j

q
j

q
i

p

p

1

         (2.49) 

with 

∑
=

=
W

i

q
iP

1

)( 1         (2.50) 

from which follows the dual relation 

pi = 
∑
=

W

j

qq
j

qq
i

P

P

1

/1)(

/1)(

][

][
         (2.51) 

as well as 

∑
∑

=

=

= W

i

qqq
i

W

i

q
i

P
p

1

/1)(1 }][{

1 .       (2.52) 

The Eqs. (2.49) and (2.51) have, within the present formalism, a role analogous to the 

direct and inverse Lorentz transfomations in Special Relativity.  

Second, we notice that Oq
(3) becomes an usual mean value when expressed in terms 

of probabilities {Pi
(q)}, i.e., 

Oq
(3) = ∑

=

W

i
i

q
i OP

1

)( .        (2.53) 

Third, the entropy can be written as  

Sq = k
1

}][{1
1

/1)(

−

− ∑
=

−

q

P
W

i

qqq
i

.       (2.54) 

Consequently, the equilibrium escort probabilities can be alternatively found by 

optimizing Sq as given by Eq. (2.54) with the constraints (2.50) and  

∑
=

==
W

i
qqi

q
i UUP

1

)3()( ε .       (2.55) 
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Although the third choice appears to be conceptually simpler than the second one, 

calculations of concrete thermal dependences look like being much harder, since the 

equations for the {pi} are implicit. If we are not interested in thermal dependences, we 

better work within the second choice. But, even if we want to compute thermal 

dependences, there is an easy way to avoid the implicit equations for the probabilities. 

Indeed, inspecting Eq. (2.44) and after some algebra, we get 

∑

∑

=

=

′′′−−

′
′= W

j

q
jq

W

j

q
j

pUq

p

1

)2()2(

1

)2(

)]([/)()1(1

)]([

βββ

β
ββ .     (2.56) 

Armed with this equation, we can implement a practical prescription to compute 

thermodynamical properties within the third choice, without the need to solve implicit 

equations on the microstates probabilities pj
(3). First of all, one has to compute, for each 

value of β ′  belonging to an appropriate range, and using the expressions (2.43), the 

microstate probabilities  pj
(3)(β) = pj

(2)( )β ′ . Then it is possible to evaluate the quantities 

∑
=

W

j

q
jp

1

)3( )(  and Uq
(3). Finally, by recourse to Eq. (2.56) one obtains the corresponding 

values of the true inverse temperature β. Then, for each value of he parameter β ′ , one 

has now the concomitant values, respectively, of β and Uq
(3). Of coure, these last ones 

are the physically meaningful ones. Within this scheme, β ′ is only an intermediate 

parameter introduced for the sake of computation. Specific heat will be 

Cq
(3)(β) = -kβ2

β
β

d
dU q )()3(

.       (2.57) 

We can also address the issues of heat and work within the third choice[20]. If we 

use Eq. (2.36) we obtain 

dSq = k q
q

q

Z
Zd

)( )3(

)3(

,        (2.58) 

which, performing the diferential operation on partition function explicitly yields 
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dUq
(3) = TdSq+ ∑∑

∑ ==

=

=
W

j
j

q
jj

W

j
W

i

q
i

q
j dPd
p

p

1

)(

1

1

)3(

)3(

)(

)(
εε .    (2.59) 

We can consequently identify (for a quasi-static process) the heat transfer as 

qq TdSQ =)3(δ ,         (2.60) 

and the work performed as 

∑=
r

rrq dFW λδ )3()3( ,        (2.61) 

where the generalized force Fr
(3) is given by 

Fr
(3) ∑

∑

∑
=

=

=

∂

∂
−=

∂∂
−≡

W

j r

jq
jW

j

q
j

W

j
rj

q
j

P
p

p

1

)(

1

)3(

1

)3(

)(

/)(

λ
ε

λε
,     (2.62) 

the set {λr} being th external parameters on which the energy spectrum depends. In 

other words, we have that 

dUq
(3) = δQq

(3)-δWq
(3),        (2.63) 

i.e., as we already saw previously, the first principle of thermodynamics holds as usual 

for all q values [21].  

 

2.2 Nonextensive Ehrenfest Theorem 

 
In this Section, we will try to see what kind of form we will have for the Ehrenfest 

theorem in nonextensive context [22]. Since we will not make use of explicit 

dependence on specific heat, we can use second choice. Using Eqs. (2.2), (2.13) and 

(2.19), through variational procedure we have 

δ [Sq-λ0Tr(ρ)-∑ =
i

i
q

i OTr 0)](ρλ ,      (2.64) 

where the λ’s are Lagrange multipliers related to normalization and second constraint 

respectively and Oi is any operator. 

The Eq. (2.64) yields the density matrix which extremalizes Tsallis entropy which is 

ρ= Z-1 (1-(-q) )∑
i

iiOλ 1/(1-q),       (2.65) 
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where Z stands for  

Z= [q-1 (1-(q-1)λ0)]1/(1-q).       (2.66) 

Having seen how to handle density matrix in nonextensive statistics, we observe that 

if D stands for the statitstical operator, the von Neumann-Liouville equation governs 

the temporal evolution of any analytic function  of D. In particular, if H stands for 

Hamiltonian operator, one has 

d(Dq)/dt = (-i/ћ) [H, Dq],       (2.67) 

from which follows 

d(<Oi>q)/dt = (-i/ћ) <[Oi, H]>q ,      (2.68) 

i.e., the generalized Tsallis expectation values obey Ehrenfest theorem.  

 

2.3 Nonextensive Langevin and Fokker- Planck Equations 

 
As is well known, the Langevin and Fokker-Planck equations lie at the heart of 

ordinary non-equilibrium statistical mechanics [23]. For a Brownian particle i moving 

under a potential V and subject to an additional random force Fi (t), we have 

)(1 tF
X
V

dt
dX

i
i

i +
∂
∂

−=
η

,       (2.69) 

where η is the viscosity and Fi (t) is a Gaussian distributed random variable with zero 

mean and variance 

<Fi(t1) Fj(t2)> = 2Aδij δ(t2-t1).       (2.70) 

The associated Fokker-Planck equation that describes the temporal evolution of the 

probability distribution of Xi, P(Xi, t) has the form 

])(1[ 2

2

iii i X
PAP

X
V

Xt
P

∂
∂

+
∂
∂

∂
∂

=
∂
∂ ∑ η

.      (2.71) 

Under very general conditions on the potential V, the Fokker-Planck equation has a 

stationary solution that corresponds to the canonical Boltzmann-Gibbs distribution 

P Ve β−∝  [24]. 

To be able to generalize the Eqs. (2.69) and (2.71), we introduce a generalized 

potential    
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])1(1ln[
)1(

1 Vq
q

V −+
−

= β
β

.      (2.72) 

Then, we can write the Langevin and Fokker-Planck equations in terms of V  

preserving the form of the equations but only substituting V istead of V into the Eqs. 

(2.69) and (2.71).  

If we have 

P∝ [1-β(1-q)V]1/(1-q),        (2.73) 

Then 

0=
∂
∂

t
P .         (2.74) 

Moreover 

ii X
V

Vq
P

X
P

∂
∂

−−
−=

∂
∂

)1(1 β
β  

 

        = ])1(1ln[
)1(

Vq
Xq

P

i

−−
∂
∂

−
β  

         

       =
iX

VP
∂
∂

− β .        (2.75) 

Substitution of these terms back into Eq. (2.71), we get 

0 = ∑ ∂
∂

−
∂
∂

i ii

P
X
VA

X
))/1(( βη .      (2.76) 

This last equality is satisfied if 

ηAβ=1          (2.77) 

This is one of the celebrated Einstein relations for the Brownian motion that is 

preserved invariant in the NEXT formalism [25]. 

It is interesting to note that the generalized canonical distribution can be written as a 

standard canonical distribution in terms of V , 

P )1/(1])1(1[ qVq −−−∝ β        (2.78) 

   = exp(- ]))1(1ln[
)1(

1 Vq
q

−−
−

β
β

β       (2.79) 
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     = Ve β−          (2.80) 

2.4 Nonextensive Liouville Equation 
 

Let us consider a general classical deterministic dynamical system whose evolution is 

governed by the equations of motion 

)(zw
dt
dz

= ,         (2.81) 

where z denotes a point in the concomitant N-dimensional phase space and both z and 

w NR∈ . A statistical ensemble of systems evolving according to Eq. (2.81) is 

described by a probability distribution F(z,t). The evolution of this distribution is given 

by the well-known Liouville equation [26] 

0).( =∇+
∂
∂ wF

t
F ,        (2.82) 

where ∇ denotes the N- dimensional differential operator 

),...,,(
21 Nzzz ∂

∂
∂
∂

∂
∂

=∇ .       (2.83) 

In the particular case of a Hamiltonian system with n degrees of freedom, we have 

N=2n, z = (q1,q2,…,qn,p1,…,pn), and  

wi = 
ip

H
∂
∂  (i = 1,…, n)       (2.84) 

wi = 
iq

H
∂
∂

−  (i = n+1,…, 2n)      (2.85) 

where the qi, pi represent generalized coordinates and momenta, respectively. 

Hamiltonian dynamics has the important feature of having zero divergence [27] 

∑
=

=
∂∂

∂
−

∂∂
∂

=∇
n

i iiii qp
H

pq
Hw

1

22

0)(. .      (2.86) 

The rate of change of a dynamical quantity A(z,t) is given by 

t
AAw

dt
dA

∂
∂

+∇= . .        (2.87) 
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Given a probability distribution F, its associated escort distribution F~ is defined as 

∫
=

zdF
FF

Nq

q~          (2.88) 

and the escort-mean value reads 

zAdFA N
q ∫=>< ~ .        (2.89) 

We also define the quantity Iq as 

Iq = ∫ zdF Nq .         (2.90) 

If we look for its derivative we see 

∫∫ −

∂
∂

=
∂
∂

= zdF
t
Fqzd

t
F

dt
dI NqN

q
q 1 ,      (2.91) 

that, due to Eq. (2.82) becomes 

 ∫ −∇−= zdFwFq
dt

dI Nqq 1)].([ ,      (2.92) 

which, after integration by parts twice becomes 

∫ >∇<−=∇−= qq
Nqq wIqzdwFq

dt
dI

].[)1(].[)1( .    (2.93) 

Before proceeding further along these lines, let us inspect the rate of change of 

nonextensive entropy: This entropy can be written in terms of probability distribution F 

to give 

Sq [F] = ∫ −
−

=−
−

]1[
1

1]1[
1

1
q

Nq I
q

zdF
q

,     (2.94) 

which entails that 

Iq = [1+(1-q)Sq].        (2.95) 

Using Eqs. (2.93) and (2.95), we obtain 

qq
q wSq

dt
dS

>∇<−+= .])1(1[ .      (2.96) 

We see that the rate of change of Sq is determined by the escort-mean value of the 

divergence of the flow in the phase space, 

∫
∫ ∇

=>∇<
zdF

zwdF
w

Nq

Nq

q

.
. .       (2.97) 



19 

 

Eq. (2.96) is a generalization of an important relation connecting the time derivative of 

Boltzmann-Gibbs entropy and the average divergence of the phase space flow [28, 29], 

which is recovered when q=1, 

>∇=< w
dt

dS
.1 .        (2.98) 

The particular case of interest is the one where the divergence of flow in phase space 

is constant, 

∇ .w = D = const.,        (2.99) 

that is, when  ∇ .w assumes a constant value D throughout phase space. In this case, we 

have 

])1(1[ q
q SqD

dt
dS

−+= ,       (2.100) 

which leads to 

}1])1exp[()]0()1(1{[
1

1)( −−=−+
−

= DtqtSq
q

tS qq .   (2.101) 

For ,1≠∀q  Sq depends on time in an exponential way, but it exhibits a linear time 

dependence for q=1. Let us write Eq. (2.89) in the following form 

∫−+
=>< zAdF

Sq
A Nq

q
q ])1(1[

1 ,      (2.102) 

in terms of Sq[F]. Taking the time derivative of Equation above, using Eqs. (2.87), 

(2.93), (2.96) and following Equation 

∫ ∫ ∫ ∫ ∂
∂

+∇−+∇= zd
t
AFzdwAFqzdAwFzAdF

dt
d NqNqNqNq ).()1().( .   (2.103) 

We finally get 

qqqqqq t
AwAwAqAwA

dt
d

>
∂
∂

<+>∇<><−>∇<−+>∇=<>< }..){1(. . (2.104) 

In the limit case q 1→ , one recovers the standard equation of motion for the mean 

value of A 

 111 . >
∂
∂

<+>∇=<><
t
AAwA

dt
d .      (2.105) 

Finally, we address the evolution equation for the escort distributions F~ : 
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])1(])1(1[[
])1(1[

1~
1

2
qq

q
q

F
dt
dSq

t
FqFSq

Sqt
F

−−
∂
∂

−+
−+

=
∂
∂ − ,  (2.106) 

which, after some algebra, leads to the evolution equation 

]..[~)1()~.(
~

qwwFqwF
t
F

>∇<−∇−=∇+
∂
∂ .     (2.107) 

The right hand side of Eq. (2.107) has the same form as the corresponding part of 

Liouvile equation. But, when q 1≠ , the left hand side of Eq. (2.107) (which vanishes in 

Liouville equation) is not in general equal to zero. However, this term vanishes for all q 

values if the flow in phase space has a constant divergence (Eq. (2.99)) [30]. 
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CHAPTER 3 

 

RIGID AND NON-RIGID ROTATOR MODELS IN 

NONEXTENSIVE THERMOSTATISTICS 

 

3.1 General Outline of the Rigid And Non-Rigid Rotators 

 
Rotating molecules can also absorb and emit infra-red and micro-wave radiation. 

The frequencies of absorption can be used to determine the rotational energy levels of 

the molecule accurately. The expression for the energy levels of the rigid rotator is 

given by the expression [31] 

)1(
8 2

2

+= ll
I

hEl π
.        (3.1) 

In this expression l is the rotational quantum number and I is the moment of inertia of 

the molecule which is defined as 

∑ ==
N

i
ii rrmI 22 µ ,        (3.2) 

where mi is the mass of the ith atom which is at a distance ri from the centre of mass of 

the molecule around which rotations take place and µ  is the reduced mass. From 

moments of inertia, the geometry of the molecule can be accurately evaluated. 

Microwave and infra-red spectroscopy of gases are some of the most powerful tools to 

determine the structure of molecules [32]. 

The vibrational spectra of gases do not show the simple band systems as predicted 

by the harmonic/anharmonic oscillator models, but are generally very complex. The 

fine structure can be adequately explained by the coupling of rotation and vibration i.e., 

the rotational quantum number changes also during a vibrational transition. The 

combined harmonic oscillator plus rigid rotator approach predicts the energy levels for 

a rotating oscillator to be 



 

22 

)1(
8

)
2
1( 2

2

+++= ll
I

hnhE
π

υ .      (3.3) 

Real molecules are neither harmonic nor rigid rotators; the vibrations are 

anharmonic and bond length changes during vibrational transitions and during rotation 

(centrifugal stretching). Suitable corrections must be made to take these effects into 

account.  

Instead of studying the quantum nature of the rigid rotator separately, the 

Schroedinger equation of non-rigid rotator plus harmonic oscillator will be directly 

solved in this Section. For this purpose, we consider a diatomic molecule consisting of 

atoms having masses m1 and m2 which are at a distance r apart. The atoms are r1 and r2 

cm away from the centre of mass M of the molecule respectively. The Cartesian 

coordinates of the first atom are (x1, y1, z1) and those of the second atom (x2, y2, z2).The 

classical Hamiltonian function H= T +V, where T is the kinetic energy and V the 

potential energy function, in Cartesian coordinates given by 

+++= ])()()[(
2
1 212121

1 dt
dz

dt
dy

dt
dxmH  

),,(])()()[(
2
1 222222

2 zyxV
dt

dz
dt

dy
dt

dxm +++ .   (3.4) 

To simplify the expression for V, a transformation to spherical coordinates r, θ and 

φ  is made. The origin of the spherical coordinate system is chosen in such a way that 

the origin is at one of the two atoms. In this system 

2

2
1 krV = .         (3.5) 

The coordinate of the centre of mass on the Y-axis are given by  

m1y1+m2y2 = (m1+m2)y,       (3.6) 

and similarly for the X- and Z-axis. Writing 

φθ cossin12 rxx =− ,        (3.7) 

φθ sinsin12 ryy =− ,        (3.8) 

θcos12 rzz =− .        (3.9) 

If (x2, y2, z2) are eliminated, we finally get 
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φθ cossin)(
21

2
1 r

mm
mxx
+

−= ,      (3.10) 

φθ sinsin)(
21

2
1 r

mm
m

yy
+

−= ,      (3.11) 

θcos)(
21

2
1 r

mm
m

zz
+

−= .       (3.12) 

Substitution (including the time derivatives) yields 

2222222

222
21

2
1)(

2

])()())[((
2
1

krSinrrr

dt
dz

dt
dy

dt
dxmmH

+++

++++=

φθθµ
     (3.13) 

This expression must be changed to contain the momenta conjugate to x, y, z, r, θ 

and φ  to be of the use. The momentum of a particle in one dimension is defined as 

px = mv.         (3.14) 

The momenta conjugate to r, θ and φ  respectively are 

rpr µ= ;     θµθ
2rp = ;     φθµφ

22 sinrp = .    (3.15) 

Subsitution of Eqs. above into the Eq. (3.13), we obtain 

)()
sin

(
2
1)(

)(2
1

22

2

2

2
2222

21

rV
r

p
r
p

pppp
mm

H rzyx ++++++
+

=
θµ

φθ . (3.16) 

In quantum mechanics, we have 

qi
pq ∂

∂
→ .         (3.17) 

We obtain the quantum mechanical Hamiltonian by inserting Eq. (3.17) into Eq. (3.16)  

)(]
sin
1)(sin

sin
1)(1[

2

)(2

2

2

222
2

2

2

2

21

2

rV
rrr

r
rr

mm
H

+
∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+∇
+

=

φθθ
θ

θθµ

  (3.18) 

 This operator consists of two separate parts-one containing only r, θ and φ  and the 

other only x, y, z. the Schroedinger equation reads [33] 

Ψ′=Ψ EH .         (3.19) 

 To separate Schroedinger equation for the Hamiltonian above, we write 
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),,(),,(),,,,,( φθψφθ rzyxrzyx Φ=Ψ ,     (3.20) 

each being equal to a separation constant E. It yields 

0)(2
2

2 =−′+∇ ψψ EE ,       (3.21) 

and 

0))((2
sin
1

)(sin
sin
1)(1

22

2

22

2
2

2

=Φ−+
∂
Φ∂

+
∂
Φ∂

∂
∂

+
∂
Φ∂

∂
∂

rVE
r

rr
r

rr
µ

φθ

θ
θ

θθ
     (3.22) 

Equation (3.21) describes the translational motion of the molecule. The rotating-

vibrating molecule can, therefore, be treated as if were stationary with one atom at the 

spherical coordinate origin. It is in general possible to separate the translational motion 

of atomic and molecular systems from the internal motion by the same procedure 

adopted here. 

The equation describing the internal degrees of freedom may be further separated by 

substituting  

),().(),,( φθχφθ rRr =Φ ,       (3.23) 

which gives the following two equations after arrangement 

λµ
=−+

∂
∂

∂
∂ 2

2
2 ))((2)(1 rrVE

r
Rr

rR
,     (3.24) 

and  

λχ
φ
χ

θθ
χθ

θθ
=

∂
∂

−
∂
∂

∂
∂

− 2

2

2sin
1)(sin

sin
1 ,     (3.25) 

where λ  is a constant. The Eq. (3.24) is called radial equation. The second equation 

can be further split into tqo separate equations by the substitution 

)().(),( φθφθχ ΦΘ= ,        (3.26) 

yielding,  

02
2

2

=Φ+
Φ m

d
d
φ

,        (3.27) 
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and 

0
sin

)(sin
sin

1
2

2

=Θ+
Θ

−
∂
Θ∂

∂
∂ λ

θθ
θ

θθ
m .     (3.28) 

Eqs. (3.27), (3.28) and (3.24) must be solved (in that order) to determine the energy 

values. The general solution for Eq. (3.27) is 

φ

π
im

m e
2
1

=Φ .        (3.29) 

This function is required to be single valued at the point φ  = 0 and also at the point φ  

= 2π ; This can only be when m is zero or a positive or negative integer,i.e., m = 0, ±1, 

±2, … Because m occurs as the square in the differential equation, both )(mΦ and 

)( m−Φ  satisfy the equation for a given value of m . There are thus two equivalent 

solutions for 0≠m  

  
φ

π

φ
π

m

m

m

m

cos1

sin1

=Φ

=Φ
        (3.30) 

and 

for m = 0, 

π2
1

0 =Φ .         (3.31) 

The Eq. (3.28) can be solved by changing to a new variable, 

θcos=z ,         (3.32) 

and writing 

)()( zP=Θ θ ,         (3.33) 

also noting that 

θ
θθ

sin)(
dz
dP

d
dz

dz
dP

d
d

−==
Θ .       (3.34) 

The result of the substitutions yields 

0)(]
1

[])()1[( 2

2
2 =

−
−+− zP

z
m

dz
zdPz

dz
d λ .     (3.35) 
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This equation is identical with the associated Legendre differential equation [34], λ 

having the characteristic values 

)1( += llλ ,         (3.36) 

where l is an integer, i.e., ,...1, += mml  The solutions for the associated Legendre 

equations are the associated Legendre polynomials of degree l and order m , which are 

defined as 

)()1()( 2/2 zP
dz
dzzP lm

m
mm

l −= ,      (3.37) 

where Pl (z) is the Legendre polynomial in z having degree l i.e., 

...]
)12(2

)1)(([
)!(!2

)!2()1()( 2
2/2

+
−

−−−
−

−
−

= −−− mlml
l

m
m

l z
l

mlmlz
mll

lzzP .  (3.38) 

The solution of the Θ equation is thus 

)(cos
)!(2

)!)(12(
θm

llm P
ml

mll
+

−+
=Θ .      (3.39) 

For example, we will have 

2
2)(0,0 =Θ θ ,        (3.40) 

or 

θθθ sin
2
3)()( 1,11,1 =Θ=Θ +− .      (3.41) 

To solve radial equation, the substitution 

r
rSrR )()( = ,         (3.42) 

is made in the Eq. (3.24). It then becomes 

0))]((2)1([ 222

2

=−+
+

−+ SrVE
r
ll

dr
Sd µ .     (3.43) 

The form of )(rV  is important. As a first approximation, )(rV  is chosen to be harmonic 

in the change in the internuclear distance, i.e. 

2)(
2

)( errkrV −= .        (3.44) 
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If variables are changed, putting r-re = x, this equation becomes 

0)]
2

(2
)(
)1([ 2

222

2

=−+
+
+

−+ SxkE
rx

ll
dx

Sd

e

µ .     (3.45) 

If the second term is assumed as perturbation, we get 

0]
2

[2 2
22

2

=−+ SxkE
dx

Sd µ .       (3.46) 

Eq. (3.32) is of  the same form as the harmonic oscillator wave equation. The boundary 

conditions are not exactly identical with those of the harmonic oscillator problem, but 

are sufficiently close, so that we can accept the following solution 

)()(
2)

2
1(

xHeCxS n

x

nn β
β−

= ,       (3.47) 

where Hn is the nth Hermite polynomial. The energy levels are, as usual, given by 

En = (n+1/2)h eυ .        (3.48) 

The first order perturbation can be found as 

∫
+∞

∞− +
+=′ dxxS

rx
xSllE n

e
nn )(]

)(
1)[()1( 2

2

µ
.     (3.49) 

The integral can be easily evaluated by expanding the term within the parantheses in 

terms of (x/re). Keeping only the first three terms in the expansion, we get 

)1( +′=′ llBE nn .        (3.50) 

The second order correction is  
2)]1([ +′−=′′ llDEn .        (3.51) 

The complete expression for the energy is thus 

E = (n+1/2)h eυ + )1( +′ JJBn
2)]1([ +′− JJD ,     (3.52) 

where J has been used instead of l for the rotational quantum number. The first term in 

the energy expression is due to the vibration of the molecule, the second to the rotation 

of the molecule and the third to centrifugal stretching of the molecule.    
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3.2 Rigid And Non-Rigid Rotator In Ordinary Thermostatistics 
 

In this Section, we will study the second and third terms in the Eq. (3.52) in a 

statistical context. The first term is harmonic oscillator term and even though it is 

important in the applications, we focus now only to those terms, which might be called 

as rigid and nonrigid rotator terms. The rigid rotator term reads 

Erot = )1( +′ JJBn .        (3.53) 

Taking the degeneracy of the system i.e., (2J+1) into consideration, we can write down 

the partition function for this model as 

∑
∞

=

+′−
+=

0
}

)1(
exp{)12()(

J

n
rot kT

JJB
JTZ ,     (3.54) 

Writing  

r
n

k
B

Θ≡
′

,         (3.55) 

The values of rΘ , for all gases except the ones involving the isotopes H and D, are 

much smaller than the room temperature. For example, the value of  rΘ  for HCl is 

about 15 K, for N2, O2 and NO it lies between 2 and 3 K, while for Cl2 it is about one-

third of a degree. On the other hand, the values of rΘ  for H2 and HD are respectively 

85 K, 64 K [35, 36]. These numbers give us an idea of respective temperature ranges in 

which the effects arising from the discreteness of the rotational states are expected to 

be important. 

We get 

∑
∞

=

+Θ
−+=

0
}

)1(
exp{)12()(

J

r
rot T

JJ
JTZ .     (3.56) 

For rT Θ>>  (high temperature limit), the spectrum of the rotational states may be 

approximated by a continuum. The summation can then be replaced by an integration: 

Zrot(T) ≈ ∫
∞ +Θ

−+
0

})1(exp{)12(
T
JJJdJ r .     (3.57) 
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Identifying J(J+1) = x, we evaluate the integral as 

Zrot = 
r

T
Θ

.         (3.58) 

The internal energy can be calculated using the formula 

rotZ
T

kTU ln2

∂
∂

−= ,        (3.59) 

and it gives 

kTU rot = .         (3.60) 

The rotational specific heat is obtained from 

T
UC rotv ∂
∂

=)( .         (3.61)  

Using Eqs. (3.60) and (3.61), we have 

(Cv)rot = k,         (3.62) 

consistent with the equipartition theorem. 

A better evaluation of the sum in Eq. (3.56) can be made with the help of the Euler-

Maclaurin formula, viz. 

∑ ∫
∞

=

∞

−′′′+′−+=
0 0

...)0(
720
1)0(

12
1)0(

2
1)()(

n
fffdxxfnf    (3.63) 

Writing  

}/)1(exp{)12()( Txxxxf rΘ+−+= ,      (3.64) 

one obtains 

Zrot (T) = T/ rΘ +1/3+(1/15) rΘ /T+(4/315)( rΘ /T)2
 + …,   (3.65) 

which is the so-called Mullholland formula; as expected, the main term of this formula 

is identical with the classical partition function (3.58). The corresponding result for the 

specific heat is 

(CV)rot = k{1+(1/45)( rΘ /T)2 +…},      (3.66) 

which shows that at high temperatures the rotational specific heat decreases with the 

temperature and ultimately tends to the classical value k. Thus, at high (but finite) 

temperatures the rotational specific heat of a diatomic gas is greater than the classical 

value. On the other hand, it must go to zero as T→0.  
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In the other limiting case, when T<< rΘ  (low temperature limit), one may retain 

only the first few terms of the sum in Eq. (3.56); then the partition function becomes 

...531)( /6/2 +++= Θ−Θ− TT
rot

rr eeTZ ,      (3.67) 

whence one obtains, in the lowest approximation 

Tr
rotV

re
T

kC /22)(12)( Θ−Θ
≅ .       (3.68) 

Thus, as T→0, the specific heat drops exponentially to zero. We conclude that at low 

enough temperatures the rotational degrees of freedom of the molecules are also frozen.  

Next, we study the non-rigid rotator in high and low temperature limits. The energy 

eigenvalues of non-rigid rotator (considering only the non-rigidity term) is given by   

Enrot = 2)]1([ +′ JJD .        (3.69) 

Treating the problem in the same manner as rigid rotator case, we write for the high 

temperature limit, 

Znrot(T) ≈ ∫
∞ +

−+
0

22

})1(exp{)12(
T
JDJJdJ ,     (3.70) 

where D = kD /′ . Making the substitution J(J+1) = x, we obtain 

 
D
T

T
Dxdx

2
}exp{

0

2 π
=−∫

∞

,       (3.71) 

i.e., we obtain the partition function as 

Znrot(T) = 
D
T

2
π .        (3.72) 

Using Eq. (3.59) with the partition function above,  

Unrot = 
D
TkT

4
π .        (3.73) 

The specific heat becomes 

2/1)(
8
3)(

D
TkC nrotV
π

= .       (3.74) 

In the low temperature limit, we have, as partition function, 

...531)( /36/4 +++= −− TDTD
nrot eeTZ ,      (3.75) 

The internal energy contribution due to non-rigidity term becomes 
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TDTD

TDTD

nrot ee
DeDekU /36/4

/36/4

531
18012

−−

−−

++
+

−= .     (3.76) 

The specific heat term becomes 

2/36/32

/36/4

2

/322

)35(
)135320(48)( TTD

TDTDTD

nrotV ee
ee

T
keDC

++
++

−= .   (3.77) 

Of course, taking the minus sign in Eq. (3.52) into consideration, we realize that there 

will be a positive correction to specific heat value of the rigid rotator by a value given 

by Eq. (3.77) in the low temperature limit.  

      

 

3.3 Rigid And Non-Rigid Rotator Models In Tsallis Thermostatistics 
 

In this Section, we will study these two models, i.e., rigid and non-rigid rotators in 

the framework of Tsallis statistics [37]. Using the energy levels of rigid rotator, we 

write the nonextensive partition function as 

)1/(1

0

]
)1(

)1(1)[12( q

J

r
q T

JJ
qJZ −

∞

=
∑ +

−−+=
θ

.      (3.78) 

Now, let us take a look at its analytic solutions in the high temperature limit. At high 

temperatures, <<T/θ 1 and the term in the parentheses in Eq. (3.78) changes slowly as 

J changes. So, we take it as a continuous functuon of J. Letting J(J+1) = x, we obtain 

∫
∞

−−−=
0

)1/(1])1(1[ qr
q T

xqdxZ θ .      (3.79) 

For the interval 1< q <2, solution to the above integral is 

r
q

T
q

Z
θ)2(

1
−

= .        (3.80) 

As q goes to 1, we get 

r
q

TZ
θ

=→1 .         (3.81) 

The expression above is exactly the Maxwell-Boltzmann (MB) partition function for 

the isotropic rigid  rotator in the high temperature limit. Thus, we calculate the 

generalized internal energy function from 
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q
Z

U
q

q
q −

−

∂
∂

−=
−

1
11

β
,        (3.82) 

in the nonextensive case. It becomes 

q

qq

q q
U −

−−

−
= 1

21

)2(
βα , 1 < q <2      (3.83) 

where 
rkθ

α 1
≡ . It is important to see that again, in the limit as q approaches to 1, we 

obtain the result already known in MB statistics, i.e., 

TkU Bq =→1 .         (3.84) 

It is also possible to calculate the specific heat in this context by using 

T
U

C q
q ∂

∂
= ,         (3.85) 

where Uq is the internal energy function. We immediately get 

2

1
1 )2()

2
( −

−
− −

−
= q

q
q

q k
Tq

q
C α .       (3.86) 

As can be easily verified 

Bq kC =→1 .         (3.87) 

All these calculations are carried out by using the second constraint of internal 

energy. But, we know that this choice of internal energy had some intrinsic problems 

within itself so that we have to consider redoing all those previous calculations in 

accordance with the third internal energy constraint. As is pointed in Chapter 2, there 

are two ways to do this: Firstly, we can recalculate all thermodynamical quantities with 

this new internal energy constraint by forming the new partition function. Another 

method is to find the relation between the temperature parameters of the old and new 

calculations. If one has all thermodynamical functions calculated with the old 

constraint and the relation between temperature parameters is known, it is possible to 

modify all previous calculations carried out with the second constraint.This is the 

method we will follow, because we already have the solutions with respect to old 

constraint.  
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We begin by writing all previous calculations in terms of intermediate variable t ′  

where t ′ )/(1 εβ ′≡ . From now on, the superscript (2) will refer to calculations done 

with the second constraint. 

The partition function of the rigid rotator in the high temperature limit becomes 

  
)2()2(

1)()2(

q
tT

q
Z

r
q −

′
=

′
−

=′
θ

β .      (3.88) 

Thus, we first evaluate 

∑ ∑
−′−−

=′
j j

q
q

qq
jq

j Z
q

p )2(

)1/(
)2( ])1(1[

)]([
εβ

β .     (3.99) 

By defining 

∑ ′=′−− −

j

qq
j tq )1/(])1(1[ εβ ,       (3.100) 

we write the Eq. (3.99) as 

∑ −′−=′
j

qqq
j tqp 1)2( )()2()]([ β .      (3.101) 

We then use Eq. (2.56), i.e., 

∑

∑

=

=

′′′−−

′
′= W

j

q
jq

W

j

q
j

pUq

p

1

)2()2(

1

)2(

)]([/)()1(1

)]([

βββ

β
ββ ,     (3.102) 

and substituting Eq. (3.101) into Eq. (3.102), we obtain 
qqq tqt /1/)1()2( +−=′ .        (3.103) 

Then, using Eq. (2.48), we have 

.)2()( /1/1)3( qq
q tqZ −−=′ β        (3.104) 

Next, using  

)()( )2()3( ββ ′= jj pp ,        (3.105) 

we can form )()3( βjp . Next, we use the relation (2.45) to be able to obtain the 

following partition function 
qqqq

q tqZ /)1(/11)3( )2()( −− −= .       (3.106) 
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Using this partition function, one can calculate all thermodynamic observables such as 

internal energy or heat capacity. Using Eq. (2.38) and Eq. (2.40) respectively, we 

obtain 
qq

q tqU /1/1)3( )2( −= ,        (3.107) 

and  

qqq
q tq

q
kC /)1(/1)3( )2( −−= .       (3.108) 

Again, as q→1, Cq
(3) →kB is obtained. This is the ordinary rotational specific heat of 

the isotropic rigid rotator for high temperature limit in accordance with the 

equipartition theorem. A plot has been made under the title Fig. 1 to be able to 

understand the behaviour of Cq
(3) with changing reduced temperature, which is defined 

as t = T/θr. 

Now, we are interested in solutions for the low temperature limit. At low 

temperatures, we look at the first few terms in the summation in Eq. (3.78) to write 

)1/(1])1(21[31 qr
q T

qZ −−−+≅
θ .      (3.109) 

This is nothing but the well-known partiton function of the rigid rotator in low 

temperature limit in MB statistics if (1-q) is small enough. This is the case if we make q 

closer to 1. For such a choice, the partition function takes the form 

)/2exp(311 TZ rq θ−+≅→ .       (3.110) 

If we identify 

=τ )1/(1]])1(21[31[ qq −−−+
α
β ,      (3.111) 

and 

=σ ])1(21[
α
βq−− ,        (3.112) 

we can write the nonextensive internal energy function as 

)1/(6 qqq
qU −−= στ

α
.        (3.113) 

This is a relatively long expression but when we look for its value as q approaches 1, 

we see that it is of the form 
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)/2exp(6

1
1 T

Z
kU r

q

rB
q θ

θ
−=

→
→ ,       (3.114) 

with 1/α = kBθ in the q→1 limit. Calculation of specific heat gives 

q
q

qq
q

q
q kT

q
kT
qC −−−−

−
− −= 1

2
1

22
1

12

22

3612 στ
α

στ
α

.     (3.115) 

As q→1, the above expression takes the form 

)/2exp(12
221 T

Tk
C r

B
q θ

α
−=→ .      (3.116) 

This limiting value of heat capacity is obtained by observing that 
1

1

→qZ
is almost equal 

to unity for low temperature partition function values. At first sight, Eq. (3.116) looks 

different from Eq. (3.68): In fact, they are not. Since 

22
2

1
rBk θ

α
= ,         (3.117) 

we get, from Eq. (3.116) 

 )/2exp()(12 2
1 T

T
kC r

r
Bq θ
θ

−=→ ,      (3.118) 

which is identical to Eq. (3.68). 

To modify Eq. (3.115) for example in accordance with the third constraint, we can 

substitute Eq. (3.103) into Eq. (3.78) and take the first two terms to get the low 

temperature limit partition function. This is redundant due to two main reasons though: 

Firstly, when the ground state energy eigenvalue is zero, there occurs no difference 

between the second and third constraint calculations as long as thermodynamic 

observables are concerned. Secondly, if we inspect Eq. (3.103), we see see that in the 

limit as q approaches 1, tt =′  i.e., both second and third constraint calculations have 

the same limiting value for thermodynamic observables. 

The behaviour of rigid rotator model in the low temperature limit is plotted in Fig. 2. 

The interesting feature in these plots is that specific heat function of the rigid rotator in 

the low temperature regime attains the same shape as the classical one but with a 

narrower width and a shift in the peak to the left. By increasing the values of q, specific 

heat function attains the same shape as the classical one but with a narrower width and 
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a shift in peak to the left. This behaviour suggests that the nonextensivity parameter q 

behaves as a scale parameter in this regime. 

Now, we can solve the non-rigid rotator term in Tsallis statistics. We consider Eq. 

(3.52) neglecting only the first term which happens to be the harmonic term. Therefore, 

the nonextensive partition function reads 

∑
∞

=

−+−++′−−+=
0

)1/(122 ])1()1()1()1(1)[12(
J

q
q JDJqJJBqJZ ββ . (3.119) 

As before, for high temperature limit, we replace summation by integral and get 

∫
∞

−++=
0

)1/(12 ]1[ qnonrigid
q bxaxdxZ ,      (3.120) 

where 

Dqa )1( −= β ,        (3.121) 

and 

Bqb ′−−= )1(β .        (3.122) 

The integral in Eq. (3.120) can be rewritten in factorial form 

nonrigid
qZ )1/(1

0

)1/(11
1

)1()1()( qqq

n
x

m
xdxmn −

∞
−− ++= ∫ ,    (3.123) 

where m = b-n and n = ])41(1[
2

2/1
2b

ab
−± . The following general form can be used to 

solve the integral 

∫
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−−−−− −++−=++
0

12
1 )1;;,(),()()(

ϑ
γξµνµξνµνγϑγϑ ξνµξµν FBetaxxdxx , (3.124) 

where 

1
1
−

=
q

µ ; 1=ν ; 
n
1

=γ ; 
m
1

=ϑ .      (3.125) 

The function );;,(12 xF γµρ  is the hypergeometric function defined by 

);;,(12 xF γµρ ∫ −−−− −−
−ΓΓ

Γ
=

1

0

11 )1()1(
)()(

)( ρµγµ

µγµ
γ xttdtt ,   (3.126) 

where the parameters satisfy 0>ν and ξνµ −> . Here we see that 1=ν and q > 1. 

Thus, we simply get 
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1
1
−

==
q

ξµ .         (3.127) 

By using the condition ξνµ −> , we obtain an upper limit for q as q < 3. Therefore, 

we have s olution range for q as 1 < q <3. Thus, we get the partition function as 

nq
qZ nonrigid

q )3(
)1(

−
−

= )1;
1

2;
1

1,1(12 n
m

qq
F −

−−
.     (3.128) 

In order to get the compact expression for the partition function above, we made use of 

the following identity: 

q
q

q
Beta

−
−

=−
− 3

1)1
1

2,1( .       (3.129) 

The resulting internal energy and geat capacity expressions may be found exactly in 

the same manner. Behaviour of heat capacity in the high temperature limit is plotted in 

Fig. 3. In all plots related to non-rigid rotator, the values 10. 397 and 4.1×10-5 have 

been used for the B′ and D parameters respectively for HCl molecule [38].  

Finally, we need to investigate non-rigid rotator model in the low temperature limit 

[39]. Taking the first few terms in the Eq. (3.119), we obtain 

qnonrigid
q qDqBZ −−+−′−+≅ 1

1

])1(4)1(21[31 ββ .    (3.130) 

Internal energy term resulting from this partition function is 

qqq
q

nonrigid
q qDBqDBDBU −−− −−′++−−′+−′= ]))1)(2(21(31[])1)(2(21)[2(6 1

1
1 ββ  

          (3.131) 

The specific heat function of non-rigid rotator for this case is illistrated in Fig. 4, with 

the same B′ and D values as before [40]. We present Fig. 1 through Fig. 4 in the next 4 

pages. 
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CHAPTER 4 

 

RELATIVE ENTROPY, SECOND LAW OF THERMODYNAMICS 

AND CONSTRAINTS IN NONEXTENSIVE STATISTICS 

 

4.1 The Physical Meaning of Ordinary Definition of Relative Entropy 

 
The definition of relative entropy [41-43] used throughout the NEXT literature 

reads 

Kq[p║r] = ∑ −−
− i

q
i

q
i rp

q
])()(1[

1
1 1 ,       (4.1) 

where ri is a reference distribution. To be able to understand its physical meaning in 

NEXT formalism, we optimize Tsallis entropy by using escort distributions (i.e., third 

choice): 
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which gives 
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The Equation above can be written in the following form   

]~[~~
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1*1
qi

q
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q
i Upqp

q
q

−−−
−

−− εβα  = 0,      (4.4) 

where 

∑
=

i

q
ip~

* ββ           (4.5) 
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and 

]~)1(1[
1 qSq

q
q

−+
−

=α .        (4.6) 

qS~  and qU~  are the values of Sq and Uq calculated in terms of the maximum entropy 

distribution ip~  [44, 45, 46]. Eqs. (4.4) and (4.6) lead to 

)1/(1* )]~()1(1[~
1~ q

qi
q

i Uq
Z

p −−−−= εβ ,      (4.7) 

)1/(1]~)1(1[~ q
qq SqZ −−+= ,        (4.8) 

     ∑ −−−−=
i

q
qi Uq )1/(1* )]~()1(1[ εβ .       (4.9) 

Substituting ri = ip~  into Eq. (4.1) and using Eqs. (4.7), (4.9), we obtain 

Kq[p║ p~ ] = )~
ˆ
1

ˆ
1~(

)~(

ˆ
qqqq

i

q
i

SSUU
p ββ
β

+−−
∑

,              (4.10) 

where 

∑=
i

q
ip )(ˆ *ββ .                  (4.11)

          

The Eq. (4.10) can be cast into a more explicit form if we identify the terms within the 

parantheses explicitly as 

Fq = qq SU
β̂
1

−                 (4.12) 

and 

qqq SUF ~
ˆ
1~~
β

−= .                (4.13) 

The Eq. (4.10) can be rewritten in the following form now 

Kq[p║ p~ ] = )~(
)~(

ˆ
qq

i

q
i

FF
p

−
∑

β .             (4.14) 

Inspection of the Equation above clearly shows that physical meaning relative entropy 

is nothing but the free energy differences [47].  
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4.2 Relative Entropy and The Second Law of Thermodynamics 
 

Under the previously explained constraints of normalization and internal energy (see 

Section 2.1),  the Tsallis entropy is found to be optimized by the following state: 

))~((1~ *
qq

q

UHe
Z

−−= βρ ,       (4.15) 

where 

Zq = ))~(( *
qq UHTre −−β .       (4.16) 

Here, eq(x) denotes the q-exponential function. qU~  and *β  are given by 

)~(
)~(~

q

q

q Tr
HTrU

ρ
ρ

= ,        (4.17) 

       

)~(
*

qTr ρ
ββ = ,         (4.18) 

where β is a Lagrange multiplier asociated with the internal energy constraint. 

Before proceeding to the second law, it seems appropriate to formulate the first law 

of thermodynamics to identify the quantity of heat. For this purpose, let us consider the 

generalized internal energy    

)(
)(

q

q

q Tr
HTrU

ρ
ρ

= .        (4.19) 

We are concerned with small change of this quantity from qU~  and therefore ρ and 

ρ~ are close to each other. Taking the variation of Uq, we obtain the first law 

qqq WUQ δδδ ′+=′ ,        (4.20) 

where qQδ ′  and qWδ ′ are the small changes of the quantity of heat and work [48,49] 

given by 
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δρδδ −=><−=′ ,      (4.22) 

respectively. We write Eq. (4.1) as 

Kq[ρ║σ] = )](1[
1

1 1 qqTr
q

−−
−

σρ .      (4.23) 

Since we want to compare ρ with ρ~  in Eq. (4.15) [50], we need to evaluate  

Kq[ρ║ ρ~ ]. Therefore, by substitution of ρ~  instead of σ, and using 

(Zq)1-q = Tr qρ~ ,        (4.24) 

We obtain 

Kq[ρ║ ρ~ ] = )]}~([][]~[{~
1 *
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qqq UHTrSS
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ρ

.   (4.25) 

Taking the variation of Kq[ρ║ ρ~ ] with respect to ρ, i.e., ρ δρρ +→ and  

Trδρ  = 0,         (4.26) 

with fixed ρ~ , we get 

[)~( q
q KTr δρ ρ║ )]([][]~ *

q
q

q UHTrS −+−= δρβρδρ ,   (4.27) 

where q
qU~δρ  has been replaced by q

qUδρ , since ρ  is close to ρ~  and therefore the 

difference between these two quantities are of higher order infinitesimal. Using Eq. 

(4.21), we have 

[)~( q
q KTr δρ  ρ║ qq QS δβρδρ ′+−= ][]~ ,     (4.28) 

A similar case has been studied for Renyi entropy in Ref. [51-53]. 

In order to establish Clausius’ inequality 

][ρδδβ qq SQ ≤′ ,        (4.29) 

it is necessary to show that ρδ [qK ║ ρ~ ] is negative. To calculate this term, we 

represent the variation by a trace-peserving completely positive unital map, 

)(ρδρρρ Λ≡+→ : 

∑=Λ
k

kV ρρ)( Vk
†.        (4.30) 
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Vk’s are certain operators satisfying the trace-preserving condition 

∑
k

Vk
†Vk = 1,        (4.31) 

with the identity operator I. The unital condition reads 

II =Λ )( ,         (4.32) 

which in turn gives 

∑
k

 VkVk
†

 = 1.        (4.33) 

These two conditions are compatible if Vk’s are normal, that is,  

[Vk,Vk
†] = 0 for k∀ .        (4.34) 

Since ρ~  is fixed, we have 

ρρ ~)~( =Λ ,         (4.35) 

which is fulfilled if 

[Vk, ]~ρ = 0.         (4.36) 

Thus, the variation must be understood as  

ρδ [qK ║ )([]~ ρρ Λ= qK ║ ρρ []~
qK− ║ ]~ρ .     (4.37) 

Now, let A be a positive operator. Then, the function 

f (A) = Aq   (q>0),        (4.38) 

is operator monotone, that is, for another positive operator B, such that AB ≥ , holds 
qq AB ≥ .         (4.39) 

A very important point is that if q > 2, then this operator function does not possess 

definite convexity. The function f (A) is operator concave (convex), i.e., 

)()1()()())1(( BfAfBAf λλλλ −+≤≥−+  if ]1,0(∈q  ( ])2,1(∈q ,  (4.40) 

where )1,0(∈λ . In other words, 
qAAF =)(      for ]1,0(∈q  

          = qA−  for   ]2,1(∈q .       (4.41) 

is operator concave. Then, Ando’s Theorem [54] states that 

∑k
F ( Vk  A Vk

† ) ∑≥ k
  Vk  F(A) Vk

† .     (4.42) 

Using this theorem, we have 

)~~(~)]([~ 2/)1(2/)1(2/)1(2/)1( qqqqqq −−−− Λ≥Λ ρρρρρρ   ( ])1,0(∈q ,   (4.43) 
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)~~(~)]([~ 2/)1(2/)1(2/)1(2/)1( qqqqqq −−−− Λ≤Λ ρρρρρρ   ( ])2,1(∈q .   (4.44) 

Therefore, using Eq. (5.23), we finally get 

)([ ρΛqK ║ ρρ []~
qK≤ ║ ]~ρ    ( ])2,0(∈q ,     (4.45) 

which establishes Clausius’ inequality in Eq. (4.29) [55]. 

Thus, it has been shown that the second law of thermodynamics holds in NEXT with 

]2,0(∈q  [56,57]. This Section also proves how important the concept of relative 

theory is in studies of nonequilibrium statistical physics.   

 

5.3 Deformed Exponentials and A New Definition of Relative Entropy 

In Nonextensive Formalism 

 
As it is explained earlier, Tsallis statistics indeed can be achieved by replacing the 

usual exponential by q exponential i.e., expq(x). This kind of particular forms of 

exponential function which has been invented to suit the needs of generalization of 

Boltzmann-Gibbs formalism is called deformed exponentials [58], and corresponding 

logarithms are called deformed logarithms. This Section will be devoted to a general 

study of these functions and a new relative entropy definition which will emerge from 

this discussion. 

As usual, our generalized exponentials and logarithms must satisfy the requirements 

met by their corresponding usual counterparts. We call these forms as κ-deformed 

exponentials (or logarithms) in general. We denote the  κ-deformed exponential 

function as expκ(x). The deformation number κ is a number we will not specify further. 

It has to satify following assumptions 

I. expκ(x) 0≥    for all real x. Expκ(x) = ∞ is allowed. 

II. expκ(0) =1. 

III. expκ(x) is a convex function which is strictly increasing in all points where its 

value is not zero or infinite. 

IV. expκ(x) goes fast enough to zero when x goes to -∞, so that ∫
∞

−
0

)(exp xdx κ < ∞. 
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V. lnκ(x) is a strictly increasing concave function, defined for all x > 0. 

VI. lnκ(1) = 0. 

VII. ∫
1

0

)(ln xdx κ is finite. 

The inverse of a κ-deformed exponential function is a κ-deformed logarithm. The 

integral of the κ-deformed logarithm is given by 

∫=
x

ydyxF
1

)(ln)( κκ ,   x > 0.       (4.46)   

This function satisfies Fκ(x) ≥ 0, Fκ(1) = 0, and Fκ(0) < ∞. It is convex because the 

derivative of lnκ(x) is increasing. 

Let us introduce a new function, denoted by ωκ(x),  

)/1()0()1()( xxFFxx κκκω −−= .      (4.47) 

This function is again a κ-deformed logarithm, provided that 

∫ 〈+∞
1

0
)/1(ln xdx κ .        (4.48) 

To be able to see why ωκ(x) might be called a κ-deformed logarithm, we list   

I. ωκ(x) is a strictly increasing concave function. To see this, we write 

∫−=
x

yydxxxF
1

)(ln)(ln)( κκκ .      (4.49) 

This expression is used to write the derivative of ωκ(x) as 

)/1(ln)/1()/1()0()( xxxFFx
dx
d

κκκκω +−=     (4.50) 

     = ∫
x

yyd
/1

0

)(lnκ .       (4.51) 

Because lnκ(y) is a strictly increasing function, the latter expression is strictly positive 

for all x > 0. Hence,  ωκ(x) is strictly increasing. It is also clear from Eq. (4.51) that the 

derivative of ωκ(x) is a decreasing function. Hence  ωκ(x) is concave. 

II. ωκ(1) = 0 since Fκ (1) = 0. 

III. We finally need to show ∫
1

0
)(xdx κω  is finite. For this purpose, we write, using 

integration by parts, 
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∫ ∫ ∫−−=
1

0

1

0

/1

0
)(ln)0()(

x
ydydxxFxdx κκκω ,     (4.52) 

                  = ∫∫ +−−
x

xydyx
dx
ddxF

/1

0

21

0
)]/1(ln))(ln([

2
1)0( κκκ ,  (4.53) 

                  = ∫−−
1

0
)/1(ln

2
1)0(

2
1 xdxF κκ ,     (4.54) 

which is finite by assumption (4.48). 

ωκ (x) is called deduced logarithmic function. It satisfies the equation 

)(ln)0())/1(( xFxx
dx
d

κκκω −−= .                (4.55) 

At this point, let us give two deformed logarithms existing in the literature as 

examples to make all previous points clearer: First, Tsallis’ deformed logarithm will be 

explained briefly. It is given by 

)1)(11()(ln −+= κ
κ κ

xx ,       (4.56) 

where -1 < κ < +1. The inverse function is 

κ
κ κ

κ /1]
1

1[)(exp ++
+= xx ,       (4.57) 

where [x]+ = max{x,0}. For κ = 0, these functions coincide with the usual definitions of 

logarithmic and exponential functions. 

lnκ (x) is a strictly increasing concave function. Indeed, we have 

1)1()(ln −+= κ
κ κ xx

dx
d ,       (4.58) 

22
2

2

)1()(ln −−−= κ
κ κ xx

dx
d .       (4.59) 

It is obvious that the first derivative is always strictly positive, and that the second 

derivative is negative. 

lnκ(1) = 0 and ∫
1

0
)(ln xdx κ  is finite and indeed equal to -1. These facts show that the 

κ-deformed logarithm in Eq. (4.56) satisfies the assumptions. In the context of Tsallis’ 

thermostatistics, one simply uses the notations expq (x) and lnq (x) with q related to κ 

by q = 1+κ [59]. Moreover, we have 
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∫ −+=
x

ydyxF
1

)1()11()( κ
κ κ

       (4.60) 

           = )1)(11()1(1 1 −+−−+ xx
κκ

κ .      (4.61) 

In particular, one has 

Fκ (0) = 1.         (4.62) 

We can write, for deduced logarithm 

)0(
)/1(

1)(
κ

κ
κω

−

−−−=
F

xF
xxx        (4.63) 

           = )1(1 κ

κ
−− x .        (4.64)    

Second, Kaniadakis’ deformed exponential function [60, 61] is 

κ
κ κκ /122 )1()(exp xxx ++= ,      (4.65) 

where -1 < κ < +1 and κ ≠ 0. The inverse function is 

)(
2
1)(ln κκ

κ κ
−−= xxx .       (4.66) 

In the limit κ = 0, thse functions coincide with the usual definitions of logarithmic and 

exponential functions. We have 

∫ −
−

=
1

0 21
1)(ln
κκ xdx ,        (4.67)  

Also, we calculate 

∫ −−=
x

yyxF
1

)(
2
1)( κκ

κ κ
,       (4.68) 

           = ]
1

1
1

1[
2
1

1
1 11

2
κκ

κκκκ
−+

−
−

+
+

−
xx .    (4.69) 

In particular, note that 

21
1)0(
κκ −

=F .        (4.70) 

The deduced logarithm is then given by 

)/1()0()1()( xxFFxx κκκω −−= ,      (4.71) 
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           = ))
1
1((ln

1
1

1
1 2/1

22 xκ
κ κ

κ

κκ −
+

−
+

−
− .    (4.72) 

It is possible to use the ideas developed above to be able to calculate information 

content: The amount of information, contained in the knowledge that event k has 

possibility pk, equals ω(1/pk), where ω(x) is an increasing function. Hence, less 

probable events have a higher information content. Hartley’s measure of information 

[62] corresponds with the choice ω(x) = ln(x).  

The obvious generalization is then to take ω(x) equal to the κ-deformed logarithm. 

Rather, we let ω(x) = ωκ(x) with right hand side being nothing but the deduced 

logarithm. The average information content Iκ(p) is then given by 

∑ ∞≤=
k

kk IppI )(κ    with   )/1( kk pI κω= .    (4.73) 

Using the definition of ωκ (x), we immediately get 

∑ −−=
k

kk pFFppI ))()0()1(()( κκκ .     (4.74) 

Because Fκ(x) is convex, one has 

)0()1()1()( κκκ FpFppF kkk −+≤       (4.75) 

             = )0()1( κFpk− .       (4.76) 

Therefore, one has always 

Iκ (p) ≥ 0.         (4.77) 

Iκ (p) = 0 if and only if pk = 1 for a single value of k. This follows because Fκ (x) is 

strictly decreasing on the interval 0 ≤ x ≤ 1. Iκ (p) is  a concave function. This means 

that, if p and q are two probability distributions, then  

)()1()())1(( qIpIqpI κκκ λλλλ −+≥−+      (4.78) 

holds for any λ, 0 ≤ λ ≤ 1.This follows immediately from Eq. (4.74) since Fκ(x) is a 

convex function. 

If ωκ (x) coincides with the usual logarithmic function then one finds 

∑−=
k

kk pppI ln)(κ .       (4.79) 
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This is Shannon’s expression for information content [63]. Now, if ωκ (x) equals 

Tsallis’ deformed logarithm, as given in Eq. (4.64), then average information content 

equals 

∑ +−=
k

k
Tsallis ppI )1(1)( 1 κ
κ κ

.       (4.80) 

This is the entropy functional used in Tsallis thermostatistics. 

The optimization of information content Iκ(p) under a linear constraint such as the 

internal energy constraint used in Tsallis formalism can be achieved with ease. The 

substitution of Eq. (4.80) will be enough to reach this purpose. Of course, due to 

generality of this Section, only by changing the form of information content, we can 

obtain similar results for Kaniadakis’deduced logarithm. 

Apart from being a general frame, deformed logarithms and exponentials enable us 

to write some new generalizations of Boltzmann-Gibbs statistics in a unified manner. 

In relevant examples of thermostatistics, the density of states ρ(E) increases as a power 

law ρ(E) ~EαN with N being the number of particles and α > 0. The increase of density 

of states compensates the exponential decrease of probability density p(E). The 

maximum of the product ρ(E)p(E) is reached at some macroscopic energy far above the 

ground state energy [64]. Indeed, one can write 

 ρ(E)p(E) = )/)(exp(log
)(

1 TEE
TZ

−ρ .     (4.81) 

The argument of the exponential function is maximal if E satisfies 

TE
E 1

)(
)(
=

′
ρ
ρ ,         (4.82) 

where )(Eρ′  is the derivative of ρ(E) with respect to E. If ρ(E) ~EαN holds, then 

E NTα≅  follows, which is the equipartition theorem.  

As a consequence of equipartition theorem, it is not easy to verify the Boltzmann-

Gibbs distribution experimentally. The energy of the system under study is always 

equal to the value predicted by Eq. (4.82), with neglible fluctuations. This indicates that 

the actual form of probability distribution p(E) is not very essential. Alternative 

expressions for p(E) are acceptable if they satisfy the equipartition theorem and 

reproduce thermodynamics. An indication of the need for a generalization of 
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Boltzmann-Gibbs is the general use of temperature-dependent Hamiltonians in applied 

statistical physics. The following well-known expression 

∫ −

−

=
TE

TE

eEdE
eEp

/

/

)(
)(

ρ
,       (4.83) 

predicts the probability density p(E) at all temperatures. In many cases, this prediction 

is not very accurate, probably because of an incomplete knowledge of the density of 

states ρ(E). However, instead of making ρ(E) temperature-dependent, which is not 

supported by theory, one can as well try to replace the Boltzmann-Gibbs distribution by 

another expresion more appropriate for the problem at hand. 

We  then start with a generalization of equipartition theorem Eq. (4.82) 

))((
)(1

Ep
Ep

T φ
′−

= ,         (4.84) 

where φ  is an incresing positive function, defined for x ≥ 0. The Eq. (4.84) holds for 

all energies E and temperatures T. Then the equation for the maximum of ρ(E)p(E) 

becomes 

))()((0 EpE
dE
d ρ= ,        (4.85) 

    = ))(()(1)()( EpE
T

EpE φρρ −′ .      (4.86) 

The expression above can be written as 

)(
))((1

)(
)(

Ep
Ep

TE
E φ

ρ
ρ

=
′

.        (4.87) 

This last equation generalizes the equipartition theorem. The Boltzmann-Gibbs case is 

recovered when φ (x) = x. 

The postulate in Eq. (4.84) fixes the form of the probability distribution p(E). To be 

able to see this, let us introduce the deformed logarithm 

∫=
x

y
dyx

1 )(
1)(ln

φφ .        (4.88) 

As can be seen very easily, when φ (x) = x, we recover log(x). The inverse of this 

function can be denoted as )(exp xφ . Using the identity 
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))((lnpex)( xx φφφ ′= ,        (4.89) 

we write Eq. (5.84) as 

=′ )(Ep ))](([lnpex1 Ep
T φφ′− .      (4.90) 

Integrating the Equation above, we get 

)/)((exp)( TETGEp −= φφ .       (4.91) 

The function )(TGφ is the integration constant and must be chosen in accordance with 

∫= )()(1 EpEdEρ .        (4.92) 

Eq. (4.91) resembles Boltzmann-Gibbs distribution in Eq. (4.83). An important 

difference is that the normalization constant appears inside the function )(exp xφ . 

When xx =)(φ , one has ))(log()( TZTG −=φ . Starting from Eq. (4.91), one can 

develop a generalized thermostatistics. 

In general, it is difficult to calculate integration constant )(TGφ  but one can obtain 

its temperature derivative in terms of previously discussed escort probabilities. The 

generalized definition is 

))((
)(

1)( Ep
TZ

EP φ= ,       (4.93) 

With normalization factor 

∫= ))(()()( EpEdETZ φρ .       (4.94) 

Expectation values with respect to P(E) are denoted as 

∫=>< )()()(* EfEPEdEf ρ .      (4.95) 

P(E) coincides with p(E) in the Boltzmann-Gibbs case i.e., xx =)(φ for all x. Next, we 

calculate, using Eqs. (4.89) and (4.93) 

))()(/)((pex)( 2T
ETG

dT
dTETGEp

dT
d

+−′= φφφ ,    (4.96) 

                = ))()(()( 2T
ETG

dT
dEPTZ +φ .     (4.97) 

From Eqs. (4.92) and (4.97), we get 
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∫= dT
EdpEdE )()(0 ρ ,        (4.98) 

    = *2

)()()( ><+ E
T

TZTG
dT
dTZ φ ,      (4.99) 

which, at last gives, 

*2

1)( ><−= E
T

TG
dT
d

φ .       (4.100) 

Combining Eq. (4.97) with Eq. (4.100), we also have 

)()()()(
*2 ><−= EE

T
EPTZ

dT
Edp .      (4.101) 

Having derived these general equations, there remains the question whether the 

generalized thermostatistics is compatible with thermodynamics. 

Our starting point will be establishing thermal stability. Internal energy U(T) is 

defined by <E>. Using Eq. (4.101), we obtain 

∫= dT
EdpEEdE

dT
TdU )()()( ρ ,       (4.102) 

  = ∫ EEdE )(ρ   )()()(
*2 ><− EE

T
EPTZ ,    (4.103) 

  = )()(
*

2
*

2
2 ><−>< EE

T
TZ ,     (4.104) 

  ≥ 0.         (4.105) 

Hence, average energy is an increasing function of temperature. However, we also need 

to prove another relation between entropy and temperature in order to show thermal 

stability. For this purpose, we define 

∫ −−= ))](()0()(1)[(()( EpFFEpEdEpS φφφ ρ ,    (4.106) 

with 

∫=
x

ydyxF
1

)(ln)( φφ .        (4.107) 

Let us postulate that thermodynamic entropy S(T) equals the value of the above 

entropy functional in Eq. (4.106) with p given by Eq. (4.91). Then one gets 

∫ −−=
dT

EdpFEpEdE
dT

TdS )())0())((ln)(()(
φφρ ,    (4.108) 
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 = ∫ −+−
dT

EdpF
T
ETGEdE )())0()()(( φφρ ,    (4.109) 

 = 
dT

TdU
T

)(1 .        (4.110) 

We needed to make use of the fact that p(E) is normalized to 1. This shows that 

dU
dS

T
=

1 .         (4.111) 

Because energy is an increasing function of temperature, one concludes that entropy S 

is a concave function of energy U. This property is known as thermal stability. 

One can introduce the Helmholtz free energy F(T) by the relation 

)()()( TTSTUTF −= .       (4.112) 

From Eq. (5.110), it follows that 

)()( TUTF
d
d

=β
β

   with   
T
1

=β .      (4.113) 

Comparison of Eq. (4.100) with Eq. (4.112), we see that F(T) is replaced by T )(TGφ , 

U(T) = <E> replaced by <E>* . Finally, this shows that T )(TGφ  equals the free energy 

associated with the escort probability distribution P(E), up to a constant independent of 

temperature T. 

The most obvious generalization of Boltzmann-Gibbs thermostatistics is obtained by 

the choice 
qxx =)(φ     with   q > 0.       (4.114) 

It reproduces Tsallis thermostatictics with some minor changes. The corresponding 

deformed logarithmic and exponential functions [65] are 

)1(
1

1)(ln 1 −
−

= −q
q x

q
x        (4.115) 

and 
)1/(1])1(1[)(exp q

q xqx −
+−+= .       (4.116) 

The probability distribution p(E) becomes 
)1/(1)]/)()(1(1[)( q

q TETGqEp −
+−−+= ,     (4.117) 
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          = )1/(1* ])()1(1[
)(

1 q
q

q

ETq
Tz

−
+−− β ,     (4.118) 

with 
)1/(1))()1(1()( −−+= q

qq TGqTz       (4.119) 

and 

TTzT q
qq /)()( 1* −=β .        (4.120) 

A nice feature of Tsallis thermostatistics is that the correspondence between p(E) 

and the escort P(E) leads to a dual structure, called “q↔1/q” duality, i.e., 

)(
)()(
TZ

EpEP
q

q

=         (4.121) 

and  

)(
)()(

/1

/1

TZ
EPEp
q

q

= .        (4.122) 

However, there also exists a “q↔ q−2 ” duality. Given )(ln xφ , a new deformed 

logarithmic function )(ln xψ  is obtained by 

)/1()0()1()(ln xxFFxx φφψ −−= ,      (4.123) 

with )(xψ  is given by 

)/1(ln1)/1()0(
)(

1 x
x

xFF
x φφφψ

+−= .     (4.124) 

When qxx =)(φ , we get  
qxqx −−= 2)2()(ψ .        (4.125) 

Hence, deformed logarithms lnq(x) and ln2-q(x) can be deduced from each other, up to a 

constant factor, by the relation (4.123). The definition of entropy can be rewritten as 

∫= ))(/1(ln)()()( EpEpEdEpS ψφ ρ .     (4.126) 

With qxx =)(ψ , Eq. (5.126) gives us Tsallis entropy, i.e., 

∫ −
−

=
q

EpEpEdEpS
q

q 1
))()(()()( ρ .      (4.127) 
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In the literature, it has been preferred to use always the above expression for entropy 

functional. Instead, the definition of average energy has been changed from <E> to 

<E>* . In fact, a change from p(E) to P(E) would do the work without the need for 

changing the definition of average energy. 

Now, we are ready to discuss the central issue of this Section, which is the relative 

entropy concept. A possible generalization of relative entropy (also called divergence) 

can be defined by 

I[p║q] = ∑
k

kkk qpfq )/( ,       (4.128) 

with f(x) being a convex function, defined for x > 0, strictly convex at x = 1 [66,67, 

68]. Alternative expressions of the form 

D[p║q] = ∑ ′−−−
k

kkkkk qfqpqfpf )]()()()([ ,    (4.129) 

with )(xf ′  being the derivative of f(x), are called relative entropies of Bergmann type 

[69, 70]. The Eqs. (4.128) and (4.129) are identical in the case when 

f(x) = x log(x).        (4.130) 

Hence, there is no need to make a difference between the two forms in the standard 

theory.  

Now, note that we can write Eq. (4.74), using also Eq. (4. 46) 

∑ ∫−−=
k

pk

xdxFpI
0

)(ln)0()( κκκ .      (4.131) 

From Eq. (4.128), we write, for the relative entropy 

Iκ[p║q] = ∑−
k

kkk pqp )/(κω .      (4.132) 

Using the definition of κω , one obtains 

Iκ[p║q] = ∑ ∫
k

p

q
k

k

k

qxdx )/(lnκ .       (4.133) 

Iκ[p║q] ≥ 0 and Iκ[p║q] is jointly convex in p and q. Iκ[p║q] = 0 implies p = q. For 

example, using Eq. (4.64), we obtain the Tsallis form of relative entropy which reads 

 Iκ(p║q) = ∑ −
k k

k
k q

p
p )1)((1 κ

κ
.      (4.134) 
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But, as pointed out before, there is also relative entropy definition of Bergmann type in 

the mathematical literature. There is no nonextensive relative entropy of Bergmann 

type. For this purpose, we proceed with Eq. (4.133) 

Dκ[p║q] = ∑ ∫ −
k

k

p

q

qxdx
k

k

))(ln)((ln κκ ,     (4.135) 

    = ∑ −−−
k

kkkkk qqpqFpF )](ln)()()([ κκκ ,   (4.136) 

    = ∑ −−−
k

kkk qqppIqI )(ln)()()( κκκ .    (5.137) 

This last expression is of Bergmann type. Positivity of Dκ[p║q] follows immediately 

since lnκ(x) is an increasing function x. As usual, Dκ[p║q] = 0 implies p = q. Convexity 

in the first argument is explicit. For nonextensive statistics a la Tsallis, we get 

Dκ[p║q] = ∑ ∑ −−−
k k

kkkkkk qqpqpp κκκ

κ
)()(1 .   (4.138) 

This expression is of the form (4.129) and certainly different than Eq. (4.134) [71]. 

The equation above forms a new relative entropy definition of Bergmann type in the 

framework of Tsallis statistics complementing the one provided by Eq. (4.134). The 

physical meaning of Eq. (4.1) which is exactly the same as Eq. (4.134), had already 

been given in Section I. Now, let us address the same issue for the new relative entropy 

expression above. Using first choice of internal energy constraint, we write 

δ[ 0])1(
1

1
=−−−

− ∑ ∑ ∑
i i i

iii
q
i ppp

q
εβα ,    (4.139) 

which yields 

0~
1

1 =−−
−

−
i

q
ip

q
q βεα .      (4.140) 

Multiplying both sides by ip~ , summing up and assuming that ip~  is normalized, one 

gets 

0~]~)1(1[
1

=−−−+
−

USq
q

q
q βα ,     (4.141) 
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where qS~  is the value of the Tsallis entropy for the stationary distribution ip~  and 

∑=
i

iiq pU ~~ ε . Note that all these calculations are being carried out with respect to first 

internal energy constraint. Substitution of α into Eq. (4.141), we have 

)1/(1)]~(1~)1(1[~ −−
−

−−+= q
qiqi U

q
qSqp εβ .    (4.142) 

Substitution of Eq. (4.142) into Eq. (4.138) yields 

 Dq[p║q] = UUSS qq
~~ ββ −++− ,     (4.143) 

     =  qq FF ~− ,       (4.144) 

which is nothing but the difference between the free energies. This proves that the two 

different expressions of relative entropy i.e., Kq[p║r] and Dq[p║q] are on equal footing 

as long as only their physical meanings are being considered. One main difference 

between these two expressions is that first is related to third choice of internal energy 

constraint whereas the latter is related to first internal energy constraint. 

One might still argue that Dq[p║q] can be written in such a way as to conform to the 

third choice of internal energy constraint: Modifying equation (4.139) in terms of 

escort probabilities, we can write 

 δ[ 0])1(
)/1(1

1 /1 =−−−
− ∑ ∑ ∑

i i i
iii

q
i PPP

q
εβα ,   (4.145) 

since we can always make use of the fact that escort probabilities are normalized and it 

might be used together with the rule q→1/q. As can be immediately understood, the 

last term in the equation above is nothing but the third choice of internal energy 

constraint. This yields 

 0~]~))/1(1(1[
)/1(1

/1
=−−−+

−
USq

q
q

q βα .    (4.146) 

Finally, we get 

)1/1/(1)]~(
/1

1/1~))/1(1(1[~ −−
−

−−+= q
qiqi U

q
qSqP εβ .   (4.147) 

We must note, however, that entropy and internal energy definitions in the equation 

above is all written with third choice in contrast to Eq. (4.142). Now, when we 
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substitute the expression above into the definition of Dq[p║q] which is being modified 

as 

 Dκ[P║Q] = ∑ ∑ −−−
k k

kkkkkk QQPQPP κκκ

κ
)()(1 ,   (4.148) 

where P and Q represents escort probabilities and κ  becomes equal to (1/q)-1 instead 

of (q-1). Using the expression above likewise, we are led to 

Dq[p║q] = qq FF ~− ,       (4.149) 

where Fq’s represent the free energies with respect to third choice of constraint. This 

seemingly shows that Dq[p║q] too can be written in way which will conform to third 

constraint. Is it really so? The answer is a solid no due to two severe flaws: Firstly, in 

the optimization in Eq. (4.145), we made use of the escort probabilities being 

normalized to unity. However, this condition cannot be be put as a constraint since 

escort probabilities are already defined very explicitly in Chapter 2. The second term in 

Eq. (4.145) is nothing but an identity. This, in turn means that if normalization is used 

as a constraint, then escort probabilities as a definition must be discarded, and 

accordingly what has been known as escort probabilities until now has to be regarded 

as a basic independent variable. Then, the first term in Eq. (4.145) i.e., the entropy 

formula written in terms of Pi’s has to be interpreted as a new quantity, which is 

different than the original Tsallis entropy [72]. 

Secondly, due to the relation 

∑ ∑
= =

−=
W

i

W

i

qq
i

q
i Pp

1 1

/1 ])([)( ,      (4.150) 

the entropy functional which will be used in the optimization can be written as 

Sq [P] = ∑ −
−

−

i

qq
iP

q
}1){[(

1
1 /1 .     (4.151) 

Sq [P] has a severe mathematical problem which becomes explicit when it has been 

written this way: It is not concave for 0 < q <1 since f(r;q)≡ 22 /][ rPSq ∂∂ , with respect 

to (r,q) in the case of P1 = r, P2 = 1-r where 0 < r <1. Then, it is easily seen (through a 

three dimensional Mathematica plot) that f(r;q) changes its sign when 0 < q <1. This 

regime is a very important regime (recall that q =1 means ordinary statistics!), therefore 
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we see that the theory exhibits instability in this regime and the new relative entropy 

expression is destined to be related to be considered in the frame of second choice of 

internal energy constraint.     

 

 

 

 

 

 

 

 

4.4 Two Definitions of Relative Entropies And Contraints In 

Nonextensive Formalism 

 
In this Section, we will compare the previously discussed forms of two relative 

entropies i.e., Kq[p║r] and Dq[p║q]. Up to now, main difference between them has 

been related to internal energy constraint.  

First of all, we notice that, in the limit q→1, both Kq[p║r] and Dq[p║q] becomes the 

Kullback-Leibler relative entropy 

H[p║r] = ∑
i

iii rpp )/ln( .      (4.152) 

The following expression is often used for the formula above 

H[p║r] = ∑ →
−

i
x

x
i

x
i rp

dx
d

1
1)()( .     (4.153) 

Kq[p║r] is obtained by replacing the differential operator by the Jackson q-differential 

operator, i.e.,  

H[p║r] = ∑ →
−

i
x

x
i

x
iq rpD 1

1)()( ,     (4.154) 

where Dq is defined as 

)]1(/[)]()([)( −−= qxxfqxfxfDq ,     (4.155) 
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which converges to the ordinary differential in the limit q→1. No such simple 

correspondence is known to exist between H[p║r] and  Dq[p║q]. 

Convexity is one of the most important properties fulfilled by relative entropy. 

Taking the second order derivatives of  Dq[p║q] with respect to the arguments, one 

finds that it is convex in pi but not in ri. 

On the other hand, like the Kullback-Leibler relative entropy, Kq[p║r] is found to be 

jointly convex, i.e., 

∑a aaq pK )([ λ ║∑ ∑≤a a aqaaa pKr )()( [] λλ ║r(a)],   (4.156) 

where λa > 0 and ∑ =
a a 1λ . This property is stronger than individual convexity in pi 

and ri.  

Finally, we compare them in terms of composability: Like the Kullback-Leibler 

relative entropy, Kq[p║r] is “composable”, but Dq[p║q] is not. In fact, for factorized 

joint distributions of a composite system (A,B) i.e., 

pij(A,B) = p(1)i (A) p(2)j (B),      (4.157) 

rij(A,B) = r(1)i (A) r(2)j (B).      (4.158) 

In this case, Kq[p(1)p(2)║r(1)r(2)] yields 

Kq[p(1)p(2)║r(1)r(2)] =  Kq[p(1)║r(1)] + Kq[p(2)║r(2)]  

 

+ (q-1) Kq[p(1)║r(1)] Kq[p(2)║r(2)],  (5.159) 

whereas no such closed relation exists for Dq[p(1)p(2)║r(1)r(2)].  

All considerations above point out to same fact that Kq[p║r] has indeed more 

favorable properties than those of Dq[p║q].  

The choice of Kq[p║r] is in fact supported by a set of axioms. About a quarter 

century ago, Shore and Johnson have proposed the axioms for minimum cross entropy 

(i.e., relative entropy) principle [73-75]. They are composed of the following five 

axioms (which will be presented in a nonabstract manner): 

Axiom I (Uniqueness): If the same problem is solved twice, then the same answer is 

expected to result both times. 
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Axiom II (Invariance): The same answer is expected when the same problem is solved 

in two different coordinate systems, in which the posteriors (i.e., pi) in the two systems 

should be related by the coordinate transformation.  

Axiom III (System Independence): It should not matter whether one accounts for 

independent information about independent systems separately in terms of their 

marginal distributions or in terms of the joint distribution. 

Axiom IV (Subset Independence): It should not matter whether one treats 

independent subsets of the states of the systems in terms of their separate conditional 

distributions or in terms of the joint distribution. 

Axiom V (Expansability): In the absence of new information, the prior (i.e., ri or so-

called reference distribution) should not be changed. 

These axioms are extremely general and natural, and thus it is likely that they cannot 

be denied by any physical situation we are interested in. According to studies carried 

out by Shore and Johnson, any relative entropy J[p║r] with the prior ri and a posterior 

pi satisfying the axioms I-V has to have the following form: 

J[p║r] = ∑
i

iii rphp )/( ,      (4.160) 

where h(x) is some function. 

It is important to realize that such a function h(x) exists for Kq[p║r]: 

)1(
1

1)( 1−−
−

= qx
q

xh ,      (4.161) 

whereas Dq[p║r] cannot be put into the form of Eq. (4.160). Therefore, we see that the 

relative entropy expresion related to third constraint i.e., Kq[p║r] satisfies all of the 

Shore-Johnson axioms. 

Since right from the beginning, we identified the relative entropy Kq[p║r] with third 

internal energy constraint and Dq[p║r] with the second choice, all the arguments up to 

now also give us the clue why third choice of constraint is superior and therefore 

preferable to the second choice of internal energy constraint [47].     
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CHAPTER 5 

   CONCLUSION 

 
We studied nonextensive generalization of Boltzmann-Gibbs statistical mechanics 

offered by Constantino Tsallis in 1988 [76-95]. In Chapter 2, the outline of the theory 

has been provided. As is easily seen, a lot of nonextensive generalizations of previous 

ideas have been suceeded by writing them down in such a way as to include 

nonextensivity parameter q in an apropriate manner [96-110]. In all these cases, in the 

limit q→1, usual Boltzmann-Gibbs results have been obtained whether it be 

nonxtensive Langevin equation or else. 

In Chapter 3, we have seen the solutions of isotropic rigid and non-rigid rotator 

models in nonextensive framework. One important aspect of these solutions was the 

emphasis put on changing from the second constraint to the third one as log as 

thermodynamic observables are being concerned. A possible scaling too has been 

discovered along the way.  

In nonextensive statistics, one vital issue was the problematics of constraints. Both 

second and third constraints were able to provide nonextensive solutions. In Chapter 4, 

it has been discovered that the solution to this problem was intrinsically related to a 

concept called relative entropy. Having been able to write two distinct forms of relative 

entropy expressions, the first being related to second and later being related to third 

constraints, we have shown that a rigorous mathematical analysis of these two 

expressions led on favor of third choice of internal energy constraint.  

In this thesis, no mention has been made of the success of experimental evidence in 

nonextensive statistics. Huang and Driscoll [111] had in 1994 some quite interesting 

nonneutral electronic plasma experiments done in a metallic cylinder in the presence of 

an axial magnetic field. They observed a turbulent state, the electronic density radial 

distribution  of which was mesured. Boghosian showed in 1996 that their case precisely 

corresponds to the optimization of Tsallis entropy with q=1/2 [112]. 
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Another experimental success came from a distinct field of physics, namely, solar 

neutrino physics. The famous problem regarding the solar neutrino problem is that the 

calculations within the so-called standard solar model (SSM) provide a neutrino flux 

which is double of what has really been observed on Earth’s surface. At least, two 

possibilities are to be scrutunized: First of all, neutrinos can oscillate in such a way that 

only part of them can be detected by current experimental devices. Secondly, the 

neutrino flux is related to the total area of the so-called Gamow peak, which is in turn 

due to the product of the thermal equilibrium BG distribution (which decreases with 

energy) and penetration factor (which increases with energy). The position of the peak 

is at energies 10 times larger than kT, therefore only the far tail of the distribution is 

concerned. Quarati et al. argue that very slight departures from q = 1 (of the order of 

0.01) are enough to modify the area of the Gamow peak. This slight nonextensivity 

thus solves the famous solar neutrino problem [113-115]. 

Since early ideas of Fermi, and later Feynman, a thermodynamical equilibrium 

scenario has been developed for the distribution of transverse momenta in the hadronic 

jets emerging from electron-positron annihilation after central collisions at energies 

ranging 14 to 161 GeV. Hagedorn developed a full theory based on BG statistics. The 

central idea that higher collision energies do not increase the transverse momenta 

temperature T but instead increase the number of involved bosons that are produced 

could not be realized by Hagedorn’s calculations. Adopting two parameters, T and q, 

Bediaga et al. [116, 117] obtained fits on amazingly large sets of experimental data. 

Wilk in Warshaw [118-120] have provided further evidences for the applicability of 

nonextensive statistics into high energy physics. 

Distribution of peculiar velocities of spiral galaxies (whose data obtained by COBE 

satellite) has been shown to fit with q = 0.24 [121]. This has been carried out by Tsallis 

and Quarati. Glazier, in Notre Dame University, measured for horizontal velocities of 

Hydra viridissima in physiological solution. The data well fitted to q = 1.5 [122]. 

Nonextensive statistics had been applied to some ideas ranging from Zipf Law [123, 

124], teen birth phenomena [125], internet traffic [126, 127], random matrix theory 

[128-130], long-range Hamiltonians [131, 132], aging [133, 134] to chaotic maps [135-

139]. 
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Recently, inspired by nonextensive statistics, a new investigation has been started 

under the name of superstatistics [140-142]. Superstatistics provide a more general 

framework in which nonextensive case is only one of the cases, which can occur as far 

as statistics is concerned. There happens to be appearing many developments in these 

fields in the close future.   

                  

 



 

68 

 
 

REFERENCES 
 
 
[1] Constantino Tsallis, Chaos, Solitons and Fractals 13, 371 (2002). 
 
[2] Ludwig Boltzmann, Vorlesungen ueber Gastheorie (Barth, Leipzig, 1896). 
 
[3] L. Tisza , Annalen der Physik 13, 1 (1961). 
 
[4] Peter Landsberg, Thermodyanics and Statistical Mechanics (Oxford Press, Oxford,  
 
1978), p.102. 
 
[5] A. M.Salzberg , J. Math. Phys. 6, 158 (1965). 
 
[6] W. C. Saslaw, Gravitational Physics of Stellar and Galactic Systems (Cambridge  
 
University Press, Cambridge, 1985), p.217. 
 
[7] R. Balian, From Microphysics to Macrophysics (Springer-Verlag, Berlin, 1991),  
 
Vol. I, p.134. 
 
[8] Peter Landsberg, J. Stat. Phys. 35, 159 (1984). 
 
[9] D.  Pavon, Gen. Rel. and Grav. 19, 375 (1987). 
 
[10] J. Von Neumann, O. Morgenstern, Theory of Games and Economic  
 
Behaviour (Princeton University Press, Prineton, 1947). 
 
[11] J. Dow, S. R. C. Werlang, Econometrica 11, 1 (1991). 
 
[12] C. Tsallis, J. Stat. Phys. 52, 479 (1988). 
 
[13] F. Jackson, Mess. Math. 38, 57 (1909). 
 
[14] S. Abe, Phys. Lett. A 224, 326 (1997).  
 
[15] E. M. F. Curado, C. Tsallis, J. Phys. A 24, 3187 (1991).  
 
[16] E. M. F. Curado, C. Tsallis, J. Phys. A 25, 1097 (1992). 
 
[17] C. Tsallis, Phys. Lett. A 195, 329 (1994). 
 



 

69 

[18] C. Beck and F. Schlogl, Thermodynamics of Chaotic Systems (Cambridge  
 
University Press, Cambridge, 1993). 
 
[19] A. Chame, Physica A 255, 423 (1998). 
 
[20] C. Tsallis, R. S. Mendes, A. R. Plastino, Physica A 261, 534 (1998). 
 
[21] A. Plastino , A. R. Plastino, Phys. Lett. A 226, 257 (1997).  
 
[22] A. R. Plastino, A. Plastino, Phys. Lett. A 177, 177 (1993). 
 
[23] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North- 
 
Holland, Amsterdam, 1981). 
 
[24] G. Parisi, Statistical Field Theory (Addison-Wesley, Reading, MA, 1988). 
 
[25] Daniel Stariolo, Phys. Lett. A 185, 262 (1994). 
 
[26] J. L. McCauley, Chaos, Dynamics, and Fractals (Cambridge University Press,  
 
Cambridge, 1995). 
 
[27] E. H. Kerner, Phys. Lett. A , 151, 401 (1990).  
 
[28] L. Andrey, Phys. Lett. A , 111, 45 (1985).  
 
[29] L. Andrey, Phys. Lett. A , 114, 183 (1986). 
 
[30] A. R. Plastino, C. Giordano, A. Plastino, M. Casas, Physica A 336, 376  
 
(2004). 
 
[31] G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand, New  
 
York, 1950). 
 
[32] C. J. H. Schutte, The Wave Mechanics of Atoms, Molecules and Ions (Edward  
 
Arnold, London,1968).  
 
[33] H. A. Bethe, Salpeter, E. E. , Quantum Mechanics of One- and Two-electron  
 
Atoms (Springer-Verlag, Berlin, 1957). 
 



 

70 

[34] George Arfken, Mathematical Methods for Physicists (Academic Press,  
 
California, 1995). 
 
[35] R. K. Pathria, Statistical Mechanics (Butterworth- Heinemann Press, Oxford,  
 
1996). 
 
[36] Kerson Huang, Statistical Mechanics (Wiley and Sons, Singapore, 1987). 
 
[37] S. Curilef, C. Tsallis, Physica A 215, 542 (1995). 
 
[38] R. J. Silbey, R. Alberty, Physical Chemistry (Wiley and Sons, Singapore, 2001). 
 
[39] Hugo Touchette, Physica A 305, 84 (2002).  
 
[40] G. B. Bagci, Ramazan Sever and Cevdet Tezcan, Mod. Phys. Lett. 18, 1 (2004). 
 
[41] A. K. Rajagopal, S. Abe , Phys. Rev. Lett. 83, 1711 (1999). 
 
[42] C. Tsallis, Phys. Rev. E 58, 1442 (1998). 
 
[43] Lisa Borland, A. R. Plastino, C. Tsallis, J. Math. Phys. 39, 6490 (1998). 
 
[44] A. G. Bashkirov, cond-mat/ 0211685. 
 
[45] A. G. Bashkirov, cond-mat/ 0310211. 
 
[46] A. G. Bashkirov, cond-mat/ 0402404. 
 
[47] S. Abe, G. B. Bagci, cond-mat/0404253. 
 
[48] M. H. Partovi, Phys. Lett. A 137, 440 (1989). 
 
[49] A. K. Rajagopal, cond-mat/0301629. 
 
[50] H. Umegaki, Kodai Math. Sem. Rep. 14, 59 (1962). 
 
[51] S. Abe, S. Martinez, F. Penini, A. Plastino, Phys. Lett. A 281, 126 (2001). 
 
[52] S. Abe, Physica 300A, 417 (2001). 
 
[53] B. Lesche, J. Stat. Phys. 27, 419 (1982). 
 
[54] R. Bhatia, Matrix Analysis (Springer Verlag, New York, 1997). 
 



 

71 

[55] G. Lindblad, Commun. Math. Phys. 39, 111 (1974). 
 
[56] S. Abe, A. K. Rajagopal, Phys. Rev. Lett. 91, 120601 (2003). 
 
[57] A. K. Rajagopal, R. W. Rendell, S. Abe, in Quantum Limits to the  
 
Second Law (AIP, New York, 2002), p. 47. 
 
[58] Jan Naudts, cond-mat/0203489. 
 
[59] E. P. Borges, J. Phys. A 31, 5281 (1998). 
 
[60] G. Kaniadakis, Physica A 296, 405 (2001). 
 
[61] G. Kaniadakis, A. M. Scarfone, cond-mat/0109537. 
 
[62] R. V. Hartley, Bell System Technical Journal 7 (1928).  
 
[63] C. E. Shannon, Bell System Technical Journal 27, 379 (1948). 
 
[64] Jan Naudts, cond-mat/0311438. 
 
[65] C. Tsallis, Quimica Nova 17, 468 (1994). 
 
[66] S. Abe, Phys. Rev. E 63, 061105 (2001). 
 
[67] Q. A. Wang, L. Nivanen, A. Le Mehaute, M. Pezeril, J. Phys. A 35, 7003 (2002). 
 
[68] A. K. Rajagopal, S. Abe, Phys. Rev. Lett. 83, 1711 (1999). 
 
[69] S. Abe, quanth-ph/0301136. 
 
[70] S. Abe, quanth-ph/0301137. 
 
[71] Jan Naudts, math-ph/0208038. 
 
[72] Sumiyoshi Abe, Phys. Lett. A 275, 250 (2000).  
 
[73] J. E. Shore, R. W. Johnson, IEEE Transactions on Information Theory IT-26, 26  
 
(1980). 
 
[74] ] J. E. Shore, R. W. Johnson, IEEE Transactions on Information Theory IT-27,  
 
472 (1981). 
 



 

72 

[75] J. E. Shore, R. W. Johnson, IEEE Transactions on Information Theory IT-29,  
 
942 (1983). 
 
[76] J. D. Ramshaw, Phy. Lett. A 198, 119 (1995). 
 
[77] J. D. Ramshaw, Phy. Lett. A 198, 121 (1995). 
 
[78] R. J. V. dos Santos, J. Math. Phys. 38, 4104 (1997). 
 
[79] K. S. Fa, J. Phys. A 31, 8159 (1998). 
 
[80] G. R. Guerberoff, G. A. Raggio, Phys. Lett. A 214, 313 (1996). 
 
[81] I. Fukuda, H. Nakamura, Phys. Rev. E 65, 026105 (2002). 
 
[82] A. Lavagno, P. M. Swamy, Mod. Phys. Lett. B 13, 961 (1999). 
 
[83] P. T. Landsberg, V. Vedral, Phys. Lett. A 247, 211 (1998). 
 
[84] A. R. Lima, T. J. P. Penna, Phys. Lett. A 256, 221 (1999). 
 
[85] A. Vidiella Branco, Phys. Lett. A 260, 335 (1999). 
 
[86] M. B. Pintarelli, A. M. Meson, F. Vericat, Phys. Lett. A 257, 145 (1999). 
 
[87] M. Hotta, I. Joichi, Phys. Lett. A 262, 302 (1999). 
 
[88] K. Sasaki, M. Hotta, J. Phys. Soc. Japan 69, 3830 (2000). 
 
[89] K. G. H. Vollbrecht, M. M. Wolf, J. Math. Phys. 43, 4299 (2002). 
 
[90] F. Giraldi, Paolo Grigolini, Phys. Rev. A 64, 032310 (2001). 
 
[91] S. K. Rama, Phys. Lett. A 276, 103 (2000). 
 
[92] T. Yamano, Phys. Rev. A 63, 046105 (2001). 
 
[93] R. Toral, Physica A 317, 209 (2003). 
 
[94] T. Wada, Phys. Lett. A 318, 491 (2003).  
 
[95] M. P. Almeida, Physica A 325, 426 (2003). 
 
[96] A. Aliano, G. Kaniadakis, E. Miraldi, Physica B 325, 35 (2003). 
 



 

73 

[97] A. Cavallo, F. Cosenza, L. De Cesare, Physica A 305, 152 (2002). 
 
[98] J. A. S Lima, J. R. Bezerra, R. Silva, Physica A 316, 289 (2002). 
 
[99] A. Lavagno, Phys. Lett. A 301, 13 (2002). 
 
[100] C. Giordano, A. R. Plastino, M. Casas, A. R. Plastino, Eur. Phys. J. B 22, 361  
 
(2001). 
 
[101] A. Compte, D. Jou, J. Phys. A 29, 4321 (1996). 
 
[102] G. Drazer, H. S. Wio, C. Tsallis, Phys. Rev. E 61, 1417 (2000). 
 
[103] G. Drazer, H. S. Wio, C. Tsallis, Granular Matter 3, 105 (2001). 
 
[104] M. Bologna, C. Tsallis, P. Grigolini, Phys. Rev. 62, 2213 (2000). 
 
[105] A. Rigo, A. R. Plastino, M. Casas, A. R. Plastino, Phys. Lett. A 276, 97 (2000). 
 
[106] C. Essex, C. Schulzky, A. Franz, K. H. Hoffman, Physica A 284, 299 (2000). 
 
[107] A. M. Reynolds, Phys. Fluids 15, L1 (2003). 
 
[108] J. L. Du, Physica A 335, 107 (2004). 
 
[109] U. Tirnakli, C. Tsallis, M. Lyra, Phys. Rev. E 65, 036207 (2002). 
 
[110] U. Tirnakli, Physica A 305, 119 (2002). 
 
[111] X. P. Huang, C. F. Driscoll, Phys. Rev. Lett. 72, 2187 (1994). 
 
[112] B. M. Boghosian, Phys. Rev. E 53, 4754 (1996). 
 
[113] G. Kaniadakis, A. Lavagno, P. Quarati, Phys. Lett. B 369, 308 (1996). 
 
[114] P. Quarati, A. carbone, G. Gervino, G. Kaniadakis, A. Lavagno, E. Miraldi, Nucl.  
 
Phys. A 621, 345c (1997).  
 
[115] A. Lavagno, P. Quarati, Nucl. Phys. B 87, 209 (2000). 
 
[116] I. Bediaga, E. M. F. Curado, J. Miranda, J. Phys. A 286, 156 (2000). 
 
[117] C. Beck, Physica A 286, 164 (2000).  
 



 

74 

[118] G. Wilk, Z. Wlodarcsyk, Nucl. Phys. B 75A, 191 (1999). 
 
[119] G. Wilk, Z. Wlodarcsyk, Phys. Rev. Lett. 84, 2770 (2000). 
 
[120] G. Wilk, Z. Wlodarcsyk, hep-ph/0004250.  
 
[121] A. Lavagno, G. kaniadakis, M. Rego-Monteiro, P. Quarati, C. Tsallis, Astrophys.  
 
Lett. Commun. 35, 449 (1998). 
 
[122] A. Upadhyaya, J. P. Rieu, J. A. Glazier, Y. Sawada, Physica A 293, 549 (2001).  
 
[123] S. Denisov, Phys. Lett. A 235, 447 (1997). 
 
[124] M. A. Montemurro, Physica A 300, 567 (2001). 
 
[125] N. Scafetta, P. Hamilton, P. Grigolini, Fractals 9, 193 (2001). 
 
[126] S. Abe, N. Suzuki, cond-mat/0204336. 
 
[127] S. Abe, N. Suzuki, Phys. Rev. E 67, 016106 (2003). 
 
[128] M. S. Hussein, M. P. Pato, Physica A 285, 383 (2000). 
 
[129] J. Evans, F. Michael, cond-mat/0207472. 
 
[130] F. Toscano, R. O. Vallejos, C. Tsallis, cond-mat/0402215. 
 
[131] A. Campa, A. Giansanti, D. Moroni, Physica A 305, 137 (2002). 
 
[132] B. J. C. Cabral, C. Tsallis, Phys. Rev. E 66, 065101 (2002). 
 
[133] M. A. Montemurro, F. Tamarit, C. Anteneodo, Phys. Rev. E 67, 031106 (2003). 
 
[134] U. Tirnakli, S. Abe, cond-mat/0405398. 
 
[135] S. Montangero, L. Fronzoni, P. Grigolini, Phys. Lett. A 285, 81 (2001). 
 
[136] F. Baldovin, C. Tsallis, B. Schulze, Physica A 320, 184 (2003). 
 
[137] F. Baldovin, C. Tsallis, B. Schulze, cond-mat/0203595. 
 
[138] M. Lissia, A. Rapisarda, Physica A 305, 124 (2002). 
 
[139] F. Baldovin, A. Robledo, Europhys. Lett. 60, 518 (2002). 
 



 

75 

[140] C. Beck, E. G. D. Cohen, Physca A 322, 267 (2003). 
 
[141] C. Beck, cond-mat/0312134. 
 
[142] F. Sattin, Physica A 338, 437 (2004).    
  
 
 
 
 
  
     



 

76 

VITA 

 

 

Gokhan Baris Bagci was born in Iskenderun, Hatay on July 11, 1975. He received 

his B. S degree in Physics from the Middle East Technical University in 1996. He later 

received his M. Sc. in Physics in 1998. He worked in Middle East Technical University 

as a graduate assistant from 1998 to 2001.  


