# SYNTHESIS AND CHARACTERIZATION OF Cu-MCM-41 AND Ni-MCM-41 TYPE CATALYTIC MATERIALS

# A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

ΒY

ASLI NALBANT

# IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMICAL ENGINEERING

JANUARY 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Prof. Dr. Nurcan Baç Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis and for the degree of Master of Science.

Prof. Dr. Suna Balcı Co-Supervisor Prof. Dr. Timur Doğu Supervisor

**Examining Committee Members** 

Prof. Dr. Hayrettin Yücel (METU, CHE)

Prof. Dr. Timur Doğu (METU, CHE)

Prof. Dr. Tunçer H. Özdamar (Ankara Univ., CHE)

Prof. Dr. Gülşen Doğu (Gazi Univ., CHE)

Assoc. Prof. Gürkan Karakaş (METU, CHE)

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Aslı Nalbant

Signature :

## ABSTRACT

# SYNTHESIS AND CHARACTERISATION OF Cu-MCM-41 AND Ni-MCM-41 TYPE CATALYTIC MATERIALS

Nalbant, Aslı M.S., Department of Chemical Engineering Supervisor: Prof. Dr. Timur DOĞU Co-Supervisor: Prof. Dr. Suna BALCI

January 2005, 128 pages

Discovery of mesoporous materials by Mobil researchers in 1992 opened a new field in catalytic applications. The materials designated as M41S family are MCM-41 with one-dimensional hexagonal structure, MCM-48 with threedimensional cubic structure and MCM-51 with unstable lamellar structure. This family of materials have high surface areas up to 1500 m<sup>2</sup>/g, narrow pore size distributions with pore sizes varying from 20 to 100 Å. These materials can be activated by incorporation of metals or active compounds into their structures.

In this study, copper and nickel incorporated MCM-41 type catalytic materials were synthesized via different methods namely, impregnation, high temperature and low temperature direct synthesis methods. The Cu-MCM-41, and Ni-MCM-41, as well as synthesized MCM-41 were characterized by using XRD, TEM, N<sub>2</sub> sorption, SEM, XRF, EDS, AAS and TPR.

MCM-41 was synthesized with high temperature direct synthesis method. High surface area values up to 1400  $m^2/g$  of MCM-41 mesoporous materials were obtained with high pore volumes up to 1.17 cc/g.

Cu-MCM-41 type catalytic materials were synthesized with three different methods. Impregnation and high temperature direct synthesis methods gave better results than those of low temperature direct synthesis method. In impregnation, relatively high surface area values (730 m<sup>2</sup>/g) were obtained with Cu/Si mole ratio as high as 0.3 in the product. For the case of high temperature direct synthesis products, Cu/Si mole ratios as high as 0.26 were obtained with somewhat smaller surface areas (400 m<sup>2</sup>/g). Low temperature direct synthesis method is the least favorable method in metal loading.

Ni-MCM-41 type of catalytic materials were synthesized by impregnation and high temperature direct syntheses methods. Ni incorporation by high temperature direct synthesis method gave high surface area values (560-930  $m^2/g$ ) having Ni/Si mole ratios of 0.12-0.28.

Keywords: MCM-41, copper, nickel, mesoporous molecular sieves

# Cu-MCM-41 VE Ni-MCM-41 TİPİ KATALİTİK MALZEMELERİN SENTEZLENMESİ VE KARAKTERİZASYONU

Nalbant, Aslı Yüksek Lisans, Kimya Mühendisliği Tez Yöneticisi: Prof. Dr. Timur DOĞU Ortak Tez Töneticisi: Prof. Dr. Suna BALCI

Ocak 2005, 128 sayfa

Mezo gözenekli malzemelerin 1992 yılında Mobil araştırmacıları tarafından sentezi katalitik uygulamalarında yeni ufuklar açtı. M41S ailesi olarak adlandırılan bu malzemeler, tek boyutlu altıgen yapısıyla MCM-41, üç boyutlu kübik yapısıyla MCM-48 ve lamellar yapısıyla MCM-50'dir. 1500 m<sup>2</sup>/g 'a varan yüzey alanları, çapları 20 ila 100 Å arasında değişen düzenli gözenek dağılımları ve yüksek ısıl kararlılıkları bu malzemelerin başlıca özellikleridir. M41S ailesindeki malzemelerin kendilerine ait katalitik özellikleri bulunmadığından, metaller ve aktif bileşiklerin yapılarına katılmasıyla aktiflik kazanırlar.

Bu çalışmada bakır ve nikel katkılı MCM-41 tipi katalitik malzemeler çeşitli sentez yöntemleriyle sentezlendi. Bu yöntemler, sonradan ekleme, yüksek sıcaklıkta doğrudan ekleme, ve düşük sıcaklıkta doğrudan ekleme olarak adlandırılabilirler. Sentezlenen MCM-41, Cu-MCM-41 ve Ni-MCM-41 XRD, TEM,  $N_2$  adsorplanması, SEM, XRF, EDS, AAS ve TPR yöntemleriyle karakterize edildi.

MCM-41 yüksek sıcaklık doğrudan ekleme yöntemiyle sentezlendi. 1400 m<sup>2</sup>/g' a varan yüksek yüzey alanı gösteren MCM-41 gözenekli malzemelerde 1.17 cc/g' a varan gözenek hacimleri elde edildi.

Cu-MCM-41 katalitik malzemeler 3 farklı yöntemle sentezlendi. Sonradan ekleme ve yüksek sıcaklıkta doğrudan ekleme yöntemleri düşük sıcaklıkta doğrudan ekleme yöntemine oranla daha iyi sonuç verdi. Sonradan ekleme yönteminde yüksek yüzey alanları (730 m²/g) ile 0.3 Cu/Si mol oranı elde edildi. Yüksek sıcaklıkta doğrudan ekleme yönteminde ise, ürünlerdeki Cu/Si mol oranı 0.26 gibi yüksek bir değer gösterirken yüzey alanlarında kismi düşüş gözlendi (400 m²/g). Düşük sıcaklıkta doğrudan ekleme yöntem oldu.

Ni-MCM-41 tipi katalitik malzemeler yüksek sıcaklık doğrudan ekleme ve sonradan ekleme yöntemleriyle sentezlendi. Nikelin yüksek sıcaklık doğrudan sentezleme yöntemi ile eklenmesi sonucunda yüksek yüzey alanlari (560-930 m<sup>2</sup>/g) ve 0.12 ve 0.28 Cu/Si mol oranları elde edildi.

Anahtar kelimeler: MCM-41, bakır, nikel, mezo gözenekli moleküler yapı

To Mehmet Melikoğlu,

### ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my supervisor Prof. Dr. Timur Doğu for his guidance, advice, criticism, and encouragements throughout the research. Also I wish to express my gratitude to my co-supervisor Prof. Dr. Suna Balcı for her valuable advice.

I would like to express my sincere appreciation to Prof. Dr. Hayrettin Yücel for his suggestions and comments and Prof. Dr. Tunçer Özdamar for the nickel(II) nitrate hexahydrate supply. I acknowledge the kind permission of Assoc. Prof. Gürkan Karakaş for the TPR analysis in his laboratory. Also I would like to thank Burcu Mirkelamoğlu for her help during these analyses. Special thanks go to Yeşim Güçbilmez for sharing her valuable knowledge.

I would like to thank Mr. Serkan Türk from ÇMB (Çimento Müstahsilleri Birliği) for XRD analyses, Mr. Tarık Baykara and Mr. Orhan İpek from TUBITAK Marmara Araştırma Merkezi (MAM) Malzeme ve Kimya Teknolojleri Araştırma Enstitüsü (MKTAE) for TEM and SEM analyses, Mrs. Gülten Bayrakçı from Microstructure Laboratory of Chemical Engineering Department and Prof. Dr. Çiğdem Erçelebi from Central Laboratory of METU for N<sub>2</sub> sorption analysis, Mr. İhsan Yavuz from MTA (Maden Tetkik Arama) for XRF analyses, Mr. Cengiz Tan from Metallurgical and Materials Engineering Department of METU for EDS analyses, Ms. Kerime Güney from Instrumental Analysis Laboratory of Chemical Engineering Department of METU for AAS analyses and deionized water supply.

ix

I present my sincere gratitude to Mehmet Melikoğlu for his valuable support, patience, help and encouragement. Without him, it would not be possible to end my study in such a short time. I offer sincere thanks to Tülay and Kazım Melikoğlu for being near me during these years.

Finally, I would like to thank my family, and my grandfather Mehmet Göçeoğlu for their patience and support.

This study was supported by the Turkish State Planning Organization (DPT) Grant No: DPT.0-04-DPT.2003K120920-0.5.

# TABLE OF CONTENTS

| PLAC | GIARISM                                                                                                                                                                                                                                                 | iii                              |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| ABS  | TRACT                                                                                                                                                                                                                                                   | iv                               |
| ÖZ   |                                                                                                                                                                                                                                                         | vi                               |
| DED  | ICATION                                                                                                                                                                                                                                                 | viii                             |
| ACKI | NOWLEDGEMENTS                                                                                                                                                                                                                                           | ix                               |
| TABL | LE OF CONTENTS                                                                                                                                                                                                                                          | xi                               |
| LIST | OF TABLES                                                                                                                                                                                                                                               | xiv                              |
| LIST | OF FIGURES                                                                                                                                                                                                                                              | xvii                             |
| NOM  | IENCLATURE                                                                                                                                                                                                                                              | xx                               |
| C⊦   | HAPTER                                                                                                                                                                                                                                                  |                                  |
| 1    | INTRODUCTION                                                                                                                                                                                                                                            | 1                                |
| 2    | M41S MOLECULAR SIEVES MATERIALS<br>2.1 Historical Development of M41S Molecular Sieves Materials<br>2.2 M41S Family<br>2.2.1 MCM-41<br>2.2.2 MCM-48<br>2.2.3 MCM-50<br>2.3 Cu-MCM-41 and Ni-MCM-41 Type Catalytic Materials                             | 3<br>3<br>4<br>6<br>7<br>7       |
| 3    | CHARACTERIZATION OF M41S MOLECULAR SIEVES MATERIALS<br>3.1 X-ray Diffraction<br>3.2 Transmission Electron Microscopy<br>3.3 N <sub>2</sub> Sorption<br>3.4 Scanning Electron Microscopy<br>3.5 X-ray Fluorescence<br>3.6 Energy Dispersive Spectroscopy | 10<br>12<br>13<br>16<br>17<br>17 |
| 4    | EXPERIMENTAL                                                                                                                                                                                                                                            |                                  |

|    | 4.1.1 Source of Silica                              | . 19 |
|----|-----------------------------------------------------|------|
|    | 4.1.2 Source of Surfactant                          | . 19 |
|    | 4.1.3 Source of Solvent                             | . 19 |
|    | 4.1.4 Source of Acid                                | . 19 |
|    | 4.1.5 Source of Metal                               | . 19 |
|    | 4.2 Synthesis of MCM-41                             | . 20 |
|    | 4.3 Synthesis of Cu-MCM-41 Type Catalytic Materials | . 22 |
|    | 4.3.1 Impregnation Method                           | . 22 |
|    | 4.3.2 High Temperature Direct Synthesis Method      | . 23 |
|    | 4.3.3 Low Temperature Direct Synthesis Method       | . 24 |
|    | 4.4 Synthesis of Ni-MCM-41 Type Catalytic Materials | . 26 |
|    | 4.4.1 High Temperature Direct Synthesis Method      | . 26 |
|    | 4.4.2 Impregnation Method                           | . 27 |
|    | 4.5 Characterization                                | . 28 |
|    | 4.5.1 X-ray Diffraction                             | . 28 |
|    | 4.5.2 Transmission Electron Microscopy              | . 28 |
|    | 4.5.3 $N_2$ Sorption                                | . 28 |
|    | 4.5.4 Scanning Electron Microscopy                  | . 29 |
|    | 4.5.5 X-ray Fluorescence                            | . 29 |
|    | 4.5.6 Energy Dispersive Spectroscopy                | . 29 |
|    | 4.5.7 Atomic Absorption Spectroscopy                | . 29 |
|    | 4.5.8 Temperature Programmed Reduction              | . 30 |
| 5  | RESULTS AND DISCUSSION                              | . 31 |
|    | 5.1 Synthesis Results                               | . 31 |
|    | 5.2 Characterization Results                        | . 33 |
|    | 5.2.1 X-ray Diffraction                             | . 34 |
|    | 5.2.2 Transmission Electron Microscopy              | . 39 |
|    | 5.2.3 $N_2$ Sorption                                | . 40 |
|    | 5.2.4 Scanning Electron Microscopy                  | . 52 |
|    | 5.2.5 X-ray Fluorescence                            | . 53 |
|    | 5.2.6 Energy Dispersive Spectroscopy                | . 54 |
|    | 5.2.7 Atomic Absorption Spectroscopy                | . 55 |
|    | 5.2.8 Temperature Programmed Reduction              | . 58 |
|    | 5.3 Economics                                       | . 60 |
| 6  | CONCLUSIONS AND RECOMMENDATIONS                     | . 61 |
| RE | FERENCES                                            | . 63 |
|    |                                                     |      |

| APPENDICES |                                      |     |
|------------|--------------------------------------|-----|
| А          | MSDS OF CHEMICALS                    | 67  |
| В          | CHARACTERIZATION DATA                | 77  |
|            | B.1 X-ray Diffraction                | 77  |
|            | B.2 Transmission Electron Microscopy |     |
|            | B.3 $N_2$ Sorption                   | 91  |
|            | B.4 Scanning Electron Microscopy     | 117 |
|            | B.5 X-ray Fluorescence               | 120 |
|            | B.6 Energy Dispersive Spectroscopy   | 121 |
|            | B.7 Atomic Absorption Spectroscopy   | 126 |
|            | B.8 Temperature Programmed Reduction | 127 |

# LIST OF TABLES

| 4.1 Synthesis differences of MCM-41 mesoporous materials                   |
|----------------------------------------------------------------------------|
| 5.1 Summary of the Synthesized Materials                                   |
| 5.2 Summary of the Characterization Techniques                             |
| 5.3 Summary of Physical Properties51                                       |
| 5.4 XRF results of Cu-MCM-41 type catalytic materials53                    |
| 5.5 XRF results of Ni-MCM-41 type catalytic materials53                    |
| 5.6 EDS results of Cu-MCM-41 type catalytic materials54                    |
| 5.7 EDS results of Ni-MCM-41 type catalytic materials54                    |
| 5.8 AAS results of Cu-MCM-41 type catalytic materials                      |
| 5.9 AAS results of Ni-MCM-41 type catalytic materials55                    |
| 5.10 Summary of Metal Content56                                            |
| 5.11 Cost analyses of materials60                                          |
| 5.12 Cost of synthesized materials60                                       |
| A.1 MSDS of Sodium Silicate Solution                                       |
| A.2 Physical and Chemical Properties of Sodium Silicate Solution           |
| A.3 MSDS of Sodium Metasilicate                                            |
| A.4 Physical and Chemical Properties of Sodium Metasilicate                |
| A.5 MSDS of Hexadecyltrimethyl ammonium bromide71                          |
| A.6 Physical and Chemical Properties of Hexadecyltrimethyl ammonium        |
| bromide72                                                                  |
| A.7 MSDS of Copper (II) nitrate trihydrate73                               |
| A.8 Physical and Chemical Properties of Copper (II) nitrate trihydrate74   |
| A.9 MSDS of Nickel (II) nitrate hexahydrate75                              |
| A.10 Physical and Chemical Properties of Nickel (II) nitrate hexahydrate76 |

| B.1 XRD plot of MCM-41(I)77                             |
|---------------------------------------------------------|
| B.2 XRD plot of MCM-41(II)78                            |
| B.3 XRD plot of MCM-41(III)79                           |
| B.4 XRD plot of MCM-41(IV)80                            |
| B.5 XRD plot of Cu-Imp(I)81                             |
| B.6 XRD plot of Cu-Imp(II)82                            |
| B.7 XRD plot of Cu-HT(I)83                              |
| B.8 XRD plot of Cu-HT(II)84                             |
| B.9 XRD plot of Cu-LT(I)85                              |
| B.10 XRD plot of Cu-LT(II)86                            |
| B.11 XRD plot of Ni-HT(I)87                             |
| B.12 XRD plot of Ni-HT(II)88                            |
| B.13 XRD plot of Ni-Imp(I)89                            |
| B.14 N <sub>2</sub> Sorption Data of MCM-41(I)91        |
| B.15 N <sub>2</sub> Sorption Data of MCM-41(II)93       |
| B.16 N <sub>2</sub> Sorption Data of MCM-41(III)95      |
| B.17 N <sub>2</sub> Sorption Data of MCM-41(IV)97       |
| B.18 N <sub>2</sub> Sorption Data of Cu-Imp(I)99        |
| B.19 N <sub>2</sub> Sorption Data of Cu-Imp(II)101      |
| B.20 N <sub>2</sub> Sorption Data of Cu-HT(I)103        |
| B.21 N <sub>2</sub> Sorption Data of Cu-HT(II) 104      |
| B.22 N <sub>2</sub> Sorption Data of Cu-LT(I) 106       |
| B.23 N <sub>2</sub> Sorption Data of Cu-LT(II) 108      |
| B.24 N <sub>2</sub> Sorption Data of Ni-HT(I)110        |
| B.25 N <sub>2</sub> Sorption Data of Ni-HT(II) 112      |
| B.26 N <sub>2</sub> Sorption Data of Ni-Imp(I) 114      |
| B.27 Summary of $N_2$ Sorption Data 116                 |
| B.28 XRF analyses of Cu-MCM-41 type catalytic materials |

| B.29 XRF analyses of Ni-MCM-41 type catalytic materials | 120 |
|---------------------------------------------------------|-----|
| B.30 AAS analyses of Cu-MCM-41 type catalytic materials | 126 |
| B.31 AAS analyses of Ni-MCM-41 type catalytic materials | 126 |

# LIST OF FIGURES

| 2.1 LCT Mechanism proposed by Beck et al. (1992)                 | 5  |
|------------------------------------------------------------------|----|
| 2.2 Structure of MCM-48 (Schumacher et al., 2000)                | 6  |
| 2.3 Structure of MCM-50 (Behrens et al., 1997)                   | 7  |
| 3.1 XRD of calcined MCM-41 (Beck et al., 1992)                   | 11 |
| 3.2 XRD of calcined MCM-48 (Beck et al., 1992)                   | 11 |
| 3.3 Types of Adsorption Isotherms                                | 14 |
| 3.4 Types of Hysteresis                                          | 15 |
| 4.1 Schematic Representation of the Synthesis of MCM-41          | 21 |
| 4.2 Schematic Representations of the Syntheses of Cu-MCM-41 Type |    |
| Catalytic Materials                                              | 25 |
| 4.3 Schematic Representations of the Syntheses of Ni-MCM-41 Type |    |
| Catalytic Materials                                              | 27 |
| 5.1 Success of experiments in terms of synthesized materials     | 31 |
| 5.2 XRD plot of MCM-41(I)                                        | 34 |
| 5.3 XRD plot of MCM-41(II)                                       | 34 |
| 5.4 XRD plot of MCM-41(III)                                      | 34 |
| 5.5 XRD plot of MCM-41(IV)                                       | 34 |
| 5.6 XRD plot of Cu-Imp(I)                                        | 36 |
| 5.7 XRD plot of Cu-Imp(II)                                       | 36 |
| 5.8 XRD plot of Cu-HT(I)                                         | 36 |
| 5.9 XRD plot of Cu-HT(II)                                        | 36 |
| 5.10 XRD plot of Cu-LT(I)                                        | 36 |
| 5.11 XRD plot of Cu-LT(II)                                       | 36 |
| 5.12 XRD plot of Ni-HT(I)                                        | 38 |

| 5.13 XRD plot of Ni-HT(II)                                                         |
|------------------------------------------------------------------------------------|
| 5.14 XRD plot of Ni-Imp(I)                                                         |
| 5.15 TEM of MCM-41(I)                                                              |
| 5.16 TEM of Cu-Imp(I)                                                              |
| 5.17 TEM of Cu-HT(I)                                                               |
| 5.18 TEM of Cu-LT(I)                                                               |
| 5.19 $N_2$ Adsorption/Desorption Isotherms of Synthesized MCM-41                   |
| Mesoporous Materials40                                                             |
| 5.20 $N_2$ Adsorption/Desorption Isotherms of Synthesized Cu-MCM-41 Type           |
| Catalytic Materials42                                                              |
| 5.21 $N_2$ Adsorption/Desorption Isotherms of Synthesized Ni-MCM-41 Type           |
| Catalytic Materials43                                                              |
| 5.22 $N_{\rm 2}$ Adsorption Pore Size Distribution (APSD) and Desorption Pore Size |
| Distribution (DPSD) of MCM-41 Mesoporous Materials45                               |
| 5.23 $N_{\rm 2}$ Adsorption Pore Size Distribution (APSD) and Desorption Pore Size |
| Distribution (DPSD) of Cu-MCM-41 Type Catalytic Materials 46-47                    |
| 5.24 $N_{\rm 2}$ Adsorption Pore Size Distribution (APSD) and Desorption Pore Size |
| Distribution (DPSD) of Ni-MCM-41 Type Catalytic Materials48                        |
| 5.25 SEM of MCM-41(I)52                                                            |
| 5.26 SEM of Cu-Imp(I)52                                                            |
| 5.27 SEM of Cu-HT(I)52                                                             |
| 5.28 SEM of Cu-LT(I)52                                                             |
| 5.29 TPR of Cu-Imp(I)58                                                            |
| 5.30 TPR of Cu-HT(I)58                                                             |
| 5.31 TPR of Cu-LT(II)59                                                            |
| B.1 TEM of Cu-LT(I)90                                                              |
| B.2 TEM of Cu-LT(I)90                                                              |
| B.3 TEM of Cu-LT(I)90                                                              |

| B.4 SEM of MCM-41(I)117       |
|-------------------------------|
| B.5 SEM of MCM-41(I)117       |
| B.6 SEM of Cu-Imp(I)117       |
| B.7 SEM of Cu-Imp(I)117       |
| B.8 SEM of Cu-Imp(I)117       |
| B.9 SEM of Cu-Imp(I)117       |
| B.10 SEM of Cu-HT(I)118       |
| B.11 SEM of Cu-HT(I)118       |
| B.12 SEM of Cu-LT(I) 118      |
| B.13 SEM of Cu-LT(I) 118      |
| B.14 SEM of Cu-LT(I) 118      |
| B.15 SEM of Cu-LT(I) 118      |
| B.16 SEM of Cu-LT(I) 119      |
| B.17 EDS of Cu-Imp(I) 121     |
| B.18 EDS of Cu-Imp(II) 121    |
| B.19 EDS plot of Cu-HT(I)122  |
| B.20 EDS plot of Cu-HT(II)122 |
| B.21 EDS plot of Cu-LT(I) 123 |
| B.22 EDS plot of Cu-LT(II)    |
| B.23 EDS plot of Ni-HT(I)124  |
| B.24 EDS plot of Ni-HT(II)124 |
| B.25 EDS plot of Ni-Imp(I)125 |
| B.26 TPR of Cu-Imp(I)127      |
| B.27 TPR of Cu-HT(I)          |
| B.28 TPR of Cu-LT(II)         |

# NOMENCLATURE

# Abbreviations

| AAS   | : Atomic Absorption Spectroscopy                    |
|-------|-----------------------------------------------------|
| EDS   | : Energy Dispersive Spectroscopy                    |
| IUPAC | : International Union of Pure and Applied Chemistry |
| МСМ   | : Mobil Composition of Matter                       |
| SEM   | : Scanning Electron Microscopy                      |
| ТЕМ   | : Transmission Electron Microscopy                  |
| TPR   | : Temperature Programmed Reduction                  |
| XPS   | : X-ray Photoelectron Spectroscopy                  |
| XRD   | : X-ray Diffraction                                 |

XRF : X-ray Fluorescence

## **CHAPTER 1**

## INTRODUCTION

According to International Union of Pure and Applied Chemistry (IUPAC) definition, materials are classified into three categories in terms of their pore sizes (IUPAC, 1972):

• Microporous Materials

( pore diameters  $\leq$  20 Å)

• Mesoporous materials

( 20 Å <pore diameters <500 Å)

Macroporous materials

(pore diameters  $\geq$  500 Å)

Zeolites are the members of microporous materials and provide excellent catalytic properties. However, their applications are limited by the relatively small pore openings. Porous glasses and porous gels have larger pores but they have disordered pore systems with broad pore-size distributions (Ciesla and Schüth, 1999).

In 1992 researchers at Mobil Oil Research and Development Corporation discovered highly ordered inorganic mesoporous materials with high surface areas [Kresge et al., 1992]. These materials are designated as M41S family. The members of this family are MCM-41, MCM-48, and MCM-51. MCM refers to Mobil Composition of Matter and the numbers are only sequence numbers.

MCM-41, MCM-48, and MCM-51 differ in sizes, molecular structures and surface areas. MCM-41 has one-dimensional, hexagonally-ordered pore structure, MCM-48 has three-dimensional, cubic-ordered pore structure, and MCM-51 has unstable lamellar structure. M41S family of materials can be used as adsorbents, catalysts, and, catalyst supports.

MCM-41 type catalytic materials have applications in many different fields. Cu-MCM-41 and Ni-MCM-41 type catalytic materials can be used in the steam reforming reaction of methanol or ethanol to form hydrogen which is the future scope of this study.

In this study, copper and nickel incorporated MCM-41 type catalytic materials were synthesized following three different methods, namely impregnation, high temperature and low temperature direct synthesis methods. The Cu-MCM-41, and Ni-MCM-41, as well as synthesized MCM-41 were characterized by using XRD,  $N_2$  sorption, XRF, SEM, TEM, Energy Dispersive Spectroscopy (EDS), Atomic Absorption Spectroscopy (AAS) and Temperature Programmed Reduction (TPR).

2

# **CHAPTER 2**

# M41S MOLECULAR SIEVES MATERIALS

#### 2.1 Historical Development of M41S Molecular Sieves Materials

Before the discovery of these materials in 1992 by Mobil Research and Development Corporation researchers (Kresge et al., 1992), a patent including the procedure for the preparation of low-density silica was already described by Chiola et al. in 1971. Di Renzo et al. (1997) reproduced the materials described in the patent and obtained MCM-41. However, the remarkable properties of these materials were actually discovered by Mobil researchers and patented in 1991 by Beck (Beck, 1991). These mesoporous molecular sieves were later designated as M41S family (Beck et al., 1992). The members of this family are MCM-41, MCM-48 and MCM-50.

### 2.2 M41S Family

Although MCM-41, MCM-48 and MCM-50 are synthesized from the same materials they show very different structural properties (Behrens et al, 1997). Detailed descriptions, properties and syntheses of these materials are given in the following sections.

#### 2.2.1 MCM-41

Like other members of the M41S family, MCM-41 is synthesized by four main components (Øye et al., 2001):

- A source of silica
- Structure-directing surfactants
- A solvent
- Acid or base

Mobil researchers found that the relative concentrations of the species present in the synthesis solutions were of great importance for the final pore structures. In the M41S family, MCM-41 is formed with the highest concentration of silica, i.e., lowest surfactant/silica molar ratio. As the surfactant/silica molar ratio was varied, the products formed could be grouped into four main categories (Vartuli et al., 1994):

- 1. Surfactant/silica < 1 :hexagonal (MCM-41)
- 2. Surfactant/Silica = 1-1.5 : Cubic (MCM-48)
- 3. Surfactant/Silica = 1.2-2 : Lamellar (MCM-50)
- 4. Surfactant/Silica > 2 : Cubic octamer

The pore diameter of MCM-41 can be varied by changing the alkyl chain length of the cationic surfactants used in the synthesis procedure (Kresge et al., 1992). The experimental studies indicate that MCM-41 pore diameter increases with surfactant chain length (Beck et al., 1992). MCM-41 mesoporous molecular sieves are formed by a liquid-crystal templating mechanism (LCT) in which surfactant liquid-crystal structures serve as templates (Kresge et al., 1992 and Beck et al., 1992). Two possible pathways were proposed by Beck et al. as can be seen in Figure 2.1 (1992):

(1) The liquid-crystal phase is intact before the silicate species are added

(2) The addition of silicate results in the ordering of the subsequent silicate encased surfactant micelles



Figure 2.1 LCT Mechanism proposed by Beck et al. (1992)

For either pathway, the resultant composition would produce an inorganic material that mimics known liquid-crystal phases. For pathway (1) to be operative, it is required that the surfactant molecules exist in sufficient concentration for a liquid-crystal structure to form. This liquid-crystal structure serves as the templating agent and the inorganic silicate anions merely serve to counterbalance the charge of these fully ordered surfactant aggregates. For pathway (2), surfactant is only part of the template. The presence of a silicate anion species not only serves to charge balance the surfactant cations but also participates in the formation and ordering of the liquid-crystal phase. At constant surfactant concentration, different types of M41S mesoporous materials are formed by varying silica concentration so pathway (1) is consistent with the synthesis data (Vartuli et al., 1994).

#### 2.2.2 MCM-48

MCM-48 differs from MCM-41 and MCM-50 in its crystal and pore structures. It has a cubic Ia3d symmetrical structure, with a proposed threedimensional pore system having two independent intertwined channel networks. Because of this three-dimensional pore structure, MCM-48 is an attractive candidate for use in various sorption and catalysis applications (Roth, 2000).



Figure 2.2 Structure of MCM-48 (Schumacher et al., 2000)

MCM-48 can be produced by reacting an inorganic silica reagent, an alkylammonium hydroxide, and a halide-containing surfactant in an aqueous medium. The process can be carried out in a single step or in multiple steps such that the inorganic silica reagent and the alkylammonium hydroxide are reacted first to form a first reaction mixture. The first reaction mixture then is combined with a halide-containing surfactant to form a second reaction mixture that is maintained under sufficient conditions to form a crystalline MCM-48 product (Roth, 2000).

While attractive because of its possible three-dimensional pore structure, crystalline MCM-48 has not been widely used. Difficulties in synthesizing MCM-48, in the laboratory and particularly on a large scale commercial basis, have limited the availability of this material (Roth, 2000)

### 2.2.3 MCM-50

MCM-50 possesses a lamellar arrangement of surfactant and silica layers given in Figure 2.3.



Figure 2.3 Structure of MCM-50 (Behrens et al, 1997)

This structure collapses upon calcination and does not give a mesoporous compound (Behrens et al., 1997).

### 2.3 Cu-MCM-41 and Ni-MCM-41 Type Catalytic Materials

Up to now Cu-MCM-41 type catalytic materials were synthesized by various methods. For example, while Ziolek et al. (2004) synthesized by room temperature method, Guo et al. (2004) synthesized at 273 K. Different types of impregnation techniques were employed by Tsoncheva and co-workers (2004). Cu-Al-MCM-41 type catalytic materials were studied by Wan et al.

(2004) by hydrothermal method. Also syntheses of Cu-MCM-48 type catalytic materials were studied by Hartmann et al. (1997) and Hadjiivanov et al. (2003).

Cu incorporated MCM-41 type catalytic materials have different applications. For example, Noreńa-Franco et al. (2002) studied the oxidation reaction of phenol, employing Cu-modified MCM-41 mesoporous catalysts. Velu et al. (2002) studied the catalytic performance of copper and zinc modified MCM-41 mesoporous catalysts for the selective oxidation of alcohols to aldehydes. Also copper is an attractive catalyst for H<sub>2</sub>S removal at high temperatures from process gases in petroleum refining and other industrial processes (Yasyerli et al., 2004). So Cu-MCM-41 type catalytic materials can find applications in removal of H<sub>2</sub>S.

Synthesis conditions of Ni-MCM-41 have great variety. Chang et al. (1999) synthesized Ni-MCM-41 type catalytic materials by hydrothermal synthesis method with a very high surface area (1151 m2/g). A novel synthesis method was followed by Jin and co-workers in 2004. In this method a coating process was applied to prepare nickel-silica composite hollow nanospheres (650 nm) with controllable shell thickness. Ion exchange synthesis method was performed by Brühwiller and Frei (2003). Incipient wetness technique was performed by Lensveld and co-workers (2001) to obtain high metal loading and high dispersion of the active phase.

Ni incorporated MCM-41 type catalytic materials find applications in the reduction of nitroarenes and carbonyl compounds to the corresponding amines and alcohols, respectively (Mohapatra et al., 2002). This type of materials also find applications in ethylene dimerization and butane isomerization (Hartmann et al., 1996). Nickel substituted MCM-41 molecular sieves are also used for the

8

oxidation of hydrocarbons (Parvulescu and Su, 2001) and for the gas phase hydrogenation of acetonitrile (Infantes-Molina et al., 2004).

Hydrogen production from steam reforming of ethanol might be attractive for countries with extensive plantations of sugar cane (Garcia et al., 1991). Ethanol has many good properties such as:

- Safe handling
- Cheap
- Easy transport
- Biodegradability
- Low toxicity

Recent studies have shown that copper-nickel supported catalysts are suitable for the production of hydrogen from ethanol (Mariño et al. 1998 and 2003) and catalytic behavior of catalysts were analyzed in the ethanol steam reforming reaction at 300 °C and atmospheric pressure (Mariño et al. 2003). The influence of the diffusional effects, the residence time and the water/ethanol molar ratio fed on the ethanol conversion and on the product distribution was analyzed and additional experiments were performed to postulate a mechanism and to clarify the role of each metal (Cu and Ni) by Mariño and co-workers (2004).

### **CHAPTER 3**

# CHARACTERIZATION OF M41S MOLECULAR SIEVES MATERIALS

In this study, XRD, TEM, N<sub>2</sub> sorption, SEM, XRF, EDS, AAS and TPR characterization techniques were studied. XRD and TEM techniques were used to determine pore architecture of the materials. N<sub>2</sub> sorption techniques were used to determine the porosity and specific surface area of materials. SEM is used to observe morphology. XRF, EDS, AAS, and TPR are used to determine metal content of Cu-MCM-41 and Ni-MCM-41 type catalytic materials. Detailed information of these techniques are given in the following sections.

#### 3.1 X-ray Diffraction

XRD provides direct information of the pore architecture of the materials. For mesoporous materials, the diffraction patterns only have reflection peaks in the low-angle range, meaning 20 less than 10. No reflections are seen at higher angles. It has thereby been concluded that the pore walls mainly are amorphous. The ordering lies in the pore structure, and the low-angle diffraction peaks can be indexed according to different lattices (Øye et al., 2001).

MCM-41 exhibits an XRD pattern containing typically 3-5 peaks which can be indexed to a hexagonal lattice as (100), (110), (200), (210), and (300) (Beck et al., 1992). Since the materials are not crystalline at the atomic level, no reflections at higher angles are observed. By X-ray diffraction it is not possible to quantify the purity of the material (Ciesla and Schüth, 1999). In Figure 3.1 X-ray powder diffraction data for a sample of MCM-41 is given (Beck et al., 1992).



Figure 3.1 XRD of calcined MCM-41 (Beck et al., 1992)

A total of 8 peaks were used to index the X-ray diffraction pattern of MCM-48. The XRD powder pattern of MCM-48 could be indexed completely on the basis of a unit cell with a = 81.09 Å (Vartuli et al., 1994).In Figure 3.2 X-ray powder diffraction data for a sample of MCM-48 is given (Beck et al., 1992).



Figure 3.2 XRD of calcined MCM-48 (Beck et al., 1992)

#### 3.2 Transmission Electron Microscopy

During the nineteenth and early twentieth century, it was realized that there was a need for a microscope with greater resolution than the optical microscope. As it was known that the very short wavelengths of electrons could theoretically provide subnanometer resolution, work was begun on the first electron microscope. After a sustained research effort toward this need, Ernst Ruska developed the first TEM in 1931. This was the first microscope to exceed the 500-nm resolution limit, of the best optical microscope of the time. By 1938, von Ardenne had improved the TEM resolution to between 50 and 100 nm. Due to the short mean free path of an electron in a solid, samples intended for TEM analysis need to be extremely thin, usually < 300 nm, or else the material will not transmit the electron beam. The absolute sample thickness depends on sample density and the electron accelerating voltage used. TEMs are typically capable of producing a beam between 100 and 300 kV, however, there are several instruments that produce 3000-kV beams. TEMs are most commonly used in the conventional or "parallel beam" operation mode in which a relatively defocused beam, measuring several microns in diameter, is used to illuminate the sample. More advanced TEMs may employ a scanned beam mode in which the beam is focused to a diameter of <10 nm and is scanned over the area of interest in much the same way as any other scanning. Due to the very small probe sizes obtainable in scanning TEM (STEM), they are better suited for microchemical analysis and crystallographic studies. Most TEMs are able to resolve details of <0.5 nm on almost any substance. With this resolution, lattice fringes and rows of atoms are visible (Wiley Interscience).

TEM is widely used by biologists as well as materials scientists, although the high cost of a TEM and the expertise required to utilize one limits usage.

12

The most significant drawback to TEM are the sample thickness requirement and the ultrahigh vacuum (UHV) environment. Special cutting devices called "ultramicrotomes" are commonly used to cut soft materials into <500-nm sections, but sample preparation can still be very time consuming and frustrating. With that said, the TEM is still one of the most generally useful microscopes. TEMs are applicable to the study of ultrafine particles (eg, pigments, abrasives and carbon blacks) as well as microtomed thin sections of plant and animal tissue, paper, polymers, composites, foods, industrial materials, minerals, etc. Even metals can be made thin enough for detailed examination (Wiley Interscience).

Transmission Electron Microscopy (TEM) is the pre-eminent method for determining dislocations' and other crystallographic defects character and for performing chemical and crystallographic analysis of micrometer and smaller precipitates and other microstructures (Cullity, 2001).

#### 3.3 N<sub>2</sub> Sorption

In the literature, there are recorded tens of thousands of adsorption isotherms, measured on a wide variety of solids. Nevertheless, the majority of these isotherms which result from physical adsorption may conveniently be grouped into five classes- the five types I to V of the classification originally proposed by Brunauer, Deming, Deming and Teller, sometimes referred to as Brunauer, Emmett and Teller (BET) or simply Brunauer classification. The essential features of these types are indicated in Figure 3.3, including Type VI which is of particular theoretical interest (Gregg and Sing, 1982).

In the case of physical adsorption, Type I isotherms are encountered with microporous powders whose pore size does not exceed a few adsorbate

13

molecular diameters. Physical adsorption that produces Type I isotherm indicates that the pores are microporous and that the exposed surface resides almost exclusively within the micropores, which once filled with adsorbate; leave little or no external surface for additional adsorption. Type II isotherms are most frequently encountered when adsorption occurs on nonporous powders or on powders with pore diameters larger than micropores. Type III isotherms are characterized principally by heats of adsorption which are less than the adsorbate heat of liquefaction. Type IV isotherms occur on porous adsorbents possessing pores in the radius range of approximately 15-1000 Å. Type V isotherms result from small adsorbate-adsorbent interaction potentials similar to the Type III isotherms. However, Type V isotherms are also associated with pores in the same range as those of Type IV isotherms (Lowell and Shields, 1991).



Relative Pressure, P/P<sup>0</sup>

**Figure 3.3** Types of Adsorption Isotherms (Adapted from Greg and Sing, 1982)

Adsorption techniques are used to determine the porosity and specific surface area of materials. The most common adsorbate is probably  $N_2$  (at

77K). According to IUPAC definition, mesoporous materials exhibit a Type IV adsorption-desorption isotherm. At low relative pressures (P/P0) the adsorption only occurs a thin layer on the walls (monolayer coverage). Depending on the pore size, a sharp increase is seen at relative pressures from 0.25 to 0.5. This corresponds to capillary condensation of N2 in the mesopores. The sharpness of the inflection reflects the uniformity of the pore sizes and the height indicates the pore volume. A hysteresis effect is often observed for N2 adsorption-desorption isotherms when the pore diameter is larger than approximately 40 A° (Øye et al., 2001). Types of hysteresis are given in Figure 3.4. Type A hysteresis is due principally to cylindrical pores open at both ends. Type B hysteresis curve is associated with slit-shaped pores or the space between parallel plates. Type C hysteresis is produced by a mixture of tapered or wedge-shaped pores with open ends. Type d curves are also produced by tapered or wedge-shaped pores but with narrow necks at one or both open ends. Type E hysteresis result from bottle-neck pores (Lowell and Shields, 1991).



Relative Pressure, P/P<sup>0</sup>

**Figure 3.4** Types of Hysteresis (Adapted from Lowell and Shields, 1991)

The Barrett-Joyner-Halenda (BJH) method for calculating pore size distributions (Barrett et al., 1951) is based on a model of the adsorbent as a collection of cylindrical pores. The theory accounts for capillary condensation in the pores using the classical Kelvin equation, which in turn assumes a hemispherical liquid-vapor meniscus and a well-defined surface tension. The BJH theory also incorporates thinning of the adsorbed layer through the use of a reference isotherm; the Kelvin equation is only applied to the "core" fluid. (Gelb et al, 2005).

#### 3.4 Scanning Electron Microscopy

The SEM consists of a column which houses the filament (ie, electron source), electromagnetic lens, and the beam scanning coils. At the base of the column is the sample chamber that contains the stage and detectors. Depending on the goal of a particular investigation, the SEM may be operated in a number of different modes. These include high depth of field; low voltage, surface sensitive; high beam current and high resolution modes. Like other scanning microscopes, the SEM acquires data from the sample one point at a time. At each location where the electron beam impacts the sample, a flux of secondary electrons, backscatter electrons, X-rays, and other signals are emitted from the sample A portion of each signal travels in a direction such that it enters a detector. The detector measures the intensity of electrons emitted at each point on the sample and converts this intensity value into a corresponding 8 bit (i.e.,  $2^8$ , or 256) grayscale value. This digitized value is then displayed on a monitor. The relative position of the output pixel on the monitor is synchronized with the movement and position of the beam on the sample. That is to say, when the beam is located at the position, row 1, column 1, the intensity measurement from that point will be displayed in row 1, column 1 of the monitor. This image formation process applies to all of the

16
collected signals and allows an image of each signal to be collected simultaneously. Given this image formation process, it is not difficult to understand that if the size of the raster is decreased then the magnification of the image will increase proportionally (Wiley Interscience).

#### 3.5 X-ray Fluorescence

X-ray fluorescence is a nondestructive physical method used for chemical analyses of solids and liquids. The specimen is irradiated by an intense X-ray beam which causes the elements in the specimen to emit (that is, fluorescence) their characteristic X-ray line spectra. The lines of the spectra are diffracted at various angles by a single crystal plate which is analogous to the diffraction grating of optical spectroscopy. The elements may be identified by the wavelengths of their spectral lines, which vary in a regular manner with atomic number, and their concentrations may be determined from the intensities of the lines (McGraw-Hill Enc.).

The X-ray fluorescence method has proven particularly useful for mixtures of elements of similar chemical properties which are difficult to separate and analyze by conventional chemical methods (McGraw-Hill Enc.).

#### 3.6 Energy Dispersive Spectroscopy

The Energy Dispersive Spectrometer first gained acceptance as an attachment for the Scanning Electron Microscope (SEM). The first use of EDS was for completely qualitative analysis that is the identification of elements present at the point on the sample surface (Russ, 1984). EDS identifies the elemental composition of materials imaged in a SEM.

## **CHAPTER 4**

## **EXPERIMENTAL**

In this study, synthesis and characterization of MCM-41, Cu-MCM-41 and Ni-MCM-41 type catalytic materials were investigated in detail. MCM-41 was synthesized by high temperature direct synthesis method. Three types of synthesis procedures were followed for Cu-MCM-41 type catalytic materials namely impregnation method, high temperature direct synthesis method and low temperature direct synthesis method. Ni-MCM-41 type catalytic materials were synthesized by high temperature direct synthesis method and impregnation.

The obtained catalytic materials as well as MCM-41 were characterized by XRD, TEM,  $N_2$  sorption, SEM, XRF, EDS, AAS and TPR analysis techniques.

#### 4.1 Chemicals

There are four main components in the synthesis of MCM-41 mesoporous materials. These are a source of silica, a source of surfactant, a source of solvent and stabilizers (acid or base).

For the synthesis of MCM-41 type catalytic materials, a source of metal was required.

#### 4.1.1 Source of Silica

There were two silica sources used during experiments. These are:

- Sodium silicate solution (27 wt % SiO<sub>2</sub>, 14 wt. % NaOH) from Aldrich
- Sodium metasilicate (44-47 wt % SiO<sub>2</sub>) from Aldrich

Detailed information about these materials are given in Appendix A.

## 4.1.2 Source of Surfactant

The surfactant used during experiments was hexadecyltrimethyl ammonium bromide (CTMABr, 99 % pure powder) from Sigma. Information about this chemical is given in Appendix A.

## 4.1.3 Source of Solvent

Deionized water was used as solvent in the syntheses. It was obtained from Millipore Ultra-Pure Water System (Milli-QPlus).

## 4.1.4 Source of Acid

The acid used in experiments was sulfuric acid from Merck.

#### 4.1.5 Source of Metal

Copper and nickel sources were found after a literature survey of ethanol steam reforming. Mariño et al (1998 and 2003) used  $Cu(NO_3)_2 \cdot 3H_2O$  as copper source and  $Ni(NO_3)_2 \cdot 6H_2O$  as nickel source. In the present study, the copper source was copper (II) nitrate trihydrate from Merck and the nickel source was nickel nitrate hexahydrate from Merck. Information about these chemicals were given in Appendix A.

#### 4.2 Synthesis of MCM-41

MCM-41 was prepared by a modified procedure of Beck and co-workers (1992). This modified procedure was performed by Zhang and co-workers (2001). By using a similar recipe high specific surface areas of MCM-41 and V-MCM-41 mesoporous materials were synthesized and characterized by Güçbilmez et al. (in press). 13.2 g of hexadecyltrimethyl ammonium bromide was dissolved in 86 ml of deionized water. The solution was heated up to 30 °C for the complete dissolution of surfactant. Than 11.3 ml of sodium silicate was added dropwise to the clear solution with continuous stirring. After observing the formation of a gel, the pH of the mixture was adjusted to 11 by adding sufficient amount of 1 M  $H_2SO_4$ . The resulting gel was stirred for 1 hour before being transferred to a Teflon bottle and placed in a stainless-steel autoclave. The hydrothermal synthesis was carried out at 120 °C for 96 hours. The resultant solid was recovered by filtration, washed thoroughly with deionized water and dried at room temperature. Before calcination the solid was kept at 40 °C for 24 hours. The as-synthesized MCM-41 was finally calcined in a tubular furnace by heating from ambient temperature to 550 °C at a rate of 1  $^{\circ}$ C/min and kept at 550  $^{\circ}$ C for 6 hours in a flow of dry air. The calcination tube was 100 cm long made up of quartz glass. There is also a quartz filter in the calcination tube (40 cm from one end) to hold the solid during air flow. For calcination process, the solid sample was poured from the long end of the tube where air was introduced. The other end was connected to ventilation to remove the gas products.

The schematic representation of the synthesis of MCM-41 by high temperature synthesis method is given in Figure 4.1.



Figure 4.1 Schematic Representation of the Synthesis of MCM-41

Eight MCM-41 mesoporous materials were synthesized throughout the study. Some of the samples were eliminated due to their low surface area. Also some samples were lost during washing process or heating. As a result, only four of them were taken into consideration. These samples are named as MCM-41(I), MCM-41(II), MCM-41(III) and MCM-41 (IV). There are some differences in the synthesis of these samples which yield to different structural properties. These differences are summarized in Table 4.1.

| Sample ID   | Gel preparation                                            | Washing                                 |
|-------------|------------------------------------------------------------|-----------------------------------------|
| MCM-41(I)   | All surfactant was dissolved at once in 86 ml of water     | Washed until pH of the filtrate is 7.4. |
| MCM-41(II)  | Surfactant was added in small amounts into 55 ml of water. | Washed until pH of the filtrate is 7.3. |
| MCM-41(III) | Surfactant was added in small amounts into 55 ml of water. | Washed until pH of the filtrate is 8.0. |
| MCM-41(IV)  | Surfactant was added in small amounts into 86 ml of water. | Washed until pH of the filtrate is 9.0. |

Table 4.1 Synthesis differences of MCM-41 mesoporous materials

## 4.3 Synthesis of Cu-MCM-41 Type Catalytic Materials

#### 4.3.1 Impregnation Method

Cu-MCM-41 type catalytic materials obtained from the impregnation method were synthesized from a modified procedure of Tsoncheva et al. (2004). 2 grams of the uncalcined MCM-41 was shaken at room temperature with 11 ml of 1 M aqueous solution of copper (II) nitrate trihydrate. Then the liquid phase was removed by centrifugation and the obtained product was dried at room temperature and then under vacuum for one night. There was no washing treatment in this procedure. The obtained product was finally calcined by heating from ambient temperature to 550 °C at a rate of 1 °C/min and kept at 550 °C for 6 hours in a flow of dry air.

Two Cu-MCM-41 type catalytic materials obtained by impregnation method were taken into consideration. These are named as Cu-Imp(I) and Cu-Imp(II). These materials were obtained by incorporation of copper into assynthesized MCM-41(I) and MCM-41(III) respectively. In the first sample, 2.66 g of copper nitrate trihydrate was added in 2 g of MCM-41(I). Excess amount of solution was removed by centrifugation. In the case of Cu-Imp(II), 0.67 g of copper nitrate trihydrate was added in 0.5 g of MCM-41(III). Excess amount of solution was removed by centrifugation.

The schematic representation of impregnation method is given in Figure 4.2.

#### 4.3.2 High Temperature Direct Synthesis Method

This is a modified method of MCM-41 synthesis. 13.2 grams of hexadecyltrimethyl ammonium bromide was dissolved in 86 ml of deionized water. The solution was heated up to 30 °C for the complete dissolution of surfactant. Than 11.3 ml of sodium silicate was added dropwise to the clear solution with continuous stirring. A certain amount of copper (II) nitrate trihydrate solution (1.7 g solid in 7 ml of water) was added to the gel mixture to obtain Cu/Si mole ratio of 0.05. After stirring for 1 hour, the pH of the mixture was adjusted to 11 by adding sufficient amount of 1 M H<sub>2</sub>SO<sub>4</sub>. The resulting gel is stirred for 1 hour before being transferred to a Teflon bottle and placed in a stainless-steel autoclave. The hydrothermal synthesis was carried out at 120 °C for 96 hours. The resultant solid was recovered by filtration, washed thoroughly with deionized water and dried at room temperature. Before calcination the solid was kept at 40 °C for 24 hours. The as-synthesized Cu/MCM-41 was finally calcined by heating from ambient temperature to 550 °C at a rate of 1 °C/min and kept at 550 °C for 6 hours in a flow of dry air.

Two Cu-MCM-41 type catalytic materials were taken into consideration and named as Cu-HT(I), and Cu-HT(II). There are some differences in the synthesis of these samples. The first sample was heated at 120 °C for 72 hours while the second one was heated for 96 hours as described in the procedure. No acid treatment was performed for both of the samples.

The schematic representation of the synthesis of Cu-MCM-41 type catalytic materials with high temperature synthesis method is given in Figure 4.2.

#### 4.3.3 Low Temperature Direct Synthesis Method

This procedure was modified from Guo et al. (2004). The source of silica used in this synthesis procedure was different from the impregnation and high temperature direct synthesis. 9.3 grams of hexadecyltrimethylammonium bromide was dissolved in 250 ml of water. 12.2 g of sodium metasilicate was added to the clear solution. Then the mixture was cooled to 273 K in an ice-water bath. Than 50 ml of copperammonia solution composed of 1,2 g of copper (II) nitrate trihydrate and 25% aqueous ammonia was added at 273 K, resulting in a dark blue solution. With constant stirring, diluted sulfuric acid (1 M) was added to regulate pH to a value of 9. After further stirring for 3 hours, the solution was filtered to separate the solid phase from solution. The product was washed repeatedly with distilled water for a number of times and dried at room temperature. The as-synthesized Cu/MCM-41 was finally calcined by heating from ambient temperature to 550 °C at a rate of 1 °C/min and kept at 550 °C for 6 hours in a flow of dry air.

Two Cu-MCM-41 type catalytic materials synthesized by low temperature direct synthesis method and named as Cu-LT(I) and Cu-LT(II). For the first sample the pH of the solution was adjusted to 8.7 and the obtained product was washed with ethanol and deionized water for a number of times until the pH of the filtrate was 7.2. For Cu-LT(II), the pH of the solution was adjusted to 9 and the obtained product was washed with deionized water only for a number of times.

The schematic representation of the synthesis of Cu-MCM-41 type catalytic material by low temperature synthesis method is given in Figure 4.2.

## Impregnation Method

## High Temperature Direct Synthesis

## Low Temperature Direct Synthesis



**Figure 4.2** Schematic Representations of the Syntheses of Cu-MCM-41 Type Catalytic Materials

#### 4.4 Synthesis of Ni-MCM-41 Type of Catalytic Materials

#### 4.4.1 High Temperature Direct Synthesis Method

This is a modified method of MCM-41 synthesis. 13.2 grams of hexadecyltrimethyl ammonium bromide was dissolved in 86 ml of deionized water. The solution was heated up to 30 °C for the complete dissolution of surfactant. Than 11.3 ml of sodium silicate was added dropwise to the clear solution with continuous stirring. A certain amount of nickel (II) nitrate hexahydrate solution (1.7 g solid in 2 ml of water) was added to the gel mixture to obtain Ni/Si mole percent 0.05. The pH of the mixture was adjusted to 11 by dilute sulfuric acid. The resulting gel is stirred for 1 hour before being transferred to a Teflon bottle and placed in a stainless-steel autoclave. The hydrothermal synthesis was carried out at 120 °C for 96 hours. After heat treatment, the gel contained solid precipitates. The resultant solid was recovered by filtration, washed thoroughly with deionized water and dried at room temperature. Before calcination the solid was kept at 40 °C for 24 hours. The as-synthesized Ni/MCM-41 was finally calcined by heating from ambient temperature to 550 °C at a rate of 1 °C/min and kept at 550 °C for 6 hours in a flow of dry air.

Two Ni-MCM-41 type catalytic materials were synthesized and named as Ni-HT(I) and Ni-HT(II). There were some differences in the syntheses of these two samples. For the first sample, no acid treatment was done and the solution was kept at the pH of 11.1. For the second sample acid was added into the final solution to adjust pH at 11.

The schematic representation of the synthesis procedure is given in Figure 4.3.

#### 4.4.2 Impregnation Method

2 grams of the uncalcined MCM-41 was stirred at room temperature with aqueous solution of nickel (II) nitrate hexahydrate  $(0.24 \text{ g of Ni}(NO_3)_2 \cdot 3H_2O)$  with 20 ml of water). The solution was stirred for 10 hours at 40 °C and dried at room temperature and then under vacuum for one night. The obtained product was finally calcined by heating from ambient temperature to 550 °C at a rate of 1 °C/min and kept at 550 °C for 6 hours in a flow of dry air.

There was only one Ni-MCM-41 type catalytic material synthesized by this procedure. Nickel was incorporated into the as-synthesized MCM-41(IV).

The schematic representation of the synthesis of Ni-MCM-41 type catalytic material by impregnation method is given in Figure 4.3.



Figure 4.3 Schematic Representations of the Syntheses of Ni-MCM-41 Type

## Catalytic Materials

#### 4.5 Characterization

#### 4.5.1 X-ray Diffraction

The XRD patterns of all synthesized materials were by using a Philips PW3040 based X-Ray diffractometer with Cu K $\alpha$  anode radiation source (wavelength 0.15406 nm). The diffraction patterns were collected at a diffraction angle 2 $\theta$  from 1° to 25° at a step size of 0.02 and a scan speed of 0.025 (2 $\theta$ /s). The samples for the XRD analysis were powder and outgassed in vacuum overnight at 110 °C before analysis.

#### 4.5.2 Transmission Electron Microscopy

The Transmission Electron Microscope analyses were determined by TEM-100C (JEOL) .

## 4.5.3 N<sub>2</sub> Sorption

The BET surface area values and pore size distributions of all samples were determined from nitrogen adsorption data at 77 K by a computerized analyzer model ASAP 2000 of Micromeritics Co. Inc. except Cu-Imp(I) and Cu-HT(I). These two samples were characterized by Quantochrome Autosorb-1/C. Before measurements, calcined samples were outgassed in vacuum overnight at 110 °C. Pore size distributions and pore diameters were calculated by the BJH method from the adsorption and desorption branch of the nitrogen adsorption-desorption isotherms.

#### 4.5.4 Scanning Electron Microscopy

The morphologies of the synthesized materials were determined by using a Scanning Electron Microscope, JSM-6335 F (JEOL) equipped with Oxford System.

#### 4.5.5 X-ray Fluorescence

X-ray Fluorescence Analyses were obtained using ZIX3000 (Rigaku) X-ray Spectrometer.

#### 4.5.6 Energy Dispersive Spectroscopy

Near surface compositions of the materials were determined from Energy Dispersive Spectroscopy by using JSM-6400 SEM (JEOL) equipped with NORAN System Six.

#### 4.5.7 Atomic Absorption Spectroscopy

The copper and nickel content was determined by Atomic Absorption Spectroscopy on Philips PU9200X spectrometer. AAS analyses were carried out by a modified method suggested by Grubert et al. (1998).

The Cu-MCM-41 and Ni-MCM-41 type catalytic materials were dissolved in a mixture of nitric acid and hydrochloric acid (1:3, volume ratio). Digestion procedure was carried out on a hot plate, and repeated for three times. Than, the liquid phase was filtered and metal content was determined by atomic absorption spectrophotometer. The remaining solid phase that contained SiO<sub>2</sub> was determined from gravimetric titration method.

#### 4.5.8 Temperature Programmed Reduction

TPR analyses were performed for Cu-MCM-41 type catalytic materials using a mass spectrometer connected to a tubular reactor. The weighted sample was placed to the quartz tubular reactor having an inside diameter of 4 mm and activated in a flow of 5 vol %  $O_2$  in He with a flowrate of 17.6 ml/min up to a maximum temperature of 400 °C at a rate of 10 °C/min and kept at 400 °C for 30 minutes. After cooling the reactor to room temperature, the reduction of the catalyst was done in a flow of 5 vol %  $H_2$  in He up to a maximum temperature of 400 °C with a heating rate of 5 °C/min. Flowrates of  $H_2$  and He were 2.9 ml/min and 55.1 ml/min respectively. TPR analyses were performed with a modified method suggested by Hartmann et al. (1999).

## **CHAPTER 5**

## **RESULTS AND DISCUSSION**

## **5.1 Synthesis Results**

Synthesis of MCM-41, Cu-MCM-41 and Ni-MCM-41 were performed as described in the experimental section. 22 experiments were performed throughout the study. Out of them, 13 experiments were taken into consideration and are presented in the thesis. In Figure 5.1 the distribution of successful and unsuccessful experiments are given.



Figure 5.1 Success of experiments in terms of synthesized materials

The synthesized materials, their syntheses procedures and identification symbols are summarized in Table 5.1.

| Type of material | Type of synthesis                 | Sample ID   |
|------------------|-----------------------------------|-------------|
| MCM-41           | High temperature direct synthesis | MCM-41(I)   |
| MCM-41           | High temperature direct synthesis | MCM-41(II)  |
| MCM-41           | High temperature direct synthesis | MCM-41(III) |
| MCM-41           | High temperature direct synthesis | MCM-41(IV)  |
| MCM-41           | High temperature direct synthesis | MCM-41(V)   |
| Cu-MCM-41        | Impregnation                      | Cu-Imp(I)   |
| Cu-MCM-41        | Impregnation                      | Cu-Imp(II)  |
| Cu-MCM-41        | High temperature direct synthesis | Cu-HT(I)    |
| Cu-MCM-41        | High temperature direct synthesis | Cu-HT(II)   |
| Cu-MCM-41        | Low temperature direct synthesis  | Cu-LT(I)    |
| Cu-MCM-41        | Low temperature direct synthesis  | Cu-LT(II)   |
| Ni-MCM-41        | High temperature direct synthesis | Ni-HT(I)    |
| Ni-MCM-41        | High temperature direct synthesis | Ni-HT(II)   |
| Ni-MCM-41        | Low temperature direct synthesis  | Ni-LT(I)    |

Table 5.1 Summary of the Synthesized Materials

## **5.2 Characterization Results**

The synthesized materials were characterized by XRD, TEM,  $N_2$  sorption, SEM, XRF, EDS, AAS and TPR techniques. Table 5.2 shows which techniques were performed to each sample.

| Sample ID   | XRD          | TEM          | N <sub>2</sub><br>Sorption | SEM          | XRF          | EDS          | AAS          | TPR          |
|-------------|--------------|--------------|----------------------------|--------------|--------------|--------------|--------------|--------------|
| MCM-41(I)   | $\checkmark$ | $\checkmark$ | $\checkmark$               | $\checkmark$ | Х            | х            | х            | х            |
| MCM-41(II)  | $\checkmark$ | х            | $\checkmark$               | х            | х            | х            | х            | х            |
| MCM-41(III) | $\checkmark$ | х            | $\checkmark$               | х            | Х            | х            | х            | х            |
| MCM-41(IV)  | $\checkmark$ | х            | $\checkmark$               | х            | Х            | х            | х            | х            |
| MCM-41(V)   | $\checkmark$ | х            | $\checkmark$               | х            | Х            | х            | х            | х            |
| Cu-Imp(I)   | $\checkmark$ | $\checkmark$ | $\checkmark$               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Cu-Imp(II)  | $\checkmark$ | х            | $\checkmark$               | х            | $\checkmark$ | $\checkmark$ | $\checkmark$ | х            |
| Cu-HT(I)    | $\checkmark$ | $\checkmark$ | $\checkmark$               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Cu-HT(II)   | $\checkmark$ | х            | $\checkmark$               | х            | $\checkmark$ | $\checkmark$ | $\checkmark$ | х            |
| Cu-LT(I)    | $\checkmark$ | $\checkmark$ | $\checkmark$               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | х            |
| Cu-LT(II)   | $\checkmark$ | х            | $\checkmark$               | х            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Ni-HT(I)    | $\checkmark$ | х            | $\checkmark$               | х            | $\checkmark$ | $\checkmark$ | $\checkmark$ | х            |
| Ni-HT(II)   | $\checkmark$ | х            | $\checkmark$               | х            | $\checkmark$ | $\checkmark$ | $\checkmark$ | х            |
| Ni-LT(I)    | $\checkmark$ | х            | $\checkmark$               | х            | $\checkmark$ | $\checkmark$ | $\checkmark$ | х            |

Table 5.2 Summary of the Characterization Techniques

#### 5.2.1 X-ray Diffraction

XRD patterns of synthesized MCM-41 mesoporous materials, MCM-41(I), MCM-41(II), MCM-41(III) and MCM-41(IV) are given in Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5 respectively. Raw data of these samples are given in Appendix B.1 from Table B.1 to Table B.4.





Figure 5.2 XRD plot of MCM-41(I)

Figure 5.3 XRD plot of MCM-41(II)





Figure 5.4 XRD plot of MCM-41(III)

Figure 5.5 XRD plot of MCM-41(IV)

In the XRD patterns of MCM-41 materials, the characteristic sharp Bragg peak corresponding to  $d_{(100)}$  were observed for MCM-41(I) and MCM-41(II) only. The major peaks were observed at 20 values of 2.61 for MCM-41(I) and 2.42 for MCM-41(II). These peaks correspond to d values of 3.4 nm and 3.7 nm respectively. For instance, other reflections were observed for MCM- 41(II) at 20 values of 4.14, 4.74 and 6.33 with d spacing of 2.1, 1.9, 1.4 nm respectively. There is only one measurable reflection for MCM-41(I) at 20 value of 4.43 with d spacing of 2.0 nm. For MCM-41(III) and MCM-41(IV), the XRD patterns indicate some changes in MCM-41 structure although the same procedure was followed. These changes are due to the small differences in the synthesis procedure. As described in the experimental section, the amount of water added into the solution was 86 ml for MCM-41(I) and MCM-41(IV) while it was 55 ml for MCM-41(II) and MCM-41(III). If the reason was the amount of water than we expected to observe same XRD patterns for MCM-41 (I) and (IV) also for MCM-41 (II) and (II). However, the first two samples gave characteristic Bragg peaks although they contained different amounts of water. Than we came to a conclusion that washing process was the critical step in the syntheses of MCM-41 type mesoporous molecular sieves. The pH of the filtrate was about 7 for MCM-41(I) and MCM-41(II).

Figures 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11 correspond to the XRD patterns of synthesized Cu-MCM-41 type catalytic materials, Cu-Imp(I), Cu-Imp(I), Cu-HT(I), Cu-HT(I), Cu-LT(I), and Cu-LT(II) respectively. Raw data of these samples are given in Appendix B.1 from Table b.5 to Table B.10.

The XRD patterns of Cu-Imp(II) and Cu-LT(I) gave the characteristic Bragg peaks at 20 values of 2.48 for Cu-Imp(II) and 2.50 for Cu-LT(I). These peaks correspond to d values of 3.6 nm for both samples. Two reflections were observed for Cu-Imp(II) at 20 4.24 and 4.83 with d values of 2.1 and 1.8 nm respectively. There is only one measurable reflection for Cu-LT(I) at 20 3.87 with d spacing of 2.3 nm. In the case of Cu-Imp(I), a sharp peak was observed at a 20 value less than 1° was observed indicating some changes in the MCM-41 structure by the incorporation of copper.





**Figure 5.6** XRD plot of Cu-Imp(I)



**Figure 5.8** XRD plot of Cu-HT(I)



Figure 5.10 XRD plot of Cu-LT(I)

Figure 5.7 XRD plot of Cu-Imp(II)



Figure 5.9 XRD plot of Cu-HT(II)



Figure 5.11 XRD plot of Cu-LT(II)

An interesting result was observed for impregnated copper samples. Copper was added into MCM-41(I) to obtain Cu-Imp(I), and into MCM-41(III) to obtain Cu-Imp(II). While the XRD pattern of MCM-41(I) was consistent with literature, copper addition led to some changes in the XRD pattern of Cu-Imp(I). However Cu-Imp(II) gave the characteristic Bragg peak and the two reflections, which were not seen in MCM-41(III) structure.

There were also some changes observed in the XRD patterns of Cu-MCM-41 type catalytic materials obtained by high temperature direct synthesis method which were due to the high metal loading. For Cu-LT(I) and Cu-LT(II), the XRD patterns indicated changes in the structure and wide bands observed. These may be an indication of the distribution of radii of the mesopores in a range.

When we compared the three synthesis methods, impregnation gives better XRD patterns than high temperature and low temperature synthesis methods. This is expected because; in the impregnation, copper is incorporated in synthesized MCM-41 mesoporous material which does not change the structure as much as the other two methods. However, in high and low temperature syntheses, copper is added to the solution mixture before gel formation which results in the changes of the crystal structure.

XRD patterns of synthesized Ni-MCM-41 type catalytic materials, Ni-HT(I), Ni-HT(II), and Ni-Imp(I) are given in Figure 5.12, Figure 5.13, and Figure 5.14 respectively. Raw data of these samples are given in Appendix B.1 from Table B.11 to Table B.13.

There were three Bragg peaks observed for Ni-HT(I) at  $2\theta$  values of 1.81, 2.18 and 3.94 with d spacing of 4.9 nm, 4.1 nm and 2.2 nm respectively.

The XRD pattern of Ni-HT(II) showed a pattern totally different from MCM-41. These differences were due to high metal loading. The wide spread distribution of XRD pattern shows that there is a pore dimension distribution in the synthesized materials.

The sample prepared by impregnation method was obtained by adding nickel into MCM-41(IV) which showed a XRD pattern different from MCM-41. However, after the impregnation, a sharp Bragg peak was observed at 20 2.45 with d spacing 3.6 nm. Also an additional peak was observed at 4.21° with a d spacing of 2.1 nm. The sample prepared by impregnation method gives XRD pattern similar to MCM-41 compared with the other two which were synthesized by high temperature direct synthesis.





Figure 5.12 XRD plot of Ni-HT(I)



Figure 5.14 XRD plot of Ni-Imp(I)

Figure 5.13 XRD plot of Ni-HT(II)

## 5.2.2 Transmission Electron Microscopy

TEM images are required to understand the morphology of the samples. Obtaining TEM images in 100 nm scale is not easy for solid samples. In the literature there are not many TEM images for Cu-MCM-41 and Ni-MCM-41 type catalytic materials.

In Figure 5.16, 5.16, 5.17 and 5.18 TEM images of some samples are given. In all three copper samples hexagonality can be easily observed. The distribution of hexagonal cells are more regular in impregnated copper sample.



**Figure 5.15** TEM of MCM-41(I)



Figure 5.17 TEM of Cu-HT(I)



Figure 5.16 TEM of Cu-Imp(I)



Figure 5.18 TEM of Cu-LT(I)

#### 5.2.3 N<sub>2</sub> Sorption

 $N_2$  adsorption-desorption isotherms of synthesized MCM-41 mesoporous materials are given in 5.19. For simplification adsorption-desorption isotherms were represented by "ADI" in the figures. The raw data of ADI in terms of relative pressure (P/P<sub>0</sub>), pressure (mmHg), and volume adsorbed (cc/g STP) are given in Appendix B.





#### (a) ADI of MCM-41 (I)

#### (**b**) ADI of MCM-41(II)





(c) ADI of MCM-41(III)

(d) ADI of MCM-41(IV)



In the adsorption-desorption isotherms of MCM-41(I), MCM-41(II), and MCM-41(III), Type IV Isotherms were observed. However, MCM-41(IV) gave Type I isotherm which indicated the presence of micropores. This sample also has higher specific surface area when compared with other samples (Table 5.3). As reported in Table 5.3, the pore volumes of MCM-41(I), (II), (IIII) and (IV) were 1.17, 1.03, 1.00 and 1.05 cc/g, respectively.

Figure 5.20 indicated adsorption-desorption isotherms of Cu-MCM-41 type catalytic materials. All samples gave Type IV isotherms. For Cu-Imp(I), the volume adsorbed (1.09 cc/g) is less than MCM-41(I) and for Cu-Imp(II) again the volume adsorbed (0.53 cc/g) is less than MCM-41(III). The hystereses in these samples were much less than MCM-41(I) and MCM-41(III). As reported in Table 5.3, pore diameters of MCM-41(I) and MCM-41(III) are 3.0 nm, while pore diameters of Cu-Imp(I) and Cu-Imp(II) are 2.7 nm. The pore diameters are taken from the adsorption branch since the data points in the desorption branch are much less than the adsorption branch. When we analyze the samples obtained from high temperature direct synthesis, we observe that there is a decrease in volume adsorbed. The hysteresis observed for Cu-HT(II) is wider than Cu-HT(I). So average pore diameter of Cu-HT(II) is (4.0 nm) greater than Cu-HT(II) (2.5 nm). The volumes of Cu-HT(I) and Cu-HT(II) were 0.54, 0.42 cc/g, respectively. The hysteresis of the adsorptiondesorption branches of Cu-LT(I) and Cu-LT(II) were wider which indicated larger pore diameters. Again from Table 5.3, the BJH adsorption pore diameters of these samples are 8.3 and 7.3 nm, respectively. Average pore volumes of these samples were found as 0.30 and 1.33 cc/g, respectively.







(b) ADI of Cu-Imp(II)





(c) ADI of Cu-HT(I)

(d) ADI of Cu-HT(II)



(e) ADI of Cu-LT(I)

(f) ADI of Cu-LT(II)



Figure 5.21 shows the adsorption-desorption isotherms of Ni-MCM-41 type catalytic materials. Ni-HT(I)I Ni-HT(II) gave Type IV isotherms which means mesoporosity while Ni-Imp(I) gave a Type I isotherm. This is expected because Ni-Imp(I) is prepared by nickel incorporation into MCM-41(IV) which also shows microporosity. The pore volumes of these samples are 0.59 for Ni-HT(I), 0.91 for Ni-HT(II) and 1.39 cc/g for Ni-Imp(I).





## (a) ADI of Ni-HT(I)

## (b) ADI of Ni-HT(II) D11



(c) ADI of Ni-Imp(I)

**Figure 5.21** N<sub>2</sub> Adsorption/Desorption (ADI) Isotherms of Synthesized Ni-MCM-41 Type Catalytic Materials Pore size distributions of synthesized materials in terms of adsorption and desorption isotherms are given in Figures 5.22, 5.23 and 5.24. For simplification adsorption pore size distribution is represented by "APSD", and desorption pore size distribution is represented by "DPSD". The raw data of BJH Adsorption Pore Distribution and BJH Desorption Pore Distribution in terms of average diameter, incremental pore volume, cumulative pore volume, incremental surface area, and cumulative surface area are given in Appendix B.

The desorption branch data points are much less than the adsorption branch data in N<sub>2</sub> sorption analyses. So the adsorption branches of pore sizes were considered. The pore diameters of MCM-41 mesoporous materials were 3.0, 2.8, 3.0 and 2.7 nm respectively. As reported in Figure 5.22, the pore size distribution was not completed for MCM-41(IV) which means that the obtained surface area was lower than the actual value. We know from adsorptiondesorption isotherm that it is Type I isotherm which shows microporosity, so more data was required to analyze these micropores found in this sample.

For Cu-MCM-41 type catalytic materials, pore size distributions were given in Figure 5.23. The pore diameters of these materials were 2.7, 2.7, 2.5, 4.0, 8.3 and 7.3 nm, respectively. The pore diameters of Cu-MCM-41 synthesized by low temperature method gave somewhat larger pore diameters when compared to other samples.



## (a) APSD of MCM-41(I)





# (b) DPSD of MCM-41(I)



Figure 5.22 N<sub>2</sub> Adsorption Pore Size Distribution (APSD) and Desorption Pore

Size Distribution (DPSD) of MCM-41 Mesoporous Materials



(a) APSD of Cu-Imp(I)



(c) APSD of Cu-Imp(II)



(e) APSD of Cu-HT(I)





10

D (nm)

100

1000



(g) APSD of Cu-HT(II)

(h) DPSD of Cu-HT(II)

Figure 5.23  $N_2$  Adsorption Pore Size Distribution (APSD) and Desorption Pore Size Distribution (DPSD) of Cu-MCM-41 Type Catalytic Materials

(d) DPSD of Cu-Imp(II)

1.5

(**q**) **bol p//v** 0.5

0.0



(b) DPSD of Cu-Imp(I)





(i) APSD of Cu-LT(I)

(j) DPSD of Cu-LT(I)



(k) APSD of Cu-LT(II)

(I) DPSD of Cu-LT(II)

Figure 5.23 (continued)  $N_2$  Adsorption Pore Size Distribution (APSD) and Desorption Pore Size Distribution (DPSD) of Cu-MCM-41 Type Catalytic Materials

Figure 5.24 correspond to the pore size distributions of Ni-MCM-41 type catalytic materials. Pore diameters of these samples were 3.8, 3.4 and 3.7 nm respectively. The graphs indicate that there may be micropores for Ni-HT(I) and Ni-HT(II).





(a) APSD of Ni-HT(I)

(b) DPSD of Ni-HT(I)





(c) APSD of Ni-HT(II)

(d) DPSD of Ni-HT(II)



(e) APSD of Ni-Imp(I)

(f) DPSD of Ni-Imp(I)

**Figure 5.24** N<sub>2</sub> Adsorption Pore Size Distribution (APSD) and Desorption Pore Size Distribution (DPSD) of Ni-MCM-41 Type Catalytic Materials

In Table 5.3, all physical properties obtained from XRD and  $N_2$  sorption data of all samples are summarized. The specific surface areas of samples are given in terms of BET and BJH (adsorption and desorption) analyses.

By using the XRD data, characteristic lattice parameters of the synthesized materials were also calculated. Lattice parameter (a) is the repeating distance between two pore centers. It was calculated by using the following equation (Kresge et al., 1992):

$$a = \frac{2d_{(100)}}{\sqrt{3}}$$

The d spacing and lattice parameters of all synthesized materials are summarized in Table 5.3.

Pore wall thickness  $\delta$  was estimated from the average pore diameter (d<sub>p</sub>) and the lattice diameter (a) using the following equation (Schultz-Ekloff et al., 1999) :

$$\delta = a - 0.95 d_p$$

From Table 5.3, the BET surface area values of all MCM-41 mesoporous materials are greater than 1000 m<sup>2</sup>/g, pore volumes greater than 1.00 cc/g and have average pore diameter of about 3.0 nm. MCM-41(I) and MCM-41(II) gave the characteristic XRD pattern of MCM-41. These mesoporous materials have high surface areas up to 1200 m<sup>2</sup>/g and pore volumes up to 1.17 cc/g.

High surface area values were obtained for Cu-Imp(I) and Cu-Imp(II) samples. These samples were synthesized by incorporation of copper into MCM-41(I) and MCM-41(III) respectively. From the Table 5.3, an increase was

observed in the pore wall thicknesses and decrease was observed in pore diameter which indicates thin layer formation of copper on the walls of MCM-41 structure. The surface area values and pore volumes of Cu-HT(I) and Cu-HT(II) are very close to each other while the pore diameter of Cu-HT(II) was larger than Cu-HT(I). Cu-MCM-41 type catalytic materials synthesized by low temperature direct synthesis method gave larger pore diameters. Although XRD pattern of Cu-LT(I) was in agreement with MCM-41 structure, its surface area and pore volume was lower than the others. When we compared Cu-HT(I) and Cu-HT(II), there were great differences between these two materials which showed the importance of titration and washing processes.

The acid treatment in the synthesis of Ni-MCM-41was very critical for obtaining high surface areas. As seen from the Figure Ni-HT(II) has higher surface area and higher pore volume than Ni-HT(I).

|              | BET SA <sup>a</sup> | BJH ASA <sup>b</sup> | BJH DSA <sup>c</sup> | BJH APV <sup>d</sup> | BJH DPV <sup>e</sup> | BJH APD <sup>f</sup> | BJH DPD <sup>9</sup> | d <sub>100</sub> | a <sup>h</sup> | $\delta_{\text{des}}$ | $\delta_{\text{ads}}$ |
|--------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------|----------------|-----------------------|-----------------------|
| Sample ID    | (m²/g)              | (m²/g)               | (m²/g)               | (cc/g)               | (cc/g)               | (nm)                 | (nm)                 | (nm)             | (nm)           | (nm)                  | (nm)                  |
| MCM-41 (I)   | 1208                | 1119                 | 1561                 | 1.17                 | 1.17                 | 3.0                  | 2.6                  | 3.4              | 3.9            | 1.5                   | 1.1                   |
| MCM-41 (II)  | 1097                | 1452                 | 1812                 | 1.02                 | 1.03                 | 2.8                  | 2.3                  | 3.7              | 4.3            | 2.1                   | 1.6                   |
| MCM-41 (III) | 1043                | 1314                 | 1966                 | 1.00                 | 1.00                 | 3.0                  | 2.0                  | 3.6              | 4.2            | 2.3                   | 1.3                   |
| MCM-41 (IV)  | 1445                | 1566                 | 1622                 | 1.05                 | 1.05                 | 2.7                  | 2.6                  | 3.2              | 3.7            | 1.2                   | 1.1                   |
| Cu-Imp(I)    | 729                 | 867                  | 878                  | 1.09                 | 1.09                 | 2.7                  | 2.7                  | 3.8              | 4.4            | 1.8                   | 1.8                   |
| Cu-Imp(II)   | 631                 | 798                  | 929                  | 0.53                 | 0.53                 | 2.7                  | 2.3                  | 3.6              | 4.2            | 2.0                   | 1.6                   |
| Cu-HT(I)     | 396                 | 430                  | 390                  | 0.54                 | 0.52                 | 2.5                  | 2.3                  | 3.3              | 3.8            | 1.6                   | 1.4                   |
| Cu-HT(II)    | 434                 | 422                  | 471                  | 0.42                 | 0.41                 | 4.0                  | 3.5                  | 3.0              | 3.5            |                       |                       |
| Cu-LT(I)     | 145                 | 145                  | 173                  | 0.30                 | 0.31                 | 8.3                  | 7.1                  | 3.5              | 4.0            |                       |                       |
| Cu-LT(II)    | 650                 | 725                  | 766                  | 1.33                 | 1.27                 | 7.3                  | 6.6                  | 3.9              | 4.5            |                       |                       |
| Ni-HT(I)     | 562                 | 613                  | 720                  | 0.59                 | 0.59                 | 3.8                  | 3.3                  | 4.1              | 4.7            | 1.6                   | 1.1                   |
| Ni-HT(II)    | 929                 | 1084                 | 1262                 | 0.91                 | 0.92                 | 3.4                  | 2.9                  | 3.5              | 4.0            | 1.3                   | 0.8                   |
| Ni-Imp(I)    | 1130                | 1500                 | 1950                 | 1.39                 | 1.38                 | 3.7                  | 2.8                  | 3.6              | 4.2            | 1.5                   | 0.6                   |

 Table 5.3 Summary of Physical Properties

<sup>a</sup>: Surface Area

<sup>b</sup>: Adsorption surface Area <sup>c</sup>: Desorption Surface Area <sup>d</sup>: Adsorption Pore Volume

<sup>e</sup>: Desorption Pore Volume <sup>f</sup>: Adsorption Pore Diameter <sup>g</sup>: Desorption Pore Diameter <sup>h</sup>: Lattice Diameter

## 5.2.4 Scanning Electron Microscopy

SEM images of MCM-41(I), Cu-Imp(I), Cu-HT(I), and Cu-LT(I) are given in the following figures. In Appendix B, some other SEM images of these samples are also given.



Figure 5.25 SEM of MCM-41(I)



Figure 5.26 SEM of Cu-Imp(I)



Figure 5.27 SEM of Cu-HT(I)



Figure 5.28 SEM of Cu-LT(I)

For the given samples, the average particle sizes were calculated using the SEM images. The particle sizes of MCM-41(I), Cu-Imp(I), Cu-HT(I) and Cu-LT(I) are 212 nm, 200 nm, 178 nm and 270 nm respectively.
#### 5.2.5 X-ray Fluorescence

X-ray Fluorescence analyses of Cu-MCM-41 type catalytic materials are given in Table 5.2. The raw data of these samples were given in Appendix B.

| Sample ID  | Cu (mol) | Si (mol) | Cu/Si mol ratio |
|------------|----------|----------|-----------------|
| Cu-Imp(I)  | 0.223    | 1.337    | 0.167           |
| Cu-Imp(II) | 0.240    | 1.320    | 0.182           |
| Cu-HT(I)   | 0.285    | 1.282    | 0.222           |
| Cu-HT(II)  | 0.297    | 1.207    | 0.246           |
| Cu-LT(II)  | 0.064    | 1.465    | 0.044           |

**Table 5.4** XRF results of Cu-MCM-41 type catalytic materials

X-ray Fluorescence analyses of Ni-MCM-41 type catalytic materials are given in Table 5.2. The raw data of these samples are given in Appendix B.

 Table 5.5 XRF results of Ni-MCM-41 type catalytic materials

| Sample ID | Ni (mol) | Si (mol) | Ni/Si mol ratio |
|-----------|----------|----------|-----------------|
| Ni-HT(I)  | 0.277    | 1.275    | 0.218           |
| Ni-HT(II) | 0.144    | 1.413    | 0.102           |
| Ni-Imp(I) | 0.077    | 1.513    | 0.051           |

### **5.2.6 Energy Dispersive Spectroscopy**

Energy dispersive Spectroscopy results of Cu-MCM-41 and Ni-MCM-41 type catalytic materials are given in Table 5.4 and Table 5.5 respectively. Raw data of EDS analyses are given in Appendix B.

| Table 5.6 ED | S results of | f Cu-MCM-41 | type cata | lytic materials  |
|--------------|--------------|-------------|-----------|------------------|
|              | S results 0  |             | cype cutu | ly lie materials |

| Sample ID  | Cu mol% | Si mol% | Cu/Si mol ratio |
|------------|---------|---------|-----------------|
| Cu-Imp(I)  | 23.92   | 76.08   | 0.31            |
| Cu-Imp(II) | 16.07   | 83.93   | 0.19            |
| Cu-HT(I)   | 20.80   | 79.20   | 0.26            |
| Cu-HT(II)  | 17.23   | 82.77   | 0.21            |
| Cu-LT(I)   | 1.80    | 98.20   | 0.02            |
| Cu-LT(II)  | 5.09    | 94.91   | 0.05            |

Table 5.7 EDS results of Ni-MCM-41 type catalytic materials

| Sample ID | Ni mol% | Si mol% | Ni/Si mol ratio |
|-----------|---------|---------|-----------------|
| Ni-HT(I)  | 21.91   | 78.09   | 0.28            |
| Ni-HT(II) | 11.01   | 88.99   | 0.12            |
| Ni-Imp(I) | 5.79    | 94.21   | 0.06            |

#### 5.2.7 Atomic Absorption Spectroscopy

Atomic Absorption Spectroscopy results of Cu-MCM-41 and Ni-MCM-41 type catalytic materials are given in Table 5.6 and Table 5.7 respectively. Raw data of AAS analyses are given in Appendix B.

| Sample ID  | Cu (mol) | Si (mol) | Cu/Si mol ratio |
|------------|----------|----------|-----------------|
| Cu-Imp(I)  | 0.260    | 0.974    | 0.266           |
| Cu-Imp(II) | 0.216    | 0.956    | 0.226           |
| Cu-HT(I)   | 0.212    | 1.025    | 0.206           |
| Cu-HT(II)  | 0.171    | 1.126    | 0.152           |
| Cu-LT(I)   | 0.002    | 0.787    | 0.003           |
| Cu-LT(II)  | 0.032    | 1.464    | 0.022           |

Table 5.8 AAS results of Cu-MCM-41 type catalytic materials

| Sample ID | Ni (mol) | Si (mol) | Ni/Si mol ratio |
|-----------|----------|----------|-----------------|
| Ni-HT(I)  | 0.236    | 0.898    | 0.263           |
| Ni-HT(II) | 0.180    | 1.082    | 0.167           |
| Ni-Imp(I) | 0.104    | 0.985    | 0.105           |

For comparison, the analysis results for determining metal content are summarized in Table 5.10. The Cu/Si and Ni/Si molar ratios obtained from different techniques gave the bulk composition of elements found in the solid samples. In order to obtain the metal content on the surface of the walls X-ray Photoelectron Spectroscopy (XPS) analyses are required. SEM and EDS gave similar results. However, when four methods are compared, the ratios are found to be rather close. This may be due to differences of sample sizes used in different techniques and heterogeneity of the samples.

|            | Solution        | SEM             | XRF             | EDS             | AAS             |
|------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sample ID  | Cu/Si mol ratio | Cu/Si mol ratio | Cu/Si mol ratio | Cu/Si mol ratio | Cu/Si mol ratio |
| Cu-Imp(I)  | -               | 0.301           | 0.167           | 0.314           | 0.266           |
| Cu-Imp(II) | -               | -               | 0.182           | 0.191           | 0.226           |
| Cu-HT(I)   | 0.05            | 0.214           | 0.222           | 0.263           | 0.206           |
| Cu-HT(II)  | 0.05            | -               | 0.246           | 0.208           | 0.152           |
| Cu-LT(I)   | 0.05            | 0.045           | 0.004           | 0.018           | -               |
| Cu-LT(II)  | 0.05            | -               | 0.044           | 0.054           | 0.022           |
| Sample ID  | Ni/Si mol ratio | Ni/Si mol ratio | Ni/Si mol ratio | Ni/Si mol ratio | Ni/Si mol ratio |
| Ni-HT(I)   | 0.05            | -               | 0.218           | 0.281           | 0.263           |
| Ni-HT(II)  | 0.05            | -               | 0.102           | 0.124           | 0.167           |
| Ni-Imp(I)  | -               | -               | 0.051           | 0.061           | 0.105           |

 Table 5.10
 Summary of Metal Content

From Table 5.10, the copper samples obtained from impregnation and high temperature synthesis methods gave higher Cu/Si molar ratios when compared with the samples synthesized by low temperature method. In the case of impregnated samples, Cu/Si molar ratio was higher than 0.3 for Cu-Imp(I) and about 0.2 for Cu-Imp(II). For Cu-HT(I) and Cu-HT(II), EDS and XRF showed a Cu/Si molar ratio in the range of 0.20-0.25 while the initial ratio still being 0.05 in the original solution. These results showed that incorporation of Cu into the MCM-41 structure was highly successful. In the case of Cu-LT(II), the Cu/Si molar ratio evaluated from the EDS results was found to be about the same as that in the solution used in the synthesis while for Cu-LT(I), Cu/Si molar ratio was much lower than the prepared solution when XRF and EDS results are considered. More efficient incorporation of copper into MCM-41 structure is possible by impregnation, keeping the surface areas above 600  $m^2/g$  and XRD patterns similar to MCM-41. For the case of high temperature synthesis, the Cu/Si molar ratios were as high as impregnated samples, however, surface areas are about 400 m<sup>2</sup>/g and changes occur in the XRD patterns. In these three methods, low temperature synthesis is the least favorable in metal loading. For nickel samples obtained from high temperature direct synthesis method, high Ni/Si molar ratios were obtained. The small differences in the synthesis gave different Ni/Si molar ratios. For Ni-HT(I), no acid treatment was performed while acid was added into the solution mixture of Ni-HT(II). The Ni/Si molar ratio evaluated from EDS and AAS analysis was higher than 0.26 while the ratio was 0.05 in the original solution with a surface area of 560 m<sup>2</sup>/g. While the Ni/Si molar ratio was about 0.16 Ni-HT(II), when AAS result was considered, the surface area was above 900  $m^2/g$ . The sample obtained from impregnation gave Ni/Si molar ratio of about 0.06 but its specific surface area was 1130 m2/g and gave characteristic Bragg peak in its XRD pattern.

57

#### **5.2.8 Temperature Programmed Reduction**

TPR analyses were done with Cu-Imp(I), Cu-HT(I) and Cu-LT(II) samples. Because of density differences, 0.05 gr of Cu-Imp(I), 0.1 gr of Cu-HT(I) and 0.1 gr of Cu-LT(II) were used in the analyses. The graphs obtained for  $H_2$ consumption and  $H_2O$  formation during analyses are given in Figures 5.29, 5.30 and 5.31, respectively. TPR data in terms of temperature are given in Appendix B for each sample.



Figure 5.29 TPR of Cu-Imp(I)



Figure 5.30 TPR of Cu-HT (I)



Figure 5.31 TPR of Cu-LT (I)

From the figures given above, combinations of two peaks were observed for hydrogen consumption. Hydrogen consumption started at a temperature of about 200 °C and gave a maximum of at 260 °C. The second hydrogen consumption peak gave a maximum at around 280 °C, for Cu-Imp(I). This TPR result also showed a long tail extending over 400 °C (Appendix B). These results indicated the presence of two kinds of reducible oxygen in the prepared sample. In the case of Cu-HT(I), the tail in the TPR curve is even longer. For Cu-LT(II), Cu/Si mole ratio was very low (0.05). TPR curve for this material was also very wide with a long tail extending to high temperatures. Presence of such long tails may be an indication of slow reduction of some of the copper oxide sites which are incorporated into MCM-41 structure. Further analysis is required for quantitative conclusions.

TPR result of impregnated sample (Figure 5.29) showed a rather symmetrical behavior indicating a first order reduction process. However for the sample obtained from high temperature direct synthesis method (Figure 5.30), the nonsymmetric TPR curve may be an indication of a second order reduction process.

#### **5.3 Economics**

Exxon Mobil had a materials synthesis effort attempting to identify new porous materials that could selectively convert bulky, high molecular weight petroleum molecules into more valuable fuel and lubricant products. Very recently, Exxon Mobil announced that they had scaled-up the synthesis and commercialized MCM-41 for an undisclosed application (Kresge et al., 2004). For this reason, economical analyses were done for the synthesized materials. For the economical analyses, cost of water, acid, electricity, instrumentation, labor and characterization were ignored.

The price of materials and their amounts are given in Table 5.11.

| Material                    | Price (x 10 <sup>6</sup><br>TL) | Amount   | Cost, TL (Price x Amount) |
|-----------------------------|---------------------------------|----------|---------------------------|
| Sodium Silicate<br>Solution | 31 /2.5Lt                       | ~11 ml   | 136,400 TL                |
| Surfactant                  | 46 /100 gr                      | ~ 13 gr  | 5,980,000                 |
| $Cu(NO_3)_2 3 \cdot H_2O$   | 28 /250 gr                      | ~ 1.7 gr | 190,400                   |
| $Ni(NO_3)_2 6 \cdot H_2O$   | 21 / 100 gr                     | ~ 2.3 gr | 483,000                   |

 Table 5.11
 Cost analyses of materials

The approximate amount of solids obtained at the end of the syntheses and their costs were summarized in Table 5.11.

Table 5.12 Cost of synthesized materials

| Material  | Amount (gr) | Cost (TL) |
|-----------|-------------|-----------|
| MCM-41    | ~ 4-5       | 6,116,400 |
| Cu-MCM-41 | ~ 6-7       | 6,306,800 |
| Ni-MCM-41 | ~ 5-6       | 6,599,400 |

#### **CHAPTER 6**

#### **CONCLUSIONS AND RECOMMENDATIONS**

In this study, MCM-41 mesoporous molecular sieves, Cu-MCM-41 and Ni-MCM-41 type catalytic materials were synthesized and characterized.

High surface area values up to 1400 m<sup>2</sup>/g of MCM-41 mesoporous materials were obtained with high pore volumes up to 1.17 cc/g. The pore volumes, average pore diameters and pore wall thicknesses of these samples were very close to each other showing the reproducibility of the synthesis procedure. The results also show the importance of washing process in the syntheses of these materials.

Cu-MCM-41 type catalytic materials were synthesized by three different methods. Impregnation and high temperature direct synthesis methods gave better results than those of low temperature direct synthesis methods. The surface area, pore volumes and Cu/Si molar ratio obtained by impregnation method were highest when compared with others. High temperature synthesis method gave Cu/Si molar ratio as high as 0.26 while initial ratio was 0.05 in the solution. The shifts and differences in the XRD patterns of these samples were the evidence of the incorporation of copper into the wall structure of the MCM-41 materials.

61

In the case of Ni-MCM-41 type catalytic materials high surface area values of 900 m<sup>2</sup>/g with Ni/Si molar ratio of 0.12 was achieved by high temperature direct synthesis procedure while the initial molar ratio was 0.05 in the solution. It was observed that acid treatment was a critical step in the synthesis procedure. The impregnation method gave 1130 m<sup>2</sup>/g with a Ni/Si molar ratio of 0.06.

Characterization of Cu-MCM-41 and Ni-MCM-41 type catalytic materials showed that, high metal content with high surface areas can be obtained by impregnation and high temperature direct synthesis methods. Their low cost is also an advantage for future catalytic applications.

For more accurate results, TEM analyses were required to calculate the pore diameters and pore wall thicknesses. Also XPS analyses were required to obtain the amount of copper and nickel on the surface of the walls.

#### REFERENCES

- Barrett, E.P., Joyner, L.G., Halenda, P.P., 1951, "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms", J. Am. Chem. Soc., 73, pp. 373-380
- Beck, J.S., 1991, "Method For Synthesizing Mesoporous Crystalline Material", US Patent No. 5,057,296
- Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt,
  K. D., Chu, C. T.-W., Olson, D. H., Sheppard, E. W., McCullen, S. B.,
  Higgins, J. B., Schlenker, J. L., 1992, "A New Family Of Mesoporous
  Molecular Sieves Prepared With Liquid Crystal Templates" J. Am. Chem.
  Soc., 114, pp. 10834-10843
- Behrens, P., Glaue, A., Haggenmüller, C., Scheshner, G., 1997, Structure-Directed Materials Syntheses: Synthesis Field Diagrams For The Preparation of Mesostructured Silicas, Solid state Ionics, 101-103, pp. 255-260
- Brühwiler, D., Frei, H., 2003, "Structure Of Ni(II) And Ru(III) Ammine Complexes Grafted Onto Mesoporous Silicate Sieve", J. Phys. Chem. B., 107, pp. 8547-8556
- Chang, Z., Zhu, Z., Kevan, L., 1999, "Electron Spin Resonance Of Ni(I) In Ni-Containing MCM-41 Molecular Sieves", J. Phys. Chem. B., 103, pp. 9442-9449
- Chiola, V., Ritsko, J.E., Vanderpool, CD., 1971, US Patent No. 3 556 725
- Ciesla, U., Schüth, F., 1999, "Ordered Mesoporous Materials", Mic. Meso. Mater. 27, pp. 131-149
- Cullity, B.D., Stock, S.R., "Elements of X-Ray Dffraction", 3<sup>rd</sup> Edition, Prentice Hall Inc., 2001
- DiRenzo, F., Cambon, H., Dutartre , R., 1997, Microporous Metarials, 10, p.283
- García, E., Laborde, M., 1991, Int. J. Hydrogen energy, 16(5), 307
- Gelb L.D., Gubbins, K.E., "Characterization of Porous Glasses by Adsorption : Models, Simulation and Data Inversion" from www.chemistry. wustl.edu/~gelb/papers/FOA6.ads.pdf at January 24, 2005
- Gregg, S.J., Sing, K.S.W., 1982, "Adsorption, Surface Area And Porosity", 2<sup>nd</sup> Edition, Academic Press Inc.

- Grubert, G., Rathouský, J., Schulz-Ekloff, G., Wark, M., Zukal, A., 1998, "Reducibility of Vanadium Oxide Species in MCM-41", Microporous and Mesoporous Materials, 22, pp. 225-236
- Gucbilmez, Y., Dogu, T., Balci, S., "Vanadium Incorporated High Surface Area MCM-41 Catalysts", Catalysis Today (in press).
- Guo X., Lai M., Kong Y., Ding W., Yan Q., 2004, "Novel Coassembly Route To Cu-Sio2 MCM-41-Like Mesoporous Materials", Langmuir, 20, pp. 2879-2882
- Hadjiivanov K., Tsoncheva T., Dimitrov M., Minchev C., Knözinger H., 2003, "Characterization Of Cu/MCM-41 And Cu/MCM-48 Mesoporous Catalysts By FTIR Spectroscopy Of Adsorbed CO" Applied Catalysis A: General, 241, pp. 331-340
- Hartmann, M., Pöppl, A., Kevan, L., 1996, "Ethylene Dimerization And Butene Isomerization In Nickel-Containing MCM-41 And AlMCM-41 Mesoporous Molecular Sieves: An Electron Spin Rsonance And Gas Chromatography Study", J. Phys. Chem., 100, pp. 9906-9910
- Hartmann M., Racouchot S., Bischof C., 1997, "Synthesis And Redox Properties Of MCM-48 Containing Copper And Zinc", Chem. Commun., 24, pp. 2367-2368
- Infantes-Molina, A., Merida-Robles, J., Braos-García, P., Rodríguez-Castellón, E.,
   Finocchio, E., Busca, G., Maireles-Torres, P., Jiménez-López, A., 2004,
   "Nickel Supported On Porous Silica As Catalysts For The Gas-Phase
   Hydrogenation Of Acetonitrile", Journal Of Catalysis, 225, pp 479-488

IUPAC Manual Of Symbols And Terminology, 1978, Pure Appl. Chem., 31, 578

- JEOL Scanning Electron Microscopes, http://www.jeol.com/sem/sem.html JSM-6700F, http://www.jeol.com/sem/semprods/jsm6700f.html at January 24, 2005
- Jin, P., Chen, Q., Hao, L., Tian, R., Zhang, L., Wang, L., 2004, "Synthesis And Catalytic Properties Of Nickel-Silica Composite Hallow Nanospheres", J. Phys. Chem. B., 108, pp. 6311-6314
- Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., Beck, J. S., 1992, "Ordered Mesoporous Molecular Sieves Synthesized By A Liquid-Crystal Template Mechanism" Nature, 359, pp. 710-712
- Kresge, C.T., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., 2004, "The Discovery Of ExxonMobil's M41S Family Of Mesoporous Materials", Studies in Surface Science and Catalysis, Vol 148, pp 53-72
- Lensveld, D.J., Mesu, J.G., Dillen, A.J., Jong, K.P., 2001, "Synthesis And Characterization Of MCM-41 Supported Nickel Oxide Catalysts", Mic. Meso Materials, 44-45, pp. 401-407

- Lowell, S., Shields, J.E., 1991, "Powder Surface Area And Porosity", 3<sup>rd</sup> Edition, Chapman and Hall Publication
- Mariño, F.J., Cerrella, E.G., Duhalde, S., Jobbagy M., Laborde M.A., 1998, "Hydrogen From Steam Reforming Of Ethanol. Characterization And Performance Of Copper-Nickel Supported Catalysts" Int. J. Hydrogen Energy, Vol. 23, No. 12, pp. 1095-1101
- Mariño, F., Baronetti, G., Jobbagy, M., Laborde M., 2003, "Cu-Ni-K/γ-Al<sub>2</sub>O<sub>3</sub>
   Supported Catalysts For Ethanol Steam Reforming. Formation Of Hydrotalcite-Type Compounds As A Result Of Metal-Support Interaction" Applied Catalysis A: General, 238, pp. 41-54
- Mariño, F., Boveri, M., Baronetti, G., Laborde, M., 2004, "Hydrogen Production Via Catalytic Gasification Of Ethanol. A Mechanism Proposal Over Copper-Nickel Catalysts", Int. J. Hyrogen Energy, 29, pp. 67-71
- McGraw-Hill Encyclopedia of Science and Technology, 1960, Volume 14, McGraw-Hill Book company, Inc.
- Mohapatra, S.K., Sonavane, S.U., Jayaram, R.V., Selvam, P., 2002, "Regio- And Chemoselective Catalytic Transfer Hydrogenation Of Aromatic Nitro And Carbonyl As Well As Reductive Cleavage Of Azo Compounds Over Novel Mesoporous Nimcm-41 Molecular Sieves", Organic Letters, Vol.4, No.24, pp. 4297-4300
- Noreńa-Franco, L., Hernandez-Perez, I., Aguliar-Pliego, J., Maubert-Franco, A., 2002, "Selective Hydroxylation Of Phenol Employing Cu-MCM-41 Catalysts", Catalysis Today, 75, pp.189-195
- Parvulescu, V., Su, B.L., 2001, "Iron, Cobalt Or Nickel Substituted MCM-41 Molecular Sieves For Oxidation Of Hydrocarbons", Catalysis Today, 69, pp. 315-322
- Peña M.L., Kan Q., Corma A., Rey F., 2001, "Synthesis Of Cubic Mesoporous MCM-48 Materials From The System Sio<sub>2</sub>:CTAOH/Br:H<sub>2</sub>O" Microporous And Mesoporous Materials, 44-45, pp. 9-16
- Øye G., Sjöblom J., Stöcker M., 2001, "Synthesis, Characterization And Potential Applications Of New Materials In The Mesoporous Range" Advances In Colloid And Interface Science, 89-90, pp. 439-466
- Roth, W.J., 2000, "Synthesis Of The Cubic Mesoporous Molecular Sieve MCM-48", US Patent No. 6,096,288
- Russ, J.C., 1982, "Fundamentals of Energy Dispersive X-ray analysis", Buttorworths Monographs in Materials

- Schultz-Ekloff, G., Rathouský J., Zukal, A., 1999, "Mesoporous Silica With Controlled Porous structure and Regular Morphology", Int. J. Inorganic Mater., 1, pp. 97-102
- Schumacher K., Ravikovitch P.I., Chesne A., Neimark A.V., Unger K.K., 2000 "Characterization Of MCM-48 Materials" Langmuir , 16, pp. 4648-4654
- Tsoncheva T., Venkov Tz., Dimitrov M., Minchev C., Hadjiivanov K., 2004, "Copper-Modified Mesoporous MCM-41 Silica: FTIR And Catalytic Study", Journal Of Molecular Catalysis A: Chemical 209, pp. 125–134
- Vartuli, J. C., Schmitt, K. D., Kresge, C. T., Roth, W. J., Leonowicz, M. E., Mccullen, S. B., Hellring, S. D., Beck, J. S., Schlenker, J. L., Olson, D. H., Sheppard, E. W., 1994, "Effect Of Surfactant/Silica Molar Ratios On The Formation Of Mesoporous Molecular Sieves: Inorganic Mimicry Of Surfactant Liquid-Crystal Phases And Mechanistic Implications" *Chem. Mater.*, 6, pp. 2317-2326
- Velu, S., Wang, L., Okazaki, M., Suzuki, K., Tomura, S., 2002, "Characterization Of MCM-41 Mesoporous Molecular Sieves Containing Copper and Zinc And Their Catalytic Performance In The Selective Oxidation Of Alcohols To Aldehydes", Mic. Meso. Mater., 54, pp. 113-126
- Wan, Y., Ma, J., Wang, Z., Zhou, W., Kaliaguine, S., 2004, "Selective Catalytic Reduction Of NO over Cu-Al-MCM-41", Journal of Catalysis, 227, pp. 242-252
- Wiley Interscience, Kirk-Othmer Encyclopedia of Chemical Technology,, http://www3.interscience.wiley.com/cgi-bin/mrwhome/104554789/HOME ,Weaver, R., 2003, McCrone Research Institute, "Microscopy", http://www.mrw.interscience.wiley.com/kirk/articles/micrmccr.a01/abstra ct-fs.html , at December 22, 2004
- Yasyerli, S, Dogu, G., Ar, I., Dogu, T., 2004," Dynamic Analysis of Removal and Selective Oxidation of H<sub>2</sub>S to Elemental Sulfur Over Cu-V and Cu-V-Mo Mixed Oxides in a Fixed Bed Reactor", Chemical Engineering Science, 59, pp. 4001-4009
- Zhang Q., Wang Y., Ohishi Y., Shishido T., Takehira K., 2001, "Vanadium-Containing MCM-41 For Partial Oxidation Of Lower Alkanes" Journal Of Catalysis, 202, pp. 308-318
- Ziolek M., Nowak I., Kilos B., Sobczak I., Decyk P., Trejda M., Volta J.C., 2004, "Template Synthesis And Characterisation Of MCM-41 Mesoporous Molecular Sieves Containing Various Transition Metal Elements—TME (Cu, Fe, Nb, V, Mo)", Journal Of Physics And Chemistry Of Solids, 65, pp. 571– 581

### **APPENDIX A**

## MSDS of CHEMICALS

### **Table A.1** MSDS of Sodium Silicate Solution

| Product Name                 | Sodium Silicate solution extra pure                                                                                                                                                    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company/ Catalog             |                                                                                                                                                                                        |
| Number                       | Aldrich / 33.844-3                                                                                                                                                                     |
| CAS Number                   | 1344-09-8                                                                                                                                                                              |
| Molecular Weight             | 242.23 g/mol                                                                                                                                                                           |
| Formula                      | SiO <sub>2</sub> · NaOH                                                                                                                                                                |
| Hazards Identification       | No hazardous product as specified in Directive 67/548/AAC.                                                                                                                             |
| First Aid Measures           | After inhalation: fresh air. After skin contact: wash off with plenty of water. After eye contact: rinse out with plenty of water. After swallowing: make victim drink plenty of water |
| Handling and Storage         | Tightly closed. Dry. At 5 °C to 30 °C.                                                                                                                                                 |
| Personal Protection          | Eye and hand protection are required.                                                                                                                                                  |
| Stability and Reactivity     | Avoid strong heating. Avoid fluorine.                                                                                                                                                  |
| Disposable<br>considerations | Chemicals must be disposed of in compliance with the respective national regulations.                                                                                                  |

| Form                                       | Liquid                  |
|--------------------------------------------|-------------------------|
|                                            |                         |
| Color                                      | Colorless               |
| Odor                                       | Odorless                |
| pH value at 50g/l H <sub>2</sub> O (20 °C) | ~11-11.5                |
| Viscosity dynamic (20 °C)                  | ~130 MPa*s              |
| Melting point                              | 0 °C                    |
| Boiling point                              | > 100 °C                |
| Ignition temperature                       | Not available           |
| Flash point                                | Not available           |
| Explosion limits                           | Not available           |
| Density (20 °C)                            | 1.35 g/cm <sup>3</sup>  |
| Bulk density                               | ~1050 kg/m <sup>3</sup> |
| Solubility in water (20 °C)                | Soluble                 |

## **Table A.2** Physical and Chemical Properties of Sodium Silicate Solution

### **TableA.3** MSDS of Sodium Metasilicate

| Product Name                 | Sodium Metasilicate                                                                                                                                                                                                                                                                                                               |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company/ Catalog<br>Number   | Aldrich / 30.781-5                                                                                                                                                                                                                                                                                                                |
| CAS Number                   | 6834-92-0                                                                                                                                                                                                                                                                                                                         |
| Molecular Weight             | 122.06 g/mol                                                                                                                                                                                                                                                                                                                      |
| Formula                      | Na <sub>2</sub> O <sub>3</sub> Si                                                                                                                                                                                                                                                                                                 |
| Hazards Identification       | Harmful if swallowed. Irritating to eyes and skin. Corrosive.<br>Causes burns to mouth and stomach. No known chronic<br>hazards.                                                                                                                                                                                                  |
| First Aid Measures           | After inhalation: fresh air. After skin contact: wash off with plenty of water. After eye contact: rinse out with plenty of water. After swallowing: make victim drink plenty of water                                                                                                                                            |
| Handling and Storage         | Tightly closed. Away from acids, reactive metals, ammonium salts.                                                                                                                                                                                                                                                                 |
| Personal Protection          | Eye and hand protection are required.                                                                                                                                                                                                                                                                                             |
| Stability and Reactivity     | Reacts with acids and some organics. Generates heat when<br>mixed with acid. May react with ammonium salt solutions<br>resulting in evolution of ammonia gas. Flammable hydrogen<br>gas may be produced on contact with aluminum, tin, lead, and<br>zinc. Carbon monoxide gas may be produced on contact with<br>reducing sugars. |
| Disposable<br>considerations | Chemicals must be disposed of in compliance with the respective national regulations.                                                                                                                                                                                                                                             |

| Form                                       | Granular powder        |
|--------------------------------------------|------------------------|
|                                            |                        |
| Color                                      | White                  |
|                                            |                        |
| Odor                                       | Odorless or musty odor |
|                                            |                        |
| pH value at 50g/l H <sub>2</sub> O (20 °C) | ~14                    |
|                                            |                        |
| Melting point                              | ~114 °C                |
|                                            |                        |
| Boiling point                              | Not available          |
|                                            |                        |
| Ignition temperature                       | Not available          |
|                                            |                        |
| Flash point                                | Not available          |
|                                            |                        |
| Explosion limits                           | Not available          |
|                                            |                        |
| Density (20 °C)                            | Not available          |
|                                            |                        |
| Bulk density                               | Not available          |
|                                            |                        |
| Solubility in water (20 °C)                | Soluble                |

# **Table A.4** Physical and Chemical Properties of Sodium Metasilicate

| Product Name                 | Hexadecyltrimethyl ammonium bromide                                                                                                                                                    |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Company/ Catalog<br>Number   | Sigma / H-5882                                                                                                                                                                         |  |  |
| CAS Number                   | 57-09-0                                                                                                                                                                                |  |  |
| Molecular Weight             | 364.45 g/mol                                                                                                                                                                           |  |  |
| Formula                      | C19H42BrN                                                                                                                                                                              |  |  |
| Hazards Identification       | Harmful if swallowed. Irritating to eyes and skin. Very toxic to aquatic organisms, may cause long term adverse effects in the aquatic environment.                                    |  |  |
| First Aid Measures           | After inhalation: fresh air. After skin contact: wash off with plenty of water. After eye contact: rinse out with plenty of water. After swallowing: make victim drink plenty of water |  |  |
| Handling and Storage         | Tightly closed. Dry. At 15 °C to 25 °C.                                                                                                                                                |  |  |
| Personal Protection          | Eye and hand protection are required.                                                                                                                                                  |  |  |
| Stability and Reactivity     | Avoid heating. Avoid strong oxidizing agents.                                                                                                                                          |  |  |
| Disposable<br>considerations | Chemicals must be disposed of in compliance with the respective national regulations. Do not allow to enter sewerage system.                                                           |  |  |

# Table A.5 MSDS of Hexadecyltrimethyl ammonium bromide

| Form                                       | Solid                  |
|--------------------------------------------|------------------------|
| Color                                      | White                  |
| Odor                                       | Weak                   |
| pH value at 50g/l H <sub>2</sub> O (20 °C) | 5-7                    |
| Melting point                              | 248-251 °C             |
| Boiling point                              | Not available          |
| Ignition temperature                       | Not available          |
| Flash point                                | Not applicable         |
| Explosion limits                           | Not available          |
| Density (20 °C)                            | Not available          |
| Bulk density                               | ~390 kg/m <sup>3</sup> |
| Solubility in water (20 °C)                | 50 mg/ml               |
| Thermal decomposition                      | > 230 °C               |

 
 Table A.6 Physical and Chemical Properties of Hexadecyltrimethyl ammonium
 bromide

| Product Name                 | Cupper (II) nitrate trihydrate extra pure                                                                                                                                              |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company/ Catalog<br>Number   | Merck KGaA / 102752                                                                                                                                                                    |
| CAS Number                   | 10031-43-3                                                                                                                                                                             |
| Molecular Weight             | 241.60 g/mol                                                                                                                                                                           |
| Formula                      | $Cu(NO_3)_2 \cdot 3H_2O$                                                                                                                                                               |
| Hazards Identification       | Harmful if swallowed. Irritating to eyes and skin. Very toxic to aquatic organisms, may cause long term adverse effects in the aquatic environment.                                    |
| First Aid Measures           | After inhalation: fresh air. After skin contact: wash off with plenty of water. After eye contact: rinse out with plenty of water. After swallowing: make victim drink plenty of water |
| Handling and Storage         | Tightly closed. Away from combustible materials and sources of ignition and heat. Dry.                                                                                                 |
| Personal Protection          | Eye and hand protection are required.                                                                                                                                                  |
| Stability and Reactivity     | Avoid strong heating. Risk of explosion with ammonia/amides, cyanide complexes, metals in powder form, oxidizable substances                                                           |
| Disposable<br>considerations | Chemicals must be disposed of in compliance with the respective national regulations. Do not allow to enter sewerage system.                                                           |

## Table A.7 MSDS of Copper (II) nitrate trihydrate

| Form                                        | Solid                   |
|---------------------------------------------|-------------------------|
|                                             |                         |
| Color                                       | Blue                    |
| Odor                                        | Of nitric acid          |
| pH value at 50g/l H <sub>2</sub> O ( 20 °C) | ~3-4                    |
| Melting point                               | ~114 °C                 |
| Boiling point                               | Not available           |
| Ignition temperature                        | Not applicable          |
| Flash point                                 | Not flammable           |
| Explosion limits                            | Not applicable          |
| Density (20 °C)                             | 2.05 g/cm <sup>3</sup>  |
| Bulk density                                | ~1050 kg/m <sup>3</sup> |
| Solubility in water (20 °C)                 | 2670 g/l                |
| Thermal decomposition                       | > 170 °C                |

# **Table A.8** Physical and Chemical Properties of Copper (II) nitrate trihydrate

| Product Name               | Nickel (II) nitrate hexahydrate GR for analysis                                                                  |
|----------------------------|------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                  |
| Company/ Catalog<br>Number | Merck KGaA / 106721                                                                                              |
|                            |                                                                                                                  |
| CAS Number                 | 13478-00-7                                                                                                       |
|                            |                                                                                                                  |
| Molecular Weight           | 290.81 g/mol                                                                                                     |
|                            |                                                                                                                  |
| Formula                    | $Ni(NO_3)_2 \cdot 6H_2O$                                                                                         |
|                            |                                                                                                                  |
| Hazards Identification     | Contact with combustible material may cause fire. Harmful if swallowed. May cause sensitization by skin contact. |
|                            |                                                                                                                  |
|                            | After inhalation: fresh air. After skin contact: wash off with                                                   |
| First Aid Measures         | plenty of water. After eye contact: rinse out with plenty of water.                                              |
|                            | water. After swallowing. make victim unitk plenty of water                                                       |
|                            | Tightly closed. Away from combustible materials and sources                                                      |
| Handling and Storage       | of ignition and heat. Dry.                                                                                       |
|                            |                                                                                                                  |
| Personal Protection        | Eye and hand protection are required.                                                                            |
|                            |                                                                                                                  |
| Stability and Reactivity   | Avoid heating. Avoid reducing agents and combustible substances.                                                 |
|                            |                                                                                                                  |
| Disposable                 | Chemicals must be disposed of in compliance with the                                                             |
| considerations             | respective national regulations.                                                                                 |

## Table A.9 MSDS of Nickel (II) nitrate hexahydrate

| Form                                        | Solid                  |
|---------------------------------------------|------------------------|
|                                             | Solid                  |
| Color                                       | Green                  |
| Odor                                        | Of nitric acid         |
| pH value at 50g/l H <sub>2</sub> O ( 20 °C) | ~5                     |
| Melting point                               | ~56.7 ℃                |
| Boiling point                               | Not available          |
| Ignition temperature                        | Not available          |
| Flash point                                 | Not available          |
| Explosion limits                            | Not available          |
| Density                                     | Not available          |
| Bulk density                                | ~800 kg/m <sup>3</sup> |
| Solubility in water (0° C)                  | 2380 g/l               |

**Table A.10** Physical and Chemical Properties of Nickel (II) nitrate hexahydrate

## **APPENDIX B**

## CHARACTERIZATION DATA

## **B.1 X-ray Diffraction**

| Table B.1 XRD data of MCM-41(I | ) |
|--------------------------------|---|
|--------------------------------|---|

| Angle | Intensity | Intensity | Intensity | Intensity | Intensity | Intensity |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|
| [20]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  |
| 1.01  | 424       | 428       | 424       | 424       | 408       | 384       |
| 1.13  | 396       | 412       | 396       | 376       | 369       | 376       |
| 1.25  | 353       | 433       | 420       | 388       | 365       | 400       |
| 1.49  | 384       | 437       | 404       | 428       | 454       | 462       |
| 1.61  | 424       | 445       | 454       | 458       | 475       | 562       |
| 1.73  | 543       | 488       | 552       | 484       | 543       | 548       |
| 1.85  | 562       | 595       | 605       | 635       | 640       | 610       |
| 1.97  | 620       | 630       | 702       | 666       | 751       | 773       |
| 2.09  | 729       | 818       | 790       | 818       | 906       | 847       |
| 2.21  | 888       | 967       | 1,018     | 961       | 1,076     | 1,082     |
| 2.33  | 1,149     | 1,170     | 1,225     | 1,225     | 1,267     | 1,391     |
| 2.45  | 1,521     | 1,552     | 1,656     | 1,681     | 1,756     | 1,772     |
| 2.57  | 1,747     | 1,884     | 1,731     | 1,689     | 1,537     | 1,362     |
| 2.69  | 1,296     | 1,050     | 955       | 930       | 784       | 708       |
| 2.81  | 692       | 595       | 610       | 548       | 502       | 529       |
| 2.93  | 471       | 445       | 458       | 454       | 384       | 424       |
| 3.05  | 380       | 369       | 396       | 404       | 328       | 365       |
| 3.17  | 372       | 331       | 331       | 353       | 331       | 313       |
| 3.53  | 262       | 282       | 289       | 266       | 250       | 276       |
| 3.89  | 289       | 289       | 299       | 253       | 276       | 262       |
| 4.25  | 282       | 269       | 276       | 286       | 259       | 276       |
| 4.97  | 202       | 237       | 210       | 237       | 216       | 199       |
| 5.57  | 154       | 137       | 121       | 130       | 112       | 135       |
| 5.93  | 112       | 130       | 130       | 128       | 94        | 110       |
| 6.53  | 119       | 104       | 121       | 119       | 98        | 85        |
| 6.89  | 92        | 88        | 94        | 104       | 104       | 90        |
| 7.97  | 66        | 79        | 77        | 71        | 76        | 86        |
| 8.57  | 61        | 67        | 59        | 76        | 67        | 67        |
| 9.29  | 66        | 56        | 56        | 59        | 42        | 66        |
| 10.01 | 44        | 58        | 49        | 52        | 42        | 58        |

Table B.2 XRD data of MCM-41(II)

| Angle | Intensity | Intensity | Intensity | Intensity | Intensity | Intensity |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|
| [20]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  |
| 1 01  | 18        | 28        | 31        | 26        | 24        | 16        |
| 1 13  | 26        | 26        | 35        | 29        | 25        | 30        |
| 1 25  | 20        | 36        | 22        | 27        | 30        | 26        |
| 1 37  | 25        | 50        | 36        | 36        | 35        | 40        |
| 1 49  | 48        | 40        | 52        | 44        | 52        | 67        |
| 1.61  | 62        | 56        | 53        | 64        | 59        | 77        |
| 1 73  | 69        | 79        | 88        | 72        | 96        | 98        |
| 1.85  | 98        | 123       | 110       | 125       | 142       | 142       |
| 1 97  | 159       | 174       | 180       | 202       | 188       | 199       |
| 2.09  | 246       | 250       | 256       | 256       | 269       | 342       |
| 2.05  | 369       | 428       | 493       | 520       | 581       | 645       |
| 2 33  | 751       | 847       | 900       | 1109      | 1076      | 1005      |
| 2.45  | 829       | 655       | 471       | 400       | 353       | 384       |
| 2 57  | 346       | 320       | 342       | 266       | 279       | 240       |
| 2.69  | 216       | 193       | 166       | 164       | 137       | 144       |
| 2.81  | 161       | 159       | 139       | 139       | 125       | 137       |
| 2.93  | 137       | 123       | 100       | 98        | 114       | 119       |
| 3.05  | 119       | 110       | 112       | 114       | 114       | 130       |
| 3.17  | 123       | 114       | 123       | 128       | 119       | 108       |
| 3.29  | 117       | 119       | 114       | 130       | 139       | 125       |
| 3.53  | 119       | 142       | 137       | 130       | 135       | 135       |
| 3.65  | 132       | 149       | 182       | 156       | 130       | 169       |
| 3.77  | 159       | 151       | 142       | 166       | 177       | 169       |
| 3.89  | 204       | 202       | 199       | 204       | 207       | 225       |
| 4.01  | 246       | 279       | 259       | 282       | 276       | 313       |
| 4.13  | 276       | 282       | 266       | 225       | 207       | 193       |
| 4.37  | 161       | 169       | 142       | 169       | 169       | 199       |
| 4.49  | 164       | 188       | 154       | 180       | 182       | 196       |
| 4.61  | 177       | 196       | 193       | 210       | 231       | 222       |
| 4.73  | 213       | 237       | 199       | 219       | 177       | 159       |
| 4.85  | 137       | 144       | 137       | 132       | 130       | 137       |
| 5.21  | 108       | 114       | 104       | 83        | 94        | 110       |
| 5.93  | 100       | 85        | 104       | 86        | 79        | 86        |
| 6.17  | 108       | 102       | 92        | 96        | 119       | 94        |
| 6.89  | 72        | 71        | 58        | 72        | 48        | 50        |
| 7.25  | 62        | 62        | 71        | 55        | 59        | 62        |
| 8.45  | 42        | 38        | 58        | 40        | 32        | 56        |
| 9.65  | 48        | 46        | 42        | 34        | 38        | 31        |
| 10.01 | 27        | 31        | 34        | 28        | 32        | 35        |

| Table B.3 XRD | data | of MCM-41(III) |  |
|---------------|------|----------------|--|
|---------------|------|----------------|--|

| Angle | Intensity | Intensity | Intensity | Intensity | Intensity | Intensity |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|
| [20]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  |
| 1.01  | 16        | 24        | 26        | 27        | 22        | 23        |
| 1.13  | 22        | 17        | 27        | 27        | 25        | 21        |
| 1.25  | 22        | 18        | 22        | 22        | 24        | 19        |
| 1.37  | 22        | 26        | 29        | 22        | 34        | 25        |
| 1.49  | 22        | 15        | 35        | 24        | 38        | 28        |
| 1.61  | 28        | 27        | 27        | 21        | 41        | 36        |
| 1.73  | 28        | 36        | 30        | 35        | 36        | 30        |
| 1.85  | 34        | 29        | 48        | 46        | 38        | 38        |
| 1.97  | 38        | 48        | 45        | 53        | 48        | 53        |
| 2.09  | 58        | 55        | 67        | 62        | 66        | 79        |
| 2.21  | 72        | 83        | 90        | 86        | 98        | 130       |
| 2.33  | 132       | 156       | 149       | 180       | 164       | 154       |
| 2.45  | 161       | 135       | 108       | 86        | 86        | 77        |
| 2.57  | 66        | 71        | 53        | 53        | 56        | 64        |
| 2.69  | 55        | 56        | 42        | 50        | 56        | 37        |
| 2.81  | 52        | 62        | 52        | 59        | 50        | 45        |
| 2.93  | 62        | 66        | 49        | 69        | 62        | 59        |
| 3.05  | 59        | 72        | 53        | 55        | 66        | 53        |
| 3.17  | 72        | 66        | 56        | 58        | 56        | 67        |
| 3.29  | 56        | 56        | 64        | 69        | 76        | 76        |
| 3.41  | 69        | 59        | 74        | 81        | 64        | 71        |
| 3.53  | 67        | 71        | 85        | 59        | 76        | 53        |
| 3.65  | 76        | 67        | 67        | 96        | 79        | 98        |
| 3.77  | 83        | 110       | 112       | 100       | 85        | 102       |
| 3.89  | 106       | 114       | 106       | 110       | 130       | 123       |
| 4.01  | 123       | 132       | 123       | 149       | 135       | 119       |
| 4.13  | 130       | 144       | 128       | 119       | 92        | 92        |
| 4.25  | 88        | 83        | 53        | 85        | 66        | 81        |
| 4.49  | 110       | 69        | 86        | 85        | 96        | 92        |
| 4.61  | 90        | 88        | 106       | 114       | 144       | 137       |
| 4.73  | 159       | 149       | 112       | 121       | 98        | 85        |
| 4.85  | 96        | 85        | 71        | 67        | 55        | 66        |
| 5.21  | 48        | 61        | 50        | 58        | 56        | 56        |
| 6.29  | 71        | 50        | 53        | 62        | 59        | 74        |
| 7.25  | 32        | 42        | 45        | 41        | 44        | 52        |
| 8.33  | 41        | 38        | 29        | 37        | 32        | 36        |
| 9.29  | 30        | 41        | 28        | 37        | 32        | 20        |
| 10.01 | 29        | 35        | 44        | 32        | 31        | 31        |

| Table B.4 XRD | data of | MCM-41(IV) |
|---------------|---------|------------|
|---------------|---------|------------|

| Angle | Intensity | Intensity | Intensity | Intensity | Intensity | Intensity |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|
| [20]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  |
| 1.01  | 24        | 26        | 27        | 30        | 34        | 32        |
| 1.13  | 18        | 29        | 25        | 28        | 27        | 22        |
| 1.25  | 14        | 28        | 21        | 35        | 23        | 27        |
| 1.37  | 26        | 29        | 30        | 34        | 31        | 37        |
| 1.49  | 38        | 30        | 44        | 36        | 44        | 52        |
| 1.61  | 41        | 50        | 56        | 44        | 48        | 50        |
| 1.73  | 46        | 42        | 55        | 62        | 53        | 61        |
| 1.85  | 71        | 56        | 67        | 59        | 72        | 79        |
| 1.97  | 62        | 85        | 71        | 128       | 90        | 98        |
| 2.09  | 83        | 90        | 85        | 92        | 92        | 117       |
| 2.21  | 114       | 92        | 106       | 121       | 121       | 130       |
| 2.33  | 137       | 144       | 130       | 182       | 164       | 159       |
| 2.45  | 177       | 196       | 180       | 174       | 193       | 146       |
| 2.57  | 207       | 182       | 196       | 202       | 243       | 193       |
| 2.69  | 228       | 240       | 259       | 246       | 276       | 231       |
| 2.81  | 289       | 266       | 243       | 259       | 240       | 243       |
| 2.93  | 213       | 222       | 234       | 246       | 216       | 199       |
| 3.05  | 180       | 190       | 196       | 196       | 172       | 207       |
| 3.17  | 188       | 166       | 199       | 180       | 188       | 174       |
| 3.29  | 169       | 144       | 159       | 154       | 166       | 149       |
| 3.41  | 182       | 130       | 161       | 159       | 193       | 128       |
| 3.53  | 149       | 137       | 169       | 164       | 135       | 125       |
| 3.65  | 137       | 149       | 188       | 154       | 169       | 161       |
| 3.77  | 159       | 161       | 132       | 130       | 144       | 149       |
| 3.89  | 125       | 137       | 166       | 149       | 146       | 144       |
| 4.13  | 121       | 112       | 123       | 121       | 106       | 110       |
| 4.25  | 121       | 108       | 104       | 106       | 121       | 119       |
| 4.49  | 106       | 108       | 94        | 123       | 106       | 110       |
| 4.73  | 102       | 98        | 117       | 106       | 114       | 110       |
| 4.97  | 85        | 98        | 90        | 106       | 110       | 100       |
| 5.21  | 100       | 104       | 98        | 81        | 88        | 90        |
| 5.45  | 83        | 79        | 83        | 62        | 72        | 88        |
| 5.93  | 66        | 81        | 86        | 83        | 69        | 72        |
| 6.17  | 85        | 83        | 59        | 67        | 61        | 62        |
| 6.89  | 69        | 66        | 50        | 53        | 49        | 50        |
| 7.73  | 46        | 48        | 58        | 58        | 38        | 52        |
| 8.93  | 46        | 32        | 36        | 31        | 41        | 46        |
| 9.77  | 28        | 36        | 32        | 34        | 38        | 30        |
| 10.01 | 29        | 30        | 37        | 34        | 32        | 36        |

Table B.5 XRD data of Cu-Imp(I)

| Angle<br>[20] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] |
|---------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1.01          | 888                   | 858                   | 756                   | 756                   | 767                   | 686                   |
| 1.13          | 702                   | 671                   | 650                   | 610                   | 576                   | 615                   |
| 1.25          | 552                   | 571                   | 562                   | 548                   | 557                   | 502                   |
| 1.37          | 493                   | 416                   | 441                   | 428                   | 416                   | 400                   |
| 1.49          | 369                   | 396                   | 380                   | 372                   | 357                   | 328                   |
| 1.61          | 361                   | 357                   | 303                   | 306                   | 324                   | 272                   |
| 1.73          | 324                   | 296                   | 266                   | 279                   | 262                   | 266                   |
| 1.85          | 240                   | 259                   | 243                   | 240                   | 228                   | 262                   |
| 1.97          | 231                   | 266                   | 246                   | 262                   | 240                   | 259                   |
| 2.09          | 259                   | 256                   | 272                   | 262                   | 299                   | 299                   |
| 2.21          | 289                   | 279                   | 279                   | 303                   | 331                   | 286                   |
| 2.33          | 310                   | 262                   | 250                   | 250                   | 225                   | 225                   |
| 2.45          | 216                   | 177                   | 169                   | 193                   | 174                   | 193                   |
| 2.57          | 182                   | 149                   | 182                   | 159                   | 159                   | 164                   |
| 2.69          | 130                   | 137                   | 130                   | 112                   | 137                   | 144                   |
| 2.81          | 139                   | 142                   | 119                   | 125                   | 117                   | 121                   |
| 2.93          | 119                   | 123                   | 102                   | 110                   | 117                   | 104                   |
| 3.05          | 119                   | 114                   | 135                   | 90                    | 130                   | 110                   |
| 3.17          | 110                   | 96                    | 94                    | 92                    | 121                   | 110                   |
| 3.29          | 88                    | 92                    | 90                    | 130                   | 108                   | 81                    |
| 3.41          | 83                    | 94                    | 94                    | 102                   | 85                    | 117                   |
| 3.53          | 96                    | 96                    | 92                    | 104                   | 102                   | 102                   |
| 3.65          | 106                   | 92                    | 92                    | 92                    | 114                   | 96                    |
| 3.77          | 96                    | 100                   | 100                   | 94                    | 108                   | 90                    |
| 3.89          | 92                    | 96                    | 92                    | 114                   | 102                   | 88                    |
| 4.01          | 94                    | 83                    | 81                    | 77                    | 67                    | 77                    |
| 4.13          | 61                    | 62                    | 79                    | 62                    | 67                    | 76                    |
| 4.25          | 64                    | 59                    | 59                    | 72                    | 76                    | 74                    |
| 4.37          | 69                    | 71                    | 67                    | 64                    | 56                    | 77                    |
| 4.61          | 64                    | 66                    | 66                    | 62                    | 59                    | 50                    |
| 4.85          | 56                    | 46                    | 61                    | 56                    | 59                    | 64                    |
| 5.09          | 46                    | 66                    | 52                    | 50                    | 46                    | 55                    |
| 5.5/          | 46                    | 40                    | 53                    | 50                    | 52                    | 52                    |
| 5.81          | 40                    | 56                    | 52                    | 41                    | 36                    | 58                    |
| 6.29          | 44                    | 45                    | 34                    | 50                    | 44                    | 56                    |
| 6.65          | 50                    | 42                    | 41                    | 36                    | 44<br>50              | 44                    |
| 0.89          | 48                    | 44                    | 45                    | 44                    | 50                    | 37                    |
| 7.37          | 34                    | 38<br>25              | 48                    | 40                    | 32                    | 49                    |
| 7.01          | <u> </u>              | 26                    | <u> </u>              | <u>مد</u>             | 20                    | 49                    |
| 7.05          | <u> </u>              | 50                    | 41                    | رد<br>۷۷              | <u>کر</u><br>۸۸       | 40                    |
| 0.33<br>9.57  | 41                    | <u> </u>              | 20                    | 40                    | 44                    | 44<br>20              |
| 8.81          | 38                    | 38                    | 38                    | 40                    | 40                    | 40                    |
| 0.01          | 30                    | 46                    | 46                    | 36                    |                       | 55                    |
| 9.53          | 37                    | 44                    | 42                    | 44                    | 36                    | 38                    |
| 9,77          | 56                    | 42                    | 44                    | 53                    | 40                    | 38                    |
| 10.01         | 50                    | 37                    | 40                    | 42                    | 42                    | 34                    |

Table B.6 XRD data of Cu-Imp(II)

| Angle         | Intensity | Intensity | Intensity | Intensity | Intensity | Intensity |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|
| [ <b>2</b> θ] | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  |
| 1.01          | 28        | 21        | 30        | 25        | 26        | 28        |
| 1.13          | 27        | 20        | 22        | 19        | 29        | 15        |
| 1.25          | 15        | 19        | 34        | 22        | 22        | 19        |
| 1.37          | 21        | 16        | 22        | 22        | 30        | 29        |
| 1.49          | 25        | 15        | 31        | 15        | 27        | 34        |
| 1.61          | 28        | 26        | 35        | 36        | 37        | 42        |
| 1.73          | 44        | 41        | 50        | 50        | 58        | 56        |
| 1.85          | 49        | 59        | 56        | 69        | 83        | 79        |
| 1.97          | 94        | 88        | 104       | 102       | 110       | 90        |
| 2.09          | 121       | 121       | 121       | 137       | 166       | 169       |
| 2.21          | 180       | 199       | 234       | 234       | 276       | 303       |
| 2.33          | 361       | 342       | 404       | 484       | 520       | 595       |
| 2.45          | 640       | 660       | 625       | 480       | 357       | 276       |
| 2.57          | 199       | 180       | 151       | 151       | 142       | 121       |
| 2.69          | 135       | 119       | 106       | 106       | 102       | 98        |
| 2.81          | 96        | 90        | 112       | 81        | 83        | 90        |
| 2.93          | 92        | 98        | 104       | 90        | 96        | 106       |
| 3.05          | 104       | 104       | 86        | 94        | 98        | 110       |
| 3.17          | 88        | 100       | 88        | 90        | 106       | 88        |
| 3.29          | 94        | 90        | 85        | 98        | 90        | 94        |
| 3.41          | 102       | 77        | 92        | 112       | 100       | 85        |
| 3.53          | 83        | 92        | 88        | 94        | 88        | 102       |
| 3.65          | 96        | 96        | 86        | 90        | 108       | 117       |
| 3.77          | 86        | 100       | 86        | 112       | 108       | 98        |
| 3.89          | 100       | 106       | 114       | 102       | 102       | 92        |
| 4.01          | 125       | 110       | 112       | 128       | 117       | 123       |
| 4.13          | 112       | 123       | 130       | 108       | 146       | 130       |
| 4.25          | 110       | 112       | 130       | 98        | 90        | 71        |
| 4.37          | 94        | 76        | 88        | 77        | 83        | 79        |
| 4.49          | 96        | 83        | 90        | 110       | 88        | 100       |
| 4.61          | 112       | 83        | 92        | 79        | 94        | 92        |
| 4.73          | 85        | 112       | 110       | 114       | 117       | 100       |
| 4.85          | 117       | 119       | 106       | 94        | 100       | 77        |
| 4.97          | 86        | 83        | 81        | 53        | 59        | 48        |
| 5.21          | 66        | 55        | 48        | 53        | 58        | 40        |
| 5.45          | 56        | 48        | 50        | 50        | 48        | 55        |
| 5.93          | 41        | 45        | 35        | 48        | 50        | 53        |
| 6.17          | 48        | 56        | 50        | 37        | 50        | 48        |
| 6.41          | 45        | 45        | 55        | 44        | 49        | 38        |
| 6.89          | 42        | 48        | 41        | 44        | 35        | 53        |
| 7.13          | 42        | 41        | 46        | 44        | 48        | 42        |
| 7.37          | 46        | 48        | 45        | 35        | 45        | 48        |
| 7.61          | 38        | 41        | 49        | 48        | 41        | 48        |
| 8.33          | 42        | 46        | 42        | 41        | 37        | 32        |
| 8.57          | 32        | 44        | 58        | 34        | 45        | 35        |
| 9.05          | 37        | 37        | 38        | 32        | 36        | 52        |
| 9.53          | 35        | 40        | 40        | 38        | 45        | 48        |
| 10.01         | 44        | 42        | 45        | 44        | 40        | 35        |

Table B.7 XRD data of Cu-HT(I)

| Angle<br>[20] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] |
|---------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1.01          | 272                   | 237                   | 222                   | 250                   | 228                   | 231                   |
| 1.13          | 237                   | 219                   | 204                   | 222                   | 225                   | 188                   |
| 1.25          | 207                   | 207                   | 231                   | 210                   | 193                   | 182                   |
| 1.37          | 219                   | 196                   | 213                   | 210                   | 193                   | 188                   |
| 1.49          | 180                   | 174                   | 193                   | 199                   | 199                   | 177                   |
| 1.61          | 172                   | 202                   | 154                   | 174                   | 185                   | 196                   |
| 1.73          | 164                   | 172                   | 164                   | 185                   | 177                   | 174                   |
| 1.85          | 169                   | 177                   | 177                   | 182                   | 169                   | 169                   |
| 1.97          | 190                   | 177                   | 202                   | 185                   | 169                   | 177                   |
| 2.09          | 190                   | 196                   | 196                   | 193                   | 169                   | 169                   |
| 2.21          | 177                   | 185                   | 174                   | 177                   | 169                   | 177                   |
| 2.33          | 207                   | 177                   | 196                   | 188                   | 185                   | 188                   |
| 2.45          | 199                   | 199                   | 185                   | 169                   | 210                   | 202                   |
| 2.57          | 190                   | 213                   | 216                   | 190                   | 213                   | 196                   |
| 2.69          | 202                   | 210                   | 216                   | 196                   | 196                   | 188                   |
| 2.81          | 202                   | 196                   | 180                   | 185                   | 154                   | 161                   |
| 2.93          | 159                   | 149                   | 156                   | 137                   | 137                   | 135                   |
| 3.05          | 142                   | 135                   | 142                   | 137                   | 130                   | 142                   |
| 3.17          | 125                   | 100                   | 121                   | 125                   | 121                   | 104                   |
| 3.29          | 119                   | 112                   | 112                   | 110                   | 102                   | 114                   |
| 3.41          | 92                    | 88                    | 98                    | 96                    | 117                   | 88                    |
| 3.53          | 114                   | 90                    | 85                    | 94                    | 81                    | 98                    |
| 3.65          | 106                   | 86                    | 106                   | 104                   | 94                    | 96                    |
| 3.77          | 83                    | 90                    | 100                   | 92                    | 88                    | 90                    |
| 3.89          | 88                    | 104                   | 94                    | 98                    | 77                    | 77                    |
| 4.01          | 79                    | 71                    | 64                    | 85                    | 59                    | 66                    |
| 4.13          | 62                    | 53                    | 72                    | 58                    | 55                    | 66                    |
| 4.25          | 44                    | 59                    | 52                    | 61                    | 67                    | 69                    |
| 4.37          | 62                    | 56                    | 41                    | 59                    | 50                    | 56                    |
| 4.49          | 53                    | 50                    | 56                    | 62                    | 67                    | 76                    |
| 4.61          | 50                    | 50                    | 53                    | 44                    | 34                    | 40                    |
| 4.73          | 59                    | 56                    | 48                    | 50                    | 50                    | 50                    |
| 4.85          | 49                    | 50                    | 50                    | 50                    | 56                    | 50                    |
| 4.97          | 41                    | 48                    | 58                    | 55                    | 50                    | 45                    |
| 5.21          | 53                    | 52                    | 59                    | 34                    | 38                    | 46                    |
| 5.57          | 38                    | 38                    | 48                    | 41                    | 36                    | 38                    |
| 5.93          | 32                    | 46                    | 38                    | 38                    | 35                    | 38                    |
| 6.05          | 44                    | 44                    | 46                    | 41                    | 31                    | 44                    |
| 6.29          | 46                    | 37                    | 37                    | 38                    | 49                    | 50                    |
| 6.77          | 44                    | 37                    | 38                    | 49                    | 28                    | 44                    |
| 7.25          | 38                    | 46                    | 46                    | 38                    | 45                    | 42                    |
| 7.49          | 35                    | 31                    | 27                    | 59                    | 32                    | 34                    |
| 7.97          | 38                    | 48                    | 34                    | 35                    | 32                    | 36                    |
| 8.33          | 34                    | 34                    | 38                    | 38                    | 29                    | 29                    |
| 8.81          | 32                    | 45                    | 44                    | 35                    | 38                    | 37                    |
| 9.77          | 36                    | 46                    | 52                    | 35                    | 35                    | 32                    |
| 10.01         | 38                    | 28                    | 48                    | 31                    | 32                    | 32                    |

Table B.8 XRD data of Cu-HT(II)

| Angle | Intensity | Intensity | Intensity | Intensity | Intensity | Intensity |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|
| [20]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  |
| 1.01  | 266       | 276       | 272       | 250       | 266       | 292       |
| 1.13  | 303       | 282       | 272       | 262       | 262       | 237       |
| 1.25  | 193       | 246       | 240       | 262       | 237       | 253       |
| 1.37  | 250       | 216       | 222       | 234       | 243       | 243       |
| 1.49  | 231       | 210       | 225       | 231       | 231       | 237       |
| 1.61  | 228       | 216       | 196       | 216       | 225       | 237       |
| 1.73  | 234       | 219       | 231       | 207       | 213       | 202       |
| 1.85  | 210       | 219       | 210       | 196       | 204       | 177       |
| 1.97  | 188       | 199       | 196       | 196       | 199       | 180       |
| 2.09  | 202       | 204       | 169       | 199       | 182       | 204       |
| 2.21  | 169       | 188       | 169       | 196       | 188       | 213       |
| 2.33  | 204       | 164       | 182       | 213       | 169       | 182       |
| 2.45  | 185       | 204       | 190       | 180       | 193       | 219       |
| 2.57  | 210       | 225       | 193       | 193       | 204       | 213       |
| 2.69  | 190       | 222       | 172       | 213       | 210       | 219       |
| 2.81  | 190       | 210       | 204       | 213       | 213       | 193       |
| 2.93  | 196       | 204       | 231       | 199       | 213       | 216       |
| 3.05  | 199       | 188       | 185       | 182       | 169       | 154       |
| 3.17  | 154       | 169       | 151       | 142       | 121       | 139       |
| 3.29  | 128       | 144       | 112       | 108       | 130       | 144       |
| 3.41  | 119       | 130       | 112       | 112       | 106       | 106       |
| 3.53  | 110       | 117       | 106       | 96        | 98        | 112       |
| 3.65  | 92        | 88        | 100       | 112       | 106       | 100       |
| 3.77  | 102       | 102       | 104       | 88        | 92        | 100       |
| 3.89  | 112       | 98        | 98        | 108       | 86        | 98        |
| 4.01  | 96        | 72        | 72        | 76        | 71        | 72        |
| 4.13  | 76        | 71        | 61        | 62        | 62        | 56        |
| 4.25  | 58        | 71        | 71        | 76        | 58        | 71        |
| 4.37  | 49        | 56        | 66        | 45        | 55        | 45        |
| 4.49  | 58        | 56        | 71        | 56        | 64        | 59        |
| 4.61  | 66        | 53        | 62        | 52        | 69        | 58        |
| 4.73  | 40        | 67        | 64        | 48        | 64        | 53        |
| 4.85  | 61        | 67        | 71        | 62        | 53        | 50        |
| 4.97  | 67        | 48        | 49        | 48        | 49        | 44        |
| 5.09  | 55        | 58        | 50        | 52        | 48        | 59        |
| 5.33  | 44        | 48        | 48        | 52        | 53        | 67        |
| 5.69  | 44        | 48        | 64        | 49        | 48        | 35        |
| 5.93  | 48        | 40        | 48        | 35        | 44        | 52        |
| 6.29  | 44        | 38        | 45        | 40        | 49        | 38        |
| 6.53  | 46        | 50        | 48        | 35        | 29        | 42        |
| 6.89  | 44        | 37        | 32        | 35        | 49        | 41        |
| 7.37  | 30        | 45        | 29        | 36        | 29        | 38        |
| 7.85  | 41        | 50        | 36        | 30        | 41        | 37        |
| 8.33  | 44        | 36        | 38        | 34        | 38        | 44        |
| 8.81  | 38        | 34        | 49        | 48        | 42        | 41        |
| 9.29  | 42        | 28        | 32        | 45        | 41        | 40        |
| 9.53  | 41        | 32        | 38        | 36        | 40        | 42        |
| 10.01 | 29        | 30        | 34        | 44        | 34        | 37        |

Table B.9 XRD data of Cu-LT(I)

| Angle         | Intensity | Intensity | Intensity | Intensity | Intensity | Intensity |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|
| [ <b>2</b> θ] | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  |
| 1.01          | 25        | 41        | 38        | 38        | 30        | 37        |
| 1.13          | 46        | 35        | 44        | 38        | 38        | 38        |
| 1.25          | 55        | 48        | 55        | 58        | 59        | 69        |
| 1.37          | 59        | 79        | 76        | 53        | 59        | 72        |
| 1.49          | 71        | 79        | 86        | 77        | 76        | 83        |
| 1.61          | 86        | 104       | 86        | 102       | 92        | 117       |
| 1.73          | 98        | 106       | 110       | 151       | 121       | 135       |
| 1.85          | 123       | 144       | 130       | 132       | 156       | 164       |
| 1.97          | 146       | 146       | 166       | 174       | 188       | 182       |
| 2.09          | 202       | 216       | 222       | 213       | 231       | 262       |
| 2.21          | 219       | 250       | 279       | 279       | 306       | 313       |
| 2.33          | 303       | 313       | 331       | 320       | 361       | 310       |
| 2.45          | 339       | 328       | 339       | 317       | 276       | 240       |
| 2.57          | 219       | 210       | 210       | 172       | 177       | 156       |
| 2.69          | 166       | 139       | 149       | 149       | 135       | 149       |
| 2.81          | 151       | 123       | 164       | 125       | 112       | 142       |
| 2.93          | 130       | 110       | 108       | 98        | 121       | 114       |
| 3.05          | 114       | 121       | 121       | 108       | 90        | 104       |
| 3.17          | 123       | 108       | 108       | 106       | 96        | 114       |
| 3.29          | 108       | 117       | 108       | 121       | 102       | 110       |
| 3.41          | 90        | 104       | 98        | 121       | 94        | 117       |
| 3.53          | 88        | 92        | 96        | 94        | 88        | 106       |
| 3.65          | 94        | 114       | 96        | 96        | 119       | 132       |
| 3.77          | 119       | 96        | 117       | 106       | 90        | 110       |
| 3.89          | 119       | 110       | 123       | 106       | 112       | 108       |
| 4.01          | 108       | 114       | 96        | 98        | 88        | 90        |
| 4.13          | 88        | 96        | 92        | 106       | 90        | 102       |
| 4.25          | 88        | 83        | 102       | 76        | 85        | 102       |
| 4.37          | 72        | 66        | 83        | 90        | 72        | 85        |
| 4.49          | 83        | 72        | 67        | 72        | 79        | 67        |
| 4.61          | 90        | 77        | 79        | 76        | 77        | 66        |
| 4.73          | 88        | 79        | 56        | 86        | 83        | 85        |
| 4.85          | 64        | 81        | 90        | 74        | 62        | 71        |
| 4.97          | 72        | 66        | 72        | 55        | 72        | 64        |
| 5.09          | 59        | 48        | 64        | 59        | 53        | 59        |
| 5.33          | 48        | 53        | 44        | 45        | 62        | 53        |
| 5.57          | 41        | 53        | 61        | 50        | 59        | 59        |
| 5.81          | 62        | 45        | 41        | 50        | 44        | 38        |
| 6.05          | 56        | 55        | 41        | 42        | 38        | 56        |
| 6.29          | 48        | 58        | 49        | 34        | 45        | 50        |
| 6.77          | 48        | 27        | 40        | 41        | 40        | 32        |
| 7.25          | 44        | 35        | 41        | 38        | 38        | 45        |
| 7.97          | 37        | 35        | 27        | 36        | 28        | 40        |
| 8.33          | 38        | 28        | 32        | 36        | 36        | 45        |
| 8.81          | 31        | 38        | 32        | 29        | 32        | 29        |
| 9.29          | 35        | 26        | 29        | 30        | 20        | 18        |
| 9.53          | 31        | 36        | 32        | 27        | 26        | 23        |
| 10.01         | 32        | 38        | 26        | 26        | 23        | 19        |

# Table B.10 XRD data of Cu-LT(II)

| Angle | Intensity | Intensity | Intensity | Intensity | Intensity | Intensity |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|
| [20]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  |
| 1.01  | 25        | 32        | 27        | 25        | 31        | 30        |
| 1.13  | 21        | 30        | 27        | 22        | 41        | 36        |
| 1.25  | 38        | 45        | 49        | 44        | 48        | 61        |
| 1.37  | 50        | 59        | 59        | 56        | 66        | 77        |
| 1.49  | 76        | 81        | 77        | 81        | 85        | 86        |
| 1.61  | 123       | 102       | 98        | 112       | 104       | 86        |
| 1.73  | 108       | 123       | 108       | 130       | 142       | 130       |
| 1.85  | 114       | 119       | 132       | 137       | 144       | 149       |
| 1.97  | 130       | 139       | 149       | 139       | 142       | 139       |
| 2.09  | 130       | 144       | 154       | 149       | 144       | 144       |
| 2.21  | 156       | 135       | 144       | 132       | 139       | 151       |
| 2.33  | 139       | 149       | 156       | 142       | 125       | 137       |
| 2.45  | 132       | 135       | 121       | 128       | 110       | 121       |
| 2.57  | 119       | 125       | 135       | 112       | 130       | 135       |
| 2.69  | 125       | 146       | 119       | 119       | 117       | 108       |
| 2.81  | 94        | 117       | 104       | 110       | 98        | 119       |
| 2.93  | 130       | 100       | 100       | 90        | 119       | 104       |
| 3.05  | 102       | 121       | 130       | 100       | 110       | 114       |
| 3.17  | 100       | 94        | 121       | 100       | 94        | 106       |
| 3.29  | 106       | 110       | 102       | 110       | 88        | 102       |
| 3.41  | 112       | 98        | 83        | 83        | 96        | 102       |
| 3.53  | 96        | 86        | 79        | 100       | 81        | 90        |
| 3.65  | 81        | 104       | 96        | 100       | 104       | 112       |
| 3.77  | 102       | 88        | 79        | 100       | 106       | 92        |
| 3.89  | 94        | 83        | 90        | 94        | 96        | 102       |
| 4.01  | 88        | 92        | 94        | 85        | 88        | 67        |
| 4.13  | 76        | 64        | 69        | 76        | 59        | 59        |
| 4.25  | 67        | 66        | 56        | 71        | 66        | 53        |
| 4.37  | 69        | 76        | 69        | 67        | 50        | 59        |
| 4.49  | 66        | 56        | 53        | 62        | 66        | 53        |
| 4.61  | 56        | 58        | 46        | 58        | 53        | 44        |
| 4.73  | 50        | 50        | 52        | 62        | 59        | 56        |
| 4.85  | 56        | 41        | 62        | 48        | 53        | 49        |
| 5.21  | 50        | 49        | 49        | 49        | 48        | 38        |
| 5.57  | 50        | 44        | 53        | 46        | 49        | 38        |
| 5.69  | 59        | 53        | 48        | 32        | 38        | 44        |
| 6.05  | 42        | 46        | 40        | 40        | 42        | 38        |
| 6.17  | 40        | 34        | 46        | 41        | 49        | 46        |
| 6.89  | 26        | 44        | 31        | 44        | 48        | 52        |
| 7.25  | 31        | 28        | 27        | 35        | 40        | 31        |
| /.61  | 42        | 45        | 38        | 30        | 3/        | 44        |
| /./3  | 20        | 38        | 30        | 27        | 35        | 50        |
| 8.21  | 28        | 2/        | 32        | 48        | 32        | 22        |
| 0.20  | 29        | 3/        | 2/        | 29        | 34        | 30        |
| 9.29  | 30        | 20        | 35        | 24        | 30        | 23        |
| T0.0T | 30        | 30        | <u> </u>  | 54        | 20        | <u>۲</u>  |

# Table B.11 XRD data of Ni-HT(I)

| Angle                       | Intensity | Intensity | Intensity | Intensity | Intensity | Intensity |
|-----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| [ <b>2</b> $\bar{\theta}$ ] | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  |
| 1.01                        | 388       | 380       | 445       | 369       | 388       | 396       |
| 1.13                        | 424       | 396       | 404       | 376       | 437       | 416       |
| 1.25                        | 412       | 416       | 437       | 441       | 458       | 424       |
| 1.37                        | 484       | 454       | 484       | 449       | 480       | 462       |
| 1.49                        | 497       | 488       | 488       | 493       | 480       | 462       |
| 1.61                        | 493       | 506       | 480       | 520       | 520       | 562       |
| 1.73                        | 562       | 520       | 581       | 543       | 548       | 538       |
| 1.85                        | 529       | 538       | 502       | 520       | 538       | 538       |
| 1.97                        | 543       | 548       | 529       | 529       | 524       | 515       |
| 2.09                        | 484       | 493       | 557       | 529       | 524       | 529       |
| 2.21                        | 484       | 475       | 529       | 529       | 484       | 462       |
| 2.33                        | 445       | 437       | 458       | 471       | 437       | 424       |
| 2.45                        | 412       | 416       | 396       | 388       | 424       | 420       |
| 2.57                        | 408       | 428       | 361       | 380       | 384       | 376       |
| 2.69                        | 350       | 372       | 372       | 346       | 350       | 335       |
| 2.81                        | 320       | 361       | 365       | 324       | 286       | 303       |
| 2.93                        | 289       | 299       | 286       | 296       | 310       | 289       |
| 3.05                        | 246       | 289       | 228       | 253       | 250       | 243       |
| 3.17                        | 279       | 228       | 240       | 234       | 213       | 243       |
| 3.29                        | 234       | 237       | 225       | 234       | 193       | 231       |
| 3.41                        | 228       | 219       | 231       | 207       | 216       | 188       |
| 3.53                        | 225       | 185       | 193       | 204       | 196       | 204       |
| 3.65                        | 202       | 182       | 185       | 196       | 202       | 177       |
| 3.77                        | 213       | 207       | 210       | 196       | 193       | 185       |
| 3.89                        | 182       | 225       | 210       | 199       | 202       | 177       |
| 4.01                        | 207       | 154       | 196       | 182       | 180       | 159       |
| 4.13                        | 154       | 132       | 161       | 164       | 144       | 144       |
| 4.25                        | 154       | 144       | 144       | 161       | 144       | 137       |
| 4.37                        | 146       | 117       | 149       | 139       | 121       | 149       |
| 4.49                        | 154       | 151       | 137       | 132       | 135       | 135       |
| 4.61                        | 137       | 142       | 119       | 132       | 149       | 135       |
| 4.97                        | 108       | 96        | 88        | 117       | 117       | 121       |
| 5.21                        | 102       | 108       | 117       | 114       | 106       | 94        |
| 5.45                        | 96        | 100       | 92        | 94        | 90        | 85        |
| 5.93                        | 86        | 79        | 79        | 85        | 88        | 66        |
| 6.17                        | 61        | 86        | 86        | 90        | 76        | 85        |
| 6.53                        | 71        | 59        | 76        | 77        | 69        | 67        |
| 6.77                        | 59        | 71        | 53        | 66        | 71        | 69        |
| 7.25                        | 74        | 52        | 49        | 62        | 56        | 59        |
| 7.61                        | 44        | 50        | 61        | 53        | 49        | 49        |
| 7.97                        | 34        | 44        | 44        | 37        | 50        | 56        |
| 8.21                        | 53        | 41        | 45        | 46        | 62        | 49        |
| 8.69                        | 50        | 45        | 32        | 38        | 34        | 46        |
| 8.93                        | 50        | 32        | 53        | 45        | 38        | 44        |
| 9.17                        | 38        | 36        | 30        | 42        | 40        | 40        |
| 9.77                        | 35        | 28        | 28        | 35        | 36        | 32        |
| 10.01                       | 44        | 37        | 32        | 32        | 31        | 34        |

# Table B.12 XRD data of Ni-HT(II)

| Angle<br>[20] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] | Intensity<br>[counts] |
|---------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1.01          | 29                    | 19                    | 32                    | 23                    | 20                    | 18                    |
| 1.13          | 26                    | 13                    | 25                    | 17                    | 20                    | 22                    |
| 1 25          | 17                    | 18                    | 20                    | 18                    | 17                    | 18                    |
| 1.37          | 32                    | 23                    | 25                    | 18                    | 18                    | 20                    |
| 1 49          | 19                    | 19                    | 18                    | 12                    | 20                    | 21                    |
| 1.61          | 19                    | 27                    | 19                    | 20                    | 28                    | 13                    |
| 1.73          | 18                    | 29                    | 21                    | 32                    | 27                    | 30                    |
| 1.85          | 23                    | 26                    | 30                    | 30                    | 38                    | 20                    |
| 1.97          | 26                    | 29                    | 32                    | 20                    | 32                    | 31                    |
| 2.09          | 36                    | 29                    | 32                    | 34                    | 27                    | 31                    |
| 2.21          | 41                    | 42                    | 37                    | 40                    | 38                    | 41                    |
| 2.33          | 46                    | 42                    | 50                    | 49                    | 71                    | 69                    |
| 2.45          | 69                    | 77                    | 72                    | 72                    | 90                    | 85                    |
| 2.57          | 83                    | 88                    | 94                    | 85                    | 88                    | 66                    |
| 2.69          | 71                    | 83                    | 86                    | 92                    | 72                    | 76                    |
| 2.81          | 85                    | 79                    | 86                    | 86                    | 92                    | 85                    |
| 2.93          | 81                    | 90                    | 79                    | 83                    | 81                    | 92                    |
| 3.05          | 81                    | 94                    | 79                    | 85                    | 88                    | 94                    |
| 3.17          | 85                    | 88                    | 100                   | 72                    | 86                    | 67                    |
| 3.29          | 83                    | 108                   | 71                    | 71                    | 96                    | 106                   |
| 3.41          | 96                    | 110                   | 83                    | 81                    | 90                    | 77                    |
| 3.53          | 79                    | 83                    | 96                    | 100                   | 86                    | 85                    |
| 3.65          | 90                    | 86                    | 77                    | 92                    | 106                   | 114                   |
| 3.77          | 81                    | 98                    | 114                   | 94                    | 104                   | 110                   |
| 3.89          | 96                    | 106                   | 121                   | 98                    | 102                   | 119                   |
| 4.01          | 114                   | 106                   | 86                    | 90                    | 119                   | 110                   |
| 4.13          | 98                    | 104                   | 104                   | 102                   | 112                   | 104                   |
| 4.25          | 110                   | 86                    | 130                   | 108                   | 96                    | 86                    |
| 4.37          | 98                    | 88                    | 85                    | 92                    | 77                    | 90                    |
| 4.49          | 85                    | 112                   | 90                    | 86                    | 98                    | 98                    |
| 4.61          | 79                    | 88                    | 90                    | 76                    | 79                    | 81                    |
| 4.73          | 85                    | 94                    | 76                    | 108                   | 88                    | 102                   |
| 4.85          | 98                    | 112                   | 104                   | 96                    | 102                   | 79                    |
| 4.97          | 81                    | 90                    | 88                    | 74                    | 76                    | 92                    |
| 5.09          | 77                    | 96                    | 85                    | 92                    | 85                    | 76                    |
| 5.33          | 71                    | 79                    | 66                    | 79                    | 71                    | 66                    |
| 5.81          | 72                    | 67                    | 62                    | 58                    | 77                    | 59                    |
| 6.05          | 53                    | 72                    | 56                    | 61                    | 44                    | 67                    |
| 6.29          | 55                    | 62                    | 56                    | 74                    | 67                    | 53                    |
| 6.89          | 53                    | 62                    | 50                    | 50                    | 45                    | 55                    |
| 7.13          | 55                    | 52                    | 48                    | 50                    | 41                    | 61                    |
| 7.85          | 44                    | 52                    | 41                    | 42                    | 30                    | 49                    |
| 8.33          | 34                    | 38                    | 50                    | 37                    | 34                    | 40                    |
| 8.81          | 35                    | 37                    | 32                    | 48                    | 38                    | 34                    |
| 9.29          | 36                    | 35                    | 34                    | 30                    | 44                    | 31                    |
| 9.53          | 35                    | 32                    | 32                    | 35                    | 30                    | 41                    |
| 10.01         | 22                    | 26                    | 29                    | 30                    | 41                    | 30                    |
### Table B.13 XRD data of Ni-Imp(I)

| Angle | Intensity | Intensity | Intensity | Intensity | Intensity | Intensity |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|
| [20]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  | [counts]  |
| 1.01  | 76        | 85        | 66        | 81        | 83        | 72        |
| 1.13  | 76        | 86        | 88        | 119       | 88        | 112       |
| 1.25  | 79        | 117       | 114       | 90        | 92        | 114       |
| 1.37  | 102       | 121       | 128       | 137       | 130       | 154       |
| 1.49  | 137       | 156       | 149       | 142       | 139       | 154       |
| 1.61  | 159       | 199       | 199       | 207       | 213       | 190       |
| 1.73  | 231       | 228       | 216       | 216       | 196       | 231       |
| 1.85  | 228       | 272       | 259       | 279       | 246       | 282       |
| 1.97  | 292       | 328       | 286       | 339       | 350       | 335       |
| 2.09  | 342       | 361       | 380       | 380       | 420       | 428       |
| 2.21  | 462       | 441       | 467       | 493       | 497       | 543       |
| 2.33  | 543       | 595       | 610       | 595       | 660       | 702       |
| 2.45  | 756       | 635       | 686       | 645       | 615       | 538       |
| 2.57  | 441       | 428       | 404       | 369       | 331       | 342       |
| 2.69  | 289       | 296       | 272       | 282       | 259       | 243       |
| 2.81  | 246       | 279       | 222       | 228       | 243       | 240       |
| 2.93  | 228       | 259       | 256       | 228       | 240       | 228       |
| 3.05  | 222       | 246       | 240       | 204       | 234       | 243       |
| 3.17  | 219       | 240       | 250       | 237       | 210       | 243       |
| 3.29  | 228       | 213       | 225       | 216       | 202       | 231       |
| 3.41  | 210       | 253       | 204       | 199       | 213       | 237       |
| 3.53  | 216       | 188       | 234       | 202       | 225       | 246       |
| 3.65  | 225       | 231       | 228       | 213       | 243       | 231       |
| 3.77  | 237       | 222       | 237       | 243       | 216       | 237       |
| 3.89  | 269       | 228       | 250       | 240       | 240       | 231       |
| 4.01  | 243       | 234       | 250       | 246       | 234       | 240       |
| 4.13  | 222       | 243       | 286       | 266       | 246       | 231       |
| 4.25  | 234       | 225       | 213       | 216       | 164       | 185       |
| 4.37  | 190       | 174       | 196       | 174       | 228       | 180       |
| 4.49  | 180       | 161       | 164       | 161       | 156       | 182       |
| 4.61  | 174       | 188       | 166       | 188       | 161       | 137       |
| 4.73  | 151       | 142       | 164       | 151       | 144       | 156       |
| 4.85  | 156       | 139       | 164       | 159       | 164       | 144       |
| 5.21  | 90        | 108       | 108       | 110       | 135       | 112       |
| 6.29  | 94        | 112       | 110       | 106       | 98        | 79        |
| 7.37  | 72        | 62        | 55        | 58        | 50        | 45        |
| 8.33  | 50        | 56        | 46        | 37        | 42        | 50        |
| 9.29  | 37        | 44        | 32        | 40        | 40        | 46        |
| 10.01 | 34        | 38        | 38        | 38        | 30        | 44        |

### **B.2 Transmission Electron Microscopy**





Figure B.1 TEM of Cu-LT (I)

Figure B.2 TEM of Cu-LT (I)



Figure B.3 TEM of Cu-LT (I)

### B.3 N<sub>2</sub> Sorption

| Relative Pressure   | Pressure | Volume Adsorbed |
|---------------------|----------|-----------------|
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0589              | 40.803   | 228.8951        |
| 0.0774              | 53.623   | 242.7974        |
| 0.0990              | 68.574   | 256.8961        |
| 0.1188              | 82.279   | 268.7957        |
| 0.1384              | 95.828   | 280.2105        |
| 0.1579              | 109.269  | 291.6037        |
| 0.2010              | 139.005  | 321.8332        |
| 0.2491              | 172.144  | 385.4736        |
| 0.2983              | 206.084  | 455.7818        |
| 0.3590              | 248.072  | 480.0744        |
| 0.4653              | 321.517  | 496.1538        |
| 0.5526              | 381.807  | 504.8549        |
| 0.6654              | 459.746  | 515.5568        |
| 0.7379              | 509.869  | 523.0518        |
| 0.7993              | 552.306  | 530.3334        |
| 0.8383              | 579.198  | 536.8646        |
| 0.8759              | 605.221  | 544.4396        |
| 0.9023              | 623.419  | 552.7889        |
| 0.9240              | 638.417  | 563.5003        |
| 0.9373              | 647.611  | 576.5142        |
| 0.9526              | 658.218  | 594.2390        |
| 0.9641              | 666.136  | 609.4467        |
| 0.9660              | 667.382  | 623.1053        |
| 0.9773              | 675.155  | 639.6318        |
| 0.9813              | 677.844  | 650.0634        |
| 0.9858              | 680.890  | 660.6472        |
| 0.9850              | 680.342  | 661.4651        |
| 0.9873              | 681.847  | 672.4582        |
| 0.9925              | 685.363  | 686.1833        |
| 0.9764              | 674.208  | 681.2368        |
| 0.9580              | 661,430  | 674.5521        |
| 0.9412              | 649,737  | 650,9924        |
| 0.8942              | 617.110  | 597.2867        |
| 0.8337              | 575.221  | 564.1829        |
| 0.7301              | 503.704  | 546.0987        |
| 0.5553              | 383.058  | 528.3945        |
| 0.3456              | 238.360  | 478.0417        |
| 0.1373              | 94.737   | 279.9366        |

| Tab | le | <b>B.14</b> | $N_2$ | Sorption | Data | of | MCM-41 | (I) | ) |
|-----|----|-------------|-------|----------|------|----|--------|-----|---|
|-----|----|-------------|-------|----------|------|----|--------|-----|---|

| Average  | Incremental | Cumulative  | Incremental | Cumulative |
|----------|-------------|-------------|-------------|------------|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 1408.3   | 0.018232    | 0.018232    | 0.518       | 0.518      |
| 1155.1   | 0.018990    | 0.037223    | 0.658       | 1.175      |
| 946.1    | 0.017487    | 0.054710    | 0.739       | 1.915      |
| 674.2    | 0.028005    | 0.082714    | 1.661       | 3.576      |
| 570.9    | 0.023913    | 0.106627    | 1.675       | 5.252      |
| 472.8    | 0.026177    | 0.132804    | 2.215       | 7.466      |
| 360.2    | 0.031237    | 0.164041    | 3.469       | 10.935     |
| 290.7    | 0.023341    | 0.187382    | 3.212       | 14.147     |
| 232.1    | 0.018868    | 0.206250    | 3.252       | 17.399     |
| 183.4    | 0.014678    | 0.220928    | 3.202       | 20.601     |
| 142.7    | 0.013242    | 0.234169    | 3.712       | 24.313     |
| 113.8    | 0.011953    | 0.246122    | 4.201       | 28.514     |
| 88.7     | 0.013509    | 0.259631    | 6.095       | 34.609     |
| 68.8     | 0.015038    | 0.274669    | 8.745       | 43.354     |
| 51.2     | 0.023995    | 0.298665    | 18.730      | 62.084     |
| 40.7     | 0.021707    | 0.320372    | 21.353      | 83.437     |
| 32.7     | 0.048464    | 0.368836    | 59.316      | 142.753    |
| 26.1     | 0.377298    | 0.746134    | 579.071     | 721.823    |
| 20.4     | 0.428090    | 1.174224    | 839.219     | 1561.042   |

 Table B.14
 Continued (BJH Adsorption Pore Distribution)

### Table B.14 Continued (BJH Desorption Pore Distribution)

| Average<br>Diameter<br>(Å) | Incremental<br>Pore Volume<br>(cc/g) | Cumulative<br>Pore Volume<br>(cc/g) | Incremental<br>Pore Area<br>(m <sup>2</sup> /g) | Cumulative<br>Pore Area<br>(m <sup>2</sup> /g) |
|----------------------------|--------------------------------------|-------------------------------------|-------------------------------------------------|------------------------------------------------|
| 561.8                      | 0.011644                             | 0.011644                            | 0.829                                           | 0.829                                          |
| 387.7                      | 0.042320                             | 0.053963                            | 4.366                                           | 5.195                                          |
| 227.7                      | 0.101056                             | 0.155020                            | 17.752                                          | 22.947                                         |
| 143.2                      | 0.063045                             | 0.218065                            | 17.613                                          | 40.560                                         |
| 88.4                       | 0.031645                             | 0.249709                            | 14.325                                          | 54.885                                         |
| 51.9                       | 0.032814                             | 0.282523                            | 25.307                                          | 80.192                                         |
| 31.8                       | 0.142949                             | 0.425472                            | 179.981                                         | 260.173                                        |
| 19.5                       | 0.747731                             | 1.173203                            | 1530.058                                        | 1790.230                                       |

| Relative Pressure   | Pressure | Volume Adsorbed |
|---------------------|----------|-----------------|
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0598              | 41.269   | 226.0036        |
| 0.0763              | 52.646   | 237.3304        |
| 0.0985              | 67.943   | 250.4652        |
| 0.1191              | 82.175   | 261.4077        |
| 0.1393              | 96.086   | 271.3247        |
| 0.1593              | 109.827  | 280.8965        |
| 0.1945              | 134.097  | 297.6532        |
| 0.2488              | 171.487  | 332.5031        |
| 0.2939              | 202.619  | 385.8789        |
| 0.3457              | 238.458  | 491.2985        |
| 0.4979              | 343.486  | 508.5721        |
| 0.5589              | 385.587  | 512.3963        |
| 0.6621              | 456.855  | 518.5742        |
| 0.7388              | 509.827  | 522.9396        |
| 0.7969              | 549.927  | 526.8251        |
| 0.8391              | 579.042  | 530.6038        |
| 0.8743              | 603.354  | 534.9913        |
| 0.9043              | 624.138  | 540.2222        |
| 0.9258              | 638.960  | 544.9543        |
| 0.9392              | 648.284  | 549.2227        |
| 0.9532              | 657.965  | 554.6429        |
| 0.9635              | 665.101  | 559.7551        |
| 0.9704              | 669.859  | 564.5270        |
| 0.9775              | 674.772  | 569.9650        |
| 0.9816              | 677.622  | 573.6622        |
| 0.9831              | 678.702  | 576.2067        |
| 0.9881              | 682.219  | 580.8591        |
| 0.9942              | 686.408  | 585.8624        |
| 0.9944              | 686.615  | 592.8211        |
| 0.9812              | 677.466  | 587.3076        |
| 0.9703              | 669.968  | 582.4025        |
| 0.9600              | 662.929  | 576.5742        |
| 0.9435              | 651.547  | 566.4155        |
| 0.9069              | 626.372  | 550.2765        |
| 0.8262              | 570.675  | 536.4792        |
| 0.7383              | 509.987  | 529.8223        |
| 0.5519              | 381.238  | 519.5681        |
| 0.3491              | 241.194  | 493.3863        |
| 0.1468              | 101.413  | 273.3908        |

### Table B.15 N<sub>2</sub> Sorption Data of MCM-41(II)

|          | Incromontal | Cumulativo  | Incromontal | Cumulativa |
|----------|-------------|-------------|-------------|------------|
| Diamotor |             |             |             |            |
|          | Pore volume | Pore volume | Pore Area   | Pore Area  |
| (A)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 1975.9   | 0.008165    | 0.008165    | 0.165       | 0.165      |
| 1238.0   | 0.011924    | 0.020089    | 0.385       | 0.551      |
| 954.2    | 0.006171    | 0.026260    | 0.259       | 0.809      |
| 747.4    | 0.009180    | 0.035440    | 0.491       | 1.301      |
| 597.5    | 0.008159    | 0.043599    | 0.546       | 1.847      |
| 474.9    | 0.008819    | 0.052417    | 0.743       | 2.589      |
| 369.6    | 0.009503    | 0.061920    | 1.029       | 3.618      |
| 298.4    | 0.007604    | 0.069524    | 1.019       | 4.637      |
| 237.2    | 0.008521    | 0.078045    | 1.437       | 6.074      |
| 182.8    | 0.009695    | 0.087740    | 2.121       | 8.195      |
| 142.7    | 0.008282    | 0.096021    | 2.322       | 10.517     |
| 113.1    | 0.007239    | 0.103261    | 2.561       | 13.078     |
| 88.6     | 0.007641    | 0.110902    | 3.449       | 16.527     |
| 68.4     | 0.009157    | 0.120059    | 5.357       | 21.885     |
| 51.8     | 0.014680    | 0.134739    | 11.344      | 33.229     |
| 42.9     | 0.009754    | 0.144492    | 9.087       | 42.316     |
| 32.6     | 0.054973    | 0.199465    | 67.459      | 109.775    |
| 25.9     | 0.659350    | 0.858815    | 1019.209    | 1128.984   |
| 20.5     | 0.165298    | 1.024113    | 323.076     | 1452.060   |

Table B.15 Continued (BJH Adsorption Pore Distribution)

### Table B.15 Continued (BJH Desorption Pore Distribution)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |
|----------|-------------|-------------|-------------|------------|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 775.1    | 0.008352    | 0.008352    | 0.431       | 0.431      |
| 559.4    | 0.010080    | 0.018432    | 0.721       | 1.152      |
| 403.7    | 0.017962    | 0.036394    | 1.780       | 2.931      |
| 255.1    | 0.029524    | 0.065918    | 4.630       | 7.562      |
| 139.4    | 0.025916    | 0.091834    | 7.435       | 14.996     |
| 89.8     | 0.012045    | 0.103879    | 5.366       | 20.363     |
| 51.2     | 0.021247    | 0.125126    | 16.597      | 36.960     |
| 31.6     | 0.074003    | 0.199129    | 93.714      | 130.674    |
| 19.7     | 0.826089    | 1.025218    | 1681.416    | 1812.090   |

| Relative Pressure   | Pressure | Volume Adsorbed |
|---------------------|----------|-----------------|
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0609              | 42.303   | 218.2606        |
| 0.0781              | 54.249   | 229.7080        |
| 0.0998              | 69.283   | 241.7346        |
| 0.1195              | 82.997   | 251.7463        |
| 0.1399              | 97.121   | 261.0818        |
| 0.1605              | 111.389  | 269.8277        |
| 0.1968              | 136.528  | 285.2770        |
| 0.2513              | 174.228  | 308.2898        |
| 0.2999              | 207.837  | 333.4574        |
| 0.3433              | 237.811  | 417.8730        |
| 0.5846              | 404.887  | 530.4541        |
| 0.6583              | 455.966  | 535.5040        |
| 0.7477              | 517.874  | 540.7870        |
| 0.7976              | 552.389  | 544.2021        |
| 0.8412              | 582.569  | 547.3132        |
| 0.8753              | 606.157  | 549.9893        |
| 0.9017              | 624.407  | 554.2075        |
| 0.9318              | 645.284  | 557.7048        |
| 0.9525              | 659.584  | 561.1552        |
| 0.9547              | 661.068  | 562.0093        |
| 0.9693              | 671.147  | 565.3677        |
| 0.9811              | 679.323  | 569.8198        |
| 0.9842              | 681.490  | 571.6097        |
| 0.9847              | 681.811  | 572.5692        |
| 0.9883              | 684.288  | 574.6489        |
| 0.9955              | 689.257  | 580.5817        |
| 0.9960              | 689.511  | 582.6710        |
| 0.9763              | 675.910  | 578.3694        |
| 0.9586              | 663.664  | 572.3517        |
| 0.9354              | 647.596  | 565.9734        |
| 0.9052              | 626.682  | 559.5426        |
| 0.8370              | 579.467  | 551.0844        |
| 0.7246              | 501.630  | 542.6718        |
| 0.5416              | 374.980  | 530.4153        |
| 0.3519              | 243.629  | 507.3553        |
| 0.1374              | 95.104   | 260.5357        |

### Table B.16 N<sub>2</sub> Sorption Data of MCM-41(III)

| A.v.o.m.o.g.o | Incremental | Cumulativa  | Incremental | Cumulativa |
|---------------|-------------|-------------|-------------|------------|
| Average       | Incremental | Cumulative  | Incremental | Cumulative |
| Diameter      | Pore Volume | Pore Volume | Pore Area   | Pore Area  |
| (Å)           | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 2011.1        | 0.009677    | 0.009677    | 0.192       | 0.192      |
| 1398.5        | 0.004987    | 0.014664    | 0.143       | 0.335      |
| 1127.0        | 0.002952    | 0.017616    | 0.105       | 0.440      |
| 756.0         | 0.007471    | 0.025087    | 0.395       | 0.835      |
| 507.9         | 0.005727    | 0.030815    | 0.451       | 1.286      |
| 433.8         | 0.001507    | 0.032322    | 0.139       | 1.425      |
| 339.4         | 0.006058    | 0.038380    | 0.714       | 2.139      |
| 237.9         | 0.006329    | 0.044708    | 1.064       | 3.203      |
| 182.6         | 0.008156    | 0.052864    | 1.787       | 4.990      |
| 144.5         | 0.005069    | 0.057933    | 1.403       | 6.394      |
| 114.0         | 0.006203    | 0.064136    | 2.177       | 8.571      |
| 91.0          | 0.007214    | 0.071350    | 3.169       | 11.740     |
| 68.6          | 0.011939    | 0.083290    | 6.967       | 18.707     |
| 54.2          | 0.012580    | 0.095869    | 9.276       | 27.984     |
| 33.5          | 0.390896    | 0.486765    | 466.860     | 494.843    |
| 26.1          | 0.423381    | 0.910146    | 649.053     | 1143.896   |
| 20.7          | 0.088119    | 0.998266    | 170.485     | 1314.381   |

Table B.16 Continued (BJH Adsorption Pore Distribution)

 Table B.16
 Continued (BJH Desorption Pore Distribution)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |
|----------|-------------|-------------|-------------|------------|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 568.0    | 0.010419    | 0.010419    | 0.734       | 0.734      |
| 360.6    | 0.011276    | 0.021696    | 1.251       | 1.984      |
| 244.3    | 0.011649    | 0.033345    | 1.907       | 3.891      |
| 146.4    | 0.015909    | 0.049254    | 4.346       | 8.237      |
| 85.5     | 0.016561    | 0.065815    | 7.747       | 15.985     |
| 48.7     | 0.027099    | 0.092914    | 22.252      | 38.237     |
| 30.6     | 0.060441    | 0.153355    | 79.050      | 117.287    |
| 18.1     | 0.838082    | 0.991437    | 1848.404    | 1965.691   |

| Relative Pressure   | Pressure | Volume Adsorbed |
|---------------------|----------|-----------------|
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0601              | 41.527   | 251.6213        |
| 0.0794              | 54.870   | 269.5260        |
| 0.0974              | 67.276   | 284.4630        |
| 0.1168              | 80.675   | 300.6594        |
| 0.1361              | 94.018   | 316.3301        |
| 0.1547              | 106.843  | 332.2144        |
| 0.1957              | 135.126  | 368.8206        |
| 0.2486              | 171.539  | 421.3115        |
| 0.3004              | 207.274  | 460.8995        |
| 0.3645              | 251.490  | 484.7643        |
| 0.4513              | 311.324  | 503.6163        |
| 0.5608              | 386.839  | 516.7349        |
| 0.6613              | 456.121  | 523.9078        |
| 0.7570              | 522.109  | 529.1091        |
| 0.7962              | 549.110  | 531.4931        |
| 0.8424              | 580.961  | 533.6726        |
| 0.8733              | 602.247  | 535.4746        |
| 0.9063              | 624.976  | 537.4060        |
| 0.9248              | 637.744  | 538.8187        |
| 0.9408              | 648.759  | 540.2388        |
| 0.9532              | 657.329  | 541.7175        |
| 0.9653              | 665.665  | 543.1369        |
| 0.9710              | 669.539  | 544.1165        |
| 0.9784              | 674.669  | 545.3317        |
| 0.9820              | 677.104  | 546.2153        |
| 0.9848              | 679.070  | 547.1131        |
| 0.9871              | 680.662  | 547.6878        |
| 0.9891              | 682.007  | 548.3757        |
| 0.9932              | 684.846  | 550.4069        |
| 0.9736              | 671.307  | 547.4017        |
| 0.9512              | 655.798  | 544.6080        |
| 0.9264              | 638.722  | 542.0887        |
| 0.9059              | 624.526  | 540.4929        |
| 0.8423              | 580.703  | 536.3626        |
| 0.7399              | 510.060  | 531.3437        |
| 0.5337              | 367.911  | 520.5395        |
| 0.3437              | 236.855  | 479.8199        |
| 0.1459              | 100.581  | 322.9615        |

Table B.17  $N_2$  Sorption Data of MCM-41(IV)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |
|----------|-------------|-------------|-------------|------------|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 1640.0   | 0.001137    | 0.001137    | 0.028       | 0.028      |
| 1240.1   | 0.002456    | 0.003592    | 0.079       | 0.107      |
| 991.2    | 0.001485    | 0.005077    | 0.060       | 0.167      |
| 769.7    | 0.002060    | 0.007137    | 0.107       | 0.274      |
| 623.6    | 0.001688    | 0.008825    | 0.108       | 0.382      |
| 484.4    | 0.002476    | 0.011301    | 0.204       | 0.587      |
| 378.4    | 0.002651    | 0.013953    | 0.280       | 0.867      |
| 300.7    | 0.002590    | 0.016542    | 0.344       | 1.211      |
| 241.9    | 0.002644    | 0.019186    | 0.437       | 1.649      |
| 185.3    | 0.003739    | 0.022925    | 0.807       | 2.456      |
| 146.8    | 0.003674    | 0.026599    | 1.001       | 3.457      |
| 115.9    | 0.004632    | 0.031231    | 1.598       | 5.055      |
| 95.4     | 0.005498    | 0.036729    | 2.305       | 7.360      |
| 71.9     | 0.013050    | 0.049779    | 7.261       | 14.621     |
| 54.4     | 0.020574    | 0.070353    | 15.141      | 29.762     |
| 42.5     | 0.044043    | 0.114396    | 41.475      | 71.237     |
| 35.1     | 0.072790    | 0.187187    | 82.945      | 154.182    |
| 28.6     | 0.295239    | 0.482426    | 413.202     | 567.385    |
| 22.8     | 0.568345    | 1.050770    | 998.442     | 1565.826   |

Table B.17 Continued (BJH Adsorption Pore Distribution)

**Table B.17** Continued (BJH Desorption Pore Distribution)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |
|----------|-------------|-------------|-------------|------------|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 490.8    | 0.004996    | 0.004996    | 0.407       | 0.407      |
| 320.3    | 0.004646    | 0.009642    | 0.580       | 0.987      |
| 242.6    | 0.003010    | 0.012652    | 0.496       | 1.484      |
| 156.0    | 0.008418    | 0.021070    | 2.158       | 3.642      |
| 95.6     | 0.011328    | 0.032398    | 4.738       | 8.380      |
| 53.1     | 0.030837    | 0.063235    | 23.228      | 31.609     |
| 35.1     | 0.157336    | 0.220571    | 179.158     | 210.767    |
| 23.6     | 0.834289    | 1.054860    | 1411.605    | 1622.372   |

| Relative Pressure   | Volume Adsorbed |
|---------------------|-----------------|
| (P/P <sub>0</sub> ) | (cc/g STP)      |
| 0.00505             | 134.9022        |
| 0.00753             | 146.1988        |
| 0.00997             | 155.2956        |
| 0.14988             | 171.4126        |
| 0.19916             | 189.5811        |
| 0.24913             | 203.8409        |
| 0.29921             | 235.4958        |
| 0.34931             | 313.2960        |
| 0.40096             | 318.3750        |
| 0.45159             | 321.5421        |
| 0.50376             | 324.4318        |
| 0.54926             | 326.7824        |
| 0.59915             | 329.3054        |
| 0.64906             | 331.7712        |
| 0.69908             | 334.3405        |
| 0.75287             | 337.3736        |
| 0.80168             | 340.4892        |
| 0.85021             | 344.3618        |
| 0.89984             | 350.4561        |
| 0.94921             | 365.2124        |
| 0.99457             | 680.5536        |
| 0.95086             | 380.8252        |
| 0.90093             | 353.6804        |
| 0.84981             | 345.9129        |
| 0.79885             | 341.4916        |
| 0.75097             | 338.3270        |
| 0.70030             | 335.4690        |
| 0.64979             | 332.8607        |
| 0.59961             | 330.3325        |
| 0.54972             | 327.7928        |
| 0.49973             | 325.1922        |
| 0.44712             | 321.8158        |
| 0.40032             | 318.9293        |
| 0.34927             | 314.8165        |
| 0.30096             | 251.6382        |
| 0.25080             | 206.9843        |
| 0.20086             | 188.8092        |
| 0.15008             | 172.6929        |
| 0.10014             | 156.5021        |
| 0.04999             | 135.7817        |
|                     | -               |

# Table B.18 N<sub>2</sub> Sorption Data of Cu-Imp(I)

| Average  | Cumulative  | Cumulative |
|----------|-------------|------------|
| Diameter | Pore Volume | Pore_Area  |
| (Å)      | (cc/g)      | (m²/g)     |
| 13.61    | 0.0113      | 33.34      |
| 14.99    | 0.0197      | 55.54      |
| 16.88    | 0.0357      | 93.51      |
| 19.35    | 0.0563      | 136.20     |
| 21.83    | 0.0903      | 198.30     |
| 24.47    | 0.1903      | 361.90     |
| 27.33    | 0.4855      | 793.80     |
| 30.56    | 0.5003      | 813.20     |
| 34.23    | 0.5082      | 822.40     |
| 38.50    | 0.5148      | 829.30     |
| 43.24    | 0.5199      | 834.00     |
| 48.85    | 0.5250      | 838.20     |
| 56.05    | 0.5297      | 841.50     |
| 65.29    | 0.5343      | 844.40     |
| 78.32    | 0.5395      | 847.00     |
| 96.62    | 0.5445      | 849.10     |
| 123.97   | 0.5505      | 851.00     |
| 174.10   | 0.5602      | 853.20     |
| 302.57   | 0.5846      | 856.50     |
| 1973.12  | 1.0890      | 866.70     |

**Table B.18** Continued (BJH Adsorption Pore Distribution)

**Table B.18** Continued (BJH Desorption Pore Distribution)

| Average  | Cumulative  | Cumulative |
|----------|-------------|------------|
| Diameter | Pore Volume | Pore Area  |
| (Å)      | (cc/g)      | (m²/g)     |
| 14.25    | 0.017740    | 49.81      |
| 16.90    | 0.033230    | 86.52      |
| 19.39    | 0.055980    | 133.50     |
| 21.92    | 0.093560    | 202.10     |
| 24.57    | 0.250500    | 457.90     |
| 27.38    | 0.489500    | 807.20     |
| 30.54    | 0.500600    | 821.70     |
| 34.02    | 0.507500    | 829.80     |
| 38.12    | 0.515500    | 838.30     |
| 43.08    | 0.520900    | 843.30     |
| 48.91    | 0.525900    | 847.30     |
| 56.15    | 0.530400    | 850.60     |
| 65.50    | 0.534800    | 853.30     |
| 78.14    | 0.539300    | 855.60     |
| 95.55    | 0.544100    | 857.60     |
| 123.04   | 0.550800    | 859.70     |
| 175.01   | 0.563300    | 862.60     |
| 310.05   | 0.610600    | 868.70     |
| 1979.50  | 1.089000    | 878.40     |

| Relative Pressure   | Pressure | Volume Adsorbed |
|---------------------|----------|-----------------|
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0611              | 42.975   | 120.8299        |
| 0.0831              | 58.386   | 129.3334        |
| 0.0995              | 69.919   | 134.9420        |
| 0.1191              | 83.623   | 141.2665        |
| 0.1389              | 97.534   | 147.4136        |
| 0.1582              | 111.084  | 153.7059        |
| 0.1942              | 136.290  | 166.0730        |
| 0.2443              | 171.384  | 196.6582        |
| 0.3068              | 215.010  | 245.3939        |
| 0.3488              | 244.405  | 250.3128        |
| 0.4610              | 323.002  | 255.7939        |
| 0.5647              | 395.568  | 259.7121        |
| 0.6510              | 455.966  | 262.7227        |
| 0.7422              | 519.839  | 266.1000        |
| 0.8035              | 562.695  | 268.5565        |
| 0.8431              | 590.378  | 270.6626        |
| 0.8798              | 615.977  | 272.7214        |
| 0.9083              | 635.893  | 274.9265        |
| 0.9296              | 650.766  | 277.0829        |
| 0.9445              | 661.119  | 279.1386        |
| 0.9572              | 669.963  | 281.7806        |
| 0.9650              | 675.388  | 283.5706        |
| 0.9708              | 679.483  | 285.1837        |
| 0.9768              | 683.662  | 287.2368        |
| 0.9818              | 687.189  | 289.4814        |
| 0.9847              | 689.206  | 290.5734        |
| 0.9849              | 689.356  | 291.3781        |
| 0.9891              | 692.252  | 292.9450        |
| 0.9956              | 696.860  | 302.4792        |
| 0.9783              | 684.748  | 296.3373        |
| 0.9665              | 676.479  | 291.5323        |
| 0.9520              | 666.348  | 287.4452        |
| 0.9427              | 659.775  | 284.4970        |
| 0.9053              | 633.607  | 278.2266        |
| 0.8230              | 576.059  | 271.5911        |
| 0.7283              | 509.755  | 267.3205        |
| 0.5372              | 375.963  | 260.3040        |
| 0.3326              | 232.769  | 249.9647        |
| 0.1344              | 94.070   | 147.6197        |

### Table B.19 N<sub>2</sub> Sorption Data of Cu-Imp(II)

| Average  | Transversental | Cumulative  | Transversental | Cumulative |
|----------|----------------|-------------|----------------|------------|
| Diamatar | Incremental    | Cumulative  | Incremental    | Cumulative |
| Diameter | Pore Volume    | Pore Volume | Pore Area      | Pore Area  |
| (A)      | (cc/g)         | (cc/g)      | (m²/g)         | (m²/g)     |
| 1469.4   | 0.002592       | 0.002592    | 0.071          | 0.071      |
| 1173.6   | 0.003166       | 0.005758    | 0.108          | 0.178      |
| 941.2    | 0.003770       | 0.009528    | 0.160          | 0.339      |
| 748.5    | 0.003477       | 0.013005    | 0.186          | 0.524      |
| 616.5    | 0.002754       | 0.015759    | 0.179          | 0.703      |
| 510.1    | 0.003087       | 0.018846    | 0.242          | 0.945      |
| 403.6    | 0.004647       | 0.023493    | 0.461          | 1.406      |
| 318.4    | 0.003646       | 0.027139    | 0.458          | 1.864      |
| 248.4    | 0.003892       | 0.031031    | 0.627          | 2.491      |
| 191.3    | 0.004087       | 0.035118    | 0.854          | 3.345      |
| 147.6    | 0.003911       | 0.039029    | 1.060          | 4.405      |
| 117.1    | 0.004227       | 0.043256    | 1.444          | 5.850      |
| 90.8     | 0.005103       | 0.048360    | 2.249          | 8.098      |
| 67.4     | 0.007682       | 0.056041    | 4.559          | 12.657     |
| 52.4     | 0.007386       | 0.063427    | 5.644          | 18.301     |
| 41.3     | 0.010695       | 0.074122    | 10.363         | 28.664     |
| 32.6     | 0.017181       | 0.091303    | 21.059         | 49.723     |
| 26.3     | 0.229814       | 0.321117    | 350.145        | 399.869    |
| 20.9     | 0.208016       | 0.529133    | 398.049        | 797.918    |

Table B.19 Continued (BJH Adsorption Pore Distribution)

### Table B.19 Continued (BJH Desorption Pore Distribution)

| Average<br>Diameter<br>(Å) | Incremental<br>Pore Volume<br>(cc/g) | Cumulative<br>Pore Volume<br>(cc/g) | Incremental<br>Pore Area<br>(m <sup>2</sup> /g) | Cumulative<br>Pore Area<br>(m <sup>2</sup> /g) |
|----------------------------|--------------------------------------|-------------------------------------|-------------------------------------------------|------------------------------------------------|
| 688.3                      | 0.008270                             | 0.008270                            | 0.481                                           | 0.481                                          |
| 476.6                      | 0.007136                             | 0.015405                            | 0.599                                           | 1.079                                          |
| 379.7                      | 0.005244                             | 0.020649                            | 0.552                                           | 1.632                                          |
| 251.7                      | 0.011443                             | 0.032092                            | 1.818                                           | 3.450                                          |
| 137.9                      | 0.012750                             | 0.044842                            | 3.698                                           | 7.148                                          |
| 87.6                       | 0.008422                             | 0.053264                            | 3.843                                           | 10.992                                         |
| 50.3                       | 0.016261                             | 0.069525                            | 12.934                                          | 23.925                                         |
| 31.4                       | 0.029656                             | 0.099181                            | 37.743                                          | 61.669                                         |
| 20.0                       | 0.432588                             | 0.531769                            | 867.057                                         | 928.726                                        |

| Relative Pressure (P/P <sub>0</sub> ) | Volume Adsorbed (cc/g STP) |
|---------------------------------------|----------------------------|
| 0.051080                              | 70.9654                    |
| 0.102640                              | 82.6204                    |
| 0.152040                              | 91.7299                    |
| 0.201240                              | 100.6321                   |
| 0.299910                              | 127.4763                   |
| 0.401080                              | 149.5486                   |
| 0.500030                              | 153.2714                   |
| 0.601130                              | 156.8343                   |
| 0.699450                              | 160.6186                   |
| 0.801020                              | 165.7971                   |
| 0.994460                              | 340.6843                   |
| 0.799510                              | 170.3829                   |
| 0.700890                              | 164.4671                   |
| 0.599340                              | 160.2514                   |
| 0.498890                              | 156.6586                   |
| 0.398280                              | 150.7986                   |
| 0.299890                              | 131.4560                   |
| 0.097878                              | 83.8237                    |

### Table B.20 $N_2$ Sorption Data of Cu-HT(I)

Table B.20 Continued (BJH Adsorption Pore Distribution)

| Average  | Cumulative  | Cumulative |
|----------|-------------|------------|
| Diameter | Pore Volume | Pore Area  |
| (Å)      | (cc/g)      | (m²/g)     |
| 13.67    | 0.0111      | 32.40      |
| 15.11    | 0.0199      | 55.85      |
| 19.45    | 0.0382      | 98.89      |
| 21.91    | 0.0596      | 142.90     |
| 29.09    | 0.0849      | 189.00     |
| 36.38    | 0.1480      | 292.00     |
| 46.40    | 0.2228      | 394.80     |
| 61.47    | 0.2314      | 404.30     |
| 88.69    | 0.2388      | 410.70     |
| 157.96   | 0.2462      | 415.50     |
| 1843.22  | 0.2559      | 419.80     |

#### Table B.20 Continued (BJH Desorption Pore Distribution)

| Average<br>Diameter<br>(Å) | Cumulative<br>Pore Volume<br>(cc/g) | Cumulative<br>Pore Area<br>(m²/g) |
|----------------------------|-------------------------------------|-----------------------------------|
| 18.02                      | 0.0372                              | 82.61                             |
| 28.99                      | 0.1376                              | 255.80                            |
| 36.23                      | 0.2018                              | 344.30                            |
| 46.22                      | 0.2169                              | 361.00                            |
| 61.51                      | 0.2241                              | 367.20                            |
| 157.58                     | 0.2321                              | 372.40                            |
| 1843.24                    | 0.2432                              | 377.50                            |

| Relative Pressure   | Pressure | Volume Adsorbed |
|---------------------|----------|-----------------|
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0581              | 40.751   | 73.5749         |
| 0.0840              | 58.903   | 81.0411         |
| 0.0991              | 69.453   | 85.1019         |
| 0.1182              | 82.842   | 90.1616         |
| 0.1378              | 96.552   | 95.2789         |
| 0.1574              | 110.308  | 100.4172        |
| 0.1964              | 137.614  | 109.8714        |
| 0.2502              | 175.257  | 119.8878        |
| 0.3062              | 214.462  | 127.8506        |
| 0.3609              | 252.726  | 134.7851        |
| 0.4496              | 314.789  | 145.2735        |
| 0.5490              | 384.341  | 157.2594        |
| 0.6490              | 454.321  | 170.8152        |
| 0.7419              | 519.239  | 184.4963        |
| 0.8030              | 561.971  | 193.6266        |
| 0.8415              | 588.817  | 199.6383        |
| 0.8772              | 613.748  | 205.2612        |
| 0.9061              | 633.912  | 210.4575        |
| 0.9265              | 648.144  | 215.1876        |
| 0.9431              | 659.723  | 219.4091        |
| 0.9544              | 667.532  | 223.3807        |
| 0.9679              | 676.944  | 228.1212        |
| 0.9730              | 680.404  | 230.3539        |
| 0.9808              | 685.803  | 233.4510        |
| 0.9839              | 687.965  | 235.0691        |
| 0.9877              | 690.602  | 236.4529        |
| 0.9963              | 696.580  | 242.9282        |
| 0.9968              | 696.932  | 248.0071        |
| 0.9852              | 688.787  | 239.5700        |
| 0.9655              | 674.933  | 236.6272        |
| 0.9340              | 652.881  | 230.8242        |
| 0.9051              | 632.681  | 224.2822        |
| 0.8424              | 588.801  | 213.2692        |
| 0.7386              | 516.250  | 201.2107        |
| 0.5464              | 381.910  | 178.3163        |
| 0.3374              | 235.820  | 132.0240        |
| 0.1395              | 97.529   | 95.4781         |

# Table B.21 N<sub>2</sub> Sorption Data of Cu-HT(II)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |
|----------|-------------|-------------|-------------|------------|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 1423.5   | 0.013049    | 0.013049    | 0.367       | 0.367      |
| 1108.8   | 0.002675    | 0.015724    | 0.096       | 0.463      |
| 834.7    | 0.005190    | 0.020914    | 0.249       | 0.712      |
| 671.4    | 0.003814    | 0.024728    | 0.227       | 0.939      |
| 503.3    | 0.008262    | 0.032990    | 0.657       | 1.596      |
| 391.8    | 0.007103    | 0.040093    | 0.725       | 2.321      |
| 309.2    | 0.007673    | 0.047766    | 0.993       | 3.314      |
| 243.4    | 0.008882    | 0.056648    | 1.460       | 4.773      |
| 189.3    | 0.010055    | 0.066702    | 2.124       | 6.898      |
| 147.6    | 0.011384    | 0.078086    | 3.085       | 9.983      |
| 118.5    | 0.012869    | 0.090955    | 4.346       | 14.328     |
| 92.6     | 0.020930    | 0.111885    | 9.042       | 23.370     |
| 69.0     | 0.034655    | 0.146540    | 20.078      | 43.448     |
| 52.8     | 0.037513    | 0.184053    | 28.430      | 71.878     |
| 42.1     | 0.035540    | 0.219593    | 33.789      | 105.667    |
| 34.9     | 0.033503    | 0.253095    | 38.375      | 144.042    |
| 28.6     | 0.054483    | 0.307579    | 76.149      | 220.191    |
| 22.9     | 0.115529    | 0.423107    | 202.003     | 422.194    |

 Table B.21
 Continued (BJH Adsorption Pore Distribution)

 Table B.21
 Continued (BJH Desorption Pore Distribution)

| Average<br>Diameter<br>(Å) | Incremental<br>Pore Volume<br>(cc/g) | Cumulative<br>Pore Volume<br>(cc/g) | Incremental<br>Pore Area<br>(m²/g) | Cumulative<br>Pore Area<br>(m <sup>2</sup> /g) |
|----------------------------|--------------------------------------|-------------------------------------|------------------------------------|------------------------------------------------|
| 693.8                      | 0.005075                             | 0.005075                            | 0.293                              | 0.293                                          |
| 365.6                      | 0.010494                             | 0.015568                            | 1.148                              | 1.441                                          |
| 246.5                      | 0.012341                             | 0.027909                            | 2.003                              | 3.443                                          |
| 154.2                      | 0.022107                             | 0.050016                            | 5.736                              | 9.180                                          |
| 93.5                       | 0.026118                             | 0.076135                            | 11.177                             | 20.356                                         |
| 52.8                       | 0.059862                             | 0.135997                            | 45.308                             | 65.664                                         |
| 33.1                       | 0.153543                             | 0.289540                            | 185.395                            | 251.059                                        |
| 21.6                       | 0.118785                             | 0.408325                            | 220.426                            | 471.485                                        |

| Relative Pressure   | Pressure | Volume Adsorbed |
|---------------------|----------|-----------------|
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0577              | 39.924   | 23.1381         |
| 0.0879              | 60.817   | 26.6978         |
| 0.0995              | 68.827   | 27.9733         |
| 0.1191              | 82.377   | 29.9734         |
| 0.1393              | 96.304   | 31.7904         |
| 0.1592              | 110.050  | 33.5746         |
| 0.1997              | 138.027  | 36.4600         |
| 0.2514              | 173.814  | 39.5846         |
| 0.3028              | 209.285  | 42.4081         |
| 0.3543              | 244.865  | 45.1258         |
| 0.4490              | 310.290  | 49.9104         |
| 0.5494              | 379.640  | 55.2715         |
| 0.6495              | 448.798  | 61.4420         |
| 0.7389              | 510.525  | 68.6893         |
| 0.8009              | 553.299  | 75.5593         |
| 0.8400              | 580.263  | 82.3512         |
| 0.8756              | 604.807  | 91.4292         |
| 0.9054              | 625.312  | 102.6573        |
| 0.9264              | 639.714  | 114.4298        |
| 0.9423              | 650.559  | 126.8525        |
| 0.9553              | 659.418  | 139.8282        |
| 0.9662              | 666.906  | 152.3461        |
| 0.9710              | 670.170  | 159.3389        |
| 0.9773              | 674.508  | 169.6920        |
| 0.9824              | 678.030  | 178.3315        |
| 0.9829              | 678.397  | 181.7009        |
| 0.9944              | 686.320  | 187.6102        |
| 0.9947              | 686.517  | 195.8259        |
| 0.9741              | 672.285  | 192.4166        |
| 0.9589              | 661.849  | 186.2677        |
| 0.9452              | 652.369  | 176.0524        |
| 0.9046              | 624.324  | 142.6717        |
| 0.8408              | 580.341  | 106.5324        |
| 0.7327              | 505.669  | 82.4471         |
| 0.5518              | 380.829  | 67.8704         |
| 0.3474              | 239.792  | 49.7999         |
| 0.1313              | 90.641   | 36.8986         |

Table B.22  $N_2$  Sorption Data of Cu-LT(I)

| Average | Incremental | Cumulative  | Incremental         | Cumulative          |
|---------|-------------|-------------|---------------------|---------------------|
|         | Pore Volume | Pore Volume | Pore Area           | Pore Area           |
| (A)     | (cc/g)      | (cc/g)      | (m <sup>-</sup> /g) | (m <sup>-</sup> /g) |
| 1332.2  | 0.015399    | 0.015399    | 0.462               | 0.462               |
| 964.1   | 0.014524    | 0.029923    | 0.603               | 1.065               |
| 756.7   | 0.017606    | 0.047529    | 0.931               | 1.996               |
| 632.1   | 0.011990    | 0.059519    | 0.759               | 2.754               |
| 501.2   | 0.021727    | 0.081246    | 1.734               | 4.489               |
| 388.1   | 0.022963    | 0.104209    | 2.367               | 6.855               |
| 305.5   | 0.022355    | 0.126564    | 2.927               | 9.783               |
| 240.1   | 0.021500    | 0.148064    | 3.582               | 13.365              |
| 185.2   | 0.020808    | 0.168872    | 4.493               | 17.858              |
| 144.1   | 0.017037    | 0.185909    | 4.730               | 22.589              |
| 115.2   | 0.012781    | 0.198690    | 4.439               | 27.027              |
| 89.5    | 0.012813    | 0.211503    | 5.727               | 32.754              |
| 66.9    | 0.014134    | 0.225637    | 8.457               | 41.211              |
| 50.8    | 0.012534    | 0.238171    | 9.878               | 51.089              |
| 40.0    | 0.011623    | 0.249794    | 11.631              | 62.720              |
| 32.5    | 0.011126    | 0.260921    | 13.680              | 76.401              |
| 26.5    | 0.014429    | 0.275350    | 21.782              | 98.183              |
| 20.9    | 0.024339    | 0.299689    | 46.634              | 144.816             |

 Table B.22
 Continued (BJH Adsorption Pore Distribution)

 Table B.22
 Continued (BJH Desorption Pore Distribution)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |
|----------|-------------|-------------|-------------|------------|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 566.6    | 0.010757    | 0.010757    | 0.759       | 0.759      |
| 411.5    | 0.018302    | 0.029059    | 1.779       | 2.539      |
| 252.2    | 0.062844    | 0.091903    | 9.968       | 12.507     |
| 152.0    | 0.716020    | 0.163505    | 18.843      | 31.349     |
| 90.7     | 0.048072    | 0.211577    | 21.191      | 52.540     |
| 52.6     | 0.026125    | 0.237702    | 19.855      | 72.395     |
| 33.0     | 0.044750    | 0.282452    | 54.236      | 126.631    |
| 20.4     | 0.023873    | 0.306325    | 46.792      | 173.423    |

| T                   |          |                 |
|---------------------|----------|-----------------|
| Relative Pressure   | Pressure | Volume Adsorbed |
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0581              | 40.027   | 132.2080        |
| 0.0773              | 53.261   | 140.4977        |
| 0.0992              | 68.362   | 148.4651        |
| 0.1191              | 82.072   | 155.0062        |
| 0.1395              | 96.086   | 161.0244        |
| 0.1596              | 109.931  | 166.7637        |
| 0.1969              | 135.648  | 176.6886        |
| 0.2524              | 173.814  | 190.9858        |
| 0.3046              | 209.704  | 205.0008        |
| 0.3536              | 243.417  | 220.8378        |
| 0.4505              | 310.031  | 257.6810        |
| 0.5626              | 387.190  | 297.6599        |
| 0.6452              | 444.087  | 335.4595        |
| 0.7381              | 508.074  | 396.7620        |
| 0.7989              | 549.937  | 456.4626        |
| 0.8405              | 578.691  | 515.8816        |
| 0.8716              | 600.101  | 578.0209        |
| 0.9028              | 621.832  | 661.7502        |
| 0.9174              | 632.035  | 705.8564        |
| 0.9345              | 644.007  | 747.3854        |
| 0.9500              | 654.810  | 776.6026        |
| 0.9571              | 659.832  | 789.0206        |
| 0.9660              | 666.032  | 801.5262        |
| 0.9723              | 670.464  | 819.4543        |
| 0.9817              | 676.991  | 827.2866        |
| 0.9887              | 681.904  | 831.3764        |
| 0.9935              | 685.229  | 835.9843        |
| 0.9948              | 686.217  | 839.1736        |
| 0.9792              | 675.450  | 835.1030        |
| 0.9691              | 668.520  | 831.3520        |
| 0.9590              | 661.595  | 826.7202        |
| 0.9424              | 650.202  | 818.9410        |
| 0.9086              | 626.941  | 799.5978        |
| 0.8451              | 583.242  | 735.0515        |
| 0.7378              | 509.444  | 491.4977        |
| 0.5352              | 369.571  | 370.0070        |
| 0.3587              | 247.710  | 283.9286        |
| 0.3260              | 225.167  | 272.5699        |

Table B.23  $N_2$  Sorption Data of Cu-LT(II)

| Average<br>Diameter | Incremental<br>Pore Volume | Cumulative<br>Pore Volume | Incremental<br>Pore Area | Cumulative<br>Pore Area |
|---------------------|----------------------------|---------------------------|--------------------------|-------------------------|
| (Å)                 | (cc/g)                     | (cc/g)                    | (m²/g)                   | (m²/g)                  |
| 2047.6              | 0.007510                   | 0.007510                  | 0.147                    | 0.147                   |
| 1255.3              | 0.006740                   | 0.014251                  | 0.215                    | 0.362                   |
| 825.0               | 0.013226                   | 0.027477                  | 0.641                    | 1.003                   |
| 639.0               | 0.031017                   | 0.058494                  | 1.941                    | 2.944                   |
| 514.2               | 0.021670                   | 0.080164                  | 1.686                    | 4.630                   |
| 430.6               | 0.021922                   | 0.102086                  | 2.036                    | 6.666                   |
| 344.0               | 0.052730                   | 0.154816                  | 6.131                    | 12.797                  |
| 271.4               | 0.077173                   | 0.231989                  | 11.376                   | 24.173                  |
| 226.3               | 0.084037                   | 0.316026                  | 14.854                   | 39.026                  |
| 179.1               | 0.163766                   | 0.479791                  | 36.579                   | 75.606                  |
| 142.3               | 0.123527                   | 0.603318                  | 34.715                   | 110.320                 |
| 113.9               | 0.119733                   | 0.723051                  | 42.064                   | 152.384                 |
| 88.4                | 0.122129                   | 0.845180                  | 55.275                   | 207.659                 |
| 65.5                | 0.127857                   | 0.973036                  | 78.093                   | 285.752                 |
| 51.1                | 0.077160                   | 1.050197                  | 60.391                   | 346.143                 |
| 39.7                | 0.082259                   | 1.132456                  | 82.789                   | 428.932                 |
| 31.9                | 0.086987                   | 1.219443                  | 109.227                  | 538.159                 |
| 25.8                | 0.060281                   | 1.279724                  | 93.293                   | 631.452                 |
| 20.2                | 0.047134                   | 1.326858                  | 93.264                   | 724.716                 |

Table B.23 Continued (BJH Adsorption Pore Distribution)

 Table B.23
 Continued (BJH Desorption Pore Distribution)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |
|----------|-------------|-------------|-------------|------------|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 740.2    | 0.006453    | 0.006453    | 0.349       | 0.349      |
| 546.3    | 0.008107    | 0.014560    | 0.594       | 0.942      |
| 398.4    | 0.013950    | 0.028509    | 1.401       | 2.343      |
| 260.6    | 0.036427    | 0.064936    | 5.590       | 7.933      |
| 157.4    | 0.132511    | 0.197448    | 33.684      | 41.617     |
| 93.6     | 0.566249    | 0.763697    | 241.985     | 283.603    |
| 51.7     | 0.269594    | 1.033291    | 208.620     | 492.222    |
| 34.5     | 0.211538    | 1.244829    | 245.469     | 737.692    |
| 29.5     | 0.020566    | 1.265395    | 27.849      | 765.541    |

| Relative Pressure   | Pressure | Volume Adsorbed |
|---------------------|----------|-----------------|
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0620              | 43.172   | 108.8545        |
| 0.0827              | 57.605   | 115.8532        |
| 0.0990              | 68.977   | 120.9582        |
| 0.1188              | 82.744   | 126.6409        |
| 0.1382              | 96.288   | 132.2350        |
| 0.1577              | 109.843  | 137.8791        |
| 0.1944              | 135.390  | 148.4363        |
| 0.2444              | 170.246  | 163.5023        |
| 0.2937              | 204.595  | 179.8286        |
| 0.3506              | 244.250  | 199.8400        |
| 0.4817              | 335.579  | 217.7374        |
| 0.5543              | 386.171  | 223.9504        |
| 0.6604              | 460.057  | 233.8383        |
| 0.7380              | 514.094  | 242.7015        |
| 0.7989              | 556.614  | 251.7895        |
| 0.8406              | 585.719  | 259.6987        |
| 0.8751              | 609.880  | 267.6575        |
| 0.9026              | 629.108  | 276.5684        |
| 0.9240              | 644.121  | 286.3588        |
| 0.9408              | 655.901  | 295.5955        |
| 0.9515              | 663.452  | 303.6570        |
| 0.9630              | 671.566  | 314.6144        |
| 0.9703              | 676.737  | 323.3002        |
| 0.9758              | 680.621  | 331.5161        |
| 0.9892              | 690.002  | 337.2416        |
| 0.9900              | 690.545  | 346.6374        |
| 0.9807              | 684.127  | 340.1983        |
| 0.9648              | 673.019  | 336.5063        |
| 0.9541              | 665.619  | 331.8718        |
| 0.9414              | 656.832  | 323.7912        |
| 0.8999              | 628.079  | 298.0047        |
| 0.8286              | 578.463  | 269.7023        |
| 0.7416              | 517.874  | 253.0416        |
| 0.5401              | 377.209  | 231.3095        |
| 0.3477              | 242.854  | 201.1764        |
| 0.1353              | 94.483   | 131.6338        |

# Table B.24 N<sub>2</sub> Sorption Data of Ni-HT(I)

| •        | <b>T</b> 1 1 |             | <b>T</b>    |            |
|----------|--------------|-------------|-------------|------------|
| Average  | Incremental  | Cumulative  | Incremental | Cumulative |
| Diameter | Pore Volume  | Pore Volume | Pore Area   | Pore Area  |
| (Å)      | (cc/g)       | (cc/g)      | (m²/g)      | (m²/g)     |
| 984.7    | 0.009683     | 0.009683    | 0.393       | 0.393      |
| 732.3    | 0.014170     | 0.023853    | 0.774       | 1.167      |
| 594.2    | 0.015126     | 0.038979    | 1.018       | 2.186      |
| 463.9    | 0.019375     | 0.058354    | 1.671       | 3.856      |
| 373.8    | 0.014448     | 0.072802    | 1.546       | 5.402      |
| 298.4    | 0.016809     | 0.089611    | 2.253       | 7.655      |
| 234.7    | 0.018308     | 0.107919    | 3.120       | 10.755     |
| 184.8    | 0.016997     | 0.124915    | 3.679       | 14.454     |
| 145.9    | 0.015506     | 0.140421    | 4.252       | 18.706     |
| 116.2    | 0.016080     | 0.156501    | 5.537       | 24.244     |
| 90.6     | 0.019394     | 0.175895    | 8.560       | 32.804     |
| 70.0     | 0.019909     | 0.195804    | 11.370      | 44.174     |
| 53.2     | 0.024066     | 0.219870    | 18.078      | 62.251     |
| 43.8     | 0.016162     | 0.236032    | 14.775      | 77.026     |
| 34.6     | 0.060476     | 0.296508    | 69.934      | 146.960    |
| 27.8     | 0.158819     | 0.455327    | 228.744     | 375.704    |
| 22.4     | 0.132741     | 0.588068    | 237.380     | 613.084    |

**Table B.24** Continued (BJH Adsorption Pore Distribution)

**Table B.24** Continued (BJH Desorption Pore Distribution)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |
|----------|-------------|-------------|-------------|------------|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |
| 671.4    | 0.006377    | 0.006377    | 0.380       | 0.380      |
| 485.8    | 0.008182    | 0.014559    | 0.674       | 1.054      |
| 380.6    | 0.014589    | 0.029147    | 1.533       | 2.587      |
| 240.4    | 0.048884    | 0.078031    | 8.133       | 10.719     |
| 142.1    | 0.056779    | 0.134811    | 15.985      | 26.705     |
| 92.9     | 0.033654    | 0.168464    | 14.496      | 41.201     |
| 51.7     | 0.048934    | 0.217398    | 37.854      | 79.055     |
| 33.3     | 0.088930    | 0.306329    | 106.934     | 185.989    |
| 21.0     | 0.280021    | 0.586350    | 534.248     | 720.237    |

| Relative Pressure   | Pressure | Volume Adsorbed |
|---------------------|----------|-----------------|
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0573              | 39.614   | 171.0447        |
| 0.0824              | 56.918   | 186.1052        |
| 0.0989              | 68.310   | 194.8497        |
| 0.1183              | 81.658   | 204.4052        |
| 0.1378              | 95.099   | 213.7955        |
| 0.1574              | 108.602  | 223.1181        |
| 0.2041              | 140.768  | 246.5204        |
| 0.2522              | 173.866  | 273.9011        |
| 0.2938              | 202.444  | 305.7901        |
| 0.3468              | 238.975  | 350.6137        |
| 0.4918              | 338.837  | 372.4891        |
| 0.5563              | 383.229  | 378.1429        |
| 0.6612              | 455.506  | 386.9330        |
| 0.7374              | 507.997  | 394.2240        |
| 0.7995              | 550.708  | 401.4791        |
| 0.8397              | 578.375  | 407.8914        |
| 0.8748              | 602.588  | 415.5363        |
| 0.9038              | 622.483  | 424.9059        |
| 0.9252              | 637.227  | 435.2154        |
| 0.9413              | 648.242  | 445.7616        |
| 0.9539              | 656.879  | 456.7405        |
| 0.9640              | 663.814  | 469.0140        |
| 0.9718              | 669.135  | 480.2787        |
| 0.9778              | 673.283  | 490.5661        |
| 0.9822              | 676.272  | 499.0657        |
| 0.9839              | 677.466  | 503.6953        |
| 0.9859              | 678.858  | 510.7042        |
| 0.9892              | 681.133  | 519.6069        |
| 0.9923              | 683.346  | 530.3144        |
| 0.9787              | 673.924  | 525.1478        |
| 0.9715              | 669.027  | 519.2567        |
| 0.9629              | 663.079  | 511.6745        |
| 0.9437              | 649.892  | 488.8043        |
| 0.8919              | 614.297  | 442.4172        |
| 0.8351              | 575.221  | 416.3506        |
| 0.7269              | 500.736  | 396.8193        |
| 0.5562              | 383.151  | 380.6087        |
| 0.3457              | 238.179  | 353.5422        |
| 0.1427              | 98.310   | 217.0848        |

# Table B.25 $N_2$ Sorption Data of Ni-HT(II)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |  |
|----------|-------------|-------------|-------------|------------|--|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |  |
| 1544.3   | 0.014712    | 0.014712    | 0.381       | 0.381      |  |
| 1215.6   | 0.019386    | 0.034098    | 0.638       | 1.019      |  |
| 977.0    | 0.014216    | 0.048314    | 0.582       | 1.601      |  |
| 777.1    | 0.017390    | 0.065704    | 0.895       | 2.496      |  |
| 613.0    | 0.019290    | 0.084994    | 1.259       | 3.755      |  |
| 482.2    | 0.021340    | 0.106334    | 1.770       | 5.525      |  |
| 380.7    | 0.019314    | 0.125648    | 2.029       | 7.555      |  |
| 301.2    | 0.018849    | 0.144497    | 2.503       | 10.058     |  |
| 236.7    | 0.018751    | 0.163248    | 3.169       | 13.227     |  |
| 184.1    | 0.017280    | 0.180529    | 3.755       | 16.981     |  |
| 144.2    | 0.014251    | 0.194780    | 3.954       | 20.936     |  |
| 115.1    | 0.012186    | 0.206966    | 4.234       | 25.169     |  |
| 89.5     | 0.014222    | 0.221188    | 6.355       | 31.524     |  |
| 69.1     | 0.015259    | 0.236447    | 8.835       | 40.359     |  |
| 52.4     | 0.020256    | 0.256702    | 15.456      | 55.815     |  |
| 43.4     | 0.014390    | 0.271093    | 13.261      | 69.076     |  |
| 33.5     | 0.071679    | 0.342771    | 85.551      | 154.626    |  |
| 27.0     | 0.330368    | 0.673140    | 489.923     | 644.549    |  |
| 21.4     | 0.235210    | 0.908350    | 439.904     | 1084.453   |  |

**Table B.25** Continued (BJH Adsorption Pore Distribution)

**Table B.25** Continued (BJH Desorption Pore Distribution)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |  |
|----------|-------------|-------------|-------------|------------|--|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |  |
| 779.6    | 0.010079    | 0.010079    | 0.517       | 0.517      |  |
| 597.4    | 0.013136    | 0.023215    | 0.880       | 1.397      |  |
| 412.7    | 0.040808    | 0.064023    | 3.955       | 5.352      |  |
| 225.1    | 0.087768    | 0.151791    | 15.596      | 20.948     |  |
| 144.7    | 0.050059    | 0.201851    | 13.837      | 34.785     |  |
| 88.6     | 0.036949    | 0.238800    | 16.686      | 51.471     |  |
| 53.0     | 0.031518    | 0.270318    | 23.800      | 75.271     |  |
| 32.8     | 0.074092    | 0.344410    | 90.219      | 165.490    |  |
| 20.9     | 0.572394    | 0.916803    | 1096.957    | 1262.447   |  |

| Relative Pressure   | Pressure | Volume Adsorbed |
|---------------------|----------|-----------------|
| (P/P <sub>0</sub> ) | (mmHg)   | (cc/g STP)      |
| 0.0595              | 41.574   | 222.9397        |
| 0.0781              | 54.508   | 237.2182        |
| 0.0997              | 69.551   | 250.8617        |
| 0.1188              | 82.899   | 262.4347        |
| 0.1388              | 96.810   | 273.6031        |
| 0.1593              | 111.084  | 284.1267        |
| 0.1961              | 136.678  | 303.1659        |
| 0.2477              | 172.573  | 331.2125        |
| 0.2940              | 204.791  | 362.5294        |
| 0.3474              | 241.819  | 425.9056        |
| 0.4713              | 328.080  | 541.6578        |
| 0.5531              | 385.018  | 596.3774        |
| 0.6494              | 452.087  | 665.5525        |
| 0.7396              | 514.869  | 735.2752        |
| 0.8072              | 561.982  | 782.7491        |
| 0.8413              | 585.693  | 799.8655        |
| 0.8708              | 606.250  | 812.0263        |
| 0.9058              | 630.659  | 822.2783        |
| 0.9203              | 640.697  | 826.0476        |
| 0.9400              | 654.448  | 830.3437        |
| 0.9510              | 662.102  | 833.1711        |
| 0.9642              | 671.312  | 836.6638        |
| 0.9707              | 675.806  | 838.4742        |
| 0.9759              | 679.489  | 840.6536        |
| 0.9830              | 684.443  | 843.3041        |
| 0.9827              | 684.215  | 844.0232        |
| 0.9949              | 692.754  | 850.1935        |
| 0.9955              | 693.286  | 858.9395        |
| 0.9818              | 683.714  | 849.9347        |
| 0.9665              | 673.102  | 844.3924        |
| 0.9517              | 662.872  | 839.7358        |
| 0.9398              | 654.552  | 836.5126        |
| 0.9045              | 629.992  | 829.5714        |
| 0.8427              | 587.017  | 819.7928        |
| 0.7307              | 509.088  | 797.0579        |
| 0.5520              | 384.656  | 720.7115        |
| 0.3559              | 248.185  | 450.4016        |
| 0.1400              | 97.633   | 274.2692        |

### Table B.26 N<sub>2</sub> Sorption Data of Ni-Imp(I)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |  |
|----------|-------------|-------------|-------------|------------|--|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |  |
| 1375.5   | 0.011386    | 0.011386    | 0.331       | 0.331      |  |
| 933.6    | 0.004330    | 0.015766    | 0.188       | 0.519      |  |
| 735.2    | 0.003661    | 0.019427    | 0.199       | 0.718      |  |
| 605.2    | 0.003049    | 0.022476    | 0.201       | 0.919      |  |
| 460.8    | 0.006012    | 0.028488    | 0.522       | 1.441      |  |
| 365.7    | 0.004965    | 0.033453    | 0.543       | 1.984      |  |
| 284.1    | 0.007701    | 0.041153    | 1.084       | 3.069      |  |
| 232.6    | 0.006972    | 0.048126    | 1.199       | 4.268      |  |
| 178.6    | 0.019725    | 0.067850    | 4.417       | 8.684      |  |
| 141.3    | 0.024466    | 0.092316    | 6.926       | 15.610     |  |
| 116.1    | 0.035692    | 0.128008    | 12.295      | 27.905     |  |
| 88.5     | 0.105175    | 0.233183    | 47.510      | 75.415     |  |
| 65.0     | 0.163857    | 0.397039    | 100.809     | 176.225    |  |
| 49.2     | 0.169306    | 0.566346    | 137.566     | 313.790    |  |
| 39.6     | 0.137259    | 0.703604    | 138.660     | 452.450    |  |
| 30.8     | 0.328820    | 1.032425    | 427.499     | 879.949    |  |
| 24.4     | 0.269578    | 1.302003    | 442.423     | 1322.372   |  |
| 18.9     | 0.084059    | 1.386062    | 177.457     | 1499.829   |  |

**Table B.26** Continued (BJH Adsorption Pore Distribution)

**Table B.26** Continued (BJH Desorption Pore Distribution)

| Average  | Incremental | Cumulative  | Incremental | Cumulative |  |  |
|----------|-------------|-------------|-------------|------------|--|--|
| Diameter | Pore Volume | Pore Volume | Pore Area   | Pore Area  |  |  |
| (Å)      | (cc/g)      | (cc/g)      | (m²/g)      | (m²/g)     |  |  |
| 701.9    | 0.009448    | 0.009448    | 0.538       | 0.538      |  |  |
| 471.7    | 0.008049    | 0.017496    | 0.682       | 1.221      |  |  |
| 364.8    | 0.005636    | 0.023133    | 0.618       | 1.839      |  |  |
| 245.6    | 0.012482    | 0.035614    | 2.033       | 3.872      |  |  |
| 150.5    | 0.018467    | 0.054081    | 4.909       | 8.780      |  |  |
| 87.2     | 0.047376    | 0.101458    | 21.720      | 30.500     |  |  |
| 49.6     | 0.181735    | 0.283193    | 146.529     | 177.029    |  |  |
| 30.5     | 0.734346    | 1.017538    | 962.618     | 1139.648   |  |  |
| 17.9     | 0.361710    | 1.379248    | 810.254     | 1949.902   |  |  |

# **Table B.27**Summary of $N_2$ Sorption Data

|                                                                                              | MCM-41  | MCM-41  | MCM-41  | MCM-41  | Cu-Imp | Cu-Imp | Cu-HT  | Cu-HT  | Cu-LT  | Cu-LT  | Ni-HT  | Ni-HT   | Ni-Imp  |
|----------------------------------------------------------------------------------------------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|---------|---------|
|                                                                                              | (I)     | (II)    | (III)   | (IV)    | (I)    | (II)   | (I)    | (II)   | (I)    | (II)   | (I)    | (II)    | (I)     |
| AREA                                                                                         |         |         |         |         |        |        |        |        |        |        |        |         |         |
| BET Surface Area m <sup>2</sup> /g                                                           | 1207.80 | 1096.86 | 1042.65 | 1445.30 | 728.50 | 630.91 | 396.00 | 433.55 | 145.17 | 649.57 | 562.33 | 928.85  | 1129.54 |
| Single Point Surface Area (P/P0 0.2010) m <sup>2</sup> /g                                    | 1119.46 | 1043.72 | 997.42  | 1291.32 | -      | 582.56 | -      | 384.33 | 127.03 | 617.68 | 520.57 | 854.12  | 1060.98 |
| BJH Cumulative Ads. Sur. Area m <sup>2</sup> /g<br>(Pores Between 17 and 3000 A Diameter)    | 1561.04 | 1452.06 | 1314.38 | 1565.83 | 866.70 | 797.92 | 430.20 | 422.19 | 144.82 | 724.72 | 613.08 | 1084.45 | 1499.83 |
| BJH Cumulative Des. Surface Area m <sup>2</sup> /g<br>(Pores Between 17 and 3000 A Diameter) | 1790.23 | 1812.09 | 1965.69 | 1622.37 | 878.40 | 928.73 | 389.60 | 471.49 | 173.42 | 765.54 | 720.24 | 1262.45 | 1949.90 |
|                                                                                              |         |         |         | VOL     | JME    |        |        |        |        |        |        |         |         |
| Single Point Total Pore Volume cc/g<br>(Pores < 1382.3854 A Diameter at P/P0 0.9858)         | 1.02    | 0.89    | 0.89    | 0.85    | -      | 0.45   | -      | 0.37   | 0.28   | 1.29   | 0.52   | 0.78    | 1.31    |
| BJH Cumulative Ads. Pore Volume cc/g<br>(Pores Between 17 and 3000 A Diameter)               | 1.17    | 1.02    | 1.00    | 1.05    | 1.09   | 0.53   | 0.54   | 0.42   | 0.30   | 1.33   | 0.59   | 0.91    | 1.39    |
| BJH Cumulative Des. Pore Volume cc/g<br>(Pores Between 17 and 3000 A Diameter )              | 1.17    | 1.03    | 0.99    | 1.05    | 1.09   | 0.53   | 0.52   | 0.41   | 0.31   | 1.27   | 0.59   | 0.92    | 1.38    |
| PORE SIZE                                                                                    |         |         |         |         |        |        |        |        |        |        |        |         |         |
| Average Pore Diameter Å (4V/A by BET)                                                        | 33.84   | 32.50   | 33.98   | 23.42   | -      | 28.50  | -      | 33.74  | 77.44  | 79.19  | 37.11  | 33.55   | 46.23   |
| BJH Adsorption Pore Diameter Å (4V/A)                                                        | 30.09   | 28.21   | 30.38   | 26.84   | 27.33  | 26.53  | 24.51  | 40.09  | 82.78  | 73.23  | 38.37  | 33.50   | 36.97   |
| BJH Desorption Pore Diameter Å (4V/A)                                                        | 26.21   | 22.63   | 20.17   | 26.01   | 27.38  | 22.90  | 23.19  | 34.64  | 70.65  | 66.12  | 32.56  | 29.05   | 28.29   |

116

#### **B.4 Scanning Electron Microscopy**





Figure B.4 SEM of MCM-41(I)

Figure B.5 SEM of MCM-41(I)



Figure B.6 SEM of Cu-Imp(I)



Figure B.7 SEM of Cu-Imp(I)



Figure B.8 SEM of Cu-Imp(I)



Figure B.9 SEM of Cu-Imp(I)



Figure B.10 SEM of Cu-HT(I)



Figure B.11 SEM of Cu-HT(I)



Figure B.12 SEM of Cu-LT(I)



Figure B.14 SEM of Cu-LT(I)



Figure B.13 SEM of Cu-LT(I)



Figure B.15 SEM of Cu-LT(I)



Figure B.16 SEM of Cu-LT(I)

#### B.5 X-ray Fluorescence

| Sample ID  | CuO wt% | SiO <sub>2</sub> wt% | Cu (mol) | Si (mol) | Cu/Si mol ratio |
|------------|---------|----------------------|----------|----------|-----------------|
| Cu-Imp(I)  | 17.754  | 80.207               | 0.223    | 1.337    | 0.167           |
| Cu-Imp(II) | 19.100  | 79.190               | 0.240    | 1.320    | 0.182           |
| Cu-HT(I)   | 22.651  | 76.924               | 0.285    | 1.282    | 0.222           |
| Cu-HT(II)  | 23.600  | 72.400               | 0.297    | 1.207    | 0.246           |
| Cu-LT(I)   | 0.519   | 98.988               | 0.007    | 1.650    | 0.004           |
| Cu-LT(II)  | 5.100   | 87.880               | 0.064    | 1.465    | 0.044           |

 Table B.28 XRF analyses of Cu-MCM-41 type catalytic materials

 Table B.29 XRF analyses of Ni-MCM-41 type catalytic materials

| Sample ID | NiO wt% | SiO <sub>2</sub> wt% | Ni (mol) | Si (mol) | Ni/Si mol ratio |
|-----------|---------|----------------------|----------|----------|-----------------|
| Ni-HT(I)  | 22.100  | 76.500               | 0.277    | 1.275    | 0.218           |
| Ni-HT(II) | 11.500  | 84.800               | 0.144    | 1.413    | 0.102           |
| Ni-Imp(I) | 6.100   | 90.800               | 0.077    | 1.513    | 0.051           |

### **B.6 Energy Dispersive Spectroscopy**







Figure B.18 EDS of Cu-Imp(II)







Figure B.20 EDS of Cu-HT(II)



Figure B.21 EDS of Cu-LT(I)



Figure B.22 EDS of Cu-LT(II)



Figure B.23 EDS of Ni-HT(I)



Figure B.24 EDS of Ni-HT(II)


Figure B.25 EDS of Ni-Imp(I)

## **B.7 Atomic Absorption Spectroscopy**

| Sample ID  | Cu wt% | Cu (mol) | Si wt % | Si (mol) | Cu/Si mol ratio |
|------------|--------|----------|---------|----------|-----------------|
| Cu-Imp(I)  | 16.493 | 0.260    | 27.357  | 0.974    | 0.266           |
| Cu-Imp(II) | 13.714 | 0.216    | 26.855  | 0.956    | 0.226           |
| Cu-HT(I)   | 13.440 | 0.212    | 28.801  | 1.025    | 0.206           |
| Cu-HT(II)  | 10.883 | 0.171    | 31.614  | 1.126    | 0.152           |
| Cu-LT(II)  | 2.042  | 0.032    | 41.122  | 1.464    | 0.022           |

Table B.30 AAS analyses of Cu-MCM-41 type catalytic materials

Table B.31 AAS analyses of Ni-MCM-41 type catalytic materials

| Sample ID | Ni wt% | Ni (mol) | Si wt % | Si (mol) | Ni/Si mol ratio |
|-----------|--------|----------|---------|----------|-----------------|
| Ni-HT(I)  | 13.873 | 0.236    | 25.217  | 0.898    | 0.263           |
| Ni-HT(II) | 10.589 | 0.180    | 30.401  | 1.082    | 0.167           |
| Ni-Imp(I) | 6.081  | 0.104    | 27.652  | 0.985    | 0.105           |

## **B.8 Temperature Programmed Reduction**

The TPR measurements in terms of temperatures are given in Figures B.26, B.27 and B.28, respectively.



Figure B.26 TPR analysis of Cu-Imp(I)



Figure B.27 TPR analysis of Cu-HT(I)



Figure B.28 TPR analysis of Cu-LT(II)