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ABSTRACT

VOICE TRANSFORMATION AND DEVELOPMENT OF RELATED

SPEECH ANALYSIS TOOLS FOR TURKISH

Salor, Özgül

Ph. D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mübeccel Demirekler

January 2005, 132 pages

In this dissertation, new approaches in the design of a voice transformation

(VT) system for Turkish are proposed. Objectives in this thesis are two-fold.

The first objective is to develop standard speech corpora and segmentation

tools for Turkish speech research. The second objective is to consider new

approaches for VT.

A triphone-balanced set of 2462 Turkish sentences is prepared for analysis.

Audio corpus of 100 speakers, each uttering 40 sentences out of the 2462-

sentence set, is used to train a speech recognition system designed for English.

This system is ported to Turkish to obtain a phonetic aligner and a phoneme

recognizer. The triphone-balanced sentence set and the phonetic aligner are

used to develop a speech corpus for VT.

A new voice transformation approach based on Mixed Excitation Linear

Prediction (MELP) speech coding framework is proposed. Multi-stage vector

quantization of MELP is used to obtain speaker-specific line-spectral frequency

(LSF) codebooks for source and target speakers. Histograms mapping the LSF
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spaces of source and target speakers are used for transformation in the baseline

system. The baseline system is improved by a dynamic programming approach

to estimate the target LSFs. As a second approach to the VT problem, quan-

tizing the LSFs using k-means clustering algorithm is applied with dimension

reduction of LSFs using principle component analysis. This approach provides

speaker-specific codebooks out of the speech corpus instead of using MELP’s

pre-trained LSF codebook. Evaluations show that both dimension reduction

and dynamic programming improve the transformation performance.

Keywords: voice transformation, phonetic aligner, phoneme recognizer, pho-

netic alphabet, speech corpus
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ÖZ

SES ÇEVİRME VE TÜRKÇE İÇİN İLGİLİ KONUŞMA ANALİZİ

ARAÇLARI GELİŞTİRME

Salor, Özgül

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mübeccel Demirekler

Ocak 2005, 132 sayfa

Bu tezde, Türkçe ses dönüştürme (SD) sistemi tasarlamak için yeni yaklaşımlar

önerilmiştir. Tezde iki amaç vardır. İlk amaç, SD sistemi geliştirmek için

gerekli olan, konuşma veritabanını ve bölütleme araçlarını geliştirmek, ikinci

amaç ise SD için yeni yaklaşımlar denemektir.

Analiz için, 2462 Türkçe tümce içeren üçlü-ses dengeli bir küme hazırlanmıştır.

Her konuşmacının 2462 tümce kümesinden 40’ar tümce seslendirdiği, 100

konuşmacılık bir veritabanı, İngilizce için tasarlanmış bir konuşma tanıma sis-

temini eğitmek üzere kullanılmıştır. Bu eğitim sonucu, sistem Türkçe için

çalışır duruma getirilmiş ve fonetik hizalayıcı ile fonem tanıyıcı araçlar elde

edilmiştir. Üçlü-ses dengeli tümce kümesi ve fonetik hizalayıcı, SD sistemi için

ses veritabanı geliştirilmesinde kullanılmıştır.

SD için yeni oluşturulan yöntemlerin ilki, MELP (Mixed Excitation Lin-

ear Prediction) konuşma kodlama algoritmasına dayanmaktadır. MELP’in

çok katlı vektör nicemlemesi kaynak ve hedef konuşmacılar için konuşmacıya

özgü çizgisel spektrum frekansı (ÇSF) kod çizelgelerinin oluşturulmasında kul-

lanılmıştır. Taban sistemde dönüştürme için, kaynak ve hedef konusmacıların
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ÇSF uzaylarını eşleyen histogramlar kullanılmıştır. Taban sistemin hedef ÇSF’leri

kestirmesi dinamik programlama yaklaşımıyla geliştirilmiştir. İkinci bir yaklaşım

olarak, ÇSF’leri nicemlemek için, ana bileşenler analizi ile ÇSF boyutu düşürülerek,

k-ortalama topaklama algoritması kullanılmıştır. Bu yaklaşım, MELP’in önceden

eğitilmiş kod çizelgesini kullanmak yerine, konuşmacıya özgü kod çizelgeleri

oluşturulmasını sağlamıştır. Nesnel ve öznel değerlendirmeler, boyut düşürmenin

ve dinamik programlamanın dönüştürme başarımını arttırdığını göstermiştir.

Anahtar Kelimeler: Ses çevirme, fonetik hizalayıcı, fonem tanıyıcı, fonetik

alfabe, konuşma veritabanı
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her invaluable guidance and encouragement throughout my graduate studies.

Her contributions in every stage of this research are gratefully acknowledged.

Her guidance and support were critical to the formulations developed in this

dissertation.

I would also like to thank Dr. Bryan Pellom for advising me during the

17-month period I spent at the Center for Spoken Language Research (CSLR)

of University of Colorado at Boulder, USA. I am grateful to him not only for

his technical guidance but also for his hospitality at CSLR. I would also like

to thank Prof. Dr. John Hansen at CSLR for spending his time to give me

technical suggestions and comments on my work.

I am grateful to my thesis committee member Assoc. Prof. Dr. Tolga
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CHAPTER 1

INTRODUCTION

One of the most natural, convenient and useful means of communication for

most people is speech, which conveys not only a message, but also informa-

tion such as emotion, attitude and speaker individuality. As the computer

technology advanced within the past two decades, the realization of a man-

machine interface to facilitate communication between people and computers

has gained importance and, naturally, speech has been focused on as a medium

for such communication. Therefore, various speech technologies such as speech

synthesis, recognition, voice transformation and coding for different languages,

have been worked on widely in recent years.

In this dissertation, we consider new approaches in the design of a newly

emerging speech technology called voice transformation (VT) for Turkish. The

goal of VT is to modify a source speaker’s speech such that it is perceived as if

a target speaker had spoken it. Our objectives in this thesis are two-fold. The

first objective is to develop a standard speech corpora and segmentation tools

for Turkish speech research, which are required to develop a VT system. The

second is to consider new approaches for VT.

In this chapter, we first motivate our need for developing speech corpora

and speech recognition tools for Turkish. Then, we motivate the use of VT

systems by a number of example applications, followed by a brief description

of current VT approaches. We then present a summary of our approach to the

problem of VT and finally give the organization of the thesis.
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1.1 Motivation

Developing any kind of speech technology, such as a VT algorithm, in a new

language requires new tools and strategies to be developed specific to that

language. Speech and text corpora designed, for the acquisition of acoustic-

phonetic knowledge, are required in addition to speech segmentation tools to

organize the corpora. Turkish has been lacking a standard corpus of read

speech, which is similar to TIMIT [1], the American English corpus of read

speech. TIMIT has been designed for development and evaluation of auto-

matic speech recognition systems and it contains a total of 6300 microphone

quality recorded sentences, 10 sentences spoken by each of 630 speakers from

8 major dialect regions of the United States. There have been recent attempts

to develop audio and text corpora for Turkish. Interactive Systems Laborato-

ries at Carnegie Mellon University has collected a multilingual audio corpus,

GlobalPhone [2], which covers 9 of the 12 most widespread languages of the

world. It includes 22.2 hours of read Turkish speech from 100 speakers of na-

tive speakers. Text is chosen from the political and economical articles selected

from national newspapers. TÜBİTAK, The Scientific and Technical Research

Council of Turkey, has collected an audio corpus of 65 speakers, each reading

373 words and 15 sentences [3]. This corpus was designed to be triphone-

balanced; however, it is telephony speech. Another telephony speech Turkish

corpus has been collected through the OrienTel Project [4], which aims to

enable the project’s participants to design and develop multilingual interac-

tive communication services for the Mediterranean and the Middle East. This

corpus includes segmented telephony speech from 1700 speakers, each uttering

about 6 minutes of speech [5]. Turkish has been lacking a triphone-balanced

high quality microphone speech.

Our motivation to develop tools for automatic segmentation of Turkish

speech raised from our need to segment the database collected for our VT re-

search. There are numerous applications in which large quantities of phoneti-

cally segmented speech is necessary. For example, model parameters for large
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vocabulary speech recognizers are estimated from thousands of phonetically

segmented speech. Speech synthesizers based on waveform concatenation can

also require thousands of segmented speech segments. Since manual segmen-

tation of such databases is time consuming, automatic speech segmentation

algorithms have been proposed in order to provide efficient phonetic labelling.

The segmentation tools we have developed have also been used to develop

a Turkish text-to-speech (TTS) engine which is given in Appendix A. This

work is not in the scope of this thesis; however, it has been developed as a

side-product using the segmentation tools developed in this thesis.

Our second goal is to consider new approaches in the design of a VT system.

The sound of a person’s voice plays an important part in daily communica-

tion. This is called speaker identity and it allows us to recognize people from

their voices alone. It also makes it possible to differentiate between speak-

ers, for example, on a radio program. Speaker identity can be controlled by

means of a VT system. There are various applications of a VT system: An

example is the integration of a VT system with a TTS synthesizer. Today’s

state-of-the-art TTS systems are based on concatenative synthesis method in

which segments from a natural database are combined together to generate a

new utterance. The creation of such a database requires a significant amount

of recording, segmenting and labelling effort. For example, a speaker may be

required to talk in a restricted way for several hours to collect even a relatively

small speech inventory of 2500 diphones [6]. For an inexperienced speaker, this

may even take more than 10 hours [7]. In addition, trained labellers can spend

10-100 hours for every hour of recorded speech, depending on the complexity of

transcriptions [6]. Using VT technology, new synthesis voices can be created

by transforming the voice of the speaker of the inventory to new speakers’

voices. Speaker model of the source and the target speakers and hence the

transformation model can be extracted using a much smaller inventory than

the original TTS inventory. Using different speaker models, the synthesis sys-

tem can generate speech signals with different speaker identities from a single
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speaker database which belongs to the source speaker [8]. This approach can

also be used to develop the voice of a speaking-impaired person who can pro-

vide limited amount of speech data, or the voice of an unavailable speaker,

whose small amount of previous speech data is owned. For concatenative TTS

systems, VT technology can also be used to preserve the voice quality of the

speaker during the long recording session. The perceptual quality of a speaker

often changes during long recording hours, and VT can be applied on the re-

sulting corpus such that the final parts of the database have the same speech

quality with the beginning part of the database [9].

In today’s state-of-the-art VT systems there are two basic modes: Training

and transformation. In the training mode, the system uses speech samples from

the source and the target and it tries to estimate a transformation function

from the source speaker’s speech to that of the target speaker. Once the

training part has been completed, the system is ready to transform the source

speaker’s speech to make it sound like the target speaker. One solution to

VT problem can be thought of as a system obtained by cascading a speech

recognizer and a text-to-speech synthesizer. Although this seems to be an

interesting solution to the VT problem, because of the lack of good quality

speech recognition and synthesis systems such approaches seem to be feasible

in the future.

1.2 Contributions

The major contributions of this thesis can be summarized as follows:

• A phonetic alphabet for Turkish which considers not only phonemes but

also all allophones listed in the phonetic dictionary given in [10] has been

developed. A triphone-balanced (in terms of the phonetic alphabet devel-

oped) 2462-sentence text has been prepared. Then a triphone-balanced

audio corpus of 193 speakers, uttering 40 balanced sentences each, for

Turkish has been collected.
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• Automatic segmentation tools (a phonetic aligner and a phoneme rec-

ognizer) for Turkish have been developed and the phonetic aligner has

been used to segment our audio corpus.

• A new VT approach based on Mixed Excitation Linear Prediction, MELP

[11], speech coding algorithm framework has been developed and evalu-

ated.

• A dynamic programming approach which considers the dependence be-

tween transformed frames has been developed and used to improve the

synthetic speech quality. The allocation of the spectral peaks indepen-

dently in each frame has been reported as a problem remained to be

solved in VT systems.

• A new method for quantizing line spectral frequencies has been used,

which includes dimension reduction of the feature space. Quantization

of the reduced dimensions has improved the synthetic speech quality.

1.3 Outline of the Thesis

Chapter 2 gives a detailed survey on works related to the objective of this thesis

together with that on the application field of our results, that is: VT models

and evaluations. We present the phonetic alphabet, audio corpus, the phonetic

aligner, and phoneme recognizer designed for Turkish in Chapter 3. We also

present the diphone corpus collected for the Turkish TTS system developed

using the Festival speech synthesis system in Appendix A. The baseline VT

system using MELP speech coding framework and the improvements on this

system have been explained in Chapter 4. The dynamic programming ap-

proach is also explained in Chapter 4. Chapter 5 introduces another method

for quantizing line spectral frequencies with dimension reduction applied on

our previous framework for VT. Objective and subjective evaluation results

are given and compared for both systems in Chapters 4 and 5. Chapter 6

concludes the thesis, providing also notes on future works.
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CHAPTER 2

AN OVERVIEW OF VOICE

TRANSFORMATION SYSTEMS

In this chapter, a literature survey on published works in the area of voice

transformation (VT) systems is presented. The first section introduces the

basic properties of the speech signal which should be considered while de-

veloping a VT system. Next section introduces components of a VT system

and summarizes the current VT techniques. Finally, the last section presents

evaluation methods for a VT system.

2.1 Basic Properties of the Speech Signal

Basics of the speech production will be presented in the first part of this section.

The relationship between the speech signal features and speaker individuality

is the subject of the second part.

2.1.1 Speech Production

Human speech is produced by air-pressure emanating from the mouth and the

nostrils of a speaker. The compression of the lungs induces a stream of air

flowing through the vocal tract, which begins at the vocal cords, or glottis,

and ends at the lips. This air flow is the source of four types of sounds [6] :

• Aspiration noise, which is the sound of air rushing through the entire

vocal tract, similar to breathing through the mouth.
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• Frication noise, which is the sound of the turbulent air at a point of

narrow constriction, for example during the initial sound in ”fair”.

• Plosion, which is the sound of air-burst, for example during the initial

consonant in ”ton”.

• Voicing, which is a quasi-periodic vibration of the glottis, for example

during the vowel in ”key”. The frequency of the vibration is called the

fundamental frequency or F0, and it is perceived as pitch.

These four types of sounds may occur in any combination. These sounds

are further modified by the vocal tract shape, which is determined by the

following organs:

• Vocal cords (glottis): When the vocal cords are close together and

oscillate against one another during a speech sound, the sound is said to

be voiced. When the folds are too slack or tense to vibrate, the sound is

said to be unvoiced.

• Velum (soft Plate): It operates as a valve, which opens to allow pas-

sage of air through the nasal cavity. Sounds produced when it is open

are called nasals, which are m and n.

• Hard palate: This is the long and relatively hard surface at the roof

inside mouth, and it enables consonant articulation when the tongue is

placed against it.

• Tongue: This is the flexible articulator. It is shaped away from the

palate for vowels, and it is placed close or on the palate or teeth for

consonant articulation.

• Teeth: This is another place of articulation used to brace tongue for

certain consonants.

• Lips: Lips can be rounded or spread to affect vowel quality. They are

completely closed to stop the oral air flow in certain consonants (p, b,
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and m).

Different vocal tract shapes have different resonant frequencies, called for-

mants, which are instrumental in developing the nature of the different speech

sounds, called phonemes.

Many different models have been postulated for quantitatively describing

certain factors involved in the speech process. One of the most successful

models of acoustical speech behavior is the linear source-filter model, which

satisfies the basic criterion of modelling (being able to find mathematical rela-

tions which can be used to represent a limited physical situation with minimum

complexity and maximum accuracy) [12]. In this model, which will be used

throughout this thesis, a source or excitation waveform is input into a time-

varying filter. This view of speech production is very powerful, because it

can explain the majority of the speech phenomena [6]. The excitation wave-

form accounts for the physiological sound sources listed above. For example,

aspiration and frication noise can be modelled as random processes, plosion

as a step-function, and voicing as a pulse train. A number of glottal pulse

models have been proposed to describe the details of the pulse shape during

voicing [13], [14]. In most systems today, the excitation waveform is usually

classified into a voiced and an unvoiced signal, which can sometimes be mod-

elled in their simplest form as either a random signal or an impulse train with

varying pitch, respectively. The time-varying filter represents the contribution

of the vocal tract shape by selectively attenuating certain frequencies of the

excitation spectrum resulting in a speech waveform with a particular formant

structure for various speech sounds.

2.1.2 Voice Individuality

The speech signal contains many types of information. The signal carries

information about the message (what is said), about the speaker (who said

it) and the environment (where it was said). The task of VT is to change

the speaker information, i.e., the voice individuality, while preserving other
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information types. The factors that are relevant to voice individuality can be

categorized in terms of socio/psycho-logical versus physiological dimensions

[15]. Speaking style, which depends on factors like age, social status, dialect

and the community to which the speaker belongs, is socially conditioned. The

sound of voice, on the other hand, comes mainly from the physical properties of

the speech organs. Physical properties of the speaker affect the glottal source

frequency range (i.e., pitch range) and its frequency spectrum, and also the

power spectrum of the vocal tract for various positions. The characteristics of

a speaker are commonly divided into the following types of cues [6]:

• Segmental cues: Acoustic descriptors of segmental cues include for-

mant locations and bandwidths, spectral tilt, F0, and energy. Segmental

cues depend on the physical properties of the speech organs.

• Suprasegmental cues: These are related to the style of speaking, for

example the duration of phonemes and the evolution of F0 (intonation)

and energy (stress) over an utterance. These cues are influenced by

social and physiological conditions. Suprasegmental cues can be easily

changed at will. For example, it is easy for a speaker to slow his or her

speech, lower the voice or speak more softly. Therefore, impersonators

usually mimic suprasegmental characteristics [15]. However, some seg-

mental cues can be mimicked by impersonators who are specially skilled

in changing some part of their vocal tract physically or in modifying

the behavior of their glottal pulse [6]. Even formant frequencies and

bandwidths can be affected in this manner.

• Linguistic cues: These include particular choice of words, dialects and

accents. Our work in this thesis will focus on segmental and supraseg-

mental cues only. Linguistic cues are beyond the scope of this thesis.

Some of the segmental and suprasegmental cue differences between dif-

ferent speakers can be illustrated by comparing the waveforms and spectro-

grams of the same phrase ”Onun kaptanı” in Turkish uttered by two male
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Speaker-2

Speaker-1

Figure 2.1: Waveforms and spectrograms from two different male speakers of
Turkish, uttering the phrase - Onun Kaptanı. Sampling frequency is 8 kHz
and time axis is in seconds.

speakers in Figure 2.1. Durations of phonemes and amplitude contours are

different. Speaker-2 exhibits a more voiced structure in the spectrogram at

high frequency bands, while Speaker-1 has more discontinuities in his formant

structures as seen in the figure.

2.1.2.1 Speaker recognition by humans

Before investigating the effect of segmental or suprasegmental cues on voice

individuality, it is important to understand how accurate human listeners can

identify voices.

Humans are capable of identifying voices under various conditions and con-
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texts with a fairly high degree of accuracy if the voices are familiar to the lis-

tener; however, human speaker-recognition is actually far from being perfect.

The ability of one listener to recognize voices familiar to him or her from a

set included 29 familiar and 24 unfamiliar voices, has been measured in an

experiment, which had shown that 31% of the 29 familiar voices were correctly

identified from a single word, 66% from a single sentence and only 83% from

30 seconds of speech [6].

2.1.2.2 Relative effects of segmental and suprasegmental cues on

speaker individuality and human perception

This section summarizes the work in the literature which investigates the effects

of various segmental and suprasegmental cues on speaker discrimination by

humans.

In [16], a subjective listening experiment made on synthetic speech com-

pared the effects of the LPC spectral envelope and LPC residual on speaker

identity. The authors concluded that LPC spectral envelope has a greater

effect on speaker identification than the LPC residual.

In another experiment, the relation between the perceptual discrimination

of speaker identity and the difference in elementary acoustical parameters has

been explored [17]. The authors have studied hybrid voices produced by in-

terchanging the approximated glottal source wave and vocal tract spectrum

among speakers. The results suggest that the vocal tract has a relatively

greater contribution than the glottal source characteristics, to the ability of

humans to discriminate speakers. Another experiment made on the TIMIT

continuous speech corpus [1] has shown that median pitch and vocal tract

length for males; median pitch, glottal tilt and average duration of unvoiced

speech segments for females are the major dimensions of subjective speaker

similarity judgements [18]. These results confirm that average pitch is the

most identifying cue in discriminating between speakers followed by segmental

cues.
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In [19], it is reported that voice personality is more sensitive to the for-

mant frequency shift than to the pitch frequency and bandwidth changes.

Voice personality is lost for the uniform shift of approximately five percent

according to subjective perception tests [19]. It has also been reported that

for formant shifts, personality is more sensitive to the lower three formants

than to the higher ones, while for bandwidth manipulation it is more sensitive

to the higher formants. Compared to the formant frequency manipulation,

perception of voice-personality is reported to be far less sensitive to the pitch

manipulation. Personality is retained for the increase or decrease of average

pitch frequency less than 1.45 to 0.6 times of the original speech. In [20],

Kuwaba also reported that it is necessary to change the pitch frequency by as

much as 50% or more toward either low or high frequency regions to lose voice

individuality. Another study in [21] reports that there are also speaker indi-

vidualities in pitch frequency contours and some specific parameters related to

the dynamics of pitch contours. Another interesting result they have reported

is that time averaged pitch contours play a much smaller role in speaker indi-

viduality than dynamics of the pitch contours.

2.2 An Overview of Voice Transformation Sys-

tems

This section introduces parts of a VT system briefly and summarizes work on

VT research in the literature. In a VT system, there are two basic modes:

Training and transformation. In the training mode, the system uses speech

samples from the source and the target and it tries to estimate a transformation

function from the source speaker’s speech to that of the target speaker. Once

the training part has been completed, the system is ready to transform the

source speaker’s speech to make it sound like the target speaker.

A VT system should have at least three basic components: A speech corpus,

a speech model and a transformation function. The speech corpus supplies
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speech data from both the source and the target speakers. This corpus is

used both for training and testing. Speech model is a mathematical model of

the speech signal. The model parameters are selected according to the desired

transformation. The model parameters, which are called features, are obtained

during training. In the transformation mode, these features are transformed

using the transformation function and the speech is re-synthesized using the

transformed features.

2.2.1 Speech Corpus

The speech corpus provides necessary speech data for training the transforma-

tion function and for testing the performance of the VT system using objective

and subjective evaluation measures. The speech corpora may contain as little

as five vowels [22, 23], a set of words [24, 25], short sentences [26], or one

hour of read speech [27]. Alternatively, speech databases created for text-to-

speech synthesizers have been used [8, 28]. The optimal size of the speech

corpus depends on the application. In [6], a special corpus, which consisted of

50 phonetically-balanced sentences of English, has been designed. Voice has

also been recorded carefully, such that the subjects were asked to mimic pre-

recorded utterances, which were slow and with flat intonation. This helped

the speech of different speakers to be aligned naturally as much as possible.

Reducing the alignment errors increases the transformation performance.

2.2.2 Speech Modelling

In VT systems, the ideal speech model should produce a wide variety of speech

that is intelligible, as well as natural and accurate with respect to speaker

recognizability. These can be achieved with numerous number of speech pa-

rameters, however, as the number of parameters increase, it is harder to find a

robust transformation function. Therefore, it is important that a well-matched

speech model and transformation function are used.

In Section 2.1.2, it has been shown that voice individuality is found in all
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acoustic cues with varying degrees. However, researchers have found evidence

that segmental features and the average behavior of suprasegmental features

(rate of speech and F0) are sufficient for a high degree of speaker discrimi-

nation by humans [6]. Studies on speaker identification have shown that the

spectral envelope alone contain a great deal of information to identify speakers

with the help of a computer [29]. Therefore, VT systems today usually focus

on transforming a representation of the short term spectral envelope, while

adjusting the source speaker’s F0, energy and rate of speech to match those

of the target speaker on the average. The speech processing in VT systems is

usually performed on small sections of speech, which are called frames, at a

time.

The source-filter model which approximates the vocal tract as a slowly

varying filter by fitting a spectral envelope to the magnitude spectrum of a

short segment of speech for representing the speech spectrum is commonly

used in VT systems. This approach has been mentioned in Section 2.1. The

model parameters of the source-filter model are often obtained by linear pre-

diction, which will be defined in Chapter 4. The filter coefficients are called

linear prediction coefficients (LPC). LPCs are converted to a number of al-

ternative representations with more desirable properties such as the ability to

be interpolated robustly. For example, cepstral coefficients [30], line spectral

frequencies (LSFs) [26, 8, 31], formant frequencies and bandwidths [32], and

log area ratios [24] have been used in VT systems.

In LPC analysis, inverse filtering a speech segment with its corresponding

LPC filter gives the approximate glottal excitation waveform. It is possible to

keep the residual signal unchanged spectrally in a VT algorithm as in [25, 8].

The result is a more natural sounding speech signal [6]. However, since the

residual signal also carries a certain degree of speaker information, modifying

the residual is also necessary to obtain more similar speech with the target.

Several methods have been proposed to modify the LPC residual in addition

to the LPC spectrum. In [26] and [27], a codebook-based transformation of
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LPC residuals using a weighted combination of excitation filters has been for-

mulated. The excitation filters have been derived from the average source

and target residual spectra within one class. Both the source speech spec-

trum envelope and the LPC residual spectrum are transformed based on a

single classification. This method, however, has been reported to cause speech

quality degradations, so the authors have applied a bandwidth modification

method to increase speech quality [27]. In [6], a new approach for LPC residual

modification has been proposed. Instead of transforming the source residual

directly, a relation between the LPC spectrum and the LPC residual of the tar-

get speaker is obtained. Then, that relation is used to predict the target LPC

residual from the transformed LPC spectral envelopes during voiced speech.

It has been reported that, modifying the LPC residual together with the LPC

spectral modification produces perceptually closer speech to the target; how-

ever, voice quality is quite below the natural stimuli [6].

2.2.3 Transformation Methods

A transformation function captures the relationship between the source speaker

and the target speaker during training, and it is applied on the source speaker’s

speech during the transformation mode of a VT system. The transformation

function can be a continuous function to be applied on the speech features

[6, 9, 33], or it can be a discrete mapping from the source speaker’s feature

space to the that of the target [24, 27, 34].

The transformation function is obtained from the training speech corpus of

both the target and the source speakers. Naturally, the durations of the linguis-

tic units differ between speakers, even when producing the same utterances.

Therefore, stream of features stemming from both speakers should be aligned

in time before training. The time-alignment has been implemented by a dy-

namic time warping (DTW) algorithm [35] in most of the previous approaches

[25, 24, 32, 28, 6]. Some approaches use unsupervised Hidden Markov Model

(HMM) [26], or forced-alignment speech recognition [8]. Some approaches use
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forced-alignment and DTW together [31, 34], to warp segments of speech inside

phoneme boundaries, or some use phonetic classifiers as in [27].

One of the earliest approaches to the spectral conversion problem is the

mapping codebook method [24], which was originally introduced for speaker

adaptation [36]. In this approach, a clustering procedure (vector quantization)

is applied to the spectral parameters of both the source and the target speak-

ers. The resulting vector quantization codebooks are used to obtain a mapping

codebook whose entries represent the transformed spectral vectors correspond-

ing to the centroids of the source speaker codebook. The main shortcoming of

this method is the fact that the parameter space of the converted envelope is

limited to a discrete set of envelopes. Several variations of this basic scheme

have been investigated in order to overcome this limitation. Using piecewise

linear conversion rules has been suggested to modify the formant frequencies

and the spectral intensity [32]. The conversion rules are generated statistically

using vector quantized parameters of the two speakers. A similar approach is

given in [37], where an orthogonal vector space conversion technique is pro-

posed to transform LPC cepstral coefficients. This technique consists of princi-

ple component decomposition by applying the Karhunen-Loeve transformation

and minimum mean-square error coordinate transformation. The spectral in-

terpolation approach described in [38] uses interpolation among the spectrum

of several speakers to determine the converted spectrum. For adaptation to

a target speaker, the optimal interpolation coefficients are determined so as

to minimize the distance between the target speaker’s spectrum and the spec-

trum generated by interpolation. The pre-stored data of the multiple speakers

provide the information on speech spectral consistency, characteristics and dy-

namics of the spectral structure of speech. Some researchers suggest that a

possible way to improve the quality of the converted speech is to modify only

some specific aspects of the spectral envelope, such as formant frequency loca-

tions [22, 32]. In [23], using artificial neural networks has been suggested for

voice conversion. Formants are used to represent the vocal tract system fea-
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tures and a formant vocoder is used for synthesis and formant transformation

is captured by a neural network. In [27], mapping codebooks have been used

to map the LSFs of source and target speakers. In a recent publication [39], a

sub-band based version of the same method has been proposed, which ensures

higher quality conversion at sampling rates higher than 16 kHz. The same

conversion scheme as in [27] is applied, but only the lower band of the speech

signal is transformed while keeping the higher frequency sub-bands untouched.

This method is reported to be providing higher quality speech output than the

full-band conversion for high sampling rates.

Several researchers have proposed to use an individual transformation func-

tion for each class of speech sound. Each transformation function represents a

relationship between source and target features of one class. Two types of lo-

cal transformation approaches have been used: linear regression and dynamic

frequency warping (DFW) [25]. For each class, an algorithm computed the op-

timal transformations for both linear regression and DFW during the training

process. Similarly, in [32], a set of linear transformation rules, which depend

on the input class, has been used. The techniques in [25] and [32] use discrete

transformation functions which are capable of producing an infinite number of

target features. This is more advantageous than the codebook based methods,

which result in a discrete set of converted envelopes. However, discontinuities

can still occur in the output due to the discrete nature of selecting a single

local transformation function.

Continuous transformation functions have also been offered [23, 6, 28]. In

[23], formant frequencies have been transformed with the help of an artificial

neural network. They have found that the network generalized properly to

unseen data. Another popular continuous transformation technique is using

Gaussian mixture models (GMM) to describe and map the source and target

feature distributions. In [9], a classification of the source feature space has been

performed by constructing a GMM that modelled the source feature space.

Then parameters of a mixture of locally linear transformation functions are

17



estimated by solving normal equations for a least-squares problem based on

the correspondence between source and target features. Discrete mel-frequency

cepstrum coefficients have been used to model the source and target features.

In [8, 6] probabilistic and locally linear transformation functions have been

proposed using a GMM which is estimated on the joint density of source and

target features. Modelling the joint density rather than the source density

alone can lead to a better allocation of mixture components and avoids certain

numerical problems when inverting large and poorly conditioned matrices [6].

2.3 Evaluation of VT Systems

Evaluation of VT systems are realized by both objective scoring tests and

subjective listening experiments. Objective evaluation is useful in comparing

algorithmic alternatives within the same VT system. On the other hand, a

perceptual system evaluation is inevitable, because the output of a VT system

is intended to be heard by human-beings.

2.3.1 Objective Evaluation

Objective measures are usually based on computing the distortion between two

speech signals. In VT systems, the average spectral distortion (SD) between the

target and the transformed speech is compared to the SD between the target

and source. SD(target, converted) should be smaller than SD(target, source)

for a successful VT system. This comparison has been used by many re-

searchers [24, 27, 30, 8, 6]. Another method is using a simple speaker ver-

ification system to test the performance of the VT system objectively [40].

Comparing the log-likelihood of the source and the transformed speech using

the target’s probability density function gives the amount of reduction in the

distance from the source speaker to the target by the transformation [27, 31].
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2.3.2 Subjective Evaluation

The perceptual evaluation of a VT system could measure several dimensions:

Intelligibility (Do listeners understand what is said?), naturalness (Does the

transformed speech sound natural or synthetic?), and speaker recognizability

(Does it sound like the target speaker speaking?).

The most popular perceptual test for VT systems in the literature is the

ABX test, which measures speaker recognizability. In this test, subjects listen

to three stimuli, A, B, and X. They are asked to decide whether X is closer

to A or B. X is typically the transformed speech, and A and B are the source

and the target speakers. Utterances can be short phonetic units [30], 2-3 word

phrases [27], or whole sentences [6, 34]. One useful property of ABX test is

the elimination of any response bias, i.e. people are equally likely to choose

A or B if indeed A=B [6]. The disadvantage is that it involves 3 stimuli,

which may cause memory effects, such as forgetting the first utterance while

listening to the third. Also, a score of 100% does not determine whether the

transformed speech is indistinguishable from the target speaker’s speech, it

only indicates that the transformed speech is closer to the target speech. In

[8], during the evaluation of a VT system in conjunction with a TTS system,

scores of 97.5% for male-female conversion and 52% for male-male conversions

have been obtained. On the other hand, a result of 100% for male-female and

78% for male-male transformations with 3 subjects listening to ten 2-3 word

phrases has been reported in [27]. 80% and 77% have been reported for two

different methods, using 20 subjects listening to 10 sentences in [34].

An alternative to the ABX test is the similarity test. Subjects listen to

pairs of utterances instead of triads in this type of test, and they rate the

similarity of the utterances in each pair. This test has also been used widely

in the literature [24, 6]. This test can also be used as a preference test to

check the naturalness of the transformed speech with respect to various system

parameters [30].

Naturalness of the transformed speech can be measured by carrying out
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a mean opinion score (MOS) test [35, page 336]. In a standard MOS test

for characterizing the quality of a speech signal, listeners rate the transformed

speech with ratings from 1 to 5 (”bad”, ”poor”, ”fair”, ”good”, ”excellent”). In

[8], a MOS test has been used to test the quality of the transformed speech. In

[27], the intelligibility of the transformed nonsense speech has been measured.

It has been found that the phone accuracy of the transformed speech was

similar to that of the source speaker’s speech.

In [6], some problems of the existing subjective listening tests (i.e. tests

being in small scale, lack of standardization, shortcomings of the ABX tests,

lack of a standard VT corpus for testing, and etc.) have been addressed and a

new evaluation strategy has been proposed for measuring the transformation

performance with a focus on speaker recognizability. The natural ability of

humans to distinguish and recognize the speakers of the speech corpus were

measured, and these measurements served as a baseline against which the

system’s transformation performance was compared.
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CHAPTER 3

SPEECH CORPORA AND RECOGNITION

TOOLS DEVELOPED FOR TURKISH

SPEECH RESEARCH

In this chapter, we present our work on speech corpora, analysis and recogni-

tion tools developed for Turkish, which we have also used for our later work

on speech synthesis and VT.

3.1 Introduction

To develop a speech synthesizer and a VT system for Turkish, we needed

to collect and segment a large audio corpus of at least two speakers. Since

segmenting a speech database manually is both time consuming and prone to

human errors, we had to focus on developing an automatic speech segmenter for

Turkish. Moreover, the audio corpus to be used for VT training and evaluations

had to have maximal phonetic coverage for our VT research to be reliable. This

chapter focuses on our preliminary work on Turkish speech, which we believe

to be useful also for researchers working in the area of Turkish speech1.

Developing speech analysis/synthesis tools specific to a language requires

1

The part of the research in this chapter and the work on speech synthesis given in Ap-
pendix A were achieved during a 17-month-period spent as a visiting-researcher at the Center
for Spoken Language Research (CSLR) of University of Colorado at Boulder in USA. The
visit was supported by TÜBİTAK, the Scientific and Technical Research Council of Turkey,
for one year through a combined doctoral scholarship program. The rest of the visit was
supported by CSLR.
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some questions to be answered for that language. For example;

• What phonemes, diphones and triphones exist in the language?

• What sentences should be recorded such that the maximal phonetic cov-

erage is achieved in the audio corpus?

No direct research to answer such questions has ever been made for Turk-

ish. A phonetic alphabet which represents all phonemes and maybe some

allophones is required before answering those questions. After developing a

convenient phonetic alphabet, we have obtained those answers using a large

text corpus, which had been collected from online Turkish newspapers. Then

a 2462 triphone-balanced Turkish sentence set has been determined for devel-

oping an audio corpus. Those sentences have been used to collect an audio

corpus at the Middle East Technical University (METU).

This corpus has been used to port CSLR’s speech recognition system, Sonic

[41], which had been developed for American English to Turkish. This system

is able to align speech with its text and can also recognize phonemes. As

future work, this system can be improved to work as a continuous speech

recognizer. A detailed and a robust language modelling for Turkish, which is

an agglutinative language, however, is remained to be added to the system.

3.2 Phonetic Alphabet for Turkish

Modern standard Turkish is a phoneme-based language like Finnish or Japanese,

which means that phonemes are represented by letters in the written language

[42]. It is also true to say that there is nearly one-to-one mapping between the

written text and its pronunciation. However, some vowels and consonants have

variants depending on the place they are produced in the vocal tract [10]. For

example the letter a in the word laf is pronounced predorsal, while in the word

almak a’s are pronounced postdorsal. So, 29 letters in the Turkish alphabet

are represented by 43 phonetic symbols in [10]. In order to be more accurate
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for both recognition and synthesis tools to be developed in our research, we

have decided to consider those variances, which are most often the allophones

of the Turkish phonemes. The representations in [10] are in International Pho-

netic Alphabet (IPA) symbols [43]. However, the orthography of IPA makes

extensive use of letters that are not available in our computer programming

applications; therefore, we have decided to use a mapping of the IPA symbols

to a more computer-friendly set of ASCII symbols. Turkish form of a computer

readable phonetic alphabet called SAMPA [44] has already been developed on

the initiative of the OrienTel Project [4], but Turkish-SAMPA [45] does not

cover all the allophones in [10]. So we have mapped IPA symbols for Turkish

phonemes to a new set of phonetic symbols, which we have called METUbet

[46]. The choice of symbol formatting in METUbet is similar to that used

within Sphinx-II, which has been designed as a mapping of IPA symbols for

American English [47]. METUbet symbols, corresponding IPA symbols and

example Turkish words are given in Figure 3.1. This is a complete reference

to the phonetic symbols used throughout this thesis.

3.3 Design of a Phonetically Rich Audio Cor-

pus

Design of the text for an audio corpus requires careful selection of utterances

such that the corpus represents the general phonetic behavior of the language.

To achieve the phonetic-balance of Turkish, we have considered triphones

as basic units, because it has been reported that for Hidden Markov Model

(HMM) based continuous-speech-recognition and keyword-spotting systems,

triphone-modelling is more powerful than phone, word or syllable modelling

in terms of consistency and inclusion of co-articulatory effects [48]. The only

problem with using triphones as speech units is that there exists a large num-

ber of triphones in any language. For example, Turkish has been reported to

have approximately 27 thousand triphones [3]. This problem can be overcome
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Figure 3.1: Mapping from IPA to METUbet.

using two different methods: The first method determines all the triphones in

a large audio corpus and the triphones with acoustic similarities are quantized

into groups. Then a subset of the utterances in the corpus which contains

these selected groups are used as the balanced audio corpus. The second

method determines the most frequently used triphones in a large text corpus

which is supposed to be large enough to model the language well. Then, a set

of balanced sentences are designed depending on those triphone frequencies.

The audio corpus is collected later using the balanced sentence set. The first

method has the advantage of using the already-recorded audio corpus at hand;
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however, the audio corpus may not be representing the language properly.

Moreover, the triphone models should be robust for determining the correct

grouping of the triphones. The second method is more time-consuming, but

it has more control on the text to be prepared for audio recording. We have

considered the second method to exactly determine the sentence set to be

recorded.

3.3.1 Construction of a Phonetically Rich Sentence Set

The number and frequencies of the triphones in Turkish have been obtained

from a large text corpus collected at METU. This corpus had been collected

from national newspapers and some Turkish document pages on the web [7].

We have normalized the corpus (numbers and abbreviations are expanded,

repetitions of headings and foreign words are cleared up) and ended up with

a text corpus of 2.5 million words (2,529,850 words exactly). Next, it had to

be converted into METUbet symbols to determine the triphone frequencies in

Turkish. Since there are 29 graphemes and 43 METUbet symbols, the mapping

from grapheme to phonemes is not one-to-one, but they are usually context or

part-of-word dependent. For example, the mapping from grapheme k to the

allophones K or KK, and that from a to A or AA are context dependent as

illustrated in the example given below:

Word METUbet

laf L A F

akıl AA KK I LL

çekil CH E K IY L

As seen in the above examples, a coming after l is predorsal and it is repre-

sented by A in METUbet, while postdorsal a is represented by AA. When k

is between back vowels (in the second row of the table), it is back-pronounced

and is represented by KK. When k is between front vowels (given in the third

row of the table), it is frontal and represented by K in METUbet.
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A set of mapping rules (letter-to-sound rules) [7], which had been previ-

ously developed at METU from the Turkish pronunciation dictionary in [10],

has been used to convert the 2.5 million-word text corpus into METUbet

phonetic representation. This has provided some insight into the frequency

of the occurrences of triphones within the Turkish language. The beginning

and the end of the sentences have been marked with SIL, meaning ”silence”.

SIL has also been counted as a phoneme in triphone occurrence counting

(i.e. SIL-phoneme-phoneme, phoneme-SIL-phoneme, and phoneme-phoneme-

SIL occurrences have also been counted). The total number of triphones in

terms of METUbet symbols has been found to be 16,977,808 and the number of

unique triphones is 29,266, which is very close to the number suggested in [3].

The most frequent 100 triphones of Turkish (assuming that 2.5 million-word

text corpus represents general triphone occurrence tendencies in Turkish), and

their normalized occurrences rates are given in Table 3.1. Normalization is

achieved by dividing the number of occurrences by the total number of tri-

phones, 16,977,808.

Construction of a phonetically balanced set of sentences for Turkish has

been achieved in the following steps:

• First 2000 sentences of the TIMIT corpus have been translated into Turk-

ish.

• These sentences are converted into METUbet symbols using letter-to-

sound rules developed at METU.

• Triphone occurrence rates in those sentences are obtained and compared

with those found from the 2.5 million-word text corpus.

• An extra 462-sentence set has been added to 2000 sentences in order to

ensure coverage of the most frequent 5000 triphones in the 2.5 million-

word text corpus.

The resulting 2462-sentence set includes most frequently used 11,033 tri-

phones in Turkish (before augmenting the 2000-sentence set, that number was
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Table 3.1: The most frequent 100 triphones and their normalized occurrence
rates in Turkish with METUbet symbols.

METUbet Occurrence METUbet Occurrence METUbet Occurrence

Triphone Rate TRIPHONE Rate TRIPHONE Rate

EE RR IY 0.0047 S IY NN 0.0018 IY CH IY 0.0013
LL AA RR 0.0046 B IY L 0.0018 AA Y I 0.0013
L EE RR 0.0045 I G I 0.0018 L EE NN 0.0013
B IY RH 0.0044 AA NN LL 0.0018 EE K IY 0.0013
NN D AA 0.0038 EE NN IY 0.0017 KK LL AA 0.0013
IY NN IY 0.0034 IY G IY 0.0017 T AA NN 0.0013
RR IY NN 0.0029 AA NN AA 0.0017 KK AA NN 0.0013
AA RR I 0.0029 IY NN EE 0.0017 IY S IY 0.0013
IY L EE 0.0029 L AA RH 0.0016 M AA S 0.0012
I NN I 0.0028 IY Y O 0.0016 M AA N 0.0012
AA S I 0.0028 AA RR I 0.0016 RR AA KK 0.0012

IY NN D 0.0027 LL M AA 0.0016 AA B IY 0.0012
I NN D 0.0027 B AA SH 0.0016 Y AA P 0.0012

NN D EE 0.0026 L EE RH 0.0016 IY RR IY 0.0012
AA RR AA 0.0026 AA LL I 0.0015 M AA KK 0.0012
LL AA NN 0.0025 Y L EE 0.0015 K L EE 0.0012
AA NN I 0.0024 AA KK AA 0.0015 EE T IY 0.0012
AA D AA 0.0023 I NN AA 0.0015 CH IY N 0.0012
RR I NN 0.0023 Y O RR 0.0015 EE C EE 0.0012
AA Y AA 0.0022 K AA RR 0.0015 S AA NN 0.0012
NN L A 0.0021 O RH SIL 0.0015 IY M IY 0.0012
IY Y EE 0.0021 O NN U 0.0015 N D IY 0.0011

NN IY NN 0.0020 O LL AA 0.0015 I Y O 0.0011
D EE NN 0.0020 EE G IY 0.0014 SIL B IY 0.0011
EE S IY 0.0020 NN B IY 0.0014 IY Y AA 0.0011
NN I NN 0.0020 U NN U 0.0014 T UE RR 0.0011
D AA NN 0.0020 Y AA NN 0.0014 EE D IY 0.0011

S I NN 0.0019 EE L EE 0.0014 LL IY K 0.0011
AA M AA 0.0019 B IY RR 0.0013 L A M 0.0011
IY L IY 0.0019 O RR U 0.0013 RR L EE 0.0011

AA LL AA 0.0019 AA NN D 0.0013 IY S T 0.0011
IY B IY 0.0019 IY K IY 0.0013 AA D I 0.0011
Y O RH 0.0019 SIL B U 0.0013 EE Y EE 0.0010

M AA Y 0.0010
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9,492). A comparison of most frequent triphones in our large text corpus and

the new 2462-sentence-set is given in Table 3.2. The most frequent triphones

from both corpora have been found to be highly correlated and the ranking

orders are quite close to each other. This shows that the new sentence set

highly reflects the phonetic behavior of Turkish.

3.3.2 Collecting the Audio Corpus

The audio corpus has been collected in the Department of Electrical and Elec-

tronics Engineering, at METU. For each speaker, a set of 40 sentences among

2462 sentences are selected randomly. This is the method which had been used

to collect the TIMIT corpus [1]. To-date, speech from 193 speakers (89 female

and 104 male) has been collected. The age range is from 19 to 50 years with an

average of 23.9 years. Speakers are collected from students, faculty and staff at

METU. The speech had been collected in office quality with a Sennheiser mi-

crophone, model ME 102. The data had been digitally recorded with a Sound

Blaster sound card on a PC at a 16 kHz sampling rate. Each recording session

is accompanied by a text file, which lists the 40 randomly selected sentences.

In addition, the recording date, the age of the speaker and the geographical

region of Turkey where the speaker has grown up is recorded. Part of an exam-

ple text file can be seen in Appendix B. The geographical region distributions

in the whole database are given in Table 3.4. The final audio corpus consists

of audio files, associated text transcriptions and phone-level, word-level and

HMM-state-level alignments. The files in the corpus are arranged as presented

in Table 3.3. These alignments are provided by the phonetic aligner, which

we have developed by porting CSLR’s speech recognition tool Sonic [41] to

Turkish. The aligner is explained in detail in Section 3.4. Each audio file in

the audio corpus has been checked for misreadings and repetitions. In cases

of misreadings, either the corresponding text file has been corrected or the

sentence has been deleted completely.
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Table 3.2: Comparison of the triphones in the 2.5 million-word text corpus
and the 2462-sentence text corpus. Occurrence rates are normalized to add up
to unity. Rankings show the descending order numbers.

METUbet RANKING IN OCCURRENCE RANKING IN OCCURRENCE

TRIPHONE 2.5M corpus RATE 2462 sentences RATE

(2.5M corpus) (2462 sentences)

EE RR IY 1 0.0047 2 0.0056
LL AA RR 2 0.0046 3 0.0052
L EE RR 3 0.0045 4 0.0050
B IY RH 4 0.0044 1 0.0060
NN D AA 5 0.0038 9 0.0033
IY NN IY 6 0.0034 6 0.0036
RR IY NN 7 0.0029 13 0.0029
AA RR I 8 0.0029 8 0.0034
IY L EE 9 0.0029 10 0.0030
I NN I 10 0.0028 21 0.0027
AA S I 11 0.0027 23 0.0026

IY NN D 12 0.0027 24 0.0026
I NN D 13 0.0027 39 0.0021

NN D EE 14 0.0026 19 0.0028
AA RR AA 15 0.0026 15 0.0029
LL AA NN 16 0.0025 17 0.0028
AA NN I 17 0.0024 20 0.0028
AA D AA 18 0.0023 5 0.0037
RR I NN 19 0.0023 28 0.0024
AA Y AA 20 0.0022 22 0.0027
NN L A 21 0.0021 27 0.0025
IY Y EE 22 0.0021 71 0.0016

NN IY NN 23 0.0021 61 0.0017
D EE NN 24 0.0020 38 0.0021
EE S IY 25 0.0020 30 0.0023
NN I NN 26 0.0020 70 0.0016
D AA NN 27 0.0020 44 0.0019

S I NN 28 0.0020 60 0.0017
AA M AA 29 0.0019 16 0.0028
IY L IY 30 0.0019 11 0.0030
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Table 3.3: File arrangement in the 193-speaker audio corpus.

FILE TYPE DESCRIPTION

SPK-ID-INFO.txt speaker information and sentences
SPK-ID.raw speech waveform file
SPK-ID.txt orthographic transcription of the words the person said
SPK-ID.wrd time-aligned orthographic word transcription
SPK-ID.phn time-aligned phonetic transcription (METUbet)
SPK-ID.stat time-aligned HMM-state transcription (METUbet)

Table 3.4: Speaker grown-up region distributions in the 193-speaker audio
corpus.

GEOGRAPHICAL PERCENT in the

REGION AUDIO COPRUS

İç Anadolu 48%
Ege 16%

Marmara 16%
Akdeniz 10%

Karadeniz 8%
Güney Doğu Anadolu 1%

Doğu Anadolu 1%

3.4 Speech Recognition Tools Developed for

Turkish

Two types of tools have been developed for Turkish: Phonetic aligner and

phoneme recognizer. CSLR’s speech recognition toolkit, Sonic, [41], has been

ported to Turkish. The resulting port has aided in the development of our

audio corpus that has been phonetically labelled at word, phoneme and HMM-

state level. In Section 3.4.1, the structure of the Sonic speech recognizer

toolkit will be explained briefly. Then, we will discuss the systems developed

by porting Sonic to Turkish in Section 3.4.2.

3.4.1 The Sonic Continuous Speech Recognizer

Sonic is a toolkit for enabling research and development of new algorithms for

continuous speech recognition, which is developed and used as a test bed for
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research activities that include speech recognition as core components at the

Center for Spoken Language Research (CSLR) of University of Colorado at

Boulder [41].

The system acoustic models are decision-tree state-clustered HMMs with

associated gamma probability density functions to model state-durations [46].

The recognizer implements a two-pass search strategy. The first pass consists of

a time-synchronous Viterbi token-passing search. Cross-word acoustic models

and trigram language models are applied in the first pass of search. During the

second pass, the resulting word-lattice is converted into a word-graph. Sonic

incorporates speaker adaptation and normalization methods such as Maximum

Likelihood Linear Regression (MLLR), Parallel Model Adaptation, and Vocal

Tract Length Normalization (VTLN).

Phonetic aligner module of Sonic provides word, phone, and HMM state-

level boundaries for acoustic training. It includes decision-tree based trainable

letter-to-sound prediction module, and multilingual lexicon support. Turkish

has been the first language, which Sonic has first been ported to, through our

work in this thesis [46]. Then it has been ported to many other languages

(German, Spanish, French, Italian, Croatian, Arabic, Russian, Portuguese,

Korean, and Japanese) [49].

Sonic has been benchmarked on several standard continuous speech recog-

nition tasks for American English and has been shown to have competitive

recognition accuracy to other recognition systems evaluated on similar data

[46]. Performance metrics are shown in Table 3.5 [49].

TI-Digits contains speech which was originally designed and collected at

Texas Instruments, Inc. (TI) for the purpose of designing and evaluating al-

gorithms for speaker-independent recognition of connected digit sequences. It

is microphone speech collected from 326 speakers each pronouncing 77 digit

sequences [50]. DARPA Communicator is a real time spoken dialog system

designed to recognize telephone quality speech in travel domain and respond

[51]. Wall Street Journal (WSJ) is a corpus which contains microphone quality

speech of approximately 78,000 training utterances (73 hours of speech), 4,000
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Table 3.5: Word error rate for Sonic on several tasks: TI-Digits, DARPA
Communicator, Nov’92 Wall Street Journal (WSJ) 5k test set and Swithboard
task. Real-time factors are for first-pass decoding on an 800 MHz Intel Pentium
III.

VOCABULARY WORD ERROR WORD ERROR REAL-TIME

TASK SIZE RATE RATE FACTOR

no adaptation with adaptation

TI-Digits 11 0.4% 0.2% 0.1
DARPA

Communicator 2.1k 10.9% -NA- 1.6
WSJ 5k 3.9% 3.0% 1.5

Switchboard 40k 41.9% 31.0% 9.1

of which are the result of spontaneous dictation by journalists with varying de-

grees of experience in dictation [52]. Switchboard is a corpus of conversational

telephone speech which consists of 3,638 5-minute telephone conversations in-

volving 657 participants [53].

3.4.2 Systems Developed for Turkish Speech Research

3.4.2.1 Phonetic Aligner

Sonic uses the Carnegie Mellon University’s Sphinx-II phoneme symbol set

[47]. Initialization of the recognizer’s acoustic models to Turkish was per-

formed by mapping Sphinx-II symbols to the acoustically nearest equivalents

in METUbet. The mapping is shown in Table 3.6. This has been done sim-

ply by mapping the symbols which correspond to the nearest IPA symbols in

the IPA chart [43]. We found that there was no acceptable mapping for the

Turkish phoneme GH (ğ in orthography). GH usually lengthens the vowel it

precedes or acts as a weak Y when it is between front vowels [10]. There-

fore, we have not used it for the recognizer and the aligner applications. The

aligner outputs ğ in word-level, but not in phone-level alignments, and instead

outputs the previous vowel with its lengthened phoneme boundary.
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Table 3.6: Mapping from Sphinx-II to METUbet phone set.

SPHINX-II ENGLISH METUbet SPHINX-II ENGLISH METUbet

PHONEME EXAMPLE PHONEME PHONEME EXAMPLE PHONEME

AA odd AA, A JH gee C
AE at EE K key K, KK
AH hut KD lick
AO ought L lee L, LL
AW cow M me M
AX abide OE N knee NN, N

AXR user NG ping
AY hide OW oat O
B be B OY toy

BD dub P pee P
CH cheese CH PD lip
D dee D R read R, RR, RH

DD dud S sea S
DH thee SH she SH
DX matter T tea T
EH Ed E TD lit
ER hurt TH theta
EY ate TS bits
F f ee F UH hood U, UE
G green G, GG UW two

GD bag V vee V, VV
HH he H W we
IH it Y y ield Y
IX acid I Z zee Z, ZH
IY eat IY ZH seizure J
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The 193-speaker Turkish audio corpus has been used to improve the accu-

racy of phonetic alignment system originally developed for English. Letter-to-

sound (i.e., letter-to-METUbet) rules for Turkish have been used to develop

a dictionary of the words in the 2462-sentence corpus. This dictionary has

been integrated into Sonic. A set of decision tree questions has been devel-

oped for Turkish phonemes and it has been used for acoustic model training.

36 questions have been determined based on the place and the manner of the

articulation of the METUbet phonemes based on the explanations given in

[10]. Decision tree questions are shown in Table 3.7.

The first 100 speakers of the audio corpus were used to train the Turkish

acoustic models of the aligner. Using the initial mapping, the corpus was

aligned at the HMM-state level and models were then retrained using decision

tree state clustering. The resulting aligner is capable of providing word-level

and phoneme-level boundaries for Turkish. The phonemes are represented

by METUbet symbols at the output of the aligner. For phoneme recognition

experiments, the 2.5 million-word text corpus has been converted to METUbet

phonemes using text-to-phoneme rules that we have developed. This corpus

was used to develop a back-off trigram phoneme language-model. Figure 3.2

illustrates the block diagram of the aligner.

3.4.2.2 Phoneme Recognizer

For phoneme recognition experiments, the 2.5 million-word text corpus has

been converted to METUbet phonemes using the letter-to-sound rules. This

corpus was used to develop a back-off trigram phoneme language-model. Fig-

ure 3.3 illustrates the block diagram of the phoneme recognizer.

3.4.2.3 Evaluations on the Aligner

Experiments on the phonetic aligner and the phoneme recognizer were con-

ducted by randomly selecting 20 speakers (10 male and 10 female) from the

193-speaker audio corpus. Those 20 speakers are not among the first 100 speak-
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Table 3.7: Decision Tree Questions for Turkish.

QUESTION ANSWER

silence SIL
voiced A, AA, E, EE, I, IY, O, OE, U, UE, B, C

D, G, GG, L, LL, M, N, NN, R, RR, V, VV, Y
voiceless CH, F, H, J, K, KK, L, LL, P, RH, S, SH, T, ZH
vowel A, AA, E, EE, I, IY, O, OE, U, UE
back-vowel A, AA, I, O, U
front-vowel E, EE, IY, OE, UE
round-vowel O, OE, U, UE
flat-vowel A, AA, E, EE, I, IY
high-vowel I, IY, U, UE
low-vowel A, AA, E, EE, O, OE
back-flat-vowel A, AA, I
front-flat-vowel E, EE, IY
back-round-vowel O, U
front-round-vowel OE, UE
low-flat-vowel A, AA, E, EE
high-flat-vowel I, IY
low-round-vowel O, OE
high-round-vowel U, UE
plosive-consonant B, P, T, D, K, KK, G, GG
nasal-cons M, N, NN
stop-fricative RH, ZH
rolled-cons R, RR
lateral L, LL
fricative C, CH, F, H, J, S, SH, V, VV, Y, Z, ZH
bilabial B, P, M
labiodental F, V, VV
dental D, T
palato-alveolar NN, R, RR, S, Z, ZH
alveo-palatal C, CH, J, SH, Y
palatal L, LL
velar K, KK, G, GG
glottal H
front-cons G, K, L
back-cons GG, KK, LL
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Figure 3.2: Block diagram of the Turkish phonetic aligner.

ers which were used for training. 40 sentences from each speaker were aligned

using the Sonic-Turkish-phonetic-aligner. The alignments for each speaker

were corrected by hand and compared to the alignments produced by the

aligner. The quality of the automatic alignment has been measured by com-

puting the absolute distance (in msec.) between the automatically determined

and hand-labelled METUbet boundaries. For a boundary aligner-labelled at

time τ and the hand-labelled boundary at time τ̃ , the misalignment is defined

as ε = |τ − τ̃ |. The overall segmentation performance is obtained by com-

puting the percent of boundaries labelled correctly, where correctness means

ε < 4, with 4 being a fixed distance [54]. Results are presented in Table 3.8.

For comparison purposes, results from the same system for English are also

provided in Table 3.8 [54]. For Turkish, 91.2% of the misalignments have been

obtained within 20 msec. of the hand-labelled locations. The results obtained

for the Turkish phonetic-aligner are quite comparable to those obtained for

English [54].
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Figure 3.3: Block diagram of the Turkish phoneme recognizer.

Table 3.8: Comparison of the percentages of automatically placed phoneme
boundaries within a fixed distance from the hand-labelled reference.

MISALIGNMENT PERCENT OF AUTOMATICALLY PERCENT OF AUTOMATICALLY

FROM REFERENCE PLACED PHONEME BOUNDARIES PLACED PHONEME BOUNDARIES

4 FOR TURKISH FOR ENGLISH

≤5msec 53.7% 47.9%
≤10msec 67.6% 69.9%
≤20msec 91.2% 85.9%
≤40msec 98.1% 95.9%
≤60msec 99.3% 98.4%

3.4.2.4 Evaluations on the Phoneme recognizer

Phoneme recognition using decision tree state clustered HMMs has also been

performed on the same test-set using a back-off trigram phoneme language

model trained from the newspaper text corpus. Results of phoneme recognition

experiments both with and without iterative unsupervised MLLR adaptation

are shown in Table 3.9. Here we see that the overall phone error rate was found

to be 29.3%. To the best of our knowledge, the only phone error rate of Turkish

that has been reported is 44.1% [2] with 29 phonemes and without a phoneme

language modelling. System summary percentages by speaker after the third

pass are provided in Table 3.10. The average error rate decreased from 31.1%

on the average to 29.3% from the first pass to third pass by speaker adaptation.
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Table 3.9: Phone error rates for 20 Turkish speakers. Results are shown for
a baseline system and the same system with iterative unsupervised MLLR
adaptation.

GENDER NON-ADAPTED ADAPTED (MLLR)

Male 30.7% 29.1%
Female 31.5% 29.6%
Overall 31.1% 29.3%

Table 3.10: System summary percentages per speaker. Cor (correct), Sub
(substitution), Del (deletion), Ins (insertion), Err (error) percentages are given.

SPEAKER SENTENCE PHONE COR% SUB% DEL% INS% ERR%

ID NUMBER NUMBER

s1082 38 1679 67.5 15.3 17.2 4.1 36.6
s1086 40 1885 71.6 15.3 13.1 2.4 30.8
s1087 40 1877 77.0 13.1 9.9 2.4 25.4
s1088 40 2004 67.0 16.3 16.7 1.3 34.3
s1089 39 1655 77.9 13.1 9.0 2.1 24.2
s1091 40 1837 73.4 16.2 10.4 2.0 28.6
s1093 40 1753 67.3 16.9 15.8 1.4 34.1
s1094 40 1891 77.0 13.1 9.9 2.0 24.9
s1096 40 1806 75.5 16.2 8.3 2.7 27.2
s1097 40 1801 76.8 14.3 8.9 1.7 24.8
s1129 40 1920 73.2 15.1 11.7 1.5 28.2
s1131 40 1825 70.1 16.7 13.2 1.3 31.2
s1132 38 1923 75.4 14.6 10.0 2.5 27.1
s1134 39 2054 64.1 20.4 15.5 2.2 38.1
s1135 39 1904 75.6 15.1 9.2 2.0 26.4
s1136 40 1877 71.1 16.8 12.1 1.4 30.3
s1137 40 1778 76.5 15.1 8.4 1.5 24.9
s1138 40 1935 67.4 19.9 12.6 2.0 34.6
s1140 40 2074 77.0 16.2 6.8 2.7 25.8
s1141 39 1804 74.1 15.2 10.6 2.5 28.4

Sum/Avg 792 37282 72.2 15.8 11.5 2.1 29.3

Table 3.10 presents correct detection, substitution, deletion, insertion and error

percentages. The following are the explanations of these terms:

• A substitution error occurs when one phoneme in the reference (this

is what should be recognized) is replaced by another phoneme in the

hypothesis (this is what is recognized).
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• An insertion error occurs when an extra phoneme is inserted in the

hypothesis.

• A deletion error occurs when a phoneme is missing in the hypothesis.

• phoneme no is the total number of phonemes in the reference.

• Error percentage is equal to [(
∑

(sub + ins + del)) /phoneme no]×100,

where sub, ins, and del stand for the total numbers of substitution, in-

sertion and deletion errors respectively.

• Correct detection percentage is the number of matching phonemes

compared to the phoneme number as a percent.
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CHAPTER 4

MELP-BASED SPECTRAL

MODIFICATION FOR VOICE

TRANSFORMATION

4.1 Introduction

This chapter introduces the baseline VT system we have implemented. Then

we introduce the improvements applied on the baseline system. The system is

designed to transform the spectral envelope of speech by changing spectral pa-

rameters of a source-filter model, using a mapping histogram matrix obtained

during training.

MELP

Analysis
Source

Speech

LSFs

Pitch

Transformation

Scaling

MELP

Synthesis

Modified

LSFs

Modified

Pitch

Transformed

Speech

Mapping

Histograms

Figure 4.1: Overview block diagram for the voice transformation system.

Figure 4.1 illustrates an overview block diagram of the VT system in the

transformation mode. Speech model is based on the Mixed Excitation Linear

Prediction (MELP) coder [11]. The system first analyzes the source speaker’s

speech, then applies transformation on the analysis parameters, which are line

spectral frequencies (LSFs), then re-synthesizes speech with the transformed
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spectral parameters. Excitation parameters in this system are not modified,

except for the pitch-period. Synthetic speech is expected to sound like the

target speaker due to the transformation applied.

4.2 Speech Model

Speech model is based on the MELP coder [11] whose analysis and synthesis

modules are based on the traditional Linear Prediction Coding (LPC) paramet-

ric model [12]. Therefore, the first part of this section explains the LPC-based

source-filter model briefly. Basics of MELP speech coding algorithm are given

in Section 4.2.2.

4.2.1 LPC-based Speech Model

The linear prediction method [12, 55] is a source-filter motivated approach for

both analyzing and synthesizing the speech signal. The model assumes that a

sample of speech can be approximated by a linear combination of P previous

samples plus an additive excitation term,

s(n) =
P∑

k=1

aks(n− k) + Gu(n) (4.1)

where P is referred to as the analysis order, ak represents the kth predictor

coefficient, and u(n) is the excitation scaled by a gain-factor, G. The excitation

can be thought of as driving a passive linear vocal tract shaping filter, which

is described by the predictor coefficients. During synthesis, the excitation can

be either a series of periodic pulses for voiced speech or noise-like excitation

for unvoiced sounds. The separation between the pulses for voiced speech

determines the resulting pitch of the output signal. By expressing Equation 4.1

in terms of an input/output relationship, a z−transform domain expression for

the vocal tract filter can be realized as,

H(z) =
S(z)

U(z)
=

G

A(z)
=

G

1−∑P
k=1 akz−k

(4.2)
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where S(z) and U(z) represent the z−transforms of the speech signal and

excitation, respectively. The denominator polynomial in H(z) is often re-

ferred to as the analysis filter and is denoted by A(z). A short-time speech

waveform passed through the analysis filter will have an output which is ap-

proximately white noise for unvoiced speech and a periodic pulse train during

voiced speech. A simple block diagram of the LPC-based model of speech is

given in Figure 4.2.

Figure 4.2: LPC-based model of speech production.

It has been shown that the LPC model of speech closely relates the acoustic

tube model of the vocal tract, which assumes the vocal tract to consist of a set

of P interconnected sections of equal length [12]. Using this relationship, an

equation to determine the prediction order, P , for a given sampling rate and a

vocal tract length has been obtained. This equation is given as [12, page 75]:

P =
2Lfs

c
, (4.3)

where L is the vocal tract length, fs is the sampling frequency, and c is the

speed of sound. If we assume that L is 17cm, which is reported as vocal tract

length of an average male [55, page 39], and that the speed of sound is 340 m/s,

then the prediction order, P , is obtained as 8 and 16, for sampling frequencies

of 8 kHz and 16 kHz, respectively. MELP uses P = 10 for LPC analysis, which

is also used throughout this thesis.
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4.2.1.1 Line Spectrum Frequency (LSF) Pairs

The determination of the LPC parameters is straight forward and computa-

tionally efficient. But they have poor interpolation and quantization properties

[56]. Consequently, alternative representations of LPCs such as reflection co-

efficients [12], log-area ratios [57, 12], etc. have been used for both speech

coding and synthesis. LSFs also provide an equivalent representation of the

linear predictor coefficients. LSFs have been used to represent the vocal tract

parameters for VT throughout this thesis. The reason for selecting LSFs is

that these parameters are closely related to formant frequencies [27] which

carry speaker individualities. They have good interpolation properties and

they are stable [58], [56, page 216]. In addition, they have a fixed dynamic

range which makes them attractive for real-time DSP implementation [27].

MELP also uses LSFs for coding the vocal tract filter response [11].

LSFs were originally formulated by Itakura [59]. They are computed from

the P th order LPC analysis with the analysis filter given by,

A(z) = 1−
P∑

k=1

akz
−k. (4.4)

The filter order can be extended to (P + 1) without introducing any new

information [60]. The resulting prediction error filter polynomials become,

P (z) = A(z) + z−(P+1)A(z−1) (4.5)

Q(z) = A(z)− z−(P+1)A(z−1), (4.6)

such that

A(z) =
1

2
[P (z) + Q(z)] . (4.7)

The two resulting polynomials, P(z) and Q(z), can be thought of as the

lossless acoustic tube representation of the vocal tract transfer function when

the glottis is either completely closed or completely open [60]. It can be shown

that the zeros of the polynomials P (z) and Q(z) are located on the unit circle

and they are interlaced with each other [59]. Furthermore, the corresponding

LPC filter is guaranteed to be stable if and only if these two conditions are
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satisfied [59]. Since the zeros of P (z) and Q(z) lie on the unit circle, each can

be expressed as ejwi where wi is known as an LSF. A P th order LPC analysis

results in 2P frequencies which are positioned in complex conjugate locations

on the unit circle. Therefore, it is sufficient to consider the first P frequencies

ranging from [0, π]. Since zeros of P (z) and Q(z) are interleaved along the unit

circle, the polynomial P (z) will have roots at frequencies {w1, w3, . . . , wP−1}
while the polynomial Q(z) will have roots at the frequencies {w2, w4, . . . , wP}.
The roots found inside the interval [0, π] are ordered such that {0 < w1 < w2 <

w3 < . . . < wP−1 < wP < π}. Thus a P th order LPC analysis will result in a

vector of LSF parameters containing P ordered frequency locations spanning

the frequency range [0, π].

In [61], it has been shown that, a cluster of (2 or 3) LSFs characterizes a

formant frequency, and the bandwidth of a given formant depends closely on

the closeness of the corresponding LSFs. In addition, the spectral sensitivities

of LSFs are localized; i.e., a change in a given LSF produces a change in the

LPC power spectrum only in its neighborhood [61]. These properties make

LSFs proper for spectral modification applications such as VT.

4.2.2 The MELP Speech Coder

MELP is designed to convert analog voice to 2,400 bits/s digitized voice and

to reconvert back to analog voice. The analysis and synthesis of MELP is

based on the traditional LPC parametric model [12]. MELP also uses some

additional features such as mixed excitation and aperiodic pulses to model the

excitation, and this allows the coder to mimic some characteristics of natural

human speech [62]. MELP is reported to produce natural sounding speech

even in a difficult noise environment [62].

The MELP decoder block diagram is given in Figure 4.3. The features

illustrated in the figure are explained briefly below [11]:

The mixed excitation is generated using a multi-band mixing model. The

primary effect of the mixed excitation is to reduce the buzz usually associated
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Figure 4.3: MELP decoder block diagram.

with LPC-based synthesizers. The periodic pulse train and the noise excitation

are passed through bandpass filters and then added together to give a full-

band excitation. For each frame (180 voice samples with a sampling rate of

8,000 samples/sec), the frequency shaping filter coefficients are generated by

a weighted sum of each of the bandpass filters. These filters are 6th order

Butterworth filters with passbands of 0− 500, 500− 1000, 1000− 2000, 2000−
3000, and 3000 − 4000 Hz. The pulse filter is calculated as the sum of each

of the bandpass filters weighted by the voicing strength in that band. The

noise filter is generated by a similar weighted sum, with weights set to keep

the total noise and pulse power constant in each frequency band. The weights

are determined by the voicing strengths in each band.

When the input speech is voiced, the MELP decoder can use either pe-

riodic or aperiodic pulses. Aperiodic pulses are most often used during

transition regions between voiced and unvoiced segments of the speech signal.

The voicing strength of the first band determines whether periodic or aperi-

odic pulses should be used. This feature enables the decoder to reduce erratic
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glottal pulses without introducing tonal sounds [62].

The adaptive spectral enhancement filter is based on the poles of the

linear prediction synthesis filter. Its use enhances the formant structure of the

synthetic speech, and it is applied to give the synthetic speech a more natural

quality [11].

The pulse dispersion is implemented using a fixed filter based on a

spectrally-flattened triangle pulse. This filter spreads the excitation energy

within a pitch period reducing the harsh quality of synthetic speech.

A 10th order LPC analysis is performed on the input speech using a 200-

sample (25 ms) Hamming window centered on the last sample in the current

frame. Then the linear prediction coefficients are converted into LSFs. For

each frame, an LSF vector f of length 10, is obtained. f is quantized using

a multi-stage vector quantizer (MSVQ). The MSVQ codebook consists of four

stages of 128, 64, 64, and 64 levels respectively. The quantized vector, f̂ , is the

sum of the vectors selected by the search process, where one vector selected

from each stage. The MSVQ search finds the codebook vector which minimizes

the square of the weighted Euclidian distance, d2, between the unquantized and

quantized LSF vectors [11]:

d2(f, f̂) =
10∑

i=1

wi(fi − f̂i)
2, (4.8)

where

wi =





P (fi)
0.3, 1≤i≤8

0.64P (fi)
0.3, i = 9

0.16P (fi)
0.3, i = 10

. (4.9)

fi is the ith component of the unquantized LSF vector, and P (fi) is the inverse

prediction filter power spectrum evaluated at frequency fi. The search proce-

dure is an M-best approximation to a full search [63], in which M = 8 best code

vectors from each stage are saved for use with the next stage. Then a process

to ensure ascending order of LSFs and minimum separation of 50 Hz between
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LSFs is applied to the quantized LSF vector [11]. This resulting vector is used

in the Fourier magnitude computation in Figure 4.3.

Equation 4.8 represents a weighted Euclidian distance measure. The weights

are assigned to a given LSF vector proportional to the value of LPC power

spectrum at this LSF. Thus this distance measure allows for quantization of

LSFs in the formant regions better than those in the non-formant regions.

Also, the distance measure gives more weight to the LSFs corresponding to

the high-amplitude formants than to those corresponding to the lower ampli-

tude formants. The LSFs corresponding to the valleys in the power spectrum

get the least weight. Since human ear cannot resolve differences at high fre-

quencies as accurately as at low frequencies, more weights are assigned to the

lower LSFs than to the higher LSFs. Similar distance measures had also been

used for speech coding and recognition purposes, and good results had been

obtained [61, 64]. Note that weights are specific to every LSF vector and vary

from frame-to-frame.

Bandpass voicing quantization is achieved on the voicing strengths

(which is the normalized autocorrelation value computed over the speech signal

in that band) on each one of the five passbands of the speech signal. When

the first band (0− 500 Hz) is unvoiced (i.e., the passband strength is found to

be smaller than 0.6), the rest of the bands are quantized to 0. When the first

band is voiced, the remaining voicing bands are quantized to 1 if their value is

greater than or equal to 0.6, and to 0 otherwise [11].

4.3 Speech Data and Time-Alignment

Speech data for our VT research consists of 235 sentences collected from

two male speakers of Turkish. Sentences are selected randomly from the

phonetically-balanced 2462-sentence text corpus described in Chapter 3. This

makes approximately 15 minutes of speech and more than 30,000 non-overlapping

MELP analysis frames for each speaker, after silence frames are removed. Both

speakers have read the same sentence set. 230 sentences have been used as the
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training set and the rest 5 sentences as the test set. Speech has been col-

lected in a quite office environment with a Sehnheiser ME-64 microphone and

sampled at 16 kHz.

In natural speech, the durations of the speech units vary from speaker to

speaker. During training, the system tries to estimate a transformation func-

tion which can predict the features of the target speaker from the features of

the source speaker. Therefore, the feature streams from the source and the

target speaker should be time-aligned to obtain the transformation function

that gives the relationship between the source and target features of equal

phonetic context. The goal of time-alignment is to modify the source and the

target speaker feature stream in such a way that the resulting feature streams

describe approximately the same phonetic content. Time-alignment in this

thesis has been achieved by selectively deleting or repeating frames from the

target speaker feature stream to match the number of source frames within

phonetically equivalent regions, through a dynamic time warping (DTW) al-

gorithm [35, page 383].

All sentences of each speaker have been aligned in phoneme level using the

Turkish phonetic aligner described in Chapter 3. After obtaining the phoneme-

level alignments, the speech has been re-sampled at 8 kHz for MELP analysis.

For every MELP frame, quantized components of multistage vector quantiza-

tion (MSVQ), and bandpass voicing values (BPVC) have been extracted. Us-

ing the phoneme-level alignments, every MELP frame has been associated to

a phoneme. Figure 4.4 illustrates examples of phoneme-aligned MSVQ frame

files for each speaker. The aligner analyzes signals sampled at 16 kHz, with

frames of length 320 samples. The frames are overlapping by 50% (shifted by

160 samples). MELP, on the other hand, analyzes speech sampled at 8 kHz

and with non-overlapping frames of length 180 samples. Association has been

achieved by mapping the nearest MELP and alignment frame centers. This

file preparation phase has been repeated separately for each speaker.

The next step is the time-alignment between two speakers which has been
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Figure 4.4: 4-stage vector quantization of LSF’s in MELP with phoneme align-
ments for the two speakers. The first column shows the frame number, the next
4-columns show the corresponding MSVQ indices. The final column shows the
associated METUbet phonemes.

achieved by DTW algorithm applied between frames of the phoneme groups

of the two speakers. The time-warped form of the MSVQ frame lists given

in Figure 4.4 are presented in Figure 4.5. Note that the frame numbers in

each phoneme group are equated after time-alignment. The distance criterion

we have used in the DTW algorithm is the Bark-weighted RMS error in dB

between the power spectra of the two speakers at those frames [65]. This

distance is given as:

SD(As(ω), At(ω)) =

√√√√ 1

πW0

∫ π

0
|WB(ω)|2

∣∣∣∣∣10 log10

|As(ω)|2
|At(ω)|2

∣∣∣∣∣
2

dω (4.10)

where As(ω) and At(ω) are the source and target LPC filters obtained from a

MELP frame. W0 normalizes WB(ω)/W0 to unity RMS. The weights WB(ω)

are the Bark weights given as:

WB(ω) =
1

25 + 75
(
1 + 1.4( Fsω

2000π
)2

)0.69 (4.11)
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Figure 4.5: Frames in Figure 4.4 after time-alignment by DTW.

where Fs is the sampling frequency in Hz.

Bark weighting has been reported to have greater correlation with subjec-

tive evaluations because of down-weighting the higher frequencies [65]. LPC

filters are computed directly over the speech files using the autocorrelation

method, instead of using the quantized LSFs of MELP, to obtain a more ac-

curate warping.

After the alignment, we collect the aligned feature vectors (MSVQ and

BPVC vectors from MELP analysis) into the N frames of source data,

XMSV Q =




xMSV Q
1

xMSV Q
2

...

xMSV Q
N




N×4

, XBPV C =




xBPV C
1

xBPV C
2

...

xBPV C
N




N×5

, (4.12)

and, respectively, the target data,
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Y MSV Q =




yMSV Q
1

yMSV Q
2

...

yMSV Q
N




N×4

, Y BPV C =




yBPV C
1

yBPV C
2

...

yBPV C
N




N×5

. (4.13)

The data matrices XMSV Q and Y MSV Q contain 4-stage MSVQ quantization

indices as illustrated in Figure 4.5, and similarly XBPV C and Y BPV C include

BPVC quantization values (0 for an unvoiced band and 1 for a voiced band)

for 5 frequency bands explained in Section 4.2.2. Beginning and end silences

of the sentences are not included in the training data sets. The value of N

depends on the amount of available data from both source and target speaker.

In our experiments, N≥ 30, 000.

4.4 Training

In this section, we first present our observations on the LSF quantization of

MELP speech coding algorithm. Then we explain our method of training.

During the training mode of the system, we obtain mapping histograms re-

lating the source feature vectors to those of the target. Those histograms are

used to transform speech, as will be presented in the next section.

4.4.1 MSVQ Representation of MELP and Observations

In the training mode, the system obtains a transformation function to map the

source speaker’s speech features, XMSV Q, to an estimate of the corresponding

target speaker’s speech features, Y MSV Q. Note that the elements of feature

matrices in our case are not the LSF values themselves, but the stage indices

corresponding to the multi-stage LSF codebook of MELP. First, two codewords

of each stage are illustrated in Table 4.1 to give an insight about LSF coding

of MELP.
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Table 4.1: Examples of codewords for multistage LSF quantization of MELP
rounded to two-digit decimals. First two codewords from each MSVQ stage are
illustrated. The first column shows the stage number (stg), the second column
shows the index number (ind), and the other columns show the frequency
vectors (vect).

stg ind vect

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz

1 0 355.24 492.66 635.39 980.35 1837.26 2145.00 2413.63 2740.71 3093.75 3368.61

1 1 484.73 640.39 823.55 1338.89 1880.24 2096.15 2435.88 2765.30 3111.36 3418.14

2 0 -1.08 -11.58 2.31 -14.00 -69.46 37.77 -72.56 -159.22 -339.82 -152.12

2 1 -49.65 -46.25 -78.10 -42.88 87.14 6.81 -84.40 -169.55 114.69 84.98

3 0 32.98 12.95 -77.52 3.46 21.12 -18.52 8.59 -32.46 79.44 57.10

3 1 20.02 21.87 -34.91 79.79 42.79 37.29 53.15 -12.29 -122.97 -61.57

4 0 13.86 -19.74 20.32 -1.37 -24.03 55.40 -33.43 -7.16 -76.74 -66.68

4 1 -22.29 -34.19 20.70 -14.17 28.37 -25.98 -43.56 15.94 46.56 34.64

Figure 4.6: Effect of adding the 1st vectors of 2nd, 3rd, and 4th stages of
MSVQ to the 1st LSF vector of the 1st stage. Corresponding filter responses
are black: stage1, blue: stage1+stage2, red: stage1+stage2+stage3, dashed:
stage1+stage2+stage3+stage4.

As presented in Table 4.1, the first stage vectors are the main LSF frequen-

cies, and the vectors in the other stages are added to the first vector to fine-tune

the LPC spectrum obtained from the first stage. Figure 4.6 presents the LPC
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filter response obtained from the first LSF vector of the first stage. The effect

of adding the other stages is illustrated by plotting their filter responses on

top of it.

Before determining the method for mapping histograms to map the LSF

indices of one speaker to the other, we have made some observations on the

LSF quantization of MELP to investigate whether MSVQ indices of MELP

carry speaker individualities.

4.4.1.1 Speaker Individualities in the First Stage of MSVQ of MELP

After the DTW process, number of frames belonging to every phoneme of the

source and the target speakers are equated. Although they are uttering the

same phonemes, MSVQ indices assigned to the same frames of the two speakers

are different due to the speaker individualities. This is observed in Figure 4.5.

Another observation is that since spectral behavior of phonemes are affected

by the context, same phonemes in different context are not quantized to the

same MSVQ indices for one speaker. This can be observed in Figure 4.7 and

Figure 4.8 which illustrate phoneme occurrence rates (histograms) in our VT

corpus for the first stage of MSVQ belonging to the first and the second speak-

ers, respectively. The same phonemes tend to gather around certain MSVQ

indices, which is expected since their LPC spectrums should present similar

formant structures. The existence of the distribution observed in Figures 4.7

and 4.8, on the other hand, is due to the context difference and also the multi-

stage vector selection of MELP (i.e., the first index of MSVQ does not have

to be the nearest first stage vector to the original speech spectrum, the selec-

tion of the first is effected by the other stages during the M-best selection).

Histograms for the same phonemes are different for different speakers, which

means that the first stage LSFs of MSVQ carry speaker individualities. Fig-

ure 4.9 presents the occurrence rates of the corresponding indices of the two

speakers in the aligned VT corpus.
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Figure 4.7: MSVQ 1st-stage index histogram for phoneme AA of speaker-1.

Figure 4.8: MSVQ 1st-stage index histogram for phoneme AA of speaker-2.
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Figure 4.9: Histogram matrix mapping occurrence rates of the 1st stage indices
of MSVQ of the two speakers.

4.4.1.2 Personalizing the MSVQ Codebook

The idea of mapping codebooks for VT has been used widely in the literature

as presented before in Chapter 2. Codebooks are usually obtained individually

from speakers [24, 27]. If we use only the first stage of MSVQ for mapping

the LSF space of the two speakers, we will be encountering two types of prob-

lems. The first problem is that 128 LSFs of the first stage are not speaker-

specific; therefore, some indices are never used by some speakers as observed

in Figure 4.9. This is inefficient in terms of quantizing the LSF space of a

speaker, and hence in terms of capturing the speaker individualities. The sec-

ond problem is that the parameter space of the converted envelope is limited

to a discrete set of envelopes, which are only the first stage LSFs. Neglecting

the spectral details in the synthetic speech will result in a degradation in the

speech quality. Therefore, at least two or more of the MSVQ stages should be

considered.
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Figure 4.10: Means of the absolute values of the frequencies in 2nd, 3rd and 4th

stages of MELP’s MSVQ, msvqi(k) where i = 2, 3, 4.

To observe the effect of each stage on the final LPC spectrum of speech, we

have computed the mean of the absolute values of the frequencies included in

2nd, 3rd, and 4th stages of MSVQ. If we represent the vectors in the ith stage in

the MSVQ codebook with msvqi(k), where k runs from 1 to 64 for the 2nd, 3rd,

and 4th stages, then the means of the absolute frequency values are computed

as:

msvqi =
1

N

N∑

k=1

|msvqi(k)|, (4.14)

where N = 64. The result is presented in Figure 4.10. This figure shows

that, each stage of MSVQ is more important than the next one in terms of

contribution to the LPC spectrum.

MSVQ codebook of MELP includes 128 LSF vectors for the first stage,

and 64 frequency vectors for each of the remaining 3 stages. This makes

128×64×64×64 = 33, 554, 432 possible codewords for LSF quantization. With

our sample space of size approximately 30, 000 vectors obtained from the VT

corpus, it is impossible to obtain occurrence histograms which reflect the ac-
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tual usage probabilities for a speaker. The data problem could be overcome

by considering the first two or three stages, and neglecting the effect of the 4th

stage, and limiting the number of quantized LSFs used by the speaker accord-

ing to the usage distribution specific to that speaker. When only the 1st and

the 2nd stages are considered, it has been observed that out of 128×64 = 8192

LSF vectors, only 1600 were enough to cover more than 80% of the LSF space

for both speakers. Those 1600 vectors are different for each speaker, which

means that they carry more speaker-specific information. Moreover, we could

force MELP to use only those 1600 vectors and determine the 3rd and 4th stage

indices accordingly. We have computed the mutual information between the

LSF vector indices of the source and the target speakers to support these ideas.

4.4.1.3 Mutual Information Computations

In this section, mutual information computations on the VT corpus will be

presented to investigate the speaker individualities on LSF quantization of

MELP. Preliminary basic information on the mutual information concept is

given in Appendix C.

Definition: Mutual Information

Mutual information is a measure of the amount of information that one

random variable contains about another random variable. It is the reduction

in the uncertainty of one random variable due to the knowledge of the other.

Let X and Y be two discrete random variables with alphabets χ and ψ. Their

probability mass functions are given as p(x) = Pr{X = x}, x ∈ χ, and

p(y) = Pr{Y = y}, y ∈ ψ, respectively. Mutual information, I(X; Y ), is

the relative entropy between the joint distribution, p(x, y), and the product

distribution, p(x)p(y), i.e.,

I(X; Y ) =
∑
x∈χ

∑

y∈ψ

p(x, y) log
p(x, y)

p(x)p(y)
. (4.15)

It can also be shown that I(X; Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

[66], where H(X) and H(Y ) are the entropy functions of the random variables
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Table 4.2: Mutual Information (MI) between the 1st and the 2nd stages of the
source and the target speakers. MP-MI stands for maximum possible MI

MI in bits MP-MI MI/MP-MI

I(X1; Y1) 1.17 7 0.17
I(X1; Y1)

(voiced frames) 1.14 7 0.16
I(X1; Y1)

(unvoiced frames) 1.19 7 0.17

I(X2; Y2) 0.21 6 0.04
I(X2; Y2)

(voiced frames) 0.24 6 0.04
I(X2; Y2)

(unvoiced frames) 0.44 6 0.07

X and Y respectively. H(X|Y ) and H(Y |X) are the conditional entropies.

Mutual Information Computations

In our experiments, we have considered the distribution of the MSVQ stage

indices of the first speaker as pX(x) and that of the target as pY (y) (we will

refer to them as p(x) and p(y) for convenience). x and y will belong to a set

running from 1 to 128 for the first stage, from 1 to 64 for the second stage

and so forth. We are approximating the actual probability functions from the

empirical probabilities obtained from those histograms which give the number

of occurrences of each frame in the VT corpus.

Let us define the empirical probabilities of the source and the target as pi(x)

and pi(y), respectively, corresponding to the random variables Xi and Yi, where

i denotes the stage number. The joint probabilities pi(x, y) are obtained from

the cross occurrence histograms (see Figure 4.9). p1(x) and p1(y) are shown in

Figure 4.11. Mutual information, I(Xi; Yi), is computed using Equation 4.15.

The results are given in Table 4.2.

Results in Table 4.2 show that the second stages of the MSVQ indices of

the two speakers do not give enough information about each other. Mapping

the stages independently would not give satisfactory results in terms of VT.

Then we have investigated the situation when the first two stages of MSVQ

are considered dependently. For this experiment, all 8192 possibilities of the
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Figure 4.11: Empirical occurrence probabilities of the MSVQ Stage-1 indices
obtained from XMSV Q and Y MSV Q data matrices of the two speakers, p1(x)
and p1(y).

summation of the two stages are considered for both of the speakers as:

{msvq1(1) + msvq2(1), msvq1(1) + msvq2(2), · · · ,msvq1(1) + msvq2(64),

· · · ,msvq1(2) + msvq2(1), · · · ,msvq1(128) + msvq2(64)}.

msvqi(k) are MSVQ frequency vectors of length 10, belonging to ith stage and

kth index, as used before in Equation 4.14. To omit the unused vectors and

make the vectors speaker-specific, we have reduced the vector size from 8192 to

256. This also results in better probability estimates. The method for reduc-

tion is a simple one: The most frequently used 256 vectors from 8192 2-stage

combinations are selected for each speaker. This covers approximately 40%

of all the frames for both speakers. The rest of the 8192 vectors are mapped

to the nearest vector among the 256 selected ones, using the spectral distance

measure given in Equation 4.10. Note that, in contrast to the previous mutual

information computation, the LSF vectors compared for the two speakers are
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Table 4.3: Mutual Information (MI) between the reduced 1st + 2nd stages of
the source and the target speakers. MP-MI stands for maximum possible MI.

MI in bits MP-MI MI/MP-MI

I(X1,2; Y1,2) 2.23 8 0.28
I(X1,2; Y1,2)

(voiced frames) 2.37 8 0.30
I(X1,2; Y1,2)

(unvoiced frames) 2.29 8 0.29

different, because the selected 256 LSF vectors are speaker-specific. Let us call

those selected 256 2-stage vectors of source and target as X1,2 and Y1,2 respec-

tively. Mutual information computed between the random variables X1,2 and

Y1,2, is given in Table 4.3. The increase in the mutual information compared

to the results in Table 4.2 indicates that it is easier to predict the LSF space of

the target speaker from the LSF space of the source speaker when more details

in the spectrum are considered with speaker-specific quantization.

4.4.2 Obtaining the Mapping Histograms

The observations in the previous section are important, because the method

we have used for VT in this chapter is based on them. The observations can

be summarized as follows:

• Every stage of MSVQ has more effect on the LPC spectrum than the

stages following it in terms of spectral distortion.

• To be able to use the MSVQ of MELP for spectral mapping, the codebook

size should be reduced due to corpus size limitations.

• Reducing the codebook size considering the mostly used LSF quantiza-

tion values by the speakers during reduction is advantageous in terms of

speaker individuality.

• Reducing the codebook size carefully increases the mutual information

between the LSF spaces of the two speakers, which will result in a better

mapping.
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The method we have used to obtain a speaker specific quantization out of

MELP’s MSVQ quantization can be summarized in the following steps:

• The first two stages provide 8192 different LSF vectors. 1600 of them,

specific to a speaker, are enough to cover 80% of the LPC spectrum space

of each speaker. The mostly used 1600 two-stage combinations for each

speaker are obtained.

• New 3rd and 4th stage indices for the whole corpus are determined once

more, forcing MELP to use those 1600 1st and 2nd stage combinations

(i.e. XMSV Q
N×4 and Y MSV Q

N×4 are updated).

• Considering the 3rd stage with those 1600 makes 1600×64 = 102400 LSF

combinations. 102400 LSF vectors have been reduced to L by choosing

the most frequently used L vectors from XMSV Q and Y MSV Q. The rest

of the LSF combinations are mapped to one of those L vectors using

the distance criterion given in Equation 4.10. The procedure has been

experimented with L values 256, 128, 96, and 64.

We have obtained a reduced set of L LSF vectors out of MELP’s 3 stages

of MSVQ. Contribution of the 4th stage has been neglected during training.

During transformation, instead of replacing the 4th stage with zeros, we are

using the 4th stage frequencies of the source speaker, without transforming.

From the updated source and target data, XMSV Q and Y MSV Q, whose in-

dices include L speaker specific LSF indices; a L×L matrix which includes

occurrence numbers in the 30,000-frame corpus has been obtained. The el-

ements of the histogram matrix, Hist(i, j), show how many times the LSF

vector corresponding to the ith index of the source encountered to the LSF

vector corresponding to the jth index of the target speaker.

4.5 Transformation - the Baseline System

Transformation of the LPC spectrum is achieved using the histogram matrix.

The method for the baseline system is mapping the LSF vector corresponding
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to the ith index of the source to jm,

jm = argj max Hist(i, j) (4.16)

which is the target index, that corresponds to the most frequently occurring

index when the source index i occurs in the corpus. In the next section, we

will consider some innovations on this system to overcome some shortcomings

of it. The main shortcoming of this mapping method is that the parameter

space of the converted envelope is limited to a discrete set of envelopes. This

reduces the quality of the transformation. This method may also result in

high distortions between the LPC spectrums of the neighboring frames, which

causes audible buzzy sounds or clicks. In Figure 4.12 spectrograms of the

output of the baseline system and the original target speaker’s utterance are

given. Spectral discontinuities are observed in the converted speech. Also,

limitation of the target spectrum has caused unvoiced frames to occur in the

middle of the illustrated part of the converted speech. In order to obtain

a higher quality synthetic speech, we have applied a dynamic programming

approach to determine the best target index that corresponds to the source

index. This approach aims to reduce the distortion between the neighboring

frames, while it is giving chance to every target index, j, to be used depending

on its occurrence rate corresponding to the ith index of the source speaker in

the histogram matrix.

4.5.1 Dynamic Programming for LSF Transformation

Assume we have the source speaker’s data of one sentence, Xsen
4×M , where M

is the number of frames in the sentence. The columns of Xsen denote the

4 stage MSVQ indices. Let the codebook of L codewords (described in Sec-

tion 4.4.2) of the source be denoted by x̄ = [x1, x2, · · · , xL], and those of target

ȳ = [y1, y2, · · · , yL]. The first step is the preparation of the source data by

quantizing it into the codewords x̄ as described in Section 4.4.2. Indices ob-

tained for each LSF vector with respect to new quantization are indicated by
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Converted speech with baseline system

Target speaker’s speech

Figure 4.12: Comparison of the converted speech output of the baseline system
and the target speaker’s speech. Illustrated part is the word kazandı in Turkish,
sampling rate is 8 kHz.

x[n], whose elements are one of x̄. n is the frame number in the sentence,

which runs from 1 to M . Using x[n], a sentence dependent histogram matrix

is obtained as:

Hsen =




Hist(x[1], 1) Hist(x[2], 1) · · · Hist(x[M ], 1)

Hist(x[1], 2) Hist(x[2], 2) · · · Hist(x[M ], 2)
...

...
. . .

...

Hist(x[1], L) Hist(x[2], L) · · · Hist(x[M ], L)




L×M

(4.17)

where M is the frame size and L is the reduced vector size. Dynamic program-

ming is achieved on the elements of this matrix to determine the best path

from frame number 1 to frame number M . We also apply constraints and
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transition probabilities obtained from the corpus of target speaker, Y MSV Q,

between frames to prevent spectral discontinuities in the transformed speech.

This will also allow the chance of using all elements of the matrix in Equa-

tion 4.17, which will increase the spectral variability in the output causing

more natural sounding transformed speech. A simple flow chart of the dy-

namic programming procedure is given in Figure 4.13.

obtain

sentence

histogram 

sentence

probability

P 

repeat for every

frame, n

obtain

SD(x[n-1], x[n])

repeat for every

target codeword,yj

obtain allowable paths

from frame n-1 to n

select the highest

probability path

among allowable paths 

obtain accumulated

prob. for target codeword

yj at frame n 

source sentence LSFs

obtain the highest

probability LSF

path along the sentence  

Figure 4.13: Flow chart of the dynamic programming procedure.

To obtain the probability matrix for the M-frame sentence, we normalize

the histogram matrix, Hsen, in Equation 4.17 such that its columns add up to

unity. This new matrix is called P and it is of size L×M . Every row of this

matrix corresponds to one of L LSF vectors of the target speaker as illustrated

in Figure 4.14. The idea is to determine the best path from frame-1 to frame-M,

while allowing only certain transitions among the possible target codewords,
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P(L,1)

P(L-1,1)

P(2,1)

P(1,1)

P(L,2)

P(L-1,2)

P(2,2)

P(1,2)

P(L,M)

P(L-1,M)

P(2,M)

P(1,M)

T(1,L)

T(2,L)

T(L-1,L)

T(L,L)

target codeword

y1

y2

yL-1

yL

x[1] x[2] x[M] source sentence

LSFs

Figure 4.14: Dynamic programming along the frames of one sentence for LSF
transformation.

yi. T (i, j) in the figure represents the transition probabilities from the target

codeword yi in one frame, to another target codeword yj in the next frame.

T (i, j)’s are the estimated probabilities based on the empirical probabilities

obtained from the target data and T is an L×L matrix. To determine the

path towards P (L, 2), for example, first the spectral distortion between the

source vectors, SD(x[1], x[2]), is computed. SD is the distortion measure d

given in Equation 4.8. Paths which satisfy the criterion given in (4.18) are

selected as allowable paths to P (L, 2). This is a search on possible j values

(j = 1· · ·L) with an allowed distance interval, D, such that:

SD(x[1], x[2])−D ≤ SD(yj, yL) ≤ SD(x[1], x[2]) + D (4.18)

is satisfied. Best path to P (L, 2) is than selected among the allowable paths.

It is the path which results in the maximum probability along the path. Let

us represent the set of j values satisfying (4.18) with ψ. The path probability

is computed by multiplying the accumulated probability on the path towards

P (L, 2) with the transition probability T (j, L) and P (L, 2) itself for all j ∈ ψ.

For example, the probability of the path towards yL at P (L, 2) which we define

as path probability, PathProb(L, 2), is:
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PathProb(L, 2) = max
j
{PathProb(j, 1)× T (j, L)× P (L, 2)}, j ∈ ψ

= max
j
{P (j, 1)× T (j, L)× P (L, 2)}, j ∈ ψ. (4.19)

Equality of P (j, 1) to PathProb(j, 1) in Equation 4.19 is a special case, because

of the initialization of the path-probability matrix, PathProbL×M . Once this

algorithm is applied to all frames and PathProbL×M matrix is obtained with

the corresponding path matrix, PathL×M , the best path is determined. Best

path is the path corresponding to the highest probability obtained at the final

column of PathProb matrix. The complete pseudo code is given below.

Initialize

Path =




1 0 · · · 0

2 0 · · · 0
...

...
. . .

...

L 0 · · · 0




PathProb =




P (1, 1) 0 · · · 0

P (2, 1) 0 · · · 0
...

...
. . .

...

P (L, 1) 0 · · · 0




Begin

for k = 2 : M;

SDs = SD(x[k],x[k-1]);

for i = 1 : L;

for j = 1 : L;

Path_allow = all j s.t.

SDs-D <= SD(y[i],y[j]) <= SDs+D;

endfor

maxSD = 0;

for n = 1 : length(Path_allow);

temp =

PathProb(Path_allow(n),k-1)P(i,k)T(Path_allow(n),i);

if temp > max_SD;

maxSD = temp;

Path(i,k) = Path_allow(n);
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PathProb(i,k) = temp;

endif

endfor

endfor

endfor

Here a small scale example is provided to clarify the decoding of the path-

probability matrix, PathProbL×M , and the path matrix, PathL×M . Assume we

have the following path and path-probability matrices with 3 frames (M = 3)

and 4 codewords (L = 4) as:

Path =




1 → 1 2

↗
2 3 → 2

↗
3 4 → 3

↗ ↘
4 → 4 3




PathProb =




0.3 0.06 0.001

0.1 0.02 0.002

0.5 0.03 0.006

0.1 0.01 0.003




The final column of the PathProb matrix shows the accumulated probabil-

ities along the paths and the highest one, which appears in the 3rd row of 3rd

column, shows that the last target vector of the best path is the 3rd codeword.

Elements in the PathProb matrix show from which row in the previous col-

umn, that point is reached. Following the path numbers in the Path matrix,

the best path is determined as [4 3 3]. The other available paths are [3 2 1],

[3 2 2], and [4 3 4].

Once the path is determined, corresponding target codewords, yi, are used

to determine estimated target codeword sequence, yest[n], for the sentence.

The 4th stage source frequencies which are neglected during the transformation

are added to yi’s (which are results of the dynamic programming operation)

directly. This has the effect of moving the target LSF vector from the codeword
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xi : source codewords

xo[n] : original source LSF at frame n

x[n] : quantized source LSF at frame n

yi : target codewords

yest[n] : estimated target LSF at frame n

Figure 4.15: Illustration of the transformation method in 2-dimensional space.

vector, yi, in the same direction with the vector (xo[n] − x[n]) where xo[n] is

the original source LSF from addition of all 4 stages of MSVQ. The situation

is illustrated in Figure 4.15 with an example in the two dimensional space. In

the figure the source LSF xo[n] is quantized to x2. The transformation maps it

to the target codeword y4. The difference vector in the source space is added

to the mapped codeword in the target space to obtain yest[n].

A comparison of the baseline system output and the improved system out-

put with dynamic programming is given Figure 4.16. Dynamic programming

reduces the discontinuities at the frame boundaries as observed in the figure.

4.5.2 Speech Synthesis

Synthesis of the transformed speech is achieved by applying the modified LSFs

in the MELP speech synthesis framework presented in Section 4.2.2. Residual

signal of the source is not modified except for a pitch period modification.

The maximum and the minimum pitch period samples in the VT corpus

has been obtained for both of the speakers and a linear relationship has been

determined between the two pitch ranges. The first speaker’s pitch samples

range from 38 to 83, while the second speaker’s pitch sample range is from 30

to 67 for the sampling rate of 8 kHz. The relationship can be given as:

p1[n] = 0.82p2[n]− 1.24, (4.20)
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target speaker’s speech

transformed speech, baseline system

transformed speech, dynamic programming

(a)

(b)

(c)

Figure 4.16: Comparison of the waveforms and spectrograms of the baseline
system and the improved system with dynamic programming. (a) is target
speaker’s speech, (b) is conversion with baseline system with L = 128, (c) is
conversion with dynamic programming with L = 128 and D = 0.16. Displayed
is the Turkish word ”aydı”.

where p1[n] and p2[n] are pitch values at frame number n of the first and the

second speakers respectively.

4.6 Results

We used speech data from the speech corpus introduced in Section 4.3. 5 of

the 235 phonetically balanced sentences have been selected as the test set.

The performance of the baseline VT system discussed in Section 4.5 has been

compared to the method proposed in Section 4.5.1 with different parameter

values using objective evaluations. Subjective listening tests have also been
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achieved and results are reported.

4.6.1 Objective Evaluations

4.6.1.1 Errors and Performance Indices

Three kinds of distances, or errors, are of interest in a VT system: the transfor-

mation error E(t̂[n], t[n]), the inter-speaker error E(s[n], t[n]), and the intra-

speaker error E(t2[n], t[n]), where t[n] represents the target speaker’s speech,

s[n] is the source speaker’s speech, t̂[n] is the transformed speech, and t2[n] is

a second rendition of the target speaker’s utterance. The inter-speaker error

describes the degree of difference between the source and the target speak-

ers, while the intra-speaker error gives a measure of how much variability is

present from one rendition to the next of the same sentence. All three errors

are conceptual and cannot be measured directly, but can be approximated

using objective and subjective evaluations [6].

To determine the transformation performance objectively, we have used the

distortion measure given in Equation 4.8. Mean of this metric is obtained over

all test set frames. It is given as:

E(x, y) =
1

M

M∑

m=1

√
1

10
d2(Lm

x , Lm
y ), (4.21)

where M is the number of frames in the test set, Lm is the LSF vector compo-

nent in frame m. Then the LSF transformation performance index is defined

as:

PLSF = 1− E(t̂[n], t[n])

E(s[n], t[n])
. (4.22)

This index applies a normalization to the transformation error E(t̂[n], t[n])

across different speaker combinations. PLSF is zero when the transformation

error equals the inter-speaker error E(s[n], t[n]). It approaches to 1 as the

transformation error approaches to zero. In practice, E(t̂[n], t[n]) is never

zero, because the intra-speaker error E(t2[n], t[n]) is usually not zero. Actually
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E(t2[n], t[n]) is the lower bound for an achievable E(t̂[n], t[n]). However, we do

not have the chance to measure this lower bound, because our corpus includes

only one utterance of the sentence-set from each speaker. In an effective VT

system transformation error is expected to be below the inter-speaker error,

which means PLSF > 0.

4.6.1.2 Results

There exist two training parameters in our system: the number of reduced

codewords, L, and the distance interval, D. We have evaluated the perfor-

mance indices of the system for L = 256, 128, 96, 64, and

D = 0.14, 0.16, 0.18, 0.20, 0.4, 0.6,∞. D = ∞ means all paths are allowed

in the dynamic programming procedure. Transformations from Speaker-1 to

Speaker-2 are tested. Figure 4.17 presents the results obtained. The maximum

possible value for D is approximately 2.3 dB for each L value, which is the

maximum value of the spectral distance between any LSF codewords of the

source. Distance values of D > 0.6 give results which are very close to applying

no constraints at all and values of D < 0.14 give no solutions, since most of

the frame boundaries end up with no allowable paths when constraints are too

tight.

LSF performance indices of the system with dynamic programming have

been compared to the performance indices of the baseline system as given in

Figure 4.17. The performance index of the baseline system has been found

to be 0.010, 0.011, and 0.011 for L = 256, 128, 64, respectively. Dynamic

programming improves the transformation performance as presented in the

figure.

The results for L = 64 are not given in the figure, because this case gives

performance indices below zero, which means that VT system is not success-

ful. The reason for the decrease in the performance when L is reduced to

64 is thought to be the selection procedure of the reduced codewords for the

speakers. When the number of codewords are reduced to a very small value,

71



Figure 4.17: Performance indices of the system for transformation from
Speaker-1 to Speaker-2.

the reduced codebook includes codewords which are very close to each other.

The reduction criterion is selecting the most frequently used codewords which

is not the ideal method to cover the LSF space of a speaker, when a small-

sized codebook is of concern. The ideal method to select the optimum LSF

codewords out of MELP’s codebook, specific to a speaker, would be running

a second quantization algorithm on the codewords of MELP, such as k-means

algorithm. Chapter 5 presents our work on LSF quantization to avoid this

problem, which quantizes the LSF space of the speakers directly, instead of

using the pre-determined codebook of MELP. The improvements in the per-

formances are presented in Chapter 5.

It has been observed that, best performance index is obtained for the code-

book size, L = 128, and form the allowable distance interval in the dynamic

programming, D = 0.16. L = 128 is probably a trade-off between obtain-

ing correct probabilities from the histogram matrix, and obtaining a reduced

codebook which represents the LSF space of the speakers efficiently. When L
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is high, the probabilities obtained from the histogram matrix are less reliable,

but the LSF space representation of the reduced codebook is more efficient.

4.6.2 Subjective Evaluations

The subjective evaluations consist of a speaker-similarity test. The speaker-

similarity test is an ABX test.

Figure 4.18: Interactive window of the speaker-similarity test.

During the ABX text, A and B represent the original speakers, and X

is the transformed speech either from A to B or from B to A. Subjects are

asked to determine whether X is more similar to A or B. The interactive

window of the speaker-similarity test is shown in Figure 4.18. Only one original

sentence of the speakers are provided to the subjects instead of providing the

original forms of all the transformed sentences. This is to prevent the speaker-

specific long-term behavior of the intonation along the sentences, from effecting

the decision of the subjects. The test includes 9 transformed X sentences, 3

transformations for each different L values (L = 256, 128, 96). D is 0.18, 0.16,

and 0.16 for L values 256, 128, and 96, respectively, which give the highest

performance indices as observed in Figure 4.17. 20 subjects have taken the

test. 174 converted sentences have been detected as the target speaker out of

180 sentences in total. 4 of the incorrect decisions were for L = 128 and 2 of

them were for L = 256.
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CHAPTER 5

LSF QUANTIZATION FOR VOICE

TRANSFORMATION

5.1 Introduction

This chapter introduces the method we propose for quantizing LSFs to map

the LSF space of one speaker to that of the other. In Chapter 4, we have

investigated the usage of MELP’s MSVQ codebook of LSFs for our VT system.

In this chapter, instead of using MELP’s LSF codebook, a new codebook for

each speaker is obtained. MELP analysis and synthesis system is used as a

framework, except for the LSF quantization part.

5.2 Quantizing Line Spectral Frequencies for

VT

Quantization of the LSFs have been achieved by k-means quantization algo-

rithm [67] after a principle component analysis based dimension reduction [68]

applied on LSFs. Background on principle component analysis (PCA) and

k-means clustering are given in Appendices D and E respectively. Application

of the method will be presented in this section.

In principle component analysis (PCA), a set of data is summarized as

a linear combination of an orthonormal set of vectors. For the data matrix

Xn×d, whose rows are data vectors xi, i = 1, · · · , n, the orthonormal set of
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vectors are the eigenvectors of the covariance matrix of the data, X. The

linear transformation T , whose columns are the eigenvectors of the covariance

matrix, is used to project the normalized (zero-mean) data on the orthonormal

eigenvectors. In PCA, the eigenvalues are arranged in descending order, such

that the transformed zero-mean data (X−x̄)T (where x̄ is the mean of the data

X) has the highest variance along the first eigenvector. Therefore, the data can

be reconstructed using the projection of data on m eigenvectors (m < d) only,

without sacrificing the main characteristics of it. Moreover, this transformation

provides a more diverse distribution of data on the eigenvectors, which make

the data more appropriate for quantization.

PCA is most appropriate for approximating multivariate normal distribu-

tions, or more generally elliptically symmetric distributions, which is almost

the case in our LSF distributions. Example distributions are given in Fig-

ures 5.1 and 5.2.

In this thesis, PCA has been used to determine the principle components

of the source and target LSFs to obtain a more efficient quantization of them.

Only the dimensions with high variance have been quantized and those dimen-

sions have been used to find the mapping between the two speakers.

5.2.1 Speaker-specific LSF Quantization

LPC analysis has been applied to the same 180-sample non-overlapping speech

frames presented in Chapter 4. A 10th order LPC analysis is performed on

both the source and the target speech signal using a 200-sample Hamming

window centered on the last sample in the current frame. This procedure is

the same as applied in MELP analysis. LSFs have been obtained from LPC

coefficients for each frame. Source and target feature stream lengths have

been equated using the same DTW procedure as presented in Section 4.3.

Band-pass voicing analysis of MELP has been used to label each frame as

voiced or unvoiced. LSF quantization and transformation have been applied

to the voiced and unvoiced frames of the speakers separately. Since DTW is
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Figure 5.1: Plots of the first two components of the normalized (zero-mean)
LSFs (upper plots) and the first two components of the transformed data
(lower plots) for both speakers. LSF values are given in Hz for a sampling rate
of 8 kHz. The upper figures are the mean-subtracted LSFs for voiced frames,
while the lower figures are the first two components after the transformation.
xTx stands for the transformed vectors for Speaker-1, and yTy stands for the
transformed vectors for Speaker-2.

applied on a spectrum similarity basis for automatic alignments of the speech

segments, some unvoiced frames of the source might be matched to voiced

frames of the target or vice versa. These wrong-matched frames are eliminated

before the training. The main reason for elimination of these frames is that

during synthesis the residual of the source speaker that is not matched to the

transformed filter causes degradation in speech quality. Those new LSF data

sets are defined as XV and XUV for the source, and Y V and Y UV for the

target. Superscripts V and UV stand for voiced and unvoiced data streams

respectively. XV and Y V are (NV×10) matrices with LSFs on the rows, where

NV represents the number of voiced frames. Similarly, XUV and Y UV are
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Figure 5.2: Plots of the third and fourth components of the normalized (zero-
mean) LSFs (upper plots) and the third and fourth components of the trans-
formed data (lower plots) for both speakers. LSF values are given in Hz for a
sampling rate of 8 kHz. The upper figures are the mean-subtracted LSFs for
voiced frames, while the lower figures are the first two components after the
transformation. xTx stands for the transformed vectors for Speaker-1, and yTy

stands for the transformed vectors for Speaker-2.

matrices of size (NUV×10). Approximately one tenth of all frames are unvoiced

for both speakers.

Note that, for convenience, we will assume that Speaker-1 is the source

speaker and his data will be represented by X, and Speaker-2 is the target

speaker and his data will be represented by Y in the following sections. During

evaluations, both speakers will be used as the source and the target.

5.2.1.1 PCA Application

Principle component analysis has been applied on the four data matrices, XV ,

XUV , Y V , and Y UV . The aim of applying PCA is to obtain the principle
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components of the data and obtain projection (or transformation) matrices,

T V
x , TUV

x , T V
y , and TUV

y for voiced and unvoiced data matrices of the source

and target speakers, respectively. The columns of the transformation matrices

are the eigenvectors of the covariance matrices obtained from the zero-mean

data as explained in Appendix D.

Let us represent mean vectors of the data matrices, XV , XUV , Y V , and

Y UV , along their columns with x̄V , x̄UV , ȳV , and ȳUV , respectively. Then the

zero-mean and the transformed data matrices, X̃V , X̃UV , Ỹ V , and Ỹ UV are

represented by:

X̃V =




XV −




1
...

1




NV

x̄V




T V
x , Ỹ V =




Y V −




1
...

1




NV

ȳV




T V
y , (5.1)

for voiced data and similarly,

X̃UV =




XUV −




1
...

1




NUV

x̄UV




TUV
x , Ỹ UV =




Y UV −




1
...

1




NUV

ȳUV




TUV
y ,

(5.2)

for unvoiced data.

The aim of using PCA here is to quantize the transformed data more effi-

ciently. This is illustrated with examples in Figures 5.1 and 5.2. In Figure 5.1,

the first two dimensions of the mean-subtracted LSF values of voiced data

(XV on the left and Y V on the right) are plotted with respect to each other

on the upper panel. They are the zero-mean forms of XV and Y V . The lower

plots are the first two components after the transformation. Note that the

transformation matrices of the two speakers are data dependent and differ-

ent, and they are denoted by Tx and Ty in the figures. The dashed lines are

drawn to illustrate the data distribution in each cell, when a simple four-level

quantizer is used to divide the LSF space of the first two dimensions in the

figures. Data dimensions will be less correlated and quantization will be much
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Table 5.1: Eigenvalues of the covariance matrices obtained from the zero-mean
data matrices. Eigenvalues are listed in descending order.

eV
x eUV

x eV
y eUV

y

3.48 42.20 3.50 31.97
1.66 13.69 1.72 12.33
1.22 6.98 1.10 8.67
0.87 4.38 0.67 4.17
0.49 3.25 0.55 3.42
0.36 2.19 0.41 2.58
0.35 2.08 0.34 2.22
0.29 1.98 0.27 1.98
0.25 1.73 0.21 1.91
0.10 1.60 0.11 1.31

more efficient (i.e. data diversity in each cell will be more equivalent) after the

transformation as illustrated in Figures 5.1 and 5.2.

Another use of PCA is that the number of dimensions to be quantized

can be reduced after transformation, which may result in a more efficient

quantization. The eigenvalues obtained after PCA, eV
x , eV

y , eUV
x , and eUV

y ,

are listed in Table 5.1. As observed in the table, the first few dimensions

are very significant for the data, while the others are less significant. This

means that if we use only the first four dimensions of the transformed data

for reconstruction, we will be able to capture most of the characteristics of the

LSFs. Eigenvectors give us the dimensions which characterize the data. If the

corresponding eigenvalue of an eigenvector is high, then the data has a high

variance in the dimension of that eigenvector. If the data has a small variation

in one of the dimensions, then neglecting that dimension during reconstruction

does not result in a big loss in the data characteristics.

5.2.1.2 k-means Clustering Application

k-means clustering algorithm has been applied on the transformed data to

obtain a limited set of vectors representing the transformed LSF space of

the speakers individually. The details of the algorithm are presented in Ap-

pendix E.
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Let us define N as the number of principle components to be quantized

and L as the number of codewords in k-means algorithm. Determination of

the initial codebook, C1, depends on the relative value of N with respect to

L. If L = 2N , for example, all initial codewords can be determined by binary

decisions, using the mean values of the positive and negative data values in

each dimension as the centroids. Then all possible values of all components

make 2N possible codewords. Note that, determination of the initial codebook

is not very critical, but it is useful to start with a good approximation of the

data distribution for C1, so that k-means algorithm converges quickly to an

optimal codebook. For the case, N = 4, and L = 64, for example, first two

dimensions with higher eigenvalues are assigned to 4 levels, while the other

two dimensions are assigned to 2 levels, giving 42×22 = 64 codewords for C1.

k-means iteration is applied to modify C1 until the fractional drop in the

average distortion becomes equal to or less than 2.22·10−16, and new codebooks

CV
x , CUV

x (for voiced and unvoiced data of the source speaker), and CV
y , CUV

y

(for voiced and unvoiced data of the target speaker) are obtained.

5.2.2 Training

Once the speaker-specific codebooks for voiced and unvoiced data of both

speakers are determined, the mapping histogram matrices are obtained sep-

arately for voiced and unvoiced data of the source and the target speakers.

Zero-mean and transformed data from source and target speakers, X̃V , X̃UV ,

Ỹ V , and Ỹ UV are quantized using the codebooks CV
x , CUV

x , CV
y , and CUV

y ,

respectively. Mapping matrices are of size L×L similar to the mapping his-

togram matrices presented in Chapter 4. One example mapping histogram

obtained after quantization with N = 4 and L = 64 is presented in Figure 5.3.

Note that this mapping histogram is different than the mapping histogram in

Figure 4.9, in the sense that there are no empty columns along the source or

target dimensions in the histogram. Since, the codewords are speaker-specific,

all codewords are used by the speakers. Moreover, the transformation applied
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helps to obtain an equal diversity of data in each cell. Note that, mapping is

obtained only for the N number of quantized principle components. The re-

maining components are not quantized. During transformation, they are either

back-transformed using the back-transformation of the target speaker without

any mapping operation or they are simply not taken into consideration. This

will be explained in detail in Section 5.3.

Figure 5.4 illustrates the block diagram of the training mode of the system.

Figure 5.3: Mapping histogram for quantized voiced frames of the source and
the target speakers, X̃V and Ỹ V .

5.3 Transformation

In the transformation mode, the system makes a voiced-unvoiced decision using

the band-pass voicing values of MELP analysis. Then the mean LSF vector

(x̄V or x̄UV ) is subtracted from the input LSF vector. It is transformed and

81



normalize data

to zero-mean
PCA

transformquantization

Basic Training Block (BTB)

LSFs

codebook

target

codebook

source

codebook

obtain

mapping

histogram

BTB

BTB

mapping

histograms

source

LSFs

target

LSFs

time

alignment

Figure 5.4: Block diagram of the training system.

the selected number of principle components (N can be from 1 to 10, N = 10

meaning all dimensions of the transformed matrix are used) are quantized using

source’s codebook. Note that quantization codebook is different for different N

values, since codeword vectors are of size N×1. Those codebooks are obtained

in the training mode. Each quantized frame is mapped to a target codeword

based on the mapping histogram matrix. Dynamic programming is applied

on a whole sentence to map the frames of the source to those of the target,

which has been explained in detail in Section 4.5.1. The allowable paths are

obtained by comparing the L2 norms of the subsequent source codewords in the
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sentence and the subsequent target codewords. The obtained target codewords

are back-transformed using the inverse of the target speaker’s transformation

matrix. Mean LSF vector of the target (ȳV or ȳUV ) is added to the back-

transformed target codeword to obtain the final transformed LSFs.

Now the method will be formulated in more detail. We will drop the

superscripts V and UV for convenience from this point on. Let us define the

transformation matrix for source and target as:

Tx = [T 1
x T 2

x ]

Ty = [T 1
y T 2

y ],
(5.3)

where T 1
x and T 1

y are 10×N matrices, which are the first N columns of Tx

and Ty. T 1
x transforms the N principle components of the zero-mean source

LSF row vector (x − x̄). N = 10 means all dimensions are quantized. The

transformation operation can be rewritten as:

(x− x̄)Tx = (x− x̄)[T 1
x T 2

x ]

= [(x− x̄)T 1
x (x− x̄)T 2

x ].
(5.4)

Since the columns of Tx and Ty are unit eigenvectors, (Tx)
−1 = (Tx)

T and

(Ty)
−1 = (Ty)

T , where the superscript T denotes transpose of the matrix.

If we want to back-transform the transformed data in Equation 5.4 using all

components without any loss of data, the below back-transformation is applied:

[
(x− x̄)T 1

x (x− x̄)T 2
x

]



(T 1
x )T

(T 2
x )T


 . (5.5)

The expression in ( 5.5), can be rewritten as:

(x− x̄) = [(x− x̄)T 1
x (T 1

x )T ] + [(x− x̄)T 2
x (T 2

x )T ]. (5.6)

The first part of the summation in Equation 5.6 comes from the princi-

ple components, and the second part comes from the remaining components.

During transformation, quantization and mapping is applied on the first ad-

dend in Equation 5.6 before back-transformation with the inverse of the target
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transformation matrix, (T 1
y )T , instead of the source back-transformation with

(T 1
x )T . The second addend in Equation 5.6 is either replaced with back trans-

formation of (x − x̄)T 2
x with the target back-transformation, (T 2

y )T , without

quantization, or it is simply neglected and equated to zero.

Let us denote the quantization operation of the source speaker by QN
x (·),

which maps the space of the source speaker to an N dimensional finite subset

of L components. If the mapping form source codebook to target codebook

operation is denoted by f(·), then the target codeword obtained after trans-

formation and mapping is given as:

f(QNp
x

(
(x− x̄)T 1

x

)
). (5.7)

The vector obtained in (5.7) is a N×1 vector selected from the target code-

book, CV
y or CUV

y , therefore, it should be back-transformed with the inverse

of the transformation matrix of the target, Ty. Then the target LSF vector

estimation, yest, obtained after transformation is:

yest =
[
f(QNp

x

(
(x− x̄)T 1

x

)
)
]
(T 1

y )T + ȳ, (5.8)

where ȳ is the mean vector of the target LSFs. If the unquantized components

are also considered, yest is computed as:

yest =
[
f(QNp

x

(
(x− x̄)T 1

x

)
)
]
(T 1

y )T +
[
(x− x̄)T 2

x (T 2
y )T

]
+ ȳ. (5.9)

The estimation in Equation 5.9 back-transforms the non-principle compo-

nents with the transformation matrix of the target, (T 2
y )T , directly, without

any quantization and mapping. Figure 5.5 presents the block diagram of the

LSF transformation system.

5.4 Evaluations

5.4.1 Objective Evaluations

The same error measure between the target and the converted speech with the

same test set discussed in Section 4.6.1 have been used.
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Figure 5.5: Block diagram of the LSF transformation system.

There exist two training parameters in training the VT system described

in this chapter: number of principle components to be quantized, N , and

the number of codewords, L, which is also the size of the mapping histogram

matrix. We varied N = 4, 6, 8, 10 for voiced and unvoiced data. We varied

L = 64, 128, 256 for voiced data and L = 16 for unvoiced data. Mapping

histograms and codewords have been determined for both speakers. There is

one transformation parameter, D, which is the interval to obtain the allowable

paths in the dynamic programming algorithm given in Section 4.5.1. Interval,

D, has been varied from various values towards ∞, which means all paths

are allowed in the dynamic programming procedure. LSF performance indices

(given in Section 4.6.1) of the transformation from Speaker-1 to Speaker-2

on the five test sentences are given in Figure 5.6. A more detailed plot of

the performance indices with L = 64, N = 4 and Equation 5.8 is given in

Figure 5.7 to illustrate the improvement in the performance index achieved by

dynamic programming.

In Figure 5.6, PLSF has been illustrated for the transformation from Speaker-

1 to Speaker-2 for the transformations given in Equation 5.8 and Equation 5.9.

The ⊗ marked plots are for Equation 5.8. PLSF has been computed for

D = 25, 50, 75, 100, 125, 150, 200, 300, 400, 500, 600. PLSF approaches to the

value of no-constraint case for values larger than D = 500. Note that D values
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interval, D

Figure 5.6: LSF performance indices, PLSF , for N values 4, 6, and 8, with
respect to the interval, D. The ⊗ marked plots are PLSF of the transformation
given in Equation 5.8, others are PLSF of the transformation in Equation 5.9.

are quite different than those D values used in Section 4.6.1.2. This is because

the distortion measures used in Equation 4.18 for the dynamic programming

are different for the MELP-based method and the method proposed here. In

the MELP-based method the spectral distortion measure given in Equation 4.8

has been used for LSF values in radians. Distortion measure used in this chap-

ter is the Euclidean distance between the transformed and dimension reduced

LSF vectors in Hz.

It has been observed that best results are obtained when D is a value

around 75 for all N values. This shows that the dynamic programming ap-

proach increases the transformation performance compared to the case when

no constraints are used. The maximum performance achieved is almost the

same for all N values and they are around PLSF = 0.36. The difference be-

tween the performances of transformation using Equation 5.8 and Equation 5.9

increases as N decreases. This is expected because as the number of principle

components are decreased, more dimensions will be carried on the unquan-
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Figure 5.7: Detailed plot of the results given in Figure 5.6, with L = 64, N = 4
and Equation 5.8.

tized term in Equation 5.9, and the performance index will decrease. It is also

important to note that, when Equation 5.8 is used, performance indices are

almost the same for all N values. This is because the the first few principle

components carry most of the information as observed from the eigenvalues

obtained after PCA given in Table 5.1.

Figures 5.8, 5.9, and 5.10 illustrate the LSF performance indices for L =

64, 96, 128, respectively. The highest performance indices are obtained with

the codebook size of L = 64. We have also evaluated the system with L = 48;

however, negative performance indices have been obtained in that case. A

small codebook size is advantageous in terms of approximating the real prob-

abilities in the mapping histogram matrix using a limited database. However,

below a certain L value, the quantization size is not enough to model the LSF

spaces of the two speakers. The dimension reduction increases the performance

index for L = 64 and L = 96 cases. With L = 128, on the other hand, the

highest performance index is obtained with N = 8.

It is possible to conclude that this system performs better than the MELP-

based VT system given in Chapter 4, because the maximum possible per-

formance index for the MELP-based system has been achieved as 0.26 with
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L = 128, while it is 0.36 with L = 64 in the current system. The performance

of this system is also comparable with the LSF performance indices given in

the literature [6, page 62]. The results given in [6] give highest performance

index as approximately 0.33. However, the test sets are completely different

in this work and in the one reported in [6]. Therefore, it is not possible to

definitely report that this system performs better.

Figure 5.8: LSF performance indices, PLSF , for transformation from Speaker-1
to Speaker-2, L = 64 and the transformation given in Equation 5.8

We have also computed the mutual information between the codeword in-

dices of the two speakers for different codebook sizes for both systems using

the mapping histograms to obtain empirical probabilities. It has been observed

that the mutual information is higher in the new VT system compared to the

MELP-based system. Results are given in Table 5.2.
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Figure 5.9: LSF performance indices, PLSF , for transformation from Speaker-1
to Speaker-2 with L = 96 and the transformation given in Equation 5.8

Figure 5.10: LSF performance indices, PLSF , for transformation from Speaker-
1 to Speaker-2 with L = 128 and the transformation given in Equation 5.8
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Table 5.2: Mutual information in bits, obtained from the mapping histograms
of the voiced frames of the two speakers.

New System, N = 4 MELP-based System

L = 128 1.62 1.21
L = 96 1.44 1.08
L = 64 1.26 0.96

5.4.2 Subjective Evaluations

An ABX test has been used to evaluate the speaker-similarity performance

of the VT system. During the ABX text, A and B represent the original

speakers, and X is the converted speech either from A to B or from B to A.

Subjects are asked to determine whether X is more similar to A or B. Only

one original sentence of the speakers is provided to the subjects instead of

providing the original forms of all the transformed sentences. This is to prevent

the speaker-specific long-term behavior of the intonation along the sentences

from effecting the decision of the subjects. The test includes 6 transformed

X sentences and 3 transformations for two different L values (L = 64, 96).

These are the L values which result in the highest performance indices. D is

75, which gives the highest performance indices for most of the cases. For 3

of the transformed sentences N has been equated to 4, and for the other 3

sentences N is 10. This is to observe the difference in perceptual results after

dimension reduction. 2 of the transformations are from Speaker-2 to Speaker-

1 and the remaining 4 transformations are from Speaker-1 to Speaker-2. All

of the transformations have been done using Equation 5.8, since objective

evaluations have shown that performance indices using Equation 5.8 are higher

than the cases using Equation 5.9.

20 subjects have taken the test. 118 converted sentences have been detected

as the target speaker out of 120 sentences in total. 2 of the incorrect decisions

were for L = 96 and N = 10. Since no errors have been detected with N =

4 case, it is possible to say that dimension reduction increases the system

performance. When compared to the MELP-based VT system, the system

presented in this chapter performs slightly better in terms of human perception.
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This system has a correct speaker detection rate of 98.3%, while the MELP-

based system has that of 96.7 %.
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CHAPTER 6

CONCLUSIONS

6.1 Summary

In this dissertation, new approaches in the design of VT techniques are consid-

ered. A triphone-balanced speech corpus and segmentation tools for Turkish

have been developed, which were required to develop a VT system for Turkish.

In Chapter 3, we have presented the speech corpora and recognition tools,

which we have developed as a basis for our VT research. A phonetic alphabet,

METUbet, which includes not only phonemes but also allophones in Turkish

[10], has been developed. Using a 2.5 million text corpus collected from online

newspapers and the phonetic alphabet, triphone occurrence rates in Turkish

have been determined. These rates have been used to obtain a triphone-

balanced set of 2462 sentences. Audio corpus of 100 speakers, each uttering

40 sentences selected from the balanced sentence-set, has been used to train

the speech recognition system of CSLR, Sonic [49]. During the part of the

research at CSLR, Sonic has been ported to Turkish to develop a phonetic

aligner and a phoneme recognizer. Then the 100-speaker triphone-balanced

audio corpus has been labelled with word-level, phoneme-level, and HMM-state

level alignments. Using a 20 speaker test-set (separate from the 100-speaker

train set), both systems have been evaluated. Phoneme boundaries determined

by the phonetic-aligner have been compared with the hand-aligned phoneme

boundaries. 91.2% of the boundaries were inside the 20 msec. neighborhood of

the hand-aligned boundaries. For the phoneme recognizer, the overall phone
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error rate has been determined to be 29.3%.

In Chapter 4, we have proposed and implemented a new approach for VT,

which is based on MELP speech analysis. This system is based on obtain-

ing speaker-specific codebooks of LSFs out of MELP’s MSVQ LSF codebook.

Those codebooks are used to train a mapping histogram, which is used for LSF

transformation from one speaker to the other. The baseline system uses the

maxima of the histograms for LSF transformations. The shortcomings of this

system, which are the limitation of the target LSF space and spectral disconti-

nuities due to independent mapping of subsequent frames, have been overcome

by applying a dynamic programming approach. This approach considers all

target codewords corresponding to one source codeword using the probabilities

obtained from the histogram matrix. Dynamic programming also considers the

LSF distances between the subsequent frames of the source speaker. This ap-

proach improved the performance of the system in terms of both the speech

quality and the speaker identification.

In Chapter 5, we have introduced a new LSF quantization scheme using

principle component analysis for dimension reduction and k-means clustering.

LSF codebooks are obtained individually for each speaker. The same dynamic

programming approach as in Chapter 4 has been applied for final LSF com-

putation. Objective evaluations have shown that this system performs better

than the MELP based system in Chapter 4 in terms of voice similarity with

the target speaker. It has also been shown that dimension reduction using

PCA improves the system performance due to more efficient quantization.

6.2 Directions for Future Research

Further improvements in VT performance can be achieved by addressing the

problems and extending solutions of the methods described in this thesis.

The proposed method uses sentences out of the triphone-balanced audio

corpus. Recordings for each speaker have been done independently. This may

cause the speakers to utter sentences with different durations and intonations,
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especially while uttering long sentences. The recording session could be im-

proved such that the speakers listen to a prerecorded utterance before they

utter each sentence, and then they mimic the intonation in the prerecorded

one. This would reduce the need for DTW before training the system. DTW

may introduce errors in aligning the frames of the two speakers, which reduces

the performance of the mapping. Moreover, recording phrases or words instead

of long sentences may lead to better control over the intonation and durations.

With long sentences, however, small pauses, glottal stops, or vowel reductions

occur, which causes errors during automatic segmentation and frame matching.

The proposed method attempts to convert only the spectral behavior of

speech. Spectral behavior has been reported to carry the highest amount of

speaker individuality in the literature [6, 20]. However, speaker individuality

also includes the prosodic characteristics specific to a speaker. The speaking

rate, pitch contour, and durations also make up part of the speaker individu-

ality [21]. Our system modifies the pitch contour linearly to match the mean

pitch; however, it has been reported that time averaged pitch contours play a

much smaller role in speaker individuality than dynamics of the pitch contours

[21]. Long term behavior of the prosody may be modelled and transformed

from one speaker to the other to increase the VT performance.

Both of the methods we have proposed for VT modify the LPC spectrum of

the source speaker and changes only the pitch period of the residual. This is the

state-of-the-art in many VT systems today. However, the residual signal also

carries some amount of speaker information [6]. During our research, we have

observed a correlation between the LSF codewords of MELP and the quantized

Fourier magnitude peaks of the residual signal. This correlation may be used

to obtain the best target residual relating the modified LPC spectrum, instead

of modifying the source speaker’s residual. This approach has been applied in

[6], however, it has been reported that voice quality degrades while increasing

the similarity with the target. The same approach may be applied to improve

the performance of our VT system after modifications to satisfy the speech
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quality.

TTS systems today use corpus-based approaches as presented in Appendix A.

The reason for that is the concatenation of prerecorded speech units results

in much more natural synthetic speech rather than using model-based ap-

proaches. A similar approach may be used for VT in such a way that parts of

speech are selected from a pre-recorded speech corpus of the target speaker and

then concatenated. The challenge in this approach is that the source speaker’s

speech should be clearly recognized so that the correct correspondence in the

target speaker’s corpus is determined. Unit selection approaches used in TTS,

which increase the naturalness of synthetic speech, could be ported to VT

research area.

Besides the proposed future works above, more comprehensive inspections

on the phenomenon of speaker individuality may be proposed. What makes a

speaker’s speech individual exactly still remains to be question needing clearer

answers. Today’s state-of-the-art VT systems use standard feature sets such

as LSFs and cepstral coefficients to obtain functions mapping the speech of

different speakers. Human perception, on the other hand, may be based on

different feature sets for different speakers. For example, average pitch period

may be the discriminative feature to identify a male-female speaker pair. For

two male speakers with similar average pitch periods, on the other hand, the

discriminative feature might be the spectral behavior of speech, or the pitch

contour along a sentence. Speaker-specific feature selection for VT may be a

future direction. Moreover, investigation of new feature sets or new speech

models other than today’s state-of-the-art speech models which would charac-

terize the individualities in the speech signal is still an interesting and an open

field of work.
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APPENDIX A

SPEECH SYNTHESIS TOOLS

DEVELOPED FOR TURKISH SPEECH

RESEARCH

In this chapter, we present our work on speech synthesis tools developed for

Turkish. First a brief introduction to the text-to-speech (TTS) systems will be

given. Then the tools developed for a Turkish TTS system will be presented.

A.1 Introduction and Background

The goal of TTS synthesis is to enable a machine to transmit oral information

to a user in a man-machine communication context. A TTS system aims to

read any text, whether it is directly introduced in the computer by an op-

erator or scanned and submitted to an optical character recognition system.

Reading should be intelligible and natural. In the context of TTS synthesis,

it is impossible to record and store all words of the focus language. There-

fore, TTS can be defined as production of speech by machines, by the way of

automatic phonetization of the sentences to utter. Current TTS systems ad-

dress three areas: text and phonetic analysis, prosody generation, and speech

synthesis. Text analysis module converts the text that enters the synthesizer

in some electronically coded format into a linguistic representation. Tagged

and phonetically labelled text is feeded into the prosody predictor, which de-

termines prosody parameter values. The signal processing module outputs the
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synthesized speech with the prosodic properties determined by the prosody

generation module.

Speech waveform generation in a TTS system can be achieved using two

different approaches: Rule-based TTS and corpus-based TTS. The early TTS

was constructed based on rules that researchers determined from their objec-

tive decisions and experience [69]. The researcher extracts the rules for speech

production by an Analysis-by-Synthesis (AbS) method. In the AbS method,

parameters characterizing a speech production model are adjusted by perform-

ing iterative feedback control so that the error between the observed value and

that produced by the model is minimized. Such rule determination needs

professional expertise since it is difficult to extract consistent and reasonable

rules [33]. The rule based TTS has usually an unnatural speech quality because

speech waveform is generated by a model, which generally needs some approx-

imations in order to model the complex human vocal mechanism [69]. Current

TTS systems are usually corpus-based synthesizers, in which a large amount

of speech data is used. This approach has been developed recently through

the improvements in computer speeds and performances. Output waveform

speech is synthesized by concatenating the selected units from the speech cor-

pus and then modifying their prosody. The structure of corpus-based TTS is

given in Figure A.1. Corpus-based TTS systems can synthesize speech more

natural than the rule-based TTS systems, because the concatenated parts are

the natural speech parts themselves. If the selected units need little modifi-

cation, natural speech can be synthesized by concatenating speech waveform

segments directly.

In this thesis, the speech synthesis tools developed are aiming a diphone-

based speech production model. A diphone-based TTS system is a special

kind of a corpus-based synthesizer, which concatenates diphones previously

recorded to synthesize speech. The corpus consists of one sample (or a set

of samples) for each phone-pair (diphone) existing in the language. The TTS

engine, Festival Speech Synthesis System, has been used as the development
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framework [70]. Festival offers a general multi-lingual framework for building

speech synthesis systems as well as including examples of various modules.

Voices in many languages including English (UK and US), Spanish and Welsh

has been developed using Festival.

Figure A.1: Structure of corpus-based TTS.

We are going to give brief information on the modules of a corpus-based

TTS system illustrated in Figure A.1, before moving on to the tools developed

for a Turkish diphone-based TTS synthesizer.

A.1.1 Text Analysis

In the text analysis module, an input text is converted into contextual in-

formation, such as pronunciation, part-of-speech and so on. First elements

of the document structure which may have direct implications on prosody,

such as sentence breaking and paragraph segmentation, are determined. Then

text normalization, which involves conversion from various numbers, symbols,

dates, phone numbers, cardinals into a common orthographic transcription

suitable for phonetic transcription. In some systems (for example Chinese),

a designated symbol marks the end of the sentence, while in many languages

as such as English and Turkish a period marks both the end of the sentence

and the abbreviations. Tokenization into words in many Asian languages such

as Mandarin Chinese is not trivial, because spaces are not used to delimit
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words. A minimal requirement for this task is an online dictionary, how-

ever this is not usually enough to overcome this problem, because there are

words not found in the dictionary. After the text normalization a linguistic

analysis is applied, which recovers the syntactic and semantic features of the

words, phrases, clauses and sentences important for both pronunciation and

prosodic choices. Commercial TTS systems usually have some minimal pars-

ing heuristics developed strictly for TTS [35]. During the linguistic analysis,

the normalized text is divided into morphemes, which are minimum units of

letter strings having linguistic meaning. These morphemes are tagged with

their parts of speech, and a syntactic analysis is performed. Then, the mod-

ule determines phoneme and prosodic symbols, e.g. accent nucleus, accentual

phrases, boundaries of phonetic clauses, and syntactic structure [56].

A.1.2 Prosody Generation

In the prosody generation module, prosodic features such as F0 contour, ampli-

tude (power contour), and phoneme duration are predicted from the contextual

information output from the text analysis. Prosodic information is important

for the intelligibility and naturalness of the synthetic speech.

One of the most famous models that represent the F0 contour is Fujisaki’s

model [56, page 166]. This model decomposes the F0 contour into two com-

ponents: a phrase component that decreases gradually toward the end of the

sentence, and an accent model that increases and decreases rapidly at each

accentual phrase. This model also fits the observations we have made previ-

ously on Turkish sentences [71]. Many data-driven algorithms to model F0

have been proposed. In [72], an F0 contour of a whole sentence is produced

by concatenating segmental F0 contours which are generated by modifying

vectors that are representatives of typical F0 contours. Using the natural F0

contours selected from a speech corpus, instead of representative vectors, to

generate an F0 contour is proposed in [73]. In this algorithm, if there is an F0

contour having equal contextual information to the predicted information in
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the speech corpus, the F0 contour is used without modification. Algorithms

using ToBI labels have been proposed and widely used for F0 contour predic-

tion [35, page 742]. HMM-based methods to model both the F0 contour and

duration have also been proposed [74]. In this method, the F0 contour, power

contour, and phoneme durations are generated directly by HMMs. Some TTS

systems do not perform the prosody generation, but contextual information is

used instead of the prosody information for the unit selection stage [75].

In our TTS system, prosody modification module is a simple one. A rule-

based duration module and an F0 model similar to Fujisaki’s method obtained

from our observations in [71] have been used.

A.1.3 Unit Selection

In this module, optimum set of units is selected from a speech corpus by

minimizing the degradation of naturalness caused by various factors, such as

prosodic difference, or spectral difference. Many types of basic speech units

have been used in the literature. Phonemes, diphones [76], VCV (vowel-

consonant-vowel) units or CVC units [77]. In order to use the stored data

effectively and flexibly, using non-uniform units with variable lengths have

also been proposed [78, 79]. In this approach, an optimum set of synthesis

units are selected by minimizing a cost capturing the degradation caused by

spectral difference, difference in phonetic environment, and concatenation be-

tween units in a synthesis procedure.

Units in our system are diphones. The basic idea behind building diphone

databases is to explicitly list all possible phone-phone transitions in a language.

This makes the wrong, but practical, assumption that co-articulatory effects

never go over more than two phones [70]. The exact definition of phone here is

in general non-trivial because various allophonic variations may in some cases

be also included, as will be discussed in our work in Section A.2.1. Unlike

generalized unit selection where multiple occurrences of phones may exists with

various distinguishing features, in a diphone database only one occurrence of
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each diphone is recorded. This makes selection much easier but also makes for

a large laborious collection task. Diphone synthesis has the advantage that the

memory required for the TTS is extensively reduced compared to the multiple

unit-selection synthesis case.

A.1.4 Waveform Synthesis

An output speech waveform is synthesized from the selected units in the final

module of the TTS. In general two approaches have been used: Waveform

concatenation without speech modification and speech synthesis with speech

modification.

Waveform concatenation without speech modification uses the natural vari-

ation of the acoustic units from a large speech database to reproduce the

desired prosodic characteristics in the synthesized speech [80]. Therefore, syn-

thetic speech has no degradation caused by signal processing. Any degradation

in the synthetic speech quality is caused by the possible prosodic errors [33]. In

order to prevent this degradation, it is necessary to prepare a large-size speech

corpus.

Speech synthesis with speech modification uses signal processing techniques

to generate a speech waveform with target prosody. The Time-Domain Pitch-

Synchronous OverLap-Add (TD-PSOLA) has been proposed, which changes

the prosody in time domain by re-arranging the center positions of windowed

speech frames to modify pitch [81]. Harmonic plus Noise Model (HNM) has

been proposed as a high-quality speech modification technique [82]. In this

model, speech signals are represented as a time-varying harmonic component

plus a noise component. In our system, residual-excited LPC method (RELP)

is used [70, 7]. RELP method modifies the inverse filtered residual signal and

re-synthesizes speech using the same LPC filter driven by the modified residual.

In terms of naturalness of synthetic speech, waveform concatenation with-

out modification outperforms, however naturalness is not always consistent.

Speech synthesis with modification does not sound as natural as waveform

101



 Best quality 

Percentage of 

sentences with 

maximum quality 

Limited 

domain 

concatenation 

Concatenative 

 (no wave 

modification) 

Concatenative  

(wave 

modification) 

Rule-based 

Figure A.2: Quality and task-independence in speech synthesis.

concatenation, but the sound quality is consistent. It is a common experience

that a single system can sound well on one sentence and terrible on the other.

For that reason, quality of the best sentences and the percentage of the sen-

tences for which such a quality is reached are considered separately [35]. This

tradeoff is illustrated in Figure A.2.

A.2 Diphone Synthesis Tools Developed for

Concatenative Speech Synthesis

A new diphone corpus for concatenative speech synthesis has been designed

and recorded for Turkish. The resulting corpus has been integrated into the

Festival Speech Synthesis System [76]. The basic idea behind building a di-

phone corpus is to explicitly list all possible phone-to-phone transitions in a

language. This is based on the practical assumption that co-articulatory affects

do not go more than over two phones. All possible diphone pairs for Turkish

have been determined based on the METUbet phonetic symbols [7]. Tools for

constructing a list of nonsense carrier words for those diphones and collecting

the audio corpus have been developed. The diphone list and simple prosodic

modules have been integrated into the Festival Speech Synthesis System and

the resulting speech synthesizer has been evaluated using a Diagnostic Rhyme

Test (DRT) [7].

102



Table A.1: New symbols added to the METUbet alphabet for speech synthesis.

METUbet Example

AAG Ağaç
AG Lağ ım
EEG Ereğ li
EG Eğ len
IG Iğdir

A.2.1 Diphone Corpus Construction

Before developing the diphone list for Turkish, some new symbols have been

added to the METUbet symbol list given in Figure 3.1, to consider the affect

of ğ on Turkish vowels. ğ usually lengthens the vowel it precedes or acts as

a weak Y when it is between front vowels [10]. It has not been considered in

the aligner and the phoneme-recognizer development as explained in Section

3.4.2.1. For synthesis, on the other hand, phoneme durations are important

and should be considered. Therefore, we have considered vowels followed by

the ğ as new phonemes instead of considering the ğ by itself. Considering the

ğ alone is impossible in terms of developing special carrier words, since it is

actually not a phoneme, realized by itself, but it acts on vowels to change their

way of articulation [10]. The new symbols added to METUbet, considering ğ,

for speech synthesis purposes are listed in Table A.1.

The new symbol set has 48 symbols to represent Turkish phonemes and

allophones. The typical diphone size is the square of the number of the phone

number for any language, which is 48×48 = 2304 in our case. However, there

are phonotactic constraints in human languages. Some phone-phone pairs do

not occur physically. All possible diphone pairs have been determined based on

letter-to-sound rules obtained from the Turkish phonetic dictionary [10]. 2283

possible diphones have been determined. A tool (Perl script) to construct

nonsense carrier words has been developed. Nonsense words help the speaker

keep constant prosody during recording. The carrier words are formed such

that they obey phonetic rules of Turkish such as vowel harmony and syllable-

final oral stop voicing and etc. The initial vowel in each carrier word helps
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Table A.2: Examples of diphones and their carrier words

Diphone Carrier Word Carrier Word in METUbet

P-AA a paradagun AA P-AA D AA RR AA GG U NN
KK-AA a kadaragun AA KK-AA D AA RR AA GG U NN

A-M a lamaragun AA L A-M AA RR AA GG U NN
A-F a lafaragun AA L A-F AA RR AA GG U NN
M-B a dambat AA D AA M-B AA T
S-F a dasfat AA D AA S-F AA T

P-UE e püderegen E P-UE D EE RR EE G EE NN
OE-T e böteregen E B-OE T EE RR EE G EE NN

the speaker adjust the amplitude and it is pronounced as a long vowel sound

for this adjustment, while the final agun or egen part (one of them is selected

depending on the vowel harmony) helps to keep the pitch constant during

recording. Table A.2 shows some of the carrier words to give an insight on the

carrier-word formation strategy.

A.2.2 Recording the Diphone Corpus

A user interface tool for systematic recording of the diphone corpus has been

developed. The tool displays each word for 5 seconds on the computer screen

both in graphemes and in METUbet symbols and lets the user record his/her

voice. Then it displays the next carrier word. The tool enables direct accu-

sation of groups of 5, 10, 15, 20, 25, or 30 words in Windows PCM *.wav

files. Recording in groups saves recoding time of all 2283 words. It also lets

the speaker to increase the number of words in a recording group and save

more time as he/she gets used to reading the carrier words. The tool creates

a log file associated with each word group file, which carries the information

of location of each individual word inside the file. This is for later separation

of the group files before integrating them into Festival. The tool also allows

the user to record multiple copies of all files, so that the speaker can listen to

them during the recording session and select the best one. Figure A.3 shows

the user interface during recording. The beginning word of the word group

to be recorded is selected on the left panel and the selected word is displayed
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below both panels. The right panel shows the already recorded files. The first

file rec0000 0004.wav includes the first 5 carrier words, while the second one,

rec004 0013.wav, includes 10 words, from word-0 to word-13.

Figure A.3: Diphone recording user interface.

The audio has been collected in a sound-isolated recording studio at CSLR.

Female voice at 16 kHz sampling rate has been collected. The Festival Speech

Synthesis System can use glottal pulses for precise pitch prediction optionally.

To take the advantage of this option, speech has been collected together with

the glottal pulse, using a device called electroglottograph (EGG). The EGG

device measures the variations in the electrical impedance of the neck at the

level of the vocal folds caused by the variation of vocal fold contact as the

vocal folds vibrate. The method uses a pair of electrodes on the neck that

apply a small current, which is safe, and measures the patterning of vocal

fold contact area. The resulting waveform, when plotted simultaneously with

the speech waveform, provides accurate measurements of the voiced/unvoiced

regions and the pitch period. The derivative of the glottal waveform has sharp

peaks at glottal openings. An example waveform with its glottal waveform is

illustrated in Figure A.4. The upper panel shows the speech waveform and the

lower panel shows the glottal wave. This is the diphone [EE-SH] in Turkish

uttered by a female speaker. Voiced/unvoiced transition can be determined
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accurately by the disappearing of the glottal pulses as observed in the figure.

An EGG device of Glottal Enterprises, Model EG-2 PC, has been used for

this data collection. The recording set-up is illustrated in Figure A.5. The

device takes the audio and the EGG signal as input separately and combines

them at the stereo output with two channels. When connected to a computer

equipped with a sound card via a stereo cable, the left channel of the output

signal carries the audio (microphone) signal, and the right carries channel the

EGG. A Labtec axis-502 microphone has been used to record the speech signal.

Figure A.4: Speech waveform (upper panel) and the glottal waveform (lower
panel). This is female speech collected at 16kHz, presented speech part is the
[eş] boundary in Turkish. Time axis is in seconds.

EGG Device

PC

stereo signal

speech + glottal wave

glottal wave

microphone

amplifier

line-in

Labtec

axis-502

microphone

EG-2 PC

Glottal Enterprises

Figure A.5: Diphone recording set-up.

Once the diphone recording phase is completed, the files are needed to be

integrated into Festival. A script to divide diphone group files into single-
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Table A.3: Diphone index list (.est file) for Festival

EST-File index
DataType ascii
NumEntries 2283
IndexName ozgul-diphone
EST-Header-End
P-AA rec0000 1.340 1.395 1.440
T-AA rec0001 1.195 1.255 1.300
B-AA rec0002 1.070 1.135 1.180
D-AA rec0003 1.320 1.395 1.425
M-AA rec0004 1.285 1.355 1.395
NN-AA rec0005 1.020 1.075 1.120
F-AA rec0006 0.965 1.035 1.080
S-AA rec0007 1.110 1.185 1.220

...
...

...
...

word files have been produced and used to obtain 2283 separate .wav files.

Festival system also requires a diphone index list file (a .est file) [83]. This

index list includes diphones, their corresponding wave file names, the start

time, mid-time (phone boundary of the diphone) and the end-time in seconds.

The beginning part of the index list file is shown in Table A.3. Phoneme

boundaries have been obtained automatically with the Sonic Turkish phoneme

aligner system, which has been presented in Section 3.4.2.1.

The next step for synthetic speech for a new language is integrating the

natural language processing modules into Festival.

A.2.3 Developing Natural Language Processing Mod-

ules for Festival

Modules required by the Festival speech synthesizer structure were written in

Scheme programming language, which is a dialect of the Lisp programming

language [84]. The natural language module scripts requited by Festival, there-

fore, have been developed in Scheme. Festival requires two different types of

scripts: Language specific text module scripts (phones, lexicon, tokenization)

and speaker specific prosodic module scripts (duration and intonation). This
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differentiation helps us define different duration and intonation styles for dif-

ferent speakers of the same language. Figure shows the block diagram of the

natural language modules in Festival.

    Phone definitions

       Tokenization

 Lexicon and LTS rules

     Phone durations

         Intonation

Language Specific Speaker Specific

Figure A.6: Natural language processing modules in Festival.

A.2.3.1 Language Specific Modules

The first text analysis module is the phone-set definition module in which every

symbol of the METUbet alphabet is classified according to phone features like

vowel height, consonant voicing and etc. Phone definitions have been made

based on the phone definitions given in [10]. Phone definitions for vowels are

given in Table A.4.

The next module, which is the lexicon module, includes letter-to-sound

rules. These are rules to convert from Turkish graphemes to METUbet sym-

bols. They have been developed at METU from the Turkish phonetic dictio-

nary [10]. Since Turkish is a phoneme-based language, the rules are able to

cover almost all Turkish words, except for some words originated from other

languages. There are 107 rules developed for Turkish, and they have been

rewritten in Scheme. Some examples are given in Table A.5.

The next module is the tokenization module. This module converts num-

bers (decimal or integer up to 999 billion), percentages, 24-hour clock, Celsius

degrees, and some common abbreviations (such as Dr. to ”doktor” or, Şub.

to Şubat) into a word. We have not provided a lexicon to the system, because

Turkish is an agglutinative language and even a simple lexicon should include

millions of words. Instead, all pronunciations are determined via letter-to-

sound rules. This module also includes syllabification of words, which will be
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Table A.4: Turkish vowel definitions in Festival text module (V/C: vowel or
consonant, length: Short or Long, height: 1/2/3 levels, frontness: 1/2/3 levels,
roundness: Round or Flat)

PHONE V/C LENGTH VOWEL VOWEL VOWEL

HEIGHT FRONTNESS ROUNDNESS

A V S 3 3 F
AA V S 3 3 F
AG V L 2 2 F

AAG V L 2 2 F
E V S 3 1 F

EE V S 3 1 F
EG V L 2 1 F

EEG V L 2 1 F
IY V S 1 1 F

IYG V L 1 1 F
I V S 1 3 F

IG V L 1 3 F
O V S 3 1 R

OG V L 2 1 R
OE V S 3 3 R

OEG V L 2 3 R
U V S 1 1 R

UG V L 1 1 R
UE V S 1 3 R

UEG V L 1 3 R

used by the speaker specific modules to assign intonation to parts of speech.

A.2.3.2 Speaker Specific Modules

Speaker specific modules determine the major components of the prosody,

which are pitch and duration of the concatenated speech segments.

The pitch contours of the sentences are determined by the intonation mod-

ule. The intonation module of Festival predicts accents on a per syllable basis.

Target fundamental frequency values are determined depending on the sylla-

ble stress values. We have used Classification and Regression Tree (CART)

definitions of Festival to determine phase boundaries. Based on our previous

work on Turkish pitch contours [71], sentence pitch contours are determined

109



Table A.5: Some examples of letter-to-sound rules in Scheme

Rule Explanation

(u [v] a = V); v after u and before a is V in METUbet
(o [v] u = V); v after o and before u is V in METUbet
(ko [v] CONSONANT = V); v after ko and before any consonant

is V in METUbet
([v] = VV); all other v’s are VV in METUbet
([b] = B); all b’s are B

using CART trees. Our observations on Turkish sentence and word prosody

in [71] can be summarized as follows:

• Pitch contour has a declining characteristic along the sentence for all

types of sentences.

• The last syllables of all words, except for the verb, which is the final

word usually, are accented (i.e. pitch contour inclines).

• Verb and the word before verb have declining pitch contours.

• The word before verb could have rising or falling pitch contour depending

on the speaker.

• Negative verbs (verbs including the negation morphemes, -me or -ma),

have the pitch contour rising before the negation morphemes.

• In yes/no question sentences, the question morpheme (-mi, -mu) is ac-

cented.

Note that these observations are far from modelling Turkish sentence or

word prosody in detail, but they only provide generalizations which help the

synthetic speech sound much more natural than flat intonation. Modelling

Turkish prosody requires a more detailed research and it is beyond the scope

of this thesis. However, the above observations provide a good framework for

the speech synthesis system at the beginning.

An analysis has been made on the on the previously recorded sentences of

our speaker. Mean values of the sentence-beginning and sentence-final pitch are
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Table A.6: Phonemes and their mean durations for our female TTS speaker.

PHONE DURATION PHONE DURATION

(sec) (sec)

AA 0.054 G 0.068
AAG 0.108 GG 0.061
A 0.046 H 0.058
AG 0.092 G 0.094
E 0.050 K 0.091
EG 0.098 KK 0.090
EE 0.045 L 0.047
EEG 0.093 LL 0.050
I 0.034 M 0.068
IG 0.075 N 0.076
IY 0.035 NN 0.059
IYG 0.070 P 0.096
O 0.061 R 0.055
OG 0.123 RR 0.042
OE 0.062 RH 0.076
OEG 0.124 S 0.118
U 0.039 SH 0.114
UG 0.079 T 0.084
UE 0.035 V 0.063
UEG 0.071 VV 0.051
B 0.066 Y 0.058
C 0.078 Z 0.088
CH 0.105 ZH 0.129
D 0.056 SIL 0.607
F 0.091

obtained. The beginning and final values have been obtained as 246 Hz and 161

Hz respectively with standard deviations 33.6 Hz and 23.1 Hz. An imaginary

linear contour which connects those two points is used as the sentence pitch

contour. This imaginary line is lifted up by 76 Hz (which is obtained from

observations) at the first and second pitch rise, which correspond to the final

syllables of the first and the second word in the sentence [71].

For the duration module, we have provided mean phoneme durations, which

have been obtained from the phoneme aligned 40 triphone-balanced sentences

of our female speaker. Duration list is given in Table A.6.
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Table A.7: Turkish Words for Diagnostic Rhyme Test

VOICING NASALITY SUSTENATION SIBILATION GRAVENESS COMPACTNESS

ver-fer mit-bit var-bar çöp-köp pek-tek yer-ver
ben-pen nar-dar şal-çal can-gan bür-dür kay-tay
cin-çin nam-dam ver-ber çem-kem mal-nal hay-fay
den-ten ney-dey fay-pay caz-gaz pak-tak göl-döl
zor-sor mor-bor şam-çam çok-kok bol-dol kar-par
dün-tün nal-dal yer-ger cay-kay met-net yurt-kurt
vol-fol mür-dür ser-çer can-kan ban-tan gaz-baz
gel-kel mey-bey sar-çar çan-kan bön-dön kör-pör
zen-sen mal-dal vak-bak çöl-göl ver-der yaz-raz
dan-tan mal-bal sal-çal çöz-köz pas-tas has-fas

A.2.4 Waveform Generation

The standard method for diphone re-synthesis, which is in the released system

of Festival, is RELP (Residual Excited Linear Prediction) [85]. This method

uses the residual signal of the speaker to excite the vocal tract filter obtained

from LPC analysis.

A.2.5 Evaluations

To test the intelligibility of our system, we have designed a simple Diagnostic

Rhyme Test (DRT) for Turkish. DRT is a response test with two response

alternatives containing systematic, minimal phonemic contrasts in the initial

consonant and it is often used for testing TTS systems [86]. The subject would

be asked to indicate whether a synthetic item was intended as for example,

dune or tune. 60 pairs of meaningful words with different confusability groups

have been determined. Using meaningful words makes the system reliable,

fast, and easy to administer and score [86]. The words have been determined

considering the close correspondence with DRT standard for American English

[87].

During the test, subjects can see the monosyllable similar word pairs, but

they hear only one of them. The fraction of the words they identify correctly

is the measure of the intelligibility of speech over the system. The six per-
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ceptual attributes (voicing, nasality, sustenation, sibilation, compactness, and

graveness) have been tested and 10 monosyllable pairs for each group have

been determined. The words are presented in Table A.7. 12 pairs (2 words

from each group) are selected randomly for each subject from the list. One

word from each pair is synthesized by our TTS system. Test has been repeated

for 20 subjects. The overall intelligibility of the system has been found to be

86.5%.
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APPENDIX B

EXAMPLE OF A TRIPHONE-BALANCED

CORPUS COLLECTION LOG FILE

Figure B.1: Beginning part of a triphone-balanced corpus collection log-file.

Figure B.1 illustrates the beginning part of one example log file prepared

for the speaker, whose specifications are recorded at the beginning of the file.

This file is prepared before the recording session and 40 sentences are selected

randomly for every speaker from the triphone-balanced sentence set.
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APPENDIX C

MUTUAL INFORMATION

In this section, preliminary basic information on the mutual information con-

cept will be given.

Mutual Information:

Mutual information is a measure of the amount of information that one

random variable contains about the other [66]. Before giving its definition, the

concept of entropy is explained here very briefly. Let X be a discrete random

variable with alphabet χ and the probability mass function p(x) = Pr{X = x},
x ∈ χ. Note that, here probability mass function is denoted by p(x) rather

than pX(x) for convenience. Therefore, p(x) and p(y) will actually refer to two

different probability mass functions pX(x) and pY (y) respectively.

Definition: Entropy

The entropy of a random variable is a measure of the uncertainty of the

random variable. In other words, entropy is a measure of the amount of in-

formation required on the average to describe the random variable. Entropy,

H(X), is defined by:

H(X) = −∑
x∈χ

p(x) log p(x). (C.1)

When the log is to the base 2, entropy is expressed in bits.

Definition: Joint Entropy

If we have a pair of random variables X and Y with a joint distribution

p(x, y), we can define the joint entropy, H(X,Y ), as:
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H(X, Y ) = −∑
x∈χ

∑

y∈ψ

p(x, y) log p(x, y), (C.2)

where ψ is the alphabet of random variable Y .

Definition: Conditional Entropy

Conditional entropy of a random variable is the uncertainty of one random

variable, knowing the distribution of the other random variable. For X and Y ,

with a joint distribution p(x, y), conditional entropy, H(Y |X), is defined as:

H(Y |X) =
∑
x∈χ

p(x)H(Y |X = x)

= −∑
x∈χ

p(x)
∑

y∈ψ

p(y|x) log p(y|x)

= −∑
x∈χ

∑

y∈ψ

p(x, y) log p(y|x). (C.3)

Note that H(X|Y ) 6= H(Y |X). However, H(X) − H(X|Y ) = H(Y ) −
H(Y |X), which will be defined as the mutual information below later. This is

the amount of decrease in the entropy of one random variable when the other

random variable is known.

Definition: Relative Entropy

The relative entropy is a measure of the inefficiency of assuming that the

distribution is q(x), when the true distribution is p(x). The relative entropy

between two probability distributions p(x) and q(x), D(p||q), is defined as:

D(p||q) =
∑
x∈χ

p(x) log
p(x)

q(x)
. (C.4)

The above definition depends on the convention that 0 log 0
q

= 0 and

p log p
0

= ∞. Relative entropy is zero, when p = q, and it is always non-

negative. However, it is not a true distance measure, since it is not symmetric

and it does not satisfy the triangle inequality.

Definition: Mutual Information

Mutual information is a measure of the amount of information that one

random variable contains about another random variable. It is the reduction
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in the uncertainty of one random variable due to the knowledge of the other.

Mutual information, I(X; Y ), is the relative entropy between the joint distri-

bution, p(x, y), and the product distribution p(x)p(y), i.e.,

I(X; Y ) =
∑
x∈χ

∑

y∈ψ

p(x, y) log
p(x, y)

p(x)p(y)
. (C.5)

It can also be shown that I(X; Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

[66].
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APPENDIX D

PRINCIPLE COMPONENT ANALYSIS

In principle component analysis (PCA), a set of data are summarized as a linear

combination of an orthonormal set of vectors. The data matrix is Xn×d, whose

rows are data vectors xi, i = 1, · · · , n. The data vectors, xi, are summarized

by the approximating function,

f(x, T ) = u + (xT )T T , (D.1)

wheref(x, T ) is a vector-valued function, u is the mean of the data {xi}, and

T is a d×m matrix with orthonormal columns. The principle component

decomposition estimates the projection matrix T , which minimizes the risk

function,

R(x, T ) =
1

n

n∑

i=1

‖xi − f(xi, T )‖2 (D.2)

subject to the condition that the columns of T are orthonormal [68]. The

mapping zi = xiT provides a low-dimensional projection of the vectors xi if

m < d. If m = d, then it is possible to reconstruct xi perfectly by back-

transforming zi with T−1.

Without loss of generality, the data can be assumed to be zero-mean, and

u can be set to zero. The transformation matrix T , which minimizes R(x, T )

in Equation D.2, is determined using the singular value decomposition (SVD)

of the data matrix X [68]. SVD is given as

X = UΣV T , (D.3)
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where the columns of U are the eigenvectors of XXT , and the columns of V

are the eigenvectors of XT X. The matrix Σ is a n×d matrix which is in the

form:

Σ =




Σ̃ 0

0 0


 , Σ̃ = diag(σ1, σ2, · · · , σw). (D.4)

where 0 are null matrices and σ2
i are the non-zero eigenvalues of the Her-

mitian and nonnegative definite matrix XT X. σi are arranged such that

σ1≥σ2≥· · ·≥σw≥0 and σw+1, σw+2, · · · are all zero, with 1≤w≤d.

To produce a projection with dimension m < d, which has maximum vari-

ance, all the eigenvalues σ2
i except the first m are set to zero. Then we redefine

the decomposition as

X̃ = ŨΣmT T , (D.5)

where Σm denotes the modified diagonal d×d eigenvalue matrix where only

the first m elements on the diagonal are nonzero and they are σ1, σ2, · · ·, σm.

T is a d×m matrix constructed from the first m columns of V and Ũ is con-

structed from the first m columns of U and it is of size n×m. X̃ is the best

approximation to X in the sense of minimization of Equation D.2. Then the

m-dimensional projection vectors are given by

Z = XT, (D.6)

where Z is an n×m matrix whose rows correspond to the projection zi for a

given data sample xi.

The principle components have the following optimal properties in the class

of linear functions f(x, T ) [68]:

• The principle components provide a linear approximation that repre-

sents the maximum variance of the original data in a low-dimensional

projection.

119



• Z provide the best low-dimensional linear representation in the sense

that the total sum of the squared distances from data points to their

projections on the principle components in the space are minimized.

• The function f(x, T ) = (xT )T T minimizes the risk function in (D.2).

Note that since T has orthonormal columns, the left inverse of it is T T .
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APPENDIX E

K-MEANS CLUSTERING ALGORITHM

The k-means algorithm is actually the Lloyd Iteration algorithm, which is used

for clustering data [67]. The algorithm starts with a given initial codebook and

ends with an improved codebook with a reduced average distortion D, which is

defined as E{d(X, Q(X))}. E{·} is the expectation operation, d(X,Q(X)) is

the distortion measure between the set of input vectors, X, and its quantized

form, Q(X). Assume X is a data matrix with row vectors xi. The algorithm

is given as:

• Step 1: Begin with an initial codebook C1. Set m = 1. Cm = {yi; i =

1 · · · , N}.

• Step 2: Find the optimal partition into quantization cells, that is, use

the nearest condition to form the nearest neighbor cells: Ri = {x :

d(x, yi)≤d(x, yj); allj 6=i}.

• Step 3: Generate the improved codebook Cm+1 = {centroid(Ri); i =

1, · · · , N}.

• Step 4: Compute the average distortion for Cm+1. If it has changed by

a small amount since the last iteration, stop. Otherwise set m + 1 → m

and go to Step 2.

The stopping criterion commonly tests if the fractional drop in the aver-

age distortion, (Dm − Dm+1)/Dm, is below or above a suitable threshold. If

the algorithm converges to a codebook in the sense that further iterations no
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longer produce any changes in the set of reproduction values, then the resulting

codebook is at least sub-optimal [67].
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mining the prosody from written turkish sentences and applications,” in
Proc. of the 9th Signal Processing and Communications Applications Con-
ference, SİU’01, 2001.
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rultayı, SİU, 2002.
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Turkish”, Thesis Supervisor: Mübeccel Demirekler, Middle East Techni-
cal University, Sept. 1999

132


