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ABSTRACT 

 
 
 

BAYESIAN LEARNING UNDER NONNORMALITY  
 
 
 

Yılmaz, Yıldız Elif 

M.S., Department of Computer Engineering 

                          Supervisor       : Assoc. Prof. Dr. Ferda Nur Alpaslan 

Co-Supervisor : Assoc. Prof. Dr. Ay�en (Dener) Akkaya 

 

December 2004, 72 pages 
 
 
 

Naive Bayes classifier and maximum likelihood hypotheses in Bayesian learning are 

considered when the errors have non-normal distribution. For location and scale 

parameters, efficient and robust estimators that are obtained by using the modified 

maximum likelihood estimation (MML) technique are used. In naive Bayes classifier, 

the error distributions from class to class and from feature to feature are assumed to be 

non-identical and Generalized Secant Hyperbolic (GSH) and Generalized Logistic (GL) 

distribution families have been used instead of normal distribution. It is shown that the 

non-normal naive Bayes classifier obtained in this way classifies the data more 

accurately than the one based on the normality assumption. Furthermore, the maximum 

likelihood (ML) hypotheses are obtained under the assumption of non-normality, which 

also produce better results compared to the conventional ML approach.  

 

Keywords:  Bayesian Learning, Non-normality, Generalized  Secant  Hyperbolic, 

         Generalized Logistic,  Robustness. 
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ÖZ 

 
 
 

NORMAL DA�ILIMA SAH�P OLMAMA VARSAYIMI ALTINDA BAYES 
Ö�RENMES� 

 
 
 

Yılmaz, Yıldız Elif 

Yüksek Lisans, Bilgisayar Mühendisli�i 

    Tez Yöneticisi           : Doç. Dr. Ferda Nur Alpaslan 

Ortak Tez Yöneticisi : Doç. Dr. Ay�en (Dener) Akkaya 

 

 

                  Aralık 2004, 72 sayfa 

 

 

Bayes ö�renmesinde naive Bayes sınıflandırıcısı ve en çok olabilirlik önsavları için hata 

terimlerinin normal olmayan da�ılıma sahip olması durumu dü�ünülmü�tür. Uyarlanmı� 

en çok olabilirlik metodu ile yerle�tirme ve ölçek parametreleri için etkin ve sa�lam 

tahmin ediciler elde edilmi�tir. Naive Bayes sınıflandırıcısında hata terimi da�ılımlarının 

sınıftan sınıfa ve özellikten özelli�e özde� olmadı�ı varsayılmı�tır ve normal da�ılımı 

yerine Genelle�tirilmi� Sekant Hiperbolik (GSH) ve Genelle�tirilmi� Lojistik (GL) 

da�ılım aileleri kullanılmı�tır. Bu yolla elde edilen normal olmayan naive Bayes 

sınıflandırıcısı, normallik varsayımına dayanana göre verileri daha do�ru sınıflandırdı�ı 

gösterilmi�tir. Ayrıca geleneksel en çok olabilirlik yakla�ımına göre daha iyi sonuçlar 

veren normal olmama varsayımı altında en çok olabilirlik önsavları elde edilmi�tir.   

 

Anahtar Kelimeler: Bayes ö�renmesi,  Normal  olmayan  da�ılımlar,   Genelle�tirilmi�  

           Sekant Hiperbolik, Genelle�tirilmi� Lojistik, Güçlülük. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Bayesian learning is a statistical approach to the problem of pattern classification. Most 

Bayesian learning procedures are based on the assumption that the underlying 

distribution is normal. In practice, however, non-normal distributions occur so 

frequently. To quote Geary (1947): “Normality is a myth; there never was, and never 

will be, a normal distribution.” Hence to assume normality instead might lead to 

erroneous statistical inferences (Tiku et al., 1986). It is, therefore, very important to 

develop statistical procedures which are appropriate and efficient for non-normal 

distributions. 

 

Naive Bayesian classification is the optimal method of supervised learning if the 

assumptions are satisfied. It basically assumes the features are independent given the 

class. Although this assumption is almost always violated in practice, Domingos and 

Pazzani (1996) showed that the naive Bayes classifier is remarkably robust to the failure 

of this assumption. However, in the literature, it is also assumed that the model 

distribution is normal without investigating the plausible distribution of the training set. 

For instance, Sebe et al. (2002) showed that in naive Bayes classifier the Cauchy 

distribution assumption provides better results than the normal distribution assumption 

for an emotion recognition problem. Hence, in this study, naive Bayesian classification 

technique is modified according to non-normal distribution assumption.  

 

In machine learning determining the most probable hypothesis from some space, given 

the observed training data is an important task. Bayesian learning method provides a 

probabilistic approach to find the best hypothesis. In the literature, when the Bayesian 

learning method is used and the learning problem is a continuous-valued target function, 
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the target value of each training example is assumed to be corrupted by random noise 

drawn according to a normal distribution. In this study, the underlying distribution of 

noise is assumed to be non-normal and statistical procedures which are efficient and 

robust are developed.  

 

The aim of this thesis is to introduce the Generalized Secant Hyperbolic and Generalized 

Logistic naive Bayes classifiers and to find the maximum likelihood hypothesis when 

the noise corrupting the target value is non-normally distributed.    

 

The outline of this thesis is given as follows: Chapter 1 presents the naive Bayes 

classifier and the maximum likelihood hypotheses under the assumption of normality 

and the properties of the Generalized Secant Hyperbolic and Generalized Logistic 

families. In Chapter 2, the Generalized Secant Hyperbolic and Generalized Logistic 

naive Bayes classifiers are defined. In Chapter 3, maximum likelihood hypothesis is 

found when the noise is non-normally distributed. Finally, applications and conclusions 

are presented in Chapter 4.  

 

1.1 Historical Perspective 

 

1.1.1 Model Description and Test Procedures Under Normality 

 

i) Naive Bayes Classifier 

 

The naive Bayes classifier is a simple classifier which assumes the features are 

independent given the class. Although independence is a poor assumption, in practice 

the naive Bayes classifier often competes well with the more sophisticated classifiers. In 

some domains its performance has been shown to be comparable to that of neural 

network and decision tree learning (Mitchell, 1997). Domingos and Pazzani (1996) 

verified that the naive Bayes classifier performs quite well in practice even when strong 
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attribute dependences are present, and showed that this is at least in part due to the fact 

that the naive Bayes classifier does not depend on feature independence to be optimal.  

 

Consider a classification problem in which wj (j = 1, 2,..., c) denotes the state of nature 

with the prior probability P(wj) and dRx ∈  denotes the feature vector. Suppose that a 

collection of samples according to class is separated, so that there are c data sets, D1, ..., 

Dc, with the samples in Dj having been drawn independently according to the probability 

law )wx(p j . In the literature, it is assumed that )wx(p ji ~ ),(N 2
ii σµ , i = 1, 2,..., d 

(Duda et al., 1973).  

 

With the assumption that samples in Dj give no information about the parameters 

corresponding to wk where kj ≠ , there are c separate problems of the following form:  

 

Since the naive Bayes classifier is based on the simplifying assumption that the feature 

values are conditionally independent given the target value, we have 

 

∏
=

=
d

1i
jij )wx(p)wx(p                          (1.1.1.1) 

 

where )wx(p ji ~ N(�i, �i), j =  1, 2,..., c. 

 

The problem is to use the information provided by the training samples to obtain optimal 

estimators for the unknown parameters �i, �i )di1( ≤≤ . For the ith feature in the jth class 

c)j1 ,di1( ≤≤≤≤ , the Fisher likelihood function is 

 

    ∏
=

=
n

1k
jik )wx(pL .              (1.1.1.2) 

 

The likelihood equations for estimating �i and �i are 
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   0)x(
nLln

ii2
ii

=µ−
σ

−=
µ∂

∂
                                    (1.1.1.3) 

and 

   0)x(
1nLln n

1k
iik3

iii

=µ−
σ

+
σ

−=
σ∂

∂
�

=

                                   (1.1.1.4) 

 

where �
=

=
n

1k
iki x

n
1

x . 

 

The simultaneous solutions of (1.1.1.3) and (1.1.1.4) are the maximum likelihood 

estimators: 

 

    ii x~ =µ                 (1.1.1.5) 

and 

    
1n

)xx(
~

n

1k

2
iik

2
i −

−
=σ
�

=                 (1.1.1.6) 

 

where 2
i

~σ  is an unbiased estimator of 2
iσ . 

 

Hence, the following can be obtained: 

 

∏
=

=
d

1i
jij )D,wx(p)D,wx(p  

     ∏
= �

�

�

�

�
�

�

�

��
�

�
��
�

�

σ
µ−

−
σπ

=
d

1i

2

i

ii

i
ˆ

ˆx
2
1

exp
ˆ2

1
.                   (1.1.1.7) 

 

To make classification, the class which maximizes 
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�
=

= c

1j
jj

jj
j

)Dw(P)D,wx(p

)Dw(P)D,wx(p
)D,xw(p    (j = 1, 2, ..., c)                     (1.1.1.8) 

 

is selected. Here, maximizing (1.1.1.8) is equivalent to maximizing  

 

)Dw(P)D,wx(p jj                (1.1.1.9) 

 

where )Dw(P j  are obtained from a trivial calculation. 

 

ii) Maximum Likelihood Hypotheses 

 

Consider the problem of learning a continuous-valued target function (Mitchell, 1997): 

 

Learner considers a hypothesis space H consisting of some class of real-valued functions 

defined over an instance space X (i.e., Hh ∈∀  is a function of the form ℜ→X:h ). 

The problem faced by the learner is to learn an unknown function ℜ→X:f  drawn 

from H. A set of n training examples is provided and the target value of each example is 

corrupted by random noise drawn according to normal distribution. More precisely,  

each training example is a pair of the form ii d,x  where 

 

iii e)x(fd +=          (i = 1, 2, ..., n),          (1.1.1.10) 

 

)x(f i  is the noise-free value of the target function and ie  is a random variable 

representing the noise. It is assumed that the values of the ie  are drawn independently 

and that they are distributed according to a normal distribution with zero mean and 

variance �2. The task of the learner is to output a maximum likelihood hypothesis given 

the observed data D by assuming all hypotheses are equally probable a priori. More 

precisely, MLh  is a maximum likelihood hypothesis provided 
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∏
=∈

=
n

1i
i

Hh
ML )hd(pmaxargh                                                                                                                                   

       ∏
=∈ �

�

�

�

�
�

�

�
�
�

�
�
�

�

σ
µ−

−
σπ

=
n

1i

2
i

Hh

d
2
1

exp
2

1
maxarg                   (1.1.1.11) 

 

where ∞<<∞− id  (i = 1, 2,..., n), ℜ∈µ , 0>σ . 

 

By substituting ),x(h)x(f ii ==µ  we obtain 

 

∏
=∈ �

�

�

�

�
�

�

�
�
�

�
�
�

�

σ
−

−
σπ

=
n

1i

2
ii

Hh
ML

)x(hd
2
1

exp
2

1
maxargh  

 

         
�	

�


�

��

�


�

�
�

�
�
�

�

σ
−

−σ−= �
=∈

2n

1i

ii

Hh

)x(hd
2
1

lnnmaxarg .           (1.1.1.12) 

 

Now, to estimate σ , the likelihood equation is 

 

0))x(hd(
1nLln n

1i

2
ii3 =−

σ
+

σ
−=

σ∂
∂

�
=

.           (1.1.1.13) 

 

The solution of the equation (1.1.1.13) is the maximum likelihood estimator: 

 

   
n

))x(hd(
~

n

1i

2
ii

2
�

=
−

=σ .            (1.1.1.14) 

 

Since maximum likelihood estimation has invariance property, by substituting the 

estimator of the variance (1.1.1.14) into the equation (1.1.1.12), the maximum likelihood 

hypothesis becomes 
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   �
=∈

−=
n

1i

2
ii

Hh
ML ))x(hd(minargh .           (1.1.1.15) 

 

Hence the maximum likelihood hypothesis is the one that minimizes the sum of the 

squared errors between the observed training values and the hypothesis predictions.  

 

1.1.2 Robustness 

 

Estimation is the art of inferring information about some unknown quantity on the basis 

of available data. The estimator is chosen to perform well under the conditions that are 

assumed to underly the data. Since these conditions are never known exactly, estimators 

must be chosen which are robust, which perform well under a variety of underlying 

conditions (Andrews et al., 1972). An estimator is called robust if it is fully efficient (or 

nearly so) for an assumed distribution but maintains high efficiency for plausible 

alternatives and a fully efficient estimator is one which is unbiased and its variance is 

equal to the Cramer-Rao minimum variance bound (Tiku and Akkaya, 2004). 

 

Statistical methods are derived under certain assumptions. However, in practice, many 

of these assumptions do not hold. For example, the assumption of normality is an 

unrealistic one. Hence it is very important to obtain estimators which have certain 

optimal properties with respect to an assumed error distribution. 

                    

1.2 Theoretical Backround 

 

1.2.1 Generalized Secant Hyperbolic (GSH) Distribution 

 

The properties of a family of distributions generalizing the secant hyperbolic were 

developed by Vaughan (2002). This family consists of  
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• symmetric distributions, with kurtosis1 ranging from 1.8 to infinity,  

• the logistic as a special case,  

• the uniform as a limiting case, and  

• closely approximates the normal and Student t2 distributions with corresponding 

kurtosis.  

 

A significant difference between this family and Student t is that for any member of the 

Generalized Secant Hyperbolic family, all moments are finite. Thus, technical 

difficulties associated with evaluating moments of Student t are not present with this 

family. Moreover, the Student t distribution represents only long-tailed symmetric 

distributions, i.e. its kurtosis 2
242 / µµ=β  is greater than 3. However, short-tailed 

symmetric distributions with 32 <β  do occur in practice. To have a unified approach to 

symmetric non-normal distributions, we need a family of distributions which represents 

both short-tailed and long-tailed distributions. Such a family is represented by the 

Generalized Secant Hyperbolic (GSH) distribution.  

 

Let the random variable X has a GSH distribution with the location parameter �, scale 

parameter � and shape parameter t.  

 

GSH(�, �; t): 
1)/)x(cexp(a2)/)x(c2exp(

)/)x(cexp(c
)x(f

22

21

+σµ−+σµ−
σµ−

σ
=   (-�<x<�)                                                                                    

        (1.2.1.1) 

where for :0t ≤<π−  

)tcos(a = , 3)t(c 22
2 −π=  and 21 c

t
)tsin(

c =  

and for :0t >  

)tcosh(a = , 3)t(c 22
2 +π=  and 21 c

t
)tsinh(

c = . 

                                                 
1 Kurtosis is the degree of flatness of a density near its center.  
2 Student t distribution is symmetrical about the population mean, unimodal and extends to infinity in both 
directions. 
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For t > π, t < π and t = π, GSH(�, σ; t) represents short-tailed, long-tailed and 

approximately normal distributions, respectively.  

 

The relation between the coefficient of kurtosis 2β  and the shape parameter t is in the 

following: 

   22

22

2 t55
t921

−π
−π=β ,    0t ≤<π−  

        22

22

t55
t921

+π
+π= ,     0t > .              (1.2.1.2) 

 

The coefficient of kurtosis is given below for a few representative values of the shape 

parameter,  t: 

 

                       t   = 3/2π−     2/π−      0    π    11π    ∞  

=µµ 2
24 / Kurtosis       9.0       5.0    4.2    3.0     2.0  1.8 

 
 
 
Now, let Z has a standard GSH distribution, i.e. Z ~ GSH(0, 1, t). The cumulative 

distribution function is  

 

  )tsin/)tcos)zc(exp((cot
t
1

1)z(F 2
1 +−+= − ,      0t <<π−  

           ))3/zexp(1/()3/zexp( π+π= ,       0t =  

           )tsinh/)tcosh)zc((exp(coth
t
1

1 2
1 +−= − ,   0t > .           (1.2.1.3) 

 

From the cumulative distribution function, the percentage points are calculated as 

follows: 

  [ ]))u1(tsin(/)tusin(ln
c
1

z
2

−=  , 0t <<π−  
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     ))u1/(uln(
3 −

π
= ,   0t =  

     [ ]))u1(tsinh(/)tusinh(ln
c
1

2

−= , 0t >              (1.2.1.4) 

 

where u = F(z). 

 

1.2.2 Generalized Logistic (GL) Distribution 

 

Let the random variable X has a Generalized Logistic (GL) distribution with the scale 

parameter � and shape parameter b. 

 

    (GL �, b): [ ] 1b1)/xexp(

)/xexp(b
)x(f ++σ−

σ−
σ

=       )x( ∞<<−∞              (1.2.2.1) 

where b > 0. 

 

For b < 1, b = 1 and b > 1, GL(b, �) represents negatively skewed, symmetric and 

positively skewed distributions, respectively. In fact, when b = 1, it represents the 

logistic distribution as GSH(�, �, 0).  

 

Now, let Z has a standard GL distribution, i.e. Z ~ GL(1, b). The moment generating 

function of Z is 

   
)1b(

)tb()t1(
b)e(E)z(M tz

t +Γ
+Γ−Γ==              (1.2.2.2) 

 

where 1t < . Hence the rth moment of Z is 

 

    
0t

tr

r

r )z(M
dt
d

=	


�

�


�

=µ′ .              (1.2.2.3) 
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In particular, 

 

  )1()b()Z(E ψ−ψ=  and )1()b()Z(V ψ′+ψ′=                                (1.2.2.4) 

 

where )x(/)x()x( ΓΓ′=ψ . The properties of )x(ψ  are given in Abramowitz and Stegun 

(1985). 

 

For a few representative values of the shape parameter, b, the coefficients of kurtosis 

and skewness are given (Tiku and Akkaya, 2004): 

 

                           b   =     0.5   1.0   2.0   4.0   6.0 
Skewness =µµ 2/3

23 /  -0.855   0.0 0.577 0.868 0.961 

=µµ     /   Kurtosis 2
24   5.400   4.2 4.333 4.758 4.951 

 

 

 The cumulative distribution function is  

 

    b)1)z(exp()z(F −+−= .                              (1.2.2.5) 

 

From the cumulative distribution function, the percentage points are calculated as 

follows: 

    )1uln(z b/1 −−= −               (1.2.2.6) 

 

where u = F(z). 
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CHAPTER 2 

 

NAIVE BAYES CLASSIFIER UNDER NONNORMALITY 

 

 

In this chapter, the Generalized Secant Hyperbolic (GSH) and Generalized Logistic 

(GL) naive Bayes classifiers using the GSH and GL distributions as the model 

distributions are introduced. 

 

2.1 Generalized Secant Hyperbolic Naive Bayes Classifier  

 

Suppose there are c data sets D1, D2,…, Dc with the samples in Dj having been drawn 

independently and identically according to probability law )wx(p j  (j = 1, 2,…, c) and 

assume that the features are independently distributed according to Generalized Secant 

Hyperbolic (GSH) distribution: 

 

1)/)x(cexp(a2)/)x(c2exp(
)/)x(cexp(c

)wx(p
iiii2ijiiii2

iiii2

i

i1
ji +σµ−+σµ−

σµ−
σ

=           (2.1.1) 

 

where -� < xi < �, -� < �i < �, �i > 0 (i = 1, 2, ..., d; j = 1, 2,..., c), 

 

for :0t i ≤<π−  

)tcos(a ii = , 3)t(c 2
i

2
i2 −π=  and i2

i

i
i1 c

t
)tsin(

c =  

and for :0t i >  

)tcosh(a ii = , 3)t(c 2
i

2
i2 +π=  and i2

i

i
i1 c

t
)tsinh(

c = . 
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Since the naive Bayes classifier is based on the simplifying assumption that the feature 

values are conditionally independent given the target value, we have 

 

    ∏
=

=
d

1i
jij )wx(p)wx(p                 (2.1.2) 

 

where )wx(p ji ~ GSH(�i, �i ; ti), j =  1, 2,..., c.  

 

2.1.1 Maximum Likelihood Estimation  

 

In order to estimate �i and �i, first assume the shape parameter ti is known. For the ith 

feature in the jth class c)j1 ,di1( ≤≤≤≤ , the Fisher likelihood function is 

 

    ∏
=

=
in

1k
jik )wx(pL .              (2.1.1.1) 

 

Note that the formulation is based on the fact that there may be missing attribute values. 

If there is no missing attribute values, take nn....nn d21 ==== .   

 

The likelihood equations for estimating �i and �i are 

 

  �
=

=
σ

+
σ

−=
µ∂

∂ in

1k
ik

i

i2

i

i2
i

i

0)z(g
c

2
c

n
Lln

                        (2.1.1.2) 

and 

  ��
==

=
σ

+
σ

−
σ

−=
σ∂

∂ ii n

1k
ikik

i

i2
n

1k
ik

i

i2

i
i

i

0)z(gz
c

2z
c1

n
Lln

                       (2.1.1.3) 

 

where  
i

iik
ik

x
z

σ
µ−

=  and 
1)zcexp(a2)zc2exp(

)zcexp(a)zc2exp(
)z(g

ii2iii2

ii2iii2
i ++

+
= . 
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The likelihood equations (2.1.1.2) and (2.1.1.3) do not admit explicit solutions since the 

terms involve the nonlinear function g(zi). An iterative process can be used to solve 

these equations, but without extensive simulations, the properties of the resulting 

maximum likelihood estimates are difficult to determine, especially for small samples. 

An alternative estimation procedure called the modified maximum likelihood solves the 

problems mentioned above. Therefore, Vaughan (2002) used modified maximum 

likelihood estimation technique in his analysis. 

 

2.1.2 Modified Maximum Likelihood Estimation 

 

Tiku and Suresh (1992) introduced modified maximum likelihood estimation in general 

location-scale models, with the following properties: 

 

1. The estimates are explicit functions of sample observations and are easier to 

compute than the maximum likelihood estimates. 

2. It is aymptotically equivalent to maximum likelihood when regularity conditions 

hold (Tiku et al.(1986), Vaughan and Tiku (2000), Bhattacharyya (1985)). 

3. The estimates are almost fully efficient in terms of the Minimum Variance 

Bounds (MVBs) even for small samples. 

4. The estimates have little bias or no bias. 

5. The method is essentially self-censoring, since it assigns small weights to 

extremes. 

 

Tiku’s modified maximum likelihood methodology proceeds in three steps as follows: 

1. Express the likelihood equations in terms of ordered variates 
i

i)k(i
)k(i

x
z

σ
µ−

=  

)nk1 ,di1( i≤≤≤≤ , 

2. linearize the intractable terms in the likelihood equations by using the first two 

terms of the Taylor series expansion and 

3. solve the resulting equations to get the modified maximum likelihood estimators. 
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Since complete sums are invariant to ordering, the likelihood equations can be written as 

follows: 

  �
=

=
σ

+
σ

−=
µ∂

∂ in

1k
)k(i

i

i2

i

i2
i

i

0)z(g
c

2
c

n
Lln

                        (2.1.2.1)  

and 

  ��
==

=
σ

+
σ

−
σ

−=
σ∂

∂ ii n

1k
)k(i)k(i

i

i2
n

1k
)k(i

i

i2

i
i

i

0)z(gz
c

2z
c1

n
Lln

                 (2.1.2.2) 

 

where zi(k) )di1( ≤≤  is the kth order statistic of the values zi1, ..., zin . 

 

Let )z(Et )k(i)k(i = , ti(k) )nk1 ,di1( i≤≤≤≤  are the expected values of the standardized 

ordered variates. For large sample size, the values of ti(k) can be found as follows: 

 

  ( )( )
�
�
�
�

�

�

�
�
�
�

�

�

+−

�
�

�
�
�

�

+=
)1n(k1tsin

1n
k

tsin
ln

c
1

t
i

i

i2
)k(i  ,  0t i <<π−  

        

                ��
�

�
��
�

�

+−
+

π
=

)1n/(k1
)1n(k

ln
3

             ,     0t i =  

 

          ( )( )
�
�
�
�

�

�

�
�
�
�

�

�

+−

�
�

�
�
�

�

+=
)1n(k1tsinh

1n
k

tsinh
ln

c
1

i

i

i2

,    0t i > .            (2.1.2.3) 

 

Since zi(k) is located in the vicinity of ti(k), the nonlinear function g(zi) can be 

approximated by the Taylor series expansion as follows: 

 

   )t(g)tz()t(g)z(g )k(i)k(i)k(i)k(i)k(i ′−+≅  
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                )k(iikik zβ+α=                          (2.1.2.4) 

where 

  )k(iik
)k(ii2i)k(ii2

)k(ii2i)k(ii2
ik t

1)tcexp(a2)tc2exp(

)tcexp(a)tc2exp(
β−

++
+

=α   

and 

  [ ]2
)k(ii2i)k(ii2

)k(ii2i2i)k(ii2i2)k(ii2i2i
ik

1)tcexp(a2)tc2exp(

)tcexp(ca)tc2exp(c2)tc3exp(ca

++

++
=β . 

 

Specifically, if there is no missing attribute values, 

 

  )k()k(d)k(2)k(1 tt...tt ==== , 

  kdkk2k1 ... α=α==α=α   

and 

  kdkk2k1 ... β=β==β=β .               (2.1.2.5) 

 

Incorporating (2.1.2.4) into (2.1.2.1) and (2.1.2.2), the following modified likelihood 

equations are obtained: 

 

[ ]�
=

=β+α
σ

+
σ

−=
µ∂

∂≅
µ∂

∂ in

1k
)k(iikik

i

i2

i

i2
i

i

*

i

0z
c

2
c

n
LlnLln

            (2.1.2.6) 

and 

       [ ]��
==

=β+α
σ

+
σ

−
σ

−=
σ∂

∂≅
σ∂

∂ ii n

1k
)k(iikik)k(i

i

i2
n

1k
)k(i

i

i2

i
i

i

*

i

0zz
c

2z
c1

n
LlnLln

.       (2.1.2.7) 

 

The simultaneous solutions of the equations (2.1.2.6) and (2.1.2.7) are the MML 

estimators: 

i

n

1k
)k(iik

i m

x
ˆ

i

�
=

β
=µ                (2.1.2.8)  
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and             

    
)1n(n2

Cn4BB
ˆ

ii

ii
2

ii
i −

++−
=σ              (2.1.2.9)  

 

where  �
=

β=
in

1k
ikim ,  )xx(cnB iaii2ii −= ,  �

=

=
in

1k
ik

i
i x

n
1

x ,  )k(i

n

1k
ik

i
ia x

n
2

x
i

�
=

α=  and 

 � �
= =

�
�

�
�
�

�
µ−β=µ−β=

i in

1k

n

1k

2
ii

2
)k(iiki2

2
i)k(iiki2i ˆmxc2)ˆx(c2C . 

 

The divisor ni in the original expression for iσ̂  is replaced by )1n(n ii −  to reduce the 

bias.  

 

It may be noted that (2.1.2.4) are asymptotically strict equalities. Moreover, in the limit 

when ni tends to infinity 

 

0
Lln

n
1

lim
Lln

n
1

lim
i

*

i
n

ii
n ii

≡
µ∂

∂≡
µ∂

∂
∞→∞→

    

and 

0
Lln

n
1

lim
Lln

n
1

lim
i

*

i
n

ii
n ii

≡
σ∂

∂≡
σ∂

∂
∞→∞→

.           (2.1.2.10) 

 

Consequently, the MML estimators iµ̂  and iσ̂  above are asymptotically equivalent to 

ML estimators and, thus, iµ̂  and iσ̂  are asymptotically unbiased and efficient 

estimators, at least heuristically. Note, however, that iµ̂  is unbiased for all ni. That 

follows from symmetry. 

 

Lemma 2.1.1: Asymptotically, the estimator iµ̂  )di1( ≤≤  is the MVB estimator of iµ  

and is normally distributed with variance  
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i2i

2
i

i cm2
)ˆ(V

σ
≅µ .            (2.1.2.11) 

 

Proof: Since i
* /Lln µ∂∂  is asymptotically equivalent to i/Lln µ∂∂  and assumes the 

form 

    )ˆ(
cm2Lln

ii2
i

i2i

i

*

µ−µ
σ

=
µ∂

∂
,           (2.1.2.12) 

 

(2.1.2.11) is obtained. By dividing both sides of (2.1.2.12) by ni, we can apply central 

limit theorem and since 0
Lln

E r
i

*r

=�
�

�
�
�

�

µ∂
∂

 for all 3r ≥ , iµ̂  is asymptotically normally 

distributed. 

 

Lemma 2.1.2: Asymptotically, 2
i

i
2
ii )(ˆn

σ
µσ

 )di1( ≤≤  is conditionally distributed as chi-

square with ni degrees of freedom. 

 

Proof: For large ni, 0
Cn

B

i1i

i ≅  where �
=

µ−β=
in

1k

2
i)k(iiki2i1 )x(c2C . Therefore, it can 

be shown that 

    ��
�

�
��
�

�
σ−

σ
≅

σ∂
∂ 2

i
i

i1
3
i

i

i

*

n
CnLln

.           (2.1.2.13) 

 

Asymptotically, 
i

i1

n
C

 is the MVB estimator of 2
iσ . Evaluation of the cumulants of 

i

*Lln
σ∂

∂
 in terms of the expected values of the derivatives of 

i

*Lln
σ∂

∂
 immediately leads 
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to the result that 2
i

i
2
ii )(ˆn

σ
µσ

 is distributed as chi-square with ni degrees of freedom 

(Bartlett, 1953). 

 

Corollary 2.1.1: Asymptotically, 2
i

2
ii ˆn

σ
σ

 )di1( ≤≤  is distributed as chi-square with ni-1 

degrees of freedom. 

 

At the beginning, it was assummed that the shape parameters ti )di1( ≤≤  are known. 

Now, plausible values for these parameters can be found by the following method (Tiku 

and Akkaya, 2004): 

 

To locate the most plausible value of ti, the MML estimators of iµ  and iσ  are calculated 

from (2.1.2.8) and (2.1.2.9) for different values of ti. Then, the values of      

 

[ ]��
==

++−+σ−=
ii n

1k
iki2iiki2

n

1k
iki2iii1i 1)ẑcexp(a2)ẑc2exp(lnẑcˆlnnclnnL̂ln     (2.1.2.14) 

 

where 
i

iik
ik ˆ

ˆx
ẑ

σ
µ−

=   (1 � i � d, 1 � k � ni ), 

 

are calculated. The value of ti that maximizes L̂ln  is the most appropriate choice.  As a 

result, the estimates of iµ , iσ  and it  )di1( ≤≤  are obtained for all classes. Since 

modified maximum likelihood estimation has invariance property, the following is 

obtained: 

 

∏
=

=
d

1i
jij )D,wx(p)D,wx(p  

                  ∏
= +σµ−+σµ−

σµ−
σ

=
d

1i iiii2iiiii2

iiii2

i

i1

1)ˆ/)ˆx(cexp(a2)ˆ/)ˆx(c2exp(
)ˆ/)ˆx(cexp(

ˆ
c

         (2.1.2.15)                                         
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and to make classification, the class which maximizes (1.1.1.9) is selected.  

 

2.1.3 Efficiency Properties 

 

The estimator µ̂  is unbiased, in fact, it is asymptotically MVB estimator of µ , and is 

normally distributed. Therefore, µ̂  is best asymptotically normal (BAN) estimator. The 

MVB for estimating µ  is as follows: 

 

for 0t ≤<π−  

  
)tcostsint(nc

tsint2
)(MVB 2

2

22

−
σ=µ ,              (2.1.3.1) 

for 0t ≥  

  
)ttcosht(sinhnc

tsinht2
)(MVB 2

2

22

−
σ=µ .                         (2.1.3.2) 

 

The estimator 2σ̂  is asymptotically the MVB estimator of 2σ  and is distributed as a 

multiple of chi-square; see Lemma 2.1.2. The MVB for estimating 2σ  is as follows: 

 

for 0t ≤<π−  

  ��
�

�
��
�

� −π−−π
��
�

�
��
�

� σ=σ
tsint

tcos)t3(
tsin
t

n
6

)(MVB
22

2

222

            (2.1.3.3) 

for 0t ≥  

  ��
�

�
��
�

� +π−+π
��
�

�
��
�

� σ=σ
tsinh

t
tsinht

tcosh)t3(
n

6
)(MVB 2

22222

                        (2.1.3.4) 

 

Given in Table 2.1.1 are the simulated values (based on N=100,000/n Monte Carlo runs) 

of the variances of the MML and LS estimators of iµ , relative efficiency (RE) of the LS 

estimator x~ =µ , the MVB of µ  and the efficiency (E) of µ̂ . 
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              Table 2.1.1  Variances of the MML and LS estimators of µ  
                                  (1) 2/)~(V σµ  (2) 2/)ˆ(V σµ  (3) )~(RE µ = [ ] 100*)~(V/)ˆ(V µµ  
                       (4) 2/)(MVB σµ  (5) )ˆ(E µ = [ ] 100*)ˆ(V/)(MVB µµ  
 

       	2 =   2.0   3.0   4.2   5.0   9.0 
n = 10 (1) 0.099 0.100 0.100 0.101 0.980 
 (2) 0.070 0.101 0.094 0.086 0.055 
 (3) 70.60 100.44 94.46 85.66 56.59 
 (4) 0.053 0.097 0.091 0.081 0.046 
 (5) 75.54 96.68 96.77 93.69 82.63 
n = 15 (1) 0.066 0.067 0.066 0.065 0.064 
 (2) 0.043 0.068 0.061 0.055 0.033 
 (3) 64.65 100.44 92.54 83.67 52.23 
 (4) 0.035 0.065 0.061 0.054 0.031 
 (5) 82.31 96.09 98.97 98.70 91.34 
n = 20 (1) 0.049 0.050 0.050 0.050 0.049 
 (2) 0.030 0.049 0.046 0.041 0.025 
 (3) 61.14 99.13 92.31 82.43 50.96 
 (4) 0.026 0.049 0.046 0.041 0.023 
 (5) 87.29 98.97 98.85 98.93 91.76 
n = 50 (1) 0.020 0.021 0.019 0.021 0.020 
 (2) 0.011 0.020 0.017 0.017 0.009 
 (3) 55.99 97.66 92.14 81.38 47.14 
 (4) 0.011 0.019 0.018 0.016 0.009 
 (5) 93.73 95.79 104.94 96.77 96.84 

 

 

It can be seen that µ̂  is considerably more efficient than µ~  even for small sample sizes 

other than approximately normal distribution ( 0.32 =β ). Actually, for approximately 

normal distribution µ̂  is as efficient as µ~ . A disconcerting feature of µ~  is that its 

relative efficiency decreases as sample size n increases. Realize that both µ̂  and µ~  are 

unbiased estimators of µ .  

 

The MML estimator σ̂  can sometimes have larger bias than σ~  for small sample sizes. 

Thus, deficiency of MML and LS estimators are calculated through simulations. 

 



 22 

Given in Table 2.1.2 are the simulated values of the deficiencies (Def) of the least square 

estimators x~ =µ  and �
=

−−=σ
n

1k

2
k

2 )1n/()xx(~  and the MML estimators µ̂  and 2σ̂ . 

Note that since µ̂  and 2σ̂  are uncorrelated with one another and so are the LS estimators 

µ~  and 2~σ  (this follows from symmetry), the joint deficiencies can be calculated as 

follows: 

   )~(MSE)~(MSE)~,~(Def σ+µ=σµ  

and 

)ˆ(MSE)ˆ(MSE)ˆ,ˆ(Def σ+µ=σµ .             (2.1.3.5) 

 

 

              Table 2.1.2  Deficiencies of the MML and LS estimators of µ   and σ  
          (1) Def( σµ ~,~ )  (2) Def( σµ ˆ,ˆ ) 
 

     	2 =   2.0   2.5   3.0   4.2   5.0   7.0   9.0 

n = 10 (1) 0.132 0.142 0.154 0.175 0.189 0.223 0.256 
  (2) 0.105 0.137 0.158 0.176 0.180 0.213 0.262 
n = 15 (1) 0.085 0.095 0.103 0.120 0.125 0.157 0.181 
  (2) 0.061 0.091 0.105 0.115 0.115 0.134 0.160 
n = 20 (1) 0.065 0.070 0.077 0.087 0.099 0.117 0.134 
  (2) 0.044 0.066 0.078 0.083 0.087 0.094 0.109 
n = 50 (1) 0.025 0.026 0.031 0.036 0.039 0.049 0.060 
  (2) 0.015 0.024 0.031 0.033 0.032 0.035 0.038 

 

 

Deficiency of MML estimators are considerably smaller than the defficiency of LS 

estimators even for sample size n = 10 other than approximately normal ( 0.32 =β ), near 

normal (logistic, 2.42 =β ) and very long-tailed ( 0.92 =β ) distributions. However, for n 


 11 defficiency of MML estimators becomes smaller than that of LS estimators for near 

normal and long-tailed distributions.  
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2.1.4  Robustness of Estimators 

 

It is very important to obtain estimators which have certain optimal properties with 

respect to an assumed distribution. In spite of our best efforts to identify the underlying 

distribution through graphical techniques (Q-Q plots, for example) or goodness-of-fit 

tests, in practice, the shape parameters might be misspecified or the data might contain 

outliers (inliers) or be contaminated. Thus deviations from an assumed distribution 

occur. That brings  the issue of robustness in focus. An estimator is called robust if it is 

fully efficient (or nearly so) for an assumed distribution but maintains high efficiency for 

plausible alternatives (Tiku et al., 1986). 

 

To show the robustness of both MML estimators, we consider, for illustration, the 

following plausible alternatives (1)-(4) to the assumed distribution GSH in (2.1.1) with t 

= -� / 2: 

 

 (1) Misspecification of the distribution: GSH(�, �, -3� / 4) 

 

 (2) Dixon’s outlier model: (n-1) observations come from GSH(�, �, -� / 2) but one   

      observation (we do not know which one) comes from GSH(�, 4�, -� / 2) 

 

 (3) Mixture model: 0.90 GSH(�, �, -� / 2) + 0.10 GSH(�, 4�, -� / 2) 

 

 (4) Contamination model: 0.90 GSH(�, �, -� / 2) + 0.10 Uniform(-1/2, 1/2)  

 

The simulated variances of µ~  and µ̂ , the simulated means of σ~  and σ̂  are given in 

Table 2.1.3. Also given are the values of the relative efficiency of the LS estimators of �  

and �. It  is obvious that the MML estimators σµ ˆ  and  ˆ  are remarkably efficient and 

robust. 
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                Table 2.1.3  Means, variances and relative efficiencies; n = 10, � = 1 
 
                                       Variance                     Mean                         RE 

Model    µ~    µ̂    σ~    σ̂    µ~     σ~  
   (1) 0.057 0.041 0.711 0.754 70.96 82.94 
   (2) 0.257 0.116 1.417 1.417 45.23 71.67 
   (3) 0.254 0.126 1.389 1.415 49.45 81.38 
   (4) 0.093 0.073 0.914 0.988 78.16 97.31 

 

 

2.2  Generalized Logistic Naive Bayes Classifier  

 

Assume that the features are independently distributed according to Generalized Logistic 

(GL) distribution: 

 

  [ ] 1b
iii

iii

i

i
ji i)/)x(exp(1

)/)x(exp(b
)wx(p +σµ−−+

σµ−−
σ

=                                        (2.2.1) 

 

where -� < xi < �, -� < �i < �, �i > 0, 

 

2.2.1 Maximum Likelihood Estimation  

 

In order to estimate �i and �i, first assume the shape parameter bi is known. For ith feature 

in the jth class, the Fisher likelihood function is 

 

    ∏
=

=
in

1k
jik )wx(pL .              (2.2.1.1) 

 

The likelihood equations for estimating �i and �i are 
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and 
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where  
i

iik
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z
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)zexp(1

1
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i
i +

= . 

 

�eno�lu (2000) used modified maximum likelihood estimation technique in his analysis. 

 

2.2.2 Modified Maximum Likelihood Estimation 

 

Since complete sums are invariant to ordering, the likelihood equations can be written as 

follows: 
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Since zi(k) is located in the vicinity of ti(k), it is approximated by the Taylor series 

expansion 
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and for large sample size, 
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Incorporating (2.2.2.3) into (2.2.2.1) and (2.2.2.2) gives the modified likelihood 

equations as follows: 
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The simultaneous solutions of the equations (2.2.2.4) and (2.2.2.5) are the MML 

estimators: 
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Lemma 2.2.1: Asymptotically, the estimator i
i

i
0iii m

ˆ)(ˆ σ
∆

+µ=σµ  is conditionally (�i 

known) the MVB estimator of iµ  )di1( ≤≤  and is normally distributed with variance  
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Lemma 2.2.2: Asymptotically, 2
i
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2
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 )di1( ≤≤  is conditionally distributed as chi-

square with ni degrees of freedom. 

 

Corollary 2.2.1: Asymptotically, 2
i

2
ii ˆn

σ
σ

 )di1( ≤≤  is distributed as chi-square with ni-1 

degrees of freedom. 

 

To locate the most plausible value of the shape parameters bi )di1( ≤≤ , the MML 

estimators of iµ  and iσ  are calculated from (2.2.2.6) and (2.2.2.7) for different values of 

bi. Then, the values of      
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are calculated. The value that maximizes L̂ln  is the most appropriate choice (Tiku and 

Akkaya, 2004).  As a result, the estimates of iµ , iσ  and ib  )di1( ≤≤  are obtained for 

all classes. Since modified maximum likelihood estimation has invariance property, the 

following is obtained: 
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and to make classification, the class which maximizes (1.1.1.9) is selected. 

 

2.2.3 Efficiency Properties 

 

The estimator µ̂  is asymptotically MVB estimator of µ , and is normally distributed. 

Therefore, µ̂  is BAN estimator. The estimator 2σ̂  is asymptotically the MVB estimator 

of 2σ  and is distributed as a multiple of chi-square; see Lemma 2.2.2. Given in Table 

2.2.1 are the simulated values (based on N=100,000/n Monte Carlo runs) of the relative 

efficiencies (RE) of the bias corrected LS estimators σψ−ψ−=µ ~))1()b((x~  and 

{ }�
=

ψ′+ψ′−−=σ
n

1k

2
k

2 ))1()b()(1n(/)xx(~ . 

 

 

              Table 2.2.1  Relative efficiencies of the LS estimators of µ  and σ  
                                  (1) )~(RE µ = [ ] 100*)~(MSE/)ˆ(MSE µµ  
                       (2) )~(RE σ = [ ] 100*)~(MSE/)ˆ(MSE σσ  
 

        b =    0.5    1.0    2.0    4.0    8.0 
n = 10 (1)  95.11  93.95  99.30  88.82  76.92 
 (2)  93.90 109.37  97.85  86.30  80.05 
n = 15 (1)  92.91  93.53  98.68  85.15  73.39 
 (2)  88.66 101.82  93.05  78.77  75.74 
n = 20 (1)  93.19  92.13  97.99  83.06  70.17 
 (2)  84.83  99.66  90.08  76.21  72.68 
n = 50 (1)  90.70  90.96  96.95  79.19  62.74 
 (2)  74.24  91.02  83.30  70.62  64.02 

 

 

It can be seen that µ̂  and σ̂  are considerably more efficient than µ~  and σ~  even for 

small sample sizes. A disconcerting feature of µ~  and σ~  is that their relative efficiencies 

decrease as sample size n increases.  
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2.2.4  Robustness of Estimators 

 

To show the robustness of both MML estimators, we consider, for illustration, the 

following plausible alternatives (1)-(4) to the assumed distribution GL in (2.2.1) with b 

= 4.0: 

 

 (1) Misspecification of the distribution: GL(3.5, �) 

 

 (2) Misspecification of the distribution: GL(4.5, �) 

 

 (3) Dixon’s outlier model: (n-1) observations come from GL(4.0, �) but one   

      observation (we do not know which one) comes from GL(4.0, 4�) 

 

 (4) Mixture model: 0.90 GL(4.0, �) + 0.10 GL(4.0, 4�) 

 

 (5) Contamination model: 0.90 GL(4.0, �) + 0.10 Uniform(-1/2, 1/2)  

 

The simulated relative efficiencies of the LS estimators of �  and � are given in Table 

2.2.2. It is obvious that the MML estimators σµ ˆ  and  ˆ  are remarkably efficient and 

robust. 

 

                Table 2.2.2  Relative efficiencies of the LS estimators of µ  and σ ; 
    n = 10, � = 1 
 
       Models 

Model     (1)     (2)     (3)     (4)     (5) 
)~(RE µ   85.14  84.19  28.47  34.76  84.20 
)~(RE σ   80.71  95.70  44.31  53.93  84.01 

 

 

 

 



 30 

 

CHAPTER 3 

 

MAXIMUM LIKELIHOOD HYPOTHESES UNDER 

NONNORMALITY 

 

 

In this chapter, the problem faced by the learner is to learn an unknown function 

ℜ→X:f  drawn from a hypothesis space H consisting of some class of real-valued 

functions defined over an instance space X (i.e., Hh ∈∀  is a function of the form 

ℜ→X:h ). In the first section, noise is assumed to have a distribution from 

Generalized Secant Hyperbolic (GSH) family and in the second section, it is assumed to 

have a distribution from Generalized Logistic (GL) family. 

 

3.1 Maximum Likelihood Hypotheses with Symmetric Non-normally Distributed 

Noise 

 

Assume the target value of each example is corrupted by random noise drawn according 

to a GSH distribution with mean zero, variance �2 and shape parameter t in (1.1.1.10). 

Therefore, the probability density function is 
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The maximum likelihood hypothesis is 

 

∏
=∈

=
n

1i
i

Hh
ML )hd(pmaxargh     

 

        
1)/)d(cexp(a2)/)d(c2exp(

)/)d(cexp(c
maxarg

i2i2

i2
n

1i

1

Hh +σµ−+σµ−
σµ−

σ
= ∏

=∈
.        (3.1.2) 

 

By substituting ),x(h)x(f ii ==µ  we obtain 
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i) Maximum Likelihood Estimation       

     

Now, to estimate σ , the likelihood equation is 
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Equation (3.1.4) has no explicit solution since the terms involve the nonlinear function 

g(zi). Therefore, modified maximum likelihood estimation technique is used (Vaughan, 

2002). 

 

ii) Modified Maximum Likelihood Estimation 

 

Since complete sums are invariant to ordering, the likelihood equations can be written as 

follows: 
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variates. For large n, the values of t(i) can be found as follows: 
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For small sample size n, the values of t(i) can be found by using the formula of E(d(i)) 

given by Vaughan (2002). 

 

Since z(i) is located in the vicinity of t(i), it is approximated by the Taylor series 

expansion 
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Incorporating (3.1.7) in (3.1.5) gives the modified likelihood equation as follows: 
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The solution of the equation (3.1.8) is the modified maximum likelihood estimator: 
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Now, we can find the maximum likelihood hypothesis by substituting the estimator of 

the variance (3.1.9) into the equation (3.1.3). Hence the maximum likelihood hypothesis 

is 
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3.2 Maximum Likelihood Hypotheses with Skewed Non-normally Distributed Noise 
 

Now, assume that the noise ie  is coming from a GL distribution with zero mean, 

variance 2σ  and shape parameter b. Therefore, the probability density function is 
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The maximum likelihood hypothesis is 
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By substituting ),x(h)x(f ii ==µ  we obtain 
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By taking the natural logarithm of (3.2.3), the following maximum likelihood hypothesis 

is obtained: 
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i) Maximum Likelihood Estimation       

     

Now, to estimate �, the likelihood equation is 
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Since equation (3.2.5) does not admit explicit solution, Tiku’s modified maximum 

likelihood estimation technique can be used (�eno�lu, 2000). 

 

ii) Modified Maximum Likelihood Estimation 

 

Since complete sums are invariant to ordering, the likelihood equations can be written as 

follows: 
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Since z(i) is located in the vicinity of t(i), it is approximated by the Taylor series 

expansion 
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Incorporating (3.2.7) in (3.2.6) gives the modified likelihood equation as follows: 
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The solution of the equation (3.2.8) is the modified maximum lilelihood estimator: 
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Now, we can find the maximum likelihood hypothesis by substituting the estimator of 

the variance (3.2.9) into the equation (3.2.4). Hence the maximum likelihood hypothesis 

is                                                                                         
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CHAPTER 4 

 

APPLICATIONS AND CONCLUSIONS 

 

 

4.1 Applications 

 

Example 1: Lindsey et al. (1987) give the measurements of ten insects having three 

attributes for each of three species of a type of insect, Chaetocnema. This data is 

reproduced in Hand et al. (1994, p.190) and given in Table 4.1.1. 

 

 

       Table 4.1.1 Insect data 
 

Species I Species II  Species III 
x1 x2 x3 x1 x2 x3 x1 x2 x3 

191 131 53 186 107 49 158 141 58 
185 134 50 211 122 49 146 119 51 
200 137 52 201 144 47 151 130 51 
173 127 50 242 131 54 122 113 45 
171 128 49 184 108 43 138 121 53 
160 118 47 211 118 51 132 115 49 
188 134 54 217 122 49 131 127 51 
186 129 51 223 127 51 135 123 50 
174 131 52 208 125 50 125 119 51 
163 115 47 199 124 46 130 120 48 

 

 

The variable x1 (microns) is the width of the first joint of the first tarsus, x2 (microns) is 

the width of the first joint of the second tarsus and x3 (microns) is the maximal width of 

the aedegus. Since in a real situation it is not known which insect belongs to which 

species, the object is to classify new insects with high accuracy. The measurements of 

six new insects given by Lindsey (1987) are given in Table 4.1.2. 
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      Table 4.1.2 Insect data: new insects 
 
 

     
 
 
 
 
 

 

 

Since the aim of this study is to determine which species new insects belong to, training 

set contains all of the measurements of ten insects. To locate the plausible distribution of 

the ith (i = 1, 2, 3) feature in the jth (j = 1, 2, 3) class, the Q-Q plot is used. Hamilton 

(1992, p.16) has very useful Q-Q plots constructed from random samples which identify 

a variety of distributions, e.g., long-tailed, short-tailed, negatively skewed, positively 

skewed, etc. The Q-Q plots of data generally indicate symmetric distributions. 

Therefore, GSH distribution assumption is used for the model distribution. For the jth 

class, to find the most appropriate value of the shape parameter ti, the MML estimators 

of iµ  and iσ  are calculated from (2.1.2.8) and (2.1.2.9) for a series of values of ti and 

the values of (2.1.2.14) are calculated. The kurtosis values corresponding to the shape 

parameters ti (i = 1, 2, 3) which maximize (2.1.2.14) for each class are as follows: 

 
 
        Feature 
 
 
                Class 
 

 

 

The LS and MML estimates of the parameters �i and �i for each class are given in Table 

4.1.3. 

 

 

x1 x2 x3 

190 143 52 
174 131 50 
211 129 49 
128 126 49 
130 131 51 
138 127 52 

       x1 x2 x3 

Species I 2.0 2.0 2.0 
Species II 2.0 6.4 5.3 
Species III 2.0 6.0 9.1 
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          Table 4.1.3 Insect data: LS and MML estimates of the parameters � and � 
  

Class Feature µ~  σ~  µ̂  σ̂  
Species I x1 179.1000 12.87935 179.5563 12.22341 
 x2 128.4000 6.995237 126.1130 6.743501 
 x3 50.50000 2.368778 50.42988 2.180407 
Species II x1 208.2000 17.22272 211.6443 17.72048 
 x2 122.8000 10.71655 122.9357 11.69911 
 x3 48.90000 3.034981 49.10543 3.227953 
Species III x1 136.8000 11.55470 139.6468 11.02152 
 x2 122.8000 8.148619 121.2471 8.685871 
 x3 50.70000 3.368152 50.68508 3.835470 

 

 

To compare the accuracy of naive Bayes classifiers under normal and GSH distribution 

assumptions, the training set is used again and to make classification in the training set, 

the class which maximizes (1.1.1.9) is selected by using the class conditional probability 

density in (1.1.1.7) or (2.1.2.15) under the Normal and GSH distributions assumptions, 

respectively. As a result, the classification rates of naive Bayes classifier under 

normality and GSH naive Bayes classifier are obtained as in Table 4.1.4. 

 

 

         Table 4.1.4 Insect data: classification rates 
 

 Normal GSH 
Classification rate 96.67% 100.00% 

 

     

Since the MML estimators in GSH naive Bayes classifier are robust, the method can 

easily adapts itself to the data and it classifies the data correctly.  Hence, when 

determining which species new insects belong to, GSH naive Bayes classifier is 

expected to classify the data more accurately. Table 4.1.5 shows the species that are 

matched to the new insects when the classifiers are applied.   
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   Table 4.1.5 Insect data: classification of new insects 

 

 

First insect is classified differently by the two classification methods. As it can be seen 

from that application, different distribution assumptions cause different results. 

Therefore, the underlying distribution should be fitted by using Q-Q plots and goodness-

of-fit tests or determining the value of a shape paramter by maximizing lnL (Tiku and 

Akkaya, 2004).   

 

Example 2: The data in Appendix C, taken from Fisher (1936), are the measurements of 

the sepal length, sepal width, petal length and petal width in centimeters of fifty plants 

for each of the three types of iris: Iris setosa, Iris versicolor and Iris virginica. Clearly 

the main problem is classification. The data is split in two nonoverlapping sets: the 

training set and the test set. Training set contains 60% of the observations of each class. 

The estimation of the parameters is done using only the training set. The classification is 

performed using only the test set. By using Q-Q plots of training set given in Appendix 

C, it can be said that for all of the features of the first class, GSH distribution; for all of 

the features of the second class, GL distribution and for other than the third feature of 

the third class, GSH distribution assumptions are appropriate. Furthermore, if the ith (i = 

1, 2, 3, 4) feature of the jth (j = 1, 2, 3) class has GSH distribution, by the method that is 

explained in the previous example for the determination of shape parameters, the 

following kurtosis values corresponding to the shape parameters ti which maximize 

(2.1.2.14) for each class are obtained: 

 

 
 

Insect 

 
 

x1 

 
 

x2 

 
 

x3 

Class obtained by 
naive Bayes 

classifier 

Class obtained by 
GSH naive Bayes 

classifier 
1 190 143 52 1 2 
2 174 131 50 1 1 
3 211 129 49 2 2 
4 218 126 49 2 2 
5 130 131 51 3 3 
6 138 127 52 3 3 
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                                                        Feature 
 

Class 

 

 

If the ith (i = 1, 2, 3, 4) feature of the jth (j = 1, 2, 3) class has GL distribution, to find the 

most appropriate value of the shape parameter bi, the MML estimators of iµ  and iσ  are 

calculated from (2.2.2.6) and (2.2.2.7) for a series of values of bi and the values of 

(2.2.2.9) are calculated. The shape parameters bi which maximize (2.2.2.9) for each class 

are as follows: 

 

                                                                                         Feature 
 

Class 

 

 

The MML and LS estimates of the parameters �i and �i for each class are obtained as in 

Table 4.1.6. 

 

 

              Table 4.1.6 Iris data: LS and MML estimates of the parameters � and � 
 

Class Feature µ~  σ~  µ̂  σ̂  
Iris setosa Sepal length 5.053333 0.3936858 5.048231 0.4292984 
 Sepal width 3.480000 0.4397492 3.482978 0.4436810 
 Petal length 1.436666 0.1629117 1.433125 0.1647454 
 Petal width 0.2466667 0.1105888 0.2185031 0.1234213 
Iris versicolor Sepal length 5.863333 0.5555261 5.405012 0.3983227 
 Sepal width 2.750000 0.3319223 3.038163 0.1012718 
 Petal length 4.180000 0.4693356 4.643937 0.1000344 
 Petal width 1.293333 0.1799106 1.426778 0.068472303 
Iris virginica Sepal length 6.523333 0.6317372 6.519863 0.6507546 
 Sepal width 2.956666 0.3500575 2.952808 0.3581837 
 Petal length 2.086667 0.2674701 1.965022 0.1858948 
 Petal width 2.086667 0.2674701 2.084731 0.2626103 

 

       Sepal length Sepal width Petal length Petal width 
Iris setosa 1.9 3.4 4.0 7.2 
Iris virginica 4.4 3.8  2.3 

       Sepal length Sepal width Petal length Petal width 
Iris versicolor 2.3 0.3 0.2 0.4 
Iris virginica   9.5  
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Note that LS estimates of the parameters of GL distribution are not bias corrected.  

 

To make classification in the test set, the class which maximizes (1.1.1.9) is selected by 

using the class conditional probability density in (1.1.1.7) and 
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where q = 0 if the distribution of ith feature of the jth class is GL and 

                 1 if the distribution of ith feature of the jth class is GSH 

   

under the normal and non-normal distributions assumptions, respectively. As a result, 

the classification rates of naive Bayes classifiers under normality and non-normality are 

given in Table 4.1.7. 

 

 

           Table 4.1.7 Iris data: classification rates 
 

 Normal Non-normal 
Classification rate 93.33% 95.00% 

 

 

In conclusion, non-normal naive Bayes classifier improves the classification rate.  

 

Example 3: Atkinson and Riani (2000) give the data in Table 4.1.8 taken from Carr 

(1960). The observations are from an experiment on the catalytic isomerization of n-

pentane to iso-pentane in the presence of hydrogen. There are 24 observations and the 

variables are rate of disappearance of n-pentane (d), partial pressure of hydrogen (x1), 

partial pressure of n-pentane (x2) and partial pressure of iso-pentane (x3).  
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Table 4.1.8 Reaction rate for the catalytic isomerization of n-pentane to isopentane 
 

Partial Pressures (psia) Rate 
x1 x2 x3 d 

205.8 90.9 37.1 3.541 
404.8 92.9 36.3 2.397 
209.7 174.9 49.4 6.694 
401.6 187.2 44.9 4.722 
224.9 92.7 116.3 0.593 
402.6 102.2 128.9 0.268 
212.7 186.9 134.4 2.797 
406.2 192.6 134.9 2.451 
133.3 140.8 87.6 3.196 
470.9 144.2 86.9 2.021 
300.0 68.3 81.7 0.896 
301.6 214.6 101.7 5.084 
297.3 142.2 10.5 5.686 
314.0 146.7 157.1 1.193 
305.7 142.0 86.0 2.648 
300.1 143.7 90.2 3.303 
305.4 141.1 87.4 3.054 
305.2 141.5 87.0 3.302 
300.1 83.0 66.4 1.271 
106.6 209.6 33.0 11.648 
417.2 83.9 32.9 2.002 
251.0 294.4 41.5 9.604 
250.3 148.0 14.7 7.754 
145.1 291.0 50.2 11.590 

 

 

Islam and Tiku (2004) found that multiple linear regression model is reasonable for this 

data set. The data is split in two nonoverlapping sets: the training set and the test set. 

Training set contains 70% of the observations. The hypotheses are constructed by using 

only the training set. If the distribution of the error terms is assumed to be normal, the 

following model with the least square estimates is obtained: 

 

  3211 x033.0x033.0x006.0832.2)x(h −+−= . 

 

However, Islam and Tiku (2004) showed that Generalized Logistic distribution is 

appropriate for the error distribution. A plausible value of the shape parameter is 
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identified as 0.5 for the training set. Therefore, the model with the modified maximum 

likelihood estimates is in the following: 

 

3212 x032.0x034.0x007.0275.3)x(h −+−= . 

 

Note that the hypothesis h2(x) is obtained by using the modified maximum likelihood 

estimators of the parameters in multiple linear regression model (Islam and Tiku, 2004; 

Tiku and Akkaya, 2004). 

 

Hence, there are two hypotheses in the hypotheses space H and the object is finding the 

maximum likelihood hypothesis. The maximum likelihood hypothesis is found from the 

training set and the test set is used for showing the validty of the hypothesis. If the 

distribution of noise is assumed to obey normal distribution, the following sum of 

squared errors are obtained for the training and test sets: 

 

Hypotheses: h1(x) h2(x) 

Training set:   �
=

−
17

1i

2
ii ))x(hd(  

 
3.149 

 
3.936 

Test set:          �
=

−
7

1i

2
ii ))x(hd(  

 
20.645 

 
14.050 

 

 

Under the normality assumption, since the maximum likelihood hypothesis is the one 

that minimizes the sum of the squared errors between the observed training values and 

the hypothesis predictions, the training set indicates that h1(x) is the maximum 

likelihood hypothesis. However, the Euclidean distance between the observed test values 

and the hypothesis predictions points out that h2(x) gives more accurate results that 

h1(x). Now, assume noise is distributed according to GL distribution. Since the values of  
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in equation (3.2.10) are as in the following, 

 

Hypotheses: h1(x) h2(x) 
   q 3.149 3.936 

 

 

the maximum likelihood hypothesis is h2(x). Hence it chooses the true hypothesis under 

the assumption that noise is distributed according to GL distribution. 

 

Example 4: Atkinson and Riani (2000) give the stack loss data taken from Brownlee 

(1965). The data is reproduced in Table 4.1.9.  

 

 

             Table 4.1.9 Stack loss data on the oxidation of ammonia 
 

 
 

Air Flow 

Cooling 
Water Inlet 

Temperature 

 
Acid 

Concentration 

 
 

Stack Loss 
x1 x2 x3 d 
80 27 89 42 
80 27 88 37 
75 25 90 37 
62 24 87 28 
62 22 87 18 
62 23 87 18 
62 24 93 19 
62 24 93 20 
58 23 87 15 
58 18 80 14 
58 18 89 14 
58 17 88 13 
58 18 82 11 
58 19 93 12 
50 18 89 8 
50 18 86 7 
50 19 72 8 
50 19 79 8 
50 20 80 9 
56 20 82 15 
70 20 91 15 
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There are observations from 21 days of operation of a plant for the oxidation of 

ammonia as a stage in the production of nitric acid. The air flow (x1) measures the rate 

of operation of the plant. The nitric oxides produced are absorbed in a countercurrent 

absorption tower; x2 is the inlet temperature of cooling water circulating through coils in 

this tower, x3 (=10*(acid concentration-50)) is proportional to the concentration of acid 

in the tower and d represents stack loss that is 10 times the percentage of ingoing 

ammonia escaping unconverted.   

 

As indicated in Islam and Tiku (2004), a multiple linear regression model is appropriate 

and the observation (x1 = 70, x2 = 20, x3 = 91 and d = 15) has an abnormally large 

residual when a standard least squares regression is fitted as it can be understood from 

the normal Q-Q plot given in Andrews (1974). Therefore, the training set which contains 

70% of the observations is chosen without including that anomalous observation. 

Although it is mentioning that the observations (x1 = 80, x2 = 27, x3 = 89 and d = 42), (x1 

= 75, x2 = 25, x3 = 90 and d = 37) and (x1 = 62, x2 = 24, x3 = 87 and d = 28) are 

anomalous, they are included in the training set and the following hypothesis is 

constructed when the least square estimates are used: 

 

  3211 x090.0x688.1x598.0734.60)x(h +++−= . 

 

Furthermore, since Islam and Tiku (2004) showed that the distribution of residuals is 

long-tailed symmetric, the following hypothesis is constructed by using the modified 

maximum likelihood estimators which were derived in Islam and Tiku (2004): 

 

  3212 x085.0x676.1x608.0683.60)x(h +++−= . 

 

First, let the test set do not contain the observation (x1 = 70, x2 = 20, x3 = 91 and d = 15). 

If the distribution of noise is assumed to obey normal distribution, the following sum of 

squared errors are obtained for the training and test sets: 
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Hypotheses: h1(x) h2(x) 

Training set:   �
=

−
14

1i

2
ii ))x(hd(  

 
58.426 

 
58.468 

Test set:          �
=

−
6
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2
ii ))x(hd(  

 
131.217 

 
128.091 

 

 

The training set indicates that h1(x) is the maximum likelihood hypothesis. However, the 

Euclidean distance between the observed test values and the hypothesis predictions 

points out that h2(x) gives more accurate results that h1(x). Now, assume noise is 

distributed according to GSH distribution. A plausible value of the shape parameter is 

identified as 9.6 for the training set. Since the values of  
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in equation (3.1.10) are as in the following, 

 

Hypotheses: h1(x) h2(x) 
   q -22.38572 -22.38540 

 
 

the maximum likelihood hypothesis is h2(x). Hence it chooses the true hypothesis under 

the assumption that noise is distributed according to GSH distribution. 

 

Now, consider the test set containing the anomalous observation. Since square of the 

Euclidean distances between the observed test values and the hypothesis predictions are 

obtained as in the following, 

 

Hypotheses: h1(x) h2(x) 

Test set:          �
=

−
7

1i

2
ii ))x(hd(  

 
196.4384 

 
194.2203 
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it is again obvious that h2(x) predicts the stack loss more accurately. As a result, the 

maximum likelihood hypothesis found under GSH distribution assumption gives better 

results than the one which is found under normality assumption.  

 

4.2 Conclusions 

 

In machine learning, Bayesian learning is a statistical approach which depends on 

normality assumption. However, assuming normal as the underlying distribution is 

unrealistic and it might cause erroneous statistical inferences (Tiku and Akkaya, 2004). 

Hence a plausible underlying distribution should be identified. In this study, two 

families of distributions are considered: Generalized Secant Hyperbolic (GSH) and 

Generalized Logistic (GL). These families contain five types of distributions: 

 

i) long-tailed symmetric, 

ii) short-tailed symmetric, 

iii) negatively skewed, 

iv) positively skewed, and 

v) approximately normal. 

 

Generalized Secant Hyperbolic and Generalized Logistic naive Bayes classifiers using 

GSH and GL distribution families as the model distribution, respectively are introduced. 

The difficulty of these models is in estimating the parameters of GSH and GL 

distributions. Since the maximum likelihood equations do not have explicit solutions, 

they have to be solved by iteration which can be problematic for reasons of  

 

i) multiple roots, 

ii) slow convergence, or 

iii) convergence to wrong values. 

 

Furthermore, since it is not possible to identify the underlying distribution exactly from 

a sample, a method of estimation which yields robust estimators is needed. Modified 
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maximum likelihood estimators are explicit functions of the sample observations and 

easy to compute. Besides, these estimators are fully efficient asymptotically, highly 

efficient for small sample size and robust to plausible deviations, therefore, it is 

sufficient to locate a distribution in reasonable proximity to the true distribution. This 

can easily be accomplished by constructing Q-Q plots followed by a formal goodness-

of-fit test and a viable alternative to a goodness-of-fit test is to determine the value of the 

shape parameter by maximizing the natural logarithm of the likelihood function (Tiku 

and Akkaya, 2004). By real life applications of the procedures, it is shown that GSH and 

GL naive Bayes classifiers improve the true classification rates even for small sample 

sizes.  

 

In addition, the maximum likelihood hypotheses are obtained under the assumption of 

non-normality. When the real life applications are carried out, it is shown that GSH and 

GL distribution assumptions provide better results than normality assumption. 
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APPENDIX A 

 

COVARIANCE MATRIX 
 

 

A.1 GSH Distribution 

 

The Fisher information matrix is 
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The asymptotic variance-covarince matrix is V = (Vij), where 
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A.2 GL Distribution 

 

The Fisher information matrix is 
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where )x(/)x()x( ΓΓ′=ψ  is the psi-function. The asymptotic variance-covarince matrix 

of σµ ˆ and ˆ  is V = ),(I 1 σµ− . 
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APPENDIX B 

 
LISTING OF SIMULATION PROGRAMS 

 

B.1 Simulation for GSH Distribution 

 

PROGRAM GSH 
USE NUMERICAL_LIBRARIES 
REAL T,B2,Y(100),G(100),PI,C1,C2,A,SIGMA,MLMU,MLSIGMA,BET(100) 
REAL ALFA(100),T1(100),M,MLMUMEAN,MLSIGMAMEAN,MLMUVAR, 
REAL MLSIGMAVAR,X(100),XBAR,XABAR,C,B,LSMU,LSSIGMA 
REAL LSMUMEAN,LSMUVAR,LSSIGMAMEAN,LSSIGMAVAR 
REAL LSSIGMAMSE,MLSIGMAMSE,RELSSIGMA,RELSMU,LSMUMSE 
REAL MLMUMSE,LSDEF,MLDEF,MVBMU,MVBSIGMA,I22,MLMUE 
REAL MLSIGMAE 
 
OPEN (unit=1,file='c:\Concon\Documents\sonuc.txt') 
PI=22.0/7.0 
 
PRINT *,'ENTER THE KURTOSIS' 
READ *,B2 

 IF (B2.GT.4.2) THEN 
   T=-PI*SQRT((5.0*B2-21.0)/(5.0*B2-9.0)) 
 ELSE IF (B2.EQ.4.2) THEN 
   T=0.0 
 ELSE IF (B2.LT.4.2.AND.B2.GT.1.8) THEN 
   T=PI*SQRT((21.0-5.0*B2)/(5.0*B2-9.0)) 
 ENDIF 
 WRITE(1,*) 'SHAPE PARAMETER=',T 

PRINT*,'ENTER THE SAMPLE SIZE' 
 READ*,N 
 
 SIGMA=1.0 
 
 IF (T.GT.(-PI).AND.T.LE.0.0) THEN 
   A=COS(T) 
   C2=SQRT((PI*PI-T*T)/3.0) 
   C1=(SIN(T)/T)*C2 
 ELSE IF (T.GT.0.0) THEN 
   A=COSH(T) 
   C2=SQRT((PI*PI+T*T)/3.0) 
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   C1=(SINH(T)/T)*C2 
 ENDIF 
 
       IF (T.GT.(-PI).AND.T.LT.0.0) THEN 
   DO 16 I=1,N 
     V2=I 
     V1=V2/(N*1.0+1.0) 
     T1(I)=LOG(SIN(T*V1)/SIN(T*(1.0-V1)))/C2 
   16      CONTINUE 
 ELSE IF (T.EQ.0.0) THEN 
   DO 17 I=1,N 
     V2=I 
     V1=V2/(N*1.0+1.0) 
     W=(V1)/(1.0-V1) 
     T1(I)=(SQRT(3.0)/PI)*LOG(W) 
   17       CONTINUE 
 ELSE IF (T.GT.0.0) THEN 
   DO 18 I=1,N 
      V2=I 
      V1=V2/(N*1.0+1.0) 
      T1(I)=LOG(SINH(T*V1)/SINH(T*(1.0-V1)))/C2 
   18      CONTINUE 
 ENDIF 
 
       DO 20 I=1,N 
   BET(I)=A*C2*EXP(3.0*C2*T1(I))+2.0*C2*EXP(2.0*C2*T1(I)) 
   BET(I)=BET(I)+A*C2*EXP(C2*T1(I)) 
   BET(I)=BET(I)/(EXP(2.0*C2*T1(I))+2.0*A*EXP(C2*T1(I))+1.0)**2 
   ALFA(I)=A*EXP(C2*T1(I))+EXP(2.0*C2*T1(I)) 
   ALFA(I)=ALFA(I)/(EXP(2.0*C2*T1(I))+2.0*A*EXP(C2*T1(I))+1.0) 
   ALFA(I)=ALFA(I)-BET(I)*T1(I) 
   20  CONTINUE 
  
       DO 23 I=1,N 
   IF (BET(I).LT.0.0) THEN 
     BET(I)=0.0 
     ALFA(I)=A*EXP(C2*T1(I))+EXP(2.0*C2*T1(I)) 
     ALFA(I)=ALFA(I)/(EXP(2.0*C2*T1(I))+2.0*A*EXP(C2*T1(I))+1.0) 
   ENDIF 
   23  CONTINUE 
 
 M=0.0 
       DO 24 I=1,N 
   M=M+BET(I) 
   24  CONTINUE 
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 MLMUMEAN=0.0 
 MLSIGMAMEAN=0.0 
 MLMUVAR=0.0 
 MLSIGMAVAR=0.0 
 LSMUMEAN=0.0 
 LSSIGMAMEAN=0.0 
 LSMUVAR=0.0 
 LSSIGMAVAR=0.0 
  
 NN=100000/N 
  

DO 100 L=1,NN 
       CALL RNUN(N,G) 
       IF (T.GT.(-PI).AND.T.LT.0.0) THEN 
       DO 5 I=1,N 
         Y(I)=LOG(SIN(T*G(I))/SIN(T*(1.0-G(I))))/C2 
    5  CONTINUE       
       ELSE IF (T.EQ.0.0) THEN 
       DO 6 I=1,N 
         Y(I)=(SQRT(3.0)/PI)*LOG(G(I)/(1.0-G(I))) 
    6  CONTINUE 
 ELSE IF (T.GT.0.0) THEN 
 DO 7 I=1,N 
         Y(I)=LOG(SINH(T*G(I))/SINH(T*(1.0-G(I))))/C2 
    7  CONTINUE 
 ENDIF 
 
C FINDING MMLE 
 CALL SVRGN(N,Y,X) 
 
 MLMU=0.0 
 DO 25 I=1,N 
   MLMU=MLMU+BET(I)*X(I) 
   25  CONTINUE 
       MLMU=MLMU/M 
 MLMUMEAN=MLMUMEAN+MLMU 
 MLMUVAR=MLMUVAR+MLMU**2 
 
 XBAR=0.0 
 XABAR=0.0 
 DO 30 I=1,N 
   XBAR=XBAR+X(I) 
   XABAR=XABAR+ALFA(I)*X(I) 
   30  CONTINUE 
 XBAR=XBAR/(N*1.0) 
 XABAR=XABAR*2.0/(N*1.0) 
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 B=N*C2*(XBAR-XABAR) 
 
 C=0.0 
 DO 31 I=1,N 
   C=C+BET(I)*(X(I)-MLMU)**2 
   31  CONTINUE 
 C=2.0*C2*C 
  
 MLSIGMA=(-B+SQRT(B**2+4.0*N*C))/(2.0*SQRT(1.0*N*(N-1))) 
 MLSIGMAMEAN=MLSIGMAMEAN+MLSIGMA 
 MLSIGMAVAR=MLSIGMAVAR+MLSIGMA**2 
 
C FINDING LSE 
 LSMU=XBAR 
 LSMUMEAN=LSMUMEAN+LSMU 
 LSMUVAR=LSMUVAR+LSMU**2 
 
 LSSIGMA=0.0 
 DO 35 I=1,N 
   LSSIGMA=LSSIGMA+(X(I)-LSMU)**2 
   35  CONTINUE 
       LSSIGMA=LSSIGMA/(N*1.0-1.0) 
 LSSIGMA=SQRT(LSSIGMA) 
 LSSIGMAMEAN=LSSIGMAMEAN+LSSIGMA 
 LSSIGMAVAR=LSSIGMAVAR+LSSIGMA**2 
 
  100  CONTINUE 
  
 MLMUMEAN=MLMUMEAN/(NN*1.0) 
 MLMUVAR=MLMUVAR/(NN*1.0)-MLMUMEAN**2 
 MLSIGMAMEAN=MLSIGMAMEAN/(NN*1.0) 
 MLSIGMAVAR=MLSIGMAVAR/(1.0*NN)-MLSIGMAMEAN**2 
 
 WRITE(1,*) '  ' 
 WRITE(1,*) 'MMLE OF M=',MLMUMEAN 
 WRITE(1,*) 'MMLE OF SIGMA=',MLSIGMAMEAN 
 WRITE(1,*) 'VAR OF MMLE OF M=',MLMUVAR 
 WRITE(1,*) 'VAR OF MMLE OF SIGMA=',MLSIGMAVAR 
  
 LSMUMEAN=LSMUMEAN/(NN*1.0) 
 LSMUVAR=LSMUVAR/(NN*1.0)-LSMUMEAN**2 
 LSSIGMAMEAN=LSSIGMAMEAN/(NN*1.0) 
 LSSIGMAVAR=LSSIGMAVAR/(1.0*NN)-LSSIGMAMEAN**2 
 
 WRITE(1,*) '  ' 
 WRITE(1,*) 'LSE OF M=',LSMUMEAN 



 60 

 WRITE(1,*) 'LSE OF SIGMA=',LSSIGMAMEAN 
 WRITE(1,*) 'VAR OF LSE OF M=',LSMUVAR 
 WRITE(1,*) 'VAR OF LSE OF SIGMA=',LSSIGMAVAR 
 
 MLMUMSE=MLMUVAR+MLMUMEAN**2 
 LSMUMSE=LSMUVAR+LSMUMEAN**2 
 
 WRITE(1,*) '  ' 
 WRITE(1,*) 'MSE OF MMLE OF M=',MLMUMSE 
 WRITE(1,*) 'MSE OF LSE OF M=',LSMUMSE 
  
 MLSIGMAMSE=(SIGMA-MLSIGMAMEAN)**2+MLSIGMAVAR 
 LSSIGMAMSE=(SIGMA-LSSIGMAMEAN)**2+LSSIGMAVAR 
 
 WRITE(1,*) 'MSE OF MMLE OF SIGMA=',MLSIGMAMSE 
 WRITE(1,*) 'MSE OF LSE OF SIGMA=',LSSIGMAMSE 
 
 MLDEF=MLMUMSE+MLSIGMAMSE 
 LSDEF=LSMUMSE+LSSIGMAMSE 
 
 WRITE(1,*) '  ' 
 WRITE(1,*) 'DEF OF MMLE=',MLDEF 
 WRITE(1,*) 'DEF OF LSE=',LSDEF 
 
 RELSMU=(MLMUVAR/LSMUVAR)*100.0 
 RELSSIGMA=(MLSIGMAMSE/LSSIGMAMSE)*100.0 
 
 WRITE(1,*) '  ' 
 WRITE(1,*) 'RE OF LSE OF M=',RELSMU 
 WRITE(1,*) 'RE OF LSE OF SIGMA=',RELSSIGMA 
 IF (T.GT.(-1.0*PI).AND.T.LT.0.0) THEN 
 MVBMU=(2.0*(SIGMA**2)*T*SIN(T)**2)/(N*(C2**2)*(T-SIN(T)*COS(T))) 
 I22=(PI**2-T**2)/(SIN(T)**2) 
 I22=I22-((PI**2-3.0*T**2)*COS(T)/(T*SIN(T))) 
 I22=-N*I22/(6.0*SIGMA**2) 
 ELSE IF (T.GT.0.0) THEN 
 MVBMU=(2.0*SIGMA**2*T*SINH(T)**2)/(N*(C2**2)*(SINH(T)*COSH(T)
-T)) 
 I22=(PI**2+3.0*T**2)*COSH(T)/(T*SINH(T)) 
 I22=I22-((PI**2+T**2)/(SINH(T)**2)) 
 I22=-N*I22/(6.0*SIGMA**2) 
 ELSE IF (T.EQ.0.0) THEN 
 MVBMU=(3.0*SIGMA**2)/(N*(C2**2)) 
 I22=-N*(PI**2+3.0)/(9.0*SIGMA**2) 
 ENDIF 
 MVBSIGMA=-1.0/I22 
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 WRITE(1,*)' ' 
 WRITE(1,*)'MVB OF M=',MVBMU 
 WRITE(1,*)'MVB OF SIGMA=',MVBSIGMA 
  
 MLMUE=(MVBMU/MLMUVAR)*100.0 
 MLSIGMAE=(MVBSIGMA/MLSIGMAVAR)*100.0 
 WRITE(1,*)' ' 
 WRITE(1,*)'EFF OF M=',MLMUE 
 WRITE(1,*)'EFF OF SIGMA=',MLSIGMAE 
 END 
 

B.2 Simulation for GL Distribution 

 

    PROGRAM GL 
 USE NUMERICAL_LIBRARIES 
 REAL B,Y(100),G(100),SIGMA,MLMU0,MLMU,MLSIGMA,T(100) 

REAL BET(100),ALFA(100),DEL(100),DELTA,M,MLMUMEAN 
REAL MLSIGMAMEAN,MLMUVAR,MLSIGMAVAR,X(100),XBAR,C 
REAL BB,LSMU,LSSIGMA,LSMUMEAN, LSMUVAR,LSSIGMAMEAN 
REAL LSSIGMAVAR,LSSIGMAMSE,MLSIGMAMSE 

 REAL RELSSIGMA,RELSMU,LSMUMSE,MLMUMSE 
 
 OPEN (unit=1,file='c:\Concon\output.txt') 
 
 B=0.5 
 
 PRINT*,'ENTER THE SAMPLE SIZE' 
 READ*,N 
 
 SIGMA=1.0 
 
 DO 10 I=1,N 
   V2=I 
   V1=V2/(N*1.0+1.0) 
   T(I)=-LOG(V1**(-1.0/B)-1.0) 
   10     CONTINUE 
 
            DO 20 I=1,N 
   BET(I)=EXP(T(I))/(EXP(T(I))+1.0)**2 
   ALFA(I)=(T(I)*EXP(T(I))+EXP(T(I))+1.0) 
   ALFA(I)=ALFA(I)/(EXP(T(I))+1.0)**2 
   20     CONTINUE 
 
 DELTA=0.0 
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 DO 22 I=1,N 
   DEL(I)=1.0/(B+1.0)-ALFA(I) 
   DELTA=DELTA+DEL(I) 
   22     CONTINUE 
  
 M=0.0 
            DO 24 I=1,N 
   M=M+BET(I) 
   24     CONTINUE 
 
 MLMUMEAN=0.0 
 MLSIGMAMEAN=0.0 
 MLMUVAR=0.0 
 MLSIGMAVAR=0.0 
 LSMUMEAN=0.0 
 LSSIGMAMEAN=0.0 
 LSMUVAR=0.0 
 LSSIGMAVAR=0.0 
  
 NN=100000/N 
 
 DO 100 L=1,NN 
            CALL RNUN(N,G) 
            DO 5 I=1,N 
              Y(I)=-LOG(G(I)**(-1.0/B)-1.0) 
    5      CONTINUE       
 
C FINDING MMLE 
 
 CALL SVRGN(N,Y,X) 
 
 MLMU0=0.0 
 DO 25 I=1,N 
   MLMU0=MLMU0+BET(I)*X(I) 
   25     CONTINUE 
            MLMU0=MLMU0/M 
 
 BB=0.0 
 DO 30 I=1,N 
   BB=BB+DEL(I)*(X(I)-MLMU0) 
   30     CONTINUE 
 BB=(B+1.0)*BB 
 
 C=0.0 
 DO 31 I=1,N 
   C=C+BET(I)*(X(I)-MLMU0)**2 
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   31     CONTINUE 
 C=(B+1.0)*C 
  
 MLSIGMA=(BB+SQRT(BB**2+4.0*N*C))/(2.0*SQRT(1.0*N*(N-1.0))) 
 MLSIGMAMEAN=MLSIGMAMEAN+MLSIGMA 
 MLSIGMAVAR=MLSIGMAVAR+MLSIGMA**2 
 
 MLMU=MLMU0+DELTA*MLSIGMA/M 
 MLMUMEAN=MLMUMEAN+MLMU 
 MLMUVAR=MLMUVAR+MLMU**2 
 
C FINDING LSE 
 
 XBAR=0.0  
 DO 32 I=1,N 
   XBAR=XBAR+X(I) 
   32     CONTINUE 
 XBAR=XBAR/(N*1.0) 
 
 LSSIGMA=0.0 
 DO 35 I=1,N 
   LSSIGMA=LSSIGMA+(X(I)-XBAR)**2 
   35     CONTINUE 
            LSSIGMA=(LSSIGMA/(N*1.0-1.0))/(4.9348+1.6449) 
 LSSIGMA=SQRT(LSSIGMA) 
 LSSIGMAMEAN=LSSIGMAMEAN+LSSIGMA 
 LSSIGMAVAR=LSSIGMAVAR+LSSIGMA**2 
  
 LSMU=XBAR-(-1.9635+0.5772)*LSSIGMA 
 LSMUMEAN=LSMUMEAN+LSMU 
 LSMUVAR=LSMUVAR+LSMU**2 
 
  100    CONTINUE 
  
 MLMUMEAN=MLMUMEAN/(NN*1.0) 
 MLMUVAR=MLMUVAR/(NN*1.0)-MLMUMEAN**2 
 MLSIGMAMEAN=MLSIGMAMEAN/(NN*1.0) 
 MLSIGMAVAR=MLSIGMAVAR/(NN*1.0)-MLSIGMAMEAN**2 
 
 WRITE(1,*) '  ' 
 WRITE(1,*) 'MMLE OF M=',MLMUMEAN 
 WRITE(1,*) 'MMLE OF SIGMA=',MLSIGMAMEAN 
 WRITE(1,*) 'VAR OF MMLE OF M=',MLMUVAR 
 WRITE(1,*) 'VAR OF MMLE OF SIGMA=',MLSIGMAVAR 
  
 LSMUMEAN=LSMUMEAN/(NN*1.0) 
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 LSMUVAR=LSMUVAR/(NN*1.0)-LSMUMEAN**2 
 LSSIGMAMEAN=LSSIGMAMEAN/(NN*1.0) 
 LSSIGMAVAR=LSSIGMAVAR/(NN*1.0)-LSSIGMAMEAN**2 
 
 
 WRITE(1,*) '  ' 
 WRITE(1,*) 'LSE OF M=',LSMUMEAN 
 WRITE(1,*) 'LSE OF SIGMA=',LSSIGMAMEAN 
 WRITE(1,*) 'VAR OF LSE OF M=',LSMUVAR 
 WRITE(1,*) 'VAR OF LSE OF SIGMA=',LSSIGMAVAR 
 
 
 MLMUMSE=MLMUVAR+MLMUMEAN**2 
 LSMUMSE=LSMUVAR+LSMUMEAN**2 
 
 WRITE(1,*) '  ' 
 WRITE(1,*) 'MSE OF MMLE OF M=',MLMUMSE 
 WRITE(1,*) 'MSE OF LSE OF M=',LSMUMSE 
  
 MLSIGMAMSE=(SIGMA-MLSIGMAMEAN)**2+MLSIGMAVAR 
 LSSIGMAMSE=(SIGMA-LSSIGMAMEAN)**2+LSSIGMAVAR 
 
 WRITE(1,*) 'MSE OF MMLE OF SIGMA=',MLSIGMAMSE 
 WRITE(1,*) 'MSE OF LSE OF SIGMA=',LSSIGMAMSE 
 
 RELSMU=(MLMUMSE/LSMUMSE)*100.0 
 RELSSIGMA=(MLSIGMAMSE/LSSIGMAMSE)*100.0 
 
 WRITE(1,*) '  ' 
 WRITE(1,*) 'RE OF LSE OF M=',RELSMU 
 WRITE(1,*) 'RE OF LSE OF SIGMA=',RELSSIGMA 
 END 
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APPENDIX C 

 
IRISES AND Q-Q PLOTS 

 

C.1 Irises 

 

Fisher (1936) gives the data, collected by E. Anderson, in Table C.1.1. 

 

 

    Table C.1.1 Irises data  
 

Iris setosa Iris versicolor Iris virginica 
Sepal 
length 

Sepal 
width 

Petal 
length 

Petal 
width 

Sepal 
length 

Sepal 
width 

Petal 
length 

Petal 
width 

Sepal 
length 

Sepal 
Width 

Petal 
length 

Petal 
width 

5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5 
4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9 
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1 
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8 
5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2 
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1 
4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7 
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8 
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8 
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5 
5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0 
4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9 
4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1 
4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0 
5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4 
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3 
5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8 
5.1 3.5 1.4 0.3 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2 
5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3 
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5 
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3 
5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 2.8 4.9 2.0 
4.6 3.6 1.0 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0 
5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8 
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1 
5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8 
5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8 
5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8 
5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 2.8 5.6 2.1 
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6 
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4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9 
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0 
5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2 
5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5 
4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4 
5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3 
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4 
4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8 
4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8 
5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 6.9 3.1 5.4 2.1 
5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4 
4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3 
4.4 3.2 1.3 0.2 5.8 2.6 4.0 1.2 5.8 2.7 5.1 1.9 
5.0 3.5 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3 
5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5 
4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3 
5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5.0 1.9 
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0 
5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3 
5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8 

 

 

C.2 Q-Q Plots 

 

Normal Q-Q plots of the training set for the ith (i = 1, 2, 3, 4) feature of the jth (j = 1, 2, 3) 

class are as follows: 
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Figure C.1 Normal Q-Q plot of the training set for the feature sepal length of the class  

      iris setosa  
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Figure C.2 Normal Q-Q plot of the training set for the feature sepal width of the class  

      iris setosa  
 
 
 
 
 

Observ ed Va lue

2.01.81.61.41.21.0

E
xp

e
ct

ed
 N

o
rm

al
 V

a
lu

e

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

 
 
Figure C.3 Normal Q-Q plot of the training set for the feature petal length of the class  

      iris setosa  
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Figure C.4 Normal Q-Q plot of the training set for the feature petal width of the class  

      iris setosa  
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Figure C.5 Normal Q-Q plot of the training set for the feature sepal length of the class  

      iris versicolor  
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Figure C.6 Normal Q-Q plot of the training set for the feature sepal width of the class  

      iris versicolor 
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Figure C.7 Normal Q-Q plot of the training set for the feature petal length of the class  

      iris versicolor 
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Figure C.8 Normal Q-Q plot of the training set for the feature petal width of the class  

      iris versicolor 
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Figure C.9 Normal Q-Q plot of the training set for the feature sepal length of the class  

      iris virginica  
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Figure C.10 Normal Q-Q plot of the training set for the feature sepal width of the class  

        iris virginica  
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Figure C.11 Normal Q-Q plot of the training set for the feature petal length of the class  

        iris virginica  
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Figure C.12 Normal Q-Q plot of the training set for the feature petal width of the class  

        iris virginica  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 


