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ABSTRACT 

PARALLEL NAVIER STOKES SOLUTIONS OF 

LOW ASPECT RATIO RECTANGULAR FLAT WINGS 

IN COMPRESSIBLE FLOW 

 

 

Durmuş, Gökhan 

Ph.D., Department of Aerospace Engineering 

Supervisor      : Assoc Prof. Dr. Sinan Eyi 

Co-Supervisor: Prof. Dr. Mehmet Ş. Kavsaoğlu 

 

September 2004, 132 pages 
 

 

The objective of this thesis is to accomplish the three dimensional 

parallel thin-layer Navier-Stokes solutions for low aspect ratio rectangular 

flat wings in compressible flow. Two block parallel Navier Stokes solutions of 

an aspect ratio 1.0 flat plate with sharp edges are obtained at different Mach 

numbers and angles of attack. Reynolds numbers are of the order of 1.0E5-

3.0E5. Two different grid configurations, the coarse and the fine grids, are 

applied in order to speed up convergence. In coarse grid configuration, 92820 

total grid points are used in two blocks, whereas it is 700,000 in fine grid. The 

flow field is dominated by the vortices and the separated flows. Baldwin 

Lomax turbulence model is used over the flat plate surface. For the regions 

dominated by the strong side edge vortices, turbulence model is modified 

using a polar coordinate system whose origin is at the minimum pressure 
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point of the vortex. In addition, an algebraic wake-type turbulence model is 

used for the wake region behind the wing. The initial flow variables at the 

fine grid points are obtained by the interpolation based on the coarse grid 

results previously obtained for 40000 iterations. Iterations are continued with 

the fine grid about 20000-40000 more steps. Pressures of the top surface are 

predicted well with the exception of leading edge region, which may be due to 

unsuitable turbulence model and/or grid quality. The predictions of the side 

edge vortices and the size of the leading edge bubble are in good agreement 

with the experiment.  

 

Keywords: Computational Fluid Dynamics, Navier-Stokes, Multi-

Block, Vortical Flows, Flow Separation 

 



 vi

 

ÖZ 

KISA AÇIKLIK ORANLI, DÜZ, DİKDÖRTGEN KANATLARIN 

SIKIŞTIRILABİLİR AKIM ALANLARININ  

PARALEL NAVIER STOKES ÇÖZÜMLERİ 

 

 

Durmuş, Gökhan 

Doktora, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi          : Doç. Dr. Sinan Eyi 

Ortak Tez Yöneticisi: Prof. Dr. Mehmet Ş. Kavsaoğlu 

 
 

Eylül 2004, 132 sayfa 

 

 

Bu tezde kısa açıklık oranlı, düz, dikdörtgen kanatların sıkıştırılabilir 

akımlarda üç boyutlu paralel ince-tabaka Navier Stokes çözümleri 

gerçekleştirildi. Keskin kenarlı açıklık oranı 1.0 olan düz levha için iki 

bloklu paralel Navier Stokes çözümleri, değişik Mach sayılarında ve 

hücum açılarında elde edildi. Reynolds sayıları 1.0E5 ila 3.0E5 

mertebesindedir. Çözümü hızlandırmak için önce seyrek daha sonra da sık 

olmak üzere iki farklı ağ kullanılmıştır. Seyrek ağda her iki blokta toplam 

92820 adet nokta kullanılmakta olup bu sayı sık ağda 700,000’e 

çıkarılmıştır. Akım alanında, girdap ve ayrılmış akımlar etkin bir şekilde 

yer almaktadır. Levha yüzeyi üzerinde Baldwin-Lomax türbülans modeli 

kullanılmıştır. Ancak, güçlü kanat ucu girdaplarının baskın olduğu 

bölgelerde, Baldwin-Lomax türbülans modelinin, merkezi girdabın en 
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düşük basınç noktası olarak belirlenen bir polar koordinat sistemi 

kullanılarak yeniden düzenlenmiş hali kullanılmıştır. Ayrıca, kanat arkası 

iz bölgelerinde cebirsel iz tipi türbülans modeli kullanılmıştır. Sık ağ 

çözümü için gerekli olan akım verileri seyrek ağ çözümün interpolasyonu 

ile edilmiştir. Sonuçların, özellikle üst yüzey basınç değerlerinin ve güçlü 

kanat ucu girdaplarının genelde deneyle uyum içinde olduğu görülmüştür. 

En belirgin uyumsuzluklar üst yüzeyde hücum kenarı civarındadır. Bunun 

nedeni ağ kalitesi ve/veya türbülans modelinin yetersizliği olabilir.  

 

Anahtar Kelimeler: Sayısal Akışkanlar Dinamiği, Navier-Stokes, 

Çok Bloklu Çözüm. Girdap Akımları, Akım ayrılması 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

Aircrafts or missiles fly and maneuver at a variety of incidence angles, 

depending on their purpose and flight requirements. When attempting to 

model the flowfield around, special difficulties are met depending on the flow 

regimes. A fairly good representation of the flow regimes is shown in Figure 1.1 

where SVα  is the angle of attack where symmetric vortices are formed, AVα  is 

the angle of attack where asymmetric vortices are formed, and UVα  is the angle 

of attack where an unsteady vortex wake is formed [1-5].  

Various interesting features of the flow have been distinguished by 

the researchers in high angle of attack aerodynamics [2,3] including; 

• Vortex asymmetry begins when the angle of attack, AVα   is about twice 

the nose angle;  

• Separation is very sensitive to nose geometric asymmetries; 

• Increased nose sharpness increases asymmetry; and  

• The results are difficult to reproduce experimentally [1]. 

For a geometry with sharp edges such as a flat delta wing with 

sharp edges or a flat rectangular wing with sharp edges, the line of 

separation is fixed at the sharp edge and the flow-field asymmetries are 

much less. 
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Figure 1.1 Angle of attack flow regimes [1-5]. 

Separated and complex turbulent flows have extensively been 

studied by experiments and numerical simulations to yield distributions 

of statistical flow properties such as time-mean velocities, pressure, 

Reynolds stresses, correlations, and spatio-temporal structure of large-

scale vortices. Kiya, M. [6] states the following remarks; “These are 

experimental results, which are useful in the design of flow apparatus, 

but to have experimental results is not equivalent to understand the flow. 

The advance of numerical simulations and experiments aided by high 

technology such as lasers and computers is just to make it rapid and 

economical to obtain the experimental results. A flow is understood when 

a physical or mathematical model that can predict essential properties of 

the flow is constructed. In this sense, we have not yet understood 

separated flows. This is because unsteadiness due to the motion of large-
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scale vortices and their three-dimensionality are characteristic of 

separated flows”.  

The main goal on this work is to test the validity of the Navier-

Stokes code on the prediction of separated flows, in particular, the ones 

around the low aspect ratio wings. 

 

1.2. General Features of the Separated Flows 

Separated flows can be classified into two categories; the flow 

without reattachment and the flow with reattachment [6]. The flow 

without reattachment occurs around cylindrical bluff bodies such as 

circular cylinders and normal plates and it is characterized by the 

interaction between vortices, which is shed from the separation points. 

However, the flow over a backward-facing step, blunt plates or blunt 

circular cylinders are the typical examples of the flow with reattachment, 

which is characterized by the interaction between vortices and the solid 

surface and a separation bubble formation [6]. 

Separation can be described as the entire process in which a flow 

detaches from a solid surface, resulting in a breakdown of the boundary 

layer while undergoing a sudden thickening and causing an increased 

interaction between the viscous-inviscid layers [7]. 

Alving & Fernholz [8] make a distinction between separation 

caused by sharp gradients in the surface geometry, denoted geometry-

induced separation, and separation from smooth surfaces caused by 

adverse pressure gradients -“adverse-pressure-gradient-induced 

separation” – and discuss in general terms differences between these two 

cases as seen on Figure 1.2.  
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Figure 1.2 Separation types   

In terms of the leading edge bluntness, the sharp leading edge 

produces less complex flow with respect to the blunt leading edge [9]. At 

high Reynolds number, flow past a blunt body typically leads to the 

formation of a turbulent separation bubble near the sharp corner as well 

as the emergence of a reattaching flow further downstream [10,13]. The 

separation bubble is characterized by rolled-up vortices in the shear layer 

and their interaction with the surface [10-12,14]. The presence of a 

separated flow, together with a reattaching flow, gives rise to 

unsteadiness, pressure fluctuations and vibrations of the structure 

through which the fluid is flowing [15].  

The pressure plateaus seen in Figure 1.3 indicate that the speed of 

the fluid particles in separated flow regions is very slow. This observation 

led to the common term “dead-air region” or “dead-water region”. 

Although the static pressure remains almost constant further 

downstream, the pressure recovers quickly as the aft portion of the time-

averaged separation bubble is approached. This corresponds to an intense 

convection effect inside the bubble. 

Separation bubble flow can also be classified as being laminar, 

transitional or turbulent according to the separation and reattachment 

status of the boundary layer [16]. In a laminar separation bubble, the 

boundary layer is laminar at both separation and reattachment points, 

while in the transitional bubble the boundary layer is still laminar at 

separation but turbulent at reattachment. If the boundary layer is 
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turbulent at both separation and reattachment locations, the separation 

bubble is called turbulent.  

 

 
 

Figure 1.3 Separation bubble formation 

Due to the unstable structure of the bubble, turbulent boundary 

layer may be developed at lower Reynolds numbers, resulting in higher 

drag. Separation bubbles have gained much attention due to its 

computational character.  

The forward&backward facing step geometries have been 

extensively studied in much experimental and numerical work on 

separated flows serve as cornerstone test cases. One reason for this is the 

fact that the point of separation is fixed in space and time and that 

separation occurs for all Reynolds numbers [16]. 

In the case of sharp leading edge bodies, the boundary layer 

separates from the edge, being shed downstream as a separated shear 

layer and as we increase the angle of attack, a fully separated flow 

develops and the wing behaves as a bluff body [6]. Kiya, M. [6,17] states 

that “spanwise vortices are formed by rolling up the shear layer through 

the Kelvin-Helmholtz instability to form rectilinear vortex tubes whose 
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axis is aligned with the edge. The Spanwise vortices merge to become 

larger and larger with increasing longitudinal distance from the edge. At 

the same time the spanwise vortices deform in the spanwise direction, 

being rapidly three-dimensionalized developing turbulence. Large-scale 

vortices impinge on the surface of the body at a certain longitudinal 

distance from the edge, being shed downstream. This position of 

impingement is near the time-mean reattachment position of the shear 

layer, which is defined as the longitudinal position at which the time-

mean streamline starting from the edge reattaches on the surface. The 

pressure fluctuation generated by the impingement of the vortices 

propagates upstream to be accepted at the sharp leading edge to generate 

vorticity fluctuation, which enhances the rolling-up of the shear layer. 

The resulting large-scale vortices subsequently impinge on the surface. In 

this sense, the leading edge separation bubble is a self-excited flow 

maintained by the feedback loop. The feedback mechanism is a working 

hypothesis, having not been confirmed by experiments or numerical 

simulations”. A description of the different feedback processes for blunt 

bodies [18] is shown in Figure 1.4.  

The number of merging of spanwise vortices up to the impingement 

position, the length scale of the impinging vortices, and the frequency of 

their shedding Fv are related to the height of the separated shear layer 

from the surface [19]. In other words, it is related with the surface 

pressure just downstream of the edge; the lower the surface pressure, the 

higher is the curvature or height [6].  

The Kelvin-Helmholtz instability and the Shedding-type or 

Impinging-type of instability [6,19,20] are the two types of instability 

within the separation bubble. 
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Figure 1.4 Schematic of feedback loops of locked vortex shedding for blunt 
leading-edge plates with either  blunt or streamlined trailing edges [18]. 

The fundamental frequency of the Kelvin-Helmholtz instability 

scales to the momentum thickness of the shear layer at the separation 

edge and the velocity, thus being a function of Reynolds number. On the 

other hand, the fundamental frequency of the shedding-type instability 

also called vortex-shedding frequency is practically constant at sufficiently 

high Reynolds numbers. Sigurdson [19] argues that the shedding-type 

instability is the primary mode of instability in the separation bubble.  

Low-frequency modulation is also observed in nominally two-

dimensional and axisymmetric separated-and-reattaching flows: 

backward-facing step flows; leading-edge separation bubbles of blunt 

plates and blunt circular cylinders. The modulation in these flows is 

sometimes referred to as flapping because it is accompanied by a 

transverse oscillation of the separated shear layer. The flapping motion is 

an intrinsic property of the separation bubbles, not being due to 

extraneous effects from end effects [6]. The experimental studies (e.g., 

Cherry et al. [10]; Kiya and Sasaki [11]; Djilali and Gartshore [21]; 

Saathoff and Melbourne [22]) around a bluff rectangular plates at high 
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Reynolds numbers report a characteristic low frequency flapping of the 

separated shear layer as well as pseudo periodic vortex shedding from the 

separation bubble [23]. 

Three-dimensional separations can also be classified in three 

groups with respect to their topology and kinematics shown in Figure 1.5. 

In Yates and Chapman [24], Horseshoe and Werle type separations are 

defined as global separations (or closed separations). It is stated clearly in 

reference [23] that “the predominant structures over the separation 

bubble are clearly identified as hairpin (horseshoe) vortices in the 

reattachment region. The legs of the horseshoe vortices are inclined with 

respect to the streamwise direction. A typical vortex grows in every 

direction as it is advected downstream of the reattachment region. Due to 

the interaction between the vortical motion of the large-scale structure 

and the wall, it also tends to lift away from the wall. This in turn, brings 

the top end of the horseshoe vortex into contact with the outer (higher 

velocity) region, resulting in further stretching and inclination of the 

vortex along the flow direction. Eventually, the central portion breaks 

down, and only the two inclined legs remain. This phenomenon takes 

place in the recovery region. The unsteady motion from the shedding of 

these large-scale vortices causes oscillations and meandering of the 

instantaneous reattachment (zero-shear stress) line”.  

A typical oscillation consists of two distinct phases: (i) gradual 

growth of large-scale structures in the separated shear layer, 

accompanied by a progressive growth of the separation bubble, (ii) 

shedding of a large-scale structure followed by a collapse of the bubble 

and abrupt shortening of the reattachment length [23].  
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Figure 1.5 Limiting streamline pattern and surfaces of separation for three 
types of 3-D separation. Taken from Yates and Chapman [24]. 

 
 
 

 
 

Figure 1.6. Singular points 

Horseshoe type 
seperation 

Werle type 
seperation 

Cross flow  
separation 
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The structure of 3-D separation can be described by means of the 

analysis of skin friction lines shown in Figure 1.6. According to Tobak, M. 

and Peake, D.J [26], when the skin friction lines converge to, or diverge 

from a point, the point is called node (nodal point of separation or 

attachment, respectively). Nodal points can have one line to which all 

skin friction lines are tangent to, or none. Foci differ from nodal points in 

that an infinite number of streamlines spiral around the node. If the 

streamlines spiral away from the node, as seen in Figure 1.6.c, the node it 

is defined as a foci of attachment. Streamlines, which spiral into the node, 

seen in Figure 1.6.d, are defined as foci of separation. Nodal points of 

separation and attachment can be viewed as sinks and sources of skin 

friction, respectively. A saddle point may be defined as a singular point in 

which only two particular lines intersect at the singular point, each of 

which is in the direction towards or away from the singular point. All 

other streamlines miss the singular point and follow the directions of the 

adjacent lines that pass through the singular point as seen in Figure 

1.6.e. Both types of points can be featured in the 3-D flow, but the number 

of nodes must be equal to the number of saddles plus two [27].  

Skin friction lines diverging from nodal points cannot cross, due to 

the presence of a saddle point between them. One of the lines through the 

saddle is a separation line as seen on Figure 1.7. Skin friction lines 

converging to, or diverging from, a line define an att achment or 

separation lines, respectively. These line are also called limiting 

streamlines. Limiting streamlines from a separation line must leave the 

surface, as shown by Lighthill [27], while streamlines converging to an 

attachment line land on the surface.   
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Figure 1.7. Line of separation 

Nodal points of separation and attachment are other interesting 

features: they become edges of vortex cores. In some cases, there is also a 

distinction between primary and secondary lines of separation. Most 

researchers agree that the convergence of streamlines on either side of a 

particular line is a necessary condition for separation however; it should 

not be used solely to define it as this may occur in other situations as 

well. 

 

1.3.  General Description of the Flowfield around the 
Low Aspect Ratio Wings 

The flowfield around the low aspect ratio wings are mainly 

characterized by the separations at the leading edge and at the side edges 

of the wing. The separation at the leading edge leads to separation bubble 

whereas the separation at the side edges results in tip vortices. There is a 

strong interference between separation bubble and side vortices at high 

incidences. This makes the flowfield around these wings quite 

complicated [28].  

At even lower aspect ratios, the wing is subject to strong vortex 

flows and CL increases at a faster rate than that predicted with a linear 

theory [29]. This is due to the presence of the strong tip vortices that 

separate closer to the leading edge, according to a mechanism similar to 



 12

the delta wing. Figure 1.8 shows a qualitative example of how strong an 

influence the leading edge vortex can have on the lifting characteristics of 

a short wing.  

 
 

Figure 1.8 The lifting characteristics of wings with low aspect ratios [29]. 

In Figure 1.9, the oil-flow patterns taken by Wickens [28] are 

shown on the leeward surface of a low-aspect-ratio rectangular wing at an 

angle of attack of 20° [30]. Figure 1.10 is a deduction from Figure 1.9 of 

the corresponding pattern of skin-friction lines. It confirms that the 

primary separation consists of the dividing surface running into the 

spiral node nearest the edge of the wing [30]. The saddle point of 

separation on the wing centerline shows favorable pressure gradients 

from leeward to windward and from the wing centerline outboard toward 

the tip of the wing.  
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Figure 1.9 Oil-flow pattern on slender, rectangular wing, aspect ratio 0.25 at 
20α = °  [28] 

 

 
 

Figure 1.10 Interpretation of skin-friction lines and pressures on slender, 
rectangular wing, aspect ratio 0.25 at 20α = °  [28]. 
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The low aspect ratio rectangular flat wings especially with sharp 

leading and side edge generally have the flowfield shown in Figure 1.11. 

Flow separates at the sharp leading edge and forms the leading edge 

bubble. There are two side, or tip vortices called as spanwise vortices. In 

the side edges, there exist also secondary vortices and reversed flows also 

shown in Figure 1.12. Moreover, a secondary bubble underneath the 

primary bubble is formed as illustrated in Figure 1.13. The rolling up 

vortices or hairshoe vortices within the separation bubble and the 

spanwise vortices interact with each other causing a more complex 

flowfield, which has unsteady, oscillating structure.  

 
 

Figure 1.11 Illustrative 3-d flowfield around the low-aspect ratio flat wings. 

 

U∞ α  
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Figure 1.12 Illustrative flowfield at the symmetry plane. 
 
 
 
 

 
 

Figure 1.13 Illustrative flowfield at the spanwise plane.  
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1.4. Literature Review on Low Aspect Ratio Wings 

In the past twenty years, great advances in technology have led to 

significant advances in fluid mechanics. Various publications by AGARD 

[28,32-35] provide a large selection of research results in this field. Low 

aspect ratio rectangular flat wings, however were studied much less when 

compared to the Delta wings of the similar nature. Stahl [36] summarized 

some of the early research works. Winter [37] obtained pressure 

distributions on the suction side and force and moment measurements of 

various low aspect ratio rectangular flat wings at incompressible speeds. 

At von Karman Institute, similar experiments [38,39] were performed in 

a transonic wind tunnel for higher speeds. 

Simpson [25,41,42] has periodically reviewed the topic of separated 

flow over the years providing a history of the understanding of turbulent 

flow separation [40]. A detailed investigation into the literature of the 

separated and reattaching flow is found by Cherry at al. [10]. A 

comprehensive review of the global instability was associated with these 

sorts of flows by Rockwell [43]. 

Extraction of large-scale vortical structure from turbulent 

separated and reattaching flows have been studied by numerous studies 

using conditional averaging techniques [10,12,44]. A strong negative 

correlation was captured caused by the low-frequency flapping motion of 

the vortex shedding used a surface pressure sensor to educe the structure 

of large-scale vortices [12]. Kiya and Sasaki [12] was identified a saw-

tooth like movement of the separation bubble and hairpin vortices in 

their conditional average. The existence of a large-scale vortex was also 

indicated by revealing that the location of maximum vorticity coincides 

with that of maximum turbulence intensity [12,46]. The characteristic 

frequencies and intermittent nature of the pseudo periodic vortex 
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shedding from the separated shear layer and the reattachment region, as 

well as the shear layer flapping were captured in the large-eddy 

simulation of separated flow over a bluff rectangular plate [23]. 

Analyses of the leading-edge separation have been performed by 

many experiments and computations [47,48]. Recent experiment at NASA 

Langley Research Center investigated effects of leading-edge bluntness 

and Reynolds-number difference [49,50]. Numerical simulation around 

delta wing with sharp and blunt leading edges has been performed to 

investigate the leading edge bluntness and Reynolds-number effects 

suggested by the experiment [9].   

The flow around rectangular plates in the absence of any external 

forcing has been studied previously both experimentally and numerically 

[20]. A series of simulations of flows around blunt rectangular plates have 

been under taken to test the hypothesis that the trailing edge shedding 

plays an important role in the mechanism leading to self sustained 

oscillations [6]. The same mechanism may in fact be the feedback loop 

generated by the impinging leading edge vortices in the absence of 

trailing edge vortex shedding [43].  

The mean flow characteristics and large-scale unsteadiness aspects 

of turbulent flow around a bluff rectangular plate have been the subject of 

a number of experimental studies at high Reynolds numbers [10,11,21]. 

All studies report a characteristic low frequency flapping of the separated 

shear layer as well as pseudo periodic vortex shedding from the 

separation bubble [23]. 

An adequate representation of the mean flow characteristics within 

the separation bubble have been provided by Reynolds-averaged Navier-

Stokes (RANS) Solution of the high Reynolds number turbulent flow [20]. 

Impinging shear layer instability was initially classified by 

Nakamura & Nakashima  [20]and Nakamura et al. [52]. Later studies 

[53-57] preferred the description impinging leading edge vortex 
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instability because it better describes the process wherein leading-edge 

vortices are shed, convected downstream and then interact with the 

trailing edges. 

The instability waves in the diverging shear flow over square and 

circular plates were studied in a water tank using flow visualization 

techniques at angles of attack between 6o and 18o and it was found that 

small-large scale instability waves were generated in the shear layer over 

a flat plate at incidence [58]. 

Alving & Fernholz [59] distinguish between “strong” and “mild” 

separation bubbles based on the height of the shear layer upstream of 

separation relative to the height of the separation bubble. A separation 

bubble is referred to as a “strong” bubble when the height of the shear 

layer preceding separation is of the same size or smaller than the height 

of the bubble, whereas, conversely, in a “mild” separation bubble the 

height of the bubble is considerable smaller than the pre-separated shear 

layer.  

A variety of influences on high angle of attack flow predictions 

have been discussed, including: governing equation complexity, 

turbulence modeling, transition modeling, algorithm symmetry, grid 

generation and density, and numerical dissipation [1]. Non-linear inviscid 

methods which account for the leading edge vortices and their 

interactions with the wing surfaces have been developed and modeled the 

behavior of high Reynolds number , turbulence flow over sharp- edged 

wings extremely well [60]. 

Computational procedures allowing aerodynamicists to investigate 

flows using complex three-dimensional computational fluid dynamics 

(CFD) to extract the flow topology are now widely available [61]. Delery 

[62] states that Legendre [63] pioneered flow topology research by 

proposing that wall streamlines be considered as trajectories having 

properties consistent with those of a continuous vector field, the principal 
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being that through any nonsingular point there must pass one and only 

one trajectory. Different combinations of nodal/saddle points and how 

they work together have received much attention by Tobak and Peake 

[26] and Chapman [64]. Since then, much research has been done on fluid 

flow topology, ranging from Chapman [64] and Wang [65] who classified 

flow topology for separation on three-dimensional bodies to Cipolla and 

Rockwell [66] who investigated the instantaneous crossflow topology 

using particle image velocimetry. Hunt et al. [67] have shown that the 

notions of singular points and the rules that they obey can be extended to 

apply to the flow above the surface on planes of symmetry and on 

crossflow planes. The classification of three-dimensional singular points 

for flow topology has enabled aerodynamicists to successfully investigate, 

predict, and fix the separation phenomena alleviating adverse 

aerodynamic characteristics associated with separation.  

1.5. Outline of Dissertation  

After introducing the scope of our dissertation, Navier-Stokes 

equations are presented in detail in Chapter 1. The following chapter 

focuses on the solution algorithm used. In Chapter 4, the development of 

hyperbolic grid generation code with upwind differencing is discussed. 

The turbulence models adapted in the solution are examined in Chapter 

5. The Test Cases and Results, which is the section where the most of the 

work are performed, are presented in Chapter 6. In this chapter, test 

cases are examined in two main sections. First, two-dimensional test 

cases are studied within two sub sections; “Laminar Flat Plate” and 

“Turbulent Flat Plate”. Then, three-dimensional test case; “Three 

Dimensional Flat Plate”, which is the main goal of the thesis, is 

presented. Results of each test case are discussed in the corresponding 

section. In the last chapter, the conclusion and the future work are 

presented. 
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CHAPTER 2 

NAVIER STOKES EQUATIONS 

The governing equations are the Navier-Stokes (N-S) equations. 

The Reynolds-averaged N-S equations are derived by averaging the 

viscous conservation laws over a time interval T. The time interval T is 

chosen large enough with respect to the time scale of the turbulent 

fluctuations, but has to remain small with respect to the time scales of 

other time- dependent effects. We consider the Reynolds Averaged N-S 

equations as the basic model, expressing the conservation laws for mass, 

momentum and energy written in conservation form  
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, or in condensed form 
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∂
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The time dependent N-S equations are hyperbolic-parabolic in 

space -time while the stationary N-S equations are of mixed type in space 

that is elliptic-parabolic for subsonic flows and hyperbolic-parabolic for 

supersonic flows. The physical interpretation of these properties are of 

great importance for the choice of a numerical scheme, since a hyperbolic 

system is dominated by wave propagation (or convection) effects, an 

elliptic system describes diffusion phenomena, while a parabolic system is 

associated with damped propagation effects. For high Reynolds number 

flows, the system of conservation equation is convection dominated in 
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most of the flow region. The N-S equations are often written in vector 

form as in Equation (2.2). For convenience, the equations are cast in 

Cartesian coordinate form. 
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These five equations are statements of the conservation of mass and 

energy and conservation of momentum in the x, y and z directions. This 

form of the equations assumes that the fluid may be compressible and 

that heat generation and body forces (except for those, which might be 

included in the source term, H ) can be ignored. This vector equation 

states that the time rate of change in the dependent variables q is equal 

to the spatial change in the inviscid fluxes, E, F and G, and viscous 

fluxes, Ev , Fv  and Gv . A source term, H, is included to account for the 

centrifugal and Coriolis force terms, which appear if the coordinate frame 

is rotating. In the present study, the source term was not taken into 

account. The presence of the Reynolds number, Re u L= ρ µ , implies that 

the governing equations have been non-dimensionalized; with ρ  and u  

often chosen as the freestream density and velocity, L  chosen as the 

reference length of the body and µ  evaluated at the freestream static 

temperature. The vector of dependent variables, the inviscid and viscous 

flux terms are shown below. 
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Here ρ  is the fluid density; u , v  and w are the fluid velocities in 

the x, y and z coordinate directions, and e  is the total energy per unit 

volume. The viscous flux terms are functions of the local fluid velocities, 

the shear stresses, τxx , and heat conduction terms qx , qy and qz . 

The pressure, p , which appears in the inviscid flux terms, is 

related to the dependent variables through an appropriate equation of 

state. The local pressure is expressed in terms of the dependent variables 

by applying the ideal gas law. 

 ( ) ( )[ ]222
2
11 wvuep ++−−= ργ  (2.4) 

The stresses are related to the velocity gradient of the fluid, 

assuming a Newtonian fluid for which the viscous stress is proportional 

to the rate of shearing strain (i.e. angular deformation rate). For 

turbulent flow, a Reynolds-averaged form of the equations is used where 

the dependent variables represent the mean flow contribution. The 

Boussinesq assumption is applied, permitting the apparent turbulent 

stresses to be related to the product of the mean flow strain rate and an 

apparent turbulent viscosity. Therefore, the shear and normal stress 

tensors have the following form; 
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The heat conduction terms, when Reynolds-averaging and the 

Boussinesq assumption are applied, are proportional to the local mean 

flow temperature gradient; 
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Here, γ  represents the ratio of specific heats, Pr  is the Prandtl 

number and M∞  is the freestream Mach number. 

To determine the effective turbulent conductivity, Tk , Reynolds 

analogy is applied and the turbulent conductivity is related to the 

turbulent viscosity as follows; 

 T T
T

Prk
Pr

µ=  (2.7) 

Here, and in the equation above, the conductivity and viscosity are 

non-dimensionalized by their representative (laminar) values evaluated 

at the freestream static temperature. 

In many CFD applications, it is desirable to solve the governing 

equations in a domain, which has surfaces that conform to the body 

rather than in a Cartesian coordinate domain. A transformation is 

applied to the original set of equations to obtain a "generalized geometry" 

form of the governing equations. This allows the irregular shaped 

physical domain to be transformed into a rectangular shaped 

computational domain that allows the numeric to be simplified 

somewhat. This transformation also simplifies the applications of the 

boundary conditions and may include various options on grid point 
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clustering and orthogonality, both being extremely important for the 

solution of the Navier-Stokes equations. Obviously, grid point clustering 

near the surface for viscous flows is required in order to resolve the flow 

gradient. The transformed equations are shown below, 
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Typically, the physical domain is oriented in such a way that the 

coordinate directions in the computational domain; [ξ , η, ζ ] may 

correspond to directions relative to the body. In the applications discussed 

here, ξ  corresponds to the direction along the body, η corresponds to the 

circumferential direction and ζ  corresponds to the outward direction from 

the body surface. Also, τ  represents time. Note that the source term, H, is 

not included to the Equation(2.8). 

The transformed fluxes are functions of the original Cartesian flux 

terms and have a similar form. After rearranging, the vector of dependent 

variables and inviscid and viscous flux terms take the following form, 
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η η η ζ ζ ζ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ + + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + + += =
⎢ ⎥ ⎢ ⎥+ + + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦ ⎣ ⎦

 (2.9) 

where 

 
zzzzyzx

yyzyyyx

xxzxyxx

qwvuC
qwvuB

qwvuA

−++=

−++=

−++=

τττ

τττ

τττ

 

The velocities in the ,  ξ η  and ζ  coordinates represent the 

contravariant velocity components. 

 
t x y z

t x y z

t x y z

U u v w

V u v w

W u v w

ξ ξ ξ ξ

η η η η

ζ ζ ζ ζ

= + + +

= + + +

= + + +

 (2.10) 

The Cartesian velocity components (U, V, W) are retained as the 

dependent variables and are non-dimensionalized with respect to a∞ (the 

freestream speed of sound). In addition to the original Cartesian 

variables, additional terms ( ),...,,, zyxJ ζηξ  appear in the equations. These 

terms referred to as the metric terms, result from the transformation and 

contain the purely geometric information that relates the physical space 

to the computational space. The metric terms are defined as 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

       

       

      

x x x

y y y

z z z

J y z y z J z y y z J y z z y

J z x x z J x z x z J z x x z

J x y y x J y x x y J x y y x

η ζ ζ η ξ ζ ξ ζ ξ η ξ η

η ζ η ζ ξ ζ ζ ξ ξ η ξ η

η ζ η ζ ξ ζ ξ ζ ξ η ξ η

ξ η ζ

ξ η ζ

ξ η ζ

= − = − = −

= − = − = −

= − = − = −

 (2.11) 

 and 
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( )
( )

1 , ,
, ,

x y z
J x y z x y z x y z x y z x y z x y zξ η ζ ζ ξ η η ζ ξ ξ ζ η η ξ ζ ζ η ξ

∂
∂ ξ η ζ

− = = + + − − −  (2.12) 

The metrics are evaluated using second-order, central difference 

formulas for interior points and three-point, one-sided formulas at the 

boundaries. Further simplification of the governing equations shown 

above is often desirable and physically justified. In many applications, the 

viscous effects are limited to the boundary layers near the body surfaces 

or along shear layers that are normal to a single grid direction. In such 

cases, it may be desirable to include only the most dominant viscous 

terms in similar fashion as the boundary layer equations. Indeed, from a 

computational perspective, for viscous effects to be properly modeled, the 

relevant viscous terms must be included in the governing equations and 

the flow field gradients must be resolved with sufficient accuracy on the 

computational mesh. For these reasons, a simplified form of the 

governing equations is applied in general. This set of equations is often 

referred to as the "Thin Layer" N-S equations. In a fashion similar to the 

boundary layer length scale analysis, only viscous terms, which involve 

derivatives along a single coordinate direction (typically normal to the 

body surface), are retained and the other viscous terms are dropped. At 

this point only a single vector of terms remains. 

 
ζ∂

∂
ζ∂

∂
η∂

∂
ξ∂

∂
τ∂

∂ SGFEq ˆ

Re
1ˆˆˆˆ

=+++  (2.13) 

where 

 

( )
( )
( )

( ) ( ) ( ) ( ){ }

3

1 3

3

12 1 2
3

0

ˆ

0.5 V 1

x

y

z

Au C
Av CS J
Aw C

A Pr a BC

µ
ζ

µ
ζ

µ
ζ

µ
ζ ζ

µ ζ
µ ζ
µ ζ

µ κ γ

−

−−

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥+= ⎢ ⎥+⎢ ⎥
⎢ ⎥⎡ ⎤+ − +⎢ ⎥⎣ ⎦⎣ ⎦

 (2.14) 
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with 

2 2 2 2 2 2 2

2

               V  

1             

x y z

x y z

x y z

A u v w

B u v w
RM

C u v wζ ζ ζ

ζ ζ ζ

ζ ζ ζ κ
γ

ζ ζ ζ
∞

= + + = + +

= + + =

= + +

 

With this form of equations, the cross-derivatives in the viscous 

terms have been eliminated. The equations are now in a form, which is 

amenable to solution by direct implicit numerical techniques such as the 

Beam and Warming algorithm.  
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CHAPTER 3 

SOLUTION ALGORITHM 

The numerical scheme used for the solution of the Thin Layer N-S 

equations is generally based on a fully implicit, approximately factored, 

finite difference algorithm in delta form [82]. Implicit methods with the 

delta form are widely used for solving steady state problems since the 

steady state solutions are indifferent to the left-hand side operators. 

The solution of the three-dimensional equations is implemented by 

an approximate factorization that allows the system of equations to be 

solved in three coupled one-dimensional steps. The most commonly used 

method is the Beam and Warming one [83]. The LU-ADI factorization 

[84]is one of those schemes that simplify inversion works for the left-hand 

side operators of the Beam and Warming's. Each ADI operator is 

decomposed to the product of the lower and upper bi-diagonal matrices by 

using the flux vector splitting technique [84].  

To maintain the stability, the diagonally dominant LU 

factorization is adopted. The explicit part is left to be the same as the 

Beam and Warming's where central differencing is used. . 

As indicated in Equation (2.13) , this solution technique involves 

solving the time-dependent N-S equations. The procedure is started by 

assuming a uniform, free-stream solution for all grid points in the 

computational domain. The calculation then marches in time until a 

steady state solution is obtained subject to the imposed boundary 

conditions. 

Beam and Warming method applied to Equation (2.13) leads to the 

following approximate factorization form, 
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( ) ( )
( ) ( )

( )

1 1

1 1 1

1 1 2 2 2

ˆ ˆ

ˆ ˆ ˆˆRe

ˆ ˆˆ ˆ Re ( ) ( ) ( )

n n
i i

n n n n
i

n n n n n
e

I h A J J I h B J J

I h C h M J J Q Q

h E F G S J JQ

ξ ξ ξ η η η

ζ ζ ζ ζ

ξ η ζ ζ ξ ξ η η ζ ζ

δ δ

δ δ

δ δ δ δ

− −

− − +

− −

+ −∈ ∇ ∆ × + −∈ ∇ ∆ ×

+ − −∈ ∇ ∆ × −

⎡ ⎤= − + + − −∈ ∇ ∆ + ∇ ∆ + ∇ ∆⎣ ⎦

 

  (3.1) 

where h t= ∆ , δ  is the central finite difference operator, and ∆and 

∇ are forward and backward difference operators, respectively. 

 For the convective terms in the right hand side, fourth order 

differencing is used. Maintenance of the freestream is achieved by 

subtracting the freestream fluxes from the governing equations. 

For the ξ  direction, the Beam and Warming's ADI operator can be 

written in the diagonal form as follows, 

 1 2 1 2 1ˆ ˆ
i A iI h A J J T I h D J J Tξ ξ ξ ξ ξ ξδ δ δ δ− − −⎡ ⎤+ + ∈ = + + ∈⎣ ⎦  (3.2) 

 where 
1ˆ ˆ

AA T D Tξ ξ
−=   . 

The flux vector splitting technique is used to decompose the central 

differencing to two one sided differencing. 

 1ˆ
A AA T I D D Tξ ξ ξ ξ
+ − −⎡ ⎤= +∇ + ∆⎣ ⎦  (3.3) 

with 

 ( ) JJDDD iAA
h

A ∈±±= −± 1
2

ˆˆ  (3.4) 

where J −1 is taken to be the Jacobian at the central point 

corresponding to Equation (3.2). Equation (3.3) can be rewritten as, 

 [ ] 1ˆ
A A AA T L M N Tξ ξ

−= + +  (3.5) 

where for three point upwinding, 
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L D DA A Aj j
= − ++ +

− −
8
6

1
61 2

, 

( )jj AAA DDIM −+ −+= 6
7 , 

N D DA A Aj j
= −− −

+ +
8
6

1
61 2

, 

The diagonally dominant factorization used here can be described 

as, 

 ( ) ( ) ( )1 20A A A A A A A AL M N L M M M N h−+ + = + + +  (3.6) 

since ( )0 1AM =  and LA, N hA = 0( ).  

Thus, the LU factorization for an ADI operator can be obtained as 

 JJAhI i
21ˆ
ξξ δδ ∈++ − ( ) ( ) 11 −− ++= ξξ TNMMMLT AAAAA  (3.7) 

By this, the block tri-diagonal system is decomposed to the product 

of the lower and upper scalar bi-diagonal ones, L MA A+  and 

( )AAA NMM +−1 . 

In order to maintain the stability of the thin layer viscous terms, 

the splitted Jacobian matrices C± are modified as follows, 

 ( ) 1ˆˆ −±± ±= ζζ ν TIDTC Cv  (3.8) 

where 

 ν µ ρ ζζ= 2 2r Re ∆  (3.9) 

At the end, the Beam and Warming Scheme can be described as follows 

by using the similar procedure for the other operators, 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1 ˆ
A A A A A B B B B B

n
C C C C C

T L M M M N T T L M M M N

T T L M M M N T U RHS

ξ ξ η

η ζ ζ

− − −

− − −

× + × × + × × + × × + ×

× + × × + × ×∆ =
 

of (3.1). 
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As far as accuracy is concerned, the basic algorithm is first order 

accurate in time and second order accurate in space. Convergence, 

stability and smoothness of the solution depend on the implicit and 

explicit smoothing factors, ∈i  and ∈e  and Courant-Friedrich-Lewy (CFL) 

number. Physically, the CFL number indicates the relation between one 

spatial step-size ∆x  movement in one time step ∆t . Numerically, CFL 

number is defined as: 

 ( )ζηξ
σ

∆∆∆
⋅∆

=
,,min

maxt
CFL  (3.10) 

Here σmax is the maximum eigenvalue. Starting from the definition 

of speed of sound, σmax is defined as follows 

 ( )CBA σσσσ ,,maxmax =  (3.11)  

where  

( )
2 2 22 1 2

p e u v wc γ γ γρ ρ
⎛ ⎞+ += = − −⎜ ⎟
⎝ ⎠

 and  

222

222

222

zyxC

zyxB

zyxA

cW

cV

cU

ζζζσ

ηηησ

ξξξσ

+++=

+++=

+++=

 

U, V and W were defined in Equation (2.10). 

 

In order to simulate turbulence effects, the viscous coefficient is 

computed as the sum of laminar viscosity and turbulence viscosity. The 

turbulent eddy viscosity is then calculated by using the two-layer 

algebraic turbulence model proposed by Baldwin and Lomax. 
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CHAPTER 4 

HYPERBOLIC GRID GENERATION WITH UPWIND 

DIFFERENCING 

Hyperbolic grid generation provides efficiency, orthogonality and 

superior control of the grid spacing. A conventional hyperbolic grid 

generation method employs a central difference scheme and second- and 

fourth-order dissipation terms are explicitly added for preventing 

oscillation. These dissipation terms include user-specified constants. 

Therefore, the decision of the constants strongly depends on the user's 

experience. When the added dissipation is large, the grid-orthogonality 

will be spoiled. On the contrary, when the dissipation is small the grid 

smoothness will not be achieved and in the worst case, grid-line crossing 

will occur. 

An upwind difference scheme can be applied to the hyperbolic grid 

generation since the system of the hyperbolic partial differential 

equations has real distinct eigenvalues. Tai et al. [70] has applied the 

Roe's flux-difference scheme to the hyperbolic grid generation, and 

demonstrates excellent results employing first-order accurate upwind 

scheme. The upwind scheme does not require the user-specified 

parameters in general. 

4.1. Governing Equations  

The goal is to create a volume or surface grid by propagating grid 

points from a given surface grid along a specified trajectory. The grid 

point propagation is constrained by the equations defining the direction of 

propagation (orthogonality) and the grid point spacing in the marching 
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direction. These constraint equations are found to be hyperbolic, making 

a marching solution possible 

A three dimensional grid point is defined as [ ]Tzyxr ,,≡ . The 

computational coordinate system is defined using the three coordinates ξ, 

η and ζ. The computational indices corresponding to the computational 

coordinates are i, j and k respectively. 

Generalized coordinates ξ(x,y,z), η(x,y,z), ζ(x,y,z) are sought where 

the body surface is chosen to coincide with ζ(x,y,z)=0 and surface 

distributions of ξ=constant and η=constant are user specified [68]. 

The governing equations are derived from orthogonality relations 

between ξ and ζ, between η and ζ, and a cell volume constraint. Actually, 

the constraint equations specify that the grid lines are to propagate from 

the initial grid along a given trajectory and that the grid cell size is to 

grow accordingly to a given function. 

Hence, the mathematical development is based on three 

constraints to allow a marching solution in the ζ direction for the three 

unknowns x, y and z. The first two constraint imposes orthogonality of 

grid lines at the surface as well as the interior domain. The third 

constraint specifies the finite Jacobian, J [69].  

The grid line trajectory in the marching direction is defined by two 

angle (orthogonality) constraints: 

 . 0  r rξ ζ =  (4.1) 

and 

 . 0  r rη ζ =  (4.2) 

The third constraint is actually a specification of cell volume 

according to 

 1( )r r r J Vξ η ζ
−⋅ × = =  (4.3) 
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Alternatively, in an expanded form, we can get the following 

system of equations 

. 0

. 0

( ) ( )

r r x x y y z z
r r x x y y z z

r r r x y z x y z x y z x y z x y z x y z V

ξ ζ ξ ζ ξ ζ ξ ζ

η ζ η ζ η ζ η ζ

ξ η ζ ξ η ζ η ζ ξ ζ ξ η ξ ζ η η ξ ζ ζ η ξ

= + + =

= + + =

⋅ × = + + − + + =

 (4.4) 

Since the constraint equations form a system of nonlinear partial 

differential equations, the system must be linearized about a known state 

0r .in order to facilitate their numerical solution [69].  

We define  

 
0

0

0

x x x
y y y
z z z

= + ∆
= + ∆
= + ∆

 (4.5) 

, or 

 rrr ∆+= 0  (4.6) 

After some manipulations, we get the linearized system in 

conventional form, 

 0 0 0A r B r C r fξ η ζ+ + =  (4.7) 

and the coefficient matrices in the above equation.  
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(4.8)

 

Roe’s upwind scheme will be used to solve the conventional form of 

the hyperbolic equations. By isolating the rζ  term, we can write the 

Equation (4.7) (Notice that  C0-1 exists unless Det(C0) → 0) as 

 
1

0

1 1
0 0 0 0

     

where           

Dr Er r C f

D C A and E C B
ξ η ζ

−

− −

+ + =

= =
 (4.9) 

The above equation is in non-conservative form. After writing this 

equation in conservative form and obtaining the fluxes using Roe’s 

upwind scheme, it is discretized [69] as, 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1
1 12 2 2

11 1 1
1 1 02 2 2

i i ii i i i

j j jj j j j

D I r r D I r

E I r r E I r r C fζ

λ λ λ λ

β β β β

+ −+ + − −

−
+ −+ + − −

− + + − + +

− + + − + + =
 (4.10) 

where   

 ( )11 22 12 21 11 33 13 31 22 33 23 32d d d d d d d d d d d dλ = − − + − + −  

 ( )11 22 12 21 11 33 13 31 22 33 23 32e e e e e e e e e e e eβ = − − + − + −  

λ and β are the eigenvalues of the matrixes D and E respectively 

[70]. Further manipulations results in 
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( ) ( )

( ) ( )

11 1
02 2

11 1
02 2

    ,orr D r E r r r C g

I D E r C g

ζ ξ ζ η ζ η ζ ξ ζη ξ

ξ η η ξ ζη ξ

δ δ ε ε

δ δ ε ε

−

−

∇ + ∇ + ∇ − ∆∇ ∇ − ∆∇ ∇ =

⎡ ⎤+ + − ∆∇ − ∆∇ ∇ =⎣ ⎦
 (4.11) 

This multi dimensional finite difference equation can be further 

simplified by the Approximate Factorization in order to get a numerical 

solution obtained by a series of finite difference equations, which can be 

represented as block tridiagonal formulations [2].  

 ( ) ( ) 11 1
02 2I D I E r C gξ ξ η η ζξ η

δ ε δ ε −⎡ ⎤ ⎡ ⎤+ − ∆∇ + − ∆∇ ∇ =⎣ ⎦ ⎣ ⎦  (4.12) 

Then the above equation can be formulated by three steps resulting 

in an intermediate solution, 1+kT  and the position vector, 1+kr  and can be 

solved by any block tridiagonal solver [68]. Reference state (0) used in 

computation of the next marching step (k+1) is obtained from the 

previous marching location (k). Replacing rζ∇  with the vector 1+kd , we 

can get the following relations. 

First step;   

 1
1 1            sweepk k kE I T C gηδ η−
+ +⎡ ⎤+ =⎣ ⎦  (4.13) 

Second step; 

 1 1                   sweepk kD I d Tξδ ξ+ +⎡ ⎤+ =⎣ ⎦  (4.14) 

Third step;  

 11 ++ += kkk drr  (4.15) 

In order to see the internal structure of the system we can write 

the above equations in an expanded form for each step. 

For the η sweep algorithm at any (i,j,k) location we can write the 

Equation (4.13) as  
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 1
, , , 1, 1 , , 1 , , , 1, 1 , , , , 1

1 1     
2 2i j k i j k i j k i j k i j k i j k i j kE T I T E T C g−

− + + + + +− + + =  (4.16) 

 Note that the unknown vector 1+kT  is underlined. 

For the ξ sweep algorithm, at any (i,j,k) location we can write the 

Equation (4.14) as  

 , , 1, 1 , , 1 , , , 1, 1 , , 1
1 1    
2 2i j k i, j- k i j k i j k i j k i j kD d I d D d T+ + + + +− + + =  (4.17) 

Note that the unknown vector 1+kd  is underlined 

The coefficient matrices A, B and C contain derivatives in ξ, η and 

ζ. The derivatives in ξ and η are obtained by central differencing while 

the derivatives in ζ are obtained from the system of Equation (4.4) as a 

linear combination of ξ- and η-derivatives as follows,  

 
( )

x y z y z
Vy z x z x

Det C
z x y x y

ζ ξ η η ξ

ζ ξ η η ξ

ζ ξ η η ξ

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟

= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 (4.18) 

In addition, for an arbitrary variable φ, central differences and 

backward differences are defined as 

for central differences 

 
)(

2
1

,1,1 jijii,jξδ −+ −= φφφ
 

 
)(

2
1

1,1, −+ −= jijii,jδ φφφη
 

for backward differences 

 , , 1( )i, j i j i jζφ φ φ −∇ = −  

The implicit dissipation terms are described as 
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( ) ( )
( ) ( )

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1
1 12

1
1 12

i, j i, j i, j i, jj j j j

i, j i , j i, j i , ji i i i

η η

ξ ξ

ε φ β φ β β φ β φ

ε φ λ φ λ λ φ λ φ

+ −+ + − −

+ −+ + − −

∆∇ = − + +

∆∇ = − + +
 (4.19) 

 where 

 
1

2

1
2

1

1

j jj

i ii

β β β

λ λ λ

±±

±±

=

=
 

 

4.2. Cell volume specification 

In this method, the cell volumes from one grid point to the next 

grid point for each level is prescribed simultaneously. One simple and 

popular way to specify the cell volumes suggested in reference [69] is 

    ,,,,,, kjikjikji sAV ∆∆=∆  (4.20) 

where    

         : the grid point surface area, ,

         : the marching spacing, ,

Ai j k

si j k

∆

∆
 

The marching distance, ∆si,j,k can be expressed as a function, which 

matches the required criteria for the generated grid. For different 

purposes, different functions can be used to specify the ∆s. In general, it is 

obtained from the exponential function. 

 1
1,, )1( −+=∆ k

kji ss ε  (4.21) 

The values of s1 (initial grid spacing in the marching direction and 

ε (the ratio of successive spacing in the marching direction) are the 

required parameters. 
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4.3. Boundary Conditions 

In general five types of implicit boundary conditions can be 

incorporated in the three-dimensional code at the ξ and η boundaries [2]. 

As explained, the grids on the initial surface are defined in i=1 to imax 

and j=1 to jmax, where imax and jmax are the maximum indices for i and 

j.  

Floating Edge Type of Boundary Condition that is used in the code 

does not allow for the specification of any boundary information such as 

edge shape or grid point distribution. Much as in the case of a constant 

Cartesian plane, an entire ξ and η boundaries can be floated using the 

simple hyperbolic equation 0=ξζr  or 0=ηζr  to update a boundary plane. 

This is essentially a zeroth order extrapolation of ∆r from the adjacent 

interior value.  

4.4. An Example 

As an illustrative example, the grid around Lann Wing [71] is 

shown in Figure 4.1. Notice that Since floating type of boundary condition 

is used, the boundaries splay outward. 
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Figure 4.1 Illustrative example of grid around Lann Wing [71] 
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Figure 4.2 Zoomed view
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CHAPTER 5 

ADAPTED TURBULENCE MODELS 

5.1. Baldwin-Lomax Turbulence Model 

The Baldwin and Lomax turbulence model [72] is an algebraic eddy 

viscosity, zero equation model. The model is based on the mixing length 

hypothesis. The model has been widely used and tested, and remains a 

very popular turbulence model. Several advantages of the model are its 

simplicity in coding and the fact that it does not require the boundary 

layer edge thickness or edge velocity as an input parameter. The Baldwin 

and Lomax model works best in wall-bounded flows with favorable 

pressure gradients.  

The calculation of eddy viscosity is not always straightforward and 

can lead to errors in the turbulence model if not computed correctly. As 

the flow physics become more complicated, as well as the geometry of the 

model being tested, the performance of this turbulence model greatly 

decreases. 

The formulation is straightforward. It uses a two-layer algebraic 

equation to calculate the eddy viscosity term, µt  given by 

  
( )
( )

crossoverinner

crossoverouter

     

     
t

t
t

µ y y
µ

µ y y

≤⎧⎪= ⎨
>⎪⎩

 (5.1) 

where y is the normal distance from the wall and ycrossover  is the 

location along the constant index line where ( )innertµ exceeds  ( )outertµ , 

marching away from the wall. 

For the inner region, µt is calculated as follows 
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 2 2 2
,inner Dk F    tµ yρ= Ω  (5.2) 

where 

 VΩ = ∇×  

 ( )( ) 1 exp / 26DF y y+⎡ ⎤= − −⎢ ⎥⎣ ⎦
 

 w w

w

y
ρ τ
µ

+ =  

 where subscript ‘’w’’ denotes the ‘’wall‘’ quantities.  

 

For the outer region, µt  is calculated as follows. 

 ,t outer cp wake klebKC F Fµ ρ=  (5.3) 

 where  

 2
max max max maxmin ; /wake wk diffF y F C y u F⎡ ⎤= ⎣ ⎦  

 
16

max

1 5.5 kleb
kleb

C yF
y

−
⎡ ⎤⎛ ⎞
⎢ ⎥= + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

 ( )1/ 22 2 2
max min     where diffu V V V u v w= − = + +  

 wk

kleb

K = 0.0168
C = 0.25
C = 0.3

 

Exponential term and Vmin is set to zero except in wakes. The value 

Fmax is the maximum of the function F(y) defined as 

 ( ) DF y y F= Ω  (5.4) 

and ymax is the value where F(ymax) =Fmax   
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5.2. Degani-Schiff  Modification 

 For the flows around bodies, which experience cross flow 

separations, maximum value of F(y) may be over predicted. This 

modification attempts to select the first occurrence of Fmax in a search 

from the wall outwards [73] , since the function F(y) exhibits more than 

one peak in such a flows. For example in the case of separated flows, the 

code must be forced to select the Fmax in the boundary layer otherwise it 

may choose a length scale corresponding to the distance up to the rolling-

up vortices, which can be larger. The symptoms of this type of occurrence 

may be stated as follows,   

• Increase in the outer value of µt  is too much, 

• Details of the flow are distorted or washed out, 

• Primary vortices are smaller, 

• Primary separation is located closer to leeward symmetry plane, 

• Secondary separation and vortices do not appear. 

The code simply search and assigned the value of Fmax until the 

following relation is satisfied 

 max0.9F F<  (5.5) 

5.3. Vorticity Adaptation 

Often the vorticity from secondary sources is intermixed with the 

wall bounded flow, which causes the turbulence model to predict the 

value of "F" maximum incorrectly. This situation occurs with corner 

flows, flows with near wall vortices and with globally swirling flows. The 

Baldwin and Lomax model has been modified to calculate the "F" function 

based on directionally correct vorticity vectors that are vorticity vectors 

that are parallel to the local wall and perpendicular to the local velocity 

vector. This use of a reduced vorticity vector has been shown to produce 

dramatically improved prediction accuracy in some applications and has 
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not been known to reduce accuracy in any application [74]. Reduced 

vorticity is determined by the Equation  (5.6). 

 R

V

V

ω
ω

×
=  (5.6) 

5.4. Algebraic Model for Vortical Flows 

The turbulent viscosity values generated by the Baldwin-Lomax 

model are extremely sensitive to the vorticity profile above the wall. The 

new algorithm was added in order to compute the correct eddy viscosity 

in the vortex region, e.g. the side wind vortex. It determines the Fmax 

based on the vortex core as illustrated in Figure 5.1.  

 
 

Figure 5.1 Illustrative example of side wind vortex with pressure contours 
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The code first seeks the minimum pressure point, which is actually 

the core of the vortex. Then it assigns this point as the starting point and 

search for Fmax through the search area index by index. 

 

5.5. Algebraic Wake Model 

 In order to use the simple algebraic models on block-structured 

grids, the problem arises how to calculate the turbulent stresses in those 

blocks that do not have a boundary layer- type flow, so that the model 

was corrected to catch up the wake region. A typical example is the wake 

of blunt bodies, because the algebraic models cannot calculate the 

characteristic length and the velocity scale normal to the wall. Therefore, 

empirical distribution laws were introduced to describe the turbulence 

transport into these blocks [75]. Because the production of turbulent 

energy in local equilibrium flows correlates with vorticity, this was taken 

as a weighted function to distribute eddy-viscosity in that area, according 

to  

 '
vt t

v

α
ω

µ µ
ω

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (5.7) 

with 
vt

µ  the maximum eddy-viscosity along the upstream block face 

and  vω  the local vorticity at that point. The exponent α  is determined 

by numerical experiments, as 0.2α =  [75]. 

In addition, the eddy-viscosity is also smoothed by an exponential 

damping factor in order to ensure steadiness on the block faces. 

 ( )' '

max

exp j
t t t t j

x
x

µ µ µ µ
∆⎛ ⎞

= − − −⎜ ⎟∆⎝ ⎠
 (5.8) 

where  
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t jµ ; the eddy-viscosity on the upstream block face at the same j-station as '
tµ  

jx∆ ; the normal distance to the location of '
tµ   

maxx∆  ; the length of the block in streamwise direction 
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CHAPTER 6 

TEST CASES AND RESULTS 

In this chapter, test cases will be covered in two main sections, 

namely two dimensional test cases and three dimensional test cases 

respectively. Results of each test case are presented in the corresponding 

section. 

6.1. Two Dimensional Test Cases 

Two dimensional test cases are chosen to validate the Navier-

Stokes solver and to investigate the essential grid parameters for the 

solution of three dimensional test cases.  

  

6.1.1. Laminar Flat Plate 

 A grid convergence study of the PML3D code, for the solution of 

laminar flow over a flat plate at zero incidence angle, is performed. 

Comparisons are made between the computational results and the 

analytical solution, which is the well known “The classical Blasius 

similarity solution”, that provides data for comparison. Various textbooks 

discuss this solution [77],[81]. The Reynolds number based on the free 

stream velocity at distance from the plate leading edge, ranged from zero 

to 2x106. The Reynolds number, ReL is equal to 1x106 at x/L=1.0. Three 

different grids are produced and the effects of the grid on the accuracy of 

the solution are observed. Number of iterations needed for a steady 

converged solution is also investigated. For the numerical solution, The 

Mach number of the flow is selected as Mach 0.4. On the other hand is 
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known that the Blasius solution is based on incompressible flow 

assumption. When comparing the numerical and analytical results, is 

assumed that compressibility effects are negligible for a boundary layer 

flow at Mach=0.4. A laminar boundary layer develops on the plate and 

thickens along the plate. The leading edge of flat plate is located at 

coordinates (x/c=0, y/c=0).  
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Figure 6.1 The applied grid geometries  
 

6.1.1.1. Computational Grid and Initial Conditions 

Single-block, two-dimensional, structured grids are generated for 

the flow domain. There different grid configurations are used. The grid 

geometries with actual dimensions (x/y aspect ratio = 1.0) are shown in 

Figure 6.1 The grid parameters are shown in Table 6.1 
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Table 6.1 The grids used in the Computations 
 

Grid Initial Grid 
Spacing

Density Maximum Marching  
Distance

A 6.25 E-5 60 x 80 0.545
B 1.0 E-5 160 x 60 0.008
C 1.0 E-5 160 x 130 0.03  

In the grid configuration A, total of 4800 points were used as 

shown in Figure 6.2. In the streamwise direction, 39 grid points were 

used along the flat plate with the leading edge stretching. In the normal 

direction, two different distribution were used; first 40 points were 

distributed uniformly between plate surface and y/c = 0.0025 and then 

stretched by tangent hyperbolic method. Initial grid spacing was set to  

∆y/c = 6.25*E-5. 
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Figure 6.2 The grid configuration A 

In the grid configuration B, total of 9600 points were used as 

shown in Figure 6.3. In the streamwise direction, 139 grid points were 

used along the flat plate with leading edge stretching. In the normal 
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direction, two different distribution were used again; first 40 points were 

distributed by tangent hyperbolic stretching between plate surface and 

y/c = 0.0025 and then stretched uniformly. Initial grid spacing was 

preselected as ∆y/c = 1.0*E-5. 
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Figure 6.3. Grid configuration B 

In the grid configuration C, total of 20800 points were used as 

shown in Figure 6.4. In the streamwise direction, 139 grid points were 

used again along the flat plate with leading edge stretching. In the 

normal direction, first 65 points were distributed by tangent hyperbolic 

stretching between plate surface and y/c = 0.0025 and then stretched in 

the same manner. Initial grid spacing was preselected as ∆y/c = 1.0*E-5. 
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Figure 6.4. Grid configuration C 

6.1.1.2. Boundary Conditions 

At the flat plate surface, the no-slip condition applies. The inflow 

boundary of the computational domain is a subsonic inflow boundary and 

is placed upstream of the leading edge at x/c = - 1 so as to capture the 

leading edge flow. The outflow boundary is placed at the end of the plate 

at x/c = 2.0. The farfield flow beyond the boundary layer should remain 

fairly uniform at freestream conditions. The farfield boundary is placed 

according to the applied grid configuration. 

Table 6.2 Computational details 
 

Grid CPU time 
(minute) 

Memory 
Requirement 

(Mb)

Number of 
Points

Number of 
Iterations

A 91 7388 4800 40000
B 190 9416 9600 40000
C 1380 16000 20800 100000  
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6.1.1.3. Computational Studies 

The computation starts from the freestream solution and marches 

in time using local time-stepping until the L2 residual has leveled off. A 

constant CFL number of 30 is used. The steady-state flow was computed 

for each grid.  

For the grid configurations A and B, 40000 iteration steps were 

required for a steady-state solution. However, the case belonging to the 

grid configuration C converged fully at 100000 iterations. Computations 

are performed on P4 1500 MHz single processor workstation. The 

computational details are given in Table 6.2.  

 

6.1.1.4. Convergence History 

In Figure 6.5, the convergence history for all cases is shown in 

terms of L2 Residual. For the first two cases, although the solution was 

converged after the 40000 iteration steps, L2 norm continues to drop. . 

From that figure, it can be seen that, after 70000 iterations, the solution 

with Grid A has converged 18 orders of magnitude, the solution with Grid 

B has converged 6.5 orders of magnitude, and the solution with the Grid 

C after 100000 iterations has converged 4.5 orders of magnitude. In 

normal conditions, three orders of magnitude convergence is accepted to 

be sufficient for a converged solution.  



 53

 

Iterations

L 2

0 20000 40000 60000 80000 100000

10-25

10-20

10-15

10-10

GRID-A
GRID-B
GRID-C

 
Figure 6.5 Convergence history, L2 Norm of Residue 

 
 
 
 

Table 6.3 Blasius solution [77]. 
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6.1.1.5. Comparisons of the results 

The computed flow properties such as pressure coefficient, skin 

friction coefficient, boundary layer thickness, momentum thickness, 

shape factor etc. are compared to the analytic results of Blasius [77] 

shown in Table 6.3 to establish the validity of the computed results.  

The difference in the flow domain especially the boundary layer 

explicitly shows the validity and the accuracy of the applied grids. These 

are shown in Figure 6.6, Figure 6.7 and Figure 6.8 for each case with an 

exaggerated view such that the dependency between the axes is 

temporarily removed. Notice that the number of points that were placed 

on the flat plate surface in the normal direction at various locations lying 

on the boundary layer. For the Grid A and B, picture seems to be the 

same but the results shows that the number of points in the streamwise 

direction has an important role about the accuracy of the problem. 

Moreover, they have too small number of points for the first quarter of 

the flat plate. Hence, the Grid C seems to be capable of capturing the flow 

properties through the boundary layer. 
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Figure 6.6 The boundary layer for grid A 
 
 
 

 
 

Figure 6.7 Boundary layer for grid B 
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Figure 6.8 Boundary layer for grid C 

 

The following figures show the comparison of the computational 

and analytic results of the selected variables. The computational results 

are taken from the fully converged solutions of each case.  

 

Figure 6.9, Figure 6.10 and Figure 6.11 shows the iterative 

convergence of the parameter Cf  for each grid respectively. The results in 

these figures have belonging to the conditions at 70000 iterations for A 

and B type Grids and 100000 iterations for C type Grids.  
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Figure 6.9 Iterative convergence of the grid-A solution 
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Figure 6.10 Iterative convergence of the grid-B solution 
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Figure 6.11 Iterative convergence of the grid-C solution 
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Figure 6.12 Pressure coefficient comparison 
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Figure 6.12 shows the variation of the pressure coefficient on the 

flat plate. As already known, the Blasius solution assumes that Cp is zero 

at the leading edge of the flat plate. In reality, however, the pressure 

becomes negative near the leading edge because the leading edge is the 

stagnation point and afterwards, the flow is inclined and speeds up in 

downstream region by the effect of the boundary layer displacement 

thickness. Hence, Navier stokes solution of the boundary layer preserves 

the actual sate of the flow. As seen on that figure, A- type Grid gives 

inappropriate results due to the rough density of grid in the streamwise 

direction in comparison with the others.  

In Figure 6.13 , the skin friction coefficient, which is the one of the 

most important flow parameters from the engineering point of view, is 

displayed. It is seen that the Grid C is the most proper grid configuration, 

which has more grid density near the surface. 
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Figure 6.13 Skin friction coefficient comparison 

 



 60

 

 

 

 Results of the boundary layer thickness parameters are shown in 

Figure 6.14, Figure 6.15, and Figure 6.16. The computed boundary layer 

thickness δ is defined as the distance from the plate where max0.99u u= × , 

where umax is the value at the first maximum in the u profile. The 

momentum and displacement thicknesses were computed from the 

standard 2-D planar definitions.  

 *

0

1
my u dy

u
δ

∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫   (6.1) 

 
0

1
my u u dy

u u
ρθ
ρ∞ ∞ ∞

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫  (6.2) 

where ym is the distance from the plate to the first maximum in u. 

Simpson's rule was used for the numerical integration. The shape factor 

is simply defined as H = δ*/ θ.  

In order to detect the thickness parameters correctly, the grid 

density must be sufficient in either directions, streamwise and normal, 

especially in the boundary layer region. Coarse grids around the 

boundary layer edge may lead to weak prediction of boundary layer 

thickness. The grid C, which has more grid points in both direction, 

correctly detects the parameters involved. The boundary layer shape 

parameter, H, is presented in Figure 6.17. 
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Figure 6.14 Boundary layer thickness comparison 
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Figure 6.15 Displacement thickness comparison 
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Figure 6.16 Momentum thickness comparison 
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Figure 6.17 Shape parameter comparison 
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In this study, the grid effects were investigated on the Navier-

Stokes solution of the boundary layer. It was seen that the solution was 

effected by the following parameters; the grid density of the boundary 

layer in the normal direction to the flow, the minimum grid spacing and 

the grid density in the streamwise direction. By using less dense grid in 

the solution, it is seen that L2 residual is decreasing steeply but 

converging to the less accurate results. On the other hand, in the case of 

using more dense grid in appropriate regions, L2 residual is decreasing 

slowly but converging to the more accurate results. In addition, it is 

understood that the flow solver, which is specifically coded for 

compressible flows, converges slowly for low speed viscous flows but can 

give accurate results when a proper grid is used. 
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6.1.2. Turbulent Flat Plate  

Turbulent flow over a flat plate at zero incidence was investigated. 

Compressibility effects are neglected during study so that the results are 

compared with the incompressible experimental data. The Reynolds 

number, ReL is equal to 1x107. The Reynolds number based on the free 

stream velocity at distance from the plate leading edge, ranged from zero 

to 2x107 . 

6.1.2.1. Computational Grid and Initial Conditions 

The computational mesh was generated by using hyperbolic grid 

generation code [76]. Grid points in the streamwise direction were packed 

near the leading edge with a total number of points 160 and 140 of them 

are distributed along the flat plate. 

At the normal direction, 96 points were used with 71 points in the 

boundary layer. The boundary layer thickness was estimated as follows 

[77]. 

 1/5

0.38
Rex

xδ =  (6.3) 

Marching distance was arranged as to follow the boundary layer 

thickness along the flat plate using a Roberts’s transformation [78]. With 

this transformation, for a line of length D, points are packed near the 

beginning of the line.  

The distance between solid wall and the first grid point was 

prescribed as follows. At least one grid point was placed where y+ was 

equal to 1.0. Pre-studies showed that for a mesh that follows the 

boundary layer, the right place of y+ analysis was the trailing edge of the 

plate, or the exit plane. If at least one grid point was placed where y+ was 

equal to 1.0 at that region, then it was guaranteed that there is more grid 

point at the leading edge region where y+ was equal to 1.0.  
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y+ analysis is conducted by using the following equation, 

 
2

f
L

cyy Re
c

+ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (6.4)  

 where cf is the skin friction coefficient and ReL is the Reynolds 

number. 

The value of cf  was estimated through the Schoenherr formula [77] 

as follows: 

 1 4.15log( ) 1.7x f
f

Re c
c

= +  (6.5)  

For our case, Rex was 2x107 at exit section of the plate. Then 

according to the above formula, cf was found to be 0.002264. By Equation 

(6.5), the minimum value of y/c was then found to be 2.972x10-6. For the 

outer region expect from boundary layer, the points were stretched 

geometrically until the upper computational boundary was at 

approximately, y96 = 7δ. As a result, the value of y+ at the first grid point 

was estimated as ranging from about 0.2 near the leading edge of the 

plate, to about 1.0 at the exit plane.  

The resulting grid, scaled to fit is shown in Figure 6.18. The edge of 

the boundary layer, as predicted by equation 2, is shown as a thick/black 

line. Figure 6.19 shows the grid with no scaling. In addition, zoomed view 

at the beginning of the boundary layer slope is shown in Figure 6.20.  
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Figure 6.18. Grid geometry 
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Figure 6.19. Grid geometry in actual dimensions 
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Figure 6.20. Zoomed view of the grid about x/c=0.0 
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6.1.2.2. Boundary Conditions 

Five boundary segments were used: (1) the upstream inflow 

boundary; (2) the downstream outflow boundary; (3) the symmetry plane 

on the lower boundary upstream of the plate; (4) the flat plate itself; and 

(5) the upper free stream boundary. The boundary conditions used are 

summarized in the following table. 

Table 6.4. Boundary conditions 
 

Boundary j k condition
Upstream Inflow 1 2-95 Fixed conditions
Downstream Outflow 160 2-95 Extrapolation
Symmetry Plane 1-19 1 Symmetry
Flat Plate 20-160 1 No-slip
Upper Free Stream 1-160 96 Extrapolation  

6.1.2.3. Computational History 

The computation starts from the freestream solution and marches 

in time using local time-stepping until the L2 residual has leveled off. A 

constant CFL number 20 is used. Computations are performed on P4 2.66 

GHz single processor workstation. The computational details are given in  

Table 6.5.  

Table 6.5 Computational details 
 

CPU time 
(minute/10000 

iterations)

Memory 
Requirement 

(MB)

Number 
of points

Number of 
iterations

82 16300 160x96 125000   
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6.1.2.4. Convergence History 

The convergence history of the L2 Norm of the residual is shown in 

Figure 6.21. 
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Figure 6.21. Convergence history 
 

 

6.1.2.5. Computed Results 

i. Velocity profiles 

The computed velocity profiles are compared with the experimental 

data of Wieghardt [78] in Figure 6.22, Figure 6.23 and Figure 6.24. The 

computational results are shown at stations, x/c=0.1,1.0,2.0 which 

correspond to Rex=0.1x107,1.0x107,2.0x107 respectively. The experimental 

data shown in figures are at the experimental stations closest to these 

computational locations. Actual locations of the experimental data in 

those figures are Rex= 0.106x107, 1.027x107. 
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Figure 6.22. Velocity profile at x/c = 0.1 
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Figure 6.23. Velocity profile at x/c = 1.0 
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Figure 6.24. Velocity profile at x/c = 2.0 

 

ii. Thickness Parameters 

In Figure 6.25 through Figure 6.28, computed values of boundary 

layer thickness δ, momentum thickness θ, displacement thickness δ* , 

and shape factor H, respectively are compared with the correlation values 

based on simple power-law analyses [77], [81].  
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Figure 6.25. Boundary layer thickness 
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Figure 6.26. Momentum thickness 
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Figure 6.27. Displacement thickness 
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Figure 6.28. Shape factor 
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iii. Skin Friction 

The computed skin friction coefficient is compared with values from 

two different correlation formulas [77], [81] in Figure 6.29.  
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Figure 6.29. Skin friction coefficient
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6.2. Three Dimensional Flat Plate  

6.2.1. Problem Description 

For the present computational study, an aspect ratio 1.0 flat plate 

with small thickness and sharp edges is considered as the test model. The 

computational test matrix given in Table 6.6 is constructed according to 

the experiment data [39]. The cases P1-P4 are intended for pressure 

comparisons and the cases S1, S2 are intended for surface streamline 

comparisons with experiments.  

 Table 6.6 Computational test matrix 

CASE M∞  Re∞  α (deg) 

P1 0.54 3.0*105 7.5 

P2 0.55 3.0*105 13.5 

P3 0.87 3.0*105 7.5 

P4 0.85 3.0*105 13.5 

S1 0.42 1.65*105 5.0 

S2 0.42 1.65*105 15.0 
 

 

 

The flow domain is composed of two zones namely Block-1 and 

Block-2 as seen on Figure 6.31. According to the researchers in high angle 

of attack aerodynamics [2], [3] , vortex asymmetry begins when the angle 

of attack is about twice the nose angle. As a rough estimate, it is may be 
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guaranteed that vortex asymmetry does not exist until the angle of attack 

is about 23 degree. In our test cases, the nose angle  is 15 degree and the 

angle of attack varies from 5o to 15o. Moreover, the experiments [39] 

about our test cases report that the flow is symmetric. Hence, we can 

consider that the flow field is symmetric with respect to the xz plane, and 

then apply the computation over only the half of the flat plate.  

 

 
 

Figure 6.30 Computational flow domain 
 

The first zone is above the flat plate and extends in the range of 

-3.0 /  4.0x c≤ ≤ , 0.0 /  3.5y c≤ ≤  and 0.0 /  3.0z c≤ ≤ . The second zone is 

below the flat plate and extends in the range of -3.0 /  4.0x c≤ ≤ , 

0.0 /  3.5y c≤ ≤  and 3.0 /  0.0z c− ≤ ≤ . The flat plate lies in the 0.0z =  plane 
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and it extends in the range of 0.0 /  1.0x c≤ ≤ and 0.0 /  0.5y c≤ ≤ . The flat 

plate has a three dimensional geometry, which has four sharp edges as 

shown in Figure 6.31. 

 
 

 
 

Figure 6.31 Computational flat plate geometry  
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Figure 6.32 Model used for compressible oil flow tests [10]. 
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6.2.2. Experimental Data For Comparison 

The test cases are selected from the experimental data acquired at the 

von Karman Institute (VKI) [38], [39]. Test models are low aspect ratio, 

rectangular flat plates with small thickness and sharp edges. Model aspect 

ratios (AR) are 0.5, 0.67, 1.0 and 1.5. For AR=1.0, the low speed model 

dimensions are 100mm*100mm*5mm. This model was used for low speed oil 

flow visualization tests. The high-speed force model dimensions are 

80mm*80mm*2mm. The high-speed pressure model dimensions are 

100m*100mm. Front and side edges of the models are sharp. The top surfaces 

of the models are not deflected at the edges and connected to the lower 

surfaces with 15° angle. In Figure 6.32, the top and side view drawings of the 

model used for high-speed oil flow measurements are shown. 

The experiments include surface oil flow measurements, force and 

moment measurements and surface pressure distribution measurements. 

Low speed tests were carried out in the VKI low speed, open circuit wind 

tunnel of the suction type, designated L-2A. This tunnel has a 0.3 m 

diameter circular test section. Maximum tunnel velocity is 40 m/sec and 

the Reynolds number based on the model chord length is about 2*105. At 

low speeds, oil flow visualizations were performed at different angles of 

attack varying from 0° to 40°. High-speed subsonic tests were carried out 

in the VKI S-1 wind tunnel. This is a closed circuit transonic / supersonic 

wind tunnel with 0.4 m * 0.4 m test section. Subsonic tests are performed 

in the transonic test section with slotted horizontal walls. High-speed 

tests include surface pressure distribution measurements, force and 

moment measurements and a few oil flow measurements. Mach number 

range was 0.4-0.9. Reynolds numbers varied between 1.63x105 and 

2.62x105. 
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6.2.3. Computational Grid 
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Figure 6.33 Overall view of the grid blocks, Block-1 and Block-2 

Two-block, three-dimensional, structured grids shown in Figure 

6.33 were generated for the computational flow domain mentioned above. 

In order to speed up the convergence of the solutions, two different grid 

configurations are adapted namely, the coarse and the fine grids. The 

coarse grid is obtained by halving the number of grid points of the fine 

grid in each coordinate direction. A three dimensional hyperbolic grid 

generation code [76] is employed to generate the grids. The grid 

parameters are shown in Table 6.7. 
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Table 6.7 The grids used in the computations 
 

Initial Grid 
Spacing Density Total Number 

of Points
Maximum Marching  

Distance

Fine Grid 1.0 E-4 100 x 50 x 70 700000 3.0

Coarse Grid 1.0 E-4 51 x 26 x 35 92820 3.0
 

 

 

In ζ direction, four different stretching ratios are used in four 

different regions to obtain desired grid densities. These regions are 

0.0≤ z/c≤0.1, 0.1≤ z/c≤0.5, 0.5≤ z/c≤1.0, and z/c>3.0.  

For the coarse grid case, the grid dimensions for each block are 

JMAX*KMAX*LMAX = 51*26*35 points in , ,ξ η ζ  directions, 

respectively. On the flat plate surface, there are 31 points in ξ  direction 

and 18 points in η  direction. The first grid distance in ζ direction from 

the flat plate surface is /z c∆ = 0.0001. The total number of points up to 

z/c = 1.0 is 30. Thus in two blocks total of 92820 grid points were 

produced. 

For the fine grid case however, the grid dimensions for each block 

are JMAX*KMAX*LMAX = 100*50*70 points in , ,ξ η ζ  directions, 

respectively. On the flat plate surface, there are 61 points in ξ  direction 

and 35 points in η  direction. The first grid distance in ζ direction from 

the flat plate surface is the same. The total number of points up to z/c = 

1.0 is 60. Thus in two blocks total of 700,000 grid points were produced. 

In Figure 6.34, the grid details around the flat plate at the 

symmetry plane (y/c=0.0) are shown. In Figure 6.36, the top view of the 

grid at z/c=0.0 plane is shown. Notice that those figures are belonging to 

the fine grid case. 
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Figure 6.34 Symmetry plane (y/c=0) view of the grid around the flat plate. 
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Figure 6.35 Zoomed view of Symmetry plane (y/c=0) of the fine grid around the 
flat plate. 
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Figure 6.36 Top view of the grid at z/c=0.0 plane. 

 
 

6.2.4. Boundary Conditions 

Five different types of boundary conditions are used in each block as 

shown in Figure 6.37: (1) the upstream inflow boundaries; (2) the downstream 

outflow boundaries; (3) the symmetry boundary at the symmetry plane 

(y/c=0); (4) the flat plate itself and (5) the matched surface boundary.  

The upstream inflow boundary condition or inflow bc is fixed by the 

freestream values. The downstream outflow boundary conditions, or 

extrapolation bc are just extrapolated from the interior values. The no-

slip condition, or surface bc is applied on the flat plate surface. In the 

matched surface boundary, the values are interchanged instantly 

between two blocks by means of parallel processing. The boundary 

conditions used in Fine Grid solution of each block are summarized in the 

following table. 
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Figure 6.37 Boundary conditions 
 
 

Table 6.8. Boundary conditions  
 

Boundary type J K L Applied Condition
Upstream Inflow 1 1-50 1-70 Fixed conditions
Downstream Outflow 100 1-50 1-70 Extrapolation
Downstream Outflow 2-100 50 1-70 Extrapolation
Downstream Outflow 2-100 2-50 70 Extrapolation
Symmetry Plane 2-100 1 1-70 Symmetry
Matched Surface 2-100 1-50 1 Matched Surface
Flat Plate Surface 20-80 1-35 1 No-slip
Upstream Inflow 1 1-50 1-70 Fixed conditions
Upstream Inflow 1-100 1-50 70 Fixed conditions
Downstream Outflow 2-100 1 1-69 Extrapolation
Downstream Outflow 100 2-50 1-69 Extrapolation
Symmetry Plane 2-100 50 1-69 Symmetry
Matched Surface 2-100 1-50 1 Matched Surface
Flat Plate Surface 20-80 16-50 1 No-slip

B
lo

ck
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B
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6.2.5. Solution Procedure 

As mentioned above, two different, the coarse and the fine grid 

configurations are utilized in order to get fast convergence of the solution.  

All cases (P1, P2, P3, P4, S1 and S2) were solved over the coarse 

grid by using a local time step (i.e., varying in space) with a CFL number 

of 20. For each Case, coarse grid solution procedures decided by the 

convergence criteria of the flow variables are as follows; 

P1 Case was obtained for 40000 iterations using the Baldwin-

Lomax turbulence model applied over the region: x/c>0.30 of the flat 

plate. 

P2 Case was obtained for 41000 iterations using the Baldwin-

Lomax turbulence model applied over the complete flat plate surface.  

P3 Case was obtained by applying the Baldwin-Lomax turbulence 

model;  

→ for the first 35000 iterations over the region; x/c>0.30  

→ for the next 5000 iterations over the complete flat plate surface.  

P4 Case was obtained for 66000 iterations using the Baldwin-

Lomax turbulence model applied over the complete flat plate surface.  

S1 Case was obtained for 45000 iterations using the Baldwin-

Lomax turbulence model applied over the region: x/c>0.30 of the flat 

plate. 

S2 Case was obtained for 40000 iterations using the Baldwin-

Lomax turbulence model applied over the complete flat plate surface. 

The fine grid solutions were initialized by the interpolation of those 

coarse grid results. P1 and S1 Cases were obtained by applying the 

Baldwin-Lomax turbulence model over the region; x/c>0.3 of the flat 

plate surface and the rest were all over of the complete flat plate surface. 

The iteration summary is given in Table 6.9 
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Table 6.9 Iteration summary 
 

P1 P2 P3 P4 S1 S2
 Course Grid iterations 40000 41000 40000 66000 44750 40000

Fine Grid iterations 29300 21500 20750 74000 21800 82500
total 69300 62500 60750 140000 66550 122500  

In the fine grid solutions, however, the time step was shifted to the 

global time step (i.e., constant in space) since the results showed that 

unsteady phenomena’s were taking place such as oscillating of Normal 

Force and Pitching Moment, etc. The flow code computes the 

corresponding time step at every point in the grid, finds the minimum of 

those time steps, and resets the time step at every point to that minimum 

value. This allows the time step to be set for an unsteady flow problem by 

specifying a CFL number. Hence, approximately 20000-30000 more 

iterations for all cases were required for the convergence of the flow 

variables. This was achieved by tracing back the behavior of the flow 

variables until reaching a periodic oscillation for each case study. 20 

samples of each solution over one cycle were saved in order to determine 

the time-mean average of each flow variable and visualize the flow 

oscillations and instabilities. 

 

6.2.6. Computational Details 

Computations are performed on Pentium IV 1500 MHz single 

processor workstation, which has 512 MB of memory. For coarse grid, a 

two-block parallel solution with 2*46410 grid points requires 2*16 MB of 

RAM. Approximately 240 minutes of CPU-time is needed per 10000 

iterations. On the other hand, for fine grid, a two-block parallel solution 

with 2*350000 grid points requires 2*82 MB of RAM and approximately 

1600 minutes of CPU-time is needed per 10000 iterations. The 

computational details are given in Table 6.10. 



 85

Table 6.10 Computational details 
 

 CPU time                  
(minute/10000 iterations) 

Memory 
Requirement (Mb)

Number of 
Points

Course Grid 240 32000 92820

Fine Grid 1600 164000 700000  
 

6.2.7. Results and Comparison 

6.2.7.1. Convergence Histories 

Convergence histories are computed by means of L2 Norm of Residue 

and the Force-Moment coefficients. In Figure 6.38, the convergence Histories 

of the L2 norm of the residual is shown for each case including the solutions of 

the coarse and fine grid for each block. Notice that number of iterations for 

the convergence of S2 is highly greater than the other case’s since it was the 

first case worked on to decide on the applied time step ;  local or global. As 

seen on that figure, it was solved by using the local time step until 93000 

iterations then continued by the global time step. The other cases were solved 

by using the global time step in the fine grid part of their solutions. Notice 

that in the L2 residue variations, small jump at the just ending of the coarse 

grid solutions of P2 Case for example, is the result of the change in the 

application region of the turbulence models. The Figure 6.39 shows only the 

fine grid part of the convergence history for each block. 

In addition, the convergence histories in terms of the Normal Force 

Coefficient and Pitching Moment Coefficient are illustrated in Figure 6.40 

and Figure 6.41. Those figures represent only the fine grid part of the solution 

and include the information from both blocks since the normal force and 

pitching moment are obtained by integration of the surface pressures from top 

and the bottom surfaces. Notice that the maximum and minimum values are 

arranged to make clear the oscillatory behavior of each case.   
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Figure 6.38 Convergence histories for the coarse and fine grid for each Case 
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Figure 6.39 Convergence histories for only the fine grid for each Case 
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Figure 6.40 Convergence histories in terms of Normal Force  
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Figure 6.41 Convergence histories in terms of Pitching Moment  
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Table 6.11 Solution summary 
 

P1 P2 P3 P4 S1 S2

Mach number, M ∞ 0.54 0.55 0.87 0.85 0.42 0.42

angle of attack, α 7.5 13.5 7.5 13.5 5 15

iteration number in one cycle 1800 5000 1000 7000 1800 5000

iteration step for data output 90 250 50 350 90 250

code time step for one itereation,  dt 0.0018 0.0018 0.0018 0.0010 0.0018 0.0018

dimensional time step, dt (s) 7.92E-07 7.77E-07 4.91E-07 2.79E-07 1.02E-06 1.02E-06

non-dimensional period, T 3.2 9.0 1.8 7.0 3.2 9.0

dimensional period, T (s) 0.00142 0.00389 0.00049 0.00196 0.00183 0.00509

non-dimensional frequency, f 0.309 0.111 0.556 0.143 0.309 0.111

dimensional frequency, f (1/s) 702 257 2035 511 546 196

Free Stream temperature,T ∞  (K) 282.4 282.4 282.4 282.4 282.4 282.4

Free stream velocity, U ∞  (m/s) 181.90 185.27 293.06 286.32 141.48 141.48

Chord length of the flat plate, c  (m) 0.08 0.08 0.08 0.08 0.08 0.08
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  Table 6.11 summarizes the frequencies and the periods for each 

case. In order to get a feeling of the situation, dimensional data is also 

obtained based on the conditions described at this table. One complete 

cycle for each case occurs approximately over the iteration range from 

1800 to 7000 and represents actually the oscillation generated by the 

separation bubble since there are other sources with minor oscillations.  

The freestream velocity “U∞ ” is calculated by using the following 

relation, 

 U M RTγ∞ ∞ ∞=  (6.6) 

The code time, “ t ” refers to the non-dimensional time used in the 

computer code, determined by 

 code time, t Ut
c
∞⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (6.7) 
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where “c” is the chord length of the plate and “t” is the dimensional 

time.  

Figure 6.42 and Figure 6.43 show the dimensional and non-

dimensional frequency variation with the angle of attack, respectively. 

They inform that the frequency increases with decreasing angle of attack 

and, its variation is more rapid for higher Mach numbers. 

One periodic cycle of the Normal Force Coefficient and Pitching 

Moment Coefficient variation with “the code time” and “the real time” can 

be seen in Figure 6.44. where the real time refers to the dimensional 

time. 
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Figure 6.42 Dimensional frequency variation with the angle of attack 
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Figure 6.43 Non-dimensional frequency variation with the angle of attack 
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Figure 6.44 Variation of the force-moment coefficients over one periodic cycle 
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6.2.7.2. Comparison with the Experiment 

i. Pressure Comparisons 

Experimentally obtained surface pressures that contains totally 36 

pressure locations in one-half of the plate were drawn in three-

dimensional form and arranged for comparison of each case. The 

computational pressures are obtained as the time-mean average of the 

each corresponding case. Each graph is colored with the same pressure 

contour as illustrated in Figure 6.45 through Figure 6.48. Also as a closer 

comparison, each surface strips along x/c and y/c are made comparable 

with the experiment as shown in Figure 6.49 through Figure 6.56.  

As seen on comparisons, pressure suction levels at stations  nearest 

to the leading edge region in the neighborhood of wing centerline, show 

small deflections from the experiment due to the high complexity of the 

flow structure here. It may require a more capable turbulence model that 

can predict the flow features around those regions. However, the other 

regions are in agreement with the experiment. It must also be noticed 

that those computational results are belonging to the time-mean 

averaged data. Time-resolved simulations show results that are more 

accurate in terms of peak suction levels. Time-resolved simulations of 

three dimensional pressure contours can be seen on the Simulation CD 

Package included with the thesis.  
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Figure 6.45 The computed time-mean averaged and experimentally obtained 
surface pressures in comparison. Mach=0.54, α=7.5° 

 
 
 
 
 
 
 

 
 

Figure 6.46 The computed time-mean averaged and experimentally obtained 
surface pressures in comparison. Mach=0.55, α=13.5° 
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Figure 6.47 The computed time-mean averaged and experimentally obtained 
surface pressures in comparison. Mach=0.87, α=7.5° 

 
 
 
 
 
 

 
 

Figure 6.48 The computed time-mean averaged and experimentally obtained 
surface pressures in comparison. Mach=0.85, α=13.5° 
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Figure 6.49 Comparison of computational and experimental [36] surface 
pressures along y strips. Case: P1 Mach=0.54, α=7.5° 
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Figure 6.50 Comparison of computational and experimental [36] surface 
pressures along x strips. Case: P1 Mach=0.54, α=7.5° 

 



 99

 

y/c

C
p

-0.4 -0.2 0 0.2 0.4

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Experiment
Experiment
Experiment
Experiment
Experiment
Computation
Computation
Computation
Computation
Computation
Computation

y/c

C
p

-0.4 -0.2 0 0.2 0.4

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 x/c=0.06

y/c

C
p

-0.4 -0.2 0 0.2 0.4

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 x/c=0.12

y/c

C
p

-0.4 -0.2 0 0.2 0.4

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 x/c=0.29

y/c

C
p

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

Experiment
Computation

Case P2 x/c=0.75

y/c

C
p

-0.4 -0.2 0 0.2 0.4

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 x/c=0.50

y/c

C
p

-0.4 -0.2 0 0.2 0.4

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 x/c=0.18

 
 

Figure 6.51 Comparison of computational and experimental [36]surface 
pressures along y strips. Case: P2 Mach=0.55, α=13.5° 

 



 100

 

y/c

C
p

-0.4 -0.2 0 0.2 0.4

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Experiment
Experiment
Experiment
Experiment
Experiment
Computation
Computation
Computation
Computation
Computation
Computation

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 y/c=0.00

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 y/c=0.13

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 y/c=0.32

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 y/c=0.24

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 y/c=0.44

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P2 y/c=0.38

 
 

Figure 6.52 Comparison of computational and experimental [36] surface 
pressures along x strips. Case: P2 Mach=0.55, α=13.5° 
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Figure 6.53 Comparison of computational and experimental [36] surface 
pressures along y strips. Case: P3 Mach=0.87, α=7.5° 

 



 102

 

y/c

C
p

-0.4 -0.2 0 0.2 0.4

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Experiment
Experiment
Experiment
Experiment
Experiment
Computation
Computation
Computation
Computation
Computation
Computation

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P3 y/c=0.00

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P3 y/c=0.13

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P3 y/c=0.24

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P3 y/c=0.32

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P3 y/c=0.44

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

Experiment
Computation

Case P3 y/c=0.38

 
 

Figure 6.54 Comparison of computational and experimental [36] surface 
pressures along x strips. Case: P3 Mach=0.87, α=7.5° 
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Figure 6.55 Comparison of computational and experimental [36] surface 
pressures along y strips. Case: P4 Mach=0.85, α=13.5° 
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Figure 6.56 Comparison of computational and experimental [36] surface 
pressures along x strips. Case: P4 Mach=0.85, α=13.5° 
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ii. Surface Skin-friction Comparisons 

The experimentally obtained surface streamlines on the leeward 

surface as shown in Figure 6.57 and Figure 6.58 were obtained by using 

the oil-flow method in the low speed tunnel at angle of attack of 5° and 

angle of attack of 15° ,respectively [39]. In Figure 6.59 and Figure 6.60, 

the computationally obtained streamlines are shown for Mach=0.42 at 

angle of attack of 5° and angle of attack of 15°, respectively. They are 

drawn from the time-mean averaged data obtained by means of averaging 

the solution data, stored at the equal time intervals by the computer, over 

the one corresponding cycle of computation.  

The comparison between computationally and experimentally 

obtained streamlines was given in Figure 6.61 and Figure 6.62. The 

formation and the size of the leading edge vortices are predicted well. In 

addition, the leading edge bubble formation is in good agreement with the 

experiment. 

Figure 6.63 and Figure 6.64 are deductions from Figure 6.59 and 

Figure 6.60 of the corresponding pattern of skin-friction lines, 

respectively. The surface streamlines actually represents the traces of the 

skin friction lines that describes the structure of the flow separation 

around the body. The streamline pattern depicts the various 

interconnections between the node, saddle points and the paths of the 

separated flow around the leading edge. The streamlines emanating from 

the saddle points, called as separatrices, represents the regions of the 

flow that separate from one another [26]. It is seen in Figure 6.63 four 

spiral nodes, one nodal point of attachment and four saddle points on the 

leeward surface. Each of the four saddle points separates the flow from 

adjacent pairs of nodes. In Figure 6.64 there are two major and four 

minor spiral nodes, four nodal point of attachment and ten saddle points 

on the leeward surface. For both patterns, two saddle points situated on 

the wing centerline shows the primary and secondary bubbles. 
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Figure 6.57 Experimentally obtained top surface streamlines α=5°, Mach≅0.1, 
Re=2.0*105 [39]. The flow is from bottom to top. 

 
 
 

 
 

Figure 6.58 Experimentally obtained top surface streamlines α=15°, Mach≅0.1, 
Re=2.0*105  [39]. The flow is from bottom to top. 
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Figure 6.59 Computationally obtained top surface streamlines (time-mean 
averaged). Case: S1 α=5°, Mach = 0.42. 

 
 
 

 
 

Figure 6.60 Computationally obtained top surface streamlines (time-mean 
averaged). Case: S2 α=15°, Mach = 0.42. 
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Figure 6.61 Comparison of computational (time-mean averaged) and 
experimental [39] top surface streamlines. Case S1 α=5°, Mach = 0.42. 

 

 
 
 

Figure 6.62 Comparison of computational (time-mean averaged)  and 
experimental [39] top surface streamlines. Case S2 α=15°, Mach = 0.42. 
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Figure 6.63 Definition of topology of the surface streamlines pattern (time-mean 

averaged), Case S1 α=5°, Mach = 0.42. 
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Figure 6.64 Definitions of topology of the surface streamlines pattern (time-

mean averaged), Case S2 α=15°, Mach = 0.42. 
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iii. Force-Moment Comparisons 

In Figure 6.65 through Figure 6.70, Normal Force and Pitching 

Moment comparisons with the experiment [39] are illustrated. Normal 

Force  and Pitching Moment values are obtained by the integration of the 

surface pressures from the top and the bottom surfaces for each case. 

Since the results have the oscillatory behavior, the variables were again 

averaged over the corresponding cycle to each case. Hence, each figure 

shows the averaged, the maximum and the minimum values of the 

Normal Force and the Pitching Moment components over a period of cycle 

at the particular angle of attack. It is seen that the differences between 

computational and experimental values are the result of differences 

between pressure peak suction levels. 
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Figure 6.65 Comparison of computational and experimental [39] pitching-
moment coefficients, Mach = 0.42, Re = 2.0*105. Computational data from 

Case’s: S1 and S2. 
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Figure 6.66 Comparison of computational and experimental [39] pitching-
moment coefficients, Mach = 0.54-0.55, Re = 2.0*105. Computational data from 

Case’s: P1 and P2. 
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Figure 6.67 Comparison of computational and experimental [39] pitching-
moment coefficients, Mach = 0.85-0.87, Re = 2.0*105. Computational data from 

Case’s: P3 and P4. 
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Figure 6.68 Comparison of computational and experimental [39] normal force 
coefficients, Mach = 0.42, Re = 2.0*105. Computational data from Case’s: S1 and 

S2. 
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Figure 6.69 Comparison of computational and experimental [39] normal force 
coefficients, Mach = 0.54-0.55, Re = 2.0*105. Computational data from Case’s: 

P1 and P2. 
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Figure 6.70 Comparison of computational and experimental [39] normal force 
coefficients, Mach = 0.85-0.87, Re = 2.0*105. Computational data from Case’s: 

P3 and P4 
 
 

6.2.7.3. Computational Flow Field Visualizations 

In this section, three-dimensional structure of the flow was 

investigated in order to get a deep understanding about the physics of the 

flow. It was observed that the size of the bubble and shedding vortex 

increased by increasing of the angle of attack and the Mach number. All 

Cases has a typical oscillation which consists of two distinct phases as 

stated in reference [23]; (i) gradual growth of large-scale structures in the 

separated shear layer, accompanied by a progressive growth of the 

separation bubble, (ii) shedding of a large-scale structure followed by a 

``collapse'' of the bubble and abrupt shortening of the reattachment 

length. Flapping motion of the separated shear layer within the periodic 

vortex shedding from the separation bubble can be clearly seen. The 

frequency of the flapping motion was found to be the nearly same with 
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the vortex shedding frequency as mentioned in Kiya M. et al [6]. In 

Figure 6.71, the transient feature of the flow through timeline of S2 Case 

is presented in terms of velocity field at the symmetry plane. Time-

resolved simulations obtained by velocity field at the symmetry plane for 

each case can be viewed  in the Simulation CD Package. 

The vortical structure of the flow field around the plate was 

illustrated in the Figure 6.72. This figure was extracted from just end of 

the timeline of Case S2 in order to show the flow structure clearly. The 

predominant structures over the separation bubble are clearly identified 

as hairpin (horseshoe) vortices in the reattachment region [23]. The legs 

of the horseshoe vortices are inclined with respect to the streamwise 

direction. A typical vortex grows in every direction as it is advected 

downstream of the reattachment region. Due to the interaction between 

the vortical motion of the large-scale structure and the wall, it also tends 

to lift away from the wall. This in turn, brings the top end of the 

horseshoe vortex into contact with the outer (higher velocity) region, 

resulting in further stretching and inclination of the vortex along the flow 

direction. Eventually, the central portion breaks down, and only the two 

inclined legs remain. In the case of separation bubble formation, there 

exist both primary and secondary separation bubbles in that picture. It 

verifies the skin-friction topology on the previous chapter that depicts the 

secondary separation bubble formation characterized by the saddle point 

near the leading edge. Reversed flow sourced by separation vortex occurs 

at mid-part and aft part of the side edge of the flat plate. 

In that figure, primary vortex actually represents the spanwise 

vortices, which are produced by rolling up of the shear layer to form 

rectilinear vortex tubes whose axis is aligned with the side edge of the 

flat plate. Secondary vortices are also formed under the primary vortex as 

seen also on Figure 6.73 which is colored by the total pressure contours. It 

shows the transitional streamline plot of the Case S2; α=15°, Mach = 0.42 
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at the spanwise section of the plate, x/c=0.5. For the same Case, a similar 

picture that shows the primary and secondary bubble formation at the 

symmetry plane, y/c=0.0 is also demonstrated in Figure 6.74. Notice that, 

secondary bubble is shown in zoomed view in that figure. Time-resolved 

simulations that shows three dimensional flow structures for S1 and S2 

Cases were also put in the Simulation CD Package. 
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Figure 6.71 Flow timeline of Case S2 α=15°, Mach = 0.42 
 

t = 0.0 t = 0.90 

t = 1.8 t = 2.7 
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t = 5.4 t = 6.3 

t = 7.2 t = 8.1 

Mach = 0.42   α = 15°  f =196 Hz 
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Figure 6.72 Three-dimensional flow structure of Case S2; α=15°, Mach = 0.42. 
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Figure 6.73 Primary and secondary vortices at the span wise plane, x/c=0.5. 
 
 

 
 

Figure 6.74 Primary and secondary bubbles at the symmetry plane, y/c=0.0 
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CHAPTER 7 

CONCLUSION 

Parallel Navier Stokes solutions of an aspect ratio 1.0 

rectangular flat plate have been performed at different Mach numbers 

and angles of attack to test the validity of the Navier-Stokes code on 

the prediction of separated flows, in particular, the ones around the 

low aspect ratio wings. The flow separates at the leading edge and 

forms the separation bubble. It is dominated by the spanwise vortices 

and the rolling-up vortices within the separation bubble. Reynolds 

number was of the order of 2.0*105-3.0*105. Two different grid 

configurations were adapted namely, the coarse and the fine grids in 

order to speed up the convergence of the solutions. For the fine grid 

part of the solution, two grid blocks with total of 700,000 points were 

used. The initial grid spacing from the surface in the normal direction 

was /z c∆  = 0.0001.  

There was a strong interference between the separation bubble 

and the side edge vortices making the flowfield quite complicated. 

Moreover, it was detected that the flow was unsteady and it has 

oscillating structure. However, the Baldwin-Lomax turbulence model 

modified around the vortical and the wake regions showed acceptable 

results. The prediction of the surface streamlines was found to be 

accurate to capture the flowfield structure in terms of size and 

formation of the primary and the secondary separation bubbles. The 

spanwise vortices at the side edges of the flat plate were in good 
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agreement with the experiment, showing both the primary and the 

secondary vortices. 

It was found that the frequency of the flow, sourced by the 

separation bubble, increased with decreasing angle of attack and, its 

variation was more rapid for higher Mach numbers. It was also 

verified that with the increasing angle of attack, the size and the 

intensity of the separation bubble increased and the flow complexity 

increased showing more singular points; saddles and nodes on the 

surface. In addition, the periodic vortex shedding and the 

intermittent nature of the flow field were captured in three-

dimensional time-resolved simulations.  

The averaged top surface pressure predictions were in good 

agreement except the leading edge region of the wing. This may be 

improved by using a more sensitive turbulence model such as Spalart-

Allmaras turbulence model, and by increasing the grid quality in 

future.  
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