
 

 
 

ANALYSIS OF STOCHASTIC AND NON-STOCHASTIC VOLATILITY 
MODELS 

 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 

PEL�N ÖZKAN 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR  
THE DEGREE OF MASTER OF SCIENCE 

 
IN 

 
STATISTICS 

 
 
 
 
 
 
 
 

SEPTEMBER 2004 
 



Approval of the Graduate School of Natural and Applied Sciences. 

 

 

 

                  Prof. Dr. Canan Özgen 

                                                               Director  

 

I certify that this thesis satisfies all the requirements as a thesis for the degree of 

Master of Science. 

 

 

                                                                                           Prof. Dr. H. Özta� Ayhan 

                                  Head of Department 

 

We certify that we have read this thesis and that in our opinion it is fully adequate, in 

scope and quality, as a thesis for the degree of Master of Science. 

 

 

   

Zafer Ali Yavan                                                  Prof. Dr. Özta� Ayhan    

          Co-Supervisor                                                                         Supervisor 

 

Examining Committee Members 

 

Prof. Dr. H. Özta� Ayhan                  (METU, STAT)                                        

Assoc. Prof. Dr. Bilgehan Güven      (METU, STAT)                                        

Asst. Prof. Dr. �nci Batmaz                               (METU, STAT) 

Zafer Ali Yavan      (TÜS�AD)   

Dr. Barı� Sürücü                  (METU, STAT)                                 



 iii 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 
 
 
 
                  Pelin ÖZKAN 
  

 
 
 

 



 iv 

 

 

 

 

ABSTRACT 

 

 

ANALYSIS OF STOCHASTIC AND NON-STOCHASTIC VOLATILITY 

MODELS 

 

 

 

ÖZKAN, Pelin 

M.S., Department of Statistics  

Supervisor: Prof. Dr. H. Özta� AYHAN 

Co-Supervisor: Zafer Ali Yavan 

 

September 2004, 64 pages 

 

 

 

 Changing in variance or volatility with time can be modeled as 

deterministic by using autoregressive conditional heteroscedastic (ARCH) type 

models, or as stochastic by using stochastic volatility (SV) models. This study 

compares these two kinds of models which are estimated on Turkish / USA 

exchange rate data. First, a GARCH(1,1) model is fitted to the data by using the 

package E-views and then a Bayesian estimation procedure is used for estimating 

an appropriate SV model with the help of Ox code. In order to compare these 

models, the LR test statistic calculated for non-nested hypotheses is obtained. 

 

Key Words: Volatility, ARCH models, GARCH models, M-GARCH models,  
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E-GARCH models, SV models, Monte Carlo integration, Gibbs sampler, 

Metropolis-Hasting algorithm, MCMC algorithm. 
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ÖZ 

 

 

STOKAST�K VE STOKAST�K OLMAYAN VARYANS MODELLER�N�N 

ANAL�Z� 

 

 

 

ÖZKAN, Pelin 

Yüksek Lisans, �statistik Bölümü 

Tez Yöneticisi: Prof. Dr. H. Özta� Ayhan 

Ortak Tez Yöneticisi: Zafer Ali Yavan 

 

Eylül 2004, 64 sayfa 

 

 

 

 Varyansın zaman içerisindeki de�i�imi rasgele olmayan bir �ekilde 

otoregresyon ko�ullu de�i�en varyans (ARCH) modelleri ile ya da stokastik olarak 

stokastik varyans modelleri ile modellenebilir. Bu çalı�ma, Türkiye /A.B.D  döviz 

kuru üzerinde tahmin edilen bu iki tür modeli kar�ıla�tırmaktadır. �lk olarak bir 

GARCH(1,1) modeli E-views paket programı kullanılarak verilere uyarlanmı� 

daha sonra Ox yardımıyla, bayes tahmin yöntemleri kullanılarak uygun bir 

stokastik varyans modeli uygulanmı�tır. Bu modelleri kar�ıla�tırmak amacıyla, iç 

içe geçmeyen varsayımlar için hesaplanan olasılık oran test istatisti�i elde 

edilmi�tir. 
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Key Words: Varyans, ARCH modelleri, GARCH modelleri, M-GARCH 

modelleri, E-GARCH modelleri, SV modelleri, Monte Carlo integral yöntemi, 

Gibbs seçicisi, Metropolis-Hasting algoritması, MCMC algoritması. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Time series models have been widely used in many disciplines in the 

science. Many econometricians and statisticians devote themselves to developed 

new models and improve the existing ones. In the last years, there has been 

growing interest in time series models with changing variance over time which is 

shown by most of the financial data. Such time series models with heteroscedastic 

errors are specifically useful for modeling high frequency data like stock returns 

and exchange rates. In the simplest case, the series mean of which is considered as 

zero is a white noise process with unit variance multiplied by a factor �t known as 

volatility (Kuan,2003). That is, 

 

yt = �t�t. 

 

 A volatility model is a specification of dynamics of the volatility process. 

There are different ways for modeling changes in volatility over time. A 

commonly used model is the autoregressive conditionally heteroscedastic  

(ARCH) model introduced by Engle (1982) in which the conditional variance is a 

function of the squared past values of the series including time t-1. Consequently, 

the volatility is observable at time t-1. This model has been extended in different 

directions. The most popular of them is generalized autoregressive conditionally 

heteroscedastic (GARCH) model which was proposed by Bollerslev after four 

years of introduction of ARCH models and it lets conditional variance depend on 
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the squared past observations and previous variances. As well as ARCH models, 

in GARCH models the volatility is known at time t-1. However, the volatility may 

be treated as an unobserved variable and this yields another class of models which 

consider the variance of the process as stochastic and model the logarithm of 

volatility as a linear stochastic process such as autoregression. Models of this kind 

are called stochastic variance or stochastic volatility (SV) models. The interest in 

SV models has been very strong in recent years. These models are important 

alternatives to the famous ARCH models. They have similar properties but they 

are different with respect to the observability of �t
2 at time t-1, that means, the 

distinction between the two models relies on whether the volatility is observable 

or not. Formally, GARCH models, with one lag, can be expressed as, 

 

 �
2

t  = a0 + �1y2
t-1 + b1 �t-1

2, 

 

whereas, SV models can be written as,  

 

 ln(�t
2) = �0 + �1 ln(�t-1

2) + vt,  

 

The innovation term, vt, of the variance equation let the variance change with time 

stochastically.  

  

  Although ARCH type models are easier to deal with, allowing volatility 

change with time is more realistic and some researchers turned their attention to 

this new class of volatility models. SV models are more flexible but more difficult 

to estimate than ARCH type models due to the fact that it is not easy to derive 

their exact likelihood function and because of this, they have been unattractive 

models until the developments of the new estimation methods. Improvements in 

computers and programming languages make them important alternatives to the 

deterministic volatility processes.  

 

 In this study, both classes of volatility models are analyzed. The exchange 

rate of TL/$ is considered and suitable deterministic and stochastic volatility 
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models are constructed in order to see which one is better in modeling the time-

varying variance. 

 

 The organization of the study is as follows. In chapter 2, the previous 

studies on the concept of volatility modeling is described briefly. In chapter 3, 

some basic definitions in time series analysis is given. Chapter 4 discusses the 

volatility models by dividing them into two parts as deterministic and stochastic. 

The empirical example is given in chapter 5 which includes the comparison of 

GARCH(1,1) and SV model. The last chapter, chapter 6, concludes all the work 

done in this thesis.  
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

Analyzing financial time series data with volatility models has become 

very common in recent years and a huge literature having been established. One 

of the most important tools that characterizes the changing of the variance is the 

ARCH model. Engle (1982) proposes to model time-varying conditional variance 

with the ARCH process that use past disturbances to model the variance of the 

series. Early empirical evidence shows that high ARCH order has to be selected in 

order to catch the dynamic of the conditional variance. The GARCH model of 

Bollerslev (1986) is an answer to this issue. Several excellent surveys on 

ARCH/GARCH models are available in Bollerslev, Chou and Kroner (1992), 

Bollerslev, Engle and Nelson (1994) and Bera and Higgins (1993). The maximum 

likelihood based inference procedures for the ARCH class of models under 

normality assumption are discussed in Engle (1982) and Pantula (1985). 

Generalized Method of Moments (GMM) estimation of ARCH type models are 

discussed in Mark (1988), Bodurtha and Mark (1991), Glosten, Jagannathan, and 

Runkle (1991) and Simon (1989). In addition to these, the Bayesian inference 

procedures within the ARCH type of models are developed by Geweke (1988) 

who uses Monte Carlo methods to determine the exact posterior distributions. As 

an alternative estimation technique, Gallant and Nychka (1987), Gallant, Rossi 

and Tauchen (1990) use a semiparametric approach while Robinson (1987), 

Pagan and Ullah (1988), Whistler (1988) use a nonparametric method.  
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The search for model specification and selection is always guided by 

empirical stylized facts. Stylized facts about volatility have been well documented 

in the ARCH literature, for instance in Bollerslev, Engle and Nelson (1994). Since 

the early sixties, it was observed by Mandelbrot (1963) and Fama (1965) and 

among others that asset returns have leptokurtic distribution with thick tails. As a 

result numerous papers have proposed to model the returns from fat-tailed 

distributions. In addition to thick tails, the volatility clustering is also common. 

ARCH models introduced by Engle (1982) and the numerous extensions as well 

as SV models are built to capture this volatility clustering. Leverage effect is 

another fact about the financial time series. Leverage effect suggests that stock 

price movements are negatively correlated with volatility. 

 

The distribution considered in ARCH and GARCH models is symmetric 

and fail to model the third stylized fact, namely the leverage effect. To solve this 

problem, many extensions to GARCH models have been proposed. Among the 

most widely spread are Exponential GARCH (EGARCH) of Nelson (1991), the so 

called GJR of Glosten, Jagannathan, and Runkle (1993) and the Asymmetric 

Power ARCH (APARCH) of Ding, Granger and Engle( 1993).  

 

The thick tails property of financial time series data often do not fully 

captured by GARCH models. This has naturally led to the use of non normal 

distributions to better model this excess kurtosis. Bollerslev (1987), Baillie and 

Bollerslev (1989) and Kaiser (1996) use Student–t distribution while Nelson 

(1991) and Kaiser (1996) suggest the Generalized Error Distribution (GED). 

Other propositions include mixture distributions such as the normal-poison 

(Jorion, 1988), the normal-lognormal (Hsieh, 1989) or the Bernoulli-normal( 

Vlaar and Palm, 1993). Moreover, to better capture the skewness, Liu and Brorsen 

(1995) applies an asymmetric stable density. A promising distribution that models 

both the skewness and kurtosis is the skewed Student-t of Fernandez and Steel 

(1998), extended to the GARCH framework by Lambert and Laurent (2000).  
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The other well known volatility model is  ARCH- in Mean or ARCH-M 

model introduced by Engle, Lilien, and Robins (1987), who considers the 

conditional mean equation is a function of the conditional variance. In this model, 

an increase in conditional variance will be associated with an increase or a 

decrease in the conditional mean of the process.  

 

The other specifications for �t
2 are as follows, the Taylor (1986) / 

Schewert (1989) (TS-GARCH) model, the A-GARCH, the NA-GARCH and the 

V-GARCH models suggested by Engle and Ng (1993), the threshold GARCH 

model (Thr-GARCH) by Zakoinan (1994), the log-ARCH by Geweke (1986) and 

Pantula (1986), the integrated GARCH (IGARCH) model due to Engle and 

Bollerslev (1986), the NARCH of Higgins and Bera (1992), the GQ_GARCH 

suggested by Sentana (1995) and finally the Aug-GARCH suggested by Duan 

(1997). The formulation of various ARCH/GARCH models is given in Table 2.1.   
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Table 2.1 ARCH-type models 

ARCH: �
=

−+=
q

i
tit

1

2
1

2 εαωσ  

 

GARCH: � �
= =

−− ++=
q

i

p

i
jtjtit

1 1

22
1

2 σβεαωσ  

 

IGARCH: � �
= =

−−−−− −+−++=
q

i

p

j
tjtjtititt

2 1

2
1

22
1

22
1

2 )()( εσβεεαεωσ  

 

Taylor/Schwert: jt

q

i

p

i
jjtit −

= =
−� �++= σβεαωσ

1 1

||  

 

A-GARCH: [ ]� �
=

−−− +++=
q

i

p

j
jtjitiitit

01 1

222 σβεγεαωσ   

 

GJR-GARCH:  [ ]� �
= =

−−> +++=
−

q

i

p

j
jtjitiit it

I
1 1

22
)0(

2 σβεγαωσ ε  

 

log-GARCH*: � �
= =

−− ++=
q

i

p

j
jtjitit e

1 1

)log(||)log( σβαωσ  

 

NGARCH: ��
=

−
=

− ++=
p

j
jtj

q

i
itit

11

|| δδδ σβεαωσ  

 

A-PARCH: [ ] ��
=

−
=

−− +−+=
p

j
jtj

q

i
itiitit

11

|| δδδ σβεγεαωσ  

 

* et is the standardized returns 
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A comparison of 330 different ARCH-type models in terms of their ability 

to describe the conditional variance is given in Hansen and Lunde (2003). The 

main findings are that there is no evidence that a GARCH(1,1) model is 

outperformed by other models.  

 

Over the last decade, there has been a tendency to employ the ARCH type 

models to analyze the volatilities of financial data while ignoring the specification 

and estimation of the conditional mean. Most recently, Li, Ling and McAleer 

(2002) define the ARMA-GARCH model which can be reduced to ARMA-

ARCH, AR-ARCH, MA-ARCH by simply imposing some restrictions to the 

process.  

 

 The ARCH type models are generalized to the multivariate case by 

Bollerslev, Engle and Wooldridge in 1988. This model is estimated by maximum 

likelihood, however, the number of parameters can be very large, so it is usually 

necessary to impose restrictions. Bollerslev (1990) mentions about these 

restrictions.  

 

 Another type of volatility process is stochastic volatility model. Due to the 

fact that in SV models the mean and the variance are driven by separate stochastic 

process, SV models are much harder to estimate than the GARCH models. 

Evaluating the likelihood function of ARCH type models is a relatively easy task. 

In contrast, for SV model, it is impossible to obtain explicit expression for the 

likelihood function. The lack of  estimation procedures for SV models made them 

for a long time an unattractive class of models in comparison to ARCH type 

models. In recent years, however, several estimation methods have been 

developed with the increasing performance of the programming languages and 

computers. The early attempts to estimate SV models used a GMM procedure due 

to Melino and Turnbull (1990). GMM considers the basic SV model with normal 

innovation processes. In general, m moments are computed. For a sample size of 

T, let gT(�) denotes the m x 1 vector of differences between each sample moment 
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and its theoretical expression in terms of the model parameters �. The GMM 

estimator is constructed by minimizing the function, 

 

 )()(minˆ ' βββ TTTt gWg= , 

 

where WT is an m x m matrix reflecting the importance given to matching each 

moments. When the innovation terms are independent, Jacquier, Polson and Rossi 

(1994) suggest using 24 moments. The GMM method may also be extended to 

handle a non-normal distribution which is done in Andersen (1994). The 

inefficiency of the GMM estimation is proved by Andersen and Sorensen (1993) 

and Jacquier, Polson and Rossi (1994). 

 

 Another estimation method is called quasi-maximum likelihood estimation 

developed by Harvey, Ruiz and Shephard (1994). A key feature of the basic SV 

model is that it can be transformed into a linear model by taking the logarithm of 

the squares of the observations. The resulting error term, log�t
2, is log of a chi-

square distribution with one degree of freedom which is highly left-skewed. 

Harvey, Ruiz and Shephard (1994) have employed Kalman filtering to estimate 

the parameters by maximizing the quasi likelihood function.  

 

 Comparison of GMM and QML can be found in Ruiz (1994), Harvey and 

Shephard(1995). The general conclusion is QML gives estimates with smaller 

mean square error. 

 

 The GMM and QML methods do not involve simulations. However, 

increasing computer power has made simulation-based estimation techniques 

increasingly popular. The simulated method of moments (SMM) or simulation 

based GMM approach proposed by Duffie and Singleton (1993) was a first 

attempt in simulation based estimation methods. The strategy of SMM is to 

simulate data from the model for a particular value of the parameters and match 

moments from the simulated data with sample moments as substitutes.  
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 Another simulation based approach to inference in the SV model is based 

on Markov Chain Monte Carlo methods, namely the Metropolis-Hastings 

algorithm (Jacquier, Polson and Rossi, 1994) and Gibbs sampling algorithm (Kim, 

Shephard and Chib, 1998). These methods have had a widespread influence on 

theory and practice of Bayesian inference.  

 

The SV in mean (SV-M) model has developed by Koopman and Uspensky 

(1999) to incorporate the unobserved volatility as an explanatory variable in the 

mean equation. The estimation is based on importance sampling techniques.  

 

Chib, Nardari and Shephard (2001) developed an MCMC procedure to 

analyze the SV model defined by heavy-tailed Student-t distribution with 

unknown degrees of freedom. They consider the SVt model with Student-t 

observation errors and also the SVt plus jump model which contains a jump 

component in the mean equation to allow for large, transient movements.  

 

 Yu, Yang and Zhang (2002) propose a new class of SV models, namely, 

nonlinear SV (N-SV) models. They include the lognormal SV model as a special 

case, which adds great flexibility on the functional form. The estimation 

procedure is again MCMC.  

 

 Jacquier, Polson and Rossi (2002) extend their earlier work to analyze the 

SV model. They replace the Gaussian innovation by a fat-tailed distribution and 

they consider the leverage effect. 

 

 Hol and Koopman (2002) consider the exact maximum likelihood method 

based on the Monte Carlo simulation technique such as importance sampling and 

they state that more accurate estimates of the likelihood function are obtained 

when the number of simulations is increased. Program documentation is available 

at www.feweb.vu.nl/koopman/sv/ (20 July, 2004).  
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Harvey, Ruiz and Shephard (1994) generalize the univariate SV model to 

the multivariate case as in the GARCH process. The estimation of the multivariate 

SV model is done by QML method. 
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CHAPTER 3 

 

 

BASIC TIME SERIES CONCEPTS 

 

 

 

A time series is a set of random variables {Yt}. The random variables 

sequentially ordered in time are called a stochastic process. The realization of 

{Yt} is denoted as {yt}, however for notational convenience, the difference 

between Yt
 and yt is not considered in this study. A time series can be continuous 

or discrete demonstrated by Y(t) and Yt respectively. In this thesis only discrete 

cases are considered.  

 

The stochastic process yt can be defined in terms of its moments, 

 

E( yt ) = �t, 

 

 E[(yt- �t)2] =Var( yt ) = �2
t, 

 

 E[(yt – �t )( yt-s – �t-s)] = cov( yt, yt-s ) = �t,t-s, 

 

which are functions of t. 

 

If the unknown parameters, �t, �2
t, �t,t-s, change with time, an essential 

restriction on the stochastic process is needed to avoid an estimation problem. The 

restriction is called stationarity, which reduces the number of parameters to be 

estimated and leads to stable processes over time.   



 13 

A time series having a finite mean and variance  is covariance stationary if 

for all t and s,  

 

E( yt ) = E( yt-s ) = µ, 

 

Var( yt ) = Var( yt-s ) = �2, 

 

Cov( yt, yt-s ) = Cov( yt-j, yt-j-s ) = �s.   

 

That means, for weak stationarity mean and variance of the process need to be 

constant and the covariance of it should depend only on lag s but not on time t. In 

the literature, covariance stationarity is also called as weak stationarity or second 

order stationarity (Kuan, 2003). 

 

For a weak stationary process, the autocorrelation between yt and yt-s is 

defined as 

 

�s = �s / �0, 

 

where �0 is the variance of yt. Since �0 and �s are time-independent, the 

autocorrelation coefficients �s are also time-independent. The autocorrelation 

between yt and yt-1 can be different from the autocorrelation between yt and yt-2, 

however the autocorrelation between yt and yt-1 must be identical to that between 

yt-s and yt-s-1 (Enders, 1995).  

 

The plot of �s, the autocovariance at lag s, against s is known as the 

autocovariance function. Similarly, the plot of �s against s yields the 

autocorrelation function denoted as ACF. The other function related to the 

correlations between {yt} is called partial autocorrelation function, denoted by 

PACF. Different than the autocorrelation, the partial autocorrelation is simply the 

correlation between yt and yt-s  after the effects of  yt-1 ,...,yt-s+1 are excluded.   
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A stronger form of week stationarity is called  strong stationarity which is 

defined in terms of the distribution function of the random variable. A time series 

is strictly stationary if  the joint distribution of series of observations {Yt1,Yt2 

… ..Ytn} is the same as that for {Yt1+s, Yt2+s, ..… Ytn+s}for all t and s (Türker, 

1999). The strict stationarity imposes no restriction on moments. If a strict 

stationary series has a finite second order moment, it must be weakly stationary. A 

sequence of i.i.d Cauchy random variables is strictly stationary but not weakly 

stationary.  

 

Since the stationarity defined in terms of the distribution functions is 

difficult to verify in practice, strict stationarity is not preferable. In this study, the 

term  stationary is used   whenever the criteria for weak-stationary  are satisfied. 

  

3.1 Simple Linear Processes 

 

3.1.1. White-Noise Processes 

  

A white-noise process contains sequence of uncorrelated zero mean 

variables with constant variance �2. It is denoted by yt ~ WN(0, �2). This process 

is stationary if its variance is finite because it satisfies all the conditions for 

stationarity.  

 

The financial time series will follow white noise patterns very rarely, but 

this process is the key for the formulation of more complex models. 

 

3.1.2. Autoregressive  Processes 

 

The process yt is said to be an autoregressive (AR) process if it can be 

expressed as, 

 

 �(B)yt = �0 + �t, 
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where �0 is a real number, �t is a white noise process with mean zero and variance 

�
2 and  � (B) is polynomial in terms of back-shift operator B.  

 

The back-shift operator applied to a time series yt is defined as Byt = yt-1. 

Similarly, B2yt = B(Byt) = yt-2, B3yt = B (B2yt) = yt-3, and so on. The back-shift 

operator is also called as lag operator which is denoted  by L.   

 

When the order of the polynomial is p, i.e.  �(B)= 1- �1B- �2B2-... �pBp, 

the process yt is referred to as an AR process of order p, AR(p), which can be 

written as 

 

yt = �0+ �1yt-1 + �2yt-2 +.....+�pyt-p + �t. 

  

As it is stated in Enders(1995), an AR(1) process with �(B) = 1-�1B can be 

written as 

 

 yt= �0+ �1yt-1 + �t. 

 

Assuming the process is started at period zero so that y0 is the known initial 

condition, the solution of this equation by forward or backward iteration is,  

 

��
−

=
−

−

=
Ψ+Ψ+ΨΨ=

1

0
1101

1

0
10

t

i
t
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t

i

i
t yy ε ,     (3.1) 

 

Taking the expected value of (3.1), 

 

�
−

=
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1

0
0110)(

t

i

ii
t yyE ,      (3.2)  

 

Updating (3.2) by s periods yields , 
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Both E(yt) and E(yt+s) are time-dependent and not equal to each other so the 

process cannot be stationary. 

 

 However, if |�1| < 1 and if the limiting value of yt is considered in 

equation (3.1) it can be shown that, the expression (�1
t)y0 converges to zero as t 

becomes infinitely large and the sum �0.[ 1 + �1 + (�2)2 + (�3)3 + ... ] converges 

to �0 /(1- �1). Thus, as t � � and if | �1| < 1, 

 

�
∞

=
−Ψ+Ψ−Ψ=

0
110 )1/(lim

i
it

i
ty ε  .     (3.4) 

 

The expected value of (3.4) is �0/(1-�1) which is finite and time-independent.  

 

If the variance of yt is calculated from equation (3.1), 

 

Var(yt) = Var [ �t +  �1�t-1 + (�1)2
�t-2 +...] 

 

 = �2[ 1 + (�1)2 + (�1)4 +...]. 

 

If the condition | �1| < 1 is satisfied then  

 

Var(yt) = �2/[1-(�1)2],  

 

which is finite and time- independent.  

 

Finally, it is demonstrated by Kuan (2003)that the limiting values of all 

autocovariances are finite and time independent: 

 

Cov(yt,yt-s) = cov{[�t + �1�t-1 + (�1)2
�t-2 +...] [�t-s + �1�t-s-1 + (�1)2

�t-s-2 +...]} 
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Cov(yt,yt-s) = �2
�1

s[1 + (�1)2 + (�1)4 +...]  

 

       = �2
�1

s/ [1-(�1)2]. 

 

 In summary, for an AR(1) process be stationary, the coefficient of the 

lagged dependent variable must be less than one in absolute value and t must be 

sufficiently large.  

 

 Solution by the iterative methods is not possible in higher-order systems. 

In these cases, the theory of difference equations is used to get the solution and 

the stability conditions of the system. For an AR(p) process defined as,  

 

�(B)yt = �0 + �t , 

 

 stationarity is satisfied  if all the roots of �(B) = 0 are greater than one.  

 

For a stationary AR(p) process, the autocorrelation function is non-zero at 

all lags and should converge to zero geometrically. On the other hand, the partial 

autocorrelation function of an AR(p) process should cut to zero for all lags greater 

than p.  

 

3.1.3 Moving Average Processes 

 

 The process is said to be moving average (MA) process if it can be 

expressed as, 

 

 yt = �0 + �(B)�t, 

 

where �0 is a real number, �t is a white noise process with mean zero and variance 

�
2 and  �(B) is polynomial in terms of back-shift operator B. When the order of 

the polynomial is q, i.e. �(B) = 1+�1B+�2B2+....+�qBq, the process yt is referred to 

as an MA process of order q, MA(q): 
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 yt =  �0 + �t + �1�t-1 + �2�t-2 + ... + �q�t-q. 

 

In this case, 

 

 E(yt) = �0, 

 

�0 = Var(yt) = �2( 1 + �1
2 +...+ �q

2 ), 

 

�s = Cov ( yt, yt-s ) = �
−

=
+

sq

i
sii

0

2 ππσ  for s = 0, 1, 2, … ,q. 

 

 Since the mean, variance and covariance functions are all time-independent, the 

MA process is always stationary regardless of its coefficients. 

  

  The autocorrelation function is obtained by dividing the �s by �0 so for the 

MA(q) process, the ACF has cut off property for the lags greater than q. On the 

other hand, the PACF of any MA(q) process should goes to zero. 

 

      Following the work of Enders(1995), an MA(q) process in the form of,  

 

 yt = �(B)�t, 

 

the residuals can be calculated as, 

 

�t = [�(B)]-1 yt, 

 

provided that [�(B)]-1 converges (which is satisfied when the roots of �(B) lie 

outside the unit circle). This condition is called the invertibility condition and 

implies that an MA(q)  process can be written as an AR(�) process uniquely 

(Kuan, 2003). 
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3.1.4. Autoregressive Moving Average Processes 

 

 Combining an AR(p) process and MA(q) process yields an Autoregressive 

Moving Average (ARMA) process. An ARMA process of order (p,q) is denoted 

by ARMA(p,q) and illustrated as: 

  

 �(B)yt = c+ �(B)�t, 

 

where, �t  is assumed to be white noise with zero mean and constant variance �2, 

and �(B) = 1- �1B- �2B2-... �pBp ,  �(B)= 1+�1B+�2B2+....+�qBq .  

 

The ARMA(p,q) model is stationary and invertible if all the roots of  �(B) 

= 0 and �(B) = 0 are greater than one, respectively.  

 

For a stationary and invertible ARMA(p,q) process, neither ACF nor 

PACF has cut off points; they both decay to zero gradually.  

 

3.2 Criteria for Model Selection 

 

After estimating the ARMA models, the most appropriate one for the data 

set should be chosen. At this point, some model selection methods are considered. 

One of them is called the Box-Jenkins methodology (Kuan,2003).  

 

The standard Box-Jenkins approach contains the following four steps: 

 

1. Transform the original time-series to a weakly stationary process. 

 

2. Identify a preliminary ARMA(p,q) model for the transformed series. 

 

3. Estimate the unknown parameters in this preliminary model. 
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4. Apply the diagnostic checks and re-estimate the model if the 

preliminary model is found inappropriate.  

 

Repeat these steps until a suitable model is found. 

 

In practice, financial time series are usually nonstationary and most of 

them include a trend component. If  a series includes a trend component, it should 

be removed by taking the first difference. However, if it is a deterministic trend, 

the differencing is not appropriate; in that case a simple trend variable t may be 

included in the model. Seasonal patterns are other common reasons for 

nonstationarity and they can be eliminated by taking the seasonal difference or by 

using seasonal dummies. 

 

After obtaining a stationary process, the second step of Box-Jenkins 

methodology is to estimate a preliminary ARMA model. In order to do this, the 

properties of ACF and PACF functions are used. If PACF has a cut off point at 

lag p, the model can be AR(p). If ACF has a cut off point al lag q, the model can 

be MA(q), and if neither of them has a cut off point but they both go to zero 

slowly, the model can be ARMA(p,q).  

 

In the third step, the unknown parameters of the preliminary ARMA(p,q) 

model should be estimated. The estimation is easily done by package programs 

such that E-Views, Minitab, Microfit, etc. Finally, diagnostic checks of the 

residuals are conducted. If the estimated model is correct, the residuals should 

behave like a white noise process.  

 

Alternatively, the structure of the ARMA process can be determined by 

using model selection criteria. The most famous ones are the Akaike Information 

Criterion (AIC) and Schwartz Information Criterion (SIC): 

 

AIC = T ln(residual sum of squares) + 2n, 
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SBC = T ln(residual sum of squares) + n ln(T), 

 

where T is the number of usable observation, and n is the number of parameters to 

be estimated. 

 

In practice, several ARMA models are estimated, and the one with the 

smallest AIC or SIC is selected as the best model (Enders, 1995).  

 

3.3 Unit Root Tests 

 

In order to make inferences on time series, they must be stationary. 

However, most of the financial time series do not satisfy the requirements of 

stationarity so that they have to be converted to stationary processes before 

modeling. Many test statistics have been developed to check whether the series 

contains unit roots or not. The most popular of them is Dickey-Fuller test.  

 

 Dickey and Fuller (1979) introduced Dickey – Fuller (DF) test statistic to 

test whether the series contains unit root or not. They assume that the underlying 

process is a simple AR(1) model.  

 

 As explained in Türker (1999), in the simplest form of the test, the model 

is given as, 

 

 yt = a1yt-1 + �t, 

 

where �t is a white noise process with zero mean and variance �2.  

 

 To obtain the test statistic, subtract yt-1 from both sides,  

 

 yt – yt-1 = a1yt-1 – yt-1 + �t, 

 �yt = (a1 – 1)yt-1 + �t, 
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 �yt = �yt-1 + �t, 

 

so that testing the hypothesis that a1 = 1 is equivalent to testing � = 0.  

 

Dickey and Fuller (1979) consider three different equations that can be 

used to test: 

 

 �yt = �yt-1 + �t, 

 

 �yt = � +  � yt-1 + �t, 

 

 �yt = �+  � yt-1 + 	t + �t. 

  

The first equation written above is a pure random walk model, the second 

equation adds an intercept or drift term, and the last one includes both a drift and 

linear time trend so that it is possible to test whether the trend that series exhibits 

is deterministic or stochastic (Enders, 1995).  

 

 In all of the above equations, H0: � = 0 is tested. If the null hypothesis is 

rejected the sequence does not contain a unit root. The estimation technique is 

Ordinary Least Squares (OLS). The calculated test statistic is compared by the 

critical values reported in the Dickey – Fuller tables. 

 

 The DF test considers the underlying process as AR(1). However, it can be 

any other processes also. Because of this Augmented Dickey–Fuller (ADF) test 

statistics has developed in the same manner to check the stationarity of the series.  
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CHAPTER 4 

 

 

VOLATILITY MODELS 

 

 

 

Modeling the volatility of a stochastic process has received much more 

attention in recent years. Volatility is the amount of price movement of a stock, 

bond or the market in general during a specific period. If the price move up and 

down rapidly over short time periods, it has high volatility; if the price almost 

never changes, it has low volatility.  

 

There are so many methods which have been developed for modeling the 

mean value of the variable in interest, one of them is the Box-Jenkins approach 

explained in the previous chapter. However, the random component of the series 

may also show changes in variability. As Campbell, Lo and MacKinlay stated in  

1997, “ It is both logically inconsistent and statistically inefficent to use volatility 

measures that are based on the assumption of constant volatility over some period 

when the resulting series moves through time”. In some cases, the assumption of 

constant variance is not satisfied and this is called as the heteroscedasticity 

problem. More efficient estimators and better forecast values can be obtained if 

the heteroscedasticity is handled properly. Because of this, the model which is 

used in estimating and forecasting the time series, should satisfy the constant 

variance assumption. In most of the financial time series, volatility clustering is 

usual in the sense that large changes are followed by large changes, and small 

changes are followed by small changes. Moreover, volatility asymmetry is also 
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quite common. Therefore, volatility models that accommodate all of the above 

features are needed to be constructed (Kuan, 2003).  

 

The volatility models can be divided into two main classes: deterministic 

and stochastic volatility models. In deterministic volatility models, the conditional 

variance is a deterministic function of past observations. These are called as 

Autoregressive Conditionally Heteroscedastic (ARCH) type models. In stochastic 

case, on the other hand, the variance equation has its own innovation component 

which makes the process stochastic rather than deterministic (Pederzoli, 2003). In 

this chapter, both deterministic and stochastic volatility models are described. 

 

4.1 Autoregressive Conditionally Heteroscedastic Models  

 

 Engle (1982) introduced the autoregressive conditional heteroscedastic 

(ARCH) model, which was a first attempt in econometrics to model the volatility. 

The aim is to simultaneously model the conditional mean and conditional variance 

of the time series. To model the conditional mean and the conditional variance, 

Engle used the following principle: 

 

 “ In order to model the conditional mean of yt given yt-1 , yt-2, yt-3,… write yt 

as a conditional mean plus white noise. To allow the non-constant conditional 

variance in the model, multiply the white noise term by the conditional standard 

deviation.” 

 

 To illustrate the principle ,consider a time series {yt} such that, 

 

 yt = �t + �t�t , 

 

 �t = a + b1x1,t + b2x2,t +… +bkxk,t ,   

 

where �t denotes the conditional mean which is a function of explanatory 

variables xi,t that may contain both lagged exogenous and dependent variables. 
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The disturbance term �t is identically and independently distributed with zero 

mean and unit variance. Usually, the assumption of normality for �t is added. �t is 

the conditional variance of the process.  

 

The ARCH(1) process is in the form: 

 

�2
t = a0 + a1 ( yt-1 - µ t-1 )2, a0 >0,  a1�0. 

 

If the mean part of the process is taken as zero, that is if  �t = 0, then, the 

ARCH(1) process can be written as, 

 

yt = �t�t,              (4.1) 

 

�2
t  = a0 + a1y2

t-1,                      (4.2) 

 

where,  

 

E(yt | �t-1) = �t  E(�t | �t-1) = �t  E(�t) = 0, 

 

E(yt
2 | �t-1) =  �t

2 E(�t
2 | �t-1) = �t

2 E(�t
2) = �t

2, 

 

�
t-1 is the information set which contains all the available information up to time 

t. As �t
2 changes with yt-1

2, yt are conditionally heteroscedastic. 

 

The argument in Triantafyllopoulos(2003) considers, 

 

 yt
2 = �t

2 + (yt
2 - �t

2), 

 

by using equation (4.2), 

 

yt
2 = a0 + a1y2

t-1 + yt
2 - �t

2, 
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yt
2 = a0 + a1y2

t-1 + �t
2 (�t2-1), 

 

yt
2 = a0 + a1y2

t-1 + vt, 

 

where vt = �t
2 (�t2-1).  

 

The process yt
2 as defined above follows a non-normal AR(1) model with the 

innovations �t
2 (�t2-1).  

 

 By the law of iterated expectation, E(yt) = E[E(yt|�-1)], and var(yt) = 

E(�t
2) = a0 + a1 var(y2

t-1). If a1<1, the process is stationary and  var(yt) = a0/(1-a1). 

Assuming that yt are conditionally normally distributed, E(yt
4|�t-1) = 3�t

4 so that,  

 

E(yt
4) = 3E(a0

2 + 2a0a1yt-1
2 + a1

2yt-1
4), 

 

          =3(a0
2 + 2a0 a1 Var(yt-1

2) +  a1
2 E(yt-1

4)). 

 

When E(yt
4) is constant,  

 

 m4 = [3a0
2(1 + a1)] / [(1-a1)(1-3a1

2)]. 

 

This implies that 0�a1
2
�1/3. The kurtosis coefficient of yt is then, 

 

 m4 / var(yt)2 = 3(1-a1
2) / (1-3a1

2) > 3. 

 

According to this result, it can be noted that the unconditional distribution of yt is 

leptokurtic. That means, even yt are conditionally normally distributed, the 

resulting ARCH(1) process can not be normal (Kuan, 2003).  

 

 An ARCH(1) process is easily generalized to an ARCH(q) process such 

that, 
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yt = �t�t,  

 

 ,
1

2
0
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q
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itit yaaσ  

 

where a0>0,  ai�0 (i = 1,… ,q). For stability of the process, a1 + a2+… + aq should 

be less than one ( Li, Ling, McAleer, 2002).  

 

 Similar to ARCH(1) model, ARCH(q) model can be represented by an AR 

representation with order q.   

 

 In order to test whether there exists an ARCH effect, a simple test can be 

used. First step of the procedure is running a linear regression with explanatory 

variables. Then, squared residuals of the regression are regressed on their q lags 

such that �t2 = �0 + �1�t-12 + ....�p�t-q2 + vt and the R2 of the regression equation is 

multiplied by the number of usable observation, T. The test statistic TR2 is 

distributed as chi-square with degree of freedom q which is the number of 

restriction on the null hypothesis �1 = �2 = .... �q = 0 . If the test value is greater 

than the critical value the conditional variance has to be modelled, otherwise there 

is no need for ARCH models (Engle, 1982).  

 

 There are some problems with ARCH(q) models. The required value of q 

might be very large and the non-negativity constraints on coefficients might be 

violated. Because of these reasons, Generalized Autoregreesive Conditionally 

Heteroscedastic (GARCH) models are introduced. 

 

4.2 Generalized Autoregressive Conditionally Heteroscedastic Models 

 

 Generalized Autoregressive Conditionally Heteroscedastic (GARCH) 

models are first introduced by Bollerslev in 1986. 

 

 The standard GARCH(1,1) process is specified as: 
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 yt = �t�t, 

 

�2
t  = a0 + �1y2

t-1 + b1 �t-1
2,  a0>0,  a1, b1�0. 

 

The conditional variance equation of GARCH(1,1) model contains a 

constant term, news about volatility from the previous period, measured as the lag 

of previous term squared residual �t-1
2 (the ARCH term), and last period’s forecast 

variance �t-1
2 ( the GARCH term). 

 

 The unconditional mean and variance of GARCH(1,1) process can be 

obtained by using law of iterative expectations such that, 

 

 E(yt) = E[E(yt|�-1)] = 0, 

 

 var(yt) = E(�t
2) = a0 + a1 E(yt-1

2) + b1E(�t-1
2).  

 

weak stationarity implies that  

 

 var(yt) = a0 / (1-a1-b1).  

 

Thus, a1 + b1 must be less than one to variance be finite.  

 

As in the ARCH process, in GARCH(1,1) model the marginal distribution 

of yt is leptokurtic even if the conditional distribution is normal (Kuan, 2003).  

 

 As illustrated in Enders (1995), the more general GARCH(p,q) model is, 

 

 yt = �t�t,, 

 

 .
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It can be shown that any GARCH(p,q) process can be written in an 

ARMA(p,q) representation (Kuan, 2003).  

 

As stated by Peters (2001), the GARCH type models are estimated by 

using a maximum likelihood (ML) approach. First, the conditional distribution of 

yt has to be specified. The standard approach is to use conditional normal density. 

However, as it is shown in chapter 4.1, the marginal distribution of yt will be 

leptokurtic even if the conditional distribution is normal because financial time 

series usually have excess kurtosis and skewness. Bollerslev and Wooldridge 

(1992) introduce the quasi-maximum likelihood (QML) estimation method which 

is robust to departures from normality. It was illustrated in Kuan (2003) that the 

QMLE’s are asymptotically efficient  if the conditional means and variances are 

correctly specified. 

 

 As an  alternative to conditional normal distribution, Bollerslev (1987), 

and Kaiser (1996) use Student–t distribution while Nelson (1991), Kaiser (1996) 

suggest Generalised Error Distribution (GED). On the other hand,  Fernandez and 

Steel (1998) use Skewed Student-t distribution.  

 

In this study, the assumption of conditional normality is used in 

estimation. 

 

4.3 GARCH in Mean Models 

 

 In some financial applications, the expected return on an asset related to 

the expected asset risk . For such cases Engle, Lilien and Robins (1987) suggest 

GARCH in mean [GARCH-M] process. In these types of models, the mean of the 

sequence depends on its own conditional variance such that, 

 

 yt = c + ��t
2 + ut, 

 

with ut = �t�t and 
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 �2
t  = a0 + a1y2

t-1 + b1 �t-1
2,  a0>0, a1, b1�0 

 

In estimation of these models, ML estimation method is used like in GARCH 

models.  

 

4.4 Exponential GARCH Models 

 

 In GARCH models, due to the presence of yt
2 in the variance equation, the 

positive and negative values of the lagged innovations have the same effect on the 

conditional variance. However, volatility responds to positive and negative shocks 

differently, so in the case of volatility  asymmetry GARCH models are not good 

choices (Kuan, 2003). For this reason, exponential GARCH (EGARCH) models 

were introduced by Nelson in 1991. 

 

 A simple EGARCH(1,1) model is, 

 

 yt = �t�t, 

 

with conditional variance, 

 

�t
2 = exp [�+� ln(�t-1

2) +	(yt-t /�t-1) + �| yt-t /�t-1| ]. 

 

In EGARCH process positive and negative shocks of the same magnitude 

do not have the same effect on volatility and due to the exponential function, a 

larger innovation has a larger effect on �t
2. These are the basic  differences 

between GARCH and EGARCH models.  

 

EGARCH(1,1) process can be extended to EGARCH(p,q) process such 

that, 

 

yt = �
t � t, 
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ARCH type models are the first attempts to deal with the volatility. They 

have applied a lot so there are many references in the literature. The main 

advantage is that they are easy to use models and the estimation is fast. However, 

volatility modelling is very difficult because of uncertain events and ARCH type 

models may not capture these surprises. When there are smooth changes the 

performance of these models is good but when the changes are unexpected they 

struggle. All ARCH/GARCH models are deterministic, that means they model the 

volatility as a deterministic function. In order to be more realistic, the models 

which consider the volatility stochastically should be considered.  

 

4.5 Stochastic Volatility 

 

 The stochastic volatility (SV) model is an important alternative to the 

ARCH type models and has attracted much attention recently. In ARCH / 

GARCH models, the volatility is considered as deterministic however, in SV 

models it is modelled as stochastic. That means SV considers the shocks affecting 

volatility in contrast to GARCH but the main disadvantage of SV models is the 

difficulty of estimation.  

 

As illustrated in Kuan(2003), a simple SV process is,  

 

 yt = �t�t,        (4.3) 

 

 ln(�t
2) = �0 + �1 ln(�t-1

2) + vt,      (4.4) 

 

where |�1| <1 to ensure stationarity of ln(�t
2). The volatility equation has 

innovation term vt which is independent of �t. The inclusion of new innovations 
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makes the model more flexible but estimation of the process becomes much more 

difficult.  

 

 If the assumption of normality is added, that is if �t ~ N(0,1) and vt ~ 

N(0,�v
2), then, 

 

 E(ln�t
2) = �0 + �1 E[ln(�t-1

2)] + E(vt), 

 

Since |�1| <1 and vt has zero mean the expectation becomes, 

 

 E(ln�t
2) = �0 / (1-�1). 

 

To calculate the variance, 

 

var(ln�t
2) = �1

2
 var[ln(�t-1

2)] + var(vt), 

 

Again from stationarity of the process the variance is, 

 

var(ln�t
2) = �v

2/(1-�1
2). 

 

That means ln�t
2 is distributed as Normal with mean �0 / (1-�1) and variance 

�v
2/(1-�1

2). 

 

If ln�t
2 is distributed as normal then �t

2 is distributed as log-normal and the log-

normal distribution can be specified in terms of the parameters of normal 

distribution. It is shown that, 

 

 ln�t
2 ~ N {�0 / (1-�1) ,�v

2/(1-�1
2)}, 

  

 then,  
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�t
2 ~ log-normal {exp [�0 / (1-�1) + �v

2/2(1-�1
2)], exp [2 �0 / (1-�1)+ �v

2/(1-

�1
2)] exp [(�v

2/(1-�1
2)) -1]}. 

 

Knowing that E(yt) = 0 and using above information the higher order 

moments of yt can be calculated: 

 

E(yt
2)=E(�t

2)E(�t2) = exp [�0 / (1-�1) + �v
2/2(1-�1

2)], 

 

E(yt
4) = E(�t

4)E(�t4) = 3 exp [2 �0 / (1-�1) + 2 �v
2/ (1-�1

2)]. 

 

When the kurtosis of yt, m4, is calculated, 

 

m4 = E(yt
4) / [E(yt

2)]2 = 3 exp [�v
2/ (1-�1

2)] > 3, 

 

thus, yt is also leptokurtic.  

 

An alternative and more commonly used representation of SV models are 

given in Kim, Shephard and Chib (1998) such that,  

 

 yt = � eht/2 �t, 

 

 ht = � + 
 (ht-1 – �) + ���t, 

 

where the log-volatility is denoted by ht such that, ht = ln(�t
2). The log-volatility  

follows a stationary process if |�| < 1. �t and �t are uncorrelated standard normal 

white noise shocks and �� is the volatility of the log-volatility. The parameter � or 

exp (�/2) is constant scaling factor and in some cases � is taken as 0 so � will be 

1.  
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4.5.1 SV Estimation 

 

 Unlike the ARCH/GARCH models, a SV model include error terms in 

both mean and variance equations. The likelihood function is difficult to evaluate 

and several methods have been developed to solve this estimation problem. Such 

methods include generalized method of moments (GMM), quasi-maximum 

likelihood (QML) estimation, Monte Carlo Markov chain (MCMC) methods. In a 

Monte Carlo study, Andersen, Chung and Sorensen (1999) compared the 

performances of various procedures and the MCMC method is found to be the 

most efficient tool in making inferences about SV models. Therefore, in this 

study, MCMC approach is used to estimate the parameters of the basic SV model.  

 

 Since MCMC is a Bayesian approach the basic ideas in Bayesian analysis 

will be described below. 

 

4.5.2 Bayesian Theory 

 

 As explained in Koop (2003), Bayesian econometrics is based on a few 

simple rules of probability. For two random variables A and B, it is known that, 
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Similarly, 
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where y is the data set and 	 contains the unknown parameters. Bayesians treats 

the 	 as a random variable and p(	|y) is the fundamental of interest. It gives all the 

information about the parameters after observing the data. Ignoring p(y), 
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 )()|()|( θθθ pypyp ∝   

 

The term p(	|y) is referred to as the posterior density, p(y|	) is the likelihood 

function and p(	) is the prior density. 

 

If the mean of the posterior density, called posterior mean, is wanted to be 

estimated, 

 

 E(	|y) = �	 p(	|y) d	. 

 

If g(	) is of interest rather than 	, then 

 

 E[g(	)|y]) = �g(	) p(	|y) d	. 

 

In general, the above integral can not be evaluated analytically. Usually a 

numerical method is needed  and in Bayesian econometrics this method is called 

as posterior simulation.  

 

 The simplest posterior simulator is referred as Monte Carlo integration. 

 

The Monte Carlo integration has following steps: 

 

Step1: Take a random draw, 	s from the posterior of 	. 

 

Step2: Calculate g(	s), where g(.) is a function of interest, keep the result. 

 

Step3: Repeat step 1 and 2 S times. 

 

Step 4: Take the average of the S draws of g(	1),… , g(	s). The average 

value converges to E[g(	)|y] as S goes to infinity.  

 

These steps give an estimate of E[g(	)|y] for any function g(.).  
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Monte Carlo integration is only an approximation. However, the degree of 

approximation error can be controlled by selecting S. From central limit theorem 

as S goes to infinity,  

 

 ),0()}|))((ˆ{ 2
gS NygEgS σϑ →− , 

 

where �g
2 = var[g(	)|y] and it can be estimated by Monte Carlo integration. The 

estimate is denoted as 2ˆ gσ . The confidence interval found by using normal 

distribution for Sĝ , or the numerical standard error defined by 
S
gσ̂

can show the 

accuracy of the estimation. If S = 10 000, for example, then the numerical 

standard error is 1% as big as the posterior standard deviation.  
 

In many cases, it is not possible to take random draws from p(	|y) because 

of the functional forms. However, dividing the parameter space 	 into various 

blocks such that 	 = (	(1), 	(2), ... 	(B)) and then taking random samples from full 

conditional distributions p(	(1) | y, 	(2),...,	(B)),… , p(	(B) | y, 	(1),..., 	(B-1)) is a 

possible way. This approach is called as Gibbs sampler and it is a powerful tool 

for posterior simulation. In this method, first an initial value is chosen and then 

random draws of 	(i) conditional on previous draws are taken sequentially. It 

yields a sequence of draws from the posterior. A possible problem in this 

application is to select the initial value. However, the initial values do not matter 

in the sense that the Gibbs sampler will give a sequence of draws from the 

posterior and it is repeated S times. The first S0 of these replications are called as 

burn- in replications and the remaining S1 is used in estimation. Generally, the 

steps of the Gibss sampler as follows: 
 

Step 0: Choose a starting value, 	(0), for s = 1,..., S 

 

Step 1: Take a random draw, 	(1)
(s) from p(	(1) |y, 	(2)

(s-1), ..., 	(B)
(s-1)), 

 

Step 2: Take a random draw, 	(2)
(s) from p(	(2) |y, 	(1)

(s-1),..., 	(B)
(s-1)), 
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Step B: Take a random draw, 	(B)
(s) from p(	(1) |y,	(1)

(s-1),...,	(B-1)
(s-1)), 

 

where B is the number of block in parameter set 	, S is the number of replication. 

Following above steps yield  S values of 	. To eliminate the effect of initial value 

the burn-in replications should be dropped and remaining S1 draws is used to 

make inferences about 	. That is, like Monte Carlo integration, the average of S1 

draws converges to E[g(	)|y] as S1 goes to infinity.  

 

 While applying the above procedure, it can be ensured that the effects of 

the initial value are eliminated. Moreover, unlike the Monte Carlo integration, in 

Gibbs sampling the draws are not independent from each other. Therefore, Gibbs 

sampling required more draws than Monte Carlo integration.  

 

 The fact that the draws in Gibbs sampling are dependent to each other 

means that the resulted sequence is a Markov Chain. This kind of simulators is 

called Markov Chain Monte Carlo (MCMC) algorithms.  

 

 Another type of MCMC algorithm is called Metropolis-Hastings 

algorithm. In many models it is not easy to take random samples from the 

posterior densities. Instead of this random draws are taken from a density q(	) 

which is easy to draw from. This density is called as candidate generating density. 

	* is a draw taken from the candidate density q(	(s-1) ; 	) which means that a 

candidate draw is taken for the random variable 	 whose density function depends 

on 	(s-1). In other words, the draws are not independent to each other and thus 

Metropolis-Hastings algorithm is a MCMC algorithm like Gibbs sampling.  

 

 The procedure for Metropolis-Hastings algorithm is as follows: 

 

 Step 0: Choose a starting value, 	(0). 
 

 Step 1: Take a candidate draw from the candidate generating density  

 q(	(s-1) ; 	). 
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 Step 2: Calculate an acceptance probability, �(	(s-1), 	*). 

 

 Step 3: Set 	(s) = 	* with probability �(	(s-1), 	*) and set 	(s) = 	(s-1) with 

probability 1- �(	(s-1), 	*). 

 

 Step 4: Repeat steps 1, 2, 3 S times 

 

 Step 5. Take the average of the S draws g(	(1)),… , g(	(S)). 

 

These steps give an estimate of E[g(	)|y]. The difference in Metropolis-Hastings 

algorithm is not all the draws are accepted. There is an acceptance probability 

such that: 
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where p(	 = 	*|y) is the posterior density at point 	*, q(	 *; 	) is a density for 	  

and so q(	 *; 	 = 	 (s-1)) is the density for 	 evaluated at 	 (s-1).  

 

 In some cases, some conditional posterior distributions are easy to draw 

from but one or two conditionals do not have a convenient form. In these types of 

situations Metropolis-within-Gibbs algorithms are commonly used. Gibbs 

sampling is applied to the conditional posteriors which have easy form and 

Metropolis-Hastings algorithm is used for the other ones.  

 

4.5.3 MCMC for SV 

 

 In a basic SV model which is represented by equations (4.3) and (4.4) the 

parameters are 	 =(
, � �
2, µ). The posterior of 	 can be written as: 

 

 ).()|()|( θθθπ fyfy ∞  
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where f(y|	) is the likelihood function and f(	) is the prior density for 	. However, 

since, 

 

 �= dhhfhyfyf )|(),|()|( θθθ , 

 

(where h = (h1,… ,hT) is the T volatilities) is difficult to find, and so the direct 

analysis of )|( yθπ is not possible. In such cases, posterior simulators can be 

used. A possible way to solve this problem is to apply Gibbs sampling which is a 

MCMC algorithm. In Gibbs sampling, as explained before, the parameter space is 

divided into blocks and the algorithm proceeds by sampling each block from the 

full conditional distributions. One cycle of the algorithm is called sweep or a scan, 

the draws from the sampler will converge to the draws from the density in interest 

as the number of sweeps increases.  

 

For the basic SV model, the parameter space is (	,h) where 	 =(
, � �
2, µ). 

The Gibbs sampling algorithm for the SV model is given in Kim, Shephard and 

Chip (1998) as follows: 

 

1. Initialize h and 	. 

 

2. Sample ht from h-t, y, �  , t=1,…,T     (h-t denotes the rest of the h vector 

other than ht). 

 

3. Sample � �
2| y, h, 
, µ, 

 

4. Sample 
| y, h, µ, � �
2, 

  

5. Sample µ| y,h,
, � �
2. 

 

6. Go to 2.  
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Cycling from 2 to 5 is a complete sweep of this sampler. Many sweeps 

should be performed to generate samples from 	, h| y.  

 

The most difficult part of the algorithm is to sample from ht| h-t, yt, 	 since 

this operation has to be done T times for each sweep. However, in SV models it is 

not possible to sample directly from f(ht| h-t, yt, 	) because 

 

),|(),|(),,|( θθθ ttttttt hyfhhfyhhf −− ∝   t=1,...,n 

 

so Metropolis-Hastings procedure is used to draw from f(ht| h-t, yt, 	). The 

candidate density is taken as normal with parameters �t, vt
2  

  

To get ��2 random draws from inverse-gamma distribution are taken such  

that, 
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where 5=rσ , and rS σσ ×= 01.0 . 

 

Metropolis-Hastings procedure is used for sampling � and the candidate 

distribution is assumed to be normal with parameters ϕ̂  and ϕV . 

 

Finally, again normal distribution is used for drawing samples of µ  such 

that, 

),ˆ(~ 2
µσµµ N  

 

All of the parameters mentioned above are stated explicitly by Kim, 

Shephard and Chip (1998). 
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This algorithm is done by an Ox code which is fully documented in the 

web site http://www.nuff.ox.ac.uk/users/shephard/ox/ (3 May 2004). This 

program calculates the estimated values of the parameters and log-likelihood ratio 

statistics of SV model automatically.  

 

 

 

 

 

 

 

 

 



 42 

 

 

 

 

CHAPTER 5 

 

 

APPLICATION OF VOLATILITY MODELS ON TURKISH FINANCIAL 

DATA 

 

 

 

In order to illustrate the volatility models, the weekly observations on 

Turkish T.L/ USA $ exchange rates from the first week of October 1989 until the 

last week of the December 2003 are taken.  

 

The graph of the data is shown in Figure 5.1, 
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Figure 5.1: Plot of the TL/Dollar exchange rates 

 

It is easily seen that the series contains a trend component which should be 

removed before modelling. To remove the trend first we should decide whether it 

is deterministic or stochastic. In order to do this ADF unit root test is applied two 
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times. In the first case, the ADF equation which does not include the trend 

component is used to calculate the test statistic; in the second case trend variable 

is considered in the equation. The trend is deterministic if the series is stationary 

with trend but non-stationary without trend. ADF statistics are calculated for both 

cases and the results are as illustrated in Table 5.1 and Table 5.2, 

 

Table 5.1 Case1: ADF test statistic without trend component 

ADF Test Statistic -1.588692 1%   Critical 

Value 

-3.4420 

  5%   Critical 

Value 

-2.8659 

  10% Critical 

Value 

-2.5691 

 

 

Table 5.2 Case 2: ADF test statistic with trend component 

ADF Test Statistic 0.628397 1%   Critical 

Value 

-3.9755 

  5%   Critical 

Value 

-3.4183 

  10% Critical 

Value 

-3.1313 

 

 

According to Table 5.1 and Table 5.2 the series includes a stochastic trend 

because it is found to be non-stationary in both cases. 

 

Since the trend is not deterministic first difference is taken to get a 

stationary process. 
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Figure 5.2: Plot of the difference of the TL/Dollar exchange rates 

 

 Figure 5.2 shows the plot of the first difference, and it suggests that a time-

varying volatility and volatility clustering is quite evident in the data. From the 

plot, the differenced series is stationary. However, to test statistically again ADF 

unit root test applied.  

 

Table 5.3 Unit root test for difference of TL/Dollar exchange rates 

ADF Test Statistic -13.73746 1%   Critical 

Value* 

-3.4420 

  5%   Critical 

Value 

-2.8659 

  10% Critical 

Value 

-2.5691 

 

 

According to Table 5.3, the ADF test statistics is greater than all the 

critical values in absolute value so the hypothesis of non-stationarity is rejected. 

That means the differenced series is stationary which is denoted as I(0).  

 

In financial time series analysis, the log value of the first differenced series 

is called as the return and in practice mean- corrected returns are mainly dealing 

with such that, 
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where rt denotes the exchange rate at time t. Therefore, the percentage mean-

corrected returns are calculated for the TL/Dollar exchange rates and the resulting 

series yields the basic statistics values as in Figure 5.3.  

 

 
Figure 5.3 Descriptive statistics for the TL/Dollar exchange rates 

 

 As it is seen in Figure 5.3 that, the kurtosis value is high which supports 

the claim that many financial time series have a leptokurtic distribution and also 

from the Jarque-Bera test, the hypothesis of normality is strongly rejected.  

 

 In practice, while dealing with volatility the mean part of the process is not 

taken into account and the variance is modelled only. Therefore, µ t is taken as 

zero when applying volatility models.  

 

 Before modelling the variance the squared of the residuals, in this case the 

data itself, should be checked whether they include any ARCH effects or not. In 

order to test whether there exists any ARCH effects or not, the ARCH-LM test is 

applied to the data. 
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Series:  
RETURN  
Observations 721 
Mean    -0.101773 
Median -0.084155 
Maximum  7.230558 
Minimum  -5.467083 
Std. Dev.   1.267858 
Skewness   0.520096 
Kurtosis   7.650156 
Jarque-Bera  682.1244 
Probability  0.000001 
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Table 5.4 Test results of autocorrelation 

H0: no autocorrelation in squared returns 

             Lag   F value   p value 

            1   82.959930.   0.000001 

up to 2   43.18155   0.000001 

up to 3   34.48939   0.000001 

up to 30  5.745111   0.000001 

  

 

According to Table 5.3 the hypothesis of no autocorrelation in squared 

returns is rejected at all lags therefore the volatility should be modelled by either 

an ARCH type or a stochastic model.  

 

5.1.Estimation of GARCH models 

 

 Various deterministic volatility models are fitted to the data. Actually, in 

practice higher order GARCH models are not preferred because it is known that 

GARCH(1,1) is able to capture the variance changing as well as the higher order 

ARCH type models so GARCH(1,1), E-GARCH and M-GARCH models are 

fitted to the data. The results are given in Table 5.5, Table 5.6 and Table 5.7, 

respectively. 
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Table 5.5 GARCH(1,1) results for percentage return 

Dependent Variable: RETURN 

Method: ML - ARCH 

Date: 08/11/04   Time: 17:22 

Sample: 1 721 

Included observations: 721  

Convergence achieved after 20 iterations 

 Coefficient Std. Error z-Statistic Prob.  

        Variance Equation 

C 0.064891 0.013004 4.990052 0.0001 

ARCH(1) 0.243420 0.037571 6.478876 0.0001 

GARCH(1) 0.734854 0.033985 21.62267 0.0001 

R-squared -0.006453     Mean dependent var -0.101773 

Adjusted R-squared -0.009256     S.D. dependent var 1.267858 

S.E. of regression 1.273712     Akaike info criterion 2.894291 

Sum squared resid 1164.842     Schwarz criterion 2.913351 

Log likelihood -1040.392     Durbin-Watson stat 1.182303 

 

Table 5.6 E-GARCH(1,1)  results for percentage return 

Dependent Variable: RETURN 

Method: ML - ARCH 

Date: 08/11/04   Time: 17:23 

Sample: 1 721 

Included observations: 721 

Convergence achieved after 39 iterations 

 Coefficient Std. Error z-Statistic Prob.  

        Variance Equation 

C -0.312529 0.034133 -9.156203 0.0001 

|RES|/SQR[GARCH](1) 0.422061 0.047251 8.932262 0.0001 

RES/SQR[GARCH](1) 0.024757 0.014344 1.725998 0.0843 

EGARCH(1) 0.940813 0.013651 68.91974 0.0000 

R-squared -0.006453     Mean dependent var -0.101773 

Adjusted R-squared -0.010664     S.D. dependent var 1.267858 

S.E. of regression 1.274600     Akaike info criterion 2.893941 

Sum squared resid 1164.842     Schwarz criterion 2.919354 

Log likelihood -1039.266     Durbin-Watson stat 1.182303 
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Table 5.7 M-GARCH(1,1) results for percentage return 

Dependent Variable: RETURN 

Method: ML - ARCH 

Date: 08/11/04   Time: 17:25 

Sample: 1 721 

Included observations: 721 

Convergence achieved after 23 iterations 

 Coefficient Std. Error z-Statistic Prob.  

GARCH -0.051835 0.025990 -1.994449 0.0461 

        Variance Equation 

C 0.068398 0.013665 5.005343 0.0001 

ARCH(1) 0.253028 0.037704 6.710844 0.0001 

GARCH(1) 0.723407 0.033582 21.54171 0.0001 

R-squared -0.004405     Mean dependent var -0.101773 

Adjusted R-squared -0.008607     S.D. dependent var 1.267858 

S.E. of regression 1.273303     Akaike info criterion 2.894733 

Sum squared resid 1162.473     Schwarz criterion 2.920146 

Log likelihood -1039.551     Durbin-Watson stat 1.168448 

 

 

Comparing different GARCH type models by looking at AIC and SBC, M-

GARCH models with both variance and standard deviation term in the mean 

equation are not preferred. If the E-GARCH and GARCH(1,1) models are 

anlaysed, AIC of  E-GARCH and SBC of GARCH(1,1) is smaller. However, SBC 

has better properties and it is more commonly used in comparison than AIC( 

Enders, 2003) so GARCH(1,1) is chosen between the deterministic type of 

volatility models. 

 

Error terms may be checked after deciding the suitable model. Descriptive 

statistics are obtained and shown in Figure 5.4. According to them, the 

distribution of the error term is not normal, it is leptokurtic and the Jarque-Bera 

test also rejects the normality which does not conflict with the theory.  
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Figure 5.4 Descriptive statistics for the error term under GARCH(1,1) process 

 

As a result the following GARCH(1,1) process is fitted to the data in order 

to model the volatility. 

 

 yt = �t�t,, 

 

 �
2

t  = 0.064891 + 0.243420y2
t-1 + 0.734854 �t-1

2. 

 

 The parameters should satisfy the stationarity conditions in the conditional 

variance equation. The sum of 0.243420 + 0.734854 = 0.978274 < 1 and all 

coefficients are positive that means the restrictions are satisfied for the 

GARCH(1,1) model.  

 

5.2 Estimation of SV model 

 

  As explained before, the GARCH types models consider the variance of 

the series as deterministic although it can be stochastic. Therefore the following 

SV model is estimated: 
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Series: Standardized Residuals 
Sample 1 721 
Observations 721 

Mean    -0.012620 
Median -0.034912 
Maximum   7.429422 
Minimum  -2.977934 
Std. Dev.   0.999175 
Skewness   0.840634 
Kurtosis   7.850459 

Jarque-Bera  791.7064 
Probability  0.000001 
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 yt = � eht/2 
�t, 

 

 ht = � + � (ht-1 – �) + ���t,  

 

where �t and  �t  are uncorrelated white noise processes.  

 

 In order to estimate the SV model an MCMC algorithm is used which is 

completely done by the written Ox code. The MCMC sampler was initialized by 

setting all the ht = 0, and � = 0.95, � �
2 = 0.02 and µ = 0. The algorithm is 

iterated 50,000 times. The burn-in period is large enough to ensure that the effect 

of the starting values becomes insignificant. The results are summarized in Table 

5.8.  

 

Table 5.8 Estimation results for the SV model 

Parameter  mean  MC STD Error Inefficiency 

�|y    0.97059 0.00083224      19.723    

�
�|y    0.26768   0.0053653    70.699 

�=exp(µ/2)|y   0.94034 0.0047216    2.2324 

 

 

 According to the results, � is very close to the one, that means the shocks 

in the log-variance are highly persistent as in the case of the GARCH. The 

numerical standard errors of the sample mean deriving from the Monte Carlo 

simulation are considered as a measure of the accuracy of the estimates. The 

accuracy could be improved by increasing the number of iterations. The 

simulation inefficiency factors measure how well the Markov Chains mixes. It is 

defined as the ratio of the numerical variance (i.e. square of the Monte Carlo 

standard error) and the variance of the sample mean that would derive from 

drawing independent samples, as independent random draws would be the optimal 

outcome of the simulation procedure, the most desirable inefficiency factor is one 

that closest to one. The inefficiency factor can be interpreted as the number of 
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times the algorithm needs to be run to produce the same accuracy in the estimate 

that would derive from independent draws. The inefficiency factor can generally 

be reduced by increasing number of iterations (Pederzoli, 2003).  

 

After fitted the SV model to the data the diagnostic checks can be applied 

to the error term. 

 

 
Figure 5.5 Descriptive statistics for the error term under SV process 

 

 Figure 5.5 shows that the resulting error term has a high kurtosis value and 

it is far from being normal. The normality is also rejected with the Jarque-Bera 

test.  

 

 Two different types of volatility models are fitted to the data, now it 

should be cleared that which type is more suitable to the percentage returns. In 

order to compare the GARCH and SV models, the likelihood ratio test statistic 

will be used.  

 

5.3 Comparison of GARCH and SV  

 

 In order to compare the SV and GARCH (1, 1) models a hypothesis testing 

procedure may be applied. Hypothesis testing theory is usually advocated when 
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Probability  0.000001 
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one of the hypotheses H0 can be considered as a limiting case of H1. That means, 

the model shown  H1 is reduced to the model in H0 by imposing some restrictions. 

In these cases, H0 is said to be nested in H1 ( Gourieroux, 1994). However, in the 

case of SV and GARCH models the usual nested hypothesis procedures can not 

be applied  because the models of interest are non-nested. A different procedure 

will be used in order to decide which model is better to construct. In this study, 

the likelihood ratio test statistics which relies on simulation suggested by 

Atkinson (1986) is calculated to test the hypothesis.  

 

The likelihood ratio (LR) test statistic for comparing the models is given 

by, 

 

 { })ˆ,|(̂log)̂,|(̂log2 0011 θξθξ yfyfLR y −= , 

 

where 1ξ  denotes the SV model and 0ξ  the GARCH model and )̂,|(̂log 11 θξyf , 

)ˆ,|(̂log 00 θξyf  denote the respective estimates of the log likelihoods. The 

sampling variation of  LRy under the SV model is true or under the alternative that  

GARCH model is true is approximated by simulation. The procedure is as 

follows: 

 

Under the assumption of SV model is true, 999 set of yi values are 

generated. For each simulated series, the parameters of GARCH and SV models 

are estimated and then the value of LRy
i ( i=1… 999) statistic is recorded. The 

resulting values of LRy
1,… ..LRy

999 are a sample from the exact distribution of LRy 

under the SV null. After that, the empirical LRy value is ranked in the 999 

simulated LRy
i values. If it is the largest, H0 is rejected at 0.1% significance level; 

if it is 23th, the significance level is 2.3% and if it is 437, for example, there is no 

evidence against the SV model.  

 

For TL/Dollar exchange rates the log-likelihood ratio statistics for the 

GARCH (1,1) model is -1040.392 and for SV model it is calculated as -1022.2 . 
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For testing the GARCH versus the  alternative of SV,  LR test statistics can be 

calculated as, 

 

LRy= 2{ -1022.2+1040.392} = 36.384. 

 

 When the data are simulated from the GARCH model with estimated 

paramaters and when the value of the LR statistics is compared with the 999 

simulated values, it is found that all of the LR values are negative while the 

empirical value is positive, that is the LRy is the largest among the simulated 

values and so GARCH model is rejected at 0.1% level.  

 

 The same procedure is applied to test the null hypothesis of SV model 

against the alternative of GARCH(1,1) model. This time, data are generated from 

the SV model and again 999 simulated LR values are obtained by using artifical 

observations. According to the results, the empirical value of 36.384 is smaller 

than all of the simulated LR test statistics so the hypothesis of SV model does not 

rejected with probability 0.999. Therefore, both tests are consistent with each 

other and this implies that SV model is a beter alternative than the GARCH(1,1) 

model. In other words, the non-nested LR test statistics give strong evidence 

against the use of GARCH(1,1) model for the case of TL/Dollar exchange rate 

data,which implies that modelling volatility as stochastic rather than deterministic 

will be better. 
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 

Volatility is a key variable which plays a central role in many areas of 

finance, most of the financial data have heteroscedasticity problem and exhibit 

volatility clustering therefore it is important to model volatility correctly. In this 

study, firstly a brief introduction to the volatility modeling is given. After that, the 

most commonly used models for volatility are covered. A simple ARCH model 

and its extensions, namely GARCH, GARCH-M and EGARCH models are 

explained as non-stochastic variance models. Following the ARCH type models, 

the SV process which models the volatility stochastically is considered. In order 

to compare them, the parameters of both type models are estimated. The 

estimation procedures of two kinds of models are different from each other. In 

ARCH type models, QMLE is used in estimation. It is easy to apply and robust to 

departures from normality. On the other hand, in SV case a Bayesian approach is 

considered to estimate the model. The MCMC method, namely the Metropolis-

Hastings and Gibbs sampling algorithms, is used since it is found to be the most 

efficient way to estimate the SV model.  

 

In the application part, the weekly exchange rates of Turkey / USA are 

analyzed. The mean part is not taken as important since the main aim is to model 

the volatility. Among other non-stochastic processes, the GARCH (1,1) model is 

decided to be the most appropriate for the time-varying variance of the data.  The 

estimators of GARCH (1,1) model are obtained by the help of the package E-
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views 3.0. The procedure is fast and easy to do. After that, SV model is estimated 

by applying the MCMC procedure which is done by an Ox code. 

 

 In order to decide which model is better, first the null hypothesis of 

GARCH(1,1) is tested versus the alternative of SV model. The log-likelihood 

ratio (LR) test statistics calculated for non-nested models. The empirical value of 

the LR test statistics is obtained by using the relevant formula and it is found to be 

36.384. After that, the data is generated artificially from the GARCH(1,1) and SV 

models respectively to get the simulated LR values. By comparing the empirical 

value with the simulated ones, the empirical value is found to be the largest  and 

so GARCH(1,1) model is rejected at 0.1% level. In the second case, the null 

hypothesis of SV model is tested versus the alternative of GARCH(1,1) model 

and this time we do not reject the null hypothesis of SV according to the results of 

the LR test statistics. That means, both test results support the claim that SV 

model is a better choice than the GARCH(1,1) model. Therefore, for the case of 

Turkish/ USA weekly exchange rate data, modeling volatility stochastically will 

be better than considering it as non-stochastic depending on the results of LR test 

statistics.  

 

The basic SV model can be extended by taking the underlying distribution 

as to be a more heavy-tailed than the normal distribution, for example the student-

t distribution, or the multivariate SV models may be estimated which can be a 

future work relating with the topics of this thesis. 
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