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ABSTRACT 

SEISMICALLY INDUCED TILTING POTENTIAL OF SHALLOW MATS ON 

FINE SOILS 

Yılmaz, Mustafa Tolga  

Ph.D., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Bahadır Sadık Bakır 

 

September 2004, 259 pages 

 

Occurrence of displacements of shallow mat foundations resting on saturated 

silt-clay mixtures were reported in Mexico City during 1985 Mexico Earthquake, 

and in Adapazarı during 1999 Kocaeli (�zmit) Earthquake. Soft surface soils, 

shallow ground water, limited foundation embedments and deep alluvial deposits 

were the common features pertaining to such foundation displacements in either 

case. Experience shows, while uniform foundation settlements, even when 

excessive, do not limit post earthquake serviceability of building structures, tilting is 

particularly problematic. In this study, a simplified methodology is developed to 

estimate the seismically induced irrecoverable tilting potential of shallow mats on 

fine saturated soils. 

The undrained shear and deformation behavior of silt-clay mixtures 

encountered at the Adapazarı sites with significant foundation displacements are 

investigated through a series of standard and rapid monotonic, and stress-

controlled cyclic triaxial tests conducted over anisotropically consolidated natural 

soil samples. Test results show that, while the shear strength of these soils do not 

significantly degrade under means of loading comparable to that of Kocaeli 

earthquake, their plastic strain accumulation characteristics critically depend on the 

mode of loading as well as the relative levels of applied load with regard to the 

monotonic strength.  



 v 

Based on the results of laboratory tests, the response of nonlinear soil-

foundation-structure system is reduced to a single-degree-of-freedom oscillator 

with elastic-perfectly plastic behavior. The natural period of the system is 

expressed by simplified soil-structure-interaction equations. Pseudo-static yield 

acceleration, which is required to initiate the foundation bearing capacity failure 

when applied to the structural mass, is estimated by the finite-element method. 

Eventually, the tilting potential of the foundations is estimated utilizing inelastic 

response of the nonlinear oscillator. Response of the deep alluvium sites, which 

involves velocity pulses with periods consistent with the fundamental site period, is 

significant in determination of inelastic response of low bearing capacity systems. 

Predictive capability of the methodology developed is tested with actual case 

data. The methodology is observed to predict irrecoverable tilting potential of 

foundations consistent with the observations, except for the cases with low seismic 

bearing capacity. Deviations are explained considering the sensitivity of low-

strength systems to asymmetrical behavior and uncertainties involved in seismic 

demand.  

 

Keywords: Adapazarı, Clay, Foundation displacements, Foundation tilting, Kocaeli 

Earthquake, Mat foundations, Mexico Earthquake, Seismic performance, Silt, Site 

response. 

 



 vi

 

 

ÖZ 

�NCE DANEL� ZEM�NLER ÜZER�NDEK� SI� RADYELER�N S�SM�K 

E��LME POTANS�YEL� 

Yılmaz, Mustafa Tolga  

Doktora, �n�aat Mühendisli�i Bölümü 

Tez Yöneticisi: Doç. Dr. Bahadır Sadık Bakır 

 

Eylül 2004, 259 sayfa 

 

1985 Meksika depreminde Mexico-City’de ve 1999 Kocaeli Depreminde  

Adapazarı’nda, doygun silt-kil karı�ımları üzerinde yer alan sı� radye temeller kalıcı  

deplasmanlara maruz kalmı�tır. Yumu�ak yüzey zeminleri, sı� yer altı suyu, kısıtlı 

temel derinli�i, ve derin alüvyon çökelleri her iki durumda temel deplasmanlarına 

ili�kin olarak görülen ortak özelliklerdir. Deneyime ba�lı olarak, düzgün temel 

oturmalarının, a�ırı olmaları durumunda dahi, bina türü yapıların deprem sonrası 

kullanılabilirli�ini etkilememekte, ancak temellerde meydana gelecek kalıcı 

e�ilmelerin özellikle bu bakımdan sorun yarattı�ı bilinmektedir. Bu çalı�mada, ince 

daneli zeminler üzerinde yer alan sı� radyelerin sismik yükler altındaki kalıcı e�ilme 

potansiyelinin öngörülebilmesi amacıyla basitle�tirilmi� bir yöntem geli�tirilmi�tir. 

Adapazarı’nda temel deplasmanlarının belirgin olarak meydana geldi�i 

sahalarda kar�ıla�ılan silt-kil karı�ımlarının drenajsız kayma ve deformasyon 

davranı�ları, anisotropik olarak konsolide edilmi� do�al zemin örnekleri üzerinde bir 

seri standart ve hızlı monotonik, ve gerilme-kontrollü çevrimsel üç eksenli testler 

gerçekle�tirilerek incelenmi�tir. Test sonuçları, bu zeminlerin kayma dayanımının 

Kocaeli depremi ile kıyaslanabilir yükler altında önemli oranda de�i�medi�ini; 

ancak plastik birim deformasyon özelliklerinin, yükleme moduna ve yükün 

monotonik kayma dayanımına göre seviyesine ba�lı oldu�unu ortaya koymaktadır. 

Laboratuvar sonuçlarına ba�lı olarak, do�rusal olmayan zemin-temel-yapı 

sisteminin tepkisi tek-derece-serbestisi olan elastik-mükemmel plastik titre�ir 
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sistem davranı�ına indirgenmi�tir. Bu idealize sistemin do�al peryodu basit zemin-

yapı-etkile�imi denklemlerine ba�lı olarak ifade edilmi�tir. Temelde ta�ıma 

kapasitesi yenilmesine sebep olan ve yapısal kütleye uygulanan pseudo-statik 

akma ivmesi, sonlu elemanlar yöntemi ile tahmin edilmektedir. Neticede, temellerin 

e�ilme potansiyeli sistemin do�rusal olmayan tepkisi kullanılarak tahmin 

edilmektedir. Saha peryodu ile tutarlı peryoda sahip hız dalgasının meydana 

gelebildi�i derin alüvyon sahaların tepkisi, dü�ük ta�ıma kapasitesine sahip 

sistemlerin elastik olmayan davranı�ını belirgin �ekilde etkiler.  

Geli�tirilen yöntemin tahmin kapasitesi vaka verileri kullanılarak denenmi�tir. 

Yöntemin, dü�ük sismik ta�ıma kapasitesinin söz konusu oldu�u durumlar dı�ında, 

kalıcı temel e�ilmesi potansiyelini tutarlı olarak tahmin edebildi�i belirlenmi�tir. 

Sapmalar, dü�ük mukavemetli sistemlerin asimetrik davranı�a olan hassasiyeti ve 

sismik talepteki belirsizlik ile açıklanmı�tır. 

 
Anahtar Kelimeler: Adapazarı, Kil, Kocaeli Depremi, Meksika Depremi, Radye 

temeller, Sismik performans, Silt, Saha tepkisi, Temel deplasmanları, Temel 

e�ilmesi 
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CHAPTER 1 

INTRODUCTION 

 

1.1. General 

After September 19, 1985 earthquake that hit Mexico City, bearing capacity 

failures of shallow mat foundations, inducing tilting and settlement of the building 

foundations, were observed in the city, which is situated over deep alluvial soils. In 

worst cases, buildings had to be demolished, due to excessive displacements in 

foundations. Subsoil conditions under the failed foundations are reported to be silty 

clays, with high compressibility. The peak ground acceleration (PGA) recorded by 

SCT station, located on the alluvium, is 0.091 g in NS, and 0.16 g in EW directions. 

Due to the significant site-amplification capability of the Mexico-City basin, the SCT 

records exhibit relatively high peak ground velocity (PGV), as 39 cm/s in NS and 57 

cm/s in SE directions (Zeevaert, 1991). The predominant period of the recorded 

motion is about 2.0 s, which is compatible with the natural period of the recording 

site (Seed et al., 1988). 

The city of Adapazarı, which is mostly located on a deep alluvial basin in the 

near field of the ruptured North Anatolian Fault, was among the worst affected 

urban areas during the 17 August 1999 �zmit (Kocaeli), Turkey earthquake (Mw 

7.4). A quite remarkable aspect from the geotechnical engineering point of view 

was the occurrence of numerous cases of displacements in various forms and 

levels at the foundations of, by and large, three- to six-story reinforced concrete 

buildings in the city. Based on the post earthquake observations and subsequent 

studies, the factors that might have contributed to certain extents in those 

displacements were listed as the variability of induced seismic excitation 

throughout the city, building height and foundation aspect ratio as well as the 

presence of adjacent buildings, and generally soft surface soils with occasional 

apparent potential for liquefaction (Bakır et al., 2002).  
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Earlier studies at Adapazarı sites with excessive foundation displacements 

(Sancio et al., 2002; Karaca, 2001) reveal that the subsoil conditions are 

dominated by silt-clay mixtures. Although the foundation displacements at the sites 

consisting silt-sand mixtures can be attributed to the soil liquefaction related 

phenomena, those on silt-clay mixtures may not be simply explained by the 

liquefaction mechanism as discussed for sands. Also, the observed tendency of 

increase in foundation displacements for relatively higher buildings underlines the 

importance of inertial effects on the seismic response of these foundations. 

Occurrence of ground failure in the city almost invariably in association with the 

foundations and lack of solid evidence of liquefaction in free-field point out the 

seismic bearing capacity failure as a possible mechanism in which soil-structure 

interaction plays an important role. 

As in the case of Mexico-City, Adapazarı is also reported to suffer from 

strong site-amplification effects, reflected as increasing spectral acceleration levels 

at longer periods: The fundamental site period at the center of the city is estimated 

to be in the order of 1.8 s, excluding the sites consisting rather soft or liquefiable 

surface deposits (Bakır et al., 2002). The EW record obtained during 17 August 

1999 event at a stiff (weathered rock) site yields PGA of 0.4g, and PGV of 57 cm/s: 

The site periods and peak ground velocities are comparable to Mexico City records 

of 1985 earthquake. Hence, the common properties of Mexico City and Adapazarı 

cases, such as presence of soft shallow silt-clay mixtures, shallow ground water 

table, amplification of long-period components of motion by deep alluvial basin, and 

shallow mat foundations appear to be the significant features that should be 

considered in investigation of available cases. 

Post earthquake observations in Adapazarı revealed additional important 

consequences regarding engineering practice. Two strongly contrasting modes of 

damage were observed at deep alluvium sites in the city over relatively new 

reinforced concrete buildings with similar characteristics: structural system failures 

due to excessive structural vibrations and foundation displacements of various 

forms and levels due to bearing capacity failure. These two modes of damage were 

observed to be remarkably mutually exclusive as well. It is to be pointed out that 

due to the water table seasonally fluctuating between 50 and 200 cm below the 

ground surface in the city, there are no basements, and the foundations are 

commonly rather shallow rigid mats. Hence the buildings were insensitive to  
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potential detrimental impact of differential settlements on the load bearing system. 

Although the foundation displacements exceeded tolerable limits in several cases, 

a great majority of the buildings sustained such mode of damage had uniform 

settlements within tolerable limits and were safely habitable following the 

earthquake. The alignments of several others tilted slightly or moderately, were 

effectively adjusted later (Bakır et al., 2004). 

Reduction of seismic demand due to nonlinear soil response displays an 

obvious potential that can be exploited for innovative future engineering 

applications. On the other hand, strong mat foundation appears to be a 

fundamental requirement for any realistic engineering approach aiming at utilization 

of this potential advantage. Therefore, the need is obvious for a practical 

methodology, through which the seismically induced ultimate foundation 

displacements can be estimated reasonably, so that they can be checked to be 

whether acceptable from the point of post-earthquake serviceability. Thus, the 

available beneficiary effects can be retained, while any unnecessary counter 

measures are avoided. Based on the experience gained in Adapazarı and Mexico-

City cases, tilting mode of foundation displacements has a greater potential of 

adverse effect regarding post-earthquake serviceability of building structures. In 

Adapazarı cases, buildings that experienced excessive tilts during the earthquake 

are observed to have poor aspect ratios (i.e., relatively greater building height with 

respect to foundation width). However, the criterion for a limiting aspect ratio, which 

forms the basis for the potential of excessive foundation tilting, is unclear. In case a 

simple methodology to estimate the tilting potential for conventional building 

structures is provided, it can be possible to limit the aspect ratio of the building, so 

that foundation failure mode will be restricted to horizontal translation and vertical 

settlement modes. This will make the utilization of foundation soils as a natural 

base-isolator mechanism possible.  

1.2. Literature Review 

A brief review of the literature covering the relevant background for the 

development of a simplified approach aiming at estimation of foundation 

displacements under seismic loading conditions for the case of surface foundations 

is presented. Available cases in Adapazarı and Mexico-City are shortly discussed 

in order to clarify the object of study.  
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1.2.1. Investigations of Adapazarı cases 

Sancio et al. (2002) presented geotechnical data, obtained from site 

explorations in Adapazarı (Bray et al. 2001a). Generally, two typical types of soil 

deposits are observed to be responsible of excessive foundation displacements: 

the dominant type of deposit is the nonplastic silts and sandy silts, generally 

consistent with the Chinese criteria (Seed and Idriss, 1982); the other type is the 

silt-clay mixtures with low penetration resistance. In the aforementioned study, 

geotechnical properties of those deposits are evaluated mainly in the perspective 

of the Chinese criteria, which state that soils with LL<35, wn>0.9LL, and having the 

percentage of very fine particles (i.e., diameter less than 5�m) less than 15% are 

susceptible to significant strength loss during earthquakes. However, the 

mechanism leading to the strength loss is unclear, and no relationship with the 

intensity of shaking is specified. Utilizing the damage survey data, they also 

concluded that, no relationship existed between the magnitude of settlement and 

the foundation width, which is in contradiction with sand-liquefaction cases 

observed in past earthquakes. Also, the reported tendency of increase in 

settlements as the number of stories increase implies the significance of influence 

of building mass and height on foundation settlements. In addition, Bray et al. 

(2001b) provided detailed geotechnical information for two cases in Adapazarı with 

excessive foundation displacements, with silt clay mixtures dominating the subsoil 

conditions. Detailed geotechnical site investigation data for 12 similar cases 

compiled from Adapazarı are presented in the Internet (Bray et al. 2001a) where 

supplementary information is also given in the study Bray et al. (2004). These 

constitute a part of the cases utilized in this study, and are referred to as PEER 

cases. 

Yasuda et al. (2001) compiled survey data regarding foundation 

displacements from Adapazarı and compared it to the liquefaction cases from 

Niigata and Dagupan city. The database consisted of information on number of 

stories, building width, foundation settlement, and angle of tilt of foundation. It 

appears that, the settlements of buildings in Adapazarı were in general, much 

smaller than those in Niigata and Dagupan city, despite the fact that the story 

numbers are significantly higher in Adapazarı. An important observation from plots 

of tilting angle versus settlement for foundations is that, although the tilting angle 

tends to increase with increasing settlement for Dagupan city and Niigata cases, no 
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such trend exists in Adapazarı data. Finally, foundation soils in Adapazarı cases 

consist by and large finer deposits (mainly silt) compared to Dagupan City and 

Niigata cases (mainly sand). These findings imply that the mechanism behind the 

foundation displacements in Adapazarı is quite possibly not related to liquefaction 

phenomena. 

Pekcan (2001) performed cyclic triaxial tests on undisturbed samples, 

consisting of silt-clay mixtures of variable proportions obtained from PEER sites. All 

samples were isotropically consolidated, and no initial shear stress was applied 

before cyclic tests. Undrained cyclic loading rate was selected as 1 Hz for 

compatibility with seismic loading rates. Pekcan reported that Adapazarı silt-clay 

mixtures can be identified as liquefiable, in case the liquefaction is defined by the 

same criteria as applied to sands: accumulation of pore-pressure ratio (ru) of 100%, 

or development of 5% double amplitude axial strain. It is also reported that the 

pore-pressure build-up in silty clays and clayey silts is slow when compared to 

sands and non-plastic silts. Low to medium plasticity silty clays can develop 

significant pore pressures under relatively high cyclic stress amplitudes and 

reasonable number of cycles. Also, cyclic resistance of silts and clays is reported to 

increase with decreasing void ratio and increasing plasticity index (PI). 

However, the mechanism leading to the accumulation of cyclic strains is not 

rigorously investigated in the study by Pekcan (2001): the reported pore pressure 

ratios are not the residual values when undrained load amplitude is zero, but the 

maximum values obtained at cyclic load peaks. Hence, for the tests for which the 

liquefaction was reported to occur based on the ru=100% criterion, pore pressures 

are observed to bounce back to considerably low levels during the reversal of 

cyclic loads. This observation may lead to the conclusion that, the “excessive” pore 

pressure ratios are mainly due to elastic response of the specimen, and the net 

effect on effective stresses can be relatively small. Ishihara (1996) reports that the 

strain accumulation mechanism for fine soils is different from conventional loose 

sand-liquefaction mechanism: In nearly all of the experiments, double-amplitude 

maximum strain levels are observed to increase consistently for each successive 

load cycle, up to the end of experiment, without displaying any significant jump in 

strain accumulation rate. In comparison, considering liquefaction of loose sands, no 

significant increase in cyclic strain levels occurs up to the instant of liquefaction, at 

which the strain accumulation rate suddenly increases due to the plastic flow 



 6

initiated. Besides, the isotropic initial load condition, which in fact is not 

representative of the stress state beneath building foundations, is utilized in the 

study (Figure 1.1).   

 

Figure 1.1. Idealized load conditions for selected locations on failure plane, for a 

foundation under inclined and eccentric load (Andersen and Lauritzsen, 1988). 

 

Besides the cases reported by PEER, Karaca (2001) reported additional 

cases with excessive foundation displacements, which is utilized in this study, and 

is referred to as METU cases. The data consists of measured displacements, CPT 

and SPT logs, soil index properties, and cyclic triaxial test results for undisturbed 

samples. The cases were observed to be underlain by subsoil conditions altering 

between silt-sand mixtures to silt-clay mixtures. Excluding the nonplastic (NP) 

samples, all samples plot practically along the A-line in plasticity chart, implying a 

transition zone between silt (ML and MH) and clay (CL and CH). Cyclic test results 

were similar to Pekcan’s. Karaca also states a tendency of increase in foundation 

settlements for heavier buildings. 

1.2.2. Investigation of Mexico-City cases 

Mendoza and Auvinet (1988) reported cases of excessive displacements of 

mat foundations, during the 1985 Mexico Earthquake. In extreme cases, the 

settlements are reported to exceed 1 m, and tilting in the order of 5º. Low 

foundation bearing capacity under static conditions, and relatively high load 

eccentricities of buildings under seismic loads led to the shear failure of foundation 
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systems during seismic loading. Before the earthquake, most cases were also 

subjected to various levels of consolidation settlements, implying rather 

compressible foundation soils. Utilizing two of such cases, Auvinet et al. (1996) 

proposed a simplified methodology to estimate seismically induced foundation 

settlements and rotations. The fundamental considerations of the methodology 

were soil-structure interaction mechanism, pseudo-static analysis of ultimate 

bearing capacity under seismic loads, and incremental accumulation of 

deformations due to exceedence of ultimate load capacity. However, uncertainties 

involved have a significant influence on the calculation results. 

Zeevaert (1991) provided the mechanical properties of shallow deposits in 

Mexico City, on which the aforementioned foundation displacements occurred. 

These soils are highly compressible and sensitive silty clay deposits, starting at 

shallow depths, they reach in excess of 30 m. The water content can be as high as  

about 400%, as measured from natural samples obtained from those sites. 

Zeevaert reported that, when shear strength of natural samples are measured 

under stress conditions similar to those of field, significant cohesion is observed. 

This would imply a preconsolidated soil behavior, yielding relatively high peak 

shear strength compared to post-peak (i.e., critical state) strength. The specimens, 

when consolidated to stress levels considerably higher than field conditions, gave 

results consistent with zero cohesion (i.e., normally consolidated behavior), and 

effective angle of internal friction in the order of 26°-30°. 

1.2.3. Simple methods for estimation of foundation displacements 

Pecker (1998) proposes two possible approaches to investigate the dynamic 

bearing capacity of building foundations. 

The first is the rigorous numerical analysis of the total soil-structure system. 

Such an analysis consists mainly of a realistic dynamic nonlinear analysis of the 

problem, and the numerical model should efficiently model the behavior of soil, 

structure, and their interaction. However, such an analysis would be rather costly 

and hence cannot be practically utilized for analyses of relatively simple structures. 

Full numerical analyses can only be utilized for the final stage of a design, since 

analyses for each design alternative will multiply the analysis cost. Hence, simple 

methodologies in order to provide estimations for different displacement modes of 

foundations (i.e., settlement, horizontal displacement, and tilting) are needed. 
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Similar to conventional foundation engineering problems, these methodologies can 

be restricted to general characteristics of foundations, such as shallow or deep. 

The second type of approach consists of the simplified analysis of the 

system, in which the involved mechanisms can be decoupled for simplification 

purposes. Also, the mechanisms that are considered to be of secondary 

importance regarding response can be omitted. In practical geotechnical 

applications, load calculation procedures (i.e., calculation of load-history at a 

selected calculation point) can be decoupled from nonlinear behavior, and final 

plastic deformations can be estimated by utilizing calculated load-history 

independently. Yield load level for a system can also be analyzed by independent 

pseudo-static analyses, based on assumptions on distribution of inertial loads on 

soil-structure system. 

Hence the second approach can be practically utilized, especially when 

uncertainty is significant in material properties. Such simplified approaches are 

commonly utilized for seismic design of earth dams and retaining walls in 

engineering practice, and may provide basic ideas regarding behavior in 

applications of foundation engineering: As an example, such methods utilized in 

seismic design of earth dams are based on sliding rigid block model proposed by 

Newmark (1965), as depicted in Figure.1.2. A widely utilized methodology is the 

Makdisi and Seed (1978) procedure, which combines the impact of dynamic 

response of a dam with the sliding block behavior in order to estimate final 

displacements. One of the most important conclusions for such analyses is that, in 

the case of pseudo-static factor of safety calculations, pseudo-static accelerations 

can be selected as considerably smaller values than peak accelerations, provided 

that small residual displacement levels can be accepted from the point of seismic 

performance (Seed, 1979; Hynes-Griffin and Franklin, 1984). There are also 

methods (e.g., Seed et al. 1973; Serff et al. 1976) based on the basic idea of 

Stress-Path method (Lambe, 1967; Lambe and Marr, 1979), such that, strain 

potentials for different sections of the dams are approximated based on cyclic 

laboratory tests. Load-histories applied in these tests are kept consistent with those 

calculated using a simple numerical model of the dam. Hence, these methods 

basically utilize the degradation behavior of cyclically yielding soil. In case of 

retaining walls, for which the displacements govern the behavior, Newmark sliding 

block analysis is applicable since governing sliding mode is in one direction (i.e., 
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towards free face) only (Richards and Elms, 1979). Those methods were 

developed in the light of failure case studies following major several earthquakes; 

they provide valuable insight for development of simple design procedures, and 

verification by rigorous numerical analyses (e.g., by transient nonlinear-dynamic 

analyses) can be achieved at final stage of design. 

For the case of shallow mat foundations, several approaches have been 

proposed by various authors. Sarma and Iossifelis (1990), and Richards et al. 

(1993), proposed methodologies of calculation to estimate settlements, utilizing a 

similar approach to Newmark sliding block analysis: The soil block and foundation 

resting on failure plane are assumed to behave as a single sliding block. Using 

empirical relationships based on statistics of sliding block analyses via actual 

earthquake records, it is possible to estimate final settlements without performing 

excessive analyses utilizing different acceleration-histories. Implicitly, the solution 

assumes a flow-rule for plastic deformation of foundations, validity of which limits 

the acceptability of the calculations: test results are needed for verification. Auvinet 

et al. (1996) also utilized a similar approach in order to estimate foundation 

settlements as well as foundation tilting. Considering the significance of building 

response on load-histories acting on foundation, the dynamic force-history acting 

on foundation level is calculated utilizing linear soil-structure-interaction (SSI) 

approaches.  

ag(t) 

α 

rigid block    

frictional surface    

 

Figure 1.2. Sliding block analogy used for estimation of slope displacements during 

seismic loading (Newmark, 1965). 
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Although the aforementioned methodologies are based on either direct 

utilization of free-field time histories, or output of a linear SSI analysis as foundation 

input motion, Paolucci (1997) reported that, the force-history acting at foundation 

level can be significantly different for the case of nonlinear SSI. Discussing the 

potential weaknesses of approaches based on decoupling of building and 

foundation response, Paolucci proposed use of a 4-degrees-of-freedom (DOF) 

system for nonlinear dynamic analyses: 1 DOF for structural distortion, and 3 DOF 

for horizontal, vertical and rocking impedances of foundation (Figure 1.3). Only the 

foundation behavior is modeled to be nonlinear. Mass of the structure and mass of 

foundation are modeled by two lumped masses in the model. Soil (foundation) 

behavior is modeled as elastic-perfectly plastic, and both, the radiation damping 

and material damping are considered in linear-phase and yielding-phase of 

foundation motion. In calculation of foundation level plastic deformations, the yield 

function and plastic potential function proposed by Nova and Montrasio (1991), 

which considers impact of load eccentricity and inclination only (i.e., inertial load on 

soil body is ignored), is utilized. Comparing the approach by 2D FEM analyses, the 

foundation displacements were observed to agree with FEM results, except for the 

rocking mode. Based on parametric analyses, it is concluded that, when nonlinear 

foundation behavior is considered, the base-shear history transmitted by 

superstructure to foundation level can be quite different from the case of linear soil-

structure interaction. The load eccentricity appears to be the main factor affecting 

the nonlinear response of shallow foundations under seismic loading. Spectral 

acceleration, when compared to PGA and Arias Intensity (IA), is the best parameter 

in correlation with plastic foundation displacements.  

Regarding the relevant experimental studies, Zeng and Steedman (1998) 

performed centrifuge tests in order to visualize the seismic bearing capacity failure 

mechanisms for the case of surface foundations resting on nonliquefiable soil. 

Buildings are modeled with tall (heavy) or short (light) blocks resting on dry or 

saturated soil. They experimentally demonstrated that, foundation rotation plays a 

significant role in seismic bearing capacity failure mechanism, and for the case of 

strain-softening soils, seismic bearing capacity calculations that are based on angle 

of friction dictated by the peak shear strength can be very unconservative. Soils 

can mobilize critical angle of friction when strain levels corresponding to peak 

strength is exceeded. Hence, irrecoverable foundation displacements can be 
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underestimated if calculations are based on peak-shear strength, rather than 

critical-state strength. 

kh,ch 

kv,cv 

kr,cr 

ks,cs 

ms 

mf 

h 

av(t) 

ah(t) 

 

Figure 1.3. Simplified SSI model utilized by Paoulicci (1997): mf and ms are the lumped 

masses representing inertia of the building and foundation; k and c are the 

spring and dashpot coefficients; av and ah are vertical and horizontal input 

acceleration-histories. 

 

Prevost et al. (1981a, 1981b) investigated the deformation behavior of 

surface foundations under inclined and eccentric cyclic loading conditions by 

performing centrifuge tests and numerical analyses. However, the load-histories 

are of typical one-way loading, which are not consistent with realistic earthquake 

loading. Results of their studies reveal that, numerical models involving realistic 

constitutive models for soil behavior can be utilized to simulate the load-

deformation behavior of foundations with sufficient accuracy. 

For the case of fine-grained (nonliquefiable) soils, Yasuhara et al. (2001) 

proposed to utilize reduced stiffness modulus and shear strength in order to 

calculate immediate settlement of the foundations during seismic loading, by 

introducing these reduced parameters into static settlement formulations. The 

difference between settlement calculations performed utilizing reduced and non-

reduced parameters gives the expected settlement during seismic loading. 

Consolidation settlements can be calculated by estimating pore-pressure increase 
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during seismic loading, and utilizing a seismic recompression index. A similar 

approach is also proposed by Andersen et al. (1988) for the case of offshore 

gravity structures exposed to storm (wave) loads.  

1.3. The Objective and Scope of the Study 

Based on the findings reported in literature and considering the limitations of 

previous studies, this study aims at development of a simple methodology to 

estimate tilting performance of structures having shallow mat foundations, resting 

on nonliquefiable soft soils. The methodology is based on utilization of elastic 

design spectrum pertaining to the site, and static bearing capacity of the 

foundation, both of which are quite easily determined through conventional 

procedures. The methodology can be utilized to detect the potential for excessive 

foundation tilting considering foundation aspect ratio for specified seismic demand 

and geotechnical conditions. The scope of the study is restricted by the followings:  

1. Foundation soils are nonliquefiable, soft, fine soils. That is, foundations are 

safe against bearing capacity failure under static (vertical) loads, but can be driven 

to successive plastic flow under seismic (horizontal) loads. 

2. Foundation subsoil can be practically assumed to be homogeneous and 

isotropic. Since the procedure is dependent on this assumption, reliability of the 

calculation procedure is limited with the significance of variation of the foundation 

subsoil from homogeneity. 

3. Structures are multistory, freestanding buildings with no nearby building that 

may significantly affect the stability and seismic load demand on them. 

4. Foundations are shallow mats with negligible depths of embedment.  

5. Slope at building sites is practically zero. 

The primary objectives of the study can be stated as follows: 

1. Understanding of the behavior of normally consolidated silt-clay mixtures 

obtained from Adapazarı cases with excessive foundation displacements by 

performing undrained cyclic and monotonic triaxial tests on undisturbed specimens. 

2. Formulation of a simple elasto-plastic SDOF system, adequately 

representative of the nonlinear soil-structure interaction. 



 13

3. Derivation of equations for utilization of elastic spectrum in order to estimate 

irrecoverable tilting demand on foundation. 

4. Evaluation of the developed methodology utilizing available cases in 

Adapazarı and Mexico City. 

Development and evaluation of the methodology is presented in the 

proceeding several chapters, where in the beginning of each, a brief literature 

survey relevant to the specific chapter context is presented.  

The first chapter, which is the present, consists of the objective and scope of 

the subject, and the literature review that reveals the statement of the engineering 

problem and the fundamental mechanisms involved. 

In the second chapter, results of cyclic and monotonic triaxial tests performed 

on undisturbed soil specimens obtained from Adapazarı are presented along with 

the engineering properties, sampling locations and depths. Additional data is also 

presented in the Appendix. The mechanisms that result in accumulation of 

relatively high strain levels for silt-clay mixtures under seismic loading conditions 

are discussed. The validity of elasto-plastic behavior assumption is evaluated 

accordingly. 

In Chapter 3, simple linear SSI equations that couple the foundation and 

structural response are presented. By formulating the equation of motion in terms 

of total horizontal displacements, and introducing the nonlinear behavior for the 

foundation displacements, basic equations relating to the motion of nonlinear 

(elasto-plastic) single-degree-of-freedom oscillator model are derived, and 

simplified determination of natural period of this basic system is presented 

consequently. 

In Chapter 4, the load capacity (i.e., maximum overturning moment) of a 

shallow strip foundation is formulated. Utilizing Plaxis, which is a finite-element 

analysis package for geotechnical applications, simple equations for the case of 

cohesive and cohesionless homogeneous soil conditions are determined, and 

compared with the available solutions in literature. Since the case studies consist 

of building structures resting naturally on consolidated soils, which behave in an 

undrained manner under seismic loading conditions, neither cohesive nor 

cohesionless soil assumptions are directly applicable. Hence, based on elasto-
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plastic soil assumption, load-capacity equations for foundations resting on 

saturated, and consolidated under static foundation loads, are presented. 

Outline of the methodology is given in Chapter 5. Since the proposed 

methodology is based on a number of assumptions, verification with available 

cases is important. Hence, utilizing the available cases from Adapazarı and 

Mexico-City, performance of the calculation methodology is investigated in Chapter 

5. The significance of site response is also introduced.  

Chapter 6 presents the conclusions of the study. The limitations of the 

methodology in practice, and possible future extensions of the study is also 

discussed. 
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CHAPTER 2 

EXPERIMENTAL STUDIES 

 

2.1. General 

A through understanding of the behavior of silt-clay mixtures when bearing 

the foundation loads during severe seismic loading is necessary for development of 

a simplified calculation procedure, as stated in Chapter 1. Accordingly, undisturbed 

soil samples obtained from the sites that were extensively investigated by Karaca 

(2001) are utilized for laboratory studies. The investigated sites predominantly 

consisted of fine-grained surface soils of low plastic nature (silt-clay mixtures), 

defined as silty clays (CL) or clayey silts (ML), according to the Unified 

Classification System. The information already documented by Karaca includes 

SPT and CPT data for boreholes opened at these sites. The soil profiles, SPT test 

results, and depths of extracted samples pertaining to the study by Karaca are 

presented in Appendix A, together with the plan-views of the sites with some 

modifications.  

To investigate the undrained shear and deformation behavior of Adapazarı 

silt-clay mixtures, a series of monotonic and stress-controlled cyclic triaxial tests 

are performed in parallel on the natural soil specimens. The specimens were 

anisotropically consolidated to simulate the stress paths of soil elements at shallow 

depths beneath foundations, and tests were carried out for various combinations of 

initial static and subsequent cyclic shear stresses. Applied cyclic stress amplitudes 

and loading frequencies were selected as to be representative of the ranges 

relevant to the Adapazarı case during 17 August earthquake. Following cyclic 

loading phase, the samples were sheared to failure under rapid monotonic loading, 

to investigate the strength and deformability response under strong pulse loading 

during seismic shaking. Test results were evaluated utilizing a methodology 

developed as part of this study to estimate the irreversible strain accumulation due 
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to cyclic loads that exceed monotonic strength. Consequently, based on the 

implications of the results obtained, the possible mechanisms that might have led 

to the observed foundation displacements on silt-clay mixtures in Adapazarı are 

discussed. 

2.2. Literature Review 

Predictability of seismic response of foundations on silt-clay mixtures requires 

understanding of behavior of such materials under repeated loading. The samples 

tested in this study have PI values ranging between 7-25, and are tested by the 

triaxial apparatus. A brief literature review on cyclic loading behavior of low to 

medium plasticity silt and clay mixtures is presented in the following. 

Cyclic behavior of silt-clay mixtures is relatively less studied compared to 

those of sandy soils. Pore pressure buildup and deformation characteristics of such 

soils under cyclic loading can be remarkably different from those of sands. 

Accordingly, the criteria used to define the liquefaction of sand may no longer be 

applicable for silt-clay mixtures (Perlea 2000, Guo and Prakash, 1999). The other 

important issue pertaining to fine soils that display cohesion is the strong 

dependency of strength and stiffness responses on the speed of loading. While the 

resistance of fine soils to deformation increases due to the inherent viscous 

behavior, which becomes more profound with the increasing speed of loading, they 

tend to become softer and weaker with the increasing number of cycles as well. 

Hence, the overall response of fine-grained soils under dynamic loading is a 

combination of two distinct mechanisms, and their undrained strength under 

dynamic loading can be significantly higher or lower than the static strength 

depending on the characteristics of loading as well as material properties (Ishihara, 

1996; Lefebre and LeBoueuf, 1987; Mateši� and Vucetic, 2003; Procter and 

Khaffaf, 1984; Lefebvre G, Pfendler P., 1996). Based on the correlations of 

foundation displacements with the subsoil conditions in Adapazarı, it has been 

reported that the levels of foundation displacements were largely reduced with the 

increasing clay fraction in foundation soils (Sancio et al, 2002; Karaca, 2001).  

Building foundations resting on fine deposits can displace due to two distinct 

mechanisms with regard to seismic loading: one, shear strain accumulation during 

loading phase due to successive bearing capacity failures; the other, development 

of volumetric strains induced by the dissipation of excess pore pressure (Andersen 
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et al. 1988a, Yasuhara et al., 2001). Degradation of soil stiffness and strength can 

be substantially influential over the seismic behavior of foundations. In the case of 

saturated soils, degradation of mechanical properties is dependent on the pore 

pressure increase induced by the cyclic loading. However, the seismic 

performance of saturated soil beneath a foundation can be significantly different 

from that of at free-field due to the sustained initial stress (Andersen et al., 1988b). 

During cyclic loading, an important phenomenon that results in strength 

reduction for soils is the increase in excess pore-pressure. In the case of sands, 

the pore-pressure increase can occur relatively fast, leading to liquefaction for the 

case of loose sands. The cyclic stress ratio (CSR), defined as the ratio of amplitude 

of cyclic shear stress (�cyc) to (effective) initial confining stress (σ'v0), is utilized as 

the principal parameter in laboratory tests for investigation of this phenomenon 

(Seed and Idriss, 1982). Whereas, for the case of clays, undrained shear strength 

of the specimen (Su) can be the normalizing parameter in investigations of cyclic 

strain and pore-pressure accumulation, instead of σ'v0 for the case of sands (Ansal 

and Erken, 1989; Ishihara, 1996; Andersen et al., 1988a; Lefebre and Pfendler, 

1996; Zhou and Gong, 2001). In addition, Procter and Khaffaf (1984) proposed use 

of monotonic shear strength obtained in rapid loading tests, with strain rates similar 

to seismic loading conditions. On the other hand, σ'v0 can still be the normalizing 

parameter utilized as in the case of sands (Andersen et al., 1988a; Hyde and 

Ward, 1985).   

Average pore-pressure increase, which is defined as the residual pore 

pressure at the end of each full load cycle (i.e., at initial stress condition) is utilized 

in monitoring of pore-pressure accumulation during cyclic triaxial loading tests by 

Yasuhara et al. (1992), and Andersen et al. (1988a). This is compatible with 

calculation of post-cyclic loading consolidation, and determination of undrained 

strength reduction, since pore-pressure increase due to octahedral stress increase 

is recovered instantaneously at the end of cyclic loading. Similar to the case of 

sands (Tokimatsu and Seed, 1987; De Alba et al., 1975), formulations for pore-

pressure increase due to cyclic loading are provided for clays (Ansal and Erken, 

1989; Ohara and Matsuda, 1988; Matsiu et al. 1980; Hyde and Ward, 1985; Hyodo 

et al., 1994), which can be utilized when pore-pressure accumulation is of interest.  

However, parameters should be determined by conducting cyclic tests on 

natural samples. In measurements of pore-pressure in cyclic triaxial test, Konrad 
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and Wagg (1993) reported that, pore-pressure distribution is not uniform in the 

specimen unless the loading rate is sufficiently low. For clayey silt specimens, a 

strain rate as low as 0.001%/s is required to obtain uniform pore-pressure 

distribution in sample. In case relatively high strain rates, the pore-pressures 

measured in the bottom or top end of the triaxial specimen is not representative of 

the pore-pressure value at the mid-sections of the specimen. Hence, in this case, 

the effective-stress plots of the test will provide a significant effective cohesion (i.e., 

c�) for the test specimen, but the effective angle of internal friction (i.e., ��) is not 

significantly affected from the rate of loading. On the other hand, Ansal and Erken 

(1989) discussed that, such low strain rates is not representative of earthquake 

loads, and viscous response of fine soils is significant under those loads. Hence, 

relatively high load frequencies (e.g., in the order of 1.0 Hz) during cyclic loading 

tests should be preferred, when simulating seismic loading conditions in laboratory 

tests. 

Considering the average levels of developed pore pressure during stress-

controlled cyclic tests performed over anisotropically consolidated cohesive soil 

specimens, the pore pressure ratio at failure is observed to decrease with the 

increasing amplitude of cyclic shear stress (Hyodo et al., 1994; Konrad and Wagg, 

1993). This is due to the fact that, depending on the intensity of applied initial 

stress, the specimen can fail before the average pore pressure develops to a level 

to effect the soil stiffness and strength significantly. Accordingly, the cyclic strength 

and hence the excess pore pressure generation beneath a foundation during 

seismic shaking would be further limited with the increasing initial stress induced by 

the structure while residual settlements due to successive bearing capacity failures 

accumulate. For comparison, in the free-field case, where instantaneous 

settlements would not normally occur at level ground during seismic shaking, post-

earthquake settlements can be of significance since larger excess pore pressures 

are generated than in the case beneath a foundation (Yasuhara, 2001). 

Post liquefaction consolidation behavior of silty clays is similar to the 

reloading behavior of over-consolidated clays: due to increase in pore-pressures, 

effective stresses decrease, leading the soil to a preconsolidated state. Hence, 

similar to conventional consolidation calculations, post-cyclic loading consolidation 

can be estimated utilizing recompression (Cr) index for cyclic loading. However, 

due to severe seismic loading, the recompression index can be somewhat higher 
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(e.g., in the order of 50%) than the recompression index determined through one-

dimensional compression tests  (Yasuhara et al., 1992, Ohara and Matsuda, 1988; 

Hyodo, 1994; Yasuhara, 1994). Hence, considering the magnitude of compression 

index (Cc) with respect to that of recompression index (Cr), consolidation 

settlements due to seismic loading appear to be of minor importance. This 

statement is consistent with the results of centrifuge and shaking-table tests that 

model buildings resting on liquefiable saturated sand deposits, such that the 

excess pore-pressure ratios beneath the building foundations are much less 

compared to those at free-field, and while a great majority of the settlements 

occurs during the shaking, only a negligible portion occurs afterwards (Yoshimi and 

Tokimatsu, 1977; Whitman and Lambe, 1982; Liu and Dobry, 1997; Hausler and 

Sitar, 2001). 

When accumulation of cyclic strains under isotropic stress conditions, and 

stress levels below monotonic shear strength are considered, the stiffness 

degradation (i.e., secant stiffness during loading) of clayey soil can be expressed 

by the degradation index δD, such-that, for a strain-controlled test, 

1

N
D

�

�
� =          (2.1.a) 

or, stress-controlled test, 

N�

�
�

1
D =         (2.1.b) 

where, for a strain-controlled test �N is the stress amplitude at the end of Nth cycle 

and �1 is the stress amplitude at the end of 1st cycle. Similarly, for a stress-

controlled test εN is the strain amplitude at Nth cycle and ε1 is the strain amplitude at 

the end of 1st cycle. The relationship between number of cycles and degradation 

index is proposed as,  

dt
D N−=δ         (2.2) 

where, td is the degradation parameter, which is dependent on OCR and PI: High 

plasticity and overconsolidated clays degrade at a much slower rate than low 

plasticity and normally consolidated clays (more linear behavior). Also, td is 
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observed to be dependent on shear strain amplitude (γc) in cyclic simple shear test 

with zero initial shear (Vucetic and Dobry, 1988; Ishihara, 1996; Idriss et al. 1978). 

Hence, for stress levels below monotonic shear strength, degradation in secant 

modulus during each successive load cycle is proportional to the logarithm of 

number of load cycles (N). This will result in monotonically decreasing rate of 

stiffness degradation with the increasing number of load cycles. A representative 

plot is provided in Figure 2.1 for the case of strain-controlled test, as proposed by 

Ishihara (1996).  
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monotonic 

N=100 

1
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E
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Figure 2.1. Typical degradation curves by Ishihara (1996): �f and �A are the strain 

amplitude at failure (due to monotonic loading test) and in cyclic loading 

respectively, and EN and E1 are the deformation modulus at Nth and 1st cycles 

respectively. 

 

As shown in Figure 2.1, the difference in the modulus of deformation between 

rapid (N=1) and static (monotonic) loading depends on the magnitude of shear 

strain, and this difference of the modulus becomes more pronounced as the level 

of strain increases. Ansal et al. (2001) reported similar findings for the case of 

stress-controlled cyclic tests, which are consistent with the relationship in equation 

2.1.a, by utilizing cyclic simple shear test on normally-consolidated, organic, fat 

marine clays.  
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The behavior is investigated by Hyde and Brown (1976): stress-strain 

behavior of silty clays under cyclic loading is very similar to that under creep 

loading. Thus, using creep test results, strain accumulation under dynamic loading 

can be estimated by numerical integration of accumulated creep strains under 

given load amplitudes with time, provided that correlation between strain rate, time 

and load amplitude is determined using creep tests; this relation is observed to be 

logarithmically linear, explaining the logarithmic degradation behavior as proposed 

by equation 2.2. 

Above definition of degradation index can be practically used for regular 

cyclic loading conditions. On the other hand, earthquake load-histories are very 

irregular in nature. Thus, a manipulation is necessary to estimate degradation 

under irregular loading condition. A detailed study, which is based on extensions 

over Masing Rules, is presented by Vucetic (1990), and can be utilized for 

estimation of degradation effect due to repeated loading. However, verification of 

such degradation models are provided for simple-shear stress conditions (i.e., 

unidirectional loading), which can be practically utilized for one-dimensional 

problems. Considerations due to changes in orieantation of plane of maximum 

shear are unclear. 

Influence of soil properties such as plasticity index, void ratio and clay 

content as well as the fabric and aging on the cyclic behavior of silt-clay mixtures is 

not very clear at the present stage (Guo and Prakash, 1999; Mateši� and Vucetic, 

2003). Taking into account the multitude of factors affecting the cyclic response, 

testing appears to be inevitable for proper understanding of the seismic 

performance of such deposits in specific cases. On the other hand, due to the 

major difficulties in accurately replicating the fabric of field conditions through 

reconstituted laboratory specimens, use of undisturbed samples is a necessity. 

Pre-existence of shear stresses on the planes of maximum applied stress should 

be given consideration, as shear stress reversal is an important factor in 

liquefaction triggering and evolution of strength degradation with accumulated 

displacement (Perlea, 2000; Lefebvre and Pfendler, 1996). 

There exist two different test patterns for stress-controlled cyclic triaxial tests, 

as defined by Ishihara (1996). The first is the two-way loading, during which the 

specimen is subjected to successive compression and extension type of loading, 

so that the deviator stress can have both negative and positive values. This type of 
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loading results in full stress-reversals on failure plane, which may have a significant 

effect on strength or stiffness degradation of the material. The second pattern is the 

one-way loading, in which the application of load cycles results in only compression 

or extension type of loading, without reversals of stress on failure plane. The 

deviator stress has negative or positive values throughout a cycle. In both of the 

tests, initial shear can be applied through an undrained or drained stress-path, 

depending on the relevant stress history. 

Normally-consolidated clay specimens under two-way and one-way loading 

behave quite differently. A clay specimen under two-way cyclic loading exhibits the 

so called cyclic mobility: the specimen undergoes plastic-flow during the cyclic test, 

except when stress conditions are returned to initial (average), whereas a 

specimen under one-way does not. Specimens under two-way loading are 

observed to proceed to critical state line (CSL) faster than specimens under one-

way compression loading, implying a faster rate of degradation. In two-way tests 

with zero average deviator stress (i.e., residual), although stress amplitudes in 

positive and negative directions are symmetrical during two-way loading, 

considerable average (residual) shear strain can still accumulate, since the 

undrained shear strength of the specimen in extension is lower than the 

compression strength. Hence, in extension period of the cyclic load, the stress 

levels will be relatively closer to failure state, when compared to compression 

period (Yasuhara et al., 1992; Konrad and Wagg, 1993; Andersen et al, 1988). 

Thus, double amplitude shear strain criterion can not be commonly used for either 

of the two types of cyclic loading, since during two-way loading the cyclic strain is 

predominant where the average shear strain is relatively small, and, during one-

way loading average shear strain is decisive contrary to the cyclic shear strain. 

Furthermore, the decrease in cyclic strength occurs more appreciably in the two 

way loading then in the one way-loading conditions (Yasuhara et al., 1992, 2001; 

Andersen et al., 1998). Similar observations were also reported from tests on clays 

with simple shear apparatus, where stress reversal causes higher rate of strength 

degradation; in tests with initial shear stress, stress reversal effects are minimized, 

resulting in a lesser degree of strength degradation (Lefebre and Pfendler, 1996).   

Based on the review of literature and the discussions in Chapter 1, one-way 

loading cyclic triaxial tests are accepted essentially as the basis for tests of this 

study. Stress-paths beneath a building with poor aspect ratio are assumed to be 
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similar to triaxial compression test, as illustrated in Figure 1.1. Initial shear stress is 

applied through a drained stress-path, assuming that the soils beneath building 

foundations were fully consolidated, before being subjected to seismic loading.  

Hence, specimens are anisotropically consolidated during consolidation stage of 

consolidated-undrained (CU) triaxial tests. Cyclic loading is applied consecutively 

in an undrained manner, to simulate seismic loading conditions. In order to 

visualize its effect on cyclic degradation, two-way loading tests are also performed. 

The monotonic shear strength is of major importance in understanding the behavior 

of fine soils, and is a fundamental parameter utilized in foundation design practice. 

Hence, simultaneous monotonic shear strength tests are performed in parallel, 

keeping consolidation stresses the same for corresponding cyclic and monotonic 

tests. Volumetric strains that might occur following dynamic loading is out of scope 

of the testing program, since such strains are considered to be relatively 

insignificant due to stress conditions beneath a building foundation. Hence, the 

results of laboratory tests are considered to be representative of the cases 

involving foundation displacements. 

2.3. Testing Methodology 

Shear and deformation characteristics of Adapazarı silt-clay mixtures are 

studied through a series of undrained monotonic and stress controlled cyclic triaxial 

tests. The tests were carried out on the undisturbed specimens, representative of 

foundation soils, sampled from depths of 2-4.5 m. The specimens are obtained 

from the sites of cases of Karaca (2002), details of which are presented in 

Appendix A.  

The cyclic triaxial tests are performed by utilizing the Geonor cyclic triaxial 

test apparatus, with the contribution of Onur Pekcan. Details of the apparatus, 

including the loading and data acquisition systems, are presented by Pekcan 

(2002). The sample preparation, consolidation, and saturation stages are as 

explained in the study. Only the differences from the Pekcan’s study are presented 

here. 

The first difference is the anisotropic consolidation applied following the initial 

isotropic consolidation stage. At the end of isotropic consolidation, the cell pressure 

valve is closed, and the axial pressure (q) is increased. Then the drainage valve is 

opened in order to initiate the anisotropic consolidation. At the cyclic loading stage, 
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these loads are removed, and pneumatic actuator is set to the target initial deviator 

stress level. The actuator cycled around this stress level depending on the 

amplitude of the cyclic deviator stress. The second difference is due to the interest 

to simulate a representative state of the post-seismic shaking stability of these soil 

specimens with relevance to the effects of shaking on soil strength. To this 

purpose, at the end of each cyclic test, samples were brought back to the 

anisotropic stress-state of pre-cyclic loading and kept for about five minutes under 

undrained conditions to observe whether an imminent state of failure exists or any 

deformations occur due to possible substantial loss of strength during cyclic 

loading. This phase is presumed to simulate the post-cyclic stability of the 

buildings. With a few exceptions, the applied initial stress is considerably large, 

when compared to the monotonic shear strength of the specimens.  

The third difference is that, no volumetric strains are measured following the 

cyclic test stage, which simulates the consolidation settlement of the buildings after 

the seismic loading. Instead, as the final stage for those samples tested cyclically, 

they are sheared under rapid monotonic loading (in about 2 seconds) with a range 

of stress rates between 10–160 kPa/s. The objective is to observe the effect of 

more pronounced viscous response on the apparent strength increase under 

strong pulse loading on soils subjected to seismic shaking. This stage, in essence, 

simulates the effect of a strong pulse acting on soil, after the action of a strong 

seismic-loading history. 

Depending on the sampling tube diameter, two or three soil samples with 

initial dimensions of 36 mm diameter and 71 mm height were extruded side by side 

from the same level in a tube. In view of the highly heterogeneous nature of 

surface soils of the Adapazarı basin, such that the engineering properties can vary 

to a large extent even in a single tube, samples thus obtained are presumed to 

consist of identical material and considered to form a set. Samples in each set are 

consolidated under similar initial isotropic and subsequent anisotropic stress 

conditions, so as to follow comparable stress paths to the long-term pre-

earthquake condition of the soil elements beneath foundations. Following 

consolidation phase, one of the samples in each set is subjected to triaxial 

monotonic compression test, while the remaining sample(s) are tested cyclically. 

Utilizing the pore pressure parameter BS (i.e., B in the original study) defined by 
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Skempton (1954), the relationship between the pore-pressure increase under 

isotropic undrained stress increase and parameter BS can be expressed as, 

r

pore
S

��

�u
B =         (2.3)  

where  ∆upore is the change in pore-pressure, and  ∆σr is the change in isotropic 

pressure (i.e., change in cell pressure).  BS values of about 0.95 were provided 

before proceeding with the tests, for verification of the validity of the full saturation 

assumption. 

During monotonic tests samples were sheared to failure with a strain rate of 

1%/min, consistent with the standard testing procedures specified by ASTM for 

undrained testing. Stresses applied corresponding to the nine monotonic triaxial 

tests performed, each representing a set, are presented in Table 2.1 along with the 

plasticity indexes of the samples. The corresponding borehole and sampling depth 

information is also provided in Table 2.1, compatible with the information in 

Appendix A. 

 

Table 2.1. Summary data for monotonic strength tests. 

Monotonic 

test number 

(σ3)c 

(kPa) 

(σ1)c 

(kPa) 

(σ1-σ3)f 

(kPa) 

∆uf 

(kPa) 

 

PI 

Borehole 

ID 

Sampling 

Depth (m) 

1 60 90 171 12 14 GE-1 2.2 

2 70 100 118 18 25 GE-1 2.2 

3 80 120 189 18 13 GE-1 6.3 

4 80 120 123 1 8 GE-2 2.3 

5 60 140 165 6 22 GE-2 2.3 

6 40 140 123 2 19 GD-2 2.0 

7 80 200 193 8 19 GD-2 2.0 

8 100 205 217 7 7 GA-2 4.0 

9 50 170 170 0 10 GA-2 4.0 

(σ1)c      = major principle stress during consolidation; 
(σ3)c      = minor principle stress during consolidation; 
(σ1-σ3)f = deviator stress at failure; 
∆uf         = pore pressure increase at failure. 
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Utilizing the results of monotonic loading tests, Figure 2.2 summarizes the 

deviator stress ratio q/p´ at failure against plasticity index (PI), where p´ is the 

effective mean principal stress, 

3
�2�

p 31 ′+′
=′         (2.4.a) 

and, q is the deviator stress, 

31 ��q −=         (2.4.b) 

where, 11 � and � ′  are the total and effective major principal stress, 33 � and � ′  are 

the total and effective minor principal stress acting on the specimen. Details on the 

monotonic tests are presented in Appendix B.  Considering the strain levels at 

yielding during monotonic loading, and the bulging type of behavior during yielding, 

the membrane effect on the measured deviator stresses are approximated to be in 

the order of 10 kPa. Hence, ignoring apparent cohesion increase due to membrane 

effect, and the possible apparent cohesion due to rate of loading in monotonic 

tests, the friction angle at failure (�’) can be calculated by the formula (Azizi, 

2000), 

 p
sin3

6sin
q ′

φ′−
φ′

=        (2.5) 

Hence, by reducing the q values by 10 kPa due to membrane effect, the q and p’ 

values at failure are compared with failure lines corresponding to �’=26°, 30° and 

34° in Figure 2.3. Considering also possible apparent cohesion due to strain rate 

effect, the values of �� are estimated to be around the value of 30°. However, the 

trend of �� for lower PI values reduces to values considerably lower than 30°, 

implying that, for the case of nonplastic fine soils, the monotonic shear strength can 

be considerably low. Since, it was not possible to obtain undisturbed soil 

specimens for this range, the monotonic shear strength values for these soils are 

somewhat unclear. Recovery of undisturbed samples from low-strength nonplastic 

fine soil deposits requires special sampling techniques. Therefore, similar 

monotonic shear-strength tests for this range are left as a future study for 

Adapazarı cases. However, the impact of possible lower �’ values will also be 

discussed in this study, when investigating the specific Adapazarı cases. 
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Figure 2.2. Ratios of effective mean principal stress to deviator stress at failure in 

monotonic triaxial tests versus plasticity index. 
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Figure 2.3. Measured p� and q at failure in monotonic triaxial tests are compared with 

different �� values via equation 2.5: q values at failure are reduced by 10 kPa 

due to membrane effect. 

 

The data regarding the Atterberg limits of the tested samples is plotted in 

Figure 2.4. All samples are observed to be transition material between ML and CL 

on the plasticity chart. Accordingly, the tested soils, which are not definitely either 

clay or silt, are referred in this study as “silt-clay mixtures”.  
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Figure 2.4. The Atterberg limits of the tested specimens. 

 

 In cyclic tests, majority of the samples were subjected to one-way 

(compression only) cyclic loading with peak stresses exceeding or remaining below 

the monotonic strength, since this load form is presumed to have dominated the 

soil-foundation system response during shaking. On the other hand, to be able to 

discuss the effects of extension type of loading and the impact of successive stress 

reversal on soil behavior as well, a number of tests with two-way cyclic loading 

(i.e., deviator stress cycled between negative and positive values) were also 

performed. Considering the expected frequency content characteristics of surface 

motion during 17 August earthquake on the alluvial basin in Adapazarı, sinusoidal 

cyclic axial loads were applied with frequencies of mostly 1.0 Hz and alternatively 

0.5 Hz, so that the viscous behavior of soil is properly reflected in response. Cyclic 

triaxial test conditions are summarized in Table 2.2: The first two letters in test 

name specify the USCS soil type for the specimen. The monotonic test number is 

the corresponding ID number for the monotonic test. Plots pertaining to both cyclic 

and monotonic loading tests are presented in Appendix B. In Table 2.2, ∆σcyc is the 

amplitude of the cyclic deviator stress applied on the specimen, σmax is the 

maximum deviator stress level applied on the specimen during the cyclic test, σmon 

is the monotonic strength of the specimens, which is utilized as the normalizing 

parameter for σmax in this study, Ncyc is the number of load cycles, fcyc is the 
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frequency of cyclic load, εa is defined as the total irrecoverable axial strain 

accumulated during cyclic loading stage (compression direction is positive). CSR is 

the cyclic stress ratio, conventionally utilized for soil liquefaction and formulated as, 

( ) ( )cc

cycCSR
31 ��

��

+
=        (2.5) 

where, (σ1)c and (σ3)c are respectively the major and minor principal stresses 

applied during the anisotropic consolidation stage. For the case of isotropic 

consolidation (i.e.,(σ1)c = (σ3)c ), equation 2.5 will reduce to the classical form of 

CSR definition for cyclic triaxial tests (Ishihara, 1993) 

 

Table 2.2. Summary of the cyclic triaxial test conditions (the first two letters in test name 

specify the USCS soil type for the specimen). 

 
Test 

Monotonic 
test number 

∆σcyc 
(kPa) mon

max
σ
σ

  
Ncyc 

 
CSR 

fcyc 

(Hz) 
εa 

(%) 

 
∆ucyc 
(kPa) 

CL0106 1 80 0.64 13 0.53 0.90 2.8 32 
CL0218 2 64 0.80 16 0.38 0.76 -2.5 18 
CL0321 3 62 0.54 7 0.31 0.94 -7.3 10 
CL0324 3 30 0.37 18 0.15 0.91 1.4 21 
ML0409 4 63 0.84 9 0.63 1.06 -2.4 45 
ML0410 4 86 1.02 7 0.43 1.07 -8.3 75 
CL0516 5 94 1.05 15 0.47 1.04 5.6 25 
CL0518 5 82 0.98 25 0.41 1.03 2.4 10 
CL0608 6 73 1.41 15 0.41 1.04 3.6 6 
CL0717 7 62 0.93 41 0.22 1.03 1.2 7 
CL0705 7 85 1.06 12 0.30 0.94 0.4 5 
CL0709 7 53 0.90 26 0.19 0.93 0.6 20 
ML0811 8 82 0.86 43 0.27 0.88 1.4 47 
ML0812 * 82 1.54  17 0.38 0.93 8.9 40 
ML0813 * 84 1.55 27 0.38 0.53 17.3 72 
ML0924 9 84 1.20 32 0.38 0.94 3.3 50 
ML0929 9 87 1.22 32 0.40 0.43 7.2 0 
* Samples (PI=7) are preferred to be tested cyclically to observe the frequency effect, and monotonic 

strength is estimated as 125 kPa from Figure 2.4. 
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2.4. Test Results and Initial Observations 

Distinct trends are observed in the cyclic behavior of samples regarding axial 

strain accumulation, depending on whether the applied loading is one-way or two-

way. The other essentially influential factor over deformation behavior was the 

respective levels of maximum and minimum deviator stresses applied during cyclic 

testing. Test results, representative of the general trends are presented in Figures 

2.5.a-d, where monotonic compression, cyclic and consequent rapid loading 

responses are superposed for each relevant set of samples for easier visual 

perception. Remaining test results are presented in Appendix B. 

In the case of one-way loading with the applied peak stress exceeding 

monotonic strength, consistent with the observations of Konrad and Wagg (1993), 

plastic strains are observed to accumulate with almost a constant rate for each 

cycle after few initial cycles. Accordingly, plots similar to Figure 2.5.a are obtained 

from such tests. Whereas in the case of peak cyclic stress remaining below 

monotonic strength, plastic strains still occur in each cycle; however, the 

incremental strain amplitudes per cycle are much smaller and tend to decrease 

rapidly with increasing number of cycles, consistent with those trends cited in 

literature (Hyodo et al. 1994, Hyde and Brown, 1976; Mitchell and King, 1977; 

Andersen et al. 1980), except that the tests are terminated before reaching the 

number of load cycles for which the instability (i.e., rapid increase in strains) is 

triggered. Hence, after a few cycles the plastic strain increment per cycle reduces 

practically to none; and when compared, for a specific number of cycles, to the 

tests in which the maximum cyclic deviator stress exceeds the monotonic strength, 

the accumulated plastic strain remains negligibly small. Figure 2.5.b illustrates the 

typical result from such tests. No significant cyclic degradation (i.e., ultimate load 

capacity) was observed in stiffness and strength of the samples tested under one-

way loading conditions, even in cases in which the monotonic strength is 

exceeded. 
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(b) 

Figure 2.5. Stress-strain responses representative of distinct trends observed in cyclic 

triaxial tests with corresponding monotonic and rapid compression triaxial test 

results: (a) one-way compressive loading with peak axial stress exceeding 

monotonic strength, (b) one-way compressive loading with peak axial stress 

remaining below monotonic strength, (c) two-way loading with specimen 

cyclically failing in compression, (d) two-way loading with specimen 

cyclically failing in extension. 
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(d) 

Figure 2.5 (continued). 

 

In the case of two-way loading, the specimens are observed to display a 

“strain memory:” That is, during loading and unloading stages, the strain history 

targeted the values of maximum past strains in compression and extension, 

respectively, and the incremental irreversible strains occurring in each additional 
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cycle are added to those of previous. Accordingly, based on the maximum and 

minimum levels of deviator stress applied during a test, the specimen can develop 

incremental cyclic strains in compression and/or extension, corresponding 

representative plots of which are presented in Figures 2.5.c and d. Specimen 

stiffness is observed to vary through a transition zone between compressive and 

extensional behavior segments in this group of tests. These results underline the 

dependency of undrained stress-strain response of cohesive soils on loading 

history, a systematic analysis of which under irregular shear loading is presented 

by Vucetic (1990). 

Despite demanding cyclic load combinations applied in several of the tests, 

none of the samples in the series, subjected to either one-way or two-way loading, 

displayed a state of failure or even any limited deformations upon imposition of 

initial anisotropic state of stress following cyclic loading. This observation indicates 

that the soils, for which the tested samples are representative, were not likely to 

have been subjected to loss of strength due to seismic shaking, at levels such that 

the building foundations would experience post-shaking instability. The other 

noteworthy observation from Figures 2.5.a-d is that the apparent strength increase 

with reference to monotonic strength is significant in each case under rapid 

loading, applied as the final stage following the rest period after cyclic loading. 

Such behavior, which is peculiar to cohesive soils, can be explained considering 

the pronounced viscous response induced by the increased speed of loading. 

An overall evaluation of the observed trends from the series of tests 

conducted over representative soil samples indicates that the relatively large 

permanent displacements of foundations situated over comparable soils are not 

possible, unless the capacity defined by monotonic strength is significantly 

exceeded during seismic disturbance. Whereas test results also indicate that the 

viscous behavior dominates the strength and plastic deformation accumulation 

response of these soils under loads with increased rates of application. Hence, any 

reasonable estimate of the degree of foundation displacements due to strong 

seismic shaking would necessarily depend on the information regarding soil 

performance beyond monotonic strength as well as the characteristics of the 

seismic load. 

Figure 2.6 presents plots of peak axial strain development during one-way 

compressive cyclic tests in the series for which the monotonic strength is exceeded 
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by peak deviator stress. These plots display quite a wide range of strain 

accumulation characteristics, as they are representative of tests involving different 

soil samples, stress amplitudes and loading frequencies. Further investigation of 

the dependency of strain accumulation on such distinct factors is attempted in the 

following section through use of a methodology developed based on strain-rate and 

load history relationship. 
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Figure 2.6. Peak axial strain development during one-way compression tests in which the 

monotonic strength are exceeded. 

 

2.5. Plastic Strain Accumulation Due to Cyclic Loading 

Hyde and Brown (1976) studied the sub-failure stress-strain-time 

relationships of reconstituted silty clays utilizing the similarity in the behavior of clay 

under repeated loading compared with that under creep loading. They concluded 

that the relationship between logarithm of strain-rate ( )�ln( � ), applied stress (σ) and 

logarithm of time (ln(t)) can be simply expressed in the form: 
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)t(ln C��	)�ln( ++=�        (2.6) 

Thus, determining parameters A, B and C, accumulated strains can be 

estimated through numerical integration for a given load history of repeated loading 

for which the stress levels remain below monotonic strength. Test results provided 

by Vaid and Campanella (1977) made clear that clay behavior could also be 

represented by equation 2.6 for creep stresses exceeding monotonic strength, until 

eventual rupture. 

In this study, the relationship expressed in equation 2.6 is presumed to be 

valid under load-histories (σ(t)) that exert stresses beyond shear strength, in the 

following modified form, in which the strain-rate does not explicitly depend on time: 

(t)�
�)�ln( ⋅+=�         (2.7.a) 

or, 


�(t)�e (t)� +=�         (2.7.b) 

The modification is due to the fact that, when specimens are loaded below 

shear strength, the parameter C in equation 2.6 has negative values, implying that 

the strain-rate will tend to decrease in time; hence, accumulated strains will 

converge to finite values. Whereas in case the shear strength is exceeded, 

deformations would continue without a bound till failure (a predefined strain level of 

interest) of the specimen is reached. Clearly, the parameters � and 
 are 

dependent on the specimen mechanical properties associated with deformation 

response, as well as the characteristics of the imposed load. Accordingly, 

integrating equation 2.7, plastic strain due to loads exceeding monotonic strength 

can be estimated (or the role of various parameters on strain accumulation 

characteristics can be investigated) for specific cases, provided that the utilized soil 

specimens and testing procedures are comparable. 

Parameters � and 
 can be determined based on rapid load test data through 

least squares fitting of equation 2.7 to part of the load history exceeding monotonic 

strength, for each test. The stress-strain variations and strain time histories, 

predicted using parameters thus determined are compared to those measured. 

Exemplary results are presented for two of the tests in Figure 2.7. Plots for 
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remaining test results can be found in Appendix B. Based on the results, it is 

concluded that, under imposed rapid loading, the deformation behavior of a sample 

beyond monotonic strength can be represented appropriately by the two 

parameters. Corresponding values of � and 
 calculated for the set of rapid load 

test data are plotted in Figure 2.8 to observe any interdependency between the two 

parameters. Despite scatter, which can largely be attributed to variations in sample 

properties and loading speed in the data set, the two parameters are clearly 

observed to be dependent. 
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(b) 

Figure 2.7. Examples of rapid load test simulation: (a) least squares fit of Equation 2, (b) 

comparison of fitted and observed strain-time histories, (b) comparison of 

fitted and observed stress-strain variation. 
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Figure 2.7 (continued).  
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Figure 2.8. Relationship between α and β parameters calculated from rapid load test data. 

 

Effects of soil properties on the strain rate can be investigated utilizing shear 

strength as the normalizing parameter so as to remove any dependency of the � 

and 
 parameters on the stress range. Accordingly, the two parameters were 

obtained from a regression analysis of the data representative of 1.5 times the 

monotonic strength, an arbitrarily selected factor. Corresponding strain rates 

calculated using equation 2.7 are plotted against plasticity index and water content 

in Figure 2.9.a and 2.9.b, respectively. With significant scatter existing in either 

case, trends, though not very distinct, are visible. The tendency of increase in 
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strain rate with increasing plasticity index, observed in Figure 2.9.a, is contradictory 

to the expectation that the soils with higher plasticity index will behave more 

viscous, displaying higher apparent strength increase under rapid loading. On the 

other hand, in Figure 2.9.b, the axial strain rate increases with increasing water 

content, which is proportionally related to void ratio in the case of saturated 

samples. This trend is in conformance with that would be expected: As the void 

ratio increases, soils become less viscous, and thus deform relatively faster under 

rapid loading. However, it is to be emphasized that the observed trends cannot be 

generalized, as the samples tested within the scope of this study are all low plastic 

and that they plot along A-line on the plasticity chart (Figure 2.4). The rather wide 

range of strain rates in Figure 2.9 shows that, depending on loading and material 

characteristics, specimens may develop insignificant amounts of irreversible 

strains, or may rapidly accumulate large amounts when stressed above monotonic 

strength for relatively short durations. 

Plastic strain accumulation due to a cyclic load can be estimated integrating 

equation 2.7, if the contribution from part of the load remaining below monotonic 

strength is regarded as negligible: 

�
+=−

2

1

t

t


�(t)�
12 dte)�(t)�(t       (2.8) 

where t1 and t2 are the instants between which the monotonic strength is exceeded 

by the imposed deviator stress in a load cycle. A cyclic load history having a 

nonzero average value (σave) can be defined as 

) t sin(����(t) cycave ⋅+=       (2.9) 

Then, plastic strain accumulation per cycle is given by  

�
ω⋅σ+σβ+α=−

2
cycave

t

t

t))sin(  (
12 dte)�(t)�(t

1

   

or, 
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(b) 

Figure 2.9. Relationship between axial strain rate calculated at deviator stress level of 1.5 

times the monotonic strength and (a) plasticity index, and (b) water content. 
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ωβσβσ+α
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1

         (2.10) 
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Referring monotonic strength as σmon, t1 and t2 can be expressed as follows: 

�
�

�

�

�
�

�

�
=

cyc

avemon
1

�

 � - �
arcsin

�

1
t       (2.11.a) 

and,  

12 t-
�



t =         (2.11.b) 

Thus, since the integrated function is symmetric around 
/2�, equation 2.10 

takes the form 

�
ωβσβσ+α

�
�
�

�
�
�⋅=ε∆

2�


t

t)sin(

cyc dtee cycave

1

2     (2.12) 

Equation 2.10 can be evaluated through numerical integration, and then, the 

parameters � and 
 can be determined by back calculation using equation 2.12 

and cyclic test data. Owing to the time independency assumption regarding � and 


, reliability of these parameters depends on the similarity between the 

characteristics of the presumed load form and those of the cyclic tests. Also, due to 

the logarithmic nature of equation 2.7, strain rate can be very sensitive to small 

variations in �. Accordingly, the formulated approach can be utilized as an 

engineering tool serving to distinguish major behavioral differences between 

different soils under dynamic loads exceeding monotonic strength and to evaluate 

the impact of viscous behavior on the foundation performance. 

It is of interest to investigate the significance of stress range on plastic strain 

accumulation. To this purpose, by means of the transformation  �tt ⋅= , equation 

2.12 is modified into the following form: 

� �
�
�

�
�
�⋅= βσσ+

2


t

1)-)t (sin(
 
�

cyc
1

cycmax tdee
�

2
��     (2.13.a) 

or, 

)gf 1cycmaxcyc t
,,() , 
 , (�
�

� σ⋅σ⋅=∆ 2
    (2.13.b) 
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where, σmax is the maximum stress applied during cyclic testing (i.e., 

σmax=σave+σcyc), and, 


 �
max

maxe) , 
 , (� σ+=σf        (2.14) 

� �
�
�

�
�
�= βσ2


t

1)-) t (sin(

1cyc
1

cyc tde)t
,,(�g      (2.15) 

��
�

�
��
�

�

−
−

=
�
�

�

�

�
�

�

� −
=

avemax

avemon

cyc

avemon
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��
arcsin

�

��
arcsint    (2.16) 

Plots of function g containing the data range of the performed rapid load tests 

are presented in Figure 2.10 as a function of dimensionless parameter 1t . It is 

observed that the function is relatively insensitive to variations in 1t , except for 

near 0t1 =  and 
/2t1 = (i.e. where σave is very close to monotonic strength, and 

σmax marginally exceeds the monotonic strength). Hence, within the range where it 

is relatively insensitive, function g can be reasonably approximated with coarse 

estimates, and plastic strain accumulation will be more critically dependent on the 

function f defined by equation 2.14. 
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Figure 2.10. Variation of function g. 
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Outlined procedure appears to require at least two cyclic tests that simulate 

stress levels and loading rates of the presumed shaking to obtain a set of � and 
 

parameters. However, depending on the equivalence of the parameters obtained 

from cyclic and rapid loading tests, a parameter set can alternatively be determined 

through consequent cyclic and rapid load tests performed over a single specimen. 

Such an approach can be convenient regarding sample availability and 

heterogeneity in the case of natural soils, as well as providing economy and speed 

in testing. Due to the limitations of the test data, parameter equivalence can be 

investigated here, through comparison of � values obtained from series of cyclic 

tests in which the monotonic strength is exceed, and consecutive rapid load tests. 

Figure 2.11 presents the comparison based on back-calculated values of � 

tabulated in Table 2.3. Although the loading patterns as well as existing load 

histories before initiation of each type of test are radically different, values are seen 

to be consistent with only minor deviations. This result also implies the dependency 

of seismic soil performance on the viscous response. 
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Figure 2.11. Correlation of α parameters calculated from cyclic and rapid load test data. 
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Table 2.3. Back calculation of α parameters from results of cyclic tests in which the 

monotonic strength is exceeded. 

 

Test 

average 

∆εcyc(%) 

ω 

(rad/s) 

 

T1 

 

β·∆σcyc  

 

g 

 

f 

 

α 

 

β 

CL0608 0.24 6.5 0.45 3.1 0.69 1.1 -6.8 0.042 

CL0705 0.033 5.9 1.2 1.9 0.39 0.25 -5.8 0.022 

ML0812 0.52 5.9 0.12 1.4 1.0 1.5 -2.8 0.017 

ML0813 0.64 3.3 0.22 1.4* 0.96 1.1 -3.2 0.017 

ML0924 0.10 5.9 1.0 2.3 0.54 0.54 -2.4 0.010 

ML0929 0.22 2.7 0.79 1.2 0.69 0.43 -3.6 0.014 

 * Parameter β of test ML0812 is utilized due to non-availability of rapid loading test. 

 

As an application of the proposed methodology, plastic strain accumulation 

per cycle due to a hypothetical test is calculated for the six cases in which the 

samples were stressed beyond monotonic strength during cyclic tests. Relevant � 

and 
 parameters are those provided in Table 2.3. For the hypothetical test, 

average and peak deviator stresses are set to 0.5 and 1.5 times the monotonic 

strength, correspondingly, and period of load cycles is set to 2 s. Calculated plastic 

strains per cycle are presented in Figure 2.12. Despite differences in load histories 

and test conditions, plastic strain accumulations are seen to be comparable, 

indicating comparable deformation characteristics for these samples. This is not 

unexpected, however, considering that all the samples are representative of sites 

of observed foundation displacements, and that they plot on the low plastic side in 

a very narrow range around A-line on the plasticity chart (Figure 2.3). 
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Figure 2.12. Estimated plastic strains per load cycle for a hypothetical test for which σave = 
0.5σmono, σmax = 1.5σmono and ω = π rad/s. 

 

2.6. Observed Dilatancy During Plastic Flow 

The dilatancy angle is important in calculations of ultimate foundation bearing 

capacity, as will be discussed in Chapter 4. For non-associative flow rule, the 

plastic strain rate for perfectly plastic material can be expressed as (Davis and 

Selvadurai, 2002): 

�

g
�

p
p ∂

∂
=ε�         (2.17) 

where, pε� is the plastic strain rate matrix, gp is the plastic potential function defined 

as a function of the components of the stress matrix �, and � is a positive multiplier. 

For the plane strain condition and Coulomb yield criterion, the plastic potential 

function can be defined as: 

xxyyp Jg σ−σ=        (2.18) 

where,  

sin�1
sin�1

J
−
+=         (2.19) 
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Here, � is the angle of dilatancy. In case �=��, the flow rule will be 

associated. For values of � different from �� the flow rule will be non-associated. 

Hence, for the plain-strain case, the volumetric strain rate during plastic flow is, 

J)�(1�
p
v −=�         (2.20) 

The volumetric strain rates can be determined from consolidated-drained 

tests, by measuring the quantity of water sucked into the specimen. However, the 

volumetric strain rate can not be directly measured during undrained tests. On the 

other hand, the pore-pressure measurements during undrained tests can be 

utilized to observe the signifcance of dilatancy during yielding. 

In case of consolidated-undrained (CU) tests, if the specimen dilates (i.e., the 

volume of the specimen tends to increase), then the pore pressures will tend to 

decrease during plastic flow (Ortigao, 1995). For investigation of change in pore-

water pressure during yielding, the pore-pressure readings (upore) during monotonic 

shear strength tests are normalized with the deviator stress increase (�q) during 

undrained phase, and plotted in Figure 2.13. It is observed that, no significant 

tendency for volume decrease exists, implying that 0p
v ≅ε� , or �≅0 can be 

presumed for further practical discussions. On the other hand, in estimations of 

bearing capacity based on perfect plasticity, the assumption of �=0 provides 

conservative ultimate load capacity for the foundations, and this issue is discussed 

in Chapter 4 in detail. 
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Figure 2.13. Change in pore-pressure (�upore), normalized by deviator stress increase (�q) 

during undrained phase in monotonic loading tests.  

 

2.7. Conclusions 

Among other factors, the highly variable characteristics of alluvial sediments 

underlying the city of Adapazarı evidently played a major role in the occurrence of 

peculiar building foundation displacements associated with the 17 August 

earthquake. Results of the series of tests performed over low plastic silt-clay 

mixtures which dominate the studied sites of foundation displacements show that, 

under means of dynamic loading comparable to that of 17 August earthquake, and 

considering stress paths beneath buildings, these soils do not display any trends 

that can be interpreted as “liquefaction,” regarding stiffness and strength response. 

Their cyclic strain accumulation characteristics, however, critically depend on the 

relative level of peak cyclic stress with regard to the monotonic shear strength: 

While plastic strains can rapidly accumulate at practically constant rates per cycle 

in case the monotonic strength is exceeded, they tend to remain insignificantly 

small, otherwise. Substantial increases of apparent strength observed during rapid 

loading tests reflect the pronounced viscous nature of these soils under loads with 

increased rates. 
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With reference to the seismic foundation response on soils of comparable 

characteristics, these results imply that substantial permanent displacements are 

not likely to occur, unless the foundation capacity defined by monotonic strength is 

exceeded during seismic shaking; whereas the residual strain accumulation 

response beyond the capacity would depend upon viscous soil response. These 

implications also explain the observed dependency of occurrence and severity of 

foundation displacements on the clay content of foundation soils, that relate to 

viscous soil response, as well as on factors (such as story number and foundation 

aspect ratio) that relate to seismically induced foundation loads and seismic 

vulnerability of structure-foundation systems.    

The viscous response of the soils for stress levels exceeding the monotonic 

strength level is considered as reserve strength for design purposes. This is due to 

the fact that, viscous response parameters calculated may not be directly utilized, 

since they can be dependent on the test procedures (i.e., triaxial testing). Further 

studies are required in order to relate the viscous parameters to actual foundation 

behavior. Thus, the soils are assumed to obey Mohr-Coulomb failure rule, with no 

further reserve load capacity due to viscous response. Still, the deformation 

behavior depends on the parameters such as angle of dilatation (�), which is 

observed to be nearly 0º during monotonic shear strength tests performed in this 

study. As it will be discussed in Chapter 4, bearing capacity calculation procedures 

involve significant uncertainty, even under static load conditions. The pore pressure 

measurements during cyclic loading tests are not reliable, since the rate of loading 

does not permit pore-pressures in the specimen to be distributed uniformly. Still, in 

all tests, no sudden increase in strain accumulation rate is observed during the 

cyclic loading phase, which implies that liquefaction of the specimens due to pore-

pressure increase does not occur. The effective friction angle at critical state is 

measured to be about 30°, somewhat compatible with the shallow silty clay 

deposits of Mexico City, as reported by Zeevaert (1991). However, more 

specimens are required to estimate shear-strength of nonplastic fine-deposits, 

which can have effective angle of friction values lower than 26°. This is left as a 

future study. 

To conclude with, dependency of cyclic plastic strain accumulation response 

of Adapazarı silt-clay mixtures on soil properties is investigated utilizing the 

methodology developed as part of this study. No particularly distinct trends were 
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observed regarding strain accumulation properties for the tested samples, all of 

which are low plastic and cluster around A-line on the plasticity chart. Recognizing 

that these samples are representative of foundation displacement sites, the 

variability of viscous soil behavior under dynamic loading, and its consequences on 

seismic foundation performance cannot be thoroughly identified without similar 

testing of soils representative of sites where no such displacements were observed 

in the city. This is also left as a future study. 
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CHAPTER 3 

SOIL-STRUCTURE-INTERACTION CONSIDERATIONS 
 
 
 

3.1. General 

As discussed in Chapter 1, the rigorous analysis of nonlinear soil-structure-

interaction (SSI) is too complicated and costly to utilize in simple design. Hence, a 

methodology that is based on simplified SSI approaches is to be developed. In this 

study, simple multistory buildings resting on shallow mat foundations are 

considered (Figure 3.1). The buildings are assumed to be excited by vertically 

incident SH waves, which results in free-field surface motion history ug(t). Linear 

SSI equations can be presumed to be applicable for the cases of low intensity 

ground motion in which the building, soil and the foundation-soil interface behave 

practically linearly. However, under strong earthquake excitation and for soft soil 

conditions, three components of the SSI system can behave significantly nonlinear, 

resulting in accumulation of irrecoverable displacements during the earthquake. 

Consideration of the nonlinear behavior of both, the structure and the 

foundation results in a complicated problem for practical applications. On the other 

hand, considering the degree of uncertainty involved in the problem, it is 

appropriate to assume either the building or the foundation-soil system behaves 

linearly. Excluding the case of nonlinearly behaving building, estimation of 

magnitudes of irrecoverable foundation displacements are targeted in this study 

assuming that the foundation-soil system is the only component that behaves 

nonlinearly. 

 



 50

 

Figure 3.1. The simple sketch for the problem statement: multistory building resting on 

shallow mat foundation. 

 

In Chapter 4, it is discussed that, for a given vertical static load level on a 

shallow mat foundation, there is a corresponding level of horizontal pseudo-static 

acceleration acting on building mass, which will initiate plastic flow of foundation-

soil system. This ultimate acceleration value depends not only on the geotechnical 

considerations for the soil-foundation system, but also on the dynamic 

characteristics of the whole oscillating system. As discussed in Chapter 1, rigorous 

analysis of nonlinear soil-structure interaction requires sophisticated numerical 

models. Such models would involve details on constitutive behavior of soil, 

foundation-soil interface and structure, and the results are dependent on the 

uncertainty involved in material properties, especially due to variation of the soil 

profile beneath the foundation and utilized input motions.  

Hence, in this chapter, governing equations for a simple methodology that 

can be utilized to estimate the irrecoverable rotation demands on shallow mat 

foundations are derived. The methodology depends on basic linear SSI principles 

to estimate the fundamental period and damping of the linear system. Basic 

equations will be extended to nonlinear range for the foundation response, such 

that the total behavior of the system will be reduced to simple elasto-plastic 

behavior. This final simplification will provide a link to the practical design 

approach, based on design spectrum for a given site, as it will be shown in Chapter 

5.  
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3.2. Literature Review 

Dynamic response of the system depicted in Figure 3.1 requires soil-

structure-interaction (SSI) considerations. In the literature review of this Chapter, 

references pertaining to the SSI concepts are discussed. 

Most rigorous study on SSI analysis is presented by Wolf, and published in 

three books (Wolf, 1985, 1988, 1994). The first book (Wolf, 1985) involves the 

fundamental principles in rigorous SSI approaches for applications in machine 

foundation problems and seismic interaction. The methodologies for linear 

numerical modeling of the structure and the soil medium are presented in 

frequency domain. Impact of nonlinearity can be analyzed through incremental 

equations of motion in time domain, which is the subject of the second book (Wolf, 

1988). Since the methodologies presented in the first two books are rather 

complicated for practical use, simple approaches for practical applications are 

utilized in the third book (Wolf, 1994), based on approximations of the SSI analysis 

via truncated cones and lumped-parameter models.  

Accordingly, the investigation of effect of the structure-foundation stiffness on 

seismic forces is referred to as the “kinematic-interaction analysis”, while the 

analysis integrating the effect of mass is referred to as the “inertial-interaction 

analysis”. For a linear SSI analysis, both effects can be formulated separately and 

can be superposed (Wolf, 1985). However, for a nonlinear analysis, superposition 

is not possible, necessitating a direct numerical solution in time-domain. Wolf also 

states that, for a surface structure excited by vertically incident waves, only the 

inertial interaction part of the analysis really has to be analyzed. Hence, in this 

study, since buildings without significant embedment are considered, only inertial 

interaction is considered in the analyses. 

The impact of SSI on response of structures can be investigated by the 

simple model described in Figure 3.2: The only lumped mass, representing the 

inertia of the structure, is located at height h. Utilizing this model, Wolf (1985) 

presents the derivations of a simplified inertial-interaction analysis for response 

calculations for the structural distortions (us) for this simplified model in the 

frequency-domain. 

As a further study, Stewart et al. (1999a; 1999b) compared the measured SSI 

effect on period lengthening and damping with the simple predictive equations, 
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based on the simple model in Figure 3.2. For the purpose, actual records that are 

obtained on the roof, the base and the free-field locations at various buildings, and 

the system-identification techniques are utilized. Analyses verified the statement 

that, the kinematic-interaction can be practically ignored for buildings with shallow 

foundations, and the SSI formulations can be practically based on inertial 

interaction alone. Both, the period lengthening and the effective foundation 

damping ratio are strongly dependent on the dimensionless parameter 1/r, which is 

formulated as: 

ssTV
h

r
=1

        (3.1) 

where, h is the effective structure height (i.e., accepted as 70% of total height of 

the building), Vs is the shear wave velocity of the foundation soil, and Ts is the 

fixed-base period for the structure. The soil-structure interaction is observed to be 

more significant for small r values. Hence, SSI impact on dynamic response is 

more significant for relatively stiff structures resting on relatively soft deposits. The 

aspect ratio (i.e., ratio of h to foundation width) is also observed to affect the 

results, such that, buildings with higher aspect ratios provide higher period 

lengthening and lower foundation damping ratios. 

Frequency independent lumped parameter models, composed of spring-

dashpot-mass models are presented by Wolf (1994). However, Wolf discusses 

that, if a lumped mass for the dynamic response of the foundation-soil system is 

included in the simplified analysis (i.e., a lumped mass is added to the originally-

massless foundation node in Figure 3.2), then effective input motion (ug) applied at 

the far-end of the SSI model must be calculated: ug is no more equal to the free-

field displacement-history. This may result in a further complication for practical 

applications. In case the foundation impedances are modeled by only spring and 

dashpots (without any use of lumped mass), then effective input motion is simply 

the free-field motion, as it is introduced in Section 3.3. However, in this case, the 

spring and dashpot coefficients become strongly frequency-dependent.  
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Figure 3.2. Simplified model for SSI analysis: uh, u�, and us are horizontal translation, 

foundation tilting and structural distortion components of the relative 

displacement of lumped mass with respect to the ground; ug is the ground 

displacement; kh, and k� are the horizontal and rocking impedances of 

foundation; ks is the structural stiffness, m is the lumped mass representing the 

inertia of the structure. 

 
Dobry and Gazetas (1986) provide the frequency-dependent foundation 

impedances without use of lumped masses at foundation nodes in simple SSI 

models. The equations are applicable to arbitrarily shaped rigid surface foundations 

placed on presumably homogeneous and deep soil deposits. For the case of 

machine foundations, frequency dependent spring and dashpot coefficients can be 

easily obtained by utilizing the operational frequency of the equipment. However, 

for seismic excitations, selection of a unique representative frequency does not 

seem to be realistic. On the other hand, considering the degree of uncertainty 

involved in practical applications, significance of frequency-dependency in SSI 

calculations is investigated in Section 3.6. Validity of these equations are also 

examined by model tests by Dobry et al. (1986). A significant outcome of these 

series of tests is the observation that, in the swaying-rocking mode, damping ratios 

are over-predicted, due to reflections on model-boundaries: The elastic half-space 

assumption for the soil tends to over-predict the actual damping values in swaying-

rocking mode. For practical use, the formulations are further simplified and 

presented by Gazetas (1991), which will be utilized in derivations for the study. 
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Wolf (1994) also rigorously investigated the case of shallow soil layer resting 

on rigid rock, and stated that, energy radiation can only occur in horizontal direction 

in this case. Hence, any harmonic excitation applied on the shallow foundation 

reflects back and forth between the ground surface and rock layer. Also, there is a 

cut-off frequency, below which practically zero damping occurs due to the radiation 

of the wave energy. These findings practically lead to the conclusion that, soil 

stratification in the horizontal and vertical directions can have a very significant 

impact on damping ratio. This creates a difficulty in practical approaches, enforcing 

the engineer to investigate the mechanical properties of the foundation soils more 

rigorously, and to evaluate the actual damping. In case of simple buildings, such an 

analysis will be difficult and costly. In fact, the importance of the effect can also be 

observed in the study by Paoulicci (1997), which aims at to compare the simplified 

(inertial) nonlinear interaction model with a two-dimensional nonlinear finite-

elements approach, as discussed in Chapter 1 of this study: The simplified 

analyses underestimate the rocking-mode displacements when compared to the 

rigorous finite-elements approach. An abrupt increase is observed in these 

displacements in the rigorous model, at time the simplified model ceases them. 

Considering the discussions of Wolf (1994), this may be due the reflections of the 

waves from the (rigid) base of the model towards ground surface, since the 

observed (back) arrival time for the severe excitation in rigorous model is 

consistent with the shear-wave velocity of the soil in the model. Such reflections 

are not considered in the simplified model, since it is based on the half-space 

assumption. Hence, the results presented by Paoulicci can be regarded as an 

example of detrimental impact of utilization of equations that are based on the half-

space assumption. 

3.3. Simplified SSI Formulation for Linear System 

In case the response of the building structure in Figure 3.1 can be 

approximated by the behavior of a single-degree-of-freedom oscillator, it can be 

possible to calculate the response of the system by integrating the equation of 

motion in time-domain. The behavior of the foundation-soil system is idealized to 

be nonlinear in this study: when a threshold seismic force level is exceeded, 

plastic-flow behavior is initiated at the foundation. Considering the complicated 

behavior of soils, as presented in Chapter 2, the foundation response is assumed 
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to be elastic-ideally plastic. The impact of more complex response of foundation 

soil is excluded here, and left as a future study. 

In engineering applications, generally only the peak values of the response of 

dynamic systems are investigated. In case the system behavior can be reduced to 

the response of a SDOF oscillator, calculation of peak response can be achieved 

utilizing the response spectrum for input motion. Only the period of the SDOF 

oscillator is required for entry to a response spectrum plot, for a given damping 

ratio, due to the normalized equation of motion (Chopra, 1995),  

g
2
nn u-u�u�2u ����� =++ �        (3.2) 

where, u is the relative displacement with respect to ground, ug is the ground 

displacement, � is the damping ratio and �n is the natural frequency (Tn=2�/�n is 

the natural period) of the linear system. If k, m, and cv are the stiffness, mass, and 

viscous damping values for a SDOF oscillator, then the following relations hold for 

equation 3.3: 

m
k

�n =         (3.3.a) 

km2

cv=ς         (3.3.b) 

In case of nonlinear behavior, due to variation of value k (system stiffness), 

additional parameters describing nonlinear constitutive behavior are required. If 

system stiffness is dependent on the state of displacement and velocity only, the 

equation of motion is, 

 gsv u-m)u(u,fucum ������ =++       (3.4) 

where, )u(u,fs � is the resistance due to nonlinear spring. The simplest nonlinear 

behavior involving yield is the elastic-perfectly plastic behavior, which also has a 

potential to develop practical design approaches. If the yield force level for the 

elastic-perfectly plastic system is fy, then equation 3.4 can be reduced as, 
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gsy
2
nn u-)u(u,fu�u�2u ������ =+ς+       (3.5) 

where, normalized force-displacement relation for nonlinear spring is formulated 

as, 

y

s
s f

)u(u,f
)u(u,f

�
� =        (3.6.a) 

and, 

k

f
u y

y =          (3.6.b) 

here, k is the stiffness of spring for force levels below fy, �n and � are calculated 

utilizing equations 3.3, considering linear system parameters k, cv and m. 

Therefore, besides natural period Tn and damping ratio �, value of function yf  

(equation 3.6.a) and uy (equation 3.6.b) are required for response calculations. 

Further reduction is possible, if equation 3.5 is normalized with uy: The ductility 

ratio is defined as, 

yu
u

� =          (3.7) 

and, the pseudo-static yield acceleration, which is the acceleration of the mass 

necessary to produce yield force fy is defined as, 

y
2
n

y
y u�

m

f
a ==         (3.8) 

which is referred to as the absolute yield acceleration in this study. Equation 3.5 

can be further reduced as, 

y

g2
ns

2
nn a

u
�)� , (�f��� 2��

��

���� −=++      (3.9)  
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Therefore, for a given input motion history, ug(t) and yield acceleration level 

ay, it is possible to calculate �-history, for a given natural period and damping ratio. 

Actual response-history can be calculated via equation 3.9.  

Equation 3.9 is also useful in utilizing elastic design spectrum in estimation of 

peak response of inelastic system. A practical approach is to utilize relationships 

between ductility ratio (�) and yield reduction factor (Ry). The yield reduction factor 

is defined as, 

y

0
y f

f
R =          (3.10) 

where, for a given excitation, f0 is the maximum force on spring for a linear system, 

and fy is the yield force for elastic-perfectly plastic behavior. Dividing both the 

numerator and denominator by m (mass), 

y

n
y a

�SA(T
R

),
=         (3.11) 

where, SA is the spectral acceleration for a linear SDOF oscillator with natural 

period Tn, provided by elastic response spectrum for a constant damping ratio �.  

Utilizing a relationship between Ry and �max (maximum ductility ratio, or 

ductility demand), it is possible to estimate a �max value consistent with the design 

spectrum and Ry factor. Then maximum displacement demand on system can be 

calculated via equation 3.7, or, by the equation,  

2

2
ny

maxmax
4�

Ta
�u ⋅=        (3.12) 

and, maximum irrecoverable displacement demand on a elastic-ideally plastic 

system by, 

( )
�
�

�
�

�
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>⋅=
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1.0� if          
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2
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ir      (3.13) 
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Hence, if the behavior of a nonlinear system can be reduced to equation 3.4, 

then irrecoverable deformations can be estimated via 3.13, utilizing the elastic 

design spectrum and available Ry-�max relationships. Such a calculation procedure 

will provide a basis for an economical design, such that, irrecoverable deformations 

at foundation will remain below an acceptable limit, where foundation capacity is 

allowed to be exceeded successively by seismic demand. Hence, the foundation 

can be accepted to have a capacity lower than that is required for no-yield 

behavior. Effectiveness of any mitigation procedures can be evaluated based on 

similar approaches, such that, effect of increase in load capacity, or alteration of 

system period can be of significance. 

In this study, tilting of foundations is accepted to be a more critical permanent 

displacement mode based on observations in past earthquakes. Buildings with 

poor aspect ratios (i.e., high building height with respect to foundation width) are 

more specifically observed to sustain excessive tilting, and a calculation procedure 

is required in order to estimate tilting performance of buildings with shallow mat 

foundations, which will help detection of buildings with poor aspect ratio for a given 

seismic demand. Following assumptions are considered for further discussion: 

1. Superstructure (i.e., load bearing system of building) behaves elastically, 

and foundation’s yield strength (load capacity) is lower than the superstructure’s 

yield strength. That is, plastic behavior of foundation is initiated well before that of 

the superstructure, since the excessive base shear, required to initiate yielding of 

building, is not transmitted to the superstructure. 

2.  Foundation response during seismic loading is idealized by elastic-

perfectly plastic behavior. The linear behavior parameters are estimated by linear 

soil-structure interaction equations, with the simplified procedures discussed in 

Section 3.2. Yield force level (load capacity) is estimated by the procedures 

presented in Chapter 4. 

3. Only inertial soil-structure interaction is considered, based on the 

assumption that, earthquake waves are vertically incident SH waves, and 

foundations are rigid plates resting on surface of an elastic-halfspace. 

 Based on above assumptions, equation of motion for the nonlinear soil-

structure interaction (SSI) system is derived in the following sections, in order to 

utilize  methodologies based on equation 3.4 in practice.  
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3.3.1. Simplified interaction without damping 

For a simplified SSI analysis, it is practical to utilize the simple model given in 

Figure 3.2 (Wolf,1994): The structure is modeled by a mass (m) attached to the top 

node of a flexible beam with stiffness ks, and height h. This system is 

representative for shallow foundations, where only inertial interaction is to be 

considered. The fixed-base period of the structure is given by 

ss
s k

m
�2

�

�2
T ==        (3.14) 

The lumped mass and the beam element simulate the basic structural 

response. The springs attached to the foundation node simulate the response of a 

shallow mat foundation resting on the surface of a homogeneous elastic halfspace. 

Hence, the response of foundation to tilting and horizontal displacements can be 

adjusted via springs having stiffness coefficients k� and kh, as shown in Figure 3.2. 

These springs are referred to as foundation impedances for rocking and horizontal 

translation motions, respectively. Two important period values are defined to 

represent the deformability of soil: the period of rocking mode of foundation 

displacements, Tr, and the period of horizontal translation mode of foundation 

displacements, Th. These periods are formulated as, 

�

2

r
r k

mh
�2

�

�2
T ==        (3.15) 

hh
h k

m
�2

�

�2
T ==        (3.16) 

Equations 3.14, 3.15 and 3.16 can be derived simply by formulating the 

equation of motion considering only the flexibility of related spring (Wolf, 1985). 

Total relative displacement of lumped mass with respect to free-field displacements 

(ug) is defined by, 

s�ht uuuu ++=         (3.17) 
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where, uh is the relative displacement of the rigid foundation with respect to free-

field, us is the structural distortion component and u� (=h�) is the foundation 

rotation component of the relative displacement of the lumped mass with respect to 

the foundation (Figure 3.2). Hence, the equation of motion in terms of ut can be 

derived as follows: force equilibrium at lumped mass level requires, 

gsst umukum ���� −=+        (3.18) 

where, second derivative of the variable with respect to  time is represented by 

double dot on the representing symbol. Force equilibrium at foundation level results 

in, 

 sshh ukuk =         (3.19) 

Substitution of equation 3.19 into 3.18 gives, 

ghht umukum ���� −=+        (3.20) 

Hence, moment equilibrium at foundation level results in (note that u�=h�),  

g�t uhm�kuhm ���� −=+        (3.21) 

Substituting equations 3.14, 3.15, and 3.16 into equations 3.18, 3.20 and 

3.21, following equations are obtained: 

( )gt2
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s uu
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1
u ���� +−=        (3.22.a) 

( )gt2
h

h uu
�

1
u ���� +−=        (3.22.b) 

( )gt2
r

� uu
�

1
�hu ���� +−=⋅=       (3.22.c) 

or, summation of equations 3.22.a-c gives 
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Hence equivalent natural vibration frequency of the linear system is defined as, 

�
�

�

�

�
�

	



++=

2
r

2
h

2
s

2 �

1

�

1

�

1

�

1
                (3.24.a) 

Accordingly, the equivalent natural period for the total SSI system can be 

calculated by, 

2
r

2
h

2
s

2 TTTT ++=        (3.24.b) 

Finally, introducing equations 3.17 and 3.24.a into 3.23, equation of motion for total 

relative displacement of the lumped mass with respect to the free-field motion can 

be obtained as, 

gt
2

t uu�u ���� −=+         (3.25) 

Hence, for a given free-field acceleration-history ( gu�� ), relative displacement 

history of the lumped mass (ut) with respect to free field can be calculated utilizing 

equation the 3.25, disregarding damping. Participations of us, uh and u� in ut are 

formulated by dividing equations 3.22.a-c by the total relative displacement of 

lumped mass: 
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Utilizing equation 3.25, an equivalent conceptual model as shown in Figure 

3.3 is proposed, which is useful for further practical discussions. In this model, 

lumped mass m and height h are the same as the model in Figure 3.2. The natural 

frequency of the reduced model is set equal to � in equation 3.24.a by calculating 

a consistent rotational spring coefficient �k , utilizing equation 3.15. 

22
� �mhk =         (3.27) 

or, 

2
�s

2
�hsh

�sh
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hkkhkkkk

kkk
k

++
=      (3.28) 

Reduced model in Figure 3.3 forms the conceptual idealization, which will be 

utilized in this study. However, the viscous damping and impact of yielding of 

foundation complicates this simple behavior. Hence, equations for damping and 

yielding of the foundation will be considered in the following sections. 
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ut

rigid

m
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Figure 3.3. Reduced system consistent with the equation 3.25. 
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3.3.2. Simplified inertial interaction with viscous damping 

As the next step, damping is considered in inertial interaction analyses. 

Viscous dashpots, with coefficients cs, ch, and c�, are considered to be working in 

parallel with springs, which have stiffness coefficients ks, kh, and k�, respectively. 

Hence, adding damping terms to equations 3.22, 
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or, utilizing the damping ratio definition in equation 3.3.b, 
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Damped equation of motion for total displacements can be formulated by the 

summation of equations 3.30.a-c, and by the substitution of equation 3.24.a, 
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or, 
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where, effective damping is defined as, 
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Hence, effective damping for ut depends on the participations of velocities 

�hs u and u u ��� ,,  to total velocity of the mass tu� , at time t. Indeed, frequency -

dependent equivalent damping and stiffness for the damped system can be 

formulated by transferring the equations of motion to frequency space, utilizing 

Fourier Transform. This can provide further insight for the linear problem, and can 

provide a selection of an equivalent damping ratio, which is frequency dependent. 

On the other hand, the yielding of the foundation, which is the major consideration 

in this study, results in the nonlinear behavior of the foundation-soil system. Hence, 

utilization of frequency-domain solutions is out of the scope of this study.  

In case the damping coefficients are assumed to remain constant (i.e., 

damping ratios are independent of the nonlinear behavior and frequency content of 

the excitation), equations 3.30 are solved simultaneously in order to calculate these 

contributions to total velocity. However, by the following assumptions, effective 

damping can be further investigated approximately: in case damping components 

in equations 3.30 are negligible when compared to displacement components (i.e., 

in case of small damping or low-frequency excitation), then relationships in 

equations 3.26 will be approximately valid. In this case, 
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and substituting equations 3.34 and 3.26 into 3.33, the effective damping can be 

estimated as, 
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In the case damping dominates the left hand side in equations 3.30 (e.g., in 

case of high damping ratios, or high-frequency excitation), displacement terms in 

equations 3.30 can be ignored, resulting in approximation, 

��hhss �
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�

�

1
�

1 ++=       (3.36) 

which states a different averaging formula for the damping components. 

Equations 3.35 and 3.36 imply the frequency - dependence of the equivalent 

damping ratio formulation. When also the frequency dependency of dashpot 

coefficients c� and ch (Gazetas, 1991), and sensitivity of damping parameters to 

soil stratifications (Wolf,1994) are considered, it may be practically difficult to 

decide on accurate equivalent damping coefficient, especially in case of limited 

availability of geotechnical site investigation data. Most importantly, provided 

equations are due to elastic behavior only, and damping coefficients simulating 

energy dissipation during yielding of foundation soils may not be easily determined. 

Therefore, considering the irregular nature of earthquake excitation, it is difficult to 

predict an equivalent constant damping ratio for the simplified SSI system. 

The damping discussion becomes problematic in linear system calculations, 

where peak response is sensitive to the damping value. In case significant 

nonlinear (i.e., elastic-perfectly plastic) behavior is considered, energy dissipation 

is governed by the hysteretic behavior. In this case, peak response is respectively 

less significant to damping value (Chopra,1995). Since the performance of 

foundations for which the seismic load demand is considerably higher than the load 

capacity is under investigation here, a constant damping ratio (e.g., 5%) consistent 

with available design procedures is utilized for further discussions.  Actual damping 

ratio may be higher for soft alluvium cases, and hence low damping ratio 

assumption may result in somewhat conservative estimates: Majority of the input 

energy will be dissipated by hysteretic (elastic-perfectly plastic) behavior of the 

foundation. Hence, the reduced differential equation, based on Figure 3.3 and 

equation 3.32, is simply 

gt
2

tt uu�u��2u ����� −=++       (3.37) 

which is the damped equation of motion for the reduced system.  
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3.4. Equations for the Equivalent System for Multistorey Buildings 

In order to utilize practical formulations based on the simplified model 

depicted in Figure 3.2 for calculations of foundation performance of multi-storey 

buildings, a formulation is required to estimate an equivalent height (h) for the 

lumped mass from foundation level. For the case of fixed-base structures, the 

effective height can be calculated from the structural (spectral) analysis, using the 

formula, 

b

b

V
M

h =          (3.38) 

where Mb and Vb are the maximum overturning moment and base shear, 

respectively, acting on the base of the structure. Practically, h can be simply 

estimated if the distribution of inertial forces can be approximated as shown in 

Figure 3.4: 

�
�
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⋅
⋅

=
  ondistributi force inertial changinglinearly  for        h0.67

ondistributi force inertial constant for        h0.50
h

n

n      (3.39) 

h n 

 

Figure 3.4. Idealized inertial force distributions on a building: (a) constant, (b) linearly 

changing. 

 
In case of buildings with poor aspect ratio, and of foundations resting on soft 

deposits, the inertial force distribution is dominated by the rocking-mode of 

foundation impedance, especially when foundation yielding in the rocking mode 

plays a significant role in the overall response. Hence, it is reasonable to assume 
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that the building behaves relatively rigid compared to the foundation behavior, and 

the rocking mode of foundation governs the SSI.  

For practical purposes, the simplified model presented in Figure 3.5, which is 

a multi-story version of Figure 3.3, is utilized: storey masses (m1,…,mn) are lumped 

at corresponding storey heights (h1,…,hn).  As the first step, only the equivalent 

height due to rocking motion of foundation is formulated, by the assumption that 

both the superstructure and the horizontal displacement spring are rigid. The 

consequent reduced system with only degree of freedom of foundation rotation � is 

shown in Figure 3.5. Hence, total acceleration acting on ith storey mass is, 

�huu igi
������ ⋅+=         (3.40) 

where, hi is the height of the storey mass from foundation level, � is the tilting angle 

of foundation (in radians), and iu��  is the total acceleration of mass mi. Hence, 

equilibrium of overturning moments at foundation node results in the equation: 

( )[ ] 0hm�huk�
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iiig� =++� ����  

or, 

ug 

hn 

�hn 

�hn-1 

�h2 

�h1 

m2 

mn-1 

mn 

_ 
k� 

m1 

 

Figure 3.5. Reduced model for multi-storey buildings. 
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where, 
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Defining the equivalent radius of oscillation (r�) as,   
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and, natural period of vibration as, 
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equation 3.41 can be reduced as, 

( ) ( ) g�
2
�� u�r��r ���� −=+        (3.45) 

Equation 3.45 is equivalent to equation 3.25, and gives the equation of 

motion for the model in Figure 3.3, such that, 

�rh =          (3.46.a) 

�
2
� Idm /=         (3.46.b) 
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On the other hand, updating quantity of lumped mass due to equation 3.46.b 

creates difficulty for further discussions. Hence, the model is altered by the 

assumption that, total mass ( )� im of all stories are lumped at a height h , given 

by: 

i

�

m
I

h
�

=         (3.47) 

Therefore, the same natural period for rocking mode will be calculated. In this case, 

the equation of motion will be formulated as, 
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where, �~ is an approximation to �. The error can be formulated by, 
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or , since �r�hu �== ~ , 
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introducing definitions for h and r� , 
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� −= �        (3.50) 

In case of simple multistory buildings with constant storey height hst, it is 

reasonable to model the building with equal lumped masses mst at each storey. 

This approximation provides further simplification, so that equation 3.50 can be 

numerically investigated. Hence, equation 3.50 is reduced as, 
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where, n is the number of stories, as shown in Figure 3.5. Plot of equation versus 

number of stories is given in Figure 3.6: calculated error in estimating � is observed 

to be in the order of 10% for most multistory buildings. Therefore, lumping total 

mass of the stories at height h based on equation 3.47 is acceptable.  
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Figure 3.6. Plot of equation 3.51 for different number of stories (n). 

 

The next consideration is the estimation of ranges of h /hn, where hn is the 

total height of the building. Based on constant storey mass and height 

approximation for simple multistory buildings, plot of h /hn vs. number of stories (n) 

is provided in Figure 3.7. For most multistory buildings, equivalent height is about 

two-thirds of total height. This is somewhat consistent with the location of resultant 

horizontal force for a fixed-base simple structure: In case the distribution of inertial 

forces for a fixed-base model is approximated to be in triangular-form, the height of 

the resultant seismic force from the foundation level will be about two-thirds of the 

total height of the building. Therefore, use of equation 3.47 for calculation of 

equivalent height is appropriate also for fixed base response of buildings, and two-

thirds of total height of building can be practically utilized for apartment buildings 

with number of stories between 2 and 10: 
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n0.67hhh ≅≅         (3.52) 

where, hn is the total height of the building from the foundation level. All the storey 

masses, excluding the mass of the foundation, can be practically lumped at height 

h. This approximation is consistent with SSI calculations due to horizontal 

translation mode of foundation, provided that the foundation mass can be 

practically ignored in period estimations. Still, the natural period of the rocking 

mode is not dependent on selection of h, and is given simply by equation 3.44. 

Equivalent height h has its most practical importance in estimation of irrecoverable 

tilting (rotation angle) demand on foundations, as it is discussed in Section 3.5. 
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Figure 3.7. Plot of nhh /  for different number of stories (n). 

 

By a similar procedure, it can be shown that, the horizontal translation period 

is simply, 
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where, Mst is the total mass of the building, formulated by, 

fdn
n

ist mmM += �        (3.54) 
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where, mfdn is the mass of the foundation, which can be omitted for practical 

applications of multistory apartment buildings.  

Calculation of Ts (fundamental period for vibration of structure) is out of the 

scope this study, and assumed to be directly given by the structural designer or to 

be calculated by a reasonable approximate equation.  

Hence, estimating the periods Ts, Th and Tr, the natural period T  for the 

oscillation of a multistory building resting on a shallow mat foundation can be 

estimated by equation 3.24.b. As discussed in Section 3.3.2, decision on a single 

equivalent damping ratio is difficult. Hence, it is reasonable to assign a small 

damping ratio (i.e., 5%), by the assumption that the majority of the energy is 

dissipated by the hysteretic behavior in the rocking mode of foundation 

displacements, which will be further formulated in the next section. These two 

parameters are adequate to estimate elastic response for the generalized system. 

3.5. Simplified Consideration of Nonlinear Foundation Behavior 

During severe seismic loading, when an ultimate level of foundation capacity 

for load eccentricity and inclination is exceeded, foundation-soil system will yield, 

resulting in irrecoverable displacements for a shallow foundation. This behavior can 

be simulated by setting kh and k� to zero, which corresponds to ideal elastic-

perfectly plastic behavior. In this case, calculated cumulative total irrecoverable 

plastic displacement, uir can be formulated as: 

�phpir uuu +=         (3.55) 

where, uhp is the plastic deformation component due to plastic flow of the 

foundation in the horizontal direction, and u�p is the plastic deformation component 

due to plastic tilting response of the foundation.  

 Although foundation system is assumed to obey elastic-perfectly plastic 

yield rule, a flow rule is required in order to calculate the contribution of uhp and u�p 

in uir. Such an analysis is performed by Paoulicci (1997), as discussed in Chapter 

1. However, the validity of such a flow rule is not rigorously investigated, and the 

calculation procedure is rather complicated. On the other hand, the flow rule for the 

foundation-soil system is not only dependent on the mechanical properties of the 

foundation soils, but also on the properties of the foundation-soil contact, and the 

dynamic response of the soil-structure system as well. However, apart from the 
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difficulties in reliably determination of such a flow rule for idealized cases (i.e., 

laboratory and numerical models), the actual practical applications will involve 

significant uncertainties regarding these parameters.  

Therefore, for practical purposes, in case of poor aspect-ratio buildings, the 

nonlinear behavior of foundation due to load inclination and eccentricity are 

assumed to be uncoupled, and the effect of load inclination is ignored when 

calculating ultimate load eccentricity capacity. Hence, horizontal irrecoverable 

displacements (uir) are ignored when estimating irrecoverable tilting performance of 

foundations. Due to this assumption, plastic deformations will occur only in rocking 

mode of foundation displacements. Therefore, when utilizing the simple model in 

Figure 3.2, it is presumed that kh and ks will behave elastic, and k� will behave 

elastic-ideally plastic. In this case, the only nonlinear element in Figure 3.2 is the 

rocking spring: the irrecoverable displacement of lumped mass in Figure 3.2 (uir) is 

directly related to the irrecoverable tilting of foundation. Hence, 

�pir uu ≅         (3.56) 

or, 

irir �hu ⋅≅         (3.57) 

where, �ir is the irrecoverable tilting of foundation, in radians.  

Since only the rocking spring in Figure 3.2 is considered to behave nonlinear, 

inelastic displacements will be dependent on the yield (ultimate) moment level (My) 

for elastic-perfectly plastic rocking spring. Hence, rocking spring will initiate plastic 

flow for the first time, when 

yy� M�k =⋅          (3.58) 

where, �y is the yield rotation angle.  Substitution of equation 3.58 into 3.21 gives 

( ) yytg Muumh =+ ����        (3.59) 
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For consistency with equation 3.8, absolute yield acceleration is defined due 

to equation 3.40 as, 

( )
mh

M
uua y

ytgy =+= ����        (3.60) 

since hMf yy = . Hence, for the equivalent elastic-perfectly plastic system in 

Figure 3.3, yielding of equivalent rotational spring will initiate when absolute value 

of total acceleration acting on mass is equal to ay (i.e., yMM = ).  

In order to develop incremental equations involving the nonlinear behavior of 

the rocking-mode spring, linear spring coefficient �k  in equation 3.21 is replaced 

by �k′ , in order to imply nonlinear behavior. The damping is not considered for 

simplicity. Hence, equations 3.18, 3.20, and 3.21 are expressed in incremental 

form: 

gsst u�mu�ku�m ���� −=+       (3.61.a) 

ghht u�mu�ku�m ���� −=+       (3.61.b) 

g�t u�hm��ku�hm ���� −=′+       (3.61.c) 

where, �hst u�u�u�u� ++= , and ��hu� � = . Therefore, differential equation of 

motion for ut in incremental form is, 

gtt u�mu�k~u�m ���� −=+        (3.62) 

where, 
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=      (3.63) 

Introducing idealized elastic-perfectly plastic behavior for rocking spring in Figure 

3.2 into equation 3.63, �k ′  is equal to zero when yielding occurs, and equal to k� 

when behaving elastically. Therefore, equation 3.63 can be expressed as, 
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implying elastic-perfectly plastic behavior for equivalent nonlinear spring in the 

conceptual model (Figure 3.3) 

Setting 0k� =′ in equations 3.61 for yielding behavior, results in the 

conclusion that 0u�u� sh == . Hence, increments of ut is directly equal to 

increments in foundation tilting component (i.e., ��hu� t ⋅= ), during the yielding 

phase for an undamped system.  

Above discussions results in the utilization of reduced model in Figure 3.3, 

where equivalent rotational spring is set to behave as an elastic-perfectly plastic 

spring. Irrecoverable displacement demands can be estimated based on the 

discussions in Chapter 5. Corresponding irrecoverable foundation tilting demand 

can be estimated by equation 3.57. Natural period of the SSI system can be 

calculated by equation 3.24, and yield acceleration can be calculated by equation 

3.60. As discussed section 3.3.2, a small damping value (e.g. 5%) can be utilized, 

for time-history calculations, also for practical utilization of Ry-�max correlations and 

relevant design spectrum. 

3.6. Formulations for Foundation Impedances 

Based on the simplified model in Figure 3.3, in order to estimate the periods 

Tr and Th, foundation impedances k� and kh should be reasonably estimated. In the 

most general case, the foundation impedances depend on mechanical properties 

of the soil, the problem geometry, and the frequency content of the excitation. In 

this section, simple formulations to estimate these values are provided, for the case 

of shallow mat foundations resting on elastic-half space. The formulations are 

based on the equations presented by Dobry and Gazetas (1986), which are 

simplified and well-presented by Gazetas (1991) for practical use, as discussed in 

Section 3.2. Since these equations are frequency-dependent, further simplifications 

are made for practical utilization. 

The dynamic stiffness of foundations for rocking and horizontal translation 

can be expressed as, 
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where, h� K and K are the static stiffness values for rocking and translation 

respectively, �k
�

 and hk
�

 are the corresponding frequency dependent dynamic 

stiffness correction factors, L and B are the foundation length and width, and a0 is 

the dimensionless frequency, which is expressed as, 

 
s

0 V
B�

a =         (3.66) 

where, � is the excitation frequency and Vs is the shear wave velocity for 

foundation subsoil. Values of h� k and k
��

 for a given a0 and L/B ratio depend on the 

displacement direction with respect to foundation axes. In this study, displacements 

in weak direction of the foundation of a free - standing building are investigated 

(Figure 3.8). That is, in case similar seismic load demands exist in both longitudinal 

and transverse directions, larger foundation displacements (i.e., tilting) are likely to 

occur in weaker transverse direction (i.e., tilting around longitudinal axis of 

foundation). In the original study by Dobry and Gazetas (1986), these impedances 

are referred to as krx for rocking and ky for translation, respectively. The expression 

for �k
�

 value for rocking around longitudinal axis of surficial foundation is given by, 

 0� 0.20a-1k =
�

       (3.67) 

For further practical discussions, the order of a0 can be estimated by 

selecting Vs=100 m/s, which is a reasonable value for soft shallow alluvium 

formations; B=20 m, which is representative for existing apartment buildings with 

rectangular section and �=6 rad/sec, which is the resonance frequency for 

systems with periods in the order of 1.0 sec. Hence, a0 ≅1.2 is calculated for 

practical purposes. Therefore, the assumption of, 



 77

X/ X/ 

Y/ 

Y/ 

�
 

uh 

B 

L 

X/- X/ section 

 

Figure 3.8. Foundation displacements in weak direction of a mat foundation. 

0.1k� ≅
�

         (3.68) 

will result in overestimation of the dynamic stiffness in the order of 30%. A further 

investigation of other possible cases for buildings resting on soft deposits will give 

the same conclusion with equation 3.63. Error in use of equation 3.63 is not higher 

than the degree of uncertainty in estimation of K�, and will have less significance in 

estimation of the SSI system period ( T ). 

Dynamic stiffness factor hk
�

 for horizontal displacements in transverse 

direction is dependent on a0 and L/B ratios is given in Figure 3.9. Similar to �k
�

, for 

practical ranges of L/B and a0, it is acceptable that,  

  01kh .≅
�

        (3.69) 

As it can be seen from Figure 3.9, the error in underestimation of hk
�

will be 

less than about 30% for most practical cases. The error in estimation of period of 

soil-structure system period ( T ) due to error in hk
�

 will be much less. Hence, for 

practical applications, 
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Figure 3.9. Dynamic stiffness correction factor for horizontal displacements in transverse 

direction (reproduced from Gazetas, 1991). 

 

 �� Kk ≅         (3.70.a) 

 hh Kk ≅         (3.70.b) 

Static stiffness of a shallow rigid foundation in rocking around longitudinal 

direction is given as (Gazetas, 1991), 
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where, � and G are the Poisson’s ratio and shear modulus for the subsoil, Ibx is the 

area moment of inertia about x (longitudinal) axis. For a rectangular foundation, 

3
bx LB

12
1

I =         (3.72) 

hence, substituting equation 3.72 into 3.71, for a rectangular foundation, 
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or, since �GVs = , where � is the soil’s density, 
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Static stiffness for translation of foundation in transverse direction is formulated as, 
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where, Ab is the area of the foundation. For a rectangular foundation, 

BLAb ⋅=         (3.75) 

hence, substituting equation 3.75 into 3.74, for a rectangular foundation, 
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or, since �GVs = , 
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Utilizing static spring coefficients, period for the rocking and horizontal 

translation mode of linear soil-structure-interaction system can be estimated 

reasonably, utilizing formulae 3.44, and 3.53: period for the fixed base structure 

(Ts) should to be provided by the structural designer.  

3.7. Ranges of Natural Periods for Nonlinear SSI: Adapazari Case 

It is beneficial to investigate practical ranges of periods for actual cases. this 

is especially beneficial in observing the significance of the above parameters. In 
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case the period elongation due to SSI on soft deposits is observed to be 

insignificant, the fixed-base period of a structure (Ts) can be directly utilized instead 

of T . Hence, in this section, the practical ranges of period for the simplified SSI 

system for the case of reinforced-concrete frame buildings with rigid mat 

foundations resting on soft surface deposits are estimated. The calculations are 

based on the information obtained from Adapazarı cases. Besides, at the end of 

the section, cases at Mexico-city are compared with the Adapazari cases.  

The detailed case studies presented in the appendices of this study are 

based on site-investigations conducted in the city of Adapazarı, after 17th August 

1999 	zmit (Kocaeli) Earthquake, as discussed in Chapter 1. Most buildings that 

displayed excessive foundation displacements were 4 to 6 storey reinforced 

concrete buildings. Fixed-base periods for these structures are estimated by the 

formula: 

(s)   n0.1Ts ⋅=         (3.77) 

where, n is the number of storeys. Lumped mass for each storey of a simple 

apartment building, and the foundation is approximated by,  

 st
m/t

st Am ⋅≅
2

1        (3.78) 

where, Ast is the area per storey. Storey heights are assumed to be 3 m for each 

floor, except for the entrance floor, which is estimated to be about 3.5 m for most 

buildings included in the investigated cases. These values are representative of the 

general characteristics, and will be utilized to estimate period ranges. 

Calculations for Th and Tr are dependent on the selection of Vs and �, the 

shear wave velocity and density of the foundation soil. During laboratory studies, 

the average unit-weight of the saturated silt-clay mixtures dominating the profile at 

the sites are observed in the range of (see Appendix B), 

3
sat kg/m 1800� =        (3.79) 

The results of shear-wave velocity measurements performed by Bray et al. 

(2001b) at selected sites with excessive foundation displacements are plotted in 

Figure 3.10. The SASW method is utilized for in-situ measurements of low strain 
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velocity, at five different sites. Low strain Vs are observed to vary generally 

between 100 and 150 m/s approximately, for the first five meters zone below 

(average) foundation level, which is prone to shear failure during seismic loading. 

 

0

2

4

6

8

10

0 50 100 150 200 250 300

Vs0(m/s)
D

ep
th

(m
)

 

 

Figure 3.10. Plot of small-strain shear-wave velocity profiles (Vs0) for 5 different sites (6 

different profiles) with excessive foundation displacement observations in 

Adapazari (Bray et al., 2001b). 

 

 Considering strong nonlinearity of soils, utilization of small strain modulus in 

calculations is inappropriate. Based on the equivalent linearization concept, the 

deformation modulus should be reduced considering the strain levels relevant for 

the problem (Atkinson, 2000). In this case, the solutions provided for linear systems 

can still be applicable. For SSI analyses, FEMA 368 (Building Seismic Safety 

Council, 2001) proposes stiffness reduction factors, depending on the severity of 

the seismic loading. These factors are given in Table 3.1. Hence, small strain 

velocities should be multiplied by 0.65 in calculations for a severe earthquake, 

according to FEMA 368 recommendations. Reduced shear velocity profiles are 

plotted in Figure 3.11.  
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Table 3.1. Correction factors for shear wave velocity (FEMA 368, Table 5.8.2.1.1) 

PGA  0.10 g 0.15 g 0.20 g ≥0.30g 

Vs / Vs0 0.90 0.80 0.70 0.65 

 

 

An alternative procedure is to utilize unloading / reloading loop stiffness in 

large-strain laboratory tests. Based on the observations from cyclic loading tests on 

silt-clay mixtures encountered (Chapter 2), average shear modulus for reloading 

tests performed following the monotonic strength tests can be utilized for practical 

purposes. Accordingly, an unloading / reloading loop is applied at the end of 

selected monotonic strength tests (see Appendix B). Shear modulus for the large 

strain behavior is estimated utilizing the variation of deviator stress and axial strain, 

via Hook’s Law. In fact, these tests were performed under anisotropic stress 

conditions, and a nonzero shear stress exists at initiation of reloading test. The 

conclusions do not involve the effect of stress reversal in compression and 

extension, hence the stiffness degradation due to “strain memory” as discussed in 

Chapter 2 does not exist. Calculated shear modulus for laboratory reloading tests 

are compared with the reduced Vs values in Figure 3.11: values are comparable, 

except for the data point at depth 6.3 m. Hence, based on results in Figure 3.11, it 

is reasonable to assume that, 

m/s 70Vs ≅         (3.80) 

for practical applications. Since, ground water table level is observed to be near 

ground surface in Adapazarı, subsoils are assumed to be fully saturated. Hence, 

Poisson’s ratio (�) is set to 0.5 for utilization of equations 3.73 and 3.76. 

Hence, calculated values of Tr and Th are plotted in Figure 3.12.a and 3.12.b, 

for buildings with 4, 5 and 6 stories. Foundation length to width ratio (L/B) is 

arbitrarily selected to be 3. Period calculations are observed not to be sensitive to 

L/B ratio, since calculations for the ratio of 1 (square) and 5 give similar values. 

Corresponding period for the total displacement of the soil-structure system, due to 

equation 3.24.b, is provided in Figure 3.13. 
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Figure 3.11. Plot of large-strain shear-wave velocity profiles (Vs), and comparisons with 

the calculated from reloading tests on triaxial test apparatus (diamonds). 

 

Investigation of Figures 3.12 and 3.13 reveals that, for aspect ratios greater 

than 1.0 (i.e., buildings with narrow foundation width) rocking period is greater than 

the translational period, consistent with the statement that SSI is governed by the 

rocking mode for buildings with aspect ratios greater than one. When period 

elongation due to SSI is investigated (i.e., sT / T ), rocking mode govern the 

response of buildings with poor aspect ratios. On the other hand, period for the 

cases with relatively wide foundation width (i.e., good aspect ratio) will be governed 

by horizontal translation mode of foundation. 
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(b) 

 

Figure 3.12. Approximate (a) rocking, and (b) horizontal translation period ranges for 

buildings resting on shallow mat foundations, with L/B=3. Foundation soil is 

considered to be undrained (�=0.5) with a shear wave velocity of 70 m/s. 
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Figure 3.13. Approximate period ranges for coupled soil-structure system, based on 

equation 3.24. 

 

In comparison, it is discussed in Chapter 4 that, failure mode for poor aspect 

ratio buildings is governed by the load eccentricity (i.e., overturning moment acting 

on foundation). On the other hand, when buildings with good aspect ratio are 

considered, failure mode will involve both load inclination effect and load 

eccentricity effect. Hence, for a given building height, as foundation width 

increases, participation of horizontal translation in total displacements (ut) for a 

nonlinear soil-structure interaction system increases. Omitting the participation of 

horizontal displacements in irrecoverable displacements, conservative 

irrecoverable tilting values are calculated for buildings with good aspect ratios. Still, 

the calculation procedure is asymptotically correct, that is, zero irrecoverable tilting 

will result in for very wide foundations (i.e., for very low aspect ratios), since the 

seismically induced overturning moment will tend to zero as the aspect ratio 

approaches to zero. 

Another practical result that can be inferred from Figure 3.13 is that, flexible-

base period range for 4 to 6 storey buildings are approximately in the range of 

0.65-1.0 sec. Accordingly, for practical discussions on available cases, it is 

assumed that, 

0.8T ≅  s        (3.82) 
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for all typical 4 to 6 storey buildings, resting on soft sit-clay mixtures. Considering 

the uncertainties involved, it does not worth to utilize rigorous estimate of linear 

system period at this step. Hence, reasonable estimates for magnitudes of 

foundation displacements are sufficient for practical purposes. 

 As discussed further in Chapter 5, the small-strain shear wave velocity for 

Mexico-City soft clays are reported to be in the order of 75 m/s (Seed et al., 1988). 

The reduced shear wave-velocity is in the order of, 

 m/s 60Vs ≅         (3.83) 

which is comparable to Adapazarı cases. However, significant uncertainty exists in 

estimation of Ts for Mexico City cases, which can have a value in the range of 1.0 

to 2.0 s. The contribution of SSI is observed to increase T  value in the order of 0.3 

s, which can be omitted considering the uncertainty in calculations. Hence, the T  

value can be as high as 2.0 s or more, which coincides the predominant site 

periods in the heavily-damaged sections of the city. This uncertainty is considered 

in calculations for the Mexico City in Chapter 5. 

3.8. Conclusions 

Based on simplified inertial soil-structure interaction discussions, it is 

concluded that the overall behavior of the soil-structure interaction system for 

buildings resting on surficial mat foundations can be reduced to the simplified 

model in Figure 3.3. For multistory buildings, total mass of the structure is assumed 

to be lumped at an equivalent height h , calculated by equation 3.47. This 

equivalent height is observed to be about 2/3 of total height of most reinforced 

concrete multistory buildings. The natural period of the simplified model can be 

estimated by equation 3.24. For a given vertical load on a shallow mat foundation, 

ultimate level of overturning moment capacity can be estimated by procedures 

presented in Chapter 4. Neglecting the damping, yield acceleration for the lumped 

mass can be estimated by equation 3.60. Hence, overall behavior of the system 

will be simple elastic-perfectly plastic, and irrecoverable displacements will be due 

to irrecoverable tilting of the foundation, which can be calculated by the relationship 

3.57. 

Implementation of effective damping of the system into the calculation 

procedure is a difficult task. This is not only because the equivalent damping ratio 
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is frequency dependent, but also because the conventional SSI formulae will 

become obsolete in case of yielding, as such formulation is based on elastic-

halfspace assumptions. Even in the case of linear behavior, damping ratio is 

dependent on geotechnical details, such as soil stratification beneath the 

foundation. Still, all the discussions are based on the assumption that the seismic 

loads are due to vertically incident SH waves. As a practical conservative 

assumption, it is presumed that all input energy to the system is dissipated by the 

hysteretic behavior of the elastic-perfectly plastic system. Hence, for time history 

analyses and for utilization of elastic design spectrum, a small damping (e.g., 5%) 

can be incorporated in the formulations.  

Utilization of a relatively low damping ratio for radiation-damping may not be 

sufficient to suppress the impact of some unconservative factors involved in the 

response.  One important unconservative assumption is ignoring the effect of 

seismic loading in the longitudinal direction (i.e., strong direction), which may tend 

to increase inelastic displacement demand in the transverse direction. Hence, due 

to geotechnical and geometrical uncertainties, it is reasonable not to involve a 

significant reduction in irrecoverable displacement demand due to radiation 

damping. Similarly, as discussed in Chapter 2, visco-plastic response of fine soils 

may have similar impact as the damping, reducing the displacement demand. 

Since it is difficult to develop a relationship between the measured laboratory 

viscous behavior and expected site response, it is practical to consider the impact 

of viscous response and possible significant radiation damping as reserve strength 

for the nonlinear behavior of foundations. Yielding of the superstructure may also 

result in reduced displacement demands in foundation, which is not considered in 

the simplified approach presented here. Still, the presented methodology is 

practically useful and economical for seismic foundation design, as it allows the 

foundation capacity to be exceeded by seismic demand during strong motion, and 

it provides a calculation procedure to predict irrecoverable tilt angle of the structure.  
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CHAPTER 4 

OVERTURNING MOMENT CAPACITY OF SHALLOW FOUNDATIONS  

 

4.1. General 

In Chapter 3, it is stated that, there is a critical level of horizontal acceleration 

(ay) acting on building inertia, such that it can create sufficient overturning moment 

(My) on the foundation level to initiate yielding of the foundation-soil system. In this 

section, practical methodologies to estimate the value of My (hence ay) are 

developed.  

As discussed further in the literature review, the overturning moment capacity 

of the foundation is dependent on the static factor of safety of the building. In 

simple buildings with mat foundations, the static bearing capacity problem will 

involve only the vertical forces acting on the structure and the soil (Figure 4.1). 

Hence, the static factor of safety against bearing capacity failure is expressed as 

(Craig, 1983), 

 

De 

B 

qp 

�D 

 

Figure 4.1. Simple sketch for definition of factor of safety against static bearing capacity 

failure for shallow foundations. 
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u
q
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FS =         (4.1) 
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where, qp is the bearing pressure on foundation, and qu is the ultimate bearing 

pressure that can be applied on the foundation before the initiation of plastic flow. 

In case of existence of embedment (i.e., De ≠0), the net foundation safety is 

defined as, 

eDp

eDu
net Dq

Dq
FS

γ−
γ−

=        (4.2) 

where,  �D is the buoyant unit weight of soil above foundation level, and De is the 

embedment depth. Dividing the foundation pressure qp into two components, 

fdnstrp qqq +=         (4.3) 

where, qstr is the load component due to weight of superstructure, and qfdn is the 

component due to weight of the foundation system.  For structures without 

basement, it can practically be assumed that qfdn ≅ �D·De. Hence, equation 4.2 can 

be reduced as, 

str

eDu
net q

Dq
FS

γ−
=        (4.4)  

In case of foundations without significant embedment, such as those in 

Adapazarı, the impact of surcharge can be practically ignored. In this case, �DDe 

term in equation 4.4 can also be practically omitted. Hence, for the mat foundations 

with small embedment, equation 4.4 eventually reduces to: 

str

u
net q

q
FS ≅         (4.5) 

Note that, equation 4.5 is not valid for relatively deeply located mats. Such cases, 

however, are not dealt within this study. When embedment is of significance and 

practically cannot be omitted in bearing capacity calculations, the contribution of 

embedment should be introduced to the analysis procedures discussed in this 

chapter.  

In this study, the net factor of safety (FSnet) will be utilized by neglecting the 

weight of foundation mass and the embedment effect on ultimate load capacity to 
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simplify the formulations. Also, the subscript in FSnet is dropped for practical 

purposes, and static net factor of safety against bearing capacity failure is simply 

referred to as factor of safety (FS). Hence, the contribution of embedment is 

considered as an over-strength factor, which causes the foundation displacements 

to reduce in practice. Therefore, in case of buildings with no basement, mass of the 

excavated soil is assumed to be equivalent to the replaced mass of foundation. 

Another important matter is that, the foundation system is considered to be a 

rigid mat, designed as reinforced slab. On the other hand, in many cases, 

foundation shape may be complicated, and foundations may consist of strong 

beams, or mats in the shape of a grid. In order to simplify the discussions, effect of 

foundation type on bearing capacity is ignored. However, for a specific foundation, 

it is possible to investigate the effect of foundation shape on bearing capacity 

utilizing the analysis procedures presented in this chapter. 

4.2. Literature Review 

The seismic bearing capacity of a shallow foundation involves the 

generalized loads as shown in Figure 4.2: Foundation loads can be summarized by 

the vertical load V, overturning moment M, and base shear H; the inertial loads 

acting on the soil is determined by the vertical (including gravitational acceleration 

g) and horizontal accelerations, av and ah respectively. Multiplication of ah and av 

with the unit mass of soil (�) gives inertial forces acting on the unit volume of soil. 

These forces can have both the static and dynamic (i.e., time-dependent) 

contributions. In case of the generalized static problem for a shallow foundation 

resting on level ground, only the V and g·� are the driving static forces. Hence, the 

success of any methodology aiming at determination of the seismic bearing 

capacity is inevitably dependent on its success in estimation of the static bearing 

capacity. Therefore, here, discussions on bearing capacity will preclude the seismic 

bearing capacity considerations, since any inherent uncertainty in the static 

problem is directly becomes the controlling factor in the seismic problem. The 

literature review on combined loading of foundation (i.e., foundation load involving 

combinations of nonzero M, V and H values), including the uplift behavior, is 

presented as the second step. Finally, studies related to the seismic bearing 

capacity problem, which involves the inertial forces acting on soil, are discussed. 
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Figure 4.2. The parameters utilized in seismic bearing capacity problem. 

 

4.2.1. Investigation of static bearing capacity 

In analytical approaches to the problem of bearing capacity, foundation soil is 

considered as a rigid - ideally plastic material, obeying the Mohr-Coulomb yield 

rule. Accordingly, the shear strength (τf) on a failure plane is given as: 

φ+=τ tan �c nf          (4.6) 

where, � is the angle of internal friction, c is the cohesion intercept, and �n is the 

normal stress acting on the failure plane. The foundation loading is expressed by 

the vertical load (V), horizontal load H, and overturning moment M. Defining the 

load eccentricity (e) and the load inclination (i) with respect to the vertical axis of 

foundation: 

V
M

e =          (4.7) 

and, 

V
H

i =          (4.8) 

The generalized form of the bearing capacity equation (Das, 1999) can be 

expressed as, 
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idsqiqdqsqscicdcscu fffBNfffNqfffcNq γγγγγ++= 50.    (4.9) 

where, Nc, Nq and N� are the bearing capacity factors; f*s are the foundation shape 

factors; f*d are the foundation depth (embedment) factors; f*i are the load inclination 

factors, qs is the surcharge pressure, B is the foundation width, � is the unit weight 

of the soil (i.e., �= g·�), and qu is the ultimate bearing pressure. The basic idea 

beneath equation 4.9 is that, there are three main contributions to ultimate bearing 

pressure for a foundation: the soil cohesion (c) contribution, the surcharge (qs) 

contribution, and soil self-weight contribution (�), which are dependent on the 

internal friction angle (�). In fact, the equation is the superposition of two different 

bearing capacity problems: the bearing capacity for a foundation resting on a 

purely cohesive soil (�=0), and for a foundation resting on a purely cohesionless 

soil (c=0), where surcharge is considered in both cases (Terzaghi, 1943). Both 

problems can be handled separately by analytical approaches. However, 

superposition of the two solutions is not mathematically correct, but the 

approximation is on the safe-site (i.e., predicts lower qu values than the unknown 

exact solution). 

Load eccentricity (e) is introduced in equation 4.10 by utilizing effective width 

B � instead of actual width B of foundation (Meyerhof, 1963), such that, 

e2BB −=′         (4.10)  

A summary of analytical formulations for the factors in equation 4.9, which 

are utilized in different European Union countries, are presented and compared in 

a study by Sieffert and Bay-Gress (2000). These formulations are mainly based on 

the proposals of Terzaghi (1943), Meyerhof (1963), Hansen (1970) and Vesic 

(1973). Sieffert and Bay-Gress observed that, the estimated bearing capacity 

depends strongly on the selected formulation. The only agreement is on the effect 

of load eccentricity (stated in equation 4.10): however, this does not imply that it is 

accurate. Hence, a unique methodology to estimate the bearing capacity does not 

exist for application, and further studies are still required on this topic. 

Analytical approaches depend on significant assumptions, which may not be 

consistent with the practical engineering applications, in order to reach a closed-

form solution. In comparison, numerical approaches are fairly free from such 

assumptions. In the foregoing, with a few exceptions, soil is considered as purely 
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cohesive (�=0) or purely cohesionless (c=0). Discussions on N� factor are 

presented in detail in this study. There exists no strong agreement on the 

evaluation of this factor, which plays a significant role in drained factor of safety of 

existing buildings in case-studies. This is due to the rather low effective cohesion 

(i.e., practically zero) of normally consolidated silt-clay mixtures. 

An important issue in analytical formulation is that, associative flow rule (i.e., 

�=�) is assumed to be valid for the soil behavior, which may introduce significant 

error in calculations. As discussed in Chapter 2, the dilatation angle is observed to 

be in the order of zero, implying a strongly nonassociative behavior. Drescher and 

Detournay (1993) showed that, in plane-strain limit analyses, the effect of non-

associativeness can be easily investigated by performing an equivalent associative 

analysis, with modified Mohr-Coulomb parameters (c* and �*): 

φ
φ−

φ=φ tan
sin sin�1

cos cos�
* tan       (4.11.a) 

c
sin sin�1

cos cos�
c*

φ−
φ=        (4.11.b) 

Hence, nonassociativeness tends to reduce overall shear strength, and thus the 

ultimate load capacity, of the soil body. 

Utilizing the method of characteristics, Bolton and Lau (1993) investigated 

bearing capacity factors under vertical loading, for strip and circular foundations 

resting on Mohr-Coulomb soil. They confirmed that the Terzaghi's approach, 

consisting of the superposition of bearing capacity terms (i.e, cohesion, soil-weight, 

and surcharge components) provides safe solutions. Calculated bearing capacity 

factors Nq and N� are observed to be very sensitive to the value of �. The interface 

condition between foundation and soil (i.e., soil - foundation friction) is also 

observed to strongly influence the bearing capacity: considering the case of �=30˚ 

and strip foundations, calculated values of factor N� is 7.74 and 23.6 for smooth 

and rough foundations, respectively.  

Michalowski (1997) investigated N� factor using kinematic approach (upper 

bound) of limit analysis. They investigated the effect of non-associativity of the soil 

on N� factor, by employing the approach proposed by Drescher and Detournay 

(1993) as stated in equations 4.11. It is observed that, N� is sensitive to dilatancy 
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angle (�), and drops significantly with the decrease in �. Hence, the influence of 

non-associative flow rule should be considered in engineering design.  

Utilizing finite element and finite difference methods for the analysis, 

Frydman and Burd (1997) investigated Nγ factor for shallow strip foundations. For 

the case of smooth footings with �<35°, dilatation angle is observed to have no 

practical impact on the value of N�. On the other hand, reduction in N� by the 

decrease in �  is very significant for the case of rough footing. Hence, for the case 

of �=30° and rough footing, calculated values for the N� factor are 21.7 and 16.7 

corresponding to �=� and �=0°, respectively. For the case of smooth footing, 

calculated values reduce to 8.7 and 7.9 respectively. Frydman and Burd also 

concluded that, discrete numerical techniques, such as finite-element and finite-

difference methods can be utilized for investigations of foundation load capacities, 

provided that computational difficulties and accuracy problems are handled 

cautiously. Parallel conclusions regarding N� and � relationship are also stated by 

Yin et al. (2001) from a similar study. Considering three-dimensional cases, 

reduction in bearing capacity for circular foundations due to nonassociativity is 

demonstrated by the numerical studies of Erickson and Drescher (2002). 

Ukritchon et al. (2002) introduced linear programming for the numerical 

solution of bearing capacity problem, by the discretization of limit analysis problem 

domain. Calculated Nγ values are compared with reported values in literature: 

proposed values by Hansen and Christensen (1969), and Meyerhof (1963) are 

observed to agree with the findings. Similar to the conclusions of Bolton and Lau 

(1993), roughness of the footing is observed to have significant effect on Nγ values. 

When compared to the results of Bolton and Lau for �=30°, the Nγ factor is 

calculated as 7.5 and 15.0 for the case of smooth and rough footing interface, 

respectively.  

Apart from all analytical and numerical models, all of which simplify the 

behavior of soil and soil-foundation interface to provide a simplified solution, an 

alternative approach is to utilize laboratory models. The laboratory models may not 

only supply the bearing capacity factors experimentally, but also verify the 

accuracy of bearing capacity calculation procedures. However, model tests suffer 

from scale effects when compared with analytical approaches (Perkins and 

Madson, 2000). Complications due to scale effects involve the nonlinearity of Mohr-

Coulomb failure envelope for real soils (i.e., dependency of � to normal effective 
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stress level), and progressive-failure mechanism which will result in different 

mobilized � values in different locations on failure plane, varying between peak-

state and critical-state values. Siddiquee et al. (2001) added to the discussion that, 

inherent anisotropic strength, highly nonlinear stress-hardening or softening 

behavior, shear banding with a specific band width as a function of the particle size 

of the test material are also reasons for further complications. 

In order to investigate the reliability of theoretical solutions, Ingra and 

Baecher (1983) studied the uncertainty in bearing capacity calculations for shallow 

foundations resting on surface of dry sands, by utilizing available experimental 

data. Due to the statistical analysis of the data, coefficient of variation for the 

bearing capacity without surcharge (i.e., qs=0) range from 20% to 30%, even in the 

case of well-defined soil properties. Theoretical values by different approaches are 

observed to vary by factors of 2 to 4 for different solutions. These values are also 

very sensitive to �, which is in turn dependent on the intermediate principal stress, 

anisotropy, strain compatibility, and non-linear nature of the Mohr-Coulomb 

strength envelope. Even in well-designed laboratory tests, significant difficulties 

arise due to differences in test apparatus and procedure, identification of failure 

load, footing material and roughness, soil density, and measurement of friction 

angle, since the results are observed to be very sensitive to these details. Besides 

all uncertainties, if the friction angle can not be accurately determined (e.g., having 

a standard deviation greater than 1˚), the contribution of uncertainty due to � 

dominates the overall uncertainty in bearing capacity estimations. Zadroga (1994) 

also obtained similar conclusions on the deviation of experimental results from 

theoretical values, for cohesionless soils. The bearing capacity obtained by model 

tests are observed to be higher than the theoretical values, possibly due to the 

effects of soil anisotropy, progressive failure phenomenon, and scale issues. 

Further research is required to classify the impact of these effects to bearing 

capacity calculations. 

Finalizing the discussions, the N� factor has a significant uncertainty in 

engineering practice. Accordingly, estimation of drained (long-term) static factor of 

safety for existing buildings suffers significantly from this uncertainty. Results of 

dynamic numerical analyses are dependent on the reliability of the simulation of 

static bearing capacity. Hence, within the scope of this study, the results of seismic 

bearing capacity analyses are normalized with the static bearing capacity, as 
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proposed by Paolucci and Pecker (1997a). No detailed data is available to decide 

the exact qu values for the available cases in Mexico City and Adapazarı. Also, � is 

observed to be zero as discussed in Chapter 2, which will result in reduction of N� 

factor when compared to the values obtained for associative flow-rule. In any case, 

a detailed study for understanding static bearing capacity of existing buildings in 

available cases is required, as a supplementary work. This is left as a future study, 

and rough estimations of bearing capacity are utilized in the evaluated case 

studies.  

4.2.2. Foundations under combined loading 

Apart from the seismic bearing capacity problem, the impact of overturning 

moment and base shear acting on a shallow foundation is separately discussed in 

literature in previous decades. The overturning moment (M) and base shear (H) 

can be normalized by the vertical load (V) as expressed in equations 4.7 and 4.8, 

yielding load eccentricity (e) and inclination (i). The studies on ultimate bearing 

capacity of shallow foundations under inclined and eccentric load (i.e., combined 

loading) are discussed in the following paragraphs. 

A simpler problem is the case when foundation uplift is prevented. Numerical 

approaches and formulations are available for this case, such as the studies of 

Taiebat and Carter (2000), and Randolph and Puzrin (2003). Although the results 

are not applicable to foundation failure cases observed in Adapazarı and Mexico 

City due to restricted uplift behavior in models, still there are foundation 

applications for which uplift is prevented due to a possible suction at soil-foundation 

interface, such as spudcam foundations of off-shore platforms (Dyvik et al., 1989). 

Still, the analysis procedures by Taiebat and Carter provide valuable feedback for 

finite-element modeling of undrained behavior of soil, which is also extended later 

to the case of uplifting foundations in a following study by Taiebat and Carter 

(2002). These studies provide basic finite-elements approaches that are utilized in 

this study, and basic equations that are utilized for verification purposes. 

For the case of circular foundation on cohesive soil, Taiebat and Carter 

(2000) studied the bearing capacity under combined loading (i.e., involving load 

eccentricity and inclination), without allowing the separation of the foundation-soil 

interface (i.e., uplift), and utilizing F.E.M. The soil is modeled as an elastic-ideally 

plastic material, obeying the Tresca yield criterion with shear strength Su. The 
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Young’s modulus (Eu) is set to 300Su, and Poisson's ratio (�) is set to 0.49, which 

will provide sufficient incompressibility of the model soil. Finite-element analysis is 

based on load-defined approach, in which foundation loads are increased up to the 

failure (i.e., plastic flow behavior of the foundation). It is proposed that, for the case 

of zero load inclination, failure loads are best determined by applying a small 

horizontal load (compared to vertical load and overturning moment) on foundation, 

and detecting the peak load for load-displacement curve for the closest Gauss 

point to the center of foundation-soil interface. It is concluded that, shallow 

foundations on cohesive soils are most vulnerable to load eccentricity and 

inclination when FS against bearing capacity for the case of zero load inclination 

and eccentricity is less than 2.   

Later, Taiebat and Carter (2002) investigated the problem of bearing capacity 

of strip and circular shallow foundations resting on undrained clay, subjected to 

eccentric loads and involving uplift, by utilizing the finite-element approaches 

discussed by Taiebat and Carter (2000). They utilized a thin layer of 'no-tension' 

elements beneath the foundation to model uplift of the foundation imposed by the 

overturning moment. Taiebat and Carter concluded that, when uplifting of the 

foundation is considered, effective width approach (Meyerhof, 1963) in calculation 

of ultimate bearing capacity for eccentric load is applicable for both plane-strain 

and 3D (i.e., circular foundation) problems. Thus, it is reasonable to assume 

existence of a unique relationship between My/VB versus FS, irrespective of 

foundation shape. For the case of strip foundations with zero load inclination (i.e., 

H=0), the finite element analysis results are observed to be consistent with the 

equation proposed by Houlsby and Purzin (1999), and expressed as, 
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where, Su is the undrained shear strength of the homogeneous soil obeying Tresca 

failure criterion. Hence, utilizing Prandl's (1920) solution for ultimate vertical load 

for strip foundations, the factor of safety against bearing capacity failure for a given 

vertical load can be formulated as: 

( )  / VBS2FS u ⋅⋅+= �        (4.13) 
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Substituting equation (4.13) into (4.12) results in, 
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for calculation of ultimate M/VB ratio, which is utilized for verification of uplift 

behavior in this study. An alternative approach for the analytical verification is also 

provided in Section 4.3.4. For the case of circular foundations, Taiebat and Carter 

(2002) showed that, the finite element results are consistent with the equation, 
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where D is the diameter of the circular footing, and Su is the shear strength of the 

purely cohesive soil. Defining the static bearing capacity as, 

V
V

FS u=         (4.16) 

where, Vu is the ultimate vertical load that can be applied on the foundation (i.e., for 

the case M=H=0), which is equal to, 
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for circular foundations. Hence, substituting equations (4.16) and (4.17) into (4.15), 

the relationship for determination of ultimate load eccentricity for a given FS is, 
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Hence, utilizing equations 4.14 and 4.18, the relationship between FS and 

My/VB ratio can be compared for the case of strip (i.e., two-dimensional case) and 

circular (i.e., three-dimensional) foundations. The comparison is given in Figure 

4.3, for the case of choosing D=B. In actual applications, if B is the width of 

foundation, then the minimum length (L) of the foundation will be B, implying a 

square foundation with dimensions B·B. In this case, the equivalent diameter for a 

circular foundation with the same foundation area is expressed as D=1.128B. 

Referring to as “equivalent circular” for this case, the comparison with strip 

foundation is also given in Figure 4.3. It is observed that, for strip and square 

foundations, the relationship between My/VB ratio and FS is similar. Hence, for 

practical purposes, the relationships determined for the strip foundations can be 

applicable to the case of rectangular foundations. 
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Figure 4.3. Relationship between ultimate My/VB and FS for an uplift-permitted 

foundation, resting on a purely cohesive soil, according to the equations 

provided by Taiebat and Carter (2002). 

 

Salençon and Pecker (1995) developed lower-bound and upper-bound 

solutions for shallow strip foundations under inclined and eccentric loads. In their 

study, soil is assumed to obey Tresca's failure criterion, and the rigid shallow 

foundation is permitted to uplift. The upper and lower-bound estimates are 

relatively close to each other for low values of eccentricity, but the difference 
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increases, as eccentricity gets higher. However, it is concluded that, the effective 

area concept of Meyerhof (1963) can lead to significant error in bearing capacity 

estimations. 

Bransby (2001) investigated the bearing capacity of rigid strip foundations 

resting on undrained soil (i.e., obeying Tresca failure criterion) under eccentric 

loading, both, including and excluding foundation uplift. Bransby introduced 

Meyerhof’s (1963) equivalent area concept for eccentric loading into analytical 

approaches, and verified the results utilizing finite element method. The 

methodology is also extended to non-uniform soil strength case, such as increasing 

linearly by depth. For the case of uniform soil strength and uplifting foundations, 

Bransby agreed with equation 4.14 for the calculation of ultimate overturning 

moment. 

Similar to discussion on static bearing capacity, laboratory model tests can 

be utilized in order to develop relationships between M, V, and H. Utilizing the 

results of model tests on cohesionless soils from different authors, Butterfield and 

Gottardi (1994) proposed following relationship between vertical load V, horizontal 

load H, and overturning moment M acting on footing on sand as, 
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and, introducing the FS (equation 4.16) into equation 4.19, 
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However, Zadroga (1994) discussed that, although the model test results are 

consistent with the effective width concept due to load eccentricity, the reduction in 

bearing capacity due to load inclination is observed to be inconsistent with most 

available equations. 

Concluding the discussions on the impact of load eccentricity and inclination 

on ultimate vertical load capacity of a foundation, for which uplift is permitted, 

available equations are limited with the constitutive model for the soil, and 

foundation-soil interface. The test results have significant uncertainties that affect 
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the reliability of the outcome. In case of practical applications, these uncertainties 

will be amplified, due the effects of actual soil stratification, limitations in 

geotechnical data, boundary conditions (e.g., impact of neighbor buildings) and 

foundation details. However, available equations can be utilized as verification for 

the analyses of this study. The impact of load eccentricity and inclination play a 

backbone role in seismic bearing capacity, which is presented in the following 

section. In any case, if the foundation is not allowed to perform limited foundation 

displacements, costly foundation improvement techniques are likely required with 

shallow foundations in severe earthquake hazard regions, especially when these 

uncertainties are considered.  

4.2.3. Seismic bearing capacity 

As discussed in the introductory paragraph of Section 4.2, seismic bearing 

capacity problem involves not only the load eccentricity and inclination for 

foundation loads, but also the inertial loads acting on the soil mass. The inclination 

of surcharge (qs) can also deviate from the vertical axis. The problem can be 

investigated by pseudo-static approaches, in order to estimate the level of 

acceleration sufficient to initiate plastic-flow of foundation. In this section, a brief 

literature survey on the seismic bearing capacity is presented. 

The first group of studies involve those that do not separate the effect of 

inertial loads on soil mass from the effect of load inclination and eccentricity: 

Richards et al. (1993), Budhu and Al-Karni (1993), Sarma and Iossifelis (1990), 

investigated the problem of shallow foundation utilizing limit equilibrium method, 

omitting the load eccentricity on the foundation. A uniform pseudo-static 

acceleration distribution is considered on the problem model. The practical 

significance of vertical accelerations is discussed to be very limited when 

compared to horizontal accelerations. Richards et al. and Sarma and Iossifelis also 

presented methodologies to estimate the settlements when yield-acceleration (ay) 

is exceeded. The settlement calculation methodologies are based on Newmark’s 

(1965) sliding block analogy, such that the foundation and the soil beneath the 

foundation are considered as a single block sliding over the failure plane. Soubra 

(1999) introduced the upper-bound method of limit analysis for the solution of the 

problem. Kumar and Mohan Rao (2002) investigated the same problem utilizing the 

method of stress characteristics, and obtained lower values of seismic N� factors 
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when compared to other studies. The difference is higher when N� values for the 

static case are considered; hence, comparatively reduced N� factors for the 

seismic loading case can be explained. Although above mentioned studies consists 

of uniform pseudo-static acceleration distribution both for the superstructure 

building and the soil, Fishman et al. (2003) provided seismic to static N� and Nq 

factor ratios (i.e., reduction in N� and Nq due to seismic loading), considering 

different pseudo-static acceleration levels for the superstructure and foundation 

soils.  

The first significant problem for some of the above studies is that, the impact 

of load eccentricity and inclination on foundation is not separated from the impact 

of inertial loads acting on the soil mass. Hence, the significance of variation of the 

seismic bearing capacity problem from the combined loading problem (i.e., as 

discussed in Section 4.2.2) is somewhat unclear. Hence, considering cohesionless 

soils, and for the case of zero load eccentricity on foundation, the studies of Sarma 

and Iossifelis (1990), and Dormieux and Pecker (1995) conclude that, reduction in 

bearing capacity is mostly due to load inclination on foundation. Therefore, for 

practical engineering applications, the effect of inertial accelerations acting on soil 

can be neglected. For the case of cohesive soils, Soubra (2000) concluded that 

reduction in bearing capacity (i.e., reduction in Nc factor) during seismic loading is 

mainly due to seismic forces at foundation level, such that inertial forces in soil 

medium can be ignored. This conclusion is also consistent with results of the study 

by Paolucci and Pecker (1997b), which investigates the effect of inertial 

acceleration acting on soil for rectangular shallow foundations resting on cohesive 

(i.e., obeying Tresca criterion) soils. Accordingly, the effect of soil inertia can be 

neglected in most practical applications, especially when static factor of safety 

against bearing capacity is greater than 2.5. For the case of strip foundations, 

Pecker (1997) concluded that the inertial acceleration has no practical significance 

if static factor of safety is greater than 2.0. Paolucci and Pecker (1997b) also 

concluded that, the effect of the soil’s inertial acceleration on reduction of N�, and 

Nq is less than 20% for the case ah (horizontal pseudo-static acceleration) is less 

than 0.3g, and the reduction of Nc is much smaller. 

Pecker (1997b) also stated that, most theoretical seismic bearing capacity 

studies suffer the following limitations: 1) accelerations acting on both, structure 

and soil are assumed to be the same, without reasoning, 2) uplift of foundation is 



 103

not considered, 3) these solutions are upper bound estimates, and comparisons 

with lower bound estimates are not provided. Considering these shortcomings, and 

utilizing upper-bound approach of limit analysis, Paolucci and Pecker (1997a) 

provided equations to calculate the reduction in static FS under seismic loading. In 

their study, the associative flow rule is assumed, and the effect of load eccentricity, 

inclination and inertial accelerations on soil mass are uncoupled. Proposed 

equations by Paolucci and Pecker are utilized for verification of drained analyses in 

this study, and investigated in greater detail. 

Paolucci and Pecker proposed the reduction factor v, such that; 

ieh vvvv ⋅⋅=         (4.21) 

where, vh, ve, and vi are the contributions of load inclination, eccentricity and 

horizontal inertial acceleration (acting on soil mass), respectively. Hence, 
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The reduced factor of safety under seismic loads is calculated by, 

FSvFSseis ⋅=         (4.23) 

where, FSseis is the factor of safety against seismic bearing capacity failure. Hence, 

foundation failure is imminent when FSseis=1.0. Therefore, the critical value of static 

FS for a given acceleration level (ah) is simply, 

v
1

FS =          (4.24) 

Investigation of equations 4.22 clarifies that the vi factor can be practically 

ignored. This will in turn result in a formula that is independent of �, which is 
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practical for design approaches. Also, the impact of load eccentricity on bearing 

capacity is very strong: when combined effect of load eccentricity and inclination is 

considered, the safe (nonyielding) design of a shallow foundation may require very 

high FS values even for relatively low to moderate seismic acceleration levels. 

However, this is inconsistent with most post-earthquake observations on shallow 

foundations. This may be explained considering the transient nature of loading, or 

non-linear characteristics of soil-foundation-structure interaction.  

Available detailed laboratory tests for investigation of seismic bearing 

capacity failure mechanisms are limited in literature. A comprehensive centrifuge 

test study is presented by Zeng and Steedman (1998). It is observed that, 

accumulation of rotation and stiffness degradation for foundation soils play a key 

role in seismic bearing capacity failure mechanism, even in the absence of 

liquefaction. Comparing the behavior of tall and heavy buildings with the behavior 

of low and light buildings, it is concluded that, seismic settlements are strongly 

correlated with foundation rotations. Furthermore, degradation in the bearing 

capacity during successive cycles is important in seismic bearing capacity failure 

mechanism. The degradation mechanisms besides that related to pore-pressure 

accumulation in soils are the reduction in mobilized shear resistance for relatively 

high shear strain levels, and topics related to P-∆ effects due to accumulated 

rotation of foundation. 

As a conclusion of the discussion on seismic bearing capacity, especially for 

the case of buildings with higher aspect ratios, the inertial forces acting on soil 

mass can be practically ignored. Impacts of load eccentricity and inclination acting 

on the shallow foundation are much more significant, especially when uncertainties 

in static bearing capacity estimations are considered. Therefore, seismic bearing 

capacity problem for shallow foundations reduces to the bearing capacity problem 

under combined loading. One important issue is the consideration of uplifting of 

foundations, in cases where no special precautions are taken.   

4.3. General Layout of the Finite-Element Analyses 

In order to provide a finite-element method approach for estimation of 

ultimate load levels that a shallow foundation can resist, Plaxis v7.2, which is a 

finite element code particularly for geotechnical analyses, is utilized. A uniform 

finite element mesh is utilized in all of the analyses. The basic principles followed in 
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the analyses are based on the approach proposed by Taiebat and Carter (2000 

and 2002), with some minor modifications. Details of the mesh and basic analysis 

procedures, as well as validation of the accuracy of the numerical analyses are 

presented in this section.  

4.3.1. Mesh and element details  

A finite element mesh involving 2279 plane-strain elements is developed 

(Figure 4.4). Soil medium is modeled by 15-node triangular elements, and 

foundation is modeled by linear beam elements. Standard fixities are chosen as 

boundary condition: both horizontal and vertical displacements are fixed at the 

bottom of the mesh, and only horizontal displacement is fixed on right and left sides 

of the mesh. The model dimensions of the mesh are 100 m x 50 m, and the 

foundation width is set to 20 m. 

All soil elements, which simulate the behavior of a homogeneous half-space, 

are set to the same soil material parameters. Elasto-plastic material model, with 

Mohr-Coulomb yield criterion, is selected as the constitutive model for the soil 

behavior. In those analyses saturated soil behavior is investigated, water table is 

located at the ground surface (i.e., at foundation level), and initial pore pressures 

are calculated accordingly (i.e., hydrostatic pressure distribution). In the analyses 

where undrained saturated soil behavior is investigated, soil element behavior is 

set to “undrained” in material properties selection window, which results in 

constant-volume behavior of saturated soil elements. This sets Poisson’s ratio (�) 

for the element behavior to 0.495, by modifying bulk modulus of water accordingly. 

With an error of negligible magnitude (since � 	 0.5 exactly), all increase in 

isotropic pressure will result in an equal increase in pore-pressures in elements. 

The stress-path will follow the elastic stress-path as further discussed in Section 

4.4.3. Tension cut-off at zero effective stress is defined for soils, except for the 

case of constant strength analyses (i.e., c 	 0 and � = 0), and further details are 

given in Section 4.4.1. 
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Figure 4.4. Finite element mesh used in Plaxis analyses: (a) general mesh layout, (b) close 

view of “uplift elements”. 

 

Since foundation uplift is to be considered in realistic investigations of the 

impact of load eccentricity, a separate region (10 cm thick in the model) that is 

located immediately beneath the foundation (referred to as uplift elements in Figure 

4.4.b) and extending horizontally 5 m away from foundation is permanently set to 

drained condition with tension cut-off. The permanently drained behavior is due to 

the fact that, in case the undrained behavior is set for those elements, foundation 
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uplift will result in negative pore pressures (i.e., suction), which in turn will result in 

positive effective stresses, and prevent tension cut-off occurrence. The uplift 

performance of the model is investigated in Section 4.4.1.  

Foundation loads are applied as distributed loads on foundation beam, 

referred to as Traction A and B in Plaxis. The soil shear modulus and saturated unit 

weight are selected respectively as G= 1.8
106 kPa and �sat=18 kN/m3, which are 

compatible for a soil with small strain shear wave velocity (Vs) of 1000 m/s.  The 

reason for selection of such a high shear modulus is to restrict the bearing capacity 

mechanism to the general bearing failure type, so that the analytical bearing 

capacity equations will be consistent with the discussions here. As an example, 

setting a value of Vs=100 m/s results in a highly compressible soil, for which the 

bearing capacity failure mechanism will not be of the general type, but of the local 

type (Vesic, 1973). High compressibility of deeper layers will result in punching of 

foundations into the soil, without forming a Prandl-type shear plane. In that case, 

the ultimate capacity of foundation will be dependent on the position of relatively 

stiff layer beneath the foundation. Hence, by increasing the stiffness, failure 

mechanism is forced to be of general bearing capacity type, and thus consistent 

with the analytical formulations based on rigid-perfectly plastic soil behavior 

assumption. Poisson’s ratio (�) of the soil for drained analyses is set to 0.3. The 

stiffness properties of the foundation are set to EI=1010 kN·m2/m, EA=1010 kN/m, 

and �=0.3, so that, foundation behaves rigidly when interacting with soil elements. 

A close inspection of beam deformations revealed that, the left-most and right-most 

displacements of beams resulted in about 1% error when compared with the rigid 

behavior. 

4.3.2. Basic analysis procedures  

Different material parameters and load quantities are utilized for different 

analyses. Each analysis consists of 3 main steps, for selected sets of parameters 

and loads: 

1. Calculation of free-field stresses: this step simulates stress distribution in the 

free-field (i.e., before foundation placement), depending on unit weight of 

foundation soil and lateral earth pressure coefficient K0. For both, consolidated-

drained and consolidated-undrained analyses (with c=0 and �	0), K0 is set to 0.5, 

which is compatible with �=30˚ according to Jaky’s formula (1944). In case of 
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cohesive soil analysis (Section 4.4.1), K0 is set to 1.0 for consistency with Prandl’s 

solution (1920). Effect of K0 on bearing capacity is also assessed and discussed in 

Section 4.3.3. 

2. Application of foundation load under drained conditions: this step simulates 

the long-term (i.e., drained) stress distribution underneath the foundation. The load 

on foundation is applied as uniformly distributed vertical pressure acting on 

foundation beam elements. The magnitude of this pressure is set in accordance 

with the target factor of safety against bearing capacity failure. This load is referred 

to as “Traction A” in Plaxis analyses. In all analyses, the material behavior is set to 

drained behavior, implying that no excess pore-pressure occurs beneath the 

foundation. 

3. Application of overturning moment and base shear on foundation: this step 

simulates the imposition of seismically induced loads. In the case undrained soil 

behavior is investigated, drainage condition is set to undrained for foundation soils, 

except for the uplift elements beneath the foundation. Overturning moment and 

base shear are increased incrementally until the failure is reached. Procedure to 

detect ultimate values at failure is discussed in the following paragraphs. 

Loads on foundations are defined by vertically and horizontally distributed 

loads on foundation beam by utilizing “traction A” and “traction B” load definitions in 

Plaxis v7.2. Traction A is utilized to simulate the drained vertical load, and traction 

B is utilized to introduce load eccentricity and inclination under undrained condition 

(Figure 4.5). In final calculations, following formulations are utilized in order to 

calculate the ultimate load and moment values at failure: 

BqV A ⋅=         (4.25.a) 

BqH BH ⋅=         (4.25.b) 
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i ==         (4.25.d) 
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qA 

B  

(a) 

qBV 

qBH 

qBV 

 

(b) 

Figure 4.5. Input load schemes in Plaxis: (a) traction A for static case, (b) traction B for 

seismic loading. 

where, qA, qBV, and qBH are the maximum absolute values of foundation pressure 

distributions as shown in Figure 4.5, V is the total vertical load, M is the overturning 

moment, H is the horizontal load acting on strip foundation of width B, e is the load 

eccentricity, i is the load inclination with respect to the vertical, and h is the moment 

arm due to effective height of mass center of building (i.e., h=M/H). The ratio h/B is 

referred to as the aspect ratio of the building.  

In tracking of the foundation failure during incremental loading, the center 

node of the foundation is selected as the control point. This point is utilized for 

obtaining plots of displacement versus traction A or traction B. A sample plot of 

horizontal displacement of control point versus traction B is given in Figure 4.6. The 

ultimate load level for traction B is defined as the value where plot becomes 
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horizontal. This definition corresponds also to the global stiffness parameter value 

of ~1.0
10-5 in Plaxis code. In application, vertical displacement is utilized for the 

detecting yield, and horizontal displacement plots are also checked to ensure that 

foundation-soil plastic flow is initiated. Based on the recommendation by Taiebat 

and Carter (2000), in case there is no horizontal load acting on foundation (i.e., 

zero load inclination), a small fraction (i.e.,1%) of vertical load (static) under 

undrained condition is applied horizontally on the foundation in order to obtain plots 

of load versus horizontal displacement at failure, as shown in Figure 4.6. 
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Figure 4.6. Sample for Plaxis analysis output curves: value of traction B (Sum-MloadB) 

versus horizontal displacement of control point (UX(m)). 

 

During the iterations, the calculation type is set to “plastic” and to “load 

advancement ultimate level”. Load multipliers, which are equal to the value of qa 

and qBV (qBH is a fraction of qBV), are incrementally increased to the ultimate load 

level utilizing successive calculation phases. This is due to the limitation that, 

Plaxis allows at most 100 calculation steps for each phase. Hence, for the 

refinement of the results, additional calculation steps are generally required (e.g., in 

the order of 1000 or more in some cases, forcing utilization of about 10 calculation 
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phases). Each phase starts from the results of the previous, and increases the load 

multipliers as specified. 

At the end of free-field stress calculations stage, the displacements are reset 

to zero, since these displacements can complicate detection of ultimate state. 

Hence, the displacements in Figure 4.6 are due to load phases that simulate 

seismic loading condition alone. Iterative procedure is set manually: The default 

error tolerance of 0.03 is accepted for most analyses, but reduced to 0.01 in some 

cases where greater refinement is required, depending on observations in load-

displacement plots during iterations. The default value of over-relaxation factor is 

changed to 1.4, based on the observation that this value provides faster 

convergence. Maximum iteration number is set to 100, which is the highest value 

permitted by Plaxis. The desired minimum number of steps is selected as 30 or 50, 

due to the observed difficulty in convergence for the calculation phase. An 

important detail is that, arc-length control is set off for all phases, since this 

technique increases the number of iterations tremendously when ultimate load is 

reached, without providing any beneficial improvement on results. 

4.3.3. Verification with the static bearing capacity equations 

Before proceeding with the eccentric and inclined loading of the foundation, 

performance of the numerical model in calculation of ultimate load levels should be 

checked utilizing analytical approaches. This is accomplished for the shallow strip 

foundations through comparing the results obtained from numerical model studies 

to those provided by the analytical formulations. 

For the case of strip foundations, resting horizontally on the surface of 

homogeneous soil, if the load inclination and eccentricity is zero, equation 4.9 

reduces to (Terzaghi, 1943): 

�qscu BN�50NqcNq .++=       (4.26) 

For the case qs=0 (i.e., no surcharge exists),  

�cu BN�50cNq .+=        (4.27) 

Hence, for the purely cohesive soil behavior (c	0, �=0), 
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cu cNq =         (4.28.a) 

and, for purely cohesionless soil, 

�u BN�50q .=         (4.28.b) 

The factor Nc is equal to �+2 (Prandl, 1920), which is exact for the rigid-

plastic behavior. The unit weight � should be consistent with the effective stress 

concept, and should be selected as the buoyant unit weight for soils below ground-

water table. The uncertainty in N� factor has already been discussed in Section 

4.2.1.  For comparison, Hansen’s (1970) formulations will be utilized in this study. 

Accordingly, 

( ) ( )2�45taneN 2�tan�
q +=       (4.29) 

and, 

�tan)1N(50.1N q� −=        (4.30) 

Hence, considering clayey silts with typical effective internal angles of friction 

between 26˚ to 30˚, the range of interest for those parameters are calculated as 

Nq=11.9-18.4, and N�=7.9-15.1. 

Utilizing the mesh and calculation procedures as discussed in Sections 4.3.1 

and 4.3.2, the capability of the analysis procedure to calculate ultimate bearing 

capacity for a foundation resting on purely cohesive soil is investigated. The soil 

parameters are consistent with those utilized in analysis presented in Section 4.4.1: 

c=100 kPa, �=0.495, and K0=1.0, for compatibility with the Prandl’s solution. 

However, the foundation behaves rigidly when compared to flexible foundation 

assumption inherent in Prandl’s solution. Hence, the calculated bearing capacity is, 

qu=512.3 kPa         

which results in Nc=5.12, which is slightly lower than �+2. This may be due to the 

horizontal force of the magnitude of 1% of the vertical load applied on the 

foundation. Another analysis performed by setting horizontal force to zero provided 
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qu=516.3 kPa, somewhat higher than the theoretical value. Hence, the analysis 

procedure satisfactorily agrees with the theoretical solution for the case of purely 

cohesive soil. 

 The case of cohesionless soil is investigated similarly, by setting the 

material parameters consistent with the analyses presented in Section 4.4.2. 

However, since the theoretical approaches consider the case with K0=1.0 (i.e., no 

initial shear stress at free-field), and �=� (i.e., associative flow rule), the analyses 

are performed for combinations of two different K0 (i.e., 0.5 and 1.0), and � (i.e., 0˚ 

and �) values. Values of N� are calculated according to the equation 4.28.b, and 

tabulated in Table 4.1. 

 

Table 4.1. Values of N� corresponding to different combinations of � and K0 (�=30˚, �=18 

kN/m3, and B=20 m) 

� K0 N� 

0˚ 0.5 10.9 

� 1.0 15.1 

0˚ 1.0 10.7 

� 0.5 15.3 

 

 

Effect of K0 is observed to be practically negligible regarding ultimate 

bearing capacity. For the case of K0=1.0 and �= �, calculated N� factor has the 

same value with that proposed by Hansen. On the other hand, � has a very 

significant impact on the ultimate bearing capacity, as discussed in Section 4.2. In 

the case modified Mohr-Coulomb parameters (c* and �*) in equations 4.11 are 

utilized, the Hansen’s N� factor is calculated as 8.7, which is somewhat lower than 

10.7. Further investigation of impact of � on N� value is out of the scope of this 

study. However, since the analysis results are normalized with static ultimate 

bearing capacity (i.e., due to definition of FS) in the following sections, no further 

improvement on this issue is deemed necessary. When normalized to FS, 

foundation load eccentricity capacity is insignificantly influenced by � for the 
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drained case. Impact of variation in � is relatively more important for calculation of 

static bearing capacity. 

4.3.4. Verification of uplift behavior 

The numerical model is assessed for the uplift behavior, utilizing the simplest 

case for purely cohesive soil behavior. The analysis results are compared with 

those provided by equation 4.14, which is verified by Houlsby and Purzin (1999), 

and consistent with the effective width concept of Meyerhof (1963), as it will be 

shown in the following paragraphs: 

As formulated by Prandl’s (1920), the ultimate bearing pressure on a flexible 

strip foundation overlying a purely cohesive soil (i.e., c 	0 and �=0) is, 

c2)(�qu ⋅+=         (4.31) 

If the foundation width is B, then the ultimate load (Vu) on foundation is, 

Bc2)(�Vu ⋅⋅+=        (4.32) 

Considering load eccentricity (M	0), contact pressure is assumed to be 

linearly varying beneath foundation. Hence, uplifting of foundation is imminent due 

to a pressure distribution of triangular form when, 

6
VB

M =          (4.33.a) 

or, substituting equation 4.7,  

6
B

e =          (4.33.b) 

Defining qmax as the maximum value of pressure for a triangular foundation 

pressure distribution beneath strip foundation, total vertical load can be calculated 

by, 

B
2

q
V max=         (4.34) 
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In that case, ultimate total vertical load is, 

BcRVu ⋅⋅=         (4.35) 

where, R is an unknown factor, which may not be equal to (�+2). In order to 

estimate R, equation 4.10 (i.e., equivalent width concept of Meyerhof) can be 

utilized. Introducing equation 4.10 and 4.33.b into 4.32, 

( ) Bc2�
3
2

Vu ⋅⋅+⋅=        (4.36) 

Then, substitution of equation 4.36 into 4.35 gives, 

( )2�
3
2

R +=         (4.37) 

For a given load eccentricity, ultimate capacity of a foundation considering 

uplift can be calculated by replacing B in equation 4.36 by contact width Bc (i.e., 

zone of uplift is excluded in B): 

V
M3

B
2
3

Bc
⋅−=         (4.38) 

Equation 4.38 can be derived combining equations 4.33.a and 4.34. 

Therefore, by the definition of FS in equation 4.16, the relationship between 

ultimate overturning moment My and FS for both cases with and without uplift is 

derived as: 

�
�

�
�
�

� −=
FS
1

1
2
1
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My  

or, 

�
�

�
�
�

� −=
FS
1

1
2
1

VB

My        (4.39.a) 

or, 
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M
21

FS
1 y−=         (4.39.b) 

which is consistent with equation 4.14. Equation 4.39.b provides the ultimate load 

eccentricity for a given factor of safety. Without occurrence of bearing capacity 

failure, uplift under load eccentricity is possible in case FS>1.5, and no uplift of the 

foundation can occur for lower FS values. 

The model parameters and analysis details are given in Section 4.4.1. As 

discussed in Section 4.3.3, the ultimate bearing pressure under vertical load (qu) is 

calculated as 512 kPa. The results of Plaxis analyses are compared with the 

results of equation 4.39 in Figure 4.7. It is observed that Plaxis analyses can model 

the uplift behavior with quite good accuracy. The only relatively significant deviation 

from equation is observed at FS=5. Although an additional analysis is performed 

with further refinement in calculation parameters, no significant improvement is 

obtained.  
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Figure 4.7. Comparison of equation 4.39 with Plaxis analyses results. 
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4.4. Results of Finite-Element Analyses 

Using commercially available packages, the finite element methodology can 

be practically utilized for estimation of ultimate load capacities of foundations. The 

main advantage of the numerical approaches is that, realistic constitutive soil and 

structure behavior, complicated problem geometries, and relatively complex load 

(or, stress) histories can be introduced. In this section, the results of the Plaxis 

analyses for the cases of cohesive and cohesionless soil behavior are investigated. 

The output is compared with the available findings cited in literature to be able to 

evaluate the proposed analysis method. The assumption of omitting the load 

inclination for poor aspect ratio buildings is tested and discussed. 

The discussion is extended to the case of consolidated-undrained behavior 

during seismic loading. This case is more realistic for the seismic foundation 

assessment of buildings resting on normally-consolidated soils for which the 

consolidation process has already been completed before the earthquake. The 

results are compared with the cohesive and cohesionless soil models, which 

practically represent undrained and fully drained cases, respectively, for normally 

consolidated soils. 

4.4.1. The undrained cohesive soil model 

The case of purely cohesive soil model (i.e., Mohr-Coulomb parameters 

with c	0 and �=0) represents the case for which the shear strength of the 

saturated soil is practically unaffected by the weight of the structure. This is 

possible for the case of over-consolidated soils, and for the time-period just after 

the construction of building during which a greater part of the consolidation process 

is not yet completed in saturated clayey foundation soils. All of the models consider 

homogeneous foundation soils, but in practical applications, it is possible to 

analyze cases with variable soil profiles approximately by the procedures proposed 

in this study. 

In the analyses, following parameters are set as soil parameters: 

1) For both the foundation contact soil and the halfspace soil, Mohr-Coulomb 

parameters are set as c=100 kPa, and �=�=0˚, corresponding to Tresca yield 

criterion with associative flow rule. 
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2) Drained behavior with �=0.495, and K0=1.0. Hence, although no ground-water 

exists in the model, soil behavior is set to undrained (i.e., no volume change for soil 

is allowed) by setting the Poisson’s ratio close to 0.5. Since coefficient of lateral 

earth pressure at-rest is set to 1.0, no initial shear exists at free-field, and model 

assumptions are compatible with the assumptions inherent in Prandl’s solution. 

3) Tension cut-off is allowed for the foundation-soil contact elements but not for 

the halfspace soil. This is due to the fact that, tension cut-off for soil behavior is not 

considered in theoretical Prandl approach. However, uplift of foundation is 

permitted by providing tension cut-off for contact elements.  

An initial run to calculate qu resulted in 512 kPa, as discussed in Section 

4.3.3. The actual qA (i.e., traction A) value is calculated according to target FS 

defined in equation 4.5. The ratio of qBV to qBH is set according to the target load 

eccentricity and inclination factors, utilizing equations 4.25. Hence, in analyses, h/B 

(i.e., aspect ratio) values of 0.5, 1.0, and 2.0 are considered. The analyses results 

are shown in Figure 4.8. For practical purposes, a least-squares fit technique is 

applied on the data, for an equation of the form: 

n
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21
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�
�

�

�

�
�

�

�
−=        (4.40) 

where, n is the coefficient depending on h/B ratio. When load inclination is zero, the 

n value is 1.0 due to equation 4.39.b. The calculated values of n are 1.0, 1.1 and 

1.5 for the aspect ratios of 2.0, 1.0 and 0.5 respectively, where n=1.0 coincides 

with equation 4.39. The comparisons of fit with the data is given in Figure 4.8. For 

zero load inclination, equation 4.39.b can be practically utilized in order to obtain 

rough estimates of My/VB ratios, for aspect ratios greater than 0.5. The error is 

comparatively higher for low FS values (i.e., close to 1.0) and lower for high FS 

values. 

Stress points where plastic state is reached at ultimate capacity is shown in 

Figure 4.9 for different aspect ratios, and FS=3.0. These points are marked by gray 

squares. In Figure 4.9.a, the plastic zone is concentrated beneath the foundation-

soil contact area. When significant load inclination is considered in Figure 4.9.b. 

and 4.9.c, the yielding zone is observed to become more concentrated, near the 
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edge of foundation and under a narrower foundation-soil contact. In three of the 

analyses, significant uplift behavior of the ultimate state is observable. 
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Figure 4.8. Comparison of equation 4.40 with Plaxis analyses results: the h/B=2.0 results 

coincide with equation 4.39. 

 

Deformations at ultimate states are also presented for the same analyses. 

For the case of zero load inclination, the foundation soil is observed to flow in both 

horizontal and vertical directions beneath the contact zone. This is similar to 

general bearing capacity failure under vertical loads, when the contact zone is 

considered as the foundation in Prandl’s foundation. These observations are 

consistent with analytical assumptions of Bransby (2001). When significant load 

inclination is introduced, the foundation soils tend to flow towards the free-field 

direction. With zero dilatation, the failure surfaces with combinations of linear and 

circular shapes are comperable with the theoretical discussions on rigid-plasticity 

(Atkinson, 1993). In Figure 4.10.c., the failure surface spreads back to zones 

beneath foundation uplift, for the case of h/B=0.5. The foundation displays 

significant tilting at ultimate capacity. However, significant uplift susceptibility can 

be expected for h/B>1.0, (Figure 4.10.a and b) but not for h/B<0.5 (Figure 4.10.c). 

However, the uplift behavior is also dependent on the static factor of safety (FS), 

such that, for lower values of FS, the foundation failure can occur without 

significant uplift of the foundation. 
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(a)

 

(b)

 

(c) 

Figure 4.9. Plastic stress points during ultimate loading, considering undrained cohesive 

soil model, for analysis with FS=3.0: (a) zero load inclination (h/B is large), 

(b) h/B=1.0, (c) h/B=0.5. 
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(a) 

 

 
(b)

 

(c) 

Figure 4.10. Deformations at ultimate states, considering undrained cohesive soil model, 

for analysis with FS=3.0: (a) zero load inclination (h/B is large), (b) h/B=1.0, 

(c) h/B=0.5. 
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4.4.2. The drained soil model 

Drained soil behavior model (i.e., c=0 and �	0) represents the case that no 

significant cohesion is involved during the shearing of soil. This case corresponds 

either to the unsaturated normally-consolidated soils, or the condition that loading 

rate is relatively low compared to the drainage duration, so that no excess pore-

pressure exists, and hence may not be applicable for saturated foundation soils 

under seismic loading. The drained soil model analyses aim to check the 

consistency of Paolucci and Pecker (1997a) results with the finite element 

approach, so that the analysis procedures can be utilized in practical where the 

assumptions inherent in Paolucci and Pecker approach are not valid (e.g., 

inhomogeneous soil profile, and complex foundation sections). The drained 

analyses also form the basis for consolidated-undrained analyses, such that the 

soil drained under static loading will be set to undrained in the analyses of Section 

4.4.3. Additionally, comparison of foundation capacity is checked when load 

inclination is omitted. 

In the analyses, following soil parameters and settings are utilized: 

1) For both, the soil in contact with the foundation and the halfspace soil: c=0, 

�=0˚, and �=30˚. These parameters imply nonassociative behavior, which 

provides conservative results. The selection of � and � is also consistent with the 

observations from Adapazarı samples and Mexico City case reports. 

2) Drained behavior with �=0.3, and K0=0.5, implying that no ground-water exists 

in the model. Coefficient of lateral earth pressure at-rest is set to 0.5, which is 

consistent with the Jaky’s (1944) formula, so that initial shear exists at free-field.  

3) Tension cut-off is allowed for all soil elements.  

An initial run to calculate qu resulted in of 1965 kPa. The actual qA (i.e., 

traction A) value is calculated based on the target FS defined in equation 4.1 (or, 

4.5). The ratio of qBV to qBH is set according to the target load eccentricity and 

inclination factors, utilizing equations 4.25. Hence, in analyses, h/B (i.e., aspect 

ratio) values of 0.5, 1.0, 2.0 and 3.0 are considered. The analysis results are given 

in Figure 4.11.  
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Figure 4.11. Comparisons of numerical results (empty boxes) with equation 4.41 (gray 

curves). 

 

As discussed by Paolucci and Pecker (1997a), major contributions to the 

reduction of factor of safety comes from load eccentricity and inclination, especially 

for horizontal pseudo-static acceleration levels (ah) below 0.3 g. Hence, omitting 

equation 4.22.c, the reduction factor for bearing capacity under seismic loading 

simplifies as, 
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Substitution of equation 4.24 into 4.41 gives, 
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which can be utilized for comparison to Plaxis analysis results directly. For different 

values of aspect ratio (h/B), computed factors of safety are compared with equation 

4.42 in Figure 4.11. Calculated values are found to be compatible with the Paolucci 

and Pecker’s formula, although these formulations are based on associative flow 



 124

rule. Therefore, the finite element approaches can provide a useful tool for 

investigation of rather complicated soil profiles and foundation shapes. In cases 

with homogeneous soil profile with foundation resting on soil surface, equation 4.42 

can be utilized directly. 

The next step is the analysis in which the base shear (i.e., inclination) is 

ignored, and only load eccentricity is considered. Results for the corresponding 

numerical analyses are provided in Figure 4.12, and compared with equation 4.42 

for different aspect ratios. It is observed that, ignorance of the load inclination effect 

is acceptable for aspect ratio’s greater than 1.0. For aspect ratios less than 1.0, the 

calculation procedure significantly overestimates the capacity for a given FS, and 

the effect of load inclination can not be ignored in estimation of My/VB ratio. 

A least-squares analysis utilizing results of the numerical analyses for no-

inclination case resulted in: 
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Figure 4.12. Comparisons of numerical results (empty boxes) due to omitted load 

inclination analyses, with equation 4.42. 

For comparison, if the reduction due to load inclination is ignored in equation 

4.42, equation 4.22.b can be utilized directly to calculate FS. Hence, plots due to 
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equation 4.22.b and 4.43 are presented in Figure 4.13. The relationship in equation 

4.20, which is based on experimental studies (Butterfield and Gottardi, 1994), is 

also compared in Figure 4.13.  

The effect of � and K0 on the static bearing capacity is discussed in Section 

4.3.3. Since the static bearing capacity is observed to be especially sensitive to the 

value of �, the sensitivity of My/VB versus FS to these parameters is investigated 

for the drained case. Hence, the analysis results with nonassociative flow rule and 

K0=0.5 are compared to those with associative flow rule and K0=1.0. The analyses 

are compared for the case of zero load inclination, in which only a vertical resultant 

force and overturning moment is applied on the foundation. The results of analyses 

are also presented in Figure 4.13. For the practical analyses of poor aspect ratio 

buildings resting on drained soil, the associativeness of the flow rule and K0 value 

has insignificant importance on the relationship between M/VB ratio and FS. On the 

other hand, the associative analyses results display a greater compatibility with 

equation 4.22.b, since soil is modeled in a parallel manner to the study of Paolucci 

and Pecker. Hence, it is practically sufficient to include the effect of the dilatancy 

angle and K0 only when calculating static factor of safety, for practical utilization of 

derived relationships in this study. 

In order to visualize failure mechanisms, stress points with plastic state 

during ultimate state are presented in Figure 4.14. Well-defined failure surfaces 

can be observed, especially for h/B=1.0 and 0.5. In case of large h/B (i.e., load 

inclination is zero), the uplift zone involves nearly half of the foundation width, 

where, for other cases this zone is more limited. The behavior and flow of the soil 

during ultimate state can be better observed when incremental displacements are 

observed (Figure 4.15): The uplift zone clearly decreases as h/B ratio decreases; in 

any case, tilting behavior of the foundation is observable, but becomes more 

significant as h/B increases. These sample plots are provided for the case of 

FS=3.0, and uplift behavior becomes more significant for higher FS values. 
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Figure 4.13. Comparisons of numerical results (empty boxes) due to omitted load 

inclination analyses, with equations 4.20 (Butterfield and Gottardi, 1994), 

4.22.b (Paolucci and Pecker, 1997a), and equation 4.43 (least-squares fit for 

�=� and K0=0.5).   

 

(a) 

Figure 4.14. Plastic stress points during ultimate loading, considering drained soil model, 

for analysis with FS=3.0: (a) zero load inclination (h/B is large), (b) h/B=1.0, 

(c) h/B=0.5. 
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(b) 

 

(c) 

Figure 4.14 (continued).  

 

Concluding, the analysis procedures outlined in this section can be practically 

utilized for investigations of more complex drained case problems. However, 

equation 4.43 is suitable for rapid assessment of drained My/VB values for poor 

aspect ratio buildings with RC slab-type mat foundations resting on (practically) 

homogeneous and isotropic soils. 
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(a)

 

(b)

 

(c) 

Figure 4.15. Displacements at ultimate state, considering drained soil model for analysis 

with FS=3.0: (a) zero load inclination (h/B is large), (b) h/B=1.0, (c) 

h/B=0.5. 
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4.4.3. Consolidated-undrained soil behavior 

When considering foundations on saturated soils, traditional bearing capacity 

equations are mainly based on two major assumptions: the fully drained case 

(depending on unit weight of soil, foundation dimensions, and soil’s angle of friction 

�), and the undrained case (depending on cohesion intercept c). In the latter, soil’s 

strength is assumed to be the same as that in the free field. This is valid for over-

consolidated soils, for which the shear strength depends on the preconsolidation 

pressure. For the case of normally consolidated fine soils, the undrained equations 

are applicable if the drainage duration is relatively very long compared to duration 

of construction. In the short term, all of the applied load results in an equivalent 

increase in pore water pressures. Hence, the effective stress and the shear 

strength practically remain unchanged. As consolidation proceeds, effective 

stresses increase, resulting in higher strength values, and higher factor of safety for 

bearing capacity. At the end of the consolidation process, bearing capacity of the 

foundation is consistent with the drained case formulas.   

Use of any of the proposed bearing capacity equations based on above 

discussions may be inconsistent when investigating foundation performance under 

seismic loading condition. Very shallow water table will complicate the behavior: 

during seismic loading, most foundations are expected to rest on soils that have 

already completed a significant part of their consolidation process. Static bearing 

capacity can be calculated utilizing conventional bearing capacity equations 

considering drained shear strength parameters. However, seismic loading results 

in an undrained situation, especially in the case of fine-grained soils. Therefore, 

equations provided for fully drained case may not be valid, whereas equations 

based on stress conditions in free field (i.e., undrained behavior) are already 

useless, except for the case of over-consolidated soils. This issue is also important 

for the design and foundation assessment calculations, since too conservative or 

unconservative ultimate load capacities may be calculated. 

Differences between the two behaviors can be explained through comparing 

effective stress paths for the conventional triaxial consolidated-undrained (CU) and 

consolidated-drained (CD) tests, applied to isotropically consolidated samples. 

Defining, 
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where, 1�  and 3� are the major and minor principal stresses respectively, and upore 

is the pore water pressure. For a drained test, pore water pressure is always equal 

to zero. Therefore, in a CD type test, stress path will follow the line 1-2 (making 45˚ 

with x-axis) in Figure 4.16.a. At point 2, stress path will intersect the failure 

envelope. On the other hand, during undrained testing pore pressure u will have 

positive values for normally consolidated soils, and test will follow a stress path 

along points 1-3, reaching failure at point 3 (Figure 4.16.a).  Having lower s’ values 

at failure, CU tests will provide lower accompanying t values, and hence lower 

shear strength in compression. Whereas for tests of extension type, undrained 

shear strength will be higher than the drained strength.  

In the case of anisotropic consolidation, both CD and CU tests start at point 

2, and follow paths 2-3 and 2-4, respectively, as demonstrated in Figure 4.16.b. 

Therefore, t at failure will be somewhat different and closer to the value at CD type 

test. At ultimate anisotropic consolidation condition, in which point 2 will coincide 

with failure envelope, t values for CD and CU type tests at failure will coincide. 

Hence, difference in t between CD and CU type will require information about the 

anisotropy level in consolidation phase, and stress-path followed (i.e., compression 

or extension). 

Slope of the effective stress path during undrained compression test 

depends on Skempton’s (1954) pore pressure parameter AS (i.e., originally stated 

as A). For the case of constant cell pressure (��3=0), increase in pore pressure 

can be written as, 

1Spore Au σ∆=∆        (4.45) 
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(b) 

Figure 4.16. Comparisons of stress paths in CD and CU type triaxial compression tests, for 

the case of (a) isotropic, and (b) anisotropic consolidation. Gray line is the 

failure envelope representing Mohr-Coulomb yield criterion with c=0. 

 

where, ��1 is the change in major principal stress, which is equal to the change in 

deviator stress in a triaxial test. Hence, the relationship between t and s′  is,  
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For no pore pressure increase (A=0), effective stress path for undrained loading 

coincides with the drained loading path.  

Actual values of AS should be determined by laboratory tests on natural 

undisturbed samples. In addition, value of AS is not constant along the undrained 

stress path: as stress levels approach to failure envelope, AS can deviate 

significantly from its initial values. Parameter AS is also dependent on the type of 

test, and on anisotropy inherent in the natural soil. Therefore, rigorous simulations 

of true undrained loading behavior can only be achieved through numerical 

analyses utilizing rigorous constitutive soil models.  

The assumption of isotropic elastic behavior for non-yielding stress levels is 

reasonable for practical purposes, especially for the case of normally consolidated 

soft clays (Parry, 1995). Hence, the effective stress path will be consistent with 

calculations based on elasticity theory. In that case, the volumetric strain based on 

small strain assumption is formulated as: 

( )( )31 σ′∆+σ′∆ν′−
′

= 221
E
1


v       (4.47) 

based on effective stress parameters, where E′  and ν′  are elastic modulus and 

Poisson’s ratio determined by drained loading. Assuming that water is 

incompressible when compared to soil skeleton, the volume change for an 

undrained test on a fully saturated soil will be equal to zero 0)(
V = . Thus,  



 133

( ) 0��2�� 31 =′⋅+′  

In this case, slope of the effective stress path in a t-s’ plot (Figure 4.16) will 

be equal to 3:1 for a CU type triaxial compression test, and corresponding AS 

parameter will be equal to 1/3. Similarly, for the case of plane strain loading, the 

slope of the effective stress path will be equal to ∞ (i.e., vertical to s’-axis), with a 

corresponding AS value of 1/2.  

The situation beneath a building is rather complicated: at every point in the 

foundation soil, initial stress condition and the stress-path can be different, and 

overall reduction in factor of safety against failure will depend on the geometry and 

dimensions of the foundation, as well as the material properties. Finite element 

technique can be utilized to provide insight for the problem.  

In order to investigate the significance of parameter AS in seismic bearing 

capacity, and to obtain preliminary formulations for simple design approaches for 

normally consolidated fine soils, assumption of isotropic elastic behavior is 

presumed to be valid. Therefore, elasto-plastic soil model implemented in the 

Plaxis code can be utilized, assuming undrained behavior for the soil as discussed 

in section 4.3.1. 

Based on elasto-plastic material behavior, since Plaxis code provides plane-

strain idealization, pore pressure parameter AS will be equal to 1/2 in the analyses. 

Calculated results will be representative of strip foundations with in plane forces, 

and for rectangular foundations with L>>W under similar loading patterns. The 

three dimensional cases (e.g., square foundations) are not investigated in this 

study. As discussed in Section 4.2.2, when only in-plane forces and moments are 

considered, the foundation shape-effects are likely to be practically ignored for 

undrained case. The AS parameter tends to 1/3 in the three dimensional case, and 

hence provides slightly higher shear strength for the soil under undrained 

compression. Hence, the practical approach given in this study can also be utilized 

for these cases. However, when combined effect of in-plane and out-of-plane 

forces are considered, the approach can overestimate the load capacity of the 

foundation. Further discussion on impact of out-of-plane forces is left as a future 

study. 
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In order to investigate the effect of undrained loading on the foundation 

capacity, load eccentricity and inclination are applied on the foundation overlying 

saturated undrained soil. In the analyses, following soil parameters are set: 

1) For both the soil in contact with foundation and the halfspace soil: c=0, �=0˚, 

and �=30˚. These parameters imply nonassociative behavior, in order to observe 

elastic-ideally plastic foundation behavior. A nonzero dilation dilatancy angle 

results in increasing shear strength at the ultimate condition (i.e., hardening 

behavior), which would be inconsistent with the results of monotonic consolidated-

undrained shear strength tests of Adapazarı specimens (Chapter 2).  

2) As the drained soil parameters, Poisson’s ratio is set to 0.3, and K0 is set to 

0.5. The ground-water table is located at ground surface. These values are 

compatible with the drained-case analyses, except the existence of ground water 

table. 

3) Tension cut-off (at zero effective normal stress) is allowed for all soil elements. 

However, during undrained loading tension cut-off can not occur, since effective 

stresses do not change, as discussed in Section 4.3.1. 

4) Undrained soil behavior is set for the foundation soil, while drained behavior is 

set for the foundation-soil interface elements, in order to allow uplift behavior.  

5) An initial run to calculate qu resulted in 848 kPa, as the drained ultimate bearing 

capacity. Calculation procedures of actual values of qA, qBV, and qBH are the same 

as the procedures in Section 4.4.1 and 4.4.2. In analyses, h/B values of 0.5, 1.0, 

and 2.0 are considered.  

In Figure 4.17, the analysis results are compared to equation 4.41, in order to 

visualize reduction in ultimate load eccentricity capacity of foundation due to 

undrained loading. The results imply a significant reduction due to undrained 

behavior. This is consistent with the observations of Mexico-City and Adapazarı, 

such that, significant decrease in ultimate overturning moment capacity of the 

foundations can occur on saturated soils under seismic loading, when compared to 

unsaturated soils, due to: 

1) The static drained bearing capacity of a foundation is lower for the case of 

saturated soil than the unsaturated soil, since buoyant unit weight is significantly 

lower than the unit weight of the unsaturated soil (the ratio of unit weights is 

approximately 1:2). 
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2) For a given FS, the consolidated-undrained bearing capacity can be 

significantly lower than the drained capacity (Figure 4.17), depending on pore-

pressure parameter AS. 
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Figure 4.17. Reduction in foundation capacity due to undrained soil behavior: computed 

data in undrained analyses are plotted against equation 4.41 (drained case). 

 

Performing analyses for the case of zero load inclination (H=0), and fitting a 

least-squares curve to the results, following equation is obtained for the factor of 

safety, 

��
�

�
��
�

�

=
VB

2My

266FS        (4.47) 

Results of zero inclination analyses are plotted against curves provided by 

equations 4.47 (undrained) and 4.43 (drained) in Figure 4.18. Hence, significant 

reduction in overturning-moment capacity for a given factor of safety is observed 

for buildings with high aspect ratio and especially for relatively low values of FS.  
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Figure 4.18. Reduction in foundation capacity due to undrained soil behavior, for the case 

of omitted load inclination. 

 

For further visualization, reduction in ultimate My/VB for a given FS is 

calculated comparing My/VB values for drained and undrained analyses. The 

reduction in ultimate My/VB for a given FS is formulated as, 

( ) ( )
( )

dry

udrydry

VBM

VBMVBM
URF

−
=      (4.48) 

where, URF is undrained behavior reduction factor, and subtitles “dr” and “udr” 

refer to drained and undrained analyses, respectively. Values of URF for different 

aspect ratios are plotted in Figure 4.19. The reduction is more significant for lower 

FS levels: for the range of FS ≅ 10, reduction induced in bearing capacity due to 

eccentrically applied load is in the range of 30% to 40%. Accordingly, reduction of 

FS due to consideration of pore pressure parameter AS is significant.  
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Figure 4.19. Undrained behavior reduction factor (URF) for different aspect ratios, due to 

equation 4.48. 

 

Therefore, prediction of pore pressure parameter AS is critical in 

determination of undrained load capacity. Higher values of AS can exist for 

normally consolidated fine soils (Craig, 1983), leading to lower capacities of load 

eccentricity. On the other hand, development of reduction factors for different AS 

factors is out of the scope of this study, and left as a future work. Naturally, more 

rigorous constitutive models than the simple elastic-ideally plastic model can 

provide improved results. Within the scope of this study, Equation 4.47 can be 

utilized for practical approaches.  

Indeed, for saturated soils, not only the load eccentricity capacity, but also 

the static undrained bearing capacity is lower than the drained capacity during 

seismic loading. Under undrained loading, if any increase in normal stress on a 

specific plane is compensated by an equivalent increase in pore pressure, then, 

effective normal stress will remain constant. The shear strength of soil will remain 

practically unchanged under undrained behavior. Hence, for saturated soils, actual 

seismic bearing capacity under vertical loading can be significantly different from 

the drained bearing capacity, similar to CU and CD type triaxial test comparisons. 

On the other hand, the overall effect of undrained loading on bearing capacity (i.e., 

difference of seismic bearing capacity from drained bearing capacity) is unclear, 
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since stress paths for different locations in foundation soils are different: Overall 

change in capacity will be the sum of gain and loss in shear strength along the 

failure plane. 

Hence, in order to investigate the reduction in bearing capacity under static 

condition and due to undrained loading, an additional analysis step is included. 

Following drained loading stage in Plaxis analyses, soil behavior for saturated soils 

are set to undrained. Then, vertical stress on foundation is increased up to 

detection of bearing failure. No load inclination and eccentricity exist in this step. 

Lower qu values are obtained when compared to drained loading analyses. 

Accordingly, seismic factor of safety against bearing failure due to vertical loads 

only is calculated by, 

p

seisu
seis q

)(q
FS =        (4.49) 

where, qp is the foundation load, and (qu)seis is the ultimate undrained capacity for 

the foundation, which has already under foundation load qp. The relationship 

between qu for drained and undrained analyses are presented in Figure 4.20, for 

selected values of FS, and for a foundation resting on the surface of saturated soil 

with parameters c=0, �=30˚, and �=0˚. As a practical range of interest, the seismic 

factor of safety, FSseis, is calculated approximately between 1.0 and one tenth of 

the static factor of safety. Obtained relationship between FSseis and FS values are 

representative for plane strain conditions, and elastic-stress path compatible AS 

value. 

Assuming that FSseis is compatible with the factor of safety defined for 

constant strength (i.e., cohesive: c ≠0, �=0˚) undrained soil, ultimate My/VB values 

can be plotted against FS, by utilizing equation 4.39.b. Hence, it is assumed that 

the FS values in equation 4.39.b are equal to FSseis, and actual drained FS 

counterparts are determined by the relationship in Figure 4.20. Thus, for no load 

inclination case, values of My/VB for the constant strength approach (Figure 4.7) 

and consolidated-undrained soil behavior (Figure 4.18), are compared in Figure 

4.21. Similarly, considering the case of nonzero load inclination, values of My/VB 

values for different aspect ratios are compared in Figure 4.22.  
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Figure 4.20. Relationship between static factor of safety (FS) and seismic factor of safety 

(FSseis) equation (4.49) for strip foundation resting on saturated soil with 

parameters c=0, �=30˚, and �=0˚. 
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Figure 4.21. Comparison of constant strength and consolidated-undrained loading results 

via FSseis for the case of no load inclination. 
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Figure 4.22. Comparison of constant strength approach (filled boxes) and consolidated-

undrained loading results (empty boxes) for different aspect ratios for the 

case including load inclination. 

 

For the case of no inclination, the results are compatible. This can be due to 

the fact that, for zero load inclination, the foundation failure mechanism is similar to 

the one under static vertical load. Observed differences can be explained as 

follows: for the cases of low factor of safety, limited uplift will occur due to load 

eccentricity before bearing failure is reached, hence, average shear strength for the 

contact zone will be in the order of the average strength for the case of foundation 

with full contact. On the other hand, for high values of FS, contact zone of 

foundation at bearing failure will be narrower: Resultant vertical load due to load 

eccentricity will move to sides of the foundation, where effective confining stress is 

lower. Therefore, in this range, it is expected that capacity will be somewhat lower 

than constant strength approach.  

On the other hand, as shown in Figure 4.22, when load inclination is 

introduced, soil shear strength at shallow depths surrounding the foundation (i.e., 

towards the free-field) plays a significant role. In constant strength analyses (c≠0, 

�=0°), these soil zones have the same shear strength with those remaining below 

the foundation. Considering the consolidated-undrained loading analyses (c=0, 

�≠0°), soils surrounding the foundation will have considerably lower strength 
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compared to the locations below foundation. This is due to effective stress concept: 

Soils below foundation will benefit from increased effective stress due to the 

foundation load. Hence, the error involved in calculations is lower for relatively high 

h/B values, and higher for relatively low h/B values. The impact of load inclination is 

more significant for the latter case. 

For no load inclination, equations based on cohesive (constant strength) soil 

are practically applicable, provided that consistent equivalent FSseis is utilized. 

However, when effect of load inclination is considered, equations provided for 

constant strength assumption are no longer valid, especially for low aspect ratios, 

as can be observed in Figure 4.22. 

The failure mechanism for consolidated-undrained load path is visualized by 

plotting stress points reaching plastic state during ultimate state in Figure 4.23, for 

a static factor of safety of 3. A well-defined failure plane is not observed, as in the 

case of cohesive soil model in Section 4.4.1.  

The deformations at ultimate state are plotted in Figure 4.24. Uplift of the 

foundation is rather limited when compared to analysis results for cohesive and 

drained soil models with FS of 3 (Sections 4.4.1 and 4.4.2). As discussed above, 

the actual undrained factor of safety (i.e., FSseis) is lower than 3 in undrained 

loading. Hence, failure of the foundation occurs without significant uplift. Failure 

planes, which are comparable to Prandl mechanisms, are clearly observable in 

these plots. For any of the h/B ratio, the foundation displacements involve 

significant tilting during ultimate state. 
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(a) 

 

(b) 

 

(c) 

Figure 4.23. Plastic stress points during ultimate loading for consolidated-undrained 

analyses with FS=3.0: (a) zero load inclination (h/B is large), (b) h/B=1.0, 

(c) h/B=0.5. 
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(a) 

 

(b) 

 

(c) 

Figure 4.24. Displacements at ultimate state, for consolidated-undrained analyses with 

FS=3.0: (a) zero load inclination (h/B is large), (b) h/B=1.0, (c) h/B=0.5. 
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4.5. Conclusions 

The finite element method can be practically utilized to analyze ultimate load 

capacity of surficial foundations during seismic loading. Procedures to achieve 

such calculations are implemented and the results are compared to those provided 

by the analytical approaches. The procedures discussed here can be utilized in 

cases where use of analytical formulations is limited due to complicated geometry, 

material behavior or heterogeneity of soil profile. 

Results of analyses reveal that, in estimating the overturning moment 

capacity of shallow foundations, the load inclination effect can be practically 

omitted when the aspect ratio (i.e., h/B) is about 1.0 or above. However, for lower 

values of h/B, the overturning moment capacity of the foundation for a given 

vertical load is over-estimated unless load inclination is included. On the other 

hand, the tilting component of total roof displacement in this case is likely to 

reduce, whereas the horizontal translation component tends to increase. 

Accordingly, use of ultimate My/VB ratio without considering load inclination effect 

will result in higher capacity for the simplified elasto-plastic model, which in turn 

results in lower irrecoverable tilting. Thus, in case true My/VB ratio (i.e., considering 

actual inclination effect) is utilized, the fraction of tilting mode of irrecoverable 

displacements should be known, since calculated total irrecoverable displacements 

are the sum of translation and tilting modes. Hence, it is assumed that, the error 

due to ignoring partition of horizontal translation in total irrecoverable 

displacements (i.e., total irrecoverable displacement at the roof level of the 

structure is due to irrecoverable tilting of foundation) can be compensated by 

utilization of ultimate My/VB ratio calculated omitting the load inclination effect. As 

the h/B ratio approaches to zero, this simplified approach provides null 

irrecoverable tilting for foundation, since the overturning moment acting on the 

foundation becomes much lower than the ultimate moment value. 

The consolidated-undrained stress-path beneath building foundations results 

in significantly reduced ultimate My/VB ratios when compared to drained analyses, 

especially for lower FS values. However, the constant strength (i.e., purely 

cohesive soil) approach representing the undrained behavior assumes that the soil 

strength is not effected by the presence of the building, can not be utilized directly 

for foundations over normally-consolidated soils that have already completed a 

significant part of the consolidation process.  
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Hence, for mat foundations resting on normally consolidated soils, the 

ultimate My/VB ratio for buildings with poor aspect ratio can be estimated by 

equation 4.39 for the undrained case with constant cohesive strength (i.e., 

saturated over-consolidated soils, or foundations resting on unconsolidated 

saturated soils for which shear strength can be assumed to be constant), by 

equation 4.43 for the fully drained case (i.e., foundation resting on unsaturated 

normally-consolidated soils), and by equation 4.47 for the consolidated-undrained 

case (i.e., foundation resting on saturated normally-consolidated soil that is fully 

consolidated). These equation are based on the assumption that �=0˚, hence the 

results are on the safe-side compared to the analyses with associative flow-rule. In 

practical cases where a nonzero value of � is known with reasonable accuracy, 

the analysis procedures discussed in this chapter can be followed to estimate 

actual ultimate load capacities of foundations. Otherwise, it is practically 

reasonable to accept the beneficial impact of positive � as an unknown reserve 

capacity, which helps to decrease inelastic displacements. However, for the case 

of drained behavior, the impact of � is mostly on FS, rather than the relationship 

between My/VB and FS. 

Three equations, namely, equations 4.39, 4.43 and 4.47 are compared in 

Figure 4.25.  The FS definition depends on the problem statement: for fully 

undrained condition, bearing capacity equations that are based purely on cohesive 

soil model (i.e., Prandl’s solution) should be utilized; where for the other two 

conditions, equations that are based on effective friction angle should be utilized 

(i.e., cohesionless soil) for consistency. For hybrid cases involving c	0 and �	0, it 

is proposed that the finite element analysis procedures presented in this chapter 

should be utilized to estimate My/VB ratio. Also, in cases where significant 

embedment of foundation exists, or soil profile is not uniform, it is recommended to 

utilize the finite element approach, rather than analytical formulations plotted in 

Figure 4.25.  
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Figure 4.25. Comparison of My/VB ratios versus static factor of safety against bearing 

capacity failure for three simplified soil behaviors. 

 

Figure 4.25 also provides an alternative hypothesis for explanation of why 

excessive foundation displacements in Mexico City and Adapazarı occurred at 

sites of shallow ground-water table for surficial mats resting on saturated normally-

consolidated soils, with insignificant embedments: The undrained ultimate seismic 

load capacity can be significantly lower than the drained capacity, due to 

reductions in both FS and My/VB ratio. However, the reduction in My/VB ratio is 

strongly dependent on the deviation of effective stress-path from the total stress-

path, based on representative pore-water pressure parameters. Further rigorous 

investigations, however, require detailed future laboratory tests (e.g., CU and CD 

type triaxial tests) on natural samples, and introduction of the obtained results into 

numerical procedures.  

Estimation of My/VB ratio requires calculation of FS with reasonable 

accuracy. However, as discussed in Section 4.2, significant uncertainty may be 

involved in calculation of static bearing capacity. As it can be seen in Figure 4.25, 

ultimate My/VB ratios are sensitive to the variation of FS, in case FS is less than 5. 

Hence, values of FS below 5 should be calculated as accurately as possible. On 

the other hand, for FS values greater than 5, relatively rough estimations of FS can 

be sufficient. Considering the uncertainty in geotechnical parameters, for 
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foundations resting on normally-consolidated silt-clay mixtures, static bearing 

capacity for case studies is estimated assuming N�=10, which is reasonably 

consistent with the range of � between 26˚ to 34˚ and �=0˚. Considerations of the 

factors that foundation-soil interface may not be perfectly rough, the impact of 

cyclic loading on shear strength, effect of embedment, and foundation system 

(which may deviate from RC slab-type) further complicate the problem. Hence, in 

investigations of foundation displacements of available case studies, it is 

reasonable to utilize rough estimates of bearing capacity. Rigorous assessments of 

actual bearing capacity for each case are out of the scope of this study, which 

require detailed geotechnical investigation of foundation soils.  
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CHAPTER 5 

VERIFICATION OF THE METHODOLOGY WITH CASE STUDIES 

 

5.1. General 

In order to validate the applicability of the proposed methodology and discuss 

the limitations, available case-studies from Mexico City and Adapazarı are utilized. 

Common properties of these cases are discussed in Chapter 1. In Chapter 2 the 

cyclic behavior of silt-clay mixtures extracted from the Adapazarı sites of observed 

building foundation displacements are discussed. In Chapter 3, the governing 

equations for tilting displacement of mat foundations under horizontal seismic 

loading are derived. These equations provide a link to elastic design spectrum 

through relating inelastic displacement demand and the elastic response spectrum. 

The overturning moment capacity of shallow mats during seismic loading is 

investigated in Chapter 4. In this chapter, all these preceding discussions are 

combined to provide a practical calculation procedure, as well as to provide an 

evaluation of it through available case studies. 

Response of a dynamic system is not only a function of the system properties 

only, but of the input excitation as well. Considering the uncertainties involved in 

characterization of input motion, design forces are generally defined by utilization 

of design spectrum, which provides information for the expected peak response of 

elastic single-degree-of-freedom (SDOF) oscillator with natural period T. Generally, 

the design spectrum for a specific location is based on a regional seismic hazard 

study, involving details of local seismological and geological features, and also the 

target performance for engineered structures.  

Hence, for practical assessment of foundation tilting performance for design 

of simple structures, it is useful to relate the calculation procedure to elastic design 

spectrum. Two requirements exist for utilization of the spectrum in displacement 

demand estimation for an oscillating nonlinear system:  
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1. System behavior should be reduced to, or linked to the response of a single-

degree-of-freedom (SDOF) oscillator.  

2. Reliable relationships should exist between inelastic displacement demand 

on nonlinear SDOF oscillator, and response of the linear oscillator. 

Regarding the first requirement, formulations and assumptions to reduce the 

behavior of simple buildings with shallow mat foundations that of simple elasto-

plastic SDOF oscillator is presented in Chapters 3 and 4. For the second 

requirement, some of the available simplified procedures for estimation of 

irrecoverable displacement demands are presented in Section 5.2.  

The simplified calculation procedure proposed here to estimate tilting 

potential of a structure on a shallow rectangular mat foundation, which is 

sufficiently away from neighboring structures so that structure to structure 

interaction does not effect the foundation performance, can be summarized as 

follows: 

1. Determine total building height hn, foundation width B and length L. Estimate 

effective height h of the building by equation 3.47: for simple multistory residential 

buildings with uniform storey-heights, h  can practically be assumed as two-thirds 

of hn. Estimate I� and Mst for the building using equations 3.42 and 3.54. Calculate 

the aspect ratio of the building by /B)h( . 

2.  Estimate the natural (i.e., first) period of the fixed-base building via simple 

approaches, or rigorous structural analysis. 

3. Estimate representative dynamic soil properties: small-strain shear wave 

velocity (Vs0) and density (�) of soil based on empirical correlations or geophysical 

test results. Reduce Vs0 due to nonlinear soil behavior, utilizing factors provided  in 

Table 3.1, so as to calculate the representative shear-wave velocity (Vs) for the 

foundation soils during seismic excitation.   

4. Estimate modes of rocking (Tr) and horizontal translation periods (Th) 

considering soil-structure interaction, using the equations 3.44 and 3.53. The k� 

and kh values are to be estimated by utilizing Vs and �, utilizing equations 3.73.b 

and 3.76.b. 

5. Estimate total soil-structure-interaction system period T  by equation 3.24.b. 

This is the natural period for the elastic behavior of the system. The damping ratio 



 150

can be selected as a small value (i.e., 5%) consistent with code-based design 

spectrum: in this study it is assumed that the majority of the energy is dissipated by 

the hysteretic behavior of the soil. 

6. Estimate representative geotechnical soil strength parameters, such as �� for 

the drained behavior of normally consolidated soils, or Su for the undrained 

behavior of over-consolidated soils. The cohesion is assumed to be negligible for 

the case of normally consolidated soils.  

7. Estimate the overturning moment capacity (My) of the shallow mat foundation 

by utilizing numerical approaches as discussed in Chapter 4, by omitting the load 

inclination, and considering the effect due to the eccentric vertical load on the 

structure. However, in case of negligible foundation embedment and uniform 

foundation soil, it is practical to utilize figure 4.25 in order to estimate the ultimate 

M/VB ratio during seismic loading, provided that the consolidation process is 

completed. The factor of safety is the net static factor of safety, which is defined by 

equation 4.5. For consistency, qu value should be calculated via equation 4.28, 

which is valid for the plane-strain condition. My is calculated by introducing V and 

B, where V is the weight of the superstructure which is simply qstr�B in the case net 

foundation safety is utilized. 

8. Calculate pseudo-static yield acceleration ay by the equation 3.60, or, 
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9. Read spectral acceleration for the linear system, )TSA( , from the elastic 

spectrum. Estimate Ry value by the equation 3.11. Estimate the ductility demand 

for the elastic-ideally plastic system through available correlations or simplified 

approaches, utilizing the Ry value.  

10. Calculate the irrecoverable displacement demand (uir) on the system by 

equation 3.13. This value is assumed to be equal to u�p as a fundamental 

assumption in this study (see equation 3.56) 

11. Estimate the irrecoverable tilting demand on foundation by, 
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h
uir=θ≅θ irir

~         (5.2) 

For the outlined methodology, verifications will be achieved by utilizing available 

case studies. Considering the uncertainties inherent in the cases, some 

simplifications exist for some of the items above, for practical comparisons of the 

measured and calculated quantities. These are further discussed in Section 5.3. 

5.2. Literature Review 

In order to estimate inelastic displacement demands by utilizing the elastic 

spectrum, approximate relationships are required. These approximate methods 

through which, inelastic displacement demands can be calculated, utilizing 

response of a linear system, can be divided into two-groups:  

1. Methods based on equivalent linearization 

2. Methods based on a displacement modification factor 

A detailed discussion of the available methodologies is provided by Miranda 

and Ruiz-Garcia (2002a). The methods based on displacement modification factors 

are utilized in this study, to ascertain seismic demand in available case studies. 

The required information for calculations involves elastic spectrum for a given 

small damping ratio (i.e., 5%), the period of the elastic system, and yield force for 

the corresponding elasto-plastic system. Hence, Ry factor is estimated by equation 

3.11, and only remaining unknown is the corresponding maximum ductility ratio 

�max (equation 3.7), where maximum inelastic displacement of the system can be 

calculated by equation 3.13. Therefore, correlations between Ry and �max are 

needed for practical use. Certainly, irrecoverable deformations can also be 

estimated by utilizing maximum displacement of inelastic system directly, for a 

given acceleration-history. 

One simple methodology is to utilize the relationships provided by Newmark 

and Hall (1982), where, 
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where, cc T and T ′  are the periods marking the acceleration and velocity sensitive 

regions for the elastic and inelastic spectrum respectively, and Tb is the lower 

bound period for the constant acceleration region, which generally has a limited 

practical importance in civil engineering applications. 

Riddel et al. (2002), utilizing ensembles of records from Circumpacific Belt 

and California, developed correlations between Ry and �max. The proposed 

relationship for elasto-plastic SDOF oscillator with 5% damping ratio is, 
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Site dependency of Ry - �max relationship is investigated by Miranda (1993). It 

is proposed that, for soft soil sites, 
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where, Tn is the natural period of the system, Tg is the predominant period of the 

ground motion. The predominant period of the ground motion is defined as the 

period at which the maximum input energy of 5% damped elastic system is 

maximum, and can be practically determined by calculating the period for which the 

spectral relative velocity is the maximum. Equation 5.5 is determined utilizing 

bilinear behavior for which the post yield stiffness is 3% of the initial. Hence, the 

equation can also be practically utilized for an elastic- ideally plastic system. 

A final detail in determination of maximum inelastic displacement demand is 

the effect of stiffness-degradation observed in cyclic tests of silt-clay mixtures: 

Utilizing stiffness-degrading models for structures, and utilizing nonlinear SDOF 

oscillator, Miranda and Ruiz-Garcia (2002b) observed that, lateral strength 

demands for degrading structures increase when compared to nondegrading 

systems, for structures with natural period shorter than Tg. Opposite trends are 

observed for natural periods higher than Tg. Hence, for a given Ry value, and 

considering the elastic period of SSI system as discussed in Section 3, the inelastic 
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displacement demands for foundations are expected to be estimated 

unconservatively when elasto-plastic model is utilized. In this study, it is assumed 

that, ignoring the actual damping, and viscous response of soils in simplified SSI 

models will compensate somewhat the increase in demand due to stiffness-

degradation. 

Hence, equations 5.3-5 will be utilized for further investigation of cases, 

especially when discussing the uncertainties in seismic demands. Therefore, these 

equations can be applied for foundation tilting potential assessments, utilizing 5% 

damped elastic design spectrum for the site. 

5.3. Case Study: Mexico City 

The case studies for the foundation settlements from the Mexico City are 

presented by Mendoza and Auvinet (1989). Four cases with shallow foundations 

are presented with available geotechnical information and foundation performance 

data, two of which involve shallow mats and two other cases with compensated 

foundations. Additional geotechnical information for Mexico-City soils is provided 

by Zeevaert (1991), and Seed et al. (1988). Attempts to calculate foundation 

displacements for two of the cases are presented by Auvinet et al. (1996), who also 

provides supplementary information for these cases.  

The seismic demand at heavily damaged zones of Mexico City is investigated 

by Seed et al. (1988). Results of one-dimensional site-response analyses, 

however, were found to be extremely sensitive to small variations in shear-wave 

velocity and layer thickness of the shallow soft clay deposits. Hence, the seismic 

demand at Mexico City is somewhat chaotic, and estimations of seismic demand at 

available case locations require detailed geotechnical and geophysical 

investigations of the site. However, such detailed information is not available. Seed 

et al. discussed that the SCT record among others during the Mexico City 

Earthquake best represents the seismic demand at heavily damaged regions of the 

city. However, this station is located on the southern border of the heavily damaged 

area, and significant deviations in seismic demand due to SCT record therefore 

exist. 

Gómez et al. (1989) presented dynamic characteristics of the selected 

damaged buildings in Mexico City, which can be accepted as representatives of the 

regular mid-rise concrete buildings. The fundamental periods of the 13 buildings 
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are calculated by modal analysis procedure, and plotted in Figure 5.1. The 

fundamental periods for these mid-rise buildings are observed to be in the range of 

1-2 seconds, with very significant scatter. 
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Figure 5.1. Fundamental periods of representative concrete buildings in Mexico-City, for 

damage assessments for September 19th 1985 earthquake (Gómez et al., 1989). 

 

The soil-structure-interaction effects are estimated to elongate the total 

natural period of these systems in the order of 0.2 to 0.3 s, based on the Vs0 data 

provided by Seed et al. (1988), which can be ignored considering the uncertainty in 

fundamental periods of these buildings, and actual seismic demand.  

5.3.1. Seismic demand 

Considering the discussion by Seed et al. (1988), the SCT record during 

1985 Mexico City is utilized in seismic demand calculations for Mexico City cases 

within the scope of this study. However, significant uncertainty exists for actual 

seismic demands at these sites, due to variations in soil profiles. 

The index parameters of SCT records are given in Table 5.1. The 

acceleration-histories are plotted in Figure 5.2, and the 5% damped elastic 

response spectra are given in Figure 5.3. The records are somewhat exceptional, 

consisting of approximately the sinusoidal form having the period consistent with 

the natural site-period (Seed et al. 1988).  
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Table 5.1. Index properties of the SCT record. 

Component PGA(g) PGV(cm/s) Predominant Ground Period (s) * 

EW 0.17 61 2.1 

NS 0.10 38 2.1 

* Determined by the period for the peak PSV value for 5% damped linear system. 
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Figure 5.2. Acceleration-history of SCT records. 

 

 Considering different pseudo-static yield acceleration levels (equation 3.8), 

the ductility demands (µmax) are computed for a 5% damped elastic-ideally plastic 

system. The computations are achieved utilizing Modified Newton-Raphson 

iteration, which is outlined by Chopra (1995) for numerical evaluation of dynamic 

response of nonlinear systems. The computed maximum µ values are compared 

with equations provided by Newmark and Hall (1982), Riddell et al. (2002), and 

Miranda (1993), which are discussed in Section 5.2, in Figures 5.4-6. 
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Figure 5.3. Spectral acceleration plots of SCT records for 5% damping. 
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Figure 5.4. Comparison of calculated µmax with Newmark and Hall (1982) relationship: 

(a) east-west  (b) north-south components. 
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Figure 5.4 (continued). 
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Figure 5.5. Comparison of calculated µmax with Riddell et al. (2002) relationship: (a) east-

west  (b) north-south components. 
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Figure 5.5 (continued). 
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Figure 5.6. Comparison of calculated µmax with Miranda (1993) relationship: (a) east-west  

(b) north-south components. 
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Figure 5.6 (continued). 

 

 The computed µmax values are observed to be inconsistent with the 

approximate relationships, except for the NS component with Miranda (1993) 

relationship, which provides unconservative estimations for low ay and period 

values. This may be explained by the extraordinary nature of the SCT records, due 

to strong site-amplification effects on the long-period component of the motion, 

resulting in insignificant amplitudes of motion in low-period ranges, but significantly 

high amplitudes of motion for high-period ranges. Development of a methodology 

for estimation of ductility demands for similar conditions are out of the scope of the 

study. On the other hand, to arrive practical conclusions, the issue is further 

investigated in Section 5.4. For further calculations on available Mexico City cases, 

computed µmax values are directly utilized. 

Above discussion on seismic demand is based on simple elastic-ideally 

plastic behavior, for which yield force is the same for both oscillation directions. In 

actual cases, however, this may not be valid, especially when a neighboring 

building does not allow the foundation to tilt in one particular direction. Also a 

significant irregularity in a soil profile may result in different yield force levels in 

different deformation directions. Accordingly, response of the elastic-ideally plastic 

system will be asymmetric, and calculated ay values can be significantly different in 
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two oscillation directions. In that case, irrecoverable displacement demand tend to 

accumulate rather in the weaker direction. Possibly, however, the failure mode may 

alter in the stronger direction (i.e., to a mode governed by horizontal sliding of 

foundation without tilting). For demonstration purposes, additional analyses are 

performed by doubling the yield strength in one direction of the ideally elastic- 

perfectly plastic system, for the simulated motion. Calculated ductility demands for 

SCT records are compared with those obtained from symmetrical behavior in 

Figure 5.7. Significant increases are observed, which is important in investigation 

of available cases and practical design recommendations. As discussed in Section 

1, in cases where elasto-plastic system practically yields only in one direction due 

to strong asymmetrical behavior, it is proposed to consider an analysis based on 

Newmark’s sliding block analysis to calculate the irrecoverable displacement, since 

the duration characteristics of the input motion becomes important.  
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(a) 

Figure 5.7. Comparison of ductility demand for the asymmetric system that the yield 

strength in one direction is doubled, with symmetrically behaving system: (a) 

EW component, (b) NS component of the SCT record. 
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Figure 5.7 (continued). 

 

 Figures 5.7 a and b show that the ductility demands are very sensitive to 

any strength asymmetry in the system behavior, especially for period ranges close 

to the predominant site-period. However, the impact of asymmetrical behavior on 

ductility demand diminishes, as ay increases. Hence, asymmetric systems with ay 

values as low as 0.1g in the weaker direction will have significantly amplified 

ductility demands when compared to symmetric system response. On the other 

hand, for systems with ay>0.3g, the amplification in the demand can be ignored, 

except for the cases that the period of the system is close to the predominant 

ground-motion period.  

5.3.2. Available cases 

Four cases presented by Mendoza and Auvinet (1988) are considered in this 

study.  The cases involve two buidings with shallow mat foundations (cases Ia and 

Ib), and two with compensated foundations (cases II and III). The density of 

saturated silty clay of the Texcoco (Mexico City) silty clay is 1.2 t/m3 as provided by 

Seed et al. (1988). The low value of density is due to extremely high natural water 

content of the soil. Considering very shallow water-table levels in the cases, the 
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buoyant unit weight of the soil is approximately 2 kN/m3. It is assumed that, all case 

foundations have completed the consolidation process before the earthquake, and 

equation 4.47 is valid for calculation of My/VB ratio for the foundation.  

Cases Ia and Ib are two buildings in a single block (Ic is the third building in 

the block). The block width is 16.75 m, and the total length of the block, which is 

equal to the sum of width of three buildings, is 40.3 m. Considering the generalized 

shape of the block, the weak direction is the east-west, where a street lies on the 

east. It is unclear whether there are similar-weight buildings on the west or not, 

from the provided scetch. It should be noted that, if these buildings were 

considered to stand alone, the weak direction would be the north-south direction, 

which is parallel to the width of each building.  

Building Ia has foundation dimensions of 16.75 m and 14.10 m, with 

approximately rectangular mat foundation section. The building has six stories, with 

a height of 18.6 m. The net pressure (qnet) exerted on the soil by the foundation is 

55 kPa. The soil embedment is 1.2 m, which can be ignored when compared to 

foundation dimensions, in calculations of bearing capacity. Hence, the static 

bearing capacity is calculated by the formula 4.28.b, utilizing N�=10 as discussed in 

Chapter 4. Hence, the drained static factor of safety is calculated as, 

03
55

107516250
FS .

.. =⋅⋅⋅=  

Larger dimension (i.e. 16.75 m) is selected as the width, considering the block-

behavior of the three buildings. Hence, the My/VB ratio is calculated by the 

equation 4.47 as 0.098. Tilting of the building is reported as 5.2% eastwards (i.e., 

towards the street site), and a pre-earthquake tilting is reported to be evident, due 

to a shallow pumping well installed near the corner of building, which lowered the 

water-table level to 2.5 m locally. 

Building Ib has somewhat similar properties with the Ia: the building has 

foundation dimensions of 16.75 m and 12.90 m, with rectangular mat foundation 

section. The building has eight stories (Paolucci and Pecker, 1997), with building 

height in the order of 25 m. The pressure that is exerted on the soil by the 

foundation is 99 kPa. Considering 1.5 m foundation embedment, the net foundation 

pressure is estimated as 81 kPa. Similarly, the factor of safety against bearing 
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capacity failure is 2.1, which results in My/VB ratio of 0.066. The reported tilting of 

the building is 6.3% eastwards. 

Case II has a compensated mat foundation with dimensions of 11.60 m width 

and 54.50 m length. Weak direction is the north-south direction. Total height from 

the foundation levels is 16.3 m. Embedment is 3.0 m, and ground water table is 

located at 1.60 m. The net pressure exerted on the foundation is 25 kPa. The 

building exhibited excessive tilting at the northwest corner, where heavy water 

tanks on the roof exerted approximately 30 kPa of additional pressure on 

foundation. The measured tilt at this corner is 2.9%. Hence, existing static load 

eccentricity and inclination can have a significant contribution on the building 

performance. Utilizing the total net pressure of 55 kPa, the factor of safety is 

calculated as 2.1, which results in My/VB ratio of 0.066.  

Case III consist of an apartment building with foundation width 25.0 m and 

length 30.1 m. The height of the building is not provided. However, since the net 

pressure exerted on the compensated foundation is reported as 33 kPa, the 

building is assumed to have a similar height with Case II. The building has tilted 

significantly towards the west and south directions, with ratios of magnitude in the 

order of 2:1. Hence, the maximum tilting is towards the southwest corner, with a 

maximum differential displacement of 0.93 m with respect to northeast corner. It is 

reported that only 0.53 m of 0.93 m occurred during the earthquake: the remaining 

0.4 m is due to water pumping at south-east corner before the earthquake. Hence, 

considering the total differential settlement 0.6 m towards the east (i.e., weak) 

direction, the tilting performance of the building can be estimated as approximately 

1.4%. Tilting in the stronger direction is approximated as 0.6% and the static 

bearing capacity is estimated as 7.6, with a My/VB ratio of 0.18.  

Based on the information provided, the effective heights ( h ) of the buildings 

are estimated as two-thirds of the total height. Irrecoverable displacement 

demands compatible with the observed tilting are tabulated in Table 5.2. Utilizing 

ultimate My/VB ratios, calculated pseudo-static yield acceleration levels for these 

cases are also presented.  
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Table 5.2. Final calculation parameters for the Mexico City cases. 

Case nh (m) h (m) B(m) Bh  VBM y  ay(g) ( )%irθ * uir(m) ** 

Ia 18.6 12.4 16.75 0.74 0.098 0.13 5.2(E) 0.64 

Ib 25. 17. 16.75 1.01 0.066 0.066 6.3(E) 1.1 

II 16.3 10.9 11.60 0.94 0.066 0.070 2.9(N) 0.32 

III 16. 11. 25.0 0.44 0.18 0.41 1.4(E) 0.15 

*   Observed value in the field, letter in parenthesis is the tilting direction. 
** Irrecoverable displacement demand is consistent with �ir: irir hu θ⋅=  

 

5.3.3. Comparison of the predicted and measured tilts  

The case data in Table 5.2 are compared with calculated irrecoverable 

displacement demands due to SCT records in Figure 5.8. Since the fundamental 

periods of the buildings are not precisely known, a wide range of periods varying 

between 0.8 and 2.8 seconds are presented. Considering the data in Figure 5.1, 

the most probable period range of interest is between 1.0 s to 2.0 s for case 

buildings. Within this range, the SSI elongates the period of the total SSI system 

approximately 0.2 to 0.3 seconds, which can be practically ignored considering the 

uncertainty in Ts. 

The cases II and III are reasonably consistent with the seismic demand. 

However, cases Ia and Ib yields higher tilting values with respect to those 

estimated based on the seismic demand on elasto-plastic system. These cases 

have relatively low ay values, in the order of 0.1g. As discussed via Figure 5.7, 

these pseudo-static yield acceleration levels are very sensitive to strength 

asymmetries. On the other hand, the uncertainties involved in geotechnical and 

structural information on cases, as well as the unknown positions of the 

neighboring buildings than can provide strong asymmetry in bearing strength in 

one direction and alter the seismic demand on building due to structure-structure 

interaction, prohibits further discussion on results. However, it is also important to 

notice that the buildings Ia and Ib are adjacent, and could have influenced by the 

same reason causing asymmetric response. However, water-pumping near the 

corner of the building Ia does not appear to be a possible reason, since it cannot 

explain the tilting performance of Ib, and the direction of the excessive tilting. 
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Further information on cases is required for clarification of the existence of 

asymmetrical behavior. 
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Figure 5.8. Comparison of Mexico City cases with the simplified methodology considering 

(a) EW component, and (b) NS component of SCT record. 
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The impact of site response, which dominates the ground response in Mexico 

City, is further investigated in Section 5.4. However, considering the inconsistency 

between simplified relationships used to estimate ductility demand and the 

calculated values based on SCT record, the seismic demand in Mexico City 

appears as a somewhat special case for seismic design. Restriction of the 

irrecoverable foundation rotation demands to relatively small values (e.g., at most 

0.5˚ or 1%) result in relatively high ay values, which in turn restrict the impact of 

strength asymmetry. However, such values of ay would also mean nearly elastic 

response of the system. Hence, similar discussions are also made for the 

Adapazarı cases, where data with better quantity and quality is available.  

5.4. Case Study: Adapazarı 

Adapazarı constitutes another special case where excessive foundation 

displacements on silt-clay mixtures are observed. Due to the shallow ground water 

level in the city (at about 1.0 m below the ground surface), majority of the 

reinforced-concrete buildings have very shallow mat foundations, which are 

observed to behave rigidly as they displaced during 17 August earthquake. The 

mechanisms leading to excessive foundation displacements are still the subject of 

ongoing researches. 

Low frequency enhancement and motion amplification effects of the deep 

alluvial basin was the obvious reason of excessive damage in the Adapazarı City. 

A detailed investigation of the site-effects on the ground response and consequent 

building damage were presented by Bakır et al. (2002). They concluded that, the 

predominant site period was over 1.5 s in Adapazarı, and could elongate further at 

sites with very soft shallow deposits.  

The case data from Adapazarı is provided by Bray et al. (2001a, 2001b, 

2004), Karaca (2001), and Yasuda et al. (2001). The cases documented by Bray et 

al. consists CPT and SPT tests nearby the case buildings with excessive 

settlements, and are referred to as “PEER cases” in this study. Additional cases 

from Cumhuriyet and Tı�cılar districts, presented by Karaca, are referred to as 

“METU cases”. Both METU and PEER cases are re-investigated and new borings 

were drilled where deemed necessary, as part of the research aiming at 

investigation of the foundation displacements and undisturbed samples retrieved 

for triaxial tests. Locations of the borings, where undisturbed samples are 
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recovered, are presented in the Appendix A. Data provided by Yasuda et al. 

involves damage-survey results for foundations, such that average and maximum 

settlements, and angle of irrecoverable tilting of foundations are tabulated, along 

with the foundation width and number of stories of the buildings. Although the 

damage survey includes performance data of numerous foundations compared to 

PEER and METU cases, geotechnical information does not exist. Additional 

geotechnical information for shallow soft deposits in Adapazarı can also be found 

in the study by Sancio et al. (2002). 

Although a detailed study on the range of fundamental periods of typical 

reinforced concrete structures in Adapazarı is not available, a study by Akkar et al. 

(2004), on the building stock encountered in Düzce, can provide useful information, 

assuming that the structural characteristics in the two cities are similar. Based on 

this data, which is plotted in Figure 5.9, 3 to 5-storey buildings, equation 3.77 is 

observed to provide a reasonable estimate of the structural period. However, 

significant scatter exists in the fundamental period for a given number of stories, 

which introduces further uncertainty in the calculations. As discussed in Chapter 3, 

the representative natural period of the soil-structure system is assumed to be 0.8 

s for 4 to 6-story buildings in Adapazarı. 

 

Figure 5.9. Range of fundamental periods for 37 buildings in Düzce (Akkar et al., 2004). 



 168

5.4.1. Seismic demand 

During 17 August 1999 Kocaeli Earthquake, the only lateral component 

recorded at Sakarya (Adapazarı) station was EW, which is almost fault-parallel, 

along with the vertical component. The NS component was not recorded due to a 

malfunction. Accordingly, EW record is utilized for estimation of seismic demand in 

Adapazarı during 17 August 1999 earthquake. Unavailability of NS component 

consists a limitation in investigation of Adapazarı cases, and the actual demand 

may be underestimated to some extent 

 The second shortcoming is that, these records are taken at a stiff site, 

where conditions are not representative of the deep alluvium on which the majority 

of the city is situated. Hence, the records can not be directly utilized for the 

assessment of seismic demand for Adapazarı cases.  

 In order to simulate seismic demand realistically at deep alluvium sites in 

the city, one dimensional site response analysis is utilized. The site response 

analysis program Proshake, which implements the same equivalent linear 

procedure as SHAKE (Schnabel et al., 1972), is used for this purpose. Hence, 

nonlinear behavior of deposits is approximately considered by equivalent 

linearization. 

The soil profile is based on the study by Bakır et al. (2002), in which the 

aftershock acceleration-histories simultaneously recorded at the stiff (i.e., same site 

with the instrument recording 17 August event) and alluvium sites are used to 

determine the transfer function. Utilizing smoothed transfer functions and deep 

borehole profiles, a consistent idealized profile is developed for site-response 

analyses. Calculated response spectra are observed to be consistent with the 

distribution of building damage on alluvium sites. Moreover, it is observed that, 

fundamental period for deep alluvium sites is around 1.5 s, and can approach to 

2.0 s due to nonlinear behavior during strong seismic excitation. Soft and weak 

shallow soils can significantly alter the seismic demand similar to the Mexico City.  

For site response analysis, a 150 m deep profile is utilized, details of which are 

given in Table 5.3. Effect of soft shallow deposits on seismic demand is ignored, 

omitting the topmost layer surficial deposits. Acceleration histories of outcrop 

motion and calculated surface motion are plotted in Figure 5.10. Velocity-histories 

are plotted, in order to visualize the site effect on seismic demand (Figure 5.11). 

Acceleration and velocity spectra for both cases are compared in Figure 5.12. 
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Table 5.3. Mechanical properties of the soil profile utilized in site-response analyses. 

Layer 

No. Material 

Thickness 

(m) 

Unit 

Weight 

(kN/m3) 

Vs 

(m/s) 
Modulus Reduction and 
Damping Curve 

1 Clay 85.0 18 330 

Ishibashi-Zhang 

(1993), PI=35 

2 Gravel 15.0 18 730 

Ishibashi-Zhang 

(1993), PI=0 

3 Clay 50.0 18 410 

Ishibashi-Zhang 

(1993), PI=35 

4 Rock 

(half-

space) 24 1000 

Schnabel et al. 

(1972), Rock curve 

Depth of water table is 1.0 m. 
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Figure 5.10. Acceleration-histories for outcrop motion (Adapazarı EW record), and the 

simulated motion for deep alluvium sites. 
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Figure 5.11. Comparison of velocity histories for outcropping (rock) motion and simulated 

surface (alluvium) motion. 
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Figure 5.12. Comparisons of acceleration spectrum for outcrop and surface motions (5% 

damping). 

Ductility demands for the generated motion are investigated for different Ry 

factors, and natural periods. Considering different yield acceleration values 

(ay=0.1g, 0.3g, and 0.5g), ductility demands are calculated for different natural 
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periods, similar to the calculations for the Mexico City cases. The results are 

compared with the simple relationships for Ry-�max given in Section 5.2, utilizing 

calculated acceleration spectra for the motion. The comparisons for Newmark and 

Hall (1982), Riddel et al. (2002) and Miranda (1993) are presented in Figures 5.13 

to 15. Calculated values are observed to agree with equations, for representative 

ranges of building periods. For the equations of Riddell et al. and Newmark and 

Hall, equations for the acceleration sensitive region (dashed lines in Figure 5.13 

and 5.14) are valid for lower periods, and equations for the velocity-sensitive 

regions (continuous lines) are valid for the mid-period ranges in the plots.  

Considering the Turkish Earthquake Code (Ministry of Public Works and 

Settlement, 1998), the City of Adapazarı is included in the zone of effective ground 

acceleration of 0.4g. In calculations of ductility demand, equation 5.3.b, which is 

consistent with the code, must be utilized. By the same methodology, ductility 

demands for different yield acceleration values (ay) are calculated, based on code 

spectrum. For practical purposes, spectral values within acceleration-sensitive 

region are omitted, and spectral values within the velocity-sensitive region are 

extended towards lower period regions, considering the period ranges and Ry 

values of interest. Comparisons with those values obtained from simulated ground 

motion (alluvium site) are presented in Figure 5.16. It is observed that the ductility 

demands for simulated ground motion are compatible with the Z4 spectrum in the 

Turkish Earthquake Code. 

In order to observe the sensitivity of inelastic response to strength 

asymmetry, increase in the ductility demand is investigated. For that purpose, the 

yield force level for the elasto-plastic system is doubled in one direction. Ductility 

demand of the asymmetric symmetric systems are compared in Figure 5.17. 

Although significant amplification in the demand for systems with ay=0.1 and 0.2 is 

observed (i.e., in the order of 2 to 3) for the period range of interest, the 

amplification is insignificant for higher values of ay. This is consistent with the 

conclusion that buildings with higher foundation aspect ratio will be more sensitive 

to the strength asymmetry, since ay values are comparatively lower. On the other 

hand, sensitivity of the ductility demand to the strength asymmetry for the 

Adapazarı cases are considerably lower than for the case of SCT record in Mexico 

City. 
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Figure 5.13. Comparison of calculated maximum µ with Newmark and Hall (1982) 

relationship. 
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Figure 5.14. Comparison of calculated maximum µ with Riddel et al. (2002) relationship. 
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Figure 5.15. Comparison of calculated maximum µ with Miranda (1993) relationship. 
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Figure 5.16. Comparison of ductility demand for the generated ground motion with the 

values corresponding to Turkish Code. 
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One important uncertainty in estimation of seismic demand on foundations is 

due to adjacent-construction style building stock in Adapazarı: Structure-structure 

interaction can result in significant deviations in the estimated seismic demand 

from the actual magnitudes.  
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Figure 5.17. Comparison of ductility demand for the asymmetric system that the yield 

strength in one direction is doubled, with symmetrically behaving system, due 

to the simulated alluvium motion for Adapazarı. 

Finally, utilizing equation 3.13, irrecoverable displacement demands (uir) for 

the alluvium site is calculated for periods T=0.6, 0.9, and 1.2 seconds, and plotted 

in Figure 5.18. It is observed that, for the generated acceleration-history for the soft 

site and the representative range of periods (i.e., about 0.8 s), the magnitude of uir 

is not significantly sensitive to the value of natural period of the system. However, 

uncertainties involved in cases regarding the natural period of the soil-structure 

interaction system ( T ) and the actual seismic demand are inherent in this 

conclusion. 

The equation for the representative curve obtained from a least-squares 

analysis fit on the data points in Figure 5.18 is, 
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gyair
1300

0.75
u =         (5.6) 

where, ay is expressed in terms of g, and uir is in meters. Equation 5.6 is utilized in 

estimations of tilting for the case studies. 
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Figure 5.18. Plot of irrecoverable displacement demand (uir) for simulated alluvium 

motion, for different natural periods and ay values. 

5.4.2. Available cases 

As presented in section 5.4, available cases are grouped into categories: a) 

PEER cases, b) METU cases, and the c) Yasuda et al. data. In this section some 

pertinent information for the cases are presented. Details of the data can be found 

in original studies. 

5.4.2.1 The PEER cases 

Cases A1 and A2 are located in the Cumhuriyet District. Case A1 is a 5-

storey building, with a foundation width of 8.4 m. This building settled about 0.8 m 

on the average and tilted extremely, in the order of 5˚, towards the north-west 

corner during the earthquake, and was demolished after the earthquake. The 

PEER research group performed two separate borings, one near the north-west 

corner (SPT-A1), and one near the south-east corner (SPT-A2). Although the soil 
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profiles appear to be similar on both sides, consisting of silt-clay mixtures, the 

Torvane tests indicate lower shear-strength values in the borehole SPT-A1 

(Su=28,50,22,23,25,26 kPa) when compared to borehole SPT-A2 

(Su=18,48,53,35,31,37 kPa) between depths 2.0 and 6.0 m, implying a weaker 

profile on the northwest corner. Hence,  asymmetric foundation response is 

expected. Case A2 is also a 5-story building with a foundation width of 12.9 m. This 

building settled uniformly (about 30 cm) without any observable tilting. The soil 

conditions beneath the foundation are similar to Case A1, possibly consisting a 

greater percentage of silt as revealed by the boring SPT-A3. 

Case B1 is definitely a poor aspect-ratio building, with 5 stories and only 5.0 

m of foundation width. This building toppled during the earthquake, and demolished 

afterwards (Figure 5.19). The shallow soil profile beneath the building is composed 

of sand-silt mixtures and silt-clay mixtures. The weak direction is the northeast. It is 

noticeable that, this building has a neighboring light-weight timber building on the 

northeast, and an adjacent similar-weight building on the opposite direction, 

implying a strong asymmetric behavior for the foundation system, and possible 

significant structure-structure interaction. 

 

Figure 5.19. Case PEER-B1. 

 

Site C is located in 	stiklal district. Case C1 is demolished after the 

earthquake, possibly due to excessive structural damage, and there is no reliable 

information about its foundation displacements. On the other hand, C2 is a 5-story 
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building, with square-shaped foundation section: the foundation dimensions are 

19.5 m width and 20.1 m length. This building has translated horizontally 57 cm 

towards west and 34 cm towards north, and settled significantly. Bray et al. (2001a) 

reports that the relative vertical movement between the pavement and the building 

is about 35 cm. When the site is revisited, it is observed that this difference could 

be due to bulging of the nearby soil around foundation, and actual average 

settlement is estimated about 10 cm. Case C3 is a similar structure without any 

significant sign of foundation displacements. Hence, only C2 is included in the 

analyses. The foundation soil conditions at this site are observed to be dominated 

with silt-clay mixtures as well. 

Case E1 is observed to settle about 0.1 m on the average, tilted about 1˚ 

towards the east, and caused structural-damage on the adjacent 2-storey timber 

building. The building consisting the case is 5-story, and the L-shaped foundation 

has an average width of about 10.5 m in the weak direction. Silt-clay and sand-silt 

mixtures both exist in soil profile. 

Case F1 is a 4-storey building with a rectangular foundation shape. The weak 

direction is the north-south, and the foundation width is 7.5 m. The building has 

settled about 0.3 m without noticeable tilting. However, existing 1-storey buildings 

adjacent to both sides on the weak direction may have limited the tilting during the 

earthquake. Both of these two buildings were demolished after the earthquake. 

Sand-silt and silt-clay mixtures again dominate the subsoil profile. 

Site-G1 is a 4-story building with a rectangular foundation shape, and has a 

relatively low foundation aspect ratio when compared to cases G2 and G3. Since 

G1 has displayed no foundation settlement, this case is disregarded in the 

analyses. Cases G2 and G3 are two 5-story adjacent buildings, which tilted 

towards the free field, consistent by the weak foundation direction (Figure 5.20). 

Each building has  average foundation width of about 8.0 m, and the weak direction 

is the southwest-northeast. Structure to structure interaction, and strong 

asymmetrical behavior of the foundation due to existence of a similar-weight 

building in one weak direction can be the reason for excessive tilting. Layers of silt-

clay and silt-sand mixtures exists in the soil profile beneath the foundations. Only 

Case G2 is introduced in the analyses, since the results will be also representative 

for the case G3. 
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Figure 5.20. Cases PEER-G2 and -G3. 

 

Finally, case H1 is a 4 story building, which settled about 10 cm, with barely 

noticeable tilting. Asymmetrical behavior is implied for the foundation system, due 

to existence of equal-weight buildings on both sides. The foundation has a width of 

10.5 m, with the weak direction being NW-SE when considered as a stand-alone 

building. Silt-clay mixtures are observed to dominate the soil profile for this case. 

5.4.2.2 The METU cases 

Cases A1, A2, and A3 are located in Tı�cılar District. Case A1 is a 5-story 

building with foundation dimensions of 8.9 m width and 24.6 m length. The weak 

direction is EW. The building is reported to tilt 1˚ to the north, and 1.5 to east. 

During the earthquake, two similar-weight adjacent buildings existed adjacent on 

the west. Case A2 is a 4-story building with foundation width of 7.0 m. The weak 

direction is the north-south direction, and the building tilted towards the free-field on 

the north. Existence of buildings on the south implies a strong asymmetric 

foundation behavior (Figure 5.21). Cases A3 and A4 are 4-story buildings standing 

adjacent to each other. The weak direction is the north-south direction when these 

buildings are considered separately. However, the buildings are observed to 

behave as a single block. Accordingly, the weak direction is considered to be the 

east-west direction. Therefore, the case A3 represents the behavior of the two 

buildings, which tilted about 1˚ to the east. The foundation width is assumed as 

10.9 m for calculations. Besides the available boreholes, two additional borings 
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(i.e., GA-I and GA-II) were drilled in the field, near the corners of A1 and A3. The 

test locations and details are given in the Appendix A. 

  

Figure 5.21. Case METU-A2. 

 

Case B1 is located in Tı�cılar District and close to Case A1. It is a 4-story 

building with foundation dimensions of 12 m width and 14 m length. The weak 

direction is the north-south direction. Although excessive settlement is reported for 

this building (~40 cm), no tilting observed. An additional boring (GB-I) is drilled 

nearby the building. The borehole location and the observed soil profile is given in 

the Appendix A. The boring data revealed that the saturated soft soils beneath the 

foundation is mainly composed of sand-silt mixtures with SPT blow counts of 4 to 

5. 

Case C1, which is a 4-story building with foundation width of 7.0 m, is 

disregarded since no plan view is provided for this case. This building is a case of 

excessive tilting (towards the street), and it is not clear if an adjacent building exists 

or not. Due to the considerably poor aspect ratio for the building this point is 

important. On the other hand, buildings with similar aspect ratios already exist in 

the data-base (e.g., Case METU-A2).  

Cases D1, D2, D3 and D4 are located in the Cumhuriyet District. Case D1 

has an irregular foundation section, which is approximated by a 11.0 m x 19.4 m 

rectangle in the study of Karaca. Although this 5-story building is reported to settle 
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about 80 cm during the earthquake, no detailed information is given regarding 

tilting. When the site was revisited, a new boring was opened near this building 

(GD-I as given in Appendix A), it was observed that the building had slightly tilted 

towards weak direction, about 1˚ to the west. Case D2 is a 3-story building, with no 

foundation settlement, and has a foundation width of 10.1 m. The weak direction is 

towards north, where the building constituting case D3 stands adjacent on the 

south. No tilting is observed for the building, but a horizontal translation (~8 cm) is 

observed in the (strong) west direction. Case D3 is a 4-story building with 

foundation dimensions 11 m and 18.1 m. The weak direction is east-west. This 

building is reported to settle 19 cm, with no foundation tilting. Case D4 is a 6-story 

building with foundation dimensions of 9.35 m width and 18.0 m length. However, it 

is observed that existence of a similar building adjacent to the north resulted in a 

system in which the foundations of the two buildings behaved as a single block. 

Also, building D3 may have prevented the foundation displacements in the south 

direction. This is consistent with the observation of very slight tilting of the block to 

the west, which is practically negligible: both buildings settled an equal amount 

(about 70 cm). Hence, the foundation width is accepted as 18.0 m (i.e., the width of 

the block) in calculations and the weak direction in east-west. A new borehole is 

opened nearby the Cases D3 and D4 (i.e., GD-II) at the location specified in the 

Appendix A. Being consistent with the logs provided in the study by Karaca, it is 

observed that soft silt-clay mixtures dominate the foundation soils. 

Cases E1, to E5 are also located in the Cumhuriyet district. Additional three 

boreholes (i.e., GE-I, GE-II, and GE-III) are utilized in order to obtain undisturbed 

samples and re-investigation of the soil conditions. Similar to Site-D cases 

foundation soils are observed to be soft silt-clay mixtures. Case E1 is a 6-story 

building. The foundation dimensions are 18.0 m width and 29 m length. The 

building settled about 60 cm without any observable tilting. The weak direction is 

the NW-SE. Adjacent to this building, Case E2 stands, which is tilted extremely 

(more than 5˚) and demolished after the earthquake (Figure 5.22). The existence of 

heavy-block of case E1 adjacent on the north implies a strong asymmetry on the 

foundation behavior, and possible significant structure to structure interaction. 

Width of this building is estimated as 7.2 m.  Cases 3, 4 and 5 displayed negligible 

foundation displacements and hence excluded from the analyses.  
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Figure 5.22. Case METU-E2 (Photo by Karaca, 2001). 

 

Two additional cases are included to the Site-E cases presented in the study 

of Karaca, and referred to as E6 and E7. These cases are located on the south of 

the Site-E cases of Karaca, and their specific locations are given in the Appendix. 

Case E6 is a 5-story building with foundation dimensions of 17.2 m width and 21.0 

m length. Case E7 is a 5-story building with foundation dimensions foundation 

dimensions 20.6 m in width and 21.6 m in length. Cases E6 and E7 settled about 

40 and 20 cm respectively, without any noticeable foundation tilting. The boring 

GE-I revealed that the foundation subsoil conditions are similar to other Site-E 

cases and dominated by silt-clay mixtures. 

Observed tilting versus foundation width for METU and PEER cases are 

plotted in Figure 5.23. The trend of decrease in irrecoverable tilting with increasing 

foundation width is clearly observable. In the plot, the rotations (y-axis) is limited 

with 5˚. Tilting of the foundations are truncated to nearest 0.5˚ interval, in order to 

further simplify the presentations. In practice, the estimations can only be 

approximate due to uncertainties discussed in Chapter 4.  
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Figure 5.23. Plot of tilting versus foundation width of METU and PEER data utilized in 

this study. 

 

5.4.2.3 Damage survey data presented by Yasuda et al. (2001) 

In order to compare predictive capability of the methodology with the general 

observed trends in foundation displacements in Adapazarı, data provided by 

Yasuda et al. (2001) is also utilized. The data consisting observed foundation 

displacements of 68 building versus foundation width is plotted in Figure 5.24. 

Although case details, such as geotechnical information and location of 

neighboring buildings are not presented, plot of the data also supports the 

expectation that irrecoverable tilting of buildings would decrease as foundation 

width increases, for a given story-number. Infact, different reasons for excessive 

foundation displacements may be involved in these cases, such as sand-

liquefaction, and bearing capacity failures. Also, the displacements may be due to 

interaction of adjacent structures, and mixed situations of bearing capacity failure 

involving soil-strength degradation.  
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Figure 5.24. Foundation tilting versus width data for mat foundations in Adapazarı, by 

Yasuda et al. (2001). 

 

5.4.3. Comparison of the procedure with the case data 

In Adapazarı cases, the water table can practically be assumed to be at 

foundation level. Also, the foundation soils are assumed to have completed the 

consolidation process. Hence, the overturning moment capacity of a surficial mat 

foundation can be estimated utilizing equation 4.47. Substitution of equation 4.47 

into 5.1 results in the relationship between the yield acceleration (ay) and static 

factor of safety (FS) as,  

log266
logFS

h2
Bay ⋅=

g
       (5.7) 

Substituting equation 5.7 into 5.6, the relationship between irrecoverable relative 

displacements of the lumped mass and FS can be derived as, 
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�
��
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�
⋅
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or, maximum irrecoverable tilting of the foundation in radians can be estimated  

introducing equation 5.2, 
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or, in degrees, 
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In order to utilize equation 5.8.b for practical investigations, typical equivalent 

heights ( h ) for apartment buildings are required. For this purpose, building storey 

height (hst) is assumed to be 3 m, except the entrance floor, which is assumed to 

be approximately 3.5 m high. Similarly, the storey masses (including that of 

foundation) are assumed to be constant, 1 ton/m2 of distributed mass per storey. 

Total and equivalent heights for different numbers of total stress are given in Table 

5.4. Equivalent heights can also be practically estimated also by calculating two-

thirds of the total height of these buildings. 

Hence, utilizing h =9.5 m for a 5 storey building, irrecoverable foundation 

tilting demands are plotted in Figure 5.25, for different values of factor of safety. It 

is observed that, when the static factor of safety in the order of 3 to 5, it is not 

sufficient to prevent significant irrecoverable tilting of foundations of 5 storey 

buildings. As observed from Figure 5.25, a static factor of safety of 15 is required, 

corresponding to a foundation width of 15 m, in order to limit �ir to values less than 

0.2°. Hence,  foundations of most buildings on soft silt-clay mixtures in Adapazarı 

are expected to have experienced the ultimate load levels during Kocaeli 

earthquake. 

 Not only �ir, but also FS is dependent on h/B: FS will decrease as the 

building height increases, keeping the remaining parameters constant. In case the 

FS cannot be calculated precisely, the net bearing capacity for surficial foundation 

can be estimated roughly via equations 4.5 and 4.28.b or, 
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Table 5.4. Approximate total height for buildings and corresponding equivalent height ( h ) 

for reduced model. 

Number of Stories Equivalent Height (m) Total Height (m) 

3 6.0 9.5 

4 7.8 12.5 

5 9.5 15.5 

6 11.2 18.5 

7 13.0 21.5 
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Figure 5.25. Plots of equation 5.8.b for different FS values.   

 

2kN/m

�B

10n

BN�
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FS
⋅

=        (5.9) 

where, �B is the buoyant unit weight of soil beneath foundation, and approximately 

is equal to 8 kN/m3 in case of Adapazarı. Hence, stating B in meters, equation of 

factor of safety is simply, 
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n

N
 B 0.4FS �=         (5.10) 

Hence, substituting equation 5.10 into equation 5.8.b, a direct relationship between 

building dimensions and irrecoverable tilting demand (in degrees) can be obtained: 
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Relationship between n and h  is given in Table 5.4. Hence, the relationship 

between B, �ir, and N� is presented in Figure 5.26, for a 5-storey building. 
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Figure 5.26. Sensitivity of irrecoverable foundation tilting to N γ factor, for a 5-storey 

building. 

 

 For further practical applications, assumption of N� ≅10 is selected as 

representative for foundations located on soft silt-clay mixtures, as discussed in 

Chapter 4. Hence, for n values between 3 and 6, the relationship between �ir and 

foundation width is plotted in Figure 5.27. Figure 5.27 is utilized in investigations of 

available Adapazarı cases with excessive foundation settlements. Although the 

correlation given in Figure 5.27 depends on a number of assumptions, the 
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observed trends are consistent with the general expectations, as well as with the 

site observations, indicating that irrecoverable tilting of foundations tend to increase 

with increasing storey number and decreasing foundation width. 
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Figure 5.27. Relationship between number of stories, building (mat foundation) width, and 

irrecoverable tilting demand on foundation.  

 

For verification purposes, the PEER and METU data are presented in Table 

5.5. Reported values of tilting (truncated to the nearest multiplication of 0.5°) is 

compared with the estimated maximum irrecoverable tilting demands, which are 

determined by the plots in Figure 5.27, in the table.  

Predicted and observed foundation performances are compared in Figure 

5.28: The upper bound in observed values is selected to be 5 degrees. Hence, 

tilted buildings are to be located on 5 degree of observed tilting in y-axis. Four out 

of nineteen cases considered are observed to be effected strongly by the existence 

of adjacent similar-weight buildings, which do not conform with the general 

assumptions in this study. On the other hand, asymmetric behavior due to the soil 

profile irregularities is relatively more difficult to identify, which requires multiple 

investigation pits or drilling around a building. There exists only one such case 

(PEER - A1) detected in the considered data set. Observed and calculated values 

are tabulated in Table 5.5 in detail.  
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Table 5.5. Observed and predicted irrecoverable foundation tilting, for PEER and METU 

data based on Figure 5.27. 

Case n B(m) 

Average 

Settlement 

(m) 

Observed 

Tilting 

 (degree) 

Predicted 

Tilting 

(degree) Remark 

A (PEER) - A1 5 8.4 0.8 ~5 1.5 (a) 

A (PEER) - A2 5 12.9 0.3 ~0 0.6  

B (PEER) - B1 5 5.0 toppled toppled >2.0 (b) 

C (PEER) - C2 5 19.5 0.1 ~0 0.1  

E (PEER) - E1 5 ~10.5 0.1 ~1 1.0 (c) 

F (PEER) - F1 4 7.5 0.3 ~0 1.6 (d) 

G (PEER) - G2  5 ~8.0 toppled toppled 1.7 (b),(c) 

H (PEER) -H1 4 10.5 0.1 ~0 0.7  

A (METU) - A1 5 8.9 0.4 ~1.5 1.4  

A (METU) - A2 4 7.0 toppled toppled 1.7 (b) 

A (METU) - A3 4 10.9 0.4 ~1 0.6  

B (METU) - B1    4  12.0 0.4 ~0 0.5  

D (METU) - D1    5 11.0 0.8 ~1 0.9  

D (METU) - D2    3 10.1 0.0 ~0 0.4  

D (METU) - D3    6 9.4 0.7 ~0 1.4  

E (METU) - E1 6 18.0 0.6 ~0 0.3  

E (METU) - E2 6 7.2 high high 2.0 (b) 

E (METU) - E6 5 17.2 0.4 ~0 0.2  

E (METU) - E7 4 20.6 0.2 ~0 0.0  

(a) Strong asymmetric behavior of foundation is expected due to significant variation 
of shear strength of soils beneath the foundation. 

(b) Strong asymmetric behavior of foundation is expected due to an equivalent-weight 
neighboring building. 

(c) L-shaped foundation area: foundation width (B) is the average value for two 
different width values. 

(d) One-storey buildings on each side may limit the tilting behavior significantly. 
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Figure 5.28. Comparison of estimated and measured tilts of available Adapazarı cases. 

 

 Response of toppled buildings are observed to be strongly effected by 

adjacent similar-weight buildings on one side, implying strong asymmetric 

behavior, and possible increase in driving forces due to structure to structure 

interaction. This condition is also observed in several cases of significantly tilted 

buildings, which are not included in this study due to the unavailability of 

geotechnical information. Hence, the buildings at block ends or those with adjacent 

buildings on one side have much greater potential for excessive tilting. In any case, 

considering the METU and PEER cases in Figure 5.28, poor foundation tilting 

performance is observed for cases that the calculated irrecoverable tilting values 

exceed 1.0º. Therefore, for utilization of the methodology described in this study for 

the design of shallow mats, it is possible to define an acceptable limit for tilting of 

foundations in calculations, so that excessive irrecoverable tilting can be prevented 

with the allowance of successive excursions of the ultimate load capacity of the 

shallow mats during severe seismic loading. In the case of adjacent building on 

one side, and unavailability of geotechnical data required to estimate the static 

bearing capacity of the foundation, this value would be decreased further.  
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 In order to compare the predictive capability of the methodology with the 

general observed trends of foundation displacements in Adapazarı, data provided 

by Yasuda et al. (2001) is utilized. The data, which consists of 68 buildings with 

observed foundation displacements, is plotted in and compared with the curve for 

5-storey buildings (Figure 5.27) in Figure 5.29. Although the curve for 5-storey 

buildings is observed to underestimate tilting in several cases, the trend is 

consistent in general with that of the data set. It is important to note that, no details 

regarding site or soil conditions for the cases are provided. Therefore, the data is 

likely to involve cases with strong asymmetric foundation response as discussed in 

the preceding. Also, soils with relatively low �� values (i.e., considerably lower than 

30˚) will yield lower values of N� values than 10, and hence lower static factors of 

safety than estimated in this study. Another reason for lower bearing capacity 

values is the possibly not completed consolidation of foundation soils. This is 

possible for those buildings before the earthquake.  
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Figure 5.29. Comparison of predictive capability of calculation procedure with the data 

provided by Yasuda et al. (2001). 

 

Equation 5.8, which forms the backbone of the methodology’s for Adapazarı 

cases, is of the form, 
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1=θ         (5.12) 

where, D1 and D2 are parameters dependent on seismic demand, static factor of 

safety, and building height. Choosing appropriate values to fit the most extreme 

cases, equation 5.12 is expressed as follows and plotted on Figure 5.29: 

( )Bir
1.16

20
� =         (5.13) 

This is equivalent to, for example, setting FS=3.0 and multiplying the uir with 

a factor of 4.4 for a typical 5-storey building ( 9.5m)h = . The lower FS can be 

explained by the ongoing consolidation process beneath the building at the time of 

earthquake, which yields a lower N� value than 10. Another possibility that may 

yield to reduced FS is the pore-pressure build-up at sites consisting of sands and 

silty sands (i.e., liquefaction). The amplified uir value can be explained by the 

uncertainty in seismic demand at alluvium site, and uncertainty involved in 

estimation of natural periods of the SSI system, with possible strong potential for 

asymmetrical response. Another possible explanation for the increased values of 

uir as discussed by Miranda and Ruiz-Garcia (2002b), can be the strain-memory 

behavior of the cyclically tested soils, as stated in Chapter 2 may result in a similar 

behavior of the foundation, through a stiffness-degrading system. Hence, the 

displacement demands can be higher than those predicted by the idealized elasto-

plastic system for soft sites. 

 Considering 5-storey buildings, which provide the upper-bound for Yasuda 

et al. data, in case these foundations are limited with 1.0˚ of rotation considering 

the generalized curve for 5-storey structures in Figure 5.27 (also plotted in Figure 

5.29), no foundation width (B) lower than 10.5 m should be accepted. In this case, 

the 5-story buildings are expected to perform a limited irrecoverable tilting. When 

the data of Yasuda et al. is considered, there are only two outlier buildings: one 

with a width of B=10.7 m and a tilt of �ir=4˚, and other with B=13.5 m and �ir=6˚. 

Except these cases, the remaining buildings have foundation tilts in the order of 0˚ 

- 2˚, and majority of the buildings have tilts in the range of 0˚ - 1˚, which is 

consistent with the observed performance. 
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Hence, the driving mechanism for excessive foundation tilting discussed in 

this study is observed to be consistent with Adapazarı cases involving soft silt-clay 

mixtures. The methodology and relevant equations here are based on 

approximations, which can be further refined by future studies. These 

approximations can be associated to three main sources: approximations based on 

seismic demand, on load capacity of the system, and on pre-yield and post-yield 

deformation behaviors. Significant error involved in any approximation may result in 

deviation of calculated quantities from realistic estimations. 

5.5. Impact of Site Response 

As discussed in Chapter 1, the relatively high ground velocity and 

predominant ground period is the common observations for the Mexico-City and 

Adapazarı cases. Hence, large displacement demands for relatively long-period 

systems can be the result of site-response. Implementation of the site response in 

development of elastic and inelastic design spectra is out of the scope of this study. 

However, the significance of site-response on seismic demand over relatively low-

bearing capacity foundations on soft soils is investigated. 

 The most significant observation on velocity-history of SCT record and the 

simulated Adapazarı motion on deep alluvium are the velocity pulses with periods 

consistent with the predominant ground period. Analysis results presented by Seed 

et al. (1988) for the Mexico City records showed that the predominant ground 

period, where PSV plot makes its peak, is consistent with the fundamental site 

period for a one-dimensional site response analyses. Bakır et al. (2002), also 

showed that the concentrated damage at deep alluvium sites in Adapazarı can be 

explained by amplification of the spectral values at periods near the site-period. In 

the velocity-history plots considered in the Mexico City and Adapazarı cases, 

velocity pulses with periods consistent with predominant site-periods and with 

amplitudes consistent with peak ground velocity are observable.  

Hence, in order to visualize significance of the site-response on foundation 

performance, the records are compared with equivalent velocity pulses, with the 

hypothesis that site-response is responsible in development of velocity pulses, 

which in turn plays a significant role in inelastic displacement demand on low-

strength systems. The analytical formulations presented by Makris and Roussos 

(2000) are used for the pulse expressions, which are originally developed to study 
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toppling of rigid blocks due to velocity pulses inherent in the near-field earthquake 

records. The Cn type velocity pulses are analytically expressed as, 

�
�

�

�
�

	




<�
�

�
�
�

� ϕ−+

�
�

�
�
�

� ϕ−+≤≤ϕ−ϕ+
=

tT

2

1
n                                                 0

T

2

1
nt0             )sin(V)t

T
2


sin(V

(t)u

pp

ppp
p

p

g�  (5.14) 

where, Vp is the amplitude, and Tp is the period of the velocity pulse, � is the phase 

angle, np is the number of successive pulse cycles, and t is the time; first pulse 

initiates at t=0. The phase angle � is dependent on np, and is equal to 0.21898 and 

0.12873 rad for np=1 and np=2 respectively.  

 For the case of Adapazarı, a velocity pulse of type C1 with amplitude 70 

cm/s and period 1.8 s, which is compatible with the peak ground velocity and site 

period, is utilized. The pulse is compared with the velocity-history of generated 

motion in Figure 5.30.a. Velocity-spectrum with 5% damping ratio is plotted in 

Figure 5.30.b for comparison. In order to visualize the significance of this pulse for 

displacement demands on elasto-plastic SDOF systems, ductility demands due to 

generated motion is compared with those due to velocity pulse in Figure 5.31. 

Observed agreements confirm that, for low values of ay (i.e., relatively low- strength 

systems) the velocity pulse, which is shaped by the site-response, practically plays 

a decisive role on the maximum inelastic response. 

A similar analysis is performed for the SCT record of Mexico City. For the EW 

component of the motion, a C2 type pulse with amplitude Vp=57 cm/s and period 

Tp=2.1 s, which are consistent with the peak ground velocity and site-period, is 

considered. The velocity pulse is compared with the actual pulse due to the SCT 

(EW) record in Figure 5.32, in terms of velocity-history and velocity-spectrum (SV) 

plots. Ductility demands for different ay values are compared in Figure 5.33. 

Consistent results are also obtained for the NS component of the motion. Similar to 

the conclusions regarding Adapazarı motion, ductility demands due to the velocity 

pulse observed to be consistent with those due to actual record, especially for low-

strength systems. The observation that the use of velocity pulse approach is 

successful in estimation of ductility demands when compared to use of simple Ry-

�max relationships (Section 5.3.1) for low-strength systems, may have practical use 
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in site-response prediction. However, further studies are required to implement the 

site-response in practical seismic design. 
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(b) 

Figure 5.30. Comparison of the velocity pulse, having a peak velocity 70 cm/s and period 

1.8 s, with generated ground motion: (a) velocity-history, (b) SV (5% 

damping). 
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Figure 5.31. Comparison of ductility demands for generated alluvium motion and velocity 

pulse.  
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Figure 5.32. Comparison of the C2 type velocity pulse, having a peak velocity of 57 cm/s 

and period 2.1 s, with EW component of SCT record: (a) velocity-history, (b) 

SV (5% damping). 
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Figure 5.32 (continued). 
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Figure 5.33. Comparison of ductility demands for SCT (EW) record and velocity pulse. 
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5.6. Conclusions 

A simple methodology, based on the assumptions stated in Chapter 2 and 3 

is developed for the shallow mat foundations resting on non-liquefiable soft 

deposits, such as silt and clay mixtures in Adapazarı and Mexico City. The 

methodology links the irrecoverable tilting demand on foundations to the design 

spectrum for the site, via the response of elastic-ideally plastic single-degree-of-

freedom oscillator. Elastic mechanical property of the soil-structure system is 

represented by the natural period of the soil-structure-interaction system. The yield 

strength for the system is estimated by a pseudo-static analysis, based on finite-

element method or on available analytical and empirical equations in literature. The 

inertial loads acting on the mass of foundation soil during seismic loading can be 

ignored for practical purposes.  

As discussed in Chapter 4, one of the basic assumptions of the proposed 

calculation procedure is that, only load eccentricity acting on the foundation is 

considered, and all inelastic displacements are assumed to be due only to 

irrecoverable tilting of foundation. For the case of poor aspect ratio buildings (i.e., 

building is too high compared to foundation width), the load eccentricity will govern 

the ultimate load level on the foundation, and foundation tilting will govern the total 

irrecoverable displacements at the roof level. As the foundation width increases, 

the tilting mode deformations of the foundations will practically diminish. Hence, the 

calculation procedure is asymptotically correct in as h/B approaches to zero or 

goes to infinity. A detailed study, involving a more rigorous flow-rule for the 

foundation in order to calculate the true participations of irrecoverable tilting and 

horizontal translation as well as the settlement of the foundation, can be possible 

as an improvement of the calculation procedure. 

Performance of the methodology is investigated utilizing foundation 

performance data from Adapazarı and Mexico City, where excessive tilting of 

shallow mat foundations on saturated soft silt-clay mixtures occurred widely. 

Although these foundations had static factors of safety more than 1.0 against 

bearing capacity failure (i.e., statically stable), the seismic loads induced 

successive excursions of ultimate load capacity of these foundations during 

seismic shaking. Despite significant potential uncertainties in the seismic demand 

and mechanical properties of these systems, the methodology provided consistent 

results with the observations. Following the methodology, it is possible to define a 
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foundation width to limit excessive tilting of foundations, utilizing the elastic design 

spectrum for the site, and mechanical properties of the soil and the structure. 

Based on the comparisons of the calculated irrecoverable tilting potential and the 

observed performance for the Adapazarı cases, the methodology provides 

satisfactory results for tilting angles up to about 1˚. For cases with higher calculated 

values of irrecoverable tilting potential, which involve foundations with considerably 

low ay values, the actual tilting values significantly exceeds the calculated values, 

including the toppled buildings at worst. This is explained by the sensitivity of 

systems with comparatively low ay values to asymmetrical behavior, most possibly 

due to existence of adjacent similar-weight structure. Hence, if possible, adjacent 

construction of buildings should be refrained, and sufficient free space should be 

left between their foundations, in order to provide symmetrical system behavior. 

Also, the geotechnical investigations should aim to capture the possible significant 

variations in strength in the shallow soil profile beneath the foundations, especially 

in the weak direction. Significance of asymmetrical behavior on overall inelastic 

response depends on the characteristics of the earthquake, such as the duration, 

and further study is required to refine the conclusions for practical applications. 

Although, the uncertainties (due to strong dependency of the surface motion on site 

characteristics) in the seismic demand and natural periods of case buildings in 

Mexico City prevent further practical discussions, accepting the SCT record as the 

representative seismic demand, only case III can be accepted with this criterion, 

which resulted in 0.8˚ (1.4%) of irrecoverable tilting of the foundation. Hence 

limitation of 1˚ for the Mexico City cases is also acceptable. 

The methodology involves significant assumptions, which may lead to  

unconservative or conservative impact on the results. Hence, further studies are 

required to improve the methodology for application. Proposed further studies are 

presented in Chapter 6. It may be possible to extend the calculation procedure to 

cases other than shallow mats, and to foundation soils that display significant 

strength (and stiffness) degradation under seismic loading.  

 A final observation is that, excessive foundation displacements occurred on 

deep alluvium sites, where seismic loads are significantly amplified at periods 

around site periods. Hence, especially for the case of relatively low-strength 

systems, reliable estimations of seismic displacement demands for these sites play 

a crucial role in calculations. For the case of Adapazarı, simulated ground motion is 
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observed to be consistent with the demand prescribed in the Turkish Earthquake 

Code, and available Ry-�max relationships. Mexico City case is observed to be more 

problematic in this respect. However, it is also shown that, seismic inelastic 

displacement demands for these records can be simulated by a velocity pulse, with 

velocity amplitude in the order of PGV, and pulse period in the order of the 

fundamental site period. Further studies are required for refinement of these 

observations. However, considering the limitations of the study, it is recommended 

that site response studies for similar cases should be directed to development of a 

representative velocity pulse, which can be utilized besides the elastic design 

spectrum for the site. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

6.1. Summary 

Cases with excessive displacements of mat foundations resting on saturated 

silt-clay mixtures were reported in Mexico City during 1985 Mexico Earthquake, 

and in Adapazarı during 1999 Kocaeli Earthquake. Soft surface deposits, shallow 

ground water table, mat foundations with limited embedment, and deep alluvial 

deposits with significant potential for site-amplification are the common features of 

these cases. Excessive tilting of foundations limited the post-earthquake 

serviceability of structures, in several instances, and this form displacements are 

particularly difficult to realign. Based on such field experience, a simple 

methodology to estimate irrecoverable tilting potential of shallow mat foundations 

on saturated soft fine deposits is developed in this study. 

Seismic behavior of undisturbed samples, consisting of fine soils retrieved 

from relevant sites at Adapazarı, is investigated through triaxial tests via 

consolidated-undrained (CU) procedures. The soils that dominate shallow deposits 

are defined as either clayey silts or silty clays. These soils that cluster around A-

line on the plasticity chart are referred to here as silt-clay mixtures. Considering the 

stress paths beneath the case foundations, the soils are anisotropically 

consolidated before the undrained test phase. Deformation behavior of Adapazarı 

silt-clay mixtures under seismic loads is investigated by undrained cyclic loading 

tests, in which the comparable load rates and amplitudes to seismic loading in 

Adapazarı are applied. Results of cyclic tests are also compared with the stress-

strain plots of monotonic shear strength tests. The specimens are observed not to 

demonstrate any significant strength loss during cyclic loading, and can 

accumulate finite irrecoverable strains during successive excursions of the 

monotonic strength. However, irrecoverable strain accumulation per load cycle is 
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dependent on the viscous response of the specimen to rapid loading. Hence, 

omitting the viscous response to rapid loading, the behavior of foundation soils can 

be idealized as elastic-perfectly plastic, obeying Mohr-Coulomb yield criterion.  

Hence, the behavior of structures resting on soft silt-clay mixtures is reduced 

to the response of a nonlinear SDOF oscillator, utilizing basic SSI formulations. 

Mechanical properties of the nonlinear soil-structure-interaction system can be 

represented by the natural period ( T ), damping ratio (�), and yield acceleration (ay) 

that should act on the mass of the SDOF oscillator. In order to calculate the 

overturning moment-history acting on the foundation, the total mass of the structure 

(ignoring that of foundation) is lumped at an equivalent height ( h ) from the base of 

the structure. For simple apartment buildings that have practically constant storey-

height the effective height is about two-thirds of the total height. For buildings with 

non-uniform storey-heights, simple equations to calculate the equivalent height are 

also derived. Estimation of a representative damping ratio is rather complicated, 

due to its dependence on frequency content of motion, soil stratification, and 

validity of simple correlations that are based on elastic halfspace assumption for 

the soil. Hence, it is proposed to utilize a small damping ratio (i.e., 5%) in the 

analyses, compatible with the damping ratio of the utilized elastic spectrum and 

inelastic displacement demand correlations. 

The pseudo-static yield acceleration (ay) that is required to initiate plastic flow 

of the foundation can be estimated utilizing available analytical formulae for simple 

cases. In more complicated cases involving significant soil stratification, or 

foundation shape irregularities, numerical approaches are useful in calculation of 

ultimate seismic load capacity of foundations. Hence, Plaxis, a finite-element 

package developed for geotechnical applications, is utilized in order to estimate 

seismic load capacity of shallow foundations. Considering that the available 

theoretical solutions in literature are based on rigid-plasticity assumption for the soil 

response, the material model is set to ideally elastic-perfectly plastic behavior. The 

elastic deformation modulus is set to a relatively high value to achieve a behavior 

similar to rigid-plasticity, so that available theoretical solutions in literature can be 

compared with the results, and that the foundation failure mode during plastic flow 

is restricted to general bearing capacity failure. For the case of purely cohesive 

soil, which behaves fully undrained, and the case of fully cohesionless soil, which 
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behaves fully drained, the numerical findings satisfactorily agree with the analytical 

approaches. 

The ultimate overturning moment capacity of foundations are correlated to 

factor of safety against static bearing capacity failure of the foundation, and the 

aspect ratio (h/B) of the structure. On the other hand, the static bearing capacity 

can involve significant uncertainties in practical applications, which will in turn affect 

the ultimate seismic load capacity of foundations. Hence, reasonable estimations of 

static bearing capacity is essential to utilize these relationships reliably. The 

ultimate bearing capacity is very sensitive to variations in effective internal friction 

angle (��). Also, dilatancy angle (�) and roughness of foundation-soil interface are 

critical parameters which affects the ultimate bearing capacity of foundations 

significantly. Hence, based on observations from laboratory tests, and findings in 

literature, the value of bearing capacity factor N� is in the order of 10, which is 

representative for cases in Adapazarı and Mexico City, resting on normally-

consolidated fine deposits without significant cohesion. The dilatancy angle is set 

to zero, which is consistent with test results, and any possible positive dilatancy 

angle will provide reserve strength for the yielding of the foundation-soil system. 

However, the relationships provided for the fully undrained cohesive soils or 

fully drained cohesionless soils are not exactly representative for available cases. 

The shallow ground-water table in Adapazarı and Mexico City results in a 

consolidated-undrained behavior for the soils during seismic loading. That is, the 

soils beneath these buildings are expected to have completed most of their 

consolidation before the earthquake (i.e., practically zero excess pore-pressure 

beneath the foundations), and are forced to behave in undrained manner during 

rapid loading of the earthquake. Hence, utilizing the finite-elements approach, the 

stress paths for consolidated-undrained behavior is simulated for normally 

consolidated soils. It is shown that, not only the long-term static factor of safety 

(FS) against bearing capacity is lower for the case of shallow ground-water table, 

but also the seismic load capacity is lower for a given FS than the case with 

unsaturated soils. Hence, seismic bearing capacity failures are more likely to 

happen for cases with very shallow ground-water tables. 

The relationship between the aspect ratio (h/B) and ultimate overturning 

moment capacity of the foundation is investigated utilizing different h/B ratios. It is 

shown that, for h/B>0.5 the load inclination (i.e., horizontal base shear acting on 
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foundation) can be practically omitted. For h/B ratios in the order of 0.5 or less, 

ignoring the base shear in calculations results in very significant overestimation of 

ultimate seismic load capacity of the foundation. In fact, the horizontal translation 

mode of displacement appear to be more significant for such cases. Hence, for 

development of a simple calculation procedure, the contribution of horizontal 

translation mode in total irrecoverable displacements is ignored, and the 

irrecoverable displacements at the structure’s roof level is accepted to be due to 

the irrecoverable tilting of the foundation. On the other hand, in calculation of 

pseudo-static yield acceleration (ay) for a foundation, only the gravitational load and 

its eccentricity are considered. Ignoring the impact of load inclination, ay is 

overestimated for structures with low h/B ratio. It is assumed that, in calculation of 

irrecoverable tilting, the error due to omitting of partition of the translational mode of 

foundation displacements is compensated by the overestimation of yield 

acceleration. As a result, the irrecoverable tilting converges to zero as h/B ratio 

converges to zero. 

Utilizing SCT records captured at alluvium sites in Mexico City during 1985 

earthquake, and simulated acceleration-history for alluvium sites in Adapazarı 

during 1999 earthquake, the calculation procedure is validated by the available 

excessive foundation displacement cases in Mexico City and Adapazarı. The long-

term bearing capacity of these foundations are estimated by setting N�=10 in 

bearing capacity calculations. It is observed that the calculation procedure provides 

consistent results with the observations, except for the systems with very low ay 

values (i.e., very poor aspect ratios), since the inelastic displacement demands are 

very sensitive to behavior asymmetries for these systems.  

Hence, in practical applications, it is proposed to limit the aspect ratio of the 

structures with mat foundations of insignificant embedment, such that the 

irrecoverable tilting demands calculated by the procedure given in the study do not 

exceed 1˚. Also, considering the impact of strength asymmetry over seismic 

behavior of foundations, it is proposed to avoid adjacent construction of buildings, 

and to provide keep sufficient free-space between foundations of neighboring 

structures. The calculations can be achieved utilizing either actual acceleration 

time-histories that are representatives of expected seismic demand, or utilizing 

elastic design spectrum and reliable Ry-�max relationships for SDOF systems.  
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Finally, the impact of deep alluvium, which is in common in both, the 

Adapazarı and Mexico City cases, on the inelastic displacement demands for the 

utilized acceleration-histories are further investigated. It is shown that, velocity 

pulses with periods compatible with the site-periods and amplitudes compatible 

with the PGV dominate the irrecoverable displacement demands on systems with 

low ay values. Therefore, it is worthwhile to further investigate the irrecoverable 

foundation tilting demand on foundations of buildings with poor aspect ratios 

utilizing these velocity pulse-histories.  

6.2. Conclusions 

The conclusions reached, based on the experimental, analytical and 

numerical studies are dependent on the assumptions and limitations already stated 

in the study. Still, however, they provide a deeper insight to our understanding of 

seismic performance of shallow mat foundations resting on soft fine deposits, and 

can be utilized in development of seismic design criteria for prevention from 

excessive tilting of buildings during major earthquakes: 

1) Considering seismic loading conditions, silt-clay mixtures with 

comparatively low shear strength are not liquefiable, considering the conventional 

definition of liquefaction. Instead, due to their low shear strength, strains can 

accumulate during severe seismic loading. However, the strain accumulation is 

counteracted by the viscous response of these materials. Hence, excessive 

foundation displacements for shallow mat foundations resting on soft silt-clay 

mixtures in Adapazarı can be explained by the seismic bearing capacity failure 

mechanism. 

2) Irrecoverable strain potential of normally consolidated silt-clay mixtures 

during cyclic loading is shown to be correlated to rapid loading test results. A 

simple relationship is developed for irrecoverable strain rates between cyclic load 

tests and rapid loading tests. Based on the observations from cyclic tests in which 

the monotonic shear strength is not exceeded the relationship omits the 

irrecoverable displacements for stress levels below monotonic shear strength, and 

considers the strain accumulation for stress levels exceeding the shear strength. 

3) During one-way loading tests (no shear stress reversals occur during 

testing), stiffness and shear strength during loading are observed to be practically 

unaffected by the strain-history. However, during two-way loading tests, the soil 
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specimens are observed to demonstrate a strain-memory behavior in both 

extension and compression directions. That is, for successive stress cycles, the 

specimen targets the previous maximum axial strain in the loading direction, and 

accumulates further irrecoverable strains over it. When the loading is reversed, the 

specimen targets the peak strain in the opposite loading direction. As the overall 

behavior, this implies a stiffness-degrading system for successive stress-reversals. 

Validation of such behavior for foundations requires further studies.  

4) Viscous response of silt-clay mixtures of Adapazarı is observed to be 

dependent on the plasticity index and water content. For a given stress level above 

monotonic strength, the strain rate for irrecoverable strains is observed to increase 

with decreasing plasticity index and increasing water content. However, further 

tests are required to validate the observed relationships, since the Atterberg Limits 

of the specimens are observed to cluster very close to the A-line. 

5) The effective angle of friction (�´) of the silt-clay mixtures of Adapazarı are 

observed to be around 30°, assuming zero cohesion during the shear failure. No 

significant dilative behavior is observed during consolidated-undrained monotonic 

triaxial tests (i.e., �≅0°). The �´ values are comparable to the values reported for 

Mexico-City soils, but somewhat higher.  

6) The behavior of foundation-soil system is idealized as ideally elastic-

perfectly plastic with single-degree-of-freedom, to estimate the dynamic response 

including nonlinear soil-structure interaction effects. The linear system properties 

can be represented by the natural period, calculated using equation 3.24, and a 

frequency-dependent equivalent damping ratio. However, due to the difficulties 

involved in estimation of an equivalent damping ratio, it is proposed that a small 

damping ratio (i.e., 5%) can be utilized for practicality assuming that majority of the 

energy input to the system is dissipated by the hysteretic behavior of the inelastic 

system. Yield strength of the simplified soil-structure-interaction system can be 

estimated by pseudo-static approaches, in which the seismic forces are considered 

as static inertial forces. For calculations, the mass of the structure can be lumped 

at a height of about 2/3 of the total building height, which is referred to as the 

equivalent height. Considering the cases that involve structures with variable 

storey-heights, simple equations to estimate the equivalent height are also 

provided in the study.  
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8) A plastic flow rule is required to calculate the contributions of horizontal 

translation and rocking modes of foundation displacements in total plastic 

displacements at the level of equivalent height. However, considering the case of 

buildings with very poor aspect ratios (h/B), the horizontal translation mode of 

displacement is ignored, and total irrecoverable displacement is assumed to be 

only due to tilting mode of plastic deformations. Similarly, the horizontal seismic 

load capacity of the foundation is estimated, ignoring the load inclination and 

considering load eccentricity alone. The calculation procedure is representative for 

poor-aspect ratio buildings, and will converge to zero irrecoverable tilting for 

structures with very low aspect ratio. Hence, considering the Adapazarı 

observations, this assumption is asymptotically correct, and the error involved in 

calculations for intermediate aspect ratios can be investigated incorporating a flow 

rule for the foundation behavior in future studies.  

9) Load-controlled finite-element analyses can be utilized in order to estimate 

the pseudo-static yield acceleration for foundations. For the case of shallow 

foundations, when horizontal seismic forces are considered, inertial forces acting 

on the soil body can be ignored, and the impact of seismic forces can be simulated 

considering inclined and eccentric loads acting at foundation level. Simple formulae 

exist in literature when drained (cohesionless) or undrained (cohesive) soil 

behavior is considered. However, these solutions are valid for rigid-plastic behavior 

and homogeneous, isotropic soil conditions, which may not be valid for every 

practical application. In case of significant deviations from these conditions, finite-

element approaches presented in this study can provide a useful tool for load-

capacity calculations. Validation of the numerical calculation procedure can be 

achieved  utilizing the analytical formulae, provided that the stiffness of the soil in 

the model is sufficiently high to capture the rigid-plastic response, which is utilized 

in analytical solutions.  

10) Eccentricity governs the ultimate seismic load capacity of the shallow mat 

foundation for buildings with aspect ratios (h/B) greater than 0.5. Hence, for these 

cases, the ultimate overturning moment capacity can be estimated ignoring the 

load inclination. Equations for calculation of ultimate overturning moment capacity 

of shallow foundations resting on homogeneous soils considering load eccentricity 

alone are given in the study. However, these equations will overestimate yield 
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acceleration and ultimate overturning moment capacity for buildings with relatively 

lower aspect ratios.  

11) Regarding the examined cases in Adapazarı and Mexico City, the 

consolidation process beneath the foundations is assumed to be completed before 

the earthquake. If however the consolidation process is not practically complete, 

the static factor of safety against bearing capacity will be lower. Hence, the 

consolidated-undrained stress-path best represents the soil behavior beneath the 

foundations. For normally-consolidated soils, the pore-pressure increase during 

undrained loading is considered to be consistent with the elastic stress-path. It is 

observed that, for a given factor of safety against bearing capacity failure under 

static loads, the seismic load capacity of foundations are significantly lower for the 

case of undrained loading than that of drained loading. This is due to the fact that, 

considering the gravitational loads alone, the consolidated-undrained bearing 

capacity, which is relevant under seismic loading conditions, is lower than the case 

of fully drained loading. 

12) Static factor of safety against bearing capacity failure (FS) can be utilized 

as a basic parameter to estimate the seismic load capacity of shallow foundations.  

For a given static factor of safety, the overturning moment capacity of shallow mat 

foundations is observed to be highest for the cohesive soil case, and lowest for the 

case of undrained saturated cohesionless soil. It is also concluded that, the FS 

values sufficiently large for static condition may not be adequate under seismic 

loading. 

13) Determination of the static factor of safety, which is the basic parameter 

used to estimate the seismic load capacity of shallow foundations, involves 

significant uncertainties. For cohesionless soils the N� factor in bearing capacity 

calculations is very sensitive to variations in ��. Also, the N� factor depends on the 

roughness of the foundation-soil interface, and on the associativeness of the plastic 

soil behavior. Even the case of perfectly rough interface and associative flow rule, 

different values of N� have been reported in literature. In the case of 

inhomogeneous soil profiles, estimation of static bearing capacity can be further 

complicated. Hence, in estimations of seismic performance of shallow foundations, 

sufficient conservatism should be applied in determining the FS. Also, for future 

studies on the topic, it is advisable to normalize the results with the static factor of 

safety. In investigation of the cases from Adapazarı and Mexico City, N� factor is 
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presumed to be 10, considering the range of �� for soft silt-clay mixtures, the 

prevailing nonassociative behavior (�=0°), and the possibility of imperfect 

roughness of the foundation-soil interface. 

14) A significant degree of uncertainty regarding the natural periods of the 

structures and the actual seismic demand in Mexico-City cases are involved. 

Similar uncertainties to a lesser degree exist also for the Adapazarı cases. 

However, assuming that the natural period of the linear SSI system ( T ) is equal to 

0.8 s, the calculation procedure is observed to be consistent with the observed 

tilting performances of the multistory reinforced concrete building structures. It is 

concluded that, in utilizing the presented methodology, the foundations should not 

be targeted to accumulate irrecoverable tilting greater than 1˚, which in fact 

introduces a limit on the aspect ratio of the building in turn. For higher levels of 

irrecoverable tilting, there exist cases with excessive foundation tilting, which 

include practically toppled buildings at worst.  

15) Significant deviations from those estimated by the method for values of 

tilting greater than 1˚ is explained by the sensitivity of these cases to strength 

asymmetry in seismic foundation behavior. For cases with low ay values, the 

inelastic displacement demand on elasto-plastic SDOF oscillator is observed to 

increase very significantly due to asymmetric yield strength in two oscillation 

directions. In order to limit the detrimental impact of strength asymmetry in 

foundation performance, it is advisable to refrain from adjacent building 

construction, and to leave sufficient free-space between building foundations. This 

precaution will not only prevent asymmetric foundation behavior, but also prevent 

deviation of the actual seismic demand from the estimations due to structure-

structure interaction. It is also proposed to investigate the soil profiles at both sides 

of the width of mat foundations, in order to detect any significant potential of 

strength asymmetry. Further studies are required to clarify the impact of strength 

asymmetry on seismic performance of foundations. 

16) Based on elastic response spectrum, simple relationships to estimate 

inelastic displacement demands for elasto-plastic systems are available. Reliable 

estimation of ductility demands for elasto-plastic systems is required for the 

application of proposed methodology. However, considering especially the case of 

SCT record, utilization of approximate relationships to estimate ductility demands 

can involve significant error on alluvium sites. This issue should be further 



 209

investigated, specifically for systems with low ay levels. It is also observed that the 

inelastic response of such systems is governed by velocity pulses inherent in the 

records, which are introduced by the site response. The velocity pulses are 

observed to have amplitudes in the order of PGV and pulse periods in the order of 

the fundamental site-period. Hence, utilizing site-response analyses, similar 

representative velocity pulses can be developed for a given alluvium site for 

utilization of inelastic displacement demands for systems with low ay values, such 

as foundations of poor aspect ratio buildings.  

6.3. Recommendations for Future Research 

The presented study is based on several assumptions and approximations, 

which can be improved through further research. These topics, which involve 

laboratory and analytical studies, are the following: 

• The static factor of safety against bearing capacity failure should be calculated 

with reasonable accuracy for shallow foundations on silt-clay mixtures. Hence, 

this requires specific testing on undisturbed samples, the shear strength 

parameters should be studied in detail, developing correlations with index 

parameters (e.g., water content, clay fraction, etc.) and with in-situ tests (e.g., 

SPT, CPT, etc.). In case CU type triaxial tests are utilized for the purpose, the 

shear strength as well as pore-pressure parameters in both extension and 

compression type stress-paths should be measured. In the case of very loose 

or soft shallow deposits, for which undisturbed sampling is not possible, in-situ 

tests to measure shear strength (e.g., pressuremeter test, plate-loading test, 

vane test, etc.) can be utilized.  

• The viscous response observed at increased rates of loading tends to limit the 

development of irrecoverable strains during transient loading. Also, the 

observed strain-memory behavior in successive stress-reversals results in a 

stiffness-degrading behavior. By conducting tests with irregular stress or strain-

histories, these observations can be further verified and a simplified procedure 

to update the soil stiffness and strength depending on the magnitude and 

duration characteristics of the seismic loading.  

• Utilizing the load-controlled model tests with saturated silt-clay mixtures, a 

plastic flow rule based on load eccentricity and inclination can be developed, for 

foundations resting on silt-clay mixtures. The flow rule can be coupled with 
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numerical analyses, in order to assess the participation of tilting and horizontal 

components of irrecoverable displacements. The results will be useful to 

improve the methodology developed in this study. 

• The correlation between mechanical behavior of soils observed in triaxial tests, 

and actual foundation behavior depends more on judgment. It is important to 

investigate the relationship between triaxial test results and actual foundation 

behavior, in terms of stiffness degradation and visco-plastic behavior. Model 

tests can be utilized to develop such correlations as well as to verify the 

methodology developed in this study.  

• The impact of soil stratification and foundation embedment can be clarified by 

similar pseudo-static numerical analyses similar to those presented in this 

study. The results can be useful in practical conclusions to estimate the ultimate 

seismic capacity of embedded foundations resting on inhomogeneous soils. 

• The ultimate capacity of foundations resting on on normally-consolidated 

saturated soils under undrained loading conditions should be further 

investigated. More rigorous constitutive soil models, which simulate pore-

pressure increase in undrained tests, can be implemented. However, accurate 

measurements of pore-pressures require low strain rates during the tests, so 

that the viscous deformation behavior during rapid loading is not considered in 

such studies. 

• Conclusions regarding the ultimate load capacity of foundations are based on 

plane-strain analyses. Also, the available formulations in literature consider only 

in-plane seismic loading. However, inclusion of impact of out-of-plane inertial 

forces in analyses may result in significantly lower yield-accelerations. These 

issues can be clarified by three-dimensional analyses. 

• In this study, it is assumed that the majority of input energy to the simplified 

soil-structure interaction system is dissipated by the hysteretic response of the 

elasto-plastic system. This, however, may be a significantly conservative 

assumption. A simplified methodology to estimate a more realistic damping 

ratio for nonlinear SSI system can be developed. Also, the impact of presumed 

value of Vs used for SSI calculations should be further investigated. 
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• The strength asymmetry is observed to increase irrecoverable displacement 

demands of foundations during seismic loading. Considering the foundations 

resting on highly-variable soil profiles, this issue should be further studied.  

• As more geotechnical data becomes available, the cases presented in this 

study can be re-investigated, utilizing improvements over the calculation 

procedure. Also, the analyses in this study can be supplemented by more 

rigorous seismic demand calculations for the sites.  
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APPENDIX A 

BOREHOLE LOCATIONS 
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Figure A.1. Plan view of Site A (Karaca, 2001) 
 
 
Table A.1. Borehole GA-I (N40°46′33′′ E30°24′17′′) details. 

 
(a) 

Depth (m) Layer 
0.0 – 1.0 Artificial fill 
1.0 – 2.2 Dark gray sandy silt 
2.2 – 6.0 Brown silt 
6.0 – 7.5  Dark gray sand 
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Table A.1 (continued). 
 

(b) 
Depth (m) Test ID 
1.60 SPT#1: 1-2-3, 32 cm sample recovered (gray silt)  
2.50 SPT#2: 2-1-3, 45 cm sample recovered (dark brown sandy silt) 
3.35 SPT#3: 1-2-2, 45 cm sample recovered (0-35 brown silt, 35-45 gray 

clay) 
5.00 UD#4 
6.50 SPT#4: 2-4-7, no sample recovered 
7.00 SPT#5: 4-3-4, (0-31 cm black sand) 
 
 
Table A.2. Borehole GA-II (N40°46′31′′ E30°24′17′′) details. 

 
(a) 

Depth (m) Layer 
0.0 – 1.0 Artificial fill 
1.0 – 3.4 Brown silt  
3.4 – 4.8 Brown silty clay 
4.8 – 7.0  Sandy silt / silty sand 

 
(b) 

Depth (m) Test ID 
1.50 SPT#1: 3-4-4, 35 cm sample recovered (brown silt)  
3.00 UD#2: top 20 cm is lost (loose silt), only bottom 20 cm is recovered 
4.00 UD#3 
5.50 SPT#4: 1-2-2, no sample recovered 
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Figure A.2. Plan view of Site B (Karaca, 2001) 
 
 
Table A.3. Borehole GB – I  (N40°46′30′′ E30°24′13′′) details. 

 
(a) 

Depth (m) Layer 
0.0 – 0.5 Artificial fill 
0.5 – 5.0 Brown silt  
5.0 – 5.8 Brown silty clay 
 

(b) 
Depth (m) Test ID 
1.50 SPT#1: 1-2-2, no sample recovered 
2.50 SPT#2: 2-2-3, 45 cm sample recovered (0-25 sandy silt, 25-45 clay) 
3.50 SPT#3: 1-2-3, 36 cm sample recovered (brown clayey silt) 
4.50 SPT#4: 2-2-3, 38 cm sample recovered 
5.50 UD#5: only 30 cm sample recovered, stiff layer at 5.80 m 
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Figure A.3. Plan view of Site D (Karaca, 2001) 
 
 
Table A.4. Borehole GD– I  (N40°46′48′′ E30°23′45′′) details. 
 

(a) 
Depth (m) Layer 
0.0 – 1.5 Artificial fill 
1.5 – 5.5 Plastic clay, plasticity is decreasing by depth 
5.5 – 7.8 Dark green silty clay 
7.8 – 10.5 Clay 
10.5 – 11.0 Sand 
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Table A.4 (continued). 
(b) 

Depth (m) Test ID 
2.00 UD#1  
4.50 UD#2 
6.00 UD#3 
10.50 SPT#1: 9-21-28, 44 cm sample recovered 
 
 
Table A.5. Borehole GD– II   (N40°46′47′′ E30°23′45′′) details. 
 

(a) 
Depth (m) Layer 
0.0 – 7.0 Plastic Clay 
 

(b) 
Depth (m) Test ID 
2.00 UD#1  
5.00 UD#2 
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Figure A.4. Plan view of Site E (Karaca, 2001) 
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Figure A.4 (continued). 
 
 
Table A.6. Borehole GE – I  (N40°46′49′′ E30°23′48′′) details. 
 

(a) 
Depth (m) Layer 
0.0 – 1.5 Artificial fill 
1.5 – 2.6 Organic, highly plastic dark green clay  
2.6 – 7.5 Light brown plastic clay 
7.5 – 10.0  Green silty clay 
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Table A.6 (continued).   
 

(b) 
Depth (m) Test ID 
2.20 UD#1  
4.00 UD#2 
6.25 UD#3 
 
 
Table A.7. Borehole GE – II (N40°46′52′′ E30°23′47′′) details. 

 
(a) 

Depth (m) Layer 
0.0 – 1.7 Artificial fill 
1.7 – 7.0 Light brown clay 
 

(b) 
Depth (m) Test ID 
2.30 UD#1  
4.50 UD#2 
 
 
Table A.7. Borehole GE – III (N40°46′54′′ E30°23′47′′) details. 
 

(a) 
Depth (m) Layer 
0.0 – 1.7 Artificial fill 
1.7 – 4.0 Dark green organic clay  
4.0 – 7.5 Brown clay 
 

(b) 
Depth (m) Test ID 
3.05 UD#1  
5.00 UD#2 
7.00 UD#3 
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APPENDIX B 

TRIAXIAL TEST PLOTS 

 
 

Monotonic Shear Strength Test Results 
 
 

Table.B.1. Sample properties 
 

Test Data 
Test No: 1 2 3 4 5 6 7 8 9 
Initial height of the specimen (mm) 71 71 71 71 71 71 71 71 71 
Initial diameter of the specimen (mm) 36 36 36 36 36 36 36 36 36 
Initial mass of the specimen (g) 136 130 134 120 128 125 131 131 128 
Bulk density (g/ml) 1.88 1.80 1.85 1.66 1.77 1.73 1.81 1.82 1.77 
Mositure content (%) (before testing) 35 40 38 36 40 46 37 32 39 
Mositure content (%) (after testing) 31 34 ? ? 47 43 ? ? ? 
Cell pressure (kPa) 60 70 80 80 60 40 80 100 50 
Proving ring constant Cp (kg/div.) 0.0970.0970.0970.0970.097 0.97 0.97 0.97 0.97 
Consolidation stresses (kPa)  
�3 60 70 80 80 60 40 80 100 50 
�1 90 100 120 120 140 140 200 200 170 
Sample information  
Borehole No. GE-1 GE-1 GE-1 GE-2 GE-2GD-2GD-2 GA-3GD-2 
Sample No. 1 2 3 1 1 1 1 3 1 
Depth (m) 2.2 4.0 6.3 2.4 2.4 2.0 2.0 4.0 2.0 
Atterberg Limits  
LL 39 50 37 36 49 43 43 32 34 
PL 25 25 24 28 27 24 24 25 24 
PI 14 25 13 8 22 19 19 7 10 
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Figure B.1. Monotonic Loading Test #1. 
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Figure B.2. Monotonic Loading Test #2. 
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Figure B.2 (continued). 
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Figure B.3. Monotonic Loading Test #3. 
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Figure B.4. Monotonic Loading Test #4. 
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Figure B.5. Monotonic Loading Test #5. 
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Figure B.5 (continued). 
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Figure B.6. Monotonic Loading Test #6. 
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Figure B.7. Monotonic Loading Test #7. 
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Figure B.8. Monotonic Loading Test #8. 
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Figure B.8 (continued). 
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Figure B.9. Monotonic Loading Test #9. 
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Cyclic Loading Test Results 
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Figure B.10. Cyclic Loading Test CL0813. 
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Figure B.11. Cyclic Loading Test CL0106. 
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Figure B.12. Cyclic Loading Test CL0321. 
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Figure B.13. Cyclic Loading Test CL0409. 



 239

ML0410

-100

0

100

200

-15 -10 -5 0 5 10

Axial Strain (%)

D
ev

ia
to

r S
tre

ss
 (k

P
a)

Cyclic
Monotonic
Rapid

 
 

Figure B.14. Cyclic Loading Test ML0410. 
 

Test CL0518

-50

50

150

250

-6 -4 -2 0 2 4 6 8 10

Axial Strain (%)

D
ev

ia
to

r S
tre

ss
 (k

P
a)

Cyclic
Monotonic
Rapid

 
 

Figure B.15. Cyclic Loading Test CL0518. 
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Figure B.16. Cyclic Loading Test CL0608. 
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Figure B.17. Cyclic Loading Test CL0717. 
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Figure B.18. Cyclic Loading Test CL0705. 
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Figure B.19. Cyclic Loading Test CL0709. 
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Figure B.20. Cyclic Loading Test ML0811. 
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Figure B.21 Cyclic Loading Test ML0811(b). 
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Figure B.22.  Cyclic Loading Test ML0812. 
 

ML0813

0

50

100

150

200

250

-10 -5 0 5 10 15 20

Axial Strain (%)

D
ev

ia
to

r S
tre

ss
 (k

P
a)

Cyclic
Monotonic

 
 
Figure B.23. Cyclic Loading Test ML0813. 
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Figure B.23. Cyclic Loading Test ML0924. 
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Figure B.24. Cyclic Loading Test ML0929. 
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Rapid Loading Tests and Best-Fit Analyses 
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Figure B.25. Rapid loading test results and least squares fit for CL0324. 
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Figure B.26. Rapid loading test results and least squares fit for ML0409. 



 247

0

10

20

30

40

0.0 0.4 0.8 1.2 1.6 2.0 2.4

Time (s)

A
xi

al
 S

tra
in

 (%
)

observed
fitted

100

110

120

130

140

150

15 20 25 30 35

Axial Strain (%)

D
ev

ia
to

r S
tre

ss
 (k

P
a)

CL0813 Rapid Loading Test

1

10

100

115 120 125 130 135 140

Deviator Stress (kPa)

A
xi

al
 S

tra
in

 R
at

e 
(%

/s
)

α= -2.4
β=  0.036

 
 

Figure B.27. Rapid loading test results and least squares fit for CL0813. 
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Figure B.28. Rapid loading test results and least squares fit for ML0410. 
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Figure B.29. Rapid loading test results and least squares fit for CL0516. 
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Figure B.30. Rapid loading test results and least squares fit for CL0518. 
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Figure B.31. Rapid loading test results and least squares fit for CL0608. 
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Figure B.32. Rapid loading test results and least squares fit for CL0717. 
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Figure B.33. Rapid loading test results and least squares fit for CL0705. 
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Figure B.34. Rapid loading test results and least squares fit CL0709. 
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Figure B.35. Rapid loading test results and least squares fit for ML0812. 
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Figure B.36. Rapid loading test results and least squares fit for ML0811b. 
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Figure B.37. Rapid loading test results and least squares fit for ML0924. 
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Figure B.38. Rapid loading test results and least squares fit for ML0929. 
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