ANALYSIS OF DEMAND AND PRICING POLICIES IN TURKEY BEER MARKET

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

CEMHAN ÖZGÜVEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN INDUSTRIAL ENGINEERING

JULY 2004

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan ÖZGEN Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Prof. Dr. Çağlar GÜVEN Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Çağlar GÜVEN Supervisor

Examining Committee Members:

Assoc. Prof. Dr. Canan SEPİL	(METU – IE)	
Prof. Dr. Çağlar GÜVEN	(METU – IE)	
Assoc. Prof. Dr. Gülser KÖKSAL	(METU – IE)	
Assoc. Prof. Dr. Nazlı WASTİ	(METU – BA)	
Asst. Prof. Dr. Sedef MERAL	(METU – IE)	

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Cemhan ÖZGÜVEN

Signature :

ABSTRACT

ANALYSIS OF DEMAND AND PRICING POLICIES IN TURKEY BEER MARKET

Özgüven, Cemhan M.S., Department of Industrial Engineering Supervisor : Prof. Dr. Çağlar Güven

July 2004, 245 pages

The purpose of this work is to study the beer market in Turkey in respect of demand analysis and with a view to assess whether the marketing and in particular pricing policies adopted by industry players in the period 1997-2002 have been efficient. Of specific interest is the near duopolistic structure of the market and the question whether pricing policies followed during the period 1997-2002 have been determinant in the observed sales volumes. The investigation focuses first on the analysis of the determinants of demand, and secondly on questioning whether pricing policies practiced in the market are optimal with respect to the objectives of the industry players. The major finding of the study is that beer prices in Turkey are below the optimal level, with respect to both revenue and profit maximizing objectives. Moreover, seasonality in beer demand can be exploited further with a high-low pricing scheme to improve the industry revenue.

Keywords: Turkey Beer Market, Demand Analysis, Pricing Policies

ÖZ

TÜRKİYE BİRA PAZARINDAKİ TALEBİN VE FİYATLANDIRMA POLİTİKALARININ İNCELENMESİ

Özgüven, Cemhan Yüksek Lisans, Endüstri Mühendisliği Bölümü Tez Yöneticisi : Prof. Dr. Çağlar Güven

Temmuz 2004, 245 sayfa

Bu çalışmanın amacı, Türkiye bira pazarını hem talep analizi ve hem de pazar oyuncuları tarafından 1997-2002 yılları arasında uygulanan pazarlama ve özellikle de fiyatlandırma politikalarının etkinliği açısından incelemektir. Pazarın duopol benzeri yapısı ile 1997-2002 yılları arasında izlenen fiyatlandırma politikalarının gerçekleşen satış hacimleri üzerindeki belirleyiciliğinin sorgulanması, çalışmanın kendine özgü yanlarıdır. Araştırma, ilk olarak, talep belirleyici unsurların analizine, ikincil olarak da, pazarda güdülen fiyatlandırma politikalarının pazar oyuncularının hedefleri açısından optimal olup olmadığının değerlendirmesine odaklanmıştır. Çalışmanın en önemli bulgusu Türkiye'deki bira fiyatlarının hem gelir hem de karlılık açısından optimal seviyenin altında olmasıdır. Bununla birlikte, bira talebindeki mevsimlik değişmeler de gelirleri arttırmak amacıyla daha etkin kullanılabilir.

Anahtar Kelimeler: Türkiye Bira Pazarı, Talep Analizi, Fiyatlandırma Politikaları

TABLE OF CONTENTS

PLAGIARISM	III
ABSTRACT	IV
ÖZET	V
TABLE OF CONTENTS	VI

CHAPTER

1. INTRODUCTION	1
2. LITERATURE ON PRICING AND DEMAND ANALYSIS	4
 2.1. THE PRICING PROBLEM	
3. OVERVIEW OF TURKEY BEER MARKET	41
3.1. BEER TAXONOMY3.2. KEY FACTS ON TURKEY BEER MARKET	41
4. ANALYSIS OF DEMAND AND PRICING POLICIES	46
 4.1. STEP 1: DEFINING THE PRICE LEADER'S PROBLEM	
KEFEKENCES	
APPENDICES	93

CHAPTER 1

INTRODUCTION

The Turkish economy has long functioned under high inflation and has gone through successive financial crises in the last two decades. This has not only thrown several macroeconomic indicators off-balance, but has also confounded the market mechanism and obstructed microeconomic efficiency. One affected area is pricing as practiced especially in the consumer goods sector, in which the distorting effects of persistent inflation has tended to obscure the importance of efficient pricing on the part of the producer and the perception of price changes on the part of the consumer. It is possible that this has resulted in slowed market growth for some goods or loss of market share for some producers. In any case, pricing decisions which normally would occupy first place of importance for management have been overshadowed by other concerns. If the recent success in the efforts to reduce inflation can be sustained in the middle term, there is the possibility of renewed interest in pricing and in demand-side analysis in general, as marketing managers would perceive pricing as a tool to secure firm objectives and to deal with competition, rather than as a remedy to offset the effects of inflation.

The purpose of this work is to study the beer market in Turkey in respect of demand analysis and with a view to assess whether the marketing and in particular pricing policies adopted by industry players in the period 1997-2002 have been efficient; not in any sense of welfare efficiency, but in the sense of profit maximization. Of specific interest is the near duopolistic structure of the market and the extent to which pricing policies followed during the period 1997-2002 have had an effect on observed sales volumes. The analysis, therefore, is from the short term perspective of the individual producer facing a market demand, but without regard to cost, finance or any other strategic particulars of the producer. Thus the investigation focuses first on analysis of the determinants of demand, and secondly on questioning whether pricing policies practiced in the market are optimal with respect to the short term profit maximization. The adoption of a short term perspective makes sense when the entire market is considered, but findings from such a study can only serve as an input that informs the specific marketing strategies of any individual producer.

Although demand analysis for beer has been widely reported for industrial countries and indeed for Turkey, such studies have not been connected with the pricing problem. Previous studies identify the determinants of demand and the sensitivity to changes in these determinants. However an analysis of supply and demand based on retail prices and product availability has not been conducted before. In the present study, market data encompassing a 60-month period is used to analyze both the market demand and the demand for a specific brand. The data is provided by an international market information firm and is accepted as the most reliable data available by the industry experts. Demand analysis is used to examine the optimality of the current pricing practices prevailing in the market.

It has long been debated in management literature whether pricing is more of an art or of a science. Nagle (1984) states on this issue that: "Pricing, like most business decisions, is an art. This is not, however, a justification for basing pricing decisions purely on the `hunch` of a talented manager. Art is beyond neither critical judgment nor scientific analysis." The present study aims to bring recent practice in light of the context of the beer industry, thereby informing practicing managers to improve pricing decisions.

Price is obviously not the only factor that determines demand and we undertake a full investigation of all the relevant factors. Our results indicate that distribution is at least as influential on brand-specific demand as price; although it is no longer a significant determinant at its current level for the total market demand. The main finding of this study is that producers set beer prices below the optimal level, with respect to both revenue and profit maximizing objectives. There is also an indication that seasonality in beer demand can be exploited with a high-low pricing scheme to improve revenues.

In the following report, Chapter 2 reviews the literature on pricing and demand analysis in detail. It describes the changing role of pricing in today's business life with a review of developments in pricing literature and offers an alternative classification of pricing problems. It also draws up a four-step approach to product line pricing problem, which puts demand analytics at the centre of the pricing problem. Finally, a number of selected pricing studies are presented, with a brief summary of problem context, model formulation and study findings.

Key particulars of the Turkey beer market, including beer products, market structure, market development, and sales regulation, are reviewed in Chapter 3 in order to set the context of this study.

The four-step approach described in Chapter 2 is followed in Chapter 4 using real market data. The growth prospect of Turkey beer market and optimality of the current pricing practices are assessed.

Chapter 5 summarizes the results and findings of the study in a compact manner, and points out further possible investigations that seem promising.

CHAPTER 2

LITERATURE ON PRICING AND DEMAND ANALYSIS

As was explained in the Introduction, this chapter reviews the literature on pricing and demand analysis in detail. In the first section, we establish the marketing terminology, as well as the concept of marketing mix and product line pricing. We then define a fourstep approach to product line pricing, which unifies the common line of reasoning followed by most of the prior studies in the area. Finally, we briefly review a set of selected studies, covering a diverse collection of cases where product line pricing is tackled with an approach similar to the one described in section 2. Our concern in this survey is not to provide a detailed account of the literature on demand analysis, but only those studies conducted with a view to pricing decision.

2.1. The Pricing Problem

2.1.1. Marketing Mix

American Marketing Association (AMA) provides the following definition of marketing:

"Marketing is the process of planning and executing the (product) conception, pricing, promotion, and distribution of ideas, goods, and services to create exchanges that satisfy individual and organizational goals."

This definition contains four major elements of marketing: product, pricing, promotion, and place (in replacement of distribution). These four elements constitute the *marketing mix* and called as "4 Ps of marketing" in most references. This shorthand was first

published by Prof. Jerome McCarthy. Marketing mix elements are also called *controllable or managerial factors*, as they constitute the set of marketing actions that can be taken under different market circumstances. There are also some factors, on which an individual marketing manager has very limited or no control. These *uncontrollable or environmental factors* include consumer needs, competitor actions, technological changes, state of the economy, and government legislation. We will briefly review the four controllable factors next.

Product is a good, service, or idea that satisfies consumers' needs. There are two levels in defining a product: core product and augmented product. Core product is the basic good or service that fulfills the fundamental need of the consumer. Augmented product is a set that includes not only the core product, but also the other product benefits like packaging, servicing, warranties, and brand image.

In the product system terminology, a *product category* is a group of products that fulfills the same fundamental consumer need. A *product line* is a group of products belonging to the same product category and offered by the same firm. A *product mix* or *product portfolio* is the total array of product categories that a specific firm offers. A *brand* is the name or symbol that represents a product of a specific firm and is usually referred as the indivisible unit in marketing.

One of the key success factors in marketing management is to understand the relations among the products. Two products are called to be related if they are cost- and/or demand- dependent. Cost-dependency is a vague subject, because it is related to a firm's financial policies at least as much as it is related to the nature of costs. Products using the same production facility or the same sales premise in case of a retailer are costdependent due to the common or joint costs, but they are usually assumed to be costindependent in marketing analysis.

Demand-dependency is more complex matter, as it involves the dynamics of consumer behavior. There are two basic types of demand dependency: *substitutability* and

complementariness. If two products share the same demand, these two products are called substitutes and an increase in one product's sales volume causes the other's sales volume to decrease. Two products are called complementary if an increase in one product's sales volume causes the other's sales volume also to increase. Balderston (1956) describes two types of complementary products: *use-complements* and *purchase-complements*. For example, all products in a retailer are purchase-complements, as a store visit to purchase a product can lead to an impulse purchase of the other. Two products are called independent if change in one product's sales volume has no effect on the other's sales volume.

Price is what the consumer pays to get the right to use the product. Price can take other names like fee, due, fare, rent, wage, commission, tuition, interest, premium, or retainer, when the product is not physical, as in the case of an idea or service. Whatever the name used, price has a fundamental characteristic: it is the give-up by the consumer in an exchange.

The pricing of a consumer product is a two-step process: producers charge retailers and retailers subsequently charge consumers, ignoring any distribution intermediaries. Dynamics of the pricing problem differ for a retailer and a producer. The retailer determines the final price on the shelf, whereas the producer can only affect the final price by changing the cost to retailer. The retailer has the control of prices for all products in a category, but producer can control the prices of its products only. Moreover, the retailers' inherent power in pricing is substantially strengthened with the recent developments in retailing. These developments include the consolidation into large retail institutions, fragmentation of consumer markets, and availability of store scanner data. As the retailers gain power in determining the consumer prices, regarding retailers as the "final intermediaries in the distribution channel" becomes inappropriate. Consequently, *retailer orientation* dominates *producer orientation* in recent marketing literature.

Promotion is a means of communication between the seller and buyer. There are four distinct promotional channels: advertising, publicity, personal selling, and sales promotion. Advertising is a paid form of mass communication by an identified sponsor and involves mass media like TV, radio, or press. Publicity is an indirectly paid form of mass communication and can take the form of a news story or editorial. Payment is indirect in publicity, as the firm does not actually pay for the media space, but rather spends on other occasions like donations or charity activities to get a favorable story on the media. Personal selling is any paid form of face-to-face communication and usually it is the most expensive means when compared on a cost-per-contact basis. A sales promotion is a temporary reduction in prices to generate incentives for the consumer to purchase a product.

Place is a means of getting the product to the consumer. Products flow from the producer to the end-users through a distribution system, which encompasses a series of intermediary parties. These intermediaries are called wholesaler, distributor, dealer, agent, or retailer in different channel structures, but middleman is the generic name used to represent a party between the producer and the end-user. Webster (1979) groups middleman functions into three main categories: transaction, logistics, and facilitation.

The foregoing discussion on marketing can be summarized as follows:

"Marketing encompasses providing a **product** that satisfies consumer needs at an appropriate **price**, **promoting** it effectively to all potential consumers, and **distributing** it to the all feasible exchange points through an efficient channel."

Today, most marketing executives cite pricing as the most important element of the marketing mix. This is an easily justifiable claim, as price is a key variable in all business equations like unit sales, sales revenue, and profit. The impact of price on business results is usually immediate and quantifiable. Moreover, price has significant interaction with all the other marketing mix elements and appeals based on price – like higher price for better quality – are easily communicable to the consumers.

Pricing problems are now being addressed with more sophisticated approaches, as their importance is appreciated by more and more marketing executives. Before the 1980s, pricing was perceived as procedural work of adding a target return on costs: *cost-oriented era*. Today, pricing is rather perceived as a key subject and its relation with demand is carefully engineered: *demand-oriented era*. Recent developments in academic literature appear to be parallel with the renewed interest in pricing.

2.1.2. Early Developments in Pricing Literature

Traditionally pricing has been the playground of economic theorists, until the second half of the past century. Their "microeconomics oriented" pricing work has been primarily related to the equilibrium market price in relation to a specific market structure. Even though the extent of this work is wide, the market level approach provides only limited insights in determining the optimal prices.

More recently, managerial economists and then marketing academician have stepped into the field of pricing. Their "business or marketing oriented" pricing work provides the managers with a repertoire of techniques and approaches. Most reviewers name Joel Dean (1976) – originally published in 1950 – as the first work of managerial economists in pricing. In this work, Dean emphasizes *skimming price* – charging relatively high price – and *penetration price* – charging relatively low price – as the two major alternatives for pricing new products.

Development in the business-oriented pricing field and adoption of more scientific methods has been slow during the two decades after Dean's work. In the late 1960s, Dean argued that *cost-plus pricing* is the most common technique in the United States. Gillis (1969) claimed that Dean's proposition is too weak, as cost-plus is almost universal. Meanwhile, Darden (1968) defined unformulated combination of experience, intuition and the cost-plus rule as the usual recipe for pricing for the businessman. In the early 1970s, Oxenfeldt (1973) suggested that all pricing decisions in the business have either been highly intuitive – as in the case of new product introductions – or based on

routine procedures – as in the cost-plus or *imitative pricing*. Although there have been developments in the business-oriented pricing field during the last three decades, the proportion of businessmen switching to more scientific methods is not very significant.

2.1.3. Classification of Pricing Problems

Pricing is setting a compensation value to an owning, which in this study is assumed to be a consumer product, rather than an asset or industrial product and includes a valuation process. The basic question in pricing is: "What is the right price that best serves reaching the defined firm objective(s) under current and prospective market circumstances?" Diversification among pricing problems arises, as the basic pricing question is tackled under different market circumstances and with attention to different firm interests. There is no unique classification of pricing problems and pricing research in the literature. Rao (1984, 1993), Monroe and Della Bitta (1978), Tellis (1986), Nagle (1987), and DeVinney (1988) are the major reviewers in the field.

In this text, we provide an alternative classification of the pricing problems by grouping the proximate issues. Three major problem categories are identified: *Product line pricing* deals with determining the optimal steady-state prices, *promotional pricing* deals with determining temporary price cuts over the steady-state level to stimulate the sales volume, and *life cycle pricing* deals with the evolution of optimal prices in time.

a. Life Cycle Pricing:

A product often has four distinct phases in its life cycle: introduction, growth, maturity, and decline. Based on an empirical study, Simon (1979) concludes that consumer response, and therefore absolute price elasticity (ϵ), for a product varies over the life cycle as follows:

(1)... $e_{\text{int roduction}} \ge e_{\text{growth}} \ge e_{\text{maturity}} \le e_{\text{decline}}$

Such an elasticity structure lends itself to an optimal pricing scheme where profit margins are lower in the introduction phase, increasing throughout the growth and maturity phases and then deteriorating again. The most distinct characteristic of life cycle pricing is that dynamic issues are more important in this category compared to the others.

New product pricing is a special case of life cycle pricing, in which case limited information is available about the consumer response before the product is actually on the market. Dean's penetration price and skimming price remain as the major options in pricing a new product.

b. Product Line Pricing:

Attempts to meet competition and serve the needs of different market segments lead to the introduction of product diversification and new product launches. This explains the emergence of multi-product firms that provide consumers with a set of related products. Product line pricing seeks to simultaneously determine the optimal prices of all demand-dependent products in a firm's portfolio.

Single product pricing and monopoly pricing – no substitutability – are the simple and well-documented cases of the general product line pricing problem.

c. <u>Promotional Pricing:</u>

Price promotion is offering a price reduction in order to stimulate the sales volume on a temporary basis. The design of this temporary price reduction constitutes a well-defined subset of pricing problems in marketing and includes the determination of key parameters like amount of price cut or deal size, duration of price cut, frequency of price cut, and long-term effects of price cut. Mulhern and Leone (1991) provide a summary of empirical research on price promotion. The major distinction between product line pricing and promotional pricing is that the former refers to determination of the permanent or base price level, whereas the later refers to the determination of a temporary price level or temporary price cut over the base price level.

Bundle pricing is a special type of promotion pricing problem. Some firms attempt to raise the sales revenue by providing the consumer with a more favorable deal in case of bundle purchases. Three bundling strategies are widely discussed in the literature: pure bundling – products are only sold in a bundle –, mixed bundling – unbundled products are available, but bundles are sold at a discount –, and premium bundling – unbundled products are available, and bundles are sold at a premium. Schmalensee (1984) provides a detailed discussion on bundle pricing.

Completing the brief discussion on classification of pricing problems, we review product line pricing in greater detail in the following section.

2.2. Product Line Pricing

The problem of pricing a competition-free product, when demand of the product is not dependent on the demand of any other product in the market, is straightforward. The profit maximizing price is a function of the associated cost (c) and the own-price elasticity (e) only. This solution is widely known as the *monopoly pricing rule*¹ in microeconomics:

$$(2)\dots p^* = \frac{e}{e+1}c$$

¹ Derived by equalizing marginal revenue to marginal cost, where $MR = p\left(1 + \frac{1}{e}\right)$ and MC = c

Pricing decisions are more complex in reality, because there are at least a few demanddependent products in a typical consumer goods market. Consequently, product prices cannot be optimized individually and demand dependency is the key phenomenon in product line pricing.

Product line pricing studies in the literature tend to follow a four-step approach: defining the pricing problem, market modeling, estimation of the model parameters, and determination of optimal prices.

2.2.1. Step 1: Defining the Pricing Problem

The recognition of the need for a pricing decision is the starting point for a pricing problem. Symptoms leading to the recognition of such a need might form a long list, but the most usual ones are: decline in sales or profits, higher or lower prices compared to the rivals, frequent price changes, unjustifiable price differentials, and large variation in prices among the sales regions. Moreover, there are two other common occasions calling for a pricing decision: price as a strategic weapon to shape the competitive environment and price as an obligation to meet.

The recognized need defines the pricing objective, which can be of four types:

- 1. <u>Financial:</u> Managing long-run profits, maximizing current profits, achieving a target return, maximizing sales revenue, and securing a sound cash flow are typical financial objectives.
- 2. <u>Operational:</u> Securing a target market share or unit sales volume are typical operational objectives.
- 3. <u>Competitive:</u> Discouraging new entrants and survival are typical competition related objectives.
- 4. <u>Social:</u> Meeting the social obligations means provision of products at lower prices, rather than exploiting consumer demand for higher profit on sales. This objective is

more related to non-profit organizations like government agencies, but can be appropriate for industrial firms with a tarnished image in being exploitative of consumers, and thus regarded as untrustworthy.

We also define all the relevant constraints to narrow the range of pricing alternatives. Pricing constraints can be attributable to four factors:

- 1. <u>Demand</u>: Consumer demand restricts the amount of products a firm can sell at a given price. This is the fundamental restriction in a pricing problem, as in case of unlimited demand, pricing would be of no issue.
- 2. <u>Product line:</u> Most firms provide a set of partially substitutable products. These multi-product firms should establish reasonable price differentials, if a balanced sales structure is desired.
- 3. <u>Cost:</u> Cost restriction is related to financial survival; firms should set their prices so that the sales revenue covers the costs in the long-run.
- 4. <u>Competition:</u> Firms should include competitor price levels in the decision process, as consumers often use "reference pricing" while evaluating the competing products.

2.2.2. Step 2: Market Modeling

We need to know the sensitivity of demand to different determinants, including both marketing initiatives and environmental factors, while making the pricing decisions; so that, we can select the best level of a managerial initiative like price increase, under the given operating conditions like income level of consumers. A mathematical market model, which is a less complex abstraction of the real market environment, can serve us best in uncovering the relation between the demand and its determinants. Market models are used to describe, explain, and predict marketing situations, and also to prescribe marketing decisions.

Several evaluation criteria have been used in the literature, while developing a market model. The most important criteria are:

- 1. <u>Decision relevance:</u> Model should encompass all the consumer choice factors and established market structure affecting the problem solution
- 2. <u>Realistic assumptions:</u> Model assumptions should not be restrictive and unrealistic, limiting the model applicability to real-world situations
- 3. Information needs: Model should be built on easily obtainable information
- 4. Parsimony: Model should be as simple as possible

A market model is developed by a priori expectations, and its explanatory power is tested based on empirical market data.

Hanssens, Parsons, and Schultz (1990) define a market model to encompass not only a *sales response function*, which defines demand as a function of its determinants, but also supply curves, competitive behavior, vertical market structures, cost functions and identities. Nevertheless, sales response function is the most important component of the market model, such that it is referred synonymously to the market model itself in most of the studies².

Sales response function describes the functional relation between the sales volume³ and relevant sales determinants. Sales volume can be quantified both in absolute terms like number of units, kg, lt., \$ and in relative terms like market share.

Urban (1969) defines modeling scope to range from the individual consumer choice process considerations – highly disaggregated, micro-analytic simulation – to simple regression of aggregate market results – highly aggregated, aggregate demand models. In any aggregation level, all significant sales determinants should be included in the model to achieve a satisfactory prediction capability. On the aggregate market level models, sales determinants might be average price level, distribution, advertising

² This text is no exception; sales response function and market model are often used interchangeably

³ Sales volume and demand are often used synonymously in the text

spending, national or large regional promotions. On the store or household level models, sales determinants might be store prices, shelf space, in-store displays, store promotions, special features.

Provided that sales determinants are properly identified, the practitioner searches for a functional relationship between the sales and its determinants. This functional form may belong to any one of the two broad categories based on the dependent variable: sales volume models and market share models.

Sales volume models

There are five widely encountered functional forms: linear model, semi-logarithmic model, power model, exponential model, and S-shaped models. We demonstrate the implications of these functional forms for a two-variable model; extension to more variable models is straightforward.

1. Linear model:

The simplest response model is represented as:

(3)...
$$q = b_0 + b_1 x_1 + b_2 x_2$$

q:Sales volume

 x_1, x_2 : Level of managerial variable 1 and 2, respectively

If x_1 is set to be the price level, then b_1 is expected to be negative. On the other hand, if x_2 is set to be advertising spending level or distribution level, then b_2 is expected to be positive. These a priori expectations provide useful insights, when testing the model with real data.

Implied elasticity is calculated as:

(4)...
$$e_{x_1} = \frac{b_1 x_1}{b_0 + b_1 x_1 + b_2 x_2}$$

Hence, elasticity depends on the level of the variable itself. The linear model is often extended to include interaction effects:

(5)... $q = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2$

Implied elasticity becomes:

(6)...
$$e_{x_1} = \frac{b_1 x_1 + b_3 x_1 x_2}{b_0 + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2}$$

In the simple linear model, response sensitivity of x_1 , defined as dq/dx_1 , is a constant such as b_1 . In the modified linear model, response sensitivity of x_1 is $b_1 + b_3 x_2$ and its value might increase or decrease as the level of x_2 increases, depending on the sign of b_3 . Modification of the simple linear model to include interaction effects enables us to establish such a dependency.

Linear model is often tried first, as it is easy to estimate, interpret and communicate. It is also proved that a linear function provides a good approximation to an underlying nonlinear function when the observations are over a limited range.

2. Semi-logarithmic model:

The semi-logarithmic model is represented as:

(7)...
$$q = b_0 + b_1 \ln x_1 + b_2 \ln x_2$$

This formulation carries the risk of generating negative sales volume for certain combination of x_i values. A restriction should be imposed on formulation to avoid this risk. In single variable model case, non-negativity restriction is explicitly formulated as: (8)... $x \ge e^{-\frac{b_0}{b_1}}$ In the multi-variable model case, the non-negativity restriction is implicitly formulated as:

$$(9)...\prod_{i=1}^{n} x_{i}^{b_{i}} \ge e^{-b_{0}}$$

In the semilog model, the response sensitivity of x_1 is equal to b_1 / x_1 and its absolute value diminishes as the level of marketing effort x_1 increases.

Implied elasticity is:

(10)...
$$e_{x_1} = \frac{b_1}{b_0 + b_1 \ln x_1 + b_2 \ln x_2}$$

As diminishing returns to scale is generally observed in advertising spending, semilog models have been frequently used to model the response to advertising in the literature.

3. Power model:

The most general power model is represented as:

(11)...
$$q = e^{b_0} + e^{b_{10}} x_1^{b_1} + e^{b_{20}} x_2^{b_2} + e^{b_{12}} x_1^{b_3} x_2^{b_4}$$

Power model considers all the interactions among the marketing variables, but it quickly becomes impractical due to the large number of parameters it needs; such that, 3 parameters for a single variable model, 8 for two variable case, 20 for three variable case, 48 for four variable case, 112 for five variable case. Sample sizes and current estimation procedures do not allow for precise estimation of so many parameters. Consequently, the general power model is often simplified by setting some parameters equal to each other or equal to 0 or 1.

The multiplicative model is the simplified form of the power model and is represented as:

(12)...
$$q = e^{b_0} x_1^{b_1} x_2^{b_2}$$

The multiplicative model has the special property that power coefficients are directly interpreted as elasticities:

(13)... $e_{x_1} = b_1$

For this reason, the multiplicative model is also known the constant elasticity model in the literature. Constant elasticity property is a source of strength, as it reduces the number of parameters required and therefore simplifies the sample size requirements and estimation procedures. This simplification makes multiplicative model the most widely used functional form in the literature, especially for data intensive studies like crossprice elasticity estimation. Yet, the constant elasticity property also attracts deep criticism for being an unrealistic assumption from many authors. The multiplicative model has the same functional form with the Cobb-Douglas production function, a wellknown model in the economics literature.

4. Exponential model:

Exponential model is represented as:

 $(14)... q = e^{b_0} e^{b_1 x_1} e^{b_2 x_2}$

In the exponential model, the response sensitivity of x_1 is equal to b_1q and its absolute value increases as the sales volume q increases. Although this is a contradiction to the a priori expectation of diminishing returns to scale, exponential models are also used in the literature, especially for modeling the effects of price. One potential application can be the promotion pricing, where price inverse (1/p) is plugged into the exponential model. The larger the price cut in a promotion, more consumers would realize the deal and the impact on sales volume might be greater. Nevertheless, increasing returns to promotional price cut should be observable only over a limited range of prices, as the demand is likely to plateau or even bend backward at the extreme cheapness levels. Monroe (1971) discusses "price limit hypothesis" in detail.

5. S-shaped models:

An S-shaped function implies increasing returns to scale up to an inflection point, and decreasing returns to scale afterwards. Three well-known functional forms depicting S-shaped relation are: log-reciprocal model, Gompertz growth model, and logistic model.

Log-reciprocal model is represented as:

(15)...
$$q = e^{b_0 - \frac{b_1}{x}}, b_0, b_1 > 0$$

Gompertz growth model is represented as:

$$(16)...q = b_0 b_1^{-b_2 b_1^{-b_3 x}}$$

Logistic model is represented as:

(17)...
$$q = \frac{q_0}{1 + e^{-(b_0 + b_1 x)}}$$

Although the existence of S-shaped functions is still debatable, distribution – number of retail sales points on the macro level and shelf space on the micro-level – and promotion – amount of advertising spending – are the two factors in which S-shaped relations are often assumed to exist.

Transcendental logarithmic or translog function is also used to model the effects of advertising in the literature. More importantly, translog model is a quadratic approximation to any continuous function, and is represented as:

(18)...
$$\ln q = b_0 + b_1 \ln x_1 + b_2 \ln x_2 + b_{12} \ln x_1 \ln x_2 + b_{11} (\ln x_1)^2 + b_{22} (\ln x_2)^2$$

Implied elasticity is:

 $(19)\dots \boldsymbol{e}_{x_1} = \boldsymbol{b}_0 + 2\boldsymbol{b}_{11}\ln x_1 + \boldsymbol{b}_{12}\ln x_2$

The translog model reduces to the simple multiplicative model, if the coefficients of the higher order terms (i.e. b_{12}, b_{11}, b_{22}) are all set to zero.

Comparison of Sales Volume Models:

Of the five forms reviewed above, linear, multiplicative and exponential formulations dominate the market modeling literature. It is often questioned whether any one of these three formulations is superior or the better formulation is case-dependent. In a product line pricing problem, determination of price elasticity estimates is the most critical step. Robustness of these estimates is the key indicator of the model dependability.

Bolton (1989) assesses the robustness of the elasticity estimates, derived from linear, multiplicative, and exponential models. Author defines the general form of store-level sales volume as:

(20)... $q_t = f(p_t, x_t, s_t) + u_t \quad \forall t = 1, \mathbf{K}, T$

 p_t : Vector of prices of major products in week t, measured in US dollar per standard unit basis and adjusted for changes in consumer price index

 x_i : Vector of variables indicating the presence of store promotions (e.g. gondola head, shelf tags, flyer advertising, newspaper advertising, discount coupons, etc.)

 s_t : Vector of dummy variables indicating the month of the year to reflect any seasonality in consumer purchases

 u_t : Disturbance term reflecting model specification and measurement error

To compare the explanatory power of the three functional forms, Bolton uses sales data for four frequently purchased, nondurable household product categories: frozen waffles, liquid bleach, toilet tissue, ketchup. Data is collected from 12 stores, six in each of the two cities, over a period of 75 weeks. Three major brands are selected in each category and a total of 144 sales equations are estimated: 4 categories times 3 brands times 12 stores.

Across all equations, average R^2 value is 0.79 for linear, 0.74 for multiplicative and exponential models. The author suggests that fit does not vary significantly with functional form. In all three models, about 55% of the own-price elasticities and about 15% of the cross-price elasticities are significant and different from zero at 95% confidence level. Furthermore, price elasticity estimates derived from these three models are significantly correlated, indicating reasonably similar estimates: similar in direction and relative magnitude. Based on this similarity, Bolton concludes that idiosyncrasies in the data, rather than the model form, are responsible for the general characteristics of the elasticity estimates.

However, this conclusion does not suggest that functional form is not an important issue. Difference among the estimates of the same elasticity parameter derived from the alternative three models range within the [-1.0, +1.0] band, averaged across all the stores. Magnitude of the variation is large, when compared to the average magnitude of own-price elasticity, ranging from -2.2 to -2.6, and cross-price elasticity, ranging from +0.4 to +0.6. Moreover, statistic tests indicate that estimates derived from all three models have a systematic bias relative to estimates derived from the models with highest R^2 . All models overstate own- and cross-price elasticity estimates to higher values to partially explain the variation attributable to the omitted variables. Bias is smallest for the multiplicative model and highest for the linear model. Larger bias in the linear case is not surprising, as linear formulation does not consider interaction among the model variables.

Market Share Models

When market share is the dependent variable in the sales response function, logical constraints should be added to the market model, which introduce an additional complexity to the formulation. These are referred as bound – market share for any product must be between 0 and 1 – and sum constraints – i.e. sum of the market shares

for all products must equal 1 – in the literature. The *attraction model* is a widely used formulation, successfully handling the complexity induced by the logical constraints.

The basic attraction model is represented as:

(21)...
$$m_i = \frac{A_i}{\sum_{j=1}^n A_j}$$

 m_i : Market share of a product i

 A_i, A_j : Attractiveness of product i, and any product j

n:Number of products in the market

Definition of attractiveness is the differentiating factor in attraction models. Although numerous definitions of attractiveness exist in the literature, two types of models remain fundamental: multiplicative model and exponential model. Almost all the other attractiveness formulations in the literature are the extensions of these two fundamental models.

1. Multiplicative model:

Multiplicative model, or more fully the Multiplicative Competitive Interaction (MCI) model, is represented as:

(22)...
$$A_i = e^{b_{i0}} \prod_{j=1}^n \prod_{k=1}^K x_{jk}^{b_{ijk}}$$

K: Number of managerial variables used in the model

 x_{jk} : Level of managerial variable k for product j

 b_{ijk} : Competitive interaction parameter, measuring the degree of the competitive impact of managerial variable k for any product j on the product i

Implied own elasticity is:

$$(23)...e_{x_{iik}} = b_{iik} - \sum_{j=1}^{n} m_j b_{jik}$$

Implied cross elasticity is:

(24)...
$$e_{x_{ilk}} = b_{ilk} - \sum_{j=1}^{n} m_j b_{jlk}$$

The above formulation is known as the Fully Extended version of the multiplicative model, as it captures all the possible cross effects among the products by the individual b_{ijk} parameters. This version is often used to model the *asymmetric competition*. Asymmetry arises when marketing actions of a firm reflect on the sales of the competitors not in proportion to their respective market shares, but selectively depending on the marketing strategy.

The Fully Extended version quickly becomes impractical due to the large number of parameters it demands. Cooper and Nakanishi (1988) provide the formula of the parameter requirement as $Kn^2 + n$. For a model of 4 variables and 10 products, the number of parameters required is 410. Sample sizes and current estimation procedures do not allow precise estimation of such a large number parameters. Full model is usually simplified by keeping the fundamental asymmetry parameters and setting the others to zero.

Simple versions of the full model are widely used in the literature. There are two levels of simplification:

- Disregarding asymmetrical competition effects among the products: $b_{ijk} = b_{ik}$
- Disregarding asymmetrical effectiveness of managerial instruments among the products: $b_{ik} = b_k$

The former is known as the Differential MCI model, and the later is known as the Simple MCI model in the literature. These models are used to model the symmetrical competition at the market level analysis.

2. Exponential model:

The exponential, or more fully the Exponential Competitive Interaction (ECI) model, is represented as:

(25)...
$$A_i = e^{b_{i0}} \prod_{j=1}^n \prod_{k=1}^K e^{b_{ijk}x_{jk}}$$

Implied own elasticity is:

$$(26)...\boldsymbol{e}_{x_{iik}} = \left(\boldsymbol{b}_{iik} - \sum_{j=1}^{n} m_j \boldsymbol{b}_{jik}\right)^* x_{ik}$$

Implied cross elasticity is:

(27)...
$$e_{x_{ilk}} = \left(b_{ilk} - \sum_{j=1}^{n} m_j b_{jlk} \right) * x_{lk}$$

Similar to the multiplicative model, the differential version and simple version of the exponential model are widely used to reduce the number of parameters required. The exponential formulation is usually referred as Multinomial Logit (MNL) model in the literature and it is often used to model the individual choice behavior, referred as microlevel modeling.

2.2.3. Step 3: Estimation of Model Parameters

`

In Step 2, the parametric form of the market model has been constructed. In this step, model parameters are estimated by fitting the response function to some kind of market data. Validity of the fit determines the prediction capability of the model⁴ and it is measured with the magnitude of discrepancy between the model predictions and the market data.

⁴ Power is the common term used to describe the prediction capability of a model.

There are three approaches to determine the sales response: statistical methods, in-store experiments, and consumer surveys. *Statistical analysis* applied to either cross-sectional or time series data is the traditional estimation method. The major source of market data for statistical methods like regression analysis is the retailer audit in consumer goods. Retailer audit is automatically performed in supermarkets by optical scanners. Scanner data can be used as in case of store-level modeling or can be aggregated to the retail chain, or regional level. To extract household-level data, the scanner system is used with a retailer card like frequent visitor card that identifies the purchasing consumer. For small retailers like groceries, snacks, gas stations, sales data is actually accounted by regularly visiting auditors and it is recorded together with price and any in-store promotion data. Auditing small retailers is a voluminous and expensive process, but also necessary, if market wide analysis is sought. Demand characteristics are usually very different in these small retailers, compared to the supermarkets. Purchases are rather impulsive in small retailers, whereas it is more planned in supermarkets. Product variety and price transparency – ease of getting price information for different products – is lower in small retailers.

Model parameters should be estimated with data driven from the sources commensurate with the degree of model aggregation. For example, nationwide market data should not be used in modeling store-level promotion decisions. Nationwide data represents a gross average of thousands of sales territories, and what is true for this gross average can be incorrect for a store located in a high income neighborhood. Similarly, a single household-level or store-level data should not be extrapolated to represent the nationwide market. A representative and sufficiently large sample is required to be conclusive. Link (1995) provides further details on market data selection.

After selecting the right set of market data, the model function defined in the preceding section is fit to the data set by using a statistics program. The prediction capability of the model is assessed by an implicit function of the discrepancy between the model predictions and market data. Major causes of low prediction capability are improper

functional formulations, and omission errors, defined as neglecting some significant predictors.

In the *experimental approach*, a feature of the selected product (like price) is systematically varied, while external influences on demand like the prices of the other products are either held constant, or measured, or randomized. Doyle and Gidengil (1977) provide a review of in-store experiments.

The *consumer survey approach* provides direct measures in purchase quantity, price responsiveness, loyalty, and brand switching on household level. Although consumer surveys are designable and relatively cheap, their representativeness and projectability are still debatable. Major problem with surveys is that they are claim-based, and there are many occasions in which claims do not represent the actual purchasing behavior, as in the case of addictive products like alcoholic beverages and tobacco.

The survey approach became more popular with the advent of conjoint methodology. In this methodology, respondents are exposed to trade-offs between the desire to obtain certain product attributes and the higher prices paid for these attributes. Respondents rank or rate numerous product attribute - price combinations. If the number of attributes tested is more than three, then a fractional factorial design is used to determine the combinations. Utility associated to each product attribute is determined according to the respondent ratings. These utility values can be used in an attraction model to predict expected market share of a product with a certain product attribute-price combination. Green, Rao, and Srinivasan (1978) and Mahajan, Green, and Goldberg (1982) provide further details on the conjoint methodology.

2.2.4. Step 4: Determination of Optimal Prices

In the final step, an optimization algorithm is run to determine the optimal price levels for a firm operating in an environment, described by the market model. The most frequently encountered pricing objective in the literature is the maximization of current profits. A simple profit optimization problem can be formulated as follows:

(28)...
$$Max p = \sum_{j=1}^{n} (p_j - c_j)^* q_j$$

s.to $q_j = f_j (x_{11}, ..., x_{ik}, ..., x_{NK}) \quad \forall j = 1, ..., n$

Problem constraints represent the demand for the products of the selected firm, as a function of the managerial variables for all the products in the market. The problem solution is straightforward. Assuming constant cost per unit and differentiating the profit function with respect to p_i :

(29)...
$$\frac{dp}{dp_i} = q_i + \sum_{j=1}^n (p_j - c_j) * \frac{dq_j}{dp_i}$$

Equating first derivate to zero and replacing $\frac{dq_j}{dp_i}$ with the price elasticity term $e_{p_{ji}} * \frac{q_j}{p_i}$, the optimality condition is written as:

(30)...
$$q_i + \sum_{j=1}^{n} e_{p_{ji}} \frac{\left(p_j - c_j\right)q_j}{p_i} = 0$$

Each sales volume variable is substituted with the relevant demand constraint:

$$(31)...f_{i}(x_{11},...,x_{ik},...,x_{NK}) + \sum_{j=1}^{n} e_{p_{ji}} \frac{(p_{j}-c_{j})}{p_{i}} f_{j}(x_{11},...,x_{ik},...,x_{NK}) = 0$$

Optimal price for product i can be derived by rearranging the Equation (31):

(32)...
$$p_i^* = \frac{-e_{p_i}^* + \sum_{\substack{j=1 \ j \neq i}}^n e_{p_{ji}} \frac{\left(p_j - c_j\right)}{c_i} \frac{f_j\left(x_{11}, \dots, x_{ik}, \dots, x_{NK}\right)}{f_i\left(x_{11}, \dots, x_{ik}, \dots, x_{NK}\right)}}{-e_{p_i}^* - 1} c_i$$

This is the fundamental microeconomic equality to determine prices for a set of interrelated product.

Little and Shapiro (1980) derive an optimal price formula for the related products in a retailer. Their work is based on the "two-stage theory of price setting". At one stage, consumers purchase goods to maximize utility, which determines the short-run price response. At the other stage, the retailer sets the prices to maximize short-run profit, subject to the long-run attractiveness constraint. Consumer loyalty, thereby long-run attractiveness of the store, calls for lower prices compared to the pure short-run profit case.

Consumer's problem is formulated as:

(33)...
$$Max u_j = v_j (q_{1j}, q_{2j}, \mathbf{K}, q_{nj}) - w_j (\sum_i p_i q_{ij})$$

s.to $q_{ij} \ge 0 \quad \forall i$

 q_{ii} : Quantity of product i purchased by consumer j

 u_i : Net utility perceived by consumer j after the purchase

 v_i : Utility received by consumer j after purchase

 w_j : Utility lost by consumer j as a result of spending $\sum_i p_i q_{ij}$ dollars

Concavity of u_j guarantees a global maximum, satisfying the first order optimality condition:

(34)...
$$\frac{dv_j}{dq_{ij}} - \frac{dw_j}{d(\sum_i p_i q_{ij})} p_i = 0$$
 provided that $q_{ij} > 0$

Retailer's problem is formulated as:

(35)...
$$Max p = \sum_{i} (p_{i} - c_{i}) * q_{i}(p_{1}, p_{2}, \mathbf{K}, p_{n})$$

s.to $\sum_{j} v_{j} (q_{1j}, q_{2j}, \mathbf{K}, q_{nj}) - w_{j} (\sum_{i} p_{i} q_{ij}) \ge u_{0}$

 u_0 : Smallest permitted consumer utility, to maintain long-run attractiveness

Starting with the Lagrangian for the retailer's problem and simplifying it with the optimality condition defined in Equation (34), the authors formulate the optimal price for product i as:

(36)...
$$p_i^* = \frac{-e_{p_i} + \sum_{j \neq i} e_{p_{ji}} \frac{\left(p_j - c_j\right)}{c_i} q_j}{-e_{p_i} - 1 + z_i} c_i$$

 $e_{p_i}, e_{p_{j_i}}$ are the own- and cross-price elasticities, whereas z_i is the consumer utility parameter. z_i is a function of the Lagrangian parameter, quantity of brand i purchased and total utility lost as a result of spending to purchase brand i. All the parameters in the price formula can be determined, except for z_i , which is regarded as an exogenous parameter used to reflect the managerial desire to maintain long-run attractiveness.

If the z_i term is neglected, the formula gives the optimal prices for a retailer aiming only to maximize its short-run profit. The simplified price formula is equivalent to Equation (32).

Price elasticity is the key parameter in the optimal price formulae. Neslin and Shoemaker (1983) report own-price elasticity estimates from numerous representative studies. Almost all the reported estimates are negative and range in absolute magnitude from zero to three. Brand-level estimates are higher than category-level estimates in general, with the average value of -1.8 and -0.6, respectively. Tellis (1988) supports this finding, by reporting an average own-price elasticity of -1.8 in his meta-analysis of price elasticities from 42 econometric studies.

Considering the average estimates given above, it can be concluded that demand is inelastic at the category-level and elastic at the brand-level. In fact, this is an expected finding. When the price of a brand is raised, a certain group of consumers cease to

purchase that brand. Among these consumers, some switch to the lower priced brands. Switching consumers add to the brand-level elasticity, but do not add to the categorylevel elasticity. If there were only one firm in the market enjoying a price elasticity of -0.6, then it would increase its price until the consumer response to rising prices becomes unfavorable, and price elasticity exceeds -1.0. Monopoly benefits from the fact that consumers do not have any alternative brand to switch. Competition in a market restricts the flexibility of the firms in pricing and provides consumers with greater economic surplus.

2.3. Product Line Pricing Studies

In this section, a set of product line pricing studies is presented to illustrate the application of the methodology discussed in the foregoing sections. These studies form a representative set, covering most of the model types discussed and using very diverse data sources. Findings from these empirical studies are heavily case dependent, and thus details of the results are excluded from the discussion and only methodological findings are presented.

Urban (1969):

Urban provides a pioneer article on analytical approach to product line pricing in 1969. In this work, Urban combines two multiplicative models in a hierarchical formulation. He defines two types of interaction among the related products: inter-category and intracategory effects. Product categories can be complementary or substitutable, but products within the same category are purely substitutable. Urban uses a multiplicative regression model to represent the inter-category competition and multiplicative attraction model to represent the intra-category competition. He includes price, advertising, and distribution effects in the models.

Total sales volume for a category is given by:
(37)...
$$q_j = k \prod_{r=1}^n p_r^{e_{p_{jr}}} a_r^{e_{a_{jr}}} d_r^{e_{d_{jr}}} \quad \forall j = 1, \mathbf{K}, n$$

- q_i : Total category j sales volume
- k: Scale constant
- p_r : Average price level of all products in any category r
- a_r : Total advertising of all products in any category r
- d_r : Total distribution level for all products in any category r
- $e_{p_{jr}}, e_{a_{jr}}, e_{d_{jr}}$: Price, advertising, and distribution elasticities for category j

Market share for a firm k, which sells a product belonging to the category j, is given by:

$$(38)... \ m_{kj} = \frac{p_{kj}^{e_{pkj}} a_{kj}^{e_{akj}} d_{kj}^{e_{dkj}}}{\sum_{i \in F} p_{ij}^{e_{pi}} a_{ij}^{e_{ai}} d_{ij}^{e_{di}}}$$

 $e_{p_i}, e_{a_i}, e_{d_i}$: Competitive price, advertising, and distribution sensitivities for any firm i $i \in F$: For all firms participating product category j

To test the descriptive adequacy and usefulness of the proposed model, Urban uses 100 grocery audits of three related and frequently purchased consumer good categories. Shelf price, number of facings, deals, and special displays are recorded in the audits. Urban does not include deals, which are frequent, but almost all deals are in terms of price cut, and special displays, which are very infrequent, in the model. Also, advertising is excluded due to the lack of data. It is assumed that none of the brands received disproportionate amount of advertising at the audited stores.

Urban's formulation is hierarchical; consumers first choose the product category, and then choose the brand. He bundles all products in the same category, and represents the interaction among the categories with a single elasticity estimate. This is an obvious pitfall; consider two firms (A, B) both selling one product in each of the two substitutable categories, 1: carbonated soft drinks, and 2: fruit juices. Products in the

same categories are substitutes. Firm A's product in category 2 and Firm B's product in category 1 are substitutes, and vice versa. However, it is not straightforward to conclude that products of the same firm in different categories are pure substitutes. These products share the same brand name or firm image, and benefit from the distribution strength of the same firm. Bundling the products of different firms may lead to elasticity estimates with low explanatory power.

Urban realizes the pitfall of bundling and updates his model by allowing different intercategory elasticity estimates for different firms. This split-category approach is partially successful, explaining 30% more of variation compared to the earlier formulation. Nevertheless, the best approach to the problem would be the nonhierarchical formulation, as it allows full flexibility in determining the interactions among the products belonging to different categories.

Urban reveals a sort of asymmetry in interdependency between two categories, such as $e_{p_{ij}} > 0$, and $e_{p_{ji}} < 0$. Asymmetry is a difficult concept to accept, as it is not in line with a priori expectations. Moreover, it can be a consequence of the modeling approach followed or low R² values achieved. Urban also states the need for further behavioral research to justify the asymmetry.

Reibstein and Gatignon (1984):

Reibstein and Gatignon use a nonhierarchical multiplicative model to determine the optimal prices for five egg varieties: extra large, large, medium, private label, and 20-pack. Authors include only price in the model:

(39)...
$$q_{it} = e^{b_{i0}} \prod_{j=1}^{5} p_{jt}^{b_{ij}} \quad \forall i = 1, \mathbf{K}, 5$$

 q_{it} :Sales volume for product i in period t

Profit maximizing price for product i is derived as:

(40)...
$$p_i^* = \frac{b_i}{b_i + 1}c_i - \sum_{j \neq i} \frac{b_{ji}}{b_i + 1} \frac{q_j}{q_i} (p_j - c_j) \quad \forall i = 1, \mathbf{K}, 5$$

It is not possible to provide an explicit solution for the optimal prices, but Equation (40) clearly shows how model parameters affect the optimal prices. First term in Equation (40) represents the optimal price charged when the demand for each product is not interrelated. The second term reflects the effect of demand inter-dependence on the optimal monopoly pricing. Profit maximizing price formula is a reordered form of Equation (32), noting that $e_{p_x} = b_{ji}$.

The authors fit the multiplicative model to 25 weeks sales data, collected from two supermarkets via scanners. They construct a 5x5 elasticity matrix, which is partially full as not all products are significantly interdependent.

Multiplicative formulation provides constant elasticity over the entire price range. This oversimplifying assumption leads to unrealistic optimal prices in this work. For extra large eggs, own price-elasticity is between 0 and -1. Consequently, the profit function is ever increasing with price and optimal price is undetermined. This is not true, because no one would buy extra eggs if they were extremely expensive. For the other egg varieties, optimal prices turn out to be outside the reasonable price range. These results are well-expected as the model assumes the same consumer responsiveness even at very high price levels.

The authors impose upper bounds on prices, assuming that optimal prices should be close to the range of observed prices. This approach causes optimality to lose its absolutistic nature, because optimality becomes dependent on the subjective assessment of current price levels. Not surprisingly, modified optimal prices turn out to be the maximum values permitted. This article is deeply criticized by Vilcassim and Chintagunta (1995) with similar arguments.

Vilcassim and Chintagunta (1995):

The authors determine the optimal retailer prices for four yogurt brands, using an exponential formulation to model the household level brand choice probabilities. The probability of purchasing a specific brand is formulated as a function of purchase determinants, including marketing activities, intrinsic household choice, and household inventory.

The conditional probability of brand i purchase ($Pr_{i/c}^{h}$:), provided that the household certainly buys yogurt, is:

(41)...
$$\Pr_{i/c}^{h} = \frac{\exp(bx_{i}^{h} + g_{i}^{h})}{\sum_{j=1}^{n} \exp(bx_{j}^{h} + g_{j}^{h})}$$

 x_j^h : Vector of marketing activities faced by the household **b**: Vector of unknown parameters, describing the effectiveness of marketing activities

 g_{i}^{h} : Intrinsic preference coefficient of the household for brand j

The unconditional probability of yogurt purchase is:

(42)...
$$\Pr_{c}^{h} = \frac{\exp(t^{h} + qZ_{c}^{h})}{1 + \exp(t^{h} + qZ_{c}^{h})}$$

 Z_c^h : Vector of purchase determinants

q: Vector of effectiveness parameters

 t^{h} : Intrinsic purchase propensity, household specific intercept

Household's product inventory (I^h) and category specific, brand invariant category value (CV_c^h) are the two purchase determinants. Category value and category attractiveness are given by:

(43)...
$$CV_c^h = \ln\left[\sum_{j=1}^n \exp\left(\boldsymbol{b} x_j^h + \boldsymbol{g}_j^h\right)\right]$$

$$(44)... \, qZ_c^h = II^h + qCV_c^h$$

The probability of purchasing brand i is given by: (45)... $Pr_i^h = Pr_{i/c}^h * Pr_c^h$

Probability that a randomly selected household purchases brand i is given by: (46)... $Pr_i = E[Pr_i^h]$

The expected sales volume for brand *i* is given by:

(47)...
$$q_i = \mathbf{M} * \mathbf{E} \left[\mathbf{P} \mathbf{r}_i^h q_i^h \right]$$

M:Number of total retailer visits made by the selected households

 q_i^h : Quantity purchased by household h if brand i is selected

To estimate the model parameters, the authors select a random sample of 100 households from the AC Nielsen yogurt database. Over the analyzed time period, these households make about 12,900 visits to the retailers, and approximately 19% of these visits result in purchase of yogurt.

Price and feature advertisements are used in the model. A dummy variable (0, 1) is coded to represent the presence of a feature advertisement. An interaction term is also included to capture any synergistic effects. Statistics tests suggest a reasonable fit of the model to the market data. Moreover, the sign and size of the estimated model coefficients are turned out to be consistent with a priori expectations.

The authors run a simple optimization procedure to determine the profit maximizing prices for the yogurt brands. Optimal prices are within the reasonable price band and fairly close to the observed average prices unlike the results of Reibstein and Gatignon (1984). The authors conclude that household level models aggregated to the market level are both theoretically and empirically superior to aggregate market models, with rigid specifications such as constant elasticity or linear demand.

Carpenter, Cooper, Hanssens, and Midgley (1988):

The authors use a multiplicative market share model to represent the asymmetrical competition among eleven brands in the market of a mature, nonseasonal, regularly purchased household product. Asymmetries arise from two main sources: unique features of brand strategy like comparative advertising, unique distribution, strong brand name and period-to-period variation in marketing mix like temporary distinctiveness provided by an advertising campaign.

The authors formulate market share for product i in time period, sales region, or consumer segment t as:

(48)...
$$m_{it} = \frac{A_{it}}{\sum_{j=1}^{N} A_{jt}}$$
 $\forall i = 1, \mathbf{K}, N$ $\forall t = 1, \mathbf{K}, T$

Differential formulation is used to define the product attraction:

(49)...
$$A_{it} = e^{a_i} \prod_{k=1}^{K} x_{kit}^{b_{ki}} \quad \forall i = 1, \mathbf{K}, N \quad \forall t = 1, \mathbf{K}, T$$

Model variables, x_{kit} denote the level of marketing activity k for product i in period t.

Cooper and Nakanishi (1982) demonstrate that this market share model is equivalent to a linear specification in logarithms with period- and brand-specific intercepts added:

(50)...
$$\log m_{it} = a_0 + \sum_{i'=1}^{N-1} a_i d_{i'} + \sum_{t'=1}^{T-1} g_t c_{t'} + \sum_{k=1}^{K} b_{ki} x_{kit} + u_{it}$$
 $i = 1, \mathbf{K}, N$ $t = 1, \mathbf{K}, T$

- a_i : Brand-specific intercept
- $d_{i'}$: Dummy variables for brands with $d_{i'} = 0$ if $i' \neq i$
- g_t : Time-period coefficient
- c_t : Time-period dummy variables with $c_{t'} = 0$ if $t' \neq t$
- a_0 :Overall intercept

 u_{it} : Stochastic disturbance, combining specification error and sampling error

Market share and price data is collected over a period of 26 months, by means of a consumer panel of about 3000 families in Australia. Price and advertising are included in the market model. Advertising effects are significant, because the predominant channel in communication is television and media spending is sizeable. Advertising data is supplied by media agencies. Distribution is excluded from the model, because all major brands have similar distribution levels. Log-linear model is fit to the market data, and results validate prediction capability of the model.

Net profit for a brand is given by the gross profit minus advertising spending: (51)... $p_{it} = q_t m_{it} (x_{pit} - c_i) - x_{ait}$

Nash equilibrium strategy requires all brands to maximize profits simultaneously:

(52)...
$$\frac{dp_{it}}{dx_{kit}} = 0$$
 $i = 1, \mathbf{K}, 11$ $k = a, p$

Provided that profit for each brand is strictly quasi-concave in each marketing-mix variable, Friedman (1977) provides the solution to the optimization problem:

(53)...
$$X_{pit}^* = c_i \left(\frac{1}{1 + (1/e_{pit})} \right)$$

(55)... $X_{ait}^* = a_t m_{it} (x_{pit}^* - c_i) e_{ait}$
(55)... $e_{kit} = b_{ki} (1 - m_{it}) \qquad k = a, p$

Basuroy, Mantrala and Walters (2001):

More recently, Basuroy, Mantrala and Walters use symmetric product-level demand functions - linear in prices - to analyze the impact of category management on business results. The authors indicate a paradigm shift for retailers, from brand-centric management to category management. Category management is concerned with maximizing the overall profit of the category by articulating the interrelatedness of the category products, rather than dealing with the profit generated by individual brands or brands sourced from the same producer.

The authors formulate the sales volume for product i in retailer r as:

(56)...
$$q_{ir} = b_i + \sum_j e_{ij} p_{jr} + \sum_k g_{rk} p_{ik} \quad \forall i, r$$

 e_{ij} :Inter-brand cross-price sensitivity, accounting for the interaction among the related products sold in the same retailer

 g_{rk} : Inter-store cross price sensitivity, accounting for the interaction among the same products sold in different retailers

The authors use the sales data for laundry detergent category to test their hypotheses on the impacts of category management. They empirically prove that category management calls for higher retail prices. This is an expected result, as coordinated and cooperative pricing dampens the competition among the products sold in the same retailer. Higher prices cause a decrease in sales volume and sales revenue, but increase the profit. This finding is almost universal as it is supported by many product line pricing studies.

Bucklin and Srinivasan (1991):

This article is not a product line pricing study per se, but it is worthwhile to include it in the review to demonstrate an alternative approach to market modeling and parameter estimation.

Most research in the market modeling literature is based on the data derived from Universal Product Code (UPC) scanners located at sales points. These historical records of consumer purchases provide the best indication of what consumers actually do in practice. However, using the scanner data has some important limitations: inadequate number of observations, insufficient magnitude of price changes, statistical deficiencies like multicollinearity in econometric approaches. Moreover, scanner data hides different preferences within a household, as it is collected at the household level. Bucklin and Srinivasan develop an alternative methodology: a survey-based approach to determine price elasticities and brand choice probabilities.

The authors specify the indivisible choice unit as "sub-household", instead of the widely accepted household. They define a sub-household as the combination of users and usage situations for which similar benefits are sought. For example, a household may have three sub-households for the coffee category: instant caffeinated coffee for the father at breakfast, ground caffeinated coffee for the mother throughout the day, and instant decaffeinated coffee for everyone in the evening. Modeling at the household level incorrectly inflates the switching behavior among the brands; observed purchasing behavior implies that household in the above example frequently switches among the three coffee types. More switching indicates closer competition and higher elasticity estimates.

To illustrate the application of the methodology, a survey is conducted by telephone interviewing. It consists of two major steps: determining the sub-households and understanding the preference structure. The number of sub-households, defined by the number of non-interchangeable brands in current use, total coffee consumption, and share of each brand are secured in the first step. It is found that 80% of the households have a single sub-household, whereas 17% have two and 3% have three sub-households. The intrinsic brand preference and trade-off between brand preference and price are secured in the second step.

Using the conjoint analysis framework, the authors represent the perceived value of brand i at price P_i for sub-household s as:

 $(57)...V_{si} = U_{si}/a_s - P_i$

 U_{si} : Utility attributed to brand i by sub-household s

 a_s : Trade-off factor for sub-household s, converting attributed utility to \$ units

Brand choice probability is formulated by the exponential model:

(58)...
$$pr_{si} = \frac{\exp(b_s V_{si})}{\sum_k \exp(b_s V_k)}$$

If q^s is the reported coffee usage for sub-household s, then total the sales volume for brand *i* is given by:

$$(59)... q_i = \sum_s q^s pr_{si}$$

Steps in determination of price elasticities are rather straightforward: change p_i , recalculate perceived value by each sub-household, recalculate brand choice probabilities for each sub-household, sum expected purchase quantities, and calculate the sales volume change following to the price change.

To assess the reliability of the methodology, households are re-interviewed in three months time and updated results are contrasted with the original results. Depending on the high level of correlation (88%) found, the authors conclude that survey-based approach is reliable. To assess the predictive validity of the methodology, the authors compared their results with the results of a research based on household-level scanner data. Two results correlated at 77%, despite the time lag and household selection differences between the studies. The authors conclude that survey-based approach has predictive validity. These conclusions are immature because they are only based on the existence of high correlation. Two data series can correlate at +/-100%, but can imply totally different things in terms of sign and magnitude.

This completes the literature review on pricing and demand analysis. In the next chapter, we review the key facts about the Turkey beer market

CHAPTER 3

OVERVIEW OF TURKEY BEER MARKET

In this chapter, we define the basic concepts in order to provide consistency in terminology and review the key facts about the Turkey beer market⁵.

3.1. Beer Taxonomy

Beer belongs to the *Fast Moving Consumer Goods* (FMCG) family, which is typically defined to include consumable non-durables and light durables. A broad, but practical definition for FMCG would be the range of products found in a hypermarket. FMCG family includes food, tobacco, personal care products, and housekeeping products.

Beverages are categorized into two groups, each representing almost equal turnover: soft drinks and alcoholic beverages. Soft drinks include the product categories of carbonated soft drinks, fruit juices, bottled water, and sparkling water. On the other hand, alcoholic beverages encompass spirits like raki, vodka, wine, and beer. Consequently, the taxonomy for beer is given as consumer good / fast moving / food / beverage / alcoholic beverage / beer.

3.2. Key facts on the Turkey Beer Market

Beer is typically a concentrated market all over the globe and the majority of even the mature markets are monopolies (e.g. Argentina, Ireland, South Africa), duopolies (e.g. France, Italy, Portugal, Baltic States, India, Indonesia, Australia, New Zealand, Canada, Mexico, Brazil), or oligopolies (e.g. USA, Spain, England, Poland, Japan). Russia,

⁵ All the market data presented in this chapter is from the retail measurement conducted by a leading market information firm. Further details on the source is disguised for confidentiality.

Germany, and China are the exceptions to the usual industry structure, with their highly fragmented markets.

Turkey is no exception to the usual industry structure and its beer market lends itself to a duopolistic structure. Tekel produced beer until the end of the 1960s as a state monopoly. In 1969, two private-owned companies stepped into the market, providing the consumers with more alternatives in choice and better product quality. In 35 years, these two companies increased their market share to 99%, almost driving the state company out of the market. Despite a few attempts to enter the market, no other companies were able to survive in the market – they either ceased operations or were acquired by the two incumbents.

Beer is a closed market by nature, such as it is produced and consumed domestically. Only high-priced premium beers are imported due to inhibiting freight costs, and these are mostly sold in upscale hotels and cafes. Consequently, import volume is negligibly small compared to the size of the beer market. On the export side, the volume is even smaller, because Turkey has no local premium brand that is accepted among the foreign beer consumers.

Compared to the peer countries, Turkey beer market is relatively small with an annual sales volume of 750 Million liters and a per capita consumption of 11 liters/year. Two major reasons behind the low beer consumption rate are prohibition of alcohol consumption in Islam and the consumer preference for raki.

In the last three decades, Turkey beer market experienced both fast growth and stabilization. Following the establishment of the two private companies in 1969, Turkey beer market experienced a fast growth period and reached a sales volume of 650 Million liters in the mid 1990s, up from 50 Million units in the late 1960s. This fast growth period is characterized by increasing per capita consumption. However, in the last decade, market growth has been stalled and sales volume has increased only by 100 Million liters. This stabilization period is characterized by fairly stable per capita

consumption and an average annual growth rate of 2%, rather driven by the new consumers entering the market.

Beer is sold in both *on-premise* and *off-premise* points. On-premise sales points are those where beer is consumed at the point of sale. Off-premise sales points are those where beer is consumed away from the point of sale, like supermarkets, groceries, etc. In Turkey, beer experts estimate that on-premise sales account for the one third of total sales. Canadean Beer Services reports that on-premise sales correspond to 35-40% of the total beer sales in most EU countries. UK is an exception to this with on-premise share reaching 70%, due to the widespread "visiting the pub for a beer" custom.

On- and off- premise sales exhibit different sales dynamics. In on-premise sales, the beer price is not proportional to its cost to the retailer. Moreover, competition is restricted due to the high exclusivity present; in the majority of the sales points only one producer's brands are promoted and sold. In off-premise sales points, retail sales price is usually within a justifiable margin – typically 20-25% – of the cost to the retailer. Exclusivity is limited and more than 95% of the off-premise sales points in Turkey carry brands of more than one producer.

High markup margin in on-premise sales limit the power of beer producers on managing the consumer prices. Consequently, exclusivity agreements drive the sales volume in these points, rather than any marketing initiative such as pricing. Moreover, on-premise sales are not transparent and no reliable market data exists. In this study, we focus only on off-premise sales, assuming that two premises represent separable markets. Hereafter, all the comments, analyses and conclusions are related to off-premise sales only.

Off-premise points are further grouped into two types: modern retailers – hypermarkets, supermarkets – and traditional retailers – groceries, snacks, dry fruit vendors, gas stations. Beer is a typical grocery (bakkal) product and only 12% of off-premise sales take place in modern retailers, unlike the most of the other FMCG products. This highly fragmented sales structure has two immediate implications:

- Ø Low negotiation power on the buyer's side: Traditional retailers purchase in low volume, and lack the power to negotiate with the producers on price and payment terms. Beer producers usually exercise a fixed mark-up margin on traditional retailers and tightly control their retail prices.
- Ø Complicated beer distribution: Traditional retailers usually have limited financial power. Consequently, they carry a few brands and purchase in small quantities. On the other hand, large retailers carry all the brands present in the market and purchase in large quantities. When the distribution cost for one liter of beer is considered, it is much more costly to reach traditional retailers. Therefore, the distribution of beer is both complicated and costly.

Alcohol sales are restricted by law in Turkey; alcohol cannot be sold within 200 meters of schools, mosques, and hospitals. Municipalities grant alcoholic beverage sales licenses to the retailers satisfying certain criteria. Consequently, beer is sold in a smaller number of retailers compared to the other FMCG products. In that regard, market information firms provide a well-accepted measure of distribution. By distribution of a product, they refer to the percentage of retail sales points carrying that product in the investigated product. The distribution of beer fluctuates within the year; it increases in the summer time, as new retail sales points are opened at vacation regions and some retailers carry beer only at high season. Even in the summer time, 35% of the distribution is reported for beer, meaning that two thirds of the retailers are not carrying beer at anytime. On the other hand, 98% distribution is reported for carbonated soft drinks and fruit juices, 90% for sparkling water and 75% for bottled water. Compared to these beverage categories, alcoholic beverage distribution is definitely limited; also noting that spirit distribution only reaches 30%. Some beer sector experts pinpoint low distribution as the most important factor limiting the total sales volume. This is one of the major propositions questioned in this study.

Beer has three defining product attributes: brand, package type and package size. In the investigated period, a total of eleven brands were being offered in the market. These eleven brands are sold in three package types (returnable bottle, non-returnable bottle,

can) and in three sizes (33 cc, 50cc, 66cc). The returnable bottle is the most preferred package type in Turkey with more than a 50% share, followed by can (30-35%) and non-returnable bottle (10%). On the package size, 50cc is the dominant one with more than 90% share, followed by 66cc (5%) and 33cc (2-3%). These three product dimensions are fairly interrelated. Premium brands are offered in neither 66cc nor the returnable bottle format, whereas discount brands are usually offered in the 66cc format and never offered in the 33cc format. On the other hand, the 50cc format is the representative package size for the standard priced brands. Prices of different package offerings for the same brand are proportional with their relative production costs. Consequently, it is possible to unify all the three product dimensions under the brand dimension, especially while analyzing market demand and pricing practices.

CHAPTER 4

ANALYSIS OF DEMAND AND PRICING POLICIES

This is the main chapter that reports the results of our study. We present the work in line with the four-step approach to the product line pricing discussed in Chapter 2. In the first section, the pricing problem is defined in perspective of the price setter. In the second section, hypothetical models are specified as the mathematical abstraction of Turkey beer market. In the following section, calculations and model results are presented. Finally, model findings and conclusions are discussed.

4.1. Step 1: Defining the Price Leader's Problem

One of the two large producers holds near monopoly power with its share of more than 80% of the market, although the market has been described as a duopoly earlier. The dominant producer takes all the pricing initiatives, and the smaller one follows by positioning itself accordingly. The pricing problem should be defined in perspective of the dominant producer in order to make sense.

Turkey beer market is growing slowly and the market share of each company is almost stable, making the beer business a "cash cow" for the dominant company – which generates cash in Turkey and makes investments in the growing markets abroad. In the existing market structure, it can be concluded that the dominant producer is the price setter and its pricing policies are determined by financial concerns. Hence, the pricing problem for the dominant company can be defined as: "What is the price level that maximizes short-term profits, without losing market leadership in the long-term?" Optimal price should balance short-term and long-term concerns of the dominant

producer and assumed to be located between the profit maximizing price level and revenue maximizing price level.

4.2. Step 2: Turkey Beer Market Model

Managerial build-up, experience, gut feeling and fact-based market information are the ingredients of an executive while making price decisions. Our work aims to provide the managers with fact-based market information. The crucial information needed in pricing is the sensitivity of sales volume to different marketing initiatives and to environmental factors. Sales volume sensitivity should be identified at both the aggregate market level and the individual brand level. The former can be used to determine the stability of the market growth, whether low growth is permanent or conditional. The latter can be used to formulate the revenue and profit equation for each brand to discover optimal prices. We build two separate models: a market-level model and a brand-level model.

4.2.1. Formulation of the Market Level Model

The market-level model aims to identify the factors affecting the beer demand and to forecast the aggregate beer sales volume in Turkey. In the first step of the modeling work, we identify the list of variables that determine the beer demand. While preparing the list, we use two information sources: the *reference article* on beer demand by Erkip, Köksalan and Moskowitz (1997) and *industry expert interviews*. Five controllable and five environmental factors are identified to be relevant. The controllable factors are quality, price, distribution, promotion, and advertising. The environmental factors are price of substitute goods, income level, ambient temperature, level of tourism activity, and Ramadan.

Controllable factors

1. <u>Quality:</u> Quality is defined as the sum of the positive and negative associations attributed to beer as a consumer product. Quality depends on both the product itself,

and the consumers' perception. Beer quality is excluded from the model for three reasons:

- a. There is no significant change in beer quality within the period investigated in this work: the same producers, the same production facilities, almost the same brand portfolio.
- b. Market research shows that beer drinkers in Turkey are not sensitive to changes in beer taste, except for the large alterations in liquid color.
- c. There is no robust measure of beer quality.
- 2. <u>Price</u>: Price is defined as the average price that consumers have to pay for a liter of beer in an off-premise sales point. Beer price (p_b) is the weighted average price of all beer brands present in the market. Nominal prices are adjusted to offset the effects of high inflation. The constant, or real, beer price for any month T is calculated, by correcting for accumulated inflation:

$$(60)... p_{bT} = p_{bT}^{R} = \frac{p_{bT}^{N}}{\prod_{t=2}^{T} (1+ir_{t})} \qquad T \neq 1$$

R/N : Real / Nominal

 ir_t : Inflation rate for month t

- 3. <u>Distribution</u>: Distribution is defined as the percentage of retail sales points carrying at least one beer Stock Keeping Unit (SKU). Beer distribution, d_b measures the availability of beer.
- 4. <u>Promotion:</u> Promotion is defined as a temporary reduction in price to make the product more affordable to the consumer. Three major types of promotion are practiced in the beer market: free good, free beer, and price discount. Free goods can be in the form of a cheap gift like glass, cooler bag, peanuts granted at the sales point or an expensive gift like automobile, consumer durables granted following a lottery process. Free good type promotions are rare compared to the other two types. Effects of the free beer and price discount type promotions are reflected as a decrease in

retail sales price. Consequently, promotion should be excluded from the model in order to avoid double counting.

 <u>Advertising</u>: Beer cannot be advertised freely in Turkey, as TV commercials of alcohol are not allowed. Advertisements in other media channels can neither reach the effective critical mass nor properly communicate the value proposed. Consequently, advertising can safely be excluded from the market model.

Environmental factors

- 1. Price of Substitute Goods: Price of a substitute good is defined as the average price that consumers have to pay for a liter of an alternative beverage in an off-premise point. Beer is a hybrid product, providing two basic values for the consumers: thirst quenching and mental relaxation. The former value is associated with soft drinks, and the later one with alcoholic beverages. Consequently, both groups are regarded as possible substitutes. However, there is a subtle point in this argument: consumers substitute beer and soft drinks only when consuming from the household inventory or when ordering in an on-premise point. They barely perceive beer and soft drinks as substitutes when purchasing in an off-premise point, due to the differentiating alcohol ingredient. Based on the foregoing discussion, we refer to spirits as the substitute for beer. The majority of the spirits are produced and distributed by the state monopoly, which was recently privatized in January 2004. This firm sets the prices of different spirits in a way to keep constant parities, so it is safe to assume the raki price to be representative for all the other spirits' prices. Nominal raki price is adjusted by price index to offset the effects of high inflation and is symbolized by p_s in the model. Aggregate spirit sales volume can also be used to account for the category-level substitution. However, this is not feasible in our study, as we lack dependable data on spirit sales.
- Income Level: Macroeconomic growth is a major sales driver for consumer goods. When the economy is growing, consumers can generate more funds for spending,

boosting the consumer off-take. The Gross Domestic Product (GDP) is assumed to be the best single indicator of economic growth. It is a composite index, accounting both for the number of households in the economy and income per household. However, it is not possible to track a monthly GDP, because the State Institute of Statistics provides GDP estimates on quarterly basis. Therefore, the same GDP figure is assumed for the months in the same quarter. Moreover, considering the significant seasonality in quarterly GDP figures, a 12-month rolling GDP estimate should be used to represent the economic growth.

- 3. <u>Ambient Temperature:</u> Significant seasonality is experienced in beer sales, mainly due to its thirst quenching characteristics. Summer is the high- and winter is the low-season for beer sales. Temperature (*Temp*) is used to account for this seasonality.
- 4. <u>Level of Tourism Activity</u>: Industry experts believe that foreign tourists contribute significantly to the domestic beer consumption volume, even though they spend a limited time in Turkey. This can be attributable to the fact that per capita beer consumption is much higher among foreign tourists, compared to the average beer drinker in Turkey. The number of foreign tourists (*f*) is included as a variable in the model to account for the tourism effect.
- <u>Ramadan</u>: Some consumers refuse to drink alcoholic beverages in the Muslim holy month of Ramadan. Industry experts point to a significant negative correlation between the monthly sales volume and the number of days coinciding with Ramadan (*r*).

We use linear and multiplicative formulation in both market- and brand-level models, and therefore ensuring the compatibility between the model results. The linear model is a good approximation to any underling nonlinear function, as our observations are over a limited range. On the other hand, the multiplicative model is especially useful in data intensive brand-level model, as its constant elasticity property deeply reduces the number of parameters required. With the explanatory variables described above, a linear model for the aggregate beer sales volume (q_{bt}) is formulated as:

(61)**K**
$$q_{bt} = b_0 + b_1 p_{bt} + b_2 d_{bt} + b_3 p_{st} + b_4 GDP_t + b_5 Temp_t + b_6 f_t + b_7 r_t + b_8 t + e_t$$

A multiplicative model is formulated as:

(62)...
$$q_{bt} = b_0 p_{bt}^{b_1} d_{bt}^{b_2} p_{st}^{b_3} GDP_t^{b_4} Tem p_t^{b_5} f_t^{b_6} r_t^{b_7} t^{b_8} e_t$$

The multiplicative model is expressed in linear form:

$$(63)... \ln q_{b_t} = b_0 + b_1 \ln p_{b_t} + b_2 d_{b_t} + b_3 \ln p_{s_t} + b_4 \ln GDP_t + b_5 \ln Temp_t + b_6 \ln f_t + b_7 \ln r_t + b_8 \ln t + e_t$$

There are eight explanatory variables in the full model - including a trend variable *t*, which is added to identify any tendencies in the beer sales volume.

4.2.2. Formulation of the Brand Level Model

The brand-level model aims to understand the factors affecting the demand for a selected brand, which competes with several other beer brands in the marketplace, and to forecast the sales volume for that brand. In compliance with the literature, we refer the demand for a specific brand as "selective" demand in the remainder of the text.

Factors expected to affect the selective demand are almost the same as the market demand, except for a fine distinction in price and distribution variables. In the market-level model, there is a single beer price and beer distribution. In the brand-level model, there are two different types of price and distribution: own and competitors'.

1. <u>Own price</u>: Own price is defined as the average price that consumers should pay to buy a liter of the selected beer brand in an off-premise point. Own price is expected to have a negative impact on the selective demand; an increase in own price causes a decrease in the quantity demanded.

- Price of competitors: The price of a competitor is defined as the average price that consumers should pay to buy a liter of an alternative beer brand in an off-premise point. A separate price variable is added to the model for every competitor brand. The price of the competitor is expected to have a positive impact on the selective demand; an increase in the competitor's price causes an increase in the quantity demanded.
- 3. <u>Own distribution</u>: Own distribution is defined as the percentage of retail sales points carrying at least one SKU of the selected brand. Own distribution is expected to have a positive impact on the selective demand.
- 4. <u>Distribution of competitors:</u> Distribution of a competitor is defined as the percentage of retail sales points carrying at least one SKU of an alternative brand. A separate distribution variable is added to the model for every competitor brand. Own distribution is expected to have a positive impact on the selective demand.

To ensure the compatibility with market-level model and to be able to determine the impact of environmental factors even if these factors have similar effects on the sales volume of different brands, we also use sales volume – instead of market share – as the dependent sales variable in the brand-level model.

The linear model for the selective sales volume (q_{it}) is formulated as:

$$(64)\mathbf{K} \ q_{it} = \mathbf{b}_{0i} + \sum_{j=1}^{N} \mathbf{b}_{1ij} p_{jt} + \sum_{j=1}^{N} \mathbf{b}_{2ij} d_{jt} + \mathbf{b}_{3i} p_{st} + \mathbf{b}_{4i} GDP_t + \mathbf{b}_{5i} Temp_t + \mathbf{b}_{6i} f_t + \mathbf{b}_{7i} r_t + \mathbf{b}_{8i} t + \mathbf{e}_{it} \ \forall i$$

- N: Number of brands competing in the marketplace
- *i* : Index identifying the selected brand

The multiplicative model is formulated as:

(65) **K**
$$q_{it} = b_0 \left(\prod_{j=1}^N p_{jt}^{b_{1ij}} \right) \left(\prod_{j=1}^N d_{jt}^{b_{2ij}} \right) p_{st}^{b_{3i}} GDP_t^{b_{4i}} Temp_t^{b_{5i}} f_t^{b_{6i}} r_t^{b_{7i}} t^{b_{8i}} e_{it} \quad \forall i$$

The multiplicative model is expressed in linear form:

$$(66)\mathbf{K} \ln q_{it} = \mathbf{b}_{0i} + \sum_{j=1}^{N} \mathbf{b}_{1ij} \ln p_{jt} + \sum_{j=1}^{N} \mathbf{b}_{2ij} \ln d_{jt} + \mathbf{b}_{3i} \ln p_{st} + \mathbf{b}_{4i} \ln GDP + \mathbf{b}_{5i} \ln Tenp_{t} + \mathbf{b}_{6i} \ln f_{t} + \mathbf{b}_{7i} \ln r_{t} + \mathbf{b}_{8i} \ln t + \mathbf{e}_{1i}$$

In the model formulations, b_1 and b_2 coefficients have different implications depending on the value *j* takes;

- $\boldsymbol{\emptyset}$ If j = i, then $\boldsymbol{b}_{1ij} = \boldsymbol{b}_{1ii} = \boldsymbol{b}_{1i}$ and $\boldsymbol{b}_{2ij} = \boldsymbol{b}_{2ii} = \boldsymbol{b}_{2i}$. These coefficients are associated with the demand sensitivity of own- price and distribution. Expected coefficient sign is negative for \boldsymbol{b}_{1i} and positive for \boldsymbol{b}_{2i} .
- \emptyset If $j \neq i$, then b_{1ij} and b_{2ij} coefficients are associated with the demand sensitivity of cross- price and distribution. Expected coefficient sign is positive for b_{1ij} and negative for b_{2ij} .

4.3. Step 3: Estimation of Model Parameters

Multiple regression runs are performed by using the SPSS software for estimation. Market data for a five-year period, encompassing 60 monthly data points, is used in the regression process. Linear and multiplicative model formulations are estimated with both full set and reduced set of explanatory variables, where variable reduction is carried out by backward, forward and stepwise elimination procedures. Eight model fits are identified for each sales volume equation, and these fits are compared with each other to select the best performing one in terms of both statistical measures and compliance to the a priori expectations. Before proceeding with the details of the regression results, we review the sources of regression data and the statistical measures taken.

4.3.1. Data Sources

In market-level and brand-level regressions, the data source for the dependent sales volume, price and distribution is the retail measurement carried out by a leading market information firm. The firm regularly tracks consumer purchases at the point of sale and provides detailed information on actual purchases, market shares, distribution, pricing, and merchandising and promotional activities. The firm combines the data read from the UPC scanners of large retailers with audit data collected from the small retailers to represent the whole market. This data is accepted as the most reliable data available by the industry experts. Sales volume, price and distribution data for the investigated period is presented in Appendices A.1, A.2, and A.3, respectively.

Data for the environmental variables are publicly available, and can be easily accessed in the related websites. Relevant data for the investigated period is presented in Appendix A.4.

By taking the natural logarithm of the previous three data tables, the data set for the multiplicative model is formed. However, a problem arises in this transformation, as some of the values are zero: $\ln[x_t = 0] = -\infty$. To get around the indefiniteness problem, the value of one is added to each observation of the problematic variable: $\ln[x_t + 1 = 0 + 1] = 0$. Appendices A.5, A.6, A.7, and A.8 present the data set used in the multiplicative regression analysis.

4.3.2. Statistical Measures

Fitting a regression model requires several assumptions. The validity of the underlying assumptions and the adequacy of the model are further examined, before solidifying the tentatively determined model. The tentative model is subjected to a series of measures and tests:

- 1. Coefficient of Multiple Determination
- 2. Goodness-of-Fit Test

3. t-Test

- 4. Residual Analysis
 - **a.** *Normality:* Normality is checked by both mapping the residuals on a normal probability plot and investigating the spread of standardized residuals.
 - **b.** *Independence:* Durbin-Watson (d) statistics is used as a measure of the degree of first order autocorrelation.
 - **c.** Zero mean and constant variance: Residual plots against the (in)dependent variables are used to check the mean and variance assumptions. More formal tests like the Goldfeld-Quandt test or Breusch-Pagan test can also be conducted to check the constant variance assumption.
- 5. **Multicollinearity check:** Multicollinearity is a problem that arises in multiple regression when some explanatory variables are highly correlated with each other. When multicollinearity exists, it becomes difficult to differentiate the independent effects of the variables and parameter estimates are no longer robust. There are no formal tests to detect the presence of multicollinearity, but we analyze the correlation matrix for the explanatory variables and mark correlations in excess of 0.9 as potential multicollinearity problem generator. However, as long as the regression has a high R² value and all the parameter estimates have high t-values, we assume that multicollinearity is unlikely to be a problem.

Pairwise correlation coefficients for the market-level explanatory variables are presented in Appendix A.9. Only the temperature and number of foreign tourists are highly correlated with each other. In fact this is a well-expected finding, as Turkey is more preferred for summer tourism, attracting more foreign tourists in the hotter months of the year. The other coefficients in the correlation matrix are safely low, discounting the multicollinearity threat.

The pairwise correlation matrix, presented in Appendix A.10, signals the existence of high correlation among some brand-level explanatory variables:

- Ø *Prices of mainstream brands:* It can be interpreted that two large beer producers synchronize the timing and magnitude of their price increases for their mainstream brands.
- Ø Distributions of the same producer's brands: Beer producers distribute their brands through exclusive distributors. These distributors supply each retailer with a portfolio of brands, and the portfolio extension depends on the size, location and financial capability of the retailer.
- Ø Distributions of the discount brands: Consumers with low purchasing power (LPP) are the typical purchasers of the discount brands. Retailers usually carry all the brands of the discount segment, in order to provide LPP consumers with more choice alternatives.
- Ø *Raki price and Brand C1 price:* It can be explained by the fact that common producer adjusts raki and beer prices at the same time.
- Ø Temperature and number of foreign tourists

Unlike the market-level model, existence of high correlations among some brandlevel explanatory variables signals a potential multicollinearity problem.

Completing the review on the data sources the statistical tests and measures, we next discuss the regression details.

4.3.3. Estimation of the Market Level Model Parameters

The market level model includes eight explanatory variables in its full version: two controllable factors, five environmental factors and a trend variable. Consequently, nine unknown parameters, including a constant, should be estimated.

Linear regression with full set of variables produces a model with high explanatory power (adj- $R^2 = 0.891$). The described model adequately fits the data set, as $F_0 = 61.2 >> F_{0.058,51}^{crt} = 2.1$. The complete regression output is presented in Appendix B.1

and regression coefficients for the explanatory variables are given in Table 4.1. Only two out of eight variables are significant at the a = 0.05 level.

	Unstandardized	Standard	Standardized		
	Coefficients	Error	Coefficients	t	Sig.
(Constant)	-175,665.9	159,390.0		-1.10	0.28
P_BEER	-630.6	412.6	-0.08	-1.53	0.13
D_BEER	3,895.9	4,846.8	0.07	0.80	0.43
P_RAKI	94.4	62.5	0.13	1.51	0.14
GDP	2,712.8	1,411.6	0.11	1.92	0.06
TEMP	5,226.4	1,088.7	0.59	4.80	0.00
TOURIST	35.0	24.3	0.22	1.44	0.16
RAMADAN	-2,767.9	494.4	-0.27	-5.60	0.00
TREND	210.1	300.3	0.06	0.70	0.49

Table 4.1: Regression coefficients - Market level model, full linear regression

Dependent: Q_BEER

It is possible to increase model efficiency by excluding some variables from the model. In fact, linear regression with any elimination procedure produces model with higher adj-R² value, noting that all the three elimination methods result in the same model. Reduced model adequately fits the data set, as $F_0 = 83.5 >> F_{0.05,6.53}^{crt} = 2.3$. Complete regression output is presented in Appendix B.2 and regression coefficients for the explanatory variables are given in Table 4.2.

Six explanatory variables are significant at a = 0.05 level, and 89.4% of the variation in the dependent variable is explained. Standardized residuals perfectly fit the normality plot. However, scatter plot demonstrates even but nonrandom distribution. Although variable transformation can be used to rehabilitate the nonrandom residuals, we continue with the bearable risk of failing to validate "constant variance" assumption.

	Unstandardized	Standard	Standardized		
	Coefficients	Error	Coefficients	t	Sig.
(Constant)	-124,168.0	139,841.8		-0.89	0.38
P_BEER	-777.9	367.2	-0.09	-2.12	0.04
P_RAKI	133.9	37.8	0.18	3.54	0.00
GDP	3,426.5	1,100.5	0.14	3.11	0.00
TEMP	4,957.5	1,022.7	0.56	4.85	0.00
TOURIST	46.8	19.4	0.29	2.41	0.02
RAMADAN	-2,681.9	477.1	-0.26	-5.62	0.00

Table 4.2: Regression coefficients - Market level model, stepwise linear regression

Dependent: Q_BEER

Residual plots are given in Figure 4.1. Durbin-Watson statistics ($d_0 = 1.66$) reject any autocorrelation among the errors for significance level a = 0.01.

The multiplicative model variants have lower explanatory power, compared to the previous the linear model; lower $adj-R^2$ values, ranging between 0.857 and 0.861. Therefore, it can be concluded that linear formulation better explains the idiosyncrasies in the beer sales data. Hence, the best model for aggregate market sales volume on monthly basis is:

 $(67)\mathbf{K} \quad q_{bt} = -124,168 - 778_1 p_{bt} + 134 p_{st} + 3,427 GDP_t + 4,957 Temp_t + 47 f_t - 2,682 r_t + e_t$

Two variables (i.e. beer distribution and trend) turn out to be insignificant in explaining the aggregate market sales volume.

- Ø *Beer distribution:* Regression findings reject the proposition that regulation on alcoholic beverage sales is a major limiting factor for the beer demand. This can be interpreted as there is no consumer in the market who wants to consume beer but fails to find any within his reach.
- Ø *Trend:* There is no clear trend in the 12-month rolling market sales volume; it is level in the 2nd and 3rd years, and first slowly increases, then slowly decreases in the following two years. In the existence of the other explanatory variables, the lack of a trend supports the saturation in beer penetration level, implying stable per capita consumption rates.

It takes a simple calculation to derive explanatory variable elasticities by using the linear regression coefficients:

(68) **K**
$$e_x = \frac{dq_b / q_b}{dx / x} = \frac{dq_b}{dx} \frac{x}{q_b} = b_x \frac{\overline{x}}{\overline{q_b}}$$
, where x represents the explanatory variable.

Average monthly beer sales volume is 325,377 hl, and average beer price per liter is 155 ('000) TL for the investigated period. Hence, the price elasticity of beer is calculated as:

(69) **K**
$$e_{p_b} = -778 * \frac{155}{325,377} = -0.37$$

The price elasticity of beer is in the inelastic range. This result is in line with the a priori expectations and findings of the prior studies:

- Ø Market or category level elasticities are in the inelastic range for almost all consumer goods
- Ø Consumers are insensitive against the changes in the prices of addictive products like beer and cigarettes compared to ordinary products

Ø Price elasticity of beer is found out to be -0.23 in USA by Gao, Wailes, Cramer (1995)

Elasticities of the other explanatory variables also have the expected signs. The crossprice elasticity of raki is +0.12, implying a 0.12% increase in beer sales volume following 1% increase in raki price. GDP elasticity is +1.20, temperature elasticity is +0.21 and foreign tourist elasticity is +0.12.

4.3.4. Estimation of the Brand Level Model Parameters

We analyze the brand offering in the market before proceeding with the details of the brand level regression modeling. Brand names are disguised and producers are referred as A, B and C for confidentiality. Three beer producers offer an unequal number of brands in the investigated period:

- Producer A with six brands: A1, A2, A3, A4, A5, A6
- Producer B with four brands: B1, B2, B3, B4
- Producer C with a single brand: C1

Among the eleven brands offered, Brand A1 dominates the market with 77% average volume share (81% max, 74% min) and 79% average revenue share (82% max, 74% min). Brand A1 is the leading brand in Turkey beer market in price and distribution related initiatives:

- Ø Brand A1 is the first brand in any price adjustment. Prices of the other Producer A brands are fixed in a way to preserve a constant price ratio. Thereafter, Producer B determines prices of its brands in line with the leader followership model. It is also interesting to note that price of Brand A1 is called the "reference price" in the industry.
- Ø Being the most preferred brand, all retailers are willing to hold at least one SKU of Brand A1. This bias provides strength to Producer A in implementing any distribution projects.

Development of real sales prices for all the eleven brands is provided in Figure 4.2, noting that price of Brand A1 is shown with a heavy line in the graph. According to their price positioning, brands can be grouped into two distinct segments: mainstream and discount. There are eight brands in the mainstream segment, which is characterized by Brand A1. The remaining three brands are positioned in the discount segment and sold at 25% discount on average, compared to mainstream prices. The graph identifies three major product repositioning in the market: two formerly discount brands have moved to the mainstream segment, and one formerly extreme cheap brand has moved to the discount segment in the investigated period.

Figure 4.2: Development of Retail Sales Prices

Having completed the brief review on brand offering, we start our discussion on the regression details. The brand-level model is a system of 11 sales volume equations, one for each brand, and each equation has 28 explanatory variables in its full version. Multiple regression is performed by using the SPSS software to estimate a total of 319 unknowns; 29 unknown parameters, including the constant, for each of the 11 equations.

With 28 explanatory variables, one can construct 268.4 million different models:

$$(70)\mathbf{K} \quad \sum_{j=0}^{28} \binom{28}{j} = \binom{28}{0} + \binom{28}{1} + \binom{28}{2} + \mathbf{K} + \binom{28}{28} = 268.4M$$

The first term in the summation represents the model with no explanatory variables, but just a constant, equal to the average sales volume. The last term represents the full model. Our aim in regression modeling is to find the best combination of variables out of the millions of possibilities. The regression of each model version, defined by a unique variable combination, produces a unique set of coefficients that maximizes the fraction of variation in the dependent variable explained. If we conceptualize each of the models as a point in the multi-dimensional solution space, it would be the case that these points are not uniformly distributed. Models with similar variable set and regression coefficients would be located at proximate points, causing concentration at some locations. We can define such a concentration, or equivalently a set of similar models, as a *model cluster*. We refer to a movement in the same model cluster as a *solution revolution*.

We detail the regressions runs for Brand A1 (dominant brand in the market), in order to clarify the whole regression process, together with the extent of multicollinearity problem and the resolution method taken.

The Linear Regression Process: Brand A1

Linear regression with full set of explanatory variables produces a model which has a high explanatory power ($R^2 = 95.3\%$, adj- $R^2 = 91.0\%$) and adequately fits the explained data set ($F_0 = 22.2 \gg F_{0.05,28,31}^{crt} = 1.8$). Complete regression output is presented in Appendix B.3 and regression coefficients for the explanatory variables are given in Table 4.3. Only two out of 28 variables, temperature and Ramadan, are significant at the a = 0.05 level. To increase the model efficiency by excluding some variables, linear regression is run with each of the three elimination procedures with p=0.05 for entry and p=0.10 for removal.

	Unstandardized Coefficients	Standard Error	Standardized Coefficients	t	Sig.
(Constant)	-318,679.5	260,436.5		-1.22	0.23
P_A1	519.9	1,648.5	0.08	0.32	0.76
D_A1	4,254.7	5,563.5	0.09	0.77	0.45
P_A2	-781.7	809.4	-0.15	-0.97	0.34
P_A3	308.5	594.5	0.06	0.52	0.61
P_A4	19.3	209.6	0.02	0.09	0.93
P_A5	-554.7	817.0	-0.10	-0.68	0.50
P_A6	594.6	547.1	0.12	1.09	0.29
P_B1	574.8	975.3	0.11	0.59	0.56
P_B2	107.4	121.5	0.10	0.88	0.38
P_B3	75.6	922.7	0.02	0.08	0.94
P_B4	-860.0	655.9	-0.17	-1.31	0.20
P_C1	-223.4	679.9	-0.06	-0.33	0.75
D_A2	983.4	4,182.8	0.04	0.24	0.82
D_A3	7,151.6	4,123.1	0.19	1.74	0.09
D_A4	1,088.5	3,032.4	0.09	0.36	0.72
D_A5	325.8	3,937.1	0.02	0.08	0.94
D_A6	-1,432.5	4,470.0	-0.07	-0.32	0.75
D_B1	-1,927.4	5,441.8	-0.05	-0.35	0.73
D_B2	3,514.5	2,831.3	0.34	1.24	0.22
D_B3	11,450.3	6,173.8	0.28	1.86	0.07
D_B4	7,901.6	4,381.6	0.14	1.80	0.08
D_C1	-579.1	5,604.9	-0.02	-0.10	0.92
P_RAKI	84.9	108.6	0.14	0.78	0.44
GDP	1,095.7	2,127.5	0.06	0.52	0.61
TEMP	3,052.0	1,353.9	0.43	2.25	0.03
TOURIST	25.7	24.1	0.20	1.06	0.30
RAMADAN	-2,108.1	463.6	-0.26	-4.55	0.00
TREND	-2,767.3	1,581.7	-0.91	-1.75	0.09

Table 4.3: Regression coefficients - Brand level model, full linear regression

-

Dependent: Q_A1

Hence, we start multiple regression from the beginning by adding a variable elimination method. *Forward and stepwise elimination* produces the same model, which has a high explanatory power ($R^2 = 91.7\%$, adj- $R^2 = 90.9\%$) and adequately fits the data set ($F_0 = 118.6 >> F_{0.055.54}^{crt} = 2.4$). Complete regression output is presented in Appendix B.4 and regression coefficients for the explanatory variables are given in Table 4.4.

	Unstandardized	Standard	Standardized			
	Coefficients	Error	Coefficients	t	Sig.	
(Constant)	-118,192.3	84,992.2		-1.39	0.17	
D_A1	7,889.4	2,884.0	0.17	2.74	0.01	
D_A3	5,114.9	1,592.7	0.14	3.21	0.00	
TEMP	3,372.3	762.2	0.48	4.42	0.00	
TOURIST	31.8	16.8	0.25	1.89	0.06	
RAMADAN	-2,347.3	357.1	-0.29	-6.57	0.00	
Dependent: Q_A1						

Table 4.4: Regression coefficients – Brand level model, 1st stepwise linear regression

There are five significant explanatory variables in the model, and monthly sales volume for Brand A1 is formulated as:

$$(71)\mathbf{K} \quad q_{A_{t}t}^{(Ls1)} = -118,192 + 7,889d_{A_{t}t} + 5,115d_{A_{3}t} + 3,372Temp_{t} + 32f_{t} - 2,347r_{t} + e_{A_{t}t}$$

Standardized residuals perfectly fit the normality plot, and the scatter plot displays even and random distribution. The Durbin-Watson statistics reject any autocorrelation among the errors for a = 0.01 significance level (as $d_0 = 1.71 > d_{0.01,U} = 1.60$).

All the explanatory variables in Equation (71) have the expected signs, except for the distribution of Brand A3. Distribution of any other brand is expected to have a negative impact on the sales volume of the selected brand, which is not the case for the regression equation found; Brand A3's distribution affects Brand A1's sales volume positively. The unexpected sign can be attributable to the existence of multicollinearity, which is also supported by the high variance inflation factor for Brand A3's distribution.

Multicollinearity primarily affects the stability of regression coefficients. Hines and Montgomery (1990) present a few remedies to resolve the multicollinearity problem:

- Ø Augmenting the data with new observations, specifically designed to breakup the approximate linear dependencies that currently exists.
- Ø Using an alternative estimation method that is less sensitive to multicollinearity than ordinary least squares, such as the Ridge regression proposed by Hoerl and Kennard (1970).
- Ø Deleting certain explanatory variables from the model.

It is not possible to implement the first remedy in our case, as we do not have option to expand the data set. The second remedy necessities excessive involvement in unusual statistical tools, which is regarded to be out of the scope of this work. So, we apply the third remedy at the expense of discarding the information contained in the deleted variables. Explanatory variables with unexpected signs are deleted one at a time from the model. If there are multiple candidates for deletion, the one with the largest regression coefficient is selected. The stepwise linear regression model for Brand A1, given in Equation (71), has only one variable with unexpected sign: distribution for Brand A3. This variable is excluded from the input data set and the regression is run again.

Stepwise regression (2nd iteration) produces satisfactory results in statistical measures: $F_0 = 88.3 >> F_{005,6,53}^{crt} = 2.4$, R² = 90.9%, adj-R² = 89.9%. Standardized residuals exhibit a random and balanced spread around the dependent variable axis and fit the normality plot. However, the autocorrelation test is inconclusive and requires more data to be collected. The complete regression output is presented in Appendix B.5 and regression coefficients for the explanatory variables are given in Table 4.5.

The 2nd stepwise model has six significant explanatory variables, and four of them, distribution of Brand A1, temperature, tourism, and Ramadan, are also present in the prior model. Two more distribution variables are added on top:

$$(72)\mathbf{K} \quad q_{A_t}^{(L_{22})} = -106,881 + 7,629d_{A_t} + 1,918d_{A_t} + 3,487d_{B_t} + 2,756Temp_t + 40f_t - 2,257r_t + e_{A_t}$$

	Unstandardized	Standard	Standardized		
	Coefficients	Error	Coefficients	t	Sig.
(Constant)	-106,880.8	91,618.4		-1.17	0.25
D_A1	7,629.2	3,205.6	0.16	2.38	0.02
D_A6	1,917.8	1,037.7	0.09	1.85	0.07
D_B1	3,487.1	1,976.8	0.09	1.76	0.08
TEMP	2,755.8	874.3	0.39	3.15	0.00
TOURIST	40.1	18.9	0.31	2.12	0.04
RAMADAN	-2,257.0	382.6	-0.28	-5.90	0.00

Table 4.5: Regression coefficients – Brand level model, 2nd stepwise linear regression

Dependent: Q_A1

Regression coefficients of the four old variables are almost stable; the 2nd model coefficients are within 25% variation of the 1st model coefficients. It can be concluded that these two models belong to the same model cluster. However, both of the added variables have coefficients with unexpected signs, necessitating another iteration. Brand B1's distribution is deleted from the model, as its coefficient is larger than that of Brand A6's distribution, and the linear regression is run again.

Stepwise regression (3^{rd} iteration) also produces satisfactory statistical results: $F_0 = 138.4 \gg F_{0053356}^{crt} = 2.8$, $R^2 = 88.1\%$, adj- $R^2 = 87.5\%$. Standardized residuals exhibit a random and balanced spread around the dependent variable axis and fit the normality plot. Moreover, the Durbin-Watson test rejects any autocorrelation among the error terms at a = 0.01 significance level (as $d_0 = 1.61 > d_{0.01,U} = 1.52$). The complete regression output is presented in Appendix B.6 and regression coefficients for the explanatory variables are given in Table 4.6.

The 3rd stepwise model has only three significant variables: (73)**K** $q_{A_t}^{(Ls3)} = 153,279+2,638d_{A_st}+103f_t-1,892r_t+e_{A_t}$
	Unstandardized	Standard	Standardized		
	Coefficients	Error	Coefficients	t	Sig.
(Constant)	153,279.0	8,726.2		17.57	0.00
D_A6	2,637.9	1,002.5	0.12	2.63	0.01
TOURIST	103.5	6.5	0.80	15.81	0.00
RAMADAN	-1,891.7	410.8	-0.23	-4.60	0.00

Table 4.6: Regression coefficients – Brand level model, 3rd stepwise linear regression

Dependent: Q_A1

3rd stepwise model belongs to a different model cluster, as it is dissimilar to the two previous models in three critical aspects:

- 1. The constant term is positive.
- 2. Two anchor variables, Brand A1's distribution and temperature, are missing.
- 3. Coefficients of the common variables are dissimilar.

Brand A6's distribution has an unexpected sign and to iterate the solution once more, it is deleted from the model. *Stepwise regression* (4th iteration) produces satisfactory statistical results: $F_0 = 124.5 \gg F_{0.05,4.55}^{crt} = 2.6$, R² = 90.1%, adj-R² = 89.1%. The standardized residuals exhibit a random and balanced spread around the dependent

variable axis, and there is a tolerable distortion in the normality plot. However, the autocorrelation test is inconclusive. The complete regression output is presented in Appendix B.7 and regression coefficients for the explanatory variables are given in Table 4.7.

	Unstandardized	Standard	Standardized		
	Coefficients	Error	Coefficients	t	Sig.
(Constant)	-155,621.2	91,038.6		-1.71	0.09
D_A1	10,658.2	2,976.1	0.23	3.58	0.00
TEMP	3,317.9	824.0	0.47	4.03	0.00
TOURIST	30.7	18.2	0.24	1.69	0.10
RAMADAN	-2,335.7	386.1	-0.29	-6.05	0.00

Table 4.7: Regression coefficients – Brand level model, 4th stepwise linear regression

Dependent: Q_A1

The 4th stepwise model has four significant variables and all these have expected signs: $(74)\mathbf{K} \quad q_{A_t}^{(Ls4)} = -155,621+10,658d_{A_t} + 3,318Temp_t + 31f_t - 2,336r_t + e_{A_t}$

This model is almost the same as the 1st model except for two important corrections:

- 1. The variable with an unexpected sign, Brand A3's distribution, is dropped from the original model.
- Contribution of the dropped variable is added to the distribution of Brand A1, the primary variable in the regression, increasing the associated regression coefficient by 35% and leaving all the other coefficients almost the same.

Equation (74) is referred as the best sales volume model, achieved by the stepwise linear regression.

We restart multiple regression from the beginning with *backward elimination* method. In its first iteration, backward elimination produces a model with high explanatory power $(R^2 = 93.9\%, adj-R^2 = 92.6\%)$ and adequate fit ($F_0 = 75.0 >> F_{0.05.10.49}^{crt} = 2.0$). There is no serious violation in error-term assumptions. The complete regression output is presented in Appendix B.8. The model has ten significant explanatory variables:

$$(75)\mathbf{K} q_{A_{t}t}^{(Lb1)} = -304,098 + 745 p_{B_{t}t} + 142 p_{B_{2}t} - 958 p_{B_{4}t} + 8,827 d_{A_{t}t} + 7,429 d_{A_{3}t} + 7,250 d_{B_{3}t} + 8,765 d_{B_{4}t} + 4,501 Temp_{t} + 2,525 r_{t} - 1,141 t + e_{A_{t}t}$$

Four of the explanatory variables have unexpected signs: three distribution variables and Brand B4's price. The variable deletion procedure is applied, and nine more iterations are made to clean all the unexpected coefficients. The long iteration process can be attributable to the presence of four problematic variables in the 1st iteration, noting that there is only one in the stepwise case. 10th backward model has strong statistical stand: $R^2 = 91.5\%$, adj- $R^2 = 90.3\%$, $F_0 = 79.7 \gg F_{0.057.52}^{crt} = 2.2$. Moreover, residual plots do not reveal any violation in error-term assumptions. The complete regression output is presented in Appendix B.9. The model has seven significant variables, and all these have expected signs:

$$(76)\mathbf{K} \quad q_{A_{t}}^{(Lb10)} = -126,930 - 1,240p_{A_{t}} + 10,999d_{A_{t}} + 158p_{B_{t}} + 759p_{B_{t}} + 3,042Temp_{t} + 39f_{t} - 2,205r_{t} + e_{A_{t}} + 10,999d_{A_{t}} + 10,990d_{A_{t}} + 10,990d_{A_{t}} + 10,99d_{A_{t}} + 10,99d_{A_{t}} + 10,99d_{A_{t}} + 10,99d_{A_{t}} + 10,99d_{A_{t}} + 10,99d_{A_{t}} + 10,99d_{A_{t}} + 10,99d_{A_{t}} + 10,99d_{A_{t}} + 10,99d_{A_{t}} + 10,99d_{A_{t}} + 10,90d_{A_{t}}$$

Backward and stepwise regression models belong to the same model cluster as they have four explanatory variables in common and regression coefficients of these variables are almost the same. However, the backward model is as an enhancement of the stepwise model, as it produces better statistical results with the addition of three extra variables: Brand A1's price, Brand B2's price and Brand B3's price. Similarity of the models formulated by different elimination techniques and robustness of the regression coefficients, coupled with satisfactory statistical performance, generate confidence in the results obtained for Brand A1.

The Multiplicative Regression Process: Brand A1

We revise the same regression process with the multiplicative formulation. The *full multiplicative model* (i.e. model with full set of explanatory variables) also has high explanatory power ($R^2 = 93.4\%$, adj- $R^2 = 87.4\%$) and adequately fits the data set ($F_0 = 15.6 >> F_{0.05,28,31}^{crt} = 1.8$). The complete regression output is presented in Appendix B.10.

However, only three out of 28 variables, Brand A5's distribution, Brand A6's distribution, and Ramadan, are significant at the p=0.05 level and collinearity statistics signal the existence of high variance inflation factors. "Variable selection – deletion" procedure is followed to increase the efficiency of the multiplicative model.

The stepwise and forward multiplicative regression produces a model with high explanatory power ($R^2 = 87.8\%$, adj- $R^2 = 86.6\%$), adequate fit (i.e. $F_0 = 77.5 >> F_{_{0.05,5,54}}^{crt} = 2.4$), and a proper Durbin-Watson statistics $(d_0 = 1.94 > d_{_{0.05,U}} = 1.77)$. However, standardized residuals fail to satisfy the zero mean and constant variance assumption. The complete regression output is presented in Appendix B.11.

The model has five significant explanatory variables and one of these variables, Brand A3's distribution, has an unexpected sign, as in the stepwise linear regression:

$$(77)\mathbf{K} \quad q_{A_{1}t}^{(Ms1)} = e^{7.86} d_{A_{1}t}^{0.91} d_{A_{3}t}^{0.17} Temp_{t}^{0.13} f_{t}^{0.11} r_{t}^{-0.09} e^{e_{A_{1}}}$$

The *backward multiplicative regression* produces a model with better statistical results (i.e. $adj-R^2 = 90.2\%$) and no violation in error-term assumptions. The complete regression output is presented in Appendix B.12.

However, five distribution variables out of the eleven model variables have unexpected signs:

$$(78)\mathbf{K} \ q_{A_{t}t}^{(Mb1)} = e^{10.93} p_{A_{3}t}^{0.68} d_{A_{3}t}^{0.20} d_{A_{6}t}^{0.10} d_{B_{1}t}^{0.20} d_{B_{3}t}^{0.44} d_{B_{4}t}^{0.58} d_{C_{1}t}^{-0.10} Temp_{t}^{0.07} r_{t}^{-0.08} f_{t}^{0.14} GDP_{t}^{-1.34} e^{e_{A_{4}t}}$$

The variable deletion process is carried out for the multiplicative regression and it takes four more iterations for the stepwise and forward regression, and eleven more iterations for the backward regression to remove all the problematic variables from the models. Following different regression paths, all the variable elimination methods arrive at the same model (with an adj. R^2 of 86.6%). The complete regression output is presented in Appendix B.13.

(79)**K**
$$q_{A_t t}^{(Ms5)} = q_{A_t t}^{(Mb12)} = e^{6.38} d_{A_t t}^{1.62} Temp_t^{0.19} r_t^{-0.10} e^{e_{A_t t}}$$

Despite the satisfactory statistical results achieved, the overall performance of the multiplicative formulation is worse than that of the linear formulation. Therefore, among all the models described in the preceding discussion, Equation (76) provides the best statistical performance, and is selected as the best regression model to represent Brand A1's sales volume. The model includes two competition variables, which are the prices of the two mainstream brands sold by the other private producer: Brand B2's price and Brand B3's price. These two terms represent the switches of the price sensitive consumers among the Brands A1, B2 and B3.

We calculate the price elasticity of Brand A1 using the corresponding regression coefficient in Equation (76). Noting that average monthly sales volume is 250,427 hl and the average price per liter is 157.9 ('000) TL for Brand A1 in the investigated period, price elasticity is found as -0.78.

(80)**K**
$$e_{p_{A1}} = -1,240 * \frac{157.9}{250,427} = -0.78$$

Although Brand A1 holds almost 80% share in the market, its price elasticity is significantly larger than the market-level elasticity: -0.78 to -0.37. The explanation lays in the difference of the underlying mechanism for the brand-level and the market-level price elasticities. Following a price increase in a specific brand, its sales volume is expected to shrink. Price elasticity of a brand is related to the size of this shrinkage. A portion of the shrunk volume stays within the market, shifting to the competitors. The rest is totally lost or dead, leaving the market. Price elasticity of the market is related to the size of this lost sales volume. Therefore, if we assume that the above elasticities are estimated accurately, it can be interpreted that when Brand A1's price is increased by 1.00%, 0.37% of its sales volume is consumed no more – assuming a single competition-free elasticity for all brands – and 0.41% shifts to the other brands in the market.

Distribution elasticity of Brand A1 is calculated as 1.41, implying a 1.41% increase in sales volume following 1% increase in distribution. Brand A1 is distributed almost three times more widely that the second most distributed brand. Assuming that distribution elasticity remains the same over the entire range of values, Brand A1 sales volume would reduce to 7% of its current level, if its distribution were limited to one third of the current level – thereby, equalizing its distribution to that of next most distributed brand. Although the previous exercise exaggerates the situation, it is clear that distribution is the most important source of strength for Brand A1.

Temperature elasticity is +0.16 for Brand A1 and it is lower than the market average of +0.21. This implies a seasonality impact of a lower magnitude; ratio of the high- to low-

season sales volume is smaller. Foreign tourist elasticity is +0.13 for Brand A1, which is almost equal to the market average of +0.12.

The variable selection – deletion method is also carried out to obtain the best sales volume models for the other ten brands. Regression details for the other brands are skipped, as Brand A1's process is a good representation of the others. A summary of the regression results for the remaining ten brands is presented in Appendix C.

Before proceeding with the details of the price optimization, we note that model coefficients and elasticity estimates derived from these coefficients are not invariant over the entire range of determinant values. They can successfully represent the sales volume sensitivity, only if change in a determinant is within the observed range of values used while fitting the model. For example, if the price of a certain brand has never been 25% higher or lower than its current price level in a sufficient number of observations, then there is no conclusive data about the consumer behavior at that price level. Price elasticity of the brand at that price level cannot be estimated properly, as price elasticity is also a function of the price level itself. Assuming constant price elasticity or a constant model coefficient for the entire range of values will be misleading at least some of the time. As the price of a brand increases significantly, progressing towards an extreme expensiveness state, elasticity is expected to be larger, thus resulting in a larger volume loss for any further price increase. Consequently, model coefficients or elasticity estimates should not be used to extrapolate the sales volume sensitivity against changes occurring in the unobserved region. Price elasticity represents a common example and the same conclusions can be easily extended to the other affecting factors. The foregoing discussion stresses an important limitation on the power of statistical methods; decision makers are uninformed about the extreme scenarios most of the time, and any optimization exercise based on statistical findings is a correction move, rather than a absolute replacement.

4.4. Step 4: Determination of Optimal Prices

In the preceding section, we derive information on market and brand level demand sensitivity to different managerial initiatives and uncontrollable factors. In this section, we use this information to determine the stability of the market growth and to describe the optimal pricing practices.

4.4.1. Stability of Market Growth

We investigate the growth potential of the aggregate beer sales volume and comment on the maturity of the market. First, we repeat the monthly aggregate beer sales model: (81) **K** $q_{bt} = -124,168 - 778_1 p_{bt} + 134 p_{st} + 3,427 GDP_t + 4,957 Temp_t + 47 f_t - 2,682 r_t + e_t$

Sales volumes for twelve consecutive months are aggregated to provide the annual beer sales model:

(82) **K** $q_b = -1,490,016 - 9,335 p_b + 1,607 p_s + 59,490 Temp + 41,118 GDP + 47F - 77,775$

The average annual value of beer price, raki price, temperature, and GDP is used in Equation (82). Coefficients of these four variables are equal to twelve times the corresponding coefficients in the monthly model. On the other hand, the annual total of foreign tourists and days coinciding with Ramadan are used in Equation (82). The coefficient of tourism variable remains the same, and the Ramadan variable becomes a constant as the number of days coinciding with Ramadan in any given year is 29 in total. The average ambient temperature is also constant at 13.5 C^o, neglecting year-to-year variation. Therefore, the annual sales model is simplified as:

(83) **K** $q_b = -764,676 - 9,335 p_b + 1,607 p_s + 41,118 GDP + 47F$

For the last twelve months, average beer price is 156.7 ('000) TL/liter, average raki price is 680.5 ('000) TL/liter, and average GDP is 112 ($x10^{15}$ TL). The total number of foreign tourists visiting Turkey is 11.685 Million. If these values are substituted into the

above equation, annual beer sales volume is found as 4.018 Million hectoliters, which is just 0.06% more than the actual figure of 4.015 Million hectoliters.

If beer price and raki price are fixed at the last 12-months average, then the annual sales model is simplified as:

(84) **K** $q_b = 4,018,140+41,118\Delta(GDP)+47\Delta(F)$ $\Delta(GDP)$: Change in average GDP $\Delta(F)$: Change in total number of foreign tourists

In the last decade, the average growth rate for GDP and number of foreign tourists has been realized as 3.6% and 8.0% per year, respectively. Assuming that the preceding growth rates are achieved, the aggregate beer sales volume can sustain a steady growth of 5%. Therefore, the 2% market growth realized in the investigated period is low compared to the underlying potential. This can be attributable to the economic crisis, adversely affecting consumer purchasing power, and some diplomatic and regional crises, adversely affecting tourism, experienced in that period. However, a fast growth of 15% a year, defined by per capita consumption increase in practice and by a trend variable in the market model, has past. Per capita consumption is fairly stable over the investigated period, and there is no trend variable in the formulated market model. Therefore, it can be interpreted that there is no motive for a potential beer drinker to consume more; beer offering has reached a stable level, both in terms of availability and product variety. Market growth is rather linked to environmental factors like GDP and tourism. Summarizing the foregoing discussion, Turkey beer market is characterized as a "slow growing, mature market".

4.4.2. Optimal Market Level Prices

We check the optimality of the current pricing practice in the market. First, we recast Equation (83) into the appropriate form:

(85)**K** $q_b = 5,480,825 - 9,335 p_b$

Equation (85) is the simplified demand curve for the Turkey beer market, and it is visualized in Figure 4.3.

Figure 4.3: Beer demand curve

Based on this demand curve, the total industry revenue is written as: (86)**K** $R_b = 5,480,825p_b - 9,335p_b^2$

Revenue maximizing price for the industry, price that makes first derivative of the revenue equation zero, is 293.6 ('000) TL per liter and it is quite higher than the current level of 156.7 ('000) TL per liter. In terms of revenue maximizing measure, the industry is clearly operating well below the optimal level. On the other hand, this does not necessarily mean that producers should increase average beer price by 136.9 ('000) TL per liter to reach the optimal price level. Price elasticity is also a function of the price level; as the beer price increases, the demand curve would become steeper, per unit volume decrease would be larger than 9,335 and the revenue increment would be smaller than anticipated. Therefore, the revenue-maximizing point should be below the level identified by the current elasticity estimate. However, it is clear that average beer price should be increased to improve total industry revenue.

4.4.3. Optimal Brand Level Prices

We investigate alternative pricing schemes and their consequences on business results at brand level. However, we concentrate on identifying the optimal pricing practice only for Brand A1, which is the leading brand in any price adjustment. In our analysis, we derive optimal pricing under the "no competitor response" assumption, and then describe the impact of a possible competitor response on the optimal price derived.

Brand A1 dominates the market by 77% of total volume and 79% of total revenue owned. Prices of the other mainstream brands are determined in reference to the Brand A1, and that is why prices of these brands are highly correlated. Brand A1 and the price correlated brands hold 88% volume and 91% revenue share in total. We first repeat the best model fit for monthly Brand A1 sales:

 $(87)\mathbf{K} \quad q_{At} = -126,930 - 1,240p_{At} + 10,999d_{At} + 158p_{Bt} + 759p_{Bt} + 3,042Temp_{t} + 39f_{t} - 2,205r_{t} + e_{At}$

The sales volume for twelve consecutive months is aggregated to formulate the annual Brand A1 sales:

$$(88)\mathbf{K} \quad q_{A_1} = -1,094,301 - 14,880p_{A_1} + 131,988d_{A_1} + 1896p_{B_2} + 9,108p_{B_3} + 39F$$

Average annual value of own price, own distribution, and competitors' prices is used in Equation (88). Coefficients of these variables are equal to twelve times the corresponding coefficients in the monthly model. Annual total of foreign tourists is used in Equation (88), and therefore its coefficient remains the same. Temperature and Ramadan variable become constant as the model is annualized, and they are pooled with the original regression constant.

We also fix the tourism variable in the annual model. The total number of foreign tourists visiting Turkey in the last 12 months of the investigated period is 11.685 Million. If the tourism variable is pooled with the constant, revised model is given as: (89) **K** $q_A = -638,586 - 14,880 p_A + 131,988 d_A + 1896 p_{B_2} + 9,108 p_{B_3}$ The annual model has the two primary variables, and moreover two competition variables. Own distribution is one of the controllable factors. In the last 12 months of the investigated period, Brand A1's distribution is 32.7; meaning that 32.7% of the retailers sell Brand A1, whereas total beer distribution is 34.2. In other words, 96% of the retailers selling beer already carry at least one SKU of Brand A1. Therefore, Brand A1 has limited room for improvement in respect of distribution. If Brand A1 fully closes its distribution gap, an extra of 198,000hl sales is attainable, which corresponds to 6% of the annual sales volume. However, the cost of expanding distribution to this level can be prohibitive, as it may require serving retailers with no economic significance – with low sales volume, located in a remote region – and breaking tying agreements. Expanding Brand A1's distribution also causes some level of cannibalization, which should also be deducted from the extra sales volume generated. In any case, feasibility of distribution improvement is not considered in the scope of this study, and the annual model is further simplified by pooling Brand A1's distribution with the regression constant: $(90)\mathbf{K}$ $q_A = 3,677,422-14,880p_A + 1896p_B, +9,108p_B$.

Revenue for Brand A1 is formulated as:

$$(91)\mathbf{K} \quad R_{A_1} = 3,677,422 p_{A_1} - 14,880 p_{A_1}^2 + 1896 p_{A_1} p_{B_2} + 9,108 p_{A_1} p_{B_3}$$

To determine the revenue-maximizing price, we take the first derivative of the revenue formula, and set it to zero:

$$(92)\mathbf{K} \quad R_{A_1} = 3,677,422 - 29,760 p_{A_1} + 1896 p_{B_2} + 9,108 p_{B_3} = 0$$

Therefore, revenue-maximizing price is computed as:

$$(93)\mathbf{K} \quad p_{A}^{R*} = \frac{3,677,422 + 1896p_{B_2} + 9,108p_{B_3}}{29,760}$$

If average prices for the competitor's brands $p_{B_2} = 154.8$ and $p_{B_3} = 167.2$ are substituted, the optimal price equation is further simplified as:

$$(94)$$
K $p_{A_1}^{R^*} = 184.6 + \frac{1,896\Delta(p_{B_2}) + 9,108\Delta(p_{B_3})}{29,760}$

Equation (94) clearly shows the game-theoretic characteristic of optimal pricing in a competitive setting. The optimal price for Brand A1 depends not only on its own sensitivity, but also on the competitor responses of the other brands. However, two important findings remain valid irrespective of the competitive reaction scenarios:

- Ø Assuming the revenue maximization objective, Brand A1 is definitely charged below the optimal level, noting that average price for Brand A1 in the last 12 months of the investigated period is 159.4 and its price should be increased to strengthen revenue generation.
- Ø Although Brand A1 makes almost 80% of the total market volume, its revenuemaximizing price, in case of no competitor response, is well below the revenuemaximizing price for the total market.

It can be easily proved that profit-maximizing price is equal to revenue-maximizing price plus a constant, if variable unit cost is assumed to be invariant. In case of a linear demand model, profit and revenue equations in general form is written as:

$$(95)\mathbf{K} p = (A - bp)(p - c) \qquad R = (A - bp)p$$

- A: Sales model constant
- b: Coefficient of own-price in the sales model
- c: Per unit variable cost

Taking the first derivative of the preceding equations and setting it to zero, the optimal prices are calculated as:

$$(96)\mathbf{K} p^{p^*} = \frac{A+bc}{2b} \qquad p^{R^*} = \frac{A}{2b}$$

Therefore, the profit-maximizing price is equal to revenue-maximizing price plus half the variable unit cost:

$$(97)\mathbf{K} \ p^{p^*} = p^{R^*} + \frac{c}{2}$$

If we reconsider Equation (94) and take the variable cost as 80 ('000 TL) per liter, assuming a market norm of 50% gross margin on the retail sales price, the profit-maximizing price for Brand A1 is given as:

(98) **K**
$$p_{A}^{p^*} = 224.6 + \frac{1,896\Delta(p_{B_2}) + 9,108\Delta(p_{B_3})}{29,760}$$

Conclusions made for revenue-maximizing pricing are also valid for profit-maximizing pricing, and therefore are not repeated here. Figure 4.4 presents the relation between price and volume (black line), revenue (upper light line), and profit (lower light line).

Figure 4.4: Relation between price and volume, revenue, and profit

We also determine the revenue maximizing price, assuming that competition follows the change in price of Brand A1: prices of both Brand B2 and Brand B3 are changed with the same percentage as Brand A1's, thereby keeping fixed price differentials Δ_1, Δ_2 with the price of Brand A1.

(99) **K**
$$p_{B_2} = p_{A_1} * (1 + \Delta_1)$$
 $p_{B_3} = p_{A_1} * (1 + \Delta_2)$

Under this setting, the revenue for Brand A1 is formulated as:

$$(100)$$
K $R_{A} = 3,677,422 p_{A} - (3,876 - 1,896\Delta_1 - 9,108\Delta_2) p_{A}^2$

The revenue-maximizing price is found as:

$$(101)\mathbf{K} \quad p_{A}^{R^{*}} = \frac{1,838,711}{3,876 - 1,896\Delta_{1} - 9,108\Delta_{2}}$$

In the investigated period, Brand B2's price is positioned 5% below, and Brand B3's price is positioned 5% above Brand A1's price. If Producer B keeps the same price differentials after Brand A1's price increases, then the optimal price for Brand A1 is calculated as 523 ('000 TL). However, the calculated optimal price is out of the justifiable range, compared to the current pricing of 159.4. This is a well-expected situation, as the linear model is used to extrapolate the sales volume. The data set used while fitting the sales model, does not include the prices beyond 176 ('000 TL) and, that is why the model is blind to any sales dynamics occurring in the "extreme" price region. Therefore, the model should not be used for estimating sales volume in case of more than the 10 - 15% price change. Nevertheless, Equation (101) clearly shows that the leading brand has more room in determining its price provided that competitors follow the price adjustments. Based on the foregoing conclusions, the best strategy for Brand A1 can be described as increasing its price in a gradual manner: increase the price by 10-15% first, and then keep prices level for a sufficient time to observe the competitor responses and to re-estimate the sales volume model, and then repeat the optimization exercise under the new setting.

Before concluding this section, we would like to discuss the impact of sales seasonality on pricing. The temperature and tourism variables drive the seasonality in sales, neglecting the slight seasonal variation in distribution. The model for monthly Brand A1 sales is recast to stress the price and seasonality variables only:

(102)**K** $q_{At} = 463,997 - 1,240 p_{At} + 3,042 \Delta T emp_t + 39 \Delta f_t - 2,205 r_t + e_{At}$

The revenue-maximizing price is determined by taking the first derivative of the revenue formula and setting it equal to zero:

(103) **K**
$$p_{A_{t}}^{R^{*}} = 186.7 + \frac{3,042 \Delta T en p_{t} + 39 \Delta f_{t} - 2,205 r_{t}}{2,480}$$

It is important to note that constant of Equation (94) differs slightly, 184.6 to 186.7, because it includes the annualized impact of Ramadan.

Temperature is 13.5°C and the number of tourists is around 975,000 for an average month in the last year of the investigated period. $\Delta Temp_t$, and Δf_t refer to the deviations from these average values. For example, in the hottest month, temperature is 24.0C° and number of tourists is 1,777,000. The revenue-maximizing price is calculated as:

(104) **K**
$$p_{A}^{R^*} = 186.7 + \frac{3,042*(24.0-13.5)+39*(1,777-975)}{2,480} = 212.2$$

However, when the temperature is 2.5° C and the number of tourists is 426,000 (i.e. the coldest month), revenue-maximizing price is 164.6. Therefore, the optimal price level for Brand A1 varies within a year in the [164.6 – 212.2] bracket, with an average at 186.7, excluding the Ramadan impact. Figure 4.5 demonstrates the optimal price (dark line) and the observed price (light line) for the last 12 months of the investigated period.

Figure 4.5: Optimal Seasonal Pricing

The seasonal pricing scheme implies higher prices in the summer, the high demand season, and lower prices in the winter, the low demand season. However, observed prices do not show the same seasonality effect. On the other hand, Ramadan also affects beer demand significantly and calls for a reduction in price level. Based on Equation (103), the optimal price should be decreased by 0.9 ('000 TL) for each day coinciding with Ramadan. For example, if all 29 days of Ramadan coincides with the coldest month for the year, then optimal price for that month should be 138.8, instead of the 164.6 determined above.

CHAPTER 5

CONCLUSION

In this chapter, we collect together and summarize the main findings and conclusion of the study. We classify the principal findings under the categories of methodology and market demand structure. We start with methodological observations first.

Methodology findings

The econometric estimation of market demand is based on data derived from a sample of retailers aggregated at market level. The level of data aggregation is commensurate with the level of the decision, as we seek to describe an optimal pricing scheme for the market. However, aggregate market-level data lacks the microstructure of trade due to the inherent "averaging out" characteristic. For example, consider two brands which are sold at different prices in many retail points, but are located at price parity when averaged out for the whole market; it is not possible to distinguish the impact of price differentials between two brands if market-level data is used. Moreover, regional promotions and point-of-sales activities like in-store merchandising also affect the sales volume, but cannot be detectable in market-level data. Therefore, results based on aggregate data should only be generalized with the "averaging out" reservation.

The major limitation of the econometric approach is that the models are myopic. Observed data is used to construct the model, which is capable of forecasting the sales volume if and only if changes in the determinant are within the observed range of values. In other words, econometric models can interpolate, but cannot extrapolate. Therefore, consequences of the managerial actions that have never been observed historically should be sought by either using an experimental method like test market or a survey method like conjoint analysis. Price is a rather complicated explanatory variable when modeling a market exposed to high inflation. Under such a setting, managers typically use pricing to cope with inflation, rather than to deal with competition. There are frequent price increases in the market, and these increases are in a way to match the inflation. This boosts the correlation among the prices in the market, and makes it more difficult to differentiate the impact of price change in one brand from the others, raising the multicollinearity problem.

Market demand findings

The *market level model* indicates that the beer sales volume is affected by both beer price and raki price. The price elasticity of beer is found to be in the inelastic range as - 0.37. This result is in line with the a priori expectations and findings of the earlier studies: market level elasticities are in the inelastic range for almost all consumer goods, and consumers are less sensitive against the changes in the prices of addictive products compared to ordinary products. Low cross-price elasticity between beer and raki calls for a limited substitutability among the two alcoholic beverage categories.

Contrary to the common belief in the industry, beer distribution has no impact on beer demand in the observed range. Beer distribution should have impact in the outer range, such that if there is no distribution, there should be no sales. Therefore, it can be concluded that distribution has reached the non-contributing, saturated level in the beer market.

Temperature and tourism are identified as the drivers of the seasonality in beer demand. Moreover, Ramadan has serious adverse impact on beer sales. Reduced alcoholic beverage consumption in Ramadan decreases the annual beer consumption by 2% on average in the investigated period. However, the monthly effect can be even more severe; Ramadan coincides with winter months in the investigated period and reduces monthly sales volume by 35-40% in these months, provided that it fully coincides with the calendar month. In the investigated period, the market achieved 2% annual growth rate. The model identifies tourism and GDP as the growth drivers. When the historical (i.e. last decades average) growth rates for these factors are assumed, it can be concluded that the beer market can grow at 5% per year. The low growth rate in the investigated period can be attributable to the economic, diplomatic, and regional crises experienced in that period. However, the lucrative growth era is over and per capita consumption is fairly stable over the investigated period. Therefore, it can be concluded that there is no motive for a potential beer drinker to consume more, and the market growth is rather linked to environmental factors like GDP, and tourism. Summarizing the foregoing discussion, Turkey beer market can be characterized as a "slow growing, mature market".

The *brand level model* identifies beer distribution as the major determinant of the selective demand, unlike the market level model. Although extending the number of beer selling points does not increase beer sales volume, the more points one brand is present in, the more share it captures from the total beer demand.

The dominant brand in the market owns a price elasticity of -0.78. Prior studies determine brand-level price elasticities to be more than -1 in the elastic region. Brand A1 is a contradiction to the literature due to its overwhelming leading power in the marketplace. Nevertheless, although Brand A1 has almost 80% share in the market, its price elasticity is almost twice the market elasticity, noting that market-level price elasticity for beer is found as -0.37. Therefore, it can be concluded that even the presence of restricted competition decreases the flexibility in setting the prices.

Solution to the brand level price optimization problem is game-theoretic. However, it can be concluded that price leader is more flexible in determining price adjustments if the other players in the market tend to follow the pricing initiative of the leader. The pairwise correlation matrix for the brand-level model signals the existence of high correlation among the prices of mainstream brands. Therefore, it can be interpreted that two private beer producers synchronize the timing and magnitude of their price increases for their mainstream brands. This finding supports the existence of a "leader-follower

model" in the marketplace, which is even stressed under the inflationary operating conditions.

Revenue and profit maximizing prices are within a certain differential, provided that variable cost is constant. With another perspective, revenue and profit maximizing prices are different, if not all costs are fixed. Nevertheless, prices are well below both the revenue and the profit maximizing level in the Turkish beer market. Three major factors drive the discrepancy between the optimal and observed beer prices in the investigated period:

- Ø Dominant player was excessively market share and sales volume centric until recently it started to make investment abroad.
- Ø Managers have long perceived pricing as a remedy to cope up with the high inflation, rather than to use it as a strategic tool in accomplishing firm objectives.
- Ø Firms lacked the necessary resources to engage in demand and pricing analysis.

Beer has a seasonal demand: more beer is sold in the summer time. Moreover, it is not possible to stock beer for a long time, as it is perishable and in bulk. The seasonal demand structure of beer calls for a seasonal pricing scheme: a higher price in the high season.

Further work

There are several lines of research that can be followed in further work. One of these is to devise a method to support the analysis on quantitative market results. Research can be designed to identify the inherent brand switching dynamics and brand proximity as an input to the market modeling process. For example, only the proximate brands, sharing a common consumer base, can be used in the regression instead of the whole set of brands, or regression coefficients can be restrained by some pre-defined relations. Moreover, estimating regression parameters by some method that is less sensitive to multicollinearity than ordinary least squares and comparing these parameters with the ones estimated by the "variable deletion" method is another future research area.

In the price optimization work, results are derived by assuming no competitor response. The direction and magnitude of the model results make the preceding assumption a safe one, securing the robustness of the study findings. However, game-theoretic tools like reaction curves and probabilistic best moves can be used, and plausible scenarios can be derived to enrich the optimization work.

Market data used in the study is historic, and does not represent the current market structure. Currently, there are a couple of more brands and three price segments, with the addition of premium segments, in the market. Consumer reaction in the premium segment can be different than the other two, as premium consumers are expected to be less price conscious. Demand analysis can be renewed with a more recent set of data, to understand the implications of the emergence of premium segment. Nevertheless, it is important to note that Brand A1 manages to preserve its position in the market, and premium brands remain marginal. Therefore, most of the our model results remain valid.

Periodical renewal of the study would be helpful in understanding the development of beer price elasticity. It is widely claimed that price elasticity is strongly dependent on the purchasing power of the consumers. One supporting example to this claim can be the comparison of USA and Turkey: US consumers have 5-6 times more purchasing power compared to the Turkish consumers, and price elasticity of beer in US (-0.23) is significantly lower than the elasticity identified for Turkey (-0.37). Consumer purchasing power is changing fast with the developing economy of Turkey, and it is possible to plot the change in price elasticity against the change in purchasing power, if the study is periodically renewed. Moreover, economic crises, experienced three times in Turkey within the last decade, severely affect the household income, and cause a discontinuity in the purchasing power. The income effect on price elasticity can be clearly identified by comparing the results of a pre- and post-crisis study.

REFERENCES

Balderston, F.E., 1956. Assortment Choice in Wholesale and Retail Marketing, Journal of Marketing, Vol. 21 (October), pp. 175-183

Basuroy, S., Mantrala, M.K., Walters, R.G., 2001. The Impact of Category Management on Retailer Prices and Performance: Theory and Evidence, Journal of Marketing, Vol. 65, Issue 4, pp. 16-32

Bolton, Ruth. N., 1989. The Robustness of Retail-Level Price Elasticity Estimates, Journal of Retailing, Vol. 65, Issue 2, pp. 193-219

Bucklin, R.E., Srinivasan, V., 1991. Determining Interbrand Substitutability through Survey Measurement of Consumer Preference Structures, Journal of Marketing Research, Vol. 28 (February), pp. 58-71

Carpenter G.S., Cooper, L.G., Hanssens, D.M., Midgley, D.F., 1988. Modeling Asymmetric Competition, Marketing Science, Vol. 7, Issue 4, pp. 393-412

Cooper, Lee G., Nakanishi, Masao, 1982. Simplified Estimation Procedures for MCI Models, Marketing Science, Vol. 1, Issue 3, pp. 314-322

Cooper, Lee G., Nakanishi, Masao, 1988. Market Share Analysis: Evaluating Competitive Marketing Effectiveness, Kluwer Academic Publishers, Boston

Darden, Bill R., 1968. An Operational Approach to Product Pricing, Journal of Marketing, Vol. 32, Issue 2, pp. 29-33

Dean, J., 1976. Pricing Policies for New Products, Harvard Business Review, Vol. 54 (November/December), pp. 141-153

DeVinney, T., 1988. Issues in Pricing: Theory and Research, Lexington Books, Lexington, MA

Doyle, Peter, Gidengil, Zeki B., 1977. A Review of In-Store Experiments, Journal of Retailing, Vol. 53 (Summer), pp. 47-62

Friedman, James W., 1977. Oligopoly and Theory of Games, Amsterdam: North Holland

Gao, X.M., Wailes, Eric J., Cramer, Gail L., 1995. A Microeconometric Model Analysis of U.S. Consumer Demand for Alcoholic Beverages, Applied Economics, Vol. 27, Issue 1, pp. 59-69.

Gillis, F.E., 1969. Managerial Economics, Addison-Wesley, pp. 254

Green, Paul E., Rao, Vithala R., Srinivasan, V., 1978. Conjoint Analysis in Consumer Research: Issues and Outlook, Journal of Consumer Research, Vol. 8 (August), pp. 355-363

Hanssens, D.M., Parsons, L.J., Schultz, R.L., 1990. Design of Static Response Models, Market Response Models: Econometric and Time Series Analysis, Kluwer Academic Publishers, Boston, Vol. 2, pp. 89-138

Hines, William W., Montgomery, Douglas C., 1990. Probability and Statistics in Engineering and Management Science, John Wiley & Sons, New York, pp. 521-527

Hoerl, A.E., Kennard, R.W., 1970. Ridge Regression: Biased Estimation for Non-Orthogonal Problems, Technometrics, Vol. 12, pp. 55-67 Koksalan, M., Erkip, N., Moskowitz, H., 1999. Explaining Beer Demand: A Residual Modeling Regression Approach Using Statistical Process Control, International Journal of Production Economics, Vol: 58, pp. 265-276

Link, Ross, 1995. Are Aggregate Scanner Data Models Biased?, Journal of Advertising Research, Vol. 35, Issue 5, RC 8-12

Little, John D.C., Shapiro J.F., 1980. A Theory for Pricing Non-featured Products in Supermarkets, Journal of Business, Vol. 53, Issue 3, pp. 199-209

Mahajan, V., Green, P.E., Goldberg, S.M., 1982. A Conjoint Model for Measuring Selfand Cross-Price/Demand Relationships, Journal of Marketing Research, Vol. 19(August), pp. 334-342

Monroe, Kent B., 1971. Measuring Price Thresholds by Psychophysics and Latitudes of Acceptance, Journal of Marketing Research, Vol. 8 (November), pp. 460-464

Monroe, K.B., Della Bitta, A.J., 1978. Models for Pricing Decisions, Journal of Marketing Research, Vol. 15 (August), pp. 413-428

Mulhern, F.J., Leone, R.P., 1991. Implicit Price Bundling of Retail Products: A Multiproduct Approach to Maximizing Store Profitability, Journal of Marketing, Vol. 55, Issue 4, pp. 63-76

Nagle, T., 1984. Economic Foundations for Pricing, Journal of Business, Vol. 57.1, Part 2, pp. 3-26

Nagle, T., 1987. The Strategy and Tactics of Pricing, Prentice-Hall, Englewood Cliffs, NJ

Neslin, S.A., Shoemaker, R.W., 1983. Using a Natural Experiment to Estimate Price Elasticity: The 1974 Sugar Shortage and the Ready-to-eat Cereal Market, Journal of Marketing, Vol. 47, Issue 1, pp. 44-57

Oxenfeldt, Alfred R., 1973. A Decision-making Structure for Price Decisions, Journal of Marketing, Vol. 37, Issue 1, pp. 48-53

Rao, Vithala R., 1984. Pricing Research in Marketing: The State of the Art, Journal of Business, Vol. 57, Issue 1, pp. 39-60

Rao, Vithala R., 1993. Pricing Models in Marketing, Handbooks in OR& MS, Elsevier Science Publishers, Vol.5, pp.517-552

Reibstein, D.J., Gatignon, H., 1984. Optimal Product Line Pricing: The Influence of Elasticities and Cross-Elasticities, Journal of Marketing Research, Vol. 21 (August), pp. 259-267

Schmalensee, R., 1984. Gaussian Demand and Commodity Bundling, Journal of Business, Vol. 57, Issue 1/2, pp. 211-230

Simon, H., 1979. Dynamics of Price Elasticity and Brand Life Cycles: An Empirical Study, Journal of Marketing Research, Vol. 16 (November), pp. 439 - 452

Tellis, Gerard J., 1986. Beyond the Many Faces of Price: An Integration of Pricing Strategies, Journal of Marketing, Vol. 50(October), pp. 146-160

Tellis, Gerard J., 1988. The Price Elasticity of Selective Demand: A Meta-Analysis of Econometric Models of Sales, Journal of Marketing Research, Vol. 25 (November), pp. 331-341

Urban, Glen L., 1969. A Mathematical Modeling Approach to Product Line Decisions, Journal of Marketing Research, Vol. 6 (February), pp. 40-47

Vilcassim, N., Chintagunta, P.K., 1995. Investigating Retailer Product Category Pricing from Household Scanner Panel Data, Journal of Retailing, Vol. 71, Issue 2, pp. 103-128

Webster, Frederick E., 1979. Industrial Marketing Strategy, John Wiley & Sons Inc., pp. 162-163

SALES VOLUME DATA – LINEAR MODEL

Table A.1: Sales Volume Data – Linear Model

	0 B	0.11	0.10	0.10	0.14	o	0.14	0.01	0.84	0.00	0.04	0 01
Month	Q_Beer	Q_AI	Q_A2	Q_A3	Q_A4	Q_A5	Q_A6	Q_R1	Q_B2	Q_B3	Q_B4	Q_CI
1	330,624	255,020	9,807	2,518	0	13,346	4,463	21,556	0	7,563	12,811	3,541
2	360,322	274,486	9,269	2,878	0	22,397	3,773	21,603	0	7,299	15,214	3,403
3	395,745	309,302	7,247	2,329	0	24,639	5,234	21,588	0	6,814	15,618	2,974
4	389,089	299,127	5,851	2,527	0	22,567	5,284	24,164	0	7,692	19,118	2,759
5	364,599	278,926	5,298	3,070	0	21,719	5,077	22,172	0	7,036	17,464	3,838
6	356,931	279,915	4,571	2,337	0	18,091	4,801	19,841	0	6,642	15,669	5,062
7	323,781	255,621	4,210	3,350	0	17,100	4,167	16,781	8	5,761	13,416	3,367
8	312,026	241,390	6,235	3,152	0	17,210	3,600	17,946	46	5,552	14,766	2,129
9	222,136	167,804	4,944	2,680	0	10,545	2,619	13,468	40	4,923	12,863	2,251
10	211,297	166,450	3,781	2,111	0	9,384	2,838	10,009	34	5,053	9,107	2,530
11	255,593	195,508	4,570	3,225	2,151	11,307	5,368	11,740	65	4,387	14,027	3,245
12	285,359	221,533	4,315	2,165	5,990	10,000	5,186	15,834	140	5,412	11,890	2,893
13	320,936	251,536	5,286	2,732	7,260	9,511	4,008	18,673	71	5,446	12,837	3,577
14	337,525	266,487	5,165	2,744	7,054	6,602	5,443	19,705	216	6,543	13,803	3,764
15	368,076	298,958	6,589	2,709	6,505	6,326	4,358	21,460	133	5,564	12,229	3,244
16	384,166	309,161	5,161	3,162	5,258	7,069	4,973	23,035	229	5,783	15,977	4,357
17	377,246	302,605	4,696	3,220	4,540	6,301	4,401	23,171	172	6,337	16,747	5,056
18	335,192	265,741	4,536	3,472	3,920	6,490	3,968	21,540	278	6,681	13,789	4,778
19	322,523	253,178	5,233	3,234	3,443	7,357	3,398	20,633	652	4,979	15,936	4,479
20	279,900	214,384	4,978	2,802	3,263	8,128	3,033	17,738	1,901	5,201	14,893	3,579
21	197,509	150.868	3.511	2,604	2.645	6.044	1.510	11.536	2.214	3.838	10.025	2,715
22	225,812	174.086	4.035	2.113	2,548	5,802	3.038	11.674	3.636	4.436	11.225	3.219
23	256,623	198,234	3,957	2,385	2,373	4,071	2,940	14,520	7,972	4,025	12,166	3,980
24	279.932	210.092	4.594	2.538	2.912	7.021	3.598	14,477	9.792	4.968	15.032	4,909
25	327.009	251.217	5.539	2.541	3.249	8,986	5.051	16.357	12.218	4.175	11.904	5.772
26	342.912	256.697	5,766	3.007	3.350	9,985	5.675	17.929	16,184	4.277	13.623	6.418
27	380,860	281 406	6 862	3 870	4,608	12,309	4 864	23 153	19 468	5.065	15.098	4,158
28	371.012	280,980	6 105	4.236	3 838	11 623	4 252	21.021	17 874	4 693	13 367	3.022
29	360 119	272.433	5,348	3,710	3 543	11 220	4,727	23,996	15 669	4,616	11,953	2,903
30	355.071	262 116	5 119	3 266	2 610	11 881	4 211	26 4 68	15 701	4 892	15 573	3 235
31	312 728	231 569	4 650	2 392	2,010	12 173	4 846	17 437	13 551	3 601	16 1 19	4 064
32	245 316	182 367	3 655	1 903	1 769	6 967	1 301	13 271	11 404	3 564	13 770	2 254
32	216.686	161 857	3,000	1 53/	1 420	7 005	3 036	12 632	10.81/	2 753	10.684	951
33	275 027	215 110	3 741	2 380	1,429	0 731	1 025	12,055	0.047	3 050	12 509	663
34	213,931	215,119	1 250	2,300	1,000	11 727	5,007	14 462	11 202	4 150	14,720	1 215
26	205.000	210,323	4,558	1,979	2 252	12 167	5,097	15,020	0.701	4,139	14,/39	2 9 4 5
27	276.945	200,562	4,423	1,770	2,333	16.762	3,131	16,030	9,791	4,039	12,0/1	2,045
20	111 950	290,302	5.270	2,020	1,982	15,755	7 974	10,818	12,014	3,393 7 577	15,520	2,120
38	411,830	515,/90	3,270	2,038	2,349	13,/33	1,0/4	22,134	11,404	1,311	13,/13	3,000

Table A.1 (continued)

Month	Q_Beer	Q_A1	Q_A2	Q_A3	Q_A4	Q_A5	Q_A6	Q_B1	Q_B2	Q_B3	Q_B4	Q_C1
39	434,339	335,923	5,079	2,241	2,293	18,586	6,746	23,707	11,528	6,743	15,879	5,426
40	444,725	342,755	5,432	2,367	2,030	18,727	6,722	26,462	11,609	5,934	15,008	6,712
41	422,480	324,823	4,910	2,091	2,101	13,981	5,850	29,214	10,629	7,271	13,899	6,130
42	374,407	288,058	5,020	1,550	2,521	10,565	4,344	26,921	8,718	7,429	11,818	5,678
43	337,220	258,132	4,698	1,529	2,028	10,524	3,485	24,442	6,872	6,682	12,358	4,822
44	188,522	137,740	3,143	1,363	1,829	6,756	2,044	15,800	5,333	4,109	7,046	2,339
45	278,822	207,000	5,163	1,557	2,321	10,062	1,896	22,096	6,826	7,881	9,600	2,722
46	309,536	239,807	5,641	1,720	2,473	8,516	2,007	19,313	6,763	7,026	9,919	3,991
47	315,732	246,023	6,566	1,922	2,179	9,565	2,072	18,462	5,596	5,977	10,564	4,111
48	338,627	265,506	6,844	2,042	2,272	9,937	2,066	19,443	5,837	6,689	10,793	5,061
49	389,526	307,516	6,506	1,685	1,797	10,676	1,536	23,373	6,651	7,179	14,047	6,213
50	406,665	318,401	7,254	2,286	2,281	11,568	1,731	23,170	9,312	8,231	13,072	7,157
51	433,994	340,742	7,756	2,169	1,966	13,927	1,038	22,969	9,510	9,384	14,768	6,952
52	437,804	335,852	5,834	1,821	1,516	16,090	944	31,911	8,162	8,364	15,368	7,505
53	411,278	314,880	6,003	1,699	1,702	17,904	1,106	28,758	6,645	8,467	14,543	5,036
54	375,691	284,656	5,782	1,438	1,692	16,855	720	26,062	6,038	8,554	13,137	6,833
55	270,252	203,574	4,872	1,018	1,572	10,541	313	18,839	3,892	5,747	12,110	4,779
56	187,012	143,333	3,597	945	966	6,818	46	10,772	2,675	4,690	8,117	2,909
57	257,647	196,429	4,460	1,287	1,270	8,804	38	14,648	5,208	5,731	12,028	4,547
58	257,740	196,141	5,571	1,357	1,218	10,363	18	14,969	3,153	5,601	11,457	4,697
59	281,993	213,810	6,571	1,521	2,055	12,780	10	16,423	2,422	6,098	11,139	5,156
60	306,055	232,085	6,326	1,411	1,368	14,857	61	18,211	2,302	7,630	13,547	4,448
Avg	325,377	250,427	5,347	2,322	2,310	11,779	3,581	19,409	5,995	5,864	13,336	4,079
Max	444,725	342,755	9,807	4,236	7,260	24,639	7,874	31,911	19,468	9,384	19,118	7,505
Min	187,012	137,740	3,090	945	0	4,071	10	10,009	0	2,753	7,046	663

PRICE DATA – LINEAR MODEL

Table A.2: Price Data – Linear Model

Month	p_Beer	p_A1	p_A2	p_A3	p_A4	p_A5	p_A6	p_B1	p_B2	p_B3	p_B4	p_C1
1	134.4	136.9	158.5	149.5	-	98.1	113.6	138.3	-	158.8	103.7	81.5
2	136.1	139.7	151.3	158.1	-	97.0	115.4	141.1	-	162.1	114.9	79.8
3	144.3	148.5	171.6	151.7	-	97.5	120.5	150.7	-	171.1	120.8	82.3
4	149.9	154.1	179.7	164.4	-	102.9	117.8	156.7	-	179.0	127.5	82.0
5	157.4	162.4	191.9	171.4	-	110.8	128.0	165.5	-	187.7	124.9	88.3
6	160.2	165.9	192.4	173.1	-	108.1	125.5	166.1	-	188.1	123.4	86.8
7	155.5	159.8	191.2	175.8	-	109.8	137.7	162.4	217.5	186.4	118.2	78.9
8	157.1	160.8	188.9	174.7	-	113.0	137.8	164.5	112.8	190.8	124.3	87.4
9	163.0	167.0	193.1	178.4	-	116.6	131.4	174.0	101.2	190.3	134.8	73.8
10	159.4	163.1	188.2	173.1	-	117.6	137.0	163.9	110.4	188.1	131.4	72.9
11	162.1	167.5	182.9	170.9	175.2	122.8	129.8	165.3	116.9	180.4	134.4	73.8
12	168.5	171.9	193.0	178.0	181.3	127.4	139.5	175.6	145.4	190.5	141.3	62.0
13	165.8	167.9	191.6	179.8	182.1	130.3	145.7	173.7	124.5	194.3	137.6	65.1
14	167.6	169.4	186.2	186.4	183.4	133.7	146.7	173.0	127.9	190.7	143.8	82.1
15	171.0	172.1	192.0	188.4	189.9	132.5	149.1	177.8	143.6	198.3	145.1	80.1
16	172.9	175.6	187.9	188.8	191.6	129.3	147.3	178.7	128.2	197.5	143.5	76.2
17	171.5	174.8	180.1	189.4	188.8	127.7	135.6	179.1	139.6	202.3	132.3	80.7
18	166.8	169.7	182.3	184.8	183.7	123.1	130.8	178.7	124.2	193.1	128.3	75.9
19	160.6	163.3	178.3	175.6	177.0	127.1	134.0	174.5	153.2	185.9	125.4	73.0
20	155.4	158.7	177.8	172.3	175.2	126.5	129.1	161.2	151.3	171.5	120.7	73.4
21	150.3	152.1	169.1	165.4	168.3	129.9	126.1	157.6	151.6	170.2	130.2	67.1
22	149.1	151.7	172.2	165.5	169.3	121.8	118.2	156.3	150.5	171.5	122.8	65.0
23	157.9	160.7	184.6	175.5	177.8	123.4	127.1	169.3	157.8	182.4	123.9	65.0
24	155.0	158.4	176.1	172.6	176.8	138.5	127.2	165.0	155.7	178.4	122.1	61.2
25	151.1	153.1	170.8	164.8	174.4	141.0	124.1	165.3	153.0	173.0	121.7	66.5
26	151.9	154.7	173.5	171.1	174.9	135.3	129.3	157.6	150.7	170.3	127.9	67.5
27	157.4	160.3	177.2	173.2	181.7	133.0	128.4	163.1	154.0	179.9	122.7	74.2
28	154.8	156.8	176.4	173.0	174.5	129.8	132.9	162.2	151.7	172.4	126.2	72.4
29	151.7	153.9	173.2	169.2	173.0	126.8	121.6	158.4	145.9	167.8	117.7	82.6
30	144.0	147.1	159.8	161.8	168.0	121.2	118.1	148.9	140.6	160.8	108.4	77.1
31	145.5	149.7	165.5	165.7	170.6	120.6	115.0	157.1	142.0	162.6	106.3	73.5
32	145.1	149.4	165.7	161.3	168.5	113.1	110.8	155.5	141.3	164.1	104.8	74.4
33	155.6	160.1	174.2	174.2	183.3	122.2	115.5	164.5	152.7	175.6	104.8	102.4
34	155.1	158.6	173.2	175.3	177.1	121.5	128.3	165.4	152.4	171.3	110.0	112.5
35	153.6	157.5	169.1	173.9	170.5	124.4	131.5	157.9	149.8	165.3	117.8	107.1
36	150.2	153.0	167.8	169.4	169.1	125.8	134.9	154.4	148.4	165.0	119.5	105.8

Table A.2 (continued)

Month	p_Beer	p_A1	p_A2	p_A3	p_A4	p_A5	p_A6	p_B1	p_B2	p_B3	p_B4	p_C1
37	155.8	158.7	172.0	169.6	173.2	128.3	145.0	164.8	150.7	166.7	125.0	104.7
38	161.7	164.7	183.1	181.6	188.9	129.3	151.5	168.5	162.2	180.4	127.8	102.4
39	159.4	162.8	177.9	178.9	179.7	125.6	132.3	166.6	159.7	179.0	127.9	98.2
40	155.1	157.5	175.8	174.9	177.1	127.3	142.0	158.9	155.8	174.7	127.6	95.3
41	151.2	152.4	169.1	168.5	174.8	123.3	140.3	158.1	150.6	171.4	124.8	96.0
42	152.0	153.7	169.6	169.8	169.2	120.0	139.2	155.3	146.6	166.2	121.7	90.0
43	146.7	148.8	164.4	168.6	164.4	114.7	133.8	146.1	143.7	159.3	118.2	89.0
44	145.2	145.9	162.8	160.4	163.7	118.3	132.1	155.6	141.4	152.1	117.1	90.0
45	142.5	143.9	159.4	158.4	158.6	113.9	131.9	141.5	140.1	155.7	111.7	86.1
46	144.9	146.0	161.5	162.8	157.9	112.2	129.7	146.3	144.2	154.4	111.6	85.3
47	146.6	147.7	159.6	158.0	163.4	115.5	136.8	147.0	147.1	156.5	110.6	90.8
48	149.7	151.8	164.0	156.9	165.4	117.0	133.4	150.5	142.6	162.9	106.1	93.6
49	152.1	154.3	170.6	170.4	176.6	117.6	131.4	153.4	152.7	170.2	105.1	94.8
50	153.8	156.0	175.8	174.1	179.3	114.6	129.3	157.2	148.3	172.4	108.4	98.3
51	160.9	163.4	187.1	185.2	189.6	117.7	136.5	163.1	158.2	173.9	111.9	99.7
52	157.2	159.7	181.3	183.1	188.0	116.8	140.5	155.4	158.0	169.5	111.1	103.8
53	159.8	162.9	181.0	181.8	193.4	112.2	148.6	161.2	154.5	170.5	109.8	102.8
54	158.7	162.2	179.4	184.3	189.3	111.3	157.9	159.3	157.5	170.2	108.7	102.2
55	160.7	164.0	178.7	190.6	181.9	117.0	150.5	164.5	156.5	173.1	107.6	106.2
56	165.0	168.2	184.0	185.6	194.0	119.2	147.2	166.6	167.6	168.9	107.2	112.3
57	155.4	157.9	178.6	192.3	181.7	115.1	136.7	153.6	149.9	161.0	110.4	107.3
58	154.1	157.0	175.4	185.3	180.6	116.4	148.4	143.0	149.4	163.7	113.1	107.6
59	153.1	155.9	170.4	156.6	159.2	117.9	158.6	142.6	151.0	157.7	113.5	106.2
60	149.5	151.8	167.3	163.1	167.7	113.5	134.9	145.0	154.3	155.5	113.6	105.3
Average	155.0	157.9	175.9	172.6	176.5	120.2	133.5	160.1	147.0	173.7	120.2	86.6
Max	172.9	175.6	193.1	192.3	194.0	141.0	158.6	179.1	217.5	202.3	145.1	112.5
Min	134.4	136.9	151.3	149.5	157.9	97.0	110.8	138.3	101.2	152.1	103.7	61.2

DISTRIBUTION DATA – LINEAR MODEL

Table A.3: Distribution Data – Linear Model

Month	d_Beer	d_A1	d_A2	d_A3	d_A4	d_A5	d_A6	d_B1	d_B2	d_B3	d_B4	d_C1
1	35.0	31.7	14.3	7.8	0.0	11.2	7.4	10.6	0.0	9.0	10.5	2.4
2	35.2	31.8	12.9	6.7	0.0	10.8	6.5	10.2	0.0	8.4	11.4	2.8
3	35.7	32.4	11.2	6.2	0.0	11.2	7.9	9.9	0.0	8.8	11.1	2.0
4	37.6	33.7	10.0	7.4	0.0	11.6	7.7	10.4	0.0	8.5	10.8	1.9
5	36.7	32.9	10.4	8.5	0.0	10.8	8.1	9.6	0.0	8.6	10.6	2.1
6	35.5	32.0	9.8	8.5	0.0	10.0	7.0	9.2	0.0	8.8	10.7	1.7
7	35.2	32.0	9.3	9.2	0.0	9.4	6.7	8.4	0.0	7.8	9.7	1.2
8	35.5	32.6	10.4	9.6	0.0	9.1	5.9	8.5	0.0	7.9	10.5	1.1
9	35.4	32.9	10.4	8.9	0.0	8.3	5.7	7.6	0.0	8.1	10.4	1.1
10	33.6	31.2	9.6	8.0	0.0	8.1	6.6	6.6	0.0	7.3	9.4	1.2
11	33.9	31.4	9.5	8.6	7.6	7.7	7.1	7.3	0.0	7.2	9.3	1.7
12	34.5	31.3	9.7	7.9	12.8	7.8	7.1	7.9	0.3	7.9	10.2	2.0
13	34.0	31.2	9.2	7.3	13.4	7.8	6.5	9.3	0.4	8.5	10.0	1.7
14	34.0	31.7	9.8	7.5	13.3	7.0	6.5	10.3	0.5	8.8	9.8	1.9
15	34.4	32.1	10.2	7.5	12.8	6.8	5.7	10.4	0.8	7.9	10.2	1.3
16	35.0	33.2	10.0	8.9	11.2	6.9	6.2	9.8	0.7	8.6	10.4	2.0
17	34.2	32.2	9.3	9.9	10.8	6.0	5.8	9.8	0.7	8.0	10.9	1.8
18	34.1	31.9	9.7	9.7	10.1	6.3	5.2	10.8	0.7	8.5	10.0	1.8
19	34.4	31.8	10.3	10.3	10.8	6.5	5.6	11.2	1.2	8.6	9.9	2.1
20	32.7	30.3	10.1	9.6	10.1	5.5	5.1	10.4	2.5	8.8	9.5	1.8
21	32.2	30.0	9.9	9.6	9.8	5.6	5.1	9.5	3.4	8.1	8.5	1.4
22	32.5	29.8	9.5	9.8	9.0	5.6	5.4	9.6	5.4	8.5	9.4	1.8
23	32.6	29.9	9.2	9.0	9.6	5.7	5.7	9.7	8.3	8.4	9.8	2.3
24	32.1	30.1	9.5	8.7	10.4	7.5	6.3	9.0	9.4	8.2	9.7	1.9
25	32.7	30.6	11.5	9.4	11.9	8.9	7.8	9.5	9.9	8.0	9.6	2.2
26	32.4	30.5	11.4	10.5	11.3	9.7	7.8	10.2	11.1	8.0	9.6	1.8
27	32.3	30.2	11.2	10.6	11.9	10.3	7.4	10.2	11.3	7.9	9.7	1.5
28	33.0	31.1	13.0	11.1	11.9	9.0	7.5	9.5	11.8	7.7	9.2	1.5
29	33.5	31.2	12.8	10.4	11.5	9.2	7.6	9.8	11.9	7.6	9.3	1.5
30	33.2	31.3	13.4	9.9	11.7	9.4	7.2	9.7	11.9	7.6	10.0	1.8
31	32.7	30.3	11.8	9.8	11.1	9.4	6.3	9.9	11.4	6.8	11.1	1.7
32	33.1	31.0	11.3	9.8	10.2	8.5	7.0	10.0	11.4	6.8	11.8	1.6
33	32.9	31.1	10.9	9.0	9.7	7.4	6.6	9.6	11.4	6.1	10.7	1.4
34	33.9	31.9	10.5	8.8	9.4	9.3	7.9	9.7	11.2	6.4	10.6	1.4
35	34.5	32.6	12.1	9.4	9.3	11.3	10.1	9.5	10.7	7.4	11.7	2.8
36	34.3	32.3	13.5	9.8	9.6	12.3	10.1	8.9	10.7	7.2	11.5	3.9
37	34.8	32.5	14.0	10.6	10.9	14.4	10.1	9.7	12.5	7.3	12.4	4.5
38	35.2	32.5	14.5	11.1	11.8	15.5	9.7	10.9	12.3	7.8	12.6	5.3

Table A.3 (continued)

Month	d_Beer	d_A1	d_A2	d_A3	d_A4	d_A5	d_A6	d_B1	d_B2	d_B3	d_B4	d_C1
39	35.6	33.2	14.2	11.8	11.3	16.1	9.2	11.3	11.5	8.2	12.1	6.0
40	36.6	34.1	13.9	12.2	10.7	15.8	8.8	11.7	11.4	9.0	12.0	5.7
41	36.3	33.8	14.3	11.6	11.7	15.5	8.5	12.2	11.6	10.4	11.4	5.4
42	35.2	32.6	13.2	11.7	12.5	14.0	8.1	12.6	11.0	10.4	11.1	5.1
43	35.8	33.4	13.3	11.9	13.5	14.6	8.3	13.2	10.2	10.1	11.5	4.8
44	35.2	33.0	13.0	11.2	12.2	14.6	8.2	12.1	9.9	8.9	10.5	3.8
45	35.3	33.1	13.8	11.9	12.4	15.0	7.8	12.0	10.4	9.0	11.4	4.0
46	34.7	32.7	13.6	11.2	12.2	15.2	7.5	11.8	9.8	9.6	11.6	4.0
47	34.6	32.7	14.8	11.4	12.2	15.7	7.0	11.3	10.3	9.4	10.7	4.2
48	34.9	33.0	15.2	11.0	12.2	15.7	7.7	11.0	10.8	9.9	10.1	4.6
49	35.7	34.0	16.1	12.4	12.2	16.3	6.4	10.9	11.9	10.3	10.7	5.3
50	35.0	33.4	15.2	11.9	11.3	16.2	5.5	10.8	12.4	10.4	11.4	5.0
51	35.2	33.4	14.9	11.0	10.9	16.0	4.0	11.6	13.6	10.4	11.8	4.8
52	35.8	34.2	14.1	10.4	10.4	15.8	3.4	11.8	13.3	10.8	11.4	4.9
53	34.7	33.0	14.4	10.3	9.5	15.0	2.6	12.8	11.6	11.5	10.7	4.2
54	34.0	32.5	14.9	9.5	9.0	15.5	2.0	12.0	11.4	10.6	10.2	5.0
55	32.6	31.2	13.8	9.3	8.5	13.4	0.7	11.6	10.8	9.5	10.4	5.0
56	33.7	31.8	12.8	9.3	8.9	13.0	0.5	11.4	9.2	9.1	10.5	4.6
57	32.9	31.6	13.0	8.8	9.5	13.6	0.7	10.9	10.0	10.4	11.0	5.4
58	33.1	32.0	12.9	9.5	9.4	14.7	0.6	10.6	9.9	10.8	11.3	5.6
59	33.4	32.5	13.8	9.7	9.7	16.3	0.5	11.4	8.7	11.4	12.0	5.6
60	34.1	32.6	15.6	10.0	9.4	15.7	0.6	12.0	8.8	12.2	12.4	4.7
Average	34.3	32.1	12.1	9.7	9.1	11.2	6.2	10.3	7.2	8.7	10.6	3.1
Max	37.6	34.2	16.1	12.4	13.5	16.3	10.1	13.2	13.6	12.2	12.6	6.0
Min	32.1	29.8	9.2	6.2	0.0	5.5	0.5	6.6	0.0	6.1	8.5	1.1

ENVIRONMENTAL FACTORS – LINEAR MODEL

Month	p_raki ('000 TL)	GDP (10 ¹² TL)	Temp (C ⁰)	Tourist ('000)	Ramadan (days)
1	539	108.2	17.0	1,003	0
2	539	108.2	22.0	1,048	0
3	627	110.6	24.0	1,209	0
4	627	110.6	24.0	1,428	0
5	627	110.6	20.0	1,299	0
6	647	112.6	15.0	949	0
7	647	112.6	9.5	540	0
8	647	112.6	7.0	419	1
9	548	114.6	5.0	346	28
10	548	114.6	2.5	372	0
11	548	114.6	5.0	477	0
12	504	115.5	11.0	642	0
13	504	115.5	17.0	986	0
14	504	115.5	22.0	1,063	0
15	525	116.5	24.0	1,288	0
16	525	116.5	24.0	1,460	0
17	525	116.5	20.0	1,209	0
18	520	116.1	15.0	1,035	0
19	520	116.1	9.5	503	0
20	520	116.1	7.0	371	12
21	462	114.2	5.0	359	17
22	462	114.2	2.5	372	0
23	462	114.2	5.0	409	0
24	450	113.6	11.0	427	0
25	450	113.6	17.0	691	0
26	450	113.6	22.0	785	0
27	543	111.2	24.0	932	0
28	543	111.2	24.0	1,079	0
29	543	111.2	20.0	876	0
30	600	110.6	15.0	801	0
31	600	110.6	9.5	436	0
32	600	110.6	7.0	321	23
33	766	111.9	5.0	334	6
34	766	111.9	2.5	354	0
35	766	111.9	5.0	435	0
36	714	113.7	11.0	721	0
37	714	113.7	17.0	986	0

Table A.4: Environmental Factors – Linear Model

Month	p_raki ('000 TL)	GDP (10 ¹² TL)	Temp (C ⁰)	Tourist ('000)	Ramadan (days)
38	714	113.7	22.0	1,079	0
39	674	116.5	24.0	1,526	0
40	674	116.5	24.0	1,419	0
41	674	116.5	20.0	1,369	0
42	656	118.8	15.0	1,178	0
43	656	118.8	9.5	602	3
44	656	118.8	7.0	424	26
45	640	118.6	5.0	359	0
46	640	118.6	2.5	405	0
47	640	118.6	5.0	547	0
48	612	115.8	11.0	885	0
49	612	115.8	17.0	1,232	0
50	612	115.8	22.0	1,388	0
51	687	112.9	24.0	1,777	0
52	687	112.9	24.0	1,601	0
53	687	112.9	20.0	1,440	0
54	720	109.9	15.0	1,066	0
55	720	109.9	9.5	521	14
56	720	109.9	7.0	398	15
57	684	110.4	5.0	307	0
58	684	110.4	2.5	426	0
59	684	110.4	5.0	676	0
60	669	112.6	11.0	853	0
Average	608	113.7	13.5	824	2.4
Max	766	118.8	24.0	1,777	28
Min	450	108.2	2.5	307	0

Table A.4 (continued)

SALES VOLUME DATA – MULTIPLICATIVE MODEL

Month	Q_Beer	Q_A1	Q_A2	Q_A3	Q_A4	Q_A5	Q_A6	Q_B1	Q_B2	Q_B3	Q_B4	Q_C1
1	12.7	12.4	9.2	7.8	0.0	9.5	8.4	10.0	0.0	8.9	9.5	8.2
2	12.8	12.5	9.1	8.0	0.0	10.0	8.2	10.0	0.0	8.9	9.6	8.1
3	12.9	12.6	8.9	7.8	0.0	10.1	8.6	10.0	0.0	8.8	9.7	8.0
4	12.9	12.6	8.7	7.8	0.0	10.0	8.6	10.1	0.0	8.9	9.9	7.9
5	12.8	12.5	8.6	8.0	0.0	10.0	8.5	10.0	0.0	8.9	9.8	8.3
6	12.8	12.5	8.4	7.8	0.0	9.8	8.5	9.9	0.0	8.8	9.7	8.5
7	12.7	12.5	8.3	8.1	0.0	9.7	8.3	9.7	2.2	8.7	9.5	8.1
8	12.7	12.4	8.7	8.1	0.0	9.8	8.2	9.8	3.9	8.6	9.6	7.7
9	12.3	12.0	8.5	7.9	0.0	9.3	7.9	9.5	3.7	8.5	9.5	7.7
10	12.3	12.0	8.2	7.7	0.0	9.1	8.0	9.2	3.6	8.5	9.1	7.8
11	12.5	12.2	8.4	8.1	7.7	9.3	8.6	9.4	4.2	8.4	9.5	8.1
12	12.6	12.3	8.4	7.7	8.7	9.2	8.6	9.7	5.0	8.6	9.4	8.0
13	12.7	12.4	8.6	7.9	8.9	9.2	8.3	9.8	4.3	8.6	9.5	8.2
14	12.7	12.5	8.5	7.9	8.9	8.8	8.6	9.9	5.4	8.8	9.5	8.2
15	12.8	12.6	8.8	7.9	8.8	8.8	8.4	10.0	4.9	8.6	9.4	8.1
16	12.9	12.6	8.5	8.1	8.6	8.9	8.5	10.0	5.4	8.7	9.7	8.4
17	12.8	12.6	8.5	8.1	8.4	8.7	8.4	10.1	5.2	8.8	9.7	8.5
18	12.7	12.5	8.4	8.2	8.3	8.8	8.3	10.0	5.6	8.8	9.5	8.5
19	12.7	12.4	8.6	8.1	8.1	8.9	8.1	9.9	6.5	8.5	9.7	8.4
20	12.5	12.3	8.5	7.9	8.1	9.0	8.0	9.8	7.6	8.6	9.6	8.2
21	12.2	11.9	8.2	7.9	7.9	8.7	7.3	9.4	7.7	8.3	9.2	7.9
22	12.3	12.1	8.3	7.7	7.8	8.7	8.0	9.4	8.2	8.4	9.3	8.1
23	12.5	12.2	8.3	7.8	7.8	8.3	8.0	9.6	9.0	8.3	9.4	8.3
24	12.5	12.3	8.4	7.8	8.0	8.9	8.2	9.6	9.2	8.5	9.6	8.5
25	12.7	12.4	8.6	7.8	8.1	9.1	8.5	9.7	9.4	8.3	9.4	8.7
26	12.7	12.5	8.7	8.0	8.1	9.2	8.6	9.8	9.7	8.4	9.5	8.8
27	12.9	12.5	8.8	8.3	8.4	9.4	8.5	10.0	9.9	8.5	9.6	8.3
28	12.8	12.5	8.7	8.4	8.3	9.4	8.4	10.0	9.8	8.5	9.5	8.0
29	12.8	12.5	8.6	8.2	8.2	9.3	8.5	10.1	9.7	8.4	9.4	8.0
30	12.8	12.5	8.5	8.1	7.9	9.4	8.3	10.2	9.7	8.5	9.7	8.1
31	12.7	12.4	8.4	7.8	7.8	9.4	8.5	9.8	9.5	8.2	9.7	8.3
32	12.4	12.1	8.2	7.6	7.5	8.8	8.4	9.5	9.3	8.2	9.5	7.7
33	12.3	12.0	8.0	7.3	7.3	8.9	8.3	9.4	9.3	7.9	9.3	6.9
34	12.5	12.3	8.2	7.8	7.4	9.2	8.5	9.5	9.1	8.0	9.4	6.5
35	12.6	12.3	8.4	7.6	7.6	9.4	8.5	9.6	9.3	8.3	9.6	7.1
36	12.6	12.4	8.4	7.5	7.8	9.5	8.7	9.6	9.2	8.4	9.4	8.0
37	12.8	12.6	8.7	7.4	7.6	9.7	8.9	9.7	9.4	8.6	9.6	7.9
38	12.9	12.7	8.6	7.6	7.8	9.7	9.0	10.0	9.3	8.9	9.7	8.6

Table A.5: Sales Volume Data – Multiplicative Model

Month	Q_Beer	Q_A1	Q_A2	Q_A3	Q_A4	Q_A5	Q_A6	Q_B1	Q_B2	Q_B3	Q_B4	Q_C1
39	13.0	12.7	8.5	7.7	7.7	9.8	8.8	10.1	9.4	8.8	9.7	8.6
40	13.0	12.7	8.6	7.8	7.6	9.8	8.8	10.2	9.4	8.7	9.6	8.8
41	13.0	12.7	8.5	7.6	7.7	9.5	8.7	10.3	9.3	8.9	9.5	8.7
42	12.8	12.6	8.5	7.3	7.8	9.3	8.4	10.2	9.1	8.9	9.4	8.6
43	12.7	12.5	8.5	7.3	7.6	9.3	8.2	10.1	8.8	8.8	9.4	8.5
44	12.1	11.8	8.1	7.2	7.5	8.8	7.6	9.7	8.6	8.3	8.9	7.8
45	12.5	12.2	8.5	7.4	7.8	9.2	7.5	10.0	8.8	9.0	9.2	7.9
46	12.6	12.4	8.6	7.5	7.8	9.0	7.6	9.9	8.8	8.9	9.2	8.3
47	12.7	12.4	8.8	7.6	7.7	9.2	7.6	9.8	8.6	8.7	9.3	8.3
48	12.7	12.5	8.8	7.6	7.7	9.2	7.6	9.9	8.7	8.8	9.3	8.5
49	12.9	12.6	8.8	7.4	7.5	9.3	7.3	10.1	8.8	8.9	9.6	8.7
50	12.9	12.7	8.9	7.7	7.7	9.4	7.5	10.1	9.1	9.0	9.5	8.9
51	13.0	12.7	9.0	7.7	7.6	9.5	6.9	10.0	9.2	9.1	9.6	8.8
52	13.0	12.7	8.7	7.5	7.3	9.7	6.9	10.4	9.0	9.0	9.6	8.9
53	12.9	12.7	8.7	7.4	7.4	9.8	7.0	10.3	8.8	9.0	9.6	8.5
54	12.8	12.6	8.7	7.3	7.4	9.7	6.6	10.2	8.7	9.1	9.5	8.8
55	12.5	12.2	8.5	6.9	7.4	9.3	5.7	9.8	8.3	8.7	9.4	8.5
56	12.1	11.9	8.2	6.9	6.9	8.8	3.8	9.3	7.9	8.5	9.0	8.0
57	12.5	12.2	8.4	7.2	7.1	9.1	3.6	9.6	8.6	8.7	9.4	8.4
58	12.5	12.2	8.6	7.2	7.1	9.2	2.9	9.6	8.1	8.6	9.3	8.5
59	12.5	12.3	8.8	7.3	7.6	9.5	2.3	9.7	7.8	8.7	9.3	8.5
60	12.6	12.4	8.8	7.3	7.2	9.6	4.1	9.8	7.7	8.9	9.5	8.4
Avg	12.7	12.4	8.6	7.7	6.5	9.3	7.7	9.8	7.1	8.6	9.5	8.2
Max	13.0	12.7	9.2	8.4	8.9	10.1	9.0	10.4	9.9	9.1	9.9	8.9
Min	12.1	11.8	8.0	6.9	0.0	8.3	2.3	9.2	0.0	7.9	8.9	6.5

Table A.5 (continued)
PRICE DATA – MULTIPLICATIVE MODEL

Table A.6: Price Data – Multiplicative Model

Month	p_Beer	p_A1	p_A2	p_A3	p_A4	p_A5	p_A6	p_B1	p_B2	p_B3	p_B4	p_C1
1	4.9	4.9	5.1	5.0	-	4.6	4.7	4.9	-	5.1	4.6	4.4
2	4.9	4.9	5.0	5.1	-	4.6	4.7	4.9	-	5.1	4.7	4.4
3	5.0	5.0	5.1	5.0	-	4.6	4.8	5.0	-	5.1	4.8	4.4
4	5.0	5.0	5.2	5.1	-	4.6	4.8	5.1	-	5.2	4.8	4.4
5	5.1	5.1	5.3	5.1	-	4.7	4.9	5.1	-	5.2	4.8	4.5
6	5.1	5.1	5.3	5.2	-	4.7	4.8	5.1	-	5.2	4.8	4.5
7	5.0	5.1	5.3	5.2	-	4.7	4.9	5.1	5.4	5.2	4.8	4.4
8	5.1	5.1	5.2	5.2	-	4.7	4.9	5.1	4.7	5.3	4.8	4.5
9	5.1	5.1	5.3	5.2	-	4.8	4.9	5.2	4.6	5.2	4.9	4.3
10	5.1	5.1	5.2	5.2	-	4.8	4.9	5.1	4.7	5.2	4.9	4.3
11	5.1	5.1	5.2	5.1	5.2	4.8	4.9	5.1	4.8	5.2	4.9	4.3
12	5.1	5.1	5.3	5.2	5.2	4.8	4.9	5.2	5.0	5.2	5.0	4.1
13	5.1	5.1	5.3	5.2	5.2	4.9	5.0	5.2	4.8	5.3	4.9	4.2
14	5.1	5.1	5.2	5.2	5.2	4.9	5.0	5.2	4.9	5.3	5.0	4.4
15	5.1	5.1	5.3	5.2	5.2	4.9	5.0	5.2	5.0	5.3	5.0	4.4
16	5.2	5.2	5.2	5.2	5.3	4.9	5.0	5.2	4.9	5.3	5.0	4.3
17	5.1	5.2	5.2	5.2	5.2	4.8	4.9	5.2	4.9	5.3	4.9	4.4
18	5.1	5.1	5.2	5.2	5.2	4.8	4.9	5.2	4.8	5.3	4.9	4.3
19	5.1	5.1	5.2	5.2	5.2	4.8	4.9	5.2	5.0	5.2	4.8	4.3
20	5.0	5.1	5.2	5.1	5.2	4.8	4.9	5.1	5.0	5.1	4.8	4.3
21	5.0	5.0	5.1	5.1	5.1	4.9	4.8	5.1	5.0	5.1	4.9	4.2
22	5.0	5.0	5.1	5.1	5.1	4.8	4.8	5.1	5.0	5.1	4.8	4.2
23	5.1	5.1	5.2	5.2	5.2	4.8	4.8	5.1	5.1	5.2	4.8	4.2
24	5.0	5.1	5.2	5.2	5.2	4.9	4.8	5.1	5.0	5.2	4.8	4.1
25	5.0	5.0	5.1	5.1	5.2	4.9	4.8	5.1	5.0	5.2	4.8	4.2
26	5.0	5.0	5.2	5.1	5.2	4.9	4.9	5.1	5.0	5.1	4.9	4.2
27	5.1	5.1	5.2	5.2	5.2	4.9	4.9	5.1	5.0	5.2	4.8	4.3
28	5.0	5.1	5.2	5.2	5.2	4.9	4.9	5.1	5.0	5.1	4.8	4.3
29	5.0	5.0	5.2	5.1	5.2	4.8	4.8	5.1	5.0	5.1	4.8	4.4
30	5.0	5.0	5.1	5.1	5.1	4.8	4.8	5.0	4.9	5.1	4.7	4.3
31	5.0	5.0	5.1	5.1	5.1	4.8	4.7	5.1	5.0	5.1	4.7	4.3
32	5.0	5.0	5.1	5.1	5.1	4.7	4.7	5.0	5.0	5.1	4.7	4.3
33	5.0	5.1	5.2	5.2	5.2	4.8	4.7	5.1	5.0	5.2	4.7	4.6
34	5.0	5.1	5.2	5.2	5.2	4.8	4.9	5.1	5.0	5.1	4.7	4.7
35	5.0	5.1	5.1	5.2	5.1	4.8	4.9	5.1	5.0	5.1	4.8	4.7
36	5.0	5.0	5.1	5.1	5.1	4.8	4.9	5.0	5.0	5.1	4.8	4.7
37	5.0	5.1	5.1	5.1	5.2	4.9	5.0	5.1	5.0	5.1	4.8	4.7
38	5.1	5.1	5.2	5.2	5.2	4.9	5.0	5.1	5.1	5.2	4.9	4.6

Month	p_Beer	p_A1	p_A2	p_A3	p_A4	p_A5	p_A6	p_B1	p_B2	p_B3	p_B4	p_C1
39	5.1	5.1	5.2	5.2	5.2	4.8	4.9	5.1	5.1	5.2	4.9	4.6
40	5.0	5.1	5.2	5.2	5.2	4.8	5.0	5.1	5.0	5.2	4.8	4.6
41	5.0	5.0	5.1	5.1	5.2	4.8	4.9	5.1	5.0	5.1	4.8	4.6
42	5.0	5.0	5.1	5.1	5.1	4.8	4.9	5.0	5.0	5.1	4.8	4.5
43	5.0	5.0	5.1	5.1	5.1	4.7	4.9	5.0	5.0	5.1	4.8	4.5
44	5.0	5.0	5.1	5.1	5.1	4.8	4.9	5.0	5.0	5.0	4.8	4.5
45	5.0	5.0	5.1	5.1	5.1	4.7	4.9	5.0	4.9	5.0	4.7	4.5
46	5.0	5.0	5.1	5.1	5.1	4.7	4.9	5.0	5.0	5.0	4.7	4.4
47	5.0	5.0	5.1	5.1	5.1	4.7	4.9	5.0	5.0	5.1	4.7	4.5
48	5.0	5.0	5.1	5.1	5.1	4.8	4.9	5.0	5.0	5.1	4.7	4.5
49	5.0	5.0	5.1	5.1	5.2	4.8	4.9	5.0	5.0	5.1	4.7	4.6
50	5.0	5.0	5.2	5.2	5.2	4.7	4.9	5.1	5.0	5.1	4.7	4.6
51	5.1	5.1	5.2	5.2	5.2	4.8	4.9	5.1	5.1	5.2	4.7	4.6
52	5.1	5.1	5.2	5.2	5.2	4.8	4.9	5.0	5.1	5.1	4.7	4.6
53	5.1	5.1	5.2	5.2	5.3	4.7	5.0	5.1	5.0	5.1	4.7	4.6
54	5.1	5.1	5.2	5.2	5.2	4.7	5.1	5.1	5.1	5.1	4.7	4.6
55	5.1	5.1	5.2	5.2	5.2	4.8	5.0	5.1	5.1	5.2	4.7	4.7
56	5.1	5.1	5.2	5.2	5.3	4.8	5.0	5.1	5.1	5.1	4.7	4.7
57	5.0	5.1	5.2	5.3	5.2	4.7	4.9	5.0	5.0	5.1	4.7	4.7
58	5.0	5.1	5.2	5.2	5.2	4.8	5.0	5.0	5.0	5.1	4.7	4.7
59	5.0	5.0	5.1	5.1	5.1	4.8	5.1	5.0	5.0	5.1	4.7	4.7
60	5.0	5.0	5.1	5.1	5.1	4.7	4.9	5.0	5.0	5.0	4.7	4.7
Average	5.0	5.1	5.2	5.1	5.2	4.8	4.9	5.1	5.0	5.2	4.8	4.4
Max	5.2	5.2	5.3	5.3	5.3	4.9	5.1	5.2	5.4	5.3	5.0	4.7
Min	4.9	4.9	5.0	5.0	5.1	4.6	4.7	4.9	4.6	5.0	4.6	4.1

Table A.6 (continued)

DISTRIBUTION DATA – MULTIPLICATIVE MODEL

Month	d_Beer	d_A1	d_A2	d_A3	d_A4	d_A5	d_A6	d_B1	d_B2	d_B3	d_B4	d_C1
1	3.6	3.5	2.7	2.1	0.0	2.4	2.1	2.4	0.0	2.2	2.3	0.9
2	3.6	3.5	2.6	1.9	0.0	2.4	2.0	2.3	0.0	2.1	2.4	1.0
3	3.6	3.5	2.4	1.8	0.0	2.4	2.2	2.3	0.0	2.2	2.4	0.7
4	3.6	3.5	2.3	2.0	0.0	2.4	2.2	2.3	0.0	2.1	2.4	0.6
5	3.6	3.5	2.3	2.1	0.0	2.4	2.2	2.3	0.0	2.2	2.4	0.7
6	3.6	3.5	2.3	2.1	0.0	2.3	2.1	2.2	0.0	2.2	2.4	0.5
7	3.6	3.5	2.2	2.2	0.0	2.2	2.0	2.1	0.0	2.1	2.3	0.1
8	3.6	3.5	2.3	2.3	0.0	2.2	1.9	2.1	0.0	2.1	2.4	0.1
9	3.6	3.5	2.3	2.2	0.0	2.1	1.9	2.0	0.0	2.1	2.3	0.1
10	3.5	3.4	2.3	2.1	0.0	2.1	2.0	1.9	0.0	2.0	2.2	0.2
11	3.5	3.4	2.3	2.1	2.2	2.0	2.1	2.0	0.0	2.0	2.2	0.5
12	3.5	3.4	2.3	2.1	2.6	2.1	2.1	2.1	0.3	2.1	2.3	0.7
13	3.5	3.4	2.2	2.0	2.7	2.1	2.0	2.2	0.4	2.1	2.3	0.5
14	3.5	3.5	2.3	2.0	2.7	1.9	2.0	2.3	0.4	2.2	2.3	0.6
15	3.5	3.5	2.3	2.0	2.6	1.9	1.9	2.3	0.6	2.1	2.3	0.3
16	3.6	3.5	2.3	2.2	2.5	1.9	2.0	2.3	0.5	2.1	2.3	0.7
17	3.5	3.5	2.2	2.3	2.5	1.8	1.9	2.3	0.5	2.1	2.4	0.6
18	3.5	3.5	2.3	2.3	2.4	1.8	1.8	2.4	0.5	2.1	2.3	0.6
19	3.5	3.5	2.3	2.3	2.5	1.9	1.9	2.4	0.8	2.2	2.3	0.7
20	3.5	3.4	2.3	2.3	2.4	1.7	1.8	2.3	1.3	2.2	2.3	0.6
21	3.5	3.4	2.3	2.3	2.4	1.7	1.8	2.3	1.5	2.1	2.1	0.3
22	3.5	3.4	2.2	2.3	2.3	1.7	1.9	2.3	1.9	2.1	2.2	0.6
23	3.5	3.4	2.2	2.2	2.4	1.7	1.9	2.3	2.2	2.1	2.3	0.9
24	3.5	3.4	2.3	2.2	2.4	2.0	2.0	2.2	2.3	2.1	2.3	0.6
25	3.5	3.4	2.4	2.2	2.6	2.2	2.2	2.2	2.4	2.1	2.3	0.8
26	3.5	3.4	2.4	2.4	2.5	2.3	2.2	2.3	2.5	2.1	2.3	0.6
27	3.5	3.4	2.4	2.4	2.6	2.3	2.1	2.3	2.5	2.1	2.3	0.4
28	3.5	3.4	2.6	2.4	2.6	2.2	2.1	2.3	2.5	2.0	2.2	0.4
29	3.5	3.4	2.5	2.3	2.5	2.2	2.1	2.3	2.6	2.0	2.2	0.4
30	3.5	3.4	2.6	2.3	2.5	2.2	2.1	2.3	2.6	2.0	2.3	0.6
31	3.5	3.4	2.5	2.3	2.5	2.2	2.0	2.3	2.5	1.9	2.4	0.6
32	3.5	3.4	2.4	2.3	2.4	2.1	2.1	2.3	2.5	1.9	2.5	0.5
33	3.5	3.4	2.4	2.2	2.4	2.0	2.0	2.3	2.5	1.8	2.4	0.3
34	3.5	3.5	2.4	2.2	2.3	2.2	2.2	2.3	2.5	1.9	2.4	0.3
35	3.5	3.5	2.5	2.2	2.3	2.4	2.4	2.3	2.5	2.0	2.5	1.0
36	3.5	3.5	2.6	2.3	2.4	2.5	2.4	2.2	2.5	2.0	2.4	1.4
37	3.5	3.5	2.6	2.4	2.5	2.7	2.4	2.3	2.6	2.0	2.5	1.5
38	3.6	3.5	2.7	2.4	2.5	2.7	2.4	2.4	2.6	2.1	2.5	1.7

Table A.7: Distribution Data – Multiplicative Model

Month	d_Beer	d_A1	d_A2	d_A3	d_A4	d_A5	d_A6	d_B1	d_B2	d_B3	d_B4	d_C1
39	3.6	3.5	2.7	2.5	2.5	2.8	2.3	2.4	2.5	2.1	2.5	1.8
40	3.6	3.5	2.6	2.5	2.5	2.8	2.3	2.5	2.5	2.2	2.5	1.7
41	3.6	3.5	2.7	2.4	2.5	2.7	2.2	2.5	2.5	2.3	2.4	1.7
42	3.6	3.5	2.6	2.5	2.6	2.6	2.2	2.5	2.5	2.3	2.4	1.6
43	3.6	3.5	2.6	2.5	2.7	2.7	2.2	2.6	2.4	2.3	2.4	1.6
44	3.6	3.5	2.6	2.4	2.6	2.7	2.2	2.5	2.4	2.2	2.3	1.3
45	3.6	3.5	2.6	2.5	2.6	2.7	2.2	2.5	2.4	2.2	2.4	1.4
46	3.5	3.5	2.6	2.4	2.6	2.7	2.1	2.5	2.4	2.3	2.4	1.4
47	3.5	3.5	2.7	2.4	2.6	2.8	2.1	2.4	2.4	2.2	2.4	1.4
48	3.6	3.5	2.7	2.4	2.6	2.8	2.2	2.4	2.5	2.3	2.3	1.5
49	3.6	3.5	2.8	2.5	2.6	2.8	2.0	2.4	2.6	2.3	2.4	1.7
50	3.6	3.5	2.7	2.5	2.5	2.8	1.9	2.4	2.6	2.3	2.4	1.6
51	3.6	3.5	2.7	2.4	2.5	2.8	1.6	2.5	2.7	2.3	2.5	1.6
52	3.6	3.5	2.6	2.3	2.4	2.8	1.5	2.5	2.7	2.4	2.4	1.6
53	3.5	3.5	2.7	2.3	2.3	2.7	1.3	2.5	2.5	2.4	2.4	1.4
54	3.5	3.5	2.7	2.3	2.3	2.7	1.1	2.5	2.5	2.4	2.3	1.6
55	3.5	3.4	2.6	2.2	2.3	2.6	0.6	2.5	2.5	2.2	2.3	1.6
56	3.5	3.5	2.5	2.2	2.3	2.6	0.4	2.4	2.3	2.2	2.4	1.5
57	3.5	3.5	2.6	2.2	2.4	2.6	0.5	2.4	2.4	2.3	2.4	1.7
58	3.5	3.5	2.6	2.2	2.3	2.7	0.5	2.4	2.4	2.4	2.4	1.7
59	3.5	3.5	2.6	2.3	2.4	2.8	0.4	2.4	2.3	2.4	2.5	1.7
60	3.5	3.5	2.7	2.3	2.3	2.8	0.5	2.5	2.3	2.5	2.5	1.5
Average	3.5	3.5	2.5	2.3	2.1	2.4	1.9	2.3	1.7	2.2	2.4	1.0
Max	3.6	3.5	2.8	2.5	2.7	2.8	2.4	2.6	2.7	2.5	2.5	1.8
Min	3.5	3.4	2.2	1.8	0.0	1.7	0.4	1.9	0.0	1.8	2.1	0.1

Table A.7 (continued)

ENVIRONMENTAL FACTORS – MULTIPLICATIVE MODEL

Month	p_raki ('000 TL)	GDP (10 ¹² TL)	Temp (C ⁰)	Tourist ('000)	Ramadan (days)
1	6.3	4.7	2.8	6.9	0.0
2	6.3	4.7	3.1	7.0	0.0
3	6.4	4.7	3.2	7.1	0.0
4	6.4	4.7	3.2	7.3	0.0
5	6.4	4.7	3.0	7.2	0.0
6	6.5	4.7	2.7	6.9	0.0
7	6.5	4.7	2.3	6.3	0.0
8	6.5	4.7	1.9	6.0	0.7
9	6.3	4.7	1.6	5.8	3.4
10	6.3	4.7	0.9	5.9	0.0
11	6.3	4.7	1.6	6.2	0.0
12	6.2	4.7	2.4	6.5	0.0
13	6.2	4.7	2.8	6.9	0.0
14	6.2	4.7	3.1	7.0	0.0
15	6.3	4.8	3.2	7.2	0.0
16	6.3	4.8	3.2	7.3	0.0
17	6.3	4.8	3.0	7.1	0.0
18	6.3	4.8	2.7	6.9	0.0
19	6.3	4.8	2.3	6.2	0.0
20	6.3	4.8	1.9	5.9	2.6
21	6.1	4.7	1.6	5.9	2.9
22	6.1	4.7	0.9	5.9	0.0
23	6.1	4.7	1.6	6.0	0.0
24	6.1	4.7	2.4	6.1	0.0
25	6.1	4.7	2.8	6.5	0.0
26	6.1	4.7	3.1	6.7	0.0
27	6.3	4.7	3.2	6.8	0.0
28	6.3	4.7	3.2	7.0	0.0
29	6.3	4.7	3.0	6.8	0.0
30	6.4	4.7	2.7	6.7	0.0
31	6.4	4.7	2.3	6.1	0.0
32	6.4	4.7	1.9	5.8	3.2
33	6.6	4.7	1.6	5.8	1.9
34	6.6	4.7	0.9	5.9	0.0
35	6.6	4.7	1.6	6.1	0.0
36	6.6	4.7	2.4	6.6	0.0
37	6.6	4.7	2.8	6.9	0.0

Table A.8: Environmental Factors – Multiplicative Model

Month	p_raki ('000 TL)	GDP (10 ¹² TL)	Temp (C0)	Tourist ('000)	Ramadan (days)
38	6.6	4.7	3.1	7.0	0.0
39	6.5	4.8	3.2	7.3	0.0
40	6.5	4.8	3.2	7.3	0.0
41	6.5	4.8	3.0	7.2	0.0
42	6.5	4.8	2.7	7.1	0.0
43	6.5	4.8	2.3	6.4	1.4
44	6.5	4.8	1.9	6.0	3.3
45	6.5	4.8	1.6	5.9	0.0
46	6.5	4.8	0.9	6.0	0.0
47	6.5	4.8	1.6	6.3	0.0
48	6.4	4.8	2.4	6.8	0.0
49	6.4	4.8	2.8	7.1	0.0
50	6.4	4.8	3.1	7.2	0.0
51	6.5	4.7	3.2	7.5	0.0
52	6.5	4.7	3.2	7.4	0.0
53	6.5	4.7	3.0	7.3	0.0
54	6.6	4.7	2.7	7.0	0.0
55	6.6	4.7	2.3	6.3	2.7
56	6.6	4.7	1.9	6.0	2.8
57	6.5	4.7	1.6	5.7	0.0
58	6.5	4.7	0.9	6.1	0.0
59	6.5	4.7	1.6	6.5	0.0
60	6.5	4.7	2.4	6.7	0.0
Average	6.4	4.7	2.4	6.6	0.4
Max	6.6	4.8	3.2	7.5	3.4
Min	6.1	4.7	0.9	5.7	0.0

Table A.8 (continued)

CORRELATION BETWEEN MARKET-LEVEL MODEL VARIABLES

	d_Beer	p_Beer	Temp	GDP	Ramadan	Tourist	p_raki	Trend
d_Beer		-0.041	0.385	0.258	-0.134	0.563	0.369	-0.106
p_Beer	-0.041		0.185	0.152	-0.038	0.217	-0.108	-0.113
Temp	0.385	0.185		-0.091	-0.341	0.900	-0.116	-0.163
GDP	0.258	0.152	-0.091		0.035	0.017	-0.150	0.088
Ramadan	-0.134	-0.038	-0.341	0.035		-0.399	0.006	0.037
Tourist	0.563	0.217	0.900	0.017	-0.399		0.079	0.011
p_raki	0.369	-0.108	-0.116	-0.150	0.006	0.079		0.579
Trend	-0.106	-0.113	-0.163	0.088	0.037	0.011	0.579	

Table A.9: Proximity Matrix – Market-Level Model

CORRELATION BETWEEN BRAND-LEVEL MODEL VARIABLES

	d A1	d A2	d A3	d A4	d A5	d A6	d B1
d A1	u	0.681	0 549	0.223	0.751	0.072	0.607
d A2	0.681		0.695	0.079	0.931	-0.092	0.637
d A3	0 549	0.695		0.247	0.649	0.295	0.585
d A4	0.223	0.079	0.247	01217	0.083	0.489	0.170
d 45	0.751	0.931	0.649	0.083	01000	-0.108	0.684
d 46	0.072	-0.092	0.295	0.489	-0.108	0.100	-0.269
d B1	0.607	0.637	0.585	0.170	0.684	-0.269	0.209
d B2	0.286	0.744	0.605	-0.045	0.682	0.089	0.402
d B3	0.523	0.573	0.316	-0.007	0.637	-0.596	0.722
d B4	0.653	0.597	0.410	0.018	0.696	0.051	0.452
	0.715	0.818	0.559	-0.038	0.070	-0.235	0.432
	0.383	-0.007	0.390	0.561	0.081	0.489	0.005
n A1	-0.036	-0.446	-0.551	-0.129	-0.373	-0.211	-0.287
p_A1	0.108	0.425	0.558	0.083	0.344	0.262	0.207
p_A2	-0.108	0.210	-0.558	-0.085	0.155	-0.202	-0.270
p_A3	0.042	-0.177	-0.405	-0.192	-0.155	-0.304	-0.015
p_A4	0.454	0.575	0.350	0.243	0.586	0.413	-0.000
p_A5	-0.434	0.270	-0.330	0.006	-0.580	0.415	-0.505
p_A0	0.220	0.270	-0.110	0.000	0.400	-0.300	0.304
р_D1	-0.250	-0.017	-0.302	0.055	-0.002	0.122	-0.403
р_ Б 2	0.043	0.426	0.313	-0.243	0.503	-0.211	0.331
р_вз » Р4	-0.175	-0.020	-0.466	0.107	-0.595	0.000	-0.400
р_D4	0.620	0.597	0.350	0.303	0.727	0.304	0.395
	0.020	0.004	0.201	-0.314	0.727	-0.203	0.490
p_raki	0.385	0.003	0.020	-0.203	0.101	-0.102	0.439
Kamadan	-0.180	-0.095	-0.050	-0.107	-0.101	-0.129	0.092
Temp	0.513	0.179	0.198	0.414	0.112	0.205	0.114
Tourist	0.592	0.356	0.300	0.300	0.330	0.075	0.294
Trend	0.537	0.854	0.486	-0.208	0.880	-0.446	0.696

Table A.10: Proximity Matrix – Brand-Level Model

	d_B2	d_B3	d_B4	d_C1	GDP	p_A1	p_A2
d_A1	0.286	0.523	0.653	0.715	0.383	-0.036	-0.108
d_A2	0.744	0.573	0.597	0.818	-0.007	-0.446	-0.425
d_A3	0.605	0.316	0.410	0.559	0.390	-0.551	-0.558
d_A4	-0.045	-0.007	0.018	-0.038	0.561	-0.129	-0.083
d_A5	0.682	0.637	0.696	0.916	0.081	-0.373	-0.344
d_A6	0.089	-0.596	0.051	-0.235	0.489	-0.211	-0.262
d_B1	0.402	0.722	0.452	0.685	0.256	-0.287	-0.270
d_B2		0.175	0.457	0.517	-0.264	-0.592	-0.507
d_B3	0.175		0.293	0.710	0.098	-0.118	-0.037
d_B4	0.457	0.293		0.687	0.071	-0.155	-0.208
d_C1	0.517	0.710	0.687		0.088	-0.204	-0.178
GDP	-0.264	0.098	0.071	0.088		-0.141	-0.186
p_A1	-0.592	-0.118	-0.155	-0.204	-0.141		0.917
p_A2	-0.507	-0.037	-0.208	-0.178	-0.186	0.917	
p_A3	-0.281	0.062	-0.031	0.035	-0.263	0.815	0.809
p_A4	-0.199	0.012	-0.088	-0.039	-0.312	0.827	0.835
p_A5	-0.365	-0.545	-0.434	-0.541	0.016	0.368	0.365
p_A6	-0.124	0.518	0.270	0.525	-0.034	0.469	0.442
p_B1	-0.589	-0.436	-0.326	-0.476	0.015	0.850	0.785
p_B2	0.606	0.215	0.253	0.421	-0.332	-0.163	-0.056
p_B3	-0.678	-0.306	-0.323	-0.442	0.065	0.875	0.814
p_B4	-0.725	-0.276	-0.292	-0.389	0.316	0.589	0.575
p_C1	0.527	0.395	0.663	0.721	-0.240	-0.059	-0.136
p_raki	0.591	0.235	0.711	0.647	-0.207	-0.168	-0.244
Ramadan	-0.006	-0.131	-0.114	-0.087	-0.051	-0.178	-0.172
Temp	0.076	0.068	0.062	0.065	0.051	0.387	0.415
Tourist	0.102	0.333	0.259	0.322	0.151	0.369	0.378
Trend	0.708	0.685	0.585	0.838	-0.200	-0.408	-0.374

Table A.10 (continued)

	p_A3	p_A4	p_A5	p_A6	p_B1	p_B2	p_B3
d_A1	0.058	0.042	-0.454	0.447	-0.230	0.045	-0.173
d_A2	-0.219	-0.177	-0.575	0.270	-0.617	0.428	-0.626
d_A3	-0.405	-0.362	-0.350	-0.110	-0.502	0.315	-0.488
d_A4	-0.192	-0.183	0.243	0.006	0.035	-0.245	0.107
d_A5	-0.155	-0.160	-0.586	0.406	-0.602	0.383	-0.593
d_A6	-0.364	-0.317	0.413	-0.366	0.122	-0.211	0.066
d_B1	-0.015	-0.060	-0.565	0.364	-0.405	0.331	-0.406
d_B2	-0.281	-0.199	-0.365	-0.124	-0.589	0.606	-0.678
d_B3	0.062	0.012	-0.545	0.518	-0.436	0.215	-0.306
d_B4	-0.031	-0.088	-0.434	0.270	-0.326	0.253	-0.323
d_C1	0.035	-0.039	-0.541	0.525	-0.476	0.421	-0.442
GDP	-0.263	-0.312	0.016	-0.034	0.015	-0.332	0.065
p_A1	0.815	0.827	0.368	0.469	0.850	-0.163	0.875
p_A2	0.809	0.835	0.365	0.442	0.785	-0.056	0.814
p_A3		0.889	0.149	0.475	0.634	0.055	0.646
p_A4	0.889		0.213	0.401	0.696	0.152	0.684
p_A5	0.149	0.213		-0.075	0.592	-0.082	0.584
p_A6	0.475	0.401	-0.075		0.134	0.112	0.193
p_B1	0.634	0.696	0.592	0.134		-0.193	0.916
_p_B2	0.055	0.152	-0.082	0.112	-0.193		-0.293
p_B3	0.646	0.684	0.584	0.193	0.916	-0.293	
p_B4	0.320	0.262	0.705	0.244	0.656	-0.420	0.737
p_C1	0.183	0.127	-0.543	0.446	-0.343	0.406	-0.403
p_raki	0.059	0.015	-0.596	0.312	-0.379	0.362	-0.478
Ramadan	-0.134	-0.117	-0.159	-0.174	-0.048	0.071	-0.230
Тетр	0.374	0.514	0.393	0.260	0.405	0.039	0.467
Tourist	0.362	0.484	0.082	0.395	0.272	0.039	0.373
Trend	-0.091	-0.123	-0.727	0.321	-0.676	0.519	-0.697

Table A.10 (continued)

	p_B4	p_C1	p_raki	Ramadan	Temp	Tourist	Trend
d_A1	-0.154	0.620	0.583	-0.186	0.313	0.592	0.537
d_A2	-0.597	0.684	0.658	-0.093	0.179	0.356	0.854
d_A3	-0.390	0.261	0.300	-0.030	0.198	0.300	0.486
d_A4	0.303	-0.314	-0.265	-0.167	0.414	0.300	-0.208
d_A5	-0.514	0.727	0.705	-0.101	0.112	0.330	0.880
d_A6	0.304	-0.265	-0.102	-0.129	0.205	0.075	-0.446
d_B1	-0.393	0.490	0.459	0.092	0.114	0.294	0.696
d_B2	-0.725	0.527	0.591	-0.006	0.076	0.102	0.708
d_B3	-0.276	0.395	0.235	-0.131	0.068	0.333	0.685
d_B4	-0.292	0.663	0.711	-0.114	0.062	0.259	0.585
d_C1	-0.389	0.721	0.647	-0.087	0.065	0.322	0.838
GDP	0.316	-0.240	-0.207	-0.051	0.051	0.151	-0.200
p_A1	0.589	-0.059	-0.168	-0.178	0.387	0.369	-0.408
p_A2	0.575	-0.136	-0.244	-0.172	0.415	0.378	-0.374
p_A3	0.320	0.183	0.059	-0.134	0.374	0.362	-0.091
p_A4	0.262	0.127	0.015	-0.117	0.514	0.484	-0.123
p_A5	0.705	-0.543	-0.596	-0.159	0.393	0.082	-0.727
p_A6	0.244	0.446	0.312	-0.174	0.260	0.395	0.321
p_B1	0.656	-0.343	-0.379	-0.048	0.405	0.272	-0.676
_p_B2	-0.420	0.406	0.362	0.071	0.039	0.039	0.519
p_B3	0.737	-0.403	-0.478	-0.230	0.467	0.373	-0.697
p_B4		-0.513	-0.568	-0.205	0.386	0.256	-0.750
p_C1	-0.513		0.928	-0.010	-0.055	0.173	0.796
p_raki	-0.568	0.928		0.058	-0.145	0.071	0.740
Ramadan	-0.205	-0.010	0.058		-0.323	-0.392	0.068
Temp	0.386	-0.055	-0.145	-0.323		0.889	-0.139
Tourist	0.256	0.173	0.071	-0.392	0.889		0.083
Trend	-0.750	0.796	0.740	0.068	-0.139	0.083	

Table A.10 (continued)

REGRESSION OUTPUT: LINEAR MARKET-LEVEL MODEL FULL SET OF VARIABLES

Variables Entered/Removed(b)									
Model	Variables Entered	Variables Removed	Method						
1	TREND, TOURIST, GDP, P_BEER, RAMADAN, P_RAKI, D_BEER, TEMP(a)		Enter						
a All re	a All requested variables entered.								
b Dependent Variable: Q_BEER									

				Model Su	nmary(b)						
				Std. Error of the Estimate							
Model	R	R Square	Adjusted R Square		R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson	
1	.952(a)	.906	.891	22144.9162	.906	61.174	8	51	.000	1.582	
a Predic	a Predictors: (Constant), TREND, TOURIST, GDP, P_BEER, RAMADAN, P_RAKI, D_BEER, TEMP										
b Deper	dent Var	iable: Q_H	BEER								

	ANOVA(b)											
Model		Sum of Squares		Mean Square	F	Sig.						
	Regression	239994683621.162	8	29999335452.645	61.174	.000(a)						
1	Residual	25010263006.438	51	490397313.852								
	Total	265004946627.600	59									
a P	a Predictors: (Constant), TREND, TOURIST, GDP, P_BEER, RAMADAN, P_RAKI, D_BEER, TEMP											
b D	Dependent Variable	e: Q_BEER										

			Coefficien	ts(a)		
		Unstandardize	d Coefficients	Standardized Coefficients		Sig.
М	odel	В	Std. Error	Beta	t	
	(Constant)	-175665.891	159390.030		-1.102	.276
	D_BEER	3895.863	4846.786	.074	.804	.425
	P_BEER	-630.625	412.604	076	-1.528	.133
	ТЕМР	5226.442	1088.736	.592	4.800	.000
1	GDP	2712.795	1411.641	.114	1.922	.060
	RAMADAN	-2767.855	494.377	271	-5.599	.000
	TOURIST	35.014	24.286	.215	1.442	.155
	P_RAKI	94.445	62.450	.125	1.512	.137
	TREND	210.051	300.301	.055	.699	.487

a Dependent Variable: Q_BEER

	Resid	luals Statistics	(a)		
	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	185820.4219	430973.7188	325376.8000	63778.5740	60
Residual	-54867.0469	41812.8555	6.354E-11	20588.8990	60
Std. Predicted Value	-2.188	1.656	.000	1.000	60
Std. Residual	-2.478	1.888	.000	.930	60
a Dependent Variable:	Q_BEER				

REGRESSION OUTPUT: LINEAR MARKET-LEVEL MODEL STEPWISE REGRESSION

	Variables Entered/Removed(a)								
Model	Variables Entered	Variables Removed	Method						
1	TOURIST		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
2	RAMADAN		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
3	ТЕМР		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
4	P_RAKI		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
5	GDP		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
6	P_BEER		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
a Deper	ndent Variable: Q_I	BEER	•						

	Model Summary(g)											
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson		
1	.893(a)	.797	.793	30486.1268	.797	227.134	1	58	.000			
2	.919(b)	.845	.840	26804.8258	.049	18.025	1	57	.000			
3	.929(c)	.864	.856	25399.0329	.018	7.484	1	56	.008			
4	.939(d)	.881	.872	23940.0055	.017	8.034	1	55	.006			
5	.947(e)	.896	.887	22562.2289	.015	7.922	1	54	.007			
6	.951(f)	.904	.894	21867.1096	.008	4.488	1	53	.039	1.657		

a Predictors: (Constant), TOURIST

b Predictors: (Constant), TOURIST, RAMADAN

c Predictors: (Constant), TOURIST, RAMADAN, TEMP

d Predictors: (Constant), TOURIST, RAMADAN, TEMP, P_RAKI

e Predictors: (Constant), TOURIST, RAMADAN, TEMP, P_RAKI, GDP

f Predictors: (Constant), TOURIST, RAMADAN, TEMP, P_RAKI, GDP, P_BEER

g Dependent Variable: Q_BEER

	ANOVA(g)											
Μ	odel	Sum of Squares	df	Mean Square	F	Sig.						
	Regression	211099518849.016	1	211099518849.016	227.134	.000(a)						
1	Residual	53905427778.584	58	929403927.217								
	Total	265004946627.600	59									
	Regression	224050521369.016	2	112025260684.508	155.916	.000(b)						
2	Residual	40954425258.584	57	718498688.747								
	Total	265004946627.600	59									
	Regression	228878737762.608	3	76292912587.536	118.263	.000(c)						
3	Residual	36126208864.992	56	645110872.589								
	Total	265004946627.600	59									
	Regression	233483134137.790	4	58370783534.448	101.847	.000(d)						
4	Residual	31521812489.810	55	573123863.451								
	Total	265004946627.600	59									
	Regression	237516021176.563	5	47503204235.313	93.317	.000(e)						
5	Residual	27488925451.037	54	509054175.019								
	Total	265004946627.600	59									
	Regression	239661911169.200	6	39943651861.533	83.534	.000(f)						
6	Residual	25343035458.400	53	478170480.347								
	Total	265004946627.600	59									
a l	Predictors: (Co	onstant), TOURIST										
bl	Predictors: (Co	onstant), TOURIST, R	AM	ADAN								
c l	Predictors: (Co	onstant), TOURIST, R	AM	ADAN, TEMP								
d	Predictors: (Co	onstant), TOURIST, R	AM	ADAN, TEMP, P_RA	KI							

e Predictors: (Constant), TOURIST, RAMADAN, TEMP, P_RAKI, GDP

f Predictors: (Constant), TOURIST, RAMADAN, TEMP, P_RAKI, GDP, P_BEER

g Dependent Variable: Q_BEER

			Coefficien	ts(a)		
		Unstandardize	d Coefficients	Standardized Coefficients		
м	odel	В	Std. Error	Beta	t	Sig.
1	(Constant)	205322.856	8885.139		23.109	.000
	TOURIST	145.688	9.667	.893	15.071	.000
	(Constant)	224200.521	8988.965		24.942	.000
2	TOURIST	130.002	9.268	.796	14.027	.000
	RAMADAN	-2462.848	580.095	241	-4.246	.000
	(Constant)	225278.403	8526.642		26.421	.000
3	TOURIST	84.033	18.960	.515	4.432	.000
	RAMADAN	-2529.178	550.206	248	-4.597	.000
	ТЕМР	2738.028	1000.833	.310	2.736	.008
	(Constant)	160316.975	24287.156		6.601	.000
	TOURIST	60.096	19.765	.368	3.040	.004
4	RAMADAN	-2628.041	519.771	257	-5.056	.000
	ТЕМР	4024.666	1046.876	.456	3.844	.000
	P_RAKI	111.099	39.197	.147	2.834	.006
	(Constant)	-218999.752	136694.674		-1.602	.115
	TOURIST	41.117	19.811	.252	2.075	.043
5	RAMADAN	-2740.185	491.475	268	-5.575	.000
	ТЕМР	5066.813	1053.814	.574	4.808	.000
	P_RAKI	143.578	38.701	.190	3.710	.000
	GDP	3177.695	1128.980	.134	2.815	.007
6	(Constant)	-124168.025	139841.846		888	.379
1	TOURIST	46.775	19.385	.287	2.413	.019
	RAMADAN	-2681.891	477.128	262	-5.621	.000

	ТЕМР	4957.457	1022.651	.561	4.848	.000					
	P_RAKI	133.868	37.788	.177	3.543	.001					
	GDP	3426.522	1100.484	.144	3.114	.003					
	P_BEER	-777.867	367.192	094	-2.118	.039					
a l	Dependent Variable: O BEER										

			Ex	cluded	Variables(g)	
						Collinearity Statistics
M	odel	Beta In	t	Sig.	Partial Correlation	Tolerance
	D_BEER	.043(a)	.591	.557	.078	.683
	P_BEER	114(a)	-1.926	.059	247	.953
	ТЕМР	.287(a)	2.180	.033	.277	.190
1	GDP	.033(a)	.550	.584	.073	1.000
	RAMADAN	241(a)	-4.246	.000	490	.841
	P_RAKI	.051(a)	.860	.394	.113	.994
	TREND	.024(a)	.403	.688	.053	1.000
	D_BEER	.075(b)	1.193	.238	.157	.673
	P_BEER	102(b)	-1.964	.055	254	.950
2	ТЕМР	.310(b)	2.736	.008	.343	.190
	GDP	.043(b)	.820	.416	.109	.998
	P_RAKI	.060(b)	1.161	.251	.153	.992
	TREND	.034(b)	.651	.517	.087	.998
	D_BEER	.150(c)	2.445	.018	.313	.593
	P_BEER	099(c)	-2.002	.050	261	.950
3	GDP	.081(c)	1.613	.113	.212	.937
	P_RAKI	.147(c)	2.834	.006	.357	.805
	TREND	.105(c)	1.994	.051	.260	.839
4	D_BEER	.110(d)	1.784	.080	.236	.545
	P_BEER	079(d)	-1.667	.101	221	.926

	GDP	.134(d)	2.815	.007	.358	.854
	TREND	.045(d)	.764	.448	.103	.636
	D_BEER	.059(e)	.934	.354	.127	.479
5	P_BEER	094(e)	-2.118	.039	279	.915
	TREND	.021(e)	.367	.715	.050	.620
6	D_BEER	.028(f)	.437	.664	.061	.448
	TREND	.010(f)	.181	.857	.025	.615
				o m		

a Predictors in the Model: (Constant), TOURIST

b Predictors in the Model: (Constant), TOURIST, RAMADAN

c Predictors in the Model: (Constant), TOURIST, RAMADAN, TEMP

d Predictors in the Model: (Constant), TOURIST, RAMADAN, TEMP, P_RAKI

e Predictors in the Model: (Constant), TOURIST, RAMADAN, TEMP, P_RAKI, GDP

f Predictors in the Model: (Constant), TOURIST, RAMADAN, TEMP, P_RAKI, GDP, P_BEER

g Dependent Variable: Q_BEER

	Residuals Statistics(a)											
	Minimum	Maximum	Mean	Std. Deviation	N							
Predicted Value	182327.8125	431936.0938	325376.8000	63734.3415	60							
Residual	-54742.8125	39808.1836	-1.6492E-11	20725.4185	60							
Std. Predicted Value	-2.244	1.672	.000	1.000	60							
Std. Residual	-2.503	1.820	.000	.948	60							
a Dependent Variable:	Q_BEER											

REGRESSION OUTPUT: LINEAR BRAND-LEVEL MODEL FULL SET OF VARIABLES

Variables Entered/Removed(b)								
Model	Variables Entered	Variables Removed	Method					
1	TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, P_A4, D_A2, D_B3, TEMP, P_RAKI, P_B3, D_A4, P_A1, D_A5, D_B2(a)	,	Enter					
a All requested variables entered.								

b Dependent Variable: Q_A1

Model Summary(b)									
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson				
1	,976(a)	,953	,910	16031,8623	1,994				
a Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, P_A4, D_A2, D_B3, TEMP, P_RAKI, P_B3, D_A4, P_A1, D_A5, D_B2									

b Dependent Variable: Q_A1

	ANOVA(b)									
ModelSum of SquaresdfMean SquareFSig										
	Regression	160025287331,860	28	5715188833,281	22,236	,000(a)				
1	Residual	7967638831,790	31	257020607,477						
	Total	167992926163,650	59							
a P	redictors: (Constan	a Predictors: (Constant) TREND TOURIST P A5 GDP RAMADAN P A3 D B4 P A6 D A6								

a Predictors: (Constant), TREND, TOURIST, P_AS, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, P_A4, D_A2, D_B3, TEMP, P_RAKI, P_B3, D_A4, P_A1, D_A5, D_B2

b Dependent Variable: Q_A1

	Coefficients(a)									
		Unstandardize	d Coefficients	Standardized Coefficients						
M	odel	В	Std. Error	Beta	t	Sig.				
1	(Constant)	-318679,477	260436,525	-	-1,224	,230				
	D_A1	4254,650	5563,546	,090	,765	,450				
	D_B1	-1927,398	5441,755	-,049	-,354	,726				
	D_A5	325,846	3937,136	,022	,083	,935				
	D_B4	7901,588	4381,635	,136	1,803	,081				
	D_C1	-579,096	5604,872	-,017	-,103	,918				
	D_A6	-1432,451	4470,044	-,067	-,320	,751				
	D_A2	983,371	4182,791	,038	,235	,816				
	D_B3	11450,290	6173,803	,283	1,855	,073				
	D_A3	7151,570	4123,121	,192	1,735	,093				
	D_A4	1088,547	3032,426	,087	,359	,722				
	D_B2	3514,505	2831,345	,336	1,241	,224				
	P_A1	519,916	1648,476	,081	,315	,755				
	P_B1	574,756	975,280	,109	,589	,560				
	P_A5	-554,679	817,007	-,098	-,679	,502				
	P_B4	-860,001	655,922	-,173	-1,311	,199				
	P_C1	-223,395	679,897	-,061	-,329	,745				
	P_A6	594,604	547,073	,122	1,087	,285				
	P_A2	-781,688	809,440	-,148	-,966	,342				
	P_B3	75,638	922,743	,017	,082	,935				
	P_A3	308,454	594,490	,058	,519	,608				
	P_A4	19,286	209,586	,024	,092	,927				
	P_B2	107,413	121,494	,095	,884	,383				
	ТЕМР	3052,034	1353,855	,434	2,254	,031				
	GDP	1095,660	2127,544	,058	,515	,610				

	RAMADAN	-2108,107	463,573	-,259	-4,548	,000		
	TOURIST	25,655	24,115	,197	1,064	,296		
	P_RAKI	84,851	108,565	,141	,782	,440		
	TREND	-2767,306	1581,657	-,906	-1,750	,090		
,								

a Dependent Variable: Q_A1

Residuals Statistics(a)									
	Minimum	Maximum	Mean	Std. Deviation	N				
Predicted Value	136765,7656	343626,2188	250426,8500	52079,6794	60				
Residual	-29555,1426	26771,5801	-1,8481E-10	11620,8746	60				
Std. Predicted Value	-2,182	1,790	,000	1,000	60				
Std. Residual -1,844 1,670 ,000 ,725 6									
a Dependent Variable:	Q_A1								

REGRESSION OUTPUT: LINEAR BRAND-LEVEL MODEL 1st STEPWISE REGRESSION

Variables Entered/Removed(a)							
Model	Variables Entered	Variables Removed	Method				
1	TOURIST		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
2	RAMADAN		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
3	D_A3		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
4	ТЕМР		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
5	D_A1		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
a Deper	dent Variable: O	<u> </u>	1100a0111y-01-1-10-10110ve >= .100).				

Model Summary(f)										
			Adina			Change S	tatisti	cs		
Model	R	R Squar e	ted R Squar e	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Chan ge	Durbin- Watson
1	.903(a)	.815	.812	23121.4704	.815	256.239	1	58	.000	
2	.931(b)	.866	.862	19837.1093	.051	21.796	1	57	.000	
3	.941(c)	.886	.880	18504.2489	.019	9.507	1	56	.003	
4	.951(d)	.905	.898	17038.8622	.019	11.046	1	55	.002	
5	.957(e)	.917	.909	16115.5098	.012	7.483	1	54	.008	1.712
a Predict	a Predictors: (Constant), TOURIST									
b Predic	b Predictors: (Constant), TOURIST, RAMADAN									

c Predictors: (Constant), TOURIST, RAMADAN, D_A3

d Predictors: (Constant), TOURIST, RAMADAN, D_A3, TEMP

e Predictors: (Constant), TOURIST, RAMADAN, D_A3, TEMP, D_A1

f Dependent Variable: Q_A1

	ANOVA(f)									
M	odel	Sum of Squares	df	Mean Square	F	Sig.				
	Regression	136985987317.735	1	136985987317.735	256.239	.000(a)				
1	Residual	31006938845.915	58	534602393.895						
	Total	167992926163.650	59							
	Regression	145562804504.363	2	72781402252.182	184.954	.000(b)				
2	Residual	22430121659.287	57	393510906.303						
	Total	167992926163.650	59							
	Regression	148818121411.744	3	49606040470.581	144.874	.000(c)				
3	Residual	19174804751.906	56	342407227.713						
	Total	167992926163.650	59							
	Regression	152025170838.251	4	38006292709.563	130.910	.000(d)				
4	Residual	15967755325.399	55	290322824.098						
	Total	167992926163.650	59							
	Regression	153968604649.384	5	30793720929.877	118.570	.000(e)				
5	Residual	14024321514.266	54	259709657.672						
	Total	167992926163.650	59							
a l	Predictors: (Co	onstant), TOURIST								
bl	Predictors: (C	onstant), TOURIST, H	RAM	ADAN						
c Predictors: (Constant), TOURIST, RAMADAN, D_A3										
d	Predictors: (C	onstant), TOURIST, H	RAM	ADAN, D_A3, TEMI	P					
e l	Predictors: (Co	onstant), TOURIST, F	RAM	ADAN, D_A3, TEMI	P, D_A1					
f I	Dependent Va	riable: Q_A1								

Coefficients(a)							
	Unstandardized Coefficients	Standardized Coefficients	t	Sig.			

М	odel	В	Std. Error	Beta		
1	(Constant)	153716.961	6738.720		22.811	.000
	TOURIST	117.359	7.332	.903	16.007	.000
	(Constant)	169079.383	6652.350		25.416	.000
2	TOURIST	104.594	6.859	.805	15.250	.000
	RAMADAN	-2004.237	429.303	246	-4.669	.000
	(Constant)	120535.770	16922.498		7.123	.000
3	TOURIST	101.780	6.463	.783	15.749	.000
	RAMADAN	-2081.816	401.248	256	-5.188	.000
	D_A3	5251.162	1703.061	.141	3.083	.003
	(Constant)	110654.697	15863.447		6.975	.000
	TOURIST	62.764	13.161	.483	4.769	.000
4	RAMADAN	-2154.442	370.118	265	-5.821	.000
	D_A3	6417.417	1606.972	.172	3.993	.000
	ТЕМР	2286.684	688.009	.325	3.324	.002
	(Constant)	-118192.332	84992.218		-1.391	.170
	TOURIST	31.777	16.830	.245	1.888	.064
5	RAMADAN	-2347.349	357.093	289	-6.573	.000
	D_A3	5114.909	1592.726	.137	3.211	.002
	ТЕМР	3372.314	762.196	.480	4.424	.000
	D_A1	7889.363	2884.039	.166	2.736	.008
	1 (V)	11 0 11				

a Dependent Variable: Q_A1

	Excluded Variables(f)								
Model						Collinearity Statistics			
		Beta In	t	Sig.	Partial Correlation	Tolerance			
1	D_A1	.041(a)	.595	.554	.079	.677			
	D_B1	.035(a)	.582	.563	.077	.888			

	D_A5	.052(a)	.861	.393	.113	.883
	D_B4	.080(a)	1.365	.177	.178	.914
	D_C1	.020(a)	.329	.743	.044	.910
	D_A6	.145(a)	2.688	.009	.335	.986
	D_A2	.057(a)	.957	.343	.126	.896
	D_B3	045(a)	744	.460	098	.883
	D_A3	.126(a)	2.291	.026	.290	.984
	D_A4	.050(a)	.885	.380	.116	.998
	D_B2	.073(a)	1.297	.200	.169	.998
	P_A1	061(a)	-1.061	.293	139	.961
	P_B1	034(a)	599	.552	079	.982
	P_A5	.028(a)	.485	.630	.064	.996
	P_B4	038(a)	654	.516	086	.966
	P_C1	010(a)	171	.865	023	.969
	P_A6	009(a)	150	.881	020	.954
	P_A2	065(a)	-1.134	.262	149	.966
	P_B3	014(a)	231	.818	031	.941
	P_A3	030(a)	526	.601	069	.965
	P_A4	.008(a)	.136	.892	.018	1.000
	P_B2	.073(a)	1.276	.207	.167	.951
	ТЕМР	.217(a)	1.700	.095	.220	.190
	GDP	.067(a)	1.185	.241	.155	1.000
	RAMADAN	246(a)	-4.669	.000	526	.841
	P_RAKI	.029(a)	.517	.607	.068	.994
	TREND	004(a)	065	.948	009	1.000
2	D_A1	.085(b)	1.443	.155	.189	.662
	D_B1	.065(b)	1.254	.215	.165	.876
	D_A5	.055(b)	1.074	.288	.142	.883
	D_B4	.083(b)	1.673	.100	.218	.914
	D_C1	.022(b)	.431	.668	.057	.910
	D_A6	.123(b)	2.631	.011	.332	.976

	D_A2	.066(b)	1.295	.201	.170	.895
	D_B3	042(b)	814	.419	108	.883
	D_A3	.141(b)	3.083	.003	.381	.980
	D_A4	.036(b)	.743	.461	.099	.994
	D_B2	.071(b)	1.487	.143	.195	.998
	P_A1	050(b)	-1.010	.317	134	.959
	P_B1	002(b)	043	.966	006	.962
	P_A5	.011(b)	.226	.822	.030	.991
	P_B4	039(b)	781	.438	104	.966
	P_C1	005(b)	095	.925	013	.968
	P_A6	014(b)	287	.775	038	.953
	P_A2	051(b)	-1.024	.310	136	.962
	P_B3	016(b)	315	.754	042	.941
	P_A3	018(b)	358	.721	048	.962
	P_A4	002(b)	040	.968	005	.998
	P_B2	.067(b)	1.354	.181	.178	.950
	ТЕМР	.240(b)	2.232	.030	.286	.190
	GDP	.077(b)	1.611	.113	.210	.998
	P_RAKI	.039(b)	.799	.428	.106	.992
	TREND	.007(b)	.134	.894	.018	.998
3	D_A1	.026(c)	.437	.664	.059	.574
	D_B1	020(c)	357	.723	048	.627
	D_A5	039(c)	666	.508	089	.612
	D_B4	.045(c)	.922	.361	.123	.839
	D_C1	089(c)	-1.565	.123	206	.620
	D_A6	.105(c)	2.364	.022	.304	.956
	D_A2	037(c)	620	.538	083	.564
	D_B3	090(c)	-1.832	.072	240	.816
	D_A4	061(c)	-1.118	.268	149	.683
	D_B2	054(c)	848	.400	114	.500
	P_A1	014(c)	299	.766	040	.896

	P_B1	.038(c)	.785	.436	.105	.896
	P_A5	020(c)	433	.667	058	.944
	P_B4	.012(c)	.245	.807	.033	.849
	P_C1	048(c)	997	.323	133	.894
	P_A6	032(c)	693	.492	093	.939
	P_A2	.002(c)	.045	.964	.006	.831
	P_B3	.058(c)	1.125	.265	.150	.761
	P_A3	005(c)	116	.908	016	.955
	P_A4	090(c)	-1.785	.080	234	.765
	P_B2	033(c)	553	.583	074	.596
	ТЕМР	.325(c)	3.324	.002	.409	.181
	GDP	.010(c)	.193	.847	.026	.751
	P_RAKI	.002(c)	.033	.974	.004	.921
	TREND	144(c)	-2.547	.014	325	.579
4	D_A1	.166(d)	2.736	.008	.349	.418
	D_B1	.007(d)	.135	.893	.018	.612
	D_A5	.025(d)	.436	.665	.059	.540
	D_B4	.093(d)	2.028	.047	.266	.778
	D_C1	019(d)	322	.748	044	.513
	D_A6	.064(d)	1.427	.159	.191	.844
	D_A2	005(d)	088	.930	012	.546
	D_B3	023(d)	433	.667	059	.635
	D_A4	095(d)	-1.901	.063	250	.660
	D_B2	079(d)	-1.348	.183	180	.492
	P_A1	003(d)	061	.952	008	.890
	P_B1	.016(d)	.347	.730	.047	.875
	P_A5	098(d)	-2.140	.037	280	.775
	P_B4	019(d)	419	.677	057	.813
	P_C1	.015(d)	.303	.763	.041	.743
	P_A6	.003(d)	.073	.942	.010	.881
	P_A2	.015(d)	.327	.745	.044	.825

	P_B3	.043(d)	.892	.376	.121	.753
	P_A3	001(d)	012	.990	002	.954
	P_A4	102(d)	-2.221	.031	289	.761
	P_B2	039(d)	722	.473	098	.596
	GDP	.037(d)	.759	.451	.103	.731
	P_RAKI	.070(d)	1.502	.139	.200	.774
	TREND	092(d)	-1.611	.113	214	.510
	D_B1	011(e)	223	.825	031	.601
	D_A5	071(e)	-1.135	.262	154	.393
	D_B4	.044(e)	.871	.388	.119	.596
	D_C1	066(e)	-1.155	.253	157	.473
	D_A6	.041(e)	.930	.357	.127	.805
	D_A2	050(e)	902	.371	123	.503
	D_B3	035(e)	708	.482	097	.630
	D_A4	060(e)	-1.188	.240	161	.598
	D_B2	061(e)	-1.079	.286	147	.484
	P_A1	.014(e)	.319	.751	.044	.873
	P_B1	.043(e)	.993	.325	.135	.833
5	P_A5	058(e)	-1.183	.242	160	.646
	P_B4	014(e)	318	.752	044	.812
	P_C1	048(e)	942	.351	128	.606
	P_A6	015(e)	351	.727	048	.859
	P_A2	.026(e)	.590	.558	.081	.818
	P_B3	.060(e)	1.330	.189	.180	.740
	P_A3	.011(e)	.259	.797	.036	.944
	P_A4	063(e)	-1.296	.201	175	.641
	P_B2	.000(e)	.006	.995	.001	.548
	GDP	.020(e)	.421	.675	.058	.716
	P_RAKI	.012(e)	.232	.817	.032	.581
	TREND	097(e)	-1.805	.077	241	.509
a I	Predictors in the	e Model: ((Constant)	, TOU	RIST	

b Predictors in the Model: (Constant), TOURIST, RAMADAN
c Predictors in the Model: (Constant), TOURIST, RAMADAN, D_A3
d Predictors in the Model: (Constant), TOURIST, RAMADAN, D_A3, TEMP
e Predictors in the Model: (Constant), TOURIST, RAMADAN, D_A3, TEMP, D_A1
f Dependent Variable: Q_A1

	Residuals Statistics(a)									
	Minimum	Maximum	Mean	Std. Deviation	N					
Predicted Value	149021.1875	339264.5313	250426.8500	51084.6099	60					
Residual	-37968.4414	37198.0742	-4.7051E-11	15417.5343	60					
Std. Predicted Value	-1.985	1.739	.000	1.000	60					
Std. Residual	-2.356	2.308	.000	.957	60					
a Dependent Variable: Q_A1										

REGRESSION OUTPUT: LINEAR BRAND-LEVEL MODEL 2nd STEPWISE REGRESSION

Variables Entered/Removed(a)							
Model	Variables Entered	Variables Removed	Method				
1	TOURIST		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
2	RAMADAN		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
3	D_A6		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
4	D_B1		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
5	ТЕМР		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
6	D_A1		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				

Model Summary(g)										
Mod el	R	R Squar e	Adjus ted R Squar e	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Cha nge	Durbin- Watson
1	.903(a)	.815	.812	23121.4704	.815	256.239	1	58	.000	
2	.931(b)	.866	.862	19837.1093	.051	21.796	1	57	.000	
3	.939(c)	.881	.875	18880.3199	.015	6.924	1	56	.011	
4	.944(d)	.891	.883	18231.5282	.010	5.057	1	55	.029	
5	.948(e)	.899	.890	17699.6526	.008	4.355	1	54	.042	

6	.953(f)	.909	.899	16981.4773	.010	5.664	1	53	.021	1.526	
a Pred	a Predictors: (Constant), TOURIST										
b Pred	b Predictors: (Constant), TOURIST, RAMADAN										
c Pred	c Predictors: (Constant), TOURIST, RAMADAN, D_A6										
d Pred	ictors: (Const	ant), TO	URIST, F	RAMADAN, D_A6,	D_B1						
e Pred	e Predictors: (Constant), TOURIST, RAMADAN, D_A6, D_B1, TEMP										
f Pred	f Predictors: (Constant), TOURIST, RAMADAN, D_A6, D_B1, TEMP, D_A1										
g Dep	g Dependent Variable: Q_A1										

	ANOVA(g)									
Μ	odel	Sum of Squares	df	Mean Square	F	Sig.				
	Regression	136985987317.735	1	136985987317.735	256.239	.000(a)				
1	Residual	31006938845.915	58	534602393.895						
	Total	167992926163.650	59							
	Regression	145562804504.363	2	72781402252.182	184.954	.000(b)				
2	Residual	22430121659.287	57	393510906.303						
	Total	167992926163.650	59							
	Regression	148030803404.806	3	49343601134.935	138.424	.000(c)				
3	Residual	19962122758.844	56	356466477.836						
	Total	167992926163.650	59							
	Regression	149711552001.907	4	37427888000.477	112.603	.000(d)				
4	Residual	18281374161.743	55	332388621.123						
	Total	167992926163.650	59							
	Regression	151075930269.449	5	30215186053.890	96.449	.000(e)				
5	Residual	16916995894.201	54	313277701.744						
	Total	167992926163.650	59							
	Regression	152709285879.449	6	25451547646.575	88.260	.000(f)				
6	Residual	15283640284.201	53	288370571.400						
	Total	167992926163.650	59							
a l	Predictors: (Co	onstant), TOURIST								
bl	Predictors: (C	onstant), TOURIST, H	RAM	ADAN						
c l	Predictors: (Co	onstant), TOURIST, F	RAM	ADAN, D_A6						

d Predictors: (Constant), TOURIST, RAMADAN, D_A6, D_B1

e Predictors: (Constant), TOURIST, RAMADAN, D_A6, D_B1, TEMP

f Predictors: (Constant), TOURIST, RAMADAN, D_A6, D_B1, TEMP, D_A1

g Dependent Variable: Q_A1

	CoefficientsStandardized Coefficients $I I I I I I I I I I I I I I I I I I I $										
		Unstandardized	l Coefficients	Standardized Coefficients							
М	odel	В	Std. Error	Beta	t	Sig.					
1	(Constant)	153716.961	6738.720		22.811	.000					
1	TOURIST	117.359	7.332	.903	16.007	.000					
	(Constant)	169079.383	6652.350		25.416	.000					
2	TOURIST	104.594	6.859	.805	15.250	.000					
	RAMADAN	-2004.237	429.303	246	-4.669	.000					
	(Constant)	153278.975	8726.197		17.565	.000					
3	TOURIST	103.458	6.542	.796	15.814	.000					
	RAMADAN	-1891.652	410.831	233	-4.604	.000					
	D_A6	2637.931	1002.537	.123	2.631	.011					
	(Constant)	108588.083	21586.775		5.030	.000					
	TOURIST	97.609	6.832	.751	14.288	.000					
4	RAMADAN	-1974.763	398.432	243	-4.956	.000					
	D_A6	3300.725	1011.962	.154	3.262	.002					
	D_B1	4409.675	1961.003	.112	2.249	.029					
	(Constant)	105827.679	20998.717		5.040	.000					
	TOURIST	70.926	14.404	.546	4.924	.000					
5	RAMADAN	-2052.369	388.592	252	-5.282	.000					
-	D_A6	2778.584	1013.798	.129	2.741	.008					
	D_B1	5113.344	1933.423	.130	2.645	.011					
	ТЕМР	1549.855	742.657	.220	2.087	.042					
6	(Constant)	-106880.824	91618.352		-1.167	.249					
	TOURIST	40.087	18.944	.308	2.116	.039					

	RAMADAN	-2256.959	382.607	277	-5.899	.000				
	D_A6	1917.837	1037.727	.089	1.848	.070				
	D_B1	3487.131	1976.822	.088	1.764	.083				
	ТЕМР	2755.844	874.338	.392	3.152	.003				
	D_A1	7629.152	3205.615	.161	2.380	.021				
a 1	Dependent Variable: O A1									

Excluded Variables(g)								
						Collinearity Statistics		
Model		Beta In	t	Sig.	Partial Correlation	Tolerance		
1	D_A1	.041(a)	.595	.554	.079	.677		
	D_B1	.035(a)	.582	.563	.077	.888		
	D_A5	.052(a)	.861	.393	.113	.883		
	D_B4	.080(a)	1.365	.177	.178	.914		
	D_C1	.020(a)	.329	.743	.044	.910		
	D_A6	.145(a)	2.688	.009	.335	.986		
	D_A2	.057(a)	.957	.343	.126	.896		
	D_B3	045(a)	744	.460	098	.883		
	D_A4	.050(a)	.885	.380	.116	.998		
	D_B2	.073(a)	1.297	.200	.169	.998		
	P_A1	061(a)	-1.061	.293	139	.961		
	P_B1	034(a)	599	.552	079	.982		
	P_A5	.028(a)	.485	.630	.064	.996		
	P_B4	038(a)	654	.516	086	.966		
	P_C1	010(a)	171	.865	023	.969		
	P_A6	009(a)	150	.881	020	.954		
	P_A2	065(a)	-1.134	.262	149	.966		
	P_B3	014(a)	231	.818	031	.941		
	P_A3	030(a)	526	.601	069	.965		

	P_A4	.008(a)	.136	.892	.018	1.000
	P_B2	.073(a)	1.276	.207	.167	.951
	ТЕМР	.217(a)	1.700	.095	.220	.190
	GSYIH	.067(a)	1.185	.241	.155	1.000
	RAMADAN	246(a)	-4.669	.000	526	.841
	P_RAKI	.029(a)	.517	.607	.068	.994
	TREND	004(a)	065	.948	009	1.000
2	D_A1	.085(b)	1.443	.155	.189	.662
	D_B1	.065(b)	1.254	.215	.165	.876
	D_A5	.055(b)	1.074	.288	.142	.883
	D_B4	.083(b)	1.673	.100	.218	.914
	D_C1	.022(b)	.431	.668	.057	.910
	D_A6	.123(b)	2.631	.011	.332	.976
	D_A2	.066(b)	1.295	.201	.170	.895
	D_B3	042(b)	814	.419	108	.883
	D_A4	.036(b)	.743	.461	.099	.994
	D_B2	.071(b)	1.487	.143	.195	.998
	P_A1	050(b)	-1.010	.317	134	.959
	P_B1	002(b)	043	.966	006	.962
	P_A5	.011(b)	.226	.822	.030	.991
	P_B4	039(b)	781	.438	104	.966
	P_C1	005(b)	095	.925	013	.968
	P_A6	014(b)	287	.775	038	.953
	P_A2	051(b)	-1.024	.310	136	.962
	P_B3	016(b)	315	.754	042	.941
	P_A3	018(b)	358	.721	048	.962
	P_A4	002(b)	040	.968	005	.998
	P_B2	.067(b)	1.354	.181	.178	.950
	ТЕМР	.240(b)	2.232	.030	.286	.190
	GSYIH	.077(b)	1.611	.113	.210	.998
	P_RAKI	.039(b)	.799	.428	.106	.992

	TREND	.007(b)	.134	.894	.018	.998
	D_A1	.079(c)	1.397	.168	.185	.660
	D_B1	.112(c)	2.249	.029	.290	.801
	D_A5	.078(c)	1.584	.119	.209	.861
	D_B4	.081(c)	1.713	.092	.225	.914
	D_C1	.066(c)	1.316	.194	.175	.828
	D_A2	.088(c)	1.827	.073	.239	.872
	D_B3	.078(c)	1.199	.236	.160	.493
	D_A4	.035(c)	.756	.453	.101	.994
	D_B2	.074(c)	1.625	.110	.214	.997
	P_A1	022(c)	446	.658	060	.905
	P_B1	012(c)	249	.805	033	.956
3	P_A5	012(c)	253	.801	034	.956
č	P_B4	077(c)	-1.606	.114	212	.897
	P_C1	.035(c)	.702	.486	.094	.884
	P_A6	.047(c)	.899	.373	.120	.781
	P_A2	026(c)	531	.597	071	.920
	P_B3	021(c)	448	.656	060	.939
	P_A3	.038(c)	.744	.460	.100	.805
	P_A4	.020(c)	.423	.674	.057	.967
	P_B2	.090(c)	1.928	.059	.252	.923
	ТЕМР	.172(c)	1.568	.123	.207	.172
	GSYIH	.037(c)	.740	.462	.099	.859
	P_RAKI	.052(c)	1.120	.267	.149	.982
	TREND	.071(c)	1.399	.167	.185	.819
4	D_A1	.037(d)	.629	.532	.085	.566
	D_A5	.019(d)	.304	.763	.041	.538
	D_B4	.044(d)	.860	.394	.116	.745
	D_C1	012(d)	178	.860	024	.465
	D_A2	.036(d)	.593	.556	.080	.542
	D_B3	025(d)	298	.767	041	.284

	D_A4	017(d)	337	.737	046	.763
	D_B2	.026(d)	.484	.631	.066	.687
	P_A1	.042(d)	.768	.446	.104	.676
	P_B1	.050(d)	.961	.341	.130	.728
	P_A5	.000(d)	007	.994	001	.944
	P_B4	033(d)	616	.541	084	.682
	P_C1	012(d)	234	.816	032	.728
	P_A6	.033(d)	.653	.516	.089	.769
	P_A2	.063(d)	1.069	.290	.144	.567
	P_B3	.082(d)	1.354	.182	.181	.533
	P_A3	.070(d)	1.382	.173	.185	.756
	P_A4	025(d)	502	.618	068	.811
	P_B2	.068(d)	1.433	.158	.191	.862
	ТЕМР	.220(d)	2.087	.042	.273	.167
	GSYIH	001(d)	016	.988	002	.755
	P_RAKI	.016(d)	.321	.750	.044	.838
	TREND	010(d)	146	.884	020	.432
5	D_A1	.161(e)	2.380	.021	.311	.376
	D_A5	.069(e)	1.100	.276	.149	.475
	D_B4	.082(e)	1.591	.117	.214	.681
	D_C1	.047(e)	.684	.497	.093	.394
	D_A2	.058(e)	.975	.334	.133	.527
	D_B3	.054(e)	.607	.546	.083	.235
	D_A4	031(e)	617	.540	084	.751
	D_B2	.022(e)	.421	.675	.058	.686
	P_A1	.046(e)	.870	.388	.119	.675
	P_B1	.038(e)	.745	.459	.102	.718
	P_A5	032(e)	675	.503	092	.855
	P_B4	049(e)	922	.361	126	.670
	P_C1	.029(e)	.530	.598	.073	.636
	P_A6	.049(e)	.987	.328	.134	.753
	P_A2	.069(e)	1.202	.235	.163	.566
-----	-------------------	-----------	-----------	------	---------------	------
	P_B3	.072(e)	1.216	.229	.165	.529
	P_A3	.062(e)	1.249	.217	.169	.751
	P_A4	034(e)	703	.485	096	.804
	P_B2	.069(e)	1.509	.137	.203	.862
	GSYIH	.044(e)	.818	.417	.112	.650
	P_RAKI	.064(e)	1.262	.212	.171	.709
	TREND	.029(e)	.427	.671	.059	.401
	D_A5	013(f)	177	.860	025	.335
	D_B4	.038(f)	.676	.502	.093	.555
	D_C1	005(f)	072	.943	010	.351
	D_A2	.019(f)	.315	.754	.044	.480
	D_B3	.002(f)	.020	.984	.003	.219
	D_A4	.003(f)	.051	.960	.007	.687
	D_B2	.031(f)	.624	.535	.086	.682
	P_A1	.043(f)	.851	.398	.117	.675
	P_B1	.057(f)	1.152	.254	.158	.702
	P_A5	.001(f)	.020	.984	.003	.776
6	P_B4	043(f)	856	.396	118	.669
	P_C1	038(f)	636	.528	088	.495
	P_A6	.018(f)	.361	.720	.050	.692
	P_A2	.056(f)	1.018	.313	.140	.560
	P_B3	.076(f)	1.345	.184	.183	.528
	P_A3	.054(f)	1.127	.265	.154	.747
	P_A4	.004(f)	.074	.941	.010	.712
	P_B2	.080(f)	1.814	.075	.244	.855
	GSYIH	.037(f)	.724	.472	.100	.648
	P_RAKI	.011(f)	.200	.842	.028	.549
	TREND	.007(f)	.098	.923	.014	.392
a I	Predictors in the	Model: (C	onstant),	TOUR	IIST	
b I	Predictors in the	Model: (C	onstant),	TOUR	RIST, RAMADAN	

c Predictors in the Model: (Constant), TOURIST, RAMADAN, D_A6

d Predictors in the Model: (Constant), TOURIST, RAMADAN, D_A6, D_B1

e Predictors in the Model: (Constant), TOURIST, RAMADAN, D_A6, D_B1, TEMP

f Predictors in the Model: (Constant), TOURIST, RAMADAN, D_A6, D_B1, TEMP, D_A1

```
g Dependent Variable: Q_A1
```

Residuals Statistics(a)											
	Minimum	Maximum	Mean	Std. Deviation	N						
Predicted Value	146006.6406	333973.5000	250426.8500	50875.2689	60						
Residual	-42668.6367	36974.6719	-6.3543E-11	16094.8672	60						
Std. Predicted Value	-2.052	1.642	.000	1.000	60						
Std. Residual	-2.513	2.177	.000	.948	60						
a Dependent Variable:	Q_A1			-							

APPENDIX B.6

REGRESSION OUTPUT: LINEAR BRAND-LEVEL MODEL 3rd STEPWISE REGRESSION

	Variables Entered/Removed(a)							
ModelVariables EnteredVariables Removed			Method					
1 TOURIST .			Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).					
2	RAMADAN		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).					
3 D_A6 .			Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).					
a Deper	a Dependent Variable: Q_A1							

	Model Summary(d)											
		R Square	Adjusted R Square	Std. Error of the Estimate								
Model	R				R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson		
1	.903(a)	.815	.812	23121.4704	.815	256.239	1	58	.000			
2	.931(b)	.866	.862	19837.1093	.051	21.796	1	57	.000			
3	.939(c)	.881	.875	18880.3199	.015	6.924	1	56	.011	1.606		
a Predic	tors: (Co	nstant), TO	DURIST									
b Predic	ctors: (Co	nstant), TO	DURIST, RA	AMADAN								
c Predic	c Predictors: (Constant), TOURIST, RAMADAN, D_A6											
d Deper	ident Var	iable: Q_A	A 1									

	ANOVA(d)									
Model		Sum of Squares	df	Mean Square	F	Sig.				
1	Regression	136985987317.735	1	136985987317.735	256.239	.000(a)				

	Residual	31006938845.915	58	534602393.895		
	Total	167992926163.650	59			
	Regression	145562804504.363	2	72781402252.182	184.954	.000(b)
2	Residual	22430121659.287	57	393510906.303		
	Total	167992926163.650	59			
	Regression	148030803404.806	3	49343601134.935	138.424	.000(c)
3	Residual	19962122758.844	56	356466477.836		
	Total	167992926163.650	59			
a I	Predictors: (Co	onstant), TOURIST				
b I	Predictors: (C	onstant), TOURIST, H	RAM	ADAN		
c I	Predictors: (Co	onstant), TOURIST, F	RAM	ADAN, D_A6		
d l	Dependent Va	riable: Q_A1				

	Coefficients(a)										
		Unstandardize	d Coefficients	Standardized Coefficients							
м	odel	В	Std. Error	Beta	t	Sig.					
1	(Constant)	153716.961	6738.720		22.811	.000					
	TOURIST	117.359	7.332	.903	16.007	.000					
	(Constant)	169079.383	6652.350		25.416	.000					
2	TOURIST	104.594	6.859	.805	15.250	.000					
	RAMADAN	-2004.237	429.303	246	-4.669	.000					
	(Constant)	153278.975	8726.197		17.565	.000					
3	TOURIST	103.458	6.542	.796	15.814	.000					
5	RAMADAN	-1891.652	410.831	233	-4.604	.000					
	D_A6	2637.931	1002.537	.123	2.631	.011					
a l	Dependent Vari	able: Q A1									

	Excluded Variables(d)									
	Beta In	t	Sig. Partial Correlation Collinearity S							
1 D_A1	.041(a)	.595	.554	.079	.677					

	D_A5	.052(a)	.861	.393	.113	.883
	D_B4	.080(a)	1.365	.177	.178	.914
	D_C1	.020(a)	.329	.743	.044	.910
	D_A6	.145(a)	2.688	.009	.335	.986
	D_A2	.057(a)	.957	.343	.126	.896
	D_B3	045(a)	744	.460	098	.883
	D_A4	.050(a)	.885	.380	.116	.998
	D_B2	.073(a)	1.297	.200	.169	.998
	P_A1	061(a)	-1.061	.293	139	.961
	P_B1	034(a)	599	.552	079	.982
	P_A5	.028(a)	.485	.630	.064	.996
	P_B4	038(a)	654	.516	086	.966
	P_C1	010(a)	171	.865	023	.969
	P_A6	009(a)	150	.881	020	.954
	P_A2	065(a)	-1.134	.262	149	.966
	P_B3	014(a)	231	.818	031	.941
	P_A3	030(a)	526	.601	069	.965
	P_A4	.008(a)	.136	.892	.018	1.000
	P_B2	.073(a)	1.276	.207	.167	.951
	ТЕМР	.217(a)	1.700	.095	.220	.190
	GDP	.067(a)	1.185	.241	.155	1.000
	RAMADAN	246(a)	-4.669	.000	526	.841
	P_RAKI	.029(a)	.517	.607	.068	.994
	TREND	004(a)	065	.948	009	1.000
2	D_A1	.085(b)	1.443	.155	.189	.662
	D_A5	.055(b)	1.074	.288	.142	.883
	D_B4	.083(b)	1.673	.100	.218	.914
	D_C1	.022(b)	.431	.668	.057	.910
	D_A6	.123(b)	2.631	.011	.332	.976
	D_A2	.066(b)	1.295	.201	.170	.895
	D_B3	042(b)	814	.419	108	.883

	D_A4	.036(b)	.743	.461	.099	.994
	D_B2	.071(b)	1.487	.143	.195	.998
	P_A1	050(b)	-1.010	.317	134	.959
	P_B1	002(b)	043	.966	006	.962
	P_A5	.011(b)	.226	.822	.030	.991
	P_B4	039(b)	781	.438	104	.966
	P_C1	005(b)	095	.925	013	.968
	P_A6	014(b)	287	.775	038	.953
	P_A2	051(b)	-1.024	.310	136	.962
	P_B3	016(b)	315	.754	042	.941
	P_A3	018(b)	358	.721	048	.962
	P_A4	002(b)	040	.968	005	.998
	P_B2	.067(b)	1.354	.181	.178	.950
	ТЕМР	.240(b)	2.232	.030	.286	.190
	GDP	.077(b)	1.611	.113	.210	.998
	P_RAKI	.039(b)	.799	.428	.106	.992
	TREND	.007(b)	.134	.894	.018	.998
3	D_A1	.079(c)	1.397	.168	.185	.660
	D_A5	.078(c)	1.584	.119	.209	.861
	D_B4	.081(c)	1.713	.092	.225	.914
	D_C1	.066(c)	1.316	.194	.175	.828
	D_A2	.088(c)	1.827	.073	.239	.872
	D_B3	.078(c)	1.199	.236	.160	.493
	D_A4	.035(c)	.756	.453	.101	.994
	D_B2	.074(c)	1.625	.110	.214	.997
	P_A1	022(c)	446	.658	060	.905
	P_B1	012(c)	249	.805	033	.956
	P_A5	012(c)	253	.801	034	.956
	P_B4	077(c)	-1.606	.114	212	.897
	P_C1	.035(c)	.702	.486	.094	.884
	P_A6	.047(c)	.899	.373	.120	.781

	P_A2	026(c)	531	.597	071	.920				
	P_B3	021(c)	448	.656	060	.939				
	P_A3	.038(c)	.744	.460	.100	.805				
	P_A4	.020(c)	.423	.674	.057	.967				
P_B2		.090(c)	1.928	.059	.252	.923				
	ТЕМР	.172(c)	1.568	.123	.207	.172				
	GDP	.037(c)	.740	.462	.099	.859				
	P_RAKI	.052(c)	1.120	.267	.149	.982				
	TREND	.071(c)	1.399	.167	.185	.819				
a l	a Predictors in the Model: (Constant), TOURIST									
bl	b Predictors in the Model: (Constant), TOURIST, RAMADAN									
c l	Predictors in the	e Model: (0	Constant)), TOU	RIST, RAMADAN, D	_A6				
d	Dependent Vari	able: Q_A	1							

Residuals Statistics(a)											
	Minimum	Maximum	Mean	Std. Deviation	N						
Predicted Value	151145.2813	347674.9375	250426.8500	50089.8859	60						
Residual	-42725.5664	33087.4102	2.910E-12	18394.0497	60						
Std. Predicted Value	-1.982	1.941	.000	1.000	60						
Std. Residual	-2.263	1.752	.000	.974	60						
a Dependent Variable:	Q_A1										

APPENDIX B.7

REGRESSION OUTPUT: LINEAR BRAND-LEVEL MODEL 4th STEPWISE REGRESSION

	Variables Entered/Removed(a)						
ModelVariables EnteredVariables RemovedMethod		Method					
1	TOURIST		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
2 RAMADAN Stepwise (Criteria: Probability-of-F-to-enter <= Probability-of-F-to-remove >= .100).		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).					
3	TEMP		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).				
4 D_A1 Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).							
a Deper	a Dependent Variable: Q_A1						

	Model Summary(e)									
Model	R Sq	R Squar e	Adjuste d R Square	Std. Error of the Estimate	R Square Change	F Change	df 1	df2	Sig. F Change	Durbin- Watson
1	.903(a)	.815	.812	23121.4704	.815	256.239	1	58	.000	
2	.931(b)	.866	.862	19837.1093	.051	21.796	1	57	.000	
3	.937(c)	.877	.871	19178.5788	.011	4.982	1	56	.030	
4	.949(d)	.901	.893	17426.6053	.023	12.826	1	55	.001	1.449
a Predic	tors: (Const	ant), TOI	JRIST							
b Predic	tors: (Const	ant), TO	URIST, RA	MADAN						
c Predic	c Predictors: (Constant), TOURIST, RAMADAN, TEMP									
d Predic	d Predictors: (Constant), TOURIST, RAMADAN, TEMP, D_A1									
e Depen	dent Variab	le: Q_A1								

	ANOVA(e)							
Μ	odel	Sum of Squares	df	Mean Square	F	Sig.		
	Regression	136985987317.735	1	136985987317.735	256.239	.000(a)		
1	Residual	31006938845.915	58	534602393.895				
	Total	167992926163.650	59					
	Regression	145562804504.363	2	72781402252.182	184.954	.000(b)		
2	Residual	22430121659.287	57	393510906.303				
	Total	167992926163.650	59					
	Regression	147395124585.292	3	49131708195.097	133.576	.000(c)		
3	Residual	20597801578.357	56	367817885.328				
	Total	167992926163.650	59					
	Regression	151290164650.185	4	37822541162.546	124.545	.000(d)		
4	Residual	16702761513.465	55	303686572.972				
	Total	167992926163.650	59					
a l	Predictors: (Co	onstant), TOURIST						
bl	Predictors: (Co	onstant), TOURIST, H	RAM	ADAN				
c I	c Predictors: (Constant), TOURIST, RAMADAN, TEMP							
d l	Predictors: (Co	onstant), TOURIST, H	RAM	ADAN, TEMP, D_A	1			
e I	Dependent Va	riable: Q_A1						

	Coefficients(a)						
Model		Unstandardized	d Coefficients	Standardized Coefficients		Sig.	
		В	Std. Error	Beta	t		
1	(Constant)	153716.961	6738.720		22.811	.000	
	TOURIST	117.359	7.332	.903	16.007	.000	
	(Constant)	169079.383	6652.350		25.416	.000	
2	TOURIST	104.594	6.859	.805	15.250	.000	
	RAMADAN	-2004.237	429.303	246	-4.669	.000	

	(Constant)	169743.398	6438.390		26.364	.000		
3	TOURIST	76.276	14.316	.587	5.328	.000		
	RAMADAN	-2045.098	415.455	251	-4.923	.000		
	ТЕМР	1686.729	755.720	.240	2.232	.030		
	(Constant)	-155621.199	91038.625		-1.709	.093		
	TOURIST	30.709	18.196	.236	1.688	.097		
4	RAMADAN	-2335.689	386.125	287	-6.049	.000		
	ТЕМР	3317.874	824.002	.472	4.027	.000		
	D_A1	10658.197	2976.052	.225	3.581	.001		
a l	a Dependent Variable: Q_A1							

	Excluded Variables(e)						
						Collinearity Statistics	
Model		Beta In t	t	Sig.	Partial Correlation	Tolerance	
1	D_A1	.041(a)	.595	.554	.079	.677	
	D_A5	.052(a)	.861	.393	.113	.883	
	D_B4	.080(a)	1.365	.177	.178	.914	
	D_C1	.020(a)	.329	.743	.044	.910	
	D_A2	.057(a)	.957	.343	.126	.896	
	D_B3	045(a)	744	.460	098	.883	
	D_A4	.050(a)	.885	.380	.116	.998	
	D_B2	.073(a)	1.297	.200	.169	.998	
	P_A1	061(a)	-1.061	.293	139	.961	
	P_B1	034(a)	599	.552	079	.982	
	P_A5	.028(a)	.485	.630	.064	.996	
	P_B4	038(a)	654	.516	086	.966	
	P_C1	010(a)	171	.865	023	.969	
	P_A6	009(a)	150	.881	020	.954	
	P_A2	065(a)	-1.134	.262	149	.966	

	P_B3	014(a)	231	.818	031	.941
	P_A3	030(a)	526	.601	069	.965
	P_A4	.008(a)	.136	.892	.018	1.000
	P_B2	.073(a)	1.276	.207	.167	.951
	ТЕМР	.217(a)	1.700	.095	.220	.190
	GDP	.067(a)	1.185	.241	.155	1.000
	RAMADAN	246(a)	-4.669	.000	526	.841
	P_RAKI	.029(a)	.517	.607	.068	.994
	TREND	004(a)	065	.948	009	1.000
2	D_A1	.085(b)	1.443	.155	.189	.662
	D_A5	.055(b)	1.074	.288	.142	.883
	D_B4	.083(b)	1.673	.100	.218	.914
	D_C1	.022(b)	.431	.668	.057	.910
	D_A2	.066(b)	1.295	.201	.170	.895
	D_B3	042(b)	814	.419	108	.883
	D_A4	.036(b)	.743	.461	.099	.994
	D_B2	.071(b)	1.487	.143	.195	.998
	P_A1	050(b)	-1.010	.317	134	.959
	P_B1	002(b)	043	.966	006	.962
	P_A5	.011(b)	.226	.822	.030	.991
	P_B4	039(b)	781	.438	104	.966
	P_C1	005(b)	095	.925	013	.968
	P_A6	014(b)	287	.775	038	.953
	P_A2	051(b)	-1.024	.310	136	.962
	P_B3	016(b)	315	.754	042	.941
	P_A3	018(b)	358	.721	048	.962
	P_A4	002(b)	040	.968	005	.998
	P_B2	.067(b)	1.354	.181	.178	.950
	ТЕМР	.240(b)	2.232	.030	.286	.190
	GDP	.077(b)	1.611	.113	.210	.998
	P_RAKI	.039(b)	.799	.428	.106	.992

	TREND	.007(b)	.134	.894	.018	.998
	D_A1	.225(c)	3.581	.001	.435	.459
	D_A5	.119(c)	2.261	.028	.292	.742
	D_B4	.131(c)	2.671	.010	.339	.823
	D_C1	.091(c)	1.682	.098	.221	.719
	D_A2	.103(c)	2.067	.043	.269	.829
	D_B3	.018(c)	.316	.753	.043	.661
	D_A4	.033(c)	.707	.482	.095	.994
	D_B2	.079(c)	1.711	.093	.225	.993
	P_A1	048(c)	-1.001	.321	134	.959
	P_B1	025(c)	501	.619	067	.923
3	P_A5	030(c)	592	.556	080	.866
5	P_B4	072(c)	-1.465	.149	194	.899
	P_C1	.053(c)	.998	.323	.133	.777
	P_A6	.015(c)	.308	.759	.041	.885
	P_A2	051(c)	-1.070	.289	143	.962
	P_B3	037(c)	746	.459	100	.910
	P_A3	016(c)	339	.736	046	.962
	P_A4	.003(c)	.057	.955	.008	.996
	P_B2	.079(c)	1.659	.103	.218	.940
	GDP	.109(c)	2.352	.022	.302	.937
	P_RAKI	.104(c)	2.050	.045	.266	.805
	TREND	.057(c)	1.125	.266	.150	.839
4	D_A5	.024(d)	.390	.698	.053	.491
	D_B4	.060(d)	1.094	.279	.147	.602
	D_C1	.026(d)	.478	.634	.065	.613
	D_A2	.044(d)	.871	.388	.118	.701
	D_B3	009(d)	163	.871	022	.647
	D_A4	.043(d)	1.017	.314	.137	.989
	D_B2	.061(d)	1.420	.161	.190	.977
	P_A1	016(d)	359	.721	049	.917

	P_B1	.020(d)	.430	.669	.058	.855
	P_A5	.016(d)	.328	.744	.045	.802
	P_B4	051(d)	-1.129	.264	152	.883
	P_C1	034(d)	627	.534	085	.610
	P_A6	012(d)	267	.790	036	.860
	P_A2	022(d)	498	.621	068	.927
	P_B3	.002(d)	.034	.973	.005	.857
	P_A3	.003(d)	.063	.950	.009	.948
	P_A4	.032(d)	.739	.463	.100	.961
	P_B2	.084(d)	1.969	.054	.259	.939
	GDP	.074(d)	1.642	.106	.218	.874
	P_RAKI	.020(d)	.360	.720	.049	.582
	TREND	.023(d)	.486	.629	.066	.802
a I	Predictors in the	e Model: (0	Constant)	, TOU	RIST	

b Predictors in the Model: (Constant), TOURIST, RAMADAN

c Predictors in the Model: (Constant), TOURIST, RAMADAN, TEMP

d Predictors in the Model: (Constant), TOURIST, RAMADAN, TEMP, D_A1

e Dependent Variable: Q_A1

Residuals Statistics(a)								
	Minimum	Maximum	Mean	Std. Deviation	N			
Predicted Value	152032.0469	337683.9375	250426.8500	50638.3262	60			
Residual	-40388.5977	40471.7852	-1.8917E-11	16825.5060	60			
Std. Predicted Value	-1.943	1.723	.000	1.000	60			
Std. Residual	-2.318	2.322	.000	.966	60			
a Dependent Variable:	a Dependent Variable: Q_A1							

APPENDIX B.8

REGRESSION OUTPUT: LINEAR BRAND-LEVEL MODEL 1st BACKWARD REGRESSION

	Variables Entered/Removed(t)	
Model	Variables Entered	Variables Removed	Method
1	TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, P_A4, D_A2, D_B3, TEMP, P_RAKI, P_B3, D_A4, P_A1, D_A5, D_B2(a)	-	Enter
2		P_B3	Backward (criterion: Probability of F-to- remove >= .100).
3		P_A4	Backward (criterion: Probability of F-to- remove >= .100).
4		D_A5	Backward (criterion: Probability of F-to- remove >= .100).
5		D_C1	Backward (criterion: Probability of F-to- remove >= .100).
6		D_A2	Backward (criterion: Probability of F-to- remove >= .100).
7		P_C1	Backward (criterion: Probability of F-to- remove >= .100).
8		P_A1	Backward (criterion: Probability of F-to- remove >= .100).
9		D_A6	Backward (criterion: Probability of F-to- remove >= .100).
10		GDP	Backward (criterion: Probability of F-to- remove >= .100).

11 .	D_B1	Backward (criterion: Probability of F-to- remove >= .100).
12 .	P_RAKI	Backward (criterion: Probability of F-to- remove >= .100).
13	P_A3	Backward (criterion: Probability of F-to- remove >= .100).
14 .	P_A2	Backward (criterion: Probability of F-to- remove >= .100).
15	P_A5	Backward (criterion: Probability of F-to- remove >= .100).
16 .	D_A4	Backward (criterion: Probability of F-to- remove >= .100).
17	D_B2	Backward (criterion: Probability of F-to- remove >= .100).
18 .	P_A6	Backward (criterion: Probability of F-to- remove >= .100).
19 .	TOURIST	Backward (criterion: Probability of F-to- remove >= .100).
a All requested variables entered.		

b Dependent Variable: Q_A1

	Model Summary(t)									
Mode l	R	R Squar e	Adjuste d R Square	Std. Error of the Estimate	R Squa re Chan ge	F Chang e	df 1	df 2	Sig. F Chang e	Durbin - Watson
1	.976(a)	.953	.910	16031.8623	.953	22.236	28	31	.000	
2	.976(b)	.953	.913	15781.0862	.000	.007	1	33	.935	
3	.976(c)	.953	.915	15541.2962	.000	.005	1	34	.945	

4	.976(d)	.953	.918	15311.8759	.000	.004	1	35	.953	
5	.976(e)	.953	.920	15092.1910	.000	.003	1	36	.957	
6	.976(f)	.952	.922	14894.9318	.000	.065	1	37	.800	
7	.976(g)	.952	.924	14714.2249	.000	.108	1	38	.745	
8	.976(h)	.952	.926	14546.1160	.000	.137	1	39	.714	
9	.976(i)	.952	.927	14432.7824	.000	.395	1	40	.534	
10	.975(j)	.951	.928	14279.2694	.000	.154	1	41	.697	
11	.975(k)	.951	.929	14184.9797	001	.460	1	42	.501	
12	.975(l)	.951	.931	14055.4914	.000	.237	1	43	.629	
13	.975(m	.950	.931	13989.6576	001	.598	1	44	.444	
14	.974(n)	.949	.932	13899.3924	001	.434	1	45	.514	
15	.973(o)	.948	.931	13998.1937	002	1.642	1	46	.207	
16	.973(p)	.946	.931	14043.3451	002	1.297	1	47	.261	
17	.971(q)	.944	.929	14177.7052	002	1.904	1	48	.174	
18	.971(r)	.942	.929	14259.2181	002	1.554	1	49	.219	
19	.969(s)	.939	.926	14503.2639	003	2.692	1	50	.107	1.906

a Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, P_A4, D_A2, D_B3, TEMP, P_RAKI, P_B3, D_A4, P_A1, D_A5, D_B2

b Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, P_A4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_A5, D_B2

c Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_A5, D_B2

d Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

e Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, P_B1, P_B4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

f Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

g Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

h Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6,

D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

i Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

j Predictors: (Constant), TREND, TOURIST, P_A5, RAMADAN, P_A3, D_B4, P_A6, D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

k Predictors: (Constant), TREND, TOURIST, P_A5, RAMADAN, P_A3, D_B4, P_A6, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

l Predictors: (Constant), TREND, TOURIST, P_A5, RAMADAN, P_A3, D_B4, P_A6, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

m Predictors: (Constant), TREND, TOURIST, P_A5, RAMADAN, D_B4, P_A6, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

n Predictors: (Constant), TREND, TOURIST, P_A5, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

o Predictors: (Constant), TREND, TOURIST, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

p Predictors: (Constant), TREND, TOURIST, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP, D_B2

q Predictors: (Constant), TREND, TOURIST, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP

r Predictors: (Constant), TREND, TOURIST, RAMADAN, D_B4, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP

s Predictors: (Constant), TREND, RAMADAN, D_B4, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP

t Dependent Variable: Q_A1

	ANOVA(t)										
Mode	1	Sum of Squares	df	Mean Square	F	Sig.					
1	Regression	160025287331.8 60	28	5715188833.281	22.236	.000(a)					
	Residual	7967638831.790	31	257020607.477							
	Total	167992926163.6 50	59								
	Regression	160023560364.5 82	27	5926798532.022	23.798	.000(b)					
2	Residual	7969365799.068	32	249042681.221							
	Total	167992926163.6 50	59								
3	Regression	160022373871.6 99	26	6154706687.373	25.482	.000(c)					

	Residual	7970552291.951	33	241531887.635		
	Total	167992926163.6 50	59			
	Regression	160021505730.7 51	25	6400860229.230	27.301	.000(d)
4	Residual	7971420432.899	34	234453542.144		
	Total	167992926163.6 50	59			
	Regression	160020828160.2 48	24	6667534506.677	29.273	.000(e)
5	Residual	7972098003.402	35	227774228.669		
	Total	167992926163.6 50	59			
	Regression	160006002421.7 43	23	6956782713.989	31.357	.000(f)
6	Residual	7986923741.907	36	221858992.831		
	Total	167992926163.6 50	59			
7	Regression	159982114808.1 04	22	7271914309.459	33.587	.000(g)
	Residual	8010811355.546	37	216508415.015		
	Total	167992926163.6 50	59	59		
	Regression	159952525540.5 77	21	7616786930.504	35.998	.000(h)
8	Residual	8040400623.073	38	211589490.081		
4 Re To To 5 Re 5 Re 6 Re 7 Re 7 Re 7 Re 7 Re 9 Re 9 Re 10 Re 10 Re	Total	167992926163.6 50	59			
	Regression	159869023025.1 34	20	7993451151.257	38.374	.000(i)
9	Residual	8123903138.516	39	208305208.680		
	Total	167992926163.6 50	59			
	Regression	159837024822.2 44	19	8412474990.644	41.258	.000(j)
10	Residual	8155901341.406	40	203897533.535		
	Total	167992926163.6 50	59			

	Regression	159743166505.4 32	18	8874620361.413	44.105	.000(k)
11	Residual	8249759658.218	41	201213650.200		
11 12 13 14 15 16 17	Total	167992926163.6 50	59			
	Regression	159695538926.6 56	17	9393855230.980	47.550	.000(1)
12	Residual	8297387236.994	42	197556838.976		
	Total	167992926163.6 50	59			
	Regression	159577373850.1 14	16	9973585865.632	50.961	.000(m)
13	Residual	8415552313.536	43	195710518.919		
14	Total	167992926163.6 50	59			
	Regression	159492429303.2 01	15	10632828620.213	55.037	.000(n)
14	Residual	8500496860.448	44	193193110.465		
	Total	167992926163.6 50	59			
	Regression	159175201919.6 08	14	11369657279.972	58.023	.000(o)
15	Residual	8817724244.042	45	195949427.645		
11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1	Total	167992926163.6 50	59			
	Regression	158921011240.8 47	13	12224693172.373	61.986	.000(p)
16	Residual	9071914922.803	46	197215541.800		
	Total	167992926163.6 50	59			
	Regression	158545581941.6 87	12	13212131828.474	65.730	.000(q)
17	Residual	9447344221.963	47	201007323.872		
	Total	167992926163.6 50	59			
18	Regression	158233311758.6 24	11	14384846523.511	70.748	.000(r)
	Residual	9759614405.026	48	203325300.105		

	Total	167992926163.6 50	59		03766.195 74.966 .00 44663.300	
19	Regression	157686037661.9 47	10	15768603766.195	74.966	.000(s)
	Residual	10306888501.70 3	49	210344663.300		
	Total	167992926163.6 50	59			
o Drod	ictors: (Constant) TPE	ND TOUDIST D	AS CDD	PAMADAN P A2 D PA	DA6 D	16

a Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, P_A4, D_A2, D_B3, TEMP, P_RAKI, P_B3, D_A4, P_A1, D_A5, D_B2

b Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, P_A4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_A5, D_B2

c Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_A5, D_B2

d Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

e Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, P_B1, P_B4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

f Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

g Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

h Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

i Predictors: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

j Predictors: (Constant), TREND, TOURIST, P_A5, RAMADAN, P_A3, D_B4, P_A6, D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

k Predictors: (Constant), TREND, TOURIST, P_A5, RAMADAN, P_A3, D_B4, P_A6, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

1 Predictors: (Constant), TREND, TOURIST, P_A5, RAMADAN, P_A3, D_B4, P_A6, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

m Predictors: (Constant), TREND, TOURIST, P_A5, RAMADAN, D_B4, P_A6, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

n Predictors: (Constant), TREND, TOURIST, P_A5, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

o Predictors: (Constant), TREND, TOURIST, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

p Predictors: (Constant), TREND, TOURIST, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP, D_B2

q Predictors: (Constant), TREND, TOURIST, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP

r Predictors: (Constant), TREND, TOURIST, RAMADAN, D_B4, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP

s Predictors: (Constant), TREND, RAMADAN, D_B4, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP

t Dependent Variable: Q_A1

	Coefficients(a)											
		Unstandardized	Coefficients	Standardized Coefficients								
Model		В	Std. Error	Beta	t	Sig.						
1	(Constant)	-318679.477	260436.525		-1.224	.230						
	D_A1	4254.650	5563.546	.090	.765	.450						
	D_B1	-1927.398	5441.755	049	354	.726						
	D_A5	325.846	3937.136	.022	.083	.935						
	D_B4	7901.588	4381.635	.136	1.803	.081						
	D_C1	-579.096	5604.872	017	103	.918						
	D_A6	-1432.451	4470.044	067	320	.751						
	D_A2	983.371	4182.791	.038	.235	.816						
	D_B3	11450.290	6173.803	.283	1.855	.073						
	D_A3	7151.570	4123.121	.192	1.735	.093						
	D_A4	1088.547	3032.426	.087	.359	.722						
	D_B2	3514.505	2831.345	.336	1.241	.224						
	P_A1	519.916	1648.476	.081	.315	.755						
	P_B1	574.756	975.280	.109	.589	.560						
	P_A5	-554.679	817.007	098	679	.502						
	P_B4	-860.001	655.922	173	-1.311	.199						
	P_C1	-223.395	679.897	061	329	.745						
	P_A6	594.604	547.073	.122	1.087	.285						

	P_A2	-781.688	809.440	148	966	.342
	P_B3	75.638	922.743	.017	.082	.935
	P_A3	308.454	594.490	.058	.519	.608
	P_A4	19.286	209.586	.024	.092	.927
	P_B2	107.413	121.494	.095	.884	.383
	ТЕМР	3052.034	1353.855	.434	2.254	.031
	GDP	1095.660	2127.544	.058	.515	.610
	RAMADAN	-2108.107	463.573	259	-4.548	.000
	TOURIST	25.655	24.115	.197	1.064	.296
	P_RAKI	84.851	108.565	.141	.782	.440
	TREND	-2767.306	1581.657	906	-1.750	.090
2	(Constant)	-318717.758	256362.273		-1.243	.223
	D_A1	4319.384	5421.065	.091	.797	.431
	D_B1	-1974.977	5326.074	050	371	.713
	D_A5	282.256	3840.036	.019	.074	.942
	D_B4	7950.905	4272.242	.137	1.861	.072
	D_C1	-501.457	5437.852	015	092	.927
	D_A6	-1485.549	4353.675	069	341	.735
	D_A2	907.623	4015.624	.035	.226	.823
	D_B3	11402.894	6050.519	.282	1.885	.069
	D_A3	7221.256	3971.417	.193	1.818	.078
	D_A4	1142.804	2913.015	.092	.392	.697
	D_B2	3523.306	2785.052	.337	1.265	.215
	P_A1	562.056	1541.764	.088	.365	.718
	P_B1	599.338	913.516	.114	.656	.516
	P_A5	-552.918	803.949	097	688	.497
	P_B4	-871.899	629.653	175	-1.385	.176
	P_C1	-221.408	668.836	060	331	.743
	P_A6	601.526	532.060	.124	1.131	.267
	P_A2	-781.101	796.747	148	980	.334
	P_A3	316.208	577.737	.060	.547	.588

	P_A4	13.369	193.684	.017	.069	.945
	P_B2	108.166	119.252	.096	.907	.371
	ТЕМР	3051.310	1332.649	.434	2.290	.029
	GDP	1110.906	2086.246	.059	.532	.598
	RAMADAN	-2118.083	440.317	260	-4.810	.000
	TOURIST	26.048	23.265	.200	1.120	.271
	P_RAKI	83.616	105.834	.139	.790	.435
	TREND	-2788.882	1535.205	913	-1.817	.079
3	(Constant)	-315184.467	247382.635		-1.274	.212
	D_A1	4287.282	5319.009	.090	.806	.426
	D_B1	-1930.782	5207.105	049	371	.713
	D_A5	220.477	3677.530	.015	.060	.953
	D_B4	7894.155	4128.676	.136	1.912	.065
	D_C1	-381.316	5073.478	012	075	.941
	D_A6	-1499.774	4282.716	070	350	.728
	D_A2	902.242	3953.862	.035	.228	.821
	D_B3	11358.303	5924.520	.281	1.917	.064
	D_A3	7186.627	3879.738	.192	1.852	.073
	D_A4	1290.506	1946.471	.104	.663	.512
	D_B2	3544.072	2726.684	.339	1.300	.203
	P_A1	596.130	1438.401	.093	.414	.681
	P_B1	598.053	899.448	.113	.665	.511
	P_A5	-554.255	791.504	098	700	.489
	P_B4	-867.178	616.416	174	-1.407	.169
	P_C1	-216.994	655.656	059	331	.743
	P_A6	593.387	510.945	.122	1.161	.254
	P_A2	-795.684	756.551	150	-1.052	.301
	P_A3	314.077	568.146	.059	.553	.584
	P_B2	110.005	114.470	.097	.961	.344
	ТЕМР	3034.437	1290.131	.432	2.352	.025
	GDP	1084.084	2018.590	.057	.537	.595

	RAMADAN	-2118.277	433.617	260	-4.885	.000
	TOURIST	26.439	22.223	.203	1.190	.243
	P_RAKI	83.359	104.161	.138	.800	.429
	TREND	-2780.634	1507.291	910	-1.845	.074
	(Constant)	-317509.681	240716.761		-1.319	.196
	D_A1	4380.002	5014.080	.092	.874	.388
	D_B1	-1953.346	5116.820	049	382	.705
	D_B4	7907.731	4061.605	.136	1.947	.060
	D_C1	-236.129	4392.387	007	054	.957
	D_A6	-1415.700	3986.878	066	355	.725
	D_A2	965.169	3755.730	.037	.257	.799
	D_B3	11332.734	5821.919	.280	1.947	.060
	D_A3	7169.066	3811.556	.192	1.881	.069
	D_A4	1249.561	1795.816	.100	.696	.491
	D_B2	3510.245	2628.289	.336	1.336	.191
	P_A1	586.313	1407.953	.092	.416	.680
4	P_B1	590.121	876.532	.112	.673	.505
	P_A5	-558.272	777.020	098	718	.477
	P_B4	-872.462	601.077	175	-1.451	.156
	P_C1	-228.958	615.328	062	372	.712
	P_A6	601.220	486.666	.124	1.235	.225
	P_A2	-776.419	674.811	147	-1.151	.258
	P_A3	304.843	538.796	.058	.566	.575
	P_B2	108.436	109.794	.096	.988	.330
	ТЕМР	3071.786	1113.079	.437	2.760	.009
	GDP	1095.803	1979.444	.058	.554	.583
	RAMADAN	-2123.499	418.507	261	-5.074	.000
	TOURIST	26.054	20.961	.200	1.243	.222
	P_RAKI	84.481	100.951	.140	.837	.409
	TREND	-2736.757	1298.238	896	-2.108	.042
5	(Constant)	-317797.950	237204.237		-1.340	.189

	D_A1	4439.325	4820.970	.094	.921	.363
	D_B1	-1999.845	4970.825	051	402	.690
	D_B4	7814.568	3620.630	.135	2.158	.038
	D_A6	-1515.327	3479.325	070	436	.666
	D_A2	915.962	3590.223	.035	.255	.800
	D_B3	11300.069	5707.051	.279	1.980	.056
	D_A3	7171.799	3756.536	.192	1.909	.064
	D_A4	1280.514	1676.604	.103	.764	.450
	D_B2	3556.708	2446.508	.340	1.454	.155
	P_A1	590.298	1385.828	.092	.426	.673
	P_B1	593.017	862.324	.112	.688	.496
	P_A5	-561.958	762.885	099	737	.466
	P_B4	-872.994	592.373	176	-1.474	.149
	P_C1	-226.168	604.338	062	374	.710
	P_A6	597.431	474.626	.123	1.259	.216
	P_A2	-778.171	664.353	147	-1.171	.249
	P_A3	294.233	494.152	.056	.595	.555
	P_B2	108.755	108.060	.096	1.006	.321
	ТЕМР	3083.953	1074.191	.439	2.871	.007
	GDP	1115.453	1917.491	.059	.582	.564
	RAMADAN	-2123.691	412.487	261	-5.149	.000
	TOURIST	25.772	20.006	.198	1.288	.206
	P_RAKI	85.442	97.932	.142	.872	.389
	TREND	-2768.768	1137.071	906	-2.435	.020
6	(Constant)	-287885.110	203506.220		-1.415	.166
	D_A1	4418.067	4757.247	.093	.929	.359
	D_B1	-2598.438	4324.980	066	601	.552
	D_B4	7921.259	3549.393	.137	2.232	.032
	D_A6	-1420.428	3414.169	066	416	.680
	D_B3	11514.550	5571.014	.285	2.067	.046
	D_A3	7568.298	3375.279	.203	2.242	.031

	D_A4	1360.113	1625.788	.109	.837	.408
	D_B2	3495.961	2403.069	.334	1.455	.154
	P_A1	474.676	1292.515	.074	.367	.716
	P_B1	645.073	826.886	.122	.780	.440
	P_A5	-614.116	725.375	108	847	.403
	P_B4	-910.847	565.996	183	-1.609	.116
	P_C1	-190.359	580.130	052	328	.745
	P_A6	653.926	414.316	.134	1.578	.123
	P_A2	-804.005	648.009	152	-1.241	.223
	P_A3	292.990	487.670	.055	.601	.552
	P_B2	103.826	104.929	.092	.989	.329
	ТЕМР	3178.516	995.040	.452	3.194	.003
	GDP	1068.685	1883.761	.056	.567	.574
	RAMADAN	-2112.870	404.938	260	-5.218	.000
	TOURIST	25.772	19.745	.198	1.305	.200
	P_RAKI	81.932	95.694	.136	.856	.398
	TREND	-2703.943	1093.832	885	-2.472	.018
7	(Constant)	-294859.918	199937.625		-1.475	.149
	D_A1	4291.785	4684.129	.090	.916	.365
	D_B1	-2661.400	4268.302	067	624	.537
	D_B4	7952.587	3505.062	.137	2.269	.029
	D_A6	-1710.582	3257.663	080	525	.603
	D_B3	11569.372	5500.951	.286	2.103	.042
	D_A3	7724.429	3301.032	.207	2.340	.025
	D_A4	1554.163	1496.044	.125	1.039	.306
	D_B2	3823.333	2159.653	.366	1.770	.085
	P_A1	472.015	1276.809	.074	.370	.714
	P_B1	650.122	816.713	.123	.796	.431
	P_A5	-717.375	645.631	126	-1.111	.274
	P_B4	-873.556	547.742	176	-1.595	.119
	P_A6	661.434	408.664	.136	1.619	.114

	P_A2	-763.223	628.262	144	-1.215	.232
	P_A3	241.555	456.188	.046	.530	.600
	P_B2	108.925	102.513	.096	1.063	.295
	ТЕМР	3179.596	982.963	.452	3.235	.003
	GDP	1202.925	1816.493	.063	.662	.512
	RAMADAN	-2103.038	398.929	259	-5.272	.000
	TOURIST	24.849	19.306	.191	1.287	.206
	P_RAKI	63.357	76.218	.105	.831	.411
	TREND	-2872.266	954.368	940	-3.010	.005
	(Constant)	-277867.896	192359.509		-1.445	.157
	D_A1	4155.081	4616.161	.088	.900	.374
	D_B1	-3261.870	3902.068	083	836	.408
	D_B4	8036.933	3457.668	.139	2.324	.026
	D_A6	-1974.085	3142.412	092	628	.534
	D_B3	11371.287	5412.243	.281	2.101	.042
	D_A3	8032.625	3157.534	.215	2.544	.015
	D_A4	1721.338	1409.769	.138	1.221	.230
	D_B2	3572.150	2026.565	.342	1.763	.086
	P_B1	842.750	621.713	.160	1.356	.183
8	P_A5	-694.228	635.246	122	-1.093	.281
	P_B4	-862.661	540.699	174	-1.595	.119
	P_A6	690.368	396.517	.142	1.741	.090
	P_A2	-667.346	565.696	126	-1.180	.245
	P_A3	289.532	432.342	.055	.670	.507
	P_B2	97.667	96.767	.086	1.009	.319
	ТЕМР	3167.160	971.163	.450	3.261	.002
	GDP	1192.000	1795.502	.063	.664	.511
	RAMADAN	-2132.884	386.211	262	-5.523	.000
	TOURIST	25.990	18.840	.200	1.380	.176
	P_RAKI	70.212	73.083	.117	.961	.343
	TREND	-2812.448	929.805	920	-3.025	.004

	(Constant)	-208547.320	156334.377		-1.334	.190
	D_A1	3477.843	4453.542	.073	.781	.440
	D_B1	-2730.724	3779.686	069	722	.474
	D_B4	7899.918	3423.896	.136	2.307	.026
	D_B3	11676.338	5348.417	.289	2.183	.035
	D_A3	7553.130	3040.020	.202	2.485	.017
	D_A4	1455.005	1334.035	.117	1.091	.282
	D_B2	2714.975	1486.712	.260	1.826	.075
	P_B1	851.943	616.698	.162	1.381	.175
	P_A5	-718.976	629.083	127	-1.143	.260
9	P_B4	-915.001	530.079	184	-1.726	.092
	P_A6	638.761	384.892	.131	1.660	.105
	P_A2	-583.746	545.537	110	-1.070	.291
	P_A3	361.728	413.541	.068	.875	.387
	P_B2	116.704	91.184	.103	1.280	.208
	ТЕМР	3128.674	961.677	.445	3.253	.002
	GDP	590.776	1507.337	.031	.392	.697
	RAMADAN	-2101.935	380.071	258	-5.530	.000
	TOURIST	26.992	18.626	.208	1.449	.155
	P_RAKI	49.086	64.381	.082	.762	.450
	TREND	-2403.891	659.336	787	-3.646	.001
10	(Constant)	-176163.303	131303.652		-1.342	.187
	D_A1	4262.372	3936.036	.090	1.083	.285
	D_B1	-2508.388	3697.126	064	678	.501
	D_B4	7810.038	3379.872	.135	2.311	.026
	D_B3	11840.119	5275.353	.293	2.244	.030
	D_A3	8039.624	2745.548	.215	2.928	.006
	D_A4	1628.687	1244.899	.131	1.308	.198
	D_B2	2741.374	1469.388	.262	1.866	.069
	P_B1	907.993	593.506	.172	1.530	.134
	P_A5	-752.795	616.509	132	-1.221	.229

	P_B4	-843.368	492.281	170	-1.713	.094
	P_A6	624.463	379.083	.128	1.647	.107
	P_A2	-588.894	539.578	111	-1.091	.282
	P_A3	328.085	400.231	.062	.820	.417
	P_B2	119.371	89.963	.105	1.327	.192
	ТЕМР	3022.042	912.579	.430	3.312	.002
	RAMADAN	-2116.498	374.227	260	-5.656	.000
	TOURIST	26.665	18.410	.205	1.448	.155
	P_RAKI	45.957	63.205	.076	.727	.471
	TREND	-2443.314	644.687	800	-3.790	.000
	(Constant)	-197911.561	126490.008		-1.565	.125
	D_A1	4802.994	3829.084	.101	1.254	.217
	D_B4	7800.564	3357.525	.135	2.323	.025
	D_B3	9671.090	4168.586	.239	2.320	.025
	D_A3	7402.396	2562.869	.198	2.888	.006
	D_A4	1219.679	1082.008	.098	1.127	.266
	D_B2	2710.411	1458.981	.259	1.858	.070
	P_B1	790.726	564.032	.150	1.402	.168
	P_A5	-649.120	593.328	114	-1.094	.280
11	P_B4	-833.891	488.833	168	-1.706	.096
	P_A6	611.266	376.084	.126	1.625	.112
	P_A2	-420.935	476.272	080	884	.382
	P_A3	286.727	392.949	.054	.730	.470
	P_B2	127.447	88.583	.113	1.439	.158
	TEMP	2820.947	857.406	.401	3.290	.002
	RAMADAN	-2165.434	364.786	266	-5.936	.000
	TOURIST	29.444	17.830	.227	1.651	.106
	P_RAKI	27.611	56.751	.046	.487	.629
	TREND	-2351.120	626.042	769	-3.756	.001
12	(Constant)	-202351.912	125008.651		-1.619	.113
	D_A1	5538.802	3485.638	.117	1.589	.120

	D_B4	8309.722	3161.136	.143	2.629	.012
	D_B3	8619.421	3531.804	.213	2.441	.019
	D_A3	7209.159	2508.793	.193	2.874	.006
	D_A4	1113.495	1050.094	.089	1.060	.295
	D_B2	2819.238	1428.571	.270	1.973	.055
	P_B1	788.843	558.870	.150	1.411	.165
	P_A5	-706.453	576.199	124	-1.226	.227
	P_B4	-880.300	475.059	177	-1.853	.071
	P_A6	678.336	346.713	.139	1.956	.057
	P_A2	-399.302	469.863	076	850	.400
	P_A3	300.362	388.371	.057	.773	.444
	P_B2	122.322	87.152	.108	1.404	.168
	ТЕМР	2757.038	839.549	.392	3.284	.002
	RAMADAN	-2181.791	359.918	268	-6.062	.000
	TOURIST	30.060	17.622	.231	1.706	.095
	TREND	-2278.872	602.623	746	-3.782	.000
13	(Constant)	-187270.990	122900.072		-1.524	.135
	D_A1	5452.117	3467.517	.115	1.572	.123
	D_B4	8189.210	3142.505	.141	2.606	.013
	D_B3	8328.633	3495.285	.206	2.383	.022
	D_A3	6940.297	2472.952	.186	2.806	.007
	D_A4	1057.445	1042.683	.085	1.014	.316
	D_B2	2641.161	1403.289	.253	1.882	.067
	P_B1	958.335	511.700	.182	1.873	.068
	P_A5	-765.821	568.388	135	-1.347	.185
	P_B4	-850.312	471.256	171	-1.804	.078
	P_A6	669.084	344.883	.138	1.940	.059
	P_A2	-295.183	448.055	056	659	.514
	P_B2	132.353	85.777	.117	1.543	.130
	ТЕМР	2925.364	807.049	.416	3.625	.001
	RAMADAN	-2233.635	351.964	275	-6.346	.000

5						
	TOURIST	28.044	17.347	.216	1.617	.113
	TREND	-2105.655	556.836	689	-3.781	.000
	(Constant)	-194566.409	121610.415		-1.600	.117
	D_A1	5498.432	3444.436	.116	1.596	.118
	D_B4	8475.503	3092.232	.146	2.741	.009
	D_B3	7750.969	3361.685	.192	2.306	.026
	D_A3	7180.274	2430.196	.192	2.955	.005
	D_A4	1398.448	899.298	.112	1.555	.127
	D_B2	2485.315	1374.282	.238	1.808	.077
14	P_B1	711.077	345.576	.135	2.058	.046
	P_A5	-717.621	560.023	126	-1.281	.207
	P_B4	-930.651	452.268	187	-2.058	.046
	P_A6	641.132	340.055	.132	1.885	.066
	P_B2	122.301	83.865	.108	1.458	.152
	ТЕМР	2948.443	801.086	.419	3.681	.001
	RAMADAN	-2193.953	344.534	270	-6.368	.000
	TOURIST	27.974	17.234	.215	1.623	.112
	TREND	-2114.576	553.080	692	-3.823	.000
15	(Constant)	-252635.341	113653.979		-2.223	.031
	D_A1	6583.232	3362.515	.139	1.958	.056
	D_B4	9262.065	3052.239	.160	3.035	.004
	D_B3	8175.067	3369.134	.202	2.426	.019
	D_A3	6881.180	2436.156	.184	2.825	.007
	D_A4	950.372	834.422	.076	1.139	.261
	D_B2	2009.442	1332.561	.192	1.508	.139
	P_B1	569.142	329.670	.108	1.726	.091
	P_B4	-1256.854	376.479	253	-3.338	.002
	P_A6	632.207	342.401	.130	1.846	.071
	P_B2	105.727	83.450	.093	1.267	.212
	ТЕМР	2772.252	794.808	.394	3.488	.001
	RAMADAN	-2125.090	342.736	261	-6.200	.000

	TOURIST	32.006	17.065	.246	1.875	.067
	TREND	-2129.739	556.884	697	-3.824	.000
	(Constant)	-238566.286	113345.132		-2.105	.041
	D_A1	5953.207	3327.402	.125	1.789	.080
	D_B4	8877.678	3043.308	.153	2.917	.005
	D_B3	7545.830	3334.249	.187	2.263	.028
	D_A3	7274.533	2419.330	.195	3.007	.004
	D_B2	1831.828	1327.673	.175	1.380	.174
16	P_B1	569.146	330.734	.108	1.721	.092
10	P_B4	-1039.804	325.732	209	-3.192	.003
	P_A6	499.733	323.079	.103	1.547	.129
	P_B2	128.223	81.341	.113	1.576	.122
	ТЕМР	2931.331	784.963	.417	3.734	.001
	RAMADAN	-2198.523	337.703	270	-6.510	.000
	TOURIST	31.319	17.110	.241	1.831	.074
	TREND	-1835.151	494.765	601	-3.709	.001
	(Constant)	-162459.397	99964.553		-1.625	.111
	D_A1	4879.980	3266.157	.103	1.494	.142
	D_B4	8871.334	3072.421	.153	2.887	.006
	D_B3	4661.426	2622.307	.115	1.778	.082
	D_A3	8468.931	2280.765	.227	3.713	.001
	P_B1	466.479	325.337	.088	1.434	.158
17	P_B4	-1092.188	326.607	220	-3.344	.002
	P_A6	395.205	317.075	.081	1.246	.219
	P_B2	133.534	82.027	.118	1.628	.110
	ТЕМР	3285.380	748.933	.467	4.387	.000
	RAMADAN	-2252.901	338.604	277	-6.653	.000
	TOURIST	31.530	17.273	.243	1.825	.074
	TREND	-1300.631	310.689	426	-4.186	.000
18	(Constant)	-198883.870	96147.179		-2.069	.044
	D_A1	6380.153	3053.759	.134	2.089	.042

	D_B4	8703.164	3087.105	.150	2.819	.007
	D_B3	5699.948	2500.709	.141	2.279	.027
	D_A3	7261.737	2076.774	.194	3.497	.001
	P_B1	569.969	316.372	.108	1.802	.078
	P_B4	-903.730	291.165	182	-3.104	.003
	P_B2	158.003	80.101	.140	1.973	.054
	ТЕМР	3382.858	749.121	.481	4.516	.000
	RAMADAN	-2330.115	334.803	286	-6.960	.000
	TOURIST	28.146	17.156	.217	1.641	.107
	TREND	-1144.664	286.010	375	-4.002	.000
	(Constant)	-304097.892	72860.624	72860.624		.000
	D_A1	8827.145	2710.348	.186	3.257	.002
	D_B4	8764.846	3139.708	.151	2.792	.007
	D_B3	7250.093	2354.965	.179	3.079	.003
	D_A3	7428.489	2109.787	.199	3.521	.001
19	P_B1	745.045	302.929	.141	2.459	.017
	P_B4	-957.549	294.262	193	-3.254	.002
	P_B2	141.942	80.862	.125	1.755	.085
	ТЕМР	4500.700	316.675	.640	14.212	.000
	RAMADAN	-2524.789	318.428	310	-7.929	.000
	TREND	-1140.843	290.896	373	-3.922	.000
1						

a Dependent Variable: Q_A1

Excluded Variables(s)						
Model					Collinearit y Statistics	
		Beta In	t	Sig.	Partial Correlation	Tolerance
2	P_B3	.017(a)	.082	.935	.015	3.383E-02
3	P_B3	.011(b)	.054	.957	.010	3.838E-02
	P_A4	.017(b)	.069	.945	.012	2.517E-02

		P_B3	.010(c)	.052	.959	.009	3.847E-02
	4	P_A4	.013(c)	.054	.957	.009	2.662E-02
		D_A5	.015(c)	.060	.953	.010	2.302E-02
		P_B3	.010(d)	.051	.960	.009	3.852E-02
	5	P_A4	.009(d)	.040	.968	.007	2.825E-02
5	D_A5	.006(d)	.028	.978	.005	2.982E-02	
		D_C1	007(d)	054	.957	009	7.943E-02
		P_B3	001(e)	005	.996	001	4.047E-02
		P_A4	.008(e)	.035	.972	.006	2.826E-02
	6	D_A5	.023(e)	.115	.909	.019	3.388E-02
		D_C1	.001(e)	.009	.993	.002	8.445E-02
		D_A2	.035(e)	.255	.800	.043	7.073E-02
		P_B3	.001(f)	.007	.994	.001	4.053E-02
		P_A4	003(f)	012	.990	002	2.887E-02
	7	D_A5	.036(f)	.186	.853	.031	3.565E-02
	1	D_C1	.002(f)	.018	.986	.003	8.451E-02
		D_A2	.023(f)	.175	.862	.029	7.476E-02
		P_C1	052(f)	328	.745	055	5.293E-02
		P_B3	.019(g)	.112	.911	.018	4.409E-02
		P_A4	.023(g)	.113	.911	.019	3.260E-02
		D_A5	.018(g)	.097	.923	.016	3.770E-02
	8	D_C1	004(g)	033	.974	005	8.613E-02
		D_A2	.006(g)	.051	.960	.008	8.316E-02
		P_C1	051(g)	330	.743	054	5.293E-02
		P_A1	.074(g)	.370	.714	.061	3.242E-02
	9	P_B3	.043(h)	.258	.798	.042	4.671E-02
		P_A4	.029(h)	.149	.882	.024	3.270E-02
		D_A5	037(h)	236	.815	038	5.104E-02
		D_C1	036(h)	346	.731	056	.116
		D_A2	011(h)	094	.925	015	8.783E-02
		P_C1	073(h)	486	.629	079	5.689E-02

	P_A1	.097(h)	.501	.619	.081	3.405E-02
	D_A6	092(h)	628	.534	101	5.895E-02
	P_B3	.045(i)	.274	.785	.044	4.677E-02
	P_A4	.002(i)	.010	.992	.002	3.691E-02
	D_A5	015(i)	100	.921	016	5.691E-02
	D_C1	031(i)	303	.764	048	.118
10	D_A2	012(i)	099	.921	016	8.784E-02
	P_C1	077(i)	524	.603	084	5.733E-02
	P_A1	.083(i)	.440	.663	.070	3.488E-02
	D_A6	040(i)	327	.746	052	8.235E-02
	GDP	.031(i)	.392	.697	.063	.196
	P_B3	.055(j)	.339	.736	.054	4.719E-02
	P_A4	003(j)	015	.988	002	3.696E-02
	D_A5	002(j)	011	.991	002	5.791E-02
	D_C1	032(j)	311	.758	049	.118
11	D_A2	.020(j)	.186	.854	.029	.106
11	P_C1	074(j)	510	.613	080	5.737E-02
	P_A1	.115(j)	.659	.514	.104	4.008E-02
	D_A6	031(j)	254	.801	040	8.333E-02
	GDP	.023(j)	.288	.774	.046	.201
	D_B1	064(j)	678	.501	107	.138
12	P_B3	.030(k)	.193	.848	.030	5.116E-02
	P_A4	.005(k)	.028	.978	.004	3.726E-02
	D_A5	003(k)	023	.982	004	5.794E-02
	D_C1	035(k)	345	.732	054	.118
	D_A2	.011(k)	.108	.915	.017	.108
	P_C1	.000(k)	.003	.998	.000	.122
	P_A1	.116(k)	.673	.505	.104	4.009E-02
	D_A6	009(k)	076	.940	012	9.422E-02
	GDP	.020(k)	.259	.797	.040	.201
	D_B1	034(k)	409	.685	064	.169

	P_RAKI	.046(k)	.487	.629	.076	.135
	P_B3	.061(l)	.420	.677	.065	5.642E-02
	P_A4	.048(1)	.287	.776	.044	4.208E-02
	D_A5	042(1)	321	.750	050	6.834E-02
	D_C1	022(1)	218	.828	034	.121
	D_A2	001(l)	012	.991	002	.111
13	P_C1	.019(l)	.198	.844	.031	.131
15	P_A1	.144(l)	.883	.382	.135	4.423E-02
	D_A6	033(1)	310	.758	048	.104
	GDP	.008(1)	.109	.914	.017	.209
	D_B1	023(1)	276	.784	042	.174
	P_RAKI	.051(l)	.543	.590	.083	.136
	P_A3	.057(1)	.773	.444	.118	.219
	P_B3	.014(m)	.107	.915	.016	6.857E-02
	P_A4	.066(m)	.401	.691	.061	4.344E-02
	D_A5	051(m)	389	.699	059	6.907E-02
	D_C1	011(m)	117	.907	018	.124
	D_A2	.016(m)	.161	.873	.024	.119
	P_C1	.022(m)	.236	.815	.036	.131
14	P_A1	.035(m)	.273	.786	.042	7.314E-02
	D_A6	016(m)	152	.880	023	.110
	GDP	.016(m)	.218	.828	.033	.215
	D_B1	001(m)	020	.984	003	.201
	P_RAKI	.043(m)	.465	.645	.071	.138
	P_A3	.039(m)	.555	.582	.084	.238
	P_A2	056(m)	659	.514	100	.162
15	P_B3	.003(n)	.026	.980	.004	6.885E-02
	P_A4	.042(n)	.256	.799	.039	4.397E-02
	D_A5	026(n)	197	.845	030	7.059E-02
	D_C1	014(n)	146	.885	022	.124
	D_A2	.014(n)	.145	.886	.022	.119
	P_C1	.000(n)	.000	1.000	.000	.136
----	--------	---------	------------	-------	------	-----------
	P_A1	.030(n)	.233	.817	.035	7.321E-02
	D_A6	017(n)	166	.869	025	.110
	GDP	.027(n)	.365	.717	.055	.218
	D_B1	.023(n)	.316	.754	.048	.216
	P_RAKI	.066(n)	.734	.467	.110	.145
	P_A3	.052(n)	.754	.455	.113	.245
	P_A2	041(n)	485	.630	073	.165
	P_A5	126(n)	- 1.281	.207	190	.118
	P_B3	042(o)	340	.736	051	7.690E-02
	P_A4	.090(o)	1.116	.270	.164	.178
	D_A5	066(o)	535	.595	080	7.805E-02
	D_C1	022(o)	223	.825	033	.125
	D_A2	.020(o)	.197	.845	.029	.119
	P_C1	040(o)	470	.640	070	.165
	P_A1	021(o)	177	.861	026	8.347E-02
16	D_A6	.040(o)	.453	.653	.067	.152
	GDP	.057(o)	.939	.353	.139	.318
	D_B1	.054(0)	.830	.411	.123	.284
	P_RAKI	.020(o)	.235	.815	.035	.170
	P_A3	.024(o)	.362	.719	.054	.271
	P_A2	073(o)	- 1.038	.305	153	.239
	P_A5	067(o)	723	.473	107	.140
	D_A4	.076(o)	1.139	.261	.167	.260
17	P_B3	074(p)	600	.551	088	8.006E-02
	P_A4	.064(p)	.792	.433	.116	.186
	D_A5	021(p)	176	.861	026	8.319E-02
	D_C1	022(p)	218	.829	032	.125
	D_A2	.020(p)	.202	.841	.030	.119
	P_C1	051(p)	599	.552	088	.166

	P_A1	069(p)	602	.550	088	9.303E-02
	D_A6	.083(p)	1.113	.271	.162	.213
	GDP	.052(p)	.849	.400	.124	.319
	D_B1	.042(p)	.650	.519	.095	.288
	P_RAKI	.035(p)	.424	.674	.062	.174
	P_A3	.013(p)	.201	.842	.030	.274
	P_A2	053(p)	761	.450	112	.247
	P_A5	038(p)	414	.681	061	.146
	D_A4	.064(p)	.956	.344	.140	.264
	D_B2	.175(p)	1.380	.174	.199	7.283E-02
	P_B3	036(q)	299	.766	044	8.448E-02
	P_A4	.024(q)	.314	.755	.046	.211
	D_A5	.043(q)	.396	.694	.058	.104
	D_C1	.019(q)	.204	.839	.030	.140
	D_A2	.057(q)	.589	.558	.086	.133
	P_C1	003(q)	044	.965	006	.199
	P_A1	014(q)	125	.901	018	.106
	D_A6	.071(q)	.949	.347	.137	.216
18	GDP	.026(q)	.434	.666	.063	.350
	D_B1	.041(q)	.623	.536	.091	.289
	P_RAKI	.070(q)	.932	.356	.135	.217
	P_A3	.025(q)	.369	.714	.054	.280
	P_A2	028(q)	411	.683	060	.265
	P_A5	056(q)	615	.542	089	.150
	D_A4	.032(q)	.497	.622	.072	.295
	D_B2	.129(q)	1.031	.308	.149	7.707E-02
	P_A6	.081(q)	1.246	.219	.179	.282
19	P_B3	020(r)	167	.868	024	8.500E-02
	P_A4	.046(r)	.599	.552	.086	.218
	D_A5	.017(r)	.158	.875	.023	.106
	D_C1	.028(r)	.296	.768	.043	.141

D_A2	.058(r)	.592	.556	.085	.133
P_C1	003(r)	037	.971	005	.199
P_A1	.002(r)	.014	.989	.002	.107
D_A6	.072(r)	.945	.349	.135	.216
GDP	.026(r)	.428	.671	.062	.350
D_B1	.026(r)	.392	.697	.056	.294
P_RAKI	.073(r)	.960	.342	.137	.217
P_A3	.012(r)	.173	.863	.025	.284
P_A2	028(r)	398	.692	057	.265
P_A5	076(r)	841	.405	120	.154
D_A4	.034(r)	.515	.609	.074	.295
D_B2	.138(r)	1.088	.282	.155	7.723E-02
P_A6	.063(r)	.949	.347	.136	.289
TOURIS T	.217(r)	1.641	.107	.230	6.946E-02

a Predictors in the Model: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, P_A4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_A5, D_B2

b Predictors in the Model: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_A5, D_B2

c Predictors in the Model: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, D_C1, P_B1, P_B4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

d Predictors in the Model: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, P_B1, P_B4, D_A2, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

e Predictors in the Model: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, P_C1, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

f Predictors in the Model: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, P_A1, D_B2

g Predictors in the Model: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_A6, D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

h Predictors in the Model: (Constant), TREND, TOURIST, P_A5, GDP, RAMADAN, P_A3, D_B4, P_A6, D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

i Predictors in the Model: (Constant), TREND, TOURIST, P_A5, RAMADAN, P_A3, D_B4, P_A6,

D_B1, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

j Predictors in the Model: (Constant), TREND, TOURIST, P_A5, RAMADAN, P_A3, D_B4, P_A6, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, P_RAKI, D_A4, D_B2

k Predictors in the Model: (Constant), TREND, TOURIST, P_A5, RAMADAN, P_A3, D_B4, P_A6, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

1 Predictors in the Model: (Constant), TREND, TOURIST, P_A5, RAMADAN, D_B4, P_A6, D_A3, P_B2, P_A2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

m Predictors in the Model: (Constant), TREND, TOURIST, P_A5, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

n Predictors in the Model: (Constant), TREND, TOURIST, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP, D_A4, D_B2

o Predictors in the Model: (Constant), TREND, TOURIST, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP, D_B2

p Predictors in the Model: (Constant), TREND, TOURIST, RAMADAN, D_B4, P_A6, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP

q Predictors in the Model: (Constant), TREND, TOURIST, RAMADAN, D_B4, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP

r Predictors in the Model: (Constant), TREND, RAMADAN, D_B4, D_A3, P_B2, D_A1, P_B1, P_B4, D_B3, TEMP

s Dependent Variable: Q_A1

Residuals Statistics(a)										
	Minimum	Maximum	Mean	Std. Deviation	Ν					
Predicted Value	135145.8281	338666.2813	250426.85 00	51697.6277	60					
Residual	-35374.5156	28247.6367	-9.4587E- 11	13217.1489	60					
Std. Predicted Value	-2.230	1.707	.000	1.000	60					
Std. Residual	-2.439	1.948	.000	.911	60					
a Dependent Variable: Q_A1										

REGRESSION OUTPUT: LINEAR BRAND-LEVEL MODEL 10th BACKWARD REGRESSION

	Variables Entered/Removed(b)									
Model	Variables Entered		Variables Removed	Method						
1	TREND, TOURIST, GDP, P_A3, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, P_A4, D_A1, D_C1, P_B1, TEMP, P_B3, P_A1, D_A4, D_A5(a)			Enter						
2		•	D_C1	Backward (criterion: Probability of F-to- remove >= .100).						
3			D_A4	Backward (criterion: Probability of F-to- remove >= .100).						
4		•	P_A4	Backward (criterion: Probability of F-to- remove >= .100).						
5		•	P_A3	Backward (criterion: Probability of F-to- remove >= .100).						
6			P_B1	Backward (criterion: Probability of F-to- remove >= .100).						
7			D_A6	Backward (criterion: Probability of F-to- remove >= .100).						
8			P_A2	Backward (criterion: Probability of F-to- remove >= .100).						
9			TREND	Backward (criterion: Probability of F-to- remove >= .100).						
10			P_A6	Backward (criterion: Probability of F-to- remove >= .100).						
11			D_A5	Backward (criterion:						

			Probability of F-to- remove >= .100).
12		GDP	Backward (criterion: Probability of F-to- remove >= .100).
13		P_RAKI	Backward (criterion: Probability of F-to- remove >= .100).
a All ree	quested variables entered.		

b Dependent Variable: Q_A1

Model Summary(n)										
						Change	e Stat	istics		
Mode l	R	R Squar e	Adjuste d R Square	Std. Error of the Estimate	R Squa re Chan ge	F Chang e	df 1	df 2	Sig. F Chang e	Durbin - Watson
1	.961(a)	.923	.886	18018.1708	.923	25.129	19	40	.000	
2	.960(b)	.923	.889	17813.8705	.000	.076	1	42	.785	
3	.960(c)	.922	.891	17610.8023	.000	.048	1	43	.828	
4	.960(d)	.922	.893	17414.0059	.000	.044	1	44	.834	
5	.960(e)	.922	.896	17241.9429	.000	.135	1	45	.715	
6	.960(f)	.922	.897	17105.1814	001	.289	1	46	.594	
7	.960(g)	.921	.899	16972.4430	001	.289	1	47	.594	
8	.960(h)	.921	.900	16838.4157	.000	.261	1	48	.612	
9	.959(i)	.920	.902	16692.3541	.000	.171	1	49	.681	
10	.959(j)	.920	.904	16573.5316	001	.305	1	50	.583	
11	.959(k)	.920	.905	16443.2044	.000	.217	1	51	.644	
12	.958(1)	.917	.904	16522.1835	002	1.491	1	52	.228	
13	.956(m)	.915	.903	16597.2618	002	1.474	1	53	.230	1.835
a Predic P_A2, F	ctors: (Con P_A4, D_A	stant), TR A1, D_C1,	END, TOU P_B1, TEM	RIST, GDP, P_4 1P, P_B3, P_A1	A3, RAN , D_A4,	IADAN, P D_A5	_RAI	KI, P_	A6, D_A6	, P_B2,
b Predic P_A2, F	ctors: (Con P_A4, D_A	stant), TR A1, P_B1,	REND, TOU TEMP, P_E	RIST, GDP, P_4 33, P_A1, D_A4	A3, RAN , D_A5	IADAN, F	P_RAI	KI, P_	A6, D_A6	, P_B2,

c Predictors: (Constant), TREND, TOURIST, GDP, P_A3, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, P_A4, D_A1, P_B1, TEMP, P_B3, P_A1, D_A5

d Predictors: (Constant), TREND, TOURIST, GDP, P_A3, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, D_A1, P_B1, TEMP, P_B3, P_A1, D_A5

e Predictors: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, D_A1, P_B1, TEMP, P_B3, P_A1, D_A5

f Predictors: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, D_A1, TEMP, P_B3, P_A1, D_A5

g Predictors: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, P_B2, P_A2, D_A1, TEMP, P_B3, P_A1, D_A5

h Predictors: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, P_B2, D_A1, TEMP, P_B3, P_A1, D_A5

i Predictors: (Constant), TOURIST, GDP, RAMADAN, P_RAKI, P_A6, P_B2, D_A1, TEMP, P_B3, P_A1, D_A5

j Predictors: (Constant), TOURIST, GDP, RAMADAN, P_RAKI, P_B2, D_A1, TEMP, P_B3, P_A1, D_A5

k Predictors: (Constant), TOURIST, GDP, RAMADAN, P_RAKI, P_B2, D_A1, TEMP, P_B3, P_A1

1 Predictors: (Constant), TOURIST, RAMADAN, P_RAKI, P_B2, D_A1, TEMP, P_B3, P_A1

m Predictors: (Constant), TOURIST, RAMADAN, P_B2, D_A1, TEMP, P_B3, P_A1

n Dependent Variable: Q_A1

	ANOVA(n)									
Mod	el	Sum of Squares		Mean Square	F	Sig.				
	Regression	155006747004.553		8158249842.345	25.129	.000(a)				
1	Residual	12986179159.097		324654478.977						
	Total	167992926163.650	59							
2	Regression	n 154982232882.457		8610124049.025	27.133	.000(b)				
	Residual	13010693281.193	41	317333982.468						
	Total	167992926163.650	59							
	Regression	154967031136.273	17	9115707713.898	29.392	.000(c)				
3	Residual	13025895027.377	42	310140357.795						
	Total	167992926163.650	59							
	Regression	154953279248.628	16	9684579953.039	31.936	.000(d)				
4	Residual	13039646915.022	43	303247602.675						
	Total	167992926163.650	59							

5Residual13080522154.04344297284594.400()Total167992926163.65059()()8Regression154826500807.0421411059035771.93237.797.000(r)7Residual13166425356.08045292587230.147()().000(r)70Regression15471990338.4471311190320026.03441.322.000(g)70Regression15471990338.4571411190320026.03441.322.000(g)71Regression154666910756.8571212888909229.73845.458.000(h)8Regression154666910756.8571212888909229.73845.458.000(h)71Regression154666910756.8571212888909229.73845.458.000(h)8Regression154618461278.28111141056223752.57150.447.000(h)71Regression15451351067.56859C1.000(h)71Regression15451351067.568591.000(h).000(h)71Regression15451351067.568591.000(h).000(h)71Regression15451351067.56859.000(h).000(h)71Regression15451351067.56859.000(h).000(h)72Regression15451351067.56859.000(h).000(h)71Regression15451351067.56859.000(h).000(h)73Regression15451351067.		Regression	154912404009.607	15	10327493600.640	34.739	.000(e)
Total167992926163.65059Image: solutionImage: solutionRegression154826500807.0421411059035771.93237.797.000(n)Residual13166425356.068452292587230.147Image: solution.000(n)Total167992926163.65059Image: solution41.32.000(n)Residual1325093582.5204628806382.287Image: solution.000(n)Residual1325093582.52045Image: solutionImage: solution.000(n)Residual1326019506.5571212888909229.73845.458.000(n)Residual13326015406.79947283532242.698Image: solution.000(n)Residual13326015406.79947283532242.698Image: solution.000(n)Residual13326015406.79947283532242.698Image: solution.000(n)Residual13326015406.79947283532242.698Image: solution.000(n)Residual1337446485.30959Image: solution.000(n)Image: solutionResidual1337446485.30959Image: solution.000(n)Image: solution.000(n)Residual13459415487.96449274681948.738Image: solution.000(n)Residual13518948497.58859Image: solution.000(n)Image: solution.000(n)Residual135197566.5159Image: solution.000(n)Image: solution.000(n)Residual135197576.5159	5	Residual	13080522154.043	44	297284594.410		
Regression154826500807.04214111059035771.93237.979.0.00(n)Residual13166425356.008452.92587230.147(Total	167992926163.650	59			
6Residual13166425356.60845292587230.147ITotal167992926163.65059I19032300260341.32.000(g)7Regression1354741990338.4713119032300260341.32.000(g)70Residual13250935825.20246288063822.287II70Regression154666910756.8571212888909229.73845.458.000(h)8Regression154666910756.85759I.000(g)I70Regression154666910756.85759I.000(h)70Regression15466910756.85759I.000(h)70Regression15466910756.85759I.000(h)70Regression15466910756.85759I.000(h)70Regression15466910756.85748278634685.112I70Regression15453351067.56848274681948.734I70Regression15453351067.56859II71Regression15447397766.112917163775296.25363.480.000(h)71Regression15407081629.58850270378969.951II71Regression15407081629.5885027037896.951II72Regression15407081629.58859III73Regression15407081629.58859III7416792926163.6559II<		Regression	154826500807.042	14	11059035771.932	37.797	.000(f)
Total167992926163.65059InterfInterfRegression154741990338.4471311903230026.03441.322.000(g)Residual13250935825.20246288063822.287InterfInterfTotal167992926163.65059InterfInterf.000(g)Regression154666910756.8571212888909229.73845.458.000(h)Residual13326015406.79347283532242.689Interf.000(g)Regression154618461278.2814114105622375.27150.447.000(g)Regression154513510675.6848278634685.112Interf.000(g)Regression154533510675.6849Interf.000(g).000(g)Regression154533510675.6859Interf.000(g).000(g)Regression154533510675.6859Interf.000(g).000(g)Regression15454351675.6859Interf.000(g).000(g)Regression1545435166.1159Interf.000(g).000(g)Regression1544739766.1159Interf.000(g).000(g)Regression1545435162.5859Interf.000(g).000(g)Regression154079226163.6559Interf.000(g).000(g)Regression15407926163.6559Interf.000(g).000(g)Regression15407926163.6559Interf.000(g).000(g)Regression15407926163.6559<	6	Residual	13166425356.608	45	292587230.147		
Regression154741990338.44713119032006.03441.3220.00(g)Residual13250935825.0046288063822.8741.320.00(g)Total16799296163.65591212888909229.7345.4580.00(h)Regression13326015406.7947283532242.6980.000.00(h)Regression131326015406.79590.000(h)0.000(h)Regression131326015406.79590.000(h)0.000(h)Regression131641841278.281014105623752.7150.4470.000(h)Regression131374464885.36948278634685.1120.000.000(h)Regression131545351067.568490.15453351067.56956.2590.000(h)Regression1315454351067.568500.1010.000(h)0.000(h)Regression1315494817.58500.116377526.2363.4800.000(h)Regression1547037066.11290.1716377526.2363.4800.000(h)Regression1547037166.11290.1716377526.2363.4800.000(h)Regression154703163299.80500.27037896.9130.1020.000(h)Regression1547031629.580590.000(h)0.000(h)0.000(h)Regression1547031629.580590.000(h)0.000(h)Regression1547031629.580590.000(h)0.000(h)Regression1547031629.580590.000(h)0.000(h)Regression1547031629.580 <th></th> <th>Total</th> <th>167992926163.650</th> <th>59</th> <th></th> <th></th> <th></th>		Total	167992926163.650	59			
Residual13250935825.2024.6288063822.87()Total167992926163.65059()()Regression154666910756.8571212888909229.73845.458000(n)Residual13326015406.793472283532242.698()()Total167992926163.65059()()()Regression154518461278.2811114056223752.57150.447.0.00(n)Regression167992926163.650482.78634685.112()()Regression154533510675.68492.78634685.112()()Regression154533510675.68492.78634685.112()()Regression154533510675.68492.74681948.734()()Regression154533510675.68492.74681948.734()()Regression15447397766.112492.7163775296.236.3.48.000(n)Residual1351894847.53502.7037896.951()()Residual1345915263.6559()()()Residual13510926163.6559()()()Residual136407081629.580481925885037.44170.50(.000(n)Residual1364792926163.6559()()()Residual136407081629.58059()()()Residual1362039284.11712.195264756.73 <th></th> <th>Regression</th> <th>154741990338.447</th> <th>13</th> <th>11903230026.034</th> <th>41.322</th> <th>.000(g)</th>		Regression	154741990338.447	13	11903230026.034	41.322	.000(g)
Total167992926163.65059InterfereRegression154666910756.8571212888909229.73845.458.000(h)Residual13326015406.79347283532242.698InterfereInterfereTotal167992926163.65059InterfereS0.447.000(h)Regression154618461278.28111114056223752.57150.447.000(h)Regression13374464885.36948278634685.112Interfere.000(h)Regression167992926163.65059Interfere.000(h)Regression154533510675.6810Interfere.000(h)Regression154533510675.6810Interfere.000(h)Regression15454739766.11259Interfere.000(h)Regression154518948497.53850270378969.51InterfereRegression15457351067.56959Interfere.000(h)Regression15467081629.58059Interfere.000(h)Regression15470781629.58059Interfere.000(h)Regression15470781629.58059Interfere.000(h)Regression15470781629.58059Interfere.000(h)Regression15470781629.58059Interfere.000(h)Regression15470781629.58059Interfere.000(h)Regression15470781629.58059Interfere.000(h)Regression15470781629.58059Interfere.000(h)Reg	7	Residual	13250935825.202	46	288063822.287		
Regression154666910756.8571212888909229.73845.458.000(h)Residual13326015406.79947283532242.69811Total167992926163.6505910100(h)100(h)Regression113374464885.30948278634685.11250.477.000(h)Total167992926163.6505910100(h)100(h)Regression11617992926163.6505910100(h).000(h)Regression113459415487.9449274681948.73410.000(h)Regression1616792926163.65059100100(h).000(h)Regression1615473371067.11249274681948.73463.480.000(h)Regression161547397766.11259101.000(h).000(h)Regression1615492926163.65059101.000(h).000(h)Regression1615492926163.65059101.000(h).000(h)Regression1615492926163.65059101.000(h).000(h)Regression1615492926163.65059101.000(h).000(h)Regression161592926163.65059101.000(h).000(h)Regression161592926163.65059.000(h).000(h).000(h)Regression161592926163.65059.000(h).000(h).000(h)Regression161592926163.65059.000(h).000(h).000(h)Regression161592926163.65059.0		Total	167992926163.650	59			
8Residual13320015406.79347283532242.698ITotal167992926163.65050II9Regression154618461278.2811114056223752.57150.4470.000(i)9Residual13374464885.36948278634685.11250.4470.000(i)9Regression154533510675.6861015453351067.56956.2590.000(j)10Regression154533510675.6861015453351067.56956.2590.000(j)11Regression15453510675.68610274681948.73366.34800.000(k)11Regression15447397766.112917113775296.23563.4800.000(k)11Regression15447397766.112917113775296.23563.4800.000(k)11Regression154070816299.5805920237347470.5500.000(k)12Regression154070816299.58058202372456.35470.5500.000(k)12Regression154070816299.58058202372456.35470.5500.000(k)13Regression154070816299.58058202372456.35470.5500.000(k)14Residual1039220163.65059202372456.35470.50020.000(k)14Residual153668532988.417021.9252647569.7379.69220.000(k)13Residual16324393175.235221.952647569.7379.69220.000(k)1416324393175.235921.9		Regression	154666910756.857	12	12888909229.738	45.458	.000(h)
Total167992926163.65059InterfereInterfereRegression154618461278.2811114056223752.57150.4470.000()Pesidual13374464885.36048278634685.112Image: Constraint of the second se	8	Residual	13326015406.793		283532242.698		
Regression154618461278.2811114056223752.57150.447.000(i)Residual13374464885.36948278634685.112()()Total167992926163.65059()1.6()Regression154533510675.6861015453351067.56956.259.000(j)Residual13459415487.96449274681948.734()()Total167992926163.65059()()()Regression15447397766.112917163775296.23563.480.000(k)Residual13518948497.53850270378969.951()()Regression15407081629.58059()()()Regression15407081629.58059()()()Regression15407081629.58059()()()Regression159220613.65059()()()Regression153668532988.411721952647569.77379.692.000(m)Rail14324393175.23952275469099.524()()Residual167992926163.65059()()()Rail16792926163.65059()()()Rail16792926163.65059()()()Rail16792926163.65059()()()Rail16792926163.65059()()()Rail16792926163.65059()()()Rail16792926163.650<		Total	167992926163.650				
9Residual13374464885.36948278634685.112ITotal167992926163.65059II8egression154533510675.6861015453351067.56956.259.000()10Residual13459415487.96449274681948.734II7otal167992926163.65059IIIRegression154473977666.112917163775296.23563.480.000(k)11Regression154473977666.1129III7otal167992926163.65059III12Regression154070816299.58150270378969.951II12Regression154070816299.58058III13Regression153668532988.4115721952647569.77379.692.000(m)13Regression1533668532988.4117121952647569.77379.692.000(m)14167992926163.65059IIII14167992926163.65059IIII151616324393175.235227546909.524III151630al167992926163.65059IIII151630al16392926163.65059IIII1616392926163.65059IIIII151630al16392926163.65059IIII </th <th></th> <th>Regression</th> <th>154618461278.281</th> <th>11</th> <th>14056223752.571</th> <th>50.447</th> <th>.000(i)</th>		Regression	154618461278.281	11	14056223752.571	50.447	.000(i)
Total167992926163.65059Image: constant of the state o	9	Residual	13374464885.369	48	278634685.112		
Regression154533510675.6861015453351067.56956.259.000(j)IOResidual13459415487.96449274681948.734Total167992926163.65059 </th <th></th> <th>Total</th> <th>167992926163.650</th> <th>59</th> <th></th> <th></th> <th></th>		Total	167992926163.650	59			
10Residual13459415487.96449274681948.734Total167992926163.65059Regression154473977666.112917163775296.23563.480000(k)11Residual13518948497.53850270378969.951Total167992926163.65059Regression154070816299.580819258852037.44770.55012Regression1352109864.07051272982546.35413Regression153668532988.4117121952647569.77379.69214Residual14324393175.23952275469099.52415Total167992926163.6505914167992926163.6505915Total167992926163.6505914167992926163.6505915167992926163.6505916167992926163.6505915167992926163.6505916167992926163.650591716791167992926163.650591819		Regression	154533510675.686	10	15453351067.569	56.259	.000(j)
Total167992926163.65059Image: constant of the system of t	10	Residual	13459415487.964	49	274681948.734		
Regression154473977666.112917163775296.23563.480.000(k)Image: Residual13518948497.53850270378969.951Image: ResidualImage:		Total	167992926163.650	59			
11Residual13518948497.53850270378969.951()Total167992926163.65059()()12Regression154070816299.580819258852037.44770.550.000(1)12Residual13922109864.07051272982546.354()()()13Regression153668532988.411721952647569.77379.692.000(m)13Residual14324393175.23952275469099.524()()14167992926163.65059()()()		Regression	154473977666.112	9	17163775296.235	63.480	.000(k)
Total167992926163.65059Image: constraint of the system of	11	Residual	13518948497.538	50	270378969.951		
Regression154070816299.580819258852037.44770.550.000(1)Residual13922109864.07051272982546.354Total167992926163.65059 </th <th></th> <th>Total</th> <th>167992926163.650</th> <th>59</th> <th></th> <th></th> <th></th>		Total	167992926163.650	59			
I2 Residual 13922109864.070 51 272982546.354 (11) Total 167992926163.650 59 (11)		Regression	154070816299.580	8	19258852037.447	70.550	.000(1)
Total 167992926163.650 59 Image: Constant of the state of the	12	Residual	13922109864.070	51	272982546.354		
Regression 153668532988.411 7 21952647569.773 79.692 .000(m) 13 Residual 14324393175.239 52 275469099.524 .000(m) Total 167992926163.650 59		Total	167992926163.650	59			
13 Residual 14324393175.239 52 275469099.524 Total 167992926163.650 59		Regression	153668532988.411	7	21952647569.773	79.692	.000(m)
Total 167992926163.650 59	13	Residual	14324393175.239	52	275469099.524		
		Total	167992926163.650	59			

a Predictors: (Constant), TREND, TOURIST, GDP, P_A3, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, P_A4, D_A1, D_C1, P_B1, TEMP, P_B3, P_A1, D_A4, D_A5

b Predictors: (Constant), TREND, TOURIST, GDP, P_A3, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, P_A4, D_A1, P_B1, TEMP, P_B3, P_A1, D_A4, D_A5

c Predictors: (Constant), TREND, TOURIST, GDP, P_A3, RAMADAN, P_RAKI, P_A6, D_A6, P_B2,

P_A2, P_A4, D_A1, P_B1, TEMP, P_B3, P_A1, D_A5

d Predictors: (Constant), TREND, TOURIST, GDP, P_A3, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, D_A1, P_B1, TEMP, P_B3, P_A1, D_A5

e Predictors: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, D_A1, P_B1, TEMP, P_B3, P_A1, D_A5

f Predictors: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, D_A1, TEMP, P_B3, P_A1, D_A5

g Predictors: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, P_B2, P_A2, D_A1, TEMP, P_B3, P_A1, D_A5

h Predictors: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, P_B2, D_A1, TEMP, P_B3, P_A1, D_A5

i Predictors: (Constant), TOURIST, GDP, RAMADAN, P_RAKI, P_A6, P_B2, D_A1, TEMP, P_B3, P_A1, D_A5

j Predictors: (Constant), TOURIST, GDP, RAMADAN, P_RAKI, P_B2, D_A1, TEMP, P_B3, P_A1, D_A5

k Predictors: (Constant), TOURIST, GDP, RAMADAN, P_RAKI, P_B2, D_A1, TEMP, P_B3, P_A1

1 Predictors: (Constant), TOURIST, RAMADAN, P_RAKI, P_B2, D_A1, TEMP, P_B3, P_A1

m Predictors: (Constant), TOURIST, RAMADAN, P_B2, D_A1, TEMP, P_B3, P_A1

n Dependent Variable: Q_A1

	Coefficients(a)											
		Unstandardize	d Coefficients	Standardized Coefficients								
Model		В	Std. Error	Beta	t	Sig.						
1	(Constant)	-117849.197	181508.969		649	.520						
	D_A1	4108.051	5639.378	.087	.728	.471						
	D_A5	1986.358	3848.266	.135	.516	.609						
	D_C1	1428.486	5198.505	.043	.275	.785						
	D_A6	-1204.631	2391.639	056	504	.617						
	D_A4	819.853	2923.521	.066	.280	.781						
	P_A1	-923.760	1486.447	144	621	.538						
	P_B1	502.974	927.469	.095	.542	.591						
	P_A6	-309.708	433.980	064	714	.480						
	P_A2	-485.361	743.681	092	653	.518						

	P_B3	626.796	963.291	.144	.651	.519
	P_A3	174.777	610.544	.033	.286	.776
	P_A4	-84.762	227.602	106	372	.712
	P_B2	195.292	110.153	.173	1.773	.084
	ТЕМР	2936.636	1257.862	.418	2.335	.025
	GDP	1325.163	1797.404	.070	.737	.465
	RAMADAN	-2234.322	491.927	275	-4.542	.000
	TOURIST	45.363	24.304	.349	1.866	.069
	P_RAKI	69.229	66.333	.115	1.044	.303
	TREND	-481.256	826.030	158	583	.563
	(Constant)	-120661.066	179165.512		673	.504
	D_A1	3876.604	5512.899	.082	.703	.486
	D_A5	2643.439	2980.967	.180	.887	.380
	D_A6	-1175.348	2362.173	055	498	.621
	D_A4	610.830	2790.821	.049	.219	.828
	P_A1	-981.423	1454.874	153	675	.504
	P_B1	493.923	916.375	.094	.539	.593
	P_A6	-276.764	412.362	057	671	.506
	P_A2	-524.077	721.933	099	726	.472
2	P_B3	667.493	941.045	.154	.709	.482
	P_A3	235.405	562.829	.044	.418	.678
	P_A4	-63.303	211.361	079	300	.766
	P_B2	189.559	106.932	.168	1.773	.084
	ТЕМР	2836.809	1190.605	.403	2.383	.022
	GDP	1365.376	1771.124	.072	.771	.445
	RAMADAN	-2217.924	482.757	273	-4.594	.000
	TOURIST	46.792	23.473	.360	1.993	.053
	P_RAKI	65.588	64.259	.109	1.021	.313
	TREND	-489.042	816.183	10.544 .033 .286 27.602 106 372 10.153 .173 1.773 57.862 .418 2.335 97.404 .070 .737 91.927 275 -4.542 24.304 .349 1.866 66.333 .115 1.044 26.030 158 .583 65.512 .673 12.899 .082 .703 80.967 .180 .887 62.173 .049 .219 54.874 .153 .675 16.375 .094 .539 12.362 .057 .671 21.933 .099 .726 41.045 .154 .709 62.829 .044 .418 11.361 .072 .771 82.875 .273 .4594 90.605 .403 2.383 71.124 .072 .771 82.757 .273 <th>.552</th>	.552	
3	(Constant)	-136697.829	161634.639		846	.403
	D_A1	4014.651	5414.269	.085	.741	.463

	D_A5	2591.547	2937.650	.176	.882	.383
	D_A6	-1065.961	2282.380	050	467	.643
	P_A1	-1046.367	1408.058	163	743	.462
	P_B1	473.045	901.007	.090	.525	.602
	P_A6	-256.468	397.220	053	646	.522
	P_A2	-496.304	702.593	094	706	.484
	P_B3	700.735	918.121	.162	.763	.450
	P_A3	209.990	544.442	.040	.386	.702
	P_A4	-25.925	123.117	032	211	.834
	P_B2	186.348	104.714	.165	1.780	.082
	ТЕМР	2937.038	1086.487	.418	2.703	.010
	GDP	1514.622	1615.962	.080	.937	.354
	RAMADAN	-2224.080	476.443	273	-4.668	.000
	TOURIST	45.011	21.767	.346	2.068	.045
	P_RAKI	63.695	62.949	.106	1.012	.317
	TREND	-459.884	796.058	151	578	.567
4	(Constant)	-136456.025	159824.378		854	.398
	D_A1	4164.471	5307.338	.088	.785	.437
	D_A5	2897.500	2524.645	.197	1.148	.257
	D_A6	-1253.104	2078.748	058	603	.550
	P_A1	-1172.068	1261.007	183	929	.358
	P_B1	452.759	885.831	.086	.511	.612
	P_A6	-266.253	390.084	055	683	.499
	P_A2	-436.612	635.684	083	687	.496
	P_B3	768.135	850.904	.177	.903	.372
	P_A3	196.222	534.462	.037	.367	.715
	P_B2	182.867	102.245	.162	1.789	.081
	ТЕМР	2922.964	1072.311	.416	2.726	.009
	GDP	1474.769	1586.907	.078	.929	.358
	RAMADAN	-2205.496	462.967	271	-4.764	.000
	TOURIST	44.094	21.089	.339	2.091	.042

	P_RAKI	67.694	59.345	.112	1.141	.260
	TREND	-560.995	627.842	184	894	.377
	(Constant)	-139068.982	158088.222		880	.384
	D_A1	4366.256	5226.645	.092	.835	.408
	D_A5	2698.153	2441.204	.183	1.105	.275
	D_A6	-1392.385	2023.643	065	688	.495
	P_A1	-1121.469	1241.068	175	904	.371
	P_B1	470.751	875.735	.089	.538	.594
	P_A6	-260.525	385.921	054	675	.503
5	P_A2	-398.581	620.990	075	642	.524
	P_B3	823.319	829.248	.190	.993	.326
	P_B2	183.676	101.211	.162	1.815	.076
	ТЕМР	3042.830	1011.307	.433	3.009	.004
	GDP	1476.944	1571.217	.078	.940	.352
	RAMADAN	-2221.072	456.464	273	-4.866	.000
	TOURIST	42.329	20.331	.326	2.082	.043
	P_RAKI	72.268	57.449	.120	1.258	.215
	TREND	-497.235	597.385	163	832	.410
6	(Constant)	-140548.885	156810.497		896	.375
	D_A1	3917.739	5118.691	.083	.765	.448
	D_A5	2404.829	2360.564	.163	1.019	.314
	D_A6	-1010.153	1879.574	047	537	.594
	P_A1	-807.626	1086.476	126	743	.461
	P_A6	-284.903	380.207	059	749	.458
	P_A2	-387.434	615.721	073	629	.532
	P_B3	970.813	776.332	.224	1.251	.218
	P_B2	186.705	100.253	.165	1.862	.069
	ТЕМР	3137.319	988.015	.446	3.175	.003
	GDP	1588.934	1544.991	.084	1.028	.309
	RAMADAN	-2114.654	408.037	260	-5.183	.000
	TOURIST	42.070	20.164	.324	2.086	.043

	P_RAKI	75.539	56.673	.125	1.333	.189
	TREND	-439.164	582.875	144	753	.455
	(Constant)	-112896.294	146979.332		768	.446
	D_A1	4467.878	4976.374	.094	.898	.374
	D_A5	2036.153	2241.162	.138	.909	.368
	P_A1	-898.591	1064.883	140	844	.403
	P_A6	-212.958	353.099	044	603	.549
	P_A2	-301.099	589.783	057	511	.612
7	P_B3	1018.172	765.329	.235	1.330	.190
	P_B2	166.643	92.322	.147	1.805	.078
	ТЕМР	2943.114	912.427	.419	3.226	.002
	GDP	1073.461	1201.824	.057	.893	.376
	RAMADAN	-2084.386	400.995	256	-5.198	.000
	TOURIST	43.991	19.691	.338	2.234	.030
	P_RAKI	59.809	48.154	.099	1.242	.221
	TREND	-252.648	464.662	083	544	.589
	(Constant)	-137543.227	137728.052		999	.323
	D_A1	4788.527	4897.596	.101	.978	.333
	D_A5	1550.079	2012.845	.105	.770	.445
	P_A1	-1154.257	932.357	180	-1.238	.222
	P_A6	-204.727	349.946	042	585	.561
	P_B3	921.151	735.504	.212	1.252	.217
8	P_B2	159.478	90.528	.141	1.762	.085
	ТЕМР	3052.800	879.769	.434	3.470	.001
	GDP	1245.743	1144.364	.066	1.089	.282
	RAMADAN	-2123.099	390.651	261	-5.435	.000
	TOURIST	42.924	19.425	.330	2.210	.032
	P_RAKI	62.518	47.483	.104	1.317	.194
	TREND	-181.887	440.006	060	413	.681
9	(Constant)	-150802.163	132779.249		-1.136	.262
	D_A1	5054.490	4813.036	.107	1.050	.299

	D_A5	1108.556	1691.284	.075	.655	.515
	P_A1	-1367.735	769.534	214	-1.777	.082
	P_A6	-190.640	345.261	039	552	.583
	P_B3	1112.801	566.029	.256	1.966	.055
	P_B2	134.243	66.270	.119	2.026	.048
	ТЕМР	3160.285	833.176	.449	3.793	.000
	GDP	1295.548	1128.133	.068	1.148	.256
	RAMADAN	-2141.457	384.752	263	-5.566	.000
	TOURIST	40.560	18.403	.312	2.204	.032
	P_RAKI	63.957	46.944	.106	1.362	.179
	(Constant)	-143279.681	131138.289		-1.093	.280
	D_A1	4812.148	4758.864	.101	1.011	.317
	D_A5	705.007	1514.362	.048	.466	.644
R T P (() D P 10 P 10 P 10 P 10 P 10 P 10 P (0) D Q (0) P (0) P	P_A1	-1575.651	666.337	246	-2.365	.022
	P_B3	1127.430	561.384	.260	2.008	.050
10	P_B2	126.419	64.276	.112	1.967	.055
	ТЕМР	3163.910	827.219	.450	3.825	.000
	GDP	1352.736	1115.372	.071	1.213	.231
	RAMADAN	-2116.502	379.368	260	-5.579	.000
	TOURIST	41.590	18.178	.320	2.288	.026
	P_RAKI	69.171	45.657	.115	1.515	.136
	(Constant)	-157226.325	126666.715		-1.241	.220
	D_A1	5840.182	4182.361	.123	1.396	.169
	P_A1	-1511.962	647.014	236	-2.337	.023
	P_B3	981.079	461.453	.226	2.126	.038
11	P_B2	130.844	63.069	.116	2.075	.043
	ТЕМР	3192.371	818.470	.454	3.900	.000
	GDP	1351.271	1106.597	.071	1.221	.228
	RAMADAN	-2144.717	371.551	264	-5.772	.000
	TOURIST	42.307	17.970	.326	2.354	.023
	P_RAKI	73.992	44.118	.123	1.677	.100

	(Constant)	-82512.524	111441.697		740	.462				
	D_A1	8784.395	3433.827	.185	2.558	.014				
	P_A1	-1591.881	646.787	249	-2.461	.017				
	P_B3	1051.016	460.084	.242	2.284	.027				
12	P_B2	167.013	55.949	.148	2.985	.004				
	ТЕМР	3037.897	812.518	.432	3.739	.000				
	RAMADAN	-2150.016	373.310	264	-5.759	.000				
	TOURIST	41.632	18.047	.320	2.307	.025				
	P_RAKI	45.948	37.850	.076	1.214	.230				
	(Constant)	-126930.108	105742.097		-1.200	.235				
	D_A1	10999.492	2922.101	.232	3.764	.000				
	P_A1	-1240.458	581.014	194	-2.135	.037				
13	P_B3	758.635	393.786	.175	1.927	.060				
	P_B2	158.446	55.754	.140	2.842	.006				
	ТЕМР	3041.959	816.204	.433	3.727	.000				
	RAMADAN	-2205.098	372.226	271	-5.924	.000				
Î	TOURIST	39.061	18.004	.301	2.170	.035				
_o D	Daman dant Vaniahlar O. A.1									

	Excluded Variables(m)								
						Collinearity Statistics			
Model		Beta In	t	Sig.	Partial Correlation	Tolerance			
2	D_C1	.043(a)	.275	.785	.043	7.853E-02			
3	D_C1	.032(b)	.211	.834	.033	8.423E-02			
	D_A4	.049(b)	.219	.828	.034	3.770E-02			
	D_C1	.023(c)	.158	.875	.024	8.915E-02			
4	D_A4	005(c)	040	.969	006	.109			
	P_A4	032(c)	211	.834	032	7.758E-02			
5	D_C1	.039(d)	.298	.767	.045	.108			

	D_A4	006(d)	050	.960	008	.109
	P_A4	025(d)	167	.868	025	7.872E-02
	P_A3	.037(d)	.367	.715	.056	.177
	D_C1	.041(e)	.322	.749	.048	.108
	D_A4	005(e)	038	.970	006	.109
6	P_A4	016(e)	107	.915	016	7.973E-02
	P_A3	.040(e)	.399	.692	.060	.178
	P_B1	.089(e)	.538	.594	.081	6.415E-02
	D_C1	.040(f)	.314	.755	.047	.108
	D_A4	032(f)	287	.776	043	.140
7	P_A4	044(f)	326	.746	049	9.747E-02
	P_A3	.048(f)	.490	.626	.073	.183
	P_B1	.049(f)	.318	.752	.047	7.318E-02
	D_A6	047(f)	537	.594	080	.228
	D_C1	.054(g)	.439	.662	.065	.116
	D_A4	011(g)	102	.919	015	.157
	P_A4	007(g)	063	.950	009	.122
8	P_A3	.035(g)	.374	.710	.055	.192
	P_B1	.054(g)	.352	.727	.052	7.347E-02
	D_A6	033(g)	389	.699	057	.245
	P_A2	057(g)	511	.612	075	.138
	D_C1	.033(h)	.290	.773	.042	.129
	D_A4	027(h)	300	.765	044	.213
	P_A4	028(h)	296	.769	043	.189
9	P_A3	.015(h)	.177	.860	.026	.230
	P_B1	.056(h)	.367	.716	.053	7.353E-02
	D_A6	007(h)	097	.923	014	.354
	P_A2	039(h)	368	.715	054	.151
	TREND	060(h)	413	.681	060	8.138E-02
10	D_C1	.019(i)	.173	.863	.025	.134
	D_A4	026(i)	299	.766	043	.213

	P_A4	024(i)	252	.802	036	.190
	P_A3	.013(i)	.155	.878	.022	.230
	P_B1	.072(i)	.491	.626	.071	7.797E-02
	D_A6	.002(i)	.033	.974	.005	.374
	P_A2	038(i)	362	.719	052	.151
	TREND	051(i)	361	.720	052	8.216E-02
	P_A6	039(i)	552	.583	079	.329
	D_C1	.035(j)	.453	.653	.065	.268
	D_A4	034(j)	401	.690	057	.225
	P_A4	034(j)	393	.696	056	.213
	P_A3	.015(j)	.173	.863	.025	.231
11	P_B1	.044(j)	.320	.750	.046	8.676E-02
11	D_A6	006(j)	090	.929	013	.402
	P_A2	018(j)	180	.858	026	.172
	TREND	006(j)	054	.957	008	.116
	P_A6	019(j)	300	.765	043	.405
	D_A5	.048(j)	.466	.644	.066	.154
	D_C1	.038(k)	.488	.628	.069	.269
	D_A4	.024(k)	.335	.739	.047	.325
	P_A4	.007(k)	.084	.933	.012	.247
	P_A3	008(k)	091	.928	013	.242
	P_B1	.100(k)	.801	.427	.113	.106
12	D_A6	.034(k)	.662	.511	.093	.637
	P_A2	043(k)	450	.655	063	.182
	TREND	018(k)	153	.879	022	.117
	P_A6	025(k)	399	.692	056	.408
	D_A5	.048(k)	.460	.648	.065	.154
	GDP	.071(k)	1.221	.228	.170	.472
13	D_C1	.041(1)	.521	.604	.073	.269
	D_A4	013(1)	196	.846	027	.393
	P_A4	023(1)	293	.770	041	.273

P_A3	.015(1)	.181	.857	.025	.255
P_B1	.109(1)	.873	.387	.121	.106
D_A6	.041(1)	.803	.426	.112	.646
P_A2	026(1)	276	.784	039	.185
TREND	.002(1)	.018	.985	.003	.119
P_A6	029(1)	461	.647	064	.409
D_A5	.076(1)	.762	.450	.106	.166
GDP	.020(1)	.401	.690	.056	.648
P_RAKI	.076(1)	1.214	.230	.168	.411

a Predictors in the Model: (Constant), TREND, TOURIST, GDP, P_A3, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, P_A4, D_A1, P_B1, TEMP, P_B3, P_A1, D_A4, D_A5

b Predictors in the Model: (Constant), TREND, TOURIST, GDP, P_A3, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, P_A4, D_A1, P_B1, TEMP, P_B3, P_A1, D_A5

c Predictors in the Model: (Constant), TREND, TOURIST, GDP, P_A3, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, D_A1, P_B1, TEMP, P_B3, P_A1, D_A5

d Predictors in the Model: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, D_A1, P_B1, TEMP, P_B3, P_A1, D_A5

e Predictors in the Model: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, D_A6, P_B2, P_A2, D_A1, TEMP, P_B3, P_A1, D_A5

f Predictors in the Model: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, P_B2, P_A2, D_A1, TEMP, P_B3, P_A1, D_A5

g Predictors in the Model: (Constant), TREND, TOURIST, GDP, RAMADAN, P_RAKI, P_A6, P_B2, D_A1, TEMP, P_B3, P_A1, D_A5

h Predictors in the Model: (Constant), TOURIST, GDP, RAMADAN, P_RAKI, P_A6, P_B2, D_A1, TEMP, P_B3, P_A1, D_A5

i Predictors in the Model: (Constant), TOURIST, GDP, RAMADAN, P_RAKI, P_B2, D_A1, TEMP, P_B3, P_A1, D_A5

j Predictors in the Model: (Constant), TOURIST, GDP, RAMADAN, P_RAKI, P_B2, D_A1, TEMP, P_B3, P_A1

k Predictors in the Model: (Constant), TOURIST, RAMADAN, P_RAKI, P_B2, D_A1, TEMP, P_B3, P_A1

1 Predictors in the Model: (Constant), TOURIST, RAMADAN, P_B2, D_A1, TEMP, P_B3, P_A1

m Dependent Variable: Q_A1

Residuals Statistics(a)							
	Minimum	Maximum	Mean	Std. Deviation	N		

Predicted Value	155181.8750	340318.1875	250426.8500	51034.8058	60			
Residual	-35646.0273	41487.1758	3.201E-11	15581.6021	60			
Std. Predicted Value	-1.866	1.761	.000	1.000	60			
Std. Residual	-2.148	2.500	.000	.939	60			
a Dependent Variable: Q_A1								

REGRESSION OUTPUT: MULTIPLICATIVE BRAND-LEVEL MODEL FULL SET OF VARIABLES

Variables Entered/Removed(b)									
Model	Variables Entered	Variables Removed	Method						
1	TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A5, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, P_RAKI, D_A5, P_B3, D_B2, D_A4(a)	,	Enter						
a All requested variables entered.									
b Deper	b Dependent Variable: Q_A1								

	Model Summary(b)										
Model	R	R Square	Durbin-Watson								
1	,966(a)	,934	,874	8,129E-02	2,231						
a Predictor D_A3, P_A	a Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A5, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, P_RAKL										

D_A5, P_B3, D_B2, D_A4

b Dependent Variable: Q_A1

	ANOVA(b)										
Model		Sum of Squares	df	Mean Square	F	Sig.					
	Regression	2,885	28	,103	15,596	,000(a)					
1	Residual	,205	31	6,608E-03							
	Total	3,090	59								

a Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A5, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, P_RAKI, D_A5, P_B3, D_B2, D_A4

b Dependent Variable: Q_A1

	Coefficients(a)											
		Unstandardize	ed Coefficients	Standardized Coefficients								
Μ	odel	В	Std. Error	Beta	t	Sig.						
1	(Constant)	11,294	7,504		1,505	,142						
	D_A1	-,463	,934	-,071	-,496	,624						
	D_B1	,384	,283	,230	1,360	,184						
	D_A5	-5,681E-02	,147	-,086	-,385	,703						
	D_B4	,550	,261	,207	2,104	,044						
	D_C1	-8,521E-02	,080	-,204	-1,061	,297						
	D_A6	,143	,053	,492	2,699	,011						
	D_A2	,228	,257	,172	,888,	,381						
	D_B3	,348	,284	,226	1,227	,229						
	D_A3	7,708E-02	,185	,051	,416	,680						
	D_A4	-9,688E-02	,188	-,395	-,515	,610						
	D_B2	-3,342E-02	,066	-,155	-,505	,617						
	P_A1	1,135	1,293	,263	,878	,387						
	P_B1	-,831	,696	-,233	-1,194	,242						
	P_A5	-2,223E-02	,552	-,008	-,040	,968						
	P_B4	-,208	,374	-,080	-,557	,582						
	P_C1	-,161	,280	-,119	-,574	,570						
	P_A6	,177	,400	,064	,443	,661						
	P_A2	-,364	,686	-,093	-,530	,600						
	P_B3	,376	,800	,116	,471	,641						
	P_A3	,533	,475	,137	1,121	,271						
	P_A4	2,684E-02	,089	,228	,302	,765						
	P_B2	8,835E-03	,027	,058	,330	,744						
	ТЕМР	9,422E-02	,055	,294	1,729	,094						

	GDP	-1,215	1,472	-,136	-,825	,415
	RAMADAN	-7,538E-02	,017	-,327	-4,534	,000
	TOURIST	,112	,087	,258	1,286	,208
	P_RAKI	5,897E-02	,326	,039	,181	,858
	TREND	5,702E-02	,087	,224	,653	,519
- 1	Domondont Vori	ablas O A 1				

a Dependent Variable: Q_A1

	Residuals Statistics(a)										
	Minimum	Maximum	Mean	Std. Deviation	N						
Predicted Value	11,9091	12,7660	12,4060	,2211	60						
Residual	-,1559	,1592	2,517E-15	5,892E-02	60						
Std. Predicted Value	-2,247	1,628	,000	1,000	60						
Std. Residual	-1,918	1,958	,000	,725	60						
a Dependent Variable:	Q_A1										

REGRESSION OUTPUT: MULTIPLICATIVE BRAND-LEVEL MODEL 1st STEPWISE REGRESSION

Variables Entered/Removed(a)								
ModelVariablesVariablesEnteredRemovedMe		Method						
1	TOURIST		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).					
2	RAMADAN		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).					
3	D_A3		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).					
4	ТЕМР		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).					
5	D_A1		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).					
a Deper	ndent Variable: Q_A	1						

	Model Summary(f)											
	odel R			Std.								
Model		R Square	Adjusted R Square	Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	Durbin- Watson		
1	.882(a)	.779	.775	.1086	.779	204.034	1	58	.000			
2	.914(b)	.835	.829	9.465E- 02	.056	19.355	1	57	.000			
3	.922(c)	.850	.842	9.093E- 02	.015	5.763	1	56	.020			
4	.932(d)	.868	.858	8.617E- 02	.018	7.353	1	55	.009			

5	.937(e)	.878	.866	8.368E- 02	.010	4.322	1	54	.042	1.935
a Predictors: (Constant), TOURIST										
b Predictors: (Constant), TOURIST, RAMADAN										
c Predic	ctors: (Co	nstant), TO	DURIST, RA	MADAN, D	_A3					
d Predic	d Predictors: (Constant), TOURIST, RAMADAN, D_A3, TEMP									
e Predic	e Predictors: (Constant), TOURIST, RAMADAN, D_A3, TEMP, D_A1									
f Depen	f Dependent Variable: Q_A1									

	ANOVA(f)										
Μ	odel	Sum of Squares	df	Mean Square	F	Sig.					
	Regression	2.406	1	2.406	204.034	.000(a)					
1	Residual	.684	58	1.179E-02							
	Total	3.090	59								
	Regression	2.580	2	1.290	143.979	.000(b)					
2	Residual	.511	57	8.958E-03							
	Total	3.090	59								
	Regression	2.627	3	.876	105.927	.000(c)					
3	Residual	.463	56	8.267E-03							
	Total	3.090	59								
	Regression	2.682	4	.670	90.296	.000(d)					
4	Residual	.408	55	7.425E-03							
	Total	3.090	59								
	Regression	2.712	5	.542	77.465	.000(e)					
5	Residual	.378	54	7.002E-03							
	Total	3.090	59								
a l	Predictors: (Co	onstant), TOURIST	1	- -							
b	Predictors: (C	onstant), TOURIST	, RA	MADAN							
c l	Predictors: (Co	onstant), TOURIST	, RA	MADAN, D_A3	3						
d	Predictors: (C	onstant), TOURIST	, RA	MADAN, D_A	3, TEMP						
e l	Predictors: (Co	onstant), TOURIST	, RA	MADAN, D_A3	3, TEMP, I	D_A1					
f I	Dependent Va	riable: Q_A1									

	Coefficients(a)										
		Unstandardize	d Coefficients	Standardized Coefficients							
м	odel	В	Std. Error	Beta	t	Sig.					
1	(Constant)	9.893	.176		56.059	.000					
	TOURIST	.382	.027	.882	14.284	.000					
	(Constant)	10.298	.179		57.442	.000					
2	TOURIST	.324	.027	.749	12.128	.000					
	RAMADAN	-6.260E-02	.014	272	-4.399	.000					
3	(Constant)	9.914	.235		42.151	.000					
	TOURIST	.318	.026	.736	12.347	.000					
	RAMADAN	-6.495E-02	.014	282	-4.739	.000					
	D_A3	.187	.078	.125	2.401	.020					
	(Constant)	10.450	.298		35.084	.000					
	TOURIST	.192	.053	.444	3.648	.001					
4	RAMADAN	-7.725E-02	.014	335	-5.615	.000					
	D_A3	.218	.075	.146	2.920	.005					
	ТЕМР	9.637E-02	.036	.300	2.712	.009					
	(Constant)	7.861	1.278		6.149	.000					
	TOURIST	.110	.064	.255	1.709	.093					
5	RAMADAN	-8.508E-02	.014	369	-6.129	.000					
-	D_A3	.171	.076	.114	2.249	.029					
	ТЕМР	.133	.039	.415	3.433	.001					
	D_A1	.908	.437	.140	2.079	.042					
a I	Dependent Vari	able: Q_A1									

Excluded Variables(f)

			t			Collinearity Statistics
Μ	odel	Beta In		Sig.	Partial Correlation	Tolerance
1	D_A1	.044(a)	.602	.549	.080	.724
	D_B1	.042(a)	.634	.529	.084	.895
	D_A5	.039(a)	.602	.550	.079	.897
	D_B4	.098(a)	1.547	.127	.201	.935
	D_C1	.002(a)	.032	.975	.004	.917
	D_A6	.139(a)	2.304	.025	.292	.970
	D_A2	.035(a)	.542	.590	.072	.903
	D_B3	036(a)	550	.584	073	.884
	D_A3	.107(a)	1.763	.083	.227	.996
	D_A4	.024(a)	.391	.697	.052	1.000
	D_B2	.060(a)	.977	.333	.128	.996
	P_A1	047(a)	754	.454	099	.973
	P_B1	035(a)	560	.578	074	.987
	P_A5	.008(a)	.120	.905	.016	.996
	P_B4	046(a)	728	.470	096	.956
	P_C1	002(a)	032	.975	004	.972
	P_A6	027(a)	422	.675	056	.949
	P_A2	050(a)	790	.433	104	.976
	P_B3	001(a)	018	.986	002	.945
	P_A3	.006(a)	.093	.926	.012	.985
	P_A4	.012(a)	.194	.847	.026	.999
	P_B2	.055(a)	.856	.396	.113	.921
	ТЕМР	.066(a)	.501	.618	.066	.223
	GDP	.049(a)	.796	.429	.105	.998
	RAMADAN	272(a)	-4.399	.000	503	.760
	P_RAKI	.037(a)	.596	.553	.079	.997

	TREND	.030(a)	.475	.637	.063	.987
	D_A1	.080(b)	1.253	.215	.165	.713
	D_B1	.093(b)	1.626	.110	.212	.862
	D_A5	.040(b)	.707	.483	.094	.897
	D_B4	.097(b)	1.775	.081	.231	.935
	D_C1	.006(b)	.108	.914	.014	.916
	D_A6	.116(b)	2.183	.033	.280	.960
2	D_A2	.055(b)	.961	.340	.127	.897
	D_B3	024(b)	411	.682	055	.881
	D_A3	.125(b)	2.401	.020	.305	.990
	D_A4	.019(b)	.344	.732	.046	.999
	D_B2	.063(b)	1.174	.245	.155	.996
	P_A1	030(b)	537	.593	072	.967
	P_B1	001(b)	014	.989	002	.966
	P_A5	006(b)	115	.909	015	.993
	P_B4	058(b)	-1.050	.298	139	.954
	P_C1	.020(b)	.357	.722	.048	.964
	P_A6	025(b)	455	.651	061	.949
	P_A2	035(b)	636	.527	085	.972
	P_B3	002(b)	040	.969	005	.945
	P_A3	.025(b)	.462	.646	.062	.978
	P_A4	.008(b)	.144	.886	.019	.998
	P_B2	.053(b)	.948	.347	.126	.921
	ТЕМР	.250(b)	2.150	.036	.276	.201
	GDP	.058(b)	1.078	.286	.143	.997
	P_RAKI	.060(b)	1.112	.271	.147	.988
	TREND	.040(b)	.738	.464	.098	.985
3	D_A1	.034(c)	.527	.601	.071	.634
	D_B1	.034(c)	.525	.602	.071	.643
	D_A5	029(c)	461	.646	062	.693
	D_B4	.069(c)	1.258	.214	.167	.876

	D_C1	087(c)	-1.378	.174	183	.659
	D_A6	.109(c)	2.129	.038	.276	.957
	D_A2	035(c)	513	.610	069	.584
	D_B3	066(c)	-1.148	.256	153	.813
	D_A4	074(c)	-1.185	.241	158	.688
	D_B2	057(c)	753	.454	101	.473
	P_A1	005(c)	090	.929	012	.930
	P_B1	.028(c)	.518	.607	.070	.921
	P_A5	043(c)	801	.427	107	.920
	P_B4	020(c)	350	.728	047	.859
	P_C1	019(c)	336	.738	045	.882
	P_A6	048(c)	891	.377	119	.922
	P_A2	.007(c)	.127	.899	.017	.868
	P_B3	.060(c)	1.031	.307	.138	.787
	P_A3	.029(c)	.554	.582	.074	.977
	P_A4	083(c)	-1.358	.180	180	.711
	P_B2	043(c)	629	.532	085	.569
	ТЕМР	.300(c)	2.712	.009	.343	.196
	GDP	.002(c)	.028	.978	.004	.789
	P_RAKI	.028(c)	.522	.604	.070	.916
	TREND	115(c)	-1.507	.137	199	.447
4	D_A1	.140(d)	2.079	.042	.272	.502
	D_B1	.052(d)	.846	.401	.114	.635
	D_A5	.015(d)	.249	.805	.034	.642
	D_B4	.104(d)	1.986	.052	.261	.837
	D_C1	038(d)	587	.560	080	.589
	D_A6	.078(d)	1.513	.136	.202	.885
	D_A2	008(d)	121	.904	016	.570
	D_B3	010(d)	163	.872	022	.689
	D_A4	094(d)	-1.603	.115	213	.678
	D_B2	076(d)	-1.068	.290	144	.469

	P_A1	.001(d)	.027	.978	.004	.928
	P_B1	.001(d)	.015	.988	.002	.885
	P_A5	104(d)	-1.959	.055	258	.808
	P_B4	031(d)	573	.569	078	.854
	P_C1	.044(d)	.772	.444	.104	.745
	P_A6	011(d)	196	.845	027	.851
	P_A2	.012(d)	.224	.823	.030	.867
	P_B3	.044(d)	.794	.431	.107	.777
	P_A3	.028(d)	.569	.572	.077	.977
	P_A4	097(d)	-1.684	.098	223	.706
	P_B2	053(d)	811	.421	110	.567
	GDP	.029(d)	.515	.608	.070	.765
	P_RAKI	.086(d)	1.608	.114	.214	.807
	TREND	086(d)	-1.166	.249	157	.436
5	D_B1	.032(e)	.522	.604	.072	.617
	D_A5	081(e)	-1.127	.265	153	.434
	D_B4	.064(e)	1.037	.304	.141	.594
	D_C1	088(e)	-1.356	.181	183	.528
	D_A6	.073(e)	1.451	.153	.195	.883
	D_A2	053(e)	791	.433	108	.518
	D_B3	032(e)	540	.591	074	.668
	D_A4	059(e)	954	.344	130	.593
	D_B2	050(e)	702	.486	096	.451
	P_A1	.013(e)	.256	.799	.035	.917
	P_B1	.022(e)	.428	.670	.059	.851
	P_A5	068(e)	-1.144	.258	155	.638
	P_B4	016(e)	315	.754	043	.839
	P_C1	016(e)	255	.800	035	.565
	P_A6	027(e)	516	.608	071	.832
	P_A2	.018(e)	.357	.722	.049	.863
	P_B3	.061(e)	1.120	.268	.152	.763

	P_A3	.034(e)	.706	.483	.097	.974				
	P_A4	061(e)	-1.003	.321	136	.608				
	P_B2	023(e)	344	.732	047	.534				
	GDP	.012(e)	.217	.829	.030	.747				
	P_RAKI	.036(e)	.552	.584	.076	.550				
	TREND	072(e)	990	.327	135	.431				
a l	Predictors in the	e Model: (0	Constant), TOU	RIST					
bl	Predictors in the	e Model: (Constant), TOU	RIST, RAMADAN					
c l	Predictors in the	e Model: (0	Constant), TOU	RIST, RAMADAN, D	_A3				
d	Predictors in the	e Model: (Constant), TOU	RIST, RAMADAN, D	_A3, TEMP				
e l	e Predictors in the Model: (Constant), TOURIST, RAMADAN, D_A3, TEMP, D_A1									
f I	Dependent Varia	able: Q_A	1							

Casewise Diagnostics(a)									
Case Number	Std. Residual	Q_A1	Predicted Value	Residual					
44	-3.218	11.83	12.0993	2693					
a Dependent Variable: Q_A1									

	Residuals Statistics(a)										
	Minimum	Maximum	Mean	Std. Deviation	N						
Predicted Value	11.9520	12.7181	12.4060	.2144	60						
Residual	2693	.2412	-3.1974E-15	8.005E-02	60						
Std. Predicted Value	-2.118	1.456	.000	1.000	60						
Std. Residual	-3.218	2.882	.000	.957	60						
a Dependent Variable:	a Dependent Variable: Q_A1										

REGRESSION OUTPUT: MULTIPLICATIVE BRAND-LEVEL MODEL 1st BACKWARD REGRESSION

	Variables Entered/Removed(b)									
Model	Variables Entered	Variables Removed	Method							
1	TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A5, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, P_RAKI, D_A5, P_B3, D_B2, D_A4(a)		Enter							
2		P_A5	Backward (criterion: Probability of F-to- remove >= .100).							
3		P_RAKI	Backward (criterion: Probability of F-to- remove >= .100).							
4		P_B2	Backward (criterion: Probability of F-to- remove >= .100).							
5		D_A5	Backward (criterion: Probability of F-to- remove >= .100).							
6		P_A4	Backward (criterion: Probability of F-to- remove >= .100).							
7		P_C1	Backward (criterion: Probability of F-to- remove >= .100).							
8		D_A4	Backward (criterion: Probability of F-to- remove >= .100).							
9		TREND	Backward (criterion: Probability of F-to- remove >= .100).							
10		D_B2	Backward (criterion: Probability of F-to-							

			remove >= .100).
11		D_A1	Backward (criterion: Probability of F-to- remove >= .100).
12		D_A2	Backward (criterion: Probability of F-to- remove >= .100).
13		P_A1	Backward (criterion: Probability of F-to- remove >= .100).
14		P_B1	Backward (criterion: Probability of F-to- remove >= .100).
15		P_A2	Backward (criterion: Probability of F-to- remove >= .100).
16		P_B3	Backward (criterion: Probability of F-to- remove >= .100).
17		P_B4	Backward (criterion: Probability of F-to- remove >= .100).
18		P_A6	Backward (criterion: Probability of F-to- remove >= .100).
a All re	quested variables entered.		
b Deper	ndent Variable: Q_A1		

Model Summary(s)											
			R R Square	Adjusted R Square	Std. Error of the Estimate						
	Model	R				R Square Chang e	F Change	df1	df2	Sig. F Change	Durbin- Watson
	1	.966(a)	.934	.874	8.129E-02	.934	15.596	28	31	.000	
	2	.966(b)	.934	.878	8.001E-02	.000	.002	1	33	.968	
	3	.966(c)	.934	.881	7.884E-02	.000	.045	1	34	.833	
	4	.966(d)	.933	.884	7.782E-02	.000	.121	1	35	.730	
	5	.966(e)	.933	.887	7.687E-02	.000	.151	1	36	.700	

	6	.966(f)	.932	.889	7.624E-02	001	.411	1	37	.526	
	7	.965(g)	.932	.891	7.562E-02	001	.405	1	38	.528	
	8	.965(h)	.931	.893	7.500E-02	001	.373	1	39	.545	
	9	.965(i)	.930	.895	7.429E-02	.000	.273	1	40	.604	
	10	.964(j)	.930	.897	7.355E-02	.000	.202	1	41	.656	
	11	.964(k)	.929	.898	7.294E-02	001	.326	1	42	.571	
	12	.964(1)	.929	.900	7.231E-02	.000	.281	1	43	.599	
ľ	13	.963(m)	.928	.901	7.205E-02	001	.681	1	44	.414	
	14	.963(n)	.927	.902	7.162E-02	001	.485	1	45	.490	
ſ	15	.962(o)	.925	.902	7.172E-02	002	1.120	1	46	.296	
	16	.961(p)	.924	.903	7.128E-02	001	.442	1	47	.509	
ľ	17	.960(q)	.922	.902	7.180E-02	003	1.682	1	48	.201	
Ī	18	.959(r)	.920	.902	7.176E-02	002	.949	1	49	.335	1.895

a Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A5, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, P_RAKI, D_A5, P_B3, D_B2, D_A4

b Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, P_RAKI, D_A5, P_B3, D_B2, D_A4

c Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, D_A5, P_B3, D_B2, D_A4

d Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_A4, D_A5, P_B3, D_B2, D_A4

e Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_A4, P_B3, D_B2, D_A4

f Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2, D_A4

g Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2, D_A4

h Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2

i Predictors: (Constant), P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2

j Predictors: (Constant), P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3

k Predictors: (Constant), P_A1, RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3

1 Predictors: (Constant), P_A1, RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, P_B1, TOURIST, P_B3

m Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, P_B1, TOURIST, P_B3

n Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, TOURIST, P_B3

o Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, D_B3, TOURIST, P_B3

p Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, D_B3, TOURIST

q Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, D_C1, D_B3, TOURIST

r Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, D_B1, D_A3, P_A3, D_C1, D_B3, TOURIST

s Dependent Variable: Q_A1

ANOVA(s)										
Mode	21	Sum of Squares	df	Mean Square	F	Sig.				
	Regression	2.885	28	.103	15.596	.000(a)				
1	Residual	.205	31	6.608E-03						
	Total	3.090	59							
	Regression	2.885	27	.107	16.694	.000(b)				
2	Residual	.205	32	6.401E-03						
	Total	3.090	59							
	Regression	2.885	26	.111	17.851	.000(c)				
3	Residual	.205	33	6.216E-03						
	Total	3.090	59							
	Regression	2.884	25	.115	19.053	.000(d)				
4	Residual	.206	34	6.056E-03						
	Total	3.090	59							
	Regression	2.883	24	.120	20.333	.000(e)				
5	Residual	.207	35	5.909E-03						
	Total	3.090	59							

	Regression	2.881	23	.125	21.552	.000(f)
6	Residual	.209	36	5.812E-03		
	Total	3.090	59			
	Regression	2.879	22	.131	22.881	.000(g)
7	Residual	.212	37	5.719E-03		
	Total	3.090	59			
	Regression	2.877	21	.137	24.355	.000(h)
8	Residual	.214	38	5.624E-03		
	Total	3.090	59			
	Regression	2.875	20	.144	26.044	.000(i)
9	Residual	.215	39	5.519E-03		
	Total	3.090	59			
10	Regression	2.874	19	.151	27.962	.000(j)
	Residual	.216	40	5.409E-03		
	Total	3.090	59			
	Regression	2.872	18	.160	29.990	.000(k)
11	Residual	.218	41	5.320E-03		
	Total	3.090	59			
	Regression	2.871	17	.169	32.291	.000(1)
12	Residual	.220	42	5.229E-03		
	Total	3.090	59			
	Regression	2.867	16	.179	34.523	.000(m)
13	Residual	.223	43	5.191E-03		
	Total	3.090	59			
	Regression	2.865	15	.191	37.228	.000(n)
14	Residual	.226	44	5.130E-03		
	Total	3.090	59			
	Regression	2.859	14	.204	39.701	.000(o)
15	Residual	.231	45	5.143E-03		
	Total	3.090	59			
16	Regression	2.857	13	.220	43.245	.000(p)

	Residual	.234	46	5.081E-03		
	Total	3.090	59			
17	Regression	2.848	12	.237	46.040	.000(q)
	Residual	.242	47	5.155E-03		
	Total	3.090	59			
18	Regression	2.843	11	.258	50.193	.000(r)
	Residual	.247	48	5.149E-03		
	Total	3.090	59			

a Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A5, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, P_RAKI, D_A5, P_B3, D_B2, D_A4

b Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, P_RAKI, D_A5, P_B3, D_B2, D_A4

c Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, D_A5, P_B3, D_B2, D_A4

d Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_A4, D_A5, P_B3, D_B2, D_A4

e Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_A4, P_B3, D_B2, D_A4

f Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2, D_A4

g Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2, D_A4

h Predictors: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2

i Predictors: (Constant), P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2

j Predictors: (Constant), P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3

k Predictors: (Constant), P_A1, RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3

l Predictors: (Constant), P_A1, RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, P_B1, TOURIST, P_B3

m Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, P_B1, TOURIST, P_B3

n Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4,
D_C1, P_A2, D_B3, TOURIST, P_B3

o Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, D_B3, TOURIST, P_B3

p Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, D_B3, TOURIST

q Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, D_C1, D_B3, TOURIST

r Predictors: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, D_B1, D_A3, P_A3, D_C1, D_B3, TOURIST

s Dependent Variable: Q_A1

	Coefficients(a)								
		Unstandardize	d Coefficients	Standardized Coefficients					
Mo	del	В	Std. Error	Beta	t	Sig.			
1	(Constant)	11.294	7.504	- 	1.505	.142			
	D_A1	463	.934	071	496	.624			
	D_B1	.384	.283	.230	1.360	.184			
	D_A5	-5.681E-02	.147	086	385	.703			
	D_B4	.550	.261	.207	2.104	.044			
	D_C1	-8.521E-02	.080	204	-1.061	.297			
	D_A6	.143	.053	.492	2.699	.011			
	D_A2	.228	.257	.172	.888	.381			
	D_B3	.348	.284	.226	1.227	.229			
	D_A3	7.708E-02	.185	.051	.416	.680			
	D_A4	-9.688E-02	.188	395	515	.610			
	D_B2	-3.342E-02	.066	155	505	.617			
	P_A1	1.135	1.293	.263	.878	.387			
	P_B1	831	.696	233	-1.194	.242			
	P_A5	-2.223E-02	.552	008	040	.968			
	P_B4	208	.374	080	557	.582			
	P_C1	161	.280	119	574	.570			
	P_A6	.177	.400	.064	.443	.661			

	P_A2	364	.686	093	530	.600
	P_B3	.376	.800	.116	.471	.641
	P_A3	.533	.475	.137	1.121	.271
	P_A4	2.684E-02	.089	.228	.302	.765
	P_B2	8.835E-03	.027	.058	.330	.744
	ТЕМР	9.422E-02	.055	.294	1.729	.094
	GDP	-1.215	1.472	136	825	.415
	RAMADAN	-7.538E-02	.017	327	-4.534	.000
	TOURIST	.112	.087	.258	1.286	.208
	P_RAKI	5.897E-02	.326	.039	.181	.858
	TREND	5.702E-02	.087	.224	.653	.519
2	(Constant)	11.219	7.157		1.568	.127
	D_A1	462	.919	071	503	.618
	D_B1	.388	.264	.232	1.466	.152
	D_A5	-5.666E-02	.145	086	391	.699
	D_B4	.552	.253	.208	2.181	.037
	D_C1	-8.515E-02	.079	204	-1.078	.289
	D_A6	.143	.052	.493	2.765	.009
	D_A2	.231	.245	.174	.942	.353
	D_B3	.348	.279	.226	1.250	.220
	D_A3	7.477E-02	.173	.050	.431	.669
	D_A4	-9.956E-02	.173	406	575	.570
	D_B2	-3.455E-02	.059	161	585	.562
	P_A1	1.136	1.273	.263	.892	.379
	P_B1	836	.673	235	-1.243	.223
	P_B4	215	.319	083	675	.504
	P_C1	166	.240	123	691	.495
	P_A6	.174	.387	.063	.451	.655
	P_A2	364	.676	093	539	.594
	P_B3	.373	.782	.115	.477	.637
	P_A3	.538	.452	.139	1.189	.243

	P_A4	2.772E-02	.085	.236	.326	.746
	P_B2	8.770E-03	.026	.058	.333	.741
	ТЕМР	9.346E-02	.050	.291	1.859	.072
	GDP	-1.213	1.448	136	838	.408
	RAMADAN	-7.530E-02	.016	327	-4.639	.000
	TOURIST	.113	.081	.261	1.396	.172
	P_RAKI	6.363E-02	.300	.042	.212	.833
	TREND	5.761E-02	.085	.227	.680	.502
3	(Constant)	11.679	6.721		1.738	.092
	D_A1	459	.905	071	507	.616
	D_B1	.405	.249	.242	1.628	.113
	D_A5	-4.914E-02	.139	075	355	.725
	D_B4	.569	.236	.214	2.414	.022
	D_C1	-8.645E-02	.078	207	-1.113	.274
	D_A6	.147	.048	.506	3.070	.004
	D_A2	.224	.239	.168	.935	.356
	D_B3	.329	.259	.213	1.270	.213
	D_A3	7.113E-02	.170	.047	.419	.678
	D_A4	107	.167	437	641	.526
	D_B2	-3.839E-02	.055	178	693	.493
	P_A1	1.161	1.249	.269	.930	.359
	P_B1	856	.657	240	-1.304	.201
	P_B4	236	.300	091	785	.438
	P_C1	137	.194	102	704	.486
	P_A6	.184	.378	.066	.487	.630
	P_A2	332	.649	085	511	.613
	P_B3	.334	.749	.103	.446	.659
	P_A3	.540	.446	.139	1.211	.235
	P_A4	3.022E-02	.083	.257	.364	.718
	P_B2	9.028E-03	.026	.060	.348	.730
	ТЕМР	9.226E-02	.049	.287	1.874	.070

	GDP	-1.255	1.413	140	888	.381
	RAMADAN	-7.488E-02	.016	325	-4.716	.000
	TOURIST	.114	.079	.264	1.442	.159
	TREND	6.365E-02	.079	.251	.809	.424
	(Constant)	10.953	6.306		1.737	.091
	D_A1	431	.890	066	484	.632
	D_B1	.362	.213	.216	1.696	.099
	D_A5	-5.303E-02	.136	080	389	.700
	D_B4	.591	.224	.222	2.632	.013
	D_C1	-9.826E-02	.069	235	-1.425	.163
	D_A6	.143	.046	.494	3.106	.004
	D_A2	.236	.234	.177	1.010	.320
	D_B3	.329	.255	.214	1.289	.206
	D_A3	9.343E-02	.155	.062	.601	.552
	D_A4	114	.164	466	699	.490
	D_B2	-3.786E-02	.055	176	693	.493
4	P_A1	.981	1.121	.227	.875	.388
-	P_B1	818	.639	229	-1.280	.209
	P_B4	266	.284	102	936	.356
	P_C1	145	.191	108	760	.453
	P_A6	.266	.293	.096	.909	.370
	P_A2	323	.640	082	505	.617
	P_B3	.378	.729	.116	.518	.608
	P_A3	.591	.415	.152	1.423	.164
	P_A4	3.710E-02	.079	.316	.467	.644
	ТЕМР	9.454E-02	.048	.295	1.963	.058
	GDP	-1.124	1.344	126	836	.409
	RAMADAN	-7.503E-02	.016	326	-4.790	.000
	TOURIST	.110	.077	.253	1.422	.164
	TREND	6.808E-02	.077	.268	.888	.381
5	(Constant)	11.080	6.221		1.781	.084

	D_A1	562	.813	087	692	.494
	D_B1	.359	.211	.214	1.703	.097
	D_B4	.588	.222	.221	2.655	.012
	D_C1	112	.058	269	-1.932	.061
	D_A6	.144	.046	.495	3.154	.003
	D_A2	.210	.221	.158	.950	.349
	D_B3	.356	.243	.231	1.467	.151
	D_A3	9.821E-02	.153	.066	.642	.525
	D_A4	128	.158	521	809	.424
	D_B2	-3.902E-02	.054	181	724	.474
	P_A1	.939	1.103	.218	.852	.400
	P_B1	784	.625	220	-1.254	.218
	P_B4	250	.278	097	902	.373
	P_C1	137	.187	102	730	.470
	P_A6	.244	.284	.088	.861	.395
	P_A2	402	.600	103	671	.507
	P_B3	.473	.679	.146	.697	.490
	P_A3	.610	.407	.157	1.497	.143
	P_A4	4.743E-02	.074	.403	.641	.526
	ТЕМР	9.207E-02	.047	.287	1.952	.059
	GDP	-1.105	1.327	124	833	.410
	RAMADAN	-7.353E-02	.015	319	-4.903	.000
	TOURIST	.110	.076	.254	1.442	.158
	TREND	6.225E-02	.074	.245	.839	.407
6	(Constant)	12.016	5.997		2.004	.053
	D_A1	560	.806	086	695	.492
	D_B1	.343	.207	.205	1.653	.107
	D_B4	.561	.216	.211	2.601	.013
	D_C1	101	.055	243	-1.840	.074
	D_A6	.140	.045	.483	3.125	.004
	D_A2	.172	.212	.130	.814	.421

	D_B3	.363	.241	.235	1.509	.140
	D_A3	.115	.150	.077	.769	.447
	D_A4	-2.942E-02	.037	120	795	.432
	D_B2	-3.632E-02	.053	169	682	.500
1	P_A1	1.044	1.081	.242	.966	.341
	P_B1	714	.610	200	-1.169	.250
	P_B4	254	.275	098	921	.363
	P_C1	117	.183	087	637	.528
1	P_A6	.209	.276	.075	.757	.454
	P_A2	477	.583	122	819	.418
	P_B3	.434	.670	.134	.647	.522
	P_A3	.628	.403	.162	1.557	.128
	ТЕМР	8.308E-02	.045	.259	1.861	.071
	GDP	-1.343	1.264	150	-1.063	.295
	RAMADAN	-7.246E-02	.015	315	-4.902	.000
	TOURIST	.119	.074	.275	1.606	.117
	TREND	5.778E-02	.073	.227	.788	.436
7	(Constant)	11.993	5.949		2.016	.051
	D_A1	737	.751	113	981	.333
	D_B1	.290	.189	.174	1.538	.133
	D_B4	.554	.214	.208	2.593	.014
	D_C1	107	.054	256	-1.980	.055
	D_A6	.140	.045	.483	3.152	.003
	D_A2	.144	.205	.108	.701	.488
	D_B3	.430	.215	.279	1.997	.053
	D_A3	.132	.146	.088	.906	.371
	D_A4	-2.090E-02	.034	085	611	.545
	D_B2	-3.440E-02	.053	160	652	.518
	P_A1	.836	1.023	.194	.818	.419
	P_B1	653	.598	183	-1.091	.282
	P_B4	229	.271	088	848	.402

	P_A6	.191	.273	.069	.701	.488
	P_A2	447	.577	114	775	.443
	P_B3	.521	.651	.161	.800	.429
	P_A3	.573	.391	.148	1.467	.151
	ТЕМР	9.226E-02	.042	.287	2.201	.034
	GDP	-1.219	1.238	136	984	.331
	RAMADAN	-7.258E-02	.015	315	-4.950	.000
	TOURIST	.109	.072	.251	1.516	.138
	TREND	4.912E-02	.071	.193	.688	.496
	(Constant)	12.464	5.850		2.131	.040
	D_A1	535	.669	082	799	.429
	D_B1	.264	.182	.158	1.449	.155
	D_B4	.573	.209	.216	2.738	.009
	D_C1	110	.053	262	-2.050	.047
	D_A6	.139	.044	.479	3.155	.003
	D_A2	.139	.203	.105	.684	.498
	D_B3	.445	.212	.289	2.102	.042
	D_A3	.152	.141	.101	1.076	.289
	D_B2	-3.525E-02	.052	164	674	.504
8	P_A1	.608	.944	.141	.644	.523
Ū	P_B1	618	.590	173	-1.047	.302
	P_B4	252	.266	097	949	.349
	P_A6	.205	.269	.074	.760	.452
	P_A2	310	.527	079	589	.560
	P_B3	.582	.638	.180	.913	.367
	P_A3	.556	.387	.143	1.439	.158
	ТЕМР	8.720E-02	.041	.272	2.140	.039
	GDP	-1.454	1.167	163	-1.245	.221
	RAMADAN	-7.092E-02	.014	308	-4.964	.000
	TOURIST	.108	.071	.249	1.514	.138
	TREND	3.508E-02	.067	.138	.523	.604

	(Constant)	10.159	3.809		2.667	.011
	D_A1	458	.646	070	708	.483
	D_B1	.235	.172	.141	1.367	.180
	D_B4	.581	.207	.219	2.806	.008
	D_C1	118	.051	281	-2.320	.026
	D_A6	.127	.038	.439	3.385	.002
	D_A2	.128	.200	.096	.639	.526
	D_B3	.451	.209	.292	2.153	.038
	D_A3	.172	.135	.115	1.276	.209
	D_B2	-1.144E-02	.025	053	449	.656
9	P_A1	.803	.860	.186	.934	.356
	P_B1	604	.584	170	-1.034	.307
	P_B4	270	.261	104	-1.035	.307
	P_A6	.239	.259	.086	.923	.362
	P_A2	377	.506	096	744	.461
	P_B3	.501	.613	.155	.818	.418
	P_A3	.574	.381	.148	1.504	.141
	ТЕМР	8.771E-02	.040	.273	2.173	.036
	GDP	-1.095	.935	122	-1.171	.249
	RAMADAN	-7.170E-02	.014	311	-5.094	.000
	TOURIST	.106	.070	.246	1.509	.139
10	(Constant)	9.783	3.678		2.660	.011
	D_A1	325	.569	050	571	.571
	D_B1	.227	.169	.136	1.339	.188
	D_B4	.570	.203	.214	2.800	.008
	D_C1	120	.050	287	-2.400	.021
	D_A6	.127	.037	.436	3.400	.002
	D_A2	.122	.198	.092	.616	.541
	D_B3	.469	.203	.304	2.306	.026
	D_A3	.138	.111	.092	1.246	.220
	P_A1	.780	.850	.181	.918	.364

	P_B1	640	.573	179	-1.116	.271
	P_B4	246	.253	095	972	.337
	P_A6	.228	.255	.082	.895	.376
	P_A2	401	.498	102	804	.426
	P_B3	.642	.523	.198	1.228	.227
	P_A3	.523	.361	.135	1.450	.155
	ТЕМР	8.839E-02	.040	.275	2.214	.033
	GDP	-1.112	.925	124	-1.202	.236
	RAMADAN	-7.094E-02	.014	308	-5.129	.000
	TOURIST	.102	.069	.235	1.474	.148
	(Constant)	9.628	3.638		2.646	.011
	D_B1	.231	.168	.138	1.380	.175
	D_B4	.513	.177	.193	2.907	.006
	D_C1	116	.049	278	-2.365	.023
	D_A6	.121	.036	.416	3.397	.002
	D_A2	.102	.193	.077	.530	.599
	D_B3	.449	.199	.291	2.259	.029
	D_A3	.147	.109	.098	1.352	.184
	P_A1	.748	.841	.174	.890	.379
11	P_B1	570	.556	160	-1.026	.311
	P_B4	219	.246	084	888	.380
	P_A6	.204	.249	.073	.816	.419
	P_A2	432	.491	110	880	.384
	P_B3	.614	.516	.189	1.190	.241
	P_A3	.508	.357	.131	1.424	.162
	ТЕМР	9.345E-02	.039	.291	2.420	.020
	GDP	-1.223	.897	137	-1.363	.180
	RAMADAN	-7.345E-02	.013	319	-5.648	.000
	TOURIST	8.927E-02	.065	.206	1.375	.177
12	(Constant)	10.608	3.107		3.414	.001
	D_B1	.197	.154	.118	1.285	.206

	D_B4	.536	.170	.202	3.154	.003
	D_C1	110	.047	264	-2.324	.025
	D_A6	.120	.035	.414	3.411	.001
	D_B3	.448	.197	.291	2.276	.028
	D_A3	.175	.096	.116	1.827	.075
	P_A1	.680	.824	.158	.825	.414
	P_B1	560	.550	157	-1.017	.315
	P_B4	281	.214	108	-1.312	.197
	P_A6	.265	.219	.096	1.209	.233
	P_A2	467	.483	119	968	.339
	P_B3	.526	.484	.162	1.086	.284
	P_A3	.538	.349	.139	1.540	.131
	ТЕМР	9.578E-02	.038	.298	2.519	.016
	GDP	-1.239	.889	139	-1.394	.171
	RAMADAN	-7.190E-02	.013	312	-5.723	.000
	TOURIST	.102	.060	.236	1.713	.094
13	(Constant)	10.280	3.070		3.349	.002
	D_B1	.178	.151	.106	1.177	.246
	D_B4	.550	.168	.207	3.266	.002
	D_C1	110	.047	262	-2.321	.025
	D_A6	.105	.030	.363	3.490	.001
	D_B3	.402	.188	.260	2.136	.038
	D_A3	.181	.095	.121	1.907	.063
	P_B1	329	.472	092	696	.490
	P_B4	297	.213	115	-1.398	.169
	P_A6	.317	.209	.114	1.517	.137
	P_A2	327	.450	083	727	.471
	P_B3	.611	.471	.188	1.296	.202
	P_A3	.616	.335	.159	1.836	.073
	ТЕМР	8.961E-02	.037	.279	2.412	.020
	GDP	-1.052	.856	118	-1.229	.226

	RAMADAN	-7.229E-02	.013	314	-5.779	.000
	TOURIST	.118	.056	.274	2.111	.041
	(Constant)	10.970	2.888		3.799	.000
	D_B1	.155	.147	.093	1.058	.296
	D_B4	.582	.161	.219	3.611	.001
	D_C1	116	.046	278	-2.528	.015
	D_A6	.111	.029	.381	3.797	.000
	D_B3	.476	.154	.309	3.095	.003
	D_A3	.181	.094	.121	1.916	.062
14	P_B4	296	.211	114	-1.398	.169
11	P_A6	.324	.208	.117	1.559	.126
	P_A2	441	.417	112	-1.058	.296
	P_B3	.465	.420	.143	1.108	.274
	P_A3	.575	.328	.148	1.751	.087
	ТЕМР	8.382E-02	.036	.261	2.329	.025
	GDP	-1.271	.791	142	-1.606	.116
	RAMADAN	-7.359E-02	.012	319	-5.985	.000
	TOURIST	.121	.056	.280	2.172	.035
15	(Constant)	10.105	2.773		3.644	.001
	D_B1	.203	.140	.121	1.449	.154
	D_B4	.560	.160	.211	3.500	.001
	D_C1	110	.046	263	-2.407	.020
	D_A6	.109	.029	.374	3.732	.001
	D_B3	.421	.145	.273	2.904	.006
	D_A3	.174	.094	.116	1.845	.072
	P_B4	293	.212	113	-1.386	.173
	P_A6	.268	.201	.096	1.332	.190
	P_B3	.242	.363	.075	.665	.509
	P_A3	.461	.310	.119	1.484	.145
	ТЕМР	8.484E-02	.036	.264	2.355	.023
	GDP	-1.131	.781	127	-1.448	.155

	RAMADAN	-7.615E-02	.012	331	-6.309	.000
	TOURIST	.121	.056	.280	2.169	.035
	(Constant)	9.935	2.745		3.620	.001
	D_B1	.167	.129	.100	1.300	.200
	D_B4	.580	.156	.218	3.711	.001
	D_C1	125	.039	299	-3.194	.003
	D_A6	.109	.029	.376	3.777	.000
	D_B3	.432	.143	.280	3.024	.004
16	D_A3	.164	.092	.109	1.771	.083
10	P_B4	269	.207	104	-1.297	.201
	P_A6	.279	.199	.100	1.401	.168
	P_A3	.602	.225	.155	2.677	.010
	ТЕМР	8.581E-02	.036	.267	2.398	.021
	GDP	-1.025	.760	115	-1.348	.184
	RAMADAN	-7.586E-02	.012	329	-6.327	.000
	TOURIST	.130	.054	.300	2.415	.020
	(Constant)	11.528	2.472		4.662	.000
	D_B1	.225	.121	.135	1.858	.069
	D_B4	.583	.157	.219	3.701	.001
	D_C1	113	.038	271	-2.953	.005
	D_A6	.111	.029	.384	3.834	.000
	D_B3	.448	.144	.290	3.118	.003
17	D_A3	.207	.087	.138	2.395	.021
	P_A6	.181	.185	.065	.974	.335
	P_A3	.586	.226	.151	2.593	.013
	TEMP	7.555E-02	.035	.235	2.150	.037
	GDP	-1.567	.640	175	-2.450	.018
	RAMADAN	-7.485E-02	.012	325	-6.211	.000
	TOURIST	.127	.054	.294	2.347	.023
18	(Constant)	10.931	2.394		4.566	.000
	D_B1	.200	.118	.120	1.690	.098

	D_B4	.576	.157	.217	3.663	.001
	D_C1	103	.037	247	-2.794	.007
	D_A6	.103	.028	.353	3.718	.001
	D_B3	.444	.143	.288	3.094	.003
	D_A3	.204	.086	.136	2.355	.023
	P_A3	.678	.206	.175	3.296	.002
	ТЕМР	7.445E-02	.035	.232	2.120	.039
	GDP	-1.343	.597	150	-2.251	.029
	RAMADAN	-7.545E-02	.012	328	-6.273	.000
	TOURIST	.135	.054	.311	2.514	.015
a D	ependent Varial	ble: Q_A1				

	Excluded Variables(r)									
						Collinearity Statistics				
Model		Beta In	t	Sig.	Partial Correlation	Tolerance				
2	P_A5	008(a)	040	.968	007	5.723E-02				
3	P_A5	020(b)	113	.910	020	6.546E-02				
	P_RAKI	.042(b)	.212	.833	.037	5.388E-02				
	P_A5	018(c)	101	.920	018	6.557E-02				
4	P_RAKI	.045(c)	.231	.819	.040	5.399E-02				
	P_B2	.060(c)	.348	.730	.061	6.849E-02				
	P_A5	010(d)	056	.956	010	6.647E-02				
5	P_RAKI	.025(d)	.133	.895	.023	5.734E-02				
	P_B2	.065(d)	.383	.704	.066	6.894E-02				
	D_A5	080(d)	389	.700	067	4.580E-02				
6	P_A5	035(e)	215	.831	036	7.094E-02				
	P_RAKI	.033(e)	.181	.857	.031	5.766E-02				
	P_B2	.088(e)	.549	.586	.092	7.465E-02				
	D_A5	113(e)	585	.562	098	5.156E-02				

	P_A4	.403(e)	.641	.526	.108	4.827E-03
	P_A5	064(f)	415	.681	069	7.969E-02
	P_RAKI	030(f)	201	.842	033	8.354E-02
7	P_B2	.094(f)	.591	.559	.098	7.490E-02
/	D_A5	090(f)	478	.635	079	5.294E-02
	P_A4	.327(f)	.530	.599	.088	4.966E-03
	P_C1	087(f)	637	.528	106	.102
	P_A5	088(g)	663	.512	108	.104
	P_RAKI	.016(g)	.120	.905	.020	.110
	P_B2	.025(g)	.188	.852	.031	.103
8	D_A5	029(g)	173	.864	028	6.495E-02
	P_A4	066(g)	472	.640	077	9.620E-02
	P_C1	048(g)	377	.709	062	.117
	D_A4	085(g)	611	.545	100	9.496E-02
	P_A5	091(h)	686	.497	111	.104
	P_RAKI	.030(h)	.243	.809	.039	.116
	P_B2	.041(h)	.322	.749	.052	.111
9	D_A5	026(h)	156	.877	025	6.503E-02
-	P_A4	039(h)	297	.768	048	.106
	P_C1	043(h)	347	.731	056	.117
	D_A4	054(h)	414	.681	067	.106
	TREND	.138(h)	.523	.604	.085	2.610E-02
	P_A5	083(i)	824	.415	131	.175
	P_RAKI	.034(i)	.278	.782	.044	.117
	P_B2	.006(i)	.057	.955	.009	.148
	D_A5	033(i)	203	.840	032	6.572E-02
10	P_A4	054(i)	491	.626	078	.146
	P_C1	042(i)	343	.733	055	.117
	D_A4	065(i)	594	.556	095	.147
	TREND	017(i)	131	.896	021	.108
	D_B2	053(i)	449	.656	072	.127

	P_A5	044(j)	490	.627	077	.217
	P_RAKI	010(j)	099	.922	016	.175
	P_B2	.027(j)	.267	.791	.042	.172
	D_A5	066(j)	469	.642	074	8.922E-02
11	P_A4	010(j)	112	.912	018	.204
	P_C1	062(j)	606	.548	095	.169
	D_A4	017(j)	186	.853	029	.210
	TREND	.006(j)	.049	.961	.008	.119
	D_B2	015(j)	142	.888	022	.161
	D_A1	050(j)	571	.571	090	.229
	P_A5	047(k)	533	.597	083	.218
	P_RAKI	005(k)	049	.961	008	.177
	P_B2	.026(k)	.262	.794	.041	.172
	D_A5	035(k)	269	.789	042	.100
	P_A4	015(k)	164	.870	026	.206
12	P_C1	045(k)	462	.646	072	.180
	D_A4	020(k)	221	.826	035	.211
	TREND	.003(k)	.025	.980	.004	.119
	D_B2	016(k)	152	.880	024	.161
	D_A1	041(k)	476	.636	074	.235
	D_A2	.077(k)	.530	.599	.083	8.156E-02
13	P_A5	036(1)	409	.685	063	.223
	P_RAKI	.008(1)	.083	.934	.013	.182
	P_B2	.020(1)	.200	.843	.031	.173
	D_A5	051(l)	396	.694	061	.103
	P_A4	.014(1)	.170	.866	.026	.244
	P_C1	030(1)	316	.754	049	.185
	D_A4	.008(1)	.091	.928	.014	.243
	TREND	.025(1)	.216	.830	.033	.126
	D_B2	014(1)	131	.896	020	.161
	D_A1	038(1)	447	.657	069	.236

	D_A2	.057(1)	.398	.692	.061	8.355E-02
	P_A1	.158(1)	.825	.414	.126	4.635E-02
	P_A5	051(m)	620	.539	094	.250
	P_RAKI	.019(m)	.204	.839	.031	.187
	P_B2	.001(m)	.009	.993	.001	.186
	D_A5	023(m)	189	.851	029	.112
	P_A4	007(m)	089	.930	014	.280
	P_C1	021(m)	225	.823	034	.189
14	D_A4	011(m)	141	.889	021	.272
	TREND	004(m)	033	.973	005	.143
	D_B2	031(m)	310	.758	047	.173
	D_A1	024(m)	290	.773	044	.247
	D_A2	.062(m)	.436	.665	.066	8.376E-02
	P_A1	.059(m)	.358	.722	.054	6.250E-02
	P_B1	092(m)	696	.490	106	9.572E-02
	P_A5	049(n)	597	.554	090	.250
	P_RAKI	015(n)	167	.868	025	.212
	P_B2	.020(n)	.218	.829	.033	.194
	D_A5	062(n)	539	.593	081	.127
	P_A4	.001(n)	.008	.994	.001	.282
	P_C1	031(n)	325	.746	049	.190
15	D_A4	003(n)	038	.970	006	.275
15	TREND	021(n)	200	.843	030	.147
	D_B2	047(n)	477	.636	072	.178
	D_A1	026(n)	319	.751	048	.247
	D_A2	.092(n)	.666	.509	.100	8.843E-02
	P_A1	027(n)	188	.852	028	8.115E-02
	P_B1	127(n)	-1.037	.305	154	.110
	P_A2	112(n)	-1.058	.296	158	.147
16	P_A5	055(o)	682	.499	101	.255
	P_RAKI	025(o)	287	.776	043	.220

	P_B2	002(o)	023	.982	003	.221
	D_A5	079(o)	738	.464	109	.143
	P_A4	015(o)	200	.842	030	.313
	P_C1	042(o)	453	.653	067	.198
	D_A4	019(o)	263	.794	039	.311
	TREND	045(o)	460	.648	068	.178
	D_B2	063(o)	728	.470	108	.222
	D_A1	029(o)	353	.726	053	.248
	D_A2	.024(o)	.206	.838	.031	.124
	P_A1	.028(o)	.245	.808	.036	.126
	P_B1	043(o)	432	.668	064	.172
	P_A2	053(o)	578	.566	086	.197
	P_B3	.075(o)	.665	.509	.099	.133
	P_A5	084(p)	-1.140	.260	166	.302
	P_RAKI	.030(p)	.389	.699	.057	.292
	P_B2	.024(p)	.283	.778	.042	.234
	D_A5	015(p)	153	.879	023	.171
	P_A4	016(p)	222	.825	033	.313
	P_C1	.011(p)	.133	.895	.020	.242
	D_A4	020(p)	273	.786	040	.311
17	TREND	012(p)	132	.896	019	.189
1,	D_B2	041(p)	483	.632	071	.230
	D_A1	.004(p)	.050	.960	.007	.273
	D_A2	.080(p)	.784	.437	.115	.160
	P_A1	.022(p)	.189	.851	.028	.127
	P_B1	054(p)	548	.586	081	.173
	P_A2	062(p)	676	.502	099	.198
	P_B3	.047(p)	.425	.673	.062	.137
	P_B4	104(p)	-1.297	.201	188	.258
18	P_A5	061(q)	851	.399	123	.323
	P_RAKI	.048(q)	.670	.506	.097	.323

P_B2	.047(q)	.580	.565	.084	.261
D_A5	.015(q)	.155	.878	.023	.189
P_A4	022(q)	303	.764	044	.316
P_C1	.030(q)	.372	.711	.054	.258
D_A4	024(q)	322	.749	047	.312
TREND	005(q)	052	.958	008	.190
D_B2	048(q)	559	.579	081	.231
D_A1	.019(q)	.246	.806	.036	.284
D_A2	.091(q)	.895	.376	.129	.162
P_A1	.056(q)	.512	.611	.074	.144
P_B1	040(q)	411	.683	060	.176
P_A2	030(q)	342	.734	050	.219
P_B3	.063(q)	.574	.568	.083	.140
P_B4	061(q)	818	.417	119	.301
P_A6	.065(q)	.974	.335	.141	.373

a Predictors in the Model: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, P_RAKI, D_A5, P_B3, D_B2, D_A4

b Predictors in the Model: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, P_B2, D_A2, P_B1, TOURIST, P_A4, D_A5, P_B3, D_B2, D_A4

c Predictors in the Model: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_A4, D_A5, P_B3, D_B2, D_A4

d Predictors in the Model: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_A4, P_B3, D_B2, D_A4

e Predictors in the Model: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2, D_A4

f Predictors in the Model: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2, D_A4

g Predictors in the Model: (Constant), TREND, P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2

h Predictors in the Model: (Constant), P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3, D_B2

i Predictors in the Model: (Constant), P_A1, RAMADAN, D_A1, D_A6, TEMP, D_B4, GDP, P_A6,

D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3

j Predictors in the Model: (Constant), P_A1, RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, D_A2, P_B1, TOURIST, P_B3

k Predictors in the Model: (Constant), P_A1, RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, P_B1, TOURIST, P_B3

l Predictors in the Model: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, P_B1, TOURIST, P_B3

m Predictors in the Model: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, P_A2, D_B3, TOURIST, P_B3

n Predictors in the Model: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, D_B3, TOURIST, P_B3

o Predictors in the Model: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, P_B4, D_C1, D_B3, TOURIST

p Predictors in the Model: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, P_A6, D_B1, D_A3, P_A3, D_C1, D_B3, TOURIST

q Predictors in the Model: (Constant), RAMADAN, D_A6, TEMP, D_B4, GDP, D_B1, D_A3, P_A3, D_C1, D_B3, TOURIST

r Dependent Variable: Q_A1

Casewise Diagnostics(a)									
Case Number	Std. Residual	Q_A1	Predicted Value	Residual					
44	-3.118	11.83	12.0538	2238					

a Dependent Variable: Q_A1

Residuals Statistics(a)									
	Minimum	Maximum	Mean	Std. Deviation	N				
Predicted Value	11.9262	12.7752	12.4060	.2195	60				
Residual	2238	.1931	-9.7700E-16	6.472E-02	60				
Std. Predicted Value	-2.186	1.682	.000	1.000	60				
Std. Residual	-3.118	2.692	.000	.902	60				
a Dependent Variable:	Q_A1								

APPENDIX B.13

REGRESSION OUTPUT: MULTIPLICATIVE BRAND-LEVEL MODEL 5th STEPWISE REGRESSION

	Variables Entered/Removed(a)								
Model	Variables Entered	Variables Removed	Method						
1	TOURIST		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
2	RAMADAN		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
3	TEMP		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
4	D_A1		Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
5		TOURIST	Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).						
a Deper	dent Variable: O	A1							

	Model Summary(f)										
	R R Squa										
Model		R Square	Adjusted R Square	Std. Error of the Estimate	R Squar e Chang e	F Change	df1	df2	Sig. F Change	Durbin- Watson	
1	.882(a)	.779	.775	.1086	.779	204.034	1	58	.000		
2	.914(b)	.835	.829	9.465E-02	.056	19.355	1	57	.000		
3	.921(c)	.847	.839	9.178E-02	.013	4.623	1	56	.036		
4	.931(d)	.866	.856	8.671E-02	.019	7.732	1	55	.007		
5	.928(e)	.860	.853	8.779E-02	006	2.401	1	57	.127	1.783	
a Predic	ctors: (Co	nstant), TO	OURIST								

b Predictors: (Constant), TOURIST, RAMADAN

c Predictors: (Constant), TOURIST, RAMADAN, TEMP

d Predictors: (Constant), TOURIST, RAMADAN, TEMP, D_A1

e Predictors: (Constant), RAMADAN, TEMP, D_A1

f Dependent Variable: Q_A1

ANOVA(f)											
M	odel	Sum of Squares	Sum of Squares df Mean S		F	Sig.					
	Regression	2.406	1	2.406	204.034	.000(a)					
1	Residual	.684	58	1.179E-02							
	Total	3.090	59								
	Regression	2.580	2	1.290	143.979	.000(b)					
2	Residual	.511	57	8.958E-03							
	Total	3.090	59								
	Regression	2.619	3	.873	103.627	.000(c)					
3	Residual	.472	56	8.423E-03							
	Total	3.090	59								
	Regression	2.677	4	.669	88.997	.000(d)					
4	Residual	.414	55	7.519E-03							
	Total	3.090	59								
	Regression	2.659	3	.886	114.985	.000(e)					
5	Residual	.432	56	7.707E-03							
	Total	3.090	59								
a I	Predictors: (Co	onstant), TOURIST		·							
b I	Predictors: (C	onstant), TOURIST	, RA	MADAN							
c I	Predictors: (Co	onstant), TOURIST	, RA	MADAN, TEMI	Р						
d l	Predictors: (C	onstant), TOURIST	', RA	MADAN, TEM	P, D_A1						
e I	Predictors: (Co	onstant), RAMADA	N, 7	TEMP, D_A1							
f I	Dependent Var	riable: Q_A1									

Coefficients(a)							
	Unstandardized Coefficients	Standardized Coefficients	t	Sig.			

М	odel	В	Std. Error	Beta				
1	(Constant)	9.893	.176		56.059	.000		
	TOURIST	.382	.027	.882	14.284	.000		
	(Constant)	10.298	.179		57.442	.000		
2	TOURIST	.324	.027	.749	12.128	.000		
	RAMADAN	-6.260E-02	.014	272	-4.399	.000		
	(Constant)	10.799	.291		37.170	.000		
3	TOURIST	.219	.055	.507	3.980	.000		
C	RAMADAN	-7.255E-02	.015	315	-4.985	.000		
	ТЕМР	8.041E-02	.037	.250	2.150	.036		
	(Constant)	7.274	1.297		5.609	.000		
	TOURIST	.103	.067	.239	1.550	.127		
4	RAMADAN	-8.425E-02	.014	366	-5.859	.000		
	ТЕМР	.134	.040	.416	3.325	.002		
	D_A1	1.202	.432	.185	2.781	.007		
	(Constant)	6.375	1.174		5.430	.000		
5	RAMADAN	-9.663E-02	.012	419	-7.981	.000		
·	ТЕМР	.190	.017	.592	10.893	.000		
	D_A1	1.620	.341	.249	4.745	.000		

a Dependent	Variable:	Q_A1
-------------	-----------	------

	Excluded Variables(f)							
Model			t	Sig.		Collinearity Statistics		
		Beta In			Partial Correlation	Tolerance		
1	D_A1	.044(a)	.602	.549	.080	.724		
	D_A5	.039(a)	.602	.550	.079	.897		
	D_C1	.002(a)	.032	.975	.004	.917		

	D_A2	.035(a)	.542	.590	.072	.903
	D_B3	036(a)	550	.584	073	.884
	D_A4	.024(a)	.391	.697	.052	1.000
	D_B2	.060(a)	.977	.333	.128	.996
	P_A1	047(a)	754	.454	099	.973
	P_B1	035(a)	560	.578	074	.987
	P_A5	.008(a)	.120	.905	.016	.996
	P_B4	046(a)	728	.470	096	.956
	P_C1	002(a)	032	.975	004	.972
	P_A6	027(a)	422	.675	056	.949
	P_A2	050(a)	790	.433	104	.976
	P_B3	001(a)	018	.986	002	.945
	P_A3	.006(a)	.093	.926	.012	.985
	P_A4	.012(a)	.194	.847	.026	.999
	P_B2	.055(a)	.856	.396	.113	.921
	ТЕМР	.066(a)	.501	.618	.066	.223
	GDP	.049(a)	.796	.429	.105	.998
	RAMADAN	272(a)	-4.399	.000	503	.760
	P_RAKI	.037(a)	.596	.553	.079	.997
	TREND	.030(a)	.475	.637	.063	.987
2	D_A1	.080(b)	1.253	.215	.165	.713
	D_A5	.040(b)	.707	.483	.094	.897
	D_C1	.006(b)	.108	.914	.014	.916
	D_A2	.055(b)	.961	.340	.127	.897
	D_B3	024(b)	411	.682	055	.881
	D_A4	.019(b)	.344	.732	.046	.999
	D_B2	.063(b)	1.174	.245	.155	.996
	P_A1	030(b)	537	.593	072	.967
	P_B1	001(b)	014	.989	002	.966
	P_A5	006(b)	115	.909	015	.993
	P_B4	058(b)	-1.050	.298	139	.954

	P_C1	.020(b)	.357	.722	.048	.964
	P_A6	025(b)	455	.651	061	.949
	P_A2	035(b)	636	.527	085	.972
	P_B3	002(b)	040	.969	005	.945
	P_A3	.025(b)	.462	.646	.062	.978
	P_A4	.008(b)	.144	.886	.019	.998
	P_B2	.053(b)	.948	.347	.126	.921
	ТЕМР	.250(b)	2.150	.036	.276	.201
	GDP	.058(b)	1.078	.286	.143	.997
	P_RAKI	.060(b)	1.112	.271	.147	.988
	TREND	.040(b)	.738	.464	.098	.985
3	D_A1	.185(c)	2.781	.007	.351	.551
	D_A5	.085(c)	1.480	.144	.196	.812
	D_C1	.055(c)	.935	.354	.125	.801
	D_A2	.084(c)	1.507	.137	.199	.856
	D_B3	.031(c)	.502	.618	.068	.731
	D_A4	.017(c)	.329	.743	.044	.999
	D_B2	.068(c)	1.314	.194	.175	.994
	P_A1	028(c)	524	.602	071	.967
	P_B1	028(c)	504	.616	068	.918
	P_A5	042(c)	771	.444	103	.910
	P_B4	072(c)	-1.356	.181	180	.940
	P_C1	.082(c)	1.409	.165	.187	.796
	P_A6	.010(c)	.169	.866	.023	.866
	P_A2	037(c)	698	.488	094	.972
	P_B3	021(c)	389	.698	052	.920
	P_A3	.024(c)	.455	.651	.061	.978
	P_A4	.009(c)	.175	.862	.024	.998
	P_B2	.060(c)	1.097	.277	.146	.918
	GDP	.088(c)	1.664	.102	.219	.946
	P_RAKI	.118(c)	2.152	.036	.279	.854

	TREND	.068(c)	1.270	.210	.169	.939
	D_A5	015(d)	217	.829	029	.501
	D_C1	011(d)	180	.857	025	.662
	D_A2	.028(d)	.480	.633	.065	.713
	D_B3	007(d)	120	.905	016	.691
	D_A4	.033(d)	.654	.516	.089	.987
	D_B2	.057(d)	1.143	.258	.154	.986
	P_A1	005(d)	106	.916	014	.941
	P_B1	.007(d)	.133	.894	.018	.865
	P_A5	.003(d)	.053	.958	.007	.821
1	P_B4	044(d)	850	.399	115	.898
-	P_C1	.000(d)	.007	.994	.001	.573
	P_A6	017(d)	322	.749	044	.838
	P_A2	016(d)	317	.752	043	.949
	P_B3	.013(d)	.252	.802	.034	.868
	P_A3	.033(d)	.658	.513	.089	.974
	P_A4	.029(d)	.572	.570	.078	.979
	P_B2	.059(d)	1.151	.255	.155	.918
	GDP	.055(d)	1.043	.302	.141	.881
	P_RAKI	.046(d)	.688	.494	.093	.553
	TREND	.048(d)	.923	.360	.125	.917
5	D_A5	022(e)	310	.758	042	.503
	D_C1	.000(e)	.002	.999	.000	.672
	D_A2	.030(e)	.505	.615	.068	.713
	D_B3	.020(e)	.339	.736	.046	.758
	D_A4	.037(e)	.728	.470	.098	.990
	D_B2	.053(e)	1.062	.293	.142	.988
	P_A1	.009(e)	.168	.868	.023	.972
	P_B1	.012(e)	.221	.826	.030	.868
	P_A5	001(e)	018	.986	002	.823
	P_B4	035(e)	660	.512	089	.909

	P_C1	.008(e)	.121	.904	.016	.576
	P_A6	002(e)	039	.969	005	.866
	P_A2	005(e)	091	.928	012	.969
	P_B3	.023(e)	.425	.672	.057	.880
	P_A3	.040(e)	.781	.438	.105	.982
	P_A4	.035(e)	.687	.495	.092	.986
	P_B2	.054(e)	1.040	.303	.139	.922
	GDP	.056(e)	1.058	.295	.141	.881
	P_RAKI	.038(e)	.563	.576	.076	.556
	TREND	.050(e)	.958	.342	.128	.918
	TOURIST	.239(e)	1.550	.127	.205	.102
a l	Predictors in the	e Model: (0	Constant)), TOU	RIST	
bl	Predictors in the	e Model: (0	Constant), TOU	RIST, RAMADAN	
c l	Predictors in the	e Model: (0	Constant)), TOU	RIST, RAMADAN, T	EMP
d]	Predictors in the	e Model: (0	Constant), TOU	RIST, RAMADAN, T	EMP, D_A1
e l	Predictors in the	e Model: (0	Constant)), RAM	IADAN, TEMP, D_A1	
f I	Dependent Varia	able: Q_A	1			

Casewise Diagnostics(a)							
Case Number	Std. Residual	Q_A1	Predicted Value	Residual			
44	-3.035	11.83	12.0965	2665			
a Dependent Variable: 0 A1							

a Dependent	Variable:	Q_A1
-------------	-----------	------

Residuals Statistics(a)									
	Minimum	Maximum	Mean	Std. Deviation	N				
Predicted Value	11.9095	12.6975	12.4060	.2123	60				
Residual	2665	.2578	-1.0658E-15	8.553E-02	60				
Std. Predicted Value	-2.339	1.373	.000	1.000	60				
Std. Residual	-3.035	2.937	.000	.974	60				
a Dependent Variable: Q_A1									

APPENDIX C

MODEL RESULTS FOR THE OTHER BRANDS

We present a compact of summary of the model results for the ten brands, except for Brand A1 which is discussed in detail in the main text.

Brand A2

Stepwise linear regression produces the neatest model, with four significant variables and an $adj-R^2$ of 71.5%:

(105)**K** $q_{A,t}^{(Ls)} = -162 + 799d_{A,t} - 224d_{A,t} - 54r_t - 87t + e_{A,t}$

Forward linear regression produces a model of six explanatory variables, and only two of these variables are in common with the preceding stepwise model: own distribution and Ramadan. The other two variables in the stepwise model are replaced by four new variables in the forward model. Forward model has lower explanatory power, and moreover it is not better in compliance to the error-term assumptions. Therefore, it can be concluded that stepwise linear model is superior to the forward linear model and presentation of the forward model is skipped.

On the other hand, backward linear regression produces a model with higher explanatory power ($R^2 = 76.9\%$, adj- $R^2 = 74.3\%$), by covering all the four variables of the stepwise model and also adding two new variables, own price and temperature, on top:

$$(106)\mathbf{K} \quad q_{A_{2t}}^{(D)} = 5,322 + 644d_{A_{2t}} - 24p_{A_{2t}} - 252d_{A_{6t}} + 39Temp_t - 47r_t - 76t + e_{A_{2t}}$$

Stepwise multiplicative regression produces a model of five significant variables, covering all the four variables of the stepwise linear model:

$$(107)\mathbf{K} \quad q_{A_{2t}}^{(Ms)} = e^{6.36} d_{A_{2t}}^{0.83} d_{A_{0}t}^{-0.05} f_t^{0.11} r_t^{-0.06} t^{-0.15} e^{e_{A_{2t}}}$$

Stepwise multiplicative model performs worse that the stepwise linear model in terms of explanatory power ($R^2 = 68.9\%$, adj- $R^2 = 66.1\%$), despite the addition of tourism variable. The same finding is also true for the other two multiplicative regression variants. Therefore, it can be concluded that linear model covers the idiosyncrasies in Brand A2's sales data better than the multiplicative model and Equation (106) is the best regression model to represent Brand A2's sales volume.

Brand A3

Stepwise and forward linear regression produces a model with seven significant variables and all with expected signs in the very first iteration:

 $(108) \mathbf{K} \quad q_{A_{4f}}^{(lf,s)} = 8,581 + 391d_{A_{4f}} + 14p_{A_{4f}} - 79d_{B_{4f}} - 349d_{C_{1f}} - 92GDP_{t} + 31Temp_{t} - 20r_{t} + e_{A_{4f}} - 92GDP_{t} + 31Temp_{t} - 20r_{t} + e_{A_{4f}} - 92GDP_{t} + 31Temp_{t} - 20r_{t} + e_{A_{4f}} - 92GDP_{t} + 31Temp_{t} - 20r_{t} + e_{A_{4f}} - 92GDP_{t} + 31Temp_{t} - 20r_{t} + e_{A_{4f}} - 92GDP_{t} + 31Temp_{t} - 20r_{t} + e_{A_{4f}} - 92GDP_{t} + 31Temp_{t} - 20r_{t} + e_{A_{4f}} - 92GDP_{t} + 31Temp_{t} - 20r_{t} + e_{A_{4f}} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GDP_{t} - 92GP_{t} -$

Backward linear regression also produces a model with eight significant variables and all with expected signs in the very first iteration:

$$(109)\mathbf{K} \quad q_{A_{5}t}^{(Lb)} = 10,188 + 392d_{A_{5}t} + 14p_{B_{4}t} - 52d_{B_{2}t} - 114d_{B_{4}t} - 332d_{C_{1}t} - 97GDP_{t} + 28Tenp_{t} - 21r_{t} + e_{A_{5}t} - 97GDP_{t} + 28Tenp_{t} - 21r_{t} + e_{A_{5}t} - 97GDP_{t} + 28Tenp_{t} - 21r_{t} + e_{A_{5}t} - 97GDP_{t} + 28Tenp_{t} - 21r_{t} + e_{A_{5}t} - 97GDP_{t} + 28Tenp_{t} - 21r_{t} + e_{A_{5}t} - 97GDP_{t} + 28Tenp_{t} - 97GDP_{t} + 97GDP_{t} - 97GDP_{t} + 97GDP_{t} - 97GDP_{t} + 97GDP_{t} - 97GD$$

Above models have six variables in common; the only difference is that Brand A5's price in the former model is replaced with Brand B4's price and distribution in the later model. Models perform equal in terms of explanatory power ($adj-R^2$ is 83.1% and 83.7%, respectively) and other statistical measures.

Stepwise and forward multiplicative regression produces a model with six significant variables, and only three of these variables are in common with the linear models:

$$(110)\mathbf{K} \quad q_{A_{st}}^{(Mf,s)} = e^{5.20} d_{A_{st}}^{1.03} p_{A_{st}}^{0.05} d_{G_{t}}^{-0.50} f_{t}^{0.17} r_{t}^{-0.08} t^{-0.22} e^{e_{A_{st}}}$$

Backward multiplicative model covers all the six variables of the forward and stepwise multiplicative model, and also includes two more explanatory variables, Brand A4's price and GDP:

(111) **K**
$$q_{A_{4t}}^{(MD)} = e^{12.12} d_{A_{4t}}^{1.28} p_{A_{4t}}^{0.05} p_{B_{4t}}^{0.69} d_{C_{t}}^{-0.46} GDP_{t}^{-2.24} f_{t}^{0.14} r_{t}^{-0.07} t^{-0.23} e^{e_{A_{4t}}}$$

Multiplicative models perform as good as the preceding linear models, in terms of explanatory power; $adj-R^2$ is 82.7% for former, and 84.2% for later multiplicative model. Therefore, it is not possible to select any of the presented four models as being superior. New observations should be augmented to the data set, in order to break the real and artificial dependencies among the explanatory variables and identify a superior model.

Brand A4

Stepwise linear regression produces a model with six significant variables ($adj-R^2 = 91.4\%$):

$$(112)\mathbf{K} \quad q_{A_{4t}}^{(Ls)} = -12,387 + 601d_{A_{4t}} + 38p_{A_{t}} + 49p_{B_{4t}} - 189d_{A_{4t}} - 80d_{A_{t}} - 272d_{C_{t}} + e_{A_{4t}}$$

Forward linear regression also produces a model with six significant variables (adj-R² = 91.9%), but only four of these variables are in common with the stepwise linear model: (113) **K** $q_{A_{4t}}^{(Lf)} = -11,422+528d_{A_{4t}}+26p_{A_{4t}}+29p_{B_{4t}}+28p_{B_{4t}}-233d_{A_{4t}}-314d_{C_{4t}}+e_{A_{4t}}$

Backward linear regression produces a completely different and massive model with twelve variables ($adj-R^2 = 95.8\%$):

$$(114)\mathbf{K} q_{A_{f}}^{(lb)} = 3.486 + 48 ld_{A_{f}} - 57 p_{A_{f}} + 22 p_{A_{f}} + 25 p_{A_{f}} + 34 p_{B_{f}} - 164 d_{A_{f}} - 111 d_{A_{f}} - 225 d_{A_{f}} - 117 d_{B_{f}} - 28 ld_{G} + 68 To p_{f} + 22 t + e_{A_{f}} - 112 d_{B_{f}}$$

All multiplicative regression runs produce the same model, with nine significant variables (adj- $R^2 = 93.8\%$), but only four of these variables are in common with the stepwise linear model:

(115) **K**
$$q_{A_{4t}}^{(M)} = e^{12.51} d_{A_{4t}}^{1.45} p_{A_{4t}}^{-4.21} p_{A_{3t}}^{1.69} p_{A_{3t}}^{1.36} p_{B_{3t}}^{1.36} d_{A_{t}}^{-3.32} d_{C_{t}}^{-0.23} f_{t}^{0.29} t^{-0.30} e^{e_{A_{4t}}}$$

Four sales volume models include sixteen explanatory variables in total. There is significant variation in the composition of these models, and it is possible to select any of the presented four models as being superior.

Brand A5

Stepwise and backward linear regression produces the same model, with seven significant variables ($adj-R^2 = 82.0\%$):

(116)**K** $q_{A_t}^{(Ls,b)} = 26,103 + 909d_{A_t} - 961d_{A_t} - 463d_{A_t} + 19p_{st} + 241Temp_t - 83r_t - 127t + e_{A_t}$

Forward linear model has one more explanatory variable, but lower explanatory power $(adj-R^2 = 81.9\%)$ compared to the prior linear model.

Forward multiplicative model encompasses the same set of explanatory variables and stepwise multiplicative model lacks the trend variable only, but both models have comparably low explanatory power; $adj-R^2$ value is 78.7% and 79.7%, respectively. Backward multiplicative model also lacks the trend variable, but has one additional explanatory variable, but performs worse than the linear correspondent with an $adj-R^2$ value of 80.0%. Based on these findings, it can be concluded that linear model covers the idiosyncrasies in Brand A5's sales data better than the corresponding multiplicative model and Equation (116) is the best regression model to represent Brand A5's sales volume.

Brand A6

Multiplicative models have significantly higher explanatory power with $adj-R^2 \sim 96\%$, compared to the linear models with $adj-R^2 \sim 87-88\%$. Linear models are not better in fitting the data set or compliance to error- term assumptions. Therefore, it can be concluded that multiplicative model better covers the idiosyncrasies in the data.

Stepwise and forward multiplicative regression produces a model with six significant variables:

(117) **K**
$$q_{A_{6t}}^{(Ms,f)} = e^{1.96} d_{A_{6t}}^{1.66} p_{B_{t}}^{3.74} d_{A_{t}}^{-6.69} p_{st}^{1.10} Temp_{t}^{0.28} t^{-0.14} e^{e_{A_{6t}}}$$

Backward multiplicative model also produces a model with six significant variables, and four of these variables are in common with the former model. In the backward case, two

variables of the former model, trend and raki price, are replaced with Brand A4's distribution and price:

(118) **K** $q_{A_{ef}}^{(MD)} = e^{3.73} d_{A_{ef}}^{1.77} p_{A_{4}t}^{0.68} p_{B_{t}}^{2.92} d_{A_{t}t}^{-4.13} d_{A_{t}t}^{-1.50} Temp_{t}^{0.30} e^{e_{A_{ef}}}$

Equation (118) is regarded as the best regression model to represent Brand A6's sales volume, as it performs better than the former one in key statistical measures.

Brand B1

Backward multiplicative regression produces the best model in terms of explanatory power with 82% adj- R^2 among the six model varieties; the other five have adj- R^2 values of 75%-77%. Backward multiplicative model is composed of eight explanatory variables, five of which are in common with the other models:

(119) **K** $q_{B_t}^{(MD)} = e^{-4.45} d_{B_t}^{0.94} p_{B_t}^{-1.47} p_{A_y}^{1.14} d_{A_t}^{-0.05} d_{C_t}^{-0.10} GDP_t^{2.82} Temp_t^{0.24} r_t^{-0.06} e^{e_{B_t}}$

Brand B2

Linear models for Brand B2 have lower explanatory power with 7% less adj-R² and higher autocorrelation risk, compared to the multiplicative models. Stepwise and forward multiplicative regressions produce a statistically satisfactory model, with four explanatory variables. However, backward multiplicative model adds an extra variable on top and performs better in terms of statistical measures (R² = 98.0%, adj-R² = 97.8%): (120)**K** $q_{B_d}^{(Mb)} = e^{2.59} d_{B_d}^{2.63} p_{B_d}^{-1.24} p_{B_d}^{2.43} d_{A_d}^{-1.25} Temp_t^{0.13} e^{e_{B_d}}$

Brand B3

Four regression variants, stepwise and forward linear plus stepwise and forward multiplicative, produce the same model with four variables: own distribution, Brand A4's distribution, GDP and tourism. However, backward elimination provides the best model in terms of the explanatory power with an $adj-R^2$ of 81.5%:

 $(121)\mathbf{K} \quad q_{B_{3t}}^{(MD)} = e^{-6.63} d_{B_{3t}}^{1.16} d_{A_{4t}}^{-0.10} Temp_t^{0.13} GDP_t^{2.31} r_t^{-0.06} e^{e_{B_{3t}}}$

Compared to the former model, backward multiplicative regression replaces tourism variable with temperature and Ramadan, improving $adj-R^2$ by 2.2%.

Brand B4

Backward multiplicative regression produces the best model in terms of explanatory power with 61% adj-R²:

 $(122)\mathbf{K} \quad q_{B_{4t}}^{(Mb)} = e^{7.53} d_{B_{4t}}^{0.98} p_{A_{4t}}^{0.19} d_{A_{4t}}^{-0.43} d_{A_{5t}}^{-0.27} Temp_t^{0.15} r_t^{-0.05} e^{e_{B_{4t}}}$

Above model and backward linear model, the second best model in terms of explanatory power with 57% adj- R^2 , own the same set of variables. This supports the stability of the best variable combination. But, the explanatory power of these models is comparably low, and almost 40-45% of variation in the sales volume remains unexplained. Low explanatory power can only be partially attributable to the variable deletion methodology, as models with full set of variables also have comparably low explanatory power with an adj- R^2 of 71.4%. Therefore, it is a probable that a number of important explanatory variables such as beer taste, package design, product image, unusual promotional activities are missing in the data set.

Brand C1

Models produced by six elimination methods resemble each other, in terms of the variable combination: own price and own distribution are common in six models; Brand A6's distribution is common in five models; temperature and Ramadan are common in four models. However, backward multiplicative model has the highest explanatory power with an adj- R^2 of 79.1% and encompasses all the five variables mentioned above plus three more:

(123) **K**
$$q_{C_{1t}}^{(Mb)} = e^{16.48} d_{C_{1t}}^{0.70} p_{C_{tt}}^{-2.27} d_{A_{4t}}^{-0.14} d_{A_{6t}}^{-0.13} d_{B_{2t}}^{-0.14} Temp_{t}^{0.34} r_{t}^{-0.08} t^{0.42} e^{e_{C_{tt}}}$$

Commentary on regression results

It is worthwhile to discuss the regression findings and do some sanity check. Almost all the 88 regression variants, four regression variants for two formulations of the eleven brand-level sales volume models, produce similar results in terms of statistical measures:

- 1. Good fit of the data set explained: large F-statistics
- 2. High explanatory power: $adj-R^2$ more than 75%, except for one brand
- 3. Limited number of significant variables: 2 or 3 out of 28 for models with full set of explanatory variables
- 4. No severe violation in error term assumptions
- 5. Serious multicollinearity problem: significant portion 30% on average of estimated regression coefficients have signs contradictory to a priori expectations
- 6. Backward elimination method to produce the models with the highest explanatory power
- 7. No absolute superiority of linear or multiplicative model over the other

Best sales volume model is defined as the one with highest explanatory power, best data fit, and full compliance to error-term assumptions and identified for all, but three brands. Best model for Brand A3 and A4, marginal brands with less than 1% market share, cannot be identified, as it is not possible to select one regression variant as being superior to others and variable combination of the variants exhibit serious variation. Moreover, no satisfactory model can be formulated for Brand B4, as even the best model has low explanatory power.

We revisit the eight brand-level sales volume models. Almost all models include two primary variables, own price and own distribution, and two environmental variables, temperature and Ramadan. We leave these four variables aside, and comment on the other model variables present.

Brand A2: Model includes a cannibalization variable of Brand A6's distribution, which deserves some discussion. Brand A6 experiences a phase-out cycle in the second half on the investigated period and its distribution steadily erodes from 10 to less than 1, following producer's decision to discontinue this brand. In this period, producer may

have replaced Brand A6 with Brand A2 in distribution system, and retailers may have been supplied with more of Brand A2 instead of the unsupplied Brand A6. To the extent that foregoing proposition is true, cannibalization variable represents the consequences of a managerial decision.

Brand A5: Model lacks own price variable, unlike the other models. One possible explanation of this can be that any adjustments in the price of Brand A5, which is already sold at 25% discount compared to the mainstream brands, do not affect consumers purchasing decisions. The same conclusion is also valid for the other discount brands. Model also includes two cannibalization variables: Brand A1's, and Brand A4's distribution. Based on this finding, following interpretation can be derived: "some consumers perceive discount Brand A5 as inferior, and switches to the other two brands if they are available". The same conclusion is also valid for Brand A6, whose sales volume model includes three cannibalization variables: Brand A1's distribution, Brand A4's distribution, and Brand A4's price.

Brand A6: Model includes a competition variable: Brand B1's price. These two brands could share a common consumer base, composed of highly price sensitive purchasers who switch to Brand A6 depending on Brand B1's price.

Brand B1: Model includes three competition variables. Interestingly, Brand B1 competes with Brand A3 on price and with Brand A4 and C1 on distribution. However, price is the dominant field of competition, as coefficients of the cross-distribution terms are negligibly small.

Brand B2: Model includes one cannibalization and one competition variable. Although both variables are associated with discount brands, field of opposition differs: Brand B2 competes with Brand B4 on price and with Brand A5 on distribution.

Brand B3: Model contains one competition variable, with a negligible coefficient. Therefore, it can be concluded that Brand B3 has very loyal consumers, who do not interact with the other brands and consume Brand B3, regardless of the other brands' price and availability.

Brand C1: Model contains an own price variable with a sizeable coefficient. Brand C1 is sold at 50% discount in the investigated period, and its consumers usually have low purchasing power. Consequently, it is well expected that these consumers exhibit some price sensitivity.