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ABSTRACT

A GEOMETRIC APPROACH TO ABSOLUTE

IRREDUCIBILITY OF POLYNOMIALS

Koyuncu, Fatih

Ph.D., Department of Mathematics

Supervisor: Doç. Dr. Ferruh Özbudak

April 2004, 78 pages.

This thesis is a contribution to determine the absolute irreducibility of

polynomials via their Newton polytopes.

For any field F, a polynomial f ∈ F [x1, x2, ..., xk] can be associated with

a polytope, called its Newton polytope. If the polynomial f has integrally

indecomposable Newton polytope, in the sense of Minkowski sum, then it is

absolutely irreducible over F, i.e. irreducible over every algebraic extension

of F. We present some new results giving integrally indecomposable classes

of polytopes. Consequently, we have some new criteria giving infinitely many

types of absolutely irreducible polynomials over arbitrary fields.

Keywords: Polynomials, absolute irreducibility, polytopes, integral indecom-

posability.
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ÖZ

POLİNOMLARIN İNDİRGENEMEZLİĞİNE

GEOMETRİK BİR YAKLAŞIM

Koyuncu, Fatih

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Ferruh Özbudak

Nisan 2004, 78 sayfa.

Bu tez, polinomların Newton çokzirvelilerine göre indirgenemezliğini be-

lirlemeye bir katkıdır.

Herhangi bir F cismi için, F [x1, x2, ..., xk] halkasından alınan bir f poli-

nomu bir Newton çokzirvelisine eşlenebilir. Bu f polinomu, Minkowski toplamına

göre ayrılamayan bir Newton çokzirvelisine sahipse, F üzerinde mutlak olarak

indirgenemez, yani F ′nin her cebirsel uzantısında indirgenemez. Biz burada,

integral olarak ayrılamayan çokzirveliler sınıfları veren bazı yeni sonuçlar ver-

mekteyiz. Sonuç olarak, rastgele bir cisim uzerinde sonsuz sayıda indirgene-

meyen polinom tipleri veren yeni kriterlere sahip oluyoruz.

Anahtar Sözcükler: Polinomlar, mutlak indirgenemezlik, çokzirveliler, inte-

gral ayrılmazlık.
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Chapter 1

INTRODUCTION

We know that the classes of absolutely irreducible polynomials are very

vital in many areas such as finite geometry [H], algebraic geometric codes [St],

combinatorics [Sz], permutation polynomials [LN] and function field sieve [A].

There are some irreducibility criteria of polynomials like Eisenstein’s criterion,

Eisenstein-Dumas criterion. Moreover, we also have absolute irreducibility

criteria of polynomials in the literature as Newton polygon method. Recently,

Newton polygon method has been strengthened by Gao in [G1, G2] as Newton

polytope method for multivariate polynomials. In this study, we shall give

some new integrally indecomposable Newton polytopes which are not included

in [G1, G2].

Let Rn denote the n-dimensional real Euclidean space and S be a subset

of Rn. The smallest convex set containing S, denoted by conv(S), is called the

convex hull of S. Note that

conv(S) =

{
k∑
i=1

λixi : {x1, ..., xk} ⊆ S, λi ≥ 0,
k∑
i=1

λi = 1

}
.
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The affine hull aff(S) of S is defined as

aff(S) =

{
k∑
i=1

λixi : {x1, ..., xk} ⊆ S,

k∑
i=1

λi = 1

}
.

For any point x ∈ S, x is said to be in the relative interior of S, denoted as

x ∈ relint(S), if x lies in the interior of S relative to aff(S), i.e. there exists an

open ball B in aff(S) such that x ∈ B ⊂ S.

The convex hull of finitely many points in Rn is called a polytope. A

point of a polytope is called a vertex if it is not on the line segment joining

any other two different points of the polytope. It is known that a polytope is

always the convex hull of its vertices, for example see [Z, Proposition 2.2].

The principle operation for convex sets in Rn is defined as follows.

Definition 1.0.1 For any two sets A and B in Rn, the sum

A+B = {a+ b : a ∈ A, b ∈ B}

is called Minkowski sum, or vector addition of A and B.

A point in Rn is called integral if its coordinates are integers. A polytope

in Rn is called integral if all of its vertices are integral. An integral polytope C

is called integrally decomposable if there exist integral polytopes A and B

such that C = A+B where both A and B have at least two points. Otherwise,

C is called integrally indecomposable.

Let F be any field and consider any polynomial

f(x1, x2, ..., xn) =
∑

ce1e2...enx
e1
1 x

e2
2 ...x

en
n ∈ F [x1, ..., xn].

We can think an exponent vector (e1, e2, ..., en) of f as a point in Rn. The

Newton polytope of f, denoted by Pf , is defined as the convex hull in Rn of

all the points (e1, ..., en) with ce1e2...en 6= 0.

2



Recall that a polynomial over a field F is called absolutely irreducible

if it remains irreducible over every algebraic extension of F .

By using Newton polytopes of multivariate polynomials, we can determine

infinite families of absolutely irreducible polynomials over an arbitrary field F

by using the following result due to Ostrowski [O1].

Lemma 1.0.2 Let f, g, h ∈ F [x1, ..., xn] with f = gh. Then Pf = Pg + Ph.

Proof: See, for example, the proof of [G1, Lemma 2.1]. 2

As a direct result of Lemma 1.0.2, we have the following corollary which

is an irreducibility criterion for multivariate polynomials over arbitrary fields.

Corollary 1.0.3 Let F be any field and f a nonzero polynomial in F [x1, ..., xn]

not divisible by any xi. If the Newton polytope Pf of f is integrally indecom-

posable then f is absolutely irreducible over F.

Proof: Since f is not divisible by any xi, it has no factor having only one

term. Let f be reducible over some algebraic extension of F. This means that

we have f = gh where both g and h have at least two nonzero terms. Then

the Newton polytopes of g and h have at least two points. By Lemma 1.0.2,

we have Pf = Pg + Ph, which is a contradiction. 2

When Pf is integrally decomposable, depending on the given field, f may

be reducible or irreducible. For example, f = x9 + y9 + z9 has Newton

polytope Pf = conv((9, 0, 0)(0, 9, 0)(0, 0, 9)) = conv((6, 0, 0)(0, 6, 0)(0, 0, 6)) +

conv((3, 0, 0)(0, 3, 0)(0, 0, 3)). But, while f = x9 + y9 + z9 = (x + y + z)9 over

F3, it is irreducible over F2,F5,F7,F11, where Fm represents the finite field

with m elements. Also, the polynomial g = x6 + y6 + 1 has the decomposable

Newton polytope Pg = conv((0, 0)(6, 0)(0, 6)) = conv((0, 0), (3, 0), (0, 3)) +

3



conv((0, 0), (3, 0), (0, 3)) whereas g = (x3 + y3 + 1)2 over F2, g = (x2 + y2 + 1)3

over F3 and g is irreducible over F5, F7, F11, F13, F41, F103.

Our aim in this thesis is mainly to find integrally indecomposable integral

polytopes in Rn and then, being associated to these polytopes, to determine

infinite families of absolutely irreducible polynomials over any field F.

In Chapter 3, we study integral indecomposability of polygons on the real

Euclidean space R2. We find new infinite families of absolutely irreducible

bivariate polynomials over F [x, y] for an arbitrary field F. We also find, in

particular, a necessary and sufficient condition for integral indecomposability

of arbitrary quadrangles.

In Chapter 4, we study integral indecomposability of polytopes. Using re-

sults on homothetic indecomposability, we find new infinite classes of integrally

indecomposable polytopes in Rn. More importantly, we also modify some in-

teresting methods for constructing homothetically indecomposable polytopes

so that we find new methods for constructing integrally indecomposable poly-

topes. Therefore, we find further new infinite classes of integrally indecompos-

able polytopes in Rn. We also give different explanations of some of the main

results in [G1] and [G2]. Throughout the thesis, we provide many examples

illustrating our results.

In Chapter 5, we work on a conjecture of McGuire and Wilson given in

[MW]. We provide solutions to some special cases of this conjecture over large

characteristics.

Finally, in Chapter 6, we introduce a way of determining the probabil-

ity of a polynomial to be irreducible by the polytope method in a family of

polynomials over arbitrary fields.

4



Notation: For any integral element v = (a1, ..., an) of Rn we shall write

gcd(v) to mean gcd(a1, ..., an), i.e. the greatest common divisor of all the

components of v. Similarly, for several vectors v1, ..., vk in Rn, by writing

gcd(v1, ..., vk) we mean the greatest common divisor of all the components

of the vectors v1, ..., vk. For any points v1, v2 ∈ Rn, [v1, v2] refers to line seg-

ment from v1 to v2, −−→v1v2 stands for the vector from v1 to v2 and ‖ v1v2 ‖ shows

the Euclidean length of the line segment [v1, v2]. Naturally, for example (v1, v2]

stands for all the points on the closed line segment [v1, v2] except for the point

v1. We note that gcd(v1, v2) = gcd(v1, v2 − sv1) for any integer s.

All mentioned regions in Rn in this thesis are assumed to be convex and

compact.

5



Chapter 2

PRELIMINARIES

In this chapter, after briefly recalling some important properties of convex

sets in Rn, we shall explain how integral polytopes decomposes in terms of their

faces. We need these possessions later to prove some significant characteristics

of homothetically or integrally indecomposable polytopes.

2.1 SOME PROPERTIES OF CONVEX SETS

Let Rn denote the n-dimensional Euclidean space. The elements x =

(x1, ..., xn) of Rn are called vectors or points. We shall write

‖x‖ = (x2
1 + ...+ x2

n)1/2

for the Euclidean norm or length of a vector x.

In Rn, a vector equation of a line through the points a and b is given by

x = a+ t(b− a) = (1− t)a+ tb, −∞ < t <∞.

The closed directed line segment [a, b] with direction from initial point a to

terminal point b corresponds to values of t ∈ [0, 1].

6



Now, we can give the following formal definition.

Definition 2.1.1 Let x and y be arbitrary points in Rn. The closed line seg-

ment from x to y is denoted by [x, y] and is defined by

[x, y] = {a ∈ Rn : a = (1− λ)x+ λy, 0 ≤ λ ≤ 1},

or equivalently,

[x, y] = {a ∈ Rn : a = αx+ βy, α ≥ 0, β ≥ 0, α + β = 1}.

The open line segment from x to y is denoted by (x, y) and is defined by

(x, y) = {a ∈ Rn : a = (1− λ)x+ λy, 0 < λ < 1},

or equivalently,

(x, y) = {a ∈ Rn : a = αx+ βy, α > 0, β > 0, α + β = 1}.

The half-open line segment [x, y), including x but not y, is obtained by

restricting λ to the half-open interval 0 ≤ λ < 1, or equivalently by restricting

α and β to satisfy α > 0, β ≥ 0, α + β = 1. Similarly, the half-open line

segment (x, y], which includes x but not y, is obtained for the values of λ

on the half-open interval 0 < λ ≤ 1, or equivalently for the values of α, β

satisfying α ≥ 0, β > 0, α + β = 1.

A set S ⊆ Rn is said to be convex, if the line segment [x, y] from x to y is

contained in S for all x, y ∈ S. For example, a point, a line, an ellipse together

with its interior points in R2, a sphere or an ellipsoid in R3 are convex regions.

The empty set ∅ and the whole space Rn are also convex.

Proposition 2.1.2 Let {Ci}i∈I be an arbitrary collection of convex sets in Rn.

Then, the set
⋂
i∈I Ci is convex.

7



Proof: Let x, y ∈ ⋂i∈I Ci. Then, the line segment [x, y] from x to y is con-

tained in all sets Ci, i ∈ I since they are convex. So, [x, y] is also contained in
⋂
i∈I Ci. 2

For any set S ⊆ Rn, the smallest convex set containing S, denoted by

conv(S) and called the convex hull of S, is the intersection of all convex sets

that contain S, that is

conv(S) =
⋂

S⊆Ki,Ki convex
Ki.

When S = {a1, ..., ak} is finite, we denote conv(S) by conv(a1, ..., ak) and call

it the convex hull of a1, ..., ak. Since the empty set is convex, conv(∅) = ∅.

x

y

x

y

x y

Convex Region Convex Region Nonconvex Region

T

S

L
E

A

B

Conv(T S E
i s a convex 6-gon

U U UL)

Figure 0.1

Let x, x1, ..., xk ∈ Rn. We say that x is a convex combination of x1, ..., xk

if there exist real numbers λ1, ..., λk such that

x = λ1x1 + ...+ λkxk, λ1 + ...+ λk = 1, λ1 ≥ 0, ..., λk ≥ 0.

As we see in Theorem 2.1.3, for any set S ⊆ Rn, conv(S) is equal to the

set of all convex combinations of elements of S.

Theorem 2.1.3 Let S be a subset of Rn. Then,

(1)

conv(S) =

{
k∑
i=1

λixi : {x1, ..., xk} ⊆ S, λi ≥ 0,
k∑
i=1

λi = 1

}
.

8



(2) S is convex if and only if S = conv(S).

(3) if S = {a1, ..., am} ⊆ Rn is finite,

conv(S) =

{
λ1x1 + ...+ λmxm : λi ≥ 0,

m∑
i=1

λi = 1

}
.

Proof: (1) Let us call the right-hand side of this equation as R. Firstly, we

shall prove that R is convex. Let x =
∑k

i=1 λixi, y =
∑m

i=1 µiyi ∈ R where

x1, ..., xk, y1, ..., ym ∈ S and λ1, ..., λk, µ1, ..., µm ≥ 0 are real numbers with

λ1 + ... + λk = µ1 + ... + µm = 1. Then, for any real number 0 ≤ λ ≤ 1, we

have

(1− λ)x+ λy = (1− λ)
k∑
i=1

λixi + λ

m∑
i=1

µiyi ∈ R

since

(1− λ)λ1, ..., (1− λ)λk, λµ1, ..., λµm ≥ 0

and

(1− λ)(λ1 + ...+ λk) + λ(µ1 + ...µm) = (1− λ) + λ = 1.

Now, by the definition of conv(S), it is enough to prove the inclusion “⊇”

of the given equality. Let K be a convex set such that S ⊆ K. We shall show

that R ⊆ K. To see this, we shall use induction on k. For k = 1, 1x1 ∈ S ⊆ K

for all x1 ∈ S. Let us assume the result for k − 1. Then, for any finite set

{x1, ..., xk} ⊆ S and parameters λ1, ..., λk ≥ 0 with λ1 + ...+ λk = 1, the point

λ1x1 + ...+ λkxk lies in K if λk = 1. And, for λk < 1,

λ1x1 + ...+ λkxk = (1− λk)
(

λ1

1− λkx1 + ...+
λk−1

1− λkxk−1

)
+ λkxk ∈ K

since K is convex and the point λ1

1−λkx1 + ...+ λk−1

1−λkxk−1 ∈ K by the induction

hypothesis while λ1

1−λk + ...+ λk−1

1−λk = 1−λk
1−λk = 1 as λ1 + ...+ λk = 1.

(2) and (3) are obvious consequences of (1). 2

The sum of two convex sets in Rn is defined as follows.

9



Definition 2.1.4 For any two sets A,B in Rn, the vector sum

A+B = {a+ b : a ∈ A, b ∈ B}

is called Minkowski sum of A and B.

We shall shortly recall some important properties of the Minkowski sum,

mainly following the book [E].

0

K L

0

K L

0

K L

0

K

L

0 K

L

0
K

L

0
K

LL

K

0 K

M

K+L+M

K+L

K

L

M

K+L+M

K

L

L+K

0

K+LK+L

Figure 0.2

The sum of two triangles K,L in a plane is either a triangle, a quadrangle,

a pentagon or a hexagon; and Minkowski addition may increase the dimension.

Every centrally symmetric 2-dimensional 2n-gon can be written as a sum of n

line segments. A regular hexagon in the plane can be written as the sum of

two triangles and also as the sum of three line segments, see Figure 0.2. Thus,

a representation of a convex compact set as a finite sum of indecomposable

convex compact sets, if possible, is not unique.

Lemma 2.1.5 (a) If τ denotes a translation then for any sets K,L in Rn,

τ(K) + L = τ(K + L) = K + τ(L).

10



(b) If K,L are both convex, closed convex or compact convex sets in Rn then

K + L is convex, closed convex, or a compact convex set respectively.

Proof: (a) If τ is given by a translation vector t then the assertion follows

from

(t+K) + L = t+ (K + L) = K + (t+ L).

(b) Let a, a′ ∈ K and b, b′ ∈ L. Then for 0 ≤ λ ≤ 1,

λ(a+ b) + (1− λ)(a′ + b′) = λa+ (1− λ)a′ + λb+ (1− λ)b′ ∈ K + L,

if K and L are convex. While K and L are closed and bounded, so is K + L

since addition is a continuous operation and maps pairs of bounded sets onto

a bounded set. 2

Remark 2.1.6 (1) We can rewrite the definition of Minkowski sum in the

form

A+B =
⋃

b∈B
(A+ b).

If K ∩ L 6= ∅ then it can easily be shown that

K + L = K ∪ (
⋃

p∈∂K
(p+ L)),

where ∂K is the boundary of K.

(2) If λ ∈ R and K ⊂ Rn is a set then the set λK = {λx : x ∈ K} is

called a multiple of K. If λ1, ..., λr ∈ R and K1, ..., Kr are sets in Rn, we call

λ1K1 + ...+ λrKr a linear combination of K1, ..., Kr. Here, λ may be negative.

However, (−1)K = −K is not the negative of K with respect to Minkowski

addition. For the fourth case in Figure 0.2, L = −K, but K +L = K + (−K)

is a hexagon. For m ∈ Z+, and convex set K in Rn, mK = K + ...+K︸ ︷︷ ︸
m times

.

11



(3) If K1, ...Kr are convex sets in Rn and λ1, ..., λr any real numbers, then

λ1K1 + ...+ λrKr is convex. This can be proved by considering the convexity

and using induction on r.

2.2 SUPPORTING HYPERPLANES AND FACES OF POLY-

TOPES

Let C ⊂ Rn be a compact convex set. Then for any nonzero vector v ∈ Rn,
we define the real number supx∈Cx ·v as the maximum of the set {x ·v : x ∈ C}
where

x · v = x1v1 + ...+ xnvn

is the dot product of the vectors x = (x1, ..., xn), v = (v1, ..., vn).

Definition 2.2.1 (1) Let K ⊂ Rn be a nonempty convex compact set. The

map

hK : Rn → R, u→ supx∈Kx · u

is called the support function of K.

(2) For α ∈ R, β ∈ Rn the set

H = {x ∈ Rn : β · x = α}

is a hyperplane. In a natural manner, the closed halfspaces formed by H are

defined as

H− = {x ∈ Rn : β · x ≤ α}, H+ = {x ∈ Rn : β · x ≥ α}.

See Figure 0.3, (a).

(3) A hyperplane HK is called a supporting hyperplane of a closed convex set

K ⊂ Rn if K ⊂ H+
K or K ⊂ H−K and K ∩ HK 6= ∅, i.e. HK contains a

12



boundary point of K. A supporting hyperplane HK to K is called nontrivial

if K is not contained in HK . We call H−K or H+
K a supporting halfspace of K,

possibly K ⊂ HK .

Example 2.2.2 Let n = 1, K = [−3, 2]. Then we see that

hK(u) =





2u if u ≥ 0,

−3u if u ≤ 0.

See Figure 0.3, (b).

Lemma 2.2.3 (a) If K + a is a translate of the compact convex set K ⊂ Rn

then,

hK+a = hK(u) + a · u for all u ∈ Rn.

(b) For every fixed nonzero vector u ∈ Rn, the hyperplane

HK(u) = {x ∈ Rn : x · u = hK(u)} (?)

is a supporting hyperplane of K. See Figure 0.3, (c).

(c) Every supporting hyperplane of K has a representation of the form (?).

Proof: (a) We have hK+a(u) = supx∈K+a(x+ a) · u = supx∈K(x · u+ a · u) =

supx∈Kx · u+ a · u = hK(u) + a · u, ∀u ∈ Rn.
(b) We see that continuity of the dot product function f(x) = x ·u implies the

continuity of the support function hK(u) = supx∈Kx · u. Since K is compact,

we must have some x0 ∈ K such that

hK(u) = x0 · u.

Therefore, for any a ∈ K, we have a ·u ≤ x0 ·u, which means that K ⊂ H−K(u)

i.e. HK(u) is a supporting hyperplane of K.
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(c) Let HK = {x ∈ Rn : x · u = x0 · u} be a supporting hyperplane of K at x0.

We can choose a nonzero vector u ∈ Rn satisfying K ⊂ H−K . Then, we have

hK(u) = supx∈Kx ·u = x0 ·u, which proves this case. See Figure 0.3, (c). 2

u

K

H
+

-
H

K

u0

0
u

K H
K

(u)

x
0

H

-3 2

y=h(u)
K

=[-3,2]
X

Y

Figure 0.3

(a) (b) (c)

Let P be a polytope. The intersection of P with a supporting hyperplane

HP is called a face of P . A vertex is a face of dimension zero. An edge of P is

a face of dimension 1, which is a line segment. A face F of P is called a facet

if dim (F)= dim (P) −1.

The following theorem explains the most important properties about the

decomposition of polytopes. As we see, Minkowski sum keeps the additivity

of the support function.

Theorem 2.2.4 (a) If hK , hL are the support functions of the convex sets

K,L in Rn respectively, then, hK + hL is the support function of K + L, i.e.

hK+L = hK + hL.

(b) HK+L = HK +HL.

(c) If F is a face of K + L, then there exist unique faces FK , FL of K,L

respectively such that

F = FK + FL.
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In particular, each vertex of K +L is the sum of vertices of K,L respectively.

(d) If K,L are polytopes then so is K + L.

(e) If A is a polytope in Rn with A = B + C then so are B and C (which are

called summands of A).

Proof: (a) hK+L(u) = supx∈K,y∈L(x + y) · u = supx∈Kx · u + supy∈Ly · u =

hK(u) + hL(u) for any u ∈ Rn \ {0}.
(b) This is an immediate consequence of (a), or Lemma 2.2.3.

(c) For any compact convex set C and a vector u pointing away from C,

according to Lemma 2.2.3, let HC(u) be a supporting hyperplane of C. Then

F = (K + L) ∩ HK+L(u). We set FK = K ∩ HK(u), FL = L ∩ HL(u). Then

HK(u), HL(u), HK+L(u) are parallel hyperplanes, and HK+L(u) = HK(u) +

HL(u). Up to a translation of L, we may assume HK(u) = HL(u). Then, we

obtain

F = (K + L) ∩HK+L(u) = (K + L) ∩ (HK(u) +HL(u))

= (K ∩HK(u)) + (L ∩HL(u)) = FK + FL.

Uniqueness of FK and FL follows from (a).

(d) This case is a consequence of (c) since the sum of two vertices is a vertex

and each vertex of K + L is obtained in this way.

(e) Every summand of a polytope is also a polytope. Because, every polytope

is formed by the fact that its supporting function is piecewise linear. 2

An important consequence of Theorem 2.2.4,(a) is that if we have A+C =

B + C for compact convex sets A,B,C ⊂ Rn then A = B. Therefore, (Rn,+)

is a commutative semigroup with cancellation law.

We also note that converse of Theorem 2.2.4,(c) is not true. That is, if

F1 and F2 are faces of K and L respectively then F1 + F2 is not necessarily a

face of K + L. To see this, consider a quadrangle which can be written as a
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sum of two triangles. In Figure 0.4, the quadrangle Q = conv(A,B,C,D) is

equal to sum of two triangles. But, as we see in this figure the parallelogram

P = conv(E,F,C,D), which is not a face of Q, is equal to sum of two line

segments [E,D] and [E,F ].

A B

C

D

E

F

Q=conv(A,B,C,D)=conv(A,E,D)+conv(E,B,F)

P
P=conv(E,F,C,D)=conv(E,D)+conv(E,F)

Figure 0.4

A polytope of dimension two is called a polygon. A polygon has the only

proper faces as its vertices and edges. We can give the following result, which

is given in [G2], of the above theorem for polygons.

Corollary 2.2.5 Let A,B and C be convex polygons in Rn with C = A + B.

Then every edge of C can be decomposed uniquely as the sum of an edge of A

and an edge of B, possibly one of them may be a point. Conversely, any edge

of A or B is a summand of precisely one edge of C.
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Chapter 3

INTEGRALLY INDECOMPOSABLE

POLYGONS

In this chapter, we shall determine some integrally indecomposable poly-

gons. Then we shall give examples of absolutely irreducible polynomials asso-

ciated to these polygons over arbitrary fields.

Recall that a polytope of dimension two is called a polygon.

For a convex polygon P in the Euclidean plane R2, we may construct a fi-

nite sequence of vectors associated with its edges as follows. Let v0, v1, ..., vn−1,

vn = v0 be the vertices of the polygon ordered in counterclockwise direction.

We may represent the edges of P by the vectors Ei = vi − vi−1 = (ai, bi) for

1 ≤ i ≤ n, where ai, bi ∈ Z and the indices are taken modulo n. We call each

Ei an edge vector. A vector v = (x, y) ∈ Z2 is called a primitive vector if

gcd(x, y) = 1. Letting ci = gcd(ai, bi) and defining ei = (ai/ci, bi/ci), we have

Ei = ciei where ei is a primitive vector for 1 ≤ i ≤ n. Each edge Ei contains

exactly ci + 1 integral points including its end points. The sequence of vectors
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{ciei}1≤i≤n, called the edge sequence or polygonal sequence, uniquely indicates

the polygon up to translation determined by v0. Since we can insert an arbi-

trary number of zero vectors to any edge sequence, we may assume that the

edge sequence of a summand of a polygon P has the same number of terms as

the edge sequence of P. While the boundary of a polygon is a closed path, we

have
∑n

i=1 ciei = (0, 0).

Lemma 3.0.6 Let P be an integral polygon having the edge sequence {ciei}1≤i≤n

where ei ∈ Z2 are primitive vectors. Then, an integral polytope Q is a sum-

mand of P if and only if it has the edge sequence of the form {diei}1≤i≤n,

0 ≤ di ≤ ci, where
∑n

i=1 diei = (0, 0).

Proof: See, e.g., the proof of [G2, Lemma 13] or [L, Lemma 2.11]. 2

Remark 3.0.7 According to Lemma 3.0.6, any integral polygon having two

parallel edges, say ei = −ej, is integrally decomposable since ei + ej = 0.

Therefore, from now on we assume that the mentioned polygons in Section 3

are integral and they have no parallel edges. And, we call an integral summand

of a polygon as trivial summand if it is a line segment or an integral point.

By Lemma 3.0.6, we also observe that any integral n-gon, n ≥ 3, having

no parallel edges may only have integral summands having i edges with i ∈
{3, 4, ..., n− 1, n}. For example, any integral pentagon without parallel edges

may have only triangular, quadrangular or pentagonal integral summands.

Moreover, we observe that any edge of a summand S of a polygon P may

occur only a summand of a unique edge of P.

In this chapter, we get some new integral indecomposability criteria for the

polygons on the 2-dimensional real Euclidean space R2. Our results on integral
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indecomposability about n-gons, for n ≥ 4, and especially for quadrangles are

important. However, for the sake of completeness, we begin from line segments.

We begin with the simplest case on the plane. We shall give direct proofs

to determine the integrally indecomposable line segments and triangles.

3.1 LINE SEGMENTS

For any two distinct points a1 and a2 in Rn, the line segment [a1, a2] from

a1 to a2 is the set of all points of the form

a = a1 + λ(a2 − a1), 0 ≤ λ ≤ 1.

We should note that for distinct points v1, v2, a1, a2, b1, b2 in Rn such that

v1 = a1 + b1 and v2 = a2 + b2 we have [v1, v2] ⊆ [a1, a2] + [b1, b2]. And, if

[v1, v2] = [a1, a2] + [b1, b2], then three line segments [v1, v2], [a1, a2] and [b1, b2]

are parallel since

[v1, v2] =
⋃

b∈[b1,b2]

([a1, a2] + b) =
⋃

a∈[a1,a2]

(a+ [b1, b2]).

One can find the number of integral points on any line segment by using

the following proposition. Note that [G1, Lemma 4.1] has a similar statement,

and here we give a different proof.

Proposition 3.1.1 Let a1 and a2 be two distinct integral points in Rn. Then

the number of integral points on the line segment [a1, a2], together with a1 and

a2, is equal to gcd(a2 − a1) + 1. Moreover, if a3 is any integral point on the

open line segment (a1, a2), such that a3 = αa1 + βa2 with α > 0, β > 0 and

α + β = 1 then
gcd(a3 − a1)

gcd(a3 − a2)
=
‖ a3 − a1 ‖
‖ a3 − a2 ‖ =

β

α
.
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Proof: Let a3 be a point on the open line segment (a1, a2). Then a3 = αa1+βa2

where α > 0, β > 0 and α + β = 1. So, we have

a3 − a1 = (1− β)a1 + βa2 − a1 = β(a2 − a1)

and

a3 − a2 = αa1 + (1− α)a2 − a2 = α(a1 − a2)

with 0 < α, β < 1. Consequently, we have

‖ a3 − a1 ‖
‖ a3 − a2 ‖ =

β

α
.

As we see, the last equality is true for any point a3 ∈ (a1, a2), which may not

be integral.

From the equality a3 − a1 = β(a2 − a1), we see that a3 is integral if and

only if β(a2 − a1) is integral. Let a3 be integral. Since the vector a2 − a1 has

integer components and a3 6= a1, a2, β must be a rational number of the form

β = m/n for some 0 < m < n with gcd(m,n) = 1.

We see that β(a2 − a1) is integral if and only if n divides d = gcd(a2 − a1).

Therefore, to have a3 integral, we must have

β = m/d with 0 < m < d.

As it is seen, we have d−1 choices for m. Consequently, the number of integral

points on [a1, a2] is (d− 1) + 2 = d+ 1.

We have

a3 − a1 = β(a2 − a1) =
m

d
dv′

and

a3 − a2 = α(a1 − a2) =
d−m
d

(−dv′)
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for some primitive vector v′, i.e. gcd of all the components of v′ is 1. Since v′

is primitive, we must have gcd(a3 − a1) = m and gcd(a3 − a2) = d−m. As a

result, we have
gcd(a3 − a1)

gcd(a3 − a2)
=

m

d−m =
β

α
,

which completes the proof. 2

Corollary 3.1.2 A line segment from an integral point a1 to another integral

point a2 in Rn is integrally indecomposable if and only if gcd(a2 − a1) = 1.

Proof: If gcd(a2 − a1) = d > 1 then the line segment [a1, a2] has an integral

point c 6= a1, a2 on it. So, we have

[a1, a2] = [a1, c] + [0, a2 − c].

Conversely, suppose that gcd(a2 − a1) = 1, but [a1, a2] = [b1, b2] + [c1, c2] for

some integral line segments on the plane with ‖ b1b2 ‖, ‖ c1c2 ‖> 0. From the re-

mark in the first paragraph of this subsection, the line segments [a1, a2], [b1, b2]

and [c1, c2] are parallel. This is a contradiction since the line segment [a1, a2]

is primitive. 2

Example 3.1.3 [O2, Theorem IX] A two-term polynomial

axi11 · · ·xikk + bx
ik+1

k+1 · · · xinn ∈ F [x1, ..., xn], a, b ∈ F \ {0},

is absolutely irreducible over F if and only if gcd(i1, ..., in) = 1.

For example, f = xn + ym is absolutely irreducible over any field F if and

only if gcd(n,m) = 1. Similarly, the polynomial g = xiyj + zk is absolutely

irreducible over F if and only if gcd(i, j, k) = 1. Of course, these polynomials

remain absolutely irreducible when we add any new terms whose exponent

vectors lie in the Newton polytopes of them.
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3.2 TRIANGLES

In order to decompose an integral triangle conv(v1, v2, v3) in Rn, we must

have gcd(v1 − v2, v1 − v3) = d > 1, which implies that we also have

gcd(v1 − v2, v1 − v3) = gcd(v2 − v1, v2 − v3) = gcd(v3 − v1, v3 − v2) = d.

For example, we have

conv((1, 2), (7, 4), (5, 8)) = conv((1, 2), (4, 3)(3, 5)) + conv((0, 0)(3, 1)(2, 3)).

Let T = conv(v1, v2, v3) be an integral triangle in Rn. We can form edge

vectors of T as E1 = c1e1 = v2−v1, E2 = c2e2 = v3−v2 and E3 = c3e3 = v1−v3

where c1 = gcd(v2−v1), c2 = gcd(v3−v2), c3 = gcd(v1−v3) are positive integers

and e1, e2, e3 are primitive edge vectors of T . Since T has no parallel edges,

by Remark 3.0.7, all convex integral summands of T must be triangular and

any convex integral summand S of T must have edges of the form E ′1 = d1e1,

E ′2 = d2e2, E
′
3 = d3e3) where di are integers with 0 ≤ di ≤ ci for i = 1, 2, 3 and

E ′1 +E ′2 +E ′3 = 0. Therefore, any integral summand S of T must be a triangle

having edges as pieces of edges of T and similar to itself. Hence, we have

‖ E ′1 ‖
‖ E1 ‖ =

‖ E ′2 ‖
‖ E2 ‖ =

‖ E ′3 ‖
‖ E3 ‖ =

d1

c1

=
d2

c2

=
d3

c3

= k =
m

n

where 0 ≤ k ≤ 1 is a rational number with gcd(m,n) = 1 and 0 ≤ m ≤ n.

Since di for i = 1, 2, 3 are integers, we see that n must divide cj for j = 1, 2, 3.

Assume that gcd(v1−v2, v1−v3) = 1. Since we have gcd(v1−v2, v1−v3) =

gcd(gcd(v1 − v2), gcd(v1 − v3)) = gcd(c1, c3) = 1, we see that n = 1. So, m = 0

or m = 1. Consequently, S = {0} or S = T.

Assume that gcd(v1−v2, v1−v3) = gcd(c1, c3) = d > 1. Then, the polytope

T ′ = conv(0, v2 − v1, v3 − v1) is integral. Hence, T = v1 + d · (1
d
T ′).
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As a result, we have proved the following proposition.

Proposition 3.2.1 A triangle conv(v1, v2, v3) in Rn is integrally indecompos-

able if and only if

gcd(v1 − v2, v1 − v3) = 1.

By Proposition 3.2.1, we see that a triangle in Rn with integral vertices

v1, v2, v3 is integrally indecomposable if

gcd(vi − vj) = 1 for some i, j ∈ {1, 2, 3}.
For example, the polynomial

f = a1x
13 + a2y

9 + a3x
2y + a4x

4y4 + a5x
5y3 + a6x

6y2 + a7x
3y4 +

∑
cijx

iyj,

with a1, ..., a7 ∈ F \{0} and (i, j) ∈ Pf = conv((13, 0)(0, 9)(2, 1)), is absolutely

irreducible over any field F since Pf is an integrally indecomposable triangle

as gcd(13, 9) = 1.

3.3 QUADRANGLES

In this subsection, we give a necessary and sufficient condition on the

integral decomposability of integral quadrangles.

By Remark 3.0.7, any integral quadrangle Q having two parallel edges is

integrally decomposable. First, we observe that any quadrangle Q without

parallel edges must lie inside exactly two kinds of triangles having precisely

one common edge with Q. For a quadrangle Q lying in a triangle T as in

Figure 1, we call the common edges of Q and T a base edge of Q. So, any

quadrangle Q has exactly two base edges. We also observe that base edges of

Q are adjacent. Therefore, in this subsection we refer to an arbitrary quad-

rangle Q = conv(A,B,C,D) lying inside the triangles T1 = conv(A,B, v1) and
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T2 = conv(B,C, v2) for some points v1, v2 ∈ R2. See Figure 1.

A B

C

D

V

V

A B

C

D

1

2

Figure 1

We fix how to indicate the corners of a quadrangle Q. In the counter-

clockwise direction, if Q lies inside the triangles T1 = conv(A,B, v1) and

T2 = conv(B,C, v2) with [A,B] and [B,C] being the base edges of Q, then

we indicate the vertices of Q as Q = conv(A,B,C,D). Therefore, [A,B] is the

first and [B,C] is the second base edge of Q in the counterclockwise direction.

Moreover, without loss of generality we assume that our quadrangle is shaped

as in Figure 2, (i). See Figure 2 to observe how we indicate the vertices of an

arbitrary quadrangle with respect to its base edges.

A

BC

D

AB

C

D

A

B C

D

A

D

B

C

Figure 2

(i) (ii) (iii) (iv)
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A B

C

D

A B

C

D

E Ga

a

b

b 1

2

1

2

1

2

c

c

dd

Decomposition methods of integral quadrangles

Case 1 Case 2

Q QF

H

1 2

A B

C

D

e

e

f

f

1

2

1

2

Case  3

Q

Figure 3

First we form the parallelograms CDEF and AGHD on Q as shown in

Figure 3, Case 1 and Case 2 respectively. Note that the points E,F,G and H

are not necessarily integral. By Lemma 3.0.6, any nontrivial summand of Q

may only be a triangle or a quadrangle. We list all possible conditions which

can give a nontrivial integral triangular or quadrangular summand of Q :

(C1) There exist integral points a1 ∈ (B,E] and a2 ∈ (B,F ] such that [a1, a2]

is parallel to [D,C]. See Figure 3, Case 1.

(C2) There exist integral points b1 ∈ (A,E] and b2 ∈ (A,D] such that [b1, b2]

is parallel to [B,C]. See Figure 3, Case 1.

(C3) There exist integral points c1 ∈ (B,G] and c2 ∈ (B,H] such that [c1, c2]

is parallel to [A,D]. See Figure 3, Case 2.

(C4) There exist integral points d1 ∈ (C,D] and d2 ∈ (C,H] such that [d1, d2]

is parallel to [A,B]. See Figure 3, Case 2.

(C5) There exist integral points e1 ∈ (A,B), e2 ∈ (B,C), f1 ∈ (D,A) and

f2 ∈ (C,D) such that [e1, e2] is parallel to [f1, f2] and ‖e1e2‖ = ‖f1f2‖.
See Figure 3, Case 3.
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The conditions (C1), (C2), (C3) and (C4) above corresponds to possible non-

trivial integral triangular summands and the condition (C5) corresponds to

possible nontrivial integral quadrangular summand of Q. We observe that

(C1)⇐⇒ (C4) and (C2)⇐⇒ (C3).

Now, we give our theorem on quadrangles.

Theorem 3.3.1 The quadrangle Q = conv(A,B,C,D) in Figure 3 is inte-

grally indecomposable if and only if the conditions (C1), (C2) and (C5) do not

hold.

Proof: Let E1 = B − A, E2 = C − B, E3 = D − C and E4 = A − D be

the edge vectors of Q. Assume first that a nontrivial integral summand of Q

is triangular. Then either condition (C1) or condition (C2) holds. Indeed by

Lemma 3.0.6, any edge of a nontrivial integral triangular summand of Q must

be a summand of only one of the edges E1, E2, E3 or E4. From Figure 3, it is

clear that the edges of a triangular summand can only be formed by the edge

groups

(a) {E1, E2, E3},

(b) {E1, E2, E4},

(c) {E2, E3, E4},

(d) {E3, E4, E1}.

The cases (a) and (b) are covered by conditions (C1) and (C2) respectively. It

is also clear from Figure 3 that the cases (c) and (d) cannot give a triangular

summand because of the directions of the corresponding edges of Q.
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Next we assume that a nontrivial integral summand S of Q is quadrangular

such that Q = S + T, where T is a nontrivial quadrangular summand. Then

the condition (C5) holds. More precisely, by Lemma 3.0.6, a nontrivial integral

quadrangular summand S must be formed by the edges which are summand

of the edges of Q. Let us assume that S has the edge vectors F1, F2, F3 and F4

which are nontrivial summands of the edges E1, E2, E3 and E4 respectively.

Let e1 = B − F1, e2 = B + F2, f1 = D + F4 and f2 = D − F3 be the integral

points on the edges of Q. Then

−−→e1e2 =
−−→
e1B +

−−→
Be2 = (B − (B − F1)) + ((B + F2)−B) = F1 + F2,

and

−−→
f1f2 =

−−→
f1D +

−−→
Df2 = (D − (D + F4)) + ((D − F3)−D) = −(F3 + F4).

Since S has a closed boundary, we have F1 + F2 + F3 + F4 = 0 and hence

−−→e1e2 =
−−→
f1f2. In particular, [e1, e2] is parallel to [f1, f2] and ‖e1e2‖ = ‖f1f2‖.

Conversely, we show in Figure 4 how we can decompose Q if either of the

conditions (C1), (C2) or (C5) is satisfied. 2

A B

C

D

a

a

1

2

A B

C

D

b

b1

2

Q

A B

C

D

e

e

f

f

1

2

1

2

Q

Decomposition methods for integral quadrangles

(1) (2) (5)

QQ

Figure 4

27



By [G1, Corollary 4.12], it is implied that the integral quadrangle Q is

integrally indecomposable if gcd(A − B) = 1 or gcd(B − C) = 1. This is just

a very special case of Theorem 3.3.1.

Note that, in order to apply Theorem 3.3.1 for decomposing Q whenever

it is possible, obeying the rules of decomposition of polygons and considering

the lengths of the edges [C,D] and [A,D], it is not necessary to find the points

E,F,G and H on Q. That is, for example one can easily find the points a1

and a2 in Figure 3 using the slope of the line segment [C,D] and the fact that

a1 ∈ [A,B], a2 ∈ [B,C]. Alternatively, we can first constitute the primitive

edge vectors v1 = (p1, p2), v2 = (q1, q2) for the directed line segments [B,A]

and [B,C] respectively. Then we can find the smallest positive integers m,n

such that ((u1, u2) + mv1)− ((u1, u2) + nv2) = mv1 − nv2 has the same slope

as the edge [C,D], where (u1, u2) is the position vector for the vertex B. Here,

of course, we must take care of the length of [a1, a2], i.e. ‖a1a2‖ must be less

than or equal to ‖CD‖.
For instance, consider the quadrangle Q = conv(A,B,C,D) where A =

(0, 3), B = (6, 0), C = (14, 4), D = (6, 4). By using the same terminology

above, we have v1 = (−2, 1) and v2 = (2, 1). And, the vector m(−2, 1)−n(2, 1)

has slope zero if m = n. So, taking m = n = 1 we get the points a1 =

(6, 0) + 1 · (−2, 1) = (4, 1) and a2 = (6, 0) + 1 · (2, 1) = (8, 1) on the line

segments (B,A) and (B,C) respectively. In this case, we have

Q = conv((0, 2), (4, 0), (6, 3), (10, 3)) + conv((0, 1), (2, 0), (4, 1)).

If we take m = n = 2, then we can decompose Q as

Q = conv((0, 1), (2, 0), (6, 2)) + conv((0, 2), (4, 0), (8, 2)).

As a consequence of Theorem 3.3.1, using the same terminology of the
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theorem, we obtain the following result.

Corollary 3.3.2 The quadrangle Q = conv(A,B,C,D) is integrally indecom-

posable if one of the following cases holds:

(a) E3 is primitive and the line segment (A,E] does not contain an integral

point.

(b) E3 is primitive, the point E is not integral and the line segment (D,A)

does not contain an integral point.

(c) E4 is primitive and the line segment [E,B) does not contain an integral

point.

(d) E4 is primitive and the line segment (B,F ] does not contain an integral

point.

(e) E3 and E4 are primitive and the point E (or F ) is not integral.

(f) E1 or E2 is primitive.

Proof: Consider case (a). As E3 is primitive, if S is a nontrivial integral

quadrangular summand of Q with Q = S + T then T must be nontrivial

integral triangular summand of Q. Hence, either condition (C1) or condition

(C2) holds. However, while E3 is primitive and E is not an integral point,

condition (C1) does not hold. Moreover, as (A,E] does not contain an integral

point, condition (C2) does not hold either. This completes the proof of case

(a). We prove the other cases similarly. 2

Remark 3.3.3 Theorem 3.3.1 gives a necessary and sufficient condition for

integral indecomposability of quadrangles. Note that only the case (f) in Corol-

lary 3.3.2 is covered by [G1, Corollary 4.12] as a result about quadrangles.
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Now, we consider some special cases of Theorem 3.3.1 and find new in-

tegrally indecomposable quadrangles. Note that the corresponding absolutely

irreducible polynomials of the given quadrangles in Proposition 3.3.4, Propo-

sition 3.3.5 and Proposition 3.3.6 were, in general, not covered in [G1, G2].

If the indecomposable regions that we shall describe have one primitive

edge, ej say, lie in a triangle having one edge as ej then of course they are

integrally indecomposable by [G1, Corollary 4.12]. But, the others give new

integrally indecomposable polygons on the real plane R2.

The following three propositions are computational consequences of Lemma

3.0.6. Hence, we do not give their proofs in detail. Note that in these proposi-

tions, the conditions for indecomposability of quadrangles in the corresponding

cases are reduced drastically compared to applying Lemma 3.0.6 directly.

Proposition 3.3.4 Let m,n, k be positive integers and Q an integral quad-

rangle having the edge sequence {me1, ne2, ke3, e4}. Then Q is integrally inde-

composable if and only if

c1e1 + c2e2 + c3e3 6= 0, 1 ≤ c1 ≤ m, 1 ≤ c2 ≤ n, 1 ≤ c3 ≤ k,

and

d1e1+d2e2+d3e3+e4 6= 0, 0 ≤ d1 ≤ m−1, 0 ≤ d2 ≤ n−1, 0 ≤ d3 ≤ k−1.

As an example of Proposition 3.3.4, any integral quadrangle Q with the

edge sequence {3e1, 2e2, 2e3, e4} is integrally indecomposable if and only if e1 +

e2 + e4 6= 0, e1 + e3 + e4 6= 0, e1 + e2 + 2e3 6= 0, e1 + 2e2 + e3 6= 0. Since Q is

convex, the last three conditions are already satisfied. Hence, Q is integrally

indecomposable if and only if e1 + e2 + e4 6= 0.
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For example, the quadrangle Q = conv((6, 0), (14, 4), (4, 20), (0, 3)) having

the edge sequence {3(2,−1), 4(2, 1), 2(−5, 8), (−4,−13)} is integrally indecom-

posable. Actually, Q is integrally indecomposable since it lies in a triangle

conv((0, 3), (4, 20), v) for some point in v ∈ R2. So, it is better to find an-

other example for which [G1, Corollary 4.12] does not work. We consider the

quadrangle

Q′ = conv((6, 0), (14, 4), (2, 6), (0, 3))

with the edge sequence {3(2,−1), 4(2, 1), 2(−6, 1), (−2,−3)}. Q′ is integrally

indecomposable since (2,−1) + (2, 1) + (−2,−3) 6= 0. Consequently, every

polynomial

f = a1x
6 + a2y

3 + a3x
14y4 + a4x

2y6 +
∑

cijx
iyj,

with (i, j) ∈ Q′ and ai 6= 0, is absolutely irreducible over any field F.

Proposition 3.3.5 Let m,n be positive integers and Q an integral quadrangle

having the edge sequence {me1, ne2, e3, e4}. Consider the integral pairs (i, j)

satisfying 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1 (if n divides m and d divides n,

omit the pairs (md/n, d) ). Then Q is integrally indecomposable if and only if

ie1 + je2 + e3 6= 0 with (i, j) as described.

For example, by Proposition 3.3.5, we easily see that a convex integral

quadrangle Q with the edge sequence {3e1, 2e2, e3, e4} is integrally indecom-

posable if and only if 2e1 + e2 + e3 6= 0, equivalently e1 + e2 + e4 6= 0. Also, a

convex integral quadrangle having the edge sequence {4e1, 2e2, e3, e4} is inte-

grally indecomposable if and only if 3e1 + e2 + e3 6= 0.

Proposition 3.3.6 Let m be a positive integer and Q an integral quadrangle

having the edge sequence {me1,me2, e3, e4}. Consider the integral pairs (i, j)
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satisfying 1 ≤ i, j ≤ m − 1 except for the pairs (i, i). Then, Q is integrally

indecomposable if and only if ie1 + je2 + e3 6= 0 with (i, j) as described.

Proof: Only if part is clear from Lemma 3.0.6.

Conversely, any integral summand of Q must be of the form c1e1 + c2e2 +

c3e3 + c4e4 = 0 where 3 ≤∑4
i=1 ci ≤ 2m+ 1, 0 ≤ c1, c2 ≤ 3 and 0 ≤ c3, c4 ≤ 1.

Since Q has no parallel edges, we have only two cases for the value of the pair

(c3, c4) as (1, 0) or (0, 1). So, we have two cases to examine:

(1) ie1 + je2 + e3 = 0 with 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m− 1, i 6= j,

(2) ie1 + je2 + e4 = 0 with 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m− 1, i 6= j.

By using the fact that me1 +me2 +e3 +e4 = 0, we observe that while counting

case (1), we also count the case (2). So, it is enough to study the case (1).

Consequently, we see that we are examining all possible summands of Q. We

can omit the cases with i = j. Because, if ie1 + ie2 + e3 = 0 then mie1 +

mie2 +me3 = i(me1 +me2) +me3 = i(−e3− e4) +me3 = (m− i)e3 +−ie4 = 0

which is a contradiction since Q has no parallel edges. As a result, if all possible

summands in case (1) are not zero then Q is integrally indecomposable. 2

As an application of Proposition 3.3.6, we easily get the result of Propo-

sition 3.3.5 for m = n = 3. Because, the quadrangle Q with edge sequence

{3e1, 3e2, e3, e4}

is integrally indecomposable if and only if

e1 + 2e2 + e3 6= 0 and 2e1 + e2 + e3 6= 0. As Q is convex, it is integrally

indecomposable if and only if 2e1 + e2 + e3 6= 0.
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As a second example of Proposition 3.3.6, an integral quadrangle Q with

edge sequence

{4e1, 4e2, e3, e4}

is integrally indecomposable if and only if

e1 + 2e2 + e3 6= 0, e1 + 3e2 + e3 6= 0, 2e1 + e2 + e3 6= 0, 2e1 + 3e2 + e3 6= 0,

3e1 + e2 + e3 6= 0, 3e1 + 2e2 + e3 6= 0. By eliminating the cases already satisfied

due to convexity of Q, we see that Q is integrally indecomposable if and only

if 2e1 + e2 + e3 6= 0, 3e1 + e2 + e3 6= 0, 3e1 + 2e2 + e3 6= 0.

For example, the quadrangle Q = conv((0, 4), (8, 0), (12, 8), (3, 9)) has the

edge sequence {4(2,−1), 4(1, 2), (−9, 1), (−3,−5)} which satisfies three condi-

tions at the end of the preceding paragraph. Hence, it is integrally indecom-

posable.

Now, we give some further numerical examples of Proposition 3.3.4, Propo-

sition 3.3.5 and Proposition 3.3.6.

Example 3.3.7

(1) Any integral quadrangle Q having the edge sequence

{2e1, 2e2, e3, e4}

is integrally indecomposable.

Let us consider the quadrangle

Q = conv((0, 8), (10, 0), (8, 18), (3, 15)).

Since Q has the edge sequence {2(5,−4), 2(−1, 9), (−5,−3), (−3,−7)},
it is integrally indecomposable.

For example, the polynomial

f = a1x
10 + a2y

8 + a3x
8y18 + a4x

3y15 +
∑

cijx
iyj,
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with (i, j) ∈ Q and ai 6= 0, is absolutely irreducible over any field F.

(2) Any integral quadrangle Q with the edge sequence

{3e1, 2e2, e3, e4}

is integrally indecomposable if and only if e1 + e2 + e4 6= 0.

For example, let us consider the quadrangle

Q = conv((0, 9), (15, 0), (17, 20), (7, 19)) which has the edge sequence

{3e1, 2e2, e3, e4} with e1 = (5,−3), e2 = (1, 10), e3 = (−10,−1) and

e4 = (−7,−10). We see that e1 + e2 + e4 6= 0. So, Q is integrally inde-

composable. Consequently, e.g. the polynomial

f = b1x
15 + b2y

9 + b3x
17y20 + b4x

7y19 +
∑

cijx
iyj,

with bi 6= 0 and (i, j) ∈ Q, is absolutely irreducible over any field F.

(3) Let Q be an integral quadrangle having the edge sequence

{3e1, 3e2, e3, e4}.

Then, Q is integrally indecomposable if and only if e1 + 2e2 + e4 6= 0.

As an example of this case, consider the quadrangle

Q = conv((0, 3), (9, 0), (12, 15), (4, 8))

which has the edge sequence {3(3,−1), 3(1, 5), (−8,−7), (−4,−5)} with

e1 = (3,−1), e2 = (1, 5), e3 = (−8,−7), e4 = (−4,−5) satisfying e1 +

2e2 + e4 6= 0. Therefore, Q is integrally indecomposable. For example,

the polynomial

f = a1x
9 + a2y

3 + a3x
12y15 + a4x

4y8 +
∑

cijx
iyj,

where (i, j) ∈ Q and ai 6= 0, is absolutely irreducible over any field F.
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Remark 3.3.8 Let m,n be positive relatively prime integers. Then, consider-

ing the sum of the edge vectors, we see that there are no quadrangles with the

edge sequences {me1, ne2, ne3,me4} and {me1, ne2, ne3, ne4}. For example,

there is no quadrangle having the edge sequence {2e1, 2e2, 2e3, e4}.

3.4 PENTAGONS

We can examine pentagons in three different cases as in Figure 5.

(ii)(i) (iii)
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Figure 5

Let P1 be an integral pentagon with two parallel edges as in Figure 5, (i).

Note that

P1 = conv(v1, v2, v3 − (v4 − v5), v5) + conv(0, v4 − v5).

Hence, P1 is integrally decomposable. This also follows from Remark 3.0.7.

Let P2 be an integral pentagon without parallel edges and having two ad-

jacent interior angles whose sum is strictly less than 2π as in Figure 5, (ii).

P2 lies in a triangle T with base [v1, v2]. Integral indecomposability of P2 is

given in [G1, Corollary 4.12] when gcd(v1−v2) = 1. Note that this also follows

directly from the facts that any integral summand S of P2 must have a closed

boundary and the edges of S must be pieces of edges of P2. If gcd(v1−v2) 6= 1,
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P2 may be integrally indecomposable or not. By Lemma 3.0.6, if P2 is integrally

decomposable, then it may have only triangular, quadrangular or pentagonal

nontrivial integral summands. In Figure 6, we give some examples of integrally

decomposable pentagons of type P2 with gcd(v1 − v2) 6= 1 provided that the

indicated points vi are integral.
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Later in this subsection, we also give some examples of integrally inde-

composable pentagons of type P2 with gcd(v1 − v2) 6= 1.

Let P3 be an integral pentagon which is not of type P1 or P2. Then the

sum of any two adjacent interior angles of P3 is strictly greater than 2π , see

Figure 5, (iii). In Figure 6, we give two examples of integrally decomposable

pentagons of type P3 in case the indicated points vi are integral.
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The next two propositions give some criteria for integral indecomposability

of pentagons of type P2 or P3.

Proposition 3.4.1 The following integral polygons on the plane are integrally

indecomposable:

(1) Any pentagon P which has the edge sequence {e1, e2, e3, e4, e5},

(2) Any pentagon P with the edge sequence {me1, e2, e3, e4, e5} satisfying

ce1 + e2 + e4 6= 0 for any integer 1 ≤ c ≤ m− 1,

(3) Any pentagon P having the edge sequence {2e1, 2e2, e3, e4, e5} which sat-

isfies

e1 + e2 + e4 6= 0, e1 + e3 + e4 6= 0, e1 + e3 + e5 6= 0, e2 + e3 + e5 6= 0,

e2 + e4 + e5 6= 0,

(4) Any 6-gon with the edge sequence {e1, e2, e3, e4, e5, e6} such that ei + ej +

ek 6= 0 for i, j, k ∈ {1, 2, 3, 4, 5, 6}, more precisely, for

e1 + e2 + e4 6= 0, e1 + e2 + e5 6= 0, e1 + e3 + e4 6= 0, e1 + e3 + e5 6= 0,

e1 + e3 + e6 6= 0, e1 + e4 + e5 6= 0, e1 + e4 + e6 6= 0,

(5) Any 7-gon having the edge sequence {e1, e2, e3, e4, e5, e6, e7} with ei+ej +

ek 6= 0 for i, j, k ∈ {1, 2, 3, 4, 5, 6, 7},

(6) Any 8-gon having the edge sequence {e1, e2, e3, e4, e5, e6, e7, e8} such that

ei+ej +ek 6= 0 and ei+ej +ek+es 6= 0 for i, j, k, s ∈ {1, 2, 3, 4, 5, 6, 7, 8},

(7) Any 9-gon having the edge sequence {e1, e2, e3, e4, e5, e6, e7, e8, e9} such

that ei + ej + ek 6= 0 and ei + ej + ek + es 6= 0 for i, j, k, s changing in the

set {1, 2, 3, 4, 5, 6, 7, 8, 9},
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(8) Any 10-gon having the edge sequence {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}
such that ei+ej +ek 6= 0, ei+ej +ek+es 6= 0 and ei+ej +ek+es+et 6= 0

for i, j, k, s, t ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

(9) Any 11-gon having the edge sequence {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}
such that ei+ej +ek 6= 0, ei+ej +ek+es 6= 0 and ei+ej +ek+es+et 6= 0

for i, j, k, s, t ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},

(10) Any n-gon, n ≥ 3, having the edge sequence {e1, e2, ..., en} such that

ei + ej + ek 6= 0, ei + ej + ek + es 6= 0,......, ei + ej + ek + es + ...+ et 6= 0

i.e. we consider the sum of 3,4,5,...,n/2 edges if n is even and sum of

3,4,5,...,(n-1)/2 edges if n is odd for i, j, k, s, ..., t ∈ {1, 2, 3, ..., n}.

Proof: We use Lemma 3.0.6.

(1) The edge sequence {e1, e2, e3, e4, e5} of P cannot have a subsequence

whose sum of terms is zero while we have e1 + e2 + e3 + e4 + e5 = 0.

(2),(3) We can easily see these effects by considering the sum of interior angles

of any nontrivial summands of these pentagons.

(4) Proof has the same idea. We only need to observe that it is enough to

consider only sum of
(

6
3

) · 1
2

= 10 triple edge vectors. Moreover, since the

sum of three consecutive edges of an n-gon, for n ≥ 4, cannot be zero

we can omit to check the cases e1 + e2 + e3 6= 0, e1 + e2 + e6 6= 0 and

e1 + e5 + e6 6= 0.

The remaining cases are generalizations of the previous idea and have same

method of proving. We should note that the sum of terms of any edge sequence

of upper or lower edges of a polygon cannot be zero. Therefore, beside the sum
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of three consecutive edges it is also not necessary to check the addition of those

kinds of edge sequences for the polygons in these cases. See Figure 7 for the

meaning of upper and lower edges of a polygon. 2
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Ei+1

En

v
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v
2

v3

vi+1

vn

x1 xi+1x2

P

E1 , E2,...,E i are

lower edges of P.

Ei+1 ,Ei+2 ,..., En are

upper edges of P.

Figure 7

Proposition 3.4.2 Let P be an integral polygon in R2 having the edge se-

quence {(ai, bi)}1≤i≤n. And let k be an integer such that gcd(k, n) = 1. If either

of the following two cases holds, then P is integrally indecomposable.

Case (1) ai ≡ k(mod n) for 1 ≤ i ≤ n.

Case (2) bi ≡ k(mod n) for 1 ≤ i ≤ n.

Proof: Let S be a proper nonempty subset of the set {1, 2, ..., n} with cardi-

nality |S| = s. Then we have
∑

j∈S aj ≡ ks 6≡ 0 (mod n) or
∑

j∈S bj ≡ ks 6≡ 0

(mod n) since s � n. Consequently, the edge sequence {(ai, bi)}1≤i≤n cannot

have a proper subsequence whose sum of terms is zero since
∑

j∈S aj 6= 0 or
∑

j∈S bj 6= 0. 2

We illustrate Proposition 3.4.1 and Proposition 3.4.2 with some examples.
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Example 3.4.3

(1) Let us first consider the pentagon

P = conv((0, 2), (1, 0), (3, 1), (2, 5), (1, 6)).

Since P has the edge sequence {(1,−2), (2, 1), (−1, 4), (−1, 1), (−1,−4)},
it is integrally indecomposable. So, the polynomial

f = a1x+ a2y
2 + a3x

3y + a4x
2y5 + a5xy

6 +
∑

cijx
iyj,

with ai 6= 0 and (i, j) ∈ P, is absolutely irreducible over any field F.

(2) Let m,n be positive integers such that gcd(m,n) = 1. Then any bivariate

polynomial f ∈ F [x, y] having Newton polytope

Pf = conv((m, 0), (0, n), (m+ 1, n+ 1), (m,n+m+ 1), (0, n+ 1))

is absolutely irreducible over any field F by Proposition 3.4.1, (1) since

Pf is a pentagon having all edges primitive. For example, taking m = 3

and n = 2, the polynomial

f = a1x
3 + a2y

2 + a3x
4y3 + a4x

3y6 + a5y
3 +

∑
cijx

iyj,

with ai 6= 0 and (i, j) ∈ Pf , is absolutely irreducible over any field F.

(3) As an example of Proposition 3.4.1, (2), consider the pentagon

P = conv((0, 4), (8, 0), (15, 5), (10, 18), (1, 16))

which has no parallel edges and does not lie in a triangle. It has the edge

sequence {2(4,−2), (7, 5), (−5, 13), (−9,−2), (−1,−12)} and is integrally
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indecomposable since (4,−2) + (7, 5) + (−9,−2) 6= 0. Consequently, any

polynomial

f = a1x
8 + a2y

4 + a3x
15y5 + a4x

10y18 + a5xy
16 +

∑
cijx

iyj,

with ai 6= 0 and (i, j) ∈ P, is absolutely irreducible over any field F.

(4) As another example of Proposition 3.4.1, (2), the pentagon

P = conv((m, 0), (0, n), (m+ 1, n+ 1), (m,n+m+ 1), (0, n+m))

is integrally indecomposable if m and n are relatively prime positive

integers. Because, P has the edge sequence

{m(0,−1), (m,−n), (1, n+ 1), (−1,m), (−m,−1)}

with i(0,−1) + (m,−n) + (−1,m) = (m− 1,m− n− i) 6= (0, 0) for any

integer 1 ≤ i ≤ m− 1.

(5) As a consequence of Proposition 3.4.1, (3), the polynomial

f = b1x
6 + b2y

4 + b3x
14y2 + b4x

18y11 + b5x
9y12 +

∑
cijx

iyj,

where bi 6= 0 and (i, j) ∈ Pf , is absolutely irreducible over any field F.

Because, its Newton polytope is the integrally indecomposable pentagon

Pf = conv((0, 4), (6, 0), (14, 2), (18, 11), (9, 12))

with the edge sequence {2(3,−2), 2(4, 1), (4, 9), (−9, 1), (−9,−8)} which

satisfies the conditions of Proposition 3.4.1, (3).

(6) Consider the 6-gon

P = conv((7, 0), (8, 0)(15, 2), (16, 7), (11, 8), (0, 3))
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which has the edge sequence

{(7,−3), (1, 0), (7, 2), (1, 5), (−5, 1), (−11,−5)}
for which 7, 1,−11,−5 ≡ 1 (mod 6). So, P is integrally indecomposable

by Proposition 3.4.2. Alternatively, since the edge sequence of P satisfies

the conditions of Proposition 3.4.1, (4), it is integrally indecomposable.

(7) Now, we give an example for which only item (4) Proposition 3.4.1 works.

Let us consider the 6-gon

C = conv((7, 0), (15, 1), (19, 10), (16, 15), (7, 13), (0, 5))

having the edge sequence

{(7,−5), (8, 1), (4, 9), (−3, 5), (−8,−1), (−8,−9)}.
We see that C is integrally indecomposable since its edge sequence sat-

isfies the conditions of Proposition 3.4.1, (4).
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The polygons presented in Example 3.4.3 have no parallel edges and do

not lie inside a triangle having a common edge with the polygon. Figure 8

shows four of these polygons.

These examples are not covered by the methods presented in [G1]. Note

that the methods of [G1] for indecomposability of polygons assume that Pf

lies inside a triangle having a common edge with Pf , and this is not the case

in our examples of Example 3.4.3.

Remark 3.4.4 While giving above criteria for integral indecomposability, we

are actually having classification of decomposable quadrangles, pentagons. For

example, if Q is an integrally decomposable quadrangle with the edge sequence

{4e1, 4e2, e3, e4} then its integral summands are included in one and only one

of the following three different types:

(1): 2e1 + e2 + e3 = 0,

(2): 3e1 + e2 + e3 = 0,

(3): 3e1 + 2e2 + e3 = 0.

Moreover, Q may have only one unique decomposition up to translation of

summands in all these cases.

Let us give an integrally decomposable quadrangle of type (1). In order

to have this example, we take the primitive edge vectors as e1 = (2,−1),

e2 = (3, 1). Using 2e1 + e2 + e3 = 0, we have e3 = (−7, 1). Since we must have

2e1 + 3e2 + e4 = 0, we get e4 = (−13,−1). We see that the quadrangle

Q = conv((8, 0), (20, 4), (13, 5), (0, 4))

with the edge sequence

{4(2,−1), 4(3, 1), (−7, 1), (−13,−1)}

43



has unique integral decomposition (up to translation of summands) as

Q = conv((4, 0), (13, 3), (0, 2)) + conv((4, 0), (7, 1), (0, 2)).

Note that the polynomial f = 3x8 + 3y4 + x20y4 + x13y5 + x8y + x13y3,

which has the integrally decomposable Newton polytope Pf = Q, is absolutely

irreducible over the complex numbers C and irreducible over the field F221 , and

reducible over F3.

We can generalize Proposition 3.4.2 for any n-dimensional polytope P

in Rn. First, we choose a fixed vertex v0, and consider any connected edge

sequence S = {ciei}1≤i≤m, i.e. ei ∩ ei+1 6= ∅, starting and ending at v0. Since

we mention about a closed path, we must have
∑m

i=1 ciei = (0, , ..., 0). If Q is a

summand of P containing the vertex v0 then the corresponding edge sequence

of Q to the edge sequence S of P must be of the form {diei}1≤i≤m where

0 ≤ di ≤ ci. and
∑n

i=1 diei = (0, ..., 0).

Corollary 3.4.5 Let P be an n-dimensional integral polytope having all edges

primitive with vertices v0, v1, ..., vk in Rn. Let us consider all edge sequences,

starting and ending at v0, Sj = {(a1i, a2i, ..., ani)}1≤i≤mj , 1 ≤ j ≤ r. And let

k be relatively prime integer with mj. If we have at least one of the following

cases for all edge sequences Sj then P is integrally indecomposable.

Case (1) a1i ≡ k (mod mj) for 1 ≤ i ≤ mj.

Case (2) a2i ≡ k (mod mj) for 1 ≤ i ≤ mj.
...

Case (m) ami ≡ k (mod mj) for 1 ≤ i ≤ mj.
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Chapter 4

INTEGRALLY INDECOMPOSABLE

POLYTOPES IN Rn

Beside the integral indecomposability, there is another concept, homothetic

indecomposability for polytopes, see the book [Gr, Chapter 15]. Let P and Q

be polytopes in Rn, not necessarily integral. Q is said to be homothetic to P

if there exists a real number r ≥ 0 and a vector v ∈ Rn such that

Q = rP + v = {ra+ v : a ∈ P}.

A polytope Q is said to be homothetically indecomposable if Q = A + B

for some polytopes A and B then either A or B is homothetic to Q, e.g. if A

is homothetic to Q then

Q = A+B = (rQ+ v) + (1− r)Q+ (−v)

for some 0 ≤ r ≤ 1 and v ∈ Rn. Otherwise, Q is called homothetically decom-

posable.
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4.1 RELATION BETWEEN INTEGRAL AND HOMOTHETIC

INDECOMPOSABILITY OF POLYTOPES

Homothetically indecomposable polytopes have been widely studied in the

literature, for example in [K, Mc, Me, Sh, Sm1, Sm2]. There is no direct

comparison between integral and homothetic indecomposability of polytopes.

A polytope may satisfy only one of them or both or none.

For example, the only homothetically indecomposable polytopes in the

plane are line segments and triangles. Any summand of a line segment must

be parallel to it and have smaller length than itself. Also, the edges of a

summand of triangle T must be parallel to the edges of T and have smaller

length than them.

As we have seen in Chapter 3, only some triangles or line segments, and

many polygons having more than three edges are integrally indecomposable.

An integral square is both integrally and homothetically decomposable. There

is a result in [G2] giving a relation between these two different concepts of

decomposability of polytopes.

Proposition 4.1.1 Let P be an integral polytope in Rn with vertices v1, ..., vm.

If P is homothetically indecomposable and

gcd(v1 − v2, ..., v1 − vm) = 1

then P is integrally indecomposable.

Proof: See the proof of [G2, Proposition 12]. 2

From Proposition 4.1.1 we get the following simple and useful lemma.
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Lemma 4.1.2 Let Q be a homothetically indecomposable integral polytope with

vertices v1,... ,vm. Then, Q is integrally indecomposable if and only if

gcd(v1 − v2, ..., v1 − vm) = 1.

Proof: Let gcd(v1 − v2, ..., v1 − vm) = d > 1. Then, the polytope P =

conv(0, v2 − v1, ..., vm − v1) is integral. Therefore, Q = v1 + d · (1
d
P ).

Converse follows from Proposition 4.1.1. 2

By Lemma 4.1.2, we can get many integrally indecomposable polytopes

using the homothetically indecomposable polytopes constructed in [K, Mc, Me,

Sh, Sm1, Sm2]. The following three theorems are combinations (and specializa-

tions to integral polytopes) of theorems about homothetic indecomposability

given in these references and Lemma 4.1.2.

Let P be a polytope. A sequence F0, F1, ..., Fm of faces of P is called a

strong chain if dim(Fi ∩ Fi+1) ≥ 1 for i = 0, ...,m− 1. Such a chain is said to

join two vertices u and v of P if, say u ∈ F0, and v ∈ Fm. See [Mc].

Theorem 4.1.3 Let P = conv(v1, v2, ..., vk) be a polytope in Rn such that

any two of whose vertices can be joined by a strong chain of homothetically

indecomposable faces. Then P is homothetically indecomposable.

In particular, if P is also integral then it is integrally indecomposable if

and only if gcd(v1 − v2, ..., v1 − vk) = 1.

Proof: For the first part, see the proof of [Sh, Statement 12]. The second part

follows from Lemma 4.1.2. 2

Now, we give some applications of Theorem 4.1.3,

Example 4.1.4 Let k ≥ 3 be an integer and C = conv(v1, ..., vk) be an inte-

gral polytope on an (n−1)-dimensional hyperplane H in Rn. Let a, b, u, v, w ∈
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H+ \ H and a′, b′, u′, v′, w′ ∈ H− \ H be distinct integral points in the corre-

sponding half spaces. Let us form the triangles A = conv(v, u, w) ⊂ H+ and

B = conv(v′, u′, w′) ⊂ H−. Assume that the projections of A and B on H are

in relint(C), relint([a, a′])∩ relint(C) = {p} is a single point, and relint([b, b′])∩
relint(C) = ∅. Assume also that affine hull of any edge of A is skew with affine

hull of any edge of C (nonintersecting and nonparallel) and affine hull of any

edge of B is skew with affine hull of any edge of C. Then, the following seven

polytopes are homothetically indecomposable by the first part of Theorem

4.1.3 since any two vertices of them can be joined by a strong chain of trian-

gular faces. Moreover, since C,A and B are integral, by the second part of

Theorem 4.1.3 we have the following:

(1) The pyramid P = conv(C, v) is integrally indecomposable if and only if

gcd(v − v1, ....., v − vk) = 1.

(2) The bipyramid Q = conv(C, a, a′) is integrally indecomposable if and

only if

gcd(a− v1, ....., a− vk, a− a′) = 1.

See Figure 9,(i).

(3) Let D = conv(C, b, b′). As relint([b, b′])∩ relint(C) = ∅, some of the

vertices v1, ..., vk of C are no longer a vertex of D (see Figure 9, ii).

However, it is clear by convexity that the vertices of D are b, b′ and a

subset of {v1, ..., vk}. By relabelling the vertices of C if necessary, let the

vertices of D be {b, b′, v1, ..., vr, vs, ..., vk} where 1 ≤ r < s ≤ k. We call

such a polytope D degenerate bipyramid. D is integrally indecomposable
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if and only if

gcd(b− v1, ..., b− vr, b− vs, ..., b− vk, b− b′) = 1.

(4) R = conv(C, u, v, u′) is integrally indecomposable if and only if

gcd(u− v1, ....., u− vk, u− v, u− u′) = 1.

(5) T = conv(C, u, v, w, u′) is integrally indecomposable if and only if

gcd(u− v1, ....., u− vk, u− v, u− w, u− u′) = 1.

(6) S = conv(C, u, v, w, u′, v′) is integrally indecomposable if and only if

gcd(u− v1, ....., u− vk, u− v, u− w, u− u′, u− v′) = 1.

(7) K = conv(C, u, v, w, u′, v′, w′) is integrally indecomposable if and only if

gcd(u− v1, ....., u− vk, u− v, u− w, u− u′, u− v′, u− w′) = 1.

H

Indecomposable  bipyramid

H

An indecomposable degenerate bipyramid

Figure 9
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Remark 4.1.5 Note that Example 4.1.4, (1) is precisely [G1, Theorem 4.2].

The other items of Example 4.1.4 are not covered in [G1] and [G2].

We observe that, by combining [G1, Theorem 4.11] and Example 4.1.4,

(1), any integral pyramid P in Rn is integrally indecomposable if one of its

faces is integrally indecomposable.

Corollary 4.1.6 If all 2-dimensional faces of a polytope P = conv(v1, v2, ..., vk)

in Rn are triangles, then it is homothetically indecomposable.

In particular, if P is also integral then it is integrally indecomposable if

and only if gcd(v1 − v2, ..., v1 − vk) = 1.

Proof: See the proof of [Gr, (3) on page 321] or [Sh, Statement 13]. The

second part follows from Lemma 4.1.2. 2

We illustrate some of the polytopes presented in Example 4.1.4 with nu-

merical examples. Note that the presented polytopes in Example 4.1.7 and

Example 4.1.8 do not lie inside a pyramid. Hence, [G1, Theorem 4.2 and The-

orem 4.11] do not work in order to decide the integral indecomposability of

these polytopes.

Example 4.1.7 Let F be any field and f1, f2, f3 ∈ F [x, y, z] be polynomials

as

f1 = x3y2 + yz4 + x4z + xyz9 + x2yz,

f2 = y2z5 + xz6 + x3yz3 + x4y2z + x4y3 + x2y5 + xy6 + y7 + xy2z12 + x3y2z,

f3 = x8z2 + x10 + x2y7z + y4z6 + yz9 + x5y3z10 + x3y2.

Then the corresponding polytopes Pfi for i = 1, 2, 3 are of type bipyramid and

these polynomials are absolutely irreducible over F by Example 4.1.4, (2). For

example, Pf1 = conv(C, a, a′) with

C = conv((3, 2, 0), (0, 1, 4), (4, 0, 1)) ⊂ H
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and a = (1, 1, 9) ∈ H+, a′ = (2, 1, 1) ∈ H−, where H is the hyperplane

x+ y + z = 5 in R3. Moreover, gcd(a− (3, 2, 0)) = gcd(−2,−1, 9) = 1.

Let us consider the polynomial

f4 = x5z10 + x13y2z10 + x15y7z10 + x16y12z10 + x14y16z10 + x10y19z10 +

x5y17z10 + x2y13z10 + y6z10 + x32y15z20 + x27y12 ∈ F [x, y, z].

Then Pf4 = conv(C, b, b′) with

C = conv((5, 0, 10), (13, 2, 10), (15, 7, 10), (16, 12, 10), (14, 16, 10), (10, 19, 10),

(5, 17, 10), (2, 13, 10), (0, 6, 10)) ⊂ H

and b = (32, 15, 20) ∈ H+, b′ = (27, 12, 0) ∈ H−, where H is the hyperplane

z = 10 in R3. Moreover, the set of vertices of Pf4 is

{b, b′, (5, 0, 10), (13, 2, 10), (10, 19, 10), (5, 17, 10), (2, 13, 10), (0, 6, 10)}.

Hence, Pf4 is a degenerate bipyramid and as gcd(b− b′) = gcd(5, 3, 20) = 1, f

is absolutely irreducible over F by Example 4.1.4, (3).

The polynomial

g = x5y20 + x6z6 + y6z8 + x2yz9 + x14y2 + x4y7z8 + x8y11z6 + xy6z2 ∈ F [x, y, z]

has the Newton polytope Pg = conv(C, u, v, u′) of type Example 4.1.4, (4),

see Figure 10, with C = conv((5, 20, 0), (0, 6, 8), (2, 1, 9), (14, 2, 0)) ⊂ H and

u = (4, 7, 8), v = (8, 11, 6) ∈ H+, u′ = (1, 6, 2) ∈ H−, where H is the hyper-

plane 2x + y + 3z = 30 in R3. Since gcd(u− (0, 6, 8)) = gcd(13,−6, 0) =, g is

absolutely irreducible over F.

The following polynomial

h = x7z21 + x10y18 + y12z16 + x3y9z48 + x7y8z45 + x4y13z43 + x5y6z9 ∈ F [x, y, z]

has Ph = conv(C, u, v, w, u′) with

C = conv((7, 0, 21), (10, 18, 0), (0, 12, 16)) ⊂ H

and u = (7, 8, 45), v = (4, 13, 43), w = (3, 9, 48) ∈ H+, u′ = (5, 6, 9) ∈ H−,

where H is the hyperplane x + y + z = 28 in R3 (See Figure 11). In ad-
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dition, since Ph is a polytope of type Example 4.1.4, (5) and gcd(v − u′) =

gcd(−1, 7, 34) = 1, h is absolutely irreducible over F .

(5,20,0) (0,6,8)

(2,1,9)

(1,6,2)

(8,11,6)
(4,7,8)

2x+y+3z=30

The Newton polytope of g.

Figure 10

(14,2,0)
(6,0,6)

(0,12,16)

x+y+z=28

The Newton Polytope of h.

Figure 11

(7,8,45)

(3,9,48)

(4,13,43)

(5,6,9)

(10,18,0)

(7,0,21)

The Newton polytope of  k

(5,20,0)
(0,6,8)

(2,1,9)

(5,6,17)

(15,5,8)

2x+y+3z=30

The Newton polytope of  m

(5,20,0)
(0,6,8)

(2,1,9)

(3,25,6) (13,0,26)

2x+y+3z=30

Figure 12

Example 4.1.8 Let F be any field and k,m ∈ F [x, y, z] be polynomials as

k = c1x
5y20 + c2y

6z8 + c3x
2yz9 + c4x

5y6z17 + c6x
15y5z8

m = d1x
5y20 + d2y

6z8 + d3x
2yz9 + d4x

3y25z6 + d6x
13z26

with ci, di ∈ F \ {0}. Then the polytopes Pk and Pm are integrally indecom-
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posable by Corollary 4.1.6. For example, Pk = conv(C, u, v) is the polytope

with

C = conv((5, 20, 0), (0, 6, 8), (2, 1, 9)) ⊂ H

and u = (5, 6, 17), v = (15, 5, 8) ∈ H+, where H is the hyperplane 2x+y+3z =

30 in R3. Moreover, since Pk is a tent T over a triangle and has triangular faces

and gcd((0, 6, 8)− u) = gcd(−5, 0,−9) = 1, g is absolutely irreducible over F.

Figure 12 shows the Newton polytopes of k and m.

Remark 4.1.9 All of the presented polynomials in Example 4.1.7 and Ex-

ample 4.1.8 still will be absolutely irreducible over F if the coefficients of them

are changed with any nonzero elements ci ∈ F \{0}, and if they are added any

number of terms whose exponent vectors lie inside their Newton polytopes.

For any polynomial f over F, the number of such integral exponents inside

Pf is always finite and bounded from above by a number depending on f .

Moreover, in some cases, depending on the configuration of Pf , we can even

add as many terms as we like to the given polynomial. For example, consider

the polynomial

f = c1x
7y7z20 + c2x

4y6 + c3x
5y5z11 + c4x

5y4z10 + c5x
6z7 + c6y

3z4 + c7x
2z3 +

c8x
5y3z9 +c9x

5y2z8 +c10x
5yz7 +c11x

5z6 +c12x
4y5z10 +c13x

4y6z11 +c14x
4y7z12 +

c15x
4y8z13 + c16x

4y9z14 + c17x
4y10z15 + c18x

3y2z6 + c19x
20y25z46 + c20x

99yz101 +

c21xy
2z4 + c22x

7yz9 + c23x
5y9z14 + c24x

7y8z16 + c25x
4y10z15 + c26x

41y42z84

with nonzero coefficients ci over the field F. Newton polytope of f is the

bipyramid Pf = conv(C, a, a′) with C ⊂ H and a = (7, 7, 20) ∈ H+, a′ =

(4, 6, 0) ∈ H−, where H is the hyperplane −x − y + z = 1 in R3. Moreover,

since relint (C)∩ relint ([a, a′]) = (97/16, 107/16, 55/4) is a single point and

gcd(a − a′) = gcd(3, 1, 20) = 1, Pf is integrally indecomposable by Example

4.1.4 (2). Hence, if f is added any new terms whose exponent vectors lying on
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the hyperplane −x − y + z = 1, then it is still absolutely irreducible over F

since its Newton polytope is always an integrally indecomposable bipyramid.

Using Statement 14 in [Sh] we obtain the following.

Corollary 4.1.10 Let P1 = conv(v1, v2, ..., vm), P2 = conv(u1, u2, ..., uk) be

two disjoint (n− 1)-dimensional polytopes, n ≥ 3, lying in parallel hyperplanes

H1, H2 respectively, such that affine hull of any edge of one is skew with affine

hull of any edge of the other. Then the polytope P = conv(P1 ∪ P2) is homo-

thetically indecomposable.

In particular, if P is also integral then it is integrally indecomposable if

and only if gcd(v1 − v2, ..., v1 − vm, v1 − u1, ...v1 − uk) = 1.

Proof: Since all the lateral faces of P are triangular, we can apply Theorem

4.1.3. 2

Example 4.1.11 We give an example for Corollary 4.1.10 for n = 3. Let P1

and P2 be polygons with no parallel edges lying in different parallel planes.

Then P = conv(P1 ∪ P2) is an antiprism having all the 2-dimensional faces as

triangular except for P1 and P2. Since we can find a strong chain of triangular

faces connecting any two of vertices of P, P is homothetically indecomposable

by Theorem 4.1.3. For n > 3, see [Sh].

Remark 4.1.12 Note that if the hyperplanes H1 and H2 are not parallel in

Rn for n ≥ 3, they divide Rn into four different regions. If the polytope P ,

mentioned in Corollary 4.1.10, lies in only one of these regions, we can still

apply Corollary 4.1.10. See Figure 13.

Moreover, in Corollary 4.1.10, beside the vertices of integral polytopes

P1 = conv(v1, v2, ..., vm) and P2 = conv(u1, u2, ..., uk) we can adjoin integral
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points vm+1 /∈ H1 and uk+1 /∈ H2 as shown in Figure 14. And then the obtained

integral polytope Q = conv(P1, P2, vm+1, uk+1) is homothetically indecompos-

able. So, the methods of Corollary 4.1.10 also work for the polytope Q instead

of P. The polytope Q is shown in Figure 14.

Remark 4.1.13 Let P = conv(P1∪P2) be an integral polytope in Rn, where

P1 and P2 are disjoint homothetically indecomposable facets lying on parallel

hyperplanes H1 and H2 respectively. Then, in [Sm1, Result 3] it is stated

that P is homothetically decomposable if and only if P1 and P2 are homoth-

etic. Consequently, P is homothetically indecomposable if and only if P1 is

not homothetic to P2. For example, for n = 3, if P1 and P2 are not homo-

thetic homothetically indecomposable polytopes lying on two disjoint parallel

planes then the polytope P = conv(P1 ∪P2) = conv(v1, v2, ..., vm) is integrally

indecomposable if and only if

gcd(v1 − v2, v1 − v3, ..., v1 − vm) = 1.
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A family F of faces of a polytope P is called strongly connected if for each

F,G ∈ F, there exists a strong chain F = F1, F2, ..., Fm = G with each Fi ∈ F.

A subset F of faces touches a face F of P if (
⋃
Fi∈F Fi)∩ F 6= ∅. Recall that a

facet of P is a face F of dimension dim(F ) = dim(P )− 1. See [Mc].

In Theorem 4.1.14 and Theorem 4.1.15, the results about homothetic in-

decomposability, are due to Mcmullen [Mc].

Theorem 4.1.14 If P is a polytope having a strongly connected family of

homothetically indecomposable faces that touches each of its facets then it is

homothetically indecomposable.

In addition, if P is also an integral polytope with vertices v1, v2, ..., vn then,

it is integrally indecomposable if and only if gcd(v1−v2, v1−v3, ..., v1−vn) = 1.

Proof: See the proof of [Mc, Theorem 2]. 2

By using Theorem 4.1.14, the following theorem is obtained.

Theorem 4.1.15 Let A,B be polytopes such that C = conv(A ∪B) and

dim(C) = dim(A) + dim(B) + 1. Then C is homothetically indecomposable.

Moreover, if C is also an integral polytope having the vertices v1, v2, ..., vn

then, it is integrally indecomposable if and only if

gcd(v1 − v2, v1 − v3, ..., v1 − vn) = 1.

Proof: See the proof of [Mc, Theorem 3]. 2

Example 4.1.16 Let P = conv(v1, v2, ..., vk) be an (m− 1)-dimensional inte-

gral polytope lying in a hyperplane H in Rn. Take any integral point v /∈ H.
Then the pyramid C=conv(P,v) is homothetically indecomposable by Theorem

4.1.15 since
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m = dim(C) = dim(P ) + dim({v}) + 1 = (m− 1) + 0 + 1.

In particular, our pyramid C is integrally indecomposable if and only if

gcd(v − v1, v − v2, ..., v − vk).
Consequently, e.g., for two distinct integral points v1 and v in Rn, the line

segment ` = [v1, v] is integrally indecomposable if and only if gcd(v − v1) = 1

since

dim(`) = 1 = 0 + 0 + 1 = dim({v1}) + dim({v}) + 1.

Moreover, if v1, v2 and v are three distinct nonlinear integral points in Rn

then the triangle T = conv(v1, v2, v) is integrally indecomposable if and only

if gcd(v − v1, v − v2) = 1 since

dim(T ) = 2 = 1 + 0 + 1 = dim([v1, v2]) + dim({v}) + 1.

Let `1 = [v1, v2] and `2 = [v3, v4] be the skew line segments formed by the

distinct integral points v1, v2, v3, v4 in Rn not lying in the same plane. Then, by

Theorem 4.1.15, the polytope conv(v1, v2, v3, v4) is integrally indecomposable

if and only if gcd(v1 − v2, v1 − v3, v1 − v4) = 1. Because, we have

dim(conv(`1 ∪ `2)) = 3 = 1 + 1 + 1 = dim(`1) + dim(`2) + 1.

Remark 4.1.17 In Example 4.1.16, we have given another proofs of [G1,

Theorem 4.2], [G1, Corollary 4.3], [G1, Corollary 4.5] and [G1, Corollary 4.7].

As we see, Gao’s results are examples of Theorem 4.1.15.

4.2 A NEW OBSERVATION GIVING NEW INTEGRALLY IN-

DECOMPOSABLE POLYTOPES IN Rn

We observe that in the previous theorems in Section 4.1, we can consider

strong chain of integrally indecomposable faces instead of strong chain of ho-

mothetically indecomposable faces. Then, we get new theorems giving many
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new integrally indecomposable polytopes in Rn. Note that the proofs of the

following three theorems are obtained by modifications of the proofs of the

corresponding results from [Sh, Mc].

Theorem 4.2.1 Let P be an integral polytope in Rn such that any two of

whose vertices can be joined by a strong chain of integrally indecomposable

faces. Then P is integrally indecomposable.

Proof: Let us assume that P = Q+ R for some integral polytopes such that

P = conv(p1, p2, ..., pm) and Q = conv(q1, q2, ..., qm), where in order to have

the same number of vertices we allow the repetition of vertices of Q.. We shall

show that Q is a translation of P, i.e. Q = P + v for some vector v ∈ Rn.
Let pi be any vertex of P and F = conv(pi, pi+1, ..., pk) = P ∩HP (u) be an

integrally indecomposable face of P containing pi, where HP (u) is a supporting

hyperplane of P having normal vector u ∈ Rn. Then, the corresponding face

G = conv(qi, qi+1, ..., qk) = F ∩HP (u) of Q, i.e. F = G+H for some face H of

R, must be of the form G = F +v for some vector v ∈ Rn. Therefore, any edge

[qj, qj+1] of Q must be of the form [qj, qj+1] = [pj, pj+1] + v. Hence, qj = pj + v

and qj+1 = pj+1 + v. Since any two vertices e, e′ of P can be joined by a strong

chain of integrally indecomposable faces F1, ..., Fs, where e ∈ F1, ..., e
′ ∈ Fs

and Fi∩Fi+1 is a line segment, we conclude that qi = pi+v for all i,= 1, ...,m.

So, Q = P + v. Consequently, P is integrally indecomposable. 2

Example 4.2.2 As a result of Theorem 4.2.1, we give six new integrally inde-

composable polytopes in Rn. Of course, we can have infinitely many examples

of this kind by taking extra suitable hyperplanes in the following items. We

consider our polytopes as seen in the respective figures. That is, in Figures

15,16, 18, 19,20, we assume that projection of C1 on C2 lies in relint(C2).
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(1) Consider Figure 15. Let n ≥ 3 be an integer. Let

C1 = conv(v1, v2, v3, ..., vn), C2 = conv(u1, u2, u3, ..., u2n) and

C3 = conv(w1, w2, w3, ..., wn) be integral polytopes lying on different non-

parallel hyperplanes as shown in Figure 15. Consider the integral poly-

tope C = conv(C1, C2, C3). Assume that the lateral white faces of C are

integrally indecomposable quadrangles conv(v1, v2, u2, u3),

conv(v2, v3, u4, u5), ..., conv(vn, v1, u2n, u1). Then, C is integrally inde-

composable if C1 or C2 is integrally indecomposable.

(2) Consider Figure 16. Let n ≥ 4 be an even integer. We take the inte-

gral polytopes C1 = conv(v1, v2, v3, ..., vn), C2 = conv(u1, u2, u3, ..., un)

and C3 = conv(w1, w2, w3, ..., wn) lying on different nonparallel hyper-

planes as shown in Figure 16. Consider the integral polytope C =

conv(C1, C2, C3). Assume that the lateral faces conv(v1, v2, u1, u2),

conv(v3, v4, u3, u4), ..., conv(vn−1, vn, un−1, un) are integrally indecompos-

able quadrangles. Then, C is integrally indecomposable if C1 or C2 is

integrally indecomposable.
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(3) Consider Figure 17. Let n ≥ 4 be an integer and H1, H2 be parallel-

nonintersecting hyperplanes in Rn. Let C1 = conv(v1, v2, v3, ..., vn) ⊂ H1

and C2 = conv(u1, u2, u3, ..., un) ⊂ H2 be integral polytopes such that

(i) [v1, v2] is not parallel to [u1, u2], [v3, v4] is not parallel to [u3, u4], ...,

([vn, v1] is not parallel to [un, u1] if n is a positive odd integer),

(ii) [v2, v3] is not parallel to [u2, u3], [v4, v5] is not parallel to [u4, u5], ...,

([vn, v1] is not parallel to [un, u1] if n is a positive even integer).

Figure 17 corresponds to the case n is an even positive integer. Assume

that the triangular lateral faces of the polytope C = conv(C1, C2) are

integrally indecomposable. If C1 or C2 is integrally indecomposable then

so is C. Note that, as in Remark 4.1.12, for nonparallel hyperplanes H1

and H2 in Rn, a similar result holds.

(4) Consider Figure 18. Let n ≥ 4 be an integer. Let

C1 = conv(v1, v2, v3, ..., vn), C2 = conv(u1, u2, u3, ..., un), and

C3 = conv(w1, w2, w3, ..., wn) be integral polytopes lying on different par-

allel hyperplanes as shown in Figure 18. Consider the integral polytope

C = conv(C1, C2, C3). Assume that

(i) [v1, v2] is not parallel to [u1, u2], [v3, v4] is not parallel to [u3, u4], ...,

([vn−1, vn] is not parallel to [un−1, un] if n is a positive even integer),

(ii) [u1, u2] is not parallel to [w1, w2], [u3, u4] is not parallel to [w3, w4], ...,

([un, u1] is not parallel to [wn, w1] if n is a positive odd integer).

Also suppose that the lateral triangular faces of C are integrally indecom-

posable. Then, C is integrally indecomposable if C1 or C2 is integrally
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indecomposable.
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(5) Consider the polytope P in Figure 19. P is in the type of the polytope

of Example 4.2.2, (4). Therefore, the same result holds in this case also.

Furthermore, in this case P lies inside a pyramid. Therefore, if the inte-

gral polytope

C3 = conv(w1, w2, ..., wn)

is integrally indecomposable then P is integrally indecomposable by [G1,

Theorem 4.11].

(6) Consider Figure 20. In order to have another example of integrally in-

decomposable polytope Q, we take an extra integral point v0 and form

the integral polytope Q = conv(C, v0) where C = conv(C1, C2, C3) is the

polytope considered in Example 4.2.2, (4). Suppose that the lateral col-

ored triangular faces of Q are integrally indecomposable. If the polytope

C3 = conv(w1, w2, ..., wn)

is integrally indecomposable then so is Q. Note that Q may not lie inside

a pyramid.
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Note that in Example 4.2.2, (1), (2), (3), (4), (5) it is impossible to find a

strong chain of homothetically indecomposable faces joining any two distinct

vertices of the related polytopes and hence, Theorem 4.1.3 is not applicable.

Theorem 4.1.3 may not be applicable also for the polytope Q in Example 4.2.2,

(6). We shall later give some numerical examples in Example 4.2.5.

Corollary 4.2.3 If all 2-dimensional faces of a polytope P in Rn are integrally

indecomposable, then so is P .

Proof: Let Q = conv(q1, ..., qm) be a summand of P = conv(p1, ..., pm),

where to have the same number of vertices we allow the repetition of vertices

of Q. Consider any 2-dimensional face FP (u) = conv(pi, pi+1, ..., pj−1, pj) =

P ∩ HP (u) of P, which is formed by the intersection of P with a supporting

hyperplane HP (u) of P having normal vector u ∈ Rn. Then, since FP (u) is inte-

grally indecomposable, the face FQ(u) = conv(qi, qi+1, ..., qj−1, qj) = Q∩HP (u)

of Q must be of the form FQ(u) = FP (u) + v for some nonzero vector v ∈ Rn.
Thus, any edge [qr, qr+1] of Q must be of the form [qr, qr+1] = [pr, pr+1] + v.
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Hence, qr = pr + v and qr+1 = pr+1 + v. Since any two edges E,E ′ of P

can be joined by a strong chain of integrally indecomposable faces F0, ..., Fs,

where E ⊂ F0, ..., E
′ ⊂ Fs and Fi ∩ Fi+1 is a line segment, we deduce that

qi = pi + v for all i,= 1, ...,m. So, Q = P + v. Consequently, P is integrally

indecomposable. 2

Theorem 4.2.4 If P is an integral polytope having a strongly connected family

of integrally indecomposable faces that touches each of its facets then it is

integrally indecomposable.

Proof: We can consider an n-dimensional polytope P in Rn, which has a

strongly connected family F of integrally indecomposable faces touching every

facet of P. We can express P as

P = {x ∈ Rn : x · ui ≤ hP (ui), i = 1, ...,m}

where u1, ..., um are the outer normal vectors to the facets of P having sup-

porting functions hP (ui) = supx∈P (x · ui) and the supporting hyperplanes

HP (ui) = {x ∈ Rn : x · ui = hP (ui)}.
Let us suppose that P = Q + R for some integral polytopes Q,R in Rn.

Now, consider any strong chain F0, F1, ..., Fk ∈ F of integrally indecomposable

faces of P . Let Gj be the face of Q corresponding to Fj, i.e. Fj = Gj +Hj for

some face Hj of R. Since Gj is a summand of the integrally indecomposable face

Fj, there exists a vector tj ∈ Rn such that Gj = Fj+tj. Since dim(Fj−1∩Fj) ≥
1 for each j, we see that tj−1 = tj. Therefore, for any strongly connected family

F of integrally indecomposable faces of P, we have a vector t ∈ Rn such that,

if G is the face of Q corresponding to F ∈ F then G = F + t.

By the hypothesis of our theorem, the family F touches every facet of P. If

Fi = FP (ui) is such a facet then it has a vertex a lying in some face FP (v) ∈ F.
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The corresponding vertex b of Q lies in FQ(v). Hence, we have b = a + t. By

considering the support function hQ of Q, we have hQ(ui) = b·ui = (a+t)·ui =

a ·ui + t ·ui = hP (ui) + t ·ui = hP+t(ui) for i = 1, ...,m. As a result, Q = P + t,

showing that P is integrally indecomposable. 2

Example 4.2.5 (i) Numeric example for Theorem 4.1.3:

Let us consider the polytopes

C1 = conv((0, 10, 0), (15, 0, 0), (30, 0, 0), (35, 10, 0), (35, 28, 0),

(32, 40, 0), (16, 40, 0), (0, 26, 0)),

C2 = conv((5, 12, 10), (14, 3, 10), (27, 3, 10), (33, 9, 10), (33, 24, 10),

(28, 3, 10), (16, 33, 10), (5, 26, 10)),

C3 = conv((12, 14, 20), (17, 7, 20), (25, 7, 20), (30, 10, 20), (30, 20, 20),

26, 23, 20), (18, 23, 20), (12, 22, 20))

lying in the planes z = 0, z = 10 and z = 20 respectively. Then, the polytope

C = conv(C1, C2, C3, (21, 15, 30)), which is of type of the polytope in Example

4.2.2, (6), is integrally indecomposable by Theorem 4.1.3 since C has a strong

chain of triangular faces joining any two of its vertices and gcd((21, 15, 30) −
(12, 14, 20)) = gcd(9, 1, 10) = 1.

(ii) Numeric example for item (5) of Example 4.2.2:

Now, take the polytopes

P1 = conv((0, 10, 0), (15, 0, 0), (30, 12, 0), (12, 36, 0)),

P2 = conv((5, 14, a), (14, 6, a), (24, 14, a), (11, 12, a)),

P3 = conv((8, 14, b), (15, 10, b), (20, 14, b), (11, 18, b))

located in the planes z = 0, z = a and z = b respectively with a, b positive

integers such that b ≥ a. P3 is an integrally indecomposable quadrangle since

its all edges are primitive. We see that the polytope P = conv(P1, P2, P3) is

integrally indecomposable by Theorem 4.2.1 (also by Theorem 4.2.4) since it
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has a strongly connected family F of integrally indecomposable faces which

connects any two vertices of P (which touches each facet of P .) Actually, this

strongly connected family of faces is

F = {conv((8, 14, b), (15, 10, b), (20, 14, b), (11, 18, b)),

conv((0, 10, 0), (15, 0, 0), (14, 6, a)), conv((0, 10, 0), (14, 6, a), (5, 14, a))

conv((5, 14, a), (14, 6, a), (15, 10, b), conv((5, 14, a), (15, 10, b), (8, 14, b)),

conv((30, 12, 0), (12, 36, 0), (24, 14, a)), conv((12, 36, 0), (11, 22, a), (24, 14, a)),

conv((24, 14, a), (11, 22, a), (20, 14, b), conv((11, 22, a), (20, 14, b), (11, 18, b))}.
(iii) Numeric example for item (4) of Example 4.2.2:

Consider the polytopes

Q1 = conv((5, 14, c), (14, 6, c), (24, 14, c), (11, 12, c)),

Q2 = conv((0, 10, d), (15, 0, d), (30, 12, d), (12, 36, d)),

Q3 = conv((8, 14, e), (15, 10, e), (20, 14, e), (11, 18, e))

placed in the planes z = c, z = d and z = e respectively with c, d, e positive

integers such that e > d > c. Q3 is an integrally indecomposable quadrangle

since its all edges are primitive. We see that the polytopeQ = conv(Q1, Q2, Q3)

is integrally indecomposable by Theorem 4.2.1 (also by Theorem 4.2.4) since

it has a strongly connected family F of integrally indecomposable faces which

connects any two vertices of Q (which touches each facet of Q.) The suitable

strongly connected family of integrally indecomposable faces is

F = {conv((8, 14, e), (15, 10, e), (20, 14, e), (11, 18, e)),

conv((0, 10, d), (15, 0, d), (14, 6, c)), conv((0, 10, d), (14, 6, c), (5, 14, c))

conv((5, 14, c), (14, 6, c), (15, 10, e), conv((5, 14, c), (15, 10, e), (8, 14, e)),

conv((30, 12, d), (12, 36, d), (24, 14, c)), conv((12, 36, d), (11, 22, c), (24, 14, c)),

conv((24, 14, c), (11, 22, c), (20, 14, e), conv((11, 22, c), (20, 14, e), (11, 18, e))}.

The following theorem is a consequence of Theorem 4.2.4.
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Theorem 4.2.6 Let A and B be polytopes such that C = conv(A ∪ B) with

dim(C) = dim(A)+dim(B)+1. Moreover, suppose also that ai, ai+1, a are ver-

tices of A, such that ai and ai+1 are adjacent, and b is a vertex of B satisfying

gcd(b−ai, b−ai+1) = 1 or gcd(b−a) = 1. Then C is integrally indecomposable.

Proof: Every facet of C = conv(A ∪ B) contains either A or B. Therefore, if

ai, ai+1, a are vertices of A, ai and ai+1 are being adjacent, and b is a vertex of B

with gcd(b−ai, b−ai+1) = 1 or gcd(b−a) = 1 then the face T = conv(ai, ai+1, b),

which is an integrally indecomposable triangle, or the face L = conv(a, b),

which is an integrally indecomposable line segment, meets every facet of C.

Therefore, by Theorem 4.2.4, taking F = {T} or F = {L}, C is integrally

indecomposable. 2

Remark 4.2.7 There are several criteria in the literature about the homoth-

etic decomposability of polytopes. But, since we are trying to find the families

of absolutely irreducible polynomials directly, our aim is to find integrally inde-

composable polytopes. Therefore, we do not go into details of such interesting

facts. For example, the following results are due to Smilansky [Sm2]:

(1) If a 3-dimensional polytope P has more vertices than facets, then P is

homothetically decomposable.

(2) If a 3-dimensional polytope P has no more than three triangular facets,

then P is homothetically decomposable.

(3) If all the facets of a 3-dimensional polytope P are homothetically decom-

posable, then so is P. 2
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Chapter 5

ON ABSOLUTE IRREDUCIBILITY OF

SOME POLYNOMIALS

OVER LARGE CHARACTERISTICS

In this chapter, motivated by a conjecture of McGuire and Wilson given in

[MW], we show absolute irreducibility of some classes of homogeneous poly-

nomials for sufficiently large characteristics.

5.1 INTRODUCTION

First we recall the conjecture of McGuire and Wilson.

Conjecture : Let t be a positive odd integer satisfying

t ≡ 1 (mod 4),

t 6= 2i + 1 for any integer i, i.e. t /∈ {1, 3, 5, 9, 17, ...},
t 6= 22i − 2i + 1 for any integer i, i.e. t /∈ {1, 3, 13, ...}.
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Then the homogeneous polynomial

g(x, y, z) =
xt + yt + zt + (x+ y + z)t

(x+ y)(x+ z)(y + z)

is absolutely irreducible over the finite field F2, i.e. irreducible over every

algebraic extension of F2.

In Section 5.2, first we have constructed three kinds of polynomial classes.

Then, by making a suitable combination of the methods presented in [R2],

[GR] and [G1], we have shown that these three classes of polynomials are

absolutely irreducible over the finite fields Fp for the prime numbers p > Ci

for some certain constant numbers Ci.

5.2 MAIN OBSERVATION AND RESULT

Instead of considering the polynomial g(x, y, z), we think of the polynomials

g1(x, y, z) =
xt − yt − zt + (x− y − z)t

(x− y)(x− z)
for any even positive integer t ≥ 4,

g2(x, y, z) =
xt − yt − zt + (−x+ y + z)t

(x− y)(x− z)
for any even positive integer t ≥ 4,

g3(x, y, z) =
xt − yt − zt + (−x+ y + z)t

(x− y)(x− z)(y + z)
for any odd positive integer t ≥ 5

over the finite field Fp with large characteristic p.

Remark 5.2.1 For a polynomial

f(x, y) =
∑
i,j

aijx
iyj ∈ Z[x, y],

we write degx(f) for its degree in x, degy(f) for its degree in y, deg(f) for its

total degree and H(f) for its height (which is defined as maxi,j{| aij |}).
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In order to give our result, we shall use the following lemma.

Lemma 5.2.2 Let f(x1, x2, ..., xn) ∈ Z[x1, x2, ..., xn] be a homogeneous poly-

nomial over Q. Then f(x1, x2, ..., xn) is absolutely irreducible if and only if

f(x1, x2, ..., xn−1, 1) is absolutely irreducible.

Proof: If f(x1, x2, ..., xn) is reducible, f(x1, x2, ..., xn−1, 1) is also reducible.

Converse follows from the equality

f(x1, x2, ..., xn) = f(
x1

xn
,
x2

xn
, ...,

xn−1

xn
, 1)xdeg(f)

n

while f(x1, x2, ..., xn) is homogeneous. 2

Remark 5.2.3 We observe that the polynomials gk(x, y, x) have polygonal

Newton polytopes. Actually, Newton polytope of the polynomials g1(x, y, z)

and g2(x, y, z) is the triangle conv((t− 2, 0, 0), (0, t− 2, 0), (0, 0, t− 2)) lying in

the plane x+y+z = t−2 for each values of t. And, g3(x, y, z) has also polygonal

Newton polytope, which is the triangle conv((t−3, 0, 0), (0, t−3, 0), (0, 0, t−3)),

lying in the plane x+ y + z = t− 3.

Now, we construct the polynomials

fk(x, y) = gk(x, y, 1), k = 1, 2, 3.

As a result of Remark 5.2.3, f1(x, y) and f2(x, y) have Newton polytopes

conv((0, 0), (t− 2, 0), (0, t− 2)

which is an integrally decomposable triangle. And, f3(x, y) has the Newton

polytope

conv((0, 0), (t− 3, 0), (0, t− 3)
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which is also an integrally decomposable triangle.

Let us assume that degx(fk) = mk, degy(fk) = nk and H(fm) = Hm.

We form the Ruppert bounds, achieved in [R2], Bfk as

Bfk = [mk(nk + 1)n2
k + (mk + 1)(nk − 1)m2

k]
mknk+(nk−1)/2 ·H2mknk+nk−1

k .

Then, we also form the Gao-Rodrigues bounds for each polynomial, at-

tained in [GR],

Cfk = (
√
m2
k + n2

k· ‖ fk ‖2)2tk−3

where tk is the number of integral points in the Newton polytope Pfk of fk,

and ‖ fk ‖2=
√∑

i,j a
2
kij is the Euclidean norm of fk.

Now, we can give our result.

Corollary 5.2.4 Let fk(x, y) = gk(x, y, 1) ∈ Z[x, y], k = 1, 2, 3 be absolutely

irreducible over Q. Then fk(x, y) are also absolutely irreducible over Fp, by

[R2] and [GR], for the prime numbers p such that

p > Bfk or p > Cfk ,

Consequently, the polynomials gk(x, y, z) are absolutely irreducible over the

finite fields Fp by Lemma 5.2.2.

Example 5.2.5 (1) Consider the polynomial

g3(x, y, z) =
x5 − y5 − z5 + (−x+ y + z)5

(x− y)(x− z)(y + z)
= 5(x2+y2+z2−xy−xz+yz).

Then g3(x, y, z) is reducible over Z if and only if the polynomial

q(x, y, z) = x2 + y2 + z2 − xy − xz + yz
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reducible over Z. So, we can work on the polynomial q(x, y, z) instead of

g3(x, y, z).

We have degx(q(x, y, 1)) = degy(q(x, y, 1)) = 2, H(q(x, y, 1)) = 1. More-

over, Newton polytope of q(x, y, 1) is the triangle conv((2, 0), (0, 2), (0, 0))

which contains six integral points. So, we have t3 = 6 for the Gao-

Rodrigues bound. Furthermore, q(x, y, 1) = x2 + y2 + 1 − xy − x + y is

absolutely irreducible over Q.

Consequently, g3(x, y, z) is absolutely irreducible over Fp if p is a prime

number such that

p > 3646 = 10077696 or p > (4
√

3)9 = 36777784

(2) Consider the polynomial

f(x, y, z) =
x7 − y7 − z7 + (−x+ y + z)7

(x− y)(x− z)(y + z)

= 7x4 − 14x3y − 14x3z + 21y2x2 + 35x2zy + 21x2z2 − 14xy3 − 35xy2z

− 35xyz2 − 14xz3 + 7y4 + 14y3z + 21y2z2 + 14yz3 + 7z4.

= 7(x4 − 2x3y − 2x3z + 3y2x2 + 5x2zy + 3x2z2 − 2xy3 − 5xy2z

− 5xyz2 − 2xz3 + y4 + 2y3z + 3y2z2 + 2yz3 + z4) = 7g(x, y, z).

We have degx(g(x, y, 1)) = degy(g(x, y, 1)) = 4 and H(g(x, y, 1)) = 5.

Also, Newton polytope of g(x, y, 1) is the polygon conv((4, 0), (0, 4), (0, 0))

which contains 15 integral points. Moreover, g(x, y, 1) is absolutely irre-

ducible over Q.

As a result, by Corollary 5.2.4, f(x, y, z) is absolutely irreducible over Fp
if p is a prime number such that

p > 3, 607784792 · 1072 or p > 6, 493603934 · 1048.

71



Note that f(x, y, z) is irreducible over F11 and F17 and reducible over

F13. Actually, we have

f(x, y, z)(mod 13) ≡ 7(x2 + 5xy + 2x+ 3y2 + 6xz + 11x+ 11yz + 9z2)

(x2 + 6xy + 6x+ 9y2 + 5xz + 7x+ 11yz + 3z2).

Remark 5.2.6 Note that the polytope method presented in [G1] does not

work about the absolute irreducibility of the polynomials gk(x, y, z), for k =

1, 2, 3. Because, these three polynomials have integrally decomposable Newton

polytopes, which are integrally decomposable triangles in R3.

Remark 5.2.7 Actually, we had considered to take the homogeneous polyno-

mials

fk(x, y) = gk(x, y, 1) + pxdeg(gk+1)ydeg(gk+1) k = 1, 2, 3

for a suitable prime number p. These polynomials have integrally indecompos-

able Newton polytopes which are quadrangles in the plane R2. Hence, they are

absolutely irreducible over the field of rational numbers Q. Thus,

fk(x, y) (mod p) = gk(x, y, 1)

would be absolutely irreducible over the finite field Fp. Consequently, by Lemma

5.2.2, gk(x, y, z) would be absolutely irreducible over Fp.

But, this idea did not work since the prime numbers , achieved by Ruppert

and Gao, depend on the height of the polynomials. As a result, if we can find

a suitable large prime number p which does not depend on the height of the

polynomials, then we will be able to solve the related conjecture over large

characteristics completely.
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Chapter 6

PROBABILITY OF THE POLYNOMIALS

TO BE IRREDUCIBLE

BY THE POLYTOPE METHOD

In this chapter, being motivated by the method, which is about to deter-

mine the probability of the polynomials to be irreducible by Eisenstein’s cri-

terion in a family of polynomials in Z[x], presented in the paper [D], we shall

introduce how to determine the probability showing the ratio of irreducible

polynomials by the polytope method in some families of polynomials over ar-

bitrary fields. In order to find this ratio, we shall work with the exponents of

terms of polynomials in this family.

First, we start with the simplest forms of polynomials having Newton

polytopes as line segments. Then we examine some polynomials with two

variables. Of course, we can give infinitely many examples in any number of

variables.
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Given any family of polynomials S = {fi(x1, ..xn) ∈ F [x1, ..., xn] | i ∈ I}
over any field F, we use the notation

P (A, I, P ) =
| K |
| L |

to mean the chance that a random polynomial f(x1, ..., xn) ∈ F [x1, ..., xn] in

S is absolutely irreducible by the polytope method, where K is the set of

all exponents of polynomials which are absolutely irreducible by the polytope

method and L is the set of all possible exponents which form the Newton

polytopes of all polynomials in S.

Beside the Euler-phi function φ, we also need to define the following set.

Definition 6.0.8 Let M and N be positive integers with M ≤ N. Then for

any positive integer i, we define the set

SM−N(i) = {x ∈ Z | M ≤ x ≤ N, gcd(x, i) = 1}.

Throughout this chapter, F ∗ stands for the set of all nonzero elements for

a field F .

Example 6.0.9 Let {axN + bym | 1 ≤ m ≤ N} be a set of family of poly-

nomials over an arbitrary field F with a, b ∈ F ∗ and N ≥ 1 a given integer.

Then, we have

P (A, I, P ) =
φ(N)

N
.

Example 6.0.10 Consider the following set of family of polynomials

{axn + bym +
∑

cijx
iyj | a, b ∈ F ∗, cij ∈ F,mi+ nj = mn}

where N and M are given positive integers such that 1 ≤ n ≤ N, 1 ≤ m ≤M

with N ≤M. Then

P (A, I, P ) =

∑N
i=1 φ(i) +

∑N
i=2 φ(i)

NM
=

2
∑N

i=1 φ(i)− 1

NM
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=

∑N
i=1 | S1−N(i) |

NM
if N = M,

and

P (A, I, P ) =
2
∑N

i=1 φ(i) +
∑M

i=N+1 | S1−N(i) | −1

NM

=

∑N
i=1 | S1−M(i) |

NM
if N < M.

Example 6.0.11 Consider the set of polynomials

{axn+bym+cxuyv +
∑

cijx
iyj | a, b, c ∈ F ∗, cij ∈ F, 1 ≤ n ≤ N, 1 ≤ m ≤M}

where N,M,A,B,C,D are given positive integers satisfying

A ≤ u ≤ B, C ≤ v ≤ D and Mu+Nv > MN.

Without loss of generality, assume that N ≤ M < C ≤ A ≤ B ≤ D. By the

polytope method, a polynomial f = a1x
e1 + b1y

e2 + c1x
e3ye4 +

∑
cijx

iyj in this

set is absolutely irreducible over F if gcd(e1, e2, e3, e4) = 1. Hence, we have

P (A, I, P ) =
[
r +

∑N
i=1

(
| S1−M(i) | + | SA−B(i) | + | SC−D(i) |

)
+
∑M

i=1

(

| SA−B(i) | + | SC−D(i) |
)

+
∑B

i=A | SC−D(i) |
]
/
[
NM(B−A+1)(D−C+1)

]

where r is the cardinality of the set of triple and quad relatively prime expo-

nents in the related intervals.
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