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ABSTRACT

HIGH SPEED-VISCOUS
PLANE COUETTE-POISEUILLE FLOW STABILITY

Ebring, Ali Aslan
Ph.D., Department of Mechanical Engineering
Supervisor: Prof. Dr. Zafer Dursunkaya

Co-Supervisor: Assoc. Prof. Dr. Serkan Ozgen

February 2004, 125 pages

The linear stability of high speed-viscous plane Couette and Couette-Poiseuille flows
are investigated numerically. The conservation equations along with Sutherland’s
viscosity law are studied using a second-order finite difference scheme. The basic
velocity and temperature distributions are perturbed by a small-amplitude normal-
mode disturbance. The small-amplitude disturbance equations are solved numerically
using a global method using QZ algorithm to find all the eigenvalues at finite
Reynolds numbers, and the incompressible limit of these equations is investigated for
Couette-Poiseuille flow. It is found that the instabilities occur, although the
corresponding growth rates are often small. Two families of wave modes, Mode I
(odd modes) and Mode II (even modes), were found to be unstable at finite Reynolds
numbers, where Mode II is the dominant instability among the unstable modes for
plane Couette flow. The most unstable mode for plane Couette — Poiseuille flow is
Mode 0, which is not a member of the even modes. Both even and odd modes are

acoustic modes created by acoustic reflections between a wall and a relative sonic

il



line. The necessary condition for the existence of such acoustic wave modes is that
there is a region of locally supersonic mean flow relative to the phase speed of the
instability wave. The effects of viscosity and compressibility are also investigated

and shown to have a stabilizing role in all cases studied.

Couette-Poiseuille flow stability is investigated in case of a choked channel flow,
where the maximum velocity in the channel corresponds to sonic velocity. Neutral
stability contours were obtained for this flow as a function of the wave number,
Reynolds number and the upper wall Mach number. The critical Reynolds number is
found as 5718.338 for an upper wall Mach number of 0.0001, corresponding to the

fully Poiseuille case.

Keywords: linear stability, eigenvalue, high speed-viscous flow, Couette flow,

Poiseuille flow, QZ algorithm, critical Reynolds number
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YUKSEK HIZLI - VISKOZ AKISKANIN
DUZLEMSEL COUETTE-POISEUILLE AKISTAKi KARARLILIGI

Ebring, Ali Aslan
Doktora, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr.Zafer Dursunkaya
Ortak Tez Yoneticisi: Assoc. Prof.Dr. Serkan Ozgen

Subat 2004, 125 sayfa

Yiiksek hizli ve viskoz akiskanin dogrusal bir diizlemde Couette ve Couette —
Poiseuille akis modellerindeki kararlilig1 sayisal olarak incelenmistir. Problem, ideal
gaz denklemi ve Sutherland viskozite kanunu da kullanilarak ikinci dereceden sayisal

denklemler halinde ¢oziilmiistiir.

Temel hiz ve sicaklik dagilimimi kapsayan denklemler ufak genlikler kullanilarak
normal mod metodu kapsaminda uyarilmistir. Ufak genlikli uyarilmis denklemler,
tiim 6z degerleri bulmak i¢in QZ algoritmas1 kullanilarak sonlu Reynolds sayilarinda
sayisal olarak ¢o6ziilmiis ve bu denklemler yiiksek hizli Couette-Poiseuille akisi igin
incelenmistir. Kararsizliklar uyarilma genliginin kiiciik olmasi durumunda da
etkilerini siirdiirmektedir. Kararsizlik modlari, Mod I ve Mod II olarak iki ana gruba
ayrilarak, sonlu Reynolds sayilarinda da varliklarimi korumaktadirlar. Mod I,
Couette akis icin en kararsiz olan moddur. Couette — Poiseuille akista en kararsiz

Mod 0 olup, Couette akistaki ¢ift modlar sinifindan degildir. Her iki kararsizlik



modu, kanal i¢indeki gaz akis hizinin dalga hizina gore sesten daha hizli oldugu
durumlarda; kanal igindeki gazin duvar ve goreceli ses ¢izgisi arasindaki akustik
yansimalarindan meydan gelmektedir. Kararsizlig1 istikrarli ve duragan hale

getirmede gazin viskozite ve sikistirilabilirliginin etkisi ayrica incelenmisgtir.

Maksimum akis hizi sonik olacak sekilde kanal icinde Couette — Poiseuille akis
incelenmistir.  NOtr kararsizlik egrileri; dalga sayisi, Reynolds sayist ve fist
duvardaki Mach sayisinin fonksiyonu olarak elde edilmistir. Kritik Reynolds sayisi
iist duvar Mach sayisinin 0.0001 oldugu tamamiyla gelismis Poiseuille akis icin

5718.338 olarak hesaplanmustir.

Anahtar Kelimeler: dogrusal kararlilik, 6zdeger, yiiksek hizli — viskoz akis, Coutte

akis, Poiseuille akig, QZ algoritmasi, kritik Reynolds sayisi
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CHAPTER 1

INTRODUCTION

The subject of solving the emission problem has been under investigation over the
past several years due to its adverse effect on environmental pollution. The loss of
engine oil through the piston-cylinder assembly is a contributor to unburned and
burned hydrocarbon emissions. With the implementation of stringent emissions
standards, the hydrocarbon emissions due to fuels have radically decreased, paving
the way for the engine oil to become a significant contributor to emissions. In an
internal combustion engine (ICE), the processes leading to the formation of
pollutants are complex and therefore experimental techniques are of widespread use
in engine development. The oil flow through the piston-cylinder system has
numerous flow passages and local volumes where engine oil can flow through and
accumulate. Combustion gases also flow through the same passages and volumes
resulting in a complex two-phase flow phenomenon. Due to this nature of the gas-oil
flow and the difficulty of the testing and viewing the oil accumulation before and
after the piston rings, experimental methods have been used in understanding the
gross effects of design parameters on oil loss and developing engines with less oil

consumption.

Engine oil is also a strong contributor to particulate formation in diesel engines. In
addition, it influences the unburned hydrocarbon emissions of spark ignition engines
because of the absorption/de-sorption phenomenon between the unburned fuel and
the lubricating oil films. The mechanism of oil consumption in the ICE is complex

and so far details have not been thoroughly understood.



In the study of engine oil loss, two sequential stages are defined; the oil rising and oil
disappearing. Oil rising is used to define the ensemble of mechanisms that promote
the transport of oil into the combustion chamber, whereas oil disappearing is related
to phenomena that transform the oil into products carried out by the flow of exhaust

gas, such as evaporation and combustion.

T oil layer

LINER \

P P
L |
- ' PISTON s
0.5 mm T b\ E RING T
The ring gap R O
RING across flow N
passes
PISTON
GAS FLOW
Top View Front View

Figure 1.1. Piston ring end gap crosssection and geometry through the flow pass

There are three perceived paths for oil flow through the rings:

1. The oil flow as oil film between the piston ring and the cylinder liner
2. The oil flow through the ring end gaps
3. The oil flow through the ring groove

Geometry and dimension of the ring end gap through which engine oil flow occurs is
shown in Figure 1.1. The driving forces that are generally considered responsible of
flows are: The pressure difference between each ring, the inertia forces, and the
transport of oil as fog or vapor in the gas stream. Most important mechanisms that

causes the oil to rise in the combustion chamber are the flow between the liner and



ring and the transport of oil in the gas stream as vapor or fog. The mechanisms and
the location of entrainment of oil to form a mist are currently unknown and no

effective mathematical description of this phenomenon has so far been suggested.

Film coolers, falling film absorption towers, condensers, transportation of liquid
vapor mixtures, boundary layers on aircraft wings, turbine blades and walls of a
channel and pipe are examples of processes involving such two-phase flow
problems. The same problem exists in the flow of hot combustion gases over the

thin oil layer between the ring openings or gaps on the piston in ICEs.

If a gas is blown parallel to an oil film, a shearing force will be exerted on the liquid
surface and cause the liquid to flow. This phenomenon exists in the flow system
composed of the piston-liner volumes and the ring-liner flow passages of an ICE.
The oil carried by the gas flow is transported to the combustion chamber of the
engine. With increasing gas velocity, the shear force on the liquid film increases. At
higher gas speeds, the liquid becomes unstable and surface waves will form. This
leads to the removal of oil droplets from the oil film to be dispersed in the gas and

carried to the combustion chamber.

The flow of gas and oil through the ring end gap were modeled by Karkag [1] and the
models for liquid entrainment into the gas flow were integrated to predict the oil loss
into the gas. Three mechanisms of oil loss due to in cylinder components widely
investigated are: 1) oil left on the cylinder surface and mixing with the combustion
chamber content, 2) oil mixing with the blowby gases and transportation due to
pressure gradient across the rings, 3) oil accumulated by the top compression ring
due to the scraping of oil film on the cylinder. Oil backflow due to pressure gradient
is the most effective path for oil loss and it was found that the oil film thickness
affects the backflow oil consumption in the second and third land volumes in ICEs
and the calculated oil loss values were 2-3 times greater than oil consumption

encountered in operating engines.



The effect of oil film thickness on oil accumulation in the second land of ICEs has
been experimentally studied by Ic6z [2]. Backflow of engine oil suspended in
combustion gases has a contribution to the oil consumption and hydrocarbon
emission when the gas flows through the piston second land back into the
combustion chamber. The piston-cylinder model assembled to measure the total oil
accumulated in the modeled second land after a single piston stroke and the results
compared to oil consumption in operating engines shown the oil accumulation in the

second land could be the major contributor to oil consumption.
1.1. Problem Description

Under brake conditions of an engine, the pressure in the intake manifold becomes
lower than the crankcase. When these conditions occur, lubricating oil is sucked
from the crankcase through the piston clearances and ring gaps into the combustion

chamber.
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Figure 1.2. Schematic representation of flow across ring gap in dimensions
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This oil flow from the sump to the combustion chamber through the piston ring belt

causes an increase in oil consumption and an emission of exhaust smoke and oil mist.

The thin layer of oil film and on which gas flows between two parallel plates
represents the basic geometry of the problem. To understand the entrainment of oil
into the high-speed gas, it is necessary to investigate the stability of the oil and gas
interface. The thickness and the velocity of the oil film moving on the stationary
plate are small compared to the high-speed gas flow occurring above the oil film and
regarding the high viscosity of oil compared to that of air, the oil layer behaves like a
solid wall as far as the stability of the gas phase is concerned. Therefore, it is
possible to study the stability of the high-speed gas flow only, and interpret the
findings to apply to the gas-oil system. Although this approach simplifies the
problem, the formulation does not compromise the physics and the omission of the
oil layer in the analysis is not expected to have an effect on the magnitude of critical
Reynolds number for the combined plane Couette-Poiseuille flow. This approach is
justified by Ozgen [3] who studied the characteristics of the instability of Newtonian
and non-Newtonian fluid-air system for low speed flows and concluded that for the
case of air flowing over a thin layer of liquid, there is negligible effect of thin liquid

layer on the stability of the two-phase flow.
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Figure.1.3 Configuration of physical problem in 2D



The fact that, the existence of a thin liquid layer has no contribution to the two-phase
flow instability, simplifies and allows us to formulate the problem to a single layer

gas flow in computational work. The flow geometry is given in Figure 1.3.

1.2. Basic Approach for Hydrodynamic Stability

Stability can be defined as the quality of being immune to small disturbances. In
general, the disturbances need not necessarily be infinitesimally small in magnitude,

but the concept of amplification is always implicit.

The stability of laminar flow has been one of the frequently pursued topics in fluid
mechanics. The actual flow problem to be solved is highly idealized and flow is
assumed to be parallel with velocity and temperature profiles changing in the flow
direction and depending only on the distance from the wall and pressure drop in flow
direction for Poiseuille flow. This builds up the basic flow concept of the stability
calculations. Instability of the flow can occur due to disturbance of equilibrium of
the forces acting on the system which are external, viscous and inertial forces. For
compressible and viscous flows, viscosity, density, Mach number, wave propagation
directions, wall cooling-heating and existence of wall confining the parallel flow
have all effect on the stability. The transition to turbulence depends on perturbations
due to surface roughness, sound source, the inherent perturbation in the downstream

and other effects.

The theoretical investigations are based on the assumption that laminar flows are
affected by small disturbances; for pipe flow, these disturbances originate at the inlet
whereas for the boundary layer over a flat plate placed in a stream they are due to
roughness on the solid surface or irregularities in the external flow. The stability
theory is to follow up in time the behavior of such disturbances when they are
imposed on the main flow and whether the disturbances increase or die out with time.
If the disturbances decay with time, the main flow is considered stable; in contrast, if

the disturbances amplify with time the main flow is unstable and the possibility of



transition to turbulence exists. Stability theory predicts the value of the critical
Reynolds number, beyond which instability will exist for a prescribed main flow.

For plane incompressible viscous Couette flow, the flow is unconditionally stable at
all Reynolds numbers. The viscosity is known to have a stabilizing effect on the
flow. In case of the plane Poiseuille flow, the flow is stable at low Reynolds

numbers.

The mathematical problem is the determination of the eigenvalues of the stability
equation obtained from the governing conservation equations of mass, momentum
and energy. It is the aim of the stability analysis to compute the phase velocity, rate
of amplification and the wave number of all possible disturbances, in a given flow as

a function of the relevant flow properties such as Reynolds and Prandtl numbers.

In natural phenomena, steady state solutions of flow systems have been observed to
become unstable as a result of infinitesimal disturbances, which are always present.
A common example is the formation of waves on bodies of water due to the action of
wind. The common feature of an instability is that infinitesimal velocity or density
perturbations are amplified and eventually grow to finite size in time and/or space.
The growth of disturbances could be algebraic or exponential in nature. Typical
instability analysis assumes an exponential growth, because it is expected that such a
behavior would overwhelm any algebraic growth. However, algebraic analyses have
been used in problems where exponential models do not match the experimental
data. Infinitesimal disturbances are expected to be in the form of noise. The noise is
infinitesimal, meaning that the amplitude thereof is small compared to any length

scale of the problem.

1.3. Review of Previous Studies

A review of the abundant work published in the area of the waves and instability

generated by shear flows shows that there exists many primary approaches for

modeling of complex physical processes that occur over the liquid surface.



Behavior of instability waves on the interface has been the subject of many
experimental and analytical studies in the past. In general, characteristics of surface

instability can be analyzed in the framework of linear analysis.

In the literature, numerous investigators worked on this problem experimentally and
numerically.  Analysis of the incompressible viscous and/or inviscid stability
problem based on the Orr-Sommerfeld equation has been widely presented in the
literature. Experimental approaches are used to visualise the phenomena from the

physical point of view to compare the numerical studies or to complete the solution.

Lees and Reshotko [4], studied on the stability of the compressible laminar boundary
layer to infinitesimal disturbances assuming the two dimensional compressible
laminar boundary layers to two dimensional subsonic disturbances and only simplest
model of a compressible gas with constant specific heat, constant Prandtl number,
viscosity a function of temperature. They concluded that the rate of conversion of
energy from the mean flow to the disturbance flow through the action of viscosity in
the vicinity of the wall increases with Mach number. Also the amplitude of inviscid
pressure fluctuations for Mach number greater than 3 decreases with distance
outward from the plate surface. The jump in magnitude of the Reynolds stress in the
neighbourhood of the critical layer is greatly reduced. At the Mach number less than
about 2, dissipation effects are minor, but extremely important at high Mach
numbers. Finally the minimum critical Reynolds number for an insulated flat plate

boundary layer decreases with increasing Mach number in the range of 0<M<3.

Lesen, Fox and Zien [5], investigated the inviscid stability of the laminar mixing of
two parallel streams of a compressible fluid with respect to 3D wavy disturbances.
They considered the Squire’s method to decrease the incompressible 3D disturbances
to be equivalent to a two dimensional one at a lower Re number. It is sufficient to
consider 2D disturbances only. They focused on the influence of the Mach number
of the flow and the angle of wave propagation on the stability characteristics of the
laminar mixing of two streams of a compressible fluid. They considered the flow

with subsonic disturbances due to the reason of supersonic disturbances, which are



often neglected in the stability calculations are less destabilizing then subsonic

disturbances.

Brown [6], studied the compressible boundary layers. He pointed out for Mach
numbers above 2 and 3 stability equations for compressible flow include a number of
terms, involving the components of the mean boundary layer velocity component
perpendicular to the surface (flat plate), which are not negligible, but those have been
ignored in making parallel flow assumptions. He numerically solved stability
equations including those surface perpendicular terms. He included the momentum
equations in all three directions in his calculations instead of the usual two and
concluded that there is an agreement between theory and experiment for both upper
and lower branches of the neutral stability curve for both Mach number 2 and 5.
After substitution of the three-dimensional form of perturbation component, in ¢e the
equations of motion, reduction to two-dimensional form by the Squire’s theorem is
accomplished. This results in a systems of eight first order differential equations and

the solution is separated into two parts

Yih [7], considered the stability of superposed fluids of different viscosity in plane
Couette and Poiseuille flow. The variation of viscosity in a fluid can cause the
instability. He considered that both plane Poiseuille and plane Couette flows can be
unstable although the Reynolds number is high. He recognised the plane Couette-
Poiseuille flow of two superposed layers of fluids of different viscosity between two
horizontal plates. He concluded that both plane Couette and Poiseuille flows can

cause instability although the Reynolds number is small.

Blumen, Drazin and Billings [8], considered the linear stability of shear layer of an
inviscid compressible fluid. It was shown by them that there was instability of two
dimensional disturbances at all values of the Mach number, due to second unstable
mode. This mode is supersonic, decays with distance from the shear layer and is not
governed by the principle of exchange of stabilities. The shear layer is unstable to
two-dimensional waves at each value of the Mach number. The occurrence of
second mode is associated with a breakdown in the validity of the Mach number.

They concluded that if a given flow is unstable to two-dimensional waves at zero

9



Mach number, it is unstable to three-dimensional waves at each value of the Mach
number. A wave nearly perpendicular to the plane of compressible flow is
equivalent to a two dimensional incompressible wave because smallness of effective

basic velocity.

Blumen [9], studied on the stability of parallel shear flow of an inviscid compressible
fluid by a linear analysis. It is shown that a subsonic neutral solution of the stability
equation would be found where the basic flow is represented by the hyperbolic
tangent velocity profile. Unstable eigenvalues, eigenfunctions and Reynolds stresses
are determined by numerical values. He found an analytical neutral stability
characteristics for a smoothly varying shear layer of an inviscid perfect gas at
uniform temperature. He only considered the subsonic disturbances and instability
was shown to exist for 0<M<I, when the Mach number M is based upon half the

velocity difference across the shear layer.

Mack [10], described the stability problem for the compressible, viscous (and
inviscid) laminar boundary layer. He described the stability problem as dealing with
the flow which is parallel with specified velocity and temperature profile, having the
only change depend on the distance from the wall. Disturbances are taken travelling
in the form as sinusoidal waves. Amplification with respect to time only.
Mathematical problem is shaped to determine the eigenvalues of the stability
equations at same Reynolds number, such as, the phase velocity, rate of amplification
and the wave number of all possible disturbances. Asymptotic method is used to
evaluate those theories to approach the stability problem. Solution of the laminar
boundary layer equations cover the Mach number range from 0.4 to 5.0. Pressure

gradient is taken to be zero to keep the simplicity of ordinary differential equation.

Djordjevic and Redekopp [11], studied the linear stability of inviscid, compressible
shear flow. Relative Mach number,|U, - ¢[, which is the important parameter for
characterizing the disturbance in parallel shear flow is taken as by them. They
introduced that for subsonic flows over the entire flow domain stability modes are

the modifications of vorticity modes for incompressible limit. They obtained the
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specific neutral solutions for both a shear layer. Also unstable solutions are

calculated for both streamwise and oblique distributions in the shear layer flow.

Glatzel [12], investigated the structure of normal modes in viscous compressible
plane Couette flow. Two different modes of spectrum are defined as being the
viscous modes which obtain finite phase velocities by the mechanism of mode
pairing and the sonic modes whose phase velocity becomes distorted in the
supersonic regime. Both mode pairing of viscous modes and distortion of the phase
velocity of sonic modes are caused by the shear. Combined effect of viscosity and
compressibility is studied treating the simplest case of plane Couette flow. The
perturbation equation is considered to the simple differential equation for the
pressure perturbation. Viscosity stabilizes at sufficiently small Reynolds number but
for such cases like plane Poiseuille flow it leads to an instability at high Reynolds

numbers.

Zhuang, Dimotakis and Kubota [13], investigated the inviscid stability with respect
to supersonic disturbances of a spatially growing plane mixing layer inside parallel
flow guide walls using linear stability analysis. The shear layer flow considered as
inviscid and formed by the same gases in the two streams. The mean flow is treated
as parallel. Their purpose was to give a description of how the instability
characteristics of the shear layer are affected by the flow guide walls and by the
distance between the walls. Concluding that the existence of the walls makes the
shear layer more unstable and keeps the maximum amplification rates from reaching
an asymptotically small values for supersonic convective Mach numbers, but no such
an effect can be seen for subsonic convective Mach numbers. For supersonic
convective Mach numbers they found the maximum amplification rates of the shear
layers approach an asymptotic value and this maximum amplification rate increased
to its maximum value and decreases as the distance between the walls decreases

continuously.

Malik [14], compared the various numerical methods for the solution of laminar
stability equations for compressible boundary layers. He discussed both the global

and the local eigenvalue methods for temporal stability analysis. Global methods are
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used to compute all the eigenvalues of the discretised system and in local methods
both purification and computation of the associated eigenfunctions take place. The
discretization methods that Malik applied are second order finite difference method,
second order finite difference method with fourth order accurate two-point compact
difference scheme, Chebyshev spectral collocation method and multi-domain
spectral collocation method. All these methods belong to the class of methods called
boundary value method. He presented the eigenvalues up to Mach number 10,
hypersonic range taking the effect of increase of Mach number brings out the
deterioration of spectral method due to outward movement of the critical layer.
Elimination of this problem is accomplished by using multi-domain spectral

collocation method for better accuracy.

Malik [14] concluded up with the compressible analogue of the known
incompressible Orr-Sommerfeld equation which is a coupled set of five ordinary
differential equations. The set of equations are one second order energy equation,
three second order momentum equation and one first order continuity equation.
Reduction of those system of second order ordinary differential equation is possible
using the approach by Less and Lin (1946). Numerical methods are described that
perfect gas equations are applicable. Malik take into account of Sutherland’s formula

. . . T"
for the viscosity with temperature dependence as u = 2.227*10’8m Ib-sec/ ft*.
+ X

Malik used two different methods to solve the compressible linear stability problem
as an Initial value theorem and boundary value problem. He described the advantages
and disadvantages of both methods which are based upon Chebyshev spectral-tau
approach. Initial value problem (IVM) consists of constructing independent initial
value problems whose solutions satisfy the eight order set of differential equations
and conditions at the free-stream boundary. Main advantage of IVM is the minimal
computer memory requirement and their capacity to adjust the integration to local
conditions. Disadvantage of this method is the requirement of a good guess of the
eigenvalues. For boundary value method,(BVM), the differential equations are
reduced to linear algebric equations using either a finite-difference discretization or a
spectral representation. Main advantage of this method is their ability to yield

eigenvalues when no knowledge of the instability is available for the problem of
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interest. Disadvantage of this is the high demand on computational resources both
memory and time. As the Mach number increases, the critical layer moves away
from the wall towards the edge of the boundary layer. Therefore Chebyshev spectral

methods may not be a natural choice for hypersonic boundary layer stability.

Yih [15] investigated wave formation on a thin liquid layer used by de-icing airplane
wings by studying the stability of air flow which is compressible and viscous over a
liquid coated flat plate at zero angle of incidence. In his physical model, the ratio of
the viscosity of the liquid to that of air is very high and the Re number based on the
liquid depth and air viscosity is of the order of a few thousand. Yih obtained two
formulas for the growth rate and phase velocity of the gravity effect and surface
tension as being Froude number, F and S, respectively. Viscosity difference has the
dominant effect in Yih’s instability model because it induces a jump in the velocity

gradient.

Duck, Erlebacher and Hussaini [16], investigated the linear stability of compressible
plane Couette flow. Firstly, they treated the basic velocity and temperature
distribution perturbation by a small amplitude normal mode disturbance. After
disturbance equations they handled at finite Reynolds number those equations are
solved numerically and they investigated the inviscid limit of those equations. They
included the viscosity to slow the effect of it on calculations and it has stability role
in all cases they investigated. Also investigated by them the cases where the wave
speed of the disturbances approached the velocity of walls. The effect of imposing
radiation type boundary conditions on the upper (moving) wall is investigated to
yield the results common to both unbounded and bounded flows. They showed that
the details of the mean flow profile have a profound effects on the stability of the
flow. They studied the linear inviscid and viscous stability of compressible Couette
flow using realistic compressible flow models. The viscosity coefficients are
computed by the Sutherlands law with a constant Prandtl number of 0.72. using
numerically generated solutions for the basic flow. They calculated the inviscid
stability modes of compressible Couette flow. The inviscid stability characteristics
of the bounded Couette flow was found to be quite different from that of the

unbounded boundary layers. For the viscous instability of compressible Couette
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flow, analysed the effects of viscosity on the stability by asymptotic analysis.
Viscosity was found to play a stabilising role for the unstable modes. They also
obtained the spectra of viscous eigenmodes numerically from the linearized full
Navier-Stokes equations for the viscous stability at finite Reynolds numbers.
Although the viscous unstable modes were expected to exist at high Reynolds

numbers, no evidence of unstable modes was found in theirs numerical solutions.

Hu and Zhong [17] studied the viscous linear stability of supersonic using two global
methods to solve the linear stability equation. Flow for a perfect gas is governed by
Sutherland viscosity law. Those methods they introduced are a fourth order finite
difference method and a spectral collocation method. They found two wave modes
to be unstable at finite Reynolds number. Those modes are acoustic modes created
by sustained acoustic reflections between a wall and a relative sonic line when the
mean flow in the local region is supersonic with respect to the wave velocities.
Effects of compressibility, three dimensionality, wall cooling on the two wave
families are also studied. For hypersonic bounded flows such as plane Couette flow
they expected that the stability properties will be different from those of the
unbounded compressible boundary layers because of the combined effects of the
upper and lower walls. In addition the effects of viscosity on the stability of
compressible Couette flow were examined by comparing the viscous results with the

inviscid stability results obtained by Duck et al.[16].

South and Hooper [18], studied on the linear stability of two-fluid plane Poiseuille
flow in two dimensions, concentrating on transient growth and its dependence on the
viscosity and depth ratio. They concentrated on the hydrodynamic stability of shear
flows of two superposed fluids on the behaviour of the interfacial mode. Interfacial
mode is due to the viscosity and/or density jump across the interface and the
proximity of the boundary walls. The stability equations for two-fluid flows admit
an infinite number of discrete eigenvalues and eigenmodes and the interfacial mode
is usually the leading eigenmode. The flow consists of two immiscible,
incompressible Newtonian fluids of equal density, one on top of the other between

two horizontal plates. Surface tension is to be zero.
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Ozgen, Degrez and Sarma [19], investigated the two fluid flow, in which a gas
boundary layer shears a second fluid that is bounded by the wall and the shearing
fluid. They solved the eigenvalue problem governing the linear stability of the
configuration using an efficient shooting search method. In shooting method, two
asymptotic solutions for the eigenfunctions are constructed at the edge of boundary
layer and Orr-Sommerfeld number is integrated towards the wall. They categorised
the stability modes due to two fluid interface in two modes such as Tollmien-
Schlichting (hard) and Yih (soft) modes. They determined the effects of viscosity
and density stratifications, thickness of the bounded fluid, gravity, surface tension
and non- Newtonian character of lower fluid and concluded that Yih mode is very
sensitive to viscosity stratification and for highly viscous liquid layer single layer
behaviour is to be seen easily. Results on the parameters can be outlined as surface
tension has stabilising effect for short waves for interfacial modes, but they
experienced more complex effect for hard mode. Gravity has destabilizing effect for
low and moderate values of the density stratification but has stabilizing effect for

higher values.
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CHAPTER 2

GOVERNING EQUATIONS

2.1. Flow Description and Objectives

The objectives of the present study are to understand the effects of viscosity,
temperature, compressibility and density on the stability of high speed parallel shear
flows. The flow geometry is sketched in Figure 2.1.

Moving upper wall

*

u =U

7" =T

0 0 *

y : —

Gas

p*,p*k* ) \

" | Ll

u =0 Lower wall (stationary) T = T;

y =0

Figure 2.1. Flow geometry for the compressible Couette flow in a channel

Gas flow is considered as viscous and compressible and in the meantime assumed to
be parallel and fully developed. Velocity and temperature profiles are functions of

vertical distance only. The linearized disturbances are in the form of travelling sine
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waves whose amplification is with respect to time, not with respect to distance
travelled in the flow direction. The mathematical problem is to determine the
eigenvalues of the stability equations, i.e., for given boundary layer profiles to
compute at some Reynolds number, the phase velocity, rate of amplification and the
wave number of all possible disturbances. The stability of a shear layer of an
inviscid compressible and viscous incompressible fluid are all classical problems of
fluid mechanics, which has attracted the attention of some distinguished scientists of
earlier generations. However, the linear stability of compressible flows is

considerably less understood than corresponding incompressible flows.

2.2. Governing Equations of Mean Plane Couette Flow

2.2.1. Basic flow velocity, temperature and related profiles

The laminar gas flow assumption across the channel is used and proved in Appendix
A for a flow media similar with the slit at piston-ring gap. Also for a gas flow
developing in a channel obeying the Poiseuille flow conditions is calculated as fully

developed and laminar.

Velocity u(y), temperature 7(y), dynamic viscosity (7") and thermal conductivity
k(T) of the basic flow are all initially calculated to perform the stability analysis.

Flow is assumed to be nearly parallel and in z — direction there is no flow although

z — momentum equation is taken into account for stability formulation to have full
sets of equation. But at further stability calculations, z — momentum equation was
again discarded from the calculations set to save computational time. Eliminating
the equation made no difference on the results are seen due to all z — momentum

components being either zero or being negligibly small.

For the high speed viscous Couette flow, a solution to the governing equations is

sought.
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The dimensionless form of the continuity equation is given as

8_p+ d(pu) n o(pv) ~0 2.1)
ot ox dy ' '

Here we assume that the appropriate dimensional timescale of O(h" /U_) is used to

nondimensionalize the time.

The momentum equations are then written in dimensionless form by

nondimensionalizing the pressure by p. RT. instead of the conventional p,U ;2 for

the incompressible flow, Duck [16].

ou ou ou 1 op 1]0 ou ou Oov
pl—+u—+v— :——2—+ 2u—+AVu ,u(—+—) ,
ot ox oy yM |~ Ox ox ox oy Ox

(2.2)
p@+u@+v@ =—;26—P+L 0 2u Q+/1Vu +— (6_u+_)
ot ox 0Oy yM,” 0y Re Gy 8y oy Ox
(2.3)
The dimensionless form of energy equation is:
or oT op oP opP
pl—+u—+v— ( —+u—+v
ot ox 6y y | ot ox 6y
L]ojpol +3[ﬁ(a—T} . Q4
Re 6y Pr 6y Ox| Pr Ox
2 -DM:| Ou ov., 1 ou A Ou
P 2 DM | By, (O Sy LG Ty
Re ox oy 2u Ox Oy

Viscosity is a function of the temperature and obeys the Sutherland’s viscosity law.
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The continuity equation can be used to show that the velocity in y — direction is zero.

Then the mean flow only function of y, i.e.,

u=U,(y) T=T,0) u=u) k=k(). (2.5)

After simplification of Equations (2.2) and (2.4), one can get the x — momentum and

energy equations in dimensionless form as

0 oU

— °)=0, 2.6
ay(ﬂo ay) (2.6)
o[ u, or, U,

ZI£ (=DM, (22)* =0 2.7)
oy| Pr oy Oy

and the boundary conditions for the solution of Equations (2.6) and (2.7) are
U,0)=0 Uu,1)=1 (2.8)
r,o=1, TI1,0)=1 (2.9)

It follows from Equation (2.6) that the shear stress, 7 , is constant through the profile,

ie.,

oU
T = u, —= = constant. (2.10)
oy

The energy equation may then be written in the form

O H Oy pypp2e(ey |20, @.11)
oy| Pr oy Oy

Integrating once and rearranging the terms
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T
o, +£(7—1)M§T(%):0 (2.12)
oy oy

o

oT oUu, oU
or ° +E(7—1)M‘i(,uo—”) ~=0 (2.13)
Ay u, d oy
Cancelling viscous terms and integrating once more
U2
T, +Pr(y —1)M] 2" +C=0. (2.14)
is obtained.
After the application of boundary conditions to above relation, one can get
Tw=1+%(7—l)Mi, (2.15)
T
r=—2= 2.16
T (2.16)

In this study, 7 is taken as unity giving out the lower wall temperature is equal to the
lower wall recovery temperature. If the effect of lower wall cooling/heating is to be

investigated, then the ratio will differ from unity.

Starting from the Equation (2.7) and integrating twice, C, and C, are the integration

constants and to be evaluated using
P P
T, = [-——(-DM2eU,dy +[—C\dy+C,. 2.17)
H, M,

In this problem the shear stress is constant and rearranging the expression for shear

du, L
stress, 7 = i, d_ , to obtain viscosity
)
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1_ 4 (2.18)
H, T
When substituted in Equation (2.17),
P dU Pr dU
T,=[-—(-DM2u, U dy+[—2Cdy+C,  (2.19)
U, dy T dy
u, to give
T, :—%(y—l)MjUj+C1EUO+C2 (2.20)
T
Applying the boundary conditions to determine constants, C, and C, .
TR S AT N |V ) /A S Y1)
2 r Pr 2
T, =T|r+(1-rU,-( —TL)UE}. (2.22)

Equation (2.22) gives the temperature distribution in flow field.

From constant shear stress one can write an expression for the derivative of the

0

T . . L
= —, and then introducing Sutherland’s law of viscosity,

velocity as
dy u,

du, 7 (I,+0) (2.23)
dy T (1+C) ° '
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{Tr[r +(1-r)U, —(1- Tl)Uf} + CJ
aq, _, d : (2.24)

dy ( 1 3/2
Tr[r+(1—r)U0 —(l—T)Uj} (1+0)

4

The energy and x — momentum equations define the problem. The shear stressz is
not known a priori and must be determined as a part of iterative solution process.
The mean pressure gradient is constant or zero. To determine the velocity gradient
an iterative process is used. An estimate to the value of 7 is made and this estimate
is used in a 4™ order Runga - Kutta (RK) scheme to integrate Equation (2.24) from
y =0 toy =1, using the shooting method. The result of the integration at the upper
wall is used in a Newton - Raphson iterative scheme to estimate a better guess for the
shear stress, and the process is repeated until convergence to the velocity boundary
condition at the upper wall. The coefficients of the 4™ order Runga - Kutta method

are:
kl :f(x[,yi)a
1 1
ky, = f(x +5d’yi +5dk1)9
1 1
ks :f(xi—'_Ed)yiJrEde))

k,=f(x,+d,y, +dk;), (2.25)

and velocity at the node is
Uo(i+1):U0(i)+éd(k1+2k2+2k3+k4). (2.26)

In Figure 2.2 the curves show the comparison of basic flow solutions using the
method of 4™ order RK and the explicit solution of momentum-energy equations
employing Sutherland’s viscosity rule for zero pressure gradient. Curves in Figure

2.3 are again the basic flow solutions for different wall Mach numbers.
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y, channel height

Figure 2.2. 4™ order R-K and explicit
solution at zero pressure gradient
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Figure 2.3. Velocity, temperature and viscosity
profiles for M, =2,5 and 10
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2.2.2. Derivatives of Mean Flow Velocity and Temperature

The equations for the linear stability analysis contain the first and second order
derivatives of temperatures. In this section expressions for these quantities will be

developed.

Analytically using the Equation (2.6) states the constant shear across the channel

height and introducing Sutherland’s viscosity law, one can get the velocity derivative

dUu, t (1,+0) 2.27)
dy T (1+C) "’ '

{T{r +(1-r)U, (1 —Tl)Uj} + CJ
Y, _, - . (2.28)

dy ( 1 . 3/2
Tr[r+(1—r)U0 —(I—T)Uo} (1+C)

4

2
o

2

. d : . .
Similarly is determined by simple algebra.

The temperature derivative which is needed in the generalized eigenvalue problem is

determined as

dT,
dy

1 du,
—T{(l—r)—2(l—E)UO} s (2.29)

2.2.3. Derivatives of Mean Flow Viscosity and Thermal Conductivity

Sutherland’s viscosity law is used to represent the variation of viscosity with

L : ST T +S
temperature in dimensional form, ,u: =(=2)*"? w
T, (T, +5)

0 0

. In dimensionless form, the

24



viscosity variation can be written as a function of temperature in the form of

/J :(T)3/2 (1+C) .
Y (T,+0)
Hence
dy _3pin 14C ) pan (140) (2.30)
ar, 2 T, +C (T, +0)
Simplifying the relation as
dﬁ:iﬂ_L’ (2.31)
dr, 27, (T,+C)
and
du du
Lo o, +0)-
i _g(dTo . ,Uo)_(dTo( , +O)—u,) o)
ar} 2 T} (T, +C) ' '

Key’s law of thermal conductivity of a gas defined in dimensional form is given as

by Mack [20]

T
k,(y)=0.6325 JT. cal/cm—sec.”C for T, >80K,  (2.33)

-12

2454

1+ 10"
( T )

o

k, () = (0.222964x10"°)T, cal /cm —sec.”C for T, <80K ,  (2.34)

or simply

C
o=l (2.35)

Thermal conductivity, & , is related to the Pr number and in this study for the

0

dimensionless mean flow, the thermal conductivity,k,, is made equal to the
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kinematic viscosity as k, = u,, assuming the Pr<1 and dimensionless mean

1s constant for air.

specific heat at constant pressure, ¢, ,

Then the derivatives of thermal conductivity assuming &k, = x, ,

dk d (1+C)|:; 1/2 d 3/2:|
o _ o _ v , (2.36)
dy dy (To +C)
| (3 Ly a;T dr, pind’T |
4 (T, +C)"*
+§T01/2 dT,, dTo _ d’ 7;(, To3/2 dT (é 172 di)
2 dy dy dy dy
; _{ dT |:2T1/2 dT 3/2:|}
dk 'y
20 =(1+0C)= )
dy (T, +0)*
(2.37)
and
dk, du, 3 u )7
o S 2 (Bey_ (e, 2.38
dT,  dT, 2(T0) (To +C (2.38)

2.3. Governing Equations of Perturbation Flow

Considering two-dimensional disturbances for the lowest limit of stability is
sufficient and approved by Squire’s theorem, three-dimensional form of the
compressible viscous equations of motion is considered having a potential capacity
in case of three-dimensional disturbances. The Squire theorem states that when the
mean flow velocities in y — and z — directions are zero, the lowest value of the critical
Reynolds number occurs when = 0. The equation governing a three-dimensional

oscillation is the same as that of a two-dimensional oscillation except the wave
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number, £, and other terms for the z — momentum equation. If o and f are real, the

presence of SFraises the viscosity. The minimum Reynolds number for instability is

higher for an oblique wave than for a pure two-dimensional wave.(Betchov and

Criminale [21])

Here, in the stability calculations two-dimensional disturbances are considered and

the wave number, 4 in z — direction taken to be zero.

Here are the set of equations

of motion, continuity, energy, equation of state and Sutherland’s rule of viscosity for

viscous compressible ideal gases in dimensional form, respectively, are as given

below in Equations (2.39-2.45).

. ou * *O'u* *dﬂ‘ *O'u*
Yo, +u +v +w
o &x* ¥ x*
% % * £ %
- +i{ﬂ*(zd‘ L ))}, (2:39)
A* ¥ A&* 3 &* Hr a*
* * * *
T R | [ﬂ*(m + 2 )}
a* a* yF| x* &* a*
* * * * * * *
P*{d} L A }=—0’JP +2 {ﬂ*(d} + )}
ax = &x*  H* Er] At ar ot (2.40)
* % * * % % ’ '
+ﬁ{y*(2év —3(5” LT O ))} ‘ [y*(éW i )}—g*
* * * * * * *
p}{é\v +u*éw +v*m +w*éw - + 7 {#*(0% +dl )}
ax G * * o * a&* At xFEF (2.41)
* * * * * * S
R P I B L A
& * d* &* | &* a* 3 &* HF a*
k ko %k k% koK
p*, dp*u*) Ap*v) dp W)zo, (2.42)

% *k %k %k
a & & x
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* * * *
pre,* o +u*5T +v*OT +w*éT
% % *
_0 (k*o’VT )+ 1z (k*ﬂ N o ol
% * * *
+0ﬂ)1D +u*0ﬂp +v*§P +w*ﬂD +O

), (2.43)

where
u* * ow*
)+ + (=)’

PU=2 L Ak A, 1 ant At Lt dnt, '
() =+ )+ ==+ ) == (V¥
2 &t H 2 H* ar 2 ar ar 3

P¥=p*R*T* (2.44)
From Schlichting [22], Sutherland’s law for the viscosity is given by Equation (2.45)

u* Z(T*)yz T, *+S*
/’loo* Too* ]-'*-I_“S‘l>l<

(2.45)

The flow area is in micro dimensions and the effect of gravity is negligible.

Newtonian perfect fluid between two parallel planes is confined between y* =0 and
y*=h* assuming the fully developed flow in x — direction and the calculations for

fully developed flow are shown in Appendix A.

In case of parallel flow assumption, the flow parameters are function of y* only, i.e.,
uk = (%), wE= wH(p¥), TF=T*(%), f* = u* (%), k*=k* (%) and normal

component of the mean velocity is zero, v¥=0.

Cartesian coordinate system and the following scaling factors are used in non-

dimensionalization of the conservation equations. Length scale is the channel height,
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h", velocity scale is the velocity at the upper moving wall,U . . Density p_, , viscosity

4. and conductivity k. are all at the reference temperature of 288 K for upper wall,

pressure is nondimensionalized by p. U ;Zand the time scale by o

0

All other

variables are nondimensionalized by their corresponding values on the upper wall.
The dimensionless variables are represented by the same symbol as those used for

the dimensional variables but without the asterisk, *.

In the next step, we separate the flow into steady mean and unsteady small
fluctuations:
w=w(y)+w(x,y,z,1)

u=u(y)+u(x,y,z1) v=v(y)+V(x,,2,1)

P=P(y)+P(x,y,z,) T=T()+T(x,y,21) p=p()+ p(x,y,2,0)

p=EO) + Azt A=A+ AEyn)  k=k()+k(xy,z0
In the subsequent discussion we drop the bars from the mean flow terms for

simplicity and then cause any confusion in the subsequent analysis.

The introduction of fluctuating and mean flow terms into the dimensionless x —

momentum equation results in the following:

(p+l5){5(u+b7)+(u+mﬂ(u+b7)+(v+‘7)ﬁ(u+17)+(W+W)0"(u§:ﬁ)}

a o Qi) 2 Ou+il)  O+¥)  A(w+iw)

dc[(!”ﬂ)(z = 3( = ) = }
_aP+P) 1| o _ O(v+Y) Ou+i) ’
" Re +ay[(”+”)( & 3 }

l _ O(w+ W) Au+il)

+§Z{(/I+ﬂ)( =~ 4 )}
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y — and z — momentum equations after the nondimensionalization takes the similar
form of x — momentum equation. Continuity and energy equations and finally

equation of state are following in Equations (2.47-2.49):

Ao+ p) Ao+ purid] A+ P+, i+ Pove D] 5 49,

a o & &
(p+5){ﬁ(T+T)+(u+ﬁ)ﬁ(T+T)+(v+v)ﬁ(T+T)+(W+W)§(T+T)}
a &
1 [i[(“k)a(nn} [(k k)ﬁ(T+T)} {(k k)a(T+T)D
RePr| & o & & 124
+(7—1)M$(M+(u+J)M+(V+7)M+(W+VV)$J
(5(u0;-b7)) (ﬁ(v+V)) (ﬁ(w+v71))2
+l é’(v+v) é’(u+u)
2
ry— M? 2(y+/7)+% é’(w+w) o"(v+v)] (2.48)
+l é’(u+u) é’(w j
2
l(é’(quu) a(+ é’(w+w))
3 & & &
and equation of state for ideal gas:
M2(P+P)=(p+p)T+T) (2.49)

Throughout the nondimensionalisation of the equations, we have groups of constants

as follows:
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d_ U_;)( W )= Ko
Re p2" oy’ pULK
*C*
Przluw—*p,
k.,
1 kT k, u

* gk k9

PrRe_c;p;U;T;' h’ c;u;.pwh U,

* %3 *2 *2 *2

h U U, U, U,
(y-DM,> =" *T*f)f B el (ol Ve
cppooUoo 0 cp 0 ( 00) 7/ 0
y—1
%2 * * %2
L.(O{—I)sz = (,Ll:o UOOZ * *h * * = * ﬂf *® ° *OO * 9
Re noce,pUT, hpU, cT,

When compared with the mean flow, the perturbations are small, therefore, quadratic

fluctuating terms such as u g_u <«<U Z—u can be neglected.
X X

One can get the simplified x — momentum equation in linearized form as follows:

i di Al du o ou M cu o

p(g+u§+u§+v5+v5+wg+wg)+p(u5+v5+wg)
o ai 1 dai, 1 1w Ol ot 1 du, 1 1w
F &{”(2(&_3(&)_3@_352)}@{”(2(&_3(&)_30}_3&)}

x Re +é (i-i'@) +é N(@J’_@) +é)|: (ﬂ_i_ﬂ):l_’_é,['\'(m_’_dl):l
P M A M M R N A T

having simplification on viscosity terms,
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ar  ai _di i . du ar ~ au ou
pl—+u—+u—+v—+V —+w—+w—)+ plu—+v—+w—)
a ax & & & 124 124 a& o a
0 ar 27 W ou 12 ow
R 7 (Apety Sy s Y7 (Apty Jecdpy s , (2.50)
) 1 dcﬂu(zé}c 0@} 0&) ﬂ(zdc 0@/ o&)i|
& Re| o & di, & ol w ai, . .dw
S D W S [+ S S+ D
d| & & & & | a|l & & &
where
P G 222
1 w, 3
P 7
’ p, 3
[, =0+ _%ﬂ“’)— 2
’ 1, 37

therefore the remaining y — and z — momentum, continuity and energy equations

become as follows, respectively:

N ~ ~
—+V—4+w—F+ W)+ plu—+v—+w—)
2% V2% 124 124 & & 124

N, dt &
&

Y. & & @}

G E , (2.51)

N 2N
+125+log)+ﬂ(10

SR

ou ov M
—+L,—+1,—)
o 12 174

)+ pu—+v—+w—)

bw M Ay dw
P & & &
0

a N W, .. U o w
{u(loék'*'lo@)"'lzaz)‘hu(loék"'lo@"'lz&)}
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, (2.53)
+p— _p - N@ @ 5 @_
p—+Vv—+p—+wW—+p—+ +w—=0

¥y & Ta a a & &
ar o _or dr _ér dr _or| Jer or or  ar
pl—+u—+Uu—+v—+V—F+Ww—+Ww— |+ p| —tUuU—+Vv—+w—
{ddcdc@@/é’zé’z}[dde@/é’z}
_ ! {5(kﬁ+l?ﬂ)+a(kﬂu?ﬂnﬁ(kﬂw?ﬂ)
PrRe |&x & & & & & & & @ &
+(;/—1)Mw2{ap+uap+L7§P+vap+§ﬂo+wﬁp+N&P}
& & &
T TR R N v
s
A& & & &
b-nm, AL +2I{d‘(ﬁ+ﬁ)+@<ﬂ+ﬁ)+m(@+ﬁ)}
Re & & da & a& & &
2T Ty Py T TP O T T A
& & & & & & ax& & & & a &).
_ lz[(d‘)%(@f+(é‘”)2}+2lo[d’®+d”>+d’é‘”+m@}
M2 & P o &y & Fa& a&d
"Re| & &, A v, A w,
+(—+) +(—+—) +(—+—)
& & & & & &
(2.54)

The fluctuating component of equation of state, Equation (2.49), is given as

~

~ P T o
p =M W2 ——p— and the mean component is derived as yM P = pT . Due to

T

boundary layer assumption for each plane, P is constant across the layer and is equal

to 1/(yM ). In that case p=1/T and then the fluctuating component simplifies to

~

~ P T . L : : : : ~
p=mM Wz — ——5 and is substituted in equations having density fluctuation term, p.

In all the above equations there are also fluctuating components of viscosity and
thermal  conductivity which are also functions of temperature as

H= d—yf , A :ﬂf k = ;Z—kf and to be inserted into the equations before the

dT dr ’

normal mode stability analysis.

33



Introducing all simplifying terms obtained into the equations covered, one can get the

summary of the equations ready to perturbation analysis.

X — component:

2~ 2~ 2~ 2~ 2~
zzﬁz‘wl(ﬂV+5W)+(é’v+5z‘)+ld—“dl F LA, (2.55)
P oul| o &d  ax & & pdldy & &

+
& Re 2. 7 2 _ 2~ 2~
wudT dy dy &~ udl* dydy Zék &

y — component:

1 & & N
—(—+u—+w—)=
T a o a

2~ 2~ ~ 2~ 2~ T T
N 0’);’4_]1(0’)” +0”w)+120":+0”:+ldl £@+gdl) , (2.56)
P oy |& &d I &% & updl & dy & dy
_7+7
R
@/ © +ldidl 10(@4_@)4’_12@ +12i
udT dy & & &

z — component:

& A . A P
(—+u—+v—+w—)=——

a & %% 124 &

2 2 2~ 2~ 2~
é’:v+ll(5u+é’v)+é’?/+2é’?/+ldiydl §+@ : (2.57)
o & oy o E udl dy & o
+ldi dzwf+dli)+ld2ﬂ£@f

wdT  dy* dy &  wdT* dy dy

1
T

wa
Re

Continuity equation after cancellation of the terms due to mean flow variables

becomes,
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M, P 1 dar M P LA 1F
T a T*a Ta T & T*& To (2.58)
_ddrp 1Ay oM 1 |
T°dy T & T & T* &
Finally, energy equation becomes
1{ﬂ+uﬁ+ﬁﬂ+w}:( —I)M‘v2{ﬁp+uap+wﬁp}
TNa & & @& & &
o'T o°T 2T 1dkdl ol
+ + e
K la?r 8 & kdT dy & . (2.59)
PrRe| 1dkd’T ldk(di)) Lk dT F
“ar @ Tk ar Tkdr & &
2 M), Al V. du &N W dw, ldu i, W,
-1 2L A E S hddd
(r -bDM {@ é}c)(d) (& @)(d) dT((a'y) (@))}

2.4. Linear Stability Analysis

The linear stability equation is based on a normal mode analysis of the linearized
perturbation equations of the three-dimensional Navier-Stokes equations. In normal
mode analysis, small disturbances are resolved into modes which may be treated
separately because each satisfies the linear system. The linear stability theory
formulas presented in this study are valid for general compressible flows with

parallel steady flow fields.

The linear stability is considered for high speed viscous combined plane Couette-

Poiseuille flow confined between finite parallel walls located at y* =0 (lower wall)
and y" =h" (upper wall) and in Figure 2.4 graphical representation of this geometry

can be seen.

Each flow variable is assumed to consist of a mean part and infinitesimally small
perturbations. Utilizing normal mode analysis the perturbations are expressed in
Fourier series. The resulting disturbance equations are linear partial differential

equations in the variables x, y, z and ¢.
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Moving upper wall
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Stationary lower wall

yE=0 X*

Figure 2.4. Flow geometry for the compressible Couette Flow in a channel

The disturbance equations are linear and the coefficients are functions of y only.
Then the separation of variables using normal modes (i.e., exponential solutions in
terms of the independent variables) resulting in the ordinary differential equations

can be used as in Equation (2.60).

One possible normal mode is the single wave and is excited in harmonic way as:

q(x,,2,0) = 0 (x,9,2) + G (x,,2,1)

G(x,p,2,t) = Q(y)e' =™
(2.60)

The frequency @ =ac, the real part of ¢ is the dimensionless phase speed, ¢, , and
the imaginary part is the temporal amplification factor, c¢,. Disturbances are

classified according to normal mode analysis in which are either amplified, neutral,

or damped.
The term «. is real for the temporal stability formulation and represented as

a=2x/,where A is the wavelength. The amplitude functions only depend on the

normal direction for a parallel flow.
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2.4.1. Spatial and temporal stability

Considering 2-D disturbances, stability is classified in two parts as spatial and

temporal related to growth in space and in time, respectively.
2.4.1.1. Spatial Stability

The local normal mode is given by Equation (2.60). Introducing o =a, +ic;, and

taking@ as real, it can be written as

G(x,y,1) = O(p)e e, 2.61)

The spatial growth rate is given by — «, for reasons stated as

where

a; <0 unstable amplified disturbances,
o, =0 neutrally stable,

a, > 0 stable damped disturbances.

The eigenvalue problem is represented by « = f(@,Re) where f is complex map.

The phase speed is defined as ¢ = Z . The spatial eigenvalue « appears nonlinearly
a

in the governing equations, so they are not suitable to global analysis using the

generalized eigenvalue approach. The nonlinearity in « arises from the viscous

2 A

—-terms. Since the instability in high Mach number flows inviscid in nature, the

X
contribution from the viscous terms relatively small. The idea is to drop the &’ term

in the global eigenvalue search.
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2.4.1.2. Temporal Stability

The local normal modes are as in the Equation (2.60) but « is real and positive while

frequency @ is complex. Therefore, wave velocity, ¢ =c, +ic, is complex. Then

normal modes is written as

G(x, p,t) = Q(y)e e (2.62)
where

¢, > 0 unstable amplified disturbances,
¢; = 0 neutrally stable,

¢, <0 stable damped disturbances.

The eigenvalue problem is represented as c¢ = f(«,Re)where f is complex map.
Since the eigenvalue, ¢, appears linearly in temporal eigenvalue problems, most of
the stability calculations are concentrated on the temporal generalized eigenvalue

problem.

In this study only the temporal eigenvalue problem is solved and all the

concentration is just focused on the real o and complex cvalues, i.e., ¢, and c;.

2.5. Method of Normal Modes and Generalized Eigenvalue Problem

The linear stability analysis is based on normal mode analysis of the linearized
perturbation equations of the three-dimensional Navier-Stokes equations. In the
normal mode analysis for the linear disturbances, the fluctuations of flow quantities
are assumed to be represented by harmonic waves of the following form in three

dimensions.

5., 5.7 =[i(y).5(0). W), p(). T ()| (2.63)
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i(ox+ fz—ar)

where & =e is the perturbation term which shows the harmonic wave

behaviour. The real part of the @, represents the frequency of the disturbance
modes while the imaginary part of @ represents the temporal amplification rate of

disturbances.

Therefore, introducing the perturbation terms into Equations (2.55-2.59) and
differentiating with respect to y.

X — component:

%([;(—zm’)g“ +ud(ia) +véu' + wi(ip)s)

Lu(ia)’ & +1,(V'(ia)é + Wip)ia)s) +i"é .64
. 1 1 du dT ., 1 du d’u ’ '
=P — o —T
(la)§+Re,U +ﬂde @S +viia)s) + L dT & TE+ )
1d° u dT du .2
AT dy dy TE+i(ip) &
y — component:
(i) + i) + i)
Vi) & +1, (ﬁ'(ia)§+v@’(iﬂ)§)+lz\3'§+ﬁ(iﬂ)zg R (2.65)

=P s S T T
€

ld,u dar

+fﬁ7[z (A(a)é +WiB)E) +1,(7E)]
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z — component:

%(fv(—wi)f +uw(ia)é + ﬁégf + ww(if)<&)

Wia) & +1,@Ga)i)E + V' (If)E) + W'E + LwiB) & » (2.66)
__haigea L) vdudl oo
=—PUPIE + 2wy + wdT (P +9(ip)E)

LA dw w1 dT du g
wudT “dy dy pudT* dy dy
continuity :
2
7]‘? (P-i@)é) —%f(—iané + %ﬁ(ia)é
2

e P LT+ e 4L 2.67)

. % AB)E + W(WTW Pup)E - Ti FiB)E) =0

energy :

%{f"(—iw)é‘ +ul(i@)é +vE % + wf(iﬂ)é}

—(y-DM,’ [ﬁ(—iw)g +uP(ia)é + wﬁ(iﬂ)f]

. . A 1 dk dT
Tia)’ E+T"E+T(If) E+———T'
(i) c+T'c+T(Ip)°¢ kdT dy 4

A . . (2.68)
—))Té +lﬁd_TT'§
dy k dT dy

RePr 1 dk d*T 1 d*k dT
+H(——F+——(
kdT dy* kdT

29 e v Sy 2D GpyE + &)
2| dy dy
FODM L dn e dw

R (G R Co

)?)
udy dy dy
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cancelling ¢£’s from both sides of each equation and rearranging the terms showing

the differentiation with respect to y.

X — component becomes:

u[; (—a@i +uict+wif3) —Rie wu((y(ie)® ++3ipB)° )}

1, 1 1dudr,_ . I v J1 ldudr
o =u' —— pu(——— +W —— +i| —— p(———
V{T” Re“Crar dy)(:a)} w[ Reu(lﬁ)(la)} u{ Re“Crar dy)l

y — component:

ﬁ{— - u(ij’;glo (ia))} + [; (o1 +uia + wif) ~ - (@) + P ﬂ

J_ 1 vdpadr, o Sf 1 ] o 1 1 dpdl
+w{— e dy)(lﬂ)}u{ Reu(ll(za»}v{ s lz>+}

A p L . A _i a _i ldiﬂ@ / ldi@ | p!
+w[— Reu(zﬂ)}v[ Reﬂ(lz)}rT[ R e+ R (zﬂ))}P
z — component:

Lo T dudr 1 G
u[— L ﬂ(ll(la)(lﬂ))}{ R B+ 0})}

¥ v”v[— LGP +(0)) + = (i + ulia) + W(iﬂ))]
Re T
1 - oL Ldudl | 1
+V[ Reﬂ(ll(lﬂ))}vv{ Reu(ﬂdT dy)}W[ Reu}
1 dud’w ldzydi’dw}rf,,{_ 11 dudw

I .
I L U (-GN By =0
{ Re” wudl dyv*  pdT? dy dy Reﬂ(,udT dy } (@A)

b
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continuity:

f{; (ia)} + ﬁ{— TIZZ’Z} + W[; (iﬂ)} + \3’[;}

+T[(—le(—iw)—”lz(ia)—lez(iﬁ))} : (2.72)
o oM ™, ™,
+P{( 7 (@) +u—""— 7 (1a)+w (zﬁ)):l
energy:
A1 ar s Mo, dw . , M~ du
—(—)-(y-DHM"— -2— nmM=-=2
V{T(@) (r-1 Re(10!) dy(lﬂ)}r { (-1 Re dy}
n aw
’ _ 2_
+w{ ( dy)}
l(—inru(ioc)Jrw(i,B))
+T (2.73)

ReP kdT dy’  kdT’

+A,{ k 1 dkdT ldde} [ k}

TN (=== ==
RePr(k dT dy kdT dy) RePr

——{(za) vy LA T 14k (—)}

oy L ey (Do
Re pu dT| dy dy

Linear disturbances satisfying all of the equations results in the generalized

eigenvalue problem shown as in Malik [14]

(AD* +BD+C)¥, =0, (2.74)

where W, is the five element vector defined by (u,V, P,T, w)” and A,B and C
which are (SN +1)x(SN +1) matrices of functions of «,f,w,Re and M. In

Equation (2.74) D and D’ are the first and second derivatives of corresponding

eigenvector according to y as follows:
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A ,B andC matrices are in the form of square matrix and represented in Appendix

C.

1 0 0 0 0]
01 0 0O
A=(0 0 0 0 O ,
0 001 O0
100 0 0 1_5)(5
_Bn B, B, B, B15_
B, By By By By
B=|B, By, By B, B >
B, By, By By By
| By By, By By Bss_5X5
_Cn ¢, C; Cy CIS_
G, Gy Gy G Cy
C=|C, G, C; (G Cy )
Co Cun Ci Cy Cy
_C51 C, Cy Cy Cs dsxs

The coefficients B;j and Cj; (i=1,5, j=1,5) are given Appendix C. The disturbance
waves are three-dimensional in general. Two-dimensional disturbance modes
correspond to a special case of f=0. We are interested in two-dimensional basic
flow, then the velocity component w(y)may be set to zero in the coefficient matrix

in Appendix C.

The boundary conditions for the Equation (2.74) are imposing the isothermal wall
temperature at the upper wall. The lower wall assumes either isothermal or adibatic

wall boundary conditions.
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yi=h* W =Y, =V, =V, =0. (2.75)

Temperature perturbations are assumed to vanish at the solid wall boundaries. In
case of isothermal condition for the lower wall, the temperature condition at y* =10
is replaced by ‘¥, (0) = 0. Due to high frequency disturbances where the temperature
fluctuations do not penetrate deep into the solid wall boundary due to thermal inertia
of the solid body, one may replace the isothermal lower wall condition, ¥, = 0, with
MO

dy

adiabatic

Equations (2.74) and (2.75) constitute the homogeneous boundary value problem and

the main scope is to determine the relation between the «,f ,Re,M and @ that

satisfies the system which constitutes a generalized eigenvalue problem.

w=wo(a,p,M, ,Re). (2.76)
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CHAPTER 3

NUMERICAL APPROACH

3.1. Numerical Method

In order to implement a numerical solution, the computational domain, 7, is divided

into grids with equal spacing and the physical properties of the fluid are evaluated at

the grid points in y — direction.

The differential equations are discretized using O(hz) finite difference formulae, in

the form
VY. 2% + V¥ Y o —-¥
SA| =T T (LA + B Y,
An 2An
(3.1

D JI— b g ¥

+k2|:j[3Bi( i+1/2 1—1/2)+Ci( 2 T 1—1/2):|:0 (1:1N-1)
An 2
First order continuity equation is shown as
¥ . —Y¥ .

J[3Bi+1/2#+ci+1/z\yi+1/z =0 (1=0..N-1) (3.2)

The terms A;, B;, C,are the coefficients of stability equations and are given in

Appendix C.
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Figure 3.1. Representation of staggered grid used for 2FD discretization (Malik [14])

Nondimensionalized channel height, 0 <y </ is mapped onto the computational

domain 0 <7 <1 by using the following nonlinear transformation

: (3.3)

where b =1+% . Here & is the channel height where the flow conditions are

satisfied. The term a is the scaling parameter chosen to optimize the accuracy of the

e which puts the half of the grid point used for

(h=2y,)

calculations. Here we use a =
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discretization between y =0 and y = y,. The mapping given above clusters the grid

points near the walls but in this study, y, :g is chosen such that the grid points are

all equally spaced in the channel.

The vector ¥, is the one corresponding to ¥ at 7=i/N and has components

u;,v,,P,T, and w,.

Also
k,=1 and k,=0 are valid for u,,v,,T,,w,,

k,=0and k,=1 are valid for only P.

The parameters f,, f, and f; are the weighting factors determining the responsibility

of coefficients of eigenvectors in the discretized equations according to grid

clustering map encountered and given as

_ (-’
fl_ bzaz >

_ 20b-p)’
fZ_ bzaz

_(b-n)’
f3_—ba :

. h . . . .
Since, the value of y, = 5 is encountered in the grid clustering, the values of f,, f,

f; are calculated as f, =1, f, =0 and f; =1.

Due to the staggered mesh generation there is no need to have artificial pressure
boundary condition. The three momentum and energy equations are written at full
nodes. The pressure information for those equations at full nodes is obtained from

the former and latter neighbour half nodes at which continuity equation is written.
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The total number of full nodes encountered is N and the total number of half nodes is
N+1. For each full node there exist 4 equations and 1 equation is written at each half
nodes. Then the total number of equations written at both full and half nodes is
5N+1. Equation (2.74) with the boundary conditions in Equation (2.75) represent the

5N+1 equations and 5N+1 unknowns to be solved simultaneously.

The discretization of the governing equations reduces the system to generalized

eigenvalue problem as

AY = gBY (3.4)

where @ is the eigenvalue and in the form of @ = a(c, +ic;). Real part of the @,
Re(@) , represents the frequency of the disturbance modes, while the imaginary part,
Im(@), represents the temporal amplification rate of disturbances. The term, ¥ is
the discrete representation of the eigenfunction. A and B are the square coefficient
matrices of the stability equations. The matrices are complex and therefore are
composed of real and imaginary submatrices. The matrix A can be depicted as
A=A,+iA;, where A, and A; are the real and the imaginary part of A, respectively.
Similarly, the matrix B is represented as B=B,+iB;, where B; and B, are the real and

the imaginary part of B, respectively.

Although the matrix A contains the coefficients without frequency information but
has wave number, «, the matrix B includes neither frequency nor wave number

information.

(A, +iA )W =a(c, +ic,)(B, +iB,)¥ (3.5)

In this problem, all the elements of the real part of matrix B are zero, i.e., B, =0

IMSL and Eispack QZ algorithms were used for the solution of the generalized

eigenvalue problem as stated in the Equation (3.5).
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The details of the QZ algorithm is given in Moler and Stewart [23]. The double

precision complex subroutines used as solver are DGVLCG and DWRCRN for

IMSL; CQZHES and CQZVAL for Eispack libraries.

Equations Hodes

A-MOmentum
W-Momentum
Energy
2-Momentum
Continuity

A-MOmentum
y-Mmomentum
Energy
2-Momentum
Continuity

A-MOmentum
W-Mmomentum
Energy
2-Momentum
Continuity

*-Mamerturm
-Mamerturm
Enargy
2-Miamenturm
Continuity

x-mamentum
W-Momentum

Energy
2-Momentum

Continuity

A-Mmamertum
W-Momentum

Energy
2-Momentum

Continuity

n-2

n-1

Swd BLOCKS

ME =< cME Hd=c ME d=cNMEH=<cME = TWE =T ™
[l
=

FANH W ISH+ LTSRS

Figure 3.2. Block tridiagonal representation of solution matrix basis for generalized eigenvalue
problem using 2" order finite difference method.

([Ar ]‘(5N+1)(5N+1) + Z[AI ]‘(5N+1)(5N+1)')‘|:‘I’]'(5N+1)

= CZC'('[Br ]‘(5N+1)(5N+1) + Z[Bl ]’(5N+1)(5N+1) )‘[T]'(SNH)

(3.6)

The coefficients of stability equations calculated at each grid point are substituted in

the matrices of A,, A;, B, and B; each in the form of general block tridiagonal

solution matrix as shown in the Figure 3.2.
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In this study global eigenvalue search method is employed and in Table 3.1
computational CPU times for the search of global eigenvalues and mean flow
solution are shown with respect to the grid points used. The global methods are
usually computationally more expensive, but they have the advantage of obtaining

the whole set of eigenvalues and eigenfunctions at the same time.

Table 3.1. Pentium 4, CPU 2.4 GHz, Ram 2 Gb time to find eigenvalues by the 2 ™ order Finite
Difference Method

Time for Time for
Grid Size basic flow solution Eigenvalue search
(sec) (sec)
99 7 7
149 14 22
199 12 54
249 10 113
299 11 287
349 9 511
399 9 896

The number of eigenvalues and eigenfunctions thus obtained is proportional to the
number of grid points used. On the other hand, the local methods are limited to
solving single set of eigenvalue and eigenfunction only but they are usually more

computationally efficient than global methods.
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CHAPTER 4

VALIDATION OF NUMERICAL METHOD

4.1. Supersonic Plane Couette Flow

Plane Couette flow is the simple flow geometry which is initially treated to validate
the code comparing the results in the literature. The stability of plane Couette flow is
a standard problem in fluid mechanics and so far either viscous incompressible or
inviscid compressible flows have been considered. The stability of incompressible
Couette flow has been studied extensively and shown to be stable to linear
disturbances. Mack [20] found that there is a new family of multiple higher
instability wave modes in supersonic boundary layers. Acoustics instability wave
modes similar to the higher modes in compressible boundary layers have also been
found in supersonic jets and mixing layers. The existence of walls has a strong effect
on the acoustic instability waves in the bounded compressible flows. For validation
of the code, Malik [14] and Hu and Zhong [17] are taken as a reference for the

comparison of the results of plane Couette flow at Mach numbers 2, 5 and 10.

4.1.1. Validation of the Results and Numerical Accuracy

The linear stability code which solves the generalized eigenvalue problem using the
second order finite difference method is first validated by comparing the results to

those obtained by Malik [14] and Hu and Zhong [17] for the linear stability of plane

Couette flow for compressible and viscous boundary layer.
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The flow conditions for the test case are compressible boundary layer over a flat

* T
plate with zero pressure gradient at M =2.5, Re =3000,7, =600°R and FW =1.

r

The methods used by Malik [14] are a second order finite difference (2FD) method, a
fourth order compact finite difference (4CD) scheme, a single domain spectral
collocation (SDSP) method and a multi domain spectral collocation (MDSP) method.
For each scheme Malik [14] used first a global method to compute all of the
eigenvalues of the discretized system and used a local method to purify the solution
and its eigenfunctions. For global methods a guess for the eigenvalue is not required.
In a local method, a guess for the eigenvalue is required. Only the eigenvalue which
is located in the neighborhood of the guessed value is computed using iterative

techniques such as Newton’s method.

According to Hu and Zhong [17] better accuracy is obtained both using global and
local methods than those obtained only by global method for the same grid points.
The methods used by Hu and Zhong [17] are fourth order finite difference global
(4FD) method and spectral collocation (SC) method. Hu and Zhong [17] used global
eigenvalue search technique employing more grid points to catch the same accuracy

as Malik [14].

Table 4.1. The eigenvalue solutions of complex frequency @ for the temporal linear
stability of a compressible boundary layer (M, =2.5, Re =3000,7, =600° R

>To

T
and T =1, =0.06and f#=0.1 (Huand Zhong [17])

r

Methods Grids Re(w) Im(@)

4CD (Malik [14]) 61 0.0367321 0.0005847
SDSP (Malik [14]) 61 0.0367339 0.0005840
MDSP (Malik [14]) 61 0.0367340 0.0005840
SC  (Huand Zhong [17]) 100 0.0367337 0.0005840
4FD (Huand Zhong [17]) 100 0.0367338 0.0005845
2FD  (present study) 149 0.0355836 0.0005687
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In our calculations global method is used and the accuracy of the solution compared

to the literature findings are in agreement as shown in Tables 4.1 and 4.2.

The linear stability computations of compressible Couette flow are also validated by
comparing the viscous results of Duck et al. [16] for the cases of small Mach and

small Reynolds numbers. Figures 4.1 and 4.2 show the eigenvalue distribution for

M, =20,Re=2x10°, ¢ =0.1and =0.

Table. 4.2. The eigenvalue solutions of wave speed ¢ for compressible Couette flow using spectral
method with three sets of grids. The flow conditions are M, =2.0, Re=2x10>, @ =0.1and £=0
(Hu and Zhong [17])

Grids Method c, C
Mode I
100 (Hu and Zhong [17]) Spectral 1.213695119859 -0.011585118523
200 (Hu and Zhong [17]) Spectral 1.213695119817 -0.011585118448
300 (Hu and Zhong [17]) Spectral 1.213695119854 -0.011585118558
100 (present study) 2FD 1.203594853239 -0.010254316025
200 (present study) 2FD 1.208357023254 -0.010485769412
250 (present study) 2FD 1.209258428513 -0.010958475215
Mode II
100 (Hu and Zhong [17]) Spectral -0.291572925106 -0.013821128462
200 (Hu and Zhong [17]) Spectral -0.291572925140 -0.013821128536
300 (Hu and Zhong [17]) Spectral -0.291572925108 -0.013821128457
100 (present study) 2FD -0.292425810686 -0.013576244212
200 (present study) 2FD -0.292387596412 -0.013553618857
250 (present study) 2FD -0.292058574690 -0.013685524863

Recovery factor, 7, used is taken to be unity specifying the lower wall recovery
temperature is equal to the lower wall temperature for adiabatic conditions.
Recovery factor different than unity makes the “Y” shaped dispersion of eigenvalues

in ¢, —c; plane to be shifted completely to the left and right in ¢, axis according to

the value of r reference to Figure 4.1. Hu & Zhong [17] has shown the that "Y"
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shaped dispersion, the lower branch is clustered around the ¢, =0.5 line. In our

case, shift of dispersion of lower part of “Y” shape to the left shows the lower wall

temperature is not equal to the upper wall reference temperature. The 0.5 line on the

¢, axis shows the equality of upper and lower wall temperatures.
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0.1 1 %0, o
o
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Figure 4.1. Phase velocity spectrum of
compressible Couette flow

atM , =2.0,Re= 2x10° ander = 0.1 using
101 grid points
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Figure 4.3. Phase velocity spectrum of
compressible Couette Flow at

M, =50,Re= 5x10%and & =0.1 using 199
grid points.

Figure 4.2. Phase velocity spectrum of
compressible Couette flow at

M, =2.0,Re=2x10"and a = 0.1 using
100 grid points. (Hu & Zhong [147)
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Figure 4.4. Phase velocity spectrum of
compressible Couette Flow at

M, =5.0,Re=5x10°and & =0.1 using 200

& 300 grid points using spectral methods
(Hu & Zhong [17])
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grid points 200 & 300 grid points. (Hu and Zhong

[17])

In general, Re(c)and Im(c) represent ¢, and c,of eigenvalue spectrum,
respectively. Figures 4.3 and 4.4 are the comparisons of phase velocity spectrum of

compressible Couette flow at M, =5.0,Re=5x10°and «=0.1 using 199 grid

points.

In Figures 4.5 and 4.6, the phase velocity spectrum of compressible Couette flow at

M, =5.0,Re=5x10"and a =3.5 using 201 grid points. SC method with 300 grid

points shows better accuracy and distribution of eigenvalues.

Basic flow solutions are very effective on the results and the accuracy of the results
is very sensitive to assumptions made on viscosity. For the determination of velocity
and temperature profile, Sutherland's viscosity law is employed as done by Hu and

Zhong [17] and Malik [14].

4.1.2. Acoustics Wave Modes

Duck et al. [16] have studied the inviscid stability of supersonic Couette flow and

found that there are two families of wave modes.
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Those wave modes are determined as odd (Mode I, III, etc) and even (Mode II, IV,
etc) wave modes. They showed that both families of modes are neutrally stable

when ¢, >1 (for odd modes) or ¢, <0 (for even modes). They found that when
0<c, <1, both even and odd modes are no longer stable for compressible viscous

Couette flow.

In general, odd modes are stable with finite damping but even modes are unstable
and mode II has the largest growth rate among the even modes. The necessary
condition for the existence of type of acoustic modes is that there is a region of

locally supersonic flow relative to the phase speed of the instability wave.

Ti=Te O<Mr<t Ti=Te

Mr<1
M1

[ TS v S0, VO v, St Vo Mr=1 -1
Mr<-1 Mre1
..Gritical Line
T=Tr (Mr<-1 TmTe (M
Even Modes: 11, IV, VI ...(Re(.c)>0) Odd Modes: I, III, V ...(Re(.c)<1

Figure 4.7. Schematic of Mach waves and the two families of wave modes in supersonic Couette flow

in reference frames moving at the velocity of the disturbance waves. (Hu & Zhong [17])

M i1s the relative Mach number at the two walls and defined as

r

_UW-—c,,
@O

formed by substained wave reflections between the walls and the relative sonic line.

Hu and Zhong [17] specified that acoustic wave modes are

There are two families of acoustic wave modes for the bounded Couette flow
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compared to the single family of unbounded compressible boundary layer. The

reason for this is there is one family for each boundary.

Figure 4.7 shows the schematic representation of the two families of acoustic modes
in compressible Couette flow in reference frame moving with the waves. Odd modes
are formed by the acoustic reflections in between critical line (relative sonic line) and
upper boundary while even modes are formed in between critical line (relative sonic

line) and lower boundary.

Duck et al. [16] found that for the case of adibatic lower wall for inviscid flow limit
of 0<c, <1, in general odd modes are stable with finite damping and even modes
are unstable. When the lower and upper wall are at the same temperature, the phase
speed is ¢, =0.5. It is shown that top boundary is relatively supersonic [M,|> 1

when ¢ > 1+ ML or c<l— ML . The bottom boundary is assumed adiabatic with a

w w

wall temperature, 7, , is relatively supersonic when the phase velocity approximately

c<-T)*/M, orc>-T\*IM,.
4.1.3. Eigenmode Spectra

Global method is used for the eigenvalues of systems of equations for compressible
Couette flow. Mode II is the most unstable mode among the viscous unstable modes
and all investigations are based on the Mode II. Although Mode I which was found
to be stable by Duck et al. [13] among the inviscid solutions, also found to be

unstable at finite Reynolds number indicating that viscosity plays destabilizing role.

Figure 4.8 shows the phase velocity eigenvalue spectrum for Re=5x10° and M L, =9

at a small wave number, o= 0.1. Spurious modes are present place in the numerical

viscous modes.
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Figure 4.8. Phase velocity spectrum for compressible Couette flow at M, =5, Re=5x10° and 0=0.1
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The eigenvalue spectrum of M, =5 is consist of “Y” shaped structure and located
around the region of ¢, between 0 and 1. Two families of inviscid acoustic modes

are located at ¢, <0 for the even modes and ¢, >1 for the odd modes. Those

acoustic modes are the results of acoustic wave reflections.

Acoustic wave modes are located close to the ¢, =0 line and marked as I, II, III etc.
Wave velocities of even modes (Modes II, IV..) satisfy ¢, <0 and odd modes
(Modes I, 111, etc) also satify ¢, >1. All those acoustics modes are all stable due to

the effect of viscosity.

4.1.4. Effect of Viscosity on Stability

The effect of viscosity on the stability of supersonic Couette flow was investigated

by Duck et al. comparing the inviscid flow cases for M| =2and M, =5. Modes I

and II are the most unstable modes and are taken into consideration during the study.

Re = 2x10°
34 el M,=5
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. Mode |

2 | ~
T
o
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2

05 15 25 35 45 55

Figure 4.9. Phase speed, c, , of Modes I and II as function of « ata Re=2x10°, M » =3
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Figure 4.11. ¢, of Mode II as a function of o at M, =5 at various Reynolds numbers
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¢, of modes I and II are shown in Figure 4.9 for M, =5 at Re=2x10° as a function
of a. Figure shows that as the o increases ¢, of even mode (Mode II) increase

while ¢, of odd mode (Mode I) decreases.

The two modes intersects the ¢, =0 around a =3.4 and for high wave numbers
these two modes are unstable (no longer neutrally stable). The ¢, of Modes I and 11
as a function of o for M, =2at various Reynolds numbers are shown in Figure

4.12. From the inviscid limit Mode I becomes stable with finite damping when

¢, <1 but Mode II becomes unstable when ¢, >0. Viscosity has destabilizing

effect on the stability of supersonic Couette flow.
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Figure 4.12. ¢, of Mode Il as a function o at M, = 2 at various Reynolds numbers
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Figure 4.13. ¢; of Mode I as a function of o at Mach 5

In Figures 4.10 and 4.11, ¢, and ¢, of Mode Il at M, =5 and Re=2x10°are

represented. Figure 4.11 also shows the behaviour of the flow for various Reynolds
number. Finally, the trend of imaginary part of the eigenvalues of Mode I as a

function of wave number, &, is shown Figure 4.13. The value of the c, is always less

than zero then the flow is always stable.

4.1.5. Neutral Stability Contours

Neutral stability contours are generated as a function of Reynolds number and wave
numbers. Mode II is the most unstable mode among the others and dominates the

instability of the compressible Couette flow.

Neutral stability contours of temporal amplification factors of Mode II is drawn at

M, =5. Neutral stability curve represented as a line with ¢, =0. Figure 4.15

shows that there are two peaks and narrow peak is located around « = 2.5 and wide

peak is around o =4 . Critical Reynolds number is around 780000 for M =5.
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Narrow peak at smaller « is due to viscous instability where as wide peak at larger
o is due to the inviscid instability for acoustic wave modes. As the Reynolds
number increases, the amplification factor of first peak extends to the maximum

value and then decreases as a result of viscous instability.
4.2. High Speed Plane Poiseuille Flow

Orzsag [24] has solved the Orr-Sommerfeld equation numerically using the
expansions in Chebyshev polynomials and QR matrix eigenvalue algorithm. He
applied the method to the stability of plane Poiseuille flow and found the critical
Reynolds number. The stability problem they studied is that of plane Poiseuille flow
in a channel and measured all lengths in units of the half-width of the channel and
velocities in units of the undisturbed stream velocity at the centre of the channel.

The flow is incompressible and the flow Mach number is close to zero.

The Orr-Sommerfeld equation employed for stability analysis is the 4™ order viscous
incompressible analogy of our set of equations used. It is convenient to make
comparison for the most unstable mode of plane Poiseuille flow with & =1 and

Re =10000. Orszag found the most unstable eigenvalue as

¢ =c, +ic, == 0.23752649 +i0.00373967

and the critical Reynolds number and wave numbers are found as

Re, =5772,22

a,, =1.02056
The critical Reynolds number that Orszag [24] found is based on the maximum

channel velocity and half of the channel height. The critical Reynolds number, Re_ ,

is defined as the smallest value of Re for which an unstable eigenmode exists.
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In this study, the critical Reynolds number has been determined for instability of

plane Couette-Poiseuille flow using the second order finite difference method. To

simulate the plane Poiseuille flow, upper wall Mach number is taken close to the

zero, M =0.0001 and the flow is fully developed. The most unstable mode for

a =1.02056 and Re =10000 is shown on the Figure 4. 16 and numerical values are
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Figure 4.16. The most unstable eigenvalue for M, =0.0001,Re =10000 and ¢, =1.02056 based
on the maximum channel velocity and half width.

Compared to the Orzsag’s value, the most unstable eigenvalue for that case is not

same but the order of magnitude is same. The reason of having not exactly the same

value is equations used to solve the problem for both basic flow and stability

analysis.
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There is a 12% difference of basic velocity and temperature profile in a channel

compared to the incompressible situation. This difference makes the most unstable

eigenvalue vary. The most interesting thing is the critical Reynolds number which is

obtained through high speed equations nearly the same.

In Figure 4.17, the dispersion of critical Re numbers according to the wall Mach

numbers is shown for various grid sizes. Results of grids of 249 and 299 are nearly

the same and find that the critical Reynolds number is Re_, = 5718.338 for the 249

computational grids throughout the channel height.
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Figure 4. 17 Critical Reynolds numbers for wall Mach numbers for various grid sizes

15000

The grids of 149 and 199 show the poor convergence to the results and that shows

the code developed is grid sensitive. For high speed plane Poiseuille flow, the limit

of the wall Mach number employed is M, < 0.065.
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CHAPTER S

COMBINED PLANE COUETTE-POISEUILLE FLOW

5.1. General Description of Basic Flow

The flow geometry of the problem is the piston ring end gap and is simplified to
Cartesian 2-D coordinates. The dimensions of the gap is 500 microns in height and 2
mm in length and shown in Figure 5.1.
account for 2-D problem. The pressure inside the combustion chamber while
compression cycle is approximately 50 bars and the pressure other side, crankcase is
3 bars. The pressure difference coupled with the high speed gas flow constitute the
Couette-Poiseuille flow inside the gap. The flow is named as “high speed” flow not

categorized as “compressible” since the effect of compressibility in the flow is not

dominant.
Yy
P =50bars

Mowing upper wall (piston)

The depth of the gap is not taken into

—-
gas
— P, =3 bars

500 um

Lower wall (cylinder liner) |
< » x

2 mm

Figure 5.1.Geometry, dimensions and pressure values at channel inlet and outlet
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The maximum speed of the piston is 15m/s (average is 8 m/s) in an ICE and the
speed of gas particles is zero at stationary wall which is the cylinder liner in the
current problem. Then the piston speed is not employed as a scaling velocity for the
nondimensionalisation of the problem. The flow is to be choked due to high pressure
ratio across the channel. Therefore, the appropriate scaling velocity is the sonic

velocity encountered in the middle of the channel.

Flow passage has a rectangular cross-section and for a gas flow, the maximum flow
rate per unit area has importance for the effect of “choking”. Choking of the flow is
not required but temperature and velocity of the gas coupled with a pressure gradient
makes the choking is inevitable. The various effects causing choking are presence of
heat transfer from the boundaries, adiabatic wall condition, channel width and high
pressure ratio across the flow passage. In Figure 5.2 the schematic representation of
the gas flow path and the geometry thereof are shown. The pressure of the gas is
decreasing along the axial direction. All the mean flow calculations are based on the

sonic velocity encountered in the middle of the channel.

Crankcase Combustion
chamber

PRI

5
. " =

Vplston d P é P*

Pl* —— d ™ < O é 2
X 7=

e e L e e e P W —
—
Channel
Gas Flow ! Height, 7*

W’Wm e e e, e
é Liner, V' =0
/ »
Channel Length ,L*
;
X

Figure 5.2. Motion of gas through the ring gap
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For the Re number across the channel mean velocity is to be used. One has to

integrate the mean mass flow rate passing through the flow crossection per unit depth

and obtain the value of p.U, to be used for the Re number as

.
Be=p,U, A, = [(p,Udy" W, (5.1)
0

& _ D
——pU'h = j piUdy (5.2)
Wch 0

pan :—* (53)

Re o” -0 (5.4)

5.2. Basic Flow Solutions

The code developed for the basic flow solutions calculates the channel height and
pressure gradient across the channel for a given upper wall Mach number and
Reynolds number to reach the sonic velocity in the middle of the channel. The

convergence to the sonic velocity requires hundreds to thousands of iterations.

While calculating the sonic velocity in the middle of the channel; temperature,
kinematic viscosity and thermal conductivity are solved simultaneously with the

velocity due to compressible and viscous mean flow equations employed. Pressure
. . dP

across the channel is decreasing, T < 0 and recalculated at every step of mean flow
x

solution to satisfy the sonic velocity in the channel.
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Figure 5.3. Couette-Poiseuille velocity profile in the channel for various upper wall velocities at
Re=125000
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Figure 5.4. Couette-Poiseuille temperature profile in the channel for various upper wall velocities at
Re=125000

Figures 5.3 to 5.5 show the mean flow solutions for the upper wall Mach numbers of

M, =0.001, 0.01, 0.05, 0.1 and 1.0 at Re=125000. In these figures, it is seen that at
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M, =1.0, mean flow resembles plane Couette flow. For M =0.001, flow is

Poiseuille and the velocity profile is parabolic. Both upper and lower walls are equal

to the adiabatic lower wall temperature.
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///
121 4 ////
///
101 4 V
é 81 -
2 0.1 \o% HNOA 05\ N7
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21 N
1

0.85 0.9 0.95 1 1.05 11 1.15
Viscosity- Conductivity (dimensionless)

Figure 5.5. Couette-Poiseuille viscosity and conductivity profile in the channel for various upper wall

velocities at Re = 125000

Across the 2 mm. gap length, the pressure ratio is approximately 235x10” Pa/m
concerning the pressure in crankcase and behind the gap as 50 bars and 3 bars,
respectively. This amount of pressure drop is not permitted across the channel as it

is seen from the Figure 5.7 for the Reynolds number at 125000.

For the mean flow thermal conductivity of the gas in the flow field taken as equal to
the reference kinematic viscosity. Prandtl number is evaluated at the reference upper
wall conditions and Pr<1 for gas. Then dimensionless mean specific heat at

constant pressure,c,,, is constant for gas. The equality,k, = 4, , is assumed in mean

flow calculations.

71



Figure 5.6 shows the channel height calculated after satisfying the sonic velocity

encountered in the middle of channel according to the given wall Mach numbers for

upper wall.

14000

12000 -

10000 -

4000

2000 -

0.0

Figure 5.6. The calculated channel height for maximum Mach number for choked flow in according
to upper wall Mach number given for Re = 125000.

Figure 5.7 shows the Reynolds number with respect to wall Mach number. The

calculated Re number is substituted into the eigenvalue solution matrices.
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M
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Figure 5.7. The calculated pressure drop in the channel for maximum Mach number for choked flow

according to upper wall Mach number given for Re = 125.000
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Figure 5.8. The Re number extracted after the calculation of the flow and used in stability equations

according to upper wall Mach number given for Re = 125000

5.3. Eigenvalue Spectra and Neutral Stability for Plane Couette-Poiseuille Flow

Generating the mean solution for a plane Couette-Poisecuille flow and fixing the flow
parameters which are the basis for the stability analysis such as channel height,
Reynolds number, pressure drop across the channel, the generalized eigenvalue

problem is solved using the method previously described.

An incompressible plane Poiseuille flow in the literature is to be validated by
employing the upper wall Mach number in the incompressible limit for the present

plane Couette-Poiseuille flow.

The dominant variable that determines and controls the flow stability is the wave

number in streamwise direction, @ and wavenumber in spanwise direction, £. The
term S is zero for two-dimensional flows. The QZ algorithm is employed as a

solution method of generalized matrix eigenvalue problem for determination of

eigenvalues as functions of Reynolds number, wave number, and wall Mach number.
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Figure 5.9. Eigenvalue spectra for M ,=0.001 and Re=125000 for a range of & =0.2-2.0

Figure 5.9 indicates the whole eigenvalue spectra for real and imaginary parts of c,
and c,, respectively. The eigenvalues located in the circle in Figure 5.9 are the most

unstable eigenvalues that dominates the behaviour of the flow stability and moving

by wave number changes.

The eigenvalues circled in Figure 5.9 are shown in Figure 5.10 in enlarged view
moving as the wave number changes and reveals the characteristics of the most
unstable mode and the flow stability according to wave number. In Couette-
Poiseuille flow, there are no acoustics modes as in the plane Couette flow which

exhibits high flow speed at supersonic ranges.

The most unstable mode followed in Figure 5.10 is distinct from the odd (Mode I,
III, V..) and even (Mode II, IV, VI...) modes for supersonic plane Couette flows.

The most unstable mode followed lies always in a region of ¢, >0 enhancing the

flow instability.
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Figure 5.10. Local eigenvalue spectra near the neutral stability line for M =0.001 and Re=125000

for a range of & =0.2-2.0

In general, when it is inspected there are four branches on “Y” shaped distributions
in the Figure 5.9. Those are due to viscous effects of the momentum (3 off) and
energy equations. For the wave numbers around 0.2, the eigenvalue spectra is in “Y”
shape and while the wave number increases the shape of eigenvalue spectra changes

to “H” shape producing more spurious eigenvalues located at the lower braches.

5.4. Critical Reynolds Number Search

The global QZ algorithm is used for searching the eigenvalues. Global eigenvalue
searching is an expensive method of computation. In addition to the global method,
the local method determines the most unstable mode and finds the initial neutral
point on the stability contour at any branch. The calculations are then followed on
the neutral contour until the gradient of the curve changes sign through the nose. At

the tip, there is a smallest Reynolds number for which an unstable eigenvalue exists.
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The most unstable mode is the mode that gives valuable information about the flow
characteristics and stability condition. Figure 5.10 shows the behaviour of the most
unstable mode that is followed as a function of wave number, o, while keeping the

upper wall Mach number, M and Reynolds number, Re ,as constant.

The most unstable eigenvalue is located on the ¢, — ¢, map and its ¢, value is closest

the ¢, axis. The location of the eigenvalue and the value of the closeness to the c,

axis only changes with wavenumber and Reynolds number, Re, at a fixed upper wall

Mach number, M

The procedure is based on the secant method for finding the root of an equation and
sketched in Figure 5.11. It starts with the solution of the generalized eigenvalue
problem employing the initially estimated Re number generating the most unstable

eigenvalue for a constant wave number and Mach number.

In the second step, initially estimated Reynolds number is infinitesimally perturbed
keeping the wave number and the Mach numbers are as constant and the most

unstable mode is evaluated.

At that point, the Secant method is used between the two sets of Reynolds number
being estimated and perturbed and their calculated ¢, values of the most unstable
modes to find the an improved estimate for the Re number at the root. The improved
estimate for the Reynolds number is then substituted as the initial estimate in the
following iterative step and the same procedure continues until the convergence of
the ¢, value is established. The ¢, lines are setto ¢, =0, ¢, >0 and ¢, <0, for the
neutral, unstable and stable regions to fix on the o —Re map at the interior or

exterior of the contours at any constant c; .
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Figure 5.11. Secant method used finding the root of function

At that point, the Secant method is used between the two sets of Reynolds number

being estimated and perturbed and their calculated ¢, values of the most unstable

modes to find the an improved estimate for the Re number at the root. The improved
estimate for the Reynolds number is then substituted as the initial estimate in the
following iterative step and the same procedure continues until the convergence of

the ¢, value is established. The ¢, lines are setto ¢, =0, ¢, >0 and ¢, <0, for the

neutral, unstable and stable regions to fix on the o —Re map at the interior or

exterior of the contours at any constant c, .

Stability contours are based on the variation of Reynolds number, Re, and o, wave

number, at a constant c¢,. A scheme is developed to find the path of converged

eigenvalues at constant ¢, ’s on the a —Re map at a fixed wall Mach number.

The stability contour has two branches, upper and lower, and their connection is at

the tip of the contour line. The Reynolds number at the tip of the contour yields the
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smallest and critical Reynolds number beyond which the flow is unconditionally

stable.
ci=constant X i
starting point
upper branch
group n
9]
fe)
g X
z lower branch oz a3
[0}
= % =
3 Rel Re2 Re3

group (n-2)

v\ al o2 o3
group 3
—_
+— group 1
starting point
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Figure 5.12. Schematic representation of stability contour search technique

Figure 5.12 exhibits the method to find the critical Reynolds number following the
lower branch contour. At every point determination Secant root finding procedure is
employed for Reynolds and wave numbers in the group. In every group, successive
Reynolds and wave numbers are perturbed infinitesimally to obtain the local

gradients between the Re—a«a pairs to reach f (a)z%ant the tip of the
a

contour. The local gradients, f(«), , = % ., and f(a),; = % l, 5, of every
a a

successive points located in the same group are used to evaluate the overall group’s

gradient as
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dRe _ f(a)l_z _f(a)2—3

fla)= (5.5)
da o, —-a,
“group 17 gradient is employed in estimating the first point’s wave number, ¢, , in
“group 2” in Equation (5.6) and “group 17 is then classified as “old”.
" S, (5.6)

new — az,,ld f(a)

(anew B al )

a,

The term is always checked after every group to continue or to stop the

iteration for the evaluation of critical Reynolds number.
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CHAPTER 6

RESULTS AND DISCUSSION

In this study of linear viscous stability characteristic of high speed Couette and
combined Couette — Poiseuille flows have been investigated numerically. The
effects of variable viscosity, temperature and density on the stability of Modes I and
II for Couette flow and Mode 0 for Couette — Poiseuille flow were studied comparing
the viscous results at finite Reynolds numbers with the results of Hu and Zhong [17]

for plane Couette flow.

The physical problem is the instability of gas flow over a thin oil layer present in the
internal combustion engine piston ring end gap. Although the flow across the end
gap is the combined plane Couette — Poiseuille type, the plane Couette flow
instability has already been studied for the code validation in Chapter IV. Plane
Couette flow was found to be stable unconditionally for all Reynolds numbers under
the sonic flow conditions, and the stability of the combined plane Coutte — Poiseuille
flow is as a function of the Reynolds and wall Mach numbers is studied in the current

Chapter.

6.1. Eigenmode Spectra

Using the global method, the unstable modes have been obtained for high speed
Couette and combined plane Couette — Poiseuille flows. Among the unstable viscous

modes, Mode II was found to be the dominant instability for high speed Couette

flow.
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The family of the most unstable eigenvalues are labeled as the odd modes (Modes I,
III, V, etc) and the even modes (Modes II, IV, VI, etc) according to symmetric

arrangement on the ¢, —c, eigenvalue spectra for a plane Couette flow. These

modes are acoustic instability modes and formed by sustained wave reflections

between the walls and the relative sonic line for the supersonic flows (Hu and Zhong

[17)).

Same labels are valid for the combined Couette — Poiseuille flow but those have no
dominance on the instability of the flow. There is a dominant mode, labeled as
“Mode 0” determining the instability of the flow. At first, Mode 0 seems to be a
member of even modes. However, while the even modes are always stable at a wide
range of flow parameters, Mode 0 varies between the stable and unstable regions
under the same conditions. This inference makes the Mode 0 different than the even

modes.

Although the flow that is investigated in the current study is a combined Couette-
Poiseuille flow where the maximum Mach number in the flow field is unity, a similar

pattern for the eigenvalue families were observed for the ¢, —¢, distribution. Figure

6.1 shows the distribution of all the eigenvalues for a given wave number a = 0.2
and Reynolds number, Re=125.000. The even modes are located on the left side and
the odd modes are located on the right side, in a symmetrical manner. Figures 6.2
and 6.3 also give a close up view of both modes. Mode II is the dominant mode in
high speed Couette flow but for high speed Couette — Poiseuille flow the dominance
of Mode II is not observed. As can be seen from Figures 6.1 - 6.3, Mode I and Mode
IT are always stable and no significant shift of those modes occurs while varying the

wave number, o, as will be shown below.
The mode that is traced in the plane Couette-Poiseuille flow is named “Mode 0 and

distinct from other known odd and even modes. Figure 6.3 shows Mode I, Mode 11

and Mode 0 on the eigenvalue spectra.
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Figure 6.1. Eigenvalue spectra at M ,= 0.05 for Re=125000 and o =0.2

Figure 6.4 shows the variation of Mode 0 as a function of wave number while Mode
I and Mode II remain nearly stationary compared to Mode 0. This shows that Mode
II is not the dominant mode that determines the stability characteristics of the flow in
plane Couette — Poiseuille flow. Since both Modes I and Il are acoustic modes,
which are dominant for supersonic flows only, they are not dominant in case of the

current study where the maximum velocity in the flow field is sonic.

The eigenvalue spectrum of M = 0.1 for Re= 15625000 and «=0.2, 1.0 and 2.6
displays an unexpected behavior especially at high wave numbers. At high Reynolds
numbers and wave numbers, one of the branches of Mode I or Mode II eigenvalue
spectrum overshoots in positive and negative directions in a symmetrical manner
while Mode 0 remains at small wave numbers, ¢ = 0.2 and 1.0, and close to or
above the ¢,. This is given in Figure 6.5. At a=2.6 scattered eigenvalues above the

¢, = 0 axis exhibits a behavior that seems spurious. If these modes are purely

spurious a poissibility exists that they may be cured by grid refinement. However, if

these modes are genuine, then the eigenvalue which exhibits the highest ¢, value is

chosen as the most unstable eigenmode, i.e., Mode 0.
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Figure 6.2. Eigenvalue spectra at M = 0.05 for Re=125000 and & = 0.2 showing the odd and even
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Figure 6.3. Eigenvalue spectra at M = 0.05 for Re=125000 and « = 0.2 showing Mode I, Mode II
and Mode 0
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Figure 6.4. Eigenvalue spectra at M = 0.05 for Re=125000 and « = 0.2, 0.4,0.8,1.4 showing Mode
I, Mode II and Mode 0

In this study the global eigenvalue solution method, QZ algorithm, was used without
employing any local method for higher accuracy. During code validation, high speed
plane Couette flow was examined in the channel. Numerical code works at any

Mach and Reynolds number.

In reference to Hu and Zhong [17] with supersonic flow conditions, the results are in
good agreement with others as stated in Table 4.1 and 4.2 (Hu and Zhong [17] and
Malik [14]). The difference of the results comes from the methods used for higher
accuracy. Malik [14], Duck et al. [16] and Hu and Zhong [17] all use local methods
in addition to the global methods to improve the results. For the subsonic flows
treated here, the grid number was increased from 49 to 499 nodes which is the
limitation of the memory of the currently used Fortran compiler. Increasing the grid
number decreases the gap between the eigenvalue curves obtained for low grid
numbers. But the convergence criteria of 10" has never been achieved between

different grid numbers.
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Figure 6.5. Eigenvalue spectra at M = 0.1 for Re=15 625 000 and o =0.2,1.0 and 2.6

6.2.Critical Reynolds Number

The critical Reynolds number was determined for plane Couette-Poiseuille flow

using the second order finite difference method. The critical Reynolds number, Re,,

is defined as the smallest value of Reynolds number for which an unstable
eigenmode exists. The investigation of critical Reynolds numbers and determination

of the stable — unstable regions on the M —Re map were generated working on a

range of Mach numbers between 0.0001 to 1.0.

Figure 6.6 shows that the critical Reynolds number converges to a value of

Re,=5718.338 for M = 0.0001 using the 249 interior grid points. This

corresponds to the fully Poiseuille case.

85



0.065

0.06 -

0.055 4

0.05 4

0.045 4

0.04 4

0.035 4

0.03 4

M,,, Wall Mach Number

0.025 4

0.02 4

5000

STABLE

Recritical Re, Reynolds Number

UNSTABLE
Grid Size
—e—149
L. 199

Critical Reynolds Number il
—a— 249

Re,=5718.338 —6—299

for

M,,=0.0001

N=249 grids

%OOO 7000 8000 9000 10000 11000 12000 13000 14000

15000

Figure 6.6. M —Re contours showing the grid sensitivity and the critical Re number at low wall
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The effect of the grid points on the results is that increasing the number of grid points

beyond 249 has no significant effect on the critical Reynolds number. Therefore, the

number of the grid points used for the neutral stability contour analysis was taken as

249. The wall Mach number shown in Figure 6.6 is 0.065 and the trend of the curves

at various grid points is consistent. In Figures 6.7 and 6.8, for wall Mach numbers

greater than 0.065, there exist an overshooting of the critical Reynolds number. The

value of the Reynolds number at M = 0.1 is around Re= 35 000 000 for 249 grid

points.
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The behavior of the results in the region of M = 0.065 - 0.3 is not meaningful. The
results show a lot of scatter for all grid points used. It is not known if there are
unexplained physical events or there exist a computational inadequacy within that
Mach number range. When the Mach number is greater than 0.3, the behavior of the

results on the map is more coherent for various grid points.

Figure 6.6 also shows the boundaries of the stable and unstable regions at a small
range of Mach and Reynolds numbers. The curves shown correspond to neutrally

stable conditions, i.e. ¢, = 0. The regions remaining within the neutral curve show

unstable configurations, while regions exterior to the curve are stable. Figures 6.7

and 6.8 display the general overview of the stability condition of the flow according

to the grid points for Mach numbers up to, M =1.0 investigated in this study for a

plane Couette-Poiseuille flow.

0.95 - [ ] )
0.9 * E A O
0.85 - . [ ]
0.8 -
0.75 A

Grid Size

0.7
0.65
0.6 1
0.55
0.5
0.45 -

0.35
0.3
0.25
0.2
0.15 A
0.1
0.05 -

M, Wall Mach Number

& 149

m 199

A 249

® 299

¢ 349

| 399

STABLE

UNSTABLE

. 000. N

TR AR 4
'll--'nn-
g

.0

'000

e .00.:
1] --

&
)

| 4

1 UL

| 4

"2
S

UNSTABLE

*

L 2
*

R st

1E+08

1E+03

1E+04

1E+05

1E+06

1E+07

log(Re), Reynolds Number in Log Scale

Figure 6.7. Stable and unstable regions for a wide range of M , and Re for various grid points.

(Re axis is in logarithmic scale)

87

1E+09



Orszag [24] found the critical Reynolds number as 5772.22 for instability of
incompressible viscous plane Poiseuille flow using Chebyshev Polynomials method

for Orr — Sommerfeld equation.
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Figure 6.8. Stable and unstable regions for a wide range of M, and Re for various grid points

Our result is in agreement with the result obtained by Orszag. Possible minor
differences are due to solution method used and the differential equation solved.
Remember that in this study, a set of high speed governing equations are solved

simultaneously instead of Orr — Sommerfeld equation and M = 0.0001 is employed

as an incompressible limit to validate the results.
6.3. Neutral Stability Contours

Inside the channel the maximum gas velocity is 400 m /s taking the gas temperature
as 100°C and the channel height as 500 pum. Using the velocity calculated and taking
the dynamic viscosity of gas as 2.3x10”. m? /s, the Reynolds number in the channel

was calculated as 5000.
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The rated average piston speed is 8 m/s and the speed of sound at the reference
temperature is 340 m/s . Practically, upper wall velocity is the average piston speed

which is basis for the upper wall Mach number and is approximately 0.0235.

Both the Reynolds and the upper wall Mach numbers draw the boundaries of the
analysis for the instability analysis of the flow through the piston ring end gap. The
Reynolds and the wall Mach number limits are extended widely to get more

information although the flow conditions are around Re= 5000 and M =0.0235.

Then, the flow was investigated and the stability contours were determined for a

range of wall Mach numbers, M, <0.065, specifically at M = 0.005, 0.035 and
0.065. Similary, the range of Reynolds number is extended to Re = 5000 —70000 .

It is traditional to represent the eigenvalues by drawing contours in diagrams of wave
number versus Reynolds number, o —Re, and phase velocity versus Reynolds

number, ¢, —Re. Each contour represents a constant rate of amplification or a

imaginary part of the complex wave velocity.

In this study neutral stability contours have been generated as functions of Reynolds
number and wavenumbers, o — Re . In these diagrams c, is taken as constant equal to
0. The conditions where ¢, =0, ¢, <0 and c, > O represent neutrally stable, stable

with finite damping and unstable with finite amplification conditions, respectively.
In general, the disturbance waves are three dimensional and two dimensional

disturbance modes correspond to a special case of spanwise wave number as £ =0

due to Squirre transformation. In this study, the stability contours for dimensionless

temporal amplification factor of ¢, = 0.0, 0.0005, 0.0010, 0.0015, 0.0020, 0.0025 and

0.0030 are determined for defined sets of M and Re.
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Figure 6.9. The neutral stability contours for mode 0 as functions of wavenumbers and Reynolds
numbers at various M .

Figure 6.9 shows the neutral stability contours for a range of Mach numbers from
0.005 to 0.065. As the Mach number increases the upper branch of the contours
move towards lower wave numbers while the lower branch stays nearly stationary.
Also, the critical Reynolds numbers increase as the wall Mach number increases,
hence the flow becomes more stable. Figure 6.9 indicates that there is a peak in

c;curves and this peak is located at o= 1.7 for M = 0.065 and a= 2.0 for
M ,,=0.005. The curves are characteristic of viscous instability where the unstable

wave numbers become less and less as the Reynolds number increases. There is no
threshold value of the wavenumber at the upper branch below which all
wavenumbers are unstable which is a characteristic of inviscid instability. This
shows that the instability modes observed in this study are the viscous instability
modes and not the acoustic or inviscid instability modes which are typically present

in supersonic flows.
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Figures 6.10 and 6.16 — 6.17 show the neutral stability contours for Mach numbers of
0.005, 0.035 and 0.065, respectively. In addition to the neutral stability contours, the

contours at constant ¢, are also indicated. As can be seen the maximum
amplification factor decreases as M increase, where maximum ¢, for M = 0.065

1s only 1/3 of the maximum ¢, for M = 0.005.
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O. 8 T T T T T T
0 10000 20000 30000 40000 50000 60000 70000
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Figure 6.10. The contours of amplification factor, c;, for Mode 0 as functions of wavenumbers and
Reynolds numbers at M, = 0.005

Figure 6.11 shows the distribution of amplification factor as a function of Reynolds

numbers of fixed wavenumbers at M = 0.005. It indicates that the peaks would

vanish as the Reynolds number increases. Figure 6.12 indicates the amplification

factor distribution and the peaks disappear increasing the Reynolds numbers.
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Figure 6.11. The distribution of amplification factor of Mode 0 as functions of Reynolds numbers at

fixed wavenumbers for the case of M = 0.005
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Figure 6.12. The distribution of amplification factor of Mode 0 as a function of Reynolds numbers at

fixed wavenumbers for the case of M, = 0.005
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Figure 6.13 Amplification factor of Mode 0 as a function aat M, = 0.005 for various Reynolds

numbers

Figure 6.13 illustrates the distribution of amplification factor as a function of « at
M, = 0.005 for a range of Reynolds numbers. It indicates that increasing the
Reynolds number further, amplification factor stays at around peak value of
¢,=0.00285. At that ¢, as seen in Figure 6.10, there is a stability contour line in the
form of nearly closed curve if we further increase the Reynolds number range
determining that viscous instability is dominant in the flow. In Figures 6.18 and
6.19, the behavior of amplification factor as functions of Reynolds and wave
numbers at wall Mach numbers 0.035 and 0.065, respectively. At wall Mach number
0.065 for the amplification factor of ¢,= 0.0009, there is a closed stability contour
and if it is further increased to 0.000925, it results in wavy closed loop. Flow is

unconditionally unstable for the values of ¢, more than the peak value of 0.000925 at

M ,=0.065.
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As the wall Mach number increases, the amplification factor, c,, decreases
concluding that there are no stability contours for the wall Mach numbers higher than
0.065 in a range of wave numbers, 0.1-2.0. The whole range of ¢, including the
stable phases, ¢, < 0, can be seen in Figure 6.14 for M = 0.005 and Figures 6.22 and

6.23 for M ,=0.035 and 0.065, respectively.

The distribution of wave speed, ¢, , which is the real part of the eigenvalue of Mode 0

is seen in the Figure 6.15 for different Reynolds numbers. As the wavenumber
increases first the wave speed decreases until o = 0.4 then it increases until «=0.9
for Re=95 000 and a=1.6 for Re=5000. Then sudden and continuous decrease of
the wave speeds with increasing wave number occurs for all Reynolds numbers.

Figures 6.22 and 6.23 show the behavior of wave speed, c,, for wall Mach numbers

0f 0.035 and 0.065 as functions of wave and Reynolds numbers.
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-0.10
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Figure 6.14. All ranges of temporal amplification factor of Mode 0 as a function o at M, = 0.005 for
various Reynolds numbers
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Figure 6.15. Wave speed, c,, of Mode 0 as a function of o atM  =0.005 for different Reynolds
numbers.
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Figure 6.16. The contours of amplification factor, c,, for Mode 0 as functions of wavenumbers and
Reynolds numbers at M ,=0.035
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Figure 6.17. The contours of amplification factor, c;, for Mode 0 as functions of wavenumbers and
Reynolds numbers at M, = 0.065
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Figure 6.18. Amplification factor of Mode 0 as a function e at M = 0.035 for various Reynolds
numbers
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Figure 6.19. Amplification factor of Mode 0 as a function aat M = 0.065 for various Reynolds
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Figure 6.20. All ranges of amplification factor of Mode 0 as a function « at M, = 0.035 for various
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Figure 6.21. All ranges of amplification factor of Mode 0 as a function o at M = 0.065 for various
Reynolds numbers
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Figure 6.22. Wave speed, c,, of Mode 0 as a function ofx atM = 0.035 for different Reynolds
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Figure 6.23. Wave speed, c,, of Mode 0 as a function ofar at M, = 0.065 for different Reynolds
numbers

6.4. Effect of Mach Number

Figure 6.24 shows the contours of amplification factor, ¢, for the most unstable

mode 0 for a range of Mach numbers and wave numbers while fixing Reynolds

number at Re= 30000.

The unstable range for « decreases as the Mach number increases. The figure
shows that, for a fixed Reynolds number, there is a Mach number which corresponds
to the maximum amplification rate for mode 0. For a fixed Reynolds number at

30000, the most unstable Mach number is around 0.010.

Figure 6.25 shows mode 0 temporal amplification factor at Re= 30000 as a function
of a for various Mach numbers. For a fixed Reynolds number at Re= 30000, as

Mach number increases, the c, first increases, reaches a maximum at certain Mach
number, and then decreases. The Mach number corresponding to the maximum c, at

Re=30000 is 0.005 which is in agreement with the above observations.
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Figure 6.24. The contours of temporal amplification factor for most unstable Mode 0 as a function of
aand M, for Re =30000.

Figure 6.26 shows the maximum phase velocity over a range of wavenumbers for a
range of Mach numbers corresponding to mode 0 at Re=30000. Same figure shows
that Mode 0O instability is weakening as the Mach number increases. Increasing
Reynolds number amplifies the instability and phase velocity increases. Mode 0

instability is the highest at M = 0.005. The curves indicate that before the Re=6000

regardless of M, the flow is stable for every wavenumber.
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Figure 6.25. Mode 0 temporal amplification factor as a function of « at different Mach numbers for
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Figure 6.26. Maximum c, of Mode 0 for different Mach numbers at fixed Reynolds numbers.
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CHAPTER 7

CONCLUSIONS

In this study the linear viscous stability characteristics of high speed Couette and
combined Couette — Poiseuille flows have been investigated numerically. A
computer program was developed for the solution of the instability equations derived
from compressible Navier — Stokes equations. The governing equations were
discretized using a second order finite difference scheme resulting in a generalized
eigenvalue problem for the temporal amplification factor. The temporal stability of
the problem was analyzed to obtain the eigenvalue spectrum. The numerical method
used was the global method which requires more grid points for improved accuracy,
and validation was achieved by comparing the results of plane hypersonic Couette
flow with that of Malik [14] and Hu and Zhong [17]. The effects of viscosity,
temperature, density and compressibility on the stability of Modes I and II for
Couette flow, and Mode 0 for Couette — Poiseuille flow were studied. It was seen
that viscosity plays a destabilizing role in both Mode I and Mode II instability for
supersonic Couette flow for a range of Reynolds number and wavenumbers. Both of
these modes originate from the wave reflections in a supersonic region near the upper

or lower wall.

Mode I and Mode II, in general, are the most unstable modes for supersonic plane
Couette flow. But they were not dominant in the combined plane Couette —
Poiseuille flow and the new mode which seemed to be a member of even modes such
as Mode II was the most unstable mode and was labeled as Mode 0. As for the Mach

number effects, Mode 0 was destabilized first and then stabilized as Mach number

102



increased. The range of Mach numbers which has Mode 0 instability expanded with
Reynolds number but remained finite. In general, the stability of the bounded plane
Coutte — Poiseuille flow was different from that of the unbounded high speed

boundary layers in many aspects due to the presence of the upper wall.

Although z — momentum equation was solved together with the set of equations for
stability analysis for plane Couette flow, the same equation was not included for
plane combined Couette — Poiseuille flow stability analysis to economize the
computational effort. = Two-dimensional linear stability eigenvalue spectrum
contained less modes than three-dimensional spectra but the most unstable
eigenmode, Mode 0, for two dimensional stability was numerically the same for

plane Couette — Poiseuille flow with that of three dimensional.

The results were presented using the boundary condition of T (0) =0 in computation

instead of Z:_T (0) =0 for the temperature fluctuation at the lower wall even when the
'y

basic flow was adiabatic. The use of 7 (0) =0 instead of Z’—T(O) =0 did not make a
y

significant difference on the results when compared to Hu and Zhong [17].

The critical Reynolds number was found to be Re,= 5718.338 for M = 0.0001
using 249 interior grid points for combined plane Couette — Poiseuille flow. This
correspond to the fully Poiseuille case, as the Couette component is negligibly small.
That means the flow is uncondionally stable for the Reynolds number less than Re,,
regardless of Mach number. The effect of the number of grid points used on the
critical Reynolds number after 249 grids was not noteworthy and neutral stability
contours calculated using that number of nodes. Orszag [24] found the critical

Reynolds number as Re_ = 5772.22 for instability of incompressible viscous plane

Poiseuille flow using the Chebyshev method.
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Both the Reynolds number and the upper wall Mach numbers draw the boundaries
for the instability analysis of the flow through the piston ring end gap. Although
Reynolds number and wall Mach number in the piston ring end gap were calculated

as Re= 5000 and M = 0.0235 for plane Couette — Poiseuille flow, the flow was

investigated and stability contours were determined for a range of wall Mach

numbers, M <0.065, and a range of Reynolds numbers, Re =5000—-100000

extending the investigation to get more about the behavior of the flow. If the upper

wall Mach number increases more than M , > 0.065, Reynolds numbers jump to
high values. While the Reynolds number is 15000 for M =0.065, that value jumped

to 35x10° for M, =0.01. It was difficult to explain physically the current situation

of Reynolds number jump for that small increase of Mach number. The reasons
would be the physics of the problem studied and most probably the solution method
and more grid requirement for improved solution and better accuracy. At the range
of Mach numbers between 0.065 and 0.3, there was a complex trend of Reynolds
numbers. The number of grid points used in discretization did not make any

difference on the dispersion of the Reynolds numbers on M, —Re map at a range of
0.065< M, <0.3 and the spectra of Reynolds number was unsteady to the grid
points. For M > 0.3, behavior of the Reynolds numbers according to Mach

numbers were much steady than the previous Mach number range.

The thin layer of oil film and on which gas layer was confined between two parallel
plates simply represents the basic geometry of the problem. The thickness and the
velocity of the oil film moving on the stationary plate were so small compared to the
high-speed gas flow occurring above the oil film that the oil layer behaves like a
solid wall and only the stability of gas phase was concerned. There was no
expectation for the magnitude of the critical Reynolds number to be affected due to
the omission of the oil layer in the analysis. This was confirmed by Ozgen [3] who
studied the characteristics of the instability of Newtonian and non-Newtonian fluid —
air systems and concluded that for the air flowing over a thin layer of liquid, the

effect of the thin layer was negligible on the two-phase flow instability.
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APPENDIX A

DEVELOPMENT OF FLOW IN A CHANNEL

l

Figure A.1. Basic flow representation of parallel flow

Figure A.1. shows developing Poiseuille flow in a channel for air as the fluid:

therefore

U, =400m/s
x=1=3x10"m
h=0.5x10" m

v =26.41x10°"m’/s
at T,,, =400K

-3
Re = Ul _400x3x10

= =45*10°
Yy 2641x107°

which is laminar gas flow.
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Boundary layer thickness for flow over flat plate for Rey is

*3%1073
é; > == o =ﬂ=0.07071*10_3m. or o =70 gm.
X Re, Re,  4/45%10°

where

_ 5
Rex,critical_3 *10

At 500K gas velocity assuming perfect gas

U, =a=+RT

where

y=14

R =2871J/kgK
For

T. =500K v=36*10° m?/s

gas

U, =V1.4%287%500 = 448.21 m/s = 450 m/s

Ul 450%3*10°
I{eQO = = -
1% 36*10°°

=37.5%10° (3*10°

Therefore flow is laminar for the gas temperature of 500 K.

Convection time scale:

* -3
PR T L |

gas

=10 sec ¢ =0.01 miliseconds

Therefore, for the above condition, flow over the oil layer, gas flow is laminar and it

takes about 0.01 millisecond for the flow fully develop in the channel.
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APPENDIX B

VELOCITY AND TEMPERATURE PROFILES
IN PLANE POISEUILLE FLOW

B.1. General

For the case of compressible and viscous two-dimensional flow with constant
properties the system of equations for the velocity and the temperature distribution in

steady flow along x — y plane, obtain from the equations in dimensional form:

Continuity:
Qo) o)y (B.1)
ot ox oy
X — momentum:
Mmoo ou ou
p|:0’%+u0’k+v0y+wa}} =
(B.2)

_£+z (2@_2(@4_@4_@)) +é (@4_@) +ﬁ|: (dd/+d/l):|
a &' & 3a o &l e s " &

y — momentum:

[0’\/ & & a'q
pl—+tu—+v—+w—|=

a & & & (B3)
17 ) N du 0 N 2 du N w 0 aw v
il [ e e o]
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energy :

{ar /A 0”1“}
PC| —Fu—+v—+w— =

a a g & (B.4)

ﬁ(k£)+ﬁ(k£)+£(k£)+£+u£+v£+W£+CD
& & & & a a& & o 124

where

4Ry
é/)

HO oG D (G Dy e G Dy —%(W)}

o | O
cp_zﬂ{(@c)“ 2ax s 2 & 2a a

assuming:

u=u(y), v=0, T=I(y) (also T=T(w)), P=P(x), CCIZ—P = cons tant,z—P =0
X ly

cy=constant, p=u(T), k=k(T), Pr=pc,/k

Simplifying both x — momentum and energy equations, one can get the fictitious
equality to the unsteady velocity and temperature terms to solve the coupled

equations using explicit finite difference method.

k+1 k k+1 k
) utn —u dr T'W -T. ]
In reality both &=~/ 7 and & =" "7 are equal to zero and this feature
dt At dt At

is used for explicit formulation of the equations.
B.1.1. X—Momentum Equation:

du 1 dP 1 ©
p— +__

Z__;/Mj dx Redy

ou
(u 5) (B.5)

du 1 dP 1 ouou 1 0’u
e T R () (B.6)
dt /M. dx Redydy Re 0y
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u/" —u! 1 apr, V! = ul —u/, 1 Jo=2u! +uf
— 1 S —( 5(;)) (B.7)

At M2 dx "Re Ay Ay  Re (Ay)?
T ]~ el ] )
. . At ]/Mz e i i-1 i i-1
ul:/ —I/ll'./+(A—) (Bg)
Y% . .
#oo ! ! = 2u] +ul)
B.1.2. Energy Equation:
dT -1) dP 1 0 1 ou .,
ar_=D, 4P, 1 0400, U=y @y (o)
dt ¥ dx ReProy oy Re Oy

dt 14 dx Re Pr 6y 8y 8y "Re

ar _(-Y dp 1 cp opol 0O ) =Dz @y a1

dt y dx RePrPr oy oy oy® Re oy
-1 _ (7_1)d_Puj + I ¢ Hly— 1 T =T/
At dx ' RePrP A A
] /7/ I x ePr Pr Y% y Y% (B.12)
i T;+1_2T +T ) (7/ 1)]\42 j( z+1_ z)
(Ay)? Re Ay
+#—( T -T))
Tj+l 3 Tj N At R P P Iu1+1 Iul i1 L
i =4 (Ay)z 1 A A (B.13)
+ ( i+1 27-;1 +T;il)
RePr Pr
(7 1) N2
ul  —u
Re wﬂz ( i+1 i )
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B.1.3. Sutherland’s Viscosity Law:

Viscosity is a function of temperature from Sutherland’s law and temperature is also

a function of velocity which is to be solved simultaneously.

. S 1450
PZAE TR [ Vo I TE R (B.14)
/Lloo Tco 7:j Sl Tco T:/ Sl ‘
T, T, T, T,
or in dimensionless form
1+-1
j 32 T,
H =0 ——5 | S, =110K (B.15)
T’ +

B.1.4. Boundary & Initial Conditions:

For the initial velocity and temperature profile for the explicit solution of the coupled

equations linear velocity profile is taken as starting profile.
u(y)=ZUw &T(y)=T,-y—— (B.16)

Since the method is explicit the following inequality must hold for the numerical

stability, assuming Pr <1, that is, a gas:

1-2—L——2L2>0 (B.17)
Ay~ p/ RePr Pr

this parameter should be monitored during the computation.
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APPENDIX C

COEFFICIENT MATRICES OF GENERALIZED EIGENVALUE PROBLEM

1 du dT
Bll _(__,U_
udT dy
B, =(ia),
B, =0
g Ldudu 1dudu
a wdT dy®  udT dy
B, =0
B, =(ia)l,
1 du dT
By =————1,
udT dy
Re 1
By =———
7
By, =0
By =ip
By =0

332 = (iﬂ)ll
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C,, :—El(—iw+iau+iﬂw)+(ia)zlz +(ip)?
u T
1dr
Cp Z_Elu'*'_d_(ia)
uT  pdy
Re .
C, =——I(a)
7]

_ldudu 14°pdldy
wdl dy — pdl* dy dy

C15 = (la)(lﬂ)

I, i dT dy

C, = —Ell(—iw +(a)u+(@p)w) +(ia)’ + (i)’
ul, T

Cy = ()ip)l,

Re | dw 1 dudl .
Cp=—— 2 LT (i)
uT oy pdl dy

C33 = _(Zﬂ) E
U

2 2
T
C34 =l—d d W+ld /l_d _dW

wdT dy®  udT? dy dy
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__Rel it o+ (pyw+LGB) + ()’
u T

- (i)

14T

T dy

- 7]‘; (—iz)+ul™_ (i)

(ia)+wl

Lo u W
_—F(—lw)—F(la)_F(lﬂ)

=%Wﬂ
=0

__xerr Lo _ 2i SN d_W .
= ( (r-HM Re(la) 2dy (ip))

Re Pr1
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APPENDIX D

EIGENVALUE SPECTRA
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Figure D.1. Eigenvalue spectra for M ,=0.001 at Re =125000 for o =0.2
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Figure D.2. Eigenvalue spectra for M, ,=0.001 at Re =125000 for « =0.4
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Figure D.3. Eigenvalue spectra for M ,=0.001 at Re =125000 for «=0.6
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Figure D.4. Eigenvalue spectra for M ,=0.001 at Re =125000 for o =0.8
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Figure D.5. Eigenvalue spectra for M ,=0.001 at Re =125000 for o =1.0
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Figure D.6. Eigenvalue spectra for M, =0.001 at Re =125000 for o =1.2
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Figure D.7. Eigenvalue spectra for M ,=0.001 at Re =125000 for o =1.4
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Figure D.8. Eigenvalue spectra for M ,=0.001 at Re =125000 for a=1.6
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Figure D.9. Eigenvalue spectra for M ,=0.001 at Re =125000 for e =1.8
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Figure D.10. Eigenvalue spectra for M, =0.001 at Re =125000 for o =2.0
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Figure D. 11 Eigenvalue spectra for M, = 0.001 at Re=125000 for a=0.2 — 2.0
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