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ABSTRACT 

 

 

HIGH SPEED-VISCOUS  

PLANE COUETTE-POISEUILLE FLOW STABILITY 

 

 

Ebrinç, Ali Aslan 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Zafer Dursunkaya 

Co-Supervisor: Assoc. Prof. Dr. Serkan Özgen 

 

February 2004, 125 pages 

 

 

The linear stability of high speed-viscous plane Couette and Couette-Poiseuille flows 

are investigated numerically.  The conservation equations along with Sutherland’s 

viscosity law are studied using a second-order finite difference scheme.  The basic 

velocity and temperature distributions are perturbed by a small-amplitude normal-

mode disturbance. The small-amplitude disturbance equations are solved numerically 

using a global method using QZ algorithm to find all the eigenvalues at finite 

Reynolds numbers, and the incompressible limit of these equations is investigated for 

Couette-Poiseuille flow.  It is found that the instabilities occur, although the 

corresponding growth rates are often small.  Two families of wave modes, Mode I 

(odd modes) and Mode II (even modes), were found to be unstable at finite Reynolds 

numbers, where Mode II is the dominant instability among the unstable modes for 

plane Couette flow.  The most unstable mode for plane Couette – Poiseuille flow is 

Mode 0, which is not a member of the even modes.  Both even and odd modes are 

acoustic modes created by acoustic reflections between a wall and a relative sonic  
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line.  The necessary condition for the existence of such acoustic wave modes is that 

there is a region of locally supersonic mean flow relative to the phase speed of the 

instability wave.  The effects of viscosity and compressibility are also investigated 

and shown to have a stabilizing role in all cases studied.  

 

Couette-Poiseuille flow stability is investigated in case of a choked channel flow, 

where the maximum velocity in the channel corresponds to sonic velocity.  Neutral 

stability contours were obtained for this flow as a function of the wave number, 

Reynolds number and the upper wall Mach number.  The critical Reynolds number is 

found as 5718.338 for an upper wall Mach number of 0.0001, corresponding to the 

fully Poiseuille case. 

  

Keywords: linear stability, eigenvalue, high speed-viscous flow, Couette flow, 

Poiseuille flow, QZ algorithm, critical Reynolds number  
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ÖZ 

 

 

YÜKSEK HIZLI – VİSKOZ AKIŞKANIN 

DÜZLEMSEL COUETTE-POISEUILLE AKIŞTAKİ KARARLILIĞI 

 

 

Ebrinç, Ali Aslan 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr.Zafer Dursunkaya 

Ortak Tez Yöneticisi: Assoc. Prof.Dr. Serkan Özgen 

 

Şubat 2004, 125 sayfa 

 

 

Yüksek hızlı ve viskoz akışkanın doğrusal bir düzlemde Couette ve Couette – 

Poiseuille akış modellerindeki kararlılığı sayısal olarak incelenmiştir.  Problem, ideal 

gaz denklemi ve Sutherland viskozite kanunu da kullanılarak ikinci dereceden sayısal 

denklemler halinde çözülmüştür. 

 

Temel hız ve sıcaklık dağılımını kapsayan denklemler ufak genlikler kullanılarak 

normal mod metodu kapsamında uyarılmıştır.  Ufak genlikli uyarılmış denklemler, 

tüm öz değerleri bulmak için QZ algoritması kullanılarak sonlu Reynolds sayılarında 

sayısal olarak çözülmüş ve bu denklemler yüksek hızlı Couette-Poiseuille akışı için 

incelenmiştir. Kararsızlıklar uyarılma genliğinin küçük olması durumunda da 

etkilerini sürdürmektedir.  Kararsızlık modları, Mod I ve Mod II olarak iki ana gruba 

ayrılarak, sonlu Reynolds sayılarında da varlıklarını korumaktadırlar.  Mod II, 

Couette akış için en kararsız olan moddur.  Couette – Poiseuille akışta en kararsız 

Mod 0 olup, Couette akıştaki çift modlar sınıfından değildir.  Her iki kararsızlık  
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modu, kanal içindeki gaz akış hızının dalga hızına göre sesten daha hızlı olduğu 

durumlarda; kanal içindeki gazın duvar ve göreceli ses çizgisi arasındaki akustik 

yansımalarından meydan gelmektedir.  Kararsızlığı istikrarlı ve durağan hale 

getirmede gazın viskozite ve sıkıştırılabilirliğinin etkisi ayrıca incelenmiştir.  

 

Maksimum akış hızı sonik olacak şekilde kanal içinde Couette – Poiseuille akış 

incelenmiştir.  Nötr kararsızlık eğrileri; dalga sayısı, Reynolds sayısı ve üst 

duvardaki Mach sayısının fonksiyonu olarak elde edilmiştir.  Kritik Reynolds sayısı 

üst duvar Mach sayısının 0.0001 olduğu tamamıyla gelişmiş Poiseuille akış için 

5718.338 olarak hesaplanmıştır.  

 

Anahtar Kelimeler: doğrusal kararlılık, özdeğer, yüksek hızlı – viskoz akış, Coutte 

akış, Poiseuille akış, QZ algoritması, kritik Reynolds sayısı  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

The subject of solving the emission problem has been under investigation over the 

past several years due to its adverse effect on environmental pollution.  The loss of 

engine oil through the piston-cylinder assembly is a contributor to unburned and 

burned hydrocarbon emissions.  With the implementation of stringent emissions 

standards, the hydrocarbon emissions due to fuels have radically decreased, paving 

the way for the engine oil to become a significant contributor to emissions.  In an 

internal combustion engine (ICE), the processes leading to the formation of 

pollutants are complex and therefore experimental techniques are of widespread use 

in engine development.  The oil flow through the piston-cylinder system has 

numerous flow passages and local volumes where engine oil can flow through and 

accumulate.  Combustion gases also flow through the same passages and volumes 

resulting in a complex two-phase flow phenomenon.  Due to this nature of the gas-oil 

flow and the difficulty of the testing and viewing the oil accumulation before and 

after the piston rings, experimental methods have been used in understanding the 

gross effects of design parameters on oil loss and developing engines with less oil 

consumption.  

 

Engine oil is also a strong contributor to particulate formation in diesel engines.  In 

addition, it influences the unburned hydrocarbon emissions of spark ignition engines 

because of the absorption/de-sorption phenomenon between the unburned fuel and 

the lubricating oil films.  The mechanism of oil consumption in the ICE is complex 

and so far details have not been thoroughly understood. 
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In the study of engine oil loss, two sequential stages are defined; the oil rising and oil 

disappearing.  Oil rising is used to define the ensemble of mechanisms that promote 

the transport of oil into the combustion chamber, whereas oil disappearing is related 

to phenomena that transform the oil into products carried out by the flow of exhaust 

gas, such as evaporation and combustion. 

 
 

   

Top View                  Front View 

 
Figure 1.1. Piston ring end gap crosssection and geometry through the flow pass 

 

 

 There are three perceived paths for oil flow through the rings: 

 

1.  The oil flow as oil film between the piston ring and the cylinder liner 

2.  The oil flow through the ring end gaps 

3.  The oil flow through the ring groove 

 

Geometry and dimension of the ring end gap through which engine oil flow occurs is 

shown in Figure 1.1.  The driving forces that are generally considered responsible of 

flows are: The pressure difference between each ring, the inertia forces, and the 

transport of oil as fog or vapor in the gas stream.  Most important mechanisms that 

causes the oil to rise in the combustion chamber are the flow between the liner and 

L
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ring and the transport of oil in the gas stream as vapor or fog.  The mechanisms and 

the location of entrainment of oil to form a mist are currently unknown and no 

effective mathematical description of this phenomenon has so far been suggested. 

 

Film coolers, falling film absorption towers, condensers, transportation of liquid 

vapor mixtures, boundary layers on aircraft wings, turbine blades and walls of a 

channel and pipe are examples of processes involving such two-phase flow 

problems.  The same problem exists in the flow of hot combustion gases over the 

thin oil layer between the ring openings or gaps on the piston in ICEs. 

 

If a gas is blown parallel to an oil film, a shearing force will be exerted on the liquid 

surface and cause the liquid to flow.  This phenomenon exists in the flow system 

composed of the piston-liner volumes and the ring-liner flow passages of an ICE.  

The oil carried by the gas flow is transported to the combustion chamber of the 

engine.  With increasing gas velocity, the shear force on the liquid film increases.  At 

higher gas speeds, the liquid becomes unstable and surface waves will form.  This 

leads to the removal of oil droplets from the oil film to be dispersed in the gas and 

carried to the combustion chamber.  

 

The flow of gas and oil through the ring end gap were modeled by Karkaç [1] and the 

models for liquid entrainment into the gas flow were integrated to predict the oil loss 

into the gas.  Three mechanisms of oil loss due to in cylinder components widely 

investigated are: 1) oil left on the cylinder surface and mixing with the combustion 

chamber content, 2) oil mixing with the blowby gases and transportation due to 

pressure gradient across the rings, 3) oil accumulated by the top compression ring 

due to the scraping of oil film on the cylinder.  Oil backflow due to pressure gradient 

is the most effective path for oil loss and it was found that the oil film thickness 

affects the backflow oil consumption in the second and third land volumes in ICEs 

and the calculated oil loss values were 2-3 times greater than oil consumption 

encountered in operating engines. 
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500 µm 

The effect of oil film thickness on oil accumulation in the second land of ICEs has 

been experimentally studied by İçöz [2].  Backflow of engine oil suspended in 

combustion gases has a contribution to the oil consumption and hydrocarbon 

emission when the gas flows through the piston second land back into the 

combustion chamber.  The piston-cylinder model assembled to measure the total oil 

accumulated in the modeled second land after a single piston stroke and the results 

compared to oil consumption in operating engines shown the oil accumulation in the 

second land could be the major contributor to oil consumption. 

 

1.1. Problem Description 

 

Under brake conditions of an engine, the pressure in the intake manifold becomes 

lower than the crankcase.  When these conditions occur, lubricating oil is sucked 

from the crankcase through the piston clearances and ring gaps into the combustion 

chamber. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.2. Schematic representation of flow across ring gap in dimensions 
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This oil flow from the sump to the combustion chamber through the piston ring belt 

causes an increase in oil consumption and an emission of exhaust smoke and oil mist. 

 

The thin layer of oil film and on which gas flows between two parallel plates 

represents the basic geometry of the problem.  To understand the entrainment of oil 

into the high-speed gas, it is necessary to investigate the stability of the oil and gas 

interface.  The thickness and the velocity of the oil film moving on the stationary 

plate are small compared to the high-speed gas flow occurring above the oil film and 

regarding the high viscosity of oil compared to that of air, the oil layer behaves like a 

solid wall as far as the stability of the gas phase is concerned.  Therefore, it is 

possible to study the stability of the high-speed gas flow only, and interpret the 

findings to apply to the gas-oil system.  Although this approach simplifies the 

problem, the formulation does not compromise the physics and the omission of the 

oil layer in the analysis is not expected to have an effect on the magnitude of critical 

Reynolds number for the combined plane Couette-Poiseuille flow.  This approach is 

justified by Özgen [3] who studied the characteristics of the instability of Newtonian 

and non-Newtonian fluid-air system for low speed flows and concluded that for the 

case of air flowing over a thin layer of liquid, there is negligible effect of thin liquid 

layer on the stability of the two-phase flow. 

 

 

 
 
 
 
 
 
 
 
 
   

 
 
 
Figure.1.3 Configuration of physical problem in 2D 
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The fact that, the existence of a thin liquid layer has no contribution to the two-phase 

flow instability, simplifies and allows us to formulate the problem to a single layer 

gas flow in computational work.  The flow geometry is given in Figure 1.3. 

 

1.2. Basic Approach for Hydrodynamic Stability 

 

Stability can be defined as the quality of being immune to small disturbances.  In 

general, the disturbances need not necessarily be infinitesimally small in magnitude, 

but the concept of amplification is always implicit. 

 

The stability of laminar flow has been one of the frequently pursued topics in fluid 

mechanics.  The actual flow problem to be solved is highly idealized and flow is 

assumed to be parallel with velocity and temperature profiles changing in the flow 

direction and depending only on the distance from the wall and pressure drop in flow 

direction for Poiseuille flow.  This builds up the basic flow concept of the stability 

calculations.  Instability of the flow can occur due to disturbance of equilibrium of 

the forces acting on the system which are external, viscous and inertial forces.  For 

compressible and viscous flows, viscosity, density, Mach number, wave propagation 

directions, wall cooling-heating and existence of wall confining the parallel flow 

have all effect on the stability.  The transition to turbulence depends on perturbations 

due to surface roughness, sound source, the inherent perturbation in the downstream 

and other effects. 

 

 

The theoretical investigations are based on the assumption that laminar flows are 

affected by small disturbances; for pipe flow, these disturbances originate at the inlet 

whereas for the boundary layer over a flat plate placed in a stream they are due to 

roughness on the solid surface or irregularities in the external flow.  The stability 

theory is to follow up in time the behavior of such disturbances when they are 

imposed on the main flow and whether the disturbances increase or die out with time.  

If the disturbances decay with time, the main flow is considered stable; in contrast, if 

the disturbances amplify with time the main flow is unstable and the possibility of 
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transition to turbulence exists.  Stability theory predicts the value of the critical 

Reynolds number, beyond which instability will exist for a prescribed main flow. 

For plane incompressible viscous Couette flow, the flow is unconditionally stable at 

all Reynolds numbers.  The viscosity is known to have a stabilizing effect on the 

flow.  In case of the plane Poiseuille flow, the flow is stable at low Reynolds 

numbers. 

 

The mathematical problem is the determination of the eigenvalues of the stability 

equation obtained from the governing conservation equations of mass, momentum 

and energy.  It is the aim of the stability analysis to compute the phase velocity, rate 

of amplification and the wave number of all possible disturbances, in a given flow as 

a function of the relevant flow properties such as Reynolds and Prandtl numbers. 

 

In natural phenomena, steady state solutions of flow systems have been observed to 

become unstable as a result of infinitesimal disturbances, which are always present.  

A common example is the formation of waves on bodies of water due to the action of 

wind.  The common feature of an instability is that infinitesimal velocity or density 

perturbations are amplified and eventually grow to finite size in time and/or space.  

The growth of disturbances could be algebraic or exponential in nature.  Typical 

instability analysis assumes an exponential growth, because it is expected that such a 

behavior would overwhelm any algebraic growth.  However, algebraic analyses have 

been used in problems where exponential models do not match the experimental 

data.  Infinitesimal disturbances are expected to be in the form of noise.  The noise is 

infinitesimal, meaning that the amplitude thereof is small compared to any length 

scale of the problem.  

 

1.3. Review of Previous Studies 

 

A review of the abundant work published in the area of the waves and instability 

generated by shear flows shows that there exists many primary approaches for 

modeling of complex physical processes that occur over the liquid surface.  
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Behavior of instability waves on the interface has been the subject of many 

experimental and analytical studies in the past.  In general, characteristics of surface 

instability can be analyzed in the framework of linear analysis.  

 

In the literature, numerous investigators worked on this problem experimentally and 

numerically.  Analysis of the incompressible viscous and/or inviscid stability 

problem based on the Orr-Sommerfeld equation has been widely presented in the 

literature.  Experimental approaches are used to visualise the phenomena from the 

physical point of view to compare the numerical studies or to complete the solution. 

 

Lees and Reshotko [4], studied on the stability of the compressible laminar boundary 

layer to infinitesimal disturbances assuming the two dimensional compressible 

laminar boundary layers to two dimensional subsonic disturbances and only simplest 

model of a compressible gas with constant specific heat, constant Prandtl number, 

viscosity a function of temperature.  They concluded that the rate of conversion of 

energy from the mean flow to the disturbance flow through the action of viscosity in 

the vicinity of the wall increases with Mach number.  Also the amplitude of inviscid 

pressure fluctuations for Mach number greater than 3 decreases with distance 

outward from the plate surface.  The jump in magnitude of the Reynolds stress in the 

neighbourhood of the critical layer is greatly reduced.  At the Mach number less than 

about 2, dissipation effects are minor, but extremely important at high Mach 

numbers.  Finally the minimum critical Reynolds number for an insulated flat plate 

boundary layer decreases with increasing Mach number in the range of 0<M<3. 

 

Lesen, Fox and Zien [5], investigated the inviscid stability of the laminar mixing of 

two parallel streams of a compressible fluid with respect to 3D wavy disturbances.  

They considered the Squire’s method to decrease the incompressible 3D disturbances 

to be equivalent to a two dimensional one at a lower Re number.  It is sufficient to 

consider 2D disturbances only.  They focused on the influence of the Mach number 

of the flow and the angle of wave propagation on the stability characteristics of the 

laminar mixing of two streams of a compressible fluid.  They considered the flow 

with subsonic disturbances due to the reason of supersonic disturbances, which are 
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often neglected in the stability calculations are less destabilizing then subsonic 

disturbances. 

 

Brown [6], studied the compressible boundary layers.  He pointed out for Mach 

numbers above 2 and 3 stability equations for compressible flow include a number of 

terms, involving the components of the mean boundary layer velocity component 

perpendicular to the surface (flat plate), which are not negligible, but those have been 

ignored in making parallel flow assumptions.  He numerically solved stability 

equations including those surface perpendicular terms.  He included the momentum 

equations in all three directions in his calculations instead of the usual two and 

concluded that there is an agreement between theory and experiment for both upper 

and lower branches of the neutral stability curve for both Mach number 2 and 5.  

After substitution of the three-dimensional form of perturbation component, in to the 

equations of motion, reduction to two-dimensional form by the Squire’s theorem is 

accomplished.  This results in a systems of eight first order differential equations and 

the solution is separated into two parts 

 

Yih [7], considered the stability of superposed fluids of different viscosity in plane 

Couette and Poiseuille flow.  The variation of viscosity in a fluid can cause the 

instability.  He considered that both plane Poiseuille and plane Couette flows can be 

unstable although the Reynolds number is high.  He recognised the plane Couette-

Poiseuille flow of two superposed layers of fluids of different viscosity between two 

horizontal plates.  He concluded that both plane Couette and Poiseuille flows can 

cause instability although the Reynolds number is small. 

 

Blumen, Drazin and Billings [8], considered the linear stability of shear layer of an 

inviscid compressible fluid.  It was shown by them that there was instability of two 

dimensional disturbances at all values of the Mach number, due to second unstable 

mode.  This mode is supersonic, decays with distance from the shear layer and is not 

governed by the principle of exchange of stabilities.  The shear layer is unstable to 

two-dimensional waves at each value of the Mach number.  The occurrence of 

second mode is associated with a breakdown in the validity of the Mach number.  

They concluded that if a given flow is unstable to two-dimensional waves at zero 
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Mach number, it is unstable to three-dimensional waves at each value of the Mach 

number.  A wave nearly perpendicular to the plane of compressible flow is 

equivalent to a two dimensional incompressible wave because smallness of effective 

basic velocity. 

 

Blumen [9], studied on the stability of parallel shear flow of an inviscid compressible 

fluid by a linear analysis.  It is shown that a subsonic neutral solution of the stability 

equation would be found where the basic flow is represented by the hyperbolic 

tangent velocity profile.  Unstable eigenvalues, eigenfunctions and Reynolds stresses 

are determined by numerical values.  He found an analytical neutral stability 

characteristics for a smoothly varying shear layer of an inviscid perfect gas at 

uniform temperature.  He only considered the subsonic disturbances and instability 

was shown to exist for 0<M<1, when the Mach number M is based upon half the 

velocity difference across the shear layer. 

 

Mack [10], described the stability problem for the compressible, viscous (and 

inviscid) laminar boundary layer. He described the stability problem as dealing with 

the flow which is parallel with specified velocity and temperature profile, having the 

only change depend on the distance from the wall. Disturbances are taken travelling 

in the form as sinusoidal waves.  Amplification with respect to time only.  

Mathematical problem is shaped to determine the eigenvalues of the stability 

equations at same Reynolds number, such as, the phase velocity, rate of amplification 

and the wave number of all possible disturbances. Asymptotic method is used to 

evaluate those theories to approach the stability problem.  Solution of the laminar 

boundary layer equations cover the Mach number range from 0.4 to 5.0. Pressure 

gradient is taken to be zero to keep the simplicity of ordinary differential equation. 

 

Djordjevic and Redekopp [11], studied the linear stability of inviscid, compressible 

shear flow.  Relative Mach number, U c0 − , which is the important parameter for 

characterizing the disturbance in parallel shear flow is taken as by them.  They 

introduced that for subsonic flows over the entire flow domain stability modes are 

the modifications of vorticity modes for incompressible limit.  They obtained the 
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specific neutral solutions for both a shear layer.  Also unstable solutions are 

calculated for both streamwise and oblique distributions in the shear layer flow. 

 

Glatzel [12], investigated the structure of normal modes in viscous compressible 

plane Couette flow.  Two different modes of spectrum are defined as being the 

viscous modes which obtain finite phase velocities by the mechanism of mode 

pairing and the sonic modes whose phase velocity becomes distorted in the 

supersonic regime.  Both mode pairing of viscous modes and distortion of the phase 

velocity of sonic modes are caused by the shear.  Combined effect of viscosity and 

compressibility is studied treating the simplest case of plane Couette flow.  The 

perturbation equation is considered to the simple differential equation for the 

pressure perturbation.  Viscosity stabilizes at sufficiently small Reynolds number but 

for such cases like plane Poiseuille flow it leads to an instability at high Reynolds 

numbers. 

 

Zhuang, Dimotakis and Kubota [13], investigated the inviscid stability with respect 

to supersonic disturbances of a spatially growing plane mixing layer inside parallel 

flow guide walls using linear stability analysis.  The shear layer flow considered as 

inviscid and formed by the same gases in the two streams.  The mean flow is treated 

as parallel.  Their purpose was to give a description of how the instability 

characteristics of the shear layer are affected by the flow guide walls and by the 

distance between the walls.  Concluding that the existence of the walls makes the 

shear layer more unstable and keeps the maximum amplification rates from reaching 

an asymptotically small values for supersonic convective Mach numbers, but no such 

an effect can be seen for subsonic convective Mach numbers.  For supersonic 

convective Mach numbers they found the maximum amplification rates of the shear 

layers approach an asymptotic value and this maximum amplification rate increased 

to its maximum value and decreases as the distance between the walls decreases 

continuously. 

 

Malik [14], compared the various numerical methods for the solution of laminar 

stability equations for compressible boundary layers.  He discussed both the global 

and the local eigenvalue methods for temporal stability analysis.  Global methods are 
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used to compute all the eigenvalues of the discretised system and in local methods 

both purification and computation of the associated eigenfunctions take place.  The 

discretization methods that Malik applied are second order finite difference method, 

second order finite difference method with fourth order accurate two-point compact 

difference scheme, Chebyshev spectral collocation method and multi-domain 

spectral collocation method. All these methods belong to the class of methods called 

boundary value method. He presented the eigenvalues up to Mach number 10, 

hypersonic range taking the  effect of increase of Mach number brings out the 

deterioration of spectral method due to outward movement of the critical layer.  

Elimination of this problem is accomplished by using multi-domain spectral 

collocation method for better accuracy. 

 

Malik [14] concluded up with the compressible analogue of the known 

incompressible Orr-Sommerfeld equation which is a coupled set of five ordinary 

differential equations. The set of equations are one second order energy equation, 

three second order momentum equation and one first order continuity equation.  

Reduction of those system of second order ordinary differential equation is possible 

using the approach by Less and Lin (1946).  Numerical methods are described that 

perfect gas equations are applicable. Malik take into account of Sutherland’s formula 

for the viscosity with temperature dependence as µ =
+

−2 227 10
1 198 6

8
1 2

. *
. /

/T
T

 lb - sec / ft2 .  

Malik used two different methods to solve the compressible linear stability problem 

as an Initial value theorem and boundary value problem. He described the advantages 

and disadvantages of both methods which are based upon Chebyshev spectral-tau 

approach.  Initial value problem (IVM) consists of constructing independent initial 

value problems whose solutions satisfy the eight order set of differential equations 

and conditions at the free-stream  boundary.  Main advantage of IVM is the minimal 

computer memory requirement and their capacity to adjust the integration to local 

conditions.  Disadvantage of this method is the requirement of a good guess of the 

eigenvalues.  For boundary value method,(BVM), the differential equations are 

reduced to linear algebric equations using either a finite-difference discretization or a 

spectral representation.  Main advantage of this method is their ability to yield 

eigenvalues when no knowledge of the instability is available for the problem of 
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interest.  Disadvantage of this is the high demand on computational resources both 

memory and time.  As the Mach number increases, the critical layer moves away 

from the wall towards the edge of the boundary layer.  Therefore Chebyshev spectral 

methods may not be a natural choice for  hypersonic boundary layer stability. 

 

Yih [15] investigated wave formation on a thin liquid layer used by de-icing airplane 

wings by studying the stability of air flow which is compressible and viscous over a 

liquid coated flat plate at zero angle of incidence.  In his physical model, the ratio of 

the viscosity of the liquid to that of air is very high and the Re number based on the 

liquid depth and air viscosity is of the order of a few thousand.  Yih obtained two 

formulas for the growth rate and phase velocity of the gravity effect and surface 

tension as being Froude number, F and S, respectively.  Viscosity difference has the 

dominant effect in Yih’s instability model because it induces a jump in the velocity 

gradient. 

 

Duck, Erlebacher and Hussaini [16], investigated the linear stability of compressible 

plane Couette flow.  Firstly, they treated the basic velocity and temperature 

distribution perturbation by a small amplitude normal mode disturbance.  After 

disturbance equations they handled at finite Reynolds number those equations are 

solved numerically and they investigated the inviscid limit of those equations.  They 

included the viscosity to slow the effect of it on calculations and it has stability role 

in all cases they investigated.  Also investigated by them the cases where the wave 

speed of the disturbances approached the velocity of walls.  The effect of imposing 

radiation type boundary conditions on the upper (moving) wall is investigated to 

yield the results common to both unbounded and bounded flows.  They showed that 

the details of the mean flow profile have a profound effects on the stability of the 

flow.  They studied the linear inviscid and viscous stability of compressible Couette 

flow using realistic compressible flow models.  The viscosity coefficients are 

computed by the Sutherlands law with a constant Prandtl number of 0.72. using 

numerically generated  solutions for the basic flow.  They calculated the inviscid 

stability modes of compressible Couette flow.  The inviscid stability characteristics 

of the bounded Couette flow was found to be quite different from that of the 

unbounded boundary layers.  For the viscous instability of compressible Couette 
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flow, analysed the effects of viscosity on the stability by asymptotic analysis.  

Viscosity was found to play a stabilising role for the unstable modes.  They also 

obtained the spectra of viscous eigenmodes numerically from the linearized full 

Navier-Stokes equations for the viscous stability at finite Reynolds numbers.  

Although the viscous unstable modes were expected to exist at high Reynolds 

numbers, no evidence of unstable modes was found in theirs numerical solutions. 

 

Hu and Zhong [17] studied the viscous linear stability of supersonic using two global 

methods to solve the linear stability equation. Flow for a perfect gas is governed by 

Sutherland viscosity law.  Those methods they introduced are a fourth order finite 

difference method and a spectral collocation method.  They found two wave modes 

to be unstable at finite Reynolds number.  Those modes are acoustic modes created 

by sustained acoustic reflections between a wall and a relative sonic line when the 

mean flow in the local region is supersonic with respect to the wave velocities.  

Effects of compressibility, three dimensionality, wall cooling on the two wave 

families are also studied.  For hypersonic bounded flows such as plane Couette flow 

they expected that the stability properties will be different from those of the 

unbounded compressible boundary layers because of the combined effects of the 

upper and lower walls.  In addition the effects of viscosity on the stability of 

compressible Couette flow were examined by comparing the viscous results with the 

inviscid stability results obtained by Duck et al.[16]. 

 

South and Hooper [18], studied on the linear stability of two-fluid plane Poiseuille 

flow in two dimensions, concentrating on transient growth and its dependence on the 

viscosity and depth ratio.  They concentrated on the hydrodynamic stability of shear 

flows of two superposed fluids on the behaviour of the interfacial mode.  Interfacial 

mode is due to the viscosity and/or density jump across the interface and the 

proximity of the boundary walls.  The stability equations for two-fluid flows admit 

an infinite number of discrete eigenvalues and eigenmodes and the interfacial mode 

is usually the leading eigenmode.  The flow consists of two immiscible, 

incompressible Newtonian fluids of equal density, one on top of the other between 

two horizontal plates.  Surface tension is to be zero. 
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Özgen, Degrez and Sarma [19], investigated the two fluid flow, in which a gas 

boundary layer shears a second fluid that is bounded by the wall and the shearing 

fluid.  They solved the eigenvalue problem governing the linear stability of the 

configuration using an efficient shooting search method.  In shooting method, two 

asymptotic solutions for the eigenfunctions are constructed at the edge of boundary 

layer and Orr-Sommerfeld number is integrated towards the wall.  They categorised 

the stability modes due to two fluid interface in two modes such as Tollmien-

Schlichting (hard) and Yih (soft) modes.  They determined the effects of viscosity 

and density stratifications, thickness of the bounded fluid, gravity, surface tension 

and non- Newtonian character of lower fluid and concluded that Yih mode is very 

sensitive to viscosity stratification and for highly viscous liquid layer single layer 

behaviour is to be seen easily.  Results on the parameters can be outlined as surface 

tension has stabilising effect for short waves for interfacial modes, but they 

experienced more complex effect for hard mode.  Gravity has destabilizing effect for 

low and moderate values of the density stratification but has stabilizing effect for 

higher values. 
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CHAPTER 2 

 

 

GOVERNING EQUATIONS 

 

 

 

2.1.  Flow Description and Objectives 

 

The objectives of the present study are to understand the effects of viscosity, 

temperature, compressibility and density on the stability of high speed parallel shear 

flows.  The flow geometry is sketched in Figure 2.1. 

 

 

 

 

 

 

 

 

 

   
Figure 2.1.  Flow geometry for the compressible Couette flow in a channel 
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waves whose amplification is with respect to time, not with respect to distance 

travelled in the flow direction.  The mathematical problem is to determine the 

eigenvalues of the stability equations, i.e., for given boundary layer profiles to 

compute at some Reynolds number, the phase velocity, rate of amplification and the 

wave number of all possible disturbances.  The stability of a shear layer of an 

inviscid compressible and viscous incompressible fluid are all classical problems of 

fluid mechanics, which has attracted the attention of some distinguished scientists of 

earlier generations.  However, the linear stability of compressible flows is 

considerably less understood than corresponding incompressible flows.  

 

2.2.  Governing Equations of Mean Plane Couette Flow 

 

2.2.1. Basic flow velocity, temperature and related profiles 

 

The laminar gas flow assumption across the channel is used and proved in Appendix 

A for a flow media similar with the slit at piston-ring gap.  Also for a gas flow 

developing in a channel obeying the Poiseuille flow conditions is calculated as fully 

developed and laminar.  

 

Velocity )(yu , temperature )(yT , dynamic viscosity )(Tµ  and thermal conductivity 

)(Tk of the basic flow are all initially calculated to perform the stability analysis.  

Flow is assumed to be nearly parallel and in z – direction there is no flow although  

z – momentum equation is taken into account for stability formulation to have full 

sets of equation.  But at further stability calculations, z – momentum equation was 

again discarded from the calculations set to save computational time.  Eliminating 

the equation made no difference on the results are seen due to all z – momentum 

components being either zero or being negligibly small. 

 

For the high speed viscous Couette flow, a solution to the governing equations is 

sought. 
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The dimensionless form of the continuity equation is given as 
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Here we assume that the appropriate dimensional timescale of )/( **
∞UhO  is used to 

nondimensionalize the time. 

 

The momentum equations are then written in dimensionless form by 

nondimensionalizing the pressure by **
∞∞ RTρ  instead of the conventional 2**
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the incompressible flow, Duck [16]. 
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The dimensionless form of energy equation is: 
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Viscosity is a function of the temperature and obeys the Sutherland’s viscosity law. 
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The continuity equation can be used to show that the velocity in y – direction is zero.  

Then the mean flow only function of y, i.e., 

 

)(yUu o=  )(yTT o=  )(yoµµ =  )(ykk o= .          (2.5) 

 

After simplification of Equations (2.2) and (2.4), one can get the x – momentum and 

energy equations in dimensionless form as 
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0)()1(
Pr

22 =
∂

∂
−+⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

y
U

M
y
T

y
o

ow
oo µγ

µ
                            (2.7) 

 

and the boundary conditions for the solution of Equations (2.6) and (2.7) are 

 

0)0( =oU  1)1( =oU             (2.8) 

 

wo TT =)0(  1)1( =oT             (2.9) 

 

It follows from Equation (2.6) that the shear stress,τ , is constant through the profile, 

i.e., 

=
∂

∂
=

y
U o

oµτ constant.          (2.10) 

 

The energy equation may then be written in the form  
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Integrating once and rearranging the terms 
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Cancelling viscous terms and integrating once more 

 

0
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is obtained. 

 

After the application of boundary conditions to above relation, one can get 

 

2)1(
2
Pr1 ww MT −+= γ ,            (2.15) 

 

r

w

T
T

r =            (2.16) 

 

In this study, r is taken as unity giving out the lower wall temperature is equal to the 

lower wall recovery temperature.  If the effect of lower wall cooling/heating is to be 

investigated, then the ratio will differ from unity.  

 

Starting from the Equation (2.7) and integrating twice, 1C  and 2C are the integration 

constants and to be evaluated using  
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o
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o
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τγ
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.        (2.17) 

 

In this problem the shear stress is constant and rearranging the expression for shear 

stress,
dy

dU o
oµτ = , to obtain viscosity  



21 
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When substituted in Equation (2.17),   
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oµ  to give 
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Applying the boundary conditions to determine constants, 1C  and 2C . 
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Equation (2.22) gives the temperature distribution in flow field. 

 

From constant shear stress one can write an expression for the derivative of the 

velocity as 
o

o

dy
dU

µ
τ

= , and then introducing Sutherland’s law of viscosity,  
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The energy and x – momentum equations define the problem.  The shear stressτ  is 

not known a priori and must be determined as a part of iterative solution process.  

The mean pressure gradient is constant or zero.  To determine the velocity gradient 

an iterative process is used.  An estimate to the value of τ is made and this estimate 

is used in a 4th order Runga - Kutta (RK) scheme to integrate Equation (2.24) from 

0=y  to 1=y , using the shooting method.  The result of the integration at the upper 

wall is used in a Newton - Raphson iterative scheme to estimate a better guess for the 

shear stress, and the process is repeated until convergence to the velocity boundary 

condition at the upper wall.  The coefficients of the 4th order Runga - Kutta method 

are:  

 

),(1 ii yxfk = , 

)
2
1,

2
1( 12 dkydxfk ii ++= , 

)
2
1,

2
1( 23 dkydxfk ii ++= , 

),( 34 dkydxfk ii ++= ,          (2.25) 

 

and velocity at the node is  

 

)22(
6
1)()1( 4321 kkkkdiUiU oo ++++=+ .                 (2.26) 

 

In Figure 2.2 the curves show the comparison of basic flow solutions using the 

method of 4th order RK and the explicit solution of momentum-energy equations 

employing Sutherland’s viscosity rule for zero pressure gradient.  Curves in Figure 

2.3 are again the basic flow solutions for different wall Mach numbers.  
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Figure 2.2.  4th order R-K and explicit                         Figure 2.3.  Velocity, temperature and viscosity  
solution at zero pressure gradient                                profiles for wM  = 2, 5 and 10  
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2.2.2. Derivatives of Mean Flow Velocity and Temperature 

 

The equations for the linear stability analysis contain the first and second order 

derivatives of temperatures.  In this section expressions for these quantities will be 

developed. 

 

Analytically using the Equation (2.6) states the constant shear across the channel 

height and introducing Sutherland’s viscosity law, one can get the velocity derivative  
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Similarly 2

2

dy
Ud o is determined by simple algebra. 

 

The temperature derivative which is needed in the generalized eigenvalue problem is 

determined as 
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2.2.3. Derivatives of Mean Flow Viscosity and Thermal Conductivity 

 

Sutherland’s viscosity law is used to represent the variation of viscosity with 

temperature in dimensional form,
)(
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.  In dimensionless form, the 
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viscosity variation can be written as a function of temperature in the form of 
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Simplifying the relation as 
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Key’s law of thermal conductivity of a gas defined in dimensional form is given as 

by Mack [20] 
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or simply 
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c
k

µ
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Thermal conductivity, ok , is related to the Pr number and in this study for the 

dimensionless mean flow, the thermal conductivity, ok , is made equal to the 
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kinematic viscosity as ook µ= , assuming the 1Pr ≤  and dimensionless mean 

specific heat at constant pressure, poc , is constant for air. 

 

Then the derivatives of thermal conductivity assuming ook µ= , 
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and 
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2.3.  Governing Equations of Perturbation Flow 

 

Considering two-dimensional disturbances for the lowest limit of stability is 

sufficient and approved by Squire’s theorem, three-dimensional form of the 

compressible viscous equations of motion is considered having a potential capacity 

in case of three-dimensional disturbances.  The Squire theorem states that when the 

mean flow velocities in y – and z – directions are zero, the lowest value of the critical 

Reynolds number occurs when β = 0.  The equation governing a three-dimensional 

oscillation is the same as that of a two-dimensional oscillation except the wave 
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number, β, and other terms for the z – momentum equation.  If α and β are real, the 

presence of β raises the viscosity.  The minimum Reynolds number for instability is 

higher for an oblique wave than for a pure two-dimensional wave.(Betchov and 

Criminale [21]) 

 

Here, in the stability calculations two-dimensional disturbances are considered and 

the wave number, β in z – direction taken to be zero.   Here are the set of equations 

of motion, continuity, energy, equation of state and Sutherland’s rule of viscosity for 

viscous compressible ideal gases in dimensional form, respectively, are as given 

below in Equations (2.39-2.45). 
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From Schlichting [22], Sutherland’s law for the viscosity is given by Equation (2.45) 
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The flow area is in micro dimensions and the effect of gravity is negligible. 

 

Newtonian perfect fluid between two parallel planes is confined between 0* =y  and 

** hy =  assuming the fully developed flow in x – direction and the calculations for 

fully developed flow are shown in Appendix A. 

 

In case of parallel flow assumption, the flow parameters are function of y* only, i.e., 

*)(** yuu = , *)(** yww = , *)(** yTT = , *)(** yµµ = , *)(** ykk =  and normal 

component of the mean velocity is zero, 0* =v . 

 

Cartesian coordinate system and the following scaling factors are used in non-

dimensionalization of the conservation equations. Length scale is the channel height, 
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*h , velocity scale is the velocity at the upper moving wall, *
∞U . Density *

∞ρ , viscosity 
*
∞µ  and conductivity *

∞k  are all at the reference temperature of 288 K for upper wall, 

pressure is nondimensionalized by 2**
∞∞Uρ and the time scale by *

*

∞U
h .  All other 

variables are nondimensionalized by their corresponding values on the upper wall.  

The dimensionless variables are represented by the same symbol as those used for 

the dimensional variables but without the asterisk, *. 

 

In the next step, we separate the flow into steady mean and unsteady small 

fluctuations: 
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In the subsequent discussion we drop the bars from the mean flow terms for 

simplicity and then cause any confusion in the subsequent analysis. 

 

The introduction of fluctuating and mean flow terms into the dimensionless x – 

momentum equation results in the following: 
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y –  and z – momentum equations after the nondimensionalization takes the similar 

form of x – momentum equation. Continuity and energy equations and finally 

equation of state are following in Equations (2.47-2.49):  
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and equation of state for ideal gas: 

 

)~)(~()~(2 TTPPM w ++=+ ρργ                               (2.49) 

 

Throughout the nondimensionalisation of the equations, we have groups of constants 

as follows: 
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When compared with the mean flow, the perturbations are small, therefore, quadratic 

fluctuating terms such as 
x
uU

x
uu

∂
∂

<<
∂
∂ ~~~  can be neglected. 

 

One can get the simplified x – momentum equation in linearized form as follows: 
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having simplification on viscosity terms, 
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therefore the remaining y – and z – momentum, continuity and energy equations  

become as follows, respectively: 
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       (2.54) 

 

The fluctuating component of equation of state, Equation (2.49), is given as   

T
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T
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~ 2 ργρ −=  and the mean component is derived as TPM w ργ =2 .  Due to 

boundary layer assumption for each plane, P is constant across the layer and is equal 

to )/(1 2
wMγ .  In that case T/1=ρ  and then the fluctuating component simplifies to 

2
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PM w −= γρ and is substituted in equations having density fluctuation term, ρ~ . 

 

In all the above equations there are also fluctuating components of viscosity and 

thermal conductivity which are also functions of temperature as 
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µ  and to be inserted into the equations before the 

normal mode stability analysis. 
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Introducing all simplifying terms obtained into the equations covered, one can get the 

summary of the equations ready to perturbation analysis. 

 

x − component: 
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y − component:  
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z − component: 
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Continuity equation after cancellation of the terms due to mean flow variables 

becomes, 
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Finally, energy equation becomes, 
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2.4.  Linear Stability Analysis 

 

The linear stability equation is based on a normal mode analysis of the linearized 

perturbation equations of the three-dimensional Navier-Stokes equations.  In normal 

mode analysis, small disturbances are resolved into modes which may be treated 

separately because each satisfies the linear system.  The linear stability theory 

formulas presented in this study are valid for general compressible flows with 

parallel steady flow fields. 

 

The linear stability is considered for high speed viscous combined plane Couette-

Poiseuille flow confined between finite parallel walls located at 0* =y  (lower wall) 

and ** hy =  (upper wall) and in Figure 2.4 graphical representation of this geometry 

can be seen. 

 

Each flow variable is assumed to consist of a mean part and infinitesimally small 

perturbations.  Utilizing normal mode analysis the perturbations are expressed in 

Fourier series.  The resulting disturbance equations are linear partial differential 

equations in the variables x, y, z and t. 
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Figure 2.4.  Flow geometry for the compressible Couette Flow in a channel 

 

 

The disturbance equations are linear and the coefficients are functions of y only. 

Then the separation of variables using normal modes (i.e., exponential solutions in 

terms of the independent variables) resulting in the ordinary differential equations 

can be used as in Equation (2.60). 

 

One possible normal mode is the single wave and is excited in harmonic way as: 

                             (2.60) 

The frequency cαϖ = , the real part of c  is the dimensionless phase speed, cr , and 

the imaginary part is the temporal amplification factor, ic .  Disturbances are 

classified according to normal mode analysis in which are either amplified, neutral, 

or damped. 

 

The term α. is real for the temporal stability formulation and represented as 

α π λ= 2 / , where λ  is the wavelength.  The amplitude functions only depend on the 

normal direction for a parallel flow. 

 

 

 

),,,(~),,(),,,( tzyxqzyxQtzyxq +=

)()(ˆ),,,(~ tzxieyQtzyxq ϖβα −+=

y* 

z* 

x* 

h* 

Stationary lower wall 

Moving upper  wall 

y* = 0 
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2.4.1.  Spatial and temporal stability 

 

Considering 2-D disturbances, stability is classified in two parts as spatial and 

temporal related to growth in space and in time, respectively. 

 

2.4.1.1.  Spatial Stability 

 

The local normal mode is given by Equation (2.60).  Introducing ir iααα +=  and 

takingϖ  as real, it can be written as  
 

)()(ˆ),,(~ txix ri eeyQtyxq ϖαα −−= ,           (2.61) 

 

The spatial growth rate is given by iα− for reasons stated as 

 

where 

0<iα  unstable amplified disturbances, 

0=iα  neutrally stable, 

0>iα  stable damped disturbances. 

 

The eigenvalue problem is represented by Re),(ϖα f= where f is complex map.  

The phase speed is defined as 
r

c
α
ϖ

= .  The spatial eigenvalue α  appears nonlinearly 

in the governing equations, so they are not suitable to global analysis using the 

generalized eigenvalue approach.  The nonlinearity in α  arises from the viscous 

2

2 ˆ
dx

ud terms.  Since the instability in high Mach number flows inviscid in nature, the 

contribution from the viscous terms relatively small.  The idea is to drop the 2α  term 

in the global eigenvalue search. 
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2.4.1.2.  Temporal Stability 

 

The local normal modes are as in the Equation (2.60) but α  is real and positive while 

frequencyω  is complex.  Therefore, wave velocity, ir iccc +=  is complex.  Then 

normal modes is written as 

 
)()()(ˆ),,(~ tcxitc ri eeyQtyxq −= αα ,                     (2.62) 

where 

0>ic  unstable amplified disturbances, 

0=ic  neutrally stable, 

0<ic  stable damped disturbances. 

 

The eigenvalue problem is represented as Re),(αfc = where f is complex map.  

Since the eigenvalue, c, appears linearly in temporal eigenvalue problems, most of 

the stability calculations are concentrated on the temporal generalized eigenvalue 

problem. 

 

In this study only the temporal eigenvalue problem is solved and all the 

concentration is just focused on the real α  and complex c values, i.e., rc  and ic . 

 

2.5.  Method of Normal Modes and Generalized Eigenvalue Problem 

 

The linear stability analysis is based on normal mode analysis of the linearized 

perturbation equations of the three-dimensional Navier-Stokes equations.  In the 

normal mode analysis for the linear disturbances, the fluctuations of flow quantities 

are assumed to be represented by harmonic waves of the following form in three 

dimensions. 

 

[ ]ξ )(ˆ),(ˆ),(ˆ),(ˆ),(ˆ~,~,~,~,~ yTypywyvyuTpwvu =                      (2.63) 

 



 39

where )( ti zxe ϖβαξ −+=  is the perturbation term which shows the harmonic wave 

behaviour.  The real part of the ϖ , represents the frequency of the disturbance 

modes while the imaginary part of ϖ  represents the temporal amplification rate of 

disturbances. 

 

Therefore, introducing the perturbation terms into Equations (2.55-2.59) and 

differentiating with respect to y. 

 

x − component: 
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y − component: 

 

[ ] ⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

′+++

++

+′+′+′+

+′−=

++−

)ˆ())(ˆ)(ˆ(1

))(ˆ)(ˆ(1
)(ˆˆ))(ˆ)(ˆ()(ˆ

Re
1ˆ

))(ˆ)(ˆ)(ˆ(1

20

2
21

2

ξξβξαµ
µ

βξαµ
µ

ξβξξβξαξα

µξ

ξβξαξϖ

vliwiul
dy
dT

dT
d

dy
dwiT

dy
duiT

dT
d

ivvliwiuliv

P

ivwivuiv
T

,         (2.65) 

 

 

 

 

 



 40

z − component: 
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continuity : 
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energy : 
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cancelling ξ ’s from both sides of each equation and rearranging the terms showing 

the differentiation with respect to y.  

 

x − component becomes: 
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y − component: 
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z − component: 
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continuity: 
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energy: 
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Linear disturbances satisfying all of the equations results in the generalized 

eigenvalue problem shown as in Malik [14] 

 

0)( 2 =Ψ++ iDD CBA ,             (2.74) 

 

where iΨ is the five element vector defined by trwTPvu )ˆ,ˆ,ˆ,ˆ,ˆ(  and A , B  and C  

which are )15()15( ++ NxN  matrices of functions of Re,,, ωβα  and wM .  In 

Equation (2.74) D and D2 are the first and second derivatives of corresponding 

eigenvector according to y as follows:   
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dy
dD = , 2

2
2

dy
dD = .  

 

A , B  and C  matrices are in the form of square matrix and represented in Appendix 

C. 
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The coefficients Bij and Cij (i=1,5, j=1,5) are given Appendix C.  The disturbance 

waves are three-dimensional in general.  Two-dimensional disturbance modes 

correspond to a special case of 0=β .  We are interested in two-dimensional basic 

flow, then the velocity component )(yw may be set to zero in the coefficient matrix 

in Appendix C. 

 

The boundary conditions for the Equation (2.74) are imposing the isothermal wall 

temperature at the upper wall. The lower wall assumes either isothermal or adibatic 

wall boundary conditions.  
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     0* =y  05421 =Ψ=Ψ=Ψ=Ψ  or 04 =
Ψ
dy

d
, 

   ** hy =  05421 =Ψ=Ψ=Ψ=Ψ .          (2.75) 

 

Temperature perturbations are assumed to vanish at the solid wall boundaries.  In 

case of isothermal condition for the lower wall, the temperature condition at 0* =y  

is replaced by 0)0(4 =Ψ .  Due to high frequency disturbances where the temperature 

fluctuations do not penetrate deep into the solid wall boundary due to thermal inertia 

of the solid body, one may replace the isothermal lower wall condition, 04 =Ψ , with 

adiabatic 0
)0(4 =

Ψ
dy

d
. 

 

Equations (2.74) and (2.75) constitute the homogeneous boundary value problem and 

the main scope is to determine the relation between the ϖβα  and MRe,,  , w  that 

satisfies the system which constitutes a generalized eigenvalue problem. 

 

Re),,,( wMβαϖϖ = .           (2.76) 
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CHAPTER 3 

 

 

NUMERICAL APPROACH 

 

 

 

3.1.  Numerical Method  

 

In order to implement a numerical solution, the computational domain, η , is divided 

into grids with equal spacing and the physical properties of the fluid are evaluated at 

the grid points in y – direction. 

 

The differential equations are discretized using )( 2hO finite difference formulae, in 

the form 
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First order continuity equation is shown as 
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         (3.2) 

 

The terms iA , iB , iC are the coefficients of stability equations and are given in 

Appendix C. 
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hy =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0=y  

0=η  

 
Figure 3.1.  Representation of staggered grid used for 2FD discretization (Malik [14]) 

 

 

Nondimensionalized channel height, hy ≤≤0  is mapped onto the computational 

domain 10 ≤≤ η  by using the following nonlinear transformation 
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where 
h
ab += 1  . Here h  is the channel height where the flow conditions are 

satisfied.  The term a  is the scaling parameter chosen to optimize the accuracy of the 

calculations.  Here we use 
)2( i
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a
−

= which puts the half of the grid point used for 
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discretization between 0=y  and iyy = .  The mapping given above clusters the grid 

points near the walls but in this study, 
2
hyi =  is chosen such that the grid points are 

all equally spaced in the channel. 

 

The vector iΨ  is the one corresponding to Ψ  at Ni /=η  and has components 

iiiii wTPvu  and ,,, .  

 

Also 

1k =1 and 2k =0  are valid for iiii wTvu ,,, ,  

1k =0 and 2k =1  are valid for only iP .  

 

The parameters 1f , 2f  and 3f are the weighting factors determining the responsibility 

of coefficients of eigenvectors in the discretized equations according to grid 

clustering map encountered and given as  

 

22

4

1
)(

ab
bf η−

= , 

22

3

2
)(2

ab
bf η−

−= , 

ba
bf

2

3
)( η−

= . 

 

Since, the value of 
2
hyi =  is encountered in the grid clustering, the values of 1f , 2f  

3f  are calculated as 11 =f , 02 =f  and 13 =f . 

 

Due to the staggered mesh generation there is no need to have artificial pressure 

boundary condition.  The three momentum and energy equations are written at full 

nodes.  The pressure information for those equations at full nodes is obtained from 

the former and latter neighbour half nodes at which continuity equation is written. 
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The total number of full nodes encountered is N and the total number of half nodes is 

N+1.  For each full node there exist 4 equations and 1 equation is written at each half 

nodes.  Then the total number of equations written at both full and half nodes is 

5N+1.  Equation (2.74) with the boundary conditions in Equation (2.75) represent the 

5N+1 equations and 5N+1 unknowns to be solved simultaneously. 

 

The discretization of the governing equations reduces the system to generalized  

eigenvalue problem as  

 

Ψ=Ψ BA ϖ                            (3.4) 

 

where ϖ  is the eigenvalue and in the form of )( ir icc += αϖ .  Real part of the ω , 

)Re(ϖ , represents the frequency of the disturbance modes, while the imaginary part, 

)Im(ϖ , represents the temporal amplification rate of disturbances.  The term, Ψ is 

the discrete representation of the eigenfunction.  A and B are the square coefficient 

matrices of the stability equations.  The matrices are complex and therefore are 

composed of real and imaginary submatrices.  The matrix A can be depicted as 

A=Ar+iAi, where Ar and Ai are the real and the imaginary part of A, respectively.  

Similarly, the matrix B is represented as B=Br+iBi , where Bi and Br are the real and 

the imaginary part of B, respectively. 

 

Although the matrix A contains the coefficients without frequency information but 

has wave number,α , the matrix B includes neither frequency nor wave number 

information. 

 

Ψ++=Ψ+ ))(()( irir BBAA iicci irα             (3.5) 

 

In this problem, all the elements of the real part of matrix B are zero, i.e., 0=rB   

 

IMSL and Eispack QZ algorithms were used for the solution of the generalized 

eigenvalue problem as stated in the Equation (3.5). 
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The details of the QZ algorithm is given in Moler and Stewart [23].  The double 

precision complex subroutines used as solver are DGVLCG and DWRCRN for 

IMSL; CQZHES and CQZVAL for Eispack libraries. 

 

 

 
Figure 3.2.  Block tridiagonal representation of solution matrix basis for generalized eigenvalue 
problem using 2nd order finite difference method. 
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The coefficients of stability equations calculated at each grid point are substituted in 

the matrices of Ar, Ai, Br and Bi each in the form of general block tridiagonal 

solution matrix as shown in the Figure 3.2. 
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In this study global eigenvalue search method is employed and in Table 3.1 

computational CPU times for the search of global eigenvalues and mean flow 

solution are shown with respect to the grid points used.  The global methods are 

usually computationally more expensive, but they have the advantage of obtaining 

the whole set of eigenvalues and eigenfunctions at the same time.  

 

 
Table 3.1. Pentium 4, CPU 2.4 GHz, Ram 2 Gb time to find eigenvalues by the 2 nd order Finite 
Difference Method 
 

 
Grid Size 

Time for  
basic flow solution 

(sec) 

Time for  
Eigenvalue search 

(sec) 
99 7 7 

149 14 22 

199 12 54 

249 10 113 

299 11 287 

349 9 511 

399 9 896 

 

 

The number of eigenvalues and eigenfunctions thus obtained is proportional to the 

number of grid points used.  On the other hand, the local methods are limited to 

solving single set of eigenvalue and eigenfunction only but they are usually more 

computationally efficient than global methods. 
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CHAPTER 4 

 

 

VALIDATION OF NUMERICAL METHOD 
 

 

 

4.1.  Supersonic Plane Couette Flow 

 

Plane Couette flow is the simple flow geometry which is initially treated to validate 

the code comparing the results in the literature.  The stability of plane Couette flow is 

a standard problem in fluid mechanics and so far either viscous incompressible or 

inviscid compressible flows have been considered.  The stability of incompressible 

Couette flow has been studied extensively and shown to be stable to linear 

disturbances.  Mack [20] found that there is a new family of multiple higher 

instability wave modes in supersonic boundary layers.  Acoustics instability wave 

modes similar to the higher modes in compressible boundary layers have also been 

found in supersonic jets and mixing layers.  The existence of walls has a strong effect 

on the acoustic instability waves in the bounded compressible flows.  For validation 

of the code, Malik [14] and Hu and Zhong [17] are taken as a reference for the 

comparison of the results of plane Couette flow at Mach numbers 2, 5 and 10. 

 

4.1.1. Validation of the Results and Numerical Accuracy 

 

The linear stability code which solves the generalized eigenvalue problem using the 

second order finite difference method is first validated by comparing the results to 

those obtained by Malik [14] and Hu and Zhong [17] for the linear stability of plane 

Couette flow for compressible and viscous boundary layer. 
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The flow conditions for the test case are compressible boundary layer over a flat 

plate with zero pressure gradient at 5.2=wM , 3000Re = , RT o
o 600* =  and 1=

r

w

T
T

. 

 

The methods used by Malik [14] are a second order finite difference (2FD) method, a 

fourth order compact finite difference (4CD) scheme, a single domain spectral 

collocation (SDSP) method and a multi domain spectral collocation (MDSP) method.  

For each scheme Malik [14] used first a global method to compute all of the 

eigenvalues of the discretized system and used a local method to purify the solution 

and its eigenfunctions.  For global methods a guess for the eigenvalue is not required.  

In a local method, a guess for the eigenvalue is required.  Only the eigenvalue which 

is located in the neighborhood of the guessed value is computed using iterative 

techniques such as Newton’s method.  

 

According to Hu and Zhong [17] better accuracy is obtained both using global and 

local methods than those obtained only by global method for the same grid points. 

The methods used by Hu and Zhong [17] are fourth order finite difference global 

(4FD) method and spectral collocation (SC) method.  Hu and Zhong [17] used global 

eigenvalue search technique employing more grid points to catch the same accuracy 

as Malik [14]. 

 

 
 Table 4.1.  The eigenvalue solutions of complex frequency ω for the temporal linear  

stability of a compressible boundary layer ( 5.2=wM , 3000Re = , RT o
o 600* =  

and 1=
r

w

T
T

,  06.0=α and 1.0=β      (Hu and Zhong [17]) 

 
Methods Grids )Re(ϖ  )Im(ϖ  

4CD    (Malik [14]) 61 0.0367321 0.0005847 

SDSP  (Malik [14]) 61 0.0367339 0.0005840 

MDSP (Malik [14]) 61 0.0367340 0.0005840 

SC       (Hu and Zhong [17]) 100 0.0367337 0.0005840 

4FD     (Hu and Zhong [17]) 100 0.0367338 0.0005845 

2FD     (present study) 149 0.0355836 0.0005687 
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In our calculations global method is used and the accuracy of the solution compared 

to the literature findings are in agreement as shown in Tables 4.1 and 4.2.  

 

The linear stability computations of compressible Couette flow are also validated by 

comparing the viscous results of Duck et al. [16] for the cases of small Mach and 

small Reynolds numbers.  Figures 4.1 and 4.2 show the eigenvalue distribution for 

0.2=wM , 5102Re x= , 1.0=α and 0=β . 

 

 
Table. 4.2. The eigenvalue solutions of wave speed c for compressible Couette flow using spectral 
method with three sets of grids. The flow conditions are 0.2=wM , 5102Re x= , 1.0=α and 0=β      
(Hu and Zhong [17]) 
 

Grids Method cr ci 

  Mode I 

100 (Hu and Zhong [17]) Spectral 1.213695119859 -0.011585118523 

200 (Hu and Zhong [17]) Spectral 1.213695119817 -0.011585118448 

300 (Hu and Zhong [17]) Spectral 1.213695119854 -0.011585118558 

100 (present study) 2FD 1.203594853239 -0.010254316025 

200 (present study) 2FD 1.208357023254 -0.010485769412 

250 (present study) 2FD 1.209258428513 -0.010958475215 

   

  Mode II 

100 (Hu and Zhong [17]) Spectral -0.291572925106 -0.013821128462 

200 (Hu and Zhong [17]) Spectral -0.291572925140 -0.013821128536 

300 (Hu and Zhong [17]) Spectral -0.291572925108 -0.013821128457 

100 (present study) 2FD -0.292425810686 -0.013576244212 

200 (present study) 2FD -0.292387596412 -0.013553618857 

250 (present study) 2FD -0.292058574690 -0.013685524863 

 

 

Recovery factor, r, used is taken to be unity specifying the lower wall recovery 

temperature is equal to the lower wall temperature for adiabatic conditions.  

Recovery factor different than unity makes the “Y” shaped dispersion of eigenvalues 

in ir cc −  plane to be shifted completely to the left and right in rc  axis according to 

the value of r reference to Figure 4.1.  Hu & Zhong [17] has shown the that "Y" 
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shaped dispersion, the lower branch is clustered around the 5.0=rc  line.  In our 

case, shift of dispersion of lower part of “Y” shape to the left shows the lower wall 

temperature is not equal to the upper wall reference temperature.  The 0.5 line on the 

rc  axis shows the equality of upper and lower wall temperatures. 
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Figure 4.1. Phase velocity spectrum of 
compressible Couette flow 
at 0.2=wM , 5102Re x= and 1.0=α  using 
101 grid points 

Figure 4.2. Phase velocity spectrum of 
compressible Couette flow at 

0.2=wM , 5102Re x= and 1.0=α  using 
100 grid points.  (Hu & Zhong [14]) 

Figure 4.3.  Phase velocity spectrum of 
compressible Couette Flow at 

0.5=wM , 6105Re x= and 1.0=α  using 199 
grid points. 

Figure 4.4.  Phase velocity spectrum of 
compressible Couette Flow at 

0.5=wM , 6105Re x= and 1.0=α  using 200 
& 300 grid points using spectral methods  
(Hu & Zhong [17]) 
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In general, )Re(c and )Im(c  represent rc  and ic of eigenvalue spectrum, 

respectively.  Figures 4.3 and 4.4 are the comparisons of phase velocity spectrum of 

compressible Couette flow at 0.5=wM , 6105Re x= and 1.0=α  using 199 grid 

points.  

In Figures 4.5 and 4.6, the phase velocity spectrum of compressible Couette flow at 

0.5=wM , 5105Re x= and 5.3=α  using 201 grid points.  SC method with 300 grid 

points shows better accuracy and distribution of eigenvalues. 
 

Basic flow solutions are very effective on the results and the accuracy of the results 

is very sensitive to assumptions made on viscosity. For the determination of velocity 

and temperature profile, Sutherland's viscosity law is employed as done by Hu and 

Zhong [17] and Malik [14]. 

 

4.1.2. Acoustics Wave Modes 

 

Duck et al. [16] have studied the inviscid stability of supersonic Couette flow and 

found that there are two families of wave modes. 
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Figure 4.6. Phase velocity spectrum of 
compressible Couette Flow at 

0.5=wM , 5105Re x= and 5.3=α using 
200 & 300 grid points. (Hu and Zhong 
[17]) 

Figure 4.5. Phase velocity spectrum of 
compressible Couette Flow at 

0.5=wM , 5105Re x= and 5.3=α  using 201 
grid points 
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Those wave modes are determined as odd (Mode I, III, etc) and even (Mode II, IV, 

etc) wave modes.  They showed that both families of modes are neutrally stable 

when 1>rc  (for odd modes) or 0<rc (for even modes).  They found that when 

10 << rc , both even and odd modes are no longer stable for compressible viscous 

Couette flow. 

 

In general, odd modes are stable with finite damping but even modes are unstable 

and mode II has the largest growth rate among the even modes.  The necessary 

condition for the existence of type of acoustic modes is that there is a region of 

locally supersonic flow relative to the phase speed of the instability wave. 

 

 
 

Even Modes: II, IV, VI …(Re(.c)>0)    Odd Modes: I, III, V …(Re(.c)<1 
 

 

Figure 4.7. Schematic of Mach waves and the two families of wave modes in supersonic Couette flow  

in reference frames moving at the velocity of the disturbance waves. (Hu & Zhong [17]) 
 

 

rM  is the relative Mach number at the two walls and defined as 

w
o

o
r M

yT
cyUM 2/1))((

)( −
= .  Hu and Zhong [17] specified that acoustic wave modes are 

formed by substained wave reflections between the walls and the relative sonic line.  

There are two families of acoustic wave modes for the bounded Couette flow 
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compared to the single family of unbounded compressible boundary layer.  The 

reason for this is there is one family for each boundary. 

 

Figure 4.7 shows the schematic representation of the two families of acoustic modes 

in compressible Couette flow in reference frame moving with the waves.  Odd modes 

are formed by the acoustic reflections in between critical line (relative sonic line) and 

upper boundary while even modes are formed in between critical line (relative sonic 

line) and lower boundary. 

 

Duck et al. [16] found that for the case of adibatic lower wall for inviscid flow limit 

of 10 << rc , in general odd modes are stable with finite damping and even modes 

are unstable.  When the lower and upper wall are at the same temperature, the phase 

speed is 5.0=rc .  It is shown that top boundary is relatively supersonic 1>rM  

when 
wM

c 11+>  or 
wM

c 11−< .  The bottom boundary is assumed adiabatic with a 

wall temperature, wT , is relatively supersonic when the phase velocity approximately 

ww MTc /2/1−<  or ww MTc /2/1−> . 

 

4.1.3. Eigenmode Spectra 

 

Global method is used for the eigenvalues of systems of equations for compressible 

Couette flow. Mode II is the most unstable mode among the viscous unstable modes 

and all investigations are based on the Mode II.  Although Mode I which was found 

to be stable by Duck et al. [13] among the inviscid solutions, also found to be 

unstable at finite Reynolds number indicating that viscosity plays destabilizing role. 

 

Figure 4.8 shows the phase velocity eigenvalue spectrum for Re=5x105 and 5=wM  

at a small wave number, α = 0.1.  Spurious modes are present place in the numerical 

viscous modes. 
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              (a) 

 

         (b) 

(a) shows the wide spectrum  

(b) local spectrum concentrated on Mode I and Mode II. 

 

Figure 4.8. Phase velocity spectrum for compressible Couette flow at 5=wM , Re=5x105 and α=0.1  
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The eigenvalue spectrum of 5=wM  is consist of “Y” shaped structure and located 

around the region of rc  between 0 and 1.  Two families of inviscid acoustic modes 

are located at 0<rc  for the even modes and 1>rc  for the odd modes.  Those 

acoustic modes are the results of acoustic wave reflections. 

 

Acoustic wave modes are located close to the 0=ic  line and marked as I, II, III etc. 

Wave velocities of even modes (Modes II, IV..) satisfy 0<rc  and odd modes 

(Modes I, III, etc) also satify 1>rc .  All those acoustics modes are all stable due to 

the effect of viscosity. 

 

4.1.4. Effect of Viscosity on Stability 

 

The effect of viscosity on the stability of supersonic Couette flow was investigated 

by Duck et al. comparing the inviscid flow cases for 2=wM and 5=wM .  Modes I 

and II are the most unstable modes and are taken into consideration during the study. 

 

 
Figure 4.9.  Phase speed, rc , of Modes I and II as function of α  at a Re=2x106, 5=wM  
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Figure 4.10. ic of Mode II as a function of α  at 5=wM at 6102Re x=  
 

 

 

Figure 4.11. rc  of Mode II as a function of α at 5=wM at various Reynolds numbers 
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rc  of modes I and II are shown in Figure 4.9 for 5=wM  at Re=2x106 as a function 

of α .  Figure shows that as the α increases rc  of even mode (Mode II) increase 

while rc  of odd mode (Mode I) decreases. 

 

The two modes intersects the 0=ic  around 4.3=α  and for high wave numbers 

these two modes are unstable (no longer neutrally stable).  The ic  of Modes I and II 

as a function of α  for 2=wM at various Reynolds numbers are shown in Figure 

4.12.  From the inviscid limit Mode I becomes stable with finite damping when 

1<rc  but Mode II becomes unstable when 0>rc .  Viscosity has destabilizing 

effect on the stability of supersonic Couette flow. 
 

 

 

Figure 4.12.  ic  of Mode II as a function α at 2=wM at various Reynolds numbers 
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Figure 4.13.  ic  of Mode I as a function of α at Mach 5 

 

 

In Figures 4.10 and 4.11, ic  and rc  of Mode II at 5=wM  and 6102Re x= are 

represented.  Figure 4.11 also shows the behaviour of the flow for various Reynolds 

number.  Finally, the trend of imaginary part of the eigenvalues of Mode I as a 

function of wave number,α , is shown Figure 4.13.  The value of the ic is always less 

than zero then the flow is always stable. 

 

4.1.5. Neutral Stability Contours 

 

Neutral stability contours are generated as a function of Reynolds number and wave 

numbers. Mode II is the most unstable mode among the others and dominates the 

instability of the compressible Couette flow.  

 

Neutral stability contours of temporal amplification factors of Mode II is drawn at 

5=wM .  Neutral stability curve represented as a line with 0=ic .  Figure 4.15 
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peak is around 4=α .  Critical Reynolds number is around 780000 for 5=wM . 
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Figure 4.14.  The contours of amplification factor for Mode II as a function of Reynolds number and 
wave numbers at 5=wM  
 

 
Figure 4.15. Neutral stability curve of Mode II as a function of Reynolds number and wave numbers 
at 5=wM  
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Narrow peak at smaller α  is due to viscous instability where as wide peak at larger 

α  is due to the inviscid instability for acoustic wave modes.  As the Reynolds 

number increases, the amplification factor of first peak extends to the maximum 

value and then decreases as a result of viscous instability. 

 

4.2.  High Speed Plane Poiseuille Flow 

 

Orzsag [24] has solved the Orr-Sommerfeld equation numerically using the 

expansions in Chebyshev polynomials and QR matrix eigenvalue algorithm.  He 

applied the method to the stability of plane Poiseuille flow and found the critical 

Reynolds number.  The stability problem they studied is that of plane Poiseuille flow 

in a channel and measured all lengths in units of the half-width of the channel and 

velocities in units of the undisturbed stream velocity at the centre of the channel.  

The flow is incompressible and the flow Mach number is close to zero. 

 

The Orr-Sommerfeld equation employed for stability analysis is the 4th order viscous 

incompressible analogy of our set of equations used.  It is convenient to make 

comparison for the most unstable mode of plane Poiseuille flow with 1=α  and 

10000Re = .  Orszag found the most unstable eigenvalue as 

 

=+= ir iccc = 0.23752649 + i0.00373967 

 

and the critical Reynolds number and wave numbers are found as 

 

22,5772Re =cr  

02056.1=crα  

 

The critical Reynolds number that Orszag [24] found is based on the maximum 

channel velocity and half of the channel height.  The critical Reynolds number, crRe , 

is defined as the smallest value of Re for which an unstable eigenmode exists. 
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In this study, the critical Reynolds number has been determined for instability of 

plane Couette-Poiseuille flow using the second order finite difference method.  To 

simulate the plane Poiseuille flow, upper wall Mach number is taken close to the 

zero, 0001.0=wM  and the flow is fully developed.  The most unstable mode for 

1=α .02056 and 10000Re =  is shown on the Figure 4. 16 and numerical values are 

 

=+= ir iccc = 0,1017976 - i0,0018456 

 

 
Figure 4.16.  The most unstable eigenvalue for 0001.0=wM , 10000Re = and 02056.1=crα  based 
on the maximum channel velocity and half width. 
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There is a 12% difference of basic velocity and temperature profile in a channel 

compared to the incompressible situation.  This difference makes the most unstable 

eigenvalue vary.  The most interesting thing is the critical Reynolds number which is 

obtained through high speed equations nearly the same. 

 

In Figure 4.17, the dispersion of critical Re numbers according to the wall Mach 

numbers is shown for various grid sizes.  Results of grids of 249 and 299 are nearly 

the same and find that the critical Reynolds number is crRe = 5718.338 for the 249 

computational grids throughout the channel height. 

 

 

 
Figure 4. 17 Critical Reynolds numbers for wall Mach numbers for various grid sizes  
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CHAPTER 5 

 

 

COMBINED PLANE COUETTE-POISEUILLE FLOW 
 
 

 

5.1. General Description of Basic Flow 
 

The flow geometry of the problem is the piston ring end gap and is simplified to 

Cartesian 2-D coordinates.  The dimensions of the gap is 500 microns in height and 2 

mm in length and shown in Figure 5.1.  The depth of the gap is not taken into 

account for 2-D problem.  The pressure inside the combustion chamber while 

compression cycle is approximately 50 bars and the pressure other side, crankcase is 

3 bars.  The pressure difference coupled with the high speed gas flow constitute the 

Couette-Poiseuille flow inside the gap.  The flow is named as “high speed” flow not 

categorized as “compressible” since the effect of compressibility in the flow is not 

dominant. 

 
 

 
Figure 5.1.Geometry, dimensions and pressure values at channel inlet and outlet 
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The maximum speed of the piston is sm / 15  (average is sm / 8 ) in an ICE and the 

speed of gas particles is zero at stationary wall which is the cylinder liner in the 

current problem.  Then the piston speed is not employed as a scaling velocity for the 

nondimensionalisation of the problem.  The flow is to be choked due to high pressure 

ratio across the channel.  Therefore, the appropriate scaling velocity is the sonic 

velocity encountered in the middle of the channel. 

 

Flow passage has a rectangular cross-section and for a gas flow, the maximum flow 

rate per unit area has importance for the effect of “choking”.  Choking of the flow is 

not required but temperature and velocity of the gas coupled with a pressure gradient 

makes the choking is inevitable.  The various effects causing choking are presence of 

heat transfer from the boundaries, adiabatic wall condition, channel width and high 

pressure ratio across the flow passage.  In Figure 5.2 the schematic representation of 

the gas flow path and the geometry thereof are shown.  The pressure of the gas is 

decreasing along the axial direction.  All the mean flow calculations are based on the 

sonic velocity encountered in the middle of the channel.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2.  Motion of gas through the ring gap 
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For the Re number across the channel mean velocity is to be used.  One has to 

integrate the mean mass flow rate passing through the flow crossection per unit depth 

and obtain the value of **
ooUρ  to be used for the Re number as  

 

*

0

****** )(
*

ch

h

oochoo WdyUAUm ∫== ρρ&            (5.1) 

 

∫==
*

0

******
*

h

oooo
ch

dyUhU
W
m ρρ
&

             (5.2) 

 

*
0

***

**

*

h

dyU
U

h

oo

oo

∫
=

ρ
ρ              (5.3) 

 

*
0

***

*

***

*

Re
∞∞

∫
==

µ

ρ

µ
ρ

h

oo
oo

dyU
hU

                    (5.4) 

 
5.2.  Basic Flow Solutions 

 

The code developed for the basic flow solutions calculates the channel height and 

pressure gradient across the channel for a given upper wall Mach number and 

Reynolds number to reach the sonic velocity in the middle of the channel.  The 

convergence to the sonic velocity requires hundreds to thousands of iterations.   

 

While calculating the sonic velocity in the middle of the channel; temperature, 

kinematic viscosity and thermal conductivity are solved simultaneously with the 

velocity due to compressible and viscous mean flow equations employed.  Pressure 

across the channel is decreasing, 0<
dx
dP and recalculated at every step of mean flow 

solution to satisfy the sonic velocity in the channel. 
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Figure 5.3.  Couette-Poiseuille velocity profile in the channel for  various upper wall velocities at 
Re=125000 
 

 

 
Figure 5.4.  Couette-Poiseuille temperature profile in the channel for various upper wall velocities at 
Re=125000  
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1=wM .0, mean flow resembles plane Couette flow.  For wM =0.001, flow is 

Poiseuille and the velocity profile is parabolic.  Both upper and lower walls are equal 

to the adiabatic lower wall temperature.  

 
 

 
 
Figure 5.5.  Couette-Poiseuille viscosity and conductivity profile in the channel for various upper wall 

velocities at Re = 125000 
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Figure 5.6 shows the channel height calculated after satisfying the sonic velocity 

encountered in the middle of channel according to the given wall Mach numbers for 

upper wall. 

 

 
Figure 5.6.  The calculated channel height for maximum Mach number for choked flow in according 
to upper wall Mach number given for Re = 125000.  
 

 

Figure 5.7 shows the Reynolds number with respect to wall Mach number.  The 

calculated Re number is substituted into the eigenvalue solution matrices.  

 

Figure 5.7.  The calculated pressure drop in the channel for maximum Mach number for choked flow 

according to upper wall Mach number given for Re = 125.000  
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Figure 5.8.  The Re number extracted after the calculation of the flow and used in stability equations 

according to upper wall Mach number given for Re = 125000 
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Figure 5.9.  Eigenvalue spectra for wM =0.001 and Re=125000 for a range ofα =0.2-2.0 

 

 

Figure 5.9 indicates the whole eigenvalue spectra for real and imaginary parts of rc  

and ic , respectively.  The eigenvalues located in the circle in Figure 5.9 are the most 

unstable eigenvalues that dominates the behaviour of the flow stability and moving 

by wave number changes. 

 

The eigenvalues circled in Figure 5.9 are shown in Figure 5.10 in enlarged view 

moving as the wave number changes and reveals the characteristics of the most 

unstable mode and the flow stability according to wave number.  In Couette-

Poiseuille flow, there are no acoustics modes as in the plane Couette flow which 

exhibits high flow speed at supersonic ranges. 

 

The most unstable mode followed in Figure 5.10 is distinct from the odd (Mode I, 

III, V..) and even (Mode II, IV, VI...) modes for supersonic plane Couette flows.  

The most unstable mode followed lies always in a region of 0>rc  enhancing the 

flow instability. 
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Figure 5.10.  Local eigenvalue spectra near the neutral stability line for wM =0.001 and Re=125000 

for a range ofα =0.2-2.0 
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The most unstable mode is the mode that gives valuable information about the flow 

characteristics and stability condition.  Figure 5.10 shows the behaviour of the most 

unstable mode that is followed as a function of wave number,α , while keeping the 

upper wall Mach number, wM  and Reynolds number, Re ,as constant.  

 

The most unstable eigenvalue is located on the ir cc −  map and its ic  value is closest 

the rc  axis.  The location of the eigenvalue and the value of the closeness to the rc  

axis only changes with  wavenumber and Reynolds number, Re , at a fixed upper wall 

Mach number, wM  

 

The procedure is based on the secant method for finding the root of an equation and 

sketched in Figure 5.11.  It starts with the solution of the generalized eigenvalue 

problem employing the initially estimated Re number generating the most unstable 

eigenvalue for a constant wave number and Mach number. 
 

In the second step, initially estimated Reynolds number is infinitesimally perturbed 

keeping the wave number and the Mach numbers are as constant and the most 

unstable mode is evaluated. 

 

At that point, the Secant method is used between the two sets of Reynolds number 

being estimated and perturbed and their calculated ic  values of the most unstable 

modes to find the an improved estimate for the Re number at the root.  The improved 

estimate for the Reynolds number is then substituted as the initial estimate in the 

following iterative step and the same procedure continues until the convergence of 

the ic  value is established.  The ic  lines are set to 0=ic , 0>ic  and 0<ic , for the 

neutral, unstable and stable regions to fix on the Re−α  map at the interior or 

exterior of the contours at any constant ic . 
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Figure 5.11.  Secant method used finding the root of function 
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smallest and critical Reynolds number beyond which the flow is unconditionally 

stable. 

 

 

 
Figure 5.12.  Schematic representation of stability contour search technique 
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“group 1” gradient is employed in estimating the first point’s wave number, newα , in 

“group 2” in Equation (5.6) and “group 1” is then classified as “old”. 
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αα −new  is always checked after every group to continue or to stop the 

iteration for the evaluation of critical Reynolds number. 
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CHAPTER 6 

 

 

RESULTS AND DISCUSSION 

 

 

 

In this study of linear viscous stability characteristic of high speed Couette and 

combined Couette – Poiseuille flows have been investigated numerically.  The 

effects of variable viscosity, temperature and density on the stability of Modes I and 

II for Couette flow and Mode 0 for Couette – Poiseuille flow were studied comparing 

the viscous results at finite Reynolds numbers with the results of Hu and Zhong [17] 

for plane Couette flow. 

 

The physical problem is the instability of gas flow over a thin oil layer present in the 

internal combustion engine piston ring end gap.  Although the flow across the end 

gap is the combined plane Couette – Poiseuille type, the plane Couette flow 

instability has already been studied for the code validation in Chapter IV.  Plane 

Couette flow was found to be stable unconditionally for all Reynolds numbers under 

the sonic flow conditions, and the stability of the combined plane Coutte – Poiseuille 

flow is as a function of the Reynolds and wall Mach numbers is studied in the current 

Chapter. 

 

6.1.  Eigenmode Spectra 

 

Using the global method, the unstable modes have been obtained for high speed 

Couette and combined plane Couette – Poiseuille flows.  Among the unstable viscous 

modes, Mode II was found to be the dominant instability for high speed Couette 

flow. 
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The family of the most unstable eigenvalues are labeled as the odd modes (Modes I, 

III, V, etc) and the even modes (Modes II, IV, VI, etc) according to symmetric 

arrangement on the ir cc −  eigenvalue spectra for a plane Couette flow.  These 

modes are acoustic instability modes and formed by sustained wave reflections 

between the walls and the relative sonic line for the supersonic flows (Hu and Zhong 

[17]).  

 

Same labels are valid for the combined Couette – Poiseuille flow but those have no 

dominance on the instability of the flow.  There is a dominant mode, labeled as 

“Mode 0” determining the instability of the flow.  At first, Mode 0 seems to be a 

member of even modes.  However, while the even modes are always stable at a wide 

range of flow parameters, Mode 0 varies between the stable and unstable regions 

under the same conditions.  This inference makes the Mode 0 different than the even 

modes. 

 

Although the flow that is investigated in the current study is a combined Couette-

Poiseuille flow where the maximum Mach number in the flow field is unity, a similar 

pattern for the eigenvalue families were observed for the ir cc −  distribution.  Figure 

6.1 shows the distribution of all the eigenvalues for a given wave number α  = 0.2 

and Reynolds number, Re=125.000.  The even modes are located on the left side and 

the odd modes are located on the right side, in a symmetrical manner.  Figures 6.2 

and 6.3 also give a close up view of both modes.  Mode II is the dominant mode in 

high speed Couette flow but for high speed Couette – Poiseuille flow the dominance 

of Mode II is not observed.  As can be seen from Figures 6.1 - 6.3, Mode I and Mode 

II are always stable and no significant shift of those modes occurs while varying the 

wave number, α , as will be shown below. 

 

The mode that is traced in the plane Couette-Poiseuille flow is named “Mode 0” and 

distinct from other known odd and even modes.  Figure 6.3 shows Mode I, Mode II 

and Mode 0 on the eigenvalue spectra. 
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Figure 6.1.  Eigenvalue spectra at wM = 0.05 for Re=125000 and α  = 0.2 

 

 

Figure 6.4 shows the variation of Mode 0 as a function of wave number while Mode 

I and Mode II remain nearly stationary compared to Mode 0.  This shows that Mode 

II is not the dominant mode that determines the stability characteristics of the flow in 

plane Couette – Poiseuille flow.  Since both Modes I and II are acoustic modes, 

which are dominant for supersonic flows only, they are not dominant in case of the 

current study where the maximum velocity in the flow field is sonic. 
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above the cr.  This is given in Figure 6.5.  At α =2.6 scattered eigenvalues above the 

ic  = 0 axis exhibits a behavior that seems spurious.  If these modes are purely 

spurious a poıssibility exists that they may be cured by grid refinement.  However, if 

these modes are genuine, then the eigenvalue which exhibits the highest ic  value is 

chosen as the most unstable eigenmode, i.e., Mode 0. 
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Figure 6.2. Eigenvalue spectra at wM = 0.05 for Re=125000 and α  = 0.2 showing the odd and even 
modes 
 

 

 

 

 
Figure 6.3. Eigenvalue spectra at wM = 0.05 for Re=125000 and α  = 0.2 showing Mode I, Mode II 
and Mode 0 
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Figure 6.4. Eigenvalue spectra at wM = 0.05 for Re=125000 and α  = 0.2, 0.4,0.8,1.4 showing Mode 
I, Mode II and Mode 0 
 

 

In this study the global eigenvalue solution method, QZ algorithm, was used without 

employing any local method for higher accuracy.  During code validation, high speed 

plane Couette flow was examined in the channel.  Numerical code works at any 
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different grid numbers. 
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Figure 6.5. Eigenvalue spectra at wM = 0.1 for Re=15 625 000 and α  = 0.2,1.0 and 2.6 
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Figure 6.6.  Re−wM  contours showing the grid sensitivity and the critical Re number at low wall 
Mach numbers 
 

 

The effect of the grid points on the results is that increasing the number of grid points 
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The behavior of the results in the region of wM = 0.065 - 0.3 is not meaningful.  The 

results show a lot of scatter for all grid points used.  It is not known if there are 

unexplained physical events or there exist a computational inadequacy within that 

Mach number range.  When the Mach number is greater than 0.3, the behavior of the 

results on the map is more coherent for various grid points. 

 

Figure 6.6 also shows the boundaries of the stable and unstable regions at a small 

range of Mach and Reynolds numbers.  The curves shown correspond to neutrally 

stable conditions, i.e. ic  = 0.  The regions remaining within the neutral curve show 

unstable configurations, while regions exterior to the curve are stable.  Figures 6.7 

and 6.8 display the general overview of the stability condition of the flow according 

to the grid points for Mach numbers up to, wM =1.0 investigated in this study for a 

plane Couette-Poiseuille flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.7. Stable and unstable regions for a wide range of wM  and Re for various grid points.   
(Re axis is in logarithmic scale) 
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Orszag [24] found the critical Reynolds number as 5772.22 for instability of 

incompressible viscous plane Poiseuille flow using Chebyshev Polynomials method 

for Orr – Sommerfeld equation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.8. Stable and unstable regions for a wide range of wM  and Re for various grid points 

 

 

Our result is in agreement with the result obtained by Orszag. Possible minor 

differences are due to solution method used and the differential equation solved.  

Remember that in this study, a set of high speed governing equations are solved 

simultaneously instead of Orr – Sommerfeld equation and wM = 0.0001 is employed 

as an incompressible limit to validate the results.   
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The rated average piston speed is 8 sm /  and the speed of sound at the reference 

temperature is 340 sm / .  Practically, upper wall velocity is the average piston speed 

which is basis for the upper wall Mach number and is approximately 0.0235. 

 

Both the Reynolds and the upper wall Mach numbers draw the boundaries of the 

analysis for the instability analysis of the flow through the piston ring end gap.  The 

Reynolds and the wall Mach number limits are extended widely to get more 

information although the flow conditions are around Re = 5000 and wM =0.0235. 

 

Then, the flow was investigated and the stability contours were determined for a 

range of wall Mach numbers, 065.0≤wM , specifically at wM = 0.005, 0.035 and 

0.065.  Similary, the range of Reynolds number is extended to 700005000Re −= . 

 

It is traditional to represent the eigenvalues by drawing contours in diagrams of wave 

number versus Reynolds number, Re−α , and phase velocity versus Reynolds 

number, Re−rc .  Each contour represents a constant rate of amplification or a 

imaginary part of the complex wave velocity. 

 

In this study neutral stability contours have been generated as functions of Reynolds 

number and wavenumbers, Re−α .  In these diagrams ic is taken as constant equal to 

0.  The conditions where 0=ic , 0<ic  and 0>ic represent neutrally stable, stable 

with finite damping and unstable with finite amplification conditions, respectively.  

In general, the disturbance waves are three dimensional and two dimensional 

disturbance modes correspond to a special case of spanwise wave number as 0=β  

due to Squirre transformation.  In this study, the stability contours for dimensionless 

temporal amplification factor of ic = 0.0, 0.0005, 0.0010, 0.0015, 0.0020, 0.0025 and 

0.0030 are determined for defined sets of wM  and Re . 
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Figure 6.9. The neutral stability contours for mode 0 as functions of wavenumbers and Reynolds 
numbers at  various wM . 
 

 

Figure 6.9 shows the neutral stability contours for a range of Mach numbers from 

0.005 to 0.065.  As the Mach number increases the upper branch of the contours 

move towards lower wave numbers while the lower branch stays nearly stationary.  

Also, the critical Reynolds numbers increase as the wall Mach number increases, 

hence the flow becomes more stable.  Figure 6.9 indicates that there is a peak in 

ic curves and this peak is located at α = 1.7 for wM = 0.065 and α = 2.0 for 

wM =0.005.  The curves are characteristic of viscous instability where the unstable 

wave numbers become less and less as the Reynolds number increases.  There is no 

threshold value of the wavenumber at the upper branch below which all 

wavenumbers are unstable which is a characteristic of inviscid instability.  This 

shows that the instability modes observed in this study are the viscous instability 

modes and not the acoustic or inviscid instability modes which are typically present 

in supersonic flows. 
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Figures 6.10 and 6.16 – 6.17 show the neutral stability contours for Mach numbers of 

0.005, 0.035 and 0.065, respectively.  In addition to the neutral stability contours, the 

contours at constant ic  are also indicated.  As can be seen the maximum 

amplification factor decreases as wM  increase, where maximum ic  for wM = 0.065 

is only 1/3 of the maximum ic  for wM = 0.005. 

 

 

 
Figure 6.10.  The contours of amplification factor, ic , for Mode 0 as functions of wavenumbers and 
Reynolds numbers at  wM = 0.005 
 

 

Figure 6.11 shows the distribution of amplification factor as a function of Reynolds 

numbers of fixed wavenumbers at wM = 0.005.  It indicates that the peaks would 

vanish as the Reynolds number increases. Figure 6.12 indicates the amplification 

factor distribution and the peaks disappear increasing the Reynolds numbers. 
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Figure 6.11. The distribution of amplification factor of Mode 0 as functions of Reynolds numbers at 

fixed wavenumbers for the case of wM = 0.005 

 

 

 
Figure 6.12. The distribution of amplification factor of Mode 0 as a function of Reynolds numbers at 

fixed wavenumbers for the case of wM = 0.005 
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Figure 6.13 Amplification factor of Mode 0 as a function α at wM = 0.005 for various Reynolds 

numbers 
 

 

Figure 6.13 illustrates the distribution of amplification factor as a function of α  at 

wM = 0.005 for a range of Reynolds numbers.  It indicates that increasing the 

Reynolds number further, amplification factor stays at around peak value of 

ic =0.00285.  At that ic  as seen in Figure 6.10, there is a stability contour line in the 

form of nearly closed curve if we further increase the Reynolds number range 

determining that viscous instability is dominant in the flow.  In Figures 6.18 and 

6.19, the behavior of amplification factor as functions of Reynolds and wave 

numbers at wall Mach numbers 0.035 and 0.065, respectively.  At wall Mach number 

0.065 for the amplification factor of ic = 0.0009, there is a closed stability contour 

and if it is further increased to 0.000925, it results in wavy closed loop.  Flow is 

unconditionally unstable for the values of ic more than the peak value of 0.000925 at 

wM = 0.065. 
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As the wall Mach number increases, the amplification factor, ic , decreases 

concluding that there are no stability contours for the wall Mach numbers higher than 

0.065 in a range of wave numbers, 0.1-2.0.  The whole range of ic  including the 

stable phases, 0<ic , can be seen in Figure 6.14 for wM = 0.005 and Figures 6.22 and 

6.23 for wM = 0.035 and 0.065, respectively. 

 

The distribution of wave speed, rc , which is the real part of the eigenvalue of Mode 0 

is seen in the Figure 6.15 for different Reynolds numbers.  As the wavenumber 

increases first the wave speed decreases until 4.0=α  then it increases until α =0.9 

for Re = 95 000 and α =1.6 for Re =5000.  Then sudden and continuous decrease of 

the wave speeds with increasing wave number occurs for all Reynolds numbers.  

Figures 6.22 and 6.23 show the behavior of wave speed, rc , for wall Mach numbers 

of 0.035 and 0.065 as functions of wave and Reynolds numbers. 

 

 
Figure 6.14. All ranges of temporal amplification factor of Mode 0 as a function α at wM = 0.005 for 
various Reynolds numbers  
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Figure 6.15. Wave speed, rc , of Mode 0 as a function of α  at wM =0.005 for different Reynolds 
numbers. 
 
 

 
Figure 6.16. The contours of amplification factor, ic , for Mode 0 as functions of wavenumbers and 
Reynolds numbers at  wM =0.035 
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Figure 6.17. The contours of amplification factor, ic , for Mode 0 as functions of wavenumbers and 
Reynolds numbers at  wM = 0.065 
 
 

 
Figure 6.18. Amplification factor of Mode 0 as a function α at wM = 0.035 for various Reynolds 
numbers 
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Figure 6.19. Amplification factor of Mode 0 as a function α at wM = 0.065 for various Reynolds 
numbers 
 
 

 
Figure 6.20. All ranges of amplification factor of Mode 0 as a function α at wM = 0.035 for various 
Reynolds numbers 
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Figure 6.21. All ranges of amplification factor of Mode 0 as a function α at wM = 0.065 for various 
Reynolds numbers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.22. Wave speed, rc , of Mode 0 as a function ofα  at wM = 0.035 for different Reynolds 
numbers 
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Figure 6.23.  Wave speed, rc , of Mode 0 as a function ofα  at wM = 0.065 for different Reynolds 
numbers 
 

 

6.4.  Effect of Mach Number 

 

Figure 6.24 shows the contours of amplification factor, ic  for the most unstable 

mode 0 for a range of Mach numbers and wave numbers while fixing Reynolds 

number at Re = 30000.   
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30000, the most unstable Mach number is around 0.010. 

 

Figure 6.25 shows mode 0 temporal amplification factor at Re = 30000 as a function 
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Figure 6.24.  The contours of temporal amplification factor for most unstable Mode 0 as a function of 
α and wM  for =Re 30000. 
 
 

Figure 6.26 shows the maximum phase velocity over a range of wavenumbers for a 

range of Mach numbers corresponding to mode 0 at Re = 30000.  Same figure shows 

that Mode 0 instability is weakening as the Mach number increases.  Increasing 

Reynolds number amplifies the instability and phase velocity increases.  Mode 0 

instability is the highest at wM = 0.005.  The curves indicate that before the Re=6000 

regardless of wM  the flow is stable for every wavenumber.  
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Figure 6.25.  Mode 0 temporal amplification factor as a function of α at different Mach numbers for 
the case of =Re 30000 
 

 
Figure 6.26.  Maximum ic of Mode 0 for different Mach numbers at fixed Reynolds numbers.  
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CHAPTER 7 

 

 

CONCLUSIONS 

 

 

 

In this study the linear viscous stability characteristics of high speed Couette and 

combined Couette – Poiseuille flows have been investigated numerically. A 

computer program was developed for the solution of the instability equations derived 

from compressible Navier – Stokes equations.  The governing equations were 

discretized using a second order finite difference scheme resulting in a generalized 

eigenvalue problem for the temporal amplification factor.  The temporal stability of 

the problem was analyzed to obtain the eigenvalue spectrum. The numerical method 

used was the global method which requires more grid points for  improved accuracy, 

and validation was achieved by comparing the results of plane hypersonic Couette 

flow with that of Malik [14] and Hu and Zhong [17].  The effects of viscosity, 

temperature, density and compressibility on the stability of Modes I and II for 

Couette flow, and Mode 0 for Couette – Poiseuille flow were studied.  It was seen 

that viscosity plays a destabilizing role in both Mode I and Mode II instability for 

supersonic Couette flow for a range of Reynolds number and wavenumbers.  Both of 

these modes originate from the wave reflections in a supersonic region near the upper 

or lower wall. 

 

Mode I and Mode II, in general, are the most unstable modes for supersonic plane 

Couette flow.  But they were not dominant in the combined plane Couette – 

Poiseuille flow and the new mode which seemed to be a member of even modes such 

as Mode II was the most unstable mode and was labeled as Mode 0.  As for the Mach 

number effects, Mode 0 was destabilized first and then stabilized as Mach number  
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increased.  The range of Mach numbers which has Mode 0 instability expanded with 

Reynolds number but remained finite.  In general, the stability of the bounded plane 

Coutte – Poiseuille flow was different from that of the unbounded high speed 

boundary layers in many aspects due to the presence of the upper wall. 

 

Although z – momentum equation was solved together with the set of equations for 

stability analysis for plane Couette flow, the same equation was not included for 

plane combined Couette – Poiseuille flow stability analysis to economize the 

computational effort.  Two-dimensional linear stability eigenvalue spectrum 

contained less modes than three-dimensional spectra but the most unstable 

eigenmode, Mode 0, for two dimensional stability was numerically the same for 

plane Couette – Poiseuille flow with that of three dimensional.  

 

The results were presented using the boundary condition of 0)0(ˆ =T  in computation 

instead of 0)0(
ˆ

=
dy
Td  for the temperature fluctuation at the lower wall even when the 

basic flow was adiabatic.  The use of 0)0(ˆ =T  instead of 0)0(
ˆ

=
dy
Td  did not make a 

significant difference on the results when compared to Hu and Zhong [17]. 

 

The critical Reynolds number was found to be crRe = 5718.338 for wM = 0.0001 

using 249 interior grid points for combined plane Couette – Poiseuille flow.  This 

correspond to the fully Poiseuille case, as the Couette component is negligibly small.  

That means the flow is uncondionally stable for the Reynolds number less than crRe  

regardless of Mach number.  The effect of the number of grid points used on the 

critical Reynolds number after 249 grids was not noteworthy and neutral stability 

contours calculated using that number of nodes.  Orszag [24] found the critical 

Reynolds number as crRe = 5772.22 for instability of incompressible viscous plane 

Poiseuille flow using the Chebyshev method. 
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Both the Reynolds number and the upper wall Mach numbers draw the boundaries 

for the instability analysis of the flow through the piston ring end gap.  Although 

Reynolds number and wall Mach number in the piston ring end gap were calculated 

as Re = 5000 and wM = 0.0235 for plane Couette – Poiseuille flow, the flow was 

investigated and stability contours were determined for a range of wall Mach 

numbers, 065.0≤wM , and a range of Reynolds numbers, 1000005000Re −=  

extending the investigation to get more about the behavior of the flow.  If the upper 

wall Mach number increases more than 065.0>wM , Reynolds numbers jump to 

high values.  While the Reynolds number is 15000 for wM =0.065, that value jumped 

to 61035x  for wM =0.01.  It was difficult to explain physically the current situation 

of Reynolds number jump for that small increase of Mach number.  The reasons 

would be the physics of the problem studied and most probably the solution method 

and more grid requirement for improved solution and better accuracy.  At the range 

of Mach numbers between 0.065 and 0.3, there was a complex trend of Reynolds 

numbers.  The number of grid points used in discretization did not make any 

difference on the dispersion of the Reynolds numbers on Re−wM  map at a range of 

3.0065.0 << wM  and the spectra of Reynolds number was unsteady to the grid 

points.  For 3.0>wM , behavior of the Reynolds numbers according to Mach 

numbers were much steady than the previous Mach number range. 

 

The thin layer of oil film and on which gas layer was confined between two parallel 

plates simply represents the basic geometry of the problem.  The thickness and the 

velocity of the oil film moving on the stationary plate were so small compared to the 

high-speed gas flow occurring above the oil film that the oil layer behaves like a 

solid wall and only the stability of gas phase was concerned.  There was no 

expectation for the magnitude of the critical Reynolds number to be affected due to 

the omission of the oil layer in the analysis.  This was confirmed by Özgen [3] who 

studied the characteristics of the instability of Newtonian and non-Newtonian fluid – 

air systems and concluded that for the air flowing over a thin layer of liquid, the 

effect of the thin layer was negligible on the two-phase flow instability. 
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APPENDIX A 
 

 

DEVELOPMENT OF FLOW IN A CHANNEL 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
Figure A.1. Basic flow representation of parallel flow 

 

Figure A.1. shows developing Poiseuille flow in a channel for air as the fluid: 
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Boundary layer thickness for flow over flat plate for Rex is 
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At 500K gas velocity assuming perfect gas 
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53
6

3

10*3  10*5.37
10*36

10*3*450Re 〈=== −

−
∞

∞ ν
lU

 

 

Therefore flow is laminar for the gas temperature of 500 K. 

 

Convection time scale: 

 

sec10
400
10*3. 5

3
−

−

===⇒=
gas

gas U
xttUx  smilisecond 01.0=t  

 

Therefore, for the above condition, flow over the oil layer, gas flow is laminar and it 

takes about 0.01 millisecond for the flow fully develop in the channel. 
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APPENDIX B 
 

 

VELOCITY AND TEMPERATURE PROFILES 

IN PLANE POISEUILLE FLOW 
 

 

 

B.1. General 

 

For the case of compressible and viscous two-dimensional flow with constant 

properties the system of equations for the velocity and the temperature distribution in 

steady flow along x – y plane, obtain from the equations in dimensional form: 

 

Continuity: 
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y – momentum: 
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energy : 
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assuming: 

 

u=u(y), v=0, T=T(y) (also T=T(u)), P=P(x), tcons
dx
dP tan= , 0=

dy
dP  

cp=constant, )(Tµµ = , )(Tkk = , kc p /Pr µ=  

 

Simplifying both  x – momentum and energy equations, one can get the fictitious 

equality to the unsteady velocity and temperature terms to solve the coupled 

equations using explicit finite difference method.  

 

In reality both 
t
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du k

j
k
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 and 
t

TT
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 are equal to zero and this feature 

is used for explicit formulation of the equations. 

 

B.1.1.     x – Momentum Equation: 
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B.1.2.   Energy Equation: 
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B.1.3.  Sutherland’s Viscosity Law: 

 

Viscosity is a function of temperature from Sutherland’s law and temperature is also 

a function of velocity which is to be solved simultaneously. 
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or in dimensionless form 
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B.1.4.  Boundary & Initial Conditions: 

 

For the initial velocity and temperature profile for the explicit solution of the coupled 

equations linear velocity profile is taken as starting profile. 
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Since the method is explicit the following inequality must hold for the numerical 

stability, assuming 1Pr < , that is, a gas: 
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this parameter should be monitored during the computation. 
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APPENDIX C 
 

 

COEFFICIENT MATRICES OF GENERALIZED EIGENVALUE PROBLEM 
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APPENDIX D 

 

 

EIGENVALUE SPECTRA 

Figure D.1. Eigenvalue spectra for wM = 0.001 at Re =125000 for α =0.2 

Figure D.2. Eigenvalue spectra for wM = 0.001 at Re =125000 for α =0.4 
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Figure D.3. Eigenvalue spectra for wM = 0.001 at Re =125000 for α =0.6 

 

 

 

Figure D.4. Eigenvalue spectra for wM = 0.001 at Re =125000 for α =0.8 
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Figure D.5. Eigenvalue spectra for wM = 0.001 at Re =125000 for α =1.0 

 
Figure D.6. Eigenvalue spectra for wM = 0.001 at Re =125000 for α =1.2 
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Figure D.7. Eigenvalue spectra for wM = 0.001 at Re =125000 for α =1.4 

 

 

 
Figure D.8. Eigenvalue spectra for wM = 0.001 at Re =125000 for α =1.6 
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Figure D.9. Eigenvalue spectra for wM = 0.001 at Re =125000 for α =1.8 

 

 
Figure D.10. Eigenvalue spectra for wM = 0.001 at Re =125000 for α =2.0 
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Figure D. 11 Eigenvalue spectra for Mw = 0.001 at Re=125000 for α=0.2 – 2.0 
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Figure D. 12 Eigenvalue spectra for Mw = 0.05 at Re=125000 for α=0.2 – 2.0 
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Figure D. 13 Eigenvalue spectra for Mw = 0.1 at Re=125000 for α=0.2 – 2.0 
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