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ABSTRACT

EXPERIMENTAL MODAL ANALYSIS OF A STEEL GRID FRAME

Kaya, Hiiseyin
M. S., Department of Civil Engineering

Supervisor: Assist. Prof. Dr. Ahmet Tiirer

January 2004, 220 pages

In this study, experimental modal analysis was studied. Experimental modal
analysis includes modal testing, modal parameter estimation and calibration. For
this purpose a 4 span skewed steel frame was constructed in Structural Mechanics
Laboratory of Civil Engineering Department of METU. The model was transported
to Vibration and Acoustic Laboratory of Mechanical Engineering Department of
METU. The tests were conducted by cooperation with Vibration and Acoustics
Laboratory. Due to lack of experimental modal analysis software in Structural
Mechanics Laboratory, modal parameter estimation and finite element updating
softwares were written in Matlab platform. The written softwares were executed on

the data obtained from modal testing.

il



15 reasonable modes are extracted from the FRFs that are obtained from
modal testing. 59.23 percent consistency is found for the nominal modal
comparison. At the end of calibration process 76.14 percent consistency is achieved

between the experimental results and analytical results.

Keywords: Experimental Modal Analysis, Modal Testing, Modal Parameter
Estimation, Vibration, Finite Element Analysis, Simulated Annealing and

Calibration.
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CELIK BIR GRID CERCEVENIN DENEYSEL MODAL ANALIZi

Kaya, Hiiseyin
Yiiksek Lisans, Insaat Miihendisligi Boliimii

Tez Yoneticisi: Yard. Dog. Dr. Ahmet Tiirer

Ocak 2004, 220 sayfa

Bu tezde, deneysel modal analiz calisilmistir. Deneysel modal analiz,
dinamik test, dinamik parametle tahmini vede calibrasyon konularini i¢cermektedir.
Bu amac igin, Orta Dogu Teknik Universitesi insaat Miihendisligi Boliimii Yapi
mekanigi Laboratuarinda tek aciklikli 4 bolmeli yan celik cerceve insaa
edilmistir.Isaa edilen yap1 Orta Dogu Teknik Universitesi Makine Miihendisligi
Boliimii Titresim ve Akustik Laboratuarina tasinmustir. Deneyler Titresim ve
Akustik Laboratuan ile isbirligi igerisinde yapilmistir. Modal parametre tahmini
i¢in labaratuarimizda herhangi bir ticari yazilim bulunmamasindan dolayi, Modal
parametre tahmini vede kalibrasyon icin Matlab platformunda programlar
yazilmistir. Yazilan programlar dinamik test sonucu elde elilen bilgiler iizerinde

uygulanmustir.



Dinamik test sonucu elde edilen bilgilerden, kabul edilebir 15 mod cikarilmistir.
Nominal model karsilagtirmasinda %59.23 uyusum saptanmustir. Kalibrasyon islemi

sonucunda deneysel ve analitik sonuglar arasindaki uyusum %76.14 ‘e yiikselmistir

Anahtar kelimeler: Deneysel Modal Analiz, Modal Test, Modal Parametre Tahmini,

Titresim, Sonlu Elemanlar Analizi, Kalibrasyon.
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CHAPTER 1

INTRODUCTION

1.1 Background

The understanding of the physical nature of vibration phenomena has always been
important for researchers and engineers, even more as today as structures are
becoming lighter and more flexible due to increased demands for efficiency, speed,
safety and comfort. When any structure vibrates, it causes major problems and
operating limitations ranging from discomfort (including noise), malfunction,
reduced performance and fatigue. Two approaches may be considered to resolve the
vibration problem: first, prevention, through proper design, and second, cure, by
modification of structure or a vibration control design. In any case, a thorough
understanding of vibration of the structure is essential. Hence, accurate
mathematical models are required to describe the vibration characteristics of the
structure. For simple structures, such as beams and plates, good analytical
predictions using closed form solutions can be easily found in various reference
books and tables (Such as Chopra, 1995, Chandrupatla et al., 1997). However, for
more complex structures, more powerful tools are needed. Today, analytical tools

and experimental tools are used to model the dynamic behavior of the structures.



The most widely used analytical tool is the Finite Element Method (FEM) (Cook et
al., 1989, Chandrupatla et al., 1997), while the experimental counterparts are
largely based on modal testing and analysis (Ewins, 1995). Due to different built-in
limitations, assumptions and choices, each approach has its own advantages and

disadvantages.

1.2 Finite Element Method (FEM)

The main assumption in Finite Element Method (FEM) is that a continuous
structure can be discretized by describing it as an assembly of finite (discrete)
elements, each with a number of boundary points which are commonly referred to
as nodes. For structural dynamic analysis, element mass, stiffness and damping
matrices are generated first and then assembled into global system matrices.
Dynamic analysis of the produced model gives the modal properties; the natural
frequencies (Eigenvalues) and corresponding mode shapes (Eigenvectors). The
modal solution can subsequently be used to calculate forced vibration response
levels for the structure under study. Element system matrices have been developed
for many simple structures, such as beams, plates, shells and bricks. Most general-
purpose FE programs have a wide range of choice of element types, and the user
must select the appropriate elements for the structure under investigation and its
particular application. Further theoretical background and practical implementation
of the FE method are given in various text books, such as those by Cook et al.,
(1989), Chandrupatla et al., (1997), Bathe (1996).

The FE method is extensively used in industry as it can produce a good

representation of a true structure. However, for complicated structures, due to



limitations in the method and application, a FE model can lead to errors. The

sources of errors in Finite Element models are:

1. Inaccuracy in estimation of the physical properties of the structure.

2. Poor quality of mesh generation and selection of individual shape functions.

3. Poor approximation of boundary conditions.

4. Poor estimation or omission of damping properties of the system.

5. Computational errors which are mainly due to rounding off. (ill conditioned
matrices)

6. Linear Modeling of highly nonlinear structures. ( Geometric and material non-

linearities)

The result of a finite element analysis is mainly dependent on the judgment and

experience of the operator and the software package used.

1.3 Modal Testing Method

The experimental approach to modeling the dynamic behavior of structures (modal
testing) relies mostly on extracting the vibration characteristics of a structure from
measurements. The procedure consists of three steps:

1. Acquiring the modal data.

2. Analyzing the measured modal data.

3. Constructing the dynamic model behavior by using extracted modal

parameters from the analyzed data.



Vibration measurements are taken directly from a physical structure, without any
assumptions about the structure, and that is the reason why modal testing models
are considered to be more reliable than Finite Element models. However, due to a
number of limitations and errors, the model created from the measured data may not
represent the actual behavior of the structure as closely as desired.

The theoretical background of modal testing and practical aspects of vibration

measurement techniques are discussed by Ewins, (1995).

In general, limitations and errors of modal testing are:

¢ Random errors due to noise.

¢ Loose attachment of transducers to the structure.

¢ Non-linear behavior of the structure or attached mechanical devices
® Poor modal analysis of experimental data (user experience).

¢ Limited number of measured degrees of freedom.

¢ Not all modes being excited due to excitation at a node.

Difficulty in measuring rotational degrees of freedom.

1.4 Applications of Modal Test Models

It is generally believed that more confidence can be placed in experimental data
since measurements are taken on the true structure. Therefore, the mathematical
models, which have been created as a result of modal testing, can be used in various
ways to avoid or to cure the problems encountered in structural dynamics. In this
Section, the applications of modal testing methods for improving the structural

dynamics will be considered.



1.4.1 Updating of the Analytical Models (Calibration)

One of the applications of the result of a modal test is the updating of an analytical
model (usually a model derived using finite element method). Model updating can
be defined as adjustment of an existing analytical model which represents the
structure under study, using experimental data (Catbas et al., 1998, Ventura et al.,
2001, Dascotte, 2001, Haapaniemi et al, 2002). Therefore, updated FE model more
accurately reflects the dynamic behavior of that structure. Model updating can be

divided into three steps:

1. Comparison of FE model and modal testing results.
2. Modifying FE model in order to correlate FEM and modal testing results.
3. Analyzing updated FE model and return to step 1 until convergence is

achieved.

Comparison can be defined as the initial step to assess the quality of the analytical
model. If the difference between analytical and experimental data is within some
preset tolerances, the analytical model can be judged to be adequate and no

updating is necessary.
Most difficulties are encountered in the second step. The difficulties in locating the
errors in a theoretical model are mostly due to measurement process and can be

summarized as:

1. Insufficient experimental modes;



2. Insufficient experimental coordinates;

3. Size and mesh incompatibility of the experimental and FE models;

4. Experimental random and systematic errors.

5. Absence of damping in the FE model

In spite of extensive research over the last two decades, model updating is still far
from mature and no reliable and general applicable procedures have been

formulated so far.

1.4.2 Structural Dynamic Modification

Structural dynamic modification can be defined as the study of changes (in natural
frequencies and mode shapes) of measured dynamic properties of the test structure
due to modified mass or stiffness or damping of the structure. In principle, the
modification process is a form of optimization of the structure to bring its modal
properties of the structures to some desired condition (Wallack et al., 1989 and
Schwarz et al., 1997).

For example a bridge with certain vibration problems should be modified.
Sometimes, the effect of an addition to a structure must be known. For instance,
addition of a storey to an existing building or addition of a missile to a fighter jet
plane. Modeling the existing structure might be too costly and unnecessary. The
existing structure can be modal tested and effect of the new addition (i.e. additional
floor or missile) can be evaluated using structural dynamic modification.

This method saves large amounts of redesign time as it reduces the cycle time in the
test, analysis, redesign, shop drawings, install redesign, and retest cycle. In practice,

the measured properties of existing structure at the boundary level are only



translational degrees of freedom (d.o.f.). However for structural dynamic
modification, rotational d.o.f.s are also needed for proper assembly. Deficiency in
rotational degrees of freedom has problems in dealing with real-world problems
such as addition of a plate, beam, and rotor or other structural elements with
bending resistance.

Moreover, there is a need for sufficient modal vector information to carry out real
world structural modification. This demands that more data be taken, but the
number of data points is limited by the time available from the highly-trained modal
staff. Generally, most modal tests are limited to 50-60 x-y-z degrees of freedom.
This is usually too few for the structural modification to be implemented without
excessive retesting. Sometimes it is desired to construct a mathematical model of a
complete structural assembly formed by the assembly of several individual
substructures. There are a number of methods for assembling such a model which
are extensions of modification methods and called “structural assembly methods”.
The essential difference is that here the modifications are themselves dynamic
systems, rather than simple mass or stiffness elements. It is possible to combine
subsystem or component models derived from different sources or analyses for
example from a mixture of analytical and experimental studies. Again the same
problems encountered with modification methods are encountered.

There are other quantitative applications of the modal test models, which demand a
high degree of both accuracy and completeness (enough points and enough d.o.f.s

on the test structure) of the test data. These applications are:

e Response predictions for the test structure if it is subjected to other excitations.



¢ Force determination, from measured responses.

e Damage detection. (Operating curves).

1.5 Sources of Lack of Precision in Modal Testing

Laboratory experiments and practical measurements serve several purposes, some
of which do not demand high accuracy. Some experiments are exploratory in the
sense of looking for the existence and direction of some effect before trying to
establish its magnitude; others are chiefly instructional, to demonstrate theoretical
principles. Some industrial measurements are needed only to control and repeat a
process in accordance with previously established values. Errors in such cases may
be harmless. However, engineering applications of some experiments demand test
data of high quality. In these cases, large errors may arise if test data with poor
quality are used. In recent years there has been a strong demand for modal testing
with high quality suitable for advanced applications such as structural modification
and model updating.

In Section 1.4, it is explained in general terms how the mathematical models which
have been created as a result of modal tests, can be used in various ways to apply in
vibration-related problems encountered in theory and practice, and how these
applications are hindered from a lack of precision in modal testing. In this Section,
the problem of the sources of the lack of precision in modal testing is studied more
systematically. In the following paragraphs attention is drawn to the reasons why
the experimental modal test data can depart from the true values it purports to
measure. The sources of a lack of precision in modal testing procedure can be

categorized in three groups: (i) Experimental data acquisition errors (ii) Signal



processing errors and (iii) Modal analysis errors, each of them has been categorized

itself in below (Ashory, 1999).

Experimental Data
Acquisition

Signal Processing Modal Analysis

\ 4
\ 4

Figure 1-1 Three stages of the modal testing

Experimental data acquisition errors:
a) Quality :
1) Mechanical errors :
e Mass loading effect of transducers

e  Shaker-structure interaction

e  Supporting of the structure

2) Measurement noise

3) Nonlinearity

b) Quantity :
e  Measuring enough points on the structure

e Measuring enough Degrees of Freedom (i.e. Rotational DOFs)

(ii) signal processing errors :

e Leakage



e Aliasing
e Effect of window functions
o Effect of Discrete Fourier Transform

e Effect of averaging

(iii)modal analysis errors :

¢ C(Circle-Fit Modal Analysis
e Line-Fit Modal Analysis

¢ Global Modal Analysis

1.6 Objectives, and Scope of This Thesis

This work is an attempt to:

Carry out a literature survey on the subjects of Theory of Vibration, modal
testing, modal analysis and FE updating.

Construct single span skewed steel grid frame in the Structural Mechanics
Laboratory for the application of modal testing.

Study one of the non-destructive modal testing methods of sweep sine forced
vibration method on the constructed frame.

Study global modal parameter estimation method of “Complex Mode Indicator
Function” (CMIF).

Write graphical user interfaced program about “General purpose modal
parameter estimation and mode animation”.

Study a robust global search and optimization technique of “Simulated

Annealing (SA)” for FEU purposes.

10



e Write a graphical user interfaced program about Finite Element Updating.
e Application of the written FEU Software on modal data obtained from single

span skewed steel grid frame model.

11



CHAPTER 2

THEORY OF VIBRATION

2.1 Introduction

One who wants to study modal testing and modal analysis should briefly have
background about dynamics but specially “Theory of vibration”. The following
Section briefly explains theory of vibration, starting with single degree of freedom
systems and continues to multi degree of freedom systems (Allemang, 1998,

Chopra, 1995, Ewins, 1995).

2.2 Single Degree of Freedom Systems

In order to understand modal analysis, single degree of freedom systems must be
understood. In particular, the complete familiarity with single degree of freedom
systems (as presented and evaluated in the time, frequency (Fourier), and Laplace
domains) serves as the basis for many of the models that are used in modal
parameter estimation. The single degree of freedom approach is obviously trivial for
the modal analysis case. The importance of this approach results from the fact that

the multiple degree of freedom case can be viewed as a linear superposition of
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single degrees of freedom systems. Single degree of freedom system is described in

Figure 2-1.
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Figure 2-1 Single Degree of Freedom System

Free body diagram of Figure 2-1 is shown in Figure 2-2.
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Figure 2-2 Free Body Diagram of SDOF system
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The general mathematical representation of a single degree of freedom system is
obtained from Newton’s Law of Motion and expressed in Equation 2-1,where total

forces acting on the system is equaled to mass (M) times acceleration.

M 5(t)+ C x(t)+ K x(t)= £(r) Equation 2-1

Where;

¢ M = Mass of the system

¢ (C = Damping of the system
e K = Stiffness of the system
e f(t) = General force function

By setting f{t)= 0, the homogeneous form of Equation 2-2 can be solved.

M ¥(t)+C x(t)+ K x(t)=0 Equation 2-2

From differential equation theory, the solution can be assumed to be of the form
x(t)=X e ,where s is a complex valued number to be determined. Taking

appropriate derivatives and substituting into Equation 2-2 yields:

(M s°+C s+ K)X e’ =0 Equation 2-3

Thus, for a non-trivial solution:

M s*+Cs+K=0 Equation 2-4

Where:
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s = Complex-valued frequency variable (Laplace variable)

Equation 2-4 is the characteristic equation of the system, whose roots A, and A,

are:

1
2 2
C C K
/11,2 = M * {( M j - (ﬁj} Equation 2-5

Thus the general solution of Equation 2-2 is:

x(1) = Ae™' + Be™' Equation 2-6

A and B are constants determined from the initial conditions imposed on the system

attime t =0.

For most real structures, unless active damping systems are present, the damping
ratio is rarely greater than ten percent. For this reason, all further discussion is
restricted to under damped systems ({ < 1). With reference to Equation 2-6, this

means that the two roots,A,,, are always complex conjugates. Also, the two

coefficients (A and B) are complex conjugates of one another (A and A" ). For an

under damped system, the roots of the characteristic equation can be written as:

M=o+ jw A,=0,-jw Equation 2-7

Where;

¢ o, = Damping Factor

15



¢ w, = Damped Natural Frequency

The roots of characteristic Equation 2-4 can also be written as:

/11’/11* = _51 Ql T Ql \/1—412 Equation 2-8

Where;

€, = Undamped Natural Frequency

€, = Percent damping with respect to critical damping.

The damping factor, ©,, is defined as the real part of a root of the characteristic

equation. This parameter has the same units as the imaginary part of the root of the
characteristic equation, radians per second. The damping factor describes the
exponential decay or growth of the oscillation. In real-world structures energy of
the system is dissipated through damping mechanism. Therefore there is always
exponential decay in oscillation. Exponential growth of the oscillation is theoretical

and is not valid for real world structures.

Critical damping (C,), is defined as being the damping which reduces the radical in

the solution of the characteristic equation to zero. This form of damping
representation is a physical approach and therefore involves the appropriate units

for equivalent viscous damping.
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K
C.=2M I =2M Q, Equation 2-9

The damping ratio, {, is the ratio of the actual system damping to the critical

system damping. The damping ratio is dimensionless since the units are normalized.

C
; == Equation 2-10
C.

2.2.1 Time Domain: Impulse Response Function

The impulse response function of a single degree of freedom system can be
determined from Equation 2-6 assuming that the initial conditions are zero and that
the system excitation, f (t), is a unit impulse. The response of the system, x(t), to
such a unit impulse is known as the impulse response function, h(t), of the system.

Therefore:

h(t)= Ae™' + A’ ™! Equation 2-11

h(t) = eﬂlt[A eHimn +A*e(—jwlr)] Equation 2-12
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Thus, the coefficients (A and A" ) control the amplitude of the impulse response,
the real part of the pole is the decay rate and the imaginary part of the pole is the
frequency of oscillation. Figure 2-3 illustrates the impulse response function, for a

single degree of freedom system.
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Figure 2-3 Time Domain: Impulse Response Function

2.2.2 Frequency Domain: Frequency Response Function

An equivalent equation of motion for Equation 2-1 is determined for the Fourier or
frequency (0)) domain. This representation has the advantage of converting a

differential equation to an algebraic equation. This is accomplished by taking the

Fourier transform (Meirovitch, 1996) of Equation 2-1.
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Letting the forcing function of Equation 2-1 be in the form of

Therefore the solution of Equation 2-1 will be in the form of;

X(t)=X(w)e’™

Thus;

X([)=joX(m)e'™

X()=-o* X(0)e’

Equation 2-13

Equation 2-14

Equation 2-15

Equation 2-16

Substituting Equation 2-14 , Equation 2-15 and Equation 2-16 into Equation 2-1

yields;

[-M @ X (@)’ + j C X (0)e’ + K X (w)e’ |= F(w)e’™ Equation 2-17

After rearranging the common terms in Equation 2-17;

M 0+ jC otk |X(@)e™ = Flo)e™

Simplifying Equation 2-18 yields;

M 0+ jCo+k]X(0)=F(o)

Restating Equation 2-19 yields:

19
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B ((’3) X ((’3) =F ((’3) Equation 2-20

Where;

e Blw)=-Mo*+jCo+K

Equation 2-20 states that the system response X () is directly related to the system
forcing function F(w) through the quantity B(w), the impedance function. If the
system forcing function F(®) and its response X (w) are known, B(w)can be

calculated. That is:

B (C‘)) =0 Equation 2-21

More frequently, the system response, X(®) due to a known input F(®) is of

interest.

F(o)
X\o)=—— .
( ) B(O)) Equation 2-22
Equation 2-22 becomes:
X(w)=H(o) F(o) Equation 2-23
Where:
. H(o)-= 1

Mo +jCo+K
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The quantity H (o) is known as the Frequency Response Function of the system.

The frequency response function relates the Fourier transform of the system input to
the Fourier transform of the system response. From Equation 2-23, the frequency
response function can be defined as:

H(w)=—= Equation 2-24

Going back to Equation 2-19, the frequency response function can be written as,

~ 1 ~ 1/M
_—M0)2+jcw+K__w2+j(cj0)+(KJ Equation 2-25

H(o)

M

The denominator of Equation 2-25 is known as the “characteristic equation” of the
system and is in the same form as Equation 2-4. The characteristic values of this
complex equation are in general complex even though the equation is a function of
a real valued independent variable “®”. The characteristic values of this equation
are known as the complex roots of the characteristic equation or the complex poles

of the system. These characteristic values are also called the “modal frequencies”.

The frequency response function H(w) can also be written as a function of the

complex poles as follows:

H(w)= M — A Al Equation 2-26

“Go-a)lo-x) Go-x) (o-x)
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A, = Complex Pole

Where;

Gl+jwl

A =

*

A

| =0, —j O,
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Since the frequency response function is a complex valued function of a real valued
independent variable (®), the frequency response function, real-imaginary,
magnitude-phase, and log magnitude-phase graphs as shown in Figure 2-4 through

Figure 2-4 Frequency Response Function (Real part vs. frequency)

Figure 2-9.
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Figure 2-5 Frequency Response Function (Imaginary part vs. frequency)
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Figure 2-6 Frequency Response Function (Magnitude vs. frequency)
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Figure 2-7 Frequency Response Function (Phase vs. frequency)
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Figure 2-9 Frequency Response Function (Phase vs. frequency)

2.2.3 Laplace Domain: Transfer Function

Just as in Section 2.2.1.2 for the frequency domain, the equivalent information can
be represented in the Laplace domain by way of the Laplace transform. The only
significant difference between the two domains is that the Fourier transform is
defined from negative infinity to positive infinity while the Laplace transform is
defined from zero to positive infinity with initial conditions. The Laplace
representation, also, has the advantage of converting a differential equation to an
algebraic equation. Theory behind Laplace transform is shown in almost every
classical text concerning vibrations (Meirovitch, 1996). The development using
Laplace transforms begins by taking the Laplace transform of Equation 2-1. Thus,

Equation 2-1 becomes:
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[V s> +C s+ K] X(s)= F(s)+[M s+C]X(0)+M X(0) Eaquation2-27

X(0) and X (0) are the initial displacements and velocities at time ¢ = 0, respectively

If the initial conditions are taken as zero, Equation 2-27 becomes:

M s> +Cs+K]x(s)=F(5) Equation 2-28

Then Equation 2-28 becomes:

B (s) X (s) =F (S) Equation 2-29

Where:
e B(s)=M s>+Cs+K
Therefore, using the same logic as in the frequency domain case, the transfer

function can be defined in the same way that the frequency response function was

defined previously.

X (s) =H (S)F (s) Equation 2-30

_Ms2+Cs+K

The quantity H(s) is defined as the “transfer function” of the system. In other words,

a transfer function relates the Laplace transform of the system input to the Laplace
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transform of the system response. From Equation 2-30, the transfer function can be

defined as:

X(s)
H (S ) = F(S) Equation 2-31
Going back to Equation (2.22), the transfer function can be written:
1 /M

:Ms2+CS+K:s2+(CJS+(Kj Equation 2-32
M

H(s)

Note that Equation 2-32 is valid under the assumption that the initial conditions are

Z€10.

The denominator term is once again referred to as the characteristic equation of the
system. As noted in the previous two cases, the roots of the characteristic equation
are given in Equation 2-5.The transfer function, H(s), can now be rewritten, just as

in the frequency response function case, as:

*

_ /M A A ‘
H(s)= (s—/il)(s—ﬂf)_ (S—ﬁl)-l- (S—ﬂf) Equation 2-33

Since the transfer function is a complex valued function of a complex independent
variable (s), the transfer function is represented, as shown in Figures 2-7 through 2-
9, as a pair of surfaces. Remember that the variable s in Equation (2.27) is a
complex variable, that is, it has a real part and an imaginary part. Therefore, it can

be viewed as a function of two variables which represent a surface.

27



Figure 2-10 Transfer Function (Real Format)
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The definition of undamped natural frequency, damped natural frequency, damping
factor, percent of critical damping, and residue are all relative to the information
represented by Figure 2-11 through Figure 2-15. The projection of this information

onto the plane of zero amplitude yields the information as shown in Figure 2-16.

pole location

conjugate pole

Figure 2-16 Transfer Function - Laplace Plane Projection

Where;
6, = Damping coefficient
®, = Damped natural frequency

Q = Undamped natural frequency

€, = cos B, = Damping factor (percent of critical damping)
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The concept of residues is now defined in terms of the partial fraction expansion of
the transfer function equation. Equation 2-33 can be expressed in terms of partial

fractions as follows:

*

1/M - 2 + A E tion 2-34
(S_}bl)(s—ﬂ;)_(s—/ll) (S_/li‘) quation 2-

H(s)=

The residues of the transfer function are defined as being the constants A and A”.
The terminology and development of residues comes from the evaluation of
analytic functions in complex analysis. The residues of the transfer function are
directly related to the amplitude of the impulse response function. In general, the

residue A can be a complex quantity.

It can be noted that the Laplace transform formulation is simply the general case of
the Fourier transform development if the initial conditions are zero. The Frequency
Response Function is the part of the transfer function evaluated along the s =j

 axis.

From an experimental point of view, the transfer function is not estimated from

measured input-output data (modal testing). Instead, the Frequency Response

Function is actually estimated via the discrete Fourier transform.
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2.3 Multiple Degree of Freedom Systems

The real applications of modal analysis concepts begin when a continuous, non-
homogeneous structure is described as a lumped mass, multiple degree-of-freedom
systems. At this point, the modal frequencies, the modal damping, and the modal
vectors, or relative patterns of motion, can be found via an estimate of the mass,
damping, and stiffness matrices or via the measurement of the associated frequency
response functions. The two-degree of freedom system, shown in Figure 2-11, is the
most basic example of a multiple degree of freedom system. This example is useful
for discussing modal analysis concepts since a theoretical solution can be
formulated in terms of the mass, stiffness and damping matrices or in terms of the

frequency response functions.

x1() x,(1)
/1) 1a(1)

K K K
AN AN FAAN
Ml M2
T T I
1 i I
C OO C, OO C

Figure 2-17 Multi-Degree of Freedom System

The equations of motion for the system in Figure 2-17, using matrix notation, are as

follows:
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e @l W]
Equation 2-35

The process of solving Equation 2-35 when the mass, damping, and stiffness
matrices are known is shown in almost every classical text concerning vibrations

and (examples are Cook, 1989, Meirovitch 1996, and Chandrupalta, 1997)

The development of the frequency response function solution for the multiple
degree of freedom case is similar to the single degree-of-freedom case, which
relates the mass, damping, and stiffness matrices to a transfer function model
involving multiple degrees of freedom. Just as in the analytical case, where the
ultimate solution can be described in terms of one degree of freedom systems, the
frequency response functions between any input and response degree of freedom
can be represented as a linear superposition of the single degree of freedom models

derived previously.

As a result of the linear superposition concept, the equations for the impulse
response function, the frequency response function, and the transfer function for the
multiple degree of freedom system are defined as follows:

Impulse Response Function (Time domain):

[h(f)] = ﬁ: [Ar]el’t + [Ai ] eﬂl = ZZN: [Ar ]eir’ Equation 2-36
r=l =1
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Frequency Response Function (Frequency Domain):

oteg L g )

o JO— Ja)—/l, ~ jo-1,

Equation 2-37

Transfer Function (Laplace Domain):

i [ ] [A] —2ZN: [4,] Equation 2-38

Where:
t = Time variable
w= Frequency variable
s = Laplace variable
p = Measured degree of freedom (output)
q = Measured degree of freedom (input)
r = Modal vector number
Apgr = Residue
Apgr = Or Yor Yor
O: = Modal scaling factor
Wpr = Modal coefficient
A= System pole

N= Number of positive modal frequencies
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It is important to note that the residue, Apq , in Equation 2-36 through Equation
2-38 is the product of the modal deformations at the input q and response p degrees
of freedom and a modal scaling factor for mode r. Therefore, the product of these
three terms is unique but each of the three terms by themselves is not unique. This
is consistent with the arbitrary normalization of the modal vectors. Modal scaling,
O, refers to the relationship between the normalized modal vectors and the absolute
scaling of the mass matrix (analytical case) and/or the absolute scaling of the
residue information (experimental case). Modal scaling is normally presented as

modal mass or modal A.

The driving point residue, A,y 1s particularly important in deriving the modal

scaling.

2
Aq = 0. YV = QrV/qr Equation 2-39

For undamped and proportionally damped systems, the r-th modal mass of a multi

degree of freedom system can be defined as:

— 1 — W})qur
" j20, 0 j2A, o

Equation 2-40
pgr

Where:
M, = Modal mass
Q= Modal scaling constant

o = Damped natural frequency
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If the largest scaled modal coefficient is equal to unity, Equation 2-40 will also
compute a quantity of modal mass that has physical significance. The physical
significance is that the quantity of modal mass computed under these conditions
will be a number between zero and the total mass of the system. Therefore, under
this scaling condition, the modal mass can be viewed as the amount of mass that is
participating in each mode of vibration. Obviously, for a translational rigid body

mode of vibration, the modal mass should be equal to the total mass of the system.

The modal mass defined in Equation 2-40 is developed in terms of displacement
over force units. If measurements, and therefore residues, are developed in terms of
any other units (velocity over force or acceleration over force), Equation 2-40 will
have to be altered accordingly.

Once the modal mass is known, the modal damping and modal stiffness can be

obtained through the following single degree of freedom equations:

Modal Damping

C.=20.M, Equation 2-41

Modal Stiffness

2 2 2
K, =(O', + w; )M, =Q'M, Equation 2-42
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There are several references in the literature in which modal mass, stiffness, and
damping matrices are calculated from estimated modal parameters (Potter, 1982,

Shye, 1986, Richardson, 2000)

For systems with non-proportional damping, modal mass cannot be used for modal
scaling. For non-proportional case, and increasingly for undamped and
proportionally damped cases as well, the modal A scaling factor is used as the basis
for the relationship between the scaled modal vectors and the residues determined

from the measured frequency response functions. This relationship is as follows:

Modal A

_VoVe 1

MA
Aw O

Equation 2-43

This definition of modal A is also developed in terms of displacement over force
units. Once modal A is known, modal B can be obtained through the following
single degree of freedom equation:

Modal B

Equation 2-44

For undamped and proportionally damped systems, the relationship between modal

mass and modal A scaling factors can be stated.

— 4+
M, =M. 0, Equation 2-45
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In general, modal vectors are considered to be dimensionless since they represent
relative patterns of motion. Therefore, the modal mass or modal A scaling terms
carry the units of the respective measurement. For example, the development of the
frequency response is based upon displacement over force units. The residue must
therefore, have units of length over force-seconds. Since the modal A scaling
coefficient is inversely related to the residue, modal A will have units of force-
seconds over length. This unit combination is the same as mass over seconds.
Likewise, since modal mass is related to modal A, for proportionally damped
systems, through a direct relationship involving the damped natural frequency, the

units on modal mass are mass units as expected.

2.4 Damping Mechanisms

In order to evaluate multiple degree of freedom systems that are present in the real
world, the effect of damping on the complex frequencies and modal vectors must be
considered. Many physical mechanisms are needed to describe all of the possible
forms of damping that may be present in a particular structure or system. Some of
the classical types are: 1) Structural Damping; 2) Viscous Damping; and 3)
Coulomb Damping. It is generally difficult to ascertain which type of damping is
present in any particular structure. Indeed most structures exhibit damping
characteristics that result from a combination of all the above. Rather than consider
the many different physical mechanisms, the probable location of each mechanism,
and the particular mathematical representation of the mechanism of damping that is
needed to describe the dissipative energy of the system, a model will be used that is

only concerned with the resultant mathematical form. This model will represent a
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hypothetical form of damping, which is proportional to the system mass or stiffness

matrix. Therefore:

[C] =a [M ] +p [K ] Equation 2-46

Under this assumption, proportional damping is the case where the equivalent
damping matrix is equal to a linear combination of the mass and stiffness matrices.
For this mathematical form of damping, the coordinate transformation that
diagonalizes the system mass and stiffness matrices also diagonalizes the system
damping matrix. Non-proportional damping is the case where this linear
combination does not exist. Therefore when a system with proportional damping
exists, that system of coupled equations of motion can be transformed to a system
of equations that represent an uncoupled system of single degree-of-freedom
systems that are easily solved. With respect to modal parameters, a system with
proportional damping has real-valued modal vectors (real or normal modes) while
a system with non-proportional damping has complex-valued modal vectors

(complex modes).
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CHAPTER 3

MODAL DATA ACQUISITION &
EXPERIMENTAL MODAL ANALYSIS
METHODS

3.1 Introduction

Modal data acquisition and related experimental modal analysis methods will be
explained in this chapter. Modal data acquisition can be seen as the first step of
experimental modal analysis. Acquisition of data, which will be used in the

formulation of a modal model, involves many important concerns.

These concerns include successful acquisition of data, prevention of various reading
and signal related errors, post processing of measured data, sampling theorems,

modal analysis and domain transformations will also be discussed in this Chapter.

A series of articles of Pete Avaitable are printed in annual journal of Society of
Experimental Techniques starting from March 1998 till March 2003. These
references are useful for understanding experimental modal analysis and modal data

acquisition.
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3.2 Modal Data Acquisition

In order to determine modal parameters, the measured input (excitation) and
response data must be processed and put into a form that is compatible with the test
and modal parameter estimation methods. Digital signal processing of the data is a
very important step in Modal data acquisition. Signal processing is one of the
technology areas where clear understandings of the Time-Frequency-Laplace
domain (Avaitable, 1998) relationships are important. The conversion of the data
from the time domain into the frequency and Laplace domain is important both in
the “measurement” and (subsequently) in the ‘“modal parameter estimation”
processes. The process of representing an analog signal as a series of digital values
is a basic requirement of modern digital signal processing analyzers. In practice, the
goal of the analog to digital conversion (ADC) process is to obtain the conversion
while maintaining sufficient accuracy in terms of frequency, magnitude, and phase.
When dealing strictly with analog devices, this concern was satisfied by the
performance characteristics of each individual analog device. With the
improvements in digital signal processing, the performance characteristics of the
analog device are only the first criteria of consideration. The characteristics of the
analog to digital conversion has become the primary concern. This process of
analog to digital conversion involves two separate concepts, each of which are
related to the dynamic performance of a digital signal processing analyzer.
Sampling is the part of the process related to the timing between individual digital
pieces of the time history. Quantization is the part of the process related to

describing analog amplitude as a digital value. Primarily, sampling considerations
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alone affect the frequency accuracy while both sampling and quantization

considerations affect magnitude and phase accuracy.

3.2.1 Sampling

Sampling is the process of recording the independent variables of an analog
process. Sampling can be done in an absolute sense where the independent variable
is in terms of time. The process of sampling arises from the need to describe analog
time histories in a digital fashion. Sampling can be done, in general, by recording
digitized amplitude and a reference time of measurement; or in the more common

method of recording amplitudes at uniform increments of time(At). Since all

analog to digital converters sample at constant sampling increments during each

sample period, all further discussions will be restricted to this case.

Sampling Theory:

Two theories or principles apply to the process of digitizing analog signals and
recovering valid frequency information. Shannon’s Sampling Theorem states, the
following in a very simple form:

F__2F

samp Nyq

X2

Equation 3-1
F,. Equation 3-2

>
Nyq —

Shannon’ Sampling theorem describes the maximum frequency in an accurate way.

The Nyquist frequency (qu) is the theoretical limit for the maximum frequency
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and is defined as one half of the sampling frequency, which means that there will be

at least two samples per period for any frequency below the Nyquist frequency.

T]M
€o
Oy
AIN

At

Figure 3-1 Shannon Sampling Theorem (Ewins, 1995)

In order to be certain that Equation 3-1,and measurement requirements Hata!
Basvuru kayna@ bulunamadi. are always met, an analog, low pass filter (LPF)
with a cutoff frequency below the Nyquist frequency must always be used when
acquiring data. Generally, LPF is built into the digital signal analyzer. Due to
practical limitations of the analog filters used prior to any digitization, the sampling
frequency is normally chosen to be greater than two times the maximum frequency
of interest. In this case, Equation 3-1 still applies as stated by the inequality. When a
factor greater than two is used the resulting maximum frequency (Fy.x) is less than
the Nyquist frequency. Fy,.x being less than the Nyquist frequency may lead to some

confusion when the data is recorded and/or displayed. Figure 3-2 shows the
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common frequency relationship between the maximum frequency, the analog low

pass filter cutoff frequency and Nyquist frequency.

Amplitude

| Maximum Frequency
/ Filter Cutoff Frequency
| | —
i \ Frequency
Aliasing

Sampling Frequency
Nyquist Frequency

Figure 3-2 Basic Sampling Relationships

Rayleigh’s criterion was first formulated in the field of optics and has to do with
being able to resolve two closely related spaced frequency components. For a time

record of T seconds, the lowest frequency component measurable is:

Af=— Equation 3-3
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Figure 3-3 Rayleigh’s Criterion

With Shannon’s Sampling Theorem and Rayleigh’s criterion in mind, the selection
of sampling parameters are summarized as shown in Table 3-1 (Allemang, 1998).

Note that for this case, the equality Equation 3-1 has been used (F,,,, = Fy,, ).
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Table 3-1 Digitization Equations (F,, = F), )

Sampling Relations

Sampling Parameter Automatically determines BlockSize Determines
T =NAt
1
At Fo =7 5 1
Af=——
/ N At
T=NAt
max A -
/ N At
Ar=—L
1 N
A Tr=—
F =—A
Ar=L
1 N
Af =—
T f=7 N
F =—A

3.2.2 Quantization

Quantization is the conversion of a specific analog value of amplitude to the nearest
discrete value available in the (analog to digital) converter. The process of
conversion involves representing a range of voltage by a fixed number of integer

steps. Normally, the range of voltage is chosen to be between positive and negative
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limits for a given voltage limit. The number of discrete levels is a function of the

number of bits in the analog to digital conversion.

3.2.3 ADC Errors

Most modern data acquisition systems minimize errors associated with the analog to
digital conversion of data to the extent that the average user does not need to be
concerned with the ADC errors. The primary ADC errors are aliasing and

quantization errors.

3.2.3.1 Aliasing

If frequency components are larger than one half the sampling frequency present in
the analog time history, amplitude and frequency errors will occur. These errors are
a result of the inability of the Fourier transform to decide which frequencies are
within the analysis band and which frequencies are outside the analysis band. This

problem is explained graphically in Figure 3-4 from a time domain point of view.

Figure 3-4 Aliasing Example

48



3.2.3.2 Quantization Error

Quantization Error is the difference between the actual analog signal and the
measured digitized value. Since this error is a random event, averaging will
minimize the effect on the resulting measurements. Note that, when measuring
transient events that cannot be averaged, this error limits the achievable magnitude

accuracy.

3.2.4 Discrete Fourier Transform

The Fourier series concept explains that a signal can be uniquely separated into a
summation of sine and cosine terms at appropriate frequencies. This will generate a
unique set of sine and cosine terms due to the orthogonal nature of sine functions at
different frequencies, the orthogonal nature of cosine functions at different
frequencies and the orthogonal nature of sine functions compared to cosine
functions. If the choice of frequencies is limited to a discrete set of frequencies, the
discrete Fourier transform will describe the amount of each sine and cosine term at
each discrete frequency. The real part of the discrete Fourier transform describes the
amount of each cosine term; the imaginary part of the discrete Fourier transform
describes the amount of each sine term. Figure 3-5 (Allemang, 1998) is a graphical
representation of this concept for a signal that can be represented by a summation of

sinusoids.
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AMPLITUDE

Figure 3-5 Discrete Fourier Transform Concept

The discrete Fourier transform algorithm is the basis for the formulation of any
frequency domain function in modern data acquisition systems. In terms of an
integral Fourier transform, the function must exist for all time in a continuous sense
in order to be evaluated. For the realistic measurement situation, data is available in
a discrete sense over a limited time period. The discrete Fourier transform,
therefore, is based upon a set of assumptions concerning this discrete sequence of
values. The assumptions can be reduced to two situations that must be met by every
signal processed by the discrete Fourier transform algorithm. The first assumption is
that the signal must be a totally observed transient with respect to the time period

of observation. If this is not true, then the signal must be composed only of
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harmonics of the time period of observation. If one of these two assumptions is not
met by any discrete history processed by the discrete Fourier transform algorithm,
then the resulting spectrum will contain bias errors accordingly. Much of the data
processing that is considered with respect to acquisition of data and the formulation
of a modal model revolves around an attempt to assure that the input and response
histories match one of these two assumptions. For a more complete understanding
of the discrete Fourier transform algorithm and the associated problems refer to

Richardson, (1978), Chopra, (1995), and Meirovitch, (1996).

3.2.4.1 Discrete Fourier Transform Errors

The primary digital signal processing error involved with making measurements is
an error associated with the discrete Fourier transform which is used to transform
the digital time data to digital frequency data. This error is a bias error that is known
as leakage or truncation error. Actually, it is not really an error but is a limitation of
discrete Fourier transform. The discrete Fourier transform is expected to give the
same answer as the integral Fourier transform, which is true when only certain

conditions are met concerning the time domain data.

3.2.4.1.1 Leakage Error

Leakage error is basically due to a violation of an assumption of the Discrete
Fourier transform algorithm. This assumption is that the true signal is periodic
within the sample period used to observe the sample function. In the cases where
both input and output are totally observable (transient input with completely

observed decay output within the sample period) or are harmonic functions of the
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time period of observation (7), there will be no contribution to the bias error. But if
these assumptions are violated, due to the truncation that occurs in the time domain

(T) there will be error which is referred as leakage.

Leakage is probably the most common and, therefore, the most serious digital signal
processing error. Unlike aliasing and many other errors, the effects of leakage can

only be reduced, not completely eliminated.

Discrete Fourier transform algorithm assumes that the data to be transformed is
periodic with respect to the frequency resolution of the sampling period. Since, in
general, the real world does not operate on the basis of multiples of some arbitrary

frequency resolution; this introduces an error known as leakage.

The concept of multiplication and convolution represents a transform pair with
respect to Fourier and Laplace transforms. More specifically, if two functions are
multiplied in one domain, the result is the convolution of the two transformed
functions in the other domain. Conversely, if two functions are convolved in one
domain, the result is the multiplication of the two transformed functions in the other
domain. When a signal is observed in the time domain with respect to a limited
observation period, 7, the signal that is observed can be viewed as the
multiplication of two infinite time functions as shown in Figure 3-6 and Figure 3-7.
The resulting time domain function is, in the limit, the signal that is processed by
the Fourier transform which is shown in Figure 3-8. Therefore, by this act of

multiplication, the corresponding frequency domain functions of Figure 3-6 and
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Figure 3-7 will be convolved to give the result equivalent to the Fourier transform
of Figure 3-6. In this way, the difference between the infinite and the truncated

signal can be evaluated theoretically.

VA
VYUY

Figure 3-6 Time Domain Function: Theoretical Harmonic

Figure 3-7 Time Domain Function: Theoretical Window
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Figure 3-8 Time Domain Function: Multiplication of Signals

Figure 3-9 Frequency Domain: Theoretical Harmonic

I}

|

Figure 3-10 Frequency Domain: Theoretical Window
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Figure 3-11 Frequency Domain: Convolved Signals

Therefore, when an analog signal is digitized in a Fourier analyzer, the analog
signal has been multiplied by a function of unity (for a period of time T) in the time
domain. This results in a convolution of the two signals in the frequency domain.
Figure 3-9 and Figure 3-10 are the Fourier transform of Figure 3-6 and Figure 3-7
respectively. Where Figure 3-11 is the convolution of Figure 3-9 and Figure 3-10.
This process of multiplying an analog signal by some sort of weighting function is
referred as "windowing". Whenever a time function is sampled, the transform
relationship between multiplication and convolution must be considered. Likewise,
whenever an additional weighting function such as a Hanning window is utilized,
the effects of such a window can be evaluated in the same fashion. The concept of

“windowing” is well explained in Avaitable, (1999),Ewins, (1995) .

3.2.5 Transducer Considerations

The transducer considerations are often the most overlooked aspect of the
experimental modal analysis process. Considerations involving the actual type and

specifications of the transducers, mounting of the transducers, and calibration of the
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transducers are often be some of the largest sources of error. Transducer
specifications are concerned with the magnitude and frequency limitations that the
transducer is designed to meet. Transducer specifications involves the measured
calibration at the time that the transducer was manufactured, the frequency range
over which this calibration is valid, and the magnitude and phase distortion of the
transducer, compared to the calibration constant over the range of interest. The
specifications of any transducer signal conditioning must be evaluated. Transducer
mounting involves evaluation of the mounting system to make sure whether the
mounting system has compromised any of the transducers specifications. The
evaluation normally involves the possibility of relative motion between the structure
under test and the transducer. Very often, the mounting systems, which are
convenient to use and allow ease of alignment with orthogonal reference axes, are
subject to mounting resonances which result in substantial relative motion between

the transducer and the structure under test in the frequency range of interest.

Therefore, the mounting system that should be used depends heavily on the
frequency range of interest and the test conditions. Test conditions include factors
such as temperature, roving or fixed transducers, and surface irregularity. A brief
review of many common transducer mounting methods is given in Table 3-2

(Allemang, 1998).
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Table 3-2 Transducer Mounting Methods

Transducer Mounting Methods

Frequency Range
Method Main Advantages Main Disadvantages
(Hz)
Poor measurement quality for
Hand-held 20-1000 Quick look
long sample periods
Good axis alignment, ease | Low frequency range, creep
Putty 0-200
of mounting problems during measurement
Temperature limitations,
frequency range limited by
Wax 0-2000 Ease of application
wax thickness, axis alignment
limitations
Quick setting time, good | Temperature sensitive
Hot glue 0-2000
axis alignment transducers (during cure)
Requires magnetic material,
axis alignment limitations,
Magnet 0-2000 Quick setup
bounce problem with impact
excitation, surface preparation
Axis alignment limitations,
Adhesive film 0-2000 Quick setup
requires flat surface
Mount on irregular surface,
Epoxy cement 0-5000 Long curing time
good axis alignment
Mount on irregular surface,
Dental cement 0-5000 Medium curing time, brittle
good axis alignment
Accurate  alignment  if | Difficult setup, requires drill
Stud mount 0-1000
carefully machined and tap
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3.3 Experimental Modal Analysis Methods

Categorizing different methods of Experimental Modal Analysis is helpful when
reviewing the literature in the area of Experimental Modal Analysis,

These methods are grouped according to:

1. Type of measured data that is acquired
a. Sinusoidal Input-Output Model
b. Frequency Response Function Model
c¢. Damped Complex Exponential Response Model
d. General Input-Output Model
2. Type of model used in modal parameter estimation stage
a. Parametric Model
i. Modal Model
ii. [M], [K], [C] Model
b. Non-Parametric Model
3. According to the domain of the modal parameter estimation model
a. Time Domain
b. Frequency Domain

c. Spatial Domain
In this Section, Experimental Modal Analysis method of Frequency Response

Function is explained in detail only. Frequency Response Function is a commonly

used method in Experimental Modal Analysis. (Richardson, 1986, Shye et al., 1987,
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Richardson, 2000). In the following sections Frequency Response Function Model

and Frequency Response Function Method are explained.

3.3.1 Frequency Response Function Model

The frequency response function method of experimental modal analysis is the most
commonly used approach to the estimation of modal parameters. This method
originated as a testing technique as a result of the use of frequency response
functions to determine natural frequencies for effective number of degrees of
freedom. In this method, frequency response functions are measured using

excitation at single or multiple points. The relationships between the input F ()
and the response X (w) for both single and multiple inputs are shown in Equation

3-4 through Equation 3-6.

Single Input Relationship:

X,=H,F, Equation 3-4
Xl qu
X, H, Equation 3-5
= Fq
X, H,
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Multiple Input Relationship:

X, H,, H,, K
X, H, H,, F,

= . . . Equation 3-6
X, N,x1 _HP1 H, dw,xw, F, Nyx1

The frequency response functions are used as input data to modal parameter
estimation algorithms that estimate modal parameters using a frequency domain
model and spatial domain model. Through the use of the Fast Fourier Transform,
the Fourier transform of the frequency response function, and the impulse response
function can be calculated for use in modal parameter estimation algorithms

involving time domain models.

3.3.2 Frequency Response Function Testing Method

For current approaches to Experimental Modal Analysis, the frequency response
function is the most important measurement to be made. When estimating
frequency response functions, a measurement model is needed that will allow the
frequency response function to be estimated from measured input and output data in
the presence of noise and errors. Some of the errors are:

e ].eakage (FFT error)

e Aliasing (FFT error)

* Noise

« Equipment problem (Power supply noise)

» Cabling problems (Shield problem)
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« Rattles, cable motion
Calibration (operator error)
« Complete system calibration

o Transducer calibration

Several important points to be remembered before attempting to estimate frequency

response functions are:

« The system (with the boundary conditions for that test) determines the
frequency response functions for the given input/output locations.

o It is important to eliminate or at least minimize all errors (aliasing,
leakage, noise, calibration, etc.) when collecting data.

o Since modal parameters are computed from estimated frequency
response functions, the modal parameters are only as accurate as the

estimated frequency response functions.

There are number of different Frequency Response Function testing configurations

(Avaitable, 2002). These different testing configurations are function of acquisition

channels or excitation sources. These testing configurations are;

Single input/single output. (SISO)
« Only option with 2 channel data acquisition system.
« Longest testing time. Roving inputs. Roving outputs.

« Time invariance problems between measurements.
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¢ Single input/multiple output. (SIMO)
o Multiple channel system (3 or more). (One ADC channel for each
response signal to be measured plus one ADC channel for an input
signal.)
« Shorter testing time than SISO. Transducers not necessarily moved.
« Consistent frequency and damping for data acquired simultaneously.
« Time invariance problems between measurements from different

inputs.

e Multiple input/single output. (MISO)
« Multiple channel system required (3 or more.). (One ADC channel
for each input signal to be measured plus one ADC channel for a
response signal.)
« Long testing time. Roving response transducer.
«  More than one input location per measurement cycle.
« Detects repeated roots. Maxwell reciprocity checks.
« Time invariance problems between measurements from different

responses.

e Multiple input/multiple output. (MIMO)
«  Multiple channel system (up to 512 channels). Increased set-up time.
« Large amount of data to be stored and organized.

« Shortest testing time.
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o Consistent frequency and damping for all data acquired
simultaneously.
«  Detects repeated roots. Maxwell reciprocity checks.

« Best overall testing scheme.

3.3.3 Excitation

Excitation is any form of input that is used to create a response in a structural
system. This can include environmental or operational inputs as well as the
controlled force input(s) that are used in Experimental Modal Analysis. The

following section is limited to the force inputs that can be controlled.

The primary assumption concerning the excitation of a linear structure is that the
excitation is observable. Whenever the excitation is measured, this assumption
simply implies that the measured characteristic properly describes the actual input

characteristics.

If the excitation is not measured, modal scaling parameters (modal mass, modal A,
residues, etc.) cannot be estimated. Even when the estimation of modal scaling
parameters are not required still an assumption must be made, concerning the

characteristics of the excitation of the system.

3.3.3.1 Classification of Excitation

Inputs which can be used to excite a system in order to determine frequency

response functions belong to one of the two classifications (Avaitable, 1998,

63



Avaitable 1999). a) Random signals, b) Deterministic signals. Random signals are
defined by their statistical properties over some time period and no mathematical
relationship can be formulated to describe the signal whereas deterministic signals
can be represented in an explicit mathematical relationship. Deterministic signals
are further divided into “periodic” and “non-periodic” classifications. The most
common inputs in the periodic deterministic signal designation are sinusoidal while
the most common inputs in the non-periodic deterministic designation are transient
in form. Mostly periodic input signals are generated by using shaker. Figure 3-12

shows shaker used in experimental modal analysis.

Figure 3-12 General view of test Configuration: Shaker
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Swept sine periodic deterministic signals are used in this study for frequency
response function estimation. The swept sine signal is a periodic deterministic
signal with a frequency that is an integer multiple of the FFT frequency increment.
Sufficient time is allowed in the measurement procedure for any transient response
(due to change in frequency) to decay so that the resultant output response is
periodic with respect to the sample period. Therefore, the total time needed to
compute an entire frequency response function are functions of the number of

frequency increments required and time allowed for transient responses to decay.

The following paragraphs summarize the terminology used in swept sine excitation

method.

e Delay Blocks: The number of continuous blocks of excitation that take
place without the associated input and output data being acquired are
referred as Delay Blocks. Delay Blocks are needed in order to give the
transient response to decay out of the response signal. Transient responses
are occurred due to start or change in the periodic excitation. So both input
and output responses will be periodic within the observation period (7). This
is why swept sine excitation method is time consuming. The length of each
delay block is equal to the length of the observation period (7). Number of
delay blocks is normally chosen as integer. The delay blocks are not

recorded and are not used in FRF estimation.
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e Capture Blocks: The number of capture blocks refers to the number of
continuous blocks of time data (input and output) that are recorded
(captured). Number of capture blocks is also the number of cyclic averages

that will be used to estimate FRF measurement.

There are several periodic and non-periodic deterministic signals and also several
non-deterministic signals. Since the details of signal type properties are out of the
scope this study they are not explained here. The following table shows a general
list of most commonly used for frequency response function estimation (Allemang,

1998).

Table 3-3 Various signals used in Frequency Response Estimation

Name Signal Type
Swept Sine Periodic Deterministic
Periodic Chirp Periodic Deterministic
Impact (Impulse) Non periodic(transient) Deterministic
Step Relaxation Non periodic(transient) Deterministic
Pure Random Ergodic, stationary random
Pseudo Random Ergodic, stationary random
Periodic Random Ergodic, stationary random
Both , transient deterministic and
Burst Random
Ergodic stationary random
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CHAPTER 4

MODAL PARAMETER ESTIMATION

4.1 Introduction

Modal parameter estimation is a special case of system identification where the a
priori model of the system is known to be in the form of modal parameters.
Therefore, regardless of the form of measured input-output data, the form of the
model used to represent the experimental data can be stated in a modal model using
temporal (time or frequency) and spatial (input DOF and output DOF) information
(Avaitable, 1999). There exist several modal parameter estimation algorithms that
are being used privately or being sold as a part of commercial software. Modal
parameter estimation algorithms are grouped according to the data domain that they
are being used (Michael et al., 1992). For the purpose of this study, a second order

frequency domain algorithm is examined and used.

4.2 Modal Parameters:

Modal identification involves estimation of the modal parameters of a structural
system from measured input-output data. Most current modal parameter estimation

methods use measured data in the form of frequency response functions (FRF) or an
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equivalent impulse response function(IRF),which is typically found by taking
inverse Fourier transform of the frequency response function. Modal parameters
include the complex-valued modal frequencies (A,) , modal vectors ({y,}) and
modal scaling (modal mass or modal A). Additionally, modal participation vectors
{L,} and residue vectors {A,} are used. Modal participation vectors are a result of

multiple reference modal parameter estimation algorithms and relate how well each
modal vector is excited from each of the excitation reference locations included in
the measured data. The combination of the modal participation vector and the
modal vector for a given modes give the residues for that mode. In general, these
two vectors represent portions of the right and left eigenvectors associated with the

structural system for a specific mode of vibration.

Modal parameters are considered to be global properties of a system. The concept
of “global modal parameters” simply means that there is only one answer for each
modal parameter and that the modal parameter estimation solution procedure
enforces this constraint (Richardson 1986). Every frequency response or impulse
response function measurement theoretically contains the information that is
represented by the characteristic equation, the modal frequencies and damping. If
individual measurements are treated in the solution procedure independent of one
another, there is nothing to guarantee that a single set of modal frequencies and
damping will be generated. Most of the current modal parameter estimation

algorithms estimate the modal frequencies and damping in a global sense.
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4.3 Complex Mode Indication Function (CMIF)

Complex Mode Indication Function is an algorithm based on singular value
decomposition (SVD), (Avaitable 2001) methods applied to multiple or single
reference FRF measurements. CMIF was first developed in order to identify the
proper number of modal frequencies, particularly when there are closely spaced or
repeated modal frequencies (Shih er al. 1989). CMIF is capable to indicates the
existence of real normal or complex modes and the relative magnitudes of each
mode. Furthermore, CMIF yields the corresponding mode shape and modal

participation vector.

CMIF is defined as the singular values, solved from a FRF matrix, at each spectral
line. The CMIF plot is the plot of these Eigenvalues on a log magnitude scale as a
function of frequency. The peaks detected on the CMIF plot indicate the existence
of modes, and the corresponding frequencies of these peaks give the damped natural
frequencies for each mode. The number of modes detected in CMIF determines the
minimum number of degrees-of-freedom of the analytical system and the order of

the system equation used in the algorithm.

4.3.1 Theory of SVD and CMIF

For multi degree of freedom systems Frequency Response Function formulation is
given in Equation 2-38 and modified here to represent discrete input output

relations.
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Equation 4-1

Where

N, is the number of response point(output)

N, is the number of excitation point (input)

[H(@)] is the FRF matrix of size N , by N,

[Ar] is the residue matrix of size N, by N,

{#}.is r™ the mode shape of size N, by 1

{L}r is the »” modal participation factor of size N, by 1
Q, is the scaling factor for the "

A, is the system pole value of " mode

Since Q, is a complex valued scalar Equation 4-1 can be rewritten as;

[H (a))]Nan, = Z:l:{¢}r ]a)Q_r 2 {L}? Equation 4-2

Thus the contribution of the " mode is {¢}, - Q’/l {L}f] .
]a) - r
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By taking the singular value decomposition of the FRF matrix at each spectral line
(say @, ), a similar expression of Equation 4-2 is obtained. Frequency Response

Function at each spectral line is represented with matrix A

[A ] :[H (a)k )]N(,le

svD ([A])=[U (@)l [Z(@,)] [V (e, )"
Equation 4-3
Where
[U (w, )] is the left singular matrix of size N , X N, which is an unitary matrix
[Z(a)k )] is the singular value matrix of size N, X N,, which is a diagonal matrix..

[V(a)k )] is the right singular matrix of size N, X N, which is also an unitary matrix.

N, is the number of dominant modes. The dominant modes are the modes that

contribute to the response of the structure at this particular frequency @.

As stated above [U (a)k )] and [V(a)k )] are unitary matrices. Thus

U(@)]*U(w,)" =V(o,)*V(w,)" =1
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Also due to the nature of the SVD U(w,) and V(w,) matrices have orthogonal

colums.

At this point is it easy to see that Equation 4-2 and Equation 4-3 are identical. If the

number of effective modes ( N, ) is less than or equal to the smaller dimension of
the FRF matrix, ie. N, < N, or N, < N , the singular value decomposition leads
to mode shapes (left singular vectors) and modal participation factors (right singular
vectors). The singular value is then equivalent to the scaling factor Q, divided by
the difference between the discrete frequency and the modal frequency jo—A. .

Since for a given mode, the scaling factor is a constant, the closer the modal
frequency is to the discrete frequency, the larger the singular value will be.
Therefore, the damped natural frequency is the frequency at which the maximum
magnitude of the singular value occurs. Since the CMIF plot is defined as the plot

of the diagonal elements of singular value matrix ([Z(a)k )]) solved form FRF matrix

([A ]) at each spectral line on a log magnitude scale. Thus the peaks in CMIF plot

indicate the existence of modes. A typical CMIF plot is given in Figure 4-2.

72



Matrix A
/

m
[}
%)
=
o
o
) .
lorg
Nca 4
Xis
Figure 4-1 FRF matrix [ A ] for spectral line @,
- Complex Mode Indicator Function
10 ; : ; : : ; :
10°F E
g
107 1
g
=
107k 1
10_9 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800

Frequency, Hz

Figure 4-2 CMIF Plot
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4.4 Enhanced Frequency Response Function (eFRF)

Enhanced Frequency Response Function is a weighted average of all of the
measured frequency response functions. The singular vectors obtained from SVD
(mode shapes and modal participation factor) are used as weighting functions. eFRF
isolates a single mode so that a simple single degree of freedom parameter
estimation algorithm is used to estimate the Eigenvalues and modal scale factors for

the enhanced mode.

Thus for the 7" mode at spectral line k

eFRF (a)k )r = {U (a)r )}H H (a)k ){V (a)r )} Equation 4-4

Where

{u (a),. )} is unitary vector of size N , x1

{V(a)r )} is unitary vector of size N %1

[H (a)k )] is the FRF matrix of size N, by N,

Thus for the r” mode at spectral line k eFRF (a)k )r is complex valued scalar
Enhance frequency response function plot is drawn by calculating eFRF (a)k )r at

each spectral line.
Since the mode shapes and modal participation factors from singular value
decomposition are unitary vectors, by substituting Equation 4-2 into Equation 4-4,

the enhanced FRF is actually the decoupled single mode response function:

Therefore for the r” mode
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Equation 4-5

That is why it is said that “eFRF isolates a single mode”. Looking to the Equation
4-5 is easy to see that for the r” mode the eFRF is only related with the modal

scaling factor and pole of the " mode.

4.5 Pole Estimation

As stated in Section 4.3, the peaks in CMIF plot indicate the existence of Modes.
The corresponding frequencies of a peak in CMIF plot is damped natural
frequencies. Poles of the measured data are estimated from eFRF plots. Second
Order Frequency Domain UMPA model is used for pole estimation. Additional B
terms are used for the modes that are out of frequency range (residual effect). The
general form of UMPA model is given in Equation 4-6. The Second Order
Frequency Domain UMPA model is given in Equation 4-7. The second order
formulation is analogous to the MCK model formulation (See Section 2.2.1.2). The
second order equation of motion for a single degree of freedom MCK system in

frequency domain is given in Equation 4-8 :

> (jo)'[A,[{eH (w)}= Z jw) [B ]{R(w)} Equation 4-6
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[(]0))2 [Az ]+ (]a))1 [Al ]+ [Ao]] {eH(w)} = i— (]0)) " [Bm ] {R(a))} Equation 4-7

(o) M 1+(jo) [c]+[K]| {eH (@)} = {R(@)} Equation 4-8

In Equation 4-7, the enhanced frequency response {efrf }(or sometimes {eH }is
known for the frequency band of interest, whereas the index matrix [R] is unity load
vector. The A's and B's in Equation 4-7 are the unknowns. A least squares solutions
is formulated for the solution of A&B. Least square solution is formulated by
assuming [A2] = [I], thus the multiplier of [A]] is taken to the right side, whereas

[B,] and R are taken to the left.

(W H W) ]
H(w)
[A1 A, B, - Bm] —R(w) :—(]’W)2 H(w) Equation4-9
Thus; - (jw)" Rw) |
[ GwHW) |
H(w) '
[A1 A, B, - Bm]=—(jw)2 H(w) — R(w) Equation 4-10
| —(W)" R(w) |

Where (") indicates generalized inverse operation (pseudo inverse)
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Since the second order UMPA formulation is analogous to the MKC model
formulation, the poles of UMPA model is exactly same as for MKC model.

For MCK model the state space formulation is as follow;

M ¥(t)+C x(r)+ Kx(t)=0 Equation 4-11

Define
X (t ) =X (t ) Equation 4-12
X ()= i(r) Equation 4-13

Substituting Equation 4-12 and Equation 4-13 to Equation 4-11 gives;

M x, (t)+ C x, (t)+ Kx, (t) =0 Equation 4-14

Thus in state space formulation (Kashani, www.deicon.com) there exist two sets of
equation which are;
M i,(1)=~C x,(t)- Kx,(t)
and
3, ()= x, (¢)

The two set of equations in matrix form is given in Equation 4-15.
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: 0 1
X X
|-k -cC
{ 5Cz } {—M _M ]{ X, } Equation 4-15

Letting

0 1
a=-K -C Eauation 4.16
M M quation 4-

Thus, the poles of the MCK model is equivalent to the eigen values of the
coefficient matrix(companion matrix) given in Equation 4-15.Since second order
UMPA formulation is analogous to the MKC model formulation, the poles of

UMPA model is also equivalent to the eigenvalues of the coefficient matrix. Thus

for second order UMPA formulation companion matrix becomes

0 1
a = _Ao _Al
A2 AZ

Keeping in mind that [A2] = [I]

0 1
a=
_Ao _Al

Thus the poles of the UMPA model is calculated as shown in Equation 4-17

" =eigla)
N —elgla Equation 4-17
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One important point in companion matrix formulation is that, terms in Companion
matrix can be rearranged so that the poles are calculated by taking the eigenvalues

of the negative companion matrix. In that case the companion matrix becomes

Where the poles are calculated as in Equation 4-18

Al
7 =eilg (_ a) Equation 4-18

4.6 Scaling Computation

Once the modal frequencies (poles) and mode shapes are estimated, the associated
modal scaling factor and corresponding modal A, and residues can calculated by
using Equation 4-5.

Keeping Equation 2-43 in mind;
For Mode r;

o PV
jw_ l r

Ar

Where;
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Since the mode shapes and modal A are calculated, it is now possible to calculate

residue terms, by Equation 4-19.

qur = M Equation 4-19

Since residual terms are calculated. The frequency response functions can be re-

synthesized by using Equation 2-37

80



CHAPTER 5

MODAL DATA PRESENTATION/VALIDATION

5.1

Introduction

The measured modal model data and constructed modal model needs to be validated

against completeness, orthogonality, consistency and similar criteria.

After the modal parameters are determined, several procedures can be used for

modal data (model) presentation/validation. Some of the procedures that may be

used are:

Measurement Synthesis

Visual Verification (Animation)

Finite Element Analysis

Modal Vector Orthogonality

Modal Vector Consistency (Modal Assurance Criterion)
Modal Modification Prediction

Modal Complexity

Modal Phase Co linearity and Mean Phase Deviation
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All of these methods depend upon the evaluation of an assumption concerning the
modal model. Unfortunately, the success of a validation method only defines the
validity of the assumptions; the failure of a modal validation does not generally
define what the cause of the problem is. For the purpose of this study four modal

data presentation /validation procedures are studied.

5.2 Measurement Synthesis

The simplest validation procedure is to compare the data synthesized from the
modal model with the measured data. This comparison is particularly effective if
the measured data was not part of the data used to estimate the modal parameters.
Comparison of generated data against measured data serves as an independent

check of the calculated modal parameter estimation variables.

Phase

Magnitude

1
15 20 25 30 35 40 45
Frequency

- Measured Data —- Reconstructed Data

Figure 5-1 Typical FRF Synthesis
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5.3 Visual Verification (Animation)

Another relatively simple method of modal model validation is to evaluate the
modal vectors visually. While visualization of mode shapes can be accomplished
using plotted modal vectors superimposed over the undeformed geometry, the
modal vectors are normally animated (superimposed upon the undeformed

geometry) in order to quickly assess the modal vector.

Figure 5-2 Visual Verification of Modal Vectors

5.4 Finite Element Analysis

The mode shapes obtained from the finite element model of a structural system can
also be used for modal model validation. While the problem of matching the
number of analytical degrees of freedom N, to the number of experimental degrees
of freedom N, causes some difficulty, the modal frequencies and modal vectors can
be compared visually or by consistency checks. Unfortunately, when the
comparison is not sufficiently acceptable, the question of error in the experimental

model versus error in the analytical model cannot be easily resolved. Generally,
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reasonable agreement can be found in the first ten deformable modal vectors but
agreement for higher modal vectors is more difficult. Some of the analytical modes
may not be measured during test, especially if the accelerometers are placed in one
direction only (i.e. lateral modes will be missed if no accelerometers are placed in
lateral direction). Also modal frequency differences between the measured and

modeled systems are expected due to variation in the assumed variables.

5.5 Modal Assurance Criterion

Modal Assurance Criterion (MAC) provides a measure of consistency between
estimated modal vectors. This measure (MAC) provides an additional confidence
factor in the evaluation of a modal vector when different excitation locations are
used. The modal assurance criterion (MAC) also provides a method of determining
the degree of causality between estimates of different modal vectors of the same

system.

MAC also provides a method of easily comparing estimates of modal vectors
originating from different sources. The modal vectors from a finite element analysis
can be compared against with those determined experimentally as well as modal
vectors determined by way of different experiments or modal parameter estimation
methods. In this way, effect of different methods can be compared in order to
evaluate the mutual consistency of different procedures, on the estimation of modal

vectors.
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MAC is defined as a scalar constant (between zero and one) relating the portion of
the auto moment of the modal vector that is linearly related to the reference modal

vector as follows:

Y v ) |
A Y v V) Wl Wt ly,]  auationsd

The constant takes values from zero, representing no consistent correspondence at
all, to one, representing exact duplicate. In this manner, if the modal vectors under
consideration truly exhibit a consistent relationship, the modal assurance criterion

should approach to unity.
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CHAPTER 6

EXPERIMENTAL MODAL ANALYSIS
SOFTWARE

6.1 Introduction

Today modal analysis softwares are available in markets with prices starting from
500 Euro. Examples are X Modal, FemTool and SDT. Since these software
packages were not available in Structural Mechanics Lab, this enforced us to write
Experimental Modal Analysis software. Matlab platform is chosen for programming
due to its rather simple architecture and ease of use for matrix manipulations. There
are many advantages of Matlab platform: Firstly most of the required functions are
readily available within Matlab (such as matrix inverse, eigenvalue solution, matrix
manipulations). Secondly the written software can be converted to a stand-alone
application where the end-user does not require Matlab in order to run the written
software (Marchand 1999). The short name of the written software is (Experimental

Modal Analysis Software) EMAS.
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6.2 Structure of EMAS

EMAS is a user friendly graphical user interfaced software. It consists of several
parts which are explained in the following Sections. In addition to EMAS, two more
programs were prepared that can be either executed within EMAS or executed
separately These programs are;
a) Finite Element Updating Software (Calibration Software): The theory and
software will be explained in Chapter 9.
b) Frequency Response Function Generator Software: Generates FRFs
according to the given M C K matrices, which is used to generate synthetic
FRFs to verify EMAS results.

The appearance of EMAS is given in Figure 6-1.

-} Experimental Modal Analysis Softw 10| x|
Commands FEU  FRF Geneakor

Figure 6-1 Appearance of EMAS
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EMAS consists of 3 menu items. These are:
e Commands,
e FEU, and
¢ FRF Generator.

Each menu item is explained in detail in the following Sections.

6.2.1 Commands

“Commands” is the first menu item of EMAS. It consists of four sub menu items.

These sub menu items are:
¢ Input File Editor
¢ Frequency Response Function Loader
e Modal Parameter Estimator.

o Exit

} Experimental Modal Analysis Software - 10] x|
Commands FELU  FRF Geneator

Input File Editor Ckrl+F

Frequecy Response Function Loader  (Chrl+L

Maodal Parameter Estimatar Chrl+M

Exit Chrl+

Figure 6-2 Items under Command pull down menu
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These sub-menu items are further explained below.

6.2.1.1 Input File Editor

“Input File Editor” menu item is at the beginning of EMAS software, at which the
general model geometry used in Experimental Modal Analysis is defined. Clicking
on “Input File Editor” activates Input File Editor program. The usage of the Input
File Editor program is rather simple. Nodes, Elements, Constraints, and Masters are
defined in this part. Input files can be prepared in Input File Editor program or in
any word-processor. The extension of input files created by Input File Editor
program is fea as in the form of “*.fea”. Fea is the abbreviated form of Finite
Element Analysis The appearance of Input File Editor program is given in Figure
6-3. Once input file is prepared by clicking Load File button the commands

displayed in the Input File Editor program is executed Figure 6-3.
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<} Input File Editor =101 %]

Input File Editor

Mew File

Open File

node 1, 0. 00, 00
node 5, -0.1941142838, 07244443657, 0.0
node 33, 3, 00, 0.0

node 37, 28085885716, 0.7244443697 .0
Load File modegen1 333 9 8

rmodegen® 37 3 13 8

nodegenl B 3 2 1

nodegen 33 37 3 34 1

modegen 9 13 2 10 1 Erase
nodegen 17 21 3 18 1
nodegen 25 29 3 26 1 Down
nodegen1 91 6 1

nodegen 25 32 1 30 1

nodegen 6 30 2 14 8

nodegen3 111 7 1

nodegen 27 35 1 31 1

nodegen¥ 31 2 15 8 LI

Feplace " Title Skewed Frame Problem Add Tolnput Filel

Save File

134

p

HH

Figure 6-3 Input File Editor Program

There are several commands used in input files that define the model. These

commands are briefly explained below.

6.2.1.1.1 NODE

Usage: Node id, x, y, z

This Command specifies the location and number of a node in three-dimensional
(3D) Cartesian coordinates. “id” is the node number, and it is a positive integer.
Every node has a unique node number. Variables x, y, z are the real coordinates of

the node id in 3D space.
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An example illustrating the use of the command “node” is given below.
Node 1, 0,0, 0

- Specifies node number 1 with coordinates x =0, y =0, z=0.

6.2.1.1.2 NODEGEN

Usage: NODEGEN nl, n2, (num, start, offset)

This command generates additional nodes linearly between two previously defined
nodes. The new nodes are spaced evenly between nl and n2, where nl, n2 are the
two end node numbers (nl1 must be less than n2). num (optional) is the total number
of nodes to be generated. Num defaults to the difference between the node numbers
nl and n2. start (optional) is the start node number of the new nodes to be
generated. Start defaults to n1+1. offset (optional) is the difference in node number
between each newly generated node. Offset defaults to +1. Offset can also be

negative.

Examples:
Nodegen 1, 11
- Generates 9 nodes numbered 2,3,..,10 located on a straight line with equal spacing

between nodes 1 and 11.

Nodegen 1, 11,9, 100

- Generates 9 nodes numbered 100, 101,.., 109 located on a straight line with equal

spacing between nodes 1 and 11.

91



Nodegen 1, 11, 3, 100, 10
- Generates 3 nodes numbered 100, 110, 120 located on a straight line with equal

spacing between nodes 1 and 11.

6.2.1.1.3 ELEMTYPE

Usage: ELEMTYPE elemname
This command specifies the type of element that will be generated by subsequent
Elem and Elemgen commands. The latest Elemtype command becomes valid and
replaces the previously defined ones. Elemname is the name of the particular
element type.
Available element types are

a) 2 dimensional frame element (Beam2d)

b) 3 dimensional frame element (Beam3d)

c) 1 dimensional spring element (Spring)

d) 2 dimensional mass element (Mass2d)

e) 3 dimensional mass element (Mass3d)

f) 2 dimensional truss element (Truss)

g) 3 dimensional spring element (Spring3d)

Example:

Elemtype beam3d

- Subsequent elements are 3-dimensional beam elements.
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6.2.1.14 ELEM

Usage: ELEM id, n1, (n2, n3,...)

This command creates an element between two previously defined nodes. The type
of element must have been previously specified by an Elemtype command.
Different elements require different number of nodes, but they all require at least
one node Available elements are given in Section 6.2.1.1.3. Although elements
requiring more than 2 nodes (Shell elements, plate elements etc) are not prepared,
elem command supports this type of elements also. id is the element number, which
is a positive integer. Every element must have a unique element number. nl, n2, ...
are the node numbers that define an element. The number of nodes required
depends on the type of the element to be generated. All of the nodes must have been

previously defined.

Example:

Elem 100, 1, 2
- Generates element number 100 of type previously specified in last Elemtype

command, between nodes 1 and 2.

6.2.1.1.5 ELEMGEN

Usage: ELEMGEN elemid, num, (elemstart, eleminc, nodeinc)
This command generates multiple elements based on the nodes of a template
element. The new elements are generated by adding a node number increment

(nodeinc) to each of the nodes of the template element. The generation is done for a
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specified number of times. Note that every node to be used in the element
generation process must already be defined, and every element number to be
generated must not be previously defined. Also, the current element type must be
the same as the element type of the template element. Variable elemid is the
element number of the template element. num is the number of elements to be
generated. elemstart (optional) is the start element number of the elements to be
generated. Elemstart defaults to elemid+1. Variable eleminc (optional) is the
increment of the the generated element numbers. Variable eleminc can be also
negative and defaults to 1. Variable nodeinc (optional) is the increment of the node
numbers of the template element which can also be negative. The default value of

nodeinc is 1.

Examples:

Elem 100, 1, 2

Elemgen 100, 3

- Generates the three elements:
Elem 101, 2, 3
Elem 102, 3, 4

Elem 103, 4, 5

Elem 100, 1,2, 5

Elemgen 100, 4, 200, 10, 2

- Generates the four elements:
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Elem 200, 3, 4, 7
Elem 210, 5, 6,9
Elem 220, 7, 8, 11

Elem 230, 9, 10, 13

6.2.1.1.6 CONSTNODE

Usage: CONSTNODE nodeid, (num, inc)

This command constrains (grounds) one or more nodes,by fixing. all six degrees of
freedom of the nodes. Variable nodeid is the node number of the first node to be
constrained. Variable num (optional) is the total number of nodes to be constrained.
Default value of num is 1.Variable inc (optional) is the increment between every

node number that is constrained. Default value of inc is 1.

Examples:
Constnode 50

- Constrains node number 50

Constnode 50, 4

- Constrains nodes number 50, 51, 52, 53

Constnode 50, 4, 2

- Constrains nodes number 50, 52, 54, 56
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6.2.1.1.7 CONSTDOF

Usage: CONSTDOF nodeid, dofn, (num, inc)
This command constrains specified degrees of freedom of one or more nodes.

Degrees of freedom are numbered as follows:

1. Translation along the X-axis
2. Translation along the Y-axis
3. Translation along the Z-axis
4. Rotation about the X-axis
5. Rotation about the Y-axis

6. Rotation about the Z-axis

Variable nodeid is the node number of the first node with a DOF to be constrained.
Variable dofn is the number of the DOF to be constrained, and takes a value
between 1 and 6. Variable num (optional) is the total number of DOFs to be
constrained. The default value for num is 1.Variable inc (optional) is the increment

between nodes which defaults to 1.

Examples:
Constnode 50, 3

- Constrains Z-translation for node number 50

Constnode 50, 5, 4, 10

- Constrains Y-rotation for node numbers 50, 60, 70, 80
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6.2.1.1.8 MASTERNODE

Usage: MASTERNODE nodeid, (num, inc)
The format of Masternode command is almost identical as Constnode command.
The only difference is that degrees of freedom of the selected nodes are not

constrained but chosen as masters.

6.2.1.1.9 MASTERDOF

Usage: MASTERDOF nodeid, dofn, (num, inc)
The format of Masterdof command is almost same as Constdof command. The only
difference is that the selected degrees of freedom are not constrained but chosen as

master degrees of freedom.

6.2.1.1.10 ALLMASTERDOF

Usage: ALLMASTERDOF (dofn)

This command is used to easily select types of degrees of freedom as masters. If the
number dofn is given, between 1 and 6, then every degree of freedom of that type
in the model is selected as a master dof. If Allmasterdof is executed without a
number following the command then every degrees of freedom is selected as a
master dof. Variable dofn (optional) is the degrees of freedom number type to be
select as master dof. Master degrees of freedoms are used in Frequency Response
Function Loader (FRFL) which is explained in the following Section. If a degrees
of freedom is not defined as a master degrees of freedom, it is not possible to assign

the acquired (measured) modal data to that degrees of freedom.
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Examples:
Allmasterdof

- All degrees of Freedoms are selected as masters.

Allmasterdof 1

- All X-translation degrees of freedom are selected as masters.

6.2.1.2 Frequency Response Function Loader

Frequency Response Function Loader (FRFL) is a menu item defined under the
Commands item (see Figure 6-2 ). This is the part of EMAS where acquired
(measured) modal data is imported into the program. Clicking on FRFL menu item
activates the FRFL program. The usage of FRFL is quite simple and further
described in Section 6.2.1.2.1. The appearance of FRFL program is given in Figure

6-4 for a cantilever beam model.
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Figure 6-4 Appearance of FRFL Program

6.2.1.2.1 How Does FRFL Program Work

First step to do in FRFL is to define Number of Input DOF and Number of
Output DOF. These argument should be less than or equal to number of masters
degrees of freedom. Note that master degrees of freedom are defined in Input File
Editor program, as explained in Sections 6.2.1.1.8, 6.2.1.1.9, and 6.2.1.1.10. After
entering these arguments, by clicking Define I/O the number of input and output
degrees of freedom is stored in the program. Then for each input-output degrees of
freedom pair, a data file obtained from modal data acquisition is imported. If the
data obtained from modal data acquisition is the form of accelerance (A/F), this is

converted into receptance (X/F) by the help of a radio button named Conversion
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from A/X is required. After importing data (obtained from modal data acquisition)
for all input-output d.o.f pairs, clicking Save and Continue button ends FRFL
program. After clicking Save and Continue button, a question dialog box appears
asking if saving the FRF Data is required. If YES is selected FRF data file is saved
to a file (which its name is defined by the user), otherwise without saving the FRF

data to a file the program is ended.

Saving the FRF data to a file is useful for further use. Next time running EMAS the
user can directly jump to MPE part of EMAS without executing FRFL program.
Keeping in mind that when FRFL menu item was first clicked, a question dialog

box was appeared asking whether loading FRF data from file is required or not.

6.2.1.3 Modal Parameter Estimation

Modal Parameter Estimation (MPE) is a menu item defined under the
Commands item (see Figure 6-2 ). As a part of EMAS, MPE is used to extract
modal parameters from the measured data obtained by modal data acquisition. The
general appearance of MPE program is given in Figure 6-4 for an example FRF data

generated from 3 dof cantilever beam model.
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Figure 6-5 MPE Program

6.2.1.3.1 How Does MPE Program Work

First step in MPE is to define the frequency range of interest. This is achieved by
defining the Lower Bound Frequency and Upper Bound Frequency. After the
Run button is clicked the CMIF plot is drawn. As stated in Chapter 4, Section 4.3,
the picks in CMIF plot indicates the existence of a mode. The peaks in CMIF plot
are selected with Peak Pick button. After clicking Peak Pick Button, it is required
to click a point on the Plot. The peak pick algorithm automatically moves towards
uphill, locates, and picks the peak. Alternatively the peaks can also be selected

manually. This is achieved by checking the Manual Peak check box. When the
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Manual Peak check is on, it is required to select the peak manually. This procedure
is repeated until all peaks are selected. Clicking the Enhanced FRF button displays
the eFRF plots for selected peaks (modes). The theory of eFRF is explained in
Chapter 4, Section 4.4. The appearance of Enhanced FRF plot is given in Figure

6-6.

il
% eFRF Plots for Mode at Frequency 21.4034 Hz
10 T T T T T T T T T
3107} .
=
=
f=zl
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=
g0} _
10'5 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 £S5 A0 45 =]
0 Frequency
A0 - i
a4}
@ -100 - .
o
=180 - |’ .
Plevinusl
_2DD | 1 | | | | | | |
0 5 10 15 20 25 30 35 A0 45 =]
Frequency

Figure 6-6 Enhanced FRF Window

The MAC Correlation button in Figure 6-4 displays a bar chart of the MAC values
of selected peaks (modes). The theory of MAC is explained in Chapter 5, Section

5.5. The appearance of MAC Correlation windows is given in Figure 6-7
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Figure 6-7 MAC Correlation Window

The Calculate Poles Button calculates the Poles of the selected peaks. The theory

of Pole calculation is explained in Chapter 4, Section 4.4.

Mode Animation button animates modal vector of selected modes. Mode
animation is a method of modal model validation which is explained in Chapter 5,
Section 5.3. Mode Shape Animation Window is shown in Figure 6-8 displaying the
third mode of vibration of a cantilever example beam The modal frequency and

percent damping rations are also displayed in the same window. The speed of
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animation and the magnitude of modal vectors are adjusted using the vertical sliding
bar displayed at the left and right side of the window, respectively (Figure 6-9).

While mode shapes are animated, it is not possible to adjust sliding bars.

§ Mode Shape Animation

Figure 6-8 Mode Shape Animation Window
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Figure 6-9 Vertical sliding bars used for adjusting the speed and magnitude of the mode shapes

Plot Individual FRF Fits Button plots regenerated FRF on top of the measured
FRF. This is a method of modal model validation which is explained in Chapter 5,
Section 5.2 as Measurement Synthesis. The appearance of Individual FRF Fit
Windows is given in Figure 6-10. The top figure displays the magnitude of
regenerated and measured FRF while the bottom part displays the phase

information for changing frequency.
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Figure 6-10 Individual FRF Fit Window

Generate Report Button (Figure 6-5) creates a text file which contains information
about the Nodes, element connection, constraints, masters, and modal parameters
(natural frequencies, damping, mode shapes). The appearance of Generate Report

screen is given Figure 6-11
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Figure 6-11 Generate Report

The last button in MPE program is Quit Button (Figure 6-5). The following screen

appears by clicking the Quit button.

<) SAVE EMA RESULTS X

? Do wou want to Save ErMA BESULTS o file ?

Yes | Mo | Eam::ell

Clicking the Yes button causes the MPE results to be saved in a MATLAB data file
with MAT extension.. The data file name is defined by user.As the MPE program
ends, it returns to the main program, EMAS. Clicking No button ends MPE
program without saving, and returns to the main program EMAS. Clicking Cancel

button cancels the “Quit” command and returns back to the MPE program without

quitting.
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6.2.1.4 FRF Generator

Clicking FRF Generator (see Figure 6-1) activates FRF Generator part of EMAS.
FRF can be generated if the mass (M), stiffness (K), damping(C) matrices of a

system are known. Equation used for FRF generation is given in Equation 6-1.

1

Hlw =
( k) (jwk)2M+(ja)k)C+K Equation 6-1

N;xN,

Where w, is a frequency variable that can take any value within the range of

interest.

Appearance of FRF Generator is shown in Figure 6-12.

<} Frequency Response Function Generator | = |EI|5|

Frequency Response Function Generator

Define M C K|

Block Size :| 1000

Generate

Figure 6-12 FRF Generator
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By Clicking DEFINE M C K, Figure 6-13 appears which allows user to import
binary texts files containing MCK matrices. Block size is used to define the number

of data points to be generated between minimum and maximum frequencies.

) Untitled =0l x|

Mass Matrix |
Stiffness Matrix

Damping Matrix| o Proportional Damping

OK

Figure 6-13 DEFINE M C K

Damping matrix can be defined to be proportional as stated in Equation 2-46.
Proportional damping is defined by clicking Proportional Damping button. As

shown in Figure 6-14.

D unied il

[C] = alfa™[M] +beta™[K]

alfa : | 1
0K |
beta : |1—

Figure 6-14 Proportional Damping
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FRF Generator calculates the Eigenvalue solution of M C K system by using state
space formulation. The state space formulation of M C K system is explained in
Chapter 4, Section 4.5. The range of frequency is automatically defined to be 1.5
times of the highest natural frequency. The frequency step size is defined as

frequency range divided by Block Size.

By FRF generator program any FRF with known M C K matrices can be generated
and printed to binary files. By default the name of all binary FREF files starts with
the letter “a”. Each FRF file consists of 3 columns of data. These columns are

Frequency (Hz), real part of FRF and imaginary part of FRF.

For example for a 10 d.o.f system with known M C K matrices, 100 binary FRF

files will be created. These files are shown in Table 6-1
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Table 6-1 FRF Table

Name of File Input Number Output Number

Al.txt 1 1

A2.txt 1 2

A3.txt 1 3

A4 .txt 1 4
A10.txt 1 10
All.txt 2 10
A100.txt 10 10
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CHAPTER 7

VERIFICATION OF EMAS

7.1 Introduction

Experimental Modal Analysis Software (EMAS) is written and explained in
Chapter 6. Before using this software in measured experimental data, it is
compulsory to verify that the software is working properly and yields correct
results. For this purpose, Frequency Response Functions are generated by using
FRF Generator part of EMAS and analyzed by using Modal Parameter Estimation
part of EMAS. Modal Parameters obtained From EMAS are compared against

theoretical values.

7.2 Verification of EMAS using 3. d.o.f Model

A 3-dof model with proportional damping M C K matrices; are defined as below.

8 0 0 13 -6 0
M=|0 10 O C=|-6 11 -5
0 0 12 0 -5 5
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Nine binary FREF files are generated by FRF Generator part of EMAS and loaded to
EMAS using FRFL program. The M C K matrices are assumed to belong to a
cantilever beam (for animation purposes) and node location, element connection
information are prepared accordingly. The input file is given in Table 7-1. The

Input file is loaded to EMAS using Input File Editor program. Figure 7-1 shows the

26 -12 0
K =10000x|-12 22 -10
0 -10 10

CMIF plot for the generate FRF data including selected peaks.

Table 7-1 Input File for 3 D. o. f. system

title 3 d.o.f cantilever beam (Units Length: N Force: m)

node 1, 0.0, 0.0, 0.0

node2, 1, 0.0, 0.0

node3, 2 0 O
node4 3 0 0
elemtype beam3d
elem 1,1, 2
elem 2 2 3
elem 3 3 4
allmasterdof 3

constnode 1

113




=} Modal Paramenter Estimation N =10 =]

Complex Mode Indicator Function

Peak. Fick |
LOWER Bound F) Hz]: I
i fedicocy i) 0 Enhanced FRF plotz I
Fiun
UPPER Bound Frequency [Hz): I 49,2037
M&LC Comelation I
" Zaoom
Caleulate Poles I
Mode Animation I
=5}
=
= Flot individual FEF fits I
=
fan ]
[0
= gl
= 10"} Generate Report I
o
|
1 1 1 1 1 1 1 1 Quit I
0 =] 10 15 20 2z 30 55 40 45
Freguency

[~ Manual Peak

Figure 7-1 CMIF Plot for 3 d.o.f problem

7.2.1 Enhanced FRF Plots & eFRF Plots with Synthesized Peaks

The selected verification model has three degrees of freedom (d.o.f). Three
Enhanced FRF (eFRF) plots exist for a three d.o.f. system, which are used for pole,
modal scaling, and residue calculation. These plots are represented through Figure
7-2 to Figure 7-4. As it is can be seen from these plots, each eFRF plot isolates a
single mode so that a simple single degree of freedom parameter estimation
algorithm can be used to estimate poles and modal scale factors for the enhanced
mode. For each mode, 10 data points are used for before and after each peak.
Number of B terms is selected as 3 (Selecting B value very high causes stability

problems and thus causes numerical errors). Selecting B value very small causes an

114



under estimation of modal parameters). eFRF plots with synthesized peaks are
represented through Figure 7-5 to Figure 7-7. The peaks are synthesized by using
the modal parameters obtained from Modal Parameter Estimation (MPE) for the 20

data points for each mode.
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Figure 7-2 eFRF plot for 1st Mode
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Figure 7-7 eFRF plot with synthesized peak for 3rd Mode

7.2.2 MPE Results

Modal parameters obtained from MPE part of EMAS are given in Table 7-2. In the

following Sections the theoretical results are represented and compared against

MPE results.

Table 7-2 Modes and corresponding Freq-damping (Experimental)

Mode Natural Frequency (Hz) Damping (%)
1 7.598 0.119
2 21.397 0.336
3 32.802 0.515
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7.2.3 Measurement Synthesis

It is useful to compare the reconstructed FRFs with measured (original) FRFs (see
Section 5.2 for further details). The reconstructed Frequency Response Functions
for the selected 3 d.o.f. system are compared against the original data through
Figure 7-8 to Figure 7-16. In general, the reconstructed FRF curves successfully
match the original curves. Small differences between the curves are addressed to

numerical and truncation errors.
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Figure 7-8 Actual FRF vs. Generated FRF for Input: 2 Output: 2
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7.2.4 Visual Verification

The visual verifications are carried out using mode shape animations. The mode
shape animation of the selected 3 d.o.f cantilever system is represented through

Figure 7-17 to Figure 7-19.

Figure 7-17 Animation of Mode 1

Figure 7-18 Animation of Mode 2

Figure 7-19 Animation of Mode 3
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It is typical of the modes that 1* mode exhibit no sign change, 2" mode exhibit one
sign change, and 3" mode exhibit two sign changes. Correspondingly, 1% mode
does not have a point of zero displacement whereas the second and third modes
have one and two points of zero displacement respectively.

The animated mode shapes shown, successfully represent the general behavior of
the three vibration modes of a cantilever beam. The results pass the visual

verification.

7.2.5 Modal Assurance Criterion (MAC) Correlation

MAC correlation gives us information about how well two modes correlate.
Theoretically any two different modes of a structural system are orthogonal to each
other. Therefore the MAC values of two different modes should theoretically be
equal tozero, and MAC values of the same modes must be equal to one. The MAC
comparison matrix of the three modes from the generated FRF data is presented in
Figure 7-20. The obtained results shown in Figure 7-20 supports the theory by unity
values across the diagonal and zero values on the-off diagonals. MAC correlation of

the modes also shows that the obtained modes are different and orthogonal.
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<} MAC Correlation Window

Figure 7-20 Bar Chart for MAC Correlation Matrix

7.2.6 Comparison of Results Obtained from MPE Part of EMAS
Against Theoretical Results

In order to compare the results obtained with MPE part of EMAS, the selected 3
d.o.f. system is analyzed by using state-space formulation. The state space
formulation of M C K system is explained in Chapter 4, Section 4.5. Results
obtained from state-space formulation are presented in Table 7-3. Percentage error
between results obtained from MPE part of EMAS against theoretical results and

theoretical results are shown in Table 7-4.
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Table 7-3 Modes and corresponding Freq-damping (Theoretical)

Mode Natural Frequency (Hz) Damping (%)
1 7.598 0.119
2 21.397 0.336
3 32.802 0.515

Table 7-4 Percentage error between experimental and theoretical results

Mode Natural Frequency (%) Damping (%)
1 2.469e-8 -1.572e-4
2 1.02e-8 -6.631e-4
3 5.120e-8 -4.532e-5

As it is shown in the above table (Table 7-4) the error between the results obtained
from MPE part of EMAS and theoretical results are negligible. The highest percent
error is 6.63e-4. The above figures, plots, and tables verify that that EMAS is
working properly and yields correct results. Also it is verified that FRF Generator
part of EMAS is working properly. The report generated by the Generate Report

part of EMAS for the selected 3 d.o.f. system is given in Appendix A.
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CHAPTER 8

EXPERIMENTAL STUDY

8.1 Introduction

Modal parameter estimation using EMAS software was verified in Chapter 7.
Therefore, the EMAS software is used with real experimental data. For the
experimental modal analysis part a steel grid model is constructed in Structural
Mechanics Laboratory. Testing and modal data acquisition was conducted in
Vibration and Acoustic Laboratory of Mechanical Engineering Department because

of the availability of proper measurement tools.

8.2 Specifications of Model

The constructed model is four bay single span skewed steel grid frame. The
dimensions of the model are given in Figure 8-1. The members of model are hollow
tube steel sections. The grid model had a skew angle of 15°. Joint details are given
in Figure 8-2 through Figure 8-4. The joints are designed to transmit bending
moments using two cover plates at the top and bottom surface. Each member is
connected using two bolts. The longitudinal members kept continuous and

transverse members were cut from the original material.
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Figure 8-3 Joint detail for a mid joint (dimensions in mm)

Figure 8-4 Joint detail of a mid joint
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8.3 Boundary Conditions

The model was tested in free-free boundary conditions. It is not exactly possible to
simulate free-free boundary conditions in an actual experiment. The only way to
simulate free-free boundary conditions is to hang the model from several points to a

fixed place using elastic/rubber bands.

For this purpose the model is suspended from a steel frame by low stiffness elastic
bands. The stiffness difference between the elastic bands and the steel grid is very
large. Therefore, the dynamic response of the test model became close to a free-free
support condition. Elastic rods and steel frame are shown in Figure 8-5 and Figure
8-6. Theoretically, the rigid body modes exist at 0 Hz frequency for free-free
boundary conditions. The rubber bands have a certain amount of stiffness causing
the rigid body mode frequencies to slightly shift from zero (0) Hz. The existence of
rubber bands over the actual modes and higher modal frequencies were minimal and
it is not possible to simulate free-free boundary conditions in real life without using
elastic rods to hang up the model. Furthermore, hanging the model in air using

elastic bands is a common practice in modal testing practice.
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Figure 8-6 Steel Frame and elastic bands
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8.4 Excitation

Swept sine periodic deterministic signals are used for frequency response function
estimation. In order to generate signals a LDS shaker system is used. LDS shaker
system consists of 3 parts. These are

1. Shaker

2. Cooling system

3. Signal Generator.

These parts are shown in Figure 8-7 and Figure 8-8.

Figure 8-7 LDS Signal Generator

134



Figure 8-8 LDS Shaker and LDS Cooling System

The shaker system supplied excitation to the structural system and the response is

measured using accelerometers.

8.5 Sensors

The response of the system is acquired by an accelerometer and the input (force) is
acquired by a force transducer located at the tip of the shaker system. Bruel& Kjaer
force transducer and accelerometer are used in the experiments. Figure 8-9 shows
accelerometer and Figure 8-10 shows force transducer. Since accurate measurement
of the force transmitted to model is crucial, the force transducer is placed at the top

of the shaker rod. In this way, actual force applied to the structure is measured.
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Figure 8-9 Accelerometer

Figure 8-10 Force Transducer
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8.6 Dynamic Signal Analyzer

The data acquired from accelerometer and force transducer are first amplified and
then sent to Dynamic signal analyzer for frequency response calculations. Hp
35665A dynamic signal analyzer is used for the measurement. Hp 35665A dynamic
signal analyzer is shown is Figure 8-11. The amplifiers used to condition and
increase the signal level are used between the transducers and acquisition system as
shown is Figure 8-12. The signal analyzer has a built in macro to measure the
response at each frequency to obtain frequency response function (FRF). An
example FRF obtained during testing is seen in the display of the dynamic signal

analyzer Figure 8-13.

Figure 8-11 Hp 35665A Dynamic Signal Analyzer

137



Figure 8-12 Bruel& Kjaer Amplifiers

narker

Figure 8-13 Display of Dynamic Signal Analyzer
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8.7 Modal Data Acquisition & Parameters

In this experiment 2 input and 37 output d.o.f are used. Two different tests are
conducted by relocating the excitation location. The model is excited in vertical
direction at node 1 and node 33 separately. The responses in vertical direction are
measured one by one at each nodal location. Node numbers are shown in Figure 8-
14. For the first experiment, frequency range of 1-500 Hz is scanned with a
frequency interval of 1.2475 Hz where 401 data points are used. For the second
experiment frequency range of 1-260 Hz is scanned with a frequency interval of
0.6475 Hz where again 401 data points are obtained. It is realized from the first
experiment that using a frequency range of 1-500 with 401 data points will lead
coarse results since frequency interval is high. Therefore in the second experiment
the frequency range is reduced to 1-260 and therefore the sensitivity of the
experiment is almost doubled. In both experiments a delay block of 10 cycles and
capture block of 10 cycles are used for each one of the 401 measurement
frequencies.

The first experiment took about 10-12 minutes to obtain one FRF for a single node
(one input-output pair). The second experiment took about 6-8 minutes to complete
a single node FRF measurement. The measured frequency response functions (FRF)
are recorded to 3%2 Floppy diskette at the end of each test. This procedure is
repeated for all nodes (37 times) for each experiment. The files recorded to diskette
are in special DAT file format which are only accessible using Hp 35665A dynamic
signal analyzer’s own program. The name of the program is SDFTOASC.EXE. By

the help of this program DAT files that are originally in BINARY format are
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converted to ASCII files which can be easily read by and word processor. The

program works in MS-DOS Prompt where the command line is as follows:
SDFTOASC  DATFILE.dat ASCIIFILE.txt /x/a

Where;

DATFILE.dat is converted to an ASCII file with extension txt. The structure of

these ASCII files are the same as FRF files generated by FRFGEN software (refer

to Section 6.1.2.4).
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8.8 Input File of Model

The model input file prepared for the EMAS software is given in Table 8-1.

Commands used in this input file are explained in Chapter 6.

Table 8-1 Input File for model

title skewed frame Problem

node I, 0, 0.0, 0.0

node 5, -0.1941142838, 0.7244443697, 0.0

node 33, 3, 0.0, 0.0

node 37, 2.8085885716, 0.7244443697 ,0

nodegen1 33 3 9 8

nodegen5 37 3 13 8

nodegenl 5 3 2 1

nodegen 33 37 3 34 1

nodegen9 13 3 10 1

nodegen 17 21 3 18 1

nodegen 25 29 3 26 1

nodegenl 91 6 1

nodegen 25 33 1 30 1

nodegen 6 30 2 14 8

nodegen3 11 1 7 1

nodegen 27 35 1 31 1

nodegen7 31 2 15 8

nodegen5 13 1 8 1

nodegen29 37 1 32 1

nodegen8 32 2 16 8

elemtype beam3d

elem 1,1, 6

elem 2 6 9

elem 2

elem 9
1
1

—

elem
elem
elem 1
elemgenl 3 3
elemgen2 3 4
elemgen 25 4 2
elemgen 25 3 2
3
3
3

2
7
1
8
1

98]

elemgen 26 4
elemgen 27 4
elemgen 28 4
elemgen9 3 11
elemgen 10 3 1
elemgen 17 3 1
elemgen 18 3 2
allmasterdof 3

S O N
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8.9 Data Loading

Frequency response functions (FRFs) obtained from the testing of experimental
model using modal data acquisition system is loaded in to EMAS software with the
help of FRFL program. The FRFs obtained from the tests are in accelerance type
(acceleration/force). Thus, FRFs are converted from accelerance to receptance

(displacement/force) in FRFL program. FRFL program is explained in Chapter 6.

8.10 Modal Parameter Estimation

MPE part of EMAS is used to estimate modal parameters from estimated Frequency
Response Functions. MPE is used twice to obtain modal parameters from the first
and second experiments respectively (see Section 8.7 for the explanation of the

experiments).

8.10.1 First Experiment (Excitation at Node 1)

The CMIF plot with selected peaks for the first experiment is shown in Figure 8-15.
The x-axis is used for Frequency (Hz) and y-axis plots Singular Values (dB) for
each frequency. As previously stated in Chapter 4, the peaks in a CMIF plot

indicate the existence of modes.
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Figure 8-15 CMIF plot with selected peaks for the first experiment

MAC correlation of selected peaks (modes) is given in Figure 8-16. MAC correlates
two selected modes and takes a value between 0 and 1. One refers to perfect
correlation and zero refers to orthogonal vectors. The estimated experimental modes
are correlated against each other. The diagonal values of the comparison matrix are
equal to one since comparison of a mode by itself would be a perfect correlation.
Similarly, off-diagonal values of the MAC matrix are expected to be zero.
Examination of Figure 8-16 reveals that although off-diagonal terms are very small,

they are not exactly equal to zero.
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Figure 8-16 MAC correlation of the selected peaks

The post processing of experimentally obtained FRFs also reveal natural
frequencies of the tested structural system. The natural frequencies and
corresponding damping factors obtained from the post-processing are given in

Table 8-2.
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Table 8-2 Results of MPE for the first experiment

Mode Natural Frequency (Hz) Damping (%)
1 6.2325 1.6516
2 14.9984 0.62407
3 24.6408 0.11188
4 37.2949 0.17752
5 47.1186 0.07784
6 67.2184 0.045684
7 79.0423 0.51138
8 104.066 0.48815
9 109.891 0.6834
10 118.218 0,02049
11 136.269 0.38227
12 156.695 0.02718
13 172.872 0.25466
14 182.002 0.31377
15 207.665 0.13437
16 223.905 0.19216
17 234.085 0.07861
18 250.922 0.11491
19 296.531 0.03747
20 304.296 0.28217
21 328.367 0.10738
22 375.774 0.13905
23 401.75 0.1742
24 469.608 0.11824

8.10.2 Second Experiment (Excitation at Node 33)

The CMIF plot with selected peaks for the second experiment is shown in Figure
8-17. The x-axis is used for Frequency (Hz) and y-axis plots Singular Values (dB)
for each frequency. As previously stated in Chapter 4, the peaks in a CMIF plot

indicate the existence of modes.
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Table 8-3 Natural Frequencies and corresponding damping factors obtained from experiment2

Mode Natural Frequency (Hz) Damping (%)
1 6.1892 1.5296
2 13.3584 0.87568
3 18,5315 0.7652
4 21.2636 0.54843
5 35.4435 0.26963
6 39.9946 0.3804
7 44.2785 0.1378
8 64.8885 0.1208
9 77.9366 0.6726
10 102.3701 0.21234
11 110.0407 0.67488
12 118.1387 0.085589
13 136.1027 0.26334
14 139.4138 0.52862
15 156.9301 0.35899
16 171.6848 0.29686
17 179.8252 0.34772
18 206.5501 0.10027
19 222.6988 0.14811
20 232.8387 0.03099
21 2494215 0.22493
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CHAPTER 9

FE UPDATING

9.1 Introduction

Modifying FE model in order to bring the FE model prediction into better
agreement with the experimental results is referred as FE Updating (FEU). There
are several applications of FE Updating in literature (Examples: Ventura et al.,
2001, Dascotte, 2001 Haapaniemi et al., 2002 Chen et al., 2000, and Ewins et al.,

2001)

Fist step in FE Updating is to compare nominal FE model results with EMA results.
If the difference between is within acceptable limits, then there is no need for FE

Updating.

FE Updating Procedure can be divided into 3 parts. These are;
a) Comparison of FEA results with EMA results (Objective Function
Calculation ).
b) Modification of FE model in order to correlate FEM and EMA results (FEU

Strategy )
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c) Analysis of modified FE model (FEA)

The above procedure is repeated until a convergence criterion is achieved. Each
item in the above procedure is explained in detail below, not in the order above but

in the order of the study.

9.2 Finite Element Analysis

For FE Updating purposes a Finite Element Analysis (FEA) code is developed and
programmed in Matlab. The reason of using Matlab platform for programming is
explained in Chapter 5. Since static analysis is out of scope of this study, FEA code
is developed for Free Vibration Analysis only. Currently FEA code is capable to
handle different type of elements. These are;

a) 2D Frame Element

b) 3D Space Frame Element

c) 2D Mass Element

d) 3D Mass Element

e) 1D Spring Element

For all of the above Element types, literature survey is carried out, and Mass,
Stiffness, and Transformation matrices are extracted /formulated. These
informations are not given here but explained in detail in most of the books related
with finite element Analysis and Dynamics (Cook et al., 1989, Kwon, 1982

Chandrupatla et al., 1997)
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In order to reduce the computational cost of programmed FEA code. The following
points are taken into consideration;
1) Banded mass, stiffness, and transformation matrices are used in matrix
formulation.
2) Built in functions for Eigenvalue/Eigenvector analysis of Matlab is used.
3) Guyan Reduction technique is implemented for the analysis of large Finite
Element Models where only a few number of degrees of freedom are of
interest. Guyan Reduction technique is explained in detail in Chandrupatla

et al., 1997

Taking into consideration of the above points, fast, reliable, and computationally

cheap FEA software is programmed for Free Vibration analysis part of FEU.

9.3 Objective Function Calculation

Objective Function is a real number used for defining how well or bad the two set
of data correlate. Where these the two sets of data are FEM and EMA results.

Objective function is calculated by the Equation 9-1.

OF :ﬁ:( |a)Ar _a)Er

+ (1 —Mac,, g, )J Equation 9-1

Where;

w,, : Natural Frequency for Mode r obtained from analytical data
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., : Natural Frequency for Mode r obtained from experimental model
Mac,, . : Mac values obtained from experimental data vs. analytical data.

N : Number of matched Modes.

9.4 Modification of FE model in order to Correlate FEM
and EMA Results (FEU Strategy)

Modification of FE model is the most important part of FEU. Therefore there is a
need of a strategy for modification. That is why the title of this Section is FEU
Strategy. Actually repetition of the FE Updating procedure is nothing else but an
optimization process. Thus “a robust global search and optimization technique”
(Hasancgebi, 2001) of Simulated Annealing is adapted for the “Modification of FE

Model” part of the above procedure.

Since Simulated Annealing (SA) is only a tool to achieve the aim of this study, it is
explained here briefly. But more detailed explanation and application are given in
(Hasancebi, 2001). Hasangebi studied Simulated Annealing for shape, size, and
topology optimization of structural systems. Unless not stated the sentences written
below are quoted from his study and necessary modifications are done in order to

adapt Simulated Annealing for Finite Element Updating Process.

9.4.1 Simulated Annealing

Simulated Annealing (SA) is a robust global search and optimization technique,
which offers a heuristic approach to yield encouraging solutions even for the most

difficult optimization problems. SA employs a simulative model of the annealing
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process of physical systems, establishing a direct analogy to the elementary

principles of thermodynamics and statistical mechanics.

9.4.1.1 Physical Origin of SA

In this process, the aim is to bring a physical system (either a solid, e.g., metal or a
liquid) to a state of minimum energy level by rearranging its atomic configuration.
For this reason, the physical system is first heated up to a sufficiently high
temperature. The reason of this is; To disorder the existing state of its atomic
structure leading to a non-minimum energy level; and to allow the atoms to move
freely for such a target configuration. This is followed by a very slow cooling of the
system, reducing the temperature monotonously towards a value at which the
freezing or crystallization takes place, which is referred to the frozen temperature.
At each temperature manipulated, as the cooling proceeds, the atoms experience
different configurations repeatedly and attempt to order themselves in a way to pass
to a lower energy level. By this way, the system is successively pushed to be more
ordered, strong and stable under restricted mobility of its atoms. Finally, when the
cooling reaches the frozen temperature, the atoms line themselves up to produce a
perfectly regular crystal structure, and thus to minimize the energy level of the
system, which is called ground state.

The idea that this process is simulated to solve optimization problems are rendered
possible by defining a parallelism between minimizing the energy level of a

physical system and lowering the objective function.
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9.4.2 How Does SA Work?

First step in FEU is to group the elements used in the FE Model. The grouped
elements are forced to have the same properties throughout the FEU process. The
next step is the formation of an initial model to be used as the starting model and
current solution of FEU. This is accomplished by specifying each variable of the
grouped elements, a value of which is its original value. Next, following the choice
of an appropriate annealing schedule, the current temperature is assigned the initial
temperature to be used as the point from which the annealing is initiated. The initial
temperature can be set as follows: it should be high enough (i) to allow a large
number of model transitions for a thorough exploration of the design space at early
stages; and (ii) to let the process cool down gradually to attain thermal equilibrium

at each temperature as the cooling proceeds.

There exist two loops in FEU. These are outer loop and inner loop. Outer loop is
used to proceed the algorithm at different temperatures during the cooling cycles
and to control the termination criterion which is simply defined as the case when the
current temperature falls below the final temperature which corresponds to the
frozen temperature in the actual annealing analogue. When the current temperature
is above the final temperature, iterations of the inner loop are performed. In a single
iteration of the inner loop a number of candidate models which is equal to the
number of model variables are created in the vicinity of the current model to be
sampled. This is performed as follows: (i) each design variable in the current model
is selected only once in a random order; (ii) the selected variable is then perturbed

by assigning a new value to it; and (iii) finally, the candidate model is created by
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using the new value of this variable and taking the values of other variables same as
in the current model. This implies that the current model differs from a
candidate only in terms of its one design variable, A competition then takes place
between the current and each candidate models sampled. Whenever a candidate
model provides a better solution (e.g., a lower value of the objective function,
downhill move), it is immediately declared as to be the winner, and thus is
authorized to replace the current model to provide data for the following candidates.
However, in the opposite case (e.g., a higher value of the objective function, uphill
move), the winner is determined in accordance with the Metropolis test (explained
in Section 9.4.4), where either the candidate is accepted, or it is rejected and the
current model maintains itself,. The underlying principle of inner loop is associated
with the concept of thermal equilibrium in the actual annealing analogue. Hence, it
is mimicked here by reducing the objective function to a reasonably low value
correlated with the current temperature. After completing the whole iterations of
inner loop at a particular temperature, the temperature of next cooling cycle is
established by multiplying the current temperature with a cooling factor, the above

process is repeated in the same way until the whole cooling cycles are iterated.

9.4.3 Formation of the Candidate Model

As stated in Section 9.4.2 the candidate model is obtained by perturbing only one
design variable of the current model. The current model is designated as x° and the
candidate (alternative) model is designated as x“,

If the selected variable for perturbing is denoted as x; and corresponding selected

variable in current design is denoted as x;, then
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X0 =x -[1+(r—0.5)-5] Equation 9-2

Where;
r : Real valued random number in the range of [0,1]

0 :Perturbation limit parameter in the range of [0, ]

The perturbation limit parameter 0 determines to which extent the vicinity of

current design is taken into account while creating a candidate design,

For better understating the perturbation limit parameter the following example is
given.

If the current value of variable in current model is x; is 10 and the perturbation
limit parameter is taken as 1. Then the candidate (alternate) variable x will have
the following upper and lower limits

If the random variable (r) is 1 then the candidate variable x will be
X :10'[1+(1—O.5)-1]:15 . If the random variable (r) is taken as O then the

candidate variable x* will be x° =10-[1+(0—0.5) -1]=5.Thus for a perturbation

limit value of 1, candidate variable will have a range of plus and minus %50,less or
more of the current variable respectively.

As will be stated in the programming part of FEU, the user has the chance of
defining the perturbation parameter for varying temperatures. This is formulated in

Equation 9-3
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_4+f
5:§f+(5f—5i)[tf ttij Equation 9-3

t

Where

t': Initial temperature

t/ Final temperature

&' Value of perturbation limit parameter at initial temperature

&’ Value of perturbation limit parameter at final temperature

The most important modification on simulated annealing is enforced at this point.
(Hasancebi, 2001) formulated SA (for optimum structural design) as a discrete
optimization method. For FEU purposes SA is reformulated as a continuous
optimization method. Equation 9-2 is used for this purpose where the candidate
variable is continuously perturbed. Also for FEU purposes, perturbation limit
parameter is related with annealing schedule. Perturbation limit variable decreases
as the temperature decreases which might be a good approach to fine tune the model

at low temperatures.

9.4.4 Number of Iterations of the Inner Loop (1)

The number of iterations of the inner loop (/) is important for the efficiency of the
algorithm. A high number of iterations may result in a very high degree of
computational cost on the algorithm and a low number of iterations, on the other
hand, may not be sufficient to bring the system to the thermal equilibrium at a

particular temperature. For initial temperatures the number of iterations should be
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kept low and it should gradually be increased as cooling proceeds. For a particular
temperature (), calculation of the number of iterations of the inner loop (1) is given

in Equation 9-4

N
I:round{]f +(I7 -1 )(t'f —tij} Equation 9-4

Where;

t': Initial temperature.

¢’ : Final temperature.

I': Number of iterations of the inner Loop at initial temperature.

o’ : Number of iterations of the inner Loop at final temperature

9.4.5 Metropolis Test

As stated in Section 9.4.2, when competition takes place between the current and a
candidate model sampled. If a candidate model provides a better solution (e.g., a
lower value of the objective function, downhill move), it is immediately declared as
to be the winner, and thus is authorized to replace the current model to provide data
for the following candidates. However, in the opposite case (e.g., a higher value of
the objective function, uphill move), the winner is determined in accordance with

the Metropolis test.

For FEU purposes the metropolis test is formulated in two different ways

(Hasancebi, 2001).
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a) Simplified Metropolis Test: The probability of accepting a poor
-AW /t

candidate model is assigned to P =¢

b) Metropolis Test with Boltzman Parameter: The probability of

accepting a poor candidate model is assigned to P =¢ *"'%

In the above equation K is defined as the Boltzman parameter. K is defined as the
running average of the positive valued aw (note that positive aw indicates a poor
candidate). Whenever a poor candidate model is sampled with respect to the current
model (aw >0), this parameter is updated as shown in Equation 9-5 before its

probability of acceptance is calculated in Metropolis test.

K"N, +Aw ™D
N, +1

K(N“ +1) _

Equation 9-5

Where;
K"+ : The value of the Boltzman parameter for the previous N, number of poor

candidates

AW Y™ The value of AW for the (N, +1)-th poor candidate,

K™«*V: The updated parameter value, including ( N, +1)-th poor candidate.

It is advantageous to calculate Boltzman parameter in this fashion. Since this serves
to normalize the AW values for the metropolis test, which in turn enables useful
implementation of the algorithm regardless of the problem type. Also calculating

Boltzman parameter in this fashion allows adaptive search experience, such that the
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determination of a next candidate is correlated to the general formation of all the

previous candidates.

There are several formations for Boltzman parameter. These are not used in FEU
process. Weighted Boltzman parameter and critical Boltzman parameter
approaches are formulated for SA structural design optimization in reference

(Hasancebi, 2001).

9.5 Matlab Based FEU Software (FEUS)

For the application of FEU, Matlab based FEU Software (FEUS) is written. The
reason of selecting Matlab for programming purposes is explained in Section 5,1.
FEUS can be executed within EMAS (see Figure 6-1) or can be executed
independently from EMAS. In the following pages the software is explained with

snapshots.
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<) Untitled == =]

File Group  Optimization Parameters Start Yiews  Show Mode Numbers Show Frame Element Humbers
Hide Mass Element Murmbers  Zoom On Hide Spring Elements

Figure 9-1 Main screen of FEUS

Main screen of the software is shown in Figure 9-1 with a model used for FEU
process. When the Group menu item is clicked, a new screen (Grouping screen)
appears. Grouping screen is shown in Figure 9-2. The groups defined in this screen
are used in FEU. The importance of grouping is explained in Section 9.4.2. For the
defined groups, group parameters are defined in Optimization parameters screen
which is shown in Figure 9-3. According to the selected group type (mass group,
frame group, spring group) different screens appear for defining FEU parameters.

These screens are shown in Figure 9-4 to Figure 9-6 respectively.
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Figure 9-2 Groups Screen
<) Untitled !EIIE
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Initial Temperature 1000
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" “Yariable # of Analysis
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o
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& Fix# of Analysis IT
[
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Figure 9-3 Optimization Parameter Screen
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Figure 9-4 Mass Group Optimization Parameters
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G Moment of Inettia About 3 4xis lzz): [ 0 [ o [ o & [LessThan v| [hameapt =] [& 7] ]
" Density (Rhol: [ [0 [« ¢ [LessThan =] [fameart =] [ = ]
 Paissor's Ratio (Nul E [ o | o € LessThan 7| |[framearpt =] |4 I N
5 Moment of Inertia About 2 A ) | D [0 [ @ |LessThan | [hamegpl =] |4 =] aa
&5 Moment of Inettia About 1Al [ 0 [ o [ o & [Less Than | [fameapt = & x| Add

Cancel |

Figure 9-5 Frame Group Optimization Parameters
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<} Spring Groups Optimization Parameters !E[

Group Name: springgrpl " Relative Parameter

Upper Limit : I i ILess T ,I
Initial “alue : I i}
Lower Limit : I 0

..............................

] | Cancel I

Figure 9-6 Frame Group Optimization Parameters

After defining all the required parameters for FEU clicking Start menu item starts

the FEU process. The status of the FEU process is shown in Figure 9-7

<} Simulated Anneaing [ _ O] x|
Pause  Success Plot
Optimization Screen
Initial Temperature 1000 Analysis Mumber 1of 20 Start |
Current Temperature 1000 War Number 7of19
Final Temperature 10 Pause |
Stop |
Probability of Acceptance 0.99:02
Accepted
Metropolis Accepted Dbjective Function 318
Metropolis Rejected Change in Objective Function 034633
Save Best Hesultl

Figure 9-7 FE Updating Process
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Whenever a better model is found, it is auto saved into a directory under the

software.
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CHAPTER 10

APPLICATION OF FE UPDATING SOFTWARE
ON SKEWED STEEL GRID FRAME

10.1 Introduction

The skewed steel grid frame was dynamically tested and FRFs were obtained
analyzed with EMAS software as discussed in the Chapter 8. Two separate sine-
sweep tests were conducted for DC to 260 Hz and DC to 500 Hz. The experimental
mode shapes and corresponding natural frequencies were obtained for each test.
Those results are then used to calibrate the nominal FE model using model updating
techniques. This Chapter concentrates on the Finite Element Updating procedure
and discussion of the results obtained from the Finite Element Updating Software

(FEUS). The results are listed in tabular format and compared against each other.

10.2 Input File of the Skewed Steel Grid Frame

The input file generation for the developed Experimental Modal Analysis Software
(EMAS) program was explained in Chapter 6. An earlier model input file was
prepared for the EMAS software for the purpose of experimental modal parameter

estimation (i.e., animate mode shapes, define input-output nodal relationships, etc.).
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A total of 37 nodes were used in the model for EMAS. For the finite element
updating (FEU) purposes, a finer meshed model input file is prepared using a total
of 127 nodes. A larger number of nodes were used to generate more members
which will be used to fine tune the variations in sectional and other relevant
properties. Additional mass elements are defined at the joints for the effect of the
actual additional masses at the connection points due to the used plates for bolting
and bolt masses. Since the model was tested by hanging the frame in the air using
elastic cords, spring elements are defined at six different points on the frame (see
Figure 10-3 for the places of the springs). Therefore, FEU model has incorporated
larger number of members, additional masses, and springs different than the initial
input file used for EMAS. 3D view of the prepared model used for FEU is shown in

Figure 10-1 .The input file is given in Appendix B.
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10.3 Groups, and Parameters for Each Group

For Finite Element Updating purposes of the skewed steel frame, the following

groups and group parameters are defined.

10.3.1 Mass groups and Parameters:

Mass groups are defined according to the plate sizes used for bolting the steel
members. Two different types of mass groups are defined based on the used plate
sizes. The steel grid is composed of three longitudinal continuous frames. Cover
plates used to connect transverse direction members to the longitudinal members
are larger for the middle longitudinal frame, and smaller for the side frames.
Therefore, the mass parameters used for the middle frame junctions and the side
frame junctions are grouped under two variables. For better visualization of mass
elements refer to Figure 8-2 and Figure 10-2.

Massgroupl1 consists of the elements 133, 135, 136, 138, 139, 141, 42, 44, 45,147

with the following parameters.

Massgroupl Initial Value Upper Limit Lower Limit

Mass (kg) 0.2098 0.4 0.1

Massgroup2 consist of the elements 134, 137, 140, 143, 146 with the following

parameters.
Massgroup?2 Initial Value Upper Limit Lower Limit
Mass (kg) 0.353 0.5 0.1
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10.3.2 Spring Groups and Parameters

Since all the elastic bands used to test the frame have the same elastic spring
coefficient, all the spring elements defined are grouped under one group. The spring
element axial stiffness parameter is named as “SpringGroups1” and consists of the

elements 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, and 159 with the

following properties.

SpringGroups1

Initial Value

Upper Limit

Lower Limit

Spring Coef. (N/m).

1001

100000

1000

Figure 10-3 Spring Elements
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10.3.3 Frame Groups and Parameters

Frame elements used for the FEU model are categorized under 4 groups. These
groups and corresponding group parameters are defined below in Table 10-1
through Table 10-4. The frame group member distributions are graphically

presented in Figure 10-4 and each group parameter are explained in detail below.

Framegroupl is defined for the elements at the joints which are connected with
plates to the other continuous elements. The existences of cover plates are expected
to increase the moment of inertia of the short members under each cover plate.
Framegroupl consist of element numbers 1, 24, 25, 48, 49, 72, 73, 78, 79, 84, 85,
90, 91, 96, 97, 102, 103, 108, 109, 114, 115, 120, 121, 126, 127, and 132 with the
parameters listed in Table 10-1. Framegroupl is shown with circles in Figure 10-4.

Parameters related with Framegroupl are given in Table 10-1.

Table 10-1 Model parameters, limits, and initial values for Frame Group 1

Framegroupl Initial Value | Upper Limit Lower Limit
Modulus of Elasticity (N/m”) 2.1ell - -
Cross-sectional area (m2) 0.000184 0.000276 9.2e-005
Z Moment of inertia (m®) 2.157e-8 3.2355e-008 1.0785e-008
Density (kg/m3) 7850 - -
Poisson’s Ratio 0.3 - -
Y moment of inertia (m"*) 1.113e-8 1.6695¢-8 5.565¢-9
X moment of inertia (m*) 2.209e-8 3.3135e-8 1.1045e-8
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Upper and lower limits are calculated by increasing and decreasing initial value by

%350 and %-50 respectively. (-) indicates that the parameter is constant.

Framegroup2 is defined for the elements at the joints which are connected
continuously to the discontinuous elements and shown with oval circles in Figure
10-4. Framegroup?2 consist of elements; 6, 7, 12, 13, 18, 19, 30, 31, 36, 37, 42, 43,
54, 55, 60, 61, 66, and 67 with the following parameters. Parameters related with

Framegroup?2 are given in Table 10-2.

Table 10-2 Model parameters, limits, and initial values for Frame Group 2

Framegroupl Initial Value | Upper Limit Lower Limit
Modulus of Elasticity (N/mz) 2.1el1 - -
Cross-sectional area (m2) 0.000184 0.000276 9.2e-005
Z Moment of inertia (m®) 2.157e-8 3.2355e-008 1.0785e-008
Density (kg/m’) 7850 - -
Poisson’s Ratio 0.3 - -
Y moment of inertia (m*) 1.113e-8 1.6695¢-8 5.565e-9
X moment of inertia (m4) 2.209e-8 3.3135e-8 1.1045e-8

Upper and lower limits are calculated by increasing and decreasing initial value by

%350 and %-50 respectively. (-) indicates that the parameter is constant.
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Framegroup3 is defined for the main elements which are located between joints
without cover plates. Framegroup3 consist of elements; 2, 3, 4, 5, 8, 9, 10, 11, 14,
15, 16, 17, 20, 21, 22, 23, 26, 27, 28, 29, 32, 33, 34, 35, 38, 39, 40, 41, 44, 45, 46,
47, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 68, 69, 70, 71, 74, 75, 76, 77, 80,
81, 82, 83, 86, 87, 88, 89, 92, 93, 94, 95, 98, 99, 100, 101, 104, 105, 106, 107, 110,
111, 112, 113, 116, 117, 118, and 119. Framegroup3 is shown with pentagons in

Figure 10-4. Parameters related with Framegroup3 are given in Table 10-3.

Table 10-3 Model parameters, limits, and initial values for Frame Group 3

Framegroupl Initial Value | Upper Limit Lower Limit
Modulus of Elasticity (N/mz) 2.1el1 - -
Cross-sectional area (m2) 0.000184 0.000276 9.2e-005
Z Moment of inertia (m®) 2.157e-8 3.2355e-008 1.0785e-008
Density (kg/m’) 7850 - -
Poisson’s Ratio 0.3 - -
Y moment of inertia (m*) 1.113e-8 1.6695¢-8 5.565e-9
X moment of inertia (m4) 2.209e-8 3.3135e-8 1.1045e-8

Upper and lower limits are calculated by increasing and decreasing initial value by

%350 and %-50 respectively. (-) indicates that the parameter is constant.

Framegroup4 is defined for the elements which are between joints for only the

elements at the right edge of the frame shown with triangles in Figure 10-4. The
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section used for the indicated members have slightly thicker walls compared to the
rest of the members defined by Framegroup3. Framegroup4 consist of elements;
122, 123, 124, 125, 128, 129, 130, and 131. Framegroup4 is shown with triangles in

Figure 10-4. Parameters related with Framegroupl are given in Table 10-4.

Table 10-4 Model parameters, limits, and initial values for Frame Group 4

Framegroupl Initial Value | Upper Limit | Lower Limit
Modulus of Elasticity (N/mz) 2.1ell - -
Cross-sectional area (m2) 0.000184 0.000276 9.2e-005
Z Moment of inertia (m®) 2.157e-8 3.2355e-008 1.0785e-008
Density (kg/m’) 7850 - -
Poisson’s Ratio 0.3 - -
Y moment of inertia (m") 1.113e-8 1.6695¢-8 5.565e-9
X moment of inertia (m4) 2.209e-8 3.3135e-8 1.1045e-8

Upper and lower limits are calculated by increasing and decreasing initial value by

%350 and %350 respectively. (-) indicates that the parameter is constant.
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10.4 Parameters defined for FEU process

Groups defined for frame properties, lumped mass constants, and spring coefficients
are assigned various parameters in order to find an optimal solution that closely
matches the experimental results. Parameters are assigned for each FEU group.
Additional parameters are used during the Simulated Annealing (SA) processes
which are necessary for the optimization process. These SA parameters are
provided below:

Initial Temperature =1000

Final Temperature = 0.0001

Temperature coefficient= 0.95

Number of Outer Loops (linear): Initial: 2, Final: 6
Following new parameters are defined in addition to the above standard SA
parameters:

Perturbation limit parameter (linear): Initial: %12, Final %8

Penalty Coefficient (linear): Initial: 1, Final: 1.5

Metropolis Test: Using Boltzman Parameter.

10.4.1 Nominal Models’ Comparisons and FEU Results

With the group names and parameters defined in Section 10.3 and FEU parameters
defined in Section 10.4, the FEU software is executed with three different
experimental models. These models are:

1) EMA result set 1 (Fist experiment 1-260 Hz).

2) EMA result set 2 (Second experiment 1-500 Hz).
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3) Combination of selected meaningful modes from EMA result set 1 and
EMA result set 2.
In the following sub-sections, the comparisons for the three nominal model results

and FEU results are explained in detail.

10.4.1.1 EMA Result Set 1

For the comparison of the nominal analytical model against EMA test result set 1, is
made using an objective function as described in Section 9.3 by Equation 9-1.
Corresponding comparison plots and tables are given in Figure 10-5 and

Table 10-5, respectively. The objective function value calculated for the nominal

analytical model (in according with Equation 9-1) is 21.85263.

Looking at the Figure 10-5 and

Table 10-5, it is easy to understand that nominal FE model does not correlate well
with EMA set 1. Overall impression obtained from examination of Figure 10-5, it is
understood that FEU process will not give good results since most of the matched
modes have very low MAC values and very low frequency correlation values. At
the end of the FEU process, the objective function is lowered to17.1021. Success

plot for FEU of EMA result set 1 is given in Figure 10-6.
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Figure 10-5 Comparison plot for Mode Shapes & Frequencies for the Ema result set 1

Table 10-5 Comparison table for nominal model with Ema result set 1

Matched Modes | Exp. Mode | Theo.Mode Exp. Freq. |Thoe. Freda. Mac Freq Corr.
1 1 8 6.1892 27.8308 0.301496 0.222387
2 2 i 13.3584 26.9766 0.178521 0.495186
3 3 5 18.5315 14.7266 0.319736 0.794682
4 4 6 21.2636 23. 4166 0.451546 0.908054
5 5 4 35.4435 6.59767 0.29144 0.186146
6 6 7 39.9946 26.9766 0.576298 0.674507
7 7 33 44. 2785 511.515 0.230721 0.086563
8 8 38 64.8885 582.474 0.165952 0.111402
9 g9 9 77.9366 54.1085 0.78876 0.694263
10 10 13 102.37 88.7602 0.184132 0.867053
11 11 10 110.041 70.5554 0.396111 0.641175
12 12 13 118.139 88.7602 0.125207 0.751322
13 13 15 136.103 107.627 0.44341 0.790776
14 14 15 139.414 107.627 0.743176 0.771995
15 15 14 156.93 94.9382 0.371032 0.604971
16 16 16 171.685 129.645 0.282592 0.755135
17 17 20 179.825 176.312 0.267824 0.980464
18 18 37 206.55 579.624 0.167371 0.356352
19 19 18 222.699 159.726 0.294774 0.717229
20 20 21 232.839 197.928 0.362858 0.850064
2l 2l 20 249.422 176.312 0.237795 0.706884
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10.4.1.2 EMA Results Set 2

For the comparison of the nominal analytical model against EMA result set 2, is
made using objective function as described in Section 9.3 by Equation 9-1.
Corresponding comparison plots and tables are given in Figure 10-7 and Table 10-7
respectively. The objective function value calculated for the nominal analytical

model (in according with Equation 9-1) 1s 26.32330.

For this comparison same as the previous one (EMA results set 1) ,looking at the
Figure 10-7 and Table 10-7, it is easy to understand that nominal FE model does not
correlate well with EMA set 2. Overall impression obtained from the examination
of Figure 10-7, it is understood that FEU process will not give good results since
most of the matched modes have very low MAC values and very low frequency
correlation values. At the end of the FEU process, the objective function is lowered

to 20.6492.

L

Figure 10-7 Comparison plot for Mode Shapes & Frequencies for the Ema result set 2

181



Table 10-6 Comparison table for nominal model with Ema result set 2

Matched Modes | Exp. Mode | Theo.Mode Exp. Freq. |Thoe. Freq. Mac Freqg Corr.
1 1 3 6.23257 23.4166 0.402019 0.26616
2 2 5 14,9984 14,7266 0.45189 0.99188
3 3 47 24.6408 860,988 0.139736 0.028619
4 4 7 37.2949 26.9766 0.128573 0.723333

| 5 | 5 | 4 | a7.1186 | 6.59767 | o0.135169 [ o0.140022
3 3 51 67.2184 1013.96 0.121028 0.066293
7 7 E 79.0423 54,1085 0.296003 0.634551
8 8 10 104. 066 70. 5554 0.568002 0.677985
9 El 10 109. 891 70. 5554 0.411422 0.642049
10 10 24 118.218 259,165 0.308474 0.45615
11 11 15 136.269 107.627 0.8473 0.789811
12 12 26 156.695 284,209 0.144272 0.551338
13 13 52 172.872 1083. 36 0.493456 0.15957
14 14 17 182.002 154. 471 0.338792 0.848736
15 15 17 207. 665 154.471 0.298472 0.743848
16 16 16 223,905 129.645 0.223548 0.579018
17 17 10 234.085 70. 5554 0.150266 0.301409
18 18 23 250,922 237.369 0.306281 0.945986
19 19 51 296. 531 1013.96 0.180444 0.292448
20 20 27 304. 296 307.149 0.199674 0.990713
21 21 25 328.367 271.344 0.15379 0.826345
22 22 26 375.774 284,209 0.402714 0.756331
23 23 28 401.75 444.917 0.415023 0.902976
24 24 27 469. 608 307.149 0.550719 0.654054

10.4.1.3 EMA Set 3

After comparing the nominal models against the EMA result set 1 and EMA result
set 2, it is concluded that a third set of EMA result which consists of the meaningful
modes select from EMA result set 1 and EMA result set 2 is necessary. For the third
try of the FEU process, meaningful modes from EMA result set 1 and EMA result
set 2 are selected and grouped as EMA Set 3 used. From the mode shape animation
of the first and second result sets, the modes which have meaningful mode shapes
are selected. The selected modes give better correlation in nominal model
comparison. These modes are 1,6,8,9,10,11,14, and 20 from EMA result set 1 and 1,
2, 8,11,14,22, and 24 from EMA result set 2. These mode shapes are re-arranged
according to their frequencies and used in the FEU process. The objective function

value calculated for the nominal model in according with the Equation 9-1 is
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12.224. Comparison plot and comparison table are given in Figure 10-8 and Table
10-7 respectively.
The FEU process is executed, and the success plot for FEU is obtained as shown in

Figure 10-9.
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Figure 10-8 Comparison plot for nominal model with Ema result set 3

Table 10-7 Comparison table for nominal model with Ema result sets combination

Matched Modes | Exp. Mode | Theo.Mode Exp. Freg. |Thoe. Freq. Mac Freq Corr.
1 1 6 6.23253 23. 4165 0.402019 0.266158
2 I z | 3 | &.22362 | 0.765449 | 0.361687 | 0.093079
3 3 5 14.9%84 14. 7266 0.45189 0.981879
4 4 7 39.9946 26.9766 0.576298 0.674507
| 5 [ 5 | 11 | 6a.8894 | 75.5733 | o0.37720 | 0.858629
[ [ | ] 78.1982 | S54.1085 0.78876 | 0.691941
7 7 | 13 102.37 | 88.7602 0.184132 | 0.867052
[ ] [ ] 10 | 104.082 70.5554 | 0.568002 0.678011
9 E 10 110.041 70. 5554 0.396111 0.641175
10 10 | 15 136.269 | 107.627 0.8473 | 0.789811
11 11 15 139. 414 107.627 | 0.743176 0.771995
12 12 17 182.002 154.471 0.338792 0.848736
13 13 | 21 232.839 | 197.928 0.362858 | 0,850064
14 14 26 375.774 284,209 0.402714 0.756331
15 15 27 469,609 307.149 0.550719 0.654052
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The objective function is lowered to 7.1564 at the end of FEU process as it can be
seen from Figure 10-9. Keeping in mind that 15 modes are used in FEU, min value
that the objective function can take is zero (complete consistency) and maximum
value is 30, which means complete inconsistency. The objective function is lowered
to 7.1564 (% 76.145 consistency) from 12.224 (%59.25 consistency) showing a
positive improvement of % 16.985 in consistency. The improvement consistency
percentages and final consistency values for the three EMA sets are listed in Table

10-8 below:

Table 10-8 Improvements consistency percentages.

Nominal Consistency | Final Consistency | Improvement

EMA Set 1 % 47.97 % 59.281 % 11.311
EMA Set 2 % 45.159 % 50.835 % 5.676
EMA Set 3 % 59.28 % 76.145 % 16.985

Comparison plot and comparison table for FEU results are given in Figure 10-10
and Table 10-9, respectively. The improvement can be easily seen when Figure
10-8 and Figure 10-10 are compared. Almost all MAC values and Frequency values

increased.
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Figure 10-10 Comparison plot for FEU result for Ema result set 3
Table 10-9 Comparison table for FEU result for Ema result set 3

|Matched Modes | Exp. Mode | Theo.Mode | Exp. Fregq. |Thoe. Freq. | Mac | Freq Corr
1 1 6 6.23253 | 14.887 | o0.556697 | 0.418656
z z 1 8.22362 | 0.000266 | 0.855455 | 3.2e-005
3 3 | g | 149984 | =25.7204 | o0.s685199 | 0.583134
4 4 | ] | 39.9946 | 39.2875 | o0.840134 | 0.98232

| 5 | 5 | 12 | eca.s894 | e66.549 | o.849889 | 0.975062

| & | & | 13 | 78.1982 | 78.5335 | 0.676377 | 0.99573

| 7 | 7 | 18 | 10z.37 | 12z.048 | 0.315143 | 0.838771

| & | & | 15 | 1o04.062 | 101.442 | 0.81204% | 0.974824

| 9 | 9 | 16 | 10,04 | 115.705 | 0.594466 | 0.951044

| 10 | 10 | 20 | 136.269 | 142.362 | 0.943425 | 0.957201

| 11 | 11 | 20 | 139.414 | 14z.362 | o0.8w0217 | 0.979291
12 | 12 | 23 | 1sz.002 191.021 0.438656 0.952786
13 | 13 | 29 | z3z.839 292,597 0. 502809 0.795765
14 | 14 36 375.714 379.676 0.837934 0.989722
15 | 15 45 469,609 466.65 0.876195 0.993699
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10.5 Optimized group parameters

Since an increase of %16.985 in consistency was the best result obtained using the
third EMA (relative to others), the FEU is accepted to be satisfactory and
corresponding group parameters are accepted as optimized group parameters. In the
following three tables, optimized mass, spring, and frame group parameters are
listed respectively. Optimized mass, spring, and frame parameters are discussed in

Chapterl1 in Discussion of Results & Conclusion.

Table 10-10 Optimized Mass Parameters

MHass Group Parameters | Property Hame | Upper Limit Lower Limit |Initial Value | Current Yalue | Change in %
nmassgroupl Mass 0.4 0.1 0.2098 0.154065 -12.2664
nassSgroup s Mass 0.5 o.1 0.353 0.24032 -31.9207

Table 10-11 Optimized Spring Parameters
Spring Group Parameters |Property Hame | Upper Limit Lower Limit |Initial Value | Current Value | Change in %

springgrpl

Spring Coef.

100000

1000
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Table 10-12 Optimized Frame Parameters
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Frame¢ Growp Parameters | Property Hame | Upper Limit | Lower Limit |Imitial Valwe | Curremt Valwe | Change in %
framegroupl A 0. 000276 9.2e-00% 0.000L84 0.000115954 -36.981%
Lramegroupl E 2.1les0ll 2. le+0ll Constant
framegroupl Izz 3.2355e-008 1.07685e-008 2.157e-008 2.10523e-0048 =2. 40016
framegroupl Fho 7850 T850 Constant
framegroupl Ru 0.3 0.3 Constant
framegroupl Ivy 1.6695e~-008 5. 565e-009 1.11%e-008 1.3714%9¢-008 23,2246
framegroupl pEE 3.3135e-008 1.1045e-008 2. 209e=-008 1.672683e-008 =-24. 2722
framegroupd A 0. 000276 9.2e=005 0.000L184 0. 000176383 =4. 13977
framegroup E 2. 1es0ll 2. le+0l1 Constant
framegroupd Ite 3.2355¢-008 1.0785¢-008 2.157e-008 | 2.18465¢-008 1.282
framegroupd Fho T850 Ta50 Constant
framegroupd Ru 0.3 0.3 Comatant
framegroupl Iyy 1.6695e-008 5. 565&-009 1.113=-008 1.05263e-008 =5.42412
Lramegroupl Tt 3.3135e-008 1. 1045-008 2.209e-008 1.89702e-008 -14.1231
Lramegroupd A 0. 0002208 00001472 0.000184 9. 8591 5-005 =46, 4176
framegroupd E 2. le0LL 2. le+011 Conatant
framegroupd Izz 2. 5884e-008 1. 7256e=-008 Z2.15Te=008 2.15547e=008 =0.0TOEB3ITZ
Eramegroupd Fho 7850 TE50 Constant
Lramegroupd Ru 0.3 0.3 Constant
framegooupd Ivy 1.3356e-008 B, 504e =005 1. 103e-008 1. 4237 7e-008 21922
framegroupd T 2.6508e-008 1.7672e-008 2.209e-008 1.22353e-008 =44.6114
Lramegroupd A 0.0002208 0. 0001472 0.000L84 0. 000193808 5. 33069
tramegroupd E 2. les0l) 2. le+011 Constant
Lramegroupd Iee 2. 5884e-008 1. 7256e-008 2.157e-008 1. 89227008 =12.2731
framegroupd Fhio T850 T850 Constant
framegroupd Hu 0.3 0.3 Constant
tramegroupd Ivy 1.3356e-008 B. 904e-009 1.113&-008 1.5891e-008 42.TT62
Lramegroupd D 2.6508e-008 1. T6T2e-008 2.209e-008 1.9515%e-008 =11, 6555



CHAPTER 11

DISCUSSION OF RESULTS & CONCLUSION

11.1 An Overview of This Study

The major work in this thesis study was on experimental modal testing, modal
analysis, and analytical model updating (calibration) based on measured modal
parameters. For this purpose a skewed steel grid frame was constructed. The test
frame was dynamically tested by using swept sine signals. The signals were
generated by the help of a shaker (see Section 3.3.3 for the properties of swept sine
signals). The model is tested in free-free boundary conditions after suspended in the
air using elastic rubber wires (see Section 8.3 for boundary condition details). HP
35665A 2 channel dynamic signal analyzer is used for processing the data obtained
from the transducers. One force transducer and one accelerometer are used to

acquire data from the model.

Two separate experiments are conducted on the test frame. Although the testing
method is the same for both sets, the force generator location is changed between
tests to excite all modes. Furthermore, the latter test focuses on a narrow band

which is half the width of the first test to increase the accuracy of measured data by
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doubling the number of measurement points (see Section 8.7 for details). The
frequency response functions obtained from the experiment are analyzed by the
developed experimental modal analysis software (EMAS). Then the results obtained
from EMAS are used in Finite Element Updating Software (FEUS). The results are

discussed and conclusions are drawn.

11.2 Discussion of Results of Modal Testing

Frequency Response Functions (FRFs) obtained from modal testing are analyzed
using EMAS (see Chapter 8). A total of 21 and 24 modes are extracted from the
FRFs of the first and second experiments, respectively. By the help of the mode
shape animation part of EMAS, these mode shapes are animated (refer to Section
5.3 for the use of mode animation as verification method and refer to Section
6.2.1.3.1 for the mode shape animation part of EMAS). By investigating these mode
shapes, it is realized that some of the mode shapes are computational modes and are
not likely to be replicated by structural analysis. Since the EMAS software was
verified using a cantilever beam’s synthetically generated experimental data (refer
to Chapter 7 for the verification of EMAS), it is certain that there are no formulation
or programming errors in EMAS. The computational modes are excluded from the
model updating process. Modal tests that were conducted on the test frame were not

possible to replicate due to laboratory and scheduling constraints.

The reason of obtaining unreasonable (computational) mode shapes can be
explained with the number of accelerometers used in modal testing. Equipment used

for modal data acquisition (or dynamic analyzer) has only 2 input channels, which
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are used for one load transducer and one accelerometer. Since there was only one
channel for accelerometer, in order to obtain mode shapes, the accelerometer was
roved over 37 reference points on the frame. Obtaining all mode shapes correctly
using a single accelerometer is not possible, and a larger number of accelerometers
are needed in order to obtain healthy results. One of the accelerometers should be
stationary (at the driving point) and the other accelerometer(s) should be moved
over reference nodes sequentially. The reference accelerometer should be used for
determining the sign of the mode shapes and for the magnitude of the modal scaling
factor. For the explanation of modal scaling factor refer to Section 2.1 and Section
4.3.1.

Since there was only one channel available for acquiring response of the model in
this study, it is assumed that if two accelerometers were used, modal scaling factor
obtained in two tests would have been equal and for the reference accelerometer
there would be no sign change in the mode shape coefficient

Natural frequency and damping factor can be correctly obtained even if only one
accelerometer is used in the modal testing. However, this does not guarantee that
the mode shapes are obtained correctly. Although some of the mode shapes may be

correctly obtained, some mode shapes may be erroneous.

11.3 Discussion of Results of Finite Element Updating

Modifying FE model in order to bring the FE model prediction into better
agreement with the experimental results is referred as Finite Element Updating
(FEU) (see Chapter 9). Results obtained from EMAS (mode shapes and

corresponding natural frequencies) are inputs of FEU.
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In Finite Element Updating, mode shapes and natural frequencies obtained from
modal testing are compared with the mode shapes and natural frequencies obtained
from Finite Element Analysis. The most important criterion in comparing mode
shapes is MAC values. MAC values are the main indicator whether the two set of
modes are similar or not. The second criterion is the comparison of the natural
frequencies of the matching modes. Therefore, in order to say that two modes
obtained experimentally and analytically are matching, both the MAC values and
modal frequencies should match. If either MAC or frequencies do not match, it is
not possible to state that the two modes are matching.

In this study, two sets of experimental results are used for FEU purposes. These two
sets of results are given in Sections 8.10.1 and 8.10.2, respectively. The Finite
Element Updating (FEU) process did not achieve good results because of the
weaknesses associated with the measurements (see Table 10-8 for the performance
of FEU on different EMA result sets). The third set of EMA results obtained by
excluding computational modes from the two sets of EMA results. For this purpose,
17 and 13 computational modes are excluded from the first and second EMA test
result sets, respectively. The remaining modes in the first and second set of EMA
results were collected in a new set and ordered according to their natural

frequencies.

FEUS execution using the third set of EMA results concluded satisfactorily. The

nominal model comparison results were acceptable (Table 10.8). The nominal

(initial) model comparison to the third experimental set yielded %58.2 consistency
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which was almost equal to the final consistency of the first set results. At the end of
Finite Element Updating using third set of data, the consistency is obtained as
76.1% (agreement with the third set of EMA results), which is a 17.9% consistency

improvement.

11.3.1 Optimized Mass Parameters

Mass groups were defined according to the plate sizes used for bolting the steel
members. Two different types of mass groups were defined based on the used plate
sizes (refer to Figure 8-2 and Section 10.3.1 for plates sizes and mass parameters,
respectively).

For the first mass group (small plates) the optimized weight is found to be 0.184
(kg) which is 12.27% less than the initial value. Also for the second mass group
(larger plates) optimized weight is found to be 0.24032 (kg) which is 31.92% less
than the initial value. It is concluded from the above results that the initial values of
the plates used were over estimated. The optimized value for mass group 2 is higher

than the optimized value of mass groupl, as expected.

11.3.2 Optimized Spring Parameters

The model was tested in free-free boundary conditions after suspended in the air
using elastic ropes. The dynamic response of the test model becomes close to a free-
free support condition since the stiffness of the elastic ropes are much smaller than
the frame stiffness. Elastic rods and steel frame are shown in Figure 8-5 and Figure
8-6. Increasing or decreasing elastic rod stiffness (within the given range) does not

affect bending or torsional modes of the model, but only affects the rigid body
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modes’ natural frequencies. Bending and torsional modes are insensitive to elastic
rod stiffness value within the selected range. The initial value of spring elements
axial stiffness was defined as 1001 N/m and the optimized parameter is found to be
11698.3 N/m. The large difference between the nominal and calibrated spring
stiffness is due to the fact that nominal spring stiffness was just a guess(no
preliminary experiment was conducted to determine the stiffness of elastic ropes),
since it had no significant effect on natural modes of the test frame other than rigid

body mode frequencies.

11.3.3 Optimized Frame Parameters

Frame elements used for the FEU were categorized under 4 groups. Frame group
member distributions were graphically presented in Figure 10-4. The upper limits,
lower limits, and initial values of the frame group parameters are initially defined
same for all frame groups (refer to Table 10-1 through Table 10-4.). For the
optimization process, the upper and lower limits of all parameters are defined by
increasing and decreasing their initial values by 50%. Since the perturbation limit
parameter was initially defined as %12, it would have been unfair to define different
ranges for the optimization parameters. (More information on the perturbation limit

parameter can be reached at Section to 9.4.3).

Framegroupl was defined for the short members (with cover plates) at the joints,
which are not continuous, and attached to the longitudinal (continuous) frame
members by cover plates. The moment of inertia of this group (I,,) about the major

bending axis was 2.4% over estimated relative to the nominal model. The calibrated
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value came out to be slightly lower than the nominal section since the transverse
members are not continuous. The moment of inertia (Iyy) about the minor bending
axis was 23.22 percent less estimated relative to the nominal value. The minor
bending direction was largely affected by the cover plates (Figure 10-4). Finally

torsional moment of inertia (Ixx) was 24.27 percent over estimated.

Framegroup2 was defined for the short members at the joints in longitudinal
direction, which are formed by the continuous members and bolted cover plates.
The calibrated moment of inertia for framegroup2 about the major bending axis (I,,)
was 1.28 percent more than the initial (nominal) value. The calibrated moment of
inertia about major bending axis (Iyy) was found to be 5.42% less than the nominal
value. Finally, calibrated torsional moment of inertia (Iix) was 14.12% lower than

the initial value.

Framegroup3 was defined for the main elements in longitudinal and transverse
direction which are located between joints and without cover plates. The calibrated
moment of inertia about the major bending axis (I,,) turned about to be 0.07%
smaller than the nominal value with almost no change at all. The calibrated moment
of inertia about the minor bending axis (Iyy) was 27.92% larger than the nominal
value. The calibrated torsional moment of inertia (I,) was 44.6% smaller than the

nominal value.

The above results show that the changes in major bending moment of inertia (I,,)

values remained within reasonable and expected ranges. The framegroupl sections
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(with cover plates in transverse direction) had smaller I value due to discontinuity,
whereas the framegroup2 (with cover plates in longitudinal direction) had a small
inertia increase probably because of the holes in compression and tension flanges,
and poor shear transfer (voids) in the bolted connections at low loading levels. The
unusual variations in the minor and torsional inertia values are due to the
insensitivity of parameters in vertical bending modes. The study had included only
the vertical modes, and minor moment of inertia values were not exited by taking
transverse vibration mode shapes. The effects of torsional and lateral bending
moment of inertias had little effect on vertical mode shapes, therefore were not

properly calibrated using measured dynamic data.

Framegroup4 is defined for the members which are located at the right edge of the
frame shown with triangles in Figure 10-4. The section used for the indicated
members have slightly different dimensions compared to the rest of the members
defined by Framegroup3. The calibrated moment of inertia for framegroup4 about
the major bending axis (I,) is found to be 12.27% smaller than the nominal value.
The calibrated moment of inertia about the minor bending axis (Iyy) was 42.78%
larger than the nominal value. The calibrated torsional moment of inertia (Ixx) was

11.66% smaller than the nominal value.

The framegroup4 sections were slightly larger than the rest of the members.
Therefore, major bending axis inertias were expected to be larger than the nominal
values. On the other hand, minor bending axis moment of inertia found to be larger

than the nominal values. The unclear variations in the group 4 member properties

196



(calibration results being smaller than the expected values) are attributed to a) the
reduced number of members not being able to affect the overall behavior, and b)
coupled effect of groupl and group4 elements that coexist. Nevertheless, the
calibration results of group 4 were worse than what was expected. Certain
percentage of low performance obtained for group4 members might also be
attributed to the quality of dynamic measurements. If the tests are repeated using
better equipment and larger number of accelerometers, the success rate of

calibration might have been improved.

As it can be noticed, changes in cross sectional area for all frame groups given
above were not mentioned. Within the given ranges, changes in cross-sectional area
do not change the objective function. Change in cross-sectional area is an
insensitive variable in FEU since all of the measured dynamic data are affected

predominantly by bending properties of sections.

11.4 A Few Comment about FEU

Process of experimental modal analysis and calibration can be considered as a
chain. Finite Element Updating is the last link of that chain, whereas modal testing
is the first, and modal parameter estimation is in the middle. Therefore a problem at
any ring level of the chain will affect the final ring. In order to obtain accurate
results from Finite Element Updating, Modal parameter estimation should be
accurate. In order to obtain accurate modal parameter estimation, Frequency
Response Functions should be accurate. Finally in order to obtain accurate

Frequency Response Functions, modal testing should be accurate. Success in a link
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of the chain is highly related with the successes in previous links. In order to say
that the result of FEU process is completely successful, there should be at least %
90-95 correlation between experimental results and finite element results (analytical
results). But in our case there was only % 76.145 consistency between experimental
results and finite element results (analytical results). If there were more that 90-95
percent correlation and the optimized values were similar to the ones above, then it
would be correct to say that there is something wrong either in Finite Element

Analysis or in Finite Element Updating.

Under these circumstances, it is only possible to say that FEU process was
successful as much as modal parameters were. And finally modal parameters were
accurate as much as modal testing was. Therefore the success in this study was
limited (and dominantly affected by) modal testing part of this study. If at least a 4
channel data acquisition system (or a 4 channel dynamic analyzer) had been
available, the modal parameters would have been more accurate and therefore FEU
would have had a higher success rate. Nonetheless, majority of the calibration
results obtained (especially for major bending moment of inertias and concentrated
mass values) were meaningful. The modal testing, modal analysis, and model
updating phases might be deemed as successful considering the difficulties with the

measurement phase.

It is concluded that minor axis bending properties could be better estimated if lateral

and longitudinal direction modal parameters were also obtained (in addition to the

vertical modal parameters). The number of accelerometers used for the testing

198



should be increased for higher success rate in measurements. Smaller frequency
windows should be tested at a time to have shorter frequency intervals between
each reading. Measurement of 1 to 260 Hz and 1 to 500 Hz range was too coarse

and individual data points were too sparse.

11.5 Future Studies

In PhD studies, it is planed to use EMAS and FEUS with data obtained from large
scale actual and existing structures (such as bridges and buildings). Small size
bridges will be dynamically tested but a better data acquisition system will be used.
With a better data acquisition system (4, 8, 16 channels) it will be proven that

EMAS and FEUS are working properly.

The next topic for future studies is “Modal Parameter Estimation using Ambient
Response data”. Ambient data is generated by environmental excitation (such as
traffic, wind, earthquakes, etc.) and the input force to the system is unknown. For
bridges, the input forces are generally the traffic loads. For the buildings, the input
forces are generally heavy street traffic, human/machinery activity in the building,

wind, and with a small probability an earth quake.

Custom design testing tools, wireless sensors, and commercially available modal

analysis programs will also be investigated as a part of future studies.
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APPENDIX A

Report generated by EMAS for 3 d.o.f. system

06-Jan-2004
16:31

Date:
Time:

This is a report generated by experimental

software (EMAS)

Title: 3 d.o.f.
N ODE S
NODE ID
1
2
3
4

ELEMETS

ELEMENT TYPE

cantilever beam model

X CORD Y

w N =

START NODE

2 1
2 2
2 3
CONSTRAINTS
NODE ID X-TRANS Y-TRANS
ROT Z—ROT
1 1
1
MASTER DOF S
NODE ID X-TRANS Y-TRANS
ROT Z—ROT
2 0
0
3 0
0

207

modal analysis

CORD Z CORD
0 0
0 0
0 0
0 0
END NODE
2
3
4
Z—TRANS X-ROT
1 1
Z—-TRANS X-ROT
1 0
1 0

Y_

Y7



M ODATL PARAMETETRS

MODE FREQUENCY (Hz)
1 7.598
2 21.397
3 32.802

M ODE S HAPES

MODE 1
NODE DOF
2 3
3 3
4 3
MODE 2
NODE DOF
2 3
3 3
4 3
MODE 3
NODE DOF
2 3
3 3
4 3

M A C CORRELATTITON

MODE 1

MODE 1
MODE 1 1.0000
MODE 2 0.0130

208

DAMPING (%)
0.119
0.336
0.515

FACTOR
-0.2801
-0.5642
-0.7767

FACTOR
-0.6200
-0.5962

0.5100

FACTOR
-0.8251
0.5489
-0.1340



MODE 3 0.0006

MODE 2

MODE 2
MODE 1 0.0130
MODE 2 1.0000
MODE 3 0.0135
MODE 3

MODE 3
MODE 1 0.0006
MODE 2 0.0135
MODE 3 1.0000
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APPENDIX B

Input file of skewed frame used in FEUS.

title skewed frame Problem
! Main nodes which are used in FEUS
are nodes that are selected as master

! these

node 1,

node 5,

node 33,
node 37,
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
! Nodes

node 38,
node 39,
node 40,
node 41,
node 42,
node 43,
node 44,
node 45,
node 46,
node 50,
nodegen
node 51

node 55

nodegen
node 64

node 68

nodegen
node 69
node 73

0, 0.0, 0.0
-0.194114283826891, 0.724444369716801,
3, 0.0, 0.0
2.80588571617311, 0.724444369716801 ,
1 33 3 9 8
5 37 3 13 8
1 5 3 2 1
33 37 3 34 1
9 13 3 10 1
17 21 3 18 1
25 29 3 26 1
1 9 1 6 1
25 33 1 30 1
6 30 2 14 8
3 11 1 7 1
27 35 1 31 1
7 31 2 15 8
5 13 1 8 1
29 37 1 32 1
8 32 2 16 8
used to define connection regions
0.037, .0, 0.0
0.715, 0, 0.0
0.785, 0, 0.0
1.465, 0, 0.0
1.535, .0, 0.0
2.215, 0, 0.0
2.285, 0, 0.0
2.963, .0, 0.0
-0.01216449512 0.04539851384, 0.0
2.987835505 0.04539851384, 0.0
46 50 3 47 1
-0.08489264679, 0.316823671, 0.0
2.91510735320637, 0.316823671, 0.0
51 55 3 52 1
-0.109221637033264, 0.407620698693987,
2.89077836296674, 0.407620698693987,
64 68 3 65 1

-0.181949788707072,

2.81805021129293,

0.679045855881215,
0.679045855881215,
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0

0.

0.

0.
0.

0

0.

0



nodegen 69 73 3 70
-0.0600571419134455,

node 56
node 57
node 58
node 59
node 60
node 61
node 62
node 63
node 74
node 75
node 76
node 77
node 78
node 79
node 80
node 81
! Nodes

! which
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
nodegen
node 126
node 127
node 128

ONDNDDNREFE P OO

NN PR PO O |

1

.617942858086555,
.687942858086555,
.36794285808655,
.43794285808655,
.11794285808655,
.18794285808656,
.86594285808656,
.157114283826891,
.520885716173109,
.590885716173109,
.27088571617311,
.34088571617311,
.02088571617311,
.09088571617311,
2.76888571617311,

0
0
0.
0
0

0.362222184858401,
0.362222184858401,
0.362222184858401,

0.362222184858401,
0.362222184858401,
0.362222184858401,
0.362222184858401,
0.362222184858401,
0.724444369716801,
0.724444369716801,
0.724444369716801,
.724444369716801,
.724444369716801,
724444369716801,
.724444369716801,
.724444369716801,

that are used to get fine mesh
! One additional node is added between two nodes

are wide enough

6 381 82 1
6 39 1 83 1
14 40 1 84 1
14 41 1 85 1
22 42 1 86 1
22 43 1 87 1
30 44 1 88 1
30 45 1 89 1
246 1 90 1
251 10911
4 64 1921
4 69 1 931
34 50 1 94 1
34 55 1 95 1
36 68 1 96 1
36 73 1 97 1
8 74 1 981
8 75 1 991
16 76 1 100 1
16 77 1 101 1
24 78 1 102 1
24 79 11031
32 80 1 104 1
32 81 1 105 1
90 94 3 106 1
91 95 3 109 1
92 96 3 112 1
93 97 3 115 1
82 98 1 118 1
83 99 1 119 1
84 100 1 120 1
85 101 1 121 1
86 102 1 122 1
87 103 1 123 1
88 104 1 124 1
89 105 1 125 1
1.125 0.1 0.5
1.27088571617311,

1.535,

0.1,

0

0.624444369716801,
.5
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[oNeoNeNeNe]
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node 129 1.68088571617311, 0.624444369716801 , 0.5
node 130 1.19794285808655,0.26222184858401,0.5
node 131 1.19794285808655, 0.46222184858401, 0.5
node 132 1.60794285808655, 0.262222184858401, 0.5
node 133 1.60794285808655, 0.462222184858401, 0.5
'node 134 0 -0.5 0

'node 135 -0.194114283826891, 1.224444369716801, 0
'node 136 3, -0.5, 0

'node 137 2.80588571617311, 1.24444369716801 , O
elemtype beam3d 1.84e-14, 2.ell, 2.157e-8, 7850, 0.3 , 1.113e-
8, 2.209%e-8

elem 1 38

elem 38 82

elem 82 6

elem 6 83

elem 83 39

elem 39 9

elem 9 40

elem 40 84

elem 84 14

elem 14 85

elem 85 41

elem 41 17

elem 17 42

elem 42 86

elem 86 22

elem 22 87

elem 87 43

elem 43 25

elem 25 44

elem 44 88

elem 88 30

elem 30 89

elem 89 45

elem 45 33

elem 3 56

elem 56 118

elem 118 7

elem 7 119

elem 119 57

elem 57 11

elem 11 58

elem 58 120

elem 120 15

elem 15 121

elem 121 59

elem 59 19

elem 19 60

elem 60 122

elem 122 23

elem 23 123

elem 123 61

elem 6l 27

elem 27 62

elem 62 124

elem 124 31

elem 31 125

elem 125 63

elem 63 35

O ~J o U W

BRI DSDLWLWWWWWWWWWLWNDNDNDNDDNDMNDNDNMDNNNDNRERPRREPRRPRRREREO
O J o b WNEFE OWOW-TJOU P WNEFE OWOWJoUd WNDE OWOOoJoyUd wbdhE o

212



elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

5 74
74 98
98 8
8 99
99 75
75 13
13 76
76 100
100 16
16 101
101 77
77 21
21 78
78 102
102 24
24 103
103 79
79 29
29 80
80 104
104 32
32 105
105 81
81 37
1 46
46 90
90 2
2 91
91 51
51 3
3 64
64 92
92 4
4 93
93 69
69 5
9 47
47 106
106 10
10 109
109 52
52 11
11 65
65 112
112 12
12 115
115 70
70 13
17 48
48 107
107 18
18 110
110 53
53 19
19 66
66 113
113 20
20 116
116 71
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elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

elemtype

elem

elemgen
elemgen
elemgen
elemgen
elemgen
elemgen
elemtype

elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem
elem

constnode
constnode
constnode
constnode
constnode
constnode
constnode
constnode

148
149
150
151
152
153
154
155
156
157
158
159

71
25

21
49

49 108
108 26
26 111
111 54

54
27

27
67

67 114
114 28
28 117
117 72

72
33
50
94
34
95
55
35
68
96
36
97
73

29
50
94
34
95
55
35
68
96
36
97
73
37

mass3d 0

133,
133
133
136
139
142
145

1

DN DN

2

136
134
137
140
143
146

spring3d
14 126
77 127
42 128
24 129
121 130
121 131
122 132
122 133
14 126
77 127
42 128
24 129

! Fix Spring Supports

126
127
128
129
130
131
132
133

allmasterdof 3

R R R R RWw

oD DNDDNDDNDDN O
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APPENDIX C

Mode shapes extracted from the first experiment.

Figure C-1 6.23 Hz

Figure C-2 14.72 Hz
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Figure C-3 104.06 Hz

Figure C-4 136.27 Hz

Figure C-5 182.0014 Hz
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Figure C-6 182.0014 Hz

Figure C-7 375.77 Hz

Figure C-8 469.60 Hz
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APPENDIX D

Mode shapes extracted from the second experiment.

Figure D-1 8.22 Hz

Figure D-2 39.995 Hz
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Figure D-3 64.889 Hz

Figure D-4 78.19 Hz

Figure D-5 102.37 Hz
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Figure D-6 110.04 Hz

Figure D-7 139.41 Hz

Figure D-8 232.84 Hz
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