
EXPERIMENTAL MODAL ANALYSIS OF A STEEL GRID FRAME

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

HÜSEY�N KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

MASTER OF SCIENCE
IN

THE DEPARTMENT OF CIVIL ENGINEERING

JANUARY 2004



Approval of the Graduate School of Natural and Applied Sciences.

________________________

Prof. Dr Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master
of Science.

________________________

Prof. Dr Erdal ÇOKCA

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

_________________________

Assist. Prof. Dr Ahmet TÜRER

Supervisor

Examining Committee Members

Prof. Dr. Polat GÜLKAN ________________________

Assist. Prof Dr. Ahmet TÜRER ________________________

Assist Prof. Dr. Ahmet YAKUT ________________________

Dr. O�uzhan HASANÇEB� ________________________

M. S. Halim ÇERM�KL� ________________________



iii

ABSTRACT

EXPERIMENTAL MODAL ANALYSIS OF A STEEL GRID FRAME

Kaya, Hüseyin

M. S., Department of Civil Engineering

Supervisor: Assist. Prof. Dr. Ahmet Türer

January 2004, 220 pages

In this study, experimental modal analysis was studied. Experimental modal

analysis includes modal testing, modal parameter estimation and calibration. For

this purpose a 4 span skewed steel frame was constructed in Structural Mechanics

Laboratory of Civil Engineering Department of METU. The model was transported

to Vibration and Acoustic Laboratory of Mechanical Engineering Department of

METU. The tests were conducted by cooperation with Vibration and Acoustics

Laboratory. Due to lack of experimental modal analysis software in Structural

Mechanics Laboratory, modal parameter estimation and finite element updating

softwares were written in Matlab platform. The written softwares were executed on

the data obtained from modal testing.
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15 reasonable modes are extracted from the FRFs that are obtained from

modal testing. 59.23 percent consistency is found for the nominal modal

comparison. At the end of calibration process 76.14 percent consistency is achieved

between the experimental results and analytical results.

Keywords: Experimental Modal Analysis, Modal Testing, Modal Parameter

Estimation, Vibration, Finite Element Analysis, Simulated Annealing and

Calibration.
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ÖZ

ÇEL�K B�R GR�D ÇERÇEVEN�N DENEYSEL MODAL ANAL�Z�

Kaya, Hüseyin

Yüksek Lisans, �n�aat Mühendisli�i Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Ahmet Türer

Ocak 2004, 220 sayfa

Bu tezde, deneysel modal analiz çalı�ılmı�tır. Deneysel modal analiz,

dinamik test, dinamik parametle tahmini vede calibrasyon konularını içermektedir.

Bu amaç için, Orta Do�u Teknik Üniversitesi �n�aat Mühendisli�i Bölümü Yapı

mekani�i Laboratuarında tek açıklıklı 4 bölmeli yan çelik çerçeve in�aa

edilmi�tir.I�aa edilen yapı Orta Do�u Teknik Üniversitesi Makine Mühendisli�i

Bölümü Titre�im ve Akustik Laboratuarına ta�ınmı�tır. Deneyler Titre�im ve

Akustik Laboratuarı ile i�birli�i içerisinde yapılmı�tır. Modal parametre tahmini

için labaratuarımızda herhangi bir ticari yazılım bulunmamasından dolayı, Modal

parametre tahmini vede kalibrasyon icin Matlab platformunda programlar

yazılmı�tır. Yazılan programlar dinamik test sonucu elde elilen bilgiler üzerinde

uygulanmı�tır.
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Dinamik test sonucu elde edilen bilgilerden, kabul edilebir 15 mod cıkarılmı�tır.

Nominal model karsıla�tırmasında %59.23 uyu�um saptanmı�tır. Kalibrasyon i�lemi

sonucunda deneysel ve analitik sonuçlar arasındaki uyu�um %76.14 ‘e yükselmi�tir

Anahtar kelimeler: Deneysel Modal Analiz, Modal Test, Modal Parametre Tahmini,

Titre�im, Sonlu Elemanlar Analizi, Kalibrasyon.
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1 CHAPTER 1

INTRODUCTION

1.1 Background

The understanding of the physical nature of vibration phenomena has always been

important for researchers and engineers, even more as today as structures are

becoming lighter and more flexible due to increased demands for efficiency, speed,

safety and comfort. When any structure vibrates, it causes major problems and

operating limitations ranging from discomfort (including noise), malfunction,

reduced performance and fatigue. Two approaches may be considered to resolve the

vibration problem: first, prevention, through proper design, and second, cure, by

modification of structure or a vibration control design. In any case, a thorough

understanding of vibration of the structure is essential. Hence, accurate

mathematical models are required to describe the vibration characteristics of the

structure. For simple structures, such as beams and plates, good analytical

predictions using closed form solutions can be easily found in various reference

books and tables (Such as Chopra, 1995, Chandrupatla et al., 1997). However, for

more complex structures, more powerful tools are needed. Today, analytical tools

and experimental tools are used to model the dynamic behavior of the structures.
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The most widely used analytical tool is the Finite Element Method (FEM) (Cook et

al., 1989, Chandrupatla et al., 1997), while the experimental counterparts are

largely based on modal testing and analysis (Ewins, 1995). Due to different built-in

limitations, assumptions and choices, each approach has its own advantages and

disadvantages.

1.2 Finite Element Method (FEM)

The main assumption in Finite Element Method (FEM) is that a continuous

structure can be discretized by describing it as an assembly of finite (discrete)

elements, each with a number of boundary points which are commonly referred to

as nodes. For structural dynamic analysis, element mass, stiffness and damping

matrices are generated first and then assembled into global system matrices.

Dynamic analysis of the produced model gives the modal properties; the natural

frequencies (Eigenvalues) and corresponding mode shapes (Eigenvectors). The

modal solution can subsequently be used to calculate forced vibration response

levels for the structure under study. Element system matrices have been developed

for many simple structures, such as beams, plates, shells and bricks. Most general-

purpose FE programs have a wide range of choice of element types, and the user

must select the appropriate elements for the structure under investigation and its

particular application. Further theoretical background and practical implementation

of the FE method are given in various text books, such as those by Cook et al.,

(1989), Chandrupatla et al., (1997), Bathe (1996).

The FE method is extensively used in industry as it can produce a good

representation of a true structure. However, for complicated structures, due to
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limitations in the method and application, a FE model can lead to errors. The

sources of errors in Finite Element models are:

1. Inaccuracy in estimation of the physical properties of the structure.

2. Poor quality of mesh generation and selection of individual shape functions.

3. Poor approximation of boundary conditions.

4. Poor estimation or omission of damping properties of the system.

5. Computational errors which are mainly due to rounding off. (ill conditioned

matrices)

6. Linear Modeling of highly nonlinear structures. ( Geometric and material non-

linearities)

The result of a finite element analysis is mainly dependent on the judgment and

experience of the operator and the software package used.

1.3 Modal Testing Method

The experimental approach to modeling the dynamic behavior of structures (modal

testing) relies mostly on extracting the vibration characteristics of a structure from

measurements. The procedure consists of three steps:

1. Acquiring the modal data.

2. Analyzing the measured modal data.

3. Constructing the dynamic model behavior by using extracted modal

parameters from the analyzed data.
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Vibration measurements are taken directly from a physical structure, without any

assumptions about the structure, and that is the reason why modal testing models

are considered to be more reliable than Finite Element models. However, due to a

number of limitations and errors, the model created from the measured data may not

represent the actual behavior of the structure as closely as desired.

The theoretical background of modal testing and practical aspects of vibration

measurement techniques are discussed by Ewins, (1995).

In general, limitations and errors of modal testing are:

• Random errors due to noise.

• Loose attachment of transducers to the structure.

• Non-linear behavior of the structure or attached mechanical devices

• Poor modal analysis of experimental data (user experience).

• Limited number of measured degrees of freedom.

• Not all modes being excited due to excitation at a node.

•  Difficulty in measuring rotational degrees of freedom.

1.4 Applications of Modal Test Models

It is generally believed that more confidence can be placed in experimental data

since measurements are taken on the true structure. Therefore, the mathematical

models, which have been created as a result of modal testing, can be used in various

ways to avoid or to cure the problems encountered in structural dynamics. In this

Section, the applications of modal testing methods for improving the structural

dynamics will be considered.
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1.4.1 Updating of the Analytical Models (Calibration)

One of the applications of the result of a modal test is the updating of an analytical

model (usually a model derived using finite element method). Model updating can

be defined as adjustment of an existing analytical model which represents the

structure under study, using experimental data (Catbas et al., 1998, Ventura et al.,

2001, Dascotte, 2001, Haapaniemi et al, 2002). Therefore, updated FE model more

accurately reflects the dynamic behavior of that structure. Model updating can be

divided into three steps:

1. Comparison of FE model and modal testing results.

2. Modifying FE model in order to correlate FEM and modal testing results.

3. Analyzing updated FE model and return to step 1 until convergence is

achieved.

Comparison can be defined as the initial step to assess the quality of the analytical

model. If the difference between analytical and experimental data is within some

preset tolerances, the analytical model can be judged to be adequate and no

updating is necessary.

Most difficulties are encountered in the second step. The difficulties in locating the

errors in a theoretical model are mostly due to measurement process and can be

summarized as:

1. Insufficient experimental modes;
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2. Insufficient experimental coordinates;

3. Size and mesh incompatibility of the experimental and FE models;

4. Experimental random and systematic errors.

5. Absence of damping in the FE model

In spite of extensive research over the last two decades, model updating is still far

from mature and no reliable and general applicable procedures have been

formulated so far.

1.4.2 Structural Dynamic Modification

Structural dynamic modification can be defined as the study of changes (in natural

frequencies and mode shapes) of measured dynamic properties of the test structure

due to modified mass or stiffness or damping of the structure. In principle, the

modification process is a form of optimization of the structure to bring its modal

properties of the structures to some desired condition (Wallack et al., 1989 and

Schwarz et al., 1997).

For example a bridge with certain vibration problems should be modified.

Sometimes, the effect of an addition to a structure must be known. For instance,

addition of a storey to an existing building or addition of a missile to a fighter jet

plane. Modeling the existing structure might be too costly and unnecessary. The

existing structure can be modal tested and effect of the new addition (i.e. additional

floor or missile) can be evaluated using structural dynamic modification.

This method saves large amounts of redesign time as it reduces the cycle time in the

test, analysis, redesign, shop drawings, install redesign, and retest cycle. In practice,

the measured properties of existing structure at the boundary level are only
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translational degrees of freedom (d.o.f.). However for structural dynamic

modification, rotational d.o.f.s are also needed for proper assembly. Deficiency in

rotational degrees of freedom has problems in dealing with real-world problems

such as addition of a plate, beam, and rotor or other structural elements with

bending resistance.

Moreover, there is a need for sufficient modal vector information to carry out real

world structural modification. This demands that more data be taken, but the

number of data points is limited by the time available from the highly-trained modal

staff. Generally, most modal tests are limited to 50-60 x-y-z degrees of freedom.

This is usually too few for the structural modification to be implemented without

excessive retesting. Sometimes it is desired to construct a mathematical model of a

complete structural assembly formed by the assembly of several individual

substructures. There are a number of methods for assembling such a model which

are extensions of modification methods and called “structural assembly methods”.

The essential difference is that here the modifications are themselves dynamic

systems, rather than simple mass or stiffness elements. It is possible to combine

subsystem or component models derived from different sources or analyses for

example from a mixture of analytical and experimental studies. Again the same

problems encountered with modification methods are encountered.

There are other quantitative applications of the modal test models, which demand a

high degree of both accuracy and completeness (enough points and enough d.o.f.s

on the test structure) of the test data. These applications are:

•  Response predictions for the test structure if it is subjected to other excitations.
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•  Force determination, from measured responses.

•  Damage detection. (Operating curves).

1.5 Sources of Lack of Precision in Modal Testing

Laboratory experiments and practical measurements serve several purposes, some

of which do not demand high accuracy. Some experiments are exploratory in the

sense of looking for the existence and direction of some effect before trying to

establish its magnitude; others are chiefly instructional, to demonstrate theoretical

principles. Some industrial measurements are needed only to control and repeat a

process in accordance with previously established values. Errors in such cases may

be harmless. However, engineering applications of some experiments demand test

data of high quality. In these cases, large errors may arise if test data with poor

quality are used. In recent years there has been a strong demand for modal testing

with high quality suitable for advanced applications such as structural modification

and model updating.

In Section 1.4, it is explained in general terms how the mathematical models which

have been created as a result of modal tests, can be used in various ways to apply in

vibration-related problems encountered in theory and practice, and how these

applications are hindered from a lack of precision in modal testing. In this Section,

the problem of the sources of the lack of precision in modal testing is studied more

systematically. In the following paragraphs attention is drawn to the reasons why

the experimental modal test data can depart from the true values it purports to

measure. The sources of a lack of precision in modal testing procedure can be

categorized in three groups: (i) Experimental data acquisition errors (ii) Signal
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processing errors and (iii) Modal analysis errors, each of them has been categorized

itself in below (Ashory, 1999).

Figure 1-1 Three stages of the modal testing

Experimental data acquisition errors:

a) Quality :

1) Mechanical errors :

• Mass loading effect of transducers

•  Shaker-structure interaction

•  Supporting of the structure

2) Measurement noise

3) Nonlinearity

b) Quantity :

•  Measuring enough points on the structure

•  Measuring enough Degrees of Freedom (i.e. Rotational DOFs)

(ii) signal processing errors :

• Leakage

Experimental Data

Acquisition
Signal Processing Modal Analysis
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• Aliasing

• Effect of window functions

• Effect of Discrete Fourier Transform

• Effect of averaging

(iii)modal analysis errors :

• Circle-Fit Modal Analysis

•  Line-Fit Modal Analysis

•  Global Modal Analysis

1.6 Objectives, and Scope of This Thesis

This work is an attempt to:

• Carry out a literature survey on the subjects of Theory of Vibration, modal

testing, modal analysis and FE updating.

• Construct single span skewed steel grid frame in the Structural Mechanics

Laboratory for the application of modal testing.

• Study one of the non-destructive modal testing methods of sweep sine forced

vibration method on the constructed frame.

• Study global modal parameter estimation method of “Complex Mode Indicator

Function” (CMIF).

• Write graphical user interfaced program about “General purpose modal

parameter estimation and mode animation”.

• Study a robust global search and optimization technique of “Simulated

Annealing (SA)” for FEU purposes.
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• Write a graphical user interfaced program about Finite Element Updating.

• Application of the written FEU Software on modal data obtained from single

span skewed steel grid frame model.



12

2 CHAPTER 2

THEORY OF VIBRATION

2.1 Introduction

One who wants to study modal testing and modal analysis should briefly have

background about dynamics but specially “Theory of vibration”. The following

Section briefly explains theory of vibration, starting with single degree of freedom

systems and continues to multi degree of freedom systems (Allemang, 1998,

Chopra, 1995, Ewins, 1995).

2.2 Single Degree of Freedom Systems

In order to understand modal analysis, single degree of freedom systems must be

understood. In particular, the complete familiarity with single degree of freedom

systems (as presented and evaluated in the time, frequency (Fourier), and Laplace

domains) serves as the basis for many of the models that are used in modal

parameter estimation. The single degree of freedom approach is obviously trivial for

the modal analysis case. The importance of this approach results from the fact that

the multiple degree of freedom case can be viewed as a linear superposition of
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single degrees of freedom systems. Single degree of freedom system is described in

Figure 2-1.

Figure 2-1 Single Degree of Freedom System

Free body diagram of Figure 2-1 is shown in Figure 2-2.

Figure 2-2 Free Body Diagram of SDOF system

xK
•

xC
M

x

( )tf
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The general mathematical representation of a single degree of freedom system is

obtained from Newton’s Law of Motion and expressed in Equation 2-1,where total

forces acting on the system is equaled to mass (M) times acceleration.

Equation 2-1

Where;

• M = Mass of the system

• C = Damping of the system

• K = Stiffness of the system

• f(t) = General force function

By setting f(t)= 0, the homogeneous form of Equation 2-2 can be solved.

Equation 2-2

From differential equation theory, the solution can be assumed to be of the form

( ) tseXtx = ,where s is a complex valued number to be determined. Taking

appropriate derivatives and substituting into Equation 2-2 yields:

Equation 2-3

Thus, for a non-trivial solution:

Equation 2-4

Where:

( ) ( ) ( ) ( )tftxKtxCtxM =++ ���

( ) ( ) ( ) 0=++ txKtxCtxM ���

( ) 02
=++

tseXKsCsM

02
=++ KsCsM
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s = Complex-valued frequency variable (Laplace variable)

Equation 2-4 is the characteristic equation of the system, whose roots 1λ and 2λ

are:

Equation 2-5

Thus the general solution of Equation 2-2 is:

Equation 2-6

A and B are constants determined from the initial conditions imposed on the system

at time t = 0.

For most real structures, unless active damping systems are present, the damping

ratio is rarely greater than ten percent. For this reason, all further discussion is

restricted to under damped systems (ζ < 1). With reference to Equation 2-6, this

means that the two roots, 21,λ , are always complex conjugates. Also, the two

coefficients (A and B) are complex conjugates of one another (A and *
A ). For an

under damped system, the roots of the characteristic equation can be written as:

Equation 2-7

Where;

• 1σ = Damping Factor

111 wj+σ=λ 112 wj−σ=λ

2

1
2

2,1
22 ��

�
�
�

��

�
�
�

�
	



�
�



−�

	



�
�



±−=

M

K

M

C

M

C
λ

tt
eBeAtx 21)(

λλ +=
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• 1w = Damped Natural Frequency

The roots of characteristic Equation 2-4 can also be written as:

Equation 2-8

Where;

1Ω = Undamped Natural Frequency

1ζ = Percent damping with respect to critical damping.

The damping factor, 1σ , is defined as the real part of a root of the characteristic

equation. This parameter has the same units as the imaginary part of the root of the

characteristic equation, radians per second. The damping factor describes the

exponential decay or growth of the oscillation. In real-world structures energy of

the system is dissipated through damping mechanism. Therefore there is always

exponential decay in oscillation. Exponential growth of the oscillation is theoretical

and is not valid for real world structures.

Critical damping ( cC ), is defined as being the damping which reduces the radical in

the solution of the characteristic equation to zero. This form of damping

representation is a physical approach and therefore involves the appropriate units

for equivalent viscous damping.

2
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*
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Equation 2-9

The damping ratio, ζ , is the ratio of the actual system damping to the critical

system damping. The damping ratio is dimensionless since the units are normalized.

Equation 2-10

2.2.1 Time Domain: Impulse Response Function

The impulse response function of a single degree of freedom system can be

determined from Equation 2-6 assuming that the initial conditions are zero and that

the system excitation, f (t), is a unit impulse. The response of the system, x(t), to

such a unit impulse is known as the impulse response function, h(t), of the system.

Therefore:

Equation 2-11

Equation 2-12
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Thus, the coefficients (A and *
A ) control the amplitude of the impulse response,

the real part of the pole is the decay rate and the imaginary part of the pole is the

frequency of oscillation. Figure 2-3 illustrates the impulse response function, for a

single degree of freedom system.

Figure 2-3 Time Domain: Impulse Response Function

2.2.2 Frequency Domain: Frequency Response Function

An equivalent equation of motion for Equation 2-1 is determined for the Fourier or

frequency ( )ω domain. This representation has the advantage of converting a

differential equation to an algebraic equation. This is accomplished by taking the

Fourier transform (Meirovitch, 1996) of Equation 2-1.
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Letting the forcing function of Equation 2-1 be in the form of

Equation 2-13

.

Therefore the solution of Equation 2-1 will be in the form of;

Equation 2-14

Thus;

Equation 2-15

Equation 2-16

Substituting Equation 2-14 , Equation 2-15 and Equation 2-16 into Equation 2-1

yields;

Equation 2-17

After rearranging the common terms in Equation 2-17;

Equation 2-18

Simplifying Equation 2-18 yields;

Equation 2-19

Restating Equation 2-19 yields:

[ ] ( ) ( )ω=ω+ω+ω− FXKCjM
2

( ) ( ) tj
eXtX

ω
ω=

( ) ( ) tj
eXjtX

ω
•

ωω=

( ) ( ) tj
eXtX

ω
••

ωω−=
2

( ) ( ) tj
eFtF

ω
ω=

[ ] ( ) ( ) tjtj
eFeXKCjM

ωω
ω=ω+ω+ω−

2

( ) ( ) ( )[ ] ( ) tjtjtjtj
eFeXKeXCjeXM

ωωωω ωωωωωω =++−
2
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Equation 2-20

Where;

• ( ) KCjMB +ω+ω−=ω
2

Equation 2-20 states that the system response ( )ωX is directly related to the system

forcing function ( )ωF through the quantity ( )ωB , the impedance function. If the

system forcing function ( )ωF and its response ( )ωX are known, ( )ωB can be

calculated. That is:

Equation 2-21

More frequently, the system response, ( )ωX due to a known input ( )ωF is of

interest.

Equation 2-22

Equation 2-22 becomes:

Equation 2-23

Where:

• ( )
KCjM

H
+ω+ω−

=ω
2

1

( ) ( ) ( )ω=ωω FXB

( )
( )

( )ω

ω
=ω

X

F
B

( )
( )

( )ω

ω
=ω

B

F
X

( ) ( ) ( )ωω=ω FHX
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The quantity ( )ωH is known as the Frequency Response Function of the system.

The frequency response function relates the Fourier transform of the system input to

the Fourier transform of the system response. From Equation 2-23, the frequency

response function can be defined as:

Equation 2-24

Going back to Equation 2-19, the frequency response function can be written as,

Equation 2-25

The denominator of Equation 2-25 is known as the “characteristic equation” of the

system and is in the same form as Equation 2-4. The characteristic values of this

complex equation are in general complex even though the equation is a function of

a real valued independent variable “ ω”. The characteristic values of this equation

are known as the complex roots of the characteristic equation or the complex poles

of the system. These characteristic values are also called the “modal frequencies”.

The frequency response function ( )ωH can also be written as a function of the

complex poles as follows:

Equation 2-26
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Where;

1λ = Complex Pole

111 ωσλ j+=

111 ω−σ=λ j
*

111 Ω−= ζσ

2

111 1 ζω −Ω=

Since the frequency response function is a complex valued function of a real valued

independent variable ( )ω , the frequency response function, real-imaginary,

magnitude-phase, and log magnitude-phase graphs as shown in Figure 2-4 through

Figure 2-9.

Figure 2-4 Frequency Response Function (Real part vs. frequency)
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Figure 2-5 Frequency Response Function (Imaginary part vs. frequency)

Figure 2-6 Frequency Response Function (Magnitude vs. frequency)
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Figure 2-7 Frequency Response Function (Phase vs. frequency)

Figure 2-8 Frequency Response Function (Log Magnitude vs. frequency)
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Figure 2-9 Frequency Response Function (Phase vs. frequency)

2.2.3 Laplace Domain: Transfer Function

Just as in Section 2.2.1.2 for the frequency domain, the equivalent information can

be represented in the Laplace domain by way of the Laplace transform. The only

significant difference between the two domains is that the Fourier transform is

defined from negative infinity to positive infinity while the Laplace transform is

defined from zero to positive infinity with initial conditions. The Laplace

representation, also, has the advantage of converting a differential equation to an

algebraic equation. Theory behind Laplace transform is shown in almost every

classical text concerning vibrations (Meirovitch, 1996). The development using

Laplace transforms begins by taking the Laplace transform of Equation 2-1. Thus,

Equation 2-1 becomes:
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Equation 2-27

X(0) and ( )0
•

X are the initial displacements and velocities at time t = 0, respectively

If the initial conditions are taken as zero, Equation 2-27 becomes:

Equation 2-28

Then Equation 2-28 becomes:

Equation 2-29

Where:

• ( ) KsCsMsB ++=
2

Therefore, using the same logic as in the frequency domain case, the transfer

function can be defined in the same way that the frequency response function was

defined previously.

Equation 2-30

Where:

• ( )
KsCsM

sH
++

=
2

1

The quantity H(s) is defined as the “transfer function” of the system. In other words,

a transfer function relates the Laplace transform of the system input to the Laplace

[ ] ( ) ( ) [ ] ( ) ( )002
•

+++=++ XMXCsMsFsXKsCsM

[ ] ( ) ( )sFsXKsCsM =++
2

( ) ( ) ( )sFsXsB =

( ) ( ) ( )sFsHsX =
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transform of the system response. From Equation 2-30, the transfer function can be

defined as:

Equation 2-31

Going back to Equation (2.22), the transfer function can be written:

Equation 2-32

Note that Equation 2-32 is valid under the assumption that the initial conditions are

zero.

The denominator term is once again referred to as the characteristic equation of the

system. As noted in the previous two cases, the roots of the characteristic equation

are given in Equation 2-5.The transfer function, H(s), can now be rewritten, just as

in the frequency response function case, as:

Equation 2-33

Since the transfer function is a complex valued function of a complex independent

variable (s), the transfer function is represented, as shown in Figures 2-7 through 2-

9, as a pair of surfaces. Remember that the variable s in Equation (2.27) is a

complex variable, that is, it has a real part and an imaginary part. Therefore, it can

be viewed as a function of two variables which represent a surface.
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Figure 2-10 Transfer Function (Real Format)

Figure 2-11 Transfer Function (Imaginary Format)
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Figure 2-12 Transfer Function (Magnitude Format)

Figure 2-13 Transfer Function (Phase Format)
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Figure 2-14 Transfer Function (Log Magnitude Format)

Figure 2-15 Transfer Function (Phase Format)
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The definition of undamped natural frequency, damped natural frequency, damping

factor, percent of critical damping, and residue are all relative to the information

represented by Figure 2-11 through Figure 2-15. The projection of this information

onto the plane of zero amplitude yields the information as shown in Figure 2-16.

Figure 2-16 Transfer Function - Laplace Plane Projection

Where;

r
σ = Damping coefficient

r
ω = Damped natural frequency

r
Ω = Undamped natural frequency

r
ζ =

r
cos β = Damping factor (percent of critical damping)
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The concept of residues is now defined in terms of the partial fraction expansion of

the transfer function equation. Equation 2-33 can be expressed in terms of partial

fractions as follows:

Equation 2-34

The residues of the transfer function are defined as being the constants A and *
A .

The terminology and development of residues comes from the evaluation of

analytic functions in complex analysis. The residues of the transfer function are

directly related to the amplitude of the impulse response function. In general, the

residue A can be a complex quantity.

It can be noted that the Laplace transform formulation is simply the general case of

the Fourier transform development if the initial conditions are zero. The Frequency

Response Function is the part of the transfer function evaluated along the s = j

ω axis.

From an experimental point of view, the transfer function is not estimated from

measured input-output data (modal testing). Instead, the Frequency Response

Function is actually estimated via the discrete Fourier transform.
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2.3 Multiple Degree of Freedom Systems

The real applications of modal analysis concepts begin when a continuous, non-

homogeneous structure is described as a lumped mass, multiple degree-of-freedom

systems. At this point, the modal frequencies, the modal damping, and the modal

vectors, or relative patterns of motion, can be found via an estimate of the mass,

damping, and stiffness matrices or via the measurement of the associated frequency

response functions. The two-degree of freedom system, shown in Figure 2-11, is the

most basic example of a multiple degree of freedom system. This example is useful

for discussing modal analysis concepts since a theoretical solution can be

formulated in terms of the mass, stiffness and damping matrices or in terms of the

frequency response functions.

Figure 2-17 Multi-Degree of Freedom System

The equations of motion for the system in Figure 2-17, using matrix notation, are as

follows:
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Equation 2-35

The process of solving Equation 2-35 when the mass, damping, and stiffness

matrices are known is shown in almost every classical text concerning vibrations

and (examples are Cook, 1989, Meirovitch 1996, and Chandrupalta, 1997)

The development of the frequency response function solution for the multiple

degree of freedom case is similar to the single degree-of-freedom case, which

relates the mass, damping, and stiffness matrices to a transfer function model

involving multiple degrees of freedom. Just as in the analytical case, where the

ultimate solution can be described in terms of one degree of freedom systems, the

frequency response functions between any input and response degree of freedom

can be represented as a linear superposition of the single degree of freedom models

derived previously.

As a result of the linear superposition concept, the equations for the impulse

response function, the frequency response function, and the transfer function for the

multiple degree of freedom system are defined as follows:

Impulse Response Function (Time domain):

Equation 2-36( )[ ] [ ] [ ] [ ]
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Frequency Response Function (Frequency Domain):

Equation 2-37

Transfer Function (Laplace Domain):

Equation 2-38

Where:

t = Time variable

ω= Frequency variable

s = Laplace variable

p = Measured degree of freedom (output)

q = Measured degree of freedom (input)

r = Modal vector number

Apqr = Residue

Apqr = Qr ψpr ψqr

Qr = Modal scaling factor

ψpr = Modal coefficient

λ r = System pole

N= Number of positive modal frequencies
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It is important to note that the residue, Apqr , in Equation 2-36 through Equation

2-38 is the product of the modal deformations at the input q and response p degrees

of freedom and a modal scaling factor for mode r. Therefore, the product of these

three terms is unique but each of the three terms by themselves is not unique. This

is consistent with the arbitrary normalization of the modal vectors. Modal scaling,

Qr, refers to the relationship between the normalized modal vectors and the absolute

scaling of the mass matrix (analytical case) and/or the absolute scaling of the

residue information (experimental case). Modal scaling is normally presented as

modal mass or modal A.

The driving point residue, Aqqr, is particularly important in deriving the modal

scaling.

Equation 2-39

For undamped and proportionally damped systems, the r-th modal mass of a multi

degree of freedom system can be defined as:

Equation 2-40

Where:

Mr = Modal mass

Qr = Modal scaling constant

ω r = Damped natural frequency

2

qrrqrqrrqqr QQA ψψψ ==
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If the largest scaled modal coefficient is equal to unity, Equation 2-40 will also

compute a quantity of modal mass that has physical significance. The physical

significance is that the quantity of modal mass computed under these conditions

will be a number between zero and the total mass of the system. Therefore, under

this scaling condition, the modal mass can be viewed as the amount of mass that is

participating in each mode of vibration. Obviously, for a translational rigid body

mode of vibration, the modal mass should be equal to the total mass of the system.

The modal mass defined in Equation 2-40 is developed in terms of displacement

over force units. If measurements, and therefore residues, are developed in terms of

any other units (velocity over force or acceleration over force), Equation 2-40 will

have to be altered accordingly.

Once the modal mass is known, the modal damping and modal stiffness can be

obtained through the following single degree of freedom equations:

Modal Damping

Equation 2-41

Modal Stiffness

Equation 2-42

rrr
MC σ2=

( )
rrrrrr

MMK
222

Ω=+= ωσ
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There are several references in the literature in which modal mass, stiffness, and

damping matrices are calculated from estimated modal parameters (Potter, 1982,

Shye, 1986, Richardson, 2000)

For systems with non-proportional damping, modal mass cannot be used for modal

scaling. For non-proportional case, and increasingly for undamped and

proportionally damped cases as well, the modal A scaling factor is used as the basis

for the relationship between the scaled modal vectors and the residues determined

from the measured frequency response functions. This relationship is as follows:

Modal A

Equation 2-43

This definition of modal A is also developed in terms of displacement over force

units. Once modal A is known, modal B can be obtained through the following

single degree of freedom equation:

Modal B

Equation 2-44

For undamped and proportionally damped systems, the relationship between modal

mass and modal A scaling factors can be stated.

Equation 2-45
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In general, modal vectors are considered to be dimensionless since they represent

relative patterns of motion. Therefore, the modal mass or modal A scaling terms

carry the units of the respective measurement. For example, the development of the

frequency response is based upon displacement over force units. The residue must

therefore, have units of length over force-seconds. Since the modal A scaling

coefficient is inversely related to the residue, modal A will have units of force-

seconds over length. This unit combination is the same as mass over seconds.

Likewise, since modal mass is related to modal A, for proportionally damped

systems, through a direct relationship involving the damped natural frequency, the

units on modal mass are mass units as expected.

2.4 Damping Mechanisms

In order to evaluate multiple degree of freedom systems that are present in the real

world, the effect of damping on the complex frequencies and modal vectors must be

considered. Many physical mechanisms are needed to describe all of the possible

forms of damping that may be present in a particular structure or system. Some of

the classical types are: 1) Structural Damping; 2) Viscous Damping; and 3)

Coulomb Damping. It is generally difficult to ascertain which type of damping is

present in any particular structure. Indeed most structures exhibit damping

characteristics that result from a combination of all the above. Rather than consider

the many different physical mechanisms, the probable location of each mechanism,

and the particular mathematical representation of the mechanism of damping that is

needed to describe the dissipative energy of the system, a model will be used that is

only concerned with the resultant mathematical form. This model will represent a



40

hypothetical form of damping, which is proportional to the system mass or stiffness

matrix. Therefore:

Equation 2-46

Under this assumption, proportional damping is the case where the equivalent

damping matrix is equal to a linear combination of the mass and stiffness matrices.

For this mathematical form of damping, the coordinate transformation that

diagonalizes the system mass and stiffness matrices also diagonalizes the system

damping matrix. Non-proportional damping is the case where this linear

combination does not exist. Therefore when a system with proportional damping

exists, that system of coupled equations of motion can be transformed to a system

of equations that represent an uncoupled system of single degree-of-freedom

systems that are easily solved. With respect to modal parameters, a system with

proportional damping has real-valued modal vectors (real or normal modes) while

a system with non-proportional damping has complex-valued modal vectors

(complex modes).

[ ] [ ] [ ]KMC βα +=
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3 CHAPTER 3

MODAL DATA ACQUISITION &

EXPERIMENTAL MODAL ANALYSIS

METHODS

3.1 Introduction

Modal data acquisition and related experimental modal analysis methods will be

explained in this chapter. Modal data acquisition can be seen as the first step of

experimental modal analysis. Acquisition of data, which will be used in the

formulation of a modal model, involves many important concerns.

These concerns include successful acquisition of data, prevention of various reading

and signal related errors, post processing of measured data, sampling theorems,

modal analysis and domain transformations will also be discussed in this Chapter.

A series of articles of Pete Avaitable are printed in annual journal of Society of

Experimental Techniques starting from March 1998 till March 2003. These

references are useful for understanding experimental modal analysis and modal data

acquisition.
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3.2 Modal Data Acquisition

In order to determine modal parameters, the measured input (excitation) and

response data must be processed and put into a form that is compatible with the test

and modal parameter estimation methods. Digital signal processing of the data is a

very important step in Modal data acquisition. Signal processing is one of the

technology areas where clear understandings of the Time-Frequency-Laplace

domain (Avaitable, 1998) relationships are important. The conversion of the data

from the time domain into the frequency and Laplace domain is important both in

the “measurement” and (subsequently) in the “modal parameter estimation”

processes. The process of representing an analog signal as a series of digital values

is a basic requirement of modern digital signal processing analyzers. In practice, the

goal of the analog to digital conversion (ADC) process is to obtain the conversion

while maintaining sufficient accuracy in terms of frequency, magnitude, and phase.

When dealing strictly with analog devices, this concern was satisfied by the

performance characteristics of each individual analog device. With the

improvements in digital signal processing, the performance characteristics of the

analog device are only the first criteria of consideration. The characteristics of the

analog to digital conversion has become the primary concern. This process of

analog to digital conversion involves two separate concepts, each of which are

related to the dynamic performance of a digital signal processing analyzer.

Sampling is the part of the process related to the timing between individual digital

pieces of the time history. Quantization is the part of the process related to

describing analog amplitude as a digital value. Primarily, sampling considerations
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alone affect the frequency accuracy while both sampling and quantization

considerations affect magnitude and phase accuracy.

3.2.1 Sampling

Sampling is the process of recording the independent variables of an analog

process. Sampling can be done in an absolute sense where the independent variable

is in terms of time. The process of sampling arises from the need to describe analog

time histories in a digital fashion. Sampling can be done, in general, by recording

digitized amplitude and a reference time of measurement; or in the more common

method of recording amplitudes at uniform increments of time ( )t∆ . Since all

analog to digital converters sample at constant sampling increments during each

sample period, all further discussions will be restricted to this case.

Sampling Theory:

Two theories or principles apply to the process of digitizing analog signals and

recovering valid frequency information. Shannon’s Sampling Theorem states, the

following in a very simple form:

Equation 3-1

Equation 3-2

Shannon’ Sampling theorem describes the maximum frequency in an accurate way.

The Nyquist frequency ( )
NyqF is the theoretical limit for the maximum frequency

2×≥ Nyqsamp FF

MaxNyq
FF ≥
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and is defined as one half of the sampling frequency, which means that there will be

at least two samples per period for any frequency below the Nyquist frequency.

Figure 3-1 Shannon Sampling Theorem (Ewins, 1995)

In order to be certain that Equation 3-1,and measurement requirements Hata!

Ba�vuru kayna�ı bulunamadı. are always met, an analog, low pass filter (LPF)

with a cutoff frequency below the Nyquist frequency must always be used when

acquiring data. Generally, LPF is built into the digital signal analyzer. Due to

practical limitations of the analog filters used prior to any digitization, the sampling

frequency is normally chosen to be greater than two times the maximum frequency

of interest. In this case, Equation 3-1 still applies as stated by the inequality. When a

factor greater than two is used the resulting maximum frequency (Fmax) is less than

the Nyquist frequency. Fmax being less than the Nyquist frequency may lead to some

confusion when the data is recorded and/or displayed. Figure 3-2 shows the
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common frequency relationship between the maximum frequency, the analog low

pass filter cutoff frequency and Nyquist frequency.

Figure 3-2 Basic Sampling Relationships

Rayleigh’s criterion was first formulated in the field of optics and has to do with

being able to resolve two closely related spaced frequency components. For a time

record of T seconds, the lowest frequency component measurable is:

Equation 3-3
T

f
1

=∆
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Figure 3-3 Rayleigh’s Criterion

With Shannon’s Sampling Theorem and Rayleigh’s criterion in mind, the selection

of sampling parameters are summarized as shown in Table 3-1 (Allemang, 1998).

Note that for this case, the equality Equation 3-1 has been used (
Nyqmax FF = ).
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Table 3-1 Digitization Equations ( Nyqmax FF = )

Sampling Relations

Sampling Parameter Automatically determines BlockSize Determines

t∆
t

Fmax
∆

=
2

1

tNT ∆=

tN
f

∆
=∆

1

maxF
maxF

t
2

1
=∆

tNT ∆=

tN
f

∆
=∆

1

f∆
f

T
∆

=
1 N

T
t =∆

f
N

Fmax ∆=
2

T
t

f
∆

=∆
1

N

T
t =∆

f
N

Fmax ∆=
2

3.2.2 Quantization

Quantization is the conversion of a specific analog value of amplitude to the nearest

discrete value available in the (analog to digital) converter. The process of

conversion involves representing a range of voltage by a fixed number of integer

steps. Normally, the range of voltage is chosen to be between positive and negative
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limits for a given voltage limit. The number of discrete levels is a function of the

number of bits in the analog to digital conversion.

3.2.3 ADC Errors

Most modern data acquisition systems minimize errors associated with the analog to

digital conversion of data to the extent that the average user does not need to be

concerned with the ADC errors. The primary ADC errors are aliasing and

quantization errors.

3.2.3.1 Aliasing

If frequency components are larger than one half the sampling frequency present in

the analog time history, amplitude and frequency errors will occur. These errors are

a result of the inability of the Fourier transform to decide which frequencies are

within the analysis band and which frequencies are outside the analysis band. This

problem is explained graphically in Figure 3-4 from a time domain point of view.

Figure 3-4 Aliasing Example
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3.2.3.2 Quantization Error

Quantization Error is the difference between the actual analog signal and the

measured digitized value. Since this error is a random event, averaging will

minimize the effect on the resulting measurements. Note that, when measuring

transient events that cannot be averaged, this error limits the achievable magnitude

accuracy.

3.2.4 Discrete Fourier Transform

The Fourier series concept explains that a signal can be uniquely separated into a

summation of sine and cosine terms at appropriate frequencies. This will generate a

unique set of sine and cosine terms due to the orthogonal nature of sine functions at

different frequencies, the orthogonal nature of cosine functions at different

frequencies and the orthogonal nature of sine functions compared to cosine

functions. If the choice of frequencies is limited to a discrete set of frequencies, the

discrete Fourier transform will describe the amount of each sine and cosine term at

each discrete frequency. The real part of the discrete Fourier transform describes the

amount of each cosine term; the imaginary part of the discrete Fourier transform

describes the amount of each sine term. Figure 3-5 (Allemang, 1998) is a graphical

representation of this concept for a signal that can be represented by a summation of

sinusoids.
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Figure 3-5 Discrete Fourier Transform Concept

The discrete Fourier transform algorithm is the basis for the formulation of any

frequency domain function in modern data acquisition systems. In terms of an

integral Fourier transform, the function must exist for all time in a continuous sense

in order to be evaluated. For the realistic measurement situation, data is available in

a discrete sense over a limited time period. The discrete Fourier transform,

therefore, is based upon a set of assumptions concerning this discrete sequence of

values. The assumptions can be reduced to two situations that must be met by every

signal processed by the discrete Fourier transform algorithm. The first assumption is

that the signal must be a totally observed transient with respect to the time period

of observation. If this is not true, then the signal must be composed only of
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harmonics of the time period of observation. If one of these two assumptions is not

met by any discrete history processed by the discrete Fourier transform algorithm,

then the resulting spectrum will contain bias errors accordingly. Much of the data

processing that is considered with respect to acquisition of data and the formulation

of a modal model revolves around an attempt to assure that the input and response

histories match one of these two assumptions. For a more complete understanding

of the discrete Fourier transform algorithm and the associated problems refer to

Richardson, (1978), Chopra, (1995), and Meirovitch, (1996).

3.2.4.1 Discrete Fourier Transform Errors

The primary digital signal processing error involved with making measurements is

an error associated with the discrete Fourier transform which is used to transform

the digital time data to digital frequency data. This error is a bias error that is known

as leakage or truncation error. Actually, it is not really an error but is a limitation of

discrete Fourier transform. The discrete Fourier transform is expected to give the

same answer as the integral Fourier transform, which is true when only certain

conditions are met concerning the time domain data.

3.2.4.1.1 Leakage Error

Leakage error is basically due to a violation of an assumption of the Discrete

Fourier transform algorithm. This assumption is that the true signal is periodic

within the sample period used to observe the sample function. In the cases where

both input and output are totally observable (transient input with completely

observed decay output within the sample period) or are harmonic functions of the
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time period of observation (T), there will be no contribution to the bias error. But if

these assumptions are violated, due to the truncation that occurs in the time domain

(T) there will be error which is referred as leakage.

Leakage is probably the most common and, therefore, the most serious digital signal

processing error. Unlike aliasing and many other errors, the effects of leakage can

only be reduced, not completely eliminated.

Discrete Fourier transform algorithm assumes that the data to be transformed is

periodic with respect to the frequency resolution of the sampling period. Since, in

general, the real world does not operate on the basis of multiples of some arbitrary

frequency resolution; this introduces an error known as leakage.

The concept of multiplication and convolution represents a transform pair with

respect to Fourier and Laplace transforms. More specifically, if two functions are

multiplied in one domain, the result is the convolution of the two transformed

functions in the other domain. Conversely, if two functions are convolved in one

domain, the result is the multiplication of the two transformed functions in the other

domain. When a signal is observed in the time domain with respect to a limited

observation period, T, the signal that is observed can be viewed as the

multiplication of two infinite time functions as shown in Figure 3-6 and Figure 3-7.

The resulting time domain function is, in the limit, the signal that is processed by

the Fourier transform which is shown in Figure 3-8. Therefore, by this act of

multiplication, the corresponding frequency domain functions of Figure 3-6 and
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Figure 3-7 will be convolved to give the result equivalent to the Fourier transform

of Figure 3-6. In this way, the difference between the infinite and the truncated

signal can be evaluated theoretically.

Figure 3-6 Time Domain Function: Theoretical Harmonic

Figure 3-7 Time Domain Function: Theoretical Window
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Figure 3-8 Time Domain Function: Multiplication of Signals

Figure 3-9 Frequency Domain: Theoretical Harmonic

Figure 3-10 Frequency Domain: Theoretical Window
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Figure 3-11 Frequency Domain: Convolved Signals

Therefore, when an analog signal is digitized in a Fourier analyzer, the analog

signal has been multiplied by a function of unity (for a period of time T) in the time

domain. This results in a convolution of the two signals in the frequency domain.

Figure 3-9 and Figure 3-10 are the Fourier transform of Figure 3-6 and Figure 3-7

respectively. Where Figure 3-11 is the convolution of Figure 3-9 and Figure 3-10.

This process of multiplying an analog signal by some sort of weighting function is

referred as "windowing". Whenever a time function is sampled, the transform

relationship between multiplication and convolution must be considered. Likewise,

whenever an additional weighting function such as a Hanning window is utilized,

the effects of such a window can be evaluated in the same fashion. The concept of

“windowing” is well explained in Avaitable, (1999),Ewins, (1995) .

3.2.5 Transducer Considerations

The transducer considerations are often the most overlooked aspect of the

experimental modal analysis process. Considerations involving the actual type and

specifications of the transducers, mounting of the transducers, and calibration of the
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transducers are often be some of the largest sources of error. Transducer

specifications are concerned with the magnitude and frequency limitations that the

transducer is designed to meet. Transducer specifications involves the measured

calibration at the time that the transducer was manufactured, the frequency range

over which this calibration is valid, and the magnitude and phase distortion of the

transducer, compared to the calibration constant over the range of interest. The

specifications of any transducer signal conditioning must be evaluated. Transducer

mounting involves evaluation of the mounting system to make sure whether the

mounting system has compromised any of the transducers specifications. The

evaluation normally involves the possibility of relative motion between the structure

under test and the transducer. Very often, the mounting systems, which are

convenient to use and allow ease of alignment with orthogonal reference axes, are

subject to mounting resonances which result in substantial relative motion between

the transducer and the structure under test in the frequency range of interest.

Therefore, the mounting system that should be used depends heavily on the

frequency range of interest and the test conditions. Test conditions include factors

such as temperature, roving or fixed transducers, and surface irregularity. A brief

review of many common transducer mounting methods is given in Table 3-2

(Allemang, 1998).
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Table 3-2 Transducer Mounting Methods

Transducer Mounting Methods

Method

Frequency Range

(Hz)

Main Advantages Main Disadvantages

Hand-held 20-1000 Quick look

Poor measurement quality for

long sample periods

Putty 0-200

Good axis alignment, ease

of mounting

Low frequency range, creep

problems during measurement

Wax 0-2000 Ease of application

Temperature limitations,

frequency range limited by

wax thickness, axis alignment

limitations

Hot glue 0-2000

Quick setting time, good

axis alignment

Temperature sensitive

transducers (during cure)

Magnet 0-2000 Quick setup

Requires magnetic material,

axis alignment limitations,

bounce problem with impact

excitation, surface preparation

Adhesive film 0-2000 Quick setup

Axis alignment limitations,

requires flat surface

Epoxy cement 0-5000

Mount on irregular surface,

good axis alignment

Long curing time

Dental cement 0-5000

Mount on irregular surface,

good axis alignment

Medium curing time, brittle

Stud mount 0-1000

Accurate alignment if

carefully machined

Difficult setup, requires drill

and tap
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3.3 Experimental Modal Analysis Methods

Categorizing different methods of Experimental Modal Analysis is helpful when

reviewing the literature in the area of Experimental Modal Analysis,

These methods are grouped according to:

1. Type of measured data that is acquired

a. Sinusoidal Input-Output Model

b. Frequency Response Function Model

c. Damped Complex Exponential Response Model

d. General Input-Output Model

2. Type of model used in modal parameter estimation stage

a. Parametric Model

i. Modal Model

ii. [M], [K], [C] Model

b. Non-Parametric Model

3. According to the domain of the modal parameter estimation model

a. Time Domain

b. Frequency Domain

c. Spatial Domain

In this Section, Experimental Modal Analysis method of Frequency Response

Function is explained in detail only. Frequency Response Function is a commonly

used method in Experimental Modal Analysis. (Richardson, 1986, Shye et al., 1987,
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Richardson, 2000). In the following sections Frequency Response Function Model

and Frequency Response Function Method are explained.

3.3.1 Frequency Response Function Model

The frequency response function method of experimental modal analysis is the most

commonly used approach to the estimation of modal parameters. This method

originated as a testing technique as a result of the use of frequency response

functions to determine natural frequencies for effective number of degrees of

freedom. In this method, frequency response functions are measured using

excitation at single or multiple points. The relationships between the input ( )ωF

and the response ( )ωX for both single and multiple inputs are shown in Equation

3-4 through Equation 3-6.

Single Input Relationship:

Equation 3-4

Equation 3-5
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Multiple Input Relationship:

Equation 3-6

The frequency response functions are used as input data to modal parameter

estimation algorithms that estimate modal parameters using a frequency domain

model and spatial domain model. Through the use of the Fast Fourier Transform,

the Fourier transform of the frequency response function, and the impulse response

function can be calculated for use in modal parameter estimation algorithms

involving time domain models.

3.3.2 Frequency Response Function Testing Method

For current approaches to Experimental Modal Analysis, the frequency response

function is the most important measurement to be made. When estimating

frequency response functions, a measurement model is needed that will allow the

frequency response function to be estimated from measured input and output data in

the presence of noise and errors. Some of the errors are:

• Leakage (FFT error)

• Aliasing (FFT error)

• Noise

• Equipment problem (Power supply noise)

• Cabling problems (Shield problem)
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• Rattles, cable motion

• Calibration (operator error)

• Complete system calibration

• Transducer calibration

Several important points to be remembered before attempting to estimate frequency

response functions are:

• The system (with the boundary conditions for that test) determines the

frequency response functions for the given input/output locations.

• It is important to eliminate or at least minimize all errors (aliasing,

leakage, noise, calibration, etc.) when collecting data.

• Since modal parameters are computed from estimated frequency

response functions, the modal parameters are only as accurate as the

estimated frequency response functions.

There are number of different Frequency Response Function testing configurations

(Avaitable, 2002). These different testing configurations are function of acquisition

channels or excitation sources. These testing configurations are;

• Single input/single output. (SISO)

• Only option with 2 channel data acquisition system.

• Longest testing time. Roving inputs. Roving outputs.

• Time invariance problems between measurements.
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• Single input/multiple output. (SIMO)

• Multiple channel system (3 or more). (One ADC channel for each

response signal to be measured plus one ADC channel for an input

signal.)

• Shorter testing time than SISO. Transducers not necessarily moved.

• Consistent frequency and damping for data acquired simultaneously.

• Time invariance problems between measurements from different

inputs.

• Multiple input/single output. (MISO)

• Multiple channel system required (3 or more.). (One ADC channel

for each input signal to be measured plus one ADC channel for a

response signal.)

• Long testing time. Roving response transducer.

• More than one input location per measurement cycle.

• Detects repeated roots. Maxwell reciprocity checks.

• Time invariance problems between measurements from different

responses.

• Multiple input/multiple output. (MIMO)

• Multiple channel system (up to 512 channels). Increased set-up time.

• Large amount of data to be stored and organized.

• Shortest testing time.
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• Consistent frequency and damping for all data acquired

simultaneously.

• Detects repeated roots. Maxwell reciprocity checks.

• Best overall testing scheme.

3.3.3 Excitation

Excitation is any form of input that is used to create a response in a structural

system. This can include environmental or operational inputs as well as the

controlled force input(s) that are used in Experimental Modal Analysis. The

following section is limited to the force inputs that can be controlled.

The primary assumption concerning the excitation of a linear structure is that the

excitation is observable. Whenever the excitation is measured, this assumption

simply implies that the measured characteristic properly describes the actual input

characteristics.

If the excitation is not measured, modal scaling parameters (modal mass, modal A,

residues, etc.) cannot be estimated. Even when the estimation of modal scaling

parameters are not required still an assumption must be made, concerning the

characteristics of the excitation of the system.

3.3.3.1 Classification of Excitation

Inputs which can be used to excite a system in order to determine frequency

response functions belong to one of the two classifications (Avaitable, 1998,
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Avaitable 1999). a) Random signals, b) Deterministic signals. Random signals are

defined by their statistical properties over some time period and no mathematical

relationship can be formulated to describe the signal whereas deterministic signals

can be represented in an explicit mathematical relationship. Deterministic signals

are further divided into “periodic” and “non-periodic” classifications. The most

common inputs in the periodic deterministic signal designation are sinusoidal while

the most common inputs in the non-periodic deterministic designation are transient

in form. Mostly periodic input signals are generated by using shaker. Figure 3-12

shows shaker used in experimental modal analysis.

Figure 3-12 General view of test Configuration: Shaker
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Swept sine periodic deterministic signals are used in this study for frequency

response function estimation. The swept sine signal is a periodic deterministic

signal with a frequency that is an integer multiple of the FFT frequency increment.

Sufficient time is allowed in the measurement procedure for any transient response

(due to change in frequency) to decay so that the resultant output response is

periodic with respect to the sample period. Therefore, the total time needed to

compute an entire frequency response function are functions of the number of

frequency increments required and time allowed for transient responses to decay.

The following paragraphs summarize the terminology used in swept sine excitation

method.

• Delay Blocks: The number of continuous blocks of excitation that take

place without the associated input and output data being acquired are

referred as Delay Blocks. Delay Blocks are needed in order to give the

transient response to decay out of the response signal. Transient responses

are occurred due to start or change in the periodic excitation. So both input

and output responses will be periodic within the observation period (T). This

is why swept sine excitation method is time consuming. The length of each

delay block is equal to the length of the observation period (T). Number of

delay blocks is normally chosen as integer. The delay blocks are not

recorded and are not used in FRF estimation.
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• Capture Blocks: The number of capture blocks refers to the number of

continuous blocks of time data (input and output) that are recorded

(captured). Number of capture blocks is also the number of cyclic averages

that will be used to estimate FRF measurement.

There are several periodic and non-periodic deterministic signals and also several

non-deterministic signals. Since the details of signal type properties are out of the

scope this study they are not explained here. The following table shows a general

list of most commonly used for frequency response function estimation (Allemang,

1998).

Table 3-3 Various signals used in Frequency Response Estimation

Name Signal Type

Swept Sine Periodic Deterministic

Periodic Chirp Periodic Deterministic

Impact (Impulse) Non periodic(transient) Deterministic

Step Relaxation Non periodic(transient) Deterministic

Pure Random Ergodic, stationary random

Pseudo Random Ergodic, stationary random

Periodic Random Ergodic, stationary random

Burst Random

Both , transient deterministic and

Ergodic stationary random
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4 CHAPTER 4

MODAL PARAMETER ESTIMATION

4.1 Introduction

Modal parameter estimation is a special case of system identification where the a

priori model of the system is known to be in the form of modal parameters.

Therefore, regardless of the form of measured input-output data, the form of the

model used to represent the experimental data can be stated in a modal model using

temporal (time or frequency) and spatial (input DOF and output DOF) information

(Avaitable, 1999). There exist several modal parameter estimation algorithms that

are being used privately or being sold as a part of commercial software. Modal

parameter estimation algorithms are grouped according to the data domain that they

are being used (Michael et al., 1992). For the purpose of this study, a second order

frequency domain algorithm is examined and used.

4.2 Modal Parameters:

Modal identification involves estimation of the modal parameters of a structural

system from measured input-output data. Most current modal parameter estimation

methods use measured data in the form of frequency response functions (FRF) or an
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equivalent impulse response function(IRF),which is typically found by taking

inverse Fourier transform of the frequency response function. Modal parameters

include the complex-valued modal frequencies ( )rλ , modal vectors { }( )rψ and

modal scaling (modal mass or modal A). Additionally, modal participation vectors

{ }rL and residue vectors { }rA are used. Modal participation vectors are a result of

multiple reference modal parameter estimation algorithms and relate how well each

modal vector is excited from each of the excitation reference locations included in

the measured data. The combination of the modal participation vector and the

modal vector for a given modes give the residues for that mode. In general, these

two vectors represent portions of the right and left eigenvectors associated with the

structural system for a specific mode of vibration.

Modal parameters are considered to be global properties of a system. The concept

of “global modal parameters” simply means that there is only one answer for each

modal parameter and that the modal parameter estimation solution procedure

enforces this constraint (Richardson 1986). Every frequency response or impulse

response function measurement theoretically contains the information that is

represented by the characteristic equation, the modal frequencies and damping. If

individual measurements are treated in the solution procedure independent of one

another, there is nothing to guarantee that a single set of modal frequencies and

damping will be generated. Most of the current modal parameter estimation

algorithms estimate the modal frequencies and damping in a global sense.
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4.3 Complex Mode Indication Function (CMIF)

Complex Mode Indication Function is an algorithm based on singular value

decomposition (SVD), (Avaitable 2001) methods applied to multiple or single

reference FRF measurements. CMIF was first developed in order to identify the

proper number of modal frequencies, particularly when there are closely spaced or

repeated modal frequencies (Shih et al. 1989). CMIF is capable to indicates the

existence of real normal or complex modes and the relative magnitudes of each

mode. Furthermore, CMIF yields the corresponding mode shape and modal

participation vector.

CMIF is defined as the singular values, solved from a FRF matrix, at each spectral

line. The CMIF plot is the plot of these Eigenvalues on a log magnitude scale as a

function of frequency. The peaks detected on the CMIF plot indicate the existence

of modes, and the corresponding frequencies of these peaks give the damped natural

frequencies for each mode. The number of modes detected in CMIF determines the

minimum number of degrees-of-freedom of the analytical system and the order of

the system equation used in the algorithm.

4.3.1 Theory of SVD and CMIF

For multi degree of freedom systems Frequency Response Function formulation is

given in Equation 2-38 and modified here to represent discrete input output

relations.
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Where

oN is the number of response point(output)

iN is the number of excitation point (input)

( )[ ]ωH is the FRF matrix of size oN by iN

[ ]rA is the residue matrix of size oN by iN

{ }
r

φ is thr the mode shape of size oN by 1

{ }
r

L is the thr modal participation factor of size iN by l

rQ is the scaling factor for the thr
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Equation 4-2

Thus the contribution of the thr mode is { } { }H

r

r

r

r L
j

Q

λω
φ

−
.

( )[ ] { } { }H

r

N

r r

r
rNN L

j

Q
H

io �
=

×
−

=
2

1 λω
φω



71

By taking the singular value decomposition of the FRF matrix at each spectral line

(say kω ), a similar expression of Equation 4-2 is obtained. Frequency Response

Function at each spectral line is represented with matrix A

[ ] ( )[ ]
io NNkHA

×
= ω

[ ]( ) ( )[ ] ( )[ ] ( )[ ]H

kkk VUASVD ωωω �=

Equation 4-3

Where

( )[ ]kU ω is the left singular matrix of size eo NN × which is an unitary matrix

( )[ ]kω� is the singular value matrix of size ee NN × , which is a diagonal matrix..

( )[ ]kV ω is the right singular matrix of size ie NN × which is also an unitary matrix.

eN is the number of dominant modes. The dominant modes are the modes that

contribute to the response of the structure at this particular frequency ω .

As stated above ( )[ ]kU ω and ( )[ ]kV ω are unitary matrices. Thus

( )[ ] ( ) ( ) ( ) IVVUU
H

kk

H

kk == ωωωω **
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Also due to the nature of the SVD ( )kU ω and ( )kV ω matrices have orthogonal

colums.

At this point is it easy to see that Equation 4-2 and Equation 4-3 are identical. If the

number of effective modes ( eN ) is less than or equal to the smaller dimension of

the FRF matrix, ie. eN ≤ iN or eN ≤ oN , the singular value decomposition leads

to mode shapes (left singular vectors) and modal participation factors (right singular

vectors). The singular value is then equivalent to the scaling factor rQ divided by

the difference between the discrete frequency and the modal frequency rj λω − .

Since for a given mode, the scaling factor is a constant, the closer the modal

frequency is to the discrete frequency, the larger the singular value will be.

Therefore, the damped natural frequency is the frequency at which the maximum

magnitude of the singular value occurs. Since the CMIF plot is defined as the plot

of the diagonal elements of singular value matrix ( ( )[ ]kω� ) solved form FRF matrix

( [ ]A ) at each spectral line on a log magnitude scale. Thus the peaks in CMIF plot

indicate the existence of modes. A typical CMIF plot is given in Figure 4-2.
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Figure 4-1 FRF matrix [ A ] for spectral line kω

Figure 4-2 CMIF Plot
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4.4 Enhanced Frequency Response Function (eFRF)

Enhanced Frequency Response Function is a weighted average of all of the

measured frequency response functions. The singular vectors obtained from SVD

(mode shapes and modal participation factor) are used as weighting functions. eFRF

isolates a single mode so that a simple single degree of freedom parameter

estimation algorithm is used to estimate the Eigenvalues and modal scale factors for

the enhanced mode.

Thus for the thr mode at spectral line k

Equation 4-4

Where

( ){ }rU ω is unitary vector of size 1×oN

( ){ }rV ω is unitary vector of size 1×iN

( )[ ]kH ω is the FRF matrix of size oN by iN

Thus for the thr mode at spectral line k ( )
rkeFRF ω is complex valued scalar

Enhance frequency response function plot is drawn by calculating ( )
rkeFRF ω at

each spectral line.

Since the mode shapes and modal participation factors from singular value

decomposition are unitary vectors, by substituting Equation 4-2 into Equation 4-4,

the enhanced FRF is actually the decoupled single mode response function:

Therefore for the thr mode

( ) ( ){ } ( ) ( ){ }rk

H

rrk VHUeFRF ωωωω =
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Equation 4-5

That is why it is said that “eFRF isolates a single mode”. Looking to the Equation

4-5 is easy to see that for the thr mode the eFRF is only related with the modal

scaling factor and pole of the thr mode.

4.5 Pole Estimation

As stated in Section 4.3, the peaks in CMIF plot indicate the existence of Modes.

The corresponding frequencies of a peak in CMIF plot is damped natural

frequencies. Poles of the measured data are estimated from eFRF plots. Second

Order Frequency Domain UMPA model is used for pole estimation. Additional B

terms are used for the modes that are out of frequency range (residual effect). The

general form of UMPA model is given in Equation 4-6. The Second Order

Frequency Domain UMPA model is given in Equation 4-7. The second order

formulation is analogous to the MCK model formulation (See Section 2.2.1.2). The

second order equation of motion for a single degree of freedom MCK system in

frequency domain is given in Equation 4-8 :

Equation 4-6
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Equation 4-7

Equation 4-8

In Equation 4-7, the enhanced frequency response { }efrf (or sometimes { }eH is

known for the frequency band of interest, whereas the index matrix [R] is unity load

vector. The A's and B's in Equation 4-7 are the unknowns. A least squares solutions

is formulated for the solution of A&B. Least square solution is formulated by

assuming [A2] = [I], thus the multiplier of [A1] is taken to the right side, whereas

[Bn] and R are taken to the left.

Equation 4-9

Thus;

Equation 4-10

Where (
+
) indicates generalized inverse operation (pseudo inverse)
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Since the second order UMPA formulation is analogous to the MKC model

formulation, the poles of UMPA model is exactly same as for MKC model.

For MCK model the state space formulation is as follow;

Equation 4-11

Define

Equation 4-12

Equation 4-13

Substituting Equation 4-12 and Equation 4-13 to Equation 4-11 gives;

Equation 4-14

Thus in state space formulation (Kashani, www.deicon.com) there exist two sets of

equation which are;

( ) ( ) ( )tKxtxCtxM 122 −−=�

and

( ) ( )txtx 21 =�

The two set of equations in matrix form is given in Equation 4-15.

( ) ( ) ( ) 0=++ tKxtxCtxM ���

( ) ( )txtx =1

( ) ( )txtx �=2

( ) ( ) ( ) 0122 =++ tKxtxCtxM �
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Equation 4-15

Letting

Equation 4-16

Thus, the poles of the MCK model is equivalent to the eigen values of the

coefficient matrix(companion matrix) given in Equation 4-15.Since second order

UMPA formulation is analogous to the MKC model formulation, the poles of

UMPA model is also equivalent to the eigenvalues of the coefficient matrix. Thus

for second order UMPA formulation companion matrix becomes

Keeping in mind that [A2] = [I]
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Thus the poles of the UMPA model is calculated as shown in Equation 4-17

Equation 4-17
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One important point in companion matrix formulation is that, terms in Companion

matrix can be rearranged so that the poles are calculated by taking the eigenvalues

of the negative companion matrix. In that case the companion matrix becomes

�
�

�
�
�

�

−
=

01

01 AA
a

Where the poles are calculated as in Equation 4-18

Equation 4-18

4.6 Scaling Computation

Once the modal frequencies (poles) and mode shapes are estimated, the associated

modal scaling factor and corresponding modal A, and residues can calculated by

using Equation 4-5.

Keeping Equation 2-43 in mind;

For Mode r;
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Since the mode shapes and modal A are calculated, it is now possible to calculate

residue terms, by Equation 4-19.

Equation 4-19

Since residual terms are calculated. The frequency response functions can be re-

synthesized by using Equation 2-37

Ar
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5 CHAPTER 5

MODAL DATA PRESENTATION/VALIDATION

5.1 Introduction

The measured modal model data and constructed modal model needs to be validated

against completeness, orthogonality, consistency and similar criteria.

After the modal parameters are determined, several procedures can be used for

modal data (model) presentation/validation. Some of the procedures that may be

used are:

• Measurement Synthesis

• Visual Verification (Animation)

• Finite Element Analysis

• Modal Vector Orthogonality

• Modal Vector Consistency (Modal Assurance Criterion)

• Modal Modification Prediction

• Modal Complexity

• Modal Phase Co linearity and Mean Phase Deviation
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All of these methods depend upon the evaluation of an assumption concerning the

modal model. Unfortunately, the success of a validation method only defines the

validity of the assumptions; the failure of a modal validation does not generally

define what the cause of the problem is. For the purpose of this study four modal

data presentation /validation procedures are studied.

5.2 Measurement Synthesis

The simplest validation procedure is to compare the data synthesized from the

modal model with the measured data. This comparison is particularly effective if

the measured data was not part of the data used to estimate the modal parameters.

Comparison of generated data against measured data serves as an independent

check of the calculated modal parameter estimation variables.

Figure 5-1 Typical FRF Synthesis
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5.3 Visual Verification (Animation)

Another relatively simple method of modal model validation is to evaluate the

modal vectors visually. While visualization of mode shapes can be accomplished

using plotted modal vectors superimposed over the undeformed geometry, the

modal vectors are normally animated (superimposed upon the undeformed

geometry) in order to quickly assess the modal vector.

Figure 5-2 Visual Verification of Modal Vectors

5.4 Finite Element Analysis

The mode shapes obtained from the finite element model of a structural system can

also be used for modal model validation. While the problem of matching the

number of analytical degrees of freedom Na to the number of experimental degrees

of freedom Ne causes some difficulty, the modal frequencies and modal vectors can

be compared visually or by consistency checks. Unfortunately, when the

comparison is not sufficiently acceptable, the question of error in the experimental

model versus error in the analytical model cannot be easily resolved. Generally,
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reasonable agreement can be found in the first ten deformable modal vectors but

agreement for higher modal vectors is more difficult. Some of the analytical modes

may not be measured during test, especially if the accelerometers are placed in one

direction only (i.e. lateral modes will be missed if no accelerometers are placed in

lateral direction). Also modal frequency differences between the measured and

modeled systems are expected due to variation in the assumed variables.

5.5 Modal Assurance Criterion

Modal Assurance Criterion (MAC) provides a measure of consistency between

estimated modal vectors. This measure (MAC) provides an additional confidence

factor in the evaluation of a modal vector when different excitation locations are

used. The modal assurance criterion (MAC) also provides a method of determining

the degree of causality between estimates of different modal vectors of the same

system.

MAC also provides a method of easily comparing estimates of modal vectors

originating from different sources. The modal vectors from a finite element analysis

can be compared against with those determined experimentally as well as modal

vectors determined by way of different experiments or modal parameter estimation

methods. In this way, effect of different methods can be compared in order to

evaluate the mutual consistency of different procedures, on the estimation of modal

vectors.
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MAC is defined as a scalar constant (between zero and one) relating the portion of

the auto moment of the modal vector that is linearly related to the reference modal

vector as follows:

Equation 5-1

The constant takes values from zero, representing no consistent correspondence at

all, to one, representing exact duplicate. In this manner, if the modal vectors under

consideration truly exhibit a consistent relationship, the modal assurance criterion

should approach to unity.
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6 CHAPTER 6

EXPERIMENTAL MODAL ANALYSIS

SOFTWARE

6.1 Introduction

Today modal analysis softwares are available in markets with prices starting from

500 Euro. Examples are X Modal, FemTool and SDT. Since these software

packages were not available in Structural Mechanics Lab, this enforced us to write

Experimental Modal Analysis software. Matlab platform is chosen for programming

due to its rather simple architecture and ease of use for matrix manipulations. There

are many advantages of Matlab platform: Firstly most of the required functions are

readily available within Matlab (such as matrix inverse, eigenvalue solution, matrix

manipulations). Secondly the written software can be converted to a stand-alone

application where the end-user does not require Matlab in order to run the written

software (Marchand 1999). The short name of the written software is (Experimental

Modal Analysis Software) EMAS.
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6.2 Structure of EMAS

EMAS is a user friendly graphical user interfaced software. It consists of several

parts which are explained in the following Sections. In addition to EMAS, two more

programs were prepared that can be either executed within EMAS or executed

separately These programs are;

a) Finite Element Updating Software (Calibration Software): The theory and

software will be explained in Chapter 9.

b) Frequency Response Function Generator Software: Generates FRFs

according to the given M C K matrices, which is used to generate synthetic

FRFs to verify EMAS results.

The appearance of EMAS is given in Figure 6-1.

Figure 6-1 Appearance of EMAS
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EMAS consists of 3 menu items. These are:

• Commands,

• FEU, and

• FRF Generator.

Each menu item is explained in detail in the following Sections.

6.2.1 Commands

“Commands” is the first menu item of EMAS. It consists of four sub menu items.

These sub menu items are:

• Input File Editor

• Frequency Response Function Loader

• Modal Parameter Estimator.

• Exit

Figure 6-2 Items under Command pull down menu
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These sub-menu items are further explained below.

6.2.1.1 Input File Editor

“Input File Editor” menu item is at the beginning of EMAS software, at which the

general model geometry used in Experimental Modal Analysis is defined. Clicking

on “Input File Editor” activates Input File Editor program. The usage of the Input

File Editor program is rather simple. Nodes, Elements, Constraints, and Masters are

defined in this part. Input files can be prepared in Input File Editor program or in

any word-processor. The extension of input files created by Input File Editor

program is fea as in the form of “*.fea”. Fea is the abbreviated form of Finite

Element Analysis The appearance of Input File Editor program is given in Figure

6-3. Once input file is prepared by clicking Load File button the commands

displayed in the Input File Editor program is executed Figure 6-3.
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Figure 6-3 Input File Editor Program

There are several commands used in input files that define the model. These

commands are briefly explained below.

6.2.1.1.1 NODE

Usage: Node id, x, y, z

This Command specifies the location and number of a node in three-dimensional

(3D) Cartesian coordinates. “id” is the node number, and it is a positive integer.

Every node has a unique node number. Variables x, y, z are the real coordinates of

the node id in 3D space.
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An example illustrating the use of the command “node” is given below.

Node 1, 0, 0, 0

- Specifies node number 1 with coordinates x =0, y =0, z=0.

6.2.1.1.2 NODEGEN

Usage: NODEGEN n1, n2, (num, start, offset)

This command generates additional nodes linearly between two previously defined

nodes. The new nodes are spaced evenly between n1 and n2, where n1, n2 are the

two end node numbers (n1 must be less than n2). num (optional) is the total number

of nodes to be generated. Num defaults to the difference between the node numbers

n1 and n2. start (optional) is the start node number of the new nodes to be

generated. Start defaults to n1+1. offset (optional) is the difference in node number

between each newly generated node. Offset defaults to +1. Offset can also be

negative.

Examples:

Nodegen 1, 11

- Generates 9 nodes numbered 2,3,..,10 located on a straight line with equal spacing

between nodes 1 and 11.

Nodegen 1, 11, 9, 100

- Generates 9 nodes numbered 100, 101,.., 109 located on a straight line with equal

spacing between nodes 1 and 11.
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Nodegen 1, 11, 3, 100, 10

- Generates 3 nodes numbered 100, 110, 120 located on a straight line with equal

spacing between nodes 1 and 11.

6.2.1.1.3 ELEMTYPE

Usage: ELEMTYPE elemname

This command specifies the type of element that will be generated by subsequent

Elem and Elemgen commands. The latest Elemtype command becomes valid and

replaces the previously defined ones. Elemname is the name of the particular

element type.

Available element types are

a) 2 dimensional frame element (Beam2d)

b) 3 dimensional frame element (Beam3d)

c) 1 dimensional spring element (Spring)

d) 2 dimensional mass element (Mass2d)

e) 3 dimensional mass element (Mass3d)

f) 2 dimensional truss element (Truss)

g) 3 dimensional spring element (Spring3d)

Example:

Elemtype beam3d

- Subsequent elements are 3-dimensional beam elements.
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6.2.1.1.4 ELEM

Usage: ELEM id, n1, (n2, n3,...)

This command creates an element between two previously defined nodes. The type

of element must have been previously specified by an Elemtype command.

Different elements require different number of nodes, but they all require at least

one node Available elements are given in Section 6.2.1.1.3. Although elements

requiring more than 2 nodes (Shell elements, plate elements etc) are not prepared,

elem command supports this type of elements also. id is the element number, which

is a positive integer. Every element must have a unique element number. n1, n2, ...

are the node numbers that define an element. The number of nodes required

depends on the type of the element to be generated. All of the nodes must have been

previously defined.

Example:

Elem 100, 1, 2

- Generates element number 100 of type previously specified in last Elemtype

command, between nodes 1 and 2.

6.2.1.1.5 ELEMGEN

Usage: ELEMGEN elemid, num, (elemstart, eleminc, nodeinc)

This command generates multiple elements based on the nodes of a template

element. The new elements are generated by adding a node number increment

(nodeinc) to each of the nodes of the template element. The generation is done for a
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specified number of times. Note that every node to be used in the element

generation process must already be defined, and every element number to be

generated must not be previously defined. Also, the current element type must be

the same as the element type of the template element. Variable elemid is the

element number of the template element. num is the number of elements to be

generated. elemstart (optional) is the start element number of the elements to be

generated. Elemstart defaults to elemid+1. Variable eleminc (optional) is the

increment of the the generated element numbers. Variable eleminc can be also

negative and defaults to 1. Variable nodeinc (optional) is the increment of the node

numbers of the template element which can also be negative. The default value of

nodeinc is 1.

Examples:

Elem 100, 1, 2

Elemgen 100, 3

- Generates the three elements:

Elem 101, 2, 3

Elem 102, 3, 4

Elem 103, 4, 5

Elem 100, 1, 2, 5

Elemgen 100, 4, 200, 10, 2

- Generates the four elements:
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Elem 200, 3, 4, 7

Elem 210, 5, 6, 9

Elem 220, 7, 8, 11

Elem 230, 9, 10, 13

6.2.1.1.6 CONSTNODE

Usage: CONSTNODE nodeid, (num, inc)

This command constrains (grounds) one or more nodes,by fixing. all six degrees of

freedom of the nodes. Variable nodeid is the node number of the first node to be

constrained. Variable num (optional) is the total number of nodes to be constrained.

Default value of num is 1.Variable inc (optional) is the increment between every

node number that is constrained. Default value of inc is 1.

Examples:

Constnode 50

- Constrains node number 50

Constnode 50, 4

- Constrains nodes number 50, 51, 52, 53

Constnode 50, 4, 2

- Constrains nodes number 50, 52, 54, 56
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6.2.1.1.7 CONSTDOF

Usage: CONSTDOF nodeid, dofn, (num, inc)

This command constrains specified degrees of freedom of one or more nodes.

Degrees of freedom are numbered as follows:

1. Translation along the X-axis

2. Translation along the Y-axis

3. Translation along the Z-axis

4. Rotation about the X-axis

5. Rotation about the Y-axis

6. Rotation about the Z-axis

Variable nodeid is the node number of the first node with a DOF to be constrained.

Variable dofn is the number of the DOF to be constrained, and takes a value

between 1 and 6. Variable num (optional) is the total number of DOFs to be

constrained. The default value for num is 1.Variable inc (optional) is the increment

between nodes which defaults to 1.

Examples:

Constnode 50, 3

- Constrains Z-translation for node number 50

Constnode 50, 5, 4, 10

- Constrains Y-rotation for node numbers 50, 60, 70, 80
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6.2.1.1.8 MASTERNODE

Usage: MASTERNODE nodeid, (num, inc)

The format of Masternode command is almost identical as Constnode command.

The only difference is that degrees of freedom of the selected nodes are not

constrained but chosen as masters.

6.2.1.1.9 MASTERDOF

Usage: MASTERDOF nodeid, dofn, (num, inc)

The format of Masterdof command is almost same as Constdof command. The only

difference is that the selected degrees of freedom are not constrained but chosen as

master degrees of freedom.

6.2.1.1.10 ALLMASTERDOF

Usage: ALLMASTERDOF (dofn)

This command is used to easily select types of degrees of freedom as masters. If the

number dofn is given, between 1 and 6, then every degree of freedom of that type

in the model is selected as a master dof. If Allmasterdof is executed without a

number following the command then every degrees of freedom is selected as a

master dof. Variable dofn (optional) is the degrees of freedom number type to be

select as master dof. Master degrees of freedoms are used in Frequency Response

Function Loader (FRFL) which is explained in the following Section. If a degrees

of freedom is not defined as a master degrees of freedom, it is not possible to assign

the acquired (measured) modal data to that degrees of freedom.
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Examples:

Allmasterdof

- All degrees of Freedoms are selected as masters.

Allmasterdof 1

- All X-translation degrees of freedom are selected as masters.

6.2.1.2 Frequency Response Function Loader

Frequency Response Function Loader (FRFL) is a menu item defined under the

Commands item (see Figure 6-2 ). This is the part of EMAS where acquired

(measured) modal data is imported into the program. Clicking on FRFL menu item

activates the FRFL program. The usage of FRFL is quite simple and further

described in Section 6.2.1.2.1. The appearance of FRFL program is given in Figure

6-4 for a cantilever beam model.
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Figure 6-4 Appearance of FRFL Program

6.2.1.2.1 How Does FRFL Program Work

First step to do in FRFL is to define Number of Input DOF and Number of

Output DOF. These argument should be less than or equal to number of masters

degrees of freedom. Note that master degrees of freedom are defined in Input File

Editor program, as explained in Sections 6.2.1.1.8, 6.2.1.1.9, and 6.2.1.1.10. After

entering these arguments, by clicking Define I/O the number of input and output

degrees of freedom is stored in the program. Then for each input-output degrees of

freedom pair, a data file obtained from modal data acquisition is imported. If the

data obtained from modal data acquisition is the form of accelerance (A/F), this is

converted into receptance (X/F) by the help of a radio button named Conversion
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from A/X is required. After importing data (obtained from modal data acquisition)

for all input-output d.o.f pairs, clicking Save and Continue button ends FRFL

program. After clicking Save and Continue button, a question dialog box appears

asking if saving the FRF Data is required. If YES is selected FRF data file is saved

to a file (which its name is defined by the user), otherwise without saving the FRF

data to a file the program is ended.

Saving the FRF data to a file is useful for further use. Next time running EMAS the

user can directly jump to MPE part of EMAS without executing FRFL program.

Keeping in mind that when FRFL menu item was first clicked, a question dialog

box was appeared asking whether loading FRF data from file is required or not.

6.2.1.3 Modal Parameter Estimation

Modal Parameter Estimation (MPE) is a menu item defined under the

Commands item (see Figure 6-2 ). As a part of EMAS, MPE is used to extract

modal parameters from the measured data obtained by modal data acquisition. The

general appearance of MPE program is given in Figure 6-4 for an example FRF data

generated from 3 dof cantilever beam model.
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Figure 6-5 MPE Program

6.2.1.3.1 How Does MPE Program Work

First step in MPE is to define the frequency range of interest. This is achieved by

defining the Lower Bound Frequency and Upper Bound Frequency. After the

Run button is clicked the CMIF plot is drawn. As stated in Chapter 4, Section 4.3,

the picks in CMIF plot indicates the existence of a mode. The peaks in CMIF plot

are selected with Peak Pick button. After clicking Peak Pick Button, it is required

to click a point on the Plot. The peak pick algorithm automatically moves towards

uphill, locates, and picks the peak. Alternatively the peaks can also be selected

manually. This is achieved by checking the Manual Peak check box. When the

Frequency
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Manual Peak check is on, it is required to select the peak manually. This procedure

is repeated until all peaks are selected. Clicking the Enhanced FRF button displays

the eFRF plots for selected peaks (modes). The theory of eFRF is explained in

Chapter 4, Section 4.4. The appearance of Enhanced FRF plot is given in Figure

6-6.

Figure 6-6 Enhanced FRF Window

The MAC Correlation button in Figure 6-4 displays a bar chart of the MAC values

of selected peaks (modes). The theory of MAC is explained in Chapter 5, Section

5.5. The appearance of MAC Correlation windows is given in Figure 6-7
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Figure 6-7 MAC Correlation Window

The Calculate Poles Button calculates the Poles of the selected peaks. The theory

of Pole calculation is explained in Chapter 4, Section 4.4.

Mode Animation button animates modal vector of selected modes. Mode

animation is a method of modal model validation which is explained in Chapter 5,

Section 5.3. Mode Shape Animation Window is shown in Figure 6-8 displaying the

third mode of vibration of a cantilever example beam The modal frequency and

percent damping rations are also displayed in the same window. The speed of
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animation and the magnitude of modal vectors are adjusted using the vertical sliding

bar displayed at the left and right side of the window, respectively (Figure 6-9).

While mode shapes are animated, it is not possible to adjust sliding bars.

Figure 6-8 Mode Shape Animation Window
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Figure 6-9 Vertical sliding bars used for adjusting the speed and magnitude of the mode shapes

Plot Individual FRF Fits Button plots regenerated FRF on top of the measured

FRF. This is a method of modal model validation which is explained in Chapter 5,

Section 5.2 as Measurement Synthesis. The appearance of Individual FRF Fit

Windows is given in Figure 6-10. The top figure displays the magnitude of

regenerated and measured FRF while the bottom part displays the phase

information for changing frequency.
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Figure 6-10 Individual FRF Fit Window

Generate Report Button (Figure 6-5) creates a text file which contains information

about the Nodes, element connection, constraints, masters, and modal parameters

(natural frequencies, damping, mode shapes). The appearance of Generate Report

screen is given Figure 6-11
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Figure 6-11 Generate Report

The last button in MPE program is Quit Button (Figure 6-5). The following screen

appears by clicking the Quit button.

Clicking the Yes button causes the MPE results to be saved in a MATLAB data file

with MAT extension.. The data file name is defined by user.As the MPE program

ends, it returns to the main program, EMAS. Clicking No button ends MPE

program without saving, and returns to the main program EMAS. Clicking Cancel

button cancels the “Quit” command and returns back to the MPE program without

quitting.
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6.2.1.4 FRF Generator

Clicking FRF Generator (see Figure 6-1) activates FRF Generator part of EMAS.

FRF can be generated if the mass (M), stiffness (K), damping(C) matrices of a

system are known. Equation used for FRF generation is given in Equation 6-1.

Equation 6-1

Where kω is a frequency variable that can take any value within the range of

interest.

Appearance of FRF Generator is shown in Figure 6-12.

Figure 6-12 FRF Generator
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By Clicking DEFINE M C K, Figure 6-13 appears which allows user to import

binary texts files containing MCK matrices. Block size is used to define the number

of data points to be generated between minimum and maximum frequencies.

Figure 6-13 DEFINE M C K

Damping matrix can be defined to be proportional as stated in Equation 2-46.

Proportional damping is defined by clicking Proportional Damping button. As

shown in Figure 6-14.

Figure 6-14 Proportional Damping
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FRF Generator calculates the Eigenvalue solution of M C K system by using state

space formulation. The state space formulation of M C K system is explained in

Chapter 4, Section 4.5. The range of frequency is automatically defined to be 1.5

times of the highest natural frequency. The frequency step size is defined as

frequency range divided by Block Size.

By FRF generator program any FRF with known M C K matrices can be generated

and printed to binary files. By default the name of all binary FRF files starts with

the letter “a”. Each FRF file consists of 3 columns of data. These columns are

Frequency (Hz), real part of FRF and imaginary part of FRF.

For example for a 10 d.o.f system with known M C K matrices, 100 binary FRF

files will be created. These files are shown in Table 6-1
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Table 6-1 FRF Table

Name of File Input Number Output Number

A1.txt 1 1

A2.txt 1 2

A3.txt 1 3

A4.txt 1 4

. . .

. . .

. . .

A10.txt 1 10

A11.txt 2 10

. . .

. . .

. . .

A100.txt 10 10
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7 CHAPTER 7

VERIFICATION OF EMAS

7.1 Introduction

Experimental Modal Analysis Software (EMAS) is written and explained in

Chapter 6. Before using this software in measured experimental data, it is

compulsory to verify that the software is working properly and yields correct

results. For this purpose, Frequency Response Functions are generated by using

FRF Generator part of EMAS and analyzed by using Modal Parameter Estimation

part of EMAS. Modal Parameters obtained From EMAS are compared against

theoretical values.

7.2 Verification of EMAS using 3. d.o.f Model

A 3-dof model with proportional damping M C K matrices; are defined as below.
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Nine binary FRF files are generated by FRF Generator part of EMAS and loaded to

EMAS using FRFL program. The M C K matrices are assumed to belong to a

cantilever beam (for animation purposes) and node location, element connection

information are prepared accordingly. The input file is given in Table 7-1. The

Input file is loaded to EMAS using Input File Editor program. Figure 7-1 shows the

CMIF plot for the generate FRF data including selected peaks.

Table 7-1 Input File for 3 D. o. f. system

title 3 d.o.f cantilever beam (Units Length: N Force: m)

node 1, 0.0, 0.0, 0.0

node 2, 1, 0.0, 0.0

node 3, 2 0 0

node 4 3 0 0

elemtype beam3d

elem 1, 1, 2

elem 2 2 3

elem 3 3 4

allmasterdof 3

constnode 1
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Figure 7-1 CMIF Plot for 3 d.o.f problem

7.2.1 Enhanced FRF Plots & eFRF Plots with Synthesized Peaks

The selected verification model has three degrees of freedom (d.o.f). Three

Enhanced FRF (eFRF) plots exist for a three d.o.f. system, which are used for pole,

modal scaling, and residue calculation. These plots are represented through Figure

7-2 to Figure 7-4. As it is can be seen from these plots, each eFRF plot isolates a

single mode so that a simple single degree of freedom parameter estimation

algorithm can be used to estimate poles and modal scale factors for the enhanced

mode. For each mode, 10 data points are used for before and after each peak.

Number of B terms is selected as 3 (Selecting B value very high causes stability

problems and thus causes numerical errors). Selecting B value very small causes an
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under estimation of modal parameters). eFRF plots with synthesized peaks are

represented through Figure 7-5 to Figure 7-7. The peaks are synthesized by using

the modal parameters obtained from Modal Parameter Estimation (MPE) for the 20

data points for each mode.

Figure 7-2 eFRF plot for 1st Mode
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Figure 7-3 eFRF plot for 2nd Mode

Figure 7-4 eFRF plot for 3 rd Mode
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Figure 7-5 eFRF plot with synthesized peak for 1st Mode

Figure 7-6 eFRF plot with synthesized peak for 2nd Mode
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Figure 7-7 eFRF plot with synthesized peak for 3rd Mode

7.2.2 MPE Results

Modal parameters obtained from MPE part of EMAS are given in Table 7-2. In the

following Sections the theoretical results are represented and compared against

MPE results.

Table 7-2 Modes and corresponding Freq-damping (Experimental)

Mode Natural Frequency (Hz) Damping (%)

1 7.598 0.119

2 21.397 0.336

3 32.802 0.515
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7.2.3 Measurement Synthesis

It is useful to compare the reconstructed FRFs with measured (original) FRFs (see

Section 5.2 for further details). The reconstructed Frequency Response Functions

for the selected 3 d.o.f. system are compared against the original data through

Figure 7-8 to Figure 7-16. In general, the reconstructed FRF curves successfully

match the original curves. Small differences between the curves are addressed to

numerical and truncation errors.

Figure 7-8 Actual FRF vs. Generated FRF for Input: 2 Output: 2
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Figure 7-9 Actual FRF vs. Generated FRF for Input: 2 Output: 3

Figure 7-10 Actual FRF vs. Generated FRF for Input: 2 Output: 4
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Figure 7-11 Actual FRF vs. Generated FRF for Input: 3 Output: 2

Figure 7-12 Actual FRF vs. Generated FRF for Input: 3 Output: 3
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Figure 7-13 Actual FRF vs. Generated FRF for Input: 3 Output: 4

Figure 7-14 Actual FRF vs. Generated FRF for Input: 4 Output: 2
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Figure 7-15 Actual FRF vs. Generated FRF for Input: 4 Output: 3

Figure 7-16 Actual FRF vs. Generated FRF for Input: 4 Output: 4
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7.2.4 Visual Verification

The visual verifications are carried out using mode shape animations. The mode

shape animation of the selected 3 d.o.f cantilever system is represented through

Figure 7-17 to Figure 7-19.

Figure 7-17 Animation of Mode 1

Figure 7-18 Animation of Mode 2

Figure 7-19 Animation of Mode 3
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It is typical of the modes that 1
st

mode exhibit no sign change, 2
nd

mode exhibit one

sign change, and 3
rd

mode exhibit two sign changes. Correspondingly, 1
st

mode

does not have a point of zero displacement whereas the second and third modes

have one and two points of zero displacement respectively.

The animated mode shapes shown, successfully represent the general behavior of

the three vibration modes of a cantilever beam. The results pass the visual

verification.

7.2.5 Modal Assurance Criterion (MAC) Correlation

MAC correlation gives us information about how well two modes correlate.

Theoretically any two different modes of a structural system are orthogonal to each

other. Therefore the MAC values of two different modes should theoretically be

equal tozero, and MAC values of the same modes must be equal to one. The MAC

comparison matrix of the three modes from the generated FRF data is presented in

Figure 7-20. The obtained results shown in Figure 7-20 supports the theory by unity

values across the diagonal and zero values on the-off diagonals. MAC correlation of

the modes also shows that the obtained modes are different and orthogonal.
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Figure 7-20 Bar Chart for MAC Correlation Matrix

7.2.6 Comparison of Results Obtained from MPE Part of EMAS

Against Theoretical Results

In order to compare the results obtained with MPE part of EMAS, the selected 3

d.o.f. system is analyzed by using state-space formulation. The state space

formulation of M C K system is explained in Chapter 4, Section 4.5. Results

obtained from state-space formulation are presented in Table 7-3. Percentage error

between results obtained from MPE part of EMAS against theoretical results and

theoretical results are shown in Table 7-4.
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Table 7-3 Modes and corresponding Freq-damping (Theoretical)

Mode Natural Frequency (Hz) Damping (%)

1 7.598 0.119

2 21.397 0.336

3 32.802 0.515

Table 7-4 Percentage error between experimental and theoretical results

Mode Natural Frequency (%) Damping (%)

1 2.469e-8 -1.572e-4

2 1.02e-8 -6.631e-4

3 5.120e-8 -4.532e-5

As it is shown in the above table (Table 7-4) the error between the results obtained

from MPE part of EMAS and theoretical results are negligible. The highest percent

error is 6.63e-4. The above figures, plots, and tables verify that that EMAS is

working properly and yields correct results. Also it is verified that FRF Generator

part of EMAS is working properly. The report generated by the Generate Report

part of EMAS for the selected 3 d.o.f. system is given in Appendix A.
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8 CHAPTER 8

EXPERIMENTAL STUDY

8.1 Introduction

Modal parameter estimation using EMAS software was verified in Chapter 7.

Therefore, the EMAS software is used with real experimental data. For the

experimental modal analysis part a steel grid model is constructed in Structural

Mechanics Laboratory. Testing and modal data acquisition was conducted in

Vibration and Acoustic Laboratory of Mechanical Engineering Department because

of the availability of proper measurement tools.

8.2 Specifications of Model

The constructed model is four bay single span skewed steel grid frame. The

dimensions of the model are given in Figure 8-1. The members of model are hollow

tube steel sections. The grid model had a skew angle of 15°. Joint details are given

in Figure 8-2 through Figure 8-4. The joints are designed to transmit bending

moments using two cover plates at the top and bottom surface. Each member is

connected using two bolts. The longitudinal members kept continuous and

transverse members were cut from the original material.
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Figure 8-3 Joint detail for a mid joint (dimensions in mm)

Figure 8-4 Joint detail of a mid joint
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8.3 Boundary Conditions

The model was tested in free-free boundary conditions. It is not exactly possible to

simulate free-free boundary conditions in an actual experiment. The only way to

simulate free-free boundary conditions is to hang the model from several points to a

fixed place using elastic/rubber bands.

For this purpose the model is suspended from a steel frame by low stiffness elastic

bands. The stiffness difference between the elastic bands and the steel grid is very

large. Therefore, the dynamic response of the test model became close to a free-free

support condition. Elastic rods and steel frame are shown in Figure 8-5 and Figure

8-6. Theoretically, the rigid body modes exist at 0 Hz frequency for free-free

boundary conditions. The rubber bands have a certain amount of stiffness causing

the rigid body mode frequencies to slightly shift from zero (0) Hz. The existence of

rubber bands over the actual modes and higher modal frequencies were minimal and

it is not possible to simulate free-free boundary conditions in real life without using

elastic rods to hang up the model. Furthermore, hanging the model in air using

elastic bands is a common practice in modal testing practice.
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Figure 8-5 Steel Frame and elastic bands

Figure 8-6 Steel Frame and elastic bands
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8.4 Excitation

Swept sine periodic deterministic signals are used for frequency response function

estimation. In order to generate signals a LDS shaker system is used. LDS shaker

system consists of 3 parts. These are

1. Shaker

2. Cooling system

3. Signal Generator.

These parts are shown in Figure 8-7 and Figure 8-8.

Figure 8-7 LDS Signal Generator
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Figure 8-8 LDS Shaker and LDS Cooling System

The shaker system supplied excitation to the structural system and the response is

measured using accelerometers.

8.5 Sensors

The response of the system is acquired by an accelerometer and the input (force) is

acquired by a force transducer located at the tip of the shaker system. Bruel& Kjaer

force transducer and accelerometer are used in the experiments. Figure 8-9 shows

accelerometer and Figure 8-10 shows force transducer. Since accurate measurement

of the force transmitted to model is crucial, the force transducer is placed at the top

of the shaker rod. In this way, actual force applied to the structure is measured.
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Figure 8-9 Accelerometer

Figure 8-10 Force Transducer
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8.6 Dynamic Signal Analyzer

The data acquired from accelerometer and force transducer are first amplified and

then sent to Dynamic signal analyzer for frequency response calculations. Hp

35665A dynamic signal analyzer is used for the measurement. Hp 35665A dynamic

signal analyzer is shown is Figure 8-11. The amplifiers used to condition and

increase the signal level are used between the transducers and acquisition system as

shown is Figure 8-12. The signal analyzer has a built in macro to measure the

response at each frequency to obtain frequency response function (FRF). An

example FRF obtained during testing is seen in the display of the dynamic signal

analyzer Figure 8-13.

Figure 8-11 Hp 35665A Dynamic Signal Analyzer
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Figure 8-12 Bruel& Kjaer Amplifiers

Figure 8-13 Display of Dynamic Signal Analyzer
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8.7 Modal Data Acquisition & Parameters

In this experiment 2 input and 37 output d.o.f are used. Two different tests are

conducted by relocating the excitation location. The model is excited in vertical

direction at node 1 and node 33 separately. The responses in vertical direction are

measured one by one at each nodal location. Node numbers are shown in Figure 8-

14. For the first experiment, frequency range of 1-500 Hz is scanned with a

frequency interval of 1.2475 Hz where 401 data points are used. For the second

experiment frequency range of 1-260 Hz is scanned with a frequency interval of

0.6475 Hz where again 401 data points are obtained. It is realized from the first

experiment that using a frequency range of 1-500 with 401 data points will lead

coarse results since frequency interval is high. Therefore in the second experiment

the frequency range is reduced to 1-260 and therefore the sensitivity of the

experiment is almost doubled. In both experiments a delay block of 10 cycles and

capture block of 10 cycles are used for each one of the 401 measurement

frequencies.

The first experiment took about 10-12 minutes to obtain one FRF for a single node

(one input-output pair). The second experiment took about 6-8 minutes to complete

a single node FRF measurement. The measured frequency response functions (FRF)

are recorded to 3½ Floppy diskette at the end of each test. This procedure is

repeated for all nodes (37 times) for each experiment. The files recorded to diskette

are in special DAT file format which are only accessible using Hp 35665A dynamic

signal analyzer’s own program. The name of the program is SDFTOASC.EXE. By

the help of this program DAT files that are originally in BINARY format are
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converted to ASCII files which can be easily read by and word processor. The

program works in MS-DOS Prompt where the command line is as follows:

SDFTOASC DATFILE.dat ASCIIFILE.txt /x/a

Where;

DATFILE.dat is converted to an ASCII file with extension txt. The structure of

these ASCII files are the same as FRF files generated by FRFGEN software (refer

to Section 6.1.2.4).
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8.8 Input File of Model

The model input file prepared for the EMAS software is given in Table 8-1.

Commands used in this input file are explained in Chapter 6.

Table 8-1 Input File for model

title skewed frame Problem

node 1, 0, 0.0, 0.0

node 5, -0.1941142838, 0.7244443697, 0.0

node 33, 3, 0.0, 0.0

node 37, 2.8085885716, 0.7244443697 , 0

nodegen 1 33 3 9 8

nodegen 5 37 3 13 8

nodegen 1 5 3 2 1

nodegen 33 37 3 34 1

nodegen 9 13 3 10 1

nodegen 17 21 3 18 1

nodegen 25 29 3 26 1

nodegen 1 9 1 6 1

nodegen 25 33 1 30 1

nodegen 6 30 2 14 8

nodegen 3 11 1 7 1

nodegen 27 35 1 31 1

nodegen 7 31 2 15 8

nodegen 5 13 1 8 1

nodegen 29 37 1 32 1

nodegen 8 32 2 16 8

elemtype beam3d

elem 1, 1, 6

elem 2 6 9

elem 25 1 2

elem 9 3 7

elem 10 7 11

elem 17 5 8

elem 18 8 13

elemgen 1 3 3 2 8

elemgen 2 3 4 2 8

elemgen 25 4 29 4 8

elemgen 25 3 26 1 1

elemgen 26 4 30 4 8

elemgen 27 4 31 4 8

elemgen 28 4 32 4 8

elemgen 9 3 11 2 8

elemgen 10 3 12 2 8

elemgen 17 3 19 2 8

elemgen 18 3 20 2 8

allmasterdof 3
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8.9 Data Loading

Frequency response functions (FRFs) obtained from the testing of experimental

model using modal data acquisition system is loaded in to EMAS software with the

help of FRFL program. The FRFs obtained from the tests are in accelerance type

(acceleration/force). Thus, FRFs are converted from accelerance to receptance

(displacement/force) in FRFL program. FRFL program is explained in Chapter 6.

8.10 Modal Parameter Estimation

MPE part of EMAS is used to estimate modal parameters from estimated Frequency

Response Functions. MPE is used twice to obtain modal parameters from the first

and second experiments respectively (see Section 8.7 for the explanation of the

experiments).

8.10.1 First Experiment (Excitation at Node 1)

The CMIF plot with selected peaks for the first experiment is shown in Figure 8-15.

The x-axis is used for Frequency (Hz) and y-axis plots Singular Values (dB) for

each frequency. As previously stated in Chapter 4, the peaks in a CMIF plot

indicate the existence of modes.
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Figure 8-15 CMIF plot with selected peaks for the first experiment

MAC correlation of selected peaks (modes) is given in Figure 8-16. MAC correlates

two selected modes and takes a value between 0 and 1. One refers to perfect

correlation and zero refers to orthogonal vectors. The estimated experimental modes

are correlated against each other. The diagonal values of the comparison matrix are

equal to one since comparison of a mode by itself would be a perfect correlation.

Similarly, off-diagonal values of the MAC matrix are expected to be zero.

Examination of Figure 8-16 reveals that although off-diagonal terms are very small,

they are not exactly equal to zero.
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Figure 8-16 MAC correlation of the selected peaks

The post processing of experimentally obtained FRFs also reveal natural

frequencies of the tested structural system. The natural frequencies and

corresponding damping factors obtained from the post-processing are given in

Table 8-2.
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Table 8-2 Results of MPE for the first experiment

Mode
Natural Frequency (Hz)

Damping (%)

1 6.2325 1.6516

2 14.9984 0.62407

3 24.6408 0.11188

4 37.2949 0.17752

5 47.1186 0.07784

6 67.2184 0.045684

7 79.0423 0.51138

8 104.066 0.48815

9 109.891 0.6834

10 118.218 0,02049

11 136.269 0.38227

12 156.695 0.02718

13 172.872 0.25466

14 182.002 0.31377

15 207.665 0.13437

16 223.905 0.19216

17 234.085 0.07861

18 250.922 0.11491

19 296.531 0.03747

20 304.296 0.28217

21 328.367 0.10738

22 375.774 0.13905

23 401.75 0.1742

24 469.608 0.11824

8.10.2 Second Experiment (Excitation at Node 33)

The CMIF plot with selected peaks for the second experiment is shown in Figure

8-17. The x-axis is used for Frequency (Hz) and y-axis plots Singular Values (dB)

for each frequency. As previously stated in Chapter 4, the peaks in a CMIF plot

indicate the existence of modes.
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Figure 8-17 CMIF plot with the selected peaks

Figure 8-18 Mac correlation of selected peaks
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Table 8-3 Natural Frequencies and corresponding damping factors obtained from experiment2

Mode Natural Frequency (Hz) Damping (%)

1 6.1892 1.5296

2 13.3584 0.87568

3 18,5315 0.7652

4 21.2636 0.54843

5 35.4435 0.26963

6 39.9946 0.3804

7 44.2785 0.1378

8 64.8885 0.1208

9 77.9366 0.6726

10 102.3701 0.21234

11 110.0407 0.67488

12 118.1387 0.085589

13 136.1027 0.26334

14 139.4138 0.52862

15 156.9301 0.35899

16 171.6848 0.29686

17 179.8252 0.34772

18 206.5501 0.10027

19 222.6988 0.14811

20 232.8387 0.03099

21 249.4215 0.22493
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9 CHAPTER 9

FE UPDATING

9.1 Introduction

Modifying FE model in order to bring the FE model prediction into better

agreement with the experimental results is referred as FE Updating (FEU). There

are several applications of FE Updating in literature (Examples: Ventura et al.,

2001, Dascotte, 2001 Haapaniemi et al., 2002 Chen et al., 2000, and Ewins et al.,

2001)

Fist step in FE Updating is to compare nominal FE model results with EMA results.

If the difference between is within acceptable limits, then there is no need for FE

Updating.

FE Updating Procedure can be divided into 3 parts. These are;

a) Comparison of FEA results with EMA results (Objective Function

Calculation ).

b) Modification of FE model in order to correlate FEM and EMA results (FEU

Strategy )
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c) Analysis of modified FE model (FEA)

The above procedure is repeated until a convergence criterion is achieved. Each

item in the above procedure is explained in detail below, not in the order above but

in the order of the study.

9.2 Finite Element Analysis

For FE Updating purposes a Finite Element Analysis (FEA) code is developed and

programmed in Matlab. The reason of using Matlab platform for programming is

explained in Chapter 5. Since static analysis is out of scope of this study, FEA code

is developed for Free Vibration Analysis only. Currently FEA code is capable to

handle different type of elements. These are;

a) 2D Frame Element

b) 3D Space Frame Element

c) 2D Mass Element

d) 3D Mass Element

e) 1D Spring Element

For all of the above Element types, literature survey is carried out, and Mass,

Stiffness, and Transformation matrices are extracted /formulated. These

informations are not given here but explained in detail in most of the books related

with finite element Analysis and Dynamics (Cook et al., 1989, Kwon, 1982

Chandrupatla et al., 1997)
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In order to reduce the computational cost of programmed FEA code. The following 

points are taken into consideration; 

1) Banded mass, stiffness, and transformation matrices are used in matrix 

formulation.  

2) Built in functions for Eigenvalue/Eigenvector analysis of Matlab is used.  

3)  Guyan Reduction technique is implemented for the analysis of large Finite 

Element Models where only a few number of degrees of freedom are of 

interest. Guyan Reduction technique is explained in detail in Chandrupatla 

et al., 1997  

  

Taking into consideration of the above points, fast, reliable, and computationally 

cheap FEA software is programmed for Free Vibration analysis part of FEU.  

9.3 Objective Function Calculation 

Objective Function is a real number used for defining how well or bad the two set 

of data correlate. Where these the two sets of data are FEM and EMA results. 

Objective function is calculated by the Equation 9-1. 

 

 

Equation 9-1 
 

Where; 

 

Arω : Natural Frequency for Mode r obtained from analytical data 
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Erω : Natural Frequency for Mode r obtained from experimental model 

Er,ArMac : Mac values obtained from experimental data vs. analytical data. 

N : Number of matched Modes. 

9.4 Modification of FE model in order to Correlate FEM 
and EMA Results (FEU Strategy) 

Modification of FE model is the most important part of FEU. Therefore there is a 

need of a strategy for modification. That is why the title of this Section is FEU 

Strategy. Actually repetition of the FE Updating procedure is nothing else but an 

optimization process. Thus “a robust global search and optimization technique” 

(Hasançebi, 2001) of Simulated Annealing is adapted for the “Modification of FE 

Model” part of the above procedure.  

 

Since Simulated Annealing (SA) is only a tool to achieve the aim of this study, it is 

explained here briefly. But more detailed explanation and application are given in 

(Hasançebi, 2001). Hasançebi studied Simulated Annealing for shape, size, and 

topology optimization of structural systems. Unless not stated the sentences written 

below are quoted from his study and necessary modifications are done in order to 

adapt Simulated Annealing for Finite Element Updating Process. 

9.4.1 Simulated Annealing  

Simulated Annealing (SA) is a robust global search and optimization technique, 

which offers a heuristic approach to yield encouraging solutions even for the most 

difficult optimization problems. SA employs a simulative model of the annealing 
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process of physical systems, establishing a direct analogy to the elementary 

principles of thermodynamics and statistical mechanics. 

9.4.1.1 Physical Origin of SA 

In this process, the aim is to bring a physical system (either a solid, e.g., metal or a 

liquid) to a state of minimum energy level by rearranging its atomic configuration. 

For this reason, the physical system is first heated up to a sufficiently high 

temperature. The reason of this is; To disorder the existing state of its atomic 

structure leading to a non-minimum energy level; and to allow the atoms to move 

freely for such a target configuration. This is followed by a very slow cooling of the 

system, reducing the temperature monotonously towards a value at which the 

freezing or crystallization takes place, which is referred to the frozen temperature. 

At each temperature manipulated, as the cooling proceeds, the atoms experience 

different configurations repeatedly and attempt to order themselves in a way to pass 

to a lower energy level. By this way, the system is successively pushed to be more 

ordered, strong and stable under restricted mobility of its atoms. Finally, when the 

cooling reaches the frozen temperature, the atoms line themselves up to produce a 

perfectly regular crystal structure, and thus to minimize the energy level of the 

system, which is called ground state.  

The idea that this process is simulated to solve optimization problems are rendered 

possible by defining a parallelism between minimizing the energy level of a 

physical system and lowering the objective function. 
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9.4.2 How Does SA Work? 

First step in FEU is to group the elements used in the FE Model. The grouped 

elements are forced to have the same properties throughout the FEU process. The 

next step is the formation of an initial model to be used as the starting model and 

current solution of FEU. This is accomplished by specifying each variable of the 

grouped elements, a value of which is its original value. Next, following the choice 

of an appropriate annealing schedule, the current temperature is assigned the initial 

temperature to be used as the point from which the annealing is initiated. The initial 

temperature can be set as follows: it should be high enough (i) to allow a large 

number of model transitions for a thorough exploration of the design space at early 

stages; and (ii) to let the process cool down gradually to attain thermal equilibrium 

at each temperature as the cooling proceeds.  

 

There exist two loops in FEU. These are outer loop and inner loop. Outer loop is 

used to proceed the algorithm at different temperatures during the cooling cycles 

and to control the termination criterion which is simply defined as the case when the 

current temperature falls below the final temperature which corresponds to the 

frozen temperature in the actual annealing analogue. When the current temperature 

is above the final temperature, iterations of the inner loop are performed. In a single 

iteration of the inner loop a number of candidate models which is equal to the 

number of model variables are created in the vicinity of the current model to be 

sampled. This is performed as follows: (i) each design variable in the current model 

is selected only once in a random order; (ii) the selected variable is then perturbed 

by assigning a new value to it; and (iii) finally, the candidate model is created by 
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using the new value of this variable and taking the values of other variables same as 

in the current model. This implies that the current model differs from a 

candidate only in terms of its one design variable, A competition then takes place 

between the current and each candidate models sampled. Whenever a candidate 

model provides a better solution (e.g., a lower value of the objective function, 

downhill move), it is immediately declared as to be the winner, and thus is 

authorized to replace the current model to provide data for the following candidates. 

However, in the opposite case (e.g., a higher value of the objective function, uphill 

move), the winner is determined in accordance with the Metropolis test (explained 

in Section 9.4.4), where either the candidate is accepted, or it is rejected and the 

current model maintains itself,. The underlying principle of inner loop is associated 

with the concept of thermal equilibrium in the actual annealing analogue. Hence, it 

is mimicked here by reducing the objective function to a reasonably low value 

correlated with the current temperature. After completing the whole iterations of 

inner loop at a particular temperature, the temperature of next cooling cycle is 

established by multiplying the current temperature with a cooling factor, the above 

process is repeated in the same way until the whole cooling cycles are iterated. 

9.4.3 Formation of the Candidate Model 

As stated in Section 9.4.2 the candidate model is obtained by perturbing only one 

design variable of the current model. The current model is designated as cx  and the 

candidate (alternative) model is designated as ax ,  

If the selected variable for perturbing is denoted as c
mx  and corresponding selected 

variable in current design is denoted as a
mx  then  
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Equation 9-2 
 

Where; 

:r  Real valued random number in the range of [0,1] 

:δ Perturbation limit parameter in the range of [0, ∞ ] 

 

The perturbation limit parameter δ  determines to which extent the vicinity of 

current design is taken into account while creating a candidate design,  

 

For better understating the perturbation limit parameter the following example is 

given. 

If the current value of variable in current model is c
mx  is 10 and the perturbation 

limit parameter is taken as 1. Then the candidate (alternate) variable a
mx  will have 

the following upper and lower limits  

If the random variable (r) is 1 then the candidate variable a
mx  will be 

[ ] 151)5.01(110 =⋅−+⋅=c
mx  . If the random variable (r) is taken as 0 then the 

candidate variable a
mx  will be [ ] 51)5.00(110 =⋅−+⋅=c

mx .Thus for a perturbation 

limit value of 1, candidate variable will have a range of plus and minus %50,less or 

more of the current variable respectively.  

As will be stated in the programming part of FEU, the user has the chance of 

defining the perturbation parameter for varying temperatures. This is formulated in 

Equation 9-3 

[ ]δ⋅−+⋅= )5.0(1 rxx c
m

a
m
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Equation 9-3 
 

Where  

it : Initial temperature 

ft  Final temperature 

iδ  Value of perturbation limit parameter at initial temperature 

fδ  Value of perturbation limit parameter at final temperature 

 

The most important modification on simulated annealing is enforced at this point. 

(Hasançebi, 2001) formulated SA (for optimum structural design) as a discrete 

optimization method. For FEU purposes SA is reformulated as a continuous 

optimization method. Equation 9-2 is used for this purpose where the candidate 

variable is continuously perturbed. Also for FEU purposes, perturbation limit 

parameter is related with annealing schedule. Perturbation limit variable decreases 

as the temperature decreases which might be a good approach to fine tune the model 

at low temperatures. 

9.4.4 Number of Iterations of the Inner Loop (I) 

The number of iterations of the inner loop (I) is important for the efficiency of the 

algorithm. A high number of iterations may result in a very high degree of 

computational cost on the algorithm and a low number of iterations, on the other 

hand, may not be sufficient to bring the system to the thermal equilibrium at a 

particular temperature. For initial temperatures the number of iterations should be 
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kept low and it should gradually be increased as cooling proceeds. For a particular 

temperature (t), calculation of the number of iterations of the inner loop (I) is given 

in Equation 9-4 

 

Equation 9-4 
 

Where; 

it : Initial temperature. 

ft : Final temperature. 

iI : Number of iterations of the inner Loop at initial temperature. 

fδ : Number of iterations of the inner Loop at final temperature 

9.4.5 Metropolis Test 

As stated in Section 9.4.2, when competition takes place between the current and a 

candidate model sampled. If a candidate model provides a better solution (e.g., a 

lower value of the objective function, downhill move), it is immediately declared as 

to be the winner, and thus is authorized to replace the current model to provide data 

for the following candidates. However, in the opposite case (e.g., a higher value of 

the objective function, uphill move), the winner is determined in accordance with 

the Metropolis test. 

 

 For FEU purposes the metropolis test is formulated in two different ways 

(Hasançebi, 2001). 
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a) Simplified Metropolis Test: The probability of accepting a poor 

candidate model is assigned to tWeP /∆−= .  

b) Metropolis Test with Boltzman Parameter: The probability of 

accepting a poor candidate model is assigned to KtWeP /∆−= . 

 

In the above equation K is defined as the Boltzman parameter. K is defined as the 

running average of the positive valued W∆  (note that positive W∆  indicates a poor 

candidate). Whenever a poor candidate model is sampled with respect to the current 

model ( 0>∆W ), this parameter is updated as shown in Equation 9-5 before its 

probability of acceptance is calculated in Metropolis test. 

 

Equation 9-5 

 

Where;  

)( aNK : The value of the Boltzman parameter for the previous aN  number of poor 

candidates 

)1( +∆ aNW : The value of W∆  for the ( 1+aN )-th poor candidate, 

)1( +aNK : The updated parameter value, including ( 1+aN )-th poor candidate. 

 

It is advantageous to calculate Boltzman parameter in this fashion. Since this serves 

to normalize the W∆  values for the metropolis test, which in turn enables useful 

implementation of the algorithm regardless of the problem type. Also calculating 

Boltzman parameter in this fashion allows adaptive search experience, such that the 
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determination of a next candidate is correlated to the general formation of all the 

previous candidates. 

 

There are several formations for Boltzman parameter. These are not used in FEU 

process. Weighted Boltzman parameter and critical Boltzman parameter 

approaches are formulated for SA structural design optimization in reference 

(Hasançebi, 2001). 

9.5 Matlab Based FEU Software (FEUS) 

For the application of FEU, Matlab based FEU Software (FEUS) is written. The 

reason of selecting Matlab for programming purposes is explained in Section 5,1. 

FEUS can be executed within EMAS (see Figure 6-1) or can be executed 

independently from EMAS. In the following pages the software is explained with 

snapshots. 
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Figure 9-1 Main screen of FEUS 

 

Main screen of the software is shown in Figure 9-1 with a model used for FEU 

process. When the Group menu item is clicked, a new screen (Grouping screen) 

appears. Grouping screen is shown in Figure 9-2. The groups defined in this screen 

are used in FEU. The importance of grouping is explained in Section 9.4.2. For the 

defined groups, group parameters are defined in Optimization parameters screen 

which is shown in Figure 9-3. According to the selected group type (mass group, 

frame group, spring group) different screens appear for defining FEU parameters. 

These screens are shown in Figure 9-4 to Figure 9-6 respectively. 
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Figure 9-2 Groups Screen 

 

 

Figure 9-3 Optimization Parameter Screen 
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Figure 9-4 Mass Group Optimization Parameters 

 

 

Figure 9-5 Frame Group Optimization Parameters 
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Figure 9-6 Frame Group Optimization Parameters 

 

After defining all the required parameters for FEU clicking Start menu item starts 

the FEU process. The status of the FEU process is shown in Figure 9-7 

 

 

Figure 9-7 FE Updating Process  
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Whenever a better model is found, it is auto saved into a directory under the 

software. 
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10 CHAPTER 10 

APPLICATION OF FE UPDATING SOFTWARE 
ON SKEWED STEEL GRID FRAME  

10.1 Introduction 

The skewed steel grid frame was dynamically tested and FRFs were obtained 

analyzed with EMAS software as discussed in the Chapter 8. Two separate sine-

sweep tests were conducted for DC to 260 Hz and DC to 500 Hz. The experimental 

mode shapes and corresponding natural frequencies were obtained for each test. 

Those results are then used to calibrate the nominal FE model using model updating 

techniques. This Chapter concentrates on the Finite Element Updating procedure 

and discussion of the results obtained from the Finite Element Updating Software 

(FEUS). The results are listed in tabular format and compared against each other.     

10.2 Input File of the Skewed Steel Grid Frame 

The input file generation for the developed Experimental Modal Analysis Software 

(EMAS) program was explained in Chapter 6. An earlier model input file was 

prepared for the EMAS software for the purpose of experimental modal parameter 

estimation (i.e., animate mode shapes, define input-output nodal relationships, etc.). 
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A total of 37 nodes were used in the model for EMAS. For the finite element 

updating (FEU) purposes, a finer meshed model input file is prepared using a total 

of 127 nodes. A larger number of nodes were used to generate more members 

which will be used to fine tune the variations in sectional and other relevant 

properties. Additional mass elements are defined at the joints for the effect of the 

actual additional masses at the connection points due to the used plates for bolting 

and bolt masses. Since the model was tested by hanging the frame in the air using 

elastic cords, spring elements are defined at six different points on the frame (see 

Figure 10-3 for the places of the springs). Therefore, FEU model has incorporated 

larger number of members, additional masses, and springs different than the initial 

input file used for EMAS. 3D view of the prepared model used for FEU is shown in 

Figure 10-1 .The input file is given in Appendix B. 
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10.3  Groups, and Parameters for Each Group 

For Finite Element Updating purposes of the skewed steel frame, the following 

groups and group parameters are defined. 

10.3.1 Mass groups and Parameters: 

Mass groups are defined according to the plate sizes used for bolting the steel 

members. Two different types of mass groups are defined based on the used plate 

sizes. The steel grid is composed of three longitudinal continuous frames. Cover 

plates used to connect transverse direction members to the longitudinal members 

are larger for the middle longitudinal frame, and smaller for the side frames. 

Therefore, the mass parameters used for the middle frame junctions and the side 

frame junctions are grouped under two variables. For better visualization of mass 

elements refer to Figure 8-2 and Figure 10-2. 

Massgroup1 consists of the elements 133, 135, 136, 138, 139, 141, 42, 44, 45,147 

with the following parameters. 

Massgroup1 Initial Value Upper Limit Lower Limit 

Mass (kg) 0.2098 0.4 0.1 

 

Massgroup2 consist of the elements 134, 137, 140, 143, 146 with the following 

parameters. 

Massgroup2 Initial Value Upper Limit Lower Limit 

Mass (kg) 0.353 0.5 0.1 
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10.3.2 Spring Groups and Parameters 

Since all the elastic bands used to test the frame have the same elastic spring 

coefficient, all the spring elements defined are grouped under one group. The spring 

element axial stiffness parameter is named as “SpringGroups1” and consists of the 

elements 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, and 159 with the 

following properties. 

 

SpringGroups1 Initial Value Upper Limit Lower Limit 

Spring Coef. (N/m). 1001 100000 1000 

 

 

Figure 10-3 Spring Elements 
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10.3.3 Frame Groups and Parameters 

Frame elements used for the FEU model are categorized under 4 groups. These 

groups and corresponding group parameters are defined below in Table 10-1 

through Table 10-4. The frame group member distributions are graphically 

presented in Figure 10-4 and each group parameter are explained in detail below. 

 

Framegroup1 is defined for the elements at the joints which are connected with 

plates to the other continuous elements. The existences of cover plates are expected 

to increase the moment of inertia of the short members under each cover plate. 

Framegroup1 consist of element numbers 1, 24, 25, 48, 49, 72, 73, 78, 79, 84, 85, 

90, 91, 96, 97, 102, 103, 108, 109, 114, 115, 120, 121, 126, 127, and 132 with the 

parameters listed in Table 10-1. Framegroup1 is shown with circles in Figure 10-4. 

Parameters related with Framegroup1 are given in Table 10-1. 

 

Table 10-1 Model parameters, limits, and initial values for Frame Group 1 

Framegroup1 Initial Value Upper Limit Lower Limit 

Modulus of Elasticity (N/m2) 2.1e11 - - 

Cross-sectional area (m2) 0.000184 0.000276 9.2e-005 

Z Moment of inertia (m4) 2.157e-8 3.2355e-008 1.0785e-008 

Density (kg/m3) 7850 - - 

Poisson’s Ratio 0.3 - - 

Y moment of inertia (m4) 1.113e-8 1.6695e-8 5.565e-9 

X moment of inertia (m4) 2.209e-8 3.3135e-8 1.1045e-8 
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Upper and lower limits are calculated by increasing and decreasing initial value by 

%50 and %-50 respectively. (-) indicates that the parameter is constant. 

 

Framegroup2 is defined for the elements at the joints which are connected 

continuously to the discontinuous elements and shown with oval circles in Figure 

10-4. Framegroup2 consist of elements; 6, 7, 12, 13, 18, 19, 30, 31, 36, 37, 42, 43, 

54, 55, 60, 61, 66, and 67 with the following parameters. Parameters related with 

Framegroup2 are given in Table 10-2. 

 

Table 10-2 Model parameters, limits, and initial values for Frame Group 2 

Framegroup1 Initial Value Upper Limit Lower Limit 

Modulus of Elasticity (N/m2) 2.1e11 - - 

Cross-sectional area (m2) 0.000184 0.000276 9.2e-005 

Z Moment of inertia (m4) 2.157e-8 3.2355e-008 1.0785e-008 

Density (kg/m3) 7850 - - 

Poisson’s Ratio 0.3 - - 

Y moment of inertia (m4) 1.113e-8 1.6695e-8 5.565e-9 

X moment of inertia (m4) 2.209e-8 3.3135e-8 1.1045e-8 

 

Upper and lower limits are calculated by increasing and decreasing initial value by 

%50 and %-50 respectively. (-) indicates that the parameter is constant. 
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Framegroup3 is defined for the main elements which are located between joints 

without cover plates. Framegroup3 consist of elements; 2, 3, 4, 5, 8, 9, 10, 11, 14, 

15, 16, 17, 20, 21, 22, 23, 26, 27, 28, 29, 32, 33, 34, 35, 38, 39, 40, 41, 44, 45, 46, 

47, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 68, 69, 70, 71, 74, 75, 76, 77, 80, 

81, 82, 83, 86, 87, 88, 89, 92, 93, 94, 95, 98, 99, 100, 101, 104, 105, 106, 107, 110, 

111, 112, 113, 116, 117, 118, and 119. Framegroup3 is shown with pentagons in 

Figure 10-4. Parameters related with Framegroup3 are given in Table 10-3. 

 

Table 10-3 Model parameters, limits, and initial values for Frame Group 3 

Framegroup1 Initial Value Upper Limit Lower Limit 

Modulus of Elasticity (N/m2) 2.1e11 - - 

Cross-sectional area (m2) 0.000184 0.000276 9.2e-005 

Z Moment of inertia (m4) 2.157e-8 3.2355e-008 1.0785e-008 

Density (kg/m3) 7850 - - 

Poisson’s Ratio 0.3 - - 

Y moment of inertia (m4) 1.113e-8 1.6695e-8 5.565e-9 

X moment of inertia (m4) 2.209e-8 3.3135e-8 1.1045e-8 

 

Upper and lower limits are calculated by increasing and decreasing initial value by 

%50 and %-50 respectively. (-) indicates that the parameter is constant. 

 

Framegroup4 is defined for the elements which are between joints for only the 

elements at the right edge of the frame shown with triangles in Figure 10-4. The 
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section used for the indicated members have slightly thicker walls compared to the 

rest of the members defined by Framegroup3. Framegroup4 consist of elements; 

122, 123, 124, 125, 128, 129, 130, and 131. Framegroup4 is shown with triangles in 

Figure 10-4. Parameters related with Framegroup1 are given in Table 10-4. 

 

Table 10-4 Model parameters, limits, and initial values for Frame Group 4 

Framegroup1 Initial Value Upper Limit Lower Limit 

Modulus of Elasticity (N/m2) 2.1e11 - - 

Cross-sectional area (m2) 0.000184 0.000276 9.2e-005 

Z Moment of inertia (m4) 2.157e-8 3.2355e-008 1.0785e-008 

Density (kg/m3) 7850 - - 

Poisson’s Ratio 0.3 - - 

Y moment of inertia (m4) 1.113e-8 1.6695e-8 5.565e-9 

X moment of inertia (m4) 2.209e-8 3.3135e-8 1.1045e-8 

 

Upper and lower limits are calculated by increasing and decreasing initial value by 

%50 and %50 respectively. (-) indicates that the parameter is constant.  
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10.4 Parameters defined for FEU process 

Groups defined for frame properties, lumped mass constants, and spring coefficients 

are assigned various parameters in order to find an optimal solution that closely 

matches the experimental results. Parameters are assigned for each FEU group. 

Additional parameters are used during the Simulated Annealing (SA) processes 

which are necessary for the optimization process. These SA parameters are 

provided below: 

Initial Temperature =1000 

Final Temperature = 0.0001 

Temperature coefficient= 0.95 

Number of Outer Loops (linear): Initial: 2, Final: 6 

Following new parameters are defined in addition to the above standard SA 

parameters: 

Perturbation limit parameter (linear): Initial: %12, Final %8 

Penalty Coefficient (linear): Initial: 1, Final: 1.5  

Metropolis Test: Using Boltzman Parameter. 

10.4.1 Nominal Models’ Comparisons and FEU Results 

With the group names and parameters defined in Section 10.3 and FEU parameters 

defined in Section 10.4, the FEU software is executed with three different 

experimental models.  These models are:  

1) EMA result set 1 (Fist experiment 1-260 Hz). 

2) EMA result set 2 (Second experiment 1-500 Hz). 
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3) Combination of selected meaningful modes from EMA result set 1 and 

EMA result set 2. 

In the following sub-sections, the comparisons for the three nominal model results 

and FEU results are explained in detail. 

10.4.1.1 EMA Result Set 1 

For the comparison of the nominal analytical model against EMA test result set 1, is 

made using an objective function as described in Section 9.3 by Equation 9-1. 

Corresponding comparison plots and tables are given in Figure 10-5 and  

Table 10-5, respectively. The objective function value calculated for the nominal 

analytical model (in according with Equation 9-1) is 21.85263. 

 

Looking at the Figure 10-5 and  

Table 10-5, it is easy to understand that nominal FE model does not correlate well 

with EMA set 1. Overall impression obtained from examination of Figure 10-5, it is 

understood that FEU process will not give good results since most of the matched 

modes have very low MAC values and very low frequency correlation values. At 

the end of the FEU process, the objective function is lowered to17.1021. Success 

plot for FEU of EMA result set 1 is given in Figure 10-6. 
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Figure 10-5 Comparison plot for Mode Shapes & Frequencies for the Ema result set 1 

 

Table 10-5 Comparison table for nominal model with Ema result set 1 
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10.4.1.2 EMA Results Set 2 

For the comparison of the nominal analytical model against EMA result set 2, is 

made using objective function as described in Section 9.3 by Equation 9-1. 

Corresponding comparison plots and tables are given in Figure 10-7 and Table 10-7 

respectively. The objective function value calculated for the nominal analytical 

model (in according with Equation 9-1) is 26.32330. 

 

For this comparison same as the previous one (EMA results set 1) ,looking at the 

Figure 10-7 and Table 10-7, it is easy to understand that nominal FE model does not 

correlate well  with EMA set 2. Overall impression obtained from the examination 

of Figure 10-7, it is understood that FEU process will not give good results since 

most of the matched modes have very low MAC values and very low frequency 

correlation values. At the end of the FEU process, the objective function is lowered 

to 20.6492. 

 

 

Figure 10-7 Comparison plot for Mode Shapes & Frequencies for the Ema result set 2 
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Table 10-6 Comparison table for nominal model with Ema result set 2 

 

 

10.4.1.3 EMA Set 3 

After comparing the nominal models against the EMA result set 1 and EMA result 

set 2, it is concluded that a third set of EMA result which consists of the meaningful 

modes select from EMA result set 1 and EMA result set 2 is necessary. For the third 

try of the FEU process, meaningful modes from EMA result set 1 and EMA result 

set 2 are selected and grouped as EMA Set 3 used. From the mode shape animation 

of the first and second result sets, the modes which have meaningful mode shapes 

are selected. The selected modes give better correlation in nominal model 

comparison. These modes are 1,6,8,9,10,11,14, and 20 from EMA result set 1 and 1, 

2, 8,11,14,22, and 24 from EMA result set 2. These mode shapes are re-arranged 

according to their frequencies and used in the FEU process. The objective function 

value calculated for the nominal model in according with the Equation 9-1 is 
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12.224. Comparison plot and comparison table are given in Figure 10-8 and Table 

10-7 respectively.  

The FEU process is executed, and the success plot for FEU is obtained as shown in 

Figure 10-9.  

 

 

Figure 10-8 Comparison plot for nominal model with Ema result set 3 

 

Table 10-7 Comparison table for nominal model with Ema result sets combination 
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The objective function is lowered to 7.1564 at the end of FEU process as it can be 

seen from Figure 10-9. Keeping in mind that 15 modes are used in FEU, min value 

that the objective function can take is zero (complete consistency) and maximum 

value is 30, which means complete inconsistency. The objective function is lowered 

to 7.1564 (% 76.145 consistency) from 12.224 (%59.25 consistency) showing a 

positive improvement of % 16.985 in consistency. The improvement consistency 

percentages and final consistency values for the three EMA sets are listed in Table 

10-8 below: 

 

Table 10-8 Improvements consistency percentages. 

 Nominal Consistency Final Consistency Improvement 

EMA Set 1 % 47.97 % 59.281 % 11.311 

EMA Set 2 % 45.159 % 50.835 % 5.676 

EMA Set 3 % 59.28 % 76.145 % 16.985 

 

Comparison plot and comparison table for FEU results are given in Figure 10-10 

and Table 10-9, respectively. The improvement can be easily seen when Figure 

10-8 and Figure 10-10 are compared. Almost all MAC values and Frequency values 

increased. 
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Figure 10-10 Comparison plot for FEU result for Ema result set 3 

 

Table 10-9 Comparison table for FEU result for Ema result set 3 
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10.5 Optimized group parameters 

Since an increase of %16.985 in consistency was the best result obtained using the 

third EMA (relative to others), the FEU is accepted to be satisfactory and 

corresponding group parameters are accepted as optimized group parameters. In the 

following three tables, optimized mass, spring, and frame group parameters are 

listed respectively. Optimized mass, spring, and frame parameters are discussed in 

Chapter11 in Discussion of Results & Conclusion. 

 

Table 10-10 Optimized Mass Parameters 

 

 

Table 10-11 Optimized Spring Parameters 
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Table 10-12 Optimized Frame Parameters 
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11 CHAPTER 11 

DISCUSSION OF RESULTS & CONCLUSION 

11.1 An Overview of This Study 

The major work in this thesis study was on experimental modal testing, modal 

analysis, and analytical model updating (calibration) based on measured modal 

parameters. For this purpose a skewed steel grid frame was constructed. The test 

frame was dynamically tested by using swept sine signals. The signals were 

generated by the help of a shaker (see Section 3.3.3 for the properties of swept sine 

signals). The model is tested in free-free boundary conditions after suspended in the 

air using elastic rubber wires (see Section 8.3 for boundary condition details).  HP 

35665A 2 channel dynamic signal analyzer is used for processing the data obtained 

from the transducers. One force transducer and one accelerometer are used to 

acquire data from the model. 

 

Two separate experiments are conducted on the test frame. Although the testing 

method is the same for both sets, the force generator location is changed between 

tests to excite all modes. Furthermore, the latter test focuses on a narrow band 

which is half the width of the first test to increase the accuracy of measured data by 
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doubling the number of measurement points (see Section 8.7 for details). The 

frequency response functions obtained from the experiment are analyzed by the 

developed experimental modal analysis software (EMAS). Then the results obtained 

from EMAS are used in Finite Element Updating Software (FEUS). The results are 

discussed and conclusions are drawn. 

11.2 Discussion of Results of Modal Testing 

Frequency Response Functions (FRFs) obtained from modal testing are analyzed 

using EMAS (see Chapter 8). A total of 21 and 24 modes are extracted from the 

FRFs of the first and second experiments, respectively. By the help of the mode 

shape animation part of EMAS, these mode shapes are animated (refer to Section 

5.3 for the use of mode animation as verification method and refer to Section 

6.2.1.3.1 for the mode shape animation part of EMAS). By investigating these mode 

shapes, it is realized that some of the mode shapes are computational modes and are 

not likely to be replicated by structural analysis. Since the EMAS software was 

verified using a cantilever beam’s synthetically generated experimental data (refer 

to Chapter 7 for the verification of EMAS), it is certain that there are no formulation 

or programming errors in EMAS. The computational modes are excluded from the 

model updating process. Modal tests that were conducted on the test frame were not 

possible to replicate due to laboratory and scheduling constraints.  

  

The reason of obtaining unreasonable (computational) mode shapes can be 

explained with the number of accelerometers used in modal testing. Equipment used 

for modal data acquisition (or dynamic analyzer) has only 2 input channels, which 
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are used for one load transducer and one accelerometer. Since there was only one 

channel for accelerometer, in order to obtain mode shapes, the accelerometer was 

roved over 37 reference points on the frame. Obtaining all mode shapes correctly 

using a single accelerometer is not possible, and a larger number of accelerometers 

are needed in order to obtain healthy results. One of the accelerometers should be 

stationary (at the driving point) and the other accelerometer(s) should be moved 

over reference nodes sequentially. The reference accelerometer should be used for 

determining the sign of the mode shapes and for the magnitude of the modal scaling 

factor. For the explanation of modal scaling factor refer to Section 2.1 and Section 

4.3.1. 

Since there was only one channel available for acquiring response of the model in 

this study, it is assumed that if two accelerometers were used, modal scaling factor 

obtained in two tests would have been equal and for the reference accelerometer 

there would be no sign change in the mode shape coefficient  

Natural frequency and damping factor can be correctly obtained even if only one 

accelerometer is used in the modal testing. However, this does not guarantee that 

the mode shapes are obtained correctly. Although some of the mode shapes may be 

correctly obtained, some mode shapes may be erroneous.  

11.3 Discussion of Results of Finite Element Updating 

Modifying FE model in order to bring the FE model prediction into better 

agreement with the experimental results is referred as Finite Element Updating 

(FEU) (see Chapter 9). Results obtained from EMAS (mode shapes and 

corresponding natural frequencies) are inputs of FEU. 
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In Finite Element Updating, mode shapes and natural frequencies obtained from 

modal testing are compared with the mode shapes and natural frequencies obtained 

from Finite Element Analysis. The most important criterion in comparing mode 

shapes is MAC values. MAC values are the main indicator whether the two set of 

modes are similar or not. The second criterion is the comparison of the natural 

frequencies of the matching modes. Therefore, in order to say that two modes 

obtained experimentally and analytically are matching, both the MAC values and 

modal frequencies should match. If either MAC or frequencies do not match, it is 

not possible to state that the two modes are matching.  

In this study, two sets of experimental results are used for FEU purposes. These two 

sets of results are given in Sections 8.10.1 and 8.10.2, respectively. The Finite 

Element Updating (FEU) process did not achieve good results because of the 

weaknesses associated with the measurements (see Table 10-8 for the performance 

of FEU on different EMA result sets). The third set of EMA results obtained by 

excluding computational modes from the two sets of EMA results. For this purpose, 

17 and 13 computational modes are excluded from the first and second EMA test 

result sets, respectively. The remaining modes in the first and second set of EMA 

results were collected in a new set and ordered according to their natural 

frequencies.  

 

FEUS execution using the third set of EMA results concluded satisfactorily. The 

nominal model comparison results were acceptable (Table 10.8). The nominal 

(initial) model comparison to the third experimental set yielded %58.2 consistency 
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which was almost equal to the final consistency of the first set results. At the end of 

Finite Element Updating using third set of data, the consistency is obtained as 

76.1% (agreement with the third set of EMA results), which is a 17.9% consistency 

improvement. 

11.3.1 Optimized Mass Parameters 

Mass groups were defined according to the plate sizes used for bolting the steel 

members. Two different types of mass groups were defined based on the used plate 

sizes (refer to Figure 8-2 and Section 10.3.1 for plates sizes and mass parameters, 

respectively). 

For the first mass group (small plates) the optimized weight is found to be 0.184 

(kg) which is 12.27% less than the initial value. Also for the second mass group 

(larger plates) optimized weight is found to be 0.24032 (kg) which is 31.92% less 

than the initial value. It is concluded from the above results that the initial values of 

the plates used were over estimated. The optimized value for mass group 2 is higher 

than the optimized value of mass group1, as expected. 

11.3.2 Optimized Spring Parameters 

The model was tested in free-free boundary conditions after suspended in the air 

using elastic ropes. The dynamic response of the test model becomes close to a free-

free support condition since the stiffness of the elastic ropes are much smaller than 

the frame stiffness. Elastic rods and steel frame are shown in Figure 8-5 and Figure 

8-6. Increasing or decreasing elastic rod stiffness (within the given range) does not 

affect bending or torsional modes of the model, but only affects the rigid body 
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modes’ natural frequencies. Bending and torsional modes are insensitive to elastic 

rod stiffness value within the selected range. The initial value of spring elements 

axial stiffness was defined as 1001 N/m and the optimized parameter is found to be 

11698.3 N/m. The large difference between the nominal and calibrated spring 

stiffness is due to the fact that nominal spring stiffness was just a guess(no 

preliminary experiment was conducted to determine the stiffness of elastic ropes), 

since it had no significant effect on natural modes of the test frame other than rigid 

body mode frequencies. 

11.3.3 Optimized Frame Parameters 

Frame elements used for the FEU were categorized under 4 groups. Frame group 

member distributions were graphically presented in Figure 10-4. The upper limits, 

lower limits, and initial values of the frame group parameters are initially defined 

same for all frame groups (refer to Table 10-1 through Table 10-4.). For the 

optimization process, the upper and lower limits of all parameters are defined by 

increasing and decreasing their initial values by 50%. Since the perturbation limit 

parameter was initially defined as %12, it would have been unfair to define different 

ranges for the optimization parameters. (More information on the perturbation limit 

parameter can be reached at Section to 9.4.3).  

 

Framegroup1 was defined for the short members (with cover plates) at the joints, 

which are not continuous, and attached to the longitudinal (continuous) frame 

members by cover plates. The moment of inertia of this group (Izz) about the major 

bending axis was 2.4% over estimated relative to the nominal model. The calibrated 
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value came out to be slightly lower than the nominal section since the transverse 

members are not continuous. The moment of inertia (Iyy) about the minor bending 

axis was 23.22 percent less estimated relative to the nominal value. The minor 

bending direction was largely affected by the cover plates (Figure 10-4). Finally 

torsional moment of inertia (Ixx) was 24.27 percent over estimated.  

 

 Framegroup2 was defined for the short members at the joints in longitudinal 

direction, which are formed by the continuous members and bolted cover plates. 

The calibrated moment of inertia for framegroup2 about the major bending axis (Izz) 

was 1.28 percent more than the initial (nominal) value. The calibrated moment of 

inertia about major bending axis (Iyy) was found to be 5.42% less than the nominal 

value. Finally, calibrated torsional moment of inertia (Ixx) was 14.12% lower than 

the initial value.  

 

Framegroup3 was defined for the main elements in longitudinal and transverse 

direction which are located between joints and without cover plates. The calibrated 

moment of inertia about the major bending axis (Izz) turned about to be 0.07% 

smaller than the nominal value with almost no change at all. The calibrated moment 

of inertia about the minor bending axis (Iyy) was 27.92% larger than the nominal 

value. The calibrated torsional moment of inertia (Ixx) was 44.6% smaller than the 

nominal value. 

 

The above results show that the changes in major bending moment of inertia (Izz) 

values remained within reasonable and expected ranges. The framegroup1 sections 
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(with cover plates in transverse direction) had smaller I value due to discontinuity, 

whereas the framegroup2 (with cover plates in longitudinal direction) had a small 

inertia increase probably because of the holes in compression and tension flanges, 

and poor shear transfer (voids) in the bolted connections at low loading levels. The 

unusual variations in the minor and torsional inertia values are due to the 

insensitivity of parameters in vertical bending modes. The study had included only 

the vertical modes, and minor moment of inertia values were not exited by taking 

transverse vibration mode shapes. The effects of torsional and lateral bending 

moment of inertias had little effect on vertical mode shapes, therefore were not 

properly calibrated using measured dynamic data.  

 

Framegroup4 is defined for the members which are located at the right edge of the 

frame shown with triangles in Figure 10-4. The section used for the indicated 

members have slightly different dimensions compared to the rest of the members 

defined by Framegroup3. The calibrated moment of inertia for framegroup4 about 

the major bending axis (Izz) is found to be 12.27% smaller than the nominal value. 

The calibrated moment of inertia about the minor bending axis (Iyy) was 42.78% 

larger than the nominal value. The calibrated torsional moment of inertia (Ixx) was 

11.66% smaller than the nominal value.  

 

The framegroup4 sections were slightly larger than the rest of the members. 

Therefore, major bending axis inertias were expected to be larger than the nominal 

values. On the other hand, minor bending axis moment of inertia found to be larger 

than the nominal values. The unclear variations in the group 4 member properties 
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(calibration results being smaller than the expected values) are attributed to a) the 

reduced number of members not being able to affect the overall behavior, and b) 

coupled effect of group1 and group4 elements that coexist. Nevertheless, the 

calibration results of group 4 were worse than what was expected. Certain 

percentage of low performance obtained for group4 members might also be 

attributed to the quality of dynamic measurements. If the tests are repeated using 

better equipment and larger number of accelerometers, the success rate of 

calibration might have been improved. 

 

As it can be noticed, changes in cross sectional area for all frame groups given 

above were not mentioned. Within the given ranges, changes in cross-sectional area 

do not change the objective function. Change in cross-sectional area is an 

insensitive variable in FEU since all of the measured dynamic data are affected 

predominantly by bending properties of sections.  

11.4 A Few Comment about FEU 

Process of experimental modal analysis and calibration can be considered as a 

chain. Finite Element Updating is the last link of that chain, whereas modal testing 

is the first, and modal parameter estimation is in the middle. Therefore a problem at 

any ring level of the chain will affect the final ring. In order to obtain accurate 

results from Finite Element Updating, Modal parameter estimation should be 

accurate. In order to obtain accurate modal parameter estimation, Frequency 

Response Functions should be accurate. Finally in order to obtain accurate 

Frequency Response Functions, modal testing should be accurate. Success in a link 
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of the chain is highly related with the successes in previous links. In order to say 

that the result of FEU process is completely successful, there should be at least % 

90-95 correlation between experimental results and finite element results (analytical 

results). But in our case there was only % 76.145 consistency between experimental 

results and finite element results (analytical results). If there were more that 90-95 

percent correlation and the optimized values were similar to the ones above, then it 

would be correct to say that there is something wrong either in Finite Element 

Analysis or in Finite Element Updating. 

 

Under these circumstances, it is only possible to say that FEU process was 

successful as much as modal parameters were. And finally modal parameters were 

accurate as much as modal testing was. Therefore the success in this study was 

limited (and dominantly affected by) modal testing part of this study. If at least a 4 

channel data acquisition system (or a 4 channel dynamic analyzer) had been 

available, the modal parameters would have been more accurate and therefore FEU 

would have had a higher success rate. Nonetheless, majority of the calibration 

results obtained (especially for major bending moment of inertias and concentrated 

mass values) were meaningful. The modal testing, modal analysis, and model 

updating phases might be deemed as successful considering the difficulties with the 

measurement phase.  

 

It is concluded that minor axis bending properties could be better estimated if lateral 

and longitudinal direction modal parameters were also obtained (in addition to the 

vertical modal parameters). The number of accelerometers used for the testing 
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should be increased for higher success rate in measurements. Smaller frequency 

windows should be tested at a time to have shorter frequency intervals between 

each reading. Measurement of 1 to 260 Hz and 1 to 500 Hz range was too coarse 

and individual data points were too sparse.  

 

11.5 Future Studies 

In PhD studies, it is planed to use EMAS and FEUS with data obtained from large 

scale actual and existing structures (such as bridges and buildings). Small size 

bridges will be dynamically tested but a better data acquisition system will be used. 

With a better data acquisition system (4, 8, 16 channels) it will be proven that 

EMAS and FEUS are working properly. 

 

The next topic for future studies is “Modal Parameter Estimation using Ambient 

Response data”. Ambient data is generated by environmental excitation (such as 

traffic, wind, earthquakes, etc.) and the input force to the system is unknown. For 

bridges, the input forces are generally the traffic loads. For the buildings, the input 

forces are generally heavy street traffic, human/machinery activity in the building, 

wind, and with a small probability an earth quake.  

 

Custom design testing tools, wireless sensors, and commercially available modal 

analysis programs will also be investigated as a part of future studies. 
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APPENDIX A 
 

Report generated by EMAS for 3 d.o.f. system 

Date: 06-Jan-2004 
Time: 16:31 
 
This is a report generated by experimental modal analysis 
software(EMAS)  
 
Title: 3 d.o.f. cantilever beam model 
 
 
N O D E S 
 
        NODE ID          X CORD          Y CORD          Z CORD 
           1               0               0               0 
           2               1               0               0 
           3               2               0               0 
           4               3               0               0 
 
 
E L E M E T S 
 
          ELEMENT TYPE      START NODE        END NODE 
                 2               1               2 
                 2               2               3 
                 2               3               4 
 
 
C O N S T R A I N T S 
 
     NODE ID      X-TRANS      Y-TRANS      Z-TRANS    X-ROT    Y-
ROT       Z-ROT  
        1            1            1            1         1        1           
1 
 
 
 
M A S T E R  D O F S 
 
     NODE ID      X-TRANS      Y-TRANS      Z-TRANS    X-ROT    Y-
ROT       Z-ROT  
        2            0            0            1         0        0           
0 
        3            0            0            1         0        0           
0 
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        4            0            0            1         0        0           
0 
 
 
 
M O D A L   P A R A M E T E R S 
 
 
                MODE        FREQUENCY(Hz)           DAMPING(%) 
                  1             7.598                  0.119 
                  2            21.397                  0.336 
                  3            32.802                  0.515 
 
 
 
M O D E   S H A P E S  
 
 
 
 
MODE 1 
 
                NODE                   DOF                FACTOR 
                  2                     3                -0.2801 
                  3                     3                -0.5642 
                  4                     3                -0.7767 
 
 
MODE 2 
 
                NODE                   DOF                FACTOR 
                  2                     3                -0.6200 
                  3                     3                -0.5962 
                  4                     3                 0.5100 
 
 
MODE 3 
 
                NODE                   DOF                FACTOR 
                  2                     3                -0.8251 
                  3                     3                 0.5489 
                  4                     3                -0.1340 
 
 
 
M A C   C O R R E L A T I O N 
 
 
 
 
 
M O D E  1 
 
 
                    MODE 1 
 
MODE 1              1.0000 
 
MODE 2              0.0130 
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MODE 3              0.0006 
 
 
 
 
M O D E  2 
 
 
                    MODE 2 
 
MODE 1              0.0130 
 
MODE 2              1.0000 
 
MODE 3              0.0135 
 
 
 
 
M O D E  3 
 
 
                    MODE 3 
 
MODE 1              0.0006 
 
MODE 2              0.0135 
 
MODE 3              1.0000 
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APPENDIX B 
 

Input file of skewed frame used in FEUS. 

title skewed frame Problem  
! Main nodes which are used in FEUS  
! these are nodes that are selected as master  
node 1,     0,    0.0,    0.0  
node 5,   -0.194114283826891,  0.724444369716801,    0.0  
node 33,    3,  0.0,    0.0  
node 37,    2.80588571617311,  0.724444369716801  , 0  
nodegen 1   33  3   9    8  
nodegen 5   37  3   13   8  
nodegen 1   5   3   2   1  
nodegen 33  37  3   34  1  
nodegen 9   13  3   10  1  
nodegen 17  21  3   18  1  
nodegen 25  29  3   26  1  
nodegen 1    9  1   6   1  
nodegen 25  33  1   30  1  
nodegen 6   30  2   14  8  
nodegen 3    11  1   7   1  
nodegen 27  35  1   31  1  
nodegen 7   31  2   15  8  
nodegen 5   13  1   8   1  
nodegen 29  37  1   32  1  
nodegen 8   32  2   16  8  
! Nodes used to define connection regions  
node 38,     0.037,    0.0,    0.0  
node 39,     0.715,    0.0,    0.0  
node 40,     0.785,    0.0,    0.0  
node 41,     1.465,    0.0,    0.0  
node 42,     1.535,    0.0,    0.0  
node 43,     2.215,    0.0,    0.0  
node 44,     2.285,    0.0,    0.0  
node 45,     2.963,    0.0,    0.0  
node 46,    -0.01216449512    0.04539851384,    0.0  
node 50,    2.987835505    0.04539851384,    0.0  
nodegen 46 50 3 47  1  
node 51     -0.08489264679,    0.316823671,    0.0  
node 55    2.91510735320637,    0.316823671,    0.0  
nodegen 51 55 3 52  1  
node 64    -0.109221637033264,  0.407620698693987,    0.0  
node 68    2.89077836296674,   0.407620698693987,    0.0  
nodegen 64 68 3 65  1  
node 69    -0.181949788707072,   0.679045855881215,    0.0  
node 73   2.81805021129293,   0.679045855881215,    0.0  
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nodegen 69 73 3 70  1  
node 56  -0.0600571419134455,   0.362222184858401,    0.0  
node 57  0.617942858086555,   0.362222184858401,    0.0  
node 58  0.687942858086555,   0.362222184858401,    0.0  
node 59  1.36794285808655,   0.362222184858401,    0.0  
node 60  1.43794285808655,   0.362222184858401,    0.0  
node 61  2.11794285808655,   0.362222184858401,    0.0  
node 62  2.18794285808656,   0.362222184858401,    0.0  
node 63  2.86594285808656,   0.362222184858401,    0.0  
node 74 -0.157114283826891,   0.724444369716801,    0.0  
node 75 0.520885716173109,   0.724444369716801,    0.0  
node 76 0.590885716173109,   0.724444369716801,    0.0  
node 77 1.27088571617311,   0.724444369716801,    0.0  
node 78 1.34088571617311,   0.724444369716801,    0.0  
node 79 2.02088571617311,   0.724444369716801,    0.0  
node 80 2.09088571617311,   0.724444369716801,    0.0  
node 81 2.76888571617311,   0.724444369716801,    0.0  
! Nodes that are used to get fine mesh  
! One additional node is added between two nodes  
! which are wide enough  
nodegen 6 38 1 82  1  
nodegen 6 39 1 83  1  
nodegen 14 40 1 84 1  
nodegen 14 41 1 85 1  
nodegen 22 42 1 86 1  
nodegen 22 43 1 87 1  
nodegen 30 44 1 88 1  
nodegen 30 45 1 89 1  
nodegen 2 46  1 90 1  
nodegen 2 51  1 91 1  
nodegen 4 64   1 92 1  
nodegen 4 69  1 93 1  
nodegen 34 50 1 94 1  
nodegen 34 55 1 95 1  
nodegen 36 68 1 96 1  
nodegen 36 73 1 97 1  
nodegen 8 74   1 98 1  
nodegen 8 75   1 99 1  
nodegen 16 76  1 100 1  
nodegen 16 77  1 101 1  
nodegen 24 78   1 102 1  
nodegen 24 79   1 103 1  
nodegen 32 80 1 104 1  
nodegen 32 81 1 105 1  
nodegen 90 94 3 106 1  
nodegen 91 95 3 109 1  
nodegen 92 96 3 112 1  
nodegen 93 97 3 115 1  
nodegen 82 98 1 118 1  
nodegen 83 99 1 119 1  
nodegen 84 100 1 120 1  
nodegen 85 101 1 121 1  
nodegen 86 102 1 122 1  
nodegen 87 103 1 123 1  
nodegen 88 104 1 124 1  
nodegen 89 105 1 125 1  
node 126 1.125 0.1 0.5  
node 127   1.27088571617311,  0.624444369716801,    0.5  
node 128    1.535,  0.1,    0.5  
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node 129    1.68088571617311,  0.624444369716801  , 0.5  
node 130    1.19794285808655,0.26222184858401,0.5  
node 131    1.19794285808655,     0.46222184858401,  0.5  
node 132 1.60794285808655, 0.262222184858401,   0.5  
node 133    1.60794285808655, 0.462222184858401,   0.5  
!node 134  0 -0.5 0  
!node 135   -0.194114283826891,  1.224444369716801,    0  
!node 136   3,  -0.5,    0  
!node 137 2.80588571617311,  1.24444369716801  , 0  
elemtype beam3d    1.84e-4,  2.e11,  2.157e-8,  7850, 0.3 , 1.113e-
8,   2.209e-8  
elem 1 1 38  
elem 2 38 82  
elem 3 82 6  
elem 4 6 83  
elem 5 83 39  
elem 6 39 9  
elem 7 9 40  
elem 8 40 84  
elem 9 84 14  
elem 10 14 85  
elem 11 85 41  
elem 12 41 17  
elem 13 17 42  
elem 14 42 86  
elem 15 86 22  
elem 16 22 87  
elem 17 87 43  
elem 18 43 25  
elem 19 25 44  
elem 20 44 88  
elem 21 88 30  
elem 22 30 89  
elem 23 89 45  
elem 24 45 33  
elem 25 3 56  
elem 26 56 118  
elem 27 118 7  
elem 28 7 119  
elem 29 119 57  
elem 30 57 11  
elem 31 11 58  
elem 32 58 120  
elem 33 120 15  
elem 34 15 121  
elem 35 121 59  
elem 36 59 19  
elem 37 19 60  
elem 38 60 122  
elem 39 122 23  
elem 40 23 123  
elem 41 123 61  
elem 42 61 27  
elem 43 27 62  
elem 44 62 124  
elem 45 124 31  
elem 46 31 125  
elem 47 125 63  
elem 48 63 35  
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elem 49 5 74  
elem 50 74 98  
elem 51 98 8  
elem 52 8 99  
elem 53 99 75  
elem 54 75 13  
elem 55 13 76  
elem 56 76 100  
elem 57 100 16  
elem 58 16 101  
elem 59 101 77  
elem 60 77 21  
elem 61 21 78  
elem 62 78 102  
elem 63 102 24  
elem 64 24 103  
elem 65 103 79  
elem 66 79 29  
elem 67 29 80  
elem 68 80 104  
elem 69 104 32  
elem 70 32 105  
elem 71 105 81  
elem 72 81 37  
elem 73 1 46  
elem 74 46 90  
elem 75 90 2  
elem 76 2 91  
elem 77 91 51  
elem 78 51 3  
elem 79 3 64  
elem 80 64 92  
elem 81 92 4  
elem 82 4 93  
elem 83 93 69  
elem 84 69 5  
elem 85 9 47  
elem 86 47 106  
elem 87 106 10  
elem 88 10 109  
elem 89 109 52  
elem 90 52 11  
elem 91 11 65  
elem 92 65 112  
elem 93 112 12  
elem 94 12  115  
elem 95 115 70  
elem 96 70 13  
elem 97 17 48  
elem 98 48 107  
elem 99 107 18  
elem 100 18 110  
elem 101 110 53  
elem 102 53 19  
elem 103 19 66  
elem 104 66 113  
elem 105 113 20  
elem 106 20 116  
elem 107 116 71  
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elem 108 71 21  
elem 109 25 49  
elem 110 49 108  
elem 111 108 26  
elem 112 26 111  
elem 113 111 54  
elem 114 54 27  
elem 115 27 67  
elem 116 67 114  
elem 117 114 28  
elem 118 28 117  
elem 119 117 72  
elem 120 72 29  
elem 121 33 50  
elem 122 50 94  
elem 123 94 34  
elem 124 34 95  
elem 125 95 55  
elem 126 55 35  
elem 127 35 68  
elem 128 68 96  
elem 129 96 36  
elem 130 36 97  
elem 131 97 73  
elem 132 73 37  
elemtype mass3d 0  
elem    133, 1  
elemgen 133 4 136 3 8  
elemgen 133 2 134 1 2  
elemgen 136 2 137 1 2  
elemgen 139 2 140 1 2  
elemgen 142 2 143 1 2  
elemgen 145 2 146 1 2  
elemtype spring3d  102  
elem 148 14 126  
elem 149 77 127  
elem 150 42 128  
elem 151 24 129  
elem 152 121 130  
elem 153 121 131  
elem 154 122 132  
elem 155 122 133  
elem 156 14 126  
elem 157 77 127  
elem 158 42 128  
elem 159 24 129  
! Fix Spring Supports  
constnode 126  
constnode 127  
constnode 128  
constnode 129  
constnode 130  
constnode 131  
constnode 132  
constnode 133  
allmasterdof 3  
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APPENDIX C 
 

Mode shapes extracted from the first experiment. 

 

 

Figure C-1 6.23 Hz 

 

 

Figure C-2 14.72 Hz 
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Figure C-3 104.06 Hz 

 

 

Figure C-4 136.27 Hz 

 

 

Figure C-5 182.0014 Hz 
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Figure C-6 182.0014 Hz 

 

 

Figure C-7 375.77 Hz 

 

 

Figure C-8 469.60 Hz 
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APPENDIX D 
 

Mode shapes extracted from the second experiment. 

 

 

Figure D-1 8.22 Hz 

 

 

Figure D-2 39.995 Hz 
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Figure D-3 64.889 Hz 

 

 

Figure D-4 78.19 Hz 

 

 

Figure D-5 102.37 Hz 
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Figure D-6 110.04 Hz 

 

 

Figure D-7 139.41 Hz 

 

 

Figure D-8 232.84 Hz 

 

 


