
 
 
 
 
 
 
 

BUSINESS PROCESS MODELLING BASED COMPUTER-AIDED 
SOFTWARE FUNCTIONAL REQUIREMENTS GENERATION 

 
 
 

A THESIS SUBMITTED TO 
 

THE GRADUATE SCHOOL OF INFORMATICS 
 

OF 
 

THE MIDDLE EAST TECHNICAL UNIVERSITY 
 
 
 

BY 
 
 
 

M. ONUR SU 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE  
 

OF 
 

MASTER OF SCIENCE 
 

IN 
 

THE DEPARTMENT OF INFORMATION SYSTEMS 
 
 
 

JANUARY 2004 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced all 

material and results that are not original to this work.                                              

 

 

     __________________________ 

       Mehmet Onur Su 



  

Approval of the Graduate School of Informatics 

                                                               

              __________________________ 

                                                       Prof. Dr. Nese YALABIK 

                                                 Director 

 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 

Master of Science/Doctor of Philosophy. 

                         __________________________ 

                                                    Assoc. Prof. Dr. Onur Demirörs 

                                                 Head of Department 

 
 
This is to certify that we have read this thesis and that in our opinion it is fully 

adequate, in scope and quality, as a thesis for the degree of Master of Science. 

 
 

                                                            

              __________________________ 

                                Assoc. Prof. Dr. Onur Demirörs 

                              Supervisor 

Examining Committee Members  
 
 
Prof. Dr. Semih BILGEN          __________________________ 
 
 
Assoc. Prof. Dr. Onur DEMIRÖRS     __________________________ 
 
 
Assoc. Prof. Dr. Bilge SAY        __________________________  
 
 
Assoc. Prof. Dr. Kadir VAROGLU     __________________________ 
 
 
Dr. Altan KOÇYIGIT                               __________________________ 
 
 



 iii 

ABSTRACT 

 
BUSINESS PROCESS MODELLING BASED COMPUTER-AIDED  

SOFTWARE 
 FUNCTIONAL REQUIREMENT GENERATION 

 
Su, M.Onur 

 
M.S., Department of Information Systems 

 
Supervisor: Assoc. Prof. Dr. Onur Demirörs 

 
 

January 2004, 114 pages 
 
 

 Problems of requirements which are identified in the earlier phase of a 

software development project can deeply affect the success of the project. Thus 

studies which aim to decrease these problems are crucial. Automation is foreseen 

to be one of the possible solutions for decreasing or removing some of the 

problems originating from requirements. 

This study focuses on the development and implementation of an automated 

tool that will generate requirements in natural language from business process 

models. In this study, The benefits of the tool are discussed, and the tool is 

compared with other software requirements related tools with respect to their 

functionality. The developed tool has been tested within a large military project 

and the results of using the tool are presented.  

 
  Keywords: Requirement, Requirement Engineering, Business Process 

Modelling, Automatic Requirement Generation, eEPC, KAOS  



 iv 

ÖZ 

 
IS SÜREÇLERI MODELLEMEYE DAYALI BILGISAYAR DESTEKLI  

YAZILIM 
 FONKSIYONEL GEREKSINIM ÜRETIMI 

 
 

Su, M.Onur 
 

Yüksek Lisans, Bilisim Sistemleri 
 

Tez Yöneticisi: Doç.Dr.Onur Demirörs 
 
 

Ocak 2004, 114 sayfa 
 
 

Yazilimin sorunlari üzerine yapilan arastirmalarda, yazilimin ilk fazinda 

tanimlanan gereksinimler ile ilgili ortaya çikan sorunlarin, yazilim projelerinin 

basarisini derinden etkiledigi bilinmektedir. Dolayisiyla bu sorunu azaltmayi 

hedefleyen çalismalarin önemi büyüktür. Otomasyon, gereksinimden kaynaklanan 

sorunlarin bazilarini azaltmak, bazilarini ise ortadan kaldirmak için çözüm olarak 

öngörülen yollardan biridir.  

Bu çalisma, yazilimin ilk sürecinde belirlenen fonksiyonel gereksinimlerin, 

dogal dille is süreç modellerinden otomatik olarak üretecek bir aracin gelistirme 

ve gerçeklestirmesine dayanmaktadir. Çalismada ayrica, gelistirilen aracin 

faydalari tartisilmakta, yazilim gereksinimleri ile etkilesimli olarak çalisan diger 

araçlar ile bu araç görevlerine göre karsilastirilmaktadir. “Büyük” kapsamindaki 

bir askeri proje ile gelistirdigimiz araç sinanmis ve sonuçlari sunulmustur.   

 Anahtar Kelimeler: Gereksinim, Gereksinim Mühendisligi, Is Seri 

Modelleme, Otomatik Gereksinim Üretme, eEPC, KAOS  



 v 

DEDICATION 

 
 
 
 
 
 
 
 
 

To my parents who always believe in me, 
 

To the memory of my Grandfather, 
Mehmet SU 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi 

ACKNOWLEDGMENTS 

I express sincere thanks to my advisor Assoc.Prof.Dr.Onur Demirörs for 

providing insight and guidance as well as encouragement and inspiration 

throughout this research. I am grateful to him for his continuing enthusiasm and 

his perfect balance between providing me direction and encouraging 

independence.   

I would like to express my deepest gratitude and appreciation to my family 

who have always given me their love and emotional support. 

I also would like to give particular thanks to each special project members 

who always helped me with my questions. 



 vii 

TABLE OF CONTENTS 

ABSTRACT.........................................................................................................III 

ÖZ......................................................................................................................... IV 

DEDICATION.......................................................................................................V 

ACKNOWLEDGMENTS ..................................................................................VI 

TABLE OF CONTENTS...................................................................................VII 

LIST OF TABLES .............................................................................................. IX 

LIST OF FIGURES ..............................................................................................X 

LIST OF ACRONYMS.......................................................................................XI 

CHAPTER 

1. INTRODUCTION......................................................................................... 1 

1.1. Statement of Problem....................................................................................................................3 

1.2. Approach ..........................................................................................................................................4 

1.3. Thesis Structure..............................................................................................................................5 

2. RELATED RESEARCH .............................................................................. 6 

2.1. Requirement Engineering ............................................................................................................6 
2.1.1. Requirement.................................................................................................................................7 

2.2. Business Process Modelling ...................................................................................................... 10 

2.3. ARIS Concept............................................................................................................................... 12 
2.3.1. EPC Method...............................................................................................................................18 
2.3.2. eEPC Method.............................................................................................................................23 
2.3.3. ARIS Tool ..................................................................................................................................30 



 viii 

2.4. Tool Support for Requirement Engineering ........................................................................ 31 
2.4.1. Automatic Requirements Generation Tools .........................................................................34 

3. KAOS TOOL............................................................................................... 36 

3.1. Tool Scenario................................................................................................................................ 37 

3.2. Software Design........................................................................................................................... 40 
3.2.1. Description of Classes ..............................................................................................................41 
3.2.2. Class Diagrams of Objects ......................................................................................................46 
3.2.3. Description of Sub-Programs ..................................................................................................48 
3.2.4. Structure Charts of Sub-Programs ..........................................................................................65 

3.3. Tool Restrictions .......................................................................................................................... 66 
3.3.1. Assumptions...............................................................................................................................66 
3.3.2. Constraints..................................................................................................................................67 

3.4. Sentence Structure ...................................................................................................................... 74 
3.4.1. Example sentences ....................................................................................................................83 

4. EXPERIMENTAL STUDY........................................................................ 86 

4.1. Description of Experimental Study ........................................................................................ 86 

4.2. The Context of the Experimental Study................................................................................ 87 
4.2.1. Concept Explorations ...............................................................................................................89 
4.2.2. AS-IS Business Process Modelling........................................................................................89 
4.2.3. AS-IS BPM Verification and Validation ..............................................................................90 
4.2.4. TO-BE Business Process Modelling......................................................................................91 
4.2.5. TO-BE BPM Verification and Validation ............................................................................94 
4.2.6. System Requirement Specification ........................................................................................95 
4.2.7. System Requirement Verification and Validation...............................................................98 

4.3. Application of the Tool .............................................................................................................. 99 

5. CONCLUSION.......................................................................................... 102 

5.1. Summary......................................................................................................................................102 

5.2. Contributions..............................................................................................................................103 

5.3. Future Work ...............................................................................................................................105 

REFERENCES .................................................................................................. 106 

APPENDIX ........................................................................................................ 109 
 



 ix 

LIST OF TABLES 

Table 1 EPC notation ............................................................................................ 19 
Table 2 eEPC notation........................................................................................... 23 
Table 3 Colour code of KAOS tool....................................................................... 67 
Table 4 Example for naming objects..................................................................... 73 
Table 5 Description of main dynamic sentence constructs................................... 75 
Table 6 Main constructs of sentence structures .................................................... 76 
Table 7 Sub-constructs of sentence structures (prefix) ......................................... 79 
Table 8 Reasons of corrections ............................................................................. 99 

 



 x 

LIST OF FIGURES 

Figure 1 Hierarchical decomposition of the requirements engineering domain ..... 7 
Figure 2 ARIS view............................................................................................... 14 
Figure 3 The relationship between views and classes........................................... 15 
Figure 4 ARIS phase model .................................................................................. 16 
Figure 5 ARIS house ............................................................................................. 18 
Figure 6 Example EPC.......................................................................................... 22 
Figure 7 Example for eEPC .................................................................................. 30 
Figure 8 Classification of RE tools ....................................................................... 32 
Figure 9-a The scenario of KAOS tool ................................................................. 39 
Figure 9-b The scenario of KAOS tool................................................................. 40 
Figure 10 Generalization relationships of classes................................................. 47 
Figure 11 Dependency relationships of classes..................................................... 47 
Figure 12 Association relationships of the classes................................................ 48 
Figure 13 Structure charts of sub-programs .......................................................... 66 
Figure 14 Example eEPC for requirement sentences............................................ 84 
Figure 15 The structure of the team...................................................................... 87 
Figure 16 The uppermost process in eEPC........................................................... 88 
Figure 17 AS-IS BPM........................................................................................... 90 
Figure 18-a TO-BE BPM ...................................................................................... 93 
Figure 18-b TO-BE BPM...................................................................................... 94 
Figure 19-a System requirement specification...................................................... 97 
Figure 19-b System requirement specification...................................................... 98 
Figure 20 KAOS tool step 1 ................................................................................ 110 
Figure 21 KAOS tool step 2 ................................................................................ 111 
Figure 22 KAOS tool step 3 ................................................................................ 111 
Figure 23 KAOS tool step 4 ................................................................................ 112 
Figure 24 KAOS tool step 5 ................................................................................ 112 
Figure 25 KAOS tool step 6 ................................................................................ 113 
Figure 26 KAOS tool step 7 ................................................................................ 113 
Figure 27 KAOS tool step 8 ................................................................................ 114 
Figure 28 KAOS tool step 9 ................................................................................ 114 

 



 xi 

LIST OF ACRONYMS 

ABS Activity Based Costing 

ARIS Architecture of Integrated Information Systems 

BPM Business Process Model 

BPR Business Process Reengineering 

C4ISR Command, Control, Communications, Computers, Intelligence, 
Surveillance and Reconnaissance 

COTS Commercial Off the Shelf 

DD Data Dictionary 

eEPC Extended Event Driven Process Chain 

EPC Event Driven Process Cha in 

ESPITI The European Software Process Improvement Training Initiative 

FP Function Point 

HOBE House of Business Engineering 

IEEE Institute of Electrical and Electronics Engineers 

INCOSE International Council on System Engineering 

IS Information System 

ISO International Standards Organisation 

IT Information Technology 

IWi The Institute for Information Systems 

METU Middle East Technical University 

OLE Object Linking and Embedding 

OTN Object Type Number 

RFP Request for Proposal 

RGT Requirements Generation Tools 

RMT Requirements Management Tools 



 xii 

WBS Work Breakdown Structure 



 1 

CHAPTER 1 

1. INTRODUCTION  

Requirements are the most important assets of software engineering 

activities because the following software engineering activities are built on 

elicited requirements. As Brooks wrote “…No other part of the work so cripples 

the resulting system if done wrong. No other part is more difficult to rectify 

later…” [Brooks, 1987]. However, requirements errors are abundant in software 

projects and can easily consume 25%–40% of the total project budget [Yourdon, 

2000].  

One of the studies carried by Jerry Weinberg discovered that up to 60% of 

errors originated from the requirements and analysis activities [Robertson, 

Robertson, 2002]. The Standish Group study also supports the findings of Jerry 

Weinberg. According to the The Standish Group, at least a third of the 

development projects run into trouble for reasons which are directly related to 

requirements gathering, requirements documenting, and requirements 

management [Yourdon, 2000]. The other survey conducted by The European 

Software Process Improvement Training Initiative (ESPITI) has even more 

striking results concerning the requirements problem. The main motivation of the 

ESPITI survey was to identify the relative importance of various types of software 

problems in industry [Yourdon, 2000]. Requirements specifications, managing 

customer requirements and documentation are three largest problems for the 

responses. “Both the Standish and the ESPITI studies provide qualitative data 

indicating that respondents feel that requirements problems appear to transcend 



 2 

other issues in terms of the risks and problems they pose to the application 

development.” [Yourdon, 2000, pg.26] 

Requirements and the problems associated with requirements are very 

important for a project lifecycle. The 1994 study of Capers Jones discovered that 

requirements errors and documentation errors together are more than one third of 

the total delivered defects pile [Yourdon, 2000]. It is easy, cost effective and time 

effective to fix problems caused by requirements in the early stages. The 

relationship between cost and requirements errors has been determined by another 

study which is performed at various companies including GTE, TRW, IBM and 

HP.  According to the study, as much as a 200:1 cost saving can be achieved 

between the requirements stage and maintenance stage [Yourdon, 2000]. 

Studies show that one of the major problems concerns requirements and the 

activities related to requirements. Requirements problems are strong sources of 

potential risks that could adversely impact the project’s resources, schedules, and 

products deeply [Wilson, 1999]. It is necessary to use any method, approach 

and/or tool that will reduce the problems associated with requirements and also 

support requirements engineering activities. 

Competitive pressures have increased the expectation of software intensive 

products therefore, the functionality of software intensive products has increased 

and this  results in an increased number of requirements. A number of tools have 

been developed to assist or automate requirements activities to handle the 

increased number of requirements. These tools are called “Requirements 

Engineering Tools” and can be classified as “Requirements Management Tools” 

(RMT) and “Requirements Generation Tools” (RGT) (See Figure 8, pg 30). RMT 

are basically used to classify requirements and serve to trace the source of 

requirements. These tools can be used after requirements are generated. On the 

other hand, RGT are used to form requirements in an organized manner. There are 

many commercial RMT such as RequisitePro, DOORS, Caliber, CARE, CORE, 

Catalyze, Cradle etc… whereas there are only a few RGT [INCOSE, 2002b]. In 

the literature, there is only one study found generating requirements from UML 

diagrams [Berenbach, 2003] (see Section 2.4.1 for further information about the 



 3 

study) but there is no study in the literature which shows the generating of 

functional requirements from business process models. 

The KAOS tool is an RGT which has been developed as part of the studies 

performed in this thesis and it generates system level software functional 

requirements from business process models. 

1.1. Statement of Problem  

The Performing Rights Society, PROMS project was abandoned in 1992 

after spending £11 million. The prominent factor in the cancellation of the project 

was poor requirements engineering. It was reported that they failed to set out the 

requirements in a form that could be understood and checked by non-technical 

people and that the specifications were ill-conceived [Bray, 2002]. Although 

critical, elicitation and documenting the initial requirements of customers is only 

part of the whole task. Software requirements frequently change during the 

process of gathering them. Manual changes are annoying, time consuming and 

error prone. One way to address these problems is to automate functional 

requirements generation. 

Automating requirements generation is a challenging but also a rewarding 

research area. Its challenge is mostly due to the difficulties related with the 

identification and representation of customer’s need. The rewards include 

minimizing effort of non-value-added tasks such as rework and documentation 

and improving the quality as well as the  ability to modify the requirements 

documents.   

As the number of requirements for software intensive systems are high, it is 

difficult and time consuming to put together requirements in a structured way. 

Traditionally software requirements are written in natural language, manually and 

in most projects by more than one person. As more engineers work on integrated 

parts of documents, consistency becomes a major problem and the task to find and 

correct these errors is complicated. Most of the time it is even difficult for a 

reviewer to decide whether these requirements are written on purpose or there are 

requirements which are skipped.  



 4 

Moreover, it is possible to write the same requirement in different styles, 

therefore the recipients of the requirements document have to adapt to different 

styles of writers. If requirements are consistently written in a structured way, 

comprehensible documents can be generated so that clients can check and 

understand resulting requirements document.  

Current software engineering tools are mainly focused on software 

requirements and use approaches which start with software requirements so there 

is no sufficient tool support for system level requirements.  

On the whole, the aim of this thesis is to develop a tool to automatically 

generate system level functional requirements in natural language from business 

processes. The tool will enable to construct the requirements within a short time, 

enable re-construction based on changes in business processes, construct sentence 

structures consistently to improve understanding and enable requirements 

management tools to ease further requirements based tasks.  

1.2. Approach  

Business Process Modelling (BPM) was utilized as an approach for 

automatic requirements generation. An appropriate business process modelling 

language can offer the opportunity to generate requirements in natural language. 

Extended Event Driven Process Chain Modelling (eEPC Modelling) was used 

with ARIS concept for AS-IS and TO-BE studies so that roles, inputs, outputs and 

their relationships could be shown precisely, functions could be presented in 

natural business language. 

There were specific activities followed step by step to generate functional 

requirements in natural language. First of all, the base components of 

requirements sentences called sentence construct was determined. The 

requirements of a similar project were analyzed to identify specific needs of 

requirements sentences and restrictions. Then restrictions were enlarged for the 

experimental study and the sentence structures were determined. The tool called 

KAOS was formed using findings and it was validated by an experimental study 

which was a large military project. 



 5 

The experimental study was performed in part of requirements elicitation 

process as defined in the article “Utilizing Business Process Models for 

Requirements Elicitation: A Large System Acquisition Experience” [Demirörs, 

Tarhan, Gencel, 2002]. The steps of the process are concept exploration, analysis 

and modelling of current business processes which is called AS-IS Study, 

modelling target business processes which is called TO-BE Study, requirements 

generation for the target system which is called system requirement specification 

and verification and validation of outputs. 

1.3. Thesis Structure  

Chapter 2, related research, provides a detailed description and information 

from the literature which are necessary for the study. 

Chapter 3, The KAOS tool, presents detailed information about tool and the 

sentence structures. 

Chapter 4, The experimental study, contains motivation, the process which 

is applied during the experimental study, structure of project team and results.   

Chapter 5, provides the conclusion to the study, includes contributions and 

directions for future work. 



 6 

CHAPTER 2 

2. RELATED RESEARCH 

2.1. Requirements Engineering  

Requirements engineering (RE) is the systematic process of developing 

requirements through an iterative co-operative process of analyzing the problem, 

documenting resulting observation in a variety of representation formats, and 

checking the accuracy of the understanding gained [Macaulay, 1996]. In addition 

to this, requirement s engineering deals with the problems associated with this 

stage.  

Requirements engineering consists of two main interconnected, as shown in 

Figure 1.  These are requirements development and requirement management  

[Wiegers, 1999a]. In addition to this, requirements development consists of sub 

domains such as elicitation, analysis, specification and verification. The sub-

disciplines encompass all the activities involved with gathering, evaluating, and 

documenting the requirements for a software or software containing product 

[Wiegers, 1999a]. 



 7 

 

Figure 1 Hierarchical decomposition of the requirements engineering domain [Wiegers, 
1999a] 

 

2.1.1. Requirement 

Quality products can be produced by quality raw materials, thus poor 

requirements can not lead to excellent software [Wiegers, 1999b]. Requirements 

are the raw materials of software intensive projects so requirements are the most 

important assets that software intensive projects own. 

It is very important to define all aspects of requirements to use a common 

language because the software society has made many definitions such as: 

 “A requirement is something that the product must do or a quality that the 

product must have.” [Robertson, Robertson, 2002, pg.5] 

“The effect that client wishes to be brought about in the problem are 

requirements themselves.” [Bray, 2002,pg.14]  

The IEEE Standard glossary of software engineering terminology defines 

requirements as:  

i. A condition or capability needed by a user to solve a 

problem or achieve an objective. 

ii. A condition or capability that must be met or possessed 

by a system or system component to satisfy a contract, 

standard, specification, or other formally imposed 

document. 

Requirements Management 

Requirements Engineering 

Requirements Development 

Verification Analysis Elicitation Specification 



 8 

iii. A documented representation of a condition or capability 

as in 1 or 2 [Christel, Kang, 1999,pg.2]. 

Although the definitions above are common, it is not adequate to understand 

the nature of requirements and to speak common language. In other words, there 

are other aspects of requirements which need to be clarified. The requirements can 

also be classified with abstraction level and type; 

Classification 1: Abstraction Level 

There are many sub-classifications in relation to the abstraction levels and 

points of views but the closest to the approach of this thesis is that of Soren 

Lausen. She classifies the requirements considering abstraction level as follows: 

[Lausen, 2002] 

• Goal Level Requirement: describing business goals.  

• Domain Level Requirement: describing activities that go on outside 

the product. 

• Product Level Requirement: specifying what should come in and 

out of the product. 

• Design Level Requirement: This is stated in software requirements 

specifications. 

Classification 2: Type 

Requirements can also be classified considering its type.  

• Functional Requirements: the things the product must do. 

• Non-Functional (Quality or Performance) Requirements: The 

properties, or qualities such as speed, capability, reliability, 

usability that product must have.  

In the software engineering field classification 2 is more common than 

classification 1 because there are still many debates on abstraction levels of 

requirements.  



 9 

The purpose of the project, which was used as an experimental study, was to 

produce a Request for Proposal (RFP) of a C4ISR system and the KAOS tool is 

designed to produce system requirements allocated to software functional 

requirements therefore generated requirements are product level requirements for 

the classification 1 and also functional requirements for the classification 2. 

Besides, generated requirements are user level system requirements allocated to 

the software functional requirements for another point of view in the software 

engineering literature.  

Software requirements specifications are filled with badly written 

requirements [Wiegers, 1999b]. Too many factors are involved in writing good 

requirements and yet there are not enough examples of good requirements 

available to learn from partly because few projects have good ones to share, and 

partly because few companies are willing to place their product specifications in 

the public domain [Wiegers, 1999b]. However, there are some explicit and well 

known ideas that an individual requirement statement should exhibit. First of all, a 

requirement sentence should be correct, feasible, necessary, unambiguous, 

verifiable and prioritized [Wiegers, 1999b]. These characteristics ensure that 

requirements are well-written. Besides this, there are other characteristics for a 

requirement sentence these include being well- identified and well-structured 

[Bayias, Hadzilacos, 1999]. Some of the data such as the version, the title, the 

status states that a requirements document is well- identified however there is no 

complete and explicit definition for “well- identified requirements” thus it is 

possible for the data can be decreased or increased according to the project needs 

and the experiences. To create a high quality text structure and to increase the 

understanding of requirements, a requirement sentence needs to be well-

structured. Poorly structured requirements sentences cause confusion and are 

prone to incorrect interpretations [Wilson, 1999]. Although, there is no agreed 

format for the base constructs of a requirement sentence, there are shared 

structural components which define a set of constructs such as: 

 
 
 
 
 



 10 

• Actor(s) such as people, system vs.… 

• An action such as read, write vs.… 

• Input(s) such as information carrier (if exists) 

• Output(s) such as message (if exists) 

• Condition (if exists) 

Moreover, there are guidelines which can change according to the needs of 

the software specialist. The following guidelines are stated for requirement 

sentences to write requirements in quality.  

• Use terms consistently. 

• State requirements in a consistent fashion. 

• To reduce ambiguity, avoid vague, subjective terms such as easy, 

rapid, efficient, etc… 

• Avoid comparative words such as improve, maximize, minimize 

[Wiegers, 1999a]. 

• Use passive sentences. 

2.2. Business Process Modelling 

Since the beginning of the industrial revolution in the business and 

commercial world the emphasis has been on automating and improving 

production efficiency and reducing cost [Lindsay, Downs, Lunn, 2003]. 

Developments in IT/IS, globalization and competitive pressure increase the 

proximity of these two of both domains  and as a result nowadays IT systems are 

perceived as vital to organizational success by the organizations nowadays 

[Gladwin, Tümay, 1994]. 

A complex IT/IS system needs have increased the attention of the business 

processes of organizations thus the importance of business process modelling 

increases because it is challenging to match business objectives of organizations 



 11 

with IT/IS systems in case software modelling techniques are used. Only a 

process oriented perspective  allows software architects and organizations to 

identify and to define about actors, goals, cooperation, commitments, and 

customer performer relationships which are crucial in a world of constant change 

in keeping the organizational objectives, and the objectives of the supporting 

information system aligned [Matthes, Wegner, Hupe, 1999]. 

There is a clear definition of a “process” whereas there is no clear and 

agreed definition of a “business process” in the literature [Hlupic, Robinson, 

1998].  

Davenport states that “A process is an ordering of work activities across 

and place, with a beginning, an end, and clearly identified inputs and outputs.” 

Davenport and Short also add that a “Business process is a set of logically related 

tasks performed to achieve a defined business outcome.” [as cited in Hlupic, 

Robinson, 1998] 

In addition to Davenport’s definition, Hammer and Champy state that a 

“Business process is a collection of activities that takes one or more kinds of 

inputs and creates output that is of value to the customer. A business process has 

a goal and is affected by events occurring in the external world or in other 

processes.” [as cited in Lindsay, Downs, Lunn, 2003] 

According to Saxena “Business process is a set of inter related work 

activities characterized by specific inputs and value added tasks that produce 

specific outputs” [Hlupic, Robinson, 1998] 

When we come to business process modelling (BPM), we could say it is a 

problem analysis technique and especially appropriate for the IT/IS environment 

however BPM is not appropriate for every software engineering effort because 

BPM adds most value when the application environment is complex, 

multidimensional, and many people are directly involved in using the system 

[Yourdon, 2000]. Except for the other benefits, BPM brings important advantages 

from the software engineering point of view such as:  



 12 

i. BPM creates a common language among specialist and 

customer/user so that both sides can understand each 

other very well.  

ii. BPM allows customers/users who do not have any 

knowledge of modelling or even software to easily 

understand modelling thus their participation increase. 

iii. When higher level understanding increase for both 

customer/user and developer, current business processes, 

business defects and target business processes that need 

IT support can be determined and modelled efficiently.  

iv.  BPM brings broader view to business processes. 

v. Documenting business process flow will help identifying 

functional requirements for a product that is intended to 

support that business process [Wiegers, 1999a]. 

Because of the advantages of BPM, further demands on BPM became 

apparent in many different communities including work flow management, 

information system engineering, requirement engineering, software engineering, 

and knowledge engineering [Decker, Erdmann, Studer, 1996]. Business process 

modelling together with appropriate modelling methods provides the opportunity 

to identify user level system requirements allocated to software functional 

requirements. Therefore in this study BPM is chosen as the modeling approach to 

elicit requirements.  

2.3. ARIS Concept 

The Architecture of Integrated Information Systems (ARIS©) was developed 

by Prof. Dr. August-Wilhelm Scheer and concentrates on the business processes. 

ARIS is a framework concept to describe companies and application software. 

The ARIS concept follows the previously developed integration concept in that it 

supports existing business processes [Scheer, 1994]. Standard modelling methods 

such as EPC1, eEPC2 are part of the  ARIS concept. ARIS can be described with 

                                                 
1 EPC stands for event driven process chain and it is explained in section 2.3.1 
2 eEPC stands for event driven process chain and it is explained in section 2.3.2 



 13 

two points of views, one of which is management point of view and the other one 

is IT point of view. The management approach consists of views while the IT 

approaches consist of phase levels. 

Business processes can include functions, events, conditions, users, 

organizational units, information technology. Considering all effects on all the 

elements of the process would be very complex. ARIS concepts reduce the 

complexity emanating from the nature of business process by defining the 

descriptive views. There are five specific views function view, organization view, 

data view, product/service view and control (process). These views are produced 

according to the “semantic correlation similarity” criterion [Scheer, 1999].  

The function view is formed by functions, goals and application software. 

These elements are part of the Meta business process model of ARIS. The 

processes transferring input into output are grouped in a function view [Scheer, 

1999]. The application system and goals are also included in the function view 

because of the close relationships between functions and goals and also between 

functions and application systems. On the one hand, the organizational view is 

composed of the organizational unit, machine resource, computer hardware and 

human output. Organizational views are formed in order to group the responsible 

entities or devices executing the same work object [Scheer, 1999]. On the other 

hand, the data view is composed of messages and data processing environment 

[Scheer, 1999]. The product/service view is composed of all physical and non-

physical inputs and outputs. Although members of product/service view are also 

implicitly captured in data views, they are primarily defined in the output view 

[Scheer, 1999]. For the control view we could say it is the point where the 

respective classes with their view-internal relationships are shown [Scheer, 1999]. 

Dividing the initial problem into individual views does reduce its complexity but 

internal relationship among views and whole processes consequently control flow 

created to eliminate this disadvantage. ARIS view is shown in Figure 2. 



 14 

 

Figure 2 ARIS view [IDS Scheer, 2003] 

 
Meta models basically determine the capability of the business design. The 

ARIS concept consists of the classes which form the Meta business process model 

of ARIS. The classes are as follows: [Scheer, 1999]   

i. Environmental data of the process 

ii. Initial and result events 

iii. Messages  

iv. Functions 

v. Human output 

vi. Machine resources and computer hardware 

vii. Application software  

viii. Material output, service output and information services 



 15 

ix. Financial resources 

x. Organizational units   

xi. Corporate goals 

The relationships between classes and views are shown in Figure 3. The 

output view in the Figure 3 is updated as service/product view at the latest version 

of the ARIS concept.  

 

Figure 3 The relationship between views and classes [Scheer, 1999, pg.37] 

 
The ARIS phase levels, which are the IT points of view, are structured in 

accordance with a lifecycle concept of descriptive levels of the information 

system. The levels are based on their proximity to information technology and 

they are requirement definition, design specification and implementation 

description, as shown in Figure 4 [Scheer, 1994]. 



 16 

 

Figure 4 ARIS phase model [Scheer, 1999,pg.38] 

 
First, Phase 1, IS-oriented strategic application concepts, is composed of 

long term goals and general corporate activities and resources. It is the point of 

departure in system development. Second Phase 2, the requirement definition, is 

used to state requirements definition of business process to be supported in such 

formalized language so that it can be used as the starting point for a consistent 

translation into information technology [Scheer, 1994]. Phase 3 is the design 

specifications where business models are adapted to the requirements of the 

implementation tool interfaces such as database, network architectures, or 

programming languages [Scheer, 1999]. Finally, Phase 4 is the implementation 

description where the design description is transformed into concrete hardware 



 17 

and software components. These four phases are known as “build time” due to the 

fact that four phases describe the creation of an information system [Scheer, 

1999]. The width of the arrows among phases shows the “relationship” between 

phases thus wider arrows mean “closer relationships”. 

Flows carry special meaning in the ARIS concept and they are used 

according to applications. These are: [Scheer, 1999] 

i. Organizational flow: Characterize responsibilities and 

management of organizational units. 

ii. Target flow: Characterize business and conceptual goals 

to be reached by a process or action during execution. 

iii. Control flow: Control the logical process of functions by 

means of events and messages.  

iv. Output flow: Characterize material flow and service 

flow 

v. Resource flow: Characterize the delivery of utilization 

output of the potential factor “resources”.  

vi. Human output flow: Display the direct human output. 

vii. Information flow: Consisting of goal-oriented skills for 

the execution of functions, they control information 

access. 

Lastly, Figure 5 shows the ARIS house of business engineering (HOBE) 

which illustrates both managerial and IT point of view together.  

The ARIS concept is used as an approach in the thesis. The thesis is in the 

requirements definition section for the “IT point of view” and also in the control 

view from the “management point of view”. 



 18 

 

Figure 5 ARIS house [Scheer, 1999,pg.41] 

2.3.1. EPC Method 

EPC stands for Event-driven Process Chain. The EPC method was 

developed at the Institute for Information systems (IWi) of the University of 

Saarland, Germany, in collaboration with SAP AG [Scheer, 2000].  

EPC is a business process modelling language and it provides 

comprehensive means for modelling the relevant aspects of a business processes 

[Loos, Allweyer, 1998]. EPC is located in the requirements definition phase of 

control view when ARIS House is considered. (See Figure 5) It is mainly used 

for: 



 19 

•  Business process re-engineering (BPR) 

•  Definition and control of workflows 

•  Configuration of standard software 

•  Software development 

•  Simulation 

•  Activity based costing (ABC) 

•  Quality-related documentation of processes according to the 

requirements of ISO 900x [Loos, Allweyer, 1998] 

The main constructs of the EPC are functions and events. An event can 

trigger a function or a function can produce an event so combinations of events 

and functions in a sequence produce EPCs. Triggering multiple events or 

functions necessitate logical operators which are already part of the modelling 

notation. An event-driven process chain (EPC) shows the chronological course of 

a business process [Scheer, 2001]. 

2.3.1.1. EPC Notation 

The notation of EPC is shown and defined in Table 1. 

 Table 1 EPC notation 

Object Symbol Definition 

Function 

 

A function is the technical 

task or activity performed on 

an object in order to support 

one or several business 

objectives. 

 
 
 
 
 
 
 



 20 

           Table 1 EPC notation (Cont.) 

Object Symbol Definition 

Event 

 

An event represents a state 

that is relevant in terms of 

business management and 

which influences or controls 

the further flow of one or 

more business processes. 

And 

  

One of the logic operators 

which allow connections 

among events and functions 

in a process chains. 

Or 
 

One of the logic operators 

which allow connections 

among events and functions 

in a process chains. 

XOr 
 

One of the logic operators 

which allow connections 

among events and functions 

in a process chains. 

Arrow 

 This is one of the connection 

types and used to show 

logical link between 

information carriers and 

functions. The direction of 

arrow also points out the 

information carriers usage 

such as “is used” or “is 

produced”. 

 
 
 
 
 
 
 



 21 

           Table 1 EPC notation (Cont.) 

Object Symbol Definition 

Dashed 

arrow 

 This is a control flow 

connection and is used to 

connect control flow objects 

such as events, functions and 

rules. If events come before 

functions, dashed arrows 

mean “activate”. On the other 

hand if functions come before 

function, dashed arrows mean 

“creates”. 

Assignment 

 

 

This is used to show 

assignment of a process. The 

symbol is positioned at right 

down corner of a process. 

 

Alternative or parallel paths are modelled with logical operators, for 

example, the AND logical operator is used when all paths are in parallel and 

functions done simultaneously, the XOR is used to choose only one of alternative 

paths, the OR logical operator is used to when one or more alternative paths can 

be followed simultaneously. These are some basic examples however more 

complex expressions can be formed according to needs. 

EPCs can be hierarchically structured across any number of levels by 

assigning more detailed EPCs to every function within an EPC thus it is easy to 

show sub-processes as shown in Figure 6 [Loos, Allweyer, 1998].  



 22 

 

Order Created

Check Order

Order Checked

Approve Order

Order Approved

Top-Level EPC
 

 

Check
Customer

Data

Check
Product

Data

Customer
Data

Checked

Product
Data

Checked

Detailed EPC "Check Order"

Order Created

 
 

 

Figure 6 Example EPC [Loos, Allweyer, 1998, pg.104] 

 
This is a very simple  example of an EPC model. The sequence on the left is 

a top level business process and can be considered as a whole process whereas the 

sequence on the right is the detailed representation of the “Check Order” process. 

“Order Created” is the triggering event of “Check Order” and it is also the 

triggering event of the top-level EPC. “Check Order” is a complex process in 

other words “Check Customer Data” and “Check Product Data” are sub functions 

of “Check Order”. “Order Checked” event is the end state of “Check Order” 

process and is formed when the “Customer Data Checked” state and “Product 

Data Checked” state are realized at the same time. The “Order Checked” event is 

the triggering event of the “Approve Order” process and when the “Approve 

 



 23 

Order” process is carried out  the “Order Approved” state is constituted and the 

whole process is completed. 

2.3.2. eEPC Method 

The eEPC is the extended Event-driven Process Chain and, as the name 

implies, the eEPC method is the extension of EPC and is located in requirements 

definition phase of control view (See Figure 5). The eEPC method is more 

effective than the EPC when business process modelling is considered, because 

the information objects of data view and organizational element of organizational 

view can be shown precisely together with the functions of the function view and 

the events of the data view. Additional views increase the understanding and the 

clarity of the processes. The objects of EPC are also used in eEPC with additional 

objects which are shown and explained in Table 2. 

2.3.2.1. eEPC Notation 

The notation for eEPC method is explained and defined in Table 2. 

 Table 2 eEPC notation 

Object Symbol Definition Note 

Line 

 This is one of the 

connection types and 

used to show logical 

link between 

organizational units 

and functions. Line 

means “execute”. 

 

Document 

 

 

This is one of the 

information carriers 

and is used to show 

physical data that is 

input or physical data 

that is output. 

This 

symbol is 

used as a 

whole 

document 

or a part 

of a 

document 



 24 

           Table 2 eEPC notation (Cont.) 

Object Symbol Definition Note 

Mobile 

Phone 

 

This is one of the 

information carriers 

and used to show 

mobile phone usage in 

a process. This can be 

both input and output 

of a process. 

This 

symbol is 

considered 

as radio. 

Telephone 
 

This is one of the 

information carriers 

and is used to show 

telephone usage in a 

process. This can be 

both the input and 

output of a process. 

- 

CD-ROM 
 

 

This is one of the 

information carriers 

and is used to show 

CD-ROM usage in a 

process. This can be 

both the input and 

output of a process. 

- 

Diskette 

 

 

This is one of the 

information carriers 

and is used to show 

diskette usage in a 

process. This can be 

both the input and 

output of a process. 

- 

 
 
 
 
 



 25 

           Table 2 eEPC notation (Cont.) 

Object Symbol Definition Note 

Magnetic 

Type 

 

 

This is one of the 

information carriers 

and is used to show 

magnetic type usage in 

a process. This can be 

both the input and 

output of a process. 

- 

File 

 

An information carrier 

represents a means to 

store information. This 

can be both the input 

and output of a process. 

This 

symbol is 

considered 

as data 

base. 

Electronic 

Folder 

 

 

This is one of the 

information carriers 

and is used to show 

electronic folder usage 

in a process. This can 

be both the input and 

output of a process. 

- 

Electronic 

Document 

 

 

This is one of the 

information carriers 

and is used to show 

electronic document 

usage in a process. This 

can be both the input 

and output of a process. 

- 

 
 
 
 
 
 
 
 



 26 

           Table 2 eEPC notation (Cont.) 

Object Symbol Definition Note 

E-Mail 
 

 

This is one of the 

information carriers 

and is used to show E-

mail usage in a process. 

This can be both the 

input and output of a 

process. 

- 

Internet 

 

 

This is one of the 

information carriers 

and is used to show 

internet usage in a 

process. This can be 

both the input and 

output of a process. 

- 

Extranet 

 

 

This is one of the 

information carriers 

and is used to show 

extranet usage in a 

process. This can be 

both the input and 

output of a process. 

- 

Intranet 

 

 

This is one of the 

information carriers 

and is used to show 

intranet usage in a 

process. This can be 

both the input and 

output of a process. 

- 

 
 
 
 
 



 27 

           Table 2 eEPC notation (Cont.) 

Object Symbol Definition Note 

Knowledge 

Category 

 

 

This is used to 

represent knowledge in 

a mind. This can be 

both the input and 

output of a process. 

- 

General 

Resource 

 

 

A general resource is a 

resource that does not 

need to be a person or 

an operating resource 

and is not explicitly 

defined. This can be 

both the input and 

output of a process. 

- 

Printer 

 

 

This is used to 

represent printer usage. 

This can be the output 

of a process. 

- 

Book 

 

 

This is one of the 

information carriers 

and is used to show 

book usage in a 

process. This can be 

both the input and 

output of a process. 

- 

List 

 

This is used to 

represent list usage. . 

This can be both the 

input and output of a 

process. 

- 

 
 
 
 



 28 

           Table 2 eEPC notation (Cont.) 

Object Symbol Definition Note 

Note Pad 

 

 

This is one of the 

information carriers 

and is used to show 

note pad usage in a 

process. This can be 

both the input and 

output of a process. 

- 

Screen 

 

 

This is used to 

represent screen usage. 

This is 

used to 

represent 

user 

interface. 

Application 

system type  

 

 

This is used to 

represent application 

system type usage. 

- 

Organization

al Unit 

 

 

Organizational units 

are the performers of 

the tasks required to 

attain the business 

objectives. 

- 

Position 
 

 

The smallest 

organizational unit in a 

company is a position. 

It is assigned to 

employees (persons). 

- 

 
 
 
 
 
 
 
 
 
 



 29 

           Table 2 eEPC notation (Cont.) 

Object Symbol Definition Note 

Group 

 

 

Group is one of the 

organizational units. 

They are used when the 

people from different 

organizational unites 

come together to attain 

specific business 

objects. 

- 

 

An example for eEPC is shown in Figure 7. The process starts when new 

students are accepted. First, student information is prepared by the departmental 

secretary using the list of teachers and the list of accepted students. Then, a 

photograph of accepted student is photocopied by the departmental secretary to 

proceed to the next activity. Later, Departmental secretary prepares a student 

folder with the photograph of the student and the information of the student. All 

processes are carried out with application system type called “Evrak yönetim 

sistemi” using a user interface. 



 30 

kullanici
arayüzü

Evrak
yönetim
sistemi

Ögrenci
kabul
listesi

Hoca
Listesi

Yeni
Ögrenci
bilgisi

Ögrenci
dosyasi

Yeni Ögrenci
Kabul Edildi

hazirlanmasi

1

Yeni
Ögrenci
bilgisi

kopyalanmasi

2

Ögrenci
resmi

hazirlanmasi

3

Ögrenci
resmi

Bölüm
sekreteri

Bölüm
sekreteri

Bölüm
sekreteri

Yeni Ögrenci
Kayit Edildi

 

Figure 7 Example  for eEPC 

 
EPC/eEPC are widely used for modelling, analysing, and redesigning 

business processes [Loos, Allweyer, 1998]. EPC/eEPC are powerful and 

understandable for end-users so that it is often used for capturing and discussing 

business processes [Loos, Allweyer, 1998]. Because of the properties of 

EPC/eEPC notation, the resulting EPC/eEPC models are used as a starting point 

for the development of information systems and for the definition of workflows 

[Loos, Allweyer, 1998]. 

2.3.3. The ARIS Tool 

The ARIS tool is used to model business processes and to generate the 

natural language functional requirements of the experimental study. The tool has 

been developed by IDS Scheer AG to support consultants and companies in 



 31 

creating, analyzing, and evaluating company processes in terms of business 

process reengineering [Scheer, 2001]. The ARIS tool is based on the ARIS 

concept thus it supports the modelling methods and views of the ARIS concept. 

Each object of the ARIS tool has various attributes some of which are 

common attributes such as Name, Identifier, Description, and others which are 

object specific properties. For example average processing time is an object 

specific attribute of a function.  Occurrences of an object can have common and 

private the attributes so that objects and occurrences can also be stated in detail. In 

addition, some of mentioned attributes can be used as input parameters for ARIS 

add-ons such as ARIS Simulation, ARIS ABC, and ARIS BSC. Moreover, 

reporting is one of the evaluation properties of ARIS toolset. Models, groups and 

databases can be analyzed using the reporting properties. The ARIS toolset 

enables users to write their reporting scripts or edit written reporting scripts 

through a script editor so that models can be evaluated according to project 

specific situations. The KAOS tool is one of the model reporting scripts used  by 

the ARIS script editor. “There is also the interface toward CASE tools (such as 

Oracle designer 6i), workflow management tools and project management tools” 

[Vidovic, 2003] 

2.4. Tool Support for Requirement Engineering 

There are many tools generated for assisting or automating purposes. One of 

the classifications of these tools has been carried out by the International Council 

on System Engineering (INCOSE) from the system engineering point of view. 

The classification of tools is shown in Figure 8 [INCOSE, 2002a]. 



 32 

 

Figure 8 Classification of RE tools [INCOSE, 2002a] 

 
Although, the upper most hierarchy of the classification is shown from a 

system engineering point of view for the integrity purpose, the requirements 

engineering related boxes are detailed in order to maintain the thesis focus.  

Tools included in “Requirement Classification Tools” help engineers 

classify requirements based on work to be done so that requirements activity can 

be scheduled and tracked [INCOSE, 2002a]. They help the engineer make the 

classification based on how the requirements will be used in modelling so that 

completeness of traceability can be monitored [INCOSE, 2002a]. Tools included 

in “Requirements Capture and Identification Tools” aid engineers in separating 

requirements from gathered information [INCOSE, 2002a]. Modern versions of 



 33 

these tools use natural language processing which are included in “Textual 

Requirements Capture Tools”. Model based requirement elicitation tools are 

included in “Tools for Elicitation of Requirements”. Tools included in 

“Requirements Traceability Tools” enable the engineer to link requirements to 

their source, to changes in requirements, and to modelling elements that satisfy 

the requirements [INCOSE, 2002a]. The tools contained in “Requirement 

Traceability Tool” provide traceability through the successive documents which 

are used to review the system development [INCOSE, 2002a]. Tools such as 

RequisitePro, DOORS, Caliber, CARE, and CORE are contained in requirements 

traceability tools  when the classification is considered. “Requirement Generation 

Tools” utilize system simulation results, performance allocations, mission 

scenarios, and design constraints to generate requirements in an organized and 

traceable manner [INCOSE, 2002a]. 

Automatic requirements generation tools can be included in “Requirement 

Generation Tools” when the classification hierarchy is considered, although 

automatic requirements generation tools are new and are not considered by 

INCOSE.  In other words, The KAOS tool is located between requirement 

elicitation tools and requirement management tools when software engineering 

lifecycle is considered and the ARIS tool can be considered as a requirement 

elicitation tool from the software engineering point of view. It is important for 

requirements to be parsed with requirement management tools to supply tool 

support for the following phases of software engineering lifecycle. When current 

requirement management tools such as RequisitePro v2002, Caliber RM 3.0, 

C.A.R.E 3.0, Catalyze 1.0, CORE 4.0, Cradle 4.0, DOORS 6.0, Envision 5.4.2, 

IRqA 2.1 and Team Trace 2.1 are considered, most support an import-export 

mechanism using text based files.  The survey by INCOSE shows that 14 RM 

tools fully support and 3 RM tools partly support the import-export mechanism in 

21 known RM tools [INCOSE, 2002b]. In other words, the requirements 

generated by the KAOS tool can be imported directly into all requirements 

management tools. Because requirements are generated from business process 

models which are formed using the one of the requirement elicitation tools and 

generated requirements can be imported to requirements management tools, 



 34 

integration among tools can be realized in requirements engineering activities 

which is very important for projects. 

2.4.1. Automatic Requirements Generation Tools 

There are two kinds of requirements generation tools one is model based 

and the other is text based. 

Automatic functional requirements generation from the business process 

models is a new issue and no tool has been found in the literature that 

automatically generates functional requirements in natural language from business 

process models.  

However, one of the studies of Brian Berenbach is the closest to the work in 

this thesis. The study called “The Automated Extraction of Requirements from 

UML Notation” aimed to generate requirements from UML models [Berenbach, 

2003]. Process of the thesis and process of the study is similar. Although there is 

no detailed information about the study, it is stated that certain guidelines are 

identified and the algorithm is based on those guidelines. Requirements that are 

generated by the study are low level when compared to requirements that are 

produced by the KAOS tool. 

Modern “Textual Requirements Capture Tools” are contained in “Textual 

Requirements Capture Tools” whereas they can also be assumed in “Requirement 

Generation Tools” intuitively because of their improved features. If the KAOS 

tool is compared with the textual requirements capture tools which generate 

requirements, the main difference is that KAOS is model based and these tools are 

text based so geometric shapes are important for a model based approach whereas 

the meaning and structure of the texts and words are important for a text based 

approach. A model based approach can easily be applied to other languages when 

correct sentence structures are found, on the other hand a text based approach 

necessitates dealing with the syntax and semantics of natural language which is 

more requires further studies. The text based approach is more difficult than the 

model based approach because natural language is ambiguous, however, the 

models have higher possibility of being understood as intended.  



 35 

If developments in text based approaches can offer solutions to today’s 

problems, they will become a better choice and many implicit and explicit 

requirements can be generated from legacy documents. The tool KAOS generates 

only functional requirements but textual approach can generate non-functional 

requirements as well. 

 



 36 

CHAPTER 3 

3. The KAOS TOOL 

The KAOS tool was developed using the ARIS Scripting language which is 

based on Visual Basic for Applications. ARIS Script is a scripting language of 

ARIS Tool Set©.  The ModellHierarchie, a model reporting script, was used as a 

framework while developing the KAOS tool. 

The functionalities of the KAOS tool are; 

Core Functionality 

i. The KAOS tool is designed to generate functional 

requirements in natural language from business process 

models.  

Supportive Functionalites 

i. Two modes can be kept within the same model. When 

two modes are kept within the models taking into 

account tool restrictions, functional requirements can be 

generated in two ways. One is to generate all functional 

requirements for both modes as a complete set so that 

there can be repeating functional requirements common 

for both modes, and the other is to generate functional 

requirements for mode one and then generate the 

remainder of the functional requirements for mode two 



 37 

which will be different so that there can not be repeating 

functional requirements common for both modes.  

ii. Two kind of numbering options exist. Outline 

numbering and plain numbering such as 1,2,3 can be 

selected and applied during generation. 

iii. Functional requirements can be filtered according to an 

application system type name so that the functional 

requirements of one application system type are 

generated or all functional requirements of application 

system types can be generated together. 

iv. The heading information of a request for proposal (RFP) 

is inserted in front of the functional requirements 

generated. 

This chapter describes the software design aspect of the KAOS tool and 

sentence structures which are produced during tool execution. The following 

sections include the classes used and their relationships, sub-programs and their 

relationships, the scenario of the tool, tool restrictions such as assumptions and 

constraints and sentence structures. 

 

3.1. Tool Scenario 

When the tool starts its execution, it takes necessary information for the tool 

and controls them. If all inputs are appropriate, the heading information is written 

to a relevant document. Then, the uppermost model to be evaluated is found and 

added to the list. The root functions of the model are identified and are checked as 

to weather they have already been added to a root function list. If there is a root 

function which has not been added to a list, it is added. Then, the list is sorted 

according to x, y coordinates and the functions in the list are processed in this 

sequence.  

During the process, first the root function is taken and it is checked to 

determine it has already been evaluated. If it has been processed, next root 

function is taken. If the function has not been processed before, current depth is 



 38 

checked. If the current depth is appropriate for the evaluation, the function is 

checked as to whether there is any assigned model on that function. If there is, the 

tool jumps to that model to evaluate it. If there is not any assigned model, all 

objects related to that function are identified and then classified. The sentence 

structure type is chosen according to the inputs and classified objects are 

processed individually. Extra words such as “kullanilarak”, “olanak saglamalidir” 

and punctuation are added and the related objects are combined during the 

process. Afterwards, processed objects are combined with the construct 

requirements sentences. These activities continue until all the required model and 

related functions are processed. The scenario of the tool is shown in Figure 9-a 

and Figure 9-b with eEPC modelling notation. 

The scenario can also be followed from a design point of view (see Figure 

9-a and Figure 9-b). Initially Function 1 and function 2 are realized within the 

SpecBox1 sub-program. Then, Function 3 is realized within the ReportHead sub-

program. Afterwards, Function 4 is realized within the Evaluate and the 

Manufacture sub-program. Function 5 and function 8 are realized within the 

FindRootFunc sub-program. When we come to Function 6 and function 11, they 

are realized within the CheckObj sub-program. Function 7, function 12, and 

function 19 are realized within the FindNextFunc sub-program and then comes 

the realization of Function 9 within the SortPosition sub-program. Function 10 is 

realized within the eEPKOut sub-program. Function 13 is realized within the 

CheckAssignedModel sub-program. Function 14, function 15 and function 16 are 

realized within the OutOfRelationships sub-program. Whereas, Function 17 is 

realized within the ActIc sub-program, the ActICjoin sub-program, the PasIc sub-

program, the PasICjoin sub-program, the PasP sub-program, the PasPJoin sub-

program, the PasAST sub-program, the PasASTjoin sub-program. Function 18 is 

realized within the Ajoin sub-program. Lastly, Function 20 is realized within the 

OutFuncData sub-program and the OutOfEPKFunc sub-program.  

Screen shots showing the execution of the KAOS tool is given in the 

Appendix.  



 39 

Start Generation

1

Take The Information
Necessary for the Script 

3

Write Heading
Information

YES

2

Control the
Entered Information

Are all inputs suitable?

NO

5

Find Root Functions
of the Model

6

Check Found
Functions

8

Add to the List

9

Sort the List

10

Take a
Root Function

NO

Is It Already Added to
Root Function List?

11

Check Function

Is It Already Evaluated ?

13

Check Assigned Model

NO

Is Current Dept Wanted to be Evaluated ?

Is There Any Assigned Model ?

14
Find all objects

(inputs,outputs,roles etc.)
connected

to the functions

4

Find and Add the Model
to be Evaluated

NO
YES

YES

YES

7

Find Next Function
YES

12

Find Next Function

YES

NO

Is It the Last Function of the Model ?

NO

 

Figure 9-a The scenario of KAOS tool 



 40 

Are all root functions evaluated?

YES

YES
NO

YES
NO

NO

Are all root functions evaluated?

15

Classify
Related Objects

17

Process Objects

16

Choose a Sentence Type

18

Combine Construct

Requirement Sentence Is Produced

Is It the Last Function of Model ?

20

Go to the Function
Assigned to the Model

19

Find Next Function

Is It the First Model Assigned ?

Stop Generation

Is It the Last Function of Model ?

All Requirements Are Produced

YES

NO

YES

NO

 

Figure 9-b The scenario of KAOS tool 

 

3.2. Software Design 

The KAOS Tool is composed of sub-programs and classes. Classes are 

predefined classes of ARIS Scripting Language. The tool is formed from a 

functional point of view so that relations between sub-programs are stated using 

state chart diagrams. On the other hand, classes are stated by using class diagrams  

since they are developed in object-oriented point of view. 



 41 

3.2.1. Description of Classes  

The classes mentioned below are the defined classes of the ARIS Tool Set© 

which are used in the tool. Although there are other methods of classes, only the 

methods which are used are explained. 

3.2.1.1. ARIS_BASIC_Extension Object 

This is a class for the data storage of the report and for attachment to the 

ARIS report component. These globally available methods provide information 

about the selected items, language choice, output file and format.  

The methods used are: 

i. SelectedLanguage: Returns the list of the (in context) 

selected Models. 

ii. SelectedModels: Returns the list of the (in context) 

selected Models. 

iii. SelectedFormat: Returns the output format selected in 

the Report Wizard. The value can be changed by 

assigning a new value. 

iv. SelectedPath: Returns the output path set in the Report 

Wizard.  

v. SelectedFile: Returns the name of the output file set in 

the Report Wizard. 

vi. ScriptError: Returns the value of the error variable.  

3.2.1.2. BaseList Object 

The object is a basic class with the common methods of all the lists. 

The methods used are: 

i. Count: Returns the list item count. 

ii. Get: Returns the list item at the position. (index) (0-

based) 



 42 

iii. Delete: Deletes the specified list item (parm=object) or 

the item at the specified position. (parm=index in the 

list) (parm: List item to be deleted. If "parm" is an 

object, this object will be deleted from the list. If "parm" 

is a numerical value, the list item with the index that 

corresponds to the numerical value will be deleted.) 

iv. Add: Adds a list item to the list.  

3.2.1.3. CxnOcc Object 

The object represents a relationship occurrence (ARIS.CxnOcc.6.0). The 

CxnOcc object can use methods of Occ object. 

The methods used are: 

i. SourceObjOcc: Returns occurrence ObjOcc of the 

source object. 

ii. TargetObjOcc: Returns occurrence ObjOcc of the target 

object. 

3.2.1.4. CxnOccList Object 

The object represents a list of connection occurrences (CxnOcc) in the 

report (ARIS.CxnOCCLIST). CxnOccList object can use methods of BaseList 

Object. 

3.2.1.5. Item Object 

Item Object is for using attribute-bearing ARIS items in the report 

(ARIS.Item.6.0). This class contains the shared methods of all attribute-bearing 

items and is also the basic class for all specialized items (Object, Model...) 

The methods used are: 

i. Name: Returns the name of the item in the specified 

language as a string. 



 43 

ii. IsEqual: Returns TRUE if the item is equal to the item 

specified as parameter. 

3.2.1.6. ItemList Object 

Item List object is a basis class of all lists that contain attribute-bearing 

items. ItemList object can use methods of BaseList object. 

3.2.1.7. Model Object  

The object is used for using models in the report (ARIS.ModelL). The 

model object can use methods of Item object. 

The methods used are: 

i. TypeNum: Returns the unique ARIS model type number.  

ii. GetSuccNodes: Returns the successor objects of the 

specified object in the model graph and marks all 

returned objects as visited. Requires the model graph. 

(use BuildGraph) 

iii. BuildGraph: Creates (internally) the model graph and 

assigns the marks. If bStructure=TRUE only structure-

relevant objects and relationships will be considered. All 

graph operations are only possible if this method has 

already been called. 

iv. StartNodeList: Returns the list of all start objects or 

roots of a model graph. Requires the model graph. (use 

BuildGraph) 

3.2.1.8. ModelList Object 

The object represents a model list (ARIS.ModelList.6.0). ModelList object 

can use the methods of ItemList object.  



 44 

3.2.1.9. ObjDef Object 

The object is used for using object definitions in the report 

(ARIS.Objdef.6.0). ObjDef object can use methods of Item object. 

The methods used are: 

i. AssignedModels: Returns the assigned models of the 

object definition. 

ii. TypeNum: Returns the object type number. (OTN) 

iii. Identifier: Returns the object identifier. 

3.2.1.10. ObjOcc Object 

The object represents an object occurrence in the report (ARIS.Objocc.6.0). 

ObjOcc object can use the methods of the Occ object. 

The methods used are: 

i. ObjDef : Returns the object definition as ObjDef. 

ii. OutDegree: Returns the out-degree (number of outgoing 

relationships) of the object occurrence. 

iii. InDegree: Returns the in-degree (number of incoming 

relationships) of the object occurrence. 

iv. SymbolNum: Returns the (possibly user-defined) symbol 

number of the object occurrence. 

v. CxnOccList: Returns all relationship occurrences 

attached to the object occurrence as CxnOccList. 

vi. X: Returns the x-position of the object occurrence in 

1/10 mm.  

vii. Y: Returns the y-position of the object occurrence in 

1/10 mm.  



 45 

3.2.1.11. ObjOccList Object 

The ObjOccList object represents a list of object occurrences (ObjOcc) in 

the report (ARIS.ObjoccList.6.0). ObjOccList object can use methods of the 

BaseList Object. 

One of the methods used is: 

i. ObjDef : Returns the object definition as ObjDef. 

3.2.1.12. Occ Object 

The Occ object represents an occurrence in the report. This class contains 

the common methods of all occurrences and it is at the same time the basic class 

of all specialized occurrences. (CxnOcc and ObjOcc) 

One of the methods used is: 

i. IsEqual: Returns TRUE if the occurrence is equal to the 

occurrence specified as the parameter. 

3.2.1.13. Output Object 

The object is an Output object for the ARIS report. The OLE name of the 

class is ARIS.Output.6.0. Output Object gathers all outputs of the report script 

while the report is being executed and writes them to a file in the specified format. 

The methods used are: 

i. DefineF: Defines a style sheet. 

ii. Init: Initialize and set the output format, and optionally 

the localeID, in which the output file is to be written. 

iii. WriteReport: Writes the report created with the output 

commands to file strFileName in the strPath directory, 

using the format specified at Init. 

iv. OutputLnF: Writes the text to the output object with the 

formatting from the specified style sheet. 



 46 

v. BeginHeader: Beginning of the Header section. (all 

commands between BeginHeader and EndHeader affect 

only the header) 

vi. BeginTable: Command to begin a table definition. 

vii. TableRow: Defines the start of a new table row; the 

beginning of the first table row must also be defined 

with this. 

viii. TableCell: Defines a new table cell in the current table 

row. 

ix. EndTable: Concludes a table definition. 

x. EndHeader: End of the Header section. 

xi. BeginFooter: Beginning of the Footer section. (all 

commands between BeginFooter and EndFooter only 

affect the footer) 

xii. OutputLn: Writes the text with the specified formatting 

to the output object and adds a paragraph sign (hard 

return) at the end. 

xiii. Output: Writes the text with the specified formatting to 

the output object. 

xiv.  OutputField: Inserts a text box. (page number, total 

number of pages ...) Otherwise the same as Output. 

xv. EndFooter: End of the Footer section. 

3.2.2. Class Diagrams of Objects 

Relations among classes can be identified in different views which are 

Generalization relationship, Dependency relationship and Association 

relationship. The Class diagrams of KAOS tool are identified with sum of all 

using all these relationships. 

 



 47 

3.2.2.1. Generalization Relationships  

The generalization relationships of the classes are shown in Figure 10. 

 

Figure 10 Generalization relationships of classes 

 

3.2.2.2. Dependency Relationships  

The dependency relationships are shown in Figure 11. 

Model

ObjOccList

ObjDefObjOcc

Occ

CxnOcc

 

Figure 11 Dependency relationships of classes  



 48 

 
 

3.2.2.3. Association Relationships  

The association relationships of the classes are shown in Figure 12. 

 

Figure 12 Association relationships of the classes  

 

3.2.3. Description of Sub-Programs 

Sub-programs are written as sub-code blocks and their sum forms the tool 

itself. The aim of the sub-programs, classes used and it’s the methods used are 

described in the following sub sections to describe sub-programs and to show 

relationships among sub-programs, classes and methods. 

3.2.3.1. Main Sub-Program 

The Main sub-program is the top of all sub programs. The Main sub-

program is the place for assigning some default values, defining style sheets and 



 49 

writing produced report. During its operation the Main sub-program calls up the 

Specbox1 sub-program, the Evaluate sub-program, the ReportHead sub-program, 

the FilterBox1 sub-program and the  NumberingBox1 sub-program. 

The classes which are used within the sub program: 

3.2.3.1.1. ARIS_BASIC_Extension Object 

The methods used in the ARIS_BASIC_Extension Object for Main sub-

program are as follows: 

i. SelectedLanguage 

ii. SelectedModels 

iii. SelectedFormat 

iv. SelectedPath 

v. SelectedFile  

vi. ScriptError 

3.2.3.1.2. Output Object  

The methods used in Output Object for Main sub-program are as follows: 

i. DefineF 

ii. Init 

iii. WriteReport 

3.2.3.1.3. BaseList Object 

The method used in BaseList Object for Main sub-program is as follows: 

i. Count 

3.2.3.2. FilterBox1 Sub-Program 

The FilterBox1sub-program is used when requirements are filtered 

according to an application system type. The sub-program produces a user dialog 

box to get a name of an application system type. The data entered is checked for 



 50 

blank input and then stored in a global variable. If there no data is entered, the 

user is warned to input the application system name.  

3.2.3.3. NumberingBox1 Sub-Program 

NumberingBox1 sub-program is used when requirements are generated with 

numbering. Two types of numbering options exist, one of which is plain 

numbering such as 1, 2, 3 and the other one is outline numbering such as 1, 1.1, 

1.1.1 The sub-program produces a user dialog box to clarify the numbering 

options. The options are number coded and according to the choice, an 

appropriate numbering format is applied during the requirement s generation. 

3.2.3.4. AssignedModelsIntoList Sub-Program 

The AssignedModelsIntoList sub-program is used to determine whether 

there is a model assigned to the function which is  being analyzed. If there is a 

model assigned to the function, the function is left unprocessed and the assigned 

model is considered so that processing operation starts from the very beginning. 

The idea behind this operation is to generate all requirements of the lowest- level 

sub-process which is assigned to the function being analyzed by the KAOS tool. 

When all the sub function’s requirements are generated, the uppermost function, 

the one sub-process assigned, is already evaluated. If there is no model assigned 

to the function the sub-program is skipped. CheckAssignedModel sub-program, 

CheckAssignedModel1 sub-program, and Manufacture sub-program are called by 

AssignedModelsIntoList sub-program during its operation   

The classes which are used within the sub program: 

3.2.3.4.1. ModelList Object:  

The methods used in ModelList Object for AssignedModelsIntoList sub-

program are as follows: 

i. TypeNum 

ii. Count 

iii. Get 



 51 

iv. Delete 

v. Add 

vi. ObjOcc Object:  

vii. Used method 

viii. ObjDef 

ix. ObjDef Object:  

x. Used methods are 

xi. AssignedModels 

xii. Name 

3.2.3.4.2. Model Object:  

The method used in Model Object for AssignedModelsIntoList sub-program 

is as follows: 

i. TypeNum 

3.2.3.4.3. CheckAssignedModel Sub-Program 

The CheckAssignedModel sub-program is used to check whether models 

have already been analyzed or to check if the model which is being processed on 

is the assigned model. It is also checked whether the next level which is added is 

the assigned model. These specific situations are searched within 

CheckAssignedModel sub-program and relevant variable values are changed 

according to results. 

The classes which are used within the sub program are: 

3.2.3.4.4. Model Object:  

The methods used in Model Object for the CheckAssignedModel sub-

program are as follows: 

i. Name 

ii. IsEqual 

 



 52 

3.2.3.4.5. ModelList Object:  

The methods used in the ModelList Object for the CheckAssignedModel 

sub-program are as follows: 

i. Count 

ii. Get 

3.2.3.5. CheckAssignedModel1 Sub-Program 

The CheckAssignedModel1 sub-program is used to check whether models 

have already been evaluated. The relevant variable values are changed according 

to the result. 

The classes which are used within the sub program are: 

3.2.3.5.1. ModelList Object:  

The methods used in the ModelList Object for the CheckAssignedModel1 

sub-program are as follows: 

i. Count 

ii. Get 

3.2.3.5.2. Model Object:  

The method used in the Model Object for the CheckAssignedModel1 sub-

program is as follows: 

i. IsEqual 

3.2.3.6. CheckObj Sub-Program 

The CheckObj sub-program is used to check whether the current object 

occurrence has already been evaluated. The reference list is the list of used object 

occurrences and is used while checking. The list can be updated with current 

object occurrence, if the Checkobj sub-program is not used for just checking 

operation. Relevant variable values are changed according to results. 

 



 53 

The classes which are used within the sub program are: 

3.2.3.6.1. ObjOccList Object:  

The methods used in the ObjOccList Object for the CheckObj sub-program 

are as follows: 

i. Count 

ii. Get 

iii. Add 

3.2.3.6.2. ObjOcc Object:  

The methods used in the ObjOcc Object for the CheckObj sub-program are 

as follows: 

i. ObjDef 

ii. IsEqual 

iii. ObjDef Object:  

iv. Used method 

v. Name 

3.2.3.7. eEPKOut Sub-Program 

The eEPKOut sub-program is used to send a root list function in a sequence 

until all root function has been evaluated. The OutOfEPKFunc sub-program is 

called by the eEPKOut sub-program during its operation. 

The classes which are used within the sub program are: 

3.2.3.7.1. ObjOccList Object:  

The methods used in the ObjOccList Object for the eEPKOut sub-program 

are as follows: 

i. Count 

ii. Get 

 



 54 

 
 

3.2.3.7.2. ModelList Object:  

The method used in the ModelList Object for the eEPKOut sub-program is: 

i. Delete 

3.2.3.8. Evaluate Sub-Program 

The Evaluate sub-program is used to assign the current model into the 

processing list. Some default assignments are carried out before the Manufacture 

sub-program is called by the Evaluate sub-program during its operation. The sub-

program is used once at the beginning of the process. 

The classes which are used within the sub program are: 

3.2.3.8.1. ModelList Object:  

The methods used in the ModelList Object for Evaluate sub-program are as 

follows: 

i. Count 

ii. Get 

iii. Add 

3.2.3.9. FindNextFunc Sub-Program 

The FindNextFunc sub-program is used to find the next structurally relevant 

function. Found next functions are checked according to two situations : 

i. The Found function can be the one itself. (This situation 

is realized when two events are connected to same 

function. )  

ii. The Found next functions can be a member of evaluated 

functions list. 

The CheckObj sub-program and the FindNextFunc sub-program itself are 

called by the FindNextFunc sub-program during its operation. 



 55 

The classes which are used within the sub program are: 

3.2.3.9.1. Model Object:  

The method used in Model Object for the FindNextFunc sub-program is as 

follows: 

i. GetSuccNodes 

3.2.3.9.2. ObjOccList Object:  

The methods used in the ObjOccList Object for the FindNextFunc sub-

program are as follows: 

i. Count 

ii. Get 

iii. ObjDef 

iv. Add 

3.2.3.9.3. ObjDef Object: 

The method used in the ObjDef Object for the FindNextFunc sub-program 

is: 

i. TypeNum 

3.2.3.10. FindRootFunc Sub-Program 

The FindRootFunc sub-program is used to find the root function of a model. 

The sub-program calls the FindNextFunc sub-program to find all root functions.  

The classes which are used within the sub program are: 

3.2.3.10.1. Model Object:  

The methods used in the Model Object for the FindRootFunc sub-program 

are as follows: 

i. BuildGraph 

ii. StartNodeList 



 56 

 
 

3.2.3.10.2. ObjOccList Object:  

The methods used in the ObjOccList Object for the FindRootFunc sub-

program are as follows: 

i. Count 

ii. Get 

iii. Delete 

iv. Add 

v. ObjOcc Object:  

vi. Used methods are 

vii. OutDegree 

viii. InDegree 

ix. ObjDef 

x. ObjDef Object:  

xi. Used method 

xii. TypeNum 

3.2.3.11. Manufacture Sub-Program 

The Manufacture sub-program is a recursive program because when a new 

assignment is found, the program cleans the old values and starts the generation 

operation from the very beginning. The sub-program is the starting point for all 

models which are evaluated. The sub-program calls the OutTopo sub-program. 

The classes which are used within the sub program are: 

3.2.3.11.1. ModelList Object:  

The methods used in the ModelList Object for the Manufacture sub-

program are as follows: 

i. Count 



 57 

ii. Add 

3.2.3.11.2. ObjOccList Object:   

The methods used in the ObjOccList Object for the Manufacture sub-

program are as follows: 

i. Get 

ii. Delete 

3.2.3.11.3. Model Object:  

The method used in the Model Object for the Manufacture sub-program is: 

i. Name 

3.2.3.12. OutFuncData Sub-Program 

The OutFuncData sub-program is a starting point for determining assigned 

models and also determining the structurally relevant relationship of the object of 

the function. The sub-program calls the AssignedModelsIntoList sub-program to 

find any assigned model, and calls the OutOfRelationships sub-program to 

determine and process objects connected with functions. The sub-program also 

calls the CheckObj sub-program to check current function occurrences with the 

list which consists of occurrence of evaluated functions. 

The classes which are used within the sub program are: 

3.2.3.12.1. ObjOcc Object:  

The methods used in the ObjOcc Object for the OutFuncData sub-program 

are as follows: 

i. ObjDef 

ii. SymbolNum 

iii. CxnOccList 

3.2.3.12.2. ObjDef Object:  

The methods used in the ObjDef Object for the OutFuncData sub-program 

are as follows: 



 58 

i. Name 

ii. Used method 

iii. AssignedModels 

3.2.3.12.3. CxnOccList Object:  

The method used in the CxnOccList Object for the OutFuncData sub-

program is: 

i. Count 

3.2.3.12.4. ModelList Object:  

Used methods of the ModelList Object for the OutFuncData sub-program 

are as follows: 

i. Count 

ii. Get 

3.2.3.13. OutOfEPKFunc Sub-Program 

The OutOfEPKFunc sub-program is used to process functions one by one 

according to the target list by calling the FindNextFunc sub-program. The Target 

list is formed here and functions are sent to the OutFuncData sub-program by 

calling it. The OutOfEPKFunc sub-program calls itself to set the next function as 

a current function. The CheckObj sub-program is used to check current and 

following functions. The SortPostion sub-program is called to sort target list. 

The classes which are used within the sub program are: 

3.2.3.13.1. ObjOcc Object:  

The method used in the ObjOcc Object for the OutOfEPKFunc sub-program 

is: 

i. ObjDef 

3.2.3.13.2. ObjDef Object:  

The methods used in the ObjDef Object for the OutOfEPKFunc sub-

program are as follows: 



 59 

i. AssignedModels 

ii. Name 

3.2.3.13.3. ObjOccList Object:   

The methods used in the ObjOccList Object for the OutOfEPKFunc sub-

program are as follows: 

i. Count 

ii. Get 

iii. Delete 

iv. Add 

3.2.3.14. OutOfRelationships Sub-Program 

The OutOfRelationships sub-program is used to generate requirements 

sentences. All the objects connected with current function are determined and 

classified according to a colour code and a type code. ActIc, PasIc, PasP and 

PasAST sub-programs are called to insert classified objects into related lists. 

Then, ActICjoin, PasICjoin, PasPJoin, PasASTjoin sub-programs are called to 

process lists. After all the lists are processed, the Ajoin sub-program is called to 

construct a requirement sentence according to the processed lists. When a 

requirement sentence is constructed, the sentence is written to a specified file. If a 

numbering option is chosen, the appropriate numbering choice is also added 

during the writing operation. 

The classes which are used within the sub program are: 

3.2.3.14.1. ObjOcc Object:  

The methods used in the ObjOcc Object for the OutOfRelationships sub-

program are as follows: 

i. ObjDef 

ii. IsEqual 

iii. SymbolNum 



 60 

The attribute used in the ObjOcc Object for the OutOfRelationships sub-

program is as following: 

i. Color 

3.2.3.14.2. ObjDef Object:  

The methods used in the ObjDef Object for the OutOfRelationships sub-

program are as follows: 

i. AssignedModels 

ii. Identifier 

iii. Name 

iv. TypeNum 

3.2.3.14.3. ModelList Object:  

The method used in the ModelList Object for the OutOfRelationships sub-

program is: 

i. Count 

3.2.3.14.4. CxnOccList Object:  

The method used in the CxnOccList Object for the OutOfRelationships sub-

program is: 

i. Get 

3.2.3.14.5. CxnOcc Object:  

The methods used in the CxnOcc Object for the OutOfRelationships sub-

program are as follows: 

i. SourceObjOcc 

ii. TargetObjOcc  

3.2.3.14.6. Output Object: 

The method used in the Output Object for the OutOfRelationships sub-

program is: 



 61 

i. OutputLnF 

3.2.3.15. ActIc Sub-Program 

The ActIc sub-program is used to insert outputs into output lists. 

3.2.3.16. ActICjoin Sub-Program 

The ActICjoin sub-program is used to process the output lists. 

Processing means: 

i. Comma, the word “and” is inserted into the appropriate 

place for output parts. 

ii. Some Turkish suffixes like “nin”, “nin” “nun”, “in”, “in” 

are added to the words which finish in “i”, “i”, “e”, “a”, 

“u”, “er”, “ar”. 

iii. Some extra words are added because some outputs 

necessitate some words which can not be shown in the 

model. 

3.2.3.17. PasIc Sub-Program 

The PasIc sub-program is used to insert inputs into input lists. 

3.2.3.18. PasICjoin Sub-Program 

The PasICjoin sub-program is used to process the input lists. 

Processing means: 

i. Comma, the word “and” is inserted into the appropriate 

place for input parts. 

ii. Some Turkish suffixes like “nin”, “nin” “nun”, “in”, “in” 

are added to the words which finish in “i”, “i”, “e”, “a”, 

“u”, “er”, “ar”. 



 62 

iii. Some extra words added because some inputs 

necessitate some words to be used such as  

“kullanilarak”. 

3.2.3.19. PasP Sub-Program 

The PasP sub-program is used to insert roles into role list. 

3.2.3.20. PasPJoin Sub-Program 

The PasPJoin sub-program is used to process the role lists. 

Processing means: 

i. Comma, the word “and” is inserted into the appropriate 

place for role parts. 

ii. Some Turkish suffixes like “i”, “ü” are added to some of 

the words envisioned. 

iii. Some extra words added because all roles necessitate 

some words to be used such as  “tarafindan”. 

3.2.3.21. PasAST Sub-Program 

The PasAST sub-program is used to insert application system types into the 

application system type list. 

3.2.3.22. PasASTjoin Sub-Program 

The PasASTjoin sub-program is used to process the application system type 

lists. 

Processing means: 

i. Comma, “and” word is inserted into the appropriate 

place for system parts. 

ii. The Turkish suffix such as “nde” is added. 



 63 

3.2.3.23. Ajoin Sub-Program 

The Ajoin sub-program is used to construct requirements sentences 

according to the inputs and outputs and user dialog box choices which are chosen 

at the beginning of the tool execution (for example, filter requirements according 

to the system name, generate requirements which are changed for case two, 

generate requirements for case 1, generate requirements for case 2 together with 

common requirements among case 1 and 2). 

3.2.3.24. OutTopo Sub-Program 

The OutTopo sub-program is used to find root functions. Found functions 

are then sorted according to the positions function’s y and x and list of root 

functions is formed to send eEPKOut sub-program. FindRootFunc, SortPosition 

and eEPKOut sub-programs are called respectively by OutTopo sub-program 

during its operation. 

The classes which are used within the sub program are: 

3.2.3.24.1. ObjOccList Object:   

The methods used in the ObjOccList Object for the OutTopo sub-program 

are as follows: 

i. Count 

ii. Get 

iii. Delete 

iv. Add 

3.2.3.24.2. ObjOcc Object:  

The methods used in the ObjOcc Object for the OutTopo sub-program are 

as follows: 

i. X 

ii. Y 

3.2.3.24.3. SortPosition Sub-Program 



 64 

The SortPosition sub-program is used to sort the object according to y 

position. The X position is used for sorting when y positions are equal.  

3.2.3.24.4. SpecBox1 Sub-Program 

The SpecBox1 sub-program is used to form the first user dialog box of the 

tool. The sub-program gets the necessary information for the tool execution. The 

relevant parts are checked for invalid input. Days sub-program, Months sub-

program, Years sub-program are called respectively by the SpecBox1 sub-

program during its operation. 

3.2.3.24.5. Days Sub-Program 

The Days sub-program is used to determine the day information of the 

SpecBox1 sub-program. 

3.2.3.24.6. Months Sub-Program 

The Months sub-program is used to determine the month information of the 

SpecBox1 sub-program. 

3.2.3.24.7. Years Sub-Program 

The Years sub-program is used to determine the year information of the 

SpecBox1 sub-program. 

3.2.3.24.8. ReportHead Sub-Program 

The ReportHead sub-program is used to form the first page of a document. 

Dynamic information gathered from the user dialog boxes, static information 

written in a header and footer are all written to a file. 

The classes which are used within the sub program are: 

3.2.3.24.9. Output Object:  

The methods used in the Output Object for the ReportHead sub-program are 

as follows: 

i. DefineF 

ii. BeginHeader 



 65 

iii. BeginTable 

iv. TableRow 

v. TableCell 

vi. EndTable 

vii. EndHeader 

viii. BeginFooter 

ix. OutputLn 

x. Output 

xi. OutputField 

xii. EndFooter 

xiii. OutputLnF 

3.2.4. Structure Charts of Sub-Programs 

The structure chart of sub-programs is shown in Figure 13 to describe 

relationships among sub-programs. 



 66 

 

Figure 13 Structure charts of sub-programs  

3.3. Tool Restrictions 

There are some assumptions, predefined notation and rules to generate 

functional requirements from business models as intended. 

3.3.1. Assumptions  

There are two modes envisioned during the development of the tool. The 

Second mode is assumed to contain the first mode. If a process/function is used 

for the second mode but not for the first mode, the identifier of a function should 

be changed with any word or character. The main point is not to leave identifier 

empty. 



 67 

There are three types of colour envisioned for information carriers.  

3.3.2. Constraints 

The notation of eEPC is valid for the tool but additional restrictions are 

added.  

There are two modes of operation and three document types envisioned. The 

usage of documents and also usage of modes necessitates the same documents 

with different colours consequently there are six colours used for both modes and 

four colours added for mode two. The colour codes used in the KAOS tool are 

shown in Table 3.   

 Table 3 Colour code of KAOS tool 

Colour Example 

Colour 

Code 

used in 

ARIS 

Mode Note 

Light 

Orange 

 

 
 

6008319 

Mode 

1 and 

2 

Light orange 

document shows 

entire text 

document like 

book or article. 

The document is 

also affected by 

an action. For 

example, when 

text output is 

produced as an 

entire document. 

Light orange 

document can be 

used as an input 

or output. 

 
 



 68 

 
 
 

           Table 3 Colour code of KAOS tool (Cont.) 

Colour Example 

Colour 

Code 

used in 

ARIS 

Mode Note 

Gold 

 

 

55295 

Mode 

1 and 

2 

Gold document is 

a kind of light 

orange document 

but the color 

shows that the 

document is used 

without being 

affected by an 

action. Gold 

document is 

always used as an 

input. 

White 

 

 
 

0 

Mode 

1 and 

2 

White document 

is used for the 

parts of 

documents like 

chapters of books 

or article. The 

color also shows 

that the document 

is affected by an 

action as the light 

orange. White 

document can be 

used as an input 

or output. 



 69 

 
 
 
 
           Table 3 Colour code of KAOS tool (Cont.) 

Colour Example 

Colour 

Code 

used in 

ARIS 

Mode Note 

Rose 

 

 
 

14804223 

Mode 

1 and 

2 

Rose document is 

a reflection of 

white document 

like gold 

document. Rose 

document is used 

without being 

affected by an 

action. Rose 

document is 

always used as an 

input. 

Blue-Gray 

 

 
 

12623485 

Mode 

1 and 

2 

Blue-gray 

document is used 

to show map as a 

layer. This is 

mainly used in 

GIS applications. 

Blue-gray 

document is also 

affected by an 

action like orange 

document. Blue-

gray document 

can be used as an 

input or output. 



 70 

 
 
           Table 3 Colour code of KAOS tool (Cont.) 

Colour Example 

Colour 

Code 

used in 

ARIS 

Mode Note 

Light 

Turquoise 

 

 
 

16777152 

Mode 

1 and 

2 

Light turquoise 

document is a 

reflection of blue-

gray document 

like gold 

document. Light 

turquoise 

document is used 

without being 

affected by an 

action. Light 

turquoise 

document is 

always used as an 

input. 

Pale Blue 

 

 
 

15658671 
Mode 

2 

Pale blue 

document is used 

when light 

turquoise 

document is 

necessary to be 

used at Mode 2. 

The properties of 

light turquoise 

document are also 

valid for pale blue 

document. 



 71 

 
           Table 3 Colour code of KAOS tool (Cont.) 

Colour Example 

Colour 

Code 

used in 

ARIS 

Mode Note 

Teal 

 

 
 

9143144 
Mode 

2 

Teal document is 

used when blue-

gray document is 

necessary to be 

used at Mode 2. 

The properties of 

blue-gray 

document are 

valid for teal 

document. 

Lavender 

 

 
 

13353215 
Mode 

2 

Lavender 

document is used 

when gold 

document is 

necessary to be 

used at Mode 2. 

The properties of 

gold document 

are also valid for 

lavender 

document. 

 
 
 
 
 
 
 
 
 
 



 72 

           Table 3 Colour code of KAOS tool (Cont.) 

Colour Example 

Colour 

Code 

used in 

ARIS 

Mode Note 

Red 

 

 
 

255 
Mode 

2 

Red document is 

used when light 

orange document 

is necessary to be 

used at Mode 2. 

The properties of 

light orange 

document are also 

valid for red 

document. 

 

If an object needs to be used in a requirement, it should be connected with 

the relevant object. 

If requirements are filtered according to an application system type name 

during generation, the keyword for filtering is sufficient for the generation. For 

example, if the name of an application system type is “GIS System” and there is 

no application system type name consisting of “GIS”, then it is enough to choose 

“GIS” as a keyword for filtering operation. 

3.3.2.1. Naming Constraints 

• An object name should conform to following abbreviation and 

spelling rules.  

• All abbreviations should be ended with a dot.  

• While naming objects, one space should be left between the  words. 

On the other hand, if a name consists of more than one word and 

there is a need to write the name on more than one line, no space 



 73 

should be left at the end of the line or at the beginning of the 

following line. An example of this rule is shown Table 4. 

 

                                        Table 4 Example for naming objects 

This is wrong This is correct 

 

ApproveOrder

 
 

 

Approve Order
 

 

 
 

 

 
 

 
• If a definition of a document needs to be used when naming an 

object, the definition should be written at the end of the name using 

parenthesis. Moreover, if it is necessary to write where an object 

comes from, this information should be written in front of an object 

using parenthesis. One pair of parenthesis (“()”) should be used 

when writing in front of a name and one pair of parenthesis should 

be used when writing at the end of a name. In other words, at most 

there can be two pairs of parenthesizes. 

• An infinitive verb should be used while naming a function, as 

shown in Table 4.  

• “System” expression should be used when naming application 

system types. For example “GIS System”, “XXX System” etc… 

• When objects such as telephone, radio, printer, CD-ROM, e-mail, 

e-folder, internet, intranet, extranet, notepad, fax, diskette, 

magnetic tape, list, database, general resource and knowledge 

category information are used as an input or output, the name of the 

information should be used while naming these objects. 



 74 

• If one or more of the following: mobile phone,  telephone, CD-

Rom, diskette, magnetic type, database, file, electronic folder, 

electronic document, e-mail, internet, extranet, intranet, knowledge 

category, general resource, printer, book, list and notepad are 

connected with the function as an output where a document or 

documents are not connected with that function as an output, the 

function should not be named. 

3.4. Sentence Structure 

Although the definition of a requirement is clearly stated, neither the 

components of a requirement sentence are explicitly defined nor are defined 

sentences the same due to the nature of the requirement sentence. There is an 

explicit process to be followed to determine sentence construct and type is 

explained below. 

First, the guidelines and the characteristics such as “well-written” and “well-

structured” that a requirements sentence should have, which were mentioned in 

chapter 2, are identified so that this information is considered while sentences 

structures are being formed. Then, at least the constructs are determined according 

to common properties to form sentence structures from the descriptions of the 

components of a requirement sentence. These common constructs can also be 

called “base components” because additional components can be added according 

to case specific situations.  

The identified base components are: 

• Actor(s) such as people, system etc.… 

• An action such as read, write etc.… 

• Input(s) such as information carrier (if exists) 

• Output(s) such as message (if exists) 

Secondly, the software functional requirements of a military project which 

is similar to the experimental study is chosen to clarify the case specific needs of 



 75 

sentences and also the constraints. The requirements of a similar project are 

classified according to its base components, while specific needs are identified so 

that the dynamic and the static constructs of a requirement sentence are defined 

accordingly.  

Thirdly, the needs of the project which is chosen for an experimental study 

are determined together with tool restrictions. Although assumptions, rules and 

notation are predefined, they are broadened to their final state during experimental 

study. Possible information carriers are determined and added for the purpose of 

general usage of the tool. 

There are three dynamic sentence constructs for input and two dynamic 

constructs for output. Moreover, there are seven dynamic constructs for other 

purposes such as suffix, position, application system type and user interface. To 

ease coding a special abbreviation is applied when naming main dynamic 

sentence constructs. These are explained in Table 5 

          Table 5 Description of main dynamic sentence constructs 

Main Dynamic Construct Name Description 

g_sActInCarHS 

g          = Global 
s          = String 
Act      = Active 
InCar   = Information Carrier 
HS       = Harita Son (Map End) 

g_sActInCarMS 

g          = Global 
s          = String 
Act      = Active 
InCar   = Information Carrier 
MS      = Metin Son (Text End) 

g_sPasInCarNHS 

g          = Global 
s          = String 
Pas      = Passive 
InCar   = Information Carrier 
N         = Nesne (Object) 
HS       = Harita Son (Map End) 

g_sPasInCarNMS 

g          = Global 
s          = String 
Pas      = Passive 
InCar   = Information Carrier 
N         = Nesne (Object) 
MS      = Metin Son (Text End) 

 



 76 

 
 

          Table 5 Description of main dynamic sentence constructs (Cont.) 

Main Dynamic Construct Name Description 

g_sPasPS 

g          = Global 
s          = String 
Pas      = Passive 
P         = Position 

g_sPasASTS 

g          = Global 
s          = String 
Pas      = Passive 
ASTS  = Application System 
Type Son   
              (Application System 
Type End) 

g_sPasInCarNDS 

g          = Global 
s          = String 
Pas      = Passive 
InCar   = Information Carrier 
NDS    = Nesne Degil Son  
              (Not Object End) 
 

g_sProcIn 
g          = Global 
s          = String 
ProcIn = Process Interface 

 

The components of a requirement sentence and the description of the 

suffixes used are shown in Table 6 and Table 7 respectively. 

 Table 6 Main constructs of sentence structures 

Construct Name Description Applied Processes 

g_sActInCarHS 

This is a last state of 

output objects used to 

show a map as a layer. 

They are represented by 

blue-gray documents or 

teal document symbols in 

models and are also 

affected by an action 

during a process 

execution. 

Required suffix 

added to the words 

which finish with 

“i”, “i”, “e”, “a”, 

“u”, “er”, “ar”. 

“,” and/or “and” 

are added 

according to 

number of the 

outputs. 



 77 

 Table 6 Main constructs of sentence structures (Cont.) 

Construct Name Description Applied Processes 

g_sActInCarMS 

This is a last state of 

output information 

carriers other than blue-

gray and teal documents 

such as white document, 

light orange document, 

red document and other 

information carriers 

which can be used as an 

output. They are affected 

by an action during a 

process execution. 

Required suffix 

added to the words 

which finish with 

“i”, “i”, “e”, “a”, 

“u”, “er”, “ar”. 

Used information 

carriers other than 

document type are 

added. 

“,” and/or “and” 

are added 

according to 

number of the 

outputs. 

g_sPasInCarNHS 

This is a last state of the 

input objects which are 

used to show a map as a 

layer. They are 

represented by blue-gray 

documents or teal 

document symbols in 

models and are also 

affected from an action 

during a process 

execution. 

Required suffix 

added to the words 

which finish with 

“i”, “i”, “e”, “a”, 

“u”, “er”, “ar”. 

 “,” and/or “and” 

are added 

according to 

number of the 

inputs. 

 
 
 
 
 
 
 
 
 
 



 78 

 Table 6 Main constructs of sentence structures (Cont.) 

Construct Name Description Applied Processes 

g_sPasInCarNMS 

This is the last state of 

input information carriers 

other than blue-gray and 

teal documents such as 

white document, light 

orange document, red 

document and other 

information carriers 

which can be used as an 

output. They are affected 

by an action during a 

process execution. 

Required suffix 

added to the words 

which finish with 

“i”, “i”, “e”, “a”, 

“u”, “er”, “ar”. 

 “,” and/or “and” 

are added 

according to 

number of the 

inputs. 

g_sPasPS 

This is the last state of 

roles. They are 

represented by 

organizational units, 

positions, or group 

symbols. They execute 

an action. 

Required suffix 

added to the words 

which finish with 

“k”, “d”, “b”. 

 “,” and/or “and” 

are added 

according to 

number of the 

inputs. 

g_sPasASTS 

This is the last state of 

application system types. 

They are represented by 

an application system 

type symbol. 

The suffix “nde” 

added to a word. 

 “,” and/or “and” 

are added 

according to 

number of the 

inputs. 

 
 
 
 
 



 79 

 Table 6 Main constructs of sentence structures (Cont.) 

Construct Name Description Applied Processes 

g_sPasInCarNDS 

This is the last state of all 

information carriers 

which can be used as an 

input and which are not 

affected from an action 

during process execution. 

“,” and/or “and” 

are added 

according to 

number of the 

inputs. 

g_sProcIn 

This is the last state of an 

user interface and is 

represented by a screen 

symbol. 

The conjunction 

“ile” is added. 

 

The required suffix for constructs are limited to the words which end with 

“i”, “i”, “e”, “a”, “u”, “er”, “ar”, “k”, “d”, “b” therefore, the chosen suffixes are 

“ne”, “na”, “nin”, “nin”, “nun”, “i”, “ü”, “in”, “in” and "nde". In addition to these, 

there are other static words which are also added according to needs of the 

sentence structures such as "kullanilarak,” and “tarafindan, ".  

 Table 7 Sub-constructs of sentence structures (prefix) 

Name of 

prefix 
Condition 

Assigned 

Value 
Note 

sdummy2 

g_nAcICcountH =1 

And 

g_nAcICcountM =1 

“ve” 

g_nAcICcountH= 

number of output 

for g_sActInCarHS 

g_nAcICcountM=n

umber of output for 

g_sActInCarMS 

sdummy2 

g_nAcICcountH>1 

And 

g_nAcICcountM =0 

“”  

 
 
 
 



 80 

 Table 7 Sub-constructs of sentence structures (prefix) (Cont.) 

Name of 

prefix 
Condition 

Assigned 

Value 
Note 

sdummy2 

g_nAcICcountH=1 

And 

g_nAcICcountM =0 

“”  

sdummy2 

g_nAcICcountH=0 

And 

g_nAcICcountM =1 

“”  

sdummy2 

g_nAcICcountH=0 

And 

g_nAcICcountM >1 

“”  

sdummy2 

g_nAcICcountH>1 

And 

g_nAcICcountM >1 

“,”  

sdummy2 

g_nAcICcountH>1 

And 

g_nAcICcountM =1 

“ve”  

sdummy2 

g_nAcICcountH =1 

And 

g_nAcICcountM >1 

“,”  

sdummy2 

g_nAcICcountH =0 

And 

g_nAcICcountM =0 

“”  

sdummy7 

g_nAcICcountH =1 

And 

g_nAcICcountM =1 

“,”  

sdummy7 

g_nAcICcountH>1 

And 

g_nAcICcountM =0 

“,”  

sdummy7 

g_nAcICcountH=1 

And 

g_nAcICcountM =0 

“ve”  



 81 

 Table 7 Sub-constructs of sentence structures (prefix) (Cont.) 

Name of 

prefix 
Condition 

Assigned 

Value 
Note 

sdummy7 

g_nAcICcountH=0 

And 

g_nAcICcountM =1 

“ve”  

sdummy7 

g_nAcICcountH=0 

And 

g_nAcICcountM >1 

“,”  

sdummy7 

g_nAcICcountH>1 

And 

g_nAcICcountM >1 

“,”  

sdummy7 

g_nAcICcountH>1 

And 

g_nAcICcountM =1 

“,”  

sdummy7 

g_nAcICcountH =1 

And 

g_nAcICcountM >1 

“,”  

sdummy7 

g_nAcICcountH =0 

And 

g_nAcICcountM =0 

“”  

sdummy3 

g_sPasInCarNHS<>"" 

And 

g_sPasInCarNMS<>"" 

“ve” 

Definition of 

g_sPasInCarNHS 

and 

g_sPasInCarNMS 

are stated in Table 

6 

sdummy4 
If a word finishes with 

“i” 
“na”  

sdummy4 
If a word finishes with 

“’i” 
“ne”  

 
 
 



 82 

 Table 7 Sub-constructs of sentence structures (prefix) (Cont.) 

Name of 

prefix 
Condition 

Assigned 

Value 
Note 

sdummy5 

g_nAcICcountH>0 

Or 

g_nAcICcountM>0 

"olusturu

lmasina" 
 

sdummy5 

g_nAcICcountH=0 

And 

g_nAcICcountM=0 

And 

g_sActInCarMS<>"" 

“” 

Definition of 

g_sActInCarMS is 

stated in Table 6. 

sdummy5 

g_sActInCarHS="" 

And 

g_sActInCarMS="" 

 

Definition of 

g_sActInCarHS is 

stated Table 6. 

 

The data gathered from the processes stated above is used to form the final 

sentence structures of the tool. There are two kinds of sentence structure used in 

the tool which are as follows: 

Sentence Structure 1 

Application System Type + Input (1) + Position + User Interface + Output 

(1) + sdummy2 + Output (2) + Function + sdummy4 + " olanak saglamalidir." 

g_sPasASTS + g_sPasInCarNDS +g_sPasPS + g_sProcIn + g_sActInCarHS 

+sdummy2+g_sActInCarMS+" "+scurrentfuname+sdummy4+" olanak 

saglamalidir." 

Sentence Structure 2 

Application System Type+input(1)+Input(2)+sdummy3+ Input(3)+ 

Position+User 

Interface+Function+sdummy4+sdummy7+Output(1)+sdummy2+Output(2)+ 

sdummy5 +" olanak saglamalidir." 



 83 

g_sPasASTS+g_sPasInCarNDS+g_sPasInCarNHS+sdummy3+g_sPasInCar

NMS+g_sPasPS+g_sProcIn+scurrentfuname+sdummy4+sdummy7+g_sActInCar

HS+ sdummy2+g_sActInCarMS+sdummy5+" olanak saglamalidir." 

The selection of sentence structures is closely linked with the input data. For 

example, if input data is affected by an action, sentence structure 2 is used. In 

other words, if a colour of an input object is white, light orange, red, blue-gray or 

teal, the sentence type is chosen as sentence structure 2. If all the input data is not 

affected by an action, sentence structure 1 is chosen. 

If requirements are generated by using the filtering option, an application 

system name is removed from the sentence structures. The functional 

requirements of the business process are generated by using the sentence 

components dynamically within sentence structures.   

3.4.1. Example sentences 

An example eEPC model shown in Figure 14 is used to generate functional 

requirements. The model is evaluated twice by the tool to show the effect of the 

filtering option. If requirements are generated according to a specific application a 

system type filtering option is chosen. In other words, if all requirements of the 

application system types are generated together, the filtering option is not chosen.  

The relevant requirements sentence are given in section 3.4.1.1.  

 



 84 

kullanici arayüzü

Evrak yönetim
sistemi

Yeni Ögrenci Kabul Edildi

hazirlanmasi

1

Ögrenci kabul listesi

Ögrenci bilgileri

kopyalanmasi

2

Ögrenci resmi

hazirlanmasi

3

Ögrenci resmi

ögrenci dosyasi

Hoca
Listesi

Bölüm sekreteri

Ögrenci bilgileri

Bölüm sekreteri

Bölüm sekreteri

Ögrenci Kayit Edildi
 

Figure 14 Example eEPC for requirement sentences 

 

3.4.1.1. Examples for Generated Functional Requirements with a 

Filtering Option 

In Figure 14, Function 1 has two inputs one of which is affected by an 

action whereas the other is not. Function 1 also has one output that is affected by 

an action, one organizational unit, one user interface and application system type. 

Sentence structure 2 is chosen because one of the inputs is affected by an action. 

The result requirement sentence for function 1 is: 

Hoca Listesi kullanilarak Ögrenci kabul listesi'nin, Bölüm sekreteri 

tarafindan, kullanici arayüzü ile  hazirlanmasina ve  Ögrenci bilgileri'nin 

olusturulmasina  olanak saglamalidir. 



 85 

Function 2 has one input which is affected by an action, 1 output which is 

affected by an action, one organizational unit, one user interface and application 

system type. Sentence structure 2 is chosen because the input is affected by an 

action. 

The resulting requirement sentence for function 2 is: 

Ögrenci resmi'nin, Bölüm sekreteri tarafindan, kullanici arayüzü ile 

kopyalanmasina olanak saglamalidir. 

Function 3 has two inputs which are not affected by an action, one output 

that is affected by an action, one organizational unit, one user interface and 

application system type. Sentence structure 1 is chosen because there is no any 

input affected by an action.  

The resulting requirement sentence for function 3 is: 

Ögrenci resmi ve Ögrenci bilgileri kullanilarak Bölüm sekreteri tarafindan, 

kullanici arayüzü ile ögrenci dosyasi'nin hazirlanmasina olanak saglamalidir. 

3.4.1.2. Examples for Generated Functional Requirements without a 

Filtering Option 

The application system type name is added when filtering is not applied 

during generation. 

Evrak yönetim sisteminde, Ögrenci kabul listesi ve Hoca Listesi kullanilarak 

Bölüm sekreteri tarafindan, kullanici arayüzü ile  Ögrenci bilgileri'nin 

hazirlanmasina olanak saglamalidir. 

Evrak yönetim sisteminde, Ögrenci resmi'nin, Bölüm sekreteri tarafindan, 

kullanici arayüzü ile  Kopyalanamsina olanak saglamalidir. 

Evrak yönetim sisteminde, Ögrenci bilgileri ve Ögrenci resmi kullanilarak 

Bölüm sekreteri tarafindan, kullanici arayüzü ile  ögrenci dosyasi'nin 

hazirlanmasina olanak saglamalidir. 

 



 86 

CHAPTER 4 

4. EXPERIMENTAL STUDY 

This chapter describes the details of the experimental study. The main aim 

of the experimental study was to validate the tool execution. Other aims of the 

experimental study were to measure the effectiveness of the tool and discover if 

there were other benefits of the tool. 

 The experimental study was the project which lasted 13 months and 

consists of the technical specification preparation phase of a IS procurement 

project for the Turkish Land Forces Command. The process described in the 

following sections was applied completely and the tool was successfully used 

during the study. Due to the sake of secrecy and security, the process followed, 

the size of the project, the structure of the project office and the results of tool 

executions are explained but other details are can not be revealed.  

The following sections include a description of the experimental study, the 

context of the experimental study which is applied during experimental study and 

application of the KAOS tool.   

4.1. Description of Experimental Study 

The resultant size of the experimental study (the system) was 26930 FP. The 

system consisted of 295 business process models and contained 1270 functions. 

There were 2913 information carriers and 74 organizational units connected with 

functions. 



 87 

The project team consisted of two sub-teams one of which was the Middle 

East Technical University (METU) project team and the other the customer side 

project team, as shown in Figure 15. The METU project team consisted of a 

software and hardware analysis group. The customer’s project team included 

domain experts which were changed when the domain changed.  

The Project Team

METU
Project Team

The Project Office of
the Customer

Hardware
Analysis

Team

Software
Analysis

Team

Domain Experts
 

Figure 15 The structure of the team 

4.2. The Context of the Experimental Study 

The recommended and also applied processes consist of seven main sub-

processes which includes; concept exploration, AS-IS business process modelling, 

TO-BE business process modelling, system requirement specification, 

verifications of the work products and validations of the work products. The 

uppermost process is shown in Figure 16. 

 



 88 

User-Level System Requirements
Specified

RFP Preparation Project
Contracted

As-Is BPM
Verification

and Validation
Completed

Are As-Is BPMs
verified and validated?

Are To-Be BPMs
verified and validated?

Are system requirements
verified and validated?

System Requirements

System Requirements
(approved)

To-Be Business
Process Modeling

Completed
 

Concept Documents
(books, instructions, forms, reports)

Concept Exploration

As-Is
Business Process Modelling

To-Be
Business Process Modelling

System Requirements
Specification

As-Is BPM
Verification and Validation

To-Be BPM
Verification and Validation

Identifying key stakeholders, user representatives,
domain documents, legacy documents (if any);

Arranging orientation meetings
 

As-Is
Business Process Models

As-Is
Business Process Models

(approved)

No

To-Be
Business Process Models

No
To-Be

Business Process Models
(approved)

System Requirements
Verification and Validation

Concept Exploration
Completed

No

Yes

Software
Analysis

Team

As-Is Business
Process Modeling

Completed

System Requirements
Specified

Yes

To-Be BPM
Verification

and Validation
Complited

Domain Experts

 

Figure 16 The uppermost process in eEPC 



 89 

4.2.1. Concept Explorations 

Concept exploration is the first activity in the process, as shown in Figure 

16.  It starts when the RFP preparation project is contracted. The aim of this phase 

is to identify key stakeholders, user representatives, domain documents and legacy 

documents (if any). In addition, orientation meetings are arranged with customer. 

Concept exploration is realized by the software analysis team. 

4.2.2. AS-IS Business Process Modelling 

AS-IS business process modelling is the second activity in the uppermost 

process and details of the activity are shown in Figure 17.  The fundamental aim 

of the process is to visualise current business processes. AS-IS business process 

modelling is realized by 6 sub-steps. These are identifying organizational charts 

for business domain, identifying key business processes for each organizational 

unit, decomposing and modelling key business processes into sub business 

processes, modelling each lowest- level sub-business process, creating data 

dictionary, and verification and validation of AS-IS data dictionary. 

AS-IS business process modelling activity is triggered when the concept 

exploration is completed. First, organizational charts are identified and then key 

business processes for each organizational unit are identified. Key business 

processes are decomposed and modelled into sub business processes until the 

lowest possible level for modelling is reached. These steps are carried out by the 

software analysis team and domain experts. 

Meanwhile, the data dictionary of the AS-IS model is created by the 

software analysis team during the AS-IS modelling. When the data dictionary is 

completed, verification and validation of AS-IS data dictionary (AS-IS DD) is 

done by domain experts. If there are any mistakes in the AS-IS DD, it is updated 

by software analysis team. Updating operations continue until the AS-IS DD is 

verified and validated. When the AS-IS DD is prepared and the modelling of all 

sub processes are finished, the work product of this activity, the AS-IS business 

process models, are produced.  

 



 90 

Identifying Organizational Charts
for Business Domain

Identifying Key Business Processes
for Each Organizational Unit

Yes Is data dicitonary
is verified and validated?

Domain Experts

Updating Data
Dictionary

No

Software
Analysis
Team

Software
Analysis

Team

Decomposing and Modelling
Key Business Processes

Into Sub Business Processes

Software
Analysis
Team

Modelling Each Lowest-Level
Sub Business Process

Yes
No

Is decomposed model at
appropriate level of detail?

As-Is
Data Dictionary

Creating
Data Dictionary

Verification and Validation of
As-Is Data Dictionary

As-Is
Data Dictionary

(approved)

As-Is Data Dictionary
Prepared

Concept Exploration
Completed

Concept Documents
(books, instructions, forms, reports)

Modeling Each Lowest-Level
Sub Business Process

Completed

As-Is Business
Process Modeling

Completed

Domain Experts

 

Figure 17 AS-IS BPM 

 

4.2.3. AS-IS BPM Verification and Validation 

The AS-IS business process model (BPM) verification and validation is the 

third activity in the uppermost process, as shown in Figure 16. The activity starts 

when the AS-IS business process modelling is completed.  

The fundamental aim of the process is to verify and validate AS-IS models. 

Domain experts inspect AS-IS business process models comparing business 

processes with models for verification and validation. When there is conflict in 

the fit between business processes and models, models are updated by domain 

experts and the software analysis team. This is a recursive action and continues 

until all models are verified and validated. 



 91 

4.2.4. TO-BE Business Process Modelling 

TO-BE business process modelling is the fourth activity in the uppermost 

process and details of the activity are shown in Figure 18-a and Figure 18-b. The 

fundamental aim of the process is to model target business processes and 

determine IT support for the target business processes. TO-BE process modelling 

activity is realized by 15 sub-steps including analyzing and enhancing existing 

business processes, verification and validation enhanced BPMs, identifying 

business processes that need IT support, identifying high- level software 

components, assigning software components to business processes that need it 

support, verification and validation of software components assigned to BPMs, 

identifying hardware components, validation of hardware components, assigning 

software components to hardware components, identifying data transmission 

requirements, identifying telecommunication infrastructure, validation of 

telecommunication infrastructure, identifying system architecture, updating data 

dictionary and verification and validation of to-be data dictionary. 

The TO-BE BPM activity is triggered when the AS-IS BPM verification and 

validation are completed. First, taking into account the tool restriction, the AS-IS 

business processes are analyzed and enhanced by software analysis team and 

where possible domain experts. Enhanced business process models are verified 

and validated by domain experts. When enhanced business process models are not 

verified and/or not validated, updates continue until all models are verified and 

validated. Later, business processes which need IT support are identified by the 

software analysis team and domain experts while each high level component is 

identified by software analysis team. There is a close interaction between these 

identifications because both sides affect each other. When both identifications are 

completed, determined high- level software components are assigned to the 

business processes that need IT support. The work products of the activity are the 

software components assigned business process models and these are verified and 

validated before proceeding to the next activity. If there is a problem for the work 

product, updates are applied where appropriate by the software analysis team and 

domain experts. This is a recursive action and continues until verification and 

validation is completed. The following step is hardware component identification 

and is completed by the hardware analysis team. The software components are 



 92 

used to determine hardware components. The hardware components are then 

validated by domain experts. If validation is not realized, the determined hardware 

components are updated until the validity is approved. Approved software 

components are assigned to approved hardware components by software and 

hardware analysis team, meanwhile data transmission requirements are identified 

by hardware analysis team and domain experts. Telecommunication infrastructure 

is identified by the hardware analysis team and domain experts as soon as data 

transmission requirements are identified. Telecommunication infrastructures are 

then validated by domain experts. Updates continue until validity is approved. 

When software components are assigned and the validation of telecommunication 

infrastructure is supplied, system architecture is identified by hardware analysis 

team using approved telecommunication infrastructure and software components. 

The data dictionary is updated by software analysis team while the activities 

of TO-BE business process modelling are realized. Verification and validation of 

data dictionary is achieved by domain experts when updates are completed. 

Update operation continues until verification and validation are completed.  

TO-BE business process modelling is completed, after the system 

architecture has been determined and TO-BE data dictionary has been prepared. 

The work product of this process is the TO-BE BPMs.  



 93 

As-Is
Business Process Models

(approved)

Identifying high-level
software components

Domain Experts

Domain Experts

Domain Experts

Domain Experts

Software components assigned
business process models

Verification and Validation of
Software components assigned

to BPMsSoftware components
assigned business

process models
(approved)

Updating Data
Dictionary

Analyzing and
enhancing

existing
business processes

Verification and Validation
Enhanced BPMs

No

Enhanced
Business

Process Models

Enhanced
Business

Process Models
(approved)

Enhanced
Business

Process Models
(approved)

Identifying
business processes
that need IT support

Assigning
software components

to business
processes that
need IT support

Enhanced
Business

Process Models
(approved)

Yes

High-Level
Software Components

To-Be
Data Dictionary

As-Is
Data Dictionary

Verification and Validation of
To-Be Data Dictionary

To-Be
Data Dictionary

(approved)

To-Be
Data Dictionary

Prepared

As-Is BPM
Verification

and Validation
Completed

Software
Analysis

Team

Are BPMs
Verified and Validated?

Yes

NoNo

Are software component
assigned to BPMs,
identified high-level

software component and
identified business processes

that need IT support
are verified and validated?

No

Yes

Is To-Be
data dictionary

validated? 

Software
Analysis

Team

Software
Analysis

Team

Software
Analysis

Team

Domain Experts

 

Figure 18-a TO-BE BPM 



 94 

Domain Experts

Domain Experts

Identifying
hardware components

Hardware
Analysis

Team

Identifying telecommunication
infrastructure

Assigning software
components to

hardware
components

Hardware Components

Validation of
Hardware Components

Validation of
telecommunication

infrastructure

System
Architecture

Identifying system architecture

Telecommunication
Infrastructure

Software
Components assigned
Hardware Components

Software components
assigned business

process models
(approved)

Hardware Components
(approved)

Identifying data
transmission
requirements

To-Be
Data Dictionary

Software components
assigned business

process models
(approved)

Telecommunication
Infrastructure

(approved)

System Architecture
Is Identified

To-Be Business
Process Modeling

Completed
 

No

Yes

Are hardware
components
validated?

Yes

No

Is
telecommunication

infrastructure
validated?

Hardware
Analysis

Team

Hardware
Analysis

Team

Software
Analysis

Team

Hardware
Analysis

Team

 

Figure 18-b TO-BE BPM 

 

4.2.5. TO-BE BPM Verification and Validation 

TO-BE BPM verification and validation is the fifth activity in the uppermost 

process, as shown in Figure 16. The activity starts after the TO-BE business 

process modelling is completed.  



 95 

The fundamental aim of the process is to verify and validate TO-BE BPMs 

and the activity completed by domain experts. When there is a problem in the TO-

BE BPMs, updates are carried where necessary. 

4.2.6. System Requirement Specification 

System Requirement Specification is the fifth activity in the uppermost 

process and details of the activity are shown in Figures 19-a, 19-b. The 

fundamental aim of the process is to generate the system requirements of the TO-

BE business process models. The system requirements specification activity is 

realized by 11 sub-steps such as automated user- level functional system 

requirements generation, verification and validation of user-level functional 

system requirements allocated to software, identifying Commercial Off The Shelf 

(COTS) requirements, identifying non-functional system requirements, integrating 

system requirements allocated to software, verification and validation of system 

requirements allocated to software, preparing system WBS, verification and 

validation of system WBS, specifying hardware and telecommunication 

infrastructure requirements, verification and validation of system requirements 

allocated to hardware and telecom infrastructure, integration of software, 

hardware, and telecommunication requirements specifications.  

The system requirement specification activity is triggered as soon as TO-BE 

BPM verification and validation is completed. First, user level functional system 

requirements are generated by the tool using the work products which are the 

software components assigned business process models (approved). Since one of 

the aims of the experimental study was to test the tool, this is one of the important 

parts of the whole process. When generation is completed, verification and 

validation activities for user-level functional system requirements allocated to 

software are applied by domain experts. The activities continue until the user-

level functional system requirements allocated to software are validated. If there is 

any problem concerning the requirements, due to models, the required changes are 

done.  

Meanwhile COTS requirements and non-functional requirements are 

identified by the software and hardware analysis team. Then, the identified 



 96 

requirements and validated requirements are integrated by the software analysis 

team to form system requirements allocated to software. Afterwards, system 

requirements allocated to software are verified and validated by the domain 

experts. When there is any problem concerning requirements, there root activity 

from where problems emanate is repeated until system requirements allocated to 

software are verified and validated. Later, the system Work Breakdown Structure 

(WBS) is prepared by the hardware analysis team. Domain experts inspect the 

system WBS for verification and to validation. If there is a problem about the 

system WBS, the system WBS is updated by the hardware analysis team until 

system WBS is verified and validated. Next, hardware and telecommunication 

infrastructure is specified by the hardware analysis team and system requirements 

allocated to hardware and telecommunication infrastructure are produced via the 

activity. Verification and validation of system requirements allocated to hardware 

and telecom infrastructure are sequential steps and carried out by domain experts. 

These requirements are updated until they are verified and validated by the 

customer. The final activity of the system requirement specification is the 

integration of hardware, software and telecommunication requirements. This 

activity is completed by hardware and software analysis team and the work 

product of this stage is system requirements.  



 97 

Automated
User-Level Functional
System Requirements

Generation

Identifying
Non-Functional

System
Requirements

Domain Experts

KAOS Script

No

Yes

Are User-Level
functional system

requirements
allocated to software

verified and validated?

Yes

NoNo
Are identified COTS

requirements,
identified non-functional

requirements,
and the result of integration

opeation
verified and validated?

As-Is BPM
Verification

and Validation
Completed

User-Level
Functional System

Requirements
Allocated to Software

Software components
assigned business

process models
(approved)

Identifying
COTS

Requirements

Integrating System
Requirements

Allocated
to Software

Non-Functional
System

Requirements

Non-Functional
System

Requirements

COTS
Requirements

System Requirements
Allocated to Software

Verification and Validation of
System Requirements
Allocated to Software

System Requirements
Allocated to Software

(approved)

Hardware
Analysis

Team

Software
Analysis
Team

COTS
Requirements

User-Level
Functional System

Requirements
Allocated to Software

(validated)

User-Level
Functional System

Requirements
Allocated to Software

(validated)

Verification
and Validation of

User-Level
Fn. Sys. Req.s
Allocated to Sw

To-Be BPM
Verification

and Validation
Complited

Domain Experts

 

Figure 19-a System requirement s pecification 



 98 

Domain Experts

Yes

No

Are system WBS
verified an validated?

Yes

No

Are system requirements
allocated to hardware and

telecommunication infrastructure
verified and validated?

Verification and
Validation of
System WBSSystem WBS

(approved)

System Requirements
Allocated to Hardware and

Telecommunication Infrastructure

Verific. and Valid. of
Sys. Req.s

Allocated to Hw and
Telecom.

Infrastructure

Sys. Req.s
Allocated to Hw and

Telecomm. Infrastructure
(approved)

Integration of Sw, Hw, and
Telecommunication Req.s

Specifications

Specifying
Hardware and Telecommunication

Infrastructure Requirements 

Preparing
System WBS

System Requirements
Allocated to Software

(approved)

System WBS
System

Architecture

System Requirements

System Requirements
Specified

Hardware
Analysis

Team

Hardware
Analysis

Team

Software
Analysis
Team

Domain Experts

 

Figure 19-b System requirements specification 

 

4.2.7. System Requirement Verification and Validation 

System Requirement Verification and Validation is the sixth and the last 

activity in the uppermost process, as shown in Figure 16. The activity starts as 

soon as system requirements are specified 

The fundamental aim of the activity is to verify and validate integrated 

system requirements. Domain experts are responsible for this activity and if 



 99 

missing items are found in the end of inspections, relevant activities and processes 

repeated until the system requirements are verified and validated otherwise the 

uppermost process is completed successfully with the work product being the 

approved system requirements. 

4.3. Application of the KAOS Tool 

The process which is shown in Figure 16 is followed in its entirety. 295 

business process models are instantiated by the KAOS tool and 1270 functional 

requirements were generated. The generation took 303 minutes although there are 

many complicated connections among rules, event and functions. Each function of 

the models are compared with the related requirements sentences to check 

whether requirements sentences are formed correctly and to find out whether there 

is any function which has not been evaluated by the tool during generation 

Results show that 753 generated requirements did not necessitate any 

correction. In other words, 59.3% of generated requirements did not contain 

punctuation errors, spelling errors, inconsistencies or badly structured sentences. 

On the other hand 517 generated requirements (40.7 % of generated requirements) 

required corrections and they were corrected in 3 person/days. Applied 

corrections can be classified in 2 groups as depicted in Table 8. 

 Table 8 Reasons of corrections  

Reasons of Corrections  

Number of 

corrected 

requirements 

Business process models which do not 

conform to tool restrictions.  
240 

Lack of morphological generator  277 

 
Business Process Models which do not conform to tool restrictions and 

rules: 

240 requirements sentences could not be generated correctly because related 

models were not developed considering the tool restrictions.  

                                                 
3 The computer  which is used for generation is  Pentium 4 – 1.8 GHz / 520 KB RAM 



 100 

• 235 of the 240 requirements contained more than 2 pairs of 

parenthesis in the information carriers. For example, one of the 

information carriers named “(…Madde 2.(a).(3).(ç))” which 

contains 4 pairs of parenthesis. Should be “(…Madde 2.a.3.ç)”  

• 2 of the 240 requirements lacked of information carriers because 

they were not connected with related functions.  

•  3 of the 240 requirements were not right because some information 

carriers were not correctly colour coded. In other words, defined 

colour codes which are stated in Table 5 (see section 3.3.2 for 

detailed information) have not been chosen for information carriers 

during the modelling. 

Lack of morphological generators: 

277 generated requirements sentences were affected by a lack of a natural 

language generation modules in KAOS tool.  

• Suitable suffixes were added by the tool for the words which end 

with “i”, “i”, “e”, “a”, “u”, “er”, “ar”, “k”, “d”, “b” whereas other 

words lacked for suffixes so 146 of generated requirement 

sentences required suffixes for words which were not considered.  

• 93 of 277 requirements sentences required suffixes for information 

carriers ending with numbers for example “… Madde 1” which 

also required suffixes.  

• 12 of 277 requirements sentences were mismatched due to vowel 

deletion. For example if an information carrier ended with “Emir”, 

one of the possible suffixes for the word is “in” but combining 

them as “Emirin” is incorrect. The vowel “i” should be deleted and 

word should be constructed as “Emrin”. This is not supported by 

the KAOS tool. 

• 24 of 277 requirements sentences were affected by softening. For 

example one of the possible suffixes for words like “Kitap” is “i” 



 101 

but combining them like “Kitapi” is incorrect. The consonant “p” 

should soften as “b” so that words should be construc ted as 

“Kitabi”. This is not supported by the KAOS tool. 



 102 

CHAPTER 5 

5. CONCLUSION 

The main aim of the thesis was to develop a tool to automatically generate 

functional requirements in natural language from business processes. Business 

process modelling is used as an approach for eliciting requirements. This chapter 

concludes the thesis by summarizing the studies performed during the thesis, 

describes contributions of the tool and future work. 

5.1. Summary 

With a related research, description of requirement engineering, the domains 

which form requirement engineering and description of requirement are stated. 

The classifications of requirements are identified. In addition to these, some of the 

characteristics such as “well-written”, “well- identified”, “well-structured” are 

clarified for the requirement and requirement sentences. The guideline which is 

followed is briefly explained. The requirements which are generated by the tool 

KAOS are identified according to the definitions stated for requirements and 

requirements sentences. Prominent studies about problems of requirement 

engineering industry and their detrimental consequences are mentioned. These 

problems are especially important for the thesis because one way of decreasing 

the problems directly or indirectly is automatic functional requirement generation. 

Business process modelling is briefly explained together with definitions about 

business processes and related terminology is stated. The advantages of business 

process modelling are also explained from the software engineering point of view. 

The ARIS concept and constructs of the ARIS House are explained in detail. EPC 

and eEPC modelling method of the ARIS concept is introduced. the notation of 



 103 

the method and the objects which are used in the notation are explained. The 

ARIS tool is briefly explained. The classification of the tools which are used for 

requirement engineering is explained and the place of the KAOS tool is identified 

according to the classification. In addition, the literature survey about automatic 

requirement generation tools is mentioned and related tools are compared. 

The software design of the KAOS tool, the scenario of the tool, tool 

restrictions and sentence structure are explained in detail. A sample business 

process model is chosen to generate requirements. A detailed description of the 

experimental study is given with the processes followed and the results of the 

application of the KAOS tool are discussed. 

5.2. Contributions 

The business process modeling based requirements generation tool, the 

KAOS tool, has been developed as a part of this thesis and was tested in a large 

military project to assess its usability. The tool generated requirements of 26930 

FP experimental study in 30 minutes. In a similar project the manual generation of 

10092 FP requirements document took 2 person/months. Requirements are 

generated as intended, if models are produced within tool restrictions. There are 

some requirements which were discovered not have been produced correctly 

either because some functions of TO-BE BPMs are not modelled considering tool 

restrictions or some objects are not connected to functions. The rest of the 

requirements sentences are affected by lack of a natural language generation 

module. Although a morphological generator is lacking, more than half of the 

requirements are completely produced and took 3 person/days to check and 

update all requirements. If a morphological generator had been integrated into the 

KAOS tool, 79.7% of requirements would have be correctly produced for the 

experimental study. As a result, automatic requirements generation using KAOS 

is more efficient than manual requirement generation. 

The KAOS tool is a link between modelling and writing requirements which 

does not exist in other requirement engineering tools. The KAOS tool supports 

system level requirements engineering activities whereas current software 



 104 

engineering tools mainly focus on software requirements which are a low level 

when compared to system level requirements. 

Because all requirements are based on a predefined sentence structure, the 

readability of all requirements were improved which increased the 

understandability of requirements. A consistent requirement document is supplied 

as it is automatically generated from business models. In other words, the 

inconsistencies which occur due to many engineers working on different parts of 

the documents are prevented 

Other benefits of using the tool were discovered. Connection mistakes in 

business process models were found with the help of the tool although the 

influence of the KAOS tool is indirect. If objects are not connected with relevant 

function, they are not seen in requirements sentences which make requirements 

sentences incorrect. These connection mistakes are identified while comparing 

models with relevant requirements sentences. 

Software requirements frequently change and these changes can be 

annoying, time consuming and error prone in the manual generation sittuation. 

Whereas in automatic generation they are constant thus it is easy to estimate the 

cost and  design a schedule based on rework and documentation.  

It can be concluded from the findings that the KAOS tool significantly 

reduces the time and effort required for requirements generation and enables the 

identification of modelling mistakes. It can be used for large scale projects. The 

effort expended on non-value-added tasks such as reworking and documentation 

is decreased, and modifiability of the requirements documents is increased. It is 

also possible for requirements to be imported into requirements management tools  

which have a basic import/export mechanism such as RequisitePro v2002, Caliber 

RM 3.0, C.A.R.E 3.0, Catalyze 1.0, CORE 4.0, Cradle 4.0, DOORS 6.0, Envision 

5.4.2, IRqA 2.1, Team Trace 2.1. Therefore further tool assistance can be 

integrated into development projects easily.  

The completeness, consistency, redundancy control was out of the area of 

concern of the KAOS tool and thus were not realized. 



 105 

5.3. Future Work 

Future work can be described from two points of views; one concerning tool 

development, and the other is about improvements to the functionalities of the 

tool. 

The KAOS tool has a specific behaviour for different modes of operations 

thus this behaviour can be generalized. Currently “roles” are used to define 

function execution. Other purposes such as “responsible”, “decides on”, 

“contributes to”, “must be informed” can be incorporated into the tool and can be 

considered during requirement generation. Conditional requirements are not 

considered thus conditional sentences can be generated. Requirements are 

generated in “.Doc” format but they can also be generated in a more generic 

format (such as XML) to improve integration possibilities. 

The tool can be improved to generate a responsibility-role matrix. 

Morphological generators for Turkish can be integrated into the KAOS tool so 

that corrections applied to the requirements sentences can be minimized.  



 106 

REFERENCES 

 
Bayias, P., and Hadzilacos, T., 1999, “The Requirements Engineering Process of 
ΟΑΣΗΣ: An Industrial Case Study”, http://citeseer.nj.nec.com/cs 
 
 
Berenbach, B., 2003, “The Automated Extraction of Requirements from UML 
Models”, Proceedings of the 11th IEEE International Requirements Engineering 
Conference,pp.1. 
 
 
Bray, I.K., 2002, “Requirements Engineering”, Addison Wesley Publishing 
Company. 
 
 
Brooks, F.P., 1987, “No Silver Bullet-Essence and Accidents of Software 
Engineering”, Computer Magazine,Vol.20, pp.10-19. 
 
 
Christel, M.G., and Kang, K.C., 1992, “Issues in Requirements Elicitation”, 
Technical Report, CMU/SEI-92-TR-012. 
 
 
Decker, S., Erdmann, M., and Studer, R., 1996, “A Unifying View on Business 
Process Modelling and Knowledge Engineering”, Proceedings of the 10th 
Knowledge Acquisition for Knowledge Based Workshop,pp.1-16. 
 
 
Demirörs, O., Tarhan, A., and Gencel, Ç., 2003, “Utilizing Business Process 
Models for Requirements Elicitation: A Large System Acquisition Experience”, 
29th Euromicro Conference, Vol-2, pp.409-412. 
 
 
Gladwin, B., and Tümay, K., 1994, “Modelling Business Processes with 
Simulation Tools”, Proceedings of the 1994 Winter Simulation Conference, SCS 
pp.114-121. 
 
 



 107 

Hlupic, V., and Robinson, S., 1998, “Business Process Modelling and Analysis 
Using Discrete-Event Simulation”, Proceedings of the Winter Simulation 
Conference, Vol-2, pp.1363-1369. 
 
 
IDS Scheer AG, 2003, “ARIS Framework Concept”, http://www.ids-scheer.com.  
 
 
INCOSE, 2002a, “SE Tools Taxonomy”, http://www.incose.org.  
 
 
INCOSE, 2002b, “Tools Survey: Requirements Management (RM) Tools”, 
http://www.incose.org. 
 
 
Lausen, S., 2002, “Software Requirements-Styles and Techniques”, Addison 
Wesley Publishing Company. 
 
 
Lindsay, A., Downs, D., and Lunn, K., 2003, “Business Process-Attempt to Find a 
Definition”, Information and Software Technology, pp.1015-1019. 
 
 
Loos, P., and Allweyer, T., 1998, “Object-Orientation in Business Process 
Modelling Through Applying Event Driven Process Chain (EPC) in UML”, IEEE, 
pp.102-112. 
 
 
Macaulay, L.A., 1996, “Requirements Engineering”, Springer-Verlag. 
 
 
Mattes, F., Wegner, H., and Hupe, P.,1999, “A Process-Oriented  Approach to 
Software Component Definition”, Springer-Verlag, pp.26-40. 
 
 
Robertson, S., and Robertson, J., 1999, “Mastering the Requirements Process”, 
Addison Wesley Publishing Company. 
 
 
Scheer, A.W., 1994, “Business Process Engineering-Reference Models for 
Industrial Enterprises”, 2nd Edition, Springer, Berlin. 
 
 
Scheer, A.W., 1999, “ARIS-Business Process Frameworks”, Springer, Berlin. 
 
 
Scheer, A.W., 2000, “ARIS-Business Process Modelling”, Springer, Berlin. 
 
 
 



 108 

Scheer, A.W., September 2001, “ARIS Methods”, Springer, Saarbrüchen, Berlin. 
 
 
Vidovich, D.I., 2003, “Dynamic Business Process Modelling Using ARIS”, 25th 
International Conference Information Technology Interfaces, pp.607-612. 
 
 
Wiegers, K.E., 1999a, “Software Requirements”, Microsoft Press. 
 
 
Wiegers, K.E., 1999b, “Writing Quality Requirements”, 
http://www.processimpact.com. 
 
 
Wilson, W.M., 1999, “Writing Effective Natural Language Requirements 
Specifications”, STSC Cross Talk, http://www.stsc.hill.af.mil/index.html 
 
 
Yourdon, E., 2000, “Managing Software Requirements”, Addison Wesley 
Publishing Company. 
 
 



 109 

APPENDIX 

The step by step execution of KAOS tool is given here  



 110 

 

Figure 20 KAOS tool step 1 



 111 

 

Figure 21 KAOS tool step 2 

 

 

 

Figure 22 KAOS tool step 3 



 112 

 

Figure 23 KAOS tool step 4 

 

 

 

Figure 24 KAOS tool step 5 



 113 

 

Figure 25 KAOS tool step 6 

 

 

 

Figure 26 KAOS tool step 7 



 114 

 

Figure 27 KAOS tool step 8 

 

 

 

Figure 28 KAOS tool step 9 

 


