BUSINESS PROCESS MODELLING BASED COMPUTER-AIDED
SOFTWARE FUNCTIONAL REQUIREMENTS GENERATION

A THESISSUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS
OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

M. ONUR SU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

JANUARY 2004

| hereby declare that al information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also declare
that, as required by these rules and conduct, | have fully cited and referenced all

material and results that are not original to this work.

Mehmet Onur Su

Approval of the Graduate School of Informatics

Prof. Dr. Nese YALABIK
Director

| certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science/Doctor of Philosophy.

Assoc. Prof. Dr. Onur Demirors

Head of Department

Thisisto certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as athesis for the degree of Master of Science.

Assoc. Prof. Dr. Onur Demirors
Supervisor

Examining Committee Members

Prof. Dr. Semih BILGEN

Assoc. Prof. Dr. Onur DEMIRORS

Assoc. Prof. Dr. Bilge SAY

Assoc. Prof. Dr. Kadir VAROGLU

Dr. AltanKOCYIGIT

ABSTRACT

BUSINESS PROCESS MODELLING BASED COMPUTER-AIDED
SOFTWARE
FUNCTIONAL REQUIREMENT GENERATION

U, M.Onur
M.S., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Onur Demirors
January 2004, 114 pages

Problems of requirements which are identified in the earlier phase of a
software development project can deeply affect the success of the project. Thus
studies which aim to decrease these problems are crucial. Automation is foreseen
to be one of the possible solutiors for decreasing or removing some of the

problems originating from requirements.

This study focuses on the development and implementation of an automated
tool that will generate requirements in natural language from business process
models. In this study, The benefits of the tool are discussed, and the tool is
compared with other software requirements related tools with respect to their
functiorality. The developed tool has been tested within a large military project

and the results of using the tool are presented.

Keywords: Requirement, Requirement Engineering, Business Process
Modelling, Automatic Requirement Generation, eEPC, KAOS

0z

IS SURECLERI MODELLEMEYE DAYALI BILGISAYAR DESTEKLI
YAZILIM
FONKSIYONEL GEREKSINIM URETIMI

Su, M.Onur
Y iksek Lisans, Bilisim Sistemleri

Tez YOneticisi: Dog.Dr.Onur Demirors
Ocak 2004, 114 sayfa

Yazilimin sorunlari Uzerine yapilan arastirmalarda, yazilimin ilk fazinda
tanimlanan gereksinimler ile ilgili ortaya cikan sorunlarin, yazilim projelerinin
basarisini derinden etkiledigi bilinmektedir. Dolayisiyla bu sorunu azaltmayi
hedefleyen calismalarin 6nemi biyiktir. Otomasyon, gereksinimden kaynaklaman
sorunlarin bazilarini azaltmak, bazilarini ise ortadan kaldirmak i¢in ¢ozim olarak

Ongorulen yollardan biridir.

Bu calisma, yazilimin ilk sirecinde belirlenen fonksiyonel gereksinimlerin,
dogal dille is stireg modellerinden otomatik olarak Uretecek bir aracin gelistirme
ve gerceklestirmesine dayanmaktadir. Calismada ayrica, gelistirilen aracin
faydalari tartisiimakta, yazilim gereksinimleri ile etkilesmli olarak calisan diger
araclar ile bu arag gorevlerine goére karsilastirilmaktadir. “Blyik” kapsamindaki

bir askeri proje ile gelistirdigimiz arag sinanmis ve sonuglari sunulmustur.

Anahtar Kelimeler: Gereksinim, Gereksinim Mduhendidligi, Is Seri
Modelleme, Otomatik Gereksinim Uretme, eEPC, KAOS

To my parents who aways believe in me,

To the memory of my Grandfather,
Mehmet SU

ACKNOWLEDGMENTS

| express sincere thanks to my advisor Assoc.Prof.Dr.Onur Demirérs for
providing insight and guidance as well as encouragement and inspiration
throughout this research. | am grateful to him for his continuing enthusiasm and
his perfect balance between providing me direction and encouraging

independence.

| would like to express my deepest gratitude and appreciation to my family

who have always given me their love and emotional support.

| aso would like to give particular thanks to each special project members

who aways helped me with my questions.

vi

TABLE OF CONTENTS

N = ¥ O S 1
(@ AT v
DEDICATION ..ttt sttt e e sba e s sae e e snneeennneneas \
ACKNOWLEDGMENTS ... VI
TABLE OF CONTENTS....oii ittt st s VI
LIST OF TABLES ... oottt st IX
LIST OF FIGURES ...ttt st X
LIST OF ACRONYMS ...ttt sttt nne s Xl
CHAPTER
1. INTRODUCTION .ottt e e snnen e 1
1.1. Statement Of ProDIEM ...ttt 3
1.2 N] 0] 0T o [T STRRTUPPRR 4
1.3. TESIS SEFUCUN @1ttt bbbt bbbt 5
2. RELATED RESEARCH ..ot 6
2.1 Requirement ENQINEEIING ..o ssssenns 6
211, REUITEIMENLcorieieieerieeetieesreeser s sese st es bbb enas 7
2.2. BUSINESS ProCeSS M OUEINGcccuiiccietriicce ettt 10
2.3. Y ST 0] (o= o | T 12
231 EPC MENO.......cciieeere ettt s st 18
232, EEPC MENOM. ...ttt s et 23
2330 ARISTOON ..ttt bbb 30

vii

2.4, Tool Support for Requirement ENGINEEriNgcccoovvveerereenerenssesesesssesesessssesesesssssssnens 31

24.1. Automatic Requirements Generation TOOIS ... nesessessesessesssneseenes A
3. KAOS TOOL ittt s 36
3.1 T OOl SCENAIT0...eeueeeeerereet ettt bbb bbb bbb bbbt 37
3.2. SOFtWAT € DESIGN ...ceeveicectriresie sttt esss e sss s sns s as s s e s n s s e sennsssesnennsnses

321 Description of ClassesS......ccorvereeerneninenenenseesesessseenens

3.22. ClassDiagrams of ODJeCctscoooevernienenneeneneireeenes

3.23. Description of SUD-Programs...........ccuveneeeneeeeneeennens

3.24. Structure Charts of Sub-Programs
3.3. T OOl RESIIICHIONS ...ttt bbb bbbttt 66

331 Assumptions

1T B 0 4 1] |1 OO OOV
3.4. SENTENCE SEMUCTU € ..ottt bbb bbb 74

341 EXAMPIE SENLENCESccecvevecctetreee ettt a st s st 83
4, EXPERIMENTAL STUDY. ..ot 86
4.1. Description of EXperimental StUAY ...t ses s sessssnas 86
4.2, The Context of the Experimental StUYc.cccceeveicerescceeeesee e

421, CoNCEPL EXPIOratioNS.......cccueieeectrsiscic ettt se s s se s sssassesssssaesesnas

4.2.2. ASISBuUSINESS Process MOAEHING......ccoooirereecerircsiesesessetseseste s ssss s sesssssssens

423. ASISBPM Verification and Validation

4.24. TO-BE Busingss Process MOUEING.......couueurerreiriririsieinesesssssesesseisesessssssssesssssssssssssssssens

425 TO-BE BPM Verification and Validationc.ccerrecneernieneenesseenessesesesesesseeenees

4.2.6. System Reguirement SpecCifiCationccceoveeeereeennee

4.2.7. System Reguirement Verification and Validation
4.3. APPLCAtion OF the TOO! ..o e 99
5. CONCLUSION ...ttt e e e e sree e s e sae e e sne e e snne e 102
5.1. SUMIMI@T Y ..ttt e e et 102
5.2. L0 0] 1 1 T 01U 0] LR 103
5.3. FULUIN @ WO K .ottt sttt 105
REFERENGCES.ottt sttt st st nnee s 106
e o o 1 T I SRS 109

viii

LIST OF TABLES

LIz o (30 R = O 110 = 4 1] 19
LI o (R = = O 110 = 1 o F R 23
Table 3 Colour code Of KAOSTOOL........cuuiviiiiiiie et 67
Table 4 Example for naming ODJECES..........ccveeriierinereeeee e 73
Table 5 Description of main dynamic sentence CoNSLIUCES...........cveverereeereeennene. 75
Table 6 Main constructs of SENtENCE SETUCLUMESeeveeiciveeeeicireee e eevneee s 76
Table 7 Sub-constructs of sentence structures (Prefix) .oveeeeveereeeneneseeeseeeene 79
Table 8 REASONS Of COMECLIONScoicuveiiiiie it sbe e e eree s 99

LIST OF FIGURES

Figure 1 Hierarchical decomposition of the requirements engineering domain..... 7
FIQUIE 2 ARIS VIBW ...ttt sttt ne e e e nne s 14
Figure 3 The relationship between views and Classes..........cccccevcvveveeccieccee e, 15
Figure 4 ARIS phase MOGEccooeiiiiiieeee e 16
FIQUIE 5 ARIS NOUSE......ccviiieeieciecees ettt re e neennens 18
Figure 6 EXaMpPlE EPC........oo et 22
Figure 7 Example for EPC ..o 30
Figure 8 Classification of RE T00IS........cccccceiieieiieie e 32
Figure 9-aThe scenario of KAOSTOOIcccocoveieeviiiieieeeceseee e 39
Figure 9-b The scenario of KAOS OO0ccccouviiieiiiiiiececee e 40
Figure 10 Generalization relationships Of ClaSSeS.........coccveeeeieneneneseseseeeees 47
Figure 11 Dependency relationships Of Classes.........cccvvveveiceeveeve s 47
Figure 12 Association relationships of the Classes.........cocccveveevieccie s, 48
Figure 13 Structure charts Of SUD-Programs.........c.ccoeveeererieeienese s 66
Figure 14 Example eEPC for requirement SENtenCeS..........cceeeveereereereereesieeneens 84
Figure 15 The structure of the team..........ccccvevieiiie i 87
Figure 16 The uppermost process in €EPC............ccovviiirierieicese e 88
FIQUIE 17 AS-IS BPM ...ttt sttt s nne s 90
Figure 18-aTO-BE BPMcoiiiiceeece ettt 93
Figure 18-D TO-BE BPMcooiiieciecieeceeeierie ettt st 9
Figure 19-a System requirement SPECIfiCalioN..........ccocvvererieeieenese e 97
Figure 19-b System requirement SPeCIfiCation............cccevveveeceeseececee e 98
Figure 20 KAOS OO0l SEEP L.....eeiieiiiiieieeee et s 110
Figure 21 KAOS 00l SEP 2.....cvoiiiiiiiieiieeeeese ettt 111
Figure 22 KAOS 00l SEEP 3.....oeoieeeeeieiie et 111
Figure 23 KAOSTOOI SLEP 4.....ceveeiie ettt 112
Figure 24 KAOS 00l SEEP 5.....oviiiiieiirieeeeeere e 112
Figure 25 KAOS 00l SEEP B...c.veeueeeeeeceeciie e s 113
Figure 26 KAOS OO0l SEED 7 ...cveeeeeeecieeie ettt 113
Figure 27 KAOS OO0l SLEP 8......ooneeeiiieieee et e 114
Figure 28 KAOS 00l SEEP 9.....oviiirieiieieeie et 114

ABS
ARIS
BPM
BPR

C4I1SR

COTS
DD
eEPC
EPC
ESPITI
FP
HOBE
|EEE
INCOSE

LIST OF ACRONYMS

Activity Based Costing

Architecture of Integrated Information Systems
Business Process Model

Business Process Reengineering

Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance

Commercia Off the Shelf

Data Dictionary

Extended Event Driven Process Chain

Event Driven Process Chain

The European Software Process Improvement Training Initiative
Function Point

House of Business Engineering

Institute of Electrical and Electronics Engineers
International Council on System Engineering
Information System

International Standards Organisation
Information Technology

The Institute for Information Systems

Middle East Technical University

Object Linking and Embedding

Object Type Number

Request for Proposal

Requirements Generation Tools

Requirements Management Tools

Xi

WBS Work Breakdown Structure

Xii

CHAPTER 1

INTRODUCTION

Requirements are the most important assets of software engineering
activities because the following software engineering activities are built on
elicited requirements. As Brooks wrote “...No other part of the work so cripples
the resulting system if done wrong. No other part is more difficult to rectify
later...” [Brooks, 1987]. However, requirements errors are abundant in software
projects and can easily consume 25%—40% of the total project budget [Y ourdon,
2000].

One of the studies carried by Jerry Weinberg discovered that up to 60% of
errors originated from the requirements and analysis activities [Robertson,
Robertson, 2002]. The Standish Group study also supports the findings of Jerry
Weinberg. According to the The Standish Group, a least a third of the
development projects run into trouble for reasons which are directly related to
requirements gathering, requirements documenting, and requiremerts
management [Yourdon, 2000]. The other survey conducted by The European
Software Process Improvement Training Initiative (ESPITI) has even more
striking results concerning the requirements problem. The main motivation of the
ESPITI survey was to identify the relative importance of various types of software
problems in industry [Yourdon, 2000]. Requirements specifications, managing
customer requirements and documentation are three largest problems for the
responses. “Both the Standish and the ESPITI studies provide qualitative data
indicating that respondents feel that requirements problems appear to transcend

other issues in terms of the risks and problems they pose to the application
development.” [Y ourdon, 2000, pg.26]

Requirements and the problems associated with requirements are very
important for a project lifecycle. The 1994 study of Capers Jones discovered that
requirements errors and documentation errors together are more than one third of
the total delivered defects pile [Y ourdon, 2000]. It is easy, cost effective and time
effective to fix problems caused by requirements in the early stages. The
relationship between cost and requirements errors has been determined by another
study which is performed at various companies including GTE, TRW, IBM and
HP. According to the study, as much as a 200:1 cost saving can be achieved

between the requirements stage and maintenance stage [Y ourdon, 2000].

Studies show that one of the major problems concerns requirements and the
activities related to requirements. Requirements problems are strong sources of
potential risks that could adversely impact the project’s resources, schedules, and
products deeply [Wilson, 1999]. It is necessary to use any method, approach
and/or tool that will reduce the problems associated with requirements and also

support requirements engineering activities.

Competitive pressures have increased the expectation of software intensive
products therefore, the functionality of software intensive products has increased
and this results in an increased number of requirements. A number of tools have
been developed to assist or automate requirements activities to handle the
increased number of requirements. These tools are called “Requirements
Engineering Tools’ and can be classified as “Requirements Maragement Tools”
(RMT) and “Requirements Generation Tools” (RGT) (See Figure 8, pg 30). RMT
are basically used to classify requirements and serve to trace the source of
requirements. These tools can be used after requirements are generated. On the
other hand, RGT are used to form requirements in an organized manner. There are
many commercial RMT such as RequisitePro, DOORS, Caliber, CARE, CORE,
Catalyze, Cradle etc... whereas there are only a few RGT [INCOSE, 2002b]. In
the literature, there is only one study bund generating requirements from UML
diagrams [Berenbach, 2003] (see Section 2.4.1 for further information about the

study) but there is no study in the literature which shows the generating of

functional requirements from business process models.

The KAOS tool is an RGT which has been developed as part of the studies
performed in this thesis and it generates system level software functional

requirements from business process models.

1.1. Statement of Problem

The Performing Rights Society, PROMS project was abandoned in 1992
after spending £11 million. The prominent factor in the cancellation of the project
was poor requirements engineering. It was reported that they failed to set out the
requirements in a form that could be understood and checked by non-technical
people and that the specifications were ill-conceived [Bray, 2002]. Although
critical, elicitation and documenting the initial requirements of customersis only
part of the whole task. Software requirements frequently change during the
process of gathering them. Manual changes are annoying, time consuming and
error prone. One way to address these problems is to automate functional

requirements generation.

Automating requirements generation is a challenging but also a rewarding
research area. Its challenge is mostly due to the difficulties related with the
identification and representation of customer's need. The rewards include
minimizing effort of nonvaue-added tasks such as rework and documentation
and improving the quality as well as the ability to modify the requirements
documents.

As the number of requirements for software intensive systems are high, it is
difficult and time consuming to put together requirements in a structured way.
Traditionally software requirements are written in natura language, manually and
in most projects by more than one person. As more engineers work on integrated
parts of documents, consistency becomes a mgjor problem and the task to find and
correct these errors is complicated. Most of the time it is even difficult for a
reviewer to decide whether these requirements are written on purpose or there are
reguirements which are skipped.

Moreover, it is possible to write the same requirement in different styles,
therefore the recipients of the requirements document have to adapt to different
styles of writers. If requirements are consistently written in a structured way,
comprehensible documents can be generated so that clients can check and

understand resulting requirements document.

Current software engineering tools are mainly focused on software

requirements and wse approaches which start with software requirements so there

is no sufficient tool support for system level requirements.

On the whole, the aim of this thesis is to develop a tool to automatically
generate system level functional requirements in natural language from business
processes. The tool will enable to construct the requirements within a short time,
enable re-construction based on changes in business processes, construct sentence
structures consistently to improve understanding and enable requirements

management tools to ease further requirements based tasks.

1.2. Approach

Business Process Modelling (BPM) was utilized as an approach for
automatic requirements generation An gpropriate business process modelling
language can offer the opportunity to generate requirements in natura language.
Extended Event Driven Process Chain Modelling (eEPC Modelling) was used
with ARIS concept for AS-1S and TO-BE studies so that roles, inputs, outputs and
their relationships could be shown precisely, functions could be presented in

natural business language.

There were specific activities followed step by step to generate functional
requirements in natural language. First of al, the base components of
requirements senterces called sentence construct was determined. The
requirements of a similar project were analyzed to identify gecific needs of
requirements sentences and restrictions. Then restrictions were enlarged for the
experimental study and the sentence structures were determined. The tool called
KAOS was formed using findings and it was validated by an experimental study
which was a large military project.

The experimental study was performed in part of requirements dlicitation
process as defined in the article “Utilizing Business Process Models for
Requirements Elicitation: A Large System Acquisition Experience” [Demirors,
Tarhan, Gencel, 2002]. The steps of the process are concept exploration, analysis
and modelling of current business processes which is caled AS-IS Study,
modelling target business processes which is called TO-BE Study, requirements
generation for the target systemwhich is caled system requirement specification

and verification and validation of outputs.

1.3. Thesis Structure

Chapter 2, related research, provides a detailed description and information

from the literature which are necessary for the study.

Chapter 3, The KAOS tool, presents detailed information about tool and the

sentence structures.

Chapter 4, The experimental study, contains motivation, the process which

is applied during the experimental study, structure of project teamand results.

Chapter 5, provides the conclusion to the study, includes contributions and

directions for future work.

CHAPTER 2

RELATED RESEARCH

2.1. Requirements Engineering

Requirements engineering (RE) is the systematic process of developing
requirements through an iterative co-operative process of analyzing the problem,
documenting resulting observation in a variety of representation formats, and
checking the accuracy of the understanding gained [Macaulay, 1996]. In addition

to this, requirements engineering deals with the problems associated with this

stage.

Requirements engineering consists of two main interconnected, as shown in
Figure 1. These are requirements development and requirement management
[Wiegers 1999a]. In addition to this, requirements development consists of sub
domains such as elicitation, anaysis, specification and verification. The sub-
disciplines encompass all the activities involved with gathering, evaluating, and
documenting the requirements for a software or software containing product
[Wiegers 1999q].

Requirements Engineering

Requirements Devel opment Requirements Management

Elicitation Analysis Specification Verification

Figure 1l Hierarchical decomposition of the requirements engineering domain [Wiegers,
19993

2.1.1. Requirement

Quality products can be produced by quality raw materias, thus poor
requirements can not lead to excellent software [Wiegers, 1999b]. Requirements
are the raw materials of software intensive projects so regquirements are the most

important assets that software intensive projects own.

It is very important to define al aspects of requirements to use a common

language because the software society has made many definitions such as:

“A requirement is something that the product must do or a quality that the
product must have.” [Robertson, Robertson, 2002, pg.5]

“The effect that client wishes to be brought about in the problem are
requirements themselves.” [Bray, 2002,pg.14]

The IEEE Standard glossary of software engineering terminology defines

reguirements as.

I. A condition or capability needed by a user to solve a

problem or achieve an objective.

il. A condition or capability that must be met or possessed
by a system or system component to satisfy a contract,
standard, specification, or other formaly imposed

document.

iii. A documented representation of a condition or capability
asin1or 2 [Christel, Kang, 1999,pg.2].

Although the definitions above are common, it is not adequate to understand

the nature of requirements and to speak common language. In other words, there
are other aspects of requirementswhich need to be clarified. The requirements can

also be classified with abstraction level and type;
Classification 1: Abstraction Level

There are many sub-classifications in relation to the abstraction levels and
points of views but the closest to the approach of this thesis is that of Soren

Lausen. She classifies the requirements considering abstraction level as follows:
[Lausen 2002]

Goal Level Requirement: describing business goals.

Domain Level Requirement: describing activities that go on outside
the product.

Product Level Requirement: specifying what should come in and
out of the product.

Design Level Requirement: This is stated in software requirements

specifications.

Classification 2: Type

Requirements can also be classified considering its type.
Functional Requirements: the things the product must do.

Non-Functional (Quality or Performance) Requirements. The
properties, or qualities such as speed, capability, reliability,
usability that product must have.

In the software engineering field classification 2 is more common than
classification 1 because there are still many debates on abstraction levels of

requirements.

The purpose of the project, which was used as an experimental study, was to
produce a Request for Proposal (RFP) of a C4lSR system and the KAOS tool is
designed to produce system requirements allocated to software functional
requirements therefore generated requirements are product level requirements for
the classfication 1 and also functional requirements for the classification 2.
Besides, generated requirements are user level system requirements allocated to
the software functional requirements for another point of view in the software

engineering literature.

Software requirements specifications are filled with badly written
requirements [Wiegers, 1999b]. Too many factors are involved in writing good
requirements and yet there are not enough examples of good requirements
available to learn from partly because few projects have gpod ones to share, and
partly because few companies are willing to place their product specifications in
the public domain [Wiegers, 1999b]. However, there are some explicit and well
known ideas that an individual requirement statement should exhibit. First of al, a
requirement sentence should be correct, feasible, necessary, unambiguous,
verifiable and prioritized [Wiegers, 1999b]. These characteristics ensure that
requirements are well-written. Besides this, there are other characteristics for a
requirement sentence these include being well-identified and well-structured
[Bayias, Hadzilacos, 1999]. Some of the data such as the version, the title, the
status states that a requirements document is well-identified however there is no
complete and explicit definition for “well-identified requirements’ thus it is
possible for the data can be decreased or increased according to the project needs
and the experiences. To create a high quality text structure and to increase the
understanding of requirements, a requirement sentence needs to be well-
structured. Poorly structured requirements sentences cause confusion and are
prone to incorrect interpretations [Wilson, 1999]. Although, there is no agreed
format for the base constructs of a requirement sentence, there are shared

structural components which define a set of constructs such as:

Actor(s) such as people, system vs....

An action such as read, write vs....

Input(s) such as information carrier (if exists)
Output(s) such as message (if exists)
Condition (if exists)

Moreover, there are guidelines which can change according to the needs of
the software specialist. The following guidelines are stated for requirement

sentences to write requirements in quality.
Use terms consistently.
State requirements in a consistent fashion

To reduce ambiguity, avoid vague, subjective terms such as easy,
rapid, efficient, etc...

Avoid comparative words such as improve, maximize, minimize
[Wiegers, 1999al.

Use passive sentences.

2.2. Business Process Modelling

Since the beginning of the industrial revolution in the business and
commercial world the emphasis has been on automating and improving
production efficiency and reducing cost [Lindsay, Downs, Lunn, 2003].
Developments in IT/IS, globalization and competitive pressure increase the
proximity of these two of both domains and as a result nowadays IT systems are
perceived as vital to organizational success by the organizations nowadays
[Gladwin, Tumay, 1994].

A complex IT/IS system needs have increased the attention of the business
processes of organizations thus the importance of business process modelling

increases because it is chalenging to match business objectives of organizations

10

with IT/IS systems in case software modelling techniques are used. Only a
process oriented perspective allows software architects and organizations to
identify and to define about actors, goals, cooperation, commitments, and
customer performer relationships which are crucia in a world of constant change
in keeping the organizational objectives, and the objectives of the supporting
information system aligned [M atthes, Wegner, Hupe, 1999].

There is a clear definition of a “process” whereas there is no clear and
agreed definition of a “business process’ in the literature [HIupic, Robinson,
1998].

Davenport states that “ A process is an ordering of work activities across
and place, with a beginning, an end, and clearly identified inputs and outputs.”
Davenport and Short also add that a*“ Business processis a set of logically related
tasks performed to achieve adefined business outcome.” [as cited in Hlupic,
Robinson, 1998]

In addition to Davenport’s definition, Hammer and Champy state that a
“Business process is a collection of activities that takes one or more kinds of
inputs and creates output that is of value to the customer. A business process has
a goal and is affected by events occurring in the external world or in other

processes.” [ascited in Lindsay, Downs, Lunn, 2003]

According to Saxena “Business process is a set of inter related work
activities characterized by specific inputs and value added tasks that produce

specific outputs’ [HIupic, Robinson, 1998]

When we come to business process modelling (BPM), we could say it isa
problem analysis technique and especially appropriate for the IT/IS environmert
however BPM is not appropriate for every software engineering effort because
BPM adds most value when the application environment is complex,
multidimensional, and many people are directly involved in using the system
[Y ourdon, 2000]. Except for the other benefits, BPM brings important advantages

from the software engineering point of view such as:

11

i. BPM creates acommon language among specialist and
customer/user so that both sides can understand each
other very well.

ii. BPM alows customers/users who do not have any
knowledge of modelling or even software to easily

understand modelling thus their participation increase.

iii. When higher level understanding increase for both
customer/user and developer, current business processes,
business defects and target business processes that need
IT support can be determined and modelled efficiently.

iv. BPM brings broader view to business processes.

v. Documenting business process flow will help identifying
functional requirements for a product that is intended to

support that business process [Wiegers, 1999a].

Because of the advantages of BPM, further demands on BPM became
apparent in many different communities including work flow management,
information system engineering, requirement engineering, software engineering,
and knowledge engineering [Decker, Erdmann, Studer, 1996]. Business process
modelling together with appropriate modelling methods provides the opportunity
to identify user level system requirements allocated to software functional
requirements Therefore in this study BPM is chosen as the modeling approach to

elicit requirements

2.3. ARIS Concept

The Architecture of Integrated Information Systems (ARIS®) was devel oped
by Prof. Dr. August-Wilhelm Scheer and concentrates on the business processes.
ARIS is a framework @ncept to describe companies and application software.
The ARIS concept follows the previously developed integration concept in that it
supports existing business processes [Scheer, 1994]. Standard modelling methods
such as EPC?!, eEPC? are part of the ARIS concept. ARIS can be described with

L EPC stands for event driven process chain and it is explained in section 2.3.1
2 eEPC stands for event driven process chain and it is explained in section 2.3.2

12

two points of views, one of which is management point of view and the other one
is IT point of view. The nanagement approach consists of views while the IT

approaches consist of phase levels.

Business processes can include functions, events, conditions, users,
organizational units, information technology. Gonsidering all effects on all the
elements of the process would be very complex ARIS concepts reduce the
complexity emanating from the nature of business process by defining the
descriptive views. There are five specific views function view, organization view,
data view, product/service view and control (process). These views are produced

according to the “semantic correlation similarity” criterion[Scheer, 1999].

The function view is formed by functions, goals and application software.
These elements are part of the Meta business process model of ARIS. The
processes transferring input into output are grouped in a function view [Scheer,
1999]. The goplication system and goals are also included in the function view
because of the close relationships between functions and goals and also between
functions and application systems. On the one hand, the organizational view is
composed of the organizational unit, machine resource, computer hardware and
human output. Organizational views are formed in order to group the responsible
entities or devices executing the same work object [Scheer, 1999]. On the other
hand, the data view is composed of messages and data processing environment
[Scheer, 1999]. The product/service view is composed of all physical and non
physical inputs and outputs. Although members of product/service view are also
implicitly captured in data views, they are primarily defined in the output view
[Scheer, 1999]. For the control view we could say it is the point where the
respective classes with their view-internal relationships are shown [Scheer, 1999].
Dividing the initial problem into individual views does reduce its complexity but
internal relationship among views and whole processes consequently control flow

created to eiminate this disadvantage. ARIS view is shown inFigure 2.

13

Requirements Definition

Design Specification

Implementation
Organisation View

Product / Service View
Requirements Dafinition

Design Specification
Impiementation

Figure2 ARIS view[IDS Scheer, 2003]

Meta models basically determine the capability of the business design. The
ARIS concept consists of the classes which form the M eta business process model
of ARIS. The classes are as follows:. [Scheer, 1999]

i. Environmental data of the process
ii. Initial and result events
iil. Messages
iv. Functions
v. Human output
vi. Machine resources and computer hardware
vii. Application software

viii. Material output, service output and information services

14

iXx. Financia resources
X. Organizational units

xi. Corporate goals

The rElationships between classes and views are shown in Figure 3 The

output view in the Figure 3 is updated as service/product view at the latest version
of the ARIS concept.

Mess.age\\'h

Erviron-
menilal Data || H
Input l Crutput J ! Saftware ‘
Data View \ ," Control View Function View
S
‘ Output
Cutput View

Figure 3 Therelationship between views and classes [Scheer, 1999, pg.37]

The ARIS phase levels, which are the IT points of view, are structured in
accordance with a lifecycle concept of descriptive levels of the information
system The levels are based on their proximity to information technology and
they are requirement definition, design specification and implementation
description, as shown in Figure 4 [Scheer, 1994].

15

Typical Designations:

Carporate Goals,
Critical Success Faclors
Weak Spots
CIM, MMS

.I. L'. '-I'. 2

" Entity Types, Functions,
Organizational Units,
Application Systems,
Types of Output

Relationships, Modules,
MNetwork Topologies,

Triggers

Access Paths,
 Network Protocols,
. Program Code

Innovations b

Phase 1

Strategic Application

1S-oriented

Concepts

Phase 2
Requiremenis
Definition

(Semantic Models)

Phase 3

1S Concept

Phase 4

Implementation
Description

Information and

Communication
Technology

> Buildtime

>

Phase § (Runtme)

Operation and
Maintanance

Figure4 ARIS phase model [Scheer, 1999,pg.38]

First, Phase 1, IS-oriented strategic application concepts, is composed of
long term goals and general corporate activities and resources. It is the point of
departure in system development. Second Phase 2, the requirement definition, is
used to state requirements definition of business process to be supported in such
formalized language so that it can be used as the starting point for a consistent
translation into information tchnology [Scheer, 1994]. Phase 3 is the design
specificatiors where business models are adapted to the requirements of the
implementation tool interfaces such as database, network architectures, or
programming languages [Scheer, 1999]. Findly, Phase 4 is the implementation

description where the design description is transformed into concrete hardware

16

and software components. These four phases are known as “build time” due to the
fact that four phases describe the creation of an information system [Scheer,
1999]. The width of the arrows among phases shows the “relationship” between

phases thus wider arrows mean “closer relationships”.

Flows carry speciad meaning in the ARIS concept and they are used
according to applications. These are: [Scheer, 1999]

I. Organizational flow: Characterize responsibilities and
management of organizational units.

ii. Target flow: Characterize business and conceptual goals

to be reached by a process or action during execution.

iii. Control flow: Control the logical process of functions by

means of events and messages.

Iv. Output flow: Characterize material flow and service

flow

V. Resource flow: Characterize the delivery of utilization

output of the potential factor “resources’.
vi. Human output flow: Display the direct human output.

vii. Information flow: Consisting of goal-oriented skills for
the execution of functions, they control information

access.
Lastly, Figure 5 shows the ARIS house of business engineering (HOBE)

whichillustrates both managerial and IT point of view together.

The ARIS concept is used as an approach in the thesis. The thesisisin the
requirements definition section for the “IT point of view” and also in the control
view fromthe *“management point of view”.

17

Strategic Business Process Analysis
and Targel Conceptual Design

Require- 0
ments Definition e, ARIS House

Dasign Specification %‘?
/ Implementation Description \

[3

) Requirements Requirements Requirements
/ Definition Definition Definition
|
' Design Design l Design

Specification Specification Specification
'.. implamgnt_.alfﬂn Implementation Implementation
| Description Description Description

Data . Control __ Function
Requirements Definition
Design Specification
Implementation Description

Qutput

Information and
Communication Technology

Figure5 ARI S house[Scheer, 1999,pg.41]
2.3.1. EPC Method

EPC stands for Event-driven Process Chain. The EPC method was
developed at the Institute for Information systems (IWi) of the University of
Saarland, Germany, in collaboration with SAP AG [Scheer, 2000].

EPC is a busness process modelling language and it provides
comprehensive means for modelling the relevant aspects of a business processes
[Loos, Allweyer, 1998]. EPC is located in the requirements definition phase of
control view when ARIS House is considered. (See Figure 5) It is mainly used

for:

18

Business process re-engineering (BPR)
Definition and control of workflows
Configuration of standard software
Software devel opment

Simulation

Activity based costing (ABC)

Quality-related documentation of processes according to the

requirements of 1SO 900x [Loos, Allweyer, 1998]

The main constructs of the EPC are functions and events. An event can
trigger a function or a function can produce an event so combinations of events
and functions in a sequence produce EPCs. Triggering multiple events or
functions necessitate logical operators which are already part of the modelling
notation. An event-driven process chain (EPC) shows the chronological course of

a business process [Scheer, 2001].
2.3.1.1. EPC Notation
The notation of EPC is shown and defined in Table 1.

Table 1 EPC notation
Object Symbol Definition
A function is the technicd

task or activity performed on
Function an object in order to support

one or severa business

objectives.

19

Table 1l EPC notation (Cont.)

Definition

An event represents a state
that is relevant in terms of
business management and
which influences or controls
the further flow of one or

more business processes.

One of the logic operators
which alow connections
among events ard functions

in a process chains.

One of the logic operators
which allow connections
among events ard functions

in aprocess chans.

One of the logic operators
which alow connections
among events ard functions

ina process chains.

Object Symbol
- |
And @

Or @
XOr @
Arrow

Thisis one of the connection
types and used to show
logical link between
information carriers and
functions. The direction of
arrow also points out the
information carriers usage
such as“isused” or “is

produced”.

20

Table 1l EPC notation (Cont.)
Object Symbol Definition

Thisisacontrol flow
connection and is used to
connect control flow objects

such as events, functions and

Dashed rules. If events come before
arrow functions, dashed arrows
mean “activate’. On the other
hand if functions come before
function, dashed arrows mean
“creates’.
Thisis used to show
Assignment &l assignment of a process. The
symbol is positioned at right

down corner of aprocess.

Alternative or parallel paths are modelled with logical operators for
example, the AND logical operator is used when all paths are in parallel and
functions done simultaneously, the XOR is used to choose only one of alternative
paths, the OR logical operator is used to when one or more alternative paths can
be followed simultaneously. These are some basic examples however more

complex expressions can be formed according to needs.

EPCs can be hierarchicaly structured across any number of levels by
assigning more detailed EPCs to every function within an BPC thus it is easy to
show sub-processes as shown in Figure 6 [Loos, Allweyer, 1998].

21

Detailed EPC "Check Order"

Top-Level EPC

Figure 6 Example EPC [L oos, Allweyer, 1998, pg.104]

Thisis avery smple example of an EPC model. The sequence on the left is
atop level business process and can be considered as a whole process whereas the
sequence on the right is the detailed representation of the “Check Order” process.
“Order Created” is the triggering event of “Check Order” and it is also the
triggering event of the top-level EPC. “Check Order” is a complex process in
other words “Check Customer Data” and “Check Product Data’ are sub functions
of “Check Order”. “Order Checked” event is the end state of “Check Order”
process and is formed when the “Customer Data Checked” state and “Product
Data Checked” state are realized at the same time. The “Order Checked” event is

the triggering event of the “Approve Order” process and when the “Approve

22

Order” process is carried out the “Order Approved”’ state is constituted and the
whole process is completed.

2.3.2. eEPC Method

The eEPC isthe extended Event-driven Process Chain and, as the name
implies, the eEPC method is the extension of EPC and is located in requirements
definition phase of control view (See Figure 5). The eEPC method is more
effective than the EPC when business process modelling is considered, because
the information objects of data view and organizational element of organizational
view can be shown precisely together with the functions of the function view and
the events of the data view. Additiona views increase the understanding and the

clarity of the processes. The objects of EPC are also used in eEPC with additional
objects which are shown and explained in Table 2.

2.3.2.1. eEPC Notation

The notation for eEPC method is explained and defined in Table 2.

Table 2 eEPC notation

Object Symbol Definition Note

Thisis one of the
connection types and
used to show logical
Line - link between
organizational units
and functions. Line

means “execute”.

This
Thisisone of the symboal is
information carriers used asa
and is used to show whole
physical datathat is document

Document

input or physical data | or apart
that is output. of a

document

23

Table 2 eEPC notation (Cont.)

Object

Symbol

Definition

Note

Mobile
Phone

Thisis one of the
information carriers
and used to show
mobile phone usage in
aprocess. This can be
both input and output

of aprocess.

This
symbol is
considered

asradio.

Telephone

Thisis one of the
information carriers
and is used to show
telephone usage in a
process. This can be
both the input and

output of a process.

CD-ROM

Thisis one of the
information carriers
and is used to show
CD-ROM usagein a
process. This can be

both the input and

output of a process.

Diskette

Thisisone of the
information carriers
and is used to show

diskette usage in a
process. This can be
both the input and

output of a process.

24

Table 2 eEPC notation (Cont.)

Object

Symbol

Definition

Note

Magnetic
Type

OO

Thisis one of the
information carriers
and is used to show

magnetic type usage in
aprocess. This can be
both the input and

output of a process.

File

An information carrier
represents a means to
store information. This
can be boththe input

and output of a process.

This
symbol is
considered
asdata
base.

Electronic
Folder

Thisisone of the
information carriers
and is used to show

electronic folder usage
inaprocess. Thiscan
be boththe input and

output of a process.

Electronic

Document

Thisis ore of the
information carriers
and is used to show
electronic document

usage in aprocess. This
can be boththe input

and output of a process.

25

Table 2 eEPC notation (Cont.)

Object

Symbol

Definition

Note

E-Mail

7

Thisis one of the
information carriers
and is used to show E

mail usage in a process.

This can be both the
input and output of a

process.

Internet

Thisis one of the
information carriers
and is used to show

internet usagein a
process. This can be

both the input and

output of a process.

Extranet

Thisis one of the
information carriers
and is used to show
extranet usage in a
process. This can be

both the input and

output of a process.

Intranet

© Q¥

Thisisone of the
information carriers
and is used to show

intranet usagein a
process. This can be

both the input and

output of a process.

26

Table 2 eEPC notation (Cont.)

Object

Symbol

Definition

Note

Knowledge
Category

-

Thisis used to
represent knowledgein
amind. This can be
both the input and

output of a process.

General

Resource

A general resourceisa
resource that does not
need to be a person or
an operating resource

and is not explicitly
defined. This can be
both the input and

output of a process.

Printer

Thisis used to
represent printer usage.
This can be the output

of aprocess.

Book

Thisis one of the
information carriers
and is used to show

book usagein a
process. This can be
both the input and

output of a process.

List

Thisis used to
represent list usage. .
This can be both the
input and output of a

process.

27

Table 2 eEPC notation (Cont.)

system type usage.

Object Symbol Definition Note
Thisis one of the
information carriers
and is used to show
Note Pad note pad usage in a -
process. This can be
both the input and
output of a process.
Thisis
o used to
Thisis used to
Screen represent
represent screen usage.
user
interface.
o Thisis used to
Application o
represent application -
system type

Organization
al Unit

Organizational units

are the performers of

the tasks required to
attain the business

objectives.

Position

The smallest

organizational unit in a

company is a position.

It is assigned to

employees (persons).

28

Table 2 eEPC notation (Cont.)

organizational unites

come together to attain

specific business
objects.

Object Symbol Definition Note
Group is one of the
organizational units.

They are used when the
people from different
Group -

An example for eEPC is shown in Figure 7. The process starts when new
students are accepted. First, student information is prepared by the departmental
secretary using the list of teachers and the list of accepted students. Then, a
photograph of accepted student is photocopied by the departmental secretary to
proceed to the next activity. Later, Departmental secretary prepares a student
folder with the photograph of the student and the information of the student. All
processes are carried out with application system type called “Evrak yonetim

sistemi” using a user interface.

29

Bolum Eurak
. ; sekreteri e
Olgrgnlc' yonetim
aul sistemi
_Yeni
L, Ogrenci
bilgisi
Bolim
sekreteri
Ogrenci
resmi
—— | yeni BolUm
,y Ogrenci
bilgisi
=7~ Ogrenci
m// dosyasi

Figure7 Example for eEPC

EPC/eEPC are widely used for modelling, analysing, and redesigning
business processes [Loos, Allweyer, 1998]. EPC/eEPC are powerful and
understandable for end-users so that it is often used for captuing and discussing
business processes [Loos, Allweyer, 1998]. Because of the properties of
EPC/eEPC notation, the resulting EPC/eEPC models are used as a starting point
for the development of information systems and for the definition of workflows
[Loos, Allweyer, 1998].

2.3.3. TheARISTool

The ARIS tool is used to model business processes and to generate the
natural language functional requirements of the experimental study. The tool has

been developed by IDS Scheer AG to support consultants and companies in

30

creating, analyzing, and evaluating company processes in terms of business
process reengineering [Scheer, 2001]. The ARIS tool is based on the ARIS
concept thus it supports the modelling methods and views of the ARIS concept.

Each object of the ARIS tool has various attributes ®me of which are
common attributes such as Name, Identifier, Description, and others which are
object specific properties. For example average processing time is an object
specific attribute of a function. Occurrences of an object can have common and
private the attributes so that objects and occurences can also be stated in detail. In
addition, some of mentioned attributes can be used as input parameters for ARIS
add-ons such as ARIS Simulation, ARIS ABC, and ARIS BSC. Moreover,
reporting is one of the evauation properties of ARIS toolset. Models, groups and
databases can be analyzed using the reporting properties. The ARIS toolset
enables users to write their reporting scripts or edit written reporting scripts
through a script editor so that models can be evaluated according to project
specific situations. The KAOS tool is one of the model reporting scripts used by
the ARIS script editor. “There is aso the interface toward CASE tools (such as
Oracle designer 6i), workflow managemert tools and project management tools’
[Vidovic, 2003]

2.4. Tool Support for Requirement Engineering

There are many tools generated for assisting or automating purposes. One of
the classifications of these tools has been carried out by the International Council
on System Engineering (INCOSE) from the system engineering point of view.
The classification of toolsis shown in Figure 8 [INCOSE, 20024].

31

System Engineering

[l

; ; [nfra
Information : ; -
Management Sharin Engimeering Structure
Sharmng Support
[]
System . Design
S Requirements s
Design EfEeate Tool Walidation
Tools L E : Tools
]
Requirements Requirements
Management Tools Generation Tools
| |

Requirements
Classification Tools

Requirements
Capture and
Identification Tools

Requirements
Traccability Tools

Textual
Eequirements
Capture Tools

Tools tor Ehcitation
of Reguirements

Figure 8 Classification of RE tools [INCOSE, 20024]

Although, the upper most hierarchy of the classification is shown from a

system engineering point of view for the integrity purpose, the requirements

engineering related boxes are detailed in order to maintain the thesis focus.

Tools included in “Requirement Classification Tools’
classify requirements based on work to be done so that requirements activity can
be scheduled and tracked [INCOSE, 2002a]. They help the engineer make the
classification based on how the requirements will be used in modelling so that
completeness of traceability can be monitored [INCOSE, 20024]. Tools included
in “Requirements Capture and Identification Tools” aid engineers in separating
requirements from gathered information [INCOSE, 2002a]. Modern versions of

32

help engineers

these tools use natural language processing which are included in “Textual
Requirements Capture Tools’. Model based requirement dlicitation tools are
included in “Tools for Elicitation of Requirements’. Tools included in
“Requirements Traceability Tools’ enable the engineer to link requirements D
their source, to changes in requirements, and to modelling elements that satisfy
the requirements [INCOSE, 2002a]. The tools contained in “Requirement
Traceability Tool” provide traceability through the successive documents which
are used b review the ystem development [INCOSE, 2002a]. Tools such as
RequisitePro, DOORS, Caliber, CARE, and CORE are contained in requirements
traceability tools when the classification is considered. “Requirement Generation
Tools” utilize system simulation results, performance allocations, mission
scenarios, and design constraints to generate requirements in an organized and
traceable manner [INCOSE, 2002a).

Automatic requirements generation tools can be included in “Requirement
Generation Tools” when the classification hierarchy is considered, although
automatic requirements generation tools are new and are not considered by
INCOSE. In other words, The KAOS tool is located between requirement
elicitation tools and requirement management tools when software engineering
lifecycle is considered and the ARIS tool can be considered as a requirement
elicitation tool from the software engineering point of view. It is important for
requirements to be parsed with requirement management tools to supply tool
support for the following phases of software engineering lifecycle. When current
requirement management tools such as RequisitePro v2002, Caliber RM 3.0,
C.A.R.E 3.0, Catalyze 1.0, CORE 4.0, Cradle 4.0, DOORS 6.0, Envision 5.4.2,
IRGA 2.1 and Team Trace 2.1 are considered, most support an import-export
mechanism using text based files. The survey by INCOSE shows that 14 RM
tools fully support and 3 RM tools partly support the import-export mechanismin
21 known RM tools [INCOSE, 2002b]. In other words, the requirements
generated by the KAOS tool can be imported directly into al requirements
management tools. Because requirements are generated from business process
models which are formed using the one of the requirement elicitation tools and

generated requirements can be imported to requirements management tools,

33

integration among tools can be realized in requirements engineering activities

which is very important for projects.

2.4.1. Automatic Requirements Generation Tools

There are two kinds of requirements generation tools one is model based
and the other is text based.

Automatic functional requirements generation from the business process
models is a new issue and no tool has been found in the literature that
automatically generates functional requirements in natural language from business

process models.

However, one of the studies of Brian Berenbach is the closest to the work in
this thesis. The study called “The Automated Extraction of Requirements from
UML Notation” aimed to generate requirements from UML models [Berenbach,
2003]. Process of the thesis and process of the study is similar. Although there is
no detailed information about the study, it is stated that certain guidelines are
identified and the algorithm is based on those guidelines. Requirements that are
generated by the sudy are low level when compared to requirements that are
produced by the KAOS tool.

Modern “Textual Requirements Capture Tools” are contained in “Textual
Requirements Capture Tools” whereas they can aso be assumed in “Requirement
Generation Tools’ intuitively because of their improved features. If the KAOS
tool is compared with the textual requirements capture tools which generate
requirements, the main difference is that KAOS is model based and these tools are
text based so geometric shapes are important for a model based approach whereas
the meaning and structure of the texts and words are important for atext based
approach A model based approach can easily be applied to other languages when
correct sentence structures are found, on the other hand a text based approach
necessitates dealing with the syntax and semantics of natural language whichis
more requires further studies. The text based approach is more difficult than the
model based approach because natural language is ambiguous, however, the

models have higher possibility of being understood as intended.

If developments in text based approaches can offer solutions to today’s
problems, they will become a better choice and many implicit and explicit
requirements can be generated from legacy documents. The tool KAOS generates
only functional requirements but textual approach can generate nonfunctional

requirements as well.

35

CHAPTER 3

The KAOSTOOL

The KAOS tool was developed using the ARIS Scripting language which is
based on Visua Basic for Applications. ARIS Script is a scripting language of
ARIS Tool Set®. The ModellHierarchie, a model reporting script, was used as a
framework while developing the KAOS tool.

The functionadlities of the KAOS tool are;

Core Functionality

I. The KAOS tool is designed to generate functiond
requirements in natural language from business process
models.

Supportive Functionalites

I. Two modes can be kept within the same model. When
two modes are kept within the modes taking into
account tool restrictions, functional requirements can be
generated in two ways. One is to generate al functional
requirements for both modes as a complete set so that
there can be repeating functiona requirements common
for both modes, and the other is to generate functional
requirements for mode one and then generate the

remainder of the functional requirements for mode two

36

which will be different so that there can not be repeating

functional requirements common for both modes.

ii. Two kind of numbering options exist. Outline
numbering and plain numbering such as 1,2,3 can be
selected and applied during generation.

iii. Functional requirements can be filtered according to an
application system type name so that the functional
requirements of one application system type are
generated or al functional requirements of application
system types can be generated together.

Iv. The heading information of a request for proposal (RFP)
is inserted in front of the functional requirements
generated.

This chapter describes the software design aspect of the KAOS tool and
sentence structures which are produced during tool execution The following
sections include the classes used and their relationships, sub-programs and their
relationships, the scenario of the tool, tool restrictions such as assumptions and
constraints and sentence structures.

3.1. Tool Scenario

When the tool starts its execution, it takes necessary information for the tool
and controls them. If al inputs are appropriate, the heading information is written
to arelevant document. Then, the uppermost model to be evaluated is found and
added to the list. The root functions of the model are identified and are checked as
to weather they have already been added to a root function list. If there is a root
function which has not been added to a list, it is added. Then, the list is sorted
according to x, y coordinates and the functions in the list are processed in this

sequence.

During the process, first the root function is taken and it is checked to
determine it has already been evaluated. If it has been processed, next root
function is taken. If the function has not been processed before, current depth is

37

checked. If the current depth is appropriate for the evaluation, the function is
checked as to whether there is any assigned model on that function. If thereis, the
tool jumps to that model to evaluate it. If there is not any assigned model, all
objects related to that function are identified and then classified. The sntence
structure type is chosen according to the inputs and classified objects are
processed individualy. Extra words such as “kullanilarak”, “olanak saglamalidir”
and punctuation are added and the related objects are combined during the
process. Afterwards, processed objects are combined with the construct
requirements sentences. These activities continue until all the required model and
related functions are processed. The scenario of the tool is shown in Figure 9-a
and Figure 9-b with eEPC modelling notation.

The scenario can also be followed from a design point of view (see Figure
9-a and Figure 9-b). Initially Function 1 and function 2 are realized within the
SpecBox1 sub-program. Then, Function 3 is realized within the ReportHead sub-
program. Afterwards, Function 4 is redlized within the Evaluate and the
Manufacture sub-program. Function 5 and function 8 are realized within the
FindRootFunc sub-program. When we come to Function 6 and function 11, they
are realized within the CheckObj sub-program. Function 7, function 12, and
function 19 are realized within the FindNextFunc sub-program and then comes
the realization of Function 9 within the SortPosition sub-program. Function 10 is
realized within the eEPKOut sub-program. Function 13 is redlized within the
CheckAssignedModel sub-program. Function 14, function 15 and function 16 are
realized within the OutOfRelationships sub-program. Whereas, Function 17 is
realized within the Actlc sub-program, the ActlCjoin sub-program, the Paslc sub-
program, the PaslCjoin sub-program, the PasP sub-program, the PasPJoin sub-
program, the PasAST sub-program, the PasASTjoin sub-program Function 18 is
realized within the Ajoin sub-program Lastly, Function 20 is realized within the
OutFuncData sub-program and the OutOf EPK Func sub-program.

Screen dots showing the execution of the KAOS tool is given in the
Appendix.

38

Is It the Lagt Function of the Model 7

Figure 9-a The scenario of KAOS tool

39

Requireme s Produced

Is It the Last Furction of Model ? 19
NO
X

YES

Are all root fungtions evaluated?

X

O/
YES

NO

20

ion
odel

i

Assi

Is It the Last Function of Model ?

(02
YES
Are all root funggions evaluated?
‘ X

NO
YES
t Model Assigned ?

All Requi*Produced

Figure 9-b The scenario of KAOS tool

Is It the Fi

NO X
-

DE—

YE!

S

3.2. Softwar e Design

The KAOS Tool is composed of sub-programs and classes. Classes are
predefined classes of ARIS Scripting Language. The tool is formed from a
functional point of view so that relations between sub-programs are stated using
state chart diagrams. On the other hand, classes are stated by using class diagrams

since they are developed in object-oriented point of view.

40

3.2.1. Description of Classes

The classes mentioned below are the defined classes of the ARIS Tool Set®
which are used in the tool. Although there are other methods of classes, only the

methods which are used are explained.
3211 ARIS BASIC_Extension Object

This is a class for the data storage of the report and for attachment to the
ARIS report component. These globally available methods provide information
about the selected items, language choice, output file and format.

The methods used are:
I. SelectedLanguage: Returns the list of the (in context)

selected Models.

ii. SelectedModels: Returns the list of the (in context)
selected Models.

iii. SelectedFormat: Returns the output format selected in
the Report Wizard. The value can be changed by

assigning a new value.

Iv. SelectedPath: Returns the output path set in the Report
Wizard.

v. SelectedFile: Returns the name of the output file set in
the Report Wizard.

vi. ScriptError: Returns the value of the error variable.

3.21.2. Baselist Object
The object isabasic class with the common methods of al the lists.
The methods used are:

i. Count: Returns the list item count.

ii. Get: Returns the list item at the postion. (index) (O-
based)

41

iii. Delete: Deletes the specified list item (parm=object) or
the item at the specified position. (arm=index in the
list) (parm: List item to be deleted. If "parm” is an
object, this object will be deleted from the list. If "parm"
is a numerical value, the list item with the index that

corresponds to the numerical value will be deleted.)
iv. Add: Addsalist item to the list.
3.2.13. CxnOcc Object

The object represents a relationship occurrence (ARIS.CxnOcc.6.0). The
CxnQOcc object can use methods of Occ object.

The methods used are:

I. SourceObjOcc: Returns occurrence ObjOcc of the
source object.

ii. TargetObjOcc: Returns occurrence ObjOcc of the target
object.

3.21.4. CxnOcclList Object

The object represents a list of connection occurrences (CxnOcc) in the
report (ARIS.CxnOCCLIST). CxnOccList object can use methods of Baselist
Object.

3.2.15. [tem Object

Item Object is for using attribute-bearing ARIS items in the report
(ARIS.Item.6.0). This class contains the shared methods of all attribute-bearing
items and is also the basic class for all specialized items (Object, Model...)

The methods used are:

I. Name Returns the name of the item in the specified

language as a string.

42

ii. IsEqual: Returns TRUE if the item is equd to the item

specified as parameter.

3.2.1.6. ItemList Object

Item List object is a kasis class of all lists that contain attribute-bearing
items. ItemList object can use methods of Baselist object.

32.1.7. Mode Object

The object is used for usng models in the report (ARIS.ModelL). The
model object can use methods of Item object.

The methods used are:

I. TypeNum: Returns the unique ARIS model type number.

ii. GetSuccNodes: Returns the successor objects of the
specified object in the model graph and marks all
returned objects as visited. Requires the model graph
(use BuildGraph)

iii. BuildGraph: Creates (internally) the model graph and
assigns the marks. If bStructure=TRUE only structure-
relevant objects and relationships will be considered. All
graph operations are only possible if this method has
aready been called.

iv. StartNodelist: Returns the list of all start objects or
roots of a model graph. Requires the model graph (use
BuildGraph)

3.21.8. ModelList Object

The object represents a model list (ARIS.ModelList.6.0). ModelList object

can use the methods of ItemList object.

43

32.1.9. ObjDef Object

The object is used for using object definitions in the report
(ARIS.Objdef.6.0). ObjDef object can use methods of Item object.

The methods used are:
I. AssignedModels: Returns the assigned models of the
object definition.
ii. TypeNum: Returns the object type number. (OTN)
iii. ldentifier: Returns the object identifier.
3.2.1.10. ObjOcc Object

The object represents an object occurrence in the report (ARIS.Objocc.6.0).

ObjOcc object can use the methods of the Occ object.
The methods used are:

I. ObjDef: Returns the object definition as ObjDef.

ii. OutDegree: Returns the out-degree (number of outgoing

relationships) of the object occurrence.

iii. InDegree: Returns the in-degree (number of incoming

relationships) of the object occurrence.

iv. SymbolNum: Returns the (possibly user-defined) symbol

number of the object occurrence.

V. CxnOcclList: Returns all relationship occurrences

attached to the object occurrence as CxnOccList.

vi. X: Returns the x-position of the object occurrence in
1/10 mm.

vii. Y: Returns the y-position of the object occurrence in
/10 mm.

3.2.1.11. ObjOccList Object

The ObjOccList object represents a list of object occurrences (ObjOcc) in
the report (ARIS.ObjoccList.6.0). ObjOccList object can use methods of the
BaseList Object.

One of the methods used is:

I. ObjDef: Returns the object definition as ObjDef.
3.2.1.12. Occ Object
The Occ object represents an occurrence in the report. This class contains

the common methods of all occurrences and it is at the same time the basic class
of al speciaized occurrences. (CxnOcc and ObjOcc)

One of the methods used is:
I. IsEqual: Returns TRUE if the occurrence is equa to the
occurrence specified as the parameter.
3.2.1.13. Output Object
The object is an Output object for the ARIS report. The OLE name of the

class is ARIS.Output.6.0. Output Object gathers all outputs of the report script

while the report is being executed and writes them to afile in the specified format.
The methods used are:

I. DefineF: Defines a style sheet.

ii. Init: Initialize and set the output format, and gptionally
the localel D, in which the output file is to be written.

iii. WriteReport: Writes the report created with the output
commands to file strFileName in the strPath directory,
using the format specified at Init.

iv. OutputLnF: Writes the text to the output object with the
formatting from the specified style sheet.

45

v. BeginHeader: Beginning of the Header section (all
commands between BeginHeader and EndHeader affect
only the header)

vi. BeginTable: Command to begin atable definition.

vii. TableRow: Defines the start of anew table row; the
beginning of the first table row must also be defined
with this.

viii. TableCdl: Defines a new table cdll in the current table

row.
ix. EndTable: Concludes atable definition.
X. EndHeader: End of the Header section.

xi. BeginFooter: Beginning of the Footer section (all
commands between BeginFooter and EndFooter only
affect the footer)

xii. OutputLn: Writes the text with the specified formatting
to the output object and adds a paragraph sign (hard
return) at the end.

xiii. Output: Writes the text with the specified formatting to
the output object.

xiv. OutputField: Inserts a text box (page number, total

number of pages ...) Otherwise the same as Output.
xv. EndFooter: End of the Footer section.
3.2.2. Class Diagramsof Objects

Relations among classes can be identified in different views which are
Generalization relationship, Dependency relationship and Association
relationship. The Class diagrams of KAOS tool are identified with sum of all
using all these relationships.

46

3221 Generalization Relationships

The generalization relationships of the classes are shown in Figure 10.

Figure 10 Generalization relationships of classes

3.22.2. Dependency Relationships

The dependency relationships are shown in Figure 11.

Figure 11 Dependency relationships of classes

47

3.2.2.3. Association Relationships

The association relationships of the classes are shown in Figure 12.

-‘lnt w

ObjOce ObjCcclist
1. .

CxnOcce CxnOcclist
1.0 .

Item ltermbist
]'!: =
Maodel ModellList

Figure 12 Association relationships of the classes

3.2.3. Description of Sub-Programs

Sub-programs are written as sub-code blocks and their sum forms the tool
itself. The aim of the sub-programs, classes used and it's the methods used are
described in the following sub sections to describe sub-programs and to show

relationships among sub-programs, classes and methods.
3.2.3.1. Main Sub-Program

The Main sub-program is the top of all sub programs. The Main sub-

program is the place for assigning some default values, defining style sheets and

48

writing produced report. During its operation the Main sub-program calls up the
Specbox1 sub-program, the Evauate sub-program, the ReportHead sub-program

the FilterBox1 sub-program and the NumberingBox1 sub-program.
The classes which are used within the sub program:

3.2.3.1.1. ARIS BASIC_Extension Object
The methods used in the ARIS BASIC Extension Object for Main sub-

program are as follows:

I. SelectedLanguage

ii. SelectedModels

iii. SelectedFormat

Iv. SelectedPath

v. SelectedFile

vi. ScriptError
3.2.3.1.2. Output Object

The methods used in Output Object for Main sub-program are as follows:

i. DefineF

il Init

iii. WriteReport
3.2.3.1.3. BaselList Object

The method used in BaseList Object for Main sub-program is as follows:

i. Count

3.23.2. FilterBox1 Sub-Program

The FilterBox1sub-program is used when requirements are filtered
according to an application system type. The sub-program produces a user dialog
box to get a name of an application system type. The data entered is checked for

49

blank input and then stored in a global variable. If there no data is entered, the

user is warned to input the application system name.
3.2.3.3. NumberingBox1 Sub-Program

NumberingBox1 sub-program is used whenrequirements are generated with
numbering. Two types of numbering options exist, one of which is plain
numbering such as 1, 2, 3 and the other one is outline numbering such as 1, 1.1,
1.1.1 The sub-program produces a user dialog box to clarify the numbering
options. The options are number coded and according to the choice, an

appropriate numbering format is applied during the requirement s generation
3.234. AssignedModelsintoList Sub-Program

The AssignedModelsintoList sub-program is used to determine whether
there is a model asigned to the function which is being analyzed. If there is a
model assigned to the function, the function is left unprocessed and the assigned
model is considered so that processing operation starts from the very beginning.
The idea behind this operation is to generate all requirements of the lowest-level
ub-processwhich is assigned to the function being analyzed by the KAOS tool.
When all the sub function’s requirements are generated, the uppermost function,
the one sub-process assigned, is already evaluated. If there is no model assigned
to the function the sub-program is skipped. CheckAssignedModel sub-program,
CheckAssignedM odell sub-program, and Manufacture sub-program are called by
AssignedModelsintoList sub-program during its operation

The classes which are used within the sub program:

3.23.4.1. ModelList Object:
The methods used in ModelList Object for AssignedModelsintoList sub-
program are as follows:
I. TypeNum
ii. Count

i, Get

50

iv. Delete
v. Add
vi. ObjOcc Object:
vii. Used method
viii. ObjDef
iX. ObjDef Object:
X. Used methods are
xi. AssignedModels
xii. Name
3.2.3.4.2. Mode Object:
The method used in Model Object for AssignedModelsintoList sub-program
isas follows:
I. TypeNum
3.2.3.4.3. CheckAssignedModel Sub-Program

The CheckAssignedModel sub-program is used to check whether models
have already been analyzed or to check if the model which is being processed on
is the assigned model. It is also checked whether the next level which is added is
the assigned model. These specific dtuations are searched within
CheckAssignedModel sub-program and relevant variable values are changed
according to results.

The classes which are used within the sub program are:

3.2.3.4.4. Mode Object:

The methods used in Model Object for the CheckAssignedModel sub-

program are as follows:

i. Name

ii. IsEqual

51

3.23.4.5. ModelList Object:
The methods used in the ModelList Object for the CheckAssignedM odel
sub-program are as follows:
I. Count
ii. Get
3.2.3.5. CheckAssignedM odel 1 Sub-Program
The CheckAssignedModel1 sub-program is used to check whether models

have already been evaluated. The relevant variable values are changed according

to the result.
The classes which are used within the sub program are:

3.235.1. ModelList Object:
The methods used in the ModelList Object for the CheckAssignedModel 1
ub-program are as follows:
i. Count
ii. Get
3.2.35.2. Mode Object:
The method used in the Model Object for the CheckAssignedModel1 sub-
program is as follows:
I. IsEqual
3.236. CheckObj Sub-Program
The CheckObj sub-program is used to check whether the current object
occurrence has already been evaluated. The reference list is the list of used object
occurrences and is used while checking. The list can be updated with current

object occurrence, if the Checkobj sub-program is not used for just checking

operation. Relevant variable values are changed according to results.

52

The classes which are used within the sub program are:

3.23.6.1. ObjOccList Object:

The methods used in the ObjOccList Object for the CheckObj sub-program

are as follows:

i. Count

ii. Get

iii. Add
3.2.3.6.2. ObjOcc Object:

The methods used in the ObjOcc Object for the CheckObj sub-program are
as follows:

i. ObjDef

ii. IsEqual
ili. ObjDef Object:
iv. Used method
v. Name

3.23.7. eEPKOut Sub-Program

The eEPK Out sub-program is used to send a root list function in a sequence
until al root function has been evaluated. The OutOfEPKFunc sub-program is
called by the eEPKOut sub-program during its operation.

The classes which are used within the sub program are:

3.2.3.7.1. ObjOccList Object:

The methods used in the ObjOccList Object for the eEPKOut sub-program
are as follows:

i. Count

i, Get

53

3.2.3.7.2. ModelList Object:

The method used in the ModelList Object for the eEPK Out sub-program is:

I. Delete
3.2.3.8. Evaluate Sub-Program
The Evauate sub-program is used to assign the current model into the
processing list. Some default assignments are carried out before the Manufacture

sub-program is caled by the Evaluate sub-program during its operation The sub-

program is used once at the beginning of the process.
The classes which are used within the sub program are:

3.2.3.8.1. ModelList Object:
The methods used inthe ModelList Object for Evaluate sub-program are as
follows:
i. Count
i, Get
iii. Add
3.2.3.9. FindNextFunc Sub-Program

The FindNextFunc sub-program is used to find the next structurally relevant

function. Found next functions are checked according to two situations:

I. The Found function can be the one itself. (This situation
is redized when two events are connected to same

function.)

ii. The Found next functions can be a member of evaluated

functions list.

The CheckObj sub-program and the FindNextFunc sub-program itself are
called by the FindNextFunc sub-program during its operation

The classes which are used within the sub program are:

3.2.39.1. Moded Object:

The method used in Model Object for the FindNextFunc sub-program is as

follows:

i. GetSuccNodes
3.2.3.9.2. ObjOccList Object:

The methods used in the ObjOccList Object for the FindNextFunc sub-

program are as follows:

. Count

ii. Get

iii. ObjDef

iv. Add
3.2.3.9.3. ObjDef Object:

The method used in the ObjDef Object for the FindNextFunc sub-program

i. TypeNum

3.2.3.10. FindRootFunc Sub-Program

The FindRootFunc sub-program is used to find the root function of a model.

The sub-program calls the FindNextFunc sub-program to find all root functions.
The classes which are used within the sub programare:

3.2.3.10.1. Model Object:

The methods used in the Model Object for the FindRootFunc sub-program
are as follows:

I. BuildGraph

ii. StartNodelList

55

3.2.3.10.2. ObjOccList Object:

The methods used in the ObjOccList Object for the FindRootFunc sub-

program are as follows:

Count

. Get

Ddete

Add

V. ObjOcc Object:

vi. Used methods are

vii. OutDegree
viii. InDegree
iXx. ObjDef

X. ObjDef Object:
Xi. Used method
xii. TypeNum
3.2.3.11. Manufacture Sub-Program
The Manufacture sub-program is a recursive program because when a new
assignment is found, the program cleans the old values and starts the generation

operation from the very beginning. The sub-program is the starting point for all
models which are evaluated. The sub-program calls the OutTopo sub-program.

The classes which are used within the sub programare:

3.2.3.11.1. ModelList Object:

The methods used in the ModelList Object for the Manufacture sub-

program are as follows:

i. Count

56

ii. Add
3.2.3.11.2. ObjOccList Object:
The methods used in the ObjOccList Object for the Manufacture sub-
programare as follows:
i. Get
ii. Delete
3.2.3.11.3. Model Object:

The method used in the Model Object for the Manufacture sub-program is:

I. Name
3.2.3.12. OutFuncData Sub-Program
The OutFuncData sub-program is a starting point for determining assigned
models and also determining the structurally relevant relationship of the object of
the function. The sub-program calls the AssignedModelsintoList sub-program to
find any assigned model, and calls the OutOfRelationships sub-program to
determine and process objects connected with functions. The sub-program also

cals the CheckObj sub-program to check current function occurrences with the

list which consists of occurrence of evaluated functions.
The classes which are used within the sub program are:

3.2.3.12.1. ObjOcc Object:
The methods used in the ObjOcc Object for the OutFuncData sub-program
are as follows:
i. ObjDef
ii. SymbolNum
iil. CxnOccList
3.2.3.12.2. ObjDef Object:

The methods used in the ObjDef Object for the OutFuncData sub-program

are as follows:

57

i. Name
ii. Used method
iii. AssignedModels
3.2.3.12.3. CxnOcclList Object:
The method used in the CxnOccList Object for the OutFuncData sub-
program is:
i. Count
3.2.3.12.4. ModelList Object:
Used methods of the ModelList Object for the OutFuncData sub-program
are as follows:
I. Count
i. Get
3.2.3.13. OutOfEPKFunc Sub-Program
The OutOfEPKFunc sub-program is used to process functions one by one
according to the target list by calling the FindNextFunc sub-program. The Target
list is formed here and functions are sent to the OutFuncData sub-program by
calling it. The OutOfEPKFunc sub-program calls itself to set the next function as

a current function. The CheckObj sub-program is used to check current and

following functions. The SortPostion sub-program is called to sort target list.
The classes which are used within the sub program are:

3.2.3.13.1. ObjOcc Object:

The method used in the ObjOcc Object for the OutOf EPK Func sub-program

i. ObjDef
3.2.3.13.2. ObjDef Object:

The methods used in the ObjDef Object for the OutOfEPKFunc sub-

program are as follows:

58

i. AssignedModels
ii. Name
3.2.3.13.3. ObjOccList Object:
The methods used in the ObjOccList Object for the OutOf EPKFunc sub-
program are as follows:
I. Count
ii. Get
iii. Delete
iv. Add
3.2.3.14. OutOfRelationships Sub-Program
The OutOfRelationships sub-program is used to generate requirements
sentences. All the objects connected with current function are determined and
classified according to a colour code and a type code. Actlc, Paslc, PasP and
PasAST sub-programs are called to insert classified objects into related lists.
Then, ActlCjoin, PasliCjoin, PasPJoin, PasASTjoin sub-programs are called to
process lists. After al the lists are processed, the Ajoin sub-program is called to
construct a requirement sentence according to the processed lists. When a
reguirement sentence is constructed, the sentence is written to a specified file. If a

numbering option is chosen, the appropriate numbering choice is also added

during the writing operation.
The classes which are used within the sub program are:

3.2.3.14.1. ObjOcc Object:

The methods used in the ObjOcc Object for the OutOfRelationships sub-

program are as follows:
I. ObjDef
ii. IsEqual

iii. SymbolNum

59

The attribute used in the ObjOcc Object for the OutOfRelationships sub-
program is as following:
i. Color
3.2.3.14.2. ObjDef Object:
The methods used in the ObjDef Object for the OutOfRelationships sub-
program are as follows:
I. AssignedModels
ii. Identifier
iii. Name
iv. TypeNum
3.2.3.14.3. ModelList Object:
The method used in the ModelList Object for the OutOfRelationships sub-
program is:
i. Count
3.2.3.14.4. CxnOccList Object:
The method used in the CxnOccList Object for the OutOf Rel ationships sub-
program is:
i. Get
3.2.3.14.5. CxnOcc Object:
The methods used in the CxnOcc Object for the OutOfRelationships sub-
program are as follows:
I. SourceObjOcc
ii. TargetObjOcc
3.2.3.14.6. Output Object:

The method used in the Output Object for the OutOfRelationships sub-

program is:

60

I. OutputLnF

3.23.15. Actlc Sub-Program

The Actlc sub-program is used to insert outputs into output lists.
3.2.3.16. ActlCjoin Sub-Program
The ActlCjoin sub-program is used to process the output lists.
Processing means:
I. Comma, the word “and” is inserted into the appropriate

place for output parts.

ii. Some Turkish suffixes like “nin”, “nin” “nun”, “in”, “in”
are added to the words which finish in “i”, “i”, “e”, “a”,
“un, fer, farr.

iiil. Some extra words are added because some outputs

necessitate some words which can not be shown in the
modd.

3.2.3.17. Paslc Sub-Program
The Paslc sub-program is used to insert inputs into input lists.
3.2.3.18. PaslCjoin Sub-Program
The Pasl Cjoin sub-program is used to process the input lists.
Processing means:

I. Comma, the word “and” is inserted into the appropriate
place for input parts.

ii. Some Turkish suffixes like “nin”, “nin” “nun”, “in”, “in”
are added to the words which finish in “i”, “i”, “e”, “a”,

143 un’ 113 ern’ 143 a.u .

61

iiil. Some extra words added because some inputs
necessitate some words to be wused such as

“kullanilarak™.

3.23.19. PasP Sub-Program
The PasP sub-program is used to insert roles into role list.
3.2.3.20. PasPJoin Sub-Program
The PasPJoin sub-program is used to process the role lists.
Processing means.

I. Comma, the word “and” is inserted into the appropriate

place for role parts.

ii. Some Turkish suffixes like “i”, “U" are added to some of

the words envisioned.

iii. Some extra words added because al roles necessitate

some words to be used such as “tarafindan’.

3.2.3.21. PasAST Sub-Program

The PasAST sub-program is used to insert application system types into the
application system type list.

3.23.22. PasASTjoin Sub-Program

The PasA STjoin sub-program is used to process the application system type
lists.

Processing means.

I. Comma, “and” word is inserted into the appropriate

place for system parts.

ii. The Turkish suffix such as “nde” is added.

62

3.2.3.23. Ajoin Sub-Program

The Ajoin sub-program is used to construct requirements sentences
according to the inputs and outputs and user dialog box choices which are chosen
at the beginning of the tool execution (for example, filter requirements according
to the system name, generate requirements which are changed for case two,
generate requirements for case 1, generate requirements for case 2 together with

common requirements among case 1 and 2).
3.2.3.24. OutTopo Sub-Program

The OutTopo sub-program is used to find root functions. Found functions
are then sorted according to the positions function’s y and x and list of root
functions is formed to send eEPKOut sub-program. FindRootFunc, SortPosition
and eEPKOut sub-programs are called respectively by OutTopo sub-program
during its operation

The classes which are used within the sub program are:

3.2.3.24.1. ObjOccList Object:
The methods used in the ObjOccList Object for the OutTopo sub-program
are as follows:
. Count
ii. Get
iii. Delete
iv. Add
3.2.3.24.2. ObjOcc Object:
The methods used in the ObjOcc Object for the OutTopo sub-program are
as follows:
i X
i, Y

3.2.3.24.3. SortPosition Sub-Program

63

The SortPosition sub-program is used to sort the object according to y
position. The X position is used for sorting wheny positions are equal.
3.2.3.24.4. SpecBox1 Sub-Program

The SpecBox1 sub-program is used to form the first user dialog box of the
tool. The sub-program gets the necessary information for the tool execution. The
relevant parts are checked for invalid input. Days sub-program, Months sub-
program, Years sub-program are called respectively by the SpecBox1 sub-
programduring its operation
3.2.3.24.5. Days Sub-Program

The Days sub-program is used to determine the day information of the
SpecBox1 sub-program.
3.2.3.24.6. Months Sub-Program

The Months sub-program is used to determine the month information of the
SpecBox1 sub-program.
3.2.3.24.7. Years Sub-Program

The Years sub-program is used to determine the year information of the
SpecBox1 sub-program.

3.2.3.24.8. ReportHead Sub-Program

The ReportHead sub-program is used to form the first page of a document.
Dynamic information gathered from the user dialog boxes, datic information

written in a header and footer are all written to afile.
The classes which are used within the sub program are:

3.2.3.24.9. Output Object:

The methods used in the Output Object for the ReportHead sub-program are

as follows:

i. DefineF

ii. BeginHeader

iii. BeginTable
iv. TableRow
v. TableCell

vi. EndTable

vii. EndHeader
viii. BeginFooter
ix. OutputLn

X. Output

xi. OutputFied
xii. EndFooter
xiii. OutputLnF

3.2.4. Structure Charts of Sub-Programs

The structure chart of sub-programs is shown in Figure 13 to describe

relationships among sub-programs.

65

_

Main

e

Spechox1 ReportHead Evaluate Nugg:lnng FilterBox1
Days Years
Manufacture
Months
CutTopo
Check
FindRoot SortPosition eEPKOut Assigned
Model1
. Cutof
FindMext EPKEunc
CheckOhj OutFuncData
Assigned o
utof
Madelsinto Relatienships
List
Check
Assigned
Model
Actle ActiCjoin Paslc PaslCjoin PasP PasPjoin PasAST PasASTjain

3.3. Tool Restrictions

Aloin

Figure 13 Structure charts of sub-programs

There are some assumptions, predefined notation and rules to generate

functional requirements from business models as intended.

3.3.1. Assumptions

There are two modes envisioned during the development of the tool. The

Second mode is assumed to contain the first mode. If a process/function is used

for the second mode but not for the first mode, the identifier of a function should

be changed with any word or character. The main point is not to leave identifier

empty.

66

There are three types of colour envisioned for information carriers.

3.3.2. Constraints

The notation of eEPC is valid for the tool but additional restrictions are
added.

There are two modes of operation and three document types envisioned. The
usage of documents and also usage of modes necessitates the same documents
with different colours consequently there are six colours used for both modes and
four colours added for mode two. The mlour codes used in the KAOS tool are
shown in Table 3.

Table 3 Colaur code of KAOS tool

Colour

Code
Colour Example _ Mode Note
used in

ARIS

Light orange
document shows
entire text
document like
book or article.
The document is

also affected by
Light Mode an action. For
6008319 | 1and
Orange example, when
text output is
produced as an
entire document.
Light orange
document can be
used as an input

or outpui.

67

Table3 Colour code of KAOStool (Cont.)

Colour

Example

Colour
Code
used in
ARIS

Mode

Note

Gold

55295

Mode
1 and

Gold document is
akind of light
orange document
but the color
shows that the
document is used
without being
affected by an
action. Gold
document is
aways used as an

Input.

White

Mode
1and

White document
is used for the
parts of
documents like
chapters of books
or article. The
color also shows
that the document
is affected by an
action as the light
orange. White
document can be
used as an input
or output.

68

Table3 Colour code of KAOStool (Cont.)

Colour

Example

Colour
Code
used in
ARIS

Mode

Note

Rose

14804223

Mode
1and

Rose document is
areflection of
white document
like gold
document. Rose
document is used
without being
affected by an
action. Rose
document is
aways used asan

input.

Blue-Gray

12623485

Mode
1 and

Blue-gray
document is used
to show map asa

layer. Thisis
mainly used in
GIS applications.
Blue-gray
document is also
affected by an
action like orange
document. Blue-
gray document
can be used as an

input or output.

69

Table3 Colour code of KAOStool (Cont.)

Colour

Example

Colour
Code
used in
ARIS

Mode

Note

Light

Turquoise

16777152

Mode
1 and

Light turquoise
document isa
reflection of blue-
gray document
like gold
document. Light
turquoise
document is used
without being
affected by an
action. Light
turquoise
document is
aways used asan

input.

Pale Blue

15658671

Mode

Pale blue
document is used
when light
turquoise
document is
necessary to be
used at Mode 2.
The properties of
light turquoise
document are also
valid for pale blue

document.

70

Table3 Colour code of KAOStool (Cont.)

Colour

Example

Colour
Code
used in
ARIS

Mode

Note

Teal

9143144

Mode

Teal document is
used when blue-
gray document is
necessary to be
used at Mode 2.
The properties of
blue-gray
document are
valid for ted
document.

Lavender

13353215

Mode

Lavender
document is used
when gold
document is
necessary to be
used at Mode 2.
The properties of
gold document
areaso vaid for
lavender

document.

71

Table3 Colour code of KAOStool (Cont.)

Colour
Code
Colour Example Mode Note
used in
ARIS
Red document is
used when light
orange document
IS necessary to be
Mode | used at Mode 2.
Red 255)
2 The properties of

light orange
document are also
valid for red

document.

If an object needs to be used in a requirement, it should be connected with

the relevant object.

If requirements are filtered according to an application system type name
during generation, the keyword for filtering is sufficient for the generation. For
example, if the name of an application system type is “GIS System” and there is

no application system type name consisting of “GIS’, then it is enough to choose

“GIS’ as akeyword for filtering operation.

3.3.21. Naming Constraints

An object name should conform to following abbreviation and

spelling rules.

All abbreviations should be ended with a dot.

While naming objects, one space should be |eft between the words.
On the other hand, if a name consists of more than one word and

there is a need to write the name on more than one line, no space

72

should be left at the end of the line or at the beginning of the

following line. An example of thisruleis shown Table 4.

Table4 Example for naming objects

Thisiswrong Thisiscorrect

pprove Ordegr

Check) Check
Custome Custome

A

Data Data

If a definition of a document needs to be used when naming an
object, the definition should be written at the end of the name using
parenthesis. Moreover, if it is necessary to write where an object
comes from, this information should be written in front of an object
using parenthesis. One pair of parenthesis (*()”) should be used
when writing in front of a name and one pair of parenthesis should
be used when writing at the end of a name. In other words, at most

there can be two pairs of parenthesizes.

An infinitive verb should be used while naming a function as
shown in Table 4.

“System” expression should be used when naming application
system types. For example “GIS System”, “XXX System” etc...

When objects such as telephone, radio, printer, CD-ROM, e mil,
e-folder, internet, intranet, extranet, notepad, fax, diskette,
magnetic tape, list, database, general resource and knowledge
category information are used as an input or output, the name of the

information should be used while naming these objects.

73

If one or more of the following: mobile phone, telephone, CD-
Rom, diskette, magnetic type, database, file, electronic folder,
electronic document, e-mail, internet, extranet, intranet, knowledge
category, general resource, printer, book, liss and notepad are
connected with the function as an output where a document or
documents are not connected with that function as an output, the

function should not be named.

3.4. Sentence Structure

Although the definition of a requirement is clearly stated, neither the
components of a requirement sentence are explicitly defined nor are defined
sentences the same due to the nature of the requirement sentence. There is an
explicit process to be followed to determine sentence construct and type is

explained below.

Firdt, the guidelines and the characteristics such as “well-written” and “well-
structured” that a requirements sentence should have, which were mentioned in
chapter 2, are identified so that this information is considered while sentences
structures are being formed. Then, at |east the constructs are determined according
to common properties to form sentence structures from the descriptions of the
components of a requirement sentence. These common constructs can also be
called “base components” because additional components can be added according

to case specific situations.
The identified base components are:
Actor(s) such as people, system etc....
An action such as read, write ec....
Input(s) such asinformation carrier (if exists)
Output(s) such as message (if exists)

Secondly, the software functional requirements of a military project which

is similar to the experimental study is chosen to clarify the case specific needs of

74

sentences and also the constraints. The requirements of a similar project are
classified according to its base components, while specific needs are identified so
that the dynamic and the static constructs of a requirement sentence are defined

accordingly.

Thirdly, the needs of the project which is chosen for an experimental study
are determined together with tool restrictions. Although assumptions, rules and
notation are predefined, they are broadened to their final state during experimental
study. Possible information carriers are determined and added for the purpose of

general usage of the tool.

There ae three dynamic sentence constructs for input and two dynamic
constructs for output. Moreover, there are seven dynamic constructs for other
purposes such as suffix, position, application system type and user interface. To
ease coding a special abbreviation is applied when naming man dynamic

sentence constructs. These are explained in Table 5

Table5 Description of main dynamic sentence constructs

Main Dynamic Construct Name Description
g = Global
S = String
g sActinCarHS Act = Active

InCar = I nformation Carrier
HS = HaritaSon (Map End)

g = Global
S = String
g sActinCarMS Act = Active

InCar = Information Carrier
MS = Mgdin Son (Text End)

g = Global

S = String

Pas =Passve
g_sPasinCarNHS InCar = Information Carrier

N = Nesne (Object)

HS = HaritaSon (Map End)

g = Global

s = String

Pas = Passve
g_sPasinCarNMS InCar = | nformation Carrier

N = Nesne (Object)

MS = Meéetin Son (Text End)

75

Table 5 Description of main dynamic sentence constructs (Cont.)

Main Dynamic Construct Name Description

g = Global
S = String

g_sPesPS Pas =Passve
P = Position
g = Global
S = String
Pas =Passve

g _SPasASTS ASTS = Application System
Type Son
(Application System
Type End)
g = Global
S = String
Pas =Passve
g_SPasInCarNDS InCar = Information Carrier
NDS = NesneDegil Son
(Not Object End)

g = Global

g_sProcin S = String
Procln = Process | nterface

The components of a requirement sentence and the description of the
suffixes used are shown in Table 6 and Table 7 respectively.

Table 6 Main constructs of sentence structures

Congtruct Name Description Applied Processes
Thisis alast state of Required suffix
output objects used to added to the words
show a map as a layer. which finish with
They are represented by L =
g SActinCarHs blue-gray documents or “un, e, farr.
teal document symbolsin | “,” and/or “and”
models and are also are added
affected by an action according to
during a process number of the
execution outputs.

76

Table 6 Main constructs of sentence structures (Cont.)

Construct Name

Description

Applied Processes

Thisis alast state of
output information
carriers other than blue-
gray and teal documents

such as white document,

Required suffix
added to the words
which finish with

) k) e) a”!

143 un’ 143 eru, ua.n .

execution

light orange document, Used information
4 SACtinCaMS red document and other | carriersother than
information carriers document type are
which can be used as an added.
output. They are affected | “,” and/or “and”
by an action during a are added
process execution according to
number of the
outputs.
Thisis alast state of the Required suffix
input objects which are | added to the words
used to show amapasa | which finish with
layer. They are “17,f17, et tal,
represented by blue-gray “un, ter”, tart.
g_sPasinCarNHS documents or teal “,” and/or “and”
document symbolsin are added
models and are also according to
affected from an action number of the
during a process inputs.

77

Table 6 Main constructs of sentence structures (Cont.)

Construct Name Description Applied Processes
Thisis the last state of Required suffix
input information carriers | added to the words
other than blue-gray and | which finish with
teal documents such as “i7, T, e tan,
white document, light “un, fer, farr.

o SPasinCaNMS orange document, red “,” and/or “and”
document and other are added
information carriers according to

which can be used as an number of the
output. They are affected inputs.
by an action during a
process execution
Thisis the last state of Required suffix
roles. They are added to the words
represented by which finish with
organizational units, “k”, “d”, “b”.
g_sPasPS positions, or group “” and/or “and”
symbols. They execute are added
an action according to
number of the
inputs.
Thisis the last state of The suffix “nde”
application system types. | added to aword.
They are represented by “ and/or “and”
g_SPasASTS an application system are added
type symbol. according to
number of the
inputs.

78

Table 6 Main constructs of sentence structures (Cont.)

Construct Name Description Applied Processes
Thisis the last stateof al | *“,” and/or “and”
information carriers are added
which can be used asan according to
g_sPasinCarNDS) .
input and which are not number of the
affected from an action Inputs.
during process execution
Thisis the last stateof an | The conjunction
user interface and is “ile” is added.
g_sProcin

represented by a screen

symbol.

The required suffix for constructs are limited to the words which end with

M, 1, e,

uren’ “ nan1 uninn’ 113 nln ,

au, uu , er’ ar ,

"otk “d”, “b” therefore, the chosen suffixes are

nun”, “i”, “0”, “in”, “in” and "nde". In addition to these,

there are other static words which are also added according to needs of the

sentence structures such as "kullanilarak,” and “tarafindan, ".

Table 7 Sub-constructs of sentence structures (pr efix)

Name of o Assigned
_ Condition Note
pr efix Value
g_nAcl CcountH=
number of output
g_nAclCcountH =1
for g sActinCarHS
sdummy?2 And “ve’
g_nAclCcountM=n
g_hAclCcountM =1
umber of output for
g sActinCarMS
g_nAclCcountH>1
sdummy?2 And “r
g_nAclCcountM =0

79

Table 7 Sub-constructs of sentence structures (prefix) (Cont.)

Name of o Assigned
_ Condition Note
pr efix Value
g_nAclCcountH=1
sdummy?2 And o

g_hAclCcountM =0

g_nhAclCcountH=0
sdummy2 And “r
g_nAclCcountM =1

g_nAclCcountH=0
sdummy?2 And “r
g_nAclCcountM >1

g_hAclCcountH>1
sdummy?2 And .
g_hAclCcountM >1

g_nAclCcountH>1
sdummy?2 And “ve’
g_nAclCcountM =1

g_nAclCcountH =1
sdummy?2 And ‘)
g_hAclCcountM >1

g_nAclCcountH =0
sdummy2 And “r
g_nAclCcountM =0

g_nAclCcountH =1
sdummy7 And “
g_hAclCcountM =1

g_nAclCcountH>1
sdummy7 And “
g_nAclCcountM =0

g_nhAclCcountH=1
sdummy7 And “ve’

g_hAclCcountM =0

80

Table 7 Sub-constructs of sentence structures (prefix) (Cont.)

Name of o Assigned
_ Condition Note
pr efix Value
g_nAclCcountH=0
sdummy7 And “ve’
g_nAclCcountM =1
g_nAclCcountH=0
sdummy7 And “r
g_nAclCcountM >1
g_nhAclCcountH>1
sdummy7 And 4
g_nAclCcountM >1
g_hAclCcountH>1
sdummy7 And ‘)
g_hAclCcountM =1
g_nAclCcountH =1
sdummy7 And “
g_nAclCcountM >1
g_nAclCcountH =0
sdummy7 And o
g_hAclCcountM =0
Definition of
g_sPasinCarNHS
g_sPasinCarNHS<>""
and
sdummy3 And “ve’
g_sPasInCarNMS
g_sPasinCarNM S<>"" _
are stated in Table
6
If aword finishes with
sdummy4 “na’
113 i"
If aword finishes with
sdummy4 “ne”
[13) i”

81

Table 7 Sub-constructs of sentence structures (prefix) (Cont.)

Name of o Assigned
_ Condition Note
pr efix Value
g_nAclCcountH>0
"olusturu
sdummy5 Or _
Imasina”

g_nAclCcountM>0
g_nAclCcountH=0

And Definition of
sdummy5 | g_nAclCcountM=0 o g_sActinCarMSis
And stated in Table 6.
g_sActinCarM S<>""
g _sActinCarHS="" Definition of
sdummy5 And g _sActinCarHS is
g sActinCarMs="" stated Table 6.

The data gathered from the processes stated above is used to form the final

sentence structures of the tool. There are two kinds of sentence structure used in

the tool which are as follows:
Sentence Structure 1

Application System Type + Input (1) + Position + User Interface + Output
(1) + sdummy?2 + Output (2) + Function + sdummy4 + " olanak saglamalidir.”

g_SPasASTS + g_sPasinCarNDS +g_sPasPS + g_sProcln + g_sActinCarHS
+sdummy2+g_sActinCarM S+" "+scurrentfuname+sdummy4+" olanak
saglamalidir.”

Sentence Structure 2

Application System Type+input(1)+Input(2)+sdummy3+ Input(3)+
Position+User
I nterface+Function+sdummy4+sdummy 7+Output(1)+sdummy2+Output(2)+
sdummy5 +" olanak saglamalidir.”

82

g_SPasASTS+g_sPasinCarNDS+g_sPaslnCarNHS+sdummy3+g_sPasinCar
NM S+g_sPasPS+g_sProcl n+scurrentfuname+sdummy4+sdummy7+g_sActinCar
HS+ sdummy2+g_sActinCarM S+sdummy5+" olanak saglamalidir.”

The selection of sentence structures is closely linked with the input data. For
example, if input data is affected by an action, sentence structure 2 is used. In
other words, if a colour of an input object is white, light orange, red, blue-gray or
teal, the sentence type is chosen as sentence structure 2. If all the input data is not

affected by an action, sentence structure 1 is chosen

If requirements are generated by using the filtering option, an application
syssem name is removed from the sentence dStructures. The functional
requirements of the business process are generated by using the sentence

components dynamically within sentence structures.

3.4.1. Examplesentences

An example eEPC model shown in Figure 14 is used to generate functional
requirements. The model is evaluated twice by the tool to show the effect of the
filtering option. If requirements are generated according to a specific applicationa
system type filtering option is chosen. In other words, if al requirements of the
application system types are generated together, the filtering option is not chosen.

The relevant regquirements sentence are given in section 3.4.1.1.

83

0lUm sekretari

EMrak yonetim
sistemi

olUm sekreteri

Bplum sekreteri

grenci bilgileri

Figure 14 Example eEPC for requirement sentences

34.11 Examplesfor Generated Functional Requirementswith a
Filtering Option

In Figure 14, Function 1 has two inputs one of which is affected by an
action whereas the other is not. Function 1 also has one output that is affected by
an action, one organizational unit, one user interface and application system type.

Sentence structure 2 is chosen because one of the inputs is affected by an action
The result requirement sentence for function 1 is:

Hoca Listes kullanilarak Ogrenci kabul listesi'nin, Bolim sekreteri
tarafindan, kullanici arayiizii ile hazirlanmasina ve Ogrenci bilgileri'nin

olusturulmasina olanak saglamalidir.

Function 2 has one input which is affected by an action, 1 output which is
affected by an action, one organizational unit, one user interface and application
system type. Sentence structure 2 is chosen because the input is affected by an

action
The resulting requirement sentence for function 2 is:

Ogrenci resmi'nin, Bolum sekreteri tarafindan, kullanici arayizii ile

kopyalanmasina olanak saglamalidir.

Function 3 has two inputs which are not affected by an action, one output
that is affected by an action, one organizational unit, one user interface and
application system type. Sentence structure 1 is chosen because there is no any
input affected by an action.

The resulting requirement sentence for function 3 is:

Ogrenci resmi ve Ogrenci bilgileri kullanilarak Boliim sekreteri tarafindan,

kullanici arayuzi ile 6grenci dosyasi'nin hazirlanmasina olanak saglamalidir.

34.1.2. Examplesfor Generated Functional Requirements without a

Filtering Option

The gplication system type name is added when filtering is not applied
during generation.

Evrak yonetim sisteminde, Ogrenci kabul listesi ve Hoca Listes kullanilarak
Bolim sekreteri tarafindan, kullanici araylizii ile Ogrenci bilgileri'nin

hazirlanmasina olanak saglamalidir.

Evrak yonetim sisteminde, Ogrenci resmi'nin, Bolum sekreteri tarafindan,

kullanici arayizi ile Kopyalanamsina olanak saglamalidir.

Evrak yonetim sisteminde, Ogrenci bilgileri ve Ogrenci resmi kullanilarak
Bolim sekreteri tarafindan, kullanici arayizii ile Ogrenci dosyasi'nin

hazrlanmasina olanak saglamalidir.

85

CHAPTER 4

EXPERIMENTAL STUDY

This chapter describes the details of the experimental study. The main aim
of the experimental study was to validate the tool execution Other aims of the
experimental study were to measure the effectiveness of the tool and discover if

there were other benefits of the tool.

The experimental study was the project which lasted 13 months and
consists of the technical specification preparation phase of a IS procurement
project for the Turkish Land Forces Command. The process described in the
following sections was applied completely and the tool was successfully used
during the study. Due to the sake of secrecy and security, the process followed,
the size of the project, the structure of the project office and the results of tool

executions are explained but other details are can not be revealed.

The following sections include a description of the experimental study, the
context of the experimental study which is applied during experimental study and
application of the KAOS tool.

4.1. Description of Experimental Study

The resultant size of the experimental study (the system) was 26930 FP. The
system consisted of 295 business process models and contained 1270 functions.
There were 2913 information carriers and 74 organizational units connected with

functions.

86

The project team consisted of two sub-teams one of which was the Middle
East Technical University (METU) project team and the other the customer side
project team, as shown in Figure 15. The METU project team consisted of a
software and hardware analysis group. The customer’'s project team included

domain experts which were changed when the domain changed.

The| Project Team

METU
oject Tea

oftwar
Analysis
Team

ardwar
Analysis
Team

L

Figure 15 The structure of the team

4.2. The Context of the Experimental Study

The recommended and also applied processes consist of seven main sub-
processes which includes; concept exploration, AS-1S business process modelling,
TO-BE business process modelling, system requirement specification,
verifications of the work products and validations of the work products. The

uppermost process is shown in Figure 16.

87

oftware
‘ Analysis

Identifying key stakeholflers, user representatives,
domain documents, legacy documents (if any);

Corjcept Docum|
(books, insfruction

ents
ns, reports)

D«main Expe»s

Are Ag-Is BPMs
verifiel\cli ahd validated?
o

Asls Verific X
Busingss Process Models
ved
al n
Busine To-Be
A BusinegP}pessJ
To, SS
Pr ing

Be BPMs
il validated?

Busing

Are system rpquirements
verified and validated?

Syst

User-Leve uirements

Figure 16 The upper most processin eEPC

88

4.2.1. Concept Explorations

Concept exploration is the first activity in the process as shown in Figure
16. It starts when the RFP preparation project is contracted. The aim of this phase
isto identify key stakeholders, user representatives, domain documents and legacy
documents (if any). In addition, orientation meetings are arranged with customer.

Concept exploration isrealized by the software analysis team.

4.2.2. AS1SBusness Process Modelling

AS-1S business process modelling is the secord activity in the uppermost
process and details of the activity are shown in Figure 17. The fundamental aim
of the process is to visualise current business processes. AS-1S business process
modelling is realized by 6 sub-steps. These are identifying organizational charts
for business domain, identifying key business processes for each organizationa
unit, decomposing and modelling key business processes into sub business
processes, modelling each lowest-level sub-business process, creating data
dictionary, and verification and validation of AS-1S data dictionary.

AS-IS business process modelling activity is triggered when the concept
exploration is completed. First, organizationa charts are identified and then key
business processes for each organizational unit are identified. Key business
processes are decomposed and modelled into sub business processes until the
lowest possible level for modelling is reached. These steps are carried out by the

software analysis team and domain experts.

Meanwhile, the data dictionary of the AS-IS mode is created by the
software analysis team during the AS-1S modelling. When the data dictionary is
completed, verification and validation of AS-IS data dictionary (AS-1S DD) is
done by domain experts. If there are any mistakes in the AS-ISDD, it is updated
by software analysis team. Updating operations continue until the AS-IS DD is
verified and validated. When the AS-1S DD is prepared and the modelling of all
sub processes are finished, the work product of this activity, the AS-1S business

process models, are produced.

89

oftware
‘ Analysis

Col

Congept Documients
(books, instruction

S, reports)

tion

oftware

A ‘ Analysis

ifying Organizatignal Charts
or Business Dojnain

| ifyi ey Busines§ Processes
or Eacly Organizatignal Unit

osing and Modelling

Key Blsiness Progesses
Into S usiness Processes

ecompased model at
opriate level of detail?

—&®

Is
app

ing Each Lowdst-Level

ub Business Prgcess

st-Level
Cess

Modelin
Sub

\

Verification and Vali§lation_o
As-Ip Data Dictigna

oftware
‘ Analysis

e
Creating
ata Dictionaly

Yes Is data dicitonary

is verified and validated?

gam

et

pdating Dat
Dictionary

S
ing

Figurel7 AS-1SBPM

4.2.3. ASISBPM Verification and Validation

The AS-IS business process model (BPM) verification and validation is the

third activity in the uppermost process, as shown in Figure 16. The activity starts

when the AS-1S business process modelling is completed.

The fundamental aim of the process is to verify and validate AS-1S models.

Domain experts inspect AS-IS business process models comparing business
processes with models for verification and validation When there is conflict in

the fit between business processes and models, models are updated by domain

experts and the software analysis team. This is a recursive action and continues
until all models are verified and validated.

90

4.2.4. TO-BE BusinessProcessModelling

TO-BE business process modelling is the fourth activity in the uppermost
process and details of the activity are shown in Figure 18-a and Figure 18-b. The
fundamental aim of the process is to model target business processes and
determine IT support for the target business processes. TO-BE process modelling
activity is realized by 15 sub-steps including analyzing and enhancing existing
business processes, verification and validation enhanced BPMs, identifying
business processes that need IT support, identifying high-level software
components, assigning software components to business processes that need it
support, verification and validation of software components assigned to BPMSs,
identifying hardware components, validation of hardware components, assigning
software components to hardware components, identifying data transmission
requirements, identifying telecommunication infrastructure, validation of
telecommunication infrastructure, identifying system architecture, updating data
dictionary and verification and validation of to-be data dictionary.

The TO-BE BPM activity is triggered when the AS-1S BPM verification and
validation are completed. First, taking into account the tool restriction, the AS-IS
business processes are analyzed and enhanced by software anaysis team and
where possible domain experts. Enhanced business process models are verified
and validated by domain experts. When enhanced business process models are not
verified and/or not validated, updates continue until all models are verified and
validated. Later, business processes which need IT support are identified by the
software analysis team and domain experts while each high level component is
identified by software analysis team. There is a close interaction between these
identifications because both sides affect each other. When both identifications are
completed, determined high-level software components are assigned to the
business processes that need I T support. The work products of the activity are the
software components assigned business process models and these are verified and
validated before proceeding to the next activity. If there is a problem for the work
product, updates are applied where appropriate by the software analysis team and
domain experts. This is a recursive action and continues until verification and
validation is completed. The following step is hardware component identification

and is completed by the hardware analysis team. The Software comporents are

91

used to determine hardware components. The hardware components are then
validated by domain experts. If vaidation is not redlized, the determined hardware
components are updated until the validity is approved. Approved software
components are assigned to approved hardware components by software and
hardware analysis team, meanwhile data transmission requirements are identified
by hardware analysis team and domain experts. Telecommunication infrastructure
isidentified by the hardware analysis team and domain experts as soon as data
transmission requirements are identified. Telecommunication infrastructures are
then validated by domain experts. Updates continue until validity is approved.
When software components are assigned and the validation of telecommunication
infrastructure is supplied, system architecture is identified by hardware analysis

team using approved telecommunication infrastructure and software components.

The data dictionary is updated by software analysis team while the activities
of TO-BE business process modelling are realized. Verification and validation of
data dictionary is achieved by domain experts when updates are completed.

Update operation continues until verification and validationare completed.

TO-BE business process modelling is completed, after the system
architecture has been determined and TO-BE data dictionary has been prepared.
The work product of this processisthe TO-BE BPMs.

92

oftware
Analysis
= oftware

Analysis
eal

Enhanced
Business

data dictionary

D validated? No
X)
Yes
oftware f /\\
‘ Analysis O/
eam

oftware
arnced Analysis
Busines:

goproved) softy

components assine%re software component
S5 processnodels assigned to BPMs,
identified higl-level
software compoment and
identified businesd processes
that need IT support
are verified and \alidated?

Figure18-aTO-BE BPM

93

ardware
‘ Analysis

Hard ()
SoftWare components N~
asgigned busingss Are hardware
plocess motels components
3 validated?

e Compohents
approvea

Software
Analysis
gan

ardware
Analysis

put

ardware’
Analysis
D(Eain Exp;ts

Software
Components assigned
Hardware-€ompohents
Identifyi
Iis
telecomnpunication
infrastfucture
validated?
. x)
{AX
AN
ardware
Analysis

Sy ture

SS

Figure 18-b TO-BE BPM

4.25. TO-BEBPM Verification and Validation

TO-BE BPM verification and validation is the fifth activity in the uppermost
process, as shown in Figure 16. The activity starts after the TO-BE business
process modelling is completed.

94

The fundamental aim of the process is to wrify and validate TO-BE BPMs
and the activity completed by domain experts. When there is a problem in the TO-
BE BPMs, updates are carried where necessary.

4.2.6. System Requirement Specification

System Requirement Specification is the fifth activity in the uppermost
process and detaills of the activity are shown in Figures 19-a 19-b. The
fundamental aim of the process is to generate the system requirements of the TO-
BE business process models. The gystem requirements specification activity is
realized by 11 sub-steps such as automated user-level functional system
requirements generation, verification and validation of user-level functional
system requirements allocated to software, identifying Commercial Off The Shelf
(COTS) requirements, identifying non-functional system requirements, integrating
system requirements allocated to software, verification and validation of system
requirements allocated to software, preparing system WBS, verification and
validation of system WBS, specifying hardware and telecommunication
infrastructure requirements, verification and validation of system requirements
allocated to hardware and telecom infrastructure, integration of software,

hardware, and telecommunication requirements specifications.

The system requirement specification activity is triggered as soon as TO-BE
BPM verification and validation is completed. First, user level functional system
requirements are generated by the tool using the work products which are the
software components assigned business process models (approved). Since one of
the aims of the experimental study was to test thetool, this is one of the important
parts of the whole process. When generation is completed, verification and
validation activities for user-level functional system requirements alocated to
software are applied by domain experts. The activities continue until the user-
level functional system requirements allocated to software are validated. If thereis
any problem concerning the requirements, due to models, the required changesare

done.

Meanwhile COTS requirements and non-functional requirements are

identified by the software and hardware analysis team. Then, the identified

95

requirements and validated requirements are integrated by the software analysis
team to form system requirements allocated to software. Afterwards, system
requirements allocated to software are verified and validated by the domain
experts. When there is any problem concerning requirements, there root activity
from where problems emanate is repeated until system requirements allocated to
software are verified and validated. Later, the system Work Breakdown Structure
(WBS) is prepared by the hardware analysis team. Domain experts inspect the
system WBS for verification and to validation If there is a problem about the
system WBS, the system WBS is updated by the hardware analysis team until
system WBS is verified and validated. Next, hardware and telecommunication
infrastructure is specified by the hardware analysis team and system requirements
allocated to hardware ard telecommunication infrastructure are produced via the
activity. Verification and validation of system requirements allocated to hardware
and telecom infrastructure are sequential steps and carried out by domain experts.
These requirements are updated until they are verified and validated by the
customer. The fina activity of the system requirement specification is the
integration of hardware, software and telecommunication requirements. This
activity is completed by hardware and software anaysis team and the work

product of this stage is system requirements.

96

oftwar
Analysis

ardwar
Analysis

Are User-Level
functional system
requirements
allocated to software

" verified and validated?

No

Are identified COTS
requirements,
identified non-functional
requirements,
and the result of integration
opeation
verified and validated?

Figure 19-a System requirement specification

97

ardware
Analysis
a

X) Are system WBS
verified an validated?
Yes

Specifying
Hardware @and Telecomirurication
Infrastr eguirements

Systeém Requirements
Allocated to Hardware and
Plecomm fon Infrastructure

—

Sys. Req.s
Allogated to Hw and
ele allocated to hardware and

Infrastructure Yes |telecommunication infrastructure
verified and validated?

Verific—agaix/alid. of No
X) Are system requirements
QMm

Sys. Req.s
Allocated to Hw jand
Telecgmm. | ucture
(approved)

ardware Software
‘ Analysis ‘ Analysis

1 ™
Integrafion of Sw, Hw, and
Telecommunication-Reg-p

Systim Requi;;gents

Syst ents

Figure 19-b System requirements specification

4.2.7. System Requirement Verification and Validation

System Requirement Verification and Vaidation is the sixth and the last
activity in the uppermost process, as shown in Figure 16. The activity starts as

Soon as system requirements are specified

The fundamental aim of the activity is to verify and validate integrated

system requiremerts. Domain experts are responsible for this activity and if

98

missing items are found in the end of inspections, relevant activities and processes
repeated until the system requirements are verified and validated otherwise the
uppermost process is completed successfully with the work product being the

approved system requirements.

4.3. Application of the KAOS Tool

The process which is shown in Figure 16 is followed in its entirety. 295
business process models are instantiated by the KAOS tool and 1270 functiona
requirements were generated. The generation took 30% minutes although there are
many complicated connections among rules, event and functions. Each function of
the models are compared with the related requirements sentences to check
whether requirements sertences are formed correctly and to find out whether there

isany function which has not been evaluated by the tool during generation

Results show that 753 generated requirements did not necessitate any
correction In other words, 59.3% of generated requirements did not contain
punctuation errors spelling errors, inconsistencies or badly structured sentences.
On the other hand 517 generated requirements (40.7 % of generated requirements)
required corrections and they were corrected in 3 persondays. Applied

correctiors can be classified in 2 groups as depicted in Table 8.

Table8 Reasons of corrections

Number of
Reasons of Corrections corrected
requirements
Business process models which do not 240
conform to tool restrictions.
Lack of morphological generator 277

Business Process Models which do not conform to tool restrictions and

rules:

240 requirements sentences could not be generated correctly because related

models were not developed considering the tool restrictions.

3 The computer which is used for generation is Pentium 4 — 1.8 GHz / 520 KB RAM

99

235 of the 240 requirements contained more than 2 pairs of
parenthesis in the information carriers. For example, one of the
information carriers named “(...Madde 2.(a).(3).(¢))” which
contains 4 pairs of parenthesis. Should be “(...Madde 2.a.3.¢)”

2 of the 240 requirements lacked of information carriers because
they were not connected with related functions.

3of the 240 requirements were not right because some information
carriers were not correctly colour coded. In other words, defined
colour codes which are sated in Table 5 (see section 3.3.2 for
detailed information) have not been chosen for information carriers
during the modelling.

Lack of morphological generators:

277 generated requirements sentences were affected by alack of a natura

language generation modulesin KAOS tool.

Suitable suffixes were added by the tool for the words which end
with “i”, “i”", “e’, “d’, “u’, “e”, “a”, “k”’, “d", “b” whereas other
words lacked for suffixes so 146 of generated requirement

sentences required suffixes for words which were not considered.

93 of 277 requirements sentences required suffixes for information
carriers ending with numbers for example “... Madde 1" which

also required suffixes.

12 of 277 requirements sentences were mismatched due to vowel
deletion. For example if an information carrier ended with “Emir”,
one of the possible suffixes for the word is “in” but combining
them as “Emirin” is incorrect. The vowel “i” should be deleted and
word should be constructed as “Emrin”. This is not supported by
the KAOS tool.

24 of 277 requirements sentences were affected by softening. For

example one of the possible suffixes for words like “Kitap” is “i”

100

but combining them like “Kitapi” is incorrect. The consonant “p”
should soften as “b” so that words should be constructed as
“Kitabi”. Thisis not supported by the KAOS tool.

101

CHAPTER 5

CONCLUSION

The main aim of the thesis was to develop a tool to automatically generate
functional requirements in natural language from business processes. Business
process modelling is used as an approach for eliciting requirements. This chapter
concludes the thesis by summarizing the studies performed during the thess,

describes contributions of the tool and future work.

5.1. Summary

With arelated research, description of requirement engineering, the domains
which form requirement engineering and description of requirement are stated.
The classifications of requirements are identified. In addition to these, some of the
characteristics such as “well-written”, “well-identified”, “well-structured” are
clarified for the requirement and requirement sentences. The guideline which is
followed is briefly explained. The requirements which are generated by the tool
KAOS are identified according to the definitions stated for requirements and
requirements sentences. Prominent studies about problems of requirement
engineering industry and their detrimental consequences are mentioned. These
problems are especially important for the thesis because one way of decreasing
the problems directly or indirectly is automatic functional requirement generation.
Business process modelling is briefly explained together with definitions about
business processes and related terminology is stated. The advantages of business
process modelling are also explained from the software engineering point of view.
The ARIS concept and constructs of the ARIS House are explained in detail. EPC
and eEPC modelling method of the ARIS concept is introduced. the rotation of

102

the method and the objects which are used in the notation are explained. The
ARIS tool is briefly explained. The classification of the tools which are used for
reguirement engineering is explained and the place of the KAOS tool is identified
according to the classification. In addition the literature survey about automatic

requirement generation tools is mentioned and related tools are compared.

The software design of the KAOS tool, the scenario of the tool, tool
restrictions and sentence structure are explained in detail. A sample business
process model is chosen to generate requirements. A detailed description of the
experimental study is given with the processes followed and the results of the
application of the KAOS tool are discussed.

5.2. Contributions

The business process modeling based requirements generation tool, te
KAOS tool, has been developed as a part of this thesis and was tested in a large
military project to assess its usability. The tool generated requirements of 26930
FP experimental study in 30 minutes. In a similar project the manual generation of
10092 FP requirements document took 2 person’months. Requirements are
generated as intended, if models are produced within tool restrictions. There are
some requirements which were discovered not have been produced correctly
either because some functions of TO-BE BPMs are not modelled considering tool
restrictions or some objects are not connected to functions. The rest of the
requirements sentences are affected by lack of a natural language generation
module. Although a morphological generator is lacking, more than half of the
requirements are completely produced and took 3 persor/days to check and
update all requirements. If a morphological generator had been integrated into the
KAOS tool, 79.7% of requirements would have be correctly produced for the
experimental study. As a result, automatic requirements generation using KAOS

is more efficient than manual requirement generation.

The KAOS toal is a link between modelling and writing requirements which
does not exist in other requirement engineering tools. The KAOS tool supports

system level requirements engineering activities whereas current software

103

engineering tools mainly focus on software requirements which are a low level

when compared to system level requirements.

Because all requirements are based on a predefined sentence structure, the
readability of al requirements were improved which increased the
understandability of requirements. A consistent requirement document is supplied
as it is automatically generated from business models. In other words, the
inconsistencies which occur due to many engineers working on different parts of

the documents are prevented

Other benefits of using the tool were discovered. Connection mistakes in
business process models were found with the help of the tool athough the
influence of the KAOS tool is indirect. If objects are not connected with relevant
function, they are not seen in requirements sentences which make requirements
sentences incorrect. These connection mistakes are identified while comparing

models with relevant requir ements sentences.

Software requirements frequently change and these changes can be
annoying, time consuming and error prone in the manua generation sittuation
Whereas in automatic generation they are constant thus it is easy to estimate the
cost and design a schedule based on rework and documentation

It can be concluded from the findings that the KAOS tool significantly
reduces the time and effort required for requirements generation and enables the
identification of modelling mistakes. It can be used for large scale projects. The
effort expended on nonvaue-added tasks such as reworking and documentation
is decreased, and modifiability of the requirements documents is increased. It is
also possible for requirements to be imported into requirements maragement tools
which have a basic import/export mechanism such as RequisitePro v2002, Caliber
RM 3.0, C.A.R.E 3.0, Catalyze 1.0, CORE 4.0, Cradle 4.0, DOORS 6.0, Envision
54.2, IRgA 2.1, Team Trace 2.1. Therefore further tool assistance can be
integrated into development projects easily.

The completeness, consistency, redundancy control was out of the area of

concern of the KAOS tool and thus were not realized.

104

5.3. Future Work

Future work can be described from two points of views one concerning tool
development, and the other is about improvements to the functionalities of the

tool.

The KAOS tool has a specific behaviour for different modes of operations
thus this behaviour can be generalized. Currently “roles” are used to define
function execution. Other purposes such as “responsible’, “decides on”,
“contributes to”, “must be informed” can be incorporated into the tool and can be
considered during requirement generation. Conditional requirements are not
considered thus conditional sentences can be generated. Requirements are
generated in “.Doc” format but they can also be generated in a more generic

format (such as XML) to improve integration possibilities.

The tool can be improved to generate a responsibility-role matrix.
Morphological generators for Turkish can be integrated into the KAOS tool so

that correctiors applied to the requirements sentences can be minimized.

105

REFERENCES

Bayias, P., and Hadzilacos, T., 1999, “The Requirements Engineering Process of
OASHS: An Industrial Case Study”, http://citeseer.nj.nec.com/cs

Berenbach, B., 2003, “The Automated Extraction of Requirements from UML
Models’, Proceedings of the 11th IEEE International Requirements Engineering
Conference,pp.1.

Bray, I.K., 2002, “Requirements Engineering”, Addison Wesley Publishing
Company.

Brooks, F.P., 1987, “No Silver Bullet-Essence and Accidents of Software
Engineering”, Computer Magazine,Vol.20, pp.10-19.

Christel, M.G., and Kang, K.C., 1992, “Issues in Requirements Elicitation”,
Technical Report, CMU/SEI-92-TR-012.

Decker, S., Erdmann, M., and Studer, R., 1996, “A Unifying View on Business
Process Modelling and Knowledge Engineering”, Proceedings of the 10th
Knowledge Acquisition for Knowledge Based Workshop,pp.1-16.

Demirdrs, O., Tarhan, A., and Gencd, C., 2003, “Utilizing Business Process
Models for Requirements Elicitation: A Large System Acquisition Experience”,
29" Euromicro Conference, Vol-2, pp.409-412.

Gladwin, B., and Tumay, K., 1994, “Modelling Business Processes with
Simulation Tools”, Proceedings of the 1994 Winter Simulation Conference, SCS
pp.114-121.

106

Hlupic, V., and Robinson, S., 1998, “Business Process Modelling and Analysis
Using Discrete-Event Simulation”, Proceedings of the Winter Simulation
Conference, Vol-2, pp.1363-1369.

IDS Scheer AG, 2003, “ARIS Framework Concept”, http://www.ids-scheer.com.

INCOSE, 20024, “SE Tools Taxonomy”, http://www.incose.org

INCOSE, 2002b, “Tools Survey: Requirements Management (RM) Tools’,
http://www.incose.org

Lausen, S, 2002, “Software Requirements-Styles and Techniques’, Addison
Wesley Publishing Company.

Lindsay, A., Downs, D., and Lunn, K., 2003, “Business Process-Attempt to Find a
Definition”, Information and Software Technology, pp.1015-1019.

Loos, P., and Allweyer, T., 1998, “Object-Orientation in Business Process
Modelling Through Applying Event Driven Process Chain (EPC) in UML”, IEEE,
pp.102-112.

Macaulay, L.A., 1996, “Regquirements Engineering”, Springer-Verlag.

Mattes, F., Wegner, H., and Hupe, P.,1999, “A Process-Oriented Approach to
Software Component Definition”, Springer-Verlag, pp.26-40.

Robertson, S., and Robertson, J., 1999, “Mastering the Requirements Process’,
Addison Wesley Publishing Company.

Scheer, A.W., 1994, “Business Process Engineering-Reference Models for
Industrial Enterprises’, 2nd Edition, Springer, Berlin.

Scheer, A.W., 1999, “ARIS-Business Process Frameworks’, Springer, Berlin.

Scheer, A.W., 2000, “ARIS-Business Process Modelling”, Springer, Berlin.

107

Scheer, A.W., September 2001, “ARIS Methods’, Springer, Saarbriichen, Berlin.

Vidovich, D.1., 2003, “Dynamic Business Process Modelling Using ARIS’, 25th
International Conference Information Technology Interfaces pp.607-612.

Wiegers, K.E., 19993, “ Software Requirements’, Microsoft Press.

Wiegers, K.E., 1999b, “Writing Quality Requirements’,
http://www.processimpact.com.

Wilson, W.M., 1999, “Writing Effective Natural Language Requirements
Specifications’, STSC Cross Talk, http://www.stsc.hill.af.mil/index.html

Yourdon, E., 2000, “Managing Software Requirements’, Addison Wesley
Publishing Company.

108

APPENDI X

The step by step execution of KAOS tool is given here

109

I & @ | Contents of 'ARIS Networl
Models Ohjects

2 AR Servers |
‘ Canfiguration llame I Compuber Marne
- (AS-1S) Focar LOCAL

- (AS5-1S)

- (A5-15)

- (A5-15)

- (A5-15)

- (AS5-1S)

-l (AS-1S)

-l (AS-IS)

- (AS5-1S)

- (TO-BE)

- (TO-BE)

- (TO-BE)

5 onur

m@ U=zers

{Zl Fank Farmaks

{El Languagess

[Tasks

E’;I Improvernents

E-C] Main group
-1 ErC

- ﬁ Ormek. L

#-{_] Mew group Explare
(-] Mew group i
-] orenek cum 5 H=
-] Process Copy
=] TEZ

5 {:I Class Create Shorkbouk
[Process Rename

-] Script L #S Delete

Delete with Ohjecks

=5 Print

Layout

apply Template. ..
As=ign Semantics. ..
IE) Attributes. ..

= Bum...
Evaluate Report...
Expart... Analysis...
As=ign Identifiers, .. Semantic Check. ..

Inherit Aktributes. ..
Generate Model. ..

Compare., .

Cresate Yariant. ..
Chart...
AML Expork. ..

P[D perties
4 | B

Figure20 KAOStool step 1

110

Report Wizard - Select Script x|

f* Default Path:;
" User-Defined Path:

kM odel-oriented repart [575]

=] Default

(] ABC
-] Administration

w20 T3

| CBusiness
-~ Ché
-/ Functionz

S

o e ST ey K] L P

Title/Drezcnption

FADS ram

1}

[£R15 Report

I« [E

< Hiack I M et I Cancel Help |

Figure21 KAOStool step 2

Report Wizard - Select Output Options E!

Under what file harme would you like to save the result?

IE:'\.F’ngram Filez" AR 15655 criptsReporthouth R epor J

Which output format do pou wizh to uge?

Which lahguage do pou wish o use?
| Turkish]

Wfhich exvaluation filtker do vou wish o use?

| Mo Fier]] New. |

[T Test script step by step
[~ Create WE Script

£ Back I Finizh I Cancel Help

Figure22 KAOStool step3

111

+ KADS Report

— partname Baplik Bilgilerni

Lina Baplik
Buraya Sartname Ana Basligini d
Giriniz

Alr Baplik

Buraya Sartname Al Basligini ;I
Giriniz

Parthame Sayfa Bazlik

Buraya Sartname HEADER _ﬂ
Bilgigini Giriniz

— Diiger Partname Bilgileri

|123

Partnarme Mo

Farttame: T arihi I‘I j L IDE’E'k j ! |2002
Partnarne Siirlim I-I
Ekl k. Akl I
Sayz:;ce ciklama 4

Yhicelenecek Model

|2
Seviyesi

v Siztem adina gore filitreleme papmak istivarum

W MNumaralarna koyrmak, istponre

[ikinci durum gegerli

I~ ikinci durum gereksinimlerinden farkly olanlar Uretmek istiyon

E

Cancel

]

Figure23 KAOStool step4

+ KADS Report

ACIELAMS TABLOSL

ACIELAMS 1

TOPLAM ACIELAMA SAYISI: 1

FaLAN ACIKLARMA SAYI5]]

SCIELMALALAR BURYA YAZILIYOR.

[~

[

Cancel

k.

Figure24 KAOStool step5

112

x|

Filitrelemek: istedeiginiz ziztenn izmini agni modelde
gectial aib qiriniz

Evrak onetim Sistern]

QK Cancel

Figure25 KAOStool step6

' KADS Report x|

M asil numaralama yvapmak: isterziniz?

— Orhekler
123 v

e i i e

Cancel

Figure26 KAOStool step7

113

Cancel

A\

Figure27 KAOStool step8

The report is completed.

s

The file C:\Program Files!ARISE!ScriptiReportioutiReport 28, doc was created.
Wiauld vau like ko display the results?

Yes

)

Figure28 KAOStool step9

114

