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ABSTRACT

DYNAMIC PERFORMANCES OF
KINEMATICALLY AND DYNAMICALLY
ADJUSTABLE PLANAR MECHANISMS

Iyiay, Erding
MS., Department of Mechanical Engineering
Supervisor : Prof. Dr. Resit Soylu
September 2003, 97 pages

In this thesis, the dynamic performances of kinematically and dynamically
adjustable planar mechanisms have been investigated. An adjustable mechanism
is here defined to be a mechanism where some of the kinematic and/or dynamic
parameters are changed in a controlled manner in order to optimize the dynamic
behaviour of the mechanism in spite of variable operating conditions. Here,
variable operating conditions refer to variable load(s) on the mechanism and/or
variable desired input motion. The dynamic behaviour of the mechanism may be
optimized via minimization of the actuator torque/force fluctuations, minimization

of energy consumed by the actuators etc.

According to the type of the adjustable parameter, the adjustable
mechanisms are classified into two groups namely, dynamically adjustable
mechanisms and kinematically adjustable mechanisms. Mechanisms, where the

main concern is to change a dynamic parameter(s) are called dynamically

il



adjustable mechanisms. In the kinematically adjustable mechanisms, on the other

hand , the main concern is to change a kinematic parameter(s).

The main objective of this study is to investigate the benefits of
adjustable planar mechanisms, regarding different dynamic behaviours under
variable operating conditions. To achieve this objective , various simulations have
been performed on the computer. In these simulations, practical constraints that
will exist in a real application have been taken into account as much as possible.
The results reveal that, in many cases, the dynamic behaviour of a planar
mechanism may be improved quite extensively via adjustable mechanisms which

are obtained from the original mechanisms with slight modifications.

Keywords : Optimization of dynamic behaviour, adjustable mechanisms, dynamic

performance .
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KINEMATIK VE DINAMIK OLARAK AYARLANABILIR
DUZLEMSEL MEKANIZMALARIN
DINAMIK PERFORMANSI

Iyiay, Erding
Yiiksek Lisans, Makine Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. Resit Soylu
Eylil 2003, 97 sayfa

Bu tezde, kinematik ve dinamik olarak ayarlanabilir diizlemsel
mekanizmalarin  dinamik performanslar1 aragtirilmistir. Burada ayarlanabilir
mekanizma , degisken caligma sartlarinda mekanizmanin dinamik davranisini
optimize etmek i¢in {lizerinde kinematik ve/veya dinamik parametrelerin kontrolli
bir bigimde degistirildigi bir mekanizma olarak tanimlanmaktadir. Burada
degisken caligma sartlari mekanizma tizerindeki degisken yiikleri ve/veya istenen
degisken giris hareketini simgelemektedir. Mekanizmanin dinamik davranisi tahrik
torkundaki/kuvvetindeki  dalgalanmalarin  minimizasyonu, tahrik motorlar

tarafindan tiiketilen enerjinin minimizasyonu vs. ile optimize edilebilmektedir.

Ayarlanabilir mekanizmalar ayarlanabilir parametrenin tliriine gore
dinamik olarak ve kinematik olarak ayarlanabilir mekanizmalar olmak iizere iki
gruba ayrilirlar. Esas amacimn bir dinamik parametre veya parametreleri
degistirmek oldugu mekanizmalar dinamik olarak ayarlanabilir mekanizmalar

olarak isimlendirilirler. Diger taraftan, kinematik olarak ayarlanabilir



mekanizmalarda esas amag¢ kinematik bir parametreyi veya parametreleri

degistirmektir.

Bu calismanin temel amaci, degisken calisma sartlarinda, farkli dinamik
davraniglar1 dikkate alarak ayarlanabilir mekanizmalarin faydalarini aragtirmaktir.
Bu amagla bilgisayarda degisik simiilasyonlar gergeklestirilmistir. Bu
simiilasyonlarda, gercek uygulamalarda ortaya c¢ikacak  pratik kisitlamalar
miimkiin oldugunca dikkate alinmistir. Sonuclar gostermektedir ki , bir ¢ok
durumda mekanizmanin dinamik davramis1 , kiigiik degisikliklerle orijinal
mekanizmalardan elde edilen ayarlanabilir mekanizmalar ile oldukg¢a etkin bir

bi¢imde diizelmektedir.

Anahtar Kelimeler : Dinamik davramisin optimizasyonu, ayarlanabilir

mekanizmalar, dinamik performans .
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CHAPTERI

INTRODUCTION

Mechanisms during their practical operation are often exposed to different
dynamical effects, which cause some important problems. One of these problems
is the existence of variable shaking forces and shaking moments. Recall that
resultant of all the forces transmitted to the frame from the machine due to inertial
effects only are known as shaking forces, moment of forces transmitted to the
frame due to inertial effects only is known as shaking moment which occur
especially in the mechanisms working at higher speeds. If the speed and/or the
total mass in the linkage is increased, the vibrations, noise, unneccessary wear,
and fatique also increase. The shaking forces and moments cause problems that
affect the life of the machine. Therefore balancing of the shaking forces and
shaking moments has been a challenging problem for the designers of the
mechanisms for a long time. Besides the balancing of the shaking forces and
shaking moments, minimization of the generalized actuator force ( input torque or
force ) fluctuations, minimization of energy consumed, minimization of joint
reaction fluctuations are also important, so that a machine works efficiently and
smoothly. Various methods may be used in order to realize these objectives. In
this thesis, the kinematic and/or dynamic properties of the mechanism will be

adjusted in order to realize these objectives.

An adjustable mechanism is a mechanism where some of the kinematic
and/or dynamic parameters are changed in a controlled manner in order to

optimize the various dynamic behaviours of the mechanism in spite of variable



operating conditions. There exist many methods in the literature for adjusting the

mechanisms.

Vukobratovic and Potkonjak ( [1] and [2] ), considered the modelling and
control of active systems with variable geometry. Every active system during its
practical operation is subject to more or less intense static, kinematic and dynamic
requirements. To meet all these requirements is a diffucult problem. To overcome
this problem they suggested system reconfiguration by changing its geometry, so
that it is possible to achieve better system performance. In [1] the general approach
is derived and the applications are discussed. In [2] case studies and numerical

results are presented.

Chen, Modi and Silva ( [3], and [4] ) presented a relatively general
formulation for studying dynamics and control of a novel multi-module mobile
manipulator, with slewing as well as deployable links. The deployment character
leads to several advantages including reduced coupling, fewer singular

configurations and ease of obstacle avoidance.

Furuya and Higashiyama [5] present dynamical characteristics of a variable
geometry truss (VGT) manipulator system which consists of a two-dimensional
statically determinate truss for space applications. Formulation takes into account
geometrical effects of the closed-link constraints , variable length mechanisms,
rotational degrees of freedom at the joints and internal control forces and is
developed by using Kane’s equations. In this study, the effects of the internal
control forces on the attitude of the manipulator system in a space environment

and the characteristics of the inverse kinetics of the manipulator are discussed.

Boutin and Arun [6] considered dynamics formulation and vibration
control of variable geometry truss structures which may be regarded as
kinematically adjustable mechanisms. The truss system is modelled as a collection
of sub-structures consisting of truss booms, prismatic actuator elements and in

some cases a manipulator at the end. For vibration control, the singular



perturbation method is employed to construct two reduced-order models, for quasi-

static motion and for modal coordinates, respectively.

The major objective of this study is to determine the optimal design
parameters that optimize the dynamic behaviour of adjustable planar mechanisms.
Here, optimization of the dynamic behaviour refers to the minimization of actuator
torque/force fluctuations, minimization of energy consumed in the mechanism,
minimization of shaking force/moment fluctuations etc. The design parameters

depend on the type of the adjustment, variable operating conditions etc.

For each type of adjustable mechanism an algorithm has been developed to
derive the equations of motion of the mechanism. These algorithms have been
implemented using the software package MATHEMATICA. The dynamic
behaviour of the mechanism has been optimized via appropiate performance

measures (PM). Again MATHEMATICA has been used to minimize the PM’s.

The outline of the thesis is as follows:

In Chapter II, the methods used for derivation of the equations of motion

of the adjustable mechanisms are presented.

In Chapter III, the performance measures used are introduced. The chapter

also discusses the methods used to compute and optimize PM’s.

Case studies related to the optimization of the dynamic behaviour(s) of

different types of adjustable mechanisms are given in Chapter I'V.

Finally, Chapter V is devoted to the conclusions.



CHAPTERII

KINEMATIC AND FORCE ANALYSIS OF
ADJUSTABLE MECHANISMS

2.1 Introduction to Adjustable Mechanisms

An adjustable mechanism is a mechanism where some of the kinematic or
dynamic parameters are changed in a controlled manner in order to optimize the
dynamic behaviour of the mechanism in spite of variable operating conditions.
Here, load(s) on the mechanism and/or the desired motion may be considered as
variable operating conditions. The dynamic behaviour of the mechanism may be

optimized via

1) Minimization of actuator torque / force fluctuations.

2) Minimization of energy consumed in the actuators.

3) Minimization of the shaking force and shaking moment fluctuations
from their desired values

4) Minimization of the joint reaction fluctuations from their desired

values.

or, a weighted combination of the above tasks.

According to the type of the adjustable parameter, the adjustable

mechanisms may be classified into two groups, namely :



1) Dynamically Adjustable Mechanisms
2) Kinematically Adjustable Mechanisms

Mechanisms where the main concern is to change a dynamic parameter(s)

are called dynamically adjustable mechanisms. Figure 2.1 shows the i’th link of

such a mechanism.

in_l_ On_h Ob_h_e
/7 Xi I X, X \

\

/
/ Sn b \
\

Sb

Figure 2.1 Link i of a Dynamically Adjustable Mechanism

As seen in Figure 2.1, the idea of dynamic adjustment consists of a
moving block ( denoted by b) which is located on a link ( denoted by i ) of the
mechanism. The block moves on the link by means of a non-moving linear
actuator (denoted by n). The actuator-block system can also be called as the
dynamic adjuster of the mechanism. The major objective in this type of adjustment
is to determine the optimal values of the design parameters that optimize the
dynamic behaviour of the mechanism. Here, the design parameters include the
constant position s, of the non-moving actuator, the adjustable position sy(t) and

the inertial parameters of the moving block.

Another type of adjustable mechanisms is the kinematically adjustable
mechanisms where the main concern is to change a kinematic parameter(s). Figure

2.2 shows an example of this type.
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Figure 2.2 Link i of a Kinematically Adjustable Mechanism

As seen above , kinematic adjustment on the mechanism is based on the
concept of variable geometry. By designing one or more than one of the links with
variable length, the mechanism may be adjusted for various tasks. In this type of
adjustment, the major objective is to determine the optimal values of the design
parameters, that optimize the dynamic behaviour of the mechanism . Here, the
only design parameter (actually, design function) is the variable length Lij(t) of the
combined link consisting of links i and j. This combined link system may also be
called as the kinematic adjuster. A hydraulic actuator may be regarded as an

example of kinematic adjuster.

If desired, one can design a mechanism which is both kinematically and
dynamically adjustable. The two type of adjustments may be on the same link, or

on different links of the mechanism.

Whether kinematic or dynamic, the adjustment on the mechanism can be
made before, or during the regular motion. This affects the degree of freedom

(DOF) of the mechanism. The DOF of an adjustable mechanism is given by



N=N,+3N,, 2.1)
i=1

where

N : DOF of the adjustable mechanism
N, : DOF of the original mechanism ( The case of no adjustment )
N, : DOF of the i’th adjuster

n, : Number of adjusters on the mechanism

The degree of freedom of an adjuster is 0 if the adjustment is made
before the regular motion, whereas it is 1 if the adjustment is made during the

regular motion of the mechanism.
2.2 Kinematic Analysis

For the kinematic and dynamic analysis of adjustable planar mechanisms,
a MATHEMATICA package developed by Tursun [7] has been used together with
the algorithm explained in section 2.4 . This package performs the complete
kinematic and dynamic analysis of a planar mechanism independently. The
material covered in this section has been taken from [7] and appropiate

modifications have been made for the case of adjustable mechanisms.

The first step in performing the kinematic & force analysis of a planar
mechanism is to define a body fixed coordinate system, O;X;YiZ; , for each link,
where 1 denotes the link number ( see Figure 2.3). Since link 1 is considered to be
the fixed link in general, the inertial or fixed coordinate system is taken to be the
0:X1Y,Z; system. The angular position of link i is given by 0;; which is measured
from the X; axis to the X axis in a right hand sense around the Z; axis. The
relative linear displacement of two links, say, i and j , connected by a prismatic

joint, on the other hand, is designated by s;; (See Figure 2.7) .



link 1

Figure 2.3 Body fixed and inertial coordinate systems

The 0,;’s and s;;’s constitute the so-called position variables vector P, of
the mechanism. For an N degree of freedom planar mechanism, the position

variables vector is given by

p=[g 0] (22)

where ¢ is the N-component generalized coordinates vector and U s the

unknown position variables vector.

2.2.1 Position Analysis

Position analysis is the determination of the U vector when the g vector

and the dimensions of the mechanism are given. To perform position analysis ,
firstly the loop closure equations (LCE) which are supplied to the package

(developed by Tursun [7] ) as input , are transformed into an algebraic equation



system ( in terms of the s, ¢;, and s;; type variables ) by the addition of the

equations
sT+cl =1 (2.3)

for each 0;, where s; = sin 0;; and c¢; = cos 0;; . Then this algebraic equation
system is solved by using the nonlinear algebraic equation solver, NSOLVE, of the
MATHEMATICA package. Using this solver, it is possible to obtain all solutions
of the equation system corressponding to all closures (or, assembly configurations)
of the mechanism. Since it is possible to display the solutions in a convenient
manner, the user of the package can identify the different closures of the
mechanism. Following this identification, the rest of the kinematic analysis and the

force analysis can be carried out by using any desired closure of the mechanism.

2.2.2 Velocity Analysis

Velocity analysis is the determination of the U vector when the cj vector,

g vector, U vector and the dimensions of the mechanism are given. To achieve
this task, firstly the LCE’s are differentiated with respect to time. The scalar

components of the resulting equations yield a linear equation system ( in the

components of U ) which is solved by using the LINEARSOLVE package of
MATHEMATICA.

2.2.3 Acceleration Analysis

Acceleration analysis is the determination of the U vector when the G, é,

q, U, U vectors and the dimensions of the mechanism are given. To achieve this

task, firstly the second time derivative of the LCE’s are determined. The scalar

components of the resulting equations yield a Ilinear equation system



( in the components of l7 ) which is solved by using the LINEARSOLVE package
of MATHEMATICA.

2.3 Force Analysis

For the force analysis D’Alembert’s principle is used and the dynamic
equilibrium of each of the moving links is considered. Again, the material covered
in this section has been taken from Tursun [7] and has been modified for the
adjustable mechanisms (see section 2.4). The three dynamic equilibrium equations

(in the OiX; Y system) for link i are given by the following three equations.

Force equilibrium in x direction:

r=NRG) _  p=NPG) e=NE(i) _ _ _ fr=NFR(i) _ _
Fr,i + Fé,i + e, +Fw,i +Fi},,i + z Fj"r,i =0 (2.4
r=1 p=1 e=1 fr=1
where
NR(7) : # of revolute joints on link i
NP(i) : # of prismatic joints on link i
NE(i) : # of external forces acting on link i
NFR(i) : # of friction forces (viscous & coulomb friction) acting on link 1
F’rfi : x component of the r’th revolute joint reaction.
F, : x component of the p’th prismatic joint reaction.
17“6’,‘[ : x component of the e’th external force
ij ; : x component of the weight of link 1
13131 : x component of the inertia force acting on link i
F i : x component of the fr’th friction force
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Force equilibrium in y direction:

r=NR(i) _ p=NP(i) _ e=NE(i) _ _ _ fr=NFR(i) __ _
y y y y y DA
Z Fr,i + z Fp,i + Z Fe,i +}Tvv’,z' +En,i + Z Ffr,i =0 (25)
r=1 p=1 e=1 fr=1
where
ﬁrfi : y component of the r’th revolute joint reaction.
— y . 9 . . . . .
F, : y component of the p’th prismatic joint reaction.
Ii}l : y component of the e’th external force
ﬁwy . : y component of the weight of link 1
Efl : y component of the inertia force acting on link 1
F i : y component of the fr’th friction force

Moment equilibrium about O; :

p=NP(i) _ f=NEG) _ m=NM(i) _ fr=NFR(i) _

r:NZRU)M” + > M, + > M+ Y M, +M + > M,
r=l p=l f=l m=1 fi=l (2.6)

+ (Tm )o,. =0

where

NM (i) : # of external moments acting on link 1

M Wy : Moment of the r’th revolute joint reaction

M i : Moment of the p’th prismatic joint reaction

M e : Moment of the e’th external force

M i : m’th external moment acting on link i

M i : Moment of the weight of link 1

M i : Moment of the fr’th friction force

11



(fm )Oi : Inertia torque of link i plus moments of inertia forces about O;

The contribution of the revolute joint reaction forces to the equilibrium
equations can be explained by referring to Figure 2.4. Here, F;; and F/, denote

the x and y components of the reaction force (in O;X;Y; system) exerted by link j

on link i acting at joint k respectively. Furthermore, P, and y,, denote the polar

coordinates of joint k in the O;X;Y; system. The contribution of the k’th

revolute joint to the first summation in equations (2.4)-(2.6) can be expressed as

F'.iy . F}j, and |:P,1 F,; Sin (_ Vi _91,1')+P/,i £ Sin [%_7//,1‘ -0, j:| ky

Jst Js

respectively, where 7, j,,and k, denote the unit vectors along the X;, Y| and

7, axes.

Figure 2.4 Revolute joint reaction on link 1

For prismatic joints, the two kinematic elements that make up the joint are
labelled as slider and slot. The slider and slot parts of prismatic joint j on link i are

shown in figures 2.5 and 2.6.

12



Figure 2.6 Slot ( numbered j ) on link 1
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In these figures F;; and M;; denote the reaction force and reaction
moment due to the j’th prismatic joint acting on link i respectively . Also, the polar

coordinates of point Q;; in the O;X;Y; system are designated by P;; and y;. The

angle [; is either (+) or (-) m/2, and it is measured from O,0,; to O, R, in

a right hand sense around Z,;.

The contributions of the j’th prismatic joint to the second summation in

equations (2.4)-(2.6) will then be F,, Cos(¢,, +6,,)i, , F,,Sin(¢,,+6,) j, and

[Mj,i +ry, £ Sin (¢j,t T )] k.

Figure 2.7 Prismatic joint number 3 connecting links i and ]
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Figure 2.7 illustrates the prismatic joint, say 3 connecting links i and j. As

can be seen from the figure, the position variable s;; is measured from Qs; , to Qs ,

the positive sense being the O, R, direction.

Figure 2.8 shows f’th externally applied force acting on link i. The

contribution of this force to the third summation in equations (2.4)-(2.6) are given

by F,, Cos(w,, +6,)i , F,,Sin(y,,+6,)j, and |g,, F,, Sin(y,, -5, )&

respectively.

Figure 2.8 f’th externally applied force acting on link i

Figure 2.9 shows the m’th externally applied moment acting on link i,

which is considered to be positive if in the Z; direction. Clearly, the contribution

of this moment to the fourth summation in (2.6) is M, k, .

Figure 2.10 shows link i with mass m; and center of gravity CG; . Here, X

and y denote the coordinates of CG; in the O;iX;Y; system, and g=g(&

denotes the gravitational acceleration vector in the O;X;Y; system. The

15



contribution of the weight of link i to the fourth summation in (2.4) , (2.5) and the
fifth summation in (2.6) are given by (m, g Cos(&))i , (m, g Sin(&))j, , and

MX, g Sin(& -6,,) — MY, g Cos (& —0,,) respectively.

link 1

Figure 2.10 Coordinates of the center of gravity of link 1
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2.3.1 Equivalent Inertia Force System

Consider the inertia force system shown in Figure 2.11 . The inertia forces

in the X, Y, directions and the inertia torque in the Z; direction are given by

i =—M; deg, (2.7)
FY ——m. g’ » 2.8
in,i i CG;
T, =—1,d, (2.9)

respectively, where

di. , . :x and y components of the absolute acceleration of CG;j in the O;X;Y)

system.

I, :Centrodial moment of inertia of link i.

a,, : Absolute angular acceleration of link i ( positive if in the Z; direction )

Figure 2.11 Inertia force system acting at CG;
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Figure 2.12 Inertia force system acting at O;

Now, let the inertia force system in Figure 2.11 be equivalent to the inertia
force system shown in Figure 2.12 . Clearly these two systems will be equivalent

if and only if the moments about O; are the same for both systems, i.e. ,

T, +7 x(E, +F)=(T,), (2.10)

where

—

F=(e —ys )i+ (%5 +5,¢) i (2.11)
and

¢, =Cos(6,)

s, =Sin(6,,)

Using simple kinematic relations one may write

deg, = Ay +@); X ((an ’7,) +a,; X7, (2.12)
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where

50,. = [aa a(y,i] : Absolute acceleration of O; in the XY system.

@,; : Absolute angular velocity of link i ( positive if in the Z; direction).
Furthermore the parallel axis theorem yields
I_i =Ii_mi)_ci2_mi yiz (2.13)

Using equations (2.7), (2.8), (2.9), (2.10), (2.11), (2.12) and (2.13) and making

some algebraic manipulations one obtains

Er =lm (Fay )+ Mx, (@ ¢, +ay s, )+ MY, (~ob s, +ay ¢,)| (2.14)
Fro=lm (cal )+ MX, (03 s, ~ay, ¢, )+ MY, (0% ¢, +ays,)] T (2.15)
(fin )0[ :[Ii (— ali) + MX, (a();l S, —aa cl.)+MYl. (agl c, +a(§i S,.) ] (2.16)

Now one can substitute (2.14), (2.15) and (2.16) into equations (2.4)-(2.6)

respectively.

2.4 Kinematic and Force Analysis of Adjustable Planar Mechanisms

Upto now, the methods used in Tursun’s [7] program for kinematic and
dynamic analysis of a planar mechanism, have been discussed. Note that the
package developed by Tursun [7] is restricted to 1 DOF planar mechanisms only.
However, the dynamically adjustable mechanisms may have more than one DOF.
In this section the methods used in kinematic and dynamic analysis of adjustable

mechanisms will be discussed.
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Consider an adjustable mechanism with the generalized coordinate vector

30 =10,0) %Oy O] = {?S (”} 2.17)
q,(t)

where

g, (t): Vector of specified generalized coordinates (i.e. the desired input motion) .
q,(®): Vector of unspecified generalized coordinates (adjustable design

parameters to be designed).

Note that ¢ (¢) denotes the vector of generalized coordinates in case of
no adjustment (original mechanism). In other words, ¢g(¢) =¢,(¢) in the case of no

adjustment. In this thesis, the study will be restricted to the mechanisms where the

original (non-adjusted) mechanism has 1 degree of freedom (i.e., g (¢) =¢,(¢)) .

The methods used in kinematic and force analysis of such adjustable mechanisms

depend on whether the adjustment is kinematic and/or dynamic.

241 Kinematic and Force Analysis of Dynamically Adjustable

Mechanisms

Consider a 1 DOF mechanism , which is to be dynamically adjusted by
means of attaching an actuator-block system on its i’th link as shown in Figure
2.13. Note that when the mechanism is adjusted dynamically by means of an
actuator-block system (dynamic adjuster) , there exists another generalized
coordinate which is unspecified . This generalized coordinate is the adjustable
position sp(t) of the moving block and is expressed as g, (¢) =s,(t) . However,
since it has no effect on the dimensions of the original mechanism, the kinematic
analysis of the adjustable mechanism is the same as the kinematic analysis of the

original mechanism. Therefore, one can use the program developed by Tursun [7]

for the kinematic analysis of the adjustable mechanism.
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Oi D_A_ On _F (0% _b_e
/ Xi Xn Xb \

Sb

Figure 2.13 Link i of a Dynamically Adjustable Mechanism

The following algorithm may be used in conjunction with the program
developed by Tursun [7] for deriving the equations of motion of the dynamically

adjustable mechanisms where the original (non-adjusted) mechanism has 1 DOF.

1) Let g,(¢) be the specified input motion of the original mechanism. Using the

program developed by Tursun [7], perform velocity, acceleration and force

analysis, and determine the actuator torque or force T, and the reaction

forces/moments vector R in terms of U, q,, q, and I, .Here, U denotes the
vector of unknown position variables, ¢, denotes the input generalized velocity ,
g, denotes the input generalized acceleration and I ., denotes the vector of inertial

parameters of the mechanism . One can express /,, as

I, ={m, ,MX, , MY, I,; my,MX, , MY, I;.... m, ,MX, ,MY, 1, } (2.18)

where

m. :mass of link 1.

A
MX, =m, %,
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I, : Moment of inertia of link 1 with respect to O; .

While finding T, and R put an external force F’/ and an external

ext

moment M/ on each link (where j denotes the link number ) so that the

ext

program displays Tm and R in terms of the external force and moment that act
on each link symbolically. Note that the angles and the moment arms of the

external forces will also be displayed symbolically as w/ , 6/ and ¢/, .

ext

2) Determine the accelerations of all origins of the links of the original

mechanism in terms of U, ¢,,and §,.

3) Now let’s put a moving block and a non-moving actuator on link i as shown in
Figure 2.13. Note that in this figure , OiX;Y; is the body fixed coordinate system
(attached to link 1 on which the moving block will be working), O,X,Y, is the
body fixed coordinate system attached to the non-moving actuator n and OpXp Yy
is the body fixed coordinate system attached to the moving block. Now consider

the free body diagram of link i shown in Figure 2.14.

Figure 2.14 Free body diagram of link i
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In this figure 7, and I, denote the centroidal moment of inertias of the non-
moving actuator and the moving block. Also @, and a, denote the mass center

accelerations of the non-moving actuator and the moving block in the O;X;Y;
(fixed) system. Using the original the origin acceleration of link i (determined in

step 2 ), one can determine g, and a, by

d, =dy +d,. (2.19)
dy =do +dyg (2.20)
where

d, o =1Cos(0, () [(-%, —5,)0," () - ,0,)]
+8in(0,()) [ ¥, 0,” (1) — (X, +5,)0,()} ©

-, ) (2.21)
{Sin(0,(0) [(-%, —5,)0,” (1) - ¥,0,(0)]

+Cos (0, [ -7, 0, (1) + (X, +5,)0, (O} ],

Gy ={Cos(0,()) [(=X, —5,)0,” (1) + §,(1) - ¥,0,()]

+8in(0,,(1)) [-25,(2) 6,,(t) +, 0, (1) — (X, +5,)6,, (1)} i, (2.22)

{Sin(0,(1) [(-X, —5,)0,° () + §,(t) = 3,0,(0)]
+Cos (6,,()) [ 25,(t) 0,,(1) =, 0,” (1) + (%, +5,)0, (D)} ]

Note that a,,, and 4,, can be determined in the inertial (fixed)
coordinate system O,X,Yy, in terms of 6, , 6, 6,,, s,,5,, §, , s, and the

center of mass coordinates of the non-moving actuator n and the moving block b.

4) Note that the inertia forces , inertia moments and weights of the non-moving

actuator and the moving block shown in Figure 2.14 are now available in terms of
6, .86, 0, s,,5,5 ,s, ceiter of mass coordinates of the non-moving
actuator and the moving block (X, , y,.X, and 3,) , I, ,I,, m, and my . By

making some algebraic manipulations one can easily obtain these forces and
23



moments in terms of 8, , ., 6., 5,,5,, 5, » 5, » MX, , MY, , MXy , MY} , 1, , I,

n

m, and m; where

m : mass of the non-moving actuator n .

n
A
MX, =m, x,

A
MYn :mn J_/n

1 : Moment of inertia of the non-moving actuator with respect to O, which

n

can simply be obtained by I, =1, +m, (X +7.).

m, : mass of the non-moving actuator n .
A
MX,=m, x,
A p—
MY, =m, y,
I, : Moment of inertia of the moving block with respect to O, which can

simply be obtained by 1, =1, +m, (X, +7,).

Note that all these forces and moments can be reduced to a single force and
single moment which can be treated to be an “external” force and moment acting

on link i of the original mechanism .

5) Find the contribution of the external force and moment found in (3) to T,,, and

R by applying the method of superposition. If there are any other external forces

and/or moments acting on the other moving links, find also their contributions to

Ty and R.

6) At the end of step 5 , one has Ty and R in terms of c?c , q,()=s,(t)(and

its first two time derivatives), I,, I, U, ¢, and ¢, where ¢, and ¢, are

known. Here 1 , denotes the vector of inertial parameters of the non-moving
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actuator n and c?C denotes the vector of constant design parameters including the

inertial parameters of the moving block and the constant position s, of the non-

—

moving actuator n . The vectors 7 and I can be combined in a vector I

m n N

which is the vector of specified inertial parameters of the mechanism. Therefore

Tmand R can be obtained in closed form in terms of time, I, 670 , q,(t) and

U.

7) If the adjustment is made during the regular motion, one should also determine
the actuator force Fy, that actuates the block, and the reaction force and reaction
moment due to prismatic joint between the actuator and the block. To determine
these 3 unknowns, one should draw the free body diagram of the block seperately
as shown in Figure 2.15. In this figure, F, denotes the actuator force that is
required to move the block, M, and F, denote the reaction moment and reaction

force due to prismatic joint between the block and the actuator. One can easily
determine Fp, M, and F, in terms of time I s c?C , q,(t) and U by solving the

three equilibrium equations for the moving block.

Figure 2.15 Free body diagram of the moving block
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8) At this stage, the terms Ty, R , Fv, My and F, have been determined in closed

form in terms of  time, I s c?c , q,() and U . Note that for the specified input

motion ¢, (¢) one can obtain U by performing the position analysis of the

mechanism. Since the position analysis of the mechanism , in general, does not

yield a closed form solution, one can solve position analysis numerically using the

package developed by Tursun[7] . Solving position analysis numerically, T , R,

Fy, M, and F, can be determined corresponding to a given time value, in terms
of 11, c?c and ¢, (¢,) only, where g, (¢,) denotes the value of g, (¢) at the time

value t; . Here t; denotes the i’th time value of the operating time interval [to , t¢ ]

which is divided into a certain number of subintervals for numerical solution. Note
that ¢, (¢,) 1s displayed symbolically in the expressions of Ty, , R, Fy, M; and

F, for each t;.

Note that the algorithm above may easily be applied for the mechanisms
where there are more than one adjusters on different moving links of the
mechanism. In this case, contribution of each adjuster to the actuator
forces/torques and the joint reactions can be determined as explained in steps 3
and 4. However, in order to distinguish the parameters of the adjusters one should
replace the subscripts b and n by bk and nk where k denotes the k’th dynamic

adjuster (i.€ Snk, Sbk, Mpk , Myk €tC ).

2.4.2 Kinematic and Force Analysis of Kinematically Adjustable

Mechanisms

The kinematic and force analysis of kinematically adjustable mechanisms
is  more diffucult than that of the dynamically adjustable mechanisms. As
discussed in section 2.4.1, in the case of dynamic adjustment, the unspecified

generalized coordinates vector ¢, (¢#) has no effect on the kinematic analysis of
the mechanism. However, in case of kinematic adjustment, g, (¢) is the variable

link length Lj(t) consisting of links i and j of the mechanism shown in

Figure 2.2. Therefore it affects the kinematic and force analysis of the mechanism
26



directly. In case of kinematic adjustment, one can’t use the program developed by
Tursun [7] for the kinematic and dynamic analysis. One should analyze the
mechanism starting from strach by considering the free body diagrams of each
link. The following algorithm may be implemented in MATHEMATICA for the
kinematic and force analysis of kinematically adjustable mechanisms. Note that
the study in this thesis is restricted to kinematically adjustable mechanisms where

the original (non-adjusted) mechanism has 1 DOF.

1) Perform velocity, acceleration and force analysis of the mechanism and

determine the actuator torques/forces vector fm and the reaction forces
vector R in terms of time, c?s, 55 , U and q,() (and its first two time

derivatives ) and f .. Here f . denotes the vector of inertial parameters

which is specified.

2) Perform the position analysis of the mechanism and solve U in terms of
q,(t), foragiven g ().

3) Substitute U (determined in (2) ) into 7, and R expressions and obtain

m

them in terms of time,/, and g, (7).

Again , note that if U can’t be obtained in closed form in terms of q,(@),
perform position analysis numerically by dividing the operating time [to, tr ] into a
number of subintervals and determine U numerically as U (¢,) interms of ¢, (t,)
where t; denotes the i’th time value in the interval [ty, tr ]. Using these results

determine 7, and R numerically as T, (z,) and R(z,) for each t;.
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CHAPTERIII

THE PERFORMANCE MEASURE

3.1 Computation of the Performance Measure

In this study, the dynamic behaviour of adjustable planar mechanisms will
be quantified using the concept of performance measure ( PM ). The performance
measure is the objective function to be minimized, or maximized, in order to
obtain the optimal control for the desired behaviour of the system in optimal
control problems. Depending upon the type of the optimal control problem, the

performance measure may be expressed in many different forms ( see Kirk [9] ).

Consider an adjustable planar mechanism with the generalized coordinates

vector

2 (t)} 3.1)

G0 =[q,() q,(1) e O {q »

where

g, (t): Vector of specified generalized coordinates (i.e. the desired input motion) .
q,(): Vector of unspecified generalized coordinates (adjustable design

parameters to be determined ).

Now let the performance measure be defined by

J=j{iwi Gl} dt (3.2)
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where

to, tr  : Initial and final values of the time-space over which J is defined.

G; : The 1’th Lagrangian function corresponding to the i’th desired behaviour
of the mechanism
w; : Weighting coefificient associated with G; (user specified ).

n; : Number of G;’s that appear in the definition of J .

As seen in equation (3.2), by selecting the definition of the G/’s
appropiately, and combining them in a weighted manner, one can obtain different
performance measures representing different dynamic behaviours of the
mechanism. Two possible definitions of J are shown below for achieving various

dynamic requirements.

1) Consider a 1 DOF mechanism that is actuated by an armature controlled DC
motor. Let the design task be the minimization of the copper losses (i’R) of this
motor, where 1 and R denote the armature current and resistance respectively.
Note that for this type of motor, the generalized actuator force, Ty, (it may be a

force or torque depending upon the type of the actuator) and the current are related

by
T, =Ki (3.3)
Energy dissipated in the armature circuit due to copper losses is then given
by
t , 7 T2 R t , t ,
W, = {(z R) dt = ;[(FR) di = ;[Tm dt =K, {Tm dt (3.4)

where K, =— is the motor constant. To minimize Wc¢;, one has to minimize

ty
Jo = [T} dt (3.5)

fy
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where the subscript CL denotes the copper losses.

Note that equation (3.5) is obtained from equation (3.2) by setting n;, = 1,
G =T andw;=1.

2) One may also consider minimization of the energy consumed (EC) in the
mechanism.In this case, if the motor(s) are not regenerative, the performance

measure is formulated to be

e =] [ZITM AQ |J dt (3:6)

where 7,,;, and ¢,(¢) denote the i’th actuator torque/force and the associated

generalized velocity respectively.

Similar expressions may be obtained for the minimization of the fluctuations of
shaking forces, shaking moments and joint reactions. Note that if there are external
forces and/or moments due to the loads, the shaking force or moment will include
the effects of the external forces and/or moments as well. The classical shaking
force/moment concept on the other hand, takes into account only the inertia forces
and moments. Suppose that the desired objective is the minimization of the
fluctuations of the components of shaking forces (SF) from their desired values.

Then the performance measure to be minimized can be expressed as

te

g = [ (F2 = F3) +w, (F) = FJ)*dr 3.7)
fy

where

Wy, W, : weighting factors

F',F’ : xandy components of the shaking force.

F,F) : desired values of F" and F. . Each of these values could be any

specified constant (including zero).
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In order to compute the performance measure J, one should obtain the G;’s
that appear in the definition of J . This is realized by using the algorithms

developed in section 2.4. By implementing these algorithms, one may obtain any

G; in closed form in terms of time, U , 11,, cfe , q,@), éu (t), and éu (t) . Here,
U denotes the unknown position variables vector , I, denotes the vector of

specified inertial parameters, c?c denotes the vector of constant design parameters,
and g,(¢) denotes the vector of unspecified generalized coordinates ( consists of

design functions ) of the adjustable mechanism.

Note that the elements of the design parameter vector JC, and ¢,(1),

depend on the type of the adjustable mechanism. Two possible cases are given

below.

1) If the mechanism is a dynamically adjustable one ( Figure 2.1) , then

d, ={m,.MX, MY, .I,.s, | (3.8)

G, (1) =1{s,(0)} (3.9)

2) If the mechanism is a kinematically adjustable one ( Figure 2.2 ), then there are
no constant design parameters. The only function to be designed is the unspecified

generalized coordinate g, (¢) which is given by

G, =1L, 1)} (3.10)

where

L;(#) : Variable link length of the combined link consisting of links iandj .

Note that the vectors ¢, (¢), qu @ , qu (1) and U arein implicit form

in the definition of the G;’s. Therefore, it is impossible to obtain J by evaluating
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the integral given by (3.2) . In order for the G;’s to be integrable over the time

interval [ty , t¢], one should express the vectors ¢, (#) and U explicitly.

The expression of ¢, (¢) depends on whether the adjustment is made

before or during the regular motion. If the adjustment is made before the regular

motion, then g, (¢) is fixed during the motion. Since it is a constant, it is already

in explicit form and creates no problem in the integration of G;’s. Note that in this

the performance measure J is a function of ¢, (¢#) . Therefore the optimization

problem is a static one which can be solved easily.

However, in the case of adjustment during the regular motion, the

unspecified generalized coordinates vector g, (¢) 1s a function of time. Therefore

the performance measure J becomes a functional ( function of a function) of

g,(t). In this case, one has a dynamic optimization problem which is more

diffucult to solve. Depending on the type of the problem, there are different
solution methods ( See Kirk [9] ). In this study, a suboptimal solution method
using Piecewise Continuous Polynomial Parameterization has been used (see
Yilmaz [8] ). The main idea of the method is to assign piecewise continuous

polynomials for the elements of ¢, (¢), so that one obtains J in terms of some

independent polynomial coefficients using equation (3.2) . Note that by this
method, the dynamic optimization problem is converted to a static one, therefore
the minimization of J is much easier as in the case of adjustment before the regular
motion. A detailed information about the Piecewise Continuous Polynomial

Parameterization is given in section 3.2 .

In order to perform the integration given by equation (3.2), one should also

express the unknown position variables vector U explicitly in the definitions of
the G;’s . This is realized by performing the position analysis of the mechanism.
Note that if the position analysis yields a closed form solution , it is possible to
obtain J by analytical integration, using equation (3.2). However, in general the

position analysis of a mechanism does not yield a closed form solution , therefore
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in most cases it is impossible to obtain J analytically using the equation (3.2). On
the other hand, if the time is specified numerically, one obtains any G;
corresponding to the given time value ( since the position analysis may be solved
numerically ) . Using the values of G;’s at the given time values, the performance
measure is then obtained by symbo-numeric integration. Here, symbo-numeric
integration refers to the implementation of a numerical integration algorithm using
a symbolic manipulation package. The numerical integration algorithm used in this
study is the Gaussian Quadrature method, where the number of Gaussian

Quadrature points may be selected by the user.

When the weighted combination of the G;’s are integrated, one obtains the

—

performance measure J in terms of I, d_, and c?u. Since I, is specified, the

resulting expression of J will be only in terms of c?c , and dl . Here c?u denotes

the vector of design parameters related to the unspecified generalized coordinates

q,(t). As an example, consider that an adjustable mechanism has a single

unspecified generalized coordinate given by ¢, (¢) = f(z). If the adjustment is
made before the regular motion ( ie, f(t)=f =cst, f(t) = f(t) = 0), then c?u is
defined by c?u ={f}. On the other hand, if the adjustment is made during the
regular motion, then the elements of dl are the independent coefficients of the
piecewise continuous polynomial which approximates f(¢). The vectors c?c, and
c?u , when combined, constitute the design parameters vector d , that affect J.

Now J is ready to be minimized with respect to the elements of d ;. Note that due

to the geometry of the mechanism and its variable operating conditions, some

elements of the vector d, may not appear in the expression for J.

3.2 Piecewise Continuous Polynomial Parameterization

In this section, the method of approximating the unspecified generalized

coordinates via piecewise continuous polynomials is explained. As stated in the
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previous section for the case of adjustment during the regular motion, piecewise
continuous polynomials are used to approximate the unspecified genaralized
coordinates, so that the optimization problem becomes easier. This is a very
effective method especially in systems which involve highly nonlinear and

complicated equations.

A MATHEMATICA program called PiecewisePolyGenerate has been
developed for generating the piecewise continuous polynomials. Consider that a

function g(x) is to be approximated as a piecewise continuous polynomial g(x) on

the interval [X;, Xf] where x denotes the independent variable, x; denotes the
initial value of x, and X denotes the final value of x . For this purpose, the interval
[xi, X¢] 1s divided into n, number of subintervals (not neccessarily of equal length)
and a polynomial gj(x)(j=1,2, ....... n, ) is defined for each subinterval, as seen

in figure 3.1 such that g(x) = gj(x) if Xj <X <, Xj+1 .

g(x)
g2(x)
f h S
gi(x) /! | T gnp-1(X)
| | ~ np
T R
} ! ! | |
| ! } | |
| | | | |
; ! ! ; ; X
XI=Xi X2 X3 Xn-l  Xn= Xf

Figure 3.1 Piecewise Continuous Polynomials

The program displays the piecewise continuous polynomial g(x) in terms
of the design coefficients, which are the values of the gj(x)’s and their derivatives

at the knot points (X;’s ). Now lets introduce the notation used in expressing these
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design coefficients . As an example, consider a polynomial gj(x) (j=L1,2,......,n-1)
on the subinterval [x; , Xj+1] . The initial value of this polynomial is its value at
x = xj and it is denoted by the coefficient gj op . Here I denotes the initial value
and OP denotes the 0’th prime (derivative ) of gj(x) . Similarly the final value of
gi(x) is denoted by gir, op = gj(Xj+1) . A few examples are given below for this

notation.

8iror =8 (x_,-) > 8iror =& (x_/+1)
8P :g_/(xj)a 8r1p :g_/(x_/+1) (3.11)

8irop :gj(xj)7 8 irop :gj(xjﬂ) ete .

The neccessary inputs to run the program are n, xv , S , C ,bv and nd.

1) n is the number of knot points on the interval [X;, x¢]. Note that x; = x; and

Xf = Xp .

2) xv is the n dimensional vector of knot points on the interval [x; , X,], given

3) S is the n dimensional vector of number of specified g values at the knots .
This vector can be expressed as S = {sl s Sy pereeneennes s, } For instance, s; denotes the
number of specified g values at x; . If s; = 3, this means g,(x,), g,(x,) and

g,(x,) are specified. Note that some of these values may not be specified

numerically and left as free variables. The elements of the vector S also gives us
information about the degree of the polynomials . One can obtain the degree of the

J’th polynomial , g ;(x), by the equation deg(g,(x))=s;+s,,,—1.

4) C is the (n-2) dimensional vector of degree of continuity at the knot points,

given by éz{c2 3Cy peeeeeenenne ¢, }. For instance if ¢, = 3, then at the point x = x,
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one has 3 contiunity equations which are g,(x,)=g,(x,), g,(x,)=g,(x,) and

8,(x,)=8,(x,).

5) bv is a string which contains all specified (numerical or symbolic ) values at

X=X and X=X,.

6) nd is the # of derivatives of g (x ) to be displayed as output . For instance
when one enters nd = 2, it is possible to obtain the polynomial and its first two

derivatives with respect to the independent variable x.

The program simply obtains the gj(x)’s in terms of the parameters gjip and
girxp Where j = 1,2,...np and k = 1,2,..nd by simply solving a set of linear
equations. It should be noted that if there are any continuity requirements and/or
initial/final value requirements, then only some of the parameters gj\p and gjrp
will be independent. When the program is executed, the piecewise continious
polynomial g(x) which satisfies all the boundary conditions and the contiunity

requirements is displayed as

gx)=g @) [u(x—x)—u(x—x,)]+ g,(x) [u(x—x,)—u(x—=x3)] + ceoeveeree.

+ g () [u(x—x,)—u(x—x,)]
(3.12)

where u(x) denotes the unitstep function. If needed, the derivatives of g(x) can also

be displayed in the same way.
3.3 Minimization of the Performance Measure
In order to optimize the dynamic behaviour of the adjustable mechanism,

the performance measure given by equation (3.2) should be minimized with

respect to the design parameters . In order for the optimal design parameters to be
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phsically meaningful, they must satisfy certain constraints. These constraints

depend on the type of the adjustable mechanism.

If the mechanism is a dynamically adjustable one (Figure 2.1 ), then one
should determine the optimal §,(f) and d, where §,(1)=1{s,()}, and
c?c = {mb,MX yo MY, 1, s, } In order for the block to be physically realizable, the

inertial parameters of the block , namely my, MX;,, MY}, and I, should satisfy
certain constraints. Two such constraints which are quite obvious are given by

m, >0 (3.13)
I,>0 (3.14)

The third constraint for the block to be phsically realizable is given by

I, >0 (3.15)

where I, denotes the moment of inertia of the block with respect to its mass

center. If I, is substituted from the parallel axis theorem, the inequality (3.15)

becomes

I, —m, (2 +72)>0 (3.16)

which can be written as

m, 1, —(MX,)’ = (MY,

my,

(3.17)

The three constraints given by (3.13), (3.14), and (3.17) can be easily shown to be

equivalent to the following two inequalities.

m, >0 (3.18)

m, I, —(MX,)* = (MY,)> >0 (3.19)
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Note that the constraint given by (3.18) may not be satisfactory for practical
purposes. In this case, one may replace ( 3.18) by

m,, <m, <m,, (3.20)

where my and my, are user specified lower and upper bounds for m;, . Again due

to practical reasons one may replace (3.14) by

1,<1,<I, (3.21)

where Iy and Iy, are the user specified lower and upper bounds for I, .

Note that due to the restrictions in available space, , one may also
consider additional constraints on the center of mass coordinates of the moving

block. These constraints may be in the form

X, <X, <X, (3.22)

Vo SV S Vi, (3.23)

where x,,, x,,, y,, and y, are user specified lower and upper bounds for x, and

Vb

Multiplying each term by my, in (3.22) and (3.23), one obtains
MX,, < MX, < MX,, (3.24)
MY, < MY, <MY, (3.25)

Due to practical reasons , one may impose constraints on the design

parameter s, in the form

<s, <s (3.26)

where s, and s,, are user specified lower and upper bounds for s, .
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The final constraint for the optimization of the dynamically adjustable
mechanisms is the constraint on the position sy(t) of the moving block , in other
words the unspecified generalized coordinate. The constraint for sp(t) may be in

the form

Sbl < Sb (t) < Sbu (3'27)

where s, and sy, are user specified lower and upper bounds for sy(t) .

For kinematically adjustable mechanisms the only design function is the
variable length L;(#) of the combined link consisting of links i and j . The

constraint for this function may be in the form

L, <L,(t)<L,, (3.28)

il =

where Ljj; and L;;, are user specified lower and upper bounds for Lj(t) .

In this study, the minimization of the performance measure has been
performed using the NMinimize command of the NumericalMath package of
MATHEMATICA . This command may be used to search for the global
minimum value of any multivariable function numerically, subject to any type of
constraints. Although the command selects the best of the 4 numerical
minimization methods automatically during its execution, the method to be used

may also be specified by the user .

3.3.1 The Minimization Algorithm

In this study, the following algorithm will be used to minimize the
performance measure J , which optimizes the desired behaviour of the adjustable

mechanism.
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1) Obtain the G;’s that appear in the definition of J in closed form in terms of

— — —

time, / ,d._,and d

s c u

or numerically in terms of i . Jc, and c?u . Also specify

the weighting factors for each G; .

2) Compute the performance measure J analytically or by symbonumeric

integration ( depending upon whether G;’s are determined in closed form or
numerically) in terms of fs, c?c, and (;u only. Note that since fs ( specified
inertial parameters vector) is specified numerically, substitute it into J and obtain J

in terms of al , and d) only.

3) Form the design parameters vector (that affect J ) d , by combining c?c, and
c?u . Also decide upon the neccessary constraints to be taken into account on the

elements of d .

4) Finally, using the NMinimize command , determine the minimum value of J

( denoted by J®) and the corresponding optimal design parameters vector d % .

3.3.2 Conversion of Dynamic Constraints to Static Constraints

The definition of the constraints in NMinimize command of

MATHEMATICA depends on the structure of the constraint. As an example

consider a function J =J(d ;) which is to be minimized with respect to the

elements of the design parameters vector d ,» subject to the following constraints

fi(d,)=0 (3.29)

fo(d,,t)20 forall t €[t,,t,] (3.30)
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As seen above the first constraint involves the design parameters vector

d,, only. Therefore, one can directly enter this inequality constraint in the

NMinimize command (i.e. it is a static constraint ). However, the constraint given

by (3.30) is a function of the independent variable t (i.e., it is a dynamic
constraint ) . Note that f, (J ;-t) 20 will be satisfied on the interval [ty , tr ] if
and only if the minimum of f, (c? ;»t) on [to, tr] is greater than O . Therefore, a
command ConsMin has been developed in MATHEMATICA. This command
evaluates the function f, (J ;,1) at certain points on [ty , tr | and selects the

minimum of these values as the minimum (with respect to time ) of the function
on [ty , tr ] . The general form of the command is expressed as

ConsMin [F, t,,t,, At], where F is the function whose minimum value is

required, to is the initial value of the independent variable , t; is the final value of

the independent variable , and At is the increment used for the variable t.

Turning back to our example , the neccessary command to minimize

J (c? ;) subject to the constraints (3.29) and (3.30), can be expressed as
NMinimize|\J(d,), {f,(d,) >0, ConsMin[ £,(d,.0), t, ¢, A1 >0}{, d,]|

Note that in some problems the dynamic constraints may be of the form

h, <h(d, ,t)<h, (3.31)

where h; and h, are the user specified lower and upper bounds for 4 (3 ;,t). One

may also express this inequality constraint as

[h,—h(d,,t)] =0 (3.32)
and
[h(d,,t)-h 120 (3.33)
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As seen above both of the constraints given by (3.32) and (3.33) are in the form
given by equation (3.30). Note that one may also express the inequalities (3.32)

and (3.33) in a combined form as

[h,—h(d,,O[h(d,,t)-h]1=0 (3.34)
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CHAPTER IV

CASE STUDIES

4.1 The Dynamically Adjustable Oscillating Elliptic Trammel

Consider the adjustable oscillating elliptic trammel (OET) shown in Figure
4.1.

Y4
X3

Figure 4.1 The Dynamically Adjustable Oscillating Elliptic Trammel

As seen in the figure, this is a dynamically adjustable mechanism where b
denotes the moving block and n denotes the non-moving actuator that actuates this
block. The dimensions, inertial parameters and some other neccessary data for this

mechanism are given as follows.
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m, =7 kg, MX, =0, MY, =0, I, = 0.1 kg.m*

m; = 15 kg , MX3 =6 kg.m, MY3 =0, I; = 0.9 kg.m’

my = 8 kg, MX4 =0, MY, =0, I;=0.12 kg.m’

L=1m,g=9.81m/s 4.1)

Also assume that the external force Fe is applied to link 2 (the horizontal
slider) in the negative Z, direction for 0 <0 < m/2 and 37/2 <6 <2m, and has a

magnitude of 300 N. One can express this external force as

ext

F._ =300 [1 —UnitStep(@ - %} + UnitStep(@ - %”D N 4.2)

The free body diagrams of the links are shown in Figure 4.2.

y

Fin,2 y

M Fin,4
14

2 Y Tin 4

m.g Fa 3 in,

Fx Fx Fx
3,2 1,4 in, 4 X
Fext ]‘;‘4’3
X

Fin,2 y 4

F3,2 m4g

Tin 2 f\

Figure 4.2 Free-body Diagrams of the Dynamically Adjustable OET
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If the position sy(t) of the moving block is adjusted during the regular
motion, one should also consider the free-body diagram of the moving block as

shown in Figure 4.3 .

Figure 4.3 Free-body diagram of the moving block

Note that in Figure 4.3, M, and F, denote the reaction force and moment
due to the prismatic joint between link 3 and the block and F, denotes the actuator

force applied to the block by the non-moving actuator n .

The equations of motion for this mechanism depend on whether the
adjustment is made before or during the regular motion. Since, the mechanism is a
simple one, it is possible to obtain the equations of motion in closed form using the
algorithm in section 2.4.1. If the adjustment is made during the regular motion,

then taking ¢ (¢)=0(t) and ¢, (t)=s,(¢) as the generalized coordinates, the

equation of motion of the mechanism can be expressed as

H,(0,5,)0+H,(0)5, +C,(8,5,)0> +C,(0,5,)035, + G(0) - T, =T, 4.3)

H,(0) 0 + H,5,+ +C,(0) 0" +G, (0) =F, (4.4)
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where

MX MX MX
342 LA b
L L L

H,(0,s,)=Sin(20) L(MY, + MY, + MY,)— L’ Cos’ (8) [2

my S
L
+m, s> +2MX,s, +m,s,

n-n

+2anSn ) +m, —my—m, —m, —mbj +m4L2 +1,+1, +1,+2MX s,

(4.5)
H,(0) = (-~ MY, —m, LSin(@)Cos(6)) (4.6)
H,(6) = (- MY, —m, LSin(0)Cos(#)) 4.7)
H,=m, (4.8)

C,(0,s,)=L[Sin(0) Cos(O)L(m, — my —m, —m, —m, )+ Sin(20)(MX , + MX , + MX,
+m,s, +m,s, )+ Cos(20) (MY, + MY, + MY, )]

(4.9)
C,(0,s,) =2 (MX, +m,s,—m, L Cos*(0)) (4.10)
C,(0)=(m, LSin* (0)—m, s, — MX,) 4.11)

G,(0) =g [Sin(0)(m,L + MX, + MX, + MX, +m,s, +m,s, )+ Cos(0) (MY, + MY,
+MY,)]

(4.12)
G,(0)=—m, g Cos(0) (4.13)
T,=—F, L Cos(0) (4.14)

Also note that

T, : generalized actuator force (input torque) associated with &

F, : generalized actuator force associated with sy,
46



T

e

L
MX, MY,

: generalized force due to the externally applied force Fy,

: length of the connecting rod ( L = |O304] )

: mass times x and y coordinates of the links in their own body fixed
coordinate systems (1= 2,3,4,n,b )

: constant position of the non-moving actuator n, with respect to
O3 X3 Y3 Z3 system

: position of the moving block with respect to the O3z X3 Y3 Z3
system

: moment of inertias of the rod, non-moving actuator n, and the

moving block b with respect to their body fixed Z axes

: gravitational acceleration (vertically downward)

However , if the adjustment is made before the regular motion, the DOF of

the mechanism reduces to 1. In this case, the position sy(t) is constant throughout

the motion leading to s,(¢) =5,(¢) =0 . Therefore, the only equation of motion is

obtained by setting §,(¢) =5,(¢) =0 in equation (4.3) , whereas F, M, and F),

become internal forces.

In this case study, the following dynamic behaviours of the mechanism

have been optimized.

1)

2)

Minimization of the copper losses (of the armature controlled DC
motors that actuate the mechanism and the block).
Minimization of energy consumed in the actuators which are assumed

to be nonregenerative.

4.1.1 Minimization of the Copper Losses of the Armature Controlled
DC Motors of the Mechanism

Let the design task be the minimization of the copper losses of the armature

controlled DC motors that actuate the mechanism and the moving block. As
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discussed in Chapter III , energy dissipated in the armature circuit due to copper

losses is given by

t,

w,, = [(k, 72 + K, F?)dt (4.15)

© Sy

where K; and K, are motor related constants. Suppose that K; = K,. In this case

to minimize W¢r , one has to minimize the performance measure given by

t

~

Jo = [(T2+F})de (4.16)
0
Let the specified input motion of the mechanism be given by

q,()=0() =ot 4.17)

where w is constant. Note that for the given input motion tr =2 n/ w for one
cycle of the mechanism. Due to changing operating conditions it is known that

w € R, where

R, =0 <0<, (4.18)

Here, w; and w, denote the specified lower and upper bounds for w .
4.1.1.1 Adjustment Before the Regular Motion

Assume that the position sy(t) is adjusted before the regular motion , i.e.
5,(t)=§,(t)=0 during the motion. In this case, the only generalized actuator
force is the actuator torque 75 that actuates the mechanism. Since the adjustment
is made before the regular motion, assume that the position of the block is adjusted
manually, i.e there is not an actuator (m, = MX, = MY, = I, =s, = 0 ). Then the

performance measure given by (4.16) reduces to
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27

t,=
Y @

JCLbefore = J. T32 dt (4 19)
0

where the subscript CLbefore denotes the copper losses for the case of

adjustment before the regular motion.

The problem is to determine the optimum values of the inertial parameters
Iy , mp, MXp, MY, of the moving block and the optimum value of the position sp(t)
(which is fixed for adjustment before the regular motion) of the moving block. As
a special case, consider that, the block to be designed is a symmetric body ,
therefore two of the inertial parameters are given by MX, = MY, =0 . Evaluating

the integral and making the neccessary substitutions, one obtains

J ctrgore =$ (202283 + 846537 m,s, +302.335 m2s2 ) +w (0.00566149

+0.00283075m, — 0.0052571 m, s, + 0.000202196 m,s, —0.000404392 m; s, )
+’(3.14441 + 3.14441m, +0.786101m, —6.28881m,s, — 3.14441 m, s,
+ 3.14441 m; s}

(4.20)

The design parameters vectors c?c and c?u that affect Jcrpenre are given by
d,={m,} (4.21)
d, ={s,} (4.22)

The constraints on the design parameters are selected to be

1<m, <10 kg (4.23)

045<5,<085 m (4.24)

Depending upon the operating conditions , there are two methods to

minimize the performance measure Jerpere for this mechanism. Method 1 is to
determine the optimum values of c?c and c?u for a specified angular velocity w

by using the algorithm given in section 3.3.1. This method is suggested if the

mechanism is to operate at only a few w values, because for each w, one has to
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design a new d_ and d,. In this method, in order to obtain the best dynamic

performance from the mechanism, one manufactures a distinct block for each
distinct operating condition ( i.e. , for each distinct w value in this example) . If the
mechanism is known to operate at a certain w, then the optimal block

corresponding to that w value is installed on the mechanism at the optimal position

given by s,;”" = constant . The mechanism is then allowed to operate. When the w

value is changed, the block should be changed with the new optimal block before
the operation starts. Indeed, this method will be practical if and only if the number

of different operating conditions is not too many.

Method 2 on the other hand, is based on the minimization of Jczpeore for a
given w range [w;, wy] . In this method one determines a single optimal c?c value

for a given range of w. The aim of the method is to design a single block whose
position s, is to be adjusted depending upon the operating condition w in the range
[wi , wy] . This method is suggested if the number of different operating conditions

is too many. The algorithm for the method is as follows.

1) Obtain the performance measure J in terms of a?c , c?u, and w,
according to the desired behaviour .
2) Discretize each element of JC between their lower and upper bounds

with specified increments. ( For instance discretize m;, between 1 and
10 kg with an increment of 1 kg )

3) Obtain a list L. containing all possible combinations of the discretized
values of each element of c?c.

4) Generate a list of w values (denoted by L, ) by discretizing the range

[wr, wy] with a specified increment .
5) For a given element of L., determine the optimum values of d , andJ
numerically for each element of L, , using the NMinimize command of

Mathematica, taking into acccount the constraints on elements of c?u .
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Then, calculate the avarage value of J over the range [w;, w,] by
numerical integration.
6) Repeat 5 for all elements of L. .

7) Select the minimum of the average J values obtained in steps 5 and 6.

The optimal value of c?c is the element of L. , corresponding to this
minimum value. The value of Ju (determined in step 5 for this

element), which 1is a function of w, is the optimal value of c?u .

Both of these methods have been applied to the mechanism for the case of

adjustment before the regular motion.
Optimization Results for a Specified w Value (Method 1)

Consider that the mechanism is to operate only at the constant w values of
6,25 and 40 rad /s . Applying Method 1, minimization of Jcppefore » Subject to the
constraints (4.23) and (4.24) , yields the optimal values ( of the design

parameters m; and sp ) given in table 4.1 .

Table 4.1 Optimization results of Jcrbefore in case of adjustment before the

regular motion using Method 1

w (rad/s) JCLbefore JcLno m” (kg) s (m)
6 35107.7 34393 1 0.45
25 8980.25 57222.8 2.82913 0.85
40 5615.16 206299 2.85286 0.85

As seen in table 4.1, for w = 6 rad/s , adjusting the mechanism is not

is larger than the

preferrable, since JCLbefore

the performance measure
performance measure in the case of no adjustment Jcin, (1.€. Jor When m,= MX,

=MY,=1,=0 and m,= MX, =MY, =1, =0) . This means that the copper losses
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increases, when the mechanism is adjusted for w = 6 rad/s. However, for w = 25
rad/s and w = 40 rad/s, notice that Jcrpefore 18 much less than Jci, . Actually for
w =25 rad/s and w = 40 rad/s , the copper losses of the adjustable mechanism
reduce to approximately 21 % and 6 % of the copper losses in the case of the
original mechanism. This means that there is a saving of 79 % and 94 % in the
copper losses for the cases of w = 25 rad/s and w = 40 rad/s. This shows that, if
the mechanism is to operate at these w values, the adjustment on the mechanism is
a must for the minimization of the copper losses. Also note that , as the angular
velocity increases, the savings in copper losses increases as well in a nonlinear
manner. Recall from Chapter III that, the copper losses in the motor is directly
related to the actuator torque T3 that actuates the mechanism. Figure 4.4 shows
the variation of T with respect to time for w =40 rad/s . Note the reduction in the
amount of the actuator torque in the case of adjustment (undashed curve )

compared to the csae of no adjustment (dashed curve) .

T3 (Nm )
v r \
1500 p \\ 1N
1000 / \ / \
J
500 d \ \

\ 0.0257 0.05 o.oM 0.15
500 [\, |
1000 | N 2 ‘\ /

~1500 Ny

- = - Case of No Adjustment
—_— Case of Adjustment

Figure 4.4 Variation of T3 for w =40 rad/s
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Optimization Results for a Specified w Range (Method 2)

Now consider that the mechanism is to operate, with a single block, at
many different w values on an operating range given by [w;, w,] =[5, 40] rad/s .
For this case, Method 2 will be applied to the problem. Let w be discretized from
5 rad/s to 40 rad/s with an increment of 1 rad/s . Also let m; be discretized from 1
kg to 10 kg with an increment of 1kg . Using the developed algorithm, one obtains

the optimal value of m, to be

m =3 kg (4.25)

The variations of J¢},.,,. and s;” (which is a constant at a given

operating speed w ) with respect to w are shown in Figures 4.5 and 4.6 . In Figure
4.5, the dotted curve indicates the case of no adjustment whereas the other one

indicates the case of adjustment.

opt
JCLbefore

200000 !

150000 .

100000 .

.
*
Maaaagese*”
m= w(rad/s)

10 15 20 25 30 35 40

50000

. Case of No Adjustment
—— Case of Adjustment

Figure 4.5 Variation of J 7, ., withrespectto w
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Figure 4.6 Variation of s,” with respect to w

As seen in Figure 4.5, for small angular velocities, the value of the
performance measure in case of adjustment (undotted curve) is close to that of the
case of no adjustment (dotted curve). This implies that the adjustment is not useful
for small angular velocities. However, as w gets larger, the performance measure
in the case of adjustment becomes less than that of the case of no adjustment. This
means that , adjusting the mechanism at higher angular velocities, is extremely

useful for minimizing the copper losses.

Note that, once the operating speed w is known, the block position will be
set to the optimal one (given by Figure 4.6) before the regular motion. The
position of the block will, indeed, be fixed during the regular motion. Also note
that for about w = 20 rad/s , one doesn’t have to change s, for every change in w,

since the curve is almost constant.

The variations of the actuator torque T3 with respect to time for w =6, 25
and 40 rad/s are shown in Figures 4.7, 4.8 and 4.9. In these curves, the undashed
curve indicates the case of adjustment, and the dashed one indicates the case of no

adjustment.
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Figure 4.7 Variation of T3 for w = 6 rad/s
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Figure 4.8 Variation of T3 for w =25 rad/s
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Figure 4.9 Variation of T3 for w =40 rad/s

As seen in the figures above, for w = 6 rad/s , adjusting the mechanism, in
general, increases the amount of the actuator torque , whereas for w = 25 rad/s
and w = 40 rad/s, it decreases the actuator torque (therefore the copper losses),

compared to the case of no adjustment.

Note that the external force Fe (given by equation (4.2) ), which is
applied to the horizontal slider, is discontinuous at 6 =mn/2 and 6 =3n /2.
Therefore the actuator torque T3 will also be discontinuous at these points. These
discontiunities can easily be seen in Figures (4.7) - (4.9) especially on the
undashed curves. They can certainly be visualized better if the plot ranges of the

horizontal and vertical axes are adjusted in a convenient manner.

4.1.1.2 Adjustment During the Regular Motion

Now consider the case where the position sy(t) of the moving block is

adjusted during the regular motion, in other words it is a function of time. Since
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the adjustment is made during the regular motion, one should use a non-moving
actuator (denoted by n in Figure 4.1) in order to actuate the block. Let the inertial

parameters of this actuator be given by

m,=5kg
I,=0.1kgm’
MX, =12 kgm
MY, =0

(4.26)

In this case, for the minimization of the copper losses, one should also
consider the actuator that actuates the block. Assume that the motor constants K;
and K, are equal to each other in equation (4.15). Then to minimize the copper

losses , one has to minimize the performance measure given by

(12 +F2)ar (4.27)

JCLduring - I
0

Note that in addition to the inertial parameters of the moving block, there is
an additional design parameter s, which is the constant position of the non-moving
actuator. Again assuming the block to be symmetric (MX, = MY}, =0 ), the constant

design parameters vector is given by

d. ={m,.s,} (4.28)

Since the adjustment is made during the regular motion, piecewise
continuous polynomial parameterization will be used. Let sy(t) be represented by
a single 5’th order polynomial g(t) = gi(t) on the interval [0, t¢], satisfying the

following boundary conditions :

5,(0)=s,(t,) = Free
$,(0)=s$,(t,) = Free (4.29)

§,(0)=5,(¢,) = Free
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where tr = 271 / w for one cycle for the given input motion 6(t) = wt . As seen from
equation (4.29), due to the periodical motion , the position , velocity, and
acceleration of the block at the beginning and at the end of the cycle are desired be
equal to each other. Using the developed code, the polynomial for su(t) , can be

generated as

1 2 1 3 5 2.3
$,()=(&ipop + Gipap t + 5 irap U7 = 7= 8ipap @ 17 — 5 8irip @1

27 27
1 15 3
+ Wgw,zp w’t* +wg1mp w’t* _WglF,lPa)4t5)(u(t)_u(t_tf))

(4.30)
where u(t) denotes the unitstep function. Also note that we have 3 independent

polynomial coefficients g;rop , g1r1p, and g;r2p. Substituting equation (4.30) into

(4.27), evaluating the integral and making the neccessary substitutions one obtains

JcLduring Interms of w , d,.,and d,, where

d, = {glF,OP’glF,lP’glF,ZP} (4.31)

The constraints on the elements of c?c and c?u are selected to be

1<m, <10 kg (4.32)
02<s, <03 m (4.33)
0.45<s,(t) < 0.85 (4.34)

As seen above, the constraint given by (4.34) is a dynamic constraint,
which can be converted to a static constraint by using the method discussed in

section 3.3.2.

Note that the vector di, contains the position s, of the actuator as a design
parameter. If Method 1 is applied to the problem, one has to change the position
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of the actuator for every change in the operating condition w. This is not practical.
Therefore, only Method 2 will be used to minimize Jcrduring - AS In section
4.1.1.2, consider that the mechanism is to operate in a range of w values given by
[wi, wy] =[5, 40] rad/s. Let this range be discretized by 1 rad/s. Also let m, be
discretized from 1 kg to 10 kg with an increment of 1 kg, and let s, be discretized
from 0.2 m to 0.3 m with an increment of 0.05 m. Applying the algorithm in
section 4.1.1, one obtains one obtains the optimal values of the constant design

parameters as

w1 |
" & (4.35)
s =03m

Figure 4.10 shows the variation of J7,,... With respect to w compared to

the case of no adjustment. Note that the savings in the copper losses increase

nonlinearly as the operating speed w increases.
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Figure 4.10 Variation of J¢},, ... with respect to w
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The variations of the actuator torque T and s, () with respect to time

for w =6, 25 and 40 rad/s are shown in figures 4.11-4.16.
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Figure 4.11 Variation of T3 for w =6 rad/s
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Figure 4.12 Variation of s, for w =6 rad/s
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Figure 4.13 Variation of T3 for w = 25 rad/s
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Figure 4.14 Variation of s, for w = 25 rad/s
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Figure 4.15 Variation of T; for w =40 rad/s
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Figure 4.16 Variation of s, for w = 40 rad/s
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As seen from the plots, the actuator torque T; decreases in the case of
adjustment during the regular motion at high angular velocities. Therefore, the
adjustment during the regular motion is neccessary to minimize the copper losses,

if the mechanism is to run at high  values.
4.1.2 Minimization of the Energy Consumed

Now , let the design task be the minimization of the energy consumed (EC)
For this purpose, if the motors are not regenerative, the performance measure to
be minimized is given by

2z
tr

Jee= [ (|1.6] +|F3,|)d (4.36)

Sy m—
z|

Note that the above performance measure illustrates the most general case, i.e . the

adjustment during the regular motion (where the block is actuated by a force F} ) .
4.1.2.1 Adjustment Before the Regular Motion

Consider that the position sy(t) of the moving block is adjusted before the

regular motion, i.e. (s,(¢) =5,(¢)=0) . In this case , the performance measure

related to energy consumed is given by

J EChefore = J. (‘T 6 ‘) (4.37)

Again as in the previous sections, assume that the input motion is given by

0 =wt, where «w is constant. Also assume that, the block to be designed is

symmetric, leading to MXy, = MYy, = 0 and the position of the block is adjusted

manually (i.e. there is not an actuator) . Then the constant design parameters

63



vector c?s, and the unspecified generalized coordinate design parameters vector
c?u are given by
d, ={m,} (4.38)
d, ={s,}

u

(4.39)

The constraints on these parameters are the same as the previous ones given by

equations (4.23) and (4.24) .

Optimization Results for a Specified « Value (Method 1)

Consider that the mechanism is to operate at w = 6 , 25 and 40 rad/s .
Using the developed algorithm discussed in section 3.3.1, the optimal values of
cfc and c?u and the minimum value of Jgcpefore cOompared to the case of no

adjustment (Jpcpo) are given in Table 4.2 .

Table 4.2 Optimization results of Jgchetore 1n case of adjustment before the

regular motion using Method 1

w (rad/s) | Jecvefore (J) | JECno (1) m? (kg) s (m)
6 995.533 1023.47 4.1617 0.85
25 897.466 2835.58 3.27893 0.84999
40 905.843 6861.83 4.0026 0.764476

As seen in the table, for all three of the operating conditions, the energy
consumed in the case of adjustment is less than that of the case of no adjustment.
Therefore adjusting the mechanism is preferrable for these w values. Also note that
as w increases, the energy consumed in case of adjustment becomes much less

than that of the case of no adjustment. For instance for w = 6 rad/s , the energy
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consumed for the case of adjustment is about 97 % of the case of no adjustment,
whereas for w = 40 rad/s, this percentage becomes about 13 % . Note that, by
minimizing the energy consumed, the power requirement of the actuator
decreases. Figure 4.17 shows the variation of power required for w = 40 rad/s .
Here, the dashed curve indicates the case of no adjustment whereas the undashed

one indicates the case of adjustment.

Power (W)
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-40000
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Figure 4.17 Variation of power for w =40 rad/s

Optimization Results for a Specified w Range ( Method 2)

Consider that the mechanism is to operate at many w values in the range

[wi, wy] =[5, 40] rad/s . As in the case of copper losses minimization, lets apply
the second method , which gives us a single optimal ‘?C ={m,} value for the range

[5, 40] rad/s . Using the same discretized values for my and w, the optimum value

of my can be obtained as
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my =4 kg (4.40)

The variation of the J}7,,,,,. with respect to w compared to the case of no

adjustment is shown in Figure 4.18. Here the case of adjustment has been
illustrated by the undotted curve. As seen below, it increases very slowly

compared to the case of no adjustment (dotted curve) as w increases.

t
Jetpetore (Joule )

7000 K
6000 o
R
5000 o
o

4000 ot

.
3000 o

w(rad/s)
. Case of No Adjustment

—H— Case of Adjustment

Figure 4.18 Variation of J}7, . . with respect to w

Figure 4.18 shows that, the energy consumed for the adjusted OET is much
less than that of the unadjusted OET. Furthermore the savings in energy consumed
increase nonlinearly as w is increased. For instance the savings in energy
consumed for w = 10, 20 and 30 rad/s are about 13 %, 49 % and 76 %. The

variation of optimal s, with respect to w is shown in Figure 4.19.
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Figure 4.19 Variation of s,°™ with respect to w

The variations of the power wrt time for w =6, 25, and 40 rad/s are shown in

figures 4.20 - 4.22 .
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Figure 4.20 Variation of power for w = 6 rad/s
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Figure 4.21 Variation of power for w = 25 rad/s
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Figure 4.22 Variation of power for w =40 rad/s
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Note that for w = 25 and 40 rad/s, the power required in the case of
adjustment (undashed curve ), is, in general, less than that of the case of no
adjustment (dashed curve). However, for w = 6 rad/s the situation is reversed. The
results indicate that by minimizing energy consumed, one also, simultaneously,

reduces the power requirements of the actuator which is another desirable feature.

4.1.2.2 Adjustment During the Regular Motion

As in section 4.1.1.2, again consider that the position sp(t) of the moving
block is adjusted during the regular motion. In this case , the performance measure

related to energy consumed is given by

2r

w

ty

(\né\ +|F, 5| ) de (4.41)

JE Cduring =

ct—, |

Note that since the adjustment is made during the regular motion, the energy
consumed in the actuator of the block is also taken into account. The inertial
parameters of the actuator are the same as given in equation (4.26). Again sp(t) is

represented by a 5°th order polynomial (given by (4.30)), subject to the BC’s given

by (4.29) . The design parameter vectors d. and c?u are the same as given in

equations (4.28) and (4.31) . Also the constraints on these parameters are the same
as given by equations (4.32)-(4.34). Again, as in section 4.1.1.2, the second
method will be used to minimize Jgcauring , Since designing the position s, of the
actuator for each given w is not practical. Let w be discretized from 5 rad/s to
40 rad/s with an increment of 1 rad/s. Also let m;, be discretized from 1 kg to 10
kg with an increment of 1 kg and let s, be discretized from 0.2 m to 0.3 m with an
increment of 0.05 m . Using the developed algorithm in section 4.1.1.1, one

obtains the optimal values of m, and s, as

m” =3 kg

(4.42)
s =0.3m
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Note that due to the assumption of symmetric block, the inertial parameters
MX,, and MY, of the block have been taken to be 0 at the beginning of the problem.
Also note that the moment of inertia 7, (which should be strictly positive) of the

block is free to be determined. Figure 4.23 shows the variation of J}7,,,,,. in case
of adjustment during the regular motion, compared to the case of no adjustment.

Here the undotted curve indicates the case of adjustment whereas the dotted one

indicates the case of no adjustment.
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7000 .

6000 o
5000 ’
4000 .
3000 K
2000 R

X3 .
1000 Sumuinit S ———_ (5] /)
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Figure 4.23 Variation of J}7,,,,,, With respect to w

As seen in the figure above, adjusting the mechanism is useful at high w
values. Note that as w increases, the energy consumed in the case of adjustment

becomes much less than the case of no adjustment.

As stated before, minimization of the energy consumed decreases the total
power required for the mechanism. The variations of the total power required and

the optimal sp(t) with respect to time for w = 6 ,25 and 40 rad/s are shown in
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figures 4.24-4.29. In the power variation curves , the dashed curves indicate the

case of no adjustment, whereas the undashed ones indicate the case of adjustment.
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Figure 4.24 Variation of power for w = 6 rad/s
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Figure 4.25 Variation of s, for w = 6 rad/s
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Figure 4.26 Variation of power for w = 25 rad/s
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Figure 4.29 Variation of s,°" for w = 40 rad/s

As seen in the figures above, for w = 25 and w = 40 rad/s, the total power
required for the case of adjustment during the regular motion is less than that of

the case of no adjustment. However, for w = 6 rad/s, the situation is reversed as in
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section 4.1.2.1. This means that adjusting the mechanism during the regular
motion for minimization of the energy consumed, is useful at high angular
velocities. Also note that for w = 6 rad/s , the chnages in sy(t) are very small.

Therefore one should better fix the block at s, = 0.79 m , rather than moving it.

4.2 The Kinematically Adjustable Oscillating Elliptic Trammel

Consider the kinematically adjustable oscillating elliptic trammel shown in

Figure 4.30.

Figure 4.30 The Kinematically Adjustable Oscillating Elliptic Trammel

As seen in the figure this is a kinematically adjustable mechanism, since
the length Lj4(t) = L3(t) + L4 of the combined link associated with links 3 and 4 is
an adjustable kinematic parameter. The dimensions, inertial parameters, and some

other neccessary data for this mechanism are given as follows.

my=7kg,MX,=0,MY,=0, ,=0.1 kg.m’

m; =6 kg, MX3=0.6 kgm , MY; =0, I;=0.08 kg.m’

my =9 kg, MX, = 1.8 kg.m, MY4=0, I;=0.15 kg.m’ (4.43)
ms=8kg, MXs=0,MYs=0, Is=0.13 kg.m’

Ls=04m, g=9.81 m/s’
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Also assume that the external force Fey is applied to link 2 (the horizontal
slider) in the negative Z, direction for 0 < 0 < /2 and 37/2 <6 <2n, and has a

magnitude of 300 N. One can express this external force as

F,, =300 [1 - UnitStep(@ - %j + UnitStep(@ - %”D N (4.44)

The free body diagrams of the links are shown in Figure 4.31.
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Figure 4.31 Free body diagrams of the Kinematically Adjustable OET
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Note that in Figure 4.31 M, and F, denote the reaction force and moment
due to the prismatic joint between link 3 and link 4 and F4 denotes the actuator

force applied to link 4 in order to adjust the length L;(t) .

The equations of motion for this mechanism depend on whether the
adjustment is made before or during the regular motion. Since, the mechanism is a
simple one, it is possible to obtain the equations of motion in closed form using the
algorithm in section 2.4.2. If the adjustment is made during the regular motion,

then taking ¢ (¢)=0(¢t) and g, (¢)=L,(¢) as the generalized coordinates, the

equation of motion of the mechanism can be expressed as

H,(0,L)0 +H,(0)L, +C,(0,L,)0> +C,(0,L,) OL, +G,(0) - T, =T,

(4.45)
H,0,L,) 0 + H,(0) L, + C,(0,L,) 6> + C,(0)0L,+ G,(0)+F, =F,
(4.46)
where
. 2 2 MX3
H\(0,L,)=Sin(20) (L + L) (MY, + MY,) = (L, + L,)’ Cos” (0) | 2-——
3t Ly

5 MX,
L,+L,
+2MX,L,(¢)

+mg—my—m,)+ms (Ly + L) +1, + 1, + m,L> + m, (L — L2)Cos” (8)

(4.47)

H,(0,Ly) = Cos(0)Sin(0) {(L, + L,)(m, +my —ms)—MX, — MX, —m,L;}
— MY, Cos*(0) + MY, Sin>(0)

(4.48)

C,(0,L,)=Sin(260) {0.5 (L, + L,)* (ms —m, —m,)+0.5(L: — L})m,

(4.49)
+(L;+L,) (MX,+MX,)} + Cos(20)(L, + L,)){ MY, + MY,}
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C,(0,L,)=Cos*(0) {2(L, + L,)(m, + my) =2 MX,}+ Sin* () {2m, (L, + L,)
+2m, L, +2MX ,} + Sin(20)[MY, + MY, ]

(4.50)
G,(0,L,) = g[Sin(0) {ms (L, + L))+ MX, + MX, +m,L,} 451
+Cos(6) (MY, + MY, }] (4.51)
T,=-F, (Ly+L,) Cos(0) (4.52)

H,(0,L,)=0.5[ MY, — MY, — (MY, + MY,)Cos(20) +(m,L, + m,L, —m.L,
-MX, -MX,+(m,+m; —m, —my)L,)Sin(26)]

(4.53)
H,(0)=m, +m,+(-m, —m; +m, +m;)Cos’(0)

(4.54)
C,(0,L,)=—m,L, —m,L, + MX, + MY, Cot (8) + Cos*(0)[L,(m, +m, —m,)

- MX, - MX,— MY, Cot(0)]+[ —m, —m; +(m, + my —m, —mg)Cos’(0)] L, (t)
+ MY, Cos(0) Sin(0)

(4.55)
C,(0) =(m, +m, —m, —m,) Sin(26) (4.56)
G,(0) = (~m, —my) g Cos(0) (4.57)
F, =F,, Sin(6) (4.58)

Also note that

T, : generalized actuator force (input torque) associated with &
F, : generalized actuator force associated with L;

T, : generalized force due to the externally applied force F,,

F, : generalized force due to the externally applied force F,;
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Ly : length of link 4 ( L, = |0405])
MX,,MY,  :masstimes x and y coordinates of the links in their own body fixed

coordinate systems (1= 2,3,4,n,b)

L; : The adjustable generalized coordinate

1,1, : moment of inertias of the links 3 and 4 with respect to their body

fixed Z axes

g : gravitational acceleration (vertically downward)

However , if the adjustment is made before the regular motion, the DOF of

the system reduces to 1. In this case, the length L;(t) is constant throughout the
motion, leading to L3 (1) = i3 (t) =0 . Therefore, the only equation of motion is
obtained by setting L3 (1) = ]:3 (t) =0 1in equation (4.45) , whereas Fy, M,, and F),
become internal forces. Note that the unspecified generalized coordinate is taken
to be q,(t) = L,(¢) rather than Ls4(t). This does not make any difference, since

once Lj3(t) is obtained, one can determine L3s(t) by Ls4(t) = Ls(t) + Ly . In this
study the minimization of the energy consumed in the actuator(s) of the

mechanism will be discussed only.
4.2.1 Minimization of the Energy Consumed

Let the design task be the minimization of the energy consumed in the
actuator(s) of the mechanism which are assumed to be nonregenerative. As in
section 4.1.2, the energy consumed in the actuators depends on whether the
adjustment is made before or during the regular motion.

4.2.1.1 Adjustment Before the Regular Motion

Assume that the adjustable length Ls(t) = |O304| , is constant throughout

the motion, i.e. L3 (t)= ]:3 () =0 during the motion. In this case, one considers
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the energy consumed in the actuator of the mechanism only. Therefore the

performance measure to be minimized is given by

2z
ly=—

ecrgme = | w\ T,0| at (4.59)
0

where the subscript ECbefore denotes the energy consumed for the adjustment
before the regular motion. Furthermore, let the input motion of the mechanism

(the specified generalized coordinate ) be given by
q,(1)=0(1) =0t (4.60)

where w is constant. Note that for the given input motion tr =2 n/ w for one
cycle of the mechanism. Due to changing operating conditions it is known that

w € R, where
R, :{a):a)l Sa)Sa)M} (4.61)

Here, w; and w, denote the specified lower and upper bounds for w .

Note that when the integral given by (4.59) is evaluated, one obtains the
performance measure Jgcbefore 1N terms of Lj(t) and w only. The problem is to
determine the optimal length Ls(t) (which is fixed during the regular motion) that
minimizes the energy consumed given by (4.59) for a specified w . The constraint

on L;(t) = Ls = constant , is selected to be

02<L, <0.5m (4.62)

Now, consider that the mechanism is to operate at different angular
velocities in an operating range of [w;, wy]| =[5, 40] rad/s . Dividing this range

with an increment of 1 rad/s, the performance measure Jecpefore has been minimized

79



with respect to Ls for each w . The variations of J7,,,. and L7 with respect

to w are shown in Figures 4.32 and 4.33. Note that in Figure 4.32, the variation

of J¥me (undotted curve ) has been shown compared to a nonoptimal case

(dotted curve). Here the nonoptimal case is the value of Jgcpefore at L3 = 0.2 m,

which is the minimum of  Jgcpefore Valuesat L3 =0.2 mand L; =0.5m.
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Figure 4.32 Variation of J}7,,,,,.. with respect to w

As seen from Figure 4.31, for the given operating range, the energy
consumed for the case of adjustment (i.e., when L, = L") is less than that of the
nonoptimal case for about after w = 20 rad/s. Note that, as the operating speed w

incrases, the adjustment on the mechanism becomes more and more useful, since

the savings in the energy increase in a nonlinear manner. Also note that the

variation of the optimal link length L%’ of the combined link associated with links

80



3 and 4 can be obtained by simply shifting the plot in Figure 4.33 upward with an

amount of L,=04m ,since L, (t)=L,(t)+L,.

375 (m)

0.25
0.24
0.23

0.22

0.21

w(rad/s)

10 15 20 25 30 35 40

Figure 4.33 Variation of LY with respect to w

The energy consumed in the actuators is directly related to the power
requirements of the actuators. Figures 4.34 and 4.35 show the variation of total

power with respect to time for w = 15 rad/s and w = 35 rad/s compared to the

nonoptimal case(dashed curve) in which L, = L™ =0.2m.
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Figure 4.34 Variation of power with respect to time for w = 15 rad/s
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Figure 4.35 Variation of power with respect to time for w = 35 rad/s

As seen from the plots, for w = 15 rad/s the optimal and non-optimal cases
are coincident, whereas for w = 35 rad/s one can easily notice that the adjustment

decreases the power requirement of the actuator during the whole cycle.
4.2.1.2 Adjustment During the Regular Motion

Now consider the case when the length Ls(t) is adjusted during the regular
motion by means of a linear actuator. In this case, for the minimization of the
energy consumed one should also take this linear actuator into account. In other

words, the performance measure to be minimized is given by

2

w{\ T,0 | +|F, L, } ar (4.63)

ty

JE Cduring =

ct—, |

Since the adjustment is made during the regular motion, the optimization problem
is a dynamic one. Therefore, piecewise continuous polynomial parameterization
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will be used. Using the developed code, define Ls(t) as two piecewise continuous

polynomials satisfying the following boundary conditions:

Ly(0)=Ly(¢,) = Free
Ly(0)=L,(t,) = Free (4.64)

Ly(0)=L,(t,) = Free

where tr = 27 / w for one cycle for the given input motion 6(t) = wt . As seen from
equation (4.64), due to the periodical motion , L3(t) and its first two time
derivatives at the beginning and at the end of the cycle are desired to be equal to
each other. When the developed code runs, the polynomial for Ls(t) , can be

generated in the form
Ly()=g(®) = g Ou()—ut=1)] + g,(O[ult—1,)—u(t, —1,)] (4.65)

where g;(t) and gx(t) are the polynomial functions in terms of the elements of the

design parameters vector (independent polynomial coefficients ) given by
d, :{glF,OP > irap »8ir2p282r.0p >82F 1P > &2F.2pP> g21,2p} (4.66)

When equation (4.63) is integrated, one obtains Jecduring 10 terms of d ; and w

only. For a given w, one can easily determine the optimal d , and the optimal
JEcduring by applying the algorithm discussed in section 3.3.1. Figure 4.36 shows
the variation of J7f,,.. with respect to w compared to the nonoptimal case
(which is the value of the energy consumed when Lj is fixed at L; = 0.2 m ). As
seen from this figure , for the given operating range, the energy consumed in case

of adjustment (undashed curve) is less than that of the nonoptimal case (dashed

curve).
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Figure 4.36 Variation of J}7, ... With respect to w

The variations of the power and L?" with respect to time for w = 15 rad/s and

w =35 rad/s are shown in Figures 4.37-4.40.

Power (W)
3000

2000

1000

-1000

- = - Case of No Adjustment
—_— Case of Adjustment

Figure 4.37 Variation of power for w = 15 rad/s
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Figure 4.38 Variation of L' for w =15 rad/s
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Figure 4.39 Variation of power for w = 35 rad/s

85




LSP"(m)

0.228 |
0.227 ¢

0.226 |

0.225

t(s)

0.025 \Swss—pmt7~or?’ 0.125 0.15 0.175

Figure 4.40 Variation of L' for w =35 rad/s

As seen from the plots above, the adjustment on the mechanism decreases
the power requirements of the actuators for both w =15 rad/s and w =35 rad/s,

therefore it is useful.

4.3 The Dynamically Adjustable Fourbar Mechanism

Consider the adjustable fourbar mechanism shown in Figure 4.41. As seen
in this figure , this is a dynamically adjustable mechanism where b denotes the
moving block and n denotes the nonmoving actuator . The dimensions of this

mechanism are given by

11 = |02 04 = 0.9 m (meters)

r=02,03=0.3m

r3=]03B;|=0.7m

14=|B1 04/ =0.6 m (4.67)

Assume that links 2 , 3 and 4 are made of steel (which has a density of
ps=7769 kg /m’) and have cylindirical cross sections with a radius of 0.015 m.
Also assume that mass center and geometric center of each link are coincident .

Using this data, the mass and moment of inertia and other inertial parameters of
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each link with respect to its body fixed Z axis can be determined . The results are

as follows.

my = 1.65 kg
MX, =0.25 kg.m
MY,=0

I, =0.05 kg.m’
m3 = 3.84 kg
MX;=1.34kg.m
MY;=0 (4.68)
I; = 0.63 kg.m’
my =3.3 kg
MX,4=0.99 kg.m
MY4=0

I,=04 kg.m2

Figure 4.41 The Dynamically Adjustable Fourbar Mechanism
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The free body diagrams of the links are shown in Figure 4.42.

Figure 4.42 Free body diagrams of the Adjustable Fourbar Mechanism
For the case of adjustment during the regular motion, one should also

consider the free body diagram of the moving block as shown in Figure 4.43. Note

that in Figure 4.42 M, and F, denote the reaction force and moment due to the
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prismatic joint between link 3 and the block and F, denotes the actuator force

applied to the block by the non-moving actuator n .

Tin,b

@\

Fb/,

LF?;,b

m».g
X
Fin ,b

Figure 4.43 Free body diagram of the moving block

Let the input motion of the mechanism be given by

q,()=0,)=wt (4.69)
where w is constant. Note that for the given input motion t; =2 n/ w for one
cycle of the mechanism. Also as in sections 4.1 and 4.2 , due to changing operating

conditions it is known that w € R, where
R, =0, <0<n,} (4.70)

The equations of motion for this mechanism depend on whether the
adjustment is made before or during the regular motion. If the adjustment is made
before the regular motion, the DOF of the system is 1, therefore the only
generalized actuator torque is the actuator torque T, (see figure 4.41) associated
with the specified generalized coordinate 6, (t). However, if the adjustment is
made during the regular motion, DOF of the system is 2. In this case, one has two

equations of motion .
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The algorithm discussed in section 2.4.1, and the program developed by
Tursun [7] has been used in order to determine the equations of motion of the
mechanism. Note that there are two closures of the mechanism. The kinematic and
force analysis have been performed numerically by dividing the time interval
[0, t¢ ] into 120 points using Tursun’s program and the algorithm discussed in
section 2.4.1. In this case study the minimization of the energy consumed for the

case of adjustment before the regular motion has been analyzed.
4.3.1 Minimization of the Energy Consumed

Let the design task be the minimization of the energy consumed . As stated
in the previous sections, the performance measure related to the energy consumed
depends on whether the adjustment is made before or during the regular motion.
Note that the solutions obtained in this section belong to the first closure of the
mechanism ( the closure in which 6;3 = 36.48 deg and 64 = 99.06 deg when
012 =36 deg).

4.3.3.1 Adjustment Before the Regular Motion

Consider the case where the position sy(t) is adjusted before the regular
motion , 1.e. §,(t)=5,(¢) =0 during the motion. Since the adjustment is made
before the regular motion, assume that the position of the block is adjusted
manually, i.e. there is not an actuator ( m, = MX;, = MY, =1, = s, = 0 ). The

performance measure to be minimized is given by

2

ly=

JECbefore = Iw ‘Tz 912‘ dt 4.71)

0

The constant design parameters vector c?c and the design parameters vector

related to the unspecified generalized coordinate (g, (¢f)=s,), c?u are given by

d, ={m,,MX,,MY, 1} (4.72)
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d, ={s,} (4.73)
Assume that the moving block is a symmetric body, therefore MX, = MY, =0 .

Then the design parameters to be determined are my LI, and sy, only. The

constraints on these parameters are selected to be

1<m, <10 kg
02<s,<0.7 m (4.74)
0.1<1, <1kgm’

Now, consider that the mechanism is to operate at many different w values
in a range [w; , w,] = [15 ,45] rad/s. Using the algorithm given in section 3.1.1,
minimizing the performance measure given by (4.71) subject to the constraints

(4.74), one obtains the optimal my , I, and s, for each w in the range

[wi, wy] = [15 ,45] rad/s. Figure 4.44 shows the variation of J}7,,,,. with respect

to w. Here, the undotted curve indicates the case of adjustment whereas the dotted

one indicates the case of no adjustment.
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Figure 4.44 Variation of J}f,,,,,. With respect to w
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The variations of the optimal my ,Iy and s, with respect to w are shown in Figures

4.45-4.47.

opt
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Figure 4.45 Variation of s,” with respect to w
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Figure 4.46 Variation of m;” with respect to w
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Figure 4.47 Variation of 7,” with respect to w

As seen from Figure 4.43, the dynamic adjustment on the fourbar
mechanism is useful at high angular velocities, since it reduces the energy
consumed compared to the case of no adjustment. Indeed, relaxing the constraints
(4.74), will lead to better results. Also note that the optimal my, and I}, are constant
for the given w range. This is an interesting result, since it was obtained by using
the algorithm discussed in section 3.3.1 (Method 1) from which we expect
different optimal my ,I, and s, values for different w values. Of course, this result
is valid for only the data given by (4.67) , (4.68) and for the constraints given by

(4.74). For the given operating range the optimal results are given by

m?” =1kg
I =1 kgm’ (4.75)
s =02m

Notice that the optimal values of m, and s, are the lower bounds of their
constraints whereas the optimal value of I is the upper bound of its constraint.
This means that better results could be obtained, locally, if one uses a block with a
smaller mass and higher mass moment of inertia and if one positions this block

nearer to the origin O3 of the body fixed frame of the coupler (Link 3 ).
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CHAPTER YV

CONCLUSIONS

In this study, the benefits of adjustable planar mechanisms, regarding
different dynamic behaviours under variable operating conditions, have been

investigated.

Different methods have been applied to derive the equations of motion for
kinematically and dynamically adjustable mechanisms. For the dynamically
adjustable mechanisms, an algorithm has been developed and has been used in
conjunction with the package developed by Tursun [7] for the kinematic and force
analysis of adjustable planar mechanisms. On the other hand , the kinematic and
force analysis of kinematically adjustable mechanisms have been determined by

using another developed algorithm discussed in Chapter 2.

In order to optimize the dynamic behaviour of the mechanism, the concept
performance measure has been used. By defining the performance measure
appropiately, it has been possible to optimize various dynamic behaviours of the
mechanism in a weighted manner. Throughout the thesis, the minimization of the
performance measure has been performed using the NMinimize command of
MATHEMATICA. This command may be used to find the global minimum,

hopefully, of any multivariable function subject to any type of constraints.
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For the dynamic optimization problems, the method of Piecewise
Continuous Polynomial Parameterization has been used to convert dynamic
optimization problems to static optimization problems. The transformed
optimization problem has been solved via the NMinimize command of

MATHEMATICA.

The developed algorithms have been applied to different types of
mechanisms in Chapter 4. All case studies have been made as realistic as possible.
The results reveal that, in many cases, the dynamic behaviour of a planar
mechanism may be improved quite extensively via adjustable mechanisms. It
should be noted that the adjustment mechanisms suggested in this study , which
convert an unadjustable mechanism to an adjustable one , are rather easily

implementable to an existing planar mechanism.

The studies performed in this section is restricted to planar mechanisms

only. In the future a similar study can be realized for spatial mechanisms as well.
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