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ABSTRACT 

 

 

A HIGH-SPEED ASIC IMPLEMENTATION OF THE RSA CRYPTOSYSTEM 

 

 

 

Yeşil, Soner 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Murat Aşkar 

 

September 2003, 96 pages 

 

This thesis presents the ASIC implementation of the RSA algorithm, which 

is one of the most widely used Public Key Cryptosystems (PKC) in the world. In 

RSA Cryptosystem, modular exponentiation of large integers is used for both 

encryption and decryption processes. The security of the RSA increases as the 

number of the bits increase. However, as the numbers become larger (1024-bit or 

higher) the challenge is to provide architectures, which can be implemented in 
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hardware, operate at high clock speeds, use a minimum of resources and can be used 

in real-time applications. 

In this thesis, a semi-custom VLSI implementation of the RSA Cryptosystem 

is performed for both 512-bit and 1024-bit processes using 0.35µm AMI 

Semiconductor Standard Cell Libraries. By suiting the design into a systolic and 

regular architecture, the broadcasting signals and routing delays are minimized in 

the implementation. With this regular architecture, the results of 3ns clock period 

(627Kbps) using 87K gates (8.7mm2 with I/O pads) for the 512-bit implementation, 

and 4ns clock period (237Kps) using 132K gates (10.4mm2 with I/O pads) for the 

1024-bit implementation have been achieved. These results are obtained for the 

worst-case conditions and they include the post-layout routing delays. The design is 

also verified in real time using the Xilinx V2000E FPGA on the Celoxica RC1000 

Hardware. The 1024-bit VLSI implementation has been sent to IMEC for 

fabrication as a prototype chip through Europractice Multi-Project Wafer (MPW) 

runs.   

Keywords: PKC, RSA, Systolic Architecture, Montgomery Modular Multiplication, 

The Binary Method.  
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ÖZ 

 

 

RSA KRİPTO SİSTEMİNİN YÜKSEK HIZLI TUMDEVRE UYGULAMASI 

 

 

Yeşil, Soner 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat Aşkar 

 

September 2003, 96 sayfa 

 

Tez çalõşmamõzda, dünyada yaygõn olarak kullanõlan bir Açõk Anahtar 

Kripto Sistemi olan RSA Algoritmasõ�nõn Uygulamaya Özel Tümdevre 

Gerçekleştirmesi sunulmaktadõr. RSA Kripto Sistemi�nde, şifreleme ve deşifreleme 

işlemleri için, çok büyük tamsayõlarõn kullanõldõğõ (1024-bit veya daha fazla) 

modüler üs alma matematiksel işlemi kullanõlmaktadõr. Kullanõlan tamsayõlarõn bit 

uzunluğu arttõkça, RSA Kripto Sisteminin güvenliği de artmaktadõr. Öte yandan, 

sayõlarõn büyümesiyle birlikte, donanõma uygun, hõzlõ çalõşabilen, mümkün olan en 
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az seviyede özkaynak içeren ve gerçek zamanlõ uygulamalarda kullanõlabilecek 

mimariler tasarlamak önem kazanmaktadõr. 

Bu tez içersinde, 0.35µm AMI Semiconductors Standart Hücre Kütüphanesi 

kullanõlarak gerçekleştirilen 512-bit ve 1024-bit RSA işlemlerinin yarõ özel 

tasarõmlarõ yer almaktadõr. Birbirine özdeş ve çok sayõda yapõnõn birbiri ardõna 

sõralanmasõyla (sistolik yapõ) olusturulan bir mimarinin tasarõmda kullanõlmasõyla, 

tümdevrenin bütününe yayõlan sinyallerin sayõ ve uzunluklarõ en az sayõya 

indirgenmiştir. Bu düzenli yapõ sonucunda, 512-bit uygulamada 3ns saat hõzõ (627 

Kbps) ve 87 bin kapõ değerinde bir alana (8.7mm2 giriş/çõkõş bağlantõlarõyla 

birlikte), 1024-bit uygulamada ise 4ns saat hõzõ (237 Kbps) ve 132 bin kapõ 

değerinde bir alana (10.4mm2 giriş/çõkõş bağlantõlarõyla birlikte) ulaşõlmõştõr. Bu 

sonuçlar, en kötü koşullar öne sürülerek ve tümdevre içersindeki yol atama 

gecikmeleri dikkate alõnarak elde edilen sonuçlardõr. Tümdevre gerçekleştirmenin 

yanõsõra, Celoxica RC1000 Donanõmõ ve bu donanõm üzerinde yer alan Xilinx 

V2000E FPGA  kullanarak, söz konusu tasarõmõn gerçek zamanlõ doğrulanmasõ da 

yapõlmõştõr. 1024-bit RSA tümdevre tasarõmõ, Europractice MPW (Çoklu Tümdevre 

Üretim Programõ) dahilinde, bir prototip tümdevre olarak üretilmek amacõyla IMEC 

firmasõna gönderilmiştir.     

Anahtar Kelimeler: RSA, Açõk Anahtar Kripto Sistemi, Montgomery Moduler 

Çarpma, Sistolik Yapõlar. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

 

 

In  the last quarter of the 20th century, especially in the 90�s, the field of 

cryptography has faced a new problem beyond privacy, which had been the main 

goal until that time. With the widespread popularity of electronic communication 

all-over the world, difficulties in the key distribution, key management and 

authentication began to rise and researchers focused on these problems without any 

concession of the traditional objective, security.  

�We stand today on the brink of a revolution in cryptography�, said Diffie 

and Hellman in 1976 [1] as the beginning sentence of their paper in which the 

concept of �Public-Key Cryptosystem� (PKC) was born. After 2 years in 1978, an 

elegant implementation of the public-key cryptosystem came from Rivest, Shamir 

and Adleman, named as the RSA Public-Key Cryptosystem [2]. Today, because of 

the high-security provided, RSA is still known as the most widely used public-key 

cryptosystem in the world.  

Although providing high security, currently available RSA hardware needs 

to be improved on the speed and area issues. The security of the RSA increases as 

the number of bits in the algorithm increase. However, high number of bits end up 
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with slower architectures and  increased area. The challenge is to provide fast 

architectures and efficiently used resources as the number of bits increase.  

This chapter presents an introduction to the cryptography and Public-Key 

Cryptosystems. The first section gives some basics of cryptography and continues 

with the needs of today�s cryptography. Section 1.2 describes the concept of PKC 

and some facilities provided by this cryptosystem such as authentication, integrity, 

and non-repudiation. The last section of this chapter gives a brief discussion of the 

scope of the research in this thesis. Also the thesis organization and chapter 

summaries are given in this section.   

 
1.1. Basics of Cryptography 

  

Cryptography is basically the art and science of enabling two people to 

communicate over an insecure channel in such a way that an unintended recipient 

cannot understand what is being said. 

A message is a plaintext usually denoted by M and represented by a binary 

data in digital applications. Encryption is the processing of the message into a form 

that is virtually impossible to understand without the key.  An encrypted message is 

cipher text, denoted as C. The process of recovering the original message from the 

encrypted data is called decryption. It is the inverse function of the encryption.  

The following formal definition of the concept of cryptography is taken from 

the text-book named �Cryptography: Theory and Practice,� which is written by D. 

Stinson [5].  

A cryptosystem is a five-tuple , where the following conditions are 

satisfied: 

),,,,( DEKCP

1.   is a finite set of possible plaintexts  P
2.   is a finite set of possible cipher texts  C
3.  , the key space, is a finite set of possible keys  K
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4.  For each , there is an encryption rule and a corresponding decryption 

rule . Each and  are functions such that 

  for every plaintext . 

Kk ∈

D

x=

Eek ∈

PC →:dk ∈

xk ))(

CPek →:

x ∈

dk

edk ( P

 

Although the traditional private-key cryptosystems satisfy the privacy, 

which has been the fundamental goal of cryptography, they are inadequate to 

overcome the recently arising secure communication problems such as:  

i)   Key distribution problem through a secure channel  

ii)  Key management problem 

iii) And the following security problems: 

� Authentication: The sender of the message should be able to sign it in    

such a way that an intruder cannot forge the signature. 

� Integrity: The intended recipient of the encrypted message should make 

sure that an intruder has not modified the message. 

� Non-repudiation: The owner of a signed message should not be able to 

gainsay his/her signature. 

 

A new concept of Public-Key Cryptosystem was invented by Diffie and 

Hellman in 1976 [1] to overcome these problems. The next section gives detailed 

information on how these problems can be solved with this new cryptosystem. 

 

1.2. Public-Key Cryptosystems (PKC) 

In a Public-key Cryptosystem, the encryption procedure of each user (E) is 

publicly revealed but the decryption procedure (D) is only private to that user. The 

enciphering and deciphering can be shown as follows: 

Enciphering:     (Public procedure)  )(MEC =

Deciphering:    (Private procedure) )(CDM =

3 



Where  is the message and  is the cipher text. M C

If the system has the properties, 

a)  ))(( MEDM =

b)  is publicly revealed and easy to compute for everyone but  is 

impractical to be computed except for its owner who has the key 

)(⋅E )(⋅D

then  is called trap-door one-way function because it is easy to implement in one 

way but very difficult in the other way. However, if one obtains the necessary key, 

is as easy as . This is the reason that it is called �trap-door�. In addition to 

the above 2 properties, a third property of  

)(⋅E

)(⋅D )(⋅E

 c) DM =   ))(())(( MDEME =

gives a new name to the system as �trap-door one-way permutation�. The result is 

that every message is the cipher text for some other message and every cipher text 

can be used as a message.  

The fundamental idea behind a Public-Key Cryptosystem is that it is 

computationally impractical to determine  given , so that the encryption 

rule  can be made public. Using the advantage of PKC, one can send an 

encrypted message to another (without the prior communication of a secret key) by 

using the public encryption rule . Only the intended recipient can decrypt the 

cipher text, using his/her secret decryption rule   

)(⋅D )(⋅E

)(⋅E

)(⋅E

)(⋅D .

Another consequence of Public-Key Cryptosystem is the signature facility 

obtained by processing the message by private procedure (D(M) ) prior to the public 

one. Anyone can verify this signature by using the public procedure of the sender, 

E(D(M)). Because the signature is a private procedure, it cannot be forged and also 

the sender cannot deny the signature. 
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1.1. The Scope of the Research and Thesis Outline 

The RSA PKC uses modular exponentiation operation both for encryption 

and decryption. The security of the RSA increases as the numbers in the modular 

exponentiation are increased. However, this increase corresponds to larger and 

slower architectures. Since the demand for higher levels of security is increasing 

day by day, it becomes important to find the ways of implementing the RSA PKC in 

more efficient and faster architectures. Within this scope of the research, this thesis 

describes a hardware implementation of the RSA PKC, which uses a linear systolic 

architecture operating at high clock frequencies with a minimum of resources. 

A mathematical background including the main algorithms used in the RSA 

algorithm is given in Chapter 2. In addition to the mathematics, this chapter also 

gives a brief discussion on the implementation properties of these algorithms. 

Chapter 3 presents a literature review of the recent RSA implementations. In this 

chapter, the methods and improvements on the RSA algorithm are categorized and 

described first, and then the implementation results are presented. Chapter 4 begins 

with the theoretical study followed at the early stages of the thesis, then gives the 

methods and algorithms chosen, and finally presents the implementation details. A 

comparison of the implementation results to the previous implementations is also 

given at the end of this chapter. The last chapter is a conclusion part, in which the 

underlying reasons of the achieved results are evaluated and the ways of improving 

this study are discussed. The appendix part includes the structure of the CLBs and 

LUTs in the XILINX Virtex FPGAs, general features of the Celoxica RC1000 

Hardware, and general characteristics of the AMI Semiconductor Standard Cell 

Libraries.   
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CHAPTER 2 

 

A MATHEMATICAL BACKGROUND OF THE RSA PKC 

 

 

 

RSA is a cryptographic algorithm, which provides high security. Modular 

exponentiation of long integers is the main mathematical operation of the RSA used 

in both encryption and decryption. The security of this algorithm is based on the 

factorisation problem of long integers.  

This chapter describes the underlying mathematics of the RSA PKC. The 

first section explains how the modular exponentiation can used for enciphering and 

deciphering purposes. An example of a secure data transmission using RSA 

algorithm is also presented in the first section. The other sections include some 

algorithms commonly used in the implementation of this cryptosystem. Finally the 

chapter ends by giving some information on the Chinese Remainder Theorem and 

its application to RSA.  

2.1. The RSA Algorithm 

The RSA Cryptosystem uses computations in Ζ  where  is the product of 

two distinct very large primes  and . The message M is represented as a number 

between  and , and relatively prime to . The encryption  and 

decryption  procedures are defined as 

N

N

N

p q

0 1−N )(⋅E

)(⋅D
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).(mod)(
).(mod)(

NCCDM
NMMEC

d

e

==

==
 

where  is the message and  is the cipher text,  is the public key and  is the 

private key. Modular exponentiation operation is used for both encryption and 

decryption processes. The relation between the keys is as follows: 

M C e d

))((mod1 Nde
qpN

φ≡⋅
⋅=

 

where  is the Euler totient function, which equals to the number of positive 

integers less than , which are relatively prime to . Since  is the product of 

two primes and ,  

)(Nφ

p

N

q

N N

)()()( qpN φφφ ⋅=  

and 

).1()(
),1()(

−=
−=

qq
pp

φ
φ

 

then φ becomes )(N

)1()1()( −⋅−= qpNφ  

As seen from the above equations, in order to obtain the private key, d , from 

the public key, , one should factorize the public modulus  into its prime factors 

 and . Because of this reason the security of the RSA cryptosystem lies in the 

factorization of large integers (e.g., > 1024-bit numbers for the modulus ), which 

is computationally infeasible with today�s technology. 

e N

p q

N

One can verify that the encryption and decryption procedures are inverse 

operations as follows: 
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)(mod1
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NMM

NMM
tNtde

Nde

t

tN

Ntde

≡

⋅≡

⋅≡

≡

+⋅=⋅
≡⋅

+⋅

φ

φ

φ
φ

 

where Euler�s theorem is used for the equation: 

)(mod1)( NM N ≡φ  

To perform the RSA, 

1) Compute N  as the product of two large random primes and q . p

2) Pick a public key e  in the range 1  and relatively prime to φ . 

Usually the public key is selected as a small number such as  in order 

to make the computation of the encryption fast. 

)(Ne φ<< )(N

1216 +

3) Compute d  using the Extended Euclidian Algorithm. ))((mod1 Ne φ−=

4) The public key is the pair of positive integers (  and private key is 

with encryption and decryption procedures as follows: 

), Ne

d

)(mod
)(mod

NCM
NMC

d

e

≡

≡
 

5) Each user in the system will have different public key pairs and private keys: 

M

),,(
),,(

),,(

ooo

bbb

aaa

deNOscar
deNBob

deNAlice

→
→
→
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6) In order to send a signed message to Bob, Alice performs the following 

operation: 

i) )  (Alice signs the message with her private key) (mod a
d NMS a=

ii)C  (She then encrypts the signed message with 

Bob�s public key) 

)(mod b
e NS b=

7) In order to decrypt and authenticate the encrypted message sent by Alice, 

Bob does the following operation: 

i)  (Bob decrypts the signed message by his private 

key) 

)(mod b
d NCS b=

ii) M  (Then he recovers the message by using Alice�s 

public key) 

)(mod a
e NS a=

 

Alice
ea, da

Bob
eb, db

C

public are  and ba ee

NSC be mod )2 ≡

NMS ad mod )1 ≡ NCS bd mod )3 ≡

NSM ae mod )4 ≡

 

Figure 2.1: An example of sending a signed message in RSA PKC. Alice sends only 

the cipher text. There is no need to transfer the key. 
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The trap-door one-way permutation for the RSA Public-Key Cryptosystem is 

the modular exponentiation operation, which can be performed as a series of 

modular multiplication operations. The modular exponentiation is also very 

commonly used for the other algorithms different from RSA cryptosystem such as 

Diffie and Hellman key exchange scheme [1], ElGamal Signature scheme [6], and 

Digital Signature Standard (DSS) [7]. Although it is a simple and widely used 

mathematical operation, modular exponentiation has an important drawback of 

being time-consuming especially when the integers are large (>1024-bits). 

Enormous number of research, both in theoretical and electronics, is still going on to 

improve the performance of the modular exponentiation operation while decreasing 

the resource usage.  

The following sections give brief discussions on various algorithms that are 

used in the modular exponentiation and multiplication operations. The Binary 

Method for the exponentiation and Montgomery’s Algorithm for the modular 

multiplication will be mainly discussed, since these are the most widely used and 

most efficient algorithms. The reader can find very clear explanations and informing 

examples about some other algorithms in the technical report of RSA Laboratories 

written by Çetin Kaya Koç [4].  

 

2.2. Modular Exponentiation 

The modular exponentiation operation is performed as a series of modular 

multiplications. Hence, the performance of the modular exponentiation depends 

mainly on the following two criteria: 

1) The number of the modular multiplications in the modular exponentiation 

algorithm. 

2) The stand-alone performance and physical area of the modular 

multiplication module. (The multiplication unit consumes most of the silicon 

area in an RSA implementation.) 

10 



Therefore, one should choose proper modular exponentiation and 

multiplication algorithms suiting to each other so that the time  product can 

settle-down to an optimum value. That is, the design implemented on a system 

should be fast enough to satisfy the time needs, on the other hand it should be as 

small as possible in order not to cause placement and cost problems. 

area×

2.2.1. The Binary Method (Square and Multiply Method) 

This method examines the exponent in bit wise fashion either from left-to-

right (L-R Binary Method) or right-to-left (R-L Binary Method). These two 

algorithms are as follows: 

{ } .1 and 1,0  where          ,2)(

:bits ofnumber   thebe Let 

1

1

0
0121 =∈== −

−

=
−− ∑ ki

k

i

i
ikk eeeeeeee

k

L
 

a) The L-R Binary Method 

I n p u ts :  NeM ,,  

O u tp u t :  )( m o d NMC e= .  

1 .  i f  )1( 1 =−ke t h e n  MC = e ls e  1=C .  

2 .  f o r  2−= ki  d o w n t o  0  

2 .a .  )( m o d NCCC ⋅=  

2 .b .  i f  1=ie  t h e n  )( m o d NMCC ⋅=   

3 .  r e t u r n  C   

 

Figure 2.2:The L-R Binary Method 

The squaring (step-2.a.) operation is performed at each step but the 

multiplication operation (step-2.b.) is performed if the corresponding bit of the 

exponent is equal to 1. Therefore the total number of multiplications needed for the 

LR Binary Method is ( , where  is the Hamming Weight of the 1)()1 −+− eHk )(eH
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exponent, which equals to the number of 1�s in the exponent. Assuming the equal 

probability of 1�s and 0�s in the exponent, the average number of multiplications for 

this algorithm is )1(
2
3

−k . 

b) The R-L Binary Method 

I n p u t s :  NeM ,,  

O u t p u t :  )( m o d NMC e= .  

1 .  ;1   ; 00 == CMX  

2 .  f o r  0=i  t o  1−k  

2 .a .  )( m o d1 NXXX iii ⋅=+
 

2 .b .   i f  )1( =ie t h e n  )( m o d 1 NXCC iii ⋅=+

2 .c .   e l s e  
ii CC =+ 1

.  

3 .   r e t u r n  C   

 

Figure 2.3: The R-L Binary Method 

Although it has the same principle as The L-R Binary Method, this algorithm 

has several advantages for fast exponentiation implementations. The main 

advantage is that the steps of 2.a. and 2.b. in the above algorithm are independent 

from each other and can be performed in parallel. This reduces the number of 

iterations directly down to the number of squaring operations, which is fixed 

whatever the exponentiation algorithm is used. The parallelism can be achieved 

either by using extra hardware or within the same hardware by using the idle clocks 

of the system as in the proposed implementation in this thesis. One drawback of this 

algorithm compared to the L-R method is that the location of the most significant 1 

in the exponent should be detected in order to prevent unnecessary squaring 

operations. However, detection of the most significant 1 is a simple procedure, 

which can be done, for example, with a 10-bit counter for the 1024-bit exponent. An 

example of R-L Binary Method, in which the squaring and multiplication operations 

are performed in parallel, is demonstrated in Figure 2.8.   
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2.2.2. The m-ary Method 

 The m-ary method is a generalization of the binary method. Differently, this 

method involves treating the m-bits of the exponent instead of 1-bit.  Usually, m is 

chosen to be a power of . The main advantage of this method is, the number of 

multiplications needed for the modular exponentiation decreases as m increases. 

However, more complex structures and preprocessing are needed since the powers 

of the message up to m  are to be calculated and stored 

beforehand. Table 2.1, which is taken from the technical report written by Çetin 

Kaya Koç [4], summarizes the comparison of the m-ary and the binary methods 

according to the required number of multiplications. 

2

),,,( 12 −mMMM L

 

Table 2.1: Comparison of m-ary Method to Binary Method. 

k binary m-ary 

Opt.r 

( ) rm 2=
Savings % 

8 11 10 2 9.1 

16 23 21 2 8.6 

32 47 43 2, 3 8.5 

64 95 85 3 10.5 

128 191 167 3, 4 12.6 

256 383 325 4 15.1 

512 767 635 5 17.2 

1024 1535 1246 5 18.8 

2048 3071 2439 6 20.6 
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There are also many other algorithms for modular exponentiation, which are 

based on reducing the number of modular multiplications and thus improving the 

exponentiation performance [4]. Since the number of squaring operations cannot be 

reduced in either of the algorithms, to perform the multiplying and squaring 

operations in parallel gives the best performance for the exponentiation operation. 

Therefore in this thesis, The R-L Binary Method is chosen to be the exponentiation 

algorithm, in which the parallelism can be exploited without any need of extra 

hardware and clocks.  

2.3. Modular Multiplication 

As mentioned in the previous sections, modular multiplication is the kernel 

operation of RSA cryptosystem. Any improvement in the modular multiplication 

operation directly affects the performance of the RSA.  

P.L. Montgomery found an ingenious way of computing modular multiplication 

operation in 1985 [8]. Different from previous methods, the Montgomery 

Multiplication Algorithm uses residue representations of the numbers that are to be 

multiplied. This representation provides division by , where  is a power of 2. 

Therefore, it is quite suitable for implementing on digital signal processors, general-

purpose microprocessors and digital VLSI structures. The next section gives the 

underlying mathematics of Montgomery�s approach on the modular multiplication.  

r r

2.3.1. Montgomery’s Method  

This method is very commonly used to speed up the modular multiplication 

and squaring operations required during the exponentiation process. In a modular 

multiplication, with modulo  being k-bit number, each number is represented by a 

radix , which is usually a power of 2. The Montgomery Multiplication Algorithm 

requires that r  and  are relatively prime to each other, i.e. gcd( . Since 

 is odd (multiplication of two primes) and  is a power of 2, this condition is 

inherently satisfied. Given two integers  and , this method computes 

, where m  is the number of the digits of  in radix- . With a 

representation of any number  of the form 

N

X

r

r −⋅

N 1), =Nr

m

N

A ⋅

r

NA < NB <

NB m mod N
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Montgomery Modular Multiplication Algorithm is as follows: 

 Inputs: A,B,N. 

Output: NrBAP m mod−⋅⋅=  
.00 =P  

For 0=i  to 1−m  
 
 a. rnrbapq ii mod)()( 1

000
−−⋅⋅+= ; 

 b. rNqBaPP iiii /)(1 ⋅+⋅+=+
; 

End 
Post Condition: BANQPr m ⋅+⋅=⋅  

 

Figure 2.4: Montgomery�s Algorithm. 

In the above algorithm, computation of  in step-a guarantees that the value 

of  in step-b is divisible by . Since  is a power of 2, division by r  is just 

shifting out the least significant zero digit in radix- . This property of the algorithm 

makes it very easy to implement in digital design. However, one should remove the 

 factor at the output in order to get the desired result, . This process 

is performed as follows: 

iq

P

m

r r

r

r − NBA mod⋅

A
NrA m mod⋅mr 2

N

Montgomery
Modular

Multiplication

B

N

Montgomery
Modular

Multiplication

NBA mod⋅

 

Figure 2.5: Removing the factor. mr −

Table 2.2 gives a summary of the computations in the algorithm.  The 

extraction of the post-condition in the algorithm can be obtained by rearranging the 

terms of the final value . This process is shown in Figure 2.6. mP
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Table 2.2: Operations in the Montgomery�s Algorithm. 

 
Step-2a of Algorithm in Figure 1.4: 
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Figure 2.6: Extraction of the post-condition of the algorithm. 

 

2.4. Modular Exponentiation Using Montgomery’s Multiplication Method 

Although Montgomery�s algorithm is very popular in fast exponentiation 

operations, it is not very practical when only one modular multiplication is to be 

used. This is because of the removing process of the  factor at the output. 

However, in the case of modular exponentiation, there is no need to remove this 

factor at each modular multiplication. Instead, the inputs of the modular 

exponentiation algorithm are pre-multiplied by , and their -residues are 

obtained. (Given an integer , its -residue is defined as 

mr −

mr 2 N

NA < N NrA m mod⋅A= .) 

Then, these residues are used throughout the whole exponentiation. One final 

multiplication by 1 gives the desired result of the modular exponentiation. The 

following example (Figure 2.8) gives an exponentiation process with exponent 

equals to decimal 21. Montgomery Modular Multiplication is used with the R-L 

Binary Method for the modular exponentiation: 

Message(M)

Pre-multiplication
factor (r2m)

Modulo(N)

exponent(e)

NM e mod
M odular

Exponentiation

 

Figure 2.7: Modular Exponentiation Block. 
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Figure 2.8: The R-L Binary Method with pre-and-final multiplications. 

As seen from the above figure, the squaring operations (the upper row) and 

the multiplication operations (the bottom row) are performed in parallel. The time 

needed for the pre-and-final multiplications becomes negligible, as the length of the 

exponent gets larger (>1024-bits usually).    

 

2.5. Chinese Remainder Theorem (CRT) 

Chinese Remainder Theorem, which uses the main property of RSA, 

, where and  are very large random primes, is used to speed-up the 

RSA cryptosystem. Since encryption is fast enough because of a small exponent, the 

CRT method is preferred for the decryption. According to this theorem, 

computation of  can be performed in two separate parts: 

qpN ⋅= p

=

q

mod NCM d

)2(mod

)1(mod

2

1

qCM

pCM
d

d

=

=
 

However, according to Fermat�s theorem: 
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Consider a prime  that defines a set of integers , then each 

element α  satisfies 

p { 1,,2,1 −= pZ p L }

pZ∈

pp mod11 =−α . 

Using this theorem, writing the private exponent d as 

1)1( dpAd +−⋅= ,  

where  is any positive integer,  or,  A

)1mod(1 −≡ pdd , 

then equation (1) and (2) can be rewritten as 

pCpCM ddpA modmod 11 ))1((
1 ≡≡ +−⋅ , (since C ). pp mod1)1( ≡−

qCqCM ddqA modmod 22 ))1((
2 ≡≡ +−⋅ , (since C ). qq mod1)1( ≡−

With the newly produced numbers, , the computation of M  

with CRT is: 

21  and MM NC d mod=

pqqpMMMM ⋅⋅−+= − ]mod)mod()[( 1
121  

Since are about one-half of ,  and are about also one-half of . 

Therefore  and/or  can be computed in ¼ of the time needed for computation 

of . This results in about 4 times speed-up in the RSA decryption procedure can 

be obtained if  and  are produced in parallel, and 2 times speed-up if they are 

produced in serial. Since the owner of the private key knows and , 

 can be pre-computed and stored before the decryption 

process. 

qp  and 

1M

( and , p −

N 1d 2d d

q

2M

2M

)q

M

 , 2d

1M

mod1

 p

1d
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CHAPTER 3 

 

A LITERATURE REVIEW OF THE HARDWARE  

IMPLEMENTATIONS OF RSA   

 

 

In the previous chapter, it is mentioned that ever-increasing number of 

research is taking place on the performance and the area improvements of the RSA 

implementations. In this chapter, the reader will be informed about the development 

process both in theory and practice, and about the latest implementation results of 

the RSA algorithm.  

The number of research, in parallel with the highly increasing need for the 

PKC algorithms, had a great jump with the beginning of the 90s. As a result of this 

jump, outstanding improvements on the time  product of the RSA 

implementations came out in the last decade. But the question is: why are we trying 

to minimize the product?  

area×

areatime ×

While examining the mathematics of the RSA, it was emphasized that the 

security of the RSA lies in the factorization problem of the large integers. In [37], 

Colin D. Walter gives a good example demonstrating this fact: The effort for 

factorization doubles for every 15-bits when the modulus is about 1024-bits. 

However, these 15 extra bits require only 5% computation time. Therefore, just 

speeding-up the operation 5% results in a two times difficult problem of breaking 

the system. Because of this reason, security is the main reason for the enormous 

research on speeding-up the RSA algorithm. On the other hand, the speed is also 
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highly needed if RSA is to be used in the real-time applications such as enciphering 

the real-time audio-video data.  

One other way of achieving more security is to use higher number of bits in 

the RSA operation. Today, although 1024-bit operation is still widely used, the 

demand for 2048-bit RSA chips is arising. However, the silicon area needed for the 

RSA implementation limits the number of bits to be used. Large chip size brings 

placement and cost problems. Because of this reason, reducing the silicon area is an 

other research goal for improving the RSA.  

This chapter presents a survey of the studies from the  product 

perspective. In the first section, the reader can find the theoretical basics of the 

various improvements. The remaining sections give information about the 

implementations up to date. Section 3.2 presents the VLSI implementations and 

Section.3.3 presents the FPGA implementations of the RSA Cryptosystem. 

areatime ×

 

3.1.  Theoretical Studies 

Since the main mathematical operation of RSA is the modular 

exponentiation, which is performed as a series of modular multiplications, the 

studies on improving the RSA performance can be categorized as in Figure 3.1. 

In 1994 Çetin Kaya Koç prepared a technical report for the RSA Data 

Security, Inc. [4], including a wide research on some various modular 

exponentiation and multiplication algorithms. Among these algorithms, the Binary 

Method and Montgomery�s Modular Multiplication Method are the most widely 

preferred algorithms for exponentiation and modular multiplication, respectively. 

All the implementations presented in this chapter use the Binary Method (L-

R and R-L Methods are used in almost 50% among these implementations) except 

for the implementation of Chiang et. al. [23], in which the exponent is treated in 4-

bit fashion. In this implementation the values  are pre-computed 

and stored into a RAM. With this method, their gain is: a worst case of  

753  and ,, MMM

3/4k
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multiplications in the exponentiation instead of  multiplications. But the 

drawback is area occupation and extra time due to storage and pre-computation 

processes, respectively. 

k2
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Reducing the
number of

multiplications
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multiplication and
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Architecture

Modifications on the
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Algorithm

Reducing the number
of iterations

Outputs in the
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Cr  Path

 

Figure 3.1: Theoretical studies on improving modular exponentiation.  

As for the modular multiplication, almost all the implementations use 

Montgomery�s method. Many modifications, those of which are categorized in 

Subsection.3.1.2.2, are applied to Montgomery�s algorithm in RSA 

implementations. The details of these implementations will be examined in the 

proceeding sections of this chapter. A comparison of the results of these 

implementations will also be given together with results of this thesis as a table in 

chapter 4. 

3.1.1. Exponentiation 

The idea behind the studies on the exponentiation algorithm is to reduce the 

number of multiplications. Some of these algorithms are: The m-ary method, The 
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Adaptive m-ary Method, The Power Tree Method, and The Booth Recoding Method 

[4]. Generally they differ from the Binary Method by examining the exponent by 

two or more bits at each time. Savings up to 20% (64-ary method for n=2048) in the 

number of multiplications compared to the Binary Method can be achieved with 

these methods (Table 2.1). However, the drawback is that some pre-computation 

and storage requirements are introduced. The designer should carefully weigh the 

advantages and disadvantages of making a choice among The Binary Method and 

other �reduced number of multiplications� methods.  Moreover, if parallelism can 

be achieved by using R-L Binary Method, the number of multiplications directly 

reduces to its lower bound, which is equal to the number of squaring operations in 

the exponentiation, and there is no need for pre-computing and storage effort.  

The implementations to date support the observation above so that The 

Binary Method can be considered as the standard for modular exponentiation due to 

being so widely used. This method, in which the exponent is examined in bit-wise 

fashion, can be performed both from MSB (The L-R Method-Figure 2.1.) or LSB 

(The R-L Method-Figure 2.2.). The latter of these methods provide parallelism in 

the multiplication and squaring operations. There are two ways for parallelism: 

- Placing two parallel multipliers in the hardware.  

- Interleaving the two operations at successive clocks. 

The first one suffers from area occupation of the extra multiplier, but can be 

accepted in situations where speed is more critical. On the other hand, the second 

one has great advantages especially for systolic architectures, which will be 

explained in section 3.1.2.1.  To give an idea, Figure 3.2 and Figure 3.3 depict how 

the interleaving can be performed by using idle clocks with 100% efficiency.  
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Figure 3.2: Only one operation (multiplication or squaring), without interleaving. 
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Figure 3.3: Interleaved multiplication and squaring operations by using idle clocks. 

3.1.2. Multiplication 

The usual way of multiplication is by scanning one of the multipliers from 

left-to-write and adding a multiple of multiplicand by a right shift of the partial 

product. This method gives the maximal carry ripple length of the parallel additions 

corresponding to the length of the multiplicand. In modular multiplication, instead 

of first multiplying and then performing modular reduction at the end, researchers 
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are trying to find the ways of interleaving the modular reduction into the partial 

steps of multiplication. With this aspect of view, many different methods were 

proposed in order to perform fast modular multiplication of large integers. This 

section will give some of these algorithms, one of which will be examined in more 

detail: The Montgomery Modular Multiplication Algorithm. 

In 1991, Orup and Kornerup [9] proposed a modular multiplication scheme 

in radix-4 as follows: 

S

ii
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i
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NBAS
NBA

k
i

k
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END
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;22          

); div Estimate(           
DO 0 WHILE
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Figure 3.4: Modulo Multiplication with quotient estimation. 

This method has drawbacks in modulo reduction and final correction, in 

which subtraction of  is performed until  belongs to the correct interval. Also 

the quotient estimation in the above algorithm is not a simple procedure, which is 

achieved by searching  values as follows: 

N

q

S

{ }max,,1,0       ,2 qqNqS r L∈− , 

where at each step the sign of the result is checked. 

Another method for modular multiplication is the L-algorithm [23], in which 

the modulo-reduction is performed by checking the overflows of the operation. The 

algorithm is given in Figure 3.5. As seen from the figure, intermediate steps ( �s) 

should be reduced into correct range at each step.  In [23], the number of clocks per 

iP
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multiplication was given as  for an -bit operation. However, they had to pre-

compute and store some constants in order to perform modulo reduction. 
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Figure 3.5: The L-algorithm (LSB first). 

 

Sign-estimation technique used in the design of K-S Cho et. al. [32] is 

another method used for modular reduction in the intermediate steps of modular 

multiplication. In this type of multiplication algorithm, the numbers are represented 

in 2�s complements and addition is performed instead of subtraction. In [32], they 

checked the 5 MSB of the partial products by using a 5-bit carry-look adder for the 

modular reduction. They achieved about n  iterations for -bit multiplication. 

However, because of intermediate modular reduction steps, the operating speed was 

only 40 MHz, which is rather slow compared to other implementations.  

2/ n

Blackley�s Method used in K. Sakiyama�s FPGA implementation [34] for 

modular multiplication (Figure 3.6) also suffers from intermediate modular 

reduction problem.  Step 4 in this algorithm may require two successive 

subtractions, , to make the intermediate result in the range [ , 

which slows down the operation. 

NRR −= ]1,0 −N
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Figure 3.6: Blackley�s Method 

While these algorithms suffer from modulo reduction, P.L. Montgomery 

found a very clever solution to this problem: His algorithm reverses the treating of 

the digits of the multiplicand, operating from the LSB of the partial products. For 

the intermediate modular reduction process, a multiple of modulo, , is added 

instead of subtracting. With this method, the partial product is guaranteed to be 

divisible by the radix- r , which is usually a power of 2. Therefore modular reduction 

becomes a simple right shifting and removing process of the right-most digit, which 

is zero. Because of the above advantages, it is used in almost all the 

implementations to date.  

N

The Montgomery Algorithm, as presented in C.D. Walter�s systolic 

implementation [10], is as follows: 

.
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./)( b.       
;mod)()( a.       

1  to0for 
;0

mod :Output
,,:Inputs

1

1
000

0

QNABPr

rNqBaPP
rnrbapq

mi
P

NABrP
NBA

m
m

iiii

ii

m

+=

++=
−⋅+=

−=
=

=

+

−

−

 

Figure 3.7: Montgomery�s Multiplication Algorithm in radix-r. 
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3.1.2.1. Montgomery’s Algorithm in Systolic Architectures: 

A systolic architecture is a regular array of processing elements, denoted as 

, where: iPE

- All the PE �s are similar to each other and operate synchronously. 

Hence the design can be expanded by repeating the systoles. 

- All the communicate locally. Therefore routing problems are 

minimized. 

- Each PE  is as simple as possible so that the architecture can 

operate at high clock frequencies. 

The following are two examples for systolic arrays: 

 

 

Figure 3.8: Linear systolic array. 

 

 

Figure 3.9: Rectangular systolic array 
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Because of these three properties, the systolic architectures are very suitable 

for the Montgomery�s Modular Multiplication Algorithm. In 1992, Colin D. Walter 

proposed a method for systolic modular multiplication, in which the operations are 

performed in radix-2 [10]. In this architecture, one of the multipliers is fed to the 

array in bit wise fashion. Each bit of the other multiplier is hardwired to each 

systole. At a given clock cycle, each processing element performs the combinational 

operation and directly passes the incoming data to the next systole at the next clock. 

The carry propagation is pipelined through the systoles. The intermediate result is 

right-shifted through the systoles digit-by-digit at each clock. This process is 

illustrated in Figure 3.10. 

PE0PE1PEm-1 ....
iaia

iq

carry

0n0b1n1b1−mn1−mb

carry

ia

iq

carry

ia

iq

]1[ −mPi
]1[iP ]0[iP

Systolic architecture for Modular Multiplication
 

Figure 3.10: A linear array of PEs for Montgomery�s Algorithm. 

Figure 3.11, which is taken from [10], shows the interior circuitry of the 

proposed  in the modular multiplication design. As shown in the figure, each PE 

is composed of 5 XOR, 2 OR, and 7 AND gates. In addition to the combinational 

circuitry, the systole involves 5 1-bit registers (2-for carry-bits, 1-for each 

). For a k-bit modular multiplication, if the linear array structure 

is to be used, the architecture requires k systoles, therefore at least 5k XOR, 2k OR, 

7k AND gates and 5k FFs. 

PE

and ][ ],[],[ iPiQiA

Among the implementations using Montgomery�s algorithm, many of them 

suited modular multiplication into systolic architecture. 
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Figure 3.11: Typical cell for radix-2. 

 

3.1.2.2. Modifications on the Montgomery’s Algorithm: 

 Although, Montgomery�s Algorithm is ideally suitable for digital 

applications, lots of small but effective modifications have been made in the 

implementations up to date. In this section, these modifications are categorized so 

that the reader will have a better understanding of the improvements while 

examining the implementations in sections 3.2, and 3.3.   

a) Reducing the Number of Iterations: 

This method is very commonly used in both ASIC and software 

implementations. Two ways for reducing the number of iterations are widely used: 

- Using a high-radix representation of the numbers, 

- Using booth-like multiplication, 

Since the modular multiplication is the kernel operation, reducing the 

number of iterations in a multiplication directly affects the total number of clocks. 

However, as complexity of each iteration increases, the time needed for each 
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iteration increases. This results in a low clock frequency, which slows down the 

operation. 

In Figure 3.7, multiplication in radix-r is shown. The number of iterations 

decreases as  increases. However, the operations in step-a and 

step-b requires more complex circuitry as the radix increases. For example, when 

radix is 2, the calculation of  in step-a needs only one XOR and one AND gate 

(Since  is always odd, ). On the other hand, if 

radix-8 is used, all the digits are in 3-bit length. Therefore the needed amount of 

sources for the same calculation turns to be (two 3  multipliers + 6-bit adder + 3-

bit LUT) (Figure 3.12). This increases the critical path. However, the total number 

of clock cycles required to complete a modular multiplication is reduced to 1/3rd of 

radix-2.  

))/(log( 2 rnm =

N

r

iq

− n 2 when ,1mod)( 1
0 ==− rrr

3×

1

1

1
iP

ia

0b

iq

2-radixin n calculatio iq

3
3

3

iP

ia

0b

iq

8-radixin n calculatio iq

x

+

ia

LUT

x 3

3
3

3

3

 

Figure 3.12: Q-Calculation circuitries for two different radix values. 

b) Reducing the Critical Path: 

One way of removing the disadvantage of using high radix is to modify the 

algorithm in such a way that the critical path is reduced. As depicted in Figure 3.7, 

step-a has the potential of increasing the critical path. In order to reduce the 

complexity of , one of the inputs, say , is shifted up by . That is, 

the least significant digit of  becomes zero. This operation directly eliminates one 

of the multiplications and the addition operation in the above figure. Recovering of 

the modification is achieved simply by increasing the number of iterations by one as 

ncalculatio-iq

B

B r
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in the implementations of A. Royo et. al.[15] and M. K. Hani et. al. [38]. This 

process is shown in Figure 3.13: 
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Figure 3.13: Recovery of the modification in the -calculation. iq

c) Obtaining the Outputs in the Correct Range: 

In the exponentiation, the outputs of the modular multiplication unit are 

reused as inputs for a new modular multiplication. Therefore, the bounds on the I/O 

of the Montgomery algorithm become important. However, a careful inspection on 

the algorithm in Figure 3.7 shows that the intermediate results are bounded to 

 as shown in the table below: NB +

Table 3.1: All the . case worst in the )1( be  toassumed are s' and s' −rqa ii

0=i NBrrNrBP +<−+−+= /)]1()1(0[1  

  

  

 

 

1=i NBrrNrBNBP +=−+−++< /)]1()1([2

M M

1−= mi NBrrNrBNBPm +=−+−++< /)]1()1([  
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Therefore the output of the first modular multiplication is bounded in the 

range  or [ . The ongoing multiplications will result in the bound of 

. In some implementations [15][33], a final comparison by and subtraction 

is performed to reduce this bound again to [ . On the other hand, in some other 

implementations [13][14][25][31], the bounding of the output is performed via 

applying one or more iterations in the algorithm. In other words, in the extra 

iterations, since �s are equal to zero anymore, one term of the addition in step-b 

will be vanished and division by  will reduce the result to satisfy the needed 

bound. 

),0[ NB +

)

)2,0 N

3,0[ N N

)2,0 N

ia

r

 

Table 3.2: Bound is satisfied via one more iteration. 

M M  

  

  

 

1−= mi NPm 3<
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However, final multiplication by 1 at the end of the exponentiation should 

guarantee that the result of the exponentiation must be in the range [ . In the 

papers of C.D. Walter [19], and T. Blum and C. Paar [22], clear explanations 

demonstrate that the final multiplication by 1 will result in a bounded output in the 

range . The origin of their idea comes from the requirements of the RSA 

mathematics. Actually, it is seen by inspection that, multiplication by 1 

will introduce all the  �s equal to zero, except for the first one. 

A worst-case examination of the algorithm, in which all the digits of quotient, �s, 

),0 N

),0[ N

000L ))01(( 2=A ia

iq
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having their highest value ( , the limit of the output will approach to the value 

.  

)1−r

N

2 [=P

(−+ mBr

(− − mNr

 

Table 3.3: Final multiplication by 1. All the a �s are zero, except for the first one. i

0=i 1
1 /]010[ −=+⋅+= BrrBP  
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Since  at the beginning of the final multiplication, the following 

inequality can be obtained: 

NB 2<

2rfor        ,0)2()1 ≥≤−< −−− mm rrNNBr . 

Therefore, the result at the last iteration falls into the range [ . ),0 N
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3.2. VLSI Implementations 

This section presents the recent VLSI implementations of RSA algorithm. 

However, a survey of the RSA implementations, prepared by Ernest F. Brickell in 

1990 [3] is given in Table 3.4 to give the reader a reference point to compare the 

improvements after 90s. 

Table 3.4: A Survey of RSA Hardware Implementations up to 1989 (Brickell [3]). 

 Year Tech. # of bits 
per chip Clock Baud 

(# of bits) 
# of clocks per 

512-bit op 

Sandia 1981 mµ3  168 4MHz 1.2K 
(336) 

6100.4 ×  

Bus. Sim. 1985 GateArray 32 5MHz 3.8K 
(512) 

60 1067. ×  

AT&T 1987 mµ5.1 6104.0 × 298 12MHz 7.7K 
(1024)  

Cylink 1987 mµ5.1  1024 16MHz 3.4K 
(1024) 

6102.1 ×  

Cryptech 1988 GateArray 120 14MHz 17K (512) 6104.0 ×  

CNET 1988 mµ1 6103.2 × 1024 25MHz 5.3K 
(512)  

Brit.Telecom 1988 mµ5.2 6101× 256 10MHz 10.2K 
(256)  

Plessy 1989 - 512 - 10.2K 
(512)  

Sandia 1989 mµ2 6104.0 × 272 8MHz 10K (512)  

Philips 1989 mµ2.1 6101.4 × 512 16MHz 2K (512)   
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 In 1996, two similar VLSI implementations, based on the reducing critical 

path approach, came from two different universities of Taiwan with P.-S. Chen et. 

al. [13] and C.-C. Yang et. al. [14]. In [13] they used a method with  operations 

per multiplication with a clock frequency of 50 . Their implementation results 

were as follows: 

n2

MHz

- 512-bit RSA operation 

- A Prototype CMOS VLSI design using  technology. mµ8.0

- gate count at a chip area of  K78≅ 276mm

-  clock cycles per 512-bit operation 61005.1 ×

- A baud of @50 clock frequency sKb /3.24 MHz

On the other hand, in [14] they proposed a similar algorithm to [13], but they 

used only about  iterations per multiplication. The drawback of their method 

was introducing one more addition operation in each iteration. The results of this 

implementation were: 

2+n

- 512-bit RSA operation 

- A single chip using  library SPDM 6.0 COMPASS mµ

- gate count at a chip area of  K74≅ 256mm

- The critical path of in the simulations. ns06.6

- worst-case clock cycles per operation. 61054.0 ×

- Expected clock frequency of 125 with estimated routing 

delay about  

MHz

ns2 .

- Expected baud of 118 @125 clock frequency (worst-

case) 

sKb / MHz
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In [15], A. Royo et. al. used a somewhat different technique for the 

Montgomery Algorithm. First of all, they used a radix-4 Modified Montgomery 

Algorithm by reducing the critical path as mentioned in the previous section. 

Differently, they shifted up  by and then applied two more iterations in the 

multiplication algorithm. In addition to this, they used a Carry Save Representation 

(CSR) for the intermediate results, by which they believe that the operation speed is 

increased. However, this technique had a drawback: conversion from CSR to non-

redundant binary representation at every modular multiplication. Their results were 

as follows: 

B 2r

- 768-bit Operation 

-  CMOS technology. mµ7.0 ES2

- Area of 77  2mm

- clocks per multiplication and 0  clocks per 

exponentiation. (Average case) 

400 6105. ×

- . MHzsKb 50@/5.72

The design of J.-H. Guo et. al. [16] is based on the bit-serial systolic 

architecture, which does not include any broadcasting signals. Although, a similar 

algorithm to the one in [14] was used, they reached to a higher performance because 

of a more compact hardware design. In addition to this, they used R-L Binary 

method, which utilizes the parallelism of the multiplication and squaring. However, 

the parallelism was performed by using two multipliers, therefore the area of this 

design is almost twice as much as the previous designs in [13] and [14].  Their 

results can be summarized as follows: 

- 512-bit operation 

- COMPASS 0 CMOS standard cell library mµ6.

- gate count at a chip area of  . K132 268mm
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- Estimated clock frequency of 143  MHz

- Estimated baud of . MHzsKb 143@/278

A different approach on the Montgomery�s Algorithm came from Jye-Jong 

Leu and An-Yeu Wu [20] in 1999. In this implementation, as shown in the 

algorithm taken from [20] (Figure 3.14), the Booth function calculates the 

coefficients ( �s) of the input  of the multiplier. Another multiplexing operation 

is performed to determine the coefficient of  in the algorithm. Different from the 

previous examples, left-shift is performed instead of right-shift for modular 

reduction. With these modifications, the proposed algorithm takes  operations 

per multiplication. In the implementation, they used a systole-like architecture with 

 unit cells, each corresponding to 2 bits of the operation. However, they 

noticed that at any clock cycle, half of these cells stayed idle. Therefore they 

reduced the number of cells by half to , and thus they reached a total of 

about gate count. One other solution for 100% utilization of the idle cells could 

be by exploiting parallelism in the exponentiation with R-L Binary Method as 

illustrated in Figure 2.8.  For the exponentiation, they used L-R Binary method, in 

which  multiplications are needed on the average. The critical path obtained in 

the design (without routing delays) was 6 . For routing, they made an estimation 

by adding 30% to critical path delay. A summary of this implementation is as 

follows: 

ic B

N

4 +

ns

2/n

12/ +n

64

3

1/n

7.

K

2/n

- 512-bit Operation  

-  (Technology name was not given) mµ6.0

-  gate count (The chip area was not stated) K64

- clock cycles. M53.0

- Estimated clock frequency of 115 . MHz

- Estimated baud of 111 . MHzsKb 115@/
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Figure 3.14. The proposed Booth-encoded Montgomery Algorithm in [20]. 
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In 1999, the authors of [13] further improved their study on Montgomery 

Algorithm and proposed a new method in [21]. In this new design they revised the 

algorithm such that one addition is required in each iteration of the modular 

multiplication. They used 2�s complement multiplier and modular-shift adder, both 

of which are composed of linear cellular arrays. However, this was a theoretical 

study rather than a hardware implementation so that the results were presented in 

terms of full adder (FA) parameters used in the design. The time spent per operation 

was given as , and the area was given as , where τ  and α  are roughly the 

delay and the area of a FA. 

τ22n αn2

The implementation of J.-S. Chiang et. al. [23] differs from the others with 

respect to the exponentiation and multiplication algorithms used. The 

exponentiation is performed by scanning 4-bits of the exponent at a time. Even 

though, the worst-case number of multiplications is reduced to  with this 

method, the R-L Binary Method with interleaved squaring and multiplication still 

gives better result ( -multiplications per exponentiation). On the other hand, this 

method needs pre-computation and storage of  in the RAMs. As 

for the multiplication, they used modified L-algorithm with  cycles per 

multiplication. The results of the implementation were: 

3/4n

n2

n
753  and ,, MMM

- 512-bit Operation 

- COMPASS standard cell library (TSMC  process). mµ6.0

- Critical path of estimated by COMPASS Input Slope Model ns6

-  clock cycles per operation M7.0

- estimated clock. MHzsKb 166@/122

Recently, 1024-bit implementations have begun to take place of the previous 

512-bit implementations. The design proposed by Y.S. Kim et. al. [25] is one of 

them. They used Montgomery�s Algorithm and L-R Binary Method for the modular 

exponentiation. Instead of a systolic architecture, they used 32-bit Carry Save 
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Adders (CSA) and Carry Propagation Adders (CPA) in the design. The results were 

as follows: 

 

- 1024-bit Operation 

-  TechnologySOG  65.0 mµ

-  counts gate 112K

- Clock cycles of  case) (average 6.1 and case)-(worst 2.2 MM

- Clock frequency of  MHz50

- Worst-case operating time of   ms43 case) average in the 5.32( ms

 

Two implementations for a 1024-bit RSA operation were proposed by T.-W. 

Kwon et. al. [31]. One of them was an area-critical design, which uses the L-R 

Binary Method, and thus needs  multiplications for an process at worst-

case. The other was a speed-critical design using the R-L Binary Method, in which 

the parallelism was performed via two separate multipliers. Montgomery�s Method 

was used in both designs for the modular multiplication. Some of the authors of this 

paper had also worked in the implementation of the 1024-bit RSA Processor in [25]. 

Newly, they improved their previous design by adding R-L Binary Method with 

parallel multiplication and squaring. Although they reached a 2 times better speed 

performance, the second multiplier had increased the area of the design. The 

comparison of the two proposed implementations is as follows: 

n2 bit-n
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Table 3.5: 1024-bit RSA implementations using two types of Binary Method (Kwon 

et. al. [31]). 

 L-R Method R-L Method 

Technology SOG 5.0 mµ SOG 5.0 mµ  

Gate counts 92K 156K 

Clock Frequency 50MHz 50MHz 

Clock Cycles 1.6M(average) 
2.2M(worst) 1.1M 

Operating Time 32.5ms(average) 
43ms(worst) 22ms 

 

 

The implementation of K.-S. Cho et. al. [32] uses a new radix-4 modular 

multiplication algorithm based on sign-estimation technique, of which a brief 

discussion was given in section 3.1.2. With this technique, they reached to a value 

of  clock cycles per n  multiplication. In addition, they used R-L Binary 

Method by performing  multiplications per exponentiation. Since, the 

parallelism was achieved via a second multiplier, the drawback of this 

implementation became the high number of gate counts: . Although the 

design had resulted in a slow operating clock of , they obtained a 

considerably high performance for a 1024-bit RSA process. The result was 13  

operating time and a baud of 78 . Obviously, there are two main 

reasons underlying such a performance with a clock frequency as low as 40MHz: 

32/ +n bit-

8.

n bit-n

K230

MHz40

ms

MhzsKb 40@/

- Reduced number of iterations in the multiplication 

- R-L Binary Method with parallel multiplication and squaring 

operations. 
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3.3. FPGA Implementations  

In 1998 J. Poldre, K. Tammenae, and M. Mandre have analyzed the FPGA 

implementations of the RSA by using three families of FPGAs: XC4000, XC6200, 

and FLEX10K [39]. They used the R-L Binary Method with parallel S&M, and 

radix-2 Montgomery algorithm in their implementation. They proposed two 

different architectures, systolic and classical, for the modular exponentiation.  

However the timing results were some estimation based on the number of clocks 

and delay values of the FPGA resources. Besides, only public key processes 

requiring operations with a small exponent (not private key processes) were taken 

into account. These results are shown in Table 3.6 and Table 3.7, which are taken 

from the corresponding paper [39]. The k-values in the tables represent the bit-

lengths of the unit operations in the design. 

 

 

Table 3.6: Estimated CLB count and number of cycles for two types of architectures 

in 3 FPGA families (J. Poldre et. al.[39]). 

bits k XC4000 
Systole 

XC4000 
Classic 

XC6200 
Systole 

XC6200 
Classic 

FLEX10K 
Systole 

FLEX10K 
Classic 

cycles 
Systole 

cycles 
Classic 

512 2 4096 6144 16384 24578 8192 12288 256 128 

512 4 7168 10752 26624 39936 14336 21504 128 64 

512 8 12288 18432 40960 61440 24576 36864 64 32 

512 2 8192 12288 32768 49152 16384 24578 512 256 

512 4 14336 21504 53248 79872 28672 43008 256 128 

512 8 24576 36864 81920 122880 49152 73728 128 64 
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Table 3.7: Estimated time (in msec) of RSA Public Exponentiation Process. Only 

exponentiation times for small exponent are presented (J. Poldre et. al.[39]). 

Bits k XC4000 
Systol. 

XC4000 
Classic. 

XC6200 
Systol. 

XC6200 
Classic. 

FLEX10K 
Systol. 

FLEX10K 
Classic. 

Cycles 
Systol. 

Cycles 
Classic. 

512 2 3,9 2,0 5,2 2,6 5,2 2,6 256 128 

512 4 2,3 1,1 3,4 1,7 3,3 1,6 128 64 

512 8 1,3 0,7 2,1 1,0 2,0 1,0 64 32 

1024 2 15,7 7,9 21,0 10,5 21,0 10,5 512 256 

1024 4 9,2 4,6 13,6 6,8 13,1 6,6 256 128 

1024 8 5,2 2,6 8,4 4,2 7,9 3,9 128 64 
 

 

 

In 1999, T. Blum and C. Paar proposed an FPGA implementation of the 

RSA Cryptosystem, which uses the modified Montgomery�s Algorithm in a systolic 

architecture [22]. In this implementation, they performed operations in radix-2, 

using the R-L Binary Method with interleaved S&M. Also, they simplified the qi-

calculation by shifting up one of the modular multiplication inputs as explained in 

3.1.2.2.b. Differing from the previous implementations, they applied three more 

iterations in their modular multiplication algorithm than the original case. Although, 

parallel S&M introduced great advantages in reducing total number of clocks, they 

obtained 2(n+2)(n+4) clock cycles for an n-bit operation, which is rather high 

because of the operations handled in radix-2.  Typical PE in this architecture was 

different from the convenient ones proposed by C.D. Walter [10] in such a way that 

each PE performed calculations more than 1-bit although radix-2 was used. They 

implemented the design for three types of PE�s (4, 8, and 16 bits) in order to find the 

solution which best suits to the Xilinx XC4000 series FPGA�s, which they used in 

the implementation. The following table taken from [22] summarizes their results 
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for these three types of PE�s. The u values represent the number of bits computed in 

each PE. 

 

Table 3.8: CLB usage and execution time for a full modular exponentiation (Blum 

et. al. [22]). 

 512 bit 768 bit 1024 bit 

u C 
CLBs 

T 
[ms] 

C 
CLBs 

T 
[ms] 

C 
CLBs 

T 
[ms] 

4 2555 9.38 3745 22.71 4865 40.50 

8 2094 10.13 3123 23.06 4224 49.36 

16 2001 11.56 2946 25.68 3786 49.78 
 

 

 

After two years, the same authors implemented a similar systolic architecture 

in Xilinx XC40250XV and XC40150XV FPGA�s with operations performed in 

radix-16 [36]. Different from the previous one, the modular multiplication algorithm 

used in this new implementation (Figure 3.15) was an optimized version of the 

Montgomery�s Algorithm to be used for high radix computations as in proposed by 

H. Orup [40]. However, in the paper [36], they didn�t give sufficient details of how 

they implemented the initialization part of the new algorithm. Using a higher radix 

in the Montgomery computations, they reduced the number of clocks about a 

quarter of the previous implementation, while preserving the clock frequency. 

Therefore they have achieved to a four times faster RSA operation than the previous 

implementation. Table 3.9 compares the two FPGA implementations [22] and [36] 

of T.Blum and  C.Paar. 
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Figure 3.15: The Modular multiplication Algorithm proposed in [36]. 

 

Table 3.9: Comparison of the two FPGA implementations [22] and [36]. 

Radix 
512-bit 

CLB     Time (ms) 

768-bit 

CLB   Time (ms) 

1024-bit 

CLB   Time (ms) 

2 [22] 2555         9.38 3745        22.71 4805        40.05 

16 [36] 3413        2.93 5071         6.25 6633        11.95 
 
 

In [30], A. Daly and W. Marnane proposed three types of Montgomery 

Algorithms and compared their FPGA performances. Among the proposed 

algorithms, they had chosen the one in Figure 3.16, in which the computations are 

handled in radix-2 and the q-calculation is made easier by shifting-up one of the 

inputs as in [22]. As for the exponentiation, they used the R-L Binary Method, 

however they performed parallel S&M with two multipliers instead of interleaving 
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them in one multiplier. The target device in this implementation was the Xilinx 

V1000FG680-6. The results of this FPGA implementation are shown in Table 3.10.  

 

  
MonPro3 (A, B, M ) 
{ 
 01 =−S ; 
 AA ×= 2 ; 
 for 0=i to n  do 
  2mod)( 1−= ii Sq ; 

  2/)( 1 AbMqSS iiii ++= −
; 

 end for 
 Return 

nS ; 
} 

 

Figure 3.16: The modular multiplication algorithm used in [30]. 

 

Table 3.10: Implementation results in Xilinx V1000FG680 FPGA (Daly et.al. [30]). 

Bit Length(n) 
No. of Slices  

(% of chip) 

Clk. Freq. 

(MHz) 
Data Rate 

120 1146 (9%) 83.51 673.2 kb/s 

240 2301 (18%) 58.15 238.3 kb/s 

480 4610 (37%) 55.92 115.5 kb/s 

720 6917 (56%) 50.66 70.0 kb/s 

1080 (1024) 10369 (84%) 49.63 45.8 kb/s 
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CHAPTER 4 

 

HARDWARE IMPLEMENTATION 

 

 

This chapter presents the details of the hardware implementation of the RSA 

PKC performed within this thesis. The design and implementation results presented 

in this chapter are summarized in a paper, which was presented and published as a 

work in progress at Euromicro Symposium on Digital System Design, DSD2003, in 

September 2003 [42].  

Section 4.1 examines the methods and modifications that are used in the 

design. Also a top-to-bottom hierarchic description of the design architecture is 

given in this section. VLSI and FPGA implementation details are handled separately 

in Section 4.2 and 4.3, respectively. Finally the last section gives a comparison of 

the results presented here to the ones in the literature, which were presented in 

Chapter 3. The reader may refer to the previous section for detailed explanations of 

the used algorithms and methods in this chapter.  

 

4.1. Design Aspects 

4.1.1. Design Methodology 

For the exponentiation operation, The R-L Binary Method is used (Figure 

2.2). This Method treats the exponent from the LSB in bit-wise fashion. The 

multiplication and squaring operations are interleaved into successive clock cycles 
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using a single multiplier, hence a 100% utilization of the hardware and time has 

been reached in the design. In other words, with interleaved multiplication and 

squaring, there are no idle clocks and idle resources while the system is running. 

Also there is no need to use exponentiation algorithms such as  Method, 

Power Tree Method or Booth Recoding Method in order to reduce the number of 

multiplications.   

ary-m

For modular multiplication, Montgomery�s Modular Multiplication 

Algorithm (Figure 2.3) is used. Among the modifications on this algorithm, which 

were categorized in Chapter 3, the following are utilized in this implementation: 

- The number of iterations are reduced by performing the 

algorithm in radix-4. A higher radix would result in a less 

number of iterations but since the computations become more 

complex as the radix increases, the critical path and needed 

amount of resources also increase. Radix-16 computations were 

also tried in the implementation. However, while the total 

operation time remained almost as the same as for radix-4, the 

area increased about 32%. The following table explains the effect 

of increased radix:  

 

 Table 4.1: Comparison of radix-4 and radix-16 designs. 
 

 Gate Count Clock Period 
Worst-case # of 

clocks 

Radix-4 K132 )2/1024(21024 ××≅ 4.06ns  

Radix-16 K175 )4/1024(21024 ××≅ 8.3ns  
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- Another modification was performed to reduce the critical path 

by simplifying the -calculation (see section 3.12.2.b). In the 

modular multiplication, one of the inputs, , was shifted-up by 

4, making the least significant digit zero. The new -calculation 

became:  

iq

B

iq

 

rnrpq

brnrbapq

i

ii

mod)(

     0  and   mod)()(
1

00

0
1

000
−

−

−⋅=

⇒=−⋅⋅+=
 

0 

As explained in section 3.1.2.2.b, one more iteration was applied in the 

algorithm to recover the same result after this simplification. 

- In order to guarantee that the outputs of the modular 

multiplication are in the range [ , another extra iteration 

was added in the multiplication algorithm. The mathematical 

details of this modification were given in section 3.1.2.2.c.  

)2 ,0 N

With the above modifications, the algorithm that is used in the design has 

turned to be: 

 Inputs: A, B, N; 

Output: NBAP m mod4 )1( +−⋅⋅=  ; 
4' ⋅= BB ;   /* Reducing the critical path */  

00 =P ; 
For 0=i  to 1+m  /* Two more iterations */ 

 a. ;4mod)4( 1
00

−−⋅= npqi
/* Simpler qi-calculation */ 

 b. ;4/)'(1 NqBaPP iiii ⋅+⋅+=+
 

End 
Post Condition: NQBAPm

m ⋅+⋅=⋅ +
+

1
14  

 

Figure 4.1: The Algorithm used in the design. 
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As seen in the above algorithm, there are two more iterations with respect to 

the original algorithm (Figure 3.7). One of these extra iterations is for the recovery 

of the shift-up operation of one of the inputs. The other iteration is for obtaining the 

output in the range [ .  )2 ,0 N

4.1.2. Design Architecture 

There are four levels of hierarchy in the 1024-bit RSA Cryptosystem design 

as seen in Figure 4.2. In this section, the design architecture will be described from 

top to bottom.  

 

Design Hierarchy

top1024R4shell

top1024R4

controller

PE0

qi-calculater

PE1

core-systole

PE512

core-systole

M

 

Figure 4.2: Hierarchy of the design. 
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The first level is used for the chip interface. The I/O interface of the top-

module is shown in Figure 4.3. The Modulus , Pre-computed Factor , and 

the Message (  are taken in by 8-bit interface; and the Key is taken in by a 4-bit 

interface. Data-valid (dvin) signal controls the acceptance of these inputs to the 

system. When dvin is at logic level LOW, all the inputs are read at the rising edge of 

the clk input. The 8-bit inputs of the top-module, , , and  are registered and 

transmitted into the second level of the hierarchy in 2-bits thru shift registers. The 

remaining 4-bits input, e , is registered and transmitted into the second level, using a 

1-bit shift register. This operation is shown in Figure 4.4.   

)(N

N

)(R

)M

R M

 

xdatain (M)

edatain (e)

rdatain (R)

mdatain (N)

8

8

4

8

dvin

reset

clk

dvout

dout
8

RSA-1024

modulus
1024-bit

precomputation
factor 1024-bit

message
1024-bit

key
1024-bit

cipher  1024-bit
)mod( MXC e=

 

Figure 4.3: I/O interface of the top-module. 
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Figure 4.4: Data interface in the 1st level hierarchy. 

 

The output of the RSA Cryptosystem, , is also a 1024-bit number and 

exported from the module by an 8-bit interface via an active-LOW data-valid signal 

named as dvout in the design.  

C

In the second level of the hierarchy, the module �top1024R4� includes a 

systolic architecture and a controller unit. There exist  processing elements 

(PE) for an  operation. The two extra PE�s are needed in order not to loose 

data when overflow occurs in the intermediate steps of the modular multiplication.  

The right-most processing element, PE

22/ +n

bit-n

0, in Figure 4.5 represents the least significant 

digit of the operation and includes the -calculation circuitry, which is the step-a of 

the used multiplication algorithm in Figure 4.1.  

iq
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Figure 4.5: A sample systolic architecture for 8-bit RSA. 

 

In the third level, the architecture of the PE�s and the function of the 

controller module are presented. Each PE represents the 2-bits of the RSA operation 

since radix-4 is used in the design. A PE consists of a core-systole and some logic 

structures surrounding the core-systole (Figure 4.6). These structures are needed for 

the input acquisition, storage of some intermediate steps and preparation of the PE�s 

for the next Squaring and Multiplication (S&M).   
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Figure 4.6: The structure of a PE. 

The 4th and the last level of the hierarchy is the interior structure of the core-

systoles. The main mathematical operation of the Montgomery�s Algorithm takes 

place in this level. All core-systoles have the same architecture except for the one in 

the right-most PE. This one is different because the -calculation circuitry is 

included. The two types of the core-systoles are presented in Figure 4.7.  
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4.1.3. The Operation 

In each iteration of the multiplication algorithm, once the q  is computed 

(step-a) in the right-most PE, all the remaining systoles do the corresponding 

computation of the step-b by using the same a  and  values, which are shifted 

through the systoles from right-to-left at each clock cycle. This computation is 

performed in a pipelined manner, therefore takes two clock cycles for each 

operation. In other words, at the i , the  processing element, PE

i

i iq

thjclock-th
j, 

performs the combinational operation in step-b and gives the outputs to the PEj+1 

sequentially at the ( cycle. However, in order to perform the next 

operation, the PE

clock-)1 thi +

j should wait one clock so that the PEj+1 performs the step-b 

operation and gives the outputs back to PEj at the next clock cycle. This means that 

each PE states idle for one clock cycle while waiting for the outputs of the nearing 

PE in the left (Figure 4.8).  In the implementation, this inefficiency was avoided by 

using the idle clocks for another multiplication, which have been mentioned as 

�parallelism� or �interleaving� in the previous chapters. Since in the R-L Binary 

Method (step-2a and step-2b in Figure 2.2), there are two modular multiplications 

(called as squaring and multiplication), which are independent from each other, 

these two multiplications are interleaved by using the idle clocks, and thus 100% 

efficiency in the utilization of time and area has been reached. The operation of the 

PE�s is summarized in Figure 4.9. 
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Figure 4.8: Single multiplication without interleaving. Each PE states idle for one 

clock cycle. 
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Figure 4.9: Interleaved Squaring and Multiplication operations. 100% utilization of 

the PE�s and no extra clocks for Multiplications. (S: Squaring; M: Multiplication). 

57 



Recalling back to the R-L Binary Method (Figure 2.2), it can be seen that the 

independent operations, step-2a and step-2b, have a common multiplicand. This 

property of the algorithm provides an efficient utilization of the hardware when 

interleaving these two independent Squaring and Multiplication (S&M) operations. 

In this implementation the common multiplicand is placed into the registers at the 

top of the PE�s, and the non-common multipliers are fed digit-by-digit from the 

right-most PE at successive clocks (Figure 4.10). These digits are actually nothing 

but the  values in the multiplication algorithm in Figure 3.7.  ia

1+msyst
...

msyst 2syst 1syst

...

... MSMS

Common
multiplicand

Modulo

non-common
Multipliers

0syst

ia

 

Figure 4.10: Implementation of the R-L Binary Method in the systolic architecture.  

Since the outputs of the multiplication are reused as the inputs in the same 

architecture, a reorganization process of the registers takes place at the end of each 

S&M. The common multiplicand is the result of the Squaring operation. Therefore, 

at the end of an S&M, the result of the S, which appears digit-by-digit at the systole 

outputs from right-to-left, is moved to the upper registers at successive clocks. 

These upper registers correspond to the  input of the Modular multiplication 

Algorithm. (The right-most systole doesn�t have a  input because of the 

modification, in which the  input is shifted-up by 4 resulting the least significant 

digit zero.) Since the modular multiplication algorithm starts from the least 

significant digit, the new S&M can start just at the next clock at the end of the 

previous S&M. In other words, the next iteration of the R-L Binary Method starts 

without waiting the completion of the previous iteration.  

B

B

B
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Figure 4.11: The result of the squaring is stored digit-by-digit to be reused in the next 

Squaring (S) and Multiplication (M). Syst1 starts the new S&M at the -clock. thi )1( +

 

In case of e  in the R-L Binary Method, only Squaring is performed. The 

result of the previous multiplication should be stored when this happens. In this 

architecture, extra registers are used in each PE to provide this storage. Figure 4.12 

shows the storage of the Multiplication result digit-by-digit into the newly added 

registers. Then the stored data is fed back to the systoles as the  inputs when a 1 

comes from the exponent input. 

0=i

ia

1+msyst
...

msyst 2syst 1syst

...

...

Result of the
Squaring

Modulo

0syst

 

Figure 4.12: Storage of the multiplication result digit-by-digit when the exponent bit 

is zero. 
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A state machine in the controller unit operates according to the incoming bits 

of the exponent and decides whether to store the multiplication result or not. There 

are 8 states of operation, in which a counter and the incoming bit of the exponent 

controls the state transition. The counter value tells the end of the present state; and 

the exponent bit tells the next state to go. The state diagram and the function of the 

states are given in Figure 4.13 and Table 4.2, respectively. Figure 4.14 illustrates an 

example for the modular exponentiation process using the state diagram in Figure 

4.13. 
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00S
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2S 3S

6S4S
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0=e
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Figure 4.13: The State Diagram.  
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Table 4.2: Description of the states. 

State Names Description 

00S  Idle State. Waits for the dvin LOW. 

0S  Getting the inputs , and placing them into the shift-registers. e,,, NMR

1S  Pre-multiplication of the inputs by  to obtain the residues. R

2S  Squaring and Multiplication in parallel. 

3S  Squaring continues and the result of the previous Multiplication is being 
stored. 

 Final multiplication by 1 to remove the  factor. 

 Outputting the result of the exponentiation 

 Only Squaring takes place. The stored value in  remains constant. 
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Figure 4.14: Modular Exponentiation example with the corresponding states. 
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4.2. VLSI Implementation 

The design presented here is a Semi-Custom Design, in which the AMI 

Semiconductor 0.35µm CMOS Standard Cell Libraries are used. This technology 

accommodates 5 metal layers for routing purposes resulting in chip densities as high 

as 15K gates per mm2. The following design tools running on Sun Sparc Work 

Stations, which were supported by TÜBİTAK-ODTÜ-BİLTEN, were used during 

the VLSI implementation: 

• Synthesis and Timing Analyzing ! Synopsys Design Analyzer  

1999.10 

• Layout (Placement & Routing) ! Cadence Silicon Ensemble 5.2 

• Simulation ! Cadence Affirma Verilog-XL 2.8  

• Post-Layout Corrections ! Cadence Design Framework II 

The following procedure was applied in the implementation: 
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Figure 4.15: VLSI Implementation Procedure. 
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4.2.1. Design with HDL  

As the Hardware Description Language (HDL), VERILOG HDL was used 

in the design. The need for the VERILOG-HDL was especially appeared in 

designing the controller unit. Designing the complex structures via HDL provides 

fast design cycles and gives better results than gate-level designs. 

The HDL design was first simulated functionally by using the Cadence 

Affirma Verilog-XL 2.8 simulation tool. This step of the implementation procedure 

provided the early detection of any errors, which might cause many problems in the 

later steps. After being completely sure about the functionality, the next step was the 

structural design: Synthesis.  

4.2.2. Synthesis 

For the synthesis of the design, the Synopsys Design Analyzer tool was used. 

The synthesis process was performed in three steps from bottom to top of the 

hierarchy.  

At first step, an individual PE was synthesized with the following 

constraints: 

- Clock Frequency: 200 MHz  

- Operating Conditions: Worst-Case Industrial (MTC45000 

WCIND)  

- Wire Load: 100-250. 

- Timing critical synthesis. 

Another synthesis constraint was selection of the Flip-Flops to be used in the 

design. Some of the Flip-Flops in the MTC45000 library were designed for low 

power consumption. They had very high set-up and hold times reaching up to 7ns. 

Therefore, this type of Flip-Flops was eliminated during the synthesis. The results of 

the above high-effort timing critical synthesis are:   
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Table 4.3: Synthesis results of an individual PE. 

Combinational Area 128.3 gate counts 

Non-combinational Area 102 gate counts 

Total Area 230 gate counts 

Max. Delay 4.98ns 
 

 

After the synthesis of one PE, the structure was marked as �don�t touch� and 

thus preserved in the synthesis of the upper level modules. With this method, the 

tool considers the synthesized PE as a black box and does not overrule the 

hierarchical structure. Since the whole design consists of many of these PE�s, the 

tool just copied the synthesized PE�s while synthesizing the upper level modules. 

This reduced the total synthesis time and preserved the locality of the systoles. 

Hence, in addition to the regularity and high operating clock frequencies, the 

systolic architecture provided also fast design cycles. 

The second step was the synthesis of the controller unit. The same 

constraints were applied as in the synthesis of the PE, except for the wire-load 

model. The controller is a rather larger design than a PE and includes some 

broadcasting signals to control the PE�s. Therefore a higher wire-load model was 

needed in the synthesis of the controller. Choosing the appropriate wire-load model 

is an important issue in such a way that if one chooses a small model below the 

needs of the architecture, the layout results will probably fail to meet timing 

constraints because of the large fan-outs and routing problems in the layout. On the 

other hand, if a high-degree model is to be chosen, then the layout tool may put 

unnecessary buffers, which increase the chip area and timing. The negative effect of 

inappropriate wire-load model appears after the layout process. Therefore, about 20 

Synthesis-Layout iterations were experienced until reaching to the optimum results 
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with the wire-load model of 36000-42000 for the controller unit. The synthesis 

results were as follows: 

 

Table 4.4: Synthesis results of the control unit. 

Combinational Area 4713 gate counts 

Non-combinational Area 9785 gate counts 

Total Area 14498 gate counts 

Max. Delay 5.11ns 
 

 

The third and the final step was the synthesis of the top module. The 

synthesizer didn�t touch to the previously synthesized modules, that is the PE�s and 

the controller unit. The remaining to be synthesized were the I/O interface circuitry 

and some multiplexers and registers, which existed in the same level with the PE�s 

and the controller. The results of the synthesis of the total design are in Table 4.5.   

 

Table 4.5: Synthesis results of the whole design with I/O pads. 

Combinational Area 84232 gate counts 

Non-combinational Area 68644 gate counts 

Total Area 152876 gate counts (with I/O pads) 

Max. Delay 6.69ns 
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4.2.3. Layout 

Reaching the desired results in the synthesis, the synthesized design is 

exported as VERILOG NETLIST to the Cadence Silicon Ensemble tool for the 

placement and routing. This process includes the following steps: 

1) Initialize floorplan: Floorplan dimensions, and some floorplan options 

are selected in this step before the placement starts. Also a decision on 

the row utilization is made. A 95% row utilization was preferred in the 

design in order to provide some area for the clock distribution process. 

2) Placing I/O�s: The designed chip includes total of 68 pins: 

- 31 input pins (8 pins for each message, pre-computation number, 

and modulo; 4 pins for exponent; 1 pin for each clock, reset data 

valid signals),  

- 9 output pins (8 pins for output data; 1 pin for output data valid 

signal),  

- 28 power pins (14-VDD, 14-VSS pins). 

3) Place cells: The cells identified in the synthesis are placed automatically 

into the floorplan in this step. The tool performs the placement by taking 

account the timing constraints, which are imported at the beginning of 

the layout process, as a constraint file.  

4) Generate clock tree: As in the timing driven placement of the cells, the 

clock distribution process is also performed according to the imported 

constraint file. In this step, the user specifies the maximum skew value 

and maximum delay on the clock signal. The tool generates a clock tree 

by inserting some buffers where needed from the imported design 

library.  

5) Place filler cells: After the newly inserted buffers in the previous step, 

the empty spaces must be filled. Filler cells are dummy structures used to 
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provide the continuity of design layers underneath the routing layers. 

They have various dimensions and are used both in filling the spaces 

between the I/O pads and the core cells.  

6) Add power rings: Two rings of metals are placed surrounding the core, 

one for VDD and the other for VSS. 

7) Connect rings: Power pins of the cells are shorted to the two rings 

created in the previous step. 

8) Global route: The tool auto-routs all the nets in the design in this step.   

9) Verify: In this step, a final verification of the connectivity, geometry, and 

antenna effect after the global routing of the whole chip is done. 

10)  Back-annotation: As the last step of the layout, the Standard Design 

Format (SDF) file is produced from the layout. This file includes triplet 

routing delay values (max, min, and typical delays) calculated separately 

for maximum and minimum type path delays using the layout data. This 

file carries the routing information and is used in the post-layout 

simulations and post-layout timing analysis of the design. 

 

4.2.4. Post-layout Work 

In addition to the back-annotation (generation of the SDF file), a VERILOG 

netlist of the layout is also extracted to be used in the post-layout simulation and 

static timing analyzing. The design is simulated in Cadence Affirma Verilog-XL 2.8 

simulation tool by annotating the SDF file into the VERILOG netlist. By 

introducing the SDF delay information, the Static Timing Analyzing was performed 

using the Design Analyzer. The results of the timing analyzing are given below: 
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Table 4.6: Static timing analysing results (with I/O pads and routing delays) after 

layout. 

Combinational Area 84515 gate counts 

Non-combinational Area 68644 gate counts 

Total Area 153159 gate counts (with I/O pads) 

Max. Delay 3.97ns 
 
 

 For the power analysis of the designed chip, an estimation can be made 

based on the formula given below:  

SfNPP NDestimated ×××= 2 , 

where: 

=2NDP  Power dissipation in a 2 input NAND gate in µWatts/MHz. 

=N  Total number of gates in the design. 

=f Operating frequency in MHz. 

=S Percentage of switching gates at a given time. 

With 0.0848 µW/MHz, and taking , and , the worst-

case power can be estimated as: 

=2NDP %30=S MHzf 250=

 974             
30/100  250 153159 / 0848.0

mW
MHzMHzWPestimated

≅
×××= µ  

 This is a high power value for a single chip, even though it is a worst-case 

estimate. However, low power design is not in the scope of the research presented in 

this thesis. Moreover, it is possible to lower the power dissipation by easily moving 

the design to technologies with smaller feature sizes and lower supply voltages, 

when commercial products are to be designed. 
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After verification of the operation in the post-layout simulation and 

obtaining the desired performance in the timing analyzer, the GDSII stream file was 

produced from the SILICON ENSEMBLE. This file is required for design 

submission and for exporting the design into Cadence for post-layout checks 

(Design Rule Check (DRC), Electrical Rule Check (ERC), and Layout Versus 

Schematic (LVS)) of the design.  

 The design has been sent for fabrication to EUROPRACTICE IC SERVICE 

as a single-chip product. The fabrication will be performed by using the technology 

AMI Semiconductor 0.35 µm CMOS C035M-D (5M/1P).   

 

 

Figure 4.16: The layout produced via Cadence Silicon Ensemble.  
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Figure 4.17: Zoomed view on the left-bottom corner of the layout of Figure 4.16. 
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Figure 4.18: Layout view in Cadence Design Framework II. 
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Figure 4.19: Zoomed view on the left-bottom corner of the layout of Figure 4.18. 
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4.3. FPGA Implementation 

The Field Programmable Gate Array (FPGA) is an integrated circuit that 

contains many identical logic cells that can be viewed as standard components. The 

individual cells are interconnected by a matrix of wires and programmable switches. 

A design is implemented on an FPGA by specifying the simple logic function for 

each cell and selectively closing the switches in the interconnect matrix.   

Design with the FPGA�s provides many facilities such as faster design 

cycles, simpler and less expensive realizations of the designs compared to VLSI 

implementations. On the other hand, designing with an FPGA has also some 

drawbacks: They are area inefficient and slower when compared to VLSI 

implementations. Therefore, VLSI is still prefferred for large and speed critical 

designs. However, FPGA technology is developing with an increasing speed and 

reducing the above disadvantages. 

The design presented in the previous section was implemented on the FPGA 

for the real-time verification. Therefore, a high degree of optimization was not 

performed while implementing on the FPGA. The following tools supported by 

TÜBİTAK-ODTÜ-BİLTEN were used for this implementation: 

• Synthesis & Implementation ! Xilinx Project Navigator 5.1i. 

• Real-time Test ! Celoxica RC1000 Hardware on a PC. 

4.3.1. Synthesis and Layout 

Since RC1000 hardware includes Xilinx Virtex2000E FPGA, the design was  

synthesized and implemented for this FPGA with a timing constraint of 20ns clock 

period (50MHz). Using the Xilinx Project Navigator 5.1i tool for this process, the 

following results were obtained: 
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Figure 4.20: A captured view form FPGA synthesis report. 

 
 

Figure 4.21: A view from FPGA map report. 
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Figure 4.22: A view from FPGA post-layout timing report. 

 

4.3.2. Real-time Test on FPGA 

The design was tested in real-time using the Celoxica RC1000 Hardware 

accomodating the Xilinx V2000E FPGA. RC1000 is a PCI bus plug-in card (Figure 

4.24) for PC�s, consisting of one large XILINX FPGA (BG560 package), four banks 

of memory for data storage, and two PMC sites for I/O with the outside world [42]. 

Memory banks can be accessed by both FPGA and PCI bus. The card is controlled 

by PC through PCI bus by running executables written in Handle-C Programming 

Language.  

In the test of the FPGA implementation, the steps given below were 

followed (Figure 4.23): 

1) A RAM interface design was included in the FPGA with the RSA 

module. This interface enables the module to access the RAM�s on 

the RC1000 hardware. 
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2) A C executable was used to access the RAMs and the FPGA. This 

exe does the following: 

• Places the test data into the RAMs, 

• Sets the FPGA clock,  

• Configures the FPGA with the configuration file obtained from 

Xilinx Project Navigator,  

• Releases the control of the RAM banks and resets the FPGA. 

• After finishing the RSA operation, FPGA writes the output into 

the RAM. Then PC again takes over the RAM control, reads 

the output of the FPGA and writes it into a file. 

3) The RSA operation was verified by observing the output in 

hexadecimal format using simply a text editor. A sample tested 

encryption and decryption is shown in Figure 4.26 and Figure 4.27. 

 

HOST (PC) RAM banks FPGA

1 2

4 3

RC1000

 

Figure 4.23: Data flow in the test of the FPGA with RC1000.  

1) PC writes the test data into the RAM. 2) FPGA reads the inputs from the RAM. 3) FPGA writes 

the RSA output into the RAM. 4) PC reads from RAM and writes the FPGA outputs into a file. 
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Figure 4.24: Test Setup. (RC1000 Board mounted to the main-board of a PC). 

 

 

 

 

Figure 4.25: Zoomed view on the Xilinx V2000E FPGA on the RC1000 board. 
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Figure 4.26: Encryption example in the FPGA test: 

Inputs: M, R, X, e; Output: C = Xe mod M; 

79 



 
 

Figure 4.27: Decryption of the Cipher Text in Figure 4.23. 1024-bit RSA is verified 

in the FPGA by recovering the Message. Inputs: M, R, C, d; Output: X = Cd mod M; 
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4.4. Comparison of the results 

The purpose of this section is to provide a quick reference for the reader to 

examine the implementation results presented in this thesis and compare them to the 

previous ones in the literature. The results of the RSA implementations, which were 

given in Chapter 3, are summarized in Table 4.7.  

Table 4.7: Comparison of the VLSI implementations. 

Paper 
&Year 

No 
of 

bits 
(n) 

Tech Gate 
count Chip area No. of clocks 

Clock 
Freq. 

(MHz) 

Op. 
time 

(msec) 

Baud 
(Kb/s) 

Chen[13] 
1996 512 mµ8.0  78K 276mm  

1.05M 
)4(~ 2n  50 20.6 24.3 

Yang[14] 
1996 512 

mµ6.0  
Compass 
SPDM 

74K 256mm  
0.54M 

)2(~ 2n  125 4.24 118 

Royo[15] 
1997 768 mµ7.0  

ES2 
- 277mm  

0.5M 
)(~ 2n  50 10.4 72.5 

Guo[16] 
1999 512 mµ6.0 268mm 

Compass 
132K  

0.258M 
)(~ 2n  143 1.8 278 

Leu[20] 
1999 512 mµ6.0  64K - 

0.53M 
)2(~ 2n  115 4.5 111 

Chiang[23] 
1999 512 

Compass 
 mµ6.0 ))2)(3/4((~ nn

TSMC 
- - 

0.7M 
 166 4.09 122 

Kim[25] 
2000 1024 mµ65.0

)2(~ 2n
 

SOG 
112K - 

2.2M 
 50 43 23.25 

Kwon[31] 
2001 1024 mµ5.0

)2(~ 2n
 

SOG 
92K - 

2.2M 
 50 43 23.25 

Kwon[31] 
2001 1024 mµ5.0

)(~ 2n
 

SOG 
156K - 

1.1M 
 50 22 45.45 

Cho[32] 
2001 1024 - 230K - 

0.527M 
))32/((~ +nn  40 13 78.8 

Our design 
2003 512 mµ35.0 27.8 mm ))4((~ +nn

 
AMIS 

87K 
(Without 

I/O 
pads) 

 
0.265M 

 333 0.8 627 

Our design 
2003 1024 mµ35.0 24.10 mm ))4((~ +nn

 
AMIS 

132K 
(Without 

I/O 
pads) 

 
1.05M 

 250 4.22 237 

 

81 



 CHAPTER 5 

 

CONCLUSION 

 

 

This thesis presented a high-speed ASIC implementation of the RSA Public-

Key Cryptosystem. The implementation basically performs the modular 

exponentiation of large integers, which is the main operation used for both 

encryption and decryption in RSA. The R-L Binary Method and Montgomery�s 

Multiplication Algorithm in radix-4 were combined in linear systolic architecture 

with a state machine for the modular exponentiation operation, which is main 

mathematical operation of the RSA. A semi-custom VLSI implementation was 

performed for both 512-bit and 1024-bit processes by using the AMI Semiconductor 

 Standard Cell Libraries.  mµ35.0

The results obtained in this implementation were: 87K gate count and 

627Kb/s baud at 3ns worst-case clock for the 512-bit operation; 132K gate count 

and 237Kb/s baud at 4ns worst-case clock for the 1024-bit operation. In addition to 

the VLSI implementations, a real-time test of the hardware was performed at a clock 

speed of 80MHz by using the Celoxica RC1000 Hardware with Xilinx 

V2000EBG560 FPGA on it. With these results, the fastest RSA processor and the 

lowest  product within our knowledge in the literature was obtained in 

the literature within this thesis. There are three main reasons underlying the 

effective results of the proposed implementation: Properly chosen algorithms and 

optimizations on these algorithms, minimized routing delays with the linear systolic 

timearea ×
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architecture, and finally the AMIS  CMOS technology used in the 

implementation.  

mµ35.0

2

By interleaving the Squaring and Multiplication steps of the R-L Binary 

Method at consecutive clock cycles, a 100% utilization of the time and resources 

have been achieved in the design. This method also reduced the total number of 

clocks without any need of extra hardware. Using radix-4 calculations in the 

Montgomery�s algorithm was another factor reducing the number of clocks. In 

addition to this, some other simplifications to reduce the critical path were applied 

in the algorithm.      

The design was fitted into a linear systolic architecture, in which a series of 

identical structures are brought together and communicate locally at high clock 

frequencies. The result of this structure was the minimized number of broadcasting 

signals in the architecture, thus very high clock speeds. Also, a controller unit in the 

architecture managed the resources in the systoles in such a way that the systolic 

architecture performed a continuous operation throughout the exponentiation, 

without any need of extra storage elements for the intermediate results of the 

exponentiation process.  

The CMOS 0.35µm technology was another important factor in achieving 

the above results in the implementation. Although the systolic architecture played 

the main role in obtaining high clock speeds, the technology used in the design had 

also great contributions to the timing of the design by providing very high-speed 

logic cells. The high density of the technology also contributed to the mapping of 

150K gates into an area of about 10 .           mm

In conclusion, with the above results, the goals at the beginning of the thesis 

have been achieved and the 1024-bit VLSI implementation has been sent to IMEC 

for fabrication as a prototype chip. However, this study can be moved further. 

Newer technologies will provide implementing high radix operations at faster and 

smaller architectures. This will result in a less number of clocks, and thus a faster 

operation. As another future work, a scalable architecture, in which it will be 
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possible to perform 2048 and 4096 bit RSA operations with a multiple of the 1024-

bit chips in serial, will be implemented. This will bring flexibility to the user in 

choosing the level of security in the application.       
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APPENDIX A 

 

VIRTEX-E CLB AND LUT 

 

 

A.1. Configurable Logic Blocks (CLBs) and Slices  

The basic building block of the Virtex-E CLB is the logic cell. A logic cell 

includes a 4-input function generator, carry logic, and a storage element. The output 

from the function generator in each logic cell drives both the CLB output and the D 

input of the flip-flop. Each Virtex-E CLB contains four logic cells as shown in 

Figure A.1.  Each CLB is divided into two slices.  

 

Figure A.1: Virtex-E CLB. Each Virtex-E CLB contains four logic cells and CLB is 

divided into two slices. 
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A.2. Look-up Tables (FGs) 

 

Figure A.2: The detailed schematic of a slice. A slice contains two LUTs, two DFFs, 

and one CY. 

 

Virtex-E function generators are implemented as 4-input look-up tables 

(LUTs). In addition to operating as a function generator, each LUT can provide a 16 

× 1-bit RAM, and a 16-bit shift register. Figure B.3 shows the detailed schematic of 

a slice having two LUTs.  
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APPENDIX B 

 

CELOXICA RC1000 HARDWARE 

 

 

 

B.1. Overview 

 

The RC1000-PP hardware platform is a standard PCI bus card equipped with 

a XILINX® Virtex TM family BG560 part with up to 1,000,000 system gates . It 

has 8Mb of SRAM directly connected to the FPGA in four 32 bit wide memory 

banks. The memory is also visible to the host CPU across the PCI bus as if it were 

normal memory. Each of the 4 banks may be granted to either the host CPU or the 

FPGA at any one time. Data can therefore be shared between the FPGA and host 

CPU by placing it in the SRAM on the board. It is then accessible to the FPGA 

directly and to the host CPU either by DMA transfers across the PCI bus or simply 

as a virtual address. The board is equipped with two industry standard PMC 

connectors for directly connecting other processors and I/O devices to the FPGA; a 

PCI-PCI bridge chip also connects these interfaces to the host PCI bus, thereby 

protecting the available bandwidth from the PMC to the FPGA from host PCI bus 

traffic. A 50 pin unassigned header is provided for either inter-board 

communication, allowing multiple RC1000-PPs to be connected in parallel or for 

connecting custom interfaces. The support software provides Linux(Intel), 

Windows®98 and NT®4.0+ drivers for the board, together with application 

examples written in Handel-C, or the board may be programmed using the 

XILINX® Alliance Series and Foundation. 
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Figure B.1: Block Diagram of RC1000 Hardware 
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APPENDIX C 

 

 

AMI SEMICONDUCTOR 0.35µm TECHNOLOGY 

 

C.1. Mixed A/D Technology  

The 0.35 µm CMOS technology is a mixed Analog/Digital process. It is 

derived from the fully digital 0.35µ CMOS process and extended with analog 

capabilities  

C.2. General Characteristics  

• 0.35 µm, up to 5 metal layers  

• Self-aligned twin tub N- and P Poly gates  

• W-plug filling of stackable contacts and vias  

• Nitride based passivation 

• 2.0V to 3.6V Supply  

• Protection :  

o Latchup resistance > +/- 200mA  

o ESD > +/- 2000V  

• 6 Inch epi wafers 
 

C.3. Layout Rules  

• Drawn minimum gate length : 0.35µm for both PMOS and NMOS  

• Polysilicon pitch : 0.9µm  
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• Metal 1 pitch : 1.1µm  

• Metal 2 pitch : 1.4µm  

• Metal 3 pitch : 1.4µm  

• Metal 4 pitch : 1.4µm  

• Metal 5 pitch : 2.8µm  

 

C.4. Standard Cell Libraries  

Following libraries are available for the AMI Semiconductor 0.35 µm 
CMOS technology : 

AMI Semiconductor libraries supporting the ADS Asic Design Framework  

• High Speed and Low Power Library (MTC 45000)  

o 393 core cells (gates, latches, flipflops,..)  

o 101 I/O cells (with slew rate controlled outputs and spike 
suppression)  

o ROM Density up to 240 Kbits/mm2  

o RAM Density (Static, single port): 25 Kbits/mm2  

o Gate density: 15000 NAND equiv. gates/mm2  

o Temp. range : -55 ... + 125deg.C  

o Typical gate delay(3,3V)  
- Unloaded invertor delay of 50ps 
- 2-input NAND delay of 610ps (typ) with fanout=2  

o Power : 0.5 µW/gate/MHz at 3 V  

o Additional analog modules  
- High ohmic polysilicon resistors (1kOhm/sq) 
- High value double poly capacitors (1.1 nF/mm2)  

• Versatile I/O Library : PAD limited I/O cells (MTC45100)  

• ROM and RAM compilation  
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