

A HIGH-SPEED ASIC IMPLEMENTATION OF THE RSA CRYPTOSYSTEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SONER YEŞİL

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2003

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Prof. Dr. Mübeccel Demirekler
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Murat Aşkar
 Supervisor

Examining Committee Members

Assoc. Prof. Dr. Melek Yücel ____________________

Prof. Dr. Murat Aşkar ____________________

Prof. Dr. Rüyal Ergül ____________________

Assoc. Prof. Dr. Tayfun Akõn ____________________

A. Neslin İsmailoğlu (M.S. in EE) ____________________

ABSTRACT

A HIGH-SPEED ASIC IMPLEMENTATION OF THE RSA CRYPTOSYSTEM

Yeşil, Soner

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat Aşkar

September 2003, 96 pages

This thesis presents the ASIC implementation of the RSA algorithm, which

is one of the most widely used Public Key Cryptosystems (PKC) in the world. In

RSA Cryptosystem, modular exponentiation of large integers is used for both

encryption and decryption processes. The security of the RSA increases as the

number of the bits increase. However, as the numbers become larger (1024-bit or

higher) the challenge is to provide architectures, which can be implemented in

iii

hardware, operate at high clock speeds, use a minimum of resources and can be used

in real-time applications.

In this thesis, a semi-custom VLSI implementation of the RSA Cryptosystem

is performed for both 512-bit and 1024-bit processes using 0.35µm AMI

Semiconductor Standard Cell Libraries. By suiting the design into a systolic and

regular architecture, the broadcasting signals and routing delays are minimized in

the implementation. With this regular architecture, the results of 3ns clock period

(627Kbps) using 87K gates (8.7mm2 with I/O pads) for the 512-bit implementation,

and 4ns clock period (237Kps) using 132K gates (10.4mm2 with I/O pads) for the

1024-bit implementation have been achieved. These results are obtained for the

worst-case conditions and they include the post-layout routing delays. The design is

also verified in real time using the Xilinx V2000E FPGA on the Celoxica RC1000

Hardware. The 1024-bit VLSI implementation has been sent to IMEC for

fabrication as a prototype chip through Europractice Multi-Project Wafer (MPW)

runs.

Keywords: PKC, RSA, Systolic Architecture, Montgomery Modular Multiplication,

The Binary Method.

iv

ÖZ

RSA KRİPTO SİSTEMİNİN YÜKSEK HIZLI TUMDEVRE UYGULAMASI

Yeşil, Soner

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Murat Aşkar

September 2003, 96 sayfa

Tez çalõşmamõzda, dünyada yaygõn olarak kullanõlan bir Açõk Anahtar

Kripto Sistemi olan RSA Algoritmasõ�nõn Uygulamaya Özel Tümdevre

Gerçekleştirmesi sunulmaktadõr. RSA Kripto Sistemi�nde, şifreleme ve deşifreleme

işlemleri için, çok büyük tamsayõlarõn kullanõldõğõ (1024-bit veya daha fazla)

modüler üs alma matematiksel işlemi kullanõlmaktadõr. Kullanõlan tamsayõlarõn bit

uzunluğu arttõkça, RSA Kripto Sisteminin güvenliği de artmaktadõr. Öte yandan,

sayõlarõn büyümesiyle birlikte, donanõma uygun, hõzlõ çalõşabilen, mümkün olan en

v

az seviyede özkaynak içeren ve gerçek zamanlõ uygulamalarda kullanõlabilecek

mimariler tasarlamak önem kazanmaktadõr.

Bu tez içersinde, 0.35µm AMI Semiconductors Standart Hücre Kütüphanesi

kullanõlarak gerçekleştirilen 512-bit ve 1024-bit RSA işlemlerinin yarõ özel

tasarõmlarõ yer almaktadõr. Birbirine özdeş ve çok sayõda yapõnõn birbiri ardõna

sõralanmasõyla (sistolik yapõ) olusturulan bir mimarinin tasarõmda kullanõlmasõyla,

tümdevrenin bütününe yayõlan sinyallerin sayõ ve uzunluklarõ en az sayõya

indirgenmiştir. Bu düzenli yapõ sonucunda, 512-bit uygulamada 3ns saat hõzõ (627

Kbps) ve 87 bin kapõ değerinde bir alana (8.7mm2 giriş/çõkõş bağlantõlarõyla

birlikte), 1024-bit uygulamada ise 4ns saat hõzõ (237 Kbps) ve 132 bin kapõ

değerinde bir alana (10.4mm2 giriş/çõkõş bağlantõlarõyla birlikte) ulaşõlmõştõr. Bu

sonuçlar, en kötü koşullar öne sürülerek ve tümdevre içersindeki yol atama

gecikmeleri dikkate alõnarak elde edilen sonuçlardõr. Tümdevre gerçekleştirmenin

yanõsõra, Celoxica RC1000 Donanõmõ ve bu donanõm üzerinde yer alan Xilinx

V2000E FPGA kullanarak, söz konusu tasarõmõn gerçek zamanlõ doğrulanmasõ da

yapõlmõştõr. 1024-bit RSA tümdevre tasarõmõ, Europractice MPW (Çoklu Tümdevre

Üretim Programõ) dahilinde, bir prototip tümdevre olarak üretilmek amacõyla IMEC

firmasõna gönderilmiştir.

Anahtar Kelimeler: RSA, Açõk Anahtar Kripto Sistemi, Montgomery Moduler

Çarpma, Sistolik Yapõlar.

vi

ACKNOWLEDGMENTS

I am very grateful to Assist. Prof. Dr. Y. Çağatay Tekmen for his endless

support and encouragement at all stages of my thesis. I would also like to express

my appreciation to him because of his valuable suggestions, guidance and

experience in solving problems at the critical stages of the thesis, where I gave way

to despair.

I would like to express my acknowledgments to my supervisor Prof. Dr.

Murat Aşkar for his inspiration of my thesis subject by initiating the RSA Project at

TÜBİTAK-ODTÜ-BİLTEN.

I would also like to thank to Assoc. Prof. Dr. Melek Yücel for her

contributions on the RSA Project, and her valuable suggestions and interest in the

development of this thesis.

Special thanks to TÜBİTAK-ODTÜ-BİLTEN for facilities provided for the

completion of this thesis. I would like to thank to my colleagues here, especially to

my coordinator Neslin İsmailoğlu for her comprehension in sharing her deep

experience in VLSI design and Oğuz Benderli for his endless interest and support

throughout my thesis. I am also very grateful to my colleague and sincere friend

Refik Sever for his valuable contributions to my study.

Finally, I would like to express my deep gratitude to my dear wife Sezen, for

her patience and continuous support, and my dear family for their love and

encouragement throughout this thesis.

vii

To my wife Sezen�

viii

TABLE OF CONTENTS

ABSTRACT... iii

ÖZ...v

ACKNOWLEDGMENTS ... vii

TABLE OF CONTENTS...ix

LIST OF FIGURES ...xiv

LIST OF ABBREVIATIONS... xviii

CHAPTER

1. INTRODUCTION ..1

1.1. Basics of Cryptography...2

1.2. Public-Key Cryptosystems (PKC) ...3

1.1. The Scope of the Research and Thesis Outline...5

2. A MATHEMATICAL BACKGROUND OF THE RSA PKC.........................6

2.1. The RSA Algorithm...6

2.2. Modular Exponentiation...10

2.2.1. The Binary Method (Square and Multiply Method)..............................11

a) The L-R Binary Method...11

b) The R-L Binary Method...12

2.2.2. The m-ary Method ...13

2.3. Modular Multiplication ..14

ix

2.3.1. Montgomery�s Method ..14

2.4. Modular Exponentiation Using Montgomery’s Multiplication Method 17

2.5. Chinese Remainder Theorem (CRT)...18

3. A LITERATURE REVIEW OF THE HARDWARE

 IMPLEMENTATIONS OF RSA..20

3.1. Theoretical Studies ...21

3.1.1. Exponentiation...22

3.1.2. Multiplication ..24

3.1.2.1. Montgomery�s Algorithm in Systolic Architectures:................28

3.1.2.2. Modifications on the Montgomery�s Algorithm:30

a) Reducing the Number of Iterations:30

b) Reducing the Critical Path: ..31

c) Obtaining the Outputs in the Correct Range:32

3.2. VLSI Implementations..35

3.3. FPGA Implementations ..43

4. HARDWARE IMPLEMENTATION...48

4.1. Design Aspects ...48

4.1.1. Design Methodology ...48

4.1.2. Design Architecture ...51

4.1.3. The Operation ..56

4.2. VLSI Implementation ...62

4.2.1. Design with HDL...64

4.2.2. Synthesis ..64

4.2.3. Layout ..67

4.2.4. Post-layout Work ...68

4.3. FPGA Implementation..74

4.3.1. Synthesis and Layout...74

4.3.2. Real-time Test on FPGA ...76

x

4.4. Comparison of the results...81

5. CONCLUSION...82

REFERENCES..85

APPENDIX

A. VIRTEX-E CLB AND LUT ..91

A.1. Configurable Logic Blocks (CLBs) and Slices..91

A.2. Look-up Tables (FGs)..92

B. CELOXICA RC1000 HARDWARE...93

B.1. Overview..93

C. AMI SEMICONDUCTOR 0.35µm TECHNOLOGY95

C.1. Mixed A/D Technology ...95

C.2. General Characteristics ..95

C.3. Layout Rules ..95

C.4. Standard Cell Libraries ..96

xi

LIST OF TABLES

TABLE

2.1: Comparison of M-ary Method to Binary Method...13

2.2: Operations in the Montgomery�s Algorithm ..16

3.1: All the a �s and �s are assumed to be in the worst-case32 i iq)1(−r

3.2: Bound is satisfied via one more iteration ...33

3.3: Final multiplication by 1. All the �s are zero except for the first one.........34 ia

3.4: A survey of RSA hardware implementations up to 1989 (Brickell [3]).........35

3.5: 1024-bit RSA implementations using two types of Binary Method

 (Kwon et. al. [31]) ..42

3.6: Estimated CLB count and number of cycles for two types of architectures

in 3 FPGA families (J. Poldre et. al.[39])...43

3.7: Estimated time (in msec) of RSA public exponentiation process. Only

exponentiation times with small exponent are presented(J. Poldre

et. al.[39]) ..44

xii

3.8: CLB usage and execution time for a full modular exponentiation (Blum

et. al. [22]) ..45

3.9: Comparison of the two FPGA implementations [22] and [36].......................46

3.10: Implementation results with Xilinx V1000FG680 FPGA (Daly et. al.

[30]) ..47

4.1: Comparison of radix-4 and radix-16 designs..49

4.2: Description of the states..61

4.3: Synthesis results of an individual PE..65

4.4: Synthesis results of the controller unit..66

4.5: Synthesis results of the whole design with I/O pads66

4.6: Static timing analysing results (with I/O pads and routing delays) after

layout. ...69

4.7: Comparison of the VLSI implementations ...81

xiii

LIST OF FIGURES

FIGURE

2.1: An example of sending a signed message in RSA PKC. Alice sends only

the cipher text. There is no need to transfer the key...9

2.2: The L-R Binary Method ...11

2.3: The R-L Binary Method. ..12

2.4: Montgomery�s Algorithm...15

2.5: Removing the r − factor..15 m

2.6: Extraction of the post-condition of the algorithm...17

2.7: Modular exponentiation block..17

2.8: The R-L Binary Method with pre-and-final multiplications18

3.1: Theoretical studies on improving modular exponentiation22

3.2: Only one operation (multiplication or squaring), without interleaving..........24

3.3: Interleaved multiplication and squaring operations by using idle clocks.......24

3.4: Modulo multiplication with quotient estimation ..25

3.5: The L-algorithm (LSB first) ...26

xiv

3.6: Blackley�s Method..27

3.7: Montgomery�s multiplication algorithm in radix-r...27

3.8: Linear systolic array ...28

3.9: Rectangular systolic array ..28

3.10: A linear array of PEs for Montgomery�s Algorithm29

3.11: Typical cell for radix-2 ...30

3.12: Q-calculation circuitries for two different radix values..................................31

3.13: Recovery of the modification in the -calculation32 iq

3.14: The proposed Booth-encoded Montgomery Algorithm in [20]......................39

3.15: The modular multiplication algorithm proposed in [36]46

3.16: Modular multiplication algorithm used in [30] ..47

4.1: The algorithm used in the design..50

4.2: Hierarchy of the design...51

4.3: I/O interface of the top-module ..52

4.4: Data interface in the 1st level of the hierarchy..53

4.5: A sample systolic architecture for 8-bit RSA...54

4.6: The structure of a PE ..55

4.7: The two types of core-systoles. The LUT module performs the operation

 pq = ...55 rnri mod)(1
00

−−⋅

4.8: Single multiplication without interleaving. Each PE states idle for one

xv

Clock cycle ...57

4.9: Interleaved Squaring and Multiplication operations. 100% utilization of

the PE�s and no extra clocks for Multiplications. (S: Squaring; M:

Multiplication) ..57

4.10: Implementation of the R-L Binary Method in the systolic architecture.........58

4.11: The result of the squaring is stored digit-by-digit to be reused in the

 next Squaring (S) and Multiplication (M). Syst1 starts the new S&M at

 the (+ clock ..59 thi)1

4.12: Storage of the multiplication result digit-by-digit when the exponent bit

is zero..59

4.13: The State Diagram ..60

4.14: Modular Exponentiation example with the corresponding states...................61

4.15: VLSI Implementation Procedure..63

4.16: The layout produced via Cadence Silicon Ensemble70

4.17: Zoomed view on the left-bottom corner of the layout of Figure 4.16.71

4.18: Layout view in Cadence Design Framework II ..72

4.19: Zoomed view on the left-bottom corner of the layout of Figure 4.1873

4.20: A captured view from FPGA synthesis report..75

4.21: A view from FPGA map report ..75

4.22: A view from FPGA post-layout timing report..76

4.23: Data flow in the test of the FPGA with RC1000 ..77

xvi

4.24: Test Setup. (RC1000 Board mounted to the main-board of the PC)78

4.25: Zoomed view on the Xilinx V2000E FPGA on the RC1000 board78

4.26: Encryption example in the FPGA test. Inputs: M, R, X, e;

 Output: C = Xe mod M; ..79

4.27: Decryption of the Cipher Text in Figure 2.1. 1024-bit RSA is verified in the

FPGA by recovering the Message. Inputs: M, R, C, d; Output:

X = Cd mod M;..80

A.1: Virtex-E CLB. Each Virtex-E CLB contains four logic cells and CLB is

divided into two slices ..91

A.2: The detailed schematic of a slice. A slice contains two LUTs, two DFFs,

and one CY. ..92

B.1: Block Diagram of RC1000 Hardware. ...94

xvii

LIST OF ABBREVIATIONS

 PKC Public Key Cryptosystem

 RSA Rivest Shamir Adleman

 ASIC Application Specific Integrated Circuit

 BİLTEN Bilgi Teknolojileri ve Elektronik Araştõrma Enstitüsü

 S&M Squaring and Multiplication

 FPGA Field Programmable Gate Array

 VLSI Very Large Scale Integrated Circuit

 R-L Right-to-Left

 L-R Left-to-Right

 CLB Configurable Logic Block

 FF Flip-Flop

 IC Integrated Circuit

 I/O Input/Output

 LSB Least Significant Bit

 LUT Look-up Table

 MSB Most Significan Bit

xviii

 PE Processing Element

 RAM Random Access Memory

 TÜBİTAK Türkiye Bilimsel ve Teknik Araştõrma Kurumu

 IMEC Interuniversity MicroElectronics Center

 AMIS Automotive Medical Industrial Semiconductor

 MPW Multi-Project Wafer

 CMOS Complementary Metal-Oxide Semiconductor

 FA Full Adder

 HDL Hardware Description Language

 DRC Design Rule Check

 ERC Electrical Rule Check

 LVS Layout Versus Schematic

xix

CHAPTER 1

INTRODUCTION

In the last quarter of the 20th century, especially in the 90�s, the field of

cryptography has faced a new problem beyond privacy, which had been the main

goal until that time. With the widespread popularity of electronic communication

all-over the world, difficulties in the key distribution, key management and

authentication began to rise and researchers focused on these problems without any

concession of the traditional objective, security.

�We stand today on the brink of a revolution in cryptography�, said Diffie

and Hellman in 1976 [1] as the beginning sentence of their paper in which the

concept of �Public-Key Cryptosystem� (PKC) was born. After 2 years in 1978, an

elegant implementation of the public-key cryptosystem came from Rivest, Shamir

and Adleman, named as the RSA Public-Key Cryptosystem [2]. Today, because of

the high-security provided, RSA is still known as the most widely used public-key

cryptosystem in the world.

Although providing high security, currently available RSA hardware needs

to be improved on the speed and area issues. The security of the RSA increases as

the number of bits in the algorithm increase. However, high number of bits end up

1

with slower architectures and increased area. The challenge is to provide fast

architectures and efficiently used resources as the number of bits increase.

This chapter presents an introduction to the cryptography and Public-Key

Cryptosystems. The first section gives some basics of cryptography and continues

with the needs of today�s cryptography. Section 1.2 describes the concept of PKC

and some facilities provided by this cryptosystem such as authentication, integrity,

and non-repudiation. The last section of this chapter gives a brief discussion of the

scope of the research in this thesis. Also the thesis organization and chapter

summaries are given in this section.

1.1. Basics of Cryptography

Cryptography is basically the art and science of enabling two people to

communicate over an insecure channel in such a way that an unintended recipient

cannot understand what is being said.

A message is a plaintext usually denoted by M and represented by a binary

data in digital applications. Encryption is the processing of the message into a form

that is virtually impossible to understand without the key. An encrypted message is

cipher text, denoted as C. The process of recovering the original message from the

encrypted data is called decryption. It is the inverse function of the encryption.

The following formal definition of the concept of cryptography is taken from

the text-book named �Cryptography: Theory and Practice,� which is written by D.

Stinson [5].

A cryptosystem is a five-tuple , where the following conditions are

satisfied:

),,,,(DEKCP

1. is a finite set of possible plaintexts P
2. is a finite set of possible cipher texts C
3. , the key space, is a finite set of possible keys K

2

4. For each , there is an encryption rule and a corresponding decryption

rule . Each and are functions such that

 for every plaintext .

Kk ∈

D

x=

Eek ∈

PC →:dk ∈

xk))(

CPek →:

x ∈

dk

edk (P

Although the traditional private-key cryptosystems satisfy the privacy,

which has been the fundamental goal of cryptography, they are inadequate to

overcome the recently arising secure communication problems such as:

i) Key distribution problem through a secure channel

ii) Key management problem

iii) And the following security problems:

� Authentication: The sender of the message should be able to sign it in

such a way that an intruder cannot forge the signature.

� Integrity: The intended recipient of the encrypted message should make

sure that an intruder has not modified the message.

� Non-repudiation: The owner of a signed message should not be able to

gainsay his/her signature.

A new concept of Public-Key Cryptosystem was invented by Diffie and

Hellman in 1976 [1] to overcome these problems. The next section gives detailed

information on how these problems can be solved with this new cryptosystem.

1.2. Public-Key Cryptosystems (PKC)

In a Public-key Cryptosystem, the encryption procedure of each user (E) is

publicly revealed but the decryption procedure (D) is only private to that user. The

enciphering and deciphering can be shown as follows:

Enciphering: (Public procedure))(MEC =

Deciphering: (Private procedure))(CDM =

3

Where is the message and is the cipher text. M C

If the system has the properties,

a)))((MEDM =

b) is publicly revealed and easy to compute for everyone but is

impractical to be computed except for its owner who has the key

)(⋅E)(⋅D

then is called trap-door one-way function because it is easy to implement in one

way but very difficult in the other way. However, if one obtains the necessary key,

is as easy as . This is the reason that it is called �trap-door�. In addition to

the above 2 properties, a third property of

)(⋅E

)(⋅D)(⋅E

 c) DM =))(())((MDEME =

gives a new name to the system as �trap-door one-way permutation�. The result is

that every message is the cipher text for some other message and every cipher text

can be used as a message.

The fundamental idea behind a Public-Key Cryptosystem is that it is

computationally impractical to determine given , so that the encryption

rule can be made public. Using the advantage of PKC, one can send an

encrypted message to another (without the prior communication of a secret key) by

using the public encryption rule . Only the intended recipient can decrypt the

cipher text, using his/her secret decryption rule

)(⋅D)(⋅E

)(⋅E

)(⋅E

)(⋅D .

Another consequence of Public-Key Cryptosystem is the signature facility

obtained by processing the message by private procedure (D(M)) prior to the public

one. Anyone can verify this signature by using the public procedure of the sender,

E(D(M)). Because the signature is a private procedure, it cannot be forged and also

the sender cannot deny the signature.

4

1.1. The Scope of the Research and Thesis Outline

The RSA PKC uses modular exponentiation operation both for encryption

and decryption. The security of the RSA increases as the numbers in the modular

exponentiation are increased. However, this increase corresponds to larger and

slower architectures. Since the demand for higher levels of security is increasing

day by day, it becomes important to find the ways of implementing the RSA PKC in

more efficient and faster architectures. Within this scope of the research, this thesis

describes a hardware implementation of the RSA PKC, which uses a linear systolic

architecture operating at high clock frequencies with a minimum of resources.

A mathematical background including the main algorithms used in the RSA

algorithm is given in Chapter 2. In addition to the mathematics, this chapter also

gives a brief discussion on the implementation properties of these algorithms.

Chapter 3 presents a literature review of the recent RSA implementations. In this

chapter, the methods and improvements on the RSA algorithm are categorized and

described first, and then the implementation results are presented. Chapter 4 begins

with the theoretical study followed at the early stages of the thesis, then gives the

methods and algorithms chosen, and finally presents the implementation details. A

comparison of the implementation results to the previous implementations is also

given at the end of this chapter. The last chapter is a conclusion part, in which the

underlying reasons of the achieved results are evaluated and the ways of improving

this study are discussed. The appendix part includes the structure of the CLBs and

LUTs in the XILINX Virtex FPGAs, general features of the Celoxica RC1000

Hardware, and general characteristics of the AMI Semiconductor Standard Cell

Libraries.

5

CHAPTER 2

A MATHEMATICAL BACKGROUND OF THE RSA PKC

RSA is a cryptographic algorithm, which provides high security. Modular

exponentiation of long integers is the main mathematical operation of the RSA used

in both encryption and decryption. The security of this algorithm is based on the

factorisation problem of long integers.

This chapter describes the underlying mathematics of the RSA PKC. The

first section explains how the modular exponentiation can used for enciphering and

deciphering purposes. An example of a secure data transmission using RSA

algorithm is also presented in the first section. The other sections include some

algorithms commonly used in the implementation of this cryptosystem. Finally the

chapter ends by giving some information on the Chinese Remainder Theorem and

its application to RSA.

2.1. The RSA Algorithm

The RSA Cryptosystem uses computations in Ζ where is the product of

two distinct very large primes and . The message M is represented as a number

between and , and relatively prime to . The encryption and

decryption procedures are defined as

N

N

N

p q

0 1−N)(⋅E

)(⋅D

6

).(mod)(
).(mod)(

NCCDM
NMMEC

d

e

==

==

where is the message and is the cipher text, is the public key and is the

private key. Modular exponentiation operation is used for both encryption and

decryption processes. The relation between the keys is as follows:

M C e d

))((mod1 Nde
qpN

φ≡⋅
⋅=

where is the Euler totient function, which equals to the number of positive

integers less than , which are relatively prime to . Since is the product of

two primes and ,

)(Nφ

p

N

q

N N

)()()(qpN φφφ ⋅=

and

).1()(
),1()(

−=
−=

qq
pp

φ
φ

then φ becomes)(N

)1()1()(−⋅−= qpNφ

As seen from the above equations, in order to obtain the private key, d , from

the public key, , one should factorize the public modulus into its prime factors

 and . Because of this reason the security of the RSA cryptosystem lies in the

factorization of large integers (e.g., > 1024-bit numbers for the modulus), which

is computationally infeasible with today�s technology.

e N

p q

N

One can verify that the encryption and decryption procedures are inverse

operations as follows:

7

)(mod

)(mod1

)(mod)(

)(mod)(
integer positiveany is where.,1)(

)).((mod1

)(

)1)((

NM

NM

NMM

NMM
tNtde

Nde

t

tN

Ntde

≡

⋅≡

⋅≡

≡

+⋅=⋅
≡⋅

+⋅

φ

φ

φ
φ

where Euler�s theorem is used for the equation:

)(mod1)(NM N ≡φ

To perform the RSA,

1) Compute N as the product of two large random primes and q . p

2) Pick a public key e in the range 1 and relatively prime to φ .

Usually the public key is selected as a small number such as in order

to make the computation of the encryption fast.

)(Ne φ<<)(N

1216 +

3) Compute d using the Extended Euclidian Algorithm.))((mod1 Ne φ−=

4) The public key is the pair of positive integers (and private key is

with encryption and decryption procedures as follows:

), Ne

d

)(mod
)(mod

NCM
NMC

d

e

≡

≡

5) Each user in the system will have different public key pairs and private keys:

M

),,(
),,(

),,(

ooo

bbb

aaa

deNOscar
deNBob

deNAlice

→
→
→

8

6) In order to send a signed message to Bob, Alice performs the following

operation:

i)) (Alice signs the message with her private key) (mod a
d NMS a=

ii)C (She then encrypts the signed message with

Bob�s public key)

)(mod b
e NS b=

7) In order to decrypt and authenticate the encrypted message sent by Alice,

Bob does the following operation:

i) (Bob decrypts the signed message by his private

key)

)(mod b
d NCS b=

ii) M (Then he recovers the message by using Alice�s

public key)

)(mod a
e NS a=

Alice
ea, da

Bob
eb, db

C

public are and ba ee

NSC be mod)2 ≡

NMS ad mod)1 ≡ NCS bd mod)3 ≡

NSM ae mod)4 ≡

Figure 2.1: An example of sending a signed message in RSA PKC. Alice sends only

the cipher text. There is no need to transfer the key.

9

The trap-door one-way permutation for the RSA Public-Key Cryptosystem is

the modular exponentiation operation, which can be performed as a series of

modular multiplication operations. The modular exponentiation is also very

commonly used for the other algorithms different from RSA cryptosystem such as

Diffie and Hellman key exchange scheme [1], ElGamal Signature scheme [6], and

Digital Signature Standard (DSS) [7]. Although it is a simple and widely used

mathematical operation, modular exponentiation has an important drawback of

being time-consuming especially when the integers are large (>1024-bits).

Enormous number of research, both in theoretical and electronics, is still going on to

improve the performance of the modular exponentiation operation while decreasing

the resource usage.

The following sections give brief discussions on various algorithms that are

used in the modular exponentiation and multiplication operations. The Binary

Method for the exponentiation and Montgomery’s Algorithm for the modular

multiplication will be mainly discussed, since these are the most widely used and

most efficient algorithms. The reader can find very clear explanations and informing

examples about some other algorithms in the technical report of RSA Laboratories

written by Çetin Kaya Koç [4].

2.2. Modular Exponentiation

The modular exponentiation operation is performed as a series of modular

multiplications. Hence, the performance of the modular exponentiation depends

mainly on the following two criteria:

1) The number of the modular multiplications in the modular exponentiation

algorithm.

2) The stand-alone performance and physical area of the modular

multiplication module. (The multiplication unit consumes most of the silicon

area in an RSA implementation.)

10

Therefore, one should choose proper modular exponentiation and

multiplication algorithms suiting to each other so that the time product can

settle-down to an optimum value. That is, the design implemented on a system

should be fast enough to satisfy the time needs, on the other hand it should be as

small as possible in order not to cause placement and cost problems.

area×

2.2.1. The Binary Method (Square and Multiply Method)

This method examines the exponent in bit wise fashion either from left-to-

right (L-R Binary Method) or right-to-left (R-L Binary Method). These two

algorithms are as follows:

{ } .1 and 1,0 where ,2)(

:bits ofnumber thebe Let

1

1

0
0121 =∈== −

−

=
−− ∑ ki

k

i

i
ikk eeeeeeee

k

L

a) The L-R Binary Method

I n p u ts : NeM ,,

O u tp u t :)(m o d NMC e= .

1 . i f)1(1 =−ke t h e n MC = e ls e 1=C .

2 . f o r 2−= ki d o w n t o 0

2 .a .)(m o d NCCC ⋅=

2 .b . i f 1=ie t h e n)(m o d NMCC ⋅=

3 . r e t u r n C

Figure 2.2:The L-R Binary Method

The squaring (step-2.a.) operation is performed at each step but the

multiplication operation (step-2.b.) is performed if the corresponding bit of the

exponent is equal to 1. Therefore the total number of multiplications needed for the

LR Binary Method is (, where is the Hamming Weight of the 1)()1 −+− eHk)(eH

11

exponent, which equals to the number of 1�s in the exponent. Assuming the equal

probability of 1�s and 0�s in the exponent, the average number of multiplications for

this algorithm is)1(
2
3

−k .

b) The R-L Binary Method

I n p u t s : NeM ,,

O u t p u t :)(m o d NMC e= .

1 . ;1 ; 00 == CMX

2 . f o r 0=i t o 1−k

2 .a .)(m o d1 NXXX iii ⋅=+

2 .b . i f)1(=ie t h e n)(m o d 1 NXCC iii ⋅=+

2 .c . e l s e
ii CC =+ 1

.

3 . r e t u r n C

Figure 2.3: The R-L Binary Method

Although it has the same principle as The L-R Binary Method, this algorithm

has several advantages for fast exponentiation implementations. The main

advantage is that the steps of 2.a. and 2.b. in the above algorithm are independent

from each other and can be performed in parallel. This reduces the number of

iterations directly down to the number of squaring operations, which is fixed

whatever the exponentiation algorithm is used. The parallelism can be achieved

either by using extra hardware or within the same hardware by using the idle clocks

of the system as in the proposed implementation in this thesis. One drawback of this

algorithm compared to the L-R method is that the location of the most significant 1

in the exponent should be detected in order to prevent unnecessary squaring

operations. However, detection of the most significant 1 is a simple procedure,

which can be done, for example, with a 10-bit counter for the 1024-bit exponent. An

example of R-L Binary Method, in which the squaring and multiplication operations

are performed in parallel, is demonstrated in Figure 2.8.

12

2.2.2. The m-ary Method

 The m-ary method is a generalization of the binary method. Differently, this

method involves treating the m-bits of the exponent instead of 1-bit. Usually, m is

chosen to be a power of . The main advantage of this method is, the number of

multiplications needed for the modular exponentiation decreases as m increases.

However, more complex structures and preprocessing are needed since the powers

of the message up to m are to be calculated and stored

beforehand. Table 2.1, which is taken from the technical report written by Çetin

Kaya Koç [4], summarizes the comparison of the m-ary and the binary methods

according to the required number of multiplications.

2

),,,(12 −mMMM L

Table 2.1: Comparison of m-ary Method to Binary Method.

k binary m-ary

Opt.r

() rm 2=
Savings %

8 11 10 2 9.1

16 23 21 2 8.6

32 47 43 2, 3 8.5

64 95 85 3 10.5

128 191 167 3, 4 12.6

256 383 325 4 15.1

512 767 635 5 17.2

1024 1535 1246 5 18.8

2048 3071 2439 6 20.6

13

There are also many other algorithms for modular exponentiation, which are

based on reducing the number of modular multiplications and thus improving the

exponentiation performance [4]. Since the number of squaring operations cannot be

reduced in either of the algorithms, to perform the multiplying and squaring

operations in parallel gives the best performance for the exponentiation operation.

Therefore in this thesis, The R-L Binary Method is chosen to be the exponentiation

algorithm, in which the parallelism can be exploited without any need of extra

hardware and clocks.

2.3. Modular Multiplication

As mentioned in the previous sections, modular multiplication is the kernel

operation of RSA cryptosystem. Any improvement in the modular multiplication

operation directly affects the performance of the RSA.

P.L. Montgomery found an ingenious way of computing modular multiplication

operation in 1985 [8]. Different from previous methods, the Montgomery

Multiplication Algorithm uses residue representations of the numbers that are to be

multiplied. This representation provides division by , where is a power of 2.

Therefore, it is quite suitable for implementing on digital signal processors, general-

purpose microprocessors and digital VLSI structures. The next section gives the

underlying mathematics of Montgomery�s approach on the modular multiplication.

r r

2.3.1. Montgomery’s Method

This method is very commonly used to speed up the modular multiplication

and squaring operations required during the exponentiation process. In a modular

multiplication, with modulo being k-bit number, each number is represented by a

radix , which is usually a power of 2. The Montgomery Multiplication Algorithm

requires that r and are relatively prime to each other, i.e. gcd(. Since

 is odd (multiplication of two primes) and is a power of 2, this condition is

inherently satisfied. Given two integers and , this method computes

, where m is the number of the digits of in radix- . With a

representation of any number of the form

N

X

r

r −⋅

N 1), =Nr

m

N

A ⋅

r

NA < NB <

NB m mod N

14

∑
−

=

=
1

0

m

i

i
i rxX , where , { }1,,1,0 −∈ rxi L

Montgomery Modular Multiplication Algorithm is as follows:

 Inputs: A,B,N.

Output: NrBAP m mod−⋅⋅=
.00 =P

For 0=i to 1−m

 a. rnrbapq ii mod)()(1

000
−−⋅⋅+= ;

 b. rNqBaPP iiii /)(1 ⋅+⋅+=+
;

End
Post Condition: BANQPr m ⋅+⋅=⋅

Figure 2.4: Montgomery�s Algorithm.

In the above algorithm, computation of in step-a guarantees that the value

of in step-b is divisible by . Since is a power of 2, division by r is just

shifting out the least significant zero digit in radix- . This property of the algorithm

makes it very easy to implement in digital design. However, one should remove the

 factor at the output in order to get the desired result, . This process

is performed as follows:

iq

P

m

r r

r

r − NBA mod⋅

A
NrA m mod⋅mr 2

N

Montgomery
Modular

Multiplication

B

N

Montgomery
Modular

Multiplication

NBA mod⋅

Figure 2.5: Removing the factor. mr −

Table 2.2 gives a summary of the computations in the algorithm. The

extraction of the post-condition in the algorithm can be obtained by rearranging the

terms of the final value . This process is shown in Figure 2.6. mP

15

Table 2.2: Operations in the Montgomery�s Algorithm.

Step-2a of Algorithm in Figure 1.4:

rNqBaPP iiii /)(1 ⋅+⋅+=+

0=i
.)()(

)(
1

0
1

0

1
001

NrqBra

rNqBaP

⋅⋅+⋅⋅=

⋅+⋅=
−−

−

1=i

.))((1
11

1
002

−− ⋅+⋅+⋅+⋅= rNqBarNqBaP

 1P

NrqrqBrara ⋅⋅+⋅+⋅⋅+⋅= −−−−)()(1
1

2
0

1
1

2
0

2=i

1
22

1
11

1
003)))(((−−− ⋅+⋅+⋅+⋅+⋅+⋅= rNqBarNqBarNqBaP

 1P

 2P

NrqrqrqBrarara ⋅⋅+⋅+⋅+⋅⋅+⋅+⋅= −−−−−−)()(1
2

2
1

3
0

1
2

2
1

3
0

 M M

1−= mi
NrqrqBrara

rNqBarNqBaP

m
m

m
m

mmm

⋅⋅++⋅+⋅⋅++⋅=

⋅+⋅++⋅+⋅=
−

−
−−

−
−

−
−−

−

)()(

.)))((((
1

10
1

10

1
11

1
00

LL

LL

16

.mod

)()(

).(

)(

1

0

1

0

1
1

1
10

1
1

1
10

NrBAP

NQBAPr

NrqBraPr

rNqrNqrNq

rBarBarBaP

m
m

m
m

m

i

i
i

m

i

i
im

m

m
mm

m
mm

m

−

−

=

−

=

−
−

+−−

−
−

+−−

⋅⋅=

⇒⋅+⋅=⋅

⇒⋅⋅+⋅⋅=⋅

⇒⋅⋅++⋅⋅+⋅⋅

+⋅⋅++⋅⋅+⋅⋅=

∑∑

L

L

Figure 2.6: Extraction of the post-condition of the algorithm.

2.4. Modular Exponentiation Using Montgomery’s Multiplication Method

Although Montgomery�s algorithm is very popular in fast exponentiation

operations, it is not very practical when only one modular multiplication is to be

used. This is because of the removing process of the factor at the output.

However, in the case of modular exponentiation, there is no need to remove this

factor at each modular multiplication. Instead, the inputs of the modular

exponentiation algorithm are pre-multiplied by , and their -residues are

obtained. (Given an integer , its -residue is defined as

mr −

mr 2 N

NA < N NrA m mod⋅A= .)

Then, these residues are used throughout the whole exponentiation. One final

multiplication by 1 gives the desired result of the modular exponentiation. The

following example (Figure 2.8) gives an exponentiation process with exponent

equals to decimal 21. Montgomery Modular Multiplication is used with the R-L

Binary Method for the modular exponentiation:

Message(M)

Pre-multiplication
factor (r2m)

Modulo(N)

exponent(e)

NM e mod
M odular

Exponentiation

Figure 2.7: Modular Exponentiation Block.

17

M

mr2

mr2

1

M
M

M

2M

2M

2M

4M
4M

4M

8M

8M

8M

16M
16M

16M

32M

__

1
M

__

1

M
NOP NOP

4M

M

5M
5M

16M 21M

21M

1
NM mod21

NOP

final-multiplicatione[0]=1 e[1]=0 e[2]=1 e[3]=0 e[4]=1pre-multiplication

0 t 2t 3t 4t 5t 6t time

210)10101()21(:(e)Exponent =

S
qu

ar
in

g
M

ul
tip

lic
at

io
n

Figure 2.8: The R-L Binary Method with pre-and-final multiplications.

As seen from the above figure, the squaring operations (the upper row) and

the multiplication operations (the bottom row) are performed in parallel. The time

needed for the pre-and-final multiplications becomes negligible, as the length of the

exponent gets larger (>1024-bits usually).

2.5. Chinese Remainder Theorem (CRT)

Chinese Remainder Theorem, which uses the main property of RSA,

, where and are very large random primes, is used to speed-up the

RSA cryptosystem. Since encryption is fast enough because of a small exponent, the

CRT method is preferred for the decryption. According to this theorem,

computation of can be performed in two separate parts:

qpN ⋅= p

=

q

mod NCM d

)2(mod

)1(mod

2

1

qCM

pCM
d

d

=

=

However, according to Fermat�s theorem:

18

Consider a prime that defines a set of integers , then each

element α satisfies

p { 1,,2,1 −= pZ p L }

pZ∈

pp mod11 =−α .

Using this theorem, writing the private exponent d as

1)1(dpAd +−⋅= ,

where is any positive integer, or, A

)1mod(1 −≡ pdd ,

then equation (1) and (2) can be rewritten as

pCpCM ddpA modmod 11))1((
1 ≡≡ +−⋅ , (since C). pp mod1)1(≡−

qCqCM ddqA modmod 22))1((
2 ≡≡ +−⋅ , (since C). qq mod1)1(≡−

With the newly produced numbers, , the computation of M

with CRT is:

21 and MM NC d mod=

pqqpMMMM ⋅⋅−+= −]mod)mod()[(1
121

Since are about one-half of , and are about also one-half of .

Therefore and/or can be computed in ¼ of the time needed for computation

of . This results in about 4 times speed-up in the RSA decryption procedure can

be obtained if and are produced in parallel, and 2 times speed-up if they are

produced in serial. Since the owner of the private key knows and ,

 can be pre-computed and stored before the decryption

process.

qp and

1M

(and , p −

N 1d 2d d

q

2M

2M

)q

M

 , 2d

1M

mod1

 p

1d

19

CHAPTER 3

A LITERATURE REVIEW OF THE HARDWARE

IMPLEMENTATIONS OF RSA

In the previous chapter, it is mentioned that ever-increasing number of

research is taking place on the performance and the area improvements of the RSA

implementations. In this chapter, the reader will be informed about the development

process both in theory and practice, and about the latest implementation results of

the RSA algorithm.

The number of research, in parallel with the highly increasing need for the

PKC algorithms, had a great jump with the beginning of the 90s. As a result of this

jump, outstanding improvements on the time product of the RSA

implementations came out in the last decade. But the question is: why are we trying

to minimize the product?

area×

areatime ×

While examining the mathematics of the RSA, it was emphasized that the

security of the RSA lies in the factorization problem of the large integers. In [37],

Colin D. Walter gives a good example demonstrating this fact: The effort for

factorization doubles for every 15-bits when the modulus is about 1024-bits.

However, these 15 extra bits require only 5% computation time. Therefore, just

speeding-up the operation 5% results in a two times difficult problem of breaking

the system. Because of this reason, security is the main reason for the enormous

research on speeding-up the RSA algorithm. On the other hand, the speed is also

20

highly needed if RSA is to be used in the real-time applications such as enciphering

the real-time audio-video data.

One other way of achieving more security is to use higher number of bits in

the RSA operation. Today, although 1024-bit operation is still widely used, the

demand for 2048-bit RSA chips is arising. However, the silicon area needed for the

RSA implementation limits the number of bits to be used. Large chip size brings

placement and cost problems. Because of this reason, reducing the silicon area is an

other research goal for improving the RSA.

This chapter presents a survey of the studies from the product

perspective. In the first section, the reader can find the theoretical basics of the

various improvements. The remaining sections give information about the

implementations up to date. Section 3.2 presents the VLSI implementations and

Section.3.3 presents the FPGA implementations of the RSA Cryptosystem.

areatime ×

3.1. Theoretical Studies

Since the main mathematical operation of RSA is the modular

exponentiation, which is performed as a series of modular multiplications, the

studies on improving the RSA performance can be categorized as in Figure 3.1.

In 1994 Çetin Kaya Koç prepared a technical report for the RSA Data

Security, Inc. [4], including a wide research on some various modular

exponentiation and multiplication algorithms. Among these algorithms, the Binary

Method and Montgomery�s Modular Multiplication Method are the most widely

preferred algorithms for exponentiation and modular multiplication, respectively.

All the implementations presented in this chapter use the Binary Method (L-

R and R-L Methods are used in almost 50% among these implementations) except

for the implementation of Chiang et. al. [23], in which the exponent is treated in 4-

bit fashion. In this implementation the values are pre-computed

and stored into a RAM. With this method, their gain is: a worst case of

753 and ,, MMM

3/4k

21

multiplications in the exponentiation instead of multiplications. But the

drawback is area occupation and extra time due to storage and pre-computation

processes, respectively.

k2

LTIP

s

educin
itical

THEORETICAL STUDIES

EXPONENTIATION MU LICATION

Reducing the
number of

multiplications

Interleaving
multiplication and

squaring

Systolic
Architecture

Modifications on the
Montgomery's

Algorithm

Reducing the number
of iterations

Outputs in the
correct range

R g the
Cr Path

Figure 3.1: Theoretical studies on improving modular exponentiation.

As for the modular multiplication, almost all the implementations use

Montgomery�s method. Many modifications, those of which are categorized in

Subsection.3.1.2.2, are applied to Montgomery�s algorithm in RSA

implementations. The details of these implementations will be examined in the

proceeding sections of this chapter. A comparison of the results of these

implementations will also be given together with results of this thesis as a table in

chapter 4.

3.1.1. Exponentiation

The idea behind the studies on the exponentiation algorithm is to reduce the

number of multiplications. Some of these algorithms are: The m-ary method, The

22

Adaptive m-ary Method, The Power Tree Method, and The Booth Recoding Method

[4]. Generally they differ from the Binary Method by examining the exponent by

two or more bits at each time. Savings up to 20% (64-ary method for n=2048) in the

number of multiplications compared to the Binary Method can be achieved with

these methods (Table 2.1). However, the drawback is that some pre-computation

and storage requirements are introduced. The designer should carefully weigh the

advantages and disadvantages of making a choice among The Binary Method and

other �reduced number of multiplications� methods. Moreover, if parallelism can

be achieved by using R-L Binary Method, the number of multiplications directly

reduces to its lower bound, which is equal to the number of squaring operations in

the exponentiation, and there is no need for pre-computing and storage effort.

The implementations to date support the observation above so that The

Binary Method can be considered as the standard for modular exponentiation due to

being so widely used. This method, in which the exponent is examined in bit-wise

fashion, can be performed both from MSB (The L-R Method-Figure 2.1.) or LSB

(The R-L Method-Figure 2.2.). The latter of these methods provide parallelism in

the multiplication and squaring operations. There are two ways for parallelism:

- Placing two parallel multipliers in the hardware.

- Interleaving the two operations at successive clocks.

The first one suffers from area occupation of the extra multiplier, but can be

accepted in situations where speed is more critical. On the other hand, the second

one has great advantages especially for systolic architectures, which will be

explained in section 3.1.2.1. To give an idea, Figure 3.2 and Figure 3.3 depict how

the interleaving can be performed by using idle clocks with 100% efficiency.

23

idle idle

idle idle

idle

idle idle

1st
systole

2nd
systole

3rd
systole

...
...

clk

Figure 3.2: Only one operation (multiplication or squaring), without interleaving.

M

S

1st
systole

2nd
systole

3rd
systole

...
...

M

M

S

S

S

M

M

M

S M

S

S --> Squaring
M--> Multiplication

clk

Figure 3.3: Interleaved multiplication and squaring operations by using idle clocks.

3.1.2. Multiplication

The usual way of multiplication is by scanning one of the multipliers from

left-to-write and adding a multiple of multiplicand by a right shift of the partial

product. This method gives the maximal carry ripple length of the parallel additions

corresponding to the length of the multiplicand. In modular multiplication, instead

of first multiplying and then performing modular reduction at the end, researchers

24

are trying to find the ways of interleaving the modular reduction into the partial

steps of multiplication. With this aspect of view, many different methods were

proposed in order to perform fast modular multiplication of large integers. This

section will give some of these algorithms, one of which will be examined in more

detail: The Montgomery Modular Multiplication Algorithm.

In 1991, Orup and Kornerup [9] proposed a modular multiplication scheme

in radix-4 as follows:

S

ii
qNBaSS
NSq

i
S

NBAS
NBA

k
i

k

 of Correction
END

;1
;22

); div Estimate(
DO 0 WHILE

 1;-mi ;0
mod:Output

,, :Inputs

−=
−+=

=
≥

==
⋅=

Figure 3.4: Modulo Multiplication with quotient estimation.

This method has drawbacks in modulo reduction and final correction, in

which subtraction of is performed until belongs to the correct interval. Also

the quotient estimation in the above algorithm is not a simple procedure, which is

achieved by searching values as follows:

N

q

S

{ }max,,1,0 ,2 qqNqS r L∈− ,

where at each step the sign of the result is checked.

Another method for modular multiplication is the L-algorithm [23], in which

the modulo-reduction is performed by checking the overflows of the operation. The

algorithm is given in Figure 3.5. As seen from the figure, intermediate steps (�s)

should be reduced into correct range at each step. In [23], the number of clocks per

iP

25

multiplication was given as for an -bit operation. However, they had to pre-

compute and store some constants in order to perform modulo reduction.

n2

for
0

Output
Inputs

0 =

n

1

;

.

1

1

1

P

P

A
AB
N

i

i

i

==
<=

−

−

−

};mod 1
;

else
;mod

)(if
){;;1(

 ;
mod :

,, :

1

0

NMM
P

NMP
b

inii
MP

NP
BA

i

i

ii

i

<<=
=

+=

++=
=

=

−

Figure 3.5: The L-algorithm (LSB first).

Sign-estimation technique used in the design of K-S Cho et. al. [32] is

another method used for modular reduction in the intermediate steps of modular

multiplication. In this type of multiplication algorithm, the numbers are represented

in 2�s complements and addition is performed instead of subtraction. In [32], they

checked the 5 MSB of the partial products by using a 5-bit carry-look adder for the

modular reduction. They achieved about n iterations for -bit multiplication.

However, because of intermediate modular reduction steps, the operating speed was

only 40 MHz, which is rather slow compared to other implementations.

2/ n

Blackley�s Method used in K. Sakiyama�s FPGA implementation [34] for

modular multiplication (Figure 3.6) also suffers from intermediate modular

reduction problem. Step 4 in this algorithm may require two successive

subtractions, , to make the intermediate result in the range [,

which slows down the operation.

NRR −=]1,0 −N

26

R
NRR

BaRR
ni

R
NABR

NBA

ik

return 5.
mod .4

2 3.
1 to0for 2.

0 1.
 mod :output

,,:input

1

=
⋅+=

−=
=

=

−−

Figure 3.6: Blackley�s Method

While these algorithms suffer from modulo reduction, P.L. Montgomery

found a very clever solution to this problem: His algorithm reverses the treating of

the digits of the multiplicand, operating from the LSB of the partial products. For

the intermediate modular reduction process, a multiple of modulo, , is added

instead of subtracting. With this method, the partial product is guaranteed to be

divisible by the radix- r , which is usually a power of 2. Therefore modular reduction

becomes a simple right shifting and removing process of the right-most digit, which

is zero. Because of the above advantages, it is used in almost all the

implementations to date.

N

The Montgomery Algorithm, as presented in C.D. Walter�s systolic

implementation [10], is as follows:

.
end

./)(b.
;mod)()(a.

1 to0for
;0

mod :Output
,,:Inputs

1

1
000

0

QNABPr

rNqBaPP
rnrbapq

mi
P

NABrP
NBA

m
m

iiii

ii

m

+=

++=
−⋅+=

−=
=

=

+

−

−

Figure 3.7: Montgomery�s Multiplication Algorithm in radix-r.

27

3.1.2.1. Montgomery’s Algorithm in Systolic Architectures:

A systolic architecture is a regular array of processing elements, denoted as

, where: iPE

- All the PE �s are similar to each other and operate synchronously.

Hence the design can be expanded by repeating the systoles.

- All the communicate locally. Therefore routing problems are

minimized.

- Each PE is as simple as possible so that the architecture can

operate at high clock frequencies.

The following are two examples for systolic arrays:

Figure 3.8: Linear systolic array.

Figure 3.9: Rectangular systolic array

28

Because of these three properties, the systolic architectures are very suitable

for the Montgomery�s Modular Multiplication Algorithm. In 1992, Colin D. Walter

proposed a method for systolic modular multiplication, in which the operations are

performed in radix-2 [10]. In this architecture, one of the multipliers is fed to the

array in bit wise fashion. Each bit of the other multiplier is hardwired to each

systole. At a given clock cycle, each processing element performs the combinational

operation and directly passes the incoming data to the next systole at the next clock.

The carry propagation is pipelined through the systoles. The intermediate result is

right-shifted through the systoles digit-by-digit at each clock. This process is

illustrated in Figure 3.10.

PE0PE1PEm-1
iaia

iq

carry

0n0b1n1b1−mn1−mb

carry

ia

iq

carry

ia

iq

]1[−mPi
]1[iP]0[iP

Systolic architecture for Modular Multiplication

Figure 3.10: A linear array of PEs for Montgomery�s Algorithm.

Figure 3.11, which is taken from [10], shows the interior circuitry of the

proposed in the modular multiplication design. As shown in the figure, each PE

is composed of 5 XOR, 2 OR, and 7 AND gates. In addition to the combinational

circuitry, the systole involves 5 1-bit registers (2-for carry-bits, 1-for each

). For a k-bit modular multiplication, if the linear array structure

is to be used, the architecture requires k systoles, therefore at least 5k XOR, 2k OR,

7k AND gates and 5k FFs.

PE

and][],[],[iPiQiA

Among the implementations using Montgomery�s algorithm, many of them

suited modular multiplication into systolic architecture.

29

Figure 3.11: Typical cell for radix-2.

3.1.2.2. Modifications on the Montgomery’s Algorithm:

 Although, Montgomery�s Algorithm is ideally suitable for digital

applications, lots of small but effective modifications have been made in the

implementations up to date. In this section, these modifications are categorized so

that the reader will have a better understanding of the improvements while

examining the implementations in sections 3.2, and 3.3.

a) Reducing the Number of Iterations:

This method is very commonly used in both ASIC and software

implementations. Two ways for reducing the number of iterations are widely used:

- Using a high-radix representation of the numbers,

- Using booth-like multiplication,

Since the modular multiplication is the kernel operation, reducing the

number of iterations in a multiplication directly affects the total number of clocks.

However, as complexity of each iteration increases, the time needed for each

30

iteration increases. This results in a low clock frequency, which slows down the

operation.

In Figure 3.7, multiplication in radix-r is shown. The number of iterations

decreases as increases. However, the operations in step-a and

step-b requires more complex circuitry as the radix increases. For example, when

radix is 2, the calculation of in step-a needs only one XOR and one AND gate

(Since is always odd,). On the other hand, if

radix-8 is used, all the digits are in 3-bit length. Therefore the needed amount of

sources for the same calculation turns to be (two 3 multipliers + 6-bit adder + 3-

bit LUT) (Figure 3.12). This increases the critical path. However, the total number

of clock cycles required to complete a modular multiplication is reduced to 1/3rd of

radix-2.

))/(log(2 rnm =

N

r

iq

− n 2 when ,1mod)(1
0 ==− rrr

3×

1

1

1
iP

ia

0b

iq

2-radixin n calculatio iq

3
3

3

iP

ia

0b

iq

8-radixin n calculatio iq

x

+

ia

LUT

x 3

3
3

3

3

Figure 3.12: Q-Calculation circuitries for two different radix values.

b) Reducing the Critical Path:

One way of removing the disadvantage of using high radix is to modify the

algorithm in such a way that the critical path is reduced. As depicted in Figure 3.7,

step-a has the potential of increasing the critical path. In order to reduce the

complexity of , one of the inputs, say , is shifted up by . That is,

the least significant digit of becomes zero. This operation directly eliminates one

of the multiplications and the addition operation in the above figure. Recovering of

the modification is achieved simply by increasing the number of iterations by one as

ncalculatio-iq

B

B r

31

in the implementations of A. Royo et. al.[15] and M. K. Hani et. al. [38]. This

process is shown in Figure 3.13:

A
NrBA m mod−⋅⋅

N

Montgomery
Modular

Multiplication
(m iterations)

B

A

NrBA

NrrBA
m

m

mod

mod)1(

−

+−

⋅⋅=

⋅⋅⋅

N

Montgomery
Modular

Multiplication
(m+1 iterations)

rBB ⋅='

Figure 3.13: Recovery of the modification in the -calculation. iq

c) Obtaining the Outputs in the Correct Range:

In the exponentiation, the outputs of the modular multiplication unit are

reused as inputs for a new modular multiplication. Therefore, the bounds on the I/O

of the Montgomery algorithm become important. However, a careful inspection on

the algorithm in Figure 3.7 shows that the intermediate results are bounded to

 as shown in the table below: NB +

Table 3.1: All the . case worst in the)1(be toassumed are s' and s' −rqa ii

0=i NBrrNrBP +<−+−+= /)]1()1(0[1

1=i NBrrNrBNBP +=−+−++< /)]1()1([2

M M

1−= mi NBrrNrBNBPm +=−+−++< /)]1()1([

32

Therefore the output of the first modular multiplication is bounded in the

range or [. The ongoing multiplications will result in the bound of

. In some implementations [15][33], a final comparison by and subtraction

is performed to reduce this bound again to [. On the other hand, in some other

implementations [13][14][25][31], the bounding of the output is performed via

applying one or more iterations in the algorithm. In other words, in the extra

iterations, since �s are equal to zero anymore, one term of the addition in step-b

will be vanished and division by will reduce the result to satisfy the needed

bound.

),0[NB +

)

)2,0 N

3,0[N N

)2,0 N

ia

r

Table 3.2: Bound is satisfied via one more iteration.

M M

1−= mi NPm 3<

mi =)2(, 2/2/)]1(03[1 >=<+=−++<+ rNrNNrrNNPm

However, final multiplication by 1 at the end of the exponentiation should

guarantee that the result of the exponentiation must be in the range [. In the

papers of C.D. Walter [19], and T. Blum and C. Paar [22], clear explanations

demonstrate that the final multiplication by 1 will result in a bounded output in the

range . The origin of their idea comes from the requirements of the RSA

mathematics. Actually, it is seen by inspection that, multiplication by 1

will introduce all the �s equal to zero, except for the first one.

A worst-case examination of the algorithm, in which all the digits of quotient, �s,

),0 N

),0[N

000L))01((2=A ia

iq

33

having their highest value (, the limit of the output will approach to the value

.

)1−r

N

2 [=P

(−+ mBr

(− − mNr

Table 3.3: Final multiplication by 1. All the a �s are zero, except for the first one. i

0=i 1
1 /]010[−=+⋅+= BrrBP

1=i 121 /)]1(0 −−− −+=−++ NrBrNrrNBr

M M

1−= mi)1()2()1 /)]1([−−−−−− −+=−+−= mmm
m NrBrNrrNNrNP

Since at the beginning of the final multiplication, the following

inequality can be obtained:

NB 2<

2rfor ,0)2()1 ≥≤−< −−− mm rrNNBr .

Therefore, the result at the last iteration falls into the range [.),0 N

34

3.2. VLSI Implementations

This section presents the recent VLSI implementations of RSA algorithm.

However, a survey of the RSA implementations, prepared by Ernest F. Brickell in

1990 [3] is given in Table 3.4 to give the reader a reference point to compare the

improvements after 90s.

Table 3.4: A Survey of RSA Hardware Implementations up to 1989 (Brickell [3]).

 Year Tech. # of bits
per chip Clock Baud

(# of bits)
of clocks per

512-bit op

Sandia 1981 mµ3 168 4MHz 1.2K
(336)

6100.4 ×

Bus. Sim. 1985 GateArray 32 5MHz 3.8K
(512)

60 1067. ×

AT&T 1987 mµ5.1 6104.0 × 298 12MHz 7.7K
(1024)

Cylink 1987 mµ5.1 1024 16MHz 3.4K
(1024)

6102.1 ×

Cryptech 1988 GateArray 120 14MHz 17K (512) 6104.0 ×

CNET 1988 mµ1 6103.2 × 1024 25MHz 5.3K
(512)

Brit.Telecom 1988 mµ5.2 6101× 256 10MHz 10.2K
(256)

Plessy 1989 - 512 - 10.2K
(512)

Sandia 1989 mµ2 6104.0 × 272 8MHz 10K (512)

Philips 1989 mµ2.1 6101.4 × 512 16MHz 2K (512)

35

 In 1996, two similar VLSI implementations, based on the reducing critical

path approach, came from two different universities of Taiwan with P.-S. Chen et.

al. [13] and C.-C. Yang et. al. [14]. In [13] they used a method with operations

per multiplication with a clock frequency of 50 . Their implementation results

were as follows:

n2

MHz

- 512-bit RSA operation

- A Prototype CMOS VLSI design using technology. mµ8.0

- gate count at a chip area of K78≅ 276mm

- clock cycles per 512-bit operation 61005.1 ×

- A baud of @50 clock frequency sKb /3.24 MHz

On the other hand, in [14] they proposed a similar algorithm to [13], but they

used only about iterations per multiplication. The drawback of their method

was introducing one more addition operation in each iteration. The results of this

implementation were:

2+n

- 512-bit RSA operation

- A single chip using library SPDM 6.0 COMPASS mµ

- gate count at a chip area of K74≅ 256mm

- The critical path of in the simulations. ns06.6

- worst-case clock cycles per operation. 61054.0 ×

- Expected clock frequency of 125 with estimated routing

delay about

MHz

ns2 .

- Expected baud of 118 @125 clock frequency (worst-

case)

sKb / MHz

36

In [15], A. Royo et. al. used a somewhat different technique for the

Montgomery Algorithm. First of all, they used a radix-4 Modified Montgomery

Algorithm by reducing the critical path as mentioned in the previous section.

Differently, they shifted up by and then applied two more iterations in the

multiplication algorithm. In addition to this, they used a Carry Save Representation

(CSR) for the intermediate results, by which they believe that the operation speed is

increased. However, this technique had a drawback: conversion from CSR to non-

redundant binary representation at every modular multiplication. Their results were

as follows:

B 2r

- 768-bit Operation

- CMOS technology. mµ7.0 ES2

- Area of 77 2mm

- clocks per multiplication and 0 clocks per

exponentiation. (Average case)

400 6105. ×

- . MHzsKb 50@/5.72

The design of J.-H. Guo et. al. [16] is based on the bit-serial systolic

architecture, which does not include any broadcasting signals. Although, a similar

algorithm to the one in [14] was used, they reached to a higher performance because

of a more compact hardware design. In addition to this, they used R-L Binary

method, which utilizes the parallelism of the multiplication and squaring. However,

the parallelism was performed by using two multipliers, therefore the area of this

design is almost twice as much as the previous designs in [13] and [14]. Their

results can be summarized as follows:

- 512-bit operation

- COMPASS 0 CMOS standard cell library mµ6.

- gate count at a chip area of . K132 268mm

37

- Estimated clock frequency of 143 MHz

- Estimated baud of . MHzsKb 143@/278

A different approach on the Montgomery�s Algorithm came from Jye-Jong

Leu and An-Yeu Wu [20] in 1999. In this implementation, as shown in the

algorithm taken from [20] (Figure 3.14), the Booth function calculates the

coefficients (�s) of the input of the multiplier. Another multiplexing operation

is performed to determine the coefficient of in the algorithm. Different from the

previous examples, left-shift is performed instead of right-shift for modular

reduction. With these modifications, the proposed algorithm takes operations

per multiplication. In the implementation, they used a systole-like architecture with

 unit cells, each corresponding to 2 bits of the operation. However, they

noticed that at any clock cycle, half of these cells stayed idle. Therefore they

reduced the number of cells by half to , and thus they reached a total of

about gate count. One other solution for 100% utilization of the idle cells could

be by exploiting parallelism in the exponentiation with R-L Binary Method as

illustrated in Figure 2.8. For the exponentiation, they used L-R Binary method, in

which multiplications are needed on the average. The critical path obtained in

the design (without routing delays) was 6 . For routing, they made an estimation

by adding 30% to critical path delay. A summary of this implementation is as

follows:

ic B

N

4 +

ns

2/n

12/ +n

64

3

1/n

7.

K

2/n

- 512-bit Operation

- (Technology name was not given) mµ6.0

- gate count (The chip area was not stated) K64

- clock cycles. M53.0

- Estimated clock frequency of 115 . MHz

- Estimated baud of 111 . MHzsKb 115@/

38

}
]12/[return

}
;2)][(]1[

);,Sel(
;4mod)][({

) ;2/ ;0(For
/* ;}2,1,0,1,2{ * / ;0]0[

};,,,,,{)Booth({
),,M3(

}
};, {return

];1[
else

];0[]1[
)0(if

];0[{
),Sel(

}
};,,,,,{return

}
;

}
break; ;0 :7 case
break; ;1 :6 case
break; ;1 :5 case
break; ;2 :4 case
break; ;2 :3 case
break; ;1 :2 case

break; ;1 :1 case
break; ;0 :0 case {

}) switch({ {
)2;;0(for

;0 ;0 ;0 {
/*encoder Booth * /)Booth(

2/2/22/12/2/

01

1

1

0

2/2/22/12/2/

112/

2/

2/

2/

2/

2/

2/

2/

2/

1/1

10

+

<<⋅+⋅+=+
=

⋅+=
++=<==

−−==
==

=
=

⊕=

==
=

=

=

=
−=
−=
−=

=
=

=
=

+=<==
===

−−

−−

++

+

+

nP

NRBciPiP
nqR

BciPq
iinii

cP
cccccAC

NBA

rrR
qr

qqr
n

qr
nq

cccccC

aq

c
c
c
c
c
c

c
c

qaa
iinii

aaq
A

i

Ii

iI

i

nnnnn

i

ii

I

i

Ii

nnnnn

ii

i

i

i

i

i

i

i

i

iii

nn

K

K

Figure 3.14. The proposed Booth-encoded Montgomery Algorithm in [20].

39

In 1999, the authors of [13] further improved their study on Montgomery

Algorithm and proposed a new method in [21]. In this new design they revised the

algorithm such that one addition is required in each iteration of the modular

multiplication. They used 2�s complement multiplier and modular-shift adder, both

of which are composed of linear cellular arrays. However, this was a theoretical

study rather than a hardware implementation so that the results were presented in

terms of full adder (FA) parameters used in the design. The time spent per operation

was given as , and the area was given as , where τ and α are roughly the

delay and the area of a FA.

τ22n αn2

The implementation of J.-S. Chiang et. al. [23] differs from the others with

respect to the exponentiation and multiplication algorithms used. The

exponentiation is performed by scanning 4-bits of the exponent at a time. Even

though, the worst-case number of multiplications is reduced to with this

method, the R-L Binary Method with interleaved squaring and multiplication still

gives better result (-multiplications per exponentiation). On the other hand, this

method needs pre-computation and storage of in the RAMs. As

for the multiplication, they used modified L-algorithm with cycles per

multiplication. The results of the implementation were:

3/4n

n2

n
753 and ,, MMM

- 512-bit Operation

- COMPASS standard cell library (TSMC process). mµ6.0

- Critical path of estimated by COMPASS Input Slope Model ns6

- clock cycles per operation M7.0

- estimated clock. MHzsKb 166@/122

Recently, 1024-bit implementations have begun to take place of the previous

512-bit implementations. The design proposed by Y.S. Kim et. al. [25] is one of

them. They used Montgomery�s Algorithm and L-R Binary Method for the modular

exponentiation. Instead of a systolic architecture, they used 32-bit Carry Save

40

Adders (CSA) and Carry Propagation Adders (CPA) in the design. The results were

as follows:

- 1024-bit Operation

- TechnologySOG 65.0 mµ

- counts gate 112K

- Clock cycles of case) (average 6.1 and case)-(worst 2.2 MM

- Clock frequency of MHz50

- Worst-case operating time of ms43 case) average in the 5.32(ms

Two implementations for a 1024-bit RSA operation were proposed by T.-W.

Kwon et. al. [31]. One of them was an area-critical design, which uses the L-R

Binary Method, and thus needs multiplications for an process at worst-

case. The other was a speed-critical design using the R-L Binary Method, in which

the parallelism was performed via two separate multipliers. Montgomery�s Method

was used in both designs for the modular multiplication. Some of the authors of this

paper had also worked in the implementation of the 1024-bit RSA Processor in [25].

Newly, they improved their previous design by adding R-L Binary Method with

parallel multiplication and squaring. Although they reached a 2 times better speed

performance, the second multiplier had increased the area of the design. The

comparison of the two proposed implementations is as follows:

n2 bit-n

41

Table 3.5: 1024-bit RSA implementations using two types of Binary Method (Kwon

et. al. [31]).

 L-R Method R-L Method

Technology SOG 5.0 mµ SOG 5.0 mµ

Gate counts 92K 156K

Clock Frequency 50MHz 50MHz

Clock Cycles 1.6M(average)
2.2M(worst) 1.1M

Operating Time 32.5ms(average)
43ms(worst) 22ms

The implementation of K.-S. Cho et. al. [32] uses a new radix-4 modular

multiplication algorithm based on sign-estimation technique, of which a brief

discussion was given in section 3.1.2. With this technique, they reached to a value

of clock cycles per n multiplication. In addition, they used R-L Binary

Method by performing multiplications per exponentiation. Since, the

parallelism was achieved via a second multiplier, the drawback of this

implementation became the high number of gate counts: . Although the

design had resulted in a slow operating clock of , they obtained a

considerably high performance for a 1024-bit RSA process. The result was 13

operating time and a baud of 78 . Obviously, there are two main

reasons underlying such a performance with a clock frequency as low as 40MHz:

32/ +n bit-

8.

n bit-n

K230

MHz40

ms

MhzsKb 40@/

- Reduced number of iterations in the multiplication

- R-L Binary Method with parallel multiplication and squaring

operations.

42

3.3. FPGA Implementations

In 1998 J. Poldre, K. Tammenae, and M. Mandre have analyzed the FPGA

implementations of the RSA by using three families of FPGAs: XC4000, XC6200,

and FLEX10K [39]. They used the R-L Binary Method with parallel S&M, and

radix-2 Montgomery algorithm in their implementation. They proposed two

different architectures, systolic and classical, for the modular exponentiation.

However the timing results were some estimation based on the number of clocks

and delay values of the FPGA resources. Besides, only public key processes

requiring operations with a small exponent (not private key processes) were taken

into account. These results are shown in Table 3.6 and Table 3.7, which are taken

from the corresponding paper [39]. The k-values in the tables represent the bit-

lengths of the unit operations in the design.

Table 3.6: Estimated CLB count and number of cycles for two types of architectures

in 3 FPGA families (J. Poldre et. al.[39]).

bits k XC4000
Systole

XC4000
Classic

XC6200
Systole

XC6200
Classic

FLEX10K
Systole

FLEX10K
Classic

cycles
Systole

cycles
Classic

512 2 4096 6144 16384 24578 8192 12288 256 128

512 4 7168 10752 26624 39936 14336 21504 128 64

512 8 12288 18432 40960 61440 24576 36864 64 32

512 2 8192 12288 32768 49152 16384 24578 512 256

512 4 14336 21504 53248 79872 28672 43008 256 128

512 8 24576 36864 81920 122880 49152 73728 128 64

43

Table 3.7: Estimated time (in msec) of RSA Public Exponentiation Process. Only

exponentiation times for small exponent are presented (J. Poldre et. al.[39]).

Bits k XC4000
Systol.

XC4000
Classic.

XC6200
Systol.

XC6200
Classic.

FLEX10K
Systol.

FLEX10K
Classic.

Cycles
Systol.

Cycles
Classic.

512 2 3,9 2,0 5,2 2,6 5,2 2,6 256 128

512 4 2,3 1,1 3,4 1,7 3,3 1,6 128 64

512 8 1,3 0,7 2,1 1,0 2,0 1,0 64 32

1024 2 15,7 7,9 21,0 10,5 21,0 10,5 512 256

1024 4 9,2 4,6 13,6 6,8 13,1 6,6 256 128

1024 8 5,2 2,6 8,4 4,2 7,9 3,9 128 64

In 1999, T. Blum and C. Paar proposed an FPGA implementation of the

RSA Cryptosystem, which uses the modified Montgomery�s Algorithm in a systolic

architecture [22]. In this implementation, they performed operations in radix-2,

using the R-L Binary Method with interleaved S&M. Also, they simplified the qi-

calculation by shifting up one of the modular multiplication inputs as explained in

3.1.2.2.b. Differing from the previous implementations, they applied three more

iterations in their modular multiplication algorithm than the original case. Although,

parallel S&M introduced great advantages in reducing total number of clocks, they

obtained 2(n+2)(n+4) clock cycles for an n-bit operation, which is rather high

because of the operations handled in radix-2. Typical PE in this architecture was

different from the convenient ones proposed by C.D. Walter [10] in such a way that

each PE performed calculations more than 1-bit although radix-2 was used. They

implemented the design for three types of PE�s (4, 8, and 16 bits) in order to find the

solution which best suits to the Xilinx XC4000 series FPGA�s, which they used in

the implementation. The following table taken from [22] summarizes their results

44

for these three types of PE�s. The u values represent the number of bits computed in

each PE.

Table 3.8: CLB usage and execution time for a full modular exponentiation (Blum

et. al. [22]).

 512 bit 768 bit 1024 bit

u C
CLBs

T
[ms]

C
CLBs

T
[ms]

C
CLBs

T
[ms]

4 2555 9.38 3745 22.71 4865 40.50

8 2094 10.13 3123 23.06 4224 49.36

16 2001 11.56 2946 25.68 3786 49.78

After two years, the same authors implemented a similar systolic architecture

in Xilinx XC40250XV and XC40150XV FPGA�s with operations performed in

radix-16 [36]. Different from the previous one, the modular multiplication algorithm

used in this new implementation (Figure 3.15) was an optimized version of the

Montgomery�s Algorithm to be used for high radix computations as in proposed by

H. Orup [40]. However, in the paper [36], they didn�t give sufficient details of how

they implemented the initialization part of the new algorithm. Using a higher radix

in the Montgomery computations, they reduced the number of clocks about a

quarter of the previous implementation, while preserving the clock frequency.

Therefore they have achieved to a four times faster RSA operation than the previous

implementation. Table 3.9 compares the two FPGA implementations [22] and [36]

of T.Blum and C.Paar.

45

MONT (A, B): Montgomery Modular Multiplication for computing

MBA mod⋅ , where
i

i
km

i
mM)2(

1

0∑
−

=
= , }12,,1,0{ −∈ k

im K ;

∑ =
−∈==

m

i

k
ii

ikk mmMMMM
0

' }12,,1,0{~,~)2(
~

 ,)2mod(
~

K ;

∑
+

=
−∈=

1

0
}12,,1,0{,)2(

m

i

k
ii

ik bbB K ;

∑
+

= + =−∈=
2

0 2 0},12,,1,0{,)2(
m

i m
k

ii
ik aaaA K ;

; ;2
~

4 ;
~

2, 1−−=′<< MMMMBA km

1. 00 =S
2. For 0=i to 2+m do
3. k

ii Sq 2mod)(=

4. BaMqSS i
k

iii ++=+ 2/)
~

(1

5. End for

Figure 3.15: The Modular multiplication Algorithm proposed in [36].

Table 3.9: Comparison of the two FPGA implementations [22] and [36].

Radix
512-bit

CLB Time (ms)

768-bit

CLB Time (ms)

1024-bit

CLB Time (ms)

2 [22] 2555 9.38 3745 22.71 4805 40.05

16 [36] 3413 2.93 5071 6.25 6633 11.95

In [30], A. Daly and W. Marnane proposed three types of Montgomery

Algorithms and compared their FPGA performances. Among the proposed

algorithms, they had chosen the one in Figure 3.16, in which the computations are

handled in radix-2 and the q-calculation is made easier by shifting-up one of the

inputs as in [22]. As for the exponentiation, they used the R-L Binary Method,

however they performed parallel S&M with two multipliers instead of interleaving

46

them in one multiplier. The target device in this implementation was the Xilinx

V1000FG680-6. The results of this FPGA implementation are shown in Table 3.10.

MonPro3 (A, B, M)
{
 01 =−S ;
 AA ×= 2 ;
 for 0=i to n do
 2mod)(1−= ii Sq ;

 2/)(1 AbMqSS iiii ++= −
;

 end for
 Return

nS ;
}

Figure 3.16: The modular multiplication algorithm used in [30].

Table 3.10: Implementation results in Xilinx V1000FG680 FPGA (Daly et.al. [30]).

Bit Length(n)
No. of Slices

(% of chip)

Clk. Freq.

(MHz)
Data Rate

120 1146 (9%) 83.51 673.2 kb/s

240 2301 (18%) 58.15 238.3 kb/s

480 4610 (37%) 55.92 115.5 kb/s

720 6917 (56%) 50.66 70.0 kb/s

1080 (1024) 10369 (84%) 49.63 45.8 kb/s

47

CHAPTER 4

HARDWARE IMPLEMENTATION

This chapter presents the details of the hardware implementation of the RSA

PKC performed within this thesis. The design and implementation results presented

in this chapter are summarized in a paper, which was presented and published as a

work in progress at Euromicro Symposium on Digital System Design, DSD2003, in

September 2003 [42].

Section 4.1 examines the methods and modifications that are used in the

design. Also a top-to-bottom hierarchic description of the design architecture is

given in this section. VLSI and FPGA implementation details are handled separately

in Section 4.2 and 4.3, respectively. Finally the last section gives a comparison of

the results presented here to the ones in the literature, which were presented in

Chapter 3. The reader may refer to the previous section for detailed explanations of

the used algorithms and methods in this chapter.

4.1. Design Aspects

4.1.1. Design Methodology

For the exponentiation operation, The R-L Binary Method is used (Figure

2.2). This Method treats the exponent from the LSB in bit-wise fashion. The

multiplication and squaring operations are interleaved into successive clock cycles

48

using a single multiplier, hence a 100% utilization of the hardware and time has

been reached in the design. In other words, with interleaved multiplication and

squaring, there are no idle clocks and idle resources while the system is running.

Also there is no need to use exponentiation algorithms such as Method,

Power Tree Method or Booth Recoding Method in order to reduce the number of

multiplications.

ary-m

For modular multiplication, Montgomery�s Modular Multiplication

Algorithm (Figure 2.3) is used. Among the modifications on this algorithm, which

were categorized in Chapter 3, the following are utilized in this implementation:

- The number of iterations are reduced by performing the

algorithm in radix-4. A higher radix would result in a less

number of iterations but since the computations become more

complex as the radix increases, the critical path and needed

amount of resources also increase. Radix-16 computations were

also tried in the implementation. However, while the total

operation time remained almost as the same as for radix-4, the

area increased about 32%. The following table explains the effect

of increased radix:

 Table 4.1: Comparison of radix-4 and radix-16 designs.

 Gate Count Clock Period
Worst-case # of

clocks

Radix-4 K132)2/1024(21024 ××≅ 4.06ns

Radix-16 K175)4/1024(21024 ××≅ 8.3ns

49

- Another modification was performed to reduce the critical path

by simplifying the -calculation (see section 3.12.2.b). In the

modular multiplication, one of the inputs, , was shifted-up by

4, making the least significant digit zero. The new -calculation

became:

iq

B

iq

rnrpq

brnrbapq

i

ii

mod)(

 0 and mod)()(
1

00

0
1

000
−

−

−⋅=

⇒=−⋅⋅+=

0

As explained in section 3.1.2.2.b, one more iteration was applied in the

algorithm to recover the same result after this simplification.

- In order to guarantee that the outputs of the modular

multiplication are in the range [, another extra iteration

was added in the multiplication algorithm. The mathematical

details of this modification were given in section 3.1.2.2.c.

)2 ,0 N

With the above modifications, the algorithm that is used in the design has

turned to be:

 Inputs: A, B, N;

Output: NBAP m mod4)1(+−⋅⋅= ;
4' ⋅= BB ; /* Reducing the critical path */

00 =P ;
For 0=i to 1+m /* Two more iterations */

 a. ;4mod)4(1
00

−−⋅= npqi
/* Simpler qi-calculation */

 b. ;4/)'(1 NqBaPP iiii ⋅+⋅+=+

End
Post Condition: NQBAPm

m ⋅+⋅=⋅ +
+

1
14

Figure 4.1: The Algorithm used in the design.

50

As seen in the above algorithm, there are two more iterations with respect to

the original algorithm (Figure 3.7). One of these extra iterations is for the recovery

of the shift-up operation of one of the inputs. The other iteration is for obtaining the

output in the range [.)2 ,0 N

4.1.2. Design Architecture

There are four levels of hierarchy in the 1024-bit RSA Cryptosystem design

as seen in Figure 4.2. In this section, the design architecture will be described from

top to bottom.

Design Hierarchy

top1024R4shell

top1024R4

controller

PE0

qi-calculater

PE1

core-systole

PE512

core-systole

M

Figure 4.2: Hierarchy of the design.

51

The first level is used for the chip interface. The I/O interface of the top-

module is shown in Figure 4.3. The Modulus , Pre-computed Factor , and

the Message (are taken in by 8-bit interface; and the Key is taken in by a 4-bit

interface. Data-valid (dvin) signal controls the acceptance of these inputs to the

system. When dvin is at logic level LOW, all the inputs are read at the rising edge of

the clk input. The 8-bit inputs of the top-module, , , and are registered and

transmitted into the second level of the hierarchy in 2-bits thru shift registers. The

remaining 4-bits input, e , is registered and transmitted into the second level, using a

1-bit shift register. This operation is shown in Figure 4.4.

)(N

N

)(R

)M

R M

xdatain (M)

edatain (e)

rdatain (R)

mdatain (N)

8

8

4

8

dvin

reset

clk

dvout

dout
8

RSA-1024

modulus
1024-bit

precomputation
factor 1024-bit

message
1024-bit

key
1024-bit

cipher 1024-bit
)mod(MXC e=

Figure 4.3: I/O interface of the top-module.

52

mdatain

rdatain

xdatain

edatain

clk

reset

dvin

dout

dvout

8

clk
reset

min

ein

xin

rin

mdata

rdata

xdata

edata

 >> 2

dvin_reg

dv

dv
cntrin

top1024r4

2

2

2

1

8

8

8

4

 >> 2

 >> 2

 >> 1

Figure 4.4: Data interface in the 1st level hierarchy.

The output of the RSA Cryptosystem, , is also a 1024-bit number and

exported from the module by an 8-bit interface via an active-LOW data-valid signal

named as dvout in the design.

C

In the second level of the hierarchy, the module �top1024R4� includes a

systolic architecture and a controller unit. There exist processing elements

(PE) for an operation. The two extra PE�s are needed in order not to loose

data when overflow occurs in the intermediate steps of the modular multiplication.

The right-most processing element, PE

22/ +n

bit-n

0, in Figure 4.5 represents the least significant

digit of the operation and includes the -calculation circuitry, which is the step-a of

the used multiplication algorithm in Figure 4.1.

iq

53

0
1

dmuxreg

min

pin

cout
qout

pe5 pe4 pe2pe3

pe0
qi

calculatorpe1

umux
ben[4]

men

cntr0 systreset

dout

dvout

mux4out

areg

areg

mux4_mux2systreset dmux

dmux0

cntr0

mux2

0
0

0

creg

ein

dvout

ben[4:0] men umux

dv

dvout

dvout

cntrLSB3_

controller

wdout

8

1

2

2

2

clk

min

ein

xin

rin

dv

reset

min
bin

aout
qout
cout

pin
sin
tin

min
bin

aout
qout
cout

pin
sin
tin

min
bin

aout
qout
cout

pin
sin
tin

min
bin

aout
qout
cout

pin
sin
tin

min
bin

aout
qout
cout

pin
sin
tin

dmuxreg dmuxreg dmuxreg dmuxreg

mout
bout

ain
qin
cin

pout
sout

tout

dmuxin

mout
bout

ain
qin
cin

pout
sout

tout

dmuxin

mout
bout

ain
qin
cin

pout
sout

tout

dmuxin

mout
bout

ain
qin
cin

pout
sout

tout

dmuxin

mout
bout

ain
qin
cin

pout
sout

tout

dmuxin

cntr0 systreset cntr0 systreset cntr0 systreset cntr0 systreset

umux
ben[3]

men umux
ben[2]

men umux
ben[1]

men umux
ben[1]

men

Figure 4.5: A sample systolic architecture for 8-bit RSA.

In the third level, the architecture of the PE�s and the function of the

controller module are presented. Each PE represents the 2-bits of the RSA operation

since radix-4 is used in the design. A PE consists of a core-systole and some logic

structures surrounding the core-systole (Figure 4.6). These structures are needed for

the input acquisition, storage of some intermediate steps and preparation of the PE�s

for the next Squaring and Multiplication (S&M).

54

0

umux men

bout

bout

ain

qin

cin

pout

sout

tout

dmuxindmuxout

tin

sin

pin

cout
qout

aout

bin

min

core
systole

ben

Figure 4.6: The structure of a PE.

The 4th and the last level of the hierarchy is the interior structure of the core-

systoles. The main mathematical operation of the Montgomery�s Algorithm takes

place in this level. All core-systoles have the same architecture except for the one in

the right-most PE. This one is different because the -calculation circuitry is

included. The two types of the core-systoles are presented in Figure 4.7.

iq

x
x

+

aout

qout
cout

pin

bin min

ain

qin

cin

pout

2

2

3

2

2

2

2

2
22

L
U
T

x

+

pin

min
2

2

2

 Figure 4.7: The two types of the core-systoles. The LUT module performs the

operation . rnrpqi mod)(1
00

−−⋅=

55

4.1.3. The Operation

In each iteration of the multiplication algorithm, once the q is computed

(step-a) in the right-most PE, all the remaining systoles do the corresponding

computation of the step-b by using the same a and values, which are shifted

through the systoles from right-to-left at each clock cycle. This computation is

performed in a pipelined manner, therefore takes two clock cycles for each

operation. In other words, at the i , the processing element, PE

i

i iq

thjclock-th
j,

performs the combinational operation in step-b and gives the outputs to the PEj+1

sequentially at the (cycle. However, in order to perform the next

operation, the PE

clock-)1 thi +

j should wait one clock so that the PEj+1 performs the step-b

operation and gives the outputs back to PEj at the next clock cycle. This means that

each PE states idle for one clock cycle while waiting for the outputs of the nearing

PE in the left (Figure 4.8). In the implementation, this inefficiency was avoided by

using the idle clocks for another multiplication, which have been mentioned as

�parallelism� or �interleaving� in the previous chapters. Since in the R-L Binary

Method (step-2a and step-2b in Figure 2.2), there are two modular multiplications

(called as squaring and multiplication), which are independent from each other,

these two multiplications are interleaved by using the idle clocks, and thus 100%

efficiency in the utilization of time and area has been reached. The operation of the

PE�s is summarized in Figure 4.9.

56

step-b step-b

step-b

step-b step-b

IDLE

jPE1+jPE2+jPE

jPE

jPE

2+jPE

2+jPE

1+jPE

1+jPE

IDLE IDLE

IDLE

clock-thi

clock-)1(thi +

clock-)2(thi +

...

...

......

...

...

Figure 4.8: Single multiplication without interleaving. Each PE states idle for one

clock cycle.

clock-thi

clock-)1(thi +

clock-)2(thi +

jPE1+jPE2+jPE

M

S

M

jPE1+jPE2+jPE

jPE1+jPE2+jPE
MSM

S

MS

...

...

...

...

...

...

Figure 4.9: Interleaved Squaring and Multiplication operations. 100% utilization of

the PE�s and no extra clocks for Multiplications. (S: Squaring; M: Multiplication).

57

Recalling back to the R-L Binary Method (Figure 2.2), it can be seen that the

independent operations, step-2a and step-2b, have a common multiplicand. This

property of the algorithm provides an efficient utilization of the hardware when

interleaving these two independent Squaring and Multiplication (S&M) operations.

In this implementation the common multiplicand is placed into the registers at the

top of the PE�s, and the non-common multipliers are fed digit-by-digit from the

right-most PE at successive clocks (Figure 4.10). These digits are actually nothing

but the values in the multiplication algorithm in Figure 3.7. ia

1+msyst
...

msyst 2syst 1syst

...

... MSMS

Common
multiplicand

Modulo

non-common
Multipliers

0syst

ia

Figure 4.10: Implementation of the R-L Binary Method in the systolic architecture.

Since the outputs of the multiplication are reused as the inputs in the same

architecture, a reorganization process of the registers takes place at the end of each

S&M. The common multiplicand is the result of the Squaring operation. Therefore,

at the end of an S&M, the result of the S, which appears digit-by-digit at the systole

outputs from right-to-left, is moved to the upper registers at successive clocks.

These upper registers correspond to the input of the Modular multiplication

Algorithm. (The right-most systole doesn�t have a input because of the

modification, in which the input is shifted-up by 4 resulting the least significant

digit zero.) Since the modular multiplication algorithm starts from the least

significant digit, the new S&M can start just at the next clock at the end of the

previous S&M. In other words, the next iteration of the R-L Binary Method starts

without waiting the completion of the previous iteration.

B

B

B

58

clock-thi

1+msyst
...

msyst 2syst 1syst

...

...

Result of the
Squaring

Modulo

0syst

clock-)1(thi +

Figure 4.11: The result of the squaring is stored digit-by-digit to be reused in the next

Squaring (S) and Multiplication (M). Syst1 starts the new S&M at the -clock. thi)1(+

In case of e in the R-L Binary Method, only Squaring is performed. The

result of the previous multiplication should be stored when this happens. In this

architecture, extra registers are used in each PE to provide this storage. Figure 4.12

shows the storage of the Multiplication result digit-by-digit into the newly added

registers. Then the stored data is fed back to the systoles as the inputs when a 1

comes from the exponent input.

0=i

ia

1+msyst
...

msyst 2syst 1syst

...

...

Result of the
Squaring

Modulo

0syst

Figure 4.12: Storage of the multiplication result digit-by-digit when the exponent bit

is zero.

59

A state machine in the controller unit operates according to the incoming bits

of the exponent and decides whether to store the multiplication result or not. There

are 8 states of operation, in which a counter and the incoming bit of the exponent

controls the state transition. The counter value tells the end of the present state; and

the exponent bit tells the next state to go. The state diagram and the function of the

states are given in Figure 4.13 and Table 4.2, respectively. Figure 4.14 illustrates an

example for the modular exponentiation process using the state diagram in Figure

4.13.

0S

00S

1S

2S 3S

6S4S

5S

0=dvin

1=e 0=e

1=e

0=e

0=e
1=e

0=e

1=e

Figure 4.13: The State Diagram.

60

Table 4.2: Description of the states.

State Names Description

00S Idle State. Waits for the dvin LOW.

0S Getting the inputs , and placing them into the shift-registers. e,,, NMR

1S Pre-multiplication of the inputs by to obtain the residues. R

2S Squaring and Multiplication in parallel.

3S Squaring continues and the result of the previous Multiplication is being
stored.

 Final multiplication by 1 to remove the factor.

 Outputting the result of the exponentiation

 Only Squaring takes place. The stored value in remains constant.

X

)1(2 +mr

1

X
X

2X 4X 8X
16X 32X

__

1
__

1
Dummy

Multiplication 1
MX mod19

final-multiplicatione[0]=1 e[1]=1 e[2]=0 e[3]=0 e[4]=1pre-multiplication

0 t 2t 3t 4t 5t 6t time

s4s2 s2 s3 s6 s2s1

3X
19X

)1(2 +mr

X

X

X

2X

2X

2X

X

4X

4X

8X

8X

Dummy
Multiplication

16X

16X

16X

Dummy
Squaring

19X

3X

S
qu

ar
in

g
M

ul
tip

lic
at

io
n

stored)

 being is (X

Figure 4.14: Modular Exponentiation example with the corresponding states.

4S)1(+− mr

5S

6S 3S

61

4.2. VLSI Implementation

The design presented here is a Semi-Custom Design, in which the AMI

Semiconductor 0.35µm CMOS Standard Cell Libraries are used. This technology

accommodates 5 metal layers for routing purposes resulting in chip densities as high

as 15K gates per mm2. The following design tools running on Sun Sparc Work

Stations, which were supported by TÜBİTAK-ODTÜ-BİLTEN, were used during

the VLSI implementation:

• Synthesis and Timing Analyzing ! Synopsys Design Analyzer

1999.10

• Layout (Placement & Routing) ! Cadence Silicon Ensemble 5.2

• Simulation ! Cadence Affirma Verilog-XL 2.8

• Post-Layout Corrections ! Cadence Design Framework II

The following procedure was applied in the implementation:

62

HDL Design

Behavioral
Simulation

Constraints &
Synthesis

Post-Synthesis
Simulation

Place & Route

Reports

Post-Layout
Simulation

Static Timing
Analyzing

DRC, ERC, LVS

Fabrication

Part II -
Synthesis

Part I - HDL

Part III -
Layout

Part IV -
Post-Layout

Reports

Back-Annotation

Theoretical
Study

Figure 4.15: VLSI Implementation Procedure.

63

4.2.1. Design with HDL

As the Hardware Description Language (HDL), VERILOG HDL was used

in the design. The need for the VERILOG-HDL was especially appeared in

designing the controller unit. Designing the complex structures via HDL provides

fast design cycles and gives better results than gate-level designs.

The HDL design was first simulated functionally by using the Cadence

Affirma Verilog-XL 2.8 simulation tool. This step of the implementation procedure

provided the early detection of any errors, which might cause many problems in the

later steps. After being completely sure about the functionality, the next step was the

structural design: Synthesis.

4.2.2. Synthesis

For the synthesis of the design, the Synopsys Design Analyzer tool was used.

The synthesis process was performed in three steps from bottom to top of the

hierarchy.

At first step, an individual PE was synthesized with the following

constraints:

- Clock Frequency: 200 MHz

- Operating Conditions: Worst-Case Industrial (MTC45000

WCIND)

- Wire Load: 100-250.

- Timing critical synthesis.

Another synthesis constraint was selection of the Flip-Flops to be used in the

design. Some of the Flip-Flops in the MTC45000 library were designed for low

power consumption. They had very high set-up and hold times reaching up to 7ns.

Therefore, this type of Flip-Flops was eliminated during the synthesis. The results of

the above high-effort timing critical synthesis are:

64

Table 4.3: Synthesis results of an individual PE.

Combinational Area 128.3 gate counts

Non-combinational Area 102 gate counts

Total Area 230 gate counts

Max. Delay 4.98ns

After the synthesis of one PE, the structure was marked as �don�t touch� and

thus preserved in the synthesis of the upper level modules. With this method, the

tool considers the synthesized PE as a black box and does not overrule the

hierarchical structure. Since the whole design consists of many of these PE�s, the

tool just copied the synthesized PE�s while synthesizing the upper level modules.

This reduced the total synthesis time and preserved the locality of the systoles.

Hence, in addition to the regularity and high operating clock frequencies, the

systolic architecture provided also fast design cycles.

The second step was the synthesis of the controller unit. The same

constraints were applied as in the synthesis of the PE, except for the wire-load

model. The controller is a rather larger design than a PE and includes some

broadcasting signals to control the PE�s. Therefore a higher wire-load model was

needed in the synthesis of the controller. Choosing the appropriate wire-load model

is an important issue in such a way that if one chooses a small model below the

needs of the architecture, the layout results will probably fail to meet timing

constraints because of the large fan-outs and routing problems in the layout. On the

other hand, if a high-degree model is to be chosen, then the layout tool may put

unnecessary buffers, which increase the chip area and timing. The negative effect of

inappropriate wire-load model appears after the layout process. Therefore, about 20

Synthesis-Layout iterations were experienced until reaching to the optimum results

65

with the wire-load model of 36000-42000 for the controller unit. The synthesis

results were as follows:

Table 4.4: Synthesis results of the control unit.

Combinational Area 4713 gate counts

Non-combinational Area 9785 gate counts

Total Area 14498 gate counts

Max. Delay 5.11ns

The third and the final step was the synthesis of the top module. The

synthesizer didn�t touch to the previously synthesized modules, that is the PE�s and

the controller unit. The remaining to be synthesized were the I/O interface circuitry

and some multiplexers and registers, which existed in the same level with the PE�s

and the controller. The results of the synthesis of the total design are in Table 4.5.

Table 4.5: Synthesis results of the whole design with I/O pads.

Combinational Area 84232 gate counts

Non-combinational Area 68644 gate counts

Total Area 152876 gate counts (with I/O pads)

Max. Delay 6.69ns

66

4.2.3. Layout

Reaching the desired results in the synthesis, the synthesized design is

exported as VERILOG NETLIST to the Cadence Silicon Ensemble tool for the

placement and routing. This process includes the following steps:

1) Initialize floorplan: Floorplan dimensions, and some floorplan options

are selected in this step before the placement starts. Also a decision on

the row utilization is made. A 95% row utilization was preferred in the

design in order to provide some area for the clock distribution process.

2) Placing I/O�s: The designed chip includes total of 68 pins:

- 31 input pins (8 pins for each message, pre-computation number,

and modulo; 4 pins for exponent; 1 pin for each clock, reset data

valid signals),

- 9 output pins (8 pins for output data; 1 pin for output data valid

signal),

- 28 power pins (14-VDD, 14-VSS pins).

3) Place cells: The cells identified in the synthesis are placed automatically

into the floorplan in this step. The tool performs the placement by taking

account the timing constraints, which are imported at the beginning of

the layout process, as a constraint file.

4) Generate clock tree: As in the timing driven placement of the cells, the

clock distribution process is also performed according to the imported

constraint file. In this step, the user specifies the maximum skew value

and maximum delay on the clock signal. The tool generates a clock tree

by inserting some buffers where needed from the imported design

library.

5) Place filler cells: After the newly inserted buffers in the previous step,

the empty spaces must be filled. Filler cells are dummy structures used to

67

provide the continuity of design layers underneath the routing layers.

They have various dimensions and are used both in filling the spaces

between the I/O pads and the core cells.

6) Add power rings: Two rings of metals are placed surrounding the core,

one for VDD and the other for VSS.

7) Connect rings: Power pins of the cells are shorted to the two rings

created in the previous step.

8) Global route: The tool auto-routs all the nets in the design in this step.

9) Verify: In this step, a final verification of the connectivity, geometry, and

antenna effect after the global routing of the whole chip is done.

10) Back-annotation: As the last step of the layout, the Standard Design

Format (SDF) file is produced from the layout. This file includes triplet

routing delay values (max, min, and typical delays) calculated separately

for maximum and minimum type path delays using the layout data. This

file carries the routing information and is used in the post-layout

simulations and post-layout timing analysis of the design.

4.2.4. Post-layout Work

In addition to the back-annotation (generation of the SDF file), a VERILOG

netlist of the layout is also extracted to be used in the post-layout simulation and

static timing analyzing. The design is simulated in Cadence Affirma Verilog-XL 2.8

simulation tool by annotating the SDF file into the VERILOG netlist. By

introducing the SDF delay information, the Static Timing Analyzing was performed

using the Design Analyzer. The results of the timing analyzing are given below:

68

Table 4.6: Static timing analysing results (with I/O pads and routing delays) after

layout.

Combinational Area 84515 gate counts

Non-combinational Area 68644 gate counts

Total Area 153159 gate counts (with I/O pads)

Max. Delay 3.97ns

 For the power analysis of the designed chip, an estimation can be made

based on the formula given below:

SfNPP NDestimated ×××= 2 ,

where:

=2NDP Power dissipation in a 2 input NAND gate in µWatts/MHz.

=N Total number of gates in the design.

=f Operating frequency in MHz.

=S Percentage of switching gates at a given time.

With 0.0848 µW/MHz, and taking , and , the worst-

case power can be estimated as:

=2NDP %30=S MHzf 250=

 974
30/100 250 153159 / 0848.0

mW
MHzMHzWPestimated

≅
×××= µ

 This is a high power value for a single chip, even though it is a worst-case

estimate. However, low power design is not in the scope of the research presented in

this thesis. Moreover, it is possible to lower the power dissipation by easily moving

the design to technologies with smaller feature sizes and lower supply voltages,

when commercial products are to be designed.

69

After verification of the operation in the post-layout simulation and

obtaining the desired performance in the timing analyzer, the GDSII stream file was

produced from the SILICON ENSEMBLE. This file is required for design

submission and for exporting the design into Cadence for post-layout checks

(Design Rule Check (DRC), Electrical Rule Check (ERC), and Layout Versus

Schematic (LVS)) of the design.

 The design has been sent for fabrication to EUROPRACTICE IC SERVICE

as a single-chip product. The fabrication will be performed by using the technology

AMI Semiconductor 0.35 µm CMOS C035M-D (5M/1P).

Figure 4.16: The layout produced via Cadence Silicon Ensemble.

70

Figure 4.17: Zoomed view on the left-bottom corner of the layout of Figure 4.16.

71

Figure 4.18: Layout view in Cadence Design Framework II.

72

Figure 4.19: Zoomed view on the left-bottom corner of the layout of Figure 4.18.

73

4.3. FPGA Implementation

The Field Programmable Gate Array (FPGA) is an integrated circuit that

contains many identical logic cells that can be viewed as standard components. The

individual cells are interconnected by a matrix of wires and programmable switches.

A design is implemented on an FPGA by specifying the simple logic function for

each cell and selectively closing the switches in the interconnect matrix.

Design with the FPGA�s provides many facilities such as faster design

cycles, simpler and less expensive realizations of the designs compared to VLSI

implementations. On the other hand, designing with an FPGA has also some

drawbacks: They are area inefficient and slower when compared to VLSI

implementations. Therefore, VLSI is still prefferred for large and speed critical

designs. However, FPGA technology is developing with an increasing speed and

reducing the above disadvantages.

The design presented in the previous section was implemented on the FPGA

for the real-time verification. Therefore, a high degree of optimization was not

performed while implementing on the FPGA. The following tools supported by

TÜBİTAK-ODTÜ-BİLTEN were used for this implementation:

• Synthesis & Implementation ! Xilinx Project Navigator 5.1i.

• Real-time Test ! Celoxica RC1000 Hardware on a PC.

4.3.1. Synthesis and Layout

Since RC1000 hardware includes Xilinx Virtex2000E FPGA, the design was

synthesized and implemented for this FPGA with a timing constraint of 20ns clock

period (50MHz). Using the Xilinx Project Navigator 5.1i tool for this process, the

following results were obtained:

74

Figure 4.20: A captured view form FPGA synthesis report.

Figure 4.21: A view from FPGA map report.

75

Figure 4.22: A view from FPGA post-layout timing report.

4.3.2. Real-time Test on FPGA

The design was tested in real-time using the Celoxica RC1000 Hardware

accomodating the Xilinx V2000E FPGA. RC1000 is a PCI bus plug-in card (Figure

4.24) for PC�s, consisting of one large XILINX FPGA (BG560 package), four banks

of memory for data storage, and two PMC sites for I/O with the outside world [42].

Memory banks can be accessed by both FPGA and PCI bus. The card is controlled

by PC through PCI bus by running executables written in Handle-C Programming

Language.

In the test of the FPGA implementation, the steps given below were

followed (Figure 4.23):

1) A RAM interface design was included in the FPGA with the RSA

module. This interface enables the module to access the RAM�s on

the RC1000 hardware.

76

2) A C executable was used to access the RAMs and the FPGA. This

exe does the following:

• Places the test data into the RAMs,

• Sets the FPGA clock,

• Configures the FPGA with the configuration file obtained from

Xilinx Project Navigator,

• Releases the control of the RAM banks and resets the FPGA.

• After finishing the RSA operation, FPGA writes the output into

the RAM. Then PC again takes over the RAM control, reads

the output of the FPGA and writes it into a file.

3) The RSA operation was verified by observing the output in

hexadecimal format using simply a text editor. A sample tested

encryption and decryption is shown in Figure 4.26 and Figure 4.27.

HOST (PC) RAM banks FPGA

1 2

4 3

RC1000

Figure 4.23: Data flow in the test of the FPGA with RC1000.

1) PC writes the test data into the RAM. 2) FPGA reads the inputs from the RAM. 3) FPGA writes

the RSA output into the RAM. 4) PC reads from RAM and writes the FPGA outputs into a file.

77

Figure 4.24: Test Setup. (RC1000 Board mounted to the main-board of a PC).

Figure 4.25: Zoomed view on the Xilinx V2000E FPGA on the RC1000 board.

78

Figure 4.26: Encryption example in the FPGA test:

Inputs: M, R, X, e; Output: C = Xe mod M;

79

Figure 4.27: Decryption of the Cipher Text in Figure 4.23. 1024-bit RSA is verified

in the FPGA by recovering the Message. Inputs: M, R, C, d; Output: X = Cd mod M;

80

4.4. Comparison of the results

The purpose of this section is to provide a quick reference for the reader to

examine the implementation results presented in this thesis and compare them to the

previous ones in the literature. The results of the RSA implementations, which were

given in Chapter 3, are summarized in Table 4.7.

Table 4.7: Comparison of the VLSI implementations.

Paper
&Year

No
of

bits
(n)

Tech Gate
count Chip area No. of clocks

Clock
Freq.

(MHz)

Op.
time

(msec)

Baud
(Kb/s)

Chen[13]
1996 512 mµ8.0 78K 276mm

1.05M
)4(~ 2n 50 20.6 24.3

Yang[14]
1996 512

mµ6.0
Compass
SPDM

74K 256mm
0.54M

)2(~ 2n 125 4.24 118

Royo[15]
1997 768 mµ7.0

ES2
- 277mm

0.5M
)(~ 2n 50 10.4 72.5

Guo[16]
1999 512 mµ6.0 268mm

Compass
132K

0.258M
)(~ 2n 143 1.8 278

Leu[20]
1999 512 mµ6.0 64K -

0.53M
)2(~ 2n 115 4.5 111

Chiang[23]
1999 512

Compass
 mµ6.0))2)(3/4((~ nn

TSMC
- -

0.7M
 166 4.09 122

Kim[25]
2000 1024 mµ65.0

)2(~ 2n

SOG
112K -

2.2M
 50 43 23.25

Kwon[31]
2001 1024 mµ5.0

)2(~ 2n

SOG
92K -

2.2M
 50 43 23.25

Kwon[31]
2001 1024 mµ5.0

)(~ 2n

SOG
156K -

1.1M
 50 22 45.45

Cho[32]
2001 1024 - 230K -

0.527M
))32/((~ +nn 40 13 78.8

Our design
2003 512 mµ35.0 27.8 mm))4((~ +nn

AMIS

87K
(Without

I/O
pads)

0.265M

 333 0.8 627

Our design
2003 1024 mµ35.0 24.10 mm))4((~ +nn

AMIS

132K
(Without

I/O
pads)

1.05M

 250 4.22 237

81

 CHAPTER 5

CONCLUSION

This thesis presented a high-speed ASIC implementation of the RSA Public-

Key Cryptosystem. The implementation basically performs the modular

exponentiation of large integers, which is the main operation used for both

encryption and decryption in RSA. The R-L Binary Method and Montgomery�s

Multiplication Algorithm in radix-4 were combined in linear systolic architecture

with a state machine for the modular exponentiation operation, which is main

mathematical operation of the RSA. A semi-custom VLSI implementation was

performed for both 512-bit and 1024-bit processes by using the AMI Semiconductor

 Standard Cell Libraries. mµ35.0

The results obtained in this implementation were: 87K gate count and

627Kb/s baud at 3ns worst-case clock for the 512-bit operation; 132K gate count

and 237Kb/s baud at 4ns worst-case clock for the 1024-bit operation. In addition to

the VLSI implementations, a real-time test of the hardware was performed at a clock

speed of 80MHz by using the Celoxica RC1000 Hardware with Xilinx

V2000EBG560 FPGA on it. With these results, the fastest RSA processor and the

lowest product within our knowledge in the literature was obtained in

the literature within this thesis. There are three main reasons underlying the

effective results of the proposed implementation: Properly chosen algorithms and

optimizations on these algorithms, minimized routing delays with the linear systolic

timearea ×

82

architecture, and finally the AMIS CMOS technology used in the

implementation.

mµ35.0

2

By interleaving the Squaring and Multiplication steps of the R-L Binary

Method at consecutive clock cycles, a 100% utilization of the time and resources

have been achieved in the design. This method also reduced the total number of

clocks without any need of extra hardware. Using radix-4 calculations in the

Montgomery�s algorithm was another factor reducing the number of clocks. In

addition to this, some other simplifications to reduce the critical path were applied

in the algorithm.

The design was fitted into a linear systolic architecture, in which a series of

identical structures are brought together and communicate locally at high clock

frequencies. The result of this structure was the minimized number of broadcasting

signals in the architecture, thus very high clock speeds. Also, a controller unit in the

architecture managed the resources in the systoles in such a way that the systolic

architecture performed a continuous operation throughout the exponentiation,

without any need of extra storage elements for the intermediate results of the

exponentiation process.

The CMOS 0.35µm technology was another important factor in achieving

the above results in the implementation. Although the systolic architecture played

the main role in obtaining high clock speeds, the technology used in the design had

also great contributions to the timing of the design by providing very high-speed

logic cells. The high density of the technology also contributed to the mapping of

150K gates into an area of about 10 . mm

In conclusion, with the above results, the goals at the beginning of the thesis

have been achieved and the 1024-bit VLSI implementation has been sent to IMEC

for fabrication as a prototype chip. However, this study can be moved further.

Newer technologies will provide implementing high radix operations at faster and

smaller architectures. This will result in a less number of clocks, and thus a faster

operation. As another future work, a scalable architecture, in which it will be

83

possible to perform 2048 and 4096 bit RSA operations with a multiple of the 1024-

bit chips in serial, will be implemented. This will bring flexibility to the user in

choosing the level of security in the application.

84

REFERENCES

[1] W. Diffie and M. E. Hellman, �New Directions in Cryptography,� IEEE Trans.

on Information Theory, vol. IT-22, pp. 644-654, November 1976.

[2] R. L. Rivest, A. Shamir, and L. Adleman, �A method for obtaining digital

signatures and public-key cryptosystems,� Communications of the ACM, vol. 21, pp.

120-126, February 1978.

[3] E. F. Brickell, �A survey of Hardware Implementations of RSA,� In G.

Brassard, editor, Advances in Cryptology, Crypto 89, Proceedings, Lecture Notes in

Computer Science, No. 435, pp. 368-370, New York, NY, Springer-Verlag, 1989.

[4] Ç. K. Koç, �High-Speed RSA Implementation,� Technical Report, RSA

Laboratories, RSA Data Security, Inc., pp. 46-49, 1994.

[5] D. Stinson, �Cryptography: Theory and Practice,� CRC Press LLC, March

1995.

[6] T. ElGamal, �A public key cryptosystem and a signature scheme based on

discrete logarithms,� IEEE Transactions on Information Theory, 31(4), pp.469-472,

July 1985.

[7] National Institute for Standards and Technology. Digital signature standard

(DSS). Federal Register, pp. 56-169, August 1991.

85

[8] P. L. Montgomery, �Modular multiplication without trial division,�

Mathematics of Computations, vol. 44, pp. 519-521, 1985.

[9] H. Orup and P. Kornerup, �A High-radix Hardware Algorithm for Calculating

the Exponential ME Modulo N,� 10-th IEEE symposium on COMPUTER

ARITHMETIC, pp. 51-57, 1991.

[10] C. Walter, �Systolic Modular Multiplication,� IEEE Transactions on

Computers, vol. 42(3), pp. 376-378, March 1993.

[11] C. Walter, �Still Faster Modular Multiplication,� Electronic Letters, vol. 31,

pp. 263-264, February 1995.

[12] T. Acar, B. S. Kaliski Jr., and Ç.K. Koç, �Analyzing and Comparing

Montgomery Modular Multiplication Algorithms,� IEEE Micro, vol. 16(3), pp. 26-

33, June 1996.

[13] P. S. Chen, S. A. Hwang, and C. W. Wu, �A Systolic RSA Public Key

Cryptosystem,� Proc. IEEE International Symposium on Circuits and Systems

(ISCAS), (Atlanta), pp. 408-411, May 1996.

[14] C. C. Yang, C. W. Jen, and T. S. Chang, �The IC Design of A High Speed

RSA Processor,� Proceeding of IEEE Asia Pacific Conference on Circuits and

Systems, Seoul, Korea, pp. 18-21, November 1996.

[15] A. Royo, J. Moran, and J. C. Lopez, �Design and implementation of a

coprocessor for cryptography applications,� Proceeding European Design and Test

Conference, pp. 213-217, Paris 1997.

86

[16] J. H. Guo, C. L. Wang, and H. C. Hu, �Design and Implementation of an RSA

Public-Key Cryptoystem,� Proceedings of the 1999 IEEE International Symposium

on Circuits and Systems, Orlando, FL, pp. 504-507, May 30 - June 2, 1999.

[17] C. C. Yang, T. S. Chang, and C. W. Jen, �A New RSA Cryptosystem

Hardware Design Based on Montgomery's Algorithm,� IEEE Transactions on

Circuits and Systems-II: Analog and Digital Signal Processing, vol. 45, no. 7, July

1998.

[18] J. H. Guo and C. L. Wang, �A novel digit-serial systolic array for modular

multiplication,� Proceedings of the 1998 IEEE International Symposium on Circuits

and Systems, Monterey, CA, pp. 177-180, May 31 - June 3, 1998.

[19] C. D. Walter, �Montgomery exponentiation needs no final subtraction,�

Electronics Letters, vol.35, no.21, pp. 1831-1832, October 1999.

[20] J. J. Leu and A. Y. Wu, �A Scalable Low-Complexity Digit-Serial VLSI

Architecture for RSA Cryptosystem,� Proc. IEEE Workshop on Signal Processing

Systems (SiPS-99), Taipei, pp. 586-595, October 1999.

[21] C. Y. Su, S. A. Hwang, P. S. Chen, and C. W. Wu, �An Improved

Montgomery's Algorithm for High-Speed RSA Public-Key Cryptosystem,� IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol.7, no.2, pp. 280-

284, June 1999.

[22] T. Blum, and C. Paar, �Montgomery Modular Exponentiation on

Reconfigurable Hardware,� Proceedings of the 14th IEEE Symposium on Computer

Arithmetic, Adelaide, , pp. 70-77, April 1999.

[23] J. S. Chiang and J. K. Chen, "An Efficient VLSI Architecture for RSA Public-

Key Cryptosystem,� ISCAS99, vol. 1, pp. 496-499, 1999.

87

[23] M. D. Shieh, C. H. Wu, M. H. Sheu, and C. H. Wu, �A VLSI Architecture of

Fast High-Radix Modular Multiplication for RSA Cryptosystem,� IEEE

International Symposium on Circuits and Systems, vol. 1, pp. 500-503, May 1999.

[24] Y. S. Kim, W. S. Kang, and J. R. Choi, �Implementation of 1024-bit modular

processor for RSA cryptosystem,� Proceedings of Asia-Pasific Conference on ASIC

(AP-ASIC), Cheju Island, Korea, August 2000.

[25] C. D. Walter, �Improved Linear Systolic Array for Fast Modular

Exponentiation,� IEEE Computers and Digital Techniques, vol. 147, no. 5, pp. 323-

328, September 2000.

[26] W. C. Tsai, C. B. Shung, and S. J. Wang, �Two Systolic Architectures for

Modular Multiplication,� IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol.8, no.1, pp. 103-107, February 2000.

[27] N. Tomabechi and T. Ito, �Design of a High-Speed RSA Encryption Processor

with Built-in Table for Residue Calculation of Redundant Binary Numbers,� ISCAS

2000-IEEE International Symposium on Circuits and Systems, Geneva, Switzerland,

vol. 5, pp. 697-700, May 2000.

[28] J. H. Hong and C. W. Wu, �Radix-4 Modular Multiplication and

Exponentiation Algorithms for the RSA Public-Key Cryptosystem,� Proceedings on

the 2000 Conference on Asia and South Pacific Design Automation, Yokohama,

Japan, pp. 565-570, January 2000.

[29] A. Daly and W. Marnane, �Efficient Architectures for Implementing

Montgomery Modular Multiplication and RSA Modular Exponentiation on

Reconfigurable Logic,� FPGA’02, Monterey California, USA, pp. 40-49, February

2002.

88

[30] T. W. Kwon, C. S. You, W. S. Heo, Y. K. Kang, and J. R. Choi. "Two

implementation methods of a 1024-bit RSA cryptoprocessor based on modified

montgomery algorithm," IEEE International Symposium on Circuits and Systems

(ISCAS), vol. 4, pp. 650-653, May 2001.

[31] K. S. Cho, J. H. Ryu and J. D. Cho, �High-Speed Modular Multiplication

Algorithm for RSA Cryptosystem,� IECON, pp. 479-483, 2001.

[32] V. Bunimov, M. Schimmler, and B. Tolg, �A Complexity-Effective Version of

Montgomery's Algorithm,� Workshop on Complexity Effective Designs

(WCED02), May 2002.

[33] K. Sakiyama and S. Kim, �An FPGA Implementation and Performance

Evaluation of Modular Multiplication Operation for RSA Cryptography Algorithm,�

http://www.cs.ucla.edu/~milos/PROJ02/KSreport.pdf

[34] H. Handschuh and P. Paillier, � Smart Card Crypto-Coprocessors for Public-

Key Cryptography,� J.-J. Quisqarter and B.Schneier, Eds., Smart Card Research

and Applications, vol. 1820 of Lecture Notes in Computer Science, pp. 386-394,

Springer-Verlag, 2000.

[35] T. Blum and C. Paar, �High Radix Montgomery Modular Exponentiation on

Reconfigurable Hardware,� IEEE Transactions on Computers, vol. 50, no.7, pp.

759-764, July 2001.

[37] C. D. Walter, �Montgomery's Multiplication Technique: How to Make it

Smaller and Faster,� Proc.CHES 99, LNCS, vol. 1717, pp.80-93, Springer, 1999.

[36] M. K. Hani, T. S. Lin, and N. Saikh-Husin, �FPGA Implementation of RSA

Public-Key Cryptographic Coprocessor,� TENCON 2000. Proceedings, vol. 3, pp.

6-11, 24-27 Sept. 2000.

89

[37] J. Põldre, K. Tammemäe, and M. Mandre, �Modular Exponent Realization on

FPGAs,� FPL'98, Tallinn, pp. 336-347, 1998.

[38] H. Orup, �Simplifying quotient determination in high-radix modular

multiplication,� Computer Arithmetic, 1995, Proceedings of the 12th Symposium,

pp.193 �199, July 1995.

[39] Xilinx Inc., �The Programmable Logic Data Book 2000,�

http://www.xilinx.com.

[40] Celoxica Ltd, �RC1000 Hardware Reference Manual,�

http://www.celoxica.com.

[41] Europractice IC Service, �AMI Semiconductor 0.35um CMOS,�

http://www.europractice.imec.be

[42] S. Yeşil, A. N. İsmailoğlu, and Y. Çağatay Tekmen, �A High-Speed ASIC

Implementation of the RSA Cryptosystem,� Proceedings of the Work in Progress,

Euromicro Symposium on Digital System Design, DSD2003, Belek, Turkey,

September 2003.

90

http://www.xilinx.com/
http://www.celoxica.com/
http://www.europractice.imec.be/

APPENDIX A

VIRTEX-E CLB AND LUT

A.1. Configurable Logic Blocks (CLBs) and Slices

The basic building block of the Virtex-E CLB is the logic cell. A logic cell

includes a 4-input function generator, carry logic, and a storage element. The output

from the function generator in each logic cell drives both the CLB output and the D

input of the flip-flop. Each Virtex-E CLB contains four logic cells as shown in

Figure A.1. Each CLB is divided into two slices.

Figure A.1: Virtex-E CLB. Each Virtex-E CLB contains four logic cells and CLB is

divided into two slices.

91

A.2. Look-up Tables (FGs)

Figure A.2: The detailed schematic of a slice. A slice contains two LUTs, two DFFs,

and one CY.

Virtex-E function generators are implemented as 4-input look-up tables

(LUTs). In addition to operating as a function generator, each LUT can provide a 16

× 1-bit RAM, and a 16-bit shift register. Figure B.3 shows the detailed schematic of

a slice having two LUTs.

92

APPENDIX B

CELOXICA RC1000 HARDWARE

B.1. Overview

The RC1000-PP hardware platform is a standard PCI bus card equipped with

a XILINX® Virtex TM family BG560 part with up to 1,000,000 system gates . It

has 8Mb of SRAM directly connected to the FPGA in four 32 bit wide memory

banks. The memory is also visible to the host CPU across the PCI bus as if it were

normal memory. Each of the 4 banks may be granted to either the host CPU or the

FPGA at any one time. Data can therefore be shared between the FPGA and host

CPU by placing it in the SRAM on the board. It is then accessible to the FPGA

directly and to the host CPU either by DMA transfers across the PCI bus or simply

as a virtual address. The board is equipped with two industry standard PMC

connectors for directly connecting other processors and I/O devices to the FPGA; a

PCI-PCI bridge chip also connects these interfaces to the host PCI bus, thereby

protecting the available bandwidth from the PMC to the FPGA from host PCI bus

traffic. A 50 pin unassigned header is provided for either inter-board

communication, allowing multiple RC1000-PPs to be connected in parallel or for

connecting custom interfaces. The support software provides Linux(Intel),

Windows®98 and NT®4.0+ drivers for the board, together with application

examples written in Handel-C, or the board may be programmed using the

XILINX® Alliance Series and Foundation.

93

Figure B.1: Block Diagram of RC1000 Hardware

94

APPENDIX C

AMI SEMICONDUCTOR 0.35µm TECHNOLOGY

C.1. Mixed A/D Technology

The 0.35 µm CMOS technology is a mixed Analog/Digital process. It is

derived from the fully digital 0.35µ CMOS process and extended with analog

capabilities

C.2. General Characteristics

• 0.35 µm, up to 5 metal layers

• Self-aligned twin tub N- and P Poly gates

• W-plug filling of stackable contacts and vias

• Nitride based passivation

• 2.0V to 3.6V Supply

• Protection :

o Latchup resistance > +/- 200mA

o ESD > +/- 2000V

• 6 Inch epi wafers

C.3. Layout Rules

• Drawn minimum gate length : 0.35µm for both PMOS and NMOS

• Polysilicon pitch : 0.9µm

95

• Metal 1 pitch : 1.1µm

• Metal 2 pitch : 1.4µm

• Metal 3 pitch : 1.4µm

• Metal 4 pitch : 1.4µm

• Metal 5 pitch : 2.8µm

C.4. Standard Cell Libraries

Following libraries are available for the AMI Semiconductor 0.35 µm
CMOS technology :

AMI Semiconductor libraries supporting the ADS Asic Design Framework

• High Speed and Low Power Library (MTC 45000)

o 393 core cells (gates, latches, flipflops,..)

o 101 I/O cells (with slew rate controlled outputs and spike
suppression)

o ROM Density up to 240 Kbits/mm2

o RAM Density (Static, single port): 25 Kbits/mm2

o Gate density: 15000 NAND equiv. gates/mm2

o Temp. range : -55 ... + 125deg.C

o Typical gate delay(3,3V)
- Unloaded invertor delay of 50ps
- 2-input NAND delay of 610ps (typ) with fanout=2

o Power : 0.5 µW/gate/MHz at 3 V

o Additional analog modules
- High ohmic polysilicon resistors (1kOhm/sq)
- High value double poly capacitors (1.1 nF/mm2)

• Versatile I/O Library : PAD limited I/O cells (MTC45100)

• ROM and RAM compilation

96

	CHAPTER

