A HIGH-SPEED ASIC IMPLEMENTATION OF THE RSA CRYPTOSYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SONER YESIL

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2003

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Ozgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Miibeccel Demirekler
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Murat Askar
Supervisor

Examining Committee Members

Assoc. Prof. Dr. Melek Yicel

Prof. Dr. Murat Askar

Prof. Dr. Riiyal Ergiil

Assoc. Prof. Dr. Tayfun Akin

A. Neslin Ismailoglu (M.S. in EE)

ABSTRACT

A HIGH-SPEED ASIC IMPLEMENTATION OF THE RSA CRYPTOSYSTEM

Yesil, Soner
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat Askar

September 2003, 96 pages

This thesis presents the ASIC implementation of the RSA algorithm, which
is one of the most widely used Public Key Cryptosystems (PKC) in the world. In
RSA Cryptosystem, modular exponentiation of large integers is used for both
encryption and decryption processes. The security of the RSA increases as the
number of the bits increase. However, as the numbers become larger (1024-bit or

higher) the challenge is to provide architectures, which can be implemented in

il

hardware, operate at high clock speeds, use a minimum of resources and can be used

in real-time applications.

In this thesis, a semi-custom VLSI implementation of the RSA Cryptosystem
is performed for both 512-bit and 1024-bit processes using 0.35um AMI
Semiconductor Standard Cell Libraries. By suiting the design into a systolic and
regular architecture, the broadcasting signals and routing delays are minimized in
the implementation. With this regular architecture, the results of 3ns clock period
(627Kbps) using 87K gates (8.7mm” with I/O pads) for the 512-bit implementation,
and 4ns clock period (237Kps) using 132K gates (10.4mm” with I/O pads) for the
1024-bit implementation have been achieved. These results are obtained for the
worst-case conditions and they include the post-layout routing delays. The design is
also verified in real time using the Xilinx V2000E FPGA on the Celoxica RC1000
Hardware. The 1024-bit VLSI implementation has been sent to IMEC for
fabrication as a prototype chip through Europractice Multi-Project Wafer (MPW)

runs.

Keywords: PKC, RSA, Systolic Architecture, Montgomery Modular Multiplication,
The Binary Method.

iv

0z

RSA KRIPTO SISTEMININ YUKSEK HIZLI TUMDEVRE UYGULAMASI

Yesil, Soner
Yiiksek Lisans, Elektrik ve Elektronik Miithendisligi Boliimii

Tez Yoneticisi: Prof. Dr. Murat Askar

September 2003, 96 sayfa

Tez caligmamizda, diinyada yaygin olarak kullanilan bir Ag¢ik Anahtar
Kripto Sistemi olan RSA Algoritmasi’nin Uygulamaya Ozel Tiimdevre
Gergeklestirmesi sunulmaktadir. RSA Kripto Sistemi’nde, sifreleme ve desifreleme
islemleri i¢in, ¢ok biiylik tamsayilarin kullanildigi (1024-bit veya daha fazla)
modiiler iis alma matematiksel islemi kullanilmaktadir. Kullanilan tamsayilarin bit
uzunlugu arttikga, RSA Kripto Sisteminin giivenligi de artmaktadir. Ote yandan,

sayilarin biiyiimesiyle birlikte, donanima uygun, hizli ¢aligabilen, miimkiin olan en

az seviyede Ozkaynak iceren ve gercek zamanli uygulamalarda kullanilabilecek

mimariler tasarlamak onem kazanmaktadir.

Bu tez icersinde, 0.35um AMI Semiconductors Standart Hiicre Kiitiiphanesi
kullanilarak gerceklestirilen 512-bit ve 1024-bit RSA islemlerinin yar1 06zel
tasarimlar1 yer almaktadir. Birbirine 6zdes ve ¢ok sayida yapinin birbiri ardina
siralanmasiyla (sistolik yapi) olusturulan bir mimarinin tasarimda kullanilmasiyla,
timdevrenin biitiinline yayilan sinyallerin sayr ve uzunluklari en az sayiya
indirgenmistir. Bu diizenli yap1 sonucunda, 512-bit uygulamada 3ns saat hiz1 (627
Kbps) ve 87 bin kapi degerinde bir alana (8.7mm’ giris/cikis baglantilartyla
birlikte), 1024-bit uygulamada ise 4ns saat hizi (237 Kbps) ve 132 bin kapi
degerinde bir alana (10.4mm’ giris/cikis baglantilariyla birlikte) ulasilmustir. Bu
sonuglar, en kotii kosullar One siiriilerek ve tiimdevre igersindeki yol atama
gecikmeleri dikkate alinarak elde edilen sonuglardir. Tiimdevre gergeklestirmenin
yanisira, Celoxica RC1000 Donanimi ve bu donanim iizerinde yer alan Xilinx
V2000E FPGA kullanarak, s6z konusu tasarimin ger¢ek zamanli dogrulanmasi da
yapilmistir. 1024-bit RSA tiimdevre tasarimi, Europractice MPW (Coklu Tiimdevre
Uretim Programi) dahilinde, bir prototip tiimdevre olarak iiretilmek amaciyla IMEC

firmasina gonderilmistir.

Anahtar Kelimeler: RSA, Acik Anahtar Kripto Sistemi, Montgomery Moduler
Carpma, Sistolik Yapilar.

vi

ACKNOWLEDGMENTS

I am very grateful to Assist. Prof. Dr. Y. Cagatay Tekmen for his endless
support and encouragement at all stages of my thesis. I would also like to express
my appreciation to him because of his valuable suggestions, guidance and
experience in solving problems at the critical stages of the thesis, where I gave way

to despair.

I would like to express my acknowledgments to my supervisor Prof. Dr.
Murat Askar for his inspiration of my thesis subject by initiating the RSA Project at
TUBITAK-ODTU-BILTEN.

I would also like to thank to Assoc. Prof. Dr. Melek Yiicel for her
contributions on the RSA Project, and her valuable suggestions and interest in the

development of this thesis.

Special thanks to TUBITAK-ODTU-BILTEN for facilities provided for the
completion of this thesis. I would like to thank to my colleagues here, especially to
my coordinator Neslin Ismailoglu for her comprehension in sharing her deep
experience in VLSI design and Oguz Benderli for his endless interest and support
throughout my thesis. I am also very grateful to my colleague and sincere friend

Refik Sever for his valuable contributions to my study.

Finally, I would like to express my deep gratitude to my dear wife Sezen, for
her patience and continuous support, and my dear family for their love and

encouragement throughout this thesis.

vii

To my wife Sezen...

viii

TABLE OF CONTENTS

ABSTRACT et r e e s ae e e n e e anr e e ne e nane e i

@ 74O U U UUUUT RO v

ACKNOWLEDGMENTS ...ttt sttt Vii

TABLE OF CONTENTS ..ottt s iX

LIST OF FIGURES ...ttt s Xiv

LIST OF ABBREVIATIONS......cco ittt XViii
CHAPTER

1 INTRODUCTION ..ottt st sa st st sneens 1

1.1. BasiCS Of Cryptograpiy......ccceeceieereeie et 2

1.2. Public-Key Cryptosystems (PKC)ooieieiiirerenereeee e 3

1.1. The Scope of the Research and ThesisOutline...........cccocceveeveieenecce e 5

2. AMATHEMATICAL BACKGROUND OF THE RSA PKC.....ccooecvvvvierienee. 6

2.1. The RSA AlQOrithm. ..o e 6

2.2. Modular EXpOnentiation..........c.ceereeieieeiiesese e 10

2.2.1. The Binary Method (Square and Multiply Method)...........cccccoeeuenene. 11

a) The L-R Binary Method...........ccooovieiiieniiiieieciieeccee e 11

b) The R-L Binary Method.........c.ccooveeiieiiiiiiiiiiciicieeieeeeeee e 12

2.2.2. The mrary Methodcccovveiiiieiieeceeeeeee e 13

2.3. Modular MUITIPHCALIONcc.oiviiiiiiiiieeeeee s 14

X

2.3.1. Montgomery’s Methodcccueviieiiieiiieieeiiecce e 14
2.4. Modular Exponentiation Using Montgomery’s Multiplication M ethod 17
2.5. Chinese Remainder Theorem (CRT) ... 18

3. ALITERATURE REVIEW OF THE HARDWARE

IMPLEMENTATIONS OF RSA ... oo 20
3.1, TheoretiCal SEUAIES.cciiiririeeeee s 21
3. 1.1, EXPONENEIAtIONeeiiiieiiieiieeiieeiie ettt ettt ettt 22
3.1.2. MUIIPHCALION ..ottt et 24
3.1.2.1. Montgomery’s Algorithm in Systolic Architectures:................ 28

3.1.2.2. Modifications on the Montgomery’s Algorithm:...................... 30

a) Reducing the Number of Iterations:ccccceevveeninnieennnne 30

b) Reducing the Critical Path:cccccooiiiniiiiiiiiieeee 31

¢) Obtaining the Outputs in the Correct Range:cc........... 32

3.2. VLS ImMpPlementations.........coooeieenienie e e 35
3.3. FPGA IMPIemMeNntationsS........cccoiiririeieieiesie s 43
4. HARDWARE IMPLEMENTATION. ..ottt e 48
4.1, DESION ASPECES ...eeeiiciectieie ettt ettt et e et e e e aeeaesre s 48
4.1.1. Design Methodologycceeeeiieeeiiieeiieeciecee e 48
4.1.2. Design ATCRITECTUIEccccuveeeiieeeiieeeiie ettt 51
4.1.3. The OPerationccceeeueeueriineiienienieeteetesee ettt 56
4.2. VLS IMPIementationcccceveeeereeneeie e e eee e 62
4.2.1. Design With HDL........ccoiiiiiiiiieiiciieee ettt 64
NN 111 1 T<1S) (USSP 64
4230 LAYOUL ..ttt 67
4.2.4. POSt-1ay0ut WOTKcoeiuiiiiieiieeieeitecie ettt e 68
4.3. FPGA ImMplementation...........cccoeeerieie e 74
4.3.1. Synthesis and Layout...........ccocoveeeiiiieiieecieecee e 74
4.3.2. Real-time Test on FPGAc.cooiiiiiiiiieeeee e 76

4.4. Comparison Of theresUltS.........ccovveeicci e 81

5. CONCLUSION ...ttt sttt s sbe et sneenaeeneas 82

REFERENCES.......co oottt ne et sneenneenne s 85

APPENDI X

A.VIRTEX-E CLB AND LUT .ottt s 91
A.1. Configurable Logic Blocks (CLBs) and Slices.........c.ccceeevvveeriieenveeenneen. 91
A.2. Look-up Tables (FGS)...ccouuruiiiiiiiieiieeieeieee e 92

B. CELOXICA RC1000 HARDWARE.........ccoiiiiieniee et 93
BL1. OVEIVIEW ..ttt sttt ettt st 93

C. AMI| SEMICONDUCTOR 0.35um TECHNOLOGYcccoevvriireenieeieneenee 95
C.1. Mixed A/D TeChNOLOZYc.ceeevieeiieiieciiieieeeie ettt 95
C.2. General CharaCteriStICSeeruiiriierieeiieniee ettt ettt et 95
C.3. Layout RUIS ...cc.covuiiiiiiiiicieeceeee e 95
C.4. Standard Cell LiDIariesccceeevueeriieriieriienieeiieeie e 96

X1

LIST OF TABLES

TABLE
2.1: Comparison of M-ary Method to Binary Method..........c...coceoiiiinininnnnnns 13
2.2: Operations in the Montgomery’s AlgOrithmcccceoerviniiiiniiniininene 16
3.1: Allthe & ’sand ¢’s are assumed to be (r —1) in the worst-case 32
3.2: Bound is satisfied via 0ne more iterationcoceeveevuereereenierienienieeienieenne 33
3.3: Final multiplication by 1. All the &, ’s are zero except for the first one......... 34
3.4: A survey of RSA hardware implementations up to 1989 (Brickell [3])......... 35
3.5: 1024-bit RSA implementations using two types of Binary Method

(KWon €. @l. [31]) ceeueeeeieee e 42
3.6: Estimated CLB count and number of cycles for two types of architectures

in 3 FPGA families (J. Poldre €t. al.[39])...ccccccevinininininieieeeeeeee 43
3.7: Estimated time (in msec) of RSA public exponentiation process. Only

exponentiation times with small exponent are presented(J. Poldre

B, A1.[39]) eveeeeeeeee e e e e e ee e eee e 44

Xii

3.8: CLB usage and execution time for a full modular exponentiation (Blum

B, Al. [22]) coveeieeee ettt r ettt naeenens 45
3.9: Comparison of the two FPGA implementations [22] and [36]........cc.cccueeneee. 46

3.10: Implementation results with Xilinx V1000FG680 FPGA (Daly et. al.

(30 ettt ettt a et h et et aeeneeneas 47
4.1: Comparison of radix-4 and radix-16 designs..........cccceevuveercieencieenirieeeree e, 49
4.2: Description Of the StAteS.......cceecvieriieiiieiieiiiesie et 61
4.3: Synthesis results of an individual PE..............cccoccoiiiiiiiiiie, 65
4.4: Synthesis results of the controller Unit.............ccocceeeviierieiciieniieeiieie e, 66
4.5: Synthesis results of the whole design with I/O padsccceeevvvevieeeneennee. 66

4.6: Static timing analysing results (with I/O pads and routing delays) after
LAY OUL. Lottt ettt et et e st e sbeenaeeens 69

4.7: Comparison of the VLSI implementations...........ccccueevceveerciieencieeniieeeieeenne, 81

xiii

LIST OF FIGURES

FIGURE

2.1:

2.2:

2.3:

2.4:

2.5:

2.6:

2.7:

2.8:

3.1:

3.2:

3.3:

3.4:

3.5:

An example of sending a signed message in RSA PKC. Alice sends only

the cipher text. There is no need to transfer the key........c.coocveveiveviecciienieennnns 9
The L-R Binary Methodccccviieiiiioiiiieieeeeeeeeee e 11
The R-L Binary Method.ccocioiiiiiiiiiieeee e 12
Montgomery’s AIGOTithmcccoeviiiiiiiiiiieiee e 15
Removing the I ™™ faCtOr......c.covviviicieicieeieeteee e 15
Extraction of the post-condition of the algorithm..............ccccoocininiiniinnnns 17
Modular exponentiation blOCK............cccueeuieriiiiieiiieiiieieeeee e 17
The R-L Binary Method with pre-and-final multiplications 18
Theoretical studies on improving modular exponentiationc..ecueeeee. 22
Only one operation (multiplication or squaring), without interleaving.......... 24
Interleaved multiplication and squaring operations by using idle clocks....... 24
Modulo multiplication with quotient estimationc.cccceeeevverveenreeeneennen. 25
The L-algorithm (LSB firSt)cccueeeiiiieiiieeiie e 26

X1V

3.6: Blackley’s Method..........coocuieiiiiiieiieeiieieceee e 27

3.7: Montgomery’s multiplication algorithm in radiX-r..........cccceovvveevieeriieernnens 27
3.8: Linear SYStOlIC QITAYceecueeruieeiieriieeiiesiie ettt 28
3.9: Rectangular SYStOliC QITaYccccveerieeiiieriieeiieiie ettt 28
3.10: A linear array of PEs for Montgomery’s Algorithmcccccovevvieiiennnnnnen. 29
3.11: Typical cell for radiX-2ceeeuiiieiiiieeiie et ee e e 30
3.12: Q-calculation circuitries for two different radix values...........cccceeeeveernnenns 31
3.13: Recovery of the modification in the g, -calculationc..ccccceceviiiuenicnnnene 32
3.14: The proposed Booth-encoded Montgomery Algorithm in [20]...................... 39
3.15: The modular multiplication algorithm proposed in [36]ccceevieruiennennen. 46
3.16: Modular multiplication algorithm used in [30]ccccccveeviierciienieiiieiieeieee, 47
4.1: The algorithm used in the design.........ccceeeviiieiiiieiiieeee e 50
4.2: Hierarchy of the desi@n..........cccceeviiiiiiiiiiiie e 51
4.3: T/O interface of the top-modulecccceeeviiiiiiiniiiiieieeeee e 52
4.4: Data interface in the 1% level of the hierarchyccococovvviieeeeeercenn 53
4.5: A sample systolic architecture for 8-bit RSAcccooviiiiiiiiiiiieeee 54
4.6: The structure of @ PE ..o 55

4.7: The two types of core-systoles. The LUT module performs the operation

O = Py (F=1) 7 MOAT e 55

4.8: Single multiplication without interleaving. Each PE states idle for one

XV

4.9:

4.10:

4.11:

4.12:

4.13:

4.14:

4.15:

4.16:

4.17:

4.18:

4.19:

4.20:

4.21:

4.22:

4.23:

CIOCK CYCIE ittt e e e e aaeeenaees 57

Interleaved Squaring and Multiplication operations. 100% utilization of
the PE’s and no extra clocks for Multiplications. (S: Squaring; M:
IMUTEPIICATION) .ttt ettt ettt e eesiaeenbeeneees 57

Implementation of the R-L Binary Method in the systolic architecture......... 58
The result of the squaring is stored digit-by-digit to be reused in the

next Squaring (S) and Multiplication (M). Syst1 starts the new S&M at

e (1 4+ 1) CLOCK et eesae s 59
Storage of the multiplication result digit-by-digit when the exponent bit

1S ZETO ettt ettt ettt ettt et h et et h ettt s ht e b et sh e e bt et et s bt e aeeatea 59
The State DIagramc.ccecvieiiieiiieieeieeeie ettt ereeeee e e e 60
Modular Exponentiation example with the corresponding states................... 61
VLSI Implementation Procedure...........c.coceviiniininiiniinenicniciceicseeeeen 63
The layout produced via Cadence Silicon Ensemblecccoeeveniiennnnnnn. 70
Zoomed view on the left-bottom corner of the layout of Figure 4.16. 71
Layout view in Cadence Design Framework I............ccccooovieviiieniieennnnne, 72
Zoomed view on the left-bottom corner of the layout of Figure 4.18 73
A captured view from FPGA synthesis report.........cccceevveerieeiieniienieenieennen. 75
A view from FPGA map rePOTtcccueeviiieiieiieiiieieeeie et 75
A view from FPGA post-layout timing report..........ccceeevveerveevieenveenreenvennnen. 76
Data flow in the test of the FPGA with RC1000..........ccccoiiiiiiiiiiiiiieee. 77

XVi

4.24.

4.25:

4.26:

4.27:

A.l:

A2:

B.1:

Test Setup. (RC1000 Board mounted to the main-board of the PC).............. 78
Zoomed view on the Xilinx V2000E FPGA on the RC1000 board................ 78
Encryption example in the FPGA test. Inputs: M, R, X, €

Output: C= XTMOd M; ..o, 79
Decryption of the Cipher Text in Figure 2.1. 1024-bit RSA is verified in the

FPGA by recovering the Message. Inputs: M, R, C, d; Output:

Virtex-E CLB. Each Virtex-E CLB contains four logic cells and CLB is

AIVIAEA INTO TWO SHICES et eeeeeeeeeeeeenes 91

The detailed schematic of a slice. A slice contains two LUTSs, two DFFs,
ANA ONE CY . o e et e e e et e e e et e e e eetaeeeeeans 92
Block Diagram of RC1000 Hardware.cccceevevieniieniienieeiieieeeeee e 94

Xvii

PKC
RSA
ASIC
BILTEN
S&M
FPGA
VLSI
R-L
L-R
CLB
FF

IC
1/0
LSB
LUT

MSB

LIST OF ABBREVIATIONS

Public Key Cryptosystem

Rivest Shamir Adleman

Application Specific Integrated Circuit
Bilgi Teknolojileri ve Elektronik Arastirma Enstitiisii
Squaring and Multiplication

Field Programmable Gate Array

Very Large Scale Integrated Circuit
Right-to-Left

Left-to-Right

Configurable Logic Block

Flip-Flop

Integrated Circuit

Input/Output

Least Significant Bit

Look-up Table

Most Significan Bit

Xviii

PE
RAM
TUBITAK
IMEC
AMIS
MPW
CMOS
FA

HDL
DRC

ERC

LVS

Processing Element

Random Access Memory

Tiirkiye Bilimsel ve Teknik Arastirma Kurumu
Interuniversity MicroElectronics Center
Automotive Medical Industrial Semiconductor
Multi-Project Wafer

Complementary Metal-Oxide Semiconductor
Full Adder

Hardware Description Language

Design Rule Check

Electrical Rule Check

Layout Versus Schematic

XIX

CHAPTER 1

INTRODUCTION

In the last quarter of the 20™ century, especially in the 90’s, the field of
cryptography has faced a new problem beyond privacy, which had been the main
goal until that time. With the widespread popularity of electronic communication
all-over the world, difficulties in the key distribution, key management and
authentication began to rise and researchers focused on these problems without any

concession of the traditional objective, security.

“We stand today on the brink of a revolution in cryptography”, said Diffie
and Hellman in 1976 [1] as the beginning sentence of their paper in which the
concept of “Public-Key Cryptosystem” (PKC) was born. After 2 years in 1978, an
elegant implementation of the public-key cryptosystem came from Rivest, Shamir
and Adleman, named as the RSA Public-Key Cryptosystem [2]. Today, because of
the high-security provided, RSA is still known as the most widely used public-key

cryptosystem in the world.

Although providing high security, currently available RSA hardware needs
to be improved on the speed and area issues. The security of the RSA increases as

the number of bits in the algorithm increase. However, high number of bits end up

with slower architectures and increased area. The challenge is to provide fast

architectures and efficiently used resources as the number of bits increase.

This chapter presents an introduction to the cryptography and Public-Key
Cryptosystems. The first section gives some basics of cryptography and continues
with the needs of today’s cryptography. Section 1.2 describes the concept of PKC
and some facilities provided by this cryptosystem such as authentication, integrity,
and non-repudiation. The last section of this chapter gives a brief discussion of the
scope of the research in this thesis. Also the thesis organization and chapter

summaries are given in this section.

1.1. Basics of Cryptography

Cryptography is basically the art and science of enabling two people to
communicate over an insecure channel in such a way that an unintended recipient

cannot understand what is being said.

A message is a plaintext usually denoted by M and represented by a binary
data in digital applications. Encryption is the processing of the message into a form
that is virtually impossible to understand without the key. An encrypted message is
cipher text, denoted as C. The process of recovering the original message from the

encrypted data is called decryption. It is the inverse function of the encryption.

The following formal definition of the concept of cryptography is taken from
the text-book named “Cryptography: Theory and Practice,” which is written by D.
Stinson [5].

A cryptosystem is a five-tuple (P,C,K,E,D), where the following conditions are
satisfied:
1. P isafinite set of possible plaintexts

2. C is a finite set of possible cipher texts

3. K, the key space, is a finite set of possible keys

4. For each K € K, there is an encryption rule € € E and a corresponding decryption
rule dk eD. Each ¢ :P— Cand dk :C —> P are functions such that

d, (e,(X)) = X for every plaintext X € P.

Although the traditional private-key cryptosystems satisfy the privacy,
which has been the fundamental goal of cryptography, they are inadequate to

overcome the recently arising secure communication problems such as:

1) Key distribution problem through a secure channel

1) Key management problem

1ii) And the following security problems:

— Authentication: The sender of the message should be able to sign it in
such a way that an intruder cannot forge the signature.

— Integrity: The intended recipient of the encrypted message should make
sure that an intruder has not modified the message.

— Non-repudiation: The owner of a signed message should not be able to

gainsay his/her signature.

A new concept of Public-Key Cryptosystem was invented by Diffie and
Hellman in 1976 [1] to overcome these problems. The next section gives detailed

information on how these problems can be solved with this new cryptosystem.

1.2. Public-Key Cryptosystems (PK C)

In a Public-key Cryptosystem, the encryption procedure of each user (E) is
publicly revealed but the decryption procedure (D) is only private to that user. The

enciphering and deciphering can be shown as follows:
Enciphering: C =E(M) (Public procedure)

Deciphering: M = D(C) (Private procedure)

Where M is the message and C is the cipher text.
If the system has the properties,
a) M = D(E(M))

b) E(:) is publicly revealed and easy to compute for everyone but D(:) is

impractical to be computed except for its owner who has the key

then E(-) is called trap-door one-way function because it is easy to implement in one

way but very difficult in the other way. However, if one obtains the necessary key,

D(-)is as easy as E(-) . This is the reason that it is called “trap-door”. In addition to

the above 2 properties, a third property of
¢) M =D(E(M)) = E(D(M))

gives a new name to the system as “trap-door one-way permutation”. The result is
that every message is the cipher text for some other message and every cipher text

can be used as a message.

The fundamental idea behind a Public-Key Cryptosystem is that it is
computationally impractical to determine D(-) given E(-), so that the encryption
rule E(-) can be made public. Using the advantage of PKC, one can send an
encrypted message to another (without the prior communication of a secret key) by
using the public encryption rule E(:). Only the intended recipient can decrypt the

cipher text, using his/her secret decryption rule D(-) .

Another consequence of Public-Key Cryptosystem is the signature facility
obtained by processing the message by private procedure (D(M)) prior to the public
one. Anyone can verify this signature by using the public procedure of the sender,
E(D(M)). Because the signature is a private procedure, it cannot be forged and also

the sender cannot deny the signature.

1.1. The Scope of the Resear ch and Thesis Outline

The RSA PKC uses modular exponentiation operation both for encryption
and decryption. The security of the RSA increases as the numbers in the modular
exponentiation are increased. However, this increase corresponds to larger and
slower architectures. Since the demand for higher levels of security is increasing
day by day, it becomes important to find the ways of implementing the RSA PKC in
more efficient and faster architectures. Within this scope of the research, this thesis
describes a hardware implementation of the RSA PKC, which uses a linear systolic

architecture operating at high clock frequencies with a minimum of resources.

A mathematical background including the main algorithms used in the RSA
algorithm is given in Chapter 2. In addition to the mathematics, this chapter also
gives a brief discussion on the implementation properties of these algorithms.
Chapter 3 presents a literature review of the recent RSA implementations. In this
chapter, the methods and improvements on the RSA algorithm are categorized and
described first, and then the implementation results are presented. Chapter 4 begins
with the theoretical study followed at the early stages of the thesis, then gives the
methods and algorithms chosen, and finally presents the implementation details. A
comparison of the implementation results to the previous implementations is also
given at the end of this chapter. The last chapter is a conclusion part, in which the
underlying reasons of the achieved results are evaluated and the ways of improving
this study are discussed. The appendix part includes the structure of the CLBs and
LUTs in the XILINX Virtex FPGAs, general features of the Celoxica RC1000
Hardware, and general characteristics of the AMI Semiconductor Standard Cell

Libraries.

CHAPTER 2

A MATHEMATICAL BACKGROUND OF THE RSA PKC

RSA is a cryptographic algorithm, which provides high security. Modular
exponentiation of long integers is the main mathematical operation of the RSA used
in both encryption and decryption. The security of this algorithm is based on the

factorisation problem of long integers.

This chapter describes the underlying mathematics of the RSA PKC. The
first section explains how the modular exponentiation can used for enciphering and
deciphering purposes. An example of a secure data transmission using RSA
algorithm is also presented in the first section. The other sections include some
algorithms commonly used in the implementation of this cryptosystem. Finally the
chapter ends by giving some information on the Chinese Remainder Theorem and

its application to RSA.
2.1. TheRSA Algorithm

The RSA Cryptosystem uses computations in Z, where N is the product of
two distinct very large primes p and (. The message M is represented as a number

between 0 and N -1, and relatively prime to N. The encryption E(:) and

decryption D(:) procedures are defined as

C=EM)=M?®modN).
M = D(C) =C%(mod N).

where M is the message and C is the cipher text, e is the public key and d is the
private key. Modular exponentiation operation is used for both encryption and

decryption processes. The relation between the keys is as follows:

N=p-q
e-d=1 (modd(N))

where ¢(N) is the Euler totient function, which equals to the number of positive

integers less than N, which are relatively prime to N . Since N is the product of

two primes pand q,

¢(N) =0 (p)-¢(a)

and

¢(p)=(p-1),
¢(q) =(q-D.

then ¢ (N) becomes

¢(N)=(p-D-(@-1)

As seen from the above equations, in order to obtain the private key, d, from
the public key, €, one should factorize the public modulus N into its prime factors
p and q. Because of this reason the security of the RSA cryptosystem lies in the
factorization of large integers (e.g., > 1024-bit numbers for the modulus N), which

1s computationally infeasible with today’s technology.

One can verify that the encryption and decryption procedures are inverse

operations as follows:

e-d=1 (modd(N)).
e-d=t-¢(N)+1., wheretisany positive integer
(M*®) =M @M (mod N)

=(M*™)". M (mod N)
=1"-M(mod N)

= M (modN)
where Euler’s theorem is used for the equation:
M*™ =1 (modN)
To perform the RSA,
1) Compute N as the product of two large random primes pand (.

2) Pick a public key e in the range 1 <e<¢(N) and relatively prime to ¢(N).

Usually the public key is selected as a small number such as 2'° +1 in order

to make the computation of the encryption fast.
3) Compute d = &' (modd(N)) using the Extended Euclidian Algorithm.

4) The public key is the pair of positive integers (€ N) and private key is

d with encryption and decryption procedures as follows:

C=M*®(modN)
M =C%(mod N)

5) Each user in the system will have different public key pairs and private keys:

Alice—» (N,.e,,d,)
Bob — (N,,e,.d,)
Oscar — (N,,e,.d,)

6) In order to send a signed message to Bob, Alice performs the following

operation:

i) S=M % (mod N,) (Alice signs the message with her private key)

i1)C =S%*(modN,) (She then encrypts the signed message with
Bob’s public key)

7) In order to decrypt and authenticate the encrypted message sent by Alice,

Bob does the following operation:

i) S=C%(modN,) (Bob decrypts the signed message by his private

key)

ii)M = S%(mod N,) (Then he recovers the message by using Alice’s

public key)
Alice ¢ Bob
ea’ da eb’ db
e, and g, are public
1)S=M% modN 3)S=C* modN
2)C = S* modN 4)M = S modN

Figure 2.1: An example of sending a signed message in RSA PKC. Alice sends only

the cipher text. There is no need to transfer the key.

The trap-door one-way permutation for the RSA Public-Key Cryptosystem is
the modular exponentiation operation, which can be performed as a series of
modular multiplication operations. The modular exponentiation is also very
commonly used for the other algorithms different from RSA cryptosystem such as
Diffie and Hellman key exchange scheme [1], ElGamal Signature scheme [6], and
Digital Signature Standard (DSS) [7]. Although it is a simple and widely used
mathematical operation, modular exponentiation has an important drawback of
being time-consuming especially when the integers are large (>1024-bits).
Enormous number of research, both in theoretical and electronics, is still going on to
improve the performance of the modular exponentiation operation while decreasing

the resource usage.

The following sections give brief discussions on various algorithms that are
used in the modular exponentiation and multiplication operations. The Binary
Method for the exponentiation and Montgomery's Algorithm for the modular
multiplication will be mainly discussed, since these are the most widely used and
most efficient algorithms. The reader can find very clear explanations and informing
examples about some other algorithms in the technical report of RSA Laboratories

written by Cetin Kaya Kog [4].

2.2. Modular Exponentiation

The modular exponentiation operation is performed as a series of modular
multiplications. Hence, the performance of the modular exponentiation depends

mainly on the following two criteria:

1) The number of the modular multiplications in the modular exponentiation

algorithm.

2) The stand-alone performance and physical area of the modular
multiplication module. (The multiplication unit consumes most of the silicon

area in an RSA implementation.)

10

Therefore, one should choose proper modular exponentiation and
multiplication algorithms suiting to each other so that the timexarea product can
settle-down to an optimum value. That is, the design implemented on a system
should be fast enough to satisfy the time needs, on the other hand it should be as

small as possible in order not to cause placement and cost problems.

2.2.1. The Binary Method (Square and Multiply Method)

This method examines the exponent in bit wise fashion either from left-to-
right (L-R Binary Method) or right-to-left (R-L Binary Method). These two

algorithms are as follows:

Let k be the number of bits :

k-l
e=(6.,6.,66)=>. 62, whereg € {0,1}ande_, =1.
i=0

a) TheL-R Binary Method

Inputs: M ,e, N
Output: C = M *(mod N) -
1. if (e, , = l)ythen c = M else Cc =1.
2. for ij= k-2 downto o
2.a.C=C-C(modN)
2.b.if e =1then C =C-M (modN)

3.return C

Figure 2.2:The L-R Binary Method

The squaring (step-2.a.) operation is performed at each step but the
multiplication operation (step-2.b.) is performed if the corresponding bit of the
exponent is equal to 1. Therefore the total number of multiplications needed for the

LR Binary Method is (k—1)+ H(e)—1, where H(e) is the Hamming Weight of the

11

exponent, which equals to the number of 1°s in the exponent. Assuming the equal

probability of 1’s and 0’s in the exponent, the average number of multiplications for

this algorithm is %(k -1).

b) The R-L Binary Method

Inputs: M ,e, N

Output: C = M *(mod N) -

2. for j=0 to k -1
2a. X, , =X, X, (modN)
2.b. if (e, =1)then Cc, =C, X, (modN)
2.c.elsec, , =C,-

3. return C

Figure 2.3: The R-L Binary Method

Although it has the same principle as The L-R Binary Method, this algorithm
has several advantages for fast exponentiation implementations. The main
advantage is that the steps of 2.a. and 2.b. in the above algorithm are independent
from each other and can be performed in parallel. This reduces the number of
iterations directly down to the number of squaring operations, which is fixed
whatever the exponentiation algorithm is used. The parallelism can be achieved
either by using extra hardware or within the same hardware by using the idle clocks
of the system as in the proposed implementation in this thesis. One drawback of this
algorithm compared to the L-R method is that the location of the most significant 1
in the exponent should be detected in order to prevent unnecessary squaring
operations. However, detection of the most significant 1 is a simple procedure,
which can be done, for example, with a 10-bit counter for the 1024-bit exponent. An
example of R-L Binary Method, in which the squaring and multiplication operations

are performed in parallel, is demonstrated in Figure 2.8.

12

2.2.2. Them-ary Method

The m-ary method is a generalization of the binary method. Differently, this
method involves treating the m-bits of the exponent instead of 1-bit. Usually, mis
chosen to be a power of 2. The main advantage of this method is, the number of
multiplications needed for the modular exponentiation decreases as m increases.
However, more complex structures and preprocessing are needed since the powers

of the message up to m (M,M?,---,M™") are to be calculated and stored

beforehand. Table 2.1, which is taken from the technical report written by Cetin
Kaya Kog¢ [4], summarizes the comparison of the mrary and the binary methods

according to the required number of multiplications.

Table 2.1: Comparison of m-ary Method to Binary Method.

Opt.r
k binary m-ary Savings %
(m=2")

8 11 10 2 9.1
16 23 21 2 8.6
32 47 43 2,3 8.5
64 95 85 3 10.5
128 191 167 3,4 12.6
256 383 325 4 15.1
512 767 635 5 17.2
1024 1535 1246 5 18.8
2048 3071 2439 6 20.6

13

There are also many other algorithms for modular exponentiation, which are
based on reducing the number of modular multiplications and thus improving the
exponentiation performance [4]. Since the number of squaring operations cannot be
reduced in either of the algorithms, to perform the multiplying and squaring
operations in parallel gives the best performance for the exponentiation operation.
Therefore in this thesis, The R-L Binary Method is chosen to be the exponentiation
algorithm, in which the parallelism can be exploited without any need of extra

hardware and clocks.

2.3. Modular Multiplication

As mentioned in the previous sections, modular multiplication is the kernel
operation of RSA cryptosystem. Any improvement in the modular multiplication

operation directly affects the performance of the RSA.

P.L. Montgomery found an ingenious way of computing modular multiplication
operation in 1985 [8]. Different from previous methods, the Montgomery
Multiplication Algorithm uses residue representations of the numbers that are to be
multiplied. This representation provides division by r, where r is a power of 2.
Therefore, it is quite suitable for implementing on digital signal processors, general-
purpose microprocessors and digital VLSI structures. The next section gives the

underlying mathematics of Montgomery’s approach on the modular multiplication.

2.3.1. Montgomery’s Method

This method is very commonly used to speed up the modular multiplication
and squaring operations required during the exponentiation process. In a modular
multiplication, with modulo N being k-bit number, each number is represented by a
radix r, which is usually a power of 2. The Montgomery Multiplication Algorithm
requires that r and N are relatively prime to each other, i.e. gcd(r,N)=1. Since
N is odd (multiplication of two primes) and r is a power of 2, this condition is
inherently satisfied. Given two integers A< N and B < N, this method computes
A-B-r "modN, where m is the number of the digits of N in radix-m. With a

representation of any number X of the form

14

X=Yxr", where Xie{O,l,--',r—l},

Montgomery Modular Multiplication Algorithm is as follows:

Inputs: A,B,N.

Output: P= A-B-r "modN
P, = 0.

For i=o tom-=1

a.q =(p,+a-b) (r-n,)" modr;
b.P, =(P+a -B+q N)/r;

End
Post Condition: r™.P=Q-N+ A-B

Figure 2.4: Montgomery’s Algorithm.

In the above algorithm, computation of ¢, in step-a guarantees that the value
of P in step-b is divisible by r. Since r is a power of 2, division by r is just
shifting out the least significant zero digit in radix-r . This property of the algorithm
makes it very easy to implement in digital design. However, one should remove the
r-™ factor at the output in order to get the desired result, A-Bmod N . This process

is performed as follows:

A— B —
om Montgomery A-r"modN Montgomery A-BmodN
r Modular Modular
Multiplication Multiplication
N — N

Figure 2.5: Removing the r ~" factor.

Table 2.2 gives a summary of the computations in the algorithm. The
extraction of the post-condition in the algorithm can be obtained by rearranging the

terms of the final value P,. This process is shown in Figure 2.6.

15

Table 2.2: Operations in the Montgomery’s Algorithm.

Step-2a of Algorithm in Figure 1.4:

P,=(R+a-B+q -N)/r

1

P = (@ B+, NI~

1=0
=(@,-r")-B+(qg,-r")-N.
PZ:(@O~B+qO~N)rJ‘1+a1-B+q1-N o'
e
=1 P
:(ao'r72+a1'ril)'B"‘(QO'r72+q1'r71)'N
Po=(((a B+0,-N)r' +a -B+q -N)'+a, -B+q, Ny
Y
N /
PZ
=@, r’+a - -r’+a,-r')yB+(q,-r°+q,-r>+g,-r')-N
1 Pm:("'(((aO'B-i_qO'N)ril+"')+am—1'B+an'N)ril-
i =m-

=@, r™+-+a,, -r'")B+(gr"+--+q,,-r')-N

16

P.=(@ Br™+a -Br™+..va -Br)+
(o N-r™™+q -N-r"™ +--4q,, N1 =
m-1 . m-1 .
rmP,=Qa-r')B+Q.q 1) N=
i=0 i=0

™ P. =A-B+Q-N=
P,=A-B-r "modN.

Figure 2.6: Extraction of the post-condition of the algorithm.

2.4. Modular Exponentiation Using Montgomery’s Multiplication M ethod

Although Montgomery’s algorithm is very popular in fast exponentiation
operations, it is not very practical when only one modular multiplication is to be
used. This is because of the removing process of the r ™ factor at the output.
However, in the case of modular exponentiation, there is no need to remove this
factor at each modular multiplication. Instead, the inputs of the modular
exponentiation algorithm are pre-multiplied by r°™, and their N -residues are

obtained. (Given an integer A< N, its N -residue is defined as A= A-r™modN .)
Then, these residues are used throughout the whole exponentiation. One final
multiplication by 1 gives the desired result of the modular exponentiation. The
following example (Figure 2.8) gives an exponentiation process with exponent
equals to decimal 21. Montgomery Modular Multiplication is used with the R-L

Binary Method for the modular exponentiation:

Message(M)

Pre-multiplication

factor (r2m M mod N

Modular —_—
Modulo(N) Exponentiation

exponent(e)

Figure 2.7: Modular Exponentiation Block.

17

Exponent(e): (21),,=(10100),

pre-multiplication e[0]=1 e[1]=0 e[2]=1 e[3]=0 e[4]=1 final-multiplication
2l wm M _ M Mol —
sl 71 mi T |we I VS 7 [mMP o |NoP
g_ . > M — M* > M >
0| - — — —>
c M W o Tal6
2l 1 = — M — 5 My 21
£ i M M? M modN
ol i ~ NOP) ~ NOP Ve
S| = e e
El
= L | L L
| | | | | | |
I I I [I I |
im
0 t 2t 3t at 5t 6t time

Figure 2.8: The R-L Binary Method with pre-and-final multiplications.

As seen from the above figure, the squaring operations (the upper row) and
the multiplication operations (the bottom row) are performed in parallel. The time
needed for the pre-and-final multiplications becomes negligible, as the length of the

exponent gets larger (>1024-bits usually).

2.5. Chinese Remainder Theorem (CRT)

Chinese Remainder Theorem, which uses the main property of RSA,

N = p-q, where pand g are very large random primes, is used to speed-up the

RSA cryptosystem. Since encryption is fast enough because of a small exponent, the

CRT method is preferred for the decryption. According to this theorem,

computation of M = C® mod N can be performed in two separate parts:

M,=C’modp (1)
M,=C%modq (2

However, according to Fermat’s theorem:

18

Consider a prime p that defines a set of integers Z,= {1,2,~--, p—l}, then each

element o € Z satisfies
o' =1 modp.
Using this theorem, writing the private exponent d as
d=A-(p-1)+d,
where A is any positive integer, or,
d =d mod(p-1),
then equation (1) and (2) can be rewritten as
M, = CAP* mod p=C® mod p, (since C*” =1 mod p).
M, =C**%) modq=C™ modq, (since C“" =1 modq).

With the newly produced numbers, M, and M, , the computation of M = C® mod N
with CRT is:

M =M, +[(M,-M,)-(p” modg)modq]- p

Since pand gare about one-half of N, d, and d, are about also one-half of d.
Therefore M, and/or M, can be computed in "4 of the time needed for computation
of M . This results in about 4 times speed-up in the RSA decryption procedure can
be obtained if M, and M, are produced in parallel, and 2 times speed-up if they are
produced in serial. Since the owner of the private key knows p and q,
d,,d,,and(p ' modq) can be pre-computed and stored before the decryption

process.

19

CHAPTER 3

A LITERATURE REVIEW OF THE HARDWARE
IMPLEMENTATIONS OF RSA

In the previous chapter, it is mentioned that ever-increasing number of
research is taking place on the performance and the area improvements of the RSA
implementations. In this chapter, the reader will be informed about the development
process both in theory and practice, and about the latest implementation results of

the RSA algorithm.

The number of research, in parallel with the highly increasing need for the
PKC algorithms, had a great jump with the beginning of the 90s. As a result of this
jump, outstanding improvements on the timexarea product of the RSA
implementations came out in the last decade. But the question is: why are we trying

to minimize the timex area product?

While examining the mathematics of the RSA, it was emphasized that the
security of the RSA lies in the factorization problem of the large integers. In [37],
Colin D. Walter gives a good example demonstrating this fact: The effort for
factorization doubles for every 15-bits when the modulus is about 1024-bits.
However, these 15 extra bits require only 5% computation time. Therefore, just
speeding-up the operation 5% results in a two times difficult problem of breaking
the system. Because of this reason, security is the main reason for the enormous

research on speeding-up the RSA algorithm. On the other hand, the speed is also

20

highly needed if RSA is to be used in the real-time applications such as enciphering

the real-time audio-video data.

One other way of achieving more security is to use higher number of bits in
the RSA operation. Today, although 1024-bit operation is still widely used, the
demand for 2048-bit RSA chips is arising. However, the silicon area needed for the
RSA implementation limits the number of bits to be used. Large chip size brings
placement and cost problems. Because of this reason, reducing the silicon area is an

other research goal for improving the RSA.

This chapter presents a survey of the studies from the timexarea product
perspective. In the first section, the reader can find the theoretical basics of the
various improvements. The remaining sections give information about the
implementations up to date. Section 3.2 presents the VLSI implementations and

Section.3.3 presents the FPGA implementations of the RSA Cryptosystem.

3.1. Theoretical Studies

Since the main mathematical operation of RSA is the modular
exponentiation, which is performed as a series of modular multiplications, the

studies on improving the RSA performance can be categorized as in Figure 3.1.

In 1994 Cetin Kaya Kog¢ prepared a technical report for the RSA Data
Security, Inc. [4], including a wide research on some various modular
exponentiation and multiplication algorithms. Among these algorithms, the Binary
Method and Montgomery’s Modular Multiplication Method are the most widely

preferred algorithms for exponentiation and modular multiplication, respectively.

All the implementations presented in this chapter use the Binary Method (L-
R and R-L Methods are used in almost 50% among these implementations) except

for the implementation of Chiang €t. al. [23], in which the exponent is treated in 4-
bit fashion. In this implementation the values M*,M>,and M’ are pre-computed

and stored into a RAM. With this method, their gain is: a worst case of 4k/3

21

multiplications in the exponentiation instead of 2k multiplications. But the
drawback is area occupation and extra time due to storage and pre-computation

processes, respectively.

THEORETICAL STUDIES

— .

EXPONENTIATION MULTIPLICATION
Reducing the Interleaving Systolic Modifications on the
number of multiplication and y Montgomery's
e . Architectures .
multiplications squaring Algorithm
Reducing the number Reducing the Outputs in the
of iterations Critical Path correct range

Figure 3.1: Theoretical studies on improving modular exponentiation.

As for the modular multiplication, almost all the implementations use
Montgomery’s method. Many modifications, those of which are categorized in
Subsection.3.1.2.2, are applied to Montgomery’s algorithm in RSA
implementations. The details of these implementations will be examined in the
proceeding sections of this chapter. A comparison of the results of these
implementations will also be given together with results of this thesis as a table in

chapter 4.

3.1.1. Exponentiation

The idea behind the studies on the exponentiation algorithm is to reduce the

number of multiplications. Some of these algorithms are: The m-ary method, The

22

Adaptive m-ary Method, The Power Tree Method, and The Booth Recoding Method
[4]. Generally they differ from the Binary Method by examining the exponent by
two or more bits at each time. Savings up to 20% (64-ary method for n=2048) in the
number of multiplications compared to the Binary Method can be achieved with
these methods (Table 2.1). However, the drawback is that some pre-computation
and storage requirements are introduced. The designer should carefully weigh the
advantages and disadvantages of making a choice among The Binary Method and
other “reduced number of multiplications” methods. Moreover, if parallelism can
be achieved by using R-L Binary Method, the number of multiplications directly
reduces to its lower bound, which is equal to the number of squaring operations in

the exponentiation, and there is no need for pre-computing and storage effort.

The implementations to date support the observation above so that The
Binary Method can be considered as the standard for modular exponentiation due to
being so widely used. This method, in which the exponent is examined in bit-wise
fashion, can be performed both from MSB (The L-R Method-Figure 2.1.) or LSB
(The R-L Method-Figure 2.2.). The latter of these methods provide parallelism in

the multiplication and squaring operations. There are two ways for parallelism:
- Placing two parallel multipliers in the hardware.
- Interleaving the two operations at successive clocks.

The first one suffers from area occupation of the extra multiplier, but can be
accepted in situations where speed is more critical. On the other hand, the second
one has great advantages especially for systolic architectures, which will be
explained in section 3.1.2.1. To give an idea, Figure 3.2 and Figure 3.3 depict how

the interleaving can be performed by using idle clocks with 100% efficiency.

23

clk

!

o X e X X e X X we X
= T T Y
= \ / \ /

o X we X X we X

Figure 3.2: Only one operation (multiplication or squaring), without interleaving.

clk —>
S O X
systole
2nd s ><
systole
3rd ><
systole
S --> Squaring
M--> Multiplication

Figure 3.3: Interleaved multiplication and squaring operations by using idle clocks.

3.1.2. Multiplication

The usual way of multiplication is by scanning one of the multipliers from
left-to-write and adding a multiple of multiplicand by a right shift of the partial
product. This method gives the maximal carry ripple length of the parallel additions
corresponding to the length of the multiplicand. In modular multiplication, instead

of first multiplying and then performing modular reduction at the end, researchers

24

are trying to find the ways of interleaving the modular reduction into the partial
steps of multiplication. With this aspect of view, many different methods were
proposed in order to perform fast modular multiplication of large integers. This
section will give some of these algorithms, one of which will be examined in more

detail: The Montgomery Modular Multiplication Algorithm.

In 1991, Orup and Kornerup [9] proposed a modular multiplication scheme

in radix-4 as follows:

Inputs: A B,N

Output: S= A-Bmod N

S=0;i=m-1;

WHILEi > 0DO
g = Estimate(Sdiv N);
S=2¥S+aB-2"oN;
i=i-1

END

Correction of S

Figure 3.4: Modulo Multiplication with quotient estimation.

This method has drawbacks in modulo reduction and final correction, in
which subtraction of N is performed until S belongs to the correct interval. Also
the quotient estimation in the above algorithm is not a simple procedure, which is

achieved by searching q values as follows:

S_qu NJ qe{o’l’“.’qmax}’
where at each step the sign of the result is checked.

Another method for modular multiplication is the L-algorithm [23], in which
the modulo-reduction is performed by checking the overflows of the operation. The

algorithm is given in Figure 3.5. As seen from the figure, intermediate steps (P ’s)

should be reduced into correct range at each step. In [23], the number of clocks per

25

multiplication was given as 2n for an Nn-bit operation. However, they had to pre-

compute and store some constants in order to perform modulo reduction.

Inputs: A B, N.
Output : P= ABmod N
P=0;M,=A
for(i=1Li<=ni++){
it (=1)
P=P,+M, modN;
else
R=R,
M, =M, , <<1modN;}

Figure 3.5: The L-algorithm (LSB first).

Sign-estimation technique used in the design of K-S Cho et. al. [32] is
another method used for modular reduction in the intermediate steps of modular
multiplication. In this type of multiplication algorithm, the numbers are represented
in 2’s complements and addition is performed instead of subtraction. In [32], they
checked the 5 MSB of the partial products by using a 5-bit carry-look adder for the
modular reduction. They achieved about n/2 iterations for n-bit multiplication.
However, because of intermediate modular reduction steps, the operating speed was

only 40 MHz, which is rather slow compared to other implementations.

Blackley’s Method used in K. Sakiyama’s FPGA implementation [34] for
modular multiplication (Figure 3.6) also suffers from intermediate modular
reduction problem. Step 4 in this algorithm may require two successive

subtractions, R=R—- N, to make the intermediate result in the range [0,N —1],

which slows down the operation.

26

input: A/B,N

output : R= ABmod N
1.R=0
2.fori=0ton-1

3. R=2R+a,,,'B
4. R=RmodN

5.return R

Figure 3.6: Blackley’s Method

While these algorithms suffer from modulo reduction, P.L. Montgomery
found a very clever solution to this problem: His algorithm reverses the treating of
the digits of the multiplicand, operating from the LSB of the partial products. For
the intermediate modular reduction process, a multiple of modulo, N, is added
instead of subtracting. With this method, the partial product is guaranteed to be
divisible by the radix-r , which is usually a power of 2. Therefore modular reduction
becomes a simple right shifting and removing process of the right-most digit, which
is zero. Because of the above advantages, it is used in almost all the

implementations to date.

The Montgomery Algorithm, as presented in C.D. Walter’s systolic

implementation [10], is as follows:

Inputs: A B,N
Output : P = ABr " mod N
P, =0;

fori=0tom-1
a.g; =(p, +aby)-(r _no)_l modr;
bR, =(R+aB+qgN)/r.

end

r"P, = AB+QN.

Figure 3.7: Montgomery’s Multiplication Algorithm in radix-r.

27

3.1.2.1. Montgomery’s Algorithm in Systolic Architectures:

A systolic architecture is a regular array of processing elements, denoted as

PE;, where:

- All the PE’s are similar to each other and operate synchronously.

Hence the design can be expanded by repeating the systoles.

- All the communicate locally. Therefore routing problems are

minimized.

- Each PE is as simple as possible so that the architecture can

operate at high clock frequencies.

The following are two examples for systolic arrays:

Figure 3.8: Linear systolic array.

[[I |l

T T T
T T T

(B (B (B

Figure 3.9: Rectangular systolic array

28

Because of these three properties, the systolic architectures are very suitable
for the Montgomery’s Modular Multiplication Algorithm. In 1992, Colin D. Walter
proposed a method for systolic modular multiplication, in which the operations are
performed in radix-2 [10]. In this architecture, one of the multipliers is fed to the
array in bit wise fashion. Each bit of the other multiplier is hardwired to each
systole. At a given clock cycle, each processing element performs the combinational
operation and directly passes the incoming data to the next systole at the next clock.
The carry propagation is pipelined through the systoles. The intermediate result is
right-shifted through the systoles digit-by-digit at each clock. This process is
illustrated in Figure 3.10.

bm 1 nm 1 b| n] b(] nO
. a
al a\ i ai
L d <Y | 9
PEms veee PE. PEo
carry carry carry
—
RIm-1] Rl R.Lo]
Systolic architecture for Modular Multiplication

Figure 3.10: A linear array of PEs for Montgomery’s Algorithm.

Figure 3.11, which is taken from [10], shows the interior circuitry of the
proposed PE in the modular multiplication design. As shown in the figure, each PE
is composed of 5 XOR, 2 OR, and 7 AND gates. In addition to the combinational
circuitry, the systole involves 5 1-bit registers (2-for carry-bits, 1-for each
Ai],Q[i],and P[i]). For a k-bit modular multiplication, if the linear array structure
is to be used, the architecture requires k systoles, therefore at least Sk XOR, 2k OR,
7k AND gates and 5k FFs.

Among the implementations using Montgomery’s algorithm, many of them

suited modular multiplication into systolic architecture.

29

Bl] M;[ﬂ B[]

Al —— |~ AR
Qll—; i @l
M[j] Bli| Paali-1}

Figure 3.11: Typical cell for radix-2.

3.1.2.2. Maodifications on the Montgomery’s Algorithm:

Although, Montgomery’s Algorithm is ideally suitable for digital
applications, lots of small but effective modifications have been made in the
implementations up to date. In this section, these modifications are categorized so
that the reader will have a better understanding of the improvements while

examining the implementations in sections 3.2, and 3.3.

a) Reducing the Number of Iterations:

This method is very commonly used in both ASIC and software

implementations. Two ways for reducing the number of iterations are widely used:
- Using a high-radix representation of the numbers,
- Using booth-like multiplication,

Since the modular multiplication is the kernel operation, reducing the
number of iterations in a multiplication directly affects the total number of clocks.

However, as complexity of each iteration increases, the time needed for each

30

iteration increases. This results in a low clock frequency, which slows down the

operation.

In Figure 3.7, multiplication in radix-r is shown. The number of iterations
(m=n/(log, r))decreases as r increases. However, the operations in step-a and
step-b requires more complex circuitry as the radix increases. For example, when

radix 1s 2, the calculation of ¢, in step-a needs only one XOR and one AND gate

(Since N is always odd, (r —n,)" modr =1, whenr =2). On the other hand, if

radix-8 is used, all the digits are in 3-bit length. Therefore the needed amount of
sources for the same calculation turns to be (two 3 x 3 multipliers + 6-bit adder + 3-
bit LUT) (Figure 3.12). This increases the critical path. However, the total number
of clock cycles required to complete a modular multiplication is reduced to 1/3rd of

radix-2.

I

—(C 3.
o L2 CZ(; .

q, calculation in radix - 2 q; calculation in radix - 8

Figure 3.12: Q-Calculation circuitries for two different radix values.

b) Reducing the Critical Path:

One way of removing the disadvantage of using high radix is to modify the
algorithm in such a way that the critical path is reduced. As depicted in Figure 3.7,
step-a has the potential of increasing the critical path. In order to reduce the

complexity of g - calculation , one of the inputs, say B, is shifted up by r. That is,

the least significant digit of B becomes zero. This operation directly eliminates one
of the multiplications and the addition operation in the above figure. Recovering of

the modification is achieved simply by increasing the number of iterations by one as

31

in the implementations of A. Royo et. al.[15] and M. K. Hani et. al. [38]. This

process is shown in Figure 3.13:

A —
Montgomery _
B Modular A-B-r mmOdN
Multiplication
N — (m iterations)
A —
, Montgomery A-B-r-r ™Y modN
B =B-r Modular
Multiplication =A-B-r "modN
N (m+1 iterations)

Figure 3.13: Recovery of the modification in the ¢, -calculation.

c) Obtaining the Outputsin the Correct Range:
In the exponentiation, the outputs of the modular multiplication unit are
reused as inputs for a new modular multiplication. Therefore, the bounds on the I/O

of the Montgomery algorithm become important. However, a careful inspection on

the algorithm in Figure 3.7 shows that the intermediate results are bounded to

B + N as shown in the table below:

Table 3.1: All the a,'sand q,'s are assumed to be (r —1) in the worst case .

i=0 P =[0+B(r-1)+N(r-1D]/r<B+N
i=1 P, <[B+N+B(r-1)+N(r-1)]/r=B+N
i =m-1 P <[B+N+B(r-1)+N(r-1)]/r=B+N

32

Therefore the output of the first modular multiplication is bounded in the

range [0,B+ N) or [0,2N). The ongoing multiplications will result in the bound of
[0,3N). In some implementations [15][33], a final comparison by N and subtraction
is performed to reduce this bound again to [0,2N). On the other hand, in some other
implementations [13][14][25][31], the bounding of the output is performed via
applying one or more iterations in the algorithm. In other words, in the extra
iterations, since & ’s are equal to zero anymore, one term of the addition in step-b

will be vanished and division by r will reduce the result to satisfy the needed

bound.

Table 3.2: Bound is satisfied via one more iteration.

i=m P.. <[BN+0+N(r-D]J/r=N+2N/r <2N, (r >=2)

However, final multiplication by 1 at the end of the exponentiation should

guarantee that the result of the exponentiation must be in the range [0, N). In the

papers of C.D. Walter [19], and T. Blum and C. Paar [22], clear explanations
demonstrate that the final multiplication by 1 will result in a bounded output in the

range [0,N). The origin of their idea comes from the requirements of the RSA
mathematics. Actually, it is seen by inspection that, multiplication by 1

(A=(000---01),) will introduce all the a ‘s equal to zero, except for the first one.

A worst-case examination of the algorithm, in which all the digits of quotient, g, ’s,

33

having their highest value (r —1), the limit of the output will approach to the value
N.

Table 3.3: Final multiplication by 1. All the a,’s are zero, except for the first one.

i=0 P=[0+1-B+0]/r=Br"

i=1 P,=[Br'+0+N(r-D]/r=N+Br>—-Nr"

i=m-1 P.=[N+Br ™" —Nr ™ +N(r-D]/r=N+Br™—Nr ™"

Since B< 2N at the beginning of the final multiplication, the following

inequality can be obtained:
Br™—Nr ™" <(@2N-rN)r"™<o0, forr>2.

Therefore, the result at the last iteration falls into the range [0, N).

34

3.2. VLS| Implementations

This section presents the recent VLSI implementations of RSA algorithm.
However, a survey of the RSA implementations, prepared by Ernest F. Brickell in
1990 [3] is given in Table 3.4 to give the reader a reference point to compare the

improvements after 90s.

Table 3.4: A Survey of RSA Hardware Implementations up to 1989 (Brickell [3]).

of bits Baud # of clocks per
Year Tech. per chip Clock (# of bits) 512-bit op
. 1.2K 6
Sandia 1981 3um 168 4MHz 4.0x10
(336)
. 3.8K 6
Bus. Sim. 1985 GateArray 32 SMHz (512) 0.67x10
AT&T | 1987 | 1.5um | 208 | 1ommz | 77K 0.4x10°
' (1024) :
Cylink 1987 | 1.5um | 1024 | temuz | AR 1.2x10°
(1024) :

Cryptech 1988 GateArray 120 14MHz | 17K (512) 0.4%10°

53K

CNET 1988 lum 1024 | 25MHz (512) 2.3x10°
Brit.Telecom | 1988 | 2.5um 256 | 10MHz 1((2)526% 1x10°
10.2K
Plessy 1989 - 512 - (512)
Sandia 1989 2um 272 8MHz | 10K (512) 0.4%x10°
Philips 1989 1.2um 512 16MHz | 2K (512) 4.1x10°

35

In 1996, two similar VLSI implementations, based on the reducing critical
path approach, came from two different universities of Taiwan with P.-S. Chen €.
al. [13] and C.-C. Yang et. al. [14]. In [13] they used a method with 2n operations
per multiplication with a clock frequency of SOMHz. Their implementation results

were as follows:
- 512-bit RSA operation
- A Prototype CMOS VLSI design using 0.8um technology.
- = 78K gate count at a chip area of 76mm’

- 1.05x10° clock cycles per 512-bit operation

A baud of 24.3Kb/s @ 50MHz clock frequency

On the other hand, in [14] they proposed a similar algorithm to [13], but they
used only about n+2 iterations per multiplication. The drawback of their method
was introducing one more addition operation in each iteration. The results of this

implementation were:
- 512-bit RSA operation

- A single chip using COMPASS 0.6pmSPDM library

- = 74K gate count at a chip area of 56mm’

- The critical path of 6.06nsin the simulations.

- 0.54x10° worst-case clock cycles per operation.

- Expected clock frequency of 125MHzwith estimated routing
delay about 2ns.

- Expected baud of 118Kb/s@125MHzclock frequency (worst-

case)

36

In [15], A. Royo et. al. used a somewhat different technique for the
Montgomery Algorithm. First of all, they used a radix-4 Modified Montgomery
Algorithm by reducing the critical path as mentioned in the previous section.
Differently, they shifted up B by r”and then applied two more iterations in the
multiplication algorithm. In addition to this, they used a Carry Save Representation
(CSR) for the intermediate results, by which they believe that the operation speed is
increased. However, this technique had a drawback: conversion from CSR to non-
redundant binary representation at every modular multiplication. Their results were

as follows:
- 768-bit Operation

- ES20.7um CMOS technology.

- Area of 77mm?

- 400clocks per multiplication and 0.5x10° clocks per

exponentiation. (Average case)

- 72.5Kb/s@50MHz.

The design of J.-H. Guo et. al. [16] is based on the bit-serial systolic
architecture, which does not include any broadcasting signals. Although, a similar
algorithm to the one in [14] was used, they reached to a higher performance because
of a more compact hardware design. In addition to this, they used R-L Binary
method, which utilizes the parallelism of the multiplication and squaring. However,
the parallelism was performed by using two multipliers, therefore the area of this
design is almost twice as much as the previous designs in [13] and [14]. Their

results can be summarized as follows:
- 512-bit operation

- COMPASS 0.6umCMOS standard cell library

- 132K gate count at a chip area of 68mm’ .

37

- Estimated clock frequency of 143MHz

- Estimated baud of 278Kb/s@143MHz.

A different approach on the Montgomery’s Algorithm came from Jye-Jong
Leu and An-Yeu Wu [20] in 1999. In this implementation, as shown in the
algorithm taken from [20] (Figure 3.14), the Booth function calculates the

coefficients (¢, ’s) of the input B of the multiplier. Another multiplexing operation

is performed to determine the coefficient of N in the algorithm. Different from the
previous examples, left-shift is performed instead of right-shift for modular
reduction. With these modifications, the proposed algorithm takes n/2 operations
per multiplication. In the implementation, they used a systole-like architecture with
Nn/2+1 unit cells, each corresponding to 2 bits of the operation. However, they
noticed that at any clock cycle, half of these cells stayed idle. Therefore they
reduced the number of cells by half to n/4+1, and thus they reached a total of
about 64K gate count. One other solution for 100% utilization of the idle cells could
be by exploiting parallelism in the exponentiation with R-L Binary Method as
illustrated in Figure 2.8. For the exponentiation, they used L-R Binary method, in
which 3n/2 multiplications are needed on the average. The critical path obtained in
the design (without routing delays) was 6.7ns. For routing, they made an estimation
by adding 30% to critical path delay. A summary of this implementation is as

follows:
- 512-bit Operation
- 0.6um (Technology name was not given)
- 64K gate count (The chip area was not stated)
- 0.53M clock cycles.
- Estimated clock frequency of 115MHz.

- Estimated baud of 111Kb/s@115MHz.

38

Booth(A) / * Booth encoder * /

{ q, = 0;a, =0; a,,, =0;
for (i=0;i<= n;i=1i+2)
{ switch({ &, a; q;,,})

{ case 0: ¢, =0; break;
case 1: ¢, =1; break;
case 2: C;,, =1; break;
case 3: C;,, = 2; break;
case 4: C;,, = —2; break;
case 5: ¢, = —1; break;
case 6: ¢C;,, = —1; break;
case 7: ¢C;,, = 0; break;

H

Qi = @441

H
reurn C = {C.,,,C. 5 1,Ch s 5sr 5Cpn,Chynls
}
Sel(g;,n,)
{ ry = q;[0];
if (n, = 0)
n=09[11® q;[0];
else
ro= o}
return R={r,r,};
}
M3(A,B,N)
{ C = Booth(A) ={C,/,,,Cn/51,Cn/2 25+ »Cpn/25Chynls
P[0] = 0; / *c, =1{2,1,0,-1,-2}; */
For (i=0;i<= n/2;i=1++)
{ g, = (P[il]+ c, -B)mod 4;
R = Sel(q;,n,);
P[i+1]= (P[il+c¢c,-B+ R -N)<< 2;
}
return P[n/2 + 1]
}

Figure 3.14. The proposed Booth-encoded Montgomery Algorithm in [20].

39

In 1999, the authors of [13] further improved their study on Montgomery
Algorithm and proposed a new method in [21]. In this new design they revised the
algorithm such that one addition is required in each iteration of the modular
multiplication. They used 2’s complement multiplier and modular-shift adder, both
of which are composed of linear cellular arrays. However, this was a theoretical
study rather than a hardware implementation so that the results were presented in
terms of full adder (FA) parameters used in the design. The time spent per operation
was given as 2n°t , and the area was given as 2no. , where © and o are roughly the

delay and the area of a FA.

The implementation of J.-S. Chiang et. al. [23] differs from the others with
respect to the exponentiation and multiplication algorithms used. The
exponentiation is performed by scanning 4-bits of the exponent at a time. Even
though, the worst-case number of multiplications is reduced to 4n/3 with this
method, the R-L Binary Method with interleaved squaring and multiplication still

gives better result (n-multiplications per exponentiation). On the other hand, this
method needs pre-computation and storage of M*,M*,and M’ in the RAMs. As

for the multiplication, they used modified L-algorithm with 2n cycles per

multiplication. The results of the implementation were:
- 512-bit Operation
- COMPASS standard cell library (TSMC 0.6um process).
- Critical path of 6nsestimated by COMPASS Input Slope Model
- 0.7M clock cycles per operation

- 122Kb/s@166MHzestimated clock.

Recently, 1024-bit implementations have begun to take place of the previous
512-bit implementations. The design proposed by Y.S. Kim et. al. [25] is one of
them. They used Montgomery’s Algorithm and L-R Binary Method for the modular

exponentiation. Instead of a systolic architecture, they used 32-bit Carry Save

40

Adders (CSA) and Carry Propagation Adders (CPA) in the design. The results were

as follows:

- 1024-bit Operation

- 0.65umSOG Technology
- 112K gate counts
- Clock cycles of 2.2M (worst - case) and 1.6M (average case)

- Clock frequency of 5S0MHz

- Worst-case operating time of 43ms (32.5msin the average case)

Two implementations for a 1024-bit RSA operation were proposed by T.-W.
Kwon et. al. [31]. One of them was an area-critical design, which uses the L-R
Binary Method, and thus needs 2n multiplications for an n-bitprocess at worst-
case. The other was a speed-critical design using the R-L Binary Method, in which
the parallelism was performed via two separate multipliers. Montgomery’s Method
was used in both designs for the modular multiplication. Some of the authors of this
paper had also worked in the implementation of the 1024-bit RSA Processor in [25].
Newly, they improved their previous design by adding R-L Binary Method with
parallel multiplication and squaring. Although they reached a 2 times better speed
performance, the second multiplier had increased the area of the design. The

comparison of the two proposed implementations is as follows:

41

Table 3.5: 1024-bit RSA implementations using two types of Binary Method (Kwon

et. al. [31]).
L-R Method R-L Method
Technology 0.5umSOG 0.5umSOG
Gate counts 92K 156K
Clock Frequency S0MHz S50MHz
Clock Cycles ! ‘;;ﬁﬁzvegss%e) 1.IM
Operating Time 324§$2((:§;;%e) 22ms

The implementation of K.-S. Cho et. al. [32] uses a new radix-4 modular
multiplication algorithm based on sign-estimation technique, of which a brief
discussion was given in section 3.1.2. With this technique, they reached to a value
of n/2+3 clock cycles per n-bit multiplication. In addition, they used R-L Binary
Method by performing n multiplications per n-bitexponentiation. Since, the
parallelism was achieved via a second multiplier, the drawback of this
implementation became the high number of gate counts: 230K . Although the
design had resulted in a slow operating clock of 40MHz, they obtained a
considerably high performance for a 1024-bit RSA process. The result was 13ms
operating time and a baud of 78.8Kb/s@40Mhz. Obviously, there are two main

reasons underlying such a performance with a clock frequency as low as 40MHz:
- Reduced number of iterations in the multiplication

- R-L Binary Method with parallel multiplication and squaring

operations.

42

3.3. FPGA Implementations

In 1998 J. Poldre, K. Tammenae, and M. Mandre have analyzed the FPGA
implementations of the RSA by using three families of FPGAs: XC4000, XC6200,
and FLEX10K [39]. They used the R-L Binary Method with parallel S&M, and
radix-2 Montgomery algorithm in their implementation. They proposed two
different architectures, systolic and classical, for the modular exponentiation.
However the timing results were some estimation based on the number of clocks
and delay values of the FPGA resources. Besides, only public key processes
requiring operations with a small exponent (not private key processes) were taken
into account. These results are shown in Table 3.6 and Table 3.7, which are taken
from the corresponding paper [39]. The k-values in the tables represent the bit-

lengths of the unit operations in the design.

Table 3.6: Estimated CLB count and number of cycles for two types of architectures
in 3 FPGA families (J. Poldre €t. al.[39]).

bits | k XC4000 XC4OQO XC6200 XC6ZQO FLEX10K | FLEX l‘OK cycles cycle.s
Systole | Classic | Systole | Classic Systole Classic Systole | Classic
512 (2| 4096 6144 16384 24578 8192 12288 256 128
512 4] 7168 10752 26624 39936 14336 21504 128 64
512 | 8 | 12288 18432 40960 61440 24576 36864 64 32
512 (2] 8192 12288 32768 49152 16384 24578 512 256
512 | 4] 14336 21504 53248 79872 28672 43008 256 128
512 | 8 | 24576 36864 81920 | 122880 49152 73728 128 64

43

Table 3.7: Estimated time (in msec) of RSA Public Exponentiation Process. Only

exponentiation times for small exponent are presented (J. Poldre €t. al.[39]).

Bits K XC4000 XC4OQO XC6200 XC6ZQO FLEX10K FLEXI.OK Cycles Cycl@s
Systol. | Classic. | Systol. | Classic. | Systol. Classic. | Systol. | Classic.
512 2 3.9 2,0 52 2,6 52 2,6 256 128
512 4 2,3 1,1 3.4 1,7 3.3 1,6 128 64
512 8 1,3 0,7 2,1 1,0 2,0 1,0 64 32
1024 2 15,7 7.9 21,0 10,5 21,0 10,5 512 256
1024 4 9,2 4,6 13,6 6,8 13,1 6,6 256 128
1024 8 52 2,6 8,4 4,2 7.9 3.9 128 64

In 1999, T. Blum and C. Paar proposed an FPGA implementation of the
RSA Cryptosystem, which uses the modified Montgomery’s Algorithm in a systolic
architecture [22]. In this implementation, they performed operations in radix-2,
using the R-L Binary Method with interleaved S&M. Also, they simplified the ;-
calculation by shifting up one of the modular multiplication inputs as explained in
3.1.2.2.b. Differing from the previous implementations, they applied three more
iterations in their modular multiplication algorithm than the original case. Although,
parallel S&M introduced great advantages in reducing total number of clocks, they
obtained 2(n+2)(n+4) clock cycles for an n-bit operation, which is rather high
because of the operations handled in radix-2. Typical PE in this architecture was
different from the convenient ones proposed by C.D. Walter [10] in such a way that
each PE performed calculations more than 1-bit although radix-2 was used. They
implemented the design for three types of PE’s (4, 8, and 16 bits) in order to find the
solution which best suits to the Xilinx XC4000 series FPGA’s, which they used in

the implementation. The following table taken from [22] summarizes their results

44

for these three types of PE’s. The u values represent the number of bits computed in

each PE.

Table 3.8: CLB usage and execution time for a full modular exponentiation (Blum

et. al. [22]).
512 bit 768 bit 1024 bit
C T C T C T
u CLBs [ms] CLBs [ms] CLBs [ms]
4 2555 9.38 3745 22.71 4865 40.50
8 2094 10.13 3123 23.06 4224 49.36
16 2001 11.56 2946 25.68 3786 49.78

After two years, the same authors implemented a similar systolic architecture
in Xilinx XC40250XV and XC40150XV FPGA’s with operations performed in
radix-16 [36]. Different from the previous one, the modular multiplication algorithm
used in this new implementation (Figure 3.15) was an optimized version of the
Montgomery’s Algorithm to be used for high radix computations as in proposed by
H. Orup [40]. However, in the paper [36], they didn’t give sufficient details of how
they implemented the initialization part of the new algorithm. Using a higher radix
in the Montgomery computations, they reduced the number of clocks about a
quarter of the previous implementation, while preserving the clock frequency.
Therefore they have achieved to a four times faster RSA operation than the previous
implementation. Table 3.9 compares the two FPGA implementations [22] and [36]
of T.Blum and C.Paar.

45

MONT (A, B): Montgomery Modular Multiplication for computing
mo1 ko

A-BmodM ,where M =3 "2)'m. m c{0.L..2"-1};

M = (M mod2)M, M =3 " 2%)' M, M {0.1,...2" -1}

B=Y"'(2)b.b e {0,,...2" -1

A=Y """ 8.8 € {01...2" ~1},a,,, = 0

AB<2M;:;4M <2 M"'= -M ';

S, =0

For i =0 to m+2 do

g = (S,)mod 2"

S, =(S +qM)/2"+aB
End for

ok w0 PE

Figure 3.15: The Modular multiplication Algorithm proposed in [36].

Table 3.9: Comparison of the two FPGA implementations [22] and [36].

512-bit 768-bit 1024-bit
Radix
CLB Time (ms) | CLB Time (ms) | CLB Time (ms)
2[22] 2555 9.38 3745 22.71 4805 40.05
16 [36] 3413 293 5071 6.25 6633 11.95

In [30], A. Daly and W. Marnane proposed three types of Montgomery
Algorithms and compared their FPGA performances. Among the proposed
algorithms, they had chosen the one in Figure 3.16, in which the computations are
handled in radix-2 and the g-calculation is made easier by shifting-up one of the
inputs as in [22]. As for the exponentiation, they used the R-L Binary Method,

however they performed parallel S&M with two multipliers instead of interleaving

46

them in one multiplier. The target device in this implementation was the Xilinx

V1000FG680-6. The results of this FPGA implementation are shown in Table 3.10.

MonPro3 (A, B, M)
{
S,=0;
A=2xA;
for j=oto n do
g, =(S,_,)mod2;
S =(S5,+qM +DbA)/2;
end for
Return S ;
}

Figure 3.16: The modular multiplication algorithm used in [30].

Table 3.10: Implementation results in Xilinx V1000FG680 FPGA (Daly et.al. [30]).

No. of Slices Clk. Freq.
Bit Length(n) Data Rate
(% of chip) (MHz)
120 1146 (9%) 83.51 673.2 kb/s
240 2301 (18%) 58.15 238.3 kb/s
480 4610 (37%) 55.92 115.5 kb/s
720 6917 (56%) 50.66 70.0 kb/s
1080 (1024) 10369 (84%) 49.63 45.8 kb/s

47

CHAPTER 4

HARDWARE IMPLEMENTATION

This chapter presents the details of the hardware implementation of the RSA
PKC performed within this thesis. The design and implementation results presented
in this chapter are summarized in a paper, which was presented and published as a
work in progress at Euromicro Symposium on Digital System Design, DSD2003, in

September 2003 [42].

Section 4.1 examines the methods and modifications that are used in the
design. Also a top-to-bottom hierarchic description of the design architecture is
given in this section. VLSI and FPGA implementation details are handled separately
in Section 4.2 and 4.3, respectively. Finally the last section gives a comparison of
the results presented here to the ones in the literature, which were presented in
Chapter 3. The reader may refer to the previous section for detailed explanations of

the used algorithms and methods in this chapter.

4.1. Design Aspects

4.1.1. Design Methodology

For the exponentiation operation, The R-L Binary Method is used (Figure
2.2). This Method treats the exponent from the LSB in bit-wise fashion. The

multiplication and squaring operations are interleaved into successive clock cycles

48

using a single multiplier, hence a 100% utilization of the hardware and time has
been reached in the design. In other words, with interleaved multiplication and
squaring, there are no idle clocks and idle resources while the system is running.

Also there is no need to use exponentiation algorithms such as m-ary Method,

Power Tree Method or Booth Recoding Method in order to reduce the number of

multiplications.

For modular multiplication, Montgomery’s Modular Multiplication
Algorithm (Figure 2.3) is used. Among the modifications on this algorithm, which

were categorized in Chapter 3, the following are utilized in this implementation:

- The number of iterations are reduced by performing the
algorithm in radix-4. A higher radix would result in a less
number of iterations but since the computations become more
complex as the radix increases, the critical path and needed
amount of resources also increase. Radix-16 computations were
also tried in the implementation. However, while the total
operation time remained almost as the same as for radix-4, the
area increased about 32%. The following table explains the effect

of increased radix:

Table 4.1: Comparison of radix-4 and radix-16 designs.

Worst-case # of
Gate Count Clock Period
clocks
Radix-4 132K 4.06ns ~1024x2x(1024/2)
Radix-16 175K 8.3ns =1024x2x(1024/4)

49

- Another modification was performed to reduce the critical path

by simplifying the (,-calculation (see section 3.12.2.b). In the

modular multiplication, one of the inputs, B, was shifted-up by

4, making the least significant digit zero. The new (-calculation

became:

0

q :(po-|-a1Z'b0)-(r—n0)’1 modr and by=0 =
g =p, (r-n,)”" modr

As explained in section 3.1.2.2.b, one more iteration was applied in the

algorithm to recover the same result after this simplification.

- In order to guarantee that the outputs of the modular

multiplication are in the range [0,2N), another extra iteration

was added in the multiplication algorithm. The mathematical

details of this modification were given in section 3.1.2.2.c.

With the above modifications, the algorithm that is used in the design has

turned to be:

Inputs: A, B, N;

Output: P= A-B-4 ™Y modN ;

B'=B.-4; /* Reducing the critical path */

P,=0;

For i=0 to m+1 /* Two moreiterations */
a. g =p,- (4- no)’1 mod 4; /* Simpler g;-calculation */
b. P, =(P+a -B+q -N)/4;

End

Post Condition: 4™'. P.,.=AB+Q-N

Figure 4.1: The Algorithm used in the design.

50

As seen in the above algorithm, there are two more iterations with respect to
the original algorithm (Figure 3.7). One of these extra iterations is for the recovery
of the shift-up operation of one of the inputs. The other iteration is for obtaining the

output in the range [0, 2N).

4.1.2. Design Architecture

There are four levels of hierarchy in the 1024-bit RSA Cryptosystem design
as seen in Figure 4.2. In this section, the design architecture will be described from

top to bottom.

Design Hierarchy

top1024R4shell |

top1024R4
| [Ccontoter |

e

%
[)

[Pt |

Figure 4.2: Hierarchy of the design.

51

The first level is used for the chip interface. The I/O interface of the top-
module is shown in Figure 4.3. The Modulus (N), Pre-computed Factor (R), and

the Message (M) are taken in by 8-bit interface; and the Key is taken in by a 4-bit

interface. Data-valid (dvin) signal controls the acceptance of these inputs to the
system. When dvin is at logic level LOW, all the inputs are read at the rising edge of
the clk input. The 8-bit inputs of the top-module, N, R, and M are registered and
transmitted into the second level of the hierarchy in 2-bits thru shift registers. The
remaining 4-bits input, e, is registered and transmitted into the second level, using a

1-bit shift register. This operation is shown in Figure 4.4.

modulus 8]
1024-bit mdatain (N)

. 8
precomputation___» rdatain (R)
factor 1024-bit

8
messagé < ydatain (M
1024-bit (M) dvout ——>
key 2 . 8 . .
) edatain (e) dout <> cipher 1024-bit
1024-bit (C = X°modM)
— dvin
— reset
—y clk

RSA-1024

Figure 4.3: I/O interface of the top-module.

52

mdatainﬂL

rdatain—?—
xdatain _,L
edatain —;L

clk ——

reset dout

dvin

topl024r4

dvout

Figure 4.4: Data interface in the 1* level hierarchy.

The output of the RSA Cryptosystem, C, is also a 1024-bit number and
exported from the module by an 8-bit interface via an active-LOW data-valid signal

named as dvout in the design.

In the second level of the hierarchy, the module “top1024R4” includes a
systolic architecture and a controller unit. There exist n/2+ 2 processing elements
(PE) for an n-bit operation. The two extra PE’s are needed in order not to loose
data when overflow occurs in the intermediate steps of the modular multiplication.
The right-most processing element, PE,, in Figure 4.5 represents the least significant

digit of the operation and includes the ¢, -calculation circuitry, which is the step-a of

the used multiplication algorithm in Figure 4.1.

53

ber(3 beni2 ber(1] berit]
L e A B A o AN], | e
dk — 0—fnin mou— min o min mou—— nin o min o min
0—fbin bout—> bin bout bin bout bin bou bin bout 7
aeg
reset—| ﬁem an| aot an aout i aout ain aout an m)
pon an| o an ot g qut an| ot an i q
an oout an oout an oot dn oot an
g ped ped pe3 pe2 pel caladator
pin pout pin pin pout—— pin pin pin
ﬁ sin s sin g sin S‘llj sin souf sin gl‘i
2 " tou —ijﬁ in wf | " g tn o tin mgH
min—+ [mac N
&—jdnreg g AMXeY i dnsceg dmdr aNEY i dmsteg dnpink—
i 2 anpo | L |t
nn 7 a0’ Systreset a0 Systreset a0 Systreset ano systreset o Sytreset
2
xin—+
1 dout
ein— e B
ansss”’ 8
’7 dvout
v om0 Syrest MR berf40] men umx dmx mod |
— ein controller daut
v dvout

Figure 4.5: A sample systolic architecture for 8-bit RSA.

In the third level, the architecture of the PE’s and the function of the
controller module are presented. Each PE represents the 2-bits of the RSA operation
since radix-4 is used in the design. A PE consists of a core-systole and some logic
structures surrounding the core-systole (Figure 4.6). These structures are needed for
the input acquisition, storage of some intermediate steps and preparation of the PE’s

for the next Squaring and Multiplication (S&M).

54

umux ben men

. oy bout
min ———)
bin d L‘T bout
aout ain
qout gin
cout core cin
systole o
pin pout
; N sout
sin
tin N} tout
I
i
dmuxout D dmuxin

Figure 4.6: The structure of a PE.

The 4™ and the last level of the hierarchy is the interior structure of the core-
systoles. The main mathematical operation of the Montgomery’s Algorithm takes
place in this level. All core-systoles have the same architecture except for the one in

the right-most PE. This one is different because the ¢ -calculation circuitry is

included. The two types of the core-systoles are presented in Figure 4.7.

bin min

qout

cout €

Figure 4.7: The two types of the core-systoles. The LUT module performs the

operation ¢, = p, -(r —n,)” modr .

4.1.3. The Operation

In each iteration of the multiplication algorithm, once the ¢ is computed

(step-a) in the right-most PE, all the remaining systoles do the corresponding

computation of the step-b by using the same &, and g, values, which are shifted

through the systoles from right-to-left at each clock cycle. This computation is

performed in a pipelined manner, therefore takes two clock cycles for each
operation. In other words, at the i™ -clock, the jth processing element, PE;,
performs the combinational operation in step-b and gives the outputs to the PE;.;
sequentially at the (i +1)™ - clock cycle. However, in order to perform the next

operation, the PE; should wait one clock so that the PE;;; performs the step-b
operation and gives the outputs back to PE; at the next clock cycle. This means that
each PE states idle for one clock cycle while waiting for the outputs of the nearing
PE in the left (Figure 4.8). In the implementation, this inefficiency was avoided by
using the idle clocks for another multiplication, which have been mentioned as
“parallelism” or “interleaving” in the previous chapters. Since in the R-L Binary
Method (step-2a and step-2b in Figure 2.2), there are two modular multiplications
(called as squaring and multiplication), which are independent from each other,
these two multiplications are interleaved by using the idle clocks, and thus 100%
efficiency in the utilization of time and area has been reached. The operation of the

PE’s is summarized in Figure 4.9.

56

e T AT
IDLE :
e og g T g
IDLE % IDLE E
PE {:J_PE/H\E PE | —
@ 29 T g _ 29
IDLE :

Figure 4.8: Single multiplication without interleaving. Each PE states idle for one

clock cycle.

i"™ - clock
T T T
%
M S M ...
PE . L g™ PE ., " PE, N
i+ 1)" - clock y J N
z 2 L g
N J N k——
S M s -
PE . — PE,,) \ """" PE N
(i +2)" - clock g \
T v R
N M ¥ e
M S M
PE ., PE ., PE | N

Figure 4.9: Interleaved Squaring and Multiplication operations. 100% utilization of

the PE’s and no extra clocks for Multiplications. (S: Squaring; M: Multiplication).

57

Recalling back to the R-L Binary Method (Figure 2.2), it can be seen that the
independent operations, step-2a and step-2b, have a common multiplicand. This
property of the algorithm provides an efficient utilization of the hardware when
interleaving these two independent Squaring and Multiplication (S&M) operations.
In this implementation the common multiplicand is placed into the registers at the
top of the PE’s, and the non-common multipliers are fed digit-by-digit from the
right-most PE at successive clocks (Figure 4.10). These digits are actually nothing

but the a values in the multiplication algorithm in Figure 3.7.

.'/ e \“E Common
“\\ D D D D S multiplicand
(L] [] [] [] [1% Moo
Va7 N2 k72 N2 adt
-
Syst,. syst,, syst, syst, syst,
—>
. &<
I non-common
Multipliers

Figure 4.10: Implementation of the R-L Binary Method in the systolic architecture.

Since the outputs of the multiplication are reused as the inputs in the same
architecture, a reorganization process of the registers takes place at the end of each
S&M. The common multiplicand is the result of the Squaring operation. Therefore,
at the end of an S&M, the result of the S, which appears digit-by-digit at the systole
outputs from right-to-left, is moved to the upper registers at successive clocks.
These upper registers correspond to the B input of the Modular multiplication
Algorithm. (The right-most systole doesn’t have a B input because of the
modification, in which the B input is shifted-up by 4 resulting the least significant
digit zero.) Since the modular multiplication algorithm starts from the least
significant digit, the new S&M can start just at the next clock at the end of the
previous S&M. In other words, the next iteration of the R-L Binary Method starts

without waiting the completion of the previous iteration.

58

[(i+ D"

- clock |

i th

i~ - clock |

s ™ Result of the
L L] L] B\ D&/h Squaring
(’D D D \ m \ DH Modulo
Va2 N2 N2 \ N2 Nl
1 KD
syst,.., syst,, syst, syst, syst,
(/] B

Figure 4.11: The result of the squaring is stored digit-by-digit to be reused in the next

Squaring (S) and Multiplication (M). Syst1 starts the new S&M at the (i +1)™ -clock.

In case of & =0 in the R-L Binary Method, only Squaring is performed. The

result of the previous multiplication should be stored when this happens. In this

architecture, extra registers are used in each PE to provide this storage. Figure 4.12

shows the storage of the Multiplication result digit-by-digit into the newly added

registers. Then the stored data is fed back to the systoles as the a inputs when a 1

comes from the exponent input.

Result of the

Squaring

B

O D —
b " " "
— 1k
syst,.., syst,, o syst, syst,
—>

Modulo

syst o

-
T
v
\
h

Figure 4.12: Storage of the multiplication result digit-by-digit when the exponent bit

is zero.

59

A state machine in the controller unit operates according to the incoming bits
of the exponent and decides whether to store the multiplication result or not. There
are 8 states of operation, in which a counter and the incoming bit of the exponent
controls the state transition. The counter value tells the end of the present state; and
the exponent bit tells the next state to go. The state diagram and the function of the
states are given in Figure 4.13 and Table 4.2, respectively. Figure 4.14 illustrates an

example for the modular exponentiation process using the state diagram in Figure

4.13.

Figure 4.13: The State Diagram.

60

Table 4.2: Description of the states.

State Names Description
Sy Idle State. Waits for the dvin LOW.
S, Getting the inputs R,M, N, e, and placing them into the shift-registers.

Pre-multiplication of the inputs by R to obtain the residues.

Squaring and Multiplication in parallel.

N NN

Squaring continues and the result of the previous Multiplication is being

stored.
. s —(m+1
S, Final multiplication by 1 to remove the I ™D factor.
55 Outputting the result of the exponentiation
56 Only Squaring takes place. The stored value in S3 remains constant.
sl s2 s2 s3 s6 s2 s4
pre-multiplication e[0]=1 e[l]=1 e[2]=0 e[3]=0 e[4]=1 final-multiplication
g X Y x? X" — X'
E = i xS x4 e Dumny
— quaring
g_ 2oty = X — ix? x° NG >
o T — - =
S X _ 7] X" NG X"
2 1 = 1 — X — X? Dummy — X" mod M
S > _ - i =Y Multiplication Dummy V) >
i rluwl) 1e R (X is being Multiplication X% 1
% stored)
s L L o
| | | | | | |
I T 1 T T T T
0 t 2t 3t at 5t 6t time

Figure 4.14: Modular Exponentiation example with the corresponding states.

61

4.2. VLS| Implementation

The design presented here is a Semi-Custom Design, in which the AMI
Semiconductor 0.35um CMOS Standard Cell Libraries are used. This technology
accommodates 5 metal layers for routing purposes resulting in chip densities as high
as 15K gates per mm”. The following design tools running on Sun Sparc Work
Stations, which were supported by TUBITAK-ODTU-BILTEN, were used during
the VLSI implementation:

e Synthesis and Timing Analyzing = Synopsys Design Analyzer
1999.10

e Layout (Placement & Routing) = Cadence Silicon Ensemble 5.2
e Simulation - Cadence Affirma Verilog-XL 2.8
e Post-Layout Corrections = Cadence Design Framework II

The following procedure was applied in the implementation:

62

Theoretical
Study

N2

HDL Design

l

Behavioral
Simulation

Part |- HDL

L

Constraints &
Synthesis

l

Reports

l

Post-Synthesis
Simulation

Part 11 -
Synthesis

L

Place & Route

Back-Annotation

—
\C
a

\

Part Il -
Layout

/N

Static Timing
Analyzing

N/

Reports

|

Post-Layout
Simulation

DRC, ERC, LVS

Part IV -
Post-Layout

N2

Fabrication

Figure 4.15: VLSI Implementation Procedure.

63

4.2.1. Design with HDL

As the Hardware Description Language (HDL), VERILOG HDL was used
in the design. The need for the VERILOG-HDL was especially appeared in
designing the controller unit. Designing the complex structures via HDL provides

fast design cycles and gives better results than gate-level designs.

The HDL design was first simulated functionally by using the Cadence
Affirma Verilog-XL 2.8 simulation tool. This step of the implementation procedure
provided the early detection of any errors, which might cause many problems in the
later steps. After being completely sure about the functionality, the next step was the

structural design: Synthesis.

4.2.2. Synthesis

For the synthesis of the design, the Synopsys Design Analyzer tool was used.
The synthesis process was performed in three steps from bottom to top of the

hierarchy.

At first step, an individual PE was synthesized with the following

constraints:
- Clock Frequency: 200 MHz

- Operating Conditions: Worst-Case Industrial (MTC45000
WCIND)

- Wire Load: 100-250.
- Timing critical synthesis.

Another synthesis constraint was selection of the Flip-Flops to be used in the
design. Some of the Flip-Flops in the MTC45000 library were designed for low
power consumption. They had very high set-up and hold times reaching up to 7ns.
Therefore, this type of Flip-Flops was eliminated during the synthesis. The results of

the above high-effort timing critical synthesis are:

64

Table 4.3: Synthesis results of an individual PE.

Combinational Area 128.3 gate counts
Non-combinational Area 102 gate counts
Total Area 230 gate counts
Max. Delay 4.98ns

After the synthesis of one PE, the structure was marked as “don’t touch” and
thus preserved in the synthesis of the upper level modules. With this method, the
tool considers the synthesized PE as a black box and does not overrule the
hierarchical structure. Since the whole design consists of many of these PE’s, the
tool just copied the synthesized PE’s while synthesizing the upper level modules.
This reduced the total synthesis time and preserved the locality of the systoles.
Hence, in addition to the regularity and high operating clock frequencies, the

systolic architecture provided also fast design cycles.

The second step was the synthesis of the controller unit. The same
constraints were applied as in the synthesis of the PE, except for the wire-load
model. The controller is a rather larger design than a PE and includes some
broadcasting signals to control the PE’s. Therefore a higher wire-load model was
needed in the synthesis of the controller. Choosing the appropriate wire-load model
is an important issue in such a way that if one chooses a small model below the
needs of the architecture, the layout results will probably fail to meet timing
constraints because of the large fan-outs and routing problems in the layout. On the
other hand, if a high-degree model is to be chosen, then the layout tool may put
unnecessary buffers, which increase the chip area and timing. The negative effect of
inappropriate wire-load model appears after the layout process. Therefore, about 20

Synthesis-Layout iterations were experienced until reaching to the optimum results

65

with the wire-load model of 36000-42000 for the controller unit. The synthesis

results were as follows:

Table 4.4: Synthesis results of the control unit.

Combinational Area 4713 gate counts
Non-combinational Area 9785 gate counts
Total Area 14498 gate counts

Max. Delay 5.11ns

The third and the final step was the synthesis of the top module. The
synthesizer didn’t touch to the previously synthesized modules, that is the PE’s and
the controller unit. The remaining to be synthesized were the I/O interface circuitry
and some multiplexers and registers, which existed in the same level with the PE’s

and the controller. The results of the synthesis of the total design are in Table 4.5.

Table 4.5: Synthesis results of the whole design with I/O pads.

Combinational Area 84232 gate counts
Non-combinational Area 68644 gate counts
Total Area 152876 gate counts (with I/O pads)
Max. Delay 6.69ns

66

4.2.3. Layout

Reaching the desired results in the synthesis, the synthesized design is

exported as VERILOG NETLIST to the Cadence Silicon Ensemble tool for the

placement and routing. This process includes the following steps:

1)

2)

3)

4)

S)

Initialize floorplan: Floorplan dimensions, and some floorplan options
are selected in this step before the placement starts. Also a decision on
the row utilization is made. A 95% row utilization was preferred in the

design in order to provide some area for the clock distribution process.
Placing I/0’s: The designed chip includes total of 68 pins:

31 input pins (8 pins for each message, pre-computation number,
and modulo; 4 pins for exponent; 1 pin for each clock, reset data

valid signals),

9 output pins (8 pins for output data; 1 pin for output data valid
signal),

28 power pins (14-VDD, 14-VSS pins).

Place cells: The cells identified in the synthesis are placed automatically
into the floorplan in this step. The tool performs the placement by taking
account the timing constraints, which are imported at the beginning of

the layout process, as a constraint file.

Generate clock tree: As in the timing driven placement of the cells, the
clock distribution process is also performed according to the imported
constraint file. In this step, the user specifies the maximum skew value
and maximum delay on the clock signal. The tool generates a clock tree
by inserting some buffers where needed from the imported design

library.

Place filler cells: After the newly inserted buffers in the previous step,

the empty spaces must be filled. Filler cells are dummy structures used to

67

provide the continuity of design layers underneath the routing layers.
They have various dimensions and are used both in filling the spaces

between the I/O pads and the core cells.

6) Add power rings: Two rings of metals are placed surrounding the core,

one for VDD and the other for VSS.

7) Connect rings: Power pins of the cells are shorted to the two rings

created in the previous step.
8) Global route: The tool auto-routs all the nets in the design in this step.

9) Verity: In this step, a final verification of the connectivity, geometry, and

antenna effect after the global routing of the whole chip is done.

10) Back-annotation: As the last step of the layout, the Standard Design
Format (SDF) file is produced from the layout. This file includes triplet
routing delay values (max, min, and typical delays) calculated separately
for maximum and minimum type path delays using the layout data. This
file carries the routing information and is used in the post-layout

simulations and post-layout timing analysis of the design.

4.2.4. Post-layout Work

In addition to the back-annotation (generation of the SDF file), a VERILOG
netlist of the layout is also extracted to be used in the post-layout simulation and
static timing analyzing. The design is simulated in Cadence Affirma Verilog-XL 2.8
simulation tool by annotating the SDF file into the VERILOG netlist. By
introducing the SDF delay information, the Static Timing Analyzing was performed

using the Design Analyzer. The results of the timing analyzing are given below:

68

Table 4.6: Static timing analysing results (with I/O pads and routing delays) after

layout.
Combinational Area 84515 gate counts
Non-combinational Area 68644 gate counts
Total Area 153159 gate counts (with I/O pads)
Max. Delay 3.97ns

For the power analysis of the designed chip, an estimation can be made

based on the formula given below:
Paimated = Papz X Nx f xS,
where:

Pw, = Power dissipation in a 2 input NAND gate in pWatts/MHz.

N = Total number of gates in the design.
f = Operating frequency in MHz.
S =Percentage of switching gates at a given time.

With P,, =0.0848 pW/MHz, and taking S=30%, and f =250MHz, the worst-

case power can be estimated as:

P .y =0.0848 uW/MHzx 153159 x 250 MHzx 30/100
~ 974mW

This is a high power value for a single chip, even though it is a worst-case
estimate. However, low power design is not in the scope of the research presented in
this thesis. Moreover, it is possible to lower the power dissipation by easily moving
the design to technologies with smaller feature sizes and lower supply voltages,

when commercial products are to be designed.

69

After verification of the operation in the post-layout simulation and
obtaining the desired performance in the timing analyzer, the GDSII stream file was
produced from the SILICON ENSEMBLE. This file is required for design
submission and for exporting the design into Cadence for post-layout checks
(Design Rule Check (DRC), Electrical Rule Check (ERC), and Layout Versus
Schematic (LVS)) of the design.

The design has been sent for fabrication to EUROPRACTICE IC SERVICE
as a single-chip product. The fabrication will be performed by using the technology
AMI Semiconductor 0.35 pum CMOS C035M-D (5M/1P).

ol i el =i
N | ¥
Tem xt =

Figure 4.16: The layout produced via Cadence Silicon Ensemble.

70

r - - -
i i
| .

1
-

1

Figure 4.17: Zoomed view on the left-bottom corner of the layout of Figure 4.16.

71

-
i % b
-

1

it T 1 M0 T TTTH [[HED H
SN SN N EREE N EN SNSRI

Figure 4.18: Layout view in Cadence Design Framework II.

72

It -
|
a S N TS
T o | 1
i | R
1T 5 .:l 3 o s s
| Trooa2ee | 0
| i ey A et - e
e e T)
R RIREEN
L : 0N | "_"l_"'_"l.'_ {nacn |

g

__'_'_iI_'_'_'_-;' ''''' i l
) e 15] i
i | i e et

Figure 4.19: Zoomed view on the left-bottom corner of the layout of Figure 4.18.

73

4.3. FPGA Implementation
The Field Programmable Gate Array (FPGA) is an integrated circuit that

contains many identical logic cells that can be viewed as standard components. The
individual cells are interconnected by a matrix of wires and programmable switches.
A design is implemented on an FPGA by specifying the simple logic function for

each cell and selectively closing the switches in the interconnect matrix.

Design with the FPGA’s provides many facilities such as faster design
cycles, simpler and less expensive realizations of the designs compared to VLSI
implementations. On the other hand, designing with an FPGA has also some
drawbacks: They are area inefficient and slower when compared to VLSI
implementations. Therefore, VLSI is still prefferred for large and speed critical
designs. However, FPGA technology is developing with an increasing speed and

reducing the above disadvantages.

The design presented in the previous section was implemented on the FPGA
for the real-time verification. Therefore, a high degree of optimization was not
performed while implementing on the FPGA. The following tools supported by
TUBITAK-ODTU-BILTEN were used for this implementation:

e Synthesis & Implementation = Xilinx Project Navigator 5.1i.

e Real-time Test =2 Celoxica RC1000 Hardware on a PC.

4.3.1. Synthesisand L ayout

Since RC1000 hardware includes Xilinx Virtex2000E FPGA, the design was
synthesized and implemented for this FPGA with a timing constraint of 20ns clock
period (50MHz). Using the Xilinx Project Navigator 5.1i tool for this process, the

following results were obtained:

74

HDL 3yntheaiz Reporc

Hacro Scaciatics

F FSM= 1 1

Reglataca 1 5672
1-bit regi=ter i 1549
Z=hiC TegisCer 1 IEET
B-hit register i 7
d=hit Tegiscer -
11-bit register -
S1Z=bit regilater I |
J-hie regiscer i 514

Counters -
11-Bir up counear i1
Z-blt uwp counter 1 1

N Hulciplesera 1031
Z-to-1 multiplexsr 1031

¥ Ahddera/SubCEAacEornE 1541

1
ll-pat adder 11
1

d=hirc &dder CAEEY OuL 514
S-bit sdde=r 513
F=hic adder CAREEY OUun 513
F Hultaplisr= i 1027
ZxZ=hit mulciplisr 1027
F Comparator= -
Ll=bit COomMpATACOrT &gual I |
11-kit comparator not sgual i1

Figure 4.20: A captured view form FPGA synthesis report.

Conatraints file; vaplOl4Rdahe=ll.pod

Loading device decabase for applicacion par Zrom Iile "topllZdRdabell map.ncd”.
"roplDZdR4shell™ ia an NCD, werzion 2.37, device x»ow2iDDe, package bgS&0;

spe==d -6

Loading device for application pmc from file *wv2000=.nph' 1n =nvicopm=nt

Cif¥ilinx,

Pavice sgpaad dace yvaraion: PRODOCTION 1.68 ZO02-DE6-19.

Pavioe utilizacion Sunmsrsy!

Nurber of External GOLEIGHs 1 ocut of 4 258%
Number of Extecnal I0E= 39 oyt af 4049 %
Nurbae of LOCed Extecnml IOES 0O oue af 38 0%
Hunber af SLICEa 10634 ouc aof 19200 55k
Nunber af GCLEs 1 ot aof % 254

fraral)l effore leval [-ol): 3 e by usec)

Flacer sffort level [=pli: 2 |ssc by user)

Flacer cost table entry (=ch: 1

Fouter effaort lewvel [-cl)! 2 |=et by ussr)

Startiog initiml Timing Apalyvsi=. BREAL cims=; 8 =ec=
Finished initial Timing Aoalvaiz. REAL Eims: 21 =&cs

Figure 4.21: A view from FPGA map report.

75

Timiesy con@Eerainr: TS =1k = PEALOD TIHECRP #=lkP 0 53 HIGH 80000000 %
w4Edtsl jEeme mnalysed. O Eiming srcocs debecEsd.

Rinimae pepiod = 1M.016m=.

kl]l CORSCTSLTGE WECE TS

kll values diaplayed in nESdssconds |ns|

Cloek ro Sarip a4 desvinarvion &lack clk

--------------- i S N e e s e e

ScrciFias| Sreifmll| Seciliasm| JecifFall|
Epures Clesk C=pt e | Dept:FHige |Dext :Fall | Dext: Frll|
e e e e e e e
clk 13,016 | | |
o e e e e s o e e o

TLin1E S Snar ¥l

Timiey ecroes: O Scops: O

Conarraints cover Z4643% packs, O nera, and S00E3 consmctions (B8.5k coverage)

Figure 4.22: A view from FPGA post-layout timing report.

4.3.2. Real-time Test on FPGA

The design was tested in real-time using the Celoxica RC1000 Hardware

accomodating the Xilinx V2000E FPGA. RC1000 is a PCI bus plug-in card (Figure
4.24) for PC’s, consisting of one large XILINX FPGA (BG560 package), four banks
of memory for data storage, and two PMC sites for I/O with the outside world [42].
Memory banks can be accessed by both FPGA and PCI bus. The card is controlled
by PC through PCI bus by running executables written in Handle-C Programming

Language.

In the test of the FPGA implementation, the steps given below were

followed (Figure 4.23):

1) A RAM interface design was included in the FPGA with the RSA

module. This interface enables the module to access the RAM’s on

the RC1000 hardware.

76

2) A C executable was used to access the RAMs and the FPGA. This

exe does the following:

e Places the test data into the RAMs,

e Sets the FPGA clock,

e Configures the FPGA with the configuration file obtained from
Xilinx Project Navigator,

e Releases the control of the RAM banks and resets the FPGA.

o After finishing the RSA operation, FPGA writes the output into
the RAM. Then PC again takes over the RAM control, reads
the output of the FPGA and writes it into a file.

3) The RSA operation was verified by observing the output in

hexadecimal format using simply a text editor. A sample tested

encryption and decryption is shown in Figure 4.26 and Figure 4.27.

4 3
HOST (PC) RAM banks FPGA
1 2
RC1000

Figure 4.23: Data flow in the test of the FPGA with RC1000.

1) PC writes the test data into the RAM. 2) FPGA reads the inputs from the RAM. 3) FPGA writes
the RSA output into the RAM. 4) PC reads from RAM and writes the FPGA outputs into a file.

77

Figure 4.24: Test Setup. (RC1000 Board mounted to the main-board of a PC).

Figure 4.25: Zoomed view on the Xilinx V2000E FPGA on the RC1000 board.

78

(@ UltraEdit-32 - [Dr\soneriRSALRC1000% rsat Debughout.dat S =] |

Lj File Edit Search Project Wiew Farmat Column Macro Advanced Mindow Help ;I

8| x|

i H SR 24 wHE|sBRB|==== |t

u:uut.u:lat"l ‘

|

00000000h: 00 00 00 00 ICD CF BF 92 D& 20 Bl &7 &F EE SF 4C|: g
00000010h: (27 AF E4 58 35 06 78 E7 D4 Bl 60 4D 3B 00 ED O6):
0o0000z0h: |35 FE B7 5D FS 06 ZE 62 45 73 51 2D B4 42 CE 5z2:
00000030h: |44 58 SE b@?guﬂ_ em: oc BC B7 3D Fof:
00000040h: |51 EE 93 28 2E zz %5 1B OE 94 C9 4C E4f:
00000050h: |05 &2 76 6F 37 8B ED D3 76 E1 CF Z0 3E E4 ao|;:
Oo0000060h: | A5 E3 BE 36 FE 51 67 LB 37 &2 D6 E4 AF 60 F1 62]:
00000070h: |81 0B 4D CE 7C C& 4E 2D D7 34 B2 Al 37 EE 77 F3|:
00000080h: |co D7 SE AZI'?D DE OC 3D D1 F7? D& 7C 50 BD A7 &&:
00000020h: [11 01 ZD LD EBA 97 54 38 ".-‘A 51 E:B Fc 62 20 ED 239|:
000000a0h: | 7E 6F 71 DC 51 E5 5F Dz 77|:
sonnooicie |oF e Tk ilié‘g"iimé Eilﬁ (R);
000000c0h: ﬁﬁi 2
000000d0h: |32 &9 78 BE E3 53 g C5 3F|:
000000e0h: |OC 54 83 1D FO 04 BEI E2 AIII BB EI'? Bl 5F 44 4z FAl:
000000f0h: |0 A2 AE OF 4F F& BE 93 1C 14 04 &F B2 84 69 43]:
00000100h: | B8 B7 34 4D|DS 04 03 02 01 00 OO0 00 00 00 00 oof:
00000110h: {00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 oof:
0o0001z0h: |00 00 00 OO0 0O OO 0O OO0 00 00 00 00 00 OO0 o0 oof:
00000130h: |00 00 00 O oo 0 0o 0o oo oof:
oooooi14oh: |oo oo oo mﬁ Stﬂge DD&;ZI oo oo 0o oof:
00000150h: |00 00 00O 00 OO0 OO0 00 00 00 00 0o 0o oof;
00000160h: |00 00 00 00 QOO0 00 |:u:| |:u:| DIII 00 00 00 00 00 o0 oof:
00000170h: |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 oof:
00000180h: o0 00 oo oofol 00 01 00 0O 00 OO0 00 00 OO0 00 oof:
00000190h: {00 00 00 00 00 00 00 00 00 00 00 00 00 00 o0 oof:
000001a0h: |00 00 00 00 QOO0 OO |:u:| |:u:| 00 00 00 00 00 DIII oo oof :
000001k0h: cu:u 00 00 00 00 00 00 00 00 00 00 DD aol :
000001c0h: m%mﬁmu xﬂu g% oof :
000001d0h: oof :
000001e0h: cu:u 00 00 00 00 00 00 DD aol :
000001£0h: |00 00 00 00 0O OO0 00 00 00 00 00 00 00 00 00 oof:
00000Z00h: 00 00 00 00 o0 o0 oo oof73 30 8B AS 38 32 42 Dif:
00000z 10h: [E7 RE 47 53 6E 36 5F 0D Ez A0 57 DO B9 ED 7D Ez|:
Oo0000Zz0h: |0C EE E0O F1 00 4B 2ZA E1 05 9B OE F1 7E 52 74 0O1]:
O0000Z30h: |95 &7 C5 79 65 BL 36 L1 95 96 06 34]:
000002 40h: |C8& 56 B9 &6 o 7 EE 88 1D 03]:
00000Z50h: |56 EO0 68 SE E%Eﬁ xm(gx CE 37 04 54];:
000002 60h: |22 6B 78 C1 ES &2 49 08 17 &F 90 A7 &6 01 03 76]:
000002 70h: |F? F& 97 26 B3 4C 16 4E 1C 17 2F 14 3E 97 0C Ac]:

00000280h: |GC C0O 64 ES DF DE DE 35|00 00 OO0 00 00 OO0 OO ﬁ; =
4 | ,

|For Help, pre [Pos: 28fH, 655, CW pos | [Mod: 29.08.2003 16:27:34 [File Si 2

Figure 4.26: Encryption example in the FPGA test:

Inputs: M, R, X, & Output: C = X*mod M;

79

(5 Uilr ik - 32 - [0 somer RSARC D000 rsa' Debog) autdat] _..I_n]_;l

[JEke g Search Project Wew Fomat Coknn Macro Advarced Wirdow Hep |
2| x|

DEFH @R MW (R B
RSA_numbers.det outdat |]

00ODODD00KR: OO0 D 00 I:IDICII CF BF 22 D& Z0O Bl &7 &F EE SF 4C|: _..,|
00O000010h: |27 AF E4 53 35 06 78 ET D4 Bl 60 40 3B 00 ED 08|
QOOOeDIOh: |35 TE BY S F5 D6 2E &2 48 73 81 D Bq 42 CE &SI |:
0000003 0h0: |44 &8 AE Fi maﬁﬁ&i { BT ADb FO
QDODOQD40h: |&1 EB 93 28 5 c9 4C E4
0000005 0R: JO5 A2 78 &F 37 34 BB ED 3 75 E1 CF EEI JE E& AD
0oo0oD&0hk: |AS E3 BE 36 FB 51 &7 AB 37 &2 D6 E4 AF &0 F1 &2
0oDODD70R:JE1 OB 4D CE 7€ CH 4E ZD DT 3L BE Al 37 EB 77 F3
0oo0d0adh: <0 T SE 12'iﬂ DB OC 3b D1 F7 Dé 7 S50 BD L7 5B
QOOOCDP0R: |11 0L ZD Al BA P77 S4 368 7L 51 8B FC 62 20 ED #9
000000a0h: | TE &F F1 DS 51 39 EN S0 45 2B DE Cz ES S5F D2 77
QUDOCDboh: |60 8B C5 FS B9 E® 3R FT CE 56 11 93 36 A3 AC OS5
[mpmin]n lusinfu]ull Y —

oonnoodon: | A Focke Emﬁ%?fh ne Ry
00ODODDE0R: JOC 54 833 1D 8B O7 Bl 5F 44 42 FA
0O0000DESh: |O0 A4 AR OF 1? FE EE 93 lC 14 04 6F BZ BA 69 43
QOO0QL00k: JEB BV A jEIFS 3D BB A3 3B 32 42 DL E7 AE 47 S3|:
00000110hk: | &E 36 S5F O Ez &0 57 DO B2 ED Th E2 OC ER E0 F1
QOODOQiZ0h: |00 4B 24 E1 O3 PB DE Fi ?E 2 TA O1 83 87 €5 79
QoOOo130a: B0 AL 19 68 &R 56 06 34 C8 58 BY BB
QooO0i40h: |20 94 F 35 2 j_ m {n 86 EQO &8 SE
ODDODLS0OR: |21 22 23 D7 Eﬂ ﬁ 2 8B TH C1
0D000160hk: |BS 82 4% 08 17 BF 90 L7 &6 01 O3 76 F7 FA 97 2&
0DODODL7OR:JE3 4C 16 4E 1C 17 ZF LR 3 i RC BC & 5]:
00000180hk: |bF DB DE 35 WS Fh BO 25 20 E9 08 AC B9 EX 1E &8
QUODOOL80hk: |06 &9 4E 39 Rl 46 28 ¥D 1L ES 4E 47 EC DC DR 1B
gooao0laldhm: g &0 1D 34 C6 DO &1 4D EO 53 Th BD CB 92 C1 09 O7
Qoo00ibohk: |5 0 9C 81 23 9F F4 C6 7B 94 AE 41 8F F3 SB &3
0oDOD1lcOh: | &0 eC E 29
cosozaon: 1 5o ECEYREL AL, REY.(], ..
O0oD0Dig0k: |EC E6 D@ 8D 5 CB SB &3 4C 52 32 LR AT |:
00O0001£0h: |&B 40 A3 FS BS D8 DE BF T1 O 02 7? ES 1? 04 Fa
QoD00Z 00k: AR BB CE 12 DO 00 DO QEIDE D4 03 Oz 01 OO OO OO

nE WE = EE

%E WE M WE W A&

ng WE = WNE =

ng WE = NE =

S WE = NE

OO0002 10k 00 0 00 O 0o 00 00 o0 o0 00 0o 0o od oo og oo
00000220h: |00 00 00 00 00 00 OO0 00 OO0 00 00 uu:u I:II:I 00 00 00
OO00D0Z3F0k: JO0 0 00 OO DO OO OO OO OO OO0 OO 0O oo oo
000002 40h: |00 00 00 00 D(ﬁlu o0 oo oo |
00000 50k: |00 00 OO0 OO0 Mﬁﬂ?ﬁg oo oo oojg:
000002 60h: |00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 00
000002 70h: |00 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 o0):
naooozeohk: oo o0 0o 0o oo oo oo oo 50 00 00 OO0 OO OO OO OO &
1] | 3
[For Help, pra [Pos: 28iH, 555, OW pos | Mod: 31082003 12:05:20 Fike S

Figure 4.27: Decryption of the Cipher Text in Figure 4.23. 1024-bit RSA is verified
in the FPGA by recovering the Message. Inputs: M, R, C, d; Output: X = C? mod M;

80

4.4. Comparison of theresults

The purpose of this section is to provide a quick reference for the reader to

examine the implementation results presented in this thesis and compare them to the

previous ones in the literature. The results of the RSA implementations, which were

given in Chapter 3, are summarized in Table 4.7.

Table 4.7: Comparison of the VLSI implementations.

No
Clock | Op.
Paper (?f Tech Gate Chip area No. of clocks Freq. | time Baud
&Year bits count (Kb/s)
(n) (MHz) | (msec)
1.05M
Chlegng[?] 512 | 0.8um | 78K | 76mm’ (~ 4n?) 50 | 20.6 | 243
0.6um 0.54M
Yang[14] 5 :
1996 512 Csoll)rll;;/lss 74K 56mm (~ 2nz) 125 | 424 | 118
Royo[15] 0.7pm 5 0.5M
1997 768 ESD - 77mm (~ nz) 50 104 | 72.5
Guo[16] 0.6um 5 0.258M
1999 512 Compass 132K 68mm (~ nz) 143 1.8 278
Leu[20] 0.53M
1999 512 | 0.6pum 64K - (~ 2n2) 115 4.5 111
Compass
Chiang[23] 0.7M
1999 | 312 ()Tslagn - - (~ (4n/3)2ny) | 166 | 409 | 122
Kim[25] 0.65um 22M
2000 1024 SOG 112K - (~ 2n2) 50 43 | 23.25
Kwon[31] 0.5um 22M
2001 1024 SOG 92K - (~ 2n2) 50 43 | 23.25
Kwon[31] 0.5um LLIM
2001 1024 SOG 156K - (~ nz) 50 22 | 4545
Cho[32] 0.527M
2001 1024 - 230K - (~n(n/2+3)) 40 13 78.8
87K
Our design 0.35um | (Without) 0.265M
pads)
132K
Our design 0.35um | (Without P 1.05SM
pads)

81

CHAPTER 5

CONCLUSION

This thesis presented a high-speed ASIC implementation of the RSA Public-
Key Cryptosystem. The implementation basically performs the modular
exponentiation of large integers, which is the main operation used for both
encryption and decryption in RSA. The R-L Binary Method and Montgomery’s
Multiplication Algorithm in radix-4 were combined in linear systolic architecture
with a state machine for the modular exponentiation operation, which is main
mathematical operation of the RSA. A semi-custom VLSI implementation was
performed for both 512-bit and 1024-bit processes by using the AMI Semiconductor
0.35um Standard Cell Libraries.

The results obtained in this implementation were: 87K gate count and
627KDb/s baud at 3ns worst-case clock for the 512-bit operation; 132K gate count
and 237Kb/s baud at 4ns worst-case clock for the 1024-bit operation. In addition to
the VLSI implementations, a real-time test of the hardware was performed at a clock
speed of 80MHz by using the Celoxica RCI1000 Hardware with Xilinx
V2000EBG560 FPGA on it. With these results, the fastest RSA processor and the
lowest areaxtime product within our knowledge in the literature was obtained in
the literature within this thesis. There are three main reasons underlying the
effective results of the proposed implementation: Properly chosen algorithms and

optimizations on these algorithms, minimized routing delays with the linear systolic

82

architecture, and finally the AMIS 0.35um CMOS technology used in the

implementation.

By interleaving the Squaring and Multiplication steps of the R-L Binary
Method at consecutive clock cycles, a 100% utilization of the time and resources
have been achieved in the design. This method also reduced the total number of
clocks without any need of extra hardware. Using radix-4 calculations in the
Montgomery’s algorithm was another factor reducing the number of clocks. In
addition to this, some other simplifications to reduce the critical path were applied

in the algorithm.

The design was fitted into a linear systolic architecture, in which a series of
identical structures are brought together and communicate locally at high clock
frequencies. The result of this structure was the minimized number of broadcasting
signals in the architecture, thus very high clock speeds. Also, a controller unit in the
architecture managed the resources in the systoles in such a way that the systolic
architecture performed a continuous operation throughout the exponentiation,
without any need of extra storage elements for the intermediate results of the

exponentiation process.

The CMOS 0.35um technology was another important factor in achieving
the above results in the implementation. Although the systolic architecture played
the main role in obtaining high clock speeds, the technology used in the design had
also great contributions to the timing of the design by providing very high-speed
logic cells. The high density of the technology also contributed to the mapping of

150K gates into an area of about 10mm’.

In conclusion, with the above results, the goals at the beginning of the thesis
have been achieved and the 1024-bit VLSI implementation has been sent to IMEC
for fabrication as a prototype chip. However, this study can be moved further.
Newer technologies will provide implementing high radix operations at faster and
smaller architectures. This will result in a less number of clocks, and thus a faster

operation. As another future work, a scalable architecture, in which it will be

83

possible to perform 2048 and 4096 bit RSA operations with a multiple of the 1024-
bit chips in serial, will be implemented. This will bring flexibility to the user in

choosing the level of security in the application.

84

REFERENCES

[1] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” |EEE Trans.
on Information Theory, vol. IT-22, pp. 644-654, November 1976.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM, vol. 21, pp.
120-126, February 1978.

[3] E. F. Brickell, “A survey of Hardware Implementations of RSA,” In G.
Brassard, editor, Advances in Cryptology, Crypto 89, Proceedings, Lecture Notesin
Computer Science, No. 435, pp. 368-370, New York, NY, Springer-Verlag, 1989.

[4] C. K. Kog, “High-Speed RSA Implementation,” Technical Report, RSA
Laboratories, RSA Data Security, Inc., pp. 46-49, 1994.

[5] D. Stinson, “Cryptography: Theory and Practice,” CRC Press LLC, March
1995.

[6] T. ElGamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, 31(4), pp.469-472,
July 1985.

[7] National Institute for Standards and Technology. Digital signature standard

(DSS). Federal Register, pp. 56-169, August 1991.

85

[8] P. L. Montgomery, “Modular multiplication without trial division,”

Mathematics of Computations, vol. 44, pp. 519-521, 1985.

[9] H. Orup and P. Kornerup, “A High-radix Hardware Algorithm for Calculating
the Exponential M® Modulo N,” 10-th IEEE symposium on COMPUTER
ARITHMETIC, pp. 51-57, 1991.

[10] C. Walter, “Systolic Modular Multiplication,” IEEE Transactions on
Computers, vol. 42(3), pp. 376-378, March 1993.

[11] C. Walter, “Still Faster Modular Multiplication,” Electronic Letters, vol. 31,
pp- 263-264, February 1995.

[12] T. Acar, B. S. Kaliski Jr., and C.K. Kog¢, “Analyzing and Comparing
Montgomery Modular Multiplication Algorithms,” |[EEE Micro, vol. 16(3), pp. 26-
33, June 1996.

[13] P. S. Chen, S. A. Hwang, and C. W. Wu, “A Systolic RSA Public Key
Cryptosystem,” Proc. IEEE International Symposium on Circuits and Systems
(ISCAS), (Atlanta), pp. 408-411, May 1996.

[14] C. C. Yang, C. W. Jen, and T. S. Chang, “The IC Design of A High Speed
RSA Processor,” Proceeding of IEEE Asia Pacific Conference on Circuits and
Systems, Seoul, Korea, pp. 18-21, November 1996.

[15] A. Royo, J. Moran, and J. C. Lopez, “Design and implementation of a
coprocessor for cryptography applications,” Proceeding European Design and Test
Conference, pp. 213-217, Paris 1997.

86

[16] J. H. Guo, C. L. Wang, and H. C. Hu, “Design and Implementation of an RSA
Public-Key Cryptoystem,” Proceedings of the 1999 |EEE International Symposium
on Circuits and Systems, Orlando, FL, pp. 504-507, May 30 - June 2, 1999.

[17] C. C. Yang, T. S. Chang, and C. W. Jen, “A New RSA Cryptosystem
Hardware Design Based on Montgomery's Algorithm,” IEEE Transactions on
Circuits and Systems-I1: Analog and Digital Sgnal Processing, vol. 45, no. 7, July
1998.

[18] J. H. Guo and C. L. Wang, “A novel digit-serial systolic array for modular
multiplication,” Proceedings of the 1998 | EEE International Symposium on Circuits
and Systems, Monterey, CA, pp. 177-180, May 31 - June 3, 1998.

[19] C. D. Walter, “Montgomery exponentiation needs no final subtraction,”

Electronics Letters, vol.35, no.21, pp. 1831-1832, October 1999.

[20] J. J. Leu and A. Y. Wu, “A Scalable Low-Complexity Digit-Serial VLSI
Architecture for RSA Cryptosystem,” Proc. IEEE Workshop on Sgnal Processing
Systems (SPS99), Taipei, pp. 586-595, October 1999.

[21] C. Y. Su, S. A. Hwang, P. S. Chen, and C. W. Wu, “An Improved
Montgomery's Algorithm for High-Speed RSA Public-Key Cryptosystem,” IEEE
Transactions on Very Large Scale Integration (VL) Systems, vol.7, no.2, pp. 280-
284, June 1999.

[22] T. Blum, and C. Paar, “Montgomery Modular Exponentiation on
Reconfigurable Hardware,” Proceedings of the 14th IEEE Symposium on Computer
Arithmetic, Adelaide, , pp. 70-77, April 1999.

[23] J. S. Chiang and J. K. Chen, "An Efficient VLSI Architecture for RSA Public-

Key Cryptosystem,” ISCASI9, vol. 1, pp. 496-499, 1999.

87

[23] M. D. Shieh, C. H. Wu, M. H. Sheu, and C. H. Wu, “A VLSI Architecture of
Fast High-Radix Modular Multiplication for RSA Cryptosystem,” |EEE
International Symposium on Circuits and Systems, vol. 1, pp. 500-503, May 1999.

[24] Y. S. Kim, W. S. Kang, and J. R. Choi, “Implementation of 1024-bit modular
processor for RSA cryptosystem,” Proceedings of Asia-Pasific Conference on ASC
(AP-ASC), Cheju Island, Korea, August 2000.

[25] C. D. Walter, “Improved Linear Systolic Array for Fast Modular
Exponentiation,” |EEE Computers and Digital Techniques, vol. 147, no. 5, pp. 323-
328, September 2000.

[26] W. C. Tsai, C. B. Shung, and S. J. Wang, “Two Systolic Architectures for
Modular Multiplication,” IEEE Transactions on Very Large Scale Integration
(VLY) Systems, vol.8, no.1, pp. 103-107, February 2000.

[27] N. Tomabechi and T. Ito, “Design of a High-Speed RSA Encryption Processor
with Built-in Table for Residue Calculation of Redundant Binary Numbers,” |SCAS
2000-1 EEE International Symposium on Circuits and Systems, Geneva, Switzerland,
vol. 5, pp. 697-700, May 2000.

[28] J. H. Hong and C. W. Wu, “Radix-4 Modular Multiplication and
Exponentiation Algorithms for the RSA Public-Key Cryptosystem,” Proceedings on
the 2000 Conference on Asia and South Pacific Design Automation, Yokohama,
Japan, pp. 565-570, January 2000.

[29] A. Daly and W. Marnane, “Efficient Architectures for Implementing
Montgomery Modular Multiplication and RSA Modular Exponentiation on
Reconfigurable Logic,” FPGA’'02, Monterey California, USA, pp. 40-49, February
2002.

88

[30] T. W. Kwon, C. S. You, W. S. Heo, Y. K. Kang, and J. R. Choi. "Two
implementation methods of a 1024-bit RSA cryptoprocessor based on modified
montgomery algorithm," IEEE International Symposium on Circuits and Systems
(ISCAS), vol. 4, pp. 650-653, May 2001.

[31] K. S. Cho, J. H. Ryu and J. D. Cho, “High-Speed Modular Multiplication
Algorithm for RSA Cryptosystem,” IECON, pp. 479-483, 2001.

[32] V. Bunimov, M. Schimmler, and B. Tolg, “A Complexity-Effective Version of
Montgomery's Algorithm,” Workshop on Complexity Effective Designs
(WCEDO02), May 2002.

[33] K. Sakiyama and S. Kim, “An FPGA Implementation and Performance
Evaluation of Modular Multiplication Operation for RSA Cryptography Algorithm,”
http://www.cs.ucla.edu/~milos/PROJ02/KSreport.pdf

[34] H. Handschuh and P. Paillier, “ Smart Card Crypto-Coprocessors for Public-
Key Cryptography,” J.-J. Quisqarter and B.Schneier, Eds., Smart Card Research
and Applications, vol. 1820 of Lecture Notes in Computer Science, pp. 386-394,
Springer-Verlag, 2000.

[35] T. Blum and C. Paar, “High Radix Montgomery Modular Exponentiation on
Reconfigurable Hardware,” IEEE Transactions on Computers, vol. 50, no.7, pp.
759-764, July 2001.

[37] C. D. Walter, “Montgomery's Multiplication Technique: How to Make it
Smaller and Faster,” Proc.CHES 99, LNCS vol. 1717, pp.80-93, Springer, 1999.

[36] M. K. Hani, T. S. Lin, and N. Saikh-Husin, “FPGA Implementation of RSA

Public-Key Cryptographic Coprocessor,” TENCON 2000. Proceedings, vol. 3, pp.
6-11, 24-27 Sept. 2000.

89

[37] J. Poldre, K. Tammemée, and M. Mandre, “Modular Exponent Realization on

FPGAs,” FPL'98, Tallinn, pp. 336-347, 1998.

[38] H. Orup, “Simplifying quotient determination in high-radix modular
multiplication,” Computer Arithmetic, 1995, Proceedings of the 12th Symposium,
pp-193 —199, July 1995.

[39] Xilinx Inc., “The Programmable Logic Data Book 2000,”

http://www .xilinx.com.

[40] Celoxica Ltd, “RC1000 Hardware Reference Manual,”

http://www.celoxica.com.

[41] Europractice IC Service, “AMI Semiconductor 0.35um CMOS,”

http://www.europractice.imec.be

[42] S. Yesil, A. N. Ismailoglu, and Y. Cagatay Tekmen, “A High-Speed ASIC
Implementation of the RSA Cryptosystem,” Proceedings of the Work in Progress,
Euromicro Symposium on Digital System Design, DSD2003, Belek, Turkey,
September 2003.

90

http://www.xilinx.com/
http://www.celoxica.com/
http://www.europractice.imec.be/

APPENDIX A

VIRTEX-E CLB AND LUT

A.1l. Configurable L ogic Blocks (CLBs) and Slices

The basic building block of the Virtex-E CLB is the logic cell. A logic cell
includes a 4-input function generator, carry logic, and a storage element. The output
from the function generator in each logic cell drives both the CLB output and the D
input of the flip-flop. Each Virtex-E CLB contains four logic cells as shown in
Figure A.1. Each CLB is divided into two slices.

CouT oL
! = ¥R ! = WA
Gé o=) " G T
as o= - Ga > el
LLT Caorry & | . YO LUT Cany & || oo . Y13
&3 = Cigriral Ga = Eoneal o
al a1 = -
- By (%
. l'E_ ! = KH
Fq = - K Fd TR
F1 = =P Fq o 5P
LuT Cany & || o al — LuT Garyd | | |p @ A
Fz = Contiod e " OFE Cosir CE -
F1 - F1 =
‘A i
EX it B |
S 1 Shem
CiK H1]

Figure A.1: Virtex-E CLB. Each Virtex-E CLB contains four logic cells and CLB is

divided into two slices.

91

A.2. Look-up Tables (FGS)

CouT

—Tn,

-
FraH
T EES
E -
a4 wWEH [|EX P
HX | —]
I — B WE “
I —
[- I LT
LI — K T
u
1 |j
R —
[L
o L=

Figure A.2: The detailed schematic of a slice. A slice contains two LUTs, two DFFs,
and one CY.

Virtex-E function generators are implemented as 4-input look-up tables
(LUTs). In addition to operating as a function generator, each LUT can provide a 16
x 1-bit RAM, and a 16-bit shift register. Figure B.3 shows the detailed schematic of
a slice having two LUTs.

92

APPENDIX B

CELOXICA RC1000 HARDWARE

B.1. Overview

The RC1000-PP hardware platform is a standard PCI bus card equipped with
a XILINX® Virtex TM family BG560 part with up to 1,000,000 system gates . It
has 8Mb of SRAM directly connected to the FPGA in four 32 bit wide memory
banks. The memory is also visible to the host CPU across the PCI bus as if it were
normal memory. Each of the 4 banks may be granted to either the host CPU or the
FPGA at any one time. Data can therefore be shared between the FPGA and host
CPU by placing it in the SRAM on the board. It is then accessible to the FPGA
directly and to the host CPU either by DMA transfers across the PCI bus or simply
as a virtual address. The board is equipped with two industry standard PMC
connectors for directly connecting other processors and I/O devices to the FPGA; a
PCI-PCI bridge chip also connects these interfaces to the host PCI bus, thereby
protecting the available bandwidth from the PMC to the FPGA from host PCI bus
traffic. A 50 pin unassigned header is provided for either inter-board
communication, allowing multiple RC1000-PPs to be connected in parallel or for
connecting custom interfaces. The support software provides Linux(Intel),
Windows®98 and NT®4.0+ drivers for the board, together with application
examples written in Handel-C, or the board may be programmed using the

XILINX® Alliance Series and Foundation.

93

Local PCI Bus

Figure B.1: Block Diagram of RC1000 Hardware

94

APPENDIX C

AM| SEMICONDUCTOR 0.35um TECHNOLOGY

C.1. Mixed A/D Technology

The 0.35 um CMOS technology is a mixed Analog/Digital process. It is
derived from the fully digital 0.35p CMOS process and extended with analog

capabilities

C.2. General Characteristics

e 0.35 um, up to 5 metal layers
e Self-aligned twin tub N- and P Poly gates
o W-plug filling of stackable contacts and vias
o Nitride based passivation
e 2.0V to3.6V Supply
e Protection :
o Latchup resistance > +/- 200mA
o ESD>+/-2000V

e 6 Inch epi wafers

C.3. Layout Rules

e Drawn minimum gate length : 0.35um for both PMOS and NMOS

e Polysilicon pitch : 0.9um

95

e Metal I pitch : 1.1um
e Metal 2 pitch : 1.4um
e Metal 3 pitch : 1.4pum
e Metal 4 pitch : 1.4um
e Metal 5 pitch : 2.8um

C.4. Standard Cdll Libraries

Following libraries are available for the AMI Semiconductor 0.35 pm
CMOS technology :

AMI Semiconductor libraries supporting the ADS Asic Design Framework
o High Speed and Low Power Library (MTC 45000)
o 393 core cells (gates, latches, flipflops,..)

o 101 I/O cells (with slew rate controlled outputs and spike
suppression)

o ROM Density up to 240 Kbits/mm?2

o RAM Density (Static, single port): 25 Kbits/mm?2
o Gate density: 15000 NAND equiv. gates/mm?2

o Temp. range : -55 ... + 125deg.C

o Typical gate delay(3,3V)
- Unloaded invertor delay of 50ps
- 2-input NAND delay of 610ps (typ) with fanout=2

o Power: 0.5 pW/gate/MHz at 3 V

o Additional analog modules
- High ohmic polysilicon resistors (1kOhm/sq)
- High value double poly capacitors (1.1 nF/mm?2)

e Versatile I/O Library : PAD limited I/O cells (MTC45100)

e ROM and RAM compilation

96

	CHAPTER

