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ABSTRACT 
 
 

FINITE VOLUME SOLUTIONS OF 1D EULER EQUATIONS FOR HIGH 

SPEED FLOWS WITH FINITE-RATE CHEMISTRY 

 

ERDEM, Birşen 

 

Msc., Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. İsmail Hakkı TUNCER 

Co-Supervisor: Dr. M. Ali AK 

 

 

December 2003, 93 pages 

 

 

In this thesis, chemically reacting flows are studied mainly for detonation 

problems under 1D, cylindrical and spherical symmetry conditions. The 

mathematical formulation of chemically reacting, inviscid, unsteady flows with 

species conservation equations and finite-rate chemistry is described. The Euler 

equations with finite-rate chemistry are discretized by Finite-Volume method and 

solved implicitly by using a time-spliting method. Inviscid fluxes are computed 

using Roe Flux Difference Splitting Model. The numerical solution is implemented 

in parallel using domain decomposition and PVM library routines for inter-process 

communication. The solution algorithm is validated first against the numerical and 

experimental data for a shock tube problem with and without chemical reactions 

and for a cylindrical and spherical propagation of a shock wave. 1D, cylindrically 

and spherically symmetric detonations of H2:O2:Ar mixture are studied next. 
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ÖZ 
 
 

YÜKSEK HIZLARDAKİ AKIŞLAR İÇİN 1 BOYUTLU EULER 

DENKLEMLERİNİN SONLU KİMYASAL DENKLEMLER İLE SONLU 

HACİMSEL ÇÖZÜMLERİ 

 

ERDEM, Birşen 

 

Yüksek Lisans, Uzay ve Havacılık Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. İsmail Hakkı TUNCER 

Yardımcı Tez Yöneticisi: Dr. M. Ali AK 

 

 

Aralık 2003, 93 sayfa 

 

 

Bu tezde, temel olarak patlama problemlerinden 1 Boyutlu (1B), silindirik 

ve küresel simetrik durumlar için kimyasal reaksiyonlu akışlar çalışılmıştır. 

Kimyasal reaksiyonlar için kütle korunumu denklemleri ile birlikte kimyasal 

reaksiyonlu, ağdasız, zamana bağlı akışların matematiksel ifadeleri verilmiştir. 

Euler denklemlerinin sonlu hızlarda gerçekleşen kimyasal reaksiyonlar ile 

çözümleri, sonlu hacimsel metodu kullanılarak zamanda ayrım yöntemi ile kapalı 

olarak çözülmüştür. Ağdasız akılar, Roe Akı Farkı Bölme modeli kullanılarak 

hesaplanmıştır. Sayısal çözümler, çözüm alanının küçük bölümlere ayrılması ve 

işlemciler arası iletişimin sağlanması için PVM kütüphanesi rutinleri kullanılarak 

paralel olarak elde edilmiştir. İlk olarak çözüm algoritması, şok tüp problemi, 

silindirik ve küresel şok dalgası yayılımı için sayısal ve deneysel veriler 

kullanılarak doğrulanmıştır. Daha sonra 1-B, silindirik ve küresel H2:O2:Ar 

karışımının patlaması çalışılmıştır. 
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CHAPTER I 

 

INTRODUCTION 
 

 

 

Chemically reacting flows are becoming a significant component of modern 

engineering design. Chemically reacting flows are widely observed in combustion 

processes and hypersonic flows, for example, hypersonic reacting flows around a blunt 

body, rocket nozzle combustion, pre-mixed detonation, etc. Solutions of chemically 

reacting flows necessitate an interaction between fluid dynamics and chemical reactions 

among species of the fluid mixture. Euler and Navier-Stokes Equations coupled with 

species mass conservation equations and finite-rate chemical reactions provide the 

mathematical model. 

I.1. Chemically Reacting Flows 

Three physical processes involved in chemically reacting flows are: 

• Fluid dynamics 

• Thermodynamics 

• Chemical reactions 

The fluid dynamics process is defined by conservation of mass, momentum and 

energy. The thermodynamics of the reactive fluid include microscopic heat transfer 

between gas molecules, work done by pressure, and volume change. Chemical 

reactions determine the generation and/or destruction of chemical species under the 

constraint of mass conservation. Each of the above processes could either be evolving 

or in equilibrium. For the evolving condition, each process has its own space and time 

scales, and they may be different from that of other processes. Such differences in 

space and time scales could allow simplification in the theoretical model. 
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In this work, it is assumed that each subfield of mixture is in thermal 

equilibrium internally but not in equilibrium with its neighbors (local thermal 

equilibrium), and then equilibrium thermodynamics can be applied to each subfield. 

Due to the assumption of local thermal equilibrium, the concept of state variables and 

the equation of state in the classical thermodynamics can be used to provide the 

relationship between thermodynamic variables. Because of flow motion and the 

associated pressure and temperature distribution in the flow field, the flow field as a 

whole is not in thermal equilibrium. As a result, the space-time evolution of the entire 

non-thermally-equilibrium system can be built up by integrating the flow equations. 

Physically, the thermal energy of different molecules (including different species) is 

locally in equilibrium. Thus, there is only one temperature of the gas mixture at each 

space-time location [1]. 

In order to better understand various categories of chemically reacting flows, 

two time scales are defined: one associated with the fluid motion and one associated 

with the chemical reactions. The interaction between chemical reactions and fluid 

dynamics may be described by the Damköhler number [1], which is the ratio of the 

characteristic time of fluid mechanics to that of chemical reaction. As the Damköhler 

number approaches infinity, chemical reactions rates are very high for a flow and the 

reactions take place instantaneously. Such a flow is considered to be in equilibrium. If 

Damköhler number is close to zero, the chemical reactions are slow as compared to 

fluid flows, and it is referred as a frozen flow. In a frozen flow, fluid particles moving 

within the domain do not experience any change in the chemical composition. In other 

words, no chemical reactions take place for a frozen flow. When the Damköhler 

number approaches to the order of unity, a significant interaction between chemical 

reactions and fluid dynamics is expected. In this case, both fluid dynamics and 

chemical reactions should be treated as evolving processes, and one must use the finite-

rate kinetics to model chemical reactions. For reacting flows, the perfect gas equation 

of state holds but the gas constant is temperature dependent, since the molecular weight 

of the mixture is changing. Chemical reactions may also cause large localized 

temperature variations during combustion. Therefore, it is important to accurately 

include the temperature dependencies in the equations of state. 
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Numerical solution of the Euler or Navier-Stokes Equations within species 

conservation terms are widely used to analyze chemically reacting flows. Chemically 

reacting flows which may only be investigated using finite-rate chemistry extend a 

simple combustion to detonation of fuel-air mixtures. 

I.2. Explosion, Deflagration and Detonation 

An explosion is a kind of violent, sudden and noisy reaction in which all the 

material changes its state from solid, liquid or gas form to hot and expanding gas. When 

the energy from the chemical reaction is released, pressure increases quickly. Oxidizer, 

flammable material and high temperature are the main three components for explosion 

to occur [2]. Nuclear explosions are caused by fission or fusion of atomic nuclei. In an 

explosion, rate of heat generation is extremely fast, but it doesn’t require the passage of 

a combustion wave through the exploding medium. 

A deflagration is a propagation of a combustion front at a velocity less than the 

speed of sound into the unreactant medium [3]. In other words, it is a discrete 

combustion wave that travels subsonically. Despite this, a deflagration can be a quite 

violent event. 

 

Figure 1.1 Detonation of a high explosive 

In a detonation, the propagation of combustion front has a supersonic velocity 

and is sustained by the energy released from the combustion [Figure 1.1], [4, 5]. High 

explosives which are a convenient source of extremely high-power density may 

detonate at standard temperature and pressure. A detonation wave can be identified as a 

coupled reaction zone-shock wave complex which propagates through a uniform 

combustible mixture to a temperature above the ignition temperature. That provides the 



 4

ignition source for the combustion to begin, and the chemical energy released in the 

reaction zone provides the energy required to maintain the shock wave. 

Explosive events can exhibit both deflagration and detonation reactions: There 

is a phenomenon called the Deflagration to Detonation Transition (DDT) which 

describes how a deflagrating substance can detonate from released energy. In addition, 

reactions involving complex or multiple reactants can exhibit both due to the different 

reactions taking place. 

Several experimental observations clarify that DDT mechanism observed on 

the sensitive fuel-oxygen mixtures can also be seen in fuel-air mixtures. Some 

experimental studies are performed to observe the transition characteristics for 

detonation. Mostly schlieren photographs are used to observe the sequence for the 

transition phenomenon as shown in Figure 1.2, [6]. 

 

Figure 1.2 Sequence of DDT 
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Detonation is utilized in fuel-air explosives and pulse detonating engines. It may 

also occur in mines as firedamps. 

I.2.1. Fuel-Air Explosives 

Fuel-Air Explosives (FAE) are military weapons which are used to destroy 

vehicles or buildings. They are delivered by a missile, rocket or torpedo and consist of 

an explosive material and a detonator which is a device used to detonate the explosive. 

Explosives are high energy chemicals, whose energy can be released quickly by a 

combustion process. The combustion may be triggered by an electric spark. The oxygen 

required for combustion is obtained from the air. In FAE system, an aerosol cloud of 

fuel is first dispersed. The fuel-air mixture is ignited to produce explosion [7, 8, 9]. 

The detonation of the fuel is ideally performed when the fuel cloud reaches the 

correct diameter for the optimum stoichiometric ratio. This optimum stoichiometric 

ratio depicts the ratio of fuel amount to air amount required for an ideal detonation 

process. A first booster is used to disperse the fuel in air. After, a second booster which 

is projected into the cloud initiates the detonation by the shockwave effect. Note that 

this explosion may not be initiated by the first detonator since the fuel cloud must be 

detonated 0.1 to 5 seconds after the distribution of fuel into atmosphere. In Reference 

[10], there is a study on the measurement of the velocity of the dispersed fuel and the 

breaking of the droplets, their size distribution and their velocities. High speed flows in 

shock tubes are heavily used in the development of FAE systems. 

The possible fuel list for FAE is not very large. Mostly some hydrocarbons are 

preferred. But also non-hydrocarbons are used. Actually the usage of hydrocarbons is 

highly attracted because of the accidents in the petroleum industry [11]. Some of the 

successfully detonated fuels are acetylene, propylene oxide, aluminum, butane, 

propane, and kerosene. 

The shock wave produced by FAE detonation is also known as the “blast 

wave”, or “blast”. It is characterized by peak overpressure and impulse at a given 

distance from the center of the detonation [12, 13]. The term overpressure identifies the 

spectacular pressure increase due to the detonation. At some distant point from the blast 

origin, the passing blast wave causes the pressure to abruptly increase from the ambient 
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value to a large peak value, and then the pressure decays relatively slow back to the 

ambient value. 

Effect of blast waves, blast effectiveness, produced by an explosion of fuel-air 

mixtures is a very important concern on FAE. Due to the experimental difficulties to 

test the blast effectiveness, the studies are mostly performed numerically, [14]. 

I.2.2. Pulse Detonation Engine 

The other area that a detonation phenomenon is important is the pulse 

detonation engine (PDE). PDE is an unsteady propulsive device in which the 

combustion chamber is periodically filled with a reactive gas mixture, a detonation is 

initiated, the detonation propagates through the chamber, and the product gases are 

exhausted. The high pressures and resultant momentum flux out of the chamber 

generate thrust. Quasi-steady thrust levels can be achieved by repeating the detonation 

cycle at a relatively high frequency and/or using more than one combustion chamber 

operating out of phase as shown in Figure 1.3. Conceptually, a pulse detonation engine 

has some advantages when compared with the conventional propulsion systems due to 

its higher efficiency and higher thrust. 

 

Figure 1.3 Pulse Detonation Engine Wave Cycle 

Besides PDE, a pulse detonation rocket engine technology [Figure 1.4] is also 

being developed for boosting satellites onto higher orbits, for lunar and planetary 

landers and excursion vehicles that require throttle control for gentle landings. The 

throttle control is achieved by controlling the frequency of the detonation. Pulse 
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detonation rocket engines operate by injecting propellants into long cylinders that are 

open on one end and closed on the other. 

 

Figure 1.4 Pulse Detonation Rocket Engine 

A major advantage is that pulse detonation rocket engines boost the fuel and 

oxidizer to extremely high pressure without a turbo pump which is an expensive part of 

conventional rocket engines. 

I.2.3. Firedamp or Methane Detonation 

The most common industrial gases found in the mining industry are natural gas 

or methane (CH4), propane (C3H8) and acetylene (C2H2) of the chemical gases. These 

gases originate from fossil fuels and are composed of carbon (C) and hydrogen (H). 

When burned, they produce carbon dioxide, water vapor and carbon monoxide. 

Methane is also produced when sewage or other organic matter is subject to stagnant 

conditions and bacterial action. Coal beds may also contain methane and release the gas 

when the bed is in exposed position during mining. Methane is very dangerous in 

underground coal mines because inadequate ventilation can result in concentrations of 

the gas building to explosive levels. 

Since the history of mining industry, methane has been the most dangerous gas 

in underground mining environments. It is formed by bacterial and chemical action on 

organic material and it is not toxic but is particularly dangerous because it is flammable 

and forms an explosive mixture with air. Methane is retained within fractures, voids 
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and pores in rocks either as a compressed gas or adsorbed on mineral (particularly 

carbon) surface. Since its density is a little over half that of air, it can form pools or 

layers in air. 

The explosible range for methane in air is normally quoted as 5% to 15%, with 

the most explosive mixture occurring at 9.8%. Under the normal atmosphere 

conditions, while the lower limit remains fairly constant, the upper explosive limit is 

reduced as the oxygen content of the air falls. It is also noted that the explosive limits of 

methane becomes a little wider as the pressure and temperature increase. 

I.3. Numerical Solutions of Chemically Reacting Flows 

Since 1970’s, several researchers have studied the solution of chemically 

reacting flows using Computational Fluid Dynamics (CFD) methods. These methods, 

[15, 16, 17, 18, 19] are high-accuracy solution methods and especially during last years, 

with the improvement of the computer processing capabilities, many modern 

mathematical solution models have been released to open literature. However, accuracy 

of the CFD solution techniques strongly depends on the numerical solution algorithms 

used and the underlying physical sub-model. Therefore, the application of the CFD 

solution techniques is limited to the physical models, which can be validated 

experimentally. 

Many modern CFD methods, originally developed for non-reactive flows, have 

been extended to simulate chemically reactive flows. For solving a chemically reactive 

flow, the first attempt is to use CFD techniques to solve the flow equations for a single 

component fluid with a complicated equation of state. In this approach, one can assume 

that the chemical reactions effect to the flow equations can be narrowed down to the 

space-time evolution of the molecular weight and specific heats (Cv and Cp) of the gas 

mixture due to the changing species composition. This situation may be represented by 

a complex relationship between pressure, density, and temperature, i.e., an equation of 

state for the reactive fluid, which is often a real gas. 

Computational fluid dynamics (CFD) methods have been successfully 

developed and applied to calculate fluid flows under various conditions. The flow 

equations are usually formulated in a conservative form, and the numerical schemes are 
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developed to satisfy conservation of mass, momentum, and energy in a space-time 

domain. 

Euler Equations are the conservation laws for inviscid flows. They form a first 

order, non-linear coupled set of equations that can be written in various forms. In 

reference [20], these well-known forms are conservative, non-conservative and 

characteristic form of the system of equations. The vectors of variables formed by 

density, momentum and total energy, which obey the conservation form of the 

equations, are called “conservative variables”. The direct variables such as density, 

pressure and velocity are called “primitive or non-conservative variables”. They can be 

measured directly in an experiment. 

Numerical solution of Euler equations requires evaluation of inviscid flux terms. 

In finite difference and finite volume solutions, there are two different approaches to 

calculate inviscid fluxes at the discrete cell surface. The first approach is to use central 

differencing (or space-centered), where the fluxes are calculated based on the averaged 

flow variables at cell interfaces. Central schemes are easy to implement, but they 

require artificial dissipation. Another approach for the inviscid flux calculations is to 

use upwind schemes, which require no explicit artificial dissipation terms for stability. 

Currently, Upwind Schemes are preferred for their high resolution of discontinuities 

such as shock waves and contact discontinuities without oscillations [21]. 

In solution of chemically reacting flows with Euler Eqn’s, viscous diffusion and 

heat conduction are neglected. A step that can be taken to develop accurate and 

efficient solutions for the eigensystems of Euler Eqn’s for a flow in chemical non-

equilibrium is described in reference [22]. 

An algorithm for flows in thermochemical non-equilibrium is described in 

reference [23], which presents a formulation for solving the 3D Navier-Stokes 

equations in generalized coordinates. This algorithm is facilitated for solution of 

arbitrary mixtures of thermally perfect gases in any local thermochemical state, namely 

full non-equilibrium, chemically non-equilibrium, chemical equilibrium or frozen flow. 

The thermochemical non-equilibrium flux-split schemes in three-dimensional 

generalized coordinates are presented, by a discussion of the time integration schemes. 
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Results for an axisymmetric diffusion with air and hydrogen-air chemistry, a blunt body 

flow, and a hydrogen-air combustion problem are supplied. 

In reference [24], the Roe Flux Difference Splitting scheme is investigated for 

accuracy in simulating hypersonic flows. The extensions of the Roe scheme that 

include finite rate chemical kinetic equations follow the approach of Grossmann and 

Cinella. In reference [25], a procedure is proposed for the evaluation of the 

thermodynamic properties of air at equilibrium conditions and several generalizations 

of Roe’s scheme are reviewed and their numerical performances are discussed by 

modeling 2D steady hypersonic flows. 

For multicomponent flows, a new numerical scheme called Karni’s Scheme is 

presented in [26]. This scheme is constructed to minimize the artificial oscillations that 

are generated by conventional finite volume schemes using Roe fluxes. A shock tube 

problem is solved and the results are compared with those of a classical finite volume 

scheme. 

In reference [27], solution of thermally perfect gas flows with finite-rate 

chemistry by using finite difference space discreatization and TVD Runge-Kutta time 

discreatization with time splitting of reaction terms is presented. In reference [28], Thin 

Layer Navier Stokes equations for non-equilibrium hydrogen combustion are dealt 

with. The developed algorithm is used for blunt body, ramped duct and supersonic 

nozzle test cases. Also, Navier Stokes equations for chemical non-equilibrium are dealt 

with in reference [29]. It includes the solution of equations with Roe splitting and Van 

Leer splitting schemes. 

A parallel CFD code which is based on Method of Lines (MOL) for transient 

laminar 2D reacting flows has been developed by Tarhan and Selçuk [30]. In this study, 

chemical reactions are modeled by infinite-rate chemistry. Governing equations are 

solved by MOL with high order and implicit solution algorithms. The 4th order five-

point Lagrange interpolation polynomial is used in spatial discreatization. The 

predictive ability and accuracy of the code is compared with that of other numerical 

studies and experimental data. Efficiencies are examined using several Ordinary 

Differential Equation (ODE) solvers and compared with each other. The ODE solver 
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ROWMAP is found the most efficient and ROWMAP ODE solver is suggested for 

speed and accuracy. 

An experimental study on flame acceleration and transition performed with 

benzene-air mixtures is described in reference [31]. In this study, flame acceleration 

experiments are carried out in a 150 mm diameter, 3.6 m long steel tube. The entire 

length of the tube is filled with circular obstacles spaced one diameter apart. The fuel 

concentration is varied between 1.7% and 5% by volume of benzene in the fuel–air 

mixture. It is stated that in the experiments three regimes of propagation were observed: 

turbulent deflagration regime, “choking” regime and quasi-detonation regime. 

In reference [32], detonation of methane/air cloud is studied by using 1D 

(spherically symmetric) time dependent Euler Equations with chemical kinetics. The 

direct initiation of methane/air cloud is modeled for different amount of an ignition 

source. Direct initiation means that fuel air mixture is ignited by using high explosives 

such as tetrly. The other mode of initiation is the self initiation. It is referred to as DDT. 

Finite difference approximations with Lagrangian and Eulerian features are used for 

conservation of mass, momentum, energy and species and also thermal and caloric 

equation of state with two-step oxidation mechanism. Stability of a detonation wave is 

also studied by W. Fishburn [33] and F.S. Hall and G.S.S. Ludfort [34]. 

Numerical simulations of two-dimensional laminar methane/air premixed jet 

flames with detailed chemical kinetics mechanism are presented in [35]. This study 

demonstrates the sensitivity of the modeling of detailed chemical kinetics on the flame 

temperature and concentrations of major component for different equivalence ratios. 

Numerical simulations and experimental results are in good agreement. 

In another research [36], methane combustion is studied and ethane, propane 

and butane ignition is investigated by C.G. Fotache, H. Wang and C.K. Law [37] in 

counter flow of jets. For methane combustion, two-step reaction is used to analyze the 

interaction between different layers. 

Numerical modeling of detonation is becoming a significant topic in Turkey 

Defense Industry. The main reason is that the research on defense industries is a 

confidential area and open source information on FAE warhead design is very limited. 
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I.4. The Scope of the Thesis 

In this study, chemically reacting flows by incorporating the species 

conservation equations and finite-rate chemical reactions are introduced. In Chapter II, 

the mathematical formulations of 1D Euler Equations with finite-rate chemistry are 

given and non-conservative forms are presented. 

In Chapter III, the flow equations are integrated in time using time-split 

algorithms. The numerical solutions of chemically reacting flow equations are obtained 

by applying the finite volume method. Flux Jacobian matrix of the system of equations, 

its eigenvalues and the associated eigenvector matrices are systematically derived in 

this chapter. 

1D Euler Solver developed by M. Ali Ak [38] in 1999 is extended for 

chemically reacting flows. Computations are performed in parallel using domain 

decomposition. The developed solver is first validated with the solution of a shock tube 

problem with reactions in air. Next, detonation of H2:O2:Ar in a shock tube is studied 

to establish the accuracy of the parallel solution and the grid sensitivity of the solution 

algorithm. The results are compared with the numerical solution given in Reference 

[38]. Finally, cylindrical or spherical symmetry conditions are investigated for 3D 

solutions of detonation and validated by using the data given in Reference [21]. 



 13

 

CHAPTER II 

 

1D EULER EQUATIONS WITH FINITE-RATE CHEMISTRY 
 

 

 

In this chapter, the mathematical formulation of inviscid, unsteady compressible 

flows with finite-rate chemistry is described. The mathematical equations describing 

inviscid flows are called Euler equations. The formulation is performed for 1D 

Cartesian coordinates for conservative variables. In the following part, the conservation 

equations for mass, momentum, energy and species are presented. 

II.1. Conservation of Mass 

The integral form of the law of conservation of mass by assuming no mass 

generation within volume,∀ , can be stated as: 

( ) 0. =+∀
∂
∂

∫∫∫∫∫
∀ A

dAVnd
t

ρρ ρρ
     (2.1) 

This integral conservation law may be generalized to include sources of mass, 

which will appear as additional integral terms. 

Gauss Theorem is applied and Eqn. (2.1) is rewritten as: 

( ) 0. =∀⎥⎦
⎤

⎢⎣
⎡ ∇+

∂
∂

∫∫∫
∀

dV
t

ρ
ρρ

     (2.2) 

As ∀  arbitrary, it follows that the integrant disappear and it becomes as, 

( ) 0. =∇+
∂
∂ V

t

ρ
ρρ        (2.3) 

II.2. Conservation of Momentum 

The law of conservation of momentum results from the direct application of 

Newton’s law: the time rate of change of momentum, V
ρ

ρ , in volume is equal to the 
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total force acting on the volume, ∀ . The total force is divided into surface forces fS and 

volume forces fV. 

( ) ( ) VS
A

ffdAVnVd
t
V

+=+∀
∂

∂
∫∫∫∫∫

∀

ρρ
ρ

ρρ .    (2.4) 

Then Gauss Theorem is applied and Eqn. (2.4) is rewritten as: 

( ) [ ] ∫∫∫∫∫∫ ∀=∀⎥
⎦

⎤
⎢
⎣

⎡
Π−+⊗∇+

∂
∂

∀ V

dgdpIVV
t
V ρρρ
ρ

ρρρ .  (2.5) 

As ∀  arbitrary, it follows that the integrant disappear, 

( ) [ ] gpIVV
t
V ρρρ
ρ

ρρρ
=Π−+⊗∇+

∂
∂ .      (2.6) 

Equation (2.6) is the differential form of momentum equation including a source 

term due to volume forces. When the viscous stresses are identically zero and the 

volume forces are neglected, Euler equations are obtained. 

II.3. Conservation of Energy 

The time rate of change of total energy, tE , is equal to the work done per unit 

time by all the forces acting on the volume plus the influx of energy per unit time, Q, 

into the volume, ∀ . The integral form of the law of conservation of energy is as 

follows: 

( )[ ] ( )∫∫∫∫∫∫
∀∀

∀=∀+Π−+∇+ dgVdQVVpEE t
ρρρρ

..)(. ρ  (2.7) 

As V arbitrary it follows that the integrant disappear, 

[ ] ( )gVQVVpEE t
ρρρρ

..)(. ρ=+Π−+∇+    (2.8) 

Equation (2.8) is the differential form of energy equation with the source term 

accounting for the effect of body forces; if these are neglected, the homogenous energy 

equation is obtained. When viscous and heat conduction effects are neglected, the 

energy equation corresponding to compressible Euler equations is obtained. 

II.4. Conservation of Species 

The application of the principle of conservation of mass of a species i, requires 

only a slight generalization of the development for the conservation of the total mass. 
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The integral form of conservation of species mass can be stated as: 

( ) ( ) ∀=∀⎥⎦
⎤

⎢⎣
⎡ ∇+

∂
∂

∫∫∫∫∫∫
∀∀

dYwdVY
t
Y

ii
i &

ρ
ρρ .    (2.9) 

where the density of the gas mixture can be defined as the summation of the species 

densities 

∑
=

=
sN

i
i

1

ρρ         (2.10) 

and Yi, mass fraction of species i in the gas mixture can also be defined as: 

ρ
ρ i

iY =         (2.11) 

Then molecular weight of mixture is defined as follows; 

∑
=

=
sN

i
ii MY

M

1
/

1        (2.12) 

As ∀  arbitrary it follows that the integrant must vanish, 

( ) ii
i wV

t
&

ρ
=∇+

∂
∂

ρ
ρ

.        (2.13) 

Mass is conserved through chemical reactions and the summation of all source 

terms, iw&, is zero, i.e., 

0
1

=∑
=

sN

i
iw&         (2.14) 

Thus, the summation of all species equations recovers the conservation equation 

of the total mass. 

The source terms in the species conservation are formulated in mass 

concentration, and they are the summation of the rate of change of species i from all 

chemical reactions J: 

i

i
i

J

j

N

i
ijb

N

i
ijfjijii

i
i

M
n

nknkM
dt

dw
S

ji
S

ji

ρ

ννρ νν

=

⎥
⎦

⎤
⎢
⎣

⎡
−−== ∑ ∏∏

= ==

where

)()(
1 1

,
1

,
'
,

''
,

''
,

'
,&

(2.15) 
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'
, jiν  : Stoichiometric coefficients of reactants of ith species for jth reaction 

''
, jiν  : Stoichiometric coefficients of products of ith species for jth reaction 

jfk ,  : Forward reaction rate of jth reaction 

jbk ,  : Backward reaction rate of jth reaction 

II.5. Conservative Form of 1D Euler Equations with Finite-Rate Chemistry 

In this section, the detailed derivation of the 1D flow equations is presented. 

Conservation of species equations is incorporated with the conservation of momentum 

and energy equations to model chemically reacting flows. Number of species can be 

defined as Ns. Conservation of species equations can be added into Euler Equation in 

such a way that conservation of species equations, Ns, are written instead of global 

conservation of mass. 

The inviscid, unsteady compressible flow equations in one spatial dimension 

with Ns conservation of species equations can be written as follows: 

  S
x
F

t
U ρρρ

=
∂
∂

+
∂

∂
       (2.16) 

where 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

sss NNN w

w
w

u

u
u

PEu
Pu

F

E
u

U

&

&
&

ρρρ

.

.

0
0

S           

.

.

)(

             

.

.
2

1

2

1

2

2

1

ρ

ρ
ρ
ρ

ρ

ρ

ρ
ρ
ρ
ρ

  (2.17) 

II.6. Non-Conservative Equations 

Based on the governing equations in the conservative form as shown in Eqn. 

(2.17) non-conservative form of the equations can be derived as in Appendix A. The 
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inviscid, unsteady compressible flow equations can be written in non-conservative form 

as follows: 

S
x
F

t
U ~~~

=
∂
∂

+
∂

∂         (2.18) 

U is the vector of the unknown variables in the non-conservative form and is given as: 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

sN

e
u

U

ρ

ρ
ρ

...

~
2

1         (2.19) 

The governing equations in non-conservative form are given as; 

Conservation of momentum equation; 

01
=

∂
∂

+
∂
∂

+
∂
∂

x
p

x
uu

t
u

ρ        (2.20) 

Conservation of energy equation; 

0=
∂
∂

+
∂
∂

+
∂
∂

x
up

x
eu

t
e

ρ        (2.21) 

Conservation of mass of species equations; 

ss

ss
NN

NN w
x
u

x
u

t

w
x
u

x
u

t

w
x
u

x
u

t

&

&

&
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∂
∂

+
∂

∂
+

∂

∂

=
∂
∂

+
∂

∂
+

∂
∂

=
∂
∂

+
∂
∂

+
∂

∂

ρ
ρρ

ρρρ

ρρρ

...

22
22

11
11

     (2.22) 

II.6.1. Pressure 

There are Ns+2 equations and Ns+3 unknowns including pressure for 1D Euler 

Equations with finite rate chemistry. An additional relation between p and unknown 

variables is needed; 
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),...,,,,( 21 sNEupp ρρρρρ=     (2.23) 

For non-reacting flows, the calorically perfect gas equation p= (γ-1) ρe is used. 

On the other hand, a general equation of state in the form of p=p (e, ρ1, ρ2,…,ρNs) can 

make the flow equations (2.16) well-posed for reacting flows with the proper initial and 

boundary conditions [1]. 

First, assume that, individual species in the gas mixture behave as ideal gases, 

i

u
i

iii

M
R

R

TRP

=

=
where

ρ
        (2.24) 

where Pi and Ri are respectively the partial pressure and the gas constant of species i 

and Ru=8314.34 J/kg-moleK is the universal gas constant and Mi is the molecular 

weight of species i. Note that all species are in thermal equilibrium and they have the 

same temperature T. 

For the model equations presented here, pressure is determined from Dalton’s 

Law which states that the pressure of a mixture of gases is the sum of the partial 

pressure. Each species partial pressure is obtained from the ideal gas law as mentioned 

above. Thus the model equations assume a mixture of thermally perfect gases that have 

a pressure defined by the equation; 

∑ ∑
= =

===
s sN

i

N

i
iii RTRTPP

1 1
ρρ       (2.25) 

where 

∑
=

=
sN

i
ii RYR

1

        (2.26) 

Note that, ∂p/∂x appears in the momentum equation and p is not an unknown 

variable in Ũ. Therefore, the total derivative of p can be written as follows: 

i

N

i ei

dp
e
pdp

s

ijjj

ρ
ρ

ρρ
∑

=
≠

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
1 , ,

     (2.27) 

Then, 
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      (2.28) 

Taking partial derivative of p with respect to x, momentum equation is 

rearranged: 

∑
=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

=
∂
∂ sN

i

i
ie x

p
x
ep

x
p

1

ρ
      (2.29) 

The momentum equation in (2.20) becomes 

0
1

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

+
∂
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sN

i

iie

x
p

x
ep

x
uu

t
u ρ

ρρ
    (2.30) 

pe and pρi can be derived as (see Appendix B): 

TRee
C
Rp

p

ii
v

e

i
+−=

−=

)(

)1(

ρ

ργ
      (2.31) 

II.6.2. Internal Energy and Enthalpy of the Mixture 

The total energy E of the gas mixture is defined as; 

2

2ueE +=        (2.32) 

where e is the internal energy of the gas mixture per unit mass and it is calculated based 

on a mass-weighted average of internal energy per unit mass of each species ei, i.e., 

∑
=

=
N

i
ii eYe

1
        (2.33) 

The internal energy and total energy include, fie , from definitions. 

The relationship between internal energy and temperature is linear for ideal 

gases. However, for most reacting gases, molecules can also have rotational and 

vibration modes in addition to translational movement. The general form of the 

equation for species energy in a calorically imperfect gas is given by the equation; 

fi

T

T
vii edTCe

R

+= ∫        (2.34) 
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Then, internal energy of a gas mixture can be written as: 

f

T

T
v

fi

N

i
i

T

T
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N

i
i

edTC

eYdTCYe

R

s

R

s

+=

+=

∫

∑∫∑
== 11

      (2.35) 

In a similar way, the general form of the equation for species enthalpy is given 

by the equation; 

fi

T

T
pii hdTCh

R

+= ∫        (2.36) 

where hfi is the heat of formation of species i. 

Then, enthalpy of a gas mixture can be written as: 

f

T

T
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T
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hYdTCYh

R

s
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+=

+=

∫

∑∫∑
== 11

      (2.37) 

By using ideal gas equation in the definition of enthalpy hi, Equation (2.36) can 

be rewritten as follows; 

TRepeh ii
i

i
ii +=+=

ρ
       (2.38) 
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II.6.3. Definition of Cp, Cv 

Cv and CP are defined as follows; 
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and the frozen specific heat ratio γ for the gas mixture is defined as; 

1
;

1
;

where

−
=

−
=+=

=

γγ
γ

γ

RCRCRCC

C
C

vpvp

v

p

    (2.41) 

Cpi is not a constant, it depends on temperature and it can be obtained from measured 

data such as The Joint Army, Navy, NASA and Air Force tables which is called 

JANNAF tables [39]. In JANNAF methodology, the thermodynamic quantities, 

specific heat, enthalpy and entropy are evaluated at the standard atmospheric pressure 

(p0= 1.03125x105 N/m2). The dependence of these quantities on temperature is 

expressed in terms of polynomials. Several coefficients are needed for each of the three 

temperature ranges, 300 to 1000 K, 1000 to 6000 K and 6000 K and 20000 K. Thus, the 

JANNAF tables contain total 27 coefficients for each species. 
4

7
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6
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54321
12 TiaTiaTiaTiaiaTiaTia

ipC ++++++= −−    (2.42) 

Cv can be written as follows; 

ipv RCC
ii

−=        (2.43) 

II.6.4. Temperature 

The Euler equations are expressed in terms of the conserved variables; mass, 

momentum and energy, and do not describe temperature directly, which is determined 

by the internal energy of the gas. It can be obtained by substituting Eqn. (2.37), (2.26) 

and (2.11) into the third equation in Eqn. (2.39); 
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II.7. Finite-Rate Chemistry 

In a general mixture of Ns species there will be J reactions taking place; 

J,1,2,j........ ''
,12

''
,11

''
,1

'
,12

'
,11

'
,1 =+++↔+++ NjjjNjjj XXXXXX νννννν  (2.45) 

X  : Chemical formulation of 1st, 2nd, Nth species 

Generally the forward and backward reaction rates are determined empirically 

and tabulated through the use of curve fits. The most common curve fit used for 

chemistry reaction rates is the Arrhenius equation. Although tabulation of experimental 

values for rate coeffients in Arhenius form is common, current practice frequently 

utilized the three parameter functional form: 

)/exp()( TREATTk uA
b −=       (2.46) 

where A, b, and EA are the three empirical parameters which can be obtained from the 

CHEMKIN databases [40]. 

II.8. Additional Terms in the Euler Equations Due to Cylindrical and Spherical 

Symmetry 

Cylindrical and spherical symmetric wave motion arises naturally in the theory 

of explosion wave in water, air and other media. In these situations the multi 

dimensional equations may be reduced to essentially 1D equations with a geometric 

source term S(U) to account for 2nd and 3rd spatial dimensions. Then the Euler equation 

without species conservation equations becomes as [21]: 
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If we add the above source terms in Eqn. (2.12), the unsteady, inviscid, and 

chemically reacting flow equations in one spatial dimension become as; 
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The cylindrical (when α=1) and spherical (when α=2) symmetry approximation 

may also be solved numerically by the current 1D solution method with a minor 

modification. 
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CHAPTER III 

 

NUMERICAL SOLUTION OF GOVERNING EQUATIONS 
 

 

 

In the previous chapter, 1D Euler equations with Finite-Rate Chemistry are 

given in both conservative form and non-conservative form. Due to numerical 

difficulties in the solution of conservative form of Euler equations, non-conservative 

form of these equations is employed in the numerical solution. The non-conservative 

form of the system of equations can also be given in a vector form as follows (See 

Chapter II): 

  ~~~
S

x
F

t
U

=
∂
∂

+
∂

∂
       (3.1) 

Equation (3.1) can be solved in two ways: fully coupled or loosely coupled by 

splitting the equations into homogenous and non-homogenous part. The splitting 

becomes; 
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      (3.3) 

Finite Volume Method (FVM) is used to solve the homogenous part and an 

ODE solver is used to solve the non-homogenous part. Finite volume space and time 

discreatization are given first. Finally, an ODE solver named DLSODE using to solve 
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source terms that come from chemistry and spherical symmetry mentioned in Chapter 

II is mentioned. 

Eqn. (3.2) can be expressed in different form as follows: 

0
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=
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+
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t
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0
~~~

~
~~

=
∂
∂

+
∂

∂
∂
∂

=

x
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t
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FA

       (3.5) 

where Ã is called as Jacobian Matrix of System of Equations. 

The time dependent Euler equations are hyperbolic equations, i.e., if the 

Jacobian matrix of flux function has m real and distinct eigenvalues and a 

corresponding set of m linearly independent eigenvectors, the system is said to be 

strictly hyperbolic where m is the total number of equations of the system. Therefore, 

Jacobian Matrix and its eigenvalues and eigenvectors are found to solve these system of 

equations. The eigenvalues of the matrix Ã are obtained from the determinant of the 

following; 

0~
=− IA λ         (3.6) 

The flux evaluation is the most important step in this solution. Flux modeling 

plays an important role in accurate and physically valid solution. In the next section, the 

Riemann problem and Godunov Flux is reviewed first. Roe Flux Difference Splitting 

Method is then introduced. In the second part, the ODE solver, DLSODE, is 

introduced. 

III.1. Flux Modeling 

For better understanding of flux modeling, Riemann problem and Godunov 

Method should be mentioned firstly. After that, Roe Flux Difference Splitting Method 

is described in the following subsections and Roe Fluxes for 1D Euler Equations with 

Finite Rate Chemistry are formulated. 
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III.1.1. Riemann Problem 

The Riemann problem can be identified for the hyperbolic, constant coefficient 

system: 
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⎨
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xUxUICs

AUUPDE

R

L
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    (3.7) 

The structure of the the solution of the Riemann problem in x-t plane is given in Figure 

3.1. For mxm linear hyperbolic system, it consists of m waves coming from origin. 

 

Figure 3.1 Structure of the Solution of the Riemann Problem for a general linear 

hyperbolic system 

Each wave carries a jump discontinuity in U, propagating with speed λi. The 

solution of the left side of the waves is simply the initial data UL and the solution of the 

right side is UR. The task is to find the solution between wedge of waves. As the 

eigenvectors K(1), K(2),..., K(m) are linearly independent, UL and UR can be written as 

follows: 
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where αi and βi are constant coefficients for i=1,...,m. For a given point (x,t) 

there is an eigen value λI such that λI<x/t< λI+1., that is x-λit>0 such that i≤I. Then the 

final solution of the Riemann problem can be written as: 
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Physically, Riemann problem is a slight generalization of the shock-tube 

problem. In this problem, the aim is to find the fluxes between left and right wedge of 

waves in x-t plane called as star region which is the region between left and right state. 

For 1D Euler Equations, a solution method can be found at Chapter 4 in [21]. 

III.1.2. Godunov Method 

Godunov’s scheme utilize Approximate Riemann solvers. To understand the 

Godunov Method, firstly 1D non-linear hyperbolic system of Initial-Boundary Value 

Problem (IVBP) should be considered; 
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Godunov method assumes a piece-wise constant distribution of the data as seen 

in Figure 3.2. 

 

Figure 3.2 Piece-wise constant distribution of data at time level n 

Spatial discretization of finite volumes is denoted as xi=xi-1+∆x and temporal 

discretization is given as tn+1=tn+∆t. 

Cell averages are defined as: 
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and they produce the desired piecewise constant distribution U(x,tn), with Ui for x in 

each cell [xi-1/2, xi+1/2]. 
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Figure 3.3 Typical wave patterns of local Riemann problems at intercell boundaries i-

1/2 and i+1/2 

Figure 3.3 shows typical wave patterns emanating from the intercell boundaries 

xi-1/2 and xi+1/2 when solving the Riemann problems of (Ui-1, Ui) and(Ui, Ui+1). For a 

time step, ∆t, that is small enough to avoid wave interaction, a global solution in terms 

of local solutions can be obtained and Godunov method can be written in conservative 

form: 

[ ]2/12/1
1

+−
+ +

∆
∆

+= ii
n
i

n
i FF

x
tUU      (3.12) 

with intercell numerical flux given by 

( )( )02/12/1 ++ = ii UFF        (3.13) 

and details on Godunov Method can be found in [20]. 

Roe Flux Difference Splitting (FDS) Method based on Godunov Method is one 

of the upwind methods mentioned in Chapter I. In this study, the flux at the interface of 

control volumes is modeled by Roe’s scheme. 

III.1.3. Roe Flux Differencing Method 

Roe Flux Differencing Method is used to solve fluxes in Equation (3.2) and it is 

examined in this section. Equation (3.2) can be written in terms of Jacobian Matrix as 

follows: 



 29

⎪
⎭

⎪
⎬

⎫

⎭
⎬
⎫

⎩
⎨
⎧

>
<

=

=+

0,
0,

)0,(

:

xU
xU

xU

oAUUPDE

R

L

xt

      (3.14) 

Roe’s approach replaces the Jacobian matrix by a constant Jacobian matrix 

),( RL UUAA =        (3.15) 

Therefore, the original problem is replaced by 

0=+ xt UAU         (3.16) 

The original Riemann problem is then replaced by the approximate Riemann 

problem. 
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This Roe Jacobian matrix satisfies the following properties; 

1- It has linearly independent eigenvalues, 

2- It is consistent with the exact Jacobian, 

3- It conserves the discontinuities. 

The eigenvalues and the right eigenvectors of the matrix ),( RL UUA  are as 

follows respectively; 
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The intercell fluxes are calculated in the following procedure: 
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Now, the corresponding numerical flux is found from modified system of 

conservation laws, 

( ) oUFU xt =+        (3.21) 

where flux function is written as: 

( )
( )02/12/1 ++ =

=

ii UAF
UAUF

       (3.22) 

Finally, using Eqn. (3.35) the numerical fluxes are obtained from 
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Alternatively, it can be written, 
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In order to compute Roe fluxes for a particular system of conservation laws, the 

wave strenghts αi, and the eigenvalues λi and the right eigenvectors K(i) can be obtained 

from the Jacobian matrix Ã of the non-conservative form of the system of equations. 

The calculation of Roe fluxes for 1D Euler Equations with Finite-Rate Chemistry can 

be obtained using wave strenghts αi, and eigenvalues λi and the right eigenvectors K(i) 

of the Jacobian matrix Ã of the non-conservative form of the system of equations in the 

following subsection. 

III.1.4. Roe Fluxes for 1D Euler Equations with Finite Rate Chemistry 

To solve Roe fluxes, Jacobian matrix of the non-conservative system of 

equations can be required and it is also given by [1] as follows; 
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Eigenvalues of the matrix Ã are obtained from the determinant of the following; 

0~~
=− IA λ         (3.26) 

where I is the identity matrix. Due to simplicity of the non-conservative form equations, 

the Ns+2 eigenvalues of Ã are found to be; 

u
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       (3.27) 

where RTa γ=  is the frozen speed of sound of the gas mixture. 

The right eigenvector xi of the matrix Ã associated with the eigenvalue λi can be 

obtained by solving; 

iii xxA λ~~
=         (3.28) 

to get nontrivial solution for xi of the Jacobian matrix. The related eigenvectors of u+a, 

u eigenvalues can be found by using a Symbolic Math Software. 
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Thus, we get the Right and Left Eigenvectors of the non-conservative form of 

the system of Euler equations with chemical reacting flows. The Right Eigenvector 

Matrix, N is given as follows (The Left Eigenvector Matrix N-1 is given in Appendix 

C): 
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Now, the non-conservative equations must be transformed to conservative 

equations by multiplying it with transformation matrix Tt and The Right Eigenvectors 

of Jacobian matrix of the conservative equations can also be found by the following 

multiplication: 

NTK t=         (3.31) 

Right Eigenvector of Jacobian matrix of the conservative equations is given as 

follows and Left Eigenvector Matrix K-1 is given in Appendix C: 
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Roe Averaged Values are defined as (see [41]); 
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By introducing Roe averaged variables, Eigenvector matrix becomes as follows: 
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1D Right Eigenvector Matrix for Jacobian matrix can be written for only 2 

species to derive the wave strenghts given in Eqn. (3.24), 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−−⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ +

−−⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ +

=

2

2

21

1

0

0

11

22

11

2

ρ

ρ

ρρ

ρρ

ρρ

ρρ

ρρρρ

ρρ

P
P

aa

P
P

aa

P
P

E
P
P

E
a
P

a
Eu

a
P

a
Eu

P
P

u
P
P

u
a
u

a
u

K

e

e

ee

ee

 (3.48) 

Then 1D wave strengths vector can be taken as; 
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and the 1D conservative jump in the variable vector can be defined as; 
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The relation between 1D conservative variable jump vector and characteristics 

can be written as: 

uK ∆=⋅α         (3.51) 

1D wave strengths require solution of the following linear system which is 

given in compact form in Eqn. (3.43), 
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from 3th and 4th equations of the matrix multiplication, 
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Adding (3.53) and (3.54), 
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From 1st equation of the matrix multiplication; 
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By using Eqn. (3.55), Eqn. (3.53) becomes 
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From  2nd equation of the matrix multiplication; 

24321
21

u
P
PE

P
PE

a
P

a
Eu

a
P

a
Eu ee ∆=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛ −+

⎭
⎬
⎫

⎩
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛ + αραραραρ

ρρ

          (3.60) 

243214321
21

u
P
P

P
P

aa
E

a
Pu

a
Pu ee ∆=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−+++⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ + αααραρραρααραρ

ρρ

          (3.61) 

By using Eqn. (3.55), Eqn. (3.54) becomes 
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From Eqn. (3.53) 3rd wave strength is found to be 
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Similarly from Equation (3.54) 4th wave strength is found to be 
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Inserting (3.64) and (3.65) to (3.63), 
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Finally, written in compact form for N species 
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from the definition of static enthalpy 
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Multiplying (3.59) with ( )uah +  
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and subtracting from (3.71), second wave strength is found to be  
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Finally first wave strength is found to be 

( ){ } 24311
1 α
ρ

α −∆+∆−∆= uuuu      (3.74) 

For N species, wave strengths are the following: 
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III.2. 1D inviscid, compressible (Euler) solver 

1D, 2D, 3D Euler flow solvers with Roe fluxes was developed by Ak [38] in 

1999. In this study, 1D Euler solver is extended for the solution of chemically reacting 

flows by finite-rate chemistry. 1D inviscid, compressible (Euler) solver has a main 

program which is called Euler 1D and sixteen subroutines and algorithm of the solver 

will be given in detail below. There are two major part of 1D inviscid, compressible 

(Euler) solver. One of the major part executes the flux calculations and the second part 

computes the source terms of species conservation equations and additional source 

terms of momentum, energy equations coming from spherical symmetry. 

Roe flux solver is implemented in a subroutine named as FLUX. Wave strenghts 

and Roe averaged values of fluxes given in subsection III.1.4 are computed in this 

subroutine. The Roe fluxes evaluated at the cell interface are modified by a Slope 

Limiter. 

The limited slope within the cell is calculated by introducing the slope limiter as 

follows: 

i

n
i

n
i

i x
ww

Ψ
−

= +

δ
σ 1        (3.78) 
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where Ψi is the non-linear limiting function of cell Ci and fluxes at the intercell are 

defined as: 
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[ ])2,min(),,2min(,0max)( rlrr =Ψ      (3.80) 

where r is the ratio of slopes of cell i-1, i, i+1.The detail on the second order accurate 

flux calculation can be found from [21], [38]. 

The ODE solver is implemented in a subroutine named as ODE which 

calculates source terms that come from conservation of species mass and spherical 

symmetry. It sets up the proper variables and calls DLSODE which is the Ordinary 

Differential Equation (ODE) solver. 

For a detonation wave, there are serious difficulties in designing numerical 

methods which properly account for the fluid dynamics and the chemistry. For 

sufficient fine meshes such difficulties can be overcome but cost will be very high. 

Because of that, ODE solver which is planned to be used must be chosen very carefully. 

In this study, Double precision Livermore Solver for Ordinary Differential Equations 

named DLSODE is implemented. It is one of the stiff ODE solvers for solving source 

terms coming from conservation of species mass and spherical symmetry in the Euler 

Equations with finite-rate chemistry. DLSODE solves stiff and non-stiff systems of the 

form dy/dt = f (t, y). In the stiff case, it treats the Jacobian matrix df/dy either as a dense 

(full) matrix, or as user-supplied or internally approximated by difference quotients. It 

uses Adams methods (predictor-corrector) in the non-stiff case and Backward 

Differentiation Formula (BDF) methods (the Gear methods) in the stiff case. The linear 

systems are solved by direct methods. Documentation on the usage of DLSODE is 

provided from the open literature. 

Also time discretization is very important for this problem, because time scales 

of flow and chemical reactions are far away from each other, therefore time step must 

be calculated from time scales of either chemical reactions or flow. Time discretization 

is re-built from cfl number called Courant Friderich Lewis number. 
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In 1D inviscid, compressible (Euler) solver, conservative variables are 

computed using subroutine ODE for first half of dt then by using these conservative 

variables, fluxes are re-calculated from subroutine FLUX for each time step. Finally, 

conservative variables are calculated from subroutine ODE for the last half of dt. 

III.2.1. Parallel Computation of 1D inviscid, compressible (Euler) solver 

Parallel computing is the concept of executing a program on multiprocessors by 

diving a large problem into smaller parts. By allocating the n processors, it is expected 

that the same program run n times faster than with a single processor [30, 42]. In this 

study, domain decomposition method is used for parallel implementation. 1D domain is 

partitioned into n subdomains with two cell overlapping at the subdomain boundaries. 

Solution on each subdomain is assigned to a parallel computer. Inter domain boundary 

conditions are exchanged at every five step of the unsteady solution. Parallel virtual 

machine (PVM) message passing software is used for the information exchange 

between sub-domains. In parallel computing, performance can be defined by speed-up 

and efficiency. Speed-up is the ratio of the execution times of parallel and single 

computing. Efficieny is the ratio of speed-up to number of processors. 

1D inviscid, compressible (Euler) solver is also developed for parallel 

computing and algorithm of it is given in Figure 3.4. Additional subroutines are written 

for master and worker processors called subroutine MAIN and subroutine WORKER. 

Parallel computations are are done using the processors in the Parallel Computing 

Laboratory of TÜBİTAK-SAGE, i.e. The Scientific and Technical Research Council of 

Turkey/ Defence Industry Research and Development Institude. Parallel computing for 

1D inviscid, compressible (Euler) solver is executed using two or higher processors 

whose speed-up information is given in the next chapter. 
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Figure 3.4 Algorithm of 1D inviscid, compressible (Euler) solver with Finite-Rate Chemistry 
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CHAPTER IV 

 

RESULTS AND DISCUSSIONS 
 

 

 

In this chapter, the Euler solver developed for the solution of 1D inviscid, 

compressible flows with species conservation of mass equations and finite-rate 

chemistry is first validated by the solution of a shock tube problem for air by comparing 

the original Euler solver developed earlier by Ak [38]. Numerical solutions are also 

compared with the exact solutions in [20]. 

Next, a 1D detonation of H2:O2:Ar mixture at high temperature is studied. The 

results with chemical reactions are validated against the numerical data given in 

Reference [43]. Parallel solutions are also validated against the serial solution and a 

grid refinement study is performed. 

An axis-symmetric (cylindrical symmetry) and spherical symmetry detonation 

cases are computed as a third test case and it is validated where the source terms for 

cylindrical and spherical symmetry terms are activated against the numerical data given 

in Reference [21]. 

Finally, the detonation of H2:O2:Ar given in Reference [44] is also studied under 

cylindrical and spherical symmetry conditions. The results obtained are compared with 

each other and are validated by against the numerical data. The results for both 

cylindrical and spherical symmetry cases are also compared with the linear detonation 

solution. 

IV.1. Validation of 1D Euler Solver: Shock (Sode) Tube Problem 

The shock tube problem forms a particularly difficult test problem since it 

represents an exact solution to the full system of 1D Euler Equations containing 

simultaneously, a shock wave, a contact discontinuity and an expansion fan. This 

problem can be realized experimentally by sudden breakdown of a diaphragm in a long 
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1D tube separating two initial gas states at different pressures and densities as shown in 

Figure 4.1. 

 

Figure 4.1 Sode Tube with Initial State at t=0 

The initial pressures and densities for this particular case are 105 Pa and 1 kg/m3 

at the left side and 104 Pa with 0.125 kg/m3 at the right hand side of the tube. Symmetry 

boundary conditions are applied in the calculations at x=0 and x=10 m as a wall 

boundary condition. The computed solutions with the present solver and the original 1D 

Euler solver are given in Figure 4.2. Shock wave and contact discontinuity are detected 

without any oscillation. The numerical results compare well with the results given in 

Reference [38]. 

Table 4.1 Reaction Mechanisms for Air 

Reactions A (m3mol-1)r-1s-1 b EA(Jmol-1) 

O2+M=>2O+M 2.90E+23 -2.0 59750. 

N2+M=>2N+M 1.60E+22 -1.6 113200. 

NO+M=>N+O+M 7.95E+23 -2.0 75500. 

NO+O=>N+O2 8.37E+12  0.0 19450. 

O+N2=>N+NO 6.44E+17 -1.0 38370. 
 

For the same case given above, the solution with the present solver where 

species conservation of mass and chemical reaction taken place, are obtained. Both 

solution and the exact solutions given in Reference [20] are compared in Figure 4.2. In 

this figure, distribution of mass fraction of O2 and N2 are given only for present solver. 
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Figure 4.2 Distribution of density (a), velocity (b), pressure (c), temperature (d) and 
mass fraction of O2 (e) and N2 (f) in a shock tube at 6.1 msec 
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IV.2. Detonation of H2:O2:Ar in a Shock Tube 

In this case, the shock tube is assumed to filled with a H2:O2:Ar mixture of 

molar ratios 2:1:7. The tube, which is closed at one end, is 12 cm long. As an initial 

condition, an incident shock wave traveling from open end on the right to the wall on 

the left is given. The computations start at instant the shock hits the wall. When the 

shock wave hits the wall boundary on the left, it is immediately reflected and a new 

shock wave travels to the right. Initial states of this problem are given in Reference [43] 

as [see Table 4.2]. 

Table 4.2 Initial Data for Shock Tube with Non-Equilibrium Chemistry 

Variables Incident Shock  Reflected 

Shock 

ρ [kg/m3] 0.223128 0.4889 

u [m/s] -478.5 0.0 

P [Pa] 36679.65 131820 

T [K] 624 1036 

YH2:YO2:YAr 0.012773 : 0.101369 : 0.885858 

W [kg/mol] 3.156667 10-2 

 

This particular 1D example has been studied in the past and a well validated 

reaction mechanism for numerical simulations is available in different references. It 

utilizes 9 different chemical species; O2, H2O, H, O, OH, H2, HO2, H2O2 and Ar and 48 

non-equilibrium elementary reactions given in Table 4.3 [43]. 

The unsteady flow with the initial conditions given above is computed by the 

present solver in serial and in parallel. The results are compared to each other in Figure 

4.3. As shown the solutions obtained in parallel overlap with the serial solution. It is 

concluded that the accuracy of the computations is preserved. However, the efficiency 

of parallel computations degrades gradually as the number of processors increase due to 

loss during inter-process communication. The speed-up which is the execution times 

ratio between parallel and single solver is collected and shown in Figure 4.4. In the 

same figure, efficiency, the slope of this curve, is also seen. 
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Table 4.3 Reaction Mechanisms of H2:O2:Ar 

Reactions A((kg/mol)n-1s) b        EA(J/mol) 
H         + OH       => O         + H2 0.843E+10              1.00       6955. 
O         + H2        => H         + OH 0.181E+11              1.00       8903. 
H         + HO2     => H2       + O2 0.253E+14              0.00        696. 
H2       + O2        => H         + HO2 0.548E+14              0.00     57828. 
H         + HO2     => OH      + OH 0.253E+15              0.00       1888. 
OH      + OH       => H         + HO2 0.120E+14              0.00     40142. 
H         + HO2     => O         + H2O 0.500E+14              0.00         994. 
O         + H2O     => H         + HO2 0.105E+13              0.45     56437. 
H         + H2O2   => HO2    + H2 0.169E+13              0.00       3776. 
HO2    + H2        => H         + H2O2 0.723E+12              0.00     18680. 
H         + H2O2    => OH     + H2O 0.318E+15              0.00       8943. 
OH      + H2O      => H        + H2O2 0.240E+15              0.00     80483. 
OH      + H2        => H         + H2O 0.110E+10              1.30       3657. 
H         + H2O     => OH      + H2 0.108E+11              1.20     19097. 
OH      + OH       => H2       + O2 0.656E+11              0.26     29212. 
H2       + O2        => OH      + OH 0.169E+14              0.00     48091. 
OH      + OH       => O         + H2O 0.602E+08              1.30            0. 
O         + H2O     => OH      + OH 0.193E+10              1.16     17428. 
OH      + HO2     => H2O    + O2 0.500E+14              0.00       1000. 
H2O    + O2        => OH      + HO2 0.143E+15              0.17     73329. 
OH      + H2O2    => HO2   + H2O 0.102E+14              0.00       1808. 
HO2    + H2O     => OH      + H2O2 0.283E+14              0.00     32789. 
HO2    + H2        => OH      + H2O 0.723E+12              0.00     18700. 
OH      + H2O     => HO2    + H2 0.801E+10              0.43     71938. 
HO2    + HO2     => H2O2  + O2 0.181E+14              0.00         994. 
H2O2  + O2        => HO2   + HO2 0.945E+15             -0.38     43719. 
O         + OH       => H        + O2 0.164E+13              0.28        -161. 
H         + O2        => O        + OH 0.223E+15              0.00     16792. 
O         + HO2     => OH     + O2 0.501E+14              0.00       1000. 
OH      + O2        => O        + HO2 0.132E+14              0.18     56040. 
O         + H2O2   => H2O   + O2 0.843E+12              0.00       4213. 
H2O    + O2        => O        + H2O2 0.343E+11              0.52     89028. 
O         + H2O2   => OH     + HO2 0.843E+12              0.00       4233. 
OH      + HO2     => O        + H2O2 0.125E+10              0.64     16355. 
H2       + M         => H        + H  + M 0.223E+15              0.00     95983. 
H2O    + M         => H        + OH      + M 0.349E+16              0.00    105124. 
HO2    + M         => H        + O2       + M 0.211E+16              0.00     45706. 
H2O2  + M         => OH     + OH      + M 0.120E+18              0.00     45508. 
OH      + M         => O        + H         + M 0.140E+15              0.21    101349. 
HO2    + M         => O        + OH      + M 0.662E+20             -0.43     63989. 
O2       + M         => O        + O         + M 0.181E+19             -1.00    118041. 
H         + H   +M => H2       + M 0.653E+18             -1.00             0. 
H         + OH+M => H2O    + M 0.225E+23             -2.00             0. 
H         + O2 +M => HO2    + M 0.150E+16              0.00        -994. 
OH      + OH+M => H2O2  + M 0.907E+15              0.00       -5067. 
O         + H   +M => OH      + M 0.300E+20             -1.00              0. 
O         + OH+M => HO2    + M 0.102E+18              0.00              0. 
O         + O   +M => O2       + M 0.189E+14              0.00       -1789. 
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Figure 4.3 Distribution of density (a), velocity (b), pressure (c) and temperature (d) 
along x axis at 160 µs using single and multi processors 
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Figure 4.4 Speed-up and efficiency of parallel solver versus number of processors 
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Next, the grid sensitivity is studied by employing 300, 600 and 1200 cells for 

the solution of above problem. As shown in Figure 4.5 the solution with 600 cells 

provides grid independent solution. In the subsequent solutions, 600 grid cells are 

employed. 
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Figure 4.5 Density (a), velocity (b), pressure (c) and temperature (d) variation along x 
axis at 170 µs using different total mesh sizes 
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The time variation of the flow variables given in Figure 4.6 and Figure 4.7 

shows that the chemical reactions begin at about t=100 µs and a detonation wave forms. 

The detonation wave travels to the right behind the reflected shock. At about t=180 µs, 

the detonation wave catches and overtakes the reflected shock. As the shock and 

detonation waves merge, some distortions and decrease are observed in Figure 4.6 and 

Figure 4.7. Mass fractions of all chemical species except Argon vary with time as seen 

in Figure 4.7, Figure 4.8 and Figure 4.9. Argon behaves as an inert gas, i.e. its 

concentration doesn’t change in time. The amount of H2 and O2 decreases immediately 

to a negligible amount after the beginning of chemical reactions. All computations end 

at an instant that the detonation wave arrives to right end of the tube. It takes 

approximately 210 µs. Two boundary conditions are applied in the calculations; wall 

boundary condition at x=0 and outflow condition at x=12 cm. 
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Figure 4.6 Variation of density (a) and velocity (b) in time 
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Figure 4.7 Variation of pressure (a), temperature (b) and mass fractions of H2O (c), OH 
(d) in time 
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Figure 4.8 Variation of mass fractions of O2 (a) and H2 (b), HO2 (c), H2O2 (d) in time 
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Figure 4.9 Variation of mass fractions of H (a) and O (b) in time 

 

The present solution at t=185 µs are also compared with the data given in 

Reference [43] and they are shown in Figure 4.10 and Figure 4.11. In general, the 

solutions compare well, however there appear to be a slight shift in wave speeds, which 

may be attributed to the slight time difference in the extracted unsteady data. 
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Figure 4.10 Comparison of density (a) and velocity (b) variation between present and 
numerical solution in Reference [43] at 185 µs 
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Figure 4.11 Comparison of pressure (a), temperature (b) and mass fractions of O2(c), H2 
(d) variation between present and numerical solution in Reference [43] at 185 µs 

 
This test case is also computed by changing the initial temperature in the tube to 

see its effect on the detonation formation. The solutions with T=500, 550 and 600 K at 

t=160 µs and t=180 µs are given in Figure 4.12 and Figure 4.13. In addition, the 

solutions with T=500, 550 and 600 K at t=210 µs are given in Figure 4.14. As shown 

for T=500 and 550 K, no significant chemical reactions are observed and detonation 

doesn’t take place. Whereas for T=600 K chemical reactions take place immediately 

and the formation of a detonation wave is observed. It should be noted that as shown in 

Figure 4.12 (c) pressure at the wall increases due to rising in temperature. But, the 

negative velocities are observed in Figure 4.12 (e). These negative velocities result in a 

brief flow to the left. 
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Figure 4.12 Variation of density (a,b), pressure (c,d) and velocity (e,f) at t=160 µs 
(a,c,e) and t=180 µs (b,d,f) for different initial temperature 
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Figure 4.13 Variation of temperature (a,b) and mass fraction of O2 (c,d) at t=160 µs 
(a,c) and t=180 µs (b,d) for different initial temperature 
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Figure 4.14 Variation of density (a), pressure (b) velocity (c) and temperature (d) at 
t=210 µs for different initial temperature 

 

IV.3. Numerical Solutions with Cylindrical and Spherical Symmetry: Detonation 

Problem without Chemical Reactions 

1D Euler Equations can be modified for 3D solutions under cylindrical or 

spherical symmetry conditions. As given in Eqn. (2.48), source terms are added to the 

governing equations. 

The test case given in Reference [21] pp: 582-585 is used to validate the present 

solver under the cylindrical and spherical symmetry conditions. In Reference [21], 

cylindrical and spherical solutions are also given by a 2D solution. Solutions of two 
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methods are also compared in Reference [21]. The non-dimensional initial conditions 

are given as in Table 4.4. Symmetry boundary conditions are applied in the calculations 

at r=0 and r=1.The comparison of the present solution and the reference data for 

cylindrical and spherical symmetry are given in Figure 4.15 and Figure 4.16 

respectively. As shown the present solution compares reasonably well with the 

reference data. 
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Figure 4.15 Density (a), velocity (b), pressure (c) and internal energy (d) variation 
along symmetry axis for cylindrical symmetry 
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Table 4.4 Initial Conditions for Explosion with Cylindrical and Spherical Symmetry 

Variables Inside Outside 
Pressure 1.0 0.1 
Density 1.0 0.125 
Velocity 0.0 0.0 

Distance from 
Detonation 0.4 1 
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Figure 4.16 Density (a), velocity (b), pressure (c) and internal energy (d) variation 
along symmetry axis for spherical symmetry 
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IV.4. Cylindrical and Spherical Detonation of H2:O2:Ar with Direct Energy 

Deposition 

Cylindrical and spherical detonation waves are next studies the present solver as 

a last test case. This test case is a simulation of direct initiation processes of cylindrical 

and spherical detonation waves by concentrated energy deposition. It should be noted 

that there are three initiation modes for detonation: The first one is the flame initiation, 

the second one is the shock wave initiation and the last one is the direct initiation mode. 

In all these cases, a shock wave occurs prior to detonation initiation. In the flame 

initiation mode, a weak spark ignites an explosive gas mixture which is confined in an 

enclosure. The generated flame propagates towards the unburned media. The flow 

motion acts as a hot-gas piston and generates a compression wave that produces a shock 

wave under suitable conditions. As a result, detonation occurs. In the shock initiation 

mode, either an incident or reflected shock wave, as in the test case 2, produce the 

detonation. The shock heats the unburned gas by compression. In the direct initiation 

mode, a large amount of energy is deposited to a small region of unconfined 

combustible mixture which is called as a driver section and it is shown in Figure 4.17. 

The rest of the region is named as a driven section. Immediately, a strong blast wave is 

generated. Due to shock heating, chemical reactions start and a detonation occurs under 

suitable conditions [44]. 

 

Figure 4.17 A Schematic of Initial Condition of Direct Detonation 
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In this validation case, direct initiation of cylindrical detonation of H2:O2:Ar 

mixture, again is modeled by using a finite-rate model of 48 reaction steps and 9 

species same as in the test case 2. In reference [44], the same problem is solved using a 

reduced set of 24 chemical reactions and 9 species. A specific amount of energy, in the 

form of high pressure and temperature is deposited into driver section of a reactive gas 

mixture. Low temperature and pressure are set for the driven section and the initial 

conditions are given in as given in Table 4.5. Two boundary conditions are applied in 

the calculations; wall boundary condition at r=0 and outflow condition at r=0.4. 

 

Table 4.5 Initial Data for Cylindrical and Spherical Detonation 

Variables Driver section  Driven Section 

R (m) 0.008 0.4 

ρ [kg/m3] 1.2 0.223128 

u [m/s] 1,000.0 0.0 

P [Pa] 2x106 20,650 

T [K] 3,750 298 

YH2:YO2:YAr 0.012773 : 0.101369 : 0.885858 

 

In Reference [44], cylindrical symmetry is used to solve a detonation wave. 

Mass fractions of O2, H2, H2O and OH are compared with the reference data and the 

results are given in Figure 4.18, Figure 4.19 and Figure 4.20. In these figures, there are 

some jumps in the small portion of the figure near the r=0.05 m and these jumps are 

different for the results obtained from present solver and Reference [44]. Because, this 

portion is defined as a driver section and initial conditions are not given in this 

reference. Therefore, they are obtained from the results for test case 2. The cylindrical 

detonation of H2:O2:Ar mixture compare well with the data given in Reference [44]. As 

shown in Figure 4.19 and Figure 4.20, the results of present solution are better than the 

results of the reference data. 
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Figure 4.18 Snapshot of species mass fraction for present solver (a) and Reference [44] 
(b) at time t=190 µs 

 
 

0 0.1 0.2 0.30

0.05

0.1

Present
Reference [44]

r (m)

M
as

s F
ra

ct
io

n 
of

 O
2

 

0 0.1 0.2 0.30

0.05

0.1

r (m)

M
as

s F
ra

ct
io

n 
of

 H
2O

 
     (a)      (b) 

Figure 4.19 Variation of Mass Fraction of O2 (a) and H2O (b) at time t=190 µs 
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Figure 4.20 Variation of Mass Fraction of H2 (a) and OH (b) along x-axis at time 
t=190µs 

 
And also, pressure variations in time are given in Figure 4.21. Peak pressure of 

detonation wave decreases up to t=150 µs, but it increases after this time. 
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Figure 4.21 Distribution of pressure ratio along symmetry axis at (1) t=20, (2) t=50, (3) 
t=80, (4) t=120, (5) t=140, (6) t=160 and (7) t= 190 µs 
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This case is also solved under linear (when α=0) and spherical (when α=2) 

symmetry conditions (see Chapter II for details). The flows are computed by using the 

present solver at linear, cylindrical and spherical symmetry conditions. In linear case, 

the results are very smooth and detonation wave travels faster than the others. However, 

a numerical solution for cylindrical and spherical symmetry cases can only be obtained 

up to t=190 µs, t=80 µs respectively before they diverge (see Figure 4.22). 
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Figure 4.22 Distribution of density for linear, cylindrical and spherical detonation wave 
at t=0 (a), t=30 (b), t=80 (c), and t=150 µs (d) 
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It is seen that the spherical symmetry case is the most unstable case and since a 

vacuum occurs due to detonation (see Figure 4.23) and the velocity becomes negative 

(see Figure 4.24) which means that the flow reverses its direction abruptly and the 

numerical solution diverges. 
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Figure 4.23 Distribution of pressure for linear, cylindrical and spherical detonation 
wave at t=0 (a), t=30 (b), t=80 (c), and t=150 µs (d) 
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Figure 4.24 Distribution of velocity for linear, cylindrical and spherical detonation 
wave at t=0 (a), t=30 (b), t=80 (c), and t=150 µs (d) 

 
It is also shown in Appendix D that the rate of change of flow variables such as 

density is higher in spherical symmetry case than it is in cylindrical case, which may 

render numerical difficulties. 

The variation of mass fraction of O2 is given lastly in Figure 4.25 and 

detonation front for all three cases can be seen in this figure. 
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Figure 4.25 Distribution of mass fraction of O2 at t=80 (a) and t=150 µs (b) 
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CHAPTER V 

 

CONCLUSIONS 
 

 

 

In this thesis, chemically reacting flows are studied mainly for 1D detonation 

problems wtih the adddition of cylindrical and spherical symmetry conditions. The 

mathematical formulation of chemically reacting, inviscid, unsteady flows with species 

conservation equations and finite-rate chemistry is described. The governing equations 

are discretized by Finite-Volume method and solved implicitly by using a time-splitting 

method. Inviscid fluxes are computed using Roe Flux Difference Splitting Model. The 

numerical solution is implemented in parallel using domain decomposition and PVM 

library routines for inter-process communication.  

The solution algorithm is validated first against the numerical and experimental 

data for a shock tube problem with chemical reactions in air and cylindrical and 

spherical propagation of shock wave. 1D, cylindrically and spherically symmetric 

detonation waves of H2:O2:Ar mixture are studied next. Computed results are compared 

with published data. The computed results and comparisons show that the developed 

solver is accurate, efficient and it may succesfully be employed for the solution of 

detonation problems such as firedamps in mines, fuel-air bombs and explosions of 

natural gas. 

V.1. Future Work 

The detonation of methane is important for both fuel-air bombs and firedamps 

encountered in mines. The present solver will be implemented for the detonation of 

methane gas in detail. The ODE solver, DLSODE, which is currently employed, will 

also be replaced with ROWMAP ODE solver for increasing the efficiency of the 

solutions. 
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APPENDIX A 

 

NON-CONSERVATIVE FORM OF EULER EQUATIONS WITH 

FINITE RATE CHEMISTRY 
 

 

Conservative form of Euler Equations with finite rate chemistry is: 

  

.

.

0
0

S           

.

.

)(

             

.

.

where

2

1

2

1

2

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

=
∂
∂

+
∂
∂

sss NNN w

w
w

u

u
u

PEu
Pu

E

E
u

Q

S
x
E

t
Q

&

&
&

ρ

ρ
ρ
ρ

ρ

ρ

ρ
ρ
ρ
ρ

 (A.1) 

 

Conservation of mass of the gas mixture; 
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From (A.1), conservation of momentum is as follows; 
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Then, it can be different form as: 
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Take the paranthesis, 
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Using (A.2) we get (A.4) as below; 
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Similarly, if we rewrite the enegy equation in (A.1), 

0)(
=

∂
+∂

+
∂

∂
x

pEu
t
E ρρ       (A.7) 

and the total energy E of the gas mixture is defined as; 
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Then, it can be different form as: 
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Take the e, u2/2, uρ and ρ paranthesis, we get 
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The first and second terms of Eqn. (A.10) is the conservation of mass and the 

third terms of Eqn. (A.10) is the conservation of momentum equation. Hence, the 

conservation of energy can be written in terms of primitive variables 
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If we write the conservation of mass for species i, then it is seen that the non-

conservative form of  
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As a result, the non-conservative form of equation has obtained from the 

conservative form of equations 
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APPENDIX B 

 

DERIVATION OF pe AND pρi  
(See Reference [1]) 

 

 

Assume the ideal gas equation for the gas mixture, 
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Accordingt to Eqn. (B.1), the partial derivatives of p can be expressed as 
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Then insert the above partial derivatives into (B.2) 
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So, pe can be found by using (B.4), 
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Similarly, pρi can be obtained, 
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To find below terms in Eqn. (B.6), use internal energy relation, 
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where e=const 
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Substitute (B.8) into (B.6), we get, 
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Finally, substitude (B.5) and (B.10) into (B.2) 
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APPENDIX C 

 

LEFT EIGENVECTOR MATRICES OF NON-CONSERVATIVE AND CONSERVATIVE FORM OF 

EQUATIONS 
 

 

 

The matrix N-1 is the left eigenvector matrix of the non-conservative equations. 
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The matrix K-1 is the left eigenvector matrix of the conservative equations. 
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APPENDIX D 

 

TIME RATE OF CHANGE OF DENSITY FOR CYLINDRICAL 

AND SPHERICAL CASE 
 

 

The continuity equation can be written as follows: 
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As take the density and velocity are constants along the area and volume, Eqn. (D.1) can 

be written as follows: 
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For cylinder, area and volume can be defined as; 
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For sphere, area and volume can be defined as; 
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When Eqn’s. (D.3) and (D.4) are substituted into Eqn. (D.2), time rate of change can be 

written under the cylindrical and spherical conditions as follows. 
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As a result, the rate of change of flow variables such as density is higher in spherical 

symmetry case than it is in cylindrical case. 


