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ABSTRACT

FINITE VOLUME SOLUTIONS OF 1D EULER EQUATIONS FOR HIGH
SPEED FLOWS WITH FINITE-RATE CHEMISTRY

ERDEM, Birsen

Msc., Department of Aerospace Engineering
Supervisor: Assoc. Prof. Dr. ismail Hakki TUNCER
Co-Supervisor: Dr. M. Ali AK

December 2003, 93 pages

In this thesis, chemically reacting flows are studied mainly for detonation
problems under 1D, cylindrical and spherical symmetry conditions. The
mathematical formulation of chemically reacting, inviscid, unsteady flows with
species conservation equations and finite-rate chemistry is described. The Euler
equations with finite-rate chemistry are discretized by Finite-Volume method and
solved implicitly by using a time-spliting method. Inviscid fluxes are computed
using Roe Flux Difference Splitting Model. The numerical solution is implemented
in parallel using domain decomposition and PVM library routines for inter-process
communication. The solution algorithm is validated first against the numerical and
experimental data for a shock tube problem with and without chemical reactions
and for a cylindrical and spherical propagation of a shock wave. 1D, cylindrically

and spherically symmetric detonations of H,:O,:Ar mixture are studied next.
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YUKSEK HIZLARDAKI AKISLAR ICIN 1 BOYUTLU EULER
DENKLEMLERININ SONLU KIMYASAL DENKLEMLER iLE SONLU
HACIMSEL COZUMLERI

ERDEM, Birsen

Yiiksek Lisans, Uzay ve Havacilik Mithendisligi Bolimii
Tez Yéneticisi: Dog. Dr. Ismail Hakki TUNCER
Yardimci Tez Yoneticisi: Dr. M. Ali AK

Aralik 2003, 93 sayfa

Bu tezde, temel olarak patlama problemlerinden 1 Boyutlu (1B), silindirik
ve kiiresel simetrik durumlar i¢in kimyasal reaksiyonlu akislar calisilmistir.
Kimyasal reaksiyonlar i¢in kiitle korunumu denklemleri ile birlikte kimyasal
reaksiyonlu, agdasiz, zamana bagl akislarin matematiksel ifadeleri verilmistir.
Euler denklemlerinin sonlu hizlarda gerceklesen kimyasal reaksiyonlar ile
cozlimleri, sonlu hacimsel metodu kullanilarak zamanda ayrim yontemi ile kapali
olarak ¢ozllmiistiir. Agdasiz akilar, Roe Aki Farki Bélme modeli kullanilarak
hesaplanmigtir. Sayisal ¢dziimler, ¢oziim alanmin kii¢iik boliimlere ayrilmasi ve
islemciler arasi iletisimin saglanmasi i¢in PVM Kkiitliphanesi rutinleri kullanilarak
paralel olarak elde edilmistir. ilk olarak ¢dziim algoritmasi, sok tiip problemi,
silindirik ve kiiresel sok dalgast yayilimi icin sayisal ve deneysel veriler
kullanilarak dogrulanmigtir. Daha sonra 1-B, silindirik ve kiiresel H;:0;:Ar

karigiminin patlamasi ¢aligilmistir.



Anahtar Kelimeler: Kimyasal Reaksiyonlu Akislar, Sonlu Kimyasal Denklemler,

Patlama, Euler Denklemleri.
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CHAPTER |

INTRODUCTION

Chemically reacting flows are becoming a significant component of modern
engineering design. Chemically reacting flows are widely observed in combustion
processes and hypersonic flows, for example, hypersonic reacting flows around a blunt
body, rocket nozzle combustion, pre-mixed detonation, etc. Solutions of chemically
reacting flows necessitate an interaction between fluid dynamics and chemical reactions
among species of the fluid mixture. Euler and Navier-Stokes Equations coupled with
species mass conservation equations and finite-rate chemical reactions provide the

mathematical model.

I.1.Chemically Reacting Flows

Three physical processes involved in chemically reacting flows are:
e Fluid dynamics
e Thermodynamics
e Chemical reactions
The fluid dynamics process is defined by conservation of mass, momentum and
energy. The thermodynamics of the reactive fluid include microscopic heat transfer
between gas molecules, work done by pressure, and volume change. Chemical
reactions determine the generation and/or destruction of chemical species under the
constraint of mass conservation. Each of the above processes could either be evolving
or in equilibrium. For the evolving condition, each process has its own space and time
scales, and they may be different from that of other processes. Such differences in

space and time scales could allow simplification in the theoretical model.



In this work, it is assumed that each subfield of mixture is in thermal
equilibrium internally but not in equilibrium with its neighbors (local thermal
equilibrium), and then equilibrium thermodynamics can be applied to each subfield.
Due to the assumption of local thermal equilibrium, the concept of state variables and
the equation of state in the classical thermodynamics can be used to provide the
relationship between thermodynamic variables. Because of flow motion and the
associated pressure and temperature distribution in the flow field, the flow field as a
whole is not in thermal equilibrium. As a result, the space-time evolution of the entire
non-thermally-equilibrium system can be built up by integrating the flow equations.
Physically, the thermal energy of different molecules (including different species) is
locally in equilibrium. Thus, there is only one temperature of the gas mixture at each
space-time location [1].

In order to better understand various categories of chemically reacting flows,
two time scales are defined: one associated with the fluid motion and one associated
with the chemical reactions. The interaction between chemical reactions and fluid
dynamics may be described by the Damkohler number [1], which is the ratio of the
characteristic time of fluid mechanics to that of chemical reaction. As the Damkdhler
number approaches infinity, chemical reactions rates are very high for a flow and the
reactions take place instantaneously. Such a flow is considered to be in equilibrium. If
Damkohler number is close to zero, the chemical reactions are slow as compared to
fluid flows, and it is referred as a frozen flow. In a frozen flow, fluid particles moving
within the domain do not experience any change in the chemical composition. In other
words, no chemical reactions take place for a frozen flow. When the Damkohler
number approaches to the order of unity, a significant interaction between chemical
reactions and fluid dynamics is expected. In this case, both fluid dynamics and
chemical reactions should be treated as evolving processes, and one must use the finite-
rate kinetics to model chemical reactions. For reacting flows, the perfect gas equation
of state holds but the gas constant is temperature dependent, since the molecular weight
of the mixture is changing. Chemical reactions may also cause large localized
temperature variations during combustion. Therefore, it is important to accurately

include the temperature dependencies in the equations of state.
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Numerical solution of the Euler or Navier-Stokes Equations within species
conservation terms are widely used to analyze chemically reacting flows. Chemically
reacting flows which may only be investigated using finite-rate chemistry extend a

simple combustion to detonation of fuel-air mixtures.

1.2. Explosion, Deflagration and Detonation

An explosion is a kind of violent, sudden and noisy reaction in which all the
material changes its state from solid, liquid or gas form to hot and expanding gas. When
the energy from the chemical reaction is released, pressure increases quickly. Oxidizer,
flammable material and high temperature are the main three components for explosion
to occur [2]. Nuclear explosions are caused by fission or fusion of atomic nuclei. In an
explosion, rate of heat generation is extremely fast, but it doesn’t require the passage of
a combustion wave through the exploding medium.

A deflagration is a propagation of a combustion front at a velocity less than the
speed of sound into the unreactant medium [3]. In other words, it is a discrete
combustion wave that travels subsonically. Despite this, a deflagration can be a quite

violent event.

als
Figure 1.1 Detonation of a high explosive

In a detonation, the propagation of combustion front has a supersonic velocity
and is sustained by the energy released from the combustion [Figure 1.1], [4, 5]. High
explosives which are a convenient source of extremely high-power density may
detonate at standard temperature and pressure. A detonation wave can be identified as a
coupled reaction zone-shock wave complex which propagates through a uniform

combustible mixture to a temperature above the ignition temperature. That provides the



ignition source for the combustion to begin, and the chemical energy released in the
reaction zone provides the energy required to maintain the shock wave.

Explosive events can exhibit both deflagration and detonation reactions: There
is a phenomenon called the Deflagration to Detonation Transition (DDT) which
describes how a deflagrating substance can detonate from released energy. In addition,
reactions involving complex or multiple reactants can exhibit both due to the different
reactions taking place.

Several experimental observations clarify that DDT mechanism observed on
the sensitive fuel-oxygen mixtures can also be seen in fuel-air mixtures. Some
experimental studies are performed to observe the transition characteristics for
detonation. Mostly schlieren photographs are used to observe the sequence for the

transition phenomenon as shown in Figure 1.2, [6].

( 2H,+0, , P,=135torr )

P Precursor shock-wave

0 us — deflagration
5 us

10 ps

15 ps

20 ps
25 ps
- obstacles
30 us
35 ps

40 ps

45 ps | . — detonation £

Figure 1.2 Sequence of DDT



Detonation is utilized in fuel-air explosives and pulse detonating engines. It may

also occur in mines as firedamps.

1.2.1. Fuel-Air Explosives

Fuel-Air Explosives (FAE) are military weapons which are used to destroy
vehicles or buildings. They are delivered by a missile, rocket or torpedo and consist of
an explosive material and a detonator which is a device used to detonate the explosive.
Explosives are high energy chemicals, whose energy can be released quickly by a
combustion process. The combustion may be triggered by an electric spark. The oxygen
required for combustion is obtained from the air. In FAE system, an aerosol cloud of
fuel is first dispersed. The fuel-air mixture is ignited to produce explosion [7, 8, 9].

The detonation of the fuel is ideally performed when the fuel cloud reaches the
correct diameter for the optimum stoichiometric ratio. This optimum stoichiometric
ratio depicts the ratio of fuel amount to air amount required for an ideal detonation
process. A first booster is used to disperse the fuel in air. After, a second booster which
is projected into the cloud initiates the detonation by the shockwave effect. Note that
this explosion may not be initiated by the first detonator since the fuel cloud must be
detonated 0.1 to 5 seconds after the distribution of fuel into atmosphere. In Reference
[10], there is a study on the measurement of the velocity of the dispersed fuel and the
breaking of the droplets, their size distribution and their velocities. High speed flows in
shock tubes are heavily used in the development of FAE systems.

The possible fuel list for FAE is not very large. Mostly some hydrocarbons are
preferred. But also non-hydrocarbons are used. Actually the usage of hydrocarbons is
highly attracted because of the accidents in the petroleum industry [11]. Some of the
successfully detonated fuels are acetylene, propylene oxide, aluminum, butane,
propane, and kerosene.

The shock wave produced by FAE detonation is also known as the “blast
wave”, or “blast”. 1t is characterized by peak overpressure and impulse at a given
distance from the center of the detonation [12, 13]. The term overpressure identifies the
spectacular pressure increase due to the detonation. At some distant point from the blast

origin, the passing blast wave causes the pressure to abruptly increase from the ambient

5



value to a large peak value, and then the pressure decays relatively slow back to the
ambient value.

Effect of blast waves, blast effectiveness, produced by an explosion of fuel-air
mixtures is a very important concern on FAE. Due to the experimental difficulties to

test the blast effectiveness, the studies are mostly performed numerically, [14].

1.2.2. Pulse Detonation Engine

The other area that a detonation phenomenon is important is the pulse
detonation engine (PDE). PDE is an unsteady propulsive device in which the
combustion chamber is periodically filled with a reactive gas mixture, a detonation is
initiated, the detonation propagates through the chamber, and the product gases are
exhausted. The high pressures and resultant momentum flux out of the chamber
generate thrust. Quasi-steady thrust levels can be achieved by repeating the detonation
cycle at a relatively high frequency and/or using more than one combustion chamber
operating out of phase as shown in Figure 1.3. Conceptually, a pulse detonation engine
has some advantages when compared with the conventional propulsion systems due to

its higher efficiency and higher thrust.

- — = -

() Delonalion is (3) Detonalion moves J\}
initiated through fieliair mix

—= =

(@) Resulting high
= pressure gas
o fills detonation

Q - <r— chamber
- (5)Detonation wave exils

enging - air drawm in by
reguced pressure

(1) Fuel is mixed with air

PDE Wave Cycle

Figure 1.3 Pulse Detonation Engine Wave Cycle

Besides PDE, a pulse detonation rocket engine technology [Figure 1.4] is also
being developed for boosting satellites onto higher orbits, for lunar and planetary
landers and excursion vehicles that require throttle control for gentle landings. The

throttle control is achieved by controlling the frequency of the detonation. Pulse
6



detonation rocket engines operate by injecting propellants into long cylinders that are

open on one end and closed on the other.

Figure 1.4 Pulse Detonation Rocket Engine

A major advantage is that pulse detonation rocket engines boost the fuel and
oxidizer to extremely high pressure without a turbo pump which is an expensive part of

conventional rocket engines.

1.2.3. Firedamp or Methane Detonation

The most common industrial gases found in the mining industry are natural gas
or methane (CHy), propane (C3;Hs) and acetylene (C,H,) of the chemical gases. These
gases originate from fossil fuels and are composed of carbon (C) and hydrogen (H).
When burned, they produce carbon dioxide, water vapor and carbon monoxide.
Methane is also produced when sewage or other organic matter is subject to stagnant
conditions and bacterial action. Coal beds may also contain methane and release the gas
when the bed is in exposed position during mining. Methane is very dangerous in
underground coal mines because inadequate ventilation can result in concentrations of
the gas building to explosive levels.

Since the history of mining industry, methane has been the most dangerous gas
in underground mining environments. It is formed by bacterial and chemical action on
organic material and it is not toxic but is particularly dangerous because it is flammable

and forms an explosive mixture with air. Methane is retained within fractures, voids
7



and pores in rocks either as a compressed gas or adsorbed on mineral (particularly
carbon) surface. Since its density is a little over half that of air, it can form pools or
layers in air.

The explosible range for methane in air is normally quoted as 5% to 15%, with
the most explosive mixture occurring at 9.8%. Under the normal atmosphere
conditions, while the lower limit remains fairly constant, the upper explosive limit is
reduced as the oxygen content of the air falls. It is also noted that the explosive limits of

methane becomes a little wider as the pressure and temperature increase.

1.3. Numerical Solutions of Chemically Reacting Flows

Since 1970’s, several researchers have studied the solution of chemically
reacting flows using Computational Fluid Dynamics (CFD) methods. These methods,
[15, 16, 17, 18, 19] are high-accuracy solution methods and especially during last years,
with the improvement of the computer processing capabilities, many modern
mathematical solution models have been released to open literature. However, accuracy
of the CFD solution techniques strongly depends on the numerical solution algorithms
used and the underlying physical sub-model. Therefore, the application of the CFD
solution techniques is limited to the physical models, which can be validated
experimentally.

Many modern CFD methods, originally developed for non-reactive flows, have
been extended to simulate chemically reactive flows. For solving a chemically reactive
flow, the first attempt is to use CFD techniques to solve the flow equations for a single
component fluid with a complicated equation of state. In this approach, one can assume
that the chemical reactions effect to the flow equations can be narrowed down to the
space-time evolution of the molecular weight and specific heats (C, and C,) of the gas
mixture due to the changing species composition. This situation may be represented by
a complex relationship between pressure, density, and temperature, i.e., an equation of
state for the reactive fluid, which is often a real gas.

Computational fluid dynamics (CFD) methods have been successfully
developed and applied to calculate fluid flows under various conditions. The flow

equations are usually formulated in a conservative form, and the numerical schemes are
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developed to satisfy conservation of mass, momentum, and energy in a space-time
domain.

Euler Equations are the conservation laws for inviscid flows. They form a first
order, non-linear coupled set of equations that can be written in various forms. In
reference [20], these well-known forms are conservative, non-conservative and
characteristic form of the system of equations. The vectors of variables formed by
density, momentum and total energy, which obey the conservation form of the
equations, are called “conservative variables”. The direct variables such as density,
pressure and velocity are called “primitive or non-conservative variables”. They can be
measured directly in an experiment.

Numerical solution of Euler equations requires evaluation of inviscid flux terms.
In finite difference and finite volume solutions, there are two different approaches to
calculate inviscid fluxes at the discrete cell surface. The first approach is to use central
differencing (or space-centered), where the fluxes are calculated based on the averaged
flow variables at cell interfaces. Central schemes are easy to implement, but they
require artificial dissipation. Another approach for the inviscid flux calculations is to
use upwind schemes, which require no explicit artificial dissipation terms for stability.
Currently, Upwind Schemes are preferred for their high resolution of discontinuities
such as shock waves and contact discontinuities without oscillations [21].

In solution of chemically reacting flows with Euler Eqn’s, viscous diffusion and
heat conduction are neglected. A step that can be taken to develop accurate and
efficient solutions for the eigensystems of Euler Eqn’s for a flow in chemical non-
equilibrium is described in reference [22].

An algorithm for flows in thermochemical non-equilibrium is described in
reference [23], which presents a formulation for solving the 3D Navier-Stokes
equations in generalized coordinates. This algorithm is facilitated for solution of
arbitrary mixtures of thermally perfect gases in any local thermochemical state, namely
full non-equilibrium, chemically non-equilibrium, chemical equilibrium or frozen flow.
The thermochemical non-equilibrium flux-split schemes in three-dimensional

generalized coordinates are presented, by a discussion of the time integration schemes.



Results for an axisymmetric diffusion with air and hydrogen-air chemistry, a blunt body
flow, and a hydrogen-air combustion problem are supplied.

In reference [24], the Roe Flux Difference Splitting scheme is investigated for
accuracy in simulating hypersonic flows. The extensions of the Roe scheme that
include finite rate chemical kinetic equations follow the approach of Grossmann and
Cinella. In reference [25], a procedure is proposed for the evaluation of the
thermodynamic properties of air at equilibrium conditions and several generalizations
of Roe’s scheme are reviewed and their numerical performances are discussed by
modeling 2D steady hypersonic flows.

For multicomponent flows, a new numerical scheme called Karni’s Scheme is
presented in [26]. This scheme is constructed to minimize the artificial oscillations that
are generated by conventional finite volume schemes using Roe fluxes. A shock tube
problem is solved and the results are compared with those of a classical finite volume
scheme.

In reference [27], solution of thermally perfect gas flows with finite-rate
chemistry by using finite difference space discreatization and TVD Runge-Kutta time
discreatization with time splitting of reaction terms is presented. In reference [28], Thin
Layer Navier Stokes equations for non-equilibrium hydrogen combustion are dealt
with. The developed algorithm is used for blunt body, ramped duct and supersonic
nozzle test cases. Also, Navier Stokes equations for chemical non-equilibrium are dealt
with in reference [29]. It includes the solution of equations with Roe splitting and Van
Leer splitting schemes.

A parallel CFD code which is based on Method of Lines (MOL) for transient
laminar 2D reacting flows has been developed by Tarhan and Sel¢uk [30]. In this study,
chemical reactions are modeled by infinite-rate chemistry. Governing equations are
solved by MOL with high order and implicit solution algorithms. The 4™ order five-
point Lagrange interpolation polynomial is used in spatial discreatization. The
predictive ability and accuracy of the code is compared with that of other numerical
studies and experimental data. Efficiencies are examined using several Ordinary

Differential Equation (ODE) solvers and compared with each other. The ODE solver
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ROWMAP is found the most efficient and ROWMAP ODE solver is suggested for
speed and accuracy.

An experimental study on flame acceleration and transition performed with
benzene-air mixtures is described in reference [31]. In this study, flame acceleration
experiments are carried out in a 150 mm diameter, 3.6 m long steel tube. The entire
length of the tube is filled with circular obstacles spaced one diameter apart. The fuel
concentration is varied between 1.7% and 5% by volume of benzene in the fuel-air
mixture. It is stated that in the experiments three regimes of propagation were observed:
turbulent deflagration regime, “choking” regime and quasi-detonation regime.

In reference [32], detonation of methane/air cloud is studied by using 1D
(spherically symmetric) time dependent Euler Equations with chemical kinetics. The
direct initiation of methane/air cloud is modeled for different amount of an ignition
source. Direct initiation means that fuel air mixture is ignited by using high explosives
such as tetrly. The other mode of initiation is the self initiation. It is referred to as DDT.
Finite difference approximations with Lagrangian and Eulerian features are used for
conservation of mass, momentum, energy and species and also thermal and caloric
equation of state with two-step oxidation mechanism. Stability of a detonation wave is
also studied by W. Fishburn [33] and F.S. Hall and G.S.S. Ludfort [34].

Numerical simulations of two-dimensional laminar methane/air premixed jet
flames with detailed chemical kinetics mechanism are presented in [35]. This study
demonstrates the sensitivity of the modeling of detailed chemical kinetics on the flame
temperature and concentrations of major component for different equivalence ratios.
Numerical simulations and experimental results are in good agreement.

In another research [36], methane combustion is studied and ethane, propane
and butane ignition is investigated by C.G. Fotache, H. Wang and C.K. Law [37] in
counter flow of jets. For methane combustion, two-step reaction is used to analyze the
interaction between different layers.

Numerical modeling of detonation is becoming a significant topic in Turkey
Defense Industry. The main reason is that the research on defense industries is a

confidential area and open source information on FAE warhead design is very limited.
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1.4. The Scope of the Thesis

In this study, chemically reacting flows by incorporating the species
conservation equations and finite-rate chemical reactions are introduced. In Chapter II,
the mathematical formulations of 1D Euler Equations with finite-rate chemistry are
given and non-conservative forms are presented.

In Chapter III, the flow equations are integrated in time using time-split
algorithms. The numerical solutions of chemically reacting flow equations are obtained
by applying the finite volume method. Flux Jacobian matrix of the system of equations,
its eigenvalues and the associated eigenvector matrices are systematically derived in
this chapter.

ID Euler Solver developed by M. Ali Ak [38] in 1999 is extended for
chemically reacting flows. Computations are performed in parallel using domain
decomposition. The developed solver is first validated with the solution of a shock tube
problem with reactions in air. Next, detonation of H2:02:Ar in a shock tube is studied
to establish the accuracy of the parallel solution and the grid sensitivity of the solution
algorithm. The results are compared with the numerical solution given in Reference
[38]. Finally, cylindrical or spherical symmetry conditions are investigated for 3D

solutions of detonation and validated by using the data given in Reference [21].
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CHAPTER I

1D EULER EQUATIONS WITH FINITE-RATE CHEMISTRY

In this chapter, the mathematical formulation of inviscid, unsteady compressible
flows with finite-rate chemistry is described. The mathematical equations describing
inviscid flows are called Euler equations. The formulation is performed for 1D
Cartesian coordinates for conservative variables. In the following part, the conservation

equations for mass, momentum, energy and species are presented.

I1.1. Conservation of Mass

The integral form of the law of conservation of mass by assuming no mass

generation within volume, V, can be stated as:
] Lav+ I R(p¥ ) = 0 @

This integral conservation law may be generalized to include sources of mass,
which will appear as additional integral terms.

Gauss Theorem is applied and Eqn. (2.1) is rewritten as:

j{j [%—f+ V.(plp)}dv =0 22)

As V arbitrary, it follows that the integrant disappear and it becomes as,

‘2—’;+v.(pf/))= 0 (2.3)

I1.2.  Conservation of Momentum
The law of conservation of momentum results from the direct application of

Newton’s law: the time rate of change of momentum, ply, in volume is equal to the
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total force acting on the volume, V . The total force is divided into surface forces fs and

volume forces fy.
}J
o\pV
2C oy o [1PoPha = 1, + 1, 2
v at A
Then Gauss Theorem is applied and Eqn. (2.4) is rewritten as:

J'y {4;_#)+ V[ @7 + pr —11]lav = w pfay (25

As V arbitrary, it follows that the integrant disappear,
d({a’t—f;)Jrv.[,orgcarﬁ)ﬂnr—H]:p§ (2.6)

Equation (2.6) is the differential form of momentum equation including a source
term due to volume forces. When the viscous stresses are identically zero and the

volume forces are neglected, Euler equations are obtained.

11.3.  Conservation of Energy

The time rate of change of total energy, E,, is equal to the work done per unit
time by all the forces acting on the volume plus the influx of energy per unit time, Q,
into the volume, V . The integral form of the law of conservation of energy is as

follows:

j{j [£,+ v ((E+p)/ -V 11+ 0)av = jy p(P.Ehv @

As V arbitrary it follows that the integrant disappear,
poop p £
E +V[E+pW-vVIi+0]=p(f) 2.8)
Equation (2.8) is the differential form of energy equation with the source term
accounting for the effect of body forces; if these are neglected, the homogenous energy

equation is obtained. When viscous and heat conduction effects are neglected, the

energy equation corresponding to compressible Euler equations is obtained.

I1.4. Conservation of Species

The application of the principle of conservation of mass of a species i, requires

only a slight generalization of the development for the conservation of the total mass.
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The integral form of conservation of species mass can be stated as:
o(pY,) P\l —
jy {7+ V.(pYiV)}dV = Iy &, d (2.9)

where the density of the gas mixture can be defined as the summation of the species

densities
N,\
p=> p, (2.10)
i=1
and Y;, mass fraction of species i in the gas mixture can also be defined as:

y, =2 (2.11)
P
Then molecular weight of mixture is defined as follows;

Mo (2.12)
Y, /M,

i

=z

As V arbitrary it follows that the integrant must vanish,
P y(pP)= g (2.13)
ot
Mass is conserved through chemical reactions and the summation of all source
terms, W&, is zero, i.e.,
N
Z W =0 (2.14)
i=1
Thus, the summation of all species equations recovers the conservation equation
of the total mass.
The source terms in the species conservation are formulated in mass
concentration, and they are the summation of the rate of change of species i from all
chemical reactions J:

J

d,D N , Ng o Ny o
1& = _dt’ = M,Z (Vi,j - Vi,j) (kf,jH n, i kb’jH n! ’.1)
=l i=1

J=1

where (2.15)
-
M
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' g . . .th . .th .
v, Stoichiometric coefficients of reactants of i~ species for j— reaction

v, oo Stoichiometric coefficients of products of i species for j reaction
k,, Forward reaction rate of jth reaction
k, Backward reaction rate of j"" reaction

11.5.  Conservative Form of 1D Euler Equations with Finite-Rate Chemistry

In this section, the detailed derivation of the 1D flow equations is presented.
Conservation of species equations is incorporated with the conservation of momentum
and energy equations to model chemically reacting flows. Number of species can be
defined as N, Conservation of species equations can be added into Euler Equation in
such a way that conservation of species equations, Ns, are written instead of global
conservation of mass.

The inviscid, unsteady compressible flow equations in one spatial dimension

with N conservation of species equations can be written as follows:

a(}’+i:§>

il 2.16
ot ox ( )
where
_pu ] _puz +P | 0 ]
pE u(pE + P) 0
% up, W&
S I A A

F

pNs upN: L s

11.6. Non-Conservative Equations

Based on the governing equations in the conservative form as shown in Eqn.

(2.17) non-conservative form of the equations can be derived as in Appendix A. The
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inviscid, unsteady compressible flow equations can be written in non-conservative form

as follows:
U, ok _§ (2.18)
ot Ox

U is the vector of the unknown variables in the non-conservative form and is given as:

u

e

g=|" (2.19)
P>

P,
The governing equations in non-conservative form are given as;
Conservation of momentum equation;

ou ou 10op
—+u—+——7-=0
ot ox pOx (2.20)

Conservation of energy equation;

Oe Oe p Ou
—+u—+——7—=0
ot ox pox (2.21)

Conservation of mass of species equations;

%4_14%4_’012_“:1&
X

ot ox

p, . P, Ou

o o T (2.22)
0Py, + 0Py, ou _ ‘&vs

u +
ot YRR AP

11.6.1. Pressure

There are Ns+2 equations and Ns+3 unknowns including pressure for 1D Euler
Equations with finite rate chemistry. An additional relation between p and unknown

variables is needed;
17



p=p(pu,pE,p,pPrss Py.) (2.23)

For non-reacting flows, the calorically perfect gas equation p= (1) pe is used.
On the other hand, a general equation of state in the form of p=p (e, p;, p,, ..., ong) can
make the flow equations (2.16) well-posed for reacting flows with the proper initial and
boundary conditions [1].

First, assume that, individual species in the gas mixture behave as ideal gases,

P =p,RT
where (2.24)
R =R

M

where P; and R; are respectively the partial pressure and the gas constant of species i
and R,=8314.34 J/kg-moleK is the universal gas constant and M; is the molecular
weight of species i. Note that all species are in thermal equilibrium and they have the
same temperature 7.

For the model equations presented here, pressure is determined from Dalton’s
Law which states that the pressure of a mixture of gases is the sum of the partial
pressure. Each species partial pressure is obtained from the ideal gas law as mentioned
above. Thus the model equations assume a mixture of thermally perfect gases that have

a pressure defined by the equation;

N N,
P=>P =TY p,R =pRT (2.25)
i=1 i=1
where
NA
R=>"YR, (2.26)

Note that, gp/ck appears in the momentum equation and p is not an unknown

variable in U. Therefore, the total derivative of p can be written as follows:

NS
dpz(a—pj =3 P ap 2.27)
ae Pj =l ap’ C.Pj jri

Then,
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(2.28)

Taking partial derivative of p with respect to x, momentum equation is

rearranged:
op e < (0p,
@b _, 0% 5, (% 2.29
2 p (L) 2.9

The momentum equation in (2.20) becomes

N.\‘
Ou O ple piOP (2.30)
ot ox pox S pl\ox
peand p,; can be derived as (see Appendix B):
p.=(=Dp
R (2.31)
D, = C—V(e—e,.)+Rl.T
11.6.2. Internal Energy and Enthalpy of the Mixture
The total energy E of the gas mixture is defined as;
2
E=ce+ ”7 (2.32)

where e is the internal energy of the gas mixture per unit mass and it is calculated based

on a mass-weighted average of internal energy per unit mass of each species ¢;, i.e.,
N
e= Z Ye, (2.33)
i=1

The internal energy and total energy include, e, from definitions.

The relationship between internal energy and temperature is linear for ideal
gases. However, for most reacting gases, molecules can also have rotational and
vibration modes in addition to translational movement. The general form of the
equation for species energy in a calorically imperfect gas is given by the equation;

T
¢ =[C.dT+e, (2.34)

Tx
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Then, internal energy of a gas mixture can be written as:

T N, N,
e=[3%C,dT+ ;Yieﬁ

i=1
i (2.35)
= [C,dT+e,
Tk
In a similar way, the general form of the equation for species enthalpy is given

by the equation;
T
hy=[C,dT +h, (2.36)
Tr

where /4y is the heat of formation of species i.

Then, enthalpy of a gas mixture can be written as:

N,

T N s
h=[3.Y.C,dT+3 Y,

Ty i=1 i=1

; (2.37)
= [c,dT+h,
Tx

By using ideal gas equation in the definition of enthalpy #4;, Equation (2.36) can

be rewritten as follows;

pi

h =e+~—=e¢e+RT (2.38)
P
NS
h=Y Yh
i=1
N, N, »,
h=2 Ye +3 Y, *- (239)
i1 =1 P
h=e+ RT

11.6.3. Definition of Cp, Cv

C, and Cp are defined as follows;

e Ny
C=—| =>YC
v dT , ; LV (
2.40)
h Ny
C=—|=>)C,
P dTp = P
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and the frozen specific heat ratio y for the gas mixture is defined as;

G
CV
where (2.41)
R R
C,=C,+R;C,="—;C =—
y—1 y—1

C,i 1s not a constant, it depends on temperature and it can be obtained from measured
data such as The Joint Army, Navy, NASA and Air Force tables which is called
JANNAF tables [39]. In JANNAF methodology, the thermodynamic quantities,
specific heat, enthalpy and entropy are evaluated at the standard atmospheric pressure
(po= 1.03125x10° N/m?). The dependence of these quantities on temperature is
expressed in terms of polynomials. Several coefficients are needed for each of the three
temperature ranges, 300 to 1000 K, 1000 to 6000 K and 6000 K and 20000 K. Thus, the
JANNATF tables contain total 27 coefficients for each species.

v

=q.T2 ! 2 3 2.42
Cp,' ailT +al.2T +al.3+al. 4T +al.5T +ai6T +ai7T4 ( )
C, can be written as follows;
c,=C, -R, (2.43)

11.6.4. Temperature

The Euler equations are expressed in terms of the conserved variables; mass,
momentum and energy, and do not describe temperature directly, which is determined
by the internal energy of the gas. It can be obtained by substituting Eqn. (2.37), (2.26)
and (2.11) into the third equation in Eqn. (2.39);

[ipfﬁcgdmhfje]

i=1 10 Tx
T ~ (2.44)

21



11.7.  Finite-Rate Chemistry

In a general mixture of Ns species there will be J reactions taking place;

Vi X v X v Xy o Xy Xy X =12, 0 (2.45)
X : Chemical formulation of 1%, 2", N species

Generally the forward and backward reaction rates are determined empirically
and tabulated through the use of curve fits. The most common curve fit used for
chemistry reaction rates is the Arrhenius equation. Although tabulation of experimental
values for rate coeffients in Arhenius form is common, current practice frequently
utilized the three parameter functional form:

k(T)= AT" exp(-E ,/ R,T) (2.46)
where 4, b, and E are the three empirical parameters which can be obtained from the

CHEMKIN databases [40].

11.8. Additional Terms in the Euler Equations Due to Cylindrical and Spherical
Symmetry

Cylindrical and spherical symmetric wave motion arises naturally in the theory
of explosion wave in water, air and other media. In these situations the multi
dimensional equations may be reduced to essentially 1D equations with a geometric
source term S(U) to account for 2™ and 3™ spatial dimensions. Then the Euler equation

without species conservation equations becomes as [21]:

ou | o), _ SU)

ot ox

where (2.47)
P pu pu

U=| pu F=|pu®+P s:—% ou’
PE u(pE + P) u(pE+ p)

If we add the above source terms in Eqn. (2.12), the unsteady, inviscid, and

chemically reacting flow equations in one spatial dimension become as;
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pu
pE
P
P2

P,

_puz + P

u(pE + P)

up,
up,

Upy,

a
- —pu’
-

~ % u(pE + P)
r
a
‘& ——pu
r
o
W — — p,u
r

(2.48)

The cylindrical (when a=1) and spherical (when 0=2) symmetry approximation

may also be solved numerically by the current 1D solution method with a minor

modification.
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CHAPTER 11

NUMERICAL SOLUTION OF GOVERNING EQUATIONS

In the previous chapter, 1D Euler equations with Finite-Rate Chemistry are
given in both conservative form and non-conservative form. Due to numerical
difficulties in the solution of conservative form of Euler equations, non-conservative
form of these equations is employed in the numerical solution. The non-conservative
form of the system of equations can also be given in a vector form as follows (See

Chapter II):

oU OF

ot ox

Equation (3.1) can be solved in two ways: fully coupled or loosely coupled by

=S (3.1)

splitting the equations into homogenous and non-homogenous part. The splitting

becomes;
P
PDE :8_U+ﬁ: 0| —,,
ot 8xp U (3.2)
IC .U (x,t")=U" '
P
ODE :d—U= 5 P
dt U (3.3)
IC :U " '

Finite Volume Method (FVM) is used to solve the homogenous part and an
ODE solver is used to solve the non-homogenous part. Finite volume space and time

discreatization are given first. Finally, an ODE solver named DLSODE using to solve
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source terms that come from chemistry and spherical symmetry mentioned in Chapter
I is mentioned.

Eqn. (3.2) can be expressed in different form as follows:

U, FU _, (3:4)
ot oU ox
i

ou (3.5)
a_U+Za_U:0
ot ox

where 4 is called as Jacobian Matrix of System of Equations.

The time dependent Euler equations are hyperbolic equations, i.e., if the
Jacobian matrix of flux function has m real and distinct eigenvalues and a
corresponding set of m linearly independent eigenvectors, the system is said to be
strictly hyperbolic where m is the total number of equations of the system. Therefore,
Jacobian Matrix and its eigenvalues and eigenvectors are found to solve these system of
equations. The eigenvalues of the matrix 4 are obtained from the determinant of the

following;
\Z - /11‘ -0 (3.6)

The flux evaluation is the most important step in this solution. Flux modeling
plays an important role in accurate and physically valid solution. In the next section, the
Riemann problem and Godunov Flux is reviewed first. Roe Flux Difference Splitting
Method is then introduced. In the second part, the ODE solver, DLSODE, is

introduced.

I11.1. Flux Modeling

For better understanding of flux modeling, Riemann problem and Godunov
Method should be mentioned firstly. After that, Roe Flux Difference Splitting Method
is described in the following subsections and Roe Fluxes for 1D Euler Equations with

Finite Rate Chemistry are formulated.
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11.1.1. Riemann Problem

The Riemann problem can be identified for the hyperbolic, constant coefficient
system:

PDE: U,+AU, =0
U, x<0, (3.7)

ICs:  U(x,0)=U"(x)= {U 0
R X>

The structure of the the solution of the Riemann problem in x-¢ plane is given in Figure

3.1. For mxm linear hyperbolic system, it consists of m waves coming from origin.

t

4

Figure 3.1 Structure of the Solution of the Riemann Problem for a general linear

hyperbolic system

Each wave carries a jump discontinuity in U, propagating with speed 4;. The
solution of the left side of the waves is simply the initial data U, and the solution of the
right side is Ug. The task is to find the solution between wedge of waves. As the
eigenvectors K 1), K(Z),..., K™ are linearly independent, U; and Uy can be written as

follows:

U, =Y aK” Uy =Y BK" (3.8)
i=1 i=l1
where ; and f; are constant coefficients for i=/,...,m. For a given point (x,2)
there is an eigen value 4; such that 4,;<x/t< A;y,., that is x-4;#>0 such that i<]. Then the

final solution of the Riemann problem can be written as:

m /

Ux,t)= Y a,K"+> BK? (3.9)

i=1+1 i=1
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Physically, Riemann problem is a slight generalization of the shock-tube
problem. In this problem, the aim is to find the fluxes between left and right wedge of
waves in x-¢ plane called as star region which is the region between left and right state.

For 1D Euler Equations, a solution method can be found at Chapter 4 in [21].

111.1.2. Godunov Method

Godunov’s scheme utilize Approximate Riemann solvers. To understand the
Godunov Method, firstly 1D non-linear hyperbolic system of Initial-Boundary Value
Problem (IVBP) should be considered;

PDE: U,+F(U,)=o0

ICs:  U(x,0)=U"(x)

BCs: (3.10)

oo |

Godunov method assumes a piece-wise constant distribution of the data as seen

in Figure 3.2.

u u.

Figure 3.2 Piece-wise constant distribution of data at time level n
Spatial discretization of finite volumes is denoted as x;,=x; ;+Ax and temporal
discretization is given as /"' =¢"+ At.
Cell averages are defined as:
U = LWT/&(x,t")ix (3.11)
Ax -

and they produce the desired piecewise constant distribution Ux,7"), with U’ for x in

each cell [x;, Xi+1].
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Figure 3.3 Typical wave patterns of local Riemann problems at intercell boundaries i-

172 and i+1/2

Figure 3.3 shows typical wave patterns emanating from the intercell boundaries
X172 and x;+;2 when solving the Riemann problems of (U.;, Uy) and(U, U.y;). For a
time step, 4¢, that is small enough to avoid wave interaction, a global solution in terms
of local solutions can be obtained and Godunov method can be written in conservative

form:
n+ n At
U, = U, +_![1 i1 i+l/2] (3.12)

with intercell numerical flux given by
Frp = F(U1,,(0)) (3.13)
and details on Godunov Method can be found in [20].
Roe Flux Difference Splitting (FDS) Method based on Godunov Method is one
of the upwind methods mentioned in Chapter 1. In this study, the flux at the interface of

control volumes is modeled by Roe’s scheme.

111.1.3.  Roe Flux Differencing Method

Roe Flux Differencing Method is used to solve fluxes in Equation (3.2) and it is
examined in this section. Equation (3.2) can be written in terms of Jacobian Matrix as

follows:
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PDE: U,+A4U_ =o
U,, x<0 } (3.14)

R0 = {U x>0
R>

Roe’s approach replaces the Jacobian matrix by a constant Jacobian matrix
A=AU,Uy) (3.15)
Therefore, the original problem is replaced by
U +AU, =0 (3.16)
The original Riemann problem is then replaced by the approximate Riemann
problem.
PDE: U,+AU_ =0
vo={l 7 ) o
This Roe Jacobian matrix satisfies the following properties;
1- It has linearly independent eigenvalues,
2- It is consistent with the exact Jacobian,

3- It conserves the discontinuities.

The eigenvalues and the right eigenvectors of the matrix A(U ,-Uy) are as

follows respectively;

4,U,U
_’(_ pUn) (3.18)
K“U,,U,)
The intercell fluxes are calculated in the following procedure:
AU=U, U, =Y @K"
koot Zl : (3.19)
a, =a,(U,,Uy), wavestrenght
Ui+1/2(0) =U, + ZO_QI?U)
250
or (3.20)
Um/z(o) =Ug - zo_ti]?(i)
2,20
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Now, the corresponding numerical flux is found from modified system of

conservation laws,

U, +F0), =0 (3.21)
where flux function is written as:
F(O)=40
T (3.22)
1+1/2 A U1+1/2(0)
Finally, using Eqn. (3.35) the numerical fluxes are obtained from
Fo,=F + Zo_li/?_“il?(i)
2:<0
or (3.23)
Fi+1/2 =F; - ZO_QZEU)
2,20
Alternatively, it can be written,
F., = ; F, +F, —%Za e (3.24)

In order to compute Roe fluxes for a particular system of conservation laws, the
wave strenghts ¢;, and the eigenvalues /; and the right eigenvectors K can be obtained
from the Jacobian matrix 4 of the non-conservative form of the system of equations.
The calculation of Roe fluxes for 1D Euler Equations with Finite-Rate Chemistry can
be obtained using wave strenghts ¢, and eigenvalues 4; and the right eigenvectors K
of the Jacobian matrix 4 of the non-conservative form of the system of equations in the

following subsection.

I11.1.4.  Roe Fluxes for 1D Euler Equations with Finite Rate Chemistry

To solve Roe fluxes, Jacobian matrix of the non-conservative system of

equations can be required and it is also given by [1] as follows;
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u plp PP PP o P, P]
plp u 0 0 0

~ 12 0 u

A= 3.25
ol 0 0 u 0 (3-25)
P, 0 0 0 u

Eigenvalues of the matrix 4 are obtained from the determinant of the following;
‘Z - Z]‘ =0 (3.26)

where / is the identity matrix. Due to simplicity of the non-conservative form equations,

the Ns+2 eigenvalues of 4 are found to be;

A, =u+\RT
=u—+yRT (3.27)
=u

where a = /yRT is the frozen speed of sound of the gas mixture.

The right eigenvector x; of the matrix 4 associated with the eigenvalue A; can be

obtained by solving;
Ax, = 1.x, (3.28)
to get nontrivial solution for x; of the Jacobian matrix. The related eigenvectors of u+a,

u eigenvalues can be found by using a Symbolic Math Software.

1 1 0 0 0
plap || —plap 1 1 0
la || =p/la||-p./ 0 1
P pla PPl P (3.29)
plall —p,/a 0 -p./'p, 0
oy lall=pylall 0 L o | |-p/p, |

Thus, we get the Right and Left Eigenvectors of the non-conservative form of
the system of Euler equations with chemical reacting flows. The Right Eigenvector
Matrix, N is given as follows (The Left Eigenvector Matrix N is given in Appendix
O):
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1 1 0 0
plap —plap 1 1
pla —pla-p,/p, 0

(3.30)
pZ/a _pZ/a 0 _pe/pp]

oS - O O

Py /a=pyla 0 0 —P./ Py, |

Now, the non-conservative equations must be transformed to conservative
equations by multiplying it with transformation matrix 7° and The Right Eigenvectors
of Jacobian matrix of the conservative equations can also be found by the following
multiplication:

K=T'N (3.31)

Right Eigenvector of Jacobian matrix of the conservative equations is given as

follows and Left Eigenvector Matrix K™ is given in Appendix C:

u u P P
pl1+— pl1-—— —u—= e —U—5
( aj [ aj PP[ PPM
P P
p(u+£j+£ p(u—EJ—E p—E—— .. p-E—*
a a a a Pp1 -
; ., )
P ~ P R
a a PPN:

Roe Averaged Values are defined as (see [41]);
P =~ PP (3.33)

pLuL + pRuR

i = Tocedor (3.34)

E_ \/pLEL + :DRER

= (3.35)
\NPrL T Pr
g pLH, ++ppHp

H
VoL 4P

(3.36)
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b = PPt PrPir

SN s

)}i: ALY+ PrYi

VoL Py

5 = Prey T+ Prlir

.

7= v oI, ++ P Ty

VoL +pe
R=Y 1R

=1

=~

N ~
é\‘v = ZYiEvi
i=1
T,
1 R
_vz = jcvidT
TR TL T,
po1=%
C

>

g(ﬁ+ﬁd) g(ﬁa—ﬁ) p—E
= A A _E
P 3 P
p_N _pz 0
a a
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r a p a P

o

>

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)



1D Right Eigenvector Matrix for Jacobian matrix can be written for only 2

species to derive the wave strenghts given in Eqn. (3.24),

P
8 Ay
a a Pp1
( Ej P ( Ej P P,
plu+—|+— plu——|-—— p-FE
K- a a a Pp1
P _P _L
a a sz
P P 0
a a

and the 1D conservative jump in the variable vector can be defined as;

Au,
Au,
Au,
Au,

Au =

The relation between 1D conservative variable jump vector and characteristics

can be written as:

K -aa=Au

ID wave strengths require solution of the following linear system which is

given in compact form in Eqn. (3.43),

u u P P
{0f) Atk f
a a PP1 Pp2
P P
p(u+£j+£ p[u—gj—z p—E—— p-E—=
a a a Pp1 sz
P P _F 0
a a sz
& p2 0 _Pe
L a a P2
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(3.49)
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from 3™ and 4™ equations of the matrix multiplication,

P
a2, P, S = A, (3.53)
a a
P
P
a, 22—, P2 g, " = Au, (3.54)
a a

Adding (3.53) and (3.54),

P P
alﬁ—azﬁ—a3—"—a4 = Au, + Au, (3.55)
a a P, P,

From 1* equation of the matrix multiplication;

P P
p[1+ZJal + p[l—zjaz —u——a, —u——a, = Au, (3.56)
a a PP] Pﬂz
pa, + pa, +u Eal —ﬁoz2 _L a, —£a4 = Au, (3.57)
a a Ppl sz
By using Eqn. (3.55), Eqn. (3.53) becomes
pa, + pa, +u(Auy + Auy )= Au, (3.58)
1
o, + oty = —{Au, —u(Au; + Au, )} (3.59)
P

From 2™ equation of the matrix multiplication;

E) P E) P P P
plu+— |+—ro, +iplu——|——ra,+| p—E—*=|ay+| p— E— |o, = Au,
a a a a Pp1 sz

(3.60)
P
[pu +—J0{1 +(pu —Ejaz + pa, + pa, + E Eal —Eaz _L a, —£a4 = Au,
a a a a P, P,
(3.61)

By using Eqn. (3.55), Eqn. (3.54) becomes

P P
[pu +—jal +(pu——ja2 + pay + pa, + E(Auy + Auy )= Au,  (3.62)
a a

P P
(pu +—joz1 +(pu ——jaz + pa, + pa, = Au, — E(Au, +Au,)  (3.63)
a a
From Eqn. (3.53) 3" wave strength is found to be
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P\ a a

e

P
a, =i[&o¢1 P, —AuJ (3.64)
Similarly from Equation (3.54) 4™ wave strength is found to be
P
a, :i(&al Py —Au4j (3.65)

Inserting (3.64) and (3.65) to (3.63),

P
(pu +£jal +(pu—£ja2 +p—=- &al —&az - Au,
a a P\ a a

. e (3.66)
+pi(&a1 _&az _AM4J = Au, —E(Au3 +Au4)

(3.67)

Pp Pp
=Au, — E(Auy + Au, )+ p P‘ Au, +p?2Au4

e e

Finally, written in compact form for N species

(3.68)

i=1 i=1 e

from the definition of static enthalpy

¥ pP
h=£+zp}f" —C,T (3.69)
P = L,

N N P
B(h +ua), + B(— h+uale, = Au, — EZ Au,,, + prAuzﬂ. (3.70)
a a

i=1 i=1 e

N N P
(h+ua)x, + (= h+ua)x, =%Au2 —EEZAMM +aziAu2+i = RHS1

i=1 i=1 e
(3.71)
Multiplying (3.59) with (/ +ua)

(h+ua)ey, +(h+ua), = U Jlroua {Au, —u(Au, + Au,)} = RHS2 (3.72)

and subtracting from (3.71), second wave strength is found to be
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a, = ﬁ(RHS2 — RHS1) (3.73)

Finally first wave strength is found to be
1
o, = —{Au, —u(Au, +Au, )} - a, (3.74)
P

For N species, wave strengths are the following:

a, = %(RHS2 — RHS1) (3.75)
1 N
a, = —{Aul —u), Auzﬂ} ~a, (3.76)
P i-1
P (p .
Oy = i(&al - &az - Au2+ij (3.77)
P \a a

I11.2. 1D inviscid, compressible (Euler) solver

1D, 2D, 3D Euler flow solvers with Roe fluxes was developed by Ak [38] in
1999. In this study, 1D Euler solver is extended for the solution of chemically reacting
flows by finite-rate chemistry. 1D inviscid, compressible (Euler) solver has a main
program which is called Euler 1D and sixteen subroutines and algorithm of the solver
will be given in detail below. There are two major part of 1D inviscid, compressible
(Euler) solver. One of the major part executes the flux calculations and the second part
computes the source terms of species conservation equations and additional source
terms of momentum, energy equations coming from spherical symmetry.

Roe flux solver is implemented in a subroutine named as FLUX. Wave strenghts
and Roe averaged values of fluxes given in subsection III.1.4 are computed in this
subroutine. The Roe fluxes evaluated at the cell interface are modified by a Slope
Limiter.

The limited slope within the cell is calculated by introducing the slope limiter as

follows:

o =iy (3.78)
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where ¥ is the non-linear limiting function of cell C; and fluxes at the intercell are

defined as:
, A _
Fon=F +) aAK' 1 Z|/11.|[1 —M}ar\y, (3.79)
<0 2 240 ox
¥ (r) = max|0, min(2r, /), min(r,2)] (3.80)

where 7 is the ratio of slopes of cell i-1, i, i+1.The detail on the second order accurate
flux calculation can be found from [21], [38].

The ODE solver is implemented in a subroutine named as ODE which
calculates source terms that come from conservation of species mass and spherical
symmetry. It sets up the proper variables and calls DLSODE which is the Ordinary
Differential Equation (ODE) solver.

For a detonation wave, there are serious difficulties in designing numerical
methods which properly account for the fluid dynamics and the chemistry. For
sufficient fine meshes such difficulties can be overcome but cost will be very high.
Because of that, ODE solver which is planned to be used must be chosen very carefully.
In this study, Double precision Livermore Solver for Ordinary Differential Equations
named DLSODE is implemented. It is one of the stiff ODE solvers for solving source
terms coming from conservation of species mass and spherical symmetry in the Euler
Equations with finite-rate chemistry. DLSODE solves stiff and non-stiff systems of the
form dy/dt = f (¢, y). In the stiff case, it treats the Jacobian matrix df/dy either as a dense
(full) matrix, or as user-supplied or internally approximated by difference quotients. It
uses Adams methods (predictor-corrector) in the non-stiff case and Backward
Differentiation Formula (BDF) methods (the Gear methods) in the stiff case. The linear
systems are solved by direct methods. Documentation on the usage of DLSODE is
provided from the open literature.

Also time discretization is very important for this problem, because time scales
of flow and chemical reactions are far away from each other, therefore time step must
be calculated from time scales of either chemical reactions or flow. Time discretization

is re-built from ¢fl number called Courant Friderich Lewis number.
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In 1D inviscid, compressible (Euler) solver, conservative variables are
computed using subroutine ODE for first half of dr then by using these conservative
variables, fluxes are re-calculated from subroutine FLUX for each time step. Finally,

conservative variables are calculated from subroutine ODE for the last half of d.

111.2.1.  Parallel Computation of 1D inviscid, compressible (Euler) solver

Parallel computing is the concept of executing a program on multiprocessors by
diving a large problem into smaller parts. By allocating the n processors, it is expected
that the same program run » times faster than with a single processor [30, 42]. In this
study, domain decomposition method is used for parallel implementation. 1D domain is
partitioned into n subdomains with two cell overlapping at the subdomain boundaries.
Solution on each subdomain is assigned to a parallel computer. Inter domain boundary
conditions are exchanged at every five step of the unsteady solution. Parallel virtual
machine (PVM) message passing software is used for the information exchange
between sub-domains. In parallel computing, performance can be defined by speed-up
and efficiency. Speed-up is the ratio of the execution times of parallel and single
computing. Efficieny is the ratio of speed-up to number of processors.

1D inviscid, compressible (Euler) solver is also developed for parallel
computing and algorithm of it is given in Figure 3.4. Additional subroutines are written
for master and worker processors called subroutine MAIN and subroutine WORKER.
Parallel computations are are done using the processors in the Parallel Computing
Laboratory of TUBITAK-SAGE, i.e. The Scientific and Technical Research Council of
Turkey/ Defence Industry Research and Development Institude. Parallel computing for
1D inviscid, compressible (Euler) solver is executed using two or higher processors

whose speed-up information is given in the next chapter.
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Figure 3.4 Algorithm of 1D inviscid, compressible (Euler) solver with Finite-Rate Chemistry
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CHAPTER IV

RESULTS AND DISCUSSIONS

In this chapter, the Euler solver developed for the solution of 1D inviscid,
compressible flows with species conservation of mass equations and finite-rate
chemistry is first validated by the solution of a shock tube problem for air by comparing
the original Euler solver developed earlier by Ak [38]. Numerical solutions are also
compared with the exact solutions in [20].

Next, a 1D detonation of H,:O,:Ar mixture at high temperature is studied. The
results with chemical reactions are validated against the numerical data given in
Reference [43]. Parallel solutions are also validated against the serial solution and a
grid refinement study is performed.

An axis-symmetric (cylindrical symmetry) and spherical symmetry detonation
cases are computed as a third test case and it is validated where the source terms for
cylindrical and spherical symmetry terms are activated against the numerical data given
in Reference [21].

Finally, the detonation of H,:0,:Ar given in Reference [44] is also studied under
cylindrical and spherical symmetry conditions. The results obtained are compared with
each other and are validated by against the numerical data. The results for both
cylindrical and spherical symmetry cases are also compared with the linear detonation

solution.

IV.1. Validation of 1D Euler Solver: Shock (Sode) Tube Problem

The shock tube problem forms a particularly difficult test problem since it
represents an exact solution to the full system of 1D Euler Equations containing
simultaneously, a shock wave, a contact discontinuity and an expansion fan. This

problem can be realized experimentally by sudden breakdown of a diaphragm in a long
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1D tube separating two initial gas states at different pressures and densities as shown in

Figure 4.1.

Diaphragm

/

State L State R

Figure 4.1 Sode Tube with Initial State at t=0

The initial pressures and densities for this particular case are 10° Pa and 1 kg/m’
at the left side and 10* Pa with 0.125 kg/m’ at the right hand side of the tube. Symmetry
boundary conditions are applied in the calculations at x=0 and x=10 m as a wall
boundary condition. The computed solutions with the present solver and the original 1D
Euler solver are given in Figure 4.2. Shock wave and contact discontinuity are detected
without any oscillation. The numerical results compare well with the results given in

Reference [38].

Table 4.1 Reaction Mechanisms for Air

Reactions A (m*mol™) st b Ea(Jmol™)
02+M=>20+M 2.90E+23 -2.0 59750.
N2+M=>2N+M 1.60E+22 -1.6 113200.
NO+M=>N+O+M 7.95E+23 -2.0 75500.
NO+O=>N+02 8.37E+12 0.0 19450.
O+N2=>N+NO 6.44E+17 -1.0 38370.

For the same case given above, the solution with the present solver where
species conservation of mass and chemical reaction taken place, are obtained. Both
solution and the exact solutions given in Reference [20] are compared in Figure 4.2. In

this figure, distribution of mass fraction of O, and N are given only for present solver.
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IVV.2. Detonation of H,:05:Ar in a Shock Tube

In this case, the shock tube is assumed to filled with a H,:0,:Ar mixture of
molar ratios 2:1:7. The tube, which is closed at one end, is 12 cm long. As an initial
condition, an incident shock wave traveling from open end on the right to the wall on
the left is given. The computations start at instant the shock hits the wall. When the
shock wave hits the wall boundary on the left, it is immediately reflected and a new
shock wave travels to the right. Initial states of this problem are given in Reference [43]

as [see Table 4.2].

Table 4.2 Initial Data for Shock Tube with Non-Equilibrium Chemistry

Variables Incident Shock Reflected
Shock

p [kg/m’] 0.223128 0.4889

u [m/s] -478.5 0.0

P [Pa] 36679.65 131820

T [K] 624 1036

Yi2:Yo2: Y ar 0.012773 : 0.101369 : 0.885858

W [kg/mol] 3.156667 10

This particular 1D example has been studied in the past and a well validated
reaction mechanism for numerical simulations is available in different references. It
utilizes 9 different chemical species; O,, H,O, H, O, OH, H,, HO,, H,O; and Ar and 48
non-equilibrium elementary reactions given in Table 4.3 [43].

The unsteady flow with the initial conditions given above is computed by the
present solver in serial and in parallel. The results are compared to each other in Figure
4.3. As shown the solutions obtained in parallel overlap with the serial solution. It is
concluded that the accuracy of the computations is preserved. However, the efficiency
of parallel computations degrades gradually as the number of processors increase due to
loss during inter-process communication. The speed-up which is the execution times
ratio between parallel and single solver is collected and shown in Figure 4.4. In the

same figure, efficiency, the slope of this curve, is also seen.
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Table 4.3 Reaction Mechanisms of H,:O,:Ar

Reactions A((kg/moD)™'s) b Ea(Jd/mol)
H +OH —0 +H2 0.843E+10 1.00 _ 6955.
O +H2 —H +OH 0.181E+11 1.00__ 8903.
H +HO2 —H2 +O2 0.253E+14 0.00 696,
H2 +02 —H _ +HO2 0.548E+14 0.00 57828.
H +HO2 —~OH +OH 0.253E+15 0.00 _ 1888.
OH +OH —H _ +HO2 0.120E+14 0.00 _40142.
H +HO2 —0 _ +H20 0.500E+14 0.00 994,
O  +H20 —H _ +HO2 0.105E+13 045 56437.
H  +H202 —HO2 +H2 0.169E+13 0.00 _ 3776.
HO2 +H2 —H _ +HO2 0.723E+12 0.00 _ 18680.
H _ +H202 —OH +H20 0.318E+15 0.00 _ 8943.
OH +H20 —H _ +H202 0.240E+15 0.00 80483
OH +H2 —H +H0 0.110E+10 130 3657.
H +H20 =>OH +H2 0.108E11 120 19097
OH +OH =>H2 +02 0.656E+11 026 29212.
H2 +02 —>OH +OH 0.169E+14 0.00 48091
OH +OH =0 _ +H20 0.602E+08 1.30 0.
O +H20 =>OH +OH 0.193E+10 1.16__ 17428,
OH +HO2 =>H20 +O2 0.500E+14 0.00___1000.
H20 +02 —>OH +HO2 0.143E+15 0.17__73329.
OH +H202 —>HO2 +H20 0.102E+14 0.00 1808
HO2 +H20 =>OH _+H202 0.283E+14 0.0 32789.
HO2 +H2 —OH +H20 0.723E+12 0.00__18700.
OH +H20 =>HO2 +H2 0.801E+10 043 71938.
HO2 +HO2 —>H202 +02 0.181E+14 0.00 994,
H202 102 —>HO2 +HO2 0.945E+15 038 43719.
0O +OH —H +02 0.164E+13 028 -l6l.
H +02 —0 +OH 0.223E+15 0.00 _16792.
O +HO2 —OH +O2 0.501E+14 0.00___1000.
OH +02 =0 _+HO2 0.132E+14 018 56040.
O +H202 —H20 +02 0.843E+12 0.00 4213
H20 +02 =0 _ +HO2 0.343E+11 052 89028.
O  +H202 —OH +HO2 0.843E+12 0.00 _ 4233.
OH +HO2 —>0 _ +H202 0.125E+10 0.64_ 16355.
H2 +M —H +H+M 0.223E+15 0.0 95983.
H20 +M___—H +OH +M 0.349E+16 0.00 105124,
HO2 +M _ —H +02 +M 0.211E+16 0.00__45706.
H202 +M___—OH +OH +M 0.120E+18 0.00 _45508.
OH +M —>0 +H +M 0.140E+15 0.21__101349.
HO2 +M =0 +OH +M 0.662E+20 -0.43 63989,
02 M =0 +0 +M 0.181E+19 7100 118041,
H +H +M—H2 +M 0.653E+18 7100 0.
H +OHM=>H20 +M 0.225E+23 -2.00 0.
H +02+tM=>HO2 +M 0.150E+16 0.00 994,
OH +OH+M=>H202 +M 0.907E+15 0.0 -5067.
O +H tM—0OH +M 0.300E+20 -1.00 0.
O  fOHM=HO2 +M 0.102E+18 0.00 0.
0O 0 M=02 M 0.189E+14 000 -1789.
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Next, the grid sensitivity is studied by employing 300, 600 and 1200 cells for
the solution of above problem. As shown in Figure 4.5 the solution with 600 cells

provides grid independent solution. In the subsequent solutions, 600 grid cells are

employed.
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Figure 4.5 Density (a), velocity (b), pressure (c) and temperature (d) variation along x
axis at 170 ps using different total mesh sizes
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The time variation of the flow variables given in Figure 4.6 and Figure 4.7
shows that the chemical reactions begin at about t=100 us and a detonation wave forms.
The detonation wave travels to the right behind the reflected shock. At about t=180 s,
the detonation wave catches and overtakes the reflected shock. As the shock and
detonation waves merge, some distortions and decrease are observed in Figure 4.6 and
Figure 4.7. Mass fractions of all chemical species except Argon vary with time as seen
in Figure 4.7, Figure 4.8 and Figure 4.9. Argon behaves as an inert gas, i.e. its
concentration doesn’t change in time. The amount of H, and O, decreases immediately
to a negligible amount after the beginning of chemical reactions. All computations end
at an instant that the detonation wave arrives to right end of the tube. It takes
approximately 210 ps. Two boundary conditions are applied in the calculations; wall

boundary condition at x=0 and outflow condition at x=12 cm.

T . T 1000 T T
i VoA
: o
' H . nod !
; o
o n I A .
g ,': 4 . g M :,' 1
F[) t A H g 'l :l I.
4 N . 2 T
~ HEA o B3} R
2 X 1 v 9 A
iz fho, ! 4 © ealot L
8 HIR o > 0 5 ek S —
O e Eameatr Py a1 N [
) T L
P : 1
...... Lt I
1 1
cepen |t
=500
0 | | 0 0.05 0.1
0 0.05 0.1 X (m)
X (m)
...... at 100
at 150
""" at 170 ps
---- at 180
(a) (b)

Figure 4.6 Variation of density (a) and velocity (b) in time

48



0.05

(3]) ermyeradwa |,

1-10°

(ed) 2anssaig

T T T
1S
7,
—~—————— e e ——————
i
=]
1 o
n =)
g
=]
HO Jo uondelq ssej]N
T T
e
pmmemTmmmm s
Do
e
' mmemm——————— mmm—————
Da
D “
e r a8
oy 13
By
a1
Jat
-
W
»
o
o
"
4
| | il o
— e} =}
S <
(=}
OCH Jo uondel ssejN

X (m)

X (m)

at 100
at 150

at 170 us
at 180
at 200

(d)

Figure 4.7 Variation of pressure (a), temperature (b) and mass fractions of H,O (c), OH

(©)

(d) in time

49



IIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIII

e T ERTTT S S

0.01 I~
0.005 [~

TH Jo uonoel] ssejy

ot

T
L4

"
e

0.1 ===
0.05 =

70 JO uonoel ssejN

0.1

0.05

0.1

0.05

v ()

~r L)

(b)

(2)

T T T
L | z
Iln-lmu
-m fonn)
~esfl
18 ~
L g %
el
W
w
i
[
-
H.
! ! [ 1 PN
=1
G 3 a
COTH jJo uonoel ssejN
T T T T
- = m
lllll cwrss- dl
S .
IIIIIIIIIIIII EEEE LR L
1 E
- ol o
(=)
—
-~
<
| | |

mDO mDO
c 3 &
ZOH JO uonoer] ssejy

at 150

at 170 us
at 180
at 200

(d)

(©)

Figure 4.8 Variation of mass fractions of O, (a) and H; (b), HO: (c), H>O, (d) in time

50



0.0015 [~

——————
-
1

001~

1
1
1
1
0.001 [~ [ 1
1
1
1
1

.-
~
[P T N

0.005 [~

I
Mass Fraction of O

Mass Fraction of H

\

*

1
[Py -

1
1
1
. — - 1
5410 o A
1
4
1
1
1
1

(a) (b)

Figure 4.9 Variation of mass fractions of H (a) and O (b) in time

The present solution at t=185 us are also compared with the data given in
Reference [43] and they are shown in Figure 4.10 and Figure 4.11. In general, the
solutions compare well, however there appear to be a slight shift in wave speeds, which

may be attributed to the slight time difference in the extracted unsteady data.
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Figure 4.10 Comparison of density (a) and velocity (b) variation between present and
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(d) variation between present and numerical solution in Reference [43] at 185 ps

This test case is also computed by changing the initial temperature in the tube to
see its effect on the detonation formation. The solutions with T=500, 550 and 600 K at
t=160 ps and t=180 pus are given in Figure 4.12 and Figure 4.13. In addition, the
solutions with T=500, 550 and 600 K at t=210 ps are given in Figure 4.14. As shown
for T=500 and 550 K, no significant chemical reactions are observed and detonation
doesn’t take place. Whereas for T=600 K chemical reactions take place immediately
and the formation of a detonation wave is observed. It should be noted that as shown in
Figure 4.12 (c) pressure at the wall increases due to rising in temperature. But, the
negative velocities are observed in Figure 4.12 (e). These negative velocities result in a

brief flow to the left.
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IV.3. Numerical Solutions with Cylindrical and Spherical Symmetry: Detonation
Problem without Chemical Reactions

ID Euler Equations can be modified for 3D solutions under cylindrical or
spherical symmetry conditions. As given in Eqn. (2.48), source terms are added to the
governing equations.

The test case given in Reference [21] pp: 582-585 is used to validate the present
solver under the cylindrical and spherical symmetry conditions. In Reference [21],

cylindrical and spherical solutions are also given by a 2D solution. Solutions of two
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methods are also compared in Reference [21]. The non-dimensional initial conditions
are given as in Table 4.4. Symmetry boundary conditions are applied in the calculations

at =0 and r=1.The comparison of the present solution and the reference data for

cylindrical and spherical symmetry are given in Figure 4.15 and Figure 4.16

respectively. As shown the present solution compares reasonably well with the

reference data.
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Table 4.4 Initial Conditions for Explosion with Cylindrical and Spherical Symmetry

Variables Inside Outside
Pressure 1.0 0.1
Density 1.0 0.125
Velocity 0.0 0.0
Distance from
Detonation 0.4 1
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Figure 4.16 Density (a), velocity (b), pressure (c) and internal energy (d) variation
along symmetry axis for spherical symmetry
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IV.4. Cylindrical and Spherical Detonation of H,:O,:Ar with Direct Energy

Deposition

Cylindrical and spherical detonation waves are next studies the present solver as
a last test case. This test case is a simulation of direct initiation processes of cylindrical
and spherical detonation waves by concentrated energy deposition. It should be noted
that there are three initiation modes for detonation: The first one is the flame initiation,
the second one is the shock wave initiation and the last one is the direct initiation mode.
In all these cases, a shock wave occurs prior to detonation initiation. In the flame
initiation mode, a weak spark ignites an explosive gas mixture which is confined in an
enclosure. The generated flame propagates towards the unburned media. The flow
motion acts as a hot-gas piston and generates a compression wave that produces a shock
wave under suitable conditions. As a result, detonation occurs. In the shock initiation
mode, either an incident or reflected shock wave, as in the test case 2, produce the
detonation. The shock heats the unburned gas by compression. In the direct initiation
mode, a large amount of energy is deposited to a small region of unconfined
combustible mixture which is called as a driver section and it is shown in Figure 4.17.
The rest of the region is named as a driven section. Immediately, a strong blast wave is
generated. Due to shock heating, chemical reactions start and a detonation occurs under

suitable conditions [44].

Oriver Section

T=Ts
p=ps

f M=y Driven Section
U= T=To

P =po
yr=yo
b =L

R R:

Figure 4.17 A Schematic of Initial Condition of Direct Detonation
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In this validation case, direct initiation of cylindrical detonation of H,:O,:Ar
mixture, again is modeled by using a finite-rate model of 48 reaction steps and 9
species same as in the test case 2. In reference [44], the same problem is solved using a
reduced set of 24 chemical reactions and 9 species. A specific amount of energy, in the
form of high pressure and temperature is deposited into driver section of a reactive gas
mixture. Low temperature and pressure are set for the driven section and the initial
conditions are given in as given in Table 4.5. Two boundary conditions are applied in

the calculations; wall boundary condition at =0 and outflow condition at r=0.4.

Table 4.5 Initial Data for Cylindrical and Spherical Detonation

Variables Driver section Driven Section
R (m) 0.008 0.4

p [kg/m’] 1.2 0.223128

u [m/s] 1,000.0 0.0

P [Pa] 2x10° 20,650

T [K] 3,750 298

Ym: Yo Yar 0.012773 : 0.101369 : 0.885858

In Reference [44], cylindrical symmetry is used to solve a detonation wave.
Mass fractions of O,, H,, H,O and OH are compared with the reference data and the
results are given in Figure 4.18, Figure 4.19 and Figure 4.20. In these figures, there are
some jumps in the small portion of the figure near the r=0.05 m and these jumps are
different for the results obtained from present solver and Reference [44]. Because, this
portion is defined as a driver section and initial conditions are not given in this
reference. Therefore, they are obtained from the results for test case 2. The cylindrical
detonation of H:0,:Ar mixture compare well with the data given in Reference [44]. As
shown in Figure 4.19 and Figure 4.20, the results of present solution are better than the

results of the reference data.
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Figure 4.20 Variation of Mass Fraction of H, (a) and OH (b) along x-axis at time

And also, pressure variations in time are given in Figure 4.21. Peak pressure of
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detonation wave decreases up to t=150 us, but it increases after this time.
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Figure 4.21 Distribution of pressure ratio along symmetry axis at (1) t=20, (2) t=50, (3)
t=80, (4) t=120, (5) t=140, (6) t=160 and (7) t= 190 ps
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This case is also solved under linear (when a=0) and spherical (when 0=2)
symmetry conditions (see Chapter II for details). The flows are computed by using the
present solver at linear, cylindrical and spherical symmetry conditions. In linear case,
the results are very smooth and detonation wave travels faster than the others. However,
a numerical solution for cylindrical and spherical symmetry cases can only be obtained

up to t=190 pus, t=80 ps respectively before they diverge (see Figure 4.22).
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Figure 4.22 Distribution of density for linear, cylindrical and spherical detonation wave
at t=0 (a), t=30 (b), t=80 (¢), and t=150 us (d)
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It is seen that the spherical symmetry case is the most unstable case and since a
vacuum occurs due to detonation (see Figure 4.23) and the velocity becomes negative
(see Figure 4.24) which means that the flow reverses its direction abruptly and the

numerical solution diverges.
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Figure 4.23 Distribution of pressure for linear, cylindrical and spherical detonation
wave at t=0 (a), t=30 (b), t=80 (c), and t=150 ps (d)
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It is also shown in Appendix D that the rate of change of flow variables such as
density is higher in spherical symmetry case than it is in cylindrical case, which may

render numerical difficulties.

The variation of mass fraction of O, is given lastly in Figure 4.25 and

detonation front for all three cases can be seen in this figure.
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CHAPTER V

CONCLUSIONS

In this thesis, chemically reacting flows are studied mainly for 1D detonation
problems wtih the adddition of cylindrical and spherical symmetry conditions. The
mathematical formulation of chemically reacting, inviscid, unsteady flows with species
conservation equations and finite-rate chemistry is described. The governing equations
are discretized by Finite-Volume method and solved implicitly by using a time-splitting
method. Inviscid fluxes are computed using Roe Flux Difference Splitting Model. The
numerical solution is implemented in parallel using domain decomposition and PVM
library routines for inter-process communication.

The solution algorithm is validated first against the numerical and experimental
data for a shock tube problem with chemical reactions in air and cylindrical and
spherical propagation of shock wave. 1D, cylindrically and spherically symmetric
detonation waves of H,:O,:Ar mixture are studied next. Computed results are compared
with published data. The computed results and comparisons show that the developed
solver is accurate, efficient and it may succesfully be employed for the solution of
detonation problems such as firedamps in mines, fuel-air bombs and explosions of

natural gas.

V.1. Future Work

The detonation of methane is important for both fuel-air bombs and firedamps
encountered in mines. The present solver will be implemented for the detonation of
methane gas in detail. The ODE solver, DLSODE, which is currently employed, will
also be replaced with ROWMAP ODE solver for increasing the efficiency of the

solutions.
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APPENDIX A

NON-CONSERVATIVE FORM OF EULER EQUATIONS WITH
FINITE RATE CHEMISTRY

Conservative form of Euler Equations with finite rate chemistry is:

a_Q + a_E — S
ot Ox
where
pu | [pu?+ P ] 0]
pE u(pE + P) 0
P u p, W
0=|p, E=|up, S=|%
Py, | | upy, | & | (AD
Conservation of mass of the gas mixture;
a_p + M — 0
gt gx ) (A2)
PPy p—u =0
ot ox ox
From (A.1), conservation of momentum is as follows;
2
olpu) , dlpw’+p) _, (A3)
ot ox
Then, it can be different form as:
p@_u+u6_p+u28_p+2up6_u+6_p:0 (A4)

ot ot ox ox Ox
Take the paranthesis,
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u(@_p+u6_p+p8_uj+p 8_u+u8_u+l6_p =0 (A.5)
ot ox ox ot ox pox

Using (A.2) we get (A.4) as below;
Ou, ou, 1p

=0 (A.6)
ot ox pox
Similarly, if we rewrite the enegy equation in (A.1),
OpE N Ou(pE + p) _ 0 (A.7)
ot Ox

and the total energy E of the gas mixture is defined as;

2

u
E = —_— A8
e+ = (A.8)

Then, it can be different form as:

2 2
Oe 8u+66_p+u_5_p+ 6_u+ u° Oou

a Poa a2 Fa Pl m

3
pa_u+uea_p+u_a_p+up@+u2pa_u+ua_p:0
Oox ox 2 ox Ox Ox Ox

(A.9)

Take the e, u”/2, up and p paranthesis, we get

[, 0 0
ot Oox Oox

(A.10)

The first and second terms of Eqn. (A.10) is the conservation of mass and the
third terms of Eqn. (A.10) is the conservation of momentum equation. Hence, the
conservation of energy can be written in terms of primitive variables

de, e pau_

0 (A.11)
ot ox pox
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If we write the conservation of mass for species i, then it is seen that the non-

conservative form of

o, oM g N

s

aat gx ; (A.12)
ﬂ + uﬁ + P _14 — ‘&l
ot Oox Ox

As a result, the non-conservative form of equation has obtained from the

conservative form of equations

8u+ 6u+18p

JE— u— —_— =

ot ox pox

%+u%+£a—u=0

ot ox pox

op, op, Ou

o e TP (A.13)
op, op, Ju

o i TP T

0Py Py ou
S tU——t p, — =
ot o P
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APPENDIX B

DERIVATION OF p. AND p,;
(See Reference [1])

Assume the ideal gas equation for the gas mixture,

NS
p=TY p.R, = pRT (B.1)

i=1

Thus, the change of p can be expressed as

Ns
dp = (@_pj dT + z(a_p) dp, (B.2)
aT Pj =l ap’ T.pj. jei

Accordingt to Eqn. (B.1), the partial derivatives of p can be expressed as

op s
- = R = 0oR
[aij, D PR =p

i=1

(B.3)
[6_19] _RT
api T9Pj‘m‘ l

Then insert the above partial derivatives into (B.2)
dp = pRdT + R Tdp, (B.4)

So, p. can be found by using (B.4),

s n(2) (2]
Oe 0, Oe o,

#i

(B.5)

Similarly, p,; can be obtained,
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To find below terms in Eqn. (B.6), use internal energy relation,

api €, P, j#i

e—zp’(jc dT +h, J TSR

11pTrgf i:l

Ozde— — (G—J
p T.p

=C dT+Z( 5 Jdpl

i=1

where e=const

[a_T] _ (ei _e)
api €, P, j=i pCV

Substitute (B.8) into (B.6), we get,

Py = Ci(ei _e)+RiT

v

Finally, substitude (B.5) and (B.10) into (B.2)

IsJ#
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APPENDIX C

LEFT EIGENVECTOR MATRICES OF NON-CONSERVATIVE AND CONSERVATIVE FORM OF
EQUATIONS

The matrix N is the left eigenvector matrix of the non-conservative equations.

_%0/2 ap,/2 ap, /2 ap, /2 ap, 12 ]
w/2—ap, /2 —ap, 12 —ap, 12 —ap, /2
N :L 0 ppr, —P, (779_p1pp1 )/pe PP,P,, p. PP, P, /p,
W 0 ll)zljp2 p2pp2ppl/pe _pp2 jp_p2pp2 /pe pzppzppm/pe
0 PnP,, PPy, Py ! Pe PrsPp, Py, ! Pe ~ Py, (747 T PPy, )/ P. |

(C.1)
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The

matrix K is the left eigenvector matrix of the conservative equations.
_(jp—apeu)/2 ap,/2 (—jpu+ape(u2—E)+appp )/2 (—mu+ape(u2—E)+apppz)/2
(}p+apeu)/2 —ap,/2 (;pu+ape(u2—E)+appp] /2 (—;pu—ape uz—E)—apppz)/Z
_plpplu plppl plppl(uz_E+/)ppl/pe)_pﬁppl plppl(uz_E-i_pppz/pe)A
PP Pap,, pop, (> ~E+pp, Ip.)  pp, W ~E+pp, I p)-php, .
| PnPo U PaP, PPy, (W -E+ o, ! pe) PP, (u2 -E+pp, /| ».)
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APPENDIX D

TIME RATE OF CHANGE OF DENSITY FOR CYLINDRICAL
AND SPHERICAL CASE

The continuity equation can be written as follows:
d p
alete=-lotd, (D.1)

As take the density and velocity are constants along the area and volume, Eqn. (D.1) can
be written as follows:

d

o)V =—pud (D.2)
For cylinder, area and volume can be defined as;

A, =2mh (D3)
v, =mh

For sphere, area and volume can be defined as;

A =4m’

v - 4 a (D.4)

When Eqn’s. (D.3) and (D.4) are substituted into Eqn. (D.2), time rate of change can be

written under the cylindrical and spherical conditions as follows.

d 3pu d

—p)====  “(p),

i roly d”” 3 (D.5)
L) =221 (o).

dr " ’° r dt ¢

As a result, the rate of change of flow variables such as density is higher in spherical

symmetry case than it is in cylindrical case.
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