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ABSTRACT 

 

 

LANGUAGE MODELING FOR TURKISH CONTINUOUS SPEECH 

RECOGNITION 

 

ŞAHİN, Serkan 

M.S., The Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Tolga Çiloğlu 

December 2003, 93 pages 

 

This study aims to build a new language model for Turkish continuous speech 

recognition. Turkish is very productive language in terms of word forms because of its 

agglutinative nature. For such languages like Turkish, the vocabulary size is far from 

being acceptable from only one simple stem, thousands of new words can be generated 

using inflectional and derivational suffixes. In this work, word are parsed into their stem 

and endings. First of all, we consider endings as words and we obtained bigram 

probabilities using stem and endings. Then, bigram probabilities are obtained using only 

the stems. Single pass recognition was performed by using bigram probabilities. As a 
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second job, two pass recognition was performed. Firstly, previous bigram probabilities 

were used to create word lattices. Secondly, trigram probabilities were obtained from a 

larger text. Finally, one-best results were obtained by using word lattices and trigram 

probabilities. All work is done in Hidden Markov Model Toolkit (HTK) environment, 

except parsing and network transforming.  

Keywords: Speech Recognition, continuous speech, language model, bigrams, trigrams, 

two pass recognition, stem, ending, parsing, Turkish morphology. 
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ÖZ 
 
 
 
 
 

 
TÜRKÇE AKAN KONUŞMA TANIMA İÇİN DİL MODELLEMESİ 

 

ŞAHİN, Serkan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Assoc. Prof. Dr. Tolga Çiloğlu 

Aralık 2003, 93 sayfa 

 

 

Bu çalışmada, Türkçe için akan konuşma tanıma sisteminde kullanılacak yeni bir 

dil modeli geliştirilmesi amaçlanmıştır. Türkçe, sondan eklemeli özelliğinden dolayı 

kelime biçimleri açısından çok üretken bir dildir. Böylesi diller için dağarcık boyutu 

kabul edilebilir olmaktan uzaktır. Basit bir gövde kullanarak, yapım ve çekim ekleri 

sayesinde binlerce yeni biçimli kelime üretilebilir.Bu çalışmada sözcükler gövde ve 

eklerine ayrılmışlardır. İlk olarak, ekler kelime gibi kabul edilip ikili kelime 

olasılıkları elde edilmiştir. Daha sonra, ikili kelime olasılıkları yalnızca gövdeler 

üzerinden elde edilmiştir. Bu ikili kelime olasılıkları kullanılarak tek geçişte tanıma 
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işlemi gerçekleştirilmiştir. İkinci çalışma olarak, iki geçişli tanıma işlemi 

gerçekleştirilmiştir. Bunun için öncelikle daha önce elde edilen ikili kelime 

olasılıkları kullanılarak kelime latisleri oluşturulmuştur. İkincil olarak daha geniş bir 

metin dosyasından üçlü kelime olasılıkları elde edilmiştir. Son olarak bu kelime 

latisleri ve üçlü kelime olasılıkları kullanılarak en iyi kelime dizisi ortaya 

çıkarılmaya çalışılmıştır. Gövde-ek ayırma ve ağ dönüştürme işlemleri dışında tüm 

işlemler Hidden Markov Model Toolkit (HTK) ile gerçekleştirilmiştir. 

 Anahtar Sözcükler: Konuşma tanıma, akan konuşma, dil modeli, kelime ikilisi, 

kelime üçlüsü, iki geçişli tanıma, gövde, ek, parçalama, Türkçe biçimbilim. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

1.1 Speech Recognition Basics 

 

Speech recognition is the process performed by a computer (or other type of 

machine) which identifies the spoken words. This process is sometimes referred to as 

speech-to-text. Some terms must be known for understanding speech recognition 

technology. These terms are: utterance, phoneme, speaker dependent/independent 

systems, vocabulary, accuracy, and adaptation. 

The smallest  unit in speech is called phoneme, which does not have any meaning 

alone. An utterance is any stream of speech between two silences. Utterances can be 

a single word, a couple of words, a sentence or even multiple sentences. Silence is 

almost as important as spoken words in speech recognition. Because it takes part at 

the beginning and at end of an utterance. 

Speaker dependent systems are designed according to a specific speaker. These 

systems are more accurate for that specific speaker, but less accurate for other 

speakers. They assume that speaker will speak in a consistent voice and tempo. 
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Speaker independent systems are designed for variety of speakers. These systems are 

most difficult to develop, most expensive and lower accuracy  compared to speaker 

dependent systems. 

Vocabularies (or dictionaries) are list of words or utterances that can be 

recognized by the speech recognition system. Generally, smaller vocabularies are 

easier to be recognized by a computer. The size of vocabulary of a speech 

recognition system affects the complexity, processing requirements and the accuracy 

of the system. Some applications,  which needs to recognize only telephone numbers, 

require a few words, others like dictation machines require very large vocabularies. 

Even though there are no established definitions, we can say 

• Small vocabulary – tens of words 

• Medium vocabulary – hundreds of words 

• Large vocabulary – thousands of words 

• Very-large vocabulary – tens of thousands of words. 

The performance of a speech recognition system is measurable. Accuracy is one 

of the most widely used criterion, it is the measurement how well a recognizer 

recognizes the spoken utterances. This is typically a quantitative measurement which 

can be calculated in several ways. It also includes identifying if the spoken words is 

not in its vocabulary. A good ASR system has an accuracy of 98% or more.  

In order to improve accuracy, some speech recognizer systems have ability to 

adapt to speaker’s voice and speaking style. 

 

 



 3

1.2 Types of Speech Recognition 

 

Speech recognition system can be categorized to different classes according to 

the ability that they have for recognizing. The classes are based on the fact that the 

ability to determine when a speaker starts and finishes an utterance, which is one of 

the difficulties of ASR. These classes can be categorized as follows. 

 

Isolated Word Recognition: Isolated recognition in general means 

recognition of speech based on any kind of isolated speech unit, which can be a word 

or a sub word or even a concatenation of words. Isolated word recognizers usually 

require each utterance to have silence (lack of an audio signal) on both sides. An 

isolated-word system operates on single words at a time - requiring a pause between 

saying each word. This is the simplest form of recognition to perform because the 

end points are easier to find and the pronunciation of a word tends not affect others. 

Thus, because the occurrences of words are more consistent they are easier to 

recognize.  

 

Connected Word Recognition: Connected words recognition can be 

considered as similar to isolated words recognition. The difference is connected 

words recognition requires minimal pauses between utterances, but isolated words 

recognition allows separate utterances. In connected words recognition, longer 
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phrases are possible to recognize, and the necessary computation increases as a 

result. 

 

Continuous Speech Recognition: Recognizers with continuous speech 

must utilize special methods to determine utterance boundaries, thus this type is the 

most difficult one. A continuous speech system operates on speech in which words 

are connected together, i.e. not separated by pauses. Continuous speech is more 

difficult to handle because of a variety of effects. First, it is difficult to find the start 

and end points of words. Another problem is co-articulation. The production of each 

phoneme is affected by the production of surrounding phonemes, and similarly the 

start and end of words are affected by the preceding and following words. The 

recognition of continuous speech is also affected by the rate of speech, i.e. fast 

speech tends to be harder. Continuous speech recognizers allow users to speak 

almost naturally. 

 

1.3 Outline of the Thesis 

 

In Chapter 2, fundamentals of speech recognition will be given. Feature 

extraction, acoustic modeling and Hidden Markov Modeling (HMM) will be 

explained in detail. 

In Chapter 3, Language modeling will be explained in general and then Turkish 

morphology and language modeling for agglutinative languages will be discussed. 
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In Chapter 4, basic search (decoding) techniques will be given and multipass 

search will be explained in detail. 

In Chapter 5, language model used in this thesis, which is core of this thesis, will 

be given and statistics of training corpus and the experimental results are given in 

tables. 

Chapter 6 concludes this thesis and describes ideas for future work. 
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CHAPTER 2 

 

 

FUNDAMENTALS OF SPEECH RECOGNITION 

 

 

 

2.1 Overview of Speech Recognition 

 

Approaches to speech recognition can be divided into different categories [1]. In 

general there are three approaches: 1) the acoustic-phonetic approach,2) the 

statistical recognition or pattern recognition and 3) the artificial intelligence (AI) 

approach. The acoustic-phonetic method is the oldest approach to speech recognition 

and AI is the youngest and the least known. Statistical methods are by far most 

appropriate to model speech. Especially, Hidden Markov models (HMMs) are most 

exclusively used in ASR. The statistical methods consist of following stages: 1) 

acoustic processing (feature extraction), 2) acoustic modeling, 3) language modeling 

and 4) hypothesis search (or decoding).  
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2.1.1 Definition of the Problem 

 

In ASR, first procedure to be done is to convert an unknown speech waveform 

into a sequence of acoustic vectors, i.e. ToooO ,...,, 21= , by a front-end signal 

processor. Each of these vectors is a compact representation of the short-time speech 

spectrum. It is assumed that the utterance consists of a sequence of words, 

nwwwW ,...,, 21= . The duty of an ASR system is to find the most probable string 

of words W  corresponding to an acoustic signal O . We can write this as an 

equation: 

                                  )/(maxarg OWPW
W

=
∧

                                             (2.1)  

This means that the probability of every sequence of words W  need to be 

computed given the acoustics O  and the most probable one will be chosen as the 

recognized output. To achieve this, we use Bayes’ rule to decompose the 

Equation(2.1) into two components; 

                           )(
)/()(maxarg

OP
WOPWPW

W
=

∧

                                       (2.2) 

Since )(OP  is the probability of the data independent of the word string )(W , we 

can simplify this further: 

                                 )/()/( WOPOWP ∝    )(WP                                (2.3) 

The first term, )/( WOP , denote the probability of observing the vector sequence 

O  given some specified word sequence W  and this probability is determined by an 
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acoustic model which is estimated from a speech corpus. As stated earlier, an HMM 

system is used to model the acoustic probability. 

 The second term, )(WP , represents the prior probability of a sequence of words. 

Since this probability does not depend on the acoustic data O , it can be estimated 

from a large text corpus. This probability is known as language model probability. 

Figure 2.1 shows the process described above. 

 

 

 

 

  

 

 

 

    Figure 2.1: Speech recognition system block diagram. The vocabulary, language             
model, and acoustic model components construct a hypothesis for interpreting a 
speech sample. 

 

• the vocabulary defines the possible words that the search can hypothesize, 

representing each word as a linear sequence of phonemes; 

• the language model models the linguistic structure but does not contain any 

knowledge about the relationship between the feature vectors and the words  

• the acoustic model models the relationship between the feature vectors and 

the phonemes 
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2.1.2 Speech Signal Processing and Feature Extraction 

   

Parametric representation of the speech waveform must be obtained for further 

analysis and processing [2]. For doing this it is assumed that the speech signal can be 

regarded as stationary (i.e. spectral characteristics are relatively constant) over a 

short period of time. Therefore, when the speech signal is divided into frames (i.e. 

block of samples) it can be considered stationary and spectral analysis can be 

performed with this frame methodology. The spacing between blocks is typically 

10ms. Blocks are normally overlapped to give a longer analysis window, typically 

25ms. It is usual to multiply each block by a tapered window function (e.g. Hamming 

window) so as to minimize the adverse effects of chopping the speech signal as 

blocks. Before all, the raw signal is pre-emphasized by applying high frequency 

amplification to compensate for the attenuation caused by the radiation from the lips. 

Linear predictive (LP) modeling or Fourier analysis or Cepstrum analysis can be 

used to compute the spectral estimates and the coefficients and the final acoustic 

vectors can be obtained using a number of transformations [1]. Linear predictive 

modeling can be considered as one of the most important analysis techniques. It is 

based on the fact that a speech sample can be approximated as a linear combination 

of past samples and exploits the sample-to-sample correlations among speech 

samples. Cepstral coefficients is another short-time representation of speech and 

computed either directly from FFT spectra or from LP coefficients. Cepstrum 

coefficients calculation using DTFT is shown below. 
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Incoming speech   Real Cepstrum 

         frame   Coefficients 

 

Figure 2.2: Computation of real cepstrum with DTFT 

 

2.1.2.1 Mel Frequency Cepstrum Coefficients 

 

Over the past 40 years of speech recognition research, many feature extraction 

techniques has been tried to find the reliable representation of speech waveform. 

Human auditory system simulates the logarithmic frequency scale not the linear 

frequency scale. Cepstrum analysis does not consider the structure of human auditory 

system so that it can not be a good parameter set. Recognition performance can be 

improved by incorporating this knowledge into the parameter set. One of the popular 

scale which consider human auditory system is Mel scale.  

HTK provides a simple Fourier transform based filterbank which is designed to 

produce a solution similar to a mel-scale [3]. Figure 2.3 shows the general form of  

this filterbank. 
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Log |.| 

 
IDTFT 
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            1m            …        jm        …          pm            Energy in each band 
 

Figure 2.3: Mel-Scale filterbank 
 
 
An approximate conversion to Mel scale is given in (2.4). 

                           )
700

1(log2595 10
Hz

mel
FF +=                                       (2.4) 

HzF = Frequency in Hertz, 

melF =Corresponding Mel frequency. 

In computation of the coefficients, each of the filter produces a log energy 

coefficient that represents the energy in that band. Than inverse DFT is performed to 

get back to cepstral domain and obtain mel-cepstral coefficients. This procedure 

summarized in Figure 2.4. 

 

 

 

1 

frequency 
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                          Figure 2.4: Mel-Cepstrum Block Diagram 

 

The feature vector used for speech recognition is typically a combination of 12 

cepstral and one energy coefficient plus the delta coefficients (+13) plus the 

acceleration coefficients (+13). 

 

2.1.3 Acoustic Modeling 

 

Acoustic modeling plays a critical role in improving accuracy and is the central 

part of any speech recognition system. Acoustic modeling quality is affected various 

causes of contextual variation. Some of these variations are due to the environment 

(is it noisy? are there multiple speakers?), the channel (telephone? wide band 

microphone?), the speaker (male or female? age?), or the speaking style (dictated or 

spontaneous?). In order to minimize these effect acoustic modeling corpus must me 

chosen quite large. 

After obtaining the feature vectors belonging to speech waveform, Hidden 

Markov modeling (HMM) can be used to model the subword units. 

Framing Window-
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2.1.3.1 Hidden Markov Modeling 

 

As stated earlier, the most popular approach to acoustic modeling is by use of 

HMMs. The HMM is a doubly stochastic state machine that has a Markov 

distribution associated with the transitions across various states and a probability 

density function that models the output for every state. Depending on the complexity 

of the recognition problem, this distribution can be modeled as a discrete-valued or 

continuous-valued process [4]. 

Each HMM represents a unit of sound, such as a word or a sub-word unit (e.g. 

phoneme) that is to be recognized. Each model is constructed using statistics 

calculated from examples of the speech unit that the model represents. This process 

is referred to as ‘ training’ the models. The generation process of an HMM can be 

depicted as shown in Figure 2.5. 

                                

 

                         1π        11          12a                         23a        

 

 

 

 

                          1o    2o                              …                                      To    

Figure 2.5: Representation of a three state HMM and a possible sequence 
of generated observations. 

Observations 

States 

11a 22a 33a
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We can define HMM parameters as follows [5]: 

},...,,{ 21 ToooO = : The observation sequence correspond to the output of the 

system being modeled. 

},...,,{ 21 TsssS = : A sequence of states representing the state space. Here ts  

represents the state at time t. 

:)|( 1 isjsPa ttij === −  The probability of taking a transition from state i to state 

j.   Nji ≤≤ ,1 .  

}{ ijaA = : Probability transition matrix. 

:)|()( isoPob ttti ==  The probability of observing the symbol to  when being in 

state i at time t. 

)}({ ti obB = : An output probability matrix (diagonal matrix with diagonal 

entries). 

:}{ iππ =  A initial state distribution. 

),,( πBA=Φ  indicates the whole parameter set of an HMM. 

Given the definition of HMM above, three basic problems of it must be stated 

before its application. 

1. The Evaluation Problem: Given an HMM Φ  and a sequence of 

observations },...,,{ 21 ToooO = , what is the probability that the observations 

are generated by the model, )|( ΦOP ?  



 15

2. The Decoding Problem: Given a model Φ  and a sequence of 

observations },...,,{ 21 ToooO = , what is the most likely state sequence 

},...,,{ 21 TsssS =   in the model that produces the observations? 

3. The Learning Problem: Given a model Φ  and a sequence of 

observations },...,,{ 21 ToooO = , how should we adjust the model parameters 

),,( πBA  in order to maximize )|( ΦOP ? 

 

2.1.3.1.1 How to  Evaluate an HMM – The Forward Algorithm  

 

We have a model ),,( πBA=Φ  and a sequence of observations },...,,{ 21 ToooO = , 

and )|( ΦOP  must be found. In order to do this, the probability for observing the 

sequence up to a given feature vector is computed over all possible state sequences 

(Figure 2.6). 

                          

 
0 

 
0 

 
 
 )|..( 331 sooP  

 
 
 )|..( 341 sooP

 
0 

 
 
     )|,( 221 sooP  

 
 
 )|..( 231 sooP  

 
 
 )|..( 241 sooP

 
 

)|( 11 soP  

 
 

)|,( 121 sooP  

 
 

)|..( 131 sooP  

 
 
 )|..( 141 sooP  

 

Figure 2.6: Example of the forward algorithm. 

 

When processing the first feature vector, the probability for being in the first state 
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of the chain must be one and the probability for being in any other state must be zero, 

since it is not allowed to start the sentence in the middle of a word. 

Summing over all possible state sequences requires summing over TN  possible 

sequences. Instead, we can consider calculating the forward variable )(itα  defined 

as the probability of the partial observation sequence tooo ,...,, 21  ending in state is  at 

time t.  

                               )|,...()( 21 Φ== isoooPi tttα                               

We can solve )(itα  recursively as follows 

Step 1: Initialization 

                                )()( 1obi iit πα =        Ni ≤≤1  

Step 2: Induction 

                                )(])([)( 1
1

1 +
=

+ ∑= tj

N

i
ijtt obaij αα      11 −≤≤ Tt  

                                                                                           Nj ≤≤1                                                

Step 3: Termination  

                                             ∑
=

=Φ
N

i
T iOP

1
)()|( α                   

In a similar way we can define backward variable )(itβ  defined as the 

probability of the partial observation Ttt ooo ,...,, 21 ++  after starting in state is  at time t 

until the end of the observation sequence:  

                                   ),|...()( 21 Φ== ++ isoooPi tTtttβ  

Backward procedure is similar to forward procedure: 
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1.Initialization: 

                                    1)( =iTβ                           Ni ≤≤1  

2.Induction: 

                       ∑
=

++=
N

j
ttjijt jobai

1
11 )()()( ββ                 11 −≤≤ Tt  

                                                                                               Ni ≤≤1  

 

Both the forward and the backward procedure can be used to solve the evaluation 

problem. Besides, the product of these probabilities gives another way to calculate 

)|( ΦOP . 

 

2.1.3.1.2 How to Decode an HMM – The Viterbi Algorithm 

 

The forward algorithm computes the probability that an HMM generates an 

observation sequence by summing up the all possible path probabilities, so it does 

not provide the best path (or state sequence). As a matter of fact, finding the best 

state sequence is the cornerstone for continuous speech recognition. This problem is 

similar to to find the optimal path in dynamic programming. Viterbi algorithm which 

is based on dynamic programming can be used to solve this problem.  

The Viterbi algorithm can be regarded as modified forward algorithm or as a 

dynamic programming algorithm applied to HMM. It stores and then remembers the 

optimal state sequence instead of summing up all possible path probabilities coming 

to the same destination state. Viterbi algorithm is said to be time synchronous 
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because it completely processes at time t before going into the time t+1. Finally a 

backtracking pass gives the required state sequences. This procedure is shown in 

Figure 2.7. 

             

                                                    

                                  4                  7 

                  1                 3                6  

                   2                  

                                           5 
 
 
               t=0              1                2                3             
  

 
Figure 2.7: Example of the Viterbi algorithm. 

 

Before giving the complete algorithm, we must define an auxiliary variable,       

                      ])|,,...,,[(max)( 21... 1,2,1

Φ==
−

OisssPi tssst
t

δ  

which gives the highest probability that partial observation sequence and state 

sequence up to time t can have, when the current state is i. Also need to store the 

state argument  at time t-1, from which the best transition is made to the current state. 

This will be kept in the vector )( jtψ . The complete Viterbi algorithm is as follows: 

1.Initialization: 

                           0)(
)()(

1

11

=
=

i
obi ii

ψ
πδ

             Ni ≤≤1  

 

S
T
A
T
E
S 

TIME

8
P(i)  probability of path i 
 
P(2) > P(1) 
 
P(3) > P(5) 
 
P(7) > P(8) 
 
Shaded path is the best
partial path according to the
Viterbi algorithm. 
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2.Recursion:          

                           ])([maxarg)(

)())((max)(

1
1

11

ijt
Ni

t

tjijtNit

aij

obaij

−
≤≤

−≤≤

=

=

δψ

δδ
            ,2 Tt ≤≤     Nj ≤≤1  

3.Termination: 

                         ))((maxarg

)]([max

1

*
1

*

iq

iP

T
Ni

T

TNi

δ

δ

≤≤

≤≤

=

=
 

4.State sequence backtracking recovery: 

                         )( *
11

*
++= ttt qq ψ               .1,...,2,1 −−= TTt  

Using max function instead of sum function is the big advantage of the Viterbi 

algorithm over the forward algorithm [6]. Therefore it is possible to work with 

logarithm of all probabilities. The resulting logarithmic score range stays within the 

limitations of most computers. 

 

2.1.3.1.3 The Learning Problem and Baum-Welch Algorithm  

 

This the most difficult of the three problems. The problem can be solved by 

Baum-Welch algorithm, also known as the forward-backward algorithm. To describe 

the Baum-Welch algorithm, we need to define two more auxiliary variables, in 

addition to the forward and backward variables defined in a previous section. These 

variables can however be expressed in terms of the forward and backward variables.  

First one of those variables is defined as the probability of being in state i at time 

t and in state j at time t+1. Formally,  
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                                         ),|,(),( 1 Φ=== + OjsisPji tttξ  

This is the same as,  

                           )|(
)|,,(),( 1

Φ
Φ==

= +

OP
OjsisPji tt

tξ  

Using forward and backward variables this can be expressed as,  

                           
∑∑

= =
++

++= N

i

N

j
tjtijt

tjtijt
t

objai

objai
ji

1 1
11

11

)()()(

)()()(
),(

βα

βα
ξ

 

The second variable is the a posteriori probability,  

                                               ),|()( Φ== OisPi ttγ  

that is the probability of being in state i at time t, given the observation sequence and 

the model. In forward and backward variables this can be expressed by,  

                                                
∑

=

= N

i
tt

tt
t

ii

iii

1

)()(

)()()(
βα

βαγ
 

One can see that the relationship between )(itγ  and )(itξ  is given by,  

                                                     ∑
=

=
N

j
tt jii

1
),()( ξγ  
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The expected number of transition from state  i is then, ∑
−

=

1

1

)(
T

t
t iγ  

                                                  

The expected number of transitions from state i to state j is then, 

                                                  ∑
−

=

1

1
),(

T

t
t jiξ     

We can estimate new values of the parameters given the observation as: 

π = expected frequency of being in state i at time =1. This is equal to )(1 iγ . 

ija =                                                                             

                 ∑

∑
−

=

−

== 1

1

1

1

)(

),(
T

t
t

T

t
t

i

ji

γ

ξ

     

)(kbj = 

Expected number of transitions from state i to state j   

Expected number of transitions from state i

Expected number of times in  state j  observing kv     

      Expected number of times in state j
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                  ∑

∑

=

=
== T

t
t

T

t
t

j

j
kvto

1

1

)(

)(

γ

γ

 

 

Hidden Markov models have some assumptions about the structure of the process 

that they represent however these are not necessarily true for speech signals [7]. 

These are; 

1) The observations accurately represent the signal. 

2) The observations are independent of each other. 

3) The between state transition probabilities are constant. 

 

2.1.3.2 Modeling Context 

 

Since speech is produced by articulatory movements, the production of a phone is 

strongly affected by both the preceding and the following phones. When speaking 

there are not discrete jumps between phones, there is a motion when passing one 

phone to another [8]. This phenomenon is called as coarticulation. Coarticulation 

means that the acoustics of a phone may be reasonably consistent when surrounding 

phonetic context is taken into account, compared with when a single model is used 

for the phone for all context. Therefore, in speech recognition it is taken into account 

to improve accuracy. 
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Context-dependent phone models are the most usual way to model the 

coarticulation effects. It involves using several basic subword units for each phone 

instead of one unit. Contexts used in speech recognition can be defined as follows: 

Monophone context: This does not consider the surrounding context. In Turkish 

this means 32 phones (plus silence) are required. The word “kelime” can be 

represented using monophones as “k   e   l   i   m   e”. 

Allophone context: this also involves no context, but there are multiple possible 

units for each phone. Using same example: Kelime = k(2)  e(1)  l(2)  i(1)  m(1)  e(1). 

Biphone context: In these case each phone is represented with a particular left or 

right context. There are possible 32 x 33 = 1056 left or right biphone context phone 

models (plus silence). Kelime = “$-k  k-e  e-l  l-i  i-m  m-e” (left biphones) and “k+e  

e+l  l+i  i+m  m+e e+$” (right biphones). (Note that $: word boundary, -: a left 

context, +: a right context.)  

Triphone context: Both left and right context are used in order to represent each 

phone. There are possible 32 x 33 x 33 = 34848 triphone context dependent models 

(plus silence). Kelime = “$-k+e  k-e+l     e-l+i  l-i+m  i-m+e  m-e+$”. 

In modern continuous speech recognition systems, the most popular context 

dependent subword unit employed is the triphone model. In this thesis triphone 

modeling is used. We also consider what to do at word boundaries. There are two 

basic possibility for this: 
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Cross word models: In this case phonetic context is taken into account across 

word boundaries. For example: 

Kelime  tanıma: $-k+e   e-l+i   l-i+m   i-m+e   m-e+t   e-t+a   t-a+n   a-n+ı   n-ı+m   

ı-m+a   m-a+$. 

Word internal models: phonetic context across word boundaries is not used. For 

example: 

  Kelime  tanıma: $-k+e   e-l+i   l-i+m   i-m+e   m-e+$   $-t+a   t-a+n   a-n+ı       

n-ı+m   ı-m+a   m-a+$. 

In continuous speech there aren’t silences between words, therefore cross word 

models is important. On the other hand, there are some advantages of the word 

internal case: The number of the contexts in cross word is more than word internal 

case since new context are introduced. The words in word internal case are 

considered to be in isolation. This property makes the decoding (search) process 

easier compared to cross word case. 

Even though the training data is quite large, it is impossible that it contains all 

contexts in a language. For a good speech recognition system it is not acceptible not 

to model the contexts that do not occur in the training data. One of the solution of 

this problem is backing-off. In this case, if there is not enough example to train a 

triphone context dependent model then a less specific biphone context dependent 

model is used instead. In the same way, the context dependent monophone model is 

used for biphone context dependent model that does not have enough data to train. 
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However, relatively few data are trained by using full triphone context when data is 

sparse (especially cross word case) and this causes loss of some advantage of the 

cross word property. Sharing is another solution to data sparseness problem. Rather 

than backing-off to less specific models, it is based on sharing models between 

different context [9]. This approach means that context dependency is maintained 

while each model has enough training data. 

 

2.1.3.3 Shared Context Dependent Models 

 

Sharing scheme can be divided into two approaches: 

Bottom-up approach: This begins by assigning a triphone context dependent 

model to all models. Since not all of these models will have enough training data, a 

merging process is used to find the closest models by using some distance measure. 

The main drawback of this approach is that training examples are required for all 

initial models. So the unseen context in the training data can not be modeled. 

Therefore, backing-off procedure is used when encountered unseen context during 

recognition process. 

 Top-down approach: This initially assumes that all the context are the same 

and are grouped. Then a splitting procedure is used to get more accurate and specific 

models. One way of realizing this is decision tree. The root of the tree is a context 

independent model. Each node of the tree contains a binary question about the 

context to get more specific models by splitting the current model (e.g. “is the left 

context a nasal?” or “is the right context /l/?”). The leaves of the tree correspond to 
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resultant context dependent models. That the every context is modelled by a context 

dependent model is an advantage of this approach. The key constraints for 

constructing a decision tree are: 

• Each leaf (context dependent model) must have a minimum number of 

training examples. 

• A finite set of questions must be chosen to split each node. 

• The resultant leaves must be able to be well modelled by HMMs. 
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CHAPTER 3 
 

 

LANGUAGE MODELING 
 

 

 

3.1 Languge Modeling 

 

Language modeling is required for large vocabulary continuous speech 

recognition to select the most likely word sequence from a large number of 

alternative word hypotheses produced during the decoding (search) process. Since 

the word boundaries in the continuous speech are not known, several word 

hypotheses are produced in addition to intended or correct ones.  

Statistical language modeling is concerned with the probability of naturally 

occuring word sequences in a language. It is essential to reduce the complexity of the 

recognition task. Its job is simply to put high probability on word sequences that are 

more likely to appear and low probability on word sequences that are less likely to 

appear.  Given a word sequence Nwww ...21  to be used as a test corpus, perplexity 

and entropy scores can be used to measure the quality of language model.  

N
N

i ii wwwP
Perplexity ∏

= −

=
1 11 )...|(

1
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The perplexity of a language model is defined as the reciprocal of the (geometric) 

average probability assigned by the model to each word in the test set [5]. Entropy 

score is related to the perplexity as follows: 

                          PerplexityEntropy 2log=  

If a language has a higher perplexity, then this means that the number of words 

branching from a previous word is larger on average. Therefore, we can consider the 

perplexity as an indication of the complexity of a language. The perplexity of a 

particular language can affect vocabulary size, grammar rules and estimated 

probabilities. The goal is to obtain small values of these measures. 

 

3.1.1 N-gram Language Models 

 

The most commonly used, simplest and successful technique for constructing a 

language model for a language is the N-gram model. We can write the probability of 

any sequence of words, Nwww ...21 , (or the probability of a sentence) as follows: 

)...|()...|()|()|()()...( 11321421312121 −= NNN wwwPwwwwPwwwPwwPwPwwwP

                             ∏
=

−=
N

i
ii wwwP

1
11 )...|(                

The word sequence, 121 ... −iwww  ,is said to be the word history or simply history 

for the word iw . An N-gram model approximates the probability of a word 

occurrence depends only on the previous n-1 words: 

                                        )...|()...|( 1111 −+−− = iniiii wwwPwwwP  
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Unigram, bigram and trigram are the most commonly used N-grams. These are 

defined respectively as follows: 

)( iwP                     = probability of word iw , 

)|( 1−ii wwP            = probability of iw  given a one word history 1−iw , 

)|( 21 −− iii wwwP      = probability of iw  given a two word history 1−iw , 2−iw . 

Maximum likelihood estimate of N-grams can be calculated from simple 

frequency counts. General likelihood formula for an N-gram model is  

                             )...(#
)...(#)...|(ˆ
11

1
11

−+−

+−
−+− =

ini

ini
inii ww

wwwwwP  

For a trigram case (N=3) the likelihood 

                              )(#
)(#)|(ˆ

12

12
21

−−

−−
−− =

ii

iii
iii ww

wwwwwwP  

where )(# xyz  indicates the number of occurrences of trigram xyz   in the training 

corpus and )(# xy  is the number of occurrences of bigram xy . For a vocabulary that 

has V  words, there are possible 3V  trigram. Many of them will not appear in the 

training corpus or appear several times. This means estimation using above equation 

will be a poor estimate. We can say there is sparse data problem. 

Discounting and back-off  methods can be used to alleviate the sparse data 

problem [10]. In discounting methods, the trigram counts of more frequently 

occurring trigrams are reduced and the resulting excess probability is distributed 

amongst the less frequently occurring trigrams. In back-off method, the probability 

of trigrams (or bigrams) that occur few times are replaced by a scaled bigram (or 
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unigram) probability and same procedure is applied for bigrams which appear few 

times in the training corpus. 

 

3.1.2 Discounting Methods 

 

This section describes some discounting methods for removing the data sparsity 

problem[29]. The term rn  denotes the number of words occurring r times. 

 

3.1.2.1 Absolute Discounting 

 

In this method, the frequency of a word is reduced by a constant c. Where c is 

often defined as the upper bound: 

                                     
21

1

2nn
nc
+

=  

So the probability of word iw  given the history 11... −+− ini ww  is calculated as: 

                                   )...(#
)...(#)...|(ˆ

11

1
11

−+−

+−
−+−

−
=

ini

ini
inii ww

cwwwwwP  

 

3.1.2.2 Linear Discounting 

 

In this method, the probability of iw  given 11... −+− ini ww  is calculated as:                                    

                     )...(#
)...(#)...|(ˆ
11

1
11

−+−

+−
−+− =

ini

ini
inii ww

wwwwwP α  
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where scaling factor α  is defined as: 

                                          
C
n11−=α                    

 where C is the number of events (unigrams). 

 

3.1.2.3 Good-Turing Discounting 

 

In this method, the count of an event occurring r  times is discounted with 

                                          
r

r
r n

nrGT 1)1( ++=  

The probability of iw  given 11... −+− ini ww  is calculated as: 

                )...(#
)...|(ˆ

11

)...(#
11

1

−+−
−+−

+−=
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ww
inii ww

GT
wwwP ini

 

 

3.1.2.4 Witten-Bell Discounting 

 

This is similar to the linear discounting in which the probability is calculated as: 

                                 )...(#
)...(#)...|(ˆ
11

1
11

−+−

+−
−+− =

ini

ini
inii ww

wwwwwP α  

where α is defined differently as: 

                                 Nww
N

ini +
−=

−+− )...(#
1

11

α  
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where N is the number of distinct words that can follow  11... −+− ini ww  in the 

training data. 

 

3.1.3 Back-off Smoothing 

 

The above discounting methods of redistributing probability from observed 

events to unseen events.  Additionally, if events are infrequently observed then they 

can be smoothed with more frequently observed events. 

In any text corpora the number of observable bigrams and trigrams are limited. In 

this case, the probabilities of bigrams and trigrams that are seen few times in the 

training corpus are calculated by back-off method. This means that the trigram 

probability is replaced by a scaled bigram probability and the bigram probability is 

replaced by a scaled unigram probability, 

                               )|(),()|(
)()()|(

12121

11

−−−−−

−−

=
=

iiiiiii

iiii

wwPwwwwwP
wPwwwP

α
α

 

where α is a back-off function that ensures the corresponding bigram and trigram 

probabilities is properly normalized. 

Calculation of back-off bigram probability is as follows [3]: 

Let the total number of occurrences of label i be ∑ =
=

L

j
jiNiN

1
),()(  where L is 

the number of distinct labels and N(i, j) is the total number of occurrences of adjacent 

pair of  i  and  j  the bigram probability P(i, j) is given by 
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otherwise
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where f  is a floor probability and α is chosen to ensure that .1),(
1

=∑ =

L

j
jiP  

For back-off bigrams, the unigram probabilities are given by 
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where u is unigram floor count and ∑ =
=

L

i
uiNN

1
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The backed-off bigram probabilities are given by  

        
⎩
⎨
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=
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jiP
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tjiNif >),(
 

 

where D  is a discount and t is a bigram count threshold.. Discounting  is the 

process in which a small part of the available probability mass is deducted from the 

higher bigram counts and distributed amongst the infrequent bigrams. When  a 

bigram count falls below the threshold t, the bigram is backed-off to the unigram 

probability suitably scaled by a back-off weight in order to ensure that  

∑ =
=

L

j
jiP

1
1),( , i.e. 

                                ∑
∑

−

−
=

Bj

Bj

jP

jiP
i

ε

εα
)(1

),(1
)(  

where B is the set of all words for which P(i, j)  has a bigram.  
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In Figure 3.1 illustration of a back-off node is shown. Only observed bigrams are 

connected by direct word transitions with correspondent bigram probabilities. For 

back-off bigrams, the last state of previous word (i.e. 3w ) is first connected to the 

back-off node with transition probability equal to back-off weight ( )( 3wα ). The 

back-off node is then connected to the beginning of each word mw  with transition 

probability equal to corresponding unigram probability )( mwP . 

 

                                               

 

                                                               

 

 

                                                                 

                                                                               

 

  

 

                       Figure 3.1: Illustration of back-off node. 
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3.2 Turkish Morphology 

 

Turkish has an agglutinative morphology with productive inflectional and 

derivational suffixations. Since every productive suffix produces a new word, the 

number of words in Turkish is very high. There can be greater than 400.000 distinct 

words in a text corpus with 10 million words [11]. Since there are so many words in 

the language, it is unlikely  that the lexicon for large vocabulary continuous speech 

recognition contains all the words. As a result of this, out of vocabulary words will 

be large. Some words that have very rare usage will not be appear in a very large text 

corpus. An example for this case is [12]: 

 

OSMANLILAŞTIRAMAYABİLECEKLERİMİZDENMİŞSİNİZCESİNE  

 

which can be broken down into morphemes as follows: 

 

OSMAN+LI+LAŞ+TIR+AMA+YABİL+ECEK+LER+İMİZ+DEN+MİŞ+SİNİZ

+CESİNE 

 

On the other hand, Turkish has a free constituent order, however the order of 

constituents may be changed to emphasize certain constituents of the sentence. The 

word which will be emphasized is put before the predicate of the sentence. This is 

called as the placement of constituents rule. For example, all of the following 

sentences have the same meaning, but emphasized word in each, which is written in 

bold, is different: 
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• Murat yarın trenle İzmir’e gidecek. (Usual order) 

• Murat yarın İzmir’e trenle gidecek. (Instrumental is emphasized) 

• Murat trenle İzmir’e yarın gidecek. (Time is emphasized) 

• Yarın trenle İzmir’e Murat gidecek. (Subject is emphasized) 

Turkish morphology exhibits vowel harmony. Suffixation is subject to vowel 

harmony. The last vowel of the stem affects the first vowel of the suffix. Stem is the 

word without suffix. It is different than the root while stems may include suffixes. A 

stem ending with a back vowel (a, ı, o, u) takes a suffix starting with a back vowel, a 

stem ending with a front vowel (e, i, ö, ü) takes a suffix starting with a front vowel. 

 

3.2.1 Language Modeling for Agglutinative Languages 

 

Language modeling for an agglutinative language is different than language 

modeling for a language like English. An algorithm for an agglutinative language is 

given below [13]. In this algorithm, the roots and endings are considered as language 

model entries: 

1. All possible endings are identified by means of a vocabulary. 

2. The endings are extracted from all dictionary words. This can be done either 

by using a dictionary in which endings and stems are already defined or by 

processing the text to find endings and stems. 

3. Using a sufficiently large text and the method in step 2, a text composed of 

stems and endings separated by white spaces is created. 

4. Using the text obtained in step 3, the vocabulary that will be used for 

language modeling is constructed. 
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5. For each stem, a set of probability for the endings is calculated. 

6. For any combination of stem and endings, an n-gram language model is 

generated. 
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CHAPTER 4 

 

 

SEARCH 

 

 

 

4.1 Introduction 

 

The search (decoding) problem in large vocabulary speech recognition can be 

stated as finding the most likely word sequence given the acoustic models and the 

language model constraints, and the spoken utterance (or acoustic data). This is a 

demanding problem since word boundary information is not available in continuous 

speech, thus each of the words in the vocabulary may be hypothesized to start at each 

frame of acoustic data. Decoding strategy combines the scores obtained on the 

acoustic and language models and generates the possible word sequences (or 

hypotheses) from which we need to find the most likely for recognition. The task for 

the search algorithm is to evaluate the following equation, 

 

)|()(maxarg
)(

)|()(maxarg)|(maxargˆ WOPWP
OP

WOPWPOWPW
WWW

===      (4.1)                         
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i.e., determine Ŵ  given the various models and the acoustic data. Direct evaluation 

of all the possible word sequences is impossible (given the large vocabulary). An 

efficient search algorithm will consider only a very small subset of all possible 

sequence of words. Since word boundaries are not known at recognition time, search 

becomes more difficult. For example, if vocabulary has 50,000 words then a 

potential 50,000 words can start each frame. 

 

4.2 Search Algorithms  

 

As mentioned above, it is impossible to terminate the search in a practical 

amount of time if we consider all sequences of words during decoding. Therefore, we 

need to restrict our search space in some meaningful fashion. Some techniques for 

reconstructing the search space are given as follows [4]: 

• Optimized Hypothesis Generation involves merging common partial 

hypotheses. A set of all partial sequences (hypotheses) is constructed in the 

form of a tree where common portions of the hypotheses are tied together. 

Refer to Figure 4.1 for an illustration. 

 

 

 

 

 

Figure 4.1: Optimized Hypothesis Generation 
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• Problem-space Reduction involves transforming the state space of the 

problem to make the search more efficient. This is done by merging common 

states in different hypotheses so that they need not be evaluated again and 

again. Figure 4.2 has an example. 

 

 

 

 

 

 

 

         Figure 4.2: Problem space reduction by merging 

 

• Search Reduction entails pruning away hypotheses that have partial 

evaluation scores less than some complete evaluation or some pre-determined 

threshold.  

• Knowledge Application makes use of expert information to improve the 

efficiency of the search. A tight constraint in the knowledge base translates 

directly into smaller search space. 

Decoder is forced to make sub-optimal chooses and this approximations does not 

affect the recognition error rate. Based on these approximations some algorithms are 

evolved: 1-)Viterbi Decoding [14,15], 2-)Stack Decoding [16,17]. Viterbi decoding 

is based on dynamic programming algorithm. This is a time synchronous algorithm, 

i.e., search progresses frame by frame, forward in time. Stack decoding is a time 

a b c d

e c d

a b c d

e



 41

asynchronous algorithm: the best scoring path or hypothesis, irrespective of time, is 

chosen for extension and this process is continued until a complete hypothesis is 

determined. 

 

4.2.1 Viterbi decoding 

 

Viterbi search and its variants belong to the breadth-first search techniques. Here, 

all hypotheses are pursued in parallel and gradually pruned away as the correct 

hypothesis emerges with the maximum score. It is based on the solution to 

Evaluation Problem for HMMs (discussed in chapter 2).  Instead of taking 

summation over all possible state sequences to uncover the best word sequence, we 

can approximate the summation with the maximum to find the best state sequence. 

Therefore we can write equation (4.1) as: 

 

)}|...,(max)({maxarg)|()(maxargˆ
1...1

WssOPWPWOPWPW NssWW N

≅=  

 

This equation is referred to as the Viterbi approximation. This means that the 

most likely word sequence is approximated by the most likely state sequence. 

Viterbi search is a time-synchronous search algorithm. That means it completely 

processes time t before going on to time t+1. Using all states at time t-1 each state is 

updated by the maximum score (instead of sum of all incoming paths) at time  t. At 

the same time, it records the backtracking pointer to remember the best path. At the 

end of the search, these backtracking pointers are traced and the most probable state 
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sequence is found. We interested in optimal word sequence in speech recognition and 

not the optimal state sequence. Therefore, we keep the backtracking pointers to 

remember the word history of the current path. So when we reach at the end of the 

search, the optimal word sequence can be recovered. The benefit of keeping 

backtracking pointer is that we no longer need to keep the entire trellis. It is enough 

to keep the previous and the current time columns in the trellis computation. 

For large vocabulary tasks, the complexity of the search space becomes larger 

and a Viterbi beam search is used to reduce the search space. In Viterbi beam search 

only the hypotheses whose likelihood falls within a fixed radius of the most likely 

hypothesis are considered. It exploits the observation that many states in the state 

lists have zero or near-zero scores and therefore need not be considered towards a 

solution. The best beam size can be determined empirically or adaptively. The 

advantage of the beam heuristics is that it allows the search to consider many good 

hypotheses in absence of a clearly dominant solution. Only a minor modification of 

the Viterbi algorithm results in the Beam search [17]. Figure 4.3 illustrates of single 

decoding process for Viterbi algorithm. 

HTK uses token passing algorithm [18] to perform the search. A token represents 

a partial path through the network extending from time 0 through to time t. At time 0, 

a token is placed in every possible start node. Each time step, tokens are propagated 

along connecting transitions stopping whenever they reach an emitting HMM state. 

When there are multiple exits from a node, the token is copied so that all possible 

paths are explored in parallel. As the token passes across transitions and through 

nodes, its log probability is incremented by the corresponding transition and 
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emission probabilities. A network node can hold at most N tokens. Hence, at the end 

of each time step, N best tokens are survived. N=1 is sufficient for most purposes.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: Viterbi decoding example for two words with two phonemes 
each: (0) possible start points of the sentence, (1) the first possible word 
end points, (2) first possible word transitions, (3) possible end points for 
the sentence. Best path obtained following bactracking pointer is shown 
in gray background. 

 

4.2.2 Stack decoding 

 

Since stack decoding is out of scope of this thesis, we will briefly discuss it. It is 

a depth-first technique in which the most promising hypothesis is pursued until the 

end of the speech data is reached. It is a heuristic search – the key is choosing the 

most probable hypothesis: the function used to choose this not only consider the 
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probability of the partial hypothesis or path, but also must estimate the probability of 

the hypothesis explaining the rest of the acoustic sequence. 

An important advantage of the stack decoding algorithm is its consistency with 

the forward-backward training algorithm. The disadvantage is that an extra function 

is required for the comparison of the hypotheses of different lengths. The basic stack 

decoding algorithm [16,17] can be summarized as follows: 

1. Pop the best partial hypothesis from the stack. 

2. Apply acoustic and language model fast matches to shortlist the candidate 

next word. 

3. Apply acoustic and language model detailed matches to candidate words. 

4. Choose the most likely next word and update all hypothesis. 

5. Insert surviving new hypotheses into the stack. 

 

4.3 Multipass search 

 

This class of search strategies have found widespread use in recent LVCSR 

systems. An approximate and efficient search with simple acoustic and language 

models is used to generate a lattice of alternatives or a subset of hypotheses that are 

more likely than others. In subsequent passes, more detailed decoding (by using 

more complex models) is used over this reduced search space to find correct 

hypothesis [19,20]. The first search pass produces either an N-best of possible word 

sequences or a word graph (or lattice) as its output. For example, an initial pass can 

be performed using word-internal context-dependent phones with a bigram language 
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model to generate a list of candidate hypotheses. Then, in a second pass of decoding, 

a trigram language modeling can be used with cross-word context dependent words.  

The problem with this is that an error in the first pass can never be recovered, 

hence large lattices must be used. The advent of N-best search has been instrumental 

to the advancement of multipass search techniques.  

 

4.3.1 N-best search 

 

The optimal N-best decoding algorithm [21] is quite similar to the Viterbi search. 

Viterbi decoding is a simple case of N-best search. Viterbi exhibits a 1-best approach 

while N-best search finds all hypothesis sequences within the specified beam. It then 

allows only N top-scoring hypotheses to propagate to the next state. This state-

dependent pruning is independent of the global Viterbi beam threshold. 

The sources of information on speech used for recognition purposes can be 

extremely diverse and are correspondingly associated with different costs in terms of 

computation and memory requirements. A hypothesis that scores the highest given 

all these knowledge sources will be an optimal solution to the recognition problem. 

But this typically requires an impractically large search space. It is advantageous to 

use a strategy in which the most efficient knowledge sources are used first to 

generate a list of top N hypotheses. These hypotheses can later be re-evaluated with 

other, more expensive knowledge sources to arrive at the best hypothesis. N-best 

search provides an efficient method of integrating different knowledge sources and 

makes the search process more modular. The scores from different knowledge 

sources can be combined using weights chosen to minimize the recognition error. 
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 For example, Table 4.1 shows an N-best list where N=5. 

Table 4.1: An example of 5-best list. 

 
 
 
 
 
 
                                    

 

4.3.2 Word lattices and word graphs 

 

The number of N-best hypotheses might grow exponentially with the length of 

the utterance. Thus, word lattices and word graphs are introduced to replace N-best 

list with a more compact representation of alternative hypotheses. 

On the other hand, generating one-best results using detailed acoustic models and 

long span language models is a computationally expensive process and hence it takes 

lots of time. For every small changes made to the system, it is required to run the 

decoder from the beginning. We can speed up the decoding operation and see the 

effects of small changes in the system to the results by initially generating lattices. 

These lattices contain the most likely hypotheses for each test utterances instead of 

the single most likely sentence obtained in a single pass. Lattice generation is a fairly 

expensive process. But once it is produced, its rescoring takes lesser time. 

Lattices can be used to constrain the search space (this is why system speeds up) 

for the second pass of decoding. They can be seen as a shrinking of search space. 

This scheme allows us to rescore lattices with new better (or computationally 

expensive) acoustic or language models without a full decoding. We applied only 

1. maçta olaylar yaşandı. 
2. çirkin olaylar yaşandı. 
3. bu anlar yaşandı. 
4. bu olaylar yaşanmazdı. 
5. bu görüntüler yaşandı. 
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larger (3-grams) language model to the lattices and then obtained one-best results. 

We used detailed acoustic models in the first pass, thus same acoustic models were 

used in the second pass. 

 

4.3.2.1    Lattice generation  

 

As mentioned before HTK uses token passing algorithm for recognition. A token 

represents a partial path from time 0 to time t. In one best recognition case, the 

tokens are updated by adding language model likelihoods to them in word end 

instances. The tokens from equivalent partial paths are recombine and only the most 

likely token survives to propagate into the rest of the network. The less likely tokens 

are discarded. The calculations are performed only on the most likely one. 

When a word lattice is needed then the less likely tokens are not discarded but are 

linked to the most likely one and the combined structure propagates into the 

following network. The calculations in the remainder of the network are performed 

on the most likely one but at the end of the utterance all of the tokens are used in 

construction of a lattice of alternative hypotheses [7]. An example lattice is shown in 

Figure 4.4. 
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Figure 4.4: An example lattice. 

 

4.3.2.2   Lattice pruning 

 

Lattices generated during decoding are very large and need to be shrunk since it 

also contains unlikely hypotheses. If we prune the lattices by discarding the paths 

that are unlikely, then the rescoring process becomes faster. Consequently, the size of 

the lattices can be reduced without altering the results obtained if it is rescored and 

reducing its accuracy. 

When a lattice is pruned, the likelihood of the most likely path can be used to 

determine which parts of the lattice will survive. Every arc in the lattice has a log 

likelihood and these likelihoods compared with the log likelihood of the most likely 

hypothesis. Any arcs whose value is out of the predetermined beam width are 

removed from the lattice [7]. 
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4.3.2.3  Lattice expanding 

 

New language models can be applied to lattices. The purpose of doing this is to 

allow higher-order-N-gram probabilities to be assigned to the word transitions so as 

to increase accuracy in the subsequent recognition pass. Thus, more context 

information is encoded in the lattice and rescoring the lattice can give better results. 

To place trigram probabilities on the lattice generated with a bigram, each node 

must have the unique two word history [28]. For example, in Figure 4.5, a node 

labeled with c and its transitions (c, d) and (c, e) are duplicated to guarantee the 

uniqueness of the trigram context for placing p(d|bc) and p(e|bc) on the transitions 

(c,d) and (c,e), respectively. When the node c has two predecessor nodes labeled 

with the same word, only one additional node and its corresponding outgoing 

transitions need to be duplicated as shown in Figure 4.6. 

 

 

 

 

 

 

 

 

Figure 4.5: Trigram expansion case 1.a-) Bigram lattice before expansion b-) 
Trigram expansion 
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Figure 4.6: Trigram expansion case 2. a-) Bigram lattice before expansion b-) 
Trigram expansion 

 
 

4.4   Search space organization 

 

If we use cross-word phonetic context instead of words in above word graph then 

we see that the size of the network will increase. This is because every word end 

needs to be hypothesized multiple times, once each for the possible next words. 

Especially, for large vocabulary size the search space explodes with the number of 

potential hypotheses.  

We can reduce the size of search space by representing the lexicon as tree. The 

tree structured lexicon is called lexical tree or tree lexicon. It can save a lot of 

computation and storage. Since many words share common pronunciation prefixes, 

they can also share models and avoid duplication. A problem of lexical tree is that 

the word identity is unknown until a word-end lexical node is reached. When there is 

a transition from word 1 to word 2 , the word 2 is unknown until the end of the 
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lexical tree. Therefore the LM score can not be applied immediately upon the 

transition. That means pruning based on language models can not be applied as early 

as possible. An LM lookahead [22] technique is devised to overcome this problem.  

 Trees were initially used in fast match for producing candidate word lists for 

further search. Recently, they have been introduced in the main search component of 

several systems [23]. In a linear lexicon, each word is represented as a linear 

sequence of phonemes independent of other words. For example, though sarı and 

sayı share the same root, we do not share any of their history during the search 

process. Following figures are illustrates linear and tree lexicon respectively. Dark 

rectangles represent starts and ends of words. 

                      

  
                               
 
 
 
 
 
 
 
 
 
 
  
 
 
 

                             

                            Figure 4.7: Linear lexicon example. It has 16 arcs. 
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                                  Figure 4.8: Tree lexicon example. It has 11 arcs. 

 

4.5   Pruning 

 

To save the computation and memory, it is imperative to stop less-likely partial 

paths from growing further. The idea of pruning is to only prune away those unlikely 

paths. However, it is possible that a path with a lower score in the early frame may 

grow to be the best path later. If the best path is pruned way, it will result in a 

recognition error.  

There are many pruning techniques [24]. For decoding using cross-word context 

dependent models, multiple new tree hypotheses corresponding to different cross-

word contexts are started for each active word-end sequence and at each time frame, 

causing a major increase in search complexity. In order to control the search space a 

standard pruning approach is applied during the search process. This pruning 
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approach consists of: acoustic pruning, language model pruning (word-end pruning) 

and histogram pruning [25], which are performed at every time frame. 

• Acoustic pruning: In this method, only the hypotheses whose scores 

close to the best state hypothesis are considered for further calculations. If 

we denote acoustic pruning threshold as ACf   and the score of the current 

best hypothesis as )(tQAC  then we prune the hypotheses whose scores are 

under the term ).(. tQf ACAC  The number of surviving state can be 

controlled by changing the value of ACf .  

• Language model pruning: This is only applied to tree startup 

hypotheses. For word end hypotheses, the bigram LM probability is 

incorporated into the accumulated score. Then, the best predecessor word 

is used to start up the corresponding tree hypothesis or is propagated into 

this tree hypothesis if it already exist. 

• Histogram pruning: In this method, the number of state hypotheses that 

will be survive for further calculations is limited to a maximum number 

StaM . If the number of active states is larger than StaM , then only the best 

StaM  hypotheses are survived while the others are removed. 
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CHAPTER 5 

 

 

EVALUATION RESULTS 

 

 

 

The works which are performed in this thesis will be given in this chapter. 

Firstly, acoustic model training will be given. Then, proposed language model for 

Turkish and experimental results will be given, respectively. 

 

5.1 Acoustic model training 

 

The phones in the Turkish language are equivalent to the letters with 8 vowels 

and 21 consonants. If we take into account the acoustic variations of some phones 

because of the surrounding phones, we can represent the Turkish with 32 phones. 

Example of these additional phones are kk (like in word “kadar”), kl (like in word 

“lider”) and kg (like in word “gazete”). In addition of these phones, we have to use 

two silence models to represent the silences in the utterances. One of them is the 

silence model which occurs at the beginning and at the end of a sentence and we 

represent it by the symbol “smsm”. The other one is the short pause model which 

occurs between words in a sentence and we represent it by the symbol “spsp”. 
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Following figure is illustrates these silence models. The transitions from states 2 to 4 

allows to absorb the various impulsive noises in the training data. Short pause model 

is also called tee-model which has a direct transition from entry to exit states. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                               Figure 5.1: Silence models 

 

Data Preparation:  

The speech data which is used for acoustic modeling is recorded at Middle East 

Technical University. Database consists of 193 records that were spoken by 104 male 

and 89 female speakers. Since most of the speakers are university student, young 

voices  dominate and the accent variation is very  low. The number of sentences used 

in acoustic training is 7380, the number of words is 52025 and the number of distinct 

words is 9165.  

   

shared state 

smsm 

spsp 
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 It takes a long time to correct the sentences so that the  text matces the records. 

For example, although the word is written as “kapayacak”, most people pronounce it 

like “kapıycak”. In this case we changed the text corpus  to  have the correct  

monophones  for further processing.  Word pronunciations are included in the 

dictionaries. 

Some of our training data have been  segmented by Özgül Salor [26] in order to 

initialize the monophone models. Since HTK uses units of 100 nanoseconds, the 

phone boundaries in segmented data were in terms of milliseconds. 

 

Training: 

Since we have used HTK in this thesis, it is useful to explain the training phases 

in terms of HTK tools. 

First of all, the training data must be coded to use it in recognizer. In other words, 

front-end parameterization must be applied to the training data. This coding process 

can be performed using the tool HCopy configured to automatically convert its input         

into MFCC vectors. To do this, a configuration file is needed which specifies all of 

the conversion parameters. We have used configuration file in Table5.1. Feature 

vectors consist of zero mean power mel-cepstrum coefficients. The FFT uses a  

Hamming window and the signal should have first order preemphasis applied using a 

coefficient of 0.97. The frames of length 25 ms are taken every 10 ms from the 

speech signal.  
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Table 5.1: The content of the configuration file. 

SOURCEKIND=WAVEFORM 

SOURCEFORMAT=WAV 

TARGETKIND=MFCC_E_D_A_Z 

USEHAMMING=T 

SAVEWITHCRC=T 

SAVECOMPRESSED=T 

PREEMCOEF=0.97 

ENORMALISE=T 

TARGETRATE=100000.0 

WINDOWSIZE=250000.0 

NUMCHANS=26 

NUMCEPS=12 

 

After defining a prototype HMM which consists of three states and a transition 

matrix, we can initialize all monophone models using segmented data and HInit 

command. HInit computes the parameters of a new HMM using a Viterbi style of 

estimation and performs this operation for every monophone one by one. After 

initializing all monophone models, HRest is used  to refine the parameters. Its 

operation is very similar to HInit except that it expects the input HMM definition 

that have been initialised and uses Baum-Welch re-estimation in place of Viterbi 

training. Baum-Welch does soft decision that can be helpful when estimating phone-

based HMMs since there are no hard boundaries between phones in real speech and 

using a soft decision may give better results. 
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Before using the tool HERest for embedded-unit training, in which all models 

are trained in parallel, training data has to be labelled at the phone level. This can be 

done by the tool HLed. A small part of training data with phone level transcription is 

shown in Figure 5.2. When there is limited training data and recognition in adverse 

noise environments is needed, so-called fixed variance models can offer improved 

robustness. These are models in which all the variances are set equal to the global 

speech variance and never subsequently re-estimated. The tool HCompV can be 

used to compute this global variance. 

 

 

 

   

  

 

 

                      Figure 5.2 : Example of phone level transcription. (Note ts = ş) 

 

The HTK philosophy is to build systems incrementally. After each modification of 

the system (adding short pause model, parameter tying, decision tree clustring etc.) 

the main training tool HERest is performed several times. Unlike the processes 

described so far, embedded training, which is performed by HERest using Baum-

Welch re-estimation, simultaneously updates all of the HMMs in a system using all 

of the training data. Before applying HERest, all monophone models must be 

collected in a file, since all models will be upgraded simultaneously. 

0 4900000 smsm 
4900000 5700000 u 
5700000 6800000 f 
6800000 7800000 a 
7800000 8100000 kk 
8100000 8300000 spsp 
8300000 9200000 kk 
9200000 9500000 u 
9500000 10100000 r 
10100000 11400000 ts 
11400000 11700000 u 
11700000 12000000 n
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At this stage, short pause model (see Figure 5.1) is added to the model by using 

the HTK HMM definition editor HHed and using the tool HLed , new transcription 

files with short pause model is created. After adding short pause model HERest is 

performed several times to make the model parameters more robust. 

The phone models created so far can be used to align the training data. This can 

be done by single invocation of the HTK recognition tool HVite. Before going on 

state tying HERest is performed several times again. 

 

State tying: 

The final  stage of model building is to create context-dependent triphone 

HMMs. This is done in two steps.  

At the first step, the monophone transcriptions are converted to triphone 

transcriptions and a set of triphone models created by copying the monophones and 

re-estimating. The latter is done by label editor HLed. At the same time, a list of 

triphones used in training data is written to a file. Then, using the tool HHed model 

cloning is done. For example, for each model of the form “a-b+c” the parameters of 

monophone model “b” is copied and for all triphones like “*-b+*” same transition 

matrix is copied. After these modifications, we run HERest several times. 

 At second step, similar acoustic states of these triphones are tied to ensure that 

all state distributions can be robustly estimated. Decision tree state tying is 

performed by running HHEd. It is based on asking questions about the left and right 

contexts of each triphone. The questions asked in this work can be seen in Appendix 

B. At this stage all possible triphones in Turkish are considered except impossible 
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ones like “a-a+a”.  Triphone statistics of training corpus can be seen in Table 5.2. 

After running HERest several times we go on mixture incrementing. 

 

Table 5.2: Triphone counts. 

 

 

 

 

 

 

 

Mixture incrementing: 

This is the final step of acoustic training. Tool for this is again Hhed. After 

incrementing mixtures by 2, we run HERest several times. This procedure goes on 

until incrementing the mixtures by 8. At last we run HERest several times and 

acoustic training is completed. 

All of the process explained for acoustic model training can be seen as schematic 

representation in Appendix A. Monophone counts in acoustic training corpus can be 

seen in Appendix C. 

 

 

 

 

 

Total triphones in Turkish 39304 

Usable triphones 39104 

Triphones in acoustic data 6687 

Triphones after decision tree 
clustering 

2316 

Triphones from text corpus 9417 
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5.2 Bigram language model training 

 

Training text for bigram language model has been downloaded from internet. ,  

The sentences which include  foreign words have been deleted. However, some of 

these that were seen lots of times are kept in the corpus. For example, “Trapattoni” 

and “Juventus” were not deleted. We denoted the beginning of a sentence as 

“bbaassllaa”  and the end of a sentence as “bbiittiirr”. These words are also included 

in the dictionary and they corresponds to the silence model at the beginning and at 

the end of the sentences. 

 

Parsing the words: 

Since Turkish is an agglutinative language, N-gram language modeling is not 

directly applied. We parsed the words into their stems and endings. The words to be 

parsed include derivational and inflectional suffixes. We parse a word from its first 

inflectional suffix if it has.  

In the first experiment, we obtained bigram probabilities by treating  stems and 

endings as individual items. This can be done by HLStats.  As an example consider 

the sentence “ben yerli futbolcudan yanayım”; it is decomposed as 

                                          Ben yerli  futbolcu dan yana yım. 

Then, we have the bigram probabilities as P(yerli|Ben), P(futbolcu|yerli), 

P(dan|futbolcu), P(yana|dan) and P(yım|yana). 
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In the second experiment, we obtained bigram probabilities only over the stems. 

The underlying idea is that the actual informative part of the word is the stem. For 

the same example sentence; 

                                          Ben   yerli   futbolcudan   yanayım. 

we modify the sentence as being only stems; 

                                          Ben  yerli   futbolcu   yana. 

  

Finally, the bigram probabilities calculated over stems are assigned to word 

bigram probabilities; 

P(yerli|Ben) = P(yerli|Ben) 

P(futbolcudan|yerli) = P(futbolcu|yerli) 

P(yanayım|futbolcudan) = P(yana|futbolcu). 

Bigram text corpus statistics are shown in Table 5.3. 

 

Table 5.3: Bigram text corpus statistics 

 Number of words Vocabulary size 

Unparsed text 428,305 49,554 

Text with stem and endings 648,695 15,191 

Text with only stems 428,305 12,524 
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5.3 Trigram language model training 

 

Training text for trigram language model has been downloaded from internet as 

in bigram model and again parsing rules are not different from the ones performed 

for bigram language model.  

Construction of trigram language model is a three stage process:  

1 – First of all, given language model training text, the tool LGPrep scans the 

input and generate a gram file holding the 3-grams seen in the training text along 

with their counts. 

2 – The counts in the gram file are modified to vocabulary and class mapping. 

This step is optional and we have skipped this step. 

3 – Finally, the 3-gram language model file is build by using the resulting gram 

file. This task is accomplished by LBuild. It reads the resulting gram file and 

generate a back-off 3-gram language model file. The LM can be built in steps (first a 

unigram, then a bigram and finally a trigram) or in a single pass if desired. LBuild 

supports Good-Turing and absolute discounting described in section 3.1.2.  

Phases in creating trigram language model are shown in the figure in Appendix 

E. Following table shows statistics for trigram text corpus. 
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Table 5.4: Trigram text corpus statistics 

 Number of words Number of distinct 
words 

Unparsed text 836,911 72,707 

Text with stems and endings 1,268,186 19,733 

Text with only stems 836,911 16,330 

 

 

5.4  Test Results 

 

The test utterances include 220 sentences that are arbitrarily selected from the 

text corpus that is used to extract bigram probabilities. They do not overlap with 

transcriptions of the speech data used in acoustic model training. These sentences 

were continuously spoken by 6 speakers (4 male, 2 female), who contributed in 

acoustic model training, too. These 220 utterances have a vocabulary of 1168 words.  

 

5.4.1 Direct recognition results 

 

Experiment 1: Since we parse the words different compared to [27] the results 

are also different. Before different parsing, we tested the system [27] with no silences 

at the beginning and at the end of the sentence. We cut out these silences from all of 

the test sentences. Results are as follows: 
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Table 5.5: Results with different s, p and u values for Experiment 1. Parsing in 
this test belongs to [27]. (CSRR:     Correct Sentence Recognition Rate, CWRR: 

Correct Word Recognition Rate, Acc: Accuracy) 
 

s p u CSRR CWRR Acc 

20 15 3000 26.82% 71.77% 67.50% 

30 20 3000 27.73% 69.51% 66.71% 

30 20 8000 27.27% 72.70% 70.73% 

 

The variables s and p are language model probability scaling factor and fixed 

penalty, respectively. These are used to control word insertion and deletion levels. 

Every language model probability value is multiplied by s and p is added to the 

result. For example, if s=30 and p=-20, the language model log probability x 

becomes 30x-20. If p gets higher, more short words are inserted into the recognized 

sentence. This causes an increase in the insertion errors. The variable u represents 

histogram pruning threshold. This sets the maximum number of active models. Once 

the optimal alignment has been found, the number of substitution errors (S), deletion 

errors (D) and insertion errors (I) can be calculated. The correct sentence recognition 

rate (CSRR) and the correct word recognition rate (CWRR) are then defined as 

follows, respectively. 

                                     

                                         %100CSRR ×=
N
H

                                               

                                    

                                         %100CWRR ×
−−

=
N

SDN
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Where N is the total number of labels in the reference transcriptions. CWRR does not 

consider insertion errors, so accuracy is defined as an the alternative evaluation 

criterion as given below. 

                                                %100Accuracy ×
−−−

=
N

ISDN
. 

It is more representative figure of recognizer performance. 

After parsing, we tested the system both the records with no silences at the 

beginning and at the end and the vocabulary which is created corresponding to new 

parsed words. As mentioned before we have parsed the words from its first 

inflectional suffix. The results belonging the this test is given below: 

 
 

Table 5.6: Results with different parsing for Experiment 1. Parsing in this test 
different from [27]. (CSRR: Correct Sentence Recognition Rate, CWRR: Correct 

Word Recognition Rate, Acc: Accuracy) 
 

 s p u CSRR CWRR Acc 

Back-off not changed, 
with silences  

30 20 8000 15.91% 60.93% 52.86% 

Back-off not changed, 
with no silences 

30 20 8000 29.09% 71.61% 68.68% 

Back-off changed, with 
silences 

30 20 8000 17.73% 61.62% 51.12% 

Back-off changed, with 
no silences 

30 20 8000 30.00% 72.99% 69.30% 

 

It is clear to see from the table no silences in the test record gives the best result. 

If we compare this results with the ones in [27] we see that CSRR is increased with 

10%. 
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Experiment 2: In this experiment, we estimate bigram probabilities only over 

stems. Firstly, we tested the system in [27] with no silences at the beginning and at 

the end of test records. The results for this case are shown below: 

 
 

Table 5.7: Results with different s, p and u values for Experiment 2. All results 
are with changed back-off and with no silences. Parsing in this test belongs to [27]. 

(CSRR: Correct Sentence Recognition Rate, CWRR: Correct Word Recognition 
Rate, Acc: Accuracy) 

 

s p u CSRR CWRR Acc 
20 15 3000 40.91% 71.07% 56.72% 

30 20 4000 40.91% 70.43% 63.52% 

30 20 5000 43.64% 74.58% 68.38% 

30 20 6000 46.36% 77.09% 71.13% 

30 20 7000 51.36% 79.98% 74.91% 

30 25 7000 51.36% 80.03% 74.64% 

35 20 7000 44.09% 74.74% 71.02% 

40 20 7000 42.27% 72.10% 69.19% 

30 25 8000 53.64% 81.33% 76.69% 
30 25 9000 54.09% 81.71% 77.06% 

30 25 10000 55.91% 83.05% 78.68% 

30 25 11000 55.91% 83.43% 79.06% 

30 25 12000 56.82% 83.97% 79.87% 

 

Then, we tested the system with new parsing. Here are the results: 
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Table 5.8: Results with different parsing for Experiment 2. Parsing in this test 
different from [27]. (CSRR: Correct Sentence Recognition Rate, CWRR: Correct 

Word Recognition Rate, Acc: Accuracy) 

 

5.4.2 Two pass recognition results 

 

In this stage of our study, we obtained recognition results through lattices by 

using two pass instead of getting them in one pass. Figure in the Appendix F shows 

speech recognizer performing two pass. In the first pass, we used a bigram language 

model in recognition. Clearly, to get more accurate speech recognition, we have to 

use more powerful language model such as a trigram language model. In addition, 

we need some techniques to allow such models to be used to improve the speech 

recognition. 

Our approach is not to modify the speech recognition at all. We use a bigram 

language model and HVite and then output a series of good hypothesis. This is called 

an N-best output (detailed explanation about N-best can be found in section 4.3). At 

the same time, we obtain lattices (from which the N-best lists are generated) 

belonging to each test utterances, instead of getting one best hypothesis. 

 s p u CSRR CWRR Acc 

Back-off not changed, with 
silences 

30 20 8000 16.82% 48.02% 42.04% 

Back-off not changed, with 
no silences 

30 20 8000 32.27% 56.71% 54.64% 

Back-off changed, with 
silences 

30 20 8000 35.00% 72.95% 55.46% 

Back-off changed, with no 
silences 

30 20 8000 63.64% 84.52% 77.02% 

Back-off changed, with no 
silences 

30 25 12000 64.09% 85.12% 77.29% 

Back-off changed, with no 
silences 

30 25 15000 64.09% 85.12% 77.29% 
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For example, if we consider our first test utterance: “ben yerli futbolcuxdan 

yanaxyIm”, an N-best output with bigram model for this example is 

  

 

 

 

 

                            
Figure 5.3: An N-best output with bigram model 

 

The  lattice from which this N-best are generated is as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Word Lattice example (N: Total number of nodes, L: Total number of links, I : 
Node number, J : Link number, S: Start word, E: End word) 

 

ben yerli futbolcuxdan yanaxyIm 
/// 

ama ben yerli futbolcuxdan yanaxyIm 
/// 

daha ilk yarIxsI golsUz sona erxdi 
/// 

hele ilk yarIxsI golsUz sona erxdi 
/// 

rumen yIldIz futbolcuxdan yanaxyIm 

N=61   L=104   

I=0    t=0.00  W=!NULL                

I=1    t=0.01  W=B  v=1   

I=2    t=0.01  W=B  v=1   

… 

I=57   t=1.92  W=erxdi  v=1   

I=58   t=1.92  W=yanaxyIm v=1   

I=59   t=1.93  W=!NULL                

I=60   t=1.93  W=S                        v=1   

J=0     S=0    E=1    a=-640.72 l=0.000    

J=1     S=0    E=2    a=-640.72 l=0.000    

J=2     S=0    E=3    a=-640.72 l=0.000    

… 

J=101   S=60   E=59   a=0.00 l=0.000    

J=102   S=57   E=60   a=-111.28 l=-0.200   

J=103   S=58   E=60   a=-111.28 l=-2.280   
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Each node in the lattice represents a point in time measured in seconds and each 

arc represents a word spanning the segment of the input starting at the time of its 

start node and ending at the time of its end node. For each such span, v gives the 

number of the pronunciation used, a gives the acoustic score and l gives the language 

model score. For example, consider the following links in the lattice 

J=0      S=0    E=1    a=-640.72    l=0.000 , 

J=53    S=1    E=35  a=-3356.22  l=-4.300, 

J=66    S=35  E=41  a=-3015.74  l=-6.260,    

J=93    S=41  E=55  a=-7346.56  l=-1.550,     

J=100  S=55  E=58  a=-3340.81  l=-6.460,  

J=101  S=60  E=59  a=0.00         l=0.000, 

J=103  S=58  E=60  a=-111.28    l=-2.280.  

  
If the corresponding words are written instead of the node numbers then the 

structure of the lattice can be more understandable. Figure 5.5 shows the hypothesis 

that the above links represents. The numbers in the parentheses near words  

represents the node number belonging to that word (and the numbers seen on the arcs 

represents the arc number belonging to that arc.)   

 

 

 

 

 

 

 

Figure 5.5: One of the hypothesis exists in word lattice. 

!NULL (0) B (1) ben (35) yerli (41) futbolcuxdan (55) yanaxyIm (58) S (60) !NULL(59)

 0.0 0.01 0.41 0.73 1.52 1.92 1.93 1.93 Time 

Acoustic 
score -640.72 -3356.22 -3015.74 -7346.56 -3340.81 -111.28    0.00 

Language  
model 
score 

-0.000 -4.300   -6.260 -1.550 -6.460 -2.280    0.000
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Sum of the acoustic and language model scores from the beginning to the end of 

the hypothesis gives the overall likelihood of the that hypothesis. This total scores 

exist for every hypotheses in the lattice and they are used in making decision which 

hypotheses are less likely. 

We process the lattice in Figure 5.4 (not N-best list) in order to obtain best 

hypothesis. Because, in N-best list, there are limited number of hypotheses. In spite 

of this, lattice encodes vastly more alternatives that realistically captured in N-best 

list.  

We divide the recognition into two steps: 

1-) Firstly, we do forward search through the observation sequence using a 

bigram language model and recognition tool HVite to produce lattices of hypotheses. 

2-) Then, following processes are applied to these lattices by using HLRescore, 

which is lattice post processing tool. This process is shown in Appendix D. 

- Lattice Pruning : Bigram lattices generated during recognition quite 

large and therefore difficult to expand. So, we obtain smaller bigram 

lattices by pruning. 

- Expansion of Lattices : We apply trigram probabilities to pruned lattices. 

The purpose of trigram lattice expansion is to allow higher order N-gram 

probabilities to be assigned to the word transitions so as to increase 

accuracy in subsequent recognition pass. This is the core of the second 

pass recognition. 

- Finding 1-best Transcription in the Expanded Lattice : Finally, the 

transcription that gives best score is selected through expanded lattices. 
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After pruning the lattice in Figure 5.4 takes form as shown in Figure 5.6 and this 

form can be changed according to pruning parameters. These parameters are 

1) grammar scale factor (s). This factor post-multiplies the language model 

likelihoods from the word lattices, 

2) the word insertion log probability (p), 

3) lattice pruning parameter (u).  

These parameters have the same function with s, p and u in direct recognition 

performed by HVite. In pruning, the effect of the parameter ‘u’ on lattice size is 

greater than those of ‘s’ and ‘p’. If ‘u’ increases, then lattice size increases. After 

pruning, we have smaller lattices in which the hypotheses that have less likelihood 

are eliminated. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Pruned Word Lattice. 

N=18   L=20    
I=0    t=0.00  W=!NULL                
I=1    t=0.01  W=B  v=1   
I=2    t=0.01  W=B  v=1   
I=3    t=0.01  W=B  v=1   
I=4    t=0.15  W=ama  v=1   
I=5    t=0.18  W=daha  v=1   
I=6    t=0.40  W=ilk  v=1   
I=7    t=0.41  W=ben  v=1   
I=8    t=0.73  W=yerli  v=1   
I=9    t=0.96  W=yarIxsI  v=1   
I=10   t=1.25  W=golsUz v=1   
I=11   t=1.52  W=kapanxdI v=1   
I=12   t=1.52  W=futbolcuxdan v=1   
I=13   t=1.87  W=yanaxyIm v=1   
I=14   t=1.92  W=erxdi  v=1   
I=15   t=1.92  W=yanaxyIm v=1   
I=16   t=1.93  W=!NULL                
I=17   t=1.93  W=S  v=1   
J=0      S=0     E=1      a=-640.72                     l=0.000    r=0.00    
J=1      S=0     E=2     a=-640.72  l=0.000    r=0.00    
J=2      S=0     E=3      a=-640.72                      l=0.000    r=0.00    
J=3      S=2     E=4      a=-1349.89  l=-3.980   r=0.00    
J=4      S=3     E=5      a=-1507.77  l=-5.430   r=0.00    
J=5      S=5     E=6      a=-1774.42   l=-5.520   r=0.00    
J=6      S=1     E=7      a=-3356.22   l=-4.300   r=0.00    
J=7      S=4     E=7      a=-2111.83   l=-3.430   r=0.00    
J=8      S=7     E=8            a=-3015.74   l=-6.260   r=0.00    
J=9      S=6     E=9      a=-5137.92   l=-1.360   r=0.00    
J=10    S=9     E=10    a=-2917.06   l=-3.190   r=0.00    
J=11    S=10   E=11     a=-2437.06   l=-2.840   r=0.00    
J=12    S=8     E=12    a=-7346.56   l=-1.550   r=0.00    
J=13    S=12   E=13    a=-2868.34  l=-6.460   r=0.00    
J=14    S=13   E=14    a=-527.13   l=-30.310  r=0.00    
J=15    S=11   E=15    a=-3340.81  l=-30.450  r=0.00    
J=16    S=12   E=15    a=-3340.81   l=-6.460   r=0.00    
J=17    S=17   E=16    a=0.00        l=0.000    r=0.00    
J=18    S=14   E=17    a=-111.28     l=-0.200   r=0.00    
J=19    S=15   E=17    a=-111.28     l=-2.280   r=0.00    
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Figure 5.7 shows the graphical representation of the lattice in Figure 5.6. 
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Figure 5.7: Word graph example. Shaded path is the most probable path in second 
pass. 

 

Experiment 3: In this experiment, two pass recognition was applied on the 

utterances in which each word has parsed into stem and endings and each ending in 

the utterance was considered as a word (same in experiment 1 in one-pass 

recognition). Two trigram language model files were used in the this experiment. 

The first one is trigram file obtained directly from training text by using HTK. The 

second one is the file in which trigram probabilities were changed  in the following 

manner: 

There are 5 trigram structures that we can encounter: 
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1-) stem1 stem2 ending       ⇒     P(ending|stem1 stem2) = P(ending|stem2), 

2-) stem1 stem2 stem3         ⇒     P(stem3|stem1 stem2) = P(stem3|stem2), 

3-) stem1 ending stem2        ⇒     P(stem2|stem1 ending) = P(stem2|stem1), 

4-) ending stem1 stem2        ⇒     P(stem2|ending stem1) = P(stem2|stem1), 

5-)ending1 stem1 ending2    ⇒     P(ending2|ending1 stem1) = P(ending2|stem1). 

In the first pass, lattices were obtained by following parameter set:  

The grammar scale factor (s) = 30, 

The word insertion log probability (p) = 25, 

The maximum number of active models (u) = 8000. 

Both in pruning and expanding in the second pass, s and p parameters are chosen as 

20.0 and 5.0, respectively. 

Table 1 and Table 2 show the one-best recognition results from lattices generated by 

using 2 and 5 tokens, respectively. 

 

Table 5.9: One-best recognition results for experiment 3 from lattices generated by 
using 2 tokens. 

 

 
 

 

 u 
(in pruning) 

u 
(in expanding) 

CSRR CWRR Acc 

Original Trigram LM 130 off 21.82% 72.01% 58.83%

Original Trigram LM  130 0.0 44.55% 80.01% 75.71%

Changed Probability 
Trigram LM  

130 off 20.45% 71.51% 58.04%

Changed Probability 
Trigram LM 

130 0.0 38.18% 76.79% 72.63%
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Table 5.10: One-best recognition results for experiment 3 from lattices generated by 
using 5 tokens. 

 

 
 

Experiment 4: In this experiment, we estimate trigram probabilities only over 

stems. Again, we have used two trigram file in expanding lattices. The first one is the 

original file obtained from HTK and in the second file, we have changed trigram 

probabilities in the original LM file. For example, the probability of the trigram  

“stem1+ending1   stem2+ending2   stem3+ending3” (some words can not have any 

ending) changed as the probability of the trigram “stem1   stem2   stem3”.  

 

Table 5.11: One-best recognition results for experiment 4 from lattices generated by 
using 2 tokens. 

 u           
(in pruning)

u              
(in expanding) 

CSRR CWRR Acc 

Original Trigram LM 130 off 15.00% 67.81% 47.10%

Original Trigram LM  130 0.0 56.82% 84.54% 80.52%

Changed Probability 
Trigram LM 

130 off 14.09% 67.38% 46.23%

Changed Probability 
Trigram LM 

130 0.0 40.91% 78.78% 74.58%

 u 
(in pruning) 

u 
(in expanding) 

CSRR CWRR Acc 

Original Trigram LM 130 off 56.36% 85.77% 71.81%

Original Trigram LM  130 0.0 72.27% 87.51% 79.90%

Changed Probability 
Trigram LM  

130 off 56.36% 85.71% 71.75%

Changed Probability 
Trigram LM 

130 0.0 71.36% 87.56% 79.25%
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Table 5.12: The one-best recognition results for experiment 4 from lattices generated 
by using 5 tokens. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 u 
(in pruning) 

u 
(in expanding) 

CSRR CWRR Acc 

Original Trigram LM 130 off 53.64% 85.66% 65.83%

Original Trigram LM  130 0.0 75.91% 88.86% 81.21%

Changed Probability 
Trigram LM  

130 off 52.73% 85.50% 65.51%

Changed Probability 
Trigram LM 

130 0.0 74.55% 88.32% 79.85%
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CHAPTER 6 
 

 

CONCLUSION 
 

 

 

 

In this thesis, we have made four experiments. All experiments are related to 

Turkish Continuous Speech Recognition. In the first two experiments, results were 

obtained by a single pass approach. In the last two experiments, first, word lattices 

was generated from recognition network for every test utterance, then recognition 

results were obtained through these lattices in the second pass. 

Two methods have been used for Turkish language modeling. In the first method, 

stems and endings were considered as separate words and language model 

probabilities were calculated by using stems and endings. This method was used in 

Experiment 1 and Experiment 3. In the second method, language model probabilities 

were calculated by using only stems. This method was used in Experiment 2 and 

Experiment 4.  

We have used different parsing strategy from the one in [27]. In [27], parsing was 

done according to frequency of stems. But we parsed a word from its first 

inflectional suffix if it has. For example, the word “futbolcudan” was parsed as 

“futbol+cudan” in [27], but we parsed it as “futbolcu+dan”. Furthermore, we also  
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parsed the words that include one-letter morphemes. In other words, the accusative, 

dative and genitive forms of the stems are not left. For example, the word 

“oyuncum” was parsed as “oyuncu+m”. From the results, we saw that this does not 

cause acoustic confusion during recognition.  

In the first experiment, we have used cross-word expanded network which is 

based on bigrams that include stems and endings. In this experiment we tested for the 

affect of the removal of silences at the beginning and at the end of the sentences and 

also for the new parsing of. An  increase in CSRR by 7 % has been observed as a 

result of the removal of initial and final silences. Then new parsing  further increased 

CSRR from 20 .09 % to 30.00 %.  

In the second experiment, cross-word expanded network was used, which is 

based on bigrams that include only stems. Again, we first tested with old parsing (in 

[27])  and observed an increase in CSRR from 30.90 % to 51.36 %. Then, new 

parsing was tested; We observed an increase in CSRR from 30.90 % to 63 %. 

In the third experiment, we have obtained trigram probabilities from a larger 

context again by using stems and endings. This time we have used the bigram 

probabilities in Experiment 1 to produce lattices for each test utterance in the first 

pass. Two cases were considered in the second pass; First , lattices generated by 

using 2 tokens and original trigram file were used to pick out the one-best 

hypothesis. This increased the CSRR from 30.00% (single pass result) to 44.55% 

(two pass result). Then lattices generated by 5 tokens and original trigram file were 

used to produce one-best results. This gave better results compared to 2-token-

lattices. Changing probabilities in the trigram file (procedure was defined in 
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Experiment 3) did not improve the recognition results. On the contrary, it decreased 

the CSRR. 

In the fourth experiment, we have used bigram probabilities in the second 

experiment to produce lattices belonging to test utterances. Trigram probabilities 

were obtained by using  unparsed words. First of all, lattices generated by using 2 

tokens and trigram file obtained from  unparsed words were used to pick out the one-

best hypothesis through lattices; this has increased the CSRR from 64.09% (single 

pass result) to 72.27% (two pass result). Then lattices generated by 5 tokens and 

trigram file obtained from unparsed words were used to produce one-best results. 

This gave better results again compared to 2-token-lattices. When the probabilities in 

the trigram file changed according to the procedure defined in Experiment 4 results 

were not improved.  

We can infer from these results that our silence model parameters were not 

estimated robustly. Because test sentences with no silences increases the recognition 

rate considerably. That the environment was not purely silent may be another reason 

for these results. Sytem can perceive the noise as speech and this may cause 

recognition errors.  

Lattice generation, at the end of the first  pass, is time consuming. However  once 

a lattice  is  created, recognition is very fast. Another advantage of generating lattices 

first and then using them in recogntion is that it sets an efficient way of 

experimentally determining optimum values for language model scale and penalty 

factors. Instead of having to rerun the decoder many times with different parameter 

settings the decoder is run once to generate lattices. Token number affects the size of 

generated lattices. If 5 tokens are used to create lattices, then generation time is 
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longer and the size of the lattices are larger compared to the lattices with 2-token 

case.  But higher CSRR in  5-tokens case is its advantage. 

 As a conclusion, new language modeling techniques have been applied to 

Turkish. Experiments in which stems are used for language model probability 

computation gave better results as expected. Because stem holds the meaning of a 

word. For a future work, larger training text (including 20-30 millions words) will be 

used for language model training. Since HTK restricts us about using variability of 

an agglutinative language, we think of implementing a new decoder performing 

speech recognition. 
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APPENDIX A 

 

 

 
 
 
 
 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.1: Acoustic training phases. 
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Figure A.2: Network construction for Experiment 1. 
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Figure A.3: Network Construction for Experiment 2. 
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APPENDIX B 
 

 

Table B.1: Decision tree questions. 
 

                                        QS 'L_v_ince_dar' {"i-*","e-*"} 

                                        QS 'R_v_ince_dar' {"*+i","*+e"} 

                                        QS 'L_v_ince_yuv' {"to-*","tu-*"} 

                                        QS 'R_v_ince_yuv' {"*+to","*+tu"} 

                                        QS 'L_v_kalin_dar' {"a-*","ti-*"} 

                                        QS 'R_v_kalin_dar' {"*+a","*+ti"} 

                                        QS 'L_v_kalin_yuv' {"o-*","u-*"} 

                                        QS 'R_v_kalin_yuv' {"*+o","*+u"} 

                                        QS 'L_nasal' {"n-*","m-*"} 

                                        QS 'R_nasal' {"*+n","*+m"} 

                                        QS 'L_v_stop' {"c-*","d-*","b-*"} 

                                        QS 'R_v_stop' {"*+c","*+d","*+b"} 

                                        QS 'L_v_stop1' {"kg-*"} 

                                        QS 'R_v_stop1' {"*+kg"} 

                                        QS 'L_v_stop2' {"g-*"} 

                                        QS 'R_v_stop2' {"*+g"} 

                                        QS 'L_unv_stop' {"t-*","p-*","tc-*"} 

                                        QS 'R_unv_stop' {"*+t","*+p","*+tc"} 

                                        QS 'L_unv_stop1' {"kk-*"} 

                                        QS 'R_unv_stop1' {"*+kk"} 

                                        QS 'L_unv_stop2' {"k-*"} 

                                        QS 'R_unv_stop2' {"*+k"} 

                                        QS 'L_v_fric' {"z-*","v-*","j-*"} 

                                        QS 'R_v_fric' {"*+z","*+v","*+j"} 

                                        QS 'L_unv_fric' {"f-*","s-*","ts-*"} 
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                                       (continued) 

   QS 'R_unv_fric' {"*+f","*+s","*+ts"} 

                                        QS 'L_fisil' {"h-*"} 

                                        QS 'R_fisil' {"*+h"} 

                                        QS 'L_sessizlik' {"smsm-*","spsp-*"} 

                                        QS 'R_sessizlik' {"*+smsm","*+spsp"} 

                                        QS 'L_yum_g' {"tg-*"} 

                                        QS 'R_yum_g' {"*+tg"} 

                                        QS 'L_y' {"y-*"} 

                                        QS 'R_y' {"*+y"} 

                                        QS 'L_diger0' {"l-*"} 

                                        QS 'R_diger0' {"*+l"} 

                                        QS 'L_diger2' {"kl-*"} 

                                        QS 'R_diger2' {"*+kl"} 

                                        QS 'L_diger1' {"r-*"} 

                                        QS 'R_diger1' {"*+r"} 
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APPENDIX C 

 
 

Table C.1 : Monophone counts in acoustic training corpus. 
 
 

 
             
 

 

 Monophone model Monophone count
1 "a" 37698 
2 "b"   8264 
3 "c" 3264 
4 "d"  13977 
5 "e"  31026 
6 "f"  1839 
7 "g"  3606 
8 "h"  3627 
9 "i"  28763 
10 "j"   235 
11 "k"  6996 
12 "l"  10373 
13 "m"  10915 
14 "n"  21990 
15 "o"  9198   
16 "p"  3043 
17 "r"  24371 
18 "s"  9751 
19 "t"  11938 
20 "u"  10190 
21 "v"  3858   
22 "y"  11104 
23 "z"  5416   
24 "kg"  753 
25 "kk"  9009 
26 "kl"  11272 
27 "smsm" (silence) 7718 
28 "tc"  4522   
29 "tg"  3410   
30 "ti"  16085 
31 "to"  2670 
32 "ts"  5614 
33 "tu"  6560   
34 "spsp" (short pause) 52054 
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Figure D.1: Second pass phases in recognition. 
 
 
 

Test Utterances 

HVite 

HLRescore

HLRescore 

HLRescore 

HMMs
Bigram 
language 
model 

Dictionary 

Pruning 
parameters 

 Lattices

Expanding 
parameters 

  Pruned lattices

One-best 
parameters 

Expanded lattices

1-best 
transcriptions 

Tied triphone list



 92

 
 
 
 

           APPENDIX E 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
              Figure E.1: The main stages in building an 3-gram language model. 
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Figure F.1: Speech recognizer performing two pass. 
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