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ABSTRACT 
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PACKET SWITCHING NETWORKS  
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Supervisor: Assoc. Prof. Dr. Buyurman Baykal 

 

 

December 2003, 150 pages 

 

 

 

A scheduling algorithm has the primary role in implementing the quality of service 

guaranteed to each flow by managing buffer space and selecting which packet to 

send next with a fair share of network. In this thesis, some scheduling algorithms for 

packet switching networks are studied. For evaluating their delay, jitter and 

throughput performances, a discrete event simulator has been developed. It has been 

seen that fair scheduling provides, fair allocation of bandwidth, lower delay for 

sources using less than their full share of bandwidth and protection from ill-behaved 

resources. 
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Çizelgeleme algoritmaları, gönderilecek paketleri ağı adaletli paylaştırarak seçmesi 

ve arabellek yönetimini yapması nedeniyle, her akış için garantilenmiş hizmet 

niteliğinin sağlanmasında birincil göreve sahiptirler. Bu tezde, paket anahtarlamalı 

ağlar için çizelgeleme algoritmaları incelenmiştir. Bu algoritmaların gecikme, 

seğirme ve çıkan iş oran başarımlarının değerlendirilmesi için, bir ayrık olay 

benzetimcisi geliştirilmiştir. Adaletli çizelgeleme algoritmalarının, bant genişliğini 

adaletli atadığı, payına düşen bant genişliğinden daha az bant genişliği kullanan 

özkaynaklar için düşük gecikme sağladığı ve payına düşen bant genişliğinden daha 

fazla bant genişiliği isteyen özkaynaklara karşı koruma sağladığı görülmüştür. 
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CHAPTER 1 

 
 

INTRODUCTION 

 
 

 
 Over the past few years, computing, communication and video compression 

technologies have advanced significantly. As new types of applications were 

developed (e.g. video conferencing, distance learning, news on demand services), it 

was seen that the bandwidth and storage space requirements of digital data must be 

manageable carefully because of limited resources [20]. 

 

 Resource guarantees and performance assurances are not possible with the best 

effort services. But today’s computer networks must concurrently support 

communication sessions from a wide range of applications. This was resulted in 

integration of support for communication sessions with diverse quality of service 

requirements. For example, the needs and characteristics of communication sessions 

from applications like telnet, ftp, and e-mail are considerably different from those of 

applications like internet phone, web browsing, and video conferencing. Some 

sessions require service guarantees such as bounds on delays or throughput, while 

others may be satisfied with a best effort guarantee [26]. 

  

 At an output of a network element, many packets compete for the output link. 

They belong to different applications running on different hosts; they flow through 

different paths and, in the case of an integrated services network, request different 

types of service. The role of the scheduling algorithm is to define the order in which 
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all these packets will be transmitted according to their requirements. Besides, as at a 

given time there exists more packets requiring access to the output link than the 

number that can be transmitted, packets are queued in the queuing mechanism 

waiting to be transmitted. If too many packets are queued, the memory is exhausted 

and some packets are discarded. Choosing which packets have to be discarded is also 

the role of the scheduling algorithm. Thus, a scheduler is a queuing algorithm, which 

allocates bandwidth and buffer space. 

 

 The scheduler identifies packets as members of a class or flow (i.e. a set of 

packets that have to receive the same treatment). Different classes receive different 

treatments. 

 

 To determine the characteristics of a suitable scheduling algorithm, consider 

the requirements of some of the principal applications envisioned for integrated 

services networks [19]: 

 

• Audio applications: To maintain adequate interactivity for such applications, 

scheduling algorithms must provide low average and maximum delay. 

 

• Video applications: Variable bit rate (VBR) video sources, which are expected to 

impose significant requirements on network resources, have unpredictable as 

well as highly variable bit rate requirement at multiple time-scales. These 

features impose two key requirements on network resource management: 

 

• Due to the difficulty in predicting the bit rate requirement of VBR video 

sources, video channels may utilize more than the reserved bandwidth. As 

long as the additional bandwidth used is not at the expense of other 
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channels (i.e., if the channel utilizes idle bandwidth), it should not be 

penalized in the future by reducing its bandwidth allocation. 

 

• Due to multiple time-scale variation in the bit rate requirement of video 

sources, to achieve efficient utilization of resources, a network will have to 

over-book available bandwidth. Since such over-booking may yield 

persistent congestion, a network should provide some Quality of Service 

(QoS) guarantees even in the presence of congestion. 

 

 Fair scheduling involves the use of internal multiple queues with the ability to 

sort and insert different packets into each queue. The primary difference lies in how 

the queues are serviced. The objective is to provide "fair" or "equivalent" service to 

each of the queues. Although the notion of fairness has been defined many ways, 

perhaps the most widely accepted is that the traffic in each queue should obtain an 

equal portion of the bandwidth. 

 

 Unfair scheduling algorithms penalize channels for the use of idle bandwidth 

and do not provide any QoS guarantee in the presence of congestion. Fair scheduling 

algorithms, on the other hand, guarantee that, regardless of prior usage or congestion, 

bandwidth would be allocated fairly. Hence, fair scheduling algorithms are desirable 

for video applications. 

 

• Data applications: To support low-throughput, interactive data applications (e.g., 

telnet), scheduling algorithms must provide low average delay. On the other 

hand, to support throughput-intensive, flow-controlled applications in 

heterogeneous, large-scale, decentralized networks, scheduling algorithms must 

allocate bandwidth fairly. Due to the coexistence of VBR video sources and data 
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sources in integrated services networks, the bandwidth available to data 

applications may vary significantly over time. Consequently, the fairness 

property of the scheduling algorithm must hold regardless of variation in server 

capacity. 

 

 Hence, a suitable scheduling algorithm for integrated services networks should: 

(1) achieve low average as well as maximum delay for low throughput applications 

(e.g., interactive audio, telnet, etc.); (2) provide fairness for VBR video; and (3) 

provide fairness, regardless of variation in server capacity, for throughput-intensive, 

flow-controlled data applications [20]. Finally, to facilitate its implementation in 

high-speed networks, it should be computationally efficient. 

 

 In this work, our aim is to simulate and evaluate various scheduling techniques 

for packet switching networks. For simulating complex, state based systems; discrete 

event simulation fundamentals are studied. To study if the scheduling schemes 

provide a fair share of network, a discrete event simulation approach will be 

presented. As an investigation of a new approach, Deficit Round Robin (DRR) 

scheduling scheme is adapted to wireless networks. 

 

 This thesis consists of six chapters. In Chapter 2, the network structures are 

presented. Packet Switching Networks and their advantages will take precedence. 

Also in this chapter simulation fundamentals of Computer Communication Networks 

will be briefly reviewed. 

 

 Survey of various scheduling disciplines for wired and wireless networks is 

presented in Chapter 3. A new scheduling approach for wireless networks is 

introduced. 
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 In Chapter 4, simulation methods are discussed and a discrete event simulator 

that has been used for evaluating the performances of scheduling disciplines is 

presented. Validations of simulated packet switching algorithms are also discussed. 

 

 Chapter 5 presents results of the simulation experiments and comparisons 

about the algorithms. Delay, jitter and throughput performance of such algorithms 

are evaluated. 

 

 Finally, some conclusions are drawn for the overall assessment of the study 

and some possible future research topics are pointed out in Chapter 6. 
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CHAPTER 2 

 
 

NETWORK STRUCTURES AND PACKET SWITCHING 
 

 

 

 A computer network is a collection of nodes at which reside the computing 

resources [which themselves are connected into the network through nodal switching 

computers], which communicate with each other via the data communication 

channels.  Messages in the form of commands, inquiries, file transmissions and the 

like travel through this network over the data transmission lines. At the nodal 

switching computers, the communications-oriented tasks of relaying messages (with 

appropriate routing, acknowledging, error and flow controlling, queueing etc.) and 

removing and insertion of identifiers are issued. These tasks are separated from main 

computing functions and dedicated to switching computers [1, 2, 22, 24, 26]. 

 

 Computer–communication networks may be partitioned into two separate 

networks: the communication subnetwork providing the message service, and the 

collection of computer and terminal resources forming the “user-resource” 

subnetwork. Figure 2.1 presents general structural model of a computer 

communication network.  The computing facilities, which are responsible for 

processing and storage of data, are connected together by means of the 

communication subnetwork. The communication subnetwork consists of switching 

computers and high – speed data links.  
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 In this thesis our attention will be directed to the communication subnetwork 

forming the message service which is responsible for accepting messages from any 

message source such as a terminal (Local, Remote or Orphan) or a computer and 

routing these messages through the network, and deliver them to their destination in 

a rapid and reliable way. 

 

 

C

C

C

Communications
"sub" -network

High - speed line

Switching computer

Computing facility

Low - speed line

"Local" terminal

"Remote" terminal

"Orphan" terminal

 
 

Figure 2.1 The structure of a computer - communication network. 

 

 Communication networks may be divided into three types [1, 2, 22, 24, 26]: 
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• Circuit or Line Switching 

• Message Switching 

• Packet Switching 

 

2.1 Circuit or Line Switching Networks: 

 

 A Circuit Switching Network provides service by setting up a total path of 

connected lines from the origin to the destination of the demand. This complete 

circuit is set up by a special signaling message that thread its way through the 

network, seizing channels in the path as it proceeds. After the path is established, a 

return signal informs the source that data transmission may proceed, and all channels 

in the path are then used simultaneously. The entire path remains allocated to the 

transmission whether or not it is use, and only when the source releases circuit, all 

these channels will be used for other paths. Circuit switching is the common method 

for telephone systems [1, 2].  

   

2.2 Message Switching Networks: 

 

 In message switching, only one channel is used at a time for a data 

transmission. The message first travels from its source node to next node in its path, 

and when the entire message is received at this node, then the next step in its path is 

selected; if this selected channel is busy, the message waits in a queue, and finally, 

when the channel becomes free, transmission begins. The message hops from node to 

node through the network using only one channel at a time, possibly queueing at 

busy channels, as it is successively stored and forwarded through the network.  
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2.3 Packet Switching Networks: 

 

 Packet Switching is basically same as Message Switching except that the 

messages are decomposed into smaller pieces called packets, each of which has a 

maximum length. These packets are numbered and addressed as with message 

switching and make their own way through the net in a packet – switched (store and 

forward) fashion. Thus many packet of the same message may be in transmission 

simultaneously, thereby giving one of the main advantages of packet switching, 

namely pipelining effect. As a result the transmission delay may considerably reduce 

over message switching. 

 

 In part (a), a network transmission path involving four nodes and three 

transmission lines are presented. It is assumed that no other traffic in the network 

interferes the transmission. The idealized sequence of events for circuit switching is 

shown in part (b). The connection delay at each switch, which is the major 

component of delay, is included in the model. It is followed by the transmission of 

the set up signal, which is assumed to be zero, arrives at switch B after a propagation 

delay. This cycle repeats for the other nodes of the path and when it reaches to the 

last node of the path, a return signal is sent by the destination node to the source 

node. As seen from part (b) only one data transmission is required.  

 

 As seen from part (c) for message switching networks first a small switch 

processing delay (for selecting routes) and messaging from node to node proceeds. 

More than circuit switching a message header for identifying and routing is added. 

This is because the path is not set up as in circuit switching.  
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 In part (d), the sequence of events for Packet Switching is presented. The 

message is divided into three parts, each of which requires its own header. The 

sequence of packets is seen to be pipelining down to chain. Because of header 

overload, the number of bits transmitted is least for circuit switching, next larger for 

message switching, and largest for packet switching. In the figure showing the 

sequence of events of Packet Switching, the delay caused by the control signals is 

omitted.  
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Figure 2.2 Comparison of network delay for circuit, message, and packet switching. 

(a) The transmission path. (b) Circuit Switching (c) Message Switching (d) Packet 

Switching 
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 Circuit-switched connection is ideal for transmission of long, continuous 

stream of data. For bursty data transmission, Packet Switching makes good sense. 

  

 There are many key features of packet switching network such as ability to 

select good paths for data transmission paths as a function of the network congestion. 

In a heavily loaded Circuit Switched Network, a set-up signal may not find a 

complete path of available channels from source to destination and a busy signal may 

be sent back to the source. This results in a blocked network. But in Packet 

Switching Network, only the next channel needs to be available. This results in rarely 

blocking of network.  

 

 With packet switching, more than a one message is allowed to be transmitted 

across the network at the same time. This is in addition to the packet pipelining for a 

single message [1, 2, 26]. This message multiplexing is possible due both to 

pipelining along a given path and to alternate routing along many paths. 

 

 Another key feature of Packet Switching is rapidly handling small messages in 

spite of the presence of long messages that may be sent at the same. This is a result 

of decomposing of long messages into packets. And this decomposition causes 

storage requirements of the nodes to be reduced. 

 

 In this work, the following network measures will be focused on: 

• Delay 

• Throughput 

• Cost 
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 Delay and throughput measures are closely related and they are basic the 

performance criteria for various kinds of traffic. Interactive traffic such as internet 

phone, web browsing, and video conferencing must be delivered quickly and 

throughput is not the main goal. On the other hand along file transfer like telnet, ftp, 

and e-mail is concerned with throughput and delay is not the central issue.  

 

 
Source Source DestinationDestination

Start Start

Finish

Finish

( a ) ( b )

W W
T(x)

T(x)

x

x Data

Data

 
 

Figure 2.3 Network delay and throughput for (a) Short and interactive traffic (b) 

Long message 

 

 

 In Figure 2.3 the network delay and throughput for two cases explained before 

is shown. In the figure the measure of the response of the net, denoted by “W” is the 

average time from when the first bit is presented to the network until the first bit is 

delivered and service time “x”, is the time from when the message begins delivery 

until the delivery is complete. The average network delay T(x), is the main 
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performance measure. For a short interactive message the average network delay is 

almost affected by the response of the net, which is shown in part (a). In part (b) of 

Figure 2.3 it is seen that in cases where x>>W, the service time dominates T (x). The 

network throughput can be defined as jkγ  msg/sec between source j and destination 

k which is inverse of service time x.  

 

 As long as handling both interactive messaging and long file transfers, a 

network may be required to support real-time traffic, which requires low delay and 

high throughput at the same time. This kind of traffic demands different kinds of 

control procedures. 

 

 As a summary, the properties of packet switching network is reviewed, as one 

that pipelines addressed messages along a single path as well as among alternate 

paths, decomposes messages into packets placing headers on each packet, and sends 

them through network in a store and forward fashion. Since these packets may be 

influenced by unexpected impacts such as errors, blocked storage, time-outs; they 

may arrive at the destination out of order or duplicated or more unluckily may get 

lost. It is expected to handle these kinds of events in an acceptable way. As stated in 

[1] the properties of Packet Switching Networks can be summarized as: 

 

• Random Delay 

• Random Throughput 

• Out of order packets 

• Lost and duplicate packets 

• Nodal storage 

• Speed matching between net and attached systems 
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 Responding to these properties, the network must provide the following 

functions:  

 

• Packetizing 

• Buffering 

• Pipelining 

• Routing 

• Sequencing and Numbering 

• Error Control 

• Storage Allocation 

• Flow Control 

 

2.4 Design Problems of Computer Communication Networks: 

 

 The design of a store-and-forward network is extremely complex task because 

of the complexity of network flow theory and queueing disciplines. As discussed 

before, a communication network is composed of: 

 

1.Switching computers and the communication channels making up the physical 

network 

 

2.Messages (described by their origin, destination, origination time, length and 

priority class) that forms flow, moving through the network in a store and 

forward fashion 

 

3.Operating rules for handling the flow of traffic 
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 The message routing procedure, the flow control procedure, the channel 

capacity assignment, the priority queueing discipline, and the topological 

configuration are the basic design issues of computer communication networks. 

Some of these topics will be covered in the following sections. 

 

2.4.1 The Message Routing Procedure: 

 

 Message routing procedure is the rule determining the next node that a message 

will visit on its way through the net. The algorithm may use such parameters as 

source and destination, priority, availability of certain channels, and congestion of 

certain nodes and channels. There can be alternate routing paths, when more than one 

path is allowed. The routing paths may be determined either in a deterministic or 

random fashion. If the decisions are based on some measure of the observed traffic 

flow and/or the breakdown of nodes and channels, then the routing algorithm said to 

be dynamic adaptive routing procedure. 

 

2.4.2 The Flow Control Procedure: 

 

 The flow control procedure is responsible for controlling how much traffic is 

permitted to enter the network. The traffic entering from the traffic form user-

resource network into communications sub-network is regulated by this procedure. 

By doing so, the congestion is prevented.  

 

2.4.3 The Priority Queueing Discipline: 

 

 As discussed before, when the communication channel assigned to a packet to 

be transmitted over is in use, the message must be queued. Transmission time for a 
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given packet can be found by dividing the length of the packet by the capacity of the 

channel. When the channel is available the packet is transmitted to the next node in 

its way and the channel is released for the use of other messages. Again, after 

reaching the next node, if the new channel is busy, the packet must enter the queue 

until it has the given link, and so on. Message or network delay is the total time spent 

in the network until the packet has reached its destination. The queueing discipline 

manages the order of service for the various channel queues. 

 

 Each packet of an admitted connection is conveyed through the network along 

the path established for that connection. At a switching node, the packet is 

multiplexed onto the next link, along with packets of other connections using the 

same link. Figure 2.4 present a simple model of the processing performed at each 

output link of a node. The steps of processing are: 

 

• Packet demultiplexing, which inserts a packet into one of a set of a queues, 

corresponding to different QoS guarantees 

 

• Queue insertion, which is either FCFS or priority based 

 

• Queue multiplexing, which selects the next queue to service, and how many 

packets to remove and transmit from that queue 

 

 

 A scheduling policy can be either work-conserving or non-work-conserving. A 

method is work-conserving if an output link will never be idle as long as there are 

packets waiting. Work conservation might seem attractive, since it promises lower 
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average and end-to-end delay for packets. However, methods, which minimize jitter, 

are always non-conserving [13]. 
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Figure 2.4 Node processing per output link 

 

  

 Queueing mechanisms for wired and wireless networks are the subject of this 

study and they will be discussed in Chapter 3; and in Chapter 5 simulation results of 

such algorithms will be presented. 

 

2.4.4 Topological Configuration: 

 

 The topological configuration of the communication net strongly affects its 

behavior as regards its reliability, message delay, routing, and the like [1]. 

Topological constraints such as reliability may complicate topological design. And 

the form of the cost function that is included in the design, affects the structure. After 

designing the topology, capacity assignment to each channel must be made and 

queueing discipline must be decided.  
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2.5 Performance Evaluation of Computer Communication Networks: 

 

 As computer communication networks are rapidly becoming more complex in 

order to provide efficient service to requirements, performance evaluation of these 

networks have become non-trivial tasks [6]. In this section, a step-by-step procedure 

for developing a simulation tool for computer communication networks will be 

studied. 

 

 Generally, for evaluating the performance of computer communication 

networks, the following approaches are used [3, 5, 6, 14]: 

 

• Analytical Techniques 

• Real time measurements 

• Simulation Techniques 

 

 For evaluating the performance of computer communication networks, 

extensive help is needed in mathematical models. These models are quick, 

economical, and easy to work with [3]. In order to obtain an approximate solution, 

analytical models must be mathematically tractable. However, a tractable analytical 

model often restricts the range of system characteristics that can be explicitly 

considered in a performance model. This is because; analytical models require a high 

degree of abstraction. So a modeler may end up with a correct solution, but to the 

wrong problem [5]. 

 

 Since real time measurements need an operational system, it provides the most 

direct means of network performance evaluation. But it is also the most expensive in 
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the sense that a network must exits. Experiments running in testbeds or labs 

automatically capture important details that might be missed in a simulation, 

however building testbeds and labs is expensive, reconfiguring and sharing them is 

difficult, and they are relatively inflexible. Further, reproducing some networking 

phenomena, such as wireless radio interference, can be difficult, complicating efforts 

to compare or evaluate protocol design [30].   

 

 The objectives of making measurements on a computer network is to gather 

statistics about events, interpret them in terms of network performance and tune the 

network parameters to achieve the most optimal performance possible. Some 

important considerations of this technique are, how often measurements are taken, 

how long it takes to gather meaningful statistics and how to interpret them. The main 

problems associated with this technique are; i) Time required to gather enough 

statistics is a question. The statistics may be captured when the network is operating 

in a sub-optimal state. ii) How much to increase or decrease a parameter to achieve 

performance goals. A wrong adjustment may push the network into a region of worst 

performance [3]. 

 

 In the simulation approach the network is simulated to any level of detail. 

Although simulation procedures are normally time consuming, they are more 

accurate, since they are not based on as may assumptions as analytical procedures 

[3]. In this technique less abstraction is required and the process of model 

formulation is a more straightforward task, although it remains advantageous from a 

solution standpoint to abstract out as many secondary system details as possible [5]. 

Such models can contain tremendous detail, especially for large networks. However, 

the execution of detailed models may require prohibitive amounts of computational 

resources. It is not uncommon for network simulations to require days of processing 
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time on a fast workstation. The analyst must aware of the trade-off between model 

detail and simulation execution time [14]. 

 

 Simulation consists of a computer program that “behaves” like the system 

under study. Various components of the actual system are represented within a 

computer program. Unlike analytical models, which often require many assumptions 

and too restrictive for most real-world systems, simulation modeling replaces few 

restrictions on the classes of systems. For communication networks, developing a 

simulation program requires [14]: 

 

• Modeling random user demands for network resources. 

• Characterizing network resources needed for processing those demands. 

• Estimating system performance based on output data generated by 

simulation. 

 

2.5.1 Developent of a Simulation Model: 

 

 Before a useful simulation can be developed a detailed description and 

understanding of the system is needed. The plan that must be worked out before a 

simulation study, should contain the following information to address all issues 

related to the system [6]: 

  

• Level of detail of a system is to be simulated. 

• The various input parameters and the range of their values. 

• Language to be used for the simulation model. 

• Method of confidence intervals to be used. 

• Criteria to be used for terminating the simulation. 
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• Validation method of the model. 

 

Some topics listed above, will be discussed in the following sections. 

 

2.5.1.1 Simulation Detail: 

 

 Since a detailed model requires more processing time, one has to decide on the 

basis of tradeoff between processing time and level of detail of a simulation model. 

The right level of a simulation model depends on the purpose of the performance 

evaluation task, the degree of understanding of the system being modeled and the 

output statistics required [6]. Since the interrelationship and interdependence among 

various events and components of the system is usually so complex, the right level of 

detail is not a trivial task. 

 

2.5.1.2 Input Parameters: 

 

 In most cases the simulators are capable of generating the sequence of arrivals 

as an input to the system. Such systems called as self-driven models [6]. But trace-

driven models needs external input to determine timing of arrival events. Since 

arrival processes occur in a random fashion, it is not easy to predict arrivals and 

departures of the messages. This is because executing a simulation is analogous to 

conducting an experiment involving randomness; simulation outputs must be treated 

as random observations [5, 14]. However, this randomness can be very closely 

represented by certain probability distributions. If the representations of arrival times 

of messages are justified by a random variable, then random number generators may 

be used to generate a sequence of arrival events.  
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 In some situations, models need a better representation of the arrival events, in 

which measurements are made on the actual system. Trace-driven simulation 

technique is not very flexible, since for a different set-up one does not a freedom to 

gather statistics [6]. 

 

2.5.1.2.1 Generation of Random Numbers: 

 

 Since self-driven models cannot do without generation of random variables, in 

this section generation of random numbers will be discussed. 

 

 Random numbers might be used, for example, to generate the length of 

messages, inter-arrival times of messages at a given node, time between failures of a 

link, or probability of a transmission error. Most of the random number generators 

accept seed values as inputs and produce a random number as an output. 

 

 The output of a random number generator is usually uniformly distributed 

between 0 and 1. However, for using these numbers in a simulation model we have 

to convert these numbers so that they follow a distribution function of our choice. 

The two common methods for converting uniformly distributed numbers to a desired 

probability distribution are: inverse transform method and rejection method [6]. 

 

Inverse Transform Method: For probability distributions whose inverse transform 

can be easily found (such as exponential distribution), inverse transform method may 

be helpful.  Let U be a random variable uniformly distributed between 0 and 1. Let Y 

be the required random variable to be generated according to a given probability 

distribution function F(y). If F(Y) is set to be equal to U, then it can be shown that 
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the variable Y defined by Y= (U) follows the cumulative distribution F(y) [6]. 

The inverse mapping (.) can be performed analytically. 

-1F
-1F

 

Acceptance-Rejection Method: If f(u) is defined to be the probability density 

function and if it is bounded by B and have a finite support, say x<u<y; U which is 

the required random number to be generated according to f(u) can be computed as 

follows [6]: 

 

1. Generate a pair of uniformly distributed numbers  between 0 and 

1. 

)V,(V 21

2. Calculate a random number , such that, =x + (y-1) .  1U 1U 1V

3. Accept U , if B1 <2V f ( ) and reject otherwise. 1U

4. Stop if U  is accepted and otherwise try again with a new pair of random 

numbers. 

1

 

2.5.1.3 Convergence of Results: 

 

 The accuracy of the results produced by a simulation model depend upon 

several factors such as accuracy of the model, simulation time, starting state of the 

model, stream of random variables etc. If the simulation had been run for either more 

or less time, or a different stream of random numbers had been used, different values 

would have been obtained for these performance measures. Usually we are interested 

in the steady state results of the system [6]. 

 

 If the network modeler is interested in the average delay performance of the 

first 200 messages through a node, the results may depend on quite strong on the 

initial conditions of the simulation (the number of messages initially in the node). 
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Performance measures depending on the initial conditions of the simulation are 

referred to as transient measures [5].  

 

 If the simulation starts from an empty state, it will of course take some time 

before it reaches to the steady state. If we deal with the steady state or long-term 

results of the system, we must ensure that we have passed the transient portion. But 

determining enough simulation time, for convergence of the results to a reasonable 

level is a hard task, since there is no well-specified point in time at the transient 

phase ends [5]. To make sure that, running the simulation for an extremely long 

period, so that the effects of the initial state of the simulation on the performance 

measures of interest are negligible; is a crude method. Rather, the effects of the 

initial configuration become less important as the length of the simulation increases. 

A relatively better approach is to run the simulation for longer duration of time when 

the rate of occurrence of events is high or vice-versa [6]. 

 

 Convergence of simulation results is usually determined with the help of the 

confidence intervals. A simulation is run until a desired level of confidence is 

achieved and then can be terminated [6].  

 

 Since the performance results produced by one simulation run depend on the 

particular random number stream, the results of a performance model will typically 

vary from one run to another. If the simulation had run for five times, and obtain five 

different values, all within 0.1 percent of each other, our confidence in that value 

would be very high. But if the five values obtained vary greatly, our confidence in 

any one value would be small. So confidence intervals also are used to quantify such 

confidence in a performance estimate [5]. If some interval (x, y) is a t percent 

confidence interval for the performance measure η, then if the simulation were to be 
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independently repeated ten times, the estimated value for η obtained from the 

simulation would fall in the interval (x, y) in approximately t percent of these runs.  

 

 There are ways to speed-up the process of achieving a desired level of 

confidence. The rule is that faster the steady state is reached, faster the desired level 

of confidence can be obtained. Usual ways of reaching the steady state of the 

simulation are [6]: 

 

• Start the simulation from a random state instead of a empty state 

• Discard a certain percentage of events in the transient portion of the 

simulation 

• Start collecting statistics after the simulation clock has reached a certain 

value. 

 

 Several techniques have been devised for generating confidence intervals [5]: 

 

Independent Replications: In this type of method the simulation is run for m 

independent times and m estimates are obtained for each performance measure of 

interest. For m independent samples standard statistical techniques are applied.  

 

Batch Means: This technique divides a single run into M equal-length periods of 

time. The values of the performance measure during each of these M periods are 

taken as M independent samples. Determination of M is an important and difficult 

problem, because if M is too small, the samples will be correlated; if it is large an 

excessive amount of simulation time will be required.  
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Regenerative Method: This technique based on partitioning a single simulation run 

into independent sub-runs. In this approach, the simulation run is partitioned on the 

basis of a modeler-defined regeneration state, a state such that the future evolution 

of the simulation is statistically identical following each entry into this state. In a 

queuing network with Poisson arrivals, the regeneration state might be the state no 

messages in the system. The regeneration state thus serves to divide the simulation 

into independent and identically distributed partitions of time of random length. 

There are two drawbacks of this technique: i) Regeneration state may be hard to 

identify; ii) Large models may require an excessive amount of simulation time to 

pass through enough regeneration points to produce a valid confidence intervals. 

 

Interval Technique: This method is also known as spectral technique. This is a 

single run method and it takes into account the correlation between data captured by 

the simulation. 

 

2.5.1.3.1 Calculation of Confidence Intervals: 

 

 The normal procedure to calculate the confidence intervals is as follows. Let 

, ,  ….. ,  be the simulation results of the same experiment but produced 

by M different runs. The upper and lower limits of a confidence interval regarding 

the simulation results are then defined by: 

1X 2X MX

 

      Upper limit= t
M
YS

M +             (2.1)

     

      Lower limit= t
M
YS

M −             (2.2) 
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where M  is the average value and S  is the standard deviation of the results. t 

depends on the degrees of freedom and the level of confidence, which is obtained 

from a t-table. Degrees of freedom (df) is defined to be df=M-1. 

Y

 

2.5.1.4 Validation of Simulation Results: 

 

 Validation of a simulation model is a process of making sure that the model 

logically does what it is supposed to do or equivalently it is the process through 

which the modeler satisfy himself that the simulation model is in fact a realistic and 

satisfactory representation of the network operating under actual traffic conditions [5, 

6]. For a system, comparing the simulation results with those obtained through 

analytical procedures may be lead to the right direction but in simple and normal 

situations, one may decide about the validity through simple comparison of results, 

intuition and confidence intervals [6]. 
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CHAPTER 3 
 

 

SCHEDULING ALGORITHMS FOR PACKET SWITCHING 

NETWORKS 
 

 

 

 This chapter gives the key features of scheduling algorithms for packet 

switching networks. Since nearly all scheduling algorithms for wireless channels are 

derived from wireline scheduling algorithms, the most important of them are 

presented. 

 

 Before the key features of scheduling algorithms are presented, let us formalize 

the notion of fair allocation. Let be the weight of flow i, and W be the total 

share in terms of bytes or bits sent in interval [ ] for that flow. Then a bandwidth 

allocation is considered to be fair if, for all intervals [ t ] in which two flows i and 

j are available for transmission, the normalized work (by weight) received by them is 

identical (i.e.

iw ),( 21 tti

21 , tt

21 , t

0
,(),( 121 −
j

j

i

i

w
ttW

w
ttW

( )

)2 = ) [20, 28, 32]. Clearly, this is an idealized 

definition of fairness as it assumes that packets can be broken into atomic units. 

Since the flows are scheduled for a quantum at a time, there will be some unfairness. 

The objective of a fair scheduling algorithm is to minimize the resultant unfairness 

(i.e., ensure that 
( )

j

tt 2,1j

i

i

w
W

w
ttW 21 ,

−  is as close to 0 as possible).  
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3.1 Scheduling Algorithms for Wireline Environment: 

 

 Since the link for wired environment is constant and always available for 

transmission and transmission errors are negligible, scheduling mechanisms for 

wired environment is relatively easy. Therefore the purpose of these algorithms is 

distributing this fixed bandwidth to different traffic in a fair way – often taking 

account the different QoS requirements agreed on at admission time of the flow. 

 

3.1.1 First Come First Served: 

 

 The simplest of all scheduling algorithms called First Come First Served 

(FCFS) is used in most of the QoS aware equipment today.  All the incoming packets 

are enqueued in a single queue, and the packet at the head of the queue is served 

whenever the channel is ready for transmission. If the queue is filled completely, the 

incoming packets are rejected and this property is called as tail dropping. 

 

 Since the main advantage of packet switching networks is to share the 

bandwidth on a packet-by-packet basis resulting in a statistical gain with isolation; 

using FCFS scheduling, no isolation is provided. Moreover FCFS does not take any 

specific requirements of QoS guarantees such as delay or throughput, into account. A 

high-throughput data can starve a low-throughput connection.  

 

 There are some queueing disciplines derived from FCFS like prioritized-FCFS, 

Last Come First Served (LCFS) and Strict Priority. LCFS serves the last incoming 

packet first, as a reverse order of FCFS. Prioritized FCFS provides one-sided 

protection, as packets with higher priority are isolated from packets from lower 

priority. Packets belonging to the “upper class” can not be isolated from each other 
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as there is only one “upper class”. Strict Priority can provide isolation because for 

each priority there exists a single queue, and the discipline selects the packets to 

transmit in FCFS fashion from the first non-empty queue of the highest priority. 

 

3.1.2 Generalized Processor Sharing: 

 

 With uniform processor sharing, at a given instant, there is a set of N non-

empty FIFO queues waiting to be served. During any time interval the server serves 

all N packets at the head of these queues simultaneously, each at a rate of 1/Nth of 

the link speed. Generalized Processor Sharing (GPS) is a generalization of uniform 

processor sharing, which allows different connections to have different service 

shares. Fluid Fair Queueing (FFQ) is an alternative name for GPS. To understand 

how FFQ works one can image the link as a pipe in which different flows are 

assigned specific fractions of the pipe's cross sectional area. The total cross sectional 

area is the link's bandwidth r. The fraction of area reserved for a flow i depends on 

the weight, Φ i , assigned to the flow. The fraction of the area changes dynamically as 

the set of flows currently in transit change. The area is shared among the flows 

currently in transit in proportion to their assigned weights.  

 

 GPS is the ideal scheduling scheme which most algorithms try to approximate 

as far as possible since GPS itself is not suitable for implementation in a packet 

network [12]. This is caused by the fact that GPS assumes work can be done in 

infinitely small steps which is not the case in a packet-based network. Here the 

minimal amount of work is processing a packet of minimal size. 
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 A session in transmit is said to be backlogged at time t if it has packets queued 

for service. Let ),( tSi τ  be the session i traffic served in the interval (τ, t]. Under the 

GPS scheme we have 

 

                  Nj
tS
tS

j

i

j

i ,....,2,1,
),(
),(

=
Φ
Φ

≥
τ
τ

             (3.1) 

for any session that is continuously backlogged in the interval ( ]t,τ . 

 

 Summing over all sessions j: 

               ( ) ( )∑ Φ−≥Φ
j

iji rttS ττ ,             (3.2) 

 Hence a session i is guaranteed a rate of 

 rg
j j

i
i ∑ Φ

Φ
=              (3.3) 

  

 If  r  is defined to be the average rate of session i, then as long as r , the 

session can be guaranteed a throughput . Session i's backlog will be cleared at a 

rate . The delay of a session i bit arriving at a time t can be bounded as a 

function of session i's queue length. These throughput and delay bound guarantees 

are independent of the queues and arrivals of other sessions. Assigning real numbers 

as needed in choosing the values of 

i

i

ii g≤

ig

g≥

iΦ  gives good flexibility of resource allocation.  

 

 We can summarize the properties of a GPS server as follows: 

 

• It is work conserving: No capacity is “lost” because of scheduling. 
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• The flows are isolated: A flow is guaranteed a service share independent of the 

amount of traffic of other flows. 

• Flexible: Assigning a small weight to an unimportant traffic, will not affect the 

higher priority traffic heavily. 

• The maximum queue size and the packet length bound the maximum delay a 

flow will experience.  

 

 Since GPS is a fluid model that can not be implemented, various approximation 

algorithms are designed to provide services that are almost identical to that of GPS 

[25, 34]. 

 

3.1.3 Weighted Fair Queueing: 

 

 Demers, Shenker and Keshav first proposed an approximation of GPS called 

Weighted Fair Queueing (WFQ), which is practically implementable. Parekh and 

Gallager [12, 15] further studied the same scheme under the name of Packet-by-

packet GPS (PGPS), in the context of integrated services networks. Their main 

contribution was in combining the mechanism with Leaky Bucket admission control 

in order to provide performance guarantees in terms of both throughput and delay. 

The WFQ scheme is flexible in the range of throughput and delay guarantees it can 

order to flows while maintaining the work conserving nature of the GPS scheme. 

 

 The WFQ scheme is based on the time the packets finish service under the GPS 

scheme. Let  be the time when a packet finishes service under the GPS scheme. 

The WFQ is an approximation of the GPS scheme that services packets in the order 

of increasing . However, it is possible that by the time the server is free to pick the 

next packet for service, the packet that would have the next smallest  under the 

pF

pF

pF
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GPS scheme may not have arrived. Consequently, the scheme cannot be work 

conserving. According to the WFQ scheme, the server picks the next packet to finish 

service under GPS if no packets were to arrive after it.  

  

 Despite this shortcoming, the WFQ approximation [12] has been shown to be 

very close to the GPS scheme in behavior. The following points have been proved.  

 

1.For all packets waiting to be served at any time τ , the order in which the 

packets will finish service under the GPS and the WFQ scheme will be the 

same. 

 

2.Let be the time at which packet finishes service under WFQ. Then, 
^

pF

r
L

F max
^

≤Fpp − , where  is the maximum packet length. The service 

completion time for a packet under the WFQ scheme never lags behind that 

in case of the GPS scheme by a value more than the time it takes to service a 

maximum size packet. 

maxL

 

3.Let  be the amount of session i traffic in bits served under WFQ. For all 

times 

( τ,
^

tSi )

τ and all sessions i, . For the amount of traffic 

served under the two schemes, the PGPS scheme never lags behind the GPS 

scheme by a value more than the maximum size packet. Consequently, the 

backlog in case of WFQ will never exceed the backlog in case of GPS by a 

value more than the maximum size packet. 

( ) max

^
),0(,0 LSS ii ≤− ττ
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 For a better understanding of how WFQ works, let us have a look at the 

example shown in Figure 3.1 where there are 6 flows sharing the same link. The 

horizontal line shows the time line and vertical axis shows the sample path of each 

flow. For simplicity, assume all packets have the same size of one (1) and the link 

speed is also one (1). Also let the weight for Flow #1 be 0.5, and the weight for each 

of the other 5 flows be 0.1. 

 

 In the example Flow #1 sends 6 back-to-back packets starting at time 0 while 

each of other 5 flows sends only one packet at time 0. If the server is GPS, it will 

take 2 time units to service a packet from Flow #1, and 10 time units to service a 

packet from another flow. This is illustrated in Figure 1 (b). If the server is WFQ, at 

time 0, all 6 flows have packets backlogged. Since the first packet of Flow #1 

finishes at time 2 while all other packets finish at time 10 at GPS system,  

 

 WFQ will service the fist packet of Flow #1 first. In fact, the first 5 packets of 

Flow #1 all have finishing times smaller than packets belonging to any other flow, 

which means that 5 packets of Flow #1 will be serviced back to back before packets 

of other flows can be transmitted. This is shown in Figure 1 (c).  After the burst the 

next packet of Flow #1, will have a larger finishing time in the GPS system than the 

5 packets at the head of other flows’ queues, therefore, it will not be serviced until all 

the other 5 packets are transmitted, at which time, another 5 packets from Flow #1 

will be serviced back to back. This cycle of bursting 5 packets and going silent for 5 

packets can go indefinitely. With more flows, the length of the period between 

bursting and silence can be larger [18]. 
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Figure 3.1 An example showing how WFQ works. (a) Packet Arrivals (b) GPS 

Service Order (c) WFQ Service Order 
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 WFQ will service the fist packet of Flow #1 first. In fact, the first 5 packets of 

Flow #1 all have finishing times smaller than packets belonging to any other flow, 

which means that 5 packets of Flow #1 will be serviced back to back before packets 

of other flows can be transmitted. This is shown in Figure 1 (c).  After the burst the 

next packet of Flow #1, will have a larger finishing time in the GPS system than the 

5 packets at the head of other flows’ queues, therefore, it will not be serviced until all 

the other 5 packets are transmitted, at which time, another 5 packets from Flow #1 

will be serviced back to back. This cycle of bursting 5 packets and going silent for 5 

packets can go indefinitely. With more flows, the length of the period between 

bursting and silence can be larger [18]. 

 

3.1.4 Worst Case Fair Weighted Fair Queueing: 

 

 GPS based schemes have been used in the context of feedback based 

congestion control. A source constantly samples feedback from receiver in order to 

check for symptoms of network congestion. The source controls the rate, which it 

admits packets into the network by reacting appropriately to these symptoms. 

Misbehaving sources might try to take advantage of network resources by sending 

packets dis-regarding, or otherwise simply ignoring symptoms of congestion. Fair 

allocation of bandwidth at queueing points would ensure that such misbehaving 

sources do not hog up the network resources. The GPS discipline offers fair 

allocation of bandwidth and protection from misbehaving sources. Robust congestion 

control algorithms can be built based on the more accurate measurement and 

protection provided by a GPS like servicing discipline.  

  

 It has been shown that delay of any packet in the WFQ scheme as compared to 

its delay in the GPS discipline is no greater than the transmission time of one packet. 
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In terms of service rate, the WFQ discipline does not fall behind the corresponding 

GPS discipline by more than one max packet size. WFQ was considered as the best 

way of approximating the GPS scheme. It was found later by Bennet and Zhang [18], 

contrary to popular belief, that large discrepancies could occur between behavior of 

the GPS scheme and the WFQ scheme. They found that while no flow can lag behind 

too much, but particular flows can be significantly ahead.  

  

 Bennet and Zhang [18] proposed a new approximation to the GPS service 

discipline called Worst-Case Fair Weighted Fair Queueing ( ). This service 

discipline shares both the bounded delay and the worst-case fairness properties of the 

GPS discipline [31]. They noted that the problem in WFQ is due to the fact that 

service of a packet can start earlier than its start time in the GPS [19]. While WFQ 

selects the next packet to service among all available packets, the  scheme 

selects the next packets to service among a subset of the available packets. When 

picking the next packet for service,  considers only the set of packets whose 

service would have started in the corresponding GPS scheme. Among the packets in 

this set it chooses that packet which will finish service first under GPS as the next 

packet to be serviced. The service order for the sessions with arrival pattern as shown 

in Figure 3.1 (a) will be as shown in Figure 3.2. 

QWF2

QWF2

QWF2

 

 Many useful properties of WFQ are retained by . Like in the case of 

WFQ, the worst-case delay bounds for packets in fluid GPS and  system 

differ by no more than the time to service a single packet of maximum size. For any 

session, the service rate in terms of the bits served by  does not lag behind the 

fluid GPS system by any value greater than the maximum packet size. Consequently, 

the backlog of any session will not exceed its backlog in GPS by a value greater the 

QWF2

QWF2

QWF2
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maximum packet size. In addition to these properties, while WFQ can be quite ahead 

of the GPS system,  cannot go ahead of GPS by more than a fraction of the 

maximum packet size. Since the service provided can be neither far behind nor too 

far ahead,  provides a service almost identical with GPS system. 

QWF2

QWF2

Flow #1
Flow #2
Flow #3
Flow #4
Flow #5
Flow #6

( )τV

10 Time5
. .

[ ] [ ]

[ ]
[ ]

[ ]
[ ]

[ ] [ ] [ ]
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Figure 3.2  Service Order QWF2

 

 

3.1.5 Worst Case Fair Weighted Fair Queueing +: 

 

  Maintaining the relative GPS finish order for packets in the WFQ system by 

using a priority queue mechanism is based on the notion of a system virtual time 

function , which is the normalized fair amount of service that all backlogged 

sessions should receive by time τ  in the GPS system. Each packet  ( k  packet 

on session i) has a virtual start and finish time  and , where 

k
ip th

k
iS k

iF ( )k
iS1−V  and 

( )k
iFV 1−

p

 are the times packet  starts and finishes services in the GPS system 

respectively. Another way of interpreting  is that it represents the amount of 

service, normalized with respect to its service share, session i has received right after 

packet  is served. In the GPS system, all backlogged sessions should receive the 

same normalized amount of service. Since both the system virtual time and the per 

k
ip

k
iF

k
i
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packet virtual start and finish times represent the normalized amount of service, they 

are measured in unit of bits. In the special case of a fixed rate server, the elapsed time 

of a backlogged period is also a measure of the service provided by the server; 

therefore, virtual times can also be measured in unit of seconds. The exact algorithm 

for computing virtual times are shown in Table 3.1, where  is the set of 

backlogged queues at time 

( )τGPSB

τ ,  is the beginning of the system backlogged period 

that includes t, 

0t

( )τr  is the server rate at time, and a  and  are the arrival time and 

the length of packet  respectively. Notice that the definition of virtual times in 

unit of bits is more general, and it is applicable to both fixed-rate and variable-rate 

servers [23]. 
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Table 3.1 Calculation of Virtual Times [23]. 
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 Since there can be N backlogged or unbacklogged sessions during an arbitrary 

small interval, the worst-case complexity of computing ).V  is O (N) [16]. 

  

 After then Bennet and Zhang [16] proposed a new scheduling technique named 

Worst Case Weighted Fair Queueing+ (W Q+) that has the same delay bounds as 

W Q. This discipline has a lower complexity since it does not need to compute 

2F
2F

 39



( ).GPSV . The new time function they have proposed has an overall complexity of O 

(log N). This new approach eliminates the need to simulate the corresponding GPS 

system.  

h
i

iS

  

 The service discipline named Worst Case Fair Index (WFI), introduced in [18] 

for characterization of fair queueing mechanisms is provided to be as same as W  

by this new scheme. Also same delay bound guarantees is provided. W Q defines 

its virtual time function as:  

2F Q
2F

  

        ( ) ( ))min),,()(max( )(
^22

th
i

Bi
QWFQWF

iSttWtVt
∈

++
++=+ ττV           (3.4) 

where ),( τ+ttW  is the total amount of service provided by the server during the 

period [t , t+τ ],  is the set of sessions backlogged in the W Q + system at 

time t, h (t) is the sequence number of the packet at the head of the session i’s queue, 

and  is the virtual start time of the packet. Other than updating virtual start and 

finish times on arrival/transmission of packets, these variables are recalculated, when 

a packet  reaches its head of queue according to the following formula: 

( )
^
tB 2F
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where ( )−k
ii aQ  is the queue size of session i just before time . k

ia
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 Since at least one packet has a virtual start time lower or equal to the system’s 

virtual time, the algorithm is work conserving by selecting the packet with the lowest 

eligible start-time for transmission like in W Q. 2F

 

3.1.6 Weighted Round Robin: 

 

  Weighted Round Robin (WRR) is based on an idea first proposed by Nagle [4]. 

To introduce fairness, Nagle proposed to store packets in a different queue for each 

source and to serve one packet from each queue in a round-robin manner. With this 

discipline, the strategy for one queue is no more to transmit all packets, but to use its 

share of bandwidth. Sending more than one packet results in delays to increase and 

possibly loss of packets from other queues. Note that this mechanism also provides 

isolation between flows. 

  

 Nagle has defined “fairness” in terms of number of packets, so that a source 

using large packets will receive larger “fair share” (in terms of bandwidth) than a 

source using small packets. To overcome this issue, Demersi Keshav and Shenker [7] 

proposed an algorithm emulating a bit by bit round-robin that incoming packets are 

labeled with the sending time of its last bit in a bit by bit round robin, and served in 

the increasing order of these labels. This scheme is illustrated in Figure 3.3. 

 

 Dealing with the problem of possible deservation of bigger share, every flow 

can be given weights, so that all of them will be allowed to send a given number of 

bits at each round. So no flow receives more than its request.  
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Figure 3.3 Bit-by-bit Round Robin Emulation 

 

 

  WRR assumes that an average packet size is known. Every flow has a weight 

 corresponding to the service share it is supposed to get. A non-empty session will 

serve the packet at the head of its queue at a rate of 

iw

r
w

w

j j

i

∑
, where r is the total 

rate. Despite its ease of implementation and reduced computational complexity 

(require only O (1) work to process a packet), missing a packet in a heavily loaded 

system will result in a significant delay. Assumption of knowing average packet size 

is another disadvantage for systems where it is not known or highly varying. Figure 

3.4 presents how WRR can be implemented to reduce the delays for packets 

belonging to the flows with small weights. 

 

 In the example shown in Figure 3.4, Flow #1, Flow #2 and Flow #4 receive 

twice more frequent service than Flow #3. Figure 3.4 (a) shows the classic round 

robin. Figure 3.4 (b) illustrates a first approach to WRR scheduling. In part (c) of the 

figure, the frequencies of visits are maintained the same, but the visits to the 

“frequent” clients are spread more evenly in time [9]. By doing so, the delay bound 

for flows with lower weights may be smaller. 
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Figure 3.4 (a) Round-robin (b) WRR (c) Visits 
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3.1.7 Deficit Round Robin: 

 

 Deficit Round Robin was suggested to overcome the flaw of WRR as it is 

assumed that WRR can be fair if the average packet size is known. Besides the ease 

of implementation and achieving nearly perfect fairness in terms of throughput; this 

new scheme proposed by Shreedhar and Varghese requires only O (1) work to 

process a packet [17]. The basic idea is to keep track of the deficits a flow 

experiences during a round and to compensate them in the next round. When the 

packet at the head of queue of a flow can not be sent because of its size in a round, 

the missing amount of service is added in the next round. 

 

 Let the number of bytes sent out for queue i in round k be . Each queue 

i is allowed to send out packets in the first round subject to the restriction that 

. If there is no more packets in queue i after the queue has been 

serviced, a state variable called is reset to 0. Otherwise, the 

remaining amount 

kibytes ,

ii Quantumbytes ≤1,

interDeficitCou

( )kibytes ,iQuantum −  is stored in the state 

variable . In subsequent rounds, the amount of bandwidth usable by 

this flow is the sum of of the previous round added to Quantum . 

Avoiding examining the empty queues, an auxiliary list named ActiveList, is kept to 

point out the queues that have at least one packet. If a packet arrives to an empty 

queue, it is added to the end of ActiveList.  

interDeficitCou

interDeficitCou i

 

 The algorithm services up to Quantum ii nterDeficitCou+  worth of bytes from 

queue i. If the queue has still packets to send but is not sufficient for 

transmission, the round robin pointer moved to the next queue in the ActiveList.

interDeficitCou
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Figure 3.5 An example showing how DRR works (a) Step 1 (b) Step 2(c) Step3 
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 To get a better understanding of how DRR works, let us have a look at the 

example shown in Figure 3.5. At start all DeficitCounter variables initialized to zero. 

The round robin pointer points to the first element of ActiveList. In the example, 

when the queue of Flow #1 is serviced the variable QuantumSize is added to the 

DeficitCounter of Flow #1. The remainder after serving the packet size of 200 is left 

in the DeficitCounter variable. But the size of next packet is equal to the 

DeficitCounter, so it is served too. DeficitCounter of Flow #1 is now equal to 0. 

Since there is no share for Flow #1, round robin pointer points to the next non-empty 

queue in ActiveList, which has a packet size of 600, bigger than the QuantumSize of 

it. So pointer moves to the next element in ActiveList, but QuantumSize is retained. 

The scenario for few steps can be seen in Figure 3.5 (a), 3.5 (b) and 3.5 (c). 

 

 In the simplest case ji QuantumQuantum =  for all flows i; j. Exactly as in 

Weighted Fair Queuing [7], each flow i can ask for a larger relative bandwidth 

allocation and the system manager can convert it into an equivalent value of 

. Clearly if QuantumiQuantum ji xQuantum2= , the manager intends that flow i get 

twice the bandwidth of flow j when both i and j are active [17]. 

 

3.1.8 Start Time Fair Queueing: 

 

 To achieve fairness, a slightly different approach is proposed by Goyal, Vin 

and Cheng [20] named Start-time Fair Queueing (SFQ). SFQ assigns a start tag to 

each packet and schedules them in the increasing order of start tags. To define the 

start tag, let the packets be scheduled for variable length quantum at a time. Also, let 

 and  denote  the quantum of packet f and its length (measured in bytes or i
fq i

fl thj
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bits), respectively. Let ( )j
fqA  denote the time at which the  quantum is requested. 

If the flow is making a transition from a non-backlogged mode to backlogged mode, 

then 

thj

( )j
fqA

fS

 is the time at which the transition is made; otherwise it is the time at 

which its previous quantum finishes. Then SFQ algorithm is defined as follows: 

i
fq

 

1.When quantum  is requested by packet f, it is stamped with start tag 

computed as: 

              ( )( )( )f
j
ff FqAvS ,max=             (3.7) 

where v(t) is the virtual time at time t and is the finish tag of packet f.  

is initially 0, and when  quantum finishes execution it is incremented as: 

fF fF

thj

         
f

j
f

ff r
l

+SF =             (3.8) 

where  is the weight of the flow that packet f belongs to. fr

2.Initially the virtual time is 0. When the channel is busy, the virtual time at time 

t, v (t), is defined to be equal to the start tag of the packet in service at time t. 

On the other hand, when the channel is idle, v (t) is set to the maximum of 

finish tag assigned to any packet. 

3.Packets are serviced in the increasing order of the start tags; ties are broken 

arbitrarily. 

 

 The example shown in Figure 3.6 illustrates the computation of the virtual time, 

as well as the start and the finish tags (and hence, the process of determining the 

execution sequence) in SFQ. Consider two flows Flow #1 and Flow #2 with weights 

1 and 2, respectively, which become backlogged at time t = 0. Let the  for all 

packets. Let each packet consume the full length of the quantum each time it is  

10=fl
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Figure 3.6 An example showing how SFQ computes virtual time, start tag and finish 

tag 

 

scheduled. Initially, the virtual time v (t) = 0. Similarly, the start tags of Flow #1 and 

Flow #2, denoted by  and , respectively, are zero (i.e.,  =  = 0). Since ties 

are broken arbitrarily, let us assume, without loss of generality, that the first packet at 

the head of Flow #1 is scheduled first. Since v (t) is defined to be equal to the start 

tag of the packet in service, for 0 < t ≤ 10: v (t) =  = 0. At the end of that quantum, 

the finish tag of the first packet of Flow #1 is computed as 

1S 2S 1S 2S

1S

10
1

1001 =+=F

1

. 

Moreover, assuming that the flow remains backlogged at the end of the quantum, it is 

stamped with = =10. At this time, since  < , the first packet of 

Flow #2 is scheduled. Note that since  = 0, the value of v (t); 10 < t ≤ 20 continues 

to be equal to 0. At the end of this quantum, the finish tag for B is set to 

1S ( )( 10v )1, Fmax 2S S

1S
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5
2

1002 =+=F . Moreover, assuming that Flow #2 remains runnable at the end of 

the quantum, we get = 2S ( )( )2,20max Fv =5. Carrying through this process illustrates 

that, before Flow #2 become unbacklogged at time t= 60, Flow #1 and Flow #2 are 

scheduled for 20ms and 40ms, respectively, which is in proportion to their weights. 

When Flow #2 is unbacklogged, the entire channel is available to Flow #1, and the 

value of v (t) changes at the beginning of each quantum of Flow #1. Now, when 

Flow #1 becomes unbacklogged at time t = 90 the system contains no backlogged 

flows. During this idle period, v(t) is set to max( 50)20,50max(), 21 ==FF

2S

50)20,50max(

. When 

Flow #1 becomes backlogged at time t = 110, v(t) = 50. Hence, Flow #1 is stamped 

with , and is immediately scheduled for transmission. On the 

other hand, when Flow #2 becomes backlogged at time t = 115, v(t) =  = 50. 

Hence, it is stamped with 

50

,50max(2

)1 =,50 Fmax{1 =S

)2 === FS . From this point, the 

ratio of bandwidth allocation goes back to 1:2. Finally, when Flow #1 becomes 

unbacklogged at t = 170, the entire bandwidth becomes available to Flow #2, until it 

becomes unbacklogged at t = 210.  

 

3.2 Fair Scheduling Algorithms for Wireless Networks: 

 

 Since a session belonging to a wireless network may receive significantly less 

service than it is supposed to, and another may get more; it is difficult to provide 

both delay-guarantees and fairness simultaneously. This may happen because of 

exhibiting high, variable error rates. Many applications and end-to-end transport 

protocols may perform very poorly when packets are lost due to link errors. This 

results in large discrepancies between sessions’ virtual times. So scheduling 

disciplines for wireline environment can not be implemented directly to wireless 

networks [25]. 
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 Wireless channels have the following unique characteristics, which wireline 

fair-scheduling algorithms do not address [28]: 

 

1.Bursty channel errors, 

2.Location-dependent channel capacity and errors. 

 

 These two properties implies that at any time, it may happen that some flows 

can transmit but others can not due to channel errors, resulting in only a subset of 

backlogged sessions to be scheduled at any time instant; also this subset is 

dynamically changing as time evolves. As a result, a session with an error-free 

channel may receive more normalized amount of service than that by a session with 

an error channel. To achieve long time fairness more service may be given to a 

previously error session [25, 28].  

 

 These characteristics make it difficult to satisfy requirements of time-sensitive 

applications such as high quality audio and video. Also host mobility makes it 

difficult to satisfy QoS requirements since routing and admission control in the 

mobile communications is dynamical and therefore complex. 

 

 Many resource management algorithms for wireless mobile networking 

environments like Idealized Wireless Fair Queueing, Wireless Fair Service, Channel 

State Independent Wireless Fair Queueing and Wireless Multiclass Priority Fair 

Queueing are proposed to suit for capacity-constrained and highly dynamic networks 

in order to support communication intensive applications with QoS requirements. 

The main design goals of these disciplines are delay and throughput guarantees for 

error-free sessions, long-term fairness for error sessions, short-term fairness for 
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error-free sessions and graceful degradation for sessions that have received excess 

service [25]. 

 

 The following sections will give information about Wireless Packet Scheduling 

(WPS), Server Based Fairness Approach (SBFA) and Channel Independent Fair 

Queueing (CIF-Q) in detail. This chapter will also introduce adaptation of DRR for 

wireless channels.  

 

3.2.1 Wireless Packet Scheduling: 

 

 WPS tries to approximate IWFQ, since for a base station performing the task of 

scheduling IWFQ does not predict channel state perfectly and has limited knowledge 

on uplink flows [27, 28]. For implementation, either WFQ or  can be chosen 

as an error-free service; but WRR can also be chosen because of its ease of 

implementation. Also it has been stated that WRR and fair scheduling will 

approximately result in same performance [28]. 

QWF2

 

 The key features of WPS are: Spreading, which generates frames based on 

WFQ or  when all flows are backlogged; Swapping within Frame, which 

interchanges the slots of a frame when a flow can not transmit in its slot because of 

channel error; Credit/Debit Adjustment, which slots’ credit and debit are adjusted 

when a slot does not transmit in its frame and can not swap with another slot in the 

same frame, but there exits another backlogged flow that can transmit at the same 

time. When a new frame needs to be generated, these credit and debits are taken into 

account in terms of effective weights; One-step Prediction, which predicts the state 

of the physical channel using the previous channel state. In Figure 3.7 A WPS 

example is given. Consider three backlogged flows Flow #1, Flow #2 and Flow #3, 

QWF2
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which have weights 3, 2, 1 respectively. The first line of Figure 3.7 shows how 

spreading generates frames using . The second line presents how the 

swapping works. At the time when slot c is scheduled, the one-step prediction 

algorithm predicts that both Flows #1 and Flow #3 have channel errors but Flow #2 

perceives a clean channel. Since Flow #3 can not transmit in slot due to channel 

errors, and Flow #1 cannot either, Flow #2 is transmitted in slot c; therefore, Flow #2 

and Flow #3 swapped slots c and e. It should be noted that at the time when slot c is 

scheduled, no predictions will be made on whether slot is e good for Flow #3 or not. 

As shown in the third line of Figure 3.7, if slot e is bad for Flow #3 according to the 

one-step prediction made, when slot is e scheduled, Flow #3 has to be scheduled in 

the next frame. In this case, Flow #3 still cannot be transmitted due to predicted error 

state for slot e, because there does not exist any slot for Flow #3 to swap within 

Frame #1, we simply maintain the credits for Flow #3 as 1, and the debits for Flow 

#2 as 1. Therefore, at the beginning of Frame #2, the effective weights for Flow #1 is 

still 3; the effective weights for Flow #2 is given by its weights minus its debits, that 

is 2-1=1; the effective weights for Flow #3 is the sum of its weights and its credits, 

that is, 1+1=2. The slot allocation for Frame #2 will be spreaded using  based 

on the effective weights, and the results are shown in Figure 3.7.  

QWF2

QWF2

 

 It should be noted that the number of credits must be bounded in order not to 

allow a flow capturing the entire channel for along time. IWFQ also has a similar 

effect, which can be solved by bounding the compensation. 

 

 Since WPS tries to approximate IWFQ in the average case, there is a difference 

in the worst-case delay since it compensates by swapping rather than by giving 

precedence in channel access to longest lagging flows. By swapping the next attempt 
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of flow to access the channel is delayed to a later slot. This means that precedence 

history is maintained by IWFQ. 

 

 

1 2 3 1 2 1 1 2 3 1 2 1 1 2 3 1 2 1 1 2 3 1 2 1

Frame #1 Frame #2 Frame #3 Frame #4

Spreading

1 2 312 1 1 2 3 1 21 1 2 3 1 2 1 1 2 3 1 2 1Swapping

1 2 212 1 1 3 2 1 3 1Credit&Debit

√ 

X

X

X

√

√

One step prediction:

√ 

X

X

One step prediction: √ 

X

X

Credit for Flow #3 = 1
 Debit  for Flow #2 = 1
Effective weights:
Flow #1=3
Flow #2=1
Flow #3=2

slot # a b c d e f

 
 

 

Figure 3.7 A WPS example 

 

 

 Another problem in WPS is, choosing a flow in a future frame instead of the 

current backlogged flow that has to be transmitted but cannot be given service due to 

a channel error. Remember that the coming frame is generated by the information 

based on the weights for all known backlogged flows.  
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3.2.2 Server Based Fairness Approach: 

 

 Another discipline proposed by Ramathan and Agrawal [27] as SBFA 

introduces the concept of long-term fairness server (LTFS) which shares the 

bandwidth with the other flows and is responsible for providing additional capacity 

to flows to maintain the long-term fairness guarantees. SBFA maintains two different 

queues for each flow, Packet Queue (PQ) and Slot Queue (SQ). When a new packet 

arrives for flow i, it is inserted into PQ , at the same time a slot is inserted with a tag 

i (identifying the slot as belonging i) into SQ . The scheduler operates on slot 

queues. 

i

i

 

 If a flow i can not transmit because of an erroneous channel, the packet is 

inserted in the LTFS queue. This means that SBFA distributes an extra quantum of 

bandwidth to lagging flows for compensation without degration of other flows. In 

general more than one LTFS may be created. For example one LTFS could be used 

for real-time traffic and a different one for interactive traffic. But all flows may be 

assigned to the same LTFS too. 

 

 To understand SBFA more, let us have a look at the example shown in Figure 

3.8. In this example, there are two flows and a LTFS sharing a wireless link. As seen 

from Figure 3.8 (a) at time=0 there are two packets waiting for transmission for each 

flow. It is assumed that all packets are unit length and WRR scheduling policy is 

applied for all flows and LTFS. Suppose that the scheduler has selected Flow #1, and 

the wireless link is not suitable for transmission. So the packet at the head of the 

packet queue is deferred and the next active flow, Flow #2 is selected. Be aware that 

Flow #1 did not get its share of the bandwidth at time 0, but a slot with tag 1 is 
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Figure 3.8 SBFA compensation in case of a deferment 
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inserted into LTFS. Figure 3.8 (b) presents the states of all queues assuming that the 

transmission of the packet at the head of packet queue of Flow #2 is successful. 

 

 At time 2, when LTFS is selected for transmission the slot’s tag refers to Flow 

#1, so the packet at the head of packet queue of Flow #1 is transmitted assuming that 

the channel is good. At time 3, scheduler selects Flow #1 for transmission and the 

packet from Flow #1 is transmitted. Assuming that all transmissions are successful 

the states of queues at time 4 is shown in Figure 3.8 (c). We have seen that how 

SBFA compensates when a packet is deferred in case of receiving a bad channel. 

 

3.2.3 Channel Independent Packet Fair Queueing: 

 

 CIF-Q uses SFQ as the error-free service system, in order to keep 

implementation low [25].  But it should be noted that any other scheduling discipline 

could be chosen as a reference model. 

 

 CIF-Q schedules the packet with minimum start tag for transmission, which 

would be served next in SFQ. When the selected flow can not send, the service is 

distributed to another flow. But the service is charged to the candidate flow. To do 

this CIF-Q introduces a lag parameter to keep the track of the amount of traffic needs 

to be compensated for. 

 

 The parameter lag  represents the difference between the services that flow i 

should receive in a reference error-free model and the service it has received in real 

system. An active flow i is said to be lagging if its lag  is positive and leading vice-

versa. It is called satisified if lag  is zero. It is obvious that for an error-free system 

i

i

i

 56



all flows will be satisified. The algorithm maintains at all time the following 

invariant: 

 

       ∑
∈

=
Ai

ilag 0              (3.9) 

 

where A is the set of the active flows. So the system is work conserving. The simple 

version of CIF-Q is given in Appendix A.  

 

 The key features of CIF-Q scheduling scheme is given below: 

 

• In CIF-Q, a session’s virtual time does not keep track of the normalized service 

received by that session in the real system S, but in the reference error-free 

system . r
SFQS

• The additional parameter lag is used for keeping the track of the difference a 

session should get in an error-free system S and it get in real system . To 

provide perfect fairness all lags of sessions must be zero. 

r
SFQS

• If no session can transmit, a session is forced to receive service and we charge 

for that forced session. This is done even if it can not send any packet.  

 

 CIF-Q is easier to implement than IWFQ, since it is self-clocked and it does not 

need to emulate a fluid system. 

 

3.2.3 DRR for Wireless Channels: 

 

 As an investigation of a new scheduling approach, DRR for wireless channels 

can be proposed. In this technique the quantum of the flow will be added to the 
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deficit counter when it receives an error. It is obvious that the scheduling scheme is 

not work conserving since it does not try to compensate the excess share.   
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CHAPTER 4 

 

 

EVENT DRIVEN SIMULATION OF SCHEDULING 

ALGORITHMS 
 

 

 

  For evaluating the delay, jitter and throughput performances of such scheduling 

algorithms, a discrete event simulator has been developed to see how they perform 

under various loading conditions. Average delay associated with a packet 

transmission and throughput statistics are kept, in order to graph versus various 

channel loads. By capturing these, information about the behavior of fair queueing 

disciplines is obtained. The language to be used for the simulation model is C++. 

 

4.1 Simulation Methods: 

 

 Before one attempts to produce a prototype, it is desirable to simulate the 

expected behavior of the design. Simulation of the behavior can demonstrate how 

successful will the product be when it is fabricated. Simulation enables to focus on a 

variety of conditions to see how the design will be behaving in complex systems.  

 

 In a simulation model, generally a simulated clock controls timing of events. 

Timing control is necessary to execute events in an appropriate sequential order. In a 

computer communication network events are limited to arrivals and departures of 

data or control messages, which a simulation model must be able to synchronize [6].  
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 The two famous methods used for controlling timing of events are1 [6]: 

• Unit advance (synchronous timing) or Time-Driven Simulation 

• Event advance (asynchronous timing) or Event-Driven Simulation 

 

 As events occur in a simulation model, the simulation clock is advanced so as 

to move the system forward in time. In unit-advance case or equivalently in time-

driven simulation, the simulation clock is advanced by a fixed quantity where as in 

event advance case; the simulation clock is advanced to the time of the next event. 

 

 The choice of the method for advancing the simulation clock has a significant 

impact on processing or the execution time of a simulation program. In time-driven 

simulation, the clock is advanced by a fixed duration of time and then the system is 

checked as to whether or not any events has taken place. If the event has taken place, 

the model variables are updated according to the type of event and the process is 

repeated again. If no event has taken place, the clock is advanced again without any 

change in the model variables and the process is repeated. 

 

 In unit advance case, the duration, the simulation clock will be increased is a 

critical decision. If a very small duration is chosen, it will take the model 

unnecessarily slow. On the other hand if one chooses a relatively long duration, the 

results may not be accurate. 

 

 In the event advance case, the duration used for advancing the simulation clock 

depends on the actual events. Thus the clock is updated dynamically. The model 
___________________________________________________________________ 
 
1http://www.winslam.com./laramee/sim/, “Event Driven Simulation Tutorial”, Tom Laramee, 

December 1995. 
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finds out when the next event is going to take place and the simulation clock is 

advanced to that time. If the events are occurred after long intervals, the clock will 

also be advanced by a longer duration and vice versa. 

 

 For illustrating the difference between two methods of simulation let us have a 

look at the following example: 

  

 One way to simulate the floating-point unit (FPU) of an Intel Pentium 

central processing unit (CPU) is to examine every clock cycle to see what is 

happening in the FPU. The “events” that causes the system to change the system to 

change its state are: 

 

• Beginning of Division Operation 

• Completion of Division Operation 

• Beginning of Multiplication Operation 

• Completion of Division Operation 

 

 A sample trace of time-driven simulation is given in Table 4.1. In the example 

division operation completes in 4 cycles and multiplication operation completes in 5 

cycles. 

 

Table 4.1 Time-Driven simulation of FPU 

CLOCK CYCLE EVENT 

1 Beginning of Multiplication Operation 

2 None 

3 None 

4 None 
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CLOCK CYCLE EVENT 

5 None 

6 Completion of Multiplication Operation 

7 None 

8 Beginning of Division Operation 

9 None 

10 None 

11 None 

12 Completion of Division Operation 

13 None 

14 None 

 

 

 An event-driven simulation trace is given in Table 4.2. 

 

Table 4.2 Event-Driven simulation of FPU. 

CLOCK CYCLE EVENT 

1 Beginning of Multiplication Operation 

6 Completion of Multiplication Operation 

8 Beginning of Division Operation 

12 Completion of Division Operation 

 

 As seen from the table, event-driven simulation only examines the events that 

cause state changes. Time intervals, where the state of a system does not change, are 

skipped.  
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 If a queueing network is simulated in a time-driven manner, every distinct 

moment of time must be traced. This results in a large amount of processing 

overhead. For example, if there is a possibility that system loading is such that there 

could be 100 events in a second, then "time" must be quantified into pieces each 0.01 

seconds long, and each of these 100 units of time must be examined during the 

simulation to see if an event has occurred.  

  

 If only 70 of these events actually occur, it is still necessary to examine all 100 

"units of time" in the time-driven simulation. But in the event-driven simulation, you 

only examine the 70 changes of state. This saves a big amount of processing time to 

complete the simulation1. 

 

 In this thesis, since event-driven simulation technique believed to be both 

efficient as well as more accurate [6], scheduling algorithms for packet switching 

networks will be simulated as in event advance case. 

 

4.2 A Scheduling System Simulation Skeleton: 

 

This part introduces the basic event handling mechanism of the discrete event 

simulator that has been developed.  

 

 The simulator developed, has a graphical user interface (GUI) in order to seed 

simulator with different operating parameters. With this GUI user can input 

simulation time (in seconds), link capacity (in megabits per second), the number of 

flows that exist in the system, traffic models and weights of these flows and the 

scheduling algorithm that is to be simulated.  
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 The simulator can support maximum of five flows and the weights of these 

flows can alter between 1 and 5. Hierarchical models are not applied in the basic 

structure.  

 

For comparing performance of queueing algorithms, an accurate traffic model 

has to be found. This is sometimes difficult because nature of the source or the 

encoding method may affect the statistics of the traffic. The source of data is 

practically a sensor, which samples a physical quantity to produce a signal. The 

following source models are applied, as shown in Figure 4.1: 

 

• Constant Bit Rate (CBR): Fixed-size packets arrive at deterministic intervals as 

shown in Figure 4.1 (a). The sources generate data, which has few 

redundancies. The data must not be compressed in a lossy way because the 

content is important. 

 

 

• Variable Bit Rate (VBR): 

o On/Off Sources: The source alternates between a period in which 

fixed-size packets arrive with deterministic spacing and an idle period 

as shown in Figure 4.1 (b) where T is period. Voice traffic is a good 

example. 

 

o Periodic with Variable Packets Sizes: The source submits a variable-

size packet to the network at deterministic intervals as shown in 

Figure 4.1 (c) where T is period. Compressed video may be a good 

example. 
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o Aperiodic with Variable Packet Sizes: Variable-size packets are 

generated at randomly distributed intervals as shown in Figure 4.1 (d). 

 

o Aperiodic with Constant Packet Sizes: Fixed-size packets are 

generated at randomly distributed intervals as shown in Figure 4.1 (e). 

  
Packet Length Packet Length Packet Length

Packet Length Packet Length

Time Time Time

Time Time

Active SilentT
T

( a ) ( b ) ( c )

( d ) ( e )  
Figure 4.1 Examples of different types of traffic sources 

 

 

User can choose one of four traffic models for flows from the GUI. These may 

be CBR or VBR, which generates variable size packets at exponentionally, 

distributed interarrival times. User can also choose On-Off and Poisson, which is 

another kind of VBR that generates fixed-size packets at exponentionally distributed 

interarrival times. User can input the period (in seconds), mean arrival rate (in 

milliseconds), packet length (in bytes) and mean packet length (in bytes) for various 

traffic models. Also user can assign the weights of the flows that exist in the system. 
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For CBR type of traffic user can input the period and packet length, for VBR 

user can input mean packet length and mean interarrival time. The mean interarrival 

time and mean packet length are Poisson distributed. For On-Off type user can input 

mean “on” time. The “off” period is the multiple of that “on” period. The packets are 

generated with a constant period within the “on” time. The packet size and the period 

of generation in the “on” time are declared as macros. For Poisson distributed type of 

traffic user inputs the mean interarrival time and the packet length is fixed (the value 

that user entered does not change until the end of simulation). 

 

 For generating Poisson distributed arrivals, inverse transform method described 

in section 2.5.1.2.1 is used. If the arrival process is Poisson, the interarrival time 

distribution is exponential with rate parameter λ [14]. Let: 

 

     =)(tPi Pr [i arrivals in a period of length t]           (4.1) 

 

and let X be the random variable describing the interarrival times for a Poisson 

process: 

 

      Pr [X > t] = (t) =             (4.2) 0P te λ−

                      = Pr [t ≥ X] = 1 -             (4.3) )(tFx
te λ−

 

 

where is the cumulative distribution function for random variable X. Define:  )(tFx

 

            u )(1 tFx−= =             (4.4) te λ−

The inverse of u is: 

 66



         
λ

)1ln()(1 uuxFt −
−== −             (4.5) 

 

If u is uniform in (0,1) then 1-u is also uniform in (0,1). Hence: 

 

      

       
λ

)ln(u
−=t              (4.6) 

 

 

As statistics, the delay associated with each packet is recorded. For the 

simulator, delay is the difference between the first bit of a packet started to transmit 

and the last bit of the same packet is received.   

 

Jitter is defined as the standard deviation of the delay. In the literature the term 

delay jitter is defined as the maximum deviation between the delays experienced by 

packets in a single connection [13]. For example, in a connection if the minimum 

end-to-end delay seen by a packet is 3 milliseconds and the maximum is 7 

milliseconds, the delay jitter is 4 milliseconds.  

 

Interactive applications require a bound on both delay and jitter, but some 

certain applications such as non-interactive television and audio broadcasting, 

require bounds on jitter but not delay [13].  

  

 Another performance measure recorded is throughput. Throughput is typically 

measured in bits/second. In Section 5, before the presentation of the simulation 

results, definition of fairness measures will be introduced. Comparing this quantity 

for a scheduling algorithm with another one will be helpful in fairness analysis. 
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The process flow diagram of the discrete event simulator is given in Figure 4.2.  

 

The simulator stores the simulated state of the system in a set of system state 

variables. Event routines cause state variables to be modified. An event list is used to 

control the execution sequence of these event routines. This event list consists of 

events in increasing chronological order. Event routines can add or delete items from 

the event list. The random number generators in these event routines provide 

randomness for modifying and scheduling of future events. In our case the event list 

is implemented as a linked list. Running a simulation is a repeated execution of a 

loop, where at each iteration the event with earliest scheduled time is executed.  

 

In the model the incoming packets are represented by data stuctures. These 

entities contain simulation-specific information as well as length indication and flow 

identificaiton. For example packet-creation time stamp is used for statistics 

colllection. Such encapsulation of data structures is a common feature in 

communication networks and is also supported by object-oriented programming [30]. 

The termination of the simulation depens on the simulation time that is determined 

by the user. 

 

For clarity in showing the effects of channel errors and for ease of 

interpretation, errors are modeled as simple periodic bursts. Error patterns represent a 

periodic burst of predefined period, with predefined period of intermediate error-free 

time.  
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Figure 4.2 Process Flow Diagram for Event Handling Mechanism 
 

 

 69



 Since single-node fairness analysis is the scope of this thesis, the simulator 

does not deal with routing, acknowledging, and flow controlling or removing and 

insertion of identifiers. Those may be considered in the end-to-end fairness analysis. 

 

4.3 Validation of Implementations: 

 

 In this section, the simulation results obtained from the simulator we have 

designed will be compared to the analytical and simulation results taken from 

literature, to make it sure that the model logically does what it is supposed to do. In 

the cases where no simulation results for the models exist, comparison with the 

analytical results will be performed for the validation process. 

 

4.3.1 Validation of Weighted Fair Queueing Simulation: 

 

 The validation strategy is based on the observation that the WFQ algorithm 

approximates the behavior of a GPS server except for an error term that is bounded 

by [12, 18]: maxL

 

                                          τττ ,),0(),0( max,, iLW WFQiGPSiW ∀≤−                             (4.7) 

 

where ),0(, τGPSiW  and ),0(, τWFQiW  are the total amounts of service received by 

session i, (the number bits transmitted) by time τ under WFQ and GPS respectively, 

and is the maximum packet length. maxL

 

The main goal of the following simulations is to verify the difference 

between services received by WFQ and GPS never violates the maximum theoretical 

limit. In fact, with the virtual time implementation of the WFQ algorithm, the server 
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keeps the track of the progress of the corresponding GPS server. However, this is not 

a good validation strategy, since both the output WFQ system and the corresponding 

GPS system could be wrong. A good validation strategy should take as reference the 

behavior of a system external to the WFQ implementation.  

 

Remember that equation 3.3 holds when all sessions in the system are 

continuously backlogged. In these time intervals the behavior of the GPS server 

(from the standpoint of a backlogged session) is exactly the same as the behavior of a 

FIFO scheduler scheduler with rate . Therefore, in order to monitor the difference 

between the services received by GPS and WFQ scheme, it is possible to compare 

the output of the WFQ system with the one of a FIFO system with the same input 

traffic pattern

jg

2. However, in order to make things work, other sessions’ backlogs 

should never be zero. In the simulation scenario, the behavior of the WFQ 

implementation is compared with the behavior of a reference FIFO system. 

 

In the simulation study, a WFQ server with a rate 150000 bit per second (bps) 

is shared by two sessions producing Poisson distributed traffic with fixed packet 

lengths is considered. As a reference, the behavior of the first session is taken and a 

FIFO server with rate 100000 bps with the same input pattern is considered. 

 

 Poisson distributed traffic is chosen to avoid periodical phenomena. In fact, if 

CBR sources had been used, the discrepancy between the amounts of service share 

would have shown a replicated behavior. 

 

___________________________________________________________________ 

2 http://netgroup-serv.polito.it/netgroup/hp/qos/validation.ps, “Validation of the WFQ code” 
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 In the following table the sessions’ parameters are given. 

 

Table 4.3 Session parameters for WFQ validation. 

 
Mean inter-arrival 

time (millisecond) 

Packet Size 

(bytes) 

Average Rate 

(bps) 
Weight 

Session 1 20 400 160000 2 

Session 2 40 360 72000 1 

 

 Be aware that, to respect the condition of non-zero backlogs, the total link 

required by the sessions is almost the twice of actual link capacity. The simulation is 

run for 200 seconds and the behavior of session 1 is monitored both in FIFO and 

WFQ simulations. We expect that the difference between the service shares both in 

FCFS and WFQ simulations for session 1 to be less than =3200. For 10 runs the 

results are given in Table 4.4. 

maxL

 

Table 4.4 Differences of service shares in terms of bits for FCFS and WFQ 

simulations. 

Simulation number )200,0(,1 WFQW  )200,0(,1 FCFSW  Difference  

1 20000000 20000000 0 

2 20000000 20000000 0 

3 20000000 20000000 0 

4 19996800 20000000 3200 

5 20000000 20000000 0 

6 20000000 20000000 0 

7 19996800 20000000 3200 

8 19996800 19996800 0 
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Simulation number )200,0(,1 WFQW  )200,0(,1 FCFSW  Difference  

9 20000000 20000000 0 

10 19996800 20000000 3200 

 

 

  From the table it is seen that, for all runs the difference between the amounts of 

network share does not exceed the maximum bound 3200. The lower and upper 

limits of the %90 confidence interval for the quantity W  are 19996000 

and 20001000 respectively. The same confidence limits for the quantity 

 are 19998000 and 20001000 respectively. 

)200,0(,1 WFQ

)200,0(,1 FCFSW

 

 These results show that the behavior of the WFQ implementation is correct. 

 

4.3.2 Validation of Worst Case Fair Weighted Fair Queueing+ and Start 

Time Fair Queueing Simulations: 

 

The scheduling algorithm at node j is said to provide a fairness guarantee, if in 

any time interval [ t , ] during which two flows f and m are continuously 

backlogged, the number of bits of flows f and m transmitted by the server, 

 and W  respectively satisfy: 

1

( 1tj

2t

)2t),( 21, ttW jf ,,m

 

                                 },.{,
21,2,1, ),(),(

mfj
m

jm

f

jf U
r

ttW
r

ttW
≤−                       (4.8) 
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where and  are the rates reserved for flows f and m respectively and U  is 

the unfairness measure – a constant that depends on the scheduling algorithm and 

traffic characteristics at server j [20, 28, 32]. Table 4.5 lists the U  values for 

W Q and SFQ algorithms. Since W F Q+ provides the same WFI as W F Q [23], 

the unfairness measure for W Q+ is the same as W Q. 

fr mr },{, mfj

2

},{, mfj

2F 2

2F 2F

 

Table 4.5 Unfairness measures for SFQ and W Q [32]. 2F

Algorithm },{, mfjU  

SFQ 
m

m

f

f

r
l

r
l maxmax

+  

W F Q 2










−+

Crr
l

mf

111max  

 

 To validate SFQ and W Q+ simulations we have used the analytical results 

above. For all the results presented here, a link of 448000 bps bandwidth is shared by 

following two flows: Flow 1 is an Poisson type of traffic in which 320 byte packets 

are generated with a mean inter-arrival time of 5 millisecond, corresponding to an 

average bandwidth need of 512000 bps. Flow 2 is also a Poisson traffic, which 

generates 800 byte packets with the mean inter-arrival time of 10 milliseconds. The 

bandwidth requirement of Flow 2 is 640000 bps. Notice that, in order to respect the 

condition of non-zero backlogs, the total link requested by the sessions is almost the 

twice of actual link capacity.  

2F

  

 The weights of flows are 2 and 5 respectively. The unfairness measure for 

W Q+ according to the given parameters is 4479.986. The simulation had been run 2F
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for 10 times. Table 4.6 presents the measured differences between the normalized 

service shares. The simulation time is 200 seconds for all runs.  

 

Table 4.6 Differences of normalized service shares in terms of bits for W F Q+ 

simulation. 

2

Simulation number )200,0(,1 jW /2 )200,0(,2 jW /5 Difference  

1 12802560 12798720 3840 

2 12800000 12800000 0 

3 12800000 12800000 0 

4 12800000 12800000 0 

5 12798720 12798720 0 

6 12797440 12798720 1280 

7 12800000 12800000 0 

8 12800000 12800000 0 

9 12798720 12800000 1280 

10 12798720 12800000 1280 

 

 

 As seen, for all runs the difference between the normalized amount of network 

share does not exceed the unfairness measure 4479.986. The lower and upper limits 

of the %90 confidence interval for the quantity W  are 12798000 and 

12801000 respectively. The same confidence limits for the quantity W  are 

12799000 and 12800000 respectively.  

)200,0(,1 j

)200,0(,2 j

 

 With the same flow parameters, the unfairness measure for SFQ is 2560. Table 

4.7 presents the results of 10 runs for SFQ.  
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Table 4.7 Differences of normalized service shares in terms of bits for SFQ 

simulation. 

Simulation number )200,0(,1 jW /2 )200,0(,2 jW /5 Difference  

1 12800000 12800000 0 

2 12800000 12800000 0 

3 12800000 12800000 0 

4 12801280 12800000 1280 

5 12801280 12800000 1280 

6 12800000 12800000 0 

7 12800000 12800000 0 

8 12800000 12800000 0 

9 12801280 12800000 1280 

10 12800000 12800000 0 

 

 

 From the table it is seen that the difference between service shares had never 

exceeded the unfairness measure. The lower and upper limit of the 90% confidence 

interval for the measured quantity W is 12800000 and 12801000 

respectively. Since standard deviation for W is 0, there is no need to 

compute confidence interval for it.  

)200,0(,1 j

,0(,2 j )200

 

 These results show that the behavior of the W Q+ and SFQ  implementations 

are correct. 

2F
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4.3.3 Validation of First Come First Served and Deficit Round Robin 

Simulations: 

 

To answer the question about the performances of DRR, Shreedhar and 

Varghese [17] experimentally confirms that DRR provides isolation superior to 

FCFS as the theory indicates for a single router case. They have also proved the 

fairness provided by DRR still good when the flows arrive at different rates and 

different distributions. 

 

They have measured the throughput in terms of delivered bits in a simulation 

interval, typically 2000 seconds. In the single router case (Figure 4.3) there are one 

or more hosts. Each host has twenty flows, each of which generates packets at a 

Poisson average of 10 packets/second. The packet sizes are randomly selected 

between 0 and Max packet size (4500 bits). Ill-behaved flows send packets at a 

Poisson average of 30 packets/second. Each host is configured to have one ill-

behaved flow. 
Host #1

Host #n
packet
buffers

Router

Network Link

 
Figure 4.3 Single router configuration 

 

 

In order to show how DRR performs with respect to FCFS, a single router 

configuration and a host with twenty flows sending packets at the default rate 
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through the router is used. The only exception is that Flow 10 is a misbehaving flow. 

The outgoing link was set to 10 Kbps. Therefore if there are 20 input flows each 

sending at rates higher than 0.5 Kbps, there is contention for the outgoing link 

bandwidth. 

 

 
 

Figure 4.4 Plot showing the results of the experiment done by Shreedhar and 

Varghese [17], which interprets the bandwidth distribution among the flows. 
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Figure 4.4 shows the plot of the bandwidth offered to flows using FCFS 

queueing and DRR. The plot is directly taken from the paper written by Shreedhar 

and Varghese [17]. In FCFS the ill-behaved flow (Flow 10) obtains an arbitrary share 

of the bandwidth. The plot clearly illustrates the isolation property of DRR. 
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Figure 4.5 The results of DRR implementation. 
 

 

We have simulated DRR and FCFS with the same operating parameters to 

validate the behavior of the implementations. The result can be seen in Figure 4.5. As 

in the experiment performed by the authors, the ill-behaved flow, namely Flow 10, 
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grabbed an arbitrary share of the bandwidth, while in DRR there is nearly perfect 

fairness. In their experiment Shreedhar and Varghese measured the maximum 

deviation from the ideal bandwidth share (in terms of Kilobits) turned out to be 

0.32%. This value is measured as 0.3002% in our case.  

 

 Table 4.8 lists the upper and lower limits of the 90% confidence intervals for 

the throughput distributed among the 20 flows by FCFS and DRR implementations. 

The values are in kilobits. 

 

Table 4.8 The upper and lower limits of the 90% confidence intervals of throughputs 

distributed among the 20 flows. 

FCFS implementation DRR implementation Flow 

number Upper limit Lower Limit Upper limit Lower Limit 

1 824.2  964 998.7     1002.4 

2 824.2  942 999.2     1002.2 

3 845 978.6 997.4     1001.9 

4 863.8     950 998    1001.8 

5 793.5     977.7 998     1002.2 

6 890.4     952.5 997.1     1002.5 

7 853     950.6 998.1     1003 

8 869.4     996.8 998.2     1002 

9 865.7     988.3 998.2     1002.9 

10 2651.6     2837.6 998.6     1001.8 

11 839.6     948.2 997.8     1001.7 

12 860.8     961.5 997.7     1001.4 

13 844.2     989.6 997     1003.3 

14 831.7     981.3 997.6     1001.8 
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FCFS implementation DRR implementation Flow 

number Upper limit Lower Limit Upper limit Lower Limit 

15 894.8     951.3 998.6     1002 

16 863.8     968.2 997.6     1002.1 

17 846.8     956.5 997.6     1002.2 

18 831     966.1 997.9     1002.8 

19 861.4     946.9 998.5     1002.1 

20 856.5     981.8 998.1     1001.3 

 

 

These results show that the behaviors of the FCFS and DRR implementations 

are correct. 

 

4.3.4 Validation of Wireless Packet Scheduling Simulation: 

 

For the simple scenario demonstrating the effectiveness of WPS, Lu, 

Bharghavan and Srikant [28] have considered an example with three loss-sensitive 

sources with WFQ weights  = 20,  = 10 and =1.  1r 2r 3r

 

It is assumed that the channels for sources evolve errors according to a two-

state discrete Markov Chain. Knowing that  is the probability that the next time 

slot is good, given that the current slot is in error, and  is the probability that the 

next time slot is in error, given that the current slot is good, then the steady-state 

probabilities  and  of being in the good and bad states, respectively, are given 

by: 

gp

ep

GP EP
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The two-state discrete Markov Chain used to model one-step prediction 

algorithm is shown in Figure 4.6. Let the bad state be 0 and good state be 1. 

 

 

1 0

gp

ep

ep−1 gp−1

 
 

Figure 4.6 Two-state discrete Markov Chain used to model errors evolved by 
channels. 

 

 

The arrival processes are assumed to be as follows: Source 1 is a Markov-

modulated Poisson process (MMPP) where the modulated process is a continuous-

time Markov chain which is in one of two states ON and OFF [28, 33]. The 
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transition rate from ON to OFF is 9 and OFF to ON is 1. When the Markov chain is 

ON state, arrivals occur according to a Poisson process. Source 2’s arrivals occur 

according to a constant inter-arrival time and Source’3 arrivals are Poisson. The 

source parameters are given in Table 4.3. For each packet, the maximum number of 

retransmissions is limited to 2, i.e. a packet is dropped if it is not successfully 

transmitted after three attempts. Also the number of credits and number of debits are 

limited to 20. The values of  and  parameters can be seen in Table 4.9. gp ep

 

Table 4.9 Source and channel parameters for WPS simulation. 

Source iλ  gp  ep  ir  

1 4.4 0.08 0.02 20 

2 0.25 0.095 0.005 10 

3 0.025 0.09 0.01 1 

 

 

The simulation had been run for 100 000 time units and the results of the 

simulation experiment done by Lu, Bharghavan and Srikant [28] are presented in 

Table 4.10. The performance measures compared for the WPS algorithm for Source 

i, i = 1,2,3 are: 

 

iW   the aggregate number of packets that have been successfully 

transmitted for flow i; 

il  loss Probability, i.e., fraction of packets that are dropped after three 

transmission attempts; 
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Table 4.10 Results of WPS simulations. 

 1W  1l  2W  2l  3W  3l  

Original 

Results 
50000 0 25000 0 2496 0 

 

 

 The results of the WPS implementation for 10 runs are given in Table 4.11. The 

90% confidence intervals for the parameters W , , , ,  and l  are also 

given in Table 4.12. 

1 1l 2W 2l 3W 3

 

Table 4.11 Simulation results for WPS implementation. 

Simulation 

number 
1W  1l  2W  2l  3W  3l  

1 49960 0 24995 0 2551     0 

2 49904 0 24999 0 2439 0 

3 49926 0 24984 0 2428 0 

4 49976 0 24997 0 2444 0 

5 49990 0 24995 0 2449 0 

6 50152 0 24996 0 2517 0 

7 49914 0 24993 0 2551 0 

8 49954 1 24997 0 2546 0 

9 49917 0 24990 0 2509 0 

10 49950 0 24996 0 2488 0 

 

 

 

 84



 

Table 4.12 Confidence intervals for WPS implementation. 

Confidence 

limits 
1W  1l  2W  2l  3W  3l  

Lower 49165 -0.3373 24988 0 2424 0 

Upper 49363 0.5373 250000 0 2560 0 

 

 

4.3.5 Validation of Channel Condition Independent Packet Fair Queuing 

Simulation: 

 

To demonstrate the fairness properties of CIF-Q, Eugene Ng, Stoica and 

Zhang [25], considered an example with seven sessions (a real-time audio session, a 

real-time video session, four FTP sessions, and a cross traffic session) with the 

parameters shown in Table 4.13. The audio and video sessions are CBR sources such 

that their packets are evenly spaced at 50 milliseconds apart and their throughputs are 

160 Kbps 1.25 Mbps respectively. The four 2 Mbps FTP sessions are all 

continuously backlogged. The cross traffic session is a Poisson source with an 

average rate of 10 Mbps. 

 

Table 4.13 Properties of the 7 sessions used in the CIF-Q simulations. 

 Packet Size Guaranteed 

Rate 

Source 

Model 

Error 

Audio 1KB 160 Kbps CBR None 

Video 8KB 1.25 Mbps CBR None 

FTP-1 3KB 2 Mbps Greedy None 

FTP-2 3KB 2 Mbps Greedy Pattern 1 
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 Packet Size Guaranteed 

Rate 

Source 

Model 

Error 

Audio 1KB 160 Kbps CBR None 

FTP-3 8KB 2 Mbps Greedy Pattern 2 

FTP-4 8KB 2 Mbps Greedy Pattern 1 

Cross 4KB 10 Mbps Poisson None 

 

 

For showing the effects of channel errors and for ease of interpretation, the 

errors are modeled as simple periodic bursts. During the 200 second periods of 

simulation experiments, the channel errors occur during the first 45 seconds, leaving 

enough error-free time to demonstrate the long term fairness property of the 

algorithm. Error pattern 1 represents a periodic error burst of 1.6 second with 3.2 

seconds of intermediate error-free time. Error pattern 2, a less severe error pattern, 

represents a periodic error burst of 0.5 seconds with 5.5 seconds of intermediate 

error-free time. Be aware that FTP-2 and FTP-4 have experience identical error 

pattern but have different packet sizes, while FTP-1 experiences no error at all. The 

results of simulation presented by the authors, using α=0 can be seen in Figure 4.7. 

 

The results of the CIF-Q implementation can be seen in 4.8. As seen the 

service received by all four FTP sessions, regardless of the amount of errors they 

have experienced, converges very rapidly when the system becomes error free. 

Figure 4.8-b demonstrates the changes and lags more easily. The long-term and 

short-term fairness guarantees provided by the algorithm holds. 
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Figure 4.7 Behavior of the FTP sessions when α=0. (a) Service received by each 

FTP sessions. (b) Difference between the actual service received by the FTP sessions 
and the corresponding amount of service. 
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Figure 4.8 Results of CIF-Q implementation. (a) Service received by each FTP 

sessions. (b) Difference between the actual service received by the FTP sessions and 
the corresponding amount of service 
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The upper and lower limits of the 90% confidence interval for the total 

bandwidth distributed to FTP sessions can be seen in Table 4.14. The values are in 

kilobytes. 

 

Table 4.14 The upper and lower limits of the 90% confidence intervals of 

throughputs distributed among the FTP sessions. 

Session Upper limit Lower limit 

FTP1 50000 50000 

FTP2 49990 50000 

FTP3 49990 49990 

FTP4 49990 50000 

 

These results show that the behavior of the CIF-Q implementation is correct. 
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    CHAPTER 5 
 

 

SIMULATION RESULTS 
 

 

 

 In this chapter, a set of simulation studies for comparing the performance of 

several flow-based scheduling algorithms, namely FCFS, WFQ, +, SFQ, DRR 

for wired environment and WPS and CIF-Q for wireless networks will be presented. 

Adaptation of DRR for wireless media will also be evaluated. Delay, jitter and 

throughput performances of the above algorithms are evaluated. 

QWF2

 

5.1 Simulation Study: 

 

 In the first simulation scenario 4 flows (1, 2, 3 and 4) as well as a server with a 

capacity of 280 Kbps were considered. The server assigns 70 Kbps to each flow, 

since the weights of all flows are equal to 1.  

 

 The traffic models used for each flow are given in Table 5.1. 

 

Table 5.1 Traffic models for each flow for the first simulation scenario 

Flow  Type Weight 
Packet Length / 

Mean Packet Length 
(Bytes) 

Period /  
Mean Interarrival Time 

(milliseconds) 
1 CBR 1 450 50 

2 Poisson 1 450 50 

3 CBR 1 900 50 
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Flow  Type Weight 
Packet Length / 

Mean Packet Length 
Period /  

Mean Interarrival Time 
(Bytes) (milliseconds) 

4 VBR 1 500 25 

 

 

1 2 3 4Flows

Link

1 1 1 1

Weights of flows  
 

Figure 5.1 The first simulation scenario 

 

 

 Flow 1 and flow 2 corresponds to an average bandwidth need of 70.3125 Kbps. 

Flow 3 is also a CBR type of traffic and need an average bandwidth of 140.625 

Kbps. Flow 4, which is a VBR type of traffic, corresponds to an average bandwidth 

need of 156.25 Kbps. It is seen that total bandwidth required for four flows 

corresponds to an average bandwidth need of 437.5 Kbps but the link provided is 

only 280 Kbps. The results were examined for 200 seconds. It is thought that 200 

seconds will be enough for the simulations to be stable. The simulations have run 10 

times for the same traffic set and the results are averaged.  

 

 The fairness measure for a scheduling algorithm can be defined as: 
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     ∑
∀

−
i

ii RR                                                          (5.1) 

 

where iR  is the measured rate (Kbps, Mbps etc.) that is provided by the algorithm to 

the corresponding flow and  is the assigned rate, which is proportional to the 

weight of the flow. 

iR

 

 

Figure 5.2 Bandwidth distributions among the four flows for the first simulation 

scenario – wireline scheduling algorithms. 
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 Figure 5.2 presents the bandwidth distribution among four flows for FCFS, 

WFQ, FQ+, SFQ and DRR. As seen from the figure the total throughput 280 

Kbps is shared fairly among the flows except for the FCFS. At the average FCFS 

algorithm allocates a bandwidth of 44.475 Kbps to Flow 1, 45.775 Kbps to Flow 2, 

89.557 Kbps to Flow 3 and 100.48 Kbps to Flow 4. As expected these results show 

that FCFS does not allocate the total bandwidth fairly among the flows. 

2W

 

 It can be said that the other servers using WFQ, FQ+, SFQ or DRR type of 

scheduling mechanisms allocate the bandwidth fairly for the given traffic set by 

looking at the fairness measures given in Table 5.2. 

2W

 

Table 5.2 Fairness measures of wired scheduling algorithms for the first simulation 

scenario. 

Algorithm Fairness Measure 

FCFS 100.12 

DRR 1.29 

WFQ 1.3 
2W FQ+ 0.42 

SFQ 0.4 

 

 

 As seen the best performing scheduling algorithms for the first traffic set are 

FQ+ and STFQ. The fairness provided by DRR and WFQ are nearly the same.  2W

 

 The upper and lower limits of the 90% confidence interval for the rates of flows 

are given in Table 5.3. 
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Table 5.3 90% confidence intervals of the rates provided by the scheduling 

mechanisms for the first scenario. 

 Flow1 Flow2 Flow3 Flow4 

FCFS 44.2 45.3 ≤ ≤ 44.2 ≤ ≤ 46.1 88.4 ≤ ≤ 90.7 99 102 ≤ ≤

DRR 70.1 70.2 ≤ ≤ 69.1 ≤ ≤ 70.4 70.1 ≤ ≤ 70.7 69.3 70 ≤ ≤

WFQ 69.9 70.2 ≤ ≤ 68.7 ≤ ≤ 69.9 69.9 ≤ ≤ 70.6 69.9 71 ≤ ≤
2W FQ+ 69.8 70.2 ≤ ≤ 68.7 ≤ ≤ 70.8 69.6 ≤ ≤ 70.6 69.6 70 ≤ ≤

SFQ 69.9 70.2 ≤ ≤ 69.3 ≤ ≤ 70.3 69.9 ≤ ≤ 70.2 69.9 70 ≤ ≤

 

 

 The mean and maximum delay performances of wired scheduling algorithms 

for the first scenario are presented in Figure 5.3 and 5.4 respectively. It is seen that, 

since FCFS does not deal with the weights of any flows, the delays experienced by 

the flows are equal. This is because FCFS does not compensate the discrepancies 

between the bandwidths that a flow supposed to have and provided by the server. 

The average number of packets transmitted for the algorithms is given in Table 5.4. 

 

 It is seen that, since DRR, WFQ, FQ+ and SFQ tries to prevent unfairness, 

flow 3 and 4 experiences more delay than the other two flows. Remember that Flow 

3 and Flow 4 require more bandwidth than provided by the server. 

2W
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Figure 5.3 Mean delays experienced by the flows for the first simulation scenario – 

wireline scheduling algorithms. 

 

Table 5.4 Average number of packets, transmitted by the scheduling algorithms for 

the first scenario. 

 Flow1 Flow2 Flow3 Flow4 

FCFS 2552.4 2555.7 2552.4 5107.9 

DRR 3993.3 3967.4 2003.8 3534 

WFQ 3987.1 3942.6 1998.7 3600.6 
2W FQ+ 3982.7 3969.8 1993.9 3551.6 

SFQ 3984.7 3970.6 1993.1 3616.5 
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Figure 5.4 Maximum delays experienced by the flows for the first simulation 

scenario – wireline scheduling algorithms. 

 

 The upper and lower limits of the 90% confidence interval for the mean and 

maximum delays experienced by the flows are given in Table 5.5 and Table 5.6 

respectively. The values are in seconds. 

 

 

Table 5.5 90% confidence intervals of the mean delays experienced by the flows for 

the first scenario.  

 Flow1 Flow2 Flow3 Flow4 

FCFS 35.1 36.9 ≤ ≤ 35 ≤ ≤ 36.9 35.1 ≤ ≤ 36.9 35.4 36.9 ≤ ≤
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 Flow1 Flow2 Flow3 Flow4 

DRR 0.12 0.25 ≤ ≤ 1.23 ≤ ≤ 2.89 49.3 ≤ ≤ 50.1 53.8 57.7 ≤ ≤

WFQ 2.53 2.8 ≤ ≤ 3.35 ≤ ≤ 4.69 51.9 ≤ ≤  52.5 534    59.9 ≤ ≤
2W FQ+ 0.09 0.9 ≤ ≤ -0.4 ≤ ≤  2.07 49.8 ≤ ≤  50.7 53.  57.6 ≤ ≤

SFQ 0.05 0.6 ≤ ≤ -0.5 ≤ ≤ 4.1 49.4 ≤ ≤  50.5 52.1 56.8 ≤ ≤

 

 

 

Table 5.6 90% confidence intervals of the maximum delays experienced by the 

flows for the first scenario. 

 Flow1 Flow2 Flow3 Flow4 

FCFS 71.6 73.1 ≤ ≤ 71.5 ≤ ≤ 73.1 71.6 ≤ ≤ 73.1 71.6   73.1 ≤ ≤

DRR 0.27 0.4 ≤ ≤ 3.7 ≤ ≤  5.8 99.4 ≤ ≤ 100.1 110 112.3 ≤ ≤

WFQ 5.19 ≤ ≤  5.6 7.1  ≤ ≤ 9.6 95.8 ≤ ≤ 130 107.8 132 ≤ ≤
2W FQ+ 0.78 1.5 ≤ ≤ 0.39 ≤ ≤ 4 99.8 ≤ ≤ 100.8 109 112.8 ≤ ≤

SFQ 0.55 ≤ ≤  1.08 1.14 ≤ ≤ 7.3 100.1 ≤ ≤ 100.5 108 111.7 ≤ ≤

 

 

 

  The jitter performances of the flows for the wired scheduling algorithms are 

presented in Figure 5.5. The jitters experienced by the flows scheduled by FCFS type 

of mechanism are the same since FCFS does not venture the weights of flows. But as 

expected the flows which uses equal to or less then their bandwidth gets less delay 

and jitter when a fair scheduling algorithm schedules them. 

 

 97



 Figure 5.5 Jitter performances of wireline scheduling algorithms for the first 

simulation scenario. 

  

Table 5.7 90% confidence intervals of the jitters experienced by the flows for the 

first simulation scenario.  

 Flow1 Flow2 Flow3 Flow4 

FCFS 20.6 21.5 ≤ ≤ 20.6 ≤ ≤ 21.5 20.6 ≤ ≤ 21.4 20.5 21.4 ≤ ≤

DRR 0.03 0.09 ≤ ≤ 0.32 ≤ ≤ 1.17 28.6 ≤ ≤ 29 31.1 33.2 ≤ ≤

WFQ 1.41 1.65 ≤ ≤ 1.44 ≤ ≤ 2.78 30.3 ≤ ≤ 30.4 31.6 34.4 ≤ ≤
2W FQ+ 0.19 0.4 ≤ ≤ -0.16 ≤ ≤ 1.3 28.77 ≤ ≤ 29.1 31.6 32.58 ≤ ≤

SFQ 0.07 0.36 ≤ ≤ -0.18 ≤ ≤ 2.65 28.7 ≤ ≤ 29.2 30.6 32.2 ≤ ≤
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 The first simulation scenario, where its traffic characteristics are introduced at 

Table 5.1 is simulated for the wireless packet scheduling schemes. Remember that 

for clarity in showing the effects of channel errors and ease of implementation, the 

errors are modeled as simple periodic bursts. During the simulation experiments, 

channel errors occur during the first 100 seconds to demonstrate long time fairness. It 

is also possible to make the channel errors occur only during the whole simulation to 

demonstrate short time fairness. 

 

 During the WPS simulations, the maximum number of credits and debits are 

both chosen as 20, and the maximum retransmissions are taken to be 2. That is a 

packet is dropped if it is not successfully transmitted after three attempts. 

 

 For CIF-Q, the α as chosen to be 0, so that a leading session i will no service as 

long as there exists a lagging error-free session in the system. This will ensure the 

short time fairness. 

 

 The channels of Flow 1 and Flow 2 experience the same error pattern and 

require approximately same bandwidths. The error pattern experienced by Flow 1 

and Flow 2 is a periodic error burst of 1.8 second with 3 seconds of intermediate 

error free time. The error pattern experienced by Flow 3 is a less severe error-pattern, 

represents a periodic burst of 0.3 seconds with 5.7 seconds of intermediate error-free 

time. Flow 4 experiences no error at all. The following figure presents the bandwidth 

distribution among four flows for WPS, CIF-Q and DRR for wireless channels 

(DRRWC). Remember that the simulations had been run for 10 times and the results 

are averaged. To ensure if the simulated schemes provide long time fairness 

simulation time is selected as 1200 seconds. 
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Figure 5.6 Bandwidth distributed by the wireless scheduling algorithms among the 

four flows for the first simulation scenario. 

 

 

 

 As seen from Figure 5.6 the total throughput 280 Kbps was shared fairly among 

the flows except WPS. For the given traffic set CIF-Q is the best fair scheduler 

among the others. The fairness performance of DRRWC is also good as compared to 

WPS. Table 5.8 lists the average bandwidth distributed by WPS, CIF-Q and 

DRRWC. The results are in Kbps. The fairness measures are also presented in Table 

5.9.  
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Table 5.8 Average bandwidth, distributed by the wireless scheduling algorithms for 

the first simulation scenario.  

 Flow1 Flow2 Flow3 Flow4 

WPS 54.06 54.07 110.11 61.32 
CIF-Q 70.03 68.7 70.74 70.51 
DRRWC 69.1 69.1 71.17 70.62 

 

 

Table 5.9 Fairness measures of wireless scheduling algorithms for the first 

simulation scenario. 

Algorithm Fairness Measure 

WPS 80.65 

CIF-Q 2.58 

DRRWC 3.61 

 

 

 According to the results given in Table 5.8 for the first simulation scenario 

WPS was not successful as CIF-Q or DRRWC. Both CIF-Q and DRRWC did not 

allow Flow 3 to get a higher share, but WPS did. Remember that channel for Flow 3 

evolves a less severe error pattern and requires a bandwidth more then provided. For 

WPS, only Flow 4 got a relatively close to the ideal share of network among the 

other flows.  

 

 The upper and lower limits of the 90% confidence interval for the rates 

provided to flows are given in Table 5.8. 
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Table 5.10 90% confidence intervals of the rates provided by the wireless scheduling 

mechanisms for the first scenario. 

 Flow1 Flow2 Flow3 Flow4 

WPS 53.96 ≤ ≤ 54.15 53.98 ≤ ≤ 54.17 109.9 ≤ ≤ 110.3 60.9 61.7 ≤ ≤

CIF-Q 70.01 ≤ ≤ 70.03 68.5 ≤ ≤ 68.8 70.6 ≤ ≤ 70.87 70.48 70.53≤ ≤

DRRWC 68.08 ≤ ≤ 69.1 69.08 ≤ ≤ 69.09 71.15 ≤ ≤ 71.18 70.59 70.65≤ ≤

 

 The mean delay performances of the simulated wireless scheduling algorithms 

for the first scenario are presented in Figure 5.7. 

 

Figure 5.7 Mean delays experienced by the flows for the first simulation scenario – 

wireless scheduling algorithms. 
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 Investigating the delay performance of the wireless scheduling algorithms, it is 

seen that for CIF-Q, while exiting from error mode, always Flow1 take precedence to 

give its lag. This is the effect of α (Remember that we have chosen α=0). So the 

mean delay experienced by Flow 1 is less than it receives when the packets are 

scheduled by DRRWC. 

 

 The upper and lower limits of the 90% confidence interval for the mean delays 

experienced by the flows are given in Table 5.9. The values are in seconds. 

 

Table 5.11 90% confidence intervals of the mean delays experienced by the flows 

for the first scenario – wireless scheduling algorithms.  

 Flow1 Flow2 Flow3 Flow4 

WPS 145.6 147.2≤ ≤ 141.7 ≤ ≤ 151.2 126.6 ≤ ≤ 128.2 359 363.5 ≤ ≤

CIF-Q 2.24 2.49 ≤ ≤ 18.1 ≤ ≤ 31.7 290.98 ≤ ≤ 294 320.3 330. ≤ ≤

DRRWC 19.6 19.9 ≤ ≤ 20 ≤ ≤ 27.9 288.5 ≤ ≤ 288.8 314.1 322 ≤ ≤

 

 The average number of packets transmitted by the flows is listed in Table 5.10. 

 

Table 5.12 Average number of packets, transmitted by the wireless scheduling 

algorithms for the first scenario. 

 Flow1 Flow2 Flow3 Flow4 

WPS 18453 18457 18792 18814 

CIF-Q 23902 23448 12073 21590 

DRRWC 23584 23581 12145 21700 

   

 Figure 5.8 presents the maximum delays experienced by the flows for the first 

simulation scenario.  
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Figure 5.8 Maximum delays experienced by the flows for the first simulation 

scenario – wireless scheduling algorithms. 

 

 The 90% confidence limits for the maximum delays experienced by the flows 

are given in Table 5.13. The results are in seconds. 

 

 The jitter performances of wireless scheduling algorithms can be seen in Figure 

5.9.  

 104



Figure 5.9 Jitter performances of wireless scheduling algorithms for the first 

simulation scenario. 

 

 The upper and lower limits of the 90% confidence limits for the jitters 

experienced by the flows are given in Table 5.14. The results are in seconds. 

 

 Jitter performances of CIF-Q and DRRWC are close, but the jitters experienced 

by the flows are more in WPS. 

 

Table 5.13 90% confidence intervals of the maximum delays experienced by the 

flows for the first scenario – wireless scheduling algorithms. 

 Flow1 Flow2 Flow3 Flow4 
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 Flow1 Flow2 Flow3 Flow4 

WPS 276.1 278.5≤ ≤ 273.3 ≤ ≤ 282.9 259.1 ≤ ≤ 261.6 727.5 732 ≤ ≤

CIF-Q 5.44 5.66 ≤ ≤ 24.4 ≤ ≤ 40.8 595.5 ≤ ≤ 597.2 655 665.3 ≤ ≤

DRRWC 20.7 20.9 ≤ ≤ 26.5 ≤ ≤ 34.5 592.6 ≤ ≤ 592.7 651.7 664 ≤ ≤

 

Table 5.14 90% confidence intervals of the jitters experienced by the flows for the 

first simulation scenario – wireless scheduling algorithms. 

 Flow1 Flow2 Flow3 Flow4 

WPS 145.5 ≤ ≤ 147 141.5 ≤ ≤ 151 126.5 ≤ ≤ 128.1 359 363.1 ≤ ≤

CIF-Q 1.43 1.44 ≤ ≤ 1.93 ≤ ≤ 7 174.7 ≤ ≤ 174.8 191.5 194 ≤ ≤

DRRWC 1.87 1.90 ≤ ≤ 2.38 ≤ ≤ 6.17 175 ≤ ≤ 175.1 191.5 199 ≤ ≤

 

1 2 3 4Flows

Link

1 10 20 50

Weights of flows
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100

 
Figure 5.10 The second simulation scenario 

 

 For the second simulation scenario 5 flows (1, 2, 3, 4 and 5) were considered, 

as well as a server with a capacity of 9050 Kbps. In this experiment the fairness 

performances of the scheduling algorithms with significant differences in weights 

will be evaluated. The traffic models used for each flow are given in Table 5.15. 
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Table 5.15 Traffic models for each flow for the second simulation scenario 

Flow  Type Weight 
Packet Length / 

Mean Packet Length 
(Bytes) 

Period /  
Mean Interarrival Time 

(milliseconds) 
1 CBR 1 450 25 

2 VBR 10 2000 25 

3 Poisson 20 800 6 

4 VBR 50 1700 5 

5 CBR 100 4200 5 

 

 

 Flow 1 and Flow 5 are CBR type of traffic, which require 140.625 and 6562.5 

Kbps bandwidths. Flow 2 is a VBR source corresponding an average bandwidth of 

625 Kbps. Flow 3 is a Poisson process, in which 800 byte packets are generated at a 

mean inter-arrival time of 6 milliseconds. An average bandwidth of 1041.17 Kbps is 

needed for Flow 3. Flow 4 is also a VBR source, which corresponds to an average 

bandwidth of 2656.25 Kbps. Be aware that all flows require more bandwidth than 

provided. 

 

 Figure 5.11 presents the bandwidth distribution among five flows for FCFS, 

WFQ, FQ+, SFQ and DRR for the second scenario. According to the fairness 

measures given in Table 5.16 it is seen that FQ+ and SFQ performs the best 

among the simulated algorithms. WFQ performs better than DRR, but as expected 

FCFS is the worst of all for the given simulation scenario. Be aware that according to 

the weights Flow 1 must get 50 Kbps, Flow 2 must get 500 Kbps, Flow 3 must get 

1000 Kbps, Flow 4 must get 2500 Kbps and Flow 5 must get 5000 Kbps. 

2W
2W
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 Figure 5.11 Bandwidth distributions among the five flows for the second simulation 

scenario – wired scheduling algorithms. 

 

Table 5.16 Fairness measures of wireline scheduling algorithms for the second 

simulation scenario. 

Algorithm Fairness Measure 

FCFS 932.5877 

DRR 167.2243 

WFQ 3.5007 
2W FQ+ 0.3184 

SFQ 0.3163 
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 The upper and lower limits of the 90% confidence intervals for the rates 

distributed to flows are given in Table 5.17. 

 

 Figure5.12 presents the mean delay performance of the wireline scheduling 

algorithms for the second scenario. As stated before, for FCFS since the server does 

not deal with the weights of any flows, the mean delays experienced by the flows are 

equal. Since the other simulated schedulers try to compensate the discrepancies of 

bandwidth share, the flows that require more bandwidth then required delays more 

than the others. Table 5.18 lists the upper and lower limits of the 90% confidence 

intervals for the mean delays experienced by the flows. 

 
Figure 5.12 Mean delays experienced by the flows for the second simulation 

scenario.
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Figure 5.13 Maximum delays experienced by the flows for the second simulation 

scenario – wireline scheduling algorithms 

  

 The maximum delay performance is presented in Figure 5.13. As seen since 

DRR, WFQ, FQ+ and SFQ tries to prevent unfairness, Flow 1, 2 and 5 

experiences more mean and maximum delay than the other two flows. This is not 

true for FCFS, since the mechanism does not care about weights of the flows. 

2W

 

 Table 5.19 lists the average number of packets transmitted by the wireline 

scheduling algorithms. 
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Table 5.19 Average number of packets, transmitted by the wireline scheduling 

algorithms for the second scenario. 

 Flow1 Flow2 Flow3 Flow4 Flow 5 

FCFS 6571 6571 27356 32870 32855 

DRR 3376 7352 30374 37432 30387 

WFQ 2845 6425 31990 37621 30486 
2W FQ+ 2844 6442 31998 37567 30477 

SFQ 2845 6404 32000 37635 30476 

  

 90% confidence intervals of maximum delays are given in Table 5.20. 

 
Figure 5.14 Jitter performances of wired scheduling algorithms for the second 

simulation scenario. 
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 Figure 5.14 shows the jitter performance of the wireline scheduling algorithms 

for the second simulation scenario. Remember that jitter is defined to be the standard 

deviation of the delays experienced by the transmitted packets. The 90% confidence 

intervals of the jitters for the wireline scheduling algorithms are listed in Table 5.21 

 

 The traffic set whose characteristics are given at Table 5.15 is also simulated 

for wireless packet scheduling schemes. As in the first simulation for clarity in 

showing the effects of channel errors and ease of implementation, the errors are 

modeled as simple periodic bursts. The channel errors occur during the first 50 

seconds to demonstrate long time fairness. The channels of Flow 1 and Flow 2 

experience the same error pattern. The error pattern experienced by Flow 1 and Flow 

2 is a periodic error burst of 1.8 second with 3 seconds of intermediate error free 

time. The error pattern experienced by Flow 3 is a less severe error-pattern, 

represents a periodic burst of 0.3 seconds with 5.7 seconds of intermediate error-free 

time. Flow 4 and 5 experiences no error at all. 

  

 As in the first simulation, the maximum number of credits and debits for WPS 

are both chosen as 20, and the maximum retransmissions are taken to be 2.  

 

 For CIF-Q, the α as chosen to be 0, so that a leading session i will no service as 

long as there exists a lagging error-free session in the system.  

 

 Figure 5.15 presents the bandwidth distribution among five flows for WPS, 

CIF-Q and DRRWC. Remember that the simulation has run for 10 times and the 

results are averaged. As in the first scenario the simulation time is 1200 seconds.
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Figure 5.15 Bandwidth distributed by the wireless scheduling algorithms among the 

five flows for the second simulation scenario. 

 

 Table 5.22 lists the average bandwidth distributed by WPS, CIF-Q and 

DRRWC. The results are in Kbps. 

 

Table 5.22 Average bandwidth, distributed by the wireless scheduling algorithms for 

the second simulation scenario.  

 Flow1 Flow2 Flow3 Flow4 Flow5 

WPS 7.01 311.8 250.6 1333.2 6561.8 

CIF-Q 50.1 491.8 998.4 2502.3 5005.8 

DRRWC 58.4 565.9 948.3 2485.6 4991.7 
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 The fairness measure for the second simulation set is presented in Table 5.23.  

 

Table 5.23 Fairness measures of wireless scheduling algorithms for the second 

simulation scenario. 

Algorithm Fairness Measure 

WPS 3709.2 

CIF-Q 17.95 

DRRWC 148.7 

 

 

 The results given in Table 5.22 and 5.23, confirms that WPS was not successful 

as CIF-Q or DRRWC for the second traffic set. The best performing scheme for the 

second traffic set is CIF-Q. The long time fairness performance of DRRWC is better 

enough. The fairness performances of CIF-Q and DRRWC are closer to the ideal 

case more than WPS. As seen from Table 5.22 WPS allows the error free channels to 

get big share than channels evolving errors. But the other two algorithms compensate 

the discrepancies between the shares of error free channels and channels evolving 

errors. 

 

 The upper and lower limits of the 90% confidence interval for the rates 

provided to five flows are given in Table 5.24. The results are in Kbps. 

 

Table 5.24 90% confidence intervals of the rates provided by the wireless scheduling 

mechanisms for the second scenario. 

 WPS CIF-Q DRRWC 

Flow1 7.01 7.02 ≤ ≤ 50.05 ≤ ≤ 50.06 58.37 ≤ ≤ 58.384 
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 WPS CIF-Q DRRWC 

Flow2 307.7 315.8 ≤ ≤ 491.7 ≤ ≤ 491.8 565.74 566.08 ≤ ≤

Flow3 250.4 250.8 ≤ ≤ 998.2 ≤ ≤ 998.5 948.23 ≤ ≤ 948.4 

Flow4 1328 1338 ≤ ≤ 2502 ≤ ≤ 2502.7 2484.9 2486.2 ≤ ≤

Flow5 6561.9 6562.3≤ ≤ 5004.9 ≤ ≤ 5006.6 4991.2 4992.2 ≤ ≤

 

 

 Figure 5.16 demonstrates the mean delay performances of the simulated 

wireless scheduling algorithms for the first scenario. The average number of packets 

transmitted by the wireless scheduling algorithms can be seen in Table 5.25.  

 

Table 5.25 Average number of packets, transmitted by the wireless scheduling 

algorithms for the second scenario. 

 WPS CIF-Q DRRWC 

Flow1 2396.4 17086.7 19926.1 

Flow2 23926.7 37721.2 43415.5 

Flow3 48121.2 191694 182075.8 

Flow4 120367.4 225872.6 224629.9 

Flow5 239974.2 183068 182554.9 

 

 

 

 It is seen that, the mean delays experienced by the flows are associated with the 

bandwidths required by the sessions and the bandwidths provided to them. As seen 

from Figure 5.16 and Table 5.26, for CIF-Q Flow 3 experiences the minimum mean 

delay, because the bandwidth requirement is the closer to the provided compared to 

other flows. 
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Figure 5.16 Mean delays experienced by the flows for the second simulation 

scenario – wireless scheduling algorithms. 

 

 

 The upper and lower limits of the 90% confidence interval for the mean delays 

experienced by the five flows are given in Table 5.26. The values are in seconds. 

 

Table 5.26 90% confidence intervals of the mean delays experienced by the flows 

for the second scenario – wireless scheduling algorithms. 

 WPS CIF-Q DRRWC 

Flow1 571.9 572.6≤ ≤ 385.5 ≤ ≤ 385.9 360.24 360.4 ≤ ≤

Flow2 300.9 306.1≤ ≤ 135.2 ≤ ≤ 144 63.8 71.5 ≤ ≤
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 WPS CIF-Q DRRWC 

Flow3 454.1 456.6≤ ≤ 24 ≤ ≤ 27.1 53.7 55.4 ≤ ≤

Flow4 296.1 299.9≤ ≤ 33.8 ≤ ≤ 37.6 35.6 40.2 ≤ ≤

Flow5 0.102 0.103≤ ≤ 141.5 ≤ ≤ 141.8 142.6 142.8 ≤ ≤

 

 Figure 5.17 presents the maximum delays experienced by the flows for the 

second simulation scenario.  

Figure 5.17 Maximum delays experienced by the flows for the second simulation 

scenario – wireless scheduling algorithms. 

 

 The 90% confidence limits for the maximum delays experienced by the flows 

are given in Table 5.27. The results are in seconds. 
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Table 5.27 90% confidence intervals of the maximum delays experienced by the 

flows for the second scenario – wireless scheduling algorithms. 

 WPS CIF-Q DRRWC 

Flow1 1139.7 1139.9 ≤ ≤ 772.6 ≤ ≤ 772.9 701.78 ≤ ≤ 701.85 

Flow2 597.9 605.6 ≤ ≤ 253.3 ≤ ≤ 262.3 110.8 ≤ ≤ 121.7 

Flow3 910.1 913.46 ≤ ≤ 46.3 ≤ ≤ 51.2 105.75 ≤ ≤ 108.56 

Flow4 595.86 599.91 ≤ ≤ 68.8 ≤ ≤ 74.1 75.4 ≤ ≤ 79.7 

Flow5 0.26 0.448 ≤ ≤ 284.5 ≤ ≤ 284.8 287.15 ≤ ≤ 287.3 

 

Figure 5.18 Jitter performances of wireless scheduling algorithms for the second 

simulation scenario. 
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  The jitter performances of wireless scheduling algorithms can be seen in Figure 

5.18. As stated before since the bandwidth requirement of Flow 3 is the more closer 

to the provided, it experiences the minimum jitter among the other flows when the 

flows are scheduled by CIF-Q or DRRWC server. 

 

 The upper and lower limits of the 90% confidence limits for the jitters 

experienced by the flows are given in Table 5.14. The results are in seconds. 

 

Table 5.28 90% confidence intervals of the jitters experienced by the flows for the 

second simulation scenario – wireless scheduling algorithms. 

 
 WPS CIF-Q DRRWC 

Flow1 571.3 ≤ ≤ 572 223.2 ≤ ≤ 223.37 197.4 197.5 ≤ ≤

Flow2 300.6 305.8 ≤ ≤ 66.6 ≤ ≤ 71.4 26.6 30.9 ≤ ≤

Flow3 453.7 456.1 ≤ ≤ 12.6 ≤ ≤ 14.7 30.2 31.3 ≤ ≤

Flow4 295.8 299.6 ≤ ≤ 20 ≤ ≤ 21.7 21.66 23.8 ≤ ≤

Flow5 0.102 0.103 ≤ ≤ 82.5 ≤ ≤ 82.53 83.3 83.43 ≤ ≤
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CHAPTER 6 

 

 

CONCLUSIONS 

 
 

 

 In this thesis, simulation of various scheduling algorithms for packet switching 

networks was studied. For evaluating the performance measures of some selected 

scheduling disciplines, the issues related to the development of computer aided 

modeling and design of computer communication networks were addressed. Methods 

to eliminate transient periods in a simulation process, generation of random 

variables, computation of confidence intervals and validation of simulation models 

were described.  

 

 To provide a common platform for comparing the performances of selected 

scheduling disciplines in serving different traffic types, a discrete event simulator has 

been developed. It was seen that, event-driven simulation of scheduling algorithms is 

both efficient as well as more accurate.  

 

 The common trend in the literature is to assign bandwidth fairly in which users 

with moderate bandwidth requirements are not penalized because of the excessive 

demands of others. As a result of equalizing the bandwidth, these schemes typically 

provide satisfactory QoS for sessions whose bandwidth requirements are less than 

their fair share.  
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 Among the existing packet scheduling algorithms for wireline environment 

FCFS is the poorest one since it does not deal with the notion of flows or weights. 

GPS is the ideal algorithm but it is not practically implementable. So the other 

scheduling schemes tries to approximate it. WFQ or FQ schedules the packets 

from different queues by referencing GPS scheme. FQ+ approximates GPS 

ideally by using a virtual time function and as WFQ and FQ it guarantees fair 

share of bandwidth. SFQ is another scheme that uses virtual time function and it 

schedules the packets in the increasing order of their start tags. WRR is an extension 

of Round Robin scheduling scheme that tries to provide fairness. DRR is designed to 

support variable size packet scheduling but it does not support guaranteed 

bandwidth. 

2W
2W

2W

 

 Wireless packet schedulers are built up from the wireline schedulers and they 

try to provide fairness in the long term by introducing terms lag, lead, credit or debit. 

WPS uses WRR as its error-free reference algorithm and it uses the credit/debit 

adjustment for providing fair share of bandwidth. SBFA maintains an additional flow 

named LTFS to provide fairness. LTFS keeps tracks of the packets that are not 

transmitted due to channel errors.  

 

 From the simulation studies it was seen that, fair scheduling provides, fair 

allocation of bandwidth, lower delay for sources using less than their full share of 

bandwidth and protection from ill-behaved resources. For wired networks, by 

looking at the fairness measures, the fairness performances of WFQ, W F Q+ and 

SFQ are closer to the ideal case. For wireless media CIF-Q has performed the best in 

terms of fairness. The fairness performance of proposed scheduling scheme was 

better than WPS but worse then CIF-Q. It was also seen that, although FCFS does 

2
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not guarantee a fair allocation of bandwidth, it is easy to implement. GPS itself is not 

suitable for implementation. Since WFQ and W F Q approximate the GPS scheme, 

the implementation efforts are higher than the W Q+. DRR and DRRWC are easy 

to implement. 

2

2F

 

 Implementing more scheduling schemes, like hierarchical resource 

management models and algorithms that support both link sharing and guaranteed 

real-time services with priority is also desirable. 
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APPENDIX A 

 

 

CIF-Q ALGORITHM 
 

 

 

In this appendix, we provide the simple version of CIF-Q algorithm. 

 

A.1 Simple Version: 

 

on session i receiving packet p: 

enqueue( ; p ) iqueue

if ( i ∉A) 

iv  = max(  ; iv { }kvAk ∈min  ); 

ilag  = 0; 

{ }iAA ∪= ; /* mark session active*/ 

on sending current packet: /* get next packet to send  */ 

{ Ai
iVi ∈= min }; /* select session with min. virtual time  */ 

if ( lag = 0 and ( i can send ) )  /* session i non-leading, can send  */ i

p =dequeue(  ); iqueue

iv  =  + p.length / r ; iv i

else 

j = 
krk

lag /max {k ∈ A| k can send }; 
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if (j exists) 

p =dequeue( queue  ); j

iv =  + p.length / ; /*  charge session i  */ iv ir

ilag  = lag  +  p.length; i

jlag = lag  - p.length; j

if ( i ≠ j and empty(  ) and  ≥ 0) jqueue jlag

leave(  j ); 

else /*  there is no active session ready to send  */ 

iv  =  + δ / ri; iv

if ( lag  < 0 and empty( ) )  i iqueue

/* i is leading, unbacklogged */ 

j = 
krk

lag /max {k ∈ A}; 

ilag  =  +  δ; ilag

jlag  = lag  -  δ; /* forced compensation */ j

set_time_out( on sending , δ / R ); 

if ( empty( queue  ) and lag  ≥ 0) i i

leave( i ); /* session i leaves*/ 

  A = A \ { i }; 

  for ( j ∈ A) /* update lags of all active sessions*/ 

   lag  = lag + lag × j j i ∑ ∈ Ak r
r

k

j ; 

  if ( ∃j ∈ s.t. empty ( ) Λ lag ≥ 0 ) jqueue j

leave( j ); 
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