
A SIMULATION STUDY OF SCHEDULING ALGORITHMS FOR PACKET

SWITCHING NETWORKS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZGÜR BABUR

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2003

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Mübeccel DEMİREKLER
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Buyurman BAYKAL

Supervisor

Examining Committee Members

Prof. Dr. Semih BİLGEN _______________________________

Prof. Dr. Hasan GÜRAN _______________________________

Assoc. Prof. Dr. Buyurman BAYKAL _______________________________

Assist. Prof. Dr. Cüneyt BAZLAMAÇCI _______________________________

Hakan YILMAZ (M.Sc.) _______________________________

ABSTRACT

A SIMULATION STUDY OF SCHEDULING ALGORITHMS FOR

PACKET SWITCHING NETWORKS

Babur, Özgür

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Buyurman Baykal

December 2003, 150 pages

A scheduling algorithm has the primary role in implementing the quality of service

guaranteed to each flow by managing buffer space and selecting which packet to

send next with a fair share of network. In this thesis, some scheduling algorithms for

packet switching networks are studied. For evaluating their delay, jitter and

throughput performances, a discrete event simulator has been developed. It has been

seen that fair scheduling provides, fair allocation of bandwidth, lower delay for

sources using less than their full share of bandwidth and protection from ill-behaved

resources.

 iii

Keywords: Packet Scheduling, Flow, Packet-Switching Network, Fair Queueing,

Delay, Jitter, Throughput.

 iv

ÖZ

PAKET ANAHTARLAMALI AĞLAR İÇİN ÇİZELGELEME

ALGORİTMALARININ BENZETİMİ ÇALIŞMASI

Babur, Özgür

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Buyurman Baykal

Aralık 2003, 150 sayfa

Çizelgeleme algoritmaları, gönderilecek paketleri ağı adaletli paylaştırarak seçmesi

ve arabellek yönetimini yapması nedeniyle, her akış için garantilenmiş hizmet

niteliğinin sağlanmasında birincil göreve sahiptirler. Bu tezde, paket anahtarlamalı

ağlar için çizelgeleme algoritmaları incelenmiştir. Bu algoritmaların gecikme,

seğirme ve çıkan iş oran başarımlarının değerlendirilmesi için, bir ayrık olay

benzetimcisi geliştirilmiştir. Adaletli çizelgeleme algoritmalarının, bant genişliğini

adaletli atadığı, payına düşen bant genişliğinden daha az bant genişliği kullanan

özkaynaklar için düşük gecikme sağladığı ve payına düşen bant genişliğinden daha

fazla bant genişiliği isteyen özkaynaklara karşı koruma sağladığı görülmüştür.

 v

Anahtar Kelimeler: Çizelgeleme, Akış, Paket Anahtarlamalı Ağ, Adaletli

Kuyruklama, Gecikme, Seğirme, Çıkan İş Oranı.

 vi

ACKNOWLEDGMENTS

 I would like to express my deep gratitude to my supervisor Assoc. Prof. Dr.

Buyurman Baykal for his invaluable guidance and patience throughout my M.Sc.

research.

 Special thanks are due to my mother Hatice and my father İsmet who provided

me with the necessary motivation and support to complete this study.

 I wish to thank TUBITAK-MRC-ITRI for the facilities provided for me to

complete this thesis.

 vii

TABLE OF CONTENTS

ABSTRACT ……………………………………………………….........….. iii

ÖZ …………………………………………………………………..............….. v

ACKNOWLEDGMENTS ……………………………………….................….. vii

TABLE OF CONTENTS ………………………………………….................… viii

LIST OF TABLES ..………………………………………………………..…. xi

LIST OF FIGURES ……………..…………………………………………..…. xiv

LIST OF ABBREVIATIONS AND ACRONYMS …………………………… xvii

CHAPTER

 1. INTRODUCTION ………………………………………….........……. 1

2. NETWORK STRUCTURES AND PACKET SWITCHING ………… 6

 2.1 Circuit or Line Switching Networks …………………………... 8

 2.2 Message Switching Networks …………………………………. 8

 2.3 Packet Switching Networks …………………………………… 9

 2.4 Design Problems of Computer Communication Networks…….. 14

 2.4.1 The Message Routing Procedure ……………………… 15

 2.4.2 The Flow Control Procedure ………………………… 15

 2.4.3 The Priority Queueing Discipline ……………………. 15

 2.4.4 Topological Configuration …………………………... 17

2.5 Performance Evaluation of Computer Communication

 Networks…...………..………………………………………… 18

 2.5.1 Development of a Simulation Model…..……………... 20

 2.5.1.1 Simulation Detail..……………………………. 21

 2.5.1.2 Input Parameters……………………………… 21

 viii

 2.5.1.2.1Generation of Random Numbers…………. 22

 2.5.1.3 Convergence of Results………………………. 23

 2.5.1.3.1 Calculation of Confidence Intervals……... 26

 2.5.1.4 Validation of Simulation Results…………….... 27

 3. SCHEDULING MECHANISMS ……………………………………. 28

 3.1 Scheduling Algorithms for Wireline Environment ….………... 29

 3.1.1 First Come First Served ……………………………… 29

 3.1.2 Generalized Processor Sharing ………………………. 30

 3.1.3 Weighted Fair Queueing ………………………...…… 32

 3.1.4 Worst Case Fair Weighed Fair Queueing ……………. 36

 3.1.5 Worst Case Fair Weighed Fair Queueing + …………. 38

 3.1.6 Weighted Round Robin ……………………………… 41

 3.1.7 Deficit Round Robin ……………………………….… 44

 3.1.8 Start-Time Fair Queueing …………………………..... 46

 3.2 Fair Scheduling Algorithms For Wireless Networks ……….… 49

 3.2.1 Wireless Packet Scheduling …………………………. 51

 3.2.2 Server Based Fairness Approach …………………….. 54

 3.2.3 Channel-Condition Independent Packet Fair

 Queueing ……………………………………………... 56

 3.2.4 DRR for Wireless Channels ………………………….. 57

 4. EVENT DRIVEN SIMULATION OF SCHEDULING

 ALGORITHMS……………………..………………………………… 59

 4.1 Simulation Methods ………………………………………….. 59

 4.2 A Scheduling System Simulation Skeleton ………….…….… 63

 4.3 Validation of Implementations ……………………………… 70

 4.3.1 Validation of Weighted Fair Queueing Simulations…. 70

 ix

 4.3.2 Validation of Worst Case Fair Weighted Fair

 Queueing+ and Start Time Fair Queueing Simulations.. 73

 4.3.3 Validation of First Come First Served and Deficit Round

Robin Simulations…………………………………… 77

 4.3.4 Validation of Wireless Packet Scheduling Simulation... 82

 4.3.5 Validation of Channel Condition Independent Packet Fair

Queuing Simulation…………………………………... 85

 5. SIMULATION RESULTS …………………………………………... 90

 5.1 Simulation Study ……………………………………………... 90

 6. CONCLUSIONS ………………………………………………….… 124

REFERENCES ……………………………………………………………….. 128

APPENDICES ………………………………………………………………... 131

 x

LIST OF TABLES

Table

 3.1 Calculation of Virtual Times …………………………………………... 39

 4.1 Time-Driven simulation of FPU ………………………...……..………. 61

4.2 Event-Driven simulation of FPU ………………………………………. 62

4.3 Session parameters for WFQ validation…………………………………72

4.4 Differences of service shares in terms of bits for FCFS and WFQ

simulations.………………………………………………..……………. 72

4.5 Unfairness measures for SFQ and W Q……………………….……... 74 2F

4.6 Differences of normalized service shares in terms of bits for W Q+

simulation…………………………………………………….…….…... 75

2F

4.7 Differences of normalized service shares in terms of bits for SFQ

simulation…………………………………………………….………… 76

4.8 The upper and lower limits of the 90% confidence intervals of

throughputs distributed among the 20 flows…………………………… 80

4.9 Source and channel parameters for WPS simulation …………….. ……83

4.10 Results of WPS simulations…………………………………….……… 84

4.11 Simulation results for WPS implementation…...………………………. 84

4.12 Confidence intervals for WPS implementation……………………...… 85

4.13 Properties of the 7 sessions used in the CIF-Q simulations …………… 85

4.14 The upper and lower limits of the 90% confidence intervals of

throughputs distributed among the FTP sessions………………………. 89

 5.1 Traffic models for each flow for the first simulation scenario ………... 90

 5.2 Fairness measures of wired scheduling algorithms for the first simulation

scenario ……………………………………………….……………….. 93

 xi

 5.3 90% confidence intervals of the rates provided by the scheduling

mechanisms for the first scenario………………………………………. 94

 5.4 Average number of packets, transmitted by the scheduling algorithms for

the first scenario……………………………………............................... 95

 5.5 90% confidence intervals of the mean delays experienced by the flows

for the first scenario……………………………………………………. 96

 5.6 90% confidence intervals of the maximum delays experienced by the

flows for the first scenario……………………………………………... 97

 5.7 90% confidence intervals of the jitters experienced by the flows for the

first simulation scenario………………………………………………. 98

 5.8 Average bandwidth, distributed by the wireless scheduling algorithms for

the first simulation scenario…………………………………………... 101

 5.9 Fairness measures of wireless scheduling algorithms for the first

simulation scenario…………………………………………….……... 101

5.10 90% confidence intervals of the rates provided by the wireless scheduling

mechanisms for the first scenario…………………………………….. 102

5.11 90% confidence intervals of the mean delays experienced by the flows

for the first scenario – wireless scheduling algorithms……………….. 103

5.12 90% confidence intervals of the mean delays experienced by the flows

for the first scenario – wireless scheduling algorithms……………….. 103

5.13 90% confidence intervals of the maximum delays experienced by the

flows for the first scenario – wireless scheduling algorithms………… 105

5.14 90% confidence intervals of the jitters experienced by the flows for the

first simulation scenario – wireless scheduling algorithms…………... 106

5.15 Traffic models for each flow for the second simulation scenario…….. 107

5.16 Fairness measures of wireline scheduling algorithms for the second

simulation scenario…………………………………………………… 108

 xii

5.17 90% confidence intervals of the rates provided by the wired scheduling

mechanisms for the second scenario …………………………………. 110

5.18 90% confidence interval of the mean delays experienced by the flows for

the second scenario – wireline scheduling algorithms………………... 111

5.19 Average number of packets, transmitted by the wireline scheduling

algorithms for the second scenario…………………………………… 113

5.20 90% confidence interval of the maximum delays experienced by the

flows for the second scenario.- – wireline scheduling algorithms……. 114

5.21 90% confidence interval of the jitter experienced by the flows for the first

simulation scenario .………………………………………………….. 115

5.22 Average bandwidth, distributed by the wireless scheduling algorithms for

the second simulation scenario ………………………………………. 117

5.23 Fairness measures of wireless scheduling algorithms for the second

simulation scenario…………………………………………………… 118

5.24 90% confidence intervals of the rates provided by the wireless scheduling

mechanisms for the second scenario…..……………………………… 118

5.25 90% confidence intervals of the rates provided by the wireless scheduling

mechanisms for the second scenario………………………………….. 119

5.26 90% confidence intervals of the mean delays experienced by the flows

for the second scenario – wireless scheduling algorithms……………. 120

5.27 90% confidence intervals of the maximum delays experienced by the

flows for the second scenario – wireless scheduling algorithms……... 122

5.28 90% confidence intervals of the jitters experienced by the flows for the

second simulation scenario – wireless scheduling algorithms..………. 123

 xiii

LIST OF FIGURES

Figure

2.1 The structure of a computer – communication network ………………… 7

2.2 Comparison of network delay for circuit, message, and packet switching.

(a) The transmission path. (b) Circuit Switching (c) Message Switching

(d) Packet Switching …..……………………... 10

2.3 Network delay and throughput for (a) Short and interactive traffic (b)

Long message ……….………..………………………………………… 12

2.4 Node processing per output link …………………………………...…… 16

3.1 An example showing how WFQ works. (a) Packet Arrivals (b) GPS

Service Order (c) WFQ Service Order....………………..……………… 35

3.2 Service Order ….……..………………………………………… 38 QWF2

3.3 Bit-by-bit Round Robin Emulation ………………………………...…… 42

3.4 (a) Round-robin (b) WRR (c) Visits ……………………………….…… 43

3.5 An example showing how DRR works (a) Step 1 (b) Step 2 (c) Step 3

……………………………………………………………….……..…… 45

3.6 An example showing how SFQ computes virtual time, start tag and finish

tag .……………………………………………………..……………… 48

3.7 A WPS example ………………………………………………………… 53

3.8 Example showing SBFA compensation in case of a deferment ………… 55

4.1 Examples of different types of traffic sources ……………………...…… 65

4.2 Process Flow Diagram for Event Handling Mechanism …………...…… 69

4.3 Single router configuration……………………………………………… 77

 xiv

4.4 Plot showing the results of the experiment done by Shreedhar and

Varghese [18], which interprets the bandwidth distribution among the

flows ………………………………………………………………..…… 78

4.5 The results of DRR implementation ……………………………….…… 79

4.6 Two-state discrete Markov Chain used to model errors evolved by

channels ………………………………………………………………… 82

4.7 Behavior of the FTP sessions when α=0. (a) Service received by each

FTP sessions. (b) Difference between the actual service received by the

FTP sessions and the corresponding amount of service ……….………. 87

4.8 Results of CIF-Q implementation. . (a) Service received by each FTP

sessions. (b) Difference between the actual service received by the FTP

sessions and the corresponding amount of service ………………………88

5.1 The first simulation scenario ……………………………………….…… 91

5.2 Bandwidth distributions among the four flows for the first simulation

scenario – wireline scheduling algorithms ……………………………… 92

5.3 Mean delays experienced by the flows for the first simulation scenario –

wireline scheduling algorithms ………………………....……………… 95

5.4 Maximum delays experienced by the flows for the first simulation

scenario – wireline scheduling algorithms ……………………………… 96

5.5 Jitter performances of wireline scheduling algorithms for the first

simulation scenario………………………………………………….…… 98

5.6 Bandwidth distributed by the wireless scheduling algorithms among the

four flows for the first simulation scenario…………………………… 100

5.7 Mean delays experienced by the flows for the first simulation scenario –

wireless scheduling algorithms………………………...……………… 102

5.8 Maximum delays experienced by the flows for the first simulation

scenario – wireless scheduling algorithms………………………...…… 104

 xv

5.9 Jitter performances of wireless scheduling algorithms for the first

simulation scenario………………………………………………...…… 105

5.10 The second simulation scenario…………………………………... …… 106

5.11 Bandwidth distributions among the five flows for the second simulation

scenario – wired scheduling algorithms……………….……………… 108

5.12 Mean delays experienced by the flows for the second simulation

scenario…………………………………………………………….…… 109

5.13 Maximum delays experienced by the flows for the second simulation

scenario – wireline scheduling algorithms………………………...…… 112

5.14 Jitter performances of wired scheduling algorithms for the second

simulation scenario………………………………………………...…… 113

5.15 Bandwidth distributed by the wireless scheduling algorithms among the

five flows for the second simulation scenario…………………………. 117

5.16 Mean delays experienced by the flows for the second simulation scenario

– wireless scheduling algorithms………………………...…………… 120

5.17 Maximum delays experienced by the flows for the second simulation

scenario – wireless scheduling algorithms………………………...…… 121

5.18 Jitter performances of wireless scheduling algorithms for the second

simulation scenario………………………………………………...…… 122

 xvi

LIST OF ABBREVIATIONS AND ACRONYMS

Bps : Bit per second

CBR : Constant Bit Rate

CIF-Q : Channel Condition Independent Packet Fair Queueing

CPU : Central Processing Unit

DRR : Deficit Round Robin

DRRWC : Deficit Round Robin for Wireless Channels

FCFS : Fist Come First Served

FFQ : Fluid Fair Queueing

FPU : Floating Point Unit

GPS : Generalized Processor Sharing

GUI : Graphical User Interface

IWFQ : Idealized Wireless Fair Queueing

Kbps : Kilo bit per second

LCFS : Last Come First Served

LTFS : Long Term Fairness Server

MMPP : Markov Modulated Poisson Process

PGPS : Packet-by-packet Generalized Processor Sharing

PQ : Packet Queue

SBFA : Server Based Fairness Approach

SFQ : Start Time Fair Queueing

SQ : Slot Queue

VBR : Variable Bit Rate

WFI : Worst Case Fair Index

WFQ : Weighted Fair Queueing

W Q : Worst Case Fair Weighted Fair Queueing 2F

 xvii

WRR : Weighted Round Robin

WPS : Wireless Packet Scheduling

QoS : Quality of Service

 xviii

CHAPTER 1

INTRODUCTION

 Over the past few years, computing, communication and video compression

technologies have advanced significantly. As new types of applications were

developed (e.g. video conferencing, distance learning, news on demand services), it

was seen that the bandwidth and storage space requirements of digital data must be

manageable carefully because of limited resources [20].

 Resource guarantees and performance assurances are not possible with the best

effort services. But today’s computer networks must concurrently support

communication sessions from a wide range of applications. This was resulted in

integration of support for communication sessions with diverse quality of service

requirements. For example, the needs and characteristics of communication sessions

from applications like telnet, ftp, and e-mail are considerably different from those of

applications like internet phone, web browsing, and video conferencing. Some

sessions require service guarantees such as bounds on delays or throughput, while

others may be satisfied with a best effort guarantee [26].

 At an output of a network element, many packets compete for the output link.

They belong to different applications running on different hosts; they flow through

different paths and, in the case of an integrated services network, request different

types of service. The role of the scheduling algorithm is to define the order in which

 1

all these packets will be transmitted according to their requirements. Besides, as at a

given time there exists more packets requiring access to the output link than the

number that can be transmitted, packets are queued in the queuing mechanism

waiting to be transmitted. If too many packets are queued, the memory is exhausted

and some packets are discarded. Choosing which packets have to be discarded is also

the role of the scheduling algorithm. Thus, a scheduler is a queuing algorithm, which

allocates bandwidth and buffer space.

 The scheduler identifies packets as members of a class or flow (i.e. a set of

packets that have to receive the same treatment). Different classes receive different

treatments.

 To determine the characteristics of a suitable scheduling algorithm, consider

the requirements of some of the principal applications envisioned for integrated

services networks [19]:

• Audio applications: To maintain adequate interactivity for such applications,

scheduling algorithms must provide low average and maximum delay.

• Video applications: Variable bit rate (VBR) video sources, which are expected to

impose significant requirements on network resources, have unpredictable as

well as highly variable bit rate requirement at multiple time-scales. These

features impose two key requirements on network resource management:

• Due to the difficulty in predicting the bit rate requirement of VBR video

sources, video channels may utilize more than the reserved bandwidth. As

long as the additional bandwidth used is not at the expense of other

 2

channels (i.e., if the channel utilizes idle bandwidth), it should not be

penalized in the future by reducing its bandwidth allocation.

• Due to multiple time-scale variation in the bit rate requirement of video

sources, to achieve efficient utilization of resources, a network will have to

over-book available bandwidth. Since such over-booking may yield

persistent congestion, a network should provide some Quality of Service

(QoS) guarantees even in the presence of congestion.

 Fair scheduling involves the use of internal multiple queues with the ability to

sort and insert different packets into each queue. The primary difference lies in how

the queues are serviced. The objective is to provide "fair" or "equivalent" service to

each of the queues. Although the notion of fairness has been defined many ways,

perhaps the most widely accepted is that the traffic in each queue should obtain an

equal portion of the bandwidth.

 Unfair scheduling algorithms penalize channels for the use of idle bandwidth

and do not provide any QoS guarantee in the presence of congestion. Fair scheduling

algorithms, on the other hand, guarantee that, regardless of prior usage or congestion,

bandwidth would be allocated fairly. Hence, fair scheduling algorithms are desirable

for video applications.

• Data applications: To support low-throughput, interactive data applications (e.g.,

telnet), scheduling algorithms must provide low average delay. On the other

hand, to support throughput-intensive, flow-controlled applications in

heterogeneous, large-scale, decentralized networks, scheduling algorithms must

allocate bandwidth fairly. Due to the coexistence of VBR video sources and data

 3

sources in integrated services networks, the bandwidth available to data

applications may vary significantly over time. Consequently, the fairness

property of the scheduling algorithm must hold regardless of variation in server

capacity.

 Hence, a suitable scheduling algorithm for integrated services networks should:

(1) achieve low average as well as maximum delay for low throughput applications

(e.g., interactive audio, telnet, etc.); (2) provide fairness for VBR video; and (3)

provide fairness, regardless of variation in server capacity, for throughput-intensive,

flow-controlled data applications [20]. Finally, to facilitate its implementation in

high-speed networks, it should be computationally efficient.

 In this work, our aim is to simulate and evaluate various scheduling techniques

for packet switching networks. For simulating complex, state based systems; discrete

event simulation fundamentals are studied. To study if the scheduling schemes

provide a fair share of network, a discrete event simulation approach will be

presented. As an investigation of a new approach, Deficit Round Robin (DRR)

scheduling scheme is adapted to wireless networks.

 This thesis consists of six chapters. In Chapter 2, the network structures are

presented. Packet Switching Networks and their advantages will take precedence.

Also in this chapter simulation fundamentals of Computer Communication Networks

will be briefly reviewed.

 Survey of various scheduling disciplines for wired and wireless networks is

presented in Chapter 3. A new scheduling approach for wireless networks is

introduced.

 4

 In Chapter 4, simulation methods are discussed and a discrete event simulator

that has been used for evaluating the performances of scheduling disciplines is

presented. Validations of simulated packet switching algorithms are also discussed.

 Chapter 5 presents results of the simulation experiments and comparisons

about the algorithms. Delay, jitter and throughput performance of such algorithms

are evaluated.

 Finally, some conclusions are drawn for the overall assessment of the study

and some possible future research topics are pointed out in Chapter 6.

 5

CHAPTER 2

NETWORK STRUCTURES AND PACKET SWITCHING

 A computer network is a collection of nodes at which reside the computing

resources [which themselves are connected into the network through nodal switching

computers], which communicate with each other via the data communication

channels. Messages in the form of commands, inquiries, file transmissions and the

like travel through this network over the data transmission lines. At the nodal

switching computers, the communications-oriented tasks of relaying messages (with

appropriate routing, acknowledging, error and flow controlling, queueing etc.) and

removing and insertion of identifiers are issued. These tasks are separated from main

computing functions and dedicated to switching computers [1, 2, 22, 24, 26].

 Computer–communication networks may be partitioned into two separate

networks: the communication subnetwork providing the message service, and the

collection of computer and terminal resources forming the “user-resource”

subnetwork. Figure 2.1 presents general structural model of a computer

communication network. The computing facilities, which are responsible for

processing and storage of data, are connected together by means of the

communication subnetwork. The communication subnetwork consists of switching

computers and high – speed data links.

 6

 In this thesis our attention will be directed to the communication subnetwork

forming the message service which is responsible for accepting messages from any

message source such as a terminal (Local, Remote or Orphan) or a computer and

routing these messages through the network, and deliver them to their destination in

a rapid and reliable way.

C

C

C

Communications
"sub" -network

High - speed line

Switching computer

Computing facility

Low - speed line

"Local" terminal

"Remote" terminal

"Orphan" terminal

Figure 2.1 The structure of a computer - communication network.

 Communication networks may be divided into three types [1, 2, 22, 24, 26]:

 7

• Circuit or Line Switching

• Message Switching

• Packet Switching

2.1 Circuit or Line Switching Networks:

 A Circuit Switching Network provides service by setting up a total path of

connected lines from the origin to the destination of the demand. This complete

circuit is set up by a special signaling message that thread its way through the

network, seizing channels in the path as it proceeds. After the path is established, a

return signal informs the source that data transmission may proceed, and all channels

in the path are then used simultaneously. The entire path remains allocated to the

transmission whether or not it is use, and only when the source releases circuit, all

these channels will be used for other paths. Circuit switching is the common method

for telephone systems [1, 2].

2.2 Message Switching Networks:

 In message switching, only one channel is used at a time for a data

transmission. The message first travels from its source node to next node in its path,

and when the entire message is received at this node, then the next step in its path is

selected; if this selected channel is busy, the message waits in a queue, and finally,

when the channel becomes free, transmission begins. The message hops from node to

node through the network using only one channel at a time, possibly queueing at

busy channels, as it is successively stored and forwarded through the network.

 8

2.3 Packet Switching Networks:

 Packet Switching is basically same as Message Switching except that the

messages are decomposed into smaller pieces called packets, each of which has a

maximum length. These packets are numbered and addressed as with message

switching and make their own way through the net in a packet – switched (store and

forward) fashion. Thus many packet of the same message may be in transmission

simultaneously, thereby giving one of the main advantages of packet switching,

namely pipelining effect. As a result the transmission delay may considerably reduce

over message switching.

 In part (a), a network transmission path involving four nodes and three

transmission lines are presented. It is assumed that no other traffic in the network

interferes the transmission. The idealized sequence of events for circuit switching is

shown in part (b). The connection delay at each switch, which is the major

component of delay, is included in the model. It is followed by the transmission of

the set up signal, which is assumed to be zero, arrives at switch B after a propagation

delay. This cycle repeats for the other nodes of the path and when it reaches to the

last node of the path, a return signal is sent by the destination node to the source

node. As seen from part (b) only one data transmission is required.

 As seen from part (c) for message switching networks first a small switch

processing delay (for selecting routes) and messaging from node to node proceeds.

More than circuit switching a message header for identifying and routing is added.

This is because the path is not set up as in circuit switching.

 9

 In part (d), the sequence of events for Packet Switching is presented. The

message is divided into three parts, each of which requires its own header. The

sequence of packets is seen to be pipelining down to chain. Because of header

overload, the number of bits transmitted is least for circuit switching, next larger for

message switching, and largest for packet switching. In the figure showing the

sequence of events of Packet Switching, the delay caused by the control signals is

omitted.

SOURCE DESTINATIONA B C D

Communication subnetwork

A B C D A B C D A B C DNode

Connection delay

Data
transmisson

time

Start

Propagation delay

Start Start

Data transmisson
time

Processing delay

Finish

Finish

Finish

(a)

(b) (c) (d)

Processing delay

Packet
transmisson time

N
et

w
or

k
de

la
y

fo
r c

irc
ui

t s
w

itc
hi

ng

N
et

w
or

k
de

la
y

fo
r

m
es

sa
ge

 s
w

itc
hi

ng

N
et

w
or

k
de

la
y

fo
r

pa
ck

et
 s

w
itc

hi
ng

Data

{
{

{

{
{

{

{
Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Signal

Signal

Signal

Header [

Header [

Figure 2.2 Comparison of network delay for circuit, message, and packet switching.

(a) The transmission path. (b) Circuit Switching (c) Message Switching (d) Packet

Switching

 10

 Circuit-switched connection is ideal for transmission of long, continuous

stream of data. For bursty data transmission, Packet Switching makes good sense.

 There are many key features of packet switching network such as ability to

select good paths for data transmission paths as a function of the network congestion.

In a heavily loaded Circuit Switched Network, a set-up signal may not find a

complete path of available channels from source to destination and a busy signal may

be sent back to the source. This results in a blocked network. But in Packet

Switching Network, only the next channel needs to be available. This results in rarely

blocking of network.

 With packet switching, more than a one message is allowed to be transmitted

across the network at the same time. This is in addition to the packet pipelining for a

single message [1, 2, 26]. This message multiplexing is possible due both to

pipelining along a given path and to alternate routing along many paths.

 Another key feature of Packet Switching is rapidly handling small messages in

spite of the presence of long messages that may be sent at the same. This is a result

of decomposing of long messages into packets. And this decomposition causes

storage requirements of the nodes to be reduced.

 In this work, the following network measures will be focused on:

• Delay

• Throughput

• Cost

 11

 Delay and throughput measures are closely related and they are basic the

performance criteria for various kinds of traffic. Interactive traffic such as internet

phone, web browsing, and video conferencing must be delivered quickly and

throughput is not the main goal. On the other hand along file transfer like telnet, ftp,

and e-mail is concerned with throughput and delay is not the central issue.

Source Source DestinationDestination

Start Start

Finish

Finish

(a) (b)

W W
T(x)

T(x)

x

x Data

Data

Figure 2.3 Network delay and throughput for (a) Short and interactive traffic (b)

Long message

 In Figure 2.3 the network delay and throughput for two cases explained before

is shown. In the figure the measure of the response of the net, denoted by “W” is the

average time from when the first bit is presented to the network until the first bit is

delivered and service time “x”, is the time from when the message begins delivery

until the delivery is complete. The average network delay T(x), is the main

 12

performance measure. For a short interactive message the average network delay is

almost affected by the response of the net, which is shown in part (a). In part (b) of

Figure 2.3 it is seen that in cases where x>>W, the service time dominates T (x). The

network throughput can be defined as jkγ msg/sec between source j and destination

k which is inverse of service time x.

 As long as handling both interactive messaging and long file transfers, a

network may be required to support real-time traffic, which requires low delay and

high throughput at the same time. This kind of traffic demands different kinds of

control procedures.

 As a summary, the properties of packet switching network is reviewed, as one

that pipelines addressed messages along a single path as well as among alternate

paths, decomposes messages into packets placing headers on each packet, and sends

them through network in a store and forward fashion. Since these packets may be

influenced by unexpected impacts such as errors, blocked storage, time-outs; they

may arrive at the destination out of order or duplicated or more unluckily may get

lost. It is expected to handle these kinds of events in an acceptable way. As stated in

[1] the properties of Packet Switching Networks can be summarized as:

• Random Delay

• Random Throughput

• Out of order packets

• Lost and duplicate packets

• Nodal storage

• Speed matching between net and attached systems

 13

 Responding to these properties, the network must provide the following

functions:

• Packetizing

• Buffering

• Pipelining

• Routing

• Sequencing and Numbering

• Error Control

• Storage Allocation

• Flow Control

2.4 Design Problems of Computer Communication Networks:

 The design of a store-and-forward network is extremely complex task because

of the complexity of network flow theory and queueing disciplines. As discussed

before, a communication network is composed of:

1.Switching computers and the communication channels making up the physical

network

2.Messages (described by their origin, destination, origination time, length and

priority class) that forms flow, moving through the network in a store and

forward fashion

3.Operating rules for handling the flow of traffic

 14

 The message routing procedure, the flow control procedure, the channel

capacity assignment, the priority queueing discipline, and the topological

configuration are the basic design issues of computer communication networks.

Some of these topics will be covered in the following sections.

2.4.1 The Message Routing Procedure:

 Message routing procedure is the rule determining the next node that a message

will visit on its way through the net. The algorithm may use such parameters as

source and destination, priority, availability of certain channels, and congestion of

certain nodes and channels. There can be alternate routing paths, when more than one

path is allowed. The routing paths may be determined either in a deterministic or

random fashion. If the decisions are based on some measure of the observed traffic

flow and/or the breakdown of nodes and channels, then the routing algorithm said to

be dynamic adaptive routing procedure.

2.4.2 The Flow Control Procedure:

 The flow control procedure is responsible for controlling how much traffic is

permitted to enter the network. The traffic entering from the traffic form user-

resource network into communications sub-network is regulated by this procedure.

By doing so, the congestion is prevented.

2.4.3 The Priority Queueing Discipline:

 As discussed before, when the communication channel assigned to a packet to

be transmitted over is in use, the message must be queued. Transmission time for a

 15

given packet can be found by dividing the length of the packet by the capacity of the

channel. When the channel is available the packet is transmitted to the next node in

its way and the channel is released for the use of other messages. Again, after

reaching the next node, if the new channel is busy, the packet must enter the queue

until it has the given link, and so on. Message or network delay is the total time spent

in the network until the packet has reached its destination. The queueing discipline

manages the order of service for the various channel queues.

 Each packet of an admitted connection is conveyed through the network along

the path established for that connection. At a switching node, the packet is

multiplexed onto the next link, along with packets of other connections using the

same link. Figure 2.4 present a simple model of the processing performed at each

output link of a node. The steps of processing are:

• Packet demultiplexing, which inserts a packet into one of a set of a queues,

corresponding to different QoS guarantees

• Queue insertion, which is either FCFS or priority based

• Queue multiplexing, which selects the next queue to service, and how many

packets to remove and transmit from that queue

 A scheduling policy can be either work-conserving or non-work-conserving. A

method is work-conserving if an output link will never be idle as long as there are

packets waiting. Work conservation might seem attractive, since it promises lower

 16

average and end-to-end delay for packets. However, methods, which minimize jitter,

are always non-conserving [13].

1

2

n-1

n

STEP: DEMULTIPLEX QUEUE INSERTION QUEUE MANAGER

Arriving Messages Departing Messages

D
E
M
U
X

M
U
X

Priority Level

Figure 2.4 Node processing per output link

 Queueing mechanisms for wired and wireless networks are the subject of this

study and they will be discussed in Chapter 3; and in Chapter 5 simulation results of

such algorithms will be presented.

2.4.4 Topological Configuration:

 The topological configuration of the communication net strongly affects its

behavior as regards its reliability, message delay, routing, and the like [1].

Topological constraints such as reliability may complicate topological design. And

the form of the cost function that is included in the design, affects the structure. After

designing the topology, capacity assignment to each channel must be made and

queueing discipline must be decided.

 17

2.5 Performance Evaluation of Computer Communication Networks:

 As computer communication networks are rapidly becoming more complex in

order to provide efficient service to requirements, performance evaluation of these

networks have become non-trivial tasks [6]. In this section, a step-by-step procedure

for developing a simulation tool for computer communication networks will be

studied.

 Generally, for evaluating the performance of computer communication

networks, the following approaches are used [3, 5, 6, 14]:

• Analytical Techniques

• Real time measurements

• Simulation Techniques

 For evaluating the performance of computer communication networks,

extensive help is needed in mathematical models. These models are quick,

economical, and easy to work with [3]. In order to obtain an approximate solution,

analytical models must be mathematically tractable. However, a tractable analytical

model often restricts the range of system characteristics that can be explicitly

considered in a performance model. This is because; analytical models require a high

degree of abstraction. So a modeler may end up with a correct solution, but to the

wrong problem [5].

 Since real time measurements need an operational system, it provides the most

direct means of network performance evaluation. But it is also the most expensive in

 18

the sense that a network must exits. Experiments running in testbeds or labs

automatically capture important details that might be missed in a simulation,

however building testbeds and labs is expensive, reconfiguring and sharing them is

difficult, and they are relatively inflexible. Further, reproducing some networking

phenomena, such as wireless radio interference, can be difficult, complicating efforts

to compare or evaluate protocol design [30].

 The objectives of making measurements on a computer network is to gather

statistics about events, interpret them in terms of network performance and tune the

network parameters to achieve the most optimal performance possible. Some

important considerations of this technique are, how often measurements are taken,

how long it takes to gather meaningful statistics and how to interpret them. The main

problems associated with this technique are; i) Time required to gather enough

statistics is a question. The statistics may be captured when the network is operating

in a sub-optimal state. ii) How much to increase or decrease a parameter to achieve

performance goals. A wrong adjustment may push the network into a region of worst

performance [3].

 In the simulation approach the network is simulated to any level of detail.

Although simulation procedures are normally time consuming, they are more

accurate, since they are not based on as may assumptions as analytical procedures

[3]. In this technique less abstraction is required and the process of model

formulation is a more straightforward task, although it remains advantageous from a

solution standpoint to abstract out as many secondary system details as possible [5].

Such models can contain tremendous detail, especially for large networks. However,

the execution of detailed models may require prohibitive amounts of computational

resources. It is not uncommon for network simulations to require days of processing

 19

time on a fast workstation. The analyst must aware of the trade-off between model

detail and simulation execution time [14].

 Simulation consists of a computer program that “behaves” like the system

under study. Various components of the actual system are represented within a

computer program. Unlike analytical models, which often require many assumptions

and too restrictive for most real-world systems, simulation modeling replaces few

restrictions on the classes of systems. For communication networks, developing a

simulation program requires [14]:

• Modeling random user demands for network resources.

• Characterizing network resources needed for processing those demands.

• Estimating system performance based on output data generated by

simulation.

2.5.1 Developent of a Simulation Model:

 Before a useful simulation can be developed a detailed description and

understanding of the system is needed. The plan that must be worked out before a

simulation study, should contain the following information to address all issues

related to the system [6]:

• Level of detail of a system is to be simulated.

• The various input parameters and the range of their values.

• Language to be used for the simulation model.

• Method of confidence intervals to be used.

• Criteria to be used for terminating the simulation.

 20

• Validation method of the model.

Some topics listed above, will be discussed in the following sections.

2.5.1.1 Simulation Detail:

 Since a detailed model requires more processing time, one has to decide on the

basis of tradeoff between processing time and level of detail of a simulation model.

The right level of a simulation model depends on the purpose of the performance

evaluation task, the degree of understanding of the system being modeled and the

output statistics required [6]. Since the interrelationship and interdependence among

various events and components of the system is usually so complex, the right level of

detail is not a trivial task.

2.5.1.2 Input Parameters:

 In most cases the simulators are capable of generating the sequence of arrivals

as an input to the system. Such systems called as self-driven models [6]. But trace-

driven models needs external input to determine timing of arrival events. Since

arrival processes occur in a random fashion, it is not easy to predict arrivals and

departures of the messages. This is because executing a simulation is analogous to

conducting an experiment involving randomness; simulation outputs must be treated

as random observations [5, 14]. However, this randomness can be very closely

represented by certain probability distributions. If the representations of arrival times

of messages are justified by a random variable, then random number generators may

be used to generate a sequence of arrival events.

 21

 In some situations, models need a better representation of the arrival events, in

which measurements are made on the actual system. Trace-driven simulation

technique is not very flexible, since for a different set-up one does not a freedom to

gather statistics [6].

2.5.1.2.1 Generation of Random Numbers:

 Since self-driven models cannot do without generation of random variables, in

this section generation of random numbers will be discussed.

 Random numbers might be used, for example, to generate the length of

messages, inter-arrival times of messages at a given node, time between failures of a

link, or probability of a transmission error. Most of the random number generators

accept seed values as inputs and produce a random number as an output.

 The output of a random number generator is usually uniformly distributed

between 0 and 1. However, for using these numbers in a simulation model we have

to convert these numbers so that they follow a distribution function of our choice.

The two common methods for converting uniformly distributed numbers to a desired

probability distribution are: inverse transform method and rejection method [6].

Inverse Transform Method: For probability distributions whose inverse transform

can be easily found (such as exponential distribution), inverse transform method may

be helpful. Let U be a random variable uniformly distributed between 0 and 1. Let Y

be the required random variable to be generated according to a given probability

distribution function F(y). If F(Y) is set to be equal to U, then it can be shown that

 22

the variable Y defined by Y= (U) follows the cumulative distribution F(y) [6].

The inverse mapping (.) can be performed analytically.

-1F
-1F

Acceptance-Rejection Method: If f(u) is defined to be the probability density

function and if it is bounded by B and have a finite support, say x<u<y; U which is

the required random number to be generated according to f(u) can be computed as

follows [6]:

1. Generate a pair of uniformly distributed numbers between 0 and

1.

)V,(V 21

2. Calculate a random number , such that, =x + (y-1) . 1U 1U 1V

3. Accept U , if B1 <2V f () and reject otherwise. 1U

4. Stop if U is accepted and otherwise try again with a new pair of random

numbers.

1

2.5.1.3 Convergence of Results:

 The accuracy of the results produced by a simulation model depend upon

several factors such as accuracy of the model, simulation time, starting state of the

model, stream of random variables etc. If the simulation had been run for either more

or less time, or a different stream of random numbers had been used, different values

would have been obtained for these performance measures. Usually we are interested

in the steady state results of the system [6].

 If the network modeler is interested in the average delay performance of the

first 200 messages through a node, the results may depend on quite strong on the

initial conditions of the simulation (the number of messages initially in the node).

 23

Performance measures depending on the initial conditions of the simulation are

referred to as transient measures [5].

 If the simulation starts from an empty state, it will of course take some time

before it reaches to the steady state. If we deal with the steady state or long-term

results of the system, we must ensure that we have passed the transient portion. But

determining enough simulation time, for convergence of the results to a reasonable

level is a hard task, since there is no well-specified point in time at the transient

phase ends [5]. To make sure that, running the simulation for an extremely long

period, so that the effects of the initial state of the simulation on the performance

measures of interest are negligible; is a crude method. Rather, the effects of the

initial configuration become less important as the length of the simulation increases.

A relatively better approach is to run the simulation for longer duration of time when

the rate of occurrence of events is high or vice-versa [6].

 Convergence of simulation results is usually determined with the help of the

confidence intervals. A simulation is run until a desired level of confidence is

achieved and then can be terminated [6].

 Since the performance results produced by one simulation run depend on the

particular random number stream, the results of a performance model will typically

vary from one run to another. If the simulation had run for five times, and obtain five

different values, all within 0.1 percent of each other, our confidence in that value

would be very high. But if the five values obtained vary greatly, our confidence in

any one value would be small. So confidence intervals also are used to quantify such

confidence in a performance estimate [5]. If some interval (x, y) is a t percent

confidence interval for the performance measure η, then if the simulation were to be

 24

independently repeated ten times, the estimated value for η obtained from the

simulation would fall in the interval (x, y) in approximately t percent of these runs.

 There are ways to speed-up the process of achieving a desired level of

confidence. The rule is that faster the steady state is reached, faster the desired level

of confidence can be obtained. Usual ways of reaching the steady state of the

simulation are [6]:

• Start the simulation from a random state instead of a empty state

• Discard a certain percentage of events in the transient portion of the

simulation

• Start collecting statistics after the simulation clock has reached a certain

value.

 Several techniques have been devised for generating confidence intervals [5]:

Independent Replications: In this type of method the simulation is run for m

independent times and m estimates are obtained for each performance measure of

interest. For m independent samples standard statistical techniques are applied.

Batch Means: This technique divides a single run into M equal-length periods of

time. The values of the performance measure during each of these M periods are

taken as M independent samples. Determination of M is an important and difficult

problem, because if M is too small, the samples will be correlated; if it is large an

excessive amount of simulation time will be required.

 25

Regenerative Method: This technique based on partitioning a single simulation run

into independent sub-runs. In this approach, the simulation run is partitioned on the

basis of a modeler-defined regeneration state, a state such that the future evolution

of the simulation is statistically identical following each entry into this state. In a

queuing network with Poisson arrivals, the regeneration state might be the state no

messages in the system. The regeneration state thus serves to divide the simulation

into independent and identically distributed partitions of time of random length.

There are two drawbacks of this technique: i) Regeneration state may be hard to

identify; ii) Large models may require an excessive amount of simulation time to

pass through enough regeneration points to produce a valid confidence intervals.

Interval Technique: This method is also known as spectral technique. This is a

single run method and it takes into account the correlation between data captured by

the simulation.

2.5.1.3.1 Calculation of Confidence Intervals:

 The normal procedure to calculate the confidence intervals is as follows. Let

, , ….. , be the simulation results of the same experiment but produced

by M different runs. The upper and lower limits of a confidence interval regarding

the simulation results are then defined by:

1X 2X MX

 Upper limit= t
M
YS

M + (2.1)

 Lower limit= t
M
YS

M − (2.2)

 26

where M is the average value and S is the standard deviation of the results. t

depends on the degrees of freedom and the level of confidence, which is obtained

from a t-table. Degrees of freedom (df) is defined to be df=M-1.

Y

2.5.1.4 Validation of Simulation Results:

 Validation of a simulation model is a process of making sure that the model

logically does what it is supposed to do or equivalently it is the process through

which the modeler satisfy himself that the simulation model is in fact a realistic and

satisfactory representation of the network operating under actual traffic conditions [5,

6]. For a system, comparing the simulation results with those obtained through

analytical procedures may be lead to the right direction but in simple and normal

situations, one may decide about the validity through simple comparison of results,

intuition and confidence intervals [6].

 27

CHAPTER 3

SCHEDULING ALGORITHMS FOR PACKET SWITCHING

NETWORKS

 This chapter gives the key features of scheduling algorithms for packet

switching networks. Since nearly all scheduling algorithms for wireless channels are

derived from wireline scheduling algorithms, the most important of them are

presented.

 Before the key features of scheduling algorithms are presented, let us formalize

the notion of fair allocation. Let be the weight of flow i, and W be the total

share in terms of bytes or bits sent in interval [] for that flow. Then a bandwidth

allocation is considered to be fair if, for all intervals [t] in which two flows i and

j are available for transmission, the normalized work (by weight) received by them is

identical (i.e.

iw),(21 tti

21 , tt

21 , t

0
,(),(121 −
j

j

i

i

w
ttW

w
ttW

()

)2 =) [20, 28, 32]. Clearly, this is an idealized

definition of fairness as it assumes that packets can be broken into atomic units.

Since the flows are scheduled for a quantum at a time, there will be some unfairness.

The objective of a fair scheduling algorithm is to minimize the resultant unfairness

(i.e., ensure that
()

j

tt 2,1j

i

i

w
W

w
ttW 21 ,

− is as close to 0 as possible).

 28

3.1 Scheduling Algorithms for Wireline Environment:

 Since the link for wired environment is constant and always available for

transmission and transmission errors are negligible, scheduling mechanisms for

wired environment is relatively easy. Therefore the purpose of these algorithms is

distributing this fixed bandwidth to different traffic in a fair way – often taking

account the different QoS requirements agreed on at admission time of the flow.

3.1.1 First Come First Served:

 The simplest of all scheduling algorithms called First Come First Served

(FCFS) is used in most of the QoS aware equipment today. All the incoming packets

are enqueued in a single queue, and the packet at the head of the queue is served

whenever the channel is ready for transmission. If the queue is filled completely, the

incoming packets are rejected and this property is called as tail dropping.

 Since the main advantage of packet switching networks is to share the

bandwidth on a packet-by-packet basis resulting in a statistical gain with isolation;

using FCFS scheduling, no isolation is provided. Moreover FCFS does not take any

specific requirements of QoS guarantees such as delay or throughput, into account. A

high-throughput data can starve a low-throughput connection.

 There are some queueing disciplines derived from FCFS like prioritized-FCFS,

Last Come First Served (LCFS) and Strict Priority. LCFS serves the last incoming

packet first, as a reverse order of FCFS. Prioritized FCFS provides one-sided

protection, as packets with higher priority are isolated from packets from lower

priority. Packets belonging to the “upper class” can not be isolated from each other

 29

as there is only one “upper class”. Strict Priority can provide isolation because for

each priority there exists a single queue, and the discipline selects the packets to

transmit in FCFS fashion from the first non-empty queue of the highest priority.

3.1.2 Generalized Processor Sharing:

 With uniform processor sharing, at a given instant, there is a set of N non-

empty FIFO queues waiting to be served. During any time interval the server serves

all N packets at the head of these queues simultaneously, each at a rate of 1/Nth of

the link speed. Generalized Processor Sharing (GPS) is a generalization of uniform

processor sharing, which allows different connections to have different service

shares. Fluid Fair Queueing (FFQ) is an alternative name for GPS. To understand

how FFQ works one can image the link as a pipe in which different flows are

assigned specific fractions of the pipe's cross sectional area. The total cross sectional

area is the link's bandwidth r. The fraction of area reserved for a flow i depends on

the weight, Φ i , assigned to the flow. The fraction of the area changes dynamically as

the set of flows currently in transit change. The area is shared among the flows

currently in transit in proportion to their assigned weights.

 GPS is the ideal scheduling scheme which most algorithms try to approximate

as far as possible since GPS itself is not suitable for implementation in a packet

network [12]. This is caused by the fact that GPS assumes work can be done in

infinitely small steps which is not the case in a packet-based network. Here the

minimal amount of work is processing a packet of minimal size.

 30

 A session in transmit is said to be backlogged at time t if it has packets queued

for service. Let),(tSi τ be the session i traffic served in the interval (τ, t]. Under the

GPS scheme we have

 Nj
tS
tS

j

i

j

i ,....,2,1,
),(
),(

=
Φ
Φ

≥
τ
τ

 (3.1)

for any session that is continuously backlogged in the interval (]t,τ .

 Summing over all sessions j:

 () ()∑ Φ−≥Φ
j

iji rttS ττ , (3.2)

 Hence a session i is guaranteed a rate of

 rg
j j

i
i ∑ Φ

Φ
= (3.3)

 If r is defined to be the average rate of session i, then as long as r , the

session can be guaranteed a throughput . Session i's backlog will be cleared at a

rate . The delay of a session i bit arriving at a time t can be bounded as a

function of session i's queue length. These throughput and delay bound guarantees

are independent of the queues and arrivals of other sessions. Assigning real numbers

as needed in choosing the values of

i

i

ii g≤

ig

g≥

iΦ gives good flexibility of resource allocation.

 We can summarize the properties of a GPS server as follows:

• It is work conserving: No capacity is “lost” because of scheduling.

 31

• The flows are isolated: A flow is guaranteed a service share independent of the

amount of traffic of other flows.

• Flexible: Assigning a small weight to an unimportant traffic, will not affect the

higher priority traffic heavily.

• The maximum queue size and the packet length bound the maximum delay a

flow will experience.

 Since GPS is a fluid model that can not be implemented, various approximation

algorithms are designed to provide services that are almost identical to that of GPS

[25, 34].

3.1.3 Weighted Fair Queueing:

 Demers, Shenker and Keshav first proposed an approximation of GPS called

Weighted Fair Queueing (WFQ), which is practically implementable. Parekh and

Gallager [12, 15] further studied the same scheme under the name of Packet-by-

packet GPS (PGPS), in the context of integrated services networks. Their main

contribution was in combining the mechanism with Leaky Bucket admission control

in order to provide performance guarantees in terms of both throughput and delay.

The WFQ scheme is flexible in the range of throughput and delay guarantees it can

order to flows while maintaining the work conserving nature of the GPS scheme.

 The WFQ scheme is based on the time the packets finish service under the GPS

scheme. Let be the time when a packet finishes service under the GPS scheme.

The WFQ is an approximation of the GPS scheme that services packets in the order

of increasing . However, it is possible that by the time the server is free to pick the

next packet for service, the packet that would have the next smallest under the

pF

pF

pF

 32

GPS scheme may not have arrived. Consequently, the scheme cannot be work

conserving. According to the WFQ scheme, the server picks the next packet to finish

service under GPS if no packets were to arrive after it.

 Despite this shortcoming, the WFQ approximation [12] has been shown to be

very close to the GPS scheme in behavior. The following points have been proved.

1.For all packets waiting to be served at any time τ , the order in which the

packets will finish service under the GPS and the WFQ scheme will be the

same.

2.Let be the time at which packet finishes service under WFQ. Then,
^

pF

r
L

F max
^

≤Fpp − , where is the maximum packet length. The service

completion time for a packet under the WFQ scheme never lags behind that

in case of the GPS scheme by a value more than the time it takes to service a

maximum size packet.

maxL

3.Let be the amount of session i traffic in bits served under WFQ. For all

times

(τ,
^

tSi)

τ and all sessions i, . For the amount of traffic

served under the two schemes, the PGPS scheme never lags behind the GPS

scheme by a value more than the maximum size packet. Consequently, the

backlog in case of WFQ will never exceed the backlog in case of GPS by a

value more than the maximum size packet.

() max

^
),0(,0 LSS ii ≤− ττ

 33

 For a better understanding of how WFQ works, let us have a look at the

example shown in Figure 3.1 where there are 6 flows sharing the same link. The

horizontal line shows the time line and vertical axis shows the sample path of each

flow. For simplicity, assume all packets have the same size of one (1) and the link

speed is also one (1). Also let the weight for Flow #1 be 0.5, and the weight for each

of the other 5 flows be 0.1.

 In the example Flow #1 sends 6 back-to-back packets starting at time 0 while

each of other 5 flows sends only one packet at time 0. If the server is GPS, it will

take 2 time units to service a packet from Flow #1, and 10 time units to service a

packet from another flow. This is illustrated in Figure 1 (b). If the server is WFQ, at

time 0, all 6 flows have packets backlogged. Since the first packet of Flow #1

finishes at time 2 while all other packets finish at time 10 at GPS system,

 WFQ will service the fist packet of Flow #1 first. In fact, the first 5 packets of

Flow #1 all have finishing times smaller than packets belonging to any other flow,

which means that 5 packets of Flow #1 will be serviced back to back before packets

of other flows can be transmitted. This is shown in Figure 1 (c). After the burst the

next packet of Flow #1, will have a larger finishing time in the GPS system than the

5 packets at the head of other flows’ queues, therefore, it will not be serviced until all

the other 5 packets are transmitted, at which time, another 5 packets from Flow #1

will be serviced back to back. This cycle of bursting 5 packets and going silent for 5

packets can go indefinitely. With more flows, the length of the period between

bursting and silence can be larger [18].

 34

Flow #1
Flow #2
Flow #3
Flow #4
Flow #5

[]

Flow #6

[]
[]
[]
[]
[]

[][][][][]

Time5

10

Flow #1
Flow #2
Flow #3
Flow #4
Flow #5
Flow #6

Time5

10

10

Flow #1
Flow #2
Flow #3
Flow #4
Flow #5
Flow #6

Time5

[]

. .

. .

. .

[][] [] [] []

[]
[]
[]
[]

[][][][][]
[]

[]
[]

[]
[]

(a) PacketArrivals

(b) GPS Service Order

(c) WFQ Service Order

[]

Figure 3.1 An example showing how WFQ works. (a) Packet Arrivals (b) GPS

Service Order (c) WFQ Service Order

 35

 WFQ will service the fist packet of Flow #1 first. In fact, the first 5 packets of

Flow #1 all have finishing times smaller than packets belonging to any other flow,

which means that 5 packets of Flow #1 will be serviced back to back before packets

of other flows can be transmitted. This is shown in Figure 1 (c). After the burst the

next packet of Flow #1, will have a larger finishing time in the GPS system than the

5 packets at the head of other flows’ queues, therefore, it will not be serviced until all

the other 5 packets are transmitted, at which time, another 5 packets from Flow #1

will be serviced back to back. This cycle of bursting 5 packets and going silent for 5

packets can go indefinitely. With more flows, the length of the period between

bursting and silence can be larger [18].

3.1.4 Worst Case Fair Weighted Fair Queueing:

 GPS based schemes have been used in the context of feedback based

congestion control. A source constantly samples feedback from receiver in order to

check for symptoms of network congestion. The source controls the rate, which it

admits packets into the network by reacting appropriately to these symptoms.

Misbehaving sources might try to take advantage of network resources by sending

packets dis-regarding, or otherwise simply ignoring symptoms of congestion. Fair

allocation of bandwidth at queueing points would ensure that such misbehaving

sources do not hog up the network resources. The GPS discipline offers fair

allocation of bandwidth and protection from misbehaving sources. Robust congestion

control algorithms can be built based on the more accurate measurement and

protection provided by a GPS like servicing discipline.

 It has been shown that delay of any packet in the WFQ scheme as compared to

its delay in the GPS discipline is no greater than the transmission time of one packet.

 36

In terms of service rate, the WFQ discipline does not fall behind the corresponding

GPS discipline by more than one max packet size. WFQ was considered as the best

way of approximating the GPS scheme. It was found later by Bennet and Zhang [18],

contrary to popular belief, that large discrepancies could occur between behavior of

the GPS scheme and the WFQ scheme. They found that while no flow can lag behind

too much, but particular flows can be significantly ahead.

 Bennet and Zhang [18] proposed a new approximation to the GPS service

discipline called Worst-Case Fair Weighted Fair Queueing (). This service

discipline shares both the bounded delay and the worst-case fairness properties of the

GPS discipline [31]. They noted that the problem in WFQ is due to the fact that

service of a packet can start earlier than its start time in the GPS [19]. While WFQ

selects the next packet to service among all available packets, the scheme

selects the next packets to service among a subset of the available packets. When

picking the next packet for service, considers only the set of packets whose

service would have started in the corresponding GPS scheme. Among the packets in

this set it chooses that packet which will finish service first under GPS as the next

packet to be serviced. The service order for the sessions with arrival pattern as shown

in Figure 3.1 (a) will be as shown in Figure 3.2.

QWF2

QWF2

QWF2

 Many useful properties of WFQ are retained by . Like in the case of

WFQ, the worst-case delay bounds for packets in fluid GPS and system

differ by no more than the time to service a single packet of maximum size. For any

session, the service rate in terms of the bits served by does not lag behind the

fluid GPS system by any value greater than the maximum packet size. Consequently,

the backlog of any session will not exceed its backlog in GPS by a value greater the

QWF2

QWF2

QWF2

 37

maximum packet size. In addition to these properties, while WFQ can be quite ahead

of the GPS system, cannot go ahead of GPS by more than a fraction of the

maximum packet size. Since the service provided can be neither far behind nor too

far ahead, provides a service almost identical with GPS system.

QWF2

QWF2

Flow #1
Flow #2
Flow #3
Flow #4
Flow #5
Flow #6

()τV

10 Time5
. .

[] []

[]
[]

[]
[]

[] [] []

[]

Figure 3.2 Service Order QWF2

3.1.5 Worst Case Fair Weighted Fair Queueing +:

 Maintaining the relative GPS finish order for packets in the WFQ system by

using a priority queue mechanism is based on the notion of a system virtual time

function , which is the normalized fair amount of service that all backlogged

sessions should receive by time τ in the GPS system. Each packet (k packet

on session i) has a virtual start and finish time and , where

k
ip th

k
iS k

iF ()k
iS1−V and

()k
iFV 1−

p

 are the times packet starts and finishes services in the GPS system

respectively. Another way of interpreting is that it represents the amount of

service, normalized with respect to its service share, session i has received right after

packet is served. In the GPS system, all backlogged sessions should receive the

same normalized amount of service. Since both the system virtual time and the per

k
ip

k
iF

k
i

 38

packet virtual start and finish times represent the normalized amount of service, they

are measured in unit of bits. In the special case of a fixed rate server, the elapsed time

of a backlogged period is also a measure of the service provided by the server;

therefore, virtual times can also be measured in unit of seconds. The exact algorithm

for computing virtual times are shown in Table 3.1, where is the set of

backlogged queues at time

()τGPSB

τ , is the beginning of the system backlogged period

that includes t,

0t

()τr is the server rate at time, and a and are the arrival time and

the length of packet respectively. Notice that the definition of virtual times in

unit of bits is more general, and it is applicable to both fixed-rate and variable-rate

servers [23].

k
i

k
iL

k
ip

k
iS

L
+ k

i
L

S
Φ

+

,1−
iF ,1k

i VF −

t

t
∫

B∈ GPS (

1
∑

tr

B GPS∈ (

)(

∑

(GPS

Table 3.1 Calculation of Virtual Times [23].

 Measured by Seconds Measured by Bits

k
iF

i

k
i

r

i

k
i

k
iS)}(max{ k

i
k aV)}(max{ k

ia

()τV τ

τ

d
i iΦ

0)

 τ

τ

d
t

t i i
∫ Φ
0)

 Since there can be N backlogged or unbacklogged sessions during an arbitrary

small interval, the worst-case complexity of computing).V is O (N) [16].

 After then Bennet and Zhang [16] proposed a new scheduling technique named

Worst Case Weighted Fair Queueing+ (W Q+) that has the same delay bounds as

W Q. This discipline has a lower complexity since it does not need to compute

2F
2F

 39

().GPSV . The new time function they have proposed has an overall complexity of O

(log N). This new approach eliminates the need to simulate the corresponding GPS

system.

h
i

iS

 The service discipline named Worst Case Fair Index (WFI), introduced in [18]

for characterization of fair queueing mechanisms is provided to be as same as W

by this new scheme. Also same delay bound guarantees is provided. W Q defines

its virtual time function as:

2F Q
2F

 () ())min),,()(max()(
^22

th
i

Bi
QWFQWF

iSttWtVt
∈

++
++=+ ττV (3.4)

where),(τ+ttW is the total amount of service provided by the server during the

period [t , t+τ], is the set of sessions backlogged in the W Q + system at

time t, h (t) is the sequence number of the packet at the head of the session i’s queue,

and is the virtual start time of the packet. Other than updating virtual start and

finish times on arrival/transmission of packets, these variables are recalculated, when

a packet reaches its head of queue according to the following formula:

()
^
tB 2F

i

)(t

k
ip

 (3.5)




=
))(,max(k

ii

i
i aVF

F
S

if
if

0)(

0)(

=−

≠−
k
ii

k
ii

aQ

aQ

i

k
i

ii r
L

SF += (3.6)

where ()−k
ii aQ is the queue size of session i just before time . k

ia

 40

 Since at least one packet has a virtual start time lower or equal to the system’s

virtual time, the algorithm is work conserving by selecting the packet with the lowest

eligible start-time for transmission like in W Q. 2F

3.1.6 Weighted Round Robin:

 Weighted Round Robin (WRR) is based on an idea first proposed by Nagle [4].

To introduce fairness, Nagle proposed to store packets in a different queue for each

source and to serve one packet from each queue in a round-robin manner. With this

discipline, the strategy for one queue is no more to transmit all packets, but to use its

share of bandwidth. Sending more than one packet results in delays to increase and

possibly loss of packets from other queues. Note that this mechanism also provides

isolation between flows.

 Nagle has defined “fairness” in terms of number of packets, so that a source

using large packets will receive larger “fair share” (in terms of bandwidth) than a

source using small packets. To overcome this issue, Demersi Keshav and Shenker [7]

proposed an algorithm emulating a bit by bit round-robin that incoming packets are

labeled with the sending time of its last bit in a bit by bit round robin, and served in

the increasing order of these labels. This scheme is illustrated in Figure 3.3.

 Dealing with the problem of possible deservation of bigger share, every flow

can be given weights, so that all of them will be allowed to send a given number of

bits at each round. So no flow receives more than its request.

 41

Time

Flow #1

Flow #2

Flow #3

Figure 3.3 Bit-by-bit Round Robin Emulation

 WRR assumes that an average packet size is known. Every flow has a weight

 corresponding to the service share it is supposed to get. A non-empty session will

serve the packet at the head of its queue at a rate of

iw

r
w

w

j j

i

∑
, where r is the total

rate. Despite its ease of implementation and reduced computational complexity

(require only O (1) work to process a packet), missing a packet in a heavily loaded

system will result in a significant delay. Assumption of knowing average packet size

is another disadvantage for systems where it is not known or highly varying. Figure

3.4 presents how WRR can be implemented to reduce the delays for packets

belonging to the flows with small weights.

 In the example shown in Figure 3.4, Flow #1, Flow #2 and Flow #4 receive

twice more frequent service than Flow #3. Figure 3.4 (a) shows the classic round

robin. Figure 3.4 (b) illustrates a first approach to WRR scheduling. In part (c) of the

figure, the frequencies of visits are maintained the same, but the visits to the

“frequent” clients are spread more evenly in time [9]. By doing so, the delay bound

for flows with lower weights may be smaller.

 42

Flow #1

Flow #3

Flow #2Flow #4

Flow #1

Flow #3

Flow #2Flow #4

Flow #1

Flow #3

Flow #2Flow #4

cycle 1

cycle 2

(a)

(b)

(c)

Figure 3.4 (a) Round-robin (b) WRR (c) Visits

 43

3.1.7 Deficit Round Robin:

 Deficit Round Robin was suggested to overcome the flaw of WRR as it is

assumed that WRR can be fair if the average packet size is known. Besides the ease

of implementation and achieving nearly perfect fairness in terms of throughput; this

new scheme proposed by Shreedhar and Varghese requires only O (1) work to

process a packet [17]. The basic idea is to keep track of the deficits a flow

experiences during a round and to compensate them in the next round. When the

packet at the head of queue of a flow can not be sent because of its size in a round,

the missing amount of service is added in the next round.

 Let the number of bytes sent out for queue i in round k be . Each queue

i is allowed to send out packets in the first round subject to the restriction that

. If there is no more packets in queue i after the queue has been

serviced, a state variable called is reset to 0. Otherwise, the

remaining amount

kibytes ,

ii Quantumbytes ≤1,

interDeficitCou

()kibytes ,iQuantum − is stored in the state

variable . In subsequent rounds, the amount of bandwidth usable by

this flow is the sum of of the previous round added to Quantum .

Avoiding examining the empty queues, an auxiliary list named ActiveList, is kept to

point out the queues that have at least one packet. If a packet arrives to an empty

queue, it is added to the end of ActiveList.

interDeficitCou

interDeficitCou i

 The algorithm services up to Quantum ii nterDeficitCou+ worth of bytes from

queue i. If the queue has still packets to send but is not sufficient for

transmission, the round robin pointer moved to the next queue in the ActiveList.

interDeficitCou

 44

300200500

600400

250750

Flow #1

Flow #3

Flow #2

500

Quantum Size

Deficit Counter

500

0

0

Round Robin
Pointer

500

600400

250750

Flow #1

Flow #3

Flow #2

500

Quantum Size

Deficit Counter

0

500

0

Round Robin
Pointer

500

600400

250750

Flow #1

Flow #3

Flow #2

500

Quantum Size

Deficit Counter

0

500

500

Round Robin
Pointer

(a)

(b)

(c)
Figure 3.5 An example showing how DRR works (a) Step 1 (b) Step 2(c) Step3

 45

 To get a better understanding of how DRR works, let us have a look at the

example shown in Figure 3.5. At start all DeficitCounter variables initialized to zero.

The round robin pointer points to the first element of ActiveList. In the example,

when the queue of Flow #1 is serviced the variable QuantumSize is added to the

DeficitCounter of Flow #1. The remainder after serving the packet size of 200 is left

in the DeficitCounter variable. But the size of next packet is equal to the

DeficitCounter, so it is served too. DeficitCounter of Flow #1 is now equal to 0.

Since there is no share for Flow #1, round robin pointer points to the next non-empty

queue in ActiveList, which has a packet size of 600, bigger than the QuantumSize of

it. So pointer moves to the next element in ActiveList, but QuantumSize is retained.

The scenario for few steps can be seen in Figure 3.5 (a), 3.5 (b) and 3.5 (c).

 In the simplest case ji QuantumQuantum = for all flows i; j. Exactly as in

Weighted Fair Queuing [7], each flow i can ask for a larger relative bandwidth

allocation and the system manager can convert it into an equivalent value of

. Clearly if QuantumiQuantum ji xQuantum2= , the manager intends that flow i get

twice the bandwidth of flow j when both i and j are active [17].

3.1.8 Start Time Fair Queueing:

 To achieve fairness, a slightly different approach is proposed by Goyal, Vin

and Cheng [20] named Start-time Fair Queueing (SFQ). SFQ assigns a start tag to

each packet and schedules them in the increasing order of start tags. To define the

start tag, let the packets be scheduled for variable length quantum at a time. Also, let

 and denote the quantum of packet f and its length (measured in bytes or i
fq i

fl thj

 46

bits), respectively. Let ()j
fqA denote the time at which the quantum is requested.

If the flow is making a transition from a non-backlogged mode to backlogged mode,

then

thj

()j
fqA

fS

 is the time at which the transition is made; otherwise it is the time at

which its previous quantum finishes. Then SFQ algorithm is defined as follows:

i
fq

1.When quantum is requested by packet f, it is stamped with start tag

computed as:

 ()()()f
j
ff FqAvS ,max= (3.7)

where v(t) is the virtual time at time t and is the finish tag of packet f.

is initially 0, and when quantum finishes execution it is incremented as:

fF fF

thj

f

j
f

ff r
l

+SF = (3.8)

where is the weight of the flow that packet f belongs to. fr

2.Initially the virtual time is 0. When the channel is busy, the virtual time at time

t, v (t), is defined to be equal to the start tag of the packet in service at time t.

On the other hand, when the channel is idle, v (t) is set to the maximum of

finish tag assigned to any packet.

3.Packets are serviced in the increasing order of the start tags; ties are broken

arbitrarily.

 The example shown in Figure 3.6 illustrates the computation of the virtual time,

as well as the start and the finish tags (and hence, the process of determining the

execution sequence) in SFQ. Consider two flows Flow #1 and Flow #2 with weights

1 and 2, respectively, which become backlogged at time t = 0. Let the for all

packets. Let each packet consume the full length of the quantum each time it is

10=fl

 47

Flow #1

Flow #2

0

0

10

105

10

5

20

10

15

15

20

20

30

30

40

40

50

50

60

50

55

55

60

60

70

60

7065

65

70

80

70

75

75

80

80

85

Start tag

Finish tag

0

Virtual Time

Real Time (ms)

10

20

30

40

50

60

70

80

Unbacklogged Backlogged

Unbacklogged Backlogged

50 100 150 2000

Unbacklogged

Unbacklogged

Figure 3.6 An example showing how SFQ computes virtual time, start tag and finish

tag

scheduled. Initially, the virtual time v (t) = 0. Similarly, the start tags of Flow #1 and

Flow #2, denoted by and , respectively, are zero (i.e., = = 0). Since ties

are broken arbitrarily, let us assume, without loss of generality, that the first packet at

the head of Flow #1 is scheduled first. Since v (t) is defined to be equal to the start

tag of the packet in service, for 0 < t ≤ 10: v (t) = = 0. At the end of that quantum,

the finish tag of the first packet of Flow #1 is computed as

1S 2S 1S 2S

1S

10
1

1001 =+=F

1

.

Moreover, assuming that the flow remains backlogged at the end of the quantum, it is

stamped with = =10. At this time, since < , the first packet of

Flow #2 is scheduled. Note that since = 0, the value of v (t); 10 < t ≤ 20 continues

to be equal to 0. At the end of this quantum, the finish tag for B is set to

1S ()(10v)1, Fmax 2S S

1S

 48

5
2

1002 =+=F . Moreover, assuming that Flow #2 remains runnable at the end of

the quantum, we get = 2S ()()2,20max Fv =5. Carrying through this process illustrates

that, before Flow #2 become unbacklogged at time t= 60, Flow #1 and Flow #2 are

scheduled for 20ms and 40ms, respectively, which is in proportion to their weights.

When Flow #2 is unbacklogged, the entire channel is available to Flow #1, and the

value of v (t) changes at the beginning of each quantum of Flow #1. Now, when

Flow #1 becomes unbacklogged at time t = 90 the system contains no backlogged

flows. During this idle period, v(t) is set to max(50)20,50max(), 21 ==FF

2S

50)20,50max(

. When

Flow #1 becomes backlogged at time t = 110, v(t) = 50. Hence, Flow #1 is stamped

with , and is immediately scheduled for transmission. On the

other hand, when Flow #2 becomes backlogged at time t = 115, v(t) = = 50.

Hence, it is stamped with

50

,50max(2

)1 =,50 Fmax{1 =S

)2 === FS . From this point, the

ratio of bandwidth allocation goes back to 1:2. Finally, when Flow #1 becomes

unbacklogged at t = 170, the entire bandwidth becomes available to Flow #2, until it

becomes unbacklogged at t = 210.

3.2 Fair Scheduling Algorithms for Wireless Networks:

 Since a session belonging to a wireless network may receive significantly less

service than it is supposed to, and another may get more; it is difficult to provide

both delay-guarantees and fairness simultaneously. This may happen because of

exhibiting high, variable error rates. Many applications and end-to-end transport

protocols may perform very poorly when packets are lost due to link errors. This

results in large discrepancies between sessions’ virtual times. So scheduling

disciplines for wireline environment can not be implemented directly to wireless

networks [25].

 49

 Wireless channels have the following unique characteristics, which wireline

fair-scheduling algorithms do not address [28]:

1.Bursty channel errors,

2.Location-dependent channel capacity and errors.

 These two properties implies that at any time, it may happen that some flows

can transmit but others can not due to channel errors, resulting in only a subset of

backlogged sessions to be scheduled at any time instant; also this subset is

dynamically changing as time evolves. As a result, a session with an error-free

channel may receive more normalized amount of service than that by a session with

an error channel. To achieve long time fairness more service may be given to a

previously error session [25, 28].

 These characteristics make it difficult to satisfy requirements of time-sensitive

applications such as high quality audio and video. Also host mobility makes it

difficult to satisfy QoS requirements since routing and admission control in the

mobile communications is dynamical and therefore complex.

 Many resource management algorithms for wireless mobile networking

environments like Idealized Wireless Fair Queueing, Wireless Fair Service, Channel

State Independent Wireless Fair Queueing and Wireless Multiclass Priority Fair

Queueing are proposed to suit for capacity-constrained and highly dynamic networks

in order to support communication intensive applications with QoS requirements.

The main design goals of these disciplines are delay and throughput guarantees for

error-free sessions, long-term fairness for error sessions, short-term fairness for

 50

error-free sessions and graceful degradation for sessions that have received excess

service [25].

 The following sections will give information about Wireless Packet Scheduling

(WPS), Server Based Fairness Approach (SBFA) and Channel Independent Fair

Queueing (CIF-Q) in detail. This chapter will also introduce adaptation of DRR for

wireless channels.

3.2.1 Wireless Packet Scheduling:

 WPS tries to approximate IWFQ, since for a base station performing the task of

scheduling IWFQ does not predict channel state perfectly and has limited knowledge

on uplink flows [27, 28]. For implementation, either WFQ or can be chosen

as an error-free service; but WRR can also be chosen because of its ease of

implementation. Also it has been stated that WRR and fair scheduling will

approximately result in same performance [28].

QWF2

 The key features of WPS are: Spreading, which generates frames based on

WFQ or when all flows are backlogged; Swapping within Frame, which

interchanges the slots of a frame when a flow can not transmit in its slot because of

channel error; Credit/Debit Adjustment, which slots’ credit and debit are adjusted

when a slot does not transmit in its frame and can not swap with another slot in the

same frame, but there exits another backlogged flow that can transmit at the same

time. When a new frame needs to be generated, these credit and debits are taken into

account in terms of effective weights; One-step Prediction, which predicts the state

of the physical channel using the previous channel state. In Figure 3.7 A WPS

example is given. Consider three backlogged flows Flow #1, Flow #2 and Flow #3,

QWF2

 51

which have weights 3, 2, 1 respectively. The first line of Figure 3.7 shows how

spreading generates frames using . The second line presents how the

swapping works. At the time when slot c is scheduled, the one-step prediction

algorithm predicts that both Flows #1 and Flow #3 have channel errors but Flow #2

perceives a clean channel. Since Flow #3 can not transmit in slot due to channel

errors, and Flow #1 cannot either, Flow #2 is transmitted in slot c; therefore, Flow #2

and Flow #3 swapped slots c and e. It should be noted that at the time when slot c is

scheduled, no predictions will be made on whether slot is e good for Flow #3 or not.

As shown in the third line of Figure 3.7, if slot e is bad for Flow #3 according to the

one-step prediction made, when slot is e scheduled, Flow #3 has to be scheduled in

the next frame. In this case, Flow #3 still cannot be transmitted due to predicted error

state for slot e, because there does not exist any slot for Flow #3 to swap within

Frame #1, we simply maintain the credits for Flow #3 as 1, and the debits for Flow

#2 as 1. Therefore, at the beginning of Frame #2, the effective weights for Flow #1 is

still 3; the effective weights for Flow #2 is given by its weights minus its debits, that

is 2-1=1; the effective weights for Flow #3 is the sum of its weights and its credits,

that is, 1+1=2. The slot allocation for Frame #2 will be spreaded using based

on the effective weights, and the results are shown in Figure 3.7.

QWF2

QWF2

 It should be noted that the number of credits must be bounded in order not to

allow a flow capturing the entire channel for along time. IWFQ also has a similar

effect, which can be solved by bounding the compensation.

 Since WPS tries to approximate IWFQ in the average case, there is a difference

in the worst-case delay since it compensates by swapping rather than by giving

precedence in channel access to longest lagging flows. By swapping the next attempt

 52

of flow to access the channel is delayed to a later slot. This means that precedence

history is maintained by IWFQ.

1 2 3 1 2 1 1 2 3 1 2 1 1 2 3 1 2 1 1 2 3 1 2 1

Frame #1 Frame #2 Frame #3 Frame #4

Spreading

1 2 312 1 1 2 3 1 21 1 2 3 1 2 1 1 2 3 1 2 1Swapping

1 2 212 1 1 3 2 1 3 1Credit&Debit

√

X

X

X

√

√

One step prediction:

√

X

X

One step prediction: √

X

X

Credit for Flow #3 = 1
 Debit for Flow #2 = 1
Effective weights:
Flow #1=3
Flow #2=1
Flow #3=2

slot # a b c d e f

Figure 3.7 A WPS example

 Another problem in WPS is, choosing a flow in a future frame instead of the

current backlogged flow that has to be transmitted but cannot be given service due to

a channel error. Remember that the coming frame is generated by the information

based on the weights for all known backlogged flows.

 53

3.2.2 Server Based Fairness Approach:

 Another discipline proposed by Ramathan and Agrawal [27] as SBFA

introduces the concept of long-term fairness server (LTFS) which shares the

bandwidth with the other flows and is responsible for providing additional capacity

to flows to maintain the long-term fairness guarantees. SBFA maintains two different

queues for each flow, Packet Queue (PQ) and Slot Queue (SQ). When a new packet

arrives for flow i, it is inserted into PQ , at the same time a slot is inserted with a tag

i (identifying the slot as belonging i) into SQ . The scheduler operates on slot

queues.

i

i

 If a flow i can not transmit because of an erroneous channel, the packet is

inserted in the LTFS queue. This means that SBFA distributes an extra quantum of

bandwidth to lagging flows for compensation without degration of other flows. In

general more than one LTFS may be created. For example one LTFS could be used

for real-time traffic and a different one for interactive traffic. But all flows may be

assigned to the same LTFS too.

 To understand SBFA more, let us have a look at the example shown in Figure

3.8. In this example, there are two flows and a LTFS sharing a wireless link. As seen

from Figure 3.8 (a) at time=0 there are two packets waiting for transmission for each

flow. It is assumed that all packets are unit length and WRR scheduling policy is

applied for all flows and LTFS. Suppose that the scheduler has selected Flow #1, and

the wireless link is not suitable for transmission. So the packet at the head of the

packet queue is deferred and the next active flow, Flow #2 is selected. Be aware that

Flow #1 did not get its share of the bandwidth at time 0, but a slot with tag 1 is

 54

12P 11P

1S

21P22P

2S 2S

Flow #1

Flow #2

PQ

PQ

SQ

SQ

SQ

SCHEDULER

12P 11P

1S

1S

22P

2S

Flow #1

Flow #2

PQ

PQ

SQ

SQ

SQ

SCHEDULER

LTFS

LTFS

22P

Flow #1

Flow #2

PQ

PQ

SQ

SQ

SQ

SCHEDULER

LTFS
2S

1S

(a) Time 0

(b) Time 1

(c) Time 4

Figure 3.8 SBFA compensation in case of a deferment

 55

inserted into LTFS. Figure 3.8 (b) presents the states of all queues assuming that the

transmission of the packet at the head of packet queue of Flow #2 is successful.

 At time 2, when LTFS is selected for transmission the slot’s tag refers to Flow

#1, so the packet at the head of packet queue of Flow #1 is transmitted assuming that

the channel is good. At time 3, scheduler selects Flow #1 for transmission and the

packet from Flow #1 is transmitted. Assuming that all transmissions are successful

the states of queues at time 4 is shown in Figure 3.8 (c). We have seen that how

SBFA compensates when a packet is deferred in case of receiving a bad channel.

3.2.3 Channel Independent Packet Fair Queueing:

 CIF-Q uses SFQ as the error-free service system, in order to keep

implementation low [25]. But it should be noted that any other scheduling discipline

could be chosen as a reference model.

 CIF-Q schedules the packet with minimum start tag for transmission, which

would be served next in SFQ. When the selected flow can not send, the service is

distributed to another flow. But the service is charged to the candidate flow. To do

this CIF-Q introduces a lag parameter to keep the track of the amount of traffic needs

to be compensated for.

 The parameter lag represents the difference between the services that flow i

should receive in a reference error-free model and the service it has received in real

system. An active flow i is said to be lagging if its lag is positive and leading vice-

versa. It is called satisified if lag is zero. It is obvious that for an error-free system

i

i

i

 56

all flows will be satisified. The algorithm maintains at all time the following

invariant:

 ∑
∈

=
Ai

ilag 0 (3.9)

where A is the set of the active flows. So the system is work conserving. The simple

version of CIF-Q is given in Appendix A.

 The key features of CIF-Q scheduling scheme is given below:

• In CIF-Q, a session’s virtual time does not keep track of the normalized service

received by that session in the real system S, but in the reference error-free

system . r
SFQS

• The additional parameter lag is used for keeping the track of the difference a

session should get in an error-free system S and it get in real system . To

provide perfect fairness all lags of sessions must be zero.

r
SFQS

• If no session can transmit, a session is forced to receive service and we charge

for that forced session. This is done even if it can not send any packet.

 CIF-Q is easier to implement than IWFQ, since it is self-clocked and it does not

need to emulate a fluid system.

3.2.3 DRR for Wireless Channels:

 As an investigation of a new scheduling approach, DRR for wireless channels

can be proposed. In this technique the quantum of the flow will be added to the

 57

deficit counter when it receives an error. It is obvious that the scheduling scheme is

not work conserving since it does not try to compensate the excess share.

 58

CHAPTER 4

EVENT DRIVEN SIMULATION OF SCHEDULING

ALGORITHMS

 For evaluating the delay, jitter and throughput performances of such scheduling

algorithms, a discrete event simulator has been developed to see how they perform

under various loading conditions. Average delay associated with a packet

transmission and throughput statistics are kept, in order to graph versus various

channel loads. By capturing these, information about the behavior of fair queueing

disciplines is obtained. The language to be used for the simulation model is C++.

4.1 Simulation Methods:

 Before one attempts to produce a prototype, it is desirable to simulate the

expected behavior of the design. Simulation of the behavior can demonstrate how

successful will the product be when it is fabricated. Simulation enables to focus on a

variety of conditions to see how the design will be behaving in complex systems.

 In a simulation model, generally a simulated clock controls timing of events.

Timing control is necessary to execute events in an appropriate sequential order. In a

computer communication network events are limited to arrivals and departures of

data or control messages, which a simulation model must be able to synchronize [6].

 59

 The two famous methods used for controlling timing of events are1 [6]:

• Unit advance (synchronous timing) or Time-Driven Simulation

• Event advance (asynchronous timing) or Event-Driven Simulation

 As events occur in a simulation model, the simulation clock is advanced so as

to move the system forward in time. In unit-advance case or equivalently in time-

driven simulation, the simulation clock is advanced by a fixed quantity where as in

event advance case; the simulation clock is advanced to the time of the next event.

 The choice of the method for advancing the simulation clock has a significant

impact on processing or the execution time of a simulation program. In time-driven

simulation, the clock is advanced by a fixed duration of time and then the system is

checked as to whether or not any events has taken place. If the event has taken place,

the model variables are updated according to the type of event and the process is

repeated again. If no event has taken place, the clock is advanced again without any

change in the model variables and the process is repeated.

 In unit advance case, the duration, the simulation clock will be increased is a

critical decision. If a very small duration is chosen, it will take the model

unnecessarily slow. On the other hand if one chooses a relatively long duration, the

results may not be accurate.

 In the event advance case, the duration used for advancing the simulation clock

depends on the actual events. Thus the clock is updated dynamically. The model

1http://www.winslam.com./laramee/sim/, “Event Driven Simulation Tutorial”, Tom Laramee,

December 1995.

 60

http://www.winslam.com./laramee/sim/

finds out when the next event is going to take place and the simulation clock is

advanced to that time. If the events are occurred after long intervals, the clock will

also be advanced by a longer duration and vice versa.

 For illustrating the difference between two methods of simulation let us have a

look at the following example:

 One way to simulate the floating-point unit (FPU) of an Intel Pentium

central processing unit (CPU) is to examine every clock cycle to see what is

happening in the FPU. The “events” that causes the system to change the system to

change its state are:

• Beginning of Division Operation

• Completion of Division Operation

• Beginning of Multiplication Operation

• Completion of Division Operation

 A sample trace of time-driven simulation is given in Table 4.1. In the example

division operation completes in 4 cycles and multiplication operation completes in 5

cycles.

Table 4.1 Time-Driven simulation of FPU

CLOCK CYCLE EVENT

1 Beginning of Multiplication Operation

2 None

3 None

4 None

 61

CLOCK CYCLE EVENT

5 None

6 Completion of Multiplication Operation

7 None

8 Beginning of Division Operation

9 None

10 None

11 None

12 Completion of Division Operation

13 None

14 None

 An event-driven simulation trace is given in Table 4.2.

Table 4.2 Event-Driven simulation of FPU.

CLOCK CYCLE EVENT

1 Beginning of Multiplication Operation

6 Completion of Multiplication Operation

8 Beginning of Division Operation

12 Completion of Division Operation

 As seen from the table, event-driven simulation only examines the events that

cause state changes. Time intervals, where the state of a system does not change, are

skipped.

 62

 If a queueing network is simulated in a time-driven manner, every distinct

moment of time must be traced. This results in a large amount of processing

overhead. For example, if there is a possibility that system loading is such that there

could be 100 events in a second, then "time" must be quantified into pieces each 0.01

seconds long, and each of these 100 units of time must be examined during the

simulation to see if an event has occurred.

 If only 70 of these events actually occur, it is still necessary to examine all 100

"units of time" in the time-driven simulation. But in the event-driven simulation, you

only examine the 70 changes of state. This saves a big amount of processing time to

complete the simulation1.

 In this thesis, since event-driven simulation technique believed to be both

efficient as well as more accurate [6], scheduling algorithms for packet switching

networks will be simulated as in event advance case.

4.2 A Scheduling System Simulation Skeleton:

This part introduces the basic event handling mechanism of the discrete event

simulator that has been developed.

 The simulator developed, has a graphical user interface (GUI) in order to seed

simulator with different operating parameters. With this GUI user can input

simulation time (in seconds), link capacity (in megabits per second), the number of

flows that exist in the system, traffic models and weights of these flows and the

scheduling algorithm that is to be simulated.

 63

 The simulator can support maximum of five flows and the weights of these

flows can alter between 1 and 5. Hierarchical models are not applied in the basic

structure.

For comparing performance of queueing algorithms, an accurate traffic model

has to be found. This is sometimes difficult because nature of the source or the

encoding method may affect the statistics of the traffic. The source of data is

practically a sensor, which samples a physical quantity to produce a signal. The

following source models are applied, as shown in Figure 4.1:

• Constant Bit Rate (CBR): Fixed-size packets arrive at deterministic intervals as

shown in Figure 4.1 (a). The sources generate data, which has few

redundancies. The data must not be compressed in a lossy way because the

content is important.

• Variable Bit Rate (VBR):

o On/Off Sources: The source alternates between a period in which

fixed-size packets arrive with deterministic spacing and an idle period

as shown in Figure 4.1 (b) where T is period. Voice traffic is a good

example.

o Periodic with Variable Packets Sizes: The source submits a variable-

size packet to the network at deterministic intervals as shown in

Figure 4.1 (c) where T is period. Compressed video may be a good

example.

 64

o Aperiodic with Variable Packet Sizes: Variable-size packets are

generated at randomly distributed intervals as shown in Figure 4.1 (d).

o Aperiodic with Constant Packet Sizes: Fixed-size packets are

generated at randomly distributed intervals as shown in Figure 4.1 (e).

Packet Length Packet Length Packet Length

Packet Length Packet Length

Time Time Time

Time Time

Active SilentT
T

(a) (b) (c)

(d) (e)
Figure 4.1 Examples of different types of traffic sources

User can choose one of four traffic models for flows from the GUI. These may

be CBR or VBR, which generates variable size packets at exponentionally,

distributed interarrival times. User can also choose On-Off and Poisson, which is

another kind of VBR that generates fixed-size packets at exponentionally distributed

interarrival times. User can input the period (in seconds), mean arrival rate (in

milliseconds), packet length (in bytes) and mean packet length (in bytes) for various

traffic models. Also user can assign the weights of the flows that exist in the system.

 65

For CBR type of traffic user can input the period and packet length, for VBR

user can input mean packet length and mean interarrival time. The mean interarrival

time and mean packet length are Poisson distributed. For On-Off type user can input

mean “on” time. The “off” period is the multiple of that “on” period. The packets are

generated with a constant period within the “on” time. The packet size and the period

of generation in the “on” time are declared as macros. For Poisson distributed type of

traffic user inputs the mean interarrival time and the packet length is fixed (the value

that user entered does not change until the end of simulation).

 For generating Poisson distributed arrivals, inverse transform method described

in section 2.5.1.2.1 is used. If the arrival process is Poisson, the interarrival time

distribution is exponential with rate parameter λ [14]. Let:

 =)(tPi Pr [i arrivals in a period of length t] (4.1)

and let X be the random variable describing the interarrival times for a Poisson

process:

 Pr [X > t] = (t) = (4.2) 0P te λ−

 = Pr [t ≥ X] = 1 - (4.3))(tFx
te λ−

where is the cumulative distribution function for random variable X. Define:)(tFx

 u)(1 tFx−= = (4.4) te λ−

The inverse of u is:

 66

λ

)1ln()(1 uuxFt −
−== − (4.5)

If u is uniform in (0,1) then 1-u is also uniform in (0,1). Hence:

λ

)ln(u
−=t (4.6)

As statistics, the delay associated with each packet is recorded. For the

simulator, delay is the difference between the first bit of a packet started to transmit

and the last bit of the same packet is received.

Jitter is defined as the standard deviation of the delay. In the literature the term

delay jitter is defined as the maximum deviation between the delays experienced by

packets in a single connection [13]. For example, in a connection if the minimum

end-to-end delay seen by a packet is 3 milliseconds and the maximum is 7

milliseconds, the delay jitter is 4 milliseconds.

Interactive applications require a bound on both delay and jitter, but some

certain applications such as non-interactive television and audio broadcasting,

require bounds on jitter but not delay [13].

 Another performance measure recorded is throughput. Throughput is typically

measured in bits/second. In Section 5, before the presentation of the simulation

results, definition of fairness measures will be introduced. Comparing this quantity

for a scheduling algorithm with another one will be helpful in fairness analysis.

 67

The process flow diagram of the discrete event simulator is given in Figure 4.2.

The simulator stores the simulated state of the system in a set of system state

variables. Event routines cause state variables to be modified. An event list is used to

control the execution sequence of these event routines. This event list consists of

events in increasing chronological order. Event routines can add or delete items from

the event list. The random number generators in these event routines provide

randomness for modifying and scheduling of future events. In our case the event list

is implemented as a linked list. Running a simulation is a repeated execution of a

loop, where at each iteration the event with earliest scheduled time is executed.

In the model the incoming packets are represented by data stuctures. These

entities contain simulation-specific information as well as length indication and flow

identificaiton. For example packet-creation time stamp is used for statistics

colllection. Such encapsulation of data structures is a common feature in

communication networks and is also supported by object-oriented programming [30].

The termination of the simulation depens on the simulation time that is determined

by the user.

For clarity in showing the effects of channel errors and for ease of

interpretation, errors are modeled as simple periodic bursts. Error patterns represent a

periodic burst of predefined period, with predefined period of intermediate error-free

time.

 68

BEGIN

INITIALIZE

SEED EVENTS

WHILE
(SystemTime < SimulationTime) GET THE CURRENT EVENT

UPDATE SYSTEM TIME

SWITCH (EVENT TYPE)

FREE CURRENT EVENT
MEMORY

PROCESS DIFFERENT EVENT
TYPES

CALCULATE STATISTICS

CLOSE FILE

END

YES

NO

PRINT REPORT TO FILE

GET USER INPUT AND SET
APPROPIATE VARIABLES

Figure 4.2 Process Flow Diagram for Event Handling Mechanism

 69

 Since single-node fairness analysis is the scope of this thesis, the simulator

does not deal with routing, acknowledging, and flow controlling or removing and

insertion of identifiers. Those may be considered in the end-to-end fairness analysis.

4.3 Validation of Implementations:

 In this section, the simulation results obtained from the simulator we have

designed will be compared to the analytical and simulation results taken from

literature, to make it sure that the model logically does what it is supposed to do. In

the cases where no simulation results for the models exist, comparison with the

analytical results will be performed for the validation process.

4.3.1 Validation of Weighted Fair Queueing Simulation:

 The validation strategy is based on the observation that the WFQ algorithm

approximates the behavior of a GPS server except for an error term that is bounded

by [12, 18]: maxL

 τττ ,),0(),0(max,, iLW WFQiGPSiW ∀≤− (4.7)

where),0(, τGPSiW and),0(, τWFQiW are the total amounts of service received by

session i, (the number bits transmitted) by time τ under WFQ and GPS respectively,

and is the maximum packet length. maxL

The main goal of the following simulations is to verify the difference

between services received by WFQ and GPS never violates the maximum theoretical

limit. In fact, with the virtual time implementation of the WFQ algorithm, the server

 70

keeps the track of the progress of the corresponding GPS server. However, this is not

a good validation strategy, since both the output WFQ system and the corresponding

GPS system could be wrong. A good validation strategy should take as reference the

behavior of a system external to the WFQ implementation.

Remember that equation 3.3 holds when all sessions in the system are

continuously backlogged. In these time intervals the behavior of the GPS server

(from the standpoint of a backlogged session) is exactly the same as the behavior of a

FIFO scheduler scheduler with rate . Therefore, in order to monitor the difference

between the services received by GPS and WFQ scheme, it is possible to compare

the output of the WFQ system with the one of a FIFO system with the same input

traffic pattern

jg

2. However, in order to make things work, other sessions’ backlogs

should never be zero. In the simulation scenario, the behavior of the WFQ

implementation is compared with the behavior of a reference FIFO system.

In the simulation study, a WFQ server with a rate 150000 bit per second (bps)

is shared by two sessions producing Poisson distributed traffic with fixed packet

lengths is considered. As a reference, the behavior of the first session is taken and a

FIFO server with rate 100000 bps with the same input pattern is considered.

 Poisson distributed traffic is chosen to avoid periodical phenomena. In fact, if

CBR sources had been used, the discrepancy between the amounts of service share

would have shown a replicated behavior.

2 http://netgroup-serv.polito.it/netgroup/hp/qos/validation.ps, “Validation of the WFQ code”

 71

http://netgroup-serv.polito.it/netgroup/hp/qos/validation.ps

 In the following table the sessions’ parameters are given.

Table 4.3 Session parameters for WFQ validation.

Mean inter-arrival

time (millisecond)

Packet Size

(bytes)

Average Rate

(bps)
Weight

Session 1 20 400 160000 2

Session 2 40 360 72000 1

 Be aware that, to respect the condition of non-zero backlogs, the total link

required by the sessions is almost the twice of actual link capacity. The simulation is

run for 200 seconds and the behavior of session 1 is monitored both in FIFO and

WFQ simulations. We expect that the difference between the service shares both in

FCFS and WFQ simulations for session 1 to be less than =3200. For 10 runs the

results are given in Table 4.4.

maxL

Table 4.4 Differences of service shares in terms of bits for FCFS and WFQ

simulations.

Simulation number)200,0(,1 WFQW)200,0(,1 FCFSW Difference

1 20000000 20000000 0

2 20000000 20000000 0

3 20000000 20000000 0

4 19996800 20000000 3200

5 20000000 20000000 0

6 20000000 20000000 0

7 19996800 20000000 3200

8 19996800 19996800 0

 72

Simulation number)200,0(,1 WFQW)200,0(,1 FCFSW Difference

9 20000000 20000000 0

10 19996800 20000000 3200

 From the table it is seen that, for all runs the difference between the amounts of

network share does not exceed the maximum bound 3200. The lower and upper

limits of the %90 confidence interval for the quantity W are 19996000

and 20001000 respectively. The same confidence limits for the quantity

 are 19998000 and 20001000 respectively.

)200,0(,1 WFQ

)200,0(,1 FCFSW

 These results show that the behavior of the WFQ implementation is correct.

4.3.2 Validation of Worst Case Fair Weighted Fair Queueing+ and Start

Time Fair Queueing Simulations:

The scheduling algorithm at node j is said to provide a fairness guarantee, if in

any time interval [t ,] during which two flows f and m are continuously

backlogged, the number of bits of flows f and m transmitted by the server,

 and W respectively satisfy:

1

(1tj

2t

)2t),(21, ttW jf ,,m

 },.{,
21,2,1,),(),(

mfj
m

jm

f

jf U
r

ttW
r

ttW
≤− (4.8)

 73

where and are the rates reserved for flows f and m respectively and U is

the unfairness measure – a constant that depends on the scheduling algorithm and

traffic characteristics at server j [20, 28, 32]. Table 4.5 lists the U values for

W Q and SFQ algorithms. Since W F Q+ provides the same WFI as W F Q [23],

the unfairness measure for W Q+ is the same as W Q.

fr mr },{, mfj

2

},{, mfj

2F 2

2F 2F

Table 4.5 Unfairness measures for SFQ and W Q [32]. 2F

Algorithm },{, mfjU

SFQ
m

m

f

f

r
l

r
l maxmax

+

W F Q 2










−+

Crr
l

mf

111max

 To validate SFQ and W Q+ simulations we have used the analytical results

above. For all the results presented here, a link of 448000 bps bandwidth is shared by

following two flows: Flow 1 is an Poisson type of traffic in which 320 byte packets

are generated with a mean inter-arrival time of 5 millisecond, corresponding to an

average bandwidth need of 512000 bps. Flow 2 is also a Poisson traffic, which

generates 800 byte packets with the mean inter-arrival time of 10 milliseconds. The

bandwidth requirement of Flow 2 is 640000 bps. Notice that, in order to respect the

condition of non-zero backlogs, the total link requested by the sessions is almost the

twice of actual link capacity.

2F

 The weights of flows are 2 and 5 respectively. The unfairness measure for

W Q+ according to the given parameters is 4479.986. The simulation had been run 2F

 74

for 10 times. Table 4.6 presents the measured differences between the normalized

service shares. The simulation time is 200 seconds for all runs.

Table 4.6 Differences of normalized service shares in terms of bits for W F Q+

simulation.

2

Simulation number)200,0(,1 jW /2)200,0(,2 jW /5 Difference

1 12802560 12798720 3840

2 12800000 12800000 0

3 12800000 12800000 0

4 12800000 12800000 0

5 12798720 12798720 0

6 12797440 12798720 1280

7 12800000 12800000 0

8 12800000 12800000 0

9 12798720 12800000 1280

10 12798720 12800000 1280

 As seen, for all runs the difference between the normalized amount of network

share does not exceed the unfairness measure 4479.986. The lower and upper limits

of the %90 confidence interval for the quantity W are 12798000 and

12801000 respectively. The same confidence limits for the quantity W are

12799000 and 12800000 respectively.

)200,0(,1 j

)200,0(,2 j

 With the same flow parameters, the unfairness measure for SFQ is 2560. Table

4.7 presents the results of 10 runs for SFQ.

 75

Table 4.7 Differences of normalized service shares in terms of bits for SFQ

simulation.

Simulation number)200,0(,1 jW /2)200,0(,2 jW /5 Difference

1 12800000 12800000 0

2 12800000 12800000 0

3 12800000 12800000 0

4 12801280 12800000 1280

5 12801280 12800000 1280

6 12800000 12800000 0

7 12800000 12800000 0

8 12800000 12800000 0

9 12801280 12800000 1280

10 12800000 12800000 0

 From the table it is seen that the difference between service shares had never

exceeded the unfairness measure. The lower and upper limit of the 90% confidence

interval for the measured quantity W is 12800000 and 12801000

respectively. Since standard deviation for W is 0, there is no need to

compute confidence interval for it.

)200,0(,1 j

,0(,2 j)200

 These results show that the behavior of the W Q+ and SFQ implementations

are correct.

2F

 76

4.3.3 Validation of First Come First Served and Deficit Round Robin

Simulations:

To answer the question about the performances of DRR, Shreedhar and

Varghese [17] experimentally confirms that DRR provides isolation superior to

FCFS as the theory indicates for a single router case. They have also proved the

fairness provided by DRR still good when the flows arrive at different rates and

different distributions.

They have measured the throughput in terms of delivered bits in a simulation

interval, typically 2000 seconds. In the single router case (Figure 4.3) there are one

or more hosts. Each host has twenty flows, each of which generates packets at a

Poisson average of 10 packets/second. The packet sizes are randomly selected

between 0 and Max packet size (4500 bits). Ill-behaved flows send packets at a

Poisson average of 30 packets/second. Each host is configured to have one ill-

behaved flow.
Host #1

Host #n
packet
buffers

Router

Network Link

Figure 4.3 Single router configuration

In order to show how DRR performs with respect to FCFS, a single router

configuration and a host with twenty flows sending packets at the default rate

 77

through the router is used. The only exception is that Flow 10 is a misbehaving flow.

The outgoing link was set to 10 Kbps. Therefore if there are 20 input flows each

sending at rates higher than 0.5 Kbps, there is contention for the outgoing link

bandwidth.

Figure 4.4 Plot showing the results of the experiment done by Shreedhar and

Varghese [17], which interprets the bandwidth distribution among the flows.

 78

Figure 4.4 shows the plot of the bandwidth offered to flows using FCFS

queueing and DRR. The plot is directly taken from the paper written by Shreedhar

and Varghese [17]. In FCFS the ill-behaved flow (Flow 10) obtains an arbitrary share

of the bandwidth. The plot clearly illustrates the isolation property of DRR.

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

TH
R

O
U

G
H

P
U

T(
in

 K
bi

ts
)

FLOWS

BANDWITH OFFERED TO FLOWS

Bandwidth used by Ill-Behaved flow

DRR queueing
FCFS queueing

Figure 4.5 The results of DRR implementation.

We have simulated DRR and FCFS with the same operating parameters to

validate the behavior of the implementations. The result can be seen in Figure 4.5. As

in the experiment performed by the authors, the ill-behaved flow, namely Flow 10,

 79

grabbed an arbitrary share of the bandwidth, while in DRR there is nearly perfect

fairness. In their experiment Shreedhar and Varghese measured the maximum

deviation from the ideal bandwidth share (in terms of Kilobits) turned out to be

0.32%. This value is measured as 0.3002% in our case.

 Table 4.8 lists the upper and lower limits of the 90% confidence intervals for

the throughput distributed among the 20 flows by FCFS and DRR implementations.

The values are in kilobits.

Table 4.8 The upper and lower limits of the 90% confidence intervals of throughputs

distributed among the 20 flows.

FCFS implementation DRR implementation Flow

number Upper limit Lower Limit Upper limit Lower Limit

1 824.2 964 998.7 1002.4

2 824.2 942 999.2 1002.2

3 845 978.6 997.4 1001.9

4 863.8 950 998 1001.8

5 793.5 977.7 998 1002.2

6 890.4 952.5 997.1 1002.5

7 853 950.6 998.1 1003

8 869.4 996.8 998.2 1002

9 865.7 988.3 998.2 1002.9

10 2651.6 2837.6 998.6 1001.8

11 839.6 948.2 997.8 1001.7

12 860.8 961.5 997.7 1001.4

13 844.2 989.6 997 1003.3

14 831.7 981.3 997.6 1001.8

 80

FCFS implementation DRR implementation Flow

number Upper limit Lower Limit Upper limit Lower Limit

15 894.8 951.3 998.6 1002

16 863.8 968.2 997.6 1002.1

17 846.8 956.5 997.6 1002.2

18 831 966.1 997.9 1002.8

19 861.4 946.9 998.5 1002.1

20 856.5 981.8 998.1 1001.3

These results show that the behaviors of the FCFS and DRR implementations

are correct.

4.3.4 Validation of Wireless Packet Scheduling Simulation:

For the simple scenario demonstrating the effectiveness of WPS, Lu,

Bharghavan and Srikant [28] have considered an example with three loss-sensitive

sources with WFQ weights = 20, = 10 and =1. 1r 2r 3r

It is assumed that the channels for sources evolve errors according to a two-

state discrete Markov Chain. Knowing that is the probability that the next time

slot is good, given that the current slot is in error, and is the probability that the

next time slot is in error, given that the current slot is good, then the steady-state

probabilities and of being in the good and bad states, respectively, are given

by:

gp

ep

GP EP

 81

eg

g
G pp

p
P

+
= (4.9)

eg

e
E pp

p
P

+
= (4.10)

The two-state discrete Markov Chain used to model one-step prediction

algorithm is shown in Figure 4.6. Let the bad state be 0 and good state be 1.

1 0

gp

ep

ep−1 gp−1

Figure 4.6 Two-state discrete Markov Chain used to model errors evolved by
channels.

The arrival processes are assumed to be as follows: Source 1 is a Markov-

modulated Poisson process (MMPP) where the modulated process is a continuous-

time Markov chain which is in one of two states ON and OFF [28, 33]. The

 82

transition rate from ON to OFF is 9 and OFF to ON is 1. When the Markov chain is

ON state, arrivals occur according to a Poisson process. Source 2’s arrivals occur

according to a constant inter-arrival time and Source’3 arrivals are Poisson. The

source parameters are given in Table 4.3. For each packet, the maximum number of

retransmissions is limited to 2, i.e. a packet is dropped if it is not successfully

transmitted after three attempts. Also the number of credits and number of debits are

limited to 20. The values of and parameters can be seen in Table 4.9. gp ep

Table 4.9 Source and channel parameters for WPS simulation.

Source iλ gp ep ir

1 4.4 0.08 0.02 20

2 0.25 0.095 0.005 10

3 0.025 0.09 0.01 1

The simulation had been run for 100 000 time units and the results of the

simulation experiment done by Lu, Bharghavan and Srikant [28] are presented in

Table 4.10. The performance measures compared for the WPS algorithm for Source

i, i = 1,2,3 are:

iW the aggregate number of packets that have been successfully

transmitted for flow i;

il loss Probability, i.e., fraction of packets that are dropped after three

transmission attempts;

 83

Table 4.10 Results of WPS simulations.

 1W 1l 2W 2l 3W 3l

Original

Results
50000 0 25000 0 2496 0

 The results of the WPS implementation for 10 runs are given in Table 4.11. The

90% confidence intervals for the parameters W , , , , and l are also

given in Table 4.12.

1 1l 2W 2l 3W 3

Table 4.11 Simulation results for WPS implementation.

Simulation

number
1W 1l 2W 2l 3W 3l

1 49960 0 24995 0 2551 0

2 49904 0 24999 0 2439 0

3 49926 0 24984 0 2428 0

4 49976 0 24997 0 2444 0

5 49990 0 24995 0 2449 0

6 50152 0 24996 0 2517 0

7 49914 0 24993 0 2551 0

8 49954 1 24997 0 2546 0

9 49917 0 24990 0 2509 0

10 49950 0 24996 0 2488 0

 84

Table 4.12 Confidence intervals for WPS implementation.

Confidence

limits
1W 1l 2W 2l 3W 3l

Lower 49165 -0.3373 24988 0 2424 0

Upper 49363 0.5373 250000 0 2560 0

4.3.5 Validation of Channel Condition Independent Packet Fair Queuing

Simulation:

To demonstrate the fairness properties of CIF-Q, Eugene Ng, Stoica and

Zhang [25], considered an example with seven sessions (a real-time audio session, a

real-time video session, four FTP sessions, and a cross traffic session) with the

parameters shown in Table 4.13. The audio and video sessions are CBR sources such

that their packets are evenly spaced at 50 milliseconds apart and their throughputs are

160 Kbps 1.25 Mbps respectively. The four 2 Mbps FTP sessions are all

continuously backlogged. The cross traffic session is a Poisson source with an

average rate of 10 Mbps.

Table 4.13 Properties of the 7 sessions used in the CIF-Q simulations.

 Packet Size Guaranteed

Rate

Source

Model

Error

Audio 1KB 160 Kbps CBR None

Video 8KB 1.25 Mbps CBR None

FTP-1 3KB 2 Mbps Greedy None

FTP-2 3KB 2 Mbps Greedy Pattern 1

 85

 Packet Size Guaranteed

Rate

Source

Model

Error

Audio 1KB 160 Kbps CBR None

FTP-3 8KB 2 Mbps Greedy Pattern 2

FTP-4 8KB 2 Mbps Greedy Pattern 1

Cross 4KB 10 Mbps Poisson None

For showing the effects of channel errors and for ease of interpretation, the

errors are modeled as simple periodic bursts. During the 200 second periods of

simulation experiments, the channel errors occur during the first 45 seconds, leaving

enough error-free time to demonstrate the long term fairness property of the

algorithm. Error pattern 1 represents a periodic error burst of 1.6 second with 3.2

seconds of intermediate error-free time. Error pattern 2, a less severe error pattern,

represents a periodic error burst of 0.5 seconds with 5.5 seconds of intermediate

error-free time. Be aware that FTP-2 and FTP-4 have experience identical error

pattern but have different packet sizes, while FTP-1 experiences no error at all. The

results of simulation presented by the authors, using α=0 can be seen in Figure 4.7.

The results of the CIF-Q implementation can be seen in 4.8. As seen the

service received by all four FTP sessions, regardless of the amount of errors they

have experienced, converges very rapidly when the system becomes error free.

Figure 4.8-b demonstrates the changes and lags more easily. The long-term and

short-term fairness guarantees provided by the algorithm holds.

 86

Figure 4.7 Behavior of the FTP sessions when α=0. (a) Service received by each

FTP sessions. (b) Difference between the actual service received by the FTP sessions
and the corresponding amount of service.

 87

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

x 104

Time (s)

S
er

vi
ce

 R
ec

ei
ve

d
(K

B
)

Service Received by Each FTP Session

FTP-1
FTP-2
FTP-3
FTP-4

(a)

(b)

0 20 40 60 80 100 120 140 160 180 200
-3000

-2000

-1000

0

1000

2000

3000

4000

Time (s)

S
er

vi
ce

 R
ec

ei
ve

d
(K

B
)

Difference Between the Service Received and Expected Amount of Service

FTP-1
FTP-2
FTP-3
FTP-4

Figure 4.8 Results of CIF-Q implementation. (a) Service received by each FTP

sessions. (b) Difference between the actual service received by the FTP sessions and
the corresponding amount of service

 88

The upper and lower limits of the 90% confidence interval for the total

bandwidth distributed to FTP sessions can be seen in Table 4.14. The values are in

kilobytes.

Table 4.14 The upper and lower limits of the 90% confidence intervals of

throughputs distributed among the FTP sessions.

Session Upper limit Lower limit

FTP1 50000 50000

FTP2 49990 50000

FTP3 49990 49990

FTP4 49990 50000

These results show that the behavior of the CIF-Q implementation is correct.

 89

 CHAPTER 5

SIMULATION RESULTS

 In this chapter, a set of simulation studies for comparing the performance of

several flow-based scheduling algorithms, namely FCFS, WFQ, +, SFQ, DRR

for wired environment and WPS and CIF-Q for wireless networks will be presented.

Adaptation of DRR for wireless media will also be evaluated. Delay, jitter and

throughput performances of the above algorithms are evaluated.

QWF2

5.1 Simulation Study:

 In the first simulation scenario 4 flows (1, 2, 3 and 4) as well as a server with a

capacity of 280 Kbps were considered. The server assigns 70 Kbps to each flow,

since the weights of all flows are equal to 1.

 The traffic models used for each flow are given in Table 5.1.

Table 5.1 Traffic models for each flow for the first simulation scenario

Flow Type Weight
Packet Length /

Mean Packet Length
(Bytes)

Period /
Mean Interarrival Time

(milliseconds)
1 CBR 1 450 50

2 Poisson 1 450 50

3 CBR 1 900 50

 90

Flow Type Weight
Packet Length /

Mean Packet Length
Period /

Mean Interarrival Time
(Bytes) (milliseconds)

4 VBR 1 500 25

1 2 3 4Flows

Link

1 1 1 1

Weights of flows

Figure 5.1 The first simulation scenario

 Flow 1 and flow 2 corresponds to an average bandwidth need of 70.3125 Kbps.

Flow 3 is also a CBR type of traffic and need an average bandwidth of 140.625

Kbps. Flow 4, which is a VBR type of traffic, corresponds to an average bandwidth

need of 156.25 Kbps. It is seen that total bandwidth required for four flows

corresponds to an average bandwidth need of 437.5 Kbps but the link provided is

only 280 Kbps. The results were examined for 200 seconds. It is thought that 200

seconds will be enough for the simulations to be stable. The simulations have run 10

times for the same traffic set and the results are averaged.

 The fairness measure for a scheduling algorithm can be defined as:

 91

 ∑
∀

−
i

ii RR (5.1)

where iR is the measured rate (Kbps, Mbps etc.) that is provided by the algorithm to

the corresponding flow and is the assigned rate, which is proportional to the

weight of the flow.

iR

Figure 5.2 Bandwidth distributions among the four flows for the first simulation

scenario – wireline scheduling algorithms.

 92

 Figure 5.2 presents the bandwidth distribution among four flows for FCFS,

WFQ, FQ+, SFQ and DRR. As seen from the figure the total throughput 280

Kbps is shared fairly among the flows except for the FCFS. At the average FCFS

algorithm allocates a bandwidth of 44.475 Kbps to Flow 1, 45.775 Kbps to Flow 2,

89.557 Kbps to Flow 3 and 100.48 Kbps to Flow 4. As expected these results show

that FCFS does not allocate the total bandwidth fairly among the flows.

2W

 It can be said that the other servers using WFQ, FQ+, SFQ or DRR type of

scheduling mechanisms allocate the bandwidth fairly for the given traffic set by

looking at the fairness measures given in Table 5.2.

2W

Table 5.2 Fairness measures of wired scheduling algorithms for the first simulation

scenario.

Algorithm Fairness Measure

FCFS 100.12

DRR 1.29

WFQ 1.3
2W FQ+ 0.42

SFQ 0.4

 As seen the best performing scheduling algorithms for the first traffic set are

FQ+ and STFQ. The fairness provided by DRR and WFQ are nearly the same. 2W

 The upper and lower limits of the 90% confidence interval for the rates of flows

are given in Table 5.3.

 93

Table 5.3 90% confidence intervals of the rates provided by the scheduling

mechanisms for the first scenario.

 Flow1 Flow2 Flow3 Flow4

FCFS 44.2 45.3 ≤ ≤ 44.2 ≤ ≤ 46.1 88.4 ≤ ≤ 90.7 99 102 ≤ ≤

DRR 70.1 70.2 ≤ ≤ 69.1 ≤ ≤ 70.4 70.1 ≤ ≤ 70.7 69.3 70 ≤ ≤

WFQ 69.9 70.2 ≤ ≤ 68.7 ≤ ≤ 69.9 69.9 ≤ ≤ 70.6 69.9 71 ≤ ≤
2W FQ+ 69.8 70.2 ≤ ≤ 68.7 ≤ ≤ 70.8 69.6 ≤ ≤ 70.6 69.6 70 ≤ ≤

SFQ 69.9 70.2 ≤ ≤ 69.3 ≤ ≤ 70.3 69.9 ≤ ≤ 70.2 69.9 70 ≤ ≤

 The mean and maximum delay performances of wired scheduling algorithms

for the first scenario are presented in Figure 5.3 and 5.4 respectively. It is seen that,

since FCFS does not deal with the weights of any flows, the delays experienced by

the flows are equal. This is because FCFS does not compensate the discrepancies

between the bandwidths that a flow supposed to have and provided by the server.

The average number of packets transmitted for the algorithms is given in Table 5.4.

 It is seen that, since DRR, WFQ, FQ+ and SFQ tries to prevent unfairness,

flow 3 and 4 experiences more delay than the other two flows. Remember that Flow

3 and Flow 4 require more bandwidth than provided by the server.

2W

 94

Figure 5.3 Mean delays experienced by the flows for the first simulation scenario –

wireline scheduling algorithms.

Table 5.4 Average number of packets, transmitted by the scheduling algorithms for

the first scenario.

 Flow1 Flow2 Flow3 Flow4

FCFS 2552.4 2555.7 2552.4 5107.9

DRR 3993.3 3967.4 2003.8 3534

WFQ 3987.1 3942.6 1998.7 3600.6
2W FQ+ 3982.7 3969.8 1993.9 3551.6

SFQ 3984.7 3970.6 1993.1 3616.5

 95

Figure 5.4 Maximum delays experienced by the flows for the first simulation

scenario – wireline scheduling algorithms.

 The upper and lower limits of the 90% confidence interval for the mean and

maximum delays experienced by the flows are given in Table 5.5 and Table 5.6

respectively. The values are in seconds.

Table 5.5 90% confidence intervals of the mean delays experienced by the flows for

the first scenario.

 Flow1 Flow2 Flow3 Flow4

FCFS 35.1 36.9 ≤ ≤ 35 ≤ ≤ 36.9 35.1 ≤ ≤ 36.9 35.4 36.9 ≤ ≤

 96

 Flow1 Flow2 Flow3 Flow4

DRR 0.12 0.25 ≤ ≤ 1.23 ≤ ≤ 2.89 49.3 ≤ ≤ 50.1 53.8 57.7 ≤ ≤

WFQ 2.53 2.8 ≤ ≤ 3.35 ≤ ≤ 4.69 51.9 ≤ ≤ 52.5 534 59.9 ≤ ≤
2W FQ+ 0.09 0.9 ≤ ≤ -0.4 ≤ ≤ 2.07 49.8 ≤ ≤ 50.7 53. 57.6 ≤ ≤

SFQ 0.05 0.6 ≤ ≤ -0.5 ≤ ≤ 4.1 49.4 ≤ ≤ 50.5 52.1 56.8 ≤ ≤

Table 5.6 90% confidence intervals of the maximum delays experienced by the

flows for the first scenario.

 Flow1 Flow2 Flow3 Flow4

FCFS 71.6 73.1 ≤ ≤ 71.5 ≤ ≤ 73.1 71.6 ≤ ≤ 73.1 71.6 73.1 ≤ ≤

DRR 0.27 0.4 ≤ ≤ 3.7 ≤ ≤ 5.8 99.4 ≤ ≤ 100.1 110 112.3 ≤ ≤

WFQ 5.19 ≤ ≤ 5.6 7.1 ≤ ≤ 9.6 95.8 ≤ ≤ 130 107.8 132 ≤ ≤
2W FQ+ 0.78 1.5 ≤ ≤ 0.39 ≤ ≤ 4 99.8 ≤ ≤ 100.8 109 112.8 ≤ ≤

SFQ 0.55 ≤ ≤ 1.08 1.14 ≤ ≤ 7.3 100.1 ≤ ≤ 100.5 108 111.7 ≤ ≤

 The jitter performances of the flows for the wired scheduling algorithms are

presented in Figure 5.5. The jitters experienced by the flows scheduled by FCFS type

of mechanism are the same since FCFS does not venture the weights of flows. But as

expected the flows which uses equal to or less then their bandwidth gets less delay

and jitter when a fair scheduling algorithm schedules them.

 97

 Figure 5.5 Jitter performances of wireline scheduling algorithms for the first

simulation scenario.

Table 5.7 90% confidence intervals of the jitters experienced by the flows for the

first simulation scenario.

 Flow1 Flow2 Flow3 Flow4

FCFS 20.6 21.5 ≤ ≤ 20.6 ≤ ≤ 21.5 20.6 ≤ ≤ 21.4 20.5 21.4 ≤ ≤

DRR 0.03 0.09 ≤ ≤ 0.32 ≤ ≤ 1.17 28.6 ≤ ≤ 29 31.1 33.2 ≤ ≤

WFQ 1.41 1.65 ≤ ≤ 1.44 ≤ ≤ 2.78 30.3 ≤ ≤ 30.4 31.6 34.4 ≤ ≤
2W FQ+ 0.19 0.4 ≤ ≤ -0.16 ≤ ≤ 1.3 28.77 ≤ ≤ 29.1 31.6 32.58 ≤ ≤

SFQ 0.07 0.36 ≤ ≤ -0.18 ≤ ≤ 2.65 28.7 ≤ ≤ 29.2 30.6 32.2 ≤ ≤

 98

 The first simulation scenario, where its traffic characteristics are introduced at

Table 5.1 is simulated for the wireless packet scheduling schemes. Remember that

for clarity in showing the effects of channel errors and ease of implementation, the

errors are modeled as simple periodic bursts. During the simulation experiments,

channel errors occur during the first 100 seconds to demonstrate long time fairness. It

is also possible to make the channel errors occur only during the whole simulation to

demonstrate short time fairness.

 During the WPS simulations, the maximum number of credits and debits are

both chosen as 20, and the maximum retransmissions are taken to be 2. That is a

packet is dropped if it is not successfully transmitted after three attempts.

 For CIF-Q, the α as chosen to be 0, so that a leading session i will no service as

long as there exists a lagging error-free session in the system. This will ensure the

short time fairness.

 The channels of Flow 1 and Flow 2 experience the same error pattern and

require approximately same bandwidths. The error pattern experienced by Flow 1

and Flow 2 is a periodic error burst of 1.8 second with 3 seconds of intermediate

error free time. The error pattern experienced by Flow 3 is a less severe error-pattern,

represents a periodic burst of 0.3 seconds with 5.7 seconds of intermediate error-free

time. Flow 4 experiences no error at all. The following figure presents the bandwidth

distribution among four flows for WPS, CIF-Q and DRR for wireless channels

(DRRWC). Remember that the simulations had been run for 10 times and the results

are averaged. To ensure if the simulated schemes provide long time fairness

simulation time is selected as 1200 seconds.

 99

Figure 5.6 Bandwidth distributed by the wireless scheduling algorithms among the

four flows for the first simulation scenario.

 As seen from Figure 5.6 the total throughput 280 Kbps was shared fairly among

the flows except WPS. For the given traffic set CIF-Q is the best fair scheduler

among the others. The fairness performance of DRRWC is also good as compared to

WPS. Table 5.8 lists the average bandwidth distributed by WPS, CIF-Q and

DRRWC. The results are in Kbps. The fairness measures are also presented in Table

5.9.

 100

Table 5.8 Average bandwidth, distributed by the wireless scheduling algorithms for

the first simulation scenario.

 Flow1 Flow2 Flow3 Flow4

WPS 54.06 54.07 110.11 61.32
CIF-Q 70.03 68.7 70.74 70.51
DRRWC 69.1 69.1 71.17 70.62

Table 5.9 Fairness measures of wireless scheduling algorithms for the first

simulation scenario.

Algorithm Fairness Measure

WPS 80.65

CIF-Q 2.58

DRRWC 3.61

 According to the results given in Table 5.8 for the first simulation scenario

WPS was not successful as CIF-Q or DRRWC. Both CIF-Q and DRRWC did not

allow Flow 3 to get a higher share, but WPS did. Remember that channel for Flow 3

evolves a less severe error pattern and requires a bandwidth more then provided. For

WPS, only Flow 4 got a relatively close to the ideal share of network among the

other flows.

 The upper and lower limits of the 90% confidence interval for the rates

provided to flows are given in Table 5.8.

 101

Table 5.10 90% confidence intervals of the rates provided by the wireless scheduling

mechanisms for the first scenario.

 Flow1 Flow2 Flow3 Flow4

WPS 53.96 ≤ ≤ 54.15 53.98 ≤ ≤ 54.17 109.9 ≤ ≤ 110.3 60.9 61.7 ≤ ≤

CIF-Q 70.01 ≤ ≤ 70.03 68.5 ≤ ≤ 68.8 70.6 ≤ ≤ 70.87 70.48 70.53≤ ≤

DRRWC 68.08 ≤ ≤ 69.1 69.08 ≤ ≤ 69.09 71.15 ≤ ≤ 71.18 70.59 70.65≤ ≤

 The mean delay performances of the simulated wireless scheduling algorithms

for the first scenario are presented in Figure 5.7.

Figure 5.7 Mean delays experienced by the flows for the first simulation scenario –

wireless scheduling algorithms.

 102

 Investigating the delay performance of the wireless scheduling algorithms, it is

seen that for CIF-Q, while exiting from error mode, always Flow1 take precedence to

give its lag. This is the effect of α (Remember that we have chosen α=0). So the

mean delay experienced by Flow 1 is less than it receives when the packets are

scheduled by DRRWC.

 The upper and lower limits of the 90% confidence interval for the mean delays

experienced by the flows are given in Table 5.9. The values are in seconds.

Table 5.11 90% confidence intervals of the mean delays experienced by the flows

for the first scenario – wireless scheduling algorithms.

 Flow1 Flow2 Flow3 Flow4

WPS 145.6 147.2≤ ≤ 141.7 ≤ ≤ 151.2 126.6 ≤ ≤ 128.2 359 363.5 ≤ ≤

CIF-Q 2.24 2.49 ≤ ≤ 18.1 ≤ ≤ 31.7 290.98 ≤ ≤ 294 320.3 330. ≤ ≤

DRRWC 19.6 19.9 ≤ ≤ 20 ≤ ≤ 27.9 288.5 ≤ ≤ 288.8 314.1 322 ≤ ≤

 The average number of packets transmitted by the flows is listed in Table 5.10.

Table 5.12 Average number of packets, transmitted by the wireless scheduling

algorithms for the first scenario.

 Flow1 Flow2 Flow3 Flow4

WPS 18453 18457 18792 18814

CIF-Q 23902 23448 12073 21590

DRRWC 23584 23581 12145 21700

 Figure 5.8 presents the maximum delays experienced by the flows for the first

simulation scenario.

 103

Figure 5.8 Maximum delays experienced by the flows for the first simulation

scenario – wireless scheduling algorithms.

 The 90% confidence limits for the maximum delays experienced by the flows

are given in Table 5.13. The results are in seconds.

 The jitter performances of wireless scheduling algorithms can be seen in Figure

5.9.

 104

Figure 5.9 Jitter performances of wireless scheduling algorithms for the first

simulation scenario.

 The upper and lower limits of the 90% confidence limits for the jitters

experienced by the flows are given in Table 5.14. The results are in seconds.

 Jitter performances of CIF-Q and DRRWC are close, but the jitters experienced

by the flows are more in WPS.

Table 5.13 90% confidence intervals of the maximum delays experienced by the

flows for the first scenario – wireless scheduling algorithms.

 Flow1 Flow2 Flow3 Flow4

 105

 Flow1 Flow2 Flow3 Flow4

WPS 276.1 278.5≤ ≤ 273.3 ≤ ≤ 282.9 259.1 ≤ ≤ 261.6 727.5 732 ≤ ≤

CIF-Q 5.44 5.66 ≤ ≤ 24.4 ≤ ≤ 40.8 595.5 ≤ ≤ 597.2 655 665.3 ≤ ≤

DRRWC 20.7 20.9 ≤ ≤ 26.5 ≤ ≤ 34.5 592.6 ≤ ≤ 592.7 651.7 664 ≤ ≤

Table 5.14 90% confidence intervals of the jitters experienced by the flows for the

first simulation scenario – wireless scheduling algorithms.

 Flow1 Flow2 Flow3 Flow4

WPS 145.5 ≤ ≤ 147 141.5 ≤ ≤ 151 126.5 ≤ ≤ 128.1 359 363.1 ≤ ≤

CIF-Q 1.43 1.44 ≤ ≤ 1.93 ≤ ≤ 7 174.7 ≤ ≤ 174.8 191.5 194 ≤ ≤

DRRWC 1.87 1.90 ≤ ≤ 2.38 ≤ ≤ 6.17 175 ≤ ≤ 175.1 191.5 199 ≤ ≤

1 2 3 4Flows

Link

1 10 20 50

Weights of flows

5

100

Figure 5.10 The second simulation scenario

 For the second simulation scenario 5 flows (1, 2, 3, 4 and 5) were considered,

as well as a server with a capacity of 9050 Kbps. In this experiment the fairness

performances of the scheduling algorithms with significant differences in weights

will be evaluated. The traffic models used for each flow are given in Table 5.15.

 106

Table 5.15 Traffic models for each flow for the second simulation scenario

Flow Type Weight
Packet Length /

Mean Packet Length
(Bytes)

Period /
Mean Interarrival Time

(milliseconds)
1 CBR 1 450 25

2 VBR 10 2000 25

3 Poisson 20 800 6

4 VBR 50 1700 5

5 CBR 100 4200 5

 Flow 1 and Flow 5 are CBR type of traffic, which require 140.625 and 6562.5

Kbps bandwidths. Flow 2 is a VBR source corresponding an average bandwidth of

625 Kbps. Flow 3 is a Poisson process, in which 800 byte packets are generated at a

mean inter-arrival time of 6 milliseconds. An average bandwidth of 1041.17 Kbps is

needed for Flow 3. Flow 4 is also a VBR source, which corresponds to an average

bandwidth of 2656.25 Kbps. Be aware that all flows require more bandwidth than

provided.

 Figure 5.11 presents the bandwidth distribution among five flows for FCFS,

WFQ, FQ+, SFQ and DRR for the second scenario. According to the fairness

measures given in Table 5.16 it is seen that FQ+ and SFQ performs the best

among the simulated algorithms. WFQ performs better than DRR, but as expected

FCFS is the worst of all for the given simulation scenario. Be aware that according to

the weights Flow 1 must get 50 Kbps, Flow 2 must get 500 Kbps, Flow 3 must get

1000 Kbps, Flow 4 must get 2500 Kbps and Flow 5 must get 5000 Kbps.

2W
2W

 107

 Figure 5.11 Bandwidth distributions among the five flows for the second simulation

scenario – wired scheduling algorithms.

Table 5.16 Fairness measures of wireline scheduling algorithms for the second

simulation scenario.

Algorithm Fairness Measure

FCFS 932.5877

DRR 167.2243

WFQ 3.5007
2W FQ+ 0.3184

SFQ 0.3163

 108

 The upper and lower limits of the 90% confidence intervals for the rates

distributed to flows are given in Table 5.17.

 Figure5.12 presents the mean delay performance of the wireline scheduling

algorithms for the second scenario. As stated before, for FCFS since the server does

not deal with the weights of any flows, the mean delays experienced by the flows are

equal. Since the other simulated schedulers try to compensate the discrepancies of

bandwidth share, the flows that require more bandwidth then required delays more

than the others. Table 5.18 lists the upper and lower limits of the 90% confidence

intervals for the mean delays experienced by the flows.

Figure 5.12 Mean delays experienced by the flows for the second simulation

scenario.

 109

Fl
ow

5

53
80

0≤
 ≤

54
00

.5

49
83

0≤
 ≤

49
87

8

49
99

8≤
 ≤

50
03

3

49
99

4≤
 ≤

50
00

7

49
99

5≤
 ≤

50
00

3

Fl
ow

4

21
66
≤
≤2

19
0.

8

24
79
≤
≤2

48
4.

5

24
96

.7
≤
≤2

50
1

24
99
≤
≤2

50
0.

4

24
99
≤
≤2

50
0.

2

Fl
ow

3

84
8.

48
≤
≤8

61
.2

7

94
8.

55
≤
≤9

49
.8

1

99
8.

90
≤
≤1

00
0.

5

99
9.

79
≤
≤1

00
0.

1

99
9.

83
≤
≤1

00
0.

2

Fl
ow

2

50
0.

52
≤
≤5

20
.4

8

57
3.

33
≤
≤5

75
.1

5

49
9.

07
≤
≤4

99
.9

4

49
9.

79
≤
≤5

00
.1

9

49
9.

91
≤
≤5

00
.2

7

Fl
ow

1

11
5.

27
≤
≤1

15
.7

1

59
.3

0≤
 ≤

59
.3

6

49
.9

7≤
 ≤

50
.0

3

49
.9

8≤
 ≤

50
.0

1

49
.9

9≤
 ≤

50
.0

2

T
ab

le
 5

.1
7

90
%

 c
on

fid
en

ce
 in

te
rv

al
s o

f t
he

 ra
te

s p
ro

vi
de

d
by

 th
e

w
ire

d
sc

he
du

lin
g

m
ec

ha
ni

sm
s f

or
 th

e
se

co
nd

sc

en
ar

io
.

FC
FS

D
R

R

W
FQ

W
²F

Q
+

SF
Q

 110

Fl
ow

5

17
.5

4≤
 ≤

18
.1

67

23
.9

5≤
 ≤

24
.0

53

26
.0

8≤
 ≤

26
.2

04

23
.7

8≤
 ≤

23
.8

3

23
.7

9≤
 ≤

23
.8

2

Fl
ow

4

17
.6

04
≤
≤1

8.
15

6.
03

21
≤
≤7

.2
34

7.
48

69
≤
≤9

.2

5.
21

71
≤
≤7

.2
53

5.
14

14
≤
≤6

.8
28

Fl
ow

3

17
.5

84
8≤

 ≤
18

.1
33

8.
32

03
≤
≤9

.7
75

5

5.
56

72
≤
≤7

.4
84

1

3.
39

53
≤
≤5

.4
12

8

3.
28

13
≤
≤4

.3
16

6

Fl
ow

2

17
.4

8≤
 ≤

18
.1

24
5

5.
98

68
≤
≤1

1.
10

4

19
.8

28
7≤

 ≤
23

.4
51

17
.9

81
0≤

 ≤
22

.8
57

17
.7

13
1≤

 ≤
22

.2
57

Fl
ow

1

17
.5

42
≤
≤1

8.
17

1

57
.7
≤
≤5

7.
82

66
.7

48
≤
≤6

6.
86

6

64
.3

78
≤
≤6

4.
47

3

64
.3

82
≤
≤6

4.
44

T
ab

le
 5

.1
8

90
%

 c
on

fid
en

ce
 in

te
rv

al
 o

f t
he

 m
ea

n
de

la
ys

 e
xp

er
ie

nc
ed

 b
y

th
e

flo
w

s f
or

 th
e

se
co

nd
 sc

en
ar

io
 –

 w
ire

lin
e

sc
he

du
lin

g
al

go
rit

hm
s.

FC
FS

D
R

R

W
FQ

W
²F

Q
+

SF
Q

 111

Figure 5.13 Maximum delays experienced by the flows for the second simulation

scenario – wireline scheduling algorithms

 The maximum delay performance is presented in Figure 5.13. As seen since

DRR, WFQ, FQ+ and SFQ tries to prevent unfairness, Flow 1, 2 and 5

experiences more mean and maximum delay than the other two flows. This is not

true for FCFS, since the mechanism does not care about weights of the flows.

2W

 Table 5.19 lists the average number of packets transmitted by the wireline

scheduling algorithms.

 112

Table 5.19 Average number of packets, transmitted by the wireline scheduling

algorithms for the second scenario.

 Flow1 Flow2 Flow3 Flow4 Flow 5

FCFS 6571 6571 27356 32870 32855

DRR 3376 7352 30374 37432 30387

WFQ 2845 6425 31990 37621 30486
2W FQ+ 2844 6442 31998 37567 30477

SFQ 2845 6404 32000 37635 30476

 90% confidence intervals of maximum delays are given in Table 5.20.

Figure 5.14 Jitter performances of wired scheduling algorithms for the second

simulation scenario.

 113

Fl
ow

5

35
.4

9≤
 ≤

35
.9

51

48
.0

09
≤
≤4

8.
11

52
.3

1≤
 ≤

52
.3

99

47
.5

9≤
 ≤

47
.6

31

47
.6

1≤
 ≤

47
.6

2

Fl
ow

4

35
.4

9≤
 ≤

35
.9

53

12
.3

3≤
 ≤

14
.9

7

15
.8
≤
≤1

8.
48

93

11
.0

3≤
 ≤

13
.1

39

11
.6

3≤
 ≤

13
.1

43

Fl
ow

3

35
.4

97
6≤

 ≤
35

.9
52

17
.1

28
9≤

 ≤
18

.8
85

11
.4

95
≤
≤1

4.
29

99

7.
56

25
≤
≤1

0.
06

22

6.
99

6≤
 ≤

8.
20

65

Fl
ow

2

35
.4

90
6≤

 ≤
35

.9
43

13
.9

92
0≤

 ≤
20

.3
91

41
.5

27
6≤

 ≤
45

.9
60

37
.5

96
≤
≤4

2.
63

09

36
.6

59
6≤

 ≤
43

.5
13

Fl
ow

1

35
.4

97
0≤

 ≤
35

.9
52

11
5.

53
≤
≤1

15
.5

98

13
3.

61
6≤

 ≤
13

3.
65

12
8.

81
9≤

 ≤
12

8.
87

12
8.

82
≤
≤1

28
.8

62

T
ab

le
 5

.2
0

90
%

 c
on

fid
en

ce
 i

nt
er

va
l

of
 t

he
 m

ax
im

um
 d

el
ay

s
ex

pe
rie

nc
ed

 b
y

th
e

flo
w

s
fo

r
th

e
se

co
nd

 s
ce

na
rio

 –

w
ire

lin
e

sc
he

du
lin

g
al

go
rit

hm
s

FC
FS

D
R

R

W
FQ

W
²F

Q
+

SF
Q

 114

Fl
ow

5

10
.2

1≤
 ≤

10
.4

84

13
.8

74
5≤

 ≤
13

.9

15
.1

3≤
 ≤

15
.1

38

13
.7

5≤
 ≤

13
.7

48

13
.7

42
≤
≤1

3.
75

Fl
ow

4

10
.2

34
≤
≤1

0.
45

3.
40

97
≤
≤4

.1
96

4.
29

25
≤
≤5

.4
34

2.
98

55
≤
≤3

.8
46

3.
37

96
≤
≤4

.0
32

Fl
ow

3

10
.2

26
3≤

 ≤
10

.4
66

4.
75

05
 ≤

 ≤
5.

69
79

3.
21

15
 ≤

 ≤
4.

15
52

1.
93

89
≤
≤3

.0
67

2

1.
81

99
≤
≤2

.5
35

2

Fl
ow

2

10
.1

79
9≤

 ≤
10

.5

3.
40

08
 ≤

 ≤
6.

16
44

11
.8

52
7≤

 ≤
13

.5
03

10
.1

73
3≤

 ≤
13

.1
67

10
.1

43
8≤

 ≤
12

.5
51

Fl
ow

1

10
.2

17
7≤

 ≤
10

.4
84

33
.3

68
3≤

 ≤
33

.3
89

38
.5

77
1≤

 ≤
38

.6
15

37
.1

94
7≤

 ≤
37

.2
18

37
.2

05
7≤

 ≤
37

.2
26

T
ab

le
 5

.2
1

90
%

 c
on

fid
en

ce
 in

te
rv

al
 o

f t
he

 ji
tte

r e
xp

er
ie

nc
ed

 b
y

th
e

flo
w

s f
or

 th
e

fir
st

 si
m

ul
at

io
n

sc
en

ar
io

.

FC
FS

D
R

R

W
FQ

W
²F

Q
+

SF
Q

 115

 Figure 5.14 shows the jitter performance of the wireline scheduling algorithms

for the second simulation scenario. Remember that jitter is defined to be the standard

deviation of the delays experienced by the transmitted packets. The 90% confidence

intervals of the jitters for the wireline scheduling algorithms are listed in Table 5.21

 The traffic set whose characteristics are given at Table 5.15 is also simulated

for wireless packet scheduling schemes. As in the first simulation for clarity in

showing the effects of channel errors and ease of implementation, the errors are

modeled as simple periodic bursts. The channel errors occur during the first 50

seconds to demonstrate long time fairness. The channels of Flow 1 and Flow 2

experience the same error pattern. The error pattern experienced by Flow 1 and Flow

2 is a periodic error burst of 1.8 second with 3 seconds of intermediate error free

time. The error pattern experienced by Flow 3 is a less severe error-pattern,

represents a periodic burst of 0.3 seconds with 5.7 seconds of intermediate error-free

time. Flow 4 and 5 experiences no error at all.

 As in the first simulation, the maximum number of credits and debits for WPS

are both chosen as 20, and the maximum retransmissions are taken to be 2.

 For CIF-Q, the α as chosen to be 0, so that a leading session i will no service as

long as there exists a lagging error-free session in the system.

 Figure 5.15 presents the bandwidth distribution among five flows for WPS,

CIF-Q and DRRWC. Remember that the simulation has run for 10 times and the

results are averaged. As in the first scenario the simulation time is 1200 seconds.

 116

Figure 5.15 Bandwidth distributed by the wireless scheduling algorithms among the

five flows for the second simulation scenario.

 Table 5.22 lists the average bandwidth distributed by WPS, CIF-Q and

DRRWC. The results are in Kbps.

Table 5.22 Average bandwidth, distributed by the wireless scheduling algorithms for

the second simulation scenario.

 Flow1 Flow2 Flow3 Flow4 Flow5

WPS 7.01 311.8 250.6 1333.2 6561.8

CIF-Q 50.1 491.8 998.4 2502.3 5005.8

DRRWC 58.4 565.9 948.3 2485.6 4991.7

 117

 The fairness measure for the second simulation set is presented in Table 5.23.

Table 5.23 Fairness measures of wireless scheduling algorithms for the second

simulation scenario.

Algorithm Fairness Measure

WPS 3709.2

CIF-Q 17.95

DRRWC 148.7

 The results given in Table 5.22 and 5.23, confirms that WPS was not successful

as CIF-Q or DRRWC for the second traffic set. The best performing scheme for the

second traffic set is CIF-Q. The long time fairness performance of DRRWC is better

enough. The fairness performances of CIF-Q and DRRWC are closer to the ideal

case more than WPS. As seen from Table 5.22 WPS allows the error free channels to

get big share than channels evolving errors. But the other two algorithms compensate

the discrepancies between the shares of error free channels and channels evolving

errors.

 The upper and lower limits of the 90% confidence interval for the rates

provided to five flows are given in Table 5.24. The results are in Kbps.

Table 5.24 90% confidence intervals of the rates provided by the wireless scheduling

mechanisms for the second scenario.

 WPS CIF-Q DRRWC

Flow1 7.01 7.02 ≤ ≤ 50.05 ≤ ≤ 50.06 58.37 ≤ ≤ 58.384

 118

 WPS CIF-Q DRRWC

Flow2 307.7 315.8 ≤ ≤ 491.7 ≤ ≤ 491.8 565.74 566.08 ≤ ≤

Flow3 250.4 250.8 ≤ ≤ 998.2 ≤ ≤ 998.5 948.23 ≤ ≤ 948.4

Flow4 1328 1338 ≤ ≤ 2502 ≤ ≤ 2502.7 2484.9 2486.2 ≤ ≤

Flow5 6561.9 6562.3≤ ≤ 5004.9 ≤ ≤ 5006.6 4991.2 4992.2 ≤ ≤

 Figure 5.16 demonstrates the mean delay performances of the simulated

wireless scheduling algorithms for the first scenario. The average number of packets

transmitted by the wireless scheduling algorithms can be seen in Table 5.25.

Table 5.25 Average number of packets, transmitted by the wireless scheduling

algorithms for the second scenario.

 WPS CIF-Q DRRWC

Flow1 2396.4 17086.7 19926.1

Flow2 23926.7 37721.2 43415.5

Flow3 48121.2 191694 182075.8

Flow4 120367.4 225872.6 224629.9

Flow5 239974.2 183068 182554.9

 It is seen that, the mean delays experienced by the flows are associated with the

bandwidths required by the sessions and the bandwidths provided to them. As seen

from Figure 5.16 and Table 5.26, for CIF-Q Flow 3 experiences the minimum mean

delay, because the bandwidth requirement is the closer to the provided compared to

other flows.

 119

Figure 5.16 Mean delays experienced by the flows for the second simulation

scenario – wireless scheduling algorithms.

 The upper and lower limits of the 90% confidence interval for the mean delays

experienced by the five flows are given in Table 5.26. The values are in seconds.

Table 5.26 90% confidence intervals of the mean delays experienced by the flows

for the second scenario – wireless scheduling algorithms.

 WPS CIF-Q DRRWC

Flow1 571.9 572.6≤ ≤ 385.5 ≤ ≤ 385.9 360.24 360.4 ≤ ≤

Flow2 300.9 306.1≤ ≤ 135.2 ≤ ≤ 144 63.8 71.5 ≤ ≤

 120

 WPS CIF-Q DRRWC

Flow3 454.1 456.6≤ ≤ 24 ≤ ≤ 27.1 53.7 55.4 ≤ ≤

Flow4 296.1 299.9≤ ≤ 33.8 ≤ ≤ 37.6 35.6 40.2 ≤ ≤

Flow5 0.102 0.103≤ ≤ 141.5 ≤ ≤ 141.8 142.6 142.8 ≤ ≤

 Figure 5.17 presents the maximum delays experienced by the flows for the

second simulation scenario.

Figure 5.17 Maximum delays experienced by the flows for the second simulation

scenario – wireless scheduling algorithms.

 The 90% confidence limits for the maximum delays experienced by the flows

are given in Table 5.27. The results are in seconds.

 121

Table 5.27 90% confidence intervals of the maximum delays experienced by the

flows for the second scenario – wireless scheduling algorithms.

 WPS CIF-Q DRRWC

Flow1 1139.7 1139.9 ≤ ≤ 772.6 ≤ ≤ 772.9 701.78 ≤ ≤ 701.85

Flow2 597.9 605.6 ≤ ≤ 253.3 ≤ ≤ 262.3 110.8 ≤ ≤ 121.7

Flow3 910.1 913.46 ≤ ≤ 46.3 ≤ ≤ 51.2 105.75 ≤ ≤ 108.56

Flow4 595.86 599.91 ≤ ≤ 68.8 ≤ ≤ 74.1 75.4 ≤ ≤ 79.7

Flow5 0.26 0.448 ≤ ≤ 284.5 ≤ ≤ 284.8 287.15 ≤ ≤ 287.3

Figure 5.18 Jitter performances of wireless scheduling algorithms for the second

simulation scenario.

 122

 The jitter performances of wireless scheduling algorithms can be seen in Figure

5.18. As stated before since the bandwidth requirement of Flow 3 is the more closer

to the provided, it experiences the minimum jitter among the other flows when the

flows are scheduled by CIF-Q or DRRWC server.

 The upper and lower limits of the 90% confidence limits for the jitters

experienced by the flows are given in Table 5.14. The results are in seconds.

Table 5.28 90% confidence intervals of the jitters experienced by the flows for the

second simulation scenario – wireless scheduling algorithms.

 WPS CIF-Q DRRWC

Flow1 571.3 ≤ ≤ 572 223.2 ≤ ≤ 223.37 197.4 197.5 ≤ ≤

Flow2 300.6 305.8 ≤ ≤ 66.6 ≤ ≤ 71.4 26.6 30.9 ≤ ≤

Flow3 453.7 456.1 ≤ ≤ 12.6 ≤ ≤ 14.7 30.2 31.3 ≤ ≤

Flow4 295.8 299.6 ≤ ≤ 20 ≤ ≤ 21.7 21.66 23.8 ≤ ≤

Flow5 0.102 0.103 ≤ ≤ 82.5 ≤ ≤ 82.53 83.3 83.43 ≤ ≤

 123

CHAPTER 6

CONCLUSIONS

 In this thesis, simulation of various scheduling algorithms for packet switching

networks was studied. For evaluating the performance measures of some selected

scheduling disciplines, the issues related to the development of computer aided

modeling and design of computer communication networks were addressed. Methods

to eliminate transient periods in a simulation process, generation of random

variables, computation of confidence intervals and validation of simulation models

were described.

 To provide a common platform for comparing the performances of selected

scheduling disciplines in serving different traffic types, a discrete event simulator has

been developed. It was seen that, event-driven simulation of scheduling algorithms is

both efficient as well as more accurate.

 The common trend in the literature is to assign bandwidth fairly in which users

with moderate bandwidth requirements are not penalized because of the excessive

demands of others. As a result of equalizing the bandwidth, these schemes typically

provide satisfactory QoS for sessions whose bandwidth requirements are less than

their fair share.

 124

 Among the existing packet scheduling algorithms for wireline environment

FCFS is the poorest one since it does not deal with the notion of flows or weights.

GPS is the ideal algorithm but it is not practically implementable. So the other

scheduling schemes tries to approximate it. WFQ or FQ schedules the packets

from different queues by referencing GPS scheme. FQ+ approximates GPS

ideally by using a virtual time function and as WFQ and FQ it guarantees fair

share of bandwidth. SFQ is another scheme that uses virtual time function and it

schedules the packets in the increasing order of their start tags. WRR is an extension

of Round Robin scheduling scheme that tries to provide fairness. DRR is designed to

support variable size packet scheduling but it does not support guaranteed

bandwidth.

2W
2W

2W

 Wireless packet schedulers are built up from the wireline schedulers and they

try to provide fairness in the long term by introducing terms lag, lead, credit or debit.

WPS uses WRR as its error-free reference algorithm and it uses the credit/debit

adjustment for providing fair share of bandwidth. SBFA maintains an additional flow

named LTFS to provide fairness. LTFS keeps tracks of the packets that are not

transmitted due to channel errors.

 From the simulation studies it was seen that, fair scheduling provides, fair

allocation of bandwidth, lower delay for sources using less than their full share of

bandwidth and protection from ill-behaved resources. For wired networks, by

looking at the fairness measures, the fairness performances of WFQ, W F Q+ and

SFQ are closer to the ideal case. For wireless media CIF-Q has performed the best in

terms of fairness. The fairness performance of proposed scheduling scheme was

better than WPS but worse then CIF-Q. It was also seen that, although FCFS does

2

 125

not guarantee a fair allocation of bandwidth, it is easy to implement. GPS itself is not

suitable for implementation. Since WFQ and W F Q approximate the GPS scheme,

the implementation efforts are higher than the W Q+. DRR and DRRWC are easy

to implement.

2

2F

 Implementing more scheduling schemes, like hierarchical resource

management models and algorithms that support both link sharing and guaranteed

real-time services with priority is also desirable.

 126

 REFERENCES

1. Kleinrock, L., Queueing Systems Volume II: Computer Applications, Wiley-
Interscience Publications, pp. 292-304, 1976.

2. W. Chou, Computer-Communications-Volume I Principles, Prentice-Hall, pp.

347-358, 1983.

3. M. Ilyas, and H.T. Mouftah, ”Performance Evaluation of Computer

Communication Networks”, IEEE Communications Magazine, Vol. 23, No 4,
April 1985, pp. 18-29

4. John B. Nagle, “On Packet Switches with Infinite Storage”, IEEE Transactions

on Communications, COM-35 (4), pp. 435-438, April 1987.

5. Kurose, J.F. and Mouftah, H. T., ”Computer-Aided Modeling, Analysis and

Design of Communication Networks”, IEEE Journal on Selected Areas in
Communications, Vol. 6, No.1 January 1988, pp. 130-145

6. M. Ilyas, and H.T. Mouftah, ”Simulation Tools for Computer Communication

Networks”, Global Telecommunications Conference, 1988, and Exhibition.
'Communications for the Information Age.' Conference Record, GLOBECOM
'88., IEEE , 28 Nov.-1 Dec. 1988, pp. 1702 -1706 Vol.3

7. Alan Demers, Srinivasan Keshav, and Scott Shenker, “Analysis and Simulation

of a Fair Queueing Algorithm”, Proceedings of SIGCOMM’89, Vol. 19,
Austin, Texas, September 1989.

8. Verma, D. C., Zhang, H., and Ferrari, D., “Delay Jitter Control for Real-Time

Communication in Packet Switching Networks”, In Proceedings of
Tricomm’91, pp. 35-46, North Carolina, April 1991.

9. Manolis Katevenis, Stefanos Sidiropoulos, and Costas Courcoubetis,

“Weighted Round-Robin Cell Multiplexing in a Genaral-Purpose ATM Switch
Chip”, IEEE Journal on Selected Areas in Communications, Vol. 9, No. 8, pp.
1265-1279, October 1991.

10. Paul E. McKenny, “Stochastic Fairness Queueing”, Journal of Internerworking

Research and Experience, Vol 2, pp. 113-131, 1991.

 127

11. David D. Clark, Scott Shenker and Lixia Zhang, “Supporting Real-Time

Applications in an Integrated Services Packet Network: Architecture and
Mechanism”, In SIGCOMM Symposium on Communications Architectures
and Protocols, pp. 14-26, Baltimore, Maryland, August 1992.

12. Parekh, A. K., and Gallager, R. G., “A Generalized Processor Sharing

Approach to Flow Control in Integrated Services Network: The Single Node-
Case”, IEEE/ACM Transactions on Networking 1 (3), pp. 344-357, Jun 1993.

13. Çağan M. Aras, James F. Kurose, Douglas S. Reeves and Henning Schulzrinne,

“Real-Time Communication in Packet Switched Networks”, Proceedings of the
IEEE, 82(1):122-139, January 1994.

14. Victor S. Frost and Benjamin Melamed, “Traffic Modeling for

Telecommunication Networks”, IEEE Communications Magazine, March
1994, pp. 70-81

15. Parekh, A. K., and Gallager, R. G., “A Generalized Processor Sharing

Approach to Flow Control in Integrated Services Networks: The Multiple Node
Case”, IEEE/ACM Transactions on Networking 2 (2), pp. 137-150, April 1994.

16. S. Golestani, “A self-clocked fair queueing scheme for broad-band

applications”, In Proceedings of IEEE INFOCOM'94, pp. 636-646, Toronto,
CA, June 1994.

17. M. Shreedhar and George Varghese, “Efficient Fair Queueing using Deficit

Round Robin”, Proceedings of SIGCOMM’95, pp. 231-242, 1995.

18. Jon C. R. Bennett and Hui Zhang, H., “ : Worst-case Fair Weighted Fair

Queueing”, In Proceedings of IEEE INFOCOM (1996), San Francisco, CA,
Mar. 1996.

QWF2

19. Jon C. R. Bennett, Hui Zhang, “Why WFQ Is Not Good Enough For Integrated

Services Networks”, In Proceedings of the 6th International Workshop on
Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), Shonan Village International Conference Center, Zushi, Japan,
April 1996.

 128

20. P. Goyal, H. M. Vin., and H. Cheng, “Start-time Fair Queueing: A Scheduling
Algorithm for Integrated Services Packet Switching Networks”, In Proceedings
of ACM SIGCOMM’96, pp. 157-168, August 1996.

21. P. Goyal, X. Guo and H. Vin. ``A Hierarchical CPU Scheduler for Multimedia

Operating Systems'', in Proc. OSDI'96, USENIX, pp. 107-121,Oct. 1996.

22. A. S. Tanenbaum, Computer Networks, Prentice-Hall Inc., pp. 130-134, 1996.

23. Jon C. R. Bennett and Hui Zhang, “Hierarchical packet fair queueing

algorithms”, IEEE/ACM Transactions on Networking, 5 (5), pp. 675-689,
1997.

24. S. Keshav, An Engineering Approach to Computer Networking, Addison

Wesley Professional Computing series, pp.163-184, 1997.

25. T. S. Euene Ng, Ion Stoica, Hui Zhang, “Packet Fair Queueing Algorithms to

Wireless Networks with Location-Dependent Errors”, Proceedings of IEEE
INFOCOM’98, 1998.

26. B. Forouzan, Introduction to Data Communications and Networking, McGraw

Hill International Editions, pp. 358-370, 1998.

27. P. Ramanathan, and P. Agrawal, “Adapting Packet Fair Queueing Algorithms

to Wireless Networks”, Proceedings of MOBICOM, 1998.

28. Songwu Lu, V. Bharghavan, and R. Srikant, “Fair Scheduling in Wireless

Networks”, IEEE/ACM Transactions on Networking, Vol. 7, pp 473-489,
August 1999.

29. C. Deleuze, “Scheduling”, COST 237, Final Report, 1999.

30. Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed

Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo
Yu, “Advances in Network Simulation”, IEEE Computer, 33 (5), pp. 59-67,
May, 2000.

31. C. Santiago, and R. Valadas, “A Simulation Study of Flow-Based Scheduling

Algorithms”, In the Proceedings of ConfTele 2001, 2001.

 129

32. Jasleen Kaur and Harrick M. Vin, “End-to-End Fairness Analysis of Fair
Queueing Networks”, Real-Time Systems Symposium, 2002. RTSS 2002. 23rd
IEEE , 3-5 Dec. 2002, pp. 49 –58

33. Xiaohong Yuan and Mohammad Ilyas, “Modeling of Traffic Sources in ATM

Networks”, Proccedings IEEE SoutheastCon 2002, pp. 82-87.

34. Assoc. Prof. Dr. Buyurman Baykal, “Communication Network Analysis and

Teletraffic Engineering”, March 2003, Class Notes.

 130

APPENDIX A

CIF-Q ALGORITHM

In this appendix, we provide the simple version of CIF-Q algorithm.

A.1 Simple Version:

on session i receiving packet p:

enqueue(; p) iqueue

if (i ∉A)

iv = max(; iv { }kvAk ∈min);

ilag = 0;

{ }iAA ∪= ; /* mark session active*/

on sending current packet: /* get next packet to send */

{ Ai
iVi ∈= min }; /* select session with min. virtual time */

if (lag = 0 and (i can send)) /* session i non-leading, can send */ i

p =dequeue(); iqueue

iv = + p.length / r ; iv i

else

j =
krk

lag /max {k ∈ A| k can send };

 131

if (j exists)

p =dequeue(queue); j

iv = + p.length / ; /* charge session i */ iv ir

ilag = lag + p.length; i

jlag = lag - p.length; j

if (i ≠ j and empty() and ≥ 0) jqueue jlag

leave(j);

else /* there is no active session ready to send */

iv = + δ / ri; iv

if (lag < 0 and empty()) i iqueue

/* i is leading, unbacklogged */

j =
krk

lag /max {k ∈ A};

ilag = + δ; ilag

jlag = lag - δ; /* forced compensation */ j

set_time_out(on sending , δ / R);

if (empty(queue) and lag ≥ 0) i i

leave(i); /* session i leaves*/

 A = A \ { i };

 for (j ∈ A) /* update lags of all active sessions*/

 lag = lag + lag × j j i ∑ ∈ Ak r
r

k

j ;

 if (∃j ∈ s.t. empty () Λ lag ≥ 0) jqueue j

leave(j);

 132

	ABSTRACT
	CHAPTER 6
	CONCLUSIONS

