

EXTERNAL CONTROL OF PUMA 700 SERIES ROBOT BASED ON THE
COMMUNICATION PROTOCOLS LUN AND DDCMP

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖNDER EMİN GEBİZLİOĞLU

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2003

Approval of the Graduate School of natural and Applied Sciences

Prof Dr. Canan ÖZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof Dr. Mübeccel DEMİREKLER
Head of the Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science

Prof Dr. Aydın ERSAK
Supervisor

Examining Committee Members

Prof Dr. Erol KOCAOĞLAN ________________________________

Prof Dr. Aydın ERSAK ________________________________

Doç Dr. Aydın ALATAN ________________________________

Yrd. Doç. Dr. Cüneyt BAZLAMAÇCI ________________________________

Ediz ÇELİK, M.Sc. ________________________________

iii

ABSTRACT

EXTERNAL CONTROL OF PUMA 700 SERIES ROBOT BASED ON THE

COMMUNICATION PROTOCOLS LUN AND DDCMP

GEBIZLIOĞLU, Önder Emin

Department of Electrical and Electronics Engineering
Middle East Technical University

Supervisor: Prof. Dr. Aydın ERSAK

December 2003

This thesis analyzes the supervisory control of the PUMA 700 series robot through
a remote computer. Supervisory communication carries the control through MARK
II controller, common controller for the PUMA robots, to a standard PC, enabling
the development of purpose specific control programming without the knowledge of
the VAL (Variable Assembly Language), robot-programming language. Using the
supervisory communication feature of PUMA, new control software has been
developed in which both VAL commands and interactive control commands can be
executed simultaneously. The supervisory communication with the control software
enables exploitation of third party applications and additional operating system
features.

The supervisory communication uses the Digital Data Communications Message
Protocol (DDCMP). The frame structure of data messages, which is specific to
PUMA robots, is fitted into this protocol. The messages embedded into DDCMP are
actually logical units, having different abilities and features. Data messages are
formed with the interactive control software according to execution requests of the
user.

 iv

This thesis explains the implementation of the communication without using the
CRC (Cyclic Redundancy Checking) on the remote computer side and the data
messages formed with the interactive control software, which also enables the use
of sensory inputs (camera, infrared, sound, color information) to be used for the
robot motion control.

Keywords: PUMA 700 Series, DDCMP, LUN (Logical Unit Number)

v

ÖZ

LUN VE DDCMP İLETİŞİM PROTOKOLLARI YOLUYLA PUMA 700
SERİSİ ROBOTUN DIŞARIDAN DENETLENMESİ

GEBIZLIOĞLU, Önder Emin

Elektrik - Elektronik Mühendisliği Bölümü
Orta Doğu Teknik Üniversitesi

Tez Danışmanı: Prof. Dr. Aydın ERSAK

Aralık 2003

Bu tez çalışmasında PUMA 700 serisi robotların uzaktan harici bir bilgisayar ve
denetleyici haberleşme kullanılarak kontrol edilmesi analiz edilmiştir. Denetleyici
ve kontrol amaçlı kullanılan bu haberleşme sayesinde, kontrol PUMA robotları için
ortak olarak kullanılmakta olan MARK II kontrol sisteminden standart
bilgisayarlara aktarılmıştır. Böylece PUMA robotları için geliştirilmiş olan VAL
kontrol yazılımı bilgisine sahip olmadan, işe özel kontrol programlaması
yapılabilmektedir. PUMA robotların denetleyici ve kontrol yeteneğine sahip
haberleşme olanağına imkan vermesi sayesinde yeni bir kontrol programı
geliştirilmiş olup, bu program ile istenirse VAL ve interaktif olarak hazırlanabilen
kontrol komutları çalıştırılabilmektedir. Bu sistem aynı zamanda üçüncü taraf
uygulamalarının ve işletim sistemi özelliklerinin robot üzerinde kullanılabilmesine
olanak sağlamıştır.

Denetleyici kontrol haberleşmesi DDCMP (Data Communications Message
Protocol) adlı protokolü kullanmaktadır. PUMA için özel olan data mesajları yapısı,
DDCMP protokolünün içine giydirilmiştir. DDCMP içine oturtulan mesajlar esasen
farklı özellik ve yeteneklere sahip olan mantıksal birimlerdir. Data mesajları,
interaktif olarak, kullanıcı isteklerine göre oluşturulabilmektedir.

 vi

Bu çalışmada, harici bilgisayarda CRC (Cyclic Redundancy Checking)
kullanılmadan yapılan haberleşme ve interaktif sistemin gerçekleştirilmesi
açıklanmaktadır. Bu sayede farklı sensör (kamera, infrared, ses, renk bilgisi)
bilgileri kullanılarak robot hareketini kontrol etmek mümkün olmuştur.

Anahtar Kelimeler: PUMA 700 Serisi, DDCMP, LUN (Logical Unit Number)

 vii

ACKNOWLEDGEMENTS

I would like to express my special thanks to Prof. Dr. Aydın ERSAK for his
powerful guidance, courage, critics and supervision throughout this thesis work.

Also I would like to thank Mr. Benjamin CLERK, from RP automation, who has
shared his experience on the robots and shown me the ways to get used to the
PUMA robot operation and programming.

Special thanks to my friends in DELTA AEROSPACE who have given me courage
and who have shared their ideas about my studies.

Finally I would like to thank my family for their great support that they have given
throughout my studies.

8

TABLE OF CONTENTS

ABSTRACT ... III

ÖZ.…………………………………………………………………………………V

ACKNOWLEDGEMENTS ..VII

LIST OF TABLES... 11

CHAPTERS……………………………………………………………………………………...

1 INTRODUCTION.. 14

1.1 Introduction ... 14

1.2 Constraints Taken in Consideration ... 17

1.3 Hardware Problems .. 17

1.4 Outline of the Thesis... 17

2 PUMA ROBOT ... 19

2.1 General ... 19

2.2 The Types Of Puma Robots ... 19

2.3 PUMA 760... 21
2.3.1 The Control Computer ... 22

2.3.1.1 DEC LSI-11/2 Computer ... 22
2.3.1.2 Digital Servo Boards .. 23
2.3.1.3 Peripherals.. 23

2.3.2 PUMA 760 Robot Arm .. 24

2.4 The Operating System - VAL ... 30
2.4.1 General ... 30
2.4.2 VAL.. 30
2.4.3 Characteristics of VAL II... 34

2.4.3.1 Data Structures of VAL II.. 34

9

2.4.3.2 Motion Commands... 35
2.4.3.3 End Effector and Sensor Commands ... 35
2.4.3.4 Computations and Operations .. 36
2.4.3.5 Program Control... 36

2.5 Practicing VAL II.. 37

2.6 Model for PUMA 700 Series ... 38

3 SUPERVISORY COMMUNICATION ... 43

3.1 General ... 43

3.2 Available Modes Of Communication .. 43

3.3 Choosing The Communication Mode ... 46

3.4 Supervisory Mode ... 47
3.4.1 General Format for the Logical Units .. 49
3.4.2 Network Manager - LUN 0 .. 51
3.4.3 Short Status Information - LUN 1.. 51
3.4.4 Monitor Input / Output - LUN 2... 52
3.4.5 Monitor Asynchronous Output - LUN 3.. 58
3.4.6 Program Terminal Input and Output - LUN 4...................................... 59
3.4.7 Disk Input and Output - LUN 5 ... 61

3.5 DDCMP ... 62
3.5.1 Control Messages ... 63
3.5.2 Data Messages.. 70

3.6 Supervisory Software ... 75
3.6.1 Operation of the Supervisory Software.. 79
3.6.2 Advantages and Disadvantages of Supervisory Software.................... 79

4 CONTROL INTERFACE.. 81

4.1 General ... 81

4.2 The Choice of MATLAB for the Robot Control Interface 81
4.2.1 Advantages and Disadvantages in Using MATLAB 81

4.3 Robotic Toolbox.. 82

4.4 The PUMA System Control Panel.. 95

10

5 AN INTERACTIVE CONTROL APPLICATION OF PUMA
ROBOT USING THE SUPERVISORY COMMUNICATION
PORT.. 99

5.1 General ... 99

5.2 Block – Matching Method... 99

5.3 Block-Matching Software ... 101

6 CONCLUSION.. 112

6.1 Conclusion... 112

6.2 Proposed Future Work ... 113

REFERENCES .. 114

APPENDICES………………………………………………………………………………….

A. APPENDIX A .. 117

B. APPENDIX B .. 127

B.1 General ... 127

B.2 Hardware Problems Encountered And Solutions Found 127

C. APPENDIX C .. 131

D. APPENDIX D .. 135

11

LIST OF TABLES

 2.1 SPECIFICATION OF PUMA 200 SERIES ROBOT.. 19
 2.2 SPECIFICATION OF PUMA 500 SERIES ROBOT.. 20
 2.3 SPECIFICATION OF PUMA 700 SERIES ROBOT.. 20
 2.4 ROBOT ARM AXES... 25
 2.5 LIMITS AND ANGULAR RESOLUTIONS.. 28
 2.6 DH PARAMETERS FOR THE PUMA 700 SERIES ... 40
 3.1 LUN AND LOGICAL UNIT ... 48
 3.2 ID BYTE BIT ASSIGNMENT.. 49
 3.3 FUNCTION CODE.. 50
 3.4 COMMAND CODES FOR LOGICAL UNIT 0 .. 51
 3.5 SYSTEM STATUS BYTE INDICATIONS.. 52
 3.6 FQ VALUE AND CORRESPONDING MEANING FOR LUN 3... 58
 3.7 POSSIBLE DISK OPERATION USING LUN 5 ... 62
 3.8 CONTROL MESSAGE FIELD DESCRIPTIONS.. 63
 3.9 DATA MESSAGE FIELD DESCRIPTIONS... 70
 A.1 TROUBLESHOOTING CHART ... 117
 B.1 POSSIBLE CAUSES, SERVICING INSTRUCTIONS AND ACTIONS TAKEN WITH

RESULTS FOR THE “SERVO DEAD JOINT X” ERROR.. .129
 D.1 TASK LIST.. 137

12

LIST OF FIGURES

2.1 ROBOT ARM & THE CONTROLLER.. 21
2.2 THE CONTROLLER COMPUTER DEC LSI-11 ... 23
2.3 THE OVERALL SYSTEM STRUCTURE ... 24
2.4 PUMA ROBOT AND CONTROL CABINET WITH THE ASSEMBLY............................. 24
2.5 THE 6 DOF ROBOT ARM ... 26
2.6 THE MOVEMENT LIMITS OF PUMA 760 JOINTS .. 29
2.7 THE GRIPPER ... 29
2.8 CRT TERMINAL AND THE TEACH-PENDANT ... 31
2.9 THE BASE OF ROBOT ARM AND 3-AXIS COORDINATE... 31
2.10 THE TOOL COORDINATE AXES... 33
2.11 LINK COORDINATE (FRAME) ASSIGNMENT... 39
2.12 DIMENSIONS OF PUMA 700 SERIES ROBOTS .. 40
3.1 PHYSICAL COMMUNICATION LINK .. 47
3.2 COMPLETE PACKET.. 49
3.3 FORMAT OF MESSAGE FOR LOGICAL UNITS .. 49
3.4 ID BYTE FOR LUN 3 .. 50
3.5 FUNCTION CODE REPLY RULE ... 50
3.6 LUN 0 FORMAT .. 51
3.7 LUN 1 FORMAT .. 51
3.8 MESSAGE DATA / STATUS MESSAGE... 52
3.9 REPLY FORMAT FOR LUN 1.. 52
3.10 LUN 2 FORMAT .. 53
3.11 LUN 2 HAVING FOUR FUNCTION CODES ... 53
3.12 VAL II TRANSMITS LUN=2 FC=1 MESSAGE ... 54
3.13 VAL II TRANSMITS LUN=2 FC=1 MESSAGE ... 54
3.14 VAL II TRANSMITS LUN=2 FC=2 MESSAGE ... 55
3.15 REPLY MESSAGE FOR LUN=2 FC=2 MESSAGE ... 55
3.16 VAL II TRANSMITS LUN=2 FC=3 MESSAGE ... 56
3.17 REPLY MESSAGE FOR LUN=2 FC=3 MESSAGE ... 56
3.18 VAL II TRANSMITS LUN=2 FC=4 MESSAGE ... 57
3.19 REPLY MESSAGE FOR LUN=2 FC=4 MESSAGE ... 58
3.20 VAL II TRANSMITS LUN=3 MESSAGE .. 58
3.21 REPLY MESSAGE FOR LUN=3... 59
3.22 FORMAT FOR THE LUN 4 MESSAGE .. 59
3.23 VAL II TRANSMITS LUN=4 FC=1 MESSAGE ... 60
3.24 VAL II TRANSMITS LUN=4 FC=1 MESSAGE ... 60
3.25 VAL II TRANSMITS LUN=4 FC=3 MESSAGE ... 60
3.26 REPLY MESSAGE FOR LUN=4 FC=3 MESSAGE ... 60
3.27 VAL II TRANSMITS LUN=4 FC=4 MESSAGE ... 61
3.28 REPLY MESSAGE FOR LUN=2 FC=4 MESSAGE ... 61
3.29 FORMAT FOR THE LUN=5 MESSAGE... 61
3.30 GENERAL FORM OF CONTROL MESSAGES (DDCMP) ... 63
3.31 STRT MESSAGE FORMAT .. 64
3.32 STRT MESSAGE (INTEGER REPRESENTATION, BASE 10)... 65
3.33 STACK MESSAGE FORMAT ... 66
3.34 STACK MESSAGE (INTEGER REPRESENTATION, BASE 10) 66
3.35 ACK MESSAGE FORMAT.. 67
3.36 ACK MESSAGE (INTEGER REPRESENTATION, BASE 10) .. 67
3.37 NAK MESSAGE FORMAT.. 68
3.38 NAK MESSAGE (INTEGER REPRESENTATION, BASE 10) .. 68

13

3.39 REP MESSAGE FORMAT... 69
3.40 REP MESSAGE (INTEGER REPRESENTATION, BASE 10) ... 69
3.41 DATA MESSAGE FORMAT ... 70
3.42 DECIMAL REPRESENTATION OF “DO READY” IN LUN 2 ... 71
3.43DECIMAL REPRESENTATION OF “DO READY” COMMAND, WHICH IS FITTED

INTO A DDCMP PACKET WITHOUT CRC VALUES. ... 72
3.44 CRC CALCULATION STATUS FOR THE COMMUNICATION 75
3.45 SUPERVISORY COMMUNICATION PORT SELECTION .. 76
3.46 COMMUNICATION INITIALIZATION... 77
3.47 SUPERVISORY SOFTWARE MESSAGING USER INTERFACE................................... 77
3.48 SUPERVISORY MESSAGE / COMMAND BOX ... 78
3.49 PUMA SYSTEM MESSAGES.. 78
3.50 SYSTEM MESSAGES ... 78
4.1 PUMA 760 PLOTTING ... 85
4.2 PUMA 760 WITH TRANSLATED BASE... 86
4.3 TWO SUBSEQUENT PUMA 760 ROBOT REPRESENTATIONS...................................... 87
4.4 JOINT 1 ROTATED ABOUT ITS X-AXIS .. 88
4.5 CONTROL INTERFACE PANEL... 89
4.6 PUMA 760 AT READY POSITION... 90
4.7 JOINT MOVEMENTS VIA THE CONTROL PANEL .. 91
4.8 SIMULATION OF MOVEMENTS.. 92
4.9 CREATING VAL PROGRAMS... 93
4.10 CREATING VAL PROGRAMS... 94
4.11 EXECUTION OF THE AUTOMATICALLY GENERATED VAL PROGRAM 95
4.12 PUMA SYSTEM CONTROL PANEL... 96
4.13 CONTROL SELECTION MENU .. 96
4.14 PROGRAMMING MODULE INTERFACE.. 97
5.1 BLOCK - MATCHING.. 100
5.2 BLOCK-MATCHING SOFTWARE FLOW .. 101
5.3 IMAGE FRAMES... 102
5.4 SELECTION OF FRAMES .. 103
5.5 SELECTION OF BLOCK AND SEARCH AREA... 104
5.6 MOTION VECTORS... 105
5.7 OVERALL MOTION VECTOR .. 106
5.8 MOTION VECTOR 1 .. 107
5.9 MOTION VECTOR 2 .. 107
5.10 JOINT ASSIGNMENT GUI.. 108
5.11 JOINT ASSIGNMENT, MODIFICATION OF SPEED AND ANGLE 108
5.12 JOINT ASSIGNMENT FOR MOTION VECTORS 1 AND 2.. 109
5.13 GENERATING VAL PROGRAM (TERMINAL I/O COMMANDS) 110
5.14 WARNING MESSAGE.. 111
C.1 FRAME 1 .. 131
C.2 FRAME 2 .. 131
C.3 FRAME 3 .. 132
C.4 FRAME 4 .. 132
C.5 FRAME 5 .. 132
C.6 FRAME 6 .. 133
C.7 FRAME 7 .. 133
C.8 FRAME 8 .. 133
C.9 FRAME 9 .. 134
C.10 FRAME 10 .. 134

14

CHAPTER 1

1 INTRODUCTION

1.1 Introduction

Robots are used in a wide range of industrial applications. The earliest applications
were in materials handling, spot welding, and spray painting. Robots in
manufacturing can be applied to jobs that were hot, heavy, and hazardous such as
die-casting, forging, and spot welding other than these robots can also be used in
assembly operations, pick and place operations and material handling operations.

Robots are generally controlled by dedicated controllers. Previous industrial robotic
control systems suffer from the use of outdated technology, although their
mechanical structure did not change with years.

PUMA robots are in a common type of industrial robot arm. PUMA robots are not
used within industrial applications and manufacturing anymore but they are used in
academic studies mostly because of their agreeable price and capabilities.

A standard PUMA manipulator is controlled by a VAL-II based Unimation Mark II
controller. There are several disadvantages or limitations of the VAL-II based Mark
II controller system, many of which are attributable to the age of the product. To
overcome some of these disadvantages, the proposed solution is to control the robot
over an external computer.

Developments in fields such as microprocessors, vision, and artificial intelligence
will be used to fulfill the needs of robot users, operators and mostly the
manufacturing industry. Robotics technology is finding applications in many other
fields as well, such as medicine and health care, space exploration, and
transportation. In order to use the benefits brought by the new technology, old
robots such as PUMA shall be modified, the modification shall enable the use of
today’s well-known computers.

There were two main motivating factors for the development of a well-known
computer based PUMA robot manipulator control system: cost and flexibility. In
this thesis, the external supervisory control studies and implementations on PUMA
robot, our objectives, problems encountered, solutions and results obtained are
explained.

15

Besides the objective of modifying the control system of PUMA robot the following
are also among the objectives of the thesis:

• Obtaining knowledge of robot control, robotic applications and PUMA robot

arm.
• Learning and practicing of PUMA robot VAL II commands.
• Controlling of PUMA externally from a well-known, easy to use and cost

effective platform, an external computer.
• Excluding the VAL II software control system of PUMA.
• Enabling users to use different kind of sensors like camera, light & infrared

detectors in order to control the robot.

While achieving the above objectives following outcomes are expected to be
reached at:

• An operational robot (since it was malfunctioning in the beginning).
• Controlling and programming the robot arm without the knowledge of VAL

II robot programming language (Detailed information of VAL II can be
found at Chapter 2).

• A system, which is flexible and extendible for a variety of manipulators,
sensors and other robot hardware.

• A system supporting control algorithm development using various sensory
information.

• Programming the robot from a distance with today’s modern computers
without the dependency on OS. OS (Operating System) is the software that
controls the execution of computer programs and may provide various
services. Most popular operating systems of today are Linux, Windows and
Unix.

• Enabling user to integrate and use OS applications, like speech processor
applications, to robotic control.

• Simulating the robot enabling users to try dangerous robot movements in an
off-line state.

• Attaching and using third party applications to control the robot such as
speech processors, video imaging applications and tools.

• Enabling users to implement third party application programs (C, C++,
Java) to control the arm movements of robots. Supervisory system shall
enable the use of new data obtained from other applications in order to be
used for the modification of the robot pose.

• Determining and executing movement paths without the need of VAL II
calculations (users are available of determining movement paths).

• Opening a gate to control the robot within a LAN (Local Area Network, a
local computer network for communication between computers) or even a
WAN (a computer network that spans a wide area, covering LANs).

16

Before starting our studies on the supervisory control of the PUMA robot we have
examined the previous studies related to our purpose. Although robotic related
studies are held all over the world, the studies conducted for industrial robots like
the PUMA robots are less in number when considered to those studies on new
generation mobile robots like the LEGO robots which support the use of external
control over the well-known computer systems. The new generation robots also
provide support for direct use of external sensory information or the data obtained
from the external sensors (camera input, voice/speech processors etc…) to be
processed for the robot control.

When we consider the case of PUMA robots, which are the most available
industrial robot arms in university laboratories, we have observed that most of the
studies were conducted on NOKIA / KAWASAKI manufactured PUMA 500 series
robots which is controlled over a well-known computer host and the TEXAS Digital
Signal Processor (DSP) based hardware. On the host computer the UNIX-like QNX
real-time operating systems are used [20, 32-34]. The studies conducted for the PUMA
manipulators that are manufactured or modified by the NOKIA Company were
actually out of our scope since Unimate manufactured MARK II controllers have
their own characteristics, which do not let the use of external computers easily.

Several approaches towards obtaining an effective control of the PUMA robot with
a MARK II controller were developed in the studies conducted by Trident Robotics
and Research, Inc. [21, 23, 32, 33, 34], Carnegie Mellon and Stanford Universities. They
have produced the TRC004 PUMA interface board, which allows direct access to
PUMA joint positions and torques. The hardware, thus the robot is controlled by a
special purpose real time operating system called Chimera. The Quality Real Time
Systems (QRTS) Company has developed a similar work in order to control the
PUMA 560 robot. QRTS Simulink Robotic Toolkit [22, 31] has been implemented for
the Puma 560, but again hardware modification is required for the operation of this
toolkit. Other than those, simulation and off-line programming studies has been
conducted for PUMA robots [23-24, 26, 30], but these simulation packages do not have
the ability to control the robot, since this requires an interface (serial port) to be
used and communication protocols to be implemented.

A similar study that used DDCMP and logical units in order to control the PUMA
arm was held [35], which had limited capabilities since it aimed to control the robot
arm joints one at a time and it was not completely visualized as well. Logical units,
which are explained in detail within chapter 3, were not completely implemented,
thus control and programming capabilities were not totally obtained.

In the scope of this thesis study no hardware modifications are made on the arm’s
MARK II controller so that available communication capabilities [1-4,13] already
present in PUMA are used. Other than those studies regarding the supervisory
communication [24-26,35], we did not make any cyclic redundancy checking for
communication error handling (Chapter 3) on the external supervisory computer [17]
since our PUMA was not operating in a noisy environment and also in order to

17

obtain a user-friendly control an interactive control software (Chapter 4-5) has been
integrated to the supervisory communication and control software. Thus we have
managed to simulate the robot and transmit required control commands from an
external computer without any change on the original hardware configuration of the
PUMA system.

1.2 Constraints Taken in Consideration

The main constraint to be considered during the studies was to preserve the original
configuration both on the hardware and software of the PUMA 760 robot arm and
its controller. Changing the configuration of the robot, controller and robot parts
might result in malfunctioning of the whole system, which would be hard to recover
since the robot was an old device manufactured in the mid 80’s by Unimate Inc.
Furthermore, the company does not exist today. Just a few companies give service
for PUMA robots currently so obtaining spare parts is both hard and expensive.
Obtaining technical information and consultancy is also difficult and the limited
technical information we have may not be adequate for troubleshooting and
recovery.

Another constraint that we have taken into account was not to change, modify or
replace original cabling and connections other than those broken. Since cabling and
shielding of electrical connections of the robot in its original state were done
extremely well and neat. All the materials used are good in quality. Interruption on
those connections may not cause malfunctioning of the system but may result in
power leakages, EMI problems thus incorrect execution of the robot arm.

1.3 Hardware Problems

The PUMA robot as a whole system was not operational in the beginning of our
studies. Thus we had to work on the hardware of the system. The troubleshooting
charts (Appendix A) were then traced for fault diagnoses and isolation. At the end
of our effort we have managed to get the robot back into operation. Details related
to this work are given in Appendix B.

1.4 Outline of the Thesis

Introduction for the thesis is given within this chapter (Chapter 1), in which we
have stated our objectives and previous studies.

In order to understand the work done throughout this thesis the general structure of
PUMA 700 series robots and VAL II, which is the software package for the control
of PUMA robot arm is described within Chapter 2.

18

In Chapter 3, available communication methods with PUMA, the communication
method used and implementation of the supervisory communication software is
described.

Interactive control software is implemented and integrated to supervisory control
software of PUMA. The work carried out for this user friendly and useful
application and the integration studies are described within Chapter 4. This software
is actually operating similar to the teach-pendant of the PUMA system (more
detailed explanation for the teach-pendant can be found in Chapter 2).

Another Interactive robot control application, which operates the robot over the
supervisory communication port, has been integrated to the system. In this
application, we have extracted image frames of a video from which we have
determined speed, displacement and direction of the motion information that is
inside the image frames. The data and information obtained is used to modify the
pose of the PUMA manipulator. In this application a motion estimation algorithm,
block-matching method has been integrated to the supervisory control interface,
which is used for the path and joint movement modification of the manipulator.
This study described within Chapter 5, is implemented in order to demonstrate the
features and advantages of the supervisory control system.

Finally in Chapter 6, the test results are given. Conclusion and the proposed future
works are also stated with this last chapter. At the end of Chapter 6, appendices are
also presented for further reading and understanding.

19

CHAPTER 2

2 PUMA ROBOT

2.1 General

In this chapter, the robot system architecture both with hardware and the software is
described and the kinematical properties are stated briefly that are used within the
scope of this thesis.

2.2 The Types Of Puma Robots

PUMAs are probably one of the most common industrial type robots taking place in
university laboratories. Originally designed in the mid-70’s, the PUMA
(Programmable Universal Machine for Assembly) was produced for many years by
Unimation. Most known PUMA types can be classified into 3 groups with the
specifications displayed in Tables 2.1-2.3.

Table 2.1 Specification of PUMA 200 series robot

DOF
Drives
Control
Positional Control
Coordinates
Configuration

6
DC Motors
Numerical
Incremental Encoders
Cartesian
Revolute

Minimum Reach
Maximum Reach
Limit Joint 1
Limit Joint 2
Limit Joint 3
Limit Joint 4
Limit Joint 5
Limit Joint 6

0.125 mm
0.406 mm
308 deg
314 deg
292 deg
578 deg
244 deg
534 deg

Repeatability
Maximum Speed

+/- 0.05 mm
1.2 m/s

Auxiliary Processors 6 Slave Microprocessors

20

Programming
Serial Interface
Memory Buffer
Battery Buffer

Teach Pendant and VAL II
RS232 or RS423
46KB
30 Days

Arm Weight
Controller Cabinet Weight

13.2kg
80kg

Table 2.2 Specification of PUMA 500 series robot

DOF
Drives
Control
Positional Control
Coordinates
Configuration

6
DC Motors
Numerical
Incremental Encoders
Cartesian
Revolute

Minimum Reach
Maximum Reach
Limit Joint 1
Limit Joint 2
Limit Joint 3
Limit Joint 4
Limit Joint 5
Limit Joint 6

0.864 mm (Between Joint 1 and 5)
360 deg Working Volume
320 deg
250 deg
270 deg
300 deg
200 deg
532 deg

Repeatability
Maximum Speed

+/- 0.1 mm
1.0 m/s

Auxiliary Processors
Programming
Serial Interface
Memory Buffer
Battery Buffer

6 Slave Microprocessors
Teach Pendant and VAL II language
RS232 or RS423
46KB
30 Days

Arm Weight
Controller Cabinet Weight

63kg
200kg

Table 2.3 Specification of PUMA 700 series robot

DOF
Drives
Control
Positional Control
Coordinates
Configuration

6
DC Motors
Numerical
Incremental Encoders
Cartesian
Revolute

Minimum Reach
Maximum Reach
Limit Joint 1
Limit Joint 2
Limit Joint 3
Limit Joint 4
Limit Joint 5
Limit Joint 6

0.125 mm(Between Joint 1 and 5)
360 deg Working Volume
320 deg
220 deg
270 deg
532 deg
200 deg
600 deg

21

Repeatability

Maximum Speed

-762 model +/- 0.2mm
-761 model +/- 0.2mm
1.8 m/s

Auxiliary Processors
Programming
Serial Interface
Memory Buffer
Battery Buffer

6 Slave Microprocessors
Teach Pendant VAL II language
RS232 or RS423
46KB
30 Days

Arm Weight

Controller Cabinet Weight

-762 model 590kg
-761 model 600kg
200kg

Note that, PUMA 700 and PUMA 500 series robots have similar specifications. The
main difference between the robots is actually at their loading capacities. Thus the
study to modify the control system on one of the series’ may help to the study
towards the modification of other series of robots. Knowledge gained in this thesis
on PUMA 760 robot can be used for PUMA 500 series robots, as well. The extra
attention and effort needed to be spent only on the software work due to different
link and joint parameters of the PUMA 500 series robot. This assertion will be
backed up with the explanations made in Chapters 3 and 4.

2.3 PUMA 760

The PUMA 760 robot system is composed of two separated parts: The robot arm
and its control computer. In the following section the control computer and the
major components are described within our concern of this study.

Fig. 2.1 Robot Arm & The Controller

22

2.3.1 The Control Computer

The controller is the master component of the electrical system. All signals to and
from the robot pass through the controller and are used by it to perform real-time
calculations to control arm movement and position. Operating controls and
indicators are located on the front and top panel of the controller. Connections for
the robot arm, terminal, floppy disk drive and accessories are located on the
controller rear panel. Software is stored in the computer memory located in the
controller. The software interprets the operating instructions for the robot arm, and
the controller transmits these instructions to the arm. From incremental encoders
and potentiometers in the robot arm, the controller/computer receives data about
arm position. This provides a closed loop control of arm motions. A floppy disk
drive is available to record the programs on diskettes.

The Unimation Mark II controller is a typical industrial robot controller. It consists
of ten components:

• DEC LSI-11 computer with ADAC parallel interface board, DLV11-J serial
interface board, CMOS board, and EPROM board.

• Servo interface board
• Six digital servo boards.
• Two power amplifier assemblies
• Power amplifier control board
• Clock/terminator board
• Input/output interface board
• Two power supplies
• High power function board
• Arm cable board

2.3.1.1 DEC LSI-11/2 Computer

The DEC LSI-11/2 computer system, which is a 16-bit processor based computer
with up to 32K words of memory, has I/O interface board, DLVII-J serial interface
board, CMOS random access memory board, EPROM (erasable, programmable
read-only memory) board and a parallel interface board. It does not have hardware
floating point support. This primitive twenty-year-old processor is used to compute
the set points, which make up the robot joint level trajectory. It communicates via
the four - port asynchronous DLV11-J serial interface card to a floppy disk drive, a
teach pendant, a serial terminal and optional accessory. Commands are usually
entered at the terminal or the teach pendant. The set point can be updated by the
LSI-11 based software at one of several user selectable periods where the default
update period is 28ms. Every 28 ms new set points for each joint are transferred
from the LSI-11 to the servo interface board, which in turn distributes the
appropriate set point to each digital servo board.

23

2.3.1.2 Digital Servo Boards

There are six digital servo boards, one per joint of the manipulator. Each servo
board consists of a 6503 8-bit 1MHz microprocessor with 2,048 bytes of EPROM
memory and 128 bytes of RAM, a counter/timer, and some parallel input/output
capability. Each processor implements the position loop for its joint at
approximately 1KHz. Computations are performed in fixed-point triple precision
(24 bits).

Fig. 2.2 The Controller Computer DEC LSI-11
and The Teach Pendant

2.3.1.3 Peripherals
Connected to the Mark II controller are a floppy disk drive, teach pendant, and
terminal. Programs entered from the terminal can be stored on the floppy drive. The
teach pendant is used to move the manipulator directly either in cartesian or joint
space, and can also be used to program motions by moving the manipulator as
opposed to entering desired end-effector configurations from the terminal.

The overall structure of the system is shown in Fig.2.3. This system is connected to
the robot arm, which will be described in the next section.

24

Fig. 2.3 The Overall System Structure

2.3.2 PUMA 760 Robot Arm

Next to the controller there is the robot arm connected to it, which is shown in
Fig.2.4. The robot arm is a mechanical chain of links and joints incorporating 6
degrees of freedom (DOF). A DC servomotor controls each joint. It is similar to a
human torso, shoulder, arm, and wrist. Fig.2.5 shows above defined components in
the chain mechanical structure of the arm. The components of the robot arm are the
trunk, shoulder, upper arm, forearm, wrist, and mounting flange. The robot arm
members contain the various servomotors and gear trains.

Fig. 2.4 PUMA Robot and Control Cabinet with the Assembly

25

Table 2.4 defines the joint axes for the PUMA robot arm.

Table 2.4 Robot Arm Axes

Joint Description
Waist – Joint 1 Joint 1 axis is perpendicular to the

mounting plane and coincident with
the centerline of the trunk

Shoulder – Joint 2 Joint 2 axis is perpendicular to and
intersects Joint 1 axis. It is coincident
with the centerline of the shoulder.

Elbow – Joint 3 Joint 3 axis is parallel to the Joint 2nd
axis.

Wrist Roll – Joint 4 Joint 4 axis is perpendicular to and
intersects Joint 3 axes. It is coincident
with the centerline of the forearm.

Wrist Bend – Join 5 Joint 5 axis is perpendicular to and
intersects the Joint 4 axis.

Wrist Swivel – Joint 6 Joint 6 axis is perpendicular to and
intersects Joint 5 axis. Joint 6 is
coincident with the centerline of the
mounting flange.

26

Fig. 2.5 The 6 DOF Robot Arm

From the mechanical structure shown in Fig.2.5 and the axes definitions
(Table 2.4) one can drive the followings for joints:

Joint 1 is a revolute axis that rotates about the world Z-axis.

- A positive change of joint angle corresponds to a positive
rotation about the world Z-axis.

Joint 2 is a revolute joint that rotates about a horizontal axis.

27

- When joint 1 is positioned at zero degrees, the axis of rotation of
joint 2 will be parallel with the world Y-axis. In this position, a
positive change in joint angle corresponds to a positive rotation
about the world Y-axis.

- When joint 2 is positioned at –90 degrees, the inner link of the
robot will point vertically in the direction of the positive world
Z-axis.

Joint 3 is a revolute joint that rotates about a horizontal axis, which is
parallel with the axis of rotation of joint 2.

- As with joint 2, when joint 1 is positioned at zero degrees, the
axis of rotation of joint 3 will be parallel with the world Y-axis.
In this position, a positive change in joint angle corresponds to a
positive rotation about the world Y-axis

- When joint 2 is positioned at –90 degrees and joint 3 is
positioned at +90 degrees (the “straight-up” position), the inner
link of the robot will be vertical and the outer link will be
approximately [6] vertical.

- The reason that the outer link may be slightly off vertical in some
PUMA robots [6] is because, for some models, the axis of
rotation of joint 4 does not intersect the axis of rotation of joint 3.
When joint 2 is positioned at –90 degrees and joint-3 is
positioned at +90 degrees, the axis of rotation of joint 4 must be
vertical. If joint 4 does not intersect joint 3, the outer link will
appear to be slightly tilted.

Joint 4 is a revolute (roll) wrist axis. When joints 2 and 3 are in their
straight-up positions, the axis of rotation of joint 4 will be parallel to the
world Z-axis.

- A positive rotation of this joint turns the robot's end effector in a
positive direction relative to the world Z-axis.

- This joint is omitted in the 5-axis configuration.

Joint 5 is a revolute (pitch) joint. The axis of rotation of joint 5 is
perpendicular to the axis of joint 4.

- When joints 2 and 3 are in their straight-up positions and joint 4
is positioned at zero degrees, the axis of rotation of joint 5 will be
parallel to the world Y-axis. In this position, a positive change in
joint angle corresponds to a positive rotation about the world Y-
axis

Joint 6 is a revolute (roll) axis whose axis of rotation defines the nominal Z-
axis of the robot's tool frame of reference.

28

- The axis of rotation of joint 6 is perpendicular to the axis of
rotation of joint 5. Furthermore, the axes of rotation of joints 4, 5,
and 6 intersect at a point in the center of the wrist.

- When joints 2 and 3 are in their straight-up positions and joints 4
and 5 are positioned at zero degrees, the axis of rotation of joint 6
will be parallel to the world Z-axis. In this position, a positive
change in joint angle corresponds to a positive rotation about the
world Z-axis.

Each joint is driven by a permanent magnet DC servomotor through an associated
gear train, and each motor contains an incremental encoder and a potentiometer
driven through a gear reduction. The position at each joint is measured relative to an
initially known absolute position. The potentiometers, incorporated in the motors
are used to determine this initial absolute position. The incremental encoder
mounted on the shaft of each motor provides information about the changes in
position involved with the respective joint. The joint velocity is, however,
computationally derived from the positional changes. Joint encoder readings are
sampled at every 28 msec. and compared with the calculated positions.

The major axes (axes belonging to joints 1, 2 and 3) are equipped with
electromagnetic brakes to lock the arm in a fixed position in space. These brakes are
activated when power is removed from the motors. This safety feature removes the
risk of injury or damage that could result from the arm collapsing if power is
accidentally removed.

Power for the motors is supplied through the cable connecting the robot arm and the
controller. This cable bundle, with different cables, also carries feedback signals
from the incremental encoders and potentiometers.

Table 2.5 tabulates joint limits and angular resolutions used in simulations and
integrated into the external control system developed in this thesis study. Fig.2.6
shows these joint limits [4].

Table 2.5 Limits and angular resolutions

Joint No Joint Limits Joint Angular Resolution
Joint 1 320 degrees 0.0050 degrees (min)
Joint 2 220 degrees 0.0035 degrees (min)
Joint 3 270 degrees 0.0092 degrees (min)
Joint 4 532 degrees 0.0082 degrees (min)
Joint 5 200 degrees 0.0080 degrees (min)
Joint 6 532 degrees 0.0111 degrees (min)

29

Fig. 2.6 The Movement Limits of PUMA 760 Joints

As a last element in this mechanical chain structure a pneumatic-controlled hand
(gripper) takes place, as seen in Fig.2.7. This hand has two stable states: open or
close. A stand-alone air compressor supplies the compressed air necessary to open
and close the two fingers of the gripper.

Fig. 2.7 The Gripper

30

2.4 The Operating System - VAL

2.4.1 General

Initially, robots were programmed using textual languages such as Pascal and C.
The code required to drive robots was very low-level, and very hard to create and
maintain, requiring skills in both advanced programming and control theory.
Textual robotic languages were developed specifically to address the problems
associated with programming robots. These languages introduced “built-in”
commands to operate the robot, eliminating (for instance) the need to develop code
for motion primitives.

2.4.2 VAL

The system software that controls the PUMA robot arm is called VAL, which is
supplied by Unimation to be used with its controller called as MARK. The software
is a sophisticated programming language and a complete robot control system, but
has disadvantages mostly due to age of the product. VAL is stored in the controller
computer memory. The controller also houses operating controls for the robot
system.

The VAL programming language consists of a full set of English language
instructions for teaching and editing. Work programs are entered into the
computer/controller using either of two different procedures, or a combination of
both. The programs can be entered with the teach pendant using the teach-by-
showing method, or using the CRT and keyboard inputs. Full programming
versatility can only be achieved through keyboard inputs, thus the CRT terminal
shown in Fig.2.8a).

31

a. CRT Terminal b. Teach-pendant

 Fig. 2.8 CRT Terminal and The Teach-pendant

In either programming method that is from CRT terminal or the teach-pendant, all
taught and learned points are stored and referenced to a 3-axis coordinate system
fixed relative to the robot base. The robot arm base is fixed as shown in Fig. 2.9.

Fig. 2.9 The Base of Robot Arm and 3-axis coordinate
frame definition for the base

32

In order to teach the PUMA system, as stated above, either of two methods, or a
combination of both, can be used. In the first method the teach pendant is used to
individually manipulate each joint to a desired orientation. This operation is
available when the robot arm power is on, since the teach-pendant actually moves
the robot as desired by the user. The combination of the six joint orientations
determines the arm location. The arm location is entered into the computer memory
with the teach pendant. The positions of joints are saved into the memory
separately, which ends up with the position / location of the whole robot arm. A
series of arm locations will produce a program. The second method is to write a
program using VAL instructions. The programs and arm position data are entered
into the computer memory with the CRT terminal keyboard.

Two coordinates systems can be selected from both of the programming methods
mentioned here. These are the “World Mode” and the “Tool Mode”.

- World Mode: The reference coordinates for the World Mode are fixed
in the robot arm base shown in Fig. 2.9. This mode can be chosen when
the gripper is to move parallel to any of the World axes, or to rotate
about those axes.

- Tool Mode: The reference coordinates for the Tool Mode are fixed in

the gripper, with their origin at the center of its mounting flange. This
mode can be chosen when the gripper is to move parallel to or rotate
about the tool coordinate axes. See Fig. 2.10 for the tool coordinate axes.

33

Fig. 2.10 The Tool Coordinate Axes

The program developed may be stored external to the controller on a floppy disk
and after completing the program development user may execute it.

VAL actually has two versions: VAL and VAL II. The version of VAL we have
used during this thesis work was VAL II. Some of the significant changes and
modifications made for the new version are:[1]

- A formal communication capability has been added for supervisory
control (see Chapter 3) of the robot system from another computer.

- Some mathematical capabilities have been added, including real
variables, variable arrays, and scientific functions.

- A second user program can be executed in parallel with the robot control
program. This second program can perform any VAL II operation that
does not access the robot.

34

 Throughout the studies of this thesis, VAL II has been used as the control software
of the robot arm.

2.4.3 Characteristics of VAL II

VAL II has three modes of operation:
• Edit mode: the user can write a new program or edit an existing one from

the terminal.
• Monitor mode: the user can define locations in space using the teach-

pendant or the terminal, transfer programs from storage back into control
memory, etc.

• Run mode: execution of the robot program.

Within those modes users are related to following characteristics of VAL:
- Data structures (see section 2.4.3.1)
- Motion commands (see section 2.4.3.2)
- End effector and sensor commands (see section 2.4.3.3)
- Computations and Operations (see section 2.4.3.4)
- Program Control (see section 2.4.3.5)

2.4.3.1 Data Structures of VAL II

Available data structures are described below with their examples:

Numeric values: Integer and real values are used within VAL II.
E.g.: Integer: 97 - 1983 0 32767 Real: 6.64 8.5E-3 -337 - 9.4177

Numeric variables: Numeric variables are names assigned to a memory location that
can contain different numeric values during the calculation.
E.g.: The following are valid variable names: x count distance.to.part.3

Array variables: An array is a group of values that share a single name. Appending
an index enclosed in brackets to the array name specifies an element of an array.
E.g.: x [3] Assignment instruction x = 3.

Mathematical operators: Available mathematical operators are <+, -, *, /, MOD>
E.g.: x = 0.5*(-length)

Locations: Robot locations are used to specify the destination of robot motions.
There are two types of locations, which are precision points and transformation.
E.g.: The following are valid location variable names:
p feeder pallet.to.part.3
Precision points are used when the robot location is represented by the exact
positions of the individual robot joints. PPOINT (20, 0, 30, -90, -33, 71).

35

Transformation is a robot-independent representation of the position and orientation
of the robot tool. The position of the tool is defined with x, y, and z coordinates, and
the tool orientation is defined by three angles measured from the coordinate axes.
TRANS (0, 0, 0, -90, 90, 0)

Compound transformation: Compound transformation provides a means of
specifying robot locations relative to the location represented by other
transformations.
E.g.: plate: object: grasp

2.4.3.2 Motion Commands

Robot motion instructions are given through motion commands. Most commonly
used motion commands are:

HERE <A1>: The pendant is used to drive the robot arm to the desired position and
orientation, and then the above command captures the value of the location.

WHERE: Will cause the present world coordinates and joint co-ordinates to be
displayed.

MOVE <A1>: Moves the end of the arm from its present location to the location
A1.
MOVES <A1>: Move to location A1 in a straight line.

APPRO <A1, 50>: Approach location A1 with offset of 50 mm along the z-axis of
the end-effector frame.

APPROS <A1, 50>: Approach A1 with straight-line motion with offset of 50 mm
along the z-axis of the end-effector frame.

DEPART <50>: Depart along z-axis to a distance of 50 mm.

SHIFT <(LOC1 BY dx, dy, dy)>: Location LOC1 will have x, y, z coordinates
changed by dx, dy, dz relative to the original values.

SPEED <60>: The speed of the end effector during the program execution will be
60% of the maximum declared speed.

2.4.3.3 End Effector and Sensor Commands

End effector commands are the ones that affect the gripper whereas sensor
commands are used as signal triggers for the system. Some of the available
commands are:

36

OPEN (CLOSEI)
CLOSE (OPENI)

E.g.:
APPRO A1, 50
MOVES A1
CLOSEI
DEPART 50

2.4.3.4 Computations and Operations

VAL II enables users to use some elementary mathematical functions, relational
operators and logical operators.

SET <x>: Initializes a location variable.
E.g.: x = plate: object: grasp

Elementary functions: trigonometric, logarithmic, exponential, square root, etc.

Relational operators: LE, LT, GE, GT, NE, EQ (<, >, ==, <>, <=, >=, etc.).

Logical operators: NOT, OR, AND

2.4.3.5 Program Control

The program control instructions control the sequence in which the user program
instructions are executed. Thus, they can be used to control the logical flow within
the user programs. Below there are main statements that can be used within the user
programs.

IF statement:

IF (logical expression) THEN
… {Group of instruction}
ELSE
… {Group of instruction}
END

WHILE loop:

WHILE (logical expression)
… {Group of instruction}
END

FOR loop:

FOR I=0 TO max
…{Group of instruction}
END

CASE statement:

CASE {expression} OF
 VALUE <expression>
 …{Group of steps}
 VALUE <expression>

Open or close gripper. The action will be executed
during the next motion

37

DO…UNTIL loop:

DO
…{Group of steps}
UNTIL <logical expression>

 …{Group of steps}
 ANY
…{Group of steps}
END

2.5 Practicing VAL II

VAL programming practices were conducted in order to understand the capabilities,
advantages and disadvantages of VAL.

Throughout those practices, all the features and skills described at section 2.5 were
tried. Programs were written and executed. It was found that VAL had the
following capabilities and advantages:

- VAL is a complete robot control software package,

- Real-time calculations are performed during the actual running of the

robot program,

- Built-in commands ease the control programming of the robot arm,

- Does not require pre-knowledge of robot control,

- Enables the use of teach-pendant,

- Enables external computer connection.

Most of the disadvantages that VAL possesses are actually due to its age. Below
there are the main disadvantages:

- Calculations related with inverse kinematics require time,

- Programs written in VAL may be difficult to read, not only due to the

cryptic nature of code, but because code can be poorly commented,

- Parallel running applications must be mapped serially,

- There is no convenient means for synchronizing two flows of code

except by the multiple use of “begin - end” blocks,

- VAL grammar is not expandable that is new actions can only be used via

external procedures or functions,

38

- VAL does not support any simulators,

- Visualization is not possible,

- Programming editor does not exist as it exists within all programming

languages today,

- Does not support new sensory information to be considered for the

control of the arm,

- Off-line programming is not possible

In order to overcome the disadvantages of VAL and improve the capabilities of the
overall system, without modifications on the original hardware, it was decided to
use an external computer. The studies conducted for the external computer control
are within the scope of Chapter 3 of this thesis.

2.6 Model for PUMA 700 Series

Kinematics is the study of motion without regard to the forces that cause it. Within
kinematics one studies the position, velocity and acceleration, and all higher order
derivatives of the position variables. The kinematics of manipulators involves the
study of the geometric and time based properties of the motion, and in particular
how the various links move with respect to one another and with time.

PUMA robots are serial-link manipulators comprising a set of bodies, called links,
in a chain, connected by joints. Each joint has one degree of freedom, which are
rotational. For a manipulator with 6 joints numbered from 1 to 6, there are 7 links,
numbered from 0 to 6. Link 0 is the base of the manipulator, and it is fixed, and link
6 carries the end-effector. Joint i connects links i-1, and i, that is joint 3 for example
connects links 3 and 2.

A link may be considered as a rigid body defining the relationship between two
neighboring joint axes. A link can be specified by two numbers, the link length and
link twist, which define the relative location of the two axes in space. The link
parameters for the first and last links are meaningless, but are arbitrarily chosen to
be 0. Joints may be described by two parameters. The link offset is the distance
from one link to the next along the axis of the joint. The joint angle is the rotation of
one link with respect to the next about the joint axis.

To facilitate describing the location of each link we affix a coordinate frame to it —
frame i is attached to link i. Denavit and Hartenberg (DH) [11,12] proposed a matrix
method of systematically assigning coordinate systems to each link of an articulated
chain. The axis of revolute joint i is aligned with zi-1. The xi-1 axis is directed along

39

the normal from zi-1 to zi-1 and for intersecting axes is parallel to zi-1 X zi. The link
and joint parameters may be summarized as:

Link length (ai): the offset distance between the zi-1 and zi axes along
 the xi axis.
Link twist (αi): the angle from the zi-1 axis to the zi axis about the
 xi axis.
Link offset (di): the distance from the origin of frame i-1 to the xi axis
 along the zi-1 axis.
Joint angle (θi): the angle between the xi-1 and xi axes about the zi-1 axis.

According to the information above link coordinate assignment can be made as
shown in Fig. 2.11.

Fig. 2.11 Link Coordinate (Frame) Assignment

It shall be noted that one can have different frame assignment due to the
assignments of x and y coordinates but the resulting transformations would not
change.

40

Using the data given in Fig.2.12, which shows the dimensions of PUMA 700 series
robot, DH (Denavit and Hartenberg) parameters can be determined as shown on
Table 2.6.

Fig. 2.12 Dimensions of PUMA 700 Series Robots

Table 2.6 DH Parameters For the PUMA 700 Series

Joint θi αi ai di
1 90 -90 0 0
2 0 0 650mm 290mm
3 90 90 -85mm 0
4 0 -90 0 600m
5 0 90 0 0
6 0 0 0 125mm

It is important that the offset distance and link lengths may change due to the
modifications on the mechanical structure of the robot.

41

After the establishment of the DH coordinate system, a homogenous transformation
matrix can be developed [11,12]. The DH representation results in a 4x4 homogenous
transformation matrix.

Cos θi -Sinθi Cosαi Sinθi sinαi ai Cos θi
Sin θi Cosθi Cosαi -Cosθi Sinαi ai Sin θi

0 Sinαi Cos di

 i-

1Ai=
0 0 0 1 (2.1)

representing each link’s coordinate frame with respect to the previous links
coordinate system; that is

0Ti = 0Ti-1 i-1Ai (2.2)

where 0Ti is the homogenous transformation describing the pose of coordinate
frame i with respect to the world coordinate system 0.

Using (2.1) we can obtain the following transformation matrices:

C1 0 -S1 0
S1 0 C1 0
0 -1 0 0

0A1=

0 0 0 1 (2.3)

C2 -S2 0 a2 C2
S2 C2 0 a2 S2
0 0 1 d2

1A2=

0 0 0 1 (2.4)

C3 0 S3 a3 C3
S3 0 - C3 a3 S2
0 1 0 0

2A3=

0 0 0 1 (2.5)

C4 0 -S4 0
S4 0 C4 0
0 -1 0 d4

3A4=

0 0 0 1 (2.6)

4A5= C5 0 S5 0

42

S5 0 -C5 0
0 1 0 0

0 0 0 1 (2.7)
C6 -S6 0 0
S6 C6 0 0
0 0 1 d6

5A6=

0 0 0 1 (2.8)

Ci and Si are defined as Ci = Cos θi , Si = Sin θi,

Using the (2.2) - (2.8) we can obtain the T matrix, which specifies the position and
orientation of the endpoint of the PUMA with respect to the base coordinate system.

T= 0A6 (2.9)

The equation above corresponds to:

T= 0A1
1A2

2A3
3A4

4A5 5A6 (2.10)

Solution to the complete transformation matrix is not given since it is a long
expression, but it can be easily calculated with the help of a computer.

The model, which is described within this section, shall be used for the simulation
and visualization of the PUMA 700 series robot.

43

CHAPTER 3

3 SUPERVISORY COMMUNICATION

3.1 General

In this chapter the available communication modes for the PUMA robot arm are
investigated. Within that context the supervisory communication mode is described
in detail together with the protocol DDCMP (Digital Data Communications
Messaging Protocol) and the software implementation of this mode with its
protocols are explained.

3.2 Available Modes Of Communication

The controller has two special ports (on its rear panel) to communicate with
external computers. These ports are referred as:

• The Alter Port
• The Supervisor Port

VAL II supervisory communication interface is normally used to send information
or commands to the controller system. If, however, the command or information,
sent in real-time, is to modify the path of the robot while it is moving then the
interfacing must be done using the alter port, not through the supervisory port. The
communication through alter port is basically for real-time path control.

The Alter port:

This port is also used to handle sensory inputs required for the control of the robot
besides the real-time path control purposes. For example, in supplying sensory
feedback information to the controller, in order to modify robot motions while they
are actually occurring, the use of communication over alter port is necessary. In
other words, real-time path control is a means for modifying the program-directed
position and orientation of the robot tool while the robot is in action. When this type
of path control is in effect, VAL II is in the “ALTER mode”. Although an external
sensor or camera cannot be directly connected to PUMA arm, it is possible to
connect an external sensory device over this serial port (RS-423, RS-232
compatible), alter port. Serial binary data obtained from the sensor (camera, infrared
detector, etc.) or a computer supplying position data and instructions can be sent to

44

VAL II over alter port. Thus, real-time path control data to the controller comes
from two sources; either from an external computer, or from a user written VAL
program in robot’s own computer. In the former, data will be transferred to the
controller by using the ‘external’ alter mode communication protocol. In the latter
case the ‘internal’ alter mode communication protocol will be used for the purpose.

External Alter Mode:

In this mode, VAL II repeatedly establishes communication with the external
computer at a rate 36 times/sec. to acquire the data about the modified robot tool
trajectory determined and sent by the external computer. This operation continues
indefinitely unless either VAL II terminates the communication for some reason, or
the external computer sends information about the existence of an exceptional
condition.

The alter mode communication is initiated by the controller so that VAL II in
response sends an "alter starting" message to the external computer and waits for a
start up acknowledgment. VAL II terminates the communication attempt
with an error if the external computer does not respond to the call, otherwise, upon
receipt of acknowledgement VAL II enters the alter mode communication at the
start of the next robot motion. With the beginning of robot’s next motion, VAL II
sends an "alter running" message to the external computer and expects to receive a
complete alter data message from the external computer within about 16 msecs,
starting from the instant when it issued out the "alter running" message. VAL II
continues to send "alter running" messages, every 28 milliseconds, as long as the
alter mode is active. During this time, that is when the alter mode is active, the
external computer connected to the PUMA controller can generate and signal an
"exception condition", this exception is an interruption to the normal flow of
program control, caused by the program itself. The exception condition causes a
user-specified VAL II subroutine, which is written by the user, to be processed
asynchronously, like a program reaction or function. This process is similar to
exception handling programming within well-known languages like C/C++ and
Java. Exception handler is a special code, which is called when an exception
condition occurs during the execution of a program. If the programmer does not
provide a handler for an exception, the program running within “alter mode” will
crash down. Using the exception generation and exception handling methods,
programmer can control the flow of the program, generate new functions and
handle any communication errors between PUMA and the external computer.
VAL II remains in alter mode until the execution of a NOALTER instruction within
the program which initiated the alter mode, or the robot program stops executing for
any reason. Note that the latter includes unexpected termination of program
execution due to an error, such as attempting a joint-interpolated motion, which is
the motion where the joint taking the longest time to make the joint change governs
the motion and the other joints are slowed in proportion so that all joints accomplish
their joint changes simultaneously with the slowest joint. Thus the program for the
alter mode crashes but the PUMA stays within the alter mode and in order to

45

overcome this problem the system requires to be re-started and re-enabling of the
alter mode. Alter mode remains in effect and VAL II does not attempt to re-initiate
the communication or shutdown the system totally even if continuous-path motions
are broken purposely due to program instructions. That is, if a program instruction
causes an error then program instructions for real-time control can not be executed,
but this error does not effect the status of the communication in the alter mode, it
may still be maintained. In case such a situation arises, the controller shall receive a
‘NOALTER’ command instead of attempting to continue program execution under
the ALTER mode. When ending alter mode, VAL II sends the external computer an
"alter pausing" message, followed somewhat later by an "alter ending" message.
The external computer needs not to respond to either message. To re-enter the alter
mode, another ALTER instruction must be executed in the VAL II program.

Internal Alter Mode:

Internal alter is useful when a process control program (written in VAL II) needs to
control the robot motion according to a pre-processed sensory data (from sources
such as infrared, sound sources, or a camera) set. Supplying pre-processed sensory
data to the arm is important in practice. Since within the environment there might
be an obstacle, another working robot that needs to be determined and the most
effective way of determining such things would be the use of new integrated
sensors such as cameras. Other than that, some robots, which examine and fix
manufacturing mistakes and non-conformances with soldering, painting, gas
leakage or gluing on products, require the use of external intelligent sensors.
Internal alter mode is used under those circumstances, which makes it a useful
communication mode.

Internal alter does not transmit messages to an external computer. Instead, VAL II
expects a program instruction to be executed every 28 milliseconds to
transfer data to the robot motion controller.

Internal alter mode shall be used in situations in which the robot motion is modified
by inputs from a simple sensor. A process control program reads the sensor input
from such a simple sensor to calculate corrections to the robot motion. An
instruction incorporated in the control program will send the correction data to the
motion program.

The Supervisor port:

This port can be used to interface the robot controller more precisely its program
language VAL II, to a supervisory computer via a RS-232 compatible serial line.
This link can operate at a maximum speed of 9600 baud (about 1000 characters per
second) by using communication protocol software.

The supervisory port can perform the following functions:

• Issues all commands available at the robot terminal.

46

• Inputs and outputs data directly to and from user programs.

• Downloads and uploads user programs and data.

• Monitors operational status of the robot system.

So, by using these links, a supervisory computer can access several robot controllers
and manage them towards the accomplishment of desired tasks simultaneously. So
creating a network of robot controllers is possible.

3.3 Choosing The Communication Mode

As explained so far there are two alternative communication modes (alter and
supervisory) for controlling the robot externally. Alter mode enables real-time path
modification, and handles data transfer to control the robot arm. It also gives a
means for sensory data to be obtained and processed coming from the incremental
encoders and potentiometers in the robot arm about the actual arm position. Using
and processing this data transmitted to the external computer, alter mode
instructions are generated. The previously carried out studies [13] and the studies that
we have carried out in the lab, show that the information obtained from the
modified servo controllers, which hold the required information, are hard to obtain,
difficult to read and they are very complex. The most applicable idea is to integrate
force / torque transducers to the robot arm [13]. Those transducers (models with ISA
cards exist) are to supply data about the 6 joints to the external computer, which
analyzes data and sends new path commands to the robot controller within 28
milliseconds.

The advantages of the alter mode control method are clear. However, for this thesis
work supervisory mode has been used due to the following reasons:

• Reading data, from the actual existing position and velocity sensors, are not
satisfactory. It requires modification on the harness configuration of the
system. Trials of gathering accurate information were not successful,
probably due to the connections.

• Replacing the sensory system with the one complying the conditions

(force/torque transducers) is quite expensive, and procurement demands
considerably long time [13].

• The VAL programming language does not support efficient real-time

updating of the manipulator trajectory based on sensory data (such as from
force / torque or vision sensors). Unimation, manufacturer of the arm, has
confirmed that there is an undocumented bug in the tool mode under real-
time path control. During real-time control, such as alter mode, the
controller does not update the rotation matrix as the robot moves [14].

47

• Supervisory Communication enables all VAL commands to be executed

from an external computer, thus VAL capabilities are carried out to an
external computer.

• Supervisory communication mode enables network control of the robot arm

if desired.

3.4 Supervisory Mode

The physical communication link for the supervisory communication is the RS-232
serial line (Fig.3.1). The baud rate for the serial port used for the supervisory
communication is set at 9600 baud. The communication data are transmitted as 8-
bit bytes, with one stop bit for each byte. No parity information is included in the
data bytes.

Fig.3.1 Physical Communication Link

Several different types of supervisory communications can occur simultaneously. If
there is a physical link for each type, an addressing scheme could be used to direct
the messages for each type of communication to the appropriate physical link. Also,
the recipient of the messages will know which physical links they come from, and
thus will know the nature of each message.

NETWORK and SUPERVISOR switches shall be enabled in order to activate the
supervisory port for communication.

External
Computer RS-232 Serial line

48

In reality every message includes a code for the physical link used for that type of
communication. The recipient can then use the code within the message to
determine the nature of the message without concerning itself as well as the
physical path used for the message. Thus, with such a message format (that is, code
plus message), there is no longer a need for individual physical links.

Since VAL II uses only one physical link for its supervisory communications, it
uses such a coding scheme within every message to identify the type of
communication. Considering the system as being subdivided into separate subunits,
referred to as “logical units” do this scheme. Each type of communication is then
associated with a particular logical unit. Each logical unit is assigned a ‘logical unit
number’ (LUN), which is used during communication as the code for identifying
message types. The logical units and LUN's listed in Table 3.1 are defined.

Table 3.1 LUN and Logical Unit

LUN Logical Unit
0 Network manager
1 Short status information
2 Monitor input and output
3 Monitor asynchronous output
4 Program terminal Input and output
5 Disk input and output

The messages formed by using the LUN’s and commands are both packed into
DDCMP packets. DDCMP is the bottom layer communication protocol that ensures
each message transmitted or received is 100 % error free. DDCMP, which is a
trademark of Digital Equipment Corporation, is a rigorous protocol that
automatically handles the detection of transmission errors and re-transmission of
messages when an error occurs. DDCMP was created by DEC (Digital Equipment
Corporation) for the use with all of their operating systems. DDCMP does not use
two or three ways handshaking method but it actually checks every individual
packet and requests re-transmission and re-sequencing of packets, thus it is a stop-
and-wait type of protocol. This method increases reliability, but on the other hand it
takes time, which caused DDCMP packaging hardware to be used in 1980’s, but
with today’s powerful computers we are able to form DDCMP packets faster.

49

In the supervisory mode the message packets are formed as shown in Fig.3.2.

Command / Data

Logical Unit Message

DDCMP Packet

Fig.3.2 Complete Packet

3.4.1 General Format for the Logical Units

The format of the logical unit records sent and received within the supervisory
communication system is shown in Fig. 3.3. This format shall be used within the
supervisory communication for both messages transmitted by VAL and for
messages transmitted by the supervisory external computer.

ID Function
Code

Function
Qualifier

Message
Data

1 byte 1 byte 2 bytes 0-256 bytes

Fig.3.3 Format of message for Logical Units

The ID byte identifies the communication protocol in use and the logical unit
associated with the message data. Available ID byte assignments are listed in Table
3.2.

Table 3.2 ID Byte Bit Assignment

Bits Description
7-6 Protocol Version
5-0 LUN (Logical Unit Number)

50

For the logical unit number 3 (Monitor asynchronous output), the ID byte will be
formed as shown below within Fig.3.4.

0 0 0 0 0 0 1 1

Fig.3.4 ID Byte for LUN 3

The function code is used in messages transmitted by VAL II in order to define how
the supervisory computer shall respond to the data message. The function code can
be one of the listed values in Table 3.3.

Table 3.3 Function Code

Function
Code

Description

0 Transmit a Command
1 Abort Outstanding

Communication
2 Read Data
3 Write Data
4 Read After Writing Data
5 Read characteristics

Supervisory computer, in reply to a transmission from a logical unit, shall set the
acknowledge bit (7th bit) of the function code byte received from VAL II.

Fig. 3.5 Function Code Reply Rule

Note that because of the acknowledgement bit, in the reply message the function
code shall be {‘the received value’ + 128}.

The Function qualifier bytes in a message provide further control on
communications and messages thus the robot and by providing new command sets
previously defined by Unimation. The function qualifier bytes differ according to
the logical unit used.

VAL II Supervisor
Computer

....{0 0 0 0 0 0 1 0 }.....
Function Code fromVAL II

....{1 0 0 0 0 0 1 0 }.....
Function Code from Supervisor

51

3.4.2 Network Manager - LUN 0

This logical unit conveys certain commands to the VAL II system from the
supervisory system unlike all the other logical units, because it is the only logical
unit that has communications initiated by the supervisory system. The network
manager logical unit never initiates communications itself. Transmissions to and
from the network manager are not acknowledged by a reply message, thus this
logical unit does not require reply message creation for the supervisor.

Format of the message transmitted to the network manager logical unit is shown in
Fig. 3.6. Different from all, the message data is conveyed with the qualifier bytes.

ID Function
Code

Function
Qualifier

1 byte 1 byte 2 bytes
LUN=0 FC=0 Command Code
00000000 00000000 See table 3.4

Fig.3.6 LUN 0 Format

Table 3.4 Command Codes for Logical Unit 0

Code Command
0 Abort the operation in progress.
1 Start the short status information on logical unit.

3.4.3 Short Status Information - LUN 1

The short status information logical unit is used to provide information to the
external supervisory computer.

This logical unit is activated by a command to the network manager logical unit.
When this logical unit is activated, it immediately transmits a status message to the
supervisor. Thus LUN 0 is used to trigger LUN 1. Fig. 3.7 shows the format of the
records transmitted by LUN 1.

ID Function
Code

Function
Qualifier

Message Data
(Status Message)

1 byte 1 byte 2 bytes 14 bytes
LUN=1 FC=3 FQ=0 See Fig. 3.8
00000001 00000011 00000000

00000000
Unknown

Fig.3.7 LUN 1 Format

52

Message Data / Status Message

1
st byte

2
nd byte

3
rd byte

4
th byte

5
th byte

6
th byte

7
th byte

8
th byte

9
th byte

10
th byte

11
th byte

12
th byte

13
th byte

14
th byte

System
status
bytes
(See
Table
3.5)

Status
Bits

First 8 characters of the user program currently
executing.

Error code
for the
terminated
execution.

Loops
completed
for the
program
execution

Fig.3.8 Message Data / Status Message

Table 3.5 System Status Byte Indications

Value of 1st Byte Meaning
0 {00000000} MANUAL MODE is displayed on the teach pendant.
1 {00000001} ARM POWER is turned off.
2 {00000010} A user program is executing
3 {00000011} The system is in HOLD mode.
4 {00000100} A “fatal” error has occurred
5 {00000101} COMPUTER Mode is selected on the teach pendant.
6 {00000110} The user program is waiting for terminal input.
7 {00000111} The user program is in a WAIT state.

Supervisor computer must reply LUN 1 messages (see Fig.3.9); the reply for the
status message shall be two’s complement negative value of the originally received
message. A reply of “1” is used in order to indicate successful receipt of
transmission.

1 byte 1 byte 2 bytes
LUN=1 FC=3+128

= 131
(Status message)’

2

00000001 10000011 Unknown

Fig.3.9 Reply Format for LUN 1
(Created by the Supervisory Computer)

3.4.4 Monitor Input / Output - LUN 2

The monitor input and output logical unit serves the role of the VAL II system
terminal while the supervisory system has control of the VAL II system. All
monitor commands are input to the VAL II system through this logical unit and all
output (except for that of LUN 3) is directed to this logical unit.

53

ID Function

Code
Function
Qualifier

Message Data

1 byte 1 byte 2 bytes 0-256 bytes
LUN=2 FC FQ MD

Fig.3.10 LUN 2 Format

The message data should be interpreted as ASCII text and contains embedded
carriage return (CR) and line feed (LF) characters, to define individual lines of text.
If the complete text to be transmitted is longer than 256 characters it is transmitted
in 256-character segments. Thus, a line of text can begin in one record and be
completed in the next.

Considering the description above following conversions shall be made in order to
form the message data for the command “DO READY”.

>> Command='DO READY';

>> ASCII_Command=double(Command)

ASCII_Command =
 68 79 32 82 69 65 68 89

>> Message_Data=dec2bin(ASCII_Command,8)
Message_Data =

01000100
01001111
00100000
01010010
01000101
01000001
01000100
01011001

Communications, which can occur through the monitor I/O logical unit, are
described within this section with their reply messages. According to LUN 2
specifications, function code for this logical unit can be 1,2,3 or 4.

LUN 2

FC =1 FC=2 FC=3 FC=4

Fig.3.11 LUN 2 Having Four Function Codes

54

FC=1 (Abort Outstanding Communication)

When a message is received from VAL II with function code as 1, VAL II cancels
the last transmission. Once this message is transmitted by VAL, the logical unit
ignores all receptions until it receives a message containing an abort function code,
afterwards normal communications can occur.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=2 FC=1 FQ=0 None
00000010 00000001 00000000

00000000
N/A

Fig.3.12 VAL II transmits LUN=2 FC=1 Message

The binary representation of the “Abort Outstanding Communication” message is
shown in Fig. 3.12, in which the representation of the message has been given
according to the general format of LUN messages as shown with Fig. 3.3. The LUN
byte (1st byte), function code FC (2nd byte), function qualifier FQ (3rd and 4th bytes)
are present in the message but the message data field (the 4th column in Fig. 3.12) is
not used for “Abort Outstanding Communication” message.

If the message (Fig. 3.12) with function code 1 is received, the supervisor shall
respond with the message shown in Fig.3.13 in order to maintain normal
communications, otherwise the communication will be broken by the supervisory
unit of the controller assuming that there exists an error with communication.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=2 FC=1+128

= 129
FQ=1 None

00000010 10000001 00000000
00000001

N/A

Fig.3.13 VAL II transmits LUN=2 FC=1 Message

(Created by the Supervisory Computer)

The binary representation of the reply to the “Abort Outstanding Communication”
message received from the PUMA is shown in Fig. 3.13, in which the
representation of the message has been given according to the general format of
LUN messages as shown with Fig. 3.3. The LUN byte (1st byte), function code FC
(2nd byte), function qualifier FQ (3rd and 4th bytes) are present in the message but
the message data field (the 4th column in Fig. 3.13) is not used when replying the
“Abort Outstanding Communication” message since there is no need for any data
transmission for the acknowledgment of the received message.

55

FC=2 (Read Data)

Function code with 2 is used by VAL II to request input from the supervisor
computer. The value of the function qualifier determines the type of response
expected, if it has a value less than or equal to zero, VAL II expects a new monitor
command otherwise a reply to a previous prompt is requested.

A read data transmission, which is transmitted by the PUMA controller actually
demands a command from the supervisory external computer, occurs as soon as
VAL II has completed processing the preceding command and is ready to accept
another. A read data transmission is used by the PUMA, in order to request a
command / message or to indicate that a new command / message can be evaluated
and executed.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=2 FC=2 FQ

(variable)
None

00000010 00000010 Unknown N/A

Fig.3.14 VAL II transmits LUN=2 FC=2 Message

The binary representation of the to the “Read Data” message received from the
PUMA is shown in Fig. 3.14, in which the representation of the message has been
given according to the general format of LUN messages as shown with Fig. 3.3.
The LUN byte (1st byte), function code FC (2nd byte), function qualifier FQ (3rd and
4th bytes) are present in the message but the message data field (the 4th column in
Fig. 3.14) is not used, since PUMA does not transmit a message in its request of a
command or a message. The message data field is used in the “Read after Write”
(Fig. 3.18) messages since those messages contain data, which are sent to the
external supervisory computer, in order to get user or operator response.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=2 FC=2+128

=130
FQ Data / Command

E.g.: DO READY
(8 byte command)

00000010 10000010 00000000
00000001

01000100
01001111
00100000
01010010
01000101
01000001
01000100
01011001

Fig.3.15 Reply Message for LUN=2 FC=2 Message

56

The message created by the supervisor for the ‘DO READY’ command is shown in
Fig.3.15.

Note that if the VAL II INTERACTIVE system switch is disabled, several types of
messages are suppressed. For example, messages, which are uniquely identified by
the function qualifier, are omitted. Also, queries such as “Are you sure (Y/N)?”
can be suppressed such that they are not issued, and all header information is
eliminated both from the output and from operations such as NET, STATUS, and
WHERE.

FC=3 (Write Data)

This communication with function code 3, outputs an error message or
informational message from VAL II to the supervisor computer.

The function qualifier, FQ represents error codes, which are always two’s-
complement negative numbers. If an error message is being output, for example,
‘ARM POWER off’ then the corresponding error code for this error is –311 as
function qualifier.[1,2,3] The supervisory computer can use this error code to identify
the error without interpreting the text of the error message but this feature has not
been implemented within the software of the supervisor computer.

The function qualifier is zero or a positive number when the message is
informational (E.g.: A reply for the command ‘WHERE’, which would be
transmitted to the supervisor computer via function code 3, would have function
qualifier as 0 since it is an informational in nature).

Figs.3.16 and 3.17 show the messages received from VAL and the reply message
created by the supervisor computer accordingly.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=2 FC=3 FQ

(variable)
Message

00000010 00000011 Unknown Unknown

Fig.3.16 VAL II transmits LUN=2 FC=3 Message

1 byte 1 byte 2 bytes 0-256 bytes
LUN=2 FC=3+128

=131
FQ=1 None

00000010 10000011 00000000
00000001

N/A

Fig.3.17 Reply Message for LUN=2 FC=3 Message

57

The message received shall be converted to ASCII characters in order to inform the
user with the message received. Thus the following conversions shall be made
within the supervisory communication software.

>>Received_Message_binary =

00101010 01000001 01010010 01001101 00100000 01010000 01001111 01010111 01000101
01010010 00100000 01101111 01100110 01100110
00101010

>> ASCII_Received_Message=bin2dec(Received_Message_binary)'

ASCII_Received_Message =

 Columns 1 through 10

 42 65 82 77 32 80 79 87 69 82

 Columns 11 through 15

 32 111 102 102 42

>> char(ASCII_Received_Message)

ans =

ARM POWER off

FC=4 (Read After Write)

VAL II outputs a message and requests input of a reply. Similar to function code 3
communication explained above but the supervisor is expected to provide a
message in its reply. Similar to function code 3, some messages received via
function code 4 have predefined message codes that can be used by the supervisor
to identify the message but message but this feature is not implemented within the
software of the supervisor computer for this thesis work.

Figs.3.18 and 3.19 show the messages received from VAL and the reply message
created by the supervisor computer according to the received message
correspondingly.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=2 FC=4 FQ

(variable)
Message

00000010 00000100 Unknown Unknown

Fig.3.18 VAL II transmits LUN=2 FC=4 Message

58

1 byte 1 byte 2 bytes 0-256 bytes
LUN=2 FC=4+128

=132
FQ=1 Reply Message

00000010 10000100 00000000
00000001

Unknown

Fig.3.19 Reply Message for LUN=2 FC=4 Message

Messages like “Are you sure (Y/N)?” are sent to the supervisor using the LUN 2
with function code 4 and the supervisor shall respond accordingly using the same
LUN with function code 4.

3.4.5 Monitor Asynchronous Output - LUN 3

LUN 3 used by VAL II in order to transmit monitor outputs during executing of
user programs. Those outputs include messages indicating the beginning and end of
program execution and any error messages that might be output during the
execution. Error messages, which result from hardware malfunctions (E.g.:
″∗[Fatal] Servo dead∗”), are reported through this logical unit.

The function code for this logical unit is 3 since only the writing data function is
used, which means only messages are transmitted to the supervisory computer.
Fig.3.20 shows the format for the LUN 3.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=3 FC=3 FQ (variable,

see table 3.6)
Message Data

00000011 00000011 Unknown Unknown

Fig.3.20 VAL II transmits LUN=3 Message

Table 3.6 FQ Value and Corresponding Meaning for LUN 3

FQ value Description
2 (No message data) LUN 3 thus VAL, transmits a message when an

execution of user program begins.
3 Program Completed.
4 This message is transmitted when the program execution

terminates. Transmitted message carries the program name and the
stopped step number of the program

5 Whenever a DO command is processed, a message is transmitted
with this FQ, no message data exist for this FQ.

6 Whenever processing of a DO command is completed, a message
is transmitted with this FQ, no message data. Exist for this FQ.

7 In TRACE mode, VAL transmits a message for each instruction
step executed. The message data is the instruction step itself.

59

8 This message is transmitted when a PAUSE instruction is
executed.

9 This message is transmitted when a HALT instruction is executed.
12 Similar to FQ=5, but this time instead of a Do command, this

message is transmitted when a user program is executed.
13 Similar to FQ=6, but this time instead of a Do command, this

message is transmitted when a user program is completed.
14 Similar to FQ=7, but this message is transmitted for the user

program.

The supervisor computer shall reply to the VAL system as shown with Fig.3.21.
The value for the function qualifier shall be set to 1 in order to indicate
acknowledgement.

1 byte 1 byte 2 bytes
LUN=3 FC=3+128

=131
FQ = 1

00000011 10000011 00000000
00000001

Fig.3.21 Reply Message for LUN=3

3.4.6 Program Terminal Input and Output - LUN 4

This logical unit is similar to LUN 2, but it is only used for program I/O instead of
monitor I/O. All requests for program input instruction and program output are
directed to the supervisory computer via logical unit 4. Fig.3.22 shows the format
for LUN=4.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=4 FC

(variable)
FQ
(variable)

Message Data

00000100 Unknown Unknown Unknown

Fig.3.22 Format for the LUN 4 Message

Communications, which can occur through the Program terminal I/O logical unit,
are described within this section with their reply messages. According to LUN 4
specifications, function code for this logical unit can be 1,3 or 4.

FC=1 (Abort Outstanding Communication)

When a message is received from VAL II with function code as 1, VAL II cancels
the last transmission. Once this message is transmitted by VAL, the logical unit

60

ignores all receptions until it receives a message containing an abort function code,
afterwards normal communications can occur.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=4 FC=1 FQ=0 None
00000100 00000001 00000000

00000000
N/A

Fig.3.23 VAL II transmits LUN=4 FC=1 Message

If the message (Fig.3.23) with function code 1 is received, the supervisor shall reply
with the message shown with Fig.3.24 in order to enable normal communications.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=4 FC=1+128

= 129
FQ=1 None

00000100 10000001 00000000
00000001

N/A

Fig.3.24 VAL II transmits LUN=4 FC=1 Message

(Created by the Supervisory Computer)

FC=3 (Write Data)

This communication with function code 3 transmits the output specification of a
TYPE instruction.

Figs.3.25 and 3.26 show the messages received from VAL and the reply message
created by the supervisor computer correspondingly.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=4 FC=3 FQ= 0 Message
00000100 00000011 00000000

00000000
Unknown

Fig.3.25 VAL II transmits LUN=4 FC=3 Message

1 byte 1 byte 2 bytes 0-256 bytes
LUN=4 FC=3+128

=131
FQ=1 None

00000100 10000011 00000000
00000001

N/A

Fig.3.26 Reply Message for LUN=4 FC=3 Message

61

FC=4 (Read After Write)

VAL II outputs a message and requests input of a reply. Similar to function code 3
communication explained above but the supervisor is expected to provide a
message in its reply.

Figs.3.27 and 3.28 show the messages received from VAL and the reply message
created by the supervisor computer according to the received message
correspondingly.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=4 FC=4 FQ=0 Message
00000100 00000100 00000000

00000000
Unknown

Fig.3.27 VAL II transmits LUN=4 FC=4 Message

1 byte 1 byte 2 bytes 0-256 bytes
LUN=4 FC=4+128

=132
FQ=1 Reply Message

00000100 10000100 00000000
00000001

Unknown

Fig.3.28 Reply Message for LUN=2 FC=4 Message

Supervisory computer software did consider the program terminal input and output
logical unit, thus it can reply to the received messages from LUN 4 but since VAL
programming from an external computer was not our main concern, this logical unit
has not been tested.

3.4.7 Disk Input and Output - LUN 5

The information between VAL II and the Unimation floppy disk drive is actually
communicated via LUN 5. Thus supervisory computer and VAL use this logical
unit when the DISK.NET switch is enabled.

Fig. 3.29 shows the format of logical unit 5.

1 byte 1 byte 2 bytes 0-256 bytes
LUN=5 FC

(variable)
FQ
(variable)

Message Data

00000101 Unknown Unknown Unknown

Fig.3.29 Format for the LUN=5 Message

62

The function code and function qualifier in the messages transmitted convey the
disk operation performed. All the possible disk operations are given with Table 3.7
below with function codes and qualifiers for each operation. The table below only
represents the received messages from the supervisor side of view.

Table 3.7 Possible Disk Operation Using LUN 5

FC Value FQ Value Description
1 0 Abort Outstanding Communication.
0 0 Close the file or directory that was opened last.
0 1 Open the file with the specified filename, which shall

be obtained from the message data bytes.
0 2 Open a file for writing data with the specified

filename, which shall be obtained from the message
data bytes.

0 4 Open the disk directory for reading.
0 5 Delete a file with the specified filename, which shall

be obtained from the message data bytes.
0 7 Compressing the disk operation directs the

Unimation’s floppy disk controller to repack the files
and recover inaccessible space.

0 8 Format the disk directs the Unimation’s floppy disk
controller to format a new diskette.

2 0 Requesting a block of data from the disk. The block
of data (256 bytes) shall be sent via the reply
message’s message data.

3 0 Writes a block of data, received within the message
data, to the disk.

LUN 5 properties were added to the supervisory control, but did not work, while no
error messages were received also. Possible problem, which cannot be proved, is
that the DISK.NET switch does not respond.

3.5 DDCMP

The Digital Data Communications Message Protocol (DDCMP) is a data link
control procedure ensuring a reliable data communication path between
communications devices connected by data links. DDCMP has been designed to
operate over full-duplex and half-duplex synchronous and asynchronous
channels in both point-to-point and multipoint modes. It can be used in a variety of
applications such as distributed computer networking, host/front-end processing,
remote terminal concentration, and remote job entry-exit system operation [15].

For DDCMP this thesis work actually used two message formats:

63

• Control Messages
• Data Messages

Other than those, maintenance messages exist in order to cover messages with error.

3.5.1 Control Messages

Control messages carry:

• Channel information,
• Transmission
• Status,
• Initialization notification; between the protocol modules.

The individual fields are specific for each type of control message. Control
messages have the following general form:

ENQ TYPE SUBTYPE FLAGS RCVR SNDR ADDR BLKCK3
8-bits 8-bits 6-bits 2-bits 8-bits 8-bits 8-bits 16-bits

Fig.3.30 General Form of Control Messages (DDCMP)

Table 3.8 Control Message Field Descriptions

ENQ The control message identifier, having a constant value of 5.
TYPE The control message type. This value denotes the type of each

control message.
SUBTYPE The subtype or type modifier field, providing additional

information for some message types. Its use is specific for each
message type.

FLAGS The link flags, which are used to control link ownership and
message synchronization.

bit 0 = Quick sync flag (QSYNC flag), used to notify the receiver
that the next message will not abut this message and
resynchronization should follow this message. The quick sync
flag reduces the length of sync sequences on synchronous links.
bit 1 = Select flag (SELECT flag), used to control transmission
ownership on multipoint and half-duplex links. Reverses link
direction on half-duplex links. Invites a tributary to send and
signals end of tributary selection on multipoint links.

RCVR The control message receiver field, which is used to pass
information from the data message receiver or slave station to the

64

data message sender or master station. Its use is specific for each
control message type.

SNDR The control message sender field, which is used to pass
information from the data message sender or master to the data
message receiver or slave. Its use is specific for each control
message type.

ADDR The station address field. For our purpose that we use DDCMP
for point-to-point link, this field is equal to 1. But in order to
create a control network this field shall be used.

BLKCK3 The block check value calculated by CRC (Cyclic Redundancy
Check) method on fields ENQ through ADDR.

SUBTYPE and FLAGS form a 2-byte quantity. The first byte contains the 8 low-
order bits of the SUBTYPE. The second byte contains the 6 high-order bits of the
SUBTYPE, the SELECT flag the highest order or most significant bit of the byte,
and the QSYNC flag the next bit in the byte. Thus the sequence shall be S | Q |
Subtype.

There are control messages, which are used within the supervisory software. These
are:

• Start Message (STRT)
• Start Acknowledge Message (STACK)
• Acknowledge Message (ACK)
• Negative Acknowledge Message (NAK)
• Reply To Message Number (REP)

Start Message (STRT)

The STRT message is used to establish initial contact and synchronization on a
DDCMP link. It is used only on link startup or re-initialization. It operates with the
start acknowledge message STACK, thus a STACK message shall be sent to the
STRT initiator to continue messaging. The start sequence resets message numbering
at the transmitter and addressed receiver. The form of the STRT message is:

ENQ STRTTYPE STRTSUB FLAGS FILL FILL ADDR BLKCK3

8-bits

8-bits

6-bits

2-bits

8-bits

8-bits

8-bits

16-bits

Fig.3.31 STRT Message Format

65

Using the DDCMP protocol specification, STRT message would become
(Fig.3.32):

ENQ STRTTYPE STRTSUB FLAGS FILL FILL ADDR BLKCK3
5 6 0 3 0 0 1 CRC

Value

Fig.3.32 STRT Message (Integer Representation, Base 10)

Using the data in Fig.3.32, we can obtain the binary representation of the STRT
message as:

00000101 | 00000101 | 11000001 | 00000000 | 00000000 | 00000001 | CRC (2
bytes)

Which corresponds to

5 | 6 | 192 | 0 | 0 | 1 | CRC (2 bytes)

CRC generation is described at following section of this chapter. A function
(crcoeg) has been developed in order to calculate the CRC value for a given set of
values as well.

It shall be noted that, while calculating CRC, header fill bits (16 bits) shall be added
since those bits are included at the supervisory communication. Those fill bits are
all ‘1’s thus they correspond to 255 | 255 as the integer representation for the first 2
byte fields.

>> CRC=crcoeg([255 255 5 6 192 0 0 1])

CRC =

 0 1 1 1 0 1 0 1
 1 0 0 1 0 1 0 1

>> binvec2dec(fliplr(CRC(1,:)))

ans =

 117

>> binvec2dec(fliplr(CRC(2,:)))

ans =

 149

66

Using the calculated CRC value, STRT message can be finalized as:

5 | 6 | 192 | 0 | 0 | 1 | 117 | 149 in integer representation or
00000101 | 00000101 | 11000001 | 00000000 | 00000000 | 00000001 | 01110101|
10010101
in binary representation, which is actually used via communication.

Start message is actually formed and sent by the VAL II system waiting for an
acknowledgement, which is the start acknowledgement message.

Start Acknowledge Message (STACK)

The STACK message is returned in response to a STRT when the VAL II system
has completed initialization and has reset its message numbering. The form of the
STACK message is (Fig. 3.33):

ENQ STACKTYPE STCKSUB FLAGS FILL FILL ADDR BLKCK3

8-bits

8-bits

6-bits

2-bits

8-bits

8-bits

8-bits

16-bits

Fig.3.33 STACK Message Format

Using the DDCMP protocol specification, STACK message would become:

ENQ STACKTYPE STACKSUB FLAGS FILL FILL ADDR BLKCK3
5 7 0 3 0 0 1 CRC

Value

Fig.3.34 STACK Message (Integer Representation, Base 10)

Using the data in Fig.3.33, we can obtain the binary representation of the STACK
message as:

00000101 | 00000110 | 11000001 | 00000000 | 00000000 | 00000001 | CRC (2
bytes)

Which corresponds to

5 | 7 | 192 | 0 | 0 | 1 | CRC (2 bytes)

CRC=crcoeg([255 255 5 7 192 0 0 1])

CRC =

 0 1 0 0 1 0 0 0

67

 0 1 0 1 0 1 0 1

>> binvec2dec(fliplr(CRC(1,:)))

ans =

 72

>> binvec2dec(fliplr(CRC(2,:)))

ans =

 85

Using the calculated CRC value, STACK message can be finalized as:

5 | 7| 192 | 0 | 0 | 1 | 72 | 85 in integer representation or

00000101 | 00000110 | 11000001 | 00000000 | 00000000 | 00000001 | 01001000 |
01010101

in binary representation, which is actually used by the communication.

Acknowledge Message (ACK)

The ACK message is used to acknowledge the correct receipt of numbered data
messages. It conveys the same information as the RESP field of the control message
(see next section for the control message) in numbered messages and is used when
acknowledgements are required, and when no numbered messages are to be sent in
the reverse direction. The form of the ACK message is:

ENQ ACKTYPE ACKSUB FLAGS RESP FILL ADDR BLKCK3

8-bits

8-bits

6-bits

2-bits

8-bits

8-bits

8-bits

16-bits

Fig.3.35 ACK Message Format

Using the DDCMP protocol specification, ACK message would become:

ENQ ACKTYPE ACKSUB FLAGS RESP FILL ADDR BLKCK3
5 1 0 3 Value 0 1 CRC

Value

Fig.3.36 ACK Message (Integer Representation, Base 10)

68

RESP stands for the response number used to acknowledge correctly received
messages, thus this information is obtained from the incoming data packet.

Using the data in Fig.3.36, we can obtain the binary representation of the ACK
message as:

00000101 | 00000001 | 11000000 | (RESP)2 | 00000000 | 00000001 | CRC (2 bytes)

Which corresponds to:

5 | 12| 192+REASON | RESP | 0 | 1 | CRC (2 bytes).

For this set of bits represented with base 10, we cannot calculate the CRC value
thus the NAK message similar to ACK, since the NAK message is generated
according to the data packet received with error(s).

For this set of bits represented with base 10, we cannot calculate the CRC value
thus the ACK message, since the ACK message is generated according to the data
packet received.

Negative Acknowledge Message (NAK)

The NAK message is used to pass error information from the data receiver to the
data sender. The error reason is included in the subtype field. The NAK message
also includes the same information as the ACK message, thus serving two
functions: acknowledging previously received messages and notifying the master of
some error condition. The form of the NAK message is:

ENQ NAKTYPE REASON FLAGS RESP FILL ADDR BLKCK3

8-bits

8-bits

6-bits

2-bits

8-bits

8-bits

8-bits

16-bits

Fig.3.37 NAK Message Format

Using the DDCMP protocol specification, NAK message would become:

ENQ NAKTYPE REASON FLAGS RESP FILL ADDR BLKCK3
5 2 Value 3 Value 0 1 CRC

Value

Fig.3.38 NAK Message (Integer Representation, Base 10)

69

REASON field identifies the source and reason for the negative acknowledgement.
The value of this field is used for error recovery.
Using the data in Fig.3.38, we can obtain the binary representation of the NAK
message as:

00000101 | 00000010 | 11(REASON)2 | (RESP)2 | 00000000 | 00000001 | CRC (2
bytes)

Which corresponds to:

5 | 12| 192+REASON | RESP | 0 | 1 | CRC (2 bytes).

For this set of bits represented with base 10, we cannot calculate the CRC value
thus the NAK message similar to ACK, since the NAK message is generated
according to the data packet received with error(s).

Reply To Message Number (REP)

The REP message is used to request received message status from the data receiver.
It is usually sent when the data transmitter has transmitted data messages and has
not received a reply within a time-out period. The response to a REP is either an
ACK or NAK depending on whether the receiver has or has not received all
messages previously sent by the transmitter. The form of the REP message is:

ENQ REPTYPE REPSUB FLAGS FILL NUM ADDR BLKCK3
8-bits

8-bits

6-bits

2-bits

8-bits

8-bits

8-bits

16-bits

Fig.3.39 REP Message Format

Using the DDCMP protocol specification, REP message would become:

ENQ REPTYPE REPSUB FLAGS FILL NUM ADDR BLKCK3
5 3 0 3 0 Value 1 CRC

Value

Fig.3.40 REP Message (Integer Representation, Base 10)

NUM field used within this control message represents the number of the last
sequential numbered data message sent by the transmitter, excluding the re-
transmitted ones.

70

Similar to ACK and NAK we are not able to generate the REP message without the
value of the NUM field.

3.5.2 Data Messages

Data Messages carry user data over DDCMP links; each data message also carries
the number assuring correct massage sequencing. The starting number is initialized
with control messages STRT and STACK, which are mentioned above. For each
data massage, the receiver must acknowledge the transmitter for the correct receipt
of data message, using the sequence number. The form of data message is:

SOH COUNT FLAGS RESP NUM ADDR BLKCK1 DATA BLKCK2

8-bits

14-bits

2-bits

8-bits

8-bits

8-bits

16-bits

X
-bytes

16-bits

Fig.3.41 Data Message Format

Table 3.9 Data Message Field Descriptions

SOH The numbered data message identifier. It has a constant value of

129.
COUNT The byte count field. It specifies the number of 8-bit bytes in the

DATA field. The value zero is not allowed.
FLAGS The link flags, which are used to control link ownership and

message synchronization.

bit 0 = Quick sync flag (QSYNC flag), used to notify the receiver
that the next message will not abut this message and
resynchronization should follow this message. The quick sync
flag reduces the length of sync sequences on synchronous links.
bit 1 = Select flag (SELECT flag), used to control transmission
ownership on multipoint and half-duplex links. Reverses link
direction on half-duplex links. Invites a tributary to send and
signals end of tributary selection on multipoint links.

RESP The response number, which is used to acknowledge correctly
received messages.

NUM The transmit number, which is used to denote the number of this
data message.

ADDR The station address field. For our purpose that we use DDCMP
for point-to-point link, this field is equal to 1. But in order to
create a control network this field shall be used.

BLKCK1 The block check value calculated by CRC (Cyclic Redundancy
Check) method on fields SOH through ADDR.

DATA The numbered message data field. This field is totally transparent

71

to the protocol and has no restrictions on bit patterns, groupings,
or interpretations. The only requirement is that it contains the
number of 8-bit bytes specified in the COUNT field.

BLKCK 3 The block check value calculated by CRC (Cyclic Redundancy
Check) method on the DATA field only.

COUNT and FLAGS form a 2-byte quantity. The first byte contains the 8 low-order
bits of the COUNT. The second byte contains the 6 high-order bits of the COUNT,
the SELECT flag the highest order or most significant bit of the byte, and the
QSYNC flag the next bit in the byte. Thus the sequence shall be S | Q | Count.

After synchronization and acknowledgement of communications between
supervisory computer and the PUMA robot control system data messages are used
in order to control the robot. VAL sends its messages using those data messages as
well. In order to send a “DO READY” command supervisory computer must do the
following:

a) Convert Command into ACII code,
b) Insert converted command into VAL’s logical units,
c) Pack the logical unit into DDCMP (CRC calculation required),
d) Transmit the DDCMP packet.

>> Command='DO READY';

>> CommandDecimal=double(Command) % Convert Command to its Decimal Representation

CommandDecimal =

 68 79 32 82 69 65 68 89

“DO READY” command when fitted into LUN 2 can be represented as shown in
Fig. 3.42:

2 130 0 1 68 79 32 82 69 65 68 89

Fig.3.42 Decimal Representation of “DO READY” in LUN 2

Using the DDMP data message structure (Fig.3.41), and the overall frame structure,
we obtain the packet as shown with Fig.3.43. Note that, NUM and RESP fields are
assumed to be 1 and 2 respectively and the COUNT is equal to 12.

72

255 255 129 12 192 0 1 1 BLKCK 1 …

… 2 130 0 1 68 79 32 82 69 …

… 65 68 89 BLKCK2 255 255

Fig.3.43Decimal Representation of “DO READY” command, which is fitted
into a DDCMP packet without CRC values.

DDCMP data messages as described earlier, use CRC for error checking, which
consume time. As seen from previous figure (Fig. 3.43), BLKCK 1 and BLKCK 2
shall be calculated in order to complete the total packet. We have developed a fast
CRC calculation function in our studies, this is a function called “crcoeg”, which
calculates CRC value for a given set of data and its output is binary.

In order to calculate BLKCK 1 (2-bytes) value for a DDCMP packet, the function
(crcoeg) takes the first 8 bytes of the packet and outputs the result of the BLKCK 1
in binary representation in which the first 8-bits of the result is the 1st byte and the
second 8-bits of the result is the second byte of the BLKCK 1 field (Fig. 3.43). The
process is actually the same for BLKCK 2 but this time the CRC calculation
function takes the data field of the DDCMP packet, which is the 12-bytes after the
BLKCK 1 field for the representation in Fig. 3.43.

>> BLKCK1=crcoeg([255 255 129 12 192 0 1 1])

BLKCK1 =

 1 1 1 1 0 0 1 0
 0 1 0 0 0 0 0 0

>>BLKCK1_1stByteInDecimal=(binvec2dec(fliplr(BLKCK1(1,:))))
BLKCK1_1stByteInDecimal = 242

>>BLKCK1_2ndByteInDecimal=(binvec2dec(fliplr(BLKCK1(2,:))))

BLKCK1_2ndByteInDecimal =64

For BLKCK 2 we use the function ‘crcoeg’ as well.

>> BLKCK2=crcoeg([2 130 0 1 68 79 32 82 69 65 68 89])

BLKCK2 =

 1 0 0 0 0 0 0 1
 1 0 1 0 0 1 1 0

Function call for
BLKCK1.

BLKCK 1 value in binary

BLKCK1 1st
byte in decimal

BLKCK1 2nd
byte in decimal

73

>>BLKCK2_1stByteInDecimal=(binvec2dec(fliplr(BLKCK2(1,:))))

BLKCK2_1stByteInDecimal =129

>>BLKCK2_2ndByteInDecimal=(binvec2dec(fliplr(BLKCK2(2,:))))

BLKCK2_2ndByteInDecimal =166

The program code of the “crcoeg” function that calculates CRC for a block check is
given below related to (BLKCK1 and BLKCK2) parameters in the DDCMP packet.

% CRC CALCULATOR %
% Developed By Onder E. GEBIZLIOGLU %
% %
% %
% Modified @ 04/04/2003 %
% %
% INPUT & OUTPUTS
%%
% INPUT is a decimal array of size (1,X) : outdata
% OUTPUT is crcf where crcf(1,:) is the 1st 8_bits and crcf(2,:) the 2nd
% 8_bits total of 16_bits
%%
% Functions used are appzero and shiftone (thus appzero.m % shiftone.m must
% be in the same file folder with crcoeg.m
%%

function crcf=crcoeg(outdata)

[q,q1]=size(outdata);

for i=1:1:q1
 out(i,:)=dec2binvec((outdata(i)*2),9);
end

%Initialize CRC variablescrc=dec2binvec(hex2dec('fffffe'));
v=dec2binvec(hex2dec('1fffe'));
w=dec2binvec(hex2dec('A001')*2);
one= dec2binvec(hex2dec('ffffff'));

%%%
% CRC ALGORITHM
%%%
for i=1:1:q1
 r=appzero(crc,out(i,:));
 crc=xor(r(1,:),r(2,:));

 for xx=1:1:8
 r1=appzero(crc,v);
 crc=and(r1(1,:),r1(2,:));
 s=shiftone(crc);
 crc=s(2,:);
 if bitand(binvec2dec(crc),1)

74

 r4=appzero(crc,w);
 crc=xor(r4(1,:),r4(2,:));

 end
 end
end
%%%
rw=appzero(crc,dec2binvec(hex2dec('1fe')));
% First 8 Bits
crcf(1,:)=fliplr(dec2binvec((binvec2dec(and(rw(1,:),rw(2,:)))/2),8));
% Second 8 Bits
crcf(2,:)=fliplr(dec2binvec((binvec2dec(and(rw(3,:),rw(4,:)))/512),8));
%%%

According to the DDMP, the algorithm for computing the cyclic redundancy check
is as follows [15]:

a) Consider the header or data portion of the message as it appears on a serial
line (LSB of the first byte first, MSB of the final byte last) and append 16
zeros after the header or data.

b) Take the string of bits constructed in 1, and treat each bit as the coefficient

of a term of a polynomial with the LSB of the first byte being the coefficient
of the highest order polynomial term. The highest order term is A * X^63
for a header block and A * X^(8 * <count> + 15) for a data block where A is
the least significant bit of the first byte of the header or data. The lowest
order term is 0 * X^0 for both cases.

c) Divide the polynomial constructed in 2, by the CRC-16 polynomial X^16 +

X^15 + X^2 + 1 using synthetic division and using modulo 2 arithmetic on
the coefficients obtaining a quotient that is discarded and a 16-bit
remainder.

d) Transmit the coefficients of the remainder as the block check bytes

following the original message bits, transmitting the coefficients of the
highest order term (X^15) first. Thus, the first byte represents coefficients
of the X^8 through X^15 terms of the remainder (from left to right) and
the second byte represents coefficients of the X^0 through X^7 terms of the
remainder (also from left to right).

This CRC error-checking algorithm runs both on the transmitter and on the receiver
sides of the communication, thus communicating sides shall both calculate the CRC
values for incoming and outgoing packets. They perform the same algorithm and
compare the received block check bytes with the computed block check bytes. If
the bytes are not identical, an error has occurred. However, we did note during our
studies that CRC calculation for the incoming packets was unnecessary for the
supervisor side, since no communication error was met on that side. Thus we have

75

assumed that the messages sent from PUMA were received totally correct. This
assumption, which was tested to be correct for our robot’s workspace later, has
decreased the number of calculations for each transaction of a particular command
that supervisory computer should handle by 25%

Calculate CRC for the outgoing
message and append it to the message
packet.

Receive packet, discard and exclude
the received CRC value and obtain the
message data.

Receive packet, calculate the CRC
value for the incoming message data,
and compare it with the received CRC
value.

Calculate CRC for the outgoing
message and append it to the message
packet. PUMA requires CRC to be
calculated.

Fig.3.44 CRC Calculation Status for the Communication

3.6 Supervisory Software
According to the supervisory rules and assumptions described previously,
supervisory software has been designed and implemented. This software enables the
user to send VAL commands directly to the PUMA robot just like the monitor
(controller) commands within the PUMA system.

External
Computer

(Supervisor)

76

Fig.3.45 Supervisory Communication Port Selection

Supervisory communication is provided through Com 1 or Com 2 ports of the
supervisory computer, which can be selected using the supervisory software initial
graphical user interface shown in Fig.3.45. Once the port is selected the
communication port settings are conducted automatically according to the
supervisory port specifications declared by the Unimation.

The baud rate for the serial line for the supervisory communication is 9600 baud,
which is set by the PUMA producer Unimation. The communication data are
transmitted as 8-bit bytes, with one parity bit for each byte and no parity
information is included in the data bytes. After the selection of the communication
port (COM 1 | COM 2), the supervisory system sets up the communication
parameters according to this information given above. The code setting the
parameters for the communication port is given below.

set(s,'BaudRate',9600)
set(s,'StopBits',1)
set(s,'Parity','none')
set(s,'BreakInterruptFcn','')
set(s,'ByteOrder','littleEndian')
set(s,'BytesAvailableFcn','')
set(s,'BytesAvailableFcnMode','byte')
set(s,'DataBits',8)
set(s,'DataTerminalReady','on')
set(s,'ErrorFcn','')
set(s,'FlowControl','none')
set(s,'ReadAsyncMode','continuous')
set(s,'RequestToSend','on')
set(s,'Terminator','')

77

Fig.3.46 Communication Initialization

Once the port is opened the supervisory software will be waiting for the PUMA
supervisory communication to initialize the communication according to the control
messaging (STRT message) of DDCMP protocol, which is described within this
chapter.

Note that the supervisory computer software will cause a timeout error when the
communication does not start within the selected timeout period.

Fig.3.47 Supervisory Software Messaging User Interface

The supervisory software opens the supervisory software messaging GUI for
command and data messaging between the supervisory computer and the PUMA
robot system, which enables all VAL commands to be transmitted and executed by
the robotic arm.

78

Fig.3.48 Supervisory Message / Command Box

The supervisory commands or messages to be transmitted are to be entered to the
Message / Command Box within the supervisory software messaging screen. Fig.
3.48 shows the message / command box which holds the message or the command
(e.g. “CALIBRATE”) to be transmitted to PUMA. The commands entered are to be
executed or replied by the PUMA. It shall be noticed that the messages or
commands, which are entered within this dialogue, shall be complete VAL
messages, thus VAL and robotic knowledge is required to use the supervisory
software but a control software is also implemented above the supervisory software
(explained within Chapter 4) which does not require the operator or the user to have
the knowledge of VAL. This control software is described with the following
chapter.

Fig.3.49 PUMA System Messages

The messages and requests sent by the PUMA (if any) are displayed within the
supervisory software-messaging screen as well. Those messages may require the
user to take action for the execution of a specific command. Also user requests such
as “WHERE” are replied and displayed by the PUMA system message box. Note
that most of the commands and requests of PUMA system are handled by the
supervisory software thus they are not displayed. Fig. 3.49 displays a message “Are
You Sure? (Y/N) received from VAL II. The external supervisor must reply to this
message in order to continue messaging otherwise VAL will go on standby, waiting
for the reply of its request or message.

Fig.3.50 System Messages

CALIBRATE

Are You Sure?(Y/N)

79

The overall supervisory communication system messages are also displayed within
the supervisory software-messaging screen. The system messages are important
since they lead the user to take required action for the execution of the overall
system. The system messages are most important when initializing the supervisory
communication since the operator or the user has to take some necessary action
such as enabling the network and the supervisory port of the PUMA controller. Fig.
3.50 shows the system messages box, which displays a system message “ENABLE
NETWORK & SUPERVISOR”, guiding the user to enable the network and
supervisor ports of the controller thus the VAL.

3.6.1 Operation of the Supervisory Software

The supervisory software actually follows the rules of the DDCMP and the Logical
Units, which are described previously within this chapter.

The DDCMP protocol has been totally implemented since it is the bottom layer
protocol of the supervisory communication, which accepts a single transmission
request from a middle layer and can simultaneously be reading a single message
from the communication interface. The DDCMP is implemented using its features
described in the related item of this chapter.

The logical units are also implemented as a whole within the supervisory software
but LUN 0, LUN 4 and LUN 5 are not completely used since robot programming
through the supervisory communication is handled with another control software
(Chapter 4) which does not require the knowledge of VAL. According to this
information the reply message comparison priority has been reformed and LUN 1,
2, 3 cases are compared and handled before the others. Although this seems to be a
lack of the supervisory communication, the control software fills in the gaps
enabling most of the VAL specifications and command to be executed and even
beyond those VAL command set many more commands can be generated by the
use of third party applications and the control software.

3.6.2 Advantages and Disadvantages of Supervisory Software

Supervisory software has all disadvantages that the VAL has since it is
implemented on top of it, but it brings many more advantages since it is executed on
a personal computer. Advantages that are specific to the supervisory
communication can be listed as follows:

• Operates on a personal computer (Operating system free),
• Enables the integration of third party applications,
• Enables network control (requires more work),
• Enables the execution of all VAL monitor commands.

80

Specific robotic programming can increase advantages that supervisory
communication brings. Thus those advantages listed above are the most basic
advantages of the supervisory software and communication. In our studies we have
developed control software that is integrated to the supervisory software and we
managed to add many more special functions to the overall system. Discarding the
integrated software modules implemented above the supervisory communication
software, the disadvantages of the supervisory software can be listed as follows:

• Operation and execution of commands are slow,
• VAL robot programming is not enabled (handled by the control software),
• Requires VAL to start up and initialize the robotic system,
• Requires VAL and robotic knowledge (handled by the control software),
• Requires MATLAB to be installed on the supervisory computer,
• Requires high memory for better performance,
• Communication buffer problems may occur due to OS.

Most of the disadvantages are due to the programming language (MATLAB) and
hardware performances, which can be overcome later on. But notice that the
advantages it brings are more important since it enables more studies to be carried
out on the robotic arm. Image processing, speech processing, network studies can
be integrated to the robot via the supervisory communication software.

81

CHAPTER 4

4 CONTROL INTERFACE

4.1 General

In order to supply the user with a user-friendly, easy to use GUI, interactive
controlling and simulation software has been developed. This interface actually
collects user requests, and sends them to the supervisory system, which is
mentioned in the previous chapter.

The supervisory program is integrated with an interface to the Robotic Toolbox
written for MATLAB [16][17]. The toolbox has been modified enabling the user to
send movement commands (joint angle movements) without the knowledge of VAL
robot programming language.

In the beginning of the studies the control interface was designed and implemented
with C++. This version of the control interface had only the manipulator kinematics
calculation capability. The implementation was specific for the PUMA 700 series
robot. Although it responds faster in runtime, the development with C++ was hard
especially for user interface and any change within the design required time
consuming rework. Thus the code was transferred to the MATLAB environment.

4.2 The Choice of MATLAB for the Robot Control Interface

The robot control interface has been implemented with MATLAB in order to use its
benefits and advantages upon simulation, graphics and matrix calculations.
MATLAB has become very popular within robotic applications since manipulator
mathematics especially kinematics use matrix calculations very commonly.

4.2.1 Advantages and Disadvantages in Using MATLAB

As stated before the most important advantage of using MATLAB is the ease of
programming for matrix calculations, since MATLAB is specifically designed for
matrix operations and thus have built-in functions for matrices.

Advantages and benefits obtained using MATLAB can be listed as follows:

82

• Ease of matrix definitions and operations;
• Ease of programming;
• Ease of modification on existing code;
• C / C++ and Java code can be called and executed within the MATLAB

code;
• Independent of operating system;
• Requires less training required to start using it, if compared with other

programming environments and languages (Microsoft Visual C++ or Visual
Basic) which is very important for future work and improvement;

• Ease of integration with existing robotic applications available;
• Enables the use of Simulink, which is a package supplied with MATLAB,

uses a graphical data-flow language to represent the mathematics of signal
processing and control theory. The Simulink package is not used within our
approach but it is very popular for designing control systems and especially
on motor control;

• Code conversion to C and Java is possible with small loss (this feature has
not been tested within the studies of this thesis);

• Enables embedded code generation specifically for Motorola and Texas
Instruments components;

• Enables the use of Toolboxes within MATLAB, which are specialized
collections of M-files (MATLAB language programs) built specifically for
solving particular classes of problems.

Other than those advantages we obtain, MATLAB also brings some disadvantages
but advantages are more valuable considering the studies performed.

The disadvantages of using MATLAB as the development environment are listed
below:

• Slow when compared to C / C++;
• Execution of code requires MATLAB to be installed;
• Code cannot be protected easily;
• MATLAB uses a great amount of memory and thus slows down the OS.

4.3 Robotic Toolbox

MATLAB has increased its power with the use of built in toolboxes within its
package. The MATLAB version 6.5.0 Release 13 includes the following built-in
toolboxes:

• Communications: Design and analyze communications systems
• Control System: Design and analyze feedback control systems
• Curve Fitting: Perform model fitting and analysis

83

• Data Acquisition: Acquire and send out data from plug-in data acquisition
boards

• Database: Exchange data with relational databases
• Filter Design: Design and analyze advanced floating-point and fixed-point

filters
• Financial: Model financial data and develop financial analysis algorithms
• Fuzzy Logic: Design and simulate fuzzy logic systems
• Image Processing: Perform image processing, analysis, and algorithm

development
• Instrument Control: Control and communicate with test and measurement

instruments
• LMI Control: Design robust controllers using convex optimization

techniques
• MATLAB Link for Code Composer Studio: Use MATLAB with RTDX

enabled Texas Instruments digital signal processors
• Mapping: Analyze and visualize geographically based information
• Model Predictive Control: Control large, multivariable processes in the

presence of constraints
• Mu-Analysis and Synthesis: Design multivariable feedback controllers for

systems with model uncertainty
• Neural Network: Design and simulate neural networks
• Optimization: Solve standard and large-scale optimization problems
• Partial Differential Equation: Solve and analyze partial differential equations
• Robust Control: Design robust multivariable feedback control systems
• Signal Processing: Perform signal processing, analysis, and algorithm

development
• Spline: Create and manipulate spline approximation models of data
• Statistics: Apply statistical algorithms and probability models
• Symbolic Math: Perform computations using symbolic mathematics and

variable-precision arithmetic
• System Identification: Create linear dynamic models from measured input-

output data
• Virtual Reality: Create and manipulate virtual reality worlds from within

MATLAB and Simulink
• Wavelet: Analyze, compress, and de-noise signals and images using wavelet

techniques.

Other than those built-in toolboxes, there are other toolboxes implemented by
individuals or workgroups for other research areas and the robotic toolbox is one of
those toolboxes. The Robotic Toolbox [16] provides many functions that are useful
in robotics including such things as kinematics, dynamics, and trajectory generation
and it actually uses some of the functions pre-defined with the initially generated
standard toolboxes. The robotic toolbox is useful for simulation and for analyzing
results from experiments with real robots as well.

84

The robotic toolbox is written using the object-oriented programming technique. A
specific robot within the robotic toolbox is actually an object (object is an unique
instance of a data structure defined according to the template provided by its class.
Each object has its own values for the variables belonging to its class and can
respond to the functions defined by its class) of the robot class, which is actually
previously generated. A class is the prototype for an object in an object-oriented
language; analogous to a derived type in a procedural language. A class may also be
considered to be a set of objects, which share a common structure and behavior. The
structure of a class is determined by the class variables, which represent the state of
an object of that and the behavior is given by a set of methods (functions)
associated with the class.

In order to use the robotic toolbox, PUMA 760 instance shall be created, that is we
have to define a new object using the robot class. In other words, we have to define
and describe our PUMA 760 series robot to the robotic toolbox, using its
specifications. Thus a PUMA 760 robot definition has been generated using the
results found and described within Chapter 2 and section 2.6 “Model for PUMA
700 Series”, in which we have assigned the link coordinate frame and determined
the Denavit and Hartenberg (DH) [11,12] parameters of the robot.

Technically we have defined a PUMA 760 object in the current workspace of
MATLAB, which described the kinematical characteristics of a Unimation Puma
760 manipulator using standard DH conventions, thus each link was defined and
described to the robotic toolbox software.

The MATLAB workspace consists of the set of variables (named arrays) built up
during a MATLAB session and stored in memory. Variables can be added to the
workspace by using functions, running M-files, and loading saved workspaces.

>> L{1} = link([pi/2 0 0 0 0], 'standard');

>> L{2} = link([0 .4318 0 0 0], 'standard');

>>L{3} = link([-pi/2 .0203 0 .15005 0], 'standard');

>>L{4} = link([pi/2 0 0 .4318 0], 'standard');

>>L{5} = link([-pi/2 0 0 0 0], 'standard');

>>L{6} = link([0 0 0 0 0], 'standard');.

>> L{6} = link([0 0 0 0 0], 'standard');

Using the object link definition above and the kinematical theory described within
Chapter 2 (the transformation matrices), we have managed to plot the PUMA 760
figure, which is actually the same for all PUMA 700 series robots since their
kinematical characteristics are the same.

85

Fig.4.1 PUMA 760 Plotting

Translating the base of the PUMA with the “transl” function can modify the base
position of the robot. This function returns the translational part of a homogenous
transform as a 3-element column vector.

>> transl([-0.5 -0.5 0])

ans =
 1.0000 0 0 -0.5000
 0 1.0000 0 -0.5000
 0 0 1.0000 0
 0 0 0 1.0000

According to the robot object definition, the base is located at [0 0 0] in the
cartesian coordinate space by default, since while creating the robot we have
defined the base coordinates of the robot as [0 0 0] in cartesian space.

86

>> p760.base %base transformation by default

ans =
 1 0 0 0
 0 1 0 0
 0 0 1 0
 0 0 0 1

>> p760.base=p760.base*transl([-0.5 -0.5 0]);

>> p760.base %translated base transformation

ans =
 1.00 0 0 -0.50
 0 1.00 0 -0.50
 0 0 1.00 0
 0 0 0 1.00

Fig.4.2 PUMA 760 with Translated Base

3D workspace enveloping, the view of the arm (in perspective or orthographical),
wrist labels (xyz or noa) can be modified for the intended representation of the
robot. Other than that, the user can draw also other robots as well, since the robot
object is created once. Representations of the arm in subsequent instances can also
be generated using the PUMA 760 robot object.

87

Instance is an individual object of a certain class. While a class is just the type
definition, an actual usage of a class is called "instance". Each instance of a class
can have different values for its instance variables, i.e. the base of the PUMA 760
object. While generating the representation for the next instance of the robot class
object, user must not forget to translate the base of the robot, otherwise the bases of
subsequent robot drawings will coincide.

>> p760_2=p760;

>> p760_2.name='2nd PUMA 760';

>> p760.base=transl([0.5 0.5 0]);

>> p760_2.base=transl([-0.5 -0.5 0]);

Fig.4.3 Two subsequent PUMA 760 Robot representations

This feature has been used here for testing purposes only, since we simulate and
control only one robot in this study. DH parameters for each robot object has been
modified and compared to the actual PUMA 760 manipulator, which fastened up
the testing process of the control interface software. The changes in DH parameters
effect both the simulation and the execution of robot motion on the real
environment. We compared the outputs of each robot object defined within the
software with the actual results obtained from the robot MARK II controller.

88

In simulating the robot motion, rotation matrices are needed to be implemented so
that the following shows the result of those implementations for a specific example
such as a rotation about x- axis for a particular rotation angle.

>> rotx(0.50265) % generates transformation matrix about the X-axis for 0.50265 (rad)

ans =
 1.0000 0 0 0
 0 0.8763 -0.4817 0
 0 0.4817 0.8763 0
 0 0 0 1.0000

These rotation matrices are needed to generate movements of robot in the
simulation.

Fig.4.4 Joint 1 Rotated About its X-axis

Using all those transformation matrices a complete control interface has been
designed in accordance with the features of the robotic toolbox. This interface
enables the user both for calculating and simulating a robot pose. Since it is a
complete interactive tool, it does not require the knowledge of VAL II robotic
programming language.

89

The robot control interface can actually be used for any kind of manipulator for
simulation purposes, but the only thing that has to be considered is that the robot
object, which defines the kinematical characteristics of the robot to be represented,
must be defined to the system.

Fig.4.5 displays the control panel for the robot control interface. This control panel
lets the user plan the motion of the manipulator, by giving a means to modify the
joint angles independently. The end-effector parameters (ax, ay, az, x, y, z) also are
given within this control panel.

Fig.4.5 Control Interface Panel

The control panel initially starts the robot from the READY position that is the arm
stretches up along the z-axis.

90

Fig.4.6 PUMA 760 at READY Position

The initial position of the robot that is set by the control software corresponds to the
“DO READY” command positioning of the VAL system. The intended movements
are executed via the scroll bars of the control panel. There exist six scroll bars,
which actually correspond to each joint of the manipulator. Fig.4.7 shows how the
scroll bars are used. The editable boxes at the right-hand side of each scroll box also
display the angular value for each joint.

91

Fig.4.7 Joint Movements via the Control Panel

The robot motion is displayed in another figure window of MATLAB as the joint
angular parameters are changed. The control panel also displays the motion of the
robot at the bottom layer of the figure window, but in order to see the motion
clearly it is recommended that the second window be used.

The user can also simulate the robot through different robot positions and poses
using the ‘simulate button’ in the control panel. In order to do this user shall record
each desired position of the robot by the set position button, it is the users choice to
record as many positions. The number of points to be traced with the simulation is
determined next, but the default is 2. That is the robot moves directly from ‘position
x’ to ‘position x+1’, and no point is considered in between. The best choice in
setting the number of points (Fig.4.8) is to set greater values for greater position
distances considering end-effector positions after each set of robot position.

92

Fig.4.8 Simulation of Movements

If we move joint 1 from the angular ready position qr =[0 1.5708 -1.5708 0 0 0] to
qd=[0.5655 1.5708 -1.5708 0 0 0] and set the number of points to 10, we end up
with the following angular positions,

Initial
Position
(READY)

 0.0000 1.5708 -1.5708 0 0 0

 0.0065 1.5708 1.5708 0 0 0
 0.0432 1.5708 1.5708 0 0 0
 0.1187 1.5708 1.5708 0 0 0
 0.2243 1.5708 1.5708 0 0 0
 0.3412 1.5708 1.5708 0 0 0
 0.4468 1.5708 1.5708 0 0 0
 0.5223 1.5708 1.5708 0 0 0
 0.5590 1.5708 1.5708 0 0 0

RECORDS POSITION
STARTS SIMULATION

SETS NUMBER of POINTS

93

Destination
Position

 0.5655 1.5708 -1.5708 0 0 0

Thus, the joint space trajectory determination between initial and destination
positions is possible. Each point between the initial position and the destination
position can be calculated and described by the position of the robot in terms of
joint positions/angles is Joint Space. The same calculations can also be carried out
for cartesian trajectory determination between two positions as well, but this time
the trajectory will be identified in terms of Cartesian coordinates.

The VAL commands to be transmitted to the PUMA controller via the supervisory
communication port can be automatically generated after the simulation process;
user is not involved with the program or command generation process. User creates
the program, which is actually the set of VAL commands to be executed, through
the control panel via the “CREATE PROGRAM” button (Fig.4.9 – Fig 4.10) so that
the created VAL program is saved as a text file under any folder within the file
structure of the computer. The file extension can also be changed but in order to run
those VAL programs it is important that those file types are to be readable by
MATLAB, these file type extensions can be .m (MATLAB file), .mat (MATLAB
MAT workspace file), .doc (document file), or .txt (text file).

The repeat action value (Fig. 4.9) is used when a simulated robot motion is to be
executed more then once.

Fig.4.9 Creating VAL Programs

94

Fig.4.10 Creating VAL Programs

The content of the generated VAL program, which is actually the commands
generated and prepared for transmission and execution via the supervisor, depends
on the recorded position values and simulation results. A basic example for the
generated VAL command set can be:

DO READY
SET SPEED 50
DO DRIVE 1,10,10
DO DRIVE 1,-90,80
DO MOVE #PPOINT(90,–90,0, 0,20,0)
DO DRIVE 2,-20,20
DO DRIVE 3,35,90
SPEED 80
DO DRIVE 6,266,90
DO DRIVE 6,-266,10
DO DRIVE 4,100,50
DO DRIVE 4,-35,90

95

Fig. 4.11 Execution of The Automatically Generated VAL Program

The VAL program generated can be executed anytime via the “EXECUTE” button
on the control panel. When this action is started, VAL Terminal I/O commands are
sent to PUMA over the supervisory port. The “TRANSFER PROGRAM” executes
a function that sends the overall program to the PUMA side of the communicating
parties. The VAL program is then created within the memory of the controller. In
order to execute the VAL programs the supervisory software, which is described
within Chapter 3, shall be started before the execution.

4.4 The PUMA System Control Panel

To guide the user through the processes and to fully integrate the software modules
a program module, which arranges the execution of programs, has been developed
to run on top of all. It brings other features; it provides ease with operation,
provides information on software processes, and guides the user on operation above
the supervisory software. It is the PUMA System Control Panel and shown in Fig.
4.12.

Integrated with the software modules, which are listed within the control selection
menu within the screen shown in Fig. 3.13, the supervisory system has become a
complete control system for the PUMA 700 series robots. All disadvantages of
supervisory control stated in Chapter 3 has also been overcome.

96

Fig.4.12 PUMA System Control Panel

The System Control Panel guides the user and executes required programs and
functions that are required for other software modules. It also gives information
about each software module. User can select which module to be executed from the
control selection menu (Fig.4.13) within the system control panel, which handles all
required programs underneath each module.

Fig.4.13 Control Selection Menu

97

The control selection menu consists of five items, which are:

• Supervisor
• Teach Pendant Mode
• Programming Mode
• Animation Mode
• Other

The supervisor and the teach pendant mode (control interface) were described
earlier. Other than those described we have the Programming module and the
animation module where as the fifth module named “Other” is left empty for future
implementations. The module selection list can be enlarged with other third party
modules and applications and even with the built-in toolboxes of MATLAB.

The programming module has been developed in order to let the user write and
execute VAL programs using personal computers. The VAL programs can be
written in text (.txt), document (.doc) or MATLAB (.m) file formats. This feature
also enables the user to include external information to be included in VAL
programs, which means if a trajectory has been defined by another program (e.g.
AutoCAD) it can be carried and merged into VAL programs.

Fig.4.14 Programming Module Interface

98

The programming module also uses the supervisory control software (Chapter 3) in
order to execute the VAL commands.

The programming module also enables VAL programming at home, which was not
available before these studies since the PUMA controller is not suitable with any
other operating system and it also does not have standard disk within its original
configuration, thus the transportation of programs is not possible without the
controller itself.

The fourth module is the animation module. It is actually a demonstration module,
which uses the outcomes of another software developed for human face tracking.
The demonstration is to show the capability of the new control system enabling the
users to use new sensory data information like the information from a web cam. The
animation module is described in Chapter 5, but since it is only for demonstration
the video processing techniques will not be discussed in detail.

99

CHAPTER 5

5 AN INTERACTIVE CONTROL APPLICATION OF PUMA
ROBOT USING THE SUPERVISORY COMMUNICATION

PORT

5.1 General

In order to demonstrate the capability of the supervisory system that we have
developed a different application was integrated to the overall system. With this
new software integration we managed to use a video camera information in
modifying the manipulator pose. The application is related to the human head/face
motion, which tries to find the direction and the speed of the human motion out of
pre-recorded video images.

As discussed before, the PUMA controller does not use sensory information other
than those within the original manipulator such as its encoders. Before the
development of the supervisory system we were not able to use camera (or any
other new sensor) information for controlling the robot motion but with the ability
of our supervisory software we can control our robot utilizing the data from other
sources and applications. The studies held under the topic of Chapter 5, demonstrate
the new ability that PUMA has gained with the capabilities of the supervisory
communication.

We have transferred the output of the video system, as the speed of the action and
displacement at the end of the action recorded in successive frames grabbed by the
camera, to the supervisory software in order to modify the pose of the robot. The
output data from the video system is obtained by processing the image frames
extracted out of the video file. In order to obtain the direction and speed of motion
within and between the image frames, we have used block-matching method, which
can be considered as the most popular method for practical motion estimation [18].

5.2 Block – Matching Method

The basic idea of block matching is depicted in Fig. 5.1, where displacement for a
pixel (n1, n2) in frame k, which is the present frame, is determined by considering an

100

N1xN2 block centered about (n1, n2) and searching frame k+1, which is the search
frame for the location of the best matching block. In this basic idea the search is to
find the motion vector, which is actually the displacement of the closest matching
block in reference frame for a block in current frame.

Fig. 5.1 Block - Matching

In our studies for the block-matching approach we have assumed the following
while generating the algorithm and software code:

• Objects are rigid bodies; hence, object deformation can be neglected for at
least a few nearby frames.

• Objects move only in translational movement for, at least, a few frames.
• Illumination is spatially and temporally uniform; hence, the observed object

intensities are unchanged under movement.
• Background affects are neglected.
• The camera stability is sustained.
• Each block is viewed as an independent object.
• The motion of pixels within the same block is uniform.

The assumptions are not totally reachable but the resultant defects are reasonable.

The advantages and disadvantages of the block-matching method is listed below.

Advantages:

• It is straightforward,
• It is a regular parallel procedure good for software implementations.
• Robust (immunity to noise)

Frame k

Frame k+1

Block

Search Window

101

Disadvantages:
• A block may contain several moving objects.
• Criteria of search (displacement size) may not give us the true movement.

5.3 Block-Matching Software

A software module has been implemented for the block matching method. Fig. 5.2
shows the flow of the processes that are implemented.

Fig. 5.2 Block-Matching Software Flow

In our studies we have used a video consisting of 10 frames. Frames extracted from
the video are shown below (Fig. 5.3).

Segmentation of the
video file into frames.

Selection of fames
and block sizes.

Block-matching
algorithm

Displaying each calculated motion vector
and generating the average motion vector.

Determination of joint, speed and motion
angle parameters for the robot.

Generation of the robot program.

102

 Fig. 5.3 Image Frames

After the extraction of image frames, user shall select the “Target” (reference
frame) and the “Estimate” (search frame) frames using the GUI displayed below
within Fig. 5.4

103

Fig. 5.4 Selection of Frames

The block size and the search window size are both selected via the GUI shown
below (Fig. 5.5), after the selection of the frames that will be used for the motion
estimation for the generation of robot program. The user can choose block size
(8x8, 16x16, 32x32), the search window or area (8x8, 16x16, 32x32) and can also
set a threshold value for the motion vectors. This threshold is used to discard
motion vectors that are small in size. Thus we are trying to minimize the affects,
which are caused by the instability of camera, background and illumination. It shall
be noted that the threshold does not completely solve our problems. Threshold
parameter shall be set by experiment, according to the video file and extracted
frames otherwise it will not be able obtain correct motion vectors.

104

Fig. 5.5 Selection of Block and Search Area

According to the selected parameters the block-matching algorithm will produce
motion vectors for each block within the selected frame. The motion vectors will
then be filtered out by the use of the threshold parameter. The frames that are
selected are displayed (Frames 1 and 4 for the case of Fig. 5.5) within the GUI as
well.

The GUI shown below in Fig. 5.6 displays the motion vectors that carry the
direction and size information.

105

Fig. 5.6 Motion Vectors

Those motion vectors are used to generate an average motion vector, which will be
used later to determine the robot movement parameters. The average motion vector
is displayed within a GUI shown in Fig. 5.7. The size, which is called “delta” in the
software, and the direction of motion is also displayed.

The direction is determined using the displacement observed on x-axis and y-axis.
This information is also used for the calculation of the vector size, which is actually
used for the speed determination of the motion since the greater displacement
represent faster motion of the moving object between the selected frames. Thus
displacement of pixels, size of the motion vector and speed has linear relationship
between themselves.

106

Fig. 5.7 Overall Motion Vector

Once the motion vectors are joined into one final motion vector, user can select
another set of frames using the “NEXT” button, which will guide the user to the
initial screen (Fig. 5.4). In order to determine the parameters required for the VAL
program, user shall choose “DONE”.

When we consider the case where we follow the processes for the estimation of two
motions and choose the parameters as follows:

Motion Estimation 1
Target Frame=1 Estimate Frame=4, Block Size=16x16,
Search Window (area)=32x32, Threshold=2,

Motion Estimation 2
Target Frame=4 Estimate Frame=1, Block Size=16x16,
Search Window (area)=32x32, Threshold=2,

we would end up with the motion vectors shown in Fig. 5.8 and Fig. 5.9.

107

Fig. 5.8 Motion Vector 1

Fig. 5.9 Motion Vector 2

Using the motion vectors and the data they carry we display the Joint assignments
GUI, where the user can see and modify the calculated parameters for the robot
motion. Fig. 5.10 shows the joint assignment GUI.

108

Fig. 5.10 Joint Assignment GUI

The default joint for the execution of the movement is set to joint 1, but user can
change the joint itself and movement parameters using the Joint assignment GUI,
which holds the required modification interface tools.

Fig. 5.11 Joint Assignment, Modification of Speed and Angle

109

Each of the motion vectors is displayed in different color in order to prevent
confusion. Fig. 5.12 shows both of the calculated motion vectors plotted with
different color and the active vector is also indicated.

Fig. 5.12 Joint Assignment for Motion Vectors 1 and 2

Completing the parameter settings and joint assignment, the next phase is to
generate the VAL programming code to execute on the PUMA system. The
program generation user interface is shown in Fig. 5.13. Through this interface, user
can select the file, which the VAL program is generated and written. The file
generated holds basic VAL commands, which are actually PUMA system terminal
input and output commands (Chapter 2). These commands can be executed via the
supervisory software.

Motion Vector 2

Motion Vector 1

Active Vector Color Display. (Displays the color of the active motion
vector, which the joint assignment is made)

110

Fig. 5.13 Generating VAL Program (Terminal I/O Commands)

The VAL commands are generated after clicking the “OK” button within the
“Generate Program” screen (Fig. 5.23). The commands generated would be similar
to the commands shown below:

DO READY
SET SPEED 40
DO MOVE JOINT 1 45
SET SPEED 50
DO MOVE JOINT 1 -35

The commands are generated according to the information contained within the
motion vectors thus the estimated motion. The selection of frames, joints and
modification of speed, angle parameters are critical for the generation of each
command.

Finally the commands are executed via the supervisory communication port since
this software is also integrated to the supervisory control software. In order to
prevent any errors within the program execution user shall start the supervisory
control software. A warning message is also generated, which is to guide the user
within the processes (Fig. 5.13).

111

Fig. 5.14 Warning Message

VAL command execution is handled by the supervisory interface afterwards. There
is variety of applications that can be integrated to the supervisory control software.

The studies carried on for the motion estimation for robot motion planning only
demonstrates the ability that we have gained by the use of supervisory interface.

Without the supervisory software, third party applications, such as the one that we
have developed, cannot be executed for the motion and path planning of the robot.

112

CHAPTER 6

6 CONCLUSION

6.1 Conclusion

An integrated interactive control software has been developed in the thesis for the
PUMA 700 series robot communicating over its supervisory protocol. The control
software running in a remote end computer has successfully established a
communication line with the robot’s own controller, so that remote and interactive
control of the arm has been possible. The following points require to be mentioned
for better evaluation of the implementation presented in this thesis study.

a. Communications port (COM1 or COM2) buffer on the external
computer rarely generate errors due to a bug within MATLAB for
Windows operating system. When this error occurs, the system may
require start-up on the external computer side.

b. Resulting joint angular displacements in complying with the motion

commands issued by the interactive control software suffer from
approximately 1.5% error. The amount of these errors decreases if the
arm is calibrated, but this amount increases as the number of executions
of these commands increase. These errors are due to the inaccuracies in
D-H parameters of the robot arm. The D-H parameters were calculated
using the technical specifications [4] of PUMA 700 series robots supplied
by the manufacturer, but since the robot under consideration is a rebuilt
one, these parameters might have been changed during this mending
process. The error magnitude may be reduced to some extent further by
correcting D-H parameters based on the results obtained from a series of
experiments carried out on the arm.

Establishing a communication channel between a remote end computer and the
controller of the arm has improved our control ability over the PUMA manipulator.
Furthermore, we have also gained a means of incorporating external sensory data
providing sources such as camera, ultrasonic transmitters and receivers, etc. into
this robot arm control system.

113

In order to have complete control ability, external feedback gear included, of
PUMA without the use of VAL, the controller system needs to be removed
thoroughly and replaced with a new controller system. Considering the labor and
funding burden for such renewal process operating the existing system in this
supervisory control scheme seems to be a feasible alternative.

6.2 Proposed Future Work

Further studies are suggested to be conducted to improve and effectiveness of this
alternative control of the arm.

• Improvement on the response time of the software can be achieved by
cleaning the warning indicator codes within the existing software code.

• The supervisory system (as a whole) has been tested under Windows,

although MATLAB supports other operating systems, the software has not
been tested for other operating systems. Thus the supervisory system can be
carried into Linux or Unix environments for tests and execution.

Future work with supervisory control system: There are many future works that can
be conducted over the supervisory system, since it enables the use of an external
computer. Those future works may require the modification of the present
supervisory system software. The proposed future works with the supervisory
system are listed as follows:

• Integrating new sensory data processing software to the supervisory control
system for robot control.

o Speech processors may be used in order to transmit voice messages

and commands to the robot over the supervisory communication
port.

o Image processing software may be used for obstacle determination,
object pick and place applications and object tracking.

• Controlling the robot over a network or even the Internet is possible by the

use of supervisory control system, but it requires modification or re-
implementation of the present supervisory software.

In order to form a PUMA control network the most practical way is to implement
Java servlets or applets that run in the users (clients) browsers enabling the
supervisory system to obtain required parameters for controlling the PUMA inside
METU ROLAB.

114

REFERENCES

[1] Unimation, “Programming Manual User’s Guide to VAL II ”, May
 1985.

[2] Unimation, “User’s Guide to VAL II Communication with Supervisory
 System”, May 1985.

[3] Unimation, “User’s Guide to VAL II Real-Time Path Control”, May
 1985.

[4] Unimation, “PUMA MARK II Robot 700 Series Equipment and
 Programming Manual”, April 1984.

[5] RP Automation Inc., PUMA Robots, www.rpautomation.com.

[6] Adept Technology Inc., “6-Axis Puma Robot Device Module (Standard and

Enhanced)”, http://www.adept.com, 2003.

[7] Chia-Yu E. Wang, Wojciech K. Timoszyk, and James E. Bobrow, "Payload

maximization for open chained manipulators: finding weightlifting motions
for a Puma 762 robot," IEEE Transactions on Robotics and Automation, vol.
17, no. 2, pp. 218-224, 2001.

[8] G. Gini, “Caratteristiche Dei Robot”, www.elet.polimi.it, 2003.

[9] J. E. Bobrow, C-Y. E. Wang and W. K. Timoszyk, "Weightlifting Motions
for a Puma 762 Robot," IEEE International Conference on Robotics and
Automation, V23 (Video), Michigan, May 1999.

[10] Denny Oetomo, Marcelo Ang Jr., Ser Yong Lim, “Singularity Handling on
Puma in Operational Space Formulation”, International Symposium on
Experimental Robotics (ISER ‘2000), Honolulu, USA, December 2000

[11] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, “Robotics. Control, Sensing,

Vision and Intelligence”, McGraw-Hill, 1987.

[12] R. S. Hartenberg and J. Denavit, “Kinematics Notations for Lower Pair
 Mechanisms Based on Matrices”, Journal of Applied Mechanics, vol.
 77, pp. 215–221, June 1955.

115

[13] W. Bihr, “Interfacing of a force/torque sensor on a PUMA 500 Robot”, Msc.
Thesis, Georgia Institute of Technology, March 1999.

[14] G. Taylor, L. Kleeman, “Flexible Self-Calibrated Visual Servoing for a

Humanoid Robot”, Proceedings of the Australian Conference on Robotics
and Automation 2001, pp 79-84, November 2001.

[15] DECnet, “DDCMP Functional Specification”, August 1984.

[16] P. Corke, "A Robotics Toolbox for MATLAB", IEEE Robotics and

Automation Magazine, Volume 3(1), March 1996.

[17] O. Gebizlioglu, A. Ersak, “Supervisory Control of PUMA MARK II 700

Series Robot”, IJCI Proceedings of International Conference on Signal
Processing, ISSN 1304-2386, Volume:1, Number:2, pp 217-222, September
2003.

[18] Murat Tekalp, “Digital Video Processing”, ISBN:0 –13-190075-7, February

1995.

[19] Mathworks Inc., “MATLAB, The Ultimate Computing Environment for

Technical Education”, ISBN 0-13-184879-4, 1994.

[20] G.Tevvesz, I. Bezi, I. Olah, “A Low-cost Robot Controller and its Software
Problems”, Periodica Polytechnica Electrical Engineering, pp.239-249,
March 1997

[21] Trident Robotics and Research, Inc, http://pages.prodigy.net/tridentrobotics/

[22] QRTS, “Simulink Based Robotic Tool Kit for the Puma 560 Robot Arm
Manual”, www.qrts.com

[23] David B. Stewart, Richard A. Volpe, Pradeep K. Khosla, “Design of

Dynamically Reconfigurable Real-Time Software Using Port-Based
Objects”, IEEE Transactions On Software Engineering, Vol. 23, No. 12,
December 1997

[24] Cannon, D. J.,Thomas, G., “Virtual Tools for Supervisory Control and

Collaborative Control of Robots” Teleoperators and Virtual Environments
Vol 6(1), pp 1-28, June 1997

[25] Users Manual, Foreman Hand Series, Monforte Robotics.

[26] S. Shenoy, L.Viswanadha, A. Agah, “Graphical User Interfaces For Mobile

Robots”, Information and Telecommunication Technology Center

116

Publications, The University of Kansas, ITTC-FY2003-TR-27640-01,
November 2002.

[27] Armstrong, O. Khatib, J. Burdick. “The explicit dynamic model and inertial

parameters of the puma 560 arm”. IEEE Int. Conf. Robot and Automation
San Francisco, California, USA, pp 510-518, April 1986.

[28] P.I. Corke and B.S. Armstrong-H'elouvry, “A search for consensus among

model parameters reported for the PUMA 560 robot”. In Proceedings IEEE
Int. Conf. Robotics and Automation, San Diego, pp. 1608-1614, May 1994.

[29] Dixon, W. E., E. Zergeroglu, Y. Fang, and D. M. Dawson, "Object Tracking

by a Robot Manipulator: A Robust Cooperative Visual Servoing Approach,"
Proceedings of the 2002 IEEE International Conference on Robotics and
Automation, Washington, D.C., pp. 211–216., May 11–15, 2002.

[30] Dixon, W. E., D. Moses, I. D. Walker, and D. M. Dawson, "A Simulink-

Based Robotic Toolkit for Simulation and Control of the PUMA 560 Robot
Manipulator," Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2202-2207, Hawaii, November
2001.

[31] J. Anderson, “A Simulink Based Robotic Toolkit (SRTK) for Simulation and

Control of the Barrett WAM and the Puma 560 Robot”, Master Thesis,
Clemson University Control and Robotics Lab, May 2002.

[32] N. Costescu, M. Loffler, E. Zergeroglu, D. Dawson, "QRobot - A

Multitasking PC Based Robot Control System", Microcomputer Applications
Journal, May 1999.

[33] N. Costescu, M. Loffler, E. Zergeroglu, D. Dawson, "QRobot - A

Multitasking PC Based Robot Control System", Proc. of the IEEE
Conference on Control Applications, Trieste, Italy, pp 887-891, September
1998.

[34] N. Costescu and D. M. Dawson, "QMotor 2.0 - A PC Based Real-Time

Multitasking Graphical Control Environment", Proc. of the American Control
Conference, Philadelphia, PA, pp. 1266-1270, June 1998.

[35] S. Dindaroglu "Control of PUMA MARK II Robot with an External

Computer", MSc. Thesis, Middle East Technical University, December 2002.

117

A. APPENDIX A

A Troubleshooting Charts

Troubleshooting charts are to be followed in order to diagnose the faults. The
available troubleshooting charts are joined into a one chart and below in Table A.1,
the whole chart is given.

Table A.1 Troubleshooting Chart

ADC dead Jt (n) Defective boards Replace boards in the following
sequence, checking if problem priests
after each replacement

1 Digital servo board for indicated joint
2 "B" interface board
3 "A" interface board

Replace faulty board.

*ADC malfunction Malfunction in analog input
module

Attempt input again. If error repeats,
hardware module should be replaced.

*ALTER aborted a. Negative control byte received;
computer cannot enter ALTER
mode

b. Error occurs while ALTER
mode is active (more than three
communication errors have
occurred in succession)

a. Check external computer to ensure it
is following proper communications
protocol

b. Check communications line to ensure
it is not excessively noisy

*ARM POWER
off*

a. ARM POWER is not turned on

b. System malfunction

a. Turn on ARM POWER and reenter
last command

b .ARM POWER does not come on.

BAD POT Jt n a. Faulty calibration

b. Dirty or dry potentiometer

c. Faulty potentiometer in

a. Run DIA POTCAL. Create overlay
as required

b. Clean and lubricate potentiometer

c. Replace entire motor assembly on
indicated joint

118

indicated joint

d. Faulty PC boards

d. Check seating. Replace boards in the
following sequence and check problem
after each step:

1 "B" Interface board
3 "A" interface board
3 Digital servo board
Exchange boards to isolate fault
4 LSI-11 processor board

Replace faulty board

*Brake release
enabled

a. Top panel switch enabled

b. Faulty toggle switch

c. Faulty PC boards

a. Move switch to OFF position

b. Check switch for continuity; replace
switch tray is faulty

c. Check seating. Replace boards in the
following sequence and recheck
problem after each step:

1 Power amplifier control board
2 High power function assembly
3 "B" interface board
4 "A" interface board

Replace faulty board

*Calibration will
move our of range
Jt n

Arm to close to end of range Reposition arm using teach pendant in
JONT mode and repeat CALIBRATE
command

*CHECKSUM
Error*

a. Diskette is use is defective

b. Defective or loose floppy drive
connector

c. Board(s) not securely seated

d. Defective board(s)

a. Attempt same procedure using known
good diskette

b. Check connection floppy drive if
connection good check continuity of
cable. Replace cable id necessary

c. Check boards in card cage for proper
seating

d. Replace boards in the following
sequence, checking if problem persists
after each replacement

1 Quad serial interface
(DLV11-J)
2 LSI_11 microprocessor
3 "B" interface board
4 CMOS board

Clock overrun a. Defective "B" interface board

b. Defective LSI-11 board

a. Replace defective board

b. Replace defective board

119

c. LSI-11 affected by electrical
noise.

c. Ensure all covers correctly installed

*Communication
line already in use*

Attempt is made to use a hardware
communication line already in use
for another purpose

Use a different communication line or
discontinue its other use

CPU ERROR
Trap to (n1) from
kernel:
(n2) (log, phy)
(n3), (n4)

CPU error
Trap to (n1)from
user:
(n2) (log,phy)
(n2), (n4)

a. Bad read from memory

b. Electrical noise on lines

c. Defective board(s)

a. Reset VAL II by typing
"1100G"
 CAUTION
Responding wit a Y will wipe out
memory

b. Isolate all high power or high
frequency lines as far from robot as
practical In some rate instances such
lines may require additional shielding

c. Replace boards in following
sequence, checking if problem persists
after each replacement

1 LSI-11microporvessor board
2 CMOS board

Replace faulty board

Data check error Transmission error detected while
transferring information to or from
external device

Attempt transfer again

Device not ready Requested File storage not
prepared to communicate with
VAL II

a. On Unimation floppy disk drive,
make sure drive is plugged in, diskette
is inserted in drive, and it is properly
formatted

 b. Replace disk

Directory Error a. Incorrect disk, not properly
installed, or not formatted

b. Damaged disk

a. Make sure correct diskette is used, it
is properly installed in drive, and it is
properly formatted

b. Replace disk

Envelope error
Jt (n)

a. Minor joint degeneracy occurs
when Jt5 is near o degrees,
therefore aligning axes of Jt4 and
Jt6. Error occurs as VAL a temps
to reposition Jt4 and 6
simultaneously for tool orientation

b. Major joint usable to maintain
position along path of motion

a. Reprogram arm; include offset in
Joint 5
 WARNING
Before proceeding to item b ensure that
arm is properly supported prier to
releasing joint brakes in FREE mode.
Failure to mechanically support the arm
will result in arm collapsing

b. Ensure That payload (including
tooling) is within specified limits. Place
affected joint in FREE mode; ensure
that brake is not dragging, and that there

120

c. Major joint runaway

d. Minor joint runaway

e. Joint stalled

f . Major joint drop

is no binding of gears or bearings.
Replace power amplifier board and retry
move

c. Check electrical connections of
affected joint. Check cables for
connections of affected hone Check
cables for continuity replace if faulty
Replace components in the following
sequence and recheck problem after
each step:

1 Digital servo board
Exchange boards to isolate fault
2 Servomotor
3 Power amplifier
4 Low power interconnect cable
5 Arm harness
6 Arm cable board
Replace faulty component

d. Check electrical connections of
affected joint Check cables for
continuity; replace if faulty Replace
components in the following sequence
and recheck problem after each step:

Digital servo board
2 Servomotor
3 Power amplifier
4 Low power interconnect cable
5 arm harness
6 Arm cable board
Replace faulty component

e. Free joint of restraint

f. Check electrical connection of
affected joint Check cables for
continuity; replace if faulty Replace
components in the following sequence
and recheck problem after each step

1 Power amplifier
2 Low power interconnect cable
3 Arm harness
4 Digital servo board exchange boards
to isolate fault

Replace faulty component

[FATAL] NOTE
When [FATAL] appears on screen it
indicates that a sufficiently serious
problem had developed to cause the
operation system to shut down. For

121

possible system look up message
alphabetically following word [FATAL]

File already open Last file not completed
successfully disk door opened to
soon

Unplug disk drive from controller
monetarily so that it undergoes a power
up-reset.

File format error a. Request floppy disk file not
created by software

b. File is corrupted

a. Use another diskette

b. Reference anther file

*Force processor
not active*

a. Force processing hardware
missing

b. Force processing hardware
malfunctioning

a. Check that hardware is in system If
Missing install hardware

b. Replace with new hardware
(Force processing board etc)

Function timeout
Jt n

a. Robot is blocked and cannot
reach its destination

b. Arm has run into a hardware
stop

c. Current overload circuit tripped

d. Motor potentiometer not
properly zeroed (possible loosed
potentiometer cap).

e. Joint stalled; arm unable to
move to programmed location.

f. Faulty electrical interconnection.

g. Faulty PC board(s).

a. Turn on ARMPOWER and try
motion again

b. Change program steps or locations as
necessary to avoid hardware stops

c. Shut system down and allow a few
moments for cooling. If problem
persists, look for shorts using standard
short isolation routines.

d. Check potentiometer voltage. If
necessary, zero potentiometer.

e. Inspect operating envelope for
physical barriers. Inspect drive train for
mechanical problems. Inspect
servomotor brake systems.

f. Check seating of ribbon cable
interconnecting "A" interface board and
servo interface board. Replace ribbon
cable if faulty.

g. Check seating. Replace boards in the
following sequence and recheck
problem after each step.

(1) Digital servo board.
 Exchange boards to isolate fault.
(2) "B" interface board.
(3) "A" interface board.

Replace faulty board.

*Hardware not in Hardware has not been installed in Proceed as follows:

122

system. system, or hardware
malfunctioning.

(1) Save necessary programs and data.
(2) Turn off system.
(3) Install or repair hardware module.
(4) If necessary, modify programs so as
not to attempt access to this hardware.

*Hardware
problem in joint
 1, 2, or 3*

*Hardware
problem in joint
 4, 5, 6*

a. Temperature fault.

b. Faulty power amplifier.

c. Faulty power amplifier control
board.

d. Shorted servomotor.

a. Turn system off and allow time for
cooling; then reinitialize.

b. Inspect controller top panel and
power amplifier. If power amplifier
assembly is faulty, replace.

c. Check seating; replace board if faulty.

d. Replace servomotor.

*Initialization
error*

a. Current overload circuit tripped.

b. Board(s) not securely seated.

c. Defective board(s).

d. Blown fuse in low voltage
power supply

a. Shut system down and allow a few
moments for cooling. If problem
persists, look for shorts using standard
short isolation routines.

b. Check boards in card cage for proper
seating.

c. Replace boards in the following
sequence, checking if problem persists
after each replacement.

(1) "B" interface board.

(2) CMOS board.

(3) Quad serial interface board.

d. Check connector P23 at
CRT/TTY for following voltage levels:

(1) Pins 3 & 5 = +12 vdc.

(2) Pins 1 & 5 = -12 vdc.

(3) Pins 4 & 5 = +5 vdc.

NOTE

Lack of voltage readings is indicative of
a blown low voltage power supply fuse.
Replace fuse if necessary.

*Logical unit
busy*

Internal error in software. Field Service Required

*Lost encoder
sync*

a. Defective encoder light source.

a. Replace motor on affected joint.

123

Jt (n) b. Faulty encoder disk.

c. Faulty digital servo board.

d. Faulty arm cable assembly.

e. Electrical noise.

b. Replace motor on affected joint.

c. Check seating. Exchange boards to
isolate fault. Replace faulty board.

d. Check seating; replace assembly

e. Install shield from interconnecting
cable.

Memory error
Address (nnnnnn)

a. Operator error.

b. Weak CMOS batteries.

c. CMOS board defective or not
seated securely.

a. Check that no attempt has been made
to store data beyond the capacity of the
CMOS memory.

b. Check CMOS battery charge.
Replace batteries if necessary.

c. Check to ensure secure seating of
CMOS board. Replace defective CMOS
board.

Motor hot
Jt (n)

Drive motor for indicated joint
overheats.

Proceed as follows:

(1) Turn off ARM POWER to allow
motor to cool for a few minutes.
(2) Turn on ARM POWER and restart
program.
(3) Reduce robot motion speed or
reduce carried load.

Motor stalled
Jt (n)

Robot arm restrained from moving
to programmed position.

Free arm of restraint.

Network closed a. Network has not opened.

b. Network closed by supervisory
computer.

a. Open network or direct device not to
use network.

b. Reissue network opening message
packet from host.

No blob
(Univision)

No blob found corresponding to
blob number given in a TRAIN,
VINFO, or CLEARGRIP
command.

If no blob is found, use
PICTURE command to save new
camera image and use VINFO to
display list of all blobs seen. If no blobs
are listed check for proper hardware
operation (e.g., use video monitor to
view image directly from camera).

If message resulted from
CLEARGRIP, make sure blob number
parameter given is returned by a recent
LOCATE or FINDHEAP.

No zero index
Jt (n)

a. Defective digital servo board.

b. Defective encoder.

a. Replace defective digital servo board
of affected joint.

b. Replace motor of affected joint.

Open failure a. Remote computer is not
responding.

a. Check that remote computer is
working properly.

124

b. Hardware problem in
communications line.

b. Check that communications hardware
is working properly. Retry command.

Out of range
Jt (n)

a. Arm outside of or adjacent to
robot arm operating envelope.

b. Faulty potentiometer.

c. Faulty electrical interconnection
in potentiometer signals.

d. Faulty PC board(s).

a. Reposition arm.

b. Exchange harness connections to
isolate servomotor. Clean and lubricate
potentiometer. Replace servomotor if
faulty.

c. Check cables for continuity; replace if
faulty.

d. Check seating. Replace boards in the
following sequence and recheck
problem after each step:

 (1) "B" interface board.
 (2) "A" interface board.
 (3) Digital servo board
 Exchange boards to isolate fault.
 (4) LSI-11 processor board.

*Page fault from
kernels:
(n1) (log,phy)
(n2), (n3)

*Page fault from
user:
(n1) (log,phy)
(n2),(n3)

Bug in software. Restart system software by typing
"1100G".
 CAUTION
Responding with a Y will wipe out
memory.

*Problem with
Amplifier C*

Hardware interface to proportional
hand is malfunctioning.

Requires field service

*Problem with
40 volt power*

a. Blown fuse on high-power
function assembly.

b. Faulty PC board(s).

a. Replace fuse.

b. Check seating. Replace faulty boards
in the following sequence and recheck
problem after each step:

(1) Power amplifier assembly.
(2) Power amplifier control board.
(3) High-power function

Replace faulty board.

*Panic button
pressed. *

OFF button on teach pendant
pressed.

Reselect COMP mode on teach pendant
before resuming program execution.

Servo dead
Jt (n)

a. Current overload circuit tripped.

b. Overheated amplifier.

a. Shut system down and allow a few
moments for cooling. If problem
persists, look for shorts using standard
short isolation routines.
b. Shut system down and allow a few

125

c. Defective motor.

d. Defective encoder.

e. Faulty electrical connection.

f. Faulty PC board(s).

moments for cooling. If problem returns
after a short running period, the ambient
temperature may be at fault and it may
be necessary to consider nonstandard
cooling procedures for the robot.

c. Replace motor on affected joint.

d. Replace motor on affected joint.

e. Check seating of ribbon cable
connecting "A" interface board and "B"
interface board. Replace ribbon cable if
faulty.

f. Check seating. Replace boards in the
following sequence and recheck
problem after each step.

(1) Digital servo board.
(2) "B" interface board.
(3) "A" interface board.

*Servo RAM
error* Jt (n)

Faulty digital servo board. Check seating. Exchange boards to
isolate fault.
Replace faulty board.

*Stopped due to
servoing error*

One or more servo errors. Troubleshoot first error described.

*Storage area
format error*

Momentary hardware failure in
user data in RAM.

Attempt to save as much data as
possible onto floppy disk.

*Supervisory mode
disabled*

Supervisory mode is automatically
disabled and is ready to accept
commands from the local terminal.

Verify supervisory computer is working
properly. Use ENABLE SUPERVISOR
to reenter supervisory mode.

*System clock
dead*

a. "B" interface board not seated
properly or defective.

b. Ribbon cable faulty.

c. Ribbon cable connections faulty.

a. Check "B" interface board.
Replace board.

b. Replace cable.

c. Replace cable connections.

*Terminal
interrupts dead*

Empty back plane slots between
CPU module and serial
I/O modules.

Check board installation to ensure
proper board placement in card cage.

Too many blobs

a. Most recent picture contains
more than 11 blobs.

b. Both BLACK and
WHITE switches enabled.

c. Picture noisy.

d. Scene too complex.

a. Use VINFO command to list all blobs
in current camera image.

b. Disable one switch.

c. Adjust camera aperture and focus
MINBLOB variable in system, or
threshold setting.

d. Remove extraneous material from

126

camera range.
*Unknown FPS
error*

CPU computer module
malfunctioning.

Shut system down and reseat
CPU in card cage.

If problem persists, replace
CPU board.

*Unknown net-
work error*

Remote computer not sending
valid data.

Refer to Supervisory
Communications Manual, User's
Guide to VAL II, Part 2.

*Unknown proto-
type*

Unknown prototype name used. Use VINFO command to display list of
all prototypes defined. If necessary,
VDEFINE and TRAIN a new prototype.

*Vision not
enabled*
(Univision)

Vision switch not enabled. Issue "ENABLE VISION" command or
include it in the user program before
first occurrence of vision instruction.

Vision time-out
(Univision)

Communication problem between
software and MIC vision system.

Retry preceding vision command or
instruction. If error repeats, refer to
following *Version system error*.

*Vision system
error*
(Univision)

Error within MIC vision system
operating program.

Reload MIC vision system and try again

*Wait with logical
unit idle*

Internal error in software. Field service required.

127

B. APPENDIX B

B HARDWARE PROBLEMS ENCOUNTERED and
SOLUTIONS FOUND

B.1 General

In this appendix, the initial hardware problems that came across with their solutions
are stated before the results that we have gathered for the supervisory computer
control. Initially, that is when we have first started our studies; the PUMA system
did not function at all. As a result, we have started analyzing the system to get it
back working again and we have found that the cause of our problems were
hardware based.

B.2 Hardware Problems Encountered And Solutions Found

In order to get complete understanding of the robot system, its capabilities and
operation, the robot was to be practiced but it was not operational. Thus four
months of work has been spent to get it back working.

The controller got powered on, but had no response at all, thus we did not receive
any error messages, which disabled the quick diagnoses of the failure. The
troubleshooting charts [4,5] (see Appendix A) were traced, but no solution was
found for the specific existing situation.

All hardware connections were checked using the circuit and connection layouts of
the robot system [5], the connections were correct and connectors were functional
(existing affects of corrosion were cleaned within this work). The failure diagnoses
studies carried on with the control of short circuit and open circuit checks on the
main processor and peripheral units interface cards. The connections and most of
the components on each PCB were checked, which led to failure localization on
interface card. It was found that, the problem occurred due to damage on the
connections within the peripheral units interface card; jumper connections were not
appropriate which ended up with different incorrect baud rates within peripheral
units causing communication failures thus the malfunctioning of the robot system.
The jumper connections were corrected (all set to 9600 BAUD) and tested after a
hard work of diagnose.

128

Note: With the diagnoses studies, it was discovered that the servo controller driver
board (PCB) for joint 2 had slight cracks and scratches on connection canals. It was
examined that, this deficiency did not affect the functioning of the driver. But as to
minimize the risk, considering the mass parameters of the PUMA 760 arm [7], the
controller board of joint 2 has been replaced with the one for the joint 3.

After the corrections made, system is powered on and the VAL is loaded, from the
floppy to the controller memory. The procedure for loading VAL is given below:

1. Turn control cabinet power on and allow to warm up,
2. Turn three-way MODE switch on front of controller to RUN,
3. Turn controller power on with POWER ON switch,
4. CRT terminal will print
 * VAL-II Boot B760.2.0 AUG81 *
 Load VAL-II from floppy (Y/N)?
5. Insert operating disk into floppy drive and press —Y“ <enter>,
6. The Robot serial number will be asked. Enter the last four digits of

the robot serial number and press enter (The robot serial number is
located on the label of operation disk and on the base of the arm),

7. At this point numbers should appear across the screen as the program
is loading, if this is not the case, turn power off and check all
connections and be sure you followed the above steps carefully, if
this still fails use the troubleshooting charts (Appendix A),

8. After the program has been installed, you should initialize and
calibrate the robot.

The procedure given here shall be applied if controller memory has been off for
approximately 30 days [4]. Otherwise the batteries of the CMOS memory card will
be used so that the VAL is not required to be loaded each time the robot arm powers
on. But this was not the case for our system; VAL needed to be loaded at each start-
up, which took a lot of time. When examined, it was found that the batteries
(2x1.2V NiCad) were dead and had leakage, thus required replacement. The
batteries were replaced with new ones but due to the performance of the battery
charger unit on the CMOS memory card and the capacity of the new batteries, we
have only reached a period of approximately three hours, which means that the user
shall load VAL after a three hours of system power off. Replacing the whole battery
charger unit mounted to the PCB can improve the performance of the memory.

As the studies went on with VAL programming, two different errors, which did not
occur at all executions, were received from the system. The first one was the
“SERVO DEAD, Joint x” error that is the joint controller for joint x did not respond
to VAL commands. Using the troubleshooting charts available, possible causes,
servicing instructions and actions taken with their results for those servicing
instructions are listed in Table B.1.

129

Table B.1 Possible causes, Servicing instructions and Actions taken with
results for the “SERVO DEAD Joint x” Error.

Possible Cause Servicing Instruction Actions Taken and Results
Faulty digital
servo board.

-Check seating.
-Exchange boards to
isolate fault.
-Replace faulty board.

-Seating(s) are checked. They are
seated properly.
-Boards have been exchanged but
error remained as it was.
-Faulty boards cannot be replaced,
since no spare is available.

Faulty electrical
interconnection.

Check seating of ribbon
cable interconnecting
parallel interface board
and servo interface
board.

Ribbon connection and all other
connections available to those
joint controllers have been made,
they are all found to be
appropriate. Error remained as it
was.

Faulty PC
board.

-Check seating.
-Replace boards.

-Seating(s) have been checked and
found to be proper.
-Board replacement cannot be
made since no spare board is
available.

Completing the necessary activities for the “SERVO DEAD” error, it is now
believed but not proven that this problem is due to the unstable state of the input
power. Thus there is no recommendation of any solution is available.

The second error received, which did not occur at all executions, just like the
“SERVO DEAD” error was the “ENVELOPE ERROR, Joint x”. This occurs if the
actual position of a joint is beyond a preset position from the position command by
VAL and that joint forces VAL to declare a fatal error condition. After some
research, it was found that minor joint degeneracy causing “ENVELOPE ERROR”
is a common failure above PUMA and PUMA-like robots. There exist three
singularities [8,10]:

• Alignment singularity (wrist is as close to the axis of joint 1 as it can get),
• Elbow singularity (elbow is fully extended or folded up; the latter is not

possible because of joint limits),
• Wrist singularity (the axes of joints 4 and 6 are aligned).

These singularities can happen individually, or as a combination of two of even
three at the same time [10]. The most common occurrence of those singularities is
actually the wrist singularity which occurs when joint 5 is at 0 degrees, therefore
aligning axes of joints 4 and 6. Error occurs as VAL attempts to reposition joints 4
and 6 simultaneously for tool orientation. The only solution that is available is; to

130

reprogram the robot arm, including offset in the robot arm. Thus users obtaining
this error shall reprogram the robot arm giving an offset value for the joint 5.

Completing the available solutions for the problems encountered, which are
mentioned above, the work mostly concentrated on VAL programming and
supervisory control implementation.

131

C. APPENDIX C

C Image Frames Extracted From the Video File

In order to apply the block-matching method, we have extracted the image frames
from the video file. The image frames are given below for clear view and
understanding.

Fig. C.1 Frame 1

Fig. C.2 Frame 2

132

Fig. C.3 Frame 3

Fig. C.4 Frame 4

Fig. C.5 Frame 5

133

Fig. C.6 Frame 6

Fig. C.7 Frame 7

Fig. C.8 Frame 8

134

Fig. C.9 Frame 9

Fig. C.10 Frame 10

135

D. APPENDIX D

D Thesis Studies Planning

In order to achieve the goals and objectives of the thesis (Chapter 1), planning shall
be made. This planning only covers tasks not the duration and effort parameters of
those tasks.

The tasks to conclude are determined to follow all through the studies conducted.
Those tasks are determined according to our purpose, the problems encountered and
the work or activity done. This section describes those tasks and associated sub
tasks to be followed.

At first the problem that was closing our way to modification was the not
operational state of the PUMA arm. This operational status of robot had to be
changed which happened to be the first task. Under this task there are sub tasks that
are stated below:

- Understanding the PUMA 760 robot arm.
- Investigations on the problem or problems causing PUMA not to

operate.
- Determining and implementing the solutions to the problem.
- Testing the implemented solutions.

Secondly the PUMA robot was taken under research in order to understand its
structure, capabilities, communication modes and its software, which is VAL II.
This task has the following sub tasks:

- Research on PUMA robots, their types.
- Determining the physical specifications.
- Understanding of electrical connections, the control cabinet in which

the peripherals are located.
- Understanding the Unimation’s software package VAL II, its

capabilities.
- Real-time practicing of VAL II programming.

136

After those tasks stated above, we had to understand how the PUMA robot arm
communicated with the external world so the third main task has come across,
which was understanding the communications available and determining the right
communication mode for control. The sub tasks for this task are:

- Research on PUMA robots external communications.
- Understanding each communication modes available and their costs.
- Implementing the chosen communication mode.
- Testing the software implementation.

The fourth main task after completing the communication externally to the PUMA
was to develop user-friendly software enabling the user to control the robot. The
sub tasks for this are stated below:

- Review of kinematics and dynamics knowledge for robots.
- Research on robot simulators available.
- Choosing the development environment.
- Implementation and modification of software.
- Testing the software.
- Integrating simulator software to the communication software.
- Testing the integrated modules of software.

As to reach the goals of this thesis a third part application for the supervisory
system is implemented and integrated to the overall system as well. This
application, which detects and outputs difference vectors out of human motion
shows the new ability of robot. In order to complete this task following sub tasks
are concluded:

- Review of code for the application (The motion estimation
implementation was generated within the studies held for the Video
Processing course held in METU Electrical Electronics Engineering
Department).

- Integration of software.
- Testing the whole system.

Completion of the thesis is the last task, which includes thesis documentation and
presentation.

Table D.1, which shows the task planning with main and sub tasks, is followed
throughout the thesis studies.

137

Table D.1 Task List

Main task
number:

Sub task
number:

Definition of Task:

1 - Fixing the un-operational robot to operate.
- 1 Understanding the PUMA 760 robot arm.
- 2 Investigations of the problem or problems

 causing PUMA not to operate.
- 3 Determining and implementing the solutions

 to the problem.
- 4 Testing the implemented solutions.
2 - Understanding PUMA 760 robot and its control

software package, which is VAL II.
- 1 Research on PUMA robots, their types.
- 2 Determining the physical specifications.
- 3 Understanding of electrical connections, the

 control cabinet in which the peripherals are
 located.

- 4 Understanding the Unimation’s software
 package VAL II, its capabilities.

- 5 Real-time practicing of VAL II programming.
3 - Understanding the communications available and

determining the right communication mode for the
control of PUMA robot arm.

- 1 Research on PUMA robots external
 communications.

- 2 Understanding each communication modes
 available and their costs.

- 3 Implementing the chosen communication
 mode.

- 4 Testing the software implementation.
4 - Developing user-friendly software enabling the user to

control the PUMA robot.
- 1 Review of kinematics and dynamics knowledge

 for robots.
- 2 Research on robot simulators available.
- 3 Choosing the development environment.
- 4 Testing the software.
- 5 Integrating simulator software to the

 communication software.
- 6 Testing the integrated modules of software.
5 - Integration of Interactive Control Application for

PUMA motion control.
- 1 Review of motion-estimation code for the

 application.

138

- 2 Integration of software.
- 3 Testing the whole system.
6 - Completion of thesis work, documentation and

presentation.

The tasks are listed following each other but actually some tasks are carried out in
parallel, the task sequence and processing of these tasks for the studies of this thesis
are not given.

The outcomes of each task and their related studies has been recorded and given as
a whole at this thesis according to their relation with the topic of each chapter.

