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ABSTRACT 
 
 
 
EXTERNAL CONTROL OF PUMA 700 SERIES ROBOT BASED ON THE 

COMMUNICATION PROTOCOLS LUN AND DDCMP 
 
 
 

GEBIZLIOĞLU, Önder Emin 
 
 
 

Department of Electrical and Electronics Engineering 
Middle East Technical University 

 
 

Supervisor: Prof. Dr. Aydın ERSAK 
 
 
 

December 2003 
 
 
 
This thesis analyzes the supervisory control of the PUMA 700 series robot through 
a remote computer. Supervisory communication carries the control through MARK 
II controller, common controller for the PUMA robots, to a standard PC, enabling 
the development of purpose specific control programming without the knowledge of 
the VAL (Variable Assembly Language), robot-programming language. Using the 
supervisory communication feature of PUMA, new control software has been 
developed in which both VAL commands and interactive control commands can be 
executed simultaneously. The supervisory communication with the control software 
enables exploitation of third party applications and additional operating system 
features. 
 
The supervisory communication uses the Digital Data Communications Message 
Protocol (DDCMP). The frame structure of data messages, which is specific to 
PUMA robots, is fitted into this protocol. The messages embedded into DDCMP are 
actually logical units, having different abilities and features. Data messages are 
formed with the interactive control software according to execution requests of the 
user. 
 



 

 iv

This thesis explains the implementation of the communication without using the 
CRC (Cyclic Redundancy Checking) on the remote computer side and the data 
messages formed with the interactive control software, which also enables the use 
of sensory inputs (camera, infrared, sound, color information) to be used for the 
robot motion control. 
 
Keywords: PUMA 700 Series, DDCMP, LUN (Logical Unit Number) 
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ÖZ 
 
 

LUN VE DDCMP İLETİŞİM PROTOKOLLARI YOLUYLA PUMA 700 
SERİSİ ROBOTUN DIŞARIDAN DENETLENMESİ 

 
 

 
GEBIZLIOĞLU, Önder Emin 

 
 
 

Elektrik - Elektronik Mühendisliği Bölümü 
Orta Doğu Teknik Üniversitesi 

 
 

Tez Danışmanı: Prof. Dr. Aydın ERSAK 
 
 
 

Aralık 2003 
 
 
 
Bu tez çalışmasında PUMA 700 serisi robotların uzaktan harici bir bilgisayar ve 
denetleyici haberleşme kullanılarak kontrol edilmesi analiz edilmiştir. Denetleyici 
ve kontrol amaçlı kullanılan bu haberleşme sayesinde, kontrol PUMA robotları için 
ortak olarak kullanılmakta olan MARK II kontrol sisteminden standart 
bilgisayarlara aktarılmıştır. Böylece PUMA robotları için geliştirilmiş olan VAL 
kontrol yazılımı bilgisine sahip olmadan, işe özel kontrol programlaması 
yapılabilmektedir. PUMA robotların denetleyici ve kontrol yeteneğine sahip 
haberleşme olanağına imkan vermesi sayesinde yeni bir kontrol programı 
geliştirilmiş olup, bu program ile istenirse VAL ve interaktif olarak hazırlanabilen 
kontrol komutları çalıştırılabilmektedir. Bu sistem aynı zamanda üçüncü taraf 
uygulamalarının ve işletim sistemi özelliklerinin robot üzerinde kullanılabilmesine 
olanak sağlamıştır. 
 
Denetleyici kontrol haberleşmesi DDCMP (Data Communications Message 
Protocol) adlı protokolü kullanmaktadır. PUMA için özel olan data mesajları yapısı, 
DDCMP protokolünün içine giydirilmiştir. DDCMP içine oturtulan mesajlar esasen 
farklı özellik ve yeteneklere sahip olan mantıksal birimlerdir. Data mesajları, 
interaktif olarak, kullanıcı isteklerine göre oluşturulabilmektedir. 
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Bu çalışmada, harici bilgisayarda CRC (Cyclic Redundancy Checking) 
kullanılmadan yapılan haberleşme ve interaktif sistemin gerçekleştirilmesi 
açıklanmaktadır. Bu sayede farklı sensör  (kamera, infrared, ses, renk bilgisi) 
bilgileri kullanılarak robot hareketini kontrol etmek mümkün olmuştur. 
 
Anahtar Kelimeler: PUMA 700 Serisi, DDCMP, LUN (Logical Unit Number) 
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CHAPTER 1 
 
 

1 INTRODUCTION 
 

1.1 Introduction 
 
Robots are used in a wide range of industrial applications. The earliest applications 
were in materials handling, spot welding, and spray painting. Robots in 
manufacturing can be applied to jobs that were hot, heavy, and hazardous such as 
die-casting, forging, and spot welding other than these robots can also be used in 
assembly operations, pick and place operations and material handling operations. 
 
Robots are generally controlled by dedicated controllers. Previous industrial robotic 
control systems suffer from the use of outdated technology, although their 
mechanical structure did not change with years.  
 
PUMA robots are in a common type of industrial robot arm. PUMA robots are not 
used within industrial applications and manufacturing anymore but they are used in 
academic studies mostly because of their agreeable price and capabilities. 
 
A standard PUMA manipulator is controlled by a VAL-II based Unimation Mark II 
controller. There are several disadvantages or limitations of the VAL-II based Mark 
II controller system, many of which are attributable to the age of the product. To 
overcome some of these disadvantages, the proposed solution is to control the robot 
over an external computer. 
 
Developments in fields such as microprocessors, vision, and artificial intelligence 
will be used to fulfill the needs of robot users, operators and mostly the 
manufacturing industry. Robotics technology is finding applications in many other 
fields as well, such as medicine and health care, space exploration, and 
transportation. In order to use the benefits brought by the new technology, old 
robots such as PUMA shall be modified, the modification shall enable the use of 
today’s well-known computers. 
 
There were two main motivating factors for the development of a well-known 
computer based PUMA robot manipulator control system: cost and flexibility. In 
this thesis, the external supervisory control studies and implementations on PUMA 
robot, our objectives, problems encountered, solutions and results obtained are 
explained. 
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Besides the objective of modifying the control system of PUMA robot the following 
are also among the objectives of the thesis:  

 
• Obtaining knowledge of robot control, robotic applications and PUMA robot 

arm. 
• Learning and practicing of PUMA robot VAL II commands. 
• Controlling of PUMA externally from a well-known, easy to use and cost 

effective platform, an external computer. 
• Excluding the VAL II software control system of PUMA. 
• Enabling users to use different kind of sensors like camera, light & infrared 

detectors in order to control the robot. 
 
While achieving the above objectives following outcomes are expected to be 
reached at: 
 

• An operational robot (since it was malfunctioning in the beginning). 
• Controlling and programming the robot arm without the knowledge of VAL 

II robot programming language (Detailed information of VAL II can be 
found at Chapter 2). 

• A system, which is flexible and extendible for a variety of manipulators, 
sensors and other robot hardware. 

• A system supporting control algorithm development using various sensory 
information.  

• Programming the robot from a distance with today’s modern computers 
without the dependency on OS. OS (Operating System) is the software that 
controls the execution of computer programs and may provide various 
services. Most popular operating systems of today are Linux, Windows and 
Unix.  

• Enabling user to integrate and use OS applications, like speech processor 
applications, to robotic control. 

• Simulating the robot enabling users to try dangerous robot movements in an 
off-line state. 

• Attaching and using third party applications to control the robot such as 
speech processors, video imaging applications and tools. 

• Enabling users to implement third party application programs (C, C++, 
Java) to control the arm movements of robots. Supervisory system shall 
enable the use of new data obtained from other applications in order to be 
used for the modification of the robot pose. 

• Determining and executing movement paths without the need of VAL II 
calculations (users are available of determining movement paths). 

• Opening a gate to control the robot within a LAN (Local Area Network, a 
local computer network for communication between computers) or even a 
WAN (a computer network that spans a wide area, covering LANs). 
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Before starting our studies on the supervisory control of the PUMA robot we have 
examined the previous studies related to our purpose. Although robotic related 
studies are held all over the world, the studies conducted for industrial robots like 
the PUMA robots are less in number when considered to those studies on new 
generation mobile robots like the LEGO robots which support the use of external 
control over the well-known computer systems. The new generation robots also 
provide support for direct use of external sensory information or the data obtained 
from the external sensors (camera input, voice/speech processors etc…) to be 
processed for the robot control.  
 
When we consider the case of PUMA robots, which are the most available 
industrial robot arms in university laboratories, we have observed that most of the 
studies were conducted on NOKIA / KAWASAKI manufactured PUMA 500 series 
robots which is controlled over a well-known computer host and the TEXAS Digital 
Signal Processor (DSP) based hardware. On the host computer the UNIX-like QNX 
real-time operating systems are used [20, 32-34].  The studies conducted for the PUMA 
manipulators that are manufactured or modified by the NOKIA Company were 
actually out of our scope since Unimate manufactured MARK II controllers have 
their own characteristics, which do not let the use of external computers easily. 
 
Several approaches towards obtaining an effective control of the PUMA robot with 
a MARK II controller were developed in the studies conducted by Trident Robotics 
and Research, Inc. [21, 23, 32, 33, 34], Carnegie Mellon and Stanford Universities. They 
have produced the TRC004 PUMA interface board, which allows direct access to 
PUMA joint positions and torques. The hardware, thus the robot is controlled by a 
special purpose real time operating system called Chimera. The Quality Real Time 
Systems (QRTS) Company has developed a similar work in order to control the 
PUMA 560 robot. QRTS Simulink Robotic Toolkit [22, 31] has been implemented for 
the Puma 560, but again hardware modification is required for the operation of this 
toolkit. Other than those, simulation and off-line programming studies has been 
conducted for PUMA robots [23-24, 26, 30], but these simulation packages do not have 
the ability to control the robot, since this requires an interface (serial port) to be 
used and communication protocols to be implemented. 
 
A similar study that used DDCMP and logical units in order to control the PUMA 
arm was held [35], which had limited capabilities since it aimed to control the robot 
arm joints one at a time and it was not completely visualized as well. Logical units, 
which are explained in detail within chapter 3, were not completely implemented, 
thus control and programming capabilities were not totally obtained. 
 
In the scope of this thesis study no hardware modifications are made on the arm’s 
MARK II controller so that available communication capabilities [1-4,13] already 
present in PUMA are used. Other than those studies regarding the supervisory 
communication [24-26,35], we did not make any cyclic redundancy checking for 
communication error handling (Chapter 3) on the external supervisory computer [17] 
since our PUMA was not operating in a noisy environment and also in order to 
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obtain a user-friendly control an interactive control software (Chapter 4-5) has been 
integrated to the supervisory communication and control software. Thus we have 
managed to simulate the robot and transmit required control commands from an 
external computer without any change on the original hardware configuration of the 
PUMA system. 
 

1.2 Constraints Taken in Consideration 
 
The main constraint to be considered during the studies was to preserve the original 
configuration both on the hardware and software of the PUMA 760 robot arm and 
its controller. Changing the configuration of the robot, controller and robot parts 
might result in malfunctioning of the whole system, which would be hard to recover 
since the robot was an old device manufactured in the mid 80’s by Unimate Inc. 
Furthermore, the company does not exist today. Just a few companies give service 
for PUMA robots currently so obtaining spare parts is both hard and expensive. 
Obtaining technical information and consultancy is also difficult and the limited 
technical information we have may not be adequate for troubleshooting and 
recovery. 
 
Another constraint that we have taken into account was not to change, modify or 
replace original cabling and connections other than those broken. Since  cabling and 
shielding of electrical connections of the robot in its original state were done 
extremely well and neat. All the materials used are good in quality. Interruption on 
those connections may not cause malfunctioning of the system but may result in 
power leakages, EMI problems thus incorrect execution of the robot arm.  
 

1.3 Hardware Problems 
 
The PUMA robot as a whole system was not operational in the beginning of our 
studies. Thus we had to work on the hardware of the system. The troubleshooting 
charts (Appendix A) were then traced for fault diagnoses and isolation. At the end 
of our effort we have managed to get the robot back into operation. Details related 
to this work are given in Appendix B.  
 

1.4 Outline of the Thesis 
 
Introduction for the thesis is given within this chapter (Chapter 1), in which we 
have stated our objectives and previous studies. 
 
In order to understand the work done throughout this thesis the general structure of 
PUMA 700 series robots and VAL II, which is the software package for the control 
of PUMA robot arm is described within Chapter 2. 
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In Chapter 3, available communication methods with PUMA, the communication 
method used and implementation of the supervisory communication software is 
described. 
 
Interactive control software is implemented and integrated to supervisory control 
software of PUMA. The work carried out for this user friendly and useful 
application and the integration studies are described within Chapter 4. This software 
is actually operating similar to the teach-pendant of the PUMA system (more 
detailed explanation for the teach-pendant can be found in Chapter 2). 
 
Another Interactive robot control application, which operates the robot over the 
supervisory communication port, has been integrated to the system. In this 
application, we have extracted image frames of a video from which we have 
determined speed, displacement and direction of the motion information that is 
inside the image frames. The data and information obtained is used to modify the 
pose of the PUMA manipulator. In this application a motion estimation algorithm, 
block-matching method has been integrated to the supervisory control interface, 
which is used for the path and joint movement modification of the manipulator. 
This study described within Chapter 5, is implemented in order to demonstrate the 
features and advantages of the supervisory control system. 
 
Finally in Chapter 6, the test results are given. Conclusion and the proposed future 
works are also stated with this last chapter. At the end of Chapter 6, appendices are 
also presented for further reading and understanding. 
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CHAPTER 2 
 
 

2 PUMA ROBOT 
 
 
 

2.1 General 
 
In this chapter, the robot system architecture both with hardware and the software is 
described and the kinematical properties are stated briefly that are used within the 
scope of this thesis. 
 

2.2 The Types Of Puma Robots 
 
PUMAs are probably one of the most common industrial type robots taking place in 
university laboratories. Originally designed in the mid-70’s, the PUMA 
(Programmable Universal Machine for Assembly) was produced for many years by 
Unimation. Most known PUMA types can be classified into 3 groups with the 
specifications displayed in Tables 2.1-2.3. 
 

Table 2.1 Specification of PUMA 200 series robot 
 

DOF 
Drives  
Control  
Positional Control 
Coordinates  
Configuration  

6  
DC Motors  
Numerical  
Incremental Encoders  
Cartesian  
Revolute  

Minimum Reach 
Maximum Reach 
Limit Joint 1  
Limit Joint 2 
Limit Joint 3 
Limit Joint 4 
Limit Joint 5 
Limit Joint 6  

0.125 mm 
0.406 mm 
308 deg 
314 deg 
292 deg 
578 deg 
244 deg 
534 deg  

Repeatability  
Maximum Speed  

+/- 0.05 mm 
1.2 m/s  

Auxiliary Processors 6 Slave Microprocessors 
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Programming 
Serial Interface 
Memory Buffer 
Battery Buffer  

Teach Pendant and VAL II  
RS232 or RS423 
46KB  
30 Days 

Arm Weight 
Controller Cabinet Weight 

13.2kg 
80kg  

 
Table 2.2 Specification of PUMA 500 series robot 

 
DOF 
Drives 
Control 
Positional Control 
Coordinates 
Configuration 

6 
DC Motors 
Numerical 
Incremental Encoders 
Cartesian 
Revolute 

Minimum Reach 
Maximum Reach 
Limit Joint 1 
Limit Joint 2 
Limit Joint 3 
Limit Joint 4 
Limit Joint 5 
Limit Joint 6 

0.864 mm (Between Joint 1 and 5) 
360 deg Working Volume 
320 deg 
250 deg 
270 deg 
300 deg 
200 deg 
532 deg 

Repeatability 
Maximum Speed 

+/- 0.1 mm 
1.0 m/s 

Auxiliary Processors 
Programming 
Serial Interface 
Memory Buffer 
Battery Buffer 

6 Slave Microprocessors 
Teach Pendant and VAL II language 
RS232 or RS423 
46KB 
30 Days 

Arm Weight 
Controller Cabinet Weight 

63kg 
200kg 
 
 

Table 2.3 Specification of PUMA 700 series robot 
 

DOF 
Drives 
Control 
Positional Control 
Coordinates 
Configuration 

6 
DC Motors 
Numerical 
Incremental Encoders 
Cartesian 
Revolute 

Minimum Reach 
Maximum Reach 
Limit Joint 1 
Limit Joint 2 
Limit Joint 3 
Limit Joint 4 
Limit Joint 5 
Limit Joint 6 

0.125 mm(Between Joint 1 and  5) 
360 deg Working Volume 
320 deg 
220 deg 
270 deg 
532 deg 
200 deg 
600 deg 
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Repeatability 
 
Maximum Speed 

-762 model +/- 0.2mm 
-761 model +/- 0.2mm 
1.8 m/s 

Auxiliary Processors 
Programming 
Serial Interface 
Memory Buffer 
Battery Buffer 

6 Slave Microprocessors 
Teach Pendant VAL II language 
RS232 or RS423 
46KB 
30 Days 

Arm Weight 
 
Controller Cabinet Weight 

-762 model 590kg 
-761 model 600kg 
200kg 

 
 
Note that, PUMA 700 and PUMA 500 series robots have similar specifications. The 
main difference between the robots is actually at their loading capacities. Thus the 
study to modify the control system on one of the series’ may help to the study 
towards the modification of other series of robots. Knowledge gained in this thesis 
on PUMA 760 robot can be used for PUMA 500 series robots, as well. The extra 
attention and effort needed to be spent only on the software work due to different 
link and joint parameters of the PUMA 500 series robot. This assertion will be 
backed up with the explanations made in Chapters 3 and 4. 

2.3 PUMA 760 
 

The PUMA 760 robot system is composed of two separated parts: The robot arm 
and its control computer. In the following section the control computer and the 
major components are described within our concern of this study. 

 

 
 

Fig. 2.1 Robot Arm & The Controller 
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2.3.1 The Control Computer 
 
The controller is the master component of the electrical system. All signals to and 
from the robot pass through the controller and are used by it to perform real-time 
calculations to control arm movement and position. Operating controls and 
indicators are located on the front and top panel of the controller. Connections for 
the robot arm, terminal, floppy disk drive and accessories are located on the 
controller rear panel. Software is stored in the computer memory located in the 
controller. The software interprets the operating instructions for the robot arm, and 
the controller transmits these instructions to the arm. From incremental encoders 
and potentiometers in the robot arm, the controller/computer receives data about 
arm position. This provides a closed loop control of arm motions. A floppy disk 
drive is available to record the programs on diskettes.  
 
The Unimation Mark II controller is a typical industrial robot controller. It consists 
of ten components: 
  

• DEC LSI-11 computer with ADAC parallel interface board, DLV11-J serial 
interface board, CMOS board, and EPROM board.  

• Servo interface board  
• Six digital servo boards.  
• Two power amplifier assemblies  
• Power amplifier control board  
• Clock/terminator board  
• Input/output interface board  
• Two power supplies  
• High power function board  
• Arm cable board 

 

2.3.1.1 DEC LSI-11/2 Computer 
  
The DEC LSI-11/2 computer system, which is a 16-bit processor based computer 
with up to 32K words of memory, has I/O interface board, DLVII-J serial interface 
board, CMOS random access memory board, EPROM  (erasable, programmable 
read-only memory) board and a parallel interface board. It does not have hardware 
floating point support.  This primitive twenty-year-old processor is used to compute 
the set points, which make up the robot joint level trajectory.  It communicates via 
the four - port asynchronous DLV11-J serial interface card to a floppy disk drive, a 
teach pendant, a serial terminal and optional accessory.  Commands are usually 
entered at the terminal or the teach pendant.  The set point can be updated by the 
LSI-11 based software at one of several user selectable periods where the default 
update period is 28ms.  Every 28 ms new set points for each joint are transferred 
from the LSI-11 to the servo interface board, which in turn distributes the 
appropriate set point to each digital servo board. 
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2.3.1.2 Digital Servo Boards 
 
There are six digital servo boards, one per joint of the manipulator.  Each servo 
board consists of a 6503 8-bit 1MHz microprocessor with 2,048 bytes of EPROM 
memory and 128 bytes of RAM, a counter/timer, and some parallel input/output 
capability. Each processor implements the position loop for its joint at 
approximately 1KHz. Computations are performed in fixed-point triple precision 
(24 bits).  
 

 

 
 

Fig. 2.2 The Controller Computer DEC LSI-11  
and The Teach Pendant 

 

2.3.1.3 Peripherals 
Connected to the Mark II controller are a floppy disk drive, teach pendant, and 
terminal. Programs entered from the terminal can be stored on the floppy drive. The 
teach pendant is used to move the manipulator directly either in cartesian or joint 
space, and can also be used to program motions by moving the manipulator as 
opposed to entering desired end-effector configurations from the terminal. 
 
The overall structure of the system is shown in Fig.2.3. This system is connected to 
the robot arm, which will be described in the next section. 
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Fig. 2.3 The Overall System Structure 
 
2.3.2 PUMA 760 Robot Arm 
 
Next to the controller there is the robot arm connected to it, which is shown in 
Fig.2.4. The robot arm is a mechanical chain of links and joints incorporating 6 
degrees of freedom (DOF). A DC servomotor controls each joint. It is similar to a 
human torso, shoulder, arm, and wrist. Fig.2.5 shows above defined components in 
the chain mechanical structure of the arm. The components of the robot arm are the 
trunk, shoulder, upper arm, forearm, wrist, and mounting flange. The robot arm 
members contain the various servomotors and gear trains.  
 

 
 

Fig. 2.4 PUMA Robot and Control Cabinet with the Assembly 
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Table 2.4 defines the joint axes for the PUMA robot arm.  

Table 2.4 Robot Arm Axes 
 
Joint Description 
Waist – Joint 1 Joint 1 axis is perpendicular to the 

mounting plane and coincident with 
the centerline of the trunk 

Shoulder – Joint 2  Joint 2 axis is perpendicular to and 
intersects Joint 1 axis. It is coincident 
with the centerline of the shoulder. 

Elbow – Joint 3 Joint 3 axis is parallel to the Joint 2nd  
axis. 

Wrist Roll – Joint 4  Joint 4 axis is perpendicular to and 
intersects Joint 3 axes. It is coincident 
with the centerline of the forearm. 

Wrist Bend – Join 5 Joint 5 axis is perpendicular to and 
intersects the Joint 4 axis. 

Wrist Swivel – Joint 6 Joint 6 axis is perpendicular to and 
intersects Joint 5 axis. Joint 6 is 
coincident with the centerline of the 
mounting flange. 
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Fig. 2.5 The 6 DOF Robot Arm  

 

From the mechanical structure shown in Fig.2.5 and the axes definitions 
(Table 2.4) one can drive the followings for joints: 

Joint 1 is a revolute axis that rotates about the world Z-axis. 

- A positive change of joint angle corresponds to a positive 
rotation about the world Z-axis.  

Joint 2 is a revolute joint that rotates about a horizontal axis. 



 

 
 

27 

- When joint 1 is positioned at zero degrees, the axis of rotation of 
joint 2 will be parallel with the world Y-axis. In this position, a 
positive change in joint angle corresponds to a positive rotation 
about the world Y-axis. 

- When joint 2 is positioned at –90 degrees, the inner link of the 
robot will point vertically in the direction of the positive world 
Z-axis.  

Joint 3 is a revolute joint that rotates about a horizontal axis, which is 
parallel with the axis of rotation of joint 2. 

- As with joint 2, when joint 1 is positioned at zero degrees, the 
axis of rotation of joint 3 will be parallel with the world Y-axis. 
In this position, a positive change in joint angle corresponds to a 
positive rotation about the world Y-axis 

- When joint 2 is positioned at –90 degrees and joint 3 is 
positioned at +90 degrees (the “straight-up” position), the inner 
link of the robot will be vertical and the outer link will be 
approximately [6] vertical. 

- The reason that the outer link may be slightly off vertical in some 
PUMA robots [6] is because, for some models, the axis of 
rotation of joint 4 does not intersect the axis of rotation of joint 3. 
When joint 2 is positioned at –90 degrees and joint-3 is 
positioned at +90 degrees, the axis of rotation of joint 4 must be 
vertical.  If joint 4 does not intersect joint 3, the outer link will 
appear to be slightly tilted.  

Joint 4 is a revolute (roll) wrist axis. When joints 2 and 3 are in their 
straight-up positions, the axis of rotation of joint 4 will be parallel to the 
world Z-axis. 

- A positive rotation of this joint turns the robot's end effector in a 
positive direction relative to the world Z-axis. 

- This joint is omitted in the 5-axis configuration.  

Joint 5 is a revolute (pitch) joint. The axis of rotation of joint 5 is 
perpendicular to the axis of joint 4.  

- When joints 2 and 3 are in their straight-up positions and joint 4 
is positioned at zero degrees, the axis of rotation of joint 5 will be 
parallel to the world Y-axis. In this position, a positive change in 
joint angle corresponds to a positive rotation about the  world Y-
axis 

Joint 6 is a revolute (roll) axis whose axis of rotation defines the nominal Z-
axis of the robot's tool frame of reference. 
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- The axis of rotation of joint 6 is perpendicular to the axis of 
rotation of joint 5. Furthermore, the axes of rotation of joints 4, 5, 
and 6 intersect at a point in the center of the wrist. 

- When joints 2 and 3 are in their straight-up positions and joints 4 
and 5 are positioned at zero degrees, the axis of rotation of joint 6 
will be parallel to the world Z-axis. In this position, a positive 
change in joint angle corresponds to a positive rotation about the 
world Z-axis.  

 
Each joint is driven by a permanent magnet DC servomotor through an associated 
gear train, and each motor contains an incremental encoder and a potentiometer 
driven through a gear reduction. The position at each joint is measured relative to an 
initially known absolute position. The potentiometers, incorporated in the motors 
are used to determine this initial absolute position. The incremental encoder 
mounted on the shaft of each motor provides information about the changes in 
position involved with the respective joint. The joint velocity is, however, 
computationally derived from the positional changes. Joint encoder readings are 
sampled at every 28 msec. and compared with the calculated positions.  
 
The major axes (axes belonging to joints 1, 2 and 3) are equipped with 
electromagnetic brakes to lock the arm in a fixed position in space. These brakes are 
activated when power is removed from the motors. This safety feature removes the 
risk of injury or damage that could result from the arm collapsing if power is 
accidentally removed. 
  
Power for the motors is supplied through the cable connecting the robot arm and the 
controller. This cable bundle, with different cables, also carries feedback signals 
from the incremental encoders and potentiometers.  
 
Table 2.5 tabulates joint limits and angular resolutions used in simulations and 
integrated into the external control system developed in this thesis study. Fig.2.6 
shows these joint limits [4]. 
 

Table 2.5 Limits and angular resolutions 
 

Joint  No Joint Limits Joint Angular Resolution 
Joint 1 320 degrees 0.0050 degrees (min) 
Joint 2 220 degrees 0.0035 degrees (min) 
Joint 3 270 degrees 0.0092 degrees (min) 
Joint 4 532 degrees 0.0082 degrees (min) 
Joint 5 200 degrees 0.0080 degrees (min) 
Joint 6 532 degrees 0.0111 degrees (min) 
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Fig. 2.6 The Movement Limits of PUMA 760 Joints 
 
As a last element in this mechanical chain structure a pneumatic-controlled hand 
(gripper) takes place, as seen in Fig.2.7. This hand has two stable states: open or 
close. A stand-alone air compressor supplies the compressed air necessary to open 
and close the two fingers of the gripper.  
 

 
 

Fig. 2.7 The Gripper 
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2.4 The Operating System - VAL 
 
2.4.1 General 
 
Initially, robots were programmed using textual languages such as Pascal and C. 
The code required to drive robots was very low-level, and very hard to create and 
maintain, requiring skills in both advanced programming and control theory. 
Textual robotic languages were developed specifically to address the problems 
associated with programming robots. These languages introduced “built-in” 
commands to operate the robot, eliminating (for instance) the need to develop code 
for motion primitives.  
 
2.4.2 VAL 

The system software that controls the PUMA robot arm is called VAL, which is 
supplied by Unimation to be used with its controller called as MARK. The software 
is a sophisticated programming language and a complete robot control system, but 
has disadvantages mostly due to age of the product. VAL is stored in the controller 
computer memory. The controller also houses operating controls for the robot 
system.  
 
The VAL programming language consists of a full set of English language 
instructions for teaching and editing. Work programs are entered into the 
computer/controller using either of two different procedures, or a combination of 
both.  The programs can be entered with the teach pendant using the teach-by-
showing method, or using the CRT and keyboard inputs.  Full programming 
versatility can only be achieved through keyboard inputs, thus the CRT terminal 
shown in Fig.2.8a). 
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a. CRT Terminal                                         b. Teach-pendant 

 
 Fig. 2.8 CRT Terminal and The Teach-pendant 

In either programming method that is from CRT terminal or the teach-pendant, all 
taught and learned points are stored and referenced to a 3-axis coordinate system 
fixed relative to the robot base. The robot arm base is fixed as shown in Fig. 2.9. 

 
 

Fig. 2.9 The Base of Robot Arm and 3-axis coordinate  
frame definition for the base 
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In order to teach the PUMA system, as stated above, either of two methods, or a 
combination of both, can be used.  In the first method the teach pendant is used to 
individually manipulate each joint to a desired orientation. This operation is 
available when the robot arm power is on, since the teach-pendant actually moves 
the robot as desired by the user. The combination of the six joint orientations 
determines the arm location.  The arm location is entered into the computer memory 
with the teach pendant. The positions of joints are saved into the memory 
separately, which ends up with the position / location of the whole robot arm. A 
series of arm locations will produce a program.  The second method is to write a 
program using VAL instructions.  The programs and arm position data are entered 
into the computer memory with the CRT terminal keyboard. 
 
Two coordinates systems can be selected from both of the programming methods 
mentioned here. These are the “World Mode” and the “Tool Mode”.  
 

- World Mode: The reference coordinates for the World Mode are fixed 
in the robot arm base shown in Fig. 2.9. This mode can be chosen when 
the gripper is to move parallel to any of the World axes, or to rotate 
about those axes.  

 
- Tool Mode: The reference coordinates for the Tool Mode are fixed in 

the gripper, with their origin at the center of its mounting flange. This 
mode can be chosen when the gripper is to move parallel to or rotate 
about the tool coordinate axes. See Fig. 2.10 for the tool coordinate axes. 
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Fig. 2.10 The Tool Coordinate Axes 

 
The program developed may be stored external to the controller on a floppy disk 
and after completing the program development user may execute it.  

VAL actually has two versions: VAL and VAL II. The version of VAL we have 
used during this thesis work was VAL II. Some of the significant changes and 
modifications made for the new version are:[1] 

- A formal communication capability has been added for supervisory 
control (see Chapter 3) of the robot system from another computer. 

- Some mathematical capabilities have been added, including real 
variables, variable arrays, and scientific functions. 

- A second user program can be executed in parallel with the robot control 
program. This second program can perform any VAL II operation that 
does not access the robot. 
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 Throughout the studies of this thesis, VAL II has been used as the control software 
of the robot arm. 

 
2.4.3 Characteristics of VAL II 

VAL II has three modes of operation: 
• Edit mode: the user can write a new program or edit an existing one from 

the terminal. 
• Monitor mode: the user can define locations in space using the teach-

pendant or the terminal, transfer programs from storage back into control 
memory, etc. 

• Run mode: execution of the robot program. 

Within those modes users are related to following characteristics of VAL: 
- Data structures (see section 2.4.3.1) 
- Motion commands (see section 2.4.3.2) 
- End effector and sensor commands (see section 2.4.3.3) 
- Computations and Operations (see section 2.4.3.4) 
- Program Control (see section 2.4.3.5) 

2.4.3.1 Data Structures of VAL II 
 
Available data structures are described below with their examples: 
 
Numeric values: Integer and real values are used within VAL II. 
E.g.: Integer: 97 - 1983 0 32767 Real: 6.64 8.5E-3 -337 - 9.4177 
 
Numeric variables: Numeric variables are names assigned to a memory location that 
can contain different numeric values during the calculation. 
E.g.: The following are valid variable names: x count distance.to.part.3 
 
Array variables: An array is a group of values that share a single name. Appending 
an index enclosed in brackets to the array name specifies an element of an array.  
E.g.: x [3] Assignment instruction x = 3. 
 
Mathematical operators: Available mathematical operators are <+, -, *, /, MOD> 
E.g.: x = 0.5*(-length) 
 
Locations: Robot locations are used to specify the destination of robot motions. 
There are two types of locations, which are precision points and transformation. 
E.g.: The following are valid location variable names:  
p feeder pallet.to.part.3 
Precision points are used when the robot location is represented by the exact 
positions of the individual robot joints. PPOINT (20, 0, 30, -90, -33, 71). 
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Transformation is a robot-independent representation of the position and orientation 
of the robot tool. The position of the tool is defined with x, y, and z coordinates, and 
the tool orientation is defined by three angles measured from the coordinate axes. 
TRANS (0, 0, 0, -90, 90, 0) 
 
Compound transformation: Compound transformation provides a means of 
specifying robot locations relative to the location represented by other 
transformations. 
E.g.:  plate: object: grasp 

2.4.3.2 Motion Commands 

Robot motion instructions are given through motion commands. Most commonly 
used motion commands are: 

HERE <A1>: The pendant is used to drive the robot arm to the desired position and 
orientation, and then the above command captures the value of the location. 
 
WHERE: Will cause the present world coordinates and joint co-ordinates to be 
displayed. 
 
MOVE <A1>: Moves the end of the arm from its present location to the location 
A1. 
MOVES <A1>: Move to location A1 in a straight line. 
 
APPRO <A1, 50>: Approach location A1 with offset of 50 mm along the z-axis of 
the end-effector frame. 
 
APPROS <A1, 50>: Approach A1 with straight-line motion with offset of 50 mm 
along the z-axis of the end-effector frame. 
 
DEPART <50>: Depart along z-axis to a distance of 50 mm. 
 
SHIFT <(LOC1 BY dx, dy, dy)>: Location LOC1 will have x, y, z coordinates 
changed by dx, dy, dz relative to the original values. 
 
SPEED <60>: The speed of the end effector during the program execution will be 
60% of the maximum declared speed. 
 
 

2.4.3.3 End Effector and Sensor Commands 
 
End effector commands are the ones that affect the gripper whereas sensor 
commands are used as signal triggers for the system. Some of the available 
commands are: 
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OPEN (CLOSEI)   
CLOSE (OPENI)    
 
E.g.: 
APPRO A1, 50 
MOVES A1 
CLOSEI 
DEPART 50 

2.4.3.4 Computations and Operations 
 
VAL II enables users to use some elementary mathematical functions, relational 
operators and logical operators. 
 
SET <x>: Initializes a location variable.  
E.g.: x = plate: object: grasp 
 
Elementary functions: trigonometric, logarithmic, exponential, square root, etc. 
 
Relational operators: LE, LT, GE, GT, NE, EQ (<, >, ==, <>, <=, >=, etc.). 
 
Logical operators: NOT, OR, AND 
 

2.4.3.5 Program Control 
 
The program control instructions control the sequence in which the user program 
instructions are executed. Thus, they can be used to control the logical flow within 
the user programs. Below there are main statements that can be used within the user 
programs. 
 
IF statement: 
 
IF (logical expression) THEN 
… {Group of instruction} 
ELSE 
… {Group of instruction} 
END 
 

WHILE loop: 
 
WHILE (logical expression) 
… {Group of instruction} 
END 
 

FOR loop: 
 
FOR I=0 TO max 
…{Group of instruction} 
END 
 

CASE statement: 
 
CASE {expression} OF 
   VALUE <expression>  
   …{Group of steps} 
   VALUE <expression>  

Open or close gripper. The action will be executed 
during the next motion 
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DO…UNTIL loop: 
 
DO 
…{Group of steps} 
UNTIL <logical expression> 
 

   …{Group of steps} 
   ANY 
…{Group of steps} 
END 

 

2.5  Practicing VAL II 
 
VAL programming practices were conducted in order to understand the capabilities, 
advantages and disadvantages of VAL. 
 
Throughout those practices, all the features and skills described at section 2.5 were 
tried. Programs were written and executed. It was found that VAL had the 
following capabilities and advantages: 
 

- VAL is a complete robot control software package, 
 
- Real-time calculations are performed during the actual running of the 

robot program, 
 
- Built-in commands ease the control programming of the robot arm, 
 
- Does not require pre-knowledge of robot control, 
 
- Enables the use of teach-pendant, 

 
- Enables external computer connection. 

 
Most of the disadvantages that VAL possesses are actually due to its age. Below 
there are the main disadvantages: 
 

- Calculations related with inverse kinematics require time, 
 
- Programs written in VAL may be difficult to read, not only due to the 

cryptic nature of code, but because code can be poorly commented, 
 
- Parallel running applications must be mapped serially, 
 
- There is no convenient means for synchronizing two flows of code 

except by the multiple use of “begin - end” blocks, 
 
- VAL grammar is not expandable that is new actions can only be used via 

external procedures or functions, 
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- VAL does not support any simulators, 
 
- Visualization is not possible, 
 
- Programming editor does not exist as it exists within all programming 

languages today, 
 
- Does not support new sensory information to be considered for the 

control of the arm, 
 

- Off-line programming is not possible 
 
In order to overcome the disadvantages of VAL and improve the capabilities of the 
overall system, without modifications on the original hardware, it was decided to 
use an external computer. The studies conducted for the external computer control 
are within the scope of Chapter 3 of this thesis. 
 

2.6  Model for PUMA 700 Series 
 
Kinematics is the study of motion without regard to the forces that cause it. Within 
kinematics one studies the position, velocity and acceleration, and all higher order 
derivatives of the position variables. The kinematics of manipulators involves the 
study of the geometric and time based properties of the motion, and in particular 
how the various links move with respect to one another and with time. 
 
PUMA robots are serial-link manipulators comprising a set of bodies, called links, 
in a chain, connected by joints. Each joint has one degree of freedom, which are 
rotational. For a manipulator with 6 joints numbered from 1 to 6, there are 7 links, 
numbered from 0 to 6. Link 0 is the base of the manipulator, and it is fixed, and link 
6 carries the end-effector. Joint i connects links i-1, and i, that is joint 3 for example 
connects links 3 and 2. 
 
A link may be considered as a rigid body defining the relationship between two 
neighboring joint axes. A link can be specified by two numbers, the link length and 
link twist, which define the relative location of the two axes in space. The link 
parameters for the first and last links are meaningless, but are arbitrarily chosen to 
be 0. Joints may be described by two parameters. The link offset is the distance 
from one link to the next along the axis of the joint. The joint angle is the rotation of 
one link with respect to the next about the joint axis. 
 
To facilitate describing the location of each link we affix a coordinate frame to it —
frame i is attached to link i. Denavit and Hartenberg (DH) [11,12] proposed a matrix 
method of systematically assigning coordinate systems to each link of an articulated 
chain. The axis of revolute joint i is aligned with zi-1. The xi-1 axis is directed along 



 

 
 

39 

the normal from zi-1 to zi-1 and for intersecting axes is parallel to zi-1 X  zi. The link 
and joint parameters may be summarized as: 
 
Link length (ai): the offset distance between the zi-1 and zi axes along   
   the xi axis. 
Link twist  (αi): the angle from the zi-1 axis to the zi axis about the   
   xi axis. 
Link offset (di):  the distance from the origin of frame i-1 to the xi axis  
   along the zi-1 axis. 
Joint angle (θi):  the angle between the xi-1 and xi axes about the zi-1 axis. 
 
 
According to the information above link coordinate assignment can be made as 
shown in Fig. 2.11. 
 
 

 
 

Fig. 2.11 Link Coordinate (Frame) Assignment 
 
 
It shall be noted that one can have different frame assignment due to the 
assignments of x and y coordinates but the resulting transformations would not 
change. 
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Using the data given in Fig.2.12, which shows the dimensions of PUMA 700 series 
robot, DH (Denavit and Hartenberg) parameters can be determined as shown on 
Table 2.6. 
 

 
 

Fig. 2.12 Dimensions of PUMA 700 Series Robots 
 

Table 2.6 DH Parameters For the PUMA 700 Series 
 

Joint θi αi ai di 
1 90 -90 0 0 
2 0 0 650mm 290mm 
3 90 90 -85mm 0 
4 0 -90 0 600m 
5 0 90 0 0 
6 0 0 0 125mm 

 
 
It is important that the offset distance and link lengths may change due to the 
modifications on the mechanical structure of the robot. 
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After the establishment of the DH coordinate system, a homogenous transformation 
matrix can be developed [11,12]. The DH representation results in a 4x4 homogenous 
transformation matrix. 

Cos θi -Sinθi Cosαi Sinθi sinαi ai Cos θi  
Sin θi Cosθi Cosαi -Cosθi Sinαi ai Sin θi  

0 Sinαi Cos di  

 i-

1Ai= 
0 0 0 1 (2.1) 

 
representing each link’s coordinate frame with respect to the previous links 
coordinate system; that is 
 

0Ti = 0Ti-1 i-1Ai                       (2.2) 
 
where  0Ti  is the homogenous transformation describing the pose of coordinate 
frame i with respect to the world coordinate system 0. 
 
Using (2.1) we can obtain the following transformation matrices: 
 
 

C1 0 -S1 0  
S1 0 C1  0  
0 -1 0 0  

0A1= 

0 0 0 1 (2.3) 
 
 

C2 -S2 0 a2 C2  
S2 C2 0  a2 S2  
0 0 1 d2  

1A2= 

0 0 0 1 (2.4) 
 
 

C3 0 S3 a3 C3  
S3 0 - C3  a3 S2  
0 1 0 0  

2A3= 

0 0 0 1 (2.5) 
 
 

C4 0 -S4 0  
S4 0 C4  0  
0 -1 0 d4  

3A4= 

0 0 0 1 (2.6) 
 
 
 
 

4A5= C5 0 S5 0  



 

 
 

42 

S5 0 -C5  0  
0 1 0 0  

 

0 0 0 1 (2.7) 
C6 -S6 0 0  
S6 C6 0  0  
0 0 1 d6  

5A6= 

0 0 0 1 (2.8) 
 
Ci  and  Si are defined as Ci = Cos θi , Si = Sin θi, 
 
Using the (2.2) - (2.8) we can obtain the T matrix, which specifies the position and 
orientation of the endpoint of the PUMA with respect to the base coordinate system. 
 

T=  0A6                        (2.9) 
 
The equation above corresponds to: 
 

T=  0A1 
1A2 

2A3 
3A4 

4A5 5A6              (2.10) 
 
Solution to the complete transformation matrix is not given since it is a long 
expression, but it can be easily calculated with the help of a computer. 
 
The model, which is described within this section, shall be used for the simulation 
and visualization of the PUMA 700 series robot.  
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CHAPTER 3 
 

3 SUPERVISORY COMMUNICATION 
 

3.1 General 
 
In this chapter the available communication modes for the PUMA robot arm are 
investigated. Within that context the supervisory communication mode is described 
in detail together with the protocol DDCMP (Digital Data Communications 
Messaging Protocol) and the software implementation of this mode with its 
protocols are explained. 

3.2  Available Modes Of Communication 
 
The controller has two special ports (on its rear panel) to communicate with 
external computers. These ports are referred as: 
 

• The Alter Port 
• The Supervisor Port 

 
VAL II supervisory communication interface is normally used to send information 
or commands to the controller system. If, however, the command or information, 
sent in real-time, is to modify the path of the robot while it is moving then the 
interfacing must be done using the alter port, not through the supervisory port. The 
communication through alter port is basically for real-time path control. 
 
The Alter port:  
 
This port is also used to handle sensory inputs required for the control of the robot 
besides the real-time path control purposes. For example, in supplying sensory 
feedback information to the controller, in order to modify robot motions while they 
are actually occurring, the use of communication over alter port is necessary. In 
other words, real-time path control is a means for modifying the program-directed 
position and orientation of the robot tool while the robot is in action. When this type 
of path control is in effect, VAL II is in the “ALTER mode”. Although an external 
sensor or camera cannot be directly connected to PUMA arm, it is possible to 
connect an external sensory device over this serial port (RS-423, RS-232 
compatible), alter port. Serial binary data obtained from the sensor (camera, infrared 
detector, etc.) or a computer supplying position data and instructions can be sent to 
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VAL II over alter port.  Thus, real-time path control data to the controller comes 
from two sources; either from an external computer, or from a user written VAL 
program in robot’s own computer. In the former, data will be transferred to the 
controller by using the ‘external’ alter mode communication protocol. In the latter 
case the ‘internal’ alter mode communication protocol will be used for the purpose. 
 
External Alter Mode: 
 
In this mode, VAL II repeatedly establishes communication with the external 
computer at a rate 36 times/sec. to acquire the data about the modified robot tool 
trajectory determined and sent by the external computer.  This operation continues 
indefinitely unless either VAL II terminates the communication for some reason, or 
the external computer sends information about the existence of an exceptional 
condition. 
 
The alter mode communication is initiated by the controller so that VAL II in 
response sends an "alter starting" message to the external computer and waits for a 
start up acknowledgment. VAL II terminates the communication attempt 
with an error if the external computer does not respond to the call, otherwise, upon 
receipt of acknowledgement VAL II enters the alter mode communication at the 
start of the next robot motion. With the beginning of robot’s next motion, VAL II 
sends an "alter running" message to the external computer and expects to receive a 
complete alter data message from the external computer within about 16 msecs, 
starting from the instant when it issued out the "alter running" message. VAL II 
continues to send "alter running" messages, every 28 milliseconds, as long as the 
alter mode is active. During this time, that is when the alter mode is active, the 
external computer connected to the PUMA controller can generate and signal an 
"exception condition", this exception is an interruption to the normal flow of 
program control, caused by the program itself. The exception condition causes a 
user-specified VAL II subroutine, which is written by the user, to be processed 
asynchronously, like a program reaction or function. This process is similar to 
exception handling programming within well-known languages like C/C++ and 
Java. Exception handler is a special code, which is called when an exception 
condition occurs during the execution of a program. If the programmer does not 
provide a handler for an exception, the program running within “alter mode” will 
crash down. Using the exception generation and exception handling methods, 
programmer can control the flow of the program, generate new functions and 
handle any communication errors between PUMA and the external computer. 
VAL II remains in alter mode until the execution of a NOALTER instruction within 
the program which initiated the alter mode, or the robot program stops executing for 
any reason. Note that the latter includes unexpected termination of program 
execution due to an error, such as attempting a joint-interpolated motion, which is 
the motion where the joint taking the longest time to make the joint change governs 
the motion and the other joints are slowed in proportion so that all joints accomplish 
their joint changes simultaneously with the slowest joint. Thus the program for the 
alter mode crashes but the PUMA stays within the alter mode and in order to 
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overcome this problem the system requires to be re-started and re-enabling of the 
alter mode. Alter mode remains in effect and VAL II does not attempt to re-initiate 
the communication or shutdown the system totally even if continuous-path motions 
are broken purposely due to program instructions.  That is, if a program instruction 
causes an error then program instructions for real-time control can not be executed, 
but this error does not effect the status of the communication in the alter mode, it 
may still be maintained. In case such a situation arises, the controller shall receive a 
‘NOALTER’ command instead of attempting to continue program execution under 
the ALTER mode. When ending alter mode, VAL II sends the external computer an 
"alter pausing" message, followed somewhat later by an "alter ending" message. 
The external computer needs not to respond to either message. To re-enter the alter 
mode, another ALTER instruction must be executed in the VAL II program. 
 
Internal Alter Mode: 

Internal alter is useful when a process control program (written in VAL II) needs to 
control the robot motion according to a pre-processed sensory data (from sources 
such as infrared, sound sources, or a camera) set. Supplying pre-processed sensory 
data to the arm is important in practice. Since within the environment there might 
be an obstacle, another working robot that needs to be determined and the most 
effective way of determining such things would be the use of new integrated 
sensors such as cameras. Other than that, some robots, which examine and fix 
manufacturing mistakes and non-conformances with soldering, painting, gas 
leakage or gluing on products, require the use of external intelligent sensors. 
Internal alter mode is used under those circumstances, which makes it a useful 
communication mode. 

Internal alter does not transmit messages to an external computer. Instead, VAL II 
expects a program instruction to be executed every 28 milliseconds to 
transfer data to the robot motion controller.  

Internal alter mode shall be used in situations in which the robot motion is modified 
by inputs from a simple sensor. A process control program reads the sensor input 
from such a simple sensor to calculate corrections to the robot motion. An 
instruction incorporated in the control program will send the correction data to the 
motion program. 
 
The Supervisor port:  
 
This port can be used to interface the robot controller more precisely its program 
language VAL II, to a supervisory computer via a RS-232 compatible serial line. 
This link can operate at a maximum speed of 9600 baud (about 1000 characters per 
second) by using communication protocol software. 
  
The supervisory port can perform the following functions:  

 
• Issues all commands available at the robot terminal.  
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• Inputs and outputs data directly to and from user programs.  

 
• Downloads and uploads user programs and data.  

 
• Monitors operational status of the robot system.  

 
So, by using these links, a supervisory computer can access several robot controllers 
and manage them towards the accomplishment of desired tasks simultaneously. So 
creating a network of robot controllers is possible. 

3.3 Choosing The Communication Mode  
 

As explained so far there are two alternative communication modes (alter and 
supervisory) for controlling the robot externally. Alter mode enables real-time path 
modification, and handles data transfer to control the robot arm.  It also gives a 
means for sensory data to be obtained and processed coming from the incremental 
encoders and potentiometers in the robot arm about the actual arm position. Using 
and processing this data transmitted to the external computer, alter mode 
instructions are generated. The previously carried out studies [13] and the studies that 
we have carried out in the lab, show that the information obtained from the 
modified servo controllers, which hold the required information, are hard to obtain, 
difficult to read and they are very complex. The most applicable idea is to integrate 
force / torque transducers to the robot arm [13]. Those transducers (models with ISA 
cards exist) are to supply data about the 6 joints to the external computer, which 
analyzes data and sends new path commands to the robot controller within 28 
milliseconds. 
 
The advantages of the alter mode control method are clear. However, for this thesis 
work supervisory mode has been used due to the following reasons: 
 

• Reading data, from the actual existing position and velocity sensors, are not 
satisfactory. It requires modification on the harness configuration of the 
system. Trials of gathering accurate information were not successful, 
probably due to the connections. 

 
• Replacing the sensory system with the one complying the conditions 

(force/torque transducers) is quite expensive, and procurement demands 
considerably long time [13]. 

 
• The VAL programming language does not support efficient real-time 

updating of the manipulator trajectory based on sensory data (such as from 
force / torque or vision sensors). Unimation, manufacturer of the arm, has 
confirmed that there is an undocumented bug in the tool mode under real-
time path control. During real-time control, such as alter mode, the 
controller does not update the rotation matrix as the robot moves [14]. 
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• Supervisory Communication enables all VAL commands to be executed 

from an external computer, thus VAL capabilities are carried out to an 
external computer. 

 
• Supervisory communication mode enables network control of the robot arm 

if desired.  
 
 

3.4 Supervisory Mode 
 
The physical communication link for the supervisory communication is the RS-232 
serial line (Fig.3.1). The baud rate for the serial port used for the supervisory 
communication is set at 9600 baud. The communication data are transmitted as 8-
bit bytes, with one stop bit for each byte. No parity information is included in the 
data bytes. 
 

  
 

Fig.3.1 Physical Communication Link 
  
  
Several different types of supervisory communications can occur simultaneously. If 
there is a physical link for each type, an addressing scheme could be used to direct 
the messages for each type of communication to the appropriate physical link. Also, 
the recipient of the messages will know which physical links they come from, and 
thus will know the nature of each message. 
 
NETWORK and SUPERVISOR switches shall be enabled in order to activate the 
supervisory port for communication. 
 

External 
Computer RS-232 Serial line 
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In reality every message includes a code for the physical link used for that type of 
communication. The recipient can then use the code within the message to 
determine the nature of the message without concerning itself as well as the 
physical path used for the message. Thus, with such a message format (that is, code 
plus message), there is no longer a need for individual physical links. 
 
Since VAL II uses only one physical link for its supervisory communications, it 
uses such a coding scheme within every message to identify the type of 
communication. Considering the system as being subdivided into separate subunits, 
referred to as “logical units” do this scheme. Each type of communication is then 
associated with a particular logical unit. Each logical unit is assigned a ‘logical unit 
number’ (LUN), which is used during communication as the code for identifying 
message types. The logical units and LUN's listed in Table 3.1 are defined. 
 

Table 3.1  LUN and Logical Unit 
 

LUN Logical Unit 
0 Network manager 
1 Short status information 
2 Monitor input and output 
3 Monitor asynchronous output 
4 Program terminal Input and output 
5 Disk input and output 

 
The messages formed by using the LUN’s and commands are both packed into 
DDCMP packets. DDCMP is the bottom layer communication protocol that ensures 
each message transmitted or received is 100 % error free. DDCMP, which is a 
trademark of Digital Equipment Corporation, is a rigorous protocol that 
automatically handles the detection of transmission errors and re-transmission of 
messages when an error occurs. DDCMP was created by DEC (Digital Equipment 
Corporation) for the use with all of their operating systems. DDCMP does not use 
two or three ways handshaking method but it actually checks every individual 
packet and requests re-transmission and re-sequencing of packets, thus it is a stop-
and-wait type of protocol. This method increases reliability, but on the other hand it 
takes time, which caused DDCMP packaging hardware to be used in 1980’s, but 
with today’s powerful computers we are able to form DDCMP packets faster. 
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In the supervisory mode the message packets are formed as shown in Fig.3.2. 
 

 
 

      
 

Command / Data 
 

Logical Unit Message  
 

DDCMP Packet 
 
 

Fig.3.2 Complete Packet 
 
3.4.1 General Format for the Logical Units  
 
The format of the logical unit records sent and received within the supervisory 
communication system is shown in Fig. 3.3. This format shall be used within the 
supervisory communication for both messages transmitted by VAL and for 
messages transmitted by the supervisory external computer. 
 
 

ID Function 
Code 

Function 
Qualifier  

Message 
Data 

1 byte 1 byte 2 bytes 0-256 bytes 
 

Fig.3.3 Format of message for Logical Units 
 
The ID byte identifies the communication protocol in use and the logical unit 
associated with the message data. Available ID byte assignments are listed in Table 
3.2. 

 
Table 3.2  ID Byte Bit Assignment 

 
Bits Description 
7-6 Protocol Version 
5-0 LUN (Logical Unit Number) 
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For the logical unit number 3 (Monitor asynchronous output), the ID byte will be 
formed as shown below within Fig.3.4.  
 

0 0 0 0 0 0 1 1 
 

Fig.3.4   ID Byte for LUN 3 
 
The function code is used in messages transmitted by VAL II in order to define how 
the supervisory computer shall respond to the data message. The function code can 
be one of the listed values in Table 3.3.  
 

Table 3.3 Function Code 
 

Function 
Code 

Description 

0 Transmit a Command 
1 Abort Outstanding 

Communication 
2 Read Data 
3 Write Data 
4 Read After Writing Data 
5 Read characteristics 

 
Supervisory computer, in reply to a transmission from a logical unit, shall set the 
acknowledge bit  (7th bit) of the function code byte received from VAL II.   
 
 
 
 
 
 
 
 

 
 
 

Fig. 3.5 Function Code Reply Rule 
 
 
Note that because of the acknowledgement bit, in the reply message the function 
code shall be {‘the received value’ + 128}. 
 
The Function qualifier bytes in a message provide further control on 
communications and messages thus the robot and by providing new command sets 
previously defined by Unimation. The function qualifier bytes differ according to 
the logical unit used. 

VAL II Supervisor 
Computer 

....{0 0 0 0 0 0 1 0 }..... 
Function Code fromVAL II 

....{1 0 0 0 0 0 1 0 }..... 
Function Code from Supervisor
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3.4.2 Network Manager - LUN 0 
 

This logical unit conveys certain commands to the VAL II system from the 
supervisory system unlike all the other logical units, because it is the only logical 
unit that has communications initiated by the supervisory system. The network 
manager logical unit never initiates communications itself. Transmissions to and 
from the network manager are not acknowledged by a reply message, thus this 
logical unit does not require reply message creation for the supervisor. 
 
Format of the message transmitted to the network manager logical unit is shown in 
Fig. 3.6. Different from all, the message data is conveyed with the qualifier bytes. 
 

ID Function 
Code 

Function 
Qualifier  

1 byte 1 byte 2 bytes 
LUN=0 FC=0 Command Code 
00000000 00000000 See table 3.4  

 
Fig.3.6 LUN 0 Format 

 
Table 3.4 Command Codes for Logical Unit 0 

 
Code Command 
0 Abort the operation in progress. 
1 Start the short status information on logical unit. 

 
 

3.4.3 Short Status Information - LUN 1 
 
The short status information logical unit is used to provide information to the 
external supervisory computer.  
 
This logical unit is activated by a command to the network manager logical unit. 
When this logical unit is activated, it immediately transmits a status message to the 
supervisor. Thus LUN 0 is used to trigger LUN 1. Fig. 3.7 shows the format of the 
records transmitted by LUN 1. 
 

ID Function 
Code 

Function 
Qualifier  

Message Data 
(Status Message) 

1 byte 1 byte 2 bytes 14 bytes 
LUN=1 FC=3 FQ=0 See Fig. 3.8 
00000001 00000011 00000000 

00000000 
Unknown 

 
Fig.3.7   LUN 1 Format 
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Message Data / Status Message 

1
st byte 

2
nd byte 

3
rd byte 

4
th byte 

5
th byte 

6
th byte 

7
th byte 

8
th byte 

9
th byte 

10
th byte 

11
th byte 

12
th byte 

13
th byte 

14
th byte 

System 
status 
bytes 
(See 
Table 
3.5) 

Status 
Bits 

First 8 characters of the user program currently 
executing. 

Error code 
for the 
terminated 
execution. 

Loops 
completed 
for the 
program 
execution 

 
Fig.3.8   Message Data / Status Message 

 
 

Table 3.5 System Status Byte Indications 
 

Value of 1st Byte Meaning 
0 {00000000} MANUAL MODE is displayed on the teach pendant. 
1 {00000001} ARM POWER is turned off. 
2 {00000010} A user program is executing 
3 {00000011} The system is in HOLD mode. 
4 {00000100} A  “fatal” error has occurred 
5 {00000101} COMPUTER Mode is selected on the teach pendant. 
6 {00000110} The user program is waiting for terminal input. 
7 {00000111} The user program is in a WAIT state. 
 
Supervisor computer must reply LUN 1 messages (see Fig.3.9); the reply for the 
status message shall be two’s complement negative value of the originally received 
message. A reply of  “1” is used in order to indicate successful receipt of 
transmission. 
 

1 byte 1 byte 2 bytes 
LUN=1 FC=3+128 

= 131 
(Status message)’

2 

00000001 10000011 Unknown 
 

Fig.3.9 Reply Format for LUN 1  
(Created by the Supervisory Computer) 

 
3.4.4 Monitor Input / Output - LUN 2 
 
The monitor input and output logical unit serves the role of the VAL II system 
terminal while the supervisory system has control of the VAL II system. All 
monitor commands are input to the VAL II system through this logical unit and all 
output (except for that of LUN 3) is directed to this logical unit.  
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ID Function 

Code 
Function 
Qualifier  

Message Data 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=2 FC FQ MD 

 
Fig.3.10  LUN 2 Format 

 
The message data should be interpreted as ASCII text and contains embedded 
carriage return (CR) and line feed (LF) characters, to define individual lines of text. 
If the complete text to be transmitted is longer than 256 characters it is transmitted 
in 256-character segments. Thus, a line of text can begin in one record and be 
completed in the next.  
 
Considering the description above following conversions shall be made in order to 
form the message data for the command “DO READY”. 
 
>> Command='DO READY'; 
 
>> ASCII_Command=double(Command) 
 
ASCII_Command = 
    68    79    32    82    69    65    68    89 
 
 
>> Message_Data=dec2bin(ASCII_Command,8) 
Message_Data = 
 
01000100 
01001111 
00100000 
01010010 
01000101 
01000001 
01000100 
01011001 
 
Communications, which can occur through the monitor I/O logical unit, are 
described within this section with their reply messages. According to LUN 2 
specifications, function code for this logical unit can be 1,2,3 or 4. 
 

LUN 2 
 
 
 

FC =1 FC=2 FC=3 FC=4 
 

Fig.3.11 LUN 2 Having Four Function Codes 
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FC=1 (Abort Outstanding Communication) 
 
When a message is received from VAL II with function code as 1, VAL II cancels 
the last transmission. Once this message is transmitted by VAL, the logical unit 
ignores all receptions until it receives a message containing an abort function code, 
afterwards normal communications can occur. 
  

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=2 FC=1 FQ=0 None 
00000010 00000001 00000000 

00000000  
N/A 

 
Fig.3.12 VAL II transmits LUN=2 FC=1 Message 

 
The binary representation of the “Abort Outstanding Communication” message is 
shown in Fig. 3.12, in which the representation of the message has been given 
according to the general format of LUN messages as shown with Fig. 3.3. The LUN 
byte (1st byte), function code FC (2nd byte), function qualifier FQ (3rd and 4th bytes) 
are present in the message but the message data field (the 4th column in Fig. 3.12) is 
not used for “Abort Outstanding Communication” message. 
 
If the message (Fig. 3.12) with function code 1 is received, the supervisor shall 
respond with the message shown in Fig.3.13 in order to maintain normal 
communications, otherwise the communication will be broken by the supervisory 
unit of the controller assuming that there exists an error with communication. 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=2 FC=1+128

= 129 
FQ=1 None 

00000010 10000001 00000000 
00000001 

N/A 

 
Fig.3.13 VAL II transmits LUN=2 FC=1 Message 

(Created by the Supervisory Computer) 
 
The binary representation of the reply to the “Abort Outstanding Communication” 
message received from the PUMA is shown in Fig. 3.13, in which the 
representation of the message has been given according to the general format of 
LUN messages as shown with Fig. 3.3. The LUN byte (1st byte), function code FC 
(2nd byte), function qualifier FQ (3rd and 4th bytes) are present in the message but 
the message data field (the 4th column in Fig. 3.13) is not used when replying the 
“Abort Outstanding Communication” message since there is no need for any data 
transmission for the acknowledgment of the received message. 
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FC=2 (Read Data) 
 
Function code with 2 is used by VAL II to request input from the supervisor 
computer. The value of the function qualifier determines the type of response 
expected, if it has a value less than or equal to zero, VAL II expects a new monitor 
command otherwise a reply to a previous prompt is requested. 
 
A read data transmission, which is transmitted by the PUMA controller actually 
demands a command from the supervisory external computer, occurs as soon as 
VAL II has completed processing the preceding command and is ready to accept 
another.  A read data transmission is used by the PUMA, in order to request a 
command / message or to indicate that a new command / message can be evaluated 
and executed. 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=2 FC=2 FQ 

(variable) 
None 

00000010 00000010 Unknown N/A 
 

Fig.3.14 VAL II transmits LUN=2 FC=2 Message 
 
The binary representation of the to the “Read Data” message received from the 
PUMA is shown in Fig. 3.14, in which the representation of the message has been 
given according to the general format of LUN messages as shown with Fig. 3.3. 
The LUN byte (1st byte), function code FC (2nd byte), function qualifier FQ (3rd and 
4th bytes) are present in the message but the message data field (the 4th column in 
Fig. 3.14) is not used, since PUMA does not transmit a message in its request of a 
command or a message. The message data field is used in the “Read after Write” 
(Fig. 3.18) messages since those messages contain data, which are sent to the 
external supervisory computer, in order to get user or operator response. 
 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=2 FC=2+128 

=130 
FQ Data / Command 

E.g.: DO READY  
(8 byte command) 

00000010 10000010 00000000 
00000001 

01000100 
01001111 
00100000 
01010010 
01000101 
01000001 
01000100 
01011001 

 
Fig.3.15 Reply Message for LUN=2 FC=2 Message 
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The message created by the supervisor for the ‘DO READY’ command is shown in 
Fig.3.15.  
 
Note that if the VAL II INTERACTIVE system switch is disabled, several types of 
messages are suppressed. For example, messages, which are uniquely identified by 
the function qualifier, are omitted. Also, queries such as  “Are you sure  (Y/N)?” 
can be suppressed such that they are not issued, and all header information is 
eliminated both from the output and from operations such as NET, STATUS, and 
WHERE. 
 
FC=3 (Write Data) 
 
This communication with function code 3, outputs an error message or 
informational message from VAL II to the supervisor computer. 
 
The function qualifier, FQ represents error codes, which are always two’s-
complement negative numbers. If an error message is being output, for example, 
‘ARM POWER off’ then the corresponding error code for this error is –311 as 
function qualifier.[1,2,3] The supervisory computer can use this error code to identify 
the error without interpreting the text of the error message but this feature has not 
been implemented within the software of the supervisor computer. 
 
The function qualifier is zero or a positive number when the message is 
informational (E.g.: A reply for the command ‘WHERE’, which would be 
transmitted to the supervisor computer via function code 3, would have function 
qualifier as 0 since it is an informational in nature). 
  
Figs.3.16 and 3.17 show the messages received from VAL and the reply message 
created by the supervisor computer accordingly. 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=2 FC=3 FQ 

(variable) 
Message 

00000010 00000011 Unknown Unknown 
 

Fig.3.16 VAL II transmits LUN=2 FC=3 Message 
 
 

 
1 byte 1 byte 2 bytes 0-256 bytes 
LUN=2 FC=3+128 

=131 
FQ=1 None 

00000010 10000011 00000000 
00000001 

N/A 

 
Fig.3.17 Reply Message for LUN=2 FC=3 Message 
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The message received shall be converted to ASCII characters in order to inform the 
user with the message received. Thus the following conversions shall be made 
within the supervisory communication software. 
 
>>Received_Message_binary = 
 
00101010 01000001 01010010 01001101 00100000 01010000 01001111 01010111  01000101   
01010010  00100000   01101111   01100110  01100110 
00101010 
 
>> ASCII_Received_Message=bin2dec(Received_Message_binary)' 
 
ASCII_Received_Message = 
 
  Columns 1 through 10  
 
    42    65    82    77    32    80    79    87    69    82 
 
  Columns 11 through 15  
 
    32   111   102   102    42 
 
>> char(ASCII_Received_Message) 
 
ans = 
 
*ARM POWER off* 
 
FC=4 (Read After Write) 
 
VAL II outputs a message and requests input of a reply. Similar to function code 3 
communication explained above but the supervisor is expected to provide a 
message in its reply. Similar to function code 3, some messages received via 
function code 4 have predefined message codes that can be used by the supervisor 
to identify the message but message but this feature is not implemented within the 
software of the supervisor computer for this thesis work. 
 
Figs.3.18 and 3.19 show the messages received from VAL and the reply message 
created by the supervisor computer according to the received message 
correspondingly. 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=2 FC=4 FQ 

(variable) 
Message 

00000010 00000100 Unknown Unknown 
 

Fig.3.18  VAL II transmits LUN=2 FC=4 Message 
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1 byte 1 byte 2 bytes 0-256 bytes 
LUN=2 FC=4+128 

=132 
FQ=1 Reply Message 

00000010 10000100 00000000 
00000001 

Unknown 

 
Fig.3.19 Reply Message for LUN=2 FC=4 Message 

 
Messages like “Are you sure (Y/N)?” are sent to the supervisor using the LUN 2 
with function code 4 and the supervisor shall respond accordingly using the same 
LUN with function code 4. 
 
3.4.5 Monitor Asynchronous Output - LUN 3 
 
LUN 3 used by VAL II in order to transmit monitor outputs during executing of 
user programs. Those outputs include messages indicating the beginning and end of 
program execution and any error messages that might be output during the 
execution. Error messages, which result from hardware malfunctions  (E.g.: 
″∗[Fatal] Servo dead∗”), are reported through this logical unit. 
 
The function code for this logical unit is 3 since only the writing data function is 
used, which means only messages are transmitted to the supervisory computer. 
Fig.3.20 shows the format for the LUN 3. 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=3 FC=3 FQ (variable, 

see table 3.6) 
Message Data 

00000011 00000011 Unknown Unknown 
 

Fig.3.20 VAL II transmits LUN=3 Message 
 

Table 3.6 FQ Value and Corresponding Meaning for LUN 3 
 

FQ value Description 
2 (No message data) LUN 3 thus VAL, transmits a message when an 

execution of user program begins. 
3 Program Completed. 
4 This message is transmitted when the program execution 

terminates. Transmitted message carries the program name and the 
stopped step number of the program 

5 Whenever a DO command is processed, a message is transmitted 
with this FQ, no message data exist for this FQ. 

6 Whenever processing of a DO command is completed, a message 
is transmitted with this FQ, no message data. Exist for this FQ. 

7 In TRACE mode, VAL transmits a message for each instruction 
step executed. The message data is the instruction step itself. 
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8 This message is transmitted when a PAUSE instruction is 
executed. 

9 This message is transmitted when a HALT instruction is executed. 
12 Similar to FQ=5, but this time instead of a Do command, this 

message is transmitted when a user program is executed. 
13 Similar to FQ=6, but this time instead of a Do command, this 

message is transmitted when a user program is completed. 
14 Similar to FQ=7, but this message is transmitted for the user 

program. 
 

 
The supervisor computer shall reply to the VAL system as shown with Fig.3.21. 
The value for the function qualifier shall be set to 1 in order to indicate 
acknowledgement. 
 

1 byte 1 byte 2 bytes 
LUN=3 FC=3+128 

=131 
FQ = 1 

00000011 10000011 00000000 
00000001 

 
Fig.3.21 Reply Message for LUN=3 

 
3.4.6 Program Terminal Input and Output - LUN 4 
 
This logical unit is similar to LUN 2, but it is only used for program I/O instead of 
monitor I/O. All requests for program input instruction and program output are 
directed to the supervisory computer via logical unit 4. Fig.3.22 shows the format 
for LUN=4. 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=4 FC 

(variable) 
FQ 
(variable) 

Message Data 

00000100 Unknown Unknown Unknown 
 

Fig.3.22 Format for the LUN 4 Message 
 
Communications, which can occur through the Program terminal I/O logical unit, 
are described within this section with their reply messages. According to LUN 4 
specifications, function code for this logical unit can be 1,3 or 4. 
 
FC=1 (Abort Outstanding Communication) 
 
When a message is received from VAL II with function code as 1, VAL II cancels 
the last transmission. Once this message is transmitted by VAL, the logical unit 
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ignores all receptions until it receives a message containing an abort function code, 
afterwards normal communications can occur. 
  

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=4 FC=1 FQ=0 None 
00000100 00000001 00000000 

00000000  
N/A 

 
Fig.3.23 VAL II transmits LUN=4 FC=1 Message 

 
If the message (Fig.3.23) with function code 1 is received, the supervisor shall reply 
with the message shown with Fig.3.24 in order to enable normal communications. 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=4 FC=1+128

= 129 
FQ=1 None 

00000100 10000001 00000000 
00000001 

N/A 

 
Fig.3.24 VAL II transmits LUN=4 FC=1 Message 

(Created by the Supervisory Computer) 
 
FC=3 (Write Data) 
 
This communication with function code 3 transmits the output specification of a 
TYPE instruction. 
 
Figs.3.25 and 3.26 show the messages received from VAL and the reply message 
created by the supervisor computer correspondingly. 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=4 FC=3 FQ= 0 Message 
00000100 00000011 00000000 

00000000 
Unknown 

 
Fig.3.25 VAL II transmits LUN=4 FC=3 Message 

 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=4 FC=3+128 

=131 
FQ=1 None 

00000100 10000011 00000000 
00000001 

N/A 

 
Fig.3.26 Reply Message for LUN=4 FC=3 Message 

 



 

 
 

61 

FC=4 (Read After Write) 
 
VAL II outputs a message and requests input of a reply. Similar to function code 3 
communication explained above but the supervisor is expected to provide a 
message in its reply.  
 
Figs.3.27 and 3.28 show the messages received from VAL and the reply message 
created by the supervisor computer according to the received message 
correspondingly. 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=4 FC=4 FQ=0  Message 
00000100 00000100 00000000 

00000000 
Unknown 

 
Fig.3.27 VAL II transmits LUN=4 FC=4 Message 

 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=4 FC=4+128 

=132 
FQ=1 Reply Message 

00000100 10000100 00000000 
00000001 

Unknown 

 
Fig.3.28 Reply Message for LUN=2 FC=4 Message 

 
Supervisory computer software did consider the program terminal input and output 
logical unit, thus it can reply to the received messages from LUN 4 but since VAL 
programming from an external computer was not our main concern, this logical unit 
has not been tested. 
 
3.4.7 Disk Input and Output - LUN 5 

 
The information between VAL II and the Unimation floppy disk drive is actually 
communicated via LUN 5. Thus supervisory computer and VAL use this logical 
unit when the DISK.NET switch is enabled. 

 
Fig. 3.29 shows the format of logical unit 5. 
 

1 byte 1 byte 2 bytes 0-256 bytes 
LUN=5 FC 

(variable) 
FQ 
(variable) 

Message Data 

00000101 Unknown Unknown Unknown 
 

Fig.3.29 Format for the LUN=5 Message 
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The function code and function qualifier in the messages transmitted convey the 
disk operation performed. All the possible disk operations are given with Table 3.7 
below with function codes and qualifiers for each operation. The table below only 
represents the received messages from the supervisor side of view. 
 

Table 3.7 Possible Disk Operation Using LUN 5 
 

FC Value FQ Value Description 
1 0 Abort Outstanding Communication. 
0 0 Close the file or directory that was opened last. 
0 1 Open the file with the specified filename, which shall 

be obtained from the message data bytes. 
0 2 Open a file for writing data with the specified 

filename, which shall be obtained from the message 
data bytes. 

0 4 Open the disk directory for reading. 
0 5 Delete a file with the specified filename, which shall 

be obtained from the message data bytes. 
0 7 Compressing the disk operation directs the 

Unimation’s floppy disk controller to repack the files 
and recover inaccessible space. 

0 8 Format the disk directs the Unimation’s floppy disk 
controller to format a new diskette. 

2 0 Requesting a block of data from the disk. The block 
of data (256 bytes) shall be sent via the reply 
message’s message data. 

3 0 Writes a block of data, received within the message 
data, to the disk. 

 
LUN 5 properties were added to the supervisory control, but did not work, while no 
error messages were received also. Possible problem, which cannot be proved, is 
that the DISK.NET switch does not respond.  
 

3.5 DDCMP 
 
The Digital Data Communications Message Protocol (DDCMP) is a data link 
control procedure ensuring a reliable data communication path between 
communications devices connected by data links.   DDCMP has been designed to 
operate over full-duplex and half-duplex    synchronous    and asynchronous     
channels in both point-to-point and multipoint modes. It can be used in a variety of 
applications such as distributed computer networking, host/front-end     processing, 
remote terminal concentration, and remote job entry-exit system operation [15]. 
 
For DDCMP this thesis work actually used two message formats: 
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• Control Messages 
• Data Messages 

 
Other than those, maintenance messages exist in order to cover messages with error. 

 
 
 

3.5.1 Control Messages 
 
Control messages carry: 
 

• Channel information, 
• Transmission 
• Status, 
• Initialization notification; between the protocol modules. 

 
The individual fields are specific for each type of control message. Control 
messages have the following general form: 
 

ENQ TYPE SUBTYPE FLAGS RCVR SNDR ADDR BLKCK3
8-bits 8-bits 6-bits 2-bits 8-bits 8-bits 8-bits 16-bits 

 
Fig.3.30 General Form of Control Messages (DDCMP) 

 
Table 3.8 Control Message Field Descriptions 

 
ENQ The control message identifier, having a constant value of 5. 
TYPE The control message type.  This value denotes the type of each 

control message. 
SUBTYPE The subtype or type modifier field, providing additional 

information for some message types.  Its use is specific for each 
message type. 

FLAGS The link flags, which are used to control link ownership and 
message synchronization. 
 
bit 0 =  Quick sync flag (QSYNC flag), used to notify the receiver 
that the next message will not abut this message and 
resynchronization should follow this message.  The quick sync 
flag reduces the length of sync sequences on synchronous links. 
bit 1 = Select flag (SELECT flag), used to control transmission 
ownership on multipoint and half-duplex links.  Reverses link 
direction on half-duplex links.  Invites a tributary to send and 
signals end of tributary selection on multipoint links. 
 

RCVR The control message receiver field, which is used to pass 
information from the data message receiver or slave station to the 
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data message sender or master station.  Its use is specific for each 
control message type. 

SNDR The control message sender field, which is used to pass 
information from the data message sender or master to the data 
message receiver or slave. Its use is specific for each control 
message type. 

ADDR The station address field. For our purpose that we use DDCMP 
for point-to-point link, this field is equal to 1. But in order to 
create a control network this field shall be used. 

BLKCK3 The block check value calculated by CRC (Cyclic Redundancy 
Check) method on fields ENQ through ADDR. 

 
 
SUBTYPE and FLAGS form a 2-byte quantity. The first byte contains the 8 low-
order bits of the SUBTYPE.  The second byte contains the 6 high-order bits of the 
SUBTYPE, the SELECT flag the highest order or most significant bit of the byte, 
and the QSYNC flag the next bit in the byte. Thus the sequence shall be S | Q | 
Subtype. 
  
There are control messages, which are used within the supervisory software. These 
are: 
 

• Start Message (STRT) 
• Start Acknowledge Message (STACK) 
• Acknowledge Message (ACK) 
• Negative Acknowledge Message (NAK) 
• Reply To Message Number (REP) 
 

 
Start Message (STRT) 
 
The STRT message is used to establish initial contact and synchronization on a 
DDCMP link. It is used only on link startup or re-initialization. It operates with the 
start acknowledge message STACK, thus a STACK message shall be sent to the 
STRT initiator to continue messaging. The start sequence resets message numbering 
at the transmitter and addressed receiver.  The form of the STRT message is: 
 

ENQ STRTTYPE STRTSUB FLAGS FILL FILL ADDR BLKCK3 

8-bits 

8-bits 

6-bits 

2-bits 

8-bits 

8-bits 

8-bits 

16-bits 

 
Fig.3.31 STRT Message Format 
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Using the DDCMP protocol specification, STRT message would become 
(Fig.3.32): 
 

ENQ STRTTYPE STRTSUB FLAGS FILL FILL ADDR BLKCK3 
5 6 0 3 0 0 1 CRC 

Value 
 

Fig.3.32 STRT Message (Integer Representation, Base 10)  
 
Using the data in Fig.3.32, we can obtain the binary representation of the STRT 
message as: 
 
00000101 | 00000101 | 11000001 | 00000000 | 00000000 | 00000001 | CRC (2 
bytes) 
 
 
Which corresponds to 
 
5 | 6 | 192 | 0 | 0 | 1 | CRC (2 bytes) 
 
CRC generation is described at following section of this chapter. A function 
(crcoeg) has been developed in order to calculate the CRC value for a given set of 
values as well. 
 
It shall be noted that, while calculating CRC, header fill bits (16 bits) shall be added 
since those bits are included at the supervisory communication. Those fill bits are 
all ‘1’s thus they correspond to 255 | 255 as the integer representation for the first 2 
byte fields. 
 
>> CRC=crcoeg([255 255 5 6 192 0 0 1]) 
 
CRC = 
 
     0     1     1     1     0     1     0     1 
     1     0     0     1     0     1     0     1 
 
>> binvec2dec(fliplr(CRC(1,:))) 
 
ans = 
 
   117 
 
>> binvec2dec(fliplr(CRC(2,:))) 
 
ans = 
 
   149 
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Using the calculated CRC value, STRT message can be finalized as: 
 
5 | 6 | 192 | 0 | 0 | 1 | 117 | 149 in integer representation or 
00000101 | 00000101 | 11000001 | 00000000 | 00000000 | 00000001 | 01110101| 
10010101   
in binary representation, which is actually used via communication.  
 
Start message is actually formed and sent by the VAL II system waiting for an 
acknowledgement, which is the start acknowledgement message. 
 
Start Acknowledge Message (STACK) 
 
The STACK message   is returned in response to a STRT when the VAL II system 
has completed initialization and has reset its message numbering. The form of the 
STACK message is (Fig. 3.33): 
 

ENQ STACKTYPE STCKSUB FLAGS FILL FILL ADDR BLKCK3 

8-bits 

8-bits 

6-bits 

2-bits 

8-bits 

8-bits 

8-bits 

16-bits 

 
Fig.3.33 STACK Message Format 

 
Using the DDCMP protocol specification, STACK message would become: 
 

ENQ STACKTYPE STACKSUB FLAGS FILL FILL ADDR BLKCK3 
5 7 0 3 0 0 1 CRC 

Value 
 

Fig.3.34 STACK Message (Integer Representation, Base 10)  
 
Using the data in Fig.3.33, we can obtain the binary representation of the STACK 
message as: 
 
00000101 | 00000110 | 11000001 | 00000000 | 00000000 | 00000001 | CRC (2 
bytes) 
 
Which corresponds to 
 
5 | 7 | 192 | 0 | 0 | 1 | CRC (2 bytes) 
 
CRC=crcoeg([255 255 5 7 192 0 0 1]) 
 
CRC = 
 
     0     1     0     0     1     0     0     0 
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     0     1     0     1     0     1     0     1 
 
>> binvec2dec(fliplr(CRC(1,:))) 
 
ans = 
 
    72 
 
>> binvec2dec(fliplr(CRC(2,:))) 
 
ans = 
 
    85 
 
Using the calculated CRC value, STACK message can be finalized as: 
 
5 | 7| 192 | 0 | 0 | 1 | 72 | 85 in integer representation or 
 
00000101 | 00000110 | 11000001 | 00000000 | 00000000 | 00000001 | 01001000 | 
01010101  
 
in binary representation, which is actually used by the communication.  
 
Acknowledge Message (ACK) 
 
The ACK message is used to acknowledge the correct receipt of numbered data 
messages. It conveys the same information as the RESP field of the control message 
(see next section for the control message) in numbered messages and is used when 
acknowledgements are required, and when no numbered messages are to be sent in 
the reverse direction.  The form of the ACK message is: 
 
 

ENQ ACKTYPE ACKSUB FLAGS RESP FILL ADDR BLKCK3 

8-bits 

8-bits 

6-bits 

2-bits 

8-bits 

8-bits 

8-bits 

16-bits 

 
Fig.3.35 ACK Message Format 

 
Using the DDCMP protocol specification, ACK message would become: 
 

ENQ ACKTYPE ACKSUB FLAGS RESP FILL ADDR BLKCK3 
5 1 0 3 Value 0 1 CRC 

Value 
 

Fig.3.36 ACK Message (Integer Representation, Base 10)  
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RESP stands for the response number used to acknowledge correctly received 
messages, thus this information is obtained from the incoming data packet. 
 
 
Using the data in Fig.3.36, we can obtain the binary representation of the ACK 
message as: 
 
00000101 | 00000001 | 11000000 | (RESP)2  | 00000000 | 00000001 | CRC (2 bytes) 
 
Which corresponds to: 
 
5 | 12| 192+REASON | RESP | 0 | 1 | CRC (2 bytes).  
 
For this set of bits represented with base 10, we cannot calculate the CRC value 
thus the NAK message similar to ACK, since the NAK message is generated 
according to the data packet received with error(s). 
 
For this set of bits represented with base 10, we cannot calculate the CRC value 
thus the ACK message, since the ACK message is generated according to the data 
packet received. 
 
Negative Acknowledge Message (NAK) 
 
The NAK message is used to pass error information from the data receiver to the 
data sender. The error reason is included in the subtype field. The NAK message 
also includes the same information as the ACK message, thus serving two 
functions: acknowledging previously received messages and notifying the master of 
some error condition. The form of the NAK message is: 
 
 
 

ENQ NAKTYPE REASON FLAGS RESP FILL ADDR BLKCK3 

8-bits 

8-bits 

6-bits 

2-bits 

8-bits 

8-bits 

8-bits 

16-bits 

 
Fig.3.37 NAK Message Format 

 
Using the DDCMP protocol specification, NAK message would become: 
 

ENQ NAKTYPE REASON FLAGS RESP FILL ADDR BLKCK3 
5 2 Value 3 Value 0 1 CRC 

Value 
 

Fig.3.38 NAK Message (Integer Representation, Base 10) 
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REASON field identifies the source and reason for the negative acknowledgement. 
The value of this field is used for error recovery. 
Using the data in Fig.3.38, we can obtain the binary representation of the NAK 
message as: 
 
00000101 | 00000010 | 11(REASON)2 | (RESP)2 | 00000000 |  00000001 | CRC (2 
bytes) 
 
Which corresponds to: 
 
5 | 12| 192+REASON | RESP | 0 | 1 | CRC (2 bytes).  
 
For this set of bits represented with base 10, we cannot calculate the CRC value 
thus the NAK message similar to ACK, since the NAK message is generated 
according to the data packet received with error(s). 
 
Reply To Message Number (REP) 
 
The REP message is used to request received message status from the data receiver.  
It is usually sent when the data transmitter has transmitted data messages and has 
not received a reply within a time-out period.  The response to a REP is either an 
ACK or NAK depending on whether the receiver has or has not received all 
messages previously sent by the transmitter.  The form of the REP message is: 
 
 

ENQ REPTYPE REPSUB FLAGS FILL NUM ADDR BLKCK3 
8-bits 

8-bits 

6-bits 

2-bits 

8-bits 

8-bits 

8-bits 

16-bits 

 
Fig.3.39 REP Message Format 

 
Using the DDCMP protocol specification, REP message would become: 
 

ENQ REPTYPE REPSUB FLAGS FILL NUM ADDR BLKCK3 
5 3 0 3 0 Value 1 CRC 

Value 
 

Fig.3.40 REP Message (Integer Representation, Base 10) 
 
NUM field used within this control message represents the number of the last 
sequential numbered data message sent by the transmitter, excluding the re-
transmitted ones. 
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Similar to ACK and NAK we are not able to generate the REP message without the 
value of the NUM field. 
 
3.5.2 Data Messages 
 
Data Messages carry user data over DDCMP links; each data message also carries 
the number assuring correct massage sequencing. The starting number is initialized 
with control messages STRT and STACK, which are mentioned above. For each 
data massage, the receiver must acknowledge the transmitter for the correct receipt 
of data message, using the sequence number. The form of data message is: 
 

SOH COUNT FLAGS RESP NUM ADDR BLKCK1 DATA BLKCK2 

8-bits 

14-bits 

2-bits 

8-bits 

8-bits 

8-bits 

16-bits 

X
-bytes 

16-bits 

 
Fig.3.41 Data Message Format 

 
Table 3.9 Data Message Field Descriptions 

 
SOH The numbered data message identifier.  It has a constant value of 

129. 
COUNT The byte count field. It specifies the number of 8-bit bytes in the 

DATA field.  The value zero is not allowed. 
FLAGS The link flags, which are used to control link ownership and 

message synchronization. 
 
bit 0 =  Quick sync flag (QSYNC flag), used to notify the receiver 
that the next message will not abut this message and 
resynchronization should follow this message.  The quick sync 
flag reduces the length of sync sequences on synchronous links. 
bit 1 = Select flag (SELECT flag), used to control transmission 
ownership on multipoint and half-duplex links.  Reverses link 
direction on half-duplex links.  Invites a tributary to send and 
signals end of tributary selection on multipoint links. 

RESP The response number, which is used to acknowledge correctly 
received messages.  

NUM The transmit number, which is used to denote the number of this 
data message. 

ADDR The station address field. For our purpose that we use DDCMP 
for point-to-point link, this field is equal to 1. But in order to 
create a control network this field shall be used. 

BLKCK1 The block check value calculated by CRC (Cyclic Redundancy 
Check) method on fields SOH through ADDR. 

DATA The numbered message data field.  This field is totally transparent 
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to the protocol and has no restrictions on bit patterns, groupings, 
or interpretations.  The only requirement is that it contains the 
number of 8-bit bytes specified in the COUNT field. 

BLKCK 3 The block check value calculated by CRC (Cyclic Redundancy 
Check) method on the DATA field only. 

 
COUNT and FLAGS form a 2-byte quantity. The first byte contains the 8 low-order 
bits of the COUNT.  The second byte contains the 6 high-order bits of the COUNT, 
the SELECT flag the highest order or most significant bit of the byte, and the 
QSYNC flag the next bit in the byte. Thus the sequence shall be S | Q | Count. 
 
After synchronization and acknowledgement of communications between 
supervisory computer and the PUMA robot control system data messages are used 
in order to control the robot. VAL sends its messages using those data messages as 
well. In order to send a “DO READY” command supervisory computer must do the 
following: 
 

a) Convert Command into ACII code, 
b) Insert converted command into VAL’s logical units, 
c) Pack the logical unit into DDCMP (CRC calculation required), 
d) Transmit the DDCMP packet. 

 
 
>> Command='DO READY'; 
 
>> CommandDecimal=double(Command) % Convert Command to its Decimal Representation 
 
CommandDecimal = 
 
    68    79    32    82    69    65    68    89 
 
“DO READY” command when fitted into LUN 2 can be represented as shown in 
Fig. 3.42:  
 

2 130 0 1 68 79 32 82 69 65 68 89 
 

Fig.3.42 Decimal Representation of “DO READY” in LUN 2 
 
Using the DDMP data message structure (Fig.3.41), and the overall frame structure, 
we obtain the packet as shown with Fig.3.43. Note that, NUM and RESP fields are 
assumed to be 1 and 2 respectively and the COUNT is equal to 12. 
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255 255 129 12 192 0 1 1 BLKCK 1 … 
 

… 2 130 0 1 68 79 32 82 69 … 
 

… 65 68 89 BLKCK2 255 255
 

Fig.3.43Decimal Representation of “DO READY” command, which is fitted 
into a DDCMP packet without CRC values. 

 
DDCMP data messages as described earlier, use CRC for error checking, which 
consume time.  As seen from previous figure (Fig. 3.43), BLKCK 1 and BLKCK 2 
shall be calculated in order to complete the total packet. We have developed a fast 
CRC calculation function in our studies, this is a function called “crcoeg”, which 
calculates CRC value for a given set of data and its output is binary. 
 
In order to calculate BLKCK 1 (2-bytes) value for a DDCMP packet, the function 
(crcoeg) takes the first 8 bytes of the packet and outputs the result of the BLKCK 1 
in binary representation in which the first 8-bits of the result is the 1st byte and the 
second 8-bits of the result is the second byte of the BLKCK 1 field (Fig. 3.43). The 
process is actually the same for BLKCK 2 but this time the CRC calculation 
function takes the data field of the DDCMP packet, which is the 12-bytes after the 
BLKCK 1 field for the representation in Fig. 3.43. 
 
 
 
>> BLKCK1=crcoeg([255 255 129 12 192 0 1 1]) 
 
 
 
BLKCK1 = 
 
     1     1     1     1     0     0     1     0 
     0     1     0     0     0     0     0     0 
 
>>BLKCK1_1stByteInDecimal=(binvec2dec(fliplr(BLKCK1(1,:)))) 
BLKCK1_1stByteInDecimal = 242 
 
 
>>BLKCK1_2ndByteInDecimal=(binvec2dec(fliplr(BLKCK1(2,:)))) 
 
BLKCK1_2ndByteInDecimal =64 
 
For BLKCK 2 we use the function ‘crcoeg’ as well. 
 
>> BLKCK2=crcoeg([2 130 0 1 68 79 32 82 69 65 68 89]) 
 
BLKCK2 = 
 
     1     0     0     0     0     0     0     1 
     1     0     1     0     0     1     1     0 
 

Function call for 
BLKCK1. 

BLKCK 1 value in binary 

BLKCK1 1st 
byte in decimal 

BLKCK1 2nd 
byte in decimal 



 

 
 

73 

>>BLKCK2_1stByteInDecimal=(binvec2dec(fliplr(BLKCK2(1,:)))) 
 
BLKCK2_1stByteInDecimal =129 
 
>>BLKCK2_2ndByteInDecimal=(binvec2dec(fliplr(BLKCK2(2,:)))) 
 
BLKCK2_2ndByteInDecimal =166 
 
 
The program code of the “crcoeg” function that calculates CRC for a block check is 
given below related to (BLKCK1 and BLKCK2) parameters in the DDCMP packet. 
 
%   CRC CALCULATOR      % 
%   Developed By Onder E. GEBIZLIOGLU    % 
%          % 
%          % 
%      Modified @ 04/04/2003  % 
% % 
% INPUT & OUTPUTS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUT is a decimal array of size (1,X) : outdata 
% OUTPUT is crcf where crcf(1,:) is the 1st 8_bits and crcf(2,:) the 2nd 
% 8_bits total of 16_bits 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Functions used are appzero and shiftone (thus appzero.m % shiftone.m must 
% be in the same file folder with crcoeg.m 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function crcf=crcoeg(outdata) 
 
[q,q1]=size(outdata); 
 
for i=1:1:q1 
    out(i,:)=dec2binvec((outdata(i)*2),9); 
end 
 
%Initialize CRC variablescrc=dec2binvec(hex2dec('fffffe')); 
v=dec2binvec(hex2dec('1fffe')); 
w=dec2binvec(hex2dec('A001')*2); 
one= dec2binvec(hex2dec('ffffff')); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% CRC ALGORITHM  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:1:q1 
    r=appzero(crc,out(i,:)); 
    crc=xor(r(1,:),r(2,:)); 
     
    for xx=1:1:8 
        r1=appzero(crc,v); 
        crc=and(r1(1,:),r1(2,:)); 
        s=shiftone(crc); 
        crc=s(2,:); 
          if  bitand(binvec2dec(crc),1) 
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              r4=appzero(crc,w); 
              crc=xor(r4(1,:),r4(2,:)); 
               
          end 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
rw=appzero(crc,dec2binvec(hex2dec('1fe'))); 
% First 8 Bits 
crcf(1,:)=fliplr(dec2binvec((binvec2dec(and(rw(1,:),rw(2,:)))/2),8)); 
% Second 8 Bits 
crcf(2,:)=fliplr(dec2binvec((binvec2dec(and(rw(3,:),rw(4,:)))/512),8)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
According to the DDMP, the algorithm for computing the cyclic redundancy check 
is as follows [15]: 
 

a) Consider the header or data portion of the message as it appears on a serial 
line (LSB of the first byte first, MSB of the final byte last) and append 16 
zeros after the header or data. 

 
b) Take the string of bits constructed in 1, and treat each bit as the coefficient 

of a term of a polynomial with the LSB of the first byte being the coefficient 
of the highest order polynomial term. The highest order term is A * X^63 
for a header block and A * X^(8 * <count> + 15) for a data block where A is 
the least significant bit of the first byte of the header or data.  The lowest 
order term is 0 * X^0 for both cases. 

 
c) Divide the polynomial constructed in 2, by the CRC-16 polynomial X^16 + 

X^15 + X^2 + 1 using synthetic division and using modulo 2 arithmetic on 
the coefficients obtaining a quotient that is discarded and   a   16-bit 
remainder. 

 
d) Transmit the coefficients of the remainder as the block check bytes 

following the original message bits, transmitting the coefficients of the 
highest order term (X^15) first.   Thus, the first byte represents coefficients 
of the X^8 through       X^15 terms of the remainder (from left to right) and 
the second byte represents coefficients of the X^0 through X^7 terms of the 
remainder (also from left to right). 

 
This CRC error-checking algorithm runs both on the transmitter and on the receiver 
sides of the communication, thus communicating sides shall both calculate the CRC 
values for incoming and outgoing packets. They perform the same algorithm and 
compare the received block check bytes with the computed block check bytes.   If 
the bytes are not identical, an error has occurred. However, we did note during our 
studies that CRC calculation for the incoming packets was unnecessary for the 
supervisor side, since no communication error was met on that side. Thus we have 
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assumed that the messages sent from PUMA were received totally correct. This 
assumption, which was tested to be correct for our robot’s workspace later, has 
decreased the number of calculations for each transaction of a particular command 
that supervisory computer should handle by 25% 
 
 
 
 
 

  

 

 
 
 

 
Calculate CRC for the outgoing 
message and append it to the message 
packet. 

 
Receive packet, discard and exclude 
the received CRC value and obtain the 
message data. 

  
Receive packet, calculate the CRC 
value for the incoming message data, 
and compare it with the received CRC 
value. 

Calculate CRC for the outgoing 
message and append it to the message 
packet. PUMA requires CRC to be 
calculated. 

  
  

     
Fig.3.44 CRC Calculation Status for the Communication 

 

3.6 Supervisory Software 
According to the supervisory rules and assumptions described previously, 
supervisory software has been designed and implemented. This software enables the 
user to send VAL commands directly to the PUMA robot just like the monitor 
(controller) commands within the PUMA system. 
 

External 
Computer 

(Supervisor) 
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Fig.3.45 Supervisory Communication Port Selection 
 
Supervisory communication is provided through Com 1 or Com 2 ports of the 
supervisory computer, which can be selected using the supervisory software initial 
graphical user interface shown in Fig.3.45. Once the port is selected the 
communication port settings are conducted automatically according to the 
supervisory port specifications declared by the Unimation. 
 
The baud rate for the serial line for the supervisory communication is 9600 baud, 
which is set by the PUMA producer Unimation. The communication data are 
transmitted as 8-bit bytes, with one parity bit for each byte and no parity 
information is included in the data bytes. After the selection of the communication 
port (COM 1 | COM 2), the supervisory system sets up the communication 
parameters according to this information given above. The code setting the 
parameters for the communication port is given below. 
 

 
set(s,'BaudRate',9600) 
set(s,'StopBits',1) 
set(s,'Parity','none') 
set(s,'BreakInterruptFcn','') 
set(s,'ByteOrder','littleEndian') 
set(s,'BytesAvailableFcn','') 
set(s,'BytesAvailableFcnMode','byte') 
set(s,'DataBits',8)  
set(s,'DataTerminalReady','on') 
set(s,'ErrorFcn','') 
set(s,'FlowControl','none') 
set(s,'ReadAsyncMode','continuous') 
set(s,'RequestToSend','on') 
set(s,'Terminator','') 
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Fig.3.46 Communication Initialization 
 
Once the port is opened the supervisory software will be waiting for the PUMA 
supervisory communication to initialize the communication according to the control 
messaging (STRT message) of DDCMP protocol, which is described within this 
chapter. 
 
Note that the supervisory computer software will cause a timeout error when the 
communication does not start within the selected timeout period. 
 
 

 
 

Fig.3.47 Supervisory Software Messaging User Interface 
 
The supervisory software opens the supervisory software messaging GUI for 
command and data messaging between the supervisory computer and the PUMA 
robot system, which enables all VAL commands to be transmitted and executed by 
the robotic arm. 
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Fig.3.48 Supervisory Message / Command Box 
 
The supervisory commands or messages to be transmitted are to be entered to the 
Message / Command Box within the supervisory software messaging screen. Fig. 
3.48 shows the message / command box which holds the message or the command 
(e.g. “CALIBRATE”) to be transmitted to PUMA. The commands entered are to be 
executed or replied by the PUMA. It shall be noticed that the messages or 
commands, which are entered within this dialogue, shall be complete VAL 
messages, thus VAL and robotic knowledge is required to use the supervisory 
software but a control software is also implemented above the supervisory software 
(explained within Chapter 4) which does not require the operator or the user to have 
the knowledge of VAL. This control software is described with the following 
chapter. 
 

 
 

Fig.3.49 PUMA System Messages 
 
The messages and requests sent by the PUMA (if any) are displayed within the 
supervisory software-messaging screen as well. Those messages may require the 
user to take action for the execution of a specific command. Also user requests such 
as “WHERE” are replied and displayed by the PUMA system message box. Note 
that most of the commands and requests of PUMA system are handled by the 
supervisory software thus they are not displayed. Fig. 3.49 displays a message “Are 
You Sure? (Y/N) received from VAL II. The external supervisor must reply to this 
message in order to continue messaging otherwise VAL will go on standby, waiting 
for the reply of its request or message. 
 

 
 

Fig.3.50 System Messages 

CALIBRATE 

Are You Sure?(Y/N) 
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The overall supervisory communication system messages are also displayed within 
the supervisory software-messaging screen. The system messages are important 
since they lead the user to take required action for the execution of the overall 
system. The system messages are most important when initializing the supervisory 
communication since the operator or the user has to take some necessary action 
such as enabling the network and the supervisory port of the PUMA controller. Fig. 
3.50 shows the system messages box, which displays a system message “ENABLE 
NETWORK & SUPERVISOR”, guiding the user to enable the network and 
supervisor ports of the controller thus the VAL. 
 
3.6.1 Operation of the Supervisory Software 
 
The supervisory software actually follows the rules of the DDCMP and the Logical 
Units, which are described previously within this chapter. 
 
The DDCMP protocol has been totally implemented since it is the bottom layer 
protocol of the supervisory communication, which accepts a single transmission 
request from a middle layer and can simultaneously be reading a single message 
from the communication interface. The DDCMP is implemented using its features 
described in the related item of this chapter. 
 
The logical units are also implemented as a whole within the supervisory software 
but LUN 0, LUN 4 and LUN 5 are not completely used since robot programming 
through the supervisory communication is handled with another control software 
(Chapter 4) which does not require the knowledge of VAL.  According to this 
information the reply message comparison priority has been reformed and LUN 1, 
2, 3 cases are compared and handled before the others. Although this seems to be a 
lack of the supervisory communication, the control software fills in the gaps 
enabling most of the VAL specifications and command to be executed and even 
beyond those VAL command set many more commands can be generated by the 
use of third party applications and the control software. 
 
3.6.2 Advantages and Disadvantages of Supervisory Software 
 
Supervisory software has all disadvantages that the VAL has since it is 
implemented on top of it, but it brings many more advantages since it is executed on 
a personal computer. Advantages that are specific to the supervisory 
communication can be listed as follows: 
 

• Operates on a personal computer (Operating system free), 
• Enables the integration of third party applications, 
• Enables network control (requires more work), 
• Enables the execution of all VAL monitor commands. 
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Specific robotic programming can increase advantages that supervisory 
communication brings. Thus those advantages listed above are the most basic 
advantages of the supervisory software and communication. In our studies we have 
developed control software that is integrated to the supervisory software and we 
managed to add many more special functions to the overall system. Discarding the 
integrated software modules implemented above the supervisory communication 
software, the disadvantages of the supervisory software can be listed as follows: 
 

• Operation and execution of commands are slow, 
• VAL robot programming is not enabled (handled by the control software), 
• Requires VAL to start up and initialize the robotic system, 
• Requires VAL and robotic knowledge (handled by the control software), 
• Requires MATLAB to be installed on the supervisory computer, 
• Requires high memory for better performance, 
• Communication buffer problems may occur due to OS. 

 
Most of the disadvantages are due to the programming language (MATLAB) and 
hardware performances, which can be overcome later on. But notice that the 
advantages it brings are more important since it enables more studies to be carried 
out on the robotic arm. Image processing, speech processing, network studies can 
be integrated to the robot via the supervisory communication software. 
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CHAPTER 4 
 
 

4 CONTROL INTERFACE 
 
 

4.1 General 
 
In order to supply the user with a user-friendly, easy to use GUI, interactive 
controlling and simulation software has been developed. This interface actually 
collects user requests, and sends them to the supervisory system, which is 
mentioned in the previous chapter. 
 
The supervisory program is integrated with an interface to the Robotic Toolbox 
written for MATLAB [16][17]. The toolbox has been modified enabling the user to 
send movement commands (joint angle movements) without the knowledge of VAL 
robot programming language. 
 
In the beginning of the studies the control interface was designed and implemented 
with C++. This version of the control interface had only the manipulator kinematics 
calculation capability. The implementation was specific for the PUMA 700 series 
robot. Although it responds faster in runtime, the development with C++ was hard 
especially for user interface and any change within the design required time 
consuming rework. Thus the code was transferred to the MATLAB environment. 
 

4.2 The Choice of MATLAB for the Robot Control Interface 
 
The robot control interface has been implemented with MATLAB in order to use its 
benefits and advantages upon simulation, graphics and matrix calculations. 
MATLAB has become very popular within robotic applications since manipulator 
mathematics especially kinematics use matrix calculations very commonly.  
 
4.2.1 Advantages and Disadvantages in Using MATLAB 
 
As stated before the most important advantage of using MATLAB is the ease of 
programming for matrix calculations, since MATLAB is specifically designed for 
matrix operations and thus have built-in functions for matrices. 
 
Advantages and benefits obtained using MATLAB can be listed as follows: 
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• Ease of matrix definitions and operations; 
• Ease of programming; 
• Ease of modification on existing code; 
• C / C++ and Java code can be called and executed within the MATLAB 

code; 
• Independent of operating system; 
• Requires less training required to start using it, if compared with other 

programming environments and languages (Microsoft Visual C++ or Visual 
Basic) which is very important for future work and improvement; 

• Ease of integration with existing robotic applications available; 
• Enables the use of Simulink, which is a package supplied with MATLAB, 

uses a graphical data-flow language to represent the mathematics of signal 
processing and control theory. The Simulink package is not used within our 
approach but it is very popular for designing control systems and especially 
on motor control; 

• Code conversion to C and Java is possible with small loss (this feature has 
not been tested within the studies of this thesis); 

• Enables embedded code generation specifically for Motorola and Texas 
Instruments components; 

• Enables the use of Toolboxes within MATLAB, which are specialized 
collections of M-files (MATLAB language programs) built specifically for 
solving particular classes of problems. 

 
Other than those advantages we obtain, MATLAB also brings some disadvantages 
but advantages are more valuable considering the studies performed. 
 
The disadvantages of using MATLAB as the development environment are listed 
below: 
 

• Slow when compared to C / C++; 
• Execution of code requires MATLAB to be installed; 
• Code cannot be protected easily; 
• MATLAB uses a great amount of memory and thus slows down the OS. 

4.3 Robotic Toolbox 
 
MATLAB has increased its power with the use of built in toolboxes within its 
package. The MATLAB version 6.5.0 Release 13 includes the following built-in 
toolboxes: 
 

• Communications: Design and analyze communications systems 
• Control System: Design and analyze feedback control systems 
• Curve Fitting: Perform model fitting and analysis 
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• Data Acquisition: Acquire and send out data from plug-in data acquisition 
boards 

• Database: Exchange data with relational databases 
• Filter Design: Design and analyze advanced floating-point and fixed-point 

filters 
• Financial: Model financial data and develop financial analysis algorithms 
• Fuzzy Logic: Design and simulate fuzzy logic systems 
• Image Processing: Perform image processing, analysis, and algorithm 

development 
• Instrument Control: Control and communicate with test and measurement 

instruments 
• LMI Control: Design robust controllers using convex optimization 

techniques 
• MATLAB Link for Code Composer Studio: Use MATLAB with RTDX 

enabled Texas Instruments digital signal processors 
• Mapping: Analyze and visualize geographically based information 
• Model Predictive Control: Control large, multivariable processes in the 

presence of constraints 
• Mu-Analysis and Synthesis: Design multivariable feedback controllers for 

systems with model uncertainty 
• Neural Network: Design and simulate neural networks 
• Optimization: Solve standard and large-scale optimization problems 
• Partial Differential Equation: Solve and analyze partial differential equations 
• Robust Control: Design robust multivariable feedback control systems 
• Signal Processing: Perform signal processing, analysis, and algorithm 

development 
• Spline: Create and manipulate spline approximation models of data 
• Statistics: Apply statistical algorithms and probability models 
• Symbolic Math: Perform computations using symbolic mathematics and 

variable-precision arithmetic 
• System Identification: Create linear dynamic models from measured input-

output data 
• Virtual Reality: Create and manipulate virtual reality worlds from within 

MATLAB and Simulink 
• Wavelet: Analyze, compress, and de-noise signals and images using wavelet 

techniques. 
 
Other than those built-in toolboxes, there are other toolboxes implemented by 
individuals or workgroups for other research areas and the robotic toolbox is one of 
those toolboxes. The Robotic Toolbox [16] provides many functions that are useful 
in robotics including such things as kinematics, dynamics, and trajectory generation 
and it actually uses some of the functions pre-defined with the initially generated 
standard toolboxes. The robotic toolbox is useful for simulation and for analyzing 
results from experiments with real robots as well. 
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The robotic toolbox is written using the object-oriented programming technique. A 
specific robot within the robotic toolbox is actually an object (object is an unique 
instance of a data structure defined according to the template provided by its class. 
Each object has its own values for the variables belonging to its class and can 
respond to the functions defined by its class) of the robot class, which is actually 
previously generated. A class is the prototype for an object in an object-oriented 
language; analogous to a derived type in a procedural language. A class may also be 
considered to be a set of objects, which share a common structure and behavior. The 
structure of a class is determined by the class variables, which represent the state of 
an object of that and the behavior is given by a set of methods (functions) 
associated with the class. 
 
In order to use the robotic toolbox, PUMA 760 instance shall be created, that is we 
have to define a new object using the robot class. In other words, we have to define 
and describe our PUMA 760 series robot to the robotic toolbox, using its 
specifications. Thus a PUMA 760 robot definition has been generated using the 
results found and described within Chapter 2 and section 2.6 “Model for PUMA 
700 Series”, in which we have assigned the link coordinate frame and determined 
the Denavit and Hartenberg (DH) [11,12] parameters of the robot.  
 
Technically we have defined a PUMA 760 object in the current workspace of 
MATLAB, which described the kinematical characteristics of a Unimation Puma 
760 manipulator using standard DH conventions, thus each link was defined and 
described to the robotic toolbox software.  
 
The MATLAB workspace consists of the set of variables (named arrays) built up 
during a MATLAB session and stored in memory. Variables can be added to the 
workspace by using functions, running M-files, and loading saved workspaces. 
 

 
>> L{1} = link([ pi/2  0 0 0 0], 'standard'); 
 
>> L{2} = link([ 0  .4318 0 0 0], 'standard'); 
 
>>L{3} = link([-pi/2  .0203 0 .15005 0], 'standard'); 
 
>>L{4} = link([pi/2  0 0 .4318 0], 'standard'); 
 
>>L{5} = link([-pi/2  0 0 0 0], 'standard'); 
 
>>L{6} = link([0  0 0 0 0], 'standard');. 
 
>> L{6} = link([0  0 0 0 0], 'standard'); 
 

 
Using the object link definition above and the kinematical theory described within 
Chapter 2 (the transformation matrices), we have managed to plot the PUMA 760 
figure, which is actually the same for all PUMA 700 series robots since their 
kinematical characteristics are the same.  
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Fig.4.1 PUMA 760 Plotting 
 
Translating the base of the PUMA with the “transl” function can modify the base 
position of the robot. This function returns the translational part of a homogenous 
transform as a 3-element column vector. 
 

 
>> transl([-0.5 -0.5 0]) 
 
ans = 
    1.0000          0          0    -0.5000 
    0  1.0000  0    -0.5000 
    0          0     1.0000 0 
    0          0          0     1.0000 
 

 

According to the robot object definition, the base is located at [0 0 0] in the 
cartesian coordinate space by default, since while creating the robot we have 
defined the base coordinates of the robot as [0 0 0] in cartesian space. 
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>> p760.base    %base transformation by default 
 
ans = 
     1     0     0     0 
     0     1     0     0 
     0     0     1     0 
     0     0     0     1 
 
>> p760.base=p760.base*transl([-0.5 -0.5 0]); 
 
>> p760.base   %translated base transformation  
 
ans = 
 1.00 0 0    -0.50 
          0     1.00 0    -0.50 
          0          0     1.00 0 
          0          0         0     1.00 
 

 
 

 
 

Fig.4.2 PUMA 760 with Translated Base 
 
3D workspace enveloping, the view of the arm (in perspective or orthographical), 
wrist labels (xyz or noa) can be modified for the intended representation of the 
robot. Other than that, the user can draw also other robots as well, since the robot 
object is created once. Representations of the arm in subsequent instances can also 
be generated using the PUMA 760 robot object. 
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Instance is an individual object of a certain class. While a class is just the type 
definition, an actual usage of a class is called "instance". Each instance of a class 
can have different values for its instance variables, i.e. the base of the PUMA 760 
object. While generating the representation for the next instance of the robot class 
object, user must not forget to translate the base of the robot, otherwise the bases of 
subsequent robot drawings will coincide.  
 

 
>> p760_2=p760; 
 
>> p760_2.name='2nd PUMA 760'; 
 
>> p760.base=transl([0.5 0.5 0]); 
 
>> p760_2.base=transl([-0.5 -0.5 0]); 
 

 

 
 

Fig.4.3 Two subsequent PUMA 760 Robot representations 
 
This feature has been used here for testing purposes only, since we simulate and 
control only one robot in this study. DH parameters for each robot object has been 
modified and compared to the actual PUMA 760 manipulator, which fastened up 
the testing process of the control interface software. The changes in DH parameters 
effect both the simulation and the execution of robot motion on the real 
environment. We compared the outputs of each robot object defined within the 
software with the actual results obtained from the robot MARK II controller.  
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In simulating the robot motion, rotation matrices are needed to be implemented so 
that the following shows the result of those implementations for a specific example 
such as a rotation about x- axis for a particular rotation angle. 
 

 
>> rotx(0.50265)  % generates  transformation matrix about the X-axis for 0.50265 (rad) 
 
ans = 
     1.0000    0          0          0 
          0     0.8763   -0.4817 0 
          0     0.4817 0.8763  0 
          0          0          0     1.0000 
 

 
These rotation matrices are needed to generate movements of robot in the 
simulation.  
 

 
 

Fig.4.4 Joint 1 Rotated About its X-axis 
 
Using all those transformation matrices a complete control interface has been 
designed in accordance with the features of the robotic toolbox. This interface 
enables the user both for calculating and simulating a robot pose. Since it is a 
complete interactive tool, it does not require the knowledge of VAL II robotic 
programming language.  
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The robot control interface can actually be used for any kind of manipulator for 
simulation purposes, but the only thing that has to be considered is that the robot 
object, which defines the kinematical characteristics of the robot to be represented, 
must be defined to the system. 
 
Fig.4.5 displays the control panel for the robot control interface. This control panel 
lets the user plan the motion of the manipulator, by giving a means to modify the 
joint angles independently. The end-effector parameters (ax, ay, az, x, y, z) also are 
given within this control panel. 
 

 
 

Fig.4.5 Control Interface Panel 
 
The control panel initially starts the robot from the READY position that is the arm 
stretches up along the z-axis. 
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Fig.4.6 PUMA 760 at READY Position 
 
The initial position of the robot that is set by the control software corresponds to the 
“DO READY” command positioning of the VAL system. The intended movements 
are executed via the scroll bars of the control panel. There exist six scroll bars, 
which actually correspond to each joint of the manipulator. Fig.4.7 shows how the 
scroll bars are used. The editable boxes at the right-hand side of each scroll box also 
display the angular value for each joint.  
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Fig.4.7 Joint Movements via the Control Panel 
 
The robot motion is displayed in another figure window of MATLAB as the joint 
angular parameters are changed. The control panel also displays the motion of the 
robot at the bottom layer of the figure window, but in order to see the motion 
clearly it is recommended that the second window be used. 
 
The user can also simulate the robot through different robot positions and poses 
using the ‘simulate button’ in the control panel. In order to do this user shall record 
each desired position of the robot by the set position button, it is the users choice to 
record as many positions. The number of points to be traced with the simulation is 
determined next, but the default is 2. That is the robot moves directly from ‘position 
x’ to ‘position x+1’, and no point is considered in between. The best choice in 
setting the number of points (Fig.4.8) is to set greater values for greater position 
distances considering end-effector positions after each set of robot position. 
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Fig.4.8 Simulation of Movements 
 
If we move joint 1 from the angular ready position qr =[ 0 1.5708 -1.5708 0 0 0] to 
qd=[0.5655 1.5708 -1.5708 0 0 0] and set the number of points to 10, we end up 
with the following angular positions, 
 

Initial 
Position 
(READY) 

      
 0.0000    1.5708   -1.5708         0         0         0 

      0.0065    1.5708   1.5708          0         0         0 
  0.0432    1.5708   1.5708          0         0         0 
      0.1187    1.5708   1.5708          0         0         0 
      0.2243    1.5708   1.5708          0         0         0 
      0.3412    1.5708   1.5708          0         0         0 
  0.4468    1.5708   1.5708          0         0         0 
      0.5223    1.5708   1.5708          0         0         0 
  0.5590    1.5708   1.5708          0         0         0 

RECORDS POSITION
STARTS SIMULATION

SETS NUMBER of POINTS
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Destination 
Position 

     0.5655    1.5708   -1.5708         0         0         0 

 
Thus, the joint space trajectory determination between initial and destination 
positions is possible. Each point between the initial position and the destination 
position can be calculated and described by the position of the robot in terms of 
joint positions/angles is Joint Space. The same calculations can also be carried out 
for cartesian trajectory determination between two positions as well, but this time 
the trajectory will be identified in terms of Cartesian coordinates.  
 
The VAL commands to be transmitted to the PUMA controller via the supervisory 
communication port can be automatically generated after the simulation process; 
user is not involved with the program or command generation process. User creates 
the program, which is actually the set of VAL commands to be executed, through 
the control panel via the “CREATE PROGRAM” button (Fig.4.9 – Fig 4.10) so that 
the created VAL program is saved as a text file under any folder within the file 
structure of the computer. The file extension can also be changed but in order to run 
those VAL programs it is important that those file types are to be readable by 
MATLAB, these file type extensions can be .m (MATLAB file), .mat (MATLAB 
MAT workspace file), .doc (document file), or .txt (text file). 
 
The repeat action value (Fig. 4.9) is used when a simulated robot motion is to be 
executed more then once.  
 

 
 

Fig.4.9 Creating VAL Programs 
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Fig.4.10 Creating VAL Programs 
 
The content of the generated VAL program, which is actually the commands 
generated and prepared for transmission and execution via the supervisor, depends 
on the recorded position values and simulation results. A basic example for the 
generated VAL command set can be:  
 
 
DO READY 
SET SPEED 50 
DO DRIVE 1,10,10  
DO DRIVE 1,-90,80 
DO MOVE #PPOINT(90,–90,0, 0,20,0) 
DO DRIVE 2,-20,20 
DO DRIVE 3,35,90 
SPEED 80 
DO DRIVE 6,266,90 
DO DRIVE 6,-266,10 
DO DRIVE 4,100,50 
DO DRIVE 4,-35,90 
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Fig. 4.11 Execution of The Automatically Generated VAL Program 
 
The VAL program generated can be executed anytime via the “EXECUTE” button 
on the control panel. When this action is started, VAL Terminal I/O commands are 
sent to PUMA over the supervisory port. The “TRANSFER PROGRAM” executes 
a function that sends the overall program to the PUMA side of the communicating 
parties. The VAL program is then created within the memory of the controller. In 
order to execute the VAL programs the supervisory software, which is described 
within Chapter 3, shall be started before the execution.  
 

4.4 The PUMA System Control Panel 
 
To guide the user through the processes and to fully integrate the software modules 
a program module, which arranges the execution of programs, has been developed 
to run on top of all. It brings other features; it provides ease with operation, 
provides information on software processes, and guides the user on operation above 
the supervisory software.  It is the PUMA System Control Panel and shown in Fig. 
4.12.  
 
Integrated with the software modules, which are listed within the control selection 
menu within the screen shown in Fig. 3.13, the supervisory system has become a 
complete control system for the PUMA 700 series robots. All disadvantages of 
supervisory control stated in Chapter 3 has also been overcome.  
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Fig.4.12 PUMA System Control Panel 
 
The System Control Panel guides the user and executes required programs and 
functions that are required for other software modules. It also gives information 
about each software module. User can select which module to be executed from the 
control selection menu (Fig.4.13) within the system control panel, which handles all 
required programs underneath each module. 
 

 
 

Fig.4.13 Control Selection Menu 
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The control selection menu consists of five items, which are: 
 

• Supervisor 
• Teach Pendant Mode 
• Programming Mode 
• Animation Mode 
• Other 

 
The supervisor and the teach pendant mode (control interface) were described 
earlier. Other than those described we have the Programming module and the 
animation module where as the fifth module named “Other” is left empty for future 
implementations. The module selection list can be enlarged with other third party 
modules and applications and even with the built-in toolboxes of MATLAB. 
 
The programming module has been developed in order to let the user write and 
execute VAL programs using personal computers. The VAL programs can be 
written in text (.txt), document (.doc) or MATLAB (.m) file formats. This feature 
also enables the user to include external information to be included in VAL 
programs, which means if a trajectory has been defined by another program (e.g. 
AutoCAD) it can be carried and merged into VAL programs.  
 

 
 

Fig.4.14 Programming Module Interface 
 



 

 
 

98 

The programming module also uses the supervisory control software (Chapter 3) in 
order to execute the VAL commands. 
 
The programming module also enables VAL programming at home, which was not 
available before these studies since the PUMA controller is not suitable with any 
other operating system and it also does not have standard disk within its original 
configuration, thus the transportation of programs is not possible without the 
controller itself. 
 
The fourth module is the animation module. It is actually a demonstration module, 
which uses the outcomes of another software developed for human face tracking. 
The demonstration is to show the capability of the new control system enabling the 
users to use new sensory data information like the information from a web cam. The 
animation module is described in Chapter 5, but since it is only for demonstration 
the video processing techniques will not be discussed in detail. 
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CHAPTER 5 
 
 

5 AN INTERACTIVE CONTROL APPLICATION OF PUMA 
ROBOT USING THE SUPERVISORY COMMUNICATION 

PORT  
 
 

5.1 General 
 
In order to demonstrate the capability of the supervisory system that we have 
developed a different application was integrated to the overall system. With this 
new software integration we managed to use a video camera information in 
modifying the manipulator pose. The application is related to the human head/face 
motion, which tries to find the direction and the speed of the human motion out of 
pre-recorded video images. 
 
As discussed before, the PUMA controller does not use sensory information other 
than those within the original manipulator such as its encoders. Before the 
development of the supervisory system we were not able to use camera  (or any 
other new sensor) information for controlling the robot motion but with the ability 
of our supervisory software we can control our robot utilizing the data from other 
sources and applications. The studies held under the topic of Chapter 5, demonstrate 
the new ability that PUMA has gained with the capabilities of the supervisory 
communication. 
 
We have transferred the output of the video system, as the speed of the action and 
displacement at the end of the action recorded in successive frames grabbed by the 
camera, to the supervisory software in order to modify the pose of the robot. The 
output data from the video system is obtained by processing the image frames 
extracted out of the video file. In order to obtain the direction and speed of motion 
within and between the image frames, we have used block-matching method, which 
can be considered as the most popular method for practical motion estimation [18].  
 

5.2 Block – Matching Method 
 
The basic idea of block matching is depicted in Fig. 5.1, where displacement for a 
pixel (n1, n2) in frame k, which is the present frame, is determined by considering an 
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N1xN2 block centered about (n1, n2) and searching frame k+1, which is the search 
frame for the location of the best matching block. In this basic idea the search is to 
find the motion vector, which is actually the displacement of the closest matching 
block in reference frame for a block in current frame. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.1 Block - Matching 
 
 
In our studies for the block-matching approach we have assumed the following 
while generating the algorithm and software code: 

• Objects are rigid bodies; hence, object deformation can be neglected for at 
least a few nearby frames. 

• Objects move only in translational movement for, at least, a few frames. 
• Illumination is spatially and temporally uniform; hence, the observed object 

intensities are unchanged under movement. 
• Background affects are neglected. 
• The camera stability is sustained. 
• Each block is viewed as an independent object. 
• The motion of pixels within the same block is uniform. 

 
The assumptions are not totally reachable but the resultant defects are reasonable.  
 
The advantages and disadvantages of the block-matching method is listed below.  
 
Advantages: 

• It is straightforward,  
• It is a regular parallel procedure good for software implementations. 
• Robust (immunity to noise) 

 

 

 

Frame k

Frame k+1

Block

 

 
 

Search Window
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Disadvantages: 
• A block may contain several moving objects. 
• Criteria of search (displacement size) may not give us the true movement. 

5.3 Block-Matching Software 
 
A software module has been implemented for the block matching method. Fig. 5.2 
shows the flow of the processes that are implemented. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 5.2 Block-Matching Software Flow 

 
In our studies we have used a video consisting of 10 frames. Frames extracted from 
the video are shown below (Fig. 5.3). 
 
 

Segmentation of the 
video file into frames. 

Selection of fames 
and block sizes. 

Block-matching 
algorithm 

Displaying each calculated motion vector 
and generating the average motion vector. 

Determination of joint, speed and motion 
angle parameters for the robot. 

Generation of the robot program. 
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 Fig. 5.3 Image Frames 
 

After the extraction of image frames, user shall select the “Target” (reference 
frame) and the “Estimate” (search frame) frames using the GUI displayed below 
within Fig. 5.4 
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Fig. 5.4 Selection of Frames 
 

The block size and the search window size are both selected via the GUI shown 
below (Fig. 5.5), after the selection of the frames that will be used for the motion 
estimation for the generation of robot program. The user can choose block size 
(8x8, 16x16, 32x32), the search window or area (8x8, 16x16, 32x32) and can also 
set a threshold value for the motion vectors. This threshold is used to discard 
motion vectors that are small in size. Thus we are trying to minimize the affects, 
which are caused by the instability of camera, background and illumination. It shall 
be noted that the threshold does not completely solve our problems. Threshold 
parameter shall be set by experiment, according to the video file and extracted 
frames otherwise it will not be able obtain correct motion vectors. 
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Fig. 5.5 Selection of Block and Search Area 
 
According to the selected parameters the block-matching algorithm will produce 
motion vectors for each block within the selected frame. The motion vectors will 
then be filtered out by the use of the threshold parameter. The frames that are 
selected are displayed (Frames 1 and 4 for the case of Fig. 5.5) within the GUI as 
well. 
 
The GUI shown below in Fig. 5.6 displays the motion vectors that carry the 
direction and size information. 
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Fig. 5.6 Motion Vectors  
 
Those motion vectors are used to generate an average motion vector, which will be 
used later to determine the robot movement parameters. The average motion vector 
is displayed within a GUI shown in Fig. 5.7. The size, which is called “delta” in the 
software, and the direction of motion is also displayed. 
 
The direction is determined using the displacement observed on x-axis and y-axis. 
This information is also used for the calculation of the vector size, which is actually 
used for the speed determination of the motion since the greater displacement 
represent faster motion of the moving object between the selected frames. Thus 
displacement of pixels, size of the motion vector and speed has linear relationship 
between themselves.  
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Fig. 5.7 Overall Motion Vector 
 
Once the motion vectors are joined into one final motion vector, user can select 
another set of frames using the “NEXT” button, which will guide the user to the 
initial screen (Fig. 5.4). In order to determine the parameters required for the VAL 
program, user shall choose “DONE”. 
 
When we consider the case where we follow the processes for the estimation of two 
motions and choose the parameters as follows: 
 
Motion Estimation 1 
Target Frame=1 Estimate Frame=4, Block Size=16x16,  
Search Window (area)=32x32, Threshold=2, 
 
Motion Estimation 2 
Target Frame=4 Estimate Frame=1, Block Size=16x16,  
Search Window (area)=32x32, Threshold=2, 
 
we would end up with the motion vectors shown in Fig. 5.8 and Fig. 5.9. 
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Fig. 5.8 Motion Vector 1 
 

 
 

Fig. 5.9 Motion Vector 2 
 
Using the motion vectors and the data they carry we display the Joint assignments 
GUI, where the user can see and modify the calculated parameters for the robot 
motion. Fig. 5.10 shows the joint assignment GUI. 



 

 
 

108 

 
 

Fig. 5.10 Joint Assignment GUI 
 
The default joint for the execution of the movement is set to joint 1, but user can 
change the joint itself and movement parameters using the Joint assignment GUI, 
which holds the required modification interface tools. 
 

 
Fig. 5.11 Joint Assignment, Modification of Speed and Angle 
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Each of the motion vectors is displayed in different color in order to prevent 
confusion. Fig. 5.12 shows both of the calculated motion vectors plotted with 
different color and the active vector is also indicated. 
 
 
 
 
 
 
 
 

 
 

Fig. 5.12 Joint Assignment for Motion Vectors 1 and 2 
 
Completing the parameter settings and joint assignment, the next phase is to 
generate the VAL programming code to execute on the PUMA system. The 
program generation user interface is shown in Fig. 5.13. Through this interface, user 
can select the file, which the VAL program is generated and written. The file 
generated holds basic VAL commands, which are actually PUMA system terminal 
input and output commands (Chapter 2). These commands can be executed via the 
supervisory software. 
 
 

Motion Vector 2

Motion Vector 1

Active Vector Color Display. (Displays the color of the active motion 
vector, which the joint assignment is made)
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Fig. 5.13 Generating VAL Program (Terminal I/O Commands) 
 
The VAL commands are generated after clicking the “OK” button within the 
“Generate Program” screen (Fig. 5.23). The commands generated would be similar 
to the commands shown below: 
 
DO READY 
SET SPEED 40 
DO MOVE JOINT 1 45 
SET SPEED 50 
DO MOVE JOINT 1 -35 
 
The commands are generated according to the information contained within the 
motion vectors thus the estimated motion. The selection of frames, joints and 
modification of speed, angle parameters are critical for the generation of each 
command.   
 
Finally the commands are executed via the supervisory communication port since 
this software is also integrated to the supervisory control software. In order to 
prevent any errors within the program execution user shall start the supervisory 
control software.  A warning message is also generated, which is to guide the user 
within the processes (Fig. 5.13). 
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Fig. 5.14 Warning Message 
 
 
VAL command execution is handled by the supervisory interface afterwards. There 
is variety of applications that can be integrated to the supervisory control software. 

The studies carried on for the motion estimation for robot motion planning only 
demonstrates the ability that we have gained by the use of supervisory interface. 

Without the supervisory software, third party applications, such as the one that we 
have developed, cannot be executed for the motion and path planning of the robot.



 

 
 

112 

CHAPTER 6 
 
 

6 CONCLUSION  

 
 

6.1 Conclusion 
 
An integrated interactive control software has been developed in the thesis for the 
PUMA 700 series robot communicating over its supervisory protocol. The control 
software running in a remote end computer has successfully established a 
communication line with the robot’s own controller, so that remote and interactive 
control of the arm has been possible. The following points require to be mentioned 
for better evaluation of the implementation presented in this thesis study. 
 

a. Communications port (COM1 or COM2) buffer on the external 
computer rarely generate errors due to a bug within MATLAB for 
Windows operating system. When this error occurs, the system may 
require start-up on the external computer side. 

 
b. Resulting joint angular displacements in complying with the motion 

commands issued by the interactive control software suffer from 
approximately 1.5% error. The amount of these errors decreases if the 
arm is calibrated, but this amount increases as the number of executions 
of these commands increase. These errors are due to the inaccuracies in 
D-H parameters of the robot arm. The D-H parameters were calculated 
using the technical specifications [4] of PUMA 700 series robots supplied 
by the manufacturer, but since the robot under consideration is a rebuilt 
one, these parameters might have been changed during this mending 
process. The error magnitude may be reduced to some extent further by 
correcting D-H parameters based on the results obtained from a series of 
experiments carried out on the arm.  

 
Establishing a communication channel between a remote end computer and the 
controller of the arm has improved our control ability over the PUMA manipulator. 
Furthermore, we have also gained a means of incorporating external sensory data 
providing sources such as camera, ultrasonic transmitters and receivers, etc. into 
this robot arm control system.  
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In order to have complete control ability, external feedback gear included, of 
PUMA without the use of VAL, the controller system needs to be removed 
thoroughly and replaced with a new controller system. Considering the labor and 
funding burden for such renewal process operating the existing system in this 
supervisory control scheme seems to be a feasible alternative.  

6.2 Proposed Future Work 
 
Further studies are suggested to be conducted to improve and effectiveness of this 
alternative control of the arm.  
 

• Improvement on the response time of the software can be achieved by 
cleaning the warning indicator codes within the existing software code.  

 
• The supervisory system (as a whole) has been tested under Windows, 

although MATLAB supports other operating systems, the software has not 
been tested for other operating systems. Thus the supervisory system can be 
carried into Linux or Unix environments for tests and execution.  

 
Future work with supervisory control system: There are many future works that can 
be conducted over the supervisory system, since it enables the use of an external 
computer. Those future works may require the modification of the present 
supervisory system software. The proposed future works with the supervisory 
system are listed as follows: 
 

• Integrating new sensory data processing software to the supervisory control 
system for robot control. 

 
o Speech processors may be used in order to transmit voice messages 

and commands to the robot over the supervisory communication 
port. 

o Image processing software may be used for obstacle determination, 
object pick and place applications and object tracking. 

 
• Controlling the robot over a network or even the Internet is possible by the 

use of supervisory control system, but it requires modification or re-
implementation of the present supervisory software. 

 
In order to form a PUMA control network the most practical way is to implement 
Java servlets or applets that run in the users (clients) browsers enabling the 
supervisory system to obtain required parameters for controlling the PUMA inside 
METU ROLAB. 
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A. APPENDIX A 
 
 

A Troubleshooting Charts 
 
 
 
 

Troubleshooting charts are to be followed in order to diagnose the faults. The 
available troubleshooting charts are joined into a one chart and below in Table A.1, 
the whole chart is given. 
 

Table A.1 Troubleshooting Chart  
 

*ADC dead* Jt (n) Defective boards Replace boards in the following 
sequence, checking if problem priests 
after each replacement 
 
1 Digital servo board for indicated joint 
2 "B" interface board 
3 "A" interface board 
 
Replace faulty board. 

*ADC malfunction Malfunction in analog input 
module 

Attempt input again.  If error repeats, 
hardware module should be replaced. 

*ALTER aborted a. Negative control byte received; 
computer cannot enter ALTER 
mode 
 
b. Error occurs while ALTER 
mode is active (more than three 
communication errors have 
occurred in succession) 

a. Check external computer to ensure it 
is following proper communications 
protocol 
 
b. Check communications line to ensure 
it is not excessively noisy 

*ARM POWER 
off* 

a. ARM POWER is not turned on 
 
b. System malfunction 

a. Turn on ARM POWER and reenter 
last command 
 
b .ARM POWER does not come on. 

*BAD POT Jt n* a. Faulty calibration 
 
 
b. Dirty or dry potentiometer 
 
 
c. Faulty potentiometer in 

a. Run DIA POTCAL.  Create overlay 
as required 
 
b. Clean and lubricate potentiometer 
 
c. Replace entire motor assembly on 
indicated joint 
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indicated joint 
 
d. Faulty PC boards 

 
d. Check seating.  Replace boards in the 
following sequence and check problem 
after each step: 
 
1 "B" Interface board 
3 "A" interface board 
3 Digital servo board 
Exchange boards to isolate fault 
4 LSI-11 processor board 
 
Replace faulty board 

*Brake release 
enabled 

a. Top panel switch enabled 
 
b. Faulty toggle switch 
 
 
c. Faulty PC boards 

a. Move switch to OFF position 
 
b. Check switch for continuity; replace 
switch tray is faulty 
 
c. Check seating.  Replace boards in the 
following sequence and recheck 
problem after each step: 
 
1 Power amplifier control board 
2 High power function assembly  
3 "B" interface board 
4 "A" interface board 
 
Replace faulty board 

*Calibration will 
move our of range 
Jt n  

Arm to close to end of range Reposition arm using teach pendant in 
JONT mode and repeat CALIBRATE 
command 

*CHECKSUM 
Error* 

a. Diskette is use is defective 
 
 
b. Defective or loose floppy drive 
connector 
 
 
 
c. Board(s) not securely seated 
 
 
d. Defective board(s) 

a. Attempt same procedure using known 
good diskette 
 
b. Check connection floppy drive if 
connection good check continuity of 
cable. Replace cable id necessary 
 
c. Check boards in card cage for proper 
seating 
 
d. Replace boards in the following 
sequence, checking if problem persists 
after each replacement 
 
1 Quad serial interface 
(DLV11-J) 
2 LSI_11 microprocessor 
3 "B" interface board 
4 CMOS board 

*Clock overrun* a. Defective "B" interface board 
 
b. Defective LSI-11 board 
 

a. Replace defective board 
 
 
b. Replace defective board 
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c. LSI-11 affected by electrical 
noise. 

 
 
c. Ensure all covers correctly installed 

*Communication 
line already in use* 

Attempt is made to use a hardware 
communication line already in use 
for another purpose 

Use a different communication line or 
discontinue its other use 

*CPU ERROR* 
Trap to (n1) from 
kernel: 
(n2) (log, phy) 
(n3), (n4) 
 
*CPU error* 
Trap to (n1)from 
user: 
(n2) (log,phy) 
(n2), (n4) 

a. Bad read from memory 
 
 
 
 
 
b. Electrical noise on lines 
 
 
 
 
 
c. Defective board(s) 

a. Reset VAL II by typing 
"1100G" 
     CAUTION 
Responding wit a Y will wipe out 
memory 
 
b. Isolate all high power or high 
frequency lines as far from robot as 
practical In some rate instances such 
lines may require additional shielding 
 
 
c. Replace boards in following 
sequence, checking if problem persists 
after each replacement 
 
1 LSI-11microporvessor board 
2 CMOS board 
 
Replace faulty board 

*Data check error* Transmission error detected while 
transferring information to or from 
external device 

Attempt transfer again 

*Device not ready* Requested File storage not 
prepared to communicate with 
VAL II 

a. On Unimation floppy disk drive, 
make sure drive is plugged in, diskette 
is inserted in drive, and it is properly 
formatted 
 
 b. Replace disk 

*Directory Error* a. Incorrect disk, not properly 
installed, or not formatted 
 
b. Damaged disk 

a. Make sure correct diskette is used, it 
is properly installed in drive, and it is 
properly formatted 
 
b. Replace disk 

*Envelope error* 
Jt (n)  

a. Minor joint degeneracy occurs 
when Jt5 is near o degrees, 
therefore aligning axes of Jt4 and 
Jt6. Error occurs as VAL a temps 
to reposition Jt4 and 6 
simultaneously for tool orientation 
 
b. Major joint usable to maintain 
position along path of motion 
 
 
 
 

a. Reprogram arm; include offset in 
Joint 5 
     WARNING 
Before proceeding to item b ensure that 
arm is properly supported prier to 
releasing joint brakes in FREE mode.   
Failure to mechanically support the arm 
will result in arm collapsing 
 
b. Ensure That payload (including 
tooling) is within specified limits.  Place 
affected joint in FREE mode; ensure 
that brake is not dragging, and that there 
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c. Major joint runaway 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d. Minor joint runaway 
 
 
 
 
 
 
 
 
 
 
 
 
 
e. Joint stalled 
 
f . Major joint drop 

is no binding of gears or bearings.  
Replace power amplifier board and retry 
move 
 
c. Check electrical connections of 
affected joint. Check cables for 
connections of affected hone Check 
cables for continuity replace if faulty 
Replace components in the following 
sequence and recheck problem after 
each step: 
 
1 Digital servo board  
Exchange boards to isolate fault 
2 Servomotor 
3 Power amplifier 
4 Low power interconnect cable 
5 Arm harness  
6 Arm cable board 
Replace faulty component 
 
d. Check electrical connections of 
affected joint Check cables for 
continuity; replace if faulty Replace 
components in the following sequence 
and recheck problem after each step: 
 
Digital servo board 
2 Servomotor 
3 Power amplifier 
4 Low power interconnect cable 
5 arm harness 
6 Arm cable board 
Replace faulty component 
 
e. Free joint of restraint 
 
f. Check electrical connection of 
affected joint Check cables for 
continuity; replace if faulty Replace 
components in the following sequence 
and recheck problem after each step 
 
1 Power amplifier 
2 Low power interconnect cable 
3 Arm harness  
4 Digital servo board exchange boards 
to isolate fault 
 
Replace faulty component 

[FATAL]  NOTE 
When [FATAL] appears on screen it 
indicates that a sufficiently serious 
problem had developed to cause the 
operation system to shut down.  For 
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possible system look up message 
alphabetically following word [FATAL]

*File already open* Last file not completed 
successfully disk door opened to 
soon 

Unplug disk drive from controller 
monetarily so that it undergoes a power 
up-reset. 

*File format error* a. Request floppy disk file not 
created by software 
 
b. File is corrupted 

a. Use another diskette 
 
 
 
b. Reference anther file 

*Force processor 
not active*  

a. Force processing hardware 
missing 
 
b. Force processing hardware 
malfunctioning 

a. Check that hardware is in system If 
Missing install hardware 
 
b. Replace with new hardware 
(Force processing board etc) 

*Function timeout* 
Jt n  

a. Robot is blocked and cannot 
reach its destination 
 
b. Arm has run into a hardware 
stop 
 
c. Current overload circuit tripped 
 
 
 
 
d. Motor potentiometer not 
properly zeroed  (possible loosed 
potentiometer cap). 
 
 
 
e. Joint stalled; arm unable to 
move to programmed location. 
 
 
 
f. Faulty electrical interconnection.
 
 
 
 
g. Faulty PC board(s). 

a. Turn on ARMPOWER and try 
motion again 
 
b. Change program steps or locations as 
necessary to avoid hardware stops 
 
c. Shut system down and allow a few 
moments for cooling. If problem 
persists, look for shorts using standard 
short isolation routines. 
 
d. Check potentiometer voltage. If 
necessary, zero potentiometer. 
 
 
 
 
e. Inspect operating envelope for 
physical barriers. Inspect drive train for 
mechanical problems. Inspect 
servomotor brake systems. 
 
f. Check seating of ribbon cable 
interconnecting "A" interface board and 
servo interface board.  Replace ribbon 
cable if faulty. 
 
g. Check seating.  Replace boards in the 
following sequence and recheck 
problem after each step. 
 
(1) Digital servo board. 
      Exchange boards to isolate fault. 
(2) "B" interface board. 
(3) "A" interface board. 
 
Replace faulty board. 

*Hardware not in Hardware has not been installed in Proceed as follows: 
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system.  system, or hardware 
malfunctioning. 

 
(1) Save necessary programs and data. 
(2) Turn off system. 
(3) Install or repair hardware module. 
(4) If necessary, modify programs so as   
not to attempt access to this hardware. 

*Hardware 
problem in joint  
  1, 2, or 3* 
 
*Hardware 
problem in joint 
  4, 5, 6*  

a. Temperature fault. 
 
 
b. Faulty power amplifier. 
 
 
 
c. Faulty power amplifier control 
board. 
 
d. Shorted servomotor. 

a. Turn system off and allow time for 
cooling; then reinitialize. 
 
b. Inspect controller top panel and 
power amplifier. If power amplifier 
assembly is faulty, replace. 
 
c. Check seating; replace board if faulty.
 
 
d. Replace servomotor. 

*Initialization 
error* 

a. Current overload circuit tripped. 
 
 
 
 
b. Board(s) not securely seated. 
 
 
c. Defective board(s). 
 
 
 
 
 
 
 
 
 
d. Blown fuse in low voltage 
power supply 

a. Shut system down and allow a few 
moments for cooling. If problem 
persists, look for shorts using standard 
short isolation routines. 
 
b. Check boards in card cage for proper 
seating. 
 
c. Replace boards in the following 
sequence, checking if problem persists 
after each replacement. 
 
(1) "B" interface board. 
 
(2) CMOS board. 
 
(3) Quad serial interface board. 
 
d. Check connector P23 at 
CRT/TTY for following voltage levels: 
 
(1) Pins 3 & 5 = +12 vdc. 
 
(2) Pins 1 & 5 = -12 vdc. 
 
(3) Pins 4 & 5 = +5 vdc. 
 
NOTE 
 
Lack of voltage readings is indicative of 
a blown low voltage power supply fuse.  
Replace fuse if necessary. 

*Logical unit 
busy*  

Internal error in software. Field Service Required 

*Lost encoder 
sync* 

a. Defective encoder light source. 
 

a. Replace motor on affected joint. 
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Jt (n)   b. Faulty encoder disk. 
 
c. Faulty digital servo board. 
 
 
d. Faulty arm cable assembly. 
 
e. Electrical noise. 

b. Replace motor on affected joint.  
 
c. Check seating.  Exchange boards to 
isolate fault. Replace faulty board. 
 
d. Check seating; replace assembly  
 
e. Install shield from interconnecting 
cable. 

*Memory error* 
Address (nnnnnn) 

a. Operator error. 
 
 
 
b. Weak CMOS batteries. 
 
 
c. CMOS board defective or not 
seated securely.  

a. Check that no attempt has been made 
to store data beyond the capacity of the  
CMOS memory. 
 
b. Check CMOS battery charge.  
Replace batteries if necessary. 
 
c. Check to ensure secure seating of 
CMOS board. Replace defective CMOS 
board. 

*Motor hot* 
Jt (n)   

Drive motor for indicated joint 
overheats. 

Proceed as follows: 
 
(1) Turn off ARM POWER to allow 
motor to cool for a few minutes. 
(2) Turn on ARM POWER and restart 
program. 
(3) Reduce robot motion speed or 
reduce carried load. 

*Motor stalled* 
Jt (n) 

Robot arm restrained from moving 
to programmed position. 

Free arm of restraint. 

*Network closed* a. Network has not opened. 
 
b. Network closed by supervisory 
computer.  

a. Open network or direct device not to 
use network.  
 
b. Reissue network opening message 
packet from host.  

*No blob* 
(Univision) 

No blob found corresponding to 
blob number given in a TRAIN, 
VINFO, or CLEARGRIP 
command. 

If no blob is found, use 
PICTURE command to save new 
camera image and use VINFO to 
display list of all blobs seen.  If no blobs 
are listed check for proper hardware 
operation (e.g., use video monitor to 
view image directly from camera). 
 
If message resulted from  
CLEARGRIP, make sure blob number 
parameter given is returned by a recent 
LOCATE or FINDHEAP.  

*No zero index* 
Jt (n)   

a. Defective digital servo board. 
 
 
b. Defective encoder.  

a. Replace defective digital servo board 
of affected joint. 
 
b. Replace motor of affected joint.  

*Open failure* a. Remote computer is not 
responding.  

a. Check that remote computer is 
working properly.   
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b. Hardware problem in 
communications line.  

 
b. Check that communications hardware 
is working properly.  Retry command. 

*Out of range* 
Jt (n) 

a. Arm outside of or adjacent to 
robot arm operating envelope. 
 
b. Faulty potentiometer. 
 
 
 
 
c. Faulty electrical interconnection 
in potentiometer signals. 
 
d. Faulty PC board(s). 

a. Reposition arm. 
 
 
b. Exchange harness connections to 
isolate servomotor.  Clean and lubricate 
potentiometer.  Replace servomotor if 
faulty. 
 
c. Check cables for continuity; replace if 
faulty. 
 
d. Check seating.  Replace boards in the 
following sequence and recheck 
problem after each step: 
 
  (1) "B" interface board. 
  (2) "A" interface board. 
  (3) Digital servo board 
   Exchange boards to isolate fault.   
  (4) LSI-11 processor board. 

*Page fault from 
kernels: 
(n1) (log,phy) 
(n2), (n3) 
 
*Page fault from 
user: 
(n1) (log,phy) 
(n2),(n3)  

Bug in software. Restart system software by typing 
"1100G".  
 CAUTION 
Responding with a Y will wipe out 
memory. 
 
 

*Problem with  
Amplifier C*  

Hardware interface to proportional 
hand is malfunctioning.  

Requires field service 

*Problem with  
40 volt power*  

a. Blown fuse on high-power 
function assembly. 
 
b. Faulty PC board(s). 

a. Replace fuse. 
 
 
b. Check seating.  Replace faulty boards 
in the following sequence and recheck 
problem after each step: 
 
(1) Power amplifier assembly. 
(2) Power amplifier control board.  
(3) High-power function  
 
Replace faulty board.  

*Panic button 
pressed. * 

OFF button on teach pendant 
pressed.  

Reselect COMP mode on teach pendant 
before resuming program execution. 

*Servo dead* 
Jt (n) 

a. Current overload circuit tripped. 
 
 
 
b. Overheated amplifier. 

a. Shut system down and allow a few 
moments for cooling. If problem 
persists, look for shorts using standard 
short isolation routines. 
b. Shut system down and allow a few 
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c. Defective motor. 
 
d. Defective encoder. 
 
e. Faulty electrical connection. 
 
 
 
 
f. Faulty PC board(s).  

moments for cooling. If problem returns 
after a short running period, the ambient 
temperature may be at fault and it may 
be necessary to consider nonstandard 
cooling procedures for the robot.  
 
c. Replace motor on affected joint. 
 
d. Replace motor on affected joint. 
 
e. Check seating of ribbon cable 
connecting "A" interface board and "B" 
interface board.  Replace ribbon cable if 
faulty.  
 
f. Check seating.  Replace boards in the 
following sequence and recheck 
problem after each step.  
 
(1) Digital servo board. 
(2) "B" interface board. 
(3) "A" interface board. 

*Servo RAM 
error* Jt (n) 

Faulty digital servo board. Check seating.  Exchange boards to 
isolate fault.   
Replace faulty board. 

*Stopped due to 
servoing error* 

One or more servo errors.  Troubleshoot first error described. 

*Storage area 
format error* 

Momentary hardware failure in 
user data in RAM.  

Attempt to save as much data as 
possible onto floppy disk.  

*Supervisory mode 
disabled*  

Supervisory mode is automatically 
disabled and is ready to accept 
commands from the local terminal.

Verify supervisory computer is working 
properly.  Use ENABLE SUPERVISOR 
to reenter supervisory mode.  

*System clock 
dead* 

a. "B" interface board not seated 
properly or defective. 
 
b. Ribbon cable faulty.   
 
c. Ribbon cable connections faulty.  

a. Check "B" interface board.   
Replace board. 
 
b. Replace cable. 
 
c. Replace cable connections. 

*Terminal 
interrupts dead* 

Empty back plane slots between 
CPU module and serial  
I/O modules. 

Check board installation to ensure 
proper board placement in card cage.  

*Too many blobs* 
 

a. Most recent picture contains 
more than 11 blobs.  
 
b. Both BLACK and  
WHITE switches enabled. 
 
c. Picture noisy. 
 
 
 
d. Scene too complex. 

a. Use VINFO command to list all blobs 
in current camera image. 
 
b. Disable one switch. 
 
 
c. Adjust camera aperture and focus 
MINBLOB variable in system, or 
threshold setting. 
 
d. Remove extraneous material from 
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camera range.  
*Unknown FPS 
error*  

CPU computer module 
malfunctioning.  

Shut system down and reseat  
CPU in card cage. 
 
If problem persists, replace  
CPU board. 

*Unknown net-
work error*  

Remote computer not sending 
valid data.   

Refer to Supervisory  
Communications Manual, User's  
Guide to VAL II, Part 2. 

*Unknown proto-
type* 
 

Unknown prototype name used. Use VINFO command to display list of 
all prototypes defined.  If necessary,  
VDEFINE and TRAIN a new prototype.

*Vision not 
enabled* 
(Univision)  

Vision switch not enabled.  Issue "ENABLE VISION" command or 
include it in the user program before 
first occurrence of vision instruction. 

*Vision time-out* 
(Univision) 

Communication problem between 
software and MIC vision system. 

Retry preceding vision command or 
instruction.  If error repeats, refer to 
following *Version system error*. 

*Vision system 
error*  
(Univision) 

Error within MIC vision system 
operating program.  

Reload MIC vision system and try again

*Wait with logical 
unit idle*  

Internal error in software. Field service required. 
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B. APPENDIX B 
 
 

B HARDWARE PROBLEMS ENCOUNTERED and 
SOLUTIONS FOUND 

 
 
 

B.1 General
 
In this appendix, the initial hardware problems that came across with their solutions 
are stated before the results that we have gathered for the supervisory computer 
control. Initially, that is when we have first started our studies; the PUMA system 
did not function at all. As a result, we have started analyzing the system to get it 
back working again and we have found that the cause of our problems were 
hardware based.  

B.2 Hardware Problems Encountered And Solutions Found 
 
In order to get complete understanding of the robot system, its capabilities and 
operation, the robot was to be practiced but it was not operational. Thus four 
months of work has been spent to get it back working. 
 
The controller got powered on, but had no response at all, thus we did not receive 
any error messages, which disabled the quick diagnoses of the failure. The 
troubleshooting charts [4,5]  (see Appendix A) were traced, but no solution was 
found for the specific existing situation.  
 
All hardware connections were checked using the circuit and connection layouts of 
the robot system [5], the connections were correct and connectors were functional 
(existing affects of corrosion were cleaned within this work). The failure diagnoses 
studies carried on with the control of short circuit and open circuit checks on the 
main processor and peripheral units interface cards. The connections and most of 
the components on each PCB were checked, which led to failure localization on 
interface card. It was found that, the problem occurred due to damage on the 
connections within the peripheral units interface card; jumper connections were not 
appropriate which ended up with different incorrect baud rates within peripheral 
units causing communication failures thus the malfunctioning of the robot system. 
The jumper connections were corrected (all set to 9600 BAUD) and tested after a 
hard work of diagnose.  
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Note: With the diagnoses studies, it was discovered that the servo controller driver 
board (PCB) for joint 2 had slight cracks and scratches on connection canals. It was 
examined that, this deficiency did not affect the functioning of the driver. But as to 
minimize the risk, considering the mass parameters of the PUMA 760 arm [7], the 
controller board of joint 2 has been replaced with the one for the joint 3. 
 
After the corrections made, system is powered on and the VAL is loaded, from the 
floppy to the controller memory. The procedure for loading VAL is given below: 

1. Turn control cabinet power on and allow to warm up, 
2. Turn three-way MODE switch on front of controller to RUN, 
3. Turn controller power on with POWER ON switch, 
4. CRT terminal will print 
  * VAL-II Boot B760.2.0 AUG81 * 
  Load VAL-II from floppy (Y/N)? 
5.  Insert operating disk into floppy drive and press —Y“ <enter>,  
6. The Robot serial number will be asked. Enter the last four digits of 

the robot serial number and press enter (The robot serial number is 
located on the label of operation disk and on the base of the arm), 

7. At this point numbers should appear across the screen as the program 
is loading, if this is not the case, turn power off and check all 
connections and be sure you followed the above steps carefully, if 
this still fails use the troubleshooting charts (Appendix A), 

8. After the program has been installed, you should initialize and 
calibrate the robot. 

 
The procedure given here shall be applied if controller memory has been off for 
approximately 30 days [4]. Otherwise the batteries of the CMOS memory card will 
be used so that the VAL is not required to be loaded each time the robot arm powers 
on. But this was not the case for our system; VAL needed to be loaded at each start-
up, which took a lot of time. When examined, it was found that the batteries 
(2x1.2V NiCad) were dead and had leakage, thus required replacement. The 
batteries were replaced with new ones but due to the performance of the battery 
charger unit on the CMOS memory card and the capacity of the new batteries, we 
have only reached a period of approximately three hours, which means that the user 
shall load VAL after a three hours of system power off. Replacing the whole battery 
charger unit mounted to the PCB can improve the performance of the memory. 
 
As the studies went on with VAL programming, two different errors, which did not 
occur at all executions, were received from the system. The first one was the 
“SERVO DEAD, Joint x” error that is the joint controller for joint x did not respond 
to VAL commands. Using the troubleshooting charts available, possible causes, 
servicing instructions and actions taken with their results for those servicing 
instructions are listed in Table B.1. 
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Table B.1 Possible causes, Servicing instructions and Actions taken with 
results for the “SERVO DEAD Joint x” Error. 

 
Possible Cause Servicing Instruction Actions Taken and Results 
Faulty digital 
servo board. 

-Check seating.  
-Exchange boards to 
isolate fault. 
-Replace faulty board. 

-Seating(s) are checked. They are 
seated properly. 
-Boards have been exchanged but 
error remained as it was. 
-Faulty boards cannot be replaced, 
since no spare is available. 

Faulty electrical 
interconnection. 

Check seating of ribbon 
cable interconnecting 
parallel interface board 
and servo interface 
board. 

Ribbon connection and all other 
connections available to those 
joint controllers have been made, 
they are all found to be 
appropriate. Error remained as it 
was. 

Faulty PC 
board. 

-Check seating. 
-Replace boards. 

-Seating(s) have been checked and 
found to be proper. 
-Board replacement cannot be 
made since no spare board is 
available.  

 
 
Completing the necessary activities for the “SERVO DEAD” error, it is now 
believed but not proven that this problem is due to the unstable state of the input 
power. Thus there is no recommendation of any solution is available.  
 
The second error received, which did not occur at all executions, just like the 
“SERVO DEAD” error was the “ENVELOPE ERROR, Joint x”. This occurs if the 
actual position of a joint is beyond a preset position from the position command by 
VAL and that joint forces VAL to declare a fatal error condition. After some 
research, it was found that minor joint degeneracy causing  “ENVELOPE ERROR” 
is a common failure above PUMA and PUMA-like robots. There exist three 
singularities [8,10]: 
 

• Alignment singularity (wrist is as close to the axis of joint 1 as it can get),  
• Elbow singularity (elbow is fully extended or folded up; the latter is not 

possible because of joint limits),  
• Wrist singularity (the axes of joints 4 and 6 are aligned). 

 
These singularities can happen individually, or as a combination of two of even 
three at the same time [10]. The most common occurrence of those singularities is 
actually the wrist singularity which occurs when joint 5 is at 0 degrees, therefore 
aligning axes of joints 4 and 6. Error occurs as VAL attempts to reposition joints 4 
and 6 simultaneously for tool orientation. The only solution that is available is; to 
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reprogram the robot arm, including offset in the robot arm. Thus users obtaining 
this error shall reprogram the robot arm giving an offset value for the joint 5. 
 
Completing the available solutions for the problems encountered, which are 
mentioned above, the work mostly concentrated on VAL programming and 
supervisory control implementation. 
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C. APPENDIX C 
 
 

C Image Frames Extracted From the Video File 
 
 
 
In order to apply the block-matching method, we have extracted the image frames 
from the video file. The image frames are given below for clear view and 
understanding.
 

 

 
 

Fig. C.1 Frame 1 
 

 
 

Fig. C.2 Frame 2 
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Fig. C.3 Frame 3 
 

 
 

Fig. C.4 Frame 4 
 

 
 

Fig. C.5 Frame 5 
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Fig. C.6 Frame 6 
 

 
 

Fig. C.7 Frame 7 
 

 
 

Fig. C.8 Frame 8 
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Fig. C.9 Frame 9 
 

 
 

Fig. C.10 Frame 10 
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D. APPENDIX D 
 
 

D Thesis Studies Planning 
 
 
 
In order to achieve the goals and objectives of the thesis (Chapter 1), planning shall 
be made. This planning only covers tasks not the duration and effort parameters of 
those tasks.  
 
The tasks to conclude are determined to follow all through the studies conducted. 
Those tasks are determined according to our purpose, the problems encountered and 
the work or activity done. This section describes those tasks and associated sub 
tasks to be followed. 
 
At first the problem that was closing our way to modification was the not 
operational state of the PUMA arm. This operational status of robot had to be 
changed which happened to be the first task. Under this task there are sub tasks that 
are stated below: 
 

- Understanding the PUMA 760 robot arm. 
- Investigations on the problem or problems causing PUMA not to 

operate. 
- Determining and implementing the solutions to the problem. 
- Testing the implemented solutions. 

 
Secondly the PUMA robot was taken under research in order to understand its 
structure, capabilities, communication modes and its software, which is VAL II. 
This task has the following sub tasks: 
 

- Research on PUMA robots, their types. 
- Determining the physical specifications. 
- Understanding of electrical connections, the control cabinet in which 

the peripherals are located. 
- Understanding the Unimation’s software package VAL II, its 

capabilities. 
- Real-time practicing of VAL II programming. 
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After those tasks stated above, we had to understand how the PUMA robot arm 
communicated with the external world so the third main task has come across, 
which was understanding the communications available and determining the right 
communication mode for control. The sub tasks for this task are: 
 

- Research on PUMA robots external communications. 
- Understanding each communication modes available and their costs. 
- Implementing the chosen communication mode. 
- Testing the software implementation. 

 
The fourth main task after completing the communication externally to the PUMA 
was to develop user-friendly software enabling the user to control the robot. The 
sub tasks for this are stated below: 
 

- Review of kinematics and dynamics knowledge for robots. 
- Research on robot simulators available. 
- Choosing the development environment. 
- Implementation and modification of software. 
- Testing the software. 
- Integrating simulator software to the communication software. 
- Testing the integrated modules of software. 

 
As to reach the goals of this thesis a third part application for the supervisory 
system is implemented and integrated to the overall system as well. This 
application, which detects and outputs difference vectors out of human motion 
shows the new ability of robot. In order to complete this task following sub tasks 
are concluded: 
 

- Review of code for the application (The motion estimation 
implementation was generated within the studies held for the Video 
Processing course held in METU Electrical Electronics Engineering 
Department). 

- Integration of software. 
- Testing the whole system. 

 
 
Completion of the thesis is the last task, which includes thesis documentation and 
presentation. 
 
Table D.1, which shows the task planning with main and sub tasks, is followed 
throughout the thesis studies.  
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Table D.1 Task List 
 
Main task 
number: 

Sub task 
number: 

Definition of Task: 

1 - Fixing the un-operational robot to operate. 
- 1  Understanding the PUMA 760 robot arm. 
- 2  Investigations of the problem or problems 

 causing PUMA not to operate. 
- 3  Determining and implementing the solutions 

 to the problem. 
- 4  Testing the implemented solutions. 
2 - Understanding PUMA 760 robot and its control 

software package, which is VAL II. 
- 1  Research on PUMA robots, their types. 
- 2  Determining the physical specifications. 
- 3  Understanding of electrical connections, the 

 control cabinet in which the peripherals are 
 located. 

- 4  Understanding the Unimation’s software 
 package VAL II,  its capabilities. 

- 5  Real-time practicing of VAL II programming. 
3 - Understanding the communications available and 

determining the right communication mode for the 
control of PUMA robot arm. 

- 1  Research on PUMA robots external 
 communications. 

- 2  Understanding each communication modes 
 available and  their costs. 

- 3  Implementing the chosen communication 
 mode. 

- 4  Testing the software implementation. 
4 - Developing user-friendly software enabling the user to 

control the PUMA robot. 
- 1  Review of kinematics and dynamics  knowledge 

 for robots. 
- 2  Research on robot simulators available. 
- 3  Choosing the development environment. 
- 4  Testing the software. 
- 5  Integrating simulator software to the 

 communication software. 
- 6  Testing the integrated modules of software. 
5 - Integration of Interactive Control Application for 

PUMA motion control. 
- 1  Review of motion-estimation code for the 

 application. 



 

 
 

138 

- 2  Integration of software. 
- 3  Testing the whole system. 
6 - Completion of thesis work, documentation and 

presentation. 
 

The tasks are listed following each other but actually some tasks are carried out in 
parallel, the task sequence and processing of these tasks for the studies of this thesis 
are not given. 
 
The outcomes of each task and their related studies has been recorded and given as 
a whole at this thesis according to their relation with the topic of each chapter. 
 


