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Prof. Dr. Osman Yılmaz



ABSTRACT

THE EFFECTS OF ρ − ω MIXING IN RADIATIVE VECTOR MESON

DECAYS

Küçükarslan, Ayşe

Ph.D, Department of Physics

Supervisor: Prof. Dr. Osman Yılmaz

December 2003, 103 pages.

The radiative ω → π0π0γ, ρ → π0π0γ, ω → π+π−γ and ρ → π+π−γ decays

are studied by adding the effect of vector meson mixing to the amplitude of

these decays. For the above decays we consider only ρ− ω mixing. In addition

to the ρ − ω mixing, we also analyse the contributions coming from different

intermediate states to examine the decay mechanism of these decays in a phe-

nomenological framework. For ω → π0π0γ decay, we consider the contributions

of the ρ-meson and σ-meson intermediate states and of the kaon-loop, and for

the ρ → π0π0γ decay we calculate the amplitude using the contributions of the

ω-meson and σ-meson intermediate states and pion-loop. Moreover, the radia-

tive ω → π+π−γ decay is studied by considering the contributions of σ-meson

and ρ-meson intermediate states and the decay ρ → π+π−γ is investigated by

taking into account the contributions of bremmsstrahlung, pion-loop and σ-

meson intermediate state amplitude. We also estimate the coupling constant

gωσγ utilizing the latest experimental value of the branching ratio ω → π0π0γ.

Keywords: ρ − ω Mixing, Radiative Decay, Vector Meson, Bremsstrahlung,
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ÖZ

IŞINSAL VEKTÖR MEZON BOZUNMALARINDA ρ − ω KARIŞIMININ

ETKİLERİ

Küçükarslan, Ayşe

Doktora , Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Osman Yılmaz

Aralık 2003, 103 sayfa.

Genliğe vektör mezon karışımın etkisi eklenerek ışınsal ω → π0π0γ, ρ → π0π0γ,

ω → π+π−γ ve ρ → π+π−γ bozunmaları çalışıldı. Bu bozunmalarda sadece

ρ − ω karışımı gözönüne alındı. ρ − ω karışımına ek olarak, bu bozunmaların

bozunma mekanizmalarına farklı katkıları fenomenolojik bir çerçevede analiz

edildi. ω → π0π0γ bozunması için ρ-mezon ve σ-mezon ara durumları ve

kaon-döngüsü katkıları düşünüldü, ρ → π0π0γ bozunması için ise ω-mezon

ve σ-mezon ara durumları ve pion-döngüsü katkıları kullanılarak genlik hesabı

yapıldı. Bundan başka, ω → π+π−γ bozunması σ-mezon ve ρ-mezon ara du-

rumları katkıları düşünülerek çalışıldı ve ρ → π+π−γ bozulması bremsstrahlung,

pion-döngüsü ve σ-mezon ara durumu katkıları dikkate alınarak çalışıldı. Ayrıca,

ω → π0π0γ bozunmasının en son deneysel dallanma oranı kullanılarak gωσγ

çiftlenim sabiti hesaplandı.

Anahtar Sözcükler: ρ − ω Karışımı, Bremsstrahlung, Işınsal Bozunma, Vektor

Mezon, Kaon-döngü, Pion-döngü, Dallanma Oranı, çiftlenim Sabiti
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CHAPTER 1

INTRODUCTION

The SND Collaboration measured the branching ratio of the radiative ω →

π0π0γ and ρ → π0π0γ decays [1] and they obtained the value BR(ω → π0π0γ) =

(6.6+1.4
−0.8 ± 0.6) × 10−5 which is in good agreement with GAMS Collaboration

measurement of the branching ratio, BR(ω → π0π0γ) = (7.2 ± 2.5) × 10−5

[2] but it has a higher accuracy, and for the ρ → π0π0γ decay, they obtained

BR(ρ → π0π0γ) = (4.1+1.0
−0.9±0.3)×10−5 and with this value they improved their

previous preliminary report of the value BR(ρ → π0π0γ) = (4.8+3.4
−1.8±0.3)×10−5

[3].This last result can be explained by means of a significant contribution of

the σγ intermediate state together with the well-known ωπ contribution. For

the charged mode of ω → ππγ decay only upper limit exists and its branching

ratio has been measured as BR(ω → π+π−γ) < 3.6 × 10−3 [4]. The experi-

mental study of ρ → π+π−γ decay was reported earlier by Novosibirsk group

who measured the branching ratio as BR(ρ → π+π−γ) = (9.9 ± 1.6) × 10−3

[5, 6] and for this decay they observed that the main mechanism is the pion

bremsstrahlung with the structural radiation proceeding through the interme-

diate scalar resonance [5].
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The theoretical studies of radiative ρ-meson and ω-meson decays were ini-

tiated by Singer [7, 8] in 1960’s. For the ω → ππγ and ρ → ππγ decays, he

assumed that they proceed through ω → (ρ)π → ππγ and ρ → (ω)π → ππγ

mechanism, respectively. Moreover, by considering the bremsstrahlung mech-

anism, he calculated the amplitude for the ρ0 → π+π−γ decay. Renard con-

sidered the decay modes V → PP
′
γ where V and P denote vector meson and

pseudoscalar meson respectively, in a gauge invariant way using current algebra,

the hard-pion and Ward-identities technique and also considering intermediate

meson states [9]. Furthermore, he discussed the angular distributions, photon

spectra and decay rate in terms of the coupling constants and of the intermedi-

ate state meson parameters, mass and coupling constants. He observed that the

intermediate meson term modifies the shape of the photon spectrum for high

momenta differently in the case of the different mass of the meson considered. In

particular, he concluded that the σ-meson term could be analysed in V → PP
′
γ

decays in terms of its mass and of the gσππ and gV σγ coupling constants, and

the σ-meson intermediate state makes the largest contribution to the radia-

tive amplitude. Then the radiative V → P 0P 0γ decays were studied by Fajfer

and Oakes [10] using a low energy effective Lagrangian approach with gauged

Wess-Zumino terms, there being no bremsstrahlung contributions. Scalar me-

son contributions were neglected and the branching ratios for the ω → π0π0γ

and ρ → π0π0γ decays were obtained as BR(ω → π0π0γ) = 8.21 × 10−5 and

BR(ρ → π0π0γ) = 2.89×10−5. Bramon et al. [11] also studied the contribution

2



of intermediate vector meson (VMD) to the vector meson decay into two pseu-

doscalars and a single photon, V → PP
′
γ, using standard Lagrangians obeying

the SU(3)-symmetry. Moreover, they also considered the V → PP
′
γ decays

within the framework of chiral effective Lagrangians using chiral perturbation

theory [12]. In particular for the branching ratio of the decays ω → π0π0γ

and ρ → π0π0γ they found the results BR(ω → π0π0γ) = 2.8 × 10−5 and

BR(ρ → π0π0γ) = 1.1× 10−5 [11]. However, they also observed that final state

interactions could lead to a larger value for the branching ratio BR(ρ → π0π0γ)

through the mechanism ρ → (π+π−)γ → (π0π0)γ, but that was very unlikely for

the branching ratio BR(ω → π0π0γ). If chiral perturbation theory Lagrangians

are used there is no three-level contribution to the amplitudes for the decay

processes V → PP
′
γ, and moreover the one-loop contributions including both

ππ and KK intermediate loops, are finite and to this order no counterterms

are required. For the ω → π0π0γ amplitude, π-loop contributions vanish in the

good isospin limit and the contribution of K-loops, resulting in the decay rate

Γ(ω → π0π0γ)K = 1.8 eV, is two orders of magnitude smaller than the contri-

bution of VMD amplitude. Therefore, the contribution of the VMD amplitude

essentially accounts for the decay rate of the ω → π0π0γ decay. Bramon et

al. [11] also considered the decay ρ → π0π0γ in this approach where the decay

proceeds mainly through the charged pion loops, obtaining the contribution of

pion-loops to the decay rate as Γ(ρ0 → π0π0γ)π = 1.42 × 103 eV which was

three orders of magnitude larger than that due to kaon-loops. As the result

3



show the pion-loop contribution is of the same order of magnitude as the VMD

contribution which is Γ(ρ0 → π0π0γ)V MD = 1.62×103 eV. Therefore, the global

ρ0 → π0π0γ decay width was given by the sum of the pion-loop contribution and

the VMD amplitude as Γ(ρ0 → π0π0γ)V MD+π = 3.88× 103 eV and the branch-

ing ratio as BR(ρ0 → π0π0γ)V MD+π = 2.6 × 10−6 which, however is smaller

than the latest experimental result [1]. Hubert and Neufeld [13] investigated

the process ρ → π+π−γ, using the close relationship between the low-energy

constants of chiral perturbation theory and the chiral invariant interactions of

the vector meson resonances with the pseudoscalar mesons. They observed that

for small photon energies, the decay rate is dominated by bremsstrahlung, how-

ever, near the endpoint of the photon energy spectrum, the solution favoured by

chiral vector meson dominance shows a sizable enhancement comparable with

the contribution from the pure bremsstrahlung mechanism. Such a particular

shape of the differential decay rate has indeed been observed experimentally and

turns out to be an important confirmation of the theoretical concept of chiral

vector dominance. They also compared the theoretical and the experimental

branching ratio and they found the branching ratio of the ρ → π+π−γ decay

as BR(ρ → π+π−γ) = 1.1 × 10−2 for Eγ > 50 MeV, while the measured value

is given by Dolinsky et al [5] as BR(ρ → π+π−γ) = (0.99 ± 1.6) × 10−2 for

Eγ > 50 MeV.

Guetta and Singer [14] in a recent work reexamined the theoretical value

for the branching ratio BR(ω → π0π0γ) of the decay ω → π0π0γ which is

4



BR(ω → π0π0γ) = (4.1 ± 1.1) × 10−5. Determining the Born amplitude for

VMD mechanism of the ω → π0π0γ decay, they calculated the decay width of

ω → π0π0γ which is proportional to the coupling constants g2
ωργ and g2

ρπγ. They

also assumed that the decay ω → 3π proceeds with the same mechanism as

ω → π0π0γ decay, that is as the sequential transition ω → (ρ)π → ππγ. Then

they used the experimental inputs for the decay rates Γ(ω → 3π), Γ(ρ0 → π0γ)

and Γ(ρ → ππ) and the Born amplitude for ω → π0π0γ decay. Furthermore

they employed a momentum dependent width for ρ-meson and obtained the

value BR(ω → π0π0γ) = (4.1 ± 1.0) × 10−5. If a constant ρ-meson width is

used, for the branching ratio of the decay ω → π0π0γ they obtained the value

BR(ω → π0π0γ) = (3.6 ± 0.9) × 10−5. Therefore, there appears to be a serious

discrepancy between the theoretical result and the experimental value for the

branching ratio of the ω → π0π0γ decay.

Guetta and Singer [14] noted that in the theoretical framework based on

chiral perturbation theory and vector meson dominance one feature has been

neglected. This is the possibility of ρ−ω mixing, one consequence of which is the

isospin violating ω → π+π− decay width the branching ratio BR(ω → π+π−) =

(2.21± 0.30)0/0 [6]. The phenomenon of ρ−ω mixing has been observed in the

electromagnetic form factor of pion improving the standard VMD model result

involving vector-meson intermediate state. This phenomena is explained in the

following chapter in some detail. Guetta and Singer [14] calculated the effect of

ρ−ω mixing using the Born amplitude for VMD mechanism of ω → π0π0γ decay,

5



and they showed that it increases the ω → π0π0γ decay width by 50/0 which is

less than 120/0 increase provided by using a momentum dependent width for ρ-

meson in the calculation using the VMD amplitude. They then combined all the

improvements on the simple Born term of VMD mechanism, that is ρ−ω mixing,

momentum dependence of ρ-meson width and the inclusion of the chiral loop

amplitude as given by Bramon et al. [12], and using the resulting amplitude for

the decay rate they obtained the theoretical result Γ(ω → π0π0γ) = (390± 96)

eV and BR(ω → π0π0γ) = (4.6 ± 1.1) × 10−5 for the branching ratio of the

ω → π0π0γ decay. Their values are still smaller though barely consistent with

the existing experimental value of this decay. Besides Guetta and Singer, Palo-

mar et al. [15] also analysed the radiative V → PP
′
γ decays using the sequen-

tial vector meson decay mechanism in addition to ρ−ω mixing and chiral loops

obtained using unitarized chiral perturbation theory. For the sequential mech-

anism (VMD) they followed the approach of Bramon et al.[11], but for the loop

contributions they adopted the approach of Marco et al. [16]. They obtained the

branching ratio of the ω → π0π0γ decay as BR(ω → π0π0γ) = (4.7±0.9)×10−5.

These theoretical results are still seriously less than the latest experimental re-

sult, BR(ω → π0π0γ) = (6.6+1.4
−0.8 ± 0.6) × 10−5. For the ρ → π0π0γ decay,

Palomar et al. [15] found the branching ratio from the sum of the sequential

and loop mechanism as BR(ρ → π0π0γ) = 4.2 × 10−5 which is about three

times larger than with either mechanism alone, and this value is comparable

with the present experimental value, BR(ρ → π0π0γ) = (4.8+3.4
−1.8 ± 0.3) × 10−5.
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From these results it follows that the possibility of additional contributions

to the mechanism of ω → π0π0γ and ρ → π0π0γ and also ω → π+π−γ and

ρ → π+π−γ decays should be investigated. For these decays the amplitude

involving scalar-isoscalar σ-meson as an intermediate state, may provide one

such additional contribution.

About the existence of an isospin zero, broad scalar resonance in ππ scat-

tering there is a long standing argument in the literature. Lately, the possible

existence of the sigma resonance was discussed along the whole conference and

at this meeting all speakers took the light σ-meson for granted and many mass

and width estimations near 500 MeV were presented. Törnqvist summarized

the most important results presented at the conference in his report [17]. He

emphasized that if the light and broad σ is accepted as a true resonance it

explains many basic problems of low energy hadronic physics in a simple way,

especially if the linear sigma model (LσM) is used as an approximate effective

low energy theory.

The sigma meson has been difficult to find in the data due to the very large

width of the resonance. In the Fermilab E791 experiment it was found that the

σ-meson manifests itself in the D-meson decay D → π+π+π−, being responsible

for approximately half of the decays through the resonant sequence D → π+σ →

π+π+π− [18]. A π+π− pair in the final state appears through the formation of

an intermediate σ-meson resonance. In a coherent amplitude analysis of the 3π

Dalitz plot the scalar resonance is determined with Mσ = (438 ± 31) MeV and

7



the total width Γσ = (338 ± 48) MeV, where statistical and systematic errors

have been added in quadrature [19].

Gökalp and Yılmaz [20] studied the ω → ππγ decays by adding to the

amplitude calculated within the framework of chiral perturbation theory and

vector meson dominance the amplitude of σ-meson intermediate state in a phe-

nomenological approach. To calculate the decay rate for the ω → ππγ decay,

they considered ρ-pole vector meson dominance amplitude as well as the σ-pole

amplitude. Then by employing the available experimental value for this branch-

ing ratio BR(ω → ππγ) = (7.2±2.5)×10−5 [2] which is somewhat less accurate

than the present new value BR(ω → ππγ) = (6.6+1.4
−0.8 ± 0.6)× 10−5 [1], they ob-

tained for the coupling constant gωσγ the values gωσγ = 0.13 and gωσγ = −0.27

using the set of values Mσ = 478 MeV and Γσ = 374 MeV. Besides this, they

determined the coupling constant gωσγ from the ω → π+π−γ decay using ex-

perimental upper limit for its decay rate, BR(ω → π+π−γ) < 3.6 × 10−3 [4].

They concluded that σ-meson intermediate state amplitude makes an important

contribution by itself and by its interference with the VMD amplitude. Later

the same authors investigated the ωσγ-vertex and again estimated the coupling

constant gωσγ in the framework of the light cone QCD sum rules methods [21]

and its value was deduced as |gωσγ| = (0.72± 0.08). This result is in reasonable

agreement with the results obtained from the phenomenological analysis of the

ω → ππγ decays [20]. Aliev et al. [22] also calculated the coupling constant gρσγ

using the light cone QCD sum rules techniques, and they obtained the value

8



gρσγ = (2.2± 0.4) from which by using SU(3)-symmetry it follows that the cou-

pling constant gωσγ should have the value gωσγ = 0.73. Thus, there seems to

be a serious discrepancy between the values obtained for the coupling constant

gωσγ using the light cone QCD sum rules method and the phenomenological

analysis of ω → ππγ decays.

To include the effect of σ-meson in the decay mechanism of the ρ0-meson, it

is considered as a σ-pole intermediate state. Thus an amplitude characterizing

the contribution of σ-meson to the ρ0 → ππγ decays result from the sequential

ρ0 → (σ)γ → ππγ interaction. To calculate the branching ratio BR(ρ0 →

π+π−γ) in a phenomenological approach, Gökalp and Yılmaz [23] used pion

bremsstrahlung amplitude and σ-meson pole amplitude, and determined the

coupling constant gρσγ by using the experimental value of the branching ratio

BR(ρ0 → π+π−γ). Then, same authors used this value of the coupling constant

gρσγ in their calculation of the branching ratio of the ρ0 → π0π0γ decay in

their following work [24]. They considered the contribution of σ-meson and ω-

meson intermediate states, and the pion-loop amplitude in their work. However,

including the contribution of the mechanism ρ0 → (σ)γ → π0π0γ the value

they obtained for the branching ratio BR(ρ0 → π0π0γ) = 4.7× 10−5 was much

larger than the experimental result BR(ρ0 → π0π0γ) = (1.9+0.9
−0.8 ± 0.4) × 10−5.

This unrealistic result was due to the constant ρ0 → σγ amplitude employed

and consequently the large coupling constant gρσγ that was deduced using the

experimental branching ratio of the ρ0 → π+π−γ decay. In conclusion, the
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σ-meson should be considered as dynamically generated from pion loops and

therefore it should not be included in the mechanism of vector meson decays

as an intermediate σ-pole state. Moreover, Marco et al. [16] also studied the

radiative V → PP
′
γ decays using the techniques of chiral unitary approach,

which was developed earlier by Oller et al. [25], to deal with the final state

interaction of the two pion system which was included by unitary resummation

of the pion-loops through the Bethe-Salpeter equation. Marco et al. noted that

the energies of two meson system are too large in some decays to be treated

with standard chiral perturbation theory. The novelty in their work is that the

strong interaction vertex is evaluated using the unitary chiral amplitudes instead

of the lowest order amplitudes used in [12]. Considering the total contribution

to the ρ0 → π+π−γ decay, they obtained the branching ratio of the decay as

BR(ρ0 → π+π−γ) = 1.18 × 10−2 for Eγ > 50 MeV. The branching ratio for

ρ0 → π0π0γ that they obtained was BR(ρ0 → π0π0γ) = 1.4 × 10−5 which

could be interpreted as resulting from the ρ0 → (σ)γ → π0π0γ mechanism.

These values are consistent with experimental results. Therefore, it seems that

a natural way to include the effect of σ-meson in the mechanism of radiative

ρ0-meson decays is to assume that σ-meson couples to ρ-meson through the

pion-loop.

Bramon et al. [26] studied the scalar σ-meson effects in vector meson decays

in a recent work using chiral loop, Linear sigma Model (LσM), vector meson

dominance (VMD) as well as ρ − ω mixing which was first analysed by Guetta
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and Singer [14]. They observed that there is a sizeable VMD contribution to the

ρ0 → π0π0γ decay, besides this there also exists a large contribution coming from

pion-loop which couple strongly to the low mass σ-meson. For the ω → π0π0γ

decay, the parallel analysis is more involved because ρ−ω mixing plays a crucial

role [14]. Moreover, for this decay the main contribution comes from a less well

fixed VMD amplitude and the effects of scalar meson exchange are much more

difficult to disentangle. Then, the complementarity between chiral perturbation

theory and the Linear sigma Model model was used to study scalar meson

exchange in V → P 0P 0γ decays by Escribano [27]. Experimental data on

ρ0 → ππγ decays seem to prefer a low mass and moderately narrow σ(500). For

the reference values Mσ = 478 MeV and Γσ = 324 MeV, the branching ratio

BR(ρ0 → π0π0γ) was obtained as BR(ρ0 → π0π0γ) = 3.8× 10−5, in agreement

with the experimental result. Therefore, taking the different values Mσ and Γσ,

as required by the LσM, one finds different value of the branching ratio of the

ρ0 → π0π0γ decay. So, the smallness of the former value disfavours a broad

σ-meson while the smallness of the chiral loop contribution confirms the need

for the effects of a moderately narrow σ-meson.

Recently, there are two valuable studies of the σ-meson effects in the radia-

tive vector meson decays. First, Gökalp, Solmaz and Yılmaz [28] reexamined the

approach used in the references [24, 26]. They studied the radiative ρ0-meson

decays in a phenomenological framework in which the contribution of vector

meson dominance, chiral-loop and σ-meson intermediate state amplitudes was
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considered, and assumed that the σ-meson couples to the ρ0-meson through

a pion-loop. They observed that their results for the branching ratios of the

ρ0-meson decay was in good agreement with the experimental values, and the

contribution coming from the σ-meson intermediate state amplitude should be

included in the analysis of radiative ρ0-meson decays and moreover σ-meson

should be considered to couple to the ρ0-meson through a pion-loop. Second,

Bramon and Escribano [29] suggested a consistent description of σ(500)-meson

effects in ρo → ππγ decays in terms of reasonably simple amplitudes which

reproduced the expected chiral-loop behaviour for large Mσ values. In their

study, for the ρo → π0π0γ decay, in addition to the well known ω-meson ex-

change, there is an important contribution from the σ(500)-meson and for the

ρo → π+π−γ decay, the dominant contribution comes from bremsstrahlung, the

effects of the σ(500)-meson are relevant only at high values of the photon energy.

In their conclusion, the ρo → ππγ decays have been shown to be an important

source of information on the low-mass ππ spectrum in the s-channel. A global

analysis of both processes, with a common amplitude interfering with markedly

different but well established backgrounds, should contribute to clarify the σ-

meson status. According to their analysis, present data already suggest the

existence of such a low-mass state.

Singer [7] also discussed the electromagnetic decays of the ω-meson in the

first order of the fine structure constant α with special emphasis on the 2π + γ

mode. This decay provides the opportunity for investigating the dynamics of
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π − π interaction in even angular momentum states because of the particular

final-state configuration of the pion pair, as a result of the charge-conjugation

invariance of the electromagnetic interactions. This way he obtained the re-

lation between the decay rates of the two possible final charge states, that is

Γ(ω → π+π−γ) = 2Γ(ω → π0π0γ). Then, Levy and Singer [30] presented a

detailed study of the first-order electromagnetic ω → ππγ decays. Apart from

providing a theoretical understanding of the radiative transitions among vector

and pseudoscalar mesons, there is an additional feature making this process

an interesting object for experimental and theoretical study. In their study,

they used the dispersion-theoretical approach and they showed that final-state

interactions resulting in a decay rate of the same order of magnitude as the

one calculated from the Born term can be parametrized with the effective pole

approximation.

In this thesis, we mainly examine the effects of ρ−ω mixing in the radiative

vector meson decays, ω → ππγ and ρ → ππγ besides the σ-meson intermediate

state, vector meson pole state and chiral loop amplitude. We reexamine the

ω → π0π0γ decay in a phenomenological framework in order to the assess the

role of σ-meson in the mechanism of the radiative ω → π0π0γ decay. Then,

utilizing the latest experimental value of the branching ratio BR(ω → π0π0γ),

we redetermine the coupling constant gωσγ which is essential in different stud-

ies. Furthermore, we calculate the decay rate for the ω → π0π0γ decay by

considering ρ-pole vector meson dominance amplitude, chiral loop amplitude,

13



σ-pole amplitude as well as the effects of ω−ρ mixing which was not taken into

account by Gökalp and Yılmaz while investigating the ω → π0π0γ decay [20].

We also examine the radiative ρ → π0π0γ decay, adding the effects of ρ − ω

mixing to the amplitude calculated with the aid of ω-meson pole intermediate

state, chiral loop and σ-meson pole which couples to the ρ-meson through a

pion-loop, in the framework of a phenomenological approach. We compare the

branching ratio calculated using different contributions with the experimental

result for this decay. In order to investigate the role of σ-meson in radiative

ω → π+π−γ decay in the same approach, we consider the vector meson dom-

inance, chiral loop and σ-meson intermediate state amplitudes and the effects

of ρ − ω mixing. Using these contributions in our approach, we calculate the

branching ratio of this decay and obtain the photon spectra for the branching

ratio of ω → π+π−γ decay which can be tested experimentally. If only Born

term VMD amplitude is used in the calculation one has the important relation

Γ(ω → π0π0γ) = (1/2)Γ(ω → π+π−γ) which was noticed by Singer [7]. As men-

tioned above, this relation follows from charge conjugation invariance to order

α which imposes pion pairs of even angular momentum. Since the 1/2 factor

in the relation holds to the first order in α, our calculation is also of interest

since the amplitude resulting from the assumed decay mechanism for ω-meson

and ρ-meson decays in our work contains terms of order e3. The last decay we

consider in our framework is the decay ρ → π+π−γ which is dominated by the

pion-bremsstrahlung amplitude. In addition to the σ-meson intermediate state
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amplitude, we examine the effects of ρ−ω mixing for this decay. However, in this

case the ρ − ω mixing does not play a significant role, because the ρ → π+π−γ

decay does not have a contribution coming from the VMD amplitude. In our

phenomenological approach, we try to calculate the decay rates of all radiative

decays by considering the contributions of different mechanisms represented by

diagrams using effective Lagrangians where we employ the coupling constants

that are determined from the experimental values of the relevant quantities.
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CHAPTER 2

RHO-OMEGA MIXING

The isospin symmetry which is the invariance under arbitrary rotations in the

isospin space is the one of the basic symmetries in nuclear physics. It is an

internal symmetry that results in the relations between different particle states.

The charge symmetry is a special case of isospin symmetry which is rotations

through 1800 about the number 2 axis in isospin space that converts protons

into neutrons, and vice versa. These symmetries assume that the proton and

neutron are identical and are distinguished only by the direction of their isospin.

However, we know that the nucleons are not completely identical proton being

charged and neutron being electrically neutral. Therefore, these symmetries

must be broken by the electromagnetic effects and by the mass differences of

the up and down quarks.

Most theoretical efforts have been devoted to understand the charge sym-

metry breaking (CSB) phenomena in nuclear physics. These phenomena are

well explained in terms of one-boson-exchange potentials, with the electromag-

netic effects, the neutron-proton mass difference, and isoscalar-isovector meson

mixing included. The violation of the charge symmetry was first observed in
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neutron-proton scattering at 477 MeV as a difference between the neutron and

proton polarization asymmetries at TRIUMF experiment [31]. Other experi-

ment was performed by Knutson et al. [32] measuring of the spin-dependent

left-right asymmetries for n-p elastic scattering at 183 MeV. In Quantum Chro-

modynamics (QCD) CSB is understood in terms of electromagnetic effects and

the up and down quark mass difference. Important source of CSB arises through

isospin mixing of vector mesons, ρ−ω mixing, in single meson-exchange models

of the strong interaction in two-nucleon system

2.1 ρ − ω mixing in quark model

The wave functions of ρ and ω meson in the quark model are given schemat-

ically as

|ρ0〉 =
1√
2
(|uu〉 − |dd〉) (2.1)

|ω〉 =
1√
2
(|uu〉 + |dd〉) (2.2)

so that the mixing matrix is obtained in the form

∏
ρω

= 〈ρ0|H|ω〉 =
1

2
〈uu|H|uu〉 − 1

2
〈dd|H|dd〉 . (2.3)

Mixing matrix vanishes if the Hamiltonian does not include the effect of mass

term that distinguish between the up and down quarks (mu − md). Therefore,

the mixing matrix element is strongly affected by the quark mass difference as

well as by the electromagnetic effects.
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Figure 2.1: Feynman graph for ρ − ω mixing through a qq intermediate state.

In the one-boson-exchange model of the nucleon-nucleon interaction the ρ−ω

potential is produced by ρ− ω mixing in the intermediate vector-meson propa-

gator as shown by Coon and Barrett [33]. They showed that the charge asym-

metric potential, which then depends on the electromagnetic transition matrix

element between the vector mesons ρ and ω, is about 1400/0 stronger than

previous estimates. The input to the calculation was a new measurement of

the G-parity forbidden decay ω → ππ which has extremely low statistical er-

rors and an inherently clean interpretation. Goldman, Henderson and Thomas

(GHT) [34] analyzed the problem associated with the assumed off-shell behav-

ior of the ρ − ω mixing matrix element. They used a simple model where the

vector mesons are considered as quark-antiquark (q− q) composites. The ρ−ω

mixing amplitude is entirely generated by an intermediate quark loop due to

the small mass difference between the up and down quarks, δ ≡ mu − md, and

the process that they calculated is illustrated in Fig. 2. 1. A ρ meson of four-

momentum qµ dissociates into a quark-antiquark pair through a vertex function

F (k2), which is the form-factor, describing the meson structure where kµ is the
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free momentum of the quark loop. Then, for the quarks free Dirac propaga-

tors were used, thus ignoring the question of confinement. GHT calculated the

mixing amplitude and obtained the static central potential in coordinate-space

by Fourier transform. Their conclusion was that the ρ − ω mixing amplitudes

are strongly momentum dependent,they plotted the potential-radial distance

from source, there is a node in the exact potential at about 0.7-0.9 fm, and the

potential changes sign due to the node which is the most important feature.

Then Krein et al. [35] investigated the role of quark confinement and the

nature of the quark propagator in a q− q based description of the ρ−ω mixing

amplitude. Their study was motivated by one of the difficulties associated with

the GHT calculation which did not include quark confinement, namely that

an unphysical qq-pair production threshold resulted in the timelike region at

q2 = 4M2
q . One possible mechanism of quark confinement is that the quark

propagator does not have a mass pole and one explicit quark model including

this property uses the solution of a quark model Dyson-Schwinger (DS) equa-

tion. Therefore they described the momentum dependence of the ρ− ω mixing

amplitude using the analytic confining, Dyson-Schwinger equation, and also for

comparison they considered recent hadronic calculations [36], where an essen-

tially parameter free calculation was made using an NN -loop and the n − p

mass difference. They showed that the Dyson-Schwinger propagator and the

hadronic models predict the opposite sign at smaller r and have nodes between

0.5 and 0.8 fm whereas the heavy free quark and confining quark cases have the
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same sign as the usual assumed potential. They saw that this increase in mass

has removed the node in potential for the free propagator case. As a conclu-

sion they observed that all calculations appear capable of fitting the data with

typical parameters and the momentum dependence is qualitatively similar in

each case, but for free and confining cases it should be noted that the results

are sensitive to the choice of the average up-down quark masses used. Their

obtained results varied with choice of form factors but not strongly.

One particularly important idea of hadronic physics is about the interac-

tion between the photon and hadronic matter. This has been remarkably well

described using the vector meson dominance (VMD) model. A simple exam-

ple to introduce VMD is the electromagnetic pion-form factor, Fπ(q2), which

has played such a crucial role in our understanding of ρ − ω mixing. This

quantity is measured experimentally in the process e+e− → π+π− in which the

non-perturbative strong interaction effects produce the significant enhancement

seen in the cross-section. In the ρ − ω resonance region the cross-section dis-

plays a narrow interference shoulder resulting from the superposition of narrow

resonant ω and broad resonant ρ exchange amplitudes.

2.2 ρ − ω mixing in Vector Meson Dominance model

VMD supposes that the vector mesons play the dominant role in the inter-

action of the photon with hadronic matter. O’Connell et al. [37, 38] described
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how the interactions of the photon with hadronic systems can be modelled use-

fully using vector mesons. The traditional representation of VMD which is

called VMD2 supposes that the photon couples to hadronic matter exclusively

through a vector meson. For the photon-rho-pion system, the relevant part of

the VMD2 Lagrangian is

LV MD2 = −1

4
FµνF

µν − 1

4
GµνG

µν +
1

2
M2

ρ (ρµ)2 − gρππρµJ
µ
π

−eM2
ρ

gρ

ρµA
µ +

1

2

(
e

gρ

)2

M2
ρAµA

µ, (2.4)

where Jµ
π is the hadronic current and Fµν and Gµν are the electromagnetic and

ρ field strength tensors, respectively. The pion form-factor is obtained from this

equation as

Fπ(q2) = − M2
ρ

q2 − M2
ρ + iMρΓρ(q2)

gρππ

gρ

. (2.5)

The VMD2 Lagrangian has a fixed photon-matter coupling as well as a photon-

rho coupling, but if this coupling were also generated by the kind of momentum

dependent loop processes used in for ρ−ω mixing, also the photon-rho coupling

would be strongly momentum dependent. For this reason, an equivalent alter-

native formulation of VMD, developed by Sakurai in the 1960’s [39], which is

called VMD1 is preferred. As discussed by O’Connell et al. [37], the alternative

formulation, VMD1, is given by the following Lagrangian

LV MD1 = −1

4
FµνF

µν − 1

4
GµνG

µν +
1

2
M2

ρρµρ
µ − gρππρµJ

µ
π − e

2gρ

Fµνρ
µν . (2.6)

21



From this Lagrangian we can derive a pion-form factor of the form

Fπ(q2) = 1 − q2

[q2 − M2
ρ + iMρΓρ(q2)]

gρππ

gρ

. (2.7)

We have the constraint Fπ(0) = 1 at zero momentum transfer and it reflects

the fact that the photon sees only the charge of the pions. In the limit of

universality, gρ = gρππ, which is seen to be only approximate in nature [40], the

two representations of VMD become equivalent and without universality only

VMD1 continues to satisfy the constraint condition.

In many ways VMD1 version differs from VMD2, for instance, in VMD1

photon-hadron interactions take place exclusively through a vector meson and

VMD1 does not have a photon mass term and it has a term which produces a

momentum-dependent photon-rho coupling of the form

Lγρ = − e

2gρ

FµνG
µν → − e

gρ

q2Aµρ
µ. (2.8)

We reach the result that this decouples the photon from the ρ at q2 = 0, for

this reason keeping the photon massless in a natural way. In Fig. 2. 2 we

display the difference the two representations of VMD. O’Connell et al. [38] in

two recent papers also discussed the two established representations of vector

meson dominance (VMD) model for photons coupling to matter, with vanishing

of vector meson-meson and meson-photon mixing self energies at q2 = 0 and

showed that one of these representations is completely consistent with such a

coupling.
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Figure 2.2: Contributions to the pion form factor in the two representations of
VMD a) VMD1 b) VMD2.

2.3 ρ − ω mixing in e+e− → π+π−

The observation of the interference of the ω-meson in the reaction e+e− →

π+π− and the improved the resolution of the cross-section plot, revealed that

there was a G symmetry violating interactions of the ω-meson, such as ω →

π+π−, which could not be explained by electromagnetism alone [37]. This

situation is shown by corresponding diagram in Fig. 2. 3.

e

ω

γγ

ρ π+

π -

e +

-

Figure 2.3: Electromagnetic contribution to the ω-resonance of e+e− → π+π−.
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Examination of the decay ω → ππ concluded that there was not significant

statistical evidence for the direct decay. It was suggested that despite a possibly

substantial direct decay rate, some process produced a cancellation giving a

zero result. The strong symmetry breaking theory allowed for a mixing of the

two mesons, introducing the quantity, transition matrix element between the

vector mesons ρ and ω. In Fig. 2. 4. the relevant diagram for the reaction

e+e− → π+π− is displayed.

e

ω ρ π+

-πγ

e +

-

Figure 2.4: ρ − ω mixing contribution to e+e− → π+π− .

2.4 ρ − ω mixing Amplitude

Writing the ρ and ω meson propagators in matrix form and generating the

mixing by dressing the bare isospin pure matrix elements this interference of

the ω meson can be included into the VMD picture formalism. Thus, in the

pure isospin limit we have the bare matrix, D0
µν = −gµνD

0, in order that vector

mesons coupled to conserved currents where D0 is the scalar propagator whose
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matrix form is

D0 =

⎛⎜⎜⎜⎝ DI
ρρ 0

0 DI
ωω

⎞⎟⎟⎟⎠ . (2.9)

Here DI
ρρ and DI

ωω are the scalar parts of the renormalised propagators for the

isospin pure fields, and there is no ρ − ω mixing and no direct ωI → ππ cou-

pling. Then we take the full expression for the dressed propagator given by

Dµν = D0
µν + D0

µα

∏αβ Dβν where the polarization function
∏

µν(q
2) = (gµν −

qµqnu/q
2)
∏

ρω has off-diagonal elements of the isospin violating mixing self-

energy
∏

ρω which generates the mixing between the isospin pure ρI and ωI

states and we keep terms to first order in isospin breaking [41] to obtain

D0 =

⎛⎜⎜⎜⎝ DI
ρρ 0

0 DI
ωω

⎞⎟⎟⎟⎠→ DI =

⎛⎜⎜⎜⎝ DI
ρρ DI

ρω(q2)

DI
ρω(q2) DI

ωω

⎞⎟⎟⎟⎠ (2.10)

=

⎛⎜⎜⎜⎝ DI
ρρ DI

ρρ

∏
ρω(q2)DI

ωω

DI
ρρ

∏
ρω(q2)DI

ωω DI
ωω

⎞⎟⎟⎟⎠ . (2.11)

The dressed propagator DI
ρω(q2) contains both a broad ρ resonance and narrow

ω resonance piece.

In the ρ, ω basis, the combinations of the ρI and ωI , for which only the

diagonal elements of the propagator matrix contain poles, define the physical ρ

and ω fields as mentioned by Maltman et al. [42] and O’Connell et al. [37]. This

associates the broad resonant part of the full amplitude with the ρ and narrow

resonant part with the ω. One would find also narrow resonant structure in

the off-diagonal element of the vector meson propagator using different linear
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combinations of ρI and ωI in the ρ′ and ω′ basis. The propagator could be

diagonalised by transforming to the physical basis

ρ = ρI − εωI , ω = ωI + ερI . (2.12)

The transformation matrix, C, is defined as follows [37]

⎛⎜⎜⎜⎝ ρ

ω

⎞⎟⎟⎟⎠ = C

⎛⎜⎜⎜⎝ ρI

ωI

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝ 1 −ε

ε 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ ρI

ωI

⎞⎟⎟⎟⎠ (2.13)

where ε is given by

ε =

∏
ρω

M2
ω − M2

ρ − i(MωΓω − MρΓρ)
. (2.14)

The standard assumption is that the mixing amplitude,
∏

ρω, is momentum

independent with its value extracted from the experimental data on e+e− →

π+π− at the ω pole, q2 � M2
ω, while the exchanged mesons have spacelike four

momentum, q2 < 0, and are therefore highly virtual. But, Goldman, Henderson

and Thomas (GHT) [34] raise the possibility of significant q2-dependence of the

ρ − ω mixing matrix element, constructing a simple model in which
∏

ρω is

generated by an intermediate quark loop as a consequence of the difference

between up and down quark masses.

Then, the significant momentum dependence has been obtained using many

theoretical approaches by other various authors. Two of them are Piekarewicz

and Williams [36], they calculated the momentum dependence of the ρ − ω

mixing amplitude in a purely hadronic model, the basic assumption of which is
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that the mixing amplitude is generated by NN loops and thus driven by the

neutron-proton mass difference. Using standard values for parameters obtained

from fits to two-nucleon data they determined a value for the ρ − ω mixing

amplitude at the on-shell ω-meson point in good agreement with experiment.

Then extending their results to the spacelike region, they computed the contri-

bution from the off-shell ρ − ω mixing amplitude to the N-N potential. Their

results were compared to a recent calculation of GHT of the mixing amplitude

in terms of qq loops. In spite of the obvious differences between the two models,

their findings agree with the main conclusion drawn from that GHT’s work that

the momentum dependence of the ρ − ω mixing amplitude is significant.

From the experimental point of view, ρ − ω interference has always been

observed through the G-symmetry violation interaction ω → π+π− of ω mesons

produced in different reactions. Coon and Barrett [33] determined the mixing

amplitude using the amplitude for G-parity forbidden decay ω → 2π as
∏

ρω =

(−4.52 ± 0.60) × 10−3 GeV 2. The sign of the mixing amplitude is determined

from the relative phase of the ω and ρ amplitudes in e+e− → π+π− near Mρ and

Mω. They used the values Mρ = 775.9± 1.1 MeV and Γρ = 150.5± 3.0 MeV in

their calculations. Then Bernicha et al. [43] determined the ρ mass and width

by applying the S matrix formalism to the reaction e+e− → π+π− in the timelike

region. Their obtained values are significantly smaller than the values quoted

by the Particle Data Group [4]. To calculate the strength of the ρ − ω mixing,

they used their obtained values, determined a small dimensionless parameter
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(y) which quantifies the isospin-breaking contribution and also used the ratio

gωπγ/gρπγ obtained from the leptonic partial rate. Then, using Mρ = (757.5 ±

1.5) MeV and y = (−1.91±0.15)×10−3, the value
∏

ρω = (−3.735±0.300)×10−3

GeV 2 is obtained, whereas from the values of Mρ = (757.0 ± 0.59) MeV and

y = (−2.16 ± 0.35) × 10−3 they obtaine
∏

ρω = (−4.225 ± 0.684) × 10−3 GeV 2

which agrees well the values obtained by Coon and Barrett [33] despite the fact

that for the ρ mass and width quite different values are used. Also from the

values Mρ = (757.03 ± 0.76) MeV and y = (−1.87 ± 0.15) × 10−3, the ρ − ω

mixing strenght is derived as
∏

ρω = (−3.669 ± 0.30) × 10−3 GeV 2. As for

Urech [44], he derived the ρ − ω mixing amplitude using the fourier transform

of the two-point function and compared his numerical result for the on-shell

expression with the calculations found in the literature. For the calculation of

the on-shell amplitude, he considered the ω → ρ → π+π− decay and found

following expression

Γ(ω → π+π−) =

∏2
ρω Γ(ρ → π+π−)

|M2
ω − M2

ρ − i(MωΓω − MρΓρ)|2

�
∏2

ρω

4M2
ρ

Γ(ρ → π+π−)

(Mω − Mρ)2 + 1
4
(Γω − Γρ)2

. (2.15)

Thus, Urech determined the amplitude
∏

ρω as

∏
ρω

= 2Mρ(mu − md) +
1

3
e2F 2

V (2.16)

and found the value
∏

ρω = (−3.91± 0.30) × 10−3 GeV 2. If the mass difference

Mω − Mρ and the width Γω is neglected in Eq. 2.15, the mixing amplitude

is
∏

ρω = −4.08 × 10−3 GeV 2. The first of the results is in good agreement
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with the values quoted in the literature. He also discussed the off-shell mixing,

for this he again considered the two-point function. In conclusion, he found

that
∏

ωρ(q
2) contains a zero at q2 = 0 and is positive in the spacelike region.

Gardner and O’Connell et al. [45] extracted the G-parity violating branching

ratio BR(ω → π+π−) from the effective ρ − ω mixing matrix element
∏

ρω

that is determined from the e+e− → π+π− data. They obtained three different

equations for branching ratios of ω → π+π− where they also defined an effective,

isospin-violating coupling constant geff.
ωππ which was used to calculate branching

ratio. This way, they found a relation that is equivalent to Eq. 2. 15 determined

by Urech [44]. In this study they also calculated
∏

ρω mixing matrix element

which results from using following equation with gρπγ/gωπγ ratio

∏
ρω

(M2
ω) =

1

3

gρπγ

gωπγ

(−3500 MeV 2) . (2.17)

The average value of mixing matrix element was determined as
∏

ρω(M2
ω) =

−3900 ± 300 MeV 2. Through these studies it is thus possible to understand

ω → π+π− decay and ρ − ω mixing and also the connection between
∏

ρω(M2
ω)

and the branching ratio of ω → π+π− decay.

O’Connell et al. [37] reviewed their study of constraints on the momentum

dependence of ρ − ω mixing and concluded that the ρ − ω mixing amplitude

should also vanish at q2 = 0 in a large class of models. A re-analysis of the

pion form-factor using this formulation gave an excellent fit to the data, while

careful re-analysis near the ω-pole gave a value
∏

ρω(M2
ρ ) = −3800± 370 MeV 2
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[38]. There are two principle sources of error in the value of
∏

ρω, the first

one is a statistical uncertainty of 310 MeV 2 resulting from the fit to data, and

the second one (200 MeV 2) is due to the error quoted in the ratio gωπγ/gρπγ.

These errors are added in quadrature. This value differs from other modern fits

mainly because of using the most recent value of gωπγ/gρπγ which is obtained by

Bernicha et al. [43] utilizing the leptonic partial rate of neutral vector meson

[46] Γ(ρ → e+e−) = (6.77± 0.32) keV and Γ(ω → e+e−) = (0.60± 0.02) keV as

gωπγ

gρπγ

=

√√√√Mω

Mρ

Γ(ρ → e+e−)

Γ(ω → e+e−)
= 3.5 ± 0.18 . (2.18)

The ratio between gωπγ and gρπγ has long been considered to be approximately

1/3 and this value is obtained in a recent QCD- based investigation by Dillon

and Morpurgo [47]. In their study, to analize the V − γ couplings gV γ in the

decays V → e+e−, they applied the general parametrization method that is

obtained from the general properties of QCD. They derived the quasi no flavor

breaking theorem using the method of general parametrization. Then employ-

ing this theorem, they showed that the ratio of ργ and ωγ coupling is almost

unaffected by flavor breaking, and therefore, equal to 3. Also, they found two

values for the ratio of these couplings, using different value of Γ(ω → e+e−)

and the formula in Eq. 2. 18. Their results were |gρπγ/gωπγ| = 3.36 ± 0.07 and

|gρπγ/gωπγ| = 3.18 ± 0.12.
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The underlying theory of strong interactions, QCD, is inaccessible for stud-

ies in the low energy region, therefore it was difficult to make some model-

independent statement about ρ−ω mixing. However, some model-independent

treatments of low energy strong interactions have later been developed and ap-

plied to examine the ρ−ω mixing. The technique of QCD sum rules (QCDSR)

is one such technique which examines two-point functions of different hadronic

currents, expanding them in powers of 1/q2. Using this technique and disper-

sion relations, Hatsuda et al. [48] analysed the q2 dependence of ρ − ω mixing

amplitude. They set up the problem by considering the two-point function

∏µν

ρω
(q2) = i

∫
d4xeiq·x < 0 | T (Jµ

ρ (x)Jν
ω(0)) | 0 > , (2.19)

where the vector currents are

Jµ
ρ = (uγµu − dγµd)/2, Jµ

ω = (uγµu + dγµd)/6 . (2.20)

∏µν
ρω has to be of transversal structure, because the currents Jµ

ρ and Jν
ω are

conserved,

∏µν

ρω
(q2) = −

(
gµν − qµqν

q2

)∏
ρω

(q2) . (2.21)

They equated this current correlator (Eq. 2. 21) with the mixed propagator

∏µν

ρω
(q2) = −(gµν − qµqν/q

2)

∏
ρω(q2)

(q2 − M2
ρ )(q2 − M2

ω)
(2.22)

and found a rapid variation of the mixing matrix element
∏

(q2) with q2. Going

off shell the mixing decreases, changes sign for positive q2 and is always negative
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in the spacelike region (q2 < 0). Although the variation of
∏

(q2) obtained

in this work was qualitatively similar to previous results based on different

models, their value of
∏

(q2) has a stronger q2-dependence than those of others.

In the quark-loop model (ρ → qq → ω) with momentum cut-off [34],
∏

(q2)

changes sign at a spacelike momentum (q2 ∼ −M2
ρ/2), therefore the variation

of
∏

(q2) is more moderate. The nucleon-loop model (ρ → NN → ω) with

dimensional regularization [36] predicts a sign change of
∏

(q2) at q2 = 0, which

still corresponds to a more moderate variation than result of Hatsuda et al. [48]

who noticed that there is a crucial assumption with no theoretical justification

in both quark-loop and nucleon-loop models that is the effect of the isospin

breaking other than the QED effect is solely attributed to the mass difference

between u and d constituent quarks in the quark-loop model or to the mass

difference between the proton and neutron in the nucleon-loop model. There

is no priori reason, however, to neglect the isospin breaking in the coupling

constants of the vector mesons with the constituent quarks or the nucleons,

which generates an extra effect to the ρ−ω mixing of order O(md −mu). They

also examined the central part of the N-N potential contributed by the ρ − ω

mixing in order to observe how the nuclear force is affected by the q2 variation

of
∏

(q2). The long-range exponential part of the potential due to the ρ − ω

mixing is strongly suppressed by the q2 dependence of the mixing. As a result,

the potential changes sign at r=0.9 fm which is the region of interest for the

symmetry breaking effect, as mentioned before.
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The other model-independent method for considering the strong interac-

tion at low energies is the Chiral Perturbation Theory (ChPT). It sets up

an effective model involving all the interactions of the pseudoscalar meson

octet and admitting all terms allowed by the symmetry of the original QCD

Lagrangian. Maltman [49] described two model-independent results on the

momentum-dependence of ρ − ω mixing. He displayed an explicit choice of

interpolating fields for the vector mesons for which both the mixing in the

propagator and the isospin-breaking at the nucleon-vector meson vertices van-

ish identically at q2 = 0. He also showed, using the constraints of unitarity

and analyticity on the spectral function of the vector meson propagator, that

there is no possible choice of interpolating fields for the ρ, ω mesons such that

mixing matrix element is independent of momentum. The standard approach

of charge symmetry breaking in few-body systems is physically realizable. In

consequence, since the standard treatment can not be interpreted as arising

from any effective meson-baryon Lagrangian it must be interpreted as being

purely phenomenological in nature.

Also that the ρ − ω mixing amplitude has a zero at q2 = 0 has been shown

by O’Connell et al. [50] within a broad class of models in which the mixing

is either zero everywhere or is necessarily momentum dependent. They argued

that the mixing amplitude vanishes at q2 = 0 in any effective Lagrangian model,

where there are no explicit mass mixing terms in the bare Lagrangian and where

the vector mesons have a local coupling to conserved currents which satisfy the
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usual vector current commutation relations as QCD. They concluded that the

ρ−ω mixing might play a minor role in the theoretical understanding of charge-

symmetry breaking in nuclear systems.

Moreover, Iqbal et al. [51] studied mesonic width effects on the momentum

dependence of the ρ − ω mixing matrix element. Theoretical calculations of

the off-shell variations of the ρ − ω mixing matrix element have used various

models that include mixing through qq loops [34, 35], NN loops [36], QCD sum

rule calculation [50]. In all these calculations, the ρ and ω mesons are treated

as stable particles and their widths are neglected. Iqbal et al. [51] showed in

a model independent way that the large difference in ρ and ω widths, Γρ =

151.5MeV, Γω = 8.4MeV , gives rise to a new source of momentum dependence

for the ρ − ω mixing matrix element. The q2 dependence arising due to the

meson widths leads to a significant alteration of the result obtained in the zero-

width approximation typically discussed in the literature [34, 35, 36, 50]. They

concluded in a model independent way that the inclusion of ρ and ω widths

significantly alters the q2 dependence of the ρ − ω mixing matrix element and

hence of the mixed meson propagator. This behavior arises from the fact that

the widths of ρ and ω are different. Any model calculation addressing the q2-

dependence of the ρ − ω mixing matrix element that does not include meson

width effects is incomplete.

Recently, Ya. I. Azimov [52] reconsidered the isospin violating mixing of ρ-

and ω-mesons in terms of propagators. He studied various pairs of ρ, ω-decays to
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the same final states. An interesting situation appears in the ω → π+π− decay

due to transition of ω into ρ having the near mass and large width ρ → π+π−

decay. Nevertheless, experiments of this decay can extract only one parame-

ter and,therefore are not sufficient to explain the isospin violation mechanisms.

From this point of view, the decay such as (ρ, ω) → ηγ and (ρ, ω) → e+e−

has attracted much attention in recent years. Taking the unperturbed propaga-

tor for vector meson V with bare mass MV Azimov described the propagators

for mixing of vector particles in different form. Then he rewrote the ampli-

tude through contributions of the physical states with physical propagators and

physical amplitudes for the meson production and for meson decays considering

a process i → f with intermediate ρ- and ω-mesons. In calculations, he made

all numerical estimations taking all necessary parameters constant, which are

ρ, ω complex masses, that is masses and widths and mixing parameters, and

used the leading role of the ρ − ω mixing for isospin violation. In summary we

can say that, the isospin violation due to ρ−ω mixing that was known for some

time in the forbidden decay ω → π+π− is later suggested for the radiative decay

ρ → π+π−. The mixing also affect all pairs of decays of ρ, ω to the same final

state and decays of heavier particles with the production of ρ, ω. The ρ − ω

mixing affects various pairs of ρ, ω-decays in a regular, correlated manner. At

higher experimental sensitivity, the universal nature of the mixing parameter

will allow to separate mixing isospin violation due to ρ, ω-transitions from direct

isospin violation in amplitudes of bare unmixed states ρ, ω. Even present data
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from experiments give some proof for necessity of such direct violating effects.

As noted by Azimov [52] in the near future it can be expected that the meson

radiative decays with participation of ρ and/or ω may certainly be attractive

and useful for studying the ρ − ω mixing and other manifestations of isospin

violation.
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CHAPTER 3

FORMALISM

We extend previous studies of ω → π0π0γ, ω → π+π−γ [21], ρ0 → π0π0γ,

ρ0 → π+π−γ [28, 29] decays by considering the effect of ω−ρ mixing in addition

to the vector meson exchange, σ-meson intermediate states and chiral loop

amplitudes. We follow a phenomenological approach and attempt to calculate

the decay rate and explain the latest experimental result about the branching

ratio for these decays.

Although the contribution of chiral kaon-loop diagram shown in Fig. 3. 1b

to decay rate of ω → π0π0γ decay is small, we also include the corresponding

amplitude of these diagrams in our calculation for completeness. For this radia-

tive decay, pion-loop contributions vanish in the good isospin limit. However,

since we lack any experimental information to describe the ωK+K−-vertex and

K+K−−π0π0 amplitudes for the contribution of this diagram we use the ampli-

tude given by Bramon et al. [12] derived using chiral perturbation theory. This

may not be entirely consistent with the philosophy of our phenomenological

approach, but since their contributions are shown to be small we do not think

that this way of including kaon-loop diagram into our calculation constitutes

37



a serious inconsistency. Moreover, in Fig. 3. 2b and Fig. 3. 7b in addition

to pion-loop intermediate state there is also a contribution to ρ0 → π0π0γ and

ρ0 → π+π−γ decays coming from KK intermediate state. However, as shown

by Bramon et al.[12] for these decays the kaon-loop intermediate states give a

contribution which is 103 times smaller than the contribution coming from the

charged-pion loops. Therefore, in our calculation we do not take the kaon-loop

amplitude in ρ0 → π0π0γ and ρ0 → π+π−γ decays into account.

3.1 Radiative ω → π0π0γ and ρ0 → π0π0γ decays

The contributions of VMD, chiral loops, σ-meson intermediate state ampli-

tudes and the effect of ρ−ω mixing are considered for the radiative ω → π0π0γ

decay. In the case of the radiative ρ0 → π0π0γ decay we calculate the decay

rate assuming that this decay also proceeds through the same mechanism as

well, that is its amplitude is provided by VMD, chiral loops, σ-meson interme-

diate state amplitudes and ρ− ω mixing. In order to calculate the effect of the

ρ−ω mixing in the ω → π0π0γ decay, we need an amplitude characterizing the

contribution coming from the different amplitudes to the ρ0 → π0π0γ decay.

Likewise, for evaluating the effects of the ρ−ω mixing in the ρ0 → π0π0γ decay,

we use the amplitude resulting from the different amplitudes to the ω → π0π0γ

decay.

Our phenomenological approach is based on the Feynman diagrams shown

in Fig. 3. 1 for ω → π0π0γ decay and in Fig. 3. 2 for ρ0 → π0π0γ decay. To
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establish the gauge invariance, the direct terms shown in the diagrams in Fig. 3.

1b and in Fig. 3. 2b,c are required. The interaction term for two vector mesons

and one pseudoscalar meson is given by the Wess-Zumino anomaly term of the

chiral Lagrangian [53], therefore we describe the ωρπ- vertex by the effective

Lagrangian [54]

Leff.
ωρπ =

gωρπ

Mω

εµναβ∂µων∂α �ρβ · �π , (3.1)

which also defines the coupling constant gωρπ. This coupling constant was de-

termined by Achasov et al. [55] through an experimental analysis as gωρπ =

(14.4) ± 0.2)GeV −1 assuming that ω → 3π decay proceeds with the intermedi-

ate ρπ state as ω → (ρ)π → πππ and they used the experimental value of the

ω → 3π width. Similarly, the V πγ-vertices where V = ρ, ω are described by

the effective Lagrangian [56]

Leff.
V πγ = gV πγε

µναβ∂µVν∂αAβπ . (3.2)

To deduce the coupling constants gωπγ and gρπγ we use the experimental partial

widths of the radiative V → πγ decays which are given as

Γ [V → πγ] =
α

24

(M2
v − M2

π)3

M5
v

g2
V πγ . (3.3)

This way for the coupling constants gωπγ and gρπγ we obtain the values gωπγ =

(0.706 ± 0.021)GeV −1 and gρπγ = (0.274 ± 0.035)GeV −1. The σππ-vertex is

described by the effective Lagrangian [57]

Leff.
σππ =

1

2
gσππMσ

−→π · −→π σ . (3.4)
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The decay width of the σ-meson that follows from this effective Lagrangian is

given as

Γ[σ → ππ] =
g2

σππ

4π

3Mσ

8

[
1 −

(
2Mπ

Mσ

)2
]1/2

. (3.5)

Using this expression and experimentally measured values of the mass Mσ and

the width Γσ as Mσ = (483±31)MeV and Γσ = (338±48)MeV, where statistical

and systematic errors are added in quadrature [18, 19], we obtain the strong

coupling constant as gσππ = 5.3 ± 0.55. We describe the ωσγ-vertex by the

effective Lagrangian [58]

Leff.
ωσγ =

e

Mω

gωσγ∂
αωβ[∂αAβ − ∂βAα]σ , (3.6)

which also defines the coupling constant gωσγ that will be determined by our

analysis. For the ρππ-vertex the effective Lagrangian [59]

Leff.
ρππ = gρππ

−→ρ µ · (∂µ−→π ×−→π ) , (3.7)

is used. The decay width of ρ-meson that follows from this effective Lagrangian

is

Γ[ρ → ππ] =
gρππ2

4π

Mρ

12

⎡⎣1 −
(

2Mπ

Mρ

)2
⎤⎦

3
2

. (3.8)

For the coupling constant gρππ using the experimental decay width of the decay

ρ → ππ [6] we obtain the value gρππ = (6.03± 0.02). The effective Lagrangians

Leff.
σππ and Leff.

ρππ are obtained from an extension of the σ model where the isovec-

tor ρ is included through a Yang-Mills local gauge theory based on isospin with
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the vector meson mass generated through the Higgs mechanism [60]. In order

to describe the π4-vertex again we consider the σ-model with spontaneous sym-

metry breaking [61] and we describe the π4-vertex by the effective Lagrangian

Leff. =
λ

4
(−→π · −→π )2 , (3.9)

where the coupling constant λ is given as λ = −g2
πNN

2
M2

σ−M2
π

M2
N

and the value

g2
πNN

4π
= 14 is used. We note that this effective interaction results in only isospin

I=0 amplitudes. The small I=2 amplitudes were also neglected in previous

calculations within the framework of chiral unitary theory [16].

In our calculation of the invariant amplitude, in ρ-meson and σ-meson prop-

agators we make the replacement q2 − M2 → q2 − M2 + iMΓ in order to take

into account the finite widths of these unstable particles. We use the energy

dependent width for σ-meson that follows from Eq. 3. 4

Γσ(q2) = Γσ
Mσ

q2

(
q2 − 4M2

π

M2
σ − 4M2

π

) 1
2

θ(q2 − 4M2
π) , (3.10)

and for ρ-meson we use the following momentum dependent width as conven-

tionally adopted [37]

Γρ(q
2) = Γρ

Mρ√
q2

(
q2 − 4M2

π

M2
ρ − 4M2

π

) 3
2

θ(q2 − 4M2
π) . (3.11)

In order to evaluate the loop diagrams in Fig. 3. 1 and Fig. 3. 2 we note that

similar loop integrals were evaluated by Lucio and Pestiau [62] using dimensional

regularization and their calculations were confirmed by Close et al. [63] We use

their results and, for example, we express the contribution of the pion-loop
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amplitude corresponding to ρ0 → (π+π−)γ → π0π0γ reaction in Fig. 3. 2b as

Aπ = − egρππλ

2π2M2
pi

I(a, b)[(p · k)(ε · u) − (p · ε)(k · u)] , (3.12)

where a =
M2

ρ

M2
π
, b = (p−k)2

M2
π

, p,k the momenta and u,ε the polarization vector

of ρ-meson and photon, respectively. The amplitude corresponding to ρ0 →

(π+π−)γσ → π0π0γ reaction can similarly be written. The function I(a,b) is

given as

I(a, b) =
1

2(a − b)
− 2

(a − b)2

[
f(

1

b
) − f(

1

a
)
]

+
a

(a − b)2

[
g(

1

b
) − g(

1

a
)
]

(3.13)

where

f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
[
arcsin( 1

2
√

x
)
]2

, x > 1
4

1
4

[
ln( η+

η−
) − iπ

]2
, x < 1

4

g(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(4x − 1)

1
2 arcsin( 1

2
√

x
) , x > 1

4

1
2
(1 − 4x)

1
2

[
ln( η+

η−
) − iπ

]
, x < 1

4

η± =
1

2x

[
1 ± (1 − 4x)

1
2

]
. (3.14)

In addition to the vector meson dominance contribution that is displayed the

corresponding Feynman diagrams in Fig. 3. 1a for ω → π0π0γ decay and Fig.

3. 2a for ρ → π0π0γ decay, the incorporation of isospin violation effects allowing

the mixing of the ρ and ω resonances is readily possible. This is the ρ−ω mixing

which is well known and it has been seen to be relevant in processes like the

ω → π+π− decay or in the pion form factor in the ω region as mentioned in the
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previous chapter. The ρ − ω mixing is described by an effective Lagrangian of

the form

Leff.
ρ−ω =

∏2

ρω
ωµρ

µ , (3.15)

where ωµ and ρµ denote pure isospin field combinations. Therefore, the corre-

sponding physical states can be written as [37]

|ρ〉 = |ρ, I = 1〉 − ε|ω, I = 0〉 (3.16)

|ω〉 = |ω, I = 0〉 + ε|ρ, I = 1〉 (3.17)

where

ε =

∏2
ρω

M2
ω − M2

ρ + i(MωΓω − MρΓρ)
. (3.18)

O’Connell et al. [37] determined values of
∏

ρω from fits the e+e− → π+π− data

as
∏

ρω = [−3800 ± 370]MeV 2. Urech [44] also determined the
∏

ρω using the

chiral perturbation theory, as mentioned in the previous section, and this result

is in good agreement with the values quoted in the literature. Then, using the

experimental values for MV and ΓV where V = ρ, ω, the mixing parameter ε

is obtained as ε = (−0.006 + i0.036). Besides the mixing of the states, there

is another effect of ρ − ω mixing, which is that it modifies the ρ-propagator

in diagrams in Fig. 3. 1a for calculation of ω → π0π0γ decay amplitude and

ω-propagator in diagrams in Fig. 3. 2a for the amplitude of ρ → π0π0γ decay

as

1

DV
′ (s)

→ 1

DV
′ (s)

[1 +
gV πγ

gV
′
πγ

∏2
V V

′

DV (s)
] , (3.19)
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where

DV (s) = s − M2
V + iMV ΓV (s) . (3.20)

New contribution coming from the ρ − ω mixing makes the whole V → PP
′
γ

amplitude to be written as A0(V → PP
′
γ) + εÃ(V

′ → PP
′
γ), where A0 and

Ã include the contributions coming from the different terms. Therefore, the

amplitude of the decay ω → π0π0γ can then be written as A = A0 + εÃ where

A0 includes the contribution coming from the diagrams shown in Fig. 3. 1 for

ω → π0π0γ and Ã represents the contributions of the diagrams in Fig. 3. 2 for

ρ → π0π0γ.

Similarly, the amplitude of the decay ρ → π0π0γ can be written same way

that is A = A0 − εÃ and in this case A0 includes the contribution coming

from the diagrams shown in Fig. 3. 2 for ρ → π0π0γ and Ã represents the

contribution of the diagrams in Fig. 3. 1 for ω → π0π0γ.

We calculate invariant amplitude A(Eγ, E1) this way for the decays ω →

π0π0γ and ρ → π0π0γ from the corresponding Feynman diagrams shown in Fig.

3. 1 and Fig. 3. 2. Then, the differential decay probability of V → π0π0γ decay

for an unpolarized V-meson at rest is then given as

dΓ

dEγdE1

=
1

(2π)3

1

8MV

| A |2 , (3.21)

where Eγ and E1 are the photon and pion energies respectively. We perform

an average over the spin states of vector-meson and a sum over the polarization
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Figure 3.1: Feynman diagrams of ω → π0π0γ decay.
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Figure 3.2: Feynman diagrams of ρ → π0π0γ decay.
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states of the photon. We obtain the decay width Γ(ω → π0π0γ) by integration

Γ =
1

2

∫ Eγ,max.

Eγ,min.

dEγ

∫ E1,max.

E1,min.

dE1
dΓ

dEγdE1

(3.22)

where the factor 1
2

is included because of the π0π0 pair in the final state. The

minimum photon energy is Eγ,min. = 0 and the maximum photon energy is

given as Eγ,max. = (M2
V − 4M2

π)/2MV . Thus, we determine the maximum

photon energy as Eγ,max. = 341 MeV for ω → π0π0γ decay and Eγ,max. = 338

MeV for ρ → π0π0γ decay. The maximum and minimum values for pion energy

E1 are given by

1

2(2EγMV − M2
V )

[−2E2
γMV + 3EγM

2
V − M3

V

±Eγ

√
(−2EγMV + M3

V )(−2EγMV + M2
V − 4M2

π) ] . (3.23)

3.1.1 Numerical analysis of ω → π0π0γ decay

The contribution of different amplitudes to the branching ratio of the radia-

tive decay ω → π0π0γ are considerably different. We first consider the VMD

amplitudes for the branching ratio and we obtain the values BR(ω → π0π0γ) =

3.96 × 10−5 and BR(ω → π0π0γ) = 4.22 × 10−5 without and with the effect

of the ρ − ω mixing, respectively. These results are quite close to the values

calculated in Ref. [14]. Then we use VMD amplitudes and chiral amplitudes,

the resulting values for the branching ratio are BR(ω → π0π0γ) = 3.98 × 10−5

and BR(ω → π0π0γ) = 4.67 × 10−5 without and with the effect of the ρ − ω

mixing included, respectively. Again these calculated values for the branching
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ratio seem to be quite in agreement with the previous results, in particular, with

the results of Bramon et al. [12] and Palomar et al. [15]. When we consider the

contribution of σ-meson intermediate state, the main difference with previous

results is observed. Indeed, using the full amplitude including the contributions

of VMD, chiral loop, and σ-meson intermediate state diagrams we obtain the

branching ratio as BR(ω → π0π0γ) = 7.29 × 10−5, and this value is reduced to

the value BR(ω → π0π0γ) = 6.6 × 10−5 when we add the effect of the ρ − ω

mixing. We thus observe that the effect of ρ − ω mixing on the amplitude of

the ω → π0π0γ decay is reasonably pronounced and moreover the contribution

of the σ-meson intermediate state is quite substantial.

The theoretical decay rate for ω → π0π0γ decay that we calculate using

Feynman diagrams in Fig. 3. 1 and Fig. 3. 2 results in a quadric equation for

the coupling constant gωσγ. Using the experimental value for this decay rate

[1], we obtain the values gωσγ = (0.11± 0.01) and gωσγ = (−0.21± 0.02) for the

coupling constant gωσγ [64]. These values are smaller than the values gωσγ =

0.13 and gωσγ = −0.27 that were obtained in the previous phenomenological

analysis which did not include the effect of ρ−ω mixing [20]. As a result of our

calculation, the ρ − ω mixing does make a reasonably substantial contribution

to the ω → π0π0γ decay amplitude when σ-meson intermediate state is taken

into account and this consequently results in a reduced value for the coupling

constant gωσγ.

In Fig. 3. 3 we plot the distribution dB/dMπ0π0 for the radiative ω → π0π0γ
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Figure 3.3: The π0π0 invariant mass spectrum of the decay ω → π0π0γ for
gωσγ = 0.11. The separate contributions resulting from the amplitudes of VMD;
VMD and ρ − ω mixing; VMD, chiral loop, ρ − ω mixing; VMD, chiral loop,
σ-meson intermediate state, ρ − ω mixing are shown.

decay in our phenomenological approach choosing coupling constat gωσγ = 0.11,

as a function of invariant mass Mππ of π0π0 system, where we also indicate

the contributions coming from the different amplitudes. The interference term

between the different amplitudes is positive over the whole region. When we

take into account the effect of ρ−ω mixing by including the contribution coming

from the diagrams in Fig. 3. 2a, the contribution of the VMD amplitude

calculated from the diagrams in Fig. 3. 1a does not change appreciably. Then

the situation changes somewhat if we consider VMD and chiral loop amplitudes
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and ρ − ω mixing as well. However, the significant alteration is obtained when

we include VMD, chiral loop, and σ-meson intermediate state amplitudes with

ρ−ω mixing. In Fig. 3. 4, we plot the resulting π0π0-invariant mass distribution

for the decay which using the coupling constant gωσγ = −0.21. These figures

clearly show the importance of the σ-meson intermediate state amplitude, and

again it makes a very significant contribution. The interference term between

the σ-meson and VMD and chiral loop amplitudes is negative some regions of

the spectrum. Moreover, the overall shape of the spectrum is quite different

from the previous case.

For the mechanism of ρ → π0π0γ decay, we consider a new approach in our

work. Neglecting a direct ρσγ-vertex, we assume that the ρ → π0π0γ decay

proceeds by a two-step mechanism with σ coupling to ρ0-meson with π+π−

intermediate loop. We show the corresponding Feynman diagrams in Fig. 3. 2

for this decay. Scalar σ-meson effects in radiative ρ0-meson decays are studied

in recent work by Gökalp and Yılmaz in detail [20]. In that work they use

the standard π0π0 → π+π− amplitude of chiral perturbation theory in the loop

diagrams. Using the same ππ → ππ amplitude in our work, we then obtain

the value of the branching ratios as BR(ω → π0π0γ) = 6.12 × 10−5 from the

full amplitude including the contributions of VMD, chiral loop, and σ-meson

intermediate state diagram as well as the effects of ρ−ω mixing. This evaluated

value is not very different from BR(ω → π0π0γ) = 6.6 × 10−5 that is obtained

employig the effective Lagrangian given in Eq. 3. 9 to described the π4-vertex.
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Figure 3.4: The π0π0 invariant mass spectrum of the decay ω → π0π0γ for
gωσγ = −0.21. The separate contributions resulting from the amplitudes of
VMD; VMD and ρ − ω mixing; VMD, chiral loop, ρ − ω mixing; VMD, chiral
loop, σ-meson intermediate state, ρ − ω mixing are shown.

An essential assumption of this decay calculation is that there is no SU(3)

vector meson-sigma-gamma vertex. Thus, the ωσγ-vertex cannot be related to

the ρσγ-vertex. The ωσγ-vertex that we use may be considered as representing

the effective final state interactions in the ππ-channel. The small value of the

coupling constant gωσγ that we obtain leads to a change in the Born amplitude

of the ω → π0π0γ decay which is of the same of the magnitude, as it is typical

of final state interactions [64]. Finally, we noted that our analysis suggests that

the coupling constant gωσγ has actually a much smaller value than obtained by
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light cone QCD sum rules calculations.

3.1.2 Numerical analysis of ρ → π0π0γ decay

In the case of ρ → π0π0γ decay, the photon spectra for the decay rate is

plotted in Fig. 3. 5 as a function of photon energy Eγ. The contributions of

VMD amplitude, ρ−ω mixing amplitude, loop amplitude, σ-meson intermediate

state amplitude and the total interference term are indicated. As it is clearly

seen that there is no effect of ρ−ω mixing for the decay of ρ → π0π0γ. So, the ρ−

ω mixing gives the contribution as well as the contribution of VMD amplitude.

The total branching ratio, including ρ − ω mixing, is obtained as BR(ρ →

π0π0γ)) = (4.90±0.82)×10−5 which is in good agreement with the experimental

result BR(ρ → π0π0γ)) = (4.1+1.0
−0.9 ± 0.3) × 10−5 [1]. The contribution of VMD

amplitude that we obtain BR(ρ → π0π0γ)) = (1.03 ± 0.02) × 10−5 is the same

the ρ−ω mixing contribution and it’s also in good agreement with the previous

calculations [11, 12, 28, 29]. On the other hand the contributions coming from

the pion-loop amplitude and σ-meson intermediate state amplitude including

the effect of ρ − ω mixing are BR(ρ → π0π0γ)) = (1.07 ± 0.02) × 10−5 and

BR(ρ → π0π0γ)) = (4.92 ± 0.16) × 10−5, respectively. As one compares the

contributions of VMD, ρ − ω mixing and pion-loop amplitudes, it is seen that

the σ-meson intermediate state makes an important contribution. Chiral loop

and VMD in the radiative vector meson decays are also studied by Palomar et

al. [15]. Their study includes the mechanisms of sequential vector meson decay,
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Figure 3.5: The photon spectra for the branching ratio of the decay ρ → π0π0γ.
The separate contributions resulting from the amplitudes of VMD; VMD and
ρ− ω mixing; chiral loop; σ-meson intermediate state; and from the full ampli-
tude obtained using the diagrams in Fig. 3. 2 and in Fig. 3. 1 as well as the
total interference are shown.

chiral loops that is obtained using a chiral unitary approach to deal with the final

state interaction of the meson meson system and the effect of ρ−ω mixing. For

the radiative ρ → π0π0γ decay, they demonstrated that the loop contribution is

very important and the branching ratio obtained as BR(ρ → π0π0γ) = 4.2×10−5

with the sum of the sequential and loop mechanisms is about three times larger

than with either mechanism alone (which is approximately the same value) and

then this value is compatible with present experimental value. They also found
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that the ρ−ω mixing effects were negligible in the case of the ρ → π0π0γ decay

as we reach the same conclusion for this decay. However, the mixing is relevant

in the rest of the decays and it has important interferences with the sequential

contribution and in addition modifies the resonance propagator involved even

though the mixing contribution is by itself small.

For the radiative ρ → π0π0γ decay σ-meson effects are also investigated

by Gokalp et al. [28] and Bramon et al. [29]. Gokalp et al. consider the

contribution coming from the σ intermediate state as well as VMD and chiral

pion-loop contributions in a phenomenological approach. Their study shows

clearly that the contribution of the σ-meson intermediate amplitude has to be

included in the analysis of radiative ρ → π0π0γ decay, moreover σ-meson has

to be considered to couple to the ρ0 meson through a pion-loop. As for Bramon

et al., they propose the description of σ-meson effects in ρ → π0π0γ decay in

terms of reasonably simple amplitudes reproduced the chiral-loop. They find

that there is an important contribution from the σ meson, in addition to the well

known ω-exchange, for the ρ → π0π0γ decay. They obtained the decay width

of charged loops, VMD, as Γ(ρ0 → π0π0γ)χ = 1.55 keV and Γ(ρ0 → π0π0γ)ω =

1.89 keV, respectively. Then, for σ-meson they determined two values due to

free parameter (k). The value k = 1 corresponds to the Linear Sigma Model

(LσM) and the value k � 2.5 matches for phenomenological context, and the

results were Γ(ρ0 → π0π0γ)LσM = 2.63 keV and Γ(ρ0 → π0π0γ)σ−phen = 1.84
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keV. Moreover, they found the interference of VMD amplitude with the chiral-

pion loops, Linear sigma Model and sigma phenomenological context amplitudes

as Γ(ρ0 → π0π0γ)χ+ω = 4.40 keV, Γ(ρ0 → π0π0γ)LσM+ω = 6.29 keV, and

Γ(ρ0 → π0π0γ)σ−phen+ω = 5.10 keV. Our results are coming from the VMD,

chiral loop and σ-meson intermediate state and also interference of VMD with

the pion-loop and σ-intermediate state amplitude, Γ(ρ0 → π0π0γ)V MD = 1.54

keV, Γ(ρ0 → π0π0γ)π = 1.60 keV, Γ(ρ0 → π0π0γ)σ = 7.44 keV and Γ(ρ0 →

π0π0γ)π+V MD = 2.49 keV, Γ(ρ0 → π0π0γ)σ+V MD = 8.25 keV, respectively. The

σ-meson effects are quite different from our results because of using different

approaches. We add the σ-meson effects to chiral-loop contribution, however,

Bramon and Escribano proposed a consistent description of σ meson effects in

terms of simple amplitudes which reproduced the expected chiral-loop behaviour

for large Mσ values.

3.2 Radiative ω → π+π−γ and ρ0 → π+π−γ decays

We consider the contributions of vector meson dominance model, σ-meson

intermediate state amplitudes and ω−ρ mixing in radiative ω → π+π−γ decay.

In the case of the radiative ρ → π+π−γ decay, the contributions of the pion-

bremsstrahlung amplitude, pion-loop, σ-meson intermediate state amplitude

and ρ − ω mixing are considered. To calculate the effects of the ρ − ω mixing

in the ω → π+π−γ decay, we use the amplitude resulting from the different

amplitudes to the ρ → π+π−γ decay. Similarly, for evaluating the effects of the
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ρ − ω mixing in the ρ → π+π−γ decay, we need an amplitude coming from the

different amplitudes to the ω → π+π−γ decay.

Our calculation is based on the Feynman diagrams shown in Fig. 3. 6

for ω → π+π−γ decay and in Fig. 3. 7 for ρ → π+π−γ decay. The direct

terms shown in the diagrams in Fig. 3. 7a, b, c are required to establish the

gauge invariance. For the ωρπ, ρπγ, ωσγ and ρππ vertices, we use the effective

Lagrangians described in Eq. 3. 1, 2, 6, 4 and 7 and also related coupling

constants we take the same values except the coupling constant gωσγ. For this

coupling constant, we use the values of gωσγ = 0.11 and gωσγ = −0.23 that are

estimated by Gökalp et al. [64] in their analysis of ω → π0π0γ decay.

Oller and Oset [65] studied the meson-meson interactions in the scalar sec-

tor using the standard chiral Lagrangian in lowest order of chiral perturbation

theory. Their model predicts the mass and partial decay widths of the scalar

resonances, as well as the different scattering amplitudes, in good agreement

with experimental results and requires the use of only one parameter which is

the cut off parameter around 1.2 GeV, in the loop integrations. We use their

result for the isospin I = 0 four pseudoscalar amplitude π+π− → π+π− that

we need in the loop diagrams in Fig. 1b, thus the small I = 2 amplitude is

neglected.

Oller [66] noted that the important point in the argumentation is that the off-

shell part of the meson-meson amplitude, which should be kept inside the loop

integration, do not contribute, and consequently the amplitude Aχ(π+π− →
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Figure 3.6: Feynman diagrams of ω → π+π−γ decay.
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Figure 3.7: Feynman diagrams of ρ → π+π−γ decay.
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π+π−) factorizes in the expression for the loop diagrams.

For ρ and σ mesons, we make the replacement in the propagator as calcula-

tion of ω → π0π0γ and ρ → π0π0γ decays, and use the energy dependent widths

given in Eq. 3. 10 and 3. 11 in invariant amplitude calculation of ω → π+π−γ

and ρ → π+π−γ decays. Moreover, we use the loop integrals appearing in Fig.

6 and 7 evaluated by Lucio and Pestiau [62] as mentioned before. The contri-

bution of the pion loop amplitude corresponding to ρ0 → (π+π−)γ →→ π+π−γ

reaction in Fig. 3. 7b can be written as

Aπ = −egρππA(π+π− → π+π−)

2π2M2
π

I(a, b) [(p.k)(ε.u) − (p.ε)(k.u)] , (3.24)

where a = M2
ρ/M2

π , b = (p − k)2/M2
π , Aχ = −(2/f 2

π)(s + M2
π/6), s = (p − k)2,

fπ = 92.4 MeV, which is the pion decay constant, p(u) and k(ε) being the

momentum (polarization vector) of ρ-meson and photon, respectively. A similar

amplitude corresponding to ρ0 → (π+π−)γσ → π+π−γ reaction can also be

written as follows

A = −egρππ(gσππMσ)2

2π2M2
π

Dσ(p − k)I(a, b) [(ε.u)(k.p) − (ε.p)(k.u)] , (3.25)

where Dσ(p − k) is the propagator of the σ-meson. For the function I(a,b), we

again use the definition in Eq. 13 and 14. To calculate ρ − ω mixing part for

ω → π+π−γ and ρ → π+π−γ decays, we follow the formalism that developed

for the decays of ω → π0π0γ and ρ → π0π0γ.

The mixing allows the transition V → V
′
in the process V → π+π−γ, thus

the amplitude of the decay ω → π+π−γ can be written as A = A0 + εÃ where
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A0 includes the contributions coming from the diagrams shown in Fig. 3. 6

for ω → π+π−γ and Ã represents the contributions of the diagrams in Fig. 3.

7 for ρ → π+π−γ. Then for the radiative ρ → π+π−γ decay the amplitude is

written as A = A0 − εÃ where A0 contains the contributions coming from the

diagrams shown in Fig. 3. 7 for ρ → π+π−γ and Ã includes the contributions

of the diagrams in Fig. 3. 6 for ω → π+π−γ.

Another effect of ρ − ω mixing is to replace the ρ propagator in first part

of amplitude of ω → π+π−γ decay by the propagator given in Eq. 3. 19.

Since according to SU(3) relation gωπγ/gρπγ = 3 this effect is relevant and it

makes a sizeable contribution. However, since there is no VMD diagram for the

ρ → π+π−γ decay, the first part of the effects of ρ − ω mixing will not exist.

The invariant amplitude A(Eγ,E1) is calculated this way for the radiative

ω → π+π−γ and ρ → π+π−γ decays from the corresponding Feynman diagrams

are shown in Fig. 3. 6 and Fig. 3. 7. In this part of calculation we use Eq. 3.

21 and 3. 22, but we do not take the factor 1/2 in Eq. 3. 22 since final state

particles are not identical. In our calculations the minimum photon energy

Eγ,min. = 0 for the ω → π+π−γ decay in ρ − ω mixing calculation of the

ω → π+π−γ decay it is taken as Eγ,min. = 30 MeV because of the presence

of bremsstrahlung amplitude coming from the ρ → π+π−γ decay. The same

situation also exist in calculation of ρ − ω mixing of ρ → π+π−γ decay. The

maximum photon energy is given as Eγ,max. = (M2
V − 4M2

π)/2MV . Eq. 23 is

used for the maximum and minimum values for pion energy E1.

58



��� � ������ �		
� � � �� � 
�
��� � ������ �		
� �� � 
�
��� � ������ �� � 
�
���

������ �

��
��
�
�

��
��

� �
��
��
�

� �

���������������������

��

��

��

��

�

�

Figure 3.8: The photon spectra for the branching ratio of the decay ω → π+π−γ
for gωσγ = 0.11. The separate contributions resulting from the amplitudes of
VMD; VMD and bremsstrahlung with ρ − ω mixing; VMD, bremsstrahlung,
chiral loop with ρ − ω mixing; and from the full amplitude obtained using the
diagrams in Fig. 3. 6 and in Fig. 3. 7 including σ-meson intermediate state
with ρ − ω mixing.

3.2.1 Numerical analysis of ω → π+π−γ decay

For the branching ratio of the decay ω → π+π−γ, the photon spectra are

plotted in Fig. 3. 8 for gωσγ = 0.11 and in Fig. 3. 9 for gωσγ = −0.21

as a function of photon energy Eγ and also the contributions of the different

amplitudes are indicated. The general shape of the spectrum as well as the rel-

ative contributions of different terms for positive and negative values of gωσγ are

quite different. These figures clearly show that the bremsstrahlung amplitude
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Figure 3.9: The photon spectra for the branching ratio of the decay ω → π+π−γ
for gωσγ = −0.21. The separate contributions resulting from the amplitudes of
VMD; VMD and bremsstrahlung with ρ − ω mixing; VMD, bremsstrahlung,
chiral loop with ρ − ω mixing; and from the full amplitude obtained using the
diagrams in Fig. 3. 6 and in Fig. 3. 7 including σ-meson intermediate state
with ρ − ω mixing.

of ρ → π+π−γ decay as the result of ρ−ω mixing affects mostly the lower part

of the photon spectra, changing it drastically, but becomes practically negligible

toward the higher photon energy part of the spectrum.

In our calculation from the contribution of VMD amplitude for the ω →

π+π−γ decay, we obtain the branching ratio BR(ω → π+π−γ) = 7.2 × 10−5. If

we consider the VMD amplitude for ω → π+π−γ decay and the bremsstrahlung

amplitude for ρ → π+π−γ decay, as a result of ρ − ω mixing, we obtain the
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branching ratio BR(ω → π+π−γ) = 0.46 × 10−3. On the other hand, if we

consider VMD and σ-meson intermediate state amplitudes for ω → π+π−γ

decay and do not consider ρ − ω mixing effect, the obtaining branching ratio

is BR(ω → π+π−γ) = 0.13 × 10−3 for gωσγ = 0.11 and BR(ω → π+π−γ) =

0.12×10−3 for gωσγ = −0.21. These values show the importance of ρ−ω mixing

and the σ-meson intermediate state amplitude in ω → π+π−γ decay.

Finally, if we consider the full amplitudes resulting from the Feynman dia-

grams in Fig. 3. 6 and in Fig. 3. 7, we obtain for the branching of ω → π+π−γ

decay the value BR(ω → π+π−γ) = 0.43 × 10−3 using the coupling constant

gωσγ = 0.11 and BR(ω → π+π−γ) = 0.67×10−3 if we use the coupling constant

gωσγ = −0.21 [67]. These values are consistent with the experimental upper

limit BR(ω → π+π−γ) < 3.6 × 10−3 [6].

3.2.2 Numerical analysis of ρ → π+π−γ decay

For the ρ → π+π−γ decay, the contributions of the bremsstrahlung ampli-

tude, pion-loop amplitude and σ-meson intermediate state amplitude to the

branching ratio of the decay are BR(ρ → π+π−γ)γ = (1.14 ± 0.01) × 10−2,

BR(ρ → π+π−γ)π = (0.45 ± 0.08) × 10−5 and BR(ρ → π+π−γ)σ = (0.83 ±

0.16) × 10−4, respectively. Gokalp et al. [28] also obtained the same results

in their analysis for this decay. For the total branching ratio including ef-

fects of ρ − ω mixing we obtain BR(ρ → π+π−γ) = (1.22 ± 0.02) × 10−2 for

Eγ > 50 MeV which is in reasonably good agreement with the experimental
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Figure 3.10: The photon spectra for the branching ratio of the decay ρ0 →
π+π−γ. The separate contributions resulting from the amplitudes of VMD;
bremsstrahlung; pion loop; σ-meson intermediate state; and from the full am-
plitude obtained using the diagrams in Fig. 3. 7 and in Fig. 3. 6 as well as the
total interference are shown.

result BR(ρ → π+π−γ) = (0.99±0.16)×10−2 [5]. Also this value was obtained

without the effects of ρ − ω mixing [28] and as the result we can say that the

ρ − ω mixing is not important for ρ → π+π−γ decay. Therefore the dominant

contribution comes from bremsstrahlung and the contribution of σ-meson in-

termediate state amplitude should be included in the analysis of the decay but

the ρ−ω mixing effects should not be considered in this decay since there is no

contribution coming from the VMD mechanism.

In Fig. 3. 10 we show the photon spectra for the branching ratio of the decay
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ρ → π+π−γ as a function of photon energy Eγ and also the experimental data

points [5]. The contribution of the pion-bremsstrahlung amplitude is the main

contribution, pion-loop and σ-meson intermediate states become noticeable only

in the region of high photon energies.

Bramon and Escribano [29] also analysed this decay and determined the

decay width contributed by bremsstrahlung, chiral loop and σ-meson ampli-

tudes. Similar to the ρ → π0π0γ decay there are two values of σ-meson am-

plitudes coming from the free parameter k. They obtained the values Γ(ρ →

π+π−γ)brems = 1.706 MeV (for Eγ > 50 MeV), Γ(ρ → π+π−γ)χ = 0.93 keV

and Γ(ρ → π+π−γ)LσM = 5.21 keV, Γ(ρ → π+π−γ)σ−phen = 3.84 keV, re-

spectively. For the contribution of different amplitudes to the decay width, we

find Γ(ρ → π+π−γ)γ = 1.718 MeV from the bremsstrahlung amplitude, Γ(ρ →

π+π−γ)π = 0.67 keV from the pion-loop amplitude and Γ(ρ → π+π−γ)σ =

0.0125 MeV from σ-meson intermediate state amplitude. Again the differences

between these results can be attributed to the different approaches followed.
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CHAPTER 4

CONCLUSIONS

We have studied the radiative decays of the ρ and ω mesons into pseudoscalar

mesons including the mechanism of vector meson dominance model (VMD),

chiral loop, σ-meson intermediate state amplitude and ω − ρ mixing in a phe-

nomenological approach.

Results of our study can be briefly summarized as follows

• The effects of ρ − ω mixing is the efficient mechanism for having the

dominant contribution if to the vector meson dominance amplitude makes a

contribution to the decays considered.

• In the analysis of the ω → π0π0γ decay in order to explain the latest

experimental result, the σ-meson intermediate state and ρ − ω mixing should

be considered.

• The ρ − ω mixing is a small effect for the ω → π0π0γ decay whose width

increases by 50/0 only due to ρ − ω mixing, even less than the 120/0 increase

provided by using a momentum dependent width for ρ meson in the calculation

amplitude of VMD.

• In the full amplitude, if the σ meson intermediate state is considered with
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the ρ−ω mixing the value of the branching ratio of ω → π0π0γ decay is reduced.

This conclusion affects the value of the coupling constant gωσγ. Therefore, the

value of the coupling constant gωσγ that we obtain is smaller than the values

obtained in the previous studies which was not considered the effects of ρ − ω

mixing.

• The shape of the ππ invariant mass distribution for ω → π0π0γ decay is

found to depend on the mechanism considered, especially σ-meson intermediate

state changes the shape considerably.

• There is very slight effect of ρ−ω mixing for the ρ → π0π0γ decay, so this

effect is negligible in mechanism of this decay.

• ρ and ω meson widths, which are rather different from each other, signifi-

cantly changes the results of the ρ − ω mixing mechanism [51], thus, this may

be a reason of why the ρ → π0π0γ decay has not been effected by the ρ − ω

mixing.

• In the case of the ρ → π0π0γ decay, the loop and σ-meson contributions

are very important and the branching ratio is obtained with the sum of the

VMD, pion-loop amplitude and σ-meson intermediate state amplitude.

• For the ω → π+π−γ decay, the σ-meson intermediate state amplitude and

ρ − ω mixing make important contributions to the branching ratio.

• Since the bremsstrahlung that comes from the effects of ρ−ω mixing is the

main contribution to the decay it affects the lower part of the photon spectrum

in ω → π+π−γ decay but for the higher part it is unimportant.
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• The bremsstrahlung contribution provides the dominant contribution of

the ρ → π+π−γ decay, however σ-meson intermediate state amplitude also

makes an appreciable contribution for this decay.

• The ρ → π+π−γ decay does not have a contribution coming from the

VMD mechanism, therefore the ρ − ω mixing is not pronounced in this decay

and thus its contribution is negligible.

• Our predicted branching ratios of the ω → ππγ and ρ → ππγ decays are

in good agreement with the latest experimental results.
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[64] A. Gökalp, A. Küçükarslan and O. Yılmaz, Phys. Rev. D67, 073008
(2003); [arXiv:hep-ph/0302129].

[65] J. A. Oller and E. Oset, Nucl. Phys. A620, 438 (1997); E: A652, 407
(1999).

[66] J. A. Oller, Phys. Lett., B426, 7 (1998).
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APPENDIX A

TWO BODY DECAY RATES

The probability of transition for a particular transition from initial state (| i >)

to a final state (| f >) is given by |Sfi|2 =|< f |S | i > |2 where the element of

the scattering matrix S is defined as

Sfi = δfi + i(2π)4δ4(pf − pi)Tfi (A.1)

where T is the transition matrix. A particle of mass M and energy E decays into

any number of particles 1,2,..... , if the invariant matrix element for the process

is Afi , the decay rate is obtained by multiplying the transition probability per

unit time by number of final states as follows

dΓ = (2π)4δ4(pf − pi)|Afi|2 1

2E

∏
i

d3pi

(2π)3(2Ei)
. (A.2)

If we consider that the decay produces two particles, then in the rest frame of

the decaying particle �p1 = −�p2 ≡ �p, E1 + E2 = M , thus

dΓ =
1

(2π)2
|Afi|2 1

2M

1

4E1E2

δ(�p1 + �p2)δ(E1 + E2 − M)d3p1d
3p2 . (A.3)

The integration over d3p2 eliminates the first delta function, the differential d3p1

is written as

d3p = p2d|�p|dΩ = |�p|dΩ
E1E2d(E1 + E2)

E1 + E2

(A.4)
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since E2
1 − M2

1 = E2
2 − M2

2 = �p2. The second delta function is eliminated by

integration over (E1 + E2) and the result is

dΓ =
1

32π2M2
|Afi|2|�p|dΩ . (A.5)

In the rest frame of the decaying particle |�p| is given as

|�p| =
1

2

√
[M2 − (M1 + M2)2][M2 − (M1 − M2)2]

M2
. (A.6)

Therefore, for the decay M → M1 + M2 where M1 = M2

|�p| =
1

2

√
1 −

(
2M1

M

)2

, (A.7)

and for the decay M → M1 + γ

|�p| =
1

2
M

[
1 −

(
M1

M

)2
]

. (A.8)

For the decay σ → ππ, the invariant matrix element that follows from the

effective Lagrangian

Leff.
σππ =

1

2
gσππMσ�π · �πσ (A.9)

is given by gσππMσ, therefore

Γσ ≡ Γ(σ → ππ) =
g2

σππ

4π

3Mσ

8

[
1 −

(
2Mπ

Mσ

)2
]1/2

. (A.10)

For the decay ρ0 → ππ which is described by the effective Lagrangian

Leff.
ρππ = gρππ�ρµ · (∂µ�π × �π) (A.11)

72



the invariant matrix element is A = igρππ(2q1 − p)µU
µ, where q1 is the mo-

mentum of one of the pions and p(U) is the momentum (polarization) of the

decaying ρ-meson. Thus the decay rate can be obtained as

Γ(ρ → ππ) =
g2

ρππ

4π

Mρ

12

⎡⎣1 −
(

2Mπ

Mρ

)2
⎤⎦3/2

. (A.12)

The radiative decay V 0 → ϕ0γ is described by the effective Lagrangian

Leff.
V ϕγ =

e

MV

gV ϕγε
µναβ∂µV

0
ν ∂αAβϕ0 , (A.13)

where V denotes the decaying vector meson and ϕ denotes the pseudoscalar me-

son. The invariant amplitude can be obtained as A = i e
MV

gV ϕγε
µναβpµUνkαεβ,

where p(U) and k(ε) are the momenta (polarization) of vector meson and photon

respectively, and the decay rate is

Γ(V 0 → ϕ0γ) =
α

24

(M2
V − M2

ϕ)3

M5
V

g2
V ϕγ . (A.14)

Utilizing the experimental values of different two body decay rates, we de-

termine various coupling constants. Using the decay rates of ρ0 → ππ and

ρ0 → π0γ decays [6] we find the coupling constants gρππ and gρπγ as gρππ = 6.047

and gρπγ = 0.696, respectively where the mass and width for ρ is taken as

Mρ = 770 MeV and Γρ = 150.2 MeV in our calculation. We also determine

the coupling constant gωπγ as gωπγ = 1.821 from the experimental value of the

ω → π0γ decay rate [6] using the value of Mω = 782 MeV and Γω = 8.44

MeV. Furthermore, to calculate the coupling constant gσππ, we use the mass

and width of sigma as Mσ = 478 MeV, Γσ = 324 MeV and finally find this

coupling constant as gσππ = 5.290.
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APPENDIX B

THREE BODY DECAY AND THE BOUNDARY OF DALITZ

PLOT

For the three particle decay M(p) → M1(q1) + M2(q2) + γ(k), the differential

decay rate is given by

dΓ = (2π)4δ4(p−k−q1−q2)
1

2Ep

d3k

(2π)3(2Eγ)

d3q1

(2π)3(2E1)

d3q2

(2π)3(2E2)
|Afi|2 (B.1)

where |Afi|2 is the average over spin states of the absolute square of the decay

invariant matrix element. Therefore, due to spin average, we can write |Afi|2 =

F (E1, E2). In the rest frame of the decaying particle δ4(p − k − q1 − q2) =

δ(M −Eγ −E1 −E2)δ
3(�k + �q1 + �q2), and the momentum delta function can be

eliminated by performing the integral over d3q2. Since

d3k

2Eγ

=
1

2
EγdEγdΩγ , (B.2)

and

d3q1

2E1

=
1

2
|�q1|dE1dΩ1 , (B.3)

we obtain

dΓ

dEγdE1

=
|�q1|Eγ|Afi|2
16M(2π)5

∫
dΩγdΩ1

δ(M − Eγ − E1 +
√

(�k + �q1)2 + M2
2 )√

(�k + �q1)2 + M2
2

(B.4)
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If we consider the integral defined by

I = |�q1|Eγ

∫
dΩγdΩ1

δ(M − Eγ − E1 −
√

(�k + �q1)2 + M2
2 )√

(�k + �q1)2 + M2
2

(B.5)

we perform the angular integrals and obtain

I = 8π2
∫ 1

−1
d(cos θ)|�q1|Eγ

δ(M − Eγ − E1 −
√

E2
γ + E2

1 − M2
1 + 2Eγ|�q1| cos θ + M2

2 )√
E2

γ + E2
1 − M2

1 + 2Eγ|�q1| cos θ + M2
2

(B.6)

where θ is defined by �k · �q1 = |�k||�q1| cos θ. A change of variable

ξ =
√

E2
γ + E2

1 − M2
1 + 2Eγ|�q1| cos θ + M2

2 (B.7)

gives

I = 8π2
∫

dξδ(M − Eγ − E1 − ξ) = 8π2 (B.8)

subject to the condition M −Eγ −E1 − ξ = 0. Therefore the double differential

decay rate can be obtain as

dΓ

dEγdE1

=
1

(2π)3

1

8M
|Afi|2 (B.9)

The limits of integral are defined by the condition M − Eγ − E1 − ξ = 0 as

M − Eγ − E1 =
√

E2
γ + E2

1 − M2
1 + 2Eγ|�q1| cos θ + M2

2 , (B.10)

or

−1 ≤ (M − Eγ − E1)
2 − E2

γ − E2
1 + M2

1 − M2
2

2Eγ

√
E2

1 − M2
1

≤ 1 . (B.11)
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APPENDIX C

INVARIANT AMPLITUDES FOR THE V → π0π0γ DECAYS

The invariant amplitude of the radiative decay V (p) → π0(q1)π
0(q2)γ(k) in-

cluding the contribution of the ρ − ω mixing is A[V → π0π0γ] = A0[V →

π0π0γ] + εÃ[V ′ → π0π0γ] where A0 and Ã include the contributions coming

from the vector meson dominance amplitude, chiral loop and σ-meson interme-

diate state amplitude. In case V, V ′ = ω the amplitude is calculated using the

Feynman diagrams shown in Fig. 3. 1 (a), (b) and (c), and for V, V ′ = ρ the

Feynman diagrams shown Fig. 3. 2 (a), (b) and (c) are used. Moreover, in

the calculation of the amplitude A0 the modified vector meson propagator is

used as given by Eqs. (3.19) and (3.20). Therefore, we can write the invariant

amplitude including the effects of ρ − ω mixing for V → π0π0γ decay as

A = A0
V,V MD + A0

V,loop + A0
V,σ + ε[ÃV ′,V MD + ÃV ′,loop + ÃV ′,σ] (C.1)

where ε ≡ c + id. The numerical values of c and d are c=-0.006 and d=0.036

[38].

In the rest frame for the V (p) → P (q1)P
′(q2)γ(k) decay, when P and P’

denote any one of the pseudoscalar mesons π0, π+ and π−

k · p = MV Ek
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k · q1 =
1

2
(M2

V − 2MV E2)

k · q2 =
1

2
(M2

V − 2MV E1)

p · p = p2 = M2
V

p · q1 = M2
V E1

p · q2 = M2
V E2

q1 · q1 = q2 · q2 = M2
π

q1 · q2 =
1

2
(M2

V − 2MV Ek − 2M2
π) . (C.2)

We organize this Appendix as follows. First, the amplitudes contributing to

the ω → π0π0γ and ρ → π0π0γ decays are introduced. Then, starting with the

VMD contribution we add the contributions of loops and σ-meson intermediate

state. Finally, we give the square of the invariant amplitudes as we discuss in

the text.

C.1 ω → π0π0γ decay

For the ω → π0π0γ decay we use the contributions coming from the VMD,

kaon-loop, and σ-meson intermediate state amplitudes. As the result of the

ρ − ω mixing, we change the propagator of the ρ-meson that is shown in Fig.

3. 1 (a). Therefore, we write the amplitudes that includes the change in the

propagator in the vector meson dominance amplitude as

A0
ω,V MD = ReA0

ω(p − q1) ∗ Fω(p − q1) + ReA0
ω(p − q2) ∗ Fω(p − q2)
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+i[ImA0
ω(p − q1) ∗ Fω(p − q1) + ImA0

ω(p − q2) ∗ Fω(p − q2)]

(C.3)

A0
ω,K = ReA0

ω,K ∗ Fω,K + iImA0
ω,K ∗ Fω,K (C.4)

A0
ω,σ = ReA0

ω,σ ∗ Fω,σ + iImA0
ω,σ ∗ Fω,σ (C.5)

where

ReA0
ω(n) = (ΓρMρ)Dω(n) +

gωπγ

gρπγ

M2
ρω

×{(n2 − M2
ω)(ΓρMρ) − (n2 − M2

ρ )(ΓωMω)}Gω(n) (C.6)

ImA0
ω(n) = (n2 − M2

ρ )Dω(n) +
gωπγ

gρπγ

M2
ρω

×{(n2 − M2
ω)(n2 − M2

ρ ) − (ΓρMρ)(ΓωMω)}Gω(n) (C.7)

Fω(n) = −
(

e

Mρ

gρπγ

)(
gωρπ

Mω

)
εµναβpαUβnµε

µ′ν′α′β′
nµ′kα′εβ′

×
[
−gνν′ +

nνnν′

M2
ρ

]
(C.8)

Dω(n) =
1

(n2 − M2
ρ )2 + (ΓρMρ)2

(C.9)

Gω(n) =
1

[(n2 − M2
ρ )2 + (ΓρMρ)2][(n2 − M2

ω)2 + (ΓωMω)2]
(C.10)

ReA0
ω,K = ReI(a, b) (C.11)

ImA0
ω,K = ImI(a, b) (C.12)
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Fω,K = −
(

eg

4
√

2π2f 2
πM2

k

)
(p2 − 2k · p)pαUβ(kαεβ − kβεα) (C.13)

ReA0
ω,σ = (ΓσMσ)Dσ(p − k) (C.14)

ImA0
ω,σ = [(p − k)2 − M2

σ ]Dσ(p − k) (C.15)

Fω,σ = −
(

e

Mω

gωσγ

)
(gσππMσ)pαUβ(kαεβ − kβεα) . (C.16)

ImI and ReI are given in Eq. 3.13 and Eq. 3.14, respectively.

C.2 ρ → π0π0γ decay

For the ρ → π0π0γ decay we use the contribution of the VMD, pion-loop,

and σ-meson intermediate state. As the result of the ρ − ω mixing, we change

the propagator of the ω-meson that is shown in Fig. 3. 2 (a). Therefore, we

write the amplitudes that includes the change in the propagator in the vector

meson dominance amplitude as

A0
ρ,V MD = ReA0

ρ(p − q1) ∗ Fρ(p − q1) + ReA0
ρ(p − q2) ∗ Fρ(p − q2)

+i[ImA0
ρ(p − q1) ∗ Fρ(p − q1) + ImA0

ρ(p − q2) ∗ Fρ(p − q2)]

(C.17)

A0
ρ,π = ReA0

ρ,π ∗ Fρ,π + iImA0
ρ,π ∗ Fρ,π (C.18)

A0
ρ,σ = ReA0

ρ,σ ∗ Fρ,σ + iImA0
ρ,σ ∗ Fρ,σ (C.19)
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where

ReA0
ρ(n) = (ΓωMω)Dρ(n) +

gρπγ

gωπγ

M2
ρω

×{(n2 − M2
ω)(ΓρMρ) − (n2 − M2

ρ )(ΓωMω)}Gρ(n) (C.20)

ImA0
ρ(n) = (n2 − M2

ω)Dρ(n) +
gρπγ

gωπγ

M2
ρω

×{(n2 − M2
ω)(n2 − M2

ρ ) − (ΓρMρ)(ΓωMω)}Gρ(n) (C.21)

Fρ(n) = −
(

e

Mω

gωπγ

)(
gρωπ

Mρ

)
εµναβpαUβnµε

µ′ν′α′β′
nµ′kα′εβ′

×
[
−gνν′ +

nνnν′

M2
ω

]
(C.22)

Dρ(n) =
1

(n2 − M2
ω)2 + (ΓωMω)2

(C.23)

Gρ(n) =
1

[(n2 − M2
ρ )2 + (ΓρMρ)2][(n2 − M2

ω)2 + (ΓωMω)2]
(C.24)

ReA0
ρ,π = ReI(a, b) (C.25)

ImA0
ρ,π = ImI(a, b) (C.26)

Fρ,π = 2gρππ(eλ)Uµεν

×
∫ d4q

(2π)4

{ −4qµqν + gµν(q
2 − M2

π)

(q2 − M2
π)[(q − k)2 − M2

π ][(p − q)2 − M2
π ]

}
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= −
(

e gρππ

2π2M2
π

)
λ pαUβ(kαεβ − kβεα) (C.27)

where

λ = −g2
πNN

2

M2
σ−M2

π

M2
N

(C.28)

ReA0
ρ,σ = {[((p − k)2 − M2

σ)ReI(a, b) + (ΓσMσ)ImI(a, b)]}Dσ(p − k) (C.29)

ImA0
ρ,σ = [((p − k)2 − M2

σ)ImI(a, b) − (ΓσMσ)ReI(a, b)]}Dσ(p − k) (C.30)

Fρ,σ = −
(

egρππ

2π2M2
π

)
(gσππMσ)2 pαUβ(kαεβ − kβεα) . (C.31)

C.3 The full amplitude of the ω → π0π0γ decay including the ρ − ω mixing

The invariant amplitude of the radiative decay ω(p) → π0(q1)π
0(q2)γ(k)

including the contribution of the ρ − ω mixing is A[ω → π0π0γ] = A0[ω →

π0π0γ] + εÃ[ρ → π0π0γ] where in the ρ → π0π0γ decay amplitude we do not

include the change in the vector meson propagator. The contribution coming

from the VMD is

AV MD = ReA0
ω1 ∗ Fω1 + ReA0

ω2 ∗ Fω2 + c(ReÃρ1 ∗ Fρ1 + ReÃρ2 ∗ Fρ2)

−d(ImÃρ1 ∗ Fρ1 + ImÃρ2 ∗ Fρ2) + i[ImA0
ω1 ∗ Fω1 + ImA0

ω2 ∗ Fω2

+c(ImÃρ1 ∗ Fρ1 + ImÃρ2 ∗ Fρ2) + d(ReÃρ1 ∗ Fρ1 + ReÃρ2 ∗ Fρ2)] . (C.32)

The square of the invariant VMD amplitude is then obtained as

|AV MD|2 = [(ReA0
ω1)

2 + (ImA0
ω1)

2](Fω1)
2 + [(ReA0

ω2)
2 + (ImA0

ω2)
2](Fω2)

2
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+(c2 + d2){[(ReÃρ1)
2 + (ImÃρ1)

2](Fρ1)
2 + [(ReÃρ2)

2

+(ImÃρ2)
2](Fρ2)

2 + 2(ReÃρ1ReÃρ2 + ImÃρ1ImÃρ2)(Fρ1Fρ2)}

+2[(ReA0
ω1ReA0

ω2 + ImA0
ω1ImA0

ω2)(Fω1Fω2) + (ReA0
ω1 ∗ Fω1

+ReA0
ω2 ∗ Fω2)(cReÃρ1 ∗ Fρ1 − dImÃρ1 ∗ Fρ1) + (ImA0

ω1 ∗ Fω1

+ImA0
ω2 ∗ Fω2)(cImÃρ1 ∗ Fρ1 + dReÃρ1 ∗ Fρ1) + (ReA0

ω1 ∗ Fω1

+ReA0
ω2 ∗ Fω2)(cReÃρ2 ∗ Fρ2 − dImÃρ2 ∗ Fρ2) + (ImA0

ω1 ∗ Fω1

+ImA0
ω2 ∗ Fω2)(cImÃρ2 ∗ Fρ2 + dReÃρ2 ∗ Fρ2)]

(C.33)

where

(Fω1)
2 =

(
e

Mρ

gρπγ

)2 (
gωρπ

Mω

)2 1

3
{−2k · p k · q1

×[p2(p · q1 − 2q2
1) + p · q1 q2

1] + (k · p)2

×[2(p · q1)
2 − p2q2

1 − 2p · q1 q2
1 + q4

1] + (k · q1)
2

×[p4 + 2(p · q1)
2 − p2(2p · q1 + q2

1)]} (C.34)

(Fω2)
2 = (Fω1)

2(q1 → q2) (C.35)

(Fρ1)
2 = (Fω1)

2(interchange ω, ρ) (C.36)

(Fρ2)
2 = (Fω2)

2(interchange ω, ρ) (C.37)

(Fω1Fω2) =

(
e

Mρ

gρπγ

)2 (
gωρπ

Mω

)2 1

3
{(k · q2)

2[(p · q1)
2 − p2 q2

1]

+ k · p k · q2[p · q2 q2
1 − 2p · q1 q1 · q2 + p2(−p · q1 + q2

1
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+ q1 · q2)] + (k · p)2[−p · q2 q2
1 + q1 · q2(−p2 + q1 · q2)

+ p · q1(2p · q2 − q2)] + (k · q1)
2[(p · q2)

2 − p2 q2
2] + k · q1

× [k · q2 p2(p2 − p · q1 − p · q2 + q1 · q2) + k · p(−2p · q2

× q1 · q2 + p · q1 q2
2 + p2(−p · q2 + q1 · q2 + q2

2)]} (C.38)

(Fρ1Fρ2) = (Fω1Fω2)(interchange ω, ρ) (C.39)

(Fω1Fρ1) =

(
e

Mρ

gρπγ

)(
gωρπ

Mω

)(
e

Mω

gωπγ

)(
gρωπ

Mρ

)

×1

3
{−2k · p k · q1[p

2(p · q1 − 2q2
1) + p · q1

×q2
1] + (k · p)2[2(p · q1)

2 − p2q2
1 − 2p · q1

×q2
1 + q4

1] + (k · q1)
2[p4 + 2(p · q1)

2

−p2(2p · q1 + q2
1)]} (C.40)

(Fω1Fρ2) =

(
e

Mρ

gρπγ

)(
gωρπ

Mω

)(
e

Mω

gωπγ

)(
gρωπ

Mρ

)

×1

3
{(k · q2)

2[(p · q1)
2 − p2 q2

1] + k · p k · q2[p · q2 q2
1

− 2p · q1 q1 · q2 + p2(−p · q1 + q2
1 + q1 · q2)] + (k · p)2

× [−p · q2 q2
1 + q1 · q2(−p2 + q1 · q2) + p · q1(2p · q2

− q2)] + (k · q1)
2[(p · q2)

2 − p2 q2
2] + k · q1[k · q2 p2

× (p2 − p · q1 − p · q2 + q1 · q2) + k · p(−2p · q2q1 · q2

+ p · q1 q2
2 + p2(−p · q2 + q1 · q2 + q2

2)]} (C.41)
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(Fω2Fρ2) = (Fω1Fρ1)(q1 → q2) . (C.42)

After adding the chiral loop amplitude to the above amplitude the resulting

invariant amplitude is A[ω → π0π0γ] = A[ω → π0π0γ]V MD +A[ω → π0π0γ]loops

where A[ω → π0π0γ]loops = A0
ω,K +ε Ãρ,π. Therefore, we can write the invariant

amplitude as

A = AV MD + Aloop

= AV MD + ReA0
ω,K ∗ Fω,K + (cReÃρ,π − dImÃρ,π) ∗ Fρ,π

+i[ImA0
ω,K ∗ Fω,K + (dReÃρ,π + cImÃρ,π) ∗ Fρ,π] . (C.43)

The square of the invariant amplitude is then obtained as

|A|2 = |AV MD + Aloop|2

= |AV MD|2 + [(ReA0
ω,K)2 + (ImA0

ω,K)2] ∗ (Fω,K)2 + (c2 + d2)

×[(ReÃρ,π)2 + (ImÃρ,π)2] ∗ (Fρ,π)2 + 2[(ReA0
ω1ReA0

ω,K + ImA0
ω1

×ImA0
ω,K)(Fω1Fω,K) + (ReA0

ω2ReA0
ω,K + ImA0

ω2ImA0
ω,K)(Fω2Fω,K)

+ReA0
ω,K(cReÃρ,1 − dImÃρ,1)(Fω,KFρ1) + ImA0

ω,K(cImÃρ,1

+dReÃρ,1)(Fω,KFρ1) + ReA0
ω,K(cReÃρ,2 − dImÃρ,2)(Fω,KFρ2)

+ImA0
ω,K(cImÃρ,2 + dReÃρ,2)(Fω,KFρ2) + ReA0

ω1(cReÃρ,π

−dImÃρ,π)(Fω1Fρ,π) + ReA0
ω2(cReÃρ,π − dImÃρ,π)(Fω2Fρ,π)

+ReA0
ω,K(cReÃρ,π − dImÃρ,π)(Fω,KFρ,π) + ImA0

ω1(cImÃρ,π

+dReÃρ,π)(Fω1Fρ,π) + ImA0
ω2(cImÃρ,π + dReÃρ,π)(Fω2Fρ,π)

+ImA0
ω,K(cImÃρ,π + dReÃρ,π)(Fω,KFρ,π) + (cReÃρ,1 − dImÃρ,1)
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×(cReÃρ,π − dImÃρ,π)(Fρ1Fρ,π) + (cImÃρ,1 + dReÃρ,1)(cImÃρ,π

+bdReÃρ,π)(Fρ1Fρ,π) + (cReÃρ,2 − dImÃρ,2)(cReÃρ,π − dImÃρ,π)

×(Fρ2Fρ,π) + (cImÃρ,2 + dReÃρ,2)(cImÃρ,π + dReÃρ,π)(Fρ2Fρ,π)]

(C.44)

where

(Fω,K)2 =

(
eg

4
√

2π2f 2
πM2

k

)2

(p2 − 2k · p)2
[
2

3
(k · p)2

]
(C.45)

(Fρ,π)2 =

(
e gρππ

2π2M2
π

)2

λ2
[
2

3
(k · p)2

]
(C.46)

(Fω1Fω,K) =

(
e

Mρ

gρπγ

)(
gωρπ

Mω

)(
eg

4
√

2π2f 2
πM2

K

)
(p2 − 2k · p)

×1

3
{k · p(2k · q1p

2 − p2(k · q1)
2/k · p + k · p(−2k · q1 + q2

1))}

(C.47)

(Fω2Fω,K) = (Fω1Fω,K)(q1 → q2) (C.48)

(Fω,KFρ1) = (Fω,1Fω,K)(interchange ω, ρ)

(C.49)

(Fω,KFρ2) = (Fω,KFρ1)(q1 → q2) (C.50)

(Fω1Fρ,π) =

(
e

Mρ

gρπγ

)(
gωρπ

Mω

)(
e gρππ

2π2M2
π

)
λ

×1

3
{k · p[2k · q1p

2 − p2(k · q1)
2/k · p + k · p(−2k · q1 + q2

1)]}

(C.51)
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(Fω2Fρ,π) = (Fω1Fρ,π)(q1 → q2) (C.52)

(Fω,KFρ,π) =

(
eg

4
√

2π2f 2
πM2

k

)(
e gρππ

2π2M2
π

)
λ [p2 − 2k · p]

[
2

3
(k · p)2

]
(C.53)

(Fρ1Fρ,π) =
(

e

Mω

gωπγ

)(
gρωπ

Mρ

)(
e gρππ

2π2M2
π

)
λ

× 1

3
{k · p[2k · q1p

2 − p2(k · q1)
2/k · p + k · p(−2k · q1 + q2

1)]}

(C.54)

(Fρ2Fρ,π) = (Fρ1Fρ,π)(q1 → q2) . (C.55)

The full amplitude including the contribution of VMD, chiral loop and σ-meson

intermediate state is A[ω → π0π0γ] = A[ω → π0π0γ]V MD+A[ω → π0π0γ]loops+

A[ω → π0π0γ]σ where A[ω → π0π0γ]σ = A0
ω,σ +ε Ãρ,σ. Therefore, the invariant

amplitude can be written as

A = AV MD + Aloop + Aσ

= AV MD + Aloops + ReA0
ω,σ ∗ Fω,σ + (cReÃρ,σ − bImÃρ,σ) ∗ Fρ,σ

+ i(ImA0
ω,σ ∗ Fω,σ + (cImÃρ,σ + dReÃρ,σ) ∗ Fρ,σ) . (C.56)

The square of the invariant amplitude is obtained in the form

|A|2 = |AV MD + Aloop + Aσ|2

= |AV MD|2 + |Aloops|2 + [(ReA0
ω,σ)2 + (ImA0

ω,σ)2](Fω,σ)2 + (c2 + d2)

×((ReÃρ,σ)2 + (ImÃρ,σ)2)(Fρ,σ)2 + 2[(ReA0
ω1ReA0

ω,σ

+ImA0
ω1ImA0

ω,σ)(Fω1Fω,σ) + (ReA0
ω2ReA0

ω,σ + ImA0
ω2ImA0

ω,σ)
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×(Fω2Fω,σ) + (ReA0
ω,KReA0

ω,σ + ImA0
ω,KImA0

ω,σ)(Fω,KFω,σ)

+ReA0
ω,σ(cReÃρ,1 − dImÃρ,1)(Fω,σFρ1) + ImA0

ω,σ(cImÃρ,1

+dReÃρ,1)(Fω,σFρ1) + ReA0
ω,σ(cReÃρ,2 − dImÃρ,2)(Fω,σFρ2)

+ImA0
ω,σ(cImÃρ,2 + dReÃρ,2)(Fω,σFρ2) + ReA0

ω,σ(cReÃρ,π

−dImÃρ,π)(Fω,σFρ,π) + ImA0
ω,σ(cImÃρ,π + dReÃρ,π)(Fω,σFρ,π)

+ReA0
ω1(cReÃρ,σ − dImÃρ,σ)(Fω1Fρ,σ) + ReA0

ω2(cReÃρ,σ

−dImÃρ,σ)(Fω2Fρ,σ) + ReA0
ω,K(cReÃρ,σ − dImÃρ,σ)(Fω,KFρ,σ)

+ReA0
ω,σ(cReÃρ,σ − dImÃρ,σ)(Fω,σFρ,σ) + ImA0

ω1(cImÃρ,σ

+dReÃρ,σ)(Fω1Fρ,σ) + ImA0
ω2(cImÃρ,σ + dReÃρ,σ)(Fω2Fρ,σ)

+ImA0
ω,K(cImÃρ,σ + dReÃρ,σ)(Fω2Fρ,σ) + ImA0

ω,σ(cImÃρ,σ

+dReÃρ,σ)(Fω,σFρ,σ) + (cReÃρ,1 − dImÃρ,1)(cReÃρ,σ − dImÃρ,σ)

×(Fρ1Fρ,σ) + (cImÃρ,1 + dReÃρ,1)(cImÃρ,σ + dReÃρ,σ)(Fρ1Fρ,σ)

+(cReÃρ,2 − dImÃρ,2)(cReÃρ,σ − dImÃρ,σ)(Fρ2Fρ,σ) + (cImÃρ,2

+dReÃρ,2)(cImÃρ,σ + dReÃρ,σ)(Fρ2Fρ,σ) + (cReÃρ,π − dImÃρ,π)

×(cReÃρ,σ − dImÃρ,σ)(Fρ,πFρ,σ) + (cImÃρ,2 + dReÃρ,2)(cImÃρ,σ

+dReÃρ,σ)(Fρ,πFρ,σ)]

(C.57)

where

(Fω,σ)2 =
(

e

Mω

gωσγ

)2

(gσππMσ)2
[
2

3
(k · p)2

]
(C.58)
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(Fρ,σ)2 =

(
egρππ

2π2M2
π

)2

(gσππMσ)4
[
2

3
(k · p)2

]
(C.59)

(Fω1Fω,σ) =

(
e

Mρ

gρπγ

)(
gωρπ

Mω

)(
e

Mω

gωσγ

)
(gσππMσ)

×1

3
{k · p[2k · q1p

2 − p2(k · q1)
2/k · p + k · p(−2k · q1 + q2

1)]}

(C.60)

(Fω2Fω,σ) = (Fω1Fω,σ)(q1 → q2) (C.61)

(Fω,KFω,σ) =

(
eg

4
√

2π2f 2
πM2

k

)(
e

Mω

gωσγ

)
(gσππMσ)

[
2

3
(k · p)2

]
(C.62)

(Fω,σFρ1) =
(

e

Mω

gωσγ

)
(gσππMσ)

(
e

Mω

gωπγ

)(
gρωπ

Mρ

)

×1

3
{k · p[2k · q1p

2 − p2(k · q1)
2/k · p + k · p(−2k · q1 + q2

1)]}

(C.63)

(Fω,σFρ2) = (Fω,σFρ1)(q1 → q2) (C.64)

(Fω,σFρ,π) =
(

e

Mω

gωσγ

)
(gσππMσ)

(
e gρππ λ

2π2M2
π

) [
2

3
(k · p)2

]
(C.65)

(Fω1Fρ,σ) =

(
e

Mρ

gρπγ

)(
gωρπ

Mω

)(
egρππ

2π2M2
π

)
(gσππMσ)2

×1

3
{k · p[2k · q1p

2 − p2(k · q1)
2/k · p + k · p(−2k · q1 + q2

1)]}

(C.66)

(Fω2Fρ,σ) = (Fω1Fρ,σ)(q1 → q2) (C.67)
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(Fω,KFρ,σ) =

(
eg

4
√

2π2f 2
πM2

k

)(
egρππ

2π2M2
π

)
(gσππMσ)2

[
2

3
(k · p)2

]
(C.68)

(Fω,σFρ,σ) =
(

e

Mω

gωσγ

)
(gσππMσ)3

(
egρππ

2π2M2
π

) [
2

3
(k · p)2

]
(C.69)

(Fρ1Fρ,σ) =
(

e

Mω

gωπγ

)(
gρωπ

Mρ

)(
egρππ

2π2M2
π

)
(gσππMσ)2

×1

3
{k · p[2k · q1p

2 − p2(k · q1)
2/k · p + k · p(−2k · q1 + q2

1)]}

(C.70)

(Fρ2Fρ,σ) = (Fρ1Fρ,σ)(q1 → q2) (C.71)

(Fρ,πFρ,σ) =

(
e gρππ λ

2π2M2
π

)(
egρππ

2π2M2
π

)
(gσππMσ)2

[
2

3
(k · p)2

]
. (C.72)

C.4 The full amplitude of the ρ → π0π0γ decay including the ρ − ω mixing

The invariant amplitude of the radiative decay ρ(p) → π0(q1)π
0(q2)γ(k)

including the contribution of the ρ − ω mixing is A[ρ → π0π0γ] = A0[ρ →

π0π0γ]+εÃ[ω → π0π0γ] where A0 and Ã include the contributions coming from

the VMD amplitude, chiral loop and σ-meson intermediate states amplitudes

that result from the Feynman diagrams in Fig. 3. 2 (a), (b) and (c) for ρ →

π0π0γ decay and in Fig. 3. 1 (a), (b) and (c) for ω → π0π0γ decay. Therefore,

we can write the invariant amplitude including the effects of ρ − ω mixing for
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ρ → π0π0γ decay as

A = A0
ρ,V MD + A0

ρ,π + A0
ρ,σ + ε[Ãω,V MD + Ãω,K + Ãω,σ] . (C.73)

For the ρ → π0π0γ decay the amplitudes, which are A0
ρ,V MD,A0

ρ,π and A0
ρ,σ, are

described in section C. 2. For the ω → π0π0γ decay, we use the same amplitude

which is described in section C.1, but for the calculation of the VMD amplitude

in Ã(ω → π0π0γ) we use the unmodified propagator for the intermediate vector

meson. Therefore, we can write the contributions coming from the different

amplitudes as

AV MD = ReA0
ρ1 ∗ Fρ1 + ReA0

ρ2 ∗ Fρ2 + c(ReÃω1 ∗ Fω1 + ReÃω2 ∗ Fω2)

−d(ImÃω1 ∗ Fω1 + ImÃω2 ∗ Fω2) + i[ImA0
ρ1 ∗ Fρ1 + ImA0

ρ2 ∗ Fρ2

+c(ImÃω1 ∗ Fω1 + ImÃω2 ∗ Fω2) + d(ReÃω1 ∗ Fω1 + ReÃω2 ∗ Fω2)]

(C.74)

A = AV MD + Aloop

= AV MD + ReA0
ρ,π ∗ Fρ,π + (cReÃω,K − dImÃω,K) ∗ Fω,K

+i[ImA0
ρ,π ∗ Fρ,π + (dReÃω,K + cImÃω,K) ∗ Fω,K ] (C.75)

A = AV MD + Aloop + Aσ

= AV MD + Aloops + ReA0
ρ,σ ∗ Fρ,σ + (cReÃρ,σ − bImÃω,σ) ∗ Fω,σ

+i[ImA0
ρ,σ ∗ Fρ,σ + (cImÃω,σ + dReÃω,σ) ∗ Fω,σ] . (C.76)
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The square of the full amplitude of ρ → π0π0γ decay including VMD, chiral

loop and σ-meson intermediate state amplitude is obtained as

|A|2 = |AV MD + Aloop + Aσ|2

= [(ReA0
ρ1)

2 + (ImA0
ρ1)

2](Fρ1)
2 + [(ReA0

ρ2)
2 + (ImA0

ρ2)
2](Fρ2)

2

+(c2 + d2){[(ReÃω1)
2 + (ImÃω1)

2](Fω1)
2 + [(ReÃω2)

2

+(ImÃω2)
2](Fω2)

2 + 2(ReÃω1ReÃω2 + ImÃω1ImÃω2)(Fω1Fω2)}

+2[(ReA0
ρ1ReA0

ρ2 + ImA0
ρ1ImA0

ρ2)(Fρ1Fρ2) + (ReA0
ρ1 ∗ Fρ1

+ReA0
ρ2 ∗ Fρ2)(cReÃω1 ∗ Fω1 − dImÃω1 ∗ Fω1) + (ImA0

ρ1 ∗ Fρ1

+ImA0
ρ2 ∗ Fρ2)(cImÃω1 ∗ Fω1 + dReÃω1 ∗ Fω1) + (ReA0

ρ1 ∗ Fρ1

+ReA0
ρ2 ∗ Fρ2)(cReÃω2 ∗ Fω2 − dImÃω2 ∗ Fω2) + (ImA0

ρ1 ∗ Fρ1

+ImA0
ρ2 ∗ Fρ2)(cImÃω2 ∗ Fω2 + dReÃω2 ∗ Fω2) + (ReA0

ρ,π)2

+(ImA0
ρ,π)2] ∗ (Fρ,π)2 + (c2 + d2)[(ReÃω,K)2 + (ImÃω,K)2]

×(Fω,K)2 + 2[(ReA0
ρ1ReA0

ρ,π + ImA0
ρ1ImA0

ρ,π) ∗ (Fρ1Fρ,π)

+(ReA0
ρ2ReA0

ρ,π + ImA0
ρ2ImA0

ρ,π)(Fρ2Fρ,π) + ReA0
ρ,π

×(cReÃω,1 − dImÃω,1)(Fρ,πFω1) + ImA0
ρ,π(cImÃω,1

+dReÃω,1)(Fρ,πFω1) + ReA0
ρ,π(cReÃω,2 − dImÃω,2)(Fρ,πFω2)

+ImA0
ρ,π(cImÃω,2 + dReÃω,2)(Fρ,πFω2) + ReA0

ρ1(cReÃω,K

−dImÃω,K)(Fρ1Fω,K) + ReA0
ρ2(cReÃω,K − dImÃω,K)(Fρ2Fω,K)

+ReA0
ρ,π(cReÃω,K − dImÃω,K)(Fρ,πFω,K) + ImA0

ρ1(cImÃω,K

+dReÃω,K)(Fρ1Fω,K) + ImA0
ρ2(cImÃω,K + dReÃω,K)(Fρ2Fω,K)

91



+ImA0
ρ,π(cImÃω,K + dReÃω,K)(Fρ,πFω,K) + (cReÃω,1 − dImÃω,1)

×(cReÃω,K − dImÃω,K)(Fω1Fω,K) + (cImÃω,1 + dReÃω,1)(cImÃω,K

+bdReÃω,K)(Fω1Fω,K) + (cReÃω,2 − dImÃω,2)(cReÃω,K − dImÃω,K)

×(Fω2Fω,K) + (cImÃω,2 + dReÃω,2)(cImÃω,K + dReÃω,K)

×(Fω2Fω,K) + (ReA0
ρ,σ)2 + (ImA0

ρ,σ)2](Fρ,σ)2 + (c2 + d2)

×((ReÃω,σ)2 + (ImÃω,σ)2)(Fω,σ)2 + 2[(ReA0
ρ1ReA0

ρ,σ

+ImA0
ρ1ImA0

ρ,σ)(Fρ1Fρ,σ) + (ReA0
ρ2ReA0

ρ,σ + ImA0
ρ2ImA0

ρ,σ)

×(Fρ2Fρ,σ) + (ReA0
ρ,πReA0

ρ,σ + ImA0
ρ,πImA0

ρ,σ)(Fρ,πFρ,σ)

+ReA0
ρ,σ(cReÃω,1 − dImÃω,1)(Fρ,σFω1) + ImA0

ρ,σ(cImÃω,1

+dReÃω,1)(Fρ,σFω1) + ReA0
ρ,σ(cReÃω,2 − dImÃω,2)(Fρ,σFω2)

+ImA0
ρ,σ(cImÃω,2 + dReÃω,2)(Fρ,σFω2) + ReA0

ρ,σ(cReÃω,K

−dImÃω,K)(Fρ,σFω,K) + ImA0
ρ,σ(cImÃω,K + dReÃω,K)(Fρ,σFω,K)

+ReA0
ρ1(cReÃω,σ − dImÃω,σ)(Fρ1Fω,σ) + ReA0

ρ2(cReÃω,σ

−dImÃω,σ)(Fρ2Fω,σ) + ReA0
ρ,π(cReÃω,σ − dImÃω,σ)(Fρ,πFω,σ)

+ReA0
ρ,σ(cReÃω,σ − dImÃω,σ)(Fρ,σFω,σ) + ImA0

ρ1(cImÃω,σ

+dReÃω,σ)(Fρ1Fω,σ) + ImA0
ρ2(cImÃω,σ + dReÃω,σ)(Fρ2Fω,σ)

+ImA0
ρ,π(cImÃω,σ + dReÃω,σ)(Fρ2Fω,σ) + ImA0

ρ,σ(cImÃω,σ

+dReÃω,σ)(Fρ,σFω,σ) + (cReÃω1 − dImÃω1)(cReÃω,σ − dImÃω,σ)

×(Fω1Fω,σ) + (cImÃω1 + dReÃω1)(cImÃω,σ + dReÃω,σ)(Fω1Fω,σ)

+(cReÃω2 − dImÃω2)(cReÃω,σ − dImÃω,σ)(Fω2Fω,σ) + (cImÃω2
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+dReÃω2)(cImÃω,σ + dReÃω,σ)(Fω2Fω,σ) + (cReÃω,K − dImÃω,K)

×(cReÃω,σ − dImÃω,σ)(Fω,KFω,σ) + (cImÃω2 + dReÃω2)(cImÃω,σ

+dReÃω,σ)(Fω,KFω,σ)] (C.77)

The full amplitude of the ρ → π0π0γ decay can then be calculated using the

same expressions as for the ω → π0π0γ decay described in detail in the previous

section.
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APPENDIX D

INVARIANT AMPLITUDE FOR THE V → π+π−γ DECAY

The invariant amplitude of the radiative decay V (p) → π+(q1)π
−(q2)γ(k) in-

cluding the contribution of the ρ − ω mixing is A[V → π+π−γ] = Ao[V →

π+π−γ] + εÃ[V ′ → π+π−γ] where V, V ′ = ρ, ω, and A0 and Ã include the

contributions coming from the different amplitudes that follow from the Feyn-

man diagrams in Fig. 3. 6 (a), (b) and (c) for ω → π+π−γ decay and in Fig. 3.

7 (a), (b) and (c) for ρ → π+π−γ decay. Moreover in the calculation of VMD

amplitude in A0 modified propagator is used for the intermediate vector meson

given by Eqs. (3.19) and (3.20).

D.1 ω → π+π−γ decay including ρ − ω mixing

For the ω(p) → π+(q1)π
−(q2)γ(k) decay we consider the contributions of

VMD and σ-meson intermediate state amplitudes, and ρ−ω mixing. The total

amplitude of this decay is A[ω → π+π−γ] = A0[ω → π+π−γ]+εÃ[ρ → π+π−γ].

Therefore, we can express the invariant amplitude for ω → π+π−γ decay as

A = A0
ω,V MD + A0

ω,σ + ε[Ãbrems. + Ãρ,π + Ãρ,σ] (D.1)
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where

A0
ω,V MD = ReA0

ω1 ∗ Fω1 + ReA0
ω2 ∗ Fω2

+ i[ImA0
ω1 ∗ Fω1 + ImA0

ω2 ∗ Fω2] (D.2)

A0
ω,σ = ReA0

ω,σ ∗ Fω,σ + iImA0
ω,σ ∗ Fω,σ (D.3)

Ãbrems. = i[Ã1 ∗ Fb1 + Ã2 ∗ Fb2 + Ã3 ∗ Fb3] (D.4)

Ãρ,π = ReÃρ,π ∗ Fρ,π + iImÃρ,π ∗ Fρ,π (D.5)

Ãρ,σ = ReÃρ,σ ∗ Fρ,σ + iImÃρ,σ ∗ Fρ,σ . (D.6)

For the ω → π+π−γ decay the terms including VMD and σ-meson intermediate

state amplitude ReA0
ω1, ReA0

ω2,Fω1,Fω2, ImA0
ω1, ImA0

ω2, ReA0
ω,σ,ImA0

ω,σ,Fω,σ,

are defined in Appendix C for ω → π0π0γ decay. Also, for the ρ → π+π−γ

decay the terms coming from the pion-loop and σ-meson intermediate state

amplitude, ReÃρ,π, ImÃρ,π,Fρ,π, ReÃρ,σ, ImÃρ,σ,Fρ,σ, are given in Appendix

C for the ρ → π0π0γ decay. Therefore, the contributions coming from the

bremsstrahlung amplitude are

Ã1 =
1

[(p − q2)2 − M2
π ]

(D.7)

Ã2 =
1

[(p − q1)2 − M2
π ]

(D.8)

Fb1 = −4egρππUµq
µ
2 q1νε

ν (D.9)

Fb2 = −4egρππUµq
µ
1 q2νε

ν (D.10)

Fb3 = −2egρππUµε
µ . (D.11)
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The full amplitude including all the contributions coming from the VMD, chiral

loop, σ-meson intermediate state amplitudes and ρ − ω mixing can be written

as

A = ReA0
ω1 ∗ Fω1 + ReA0

ω2 ∗ Fω1 + ReA0
ω,σ ∗ Fω,σ

+ c(ReÃρ,π ∗ Fρ,π + ReÃρ,σ ∗ Fρ,σ) − d(Ã1 ∗ Fb1 + Ã2 ∗ Fb2

+ Ã3 ∗ Fb3 + ImÃρ,π ∗ Fρ,π + ImÃρ,σ ∗ Fρ,σ) + i[ImA0
ω1 ∗ Fω1

+ ImA0
ω2 ∗ Fω2 + ImA0

ω,σ ∗ Fω,σ + c(Ã1 ∗ Fb1 + Ã2 ∗ Fb2

+ Ã3 ∗ Fb3 + ImÃρ,π ∗ Fρ,π + ImÃρ,π) ∗ Fρ,π + d(ReÃρ,π ∗ Fρ,π

+ ReÃρ,σ ∗ Fρ,σ)] . (D.12)

The square of the total amplitude is obtained as

|A|2 = [(ReA0
ω1)

2 + (ImA0
ω1)

2](Fω1)
2 + [(ReA0

ω2)
2 + (ImA0

ω2)
2](Fω2)

2

+[(ReA0
ω,σ)2 + (ImA0

ω,σ)2](Fω,σ)2 + (c2 + d2){(Ã1)
2(Fb1)

2

+(Ã2)
2(Fb2)

2 + (Fb3)
2 + [(ReÃρ,π)2 + (ImÃρ,π)2](Fρ,π)2

+[(ReÃρ,σ)2 + (ImÃρ,σ)2](Fρ,σ)2 + 2[(Ã1ImÃρ,π)(Fb1Fρ,π)

+(Ã1ImÃρ,σ)(Fb1Fρ,σ) + (Ã2ImÃρ,π)(Fb2Fρ,π) + (Ã2ImÃρ,σ)

×(Fb2Fρ,σ) + ImÃρ,π(Fb3Fρ,π) + ImÃρ,σ(Fb3Fρ,σ) + (ReÃρ,πReÃρ,σ

+ImÃρ,πImÃρ,σ)(Fρ,πFρ,σ)]} + 2[(ReA0
ω1ReA0

ω2 + ImA0
ω1ImA0

ω2)

×(Fω1Fω2) + (ReA0
ω1ReA0

ω,σ + ImA0
ω1ImA0

ω,σ)(Fω1Fω,σ)

+(ReA0
ω2ReA0

ω,σ + ImA0
ω2ImA0

ω,σ)(Fω2Fω,σ) − ReA0
ω1(dÃ1)

×(Fω1Fb1) − ReA0
ω2(dÃ1)(Fω2Fb1) − ReA0

ω,σ(dÃ1)(Fω,σFb1)
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+ImA0
ω1(cÃ1)(Fω1Fb1) + ImA0

ω2(cÃ1)(Fω2Fb1) + ImA0
ω,σ(cÃ1)

×(Fω,σFb1) − ReA0
ω1(dÃ2)(Fω1Fb2) − ReA0

ω2(dÃ2)(Fω2Fb2)

−ReA0
ω,σ(dÃ2)(Fω,σFb2) + ImA0

ω1(cÃ2)(Fω1Fb2) + ImA0
ω2(cÃ2)

×(Fω2Fb2) + ImA0
ω,σ(cÃ1)(Fω,σFb2) − ReA0

ω1d(Fω1Fb3)

− ReA0
ω2d(Fω2Fb3) − ReA0

ω,σd(Fω,σFb3) + ImA0
ω1c(Fω1Fb3)

+ ImA0
ω2c(Fω2Fb3) + ImA0

ω,σc(Fω,σFb3) − ReA0
ω1(dÃρ,π)

×(Fω1Fρ,π) − ReA0
ω2(dÃρ,π)(Fω2Fρ,π) − ReA0

ω,σ(dÃρ,π)

×(Fω,σFρ,π) + ImA0
ω1(cÃρ,π)(Fω1Fρ,π) + ImA0

ω2(cÃρ,π)

×(Fω2Fρ,π) + ReA0
ω,σ(cÃρ,π)(Fω,σFρ,π) − ReA0

ω1(dÃρ,σ)

×(Fω1Fρ,σ) − ReA0
ω2(dÃρ,σ)(Fω2Fρ,σ) − ReA0

ω,σ(dÃρ,σ)

×(Fω,σFρ,σ) + ImA0
ω1(cÃρ,σ)(Fω1Fρ,σ) + ImA0

ω2(cÃρ,σ)

×(Fω2Fρ,σ) + ReA0
ω,σ(cÃρ,σ)(Fω,σFρ,σ)] (D.13)

where the terms related to the VMD and σ-meson are defined in Appendix C

and the terms related to the bremsstrahlung amplitude are given as

F 2
b1 =

1

3
(q1)

2

[
q2
2 −

(p · q2)
2

M2
ρ

]
(D.14)

F 2
b2 =

1

3
(q2)

2

[
q2
1 −

(p · q1)
2

M2
ρ

]
(D.15)

F 2
b3 = (2egρππ)2 (D.16)
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(Fω1Fb1) =

(
e

Mρ

gρπγ

)(
gωρπ

Mω

)
(4egρππ)

× 1

3
{k · q2[(p · q1)

2 − p2q2
1] + k · q1[(−p · q1)(p · q2)

+ p2(q1 · q2) + k · p [(p · q2)q
2
1 − (p · q1)(q1 · q2)]]} (D.17)

(Fω2Fb1) = (Fω1Fb1) (D.18)

(Fω,σFb1) =
(

e

Mω

gωσγ

)
(gσππMσ) (4egρππ)

×
{

1

3
[k · p q1 · q2 − p · q1 k · q2]

}
(D.19)

(Fω1Fb2) = (Fω1Fb1) (D.20)

(Fω2Fb2) =

(
e

Mρ

gρπγ

)(
gωρπ

Mω

)
(4egρππ)

×1

3
{k · q2[(−p · q1)(p · q2) + p2(q1 · q2)] + k · q1

[(p · q2)
2 − p2q2

2] + k · p [(−p · q2)(q1 · q2) + (p · q1)q
2
2]}(D.21)

(Fω,σFb2) =
(

e

Mω

gωσγ

)
(gσππMσ) (4egρππ)

×
{

1

3
[k · p q1 · q2 − p · q2 k · q1]

}
(D.22)

(Fω1Fb3) =

(
e

Mρ

gρπγ

)(
gωρπ

Mω

)
(2egρππ)

×
{

2

3

[
k · q1(p

2 − p · q1) + k · p (−p · q1 + q2
1)
]}

(D.23)
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(Fω2Fb3) = (Fω2Fb1)(q1 → q2) (D.24)

(Fω,σFb3) =
(

e

Mω

gωσγ

)
(gσππMσ) (2egρππ)(k · p) (D.25)

(Fb1Fb2) = (4egρππ)2

{
1

3
(q1 · q2)

[
q1 · q2 − (p · q1)(p·q2)

M2
ρ

]}
(D.26)

(Fb1Fb3) = 8(egρππ)2

{
1

3

[
q1 · q2 − (p · q1)(p · q2)

M2
ρ

]}
(D.27)

(Fb2Fb3) = (Fb1Fb3) (D.28)

(Fb1Fρ,π) = (4egρππ)

(
egρππ

2π2M2
π

)
λ

×
{

1

3
[(p · k)(q1 · q2) − (p · q1)(k · q2)]

}
(D.29)

(Fb1Fρ,σ) = 4(egρππ)2

(
(gσππMσ)2

2π2M2
π

)

×
{

1

3
[(p · k)(q1 · q2) − (p · q1)(k · q2)]

}
(D.30)

(Fb2Fρ,π) = (4egρππ)

(
egρππ

2π2M2
π

)
λ

×
{

1

3
[(k · p)(q1 · q2) − (p · q2)(k · q1)]

}
(D.31)

(Fb2Fρ,σ) = (Fb1Fρ,σ) (D.32)
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(Fb3Fρ,π) =

(
2(egρππ)2

2π2M2
π

)
λ (p · k) (D.33)

(Fb3Fρ,σ) =

(
2(egρππ)2

2π2M2
π

)
(gσππMσ)2 (p · k) . (D.34)

D.2 ρ → π+π−γ decay including ρ − ω mixing

For the ρ(p) → π+(q1)π
−(q2)γ(k) decay we consider the contributions of

pion-bremsstrahlung amplitudes, pion-loop, σ-meson intermediate state am-

plitude and ρ − ω mixing. Total amplitude of ρ → π+π−γ decay is A[ρ →

π+π−γ] = A0[ρ → π+π−γ] + εÃ[ω → π+π−γ]. Therefore, we can express the

invariant amplitude as

A = A0
brems. + A0

ρ,π + A0
ρ,σ + ε[Ãω,V MD + Ãω,σ] (D.35)

where

A0
brems. = i[A0

1 ∗ Fb1 + A0
2 ∗ Fb2 + A0

3 ∗ Fb3] (D.36)

A0
ρ,π = ReA0

ρ,π ∗ Fρ,π + iImA0
ρ,π ∗ Fρ,π (D.37)

A0
ρ,σ = ReA0

ρ,σ ∗ Fρ,σ + iImA0
ρ,σ ∗ Fρ,σ (D.38)

Ãω,V MD = ReÃω1 ∗ Fω1 + ReÃω2 ∗ Fω2

+i[ImÃω1 ∗ Fω1 + ImÃω2 ∗ Fω2] (D.39)

Ãω,σ = ReÃω,σ ∗ Fω,σ + iImÃω,σ ∗ Fω,σ . (D.40)

For the ρ → π+π−γ decay, we use the amplitudes A0
ρ,π, A0

ρ,σ as described in
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section C.2. Similarly, for the ω → π+π−γ decay we utilize the same amplitudes

for VMD and σ-meson intermediate amplitude which are described in section

C.1, but in VMD amplitude in Ã(ω → π0π0γ) we use unmodified propagator

for the vector meson.

For the ρ → π+π−γ decay the square of the full amplitude including bremsstrahlung

amplitudes, pion-loop, VMD and σ-meson intermediate state amplitude is ob-

tained as

|A|2 = (A0
1)

2(Fb1)
2 + (A0

2)
2(Fb2)

2 + (Fb3)
2 + [(ReA0

ρ,π)2 + (ImA0
ρ,π)2]

×(Fρ,π)2 + [(ReA0
ρ,σ)2 + (ImA0

ρ,σ)2](Fρ,σ)2 + (c2 + d2)[(ReÃω1)
2

+(ImÃω1)
2](Fω1)

2 + [(ReÃω2)
2 + (ImÃω2)

2](Fω2)
2 + (ReÃω,σ)2

+(ImÃω,σ)2](Fω,σ)2 + 2[(A0
1)(A

0
2)(Fb1)(Fb2) + (A0

1)(Fb1)(Fb3)

+(A0
1)(ReA0

ρ,π)(Fb1)(Fρ,π) + (A0
1)(ReA0

ρ,σ)(Fb1)(Fρ,σ)

+(A0
2)(Fb2)(Fb3) + (A0

2)(ReA0
ρ,π)(Fb2)(Fρ,π) + (A0

2)(ReA0
ρ,σ)

×(Fb2)(Fρ,σ) + (ReA0
ρ,π)(Fb3)(Fρ,π) + (ReA0

ρ,σ)(Fb3)(Fρ,σ)

+[(ReA0
ρ,π)(ReA0

ρ,σ) + (ImA0
ρ,π)(ImA0

ρ,σ)](Fρ,π)(Fρ,σ)

+(ReA0
ρ,π)(ReÃω1)(Fρ,π)(cFω1) + (ReA0

ρ,σ)(ReÃω1)(Fρ,σ)(cFω1)

−(ReA0
ρ,π)(ImÃω1)(Fρ,π)(dFω1) − (ReA0

ρ,σ)(ImÃω1)(Fρ,σ)(dFω1)

+(A0
1)(cImÃω1 + dReÃω1)(Fb1)(Fω1) + (A0

2)(cImÃω1 + dReÃω1)

×(Fb2)(Fω1) + (cImÃω1 + dReÃω1)(Fb3)(Fω1) + (ImA0
ρ,π)(cImÃω1

+dReÃω1)(Fρ,π)(Fω1) + (ImA0
ρ,σ)(cImÃω1 + dReÃω1)(Fρ,σ)(Fω1)
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+(ReA0
ρ,π)(ReÃω2)(Fρ,π)(cFω2) + (ReA0

ρ,σ)(ReÃω2)(Fρ,σ)(cFω2)

−(ReA0
ρ,π)(ImÃω2)(Fρ,π)(dFω2) − (ReA0

ρ,σ)(ImÃω2)(Fρ,σ)(dFω2)

+(A0
1)(cImÃω2 + dReÃω2)(Fb1)(Fω2) + (A0

2)(cImÃω2 + dReÃω2)

×(Fb2)(Fω2) + (cImÃω2 + dReÃω2)(Fb3)(Fω2) + (ImA0
ρ,π)(cImÃω2

+dReÃω2)(Fρ,π)(Fω2) + (ImA0
ρ,σ)(cImÃω2 + dReÃω2)(Fρ,σ)(Fω2)

+(ReA0
ρ,π)(ReÃω,σ)(Fρ,π)(cFω,σ) + (ReA0

ρ,σ)(ReÃω,σ)(Fρ,σ)(cFω,σ)

−(ReA0
ρ,π)(ImÃω,σ)(Fρ,π)(dFω,σ) − (ReA0

ρ,σ)(ImÃω,σ)(Fρ,σ)(dFω,σ)

+(A0
1)(cImÃω,σ + dReÃω,σ)(Fb1)(Fω,σ) + (A0

2)(cImÃω,σ + dReÃω,σ)

×(Fb2)(Fω,σ) + (cImÃω,σ + dReÃω,σ)(Fb3)(Fω,σ) + (ImA0
ρ,π)(cImÃω,σ

+dReÃω,σ)(Fρ,π)(Fω,σ) + (ImA0
ρ,σ)(cImÃω,σ + dReÃω,σ)(Fρ,σ)(Fω,σ)

+(c2 + d2)[(ReÃω1)(ReÃω2)(Fω1)(Fω2) + (ReÃω1)(ReÃω,σ)(Fω1)

×(Fω,σ) + (ReÃω2)(ReÃω,σ)(Fω2)(Fω,σ) + (ImÃω1)(ImÃω2)(Fω1)

×(Fω2) + (ImÃω1)(ImÃω,σ)(Fω1)(Fω,σ) + (ImÃω2)(ImÃω,σ)(Fω2)

×(Fω,σ)]] (D.41)

The square of the full amplitude of the ρ → π+π−γ decay can be calculated

using the similar expressions which are described for the square of the invariant

amplitude of the ω → π+π−γ decay.
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