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Abstract

QUANTUM MECHANICAL COMPUTATION OF

BILLIARD SYSTEMS WITH ARBITRARY SHAPES

İnci Erhan

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Hasan TAŞELİ

December 2003, 88 pages

An expansion method for the stationary Schrödinger equation of a particle moving

freely in an arbitrary axisymmetric three dimensional region defined by an analytic

function is introduced. The region is transformed into the unit ball by means of co-

ordinate substitution. As a result the Schrödinger equation is considerably changed.

The wavefunction is expanded into a series of spherical harmonics, thus, reducing

the transformed partial differential equation to an infinite system of coupled ordi-

nary differential equations. A Fourier-Bessel expansion of the solution vector in terms

of Bessel functions with real orders is employed, resulting in a generalized matrix

eigenvalue problem.

The method is applied to two particular examples. The first example is a pro-

late spheroidal billiard which is also treated by using an alternative method. The

numerical results obtained by both methods are compared. The second example is a

billiard family depending on a parameter. Numerical results concerning the second

example include the statistical analysis of the eigenvalues.

Keywords: Billiard Systems, Schrödinger Equation, Eigenfunction Expansion, Eigen-

value Problem, Spherical Harmonics
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Öz

KEYFİ ŞEKİLLİ BİLARDO SİSTEMLERİNİN KUANTUM

MEKANİKSEL HESAPLAMALARI

İnci Erhan

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hasan TAŞELİ

Aralık 2003, 88 sayfa

Analitik bir fonksiyon ile tanımlanan ve dönel simetrisi olan keyfi bir üç boyutlu

bölgede, serbest hareket eden bir parçacığın Schrödinger denklemi için açılım yöntemi

verilmektedir. Bir koordinat dönüşümü vasıtası ile bölge birim küreye dönüştürül-

mektedir. Bunun sonucunda, Schrödinger denklemi de önemli ölçüde değişikliğe

uğramaktadır. Dalga fonksiyonu küresel harmonikler cinsinden seriye açılmaktadır

ve böylece, değişmiş olan kısmi diferansiyel denklemi sonsuz boyutlu bir diferan-

siyel denklem sistemine indirgemektedir. Çözüm vektörü için reel mertebeli Bessel

fonksiyonları cinsinden Fourier-Bessel açılimları kullanilmaktadır ve denklem sistemi

genelleştirilmiş bir matris özdeğer problemine dönüştürülmektedir.

Yöntem iki özel örneğe uygulanmaktadır. Birinci örnek “prolate spheroid” şek-

lindeki bilardo sistemidir ve ayni anda alternatif bir yöntemle daha incelenmektedir.

Her iki yöntemle elde edilen sayısal sonuçlar karşılaştırılmaktadır. İkinci örnek bir

parametreye bağlı bir bilardo ailesidir. Bu örneğe ait sayısal sonuçlar özdeğerlerin

istatistiksel analizini de içermektedir.

Anahtar Kelimeler: Bilardo Sistemleri, Schrödinger Denklemi, Özfonksiyon Açı

lımı, Özdeğer Problemi, Küresel Harmonikler
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Arkadi Pikovsky and all the members of the Institute of Numerical Mathematics and

the Department of Nonlinear Dynamics in Potsdam University. I would also like to

express my thanks to the members of TÜBİTAK-BAYG for the grant which gave
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Chapter 1

INTRODUCTION

Investigation of quantum mechanical systems whose classical counterparts are chaotic

systems has received considerable interest in the last few decades. In classical me-

chanics, chaos is characterized by exponential instability with respect to the initial

conditions. The reason why such an exponentially unstable system is called chaotic

is that the motion is unpredictable. However, it took a long time trying to answer

the question how chaos in a classical system shows itself in the corresponding quan-

tum mechanical system. Unfortunately, this question still remains unanswered in the

sense of a rigorous theoretical analysis. On the other hand, numerical investigations

have given some very encouraging results.

In 1973 Percival [37] conjectured that the energy spectrum of a quantum system

whose classical analog is irregular (i.e., chaotic) is more sensitive to slowly changing

or fixed perturbations than those of a quantum system with regular (i.e., non chaotic)

classical counterpart. Pomphrey [38] showed that the idea worked well with the so

called Henon-Heiles potential.

Later, in order to shed more light on the relationship between classically chaotic

systems and their quantum analogs, scientists started to study the ”billiard” systems.

The billiard problems, that is, problems of free motion in a closed finite domain are

amongst the oldest problems in quantum mechanics, which have recently started

regaining remarkable interest [21, 42]. This is primarily due to the fact that these

simple systems, with only few exceptions, exhibit chaotic properties. In fact, de-

pending on the shape of the billiard, the motion of the particle inside can show a

rich variety of behaviors going from most regular to most chaotic.
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1.1 Billiard systems in classical and quantum me-

chanics

The name of the billiard system comes from the billiard game familiar to almost

everyone. As is well known, this game is played on a special rectangular table. If a

player strikes a ball with a cue stick it follows straight line trajectories between hits at

the edges of the table. If he strikes a second ball nearly but not exactly, it will follow

a trajectory close to that of the first ball. This is not the case if the billiard table is

in the shape of a stadium, i.e., if the two short edges of the rectangle are replaced

by semicircles. In fact, in a stadium shaped billiard, even a small error in the initial

struck will lead to a completely different trajectory. These two examples illustrate

two completely different types of motion, regular in the first case and irregular in

the second one.

Classically, a billiard system is the free motion of a point particle in a closed

region with elastic reflection when the particle bounces at the boundary. Such a

system is conservative since the particle does not lose energy. Therefore, the quantum

mechanical billiard problem can be modelled by the stationary Schrödinger equation

−∆Ψ = EΨ in D ⊂ Rd, (1.1)

where D is a closed domain and the accompanying boundary condition is of Dirichlet

type,

Ψ = 0 on ∂D. (1.2)

Due to their simplicity, two dimensional billiards have been thoroughly studied

from both classical and quantum mechanical points of view. In 1984 Bohigas, Gi-

annoni and Schmit [12] computed the quantum energy spectrum of the classically

chaotic Sinai billiard which is in the shape of a square with a reflecting circular

obstacle in the middle, and conjectured that the statistical properties of the energy

eigenvalues of quantum systems with chaotic classical counterparts will be quite dif-

ferent than those with regular classical analogs. Since then, a number of results

reinforcing this conjecture have been reported. Before discussing the details of the

statistical analysis of the energy levels we will give a brief summary of the studies

related to billiard systems.

2



Energy level statistics of the rectangular billiards have been given by Berry and

Tabor [10]. Spectral properties of the aforementioned stadium billiard , also called

Bunimovich stadium after the Russian scientist Bunimovich, have also been stud-

ied [13, 14]. Classical mechanics of an alternative stadium, the so called elliptical

stadium in which the semicircles in the stadium are replaced by semi-ellipses, has

been investigated recently [32]. Robnik has designed a family of plane billiards de-

fined by the conformal map of the unit disc in a complex plane w as follows,

B = {w | w = z + λz2, | z |≤ 1}, 0 ≤ λ ≤ 1

2
(1.3)

Depending on values of λ, the shape of the billiard B varies from a circle to a

cardioid. Robnik studied this billiard family from both classical [43] and quantum

point of view [44, 41]. In another work by Bäcker and Steiner [4] the statistical

analysis of the energy spectra of the quantum cardioid billiard has been presented.

Perhaps one of the most popular billiard systems is the Sinai billiard. This system is

known to be classically chaotic and a detailed study of the corresponding quantum

mechanical system can be found in [12, 8]. Sieber and Steiner considered the motion

in a hyperbola billiard defined as follows,

B = {(x, y) | x ≥ 0, y ≥ 0, y ≤ 1

x
}. (1.4)

They report that the hyperbola billiard is classically chaotic [45] and analyzed the

statistical properties of the energy spectra of the quantum hyperbola [46]. Another

one-parameter family of billiard systems has been studied recently both as classical

and quantum mechanical system. The boundary of this family has been defined by

the curve

y(x) = ±(1− | x |δ), x ∈ [−1, 1], 1 ≤ δ ≤ ∞, (1.5)

where the parameter δ determines the shape of the billiard. For δ=2 the shape of the

billiard is lemon-like, hence the billiard family has been called generalized parabolic

lemon shaped billiard [30]. Some results about quantum polygon billiard problem [27]

and rhombus billiard [17] has also been obtained. A survey on two dimensional

billiards can be found in [62]. Much less has been done on three-dimensional billiard

systems. There are only few results concerning the generalized three dimensional

stadium [36], three-dimensional Sinai billiard [39, 40] and conical billiard [28, 29].

3



The Schrödinger equation (1.1) is not exactly solvable unless the boundary of the

billiard is constant in some coordinate system. However, in order to perform a reli-

able statistical analysis one needs to compute hundreds of energy levels. Therefore

the use of efficient numerical methods gains a lot of significance. One of the most

practical methods is the boundary element method [24, 6]. This method uses integral

equation representation and discretization of the boundary which results in a homo-

geneous algebraic linear system. The zeros of the determinant give the eigenvalues.

This method has been widely used but has recently been shown to have problems if

the billiard is non-convex [26]. Another method is the point matching (collocation)

method, which uses an expansion of the wave function in suitable basis functions

and then forces this expansion to be zero on the discretized boundary [19, 20]. This

method has also a drawback as it can not be relied upon for accurate spectra. The

conformal mapping method is an elegant and efficient method which solves the bil-

liard problem by finding a suitable conformal mapping to transform the billiard to

the unit disc [41]. Unfortunately, the method can be applied only to two dimensional

billiards for which a conformal map can be found. The recently proposed constraint

operator method solves the billiard problem by using an enlarged billiard on which

the Schrödinger equation is exactly solvable and then ”cuts away” the unwanted part

of that billiard to obtain the original one [33]. It is interesting from both mathemati-

cal and physical points of view because it can represent the Hamiltonian of a chaotic

billiard by the eigenfunctions of a regular one. The method reduces the Schrödinger

equation to a matrix eigenvalue problem. A similar method, using an expansion

in eigenfunctions of square billiard has been proposed recently [25]. The scaling

method for computation of highly exited states of billiards [57] and the Korringa-

Kohn-Rostoker method [8] are also worth mentioning here. In some recent studies

two-dimensional quantum billiards have been studied experimentally by means of

microwave cavities [22, 47] and highly excited energy levels have been obtained in

this manner.
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1.2 Statistical Properties of the Energy Spectra of

Quantum Systems and Random Matrix The-

ory

The pioneering work of Berry and Tabor [10] and the work of Bohigas, Giannoni

and Schmit [12] led to an enormous interest in the Random Matrix Theory (RMT)

developed by Wigner, Dyson, Mehta and others in 1950-1960. The most detailed

and complete monograph about RMT is the second enlarged edition of “Random

Matrices” written by Mehta [34].

The quantum mechanical system is represented by its Hamiltonian operator which

in turn can be represented by a Hermitian matrix. For billiard systems this matrix

is real symmetric and is invariant under orthogonal transformations. More precisely,

let H be the real symmetric matrix representation of the Hamiltonian operator in

any arbitrary basis. Then the matrix H′ defined by

H′ = OHOT (1.6)

is also real and symmetric, where O is an orthogonal matrix. If the system is regular

and the basis is suitably chosen, then the matrix H is diagonal. In this case the

eigenvalues of the system are not correlated. Denote the ordered eigenvalues by

E1 ≤ E2 ≤ E3 ≤ . . . ≤ EN ≤ . . ., and the spacings between them by si = Ei+1 −Ei,

i = 1, 2, 3, . . ., then it can be shown that the probability distribution function for

these spacings, the so-called Nearest Neighbor Spacing Distribution(NNSD) has the

form

p(s) = e−s. (1.7)

This is the well known Poisson distribution function. Hence, the NNSD of regular

systems is expected to be Poissonian. If the quantum system is not regular, then

the matrix H belongs to the Gaussian Orthogonal Ensemble(GOE) in RMT. Two

other ensembles: Gaussian Unitary(GUE) and Gaussian Symplectic(GSE) have to

be mentioned here, but none of them will be used in this work, so we will not discuss

them. The NNSD for the eigenvalues of matrices from the GOE can be obtained

from the joint probability density function by long integration and has the following

5



form

p(s) =
π

2
se−

π
4
s2

. (1.8)

Most classical billiards are neither completely regular nor completely chaotic. In

such systems, called generic, both types of motion co-exist. The NNSD of the energy

levels of generic systems is neither Poissonian nor like that of the GOE. Several

theoretical models have been developed for this class of systems. The first model

was introduced by Brody [50],

p(s) = (ν + 1)aνs
ν exp(−aνs

ν+1) (1.9)

where

aν =

[
Γ

(
ν + 2

ν + 1

)]ν+1

. (1.10)

For ν = 0, the Brody distribution reduces to Poissonian and for ν = 1 the NNSD of

the GOE is obtained. Another approach is that of Izrailev [23], who proposed the

following distribution,

p(s) = Asν exp

[
−π2

16
νs2 −

(
C − ν

2

) π

2
s

]
(1.11)

where the constants A and C can be obtained using normalization conditions. The

distribution becomes Poissonian for ν = 0, and it coincides with the NNSD of the

GOE for ν = 1. The derivation of the above distributions and some other theoretical

models interpolating between the Poisson and GOE cases can be found in a recent

monograph by Stöckmann [48].

Other frequently used statistics are the Dyson-Mehta or spectral rigidity statistics

∆3 and the number variance Σ2. Definition and derivation of these statistics can be

found in [34] and [48], but will not be discussed here.

One of the two examples considered in this study is the integrable prolate sphe-

roidal billiard, the other is a generic billiard depending on a parameter. As it will be

shown in chapter 4, the NNSD of the numerically calculated spectra for the prolate

spheroid agrees with Poisson distribution (1.7), while for the second generic billiard

the NNSD is similar to Brody’s model (1.9). Unfortunately, due to computational

difficulties in evaluating the matrix elements of the Hamiltonian of the system, the

statistical analysis has been performed using a relatively small number of spacings,

however the resulting distribution properties have shown good agreement with the

predictions of Random Matrix Theory.
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1.3 Mathematical Model of a Quantum Billiard

System Defined by a Shape Function

In this study we propose a numerical method for solving a quite general class of

axisymmetric three dimensional billiard systems obtained by rotating a closed finite

region in the yz-plane about the z-axis. To be specific, let us consider the region

B = {(r, θ) | 0 ≤ r ≤ f(θ), 0 ≤ θ ≤ π} (1.12)

where r is the magnitude of the position vector ~r of a point with coordinates (r, θ).

Note that θ stands for the angle between the positive z-axis and ~r (see Figure 1.1).

The function f(θ) can be identified as the shape function since it determines the shape

of the billiard and is assumed to be an arbitrary analytic function of θ. The idea is

not original, in fact, the billiards in (1.3) and (1.5) were also constructed by means

of shape functions. Nevertheless, they contain a single parameter and therefore,

can generate only a limited class of billiards. The function f(θ), proposed in this

work, however, is very general depending on infinitely many parameters. Similar

shape function has been previously used by Taşeli and Demiralp [51] and Taşeli and

Eid [52] to determine the Stokes flow past an arbitrary body. To our knowledge,

studies concerning billiard systems with such a general shape do not appear in the

literature. Thus, we design our three-dimensional axisymmetric billiard, say D, by

rotating the region (1.12) about the z-axis (see Figure 1.2), that is,

D = {(r, θ, φ) | 0 ≤ r ≤ f(θ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π} , D ⊂ R3 (1.13)

where (r, θ, φ) are the spherical coordinates.

The Schrödinger equation for a particle moving freely inside the region D can be

written as

−
{

∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cotθ

r2

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

}
Ψ(r, θ, φ) = EΨ(r, θ, φ) (1.14)

where the wavefunction Ψ vanishes on the boundary,

Ψ = 0 on ∂D. (1.15)

In addition, the wavefunction is assumed to satisfy the square integrability condition
∫ ∫

D

∫
| Ψ |2 dV < ∞ (1.16)
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Figure 1.1: Two-Dimensional Region Generating an Axisymmetric Billiard

arising from the fact that Ψ must belong to the Hilbert space of square integrable

functions on D ⊂ R3.

The mathematical problem so defined is an eigenvalue problem. It is of great

importance not only in the study of quantum chaos, but also in many other areas

like acoustics, where the function Ψ represents a sound wave, in nuclear physics,

electromagnetics and also in connection with diffusion problems. Clearly, the Lapla-

cian is a self-adjoint operator on the Hilbert space of square integrable functions over

D ⊂ R3. An eigenvalue problem associated with the Laplacian has an infinite set of

discrete real eigenvalues corresponding to an orthogonal set of eigenfunctions. More-

over, the Dirichlet type boundary conditions imply the positiveness of the eigenvalues

as stated in the following theorem, the proof of which can be found in [49], or any

textbook on the partial differential equations.

Theorem 1.1. The eigenvalues of the Laplace operator on a closed bounded domain

are real and discrete and the corresponding eigenfunctions are orthogonal. If, in ad-

dition, the boundary conditions are of Dirichlet type, the eigenvalues are all positive.

Unfortunately, the numerical implementation of the problem within a reasonable

degree of accuracy still remains a very difficult task. Despite the plentiful literature

8



Figure 1.2: Three-Dimensional Axisymmetric Billiard.

about its numerical treatment in two dimensions, results on the three-dimensional

case are only few. This is mainly due to the fact that solving three-dimensional

problems by means of the aforementioned methods is much more difficult than solving

two-dimensional ones. Moreover, some of the methods are applicable only in two

dimensions.

Therefore, the main objective of this study is to develop a method to deal nu-

merically with the problem (1.14)-(1.16). However, it will be made clear in the

forthcoming chapters that this thesis seems to be interesting from two different as-

pects. In other words, it has applications in both mathematics and physics. First,

it provides a numerical method for a quite general class of eigenvalue problems. Se-

cond, the general form of the shape function f(θ) makes it possible to design a wide

variety of three-dimensional billiards and investigate them not only as quantum but

also as classical systems.

9



Chapter 2

Development of a Method for

Solving Three-Dimensional

Billiards

2.1 The Shape Function and the New Coordinates

In this section we introduce a coordinate transformation which transforms the region

under consideration into the unit ball.

Consider again the billiard

D = {(r, θ, φ) | 0 ≤ r ≤ f(θ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π} (2.1)

where (r, θ, φ) are the usual spherical coordinates related to the rectangular coordi-

nates by x = r sin θ cos φ, y = r sin θ sin φ and z = r cos θ. The analyticity of f(θ)

suggests proposing a shape function of the form

f(θ) = 1 +
∞∑

k=1

αk cosk θ, αk ∈ R (2.2)

where αk’s are regarded as the shape parameters. Note that, 1 ≤ f(θ) < ∞ must

hold for all θ ∈ [0, π] in order to have a bounded geometrical region. By means

of the flexible parameters αk introduced in (2.2), it is possible to deal with various

billiards including prolate and oblate spheroids, the three-dimensional version of the

cardioid billiard mentioned in Section 1.1 and many others. Furthermore, even very

10



simple choices of f(θ) like finite sums containing only few terms can generate plenty

of shapes. Note also that the particular case, in which αk = 0 for all k ∈ Z+,

corresponds to the exactly solvable spherical billiard.

We introduce the new coordinates

ξ =
r

f(θ)
, ξ ∈ [0, 1]

η = cos θ, η ∈ [−1, 1]
(2.3)

where the third coordinate φ remains unchanged. The region D is now transformed

into

D = {(ξ, η, φ) | 0 ≤ ξ ≤ 1, −1 ≤ η ≤ 1, 0 ≤ φ ≤ 2π} , (2.4)

which is a unit ball. Partial derivative operators involved in the Schrödinger equation

take very complicated forms such that

∂

∂r
=

1

F (η)

∂

∂ξ
,

∂2

∂r2
=

1

[F (η)]2
∂2

∂ξ2
,

∂

∂θ
=

√
1− η2

[
F ′(η)

F (η)
ξ

∂

∂ξ
− ∂

∂η

]

and

∂2

∂θ2
= (1− η2)

[F ′(η)]2

[F (η)]2
ξ2 ∂2

∂ξ2
− 2(1− η2)

F ′(η)

F (η)
ξ

∂2

∂ξ∂η

−(1− η2)F ′′(η)F (η)− ηF ′(η)F (η)− 2(1− η2) [F ′(η)]2

[F (η)]2
ξ

∂

∂ξ

+(1− η2)
∂2

∂η2
− η

∂

∂η

(2.5)

where the function F (η),

F (η) = 1 +
∞∑

k=1

αkη
k. (2.6)

is the shape function written in terms of the new variable η. Obviously, the coor-

dinate system (ξ, η, φ) is quite an unusual one, which is not orthogonal. This fact,

unfortunately, has some very unpleasant consequences as will be seen later. Never-

theless, in almost all studies summarized in Section 1.1 concerning quantum billiard

problems even in two dimensions, serious difficulties of one kind or other have been

encountered.

Let us recall our mathematical problem consisting of the Schrödinger equation

and the additional conditions in (1.14)-(1.16). We employ the substitutions in (2.3)

11



and partial derivatives in (2.5) to transform the Schrödinger equation to a new partial

differential equation. Thus, we get

−
{[

1

F 2
+ (1− η2)

(F ′)2

F 4

]
∂2

∂ξ2
− 2(1− η2)

F ′

F 3

1

ξ

∂2

∂ξ∂η

+

[
2

F 2
+

2(1− η2) (F ′)2 − (1− η2)F ′′F + 2ηF ′F
F 4

]
1

ξ

∂

∂ξ

+
1

F 2ξ2

[
(1− η2)

∂2

∂η2
− 2η

∂

∂η
− 1

1− η2

∂2

∂φ2

]}
Ψ(ξ, η, φ) = EΨ(ξ, η, φ)

which becomes

−
{[

F 2 + (1− η2) (F ′)2
] ∂2

∂ξ2
− 2(1− η2)F ′F

1

ξ

∂2

∂ξ∂η

+
[
2F 2 + 2(1− η2) (F ′)2 − (1− η2)F ′′F + 2ηF ′F

] 1

ξ

∂

∂ξ

+
F 2

ξ2

[
(1− η2)

∂2

∂η2
− 2η

∂

∂η
− 1

1− η2

∂2

∂φ2

]}
Ψ(ξ, η, φ) = EF 4Ψ(ξ, η, φ)

(2.7)

upon multiplication of both sides by F 4, where we have dropped the η-dependance

of the shape function F (η) for simplicity. The resulting partial differential equation

cannot be treated by the method of separation of variables. In fact, it is completely

different from the original one, since the shape function has been inserted into it. As a

result, shape effects are now characterized mainly by the partial differential equation.

However, this new equation will be solved in the standardized region (2.4), i.e., in

the unit ball. It seems that an expansion method for the wavefunction will be more

appropriate.

The Jacobian determinant of the transformation (2.3) is

∂(ξ, η, φ)

∂(r, θ, φ)
=

∣∣∣∣∣∣∣∣

1
f(θ)

−r f ′(θ)
f2(θ)

0

0 − sin θ 0

0 0 1

∣∣∣∣∣∣∣∣
= −sin θ

f(θ)

leading to a square integrability condition of the form
∫ 2π

0

∫ 1

−1

∫ 1

0

|Ψ(ξ, η, φ)|2 ξ2 [F (η)]3 dξdηdφ < ∞. (2.8)
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over the new region. As is shown, this square integrability condition contains the

unspecified shape function as a weight. More precisely, (2.8) implies that the wave-

function must belong to the Hilbert space of square integrable functions over D under

the weight ξ2 [F (η)]3. Thus, to find a suitable expansion basis becomes a very dif-

ficult task. However, from the definition of F (η), it follows that 1 ≤ F (η) for all

η ∈ [−1, 1], and therefore,

∫ 2π

0

∫ 1

−1

∫ 1

0

|Ψ(ξ, η, φ)|2 ξ2dξdηdφ ≤
∫ 2π

0

∫ 1

−1

∫ 1

0

|Ψ(ξ, η, φ)|2 ξ2 [F (η)]3 dξdηdφ

(2.9)

implying the boundedness of the integral

∫ 2π

0

∫ 1

−1

|Ψ(ξ, η, φ)|2 dηdφ < ∞, (2.10)

for every fixed ξ ∈ (0, 1]. In what follows, (2.10) suggests that Ψ(ξ, η, φ) can also

be regarded as a square integrable function over the region [−1, 1]× [0, 2π] with the

unit weight for a fixed ξ. In fact, this region represents a sphere of radius ξ defined

by

Dξ = {(ξ, η, φ)|ξ = c,−1 ≤ η ≤ 1, 0 ≤ φ ≤ 2π} (2.11)

where ξ is assumed to be constant.

Let us now consider the differential operator

T = (1− η2)
∂2

∂η2
− 2η

∂

∂η
− 1

1− η2

∂2

∂φ2
(2.12)

appearing on the last term of the left hand side of (2.7). The eigenvalue problem

related to this operator, i.e.,

T y = λy (2.13)

generates the orthogonal sequence of the spherical harmonics defined as [15]

Y n
m(η, φ) = P |n|

m (η)einφ (2.14)

corresponding to the eigenvalues λ = −m(m + 1), where the indices range over

−m ≤ n ≤ m, 0 ≤ m ≤ ∞. Here the functions P
|n|
m (η) are the associated Legendre

functions of the first kind. As a matter of fact, (2.13) has also solutions of the form

Q
|n|
m (η)einφ, where the Q

|n|
m (η) denote the associated Legendre functions of the second
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kind. However, these functions are not bounded at η = ±1, and, therefore, they are

not suitable as an expansion basis for our problem.

We now give the following theorems which complete the analysis related to the

choice of an expansion basis.

Theorem 2.1. The system of spherical harmonics {Y n
m}, where m = 0, 1, . . .∞,

−m ≤ n ≤ m is complete.

Theorem 2.2. Every function, square integrable over a sphere can be expanded in

terms of spherical harmonics.

The proofs of Theorems 2.1 and 2.2 can be found in [15] or [56].

2.2 An Eigenfunction Expansion for the Trans-

formed Equation

In this section, we propose an expansion in spherical harmonics for the wavefunction

Ψ(ξ, η, φ) and insert this expansion into the transformed equation. The discussion

of the previous section demonstrates the advantage of using such an expansion, for,

it is clear that this expansion will replace the differential operator in (2.12) by its

eigenvalues. Thus, we assume

Ψ(ξ, η, φ) =
∞∑

m=0

m∑
n=−m

χn
m(ξ)P |n|

m (η)einφ

where the χn
m(ξ) denote the Fourier coefficient functions. It is more appropriate for

our analysis to rewrite this expansion as

Ψ(ξ, η, φ) =
∞∑

m=0

{
Φ0

m(ξ)P 0
m(η) +

m∑
n=1

[Φn
m(ξ) cos nφ + ψn

m(ξ) sin nφ] P n
m(η)

}
(2.15)

where now the expansion coefficients are the Φn
m and ψn

m. Theorems 2.1 and 2.2

together with the condition (2.10) imply that this expansion converges in the mean

to the function Ψ(ξ, η, φ) for every fixed ξ ∈ (0, 1], provided that the Φn
m(ξ) and
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ψn
m(ξ) are the Fourier coefficients defined by

Φ0
m(ξ) =

1

4π

2

(2m + 1)

∫ 2π

0

∫ 1

−1

Ψ(ξ, η, φ)P 0
m(η)dηdφ

Φn
m(ξ) =

1

2π

2

(2m + 1)

(m + n)!

(m− n)!

∫ 2π

0

∫ 1

−1

Ψ(ξ, η, φ)P n
m(η) cos nφdηdφ

and

ψn
m(ξ) =

1

2π

2

(2m + 1)

(m + n)!

(m− n)!

∫ 2π

0

∫ 1

−1

Ψ(ξ, η, φ)P n
m(η) sin nφdηdφ

(2.16)

respectively, for n = 1, 2, . . . , m and m = 0, 1, 2, . . . ,∞.

Before proceeding, let us have a closer look at the shape function F (η). From

a computational point of view, the power series representation of F (η) should be

truncated. Therefore, we use the truncated shape function, say G(η),

G(η) = 1 +
K∑

k=1

αkη
k. (2.17)

instead of the original shape function unless F (η) is already defined by a finite sum.

Note that,

F (η) = lim
K→∞

G(η).

In what follows, we will replace the function F (η) in the equation (2.7) by G(η).

Remark 1. In order to have a “numerically” convergent algorithm it is important

that the power series describing F (η) converges very rapidly, i.e., the coefficients

αk form a rapidly decreasing sequence, Otherwise, one must take a large truncation

order K which will cause long computing time, large memory and may even lead to

a divergent algorithm. ♦
We shall make the following definitions for the sake of brevity

G0(η) := [G(η)]2

G1(η) := [G(η)]2 + (1− η2) [G′(η)]
2

G2(η) := 2ηG′(η)G(η)

G3(η) := (1− η2)G′′(η)G(η).

(2.18)

It follows easily from the definition of G(η) that all the functions Gi(η) where i =

0, 1, 2, 3, are polynomials of degree 2K in η. We employ (2.18) and (2.12) to rewrite
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equation (2.7) as

−
{
G1(η)

∂2

∂ξ2
+ [2G1(η) + G2(η)− G3(η)]

1

ξ

∂

∂ξ
− (1− η2)

ξη
G2(η)

∂2

∂ξ∂η

+
G0(η)

ξ2
T

}
Ψ(ξ, η, φ) = E [G0(η)]2 Ψ(ξ, η, φ).

(2.19)

Substituting the expansion (2.15) in equation (2.19) and using (2.13) we obtain

−
∞∑

m=0

m∑
n=0

{
G1(η)P n

m(η)
d2

dξ2
Φn

m(ξ) + [2G1(η) + G2(η)− G3(η)]
1

ξ

d

dξ
Φn

m(ξ)

−G2(η)

η
(1− η2)

d

dη
P n

m(η)
1

ξ

d

dξ
Φn

m(ξ)−m(m + 1) G0(η)P n
m(η)

1

ξ2
Φn

m(ξ)

}
cos nφ

−
∞∑

m=0

m∑
n=1

{
G1(η)P n

m(η)
d2

dξ2
ψn

m(ξ) + [2G1(η) + G2(η)− G3(η)]
1

ξ

d

dξ
ψn

m(ξ)

−G2(η)

η
(1− η2)

d

dη
P n

m(η)
1

ξ

d

dξ
ψn

m(ξ)−m(m + 1) G0(η)P n
m(η)

1

ξ2
ψn

m(ξ)

}
sin nφ

= E

∞∑
m=0

{
[G0(η)]2

m∑
n=0

P n
m(η)Φn

m(ξ) cos nφ +
m∑

n=1

P n
m(η)ψn

m(ξ) sin nφ

}
.

(2.20)

The range of the index n of the inner sums involved in this equation depends on

the index m of the outer sums, otherwise one could easily get rid of one summation

using the orthogonality of the trigonometric functions over [0, 2π]. On the other

hand, notice that, one can reorder the two double sums as
∞∑

n=0

∞∑
m=n

and
∞∑

n=1

∞∑
m=n

respectively, bearing in mind the relation between the indices n and m. Then we

multiply (2.20) by cos nφ for n = 0, 1, . . . and by sin nφ for n = 1, 2, . . . and integrate

with respect to φ over [0, 2π]. This yields

−
∞∑

m=n

{
G1(η)P n

m(η)
d2

dξ2
Φn

m(ξ) + [2G1(η) + G2(η)− G3(η)] P n
m(η)

1

ξ

d

dξ
Φn

m(ξ)

−G2(η)

η
(1− η2)

d

dη
P n

m(η)
1

ξ

d

dξ
Φn

m(ξ)−m(m + 1) G0(η)P n
m(η)

1

ξ2
Φn

m(ξ)

}

= E

∞∑
m=n

[G0(η)]2 P n
m(η)Φn

m(ξ)

(2.21)

16



for n = 0, 1, 2, . . . and

−
∞∑

m=n

{
G1(η)P n

m(η)
d2

dξ2
ψn

m(ξ) + [2G1(η) + G2(η)− G3(η)] P n
m(η)

1

ξ

d

dξ
ψn

m(ξ)

−G2(η)

η
(1− η2)

d

dη
P n

m(η)
1

ξ

d

dξ
ψn

m(ξ)−m(m + 1) G0(η)P n
m(η)

1

ξ2
ψn

m(ξ)

}

= E

∞∑
m=n

[G0(η)]2 P n
m(η)ψn

m(ξ)

(2.22)

for n = 1, 2, . . . in the virtue of the orthogonality of the trigonometric functions.

The two equation sets (2.21) and (2.22) for the Fourier coefficient functions Φn
m

and ψn
m are independent of each other. This is a result of the axial symmetry of the

region which allows a separation of the expansion (2.15) into two parts containing

even and odd eigenfunctions in φ. Moreover (2.21) and (2.22) are identical for each

n ∈ Z+, i.e., Φn
m(ξ) = ψn

m(ξ) for n ∈ Z+. Hereafter, we consider only the equations

for Φn
m(ξ). By means of the differential-difference relation [1]

(1− η2)
∂

∂η
P n

m(η) = (m + 1)ηP n
m(η)− (m− n + 1)P n

m+1(η)

it is possible to get rid of the derivative of P n
m(η) and obtain

−
∞∑

m=n

{
G1(η)P n

m(η)
d2

dξ2
Φn

m(ξ) + [G1(η)−mG2(η)− G3(η)] P n
m(η)

1

ξ

d

dξ
Φn

m(ξ)

+
G2(η)

η
(m− n + 1)P n

m+1(η)
1

ξ

d

dξ
Φn

m(ξ)−m(m + 1)G0(η)P n
m(η)

1

ξ2
Φn

m(ξ)

}

= E

∞∑
m=n

[G0(η)]2 P n
m(η)Φn

m(ξ)

(2.23)

for every n = 0, 1, 2, . . .. In our further analysis we will treat equation (2.23) for a

fixed n keeping in mind that n = 0, 1, ....
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2.3 Reduction to a System of Ordinary Differen-

tial Equations

An eigenfunction expansion of the type (2.15) makes it possible to reduce a partial

differential equation to a system of ordinary differential equations [54, 16]. The

technical details of such a reduction, which leads to an infinite system of coupled

ordinary differential equations for the functions Φn
m(ξ) will be introduced in this

section.

Let us consider the η-dependent expressions in equation (2.23). The polynomials

Gi(η) involved in these expressions can be written as

Gi(η) =
2K∑

k=0

gi,kη
k (2.24)

for i = 0, 1, 2, 3. Rewriting the truncated shape function G(η) in the form G(η) =
K∑

k=0

αkη
k, where α0 = 1 and using the definitions of Gi(η) given in (2.18), we compute

the coefficients gi,k as

g0,k =
k∑

t=0

αtαk−t k = 0, 1, . . . , 2K

g1,k =
k∑

t=0

αtαk−t + (t + 1)(k − t + 1)αt+1αk−t+1 k = 0, 1

g1,k =
k∑

t=0

αtαk−t + (t + 1)(k − t + 1)αt+1αk−t+1

−
k−2∑
t=0

(t + 1)(k − t− 1)αt+1αk−t−1 k = 2, 3, . . . , 2K − 2

g1,k =
k∑

t=0

αtαk−t −
k−2∑
t=0

(t + 1)(k − t− 1)αt+1αk−t−1 k = 2K − 1, 2K

g2,0 = 0

g2,k = 2
k∑

t=0

(k − t + 1)αtαk−t+1 k = 1, 2, . . . , 2K
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g3,k =
k∑

t=0

(k − t + 1)(k − t + 2)αtαk−t+2 k = 0, 1

g3,k =
k∑

t=0

(k − t + 1)(k − t + 2)αtαk−t+2

−
k−2∑
t=0

(k − t− 1)(k − t)αtαk−t k = 2, 3, . . . , 2K − 2

g3,k = −
k−2∑
t=0

(k − t− 1)(k − t)αtαk−t k = 2K − 1, 2K

(2.25)

where clearly α0 = 1 and αr = 0 for all r = K+1, K+2, . . . , 2K. The right-hand-side

of (2.23) contains [G0(η)]2, which can be explicitly written as

[G0(η)]2 =
4K∑

k=0

g4,kη
k, g4,k =

k∑
t=0

g0,tg0,k−t, k = 0, 1, . . . , 4K. (2.26)

Now, using (2.24) and (2.26), we rewrite equation (2.23) in the form

−
∞∑

m=n

{[
2K∑

k=0

g1,kη
kP n

m(η)

]
d2

dξ2
Φn

m(ξ)

+

[
2K∑

k=0

(2g1,k −mg2,k − g3,k) ηkP n
m(η) + (m− n + 1)

2K−1∑

k=0

g2,k+1η
kP n

m+1(η)

]
1

ξ

d

dξ
Φn

m(ξ)

−m(m + 1)

[
2K∑

k=0

g0,kη
kP n

m(η)

]
1

ξ2
Φn

m(ξ)

}
= E

∞∑
m=n

{[
4K∑

k=0

g4,kη
kP n

m(η)

]
Φn

m(ξ)

}

(2.27)

The product ηkP n
m(η) can be expanded into a series of P n

l (η),

ηkP n
m(η) =

∞∑

l=n

γ
(n)
l,m,kP

n
l (η), (2.28)

where

γ
(n)
m,l,k =

∫ 1

−1

ηkP n
m(η)P n

l (η)dη. (2.29)

Evaluation of the coefficients γ
(n)
l,m,k is much easier than it looks, thanks to the recur-

rence relation of the associated Legendre functions [7],

ηP n
m(η) =

m− n + 1

2m + 1
P n

m+1 +
m + n

2m + 1
P n

m−1. (2.30)

Clearly, the computation of γ
(n)
l,m,0 is sufficient to obtain all the other coefficients γ

(n)
l,m,k

up to any desired degree k. The orthogonality relation of the associated Legendre
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functions on the other hand, determines γ
(n)
l,m,0 as

γ
(n)
l,m,0 =

∫ 1

−1

P n
m(η)P n

l (η)dη =
2

(2m + 1)

(m + n)!

(m− n)!
δl,m (2.31)

where δl,m stands for Kronecker’s delta. We employ (2.28) and define the matrices

An :=
[
an

l,m

]
, Bn :=

[
bn
l,m

]
, Cn :=

[
cn
l,m

]
and Dn :=

[
dn

l,m

]
with entries

an
l,m =

2K∑

k=0

g1,kγ
(n)
l,m,k

bn
l,m =

2K∑

k=0

(2g1,k −mg2,k − g3,k) γ
(n)
l,m,k + (m− n + 1)

2K−1∑

k=0

g2,k+1γ
(n)
l,m+1,k

cn
l,m = m(m + 1)

2K∑

k=0

g0,kγ
(n)
l,m,k

dn
l,m =

4K∑

k=0

g4,kγ
(n)
l,m,k

(2.32)

where n is fixed. Notice that in the definition of the matrices, the superscript “n” is

used merely as a notation and cannot mean the power. Thus, equation (2.27) turns

out to be

∞∑

l=n

{ ∞∑
m=n

[
an

l,m

d2

dξ2
Φn

m(ξ) + bn
l,m

1

ξ

d

dξ
Φn

m(ξ)− cn
l,m

1

ξ2
Φn

m(ξ) + Edn
l,mΦn

m(ξ)

]}
P n

l (η) = 0.

Since the set
{
P n

n (η), P n
n+1(η), P n

n+2(η), . . .
}

is linearly independent for a fixed n, we

must have

∞∑
m=n

[
an

l,m

d2

dξ2
Φn

m(ξ) + bn
l,m

1

ξ

d

dξ
Φn

m(ξ)− cn
l,m

1

ξ2
Φn

m(ξ) + Edn
l,mΦn

m(ξ)

]
= 0, (2.33)

for each l = n, n + 1, . . ., and fixed n. That is, we obtain an infinite system of cou-

pled ordinary differential equations for the determination of the coefficient functions

Φn
n(ξ), Φn

n+1(ξ), . . .. In matrix-vector form the system is written as

{
An d2

dξ2
+ Bn 1

ξ

d

dξ
−Cn 1

ξ2

}
Φn = −EDnΦn (2.34)

where Φn stands for the vector

Φn =
[
Φn

n(ξ), Φn
n+1(ξ), Φ

n
n+2(ξ), . . .

]T
. (2.35)
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This vector differential equation cannot have an exact analytical solution unless the

matrices An, Bn, Cn and Dn are diagonal. Then the ordinary differential equations

(ODEs) will be uncoupled, i.e., they will be independent of each other. Unfortu-

nately, this happens only in the special case of the spherical billiard which will be

discussed in detail later.

For a complete reformulation of the problem, we need to redefine the boundary

and square integrability conditions in accordance with the vector differential equation

just obtained.

2.4 Transformation of the Boundary and Square

Integrability Conditions

In the previous section, we have discussed how the transformation (2.3) changes

the form of the equation (1.14). In addition, we have asserted an expansion for

the wavefunction into the complete set of spherical harmonics which has reduced

the partial differential equation under consideration to a system of coupled ordinary

differential equations. What remains to be investigated is how the transformation

changes the boundary and square integrability conditions. Let us first deal with the

boundary condition (1.15). Upon substitution of the expansion (2.15) it becomes

∞∑
m=0

{
Φ0

m(1)P 0
m(η) +

m∑
n=1

P n
m(η) [Φn

m(1) cos nφ + ψn
m(1) sin nφ]

}
= 0 (2.36)

where η ∈ [−1, 1] and φ ∈ [0, 2π]. This immediately gives

Φn
m(1) = 0, ψn

m(1) = 0 (2.37)

for all n = 0, 1, . . . ,m and m = 0, 1, . . . since the spherical harmonics are linearly

independent. Recall that, for purposes of determination of an expansion basis, we

have used the fact that the wavefunction satisfies a square integrability condition of

the form (2.9). Now substitute (2.15) in (2.9) and deduce that

∫ 2π

0

∫ 1

−1

∫ 1

0

∣∣∣∣∣
∞∑

m=0

m∑
n=0

P n
m(η)Φn

m(ξ) cos nφ+
∞∑

m=0

m∑
n=1

P n
m(η)ψn

m(ξ) sin nφ

∣∣∣∣∣

2

ξ2dξdηdφ < ∞
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which is equivalent to

∫ 2π

0

∫ 1

−1

∫ 1

0

∞∑
m=0

∞∑

l=0

{
m∑

n=0

m∑
t=0

Φn
m(ξ)Φt

l(ξ)P
n
m(η)P t

l (η) cos nφ cos tφ

+
m∑

n=0

m∑
t=1

Φn
m(ξ)ψt

l (ξ)P
n
m(η)P t

l (η) cos nφ sin tφ

+
m∑

n=1

m∑
t=1

ψn
m(ξ)ψt

l (ξ)P
n
m(η)P t

l (η) sin nφ sin tφ

}
ξ2dξdηdφ < ∞.

Interchanging formally the summation and integration with respect to φ and using

the orthogonality of trigonometric functions we obtain

∫ 1

−1

∫ 1

0

∞∑
m=0

∞∑

l=0

{
m∑

n=0

Φn
m(ξ)Φn

l (ξ)P n
m(η)P n

l (η)

+
m∑

n=1

ψn
m(ξ)ψn

l (ξ)P n
m(η)P n

l (η)

}
ξ2dξdη < ∞.

Similarly, the orthogonality of the associated Legendre functions implies that

∫ 1

0

∞∑
m=0

{
m∑

n=0

(Φn
m(ξ))2 +

m∑
n=1

(ψn
m(ξ))2

}
ξ2dξ < ∞. (2.38)

A necessary condition for (2.38) is

∫ 1

0

∞∑
m=0

m∑
n=0

(Φn
m(ξ))2ξ2dξ < ∞ (2.39)

from which ∫ 1

0

ξ2 |Φn
m(ξ)|2 dξ < ∞ (2.40)

is easily concluded for n = 0, 1, . . . m and m = 0, 1, 2, . . ..

2.5 The Special Case of Spherical Billiard and the

Truncated System of ODEs

In this section we discuss a special case in which the axisymmetric billiard under con-

sideration reduces into a ball of unit radius. This billiard is usually called “spherical
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billiard”. In this case, the shape function is simply F (η) = G(η) = 1. Therefore, the

entries of the coefficient matrices are defined by

an
l,m = γ

(n)
l,m,0, bn

l,m = 2γ
(n)
l,m,0, cn

l,m = m(m + 1)γ
(n)
l,m,0, dn

l,m = γ
(n)
l,m,0

which immediately tells us that they should satisfy the relations

Bn = 2An, Cn = MnAn, Dn = An

where

Mn = diag {n(n + 1), (n + 1)(n + 2), (n + 2)(n + 3), . . .} .

The definition of γ
(n)
l,m,0 on the other hand, implies that the matrix An is diagonal,

that is,

An = diag
{

γ
(n)
n,n,0, γ

(n)
n+1,n,0, γ

(n)
n+2,n,0, . . .

}
.

Note that, this matrix is nonsingular, since none of its diagonal entries is zero. Hence,

the vector differential equation for the spherical billiard upon multiplication of both

sides by the inverse of An becomes

{
I

d2

dξ2
+ 2I

1

ξ

d

dξ
−Mn 1

ξ2

}
Φn = −EΦn (2.41)

where I denotes the identity matrix. Thus, we have a system of uncoupled ODEs for

every fixed n. The functions Φn
m(ξ) satisfy the boundary conditions

Φn
m(1) = 0 for m = n, n + 1, n + 2, . . . (2.42)

and the square integrability conditions

∫ 1

0

|Φn
m(ξ)|2 ξ2dξ for m = n, n + 1, n + 2, . . . . (2.43)

Observe that, the system in (2.41) can be completely characterized by the single

differential equation

{
d2

dξ2
+ 2

1

ξ

d

dξ
−m(m + 1)

1

ξ2

}
Φn

m(ξ) = −EΦn
m(ξ) (2.44)

where m takes the values n, n + 1, n + 2, . . .. The general solution of this equation is

known to be

Φn
m(ξ) = c1jm(

√
Eξ) + c2j−m(

√
Eξ)
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where jν(x) denote the so-called spherical Bessel function defined by [1]

jν(x) =

√
2

πx
Jν+ 1

2
(x)

in which Jµ(x) is the usual Bessel function of the first kind of order µ. The square

integrability condition does not hold for the second solution j−m(
√

Eξ), which is

rejected. Therefore, we must take

Φn
m(ξ) = jm(

√
Eξ).

On the other hand, the boundary condition implies that,

Φn
m(1) = jm(

√
E) = 0,

determining the eigenvalues,

Em,p = λ2
m,p for m = n, n + 1, . . . and p = 1, 2, . . .

where λm,p stands for the p-th positive zero of jm, or equivalently of Jm+ 1
2
.

The spherical billiard is the only exactly solvable billiard amongst the axisym-

metric billiards defined by the general shape function F (η). Therefore, we seek for

approximate solutions of the system (2.34) in finite-dimensional subspaces. More

specifically, we assume that the index m varies from 0 to some M < ∞. Then we

have
M∑

m=n

[
an

l,m

d2

dξ2
Φn

m(ξ) + bn
l,m

1

ξ

d

dξ
Φn

m(ξ)− cn
l,m

1

ξ2
Φn

m(ξ) + Edn
l,mΦn

m(ξ)

]
= 0, (2.45)

for l = n, n + 1, . . . , M , where n is fixed. In this case the range of the index n is also

[0,M ]. An important point to bear in mind is that the dimension of the truncated

system (2.45) is not the same for each n. In fact, it decreases as n varies from 0 to

M and we have M + 1 equations for n = 0, M equations for n = 1 and finally one

equation for n = M . It is also convenient to apply shifting transformations of the

form
i = l − n + 1, i = 1, 2, . . . ,M + 1− n

j = m− n + 1, j = 1, 2, . . . ,M + 1− n,
(2.46)

for the entries of the coefficient matrices and the vector Φn, which give the usual

indexing of these entries. Letting N = M + 1− n we obtain the system

N∑
j=1

[
ân

i,j

d2

dξ2
Φ̂n

j (ξ) + b̂n
i,j

1

ξ

d

dξ
Φ̂n

j (ξ)− ĉn
i,j

1

ξ2
Φ̂n

j (ξ) + Ed̂n
i,jΦ̂

n
j (ξ)

]
= 0 (2.47)
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where i = 1, 2, . . . , N and

ân
i,j := an

l,m

b̂n
i,j := bn

l,m

ĉn
i,j := cn

l,m

d̂n
i,j := dn

l,m

Φ̂n
j := Φn

m.

(2.48)

Explicitly, we have the following truncated system of ODEs


Ln
1,1 Ln

1,2 · · · Ln
1,N

Ln
2,1 Ln

2,2 · · · Ln
2,N

...
...

. . .
...

Ln
N,1 Ln

N,2 · · · Ln
N,N







Φ̂n
1

Φ̂n
2

...

Φ̂n
N




= −E




d̂n
1,1 d̂n

1,2 · · · d̂n
1,N

d̂n
2,1 d̂n

2,2 · · · d̂n
2,N

...
...

. . .
...

d̂n
N,1 d̂n

N,2 · · · d̂n
N,N







Φ̂n
1

Φ̂n
2

...

Φ̂n
N




(2.49)

where Ln
i,j is a differential operator of the form

Ln
i,j = ân

i,j

d2

dξ2
+ b̂n

i,j

1

ξ

d

dξ
− ĉn

i,j

1

ξ2
(2.50)

for i, j = 1, 2, . . . , N and fixed n. The functions Φn
i satisfy the boundary conditions

Φn
i (1) = 0 i = 1, 2, . . . , N (2.51)

and the square integrability conditions
∫ 1

0

|Φn
i (ξ)|2 ξ2dξ i = 1, 2, . . . , N. (2.52)

Remark 2. It is evident from (2.30) that,

γ
(n)
l,m,k =

m− n + 1

2m + 1
γ

(n)
l,m+1,k−1 +

m + n

2m + 1
γ

(n)
l,m−1,k−1. (2.53)

The largest degree k of the γ
(n)
l,m,k required for evaluation of the matrices (2.32) is 4K.

Hence, for each k = 0, 1, . . . 4K the following arrays must be computed,


γ
(n)
−1,−1,k γ

(n)
−1,0,k γ

(n)
−1,1,k γ

(n)
−1,2,k · · · γ

(n)
−1,M+4K−k,k

γ
(n)
0,−1,k γ

(n)
0,0,k γ

(n)
0,1,k γ

(n)
0,2,k · · · γ

(n)
0,M+4K−k,k

γ
(n)
1,−1,k γ

(n)
1,0,k γ

(n)
1,1,k γ

(n)
1,2,k · · · γ

(n)
1,M+4K−k,k

γ
(n)
2,−1,k γ

(n)
2,0,k γ

(n)
2,1,k γ

(n)
2,2,k · · · γ

(n)
2,M+4K−k,k

...
...

...
...

. . .
...

γ
(n)
M+4K−k,−1,k γ

(n)
M+4K−k,0,k γ

(n)
M+4K−k,1,k γ

(n)
M+4K−k,2,k · · · γ

(n)
M+4K−k,M+4K−k,k




where M is the dimension of the finite-dimensional subspace on which the problem

will be solved. ♦
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2.6 Investigation of the Coefficient Matrices

Further development of the method will be performed after a detailed investigation

of the coefficient matrices. Their entries have been defined in (2.32) in terms of the

coefficients gi,k and the elements of the three-dimensional array γ
(n)
l,m,k. This form is

well suited for rapid computer calculation. However, to study the properties of these

matrices, we use their interpretations in terms of the truncated shape function itself,

an
l,m =

∫ 1

−1

{
[G(η)]2 + (1− η2) [G′(η)]

2
}

P n
l (η)P n

m(η)dη (2.54)

bn
l,m =

∫ 1

−1

{
2 [G(η)]2 + 2(1− η2) [G′(η)]

2
+ 2ηG′(η)G(η)

− (1− η2)G′′(η)G(η)
}

P n
l (η)P n

m(η)dη

− 2

∫ 1

−1

(1− η2)G′(η)G(η)P n
l (η)

d

dη
P n

m(η)dη (2.55)

cn
l,m = m(m + 1)

∫ 1

−1

[G(η)]2 P n
l (η)P n

m(η)dη (2.56)

and

dn
l,m =

∫ 1

−1

[G(η)]4 P n
l (η)P n

m(η)dη (2.57)

where l,m = n, n+1, . . . and n is fixed. Some important properties of the coefficient

matrices will be stated and proved now.

Proposition 2.1. The matrices An,Dn and the matrix Cn
1 :=

[
(c1)

n
l,m

]
defined by

(c1)
n
l,m =

∫ 1

−1

[G(η)]2 P n
l (η)P n

m(η)dη, (2.58)

are symmetric positive definite.

Proof. The symmetry follows easily from the definitions (2.54), (2.57) and (2.58).

Consider the quadratic forms QA, QD and QC related to the matrices An, Dn and

Cn
1 respectively,

QA = xTAnx (2.59)

QD = xTDnx (2.60)

QC = xTCn
1x (2.61)
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where x is a nonzero vector. The definitions (2.54), (2.57) and (2.58) imply

QA =
∞∑

l=n

∞∑
m=n

xlxm

∫ 1

−1

[
{G(η)]2 + (1− η2) [G′(η)]

2
}

P n
l (η)P n

m(η)dη,

QD =
∞∑

l=n

∞∑
m=n

xlxm

∫ 1

−1

[G(η)]4 P n
l (η)P n

m(η)dη

QC =
∞∑

l=n

∞∑
m=n

xlxm

∫ 1

−1

[G(η)]2 P n
l (η)P n

m(η)dη

(2.62)

Define the function h(η) as

h(η) =
∞∑

m=n

xmP n
m(η) (2.63)

and use it to rewrite (2.62) in the form

QA =

∫ 1

−1

[h(η)]2
{

[G(η)]2 + (1− η2) [G′(η)]
2
}

dη,

QD =

∫ 1

−1

[h(η)]2 [G(η)]4 dη

QC =

∫ 1

−1

[h(η)]2 [G(η)]2 dη.

(2.64)

Clearly, all the integrals in (2.64) are positive, for, the integrand functions are non-

negative and not identically zero. Hence, the matrices An and Dn and Cn
1 are positive

definite.

Proposition 2.2. The matrix Bn can be written as Bn = 2An + Bn
P + Bn

S, where

Bn
P is symmetric positive semidefinite matrix and Bn

S is a skew-symmetric matrix.

Proof. Observe that

− d

dη

{
(1− η2)G′(η)G(η)

}

= 2ηG′(η)G(η)− (1− η2)G′′(η)G(η)− (1− η2) [G′(η)]
2
.

Now, add and subtract the term

∫ 1

−1

(1− η2) [G′(η)]
2
P n

l (η)P n
m(η)dη to the right hand
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side of (2.55)

bn
l,m =

∫ 1

−1

{
2 [G(η)]2 + 2(1− η2) [G′(η)]

2
}

P n
l (η)P n

m(η)dη

+

∫ 1

−1

(1− η2) [G′(η)]
2
P n

l (η)P n
m(η)dη

−
∫ 1

−1

d

dη

[
(1− η2)G′(η)G(η)

]
P n

m(η)P n
l (η)dη

− 2

∫ 1

−1

(1− η2)G′(η)G(η)P n
l (η)

d

dη
P n

m(η)dη

(2.65)

The first integral in (2.65) is exactly 2an
l,m. Denote the second integral by (bP )n

l,m

and the sum of the last two by (bS)n
l,m, where (bP )n

l,m and (bS)n
l,m are regarded as the

entries of the matrices Bn
P and Bn

S respectively. Positive semidefiniteness of Bn
P can

be easily proven using the method of the proof of Proposition 2.1. The quadratic

form xTBn
Px ≥ 0 and the equality holds only in the case G(η)=constant, which

corresponds to the exactly solvable case of a spherical billiard, where we actually

have Bn = 2An. Consider now

(bS)n
l,m = −

∫ 1

−1

d

dη

[
(1− η2)G′(η)G(η)

]
P n

m(η)P n
l (η)

− 2

∫ 1

−1

(1− η2)G′(η)G(η)P n
l (η)

d

dη
P n

m(η)dη.

(2.66)

With

U = P n
l (η)P n

m(η) dU =
{
[P n

l (η)]′ P n
m(η) + [P n

m(η)]′ P n
l (η)

}
dη

dV = d
dη

[(1− η2)G′(η)G(η)] dη V = [(1− η2)G′(η)G(η)]

(2.67)

we apply integration by parts to evaluate the first integral

(bS)n
l,m = − (1− η2)G′(η)G(η)P n

l (η)P n
m(η)

∣∣1
−1

+

∫ 1

−1

(1− η2)G′(η)G(η)
{
[P n

l (η)]′ P n
m(η) + [P n

m(η)]′ P n
l (η)

}
dη

− 2

∫ 1

−1

(1− η2)G′(η)G(η) [P n
m(η)]′ P n

l (η)dη.

(2.68)
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From the last equation the entries of Bn
S are found to be

(bS)n
l,m =

∫ 1

−1

(1− η)2G′(η)G(η)
{
[P n

l (η)]′ P n
m(η)− [P n

m(η)]′ P n
l (η)

}
dη (2.69)

so that the matrix is obviously skew-symmetric. Hence, the proof is complete.

Remark 3. Notice that Propositions 2.1 and 2.2 hold also for the shifted matrices

Ân, B̂n, Ĉn and D̂n. ♦

2.7 Truncated Solution in One Dimensional Sub-

space

As a first approximation, we deal with the truncated solution of the problem in one-

dimensional subspace. In other words, we assume M=0, or equivalently, N=1. Then

the system in (2.47) reduces to a single differential equation of the form

a
d2Φ̂0

1(ξ)

dξ2
+ b

1

ξ

dΦ̂0
1(ξ)

dξ
− c

1

ξ2
Φ̂0

1(ξ) + EdΦ̂0
1(ξ) = 0 (2.70)

where the accompanying boundary condition reads as

Φ̂0
1(1) = 0, (2.71)

and the square integrability condition is

∫ 1

0

ξ2 | Φ̂0
1(ξ) |2 dξ < ∞. (2.72)

Here we have set

a = â0
1,1, b = b̂0

1,1 c = ĉ0
1,1, d = d̂0

1,1. (2.73)

The coefficient a is, in fact, a leading principal submatrix of dimension 1 of the

matrix Â0. By Proposition 2.1, a must be positive. Similarly, by Proposition 2.2,

b = 2a + bP + bS, where bP = (̂bP )0
1,1 ≥ 0 and bS = (̂bS)0

1,1 = 0 implies 2 ≤ b

a
≤ 3.

On the other hand, by Proposition 2.1, c ≥ 0 and
d

a
> 0. Upon dividing both sides

by a we get,

d2Φ̂0
1(ξ)

dξ2
+

b

a

1

ξ

dΦ̂0
1(ξ)

dξ
− c

a

1

ξ2
Φ̂0

1(ξ) + E
d

a
Φ̂0

1(ξ) = 0. (2.74)
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We propose a solution Φ̂0
1(ξ) of the form

Φ̂0
1(ξ) = ξµZ(ξ) (2.75)

where µ ∈ R. It can be easily shown that the function Z(ξ) satisfies the differential

equation

d2Z(ξ)

dξ2
+

[
2µ +

b

a

]
1

ξ

dZ(ξ)

dξ
+

[
µ(µ− 1) + µ

b

a
− c

a

]
1

ξ2
Z(ξ) + E

d

a
Z(ξ) = 0, (2.76)

the boundary condition

Z(1) = 0, (2.77)

and the square integrability condition
∫ 1

0

ξ2+2µ | Z(ξ) |2 dξ < ∞. (2.78)

Define now

µ =
1

2

(
1− b

a

)
ν =

√
µ2 +

c

a

and note that −1 ≤ µ ≤ −1
2

and also that 0 < ν. The linear transformation

x = λξ, where λ =

√
E

d

a
> 0,

on the independent variable ξ yields the equation

d2Z(x)

dx2
+

1

x

dZ(x)

dx
+

(
1− ν2

x2

)
Z(x) = 0, (2.79)

the boundary condition

Z(λ) = 0 (2.80)

and the square integrability condition

∫ λ

0

x2+2µ | Z(x) |2 dx < ∞. (2.81)

The equation (2.79) can be recognized as the Bessel’s differential equation, the ge-

neral solution of which is given by

Z(x) = c1Jν(x) + c2J−ν(x). (2.82)

Since the order ν is positive and moreover ν =

√
µ2 +

c

a
≥ |µ|, Jν(x) satifies the

condition (2.81), while the second solution J−ν(x) does not, and, is thus rejected.
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Finally, the boundary condition (2.80) requires Jν

(√
E d

a

)
= 0 and the eigenvalues

E are obtained as

Ep =
a

d
λ2

p, p = 1, 2, . . .

where λp’s are the positive roots of the equation Jν(λ) = 0.

2.8 Reduction of the System to a Matrix Eigen-

value Problem

The exact solution of the truncated system in one-dimensional subspace can be used

as a hint while searching for solutions in finite-dimensional subspaces of dimension

N > 1. In other words, it is expected that the coefficient functions Φn
m(ξ) in the

eigenfunction expansion (2.15) will be represented in terms of Bessel functions, more

precisely, in terms of Fourier-Bessel expansions. Unfortunately, the orders of the

Bessel functions are closely related to the parameters αk defining the shape function,

which is one unpleasant consequence of using the non-orthogonal coordinates (2.3)

and inserting the shape function into the Schrödinger equation.

Recall that the coefficient matrix Ân is positive definite by Proposition 2.1. Then

according to the Cholesky decomposition theorem [58], Ân = LLT where L is a lower

triangular matrix with positive diagonal entries. Let

Zn(ξ) = LT Φ̂n(ξ). (2.83)

This immediately implies that Zn(ξ) satisfies the vector differential equation

−
{
L

d2

dξ2
+ B̂nL−T 1

ξ

d

dξ
− ĈnL−T 1

ξ2

}
Zn = ED̂nL−TZn (2.84)

the boundary condition

Zn(1) = [Zn
1 1, Zn

2 (1), . . . , Zn
N(1)]T = 0 (2.85)

and the square integrability condition

∫ 1

0

|Zn
i (ξ)|2 ξ2dξ for i = 1, 2, . . . , N. (2.86)
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Note that the existence of L−T is guaranteed by the positive definiteness of Ân.

Multiplying both sides of (2.84) by L−1, we obtain

−
{

I
d2

dξ2
+ Qn 1

ξ

d

dξ
−Rn 1

ξ2

}
Zn = ETnZn (2.87)

where the matrices Qn :=
[
qn
i,j

]
, Rn :=

[
rn
i,j

]
and Tn :=

[
tni,j

]
are defined by

Qn = L−1B̂nL−T

Rn = L−1ĈnL−T

Tn = L−1D̂nL−T

(2.88)

and I denotes the identity matrix. In scalar form (2.87) becomes

−
N∑

j=1

{
δi,j

d2

dξ2
+ qn

i,j

1

ξ

d

dξ
− rn

i,j

1

ξ2

}
Zn

j = E

N∑
j=1

tni,jZ
n
j (2.89)

where i = 1, 2, . . . , N and n is fixed. The differential operators Hn
i,j

Hn
i,j = δi,j

d2

dξ2
+ qn

i,j

1

ξ

d

dξ
− rn

i,j

1

ξ2
(2.90)

for i, j = 1, 2, . . . , N and fixed n can be employed now to write (2.89) in matrix form

as well

−




Hn
1,1 · · · Hn

1,N

Hn
2,1 · · · Hn

2,N
...

. . .
...

Hn
N,1 · · · Hn

N,N







Zn
1

Zn
2

...

Zn
N




= E




tn1,1 · · · tn1,N

tn2,1 · · · tn2,N
...

. . .
...

tnN,1 · · · tnN,N







Zn
1

Zn
2

...

Zn
N




. (2.91)

The following propositions are needed for further analysis.

Proposition 2.3. The diagonal entries of the matrix Qn satisfy 2 ≤ qn
i,i ≤ 3 for all

i = 1, 2, . . . N .

Proof. By Proposition 2.2, the matrix Qn is in the form Qn = 2I + Qn
P + Qn

S, where

Qn
P = L−1B̂n

PL−T is a symmetric positive semidefinite matrix and Qn
S = L−1B̂n

SL
−T

is a skew-symmetric matrix. Positive semidefiniteness of Qn
P is easily seen from

xTL−1B̂n
PL−Tx = yT B̂n

Py ≥ 0
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by taking y = L−Tx, for every x 6= 0. On the other hand,

Qn
S

T = (L−1B̂n
SL

−T )T = −L−1B̂n
SL

−T = −Qn
S

shows that Qn
S is skew-symmetric. Then qn

i,i satisfies

qn
i,i = 2 + (qP )n

i,i ≥ 2

where (qP )n
i,i ≥ 0, since Qn

P is positive semidefinite. Recall now the definition of Ĉn
1

given in Proposition 2.1 and note that Ân = B̂n
P + Ĉn

1 , consequently,

I = Qn
P + L−1Ĉn

1L
−T .

Thus, 0 ≤ (qP )n
i,i ≤ 1, since the matrix L−1Ĉn

1L
−T is also positive definite. Hence,

2 ≤ qn
i,i ≤ 3

easily follows for each i = 1, 2, . . . , N .

Proposition 2.4. The diagonal entries of the matrix Rn are nonnegative.

Proof. Since

Rn = L−1ĈnL−T

then its diagonal entries are expressible as

rn
i,i = (i + n− 1)(i + n)(r1)

n
i,i

where (r1)
n
i,i are the entries of the matrix Rn

1 = L−1Ĉ1

n
L−T . This matrix is positive

definite, therefore, the diagonal entries of Rn are all positive except r0
1,1 which is 0.

Thus, they are nonnegative.

We assume that the solutions Zn
i of (2.91) are of the form

Zn
i (ξ) = ξµn

i Xn
i (ξ), for all i = 1, 2, . . . N (2.92)

where

µn
i =

1

2

(
1− qn

i,i

)
, for all i = 1, 2, . . . , N (2.93)

It follows from Proposition 2.3 that −1 < µn
i ≤ −1

2
for all i = 1, 2, . . . , N . Define

νn
i =

√
(µn

i )2 + rn
i,i for all i = 1, 2, . . . N, (2.94)
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and observe that νn
i is real and positive by Proposition 2.4. Then we calculate

Hn
i,iξ

µn
i Xn

i (ξ) = ξµn
i

{
d2

dξ2
+

1

ξ

d

dξ
− (νn

i )2

ξ2

}
Xn

i (ξ) (2.95)

and also

Hn
i,jξ

µn
j Xn

j (ξ) = ξµn
j

{
qn
i,j

1

ξ

d

dξ
+

[
µn

j q
n
i,j − rn

i,j

] 1

ξ2

}
Xn

j (ξ). (2.96)

Consider now the equation
{

d2

dξ2
+

1

ξ

d

dξ
+

(
λ2 − (νn

i )2

ξ2

)}
Xn

i (ξ) = 0

and observe that it has two linearly independent solutions, namely, Bessel functions

of the first kind J±νn
i
(λξ). The definition (2.94) of the order νn

i implies νn
i ≥| µn

i |,
hence νn

i ≥ 1
2

and −νn
i < −1. The boundary conditions (2.85) satisfied by the Xn

i (ξ)

are of the form

Xn
i (1) = 0 (2.97)

while the square integrability conditions (2.86) read as

∫ 1

0

ξ2+2µn
i |Xn

i (ξ)|2 dξ < ∞ (2.98)

for every i = 1, 2, . . . , N . Thus, the functions Xn
i (ξ) must be square integrable over

the interval [0, 1] with respect to the weight function w(ξ) = ξ2+2µn
i . On the other

hand, 0 ≤ 2 + 2µn
i ≤ 1, therefore, we have

∫ 1

0

ξ |Xn
i (ξ)|2 dξ ≤

∫ 1

0

ξ2+2µn
i |Xn

i (ξ)|2 dξ < ∞. (2.99)

In other words, the Xn
i (ξ) can be regarded as square integrable functions over [0, 1]

under the weight w(ξ) = ξ. The set
{
Jνn

i
(λi,1ξ), Jνn

i
(λi,2ξ), Jνn

i
(λi,3ξ), . . .

}
forms a

basis for this space, provided that νn
i ≥ −1

2
and λi,p are the positive zeros of Jνn

i
.

This suggests expanding each of the functions Xn
i (ξ) into a Fourier-Bessel expansion

in terms of Jνn
i
, that is, we propose

Xn
i (ξ) =

∞∑
p=1

xn
i,pJνn

i
(λi,pξ) (2.100)

where the xn
i,p are the Fourier coefficients. Moreover,

Xn
i (1) =

∞∑
p=1

xn
i,pJνn

i
(λi,p) = 0
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that is, the expansion (2.100) satisfies the boundary condition. It is obvious that

Hn
i,iξ

µn
i Xn

i (ξ) = ξµn
i

∞∑
p=1

(−λ2
i,p)x

n
i,pJνn

i
(λi,pξ) (2.101)

for every i = 1, 2, . . . , N . The differential expression (2.96) on the other hand, upon

substitution of the expansion (2.100) becomes

Hn
i,jξ

µn
j Xn

j (ξ) = ξµn
j
(
qn
i,jµ

n
j − rn

i,j

) 1

ξ2

∞∑
p=1

xn
j,pJνn

j
(λj,pξ)

+ ξµn
j qn

i,j

1

ξ

∞∑
p=1

xn
j,p

d

dξ
Jνn

j
(λj,pξ)

= ξµjsn
i,j

1

ξ2

∞∑
p=1

xn
j,pJνn

j
(λj,pξ)− ξµn

j λj,pq
n
i,j

1

ξ

∞∑
p=1

xn
j,pJνn

j +1(λj,pξ)

(2.102)

where the difference-differential relation

d

dξ
Jν(λξ) =

ν

ξ
Jν(λξ)− λJν+1(λξ)

avoids the derivative
d

dξ
Jνn

j
(λj,pξ) and the matrix Sn :=

[
sn

i,j

]
defined by

sn
i,j = qn

i,j(µ
n
j + νn

j )− rn
i,j

shortens the expression. For computational purposes, we must truncate the expan-

sion (2.100), so, we take p = 1, 2, . . . , P . Now, we use (2.101) and (2.102) to rewrite

the system (2.89) as

−
N∑

j=1,j 6=i

{
P∑

p=1

ξµn
j

[
sn

i,j

1

ξ2
Jνn

j
(λj,pξ)x

n
j,p − qn

i,j

1

ξ
Jνn

j +1(λj,pξ)

]
xn

j,p

}

−
P∑

p=1

[
(−λ2

i,p)ξ
µn

i Jνn
i
(λi,pξ)x

n
i,p

]
= −E

N∑
j=1

P∑
p=1

[
tni,jξ

µn
j Jνn

j
(λj,pξ)x

n
j,p

]

(2.103)

for i = 1, 2, . . . , N and fixed n. Last, we multiply the i-th equation in (2.103) by

ξ1−µn
i Jνn

i
(λi,s) where s = 1, 2, . . . P and i = 1, 2, . . . , N and integrate over [0, 1]. The

orthogonality relation of the Bessel functions,

∫ 1

0

ξJνn
t
(λt,pξ)Jνn

t
(λt,sξ)dξ =

[
Jνn

t +1(λt,p)
]2

2
δp,s (2.104)
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implies that

N∑
j=1

P∑
p=1

{
λ2

i,s

2

[
Jνn

i +1(λi,s)
]2

δp,sδi,j

−
[
sn

i,j

∫ 1

0

ξµn
j −µn

i −1Jνn
i
(λi,sξ)Jνn

j
(λj,pξ)dξ

− qn
i,jλj,k

∫ 1

0

ξµn
j −µn

i Jνn
i
(λi,sξ)Jνn

j +1(λj,pξ)dξ

]
(1− δi,j)

}
xn

j,p

= E

N∑
j=1

P∑
p=1

[
tni,j

∫ 1

0

ξµn
j −µn

i +1Jνn
i
(λi,sξ)Jνn

j
(λj,pξ)dξ

]
xn

j,p

(2.105)

for every i = 1, 2, . . . N and s = 1, 2, . . . P . In fact, we have replaced every operator

Hn
i,j by its matrix representation, say Hn

i,j :=
[
hn

i,j,p,s

]
, in the basis set {ξµn

i Jνn
i
(λi,p)}P

p=1.

By using the notation

I(ρ, ν, σ, α, β) =

∫ 1

0

ξρJν(αξ)Jσ(βξ)dξ (2.106)

for the integrals involved in (2.105) it can be easily seen that

hn
i,j,p,s =





λ2
i,s

2

[
Jνn

i +1(λi,s)
]2

δp,s if i = j

−sn
i,jI(µn

j − µn
i − 1, νn

i , νn
j , λi,s, λj,p)

+qn
i,jλj,kI(µn

j − µn
i , ν

n
i , νn

j + 1, λi,s, λj,p) if i 6= j

(2.107)

Consider now the right-hand-side of (2.105). If we define the matrices Wn
i,j :=[

wn
i,j,p,s

]
as

wn
i,j,p,s =





tni,i
2

[
Jνn

i +1(λi,s)
]2

δp,s if i = j

tni,jI(µn
j − µn

i + 1, νn
i , νn

j , λi,s, λj,p) if i 6= j

(2.108)

and the vectors xn
i as

xn
i =

[
xn

i,1, x
n
i,2, . . . , (x

n
i,P

]T
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then (2.91) becomes




Hn
1,1 · · · Hn

1,N

Hn
2,1 · · · Hn

2,N
...

. . .
...

Hn
N,1 · · · Hn

N,N







xn
1

xn
2

...

xn
N




= E




Wn
1,1 · · · Wn

1,N

Wn
2,1 · · · Wn

2,N
...

. . .
...

Wn
N,1 · · · Wn

N,N







xn
1

xn
2

...

xn
N




. (2.109)

The transformations

t = (i− 1)P + s t = 1, 2, . . . NP

r = (j − 1)P + p r = 1, 2, . . . NP
(2.110)

on the indices can be employed to write block matrices and the block vector in (2.109)

in the usual matrix and vector forms. More precisely, we set

ĥn
t,r = hn

i,j,p,s

ŵn
t,r = wn

i,j,p,s

x̂n
r = xn

j,p

(2.111)

so that (2.109) becomes

Ĥnx̂n = EŴnx̂n (2.112)

Hence, we have finally transformed the Schrödinger equation to a generalized eigen-

value problem. As a matter of fact, it is expected that the matrices involved in

(2.112) are symmetric and moreover that, the matrix Ŵn is positive definite. How-

ever, the non-orthogonal transformation (2.3) destroys these properties. Thus, we

need to compute of the whole matrices Ĥn and Ŵn.

Unfortunately, the integrals (2.106) involved in the definitions of Ĥn and Ŵn

cannot be evaluated analytically by means of recurrence relations of the Bessel func-

tions. This is the second and more serious drawback of the method. Theoretically,

these integrals have been proven to be proper and finite. On the other hand, their

numerical computation is a very difficult task. The detailed discussion about this

subject is given in Chapter 4.
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Chapter 3

Two Examples: Prolate Spheroid

and a Parameter-Depending

Billiard

3.1 Prolate Spheroidal Billiard: Solution by the

Method of Chapter 2

As a first application of the method, we consider the three dimensional billiard

obtained by rotating an ellipse

y2

a2
+

z2

b2
= 1, with 0 < a ≤ b (3.1)

in the yz-plane about the z-axis. The solid region formed in this way is called prolate

spheroid and in Cartesian coordinates can be written as

D =

{
(x, y, z) | x2 + y2

a2
+

z2

b2
≤ 1

}
(3.2)

where b2 > a2, while in spherical coordinates takes the form

D =

{
(r, θ, φ) | 0 ≤ r ≤ a√

1− β cos2 θ
, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

}
(3.3)

with β = 1 − a2

b2
. Obviously, 0 ≤ β < 1 and the particular case β = 0 corresponds

to a ball with radius a. The shape function

f(θ) =
a√

1− β cos2 θ
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can be expanded into a power series in powers of cos θ using the Binomial theorem

a√
1− β cos2 θ

= a + 2a
∞∑

k=1

βk

4k

Γ(2k)

Γ(k)Γ(k − 1)
cos2k θ (3.4)

for consistency with the general form (2.2). Therefore, the function F (η) becomes

F (η) = a + 2a
∞∑

k=1

βk

4k

Γ(2k)

Γ(k)Γ(k − 1)
η2k (3.5)

consequently, the truncated shape function G(η) is

G(η) = a + 2a
K∑

k=1

βk

4k

Γ(2k)

Γ(k)Γ(k − 1)
η2k. (3.6)

The symmetric structure of D with respect to the xy-plane, or equivalently with

respect to η = 0 verifies the lack of odd powers of η in (3.6) where clearly α2k+1 = 0

and α2k = 2a
βk

4k

Γ(2k)

Γ(k)Γ(k − 1)
for all k = 1, 2, . . . K. Recall that, the definitions of

the coefficient matrices An, Bn, Cn and Dn have been based on the coefficients γ
(n)
l,m,k

of the expansion

ηkP n
m(η) =

∞∑

l=n

γ
(n)
l,m,kP

n
l (η)

and the coefficients gi,k of the polynomials Gi where i=0,1,2,3. The shape function

G(η) describing the prolate spheroid contains only even powers of η, hence, the

polynomials Gi have the same structure. The product G′(η)G(η) on the other hand,

includes only odd powers of η. The polynomial part of the associated Legendre

function

P n
m(η) =

(
1− η2

)n
2

dnPm(η)

dηn
,

that is,
dnPm(η)

dηn
, contains only even or only odd powers of η in accordance with its

degree. Therefore, the expansions

η2kP n
m(η) =

∞∑

l=n

γ
(n)
l,m,2kP

n
l (η)

involved in the definitions in the coefficient matrices of the prolate spheroid have

nonvanishing coefficients γ
(n)
l,m,2k whenever l and m are both even or odd. Similarly,

the coefficients γ
(n)
l,m+1,2k−1 of the expansions

η2k−1P n
m+1(η) =

∞∑

l=n

γ
(n)
l,m+1,2k−1P

n
l (η)
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taking place in the definition of Bn are nonzero if l is even and m + 1 is odd or l is

odd and m + 1 is even. Thus, all the matrices An, Bn, Cn, and Dn possess a special

structure, that is, 


x 0 x 0 x · · ·
0 x 0 x 0 · · ·
x 0 x 0 x · · ·
0 x 0 x 0 · · ·
x 0 x 0 x · · ·
...

...
...

...
...

. . .




(3.7)

where x denotes the nonzero entries. This suggests the separate treatment of the

even and odd eigenfunctions in η. Recall that we have already taken only the even

eigenfunctions in φ. In fact, we have split the expansion (2.15) as

Ψ(ξ, η, φ) =
∞∑

m=0

m∑
n=0

Φn
m(ξ)P n

m(η) cos nφ +
∞∑

m=0

m∑
n=1

ψn
m(ξ)P n

m(η) sin nφ

and have considered only the first part, say Ψ(ξ, η, φ)e. Now, we decompose Ψ(ξ, η, φ)e

as

Ψ(ξ, η, φ)e =
∞∑

m=0

m∑
n=0

Φn
2m(ξ)P n

2m(η) cos nφ +
∞∑

m=0

m∑
n=0

Φn
2m+1(ξ)P

n
2m+1(η) cos nφ (3.8)

where the first sum contains even eigenfunctions in η and the second one odd eigen-

functions in η. In numerical computations we deal with the two parts of (3.8) in-

dependently and obtain two different sets of eigenvalues. This procedure is not

necessary from mathematical point of view, however, the statistical analysis must be

performed on eigenvalue sets that are not correlated, therefore, each symmetry class

needs individual investigation.

In what follows, we employ our method to calculate the spectrum of three par-

ticular prolate spheroids with a = 1, b = 1.01, a = 1, b = 1.5 and a = 1, b = 2 (see

Figures 3.1, 3.2, 3.3).
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Figure 3.1: Prolate spheroid x2 + y2 +
z2

(1.01)2
≤ 1

Figure 3.2: Prolate spheroid x2 + y2 +
z2

(1.5)2
≤ 1

Figure 3.3: Prolate spheroid x2 + y2 +
z2

22
≤ 1
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The corresponding values of the parameter β are computed as β = 0.17, β =

0.5556, β = 0.75 respectively. Numerical results and detailed discussion of the

algorithms and computer softwares are presented in Chapter 4. Precision of the

method has been checked by comparing the results with those obtained by using an

alternative method introduced in the next section.

3.2 Prolate Spheroidal Billiard: Solution by the

Method of Moszkowski

In this section we give an elegant and powerful method developed by Moszkowski [35]

and used by Ayant and Arvieu [2, 3] for solving the Schrödinger equation of a particle

enclosed in a prolate spheroidal box. The method is very efficient, therefore, can be

relied upon for comparison purposes. However, it works only for prolate spheroids.

Let D be the prolate spheroid defined in (3.2). The Schrödinger equation in

Cartesian coordinates for a particle moving freely in D is

−∆Ψ(x, y, z) = −
{

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

}
Ψ(x, y, z) = EΨ(x, y, z) (3.9)

where the wavefunction Ψ(x, y, z) vanishes on ∂D and satisfies the square integra-

bility condition ∫ ∫

D

∫
| Ψ |2 dV < ∞ (3.10)

as usual. The coordinate transformation

x′ =
R

a
x, y′ =

R

a
y, z′ =

R

b
z (3.11)

where
3

R2
=

2

a2
+

1

b2
(3.12)

transforms the prolate spheroid into a ball of radius R. Denote the Laplace operator

in terms of the coordinates x′, y′, and z′ by ∆′ and observe that

∆ = ∆′ + c

(
∆′ − 3

∂2

∂z′ 2

)
(3.13)
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where c =
b2 − a2

a2 + 2b2
. Rewrite (3.13) as ∆ = H0 +H1, where H0 = ∆′ can be regarded

as an exactly solvable Hamiltonian operator, and

H1 = c

(
∆′ − 3

∂2

∂z′ 2

)
(3.14)

as a perturbation term. Since the region has been transformed into a ball, it is

more appropriate to use spherical coordinates x′ = r sin θ cos φ, y′ = r sin θ sin φ and

z′ = r cos θ. Letting also η = cos θ for convenience, we can transform the operator

H1 into

H1 = c

{
∆′′ − 3

[
η2 ∂2

∂r2
+

1− η2

r

∂

∂r
+ 2

η(1− η2)

r

∂2

∂r∂η

+
(1− η2)2

r2

∂2

∂η2
− 3η

1− η2

r2

∂

∂η

]} (3.15)

where ∆′′ denotes the Laplace operator in coordinates (r, η, φ). The eigenvalues of the

unperturbed Hamiltonian H0 are known to be −λ2
m,p, m = n, n + 1, . . ., p = 1, 2, . . .,

where λm,p is the p-th positive zero of the equation

Jm+ 1
2
(λR) = 0 (3.16)

and correspond to the normalized eigenfunctions

Ψ(r, η, φ)n,m,p = N n
m,pjm(λm,pr)Y

n
m(η, φ) (3.17)

where the Y n
m(η, φ) are the Spherical harmonics, defined by (2.14). Here the jm

denote the spherical Bessel functions [1]

jm(ξ) =

(
π

2ξ

) 1
2

Jm+ 1
2
(ξ).

and

N n
m,p =

{
1√
2π

√
(m + n)!

(2m + 1)(m− n)!
Jm+ 3

2
(λm,p)

}−1

the normalization constant. Then the wavefunction can be expanded in terms of the

eigenfunctions of the unperturbed Hamiltonian

Ψ(r, η, φ) =
∞∑

m=0

{
m∑

n=0

∞∑
p=1

an
m,pN n

m,pP
n
m(η)

1√
r
Jm+ 1

2
(λm,pr) cos nφ

+
m∑

n=1

∞∑
p=1

bn
m,pN n

m,pP
n
m(η)

1√
r
Jm+ 1

2
(λm,pr) sin nφ

} (3.18)
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where the an
m,p and bn

m,p denote the Fourier coefficients. The two symmetries of the

region, namely, the axial symmetry and the symmetry with respect to xy-plane allow

decomposition of (3.18) into 4 parts as

Ψ(r, η, φ) =
∞∑

m=0

m∑
n=0

∞∑
p=1

an
2m,pN n

2m,pP
n
2m(η)

1√
r
J2m+ 1

2
(λ2m,pr) cos nφ

+
∞∑

m=0

m∑
n=0

∞∑

k=1

an
2m+1,pN n

2m+1,pP
n
2m+1(η)

1√
r
J2m+ 3

2
(λ2m+1,pr) cos nφ

+
∞∑

m=0

m∑
n=1

∞∑
p=1

bn
2m,pN n

2m,pP
n
2m(η)

1√
r
J2m+ 1

2
(λ2m,pr) sin nφ

+
∞∑

m=0

m∑
n=1

∞∑
p=1

bn
2m+1,pN n

2m+1,pP
n
2m+1(η)

1√
r
J2m+ 3

2
(λ2m+1,pr) sin nφ

(3.19)

where each part can be treated separately. By employing the relations [1]

ηP n
m(η) =

1

(2m + 1)

[
(m + 1)P n

m+1(η) + (m− n + 1)P n
m−1(η)

]

(1− η2)
d

dη
P n

m(η) =
1

(2m + 1)

[
(m + 1)(m + n)P n

m−1(η)−m(m− n + 1)P n
m+1(η)

]

1

ξ
Jν(ξ) =

1

2ν
[Jν−1(ξ) + Jν+1(ξ)]

d

dξ
Jν(ξ) =

1

2
[Jν−1(ξ)− Jν+1(ξ)]

(3.20)

between the associated Legendre functions and the Bessel functions, the expression

H1P
n
m(η)

1√
r
Jm+ 1

2
(λm,kr) cos nφ

= c

{
−λ2

m,pP
n
m(η)

1√
r
Jm+ 1

2
(λm,pr)− 3λ2

m,p×

[
(m− n + 1)(m− n + 2)

(2m + 1)(2m + 3)
P n

m+2(η)
1√
r
Jm+ 5

2
(λm,pr)

−2m2 − 2n2 + 2m− 1

(2m− 1)(2m + 3)
P n

m(η)
1√
r
Jm+ 1

2
(λm,pr)

+
(m + n)(m + n− 1)

(2m + 1)(2m− 1)
P n

m−2(η)
1√
r
Jm− 3

2
(λm,pr)

]}
cos nφ

(3.21)

can be derived after a long computation and will be used to appraise the matrix
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elements of the operator H1. We now substitute the first part of the expansion

(3.18) in the equation

− [H0 +H1] Ψ(r, η, φ) = EΨ(r, η, φ)

and use (3.21) which result in

∞∑
m=0

m∑
n=0

∞∑
p=1

an
2m,p

{
(1 + c) λ2

2m,pN n
2m,pP

n
2m(η)

1√
r
J2m+ 1

2
(λ2m,pr)

+3cλ2
2m,p×

[
(2m− n + 1)(2m− n + 2)

(4m + 1)(4m + 3)
N n

2m,pP
n
2m+2(η)

1√
r
J2m+ 5

2
(λ2m,pr)

−8m2 − 2n2 + 4m− 1

(4m− 1)(4m + 3)
N n

2m,pP
n
2m(η)

1√
r
J2m+ 1

2
(λ2m,pr)

+
(2m + n)(2m + n− 1)

(4m + 1)(4m− 1)
N n

2m,pP
n
2m−2(η)

1√
r
J2m− 3

2
(λ2m,pr)

]}
cos nφ

= E

∞∑
m=0

m∑
n=0

∞∑
p=1

an
2m,pN n

2m,pP
n
2m(η)

1√
r
J2m+ 1

2
(λ2m,pr) cos nφ.

(3.22)

Recalling the truncation order notations adopted in Chapter 2, that is M and P ,

we truncate the infinite series in (3.22) so that, m = 0, 1, . . . ,M , n = 0, 1, . . .m and

p = 1, 2, . . . , P . The double sum
M∑

m=0

m∑
n=0

can be reordered as
M∑

n=0

M∑
m=n

as it has

been done in Section 2.2, which permits the removal of
M∑

n=0

implied by the linear
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independence of cos nφ. Then (3.22) yields M + 1 equations of the form

M∑
m=n

P∑
p=1

an
2m,p

{
(1 + c) λ2

2m,pN n
2m,pP

n
2m(η)

1√
r
J2m+ 1

2
(λ2m,pr)

+3cλ2
2m,p×

[
(2m− n + 1)(2m− n + 2)

(4m + 1)(4m + 3)
N n

2m,pP
n
2m+2(η)

1√
r
J2m+ 5

2
(λ2m,pr)

−8m2 − 2n2 + 4m− 1

(4m− 1)(4m + 3)
N n

2m,pP
n
2m(η)

1√
r
J2m+ 1

2
(λ2m,pr)

+
(2m + n)(2m + n− 1)

(4m + 1)(4m− 1)
N n

2m,pP
n
2m−2(η)

1√
r
J2m− 3

2
(λ2m,pr)

]}

= E

M∑
m=n

P∑
p=1

an
2m,pN n

2m,pP
n
2m(η)

1√
r
J2m+ 1

2
(λ2m,pr)

(3.23)

corresponding to each n = 0, 1, . . .M . Now, we multiply (3.23) by

N2l,sP
n
2l(η)

1√
r
J2l+ 1

2
(λ2l,sr), l = n, n + 1, . . . , M s = 1, 2, . . . , P

and integrate over the region [−1, 1] × [0, R] with respect to the weight function

w(r) = r2 which gives
M∑

m=n

P∑
p=1

[hl,m,s,p − E] an
2m,p = 0 (3.24)

for each l = n, n+1, . . . M and s = 1, 2, . . . P where n is assumed to be fixed. Recall

also that n = 0, 1, . . . M , that is, (3.24) will be solved M + 1 times. Making use of

the identities (3.20) and the integral [59]

∫ R

0

rJν(αr)Jν(βr)dr =
R

α2 − β2
[αJν+1(αR)Jν(βR)− βJν(αR)Jν+1(βR)]
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we evaluate hl,m,s,p as

hl,m,s,p =





λ2
2l,s

(
1 + 2c

3n2 − 2l(2l + 1)

(4l − 1)(4l + 3)

)
δs,p if l = m

2c
λ2l,sλ2l+2,p

λ2
2l,s − λ2

2l+2,p

√
[(2l + 1)2 − n2] [(2l + 2)2 − n2]

(4l + 1)(4l + 5)
if l = m− 1

−2c
λ2l,sλ2l−2,p

λ2
2l−2,p − λ2

2l,s

√
[(2l − 1)2 − n2] [4l2 − n2]

(4l + 1)(4l − 3)
if l = m + 1

(3.25)

which may be regarded as entries of a block matrix, say H := [Hl,m], where (l, m)

label the blocks and (s, p) the entries of each block. Equation (3.24) describes then

an algebraic eigenvalue problem for the eigenvalues of the block matrix H. A similar

eigenvalue problem is obtained if the second part of the expansion (3.18) is used. A

careful inspection of the matrix H shows that it has a symmetric block tridiagonal

structure, hence, the matrix form of (3.24) becomes




Ĥn Un 0 · · · 0

UT
n Ĥn+1 Un+1

...

0 UT
n+1 Ĥn+2

. . . 0
...

. . . . . . UM−1

0 · · · 0 UT
M−1 ĤM







an

an+1

...

aM−1

aM




= E




an

an+1

...

aM−1

aM




(3.26)

where we have set
Ĥm := Hm,m

Um := Hm,m+1

for m = n, n + 1, . . . , M . The method exposed in this section seems to be very

efficient and numerically powerfull, which is obvious from the fact that the matrix

elements can be evaluated analytically and very rapidly. Moreover, the block tridiag-

onal and symmetric structure of the matrix reduces considerably the computer time

required for this evaluation. On the other hand, the perturbation is regular, since

the coefficient c of the perturbation term H1 is smaller than 1 for all possible values

of b > a > 0, which guaranties the convergence.
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3.3 A Billiard Family Depending on a Parameter:

Classical and Quantum Mechanics

As a second application, we consider a family of billiards, defined by the shape

function

f(θ) = 1 + δ cos2 θ, where 0 ≤ δ < 1. (3.27)

More precisely, the region D is,

D =
{
(r, θ, φ)

∣∣0 ≤ r ≤ 1 + δ cos2 θ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π
}

. (3.28)

Despite its simple form, this function generates various shapes becoming nonconvex

for
1

2
< δ < 1 and clearly becomes the unit ball for the special choice δ = 0. To

our knowledge, this billiard has not been studied earlier, neither classically nor as a

quantum system, hence, we are not certain whether or not it may be important from

a physical point of view. However, it seems to provide a good testing ground for our

method.

Hereafter, the billiard (3.28) shall be refereed to as δ-billiard. In fact, it is beyond

the scope of this study to investigate classical behavior of billiard systems, yet, one

may wonder if the δ-billiards exhibit classical or regular motion. Therefore, we

studied the classical motion in the two dimensional billiard

B =
{
(r, θ)|0 ≤ r ≤ 1 + δ cos2 θ, 0 ≤ θ ≤ 2π

}
(3.29)

generating D for simplicity. We use the method described by Berry [9], the details

of which are given below.

Consider a particle moving in a closed region in the plane. At impact with the

boundary, it is reflected according to the rule ”angle of incidence equals angle of

reflection” and between impacts it moves in straight line trajectories. Therefore an

orbit (or trajectory) is completely determined by giving the positions and directions

of the particle immediately after each impact. The position round the boundary

can be specified in different ways according to the parametrization of the curve -

arc length (s) or polar angle(φ) or direction of the counterclockwise directed tangent

(ψ) measured from the origin. Direction can be described by the angle (α) between

the orbit and the counterclockwise directed tangent or equivalently by the tangential
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α1

α1
ψ1

x
φ1

y

ψ0

α0

Figure 3.4: Classical Motion in Two-Dimensional Billiard

momentum p = cos α (see Figure 3.4). In terms of the arc length and the tangential

momentum the discrete dynamics of the system is a two dimensional mapping M of

the form (
sn+1

pn+1

)
= M

(
sn

pn

)
(3.30)

and is nonlinear in general. The phase space of the system is then restricted to the

rectangle −1 ≤ p ≤ 1 , 0 ≤ s ≤ L, where L is the length of the boundary curve.

One can show that in terms of s and p the mapping M is area preserving, i.e., it

satisfies
∂(sn+1, pn+1)

∂(sn, pn)
= det

(
∂sn+1

∂sn

∂sn+1

∂pn

∂pn+1

∂sn

∂pn+1

∂pn

)
= 1.

Started with the initial position-direction pair (s0, p0), an orbit in the phase space

can be represented in three different ways: N points can be encountered repeatedly,

which corresponds to periodic orbit case; the orbit can be given by a smooth curve,

called invariant curve, which shows the existence of a constant of motion, and the

motion is regular; the orbit can be specified by an area in the phase space, that is,

the motion is not restricted by any conserved quantity and is said to be chaotic.

We now apply the method of Berry to the two dimensional δ-billiard (3.29). Fig-

ures 3.5, 3.6, and 3.7 show the form of the billiard for δ = 0.1, 0.5, 0.9 respectively.
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Figure 3.5: Two-Dimensional δ-billiard with δ = 0.1

Figure 3.6: Two-Dimensional δ-billiard with δ = 0.5

Figure 3.7: Two-Dimensional δ-billiard with δ = 0.9
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The billiard mapping M can be constructed by means of the following relations

between the arc length s of the curve measured from the origin, the turning angle ψ

(angle between the forward tangent and the positive x-axis), the polar angle φ and

the angle α between forward tangent and the orbit. Observe that as a function of

the polar angle φ, the boundary curve can be written as r = 1+δ sin2 φ, so that then

the arc length s can be computed from

s =

∫ φ

0

[
(r′(t))2 + r2(t)

]1/2
dt.

On the other hand, the relation between the turning angle and the arc length is

known to be

ψ =
π

2
+

∫ φ

0

κ(t)
[
(r′(t))2 + r2(t)

]1/2
dt

where κ(t) is the local curvature. It can be seen from Figure 3.4 that the slope

of the trajectory between two bounces is
y(φ1)− y(φ0)

x(φ1)− x(φ0)
and is also expressible as

tan(ψ0 + α0). Since

x(φ) = r(φ) cos φ = (1 + δ sin2 φ) cos φ

y(φ) = r(φ) sin φ = (1 + δ sin2 φ) sin φ

we obtain
r(φ1) sin φ1 − r(φ0) sin φ0

r(φ1) cos φ1 − r(φ0) cos φ0

=
sin(ψ0 + α0)

cos(ψ0 + α0)
.

This relation can be simplified as

r(φ1) sin(φ1 − ψ0 − α0) = r(φ0) sin(φ0 − ψ0 − α0)

Figure 3.4 shows that the slope of the orbit through two consecutive bounces can be

also given by tan(ψ1 − α1). Hence, we have

tan(ψ0 + α0) = tan(ψ1 − α1).

We express the curvature

κ(φ) =
|2(r′(φ))2 + r2(φ)− r(φ)r′′(φ)|

((r′(φ))2 + r2(φ))3/2

of the boundary curve as a function of the polar angle and employ these relations to

construct the following algorithm for computing successive bounces.
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Algorithm

Given the initial position by the polar angle φ0 and the angle α0, compute ψ0, s0

and p0 from the equations

ψ0 =
π

2
+

∫ φ0

0

2δ2 sin2(2t) + (1 + δ sin2 t)2 − 4δ2 cos2(2t)

δ2 sin2(2t) + (1 + δ sin2 t)2
dt

s0 =

∫ φ0

0

[
δ2 sin2(2t) + (1 + δ sin2 t)2

]1/2
dt

p0 = cos(α0),

using a suitable quadrature for computation of ψ0 and s0 . From n = 0 to n = N

repeat the following steps:

1. Solve the equation

(1 + δ sin2 φn+1) sin(φn+1 − αn − ψn) = (1 + δ sin2 φn) sin(φn − αn − ψn)

for φn+1. Obviously, the equation has two solutions in [0, 2π], one of which is

φn.

2. Compute the turning angle ψn+1 from the following expression

ψn+1 =
π

2
+

∫ φn+1

0

2δ2 sin(2t) + (1 + δ sin2 t)2 − 4δ2 cos2(2t)

δ2 sin2(2t) + (1 + δ sin2 t)2
dt

3. Evaluate αn+1 from

αn+1 = ψn+1 − αn − ψn

4. Calculate

sn+1 =

∫ φn+1

0

[
δ2 sin2(2t) + (1 + δ sin2 t)2

]1/2
dt

pn+1 = cos(αn+1)

This algorithm is well suited for rapid computer calculations. We computed 800

successive bounces of an orbit starting with φ0 = 0.8, α0 = 0.6 for the billiards given

in Figures 3.5, 3.6, 3.7. For approximate evaluation of the integrals we have used the

IMSL Library routine called QDAGS. From Figures 3.8, 3.9 and 3.10 we see how the

orbits so obtained show themselves in the phase space (s, p) for the corresponding

billiards. It is obvious that for δ = 0.1 the motion is regular, since the orbit forms a
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curve in the phase space, for δ = 0.5 and δ = 0.9 the orbit is represented by an area

which indicates the presence of a chaotic motion.

Next, consider the three-dimensional quantum δ-billiards (3.28) for the same

values of the parameter δ, i.e., δ = 0.1, 0.5, 0.9 (see Figures 3.11,3.12,3.13). The

shape function in terms of the transformed variable η, becomes simply

F (η) = 1 + δη2 (3.31)

so that the truncated shape function G(η) is exactly F (η). The derivatives of F (η)

can be easily computed and the entries of the coefficient matrices read as,

ân
i,j = γ

(n)
i+n−1,j+n−1,0 + 2δ(1 + 2δ)γ

(n)
i+n−1,j+n−1,2 − 3δγ

(n)
i+n−1,j+n−1,4

b̂n
i,j = 2(1− δ)γ

(n)
i+n−1,j+n−1,0 + 2δ(5− 3δ)γ

(n)
i+n−1,j+n−1,2

−4(j + n− 1)(j + n)δ
[
γ

(n)
i+n−1,j+n−1,2 + δγ

(n)
i+n−1,j+n−1,4

]

+4jδ
[
γ

(n)
i+n−1,j+n,1 + δγ

(n)
i+n−1,j+n,3

]

ĉn
i,j = (j + n− 1)(j + n)

[
γ

(n)
i+n−1,j+n−1,0 + 2δγ

(n)
i+n−1,j+n−1,2 + δ2γ

(n)
i+n−1,j+n−1,4

]

d̂n
i,j = γ

(n)
i+n−1,j+n−1,0 + 4δγ

(n)
i+n−1,j+n−1,2 + 6δ2γ

(n)
i+n−1,j+n−1,4

+4δ3γ
(n
i+n−1,j+n−1,6 + δ4γ

(n)
i+n−1,j+n−1,8.

(3.32)

The three dimensional δ-billiard is also symmetric with respect to the xy-plane,

equivalently, with respect to η = 0, therefore, eigenvalues corresponding to even and

odd eigenfunctions in η must be calculated separately. We have obtained 6 particular

spectra, namely, eigenvalues related to the even and odd eigenfunctions in η, for δ-

billiards with δ = 0.1, 0.5, and 0.9. We have also plotted the Nearest Neighbor

Spacing Histograms for these eigenvalue sets and observed good agreement with the

theoretical models. The results and a detailed discussion can be found in Chapter 4.
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Figure 3.8: Phase space of δ-billiard with δ = 0.1
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Figure 3.9: Phase space of δ-billiard with δ = 0.5
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Figure 3.10: Phase space of δ-billiard with δ = 0.9
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Figure 3.11: Three-Dimensional δ-billiard with δ = 0.1

Figure 3.12: Three-Dimensional δ-billiard with δ = 0.5

Figure 3.13: Three-Dimensional δ-billiard with δ = 0.9
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Chapter 4

Numerical Results and

Discussion

In this chapter we present the results and discuss in detail the numerical methods,

algorithms and computer softwares necessary to perform the numerical implementa-

tions.

4.1 Numerical Results for the Prolate Spheroidal

Billiard

The results related to the first example introduced in Chapter 3, namely, the prolate

spheroid are shown in this section. They include six different sets of eigenvalues.

More precisely, we consider three particular sets of values for the parameters a and

b. Each set provides two classes of spectra which have been computed using both

our method and that of Moszkowski. They can be listed as:

• 1. Eigenvalues corresponding to eigenfunctions even in η and even in φ for a

prolate spheroid with a = 1, b = 1.01 (Table 4.1).

• 2. Eigenvalues corresponding to eigenfunctions odd in η and even in φ for a

prolate spheroid with a = 1, b = 1.01 (Table 4.2).

• 3. Eigenvalues corresponding to eigenfunctions even in η and even in φ for a

prolate spheroid with a = 1, b = 1.5 (Table 4.3).
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• 4. Eigenvalues corresponding to eigenfunctions odd in η and even in φ for a

prolate spheroid with a = 1, b = 1.5 (Table 4.4).

• 5. Eigenvalues corresponding to eigenfunctions even in η and even in φ for a

prolate spheroid with a = 1, b = 2 (Table 4.5).

• 6. Eigenvalues corresponding to eigenfunctions odd in η and even in φ for a

prolate spheroid with a = 1, b = 2 (Table 4.6).

We have employed two different types of software, namely, Fortran and Math-

ematica [61]. The method of Moszkowski needs the zeros of the spherical Bessel

functions which have been computed using the Mathematica package BesselZeros

and stored in a data file. This data is required to evaluate the entries of the sym-

metric matrix H given in (3.26). A Fortran program performs this evaluation within

a desired precision and then calls two EISPACK routines to find the eigenvalues of

the matrix. The first routine, called TRED2 reduces H to a tridiagonal form, and

the second one, called TQL2 computes the eigenvalues of the resulting matrix. We

have observed that the method is very efficient in the sense of computing time and

numerical performance.

The numerical implementation of our method is much more complicated. In order

to follow up the procedure and reduce the size of the memory, we executed each step

of the method in an individual computer program. First, a Fortran program evaluates

and stores the coefficients γ
(n)
i,j,k. A second Fortran program computes and stores the

coefficient matrices Ân, B̂n, Ĉn and D̂n. Then this data is used in a Mathematica

program which performs the Cholesky decomposition of Ân and consequently gives

the matrices Qn, Rn and Tn, the numbers µn
i , the orders νn

i of the Bessel functions

and their zeros λi,s. Another Fortran program evaluates the integrals I(ρ, µ, a, σ, b)

and the matrices Ĥ and Ŵ. The last Fortran program calls the EISPACK routine

QZIT, based on the QZ-factorization method for computation of the eigenvalues of

the generalized eigenvalue problem

Ĥx = EŴx. (4.1)

Truncation orders of the shape function have been taken as K = 8, K = 16

and K = 20 for the cases a = 1, b = 1.01, a = 1, b = 1.5 and a = 1, b = 2
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respectively. This choice has been done after checking the precision of the eigenvalues

obtained by taking two consecutive values of K. To be specific, we have observed

that the significant digits in the computed eigenvalues do not increase by taking

K = 9 in the first case, K = 17 in the second, and K = 21 in the last case.

Thus, for each particular prolate spheroid, we obtained the eigenvalues corresponding

eigenfunctions even and odd in η. Hereafter they shall be refereed to as “even” and

“odd” eigenvalues for brevity. Truncation order M has been taken as 16 for each case

and both the methods, while the truncation order P varies in accordance with M .

Thus, we have solved the problem (4.1) 16 times. More specifically, we have taken

n = 0 and P = 20; n = 1 and P = 19, . . ., n = 16 and P = 4. On the other hand,

we have determined a minimum precision requirement, which has been achieved for

all eigenvalues in the following ranges:

• a = 1, b = 1.01 even eigenvalues in the range 0 − 375; odd eigenvalues in the

range 0− 375

• a = 1, b = 1.5 even eigenvalues in the range 0 − 220; odd eigenvalues in the

range 0− 220

• a = 1, b = 2 even eigenvalues in the range 0−155; odd eigenvalues in the range

0− 155.

Thus, we have observed that it actually suffices to take n = 12, since for larger

values of n the resulting eigenvalues are out of the given ranges. The convergence

rates have been routinely checked one more time, by comparing the results obtained

for two consecutive values of the truncation order M . The tables clearly show that

the accuracy is 7 digits in the case a = 1, b = 1.01, 4 digits in the case a = 1,

b = 1.5 and 3 digits for a = 1, b = 2. The poor convergence in the last case is a

consequence of the “large” value of β = 0.75. In this last example, the significance

of the choice of the shape function clearly shows itself. In fact, the truncation order

K = 20 implies |F (η)−G(η)| ≈ 10−4, i.e., this is a “bad” approximation. On the

other hand, increase of K yields other problems, like large memory requirements.

Furthermore, recalling that the shape function F (η) has been defined as

F (η) = 1 +
∞∑

k=1

αkη
k
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it is also worth mentioning here that it is necessary to have
∑∞

k=1 αkη
k < 1 in

order that the perturbation is regular. For this reason, we have not treated prolate

spheroids with larger values of β. However, in the study of billiard systems the shape

of the billiard is of importance but not its volume, therefore, this additional condition

on the shape function does not restrict the variety of the billiards too much.

The most “expensive” part of the algorithm is the approximate calculation of the

integrals

I(ρ, ν, σ, α, β) =

∫ 1

0

ξρJν(αξ)Jσ(βξ)dξ

and in fact, it takes nearly the whole computing time. We have used the formula [31]

∫ 1

0

ξρJν(αξ)Jσ(βξ)dξ =
ανβσ

2ν+σΓ(ν + 1)Γ(σ + 1)
×

∞∑
i=0

(−1)i(α/2)2i
2F1(−i,−ν + i; σ + 1; β2

α2 )

i!(ρ + ν + σ + 2i + 1)(ν + 1)i

(4.2)

where 2F1 denotes the Hypergeometric function and (ν + 1)i the Pochammer’s sym-

bol. The series has been proven to be convergent for β/α < 1. However, for large

values of α and β the convergence is very slow, so that, the formula (4.2) is meaning-

less. Moreover, the convergence rate of the series cannot be improved by means of

some known methods. Therefore, for large α and β, a suitable quadrature seems to

be more appropriate. One can then take advantage of some standard routines avail-

able elsewhere to evaluate the Bessel functions for small variables and asymptotic

expansions for large variables [59]. For the eigenvalue ranges considered in this work,

relatively small values of α and β have been needed, so, we have applied the formula

(4.2), yet, even in this case we have performed a suitable scaling on the terms of the

series to get better results.

Next, we give the tabulated eigenvalues. In all the tables E(1) denotes eigenvalues

obtained using our method, and E(2) denotes eigenvalues obtained using the method

of Moszkowski.
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Table 4.1: First 60 even eigenvalues for a prolate spheroidal billiard with a = 1 and

b = 1.01

n E
(1)
n E

(2)
n n E

(1)
n E

(2)
n

1 9.8047447 9.8047447 31 161.96988 161.96986

2 32.867762 32.867761 32 161.99303 161.99301

3 32.936688 32.936688 33 162.06243 162.06241

4 33.123826 33.123826 34 162.17791 162.17790

5 39.225609 39.225609 35 162.33921 162.33920

6 66.278007 66.278005 36 162.54596 162.54595

7 66.313557 66.313555 37 162.79772 162.79771

8 66.419504 66.419503 38 163.09393 163.09393

9 66.593947 66.593946 39 163.43399 163.43399

10 66.834143 66.834142 40 199.82184 199.82182

11 81.834023 81.834012 41 199.87228 199.87226

12 82.026250 82.026243 42 200.02307 200.02305

13 82.489096 82.489092 43 200.27261 200.27260

14 88.281146 88.281146 44 200.61845 200.61844

15 109.41235 109.41233 45 201.05744 201.05743

16 109.43946 109.43945 46 201.58596 201.58596

17 109.52067 109.52066 47 223.75105 223.75111

18 109.65554 109.65553 48 223.77192 223.77178

19 109.84339 109.84338 49 223.83435 223.83429

20 110.0833 110.08330 50 223.88109 223.88109

21 110.37419 110.37419 51 223.93827 223.93822

22 135.61419 135.61418 52 224.01140 224.01138

23 135.68947 135.68947 53 224.08359 224.08354

24 135.91179 135.91179 54 224.27011 224.27010

25 136.27261 136.27261 55 224.39027 224.39024

26 136.76108 136.76108 56 224.49759 224.49756

27 150.19793 150.19786 57 224.76577 224.76575

28 150.59847 150.59844 58 224.99324 224.99323

29 151.43987 151.43985 59 225.07432 225.07431

30 156.99778 156.99778 60 225.42288 225.42287
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Table 4.2: First 60 odd eigenvalues for a prolate spheroidal billiard with a = 1 and

b = 1.01

n E
(1)
n E

(2)
n n E

(1)
n E

(2)
n

1 19.951901 19.951901 31 167.36979 167.36979

2 20.111077 20.111077 32 185.65408 185.68407

3 48.332619 48.332619 33 185.88459 185.88458

4 48.377655 48.377654 34 186.42431 186.42431

5 48.510056 48.510055 35 187.23407 187.23406

6 48.724101 48.724101 36 191.71746 191.71744

7 58.979987 58.979987 37 191.73931 191.73929

8 59.448188 59.448188 38 191.80483 191.80480

9 86.651620 86.651617 39 191.91388 191.91387

10 86.682014 86.682012 40 192.06632 192.06630

11 86.772914 86.772912 41 192.50021 192.50020

12 86.923498 86.923496 42 192.78097 192.78096

13 87.132493 87.132492 43 193.10370 193.10370

14 107.39960 107.39960 44 193.46793 193.46793

15 107.50594 107.50594 45 195.61456 195.61456

16 107.80834 107.80834 46 197.13426 197.13426

17 108.28084 108.28084 47 235.73757 235.73756

18 117.52558 117.52557 48 235.78175 235.78174

19 118.45063 118.45063 49 235.91401 235.91399

20 134.52736 134.52736 50 236.13346 236.13345

21 134.55220 134.55220 51 236.43874 236.43873

22 134.62663 134.62662 52 237.29913 237.29913

23 134.75039 134.75038 53 237.84961 237.84961

24 134.92308 134.92307 54 258.05433 258.05429

25 135.41288 135.41288 55 258.07430 258.07430

26 135.72851 135.72851 56 258.13419 258.13413

27 166.43532 166.43531 57 258.23390 258.23390

28 166.49511 166.49510 58 258.37340 258.37335

29 166.67328 166.67327 59 258.77103 258.77099

30 166.96647 166.96647 60 259.02881 259.02875
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Table 4.3: First 60 even eigenvalues for a prolate spheroidal billiard with a = 1 and

b = 1.5

n E
(1)
n E

(2)
n n E

(1)
n E

(2)
n

1 7.9953 7.9953 31 119.90 119.90

2 20.394 20.393 32 120.49 120.48

3 24.986 24.986 33 127.70 127.70

4 30.410 30.410 34 128.87 128.87

5 34.893 34.893 35 130.44 130.44

6 39.909 39.905 36 130.73 130.73

7 44.098 44.097 37 138.02 138.01

8 49.663 49.662 38 138.16 138.12

9 55.982 55.980 39 140.07 140.07

10 56.121 56.121 40 141.88 141.87

11 63.279 63.279 41 143.84 143.84

12 66.357 66.350 42 144.42 144.40

13 66.514 66.512 43 147.84 147.84

14 69.742 69.740 44 148.01 148.01

15 75.053 75.050 45 148.45 148.40

16 77.319 77.317 46 150.47 150.45

17 81.570 81.570 47 154.10 154.09

18 81.579 81.577 48 157.83 157.81

19 84.133 84.115 49 158.28 158.28

20 89.011 89.010 50 163.54 163.48

21 95.037 95.031 51 165.31 165.31

22 97.188 97.187 52 166.25 166.23

23 99.257 99.243 53 167.01 167.01

24 101.81 101.78 54 172.96 172.94

25 106.01 106.01 55 175.57 175.54

26 106.38 106.38 56 180.56 180.56

27 106.66 106.65 57 182.31 182.30

28 111.65 111.64 58 182.82 182.76

29 113.01 113.01 59 184.05 184.03

30 118.28 118.28 60 184.32 184.27
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Table 4.4: First 60 odd eigenvalues for a prolate spheroidal billiard with a = 1 and

b = 1.5

n E
(1)
n E

(2)
n n E

(1)
n E

(2)
n

1 13.316 13.316 31 121.33 121.33

2 17.839 13.839 32 123.31 123.31

3 29.260 29.260 33 124.78 124.76

4 33.727 33.727 34 129.16 129.15

5 39.283 39.282 35 130.97 130.95

6 44.595 44.595 36 130.99 130.98

7 45.584 45.584 37 135.41 135.41

8 52.290 52.287 38 138.43 138.41

9 54.704 54.704 39 140.72 140.70

10 56.106 56.103 40 145.69 145.68

11 61.581 61.580 41 146.84 146.83

12 68.110 68.109 42 148.13 148.13

13 69.125 69.123 43 150.81 150.79

14 75.438 75.438 44 156.09 156.08

15 79.937 79.934 45 159.77 159.73

16 82.032 82.022 46 161.42 161.42

17 83.436 83.436 47 161.46 161.42

18 84.989 84.980 48 162.12 162.10

19 90.084 90.080 49 162.29 162.28

20 91.072 91.070 50 165.57 165.53

21 95.806 95.803 51 166.07 166.05

22 96.546 96.540 52 166.81 166.80

23 101.02 101.02 53 169.45 169.42

24 102.68 102.68 54 171.46 171.41

25 104.02 104.02 55 174.38 174.36

26 111.29 111.29 56 176.69 176.69

27 111.86 111.86 57 178.72 178.68

28 112.32 112.32 58 179.20 179.20

29 117.97 117.96 59 186.67 186.63

30 120.18 120.16 60 187.11 187.07
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Table 4.5: First 60 even eigenvalues for a prolate spheroidal billiard with a = 1 and

b = 2

n E
(1)
n E

(2)
n n E

(1)
n E

(2)
n

1 7.284 7.284 31 100.3 100.3

2 15.20 15.20 32 101.2 101.1

3 21.76 21.76 33 102.8 102.8

4 27.14 27.13 34 103.7 103.6

5 29.25 29.24 35 104.0 104.0

6 33.57 33.57 36 111.6 111.5

7 34.18 34.18 37 113.2 113.0

8 42.43 42.42 38 113.5 113.5

9 43.34 43.30 39 114.2 114.1

10 47.75 47.72 40 117.6 117.4

11 50.42 50.41 41 119.0 119.0

12 51.62 51.62 42 120.5 120.5

13 59.11 59.10 43 123.2 123.0

14 61.28 61.27 44 124.6 124.4

15 61.69 61.69 45 126.0 126.0

16 63.85 68.80 46 126.8 126.8

17 65.56 65.51 47 128.4 128.4

18 68.95 68.94 48 129.4 129.2

19 70.23 70.59 49 131.9 131.9

20 75.45 75.45 50 136.1 136.0

21 79.49 79.45 51 138.9 138.9

22 79.61 79.60 52 141.0 141.0

23 79.76 79.76 53 141.3 141.3

24 80.24 80.22 54 142.4 142.3

25 87.31 87.19 55 143.4 143.1

26 88.63 88.49 56 145.4 145.4

27 89.75 89.72 57 146.1 146.0

28 91.47 91.47 58 146.3 146.2

29 94.89 94.79 59 150.8 150.8

30 95.53 95.51 60 152.5 152.2
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Table 4.6: First 60 odd eigenvalues for a prolate spheroidal billiard with a = 1 and

b = 2

n E
(1)
n E

(2)
n n E

(1)
n E

(2)
n

1 10.76 10.76 31 101.5 101.5

2 16.90 16.90 32 102.1 102.1

3 20.64 20.64 33 102.6 102.6

4 27.51 27.51 34 106.9 106.9

5 34.69 34.68 35 108.5 108.5

6 35.41 35.41 36 109.0 109.0

7 40.21 40.21 37 111.9 111.9

8 41.82 41.81 38 113.1 113.1

9 44.21 44.21 39 115.0 115.0

10 50.31 50.31 40 115.6 115.6

11 53.04 53.00 41 117.3 117.3

12 53.09 53.09 42 123.4 123.4

13 56.15 56.14 43 125.8 125.8

14 59.86 59.86 44 127.7 127.7

15 60.02 60.00 45 127.8 127.8

16 68.83 68.81 46 128.8 128.8

17 70.32 70.32 47 132.2 132.2

18 70.33 70.33 48 132.9 132.9

19 75.68 75.68 49 133.7 133.7

20 75.87 75.87 50 137.9 137.9

21 78.91 78.91 51 139.0 139.0

22 81.65 81.65 52 139.4 139.4

23 82.26 82.26 53 139.8 139.8

24 85.07 85.07 54 140.7 140.7

25 89.53 89.53 55 144.2 144.2

26 90.03 90.03 56 147.4 147.4

27 91.09 91.09 57 149.6 149.6

28 91.11 91.11 58 153.0 153.0

29 99.65 99.65 59 153.9 153.9

30 100.6 100.6 60 154.3 154.3
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4.2 Numerical Results for the δ-billiard

In this section we exhibit the results obtained for the second example considered in

section 3.2, which we named δ-billiard. We have treated numerically three particular

cases of the parameter δ, i.e., δ = 0.1, 0.5 and 0.9. Because of the symmetric

structure of the region with respect to the η variable, the results have been grouped

in six sets as follows:

• 1. Eigenvalues corresponding to eigenfunctions even in η and even in φ for a

δ-billiard with δ=0.1 (Table 4.7).

• 2. Eigenvalues corresponding to eigenfunctions odd in η and even in φ for a

δ-billiard with δ=0.1 (Table 4.8).

• 3. Eigenvalues corresponding to eigenfunctions even in η and even in φ for a

δ-billiard with δ=0.5 (Table 4.9).

• 4. Eigenvalues corresponding to eigenfunctions odd in η and even in φ for a

δ-billiard with δ=0.5 (Table 4.10).

• 5. Eigenvalues corresponding to eigenfunctions even in η and even in φ for a

δ-billiard with δ=0.9 (Table 4.11).

• 6. Eigenvalues corresponding to eigenfunctions odd in η and even in φ for a

δ-billiard with δ=0.9 (Table 4.12).

We have constructed the same algorithm as for the prolate spheroid and have assigned

a separate computer program for each step of the procedure. Truncation order M

has been taken as 16 again and P varied with M . Specifying a precision for the

computed eigenvalues, we have obtained all the eigenvalues in the following ranges:

• For δ = 0.1 even eigenvalues in the range 0− 300; odd eigenvalues in the range

0− 290

• For δ = 0.5 even eigenvalues in the range 0− 235; odd eigenvalues in the range

0− 215
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• For δ = 0.9 even eigenvalues in the range 0− 180; odd eigenvalues in the range

0− 160.

This yields between 75-106 eigenvalues for each case. The convergence rate has been

checked simply by comparing the results for two consecutive values of the truncation

order M . The accuracy has been observed to be 7 digits for δ = 0.1, 6 digits for

δ = 0.5 and 5 digits for δ = 0.9. It is not surprising that the accuracy for large values

of δ is better than the accuracy for large β values in the prolate spheroid case, since

the δ-billiard is represented by an exact shape function.
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Table 4.7: First 60 even eigenvalues for δ-billiard with delta=0.1

n En n En n En

1 9.2648693 21 109.04901 41 182.13966

2 29.679455 22 122.70606 42 183.85682

3 30.569025 23 123.94873 43 186.52479

4 32.301069 24 126.56978 44 190.03627

5 37.480382 25 130.22474 45 194.31993

6 60.259803 26 134.71446 46 199.30631

7 60.650335 27 135.60845 47 201.48657

8 61.734874 28 141.57409 48 204.00534

9 63.450691 29 147.61835 49 204.17384

10 65.753952 30 147.83988 50 204.73425

11 73.636906 31 148.44418 51 204.78135

12 76.572412 32 148.52729 52 205.76271

13 80.654640 33 149.60912 53 207.13801

14 85.266749 34 151.15737 54 208.91226

15 99.650129 35 152.79380 55 209.61725

16 99.918484 36 153.15113 56 211.08938

17 100.71749 37 155.59581 57 213.67917

18 102.03540 38 158.49972 58 215.69867

19 103.86453 39 161.87156 59 216.68956

20 106.20266 40 181.52288 60 216.73828
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Table 4.8: First 60 odd eigenvalues for δ-billiard with delta=0.1

n En n En n En

1 17.559769 21 122.57297 41 177.32378

2 19.424857 22 122.81398 42 178.08131

3 43.844223 23 123.53441 43 179.95377

4 44.394358 24 124.73127 44 182.25145

5 45.748407 25 126.40166 45 182.62976

6 47.770606 26 128.54752 46 184.20558

7 53.670901 27 131.17296 47 184.98372

8 57.692134 28 134.28392 48 188.15912

9 78.871013 29 150.97369 49 191.78903

10 79.182967 30 151.80400 50 192.96604

11 80.095465 31 153.90056 51 214.33942

12 81.579386 32 157.00606 52 214.84022

13 83.616893 33 160.98186 53 216.29328

14 86.194402 34 165.71539 54 218.65050

15 96.821516 35 166.80616 55 221.74827

16 98.767459 36 171.39408 56 225.62496

17 102.08042 37 174.76614 57 230.20703

18 106.34513 38 174.97499 58 235.30151

19 108.32473 39 175.59104 59 235.45127

20 115.49426 40 176.62946 60 235.49092
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Table 4.9: First 60 even eigenvalues for δ-billiard with delta=0.5

n En n En n En

1 7.63575 21 87.5637 41 138.057

2 19.9003 22 90.5275 42 138.766

3 22.8837 23 96.5736 43 139.999

4 29.1090 24 99.1163 44 140.435

5 32.6498 25 101.907 45 140.625

6 40.4220 26 102.310 46 140.900

7 42.3942 27 102.901 47 142.910

8 46.0214 28 104.310 48 146.518

9 51.0549 29 106.808 49 149.079

10 51.7918 30 109.750 50 154.247

11 59.8284 31 112.445 51 154.383

12 61.0811 32 115.087 52 155.271

13 67.7435 33 118.767 53 162.552

14 69.0006 34 119.767 54 164.716

15 71.4522 35 121.279 55 164.945

16 74.3095 36 124.331 56 168.682

17 76.0218 37 126.662 57 168.841

18 76.7052 38 127.649 58 169.138

19 80.2864 39 131.369 59 171.490

20 82.0830 40 134.833 60 174.826
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Table 4.10: First 60 odd eigenvalues for δ-billiard with delta=0.5

n En n En n En

1 12.2859 21 87.3057 41 137.826

2 16.9854 22 90.8215 42 141.256

3 29.1935 23 96.4084 43 144.165

4 31.6739 24 98.3090 44 145.778

5 36.0811 25 99.1083 45 148.008

6 39.4753 26 103.695 46 149.735

7 43.8364 27 104.767 47 152.223

8 51.8458 28 105.833 48 153.921

9 53.3723 29 112.973 49 155.976

10 54.8707 30 113.474 50 156.854

11 58.0045 31 115.462 51 160.070

12 62.8447 32 120.557 52 162.148

13 64.1069 33 120.560 53 162.642

14 69.9554 34 122.691 54 164.464

15 72.5582 35 122.844 55 166.382

16 80.7841 36 126.835 56 167.847

17 82.8514 37 127.398 57 168.823

18 83.2611 38 130.077 58 170.516

19 84.7115 39 131.256 59 173.116

20 85.7076 40 136.363 60 174.069
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Table 4.11: First 60 even eigenvalues for δ-billiard with delta=0.9

n En n En n En

1 6.5913 21 67.529 41 108.42

2 15.127 22 74.879 42 109.75

3 17.743 23 75.745 43 112.39

4 25.933 24 76.614 44 114.58

5 27.720 25 77.800 45 115.56

6 29.957 26 80.657 46 116.44

7 32.317 27 80.675 47 117.26

8 36.664 28 82.889 48 117.89

9 39.812 29 86.044 49 118.21

10 42.251 30 88.581 50 119.42

11 46.868 31 89.105 51 122.22

12 50.195 32 91.380 52 125.48

13 52.051 33 93.106 53 129.76

14 55.007 34 93.535 54 130.53

15 55.208 35 96.381 55 131.48

16 58.677 36 101.18 56 132.12

17 60.098 37 101.20 57 138.53

18 64.850 38 105.54 58 138.96

19 65.592 39 106.52 59 139.12

20 66.999 40 107.47 60 139.91
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Table 4.12: First 60 odd eigenvalues for δ-billiard with delta=0.9

n En n En n En

1 9.0270 21 70.377 41 109.47

2 14.913 22 70.743 42 113.83

3 21.387 23 73.273 43 115.17

4 24.697 24 77.175 44 115.94

5 28.845 25 79.103 45 116.21

6 30.137 26 86.373 46 117.71

7 39.380 27 87.371 47 119.04

8 39.402 28 87.410 48 119.33

9 41.381 29 88.484 49 121.54

10 44.859 30 90.092 50 122.34

11 45.154 31 90.765 51 123.98

12 47.107 32 91.159 52 124.49

13 50.952 33 93.410 53 129.64

14 57.899 34 95.753 54 130.65

15 58.223 35 95.954 55 130.81

16 62.238 36 100.41 56 131.87

17 63.698 37 101.54 57 136.95

18 65.805 38 103.65 58 136.99

19 67.192 39 107.24 59 139.86

20 67.325 40 108.51 60 140.37
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4.3 Statistical analysis of the spectra

Statistical analysis performed in this study includes only plotting the nearest neigh-

bor spacing histogram for a specific eigenvalue class and comparing it with the the-

oretical models given in Section 1.2. However, since all the theoretical models have

mean unity, one must “unfold” the original spectra first as described in [11]. In other

words, the sequence {En}N
n=1 of eigenvalues must be transformed to a new sequence

having mean spacing unity. The usual procedure is to use the transformation

xn = N(En), n = 1, 2, . . . , N, (4.3)

where N(E) is the so called spectral staircase or counting function and counts the

number of eigenvalues≤ E. This function is defined as

N(E) =

∫ E

0

ρ(E ′)dE ′ (4.4)

where ρ(E) is the eigenvalue density function. It has been shown by Balian and

Bloch [5] that for three-dimensional regions enclosed by a smooth surface, ρ(E) has

an asymptotic expansion of the form

ρ(E) =
V
√

E

4π2
± S

16π
+

1

12π2
√

E

∫

S

∫
1

2

(
1

R1

+
1

R2

)
dS + · · · (4.5)

where V and S are the volume and the surface area of the billiard respectively while

R1 and R2 are the two principal radii of curvature at each point of the boundary.

The - and + signs correspond to Dirchlet and Neumann type boundary conditions

respectively. For a billiard defined by the truncated shape function

G(η) = 1 +
K∑

k=1

αkηk

the volume V can be obtained evaluating the integral

V =
2π

3

∫ 1

−1

[G(η)]3 dη (4.6)

and the surface area S is computed from

S = 2π

∫ 1

−1

G(η)

√
[G(η)]2 + [G′(η)]2dη. (4.7)
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The two principal radii of curvature can be obtained using the first and second

fundamental forms of the boundary surface, (see [55] for details), so that, the integral

term in (4.5) becomes

−π

{
G(−1) + G(1) +

∫ 1

−1

G(η)dη

}

+π

∫ 1

−1

(1− η2)
{
G′′(η)G(η)− [G′(η)]2

}− ηG′(η)G(η)

[G(η)]2 + [G′(η)]2
dη.

(4.8)

It must be pointed out that the eigenvalue sets obtained for each case represent actu-

ally 1/4-th of the total number of eigenvalues in the corresponding interval. This is

due to the fact that we have separated the eigenfunctions according to their symme-

tries. This separation is necessary for the statistical analysis, since the degeneracies

implied by the symmetries must be avoided.

In what follows, we transformed the eigenvalue sequence {En}N
n=1 to the sequence

{xn}N
n=1 by means of the transformation

xn = N(En) =
1

4

{
V E

3/2
n

6π2
− SEn

16π
+

KE
1/2
n

6π2

}
. (4.9)

The values of V , S and K have been evaluated numerically using Mathematica. Then

we have calculated the spacing sn = xn+1 − xn and have observed that the mean

s of the sequence (sn) is s ≈ 1 in each case. Figures 4.1-4.5 show the distribution

of the sequence (sn) for each eigenvalue set computed for the δ-billiard, that is, the

so-called Nearest Neighbor Spacing (NNS) Histograms. In each Figure, the graph of

the Poisson distribution

p(s) = e−s

is plotted. In the first two figures the NNS histograms of even and odd eigenvalues

of the δ-billiard with δ=0.1 are given. The graph of the probability distribution

function of the Gaussian Orthogonal Ensemble,

p(s) =
π

2
se−

π
4
s2

is also plotted for comparison. The resemblance between the Poisson distribution

function and the histograms is remarkable for both cases. Recall that the two dimen-

sional cross-sectional billiard with δ = 0.1 exhibited regular motion. In the Figures
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4.3 and 4.4 the NNS histograms of even and odd eigenvalues of the δ-billiard with

δ=0.5 are given. The Brody distribution

p(s) = (ν + 1)aνs
ν exp(−aνs

ν+1), (4.10)

where

aν =

[
Γ

(
ν + 2

ν + 1

)]ν+1

. (4.11)

and ν = 0.5 is also plotted and obviously, the agreement between the histogram and

the Brody model is quite good. NNS histograms for the even and odd eigenvalues of

the δ-billiard with δ = 0.9 are given in Figures 4.5 and 4.6 respectively. The graph

of Brody model with ν = 0.9 is also given for comparison. The similarity of the last

two histograms and the Brody distribution is also noticeable.

Despite the relatively small number of eigenvalues included in the histograms, we

have observed good agreement with the theoretical models. Thus, we expect that

increasing the number of the eigenvalues we will get much better statistical results.

However, the main purpose of this work is the development of the method rather

than the statistical investigation, therefore, we do not further extend our statistical

analysis.
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Figure 4.1: Nearest-Neighbor Spacing Histogram for even eigenvalues of the billiard

with δ=0.1. Solid line-Poisson distribution. Dashed line-GOE distribution
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Figure 4.2: Nearest-Neighbor Spacing Histogram for odd eigenvalues of the billiard

with δ=0.1. Solid line-Poisson distribution. Dashed line-GOE distribution
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Figure 4.3: Nearest-Neighbor Spacing Histogram for even eigenvalues of the billiard

with δ=0.5. Solid line-Poisson distribution. Dashed line- Brody distribution with

ν = 0.5
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Figure 4.4: Nearest-Neighbor Spacing Histogram for odd eigenvalues of the billiard

with δ=0.5. Solid line-Poisson distribution. Dashed line- Brody distribution with

ν = 0.5
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Figure 4.5: Nearest-Neighbor Spacing Histogram for even eigenvalues of the billiard

with δ=0.9. Solid line-Poisson distribution. Dashed line- Brody distribution with

ν = 0.9
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Figure 4.6: Nearest-Neighbor Spacing Histogram for odd eigenvalues of the billiard

with δ=0.9. Solid line-Poisson distribution. Dashed line- Brody distribution with

ν = 0.9
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Chapter 5

Conclusion

In this thesis we have presented a numerical method for computation of the eigenval-

ues of the Schrödinger equation for a particle moving freely in a closed axisymmetric

three-dimensional region. In the theory of partial differential equations, this is an

eigenvalue problem for the eigenvalues and eigenfunctions of the self-adjoint Laplace

operator subject to some additional conditions. The method employs an unusual

non-orthogonal coordinate transformation leading to an expansion in terms of Bessel

functions with real orders. Therefore, it seems to be interesting from mathematical

point of view. In fact, the expansions in Bessel functions with real orders is not

as common a tool as the expansions in terms of Bessel functions with integral or

half-an-odd integral orders.

The method is also interesting from classical and quantum mechanical points of

view, more precisely, in the study of quantum chaos, since it deals with quite gen-

eral three-dimensional billiard systems. Unlike the boundary element or collocation

methods resulting in a nonlinear problem, our method ends up with a generalized

matrix eigenvalue problem, which is more appropriate in quantum mechanics. A

similar matrix eigenvalue problem is obtained if the problem is treated with the

constraint operator method [33] for example, however, this method represents the

wavefunction of a chaotic billiard in terms of the eigenfunctions of a regular billiard.

The expansion basis of our method is closely related to the shape of the billiard,

which seems more natural.

The method has one very serious drawback. It requires computation of integrals

of products of Bessel functions of real orders, which is a very difficult numerical task.
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In this study, computation of such integrals has been done by using a method which

is not numerically efficient, for, it is very “expensive” in the sense of computing time.

Therefore, this problem needs to be reconsidered. Moreover, for each new parameter

the integrals must be computed again. For this reason, the use of an expansion basis

of spherical Bessel functions may seem to be more appropriate. Then, it would be

sufficient to compute the integrals needed to evaluate the matrix elements once, and

use them for each new parameter. Although not reported here, we have tried such a

basis during the period of preparing the thesis. However, we have observed that the

accuracy of the eigenvalues computed in this way is less than the accuracy obtained

using the basis presented here. It must be pointed out that, despite its drawbacks,

the accuracy of our method is quite good compared with the results reported in the

literature.

The second numerical example considered in this thesis is a billiard family de-

pending on a parameter. This billiard has not been investigated before. However,

related statistical results, seem to be very interesting and we expect that they may

attract the attention of people studying chaos in classical and quantum systems.
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