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ABSTRACT

EFFECT OF JACOBIAN EVALUATION ON

DIRECT SOLUTIONS OF THE EULER EQUATIONS

Onur, Ömer

M. S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Sinan Eyi

December 2003, 109 Pages

A direct method is developed for solving the 2-D planar/axisymmetric Euler

equations. The Euler equations are discretized using a finite-volume method with

upwind flux splitting schemes, and the resulting nonlinear system of equations are

solved using Newton’s Method. Both analytical and numerical methods are used for

Jacobian calculations. Numerical method has the advantage of keeping the Jacobian

consistent with the numerical flux vector without extremely complex or impractical

analytical differentiations. However, numerical method may have accuracy problem

and may need longer execution time.

In order to improve the accuracy of numerical method detailed error analyses

were performed. It was demonstrated that the finite-difference perturbation

magnitude and computer precision are the most important parameters that affect the

accuracy of numerical Jacobians. A relation was developed for optimum perturbation

magnitude that can minimize the error in numerical Jacobians. Results show that
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very accurate numerical Jacobians can be calculated with optimum perturbation

magnitude.

The effects of the accuracy of numerical Jacobians on the convergence of flow

solver are also investigated. In order to reduce the execution time for numerical

Jacobian evaluation, flux vectors with perturbed flow variables are calculated for

only related cells. A sparse matrix solver based on LU factorization is used for the

solution, and to improve the Jacobian matrix solution some strategies are considered.

Effects of different flux splitting methods, higher-order discretizations and several

parameters on the performance of the solver are analyzed.

Keywords: Direct Flow Solution, 2-D Planar/Axisymmetric Euler Equations,

Newton’s Method, Numerical Jacobians, Analytical Jacobians, Sparse Matrix

Solvers, Upwind Flux Splitting Methods
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ÖZ

JACOBIANLARIN DEĞERLENDİRİLMESİNİN

EULER DENKLEMLERİNİN DİREKT ÇÖZÜMLERİNE ETKİSİ

Onur, Ömer

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Sinan Eyi

Aralık 2003, 109 sayfa

2-boyutlu düzlemsel/eksensimetrik Euler denklemleri için bir direkt çözüm

metodu geliştirilmiştir. Euler denklemleri akış yönlü akı bölme yöntemlerinin

kullanıldığı bir sonlu-hacim metodu ile ayrıştırılmış, ve ortaya çıkan doğrusal

olmayan denklemler sistemi Newton Metodu ile çözülmüştür. Jacobian

hesaplamalarında analitik ve sayısal metodların her ikisi de kullanılmıştır. Sayısal

metod çok karışık yada uygulanamayan analitik türevler içermeden Jacobianı sayısal

akı yöneyiyle tutarlı olarak saklama yararına sahiptir. Buna rağmen, sayısal metodun

doğruluk problemi olabilir ve daha uzun uygulama zamanı gerektirebilir.

Sayısal metodun doğruluğunu ilerletmek için detaylı hata analizleri yapılmıştır.

Gösterilmiştir ki sonlu-farklar değiştirme büyüklüğü ve bilgisayar kesinliği sayısal

Jacobianların doğruluklarını etkileyen en önemli parametrelerdir. Sayısal

Jacobianlardaki hatayı en aza indirgeyen en uygun değiştirme büyüklüğü için bir
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bağlantı geliştirilmiştir. Sonuçlar en uygun değiştirme büyüklüğü kullanılarak çok

doğru sayısal Jacobianların hesaplanmasının mümkün olduğunu göstermiştir.

Sayısal Jacobianların doğrulularının akış çözücünün yakınsaması üserine

etkileri de incelenmiştir. Sayısal Jacobianları değerlendirilmesindeki uygulama

zamanını düşürmek için, değiştirilen akış değişkenlerini içeren akı yöneyleri sadece

ilgili hücrelerde hesaplanmıştır. Akış çözümü için LU çarpanlarına ayırma yöntemini

temel alan bir seyrek matris çözücü kullanılmıştır ve Jacobian matris çözümünü

geliştirmek için bazı stratejiler uygulanmıştır. Farklı akı bölme yöntemlerinin,

yüksek-dereceli ayrıştırmaların, ve birçok parametrenin çözücünün performansı

üzerindeki etkileri analiz edilmiştir.

Anahtar Kelimeler: Direkt Akış Çözümü, 2-Boyutlu Düzlemsel/Eksensimetrik Euler

Denklemleri, Newton Metodu, Sayısal Jacobianlar, Analitik Jacobianlar, Seyrek

Matris Çözücüleri, Akış Yönlü Akı Bölme Yöntemleri
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Computational Fluid Dynamics (CFD) has become a valuable tool and being

widely used in all areas of science and engineering with the rapid progress in the

computer technology. Many methods have been developed to understand the physics

of the flow. These analyses provide a level of detail that is difficult to match with

alternative analytical and experimental methods. Considering the high time and work

cost of other methods, the advantage and importance of predicting the flow physics

with CFD models is increasing day by day.

Many problems of interest in science and engineering only involve steady

fluid flow; even the design of aerospace vehicles is predominated by steady flows.

The mission performance of the vehicle is usually determined by its capability in

steady flight regimes like cruise, and transient maneuvers have usually secondary

influence. However, most of the CFD methods in common use solve an unsteady

system of equations although the problem of interest may be steady. The use of the

unsteady equation system is obviously appropriate for unsteady flows. For steady

flows, the equilibrium solution is found by advancing the unsteady equation in time

until a steady state is achieved.

  The use of unsteady equations for finding steady solutions is very important

in the development of CFD solution algorithms, and the resulting codes are efficient
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and robust. However, such computation of steady flows may not be the best way.

The steady flow can be obtained using “direct” solution methods. Direct solution

methods consider the domain as a whole and compute the steady flow without an ad-

vance in time of an unsteady analysis. Indeed, for the solution of steady flows with

direct methods, neither time nor any time-like variable appears in the set of govern-

ing equations or the solution algorithm.

Advantages of the direct solution approach may include stability, efficiency,

increased area of applicability, and the availability of additional information about

the flow that can not be reached using unsteady equations. Solving the whole domain

at once without considering any time or any time-like variable makes this approach

much more stable. An increase in efficiency is possible, because generally very small

number of iterations are required by a direct method for the flow to converge. The

increased area of applicability comes out from the ease of obtaining sensitivity de-

rivatives for design optimization, or including structural or thermal parameters in the

system for such analyses.

The direct solution technique is Newton’s method. This method is widely

used for finding the solution of a non-linear system of algebraic equations, and pro-

viding quadratic convergence. Although Newton’s method has been available for

long years, the current development of very powerful computers has now made the

procedure more applicable for extremely large systems of equations of CFD.

Solving the whole domain at once requires the calculation of Jacobian matrix,

which may be very large according to the CFD model used to predict the flow phys-

ics. Also, derivation of the Jacobian matrix entries by analytical means become more

difficult, as the discretization of the fluid flow equations becomes more complex.

Thus, accurate computation of the Jacobians numerically, and fast solution of the

matrix are very important for the performance of direct solution technique.
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1.2 Objective

The first objective of this study is to analyze the accuracy of numerical Jacobi-

ans used in the solver considering the effects of finite-difference perturbation mag-

nitude and computer precision. The second objective is to investigate the effects of

the accuracy of Jacobians on the performance of the direct flow solver in terms of

convergence and CPU time. The third objective is to improve the efficiency of the

Jacobian matrix solution using some strategies like diagonal-term addition, Jacobian

freezing. Also, the developed solver is tested for different flux splitting methods, and

higher-order discretization schemes. A fourth objective can be to investigate the

benefits of using the same flux calculation scheme for both Jacobian and residual

calculation in terms of the convergence of the solver.

1.3 Literature Survey

Newton’s method has been used by several researchers to address a variety of

fluid dynamics problems. In the cited literature, there are a number of common moti-

vations for using Newton’s method to solve the fluid flow. Many researchers were

drawn to Newton’s method because of its quadratic convergence. A flow solution,

which may take hundreds or thousands of iterations with iterative methods, can be

obtained in ten or twenty iterations with Newton’s method. Some researchers have

used Newton’s method for strongly coupled multidisciplinary analyses, which is an-

other important feature of the method.

Wigton [1] calculated the flow about multi-element airfoils based a streamline

formulation of the Euler equations. A Newton’s method was used for the solution of

the multi-element airfoil problem because of the poor convergence rate observed for

transonic calculations using the conventional approach of solving unsteady equa-

tions. Wigton used the symbolic manipulation expert system MACSYMA to com-

pute the Jacobian matrix derivatives and to output the Fortran code. He described a
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technique called nested dissection node reordering which significantly reduces the

storage requirements and factorization time relative to the usual banded matrix ap-

proach. Although it is complicated, the efficiency gains make three-dimensional cal-

culations using Newton’s method practical. This feature is very important and similar

operations are included in today’s advanced sparse matrix solvers.

Bender and Khosla [2] applied Newton’s method to potential and simplified

Navier-Stokes equations to the cavity problem and to transonic airfoils. One inter-

esting feature was the use of a residual reduction correction, which can be very use-

ful in case of poor initial conditions or convergence problems.

One of the best implementations of Newton’s method was transonic airfoil

computation of Venktakrishnan [3]. Van Leer flux-vector splitting and Roe’s flux

difference splitting were applied to full Euler and Navier-Stokes equations. Venktak-

rishnan used nested dissection like Wigton with advanced sparse matrix inversion

routines, and a diagonal term modification that improves the Newton’s method

greatly for convergence even from poor initial guess instead of Bender and Khosla’s

residual reduction. This diagonal term modification is also applied in this study.

Orkwis [4] developed a new Newton’s solver for calculating 2-D planar or axi-

symmetric, laminar or turbulent Navier-Stokes equations. He first analyzed high-

speed planar flows [5] and extended his solver to axisymmetric flows [6]. In all

cases, a second order Roe’s flux difference splitting scheme is used for inviscid flux

calculations. Turbulent flows are calculated using Baldwin–Lomax turbulent model.

Like Wigton, he used the symbolic manipulation system MACSYMA to calculate

exact Jacobian matrix entries. Orkwis mentioned that these Jacobians took approxi-

mately 40000 lines of Fortran code to implement, some of which may not be vectori-

zable. The diagonal term modification of Venktakrishnan is employed in order to

overcome non-optimal initial conditions.
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In the later studies, Orkwis compared the performance of several Newton’s and

quasi-Newton’s method solvers [7]. He showed that despite of not having quadratic

convergence, quasi-Newton’s methods could be more efficient than the exact New-

ton’s method. After his studies with Kim [8] on Jacobian matrix simplification ideas

like partial and global freezing for Newton and Newton-like methods, they showed

that approximate methods can also give quadratic or better convergence rates with

proper implementations.

Felker [9] developed a method for directly solving steady, 2-D, compressible

Navier-Stokes equations with fluid/structure coupling. The inviscid terms are discre-

tized using Roe’s flux difference splitting method. An algebraic eddy viscosity

model represents the effect of turbulence. This fluid dynamics model has been cou-

pled with a finite-element structure model. By this way, both the fluid flow and the

structural deformations in static aeroelasticity are analyzed.  The efficiency of the

full Newton method is compared with that of a modified one and the effect of the

data storage is analyzed.

Whitfield and Taylor [10] presented a Newton-relaxation solver for solving

both 3-D compressible and incompressible flows. High order Roe flux difference

splitting scheme is used. Since obtaining the Jacobian matrix analytically is impracti-

cal for such a discretization, it is approximated using numerical Roe flux vectors.

This is one of the first implementations of numerical Jacobian calculation.

As a continuation of the studies of Whitfield, Vanden [11, 12] applied direct

and iterative methods to solve 3-D Euler equations. Euler equations are discretized

using numerical derivatives of the numerical flux vector. Direct methods include so-

lution of block-tridiagonal systems with a block LU factorization followed by for-

ward or backward substitution. Instead of conventional matrix structure, a diagonal

plane structure was presented to decrease the memory requirement. The robustness

of several iterative methods is verified with comparison with direct methods.
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Orkwis and Vanden [13] combined their studies in order to compare numerical

and analytical approaches for forming the Jacobian matrix that they used. The deri-

vation of the analytical Jacobians using the MACSYMA manipulation system and

the numerical differentiation procedure to find the numerical Jacobians is explained

in detail. They used 2-D laminar compressible Navier-Stokes equations discretized

with Roe flux splitting scheme. Studies over supersonic flat plate and compression

corner geometries showed that numerical method has the practicality and simplicity

advantages over the exact Jacobian approach.

One of the recent studies on flux Jacobians is of Aberle and Shumlak [14].

They used Roe’s approximate Riemann solver over ideal 1-D magneto-

hydrodynamic equations. The accuracy, convergence and performance of the analyti-

cal and numerical methods to determine the flux Jacobians are compared. It is found

that the accuracy and the convergence are identical, while analytical formulation re-

quires less execution time.

1.4 Outline

Chapter 2 introduces the basic theory of 2-D planar/axisymmetric Euler equa-

tions in generalized coordinates. Finite-volume spatial discretization of the govern-

ing equations including Steger-Warming, Van Leer, and Roe’s upwind flux splitting

methods are explained in detail. Higher order discretization schemes are discussed

with the introduction of limiters. In addition, possible boundary conditions for the

flow model are presented.

The direct solution of the Euler equations is studied in Chapter 3. Newton’s

method is introduced, and the numerical and analytical calculations of the flux and

residual Jacobians are explained in detail. The structure of the Jacobian matrix re-

quired in the Newton’s method is discussed. The solution strategies of Jacobian ma-
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trix to improve the performance like freezing and good initial guess are also pre-

sented.

Chapter 4 is related to the accuracy of numerical Jacobians. The effects of fi-

nite-difference perturbation magnitude and computer precision on the accuracy of

numerical Jacobians are investigated. After possible types of errors are explained in

detail, errors between numerical and analytical flux and residual Jacobians are ana-

lyzed for the test case being supersonic ramp. An optimum finite-difference pertur-

bation magnitude is obtained in two ways; using a trial-error procedure and a de-

rived relation from the error analysis. The precision of the computer is discussed.

Several graphical and tabulated results are presented.

The effect of the Jacobians on the performance of the developed direct flow

solver is studied in Chapter 5. The convergence history and CPU time results are

presented for the test case. Comparisons for different flux splitting schemes, higher

order discretizations, and another geometry with different flow conditions are done.

Again, several tabulated and graphical results are presented in this chapter.

Finally, Chapter 6 makes some conclusions about the study and recommenda-

tions for future research.
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CHAPTER 2

FLOW MODEL

2.1 Introduction

The flow model as a whole should have the capability to retain the flow

physics for the given flow conditions. The governing equations of the fluid flow, the

employed discretization scheme, the choice of appropriate boundary conditions, and

the grid density are very important factors for a better flow simulation. With simple

flow models, the high computational cost due to large grid sizes and high-level flow

physics may be reduced, but accuracy of the flow simulation may not be reliable.

In this study, 2-D planar/axisymmetric Euler equations are solved in

generalized coordinate system. Euler equations have capability of solving inviscid

rotational flow. Although the Navier-Stokes equations with turbulence modeling

provide better solution including viscous flow, because of several reasons they are

not used in this study. The main objective of this thesis is to compare the

performance of numerical and analytical Jacobians in terms of accuracy and

convergence. However, it is not easy to obtain analytical Jacobians for Navier-Stokes

equations and turbulence modeling. In addition, the grid size will be larger for

Navier-Stokes equations. This will make the size of Jacobian matrix even larger, and

the solution of this system may not be possible with present computer resources.

Thus, starting with a simpler flow model that retains the requirements is reasonable.

After sufficient effort is done, with the use of new and modified solvers models that

are more complex can be considered.
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2.2 Governing Equations

The universal laws of the conservation of mass, momentum, and energy are the

basis of the fundamental equations of fluid dynamics. The steady, 2-D

planar/axisymmetric Euler equations in Cartesian coordinates [15], written in non-

dimensional form without body forces are;

F(W ) G(W ) H(W ) 0
x y

∂ ∂ σ
∂ ∂

+ + = (2.1)

For a 2-D planar flow σ =0, and for a 2-D axisymmetric flow σ =1, with x and

y the axial and radial directions respectively. Here, the conserved flow variable

vector W, the flux vectors F and G, and the axisymmetric source vector H are:

t

2

t

u
W

v
e

u
u p

F
uv

( e p )u

ρ
ρ
ρ
ρ

ρ
ρ
ρ
ρ

 
 
 =
 
 
 
 
 + =
 
 +  

 

2

t

2

t

v
uv

G
v p

( e p )v

v
uv1H

y v
( e p )v

ρ
ρ
ρ
ρ

ρ
ρ
ρ
ρ

 
 
 =
 +
 +  
 
 
 =
 
 +  

(2.2)

where ρ is the density, u and v are the x and y components of the velocity vector,

respectively, p is the pressure, et is the total energy per unit volume. Pressure is

obtained from the ideal gas relation as:

2 2
t

1p ( 1) e ( u v )
2

γ ρ  = − − +  
(2.3)
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In order to apply the numerical algorithm and boundary conditions easily to an

arbitrary geometry, the governing equations in the physical domain or Cartesian

coordinates must be transformed to the computational domain or generalized

coordinates [15, 16]. Figure 2.1 shows the 2-D coordinate transformation between

physical and computational domains, where x and y are the physical, ξ, and η are the

curvilinear coordinates, respectively.

                  PHYSICAL DOMAIN COMPUTATIONAL DOMAIN

Figure 2.1 Generalized transformation from the physical to the computational
domain

The general transformation and its inverse are of the form:

ξ = ξ (x, y) x = x (ξ, η)

η = η (x, y) y= y (ξ, η) (2.4)

ζ

ξ

∆ξ

∆η

i-1 i i+1
j-1
j
j+1

x

y

ξ

η
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By using the chain rule of partial differentiation, the partial derivatives in the

physical domain become

x x

y y

x

y

∂ ∂ ∂ξ η
∂ ∂ξ ∂η
∂ ∂ ∂ξ η
∂ ∂ξ ∂η

= +

= +
(2.5)

where the metrics ξx, ηx, ξy, ηy are obtained in the following manner. The differential

expressions in their matrix form are:

x y

x y

d dx dy
d dx dy

dx x d x d
dy y d y d

ξ η

ξ η

ξ ξ ξ
η η η

ξ η
ξ η

= +

= +

= +

= +

x y

x y

d dx
d dy

x xdx d
y ydy d
ξ η

ξ η

ξ ξξ
η ηη

ξ
η

    =     
    

    =     
    

(2.6)

Therefore,

1
x y

x y

x x
y y
ξ η

ξ η

ξ ξ
η η

−
   

=   
   

(2.7)

Thus, the transformation metrics are:

x Jyηξ = y Jxηξ = − x Jyξη = − y Jxξη = (2.8)

where J is the coordinate transformation Jacobian, defined as:

1
x y

x y

x x( , ) 1J
y y( x, y ) x y x y
ξ η

ξ η ξ η η ξ

ξ ξ∂ ξ η
η η∂

−

= = = =
−

(2.9)



12

The metrics can be determined by using a finite difference scheme in the

computational domain. Applying this generalized transformation to Equation (2.1),

the following transformed equations are obtained for Euler equations:

ˆˆ ˆ ˆF(W ) G(W ) ˆ ˆH(W ) 0∂ ∂ σ
∂ξ ∂η

+ + = (2.10)

where the flux terms are:

t

x

y

t

1

1

ρ
ρu

Ŵ J
ρv
ρe

ρU
ρuU p

F̂ J
ρvU p

( e p)U

ξ
ξ

ρ

−

−

 
 
 =
 
 
 
 
 + =

+ 
 + 

x

y

t

1
2

t

1

ρV
ρuV η p

Ĝ J
ρvV η p

( e p)V

v
uv1Ĥ J

y v
( e p )v

ρ

ρ
ρ
ρ
ρ

−

−

 
 + =

+ 
 + 
 
 
 =
 
 +  

(2.11)

where U and V are contravariant velocity components defined as,

x y

x y

U u v
V u v

ξ ξ
η η

= +

= +
(2.12)

2.3 Spatial Discretization

One of the most common approaches for spatial discretization is the finite

volume method. In this method, the computational domain is divided into

quadrilateral cells and the flow variables are defined at the cell centers. The grid

points define cell corners and the fluxes are defined at the cell faces.
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The differential form of the steady, 2-D planar/axisymmetric Euler equations

given in Equation (2.10) can be discretized for an arbitrary quadrilateral control

volume as given in Figure 2.1.

ˆF̂ G
Ĥ 0ξ ηδ δ

σ
∆ξ ∆η

+ + = (2.13)

where the spatial derivatives of the flux vectors are written conservatively as flux

balances across the cell.

i 1 / 2, j i 1 / 2, j

i , j 1 / 2 i , j 1 / 2

ˆ ˆ ˆF ( F F )
ˆ ˆ ˆG ( G G )

ξ

η

δ

δ
+ −

+ −

= −

= −
(2.14)

 The i±1/2 and j±1/2 denotes a cell interface and the flow variables are

assumed constant over each cell. The fluxes are calculated at the cell faces by using

the flow variables interpolated from the cell center values according the order of

spatial discretization.

The computational domain is chosen to have equal spacing (∆ξ = ∆η = 1) to

simplify the differencing as shown in Figure 2.2. Equation (2.13) can then be written

as:

i 1 / 2, j i 1 / 2, j i , j 1 / 2 i , j 1 / 2 i , j
ˆ ˆˆ ˆ ˆ( F F ) ( G G ) H 0σ+ − + −− + − + = (2.15)
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Figure 2.2 A typical control volume

The Euler equations have convective flux that represent the inviscid

phenomena and are hyperbolic in nature. There are two different approaches to

calculate the flux. The first approach is central differencing. In this method, the

fluxes are calculated based on the averaged flow variables at the cell interface.

Central schemes are easy to implement, but they require artificial dissipation.

Another approach for the inviscid flux calculations is the upwinding schemes, which

requires no explicit artificial dissipation. In this study, upwinding flux splitting

schemes are used for the spatial discretization of the flux vector.

2.4 Flux Splitting

In general, the flux vectors of Euler equations given in Equation (2.1) have a

special property. Steger and Warming [17] showed that since F and G are

homogeneous functions of degree one in W, flux vectors are exactly equal to their

Jacobian times the flow variable vector:

F=AW G=BW (2.16)

i-1/2,j-1/2 i+1/2,j-1/2

i-1/2,j+1/2 i+1/2,j+1/2

j,2/1iF̂ +j,2/1iF̂ −

2/1j,iĜ +

2/1j,iĜ −

i,j
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where

FA
W
∂=
∂

GB
W
∂=
∂

Considering wave splitting procedure, A and B Jacobian matrices can be

diagonalized as;

-1
AA=Q QΛ ΛΛ -1

BB=Q QΛ ΛΛ (2.17)

where AΛ , BΛ  are the diagonal matrices including eigenvalues of A, B and QΛ is the

matrix of corresponding right eigenvectors.

Since any eigenvalue can be splitted into positive and negative parts, the

positive and negative Jacobian matrices become:

-1 -1 -1
A A A A

-1 -1 -1
B B B B

A=Q ( + )Q Q Q Q Q A A

B=Q ( + )Q Q Q Q Q B B

Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

Λ Λ Λ Λ

Λ Λ Λ Λ

+ − + − + −

+ − + − + −

= + = +

= + = +

(2.18)

Then, the splitted flux vectors are:

F=(A A )W F F
G=(B B )W G G

+ − + −

+ − + −

+ = +

+ = +
(2.19)

F +  is a subvector associated with the positive eigenvalues of A, meaning that it

is a flux in the positive x-direction carrying information from left to right by positive

wave speeds. Since F + is associated only with information coming from upstream,

leftside flow variables W −  are used in its computation. Considering F −  is a

subvector associated with the negative eigenvalues of A, it is computed by rightside

flow variables W + . Similar conditions apply for G+  and G− .
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F A W
F A W

+ + −

− − +

=
=

G B W
G B W

+ + −

− − +

=
=

(2.20)

Implementing this splitting procedure to our case, the interface fluxes given

in Equation (2.15) can be constructed as:

i 1 / 2, j i 1 / 2, j i 1 / 2 , j

i , j 1 / 2 i , j 1 / 2 i , j 1 / 2

ˆ ˆ ˆ ˆ ˆF F (W ) F (W )
ˆ ˆ ˆˆ ˆG G (W ) G (W )

+ − − +
± ± ±

+ − − +
± ± ±

= +

= +
(2.21)

Consequently, the upwind discretized form of the steady, 2-D

planar/axisymmetric Euler equations can be written as:

i 1 / 2, j i 1 / 2, j i 1 / 2 , j i 1 / 2, j

i , j 1 / 2 i , j 1 / 2 i , j 1 / 2 i , j 1 / 2

i , j

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆF (W ) F (W ) F (W ) F (W )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆG (W ) G (W ) G (W ) G (W )

ˆ ˆH(W ) 0σ

+ − − + + − − +
+ + − −

+ − − + + − − +
+ + − −

   + − +   
   + + − +   

+ =

(2.22)

The usage of upwind schemes mainly depends on the flux splitting and

differs by modifications made on the splitting procedure. The main upwind flux

vector splitting schemes are Steger-Warming, and Van Leer are described below.

The flux difference splitting scheme by Roe is also considered. Since direct flow

solution is concerned, any of the schemes could be employed in the discretized

residual and Jacobian calculation. Because of their simplicity, Steger-Warming flux

Jacobians are often used with discretized residuals of any schemes. These are

analyzed detail in the following chapters. However, it can be thought that for a better

convergence, the residual and Jacobian calculations have to be consistent.
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2.4.1 Steger-Warming Flux Vector Splitting

Since eigenvalue splitting is not unique and several splittings are possible, it’s

convenient to define a generalized flux vector in terms of eigenvalues. For steady, 2-

D planar/axisymmetric Euler equations given in Equation (2.10) it can be written as:

1 3 4

1 3 1 4 1

1 3 2 4 2

2 2 2 23
1 1 2

2
2 24 3 4

1 2

2( 1)
2( 1) u ( u ck ) ( u ck )
2( 1) v ( v ck ) ( v ck )

2 ( 1) ( u v ) (( u ck ) ( v ck ) )
2

( 3 )( )c(( u ck ) ( v ck ) )
2 2( 1)

γ λ λ λ
γ λ λ λ
γ λ λ λ

ρ
λγ γ λ

λ γ λ λ
γ

− + + 
 − + + + − 

− + + + − 
 =  − + + + + +
 
 − + + − + − +

−  

(2.23)

where the eigenvalues λi, the speed of sound c and the directional cosines ik  are

defined as:

1 1 2

2 2
3 1 1 2

2 2
4 1 1 2

uk vk

c k k

c k k

λ

λ λ

λ λ

= +

= + +

= − +

(2.24)

2 2
t

1c ( 1) e ( u v )
2

γ γ  = − − +  
(2.25)

1
1 2 2

1 2

2
2 2 2

1 2

kk
k k

kk
k k

=
+

=
+

(2.26)

The ξ-directional flux vector F̂  can be obtained from Equation (2.23) by

replacing k1 and k2 with ξx and ξy, and the η-directional flux vector Ĝ  can be

obtained by replacing k1 and k2 with ηx and ηy, respectively.
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Steger-Warming [17] proposed the following definitions for the splitting of the

eigenvalues. The positive and negative flux vectors are obtained from Equation

(2.23) by substituting all λ’s by λ+’s and λ-’s respectively.

i i
i 2

λ λ
λ± ±

= (2.27)

However, this scheme has problems when eigenvalues are zero being at sonic

points (M=1) and stagnation points (M=0), meaning that the positive and negative

flux vectors are not continuously differentiable. Beside of taking extra cautions in the

differentiation process, the oscillations around discontinuities may be reduced

defining a small number ∈ .

2 2
i i

i 2
λ λ

λ± ± +∈
= (2.28)

2.4.2 Van-Leer Flux Vector Splitting

Van-Leer [18] introduced a different method for splitting fluxes, which is not

based on wave speed splitting. The generalized flux vector is expressed as a function

of contravariant Mach numbers.

• For supersonic flow ( M 1> );

+ = 0− = for M 1≥
(2.29)

0+ = − = for M 1< −
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• For subsonic flow ( M 1< );

( )

1

2
1 2

2

2 2 2

2

1
1 ( U 2c )k u

1c ( M 1) ( k k ) 1 ( U 2c )k v4

U 2a u vU 2c
1 1 2

γ
ρ

γ

γ γ

±

 
 
 − ± +
 
 = ± ± +  − ± +
 
 + − ± + +

+ −  

(2.30)

where M is the contravariant Mach number in ξ or η direction, and the speed of

sound c and the directional cosines ik  are defined in Equations (2.25) and (2.26).

UM
c

= 1 2
1 22 2

1 2

uk vkU uk vk
k k

+= = +
+

(2.31)

Again, the ξ-directional flux vector F̂  can be obtained from Equation (2.30) by

replacing k1 and k2 with ξx and ξy, and the η-directional flux vector Ĝ  can be

obtained by replacing k1 and k2 with ηx and ηy, respectively.

2.4.3 Roe Flux Difference Splitting

Roe [19] extended flux-splitting idea by considering the Riemann problem of

discontinuous flow variables. He showed that with a new definition for the flux

vectors Rankine-Hugonoit relationship holds exactly across a shock.  Instead of

splitting the flux vectors as in Equations (2.19) and (2.20), constant Jacobian

matrices A  and B  are defined as a function of Roe averaged flow variables W

F=AW
G=BW

+ +

+ +

F(W )-F(W )= A (W W )

G(W )-G(W )= B (W W )

− −

− −

−

−
(2.32)
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A  and B  Jacobian matrices can be diagonalized as:

-1
A

-1
A

A=Q Q

A =Q Q

Λ Λ

Λ Λ

Λ

Λ

-1
B

-1
B

B=Q Q

B =Q Q

Λ Λ

Λ Λ

Λ

Λ
(2.33)

where AΛ , BΛ  are the diagonal matrices including eigenvalues of A , B , and QΛ is

the matrix of corresponding right eigenvectors.

+ -1 +
A

+ -1 +
B

F(W )-F(W )= Q Q (W W )

G(W )-G(W )= Q Q (W W )

Λ Λ

Λ Λ

λ

λ

− −

− −

−

−

∑

∑
(2.34)

Considering the positive and negative values of the eigenvalues, the interface

flux vectors can be written in two ways:

A

A

B

-1
i 1 / 2, j i 1 / 2 , j A i 1 / 2, j i 1 / 2, j

0

-1
i 1 / 2, j i 1 / 2 , j A i 1 / 2 , j i 1 / 2 , j

0

-1
i , j 1 / 2 i , j 1 / 2 B i , j 1 / 2 i , j 1 / 2

0

i , j

ˆ ˆ ˆ ˆ ˆF F(W ) Q Q (W W )

ˆ ˆ ˆ ˆ ˆF F(W ) Q Q (W W )

ˆ ˆ ˆ ˆ ˆG G(W ) Q Q (W W )

Ĝ

Λ Λ
λ

Λ Λ
λ

Λ Λ
λ

λ

λ

λ

− + −
± ± ± ±

<

+ + −
± ± ± ±

>

− + −
± ± ± ±

<

= + −

= − −

= + −

∑

∑

∑

B

-1
1 / 2 i , j 1 / 2 B i , j 1 / 2 i , j 1 / 2

0

ˆ ˆ ˆ ˆG(W ) Q Q (W W )Λ Λ
λ

λ+ + −
± ± ± ±

>

= − −∑

(2.35)

Finally, the interface flux vectors that are splitted in Equation (2.21) can be

written as an average of both definitions above.

-1
i 1 / 2, j i 1 / 2 , j i 1 / 2, j A i 1 / 2, j i 1 / 2, j

-1
i , j 1 / 2 i , j 1 / 2 i , j 1 / 2 B i , j 1 / 2 i , j 1 / 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆF F(W ) F(W ) Q Q (W W )
2

1ˆ ˆ ˆˆ ˆ ˆ ˆG G(W ) G(W ) Q Q (W W )
2

Λ Λ

Λ Λ

λ

λ

+ − + −
± ± ± ± ±

+ − + −
± ± ± ± ±

 = + − −  
 = + − −  

∑

∑

(2.36)
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Although Roe’s original notation includes R and L subscripts as the right and

left states respectively, in this study, + and – subscripts are used as positive (right)

and negative (left) states in order to be consistent with the flux vector splitting

notation. Roe averaged density ρ  and any other Roe averaged flow variable W ,

which are required in the calculation of the constant Jacobian matrices, are defined

as:

ρ ρ ρ− +=  
W W

W
ρ ρ

ρ ρ

− − + +

− +

+
=

+
(2.37)

2.5 Higher-Order Schemes with Limiters

 As explained before, the flow variables are assumed constant for a

computational cell given in Figure 2.1. However, the interface fluxes given in

Equation (2.21) or (2.36) require the flow variables on cell faces, i 1 / 2 , jŴ ±
±  or i , j 1 / 2Ŵ ±

± .

A first order interpolation can be realized easily as follows:

 i 1 / 2 i
ˆ ˆW W−

+ = i 1 / 2 i 1
ˆ ˆW W+

+ += (2.38)

For higher order spatial discretizations, these conserved variables are

determined from an upwind-biased interpolation of the primitive variables at cell

centers. This is called MUSCL (Monotonic upstream-centered Scheme for

Conservation Laws) [20] and general form can be written as:

[ ]

[ ]

i 1 / 2 i
i

i 1 / 2 i 1
i 1

ˆ ˆW W ( 1 ) ( 1 )
4

ˆ ˆW W ( 1 ) ( 1 )
4

φ κ κ

φ κ κ

−
+

+
+ +

+

 = + − ∇ + + ∆ 
 
 = − + ∇ + − ∆ 
 

(2.39)
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where the difference operators are:

i i 1 i
ˆ ˆW W+∆ = − i i i 1

ˆ ˆW W −∇ = − (2.40)

Order of the discretization and type of the differencing are determined by

assigning different values to φ  and κ . Considering 0φ =  and 0κ = , a first order

interpolation can be reached. With 1φ =  and 1κ = −  a straight second-order

interpolation can be obtained. By changing the values of these parameters, the order

of accuracy can be increased up to third order.

In higher order spatial discretizations, numerical oscillations are expected

where large flow gradients occur. In order to control and reduce the order in these

regions, flux limiters can be used. Actually, instead of a number φ  can be used as a

limiter, which is a function of differences through their ratio r. The ratio of

differences can be defined as:

i
i

i

r ∆ +∈=
∇ +∈

(2.41)

where ∈  is a small number to prevent the division by zero in the zero gradient flow

regions.

Then, Equation (2.39) can be rewritten as:

[ ]

[ ]

i 1 / 2 i
i

i 1 / 2 i 1
i 1

( r )ˆ ˆW W ( 1 ) ( 1 )
4
( 1 / r )ˆ ˆW W ( 1 ) ( 1 )

4

φ κ κ

φ κ κ

−
+

+
+ +

+

 = + − ∇ + + ∆ 
 
 = − + ∇ + − ∆ 
 

(2.42)
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There are several types of limiter functions, which may change the flux

calculations. Some common limiters are:

• Min-Mod limiter:

( r ) max( 0,min( r,1))φ = (2.43)

• Superbee limiter:

( r ) max( 0,min( 2r,1),min( r,2 ))φ = (2.44)

• Van Leer limiter:

r r
( r )

1 r
φ

+
=

+
(2.45)

• Van Albada limiter:
2

2
r r( r )
1 r

φ +=
+

(2.46)

In the regions of small gradient flows, the value of φ  reaches one and

actually uses no limiter. On the contrary, in the regions of very large gradient flows,

its value goes to zero reducing the interpolation to first order. Van Albada limiter

will be used in this study.

2.6 Boundary Conditions

According to the grid geometry and nature of the problem, several boundary

conditions can be defined for the flow model. Both the selections of the appropriate

boundary conditions and their successful implementation to the problem are very

important. Four types of boundary conditions; inflow-outflow, symmetry and wall

are considered. They are implemented to the flow by ghost cells
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2.6.1 Inflow BC

Supersonic flow is the simplest case. Since all the information travels from

outside into the computational domain, no information travels from inside across the

boundary. In other words, the inflow boundary condition does not require to specify

any variable from interior cells, all of the flow variables are set to the free-stream

values in the ghost cells.

However for subsonic case, information can propagate from inside across the

inflow boundary. Thus, one of the four flow variables has to be specified from inside.

If Riemann invariants are used here, it is assumed that the flow is isentropic at the

inlet boundary. In order to eliminate entropy generation, the inlet region should be

far away from the geometry. At the far field boundary, the density and pressure are

calculated from the speed of sound and entropy.

2.6.2 Outflow BC

The outflow boundary conditions are similar to those in inflow boundary.

Supersonic flow is again the simplest case. In this case no information can travel

upstream of the boundary, so all of the flow variables are extrapolated from the

interior cells. Flow leaving the computational domain is unaffected by the outlaw

boundary condition.

For subsonic flow, information can propagate again across the outflow

boundary. Thus, three of the four flow variables are determined from inside flow,

and one is specified by outflow boundary condition. A typical choice can be to

specify the exit static pressure. If Riemann invariants are used here, it is assumed that

the flow is isentropic at the outlet.
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2.6.3 Symmetry BC

In the symmetry boundary condition, all the flow variables are extrapolated

from the interior cells. If the symmetry line is parallel with the x-axis, flow variables

are equal on both sides of the symmetry boundary, only the negative value of normal

velocity component of the interior cell is assigned to the corresponding ghost cell.

2.6.4 Wall BC

Since inviscid flow is concerned, solid boundary can be treated very similar to

the symmetry boundary. The density, tangential component of the velocity and total

energy are equally extrapolated from the interior cells. According to the meaning of

the wall, the normal component of the velocity is zero preserving no mass flux into

or out of the wall. Only the tangential velocity component is maintained over the

solid boundary. This is realized just as the same in the symmetry boundary, the

normal velocity is defined to have equal magnitude but opposite sign across the

boundary. Pressure can also be extrapolated from normal momentum equation.
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CHAPTER 3

SOLUTION METHOD

3.1 Introduction

The solution method is closely related to the governing equations of the fluid

flow. In iterative methods, whether the problem of interest is steady or unsteady, an

unsteady set of equations is solved. For steady flows, the equilibrium solution is

found by advancing the unsteady equation in time until a steady state is achieved.

Although this iterative procedure can be efficient and robust, it is not clear that it is

the best method for computing steady flows. With direct solution schemes, it is

possible to compute the steady flow without an advance in time of an unsteady

analysis. With direct methods, stability is increased since no time or any time-like

variable appears in the set of governing equations or in the solution algorithm, and

faster convergence is possible.

The direct solution technique employed in this study is the Newton’s method.

Newton’s method is a widely used procedure for finding the solution of a system of

non-linear algebraic equations for hundreds of years. However, the relatively recent

development of powerful computers has now made the procedure practical for

extremely large systems of equations.

In this study, the main objective is to develop a direct flow solver and analyze

the effects of Jacobian calculation on the direct flow solutions. Several

computational experiments are done related to accuracy and convergence of the
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direct flow solution. Since the full matrix direct solvers require the solution of a huge

Jacobian matrix even for a small computational domain, a simple flow model that

retains the requirements is constructed. This simple model includes 2-D

planar/axisymmetric Euler equations as governing equations. Since the discrete

residual Jacobian matrix is a function of flux Jacobians, the calculation of these

Jacobians is the main concern.

The first way to obtain the flux and residual Jacobians is analytically. As the

discretization of the governing equations become more complex, derivation of

analytical flux Jacobians becomes more difficult; even there may be some terms that

cannot be differentiated analytically. Then, the best alternative is to compute the flux

and residual Jacobians numerically as accurate as possible. Since numerical flux

Jacobians are calculated by finite differencing the flux vectors, the perturbation

magnitude used comes out as the most important parameter to obtain better accuracy.

After the accurate calculation of flux Jacobians, the correct formation of the Jacobian

matrix is also very important. In order to solve the Jacobian matrix efficiently several

modifications and strategies can be employed to the solution method. Freezing the

matrix after appropriate number of iterations has significant effect on the rapid

convergence of the flow. Adding a time-like diagonal term or limiting the change in

the solution for a number of iterations can be very important for stable convergence

from poor initial conditions.

3.2 Newton’s Method

The system of non-linear equations of the discretized governing equations can

be written in the form:

  ˆ ˆR(W ) 0= (3.1)

where R̂  is the residual vector of the system, Ŵ  is the flow variable vector.
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Then, the general Newton’s method is:

n
n nR̂ ˆ ˆW R(W )

Ŵ
∂ ∆
∂

 
= − 

 
(3.2)

The increment Ŵ∆  at the nth iteration is found by solving the above system.

The new values of flow variable vector Ŵ  at the (n+1)th iteration is given by:

n 1 n nˆ ˆ ˆW W W∆+ = + (3.3)

3.3 Evaluation of the Jacobians

In direct flow solver, the Jacobian matrix has to be evaluated. The Jacobian

matrix elements are the residual Jacobians that are functions of flux Jacobians. To

investigate the accuracy of the numerical Jacobians both the numerical and analytical

flux and residual Jacobians are calculated. In the study, analytical Jacobians are

derived for first-order Steger Warming discretization. However, flux vectors are

discretized by first/second order Steger-Warming/Van Leer/Roe schemes and the

numerical Jacobians are calculated numerically for all these cases.

3.3.1 Analytical Jacobian Derivation

It is obvious that the calculation of flux Jacobians by manual differentiation is

time-consuming and likely to be erroneous. However, for Euler fluxes with Steger-

Warming flux-splitting discretization, this could be a bit feasible and easy. Thus, the

analytical flux Jacobians are calculated by hand. The derivation procedure is given in

Appendix A.
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The residual Jacobians are functions of these flux Jacobians and directly found

by summation of them. Considering Equation (2.22) and (2.38), first-order Steger-

Warming discretized residual form of the steady, 2-D planar/axisymmetric Euler

equations is:

i , j i 1, j i 1, j i , j

i , j i , j 1 i , j 1 i , j

i , j i , j

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆF (W ) F (W ) F (W ) F (W )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆG (W ) G (W ) G (W ) G (W )

ˆ ˆ ˆ ˆH(W ) R(W )σ

+ − + −
+ −

+ − + −
+ −

   + − +   
   + + − +   

+ =

(3.4)

Since the residual is first-order discretized, it is only a function of 5-point

stencil, the discretized residual Jacobians are as follows:

i , j
i , j i , j i , j i , j

i , j

R̂ ˆ ˆ ˆ ˆA A B B
Ŵ

+ − + −∂
= − + −

∂

i , j
i 1, j

i 1, j

R̂
Â

Ŵ
−
+

+

∂
=

∂
i , j

i , j 1
i , j 1

R̂
B̂

Ŵ
−

+
+

∂
=

∂
(3.5)

i , j
i 1, j

i 1, j

R̂
Â

Ŵ
+
−

−

∂
= −

∂
i , j

i , j 1
i , j 1

R̂
B̂

Ŵ
+

−
−

∂
= −

∂

The most critical part in the flux Jacobian calculation was taking the

derivative of positive or negative eigenvalues with respect to flow variables, since

they include absolute values of actual eigenvalues and this directly changes the flux

vector equation. As given in the Appendix A, the derivative of iλ ±  with respect to

jŴ  can be found as:

i i
i

i i i

j j

λ λ
λ

2
λ λ 1 sign(λ )
ˆ ˆ 2W W

±

±

±
=

∂ ∂ ± = ⋅  ∂ ∂  

(3.6)
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Note that the eigenvalues on the right are the actual eigenvalues without

splitting. Although it seems very easy, during the coding this part has to be made

very carefully.

Instead of taking the derivatives by hand, the flux Jacobians can be obtained

from a symbolic manipulation system like MACSYMA. However, Orkwis [4] stated

that, since MACSYMA cannot recognize repeatable patterns and is incapable of

common simplifications, several simplifications and manipulations have to be

considered for a desired result. It can be said that although exact Jacobians can be

obtained for this case, it will be very hard to obtain this result for more complex

discretized flow equations. Thus, investigation of numerical differentiation can be a

good choice.

3.3.2 Numerical Jacobian Calculation

The flux Jacobians can be calculated numerically by one-sided derivative of

numerical flux vector i
ˆ(W )  with respect to flow variable vector jŴ , using a small

number being the finite-difference perturbation magnitude ε:

i j ii

j

ˆ ˆ(W ε e ) (W)
ˆ εW

+ ⋅ −∂ =
∂

(3.7)

Here ej is the jth canonical vector.  This value implies that the perturbation

magnitude is closely related to the flow variable vector. The numerical residual

Jacobians can also be calculated in the same manner. Instead of summing up the

calculated numerical flux Jacobians, perturbing the residual ˆR(W )  and taking the

difference with the original one seems more reasonable.
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i j ii

j

ˆ ˆˆ R (W ε e ) R (W)R
ˆ εW

+ ⋅ −∂ =
∂

(3.8)

The value of ε does not have to be positive necessarily. It is obvious that with

employing a positive ε the derivative will be forward differenced, while with a

negative ε backward differenced derivative could be obtained. The choice of the sign

of the finite-difference perturbation magnitude can be very important when the value

of the perturbed flow variable is very close to even smaller than ε:

In numerical Jacobian calculation, the same flux vector is used for both the

original and perturbed flow variables. In Steger-Warming scheme, one of the most

critical parts was being the flux vectors non-differentiable where the eigenvalues

may change sign. With the perturbed flow variables, eigenvalues may change sign

and cause to use a different flux vector. In order to prevent this, the effect of the

perturbation on the sign of the eigenvalues must be checked, and the choice of

backward or forward differencing has to be made carefully.

For better accuracy of the numerical Jacobians, the errors should be minimized

with a good choice of ε. A detailed error analysis for the flux Jacobians to obtain an

optimum finite-difference perturbation magnitude is presented in the next chapter.

As mentioned before, the numerical Jacobians require only the coding of flux

discretization that will output the flux vector for both the original and perturbed flow

variable vectors. This reuse of the same code for the calculation of flux vector is one

of the big advantages of numerical approach. Moreover, for cases in which analytical

Jacobians are impossible or too difficult to obtain, numerical approximation still

brings a solution. With the computation of only the flux vector, higher-order

discretizations can be considered easily.



32

Using the original flow variables, the flux vector and the residual is calculated

for the whole domain. Since the same flux vector is used for the perturbed flow

variables, the flux and residual values that are not affected from the perturbation are

also calculated. This is an unnecessary time consuming process. In order to reduce

time, flux vectors with perturbed flow variables are computed for only neighbouring

cells. By this way, numerical Jacobian evaluation method becomes nearly as fast as

the analytical method

3.4 Matrix Structure

The Jacobian matrix requires partial derivatives of every residual equation with

respect to every flow variable. Fortunately, most of these derivatives are zero

because of the fact that the discretized residual equations only depend on local

variables. For better efficiency, only the non-zero elements of the Jacobian matrix

have to be computed and stored. However, direct full matrix solvers require the

whole matrix to be constructed, which limits the Newton’s method. The storage and

factorization costs of this type of matrix structure as if it were full would are

prohibitively expensive for large problems. Thus, only storing the non-zero elements

of the Jacobian matrix and employing a sparse matrix solver is the most required

strategy for best efficiency.

The Jacobian matrix of the complete system is square, with dimensions equal

to the total number of flow variables in the system. Considering the test case, 15°

ramp geometry, the computations are realized with a 33x25 grid, meaning 34x26

cells. Since there are 4 flow variables at each cell, the total number of variables is

3536 and the Jacobian matrix has 35362 ≅ 12.5 million elements. For first-order

upwind discretizations, a 5-point stencil is required, which produces a block

tridiagonal matrix made up of 5 4x4-block bands as given in Figures 3.1 and 3.2.

And in second-order discretizations 9-point stencil is employed, which produces a

block tridiagonal matrix made up of 9 4x4-block bands as given in Figures 3.3 and
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3.4. Thus, the elements of the Jacobian matrix except this block bands and the

boundary conditions, are zero.

Although a full matrix solver using LU factorization [21] is tried to employ in

the first stages of the study, due to storage and factorization costs sparse matrix

solution is necessary. Thus, the sparse matrix solver package UMFPACK [22] is

used in this study.

Figure 3.1 5-point stencil
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Figure 3.2 Matrix structure from 5-point stencil
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Figure 3.3 9-point stencil
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Figure 3.4 Matrix structure from 9-point stencil
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3.5 Matrix Solution Strategies

Although, most of the elements of the Jacobian matrix are zero, conventional

direct solvers require the whole matrix to be constructed to factorize or invert it. To

handle this expensive operation, several strategies can be employed separately.

Actually, inverting process is very hard in case of a very large Jacobian matrix.

Therefore, most of the methods solve the system without a direct inversion of the

matrix. One of the most common one is factorizing by LU decomposition. Also a

combination of direct/iterative inversion routines can be employed to invert large

sparse matrices like Orkwis [4]. Freezing the Jacobian matrix and starting with a

good initial guess are also very important for an efficient convergence.

In this study, UMFPACK sparse matrix solver package [22] is used in order to

solve Jacobian matrix. UMFPACK “Unsymmetric-pattern Multifrontal Package” is

mainly based on converting the full matrix into sparse storage mode and factorizing

it using a sequence of small dense frontal matrices by LU factorization. Usage of a

sparse matrix solver increased the efficiency of the flow solver greatly. Moreover,

strategies as frozen Jacobian, and better initial guess are considered in this study.

3.5.1 Frozen Jacobian

In the general Newton’s method, the Jacobian matrix has to be recomputed and

refactored with each iteration, since the matrix is a non-linear function of the

changing flow variables. However, great gains in efficiency can be obtained by only

computing and factoring the Jacobian matrix once, and using this frozen Jacobian

matrix for all subsequent iterations. Since this is an approximation to the true system

Jacobian, at each iteration the same convergence could not be reached. Actually, this

is not very important since several iterations can be realized using the frozen

Jacobian in the time required computing and factorizing a new one.
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Nevertheless, freezing the Jacobian after some considered convergence is

achieved makes the strategy more effective and reliable. Because Newton’s Method

has a tendency to diverge in the early stages of iterations. After this period is

overcomed, rapid convergence is observed. As the divergence risk disappears in

those stages, freezing becomes safe. As an example, in our test case, flow solutions

are assumed to be converged when L∞ -norm of the density residual becomes 10-14 in

double computer precision, and 10-5 in single computer precision. And when the

residual drops to values around 10-2-10-4 freezing the Jacobian matrix becomes

feasible and improves the convergence time. A freezing before that value may cause

the Newton’s Method diverge. Thus, the time when to apply freezing is very

important.

3.5.2 Initial Guess

The general Newton’s method requires a good initial guess for convergence.

This is one of the drawbacks of the method. The method fails in case of a poor initial

guess. In this study, flow variables are initialized with their free-stream values.

Although it may a poor initial guess, the results given in this study are obtained using

this initialization.

Several ideas are available to modify the Newton’s method to handle with poor

initial conditions. One of them is a time-like term addition to the Jacobian matrix

diagonal [3]. The modified Newton’s method becomes:

[ ]
n

n n
ˆ1 R ˆ ˆI W R(W )ˆt W

∂ ∆
∆ ∂

 
+ = − 

 
(3.9)

As ∆t → ∞, the original Newton’s method is achieved. Choosing a small initial

value ∆t0, and gradually increasing its value according the L2-norm of the residuals
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will increase the stability of the Newton’s method in poor initial conditions. A new

value of ∆t can be obtained from:

0
n 0 2

n

2

ˆR(W )
t t ˆR(W )

∆ ∆= (3.10)

where L2-norm is defined as:

1n
2

i2
i 1

n

X
X X X

X=

 
 = =  
  

∑ (3.11)

Considering this modification whether as a time derivative of Ŵ making the

method integrating in a time like fashion, or just an addition to increase the strength

of the matrix diagonal, iteration from poor initial conditions are improved. But, since

this method converges linearly until ∆t gets very large, the computation time is

increased.

The time-like diagonal term addition is employed in this study considering that

initialization from free-stream can be a poor guess, and the solver may not work

without such an improvement. L2-norm is computed including all the residuals in the

domain. One important point was that this modification is required only in the first

stages of the iterations. After certain number of iterations, the conditions are not poor

anymore. So, instead of waiting ∆t to get larger and larger, the diagonal term in terms

of ∆t may not be added anymore to the Jacobian matrix. This sudden withdrawal may

cause oscillations but if the right time was chosen very faster convergence can be

achieved. For the test case, ∆t0=1 is used in all calculations for 2-D planar

calculations. And when ∆t becomes around 1.5, this diagonal term is taken out from

the system. This improves the number of iterations to convergence and CPU time

greatly. For 2-D axisymmetric calculations, there are already axisymmetric terms
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added to the diagonal of the Jacobian matrix. Thus, there is no need for such a

modification to improve the initial guess. In axisymmetric calculation, no diagonal

term is added to the Jacobian matrix

Another modification that may make the use of poor initial guess possible is

limiting the change in the solution to reduce the residual [2]. In case of the residual

not decreasing, the entire flow variable vector is reduced by some factor α.

n 1 n nˆ ˆ ˆW W Wα∆+ = + (3.12)

However, the correct value for α for a residual reduction can only be

determined by trial. According to Orkwis [4], this idea may not allow the formation

of shock waves in case, thus may not be practical as the diagonal term modification.

In this study, only time-like diagonal term addition is employed.
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CHAPTER 4

ACCURACY OF NUMERICAL JACOBIANS

4.1 Introduction

Despite of increasing stability, direct solution of the discretized governing

equations requires the calculation of Jacobian matrix that is a function of flux

Jacobians. The preferable way to obtain these Jacobians is analytical methods. As the

discretization of the governing equations become more complex, derivation of

analytical Jacobians becomes more difficult. Then, the best alternative is to compute

the Jacobians numerically as accurate as possible. Since numerical flux Jacobians are

calculated by finite differencing the flux vectors, the perturbation magnitude used

comes out as the most important parameter to obtain better accuracy.

Several flux calculation schemes like central differencing, Steger-Warming,

Van Leer or Roe upwind differencing schemes could be employed in the governing

equation discretization and Jacobian calculation. Because of their simplicity, Steger-

Warming flux Jacobians are often used even with discretized residuals of other

schemes. However, as also shown in this study, to get best convergence the flux

calculation in residual and Jacobian calculation must be consistent.

Although the calculation of flux Jacobians by manual differentiation seems

impractical, the simplicity of Steger-Warming flux discretization makes it possible.

Thus, the analytical flux Jacobians are calculated by hand. Several symbolic

mathematics software packages can be used for analytical differentiation. As in some
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of the studies in the literature, analytical Jacobians can be obtained from the

symbolic manipulation expert system MACSYMA.

In this study, the accuracy of the numerical Jacobians is investigated by

comparing the values of numerical and analytical Jacobians. Effect of perturbation

magnitude ε, on the accuracy of the numerical Jacobians is studied. For different ε

values, maximum and average errors between the analytical and numerical flux and

residual Jacobian values are analyzed. The effect of backward and forward

differencing is investigated. To obtain an optimum perturbation magnitude, a

detailed error analysis is performed for the numerical Jacobian calculation.

Computations are performed with both single and double precision in order to see the

effect of computer precision on the accuracy. Also, a method is investigated to find

the optimum perturbation magnitude in single precision. The results for supersonic

ramp geometry are presented in Section 4.5.

4.2 Error Analysis

In numerical Jacobian calculation, mainly two types of errors occur. These are

truncation and condition errors. Truncation error is due to neglected terms in the

Taylor’s series expansion. Truncation error increases with the perturbation

magnitude. Condition error is associated with numerical noise and caused by loss of

numerical precision. This error may result from computer round-off error. Condition

error in finite difference derivatives generally increases with decreasing the

perturbation magnitudes.

4.2.1 Truncation Error

As in the case of numerical flux Jacobian calculation, the first derivative of a

function ƒ(x) can be approximated as a forward difference for some perturbation

magnitude ε<1:
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f ( x ) f(x ) f(x)
x

∆ ε
∆ ε

+ −= (4.1)

However, since the Taylor series expansion includes higher order terms, the

actual derivative is:

2 3 2f ( x ) f(x ) f(x) f ( x ) f ( x ) ...2 3x 2 6x x

ε ε ε
ε

∂ + − ∂ ∂= − ⋅ − ⋅ −
∂ ∂ ∂

 (4.2)

Therefore, the truncation error consists of the neglected terms in the Taylor

series:

2 3 2 2f ( x ) f ( x ) f ( x ) f ( x ) f ( )E ( ) ...T 2 3 2x x 2 6 2x x x

∆ ε ε ζ εε
∆

∂ ∂ ∂ ∂= − = ⋅ + ⋅ + = ⋅
∂ ∂ ∂ ∂

(4.3)

where ζ=[ x, x+ε ].

The above equation shows that truncation error increases with the

perturbation magnitude.

4.2.2 Condition Error

Due to computer precision, the exact value of a function ƒ(x) and its computed

value f (x) can be different due to round-off error E(x):

f ( x ) f ( x ) E( x )

f ( x ) f ( x ) E( x )ε ε ε
= +

+ = + + +
(4.4)



42

The first derivative of the function f (x) can be computed as:

f ( x ) f(x ) f(x) f(x ) f(x) E(x ) E(x)
x

∆ ε ε ε
∆ ε ε ε

+ − + − + −= = + (4.5)

So, the condition error comes out to be:

C
f ( x ) f ( x ) E( x ) E( x )E ( x )

x x
∆ ∆ ε∆

∆ ∆ ε
+ −= − = (4.6)

Considering an error bound ER = max{ |E(x)| , |E(x+∆x)| }, the maximum of

condition error can be written as:

R
C

2 EE ( )ε
ε
⋅= (4.7)

4.2.3 Total Error

The total error is simply the sum of the truncation and condition errors.

Actually, rounding error also exists, but is not considered since it’s negligible when

compared to these errors.

2
R

TOTAL C T 2

2 E f ( )E ( ) E ( ) E ( )
x 2

ζ εε ε ε
ε
⋅ ∂= + = + ⋅

∂
(4.8)

It can be seen that the total error is highly dependent on perturbation

magnitude. If the perturbation magnitude is too small, condition error dominates and

if the perturbation magnitude is too large, truncation error becomes more important.

So, there must an optimum value for the perturbation magnitude that gives a

minimum error.
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4.3 Effect Of Computer Precision

In this study, the accuracy between the analytical and numerical flux and

residual Jacobians are analyzed for different ε values as explained before. All the

analyses are made for both single and double computer precision in order to see the

effect of computer precision on the accuracy. This is realized without changing the

solver code, but using the optimization property of the Fortran compiler that makes

the computations in double precision.

The precision is the property of the computer processor, and defined according to the

machine epsilon, Mε . This is the smallest number that the computer recognizes as

being bigger than zero. Machine precision is dependent upon number of bytes used

in the representation of a real number as well as the distribution of the bits associated

with representing the mantissa verses the exponent. This distribution is usually a

property of the hardware; however, software like optimizing compilers can extend

the precision but at the price of speed. Generally speaking, a reasonable estimate of

Mε  can be given as follows:

M m
1

2
ε =  such that M1 1ε+ > (4.9)

where m is the number of possible highest bits in the binary representation of the

mantissa.

All the calculations of this study are realized on 1.5GHz Pentium IV dual

processor with openMosix cluster running on Linux 2.4. Although openMosix

provides dynamic load balancing between cluster nodes and continuously attempts to

optimize the resource allocation, this property may be more important in the use of

parallel processing and in this study, the main concerns are processor power and the

memory usage. The compiler used in the study is Lahey/Fujitsu Optimizing Fortran
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95 Compiler “lf95” which has options that the code can be compiled in single or

double precision.

Knowing the precision of the computer before realizing the computations is

very important since the accuracy in terms of very small numbers are studied. The

machine epsilon Mε  values of this compiler-computer configuration can be found

according to Equation (4.9). Then, for single precision 8
M 3.0 10ε −≅ × , and for

double precision 17
M 5.6 10ε −≅ ×  values are reached. In order to realize feasible and

reliable analyses, all the numerical values used in the computations have to be

greater than these limits.

4.4 Optimum Perturbation Magnitude Analysis

The optimum perturbation magnitude value can be found nearly some special

methods developed. One known method is looking at the ε  value where the

derivative of Equation (4.8) is zero:

2
TOTAL R

2 2

E ( ) 2 E 1 f ( ) 0
2 x

ε ξ
ε ε

∂ ⋅ ∂= − + ⋅ =
∂ ∂

(4.10)

R
OPT 2

2

E2
f ( )
x

ε
ξ

= ⋅
∂

∂

(4.11)

The above equation requires the calculation of second derivative and the bound

of condition error. In many cases for the second derivative a finite difference relation

has to be employed which also brings errors, and it’s not applicable at points where

the second derivative is zero. Considering the second derivative in the order of one

can also be a good approximation. The bound of condition error is actually the

precision error and for the single precision case, it can be found by subtraction of
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double and single precision calculations of the function. Another consideration can

be taking the precision error equal to the machine epsilon for both single and double

precision cases. Taking the second derivative as one Equation (4.11) becomes:

 OPT M2ε ε= ⋅ (4.12)

In this study, the optimization method explained above is employed. Optimum

value for finite-difference perturbation magnitude is calculated using Equation (4.12)

for both single and double precision. In addition, for single precision case, OPTε  is

found from averaged second derivative and precision error values for each flux

vector. Here, the precision error is simply found by subtraction of double and single

precision calculations of the flux values. The second derivative is calculated using a

forward/backward finite-difference method using double precision. Although, this

also brings errors, the difference in the optimization for each flux vector can be seen

by this way.

In order to control the reliability of the optimization method, as a trial-error

like procedure, flux Jacobians are computed and their effect on the accuracy of the

numerical flux Jacobians are analyzed for several finite-difference perturbation

magnitude values. Both the maximum error and the average error in the domain are

calculated. As explained in the following section in detail, nearly optimum

perturbation magnitude values are obtained minimizing each maximum and average

error between analytical and numerical flux and residual Jacobians. Another

consideration was the choice of backward or forward differencing in the calculation

of the numerical Jacobians. This analysis using both positive and negative

perturbation magnitudes would give information about this choice.
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4.5 Test Case Results

The results are obtained for the test case being 15° supersonic ramp geometry

as shown in Figure 4.1. A 33x25 grid is used. The inlet Mach number, M  is 2.0.  At

the inlet and outlet flow is supersonic. Thus, at the inlet flow variables are initialized

with their free stream values, while at the outlet they are equated to the inner values.

In addition, wall and symmetry boundary conditions are employed. These geometry

and flow conditions are suitable to include the effect of shocks on the errors in

numerical Jacobians. In this part of the study, only the accuracy of numerical

Jacobians is studied. Numerical and analytical Jacobians are calculated for an already

converged solution and they are compared with each other. Analytical Jacobians are

obtained for first-order Steger-Warming scheme. A detailed procedure of obtaining

Jacobians numerically and analytically is given in Chapter 3.3.

For different finite-difference perturbation magnitude, ε values, changes of

maximum and average errors in numerical Jacobians are analyzed. The numerical

Jacobians are calculated using both forward and backward differencing to investigate

their effects. All the study is realized for both single and double precision in order to

see the effect of computer precision on the accuracy. For observing the change in all

possible Jacobian terms, all four flux vectors ˆ ˆˆ ˆF ,F ,G ,G+ − + −  and residuals for both

planar and axisymmetric cases pl ax
ˆ ˆR ,R  are considered.

Figure 4.2 and Figure 4.3 show the error contours in numerical flux Jacobian

2 1
ˆ ˆF / W+∂ ∂ , similarly Figure 4.4 and Figure 4.5 show the flux Jacobian 2 1

ˆ ˆF / W+∂ ∂

contour itself calculated with single and double precision. This flux Jacobian is

arbitrarily chosen in order to show the behaviour of the contours. It’s seen that for

higher perturbation magnitudes the error contours look like the Jacobian contours.

This is the case where truncation error is dominant, and this similarity of the contours

makes sense since this error is higher at high gradient regions. As the perturbation

magnitude is decreased, the contour becomes more scrambled decreasing error.
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However, with further decrease in perturbation magnitude, although scrambled

contour shape is conserved, the errors start to increase. If the perturbation magnitude

is too small, condition error dominates and the loss of precision increases the error.

As explained in Chapter 3.3.2, the value of ε does not have to be positive

necessarily, both forward and backward differencing can be employed in the

calculation of the numerical flux and residual Jacobians. When the value of the

perturbed flow variable is very close to or even smaller than ε, this choice may be

very important. In Steger-Warming scheme, when the eigenvalues are close to zero,

with the perturbed flow variable eigenvalues may change sign and cause to use a

different flux vector. As a control mechanism, the effect of the perturbation on the

sign of the eigenvalues must be checked, and the appropriate differencing has to be

chosen.

Figure 4.6 and Figure 4.7 show the effect of this control mechanism on total

errors for the planar residual Jacobian, pl
ˆ ˆR / W∂ ∂  in single and double precision.

From Figure 4.6 showing the single precision case, it is observed that without this

control, forward difference gives more accurate results compared to backward

formulation in terms of average error. However, for the average and maximum

errors, a decrease is observed with the application of control mechanism.

Considering Figure 4.7 showing the double precision case, it is seen that the control

mechanism has a great importance. Again, without control, forward difference seems

to give better results compared to backward formulation, but all the errors are very

large and look like constant without affecting from the perturbation magnitude. With

the use of control mechanism, a large decrease in all errors is observed, even the

maximum error decreases from the order of 10-1 to 10-7. This shows that in all

calculations, the usage of this control mechanism is necessary to realize an accurate

study.
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Looking at the general behaviour of all figures, it is obvious that with double

precision the errors become very small; the maximum error is on the order of 10-8,

for the average error the order drops to 10-9. With single precision, only an order of

10-3 can be achieved for maximum and average errors. Thus, the usage of double

precision improves the accuracy significantly. Again, from the general view of the

figures, it is observed that there is no significant difference between the forward and

backward differencing in the calculation of the numerical Jacobians. Because the

control mechanism employed changes the differencing procedure in case of a

problem.

Figure 4.8 and Figure 4.9 show the effect of perturbation magnitude on

maximum error in all numerical Jacobians. Since maximum errors are considered,

the planar residual Jacobian pl
ˆ ˆR / W∂ ∂  error follows up the path of maximum values

of all flux Jacobian errors. The optimum value of ε can be seen that nearly 4-5x10-8

giving an error around 10-7 for double precision, and 6-7x10-4 giving an error in the

order of 10-1 for single precision.

Figure 4.10 and Figure 4.11 show the effect of perturbation magnitude on

average error in all numerical Jacobians. In this case average error for pl
ˆ ˆR / W∂ ∂

looks like as the average of flux Jacobian errors as expected. The optimum value of ε

can be observed again nearly 4-5x10-8 giving an error in the order of 10-9 for double

precision, and 6.4-9.8x10-4 giving an error around 10-4 for single precision.

Figure 4.12 and Figure 4.13 show the effect of axisymmetry on average and

maximum errors for the residual Jacobian in single and double precision. The

axisymmetric residual Jacobians ax
ˆ ˆR / W∂ ∂  only include some extra terms due

axisymmetric source. Thus, it is not expected to have results much different from the

planar case. As a matter of fact, all maximum and average errors in both double and

single precision came out as pretty much the same for the axisymmetric case.
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In Figure 4.8 through Figure 4.13, results show that the error is highly

dependent on perturbation magnitude, and there’s an optimum value that gives the

minimum error. As explained before, if the perturbation magnitude is too small,

condition error increases and if the perturbation magnitude is too large, truncation

error grows up. In figures, there is nothing seen related to the errors for the flux

Jacobian ˆ ˆF / W−∂ ∂ . This was obvious since F̂ −  is completely zero in our test case

due to supersonic flow at all points.

In order to find the optimum value for the finite-difference perturbation

magnitude, the optimization method given by Equation (4.11) is realized for single

precision as explained in Section 4.3. In the method, to eliminate the errors caused by

zero second derivatives, εopt value is calculated from the averaged second derivative

and precision error values, which can be seen from Table 4.1. Considering the

second derivative values in the order of 1 and the precision error equal to machine

epsilon, the optimization method given by Equation (4.12) is also used for both

single and double precision, and the results are given in Table 4.2. Optimum values

come out in the order of 10-4 for single precision and in the order of 10-8 for double

precision.

Table 4.1 εopt analysis using average values for single precision.

Optimization Method (avg.)
Flux Precision Error (avg.) Second Derivative (avg.) εopt (avg.)
F+ 13.5.10-7 9.092 7.7.10-4

F- - - -
G+ 5.0.10-7 3.215 7.9.10-4

G- 4.6.10-7 3.049 7.7.10-4

Table 4.2 εopt analysis using machine epsilon for single and double precision.

Optimization Method (εM)
Precision Precision Error (=εM) Second Derivative (=1) εopt (εM)

Single 3.0.10-8 1. 3.5.10-4

Double 5.6.10-17 1. 1.5.10-8
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Table 4.3 gives the optimum perturbation magnitude values for different flux

Jacobians found by trial-error as shown in Figure 4.8 through Figure 4.11, and using

the optimization method. For single precision, especially εopt values minimizing total

average errors between analytical and forward-differenced numerical flux Jacobians

in the trial-error procedure and the corresponding values for the optimization method

are very close to each other. For double precision, the same optimum value is found

for all flux Jacobians. Since F̂ −  is completely zero for supersonic flow over our test

case, no related errors can be seen in the table for its flux Jacobian.

Table 4.3 Optimum perturbation magnitude εopt results for single precision.

Trial-Error Procedure Optimization Method
Jacobian εopt (max. error) εopt (avg. error) εopt (avg.) εopt (εM)

F+ 9.8.10-4 6.4.10-4 7.7.10-4

F- - - -
G+ 1.5.10-5 6.4.10-4 7.9.10-4

G- 1.5.10-5 6.4.10-4 7.8.10-4

3.5.10-4

Table 4.4 Optimum perturbation magnitude εopt results for double precision.

Trial-Error Procedure Optimization Method
Jacobian εopt (max. error) εopt (avg. error) εopt (εM)

F+ 4.0.10-8 4.0.10-8

F- - -
G+ 4.0.10-8 4.0.10-8

G- 4.0.10-8 4.0.10-8

1.5.10-8

Although, it’s an approximation, the optimization method is a good approach

to find the optimum perturbation magnitude. Instead of spending time on trial-error

procedure, employing this simple optimization method give very good results. As a

result, for single precision 7.10-4, and for double precision 4.10-8 can be used as the

optimum perturbation magnitude values for all flux Jacobians.
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15o Ramp geometry

15o

(a) General view

33x25 Grid for Ramp geometry

(b) 33x25 grid

Figure 4.1 15° ramp geometry
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Figure 4.7 Effect of control on total max. and avg. errors for pl
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Figure 4.8 Effect of ε on total max. error for all Jacobians in single
precision.
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Figure 4.9 Effect of ε on total max. error for all Jacobians in double
precision.



60

Perturbation Magnitude (ε)

To
ta
lA
vg
.E
rro
rb
et
w
ee
n
Ja
co
bi
an
s

10-910-710-510-310-110110-5

10-4

10-3

10-2

10-1

100

101

102

103

∂ F+ / ∂ W
∂ F- / ∂ W
∂ G+ / ∂ W
∂ G- / ∂ W
∂ Rpl / ∂ W

Change of Total Average Error with Perturbation Magnitude
[Single Precision, Forward Differencing]

ε =7×10-4

(a) Forward differencing

Perturbation Magnitude (ε)

To
ta
lA
vg
.E
rro
rb
et
w
ee
n
Ja
co
bi
an
s

10-910-710-510-310-110110-5

10-4

10-3

10-2

10-1

100

101

102

103

∂ F+ / ∂ W
∂ F- / ∂ W
∂ G+ / ∂ W
∂ G- / ∂ W
∂ Rpl / ∂ W

Change of Total Average Error with Perturbation Magnitude
[Single Precision, Backward Differencing]

ε =7×10-4

(b) Backward differencing

Figure 4.10 Effect of ε on total avg. error for all Jacobians in single
precision.
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Figure 4.11 Effect of ε on total avg. error for all Jacobians in double
precision.
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Figure 4.12 Effect of axisymmetry on total max. and avg. errors for
ˆ ˆR / W∂ ∂ in single precision.
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CHAPTER 5

SOLVER PERFORMANCE

5.1 Introduction

In case of developing a direct solver, the solution technique employed is the

Newton’s method. Although it is a well-known procedure for long time, due to the

requirement of solving a huge matrix at once, it could not gain popularity until big

improvements in the computer technology were realized.

In this study, a direct 2-D planar/axisymmetric Euler flow solver is developed.

Governing equations are discretized by finite-volume method with upwind flux

splitting schemes, and the resulting nonlinear system of equations are solved using

Newton’s Method with numerical/analytical Jacobian matrices. The performance of

the solver is analyzed by several experiments related to convergence. First, the

effects of Jacobian calculation on the direct flow solver are investigated. Correct

formation and efficient solution of the Jacobian matrix is the main concern of the

solver. UMFPACK sparse matrix solver package is used to minimize the storage and

factorization costs. Also, several modifications and strategies are employed to the

solution method. For better convergence, freezing the matrix after appropriate

number of iterations is discussed. A time-like diagonal term addition in the first few

steps of the iteration is applied to maintain the convergence of the solver even from

poor initial conditions. The results for supersonic ramp geometry are presented in

Section 5.2.
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Several flux-splitting procedures like Van Leer and Roe schemes are analyzed

and compared in Section 5.3. Also, higher order discretizations are compared in

terms of flow convergence and CPU time. The results for second order Steger-

Warming, Van Leer and Roe schemes with Van Albada limiter are given in Section

5.4. Finally, the solver performance on another geometry with different flow

conditions is investigated. Section 5.5 presents the results for bump geometry for

supersonic and subsonic flow conditions.

5.2 Test Case Results

The results are obtained for the test case being 15° supersonic ramp geometry

with 33x25 grid as shown in Figure 4.1. As mentioned before M =2.0 flow and

inlet-outlet, wall and symmetry boundary conditions are employed. These geometry

and flow conditions are suitable to visualize the effect of shocks. In this part of the

study, the solver developed is run from a free-stream initialization of the flow. The

analytical Jacobians are found from first-order Steger-Warming upwinding

discretization of the governing equations. A detailed procedure of obtaining

Jacobians numerically and analytically is given in Section 3.3.

All the calculations of this study are realized using Lahey/Fujitsu Optimizing

Fortran 95 Compiler “lf95” on 1.5GHz Pentium IV dual processor openMosix cluster

running on Linux 2.4. As discussed in Section 4.4, this compiler has an optimization

property that may greatly improve solution procedure. Without changing the code,

the code can be made to run in double precision mode using the optimization

parameters. The machine epsilon Mε  of this compiler-computer configuration is

8
M 3.0 10ε −≅ ×  for single precision, and 17

M 5.6 10ε −≅ ×  for double precision. The

CPU time required for the solution to converge, is the property of the specified

computer processor again.
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The formation and calculation of Jacobian matrix is one of the most critical

parts of direct solvers. In the first stages of this study, a full matrix solver using LU

factorization is used in the code. However, due to its high storage and factorization

costs a sparse matrix solver UMFPACK is adapted to the code. Considering the test

case, 15° ramp geometry with a 33x25 grid meaning 34x26 cells, and 4 flow

variables at each cell, the total number of variables is 3536 and the Jacobian matrix

has 35362 ≅ 12.5 million elements. In terms of file size this huge matrix is around

240 MB. In first-order Steger-Warming upwinding discretizations, 5-point stencil

produces a block tridiagonal matrix including 5 4x4-block bands with the rest having

the value zero. With the initial full matrix LU solver, the whole matrix including

zeros has to be solved. Due to high storage, memory costs the solution procedure

took nearly 26 hours of CPU time. However with the adaptation of UMFPACK, the

performance of the solver improved greatly. After getting rid of the unnecessary zero

values, the size of the matrix drops significantly to 1-2 MB. And the solution

converges rapidly in 10-20 seconds of CPU time.

Considering both the analytical and numerical Jacobian evaluation methods

using first-order Steger-Warming scheme, the solver performance is analyzed in

terms of convergence history and the required CPU time. Actually the results for

optimum value of ε obtained in the previous chapter is compared with the analytical

results. The use of diagonal term addition and Jacobian matrix freezing are

investigated to improve the efficiency of the solver. Both planar and axisymmetric

cases are considered in the analyses. The numerical Jacobians are calculated using

both forward and backward differencing to investigate their importance. All the

study is realized for both single and double precision in order to see the effect of

computer precision on the convergence.

Figure 5.1 shows the flow solution in terms of Mach numbers obtained for

first-order Steger-Warming scheme. Mach contours for both planar and

axisymmetric cases show the general behaviour of a first-order method. The shock

can be seen but it’s not very sharp.
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Looking at the general behaviour of all convergence history figures, it is

obviously seen that with double precision the density residual converges to the order

of 10-15, while with single precision, only an order of 10-6 can be achieved. Thus, the

usage of double precision improves the order of convergence significantly without

too much change in the number of iterations and CPU time.

The best combination of when to add and remove the diagonal term, and when

to freeze the Jacobian matrix is very important to obtain the best performance of the

solver. After a trial-error study using the analytical Jacobians, it is observed that

diagonal term addition is necessary in case of planar flow. Since a free-stream

initialization is used, this modification is required to overcome the poor initial guess.

Figure 5.2 shows the effect of diagonal term addition on the convergence history for

planar density residual with CPU time values. As mentioned before, removing the

diagonal term reduces the number of iterations and CPU time for convergence.

∆trm=1.5 gives the best performance with around 10 iterations and 10-13 seconds of

CPU time. However, since the axisymmetric source terms behave like an addition to

the diagonal of the Jacobian matrix, another modification is unnecessary for

axisymmetric case. Thus, as shown from Figure 5.3, best results are obtained for no

∆t. The solution converges in 6-8 iterations. This corresponds 6-9 seconds of CPU

time.

Another trial-error study is realized, to find the order of residual at which the

freezing is applied, using the analytical Jacobians and the ∆t values desired above.

With the use of freezing, although the number of iterations increases, the CPU time

spent for convergence decreases since the Jacobian calculation procedure is skipped.

Figure 5.4 shows the effect of freezing on the convergence history for planar density

residual and the corresponding CPU time values. For single precision, Rfrz= 1x10-2

gives the same convergence as no freezing case with a less CPU time. For double

precision, Rfrz= 1x10-4 gives the same convergence as no freezing case with a less

CPU time. Considering Figure 5.5 that give the effect of freezing for the

axisymmetric case, Rfrz= 1x10-2 comes out as the best value with less number of

iterations and CPU time.
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After these trial-error procedures, using the best combinations obtained for

diagonal term modification and Jacobian freezing, the effect of finite-difference

perturbation magnitude on the convergence of the flow is analyzed through Figures

5.6 and 5.9. From these figures, it is observed that there is no significant difference

between the forward and backward differencing in the calculation of the numerical

Jacobians, because the control mechanism employed changes the differencing

procedure in case of a problem.  It can be seen that the best convergence with least

CPU time is always obtained with the use of optimum perturbation magnitude, being

ε = 7x10-4 for single precision and ε = 4x10-8 for double precision. Although for some

other ε values the flow may not converge, with the optimum perturbation magnitude

nearly the same convergence history is obtained with the analytical method. For the

planar case, convergence is obtained in 10-11 iterations taking nearly 15 seconds of

CPU time. For the axisymmetric case, convergence is obtained around 6-8 iterations

taking nearly 9 seconds of CPU time.



69

1.9
50
49 1.554

39

1.45536

1.50487 1.6
03
9

1.55439

1.35633

1.45536

1.7
02
92

1.8
019
5

1.7
52
44

1.2
57
31

1.3
56
33

1.6
53
41

1.7
52
44

Mach Contour for Ramp geometry
[2-D planar, Double Precision, 1st order S-W]

(a) 2-D planar case

1.93
113

1.9
84
26

1.9
631
3

1.90
097

1.6
534
1

1.8
01
95

1.9
50
49

1.9
746
7

1.9
842
6

1.8
51
46

1.9
504
9

Mach Contour for Ramp geometry
[2-D axisymmetric, Double Precision, 1st order S-W]

(b) 2-D axisymmetric case

Figure 5.1 Mach contours for 1st order Steger-Warming scheme in double precision.



70

∆t CPU Time
(s)

  No ∆t NaN
  ∆trm= 1.5 10.04
  ∆trm= 5. 16.55
  Full ∆t 30.84

# of iterations

M
ax
.D
en
si
ty
R
es
id
ua
l(
R
1)

0 10 20 3010-9

10-7

10-5

10-3

10-1

101

No ∆t
∆trm = 1.5
∆trm = 5.
Full ∆t

Effect of ∆t on Convergence History
[2-D planar, Single Precision]

Analytical Jac.
No frz.

(a) Single precision

∆t CPU Time
(s)

  No ∆t NaN
  ∆trm= 1.5 13.32
  ∆trm= 5. 22.65
  Full ∆t 257.27

# of iterations

M
ax
.D
en
si
ty
R
es
id
ua
l(
R
1)

0 10 20 30 4010-20

10-15

10-10

10-5

100

No ∆t
∆trm = 1.5
∆trm = 5.
Full ∆t

Effect of ∆t on Convergence History
[2-D planar, Double Precision]

Analytical Jac.
No frz.

(b) Double precision
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Figure 5.3 Effect of ∆t on the convergence history for axisymmetric density residual.



72

Tolerance CPU Time
(s)

 No freeze 10.04
Rfrz= 1x10-1 8.75
Rfrz= 5x10-1 8.64
Rfrz= 1x10-2 9.28

# of iterations

M
ax
.D
en
si
ty
R
es
id
ua
l(
R
1)

0 5 10 1510-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

No frz.
Rfrz =1×10-1
Rfrz =5×10-2
Rfrz =1×10-2

Effect Of Freezing on Convergence History
[2-D planar,Single Precision]

Analytical Jac.
∆trm = 1.5

(a) Single precision

Tolerance CPU Time
(s)

 No freeze 13.32
Rfrz= 1x10-1 12.85
Rfrz= 1x10-2 12.20
Rfrz= 1x10-4 12.51

# of iterations

M
ax
.D
en
si
ty
R
es
id
ua
l(
R
1)

0 5 10 15 2010-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

No frz.
Rfrz =1×10-1
Rfrz =1×10-2
Rfrz =1×10-4

Effect Of Freezing on Convergence History
[2-D planar, Double Precision]

Analytical Jac.
∆trm = 1.5

(b) Double precision

Figure 5.4 Effect of freezing on the convergence history for planar density residual.



73

Tolerance CPU Time
(s)

 No freeze 6.05
Rfrz= 1x10-1 5.52
Rfrz= 5x10-1 8.20
Rfrz= 1x10-2 6.04

# of iterations

M
ax
.D
en
si
ty
R
es
id
ua
l(
R
1)

0 2 4 6 8 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

No frz.
Rfrz =1×10-1
Rfrz =5×10-2
Rfrz =1×10-2

Effect Of Freezing on Convergence History
[2-D axisymmetric, Single Precision]

Analytical Jac.
No ∆t

(a) Single precision

Tolerance CPU Time
(s)

 No freeze 9.79
Rfrz= 1x10-1 10.32
Rfrz= 1x10-2 8.15
Rfrz= 1x10-4 8.23

# of iterations

M
ax
.D
en
si
ty
R
es
id
ua
l(
R
1)

0 5 10 15 2010-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

No frz.
Rfrz =1×10-1
Rfrz =1×10-2
Rfrz =1×10-4

Effect Of Freezing on Convergence History
[2-D axisymmetric, Double Precision]

Analytical Jac.
No ∆t

(b) Double precision

Figure 5.5 Effect of freezing on the convergence history for axisymmetric density
residual.



74

Jacobian CPU Time
(s)

  Analytic 9.37
  ε = 7x10-2 NaN
  ε = 7x10-4 14.53
  ε = 7x10-6 NaN

# of iterations

M
ax
.D
en
si
ty
R
es
id
ua
l(
R
1)

0 5 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

An. Jac.
ε =7×10-2
ε =7×10-4
ε =7×10-6

Convergence History
[2-D planar, Single Precision, Forward Differencing]

∆trm = 1.5
Rfrz = 10

-2

(a) Forward differencing

Jacobian CPU Time
(s)

  Analytic 9.37
  ε = 7x10-2 15.97
  ε = 7x10-4 14.47
  ε = 7x10-6 NaN

# of iterations

M
ax
.D
en
si
ty
R
es
id
ua
l(
R
1)

0 5 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

An. Jac.
ε =7×10-2
ε =7×10-4
ε =7×10-6

Convergence History
[2-D planar, Single Precision, Backward Differencing]

∆trm = 1.5
Rfrz = 10

-2

(b) Backward differencing

Figure 5.6 Effect of ε on the convergence history for planar density residual in single
precision.
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Figure 5.7 Effect of ε on the convergence history for planar density residual in
double precision.
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Figure 5.8 Effect of ε on the convergence history for axisymmetric density residual
in single precision.
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5.3 Results for Different Flux Splitting Schemes

The results are again obtained for the test case being 15° supersonic ramp

geometry having 33x25 grid with M =2.0 flow and inlet-outlet, wall and symmetry

boundary conditions. After the Steger-Warming scheme is studied in detail, in this

section the numerical Jacobians are found from first-order Van Leer and Roe

upwinding discretization of the governing equations. The benefits of using the same

flux calculation scheme for both Jacobian and residual calculation are analyzed in

terms of the convergence of the solver.

Considering numerical Jacobian evaluation methods using first-order Van Leer

and Roe’s schemes, the solver performance is analyzed in terms of convergence

history and the required CPU time. Actually the results for optimum value of ε

obtained in the previous chapter is used in the calculations. Also, the results for

analytical Steger-Warming Jacobians with Van Leer and Roe discretized residuals

are compared.  The appropriate values of diagonal term addition and Jacobian matrix

freezing are used to reflect the best performance of the solver. Both planar and

axisymmetric cases are considered in the analyses. The numerical Jacobians are

calculated using forward differencing. All the study is realized for both single and

double precision in order to see the effect of computer precision on the convergence.

Mach contours are given for first-order Van Leer scheme in Figure 5.10, and

for first-order Roe scheme in Figure 5.11. Comparing the contours with Figure 5.1 of

first-order Steger-Warming, although all the figures are very similar, Roe seems to

give better results.

Looking at the general behaviour of all convergence history figures, it is again

obvious that the usage of double precision improves the order of convergence

significantly without too much change in the number of iterations and CPU time.
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The effect of different flux splitting schemes on the convergence of the flow is

analyzed through Figures 5.12 and 5.15. First of all, a general trend observed is that

Steger-Warming has the fastest convergence in terms of both iterations and CPU

times, and Roe is the slowest one compared to the others. Considering Figure 5.12(a)

through Figure 5.15(a), it is observed that using different schemes in the calculation

of the Jacobian and the residual makes the performance of the solver worse. Van

Leer or Roe residuals with Steger-Warming analytical Jacobians converge much

slower than Van Leer or Roe residuals used with its corresponding numerical

Jacobian. Especially, Roe reflects this well. In case of double precision, this

regression in convergence can be seen well. Considering Figure 5.13, Roe with its

numerical Jacobians converged in 17 iterations taking 29.4 seconds of CPU time,

while with the use of Steger-Warming analytical Jacobians convergence is possible

after 150 iterations taking 99.62 seconds of CPU time. Thus, using the same flux

calculation scheme for both Jacobian and residual calculation are very important for

a faster convergence of the solver.  When numerical Jacobians of the same flux

calculation scheme is used, very good convergence results are obtained for first-order

Van Leer and Roe schemes.
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Figure 5.14 Effect of different flux splitting schemes on the convergence history for
axisymmetric density residual in single precision.
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Figure 5.15 Effect of different flux splitting schemes on the convergence history for
axisymmetric density residual in double precision.
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5.4 Results for Higher-Order Discretizations

The results are obtained for the test case being 15° supersonic ramp geometry

having 33x25 grid with M =2.0 flow and inlet-outlet, wall and symmetry boundary

conditions. After the first-order schemes are considered, in this section the numerical

Jacobians are found from second-order Steger-Warming, Van Leer and Roe

upwinding discretization of the governing equations. As explained in Section 2.5,

Van Albada limiter is used in the extrapolation of the flow variables. The behaviours

of different flux splitting schemes with the limiter are analyzed in terms of the

convergence of the solver.

Considering numerical Jacobian evaluation methods using second-order

Steger-Warming, Van Leer and Roe’s schemes, the solver performance is analyzed

in terms of convergence history and the required CPU time. The optimum values of ε

obtained in the previous chapters are used in the calculations. Both planar and

axisymmetric cases are considered in the analyses. The numerical Jacobians are

calculated using forward differencing, double precision is used to get a better

convergence performance. The appropriate values of diagonal term addition and

Jacobian matrix freezing are used. After some trial-error study it is observed that

matrix freezing does not improve the convergence, on the contrary causes

divergence. This may be due to the nature of the second-order discretization. Time-

like diagonal term addition to the matrix diagonal seems to be very important in

higher-order schemes.  Even removing them after some number of iterations may

cause the code to diverge. Besides all of these parameters, the convergence problem

is obviously seen in second-order schemes. Although it does not diverge, the solution

goes into a limit-cycle and residual does not decrease anymore. This is due to the

nature of the flux limiter employed in the solver. Actually, the choice and application

of limiters is another challenging task that must be analyzed in detail.
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Mach contour results for second-order flux splitting schemes are given through

Figures 5.16 and 5.18. Comparing the contours it can be observed that Roe gives a

better solution than the other two schemes. Looking at the shock and expansion

waves, the contours of Roe are much sharper than that of Van Leer or Steger-

Warming schemes. When these second-order contours are compared with the first-

order results given in Figure 5.1, Figure 5.10 and Figure 5.11, it is obviously seen

that with the second-order discretization the shock and expansion parts of the contour

are captured much better.

The effect of different second-order flux splitting schemes on the convergence

of the flow is analyzed in Figure 5.19 and Table 5.12. First of all, a general trend

observed is that Steger-Warming has the fastest convergence in terms of both

iterations and CPU times, and Roe is the slowest one compared to the others.

Considering Figure 5.19, the number of iterations for the planar flow to converge is

much higher than that is required for the first-order schemes. Nevertheless, in case of

planar flow, full convergence in the order of 10-14 is obtained with the use of second-

order flux splitting methods and Van Albada’s limiter. However, for the

axisymmetric case as given in Figure 5.20, the solution goes into a limit-cycle with

the residual value around 10-8, and does not decrease anymore. Implementation of

another limiter or considering a totally different procedure for higher-order schemes

may improve the solution to a fully convergence.
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5.5 Results for Different Geometry and Flow Conditions

Until this section, all the results are obtained for the test case, 15° supersonic

ramp geometry. In this part the solver is tested for another geometry and a different

flow condition. A bump geometry with a finer grid can be useful to analyze since it

also shows the effect of the grid size. Considering the flow conditions, since

supersonic flow is used in all previous calculations, a different case can be

considered as subsonic flow.

The bump geometry used has 65x17 grid as shown in Figure 5.20. First,

M =2.0 supersonic flow with inlet-outlet, wall and symmetry boundary conditions is

analyzed. Then the same grid with M =0.5 subsonic flow is considered. The second-

order Roe upwinding discretization with Van Albada’s limiter is employed in the

calculations. The solver performance is analyzed in terms of convergence history and

the required CPU time. The numerical Jacobians are calculated using forward

differencing with the optimum value of ε in double precision. Both planar and

axisymmetric cases are considered in the analyses. Again, no matrix freezing and full

diagonal term addition is employed in the calculations as in the previous section.

Since a finer grid is used with second-order discretization, it is expected to have

slower convergence. Again limit-cycle convergence at higher residuals can come into

picture.

Mach contours for second-order Roe flux splitting scheme are given in Figure

5.21 and Figure 5.23. Considering the supersonic case, similar behaviour of the flow

with the ramp geometry is observed. Shock formation and expansion are captured

with the solver. And for subsonic case, no shock forms as expected. The contours

may not be so sharp since the results are not for the best converged solution.
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The convergence history for second-order Roe flux is given in Figure 5.19 for

supersonic flow, and in Figure 5.20 for subsonic flow. For all cases of bump

geometry, the solution goes into a limit-cycle with the use of second-order

discretization with Van Albada’s limiter. Considering the supersonic flow, the results

are much better since residual value decreases around 10-12 for planar flow, and 10-8

for axisymmetric flow. However, in subsonic flow, the residual decreases until 10-6

and oscillates around this value as limit-cycle. Although these results are not very

bad, limit-cycle makes the solution unsteady and in order to obtain fully converged

solution detailed analyses of higher-order schemes is needed.
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Figure 5.22 Convergence history for 2nd order Roe scheme in double precision for
supersonic flow
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

In this study, a direct method is developed for 2-D planar/axisymmetric Euler

equations. Upwind flux splitting schemes are used in the finite-volume discretization

of governing equations. The discretized nonlinear system of equations are solved

using Newton’s Method. The required Jacobian matrix is calculated using both

analytical and numerical methods. UMFPACK sparse matrix solver is adapted to the

code and used to solve the Jacobian matrix. Test calculations for accuracy and

convergence are realized using first-order Steger Warming flux splitting scheme for

flow over a 15o supersonic ramp geometry. Effects of different flux splitting

methods, higher-order discretizations and several parameters on the performance of

the solver are analyzed

The first objective of this study was to analyze the accuracy of numerical

Jacobians considering the effects of finite-difference perturbation magnitude and

computer precision. The choice of forward or backward differencing only becomes

important when the value of the perturbed flow variable is in the order of finite-

difference perturbation magnitude. Thus, a control mechanism related to the choice

of differencing is employed to overcome the different flux calculation problem in

Steger-Warming scheme. After a detailed error analyses, it was demonstrated that the

finite-difference perturbation magnitude together with computer precision is the most

important parameter that affect the accuracy of numerical Jacobians. Test results

showed that double precision improves the accuracy significantly decreasing the
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order from 10-3 to 10-8 and with an optimum perturbation magnitude around 10-8 very

accurate numerical flux Jacobians with an error minimized to 10-7 can be calculated.

Also, using an optimization method it is found that, for single precision a value

around 7.10-4 and for double precision a value around 4.10-8 can be used as optimum

perturbation magnitude for all flux Jacobians. Nevertheless, the control mechanism

used in first order Steger-Warming Jacobian calculation can be improved to give the

best accuracy for all perturbation magnitude values.

 The second objective was to investigate the effects of the accuracy of

Jacobians on the performance of the direct flow solver in terms of convergence and

CPU time. Calculation of the Jacobian numerically keeps the Jacobian consistent

with the numerical flux vector without extremely complex or impractical analytical

differentiations. Even higher-order discretizations, for which analytical derivation

may be difficult to obtain, can be easily handled with the for numerical Jacobian

evaluation. However, numerical method may have accuracy problem and may need

longer execution time. In order to reduce this execution time, flux vectors with

perturbed flow variables are calculated for only related cells. UMFPACK sparse

matrix solver is used to get rid of the high storage and memory requirements of full

matrix solvers. For the test case, with the optimum perturbation magnitude nearly the

same convergence history with the analytical method is obtained. For 2-D planar

flow, convergence is obtained in 10-11 iterations taking nearly 15 seconds of CPU

time. For 2-D axisymmetric flow, convergence is obtained around 6-8 iterations

taking nearly 9 seconds of CPU time. These results are very good and obtained by

implementing some strategies to the Jacobian matrix solution.

Actually, the third objective was to improve the Jacobian matrix solution with

some strategies. A time-like term addition to the matrix diagonal, is a very important

strategy in case of poor initial guess. One important point was that this addition is

required only in the first stages of the iterations, until the conditions become not poor

anymore. Although a sudden withdrawal may cause oscillations, faster convergence

can be achieved if the right time is chosen. Jacobian freezing is also important to
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decrease the execution time. The time when to apply freezing is very important since

early freezing may cause to divergence. For the test case, a detailed analysis is

realized to find the best combination for diagonal-term addition and matrix freezing

strategies. For the test case, quick withdrawal of the diagonal term improved the

number of iterations to convergence and CPU time greatly for 2-D planar flow. For

2-D axisymmetric calculations, there are already axisymmetric terms added to the

diagonal of the Jacobian matrix, providing no need for diagonal term addition. More

advanced strategies can be considered to improve the Jacobian matrix solution.

The developed solver is also tested for different flux splitting methods. By this

way a fourth objective, to investigate the benefits of using the same flux calculation

scheme for both Jacobian and residual calculation in terms of the convergence of the

solver is realized. For test case, after the Steger-Warming scheme is studied in detail,

the numerical Jacobians are found from Van Leer and Roe upwinding schemes. It is

observed that Van Leer or Roe residuals with Steger-Warming analytical Jacobians

converge much slower than Van Leer or Roe residuals used with its corresponding

numerical Jacobian. Especially, Roe reflects this well. In one case, Roe with its

numerical Jacobians converged in 17 iterations taking 29.4 seconds of CPU time,

while with the use of Steger-Warming analytical Jacobians convergence can be

possible up to 150 iterations taking 99.62 seconds of CPU time. Thus, using the same

flux calculation scheme for both Jacobian and residual calculation are very important

for a faster convergence of the solver. Very good convergence results are obtained

for first-order Van Leer and Roe schemes in case of numerical Jacobians are used.

Higher-order discretization schemes are also included in the study. Second-

order Steger-Warming, Van Leer and Roe upwinding are used with Van Albada

limiter. Different from the previous work done in the study, the convergence problem

is clearly seen in higher-order schemes. For 2-D axisymmetric flow, the solution

goes into a limit-cycle with the residual value around 10-8, and does not decrease

anymore. This may be due to the nature of the flux limiter employed in the solver.

Choice and application of limiters is another area that must be analyzed in detail.
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Finally, different from the test case, bump geometry with a finer grid is

analyzed considering a subsonic flow as a different case than supersonic flow. The

second-order Roe upwinding scheme with Van Albada’s limiter is used in the

calculations. For all cases of bump geometry, the solution goes into a limit-cycle.

Considering the supersonic flow, the results are much better since residual value

decreases around 10-12 for planar flow, and 10-8 for axisymmetric flow. In subsonic

flow, the residual oscillates around 10-6. Limit-cycle makes the solution unsteady and

in order to obtain fully converged solution implementation of another limiter or

considering a totally different procedure for higher-order schemes have to be

considered.
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APPENDIX A

ANALYTICAL FLUX JACOBIANS FOR STEGER-WARMING FLUX
VECTOR SPLITTING SCHEME

The generalized flux vector of 2-D Euler equations in generalized coordinates

can be written as:

1 3 4

1 3 1 4 1

1 3 2 4 2

2 2 2 23
1 1 2

2
2 24 3 4

1 2

2( 1)
2( 1) u ( u ck ) ( u ck )
2( 1) v ( v ck ) ( v ck )

2 ( 1) ( u v ) (( u ck ) ( v ck ) )
2

( 3 )( )c(( u ck ) ( v ck ) )
2 2( 1)

γ λ λ λ
γ λ λ λ
γ λ λ λ

ρ
λγ γ λ

λ γ λ λ
γ

− + + 
 − + + + − 

− + + + − 
 =  − + + + + +
 
 − + + − + − +

−  

(A.1)

where the speed of sound c, the eigenvalues λi and the directional cosines ik are

defined as:

2 2
t

1c ( 1) e ( u v )
2

γ γ  = − − +  

1 1 2

2 2
3 1 1 2

2 2
4 1 1 2

uk vk

c k k

c k k

λ

λ λ

λ λ

= +

= + +

= − +

1
1 2 2

1 2

2
2 2 2

1 2

kk
k k

kk
k k

=
+

=
+
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Then taking derivative of each flux i  with respect to each flow variable Wj,

flux Jacobians ij  are obtained as follows:

( )

( )

( )

( )

1
11 11 31 41

12 12 32 42

13 13 33 43

14 14 34 44

2( 1)
2

2( 1)
2

2( 1)
2

2( 1)
2

ρ γ λ λ λ
γ ρ
ρ γ λ λ λ
γ
ρ γ λ λ λ
γ
ρ γ λ λ λ
γ

= − + + +

= − + +

= − + +

= − + +

(A.2)

( )

( )

( )

1
21 11 1 1 3 4 31 41 3 4

1
22 12 1 2 3 4 32 42

23 13 1 3 3 4 33 43

24 14 1 4 3 4 34 44

cu k c ( ) c( ) ( )
2

u k c ( ) c( )
2

u k c ( ) c( )
2

u k c ( ) c( )
2

ρ λ λ λ λ λ λ
ρ γ ρ

ρ λ λ λ λ
ρ γ

ρ λ λ λ λ
γ
ρ λ λ λ λ
γ

   = − + − + − + −   
   

= + + − + −

= + − + −

= + − + −

(A.3)

( )

( )

( )

1
31 11 2 1 3 4 31 41 3 4

32 12 2 2 3 4 32 42

1
33 13 2 3 3 4 33 43

34 14 2 4 3 4 34 44

cv k c ( ) c( ) ( )
2

v k c ( ) c( )
2

v k c ( ) c( )
2

v k c ( ) c( )
2

ρ λ λ λ λ λ λ
ρ γ ρ

ρ λ λ λ λ
γ

ρ λ λ λ λ
ρ γ

ρ λ λ λ λ
γ

   = − + − + − + −   
   

= + − + −

= + + − + −

= + − + −

(A.4)
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( )

( )

2 2 1
41 11 1 2 1 3 4 31 41

1 3 4 31 41 3 4

2 2 1
42 12 1 2 2 3 4 32 42

2 3 4

21 ( u v ) ( uk vk ) c ( ) c( )
2 2

c c cc ( ) ( ) ( )
( 1) 2 2

1 ( u v ) u ( uk vk ) c ( ) c( )
2 2

c c ( )
( 1)

ρ λ λ λ λ
ρ γ

ρ λ λ λ λ λ λ
γ γ ρ

ρ λ λ λ λ
ρ γ

ρ λ λ
γ γ

 = + − + + − + − 
 
 + + + + + + −  

= + + + + − + −

+ + +
−

( )

( )

32 42 1 3 4

2 2 1
43 13 1 2 3 3 4 33 43

3 3 4 33 43 2 3 4

2 2
44 14 1 2 4 3 4 34 44

c c( ) k ( )
2 2

1 ( u v ) v ( uk vk ) c ( ) c( )
2 2

c c cc ( ) ( ) k ( )
( 1) 2 2

1 ( u v ) ( uk vk ) c ( ) c( )
2 2

λ λ λ λ
γ

ρ λ λ λ λ
ρ γ

ρ λ λ λ λ λ λ
γ γ γ

ρ λ λ λ λ
γ

 + + −  

= + + + + − + −

 + + + + + − −  

= + + + − + −

4 3 4 34 44
c cc ( ) ( )

( 1) 2
ρ λ λ λ λ

γ γ
 + + + + −   (A.5)

where the derivatives of speed of sound c and eigenvalues λi with respect to flow

variables Wj, being cj and λij respectively are defined as:

2 2
1 t

2

3

4

( 1)c ( u v e )
2 c
( 1)uc

2 c
( 1)vc

2 c
( 1)c
2 c

γ γ
ρ

γ γ
ρ

γ γ
ρ

γ γ
ρ

−= + +

−= −

−= −

−= −

1
11

1
12

2
13

14

k

k

0

λλ
ρ

λ
ρ

λ
ρ

λ

= −

=

=

=

2 21
31 1 1 2

2 21
32 2 1 2

2 22
33 3 1 2

2 2
34 4 1 2

c k k

k c k k

k c k k

c k k

λλ
ρ

λ
ρ

λ
ρ

λ

= − + +

= + +

= + +

= +

2 21
41 1 1 2

2 21
42 2 1 2

2 22
43 3 1 2

2 2
44 4 1 2

c k k

k c k k

k c k k

c k k

λλ
ρ

λ
ρ

λ
ρ

λ

= − − +

= − +

= − +

= − +
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The ξ-directional flux vector F̂ and its Jacobian matrices Â can be obtained

from Equation (A.1) to Equation (A.5) by replacing k1 and k2 with ξx and ξy, and the

η-directional flux vector Ĝ and its Jacobian matrices B̂ can be obtained by replacing

k1 and k2 with ηx and ηy, respectively.

The positive and negative flux vectors and their Jacobian matrices are obtained

from Equation (A.1) to Equation (A.5) by substituting all λ’s by λ+’s and λ-’s

respectively. Here, iλ ±  and its derivative with respect to flow variables Wj, ijλ ±  are

defined as:

i i
i 2

λ λ
λ ± ±

= i
ij ij

1 sign( )
2

λλ λ± ± =   
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