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ABSTRACT 
 

OPTIMIZATION OF THE ARRAY GEOMETRY FOR DIRECTION               

FINDING 

ÖZAYDIN, Seval 

MSc. , Department of Electrical and Electronic Engineering 

     Supervisor: Assoc. Prof. Dr. Sencer KOÇ 

      Co-Supervisor: Prof. Dr. Yalçõn TANIK 

December 2003, 86 pages 

 

In this thesis, optimization of the geometry of non-uniform arrays for direction 

finding yielding unambiguous results is studied. A measure of similarity between the 

array response vectors is defined.  In this measure, the effects of antenna array 

geometry,  source placements and antenna gains are included as variable parameters. 

Then, assuming that the antenna gains are known and constant, constraints on the 

similarity function are developed and described to result in unambiguous 

configurations and maximum resolution. The problem stated is solved with two 

different methods, the MATLAB optimization toolbox, and genetic algorithm in 

which different genetic codings are also studied. 

          The performance of the MUSIC algorithm with the optimized array geometries  
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are investigated through computer simulations. The direction of arrival estimates are 

obtained using the optimized array geometry on the MUSIC algorithm along with the 

effects of different parameters. Statistics of the true and probable erroneous arrival 

angles and the probability of gross error are obtained as a measure of performance. It 

is observed that the proposed optimization process for the array geometry gave rise 

to unambiguous results for direction finding. 

 

Keywords : direction finding,  MUSIC algorithm, array optimization, genetic        

algorithm 
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ÖZ 

YÖN BULMADA ANTEN DİZİLERİNİN GEOMETRİ        

OPTİMİZASYONU 

ÖZAYDIN, Seval 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Sencer KOÇ 

Ortak Tez Yöneticisi: Prof. Dr. Yalçõn TANIK 

Aralõk 2003, 86 sayfa 

 

Bu araştõrmada, eş aralõklõ olmayan anten dizilerinin, yön bulmada belirsizlik 

içermeyen sonuçlar verebilmesi için, geometri optimizasyonlarõ üzerine çalõşõlmõştõr. 

Anten dizisi tepki vektörlerinin arasõnda bir benzerlik ölçüsü tanõmlanmõştõr. Bu 

ölçüye, anten dizisi geometrisi, kaynak yerleşimleri ve anten kazançlarõ değişken 

parametreler olarak dahil edilmiştir. Daha sonra, anten kazançlarõnõn bilindiği ve 

sabit olduğu varsayõlarak, yön bulmada en yüksek çözünürlüğe sahip ve belirsizlik 

içermeyen sonuçlar elde etmek üzere, benzerlik fonksiyonu üzerine getirilecek 

kõsõtlamalar belirlenmiş ve anlatõlmõştõr. Tanõmlanan problem, MATLAB�õn 

optimizasyon işlevi ve farklõ genetik kodlamalarõn da kullanõldõğõ genetik algoritma 

yöntemleriyle çözülmüştür.  
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          MUSIC algoritmasõnõn optimum anten geometrileriyle performansõ  bilgisayar 

simülasyonlarõyla gözlemlenmiştir. Geliş açõsõ tahminleri, farklõ parametrelerin etkisi 

de göz önünde bulundurularak, optimum anten geometrilerinin MUSIC 

algoritmasõnda kullanõlmasõyla elde edilmiştir. Performans ölçüsü olarak, gerçek ve 

muhtemel yanlõş geliş açõlarõnõn istatistikleri ve karõşõklõk oluşmasõ ihtimali 

hesaplanmõştõr. Anten dizisi geometrilerinin optimizasyonu için öngörülen 

yaklaşõmõn, yön bulmada belirsizlik içermeyen sonuçlar verdiği gözlemlenmiştir. 

 

Anahtar Kelimeler: yön bulma, anten dizisi optimizasyonu, MUSIC algoritmasõ,    

genetik algoritma 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Direction Finding 

          Estimation problems in theoretical as well as applied statistics have long been 

of great research interest given their importance in a great variety of applications. 

Parameter estimation has particularly been an area of focus by applied statisticians 

and engineers as problems required ever improving performance. Many techniques 

were the result of an attempt by researchers to go beyond the classical Fourier-limit. 

          As applications extended, the interest in accurately estimating relevant 

temporal as well as spatial parameters grew. Sensor array signal processing 

emerged as an active area of research and was centered on the ability to fuse data 

collected at an array of judiciously placed antenna sensors in space in the field of 

interest. The received signal is assumed to be generated by a finite number of 

emitters, and contains information about signal parameters characterizing the 

emitters.  The goal is to extract useful characteristics of the received signal (e.g., the 

number of sources, their direction in azimuth and elevation, complex envelopes, 

location, signature, speed of propagation, center frequency, range, etc., associated 

with each signal). One of the most important parameters to be extracted from the 
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sensor array is the direction of the signals impinging on the array, the problem 

named as �Direction Finding� (DF), [1]. 

          The sources under consideration, may be uncorrelated (i.e., independent from 

each other), correlated (i.e., dependent by some amount designated by the 

correlation coefficient), or coherently related (i.e., correlation coefficient is 1, these 

sources are identical) to each other. 

         There are some important factors to be considered in the DF problem such as 

the choice of the sensors, the receiver structure, and the optimum algorithm. One 

other important factor to be considered in the DF problem is the choice of the 

optimum array geometry, which is the focus of this thesis.  

1.2. Array Geometry 

          In DF systems, a variety of different array geometries are used depending on 

the application of interest. The array geometry affects various aspects of the DF 

system such as resolution and sensitivity to system errors. 

           The most commonly used configuration is the linear array, in which the 

sensors (all of a common type) are spaced along a straight line. If sensor spacings 

are uniform, this is called a uniform linear array (ULA). Another common 

configuration is a planar array, in which the sensors may form a rectangular grid or 

lie on concentric circles. If the sensors are placed on a single circle with uniform 

spacings, this is called a uniform circular array (UCA), [2].  

       The widely studied uniform linear array (ULA) can provide estimates of source 

bearings relative to the array axis. However, a planar array is required if estimates 



                                                                 3

of both source azimuth and elevation are required. The following properties of 

uniform circular arrays (UCA�s) make them attractive in the context of DOA 

estimation. UCA�s provide 360° azimuthal coverage and also provide information 

on source elevation angles. ULA�s, in contrast, provide only 180° coverage and 

have left-right ambiguity. They do not provide uniform resolution over the entire 

space. 

        Conventionally, the uniform linear array is implemented with inter-element 

spacing less than or equal to λ/2, where λ is the wavelength at the center frequency. 

The value of λ/2 is derived from the sampling theorem in order to cover angles from 

-π/2 to π/2 in physical space, measured from the boresight of the array, and to 

eliminate the problem of ambiguity in angles of arrival.  

          In some cases, to increase the accuracy of measurement, one has to maximize 

the aperture or the length of the array for a given number of sensors, which will 

increase the inter-sensor spacing such that the average spacing will be larger than 

λ/2.  This will introduce ambiguities if ULA is employed. To avoid this problem, 

array structures in which the element spacing is unequal, called non-uniform array, 

are used.  

1.3. Direction Finding Algorithms 

          There exist a vast number of algorithms in the literature for estimating the 

direction of arrival (DOA) from the measured output of a sensor array. These 

algorithms can be classified into two main categories, namely spectral-based and 

parametric approaches. In the former, one forms some spectrum-like function of the  
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parameter(s) of interest, e.g., the DOA. The locations of the highest (separated) 

peaks of the function in question are recorded as the DOA estimates. Parametric 

techniques, on the other hand, require a simultaneous search for all parameters of 

interest. The latter approach often results in more accurate estimates, at the expense 

of an increased computational complexity.   

1.3.1. Spectral-Based Methods 

1.3.1.1. Beamforming Techniques [1] 

          The first attempt to automatically localize signal sources using antenna arrays 

was through beamforming techniques. The idea is to �steer� the array pattern in one 

direction at a time and measure the output power. The steering locations which 

result in maximum power yield the DOA estimates.    

1.3.1.2. Subspace-Based Methods [2] 

          The subspace based methods exploit the underlying structure of the array 

covariance matrix: 

{ } I)(AR)(A)t(y)t(yER H
xi

H
i

2σ+ΘΘ== ,                                            (1.1) 

where 

[ ])(...)()( 1 LaaA ΘΘ=Θ  : array manifold matrix, 

)(Θa  : array steering vector, 

{ })t(x)t(xER i
H

ix =  : signal covariance matrix, 

2σ  : power of the additive white Gaussian noise. 
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)t(x i : complex envelope of the emitter signal at the ith  time instant 

)t(y i : complex envelope of the sensor output at the ith  time instant 

 

   These methods are based on the fact that the signal part of the array output 

vectors lies in the so-called signal subspace, which is a lower dimensional subspace 

of the array manifold.    

            The subspace based methods use either the signal subspace or the noise 

subspace for the estimation of the signal parameters. The issue is then the 

estimation of either signal or the noise subspace. The estimates of these subspaces 

are commonly found either from the eigendecomposition of the sample correlation 

matrix, or equivalently, from the singular value decomposition of the data matrix 

itself, although there are other approaches which do not use eigendecomposition 

techniques in an attempt to reduce the computational complexity at the cost of 

performance, [2]. 

            The signal and noise subspaces can be consistently estimated from the 

eigendecomposition of a consistent estimate of the array covariance matrix, where 

the most popular estimate for R  is 

)t(y)t(y
N

R� i
H

i
i∑=

1                                                                                         (1.2) 

with N as the number of samples.                 

   



                                                                 6

Specific Algorithms and Discussions 

          The high resolution capability and lower computational complexity (as 

compared to parametric approaches) of subspace based methods have led to a vast 

number of algorithms based on the same approach. 

MUSIC [1] 

          In the engineering literature, Pisarenko�s work in harmonic retrieval was 

among the first to be published for subspace based methods. However, the 

tremendous interest in the subspace approach is mainly due to the introduction of 

the MUSIC (MUltiple SIgnal Classification) algorithm. It is interesting to note that 

while earlier works were mostly derived in the context of time series analysis and 

later applied to the sensor array problem, MUSIC was indeed originally presented 

as a DOA estimator.  

          In this algorithm, DOA estimates are obtained using the fact that any vector 

in the noise subspace is in the null space of the signal subspace, i.e., the signal and 

noise subspaces are orthogonal.  

          MUSIC algorithm will be explained in detail in Chapter 4. 

MIN-NORM [1] 

          This algorithm is a result of an attempt to improve/overcome some of 

MUSIC�s shortcomings in various specific scenarios. The method is the unifying 

theme of weighted MUSIC in which the denominator of the MUSIC spectrum is 

weighted by a matrix W. For different weighting matrices W, the method is 

particularized to various algorithms. 
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          The weighting matrix W is introduced to take into account the influence of 

each of the eigenvectors. It is clear that a uniform weighting of the eigenvectors, 

i.e., W= I, results in the original MUSIC method. This is indeed the optimal 

weighting in terms of yielding estimates of minimal asymptotic variance. However, 

in difficult scenarios involving small number of samples, low SNR and highly 

correlated signals, a carefully chosen non-uniform weighting may improve the 

resolution capability of the estimator without seriously increasing the variance. 

          One particularly useful choice of weighting is given by 

          W=e1 e1
T   

where e1 is the first column of the LxL identity matrix, L representing the number of 

sensors. This corresponds to the Min-Norm algorithm, which is originally proposed 

for uniform linear arrays but also extended to arbitrary array geometries. 

          The Min-Norm algorithm exhibits a lower bias and hence a better resolution 

than the original MUSIC algorithm, at least when applied to ULA�s.  

ESPRIT  

          Among the algorithms developed, ESPRIT (Estimation of Signal Parameters 

via Rotational Invariance Techniques) has been greatly exploited because of its 

computational efficiency. The reduction in the computational cost is achieved by 

requiring that the sensor array possess displacement invariance, i.e., sensors occur 

in matched pairs with identical displacement vectors. Thus, there exist two identical 

subarrays, one of which is shifted by a known amount ∆ relative to the other.  This 

method, different from MUSIC, does not require the array manifold, i.e., the actual 
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positions, patterns; etc., of the array elements; only the shift vector needs to be 

known, [2]. 

State-Space Realization (TAM) 

          The Toeplitz Approximation Method (TAM), is based on a state-space 

representation of the sensor outputs. TAM estimates an LxL state transition matrix, 

where L is the number of sensors, and obtains estimates of the DOA�s from the 

eigenvalues of this matrix, [2].  

1.3.2. Parametric Methods [1]  

          While the spectral-based methods presented in the previous sections are 

computationally attractive, they do not always yield sufficient accuracy. In 

particular, for scenarios involving highly correlated (or even coherent) signals, the 

performance of spectral-based methods may be insufficient. An alternative is to 

more fully exploit the underlying data model, leading the so-called parametric array 

processing methods.  In these methods, the problem is the maximization of the 

likelihood function of the observed data. The set of parameters that maximizes the 

likelihood function is the set of parameters that makes the observed data most 

probable.  Depending on the model assumption on the signal waveforms there exist 

two of these algorithms. They are presented shortly below: 

Deterministic Maximum Likelihood 

          In this method, noise is modeled as a stationary Gaussian white random 

process whereas the signal waveforms are deterministic (arbitrary) and unknown. 
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The deterministic signal model is more appropriate in certain applications, such as 

radar and radio communication. 

 Stochastic Maximum Likelihood 

          This model is obtained by modeling the signal waveforms as stationary, 

Gaussian random processes. This method is reasonable, for instance, if the 

measurements are obtained by filtering wideband signals using a narrow bandpass 

filter.  

1.4. Earlier Approaches Towards Array Geometry Optimization 

          The optimal array geometry problem is discussed in some papers, both in 

relation with beamforming and the DF problem. The most common structures are 

the linear and circular arrays.  

          Moffet studied on non-uniform linear arrays and found that there exists a 

class of non-uniform linear arrays, called the minimum redundancy array. The 

minimum redundancy array is a linear array that contains the least possible number 

of sensors such that all the required sensor spacings are present, hence the 

redundancy in the structure is minimized, [2]. 

          The effect of the linear array geometry on DOA estimation for a single source 

is studied in [3]. A comparison on the performances of uniform and non-uniform 

linear array structures is made and in the case of single targets in additive white 

Gaussian noise, non-uniform arrays are found to provide significant improvement 

over the uniform arrays of the same number of elements. 
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          The linear array design problem for optimum DOA performance with regard 

to the maximum likelihood estimation is studied in [4]. The non-uniform array 

structure proposed in this study has an improved performance as compared to 

uniform linear arrays and the minimum redundancy arrays. 

          The design of super-resolution direction finding arrays that satisfy 

prespecified performance levels, such as detection-resolution thresholds and 

Cramer-Rao bounds on error variance is also a different problem and has been 

addressed by Dowlut and Manikas, [5]. The sensor placement problem is 

formulated in the framework of subspace-based DF techniques. The core of the 

design approach is the sensor locator polynomial (SLP), which is constructed using 

the manifold curvatures and whose roots yield the normalized sensor locations of 

the desired array. 

          The problem of DOA ambiguity of arbitrary array for subspace-based DF 

methods in a wide frequency band is studied in [6]. The ambiguities are divided into 

different orders and first-order ambiguity is intensively discussed. Especially, the 

ULA and UCA are examined and a general conclusion on first-order ambiguity 

versus array configuration is reached. 

          One of the most specific works on optimizing the array geometry for 

ambiguity resolution in direction finding is that of Gavish and Weiss, [7]. They 

introduced a measure of similarity between array response vectors and derived a 

tight lower bound of the similarity measure. The array geometry associated with the 

highest  lower  bound performs better  than other arrays with  the same aperture and 

the same number of sensors. Therefore, this lower bound is used for selecting the 
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best thinned array configuration from a set of candidate geometries by computing 

the bound for each configuration in the set. It is shown that for wideband arrays, the 

optimal array selection should be performed only once at the highest frequency of 

operation. The approach proposed in this study is applicable to any array 

configuration.       

1.5. The Motivation and Purpose of This Work 

          Although sensor-array applications such as direction finding, interference 

cancellation, communications, etc., have been worked on a lot, there is not much 

literature on the design of the array geometry. In this thesis, the problem of 

optimizing the array geometry to minimize probability of large errors in direction of 

arrival (DOA) estimation is studied.  

          The array manifold gives the array response in the presence of a single signal. 

For different direction of arrivals (DOA�s), the manifold should be different. If, for 

a given set of widely separated DOA�s the array response is similar, large errors, 

usually referred to as ambiguity errors, are likely to occur.  A measure of similarity 

between the array response vectors is introduced for the solution of this problem.   

Appropriate array geometries, yielding unambiguous results, are found by putting 

some constraints on the evaluated similarity function.    

The particular problem considered in this work is the estimation of DOA�s, 

in azimuth, of L incident plane waves, at a known wavelengthλ , by using N data 

samples taken from a non-uniform linear array with M antennas whose locations are 

determined  by  the constrained optimization process  implemented on the evaluated 

similarity function, using genetic algorithm.  The MUSIC algorithm is applied to 
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the resultant array geometry. A direction estimation covering (0°) � (180°) in 

azimuth is performed since a linear array is used.   

 The performance of the proposed optimization process is then investigated 

through computer simulations, for which the variable parameters are chosen 

carefully for verifying the array geometry in any case. The probability of ambiguity 

is found for the optimized geometries. It is observed that the proposed optimization 

process resulted in unambiguous array geometries.  

1.6. Outline of the Thesis 

          This thesis is organized as follows: In Chap. 2, the problem is stated and 

formulated; an approach on optimizing the array geometry in DF, by Motti Gavish 

and Anthony J. Weiss, is presented, and the details for the proposed constraints on 

the similarity function are developed and described.  

 In Chap. 3, the optimization methods are told. A brief summary on Genetic 

Algorithm is provided.  The details of the array optimization, using the constraints 

developed in Chap.2, are given.  Also, the simulation results for the optimum array 

geometry, depending on the constraints on the similarity function, are presented. 

          In Chap. 4, typical results of the computer simulations, using the optimized 

array geometry on the MUSIC algorithm, are presented, along with the discussions 

related to effects of different parameters. To investigate the performance of the 

proposed geometries, the statistics of the true and probable ambiguous peaks are 

given. The probability of ambiguity is derived for the performance measure. 

 Finally, Chap.5 includes some concluding remarks. 
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CHAPTER 2 

THE OPTIMIZATION APPROACH 

 

          In this study, the problem of optimizing the antenna array geometry for 

unambiguous estimation of the direction of arrivals (DOA�s) of plane waves is 

investigated. Aim of this study is to find the optimum array geometry, for the 

estimation of the DOA�s of L narrowband plane waves from the measurements 

taken by an array consisting of M sensors ( )(
1 iMx

ty  for 1,...,0 −= Ni ). 

The problem is formulated in terms of the steering vector concept described 

later, and a measure of similarity of the steering vectors is developed. In the first 

part of this chapter, the study by Motti Gavish and Anthony J. Weiss [7], is given. 

In their study, a measure of similarity between the array response vectors is derived 

and lower bounded by a discrete function that can be easily computed. According to 

the proposed design criterion, the best array geometry is found using this lower 

bound. 

In the second part, the optimization criteria for the array geometry used in 

this thesis are described. The same measure of similarity between the array response 

vectors is used as in the work by Motti Gavish and Anthony J. Weiss, [7]. But, the 

proposed optimization criteria are novel. Detailed derivations for the optimization 

criteria are also provided. 
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2.1. Data Model 

           The data model used in this chapter assumes M sensors located in an 

arbitrary geometry and L plane waves impinging on the array. When each sensor 

output is modeled as the response of a linear time-invariant system, the output of 

the kth sensor can be written as a superposition 

          )t(n~)t(x~)t(h)t(y~ kkii

L

i
kik +τ−∗= ∑

=1
,                                                       (2.1) 

where )t(hki denotes the impulse response of the kth sensor to the ith signal )t(x~i  

impinging on the array, kiτ  denotes the time delay of the ith signal at the kth sensor, 

relative to some fixed reference point, (*) denotes convolution, and )t(n~k  is an 

additive noise term. Denoting the DOA of the ith signal as iθ , and under the 

narrowband assumption, i.e., time delay between any two elements of the array is 

small compared to the time variations and phase modulations of the carrier 

frequency, the complex envelope of the sensor output can be written as  

         )t(n)t(xe)(H)t(y ki
)(j

L

i
ikk

ik +θ= θωτ−

=
∑

1
 ,                                               (2.2) 

where the kth sensor�s response and the time-delay of propagation for the ith signal 

are denoted by )(H ik θ  and )( ik θτ , respectively. )t(xi  and )t(nk are the complex 

envelopes of the ith emitter signal and the kth sensor noise, respectively. Adopting a 

vector notation, the above equation can be written in the following form: 

          y (t) = [ ])()...( Laa θθ1  [ ]TL )t(x)...t(x1 + n (t), 

                  = A (θ ) x ( t ) + n (t),                                                                          (2.3) 
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where the response of the kth sensor to the ith signal is )(j
ikik

ike)(H)(a θωτ−θ=θ . 

The vector  y (t) belongs to an M-dimensional complex vector space.  

          The array response vector a( iθ ) is an element of the complex M-dimensional  

vector space, and the array manifold is defined as the collection of all array 

response vectors over the parameter range of interest, which for the special case 

studied in this thesis, is only the signal�s DOA as measured relative to a reference 

axis. 

2.2. An Approach for Optimization of Array Geometry by Motti Gavish and 

Anthony J. Weiss [7] 

          The array manifold gives the array response in the presence of a single signal, 

as explained before. For different direction of arrivals (DOA�s), the array response 

vectors should be different. If, for widely separated DOA�s, the array responses are 

close to each other, this will yield ambiguity errors. In [7], a measure of similarity 

between array response vectors is introduced. A tight lower bound for the similarity 

measure is derived. The array geometry which has the highest lower bound has a 

smaller probability of making a gross error than the other arrays with the same 

aperture and the same number of antennas. Therefore, this bound can be used to 

select the best array geometry from a set of given geometries, by computing the 

bound for each geometry in this selected set of geometries.  

          The notation used in the following sections is as follows: 

          (.)T  : Transpose 

          (.)*  : Complex conjugate 
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          (.)H  : Hermitian (complex conjugate) transpose 

          E{.} : Expected value 

         .   : Euclidean norm 

          IM       : MxM identity matrix 

          tr{X}: Trace of matrix X    

2.2.1. Linear Arrays  

          Consider a linear array of M sensors. The sensor gains are assumed to be 

constant. The array steering vector ( the array response vector) is given by 

 a (θ ) = [ ]Tsindj
M

sindjsindj Meg,...,eg,eg,g θπθπθπ 22
3

2
21

32                                          (2.4) 

where dm   is the mth sensor distance from the first sensor (in wavelength units), θ  is 

the off-broadside signal angle, and gm  is the gain of the mth sensor.  

          Obviously, the steering vectors of two closely spaced angles are not much 

different, and therefore, the array spatial resolution is limited. In this work, the 

concentration is on the similarity of steering vectors associated with widely 

separated angles, which are the probable candidates for ambiguity errors. 

          It is assumed that the array is intended to intercept signals from a given field 

of  view defined by  Θ [ ]maxmin ,θθ= . It is desired that steering vectors associated 

with  Θ∈θ1  and Θ∈θ2  where 21 θ≠θ   would be as different as possible. Each 

steering vector is characterized by the vector of phases of the last M-1 elements 

relative to the first element 
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          p(θ )= [ ]TM sind,...,sind,sind θπθπθπ 222 32                                               (2.5) 

             Corresponding to the DOA�s 1θ
 and 2θ , a very good measure of the 

similarity or difference between the two steering vectors, is the squared Euclidean 

norm 

       Q( 21 θθ , )∆ 24
1
π

|| G((p( 2θ )- p( 1θ )))2π ||2                                                          (2.6) 

where ((z))2π  is used for representing the evaluation of each of the elements of the 

vector z modulo 2π, and the modulo is defined in the interval (-π, π]. The 

coefficient 1/4π2 is used to reduce the computational complexity for the 

mathematical operations. The matrix G in Eq. (2.6) is a diagonal weighting matrix 

defined by 

          G∆ 1/g1 diag{g2, g3, �, gM}.                                                                        (2.7) 

In (2.7) g1 must be nonzero since the case g1≡0 is meaningless. 

Using the notation   x∆  sin 2θ  - sin 1θ ,  and  d ∆ [d2, d3, �, dM]T , (2.6) becomes 

         24
1)(
π

=xQ   G((2 π d x)) 2π  
2                                                                                              (2.8) 

In Eq. (2.6), the introduced measure of similarity seems to be intuitively satisfying, 

since it is closely related to the probability of error in choosing between  1θ  and 2θ  

using a finite number of noisy samples of the array output.  This approach is based 

on the classical detection theory. During the probability of error calculations, it is 

assumed that the signal and noise are mutually uncorrelated zero-mean Gaussian 

processes with known covariance.  
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          Equation (2.8) can be written as 

         =)(xQ G(dx-k)  2                                                                                                                            (2.9) 

where  k∆  [k2, k3, �, kM]T   is a vector of integers selected so that each element of 

the vector (dx-k) is in the interval (-1/2,1/2]. 

          As a result of its definition, x is limited to the interval X= [xmin, xmax] which is 

induced by Θ. According to the value of k, the interval X can be divided into 

subintervals. Within each subinterval, the value of  k is fixed, and is different for 

different subintervals.  

          The identification of the integer vectors k associated with a given array 

geometry is an important step in the evaluation of the array score. Starting with 

linear arrays, and recalling that the vector k∆  [k2, k3, �, kM]T  is a vector of 

integers selected to limit the elements of the vector (dx-k) to the interval (-1/2,1/2], 

the valid interval for x can be found 

          -1/2 < dix-ki  ≤  1/2                         i = 2,3,�,M   

or 

           
i

i

i

i

d
k/

x
d

k/ +
≤<

+− 2121
            i = 2,3,�,M                                       (2.10) 

          The above equation identifies intervals of  x in which a given  ki  value is 

used. Since ki = 0,1,2,�, ki
max , it is easy to identify all the valid intervals of x in 

which ki  is fixed. The combination of the intervals for  i = 2,3,�,M  can be used to 
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identify the set of vectors k associated with a given array. The vector k is fixed 

within each interval and is different in different intervals. 

          For three-dimensional arrays composed of orthogonal linear subarrays, this 

approach can still be used. For an arbitrary array geometry, the vectors k can be 

found by using a dense enough grid of azimuth and elevation angles within the 

spatial sector of interest.  

          After the computation of integers k, the minimization of Q(x) with respect to 

x for a given vector k is required. Using the first derivative of  Q(x), the minimizer 

is found as  

          =x~ (dTG2d)-1dTG2k                                                                                  (2.11) 

substituting x~  back to Eq. (2.9) gives the lower bound 

           Q(x) ≥  Dk 2                                                                                                                                   (2.12) 

where  D is the matrix 

          D ∆ [Gd(dTG2d)-1dTG-IM-1]G                                                                  (2.13) 

          For any array configuration, the function Q(x)  and its lower bound can be 

evaluated. As expected, for x=0 the distance between the steering vectors is zero, 

and the function Q(x) takes the value zero. This is also the same for the case x=2 

where the steering vectors are equal for any array whose sensor spacings are 

multiples of λ/2, where λ is the wavelength of the incoming signal, and reflects the 

difficulty of such arrays to distinguish between directions (close to)  90° and -90°! 
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The lower bound found for Q(x) is tight and Q(x) reaches the bound at certain 

points.  

          To evaluate the array, it is useful to calculate the bound Dk 2 for all the 

vectors k except for the vector associated with the first interval which is a vector of 

zeros. The number of vectors k is finite and is a function of the array aperture and 

the number of sensors. For the values of x associated with the minima of   Q(x), Q(x) 

is equal to the bound. Because of this fact, the examination of the bound reveals the 

combinations of DOA�s corresponding to the poorest array performance.  

          The set of all the k vectors induced by the vector d and the interval X is 

denoted by K , not including k=0.  Then, a scalar S is defined as 

          S = 
Kk

min
∈

Dk 2                                                                                           (2.14) 

          Here, S characterizes the worst-case ambiguity behaviour of the array and can 

be used as a performance index of a given array geometry. Better arrays will be 

associated with larger S, using a worst-case approach. From all the candidate 

geometries, the one with the highest score S will be chosen. This strategy yields to 

the selection of array having the best worst-case performance among the considered 

configurations. 

          The evaluation of S requires finding the smallest number out of a finite set of 

numbers. 

          Some remarks about the criterion are as follows: First, in Eq. (2.6), the phase 

vector p(θ )  which is linear in sinθ   is used, and it is normalized by the relative 

gains of the matrix G rather than using directly the steering vector a(θ ). This 
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selection was done to have a similarity function Q(x) which can be easily bounded, 

to simplify the approach. Second, the gains of the antennas, gm  should be known 

and are assumed constant (but not necessarily identical) within the angular sector of 

interest. Small gain changes are not likely to affect the score function significantly. 

          A more generalized form of the approach is presented below, derived for the 

case of most practical arrays required to operate over a wide-frequency band. 

          The elements of the vector d are the spacings between the first sensor and the 

mth sensor in wavelength units. So, the vector d is different for each frequency. 

Letting dl to be the vector d corresponding to a frequency associated with 

wavelength λl , and dh to be the vector d evaluated at the highest frequency of 

operation, associated with wavelength λh, there exists the relation 

          dl  = dh  
l

h

λ
λ

                                                                                                                                                 (2.15) 

         Since the vector  dl  is a scaled version of the vector dh , the matrix D,  defined 

in (2.13), is the same for all frequencies. Also, the set of integer vectors Kl  

associated with dl  is a subset of the set Kh  associated with dh.   

          Hence, the score Sh , associated with the highest frequency is always less than 

or equal to the score Sl  associated with any other frequency 

          Sh ≤  Sl  .                                                                                                     (2.16) 

          This result shows that the higher the frequency the higher is the probability of 

ambiguity. If a worst-case design criterion is used, the geometry selection should be 

performed only once at the highest frequency of operation. This approach yields to 
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the selection of the array having the best worst-case performance (over all 

frequency range and all directions of interest) among the considered configurations. 

2.2.2. General Arrays 

          For a general array of sensors, in which the sensor gains are assumed constant 

within the spatial sector of interest, the array steering vector is given by 

          a(u) = [ ]Turj
M

urjurj T
M

TT

eg,...,eg,eg,g πππ 22
3

2
21

32                                             (2.17) 

         where  

          rm∆ [ xm, ym, zm ]T                            m=2,3,�,M                                        (2.18) 

          u∆ [cosθ cosφ , sinθ cosφ , sinφ ]T                                                                                       (2.19) 

          In Eq. (2.18),  xm , ym , and  zm are the cartesian coordinates of the mth sensor, 

and  u defined in (2.19) is a unit vector pointing to the source. The angles θ , φ  

stand for azimuth and elevation, respectively. The first sensor coincides with the 

origin of the coordinate system. 

          In this case, the vector of phases is given by 

          p(u)=2πRu                                                                                                (2.20) 

          where  R∆ [r2,r3,�,rM]T . 

          In this case, the measure of similarity is 

          Q(u1 , u2) ∆  1/4π2 || G((p(u2)- p(u1)))2π ||2                                                                         (2.21)      

          for which, the matrix G is as defined in (2.7). 
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          If, (2.20) is substituted in (2.21), the similarity measure becomes 

         =)x(Q G(R x -k)  2                                                                                                                    (2.22)                                    

          where      x ∆  u2-u1
                                                                                                                               (2.23)      

          and  k   is a vector of integers,  selected so that each element of the vector 

(R x -k) is in the interval (-1/2,1/2].  

          The function )(xQ can be bounded, using the same technique as for linear 

arrays as follows: 

          )(xQ ≥  Tk 2                                                                                                                                   (2.24)      

               where 

          T ∆ [GR(RTG2R)-1RTG-IM-1]G.                                                              (2.25)      

The corresponding score for a given array geometry becomes 

          S = 
Kk∈

min Tk 2                                                                                        (2.26)      

where the set of integers K is obtained by removing the vector k=0 from the set of 

all the k vectors induced by the matrix R and the corresponding interval X of  x . 

          So, the technique that is used to evaluate a linear array can be used for arrays 

with a general geometry. 

2.2.3. Conclusion 

          In the study by M. Gavish and A. J. Weiss [7], that is presented above, a 

measure of similarity is introduced and lower bounded by a tight bound which 
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serves as a score function for optimization of array configurations. The proposed 

design procedure can be used with any array geometry. 

2.3. The Proposed Optimization Approach for Unambiguous Array Design 

          As described in the previous section, the array manifold gives the array 

response in the presence of a single signal.  

          In this study, a linear array of M  sensors is considered. The sensor gains are 

assumed constant. The the array response vector is as given in Eq. (2.4), i.e., 

 a (θ ) = [ ]Tsindj
M

sindjsindj Meg,...,eg,eg,g θπθπθπ 22
3

2
21

32                                        (2.27) 

where di   is the ith sensor distance from the first sensor (in wavelength units), θ  is 

the signal angle  measured from the broadside direction, and gi  is the gain of the ith 

sensor.           

          Throughout this section, lowercase boldface letters are used to denote vectors 

and uppercase boldface letters are used to denote matrices.            

          Letting  a(θ ) to be the array  response vector, define  

          Q( 21 ,θθ )∆ 1/4  a( 1θ )-a( 2θ ) 
2                                                                                          (2.28)   

as the similarity function.  This function is a measure of how similar the array 

steering vectors for different angles   1θ   and  2θ  . 

          Substituting (2.27) in (2.28), the following are obtained: 

          Q( 21 ,θθ )= 1/4  a( 1θ )-a( 2θ ) 
2 
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               = ∑
=

M

i
ig

2

2

4
1 [ 21 22 θπθπ − sindjsindj ii ee ] 2 

                     = ∑
=

M

i
ig

2

2

4
1 )ee(e

sinsin
dj

sinsin
dj

sinsin
dj iii 2

2
2

2
2

2 212121 θ−θ
π−

θ−θ
π

θ+θ
π

− 2 

              = ∑
=

M

i
ig

2

2

4
1





 θ−θ
π

θ+θ
π

2
22 212

2 21 sinsindsinje i

sinsin
dj i 2 

              = ∑
=

M

i
ig

2

2

4
1 2

2 21 θ+θ
π

sinsin
dj ie 2  





 θ−θ
π

2
22 21 sinsindsinj i

2 

              = ∑
=

M

i
ig

2

2

4
1 ))sin(sind(sin i 21

24 θ−θπ  

                 = ∑
=

M

i 2
)xd(sing ii π22                                                                                (2.29)   

where  x∆ sin 1θ  - sin  2θ                                                                                                                                (2.30)  
 

          So, the similarity function is reduced to 

          Q(x)=  ∑
=

M

i 2
)xd(sing ii π22      

          Recall that in the study by M.Gavish and A.J.Weiss [7], the proposed 

similarity function for general array geometry was defined as 

          =)x(Q G(R x -k) 2                                                                                             

          where      x ∆  u2-u1
      , u2 and u1 representing the unit vectors pointing to the 

sources.  
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          As expected, for x=0 the distance between the steering vectors is zero, and 

)x(Q = 0. The similarity function reaches the tight lower bound at multiple points 

in this approach. The details of the computations are provided in 2.2.                                                   

          From Eq. (2.29), it is seen that the similarity function is reduced to a function 

of a single variable x, where  -2≤  x ≤  2.  

          Q(x) is an even function of x, i.e., 

          Q(x) = Q(-x)  

so, the range of x can be restricted to [0,2].  

          Obviously, Q(0)=0, since the array responses of two angles which are equal, 

are identical.  

          For the array not to have ambiguities, we require  

          Q(x) ≠  0   for   x≠ 0.                                                                                (2.31) 

          To search for the condition of ambiguity occurrence, the following equation 

has to be solved:  

          Q(x)= ∑
=

M

i 2
)xd(sing ii π22  = 0                                                                  (2.32) 

This yields the equation  )xdsin( iπ = 0       i=2,3,�,M                                     (2.33) 

The values of x satisfying this equation are for 

          πdix = nπ  or  dix = n          i=2,3,�,M  and  n is an integer                      (2.34)   

It   can  also be concluded from  Eq. 2.34  that,  d2  has to be greater  than 1/2  for an  
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ambiguity to occur since x can be 2 at its maximum, and if d2 is less than 1/2, πdix 

can not be an integer multiple of π. Hence, if  d2 < 1/2 , the array will have no 

ambiguity. 

          On the other hand, if  Q(x) gets very small for x ≠  0, a small perturbation in 

the signals due to noise will make it impossible to distinguish between 1θ  and 2θ , 

resulting in a gross error. Hence, in the design of the array geometry,  the relevant 

Q(x) is required to be as large as possible for x ≠  0. 

          For a given array geometry, as seen in Fig. 2.1, S( d ) is defined as the 

minimum of the local minima of Q(x), d  and s0 denoting the optimized array 

geometry and the lower bound (which will be explained later), respectively.  

 

      

          

S( d ) 

Fig. 2.1:  Q(x) as a function of  x for an arbitrary array geometry 
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          Thus, one approach could be to maximize S( d ) as a function of d  and 

among such geometries to select the one which has the smallest curvature at x=0 as 

a means of optimizing the array resolution for the sources close in space. 

           To investigate the behaviour of  Q(x) in the neighbourhood of x=0,  we 

expand Q(x) into Taylor series, 

          Q(x) ≅ ∑
=

M

2i

{  [ ]22 xdg ii π  + h.o.t } 

                   = ∑
=

M

2i

2222 xdg iiπ + h.o.t                                                                   (2.35)   

          Since, the resolution measure carries information only around the angles near 

in magnitude, i.e., x≅ 0,  higher order terms can be extracted during the evaluations 

made for resolution.  

          Hence, a measure of the array resolution around x=0 can be written as 

          R( d ) = ∑
=

M

2i
 g 2

i d 2
i                                                                                                                   (2.36)   

          So, various optimization approaches can be developed depending on 

parameters R( d ) and S( d ).  

Remark: If two signals arriving from 1θ  and 2θ  have different amplitudes, the 

measure of similarity should be considered as 

          Q( 1θ , 2θ ) = a( 1θ )-ba( 2θ ) 
2                                                                                                (2.37)   
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where the constant b represents the ratio of the amplitude of the  second signal to 

the first one. In this study, however, the case of ambiguity for two signals is not 

considered. This remark is provided for the sake of completeness. 

          If the approach is to maximize S( d ), the local minima of  Q(x ) should be 

determined first. This is done by taking the first derivative and equating it to zero: 

        Since          Q(x)  = ∑
=

M

i 2
)xd(sing ii π22    

                          
dx

xdQ )( =  ∑
=

M

i 2

)xdcos()xdsin(dg iiii πππ 22  = 0 

                                      =∑
=

M

i 2
)xdsin(dg iii ππ 22 =0                                           (2.38)   

          Obviously, there is a finite number of solutions (let this number be N) to this 

equation. Let us denote these solutions by xj , j=1,2,�,N.  

          However, some of these solutions are local maxima and some of them are 

local minima. To choose the local minima out of these N solutions,  second 

derivatives should be evaluated to decide whether the points are on a decreasing or 

increasing point of the curve.  

As evaluated previously, the first derivative of the similarity function is 

          
dx

xdQ )(  =   ∑
=

M

i 2
)xdsin(dg iii ππ 22  

for which the second derivative is derived as 
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          2

2 )(
dx

xQd

jxx=
=∑

=

M

i 2
)xdcos(dg jiii ππ 22 222                                               (2.39)   

          To ensure that xj corresponds to a local minimum, the second derivative must 

be greater than zero.  

          Actually, local minima and maxima will be interleaved since Q(x) is a 

continuous function, and determination of the first local extrema (x1) will be 

enough. The rest can be determined in a switching order. In any case, one of the 

optimization parameters, S( d ), can be expressed as 

          S( d ) = 
][ 1N,1j

min
+∈

{Q(xj)}                                                                              (2.40)   

          where xN+1 stands for the case of  x=sin 1θ  - sin  2θ =2, i.e., xN+1=2. 

          Note: The first derivative of  Q(x)  was obtained as 

          
dx

xdQ )(  =   ∑
=

M

i 2
)xdsin(dg iii ππ 22   

          As seen in the formula, the equation includes a summation in terms of the 

placements of the array elements. Hence, to maximize  S( d ), derivatives of S( d )   

wrt various  di  are needed. Let Eq (2.38) have the solutions xj ( d ) when equated to 

0. To simplify the notation 

          Qj( d ) ∆  Q(xj ( d ))                                                                                    (2.41)   

is defined.  Then, 

          
)d(
)(Q

l

j

∂

∂  d
=  ∑

=

M

i 2
g 2

i )d( l∂
∂

 )xd(sin jiπ2
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                      = )xdsin(gx jllj ππ 22                                                                     (2.42)   

          Among the solutions of this equation when it is equated to zero, the one that 

minimizes Q(x), yields the optimum array geometry, i.e., the optimum array 

distances are the values satisfying the equation  

                     
)d(
)(S

l∂
∂  d =

)d( l∂
∂ [

j
min Qj( d )]                                                         (2.43)   

          However, R( d ) and S( d ) cannot be maximized simultaneously. An array  

with the possible maximum S( d ) cannot possess the smallest curvature at x=0. 

Hence, a cost function of the form 

                      C( d ) = wS S( d )+wR R( d )                                                            (2.44) 

can be defined and optimization can be realized using this cost function. Another  

approach is to maximize R( d ) while keeping S( d ) greater than a specified tight 

lower bound, denoted by s0. Keeping S( d ) over a lower bound guarentees that 

gross error would not occur. Among such geometries, the one with the highest 

resolution is selected by this second approach, which is used in this study. 

          The design procedure outlined in this chapter is for linear arrays for which the 

gains of each of the elements are assumed to be known and constant. However, 
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small gain deviations of the antennas are not likely to affect the score function 

significantly.     

          In the following chapter, the optimization algorithm used for solving the 

problem of maximizing R( d ) constrained to S( d ) to be greater than a specified 

value will be derived. 
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                                                CHAPTER 3 

                                OPTIMIZATION METHODS 

 

          In this chapter, the problem of optimizing the antenna array geometry for 

unambiguous estimation of the direction of arrivals (DOAs) of plane waves, 

according to the constraints developed in Chap.2, is investigated.  

          First, the structure of the array, used for the problem formulation is stated. 

Then, the specific case of optimization using genetic programming is discussed. 

The genetic algorithm developed in this study is based on two different approaches, 

for which the details of the algorithm are provided. Optimization using MATLAB 

optimization toolbox is provided next. A discussion on the effects of the specified 

parameters on the performance of the optimization processes is given, along with 

the optimized array geometries and the corresponding score functions for changing 

lower bounds. Finally, a comparison of the performances of the three proposed 

approaches is provided.  

3.1. Array Structure  

          In this study, specifically, optimization of linear arrays is studied. The model 

and related representations used for the antenna placement are as shown in Fig. 3.1. 
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Figure 3.1:  Graphical representation of the structure of the array        

          As expressed before, a linear array of M sensors, located on a linear platform 

of length D, is considered. Two of the array elements are constrained to be at the 

end points of the line segment of length  D as shown in Fig. 3.1. In between these 

two, the remaining elements are placed, locations of which are to be optimized. 

Since, the placements of two of the array elements are fixed, the array structure is 

represented by M-2 numbers that are the distances of array elements from the first 

element which is used as reference. So, the placement vector reduces to 

          d = [ ]221 −Md,...,d,d                                                                                (3.1) 

          In the following sections, different approaches for the optimization of this 

placement vector are given. 

3.2. Genetic Algorithm [8] 

          In nature, variety is defined as variation in the chromosomes of the entities in 

the population.  The  variation in both  the structure and the behaviour of the entities  

dM-2

. . .
d1 

d2 
d3 

dM-1=D
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in their environment is a result of this variety. Differences in the rate of survival and 

reproduction reflect this variation in structure and behaviour. Some entities are 

better able to perform tasks in their environment, survive and reproduce at a higher 

rate, whereas less fit entities survive and reproduce at a lower rate. Over a period of 

time and many generations, the population comes to contain more individuals 

whose chromosomes are translated into structures and behaviours that enable those 

individuals to better perform their tasks in their environment and to survive and 

reproduce. So, as time passes the structure of individuals in the population changes 

as a result of natural selection. When these visible and measurable differences in 

structure that arose from differences in fitness is observed, it is concluded that the 

population has evolved. In this process, structure arises from fitness. 

          When there exists a population of entities, the existence of some variability 

having some differential effect on the rate of survivability, is almost inevitable. So, 

for an entity, to have the ability to reproduce itself, is the most important condition 

for starting the evolutionary process. 

          Evolutionary process can be applied to artificial systems. Any problem in 

adaptation can be formulated in genetic terms. Once formulated in those terms, such 

a problem can be solved by �genetic algorithm�. The genetic algorithm simulates 

Darwinian evolutionary processes and naturally occuring genetic operations on 

chromosomes. 

          Genetic algorithm is a highly parallel mathematical algorithm that transforms 

a  set   (population)   of   individual   mathematical  objects  ( typically  fixed-length 
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 character strings patterned after chromosome strings), each with an associated 

fitness value, into a new population (i.e., the next generation) using operations 

patterned after the Darwinian principle of reproduction and survival of the fittest  

after naturally occuring genetic operations. 

3.3. The Representation Problem for the Genetic Algorithms 

          Since genetic algorithms directly manipulate a coded representation of the 

problem and because the representation scheme can severly limit the window by 

which a system observes its world, representation is a key issue in genetic algorithm 

work. The conventional genetic algorithm operating on fixed-length character 

strings is capable of solving a great many problems. Nevertheless, the use of fixed-

length character strings leaves many issues unsettled. For many problems, the most 

natural representation for a solution is a hierarchical computer program rather than a 

fixed-length character string. The hierarchies in representing the tasks and subtasks 

(that is, programs and subroutines) that are needed to solve complex problems have 

a central importance in genetic coding. The hierachical computer program should 

have the potential of changing its size and shape since the size and shape of this 

program that will solve a given problem are generally not known in advance [8].           

          Virtually any programming language is capable of expressing and executing 

the general, hierarchical computer programs. In the method provided in this thesis, 

MATLAB is used as the computer program, due to its ability to perform alternative 

computations conditioned on the outcome of intermediate calculations, to perform 

operations in a hierarchical way, to perform computations on variables of many 
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different types and since the problem involved requires iteration, due to its 

recursion and dynamic variability. 

3.4. Detailed Description of the Proposed Genetic Program 

          For the conventional genetic algorithm and genetic programming, the 

structures undergoing adaptation are a population of individual points from the 

search space, rather than a single point. Genetic methods differ from most other 

search techniques in that they simultaneously involve a parallel search involving 

hundreds or thousands of points in the search space.   

          In the proposed genetic program, the structure chosen to undergo adaptation 

is the antenna array geometry, i.e., the placement of the antennas in space assumed 

to lie on a linear platform with a predetermined length, D. The number of elements 

in the array, M, is an input to the program. A population consists of individuals 

which represent the array structures by M-2 numbers as in Eq. (3.1), that are the 

distances of array elements from the first element used as the reference. The 

generation of each individual, i.e, d  in Eq. (3.1), in the initial population is done by 

randomly generating M-2 numbers arranged in an increasing order. Although the 

numbers are generated randomly, there is a restriction on the differences of 

successive numbers to be at least a predetermined resolution, which is determined 

by the physical constraints for the minimum distance between the antennas, and 

given as an input to the program. 

          As described before, fitness of an individual is the probability that it   

survives to the age of  reproduction and reproduces. The most common approach  to  
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measuring fitness is to create an explicit fitness measure for each individual in the 

population. Each individual in the population is assigned a scalar fitness value by 

means of some well-defined explicit evaluative procedure. In this work, the fitness 

value  assigned to the array geometries is R( d ), provided that S( d ) is greater than a 

specified value, s0. This selection is due to the proposed optimization criterion 

provided in Chapter 2.  The array geometry with the highest fitness value among all 

the geometries satisfying S( d ) > s0, is said to be the best array geometry. 

          To modify the structures undergoing adaptation in genetic programming, an 

operation known as �crossover� is applied to the individuals, namely, array 

geometries in this thesis. This operation creates variation in the population by 

producing new offsprings that consist of parts taken from each parent. The 

crossover operation starts with two parental individuals and produces two offspring 

individuals. The parents are chosen from the part of the population which is 

composed of a predetermined number of individuals with the highest fitness values, 

satisfying S( d ) > s0, as will be explained in detail later. 

          Two different methods for the representation of array distances in d , are 

implemented. For both of the methods, the number of antennas that will be used in 

the array, the length of the linear platform used, namely, the last distance that an 

antenna can be placed, the number of individuals to be created in the population, 

and the number of generations to be created are  input to the program. Also, the 

minimum distance required between the array elements arising from the physical 

constraints  of  the platform and of the antennas used, is provided as an input.  In the  
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first method, the placements of the array elements are represented as decimal 

numbers, in individuals, d . The initial generation is created by assigning random 

numbers in an increasing order, to the antenna distances in d , as expressed 

previously. Then, the operation begins by reducing the population to the individuals 

satisfying S( d ) > s0. Next, by independently selecting, using a uniform probability 

distribution, one random point in each parent in the population created in the 

previous step, to be the crossover point, offsprings are produced by deleting the 

crossover fragment of the first parent from the first parent and then inserting the 

crossover fragment of the second parent at the crossover point of the first parent. 

During the insert operation, array placements  are selected in an increasing order in 

their decimal values. Number of offsprings to be produced are restricted to 

complete the number of individuals to the predetermined population. This operation 

is done to increase the probability of every individual in the population to overcome 

the lower bound restriction. For all the individuals in this population, fitness values, 

i.e., R( d ), are evaluated, and individuals are put in order according to increasing 

fitness values. Among all the individuals, ordered with respect to their fitnesses in 

this population, 10% of them with the highest fitness values are selected to form a 

part of a new generation, created to improve quality in the sense of higher R( d ). 

The remaining individuals of this new generation are formed by crossover operation 

implemented on the prior 10%. By this way, the probability of maximizing the 

fitness value of every individual in the population is increased. This provides better 

initial populations with possible highest fitness values and adequate lower bounds, 

for next generations, thus increasing the quality for every next generation.  
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          In addition to the two primary genetic operations of reproduction and 

crossover in genetic programming, there are five optional secondary operations, 

known as mutation, permutation, editing, encapsulation and decimation. In this 

work, only mutation is used which introduces random changes in structures in the 

population.  

          The number of the mutant individuals is determined at the beginning of the 

program. The mutation operation removes whatever is currently at the selected 

point of an indivudual d , and inserts a randomly generated decimal value 

representing the distance of the array at that point. By this way, random changes are 

introduced in structures, and transferred to the next generations.           

          In the second approach, antenna placements are elements of the vector d , 

representing each individual as in the first approach, but they are represented by 

binary fixed point numbers for which the number of bits is provided as an input to 

the program, say K. Thus, every individual in the population is a  Kx(M-2) bit array, 

M representing the number of sensors, as in the first case. The structure of an 

individual can be modeled as shown in Fig. 3.2.        

 

    K bits, d1  K bits, d2  K bits, d3                                           K bits, dM-3  K bits, dM-2 

                   

                                                 Kx(M-2) bits      

  Figure 3.2:  Schematical representation of the structure of an invidual        

� 
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             As the number of bits increases, the placement accuracy of the antennas 

increases. But the properties of the platform used must also be considered, since it 

may not always be possible to place the antennas at very precise points. 

          As in the first case, in an individual, the binary numbers representing the 

antenna placements,  are generated in an increasing order. The operation begins by 

reducing the population to the individuals satisfying S( d ) > s0. Then, those 

individuals which satisfy the lower bound constraint, are put in order according to 

the value of their fitnesses. A new generation with an improved quality in the sense 

of higher R( d ) is generated, then 10% of which is constructed using the individuals 

with the highest fitnesses in the ordered sequence, generated in the last step. The 

remaining 90% of this new generation are formed by crossover operation 

implemented on the prior 10%.   

          The critical advantage of this approach is realized in the crossover operation. 

The method is as follows: the individuals in the upper 10%, with the highest 

fitnesses, are rearranged in an other matrix, so as to group the most significant bits 

of each antenna distance. This operation is repeated till the least significant bit. At 

the end of this, the new matrix, say MSB, have individuals with Kx(M-2) bits 

ordered as groups according to their significance in the binary numbers, 

representing the antenna distances. A schematic representation is shown in Fig. 3.3.  

          The crossover operation is then applied to the individuals in MSB.  This is 

done to improve the efficiency of the crossover operation, by increasing the 

probability  of  most  significant  bits  to  be  preserved.  Although  there  is  still the 
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  individual1 = 

 

  individual2 =  

  

  MSB1          =     

 

  MSB2          =     

     

 

probability for the crossover point to be in between the most significant bits, and  

separate them, this probability can be considered negligible compared to the 

remaining alternative points in the individuals. After the crossover operations, the 

individuals are transformed to their original structure, and 90% of the new 

generation is filled with them. By this way, crossover operation is realized between 

the parents which provide the condition for S( d ) to be greater than s0, and have the 

highest fitness values, while at the same time preserving the values at their most 

significant bits. Mutation operation is also applied here, by inserting a random 

binary number to a randomly selected point of a randomly selected individual. This 

insertion, for which the amount is determined as input to the program, is made to 

introduce random changes in structures in the population. Using this method by 

binary representations, better initial populations regarding R( d ) are provided to 
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next generations, and the best geometry is likely to be obtained after among less 

generations than in the first approach.   

          The performance of the two methods are nearly the same with a small number 

of sensors. The optimization results of these two approaches will be presented in the 

following sections. A more detailed performance comparison for the approaches 

will be presented later. The  results of the genetic optimization algorithm that are 

used in simulations with MUSIC are given in Chapter4.                 

3.5. Optimization Using  Optimization Toolbox in MATLAB 

          Other than using genetic algorithm, optimization is realized also with the 

optimization toolbox of  Matlab. In this approach, �fmincon� function of the toolbox 

is used. The structure is 

[d,fval,exitflag,output]=fmincon(Fun,d0,a,b,Aeq,Beq,lb,ub,nonlcon,options) 

The function �fmincon� finds a constrained minimum of a function of several 

variables. In our case, the function for which the minimum is found, is  -R( d ). This 

is the same as finding the maximum value for R( d ). This function subjects the 

minimization to the constraints defined in �nonlcon�. For the specific problem in 

this thesis, �nonlcon� is defined as S( d ) to be greater than a predetermined value. A 

set of lower and upper bounds on the design variables d are defined, so that a 

solution is found in  the range lb <= id <= ub, where id  are the elements of vector 

d . During the search, the �fmincon� function starts at 0d  and finds d  that minimize 

the  function  -R( d ),  that  is  close to  the starting  point 0d . To enlarge  the  search  
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space, the optimization is repeated many times with different initial estimates, 0d . 

This is done by creating a set of different initial points of search to be used for the 

function. Initial points are created starting from the least possible distances for 1d  

and padding numbers in an increasing order, for the remaining distances, 

considering a predetermined resolution in between them. This is done for all the 

possible values of  1d , restricted by the physical constraints of the platform for the 

placement of the remaining elements. Optimization results for this approach will 

also be presented in the next sections. 

3.6. Optimization Results for the Array Geometry 

          In this section, the studies on array geometry optimization are presented.          

Various scenarios were considered with design related parameters such as the 

length of the linear platform used, the number of antennas used, the resolution for 

the antenna placement, the number of generations and the initial population created 

during the genetic programming, and the value of the lower bound, i.e., the 

constrain for the value of  S( d ), all varied to some extent. 

          The optimization processes resulted in non-uniform linear arrays, i.e., arrays 

with unequal inter-sensor spacings. This is in a sense, a confirmation of the study in 

[3], in which the performance of uniform and different nonuniform linear array 

stuructures are compared, and in the event of single targets in additive white 

Gaussian noise, the nonuniform arrays are found to provide significant 

improvement over uniform arrays of the same number of elements. 
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          Simulation results for the three methods described in this chapter are not 

presented separately. For a given constrain for the lower bound of  S( d ), all three 

programs are run to find the optimum array geometry in itself. Among the solutions 

that are found to be the best in each method, which are very close to each other 

except for small variations resulting from the resolution differences, the one with 

the highest  R( d ) value is selected as the optimum array geometry.  It is observed 

from the results that, genetic algorithm with the array placements represented as 

binary numbers, provides the most accurate results using the shortest run time, but 

all three methods result in nearly the same optimum geometry in different run times.  

          Since simultaneous illustration of the effects of all the design related 

parameters on the performance of the algorithm is a difficult task, the basic 

approach is to vary one parameter at a time.  

3.6.1.  Effect of the Length of the Linear Platform 

          As expressed previously, the array elements are located on a linear platform 

of length D. All of the optimization methods presented in this study, are designed to 

optimize the arrays with any length. However, the run time increases with larger 

array dimensions. In genetic algorithm, the optimum result is obtained in a later 

generation for example. Also, since the initial generations are created randomly, 

program has to be run several times to produce different initial generations, from 

which the optimum geometry will be found.  

          In this study, the simulation results for the last distance to be 5 times the 

wavelength, that is, 5λ, will be presented, 5λ selected as an example.  
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3.6.2.  Effect of the Number of Antennas 

          The optimization process does not include the optimization of the number of 

antennas that will be used. The process begins with the assumption that the number 

of antennas to be used is known. The programs are capable of optimizing the 

geometry with any number of sensors that do not violate the resolution requirements 

on the linear platform, with the given length. The run time and the number of 

iterations required to reach the optimum geometry increases with increasing number 

of antennas used.  

          In this study, the simulations performed by using four antennas are presented. 

But the algorithms are designed to optimize the arrays with different number of 

antennas. 

 

3.6.3. Effect of the Resolution for Antenna Placement 

Uncertainity concerning sensor locations can degrade the ability of an array 

to estimate the location of radiating sources. Then, array calibration becomes an 

important issue. In this study, a measure of resolution for the inter-element spacings 

is introduced which represents the minimum distance required  between the sensors. 

This resolution must be kept at a sensible value to ascertain the possibility of that 

placement practically.  

          In this study, the minimum distance required  between the sensors is selected 

as 0.05λ.  
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3.6.4. Effect of the Number of Generations 

          The maximum number of generations to be produced is an input parameter in 

the genetic programming codes. During the simulations, it is observed that, as the 

array length and the number of antennas increase, the optimum geometry is found at 

later generations. In case of keeping the number of generations less than enough, 

the algorithm results in an intermediate geometry that is not optimum. So, it is 

necessary to keep this parameter high enough to assure that the optimum geometry 

is achieved at that much generation. In the special example of  5 sensors, and 5λ as 

the array length, the optimum geometry is mostly found after among the 4th  or 5th  

generations.  

3.6.5.  Effect of the Value of the Lower Bound 

          The optimization process is realized with different lower bounds, to see the 

effect of this bound on the direction finding performance. A detailed discussion of 

the effect of s0 on the probability of gross error will be presented in Chap.4.  

          The array structure considered in this chapter assumes 4 sensors, first located 

at the origin, last located at the end of the linear platform, and the positions of the 

remaining two are optimized to reach the best performance in direction finding, 

according to the proposed constraints. As expressed before, the length is selected to 

be 5 times the wavelength, that is, 5λ, as an example. 

          To observe the effect of  s0  on the performance of the algorithm, eight 

different values of s0, namely, s0 = 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 
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were considered. In each case, the score function for that special s0 is also 

demonstrated (see Figures 3.4-3.11).  

          It is convenient to remind the case of ambiguity for x=2 here. In Chap. 2, 

during the search for ambiguity case, it was shown in Eq. 2.34 that, the condition 

for ambiguity is 

          πdix = nπ   or  dix = n       i=2,3,�,M  and  n is an integer 

The placements of the optimized arrays d =[0  3.5  4.5  5],  for s0=0.50, and     

d =[0  3.5  4  5], for s0=0.55, satisfy this condition, and this fact is observed from 

their score functions with 0 values, at x=2. Since the case for x=2 is valid for 1θ =90 

and 2θ = -90 degrees, an inherent ambiguity for the linear array geometry occurs 

[9], which is out of the scope of this thesis.                                               

• s0 = 0.20 , Optimum array geometry = [0  4.05  4.8  5], with resulting global 

minimum point = 0.2202, and R( d ) = 64.4425. 

 

Figure 3.4:  Score function as a function of the difference of the sines of the 

incoming source angles for s0 = 0.2.  
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• s0 = 0.25 , Optimum array geometry = [0  3.95  4.75  5], with resulting global 

minimum point = 0.2665, and R( d ) = 63.165 

 

Figure 3.5:  Score function as a function of the difference of the sines of the 

incoming source angles for s0 = 0.25.  

• s0 = 0.30 , Optimum array geometry = [0  3.85  4.75  5], with resulting global 

minimum point = 0.3231, and R( d ) = 62.385 

 

Figure 3.6:  Score function as a function of the difference of the sines of the 

incoming source angles for s0 = 0.30.  
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• s0 = 0.35 , Optimum array geometry = [0  3.75  4.6  5], with resulting global 

minimum point = 0.3699, and R( d ) = 60.2225 

 

Figure 3.7:  Score function as a function of the difference of the sines of the 

incoming source angles for s0 = 0.35.  

• s0 = 0.40 , Optimum array geometry = [0  3.7  4.65  5], with resulting global 

minimum point = 0.4048, and R( d ) = 60.3125 

 

Figure 3.8:  Score function as a function of the difference of the sines of the 

incoming source angles for s0 = 0.40.  
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• s0 = 0.45 , Optimum array geometry = [0  3.45  4.6  5], with resulting global 

minimum point = 0.4534, and R( d ) = 58.0625 

 

Figure 3.9:  Score function as a function of the difference of the sines of the 

incoming source angles for s0 = 0.45.  

• s0 = 0.50 , Optimum array geometry = [0  3.5  4.5  5], with resulting global 

minimum point = 0.5298, and R( d ) = 57.5 

 

Figure 3.10:  Score function as a function of the difference of the sines of the 

incoming source angles for s0 = 0.50.  
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• s0 = 0.55 , Optimum array geometry = [0  3.5  4  5], with resulting global 

minimum point = 0.5879, and R( d ) = 53.25 

 

Figure 3.11:  Score function as a function of the difference of the sines of the 

incoming source angles for s0 = 0.55.         

 

3.7. Comparison of the Performances of Proposed Optimization Approaches   

          In the description of the different optimization approaches, it is mentioned 

that, the performance of the methods are nearly the same with a small number of 

sensors. Although all of the three optimization methods proposed in this study are 

capable of optimizing the array geometry with any length and any number of 

sensors, differences arise in their performance concerning run times. To observe 

this effect in practice, an array of  M=40 sensors, placed on a linear platform of 

length D=20λ, is considered. Placements of the sensors are optimized using the 

three proposed methods. The optimum array geometries are given in Appendix.A. 

 Related parameters for the optimization operations are observed as follows: 
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i)   Genetic algorithm with array placements represented as decimal numbers 

Optimum array geometry is obtained at the end of the 2nd generation, with about 

700 sec. run time. R( d ) is obtained as 1.4155e+004.  

ii)  Genetic algorithm with array placements represented as binary numbers 

Optimum array geometry is obtained at the end of the 2nd generation, with about 

450 sec. run time. R( d ) is obtained as 1.4151e+004.  

iii) MATLAB optimization toolbox 

If the initial distances for all the array elements are tried in an exhaustive manner, 

run time increases drastically. But, in case of selecting a proper initial condition, for 

the elements in d , optimization results in R( d ) = 1.4156e+004 with a run time of  

about 75 seconds. Simulations are performed on  a computer configured with P4 

2.00 GHz CPU, 256 MB RAM, and Windows XP Professional operating system. 
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                                             CHAPTER 4 

                                SIMULATIONS with MUSIC 

         

          In the first part of this chapter, the MUSIC algorithm is described in detail. 

Then, optimum array geometries obtained in Chap.3 are employed in direction 

finding with the MUSIC algorithm. The simulations are performed for a specified 

number of iterations, and after many iterations, the statistical properties of the 

MUSIC spectrum for a given array geometry, are obtained. These properties are 

then used to compute the probability of gross error in finding the direction of the 

arriving signal as well as the resolution in the vicinity of the true DOA. It would be 

useful to remind here that, the proposed optimization approach for the sensor 

placements is applicable to any direction finding algorithm. MUSIC is selected in 

this study as an example algorithm due to its low computational complexity. 

          Simulations are carried out with MATLAB, in order to observe the effects of 

several parameters for MUSIC. Those parameters are the change in the statistical 

properties of the signal during observation duration, number of samples, number of 

antennas, number of incoming signals, number of iterations, antenna placement,  

and signal-to-noise ratio (SNR). The simulation results provided here however, 

include only the effects of antenna placements which are found to be optimum, and 

SNR, keeping the remaining parameters at fixed values, since the effects of those 
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parameters on performance are out of the scope of this study. In the following 

sections, the SNR for each signal is defined as: 






= 2log10 σ

rSignalPoweSNR ,                                                      (4.1)   

where 2σ  is the power of the additive white Gaussian noise corrupting the 

measurements. 

          Since the simultaneous illustration of the effects of these two parameters on 

the performance is difficult, the simulations are carried out by changing one 

parameter at a time. 

 4.1. MUSIC (MUltiple SIgnal Classification) Algorithm [12] 

          The MUSIC algorithm is one of the most widely used DF algorithms in the 

literature due to its interesting breakdown of the principal components of the input 

signals. The input signals provide information about the DOA of the received plane-

waves as well as the noise received at each element. In our case, only one signal is 

assumed to impinge on the array. 

          The core concept of the MUSIC algorithm is that the space of the signal 

covariance matrix can be divided into two subspaces, the signal subspace and the 

noise subspace. Due to the eigenvector orthogonality, the noise subspace is 

orthogonal to the signal subspace and, consequently, to the array response vectors 

corresponding to the direction of arrival. In other words, the product of the array 

response vector and the eigenvector corresponding to noise should be relatively 

small  when  the  angle  is  close  to  the  direction of  signal  arrival.  Therefore,  the  
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direction of arrival can be estimated as the peak of the MUSIC spatial spectrum 

given by the inverse of the magnitude of the product between the array response 

vector and the noise subspace matrix.    

          The MUSIC algorithm makes use of the equation 

         0=θθ )(aEE)(a H
nn

H ,                                                                                 (4.2) 

where )(a θ  is the array response vector, En represents the noise subspace and θ  

represents the direction of arrival of the signal impinging on the array. 

          Since, in practice a finite number of noisy data vectors are available, an 

estimate of the array covariance matrix, which is called the sample covariance 

matrix is found first. Once the eigendecomposition of the sample covariance matrix  

is obtained, the DOA estimate can be found by the peak of the function  

)(aE�E�)(a
)(P

H
nn

H θθ
=θ

1  ,                                                                                  (4.3) 

which is called the MUSIC spectrum.   

          Although )(P θ  is not a true spectrum in any sense (it is only the distance 

between two subspaces), it exhibits a peak in the neighbourhood of the true DOA. 

In the following sections, however, the reciprocal of )(P θ , called the null-

spectrum, will be used to estimate the DOA in the MUSIC algorithm. This will 

yield a minimum point which represent the DOA. This method is preferred to 

achieve a known distribution function, which is shown to be Gaussian [11], for the 

differences of main null and local minima, for the sake of  gross error probability 

calculations. 
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4.2. Simulation Results 

          As expressed before, simulations are carried out to see the effects of scenario 

related parameters by changing one parameter at a time while keeping the others at 

the values specified for that case. 

          The first section is mainly a study on the direction finding performance of 

MUSIC using the array geometry found to be optimum. The optimum array 

geometries considered are those obtained in Chap.3 and the individual peformances 

of all these geometries are observed for the MUSIC algorithm for different SNR�s, 

number of snapshots and iterations.  

          Since single snapshot processing is difficult to solve the DOA of the 

incoming plane wave satisfactorily due to its inability to integrate the signal in time, 

i.e., needs increasing the minimum signal to noise ratio for reliable operation, 

multiple snapshot processing approach, i.e., temporal averaging is used to improve  

the estimation of the DOA of the incident plane wave. So, a 0dB SNR value along 

with 100 snapshots, integrates the signal and results in 20dB; similarly, it integrates 

to 30dB if 1000 snaphots are used. The SNR values and number of snapshots used 

during the simulations in this chapter are by no means the only ones that satisfy the 

accurate DOA estimates.          

          It is observed that other than the main null, there exists other points which 

seem to be candidates to create ambiguity. In the second sections of each 

optimization  approach subtitle, the behaviour of the null-spectrum in the immediate 

vicinity of  the  true DOA  is studied.  The MUSIC null spectrum is observed on the  
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same graph for 10000 trials to have an intuition on the behaviour of these probable 

ambiguous points. For the derivation of the probability of ambiguity, the histograms 

of the difference of these two probable ambiguous points and the main null are 

presented. Next, correlation coefficients and probability of ambiguity are computed.           

4.2.1. MUSIC Null-Spectrum with Optimized Array Geometries     

          A detailed examination of Figures 4.1-4.3, which are the MUSIC null spectra 

for changing s0, reveals the fact that the difference of the local minima and the main 

null increases with increasing s0, meaning less probability of ambiguity. It is also 

observed that, the algorithm tends to equiripple the local minima with increasing s0, 

which is a realization of the general behaviour of  minimax problems so to 

equiripple local minima. 

 

Figure 4.1:  Null spectrum for SNR=30dB (10dB with 100 snapshots), no of 

antennas=4, θ =60, dlast=5, s0=0.30, optimized geometry=[0  3.85  4.75  5] 
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Figure 4.2: Null spectrum for SNR=30dB (10dB with 100 snapshots), no of 

antennas=4, θ =60, dlast=5, s0=0.40, optimized geometry=[0  3.7  4.65  5] 

 

Figure 4.3:  Null spectrum for SNR=30dB (10dB with 100 snapshots), no of 

antennas=4, θ =60, dlast=5, s0=0.50, optimized geometry=[0  3.5  4.5  5] 
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4.2.2.  Gross Error Probability Calculations 

4.2.2.1. Graphical Representation of Statistical Values for Probability of 

Ambiguity 

          In this part of the simulations, d =[0  3.7  4.65  5] is used as the optimized 

array geometry as an example. This geometry was found to be the optimum for s0 

being 0.4, as shown in Chap.3. For this geometry, the MUSIC algorithm is run for 

10000 iterations and it is seen that other than the main null point, i.e., the true DOA, 

there exist  other probable null points, for which the probability to be less than that 

of the main null, is derived. These derivations are made by using two different SNR 

values to observe the effects of this factor on the probability of ambiguity. All the 

simulations are made assuming one source at  θ =60 degrees.  The histograms for 

the difference of the probable ambiguity points and the main null are provided (see 

Figures 4.4-4.11). The computation of the probabilities are left to the next section. 

 

Figure 4.4:  Null spectrum for SNR=30dB (10dB with 100 snapshots), no of 

iterations=10000, θ =60, dlast=5, s0=0.40, optimized geometry=[0  3.7  4.65  5] 
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Figure 4.5:  Histogram for the difference of the first null (around 44 degrees) and 

the main null at SNR=30dB (10dB with 100 snapshots), 10000 iterations 

 

Figure 4.6:  Histogram for the difference of the second null (around 73 degrees) 

and the main null at SNR=30dB (10dB with 100 snapshots), 10000 iterations 
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Figure 4.7:  Histogram for the difference of the third null (around 109 degrees) and 

the main null at SNR=30dB (10dB with 100 snapshots), 10000 iterations 

 

Figure 4.8: Null spectrum for SNR=14dB (-6dB with 100 snapshots), no of 

iterations=10000, θ =60, dlast=5, s0=0.40, optimized geometry=[0  3.7  4.65  5] 
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Figure 4.9:  Histogram for the difference of the first null (around 44 degrees) and 

the main null at SNR=14dB (-6dB with 100 snapshots), 10000 iterations 

 

Figure 4.10:  Histogram for the difference of the second null (around 73 degrees) 

and the main null at SNR=14dB (-6dB with 100 snapshots), 10000 iterations 
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Figure 4.11:  Histogram for the difference of the third null (around 109 degrees) 

and the main null at SNR=14dB (-6dB with 100 snapshots), 10000 iterations 

 

4.2.2.2. Computation and Comparison of Gross Error Probabilities 

          To obtain the probability of gross error with a given array geometry and SNR, 

it is necessary to model the distribution of the difference of the main null and the 

local minima. Modeling of this difference is necessary, because local minima are 

candidates for gross error with their probability to fall below the main null, so to be 

detected as the true DOA.  

          Figure 4.4 through Figure 4.7, for instance, show the MUSIC null spectrum 

and difference of main null and local minima histograms obtained as a result of 

10000 trials using the optimum array geometry found for the lower bound s0 as 

0.40,  in a  scenario where  SNR= 30dB. The simulations for this special case imply  
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that the spectrum of the difference of the global and local minima have Gaussian 

distributions with a large amount of iterations, [11]. The approach in calculating the 

gross error probability is to derive the probability of error individually for each 

probable gross error region, i.e., the local minima that seem to be canditates to 

create gross error, first. Then, the correlation among all the pairs is found. The 

simulation results show that it is not always possible to assume the pairs of these 

random varibles as uncorrelated. So, a worst case calculation is done for the 

probability of gross error by adding all individual error probabilities.  

          Next, similar calculations are carried out for the same array geometry for a 

lower SNR value, 14dB, to observe the effect of SNR on the gross error probability. 

From the null spectrum, it is observed that, the values of the local minima in the 

null spectrum are closer to the global minimum than in the case of 30dB. This fact 

is realized in the probability of error calculations with a resulting error probability 

higher than that in the high SNR case.  

          For both cases, the procedure followed in calculating the probability of error 

is to first find the means and variances of the difference curves for 10000 iterations, 

and then to calculate the correlation coefficient [10], between these random 

variables, to reach a statistical description. As expressed before, the simulations are 

performed pairwise for the probable gross error points, i.e., if there exist 3 local 

minima, for instance, that have the probability to cause gross error, two among 

these three points are selected, and the correlation among these two is calculated 

first.  This  is applied  for  the other  pairs  in  the same way. Then, the functions, for  



                                                                 66

which the mean, variance and correlation coefficients are calculated, are used in the 

probability of error derivations.    

Remark: Before the probability of gross error calculations for the optimized 

geometries in detail, it is convenient to provide a short theoretical background for 

Gaussian random variables and error pobability derivations with such a distribution, 

here. 

          Let x denote a Gaussian distributed random variable of mean xµ and variance 

2
xσ . The probability density function of such a variable is defined by 
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A random variable is said to be normally distributed if its density function is a 

Gaussian curve. 

The corresponding distribution function is given by 
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where the definition of error function is given as 

          dye)x(erf
x
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1                                                                             (4.6) 

Throughout the error probability calculations, the function in (4.5) is used, with the 

upper bound of the integral being 0, pointing to the search for the region where the 

amplitude of secondary minima fall below the main null, yielding gross error.  
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          Some notations for the MUSIC null spectrum are defined in Fig. 4.12, which 

are going to be used in the remaining of this chapter for error probability 

calculations. 

 

Figure 4.12: An example null spectrum for notation settings 

          As shown in Fig. 4.12, the local minima that seem to have a probability to fall 

below the main null intuitively, are given names representing both their amplitudes 

in the y-axis, i.e., null spectrum values, and their placements on the x-axis, 

representing the DOA�s corresponding to those minima. All the local minima are 

not taken into consideration, but the ones which are dominant considering their null 

spectrum values are employed in the gross error probability calculations. The 

number of candidate local minima to be employed may change related to s0 and 

SNR. Different cases will be dealt with in the next sections. 

          Since a gross error occurs in case of one of the local minima falling below the 

main null, the parameters to be considered in the calculations are the differences of 

11 θ,y 33 θ,y
22 θ,y

00 θ,y
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the local and the global minima. Looking at the behaviour of these values around 0, 

the decision on whether there exists a gross error or not, can be made. Let  d1, d2, d3, 

�, dP  denote the differences, where P is the number of candidate local minima to 

create gross error. For the example spectrum in Fig. 4.12, these parameters are 

defined as 

          d1= y1-y0                                                                                                      (4.7) 

          d2= y2-y0                                                                                                      (4.8) 

          d3= y3-y0                                                                                                      (4.9) 

To have a more general intuition on the behaviour of the MUSIC null spectrum, 

10000 iterations are made. The distributions of the differences are obtained from the 

result of these iterations, using MATLAB. So, yi and di (i=1,2,�,P) for the iterative 

case, represent the mean of the 10000 values of the null spectrum, and the 

differences of these means respectively.  

4.2.2.2.1. Probability of Error for SNR = 30dB  

          It can be seen in Fig.4.4 that, for 10000 iterations, the global minimum is in 

the neighbourhood of 60 degrees, which is the angle of arrival of the incoming 

signal. Other than this minumum point, there exist accumulations around three other 

regions. These regions are the probable gross error angles which are then used in 

error probability calculations. It can be observed that these local accumulation areas 

are around  44±1 degrees, 73±1 degrees, and 109±1 degrees. The approach, as 

explained above, is to deal with the difference of the values of the MUSIC spectrum 

around these local minima and the global minimum around 60 degrees. According 
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to the notations introduced previously, gross error probabilities for d1, d2, and d3 

have to be calculated. For this example, d1 corresponds to the difference of y1 

around 1θ  (44±1) and y0 around the DOA, i.e., 0θ  (60±1 degrees), similarly, d2 to 

the difference of y2 around 2θ  (73±1) and y0 around 0θ , and d3 to the difference of 

y3 around 3θ  (109±1) and y0 around 0θ . 

i)  Gross error probability for d1 

Fig. 4.5 shows the distribution of the difference of the values of the MUSIC 

spectrum for y1 around 1θ  (44±1) and y0 around 0θ (60±1), i.e., d1, for 10000 

iterations. This curve is obtained from the null spectrum by first setting the values 

of the regions other than 1θ  and 0θ  to adequately high values, to overcome the 

interferences out of the region of interest, i.e., to eliminate the probability of the 

values of these regions to fall below the main null. By this way, the gross error only 

around 1θ  is taken into account in this step. So, this probability has the 

mathematical interpretation as 01 <d(P )d,d 032 > since during the individual 

calculation of error probability for d1, d2 and d3 are assumed to be free of gross error 

because of the reason explained above. Error would likely to occur where this 

Gaussian distribution curve falls below zero, meaning that local minimum at  1θ  

reached the global minimum at 0θ and fell below it. From Figure 4.5, it is observed 

that, the Gaussian curve is always above zero point at this SNR, which yields a zero 

probability of error  intuitively. Using the mean and variance of the resulting curve, 

the above probability is calculated with Eq. 4.11 as 5.2991e-5. 
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ii)  Gross error probability for d2 

In a similar manner as for d1, the error probability for d2 is calculated. Fig. 4.6 

shows the distribution of the difference of the values of the MUSIC spectrum for y2 

around 2θ  (73±1) and y0 around 0θ (60±1), i.e., d2, for 10000 iterations. 

0( 2 <dP )0, 31 >dd is found to be 5.2790 e-5, using Eq. 4.11. 

iii)  Gross error probability for d3 

In Fig. 4.7, the distribution of the difference of the values of the MUSIC spectrum 

for y3 around 3θ  (109±1) and y0 around 0θ (60±1), i.e., d3, for 10000 iterations, is 

shown. Using the same method in i, 0( 3 <dP )0, 21 >dd  is evaluated using Eq. 

4.11 and found as 5.2575e-5. 

          The idea in calculating the overall gross error probability, is to obtain an 

intuition about the correlation of the local areas first. Correlation coefficients 

calculated among the pairs are as follows:  

          =
21 ,ddρ −0.6925,  =

31 ,ddρ −0.0640,  =
32 ,ddρ −0.0857.   

          Although, it is observed for all cases that the mean of the product of the pair 

under concern is nearly equal to the product of their means, this is not enough to 

conclude that these events are independent looking at their correlation coefficients.   

However, to have an idea about the general behaviour of the algorithm, a worst case 

calculation is carried out by adding all the individual error probabilities as 

=errorgrossP _ 01 <d(P )d,d 032 > + 0( 2 <dP )0, 31 >dd + 0( 3 <dP )0, 21 >dd  

                                                                                                                             (4.10) 
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For the specific case of 10dB SNR, using 100 snaphots, meaning 30dB SNR with 

the integration effect of the multiple snapshot approach, the addition operation 

results in 0.016% probability of error, which is very close to zero, using the values 

of gross error probabilities calculated individually for each region. 

 

4.2.2.2.2. Probability of Error for SNR = 14dB  

          As can be seen from Fig. 4.8, for 10000 iterations, the DF algorithm 

performance degrades as SNR is decreased, as compared to Fig. 4.4. The global 

minimum seems to appear around neighbourhood of  60 degrees, most of the time. 

Other accumulations around various regions are more scattered than in the case of 

30dB SNR. These probable gross error areas  also seem to have values closer to the 

global minimum than in the high SNR case. At first sight, these observations create 

an intuition about the error probability to be higher than the previous example at 

30dB SNR. This is also observed at the end of the theoretical probability 

calculations below.  

          The approach will be similar to the one used for the high SNR case, i.e., the 

regions that seem to be candidates for global error, are investigated separately. To 

reduce the computational complexity, three regions, which seem to be the most 

probable ambiguity regions, are taken into account in the probability calculations.  

It can be observed that these local accumulation areas are around  44±2 degrees, 

73±2 degrees, and 109±2 degrees. Here, d1 corresponds to the difference of y1 

around 1θ  (44±2) and y0 around the DOA, i.e., 0θ  (60±2 degrees), similarly d2 to the 
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difference of y2 around 2θ  (73±2) and y0 around 0θ , and d3 to the difference of y3 

around 3θ  (109±2) and y0 around 0θ . 

i)  Gross error probability for d1 

Calculations are carried out in a different manner from those for 30dB SNR case, 

because of the slight asymmetric behaviour of the distribution in Fig.4.9. A careful 

observation on the simulation results for 14dB SNR case (see Figures.4.9-4.11) 

reveals that the distributions are not exactly Gaussian, so using error function for 

this case would result in slight deviations from the true gross error probabilities. 

Instead, the approach here is to use the ratio of number of negative samples on the 

distribution function to the total number of samples as a measure of gross error 

probability. As a result, 01 <d(P )d,d 032 >  is found to be 0.32% (0.0032). 

ii)  Gross error probability for d2 

       Similarly, the distribution function provided in Fig. 4.10 results in 0.33% (0.0033) 

gross error probability represented by 02 <d(P )d,d 031 > . 

iii)  Gross error probability for d3 

Similarly, using Fig.11,  gross error probability, 03 <d(P )d,d 021 > , is 0.21%. 

Correlation coefficients among the pairs for this case are calculated as follows:  

=
21 ,ddρ −0.6310,  =

31 ,ddρ −0.0306,  =
32 ,ddρ −0.0140.   

Using a worst case approximation method as in the high SNR case, total gross error 

probability 
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=errorgrossP _ 01 <d(P )d,d 032 > + 0( 2 <dP )0, 31 >dd + 0( 3 <dP )0, 21 >dd  

is calculated as nearly 0.9% (0.009) for the specific case of  -6dB SNR, using 100 

snaphots, meaning 14dB SNR with the integration effect of the multiple snapshot 

approach. 

          This increase in the error probability is an expected result of decreasing the 

SNR. It was also observed at the MUSIC null spectrum that, as the signal power 

decreases with respect to noise power, the local minima are more likely to fall 

below the main null, so to have a higher probability to cause gross error. 

4.2.3. Relation Between the Minima of the Similarity Function and of the Null 

Spectrum       

          To investigate the relation between the angles corresponding to the local 

minima in the null spectrum and the positions of the local minima in the similarity 

function, some calculations are presented below. As an example, the geometry 

optimized for s0=0.40 is selected. It was found to be d =[0  3.7  4.65  5] in Chap.3. 

This geometry results in the null spectrum provided in Fig.4.4 which is also given in 

Figure 4.13, for SNR=30 dB (10 dB with 100 snapshots), 10000 iterations and 

0θ =60. Related to the convention chosen during MUSIC formulations, angles 

included in the x-axis of the null spectrum and those in the x-axis of the similarity 

function complete each other to 90 degrees, i.e., cosine of one is equal to the sine of 

the other. This will be reflected to the angle notations in the following calculations. 

          To  provide  consistency  in the notations, let 0θ   represent  the angles around  
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60±1 degrees, 1θ  around  44±1 degrees, 2θ  around  73±1 degrees and 3θ  around 

109±1 degrees in the null spectrum. The approach is then, to find the angles 

corresponding to the local minima in the similarity function and to check if these 

results are consistent with the values 1θ ,  2θ  and 3θ . 

      

                              (a)                                                                      (b) 

Figure 4.13: (a) Similarity function for s0=0.40, and (b) corresponding null 

spectrum 

          The two significant local minima are marked in Fig. 4.13 (a). These two are 

selected because they give the intuition to cause gross error more than the other 

candidates and are enough to see the relation between the minima of two functions, 

which is actually the aim of this section. Processing all the local minima however, 

would not be practical.  

          The corresponding x-axis values, i.e., the difference of the sines of two 

incoming signals for these minima of the similarity function, are 0.22 and 0.82. The 

problem then reduces to solving the following equations: 
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         i)   )sin()sin( '
01 9090 θ−−θ−  = 0.22, or                                                 (4.11) 

        ii)   )sin()sin( '
20 9090 θ−−θ−  = 0.22, or                                                (4.12) 

        iii)  )sin()sin( '
30 9090 θ−−θ− = 0.82                                                       (4.13) 

The equations written above are the ones that have possible solutions for the given 

values of difference of sines. For example, the fourth equation that could be written 

here with the expression )sin()sin( '
03 9090 θ−−θ−  = 0.82, has no real solution. 

0θ  represents the angle of arrival, 60 degrees here, because the focus is on the gross 

error, related to the difference of a local minimum and the value at 0θ , which is the 

main null corresponding to the DOA. 

          Solution of equation i yields  43.94 degrees for '
1θ , equation ii yields 73.73 

degrees for '
2θ , and equation iii yields 108.66 degrees for '

3θ .  

          It is clearly seen that the solutions for  '
1θ , '

2θ  and '
3θ  correspond to the 

angles 1θ , 2θ  and 3θ  that are the candidate angles to cause gross error. This fact 

reveals the close relation between the similarity function and the probable angles for 

gross error. So, once the similarity function for an arbitrary array geometry is 

obtained, enough data is collected for estimation of the localizations of angles that 

may cause gross error. 

          It is also observed here that, the less the value of the local minima in the 

similarity function,  the high  the probability of corresponding  angle to  cause gross 

error, which is consistent with the proposed optimization approach.   
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4.2.4. Effect of the Lower Bound on the Probability of Gross Error 

          To investigate the effect of the lower bound on the gross error probability, 

four different array geometries, optimized with different lower bound constraints 

are used and error probabilities for all of them are calculated. The lower bounds 

chosen as example and the corresponding optimum array geometries are as follows: 

s0 = 0.20,   Optimum array geometry = [0  4.05  4.8    5] 

s0 = 0.30,   Optimum array geometry = [0  3.85  4.75  5] 

s0 = 0.40,   Optimum array geometry = [0  3.7   4.65   5] 

s0 = 0.55,   Optimum array geometry = [0   3.5     4     5]. 

          For each of these geometries, MUSIC null spectrum is obtained with 3000 

iterations at SNR=14 dB (-6 dB with 100 snapshots). It is observed that, with 

increasing s0, the algorithm tends to converge the values of the probable ambiguity 

regions in the y-axis, to each other as seen in Figures 4.14 and 4.15. 

 

    

  

 

 

 

Figure 4.14: Null spectrum for (a) s0 = 0.20 and (b) s0 = 0.30 

(b) (a) 
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                            (a)                                                                      (b) 

Figure 4.15: Null spectrum for (a) s0 = 0.40 and (b) s0 = 0.55 

          These four examples are investigated in a similar manner as in section 

4.2.3.3, and the error probabilities are calculated as 1.82 % for s0 = 0.20, 1.12 % for 

s0 = 0.30, 0.9 % for s0 = 0.40 and nearly zero for s0 = 0.55 (see Figure 4.16). 

 

Figure 4.16: Variation of gross error probability with respect to s0, at SNR=14dB. 
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          It can be seen from the obtained performance curve that, with increasing 

lower bound, the performance of the algorithm increases in the sense of decreasing 

probability of gross error. Similar observations can be made using various other 

optimum geometries.            

4.2.5. Resolution Around the True DOA 

          The optimization problem was defined as follows: maximize R( d ) while 

keeping S( d ) greater than a specified tight lower bound, s0. Up to now, the effect of 

keeping the lower bound greater than s0 on performance, is studied. Maximizing  

R( d ) is proposed to provide maximum resolution around the DOA. Here, it is 

aimed to see this effect through computer simulations. The approach is to select 

random array geometries with almost equal lower bounds and different R( d ) values 

first, then to investigate the change in resolution for changing  R( d ). 

          The array geometries selected for this purpose and corresponding s0 and R( d ) 

values calculated with Eq. 2.37, are as follows: 

1d =[0  3.75  4.6  5],   s01= 0.3699,   R( 1d ) =  60.2225 

2d =[0  2.1  4.45  5],   s02= 0.3661,  R( 2d ) =  49.2125 

3d =[0  0.9  4.48  5],   s03= 0.3684,  R( 3d ) =  45.8804 

4d =[0  0.94  3.5  5],   s04= 0.3660,  R( 4d ) = 38.1336 

          MUSIC spectrum corresponding to 1d , as an example, at an SNR of 15 dB   

(-5 dB with 100 snapshots) with 2000 iterations and the zoomed in part around the 

DOA are provided in Figure 4.17. 
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                                     (a)                                                                      (b) 

      Figure 4.17: (a) Null spectrum at 15 dB SNR, (b) zoomed in part of (a) around DOA 

To gain an intiution for the resolution, rms error around the global minimum of the 

null spectrum, corresponding to the true DOA, have to be examined for all cases. 

However, to reach realistic statistics, a huge amount of iterations have to be used 

during simulations, which caused the computer that is used for simulations, run out 

of memory. To gain an insight only, simulations are performed with 2000 iterations. 

Mean values around the global minimum show that the estimates are unbiased. 

Resulting rms errors are 0.4910 for 1d , 0.5122 for 2d , 0.5154 for 3d , 0.5207 for 4d , 

which are consistent with the proposed optimization constraint, since an increase in 

rms error means a decrease in resolution. But, as expressed before, for more reliable 

results, these simulations have to be carried out with quite high number of 

iterations.     
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CHAPTER 5 

CONCLUSIONS 

 

          In this thesis, a criterion for optimizing the geometry of a sensor array for 

unambiguous DOA estimation is developed, with particular emphasis on the issues 

of reducing the gross error probability and of improving the resolution performance. 

          The formulation of the problem is based on a measure of similarity between 

array response vectors. The similarity measure is formed by finding the difference 

of the array response vectors for two different angles of arrival. This measure thus 

is closely related to the probability of error in choosing between two arrival angles 

using a finite number of noisy samples of the array output. Optimization criteria are 

extracted from this measure, to satisfy unambiguous DOA estimates by restricting 

the global minima of the similarity function to s0, as well as a high resolution 

capability for the sources close in space, by maximizing R( d ). Although the design 

procedure proposed for optimization is applicable to geometry selection for any real 

array, linear array geometry is chosen due to its lower computational complexity. 

Performance of the proposed method, using other array geometries, should be 

analyzed in more detail, which can be the subject of another study. 

          The proposed  optimization methods are based on  the suggested optimization  
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criteria on the similarity function. Optimization is realized by genetic coding or by 

MATLAB optimization toolbox. Since, the second is a tool for local extrema 

search, a proper initial condition, for which the results of genetic coding may be 

used, should be supplied to it, to converge to the optimum geometry. Optimization 

with genetic algorithm also uses two different genetic coding approaches. The first 

approach searches for the optimum geometry, with the individuals represented as 

decimal numbers, whereas the second does the same with the individuals 

represented as binary fixed point numbers, which is proposed to preserve the data in 

the most significant bits. Although with a small population, time required for 

optimization is less for the second approach, when the selected population is large 

enough, the performances of the two are similar. 

          The performance of the proposed optimization approach and algorithms 

developed for optimization are studied through computer simulations. Behaviour of 

the null-spectrum for MUSIC, using the optimized array geometries are presented, 

at various SNR. Computations on the gross error probability clearly reveal the 

influence of various parameters on the estimation error level. It is observed that the 

algorithm performance depends on the choice of s0 and SNR. It was found that for a 

non-uniform linear array of antennas with optimized geometry, the gross error 

probability increases with decreasing s0. The minimal error, thus, occurs at highest 

s0 value at which the geometry can be optimized. It was demonstrated that the gross 

error probability also lessens with increasing SNR.  

          It  was also demonstrated  that an analogy exists between the resolution of the  
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array and R( d ), when different array geometries satisfying the same lower bound 

constraint, are considered. Local accuracy around DOA increases with higher R( d ), 

i.e., an improvement on system�s ability to differentiate between any two closely 

spaced angles is achieved, pointing out the effectiveness of the proposed 

optimization approach.  

          Although the approach is applicable to any geometry, this study focused on 

linear arrays. Optimization of sensor placements for a 2-D array to maximize the 

performance of the direction finder may be studied as a future work. 
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APPENDIX A 

OPTIMUM ARRAY GEOMETRIES 

 

i) Genetic algorithm with array placements represented as decimal numbers: 

d = [0   17.8000   18.1500   18.2000   18.2500   18.3000   18.3500   18.4000   

18.4500   18.5000   18.5500   18.6000   18.6500   18.7000   18.7500   18.8000   

18.8500   18.9000   18.9500   19.0000   19.0500   19.1000   19.1500   19.2000   

19.2500   19.3000   19.3500   19.4000   19.4500   19.5000   19.5500   19.6000   

19.6500   19.7000   19.7500   19.8000   19.8500   19.9000   19.9500   20.0000] 

Elapsed_time =700.4 seconds 

Best fit value of the generation = 1.4155e+004 

ii) Genetic algorithm with array placements represented as binary numbers: 

d =[0   17.7973   18.1490   18.1978   18.2466   18.2955   18.3492   18.3980   

18.4469   18.4957   18.5495   18.5983   18.6471   18.6960   18.7497   18.7985   

18.8474   18.8962   18.9499   18.9988   19.0476   19.0965   19.1453   19.1990   

19.2479   19.2967   19.3455   19.3993   19.4481   19.4969   19.5458   19.5995   

19.6484   19.6972   19.7460   19.7998   19.8486   19.8974   19.9463   20.0000] 

Elapsed_time = 452 seconds 

Best fit value of the generation = 1.4155e+004 
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iii) Optimization using MATLAB Optimization Toolbox: 

d = [0   17.8240   18.1500   18.2000   18.2500   18.3000   18.3500   18.4000   

18.4500   18.5000 18.5500   18.6000   18.6500   18.7000   18.7500   18.8000   

18.8500   18.9000   18.9500   19.0000   19.0500   19.1000   19.1500   19.2000   

19.2500   19.3000   19.3500   19.4000   19.4500   19.5000   19.5500   19.6000   

19.6500   19.7000   19.7500   19.8000   19.8500   19.9000   19.9500   20.0000] 

Elapsed_time = 75 seconds 

Best fit value of the generation = 1.4156e+004 

 

 

 

 


