

BI-OBJECTIVE BIN PACKING PROBLEMS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

I�IL ILICAK

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INDUSTRIAL ENGINEERING

DECEMBER 2003

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science

 Prof. Dr. Ça�lar GÜVEN
 Head of the Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science

Prof. Dr. Meral AZ�ZO�LU Asst. Prof. Dr. Esra KARASAKAL
 Co-Supervisor Supervisor

Examining Committee Members:

Prof. Dr. Meral AZ�ZO�LU ______________________

Asst. Prof. Dr. Esra KARASAKAL ______________________

Assoc. Prof. Dr. Nur Evin ÖZDEM�REL ______________________

Assoc. Prof. Dr. Yıldırım SALDIRANER ______________________

Dr. Özge UNCU ______________________

iii

ABSTRACT

BI-OBJECTIVE BIN PACKING PROBLEMS

ILICAK, I�ıl

M. Sc., Department of Industrial Engineering

Supervisor: Asst. Prof. Dr. Esra KARASAKAL

Co-Supervisor: Prof. Dr. Meral AZ�ZO�LU

December 2003, 81 pages

 In this study, we consider two bi-objective bin packing problems

that assign a number of weighted items to bins having identical capacities.

Firstly, we aim to minimize total deviation over bin capacity and minimize

number of bins. We show that these two objectives are conflicting. Secondly, we

study the problem of minimizing maximum overdeviation and minimizing the

number of bins. We show the similarities of these two problems to parallel

machine scheduling problems and benefit from the results while developing our

solution approaches. For both problems, we propose exact procedures that

generate efficient solutions relative to two objectives. To increase the efficiency

of the solutions, we propose some lower and upper bounding procedures. The

results of our experiments show that total overdeviation problem is easier to

iv

solve compared to maximum overdeviation problem and the bin capacity, the

weight of items and the number of items are important factors that effect the

solution time and quality. Our procedures can solve the problems with up to 100

items in reasonable solution times.

Keywords: Bin Packing, Multiobjective Optimization, Efficient Solutions

v

ÖZ

�K� AMAÇLI KUTU PAKETLEME PROBLEMLER�

ILICAK, I�ıl

Yüksek Lisans, Endüstri Mühendisli�i Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Esra KARASAKAL

Ortak Tez Yöneticisi: Prof. Dr. Meral AZ�ZO�LU

Aralık 2003, 81 sayfa

 Bu çalı�mada, a�ırlıkları belirli cisimleri e�it kapasitelerdeki kutulara

yerle�tiren iki amaçlı kutu paketleme problemlerini ele aldık. �lk olarak, kutu

kapasitesinden toplam sapmayı ve kutu sayısını en azlamayı amaçladık.

Problemin amaç fonksiyonlarının birbiriyle çeli�ti�ini gösterdik. �kinci olarak,

maksimum sapmayı ve kutu sayısını en azlayan problem üzerinde çalı�tık.

Problemlerin, paralel makinalı çizelgeleme problemine benzerliklerini gösterdik

ve çözüm yöntemleri geli�tirirken bu benzerliklerden yararlandık. �ki amaca göre

etkin çözümler elde eden kesin yöntemler geli�tirdik. Çözümlerin verimlili�ini

arttırmak için bazı alt ve üst sınır yöntemleri önerdik. Deneylerimizin sonucu,

toplam sapma probleminin, maksimum sapma problemine göre daha kolay

vi

oldu�unu ve kutu kapasitesinin, cisimlerin a�ırlıklarının ve cisim sayısının

çözüm süresi ve kalitesi üzerinde önemli etkileri oldu�unu göstermektedir.

Yakla�ımlarımız, cisim sayısı 100’e kadar olan problemleri makul çözüm

süreleri içinde çözmektedir.

Anahtar Kelimeler: Kutu Paketleme, Çok Amaçlı Optimizasyon, Etkin Çözümler

vii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitudes to my thesis supervisor

Asst. Prof. Dr. Esra Karasakal and my co-supervisor Prof. Dr. Meral Azizo�lu,

for their informative and constructive comments, guidance, support and

encouragement throughout this study. It has been a great pleasure for me to work

under their supervision.

I thank my dear friend and colleague Bülvin Karlıkaya for her support

and encouragement.

I offer sincere thanks to my parents, Hatice and Yener Ilıcak, my sister

�dil Ilıcak and my aunt Hale Üstünbal for their encouragement.

Finally, I wish to thank to my husband Sertan for his patience and

encouragement.

viii

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ…………………………………………………………………………...…..... v

ACKNOWLEDGMENTS... vii

TABLE OF CONTENTS ...viii

LIST OF TABLES .. x

LIST OF FIGURES.. xi

CHAPTER

 1. INTRODUCTION.. 1

 2. LITERATURE REVIEW .. 5

 2.1 Classical Bin Packing Problem ... 8

 2.1.1 Approximation Algorithms ... 8

 2.1.2 Exact Algorithms... 11

 2.2 Dual Bin Packing Problem (Type I).. 13

 2.2.1 Approximation Algorithms ... 13

 2.2.2 Exact Algorithms... 16

 2.3 Dual Bin Packing Problem (Type II) .. 17

 2.3.1 Approximation Algorithms ... 17

 2.4 Variable Sized and On-line Bin Packing Problems........................... 18

ix

 3. MINIMIZING TOTAL AND MAXIMUM OVERDEVIATION 20

 3.1 Problem Statement .. 20

 3.2 Some Definitions... 22

 3.3 Mathematical Formulation .. 24

 3.4 Ranges for Efficient Solutions .. 27

 4. SOLUTION PROCEDURES... 29

 4.1 Generation of All Efficient Solutions.. 29

 4.1.1 Development of Lower Bounds .. 36

 4.1.2 Development of Upper Bounds... 39

 4.2 A Preliminary Remark... 45

 4.3 An Approach for Problem I... 47

 4.4 An Example for Problem I .. 47

 4.5 An Approach for Problem II ... 54

 4.6 An Example for Problem II ... 54

 5. COMPUTATIONAL EXPERIMENTS ... 60

 5.1 Design of Experiments ... 60

 5.2 Computational Results ... 61

 5.2.1 Problem I – Minimization of Total Overdeviation.................. 61

 5.2.2 Problem II – Minimization of Maximum Overdeviation 70

 6. CONCLUSIONS... 76

REFERENCES.. 79

x

LIST OF TABLES

TABLE

 5.1 Solution Times for Problem I... 61

 5.2 The Lower Bound, Upper Bound and Optimal Solution Values 63

 5.3 Number of Unsolved Instances for Problem I.. 65

 5.4 The Lower and Upper Bounds when n = 150 and 200 for Problem I 67

 5.5 Comparison of Results with and without Upper Bound......................... 68

 5.6 CPU Times for Problem II ... 69

 5.7 The Average Lower Bound, Upper Bound and Optimal Values 71

 5.8 Number of Unsolved Instances for Problem II 72

 5.9 The Lower and Upper Bounds when n = 150 and 200 for Problem II... 73

xi

LIST OF FIGURES

FIGURE

 3.1 An Example Problem .. 23

 4.1 MIP I... 34

 4.2 MIP II for Problem I .. 35

 4.3 MIP II for Problem II ... 36

 4.4 Figure of Elimination Procedure .. 42

 4.5 Solution of Reduced Configuration.. 43

 4.6 Final Solution by Adding Two Configurations.................................... 43

 4.7 All Efficient Solutions for Problem I ... 52

 4.8 Efficient Solutions Found by Solving MIP I & MIP II........................ 53

 4.9 All Efficient Solutions for Problem II ... 58

1

CHAPTER 1

INTRODUCTION

Bin packing problem has been widely researched in operations research

literature. In the classical bin packing problem, a set of items of different sizes

and weights has to be packed into bins of limited capacities. A packing is

feasible if the total sizes of the items in all bins do not exceed the bin capacity.

As the problem has a wide range of application areas related to space and time

minimization its study is of theoretical interest.

Bin packing problem has been categorized in many different ways. One

categorization is due to the dimension of packs. Most widely studied version is

one dimensional bin packing problem that has its place in manufacturing and

production applications. There are many exact procedures, heuristics, on-line and

off-line algorithms developed for one dimensional bin packing problem. Also,

dual versions of this problem, i.e., problems with the objective of maximizing

the number of bins used or maximizing the number of items packed to the bins

are investigated.

New and improved versions of bin packing problems have arisen with

improving industry demands. Variable sized bin packing problems with variable

2

bin capacities, problems with item weights greater than the bin capacity, are

some notable examples. Due to its close relation to practical life, bin packing

problems are continuing to gain importance in operational research area.

Bin packing arises in a variety of packaging and manufacturing problems.

A well known manufacturing example is cutting stocks so as to minimize waste,

therefore to minimize cost. In waste minimization, we layout the parts so as to

use as few fixed-size sheets as possible. Identifying which part goes to which

sheet in which location is a variation of bin packing problem so called the cutting

stock problem. Another version of bin packing problem arises, namely how best

to fit the boxes into trucks to minimize the number of trucks needed to ship all.

Classical bin packing problem finds its application in scheduling

problems with parallel machines. If we assume parallel machines environment,

a natural question may be how to assign items to the machines without

exceeding the specified makespan, i.e. specified maximum completion time.

With these information, we can make the following analogy: The machines can

be represented by the bins of limited capacity. The capacity of the machines

refers to the makespan, whereas the processing times are analogous to item

weights.

 If required completion time of all machines are the same, then we use

bins with equal capacity. Having identical machine completion times represent

the case where the items have a common due date.

 In this study, we allow deviations over bin capacity. Hence, even if the

total weight of items in a bin exceeds the bin capacity, the solution is feasible.

3

Our problem has two conflicting objectives. First objective is to minimize the

number of bins used and second objective is to minimize total or maximum

deviation over capacity. Hence, according to the second objective we study two

problems. To the best of our knowledge, there is no such work in the literature.

Our problems are analogous to the production environments as follows:

There are a number of identical parallel machines (bins) and the processing times

(weights) of the jobs (items) are known. Due date of all jobs are the same (equal

bin capacity). The aim is to minimize the number of machines used and

minimize total lateness of the last jobs (total overdeviation) or makespan

(maximum overdeviation).

 In our study, we propose some exact procedures to generate all efficient

solutions of our biobjective problems. Using the results of scheduling theory, we

generate constructive and improvement upper bounding heuristics and use some

well known lower bounds.

 We also aim to see the effects of capacity, weight and number of items on

the solution speed and quality. We investigate the differences and similarities

between our biobjective problems.

 The rest of the thesis is organized as follows:

Chapter 2 reports the literature survey related with bin packing problems.

The related work is classified according to the types of bin packing problems.

 In Chapter 3, we define our problems and give their mathematical

formulations. The basic assumptions, notation used throughout the study are also

given in this chapter.

4

In Chapter 4, we present our solution procedures to generate all efficient

solutions. We propose some methods to find upper and lower bounds and some

useful theorems.

The computational experiment associated with our procedures are

reported in Chapter 5. In this chapter, we discuss the effects of capacity, weight

and number of items on the solution speed and quality. We also make

comparative discussions of the total deviation and maximum deviation problems.

In Chapter 6, we give our conclusions and point out the directions for

future research.

5

CHAPTER 2

LITERATURE REVIEW

Bin packing problem is a widely studied operations research problem.

Many different packing problems are defined, depending on the size and shape

of the items, as well as on the form and the capacity of the bins. Similar

problems occur in minimizing material wastage while cutting sheets into smaller

parts, and in the scheduling of identical processors so as to minimize maximum

completion time. Bin packing problem is simple to state, but hard to solve. It is

shown to be NP-hard (Garey and Johnson, 1979).

Bin packing problem has a variety of different types. We classify the

problem into three main categories as classical bin packing problem, dual bin

packing problem (Type I) and dual bin packing problem (Type II). Each of these

cases are reviewed below. We also review some other variations like on-line bin

packing problems.

Classical Bin Packing Problem: The basic bin packing problem is the

classical bin-packing problem (BPP). Given the weight of the items, and the

capacity of bins, the objective is to minimize the number of bins used, without

exceeding the capacity.

6

Dual Bin Packing Problem (Type I): Given the weight of the items and

the capacity of the bins, the objective is to maximize the number of bins used,

where the total weight of items in any bin is allowed to be greater than or equal

to the capacity of the bins. The minimum usage of the bins should be equal to the

capacity of the bins. This problem is also called bin covering problem.

Dual Bin Packing Problem (Type II): In this version the number of bins is

fixed, and the objective is to maximize number of items packed without

exceeding the capacity of the bins.

 The bin packing problems are also categorized into two: single sized

problem and variable sized problem. In single sized problems, the bins have

equal capacities where in variable sized version the bins have different

capacities.

 BPP can also be divided into two classes: off-line and on-line. In off-line

version, all items are initially available, i.e. the system is static, while in the on-

line version the items arrive dynamically. Off-line algorithms first build an order

of the items while on-line algorithms consider the items in the given order and

pack each item into a bin according to a particular selection strategy. In this

study we focus on off-line algorithms and assume that the bins have identical

capacities unless stated otherwise.

 Off-line algorithms are divided into two classes: approximate and exact

algorithms. Majority of the studies in the literature on BPP consider approximate

algorithms and measure their performances. There are a few exact algorithms in

7

the literature, as well. They use the following measures to evaluate the

performances of the approximate algorithms:

 Worst Case Ratio (r): The worst case performance ratio of algorithm A is

defined as the largest real number p(A) such that;

 A(I) / OPT (I) ≤ p(A) for all instances I.

where;

 A(I) = value obtained by solving instance I

 OPT(I) = optimal value of instance I

 Asymptotic Worst Case Ratio(r∞): For an approximate algorithm A, this

measure is defined as the minimum real number r∞(A) such that, for some

positive integer k

 A(I) / OPT(I) ≤ r∞(A) for all instances satisfying OPT(I) ≥ k

These worst case ratios are the usual measures for the quality of an

approximation algorithm. These ratios are less than one for maximization

problems, while they are greater than one for minimization problems. Hence, for

maximization problems, the better the performance of the algorithm, the greater

the ratio. The inverse is true for minimization problems. The ratio is smaller for

better algorithms.

8

2.1 Classical Bin Packing Problem

In this section we first give approximation algorithms for the Classical

BPP, then continue with the exact algorithms.

2.1.1 Approximation Algorithms

We start with the simplest approximation algorithms and continue with

the more complicated ones. Johnson et. al. (1974), developed a number simple

algorithms each of which is discussed below.

Next Fit Algorithm (NF): The simplest approximate approach to the bin-

packing problem is the Next-Fit (NF) algorithm. The items are ordered

arbitrarily. First item is assigned to first bin. Thereafter, each item is assigned to

the current bin, if it fits; otherwise it is assigned to a new bin. As there are n

assignments due to n items, the time complexity of the algorithm is O(n). A

modification of the NF algorithm, called Next-Fit Decreasing (NFD), sorts the

items according to nonincreasing order of their weights and proceeds like NF.

Therefore the time complexity is defined by sorting n items in O(nlogn) steps.

Worst case performance ratio of NF is shown as 2.

First Fit Algorithm (FF): A better algorithm First-Fit (FF), assumes that

the items are indexed arbitrarily and assigns each item to the lowest indexed bin

into which it fits; only when the current item cannot fit into any bin, a new bin is

introduced. The time complexity of the algorithm is O(n). It has been proved by

Johnson et. al. (1974) that asymptotic worst case ratio of FF algorithm is 17/10.

FF algorithm has a modification like NF assuming that the items are sorted in

9

nonincreasing order of their weights. Modified algorithm, First-Fit Decreasing

(FFD) has the same time complexity with NFD.

Best Fit Algorithm (BF): The algorithm, Best-Fit (BF), is obtained from

FF by assigning the current item to the feasible bin (if any) having the smallest

residual capacity where the residual capacity is the capacity of the bin minus the

sum of the items already assigned. BF satisfies the same worst-case ratios as FF.

As opposed to Best Fit (BF), another algorithm Worst Fit (WF) selects a partially

filled bin having the largest residual capacity. BF and WF have Best-Fit

Decreasing (BFD), Worst-Fit Decreasing (WFD) versions with time complexity

of O(nlogn).

 Minimum Bin Slack Heuristic (MBS): Minimum Bin Slack (MBS) heuristic

is developed by Gupta and Ho (1999). At each step an attempt is made to find a

set of items (packing) that uses the bin capacity at the greatest extent. The items

are listed according to nonincreasing order of their weights. Each packing is

determined in a search procedure. The search procedure tests all possible subsets

of unassigned items that fit into the bin so as to minimize total residual capacity.

If the algorithm finds a subset that fills the bin completely, the search is stopped.

After a packing is determined, the items involved are placed in a bin and

removed from the list of unassigned items preserving the sort order. The process

ends when all items are packed. The authors show that MBS is superior, in terms

of solution quality when compared with First-Fit Decreasing and Best-Fit

Decreasing algorithms.

10

MBS Based Heuristics: Flezar and Hindi (2002) proposed four heuristic

procedures. The first heuristic called MBS′, based on the MBS heuristic. Before

the search procedure is invoked, an item is chosen and permanently fixed in the

packing. The authors suggested that a good choice of the fixed item is the one

with greatest size. They showed that MBS does not dominate MBS′ in terms of

solution quality.

Second heuristic proposed by Flezar and Hindi (2002) is Relaxed MBS′.

The modification is due to accepting some packing with positive slack, without

seeking better ones. Suggestion of the authors is to run it several more times, in

addition to running the procedure with zero allowable slack.

Third heuristic is Perturbation MBS′. Starting from an initial solution,

their heuristic successively builds a new solution by perturbing the current one.

The perturbation is done in the following way: an item of a bin with a relatively

large slack is selected as fixed and a packing containing this item, considering all

other items, is created by the search procedure. Items of the new packing are

transferred to a new bin and when the bin becomes empty it is immediately

removed.

Sampling MBS′ is another proposed heuristic. This algorithm invokes

MBS′ several times by changing the ordering of items in the unassigned items

list and adopts the best solution. The algorithm terminates when the lower bound

on the number of bins is achieved or when the algorithm fails to improve the

incumbent solution for a certain number of iterations. The order in the list is

based probabilistically on the nonincreasing order of item weights. The authors

11

show that their MBS based heuristics give good results in reasonably short

solution times.

Variable Neighborhood Search (VNS): Hansen and Mladenovic (1997)

proposed an effective meta heuristic by variable neighborhood search method.

The algorithm is based on moves where a move is defined as the transfer of an

item from its current bin to another one or the swap of a pair of items among

their respective bins. Only feasible moves are considered. The objective is to

maximize the sum of the weights of the items; hence, the algorithm tries to fill

the bins as much as possible.

2.1.2 Exact Algorithms

In this subsection we present the exact algorithms developed for solving

Classical BPPs.

Branch and Bound Algorithms: Eilon and Christofides (1971) presented a

simple depth-first enumerative algorithm based on the “best-fit decreasing”

branching strategy. At any decision node, assuming that b bins have been

initialized, their current residual capacities are sorted by increasing values. The

item is assigned to the first bin into which it fits, if there is no available bin, a

new bin is opened.

Hung and Brown (1978) presented a branch and bound algorithm for the

generalization of the BPP to the case where the bins have different capacities.

Their branching strategy is based on a characterization of equivalent

assignments, thereby reducing the number of explored nodes. The computational

12

results of these algorithms indicate that they can solve only small-sized problem

instances can be solved.

MTP Algorithm: Martello and Toth (1990) proposed an algorithm, MTP,

based on a “first fit decreasing” branching strategy. The items are initially sorted

according to nonincreasing order of their weights. The algorithm indexes the

bins according to their initial order. At each decision node, the first unassigned

item is put to the feasible initialized bin or to a new bin. A backtracking step

involves the removal of the current item from its current bin, and its assignment

to the next feasible bin.

BISON Procedure: Scholl, Klein and Jurgens (1997) present a fast hybrid

procedure BISON for solving the classical bin packing problem. The procedure

combines the tabu search and a branch and bound procedure. BISON computes

some new lower bounds for the problem and uses well-known heuristics like

FFD, WFD, and BFD to find an initial upper bound. If the upper bound is equal

to the lower bound the procedure terminates, if not more powerful lower bounds

are computed and compared with the upper bound, if they are not equal,

procedure continues with tabu search.

The search procedure tries to find a feasible solution for the dual instance

where the number of the bins is equal to the best-known lower bound. If such a

solution does not exist, then the number of bins is increased by one and the

procedure continues until a feasible solution is found or the number of bins

reaches to the best-known upper bound.

13

After tabu search application if lower and upper bounds are still not equal

then local lower bound method that uses a depth-first search branch and bound

procedure is implemented.

The authors compare BISON with MTP and empirically show that their

algorithm outperforms MTP.

2.2 Dual Bin Packing Problem (Type I)

In the following subsections we present approximation and exact

algorithms for solving dual version of the bin packing problem. As in classical

case, exact algorithms are not as many as approximating ones.

2.2.1 Approximation Algorithms

We again start with a simple heuristic and continue with more

complicated ones.

Heuristic Simple (SI): Csirik et. al. (1999) developed two simple

algorithms for bin covering problem. As a preliminary work, they adapted two

heuristics of classical bin packing problem. First heuristic is Heuristic Simple

(SI) that starts with sorting the items in their nonincreasing order of weights.

They defined an index k1, such that the sum of the weights up to k1
th item is less

than one and including (k1+1)th item makes the summation greater than or equal

to one. Items up to k1 are packed in the first bin, and the slack of the bin is filled

by adding the items from the end of the list, until the capacity permits. The

14

procedure terminates when all items are assigned. The authors proved that the

worst case ratio of this heuristic is 2/3.

Improved Heuristic Simple (ISI): Second heuristic by Csirik et. al. (1999),

Improved Simple Heuristic (ISI) is the improved version of Heuristic Simple.

The heuristic divides the items into three groups being X, Y and Z where in each

group the items are sorted according to the nonincreasing order of their weights.

These sublists contain items with weights between (0, 1/3], (1/3, 1/2] and over

1/2. Algorithm is composed of two phases. Phase 1 proceeds as follows: the

weight of the first item in sublist X and total weight of the first two items in

sublist Y are compared and the greater weight is assigned to an empty bin.

Empty parts in the bins are filled by the items from Z-sublist starting from the

end. The procedure continues until X and Y sublist or Z sublist is empty. The

authors aimed to assign larger items to empty bins so as to use more bins. In

Phase 2, unassigned items in the sublists are assigned to new bins by two, three

or according to the Next Fit heuristic. The authors proved that ISI has a worst

case performance ratio of 3/4 which is better than the worst case ratio of

Heuristic Simple (SI).

PTAAS Scheme: Csirik, Johnson and Kenyon (2001) developed better

approximation algorithms for the bin covering problem. The authors tried to

implement the Polynomial Time Asymptotic Approximation Scheme (PTAAS)

to bin covering problem. They developed a parameterized algorithm Aε such that

for any fixed ε > 0, it runs in polynomial time and satisfies the conditions of

asymptotic worst case performance ratio of (1-ε). In classical bin packing, the

15

PTAAS can be used as very tiny items can be ignored. However in the dual

version, tiny items play an important role in filling a bin. This is the reason why

many authors did not prefer to use PTAAS scheme for bin covering. The authors

interested in “robust” heuristics that do not only have worst case behavior close

or equivalent to that of Next-Fit, but also have an average-case behavior that is

probably much better. They considered discrete distributions. Their algorithm

starts with identifying the set of large items. As a second step large groups are

divided into 1/ε2 groups according to the rank so that all have the same

cardinality. Algorithm considers some relaxations by rounding the large items to

the value of smallest item, solving the relaxed and rounded problems and

constructing a solution to the original problem. The authors also developed

similar algorithms for on-line version of the problem.

First Fit Increasing Heuristic: Bruno and Downey (1985), analyzed

First-Fit Increasing heuristic under the assumption that the item sizes are chosen

uniformly. As the name implies, First-Fit Increasing (FFI) heuristic sorts items

according to the increasing order of their weights. The authors showed that given

a desired confidence of 1-ε, the performance of the FFI policy can be made

arbitrarily close to the optimal policy with any desired degree of confidence for

large sample sizes. The authors derived a lower bound on the expected result of

the FFI. Their proofs are based on the distribution of one-sided Kolmogorov-

Smirnov statistic.

Pairing Heuristic: Csirik et al (1991), studied probabilistic analysis of the

algorithms for dual bin packing problems. Their assumption is based on the fact

16

that item weights are generated from a uniform distribution. The authors adapted

a pairing heuristic (PA) such that the largest unassigned item is paired with the

smallest unassigned item so as to cover a bin. If no such item exists, all

remaining items are added to the most recently opened bin. Beside PA, the

authors analyzed the expected behavior of the Next-Fit, and Next-Fit Decreasing

heuristics. Their main interesting conclusion is that the expected performance of

the NF heuristic is better than the expected behavior of the NFD heuristic where

the reverse is true for the classical bin packing problem. However, the authors

could not give an intuitive explanation for this result.

2.2.2 Exact Algorithms

Labbe, Laporte and Martello (1995), provided an exact algorithm for the

DBP. They assumed that the items are ordered according to nonincreasing order

of their weights. They developed some reduction criteria, one of which states

that if the sum of the weights of a combination of items is equal to the bin

capacity, then those items are eliminated. Another reduction criterion is to assign

items to the same bin whenever the sum of the weights of the items is greater

than or equal to the capacity. Recall that this is similar to the Heuristic Simple

(SI), developed by Csirik et al (1999).

 The authors also derived some upper bounds for the problem. Their

proposed algorithm first fills the empty spaces in the bins by adding a small

weighted item.

17

 The branching strategy of the algorithm is based to go on more promising

nodes, which is similar to the inverse of “best-fit decreasing” strategy developed

by Eilon and Christofides (1971). Results of the authors’ experimentations

indicate that the upper bounds are very sharp and the ratio to the lower bound is

always close to one. The main result of the computational experiments is that the

combined effect of the reduction criteria and the upper bounds made a hard

problem relatively easy to solve one, in most cases.

2.3 Dual Bin Packing Problem (Type II)

 In this section, approximating algorithms for Type II Dual Bin Packing

problem are presented. This type of problem is not as widely studied as Type I,

and there are only a few approximating algorithms.

2.3.1 Approximation Algorithms

First Fit Increasing Heuristic: Coffman, Leung, and Ting (1978)

developed First- Fit Increasing (FFI) algorithm. The algorithm sorts the items

according to the increasing order of weights, hence aims to find a maximum

subset of smaller pieces. The authors proved that worst case performance ratio of

FFI is 3/4.

Probabilistic Analysis of First Fit Increasing Heuristic: Foster and Vohra

(1989), studied probabilistic analysis of First- Fit Increasing heuristic for the

second version of the dual bin packing problem. The authors show that when the

items are independent and identically distributed, then the relative error of the

18

algorithm approaches to zero as the number of items approaches to infinity. The

authors also considered an on-line version of the problem and proposed a simple

heuristic.

2.4 Variable Sized and On-line Bin Packing Problems

 Variable sized bin packing problem (VSBP) and online version of the bin

packing problem are studied in the literature as well. In this section we give a

brief description of methods developed for these problems.

 Friesen and Langston (1986), gave three heuristics for the variable sized

bin packing problem, called Next-Fit using largest bins only (NFL), First-Fit

decreasing using largest bins, and repacking to smallest possible bins (FFDLR)

and First-Fit decreasing using largest bins but shifting when necessary (FFDLS).

As the names of the heuristics imply, these algorithms are the same as Next-Fit

and First-Fit Decreasing heuristics. Only difference is the selection criteria of the

bins.

 Zhang et. al. (1997), modified some algorithms of classical bin packing

to the variable sized on-line bin packing problem by allowing to open one bin at

a time. However the authors proved that even FFD has worst case performance

ratio of 2 and this ratio cannot be improved by generalizing the case that allows

to open more than one bin at a time.

 Zhang et. al. (2001), developed the dual version of the variable sized bin

packing problem so called bin batching problem where the objective is to pack

19

the items into maximum number of nonidentical bins. The authors developed an

upper bound and derived worst case performance ratios for their problem.

 Xing et. al. (2002), defined a new bin backing problem with over sized

items. In this case, item weights are allowed to be greater than the bin capacity.

The objective is to pack all items into bins so as to minimize the number of bins

used. The authors aimed to minimize the difference between the sum of the

capacities of the bins and the sum of the item weights assigned to the bins. The

authors developed a two-stage procedure, first packing the over-sized items into

largest bins and then packing the remaining ones. They proved that the two-stage

procedure did not perform as satisfactory as expected, so the authors developed a

new on-line algorithm with an asymptotic worst case ratio not greater than 7/4.

 Azar and Regev (2001), defined another problem called on-line bin

stretching. In bin-stretching problem, they fix the number of bins and try to pack

the items while stretching the size of the bins as small as possible. The authors

presented two on-line algorithms that guarantee a stretching factor of 5/3 for any

number of bins. They then combined two algorithms and designed an algorithm

with stretching factor of 1.625 for any number of bins. The authors proved that

the best lower bound for any algorithm is 4/3 for any number of bins greater than

or equal to 2. They indicated that the bin-stretching problem is equivalent to the

classical scheduling problem with known makespan.

20

CHAPTER 3

MINIMIZING TOTAL AND MAXIMUM OVERDEVIATION

In this chapter, we introduce two bi-objective bin packing problems

where the objectives are to minimize the total and the maximum deviation over

capacity together with the minimization of the number of bins, and present

mathematical models for these problems.

3.1 Problem Statement

 Given n items, with weights wi and bins with capacity c, the aim is to

assign all items into minimum number of bins so that total weight of items in

each bin does not exceed c. This problem is known as Classical Bin Packing

problem, BPP (Johnson et al, 1974).

In this study we relax the capacity constraint of the classical BPP, and

allow deviations over capacity. In other words, we allow to assign items to bins

even if the bin usage exceeds c. The deviation over capacity is referred to as

overdeviation and defined as:

Overdeviation: Total weight of items in the bin minus the capacity of the

bin. Hence,

21

Overdeviation = Max {0, �
i

iw xij– c}

where

�
�
�= ji

ijx bin toassigned is item if 1
otherwise 0

Total overdeviation: Sum of overdeviation of all of the bins.

Total overdeviation = �
j

 Max {0,�
i

iw xij – c}

Maximum overdeviation: Maximum overdeviation among all the bins.

Maximum overdeviation = Maxj { Max {0, �

i
iw xij – c}}

In the thesis, we first consider the problem of minimizing total

overdeviation and minimizing the number of bins. Next, we deal with the

problem of minimizing the maximum overdeviation together with minimizing

the number of bins.

For the sake of clarity, we refer the problem of minimizing total

overdeviation as Problem I, and the problem of minimizing maximum

overdeviation as Problem II. The objectives of these problems are summarized

below.

Objectives of Problem I:

22

• Minimize the number of bins

• Minimize the total overdeviation

Objectives of Problem II:

• Minimize the number of bins

• Minimize the maximum overdeviation

As we decrease the number of bins, the total or the maximum deviation

over capacity will increase. Overdeviations can only be tolerated if they cause

reduction in the total number of bins. Therefore, the objectives of both problems

are conflicting. When objectives conflict, there may not be a single solution

which optimizes both objectives at the maximum extent. Hence, our aim is to

find the set of efficient solutions.

Before proceeding further, for the sake of clarity, we give some

definitions in the following subsection.

3.2 Some Definitions

In this section we define dominance and efficiency.

Dominance: Let, fi (x) be the value of objective i, at solution x. For any

minimization problem, solution x ∈ X dominates solution x′ ∈ X if

fi (x) ≤ fi (x′) ∀ i and

fi (x) < fi (x′) ∃ i

23

Efficiency: Solution x′ ∈ X is efficient (nondominated) if there exists no

solution dominating it.

Let us, give an example. Assume that we have two objectives, f1(x) and

f2(x), to minimize. Figure 3.1 shows the possible objective function values of our

objectives.

0

1

2

3

4

5

6

0 1 2 3 4 5 6
f2(x)

f1
(x

)

Figure 3.1 An Example Problem

Suppose we have five feasible solutions to our problem. As can be

observed from the figure,

 Solutions d and e are dominated by a, b and c.

 Solution c is dominated by solution b.

Solutions a and b are not dominated by any solution hence they are

efficient.

24

3.3 Mathematical Formulation

We present the mathematical formulations of the two problems in this

section. Below, we present indices and additional notation that will be used

throughout the thesis:

Parameters:

 n the number of items

 m the number of bins

Indices:

i item index, where i = 1, 2, 3....n

j bin index, where j = 1, 2, 3....m

Decision Variables:

f maximum overdeviation

dj overdeviation from capacity of bin j

�
�
�= selected is bin if 1

otherwise 0
j

jy

�
�
�= ji

ijx bin toassigned is item if 1
otherwise 0

Mathematical formulations of our problems, Problem I and Problem II

are as follows:

Constraints:

Constraint set 3.1 ensures that every item is assigned to exactly one bin.

25

�
j

xij = 1, ∀ i (3.1)

Constraint set 3.2 guarantees that if an item is assigned to a bin, then the bin

should be opened.

xij ≤ yj, ∀ i and j (3.2)

Constraint set 3.3 gives the overdeviation due to bin j.

�
i

wixij – dj ≤ cyj, ∀ j (3.3)

Variables are defined as binary or continuous with the following constraints.

yj ≤ 1 ∀ j

yj ≥ 0 ∀ j

dj ≥ 0 ∀ j

xij = 0, 1 ∀ i and j

Note that yj takes binary values even though it is defined as a continuous

variable since xij is a binary variable.

26

Objective Functions:

The model has two objectives; minimization of the total number of bins

used, and the minimization of total overdeviation.

Minimize �

j

 yj (3.4)

Minimize �
j

dj (3.5)

The above model is a mixed integer linear program (MIP). The large

number of binary variables makes its solution impractical, even infeasible with

avaliable MIP softwares.

The above formulation can be modified for Problem II as follows:

Constraints:

In addition to our constraint sets given above, we have one additional

constraint. Constraint set 3.6 defines the maximum overdeviation f.

f ≥ dj, ∀ j (3.6)

Objective Functions:

The model for Problem II has two objectives: minimization of the total

number of bins used, and the minimization of the maximum overdeviation.

27

Minimize �
j

yj (3.7)

Minimize f (3.8)

Note that, the first objective of the models, is the objective of classical

bin packing problem. In a classical bin packing problem capacity cannot be

exceeded whereas in our models we can exceed capacity. To generate the

efficient solutions, we minimize the total overdeviation from bin capacity

(�
j

dj) [for Problem I] and the maximum overdeviation (f) [for Problem II] for

all possible values of the number of bins. The maximum number of bins that can

be used is equal to the number of items, and the minimum number of bins that

can be used is equal to one.

3.4 Ranges for Efficient Solutions

In this section, we define the ranges for efficient solutions. Let (x,y)

represent a solution where the number of bins is equal to x and the

total/maximum overdeviation is equal to y.

Efficient solutions lie between the following two solutions.

• Solution with one bin, hence with the maximum total

overdeviation.

Note that, an upper bound on the total/maximum overdeviation of

all efficient solutions is (�
i

wi – c), and (1, �
i

wi – c) is an

efficient solution.

28

• Solution with zero total overdeviation

Remark 3.1

Finding the efficient solution with zero total overdeviation is equivalent

to solving classical bin packing problem.

It is mentioned that classical bin packing problem does not allow any

overdeviation, therefore its optimum solution, z*, gives an efficient solution

(z*,0).

To summarize;

Range for the number of bins = [1, z*]

Range for the total/maximum overdeviation = [0, �
i

wi – c]

Hence; efficient solutions lie between (z*,0) and (1, �
i

wi – c)

In the following chapter, procedures developed to generate all efficient

solutions for Problem I and Problem II are presented.

29

CHAPTER 4

SOLUTION PROCEDURES

In this chapter, we present the procedures for solving our problems

together with upper and lower bounds on the objective function values.

4.1 Generation of All Efficient Solutions

Remark 3.1, states that finding an efficient solution with zero

total/maximum overdeviation is equivalent to solving a classical BPP. To

generate the set of efficient solutions, we develop a two stage procedure. In the

first step, we solve the classical BPP and minimize the number of bins for zero

total/maximum overdeviation [to generate the solution (z*,0)]. In the second

step, we minimize the total/maximum overdeviation for the given number of

bins.

In Step I, we describe how the classical BPP is solved, and the optimal

number of bins, z*, is found for zero total/maximum overdeviation.

STEP I (MIP I):

In this step the following MIP is solved.

30

Constraints:

�
j

 yj ≤ YUB (4.1)

�
j

 yj ≥ YLB (4.2)

�
j

 xij = 1, ∀ i (4.3)

�
i

wixij ≤ cyj, ∀ j (4.4)

xij ≤ yj, ∀ i and j (4.5)

yj ≤ 1, ∀ j (4.6)

xij = 0, 1, ∀ i and j

yj ≥ 0, ∀ j

Constraint sets (4.1) and (4.2) are the upper and lower bounds on the

optimal number of bins (these bounds are defined in sections 4.1.1 and 4.1.2).

We introduce these constraints to speed-up the solution process of the model.

The remaining constraints are the ones in our original mathematical model. The

only difference is that we set decision variable dj to zero and modify constraint

set 3.3 (see constraint set 4.4).

Objective Function:

The objective function is to minimize the number of bins.

Minimize z = �

j

 yj (4.7)

31

Let z* be the optimal objective function value of MIP I. In Step II, we

generate the remaining efficient solutions by solving a new MIP (MIP II)

iteratively.

MIP II, generates an efficient solution with z*-1 number of bins, which is

an adjacent efficient solution to the optimal solution of MIP I (solution with

zero total overdeviation). The model tries to minimize the total/maximum

overdeviation while keeping the number of bins at z*-1. In order to generate all

efficient solutions, we iteratively solve MIP II by updating the number of bins

(decreasing the number of bins by one each time).

STEP II (MIP II):

In this step, the following MIP minimizes the total overdeviation. Let;

�
�
�= first time for the II STEP solving are weif z*

otherwise 1 -*k*k

Constraints:

�
j

 yj = k*- 1 (4.8)

�
j

dj ≤ DUB (4.9)

�
j

dj ≥ DLB (4.10)

�
j

xij = 1, ∀ i (4.11)

32

�
i

wixij - dj ≤ cyj, ∀ j (4.12)

xij ≤ yj, ∀ i and j (4.13)

 yj ≤ 1, ∀ j (4.14)

xij = 0, 1, ∀ i and j

yj ≥ 0, ∀ j

Note that, while solving MIP II for the first time, the optimal objective

function value of MIP I is used in constraint set 4.8 for k*. In the following

iterations, we decrease the value of k* by one. We again introduce upper and

lower bounds on the objective function by constraints (4.9) and (4.10) to increase

solution speed. The rest of the constraints are the ones in our original model.

Objective Function:

Our objective is to minimize total overdeviation.

Minimize t = �
j

 dj

For minimizing maximum overdeviation Step II is modified as follows:

33

Constraints:

f ≤ FUB (4.15)

f ≥ FLB (4.16)

f ≥ dj, for all j (4.17)

Again we have upper and lower bounds on the objective function (see

constraint sets 4.15 & 4.16), and constraint set 4.17 is added for finding the

maximum overdeviation. In addition to these, we also have constraint sets 4.8,

4.11, 4.12, 4.13, 4.14.

Objective Function:

Our objective is to minimize maximum overdeviation.

Minimize f

In the following subsections, we discuss the development of upper and

lower bounds used in MIP I and MIP II. For the ease of reference, we give MIP

I, MIP II for Problem I and MIP II for Problem II in compact forms in Figures

4.1, 4.2 and 4.3 respectively.

34

Figure 4.1 MIP I

35

Figure 4.2 MIP II for Problem I

36

Figure 4.3 MIP II for Problem II

4.1.1 Development of Lower Bounds

In this subsection, the methods used to develop lower bounds on the

objective function values are introduced. We generate these bounds for both

steps of the problems.

Below, we introduce a method for finding the lower bound for the first

step of the procedure. The first step is common for both of our problems, and

therefore the lower bound given in Theorem 4.1 is valid for both problems.

37

Theorem 4.1

� �
i

wi / capacity � is a lower bound on the minimum number of bins with zero

total/maximum overdeviation.

Proof

An optimal solution to the problem with item splitting is ��
i

wi / capacity�

(Marthello and Toth, 1990). As an optimal solution to any relaxation of the

problem leads to lower bound, � �
i

wi / capacity � is a valid lower bound on the

number of bins, Y.

�

Hence, we set

YLB = � �
i

wi / capacity � (4.18)

in our formulation.

Theorem 4.2 introduces a lower bound on the objective function of the

second step of our procedure for Problem I (where the objective is to minimize

total overdeviation).

Theorem 4.2

Max {0, � �
i

wi – (number of bins × c)�} is a lower bound on the optimal total

overdeviation.

38

Proof

(Number of bins × c) is an upper bound on the utilization of all bins. So,

� �
i

wi – (number of bins × c)� becomes a lower bound on the load excess of

(number of bins × c), therefore it is a valid lower bound on the total

overdeviation.

�

Hence;

DLB = � Max {0,[�
i

wi – (number of bins × capacity)]}� (4.19)

in our formulation.

Theorem 4.3, presents the lower bound on the objective function of

second step of our procedure for Problem II.

Theorem 4.3

Max {0, � [�
i

wi – (number of bins × c)] / n�} is a lower bound on the optimal

maximum overdeviation.

Proof

(Number of bins × c) / n is an upper bound on the utilization of all bins. So, note

that � (�
i

wi) / n – (number of bins × c) / n� becomes a lower bound on the

assignment over (number of bins × c) / n, therefore it is a valid lower bound on

the maximum overdeviation.

39

Hence;

FLB = � Max {0, � [�
i

wi – (number of bins × c)] / n � } (4.20)

in our formulation.

These lower bounds are the rounded up results of the LP relaxations of

the problems. One example for this, is the lower bound of Classical BPP. The

continuous relaxation of BPP problem can be immediately solved by values xii =

1, xij = 0 (j ≠ i) and yi = wi / c (Marthello and Toth, 1990).

4.1.2 Development of Upper Bounds

For the first step (MIP I), we use Best Fit Decreasing Heuristic as an

upper bound for classical BPP, since BFD is easy to implement and it has a good

worst case performance ratio. For the sake of completeness, we give the details

of the heuristic. We start the procedure by sorting the items according to the

nonincreasing order of their weights. Then, starting from the first item of the list

we assign the items to a feasible bin with smallest remaining capacity. The

stepwise description of the heuristic is given below.

Best-Fit Decreasing Heuristic (Garey & Johnson, 1979) :

1. Sort the items in their nonincreasing order of weights

2. Put the first item to a feasible bin with smallest remaining capacity

3. If there is no feasible bin available, open a new bin.

4. Continue until all items are assigned.

40

Worst case performance ratio of BFD is proven to be 1.222 by Garey,

Coffman and Johnson (1984).

First step of the problems are the same, we use above heuristic for both

problems. Below, a constructive heuristic and an improvement of that heuristic

are given for the second step of Problem I.

We modify the Best Fit Decreasing Heuristic for the case where the

number of bins is given. The only difference is, when all the bins are full, we

assign the item to any bin, instead of opening a new bin. We present our heuristic

below:

A Constructive Heuristic:

1. Sort the items in their nonincreasing order of weights.

2. Assign the first item of the list to the feasible bin with smallest

remaining capacity. If there is no slack in any one of the bins, assign the

item to an arbitrarily selected bin.

3. Continue until all the items are assigned.

We improve the constructive heuristic by the following improvement

heuristic.

An Improvement Heuristic:

If (DUB-DLB)/DUB ≥ R; where R is equal to 0.4 then; starting from the

solution found from the constructive heuristic we apply our improvement

heuristic. We obtain 0.4 as a suitable value for R by experimentation (i.e. starting

41

from the value 0.1, several R values are implemented and we found out that, up

to the value 0.4, there is no need to apply improvement heuristic).

We eliminate some of the bins with their assigned items to decrease the

problem size and consider only the ones with no overdeviation. Those bins are

then sorted in nonincreasing order of their total assigned weights. Hence, the

bins with total assigned weight equal to their capacity are eliminated first. The

improvement heuristic is given below.

1. Take the bins with zero overdeviation to a list

2. Sort the bins of the list in nonincreasing order according to their

assigned weights

3. Eliminate the first B bins together with their assigned items

4. Solve the MIP II in Step II (section 4.1) for the reduced problem

An alternative for third step of the improvement heuristic may be to

eliminate the bins one by one unless slacks are zero, instead of eliminating B

bins. However it would blow up the computational time. So, we decided to

eliminate B bins.

Schematic view of Improvement Heuristic can be seen in Figures 4.4, 4.5

and 4.6.

42

Figure 4.4 Figure of elimination procedure

 In the illustrative example shown in Figure 4.4, B is taken to be 3. So, we

have to eliminate 3 bins from the original configuration. Bin number 3 is not

taken into the list as its capacity is exceeded. When we sort the bins in

nonincreasing order according to their assigned weights, bins with number 1, 15

and 2 are taken into the list. The bin with number 14 is not eliminated since its

assigned weight is less than the other three bins. Note that the total

overdeviations of the eliminated bins are zero.

 Suppose, the MIP II solution of the reduced configuration of Figure 4.4

is as given in Figure 4.5.

43

Figure 4.5 Solution of reduced configuration

 If there is no overdeviation as in the reduced configuration of Figure 4.5,

then there is no need to solve the original problem, and the combined

configurations, (i.e. eliminated bins and solution of reduced configuration) will

give the solution (see Figure 4.6).

Figure 4.6 Final Solution by Adding Two Configurations

How to find B?

An important concern is how to decide on the number of bins to be

eliminated. We develop a method for finding a suitable value for B by

44

experimentation. In the experiments, we observe that if we choose too small or

too big a B value, we cannot obtain a satisfactory improvement.

We set,

B = �s* × 10(wa / capacity)�

where

 1 if n = 50

s* = 1.5 if n = 75

 2 if n = 100

wa = �wi / n, i.e. average weight of items,

For example, assume that we have 50 items with total weight of 2872.

Then the average weight of items is 57.44 (2872 / 50). Let the capacity be equal

to 100. Hence, B = �10(57.44 / 100)� = 6.

 The formulation takes into account the capacity, the weight of items and

the number of items. So, as the number of items and the weight of these items

increase, the number of the bins increases, and we have to eliminate more bins.

However, as the capacity of the bins increases the reverse is true.

 Finally, we present a heuristic for minimizing maximum overdeviation.

As this problem is similar to the problem of minimizing makespan with parallel

machines without preemptions, we used a well known heuristic for upper bound

calculation.

45

Heuristic for Minimizing Maximum Overdeviation (Graham, 1969):

1. Sort the items in their nonincreasing order of weights.

2. Assign first item of the list to the feasible bin with smallest remaining

capacity. If there is no slack in any one of the bins, assign the item to bin

with smallest overdeviation.

3. Continue until all items are assigned.

The main difference of this heuristic from our constructive heuristic for

Problem I is, when all the bins are full we assign the item to the bin with smallest

overdeviation instead of assigning it to an arbitrary bin, as our main concern is to

balance the overdeviations of the bins so as to minimize maximum

overdeviation.

Worst case performance of this heuristic is proven to be 4/3-1/3n where n

is the number of bins (Graham, 1969). Due to this satisfactory worst case

performance, we did not implement an improvement heuristic.

4.2 A Preliminary Remark

In this section we present an important property of Problem I, by

Theorem 4.4.

Theorem 4.4

When all bins are fully loaded, the efficient solutions can be obtained through

the following procedure:

46

Let TD(n) be the minimum total overdeviation where the number of bins

is equal to n. Then a unit reduction in the number of bins increases the total

overdeviation by c units. That is:

TD(n-1) = TD(n)+ c

Proof

Total overdeviation with n bins is given by

TD(n) = �
i

wi – n×c

Total overdeviation with n-1 bins is given by

 TD(n-1) = �

i

 wi – (n-1)×c

The difference between two deviations is as follows:

TD(n-1) - TD(n) = �
i

 wi – (n -1)×c - �
i

wi + n×c = c

Hence;

TD(n-1) = TD(n)+ c

�

47

4.3 An Approach for Problem I

In this section, using the above results, we develop an approach for

Problem I.

STEP I: Solve MIP I

STEP II: Using the optimal objective function value z* of MIP I as a

parameter in MIP II, solve MIP II.

Continue to solve MIP II by decreasing the number of bins by one

until there is no slack in any of the bins.

Find the remaining efficient solutions by using the result of

Theorem 4.4.

4.4 An Example for Problem I

An example problem is presented in this section to illustrate the

procedure for Problem I.

Let;

Number of items = 100

Capacity = 100

Suppose the weights of items are generated between [1,50] from uniform

distribution, and they add up to;

�
i

wi = 2745

We implement our procedure, for the above data.

48

STEP I (MIP I)

To solve Step I, first we calculate upper and lower bounds on the objective

function.

Calculating Bounds for Step I:

Lower bound for Step I is calculated by the result of Theorem 4.1.

YLB = � �
i

wi / capacity �

YLB = � 2752 / 100 �

YLB = 28

Upper bound for Step I is calculated by using Best Fit Decreasing Heuristic. First

we sort the items in their nonincreasing order of weights. Then, starting from the

first item of the list, we assign the item to a feasible bin with smallest remaining

capacity. If there is no feasible bin available, we open a new bin. Assigning all

items accordingly, we find the number of bins as;

YUB = 33

The optimal solution of Step I gives:

z* = 29

49

After finding z*, we continue our procedure by MIP II.

STEP II (MIP II)

Iteration 1: Minimize total overdeviation with z*-1 = 28 bins

Again, we calculate the upper and lower bounds.

Calculating Bounds for Step II:

Lower bound for Step II is calculated using Theorem 4.2

DLB = � Max {0, [�
i

wi – (number of bins × capacity)]}�

The number of bins is equal to z*-1

DLB = � Max { 0,[2752 – (28 × 100)] }�

DLB = 0

To calculate the upper bound, first we use the constructive heuristic. By sorting

the items in their nonincreasing order of weights, we assign the first item of the

list to the bin with smallest remaining capacity, if there is no slack in any of the

bins, then we assign the item arbitrarily to any bin. The upper bound is found as,

DUB = 20

Then we decide whether we need an improvement or not, as follows:

50

(DUB- DLB) / DUB = 1 > 0.4

Hence, we improve the upper bound by improvement heuristic as,

B = �s* × 10(wa / capacity)�

s* = 2

wa = 27.52

capacity = 100

B = �2 × 10(27.52 / 100)� = 6

We eliminate 6 bins.

Then, result of the reduced problem is 7, hence

DUB = 7

By solving Step II

t* (minimum total overdeviation) = 0

There are still unused capacities in some bins

Iteration 2: Minimize total overdeviation with 27 bins

DLB = 52

DUB = 54

(DUB – DLB) / DUB = 0.04

We do not implement improvement heuristic, hence DUB = 54

51

By solving the model;

D* = 54

There are unused capacities in some bins

Iteration 3: Minimize total overdeviation with 26 bins

DLB = 152

DUB = 152

DUB = DLB hence D* = 152

There is no slack in any of the bins. Using the result of Theorem 4.4, we

continue to generate efficient solutions by increasing total overdeviation by c

units and decreasing the number of bins by 1. We stop when the number of bins

reaches to its lower limit of one.

Number of bins = 25 D* = 152 + 100 = 252

Number of bins = 24 D* = 252 + 100 = 352

Number of bins = 23 D* = 352 + 100 = 452

 . .

 . .

 . .

Number of bins = 1 D* = 2652

52

All efficient solutions are shown in Figure 4.7. Solutions obtained by

MIP I and MIP II are depicted in Figure 4.8. The linear behaviour of solutions

after the bins are fully utilized can be easily seen in Figure 4.7.

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30

number of bins

to
ta

l o
ve

rd
ev

ia
tio

n

Figure 4.7 All Efficient Solutions

When the number of bins reaches 26, the solutions generated afterwards

show a linear trend (see Figure 4.7). From Theorem 4.4, it is known that after all

bins are fully loaded, by removing one bin, the total overdeviation increases by c

units. Solutions in the cycle are the ones generated by solving MIP I and MIP II.

53

In Figure 4.8, the efficient solutions generated before all the bins are fully

loaded, can be seen more clearly. These solutions are generated by solving MIP

I, and MIP II. As can be seen, there is no such linear trend.

0

152

54

0

20

40

60

80

100

120

140

160

25 26 27 28

number of bins

to
ta

l o
ve

rd
ev

ia
tio

n

Figure 4.8 Efficient Solutions Found by Solving MIP I & MIP II

4.5 An Approach for Problem II

In this section, the approach developed for Problem II is presented.

Main difference between Problem I and Problem II is that, there is no

such linear relationship between the number of the bins and the maximum

overdeviation after some solution as stated in Theorem 4.4. So we have to solve

Step II (MIP II) for all possible number of bins.

54

STEP I: Solve MIP I

STEP II: Using the optimal objective function value z* of MIP I as

a parameter in MIP II, solve MIP II

Continue to solve MIP II by decreasing number of bins by

one for all possible number of bins

4.6 An Example for Problem II

 Let;

Number of items = 100

Capacity = 200

Suppose the weights of items are generated between [1,50] from uniform

distribution, and they add up to;

�
i

wi = 2378

We start to implement our procedure for the above data.

STEP I (MIP I):

To solve Step I, first we calculate upper and lower bounds on the objective

function.

Calculating Bounds for Step I:

Lower bound for Step I is calculated by using the result of Theorem 4.1.

55

YLB = � �
i

wi / capacity �

YLB = � 2378 / 200 �

YLB = 12

Upper bound for Step I is calculated by using Best Fit Decreasing Heuristic and

found as;

YUB = 13

The optimal solution of Step I gives:

z* = 12

After finding z*, we continue our procedure by MIP II.

STEP II (MIP II):

Iteration 1: Minimize maximum overdeviation with z*-1 (11) bins

Again, we calculate the upper and lower bounds.

Calculating Bounds for Step II:

Lower bound for Step II is calculated from Theorem 4.3

FLB = � Max {0, [�
i

wi – (number of bins × capacity)] / n}�

The number of bins is equal to z*-1

56

FLB = � Max { 0,[2378 – (11 × 200)] / 11 }�

FLB = 17

For upper bound, we use the heuristic by Graham (1969). We sort the items in

their nonincreasing order of weights, we assign the first item of the list to the bin

with smallest remaining capacity, if there is no slack in any of the bins, then we

assign the item to the bin with smallest overdeviation. Then, the upper bound is:

FUB = 17

FUB = FLB hence F* = 17

Iteration 2: Minimize maximum overdeviation with 10 bins

FLB = 38

FUB = 39

By solving the model;

F* = 39

Iteration 3: Minimize maximum overdeviation with 9 bins

FLB = 65

FUB = 65

FUB = FLB hence F* = 65

57

Although there is no slack in any of the bins we should continue to

generate efficient solutions by solving MIP II. We stop when the number of bins

reaches its lower limit of one.

By solving MIP II, following results are obtained:

Number of bins = 8 F* = 99

Number of bins = 7 F* = 140

Number of bins = 6 F* = 197

Number of bins = 5 F* = 276

Number of bins = 4 F* = 395

Number of bins = 3 F* = 593

Number of bins = 2 F* = 969

 Number of bins = 1 F* = 2178

 All efficient solutions are shown in Figure 4.9.

58

2178

969

593

395
276

197 140 99 65 39 17 00

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 2 4 6 8 10 12

number of bins

m
ax

im
um

 o
ve

rd
ev

ia
tio

n

Figure 4.9 All Efficient Solutions

As can be seen from the above figure, there is no linear relationship

between the maximum overdeviation and the number of bins. Hence, in Step II

we have to solve MIP II for all possible number of bins, to generate the set of

efficient solutions.

59

CHAPTER 5

COMPUTATIONAL EXPERIMENTS

In this chapter, we present the experiment environment and results of the

experiments.

5.1 Design of Experiments

In our computational experiments, the class of a problem is determined

by the number of items, item weights and bin capacities. 18 different problem

classes were constructed and we perform our experiments with problems having

50, 75 and 100 items. Item weights are generated from uniform distribution in

the ranges [1,50] and [1,100]. We use bin capacities of 100, 150 and 200. For

each problem class, we generate 10 problem instances. For each problem

instance, we find all efficient solutions.

The Central Processing Unit (CPU) time limit is set to 3600 seconds, that

is the execution is terminated if the optimal solution is not returned in 3600

seconds.

60

We report average and maximum values of CPU times, lower bound and

upper bound performances and the number of unsolved instances within

specified termination limit.

 The computational experiments are performed on Pentium II processor

with 128 MB RAM. GAMS 20.2 with CPLEX solver is used to solve MIP

problems. All heuristics are coded with VISUAL BASIC 6.0.

5.2 Computational Results

In this section we present the results of our computational experiments

for problems I and II.

5.2.1 Problem I – Minimization of Total Overdeviation & Number of Bins

 In this subsection, we present the results of our computational

experiments for Problem I.

Solution Times:

The average and maximum CPU times are given in Table 5.1. Max(1)

and Max(2) represent the maximum CPU time observed and Avg(1) and Avg(2)

represent the average of CPU times. CPU times of unsolved problems are

included in Max(1) and Avg(1), while they are excluded in Max(2) and Avg(2).

The gray shaded entries mean that none of the problem instances can be solved

within specified termination limit of 3600 seconds.

61

Table 5.1 Solution Times for Problem I (seconds)

n = 50

c wi Max(1) Avg(1) Max(2) Avg(2)

100 [1, 50] 800 63 800 63

150 [1, 50] 4 3 4 3

200 [1, 50] 3 3 3 3

100 [1, 100] 3600 1100 242 32

150 [1, 100] 3600 800 150 30

200 [1, 100] 3600 500 500 60

n = 75

100 [1, 50] 3600 422 1400 87

150 [1, 50] 8 4.5 8 4.5

200 [1, 50] 10 3.5 10 3.5

150 [1, 100] 3600 1218 3370 198

200 [1, 100] 3600 654 560 33

n = 100

100 [1, 50] 3600 448 386 60

150 [1, 50] 16 7 16 7

200 [1, 50] 12 5 12 5

200 [1, 100] 3600 750 645 44

 When there are 50 items and weights are generated between [1, 50], it is

seen that as capacity increases, the average CPU time decreases. Max(1) and

Max(2) values are the same for this weight distribution, implying that all

instances are solved. Moreover, there is a clear decrease in the Avg(1) values for

the problem classes where weights are generated between [1, 100], as capacity

increases. However the Avg(2) values do not show such a relationship. This is

62

due to the exclusion of the CPU times of unsolved instances in Avg(2) values.

Comparing the weight ranges, we see that, as the average weight of items

increases, CPU time increases.

 The difficulty of our problems arises from the binary variables xij. It is

clear that, as capacity increases, we need fewer bins to assign all items. This

decreases the upper value of index j, hence the number of binary variables, xij.

The decrease in the number of required bins reduces the problem size, hence

makes the problem simpler, i.e. CPU times decrease with increasing bin

capacity. The same reason also holds for the average weight of items. As the

average weight of items decrease, more items fill one bin; therefore, fewer bins

are used.

 When n = 75 and 100 items, we observe the same relations between bin

capacity and CPU times, and item weights and CPU times. As the capacity

increases CPU times decrease, and as the average weights of items increases

CPU times increase.

When the weights are generated between [1, 50], the CPU time increases

with an increase in the number of items. The same relation also holds when n =

75 and 100, and the weights are generated between [1, 100]. The reason is the

same, that is an increase in the number of items affects the value of index i which

increases the size of the problem.

The Lower Bound and Upper Bound Performances:

 In Table 5.2, the average upper bound values (AVG. UB), the average

lower bound values (AVG. LB) and the average optimal values (OPT) are

63

reported for the number of bins. Note that in the table absolute values are

presented, i.e. we report average values of the bounds rather than any

percentages. We prefer to use absolute values since the objective function values

are too small.

Table 5.2 The Lower Bound, Upper Bound and Optimal Solution Values

AVG. UB, OPT n = 50 n=75 n=100

c wi UB OPT UB OPT UB OPT

100 [1, 50] 29 28 41.8 40.6 50.6 50.4

150 [1, 50] 31 31 51 50.3 39.2 38.6

200 [1, 50] 50 50 54 53.8 49.6 49

100 [1, 100] 73.7 71.7

150 [1, 100] 58.4 54 124.7 104.4

200 [1, 100] 50.9 48.4 72.6 68.7 88.5 80.8

AVG. LB, OPT LB OPT LB OPT LB OPT

100 [1, 50] 28 28 39.8 40.6 49 50.4

150 [1, 50] 31 31 50.3 50.3 38.4 38.6

200 [1, 50] 50 50 53.8 53.8 48.9 49

100 [1, 100] 65.1 71.7

150 [1, 100] 50.4 54 95.2 104.4

200 [1, 100] 47.1 48.4 67.3 68.7 77.7 80.8

When the number of items is 50 and weights are generated between [1,

50], we see that both the upper bound and the lower bound values are very close

to the optimal solution. We also observe that when capacities are 150 and 200,

the average upper bound and lower bound values are equal which means that for

64

all instances both bounds give the optimal solutions. When the numbers of items

are 75 and 100 and weights are generated between [1, 50], the bounds are very

close to the optimal solutions. When weights are generated between [1, 50], we

do not need many bins, therefore the value of index j is small. As the number of

items increases, we need extra bins. Hence, the problem becomes harder to solve.

 When the weights are generated between [1, 100] it is seen that the

values of the bounds are still close to the optimal solution values. We observe

that the results are in line with our expectations.

When n = 75 and 100 items and weights are generated between [1, 100]

the performance detoriates. However, relationships observed for n = 50 also hold

here too. As the capacity increases or the number of items decreases or the

average weight of items decreases, the bounds get closer to the optimal solutions.

 The results reveal that the problem becomes harder as capacity

decreases, and the number of items or the average weight of items increases, but

the performances of our bounds are good for all problem classes.

Number of Unsolved Instances:

 Table 5.3 reports the number of unsolved instances of Problem I, the total

number of efficient solutions including the ones obtained either by solving MIP I

and MIP II or directly from Theorem 4.4, the percentage of unsolved problems

and the percentage of solutions found by Theorem 4.4.

65

Table 5.3 Number of Unsolved Instances of Problem I

n = 50

c wi # of
unsolved
problems

of ins.
by MIP I
& MIP II

 # of
efficient
solutions

%
unsolved
problems

% of soln.
by

Theorem
4.4

100 [1, 50] 0 20 130 0 84.6

150 [1, 50] 0 20 90 0 77.7

200 [1, 50] 0 20 70 0 71.4

100 [1, 100] 8 40 272 2.9 85.2

150 [1, 100] 3 20 171 1.7 88.3

200 [1, 100] 1 20 133 0.7 84.9

n = 75

100 [1, 50] 2 30 200 1 85

150 [1, 50] 0 20 128 0 84.3

200 [1, 50] 0 20 98 0 79.5

150 [1, 100] 7 40 267 2.6 85

200 [1, 100] 3 30 190 1.6 84.2

n = 100

100 [1, 50] 3 40 281 1.1 85.7

150 [1, 50] 0 20 164 0 87.8

200 [1, 50] 0 20 132 0 84.8

200 [1, 100] 7 40 270 2.6 85.1

 The percentages of efficient solutions found by Theorem 4.4, show that

on the average 85 % of all efficient solutions are found by Theorem 4.4. As the

problem gets harder; that is as capacity decreases or the number of items and the

average weight of items increases, this percentage also increases. That is

66

because, as problem gets harder we need more bins to be filled and this leads to a

drastic increase in the total number of efficient solutions. However, there are not

many efficient solutions until all the bins are fully loaded.

 As can be seen from Table 5.3, when capacity increases, the total number

of efficient solutions decreases. This is because, as capacity increases we need

fewer bins to assign the items. As average weight of items increases we need

more bins to be filled, hence the total number of solutions increases with

increasing the average weight of items. As mentioned in Chapter 2, the ranges of

efficient solutions are related with the necessary number of bins. Because of the

same reason, the number of problem instances solved by MIP I and MIP II

increases as the number of bins to be filled increases.

 The number of unsolved problems shows that as capacity increases or the

average weight of items decreases, the number of unsolved problems decreases.

So, our previous conclusion, as the necessary number of bins increases, the

problem gets harder to solve, holds here as well.

We also observe that, due to the same reason, as the number of items

increases, the number of unsolved instances increases too.

 We also investigate the performance of the upper and lower bounds on

the number of bins for 150 and 200 items. In Table 5.4, the average values of

these bounds and the average and maximum differences between the bounds are

given.

67

Table 5.4 The Lower and Upper Bounds when n = 150 and 200 for Problem I

n = 150

c wi AVG. LB AVG. UB AVG. DIF. MAX. DIF

100 [1, 50] 55.3 60 4.7 16

150 [1, 50] 55.5 57.5 2 6

200 [1, 50] 55.7 56.5 0.8 2

100 [1, 100] 80.5 103.8 23.3 83

150 [1, 100] 139 193.7 54.7 144

200 [1, 100] 92.3 102.9 10.6 47

n = 200

100 [1, 50] 56.8 66.6 9.8 44

150 [1, 50] 54 58.1 4.1 28

200 [1, 50] 57.6 59.2 1.6 13

100 [1, 100] 116.9 145.3 28.4 116

150 [1, 100] 129.9 202.1 72.2 220

200 [1, 100] 102.7 117.3 14.6 63

 When the weights are generated between [1, 50], as the capacity

increases the bounds get closer. This may be explained by the fact that as the

capacity increases, we need fewer bins, therefore the size of the problem reduces.

Thus, the performance of our bounds improves. However, when weights are

generated between [1, 100], the largest gap between the bounds is observed

when the capacity is 150. Recall that we could not solve the problems with more

than 100 items when the weights are generated between [1, 100] and the bin

capacities are set to 100 and 150. Hence, we cannot expect a smooth relationship

68

for these instances. We also observe that when the weights are generated

between [1, 100], the bounds are the closest when bin capacity is 200.

Computational Experiments with and without Upper Bound:

 To see the effect of upper bounds on the solution speed, we perform

experiments with and without upper bounds for 50 items and report the results in

Table 5.5. The table gives the number of unsolved problems, number of nodes

and CPU times with and without upper bounds cases.

Table 5.5 Comparison of Results with and without Upper Bound

 # of unsolved Pr. # of nodes CPU time (s)

c wi with UB w/o UB with UB w/o UB with UB w/o UB

100 [1, 50] 0 0 90 590 63 90

150 [1, 50] 0 0 6 69 3 24

200 [1, 50] 0 0 0 27 3 11

100 [1, 100] 8 11 210 800 32 82

150 [1, 100] 3 4 181 5283 30 154

200 [1, 100] 1 2 215 775 60 79

 The positive effect of the upper bounds on the solution speed is clearly

seen from Table 5.5. When the weights are generated between [1, 100], the role

of the upper bounds increases in the solution process. This is not surprising

because when the average weight of the items increases, the problem becomes

harder to solve.

69

For the problems where the weights are generated between [1, 100], the

number of unsolved problems and the number of nodes reduce significantly

when upper bounds are used. Hence, CPU times decrease drastically.

5.2.2 Problem II – Minimization of Maximum Overdeviation & Number of

Bins

 In this subsection, we present the results of our computational

experiments for Problem II. The same notation with Problem I are used.

Solution Times:

We report the CPU times of Problem II in Table 5.6.

Table 5.6 The CPU Times of Problem II

n = 50

c wi Max(1) Avg(1) Max(2) Avg(2)

100 [1, 50] 3600 124 1024 21.3

150 [1, 50] 4 2 4 2

200 [1, 50] 3 2 3 2

150 [1, 100] 3600 587 1014 32

200 [1, 100] 3600 326 900 25

n = 75

100 [1, 50] 3600 488 2194 54.7

150 [1, 50] 3600 143.5 548 15.3

200 [1, 50] 46 5 46 5

200 [1, 100] 3600 638.5 2071 95.4

n = 100

150 [1, 50] 3600 290 72 11

200 [1, 50] 152 5.3 152 5.3

70

 The CPU times of Problem II show that this problem is harder to solve

than Problem I. However all trends observed for Problem I are also valid for

Problem II. For instance, the average CPU times decrease with increasing

capacity for 50 items when weights are generated between [1, 50]. For 50 items

when weights are generated between [1,100], Avg(1) values show the same

relationship. For 75 and 100 items, the CPU times decrease with increasing

capacity or decreasing average weight of items. With increasing capacity, we

need less number of bins; hence, problem size decreases. As we mentioned

above, Problem II is harder to solve as the model tries to make deviations of bins

close to each other. Note that Problem I did not have such a balance concern.

 The Lower Bound and Upper Bound Performances:

Table 5.7 reports the lower, upper bound and optimal solution values for

Problem II.

71

Table 5.7 The Average Lower Bound, Upper Bound and Optimal Values

AVG. UB, OPT n = 50 n=75 n=100

c wi UB OPT UB OPT UB OPT

100 [1, 50] 128.9 128.1 162.4 161.7

150 [1, 50] 153.2 152.9 192.5 191.9 236.7 221.2

200 [1, 50] 142.9 142.6 208.9 208.4 283.2 259.7

150 [1, 100] 241.4 227.5

200 [1, 100] 272.7 254.9 367.3 306.3

AVG. LB, OPT LB OPT LB OPT LB OPT

100 [1, 50] 127.5 128.1 160.2 161.7

150 [1, 50] 152.4 152.9 189 191.9 220.2 221.2

200 [1, 50] 142.2 142.6 207.6 208.4 256.7 259.7

150 [1, 100] 224.2 227.5

200 [1, 100] 251.5 254.9 302.1 306.3

When n = 50, and weights are generated between [1, 50], as the capacity

increases, the bounds get closer. This observation is valid when weights are

generated between [1, 100]. We also observe that, as the number of items

decreases, the bounds get closer. Although we observe improvements in the

bounds with increase in the capacity or decrease in the number of items, the

improvements are not significantly different from each other. This is the main

difference between Problem I and Problem II. Decrease in the necessary number

of bins is not as effective as that of Problem I. Because in Problem II, we assign

items to the bins so that the deviation amounts over all bins are close to each

72

other. Hence, the number of bins required is no longer a dominant factor in

determining the performance of the bounds.

 When n = 100, and weights are generated between [1, 50], we do not

observe the above relations. If the number of items is high, then it is more

difficult to assign items to the bins with very close overdeviations. Hence for

these cases, increase in capacity does not improve the performance of the

bounds.

Number of Unsolved Instances:

 Table 5.8 shows the number of unsolved instances for Problem II.

Table 5.8 Number of Unsolved Instances for Problem II

n = 50

c wi # of unsolved
problems

Total # of
solutions

% unsolved
problems

100 [1, 50] 2 130 1.5

150 [1, 50] 0 90 0

200 [1, 50] 0 70 0

150 [1, 100] 15 171 8.8

200 [1, 100] 8 133 6

n = 75

100 [1, 50] 22 200 11

150 [1, 50] 4 128 3.1

200 [1, 50] 0 98 0

200 [1, 100] 27 190 14.2

n = 100

150 [1, 50] 10 164 6.1

200 [1, 50] 0 132 0

73

 The percentage of the number of unsolved instances is more than that of

Problem I as expected. Problem II is more difficult even when the capacity is

increased because in Problem II, items should be assigned to the bins so that

overdeviations are nearly equal. The other relations for Problem I, hold for

Problem II.

 Finally we investigate the upper and lower bound performances for 150

and 200 items. In Table 5.9, the average of these bound values and the

differences between these bounds are given.

Table 5.9 The Lower and Upper Bounds when n = 150 and 200 for Problem II

n = 150

c wi AVG. LB AVG. UB AVG. DIF. MAX. DIF

100 [1, 50] 194.4 226.7 32.3 311

150 [1, 50] 248.9 294.6 45.7 264

200 [1, 50] 281.9 345.9 64 214

100 [1, 100] 222 346.5 124.5 745

150 [1, 100] 278.2 455.3 177.1 600

200 [1, 100] 388.3 663.7 275.4 512

n = 200

100 [1, 50] 218.5 280 61.5 410

150 [1, 50] 289.5 384.9 95.4 462

200 [1, 50] 333.6 459.3 125.7 710

100 [1, 100] 310.9 562.1 251.2 796

150 [1, 100] 317.8 607.2 289.4 849

200 [1, 100] 444 890.5 446.5 901

74

 It can be observed from Table 5.9 that, none of the relations we observed

for Problem I hold. Actually, that is an expected result because when we

examined lower and upper bound performances for Problem II, there was not a

smooth relationship for the problems with 100 items. When the number of items

is large (more than 100 items) the problem becomes so hard that the capacity

loses its significance.

 To summarize, Problem II shows the same relations with Problem I,

according to the solution times and the number of unsolved instances. However,

when we examine lower and upper bound performances, when there are more

than 100 items, the observations differ. By Theorem 4.4, Problem I shows better

performance on the average because after some point we guarantee to find

efficient solutions without solving the problem. However, in Problem II, we have

to solve all instances. That increases the possibility of not finding an efficient

point and decreases the performances for large n.

75

CHAPTER 6

CONCLUSIONS

In this study, we analyze a bin packing problem with multiple objectives.

We aim to minimize the number of bins used and the deviations over the bin

capacity. We generate two versions of this problem. We minimize the total

overdeviation in the first problem and the maximum overdeviation in the second

one. To the best of our knowledge, our study is the first attempt to solve the

multiobjective bin packing problem, to minimize the number of bins and the

deviation over the bin capacity.

 We first show that the two objectives of our problems are conflicting, i.e.

improvement in one detoriates the other. We also show that our problems are

analogous to the parallel machine scheduling problems.

 For both problems, we develop mathematical models and propose some

solution procedures to generate efficient points. To enhance the efficiency of our

procedures, we generate some lower and upper bounds. Lower bounds are

obtained from the LP relaxations of the problems. We generate some heuristics

to obtain upper bounds by using the procedures developed for the parallel

machine scheduling problems.

76

We develop some properties of the efficient sets for both problems. For

minimizing total overdeviation, by this property, we generate some of the

efficient solutions trivially.

 To measure the performance of the algorithms and investigate the effects

of different parameters on problem difficulties, an experiment is designed. The

computational results reveal that CPU time is effected by the capacity of the

bins, the weight of the items and the number of the items for the problem

minimizing total overdeviation. The proposed procedure provides satisfactory

methods of solving problems up to 100 items when weights are generated

uniformly between [1, 100] and [1, 50]. For the problem of minimizing

maximum overdeviation, the proposed procedure provides satisfactory methods

of solving problems up to 75 items when the weights are generated uniformly

between [1, 100] and up to 100 items when the weights are generated uniformly

between [1, 50]. So we can conclude that, the problem of minimizing maximum

overdeviation is harder to solve.

 We also perform an experiment to test the effect of upper bounds. Our

experiments show that incorporation of the upper bounds drastically reduce the

CPU time and the number of unsolved instances.

 The computational tests also reveal that the capacity, the number of items

and the weight of the items play a significiant role on the difficulty of the

problems. The problem gets harder with decrease in capacity, increase in average

weight and increase in the number of items. Hence, we may conclude that our

77

solution procedure is very effective especially for problems up to 100 items

when the weights are generated uinformly between [1, 100] and [1, 50].

 This study may open some new research areas. Some examples that can

be studied in the future are listed below.

• Variable Bin Sizes: Instead of using bins with equal capacities, bins with

different capacities can be used.

• Problem with Underdeviation: Another multi-objective problem can be to

maximize the number of bins used and to minimize the underdeviation

(slack of the bins).

• Problem with Underdeviation and Overdeviation: Instead of minimizing

the number of bins, an alternative multi-objective problem can be to

minimize the underdeviation and overdeviation of the bins.

78

REFERENCES

1. Azar, Y., Regev O. (2001), “On-line Bin Stretching”, Theoretical

Computer Science, Vol. 268, pp. 17-41.

2. Bruno, J. L., Downey J. P. (1985), “Probabilistic Bounds for Dual Bin

Packing”, Acta Informatica, Vol. 22, pp. 333-345.

3. Csirik, J., Frenk J. B. G., Labbe M., Zhang S. (1999), “Two Simple

Algorithms for Bin Covering”, Acta Cybernetica, Vol. 14, pp. 13-25.

4. Csirik, J., Johnson D. S., Kenyon C. (2001), “Better Approximation

Algorithms for Bin Covering”, 12th ACM-SIAM Symp. On Discrete

Algorithms, Washington D.C.

5. Csirik, J., Frenk J. B. G., Galambos G., Kan A. H. G. (1991),

“Probabilistic Analysis of Algorithms for Dual Bin Packing Problems”,

Vol. 12, pp. 189-203.

79

6. Coffman, E. G., Garey M. R. and Johnson D. S. (1984), “Approximation

Algorithms for Bin Packing – An Updated Survey”, Algorithm Design

for Computer Systems Design, Springer-Verlag, Vienna.

7. Coffman, E. G., Leung J. Y-T, Ting D.W. (1978), “Bin Packing:

Maximizing the Number of Pieces Packed”, Acta Informatica, Vol. 9, pp.

263-271.

8. Eilon, S., Christofides N. (1971), “The Loading Problem”, Management

Science, Vol. 17, pp. 259-267.

9. Flezar, K., Hindi K. S. (2002), “New Heuristics for One Dimensional Bin

Packing”, Computers and Operations Research, Vol. 29, pp. 821-839.

10. Foster, D. P., Vohra V. R. (1989), “Probabilistic Analysis of A Heuristics

For The Dual Bin Packing Problem”, Information Processing Letters,

Vol. 31, pp. 287-290.

11. Friesen, D. K., Langston M. A. (1986), “Variable Sized Bin Packing”,

SIAM Journal of Computing, Vol.15, pp. 222-229.

80

12. Garey, M.R. and Johnson, D.S. (1979), “A Guide to the Theory of NP-

Completeness”, Computers and Intractability, A Series of Books in the

Mathematical Sciences, W.H. Freeman and Company.

13. Graham, R. L., (1969), “Bounds on Multiprocessing Timing Anomalies”,

SIAM J. Applied Mathematics, Vol.17, pp. 416-429.

14. Gupta, J. N. D., Ho J. C. (1999), “A New Heuristic Algorithm for The

One Dimensional Bin Packing Problem”, Production Planning and

Control, Vol.10, pp. 598-603.

15. Hansen, P., Mladenovic N. (1997), “Variable Neighbourhood Search”,

Computers and Operations Research, Vol. 24, pp. 97-100.

16. Hung, M. S., Brown J. R. (1978), “An Algorithm for A Class of Loading

Problems”, Naval Research Logistics Quarterly, Vol. 25, pp. 289-297.

17. Johnson, D. S., Demers A., Ullman J. D., Garey M. R., and Graham

R.L.(1974), “Worst-case performance bounds for simple one-dimensional

packing algorithms”, SIAM Journal on Computing, Vol.3, pp. 299-325.

18. Johnson, D. S. (1974), “Fast Algorithms for Bin Packing”, Journal of

Computer System Sciences, Vol.8, pp. 272-314.

81

19. Labbe, M., Laporte G., Martello S. (1995), “An Exact Algorithms for the

Dual Bin Packing Problem”, Operations Res. Letters, Vol.17, pp.9-18.

20. Martello, S. and Toth, P.(1990), “Knapsack Problems: Algorithms and

Computer Implementations”, John Wiley and Sons, Chichester, England.

21. Scholl, A., Klein R., Jurgens C. (1997), “BISON: A Fast Hybrid

Procedure for Exactly Solving The One Dimensional Bin Packing

Problem”, Computers and Operations Research, Vol. 24, pp. 627-645.

22. Xing, W. (2002), “A Bin Packing Problem with Over Sized Items”,

Operations Research Letters, Vol. 30, pp. 83-88.

23. Zhang, G. (1997), “A New Version of On-line Variable Sized Bin

Packing”, Discrete Applied Mathematics, Vol. 72, pp. 193-197.

24. Zhang G. (2001), “An On-line Bin Batching Problem”, Discrete Applied

Mathematics, Vol. 108, pp. 329-333.

82

