

REPRESENTING DESIGN PATTERNS AS SUPER COMPONENTS IN

COMPONENT ORIENTED SOFTWARE ENGINEERING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

OKAN AVKARO�ULLARI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF COMPUTER ENGINEERING

JANUARY 2004

Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan Özgen
 Director

I certified that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Ay�e Kiper
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Ali Hikmet Do�ru
 Supervisor

Examining Committee Members

Assoc. Prof. Dr. Volkan Atalay

Assoc. Prof. Dr. Ahmet Co�ar

Dr. Meltem Turhan Yöndem

M.S. O�uz Mut

Assist Prof. Dr. Ali Hikmet Do�ru

iii

ABSTRACT

REPRESENTING DESIGN PATTERNS AS SUPER COMPONENTS IN

COMPONENT ORIENTED SOFTWARE ENGINEERING

Avkaro�ulları, Okan

M. S., Department of Computer Engineering

Supervisor: Dr. Ali Hikmet Do�ru

January 2004, 46 pages

It is widely believed and empirically shown that component reuse improves

both the quality and productivity of software development. This brings the necessity

of a graphical editor to model the projects by using components. A graphical editor

was implemented for the development of Component Oriented software development.

The editor facilitates modeling efforts through application of the graphical modeling

language COSEML. Both design patterns and software components have come to play

important roles in software development. The correlation between software

components and design patterns is apparent. In the design phase of the projects design

patterns are used widely both in component and object oriented projects. Design

patterns can be used as super components in component-based development . Software

reuse, software components, design patterns, use of design patterns in component-

based development, and component architectures are studied in details to address the

need for the approach. COSE modeling activity starts with the decomposition of the

target system into building blocks in a top-down order. Next, interfaces between these

blocks are defined. If required design patterns can be added to model as super

components.

Keywords: Component Design Patterns, Design Patterns, Component Oriented

Software Modeling Language, Component Based Development

iv

ÖZ

TASARIM KALIPLARININ B�LE�EN TABANLI YAZILIM

MÜHEND�SL���NDE B�LE��K B�LE�EN OLARAK TEMS�L ED�LMES�

Avkaro�ulları, Okan

Yüksek Lisans, Bilgisayar Mühendisli�i Bölümü

 Tez Danı�manı: Dr. Ali Hikmet Do�ru

Ocak 2004, 46 sayfa

Yazılım geli�tirirken bile�enlerin kullanılmasının kaliteyi ve üretimi arttırdı�ına

yaygın olarak inanılmakta ve bu deneylerle gösterilmi�tir. Bu da projelerin bile�enlerle

tasarlanabilmesi için grafiksel bir editör ihtiyacı do�urmu�tur. Bu amaçla geli�tirilmi�

bir grafiksel editör bulunmaktadır. Bu editörde özellikle, Bile�en Yönelimli Yazılım

Mühendisli�i (BYYM) yakla�ımı desteklenmi�tir. Editör, grafiksel modelleme dili

BYYMMD’nin uygulanması sayesinde modelleme çalı�malarını kolayla�tırmaktadır.

Hem tasarım örnekleri hemde yazılım bile�enleri yazılım geli�tirirken önemli bir role

sahiptirler. Yazılım bile�enlerinin ve tasarım örneklerinin arasındaki ili�ki barizdir.

Gerek nesneye yönelik gerekse bile�en yönelimli projelerde tasarım a�amasında

tasarım örnekleri sıkça kullanılmaktadır. Tasarım kalıpları bile�en yönelimli

tasarımda geli�mi� bile�enler olarak kullanılabilir. Yazılımı yeniden kullanma, tasarım

örnekleri, tasarım örneklerinin bile�en yönelimli tasarımlardaki kullanımı ve bile�en

mimarileri bahsedilen yakla�ımın gereklili�ini belirtmek için detaylı olarak

incelenmi�tir. BYYM modelleme aktivitesi, hedef sistemin yukarıdan-a�a�ıya

yakla�ımına göre alt parçalarına bölünmesi ile ba�lar. Daha sonra, parçalar arasındaki

arabirimleri tanımlar. Gerekti�inde tasarım örnekleri de üst seviye bile�en olarak

tasarımlara eklenebilmektedir.

Anahtar Kelimeler: Bile�en Tasarım Örnekleri, Tasarım Örnekleri, Bile�en Yönelimli

Yazılım Modelleme Dili, Bile�en Tabanlı Uygulama Geli�tirme

v

To My Father

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Ali Hikmet Do�ru, for his guidance

and encouragement throughout this research. To my family, I offer sincere thanks for

their emotional support.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ... iv

ACKNOWLEDGEMENTS.. vi

TABLE OF CONTENTS... vii

LIST OF TABLES... x

LIST OF FIGURES .. xi

1. INTRODUCTION.. 1

1.1. Motivation for Implementing Design Patterns in COSEML 4

1.2. Organization of the Thesis .. 5

2. BACKGROUND.. 6

2.1. Component Based Software Engineering ... 6

2.2. Building Systems and Building Components ... 7

2.2.1. Building Component Based Systems – a top-down approach......... 8

2.2.2. Building Systems from Components ... 9

2.3. Design Patterns ... 9

2.3.1. What is a Design Pattern ?... 10

2.3.2. Cooperation and Co-existence of Design Patterns and Component
Based Development... 11

2.3.3. Design Patterns and Frameworks in COSE................................... 14

2.3.4. The Catalog and Brief Explanation of Main Design Patterns 15

2.3.5. Useful Design Patterns for Component Development................... 17

2.3.6. The Design Patterns, Which Can be Used in Component Based
Systems Designs.. 17

viii

2.4. A useful set of design patterns for C.O.S.E. ... 19

2.5. Design Patterns as Super Components ... 21

2.6. Component Based System Design Pattern.. 22

3. COSE APPROACH.. 26

3.1. Modeling Language .. 26

3.2. An Example Model... 28

4. IMPROVEMENTS TO THE CASE TOOL... 33

4.1. COSECASE v1.1 .. 33

4.2. Added Capabilities.. 34

4.2.1. Creating New Design Pattern Models and Removing a Defined
Pattern from System .. 35

4.2.2. Selecting Among Existing Design Patterns................................... 35

4.2.3. Viewing Original Details of the Design Pattern 36

4.2.4. Integrating a Design Pattern in a COSEML Model....................... 36

4.2.5. Diffusing a Design Pattern to a System Model 37

4.2.6. Making Modifications on the Detail of a Design Pattern 38

4.2.7. Reforming Design Pattern Abstraction.. 38

4.3. Design Overview .. 39

4.3.1. Newly Added Classes.. 39

4.3.2. Zoom Algorithms .. 41

4.3.2.1. Zoom Out Algorithm.. 41

4.3.2.2. Zoom In Algorithm .. 42

5. CONCLUSIONS AND FUTURE WORK... 44

5.1. Conclusions... 44

5.2. Future Work.. 46

REFERENCES .. 47

APPENDICES

ix

A. A BRIEF USER MANUAL FOR USING DESIGN PATTERNS IN
COSECASE... 49

B. CONSTRUCTION STEPS OF A SAMPLE MODEL 57

x

LIST OF TABLES

TABLE

1. COSEML symbols and their meanings... 29

xi

LIST OF FIGURES

FIGURES

1. The relationships among patterns, frameworks and components…............... 13

2. The relation between reusable techniques and an application…. 13

3. Design patterns, components and frameworks within COSE perspective 14

4. The role of super-components in CBD … .. 21

5. The component based design pattern … ... 23

6. Graphical symbols in the COSEML ... 28

7. COSECASE screen for the example when patterns are in abstract level. Error!
Bookmark not defined.

8. COSECASE screen for the example when patterns are in detailed mode.
 Error! Bookmark not defined.

9. Class hierarchy for Design Patterns .. 40

10. Class hierarchy of new dialog classes ... 41

11. Class hierarchy of Design Pattern Package.. 41

1

CHAPTER 1

INTRODUCTION

A brief look at the history of the computer science suggests that important

developments had happened through raising the abstraction levels in development and

introduction of tools associated with this new paradigm. In the early days of computer

science, programmers had to write op-codes of the entire program. Later on

mnemonics were introduced which abstracted the machine code into instruction

names. A tool associated with the abstraction was a piece of software that converted

the instructions to op-codes.

This phase was followed by introduction of another abstraction mechanism and

its associated tool: the assembler. The assembler is a software tool that converts not

only instructions but also labels into such codes that a machine can understand.

As the complexity of software grew and the number of programmers in projects

increased, assemblers become inadequate. The problem was resolved by introduction

of another level of abstraction and its associated tools: high level programming

languages and compilers. Programming languages provided means to control and

implement software development that is closer to human thinking and understanding.

Programmers would learn a computer language that is similar to a natural language in

many ways, and the tool, the compiler, would convert this human made language to

the language the computer understands: the machine code.

Over the time the increase in software complexity and failure rate of software

engineering projects required new approaches to be invented and as a result object

oriented programming came to rescue. The tools for object-oriented techniques were

new languages that supported this new paradigm. Object-oriented programming

techniques promote a new approach to software engineering in which reliable and

2

open applications can be largely constructed, rather than programmed, by reusing

software components.

With ever-increasing software complexity no single individual, however

talented, could deal with the entire complexity of the projects. Though object oriented

programming supported software reuse and better effort division, there were and still

are different individuals implementing same things over and over for different projects

and in some cases in the same project.

It became apparent that for better software reuse a new method was required.

Software components and component based development were the apparent answer to

this problem. Although the dream of a components-based software industry is

relatively old, only now does it appear that we are close to realizing the dream. The

reason for this is twofold:

• Modern applications are increasingly open in terms of topology,

platform and evolution, and so the need for a component-oriented

approach to development is even more acute than in the past.

• Objects provide an organizational paradigm for decomposing large

applications into cooperating objects as well as a reuse paradigm for

composing applications from pre-packaged software components.

Software reuse is the main issue in component based software development.

Software reuse is reusing the inputs, processes, and outputs of previous software

development efforts. Not only the source code of previously developed systems can be

reused, but also data, architecture, program, technology transfer and utilization

knowledge, and development and application-area knowledge reuse can be applied to

the software development processes.

Software reuse improves productivity and quality. A suitable example of

software reuse is reusing the software components. A software component is any

standard, reusable, and previously implemented unit that has a function in a well-

defined architecture. When the quality software components are used in a target

system, the overall product quality and reliability of that system improves.

3

In component based software development software components are used to

develop a bigger system. Component-based development transforms the development

from code writing to integration of components. To achieve this first the specification

of the target system is defined. Based on this specification the target system is

decomposed according to the components available (since there exists a large set of

components in the market). Since the components are defined their adaptation and

creation are performed. After acquiring the needed components, these components are

integrated to build the target system.

The integration stage heavily depends on the interfaces. A framework

architecture is developed such that components communicate without any knowledge

of the details of each other. This is facilitated by the set of well-defined interfaces

belonging to the components.

In summary, component-based software development is associated with a shift

from statement-oriented coding to system building by plugging together components.

The idea is not new and some progress has been made over the past decades.

Nevertheless, today's software development practice is still not fully matured in this

respect. In recent years, the term component-ware has become the vogue in the

software engineering community. There are lots of design tools available in the

market. But none of them is specialized for component oriented software development

as defined in the “ build by integration ” paradigm.

The software reuse problem was not the only obstacle for the success of large

software projects. In the late eighties, it became obvious that the tools and methods in

hand were not good enough to assure the success of the projects. The main cause of

failure was the missing of sharing knowledge and experience among the members of

developments groups. The group members lacked a common language and

understanding of problems. Towards the end of eighties and early nineties, the concept

of design patterns emerged in parallel with the work on components. Design patterns

literature provided a common language, and the work on patterns provided well

thought solutions to problems that are common to most of the software projects.

As it is pointed above, so far the most powerful abstractions and paradigms

have tools that help the developers implement them with little effort and high

4

efficiency. “Design patterns” is also mostly a print media effort yet. There is no

powerful tool that helps the developer use design patterns with little effort and high

efficiency except for just a few design patterns (such as model-view-controller

implemented in Java Swing).

The aim of our work is close this gap by implementing a visual tool that

implements a Component Oriented methodology which makes it possible to

hierarchically decompose a system’s requirements. Modeled in Component Oriented

Software Engineering Modeling Language (COSEML) developed before, such a

hierarchy corresponds to the structural relations among components [1]. Today’s

technology is Component Based (CB) that is; components are accounted for during

only limited development phases. A top-down approach envisioning components at

every level has been missing. This is like the history of Object Oriented (OO)

technologies: languages were developed before methodologies.

The graphical editor, partially implemented in this research, presents only the

structural views of target systems. So, it enables the user to hierarchically decompose

a system’s requirements, and to view structural relations among components

graphically. It also introduces the design patterns to the picture by treating them as

super components.

1.1. Motivation for Implementing Design Patterns in COSEML

Both design patterns and software components have come to play important

roles in software development. The correlation between software components and

design patterns is apparent.

Design patterns are well suited to describe the power of different strategies in

component-based software development. Programmers developing components can

take advantage of already defined design patterns, when developing new components.

Also the design pattern community might extract new or improved design patterns

from existing successful component-based applications that can later bring benefits to

other component developers.

There are design patterns offering guidance on how to make loose connections

between different subsystems, but also, when it comes to the inner workings of a

5

module or a component, there are patterns helping the programmer to identify a

suitable implementation.

Design patterns are important to Component Based Development (CBD), even

if they are not a panacea. When developing components, one very obvious goal is to

make them as usable as possible. For example, it is important that the components

become maintainable and flexible. Design patterns are very good tools to capture the

pros and cons of different solutions. The advantages of taking existing patterns into

account when developing components will probably be even more apparent as time

advances by, when more patterns suitable to CBD will be discovered.

CBD is a promising concept, even if there is much work to be done in this very

young and rapidly changing field. In the future when component technologies have

matured, they might form the foundation of software construction. In the development

process ahead, design patterns might provide assistance and guidance to new

solutions.

As a result design patterns can be thought as super components or a strategy to

develop components. There are lots of design patterns for new component based

technologies such as Component Object Model (COM), Distributed COM (DCOM),

Enterprise JavaBeans (EJB) and etc. This brings the requirement to use design patterns

while designing component-based systems.

1.2. Organization of the Thesis

Beyond this first chapter, the thesis is organized as follows: In chapter 2,

necessary background on component-based modeling, component architectures,

background for design patterns and use of them in COSE (Component Oriented

Software Engineering) are presented. Chapter 3 describes the COSE approach and

defines this modeling language. Chapter 4 describes the improvements to the CASE

tool COSEML by representing added capabilities and design overview. Chapter 5

presents conclusions and further work.

6

CHAPTER 2

BACKGROUND

Developing large software systems with very high reliability and availability

requirements entails enormous costs. Many software organizations have begun to

consider implementing such systems using reusable components to decrease the costs

and cycles of development process, and the time to specify the requirements, design,

test, and maintain the system as well. Thus, software reuse is a logical choice for these

organizations.

New generation of software reuse is through utilization of using software

components. They obey all the rules defined in software reuse, and they promise

improvements in software quality and productivity.

Software components lead to component-based development style. This style

focuses on the reuse of software components, and it changes the software development

from line by line coding to system integration from well-defined software

components.

Component based development style makes it possible to bring together

software components written in different languages, compiled by different compilers,

and run on different platforms. This heterogeneity problem of the systems can be

solved by component architecture.

2.1. Component Based Software Engineering

Component-based Software Engineering (CBSE) is concerned with the

development of systems from software components, the development of components

themselves, and system maintenance and improvement by means of component

replacement or customization. Building systems from components and building

7

components for different systems require established methodologies and processes not

only in relation to development / maintenance phases, but also organizational,

marketing, legal, and other aspects of the system lifecycle. There are a number of

software engineering disciplines and processes that require methodologies to be

specialized for application in component-based development that are specific to

CBSE, in addition to objectives such as component specification, composition, and

component technology development. Many of these methodologies are not yet

established in practice; some have not even been developed yet.

Experiences from other fields, such as system engineering can be successfully

applied to component-based development, as there are many similarities in the basic

concepts (for example, relations between systems and components). Also, with its

focus on components and their specifications, CBSE can provide better understanding

of building systems in general, and in particular of computer-based systems whose

significant part is software. It is widely believed both in academia and the industry

that the progress of software and system development in the near future will depend

very much on the successful establishment of CBSE [9].

2.2. Building Systems and Building Components

There is one significant difference between the challenges and problems

addressed by CBSE and those encountered elsewhere in software engineering. CBSE

specifically focuses on questions related to components and in that sense it

distinguishes the process of “component development” from that of “system

development with components”. There is a difference in requirements and business

ideas in these two cases and different approaches are necessary. Components are built

to be used and reused in many applications, some possibly even not yet imagined.

Marketing factors play an important role, as development costs must be recovered by

future earnings. System development with components focuses on the identification of

reusable entities and relations between them, starting with the system requirements

stage. The availability of components already existing, should also be considered.

8

2.2.1. Building Component Based Systems – a top-down
approach

A standard approach in a system development is the top down approach; the

system design starts with specification of the system architecture. The architecture

defines the components of a software system as well as their interactions and can be

used to analyze its quality attributes [10].

The system design process, i.e. the software architecture design process,

typically consists of three phases, which might be performed in several iterations. The

first phase includes functionality-based design. Although nonfunctional requirements

are not explicitly addressed at this stage, software designers usually keep an eye on

them during the design phase. Functionality-based design consists of four steps:

defining the boundaries and the context of the system, identification of the types,

decomposition of the system into its main components and, finally, the first validation

of the architecture by describing a number of system use scenarios.

The second phase is the assessment of the quality attributes of the software

architecture in relation to the quality requirements [10].

The third phase of the software architecture design process is concerned with

the transformation of the design solutions to improve the quality attributes while

preserving the domain functionality captured by the software architecture. These

transformations result in a new version of the software architecture which in general

improves over the old ones in terms of quality.

The final result of this stage is the system software architecture which identifies

the components and the interaction between them. Up to now the design model is not

specific to component-based approach. In, what many would consider, a “classical”

approach the next step would have been to implement the components identified by

the design. In a component-based approach the main idea is to re-use the existing

components, i.e. to find the most suitable components. The implementation effort in

system development will decrease but the effort required in dealing with the

components; locating them, selecting those most appropriate, testing them, etc. will

increase [10].

9

2.2.2. Building Systems from Components

The architecture of the system is heavily influenced by the types of components

that compose the system. The framework into which components are to be plugged

influences the architecture of the system in a similar way as the type of the selected

components, influence the system design process [10].

Design freedom is limited to component selection and the way the selected

components are integrated. This restricted freedom points out the importance of

managing and controlling component integration. Component specifications in the

form of APIs do not normally provide enough information about how the component

will behave when used in a given environment. The lack of complete information

raises issues related to understanding of the behavior of the components and in

verifying both the functional and non-functional properties of the components and in

accurate prediction of overall system behavior. The verification of component

properties is required in order for developers to have confidence that a system will

behave as its architect predicted it would. In many cases a component property alone

cannot be used to predict the system behavior, but clusters of components (assemblies)

must be analyzed separately.

The examples briefly mentioned above show that much of activity in the design

and development phases belong to the component properties and composition issues.

This shows that a component-based design can have difficulties in using top-down

approach. Rather a mix of a top-down and a bottom-up approaches should be

followed.

2.3. Design Patterns

Designing object-oriented software is hard, and designing reusable object-

oriented software is even harder. A reusable design should be specific to the problem

at hand but also general enough to address future problems and requirements. When a

good enough design is found it is reused again and again. At each use the solution

becomes more flexible. This gives the ability to use it next time. By time these design

solutions are used to solve specific design problems and make the object oriented

design more flexible, elegant, and ultimately reusable. These designs help designers

10

reuse successful designs by basing new designs on prior experience. A designer who is

familiar with such patterns can apply them immediately to design problems without

having to rediscover them.

2.3.1. What is a Design Pattern ?

Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem, in such a way

that you can use this solution a million times over, without ever doing it the same

twice [2]. Patterns are about communicating problems and solutions. Patterns enable

us to document a known recurring problem and its solution in a particular context, and

to communicate this knowledge to others. The main goal of a design pattern is to

foster conceptual reuse over time. Each design pattern is a three part rule, which

expresses a relation between a certain context, a certain system of forces which occurs

repeatedly in that context, and a certain software configuration which allows these

forces to resolve themselves.

The main common characteristics of design patterns can be classified as:

• Patterns are observed through experience.

• Patterns are typically written in a structured format.

• Patterns prevent reinventing the wheel.

• Patterns exist at different levels of abstraction.

• Patterns undergo continuous improvement.

• Patterns are reusable artifacts.

• Patterns communicate designs and best practices.

• Patterns can be used together to solve larger problem.

In general a design pattern has four essential elements:

11

• “The Pattern Name is a handle we can use to describe a design

problem, its solutions, and consequences in a word or two. It lets us

design at a higher level of abstraction” [2].

• “The Problem “describes when to apply the pattern. It explains the

problem and its context. It might describe specific design problems such

as how to represent algorithms as objects” [2].

• “The Solution “describes the elements that make up the design, their

relationships, responsibilities, and collaborations. Note that the solution

does not describe a particular concrete design or implementation” [2].

• “The Consequences “are the results and trade-offs of applying the

pattern. Though consequences are often unvoiced when we describe

design decisions, they are critical for evaluating design alternatives and

for understanding the costs and benefits of applying the pattern” [2].

During the last ten years design patterns, frameworks and software components

have become very promising as different tools available to increase reuse in software

development projects. The two most common techniques for reusing functionality in

systems are class inheritance and object composition. Class inheritance lets to define

the implementation of one class in terms of another’s.

Object composition is an alternative to class inheritance. Here, new

functionality is obtained by assembling or composing objects to get more complex

functionality. A good pattern show ways to solve problems and are structured in a

style that lends itself well to explaining the aspects of the problem and solution at

work. From this view it is clear that a design pattern is a reusable component itself.

And also design patterns can be reused by using object composition. Each design

pattern has responsibility for one specific problem solution.

2.3.2. Cooperation and Co-existence of Design Patterns and
Component Based Development

There exists a strong interaction, cooperation and co-existence between

software components and design patterns. Components can benefit from design

12

patterns. Design patterns are well suited to describe the power of different strategies in

component-based software development. Programmers developing components can

take advantage of already written design patterns, when developing new components

and the design pattern community might extract new or improved design patterns from

existing successful component-based applications that can later bring benefits to other

component developers. There are design patterns giving guidance on how to make

loose connections between different subsystems, but also, when it comes to the inner

workings of a module or a component, there are patterns helping the programmer to

identify a suitable implementation.

Another interesting reuse technique is frameworks. A framework is a highly

reusable design for an application, or part of an application, in a certain domain. It

often defines the basic architecture of the applications that can be built by using it.

Another way to view a framework is as an abstraction of a set of possible solutions to

a problem. A framework is different from a design pattern, though. A framework is a

concrete powerful solution that can be described in source code, Whereas a design

pattern is more abstract. Only example usage or applications of a design pattern can be

described in source code. Furthermore, a framework is often built by the application of

a number of design patterns, and thus, patterns describe microarchitectures often used

in frameworks.

Developers use existing frameworks by adapting them to form their particular

application. So called whitebox frameworks let developers reuse and extend

functionality by inheriting from base classes in the framework and provide application

specific implementations. In blackbox frameworks, developers use object composition

to plug in new functionality. Blackbox frameworks are generally easier to use and

extend than whitebox frameworks, since developers need to have much more detailed

knowledge about the internal parts in whitebox frameworks.

Component-based development has been presented as a very promising

technology. A component is a replaceable part of an application. It has well-defined

interfaces, which are separated from its implementation. The purpose of this dividing

of a component into two parts (the interface and the implementation) is to achieve

flexibility in how a component can be connected to other components and replaced by

other components [7].

13

There is a strong relation between design patterns and components. Actually,

one or more design patterns can be applied to build a component. Also, as a realization

of a design pattern one or more components can be used. Furthermore, components

can be used as parts in for example a framework and a framework can even be viewed

as the glue code that makes components work together. In fact, technologies like Java

Beans, COM/DCOM or Corba, are different specialized frameworks making it

possible to connect components. Figure 1 illustrates the relationships (using UML

syntax) between patterns, frameworks and components.

Figure 1. The relationships among patterns, frameworks and components [7]

The relation and hierarchy between these reusable techniques and applications

which use these is shown in Figure 2.

`

Figure 2. The relation between reusable techniques and an application [7]

14

2.3.3. Design Patterns and Frameworks in COSE

COSE regards any kind of development units as components. These

components could be composite (super-components) or atomic. Any other concept is

better represented somehow, as a logical or physical-level component. In this regard

frameworks are considered as the largest-granularity components where care has to be

taken about the more “physical” or implemented nature of the frameworks. The next

large granularity components are design patterns. Mostly, a design pattern will

represent a collaborating set of 2 to 7 components.

Design patterns are by definition abstract entities. COSEML allows the abstract-

level representation of components. Hence, a design pattern can directly be

represented as an abstract composite-component. This research however, allows the

instantiated versions of design patterns also. Consequently, it is possible to

accommodate a design pattern as a completely abstract entity (as it is), as a completely

implemented set of components or a mixture. Practically all these forms can

correspond to some area (or a sub-tree) in the decomposition view of a COSEML

model. The designer has to be careful about the abstraction levels such super-

components (frameworks and design patterns) while embedding them to a system with

existing components. Figure 3 displays the conceptual relations among these elements.

 Figure 3. Design patterns, components and frameworks within COSE perspective

Design

pattern

Component Framework

15

2.3.4. The Catalog and Brief Explanation of Main Design
Patterns

There are 23 different design patterns extracted from several successful

frameworks and domains. These patterns are accepted as the main design patterns.

• Abstract Factory: Provide an interface for creating families of related or

dependent objects without specifying their concrete classes [2].

• Adaptor: Convert the interface of a class into another interface clients

expect. Adaptor lets classes work together that could not otherwise because

of incompatible interfaces [2].

• Bridge: Decouple an abstraction from its implementation so that the two

can vary independently [2].

• Builder: Separate the construction of a complex object from its

representation so that the same construction process can create different

representations [2].

• Chain of Responsibility: Avoid coupling the sender of a request to its

receiver by giving more than one object a chance to handle the request.

Chain the receiving objects and pass the request along the chain until an

object handles it [2].

• Command: Encapsulate a request as an object, thereby letting you

parameterize clients with different requests, queue or log requests, and

support undoable operations [2].

• Composite: Compose objects into tree structures to represent part-whole

hierarchies. Composite lets clients treat individual objects and composition

of objects uniformly [2].

• Decorator: Attach additional responsibilities to an object dynamically.

Decorators provide flexible alternative to subclassing for extending

functionality [2].

16

• Façade: Provide a unified interface to a set of interfaces in a subsystem.

Façade defines a higher level interface that makes the subsystem easier to

use [2].

• Factory Method: Define an interface for creating an object, but let

subclasses decide which class to instantiate. Factory method lets a class

defer instantiation to subclasses [2].

• Flyweight: Use sharing to support large numbers of fine-grained objects

efficiently [2].

• Interpreter: Given a language, define a representation for its grammar

along with an interpreter that uses the representation to interpret sentences

in the language [2].

• Iterator: Provide a way to access the elements of an aggregate object

sequentially without exposing its underlying representation [2].

• Mediator: Define an object that encapsulates how a set of objects interact.

Mediator promotes loose coupling by keeping objects from referring to each

other explicitly, and it lets you vary their interaction independently [2].

• Memento: Without violating encapsulation, capture and externalize an

objects internal state so that the object can be restored to this state later [2].

• Observer: Define a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and updated

automatically [2].

• Prototype: Specify the kinds of objects to create using a prototypical

instance, and create new objects by copying this prototype [2].

• Proxy: Provide a surrogate or placeholder for another object to control

access to it [2].

• Singleton: Ensure a class only has one instance, and provide a global point

of access to it [2].

17

• Strategy: Define a family algorithm, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients

that use it [2].

• Template Method: Define a skeleton of an algorithm in an operation,

deferring some steps to subclasses. Template method lets subclasses

redefine certain steps of an algorithm without changing the algorithm’s

structure [2].

• Visitor: Represents an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without changing

the classes of the elements on which it operates [2].

2.3.5. Useful Design Patterns for Component Development

Component-based development (CBD) is in no way a silver bullet to complex

software development, but it helps and is a stepping-stone to a better development

model. The problem domains inherent to CBD are interface versus implementation,

interdependencies, interaction and responsibility. Design patterns focusing on these

issues could be of great help. Design patterns can be used as super components in a

component-based design. However this does not mean that all design patterns can be

used as super components directly. To use a design pattern as a super component in

the component-based design, this design pattern must be usable as a component by

itself. Also it must contain information about how to use; not how to code. It is

observed that creational design patterns can not be used as super components but some

structural and behavioural design patterns can be used as super components in

component based system designs. Creational design patterns can be incorporated

through the in methods of a component but this is not in the concern area of

component based development. Structural and behavioural design patterns that are

concerned with the objects can be used as super components.

2.3.6. The Design Patterns, Which Can be Used in Component
Based Systems Designs

Design patterns are widely used In object-oriented approach. As a result there

are lots of special design patterns for object-oriented approach. Component orientation

18

is a new approach for software design. Since it is not as widely used as the object

oriented approach, it does not have specialized design patterns such as component

design patterns. However the question “can all design patterns be used in design

phase ?” is the same for the object oriented approach.

Design patterns can be classified into three groups according to their purpose.

These are creational design patterns, structural design patterns and behavioural design

patterns. Each group can be divided into two subgroups according to their scope

(specifies whether the patterns applies primarily to classes or objects). Creational

patterns are concerned with creation of objects. Structural patterns are concerned with

the composition of classes and objects. Behavioural patterns characterize interaction

of classes and objects.

When designing an object oriented system, designers are usually concerned

with classes. If one of the creational patterns (for example factory or singleton design

pattern) is used in creating classes in the design there is no need to specify this

information. Therefore UML does not deal with whether an extra class architecture for

classes are created from creational design patterns or not. But this information is given

in the operations defined in the class. Like UML, COSECASE behaves in the same

way with respect to this problem. In COSECASE most creational patterns take role

only in methods defined in the interfaces. Since in component orientation the

implementation of a component is not represented, there is no need or a way to show

creational concerns, therefore the concern is only on the usage of the component.

Structural design patterns differ from creational patterns. For example adapter

design pattern (also known as wrapper design pattern) can be used as a super

component in component based system design. Adapter design pattern is used for

mainly converting the interface of a class into another interface. The use of this

design pattern in component based systems is adding a component between the

component that interacts with each other, and this new component converts the

interaction of these components into an appropriate form for each other. This new

component is a super component since it is derived from the adaptor design pattern.

COSECASE allows the use of this as a super-component and reuse whenever needed.

19

Like structural design patterns, behavioural design patterns can be used as super

components in component based development. For example command design pattern

can be used as a super component in component based system design. Command

design pattern is used to encapsulate a request as an object, thereby allows the

parameterisation of the clients with different requests, queue or log request, and

supports undoable operations. For example, in a store automation design the ‘store

sale’, ‘e- sale’ and ‘inventory’ components all interact with the sale component. Each

component has different clients. In design phase command design patterns can be used

as a super components between the sale component and other components, thus the

operations can be controlled from this super component.

In order to use a design pattern as a super component in the COSECASE, this

design pattern must be usable as a component by itself. This means it must provide

information on how to use, not how to code. The main issue in COSE is not coding,

using with no or less adaptation in coding. Structural and behavioural design patterns

can be used in component based system designs but this does not mean all structural

and behavioural design patterns can be used.

2.4. A useful set of design patterns for C.O.S.E.

Section 2.3.3. contains a selection of very useful design patterns, and some of

them fit especially well into C.O.S.E. For example, Observer, Proxy, Mediator and

Facade would solve some of the implementation difficulties of interdependencies and

interaction of components. Here follows a short description about how these patterns

can be used as component:

• The Adapter pattern (also called Wrapper) allows a client to use a target

with an incompatible interface. It translates requests done according to the

expected interface into corresponding request to the target with an

otherwise incompatible interface.

• The Proxy pattern introduces an intermediate that handles all

communication with the target. This can increase efficiency and protection

of the target. The proxy interface can also provide easier access to the

target.

20

• The Observer pattern (also called Publisher-Subscriber) regulates how a

change in one object can be reflected in an unspecified number of

dependant objects. It helps to avoid a tight coupling between the involved

objects, which increases the flexibility and reuse possibilities.

• The Mediator pattern hides how a set of objects communicates with each

other. It instills a loose coupling by not allowing direct reference between a

set of objects. Instead these objects communicate through the mediator.

• The Facade pattern provides a single and simpler interface to a complex

subsystem. This makes the subsystem easier to use and it also helps to

decouple the subsystems from its clients. The facade doesn’t provide any

new functionality and the classes in the subsystem don’t know anything

about it. Hence, its protocol is unidirectional.

• Here follows some mostly used design patterns that are suited directly or

indirectly for CBD. These patterns are obtained by the union of one or more

main design patterns which are described in section 3.4. briefly.

• The Blackboard pattern is useful to solve problems where no known

strategies exist. A collection of independent programs or subsystems is able

to work together on the solution. Results found during the problem solving

process are stored on the so-called blackboard.

• The Broker pattern solves the problem of coordinating communication in a

distributed software system. It depicts how components interact by remote

service invocation. Further more; it takes care of how to forward requests to

appropriate servers and also how to transmit results and exceptions back to

the client. The solution is flexible and reduces the inherent complexity in

distributed applications.

• The Whole-Part pattern solves problems when a combined set of

components acts together as a semantic unit. Aggregation encapsulates and

prohibits direct access to the individual parts. It also organizes the internal

part collaboration and stipulates a strict component interface.

21

• The Master-Slave pattern describes a solution to a working N redundant or

parallel computing problem. A master controls a set of slaves and issues

commands and work to the slaves. It then combines the partial results

returned from the slaves into a final result. A client only communicates with

the master.

 As already stated, the above-mentioned patterns are examples of useful patterns

for CBD. They show the intent of design patterns and, hopefully, they constitute a

shortcut in the software development process when used. There are other patterns,

however, that could have been mentioned equally well.

2.5. Design Patterns as Super Components

As time goes on, probably more and more specialized component patterns will

be presented. Such domain specific patterns could be collected to form a useful

component pattern catalog. This has already happened in other fields. For example,

patterns aimed at business modeling. Another kind of domain specific patterns is

patterns aiming at distributed computing, which is also very interesting and essential

in CBD. For example, the major component models of today support distribution and

the usage of distributed applications [7].

Figure 4. The role of super-components in CBD [7]

Domain specific patterns for CBD would work as some sort of super

components, that is, components that can help to create other components that

22

conform to a certain set of constraints. This set of constraints could be the

implementation of a set of design patterns. As an example, a component framework

(system that promotes the use of components i.e. COM/DCOM, CORBA or EJB)

could be described as a set of collaborating design patterns [7].

Looking at design patterns as super components might inspire the pattern

community to develop pattern languages for CBD. In Figure 4 an idealized view of

super components role in CBD is presented. The application developer uses some

component framework and integrates suitable components into the application. Super

components were used to form the component framework and also to create the

individual components themselves.

CBD might also benefit from a formal method of describing design patterns.

Research is done in the field to formally specify design patterns and mathematically

describe and transform design patterns. This is not mainstream research and has many

adversaries due to the fact that design patterns are described in a natural language that

accommodates ambiguity. This kind of research in the design patterns field could

contribute to CBD. It could stimulate the discovery and invention of new component

patterns, the classification and description of them and also, automatic application of

patterns.

2.6. Component Based System Design Pattern

Component-based systems result from adopting a component-based design

strategy, and software component technology includes the products and concepts that

support this design strategy. Design strategy is something very close to architectural

style - a high-level design pattern described by the types of components in a system

and their patterns of interaction. Software component technology reflects this design

pattern, which is depicted graphically in Figure 5. This reflection is due to the fact that

software component technology does not exist only in development tools but also

becomes part of the deployed application or system. This pattern is found in

commercial software component technologies such as Sun Microsystems’ Enterprise

JavaBeans™ and Microsoft’s COM+ [8].

23

Figure 5. The component based design pattern [8]

A component (1) is a software implementation that can be executed on a

physical or logical device. A component implements one or more interfaces (2) that

are imposed upon it. This reflects that the component satisfies certain obligations,

which is described as a contract (3). These contractual obligations ensure that

independently developed components obey certain rules so that components interact

(or can not interact) in predictable ways, and can be deployed into standard build-time

and run-time environments (4). A component-based system is based upon a small

number of distinct component types, each of which plays a specialized role in a

system (5) and is described by an interface (2). A component model (6) is the set of

component types, their interfaces, and, additionally, a specification of the allowable

patterns of interaction among component types. A component framework (7) provides

a variety of runtime services (8) to support and enforce the component model. In many

respects component frameworks are like special-purpose operating systems, although

they operate at much higher levels of abstraction [8].

Figure 5 is a reference model for component-based concepts. Some approaches

equate component model and frameworks, and suggest that the framework may or

24

may not include services. Microsoft’s COM+, on the other hand, embeds the

component framework into the operating system itself obviating the need for a

separate entity called “component framework”. Indeed, it is difficult to find

categorical distinctions between component frameworks and operating systems, as

both provide coordination mechanisms that enforce a particular model of component

interactions. Nevertheless, we assert there are qualitative distinctions; for example,

component frameworks will support a more restricted range of coordination schemes

than a general-purpose operating system.

Figure 5 depicts the component based system design pattern. The motivation of

this pattern can be listed as follows:

• Independent extensions. One problem that plagues legacy software is lack of

flexibility. Components are units of extension, and a component model prescribes

exactly how extensions are made. In some cases the framework itself may constitute

the running application into which extensions (components) are deployed. The

component model and framework ensure that extensions do not have unexpected

interactions, thus extensions (components) may be independently developed and

deployed.

• Component markets. Component models prescribe the necessary standards

to ensure that independently developed components can be deployed into a common

environment, and will not experience unanticipated interactions such as resource

contention. The integration of support services in a framework also simplifies the

construction of components, and provides a platform upon which families of

components can be designed for particular application niches.

• Reduced time-to-market. The availability of components of the sort just

described also promises to drastically reduce the time it takes to design, develop and

field systems. Design time is drastically reduced because key architectural decisions

have been made and are embodied in the component model and framework.

Component families such as those found in the Theory Center obviously contribute to

reduced time to market. Even if such component families are not available in an

application domain the uniform component abstractions will reduce development and

maintenance costs overall.

25

• Improved predictability. Component models and frameworks can be

designed to support those quality attributes that are most important in particular

application areas. Component models express design rules that are uniformly enforced

over all components deployed in a component-based system. This uniformity means

that various global properties can be “designed into” the component model so that

properties such as scalability, security and so forth can be predicted for the system as a

whole. For example, EJB™ is touted as promising scalable, secure, and distributed

transactions by virtue of its component model and framework services.

26

CHAPTER 3

COSE APPROACH

Traditional methodologies are heavily oriented towards functional

decomposition of the system. Unlike object oriented methodology, component

oriented methodology is structure-oriented. It suggests a hierarchical top-down

system decomposition while foreseeing the integration of components as a bottom-up

inclusion. In component based software development software components are used to

develop a bigger system. Component-Oriented development transforms the

development from code writing to integration of components. To achieve this first the

specification of the target system is defined. Then, according to this specification, the

target system is decomposed according to the components available. Since the

components are known next the adaptation and creation of resulting components are

performed. After getting the needed components, these components are integrated to

build the target system.

COSE approach starts with a structural decomposition that is conducted layer

by layer. During the decomposition, arriving at existing components is taken into

account. Intermediate concepts such as frameworks and design patterns are considered

as super-components in COSE approach. The decomposition is performed according

to two views: Abstract design and existing components [1]. In this chapter, first,

COSE Modeling Language (COSEML) is defined. Next, an example model in this

modeling language is presented.

3.1. Modeling Language

COSE Modeling Language (COSEML) is designed as the primary modeling

language for the component oriented software engineering approach [1]. COSE

27

transforms the system specification into a set of components and a set of connectors.

The set of connectors connects the set of components to produce the target system like

a skeleton of a human body. Components and other abstraction mechanisms provide

the solutions to the subproblems of the whole target system. The network formed by

the connectors is the interface specification for the entire system. A pair of interfaces

at component level is represented by a connector at a higher abstraction level. Super-

components provide an abstraction that defines large subproblems [1].

Modeling a system starts top-down to introduce the building blocks. While the

activity continues towards lower level blocks, interfaces between the blocks are

defined. When the module is expected to correspond to a component, a temporary

bottom-up approach is applied: If desired capability can only be achieved by a set of

components, they should be integrated into a super-component. Finally, the super-

component is imported into the system to end of the temporary bottom-up task. Design

patterns can also be used as super-components by themselves.

Packages correspond to the abstract components and they are represented by

Unified Modeling Language’s (UML) Package symbol. Internals of the Packages are

represented by the Data, Function, and Control abstractions. System level functions

are shown as function and like UML’s Use CASE symbol, are represented by an oval.

Implementation level components are represented by Events, Properties and Methods.

Figure 6 shows the graphical symbols in COSEML.

There are some links for connecting abstractions or components. For the

abstraction elements, there is a “Composition” link represented by a diamond at the

container end. “Inheritance” link is represented by a triangular arrowhead at the

generalized end as in the UML. The most special link is “Connector”. It is represented

by a box symbol as well as a line symbol. During decomposition activity, the box

version is used for interface specification. The line version is used for information

hiding. The symbols for connectors are shown in Figure 6.

Since the model can have abstraction level and corresponding component level,

a system function could be represented in different levels. Thus, a connector can be

represented between two abstractions, as well as between two components.

28

Design
pattern

Data

Package Function

Control

Component
interface1
interface2

.

.

Abstractions

Components

Connector

Component

properties

methods

event s in

events out

with single interface

interface

properties

methods

events in

events out

Connector

Figure 6. Graphical symbols in the COSEML

Super-components that are not design patterns can be constructed by the

compositional links that are used among components. Finally, the “Represents”

relation links the components to the abstractions of them. Table 1 contains

explanations to the graphical symbols of COSEML [6].

3.2. An Example Model

In this section, a small business framework which can be used in J2EE platform

is modeled in COSEML. This example shows that design patterns can be used in

COSEML as super-components.

Frame work is designed containing Java and EJB design patterns. There is the

main package that holds all the client operations. Framework connects LDAP, Content

Manager (for document management system) , IBM MQSeries (for workflow

operations) and a database. All of the requirements for these except database

requirements are provided by the vendors. So these behave like external systems for

our framework (They can also be defined as components).

29

Table 1. COSEML symbols and their meanings

Symbol Explanation

Package: Package is for organizing the part-whole relations. A container that wraps

system-level entities and functions etc. at a decomposition node. Can contain further

Package, Data, Function, and Control elements. Also can own one port of one or more

connectors. Can be represented by a Component. The contained elements are within the

scope of a Package: they do not need connectors for intra-package communication.

Function: Function represents a system-level function. Can contain further Function,

Data, and Package elements. Can own connector ports. Can be represented by a

Component.

Data: Data represents a system-level entity. Can contain further Data, Function, and

Package elements. Can own connector ports. Has its internal operations. Can be

represented by a Component.

Control: Control corresponds to a state machine within a Package. Meant for managing

the event traffic at the Package boundary, to affect the state transitions.

Connectors: Connector represent data and control flows across the system modules.

Cannot be contained in one module because two ports will be used by different modules.

Ports correspond to interfaces at components level.

Component: A Component corresponds to the existing implemented component codes.

Contains one or more interfaces. Can contain components. Can represent abstraction.

Interface: An Interface is the connection point of a Component. Services requested

from a component have to be invoked through this interface.

(Red)

Represents: A Represents relation indicates that an abstraction will be implemented by

a Component.

(Blue)

Event: An Event link is connected between the output event of one interface and the

input event of another. The destination end can have arrows corresponding to the

synchronization type.

(Green)

Method: A Method link is connected between two interfaces to represent a method call.

Arrow indicates message direction.

 Composition and Inheritance: UML class diagram relations are utilized. Diamond:

Composition, Triangle: Inheritance.

Design Pattern: A design pattern corresponds to the existing implemented design

pattern codes in an abstract form. Can contain other components and interfaces.

Represents a super-component.

30

Since it is a J2EE framework the servlet is decided to make a connection

between the application layer and the client. To make a servlet for each request the

command design pattern is used as super component. This design pattern determines

the external system that must be interacted and sends the request to it [3]. The only job

done for the programmer is to fill the xml file (or a class) that holds the commands. If

the command is something associated with external systems, the command is sent to

the corresponding external system.

If the command is related with in a database operation the wrapper design

pattern is activated. This design pattern is an EJB design pattern that determines which

session base class or classes will be activated and in which order these will be

activated.

 Session Base design patterns use session beans or in other words session beans

inherit session base design patterns [4]. Session base design pattern handle all the

responsibilities for transactions and rollback operations. It also decides how to connect

to database, by using entity beans or Data Access Object Design patterns [4]. The data

access object design pattern handles all the JDBC (Java Database Connection)

requirements such as providing a connection and resources from the pool, removing

connections and handling exceptions. The queries that will run are decided by the Data

Access Object (DAO) design pattern using the command. So another xml file (or a

class) that holds commands and queries is provided by the user.

This framework is designed by using COSECASE and implemented in java.

This framework can be used in other projects and may be after some use it can be a

component design pattern itself. The generic and simple design for the framework

using COSECASE is given in Figure 7. The design of the framework and all patterns

shown in detailed mode are shown in Figure 8. The construction steps of this example

model are presented in Appendix B.

31

Fi
gu

re
 7

. C
O

SE
C

A
SE

 s
cr

ee
n

fo
r t

he
 e

xa
m

pl
e

w
he

n
pa

tte
rn

s
ar

e
in

 a
bs

tr
ac

t l
ev

el
.

32

Fi
gu

re
 8

. C
O

SE
C

A
SE

 s
cr

ee
n

fo
r t

he
 e

xa
m

pl
e

w
he

n
pa

tte
rn

s
ar

e
in

 d
et

ai
le

d
m

od
e.

33

CHAPTER 4

IMPROVEMENTS TO THE CASE TOOL

The work includes enhancements to the graphical editor COSECASE v1.0 that

was implemented for aiding Component Oriented software development before [6].

Unfortunately it does not support the utilization of design patterns in either the

abstract or physical levels of COSEML. Therefore the tool is upgraded to support

these capabilities. Initial tool was developed using Borland JBuilder 3.0 that is a

highly productive visual development tool for creating high-performance and

platform-independent applications using the Java programming language. In this

section the design overview of newly added capabilities are presented.

4.1. COSECASE v1.1

The initial tool was upgraded for this research using IBM Web Sphere

Application Developer. During the upgrade development only core JDK and Swing

classes were used, and the target JDK is Java version 1.2.

COSECASE enables software designers to use all COSEML symbols for any

project. It only produces the structural views of target systems, and it is simply a

graphical editor. Thus, it enables the user to hierarchically decompose a system’s

requirements, and to view relations among components graphically.

The hierarchical decomposition is in two levels: Abstract and component levels.

COSECASE enables users to decompose a system’s requirements into two levels;

first, abstraction level decomposition is performed in a single tree, and next,

appropriate components and their interfaces are included in a component forest. Trees

in COSECASE are graphically balanced such that every node is centered according to

its children.

34

COSECASE now enables using design patterns in both abstract and detailed

modes. A brief user manual for using design patterns in COSECASE is presented in

Appendix A.

By definition, a design pattern is an abstract entity. It can best be modeled as a

collaborating set of objects (abstract components, in our case). However, practical

development environments prefer to have implemented instantiations of design

patterns, as adopted partial solutions in a particular domain. This research allows the

representation of a design pattern as an abstract super-component as well as a physical

super-component.

A design pattern may be instantiation into more than one super-component.

Also once utilized a design pattern can be modified and enhanced at abstract or

physical levels, the modified design patterns have new names and they will also retain

the original design pattern if its origins will need to be viewed.

Initially, a design pattern is introduced as a set of structurally connected abstract

components. Their operational connectors are introduced later, as modifications.

Modifications may only involve connectors (operational) but a detailed enhancement

may even introduce further components hence affecting the structural connections

also.

4.2. Added Capabilities

COSESACE v1.0 has capabilities for designing a whole system by

decomposition. The utilization of design patterns in both abstract and detailed mode

support is added to the tool. After some enhancements COSECASE v1.1 is defined.

Some of the newly added capabilities are:

• Creating new design pattern models and removing a defined pattern from the

system.

• Selecting among existing design patterns.

• Viewing original details of a design pattern.

• Integrating a design pattern in a COSEML design.

35

• Diffusing a design pattern to a COSEML design in the form of a set of

connected abstractions.

• Making modifications on the detail of a design pattern.

• Ability to re-form an abstraction corresponding to a design pattern that has

been diffused.

4.2.1. Creating New Design Pattern Models and Removing a
Defined Pattern from System

COSEML v1.1 enables users to create a new design pattern model to the

system. User can define any existing design as a design pattern. The user given name

and the path are saved by the tool. When the design pattern is first created this

information is stored in the structure that defines the design pattern. When the design

pattern is used for the first time in the detail mode, the system finds the structural

elements of the design pattern by using this information. When user modifies some

part of this design, the new design is stored in the design pattern structure. By this

capability there exists no relation with the main design and the modified design of a

design pattern. If user wants to make a permanent modification in design pattern, it

must be done in the file that holds the main design of the design pattern. The

modifications done in this file will not effect the design pattern samples and

derivations used before because there is no relation between the main design and the

used designs for the design patterns.

When it is believed that there is no need for a specific design pattern in the list

of existing design patterns, user can remove it. This is implemented through removing

this design pattern from the data structure that holds the existing design patterns and

their design file’s path. A brief user manual for creating and removing design patterns

in COSECASE is presented in Appendix A.

4.2.2. Selecting Among Existing Design Patterns

COSECASE v1.1 enables users to work only with existing design patterns.

When user wants to use a design pattern, system shows the defined design patterns for

selecting among them. If user selects non of the existing design patterns, the system

36

creates a design pattern symbol but does not give the ability to use this design pattern

in the detailed mode. A brief user manual for selecting design patterns in COSECASE

is provided in Appendix A.

4.2.3. Viewing Original Details of the Design Pattern

COSECASE v1.1 enables users to see the original details of the design pattern

at any time. Each design pattern holds the original file and the path of this file in the

structure that saves the design pattern. When this original design is desired to be

viewed, a new COSEML frame is created and the original design pattern will be

loaded into this frame. By this capability the user is enabled to detect the

modifications done on the original detailed design of the design patterns.

4.2.4. Integrating a Design Pattern in a COSEML Model

Integrating a design pattern in a COSEML model can be done by the same way

that the other objects are integrated. The only difference is the user is asked to choose

one of the existing design patterns instead of component. The user has the option not

to choose one of them. In that case design pattern is integrated but it can only be used

in abstract mode. When a design pattern is integrated into a model, it is created under

the object that the user has selected, and the system holds this design pattern as one of

the children of the selected object. Since design patterns are abstract level objects,

system ensures that they can only be created under a package. Since a design pattern

has the ability of integration with other objects, a design pattern has four connection

points (as far any COSEML object). User can make the connections of the design

patterns with the other objects by using these connection points and by using as

connectors . When a design pattern is integrated in a design, the tool automatically

creates a new node to the tree that hierarchically displays the objects in the model.

Design patterns are abstract designs that correspond to a solution of a subproblem in

the main design. A design pattern can contain other abstractions such as packages,

functions and etc. in its detailed design.

37

4.2.5. Diffusing a Design Pattern to a System Model

Design patterns can be used both in abstract and detail mode in COSECASE

v1.1. To use it in the detailed mode the tool diffuses the structural design of the

design pattern into the model. To achieve this, first the current detailed design of the

design pattern is read from the structure that holds the design pattern. The detailed

design of the design pattern is not read from the main file that holds the original

structural design of the design pattern, because user could have made some

modifications on the design pattern at the previous diffuse operation. This gives the

ability to make modifications on a design pattern’s detail again and again without

affecting other designs using this design pattern and the original design that holds the

detail design of the design pattern. Also later modifications in the original detail of the

design pattern will not affect design pattern created before modification.

To diffuse the design pattern’s current detail, the data structure that represents

the design pattern in abstract mode is removed. If it is the first time the design pattern

is being diffused, a special data structure which is derived from the package will be

created instead of the design pattern structure. If it is not the first time the design

pattern is diffused, this structure will not be created since it will be existing in the

design pattern’s current design. This special package will be created under the

package that is the parent of the design pattern and all the connections to the design

pattern will be connected to this structure.

The other objects that take place in the design pattern’s current detail are read

one by one and created within to the current design. COSECASE handles these

creations as if a user is creating them. All the properties of these objects are also

defined by the tool automatically by using the previous current design. After this

operation user can use all these objects just like the other objects that were created by

the user in the design. There is no difference in the usage of the automatically

generated objects that represents the detailed design of a design pattern and any other

object that are created by the user. The objects that are created automatically by the

tool to represent the detail of the design patterns are also created under the tree

structure that shows the hierarchical decomposition of the system. User can update,

delete and perform any other operations on these objects. If required, connections of

these objects with the other objects in the model can be made. If a new connection

38

between the objects of the design pattern is made, the tool will define this connection

as a new modification to the design pattern and will store it in the design pattern’s

current design. The diffusion operation is presented in the example presented in

Appendix B.

4.2.6. Making Modifications on the Detail of a Design Pattern

User can make any modification in the detail of the design pattern. The

properties of any object that is a part of the detail of the design pattern can be changed

and this modification will be detected by the tool. Any modification done in the detail

of the design pattern is updated in the data structure that holds the current (or

modified) detail design of the design pattern.

If a link is created so that the objects that are in both sides of the link are

members of the detail design of a design pattern, COSECASE 1.1 evaluates this link

as a modification in the detail design of the design pattern. This link is a new member

of the detail design of the design pattern and will not be shown when design pattern is

used in abstract mode.

If a node object (such as interface, data, function and etc.) is created so that the

parent of the object is a member of the detail of the design pattern, COSECASE

evaluates this object as a modification in the detail design of the design pattern. This

object will be presented as a new member of the detail design of the design pattern and

will not be shown when design pattern is used in abstract phase.

4.2.7. Reforming Design Pattern Abstraction

Reforming design pattern abstraction is the reverse of the diffusing operation.

By reforming design pattern abstraction and diffusing a design pattern to a COSEML

design, user is enabled to use design patterns both in abstract and detail modes.

Reforming a design pattern abstraction simply means, removing the elements of the

design pattern from the model and inserting the design pattern abstraction instead.

When the design pattern is desired to be reformed as abstraction, the tool first stores

the current detail of the design pattern. To achieve this the specialized package that is

created instead of the design pattern is used. This package holds the detail of the

design pattern to be used when the design pattern will be diffused. COSECASE starts

39

saving the design pattern under the root package and finds all the objects that are

elements of the detail of the design pattern. All these properties of these elements are

saved in the data structure that holds the detail design of the design pattern. Addition

to these objects the connections that are created between the objects that come from

the design pattern are stored in a data structure which will record the design pattern’s

current form. All these elements are removed from the main system’s hierarchy tree.

A design pattern is created at the place of the specialized package (in other words, the

place that design pattern existed before diffusion). Also a new node is added to the

hierarchy tree. The connections that are among the design pattern’s detailed objects

and the rest of the system, are connected to the newly created design pattern

abstraction. Meanwhile the introduced connections internal to the design pattern are

also saved for later access. This helps in finding the internal connection points in a

future diffusion operation.

4.3. Design Overview

As described before, COSECASE is developed by using the Java programming

language and core JDK and Swing classes helped in designing the user interface of the

tool. Therefore it can be used and embedded in any tool that supports java with no or

a very small modification.

4.3.1. Newly Added Classes

The class hierarchy of COSECASE v1.0 was described in thesis “A Graphical

Editor For Component Oriented Modeling” by Aydin Kara [6].. There are newly

added classes added to this hierarchy. The first class is OKDesignPattern class. This

class has the same hierarchy with component and interfaces classes. It holds necessary

information for design patterns. Related class structure is depicted in Figure 9.

OKDesignPatternPropertiesDialog is implemented in a similar fashion. This

class enables user to enter the name and the properties of a design pattern just like

AKComponentPropDialog and AKInterfacePropDialog would. These classes are used

for describing the properties of components and interfaces. Like others

OKDesignPatternPropDialog is inherited from JDilaog. To define design patterns and

select or remove design patterns from the system two new graphical user interface

40

Figure 9. Class hierarchy for Design Patterns

elements were implemented. These are inherited from JDialog class like most other

graphical user interfaces used in COSECASE v1.0. The new hierarchy for GUI classes

in COSECASE is shown in Figure 10. The current design patterns defined to the

system are saved in a file. Tool browses the structural design of design patterns by

using this file as a pointer table. Each design pattern must have its structural design in

a coseml file in the file system.

Since user is enabled to use design patterns both in abstract and detailed modes,

a separator is needed to distinguish the design pattern when used in detailed mode. To

achieve class is inherited from AKPackage class as shown in Figure 11. It is used to

show the user which part of the design belongs to the detail of the design pattern.

41

 JDialog

CosemlAddNewDPDialog CosemlDesignPatternDialog OKDesignPatternPropDialog

Figure 10. Class hierarchy of new dialog classes

 A KPacka ge

O KD esignPat ternPacka ge

Figure 11. Class hierarchy of Design Pattern Package

4.3.2. Zoom Algorithms

The zoom algorithms are designed to graphically show the abstract and detailed

modes of design patterns. To achieve this each design pattern is enabled to hold its

own design. Thus the modifications in design patterns structure and links connected to

this structure is saved in a specific data structure. This enables the user to modify the

structural composition of the design pattern. The zoom in algorithm works when user

wants to see design pattern in detail, zoom out works to show the abstract mode.

4.3.2.1. Zoom Out Algorithm

Zoom out algorithm works on the data structure that holds the design of the

design pattern. It first finds the structural elements of design pattern in the design, and

then saves the current status of these structures. By this approach a future zoom in

operation can retrieve the last modified phase of the design pattern.

42

ZoomOut(Input: designPattern; Output: abstract phase of design pattern)

(Shows the abstract phase of design pattern)

begin

Create abstract design pattern

Current = root of design pattern

While design pattern has structural element

Begin

 Current = next structural element

 If current is node

 Begin

 While current has connected link

 Begin

 If link is not connected to the same design pattern

 begin

 Connect local part to the abstract design pattern

 Save connection information

 end

 end

 Read the properties of node and save to the design pattern

 End

 Else

 Read properties of link and save to the design pattern

End

Delete current from the main design

4.3.2.2. Zoom In Algorithm

Zoom in algorithm is the reverse of the zoom out algorithm. Zoom in algorithm

works on the data structure that holds the design of the design pattern. It first reads the

structural elements of the design pattern. Nodes are created in the order of read

operation. At each create operation, external links are updated in the structure that

holds the design pattern. When all the elements are created and updated the old

abstract element for the design pattern is removed from the model.

43

ZoomIn(Input: designPattern; Output: detail of design pattern)

(Shows the detail of design pattern)

begin

Current = root of design pattern

While design pattern has structural element

Begin

 Read the next structural element

 Current = next structural element

 Create a new structural element according to current

 Update properties of the new element according to current

 If current is node

 Begin

 While current has connected link

 Begin

 If link is not connected to the same design pattern

 Begin

 Remove the connection from the abstract design pattern

 Make Connections of link to the new created structure

 end

 end

 End

End

Delete abstract design pattern from the main design

44

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this chapter a brief conclusion is presented regarding the use of design

patterns as super components in COSE. Next, the results of a comparison between

COSEML and other popular CASE tools is interpreted. Finally, a section suggesting

the directions for future work is presented.

5.1. Conclusions

The aim of this work is using design patterns in Component Oriented Software

Engineering. To achieve this, a facility for using design patterns is added to the

Component Oriented Software Development tool: COSECASE. Then the use of

design patterns is discussed in details.

The first problem is the representation of a design patterns. A design pattern is

represented as a special kind of package to indicate that it is an abstract structure. It

was initially thought that only abstract level representation of a pattern would be

adequate. After some experiments and observations, it was realized that abstract level

demonstration will not be sufficient because of the detail in the structures and

definitions of design patterns. Design patterns capture a good solution to a recurring

problem in a theoretical and general way. But the practice (design and use of design

patterns) can be different in some cases. Users of design patterns can design it in

different ways according to the requirements and the framework used. Users usually

specialize the generalized solution that design patterns provide while adapting them.

However the concept of ‘generalized solutions’ of design patterns still exists. This

brought the necessity of using design patterns in detailed mode. Therefore a new

symbol and also a new representation are developed such that design patterns can be

45

used both in abstract mode and in detailed mode. User is enabled to make

modifications on a design pattern, defining a design pattern and removing a design

pattern from the system.

After conducting some case studies, it was observed that design patterns could be

used as super components in a component-based design. However this does not mean

that all design patterns can be used as super components directly. To use a design

pattern as a super component in the component-oriented design, this design pattern

must be usable as a component by itself not as a part of a component. Also it must

contain information about how to use; not how to code. It is observed that creational

design patterns can not be used as super components but some structural and

behavioural design patterns can be used as super components in component oriented

development. Creational design patterns can be used in methods of a component but

this is not in the concern area of this research. Structural and behavioural design

patterns that are concerned with the objects can be used as super components.

Incorporating design patterns in COSE has been a valuable experience. The case

studies demonstrated the increased efficiency in reuse. It can be easily felt that bigger

sub-problems are being solved faster in developing system models. The usage of the

pure design pattern definition however had to be extended. The mere abstract

definition of a pattern is a strong idea but our practice shows that in a development

environment, some more concrete definition of a design pattern can be more effective.

Even, implemented variations of a design pattern as its instantiations surfaced as a

valid idea in especially a “built by integration’ avenue to development. If this practice

has a chance to be adopted by the industry, a widely appreciated interpretation of the

concept (design pattern) may settle that suggests more concrete than abstract

utilization of design patterns. Finally, it is observed to be a very effective

enhancement, to provide design pattern incorporations into COSE.

Since design pattern concept is not a specialized concept for component-oriented

development, the usage of design patterns in the other CASE tools and languages are

studied. It is observed that design patterns are widely used in especially object

oriented approach and other software engineering disciplines. This usage has not been

specifically supported by the CASE tools for these approaches.

46

5.2. Future Work

The current version of COSECASE does not support error checking or syntax

enforcement. For now, every symbol can be connected with any other symbol. Such

abilities could be added to develop the application towards a more complete CASE

tool. Design Patterns can be used both in abstraction and detailed mode. But

automatically code generation for components (and also design patterns) is not

available. The need of a component and design pattern catalog is clear. The ability of

searching design patterns from the catalog and using them, and then automatically

generating code could be added to the CASE tool.

Design patterns are used as super components in COSECASE. The mechanism

created for design patterns can be utilized for other widely used designs. The ability to

use abstraction for widely used designs, or some part of a big design can be added to

COSECASE. This may mean selecting a section of an existing design and naming the

selection as a new design pattern.

Inclusion of at least another view and consistency checking among the views

can be done. COSECASE provides, for now, only the structural view using nodes and

connectors. The nodes or alternatively, connectors in a model can be hidden to yield a

single-concern view. Other views, like data or control, can be added. The abstract part

of the model includes data, function and control concepts. Different views only

displaying related abstract components will yield a hierarchically organized data view,

function view and a network of multi-tasking control structures. Connectors are an

important concept in Component Oriented modeling. COSEML includes primitives to

represent them as only graphical links or more detailed specifications of a connection.

Therefore, two different detail level views for “connectors” are possible to implement.

An existing component framework, such as Enterprise JavaBeans (EJB), can be

integrated with COSECASE so that an implementation could be generated, especially

for specific domains. A help facility is also missing. A complete and user-friendly

help option could be added after the completion of the syntax enforcement and error

checking facilities.

47

REFERENCES

[1] A. H. Do�ru, “Component Oriented Software Engineering Modeling Language:

COSEML,” TR-99-3, Computer Engineering Department, Middle East

Technical University, Dec. 1999.

[2] Erich Gamma, Richard Helm, Ralp Johnson, John Vlissides, “Design Patterns,”

Addison & Wesley, 1994.

[3] Floyd Marinescu , “EJB Design Patterns: Advanced Patterns, Processes, and

Idioms,” Jon Wiley & Sons, 2002.

[4] D. Alur, J. Crupi, D. Malks, “Core J2EE Patterns,” Prentice Hall, 2001.

[5] Ed Roman, “Mastering Enterprise Java Beans,” John Wiley & Suns, 2002.

[6] Kara Aydin, “A Graphical Editor For Component Oriented Modeling,”

Engineering Department, Middle East Technical University, Dec. 2001.

[7] Thomas Larsson1, Mikael Sandberg, “Building Flexible Components Based on

Design Patterns,” State of Art, Technical Report, p144 - p152, Mälardalen

University, Department of Computer Engineering, Sweden, 2000

[8] Felix Bachmann, Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred

Long, John Robert, Robert Seacord, Kurt Wallnau, “Volume II: Technical

Concepts of Component-Based Software Engineering, 2nd Edition,” CMU/SEI-

2000-TR-008 ESC-TR-2000-007, May 2000.

[9] R.Schmidt, U. Assmann, “Concepts For Developing Component-based

Systems,” International Workshop on Component-Based Software Engineering,

Forschungszentrum Informatik and Universität Karlsruhe, 1998

48

 [10] Ivica Crnkovic, “Concepts For Developing Component-Based Systems,’ John

Wiley & Suns, December 2001.

 [11] Wolfgang Pree, “Component Based Software Development: A New Paradigm

in Software Engineering,” Software Concepts and Tools, 18: p169 – p174,

Springer-Verlag, 1997.

[12] Wolfgang Pree, “Essential Framework Design Patterns,” University of

Constance, Germany, 1997.

[13] Alan B., Simon J.,Kelly K., “Using Component Based Development to Built

Web Service Applications,” Rational Software, New York, April 2003.

[14] Frantisek P., Micheal S, “An architectural View of Distributed Objects and

Components,” H. A. Simon, Software Concepts and Tools,66 , 1998.

[15] Kiziltan Z., Jonsson T., Hnich B., “On the Definition of Concepts in

Component Based Software Development,” Department of Information

Science, Uppsala University, July 1997.

[16] M. M. Tanik and E. S. Chan, “Fundamentals of Computing for Software

Engineers,“ Van Nostrand Reinhold, New York, 1991.

[17] E. J. Weyuker, “Testing Component-Based Software: A Cautionary Tale,”

IEEE Software, vol. 15, no. 5, pp. 54-59, Sept./Oct. 1998.

[18] C. Wohlin and P. Runeson, “Certification of Software Components,” IEEE

Trans. Software Eng., vol. 20, no. 6, pp. 494-499, June 1994.

[19] Woodman M., Benediktsson O., Lefever B., Stallinger F., “Issues in CBD

Product Quality and Process Quality,” Computer Science Department,

Middlesex University, London.

[20] Quatrani Terry, “ Visual Modeling With Rational Rose 2000 and UML,”

Addison & Wesley, 1999.

49

APPENDIX A

A BRIEF USER MANUAL FOR USING DESIGN
PATTERNS IN COSECASE

A manual for using COSECASE was incorporated in thesis “A Graphical Editor

For Component Oriented Modeling ” by Aydin Kara [6]. Only new added capabilities

are explained here. The new added capabilities are defining and removing design

patterns into and from the system and using them in abstract and detailed mode. These

capabilities are described by figures and examples in the subsequent subsections. The

main window and all other capabilities in COSECASE version 1.0 are kept. Besides,

new buttons for adding/removing design patterns and using design patterns in the main

window are added.

A.1. Design Pattern Dialog

The design pattern dialog box of the improved tool contains four buttons. OK,

Cancel, Add New Pattern and Remove From View As shown in Figure A.1. The

dialog can be activated by using the Design Pattern button in main window. Each

added design pattern is shown to the user through this dialog box. The design pattern

that user wants to use is selected using this dialog box. Add New Pattern button

activates Add New Design Pattern dialog and enables user to add a new design pattern

to the system. Remove From View button removes the selected design pattern from

the system. To remove a design pattern from the system the steps shown in Figure

A.6. should be followed.

50

Figure A.1. Design Pattern Dialog Box

A.1.1. Add New Design Pattern Dialog

Add New Design Pattern Dialog, shown in Figure A.2., is activated when Add

New Pattern button in the Design Pattern dialog is pressed. Dialog contains choose

file, OK and Cancel buttons. Choose File button activates Choose Design Pattern File

Dialog shown in Figure A.3.. This dialog is used to choose the COSEML file that

contains the structure design of the design pattern. User must choose a file and give a

name to the design pattern to add it to the system. In case of the absance of one of

these the tool will generate the corresponding error messages shown in Figure A.4.. To

define a design pattern user must enter a name and choose a file. After this operation if

user presses OK button the new created design pattern will be added to the system and

after this it will be shown in Design Pattern dialog as shown with all steps in Figure

A.5..

Figure A.2. Add New Design Pattern Dialog Box

51

Figure A.3. Choose Design Pattern File Dialog

Figure A.4. Error Dialogs For Add New Design Pattern Dialog

STEP 1. User Enters A Design Pattern Name

52

STEP 2. User Chooses A Coseml File For Design Pattern

STEP 3. User Presses OK Button

 STEP 4. System Adds Design Pattern to System For Future Use

Figure A.5. Steps For Adding a Design Pattern to System

53

STEP 1. User Selects the Design Pattern To Remove

STEP 2. User Presses Remove From View Button

Figure A.6. Steps For Removing a Design Pattern from System

A.2. The New Symbols and Usage of Them

To use Design Patterns in COSECASE two new symbols added to the system.

The first one is for Design Patterns. This symbol represents the design pattern in the

detailed mode and it can be only created under a package. This symbol is also added

to the symbol menu found in the bottom of the COSECASE main window. The other

symbol is the Design Pattern Package symbol. This symbol is not added to the symbol

menu because it is generated automatically when needed.

54

A.2.1. Design Pattern Symbol and Its Attributes

Since one of our aim is using design patterns in component system designs,

there must be a unique and standard symbol for design patterns. To achieve this the

design pattern symbol shown in Figure A.7. is used. The similarity of this figure with

other COSEML symbols is clear. This figure represents the abstract mode of the

design patterns. It has four options as shown in Figure A.8.. These options are delete,

Properties, Open Specification and Zoom In. Delete operation deletes the design

pattern from the model. The properties attributes enables the properties dialog. Open

Specification shows user the detail of the design pattern in an another COSEML

window. Zoom In is used to use the detail of the design pattern instead of the abstract

mode.

Figure A.7. The COSEML Figure Represents Abstract Mode of a Design Pattern

Figure A.8. Attributes of a Design Pattern

A.2.1.1. Design Pattern Properties Dialog

Design Pattern properties dialog shown in Figure A.9. is activated when the

“properties” item on the submenu is pressed. It has two attributes “Design Pattern

Name” and Text Area. Design Pattern Name is used to give a specific name to the

Design Pattern in the model. The text area is used to enter the important and necessary

expressions.

55

Figure A.9. Design Pattern Properties Dialog

A.2.2. Design Pattern Package Symbol and Its Attributes

The Design Pattern Package Symbol is shown in Figure A.10. It is similar to a

regular package symbol but differs in some ways. It is not used by the user directly. It

is generated when a design pattern’s zoom in function is activated. Users are enabled

to use design patterns in both abstract and detailed modes. In abstract level, a design

pattern is represented by the design pattern symbol. But in detail use of design

patterns the need to distinguish the design pattern structure and other structures in the

model has occurred. To achieve this distinction, the Design Pattern Package Symbol is

created. This symbol has all the properties that a regular package has. All the design

patterns structure are created under this package and the user can clearly see which

part of the design originates from design patterns. Since one of our aim is to use

design patterns both in abstract and detailed mode there must be a way to return from

detailed modes to abstract mode. This special package handles this issue. The zoom

out option shown in Figure A.11. realize this requirement. When zoom out property is

activated the design pattern package and other structures that are created under this

package are all removed and the abstraction is created again. The “zoom in” and

“zoom out “ capabilities enable the user to switch between the abstract and detailed

modes of a design pattern at any time during development. Other capabilities of design

56

pattern package are “delete” and “properties”. These are derived from the normal

package defined in COSECASE v1.0 and they are the same.

Figure A.10. COSEML Figure Represents Design Pattern Package (when design

pattern is used in detailed mode)

Figure A.11. Action options on a Design Pattern Package

57

APPENDIX B

CONSTRUCTION STEPS OF A SAMPLE MODEL

A COSEML model for the beginning of the J2EE framework development is

shown in Figure 8. To construct the model, the user starts with creating design patterns

which will be used. First front controller design pattern is created and defined as the

framework to the system. Front Controller is a design pattern which is used to abstract

a generic servlet mechanism which is responsible for taking requests from clients and

sending these request to the server side by parameters. Therefore it has two functions :

Give respond and take request.

Building the J2EE framework model continuous in a similar fashion: new

design patterns are included and then their details are modified. The enhancement

includes forming of connectors also.

Figure B.1. Detail of Front Controller Design Pattern

58

Figure B.2. Add New Design Pattern for Front Controller Design Pattern

Figure B.3. Defining Name and Path for Design Pattern

Figure B.4. Existing Design Patterns List After Front Controller Design Pattern is

Added

By the same approach all other design patterns are created and defined to the

system. Command design pattern is responsible for taking the request from client side

and then decides the external system that must be interacted and sends the request to

this external system. There is a file which holds the commands, the external system

and operation which will run on this external system. Since it is responsible for taking

request from client, front controller design pattern is used in command design pattern.

The following figures illustrate the introduction of new patterns and then, their

modification in the effort to build the J2EE framework.

59

Figure B.5. Detail of the Command Design Pattern

Figure B.6. Command Pattern After Front Controller Design Pattern is Created

60

If the command design pattern would not be used, all 6 elements shown in the

above screen figures would have to be created and connected individually.

Figure B.7. Command Pattern After Front Controller Design Pattern is Diffused

Figure B.8. Command Design Pattern After the Necessary Connections Created

61

The wrapper design pattern is the pattern that is the first leg for database

operations in the framework. This design pattern is an EJB design pattern that decides

which session base class or classes will be activated and in which order these will be

activated. Since there is a decide activity by using a file, command design pattern is

used in the design phase of wrapper design pattern.

Figure B.9. Existing Design Patterns List After Command Design Pattern is Added

Figure B.10. Wrapper Design Pattern After Command Design Pattern is Created

62

Figure B.11. Wrapper Pattern After Call Sessions Sequentially Function is Created

Figure B.12. Wrapper Pattern Before Command Pattern is Diffused

63

Figure B.13. Wrapper Pattern After Command Pattern is Diffused

 Session Base design patterns use session beans or in other words session beans

inherit session base design patterns. Session base design patterns handles all the

responsibilities for transaction and rollback operation. It also decides how to connect

to database, by using entity beans or Data Access Object Design patterns. Since again

there exist a decide activity by using a file, command design pattern is again used in

the design phase of session base design pattern.

Figure B.14. Session Base Pattern After Command Design Pattern is Created

64

Figure B.15. Session Base Pattern After Prepare Transactions Function is Created

Figure B.16. Session Base Pattern After Rollback Function is Created

65

Figure B.17. Session Base Pattern Before Command Design Pattern is Diffused

Figure B.18. Session Base Pattern After Command Design Pattern is Diffused

66

The data access object design pattern handles all the JDBC (Java Database

Connection) requirements such as providing a connection and resources from the pool,

removing connections and handling exceptions. The queries that will run is decided by

the DAO using the command. A file is used to hold the relation between the command

and queries.

Figure B.19. Detail of Data Access Design Pattern

Since the necessary design patterns are defined to the system, framework design

can be done easily. First a package is inserted which describes the framework. And

then a package is inserted which describes the client operations and classes. Since

command design pattern will be used to make operations between the client and server

sides, this design pattern is added to the framework. The necessary relations to use

command design pattern are introduced in the detail mode of the super component.

External systems are defined by creating packages and necessary links are created to

these packages.

67

Figure B.20. Design of Example After Client Package Created

Figure B.21. Design of Example After Command Pattern Created

68

Figure B.22. Design of Example Before Command Pattern Diffused

Figure B.23. Design of Example Before Command Pattern Diffused

69

Figure B.24. Design of Example After Connections with External Systems Done

After external systems are created, the wrapper design pattern is added to the

framework in case us database operations will be used. After the wrapper design

pattern is added, the session base design pattern and data access object design pattern

are added. Finally a package that represents the database is created.

70

Figure B.25. Design of Example After Wrapper Design Pattern Created and Diffused

Figure B.26. Design of Example After Session Base Created and Diffused

71

Figure B.27. Design of Example After Data Access Pattern Created and Diffused

Figure B.28. Design of Example After All Connections Created

72

If the capability of using design patterns was not added to the COSECASE, then these

detailed designs of design patterns had to be created at each use. The final design

would be the same except for the packages that represent the design pattern’s detailed

design. These design patterns are modified in some way to make them appropriate and

specific to this design. For example the original design of the command design pattern

does not have an extra file to find the appropriate external system or wrapper

component. For each operation a new class inherited from the base command class

would be implemented. But in this design instead of all of these classes, a generic

class that conducts the same operation by using a file and a parameter set. Therefore

the original detailed design of the command design pattern is modified. The same

approach is repeated for the data access object design pattern. Instead of implementing

a different class that is inherited from data access design pattern, a hash map file that

contains the queries and relations of these queries with commands and parameters of

these commands is used. Data access design pattern is modified to achieve these

modifications.

