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ABSTRACT 

 

 

NUMERICAL INVESTIGATION OF STIRRED TANK HYDRODYNAMICS 

 

 

 

 

Yapıcı, Kerim 

M.Sc., Department of  Chemical engineering  

Supervisor: Ass.Prof.Dr. Yusuf Uludağ 

 

September 20003, 93  pages 

 

  A theoretical study on the hydrodynamics of mixing processes in stirred tanks 

is described. The primary objective of this study is to investigate flow field and 

power consumption generated by the six blades Rushton turbine impeller in baffled, 

flat-bottom cylindrical tank both at laminar and turbulent flow regime both 

qualitatively and quantitatively. Experimental techniques are expensive and time 

consuming in characterizing mixing processes. For these reasons, computational 

fluid dynamics (CFD) has been considered as an alternative method. In this study, 

the velocity field and power requirement are obtained using FASTEST, which is a 

CFD package.  It employs   a fully conservative second order finite volume method 

for the solution of Navier-Stokes equations. The inherently time-dependent geometry 

of stirred vessel is simulated by a multiple frame of reference approach. 

 The flow field obtained numerically agrees well with those published 

experimental measurements. It is shown that Rushton turbine impeller creates 

predominantly radial jet flow pattern and produces two main recirculation flows one 

above and the other below the impeller plane. Throughout the tank impeller plane 

dimensionless radial velocity is not affected significantly by the increasing impeller  
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speed and almost decreases linearly with increase in radial distance. Effect of the 

baffling on the radial and tangential velocities is also investigated. It is seen that 

tangential velocity is larger than radial velocity at the same radial position in 

unbaffled system.   

 An overall impeller performance characteristic like power number is also 

found to be in agreement with the published experimental data. Also power number 

is mainly affected by the baffle length and increase with increase in baffle length. It 

is concluded that multiple frame of reference approach is suitable for the prediction 

of flow pattern and power number in stirred tank. 

 

Keywords: Stirred Tank, Mixing, Rushton Turbine, Computational Fluid Dynamics 

(CFD), Multiple Frame of Reference 
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ÖZ 

 

 

KARIŞTIRMA TANKI HİDRODİNAMİĞİNİN NÜMERİK İNCELENMESİ 

 

 

 

Yapıcı, Kerim 

Yüksek Lisans, Kimya Mühendisliği Bölümü 

Danışmanı: Y.Doç.Dr. Yusuf Uludağ 

 

Eylül 2003, 93  sayfa 

 

 Karıştırmalı tanklarda karıştırma sürecinin hidrodinamiği üzerine teorik bir 

çalışma yapılmıştır. Çalışmanın temel amacı hem laminer hem de türbülent akış 

rejimlerinde kırıcı yerleştirilmiş düz tabanlı silindirik tankta altı kanatçıklı Rushton 

tip karıştırıcı ile oluşturulan akış profili ve güç harcamasının nitel ve nicel 

incelenmesidir. Akış süreçlerinin karakterize edilmesinde kullanılan deneysel 

teknikler hem fazla zaman gerektirir hem de pahalıdır. Bu sebeplerden dolayı, 

hesaplamalı akışkan dinamiği alternatif bir metod olarak görülebilir. Bu çalışmada 

akış profili ve güç harcamaları bir paket program olan FASTEST kullanılarak elde 

edilmiştir. Bu program da Navier-Stokes eşitliklerinin çözümü için tam korunumlu 

ikinci dereceden sonlu hacimler metodu kullanılmaktadır. Karıştırmalı tankın 

kaçınılmaz olarak zamana bağlı geometrisinin simülasyonu, çoklu referans düzlemi 

yaklaşımı ile yapılmıştır.  

 Bu çalışmada sayısal yötemlerle bulunan akış alanı literatürdeki deneysel 

sonuçlarla uyum içerisindedir. Rushton tip karıştırıcının ağırlıklı olarak radyal jet-

akışı ve birisi karıştırıcı düzleminin üzerinde diğeride altında olmak üzere iki ana 
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akışkan dolanımı oluşturduğu görülmüştür. Tank boyunca karıştırıcı düzlemindeki 

normalize edilmiş radyal yöndeki hızın artan karıştırıcı hızından önemli ölçüde 

etkilenmediği ve artan radyal yönle nerdeyse doğrusal olarak azaldığı bulunmuştur. 

Kırıcının radyal ve açısal hızlar üzerindeki etkisi ayrıca incelenmiştir. Kırıcı 

kullanılmayan sistemde aynı radyal pozisyonda açısal hızın radyal hızdan daha 

büyük olduğu görülmüştür.  

Bir karıştırıcı performans özelliği olan güç sayısının yayınlanmış deneysel 

sonuçlarla uyum içinde olduğu bulunmuştur. Ayrıca güç sayısının ağırlıklı olarak 

kırıcı genişliğinden etkilendiği ve artan kırıcı genişliği ile arttığı bulunmuştur.  

Sonuç olarak, çoklu referans düzlemi  karıştırmalı tanklarda akış özellikleri 

ve güç sayısının tahmini  için uygun bir yaklaşımdır.     

 

Anahtar Kelimeler: Karıştırmalı Tank, Karıştırma, Rushton Karıştırıcı, Hesaplamalı 

Akışkan Dinamiği, Çoklu Referans Düzlemi                                    
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CHAPTER 1 

 
INTRODUCTION 

 
 

1.1 Scope 
 

The mixing of fluids in agitated vessel is one of the most important unit 

operations for many industries including the chemical, bio-chemical, pharmaceutical, 

petrochemical, and food processing (Sahu et al., 1999). Therefore determining the 

level of mixing and overall behavior and performance of the mixing tanks are crucial 

from the product quality and process economics point of views. One of the most 

fundamental needs for the analysis of these processes from both a theoretical and 

industrial perspective is the knowledge of the flow structure in such vessels. 

Depending on purpose of the operation carried out in a mixer, the best choice 

for the geometry of the tank and impeller type can vary widely. Different materials 

require different types of impellers and tank geometries in order to achieve the 

desired product quality. The flow field and mixing process even in a simple vessel 

are very complicated. The fluid around the rotating impeller blades interacts with the 

stationary baffles and generates a complex, three-dimensional turbulent flow. The 

other parameters like impeller clearance from the tank bottom, proximity of the 

vessel walls, baffle length also affect the generated flow. The presence of such a 

large number of design parameters often makes the task of optimization difficult. As 

a consequence, large amounts of money in the range of billions of dollars per year in  
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the USA (Tatterson, 1994) may be lost because of the uncertainties associated with 

the mixer designs. 

In order to understand the fluid mechanics and develop rational design 

procedures there have been continuous attempts over the past century. These 

attempts can be broadly classified in two parts, namely experimental fluid dynamics 

(EFD) and computational fluid dynamics (CFD). The developments in Laser based 

instrumentation such as laser Doppler velocimetry (LDV), particle image 

velocimetry (PIV) and application of computers in experimental investigation have 

led to enhanced understanding of many complex fluid dynamic processes 

experimentally.  

Experimental investigations have also contributed significantly to the better 

understanding of the complex hydrodynamics of stirred vessels. However such 

experimental studies have obvious limitations regarding the extent of parameter 

space that can be studied within a time frame. A wide variety of impellers with 

different shapes are being used in practice. The impeller clearances, impeller 

diameter, length, height can vary significantly for different applications. Therefore an 

experiment programmed to measure the discharge flows for all impellers is not 

economic. 

Flow simulation studies for stirred vessels are generally based on steady-state 

analyses (Harvey and Greaves, 1982, Placek et al., 1986., Ranade et al., 1990). Most 

of these previous studies have treated the rotating impeller as a black box. This 

approach requires impeller boundary conditions as input which needs to be 

determined experimentally. Though this approach is successful in predicting the flow 

characteristics in the bulk of the vessel, its usefulness is inherently limited due to its 
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dependence on the availability of the experimental data. Hence it cannot be used to 

screen large number of alternative mixer configurations (clearance from the bottom, 

size and shape of the impeller blade, multiple impellers, etc.). Even with the 

available data, it is not at all certain that the given impeller generates the same flow 

leaving its periphery in all vessels.  In order to overcome these drawbacks, in more 

recent studies the flow pattern around the impeller blades are predicted explicitly 

instead of using experimental data as impeller boundary conditions (Brucato et al., 

1998). Explicit modeling of the impeller geometry is done through four methods. 

The first explicit model is momentum source method which is based on aerofoil 

aerodynamics (Xu and McGrath, 1996). In this model, the impeller blades are 

replaced with finite blade section by dividing it into a number of vertical strips from 

the hub to the tip. The blade section inside each strip is approximated to an aerofoil 

and aerofoil aerodynamics is applied. Second explicit model is sliding mesh method 

(Bakker et al., 1997). With the sliding mesh method, the tank is divided into two 

regions that are treated separately: the impeller region and the tank region that 

includes the bulk of the liquid, the tank wall, the tank bottom and the baffles. The 

grid in the impeller region rotates with the impeller while the grid in the tank remains 

stationary. The two grids slide past each other at a cylindrical interface. 

The other model is snapshot method. This method can be explained as follows: 

in a real case rotation of the blade causes suction of fluid at the back side of the 

impeller blades and equivalent ejection of fluid from the front side of the blades. 

These phenomena of ejection and suction have been modeled by snapshot 

formulation which is discussed in more detail in Chapter 3 (Ranade and Dommeti, 

1996). The last model is multiple frame of reference, which is used in this study. In 
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this method tank is divided into two frames. These are rotating frame and stationary 

frame. Rotating reference frame encompasses the impeller and the flow surrounding 

it and stationary frame includes the tank, the baffles and the flow outside the impeller 

frame (Naude et al., 1998), (Fluent, 2000).  

 

1.2 Objective of This Study 

In this study, the velocity field and power requirement are obtained using Flow 

Analysis by Solving Transport Equations Simulating Turbulence (FASTEST), which 

is a CFD package. It employs a fully conservative finite volume method for the 

solution of the continuity and momentum equations. In the simulations the selected 

mixer consists of a Rushton turbine in a baffled, flat-bottom cylindrical tank filled 

with silicone oil and water as working fluid. The influence of angular velocity and 

baffle length on the power number and generated velocity field are investigated.  
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CHAPTER 2 
 

GENERAL CONSIDERATIONS IN MIXING 
 
 

2.1 Mixing Phenomena 
 

The objective of mixing is homogenization, manifesting itself in a reduction 

of concentration or temperature gradients or both simultaneously, within the agitated 

system. Quillen defines mixing as the ‘intermingling of two or more dissimilar 

portions of a material, resulting in the attainment of a desired level of uniformity, 

either physical or chemical, in the final product (Holland, 1966). 

Gases, confined in a container, mix rapidly by natural molecular diffusion. In 

liquids, however, natural diffusion is a slow process. To accelerate molecular 

diffusion within liquids, the mechanical energy from a rotating agitator is utilized. 

The rotation of an agitator in a confined liquid mass generates eddy currents. These 

are formed as a result of velocity gradients within the liquid. A rotating agitator 

produces high velocity liquid streams, which move through the vessel. When the 

high velocity streams come into contact with stagnant or slower mowing liquid, 

momentum transfer occurs. Low velocity liquid becomes entrained in faster moving 

streams, resulting in forced diffusion and liquid mixing. 
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2.2. Mixing Operations 

 The main applications of the mixing can be classified in terms of the 

following five operations: 

1) Homogenization; 

Homogenization can be described as the equalization of concentration and 

temperature differences, which is the most important and the most frequently carried 

out mixing operation.  

2) Enhancing heat transfer between a liquid and heat transfer surface; 

 Mixing reduces the thickness of the liquid boundary layer hence the thermal 

resistance on the heat transfer surface and convective motion of the tank contents 

ensure that the temperature gradients within the tank content are reduced. 

3) Suspension of solid in a liquid; 

 In continuous process homogenous distribution of the solid in the bulk of the 

liquid is required. By mixing the suspension, settling of the particles as a result of 

gravity is prevented. 

4) Dispersion of two immiscible liquids; 

 Dispersion in liquid/liquid systems is associated with the enlargement of the 

interface area between two immiscible liquids. This accomplished by the lowest 

impeller speed at which one phase is completely mixed into the other. 

5) Dispersion of a gas in a liquid. 

            The aim of this operation is to increase the interfacial area between the gas 

phase and liquid phase. Increasing the gas liquid interfacial area is obtained by gas 

sparging by means of stirrers. 
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2.3 Mixing Equipment 

The classification of mixing equipment is made on both predominant flow 

pattern that it produces and liquid viscosity, which affects the flow created by 

rotating agitator. Low viscosity liquids show little resistance to flow and therefore 

require relatively small amounts of energy per unit volume for a condition of mixing 

to occur. A typical stirred vessel consists of three parts: tank, baffles and impeller. 

Figure 2.3.1 shows the typical tank geometry which is widely used in chemical 

industry.  

 

                                 

 

Tanks used in stirrer equipment can be in different shapes depending on the 

application. These are cylindrical vessel with a flat bottom, cylindrical vessel with a 

round bottom and rectangular vessels as shown Figure 2.3.2. Round bottom tanks are 

used mainly for solid-liquid agitation while the flat bottom tanks suit better for more 

viscous types of fluids. 

 

Figure 2.3.1. A typical stirred tank equipment 
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Baffles are important parts of the stirred tanks which improve the mixing 

efficiency and suppress the vortex formation. However they increase the power 

requirements in the mixing tank. Several baffle arrangements are available according 

to their using purposes. For example they can be fixed on the tank wall or can be set 

away from the wall. 

Impellers are the most important parts in a stirred tank. In Figure 2.3.3 the 

stirrer types are given according to the flow pattern that they produce as well as to 

the range of fluid viscosity. 

(a) 

Figure 2.3.2. Stirred tanks (a) cylidrical with flat bottom  
(b) cylindrical with round bottom (c) rectangular 

(c) (b) 
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Figure 2.3.3 Classification of impeller according to the 
flow pattern and range of viscosity 

 

2.3.1 Turbines and propellers 

 For mixing low to medium viscosity liquids, the flat blade turbine or the 

marine type propeller is used. One of the most common turbines is the 6 blade flat 

blade, disk mounted type. A common marine propeller has 3 blades, with a blade 

pitch equal to the propeller diameter. 

 A large variety of turbine agitators are available which are modifications of 

the flat blade design. The hub mounted curved blade turbine and disk mounted 

curved blade turbine are useful where the general characteristics of the flat blade type 

are desired but at a lower shear at the blade tip and reduced power consumption 

(Weber, 1964). 

 Another modification of the flat blade design is the pitched blade hub 

mounted turbine with straight blades set at less than 900 from the horizontal. This 

design provides reduced power requirements and is useful when mixing liquids with 

heavy solids content.                        
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2.3.2 Helical screw impeller 

 The helical screw agitator is an effective device when used in high viscosity 

liquids (Chapman, 1962). The screw functions by carrying liquid from the vessel 

bottom to the liquid surface. The liquid is then discharged and returns to the tank 

bottom to fill the void created when fresh liquid is carried to the surface. 

2.3.3 Anchor impeller 

 The anchor agitator is generally a slow moving, large surface area device; in 

close proximity to the vessel wall. It has been used in the batch mixing of liquids 

having high viscosity.                                          

2.3.4 High shear impeller 

 High shear agitators are primarily used in liquid mixing systems where a 

particle size reduction or a breaking apart of agglomerated solids is required                       

2.4 Degree of Mixing 

  The degree of mixing within a system is a function of two variables: the 

magnitude of eddy currents or turbulence formed and the forces tending to dampen 

the formation of eddy currents. This relationship may be expressed:  

                                                      mixing of Degree 
Resistance

Force Driving
=  

        In this case, 

    Driving force= the forces producing eddy currents 

  Resistance= the forces tending to dampen the formation of eddy currents 

  A high degree of mixing occurs when the entire liquid mass, confined in a 

vessel, is under turbulent flow condition. 
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2.5 Degree of Agitation 

 Impeller tip speed in m/s is commonly used as a measure of the degree of 

agitation in a liquid mixing system. The tip speed of an agitator can be expressed: 

                                             ND TS iπ=  

Where Di is the diameter of the impeller in m and N is the rotational speed of the 

impeller in revolution per second. 

2.6 Methods of Measuring Liquid Velocity 

 The flow characteristics of stirred vessels have been studied by many 

investigators using different velocity measuring devices. The first velocity 

measurement in a stirred vessel carried out by using the light streak method (Sachs, 

1954). Improved version was used by Cutter (1966). Pitot tubes (Nagata, 1955) and 

hot wire anemometer (Bowers, 1965) were other types of instruments employed in 

the early studies on the measurements of the flow fields in mixing tanks.  

 None of the above devices are entirely satisfactory. Ideally a measurement 

device should not interface with the flow field and should permit the measurement of 

instantaneous velocities. Among the non-invasive and instantaneous methods, the 

Laser Doppler Velocimetry (LDV) in which velocity is measured using the Doppler 

shift of the laser beams crossing the flow field, is the most common method used in 

velocity measurements of the complex flows. 

 LDV was used by Rao and Brodkey (1972), Riet and Soots (1989), Wu and 

Petterson (1989), Kresta and Wood (1983). Nevertheless the flow in the stirred 

vessel is highly unsteady and time varying large scale motions dominate the flow. 

Since the LDV measures velocities on a plane, characterizing the entire flow field 

requires long experimental times. In addition LDV cannot be used in opaque media. 
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Therefore Bakker et al. (1996), Ward (1995) were the first to use Particle Image 

Velocimetry (PIV) to study the two dimensional flow pattern along the center plane 

in the vessel. PIV is quite different from the LDV methods. LDV provides 

instantaneous velocity field snapshot in a plane but PIV provides overall flow fields 

with spatially resolved eddies but with low temporal resolution. 

2.7 Flow Patterns in Stirred Vessel 

 According to the main directions of the streamlines in the vessel, there are 

three principal types of flow. These are tangential flow, radial flow and axial flow. 

2.7.1. Tangential flow 

 Tangential flow, where the liquid flows parallel to the path is shown in Figure 

2.7.1.1. When the flow is predominantly tangential, discharge of liquid from the 

impeller to the surroundings is small. Tangential flow takes place in a paddle type 

impeller running at a speed, which is not sufficient to produce a noticeable action of 

the centrifugal force. 

 

 

                                  

     Figure 2.7.1.1. Tangential flow 
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2.7.2 Radial flow 

 The liquid discharges from the impeller at right angles to its axis and along a 

radius. Figure 2.7.2.1 shows the flow pattern of a impeller with its axis coinciding 

with that of the vessel and producing radial flow. In this case it is apparent that the 

impeller produces two flow sections; one is in the bottom part of the vessel it entrains 

the liquid in the upward direction and displaces it at right angles to the axis of the 

impeller; the other is in the upper part of the vessel, the impeller entrains the liquid 

downwards, displacing it like perpendicular to the impeller axis. 

                                           

                                              

   

   Figure 2.7.2.1 Radial flow pattern 
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2.7.3 Axial flow 

 Axial flow, in which the liquid enters the impeller and discharges from it 

parallel to it axis as shown in Figure 2.7.3.1. 

                                           

                                           

              Figure 2.7.3.1. Axial flow pattern 

 

2.8 Flow Model for The Stirred Vessel 

 One of the most commonly used and extensively studied impeller is the radial 

flow Rushton turbine. This is also chosen for this study in order to compare the 

results of this study with those of previous studies directly. 

 In baffled vessels a Rushton turbine impeller develops radial flow pattern. 

From the fluid dynamics view point the flow field in an agitated vessel divided into 

six following regions (DeSouza and Pike, 1972). 

1) The flow from the impeller; 

2) Impeller stream impinging on the tank wall; 

3) Upper and lower corners of the tank; 

4) Flow at the top and bottom of the thank axis; 

5) Flow at the center of the tank axis; 

6) Two doughnut shaped regions. 

14 



 The most important among them is the impeller region where tank content 

and the impeller interacts directly and the required energy to drive the flow is 

transferred to the fluid. Due to the high shear rates and sudden accelerations 

associated with this region, capturing the flow characteristics accurately around the 

impeller through computational methods is a challenging task. 

2.9 Power Consumption in Mixing Vessel 

 The velocity field in stirred vessels provides the details on how fluid moves 

inside the tank, no specific information of impeller performance are readily available. 

In fact, the power drawn by a rotating impeller is crucial for the process and 

mechanical design of agitated vessels. 

 The power consumption in a liquid mixing system is determined by its 

impeller rotational speed and by the various physical properties of the mixing liquid. 

Rushton, Costich and Everett (1950) used dimensional analysis to derive the 

equations 
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                                                        (2.9.1) i
R

h
B NRNB )/()/(

which, gives the dimensionless Power number   as a function of the Reynolds 

number , Froude number  and number of dimensionless shape factors. 

Reynold number and Froude number are defined as: 

pN

ReN FrN

    
µ

ρNDN i
2

Re =  
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g
DNN i

Fr

2

=  

where Di is the impeller diameter (m), N is the impeller speed (s-1), ρ is density  

(kgm-3), µ is the viscosity (Pas), g is the gravitational force (ms-2). 

In equation (2.9.1): 

 C = dimensionless constant 

 = impeller diameter iD

 = tank diameter TD

 = liquid height lH

 = impeller height from bottom of the tank iH

 = impeller blade with q

 r = impeller blade length 

 = baffle length W

 = reference number for baffles BN

 = reference number for impellers RN

BN  and  determined by convenient choice. For example, in the case of standard 

configuration, which is discussed in Chapter 4 is used as a reference, = 4 and 

= 6. If these shape factors remain fixed, equation 2.9.1 simplifies to 

RN

BN

RN

y
Fr

x
p NNCN )()( Re=                (2.9.2) 

where C  is the over all shape factor which represents the geometry of the system. 

Since Froude number links gravitational forces and centrifugal inertial forces, then 
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fully baffled vessel in which no central vortex could form. Therefore the exponent y 

of the Froude number is zero, =1 and equation 2.9.2 becomes y
FrN )(

x
p NCN )( Re=                 (2.9.3) 

 Power number, which is dimensionless number relating the resistance force to 

the inertia force is expressed as 

53N i
p D

PN
ρ

=                 (2.9.4) 

where P  is the power in Watt, ρ  is the density in  , N is the rotational 

speed of the impeller in rev/sec and  is the impeller diameter. 

3/ mkg

iD

 

2.9.1 Power curves 

 A plot of  versus  on log-log coordinates is commonly called a power 

curve. The power curve firstly was plotted by Holland and Chapman (1966) for the 

standard tank configuration. At low Reynolds number

pN ReN

)10( Re <N , Np decreases 

linearly with increasing Re. In this region equation (2.9.3) may be written as 

Re101010 logloglog NxCN p +=               (2.9.5) 

The slope x in the viscous region is equal to -1. Therefore for the viscous region, 

equation (2.9.5) can be simplified, 

12
i

53 )/ND ()N ( −= µρρ CDP i              (2.9.6) 

which can be rearranged to 

))(( 32
iDNCP µ=               (2.9.7) 
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Equation (2.9.7) shows power to be directly proportional to viscosity at any impeller 

speed. 

 When the Reynolds number increases, flow changes from viscous to 

turbulent. The power and flow characteristics remain dependent only on the 

Reynolds number until 300Re ≅N .  At this point enough energy is being transferred 

to the liquid enabling vortex formation. The baffles effectively suppress vortexing 

and the flow remains dependent on the Reynolds number until . When 

flow becomes fully turbulent, the power curve becomes horizontal. Here flow is 

independent of both the Froude and Reynolds numbers. 

10000Re =N

. 
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CHAPTER 3 

 
DISCRETIZATION METHODS IN FLUID DYNAMICS 

 
 

3.1 Computational Approach 
 
 Computational fluid dynamics (CFD) is a tool for solving conservation 

equations for mass, momentum and energy in flow geometry of interest. Flows and 

associated phenomena can be described by partial differential equations, which are in 

many cases extremely difficult to solve analytically due to the non-linear inertial 

terms. To obtain accurate results the domain in which the partial differential 

equations are described, have to be discretized using sufficiently small grids. 

Therefore accuracy of numerical solution is dependent on the quality of 

dicretizations used (Ferziger, Peric, 1996). 

3.2 Components of the Numerical Simulations 

3.2.1 Mathematical model 

 The starting point of a numerical method is the mathematical model, which is 

the selection of the governing equations and initial and boundary conditions. 

3.2.2 Discretization of the governing equations 

 After selection the governing equations, one has to choose suitable 

discretization method. There are many approaches, the most important are: finite 

difference (FD), finite volume (FV) and finite element (FE) methods. Each of these 

methods is used to transform differential equations to the algebraic equations. 
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3.2.3 Generation of computational grid 

 The discrete locations form numerical grid, which can also be considered as 

discrete representation of the solution domain. The numerical grid divides the 

solution domain into finite number of subdomains (elements, control volumes). 

3.2.3.1 Structured grid 

 Structured grids consist of families of grid lines with the property that 

members of a single family do not cross each other and cross each member of the 

other families only once. This allows the lines of a given set to be numbered 

consecutively. The disadvantage of structured grid is that they can be used only for 

geometrically simple solution domains and another is that it may be difficult to 

obtain suitable grid distributions for complicated flow fields.  

3.2.3.2 Unstructured grid 

 For very complex geometries, the most flexible type of grid is one, which can 

fit an arbitrary solution domain boundary. In principle, such grids could be used with 

any discretization scheme, but they are best adapted finite volume and finite element 

approaches. The elements or control volumes may have any shape and there is no 

restriction on the number of neighbor elements or nodes. Disadvantage of the 

unstructured system of algebraic equation is difficult to solve. 

3.2.3.3 Block structured grid 

In a block structured grid, there are two or more level subdivision of domain. 

There are blocks, which are relatively large segments of the domain; their structure 

may be irregular and they may or may not overlap. This kind of grid is more flexible 

then the structured grids, since it allows use of finer grids in regions where greater 
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spatial resolutions are required. The main advantage of the block structured grid is 

that complex geometries can be handled easily. 

3.2.4 Finite approximation 

 After the choice of grid type, one has to select the approximations to be used 

in the discretization process. In the finite difference method, approximations for the 

derivatives at the grid points have to be selected. In the finite volume method, 

however, one has to select the methods of approximating surface and volume 

method. In the finite element method, one has to choose the functions (elements) and 

weight functions. The choice influences the accuracy of the approximation, also 

affects the difficulty of developing the solution method and speed of the code. More 

accurate approximations involve more nodes and result algebraic equations with 

dense matrices. 

3.2.5 Solution method 

 Discretization yields a large system of non-linear algebraic equations. The 

method of solution depends on the problem. For example for unsteady flows, 

methods employed in the solution of the initial value problems are used. The solution 

methods of solving algebraic systems can be classified as follows: 

1) Direct methods 

Direct methods are based on finite number of arithmetic operations leading to 

the exact solution of linear algebraic system. Some of these are Gauss elimination, 

tridiagonal system and LU decomposition. 
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2) Iterative methods 

 Iterative methods are based on a succession of approximate solutions, leading 

to the exact solution after infinite number of step. A large number of iterative 

methods are available. Some of these are Jacobi method, Gauss-Seidel method, 

successive over relaxation (SOR), strongly implicit procedure (SIP) and 

alternating direction implicit (ADI) method. 

3.2.6 Convergence criteria 

Finally, one needs to set the convergence criteria for the iterative method due 

to decide when to stop iterative process. Usually, there are two levels of iterations, 

within which the linear equations are solved and outer iteration that deals with the 

non-linearity and coupling of the equations. Deciding when to stop the iterative 

process on each level is important from both the accuracy and efficiency point of 

views. 

3.3 Finite Volume Method 

 Finite volume method uses the integral form of the conservation equations, 

which are discretized  directly in the physical space. Solution domain is divided into 

a finite number of small control volumes (CVs) by a grid, in contrast to the finite 

differences (FD) method, defines the control volumes boundaries. In the finite 

volume method two approaches are described. In the usual approach, the solution 

domain is discretized and a computational node is assigned to the each control 

volume center. However, in the second approach nodel locations are defined first and 

constructed CVs around them, so that control volume is faced lie midway between 

nodes which boundary conditions are applied as shown in Figure 3.3.1 (J.H. Ferziger 

and M.Peric, 1996). 
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       (a) 

                                    

                                                                       (b) 

Figure 3.3.1 Types of FV grids (a) nodes centered in CVs (b) CV faces centered 

between nodes 

The advantage of the first approach is that the nodal value represents the 

mean over the control volume to higher accuracy than the second approach, since the 

nodes are located at the center of the control volume. In the second approach, 
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however, central differences scheme (CDS) approximations of derivatives at control 

volume faces are more accurate when the face is midway between two nodes. The 

discretization principles are the same for the both approaches. 

3.3.1 Discretization process 

 In this study, discretization of the flow equations within the FASTEST3D, 

which is introduced in Chapter 4 in detail was carried out using finite volume 

method. 

 The equations describing fluid flow are derived from the conservation of 

mass and momentum. General form of the conservation equations are (Versteeg, 

Malalasekera, 1995) 

continuity:   ( ) 0=+
∂
∂ vdiv

t
ρ

ρ
             (3.3.1) 

momentum:    ( ) vsTvvdivv
t

=−+
∂
∂ )(ρρ            (3.3.2) 

where ρ is density, v is velocity, T is the diffusion flux vector, Equation (3.3.2) is 

written in terms of a velocity component , obtain iU

( ) uiiii stUvdivU
t

=−+
∂
∂ )(ρρ                                 (3.3.3) 

where it is the momentum diffusion and is the source term which represent the 

external forces; 

uis

jiji it τ=               (3.3.4) 

iui y
Ps

∂
∂

−=  , ghpP ρ+=             (3.3.5) 
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 The index ‘i’ denotes the direction of the Cartesian coordinate.  are the 

Cartesian velocity components,  

iU

p  is the pressure, g is the gravity constant and h the 

distance from a given reference level. ijτ are the anisotropic parts of the stress tensor. 

For a Newtonian fluid and incompressible laminar flow it can be expressed as the 

product of the dynamic viscosity and the rate of strain as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
i

j

j
i

ij y
U

y
Uµτ                        (3.3.6) 

Figure 3.2 shows the Cartesian coordinate system ( )21 , yy  with base vector 1i  and 

2i and a typical control volume. Equation (3.3.1) and (3.3.2) are to be integrated over 

a finite number a control volumes and over the time interval ( )ll tt ,1− . 

 Here, Divergence theorem is used, which transforms the volume integral of a 

vector divergence in to a surface integral: 

AdfdVfdiv
Av
∫∫ ≡              (3.3.7) 

V is the volume of the control volume and A is the area of its surface, Ad  being the 

outward directed surface vector normal to this surface. The right hand side of the 

equation (3.3.7) represents the net flux of the transport quantity through the control 

volume surface. It must be equal to the net source given by the right hand side of 

equations (3.3.1) and (3.3.2). In the case of the continuity equation, there is no source 

term, i.e. mass is conserved, so the net mass flux must be zero. For the momentum 

equations the right hand side ( )uis  represents the external forces. 

 The surface integrals are evaluated on each control volume face and then 

summed up. For a two dimensional case the third dimension is unity, and the fluxes 
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in this direction are zero. Since the third dimension is unity the cell face areas are 

equal to the length of the line segments connecting the two vertices. 

 The fluxes are by definition equation (3.3.7) taken positive when directed 

outwards. Outward flux through the ‘e’ or east cell face (Figure 3.3.2), , is the 

inward flux through the ‘w’ or west cell face of the neighbor control volume can be 

expressed as : ( ) . Therefore only two fluxes per control volume need 

to be calculated, namely  and . The general form of the discretized equation 

then becomes: 

eI

( )EwPe II −=

eI nI

SIIII snwe =+++                        (3.3.8) 

where the I’s represent the fluxes through respective cell surfaces. Similarly 

subscripts n and s denotes the quantities in the north and south directions as shown in 

the Figure 3.3.2. 
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Figure 3.3.2. A typical control volume and the notation used for a Cartesian 2D grid 

 

ee
Ae

e AfAdfI .. ≈= ∫                             (3.3.9) 

The surface vectors on the cell faces are defined as: 

( ) ( ) jxxiyyA esnesne −−−=          (3.3.10) 

( ) ( ) jxxiyyA newnewn −−−=          (3.3.11) 

where x’s and y’s stand for the horizontal and vertical positions of the cross-sectional 

points of the surfaces, respectively. In the case of the continuity equation, the vector 

f  in equations (3.3.7) and (3.3.9) stands for vρ . The positive, outward directed 

fluxes through the east and north cell faces become: 

( ) ( ) ( )[ ]esnsnee
Ae

ee xxVyyUAVAdVFI −−−=≈== ∫ ρρρ ..1        (3.3.12) 
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( ) ( ) ( )[ ]nwewenn
An

nn yyVxxUAVAdVFI −−−=≈== ∫ ρρρ ..2        (3.3.13) 

1F  and  denote the average mass fluxes in the positive direction of general 

coordinate 

2F

1x  and 2x  respectively. U and V are the x and y components of the 

velocity, respectively. The continuity equation then becomes 

02211 =−+− snwe FFFF                      (3.3.14) 

eU , ,  and  in equations (3.3.12) and (3.3.13) represent the average values 

of the Cartesian velocity components at the appropriate cell faces. 

eV nU nV

 The left hand side of the momentum equations (3.3.3) has two parts: 

convection and diffusion. For the convection fluxes CI , f  in equations (3.3.7) and 

(3.4.9) is substituted by vUρ , yielding: 

ee
C
e UFI 1≈                                  (3.3.15) 

nn
C
n UFI 2≈             (3.3.16) 

In case of the diffusion fluxes DI , the vector f  stands in the U  equation for 1t− , 

yielding: 

ee
D
e AjiI .)( 1211 ττ +−≈           (3.3.17) 

nn
D
n AjiI .)( 1211 ττ +−≈           (3.3.18) 

The stresses 11τ  and 12τ  contain velocity derivatives with respect to Cartesian 

coordinates, these have to be expressed in term of general coordinate iξ , according 

to : 
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where J is the Jacobian of the coordinate transformation ( ) ( )ηξ ,, fyx =  defined 

by: 

ξηηξ ∂
∂

∂
∂

−
∂
∂

∂
∂

=
yxyxJ           (3.3.21) 

The Jacobian and derivatives of the equations (3.3.19) and (3.3.20) need to be 

evaluated at the cell face locations ‘e’ and ‘n’. For the ‘e’ face, the ξ  coordinate is 

taken to connect the points P and E (from P to E) and η  runs along the ‘e’ cell face 

(from the ‘se’ to ‘ne’). The derivatives
ξ∂

∂x
, 

η∂
∂x

 can be approximated as: 
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        (3.3.22) 

For the simplicity, PE ξξ −  is taken  which is the distance between point P and 

E; analogously, 

EPl ,

sene ηη −  is set equal to the , the length of the cell face between 

vertices ‘ne’ and ‘se’. The Jacobian can then approximated by: 

senel ,

( )( ) ( ) ([ ]PEesnesnPE
seneEP

e yyxxyyxx
ll

J −−−−−≈
,,

1 )         (3.3.23) 

The derivatives in equations (3.3.19) and (3.3.20) can be expressed via expression 

equations (3.3.22) and (3.3.23) to yield: 

( ) ( ) ( )( )
( ) ( ) ( )( )esnPEPEesn
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e xxyyxxyy
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         (3.3.24) 
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When the expression (3.3.6) for ijτ  are introduced in equations (3.3.17-18) and 

relations of the form (3.3.24-25) are used the following expression can be written as 

for the diffusion fluxes  and : D
eI D

nI

( ){ ( ) ( )[ ]
( ) ( )( ) ( )( )[ ]
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It should be noted that the outward diffusion flux thorough the ‘e’ cell face is 

the inward flux through the ‘w’ cell face of the neighbor control volume that is 

( ) ( )w
D
eP

D
w II −=  and ( ) ( )S

D
nP

D
s II −= ; also nV δ  and eV δ  are defined as the 

scalar product of the surface vector nA and eA  respectively. 

( ) ( ) ( ) ( )PNnwePNnwenn yyxxxxyyPNAV −−+−−−== . δ         (3.3.28) 

( ) ( ) ( ) ( )PEnsnPEesnee yyxxxxyyPEAV −−+−−−== . δ         (3.3.29) 

For the V -momentum equation, the convection and diffusion fluxes are 

obtained as: 
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The source term in the momentum equations are integrated over the control volume; 

( ) VsdVsS
V

Puu δ∫ ≈=                      (3.3.34) 

Thus, the gradients 
x
P

∂
∂

 and 
y
P

∂
∂

 need to be evaluated at point P by analogy 

to equations (3.4.19-20-21) and (3.4.23), these gradients are calculated as: 
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Source terms for the momentum equations can be approximated as: 

( )( ) ( )( )wesnsnwe
p

u yyPPyyPPS −−+−−−≈           (3.3.37) 

( )( ) ( )( )snwewesn
p

v xxPPxxPPS −−+−−−≈           (3.3.38) 
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When all the flux components and the discretized sources are introduced in equation 

(3.4.8), an algebraic counterpart of the differential equation is obtained. 

[ ]{ } { }SA =φ             (3.3.39) 

where  is the [ ]A MM × matrix, M is the total number of the control volumes, { }φ  

is the dependent variable vector of M nodal values and { }S  is similar vector 

containing source terms. 

3.4 Solution Methods 

 The previous discussion showed the partial differential equations may be 

discretized using FV method. The result of the discretization process is a system of 

algebraic equations, which are linear or nonlinear according to the nature of partial 

differential equations from which they are derived. 

 Two methods are available for the solution of linear algebraic equations: the 

direct and iterative methods. In non-linear case, the discretized equations must be 

solved by using iterative technique. 

3.4.1 Direct methods 

 Direct methods are based on a finite number of arithmetic operations leading 

to the exact solution of a linear algebraic system in one step. 

3.4.1.1 Gauss elimination 

 The basic method for solving linear systems of algebraic equations is Gauss 

elimination. Its basis is the systematic reduction of large systems of equations to 

smaller ones (Heath, 1997). 
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The base of the algorithm is the technique for eliminating below the diagonal matrix 

element that is replacing it with zero. After this operation, the original matrix is 

replaced by the upper triangular matrix: 
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                      (3.4.2) 

After this step all of the elements except in the first row differ from in the original 

matrix A . Triangular linear systems are solved by successive substitution process, 

which is called back-substitution. 

 

3.4.1.2 Tridiagonal systems 

 A finite difference approximation provides an algebraic equation at each grid 

node. Each equations contains only the variable at its own node and its left and right 

neighbors as shown in Figure 3.4.1.2.1. 
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  Figure 3.4.1.2.1. 1 D Cartesian grid for FD methods 
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 The corresponding matrix A  has non zero terms only on its main diagonal 

and the diagonal above and below it. Such matrix is called tridioganal shown Figure 

3.4.1.2.2. 
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Figure 3.4.1.2.2. Schematic representation of the tridioganal matrix 

 Gauss elimination is preferred for solving tridioganal systems since only one 

element needs to be eliminated from each row during the forward elimination 

process. 

3.4.2 Iterative methods 

 The basis of iterative methods is to perform a small number of operations on 

the matrix element of the algebraic system, the aim of approach in the exact solution 

within a preset level of accuracy and small number of iteration. A large number of 

iterative methods are available some of these are: 

1) Jacobi method 

2) Gauss-Seidel method 

3) Successive over relaxation (SOR) method 

4) Alternating direction implicit (ADI) method 

5) Strongly implicit procedure (SIP) 

6) Conjugate gradient method 

7) Multi grid method 
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3.4.3 Solution of the non-linear equations 

 There are two types techniques for solving non linear equations: Newton-like 

and global. Newton-like techniques are much faster when a good estimate of solution 

is available but global techniques ensure the solution to converge. 

 

3.5 Convergence Criteria 

When using iterative solvers, it is important to know when to stop. The most 

common procedure is based on the difference between two successive iterates; the 

procedure is stopped when this differences, measured by some norm, is less that pre 

selected value. 

 The numerical solution  should approach the exact solution n
iu ),( txu  of the 

differential equations at any points xixi ∆=  and time tntn ∆=  when x∆  and t∆  

tend to zero, that is, when the mesh is refined  and  being fixed. This condition 

implies that and  goes to infinity while 

ix nt

i n x∆  and t∆  goes to zero (C. Hirssch, 

1997). This condition for convergence of the numerical solution to the exact solution 

of the differential equation express that the error, 

) ,( nnxiuun
i

n
i ∆∆−=ε    

satisfies the following convergence condition; 

0lim
0
0 =

→∆
→∆

n
i

x
t ε  at fixed values of  xixi ∆=  and tntn ∆= . 

3.6 Numerical Methods in Our Study 

 Numerical techniques described above are all of the methods which can be 

used for solution of any mathematical model based on computational fluid dynamics. 

In our study for the discretization of the incompressible Navier-Stokes equations in 
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time and space, finite volume method was used and block structured grid was 

selected because of the easy treatment of the complex geometry. At the end of the 

discretization process, linear algebraic equation was obtained and this matrix 

equation solved by using strongly implicit SIP method of Stone time integration by 

second order Crank-Nicolson scheme. The inherently time-dependent geometry of 

stirred vessel is simulated by a multiple frame of reference approach which is 

mentioned in Chapter 4.  

 Besides of these numerical techniques, for the treatment of the rotating 

impeller in mixing tank some new methods have been introduced. Detailed 

information is given in the following parts.  

 

3.7 Numerical Methods Used In Mixing Applications 

Improvements in computer hardware and capacity of the memory resulting in 

developed of predictive methods based on computational fluid dynamics (CFD) and 

capable of providing detailed information not only flow and turbulence field but also 

impeller performance characteristics like impeller power number and pumping 

number in the stirred tank. 

In the past most of the studies for the flow simulations in the stirred tanks are 

based on steady-state analyses (Harvey and Greaves, 1982), (Ranade and Joshi, 

1989), (Bakker, 1992). Most of these investigators have treated the rotating impeller 

as a black box, since this approach requires boundary condition in the immediate 

vicinity of the impeller, which must be determined experimentally. Though this 

approach was successful in the prediction of the flow characteristics in the bulk of 

the tank, but it was restricted to the conditions for which input data are available are 
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not for true predictions. Since a single set of impeller boundary conditions must be 

used for geometrically similar systems, it cannot be used large number alternative 

mixer configurations 

To overcome limitations associated with the requirement of the experimental 

impeller boundary conditions, recently some methods have been developed. These 

methods are namely momentum source, snapshot, sliding mesh and multiple frame of 

reference method which was used in this study. 

3.7.1 Impeller models 

 As mentioned above, there are four different approaches for the modeling of 

the impeller. They are analyzed in further detailed below especially focus on clicking 

method. 

3.7.1.1 Momentum source method 

 Momentum source model is based on aerofoil aerodynamics. In this model, 

the impeller blades are replaced with finite blade section by dividing the blade into a 

number of vertical strips from the hub to tip (Xu and McGrath, 1996), (Pericleous 

and Patel, 1987). The blade sections inside each strip are approximated to an aerofoil 

and aerofoil aerodynamics is applied. No experimental data are required in this 

model but it is restrictive since the flow inside the impeller is assumed to have no 

azimuthal direction of the flow between the blades. 

3.7.1.2 Snapshot method 

 In the snapshot method, impeller blades are fixed at one particular position 

with respect to the baffles. This method can be explained as follows: in a real case 

rotation of the blade causes suction of fluid at the back side of the impeller blades 

and equivalent ejection of fluid from the front side of the blades. These phenomena 
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of ejection and suction have been modeled by snapshot formulation (Ranade and 

Dommeti, 1996). That is, computational cells adjacent to the back side of the blades 

are modeled by specifying the mass sources, it can be defined as: 

bcbcm WAS  ρ−=        (3.7.1.2.1) 

where  and  are the area of the surface of the computational cell which is the 

adjacent to the impeller blade. For the computational cell on the back side of the 

blades are modeled by specifying the mass sinks and it is defined by expression 

(3.7.1.2.1) with the positive sign 

bcA bcW

bcbcm WAS  ρ=       (3.7.1.2.2) 

3.7.1.3 Sliding mesh method 

 In the sliding mesh method, the tank is dividing in to two regions that are 

impeller region and the tank region. The tank region includes the bulk of the liquid, 

the tank wall, the tank bottom and the baffles. The grid in the impeller region rotates 

with the impeller while the grid in the tank remains stationary (Bakker et al., 1996), 

(Lane and Koh, 1997), (Jaworski et al., 1997), (Lee and Yanneskis, 1996). The two 

grids slide past each other at a cylindrical interface. Two regions are implicitly 

coupled at the interface via a sliding mesh algorithm which takes in to account the 

relative motion between the two sub-domains and performs the conservative 

interpolation. 
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CHAPTER  4 
 

NUMERICAL METHOD FOR SOLVING TIME DEPENDENT FLUID  
DYNAMICS 

 
 

4.1 Numerical Methods 
 

In this section numerical method and tools used in the flow simulations are 

explained. In the past most of the studies for the flow simulations in the stirred tanks 

are based on steady-state analyses as outlined in chapter 3. This technique, however, 

needs some experimentally obtained boundary conditions in the vicinity of the 

impeller. Therefore this method is not practical to study large number of impeller 

configuration. 

To overcome limitations associated with the requirement of the experimental 

impeller boundary conditions, recently some methods have been developed. These 

methods are as previously described as momentum source method, snapshot method 

and sliding mesh method. Another method being used in the mixing simulations is 

multiple frame of reference method, which is the technique employed in this study 

due to some shortcomings of the mentioned alternative methods. For example in the 

momentum source method the impeller modeling is rather restrictive because the 

flow inside the impeller is assumed to have no azimuthal direction variations, so 

there is no straight forward simulation of the flow between the blades. The snapshot 

technique provides a relatively less computational intensive for the simulation of  

flow between impeller blades. Finally, the sliding mesh method is based on the time 

dependent laminar flow simulation only.  It is also highly CPU time demanding. 
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4.1.1 Multiple frame of reference method 

In this study all of the numerical simulations are carried out by using multiple 

frame of reference with clicking method within the FASTEST3D code. In this 

method tank is divided into two frames. These are rotating frame and stationary 

frame. Rotating reference frame encompasses the impeller and the flow surrounding 

it and stationary frame includes the tank, the baffles and the flow outside the impeller 

frame. Figure 4.1.1.1 depicts the configuration used. This figure shows that the tank 

is formed by twenty three blocks, seventeen blocks of them are defined as rotating 

which are represented by the red color blocks and remaining are six stationary 

blocks, which are indicated by yellow color. Interface blocks are not physically 

defined by the user when the grid generation is being constructed. These blocks are 

defined by the program as an imaginary section to provide the interaction between 

the rotating and stationary blocks. The interface blocks are represented by dark blue 

and light blue as shown in Figure 4.1.1.2.  Numbers of the control volumes which are 

forming the interface blocks belonging to stationary and rotating parts are equal at θ 

direction. In the stationary blocks, governing equations are the common equation of 

continuity and Navier Stokes equations.  In the flow region surrounding the impeller 

those governing equations are modified for the rotating frame. 
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Figure 4.1.1.1 Rotating and stationary blocks in the solution domain 

 

 

Figure 4.1.1.2 Interface sections of the stationary and rotating blocks 
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In this method clicking step size and number of the time step have to be defined by 

user before executing the program. Once the flow quantities such as velocities and 

pressures are determined for a certain control volume near the impeller, for the next 

time step those quantities are transferred as initial condition to the other control 

volume which is in front of the original control volume by the clicking step size in 

the rotation direction. Therefore, by this procedure rotation around the impeller is 

mimicked. Once the clicking step size and angular velocity are set by the user, time 

step is calculated according to those values by the code. 

 In this study the investigated tank is divided into two symmetric parts as 

shown in Figure 4.1.1.3 to reduce the computational requirements. Each part consists 

of two baffles and three impeller blades. The clicking step size is set as two and 

times step number depending on the Reynolds number varies between 3000 and 

6000. Rotating blocks are jumped by two control volumes in the r-θ plane. Since 

there are 48 control volumes at the defined interface of the rotating block in θ  

direction, it takes 24 time steps to complete 180 degree (two clicking step size is 

corresponding to 7.5 degree) revolution of the impeller blade. Eventually solutions of 

the two frames at the interface are performed via velocity transformation from one 

frame to other. Investigation of the 180 degree of the tank in θ direction is assumed 

to be sufficient to study whole tank due to the symmetry. Figure 4.1.1.4 shows the 

impeller location after the different time steps  

 
Figure 4.1.1.3 Grid distribution in r-θ plane 
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(a) After first time step 

 

                          

                                               (b) After 10.  time step 
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                                         (c)  After 24. time step 

                  Figure 4.1.1.4 Impeller locations after different time steps 

 

 

4.2 FASTEST3D 

 In this study all numerical simulations are carried out by using FASTEST3D 

code. FASTEST is an abbreviation for ‘Flow Analysis by Solving Transport 

equations Simulating Turbulence.’ It has been developed at the university of 

Erlangen-Nuremberg. FASTEST3D was written by using Fortran language and it 

works under the Linux operating system. 

 The complete FASTEST3D program consists of there computer sub 

programs: 

1) A pre-processor for generating the numerical grid, 

2) A flow predictor, 

3) A post-processor for the graphical visualization of the result. 
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A typical FASTEST3D operation can be summarized as follows: Firstly a grid is 

generated by taking into account the shape and size of the tank and impeller. Details 

of this process are being explained under the topic of the grid generation and 

parameters. Other parameters such as angular velocity, fluid properties, clicking step 

size and time step number are also supplied to the code. The code then solves the 

mixing problem and produces quantities characterizing the flow field in the tank such 

as velocity components, turbulence and pressure quantities and power consumption 

as shown in Figure 4.2.1. 

  

 

FASTEST3D
generation grid

elocityimpeller v
properties fluid

size step clicking
size step time

input

componentsvelocity 
field pressure

quantities turbulence

output

power number 

Figure 4.2.1 Flow chart of the running FASTEST 

FASTEST3D is a flexible code that can be modified according to the specific fluid 

flow problems. Its major drawback is that it is not user friendly and to master the 

code one needs a lot of practice and trial-error 

4.3 Grid generation 

 For the treatment of complex geometries like mixing tank, block structured 

irregular grid is used in FASTEST3D. These globally unstructured, but locally 

structured grids can be viewed as a compromise between the flexibility of fully 

unstructured grids and numerical efficiency of globally structured grids. Figure 4.3.1 

shows a block structured grid which is used in this study. Solution domain is divided 
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into symmetric parts. Each one encompassing two baffles and three impeller blades 

(Figure 4.3.2). Our solution domain consists of 23 blocks and total number of 

computational cells used is 248020. Table 4.3.1 shows number of control volume in 

the blocks-. 

Table 4.3.1 Number of the control volumes in the blocks 

Block number  θ           r          z   Number of control volumes

Block 1:  7×      5× 5=         175 CVs 

Block 2:                      7× 5× 5=         175 CVs 

Block 3:  7× 5× 12=  420 CVs 

Block 4:  14× 5× 5=  350 CVs 

Block 5:  14× 5× 5=  350 CVs 

Block 6:  14× 5× 12=  840 CVs 

Block 7:  14× 5× 5=  350 CVs 

Block 8:  14× 5× 5=  350 CVs   

Block 9:  14× 5× 12=  840 CVs 

Block 10:   7× 5× 5=  175 CVs 

Block 11:   7× 5× 5=  175 CVs 

Block 12:  7× 5× 12=  420 CVs 

Block 13:  48× 5× 5=  1200 CVs 

Block 14:  48× 5× 5=  1200 CVs 

Block 15:  48× 17× 10=  8160 CVs 

Block 16:  48× 17× 52=  42432 CVs 

Block 17:  48× 15× 74=  52380 CVs 

Block 18:  48× 32× 20=  30720 CVs 
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Table 4.3.1 Number of the control volumes in the blocks continued. 

Block number  θ           r          z   Number of control volumes 

Block 19:  12× 10× 94=  11280 CVs 

Block 20:  23× 10× 94=  21620 CVs 

Block 21:  11× 10× 94=  10340 CVs 

Block 22:  48× 12× 94=  54144 CVs 

Block 23:  48× 2× 94=         + 9024 CVs 

Total                 248020 CVs 

    

                         

 

 

                       

                          Figure 4.3.1 Block structured irregular grid. 
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(a) (b) 

        Figure 4.3.2 Grid distribution (a) typical r- θ plane (b) typical r-z plane 

 One of the advantages of the using block structured grid is generating needed 

number of the solution domain. The important point in the treatment of the complex 

geometries like stirred tank with baffles is taking large numbers and small size of 

control volumes in the vicinity of the impeller where changes in the flow quantities 

occur rather in a smaller length scales compared to the other regions in the tank. Up 

to now most of the studies have been based on structured grid and block structured 

grid has not been used in the field of mixing. The other advantage of the block 

structured grid is that it is well suited as a base for the parallelization of the 

computational by means of grid partitioning techniques.  

 4.3.1 Geometry parameters 

 The selected standard tank configuration with Rushton turbine is shown in 

Figure 4.3.1.1. All of the geometrical quantities are expressed in terms of tank 

diameter. In the case of changing any of the geometrical parameters, spatial 
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discretization of the new configuration is updated through the grid generation 

procedure.  

 The system investigated consists of a standard stirred cylindrical vessel 

(diameter=height=0.15 m) with four baffles (length=0.015 m) equally spaced around 

the periphery. The shaft of the impeller is concentric with the axis of the vessel. The 

standard six-bladed flat bladed (diameter=0.05 m) Rushton turbine impeller is 

located 0.05 m from bottom of the tank. Diameter and height of the hub are 0.0125 

m. The diameter of the shaft is 0.008 m. 

                                                                                      

                       

                                                                    

                                                                    Ruhton disk turb

Di

Dd

L 

Dh

Ds

H 

DT
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Hl

Di

W

(b)

(a) 

Figure 4.3.1.1 (a) A standard baffled mixing tank (b) Geometrical details of the 
ine impeller. 
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In this study, the geometrical parameters shown in Figure 4.3.1.1 are set as follows: 

DT= Tank diameter 0.15 m 

Di= Impeller diameter; Di =DT/3=0.05 m 

Hl= Height of the liquid; Hl= DT=0.15 m 

Hi= Impeller height from bottom of the tank; Hi= DT/3=0.05 m 

W= Length of the baffles; W=3Di/10=0.015 m 

L= Length of the blade; L= Di/4=0.0125 m 

H=Height of the blade; H= Di/5=0.01m 

Dd= Diameter of the disc; Dd=3Di/4=0.0375 m 

Dh= Diameter of the hub; Dh= Di/4=0.0125 m 

Ds= Diameter of the shaft; Ds=4Di/25=0.008 m 

4.4 Computational requirements 

 Prior to the simulation, the selected numerical tools that suit best for the 

numerical simulation of the stirred tank have to be specified. Details of these tools 

and general guidelines to make a suitable selection are covered in chapter 3. 

Regarding this process the following steps are taken in process of setting up 

numerical scheme: 

1) Selection of a discretization method of the equations. This implies selection 

between finite difference, finite element or finite volume methods as well as 

selection of accuracy of the spatial and, eventually time discretization. 

2) Selection of a solution method for the algebraic system of equations which is 

obtained from discretization  
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3) Analysis of the selected numerical algorithm. This step concerns the analysis 

of the ‘qualities’ of the scheme in terms of stability and convergence 

properties. 

Concerning the numerical method FASTEST3D to solve the incompressible Navier-

Stokes equations composed of the following components: second order finite volume 

discretization in time and space, strongly implicit SIP method of Stone for solving a 

large system of linear equations and time integration by second order Crank-

Nicolson scheme. The inherently time-dependent geometry of stirred vessel is 

simulated by a multiple frame of reference approach, which is mentioned above. 

Space discretization is introduced in Chapter 3 therefore here other features of the 

implemented numerical methods are explained. 

4.4.1 Time discretization 

 In addition to the spatial discretization a discretization in time is required to 

obtain solution of the unsteady problem. Time may be regarded as an additional 

coordinate, therefore a special problem can be considered as sequence of levels at 

several times, so-called time levels as shown Figure 4.4.1.1. In contrast to spatial 

discretization the variable values have to be determined before moving to the next 

time level. New time levels are always extrapolated from the older one. 
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                                     Figure 4.4.1.1 Time discretization 

 

4.4.2 Solution method 

 In this study, strongly implicit (SIP) method (Stone, 1968) is used for solving 

linear algebraic equation systems, which are obtained from the spatial discretization 

process. The main reason of using SIP method is that, it provides better convergence 

than the other methods such as Gauss-Seidel method, conjugate gradient method and 

Tri-Diagonal-Matrix algorithm. 

 The system of discretized equations for all control volumes can be described 

in matrix form as 

     [ ]{ } { }SA =φ                       (4.4.2.1) 

where  is the [ ]A MM ×  diagonal matrix shown in Figure 4.4.2.1, M is the total 

number of the control volumes, { }φ  is the dependent variable vector of M nodal 

values and {  similarly is composed of the source terms. Direct solution of such 

matrix equation is too costly.  Using SIP method, the solution becomes less CPU 

}S
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time demanding. In this method the specified matrices are by separated into upper 

and lowers triangular matrices (Figure 4.4.2.2).  

The matrix equation then becomes 

                 [ ]{ } [ ][ ]{ } { }SULC == φφ                      (4.4.2.2) 

Therefore the solution becomes easier, since the triangular matrices can be inverted 

by simple forward and backward substitution. The triangular matrices [  and ]L [ ]U  

have non-zero coefficients only on diagonals which correspond to the non non-zero 

diagonals in the matrix  The product matrix [ ]A [ ]C   has two more diagonals than the 

matrix  as shown in Figure (4.4.2.2). The coefficients of the matrix [  can be 

expressed through the coefficients of the 

[ ]A ]C

[ ]L  and [ ]U  matrices, denoted by b and 

analogously to the coefficients a of the matrix [ ]A . 
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Figure 4.4.2.1 Schematic presentation of matrix equations (4.4.2.1)     
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4.4.3 Convergence 

The convergence criterion used in all simulations can be defined as follows. After 

the set of equations are solved and the field values are updated, new coefficients of 

the discretized equations are calculated. Using these new coefficients and the 

existing variable values, the residuals are calculated. The absolute values of the 

residuals for all control volumes are summed up, and this sum is normalized with an 

appropriate reference quantity: 

• inlet mass flux for the continuity equations, 

• inlet momentum flux for the momentum equations, 

• mean kinetic energy for turbulent kinetic energy equation, 

• mean dissipation rate for the turbulent kinetic energy dissipation rate 

equation. 

It is then required that this normalized sum of residuals fall below a certain limit, 

which is defined 10-4 for all simulations. To examine convergence and stability, 

power number is calculated both on the impeller surface and in the overall tank 

volume. When the change in the power numbers between two successive steps is les 

than 1%, the solution is assumed to be converged and the program is stopped.  

54 



In the simulation at Re=10000, a time step size of 0.00521 s is used and up to 

3000 time steps were performed, resulting in 62.37 revolutions to achieve the steady 

state flow in terms of the turbulent quantities and power number. Calculation time is 

approximately 5 hours per impeller revolution on a P III 1Ghz computer. 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 
 

 As mentioned before agitated vessels are used extensively in industry for 

conducting a variety of the processes. One of the most fundamental needs for the 

analysis of these processes is the knowledge of flow structure in such vessels. The 

flow structures are dependent on the type of agitator and other parameters like 

impeller clearance from the bottom of the tank and baffle length. As a result of these 

dependencies our investigation has focused on the effects of impeller rotational 

speed, N, and  baffle length on the flow field and power consumption.  

In this study our results consist of two parts: In the first part, we investigate 

the flow field generated by Rushton turbine in both laminar and turbulent regimes 

using Newtonian silicone oil and water as working fluids in the baffled tank, 

respectively. Table 5.1 shows the impeller speed, N (rpm), and corresponding 

impeller Reynolds  numbers. 

 

Water Silicone oil  

ρ= 1000 kg/m3; µ=0.001 Pas ρ=1309 kg/m3; µ=0.0159 Pas

Reynolds number 10000 2069 760 100 20 

Impeller speed (rpm) 240 49.6 279 36,76 7,3 

Table 5.1. Impeller speed and corresponding Reynolds number 

In the second part the effects of the baffle length on the power consumption or power 

number at various Reynolds numbers were considered. 

56 



5.1. Effect of the Reynolds Numbers on the Velocity Field 

The flow fields obtained within the Reynolds number range from 10 to 10000 

are presented in Figure 5.1.1 in the form of velocity vectors. The figure depicts the 

velocities in the half of the vertical cross section cut at the center of the tank. Lengths 

of the vectors are proportional to the magnitude of the liquid velocity. At laminar 

region which corresponds to Re=10, 20, 100, liquid around the impeller moves with 

the impeller rotation smoothly and liquid distant from the impeller is stagnant. In 

addition to these, two small vortex rings exist in the flow one below the impeller 

plane and the other above the impeller plane. In this region, the resistance to impeller 

rotation is mainly due to viscous effects.   

Re=760, 2069 correspond to the transition region. In this region the flow 

around the impeller becomes unstable and turbulence sets in. Discharge flow notably 

increases and reaches a maximum. Now the stagnant zones which are observed in the 

laminar region disappear. In this region, the liquid away from the impeller is still 

laminar eddies start to form as a result of velocity gradients within the liquid. Also 

two vortex centers are observed and they get closer to the impeller plane as impeller 

speed is increased. No experimental results have been found in the literature for the 

flows in transition region so as to compare the results that were obtained in this 

study. Moreover, working numerically in this region is very difficult, since there is 

not any applicable turbulent model to the flow field at the corresponding Reynolds 

numbers. However, we carried out the simulations using DNS (Direct Solution of 

Navier Stokes Equations) method. The results obtained in this region such as velocity 

and power number values fit well with those results obtained in laminar and turbulent 

regions. Therefore the methods used in this study for the transition region may be 
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considered as satisfactory. Briefly the overall flow pattern in this region is irregular 

and flow characteristics are similar to turbulent regime. 

At turbulent regime where Reynolds number is larger than 104 the flow 

pattern is highly unsteady and the large eddies form at the vicinity of the impeller 

plane and secondary small vortices appear in the regions away from the impeller 

because of the tank lid. Now stagnant zones and laminar zones, which are observed 

in the laminar and transition regions disappear. Discharge flow from the impeller 

notably increases and reaches a maximum and generates vertical circulation. As a 

result of this phenomena at this region mixing operation becomes highly efficient as 

shown in Figure 5.1.1(a). The flow field is not symmetric since the impeller is not 

symmetrically located with respect to vertical position. Its location is one third of the 

tank diameter from the tank bottom. 

Through the simulations the flow field is determined for the entire tank. The 

details of the flow characteristics for any given location in the tank are readily 

available. In the forthcoming sections, on the other hand, flow field in various 

vertical and horizontal cross-sections of the tank is considered only for the sake of 

simplicity. Those locations are mainly regions around the impeller, which have the 

most important impact on the overall flow field.   
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 (a) (b) (c) 

 

 
Figure 5.1.1. Predicted flow field on r-z plane  for the standart    

tankconfigurations(a)Re=10000; (b) Re=2069; 
(c) Re=760; (d)Re=100; (e) Re=20; (f) Re=10 
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(d) (e) (f)  

 Figure 5.1.1. (continued) 

60 



61 

5.1.1 Flow pattern in the radial direction  

Radial, axial and tangential velocities are also investigated quantitatively at 

Reynolds numbers. In addition, values of effective turbulent intensity like turbulent 

kinetic energy and turbulent dissipation rate are calculated at Reynold number 10000 

and plotted with respect to the radial and axial positions. 

 The radial velocities are calculated along the impeller blade height in axial 

direction at different radial positions, which are normalized by the impeller radius 

(R) as shown in Figure 5.1.1.1. Figure 5.1.1.2 depicts the radial velocities at different 

Reynolds numbers. In this figure horizontal axis denotes radial velocity component 

which is normalized by the impeller tip speed (πNDi), vertical axis, on the other 

hand, represents axial position, which is normalized with the impeller blade height 

(b) (see Figure 5.1.1.2).   

Generally, the center-line radial velocity decreases with increasing radial 

distance from impeller which is in agreement with the experimental results from 

literature (Wu and Patterson, 1988; Dyster et al., 1993). At high Reynolds numbers 

(760-104), on the other hand, center-line radial velocity does not decrease 

continuously along radial distance. Instead at r/R=1.32 (8mm away from impeller 

blade tip) it makes a local maxima. This effect is a result of the small size of eddies 

which are generated by the interaction between the impeller and baffle and they 

contain significant portion of the total kinetic energy. Moreover, the differences 

between location of the radial and tangential velocity components can be used to 

estimate the average eddy size roughly in this region. When the radial velocity is 

measured at r/R=2, the effect of eddies disappears and as expected radial velocity 

decreases. This trend goes on until Re<300 which correspond to the transition region. 



Below that value or in laminar region  the effect of the eddies completely disappears 

as expected (see Figure 5.1.1.2) 

 

             

Z=1 

Z=-1 

Z=0 
Impeller 

blade 

r/R=1.04 r/R=2

Tank wall 

Figure 5.1.1.1. The observation points in the radial direction from the impeller blade 

to tank wall. 
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 Figure 5.1.1.2. Axial distribution of the radial velocity profiles at various 
normalized radial positions at different Reynolds numbers: (a) Re=10000,  

(b) Re=2069, (c) Re=760, (d) Re=100, (e) Re=20  
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Figure 5.1.1.2. (continued) 
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Figure 5.1.1.2. (continued) 

     (e) 

 

 

5.1.2. Tangential flow pattern  

 Tangential velocities at different Reynolds numbers and at various radial 

positions are presented in Figure 5.1.2.1. Their magnitudes are higher compared to 

the radial components. Also, they are almost symmetrical with respect to the impeller 

axis and to the plane of impeller rotation. Tangential velocity components increase 

near the impeller but away from the impeller decrease because of the baffles and the 

vortices, which are more pronounced as Re increases. Near the baffle region 

tangential velocities diminish for all Reynolds number as expected.  

 In the range where Reynolds number is larger than 100, maximum tangential 

velocity appears at the radial distance r/R=1.16 while maximum radial velocity 

appears at r/R=1.04. This may be due to vortex formation which changes the velocity 
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direction and as a result of this radial velocity is relatively small in the radial distance 

of r/R=1.16 where tangential velocity is maximum.  

 Table 5.1.2.1 shows the maximum value of predicted tangential velocities and 

corresponding maximum radial velocities at different Reynolds number. In this table 

(Re=2069) tangential velocity can exceed the tip speed due to acceleration of the 

fluid over the blades (Stoots and Richard, 1995). The prediction of the maximum 

tangential velocity accurately is crucial. Under prediction of the tangential velocity 

leads to subsequent under prediction of the radial velocity. The prediction both 

maximum tangential and radial velocities agree well with those reported in the 

literature (Ranade, 1997). 

 

Table 5.1.2.1. Predicted maximum tangential and radial velocities 

 Re=10000 Re=2069 Re=760 Re=100 Re=20 

Uθ 0.842Utip 1.032Utip 0.760Utip 0.526Utip 0.220Utip 

Ur 0.600Utip 0.870Utip 0.622Utip 0.481Utip 0.580Utip 
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Figure 5.1.2.1. Axial distribution of the tangential velocity profiles at various 
normalized radial positions and various Reynolds numbers: (a) Re=10000, (b) 

Re=2069, (c) Re=760, (d) Re=100, (e) Re=20 
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Figure 5.1.2.1. (continued) 

 
68 



Re=20

-1,5

-1

-0,5

0

0,5

1

1,5

0,05 0,1 0,15 0,2 0,25

Uθ/Utip

2z
b r/R=1,04

r/R=1,08

r/R=1,16

r/R=1,32

 
   (e) 

 Figure 5.1.2.1. (continued) 
  

5.1.3. Axial flow pattern    

 Axial velocities at different Reynolds numbers and at various radial positions 

are demonstrated in Figure 5.1.3.1. Axial velocities are much smaller than the other 

components through the impeller stream. In the range of Re>100 axial velocities 

fluctuate between negative and positive direction and this trend disappear at radial 

distance r/R=2. That is far away from the impeller they almost vanish. This may be 

the place where the impeller stream is about to split in to two streams, one flowing 

upward, the other flowing downward in to the bulk of the tank (see Figure 5.1.1).As 

shown in Figure 5.1.3.1-d-e at laminar region axial velocity components even near 

the impeller disappear. At this region radial and tangential velocity components are 

dominant.  
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Figure 5.1.3.1. Axial distribution of the axial velocity profiles as a fuction of 
normalized radial positions at different Reynolds numbers: (a)Re=10000,  

(b) Re=2069, (c) Re=760, (d) Re=100, (e) Re=20 
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Figure 5.1.3.1. (continued) 

71 



 

Re=20

-1.5

-1

-0.5

0

0.5

1

1.5

-0.4 -0.2 0 0.2 0.4

Uz/Utip

2z
b r/R=1.04

r/R=1.08

r/R=1.16

r/R=1.32

 

         (e) 

 
Figure 5.1.3.1. (continued) 
 

 

5.1.4. Flow field at different axial location 
 
 The radial, tangential and axial velocity components at different axial 

locations in the tank were calculated. They are the axial location of the impeller 

blade (z=0), 25 mm above and 35 mm below the impeller as shown Figure 5.1.4.1.  

Impeller plane velocity profiles:  

Radial, tangential and axial velocity components at z=0 are depicted in Figure 

5.1.4.2-4. In these figures horizontal axis represents the radial position, which is 

normalized by the impeller radius and vertical axis shows the velocities normalized 

by the impeller tip velocity. 
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Z=0 

R

Z =+25mm 

Z =-35mm 

Figure 5.1.4.1.  Axial positions of the tank cross-sections in which velocity 
components are presented.  

 
 
 
Impeller plane radial velocity: 

 
Figure 5.1.4.2 shows the impeller plane radial velocity profiles at different 

Reynolds number. They are not significantly affected by the Reynolds number that is 

in agreement with the previous work on Rushton turbines (Dyster at al., 1993). Also 

it is evident that the dimensionless radial velocity decreases at all Reynolds number 

with the increase in the radial distance. At low Reynolds number this trend is almost 

linear. Especially at high angular velocities Re=104 dimensionless radial velocity 

component near the baffles (r/R=2.3) increases. This is because the radial discharge 

of fluid flowing from the rotating impeller is disturbed by the baffles and causing 

relative increase in the fluids turbulence. But away from the baffle dimensionless 

radial velocity becoming again decreases.    
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 Figure 5.1.4.2 Radial velocity as a function of radial 
position and Re at z=0.  

 

Impeller plane tangential velocity: 

 Figure 5.1.4.3 shows the center-line tangential velocity profiles at different 

Reynolds numbers. Dimensionless tangential velocity is appreciably decreases with 

increase the radial distance from the impeller. This is as a result of the baffle. Baffles 

eliminate the large scale vortex formation and induce turbulence.  

 

74 



 

0

0.2

0.4

0.6

0.8

1

1.2

1 1.5 2 2.5 3
r/R

U
θ/

U
tip Re:10000

Re:2069

Re:760

Re:100

Re:20

 

Impeller plane axial velocity: 
Figure 5.1.4.3 Tangential velocity as a function of radial position and Re at z=0  

 Figure 5.1.4.4 shows the center-line axial velocity profiles with different 

Reynolds numbers. At low Reynolds numbers (Re=20, 100) dimensionless axial 

velocity is nearly zero within the radial position range, indicating that fluid in the 

laminar flow region either in the radial or tangential directions smoothly until the 

tank wall. However at high Reynolds numbers, turbulence onsets and axial velocity 

components fluctuate as other velocity components. This is expected because 

Rushton turbine dominantly generates radial flow pattern.   
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The flow pattern above the impeller: 

Figure 5.1.4.4 Axial velocity as a function of radial position and Re at z=0. 

 

 Figure 5.1.4.5 shows the dimensionless radial, axial and tangential velocity 

patterns which have been calculated 25 mm above the center impeller plane at 

different radial positions and at different Reynolds numbers (20-104). In this figure at 

low Reynolds number radial velocity pattern above the impeller almost goes to zero, 

because of the stagnation region. Due to low angular speeds involved, the fluid at 

various locations of the tank remains stagnant. But at high Reynolds numbers radial 

velocity components decrease by making oscillation with the increasing radial 

position, whereas axial velocity profiles slowly increases with the increasing radial 

distance. This pattern in the axial flow can also be observed in the Figure 5.1.1 in 

which large scale smooth circulations occur at low Re and as radial position 

increases the movement of the fluid becomes rather in the axial direction. Similarly 

at high Re, fluid near the tank wall moves in the axial direction. But in this case this 

region is more confined to the regions that are much closer to the wall as opposed to 
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the low Re cases.  Tangential velocities at high Reynolds number increases until a 

certain radial position (r/R=1.4) and then start to decrease towards zero. At low 

Reynolds numbers, along the radial distance there is not any variation of tangential 

velocity components. 
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(b) 

Figure 5.1.4.5. Velocity components as a function of radial position and Re above the 
impeller (z=+25 mm) (a) radial velocity, (b) axial velocity, (c) tangential velocity. 
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 Figure 5.1.4.5. (continued) 

    (c) 

 

The flow pattern below impeller blade: 

 Figure 5.1.4.6 shows the dimensionless radial, axial and tangential velocity 

patterns as a function of radial position and Re. In this figure radial velocity at high 

Reynolds numbers decreases along radial distance. However there is not any 

significant change in radial velocity below the impeller at low Reynolds numbers. 

Axial velocity at low Reynolds numbers almost goes to the zero along the radial 

distance. Actually flow pattern in the axial direction is quite similar to the above 

impeller cross-section. The main differences are the negative or downward direction 

of the velocity and more pronounced oscillations due to the presence of the tank 

bottom. However as Re gets higher decrease below to zero with increase the radial 

position. Tangential velocity at low Reynolds numbers does not change along the 

radial distance but with increase the Reynolds numbers they goes to zero along the 

radial position. 
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Figure 5.1.4.6 Velocity components as a function of radial position and Re below the 
impeller (z=-35 mm)  (a) radial velocity, (b) axial velocity, (c) tangential velocity. 

(b) 
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Figure 5.1.4.6. (continued) 

 

5.1.5 The effects of the baffle presence on the flow field 

 The effects of the baffles on the radial and tangential velocity profiles are 

investigated at Re=760. Figure 5.1.5.1 shows the axial profile radial velocity 

components at radial distance 8mm from the impeller edge with baffle and without 

baffles. It can be seen that at the same radial distance, the radial velocity with baffles 

is greater than that without baffles. This is because of the baffles reduce the vortex as 

a result of this radial velocity decreases while tangential velocity components 

increases at the same radial distance as shown Figure 5.1.5.2. 

 Tangential velocity greatly decreases by insertion of baffles. In unbaffled 

stirred tank tangential velocity proportional to the vortex zone radius and it increase 

the increasing impeller speed. Therefore in unbaffled system tangential velocity 

increased with increasing impeller speed while radial velocity decreased. 
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Figure 5.1.5.1 Axial profile radial velocity at Re=760  
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Figure 5.1.5.2 Axial profile tangential velocity at Re=760  

 



 

5.1.6 Kinetic energy and kinetic energy dissipation rate 

 Turbulent kinetic energy and turbulent dissipation rate are evaluated at 

Reynold number 104 using k-ε model. The value of k calculated from equation 

(5.1.6.1): 

)(
2
1 222

zr VVVk ++= θ            (5.1.6.1) 

where 2
rV , 2

θV , 2
zV  are the fluctuating velocities radial, tangential and axial direction 

respectively. Figure 5.1.6.1 depicts the turbulent kinetic energy, which is normalized 

by U2
tip at the various radial locations from the blade edge. Near the impeller change 

in the k values as a function of axial locations occur stronger than those regions of 

more distant regions. Higher turbulent kinetic energies in vicinity of the impeller can 

be expected. The fluctuations in the k values with respect to axial position indicate 

that there are regions where fluid has a higher kinetic energy than others which can 

be explained through the turbulent eddies having characteristic length and velocity 

scales of the impeller height and velocity, respectively. 
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Turbulent dissipation rate: 

Figure 5.1.6.1 Axial distribution of the turbulent kinetic energy 
distribution at various radial locations. 

Turbulent dissipation rate can be defined as: 

 

where A is the constant, determined experimentally and it is approximately unity. L 

is the geometrical distance commonly chosen as impeller blade height (b) (Calabrese 

and et al., 1989). The characteristic features of turbulence irregularity and 

disorderliness, involve various periodicities and scales. For this reason turbulence 

consists of eddies of ever-smaller size. All these various sized eddies have a certain 

kinetic energy, determined by the intensity of the velocity fluctuation (Hinze, 1975). 

In the stirred tank small size eddies are generated by the impeller baffle interaction 

and they contain significant portion of the total kinetic energy. Turbulent energy is 

mostly dissipated by viscous effects in these smaller eddies. Figure 5.1.6.2 shows the 

radial profiles of the turbulent dissipation rate normalized with the tank average 

power consumption rate through impeller. Maximum dissipation rates occur 

L
Ak 2/3

=ε
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approximately at the mid point of the impeller stream where fraction of the small size 

eddies is high.  
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Figure 5.1.6.2 Radial distribution of the turbulent kinetic energy dissipation rate.

5.2 Power Number 

Second part of our study is on the determination of the power consumption 

and the effects of the baffle length on the power number at different Reynolds 

numbers. Several shape factors have strong effect on the power number which are 

given in Chapter 2. In this section only one of those parameters, baffle length, is 

considered since it has been reported as the most effective parameter on the power 

consumption among the shape factors in the literature (Holland and Chapman, 1996). 

Figure 5.2.1 shows the experimentally obtained power number versus Re, 

which is plotted in log-log scale for a standard tank configuration. Figure 5.2.1 

shows  that at low Reynolds numbers the plot is linear. In this range the viscous 

forces dominate the system. As the Reynolds number increases the flow changes 

from laminar to turbulent, the power curve becomes horizontal. For lower impeller 
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Reynolds numbers (10 and 760), the predicted power numbers are in excellent 

agreement with the reported data (Bates et al., 1963). For the turbulent regime, the 

power number is rather under predicted (approximately 28 %). This can be due the 

constant parameter used in k-epsilon model, which may not be accurate enough for 

the flow field in stirred tanks.   
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 Figure 5.2.1 Power number as a function of Re for standart tank 
configuration 

 

 Effect of the baffle length on power number: 

Figure 5.2.2 shows the effect of the baffle length on the power number. In this 

figure horizontal axis depicts baffle length normalized with the impeller diameter. At 

both Re=760 and Re=10, power number gets higher with increasing w/Di ratio. This 

is because of the larger baffle area which in turn leads to increased turbulent kinetic 

energy dissipation rate near the baffle surfaces. 
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Figure 5.2.2. Effect of the baffle length on the power number 
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CHAPTER 6 

CONCLUSIONS 

 
The flow field and power consumption generated by Ruhton turbine impeller have 

been calculated using computational fluid dynamics techniques in conjuction with a 

multiple frame of reference method for various Reynolds numbers in both laminar 

and turbulent regime. The results obtained in this study allow one to draw the 

following conclusions: 

1. Multiple frame of reference method has demonstrated that it is able to 

simulate the flow in stirred tanks and to produce realistic predictions.  

2. In the r-z plane a strong radially oriented flow is observed to emerge from the 

impeller, producing two main recirculation flows, one above and the other 

below the impeller plane. Location of the circulation loops’ centers change 

with increasing Reynolds numbers and move closer to the impeller plane. 

3. Axial distribution of the center-line radial velocity components decrease with 

increasing radial distance from the impeller. But tangential velocity remain 

higher than the radial velocity and increase until radial distance r/R=1.16.  

After this location decreases with increasing radial distance. The axial 

velocity component is much smaller than the other components through the 

impeller stream and far away from the impeller it almost vanishes. 
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4. Impeller plane radial velocity is not significantly affected by the Reynolds 

numbers. Tangential velocity appreciable decrease at higher radial positions 

or away from the impeller region for all Re numbers. Axial velocity is found 

nearly zero especially in the laminar region. 

5. At low Re numbers, radial velocity above the impeller becomes almost zero 

because of the stagnation region. However Tangential velocity is found to 

increase until a certain radial position (r/R=1.4) and then starts to decrease 

towards zero. Axial velocity diminishes along the radial position. 

6. Radial velocity decreases below the impeller along the radial distance but 

tangential velocity does not change. Axial velocity exhibits similar 

characteristics to the axial velocity above the impeller. 

7. Radial velocity component in an unbaffled vessel significantly decreases 

while tangential velocity gets higher at the same radial position. 

8. Turbulent kinetic energy decreases as a function of radial position at 

Re=10000. In addition, maximum turbulent kinetic energy dissipation rate is 

found approximately at the mid point of the impeller stream where fraction of 

the small sized eddies is higher compared to the other tank locations. 

9. Power curve is found in excellent agreement with the experimental data. 

Using larger baffle lengths lead to higher power consumption or power 

number. 
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