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ABSTRACT 
 

LATERAL PRESSURES ON RIGID RETAINING WALLS : 

A NEURAL NETWORK APPROACH 

 

Yıldız, Ersan 

M.S., Department of Civil Engineering 

Supervisor : Prof. Dr. M. Yener Özkan 

 

August 2003, 101 pages 

 

Lateral pressures  on non-yielding walls due to surface strip loads were 

investigated considering the non-linear stress-strain behaviour of the soil by finite 

element analyses. Data obtained from the finite element analyses were used to 

train neural networks in order to obtain a solution to assess the total lateral thrust 

and its point of application on a non-yielding wall due to a strip load. A 2-layered  

backpropogation type neural network was used. An artificial neural network 

solution was obtained, as a function of six parameters including the shear strength 

parameters of the soil ( cohesion and angle of friction ). The effects of each input 

parameter on the lateral thrust and point of application  were summarized and the 

results were compared with the conventional linear elastic solution. 

 

Keywords : Lateral pressure, Strip load, Neural networks, Hardening soil model 

        

 

 

 

 



 

 

 

ÖZ 
 

RİJİT DUVARLARA UYGULANAN YANAL BASINÇLAR: 

YAPAY SİNİR AĞI YAKLAŞIMI 

 

Yıldız, Ersan 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. M. Yener Özkan 

 

 Ağustos  2003, 101 sayfa 

 

Yüzeysel şerit yüklerin rijit istinat duvarları üzerinde uyguladıkları yanal 

basınçlar, zeminin doğrusal olmayan gerilme-deformasyon özellikleri göz önüne 

alınarak incelenmiştir. Sonlu elemanlar yöntemi ile bulunan veriler, yüzeysel şerit 

yükten dolayı bir rijit istinat yapısına gelen toplam yanal kuvvetin ve bu kuvvetin 

tatbik noktasının tahmini amacıyla yapay sinir ağlarının eğitilmesinde 

kullanılmıştır. Bu amaçla 2 tabakalı geri-yayılımlı tipte ( back-propogation type ) 

sinir ağından yararlanılmıştır. Duvara gelen toplam yük ve tatbik noktasının 

hesaplanması için kullanılabilecek ve 6 girdinin  bir fonksiyonu olan, yapay sinir 

ağı çözümü elde edilmiştir. Her bir girdi parametresinin toplam yanal kuvvet ve 

tatbik mesafesine olan etkileri belirtilmiş ve sonuçlar dogrusal elastik çözümle 

karşılaştırılmıştır. 

 

Anahtar kelimeler : Yanal basınç, Şerit yük, Yapay sinir ağı 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 
In many applications of soil engineering, lateral pressures acting on non-yielding 

retaining walls due to surface strip loads behind the wall are required. 

 

Retaining structures supporting continuous wall footings, highways, railroads and 

crane loads are typical examples for the surface strip loading. 

 

In the case of a rigid retaining wall, linear elastic solutions based on Bousinessq’s 

equations( Misra 1981, Jarquio 1981) are frequently used for the determination of 

the lateral thrust due to strip loads. However, the theory of elasticity does not 

consider the strength  and the variation of the stiffness of the soil with different 

stress states. 

 

The objective of this study is to investigate the lateral earth pressures acting on 

rigid retaining walls due to surface strip loading only by modelling the soil as an 

elastoplastic material having non-linear stress-strain relationship. For this purpose, 

a finite element program “ PLAXIS ver. 7.11” is used for the calculations. 

 

It is proposed to obtain a closed-form solution for the calculation of the total 

lateral thrust and its point of application considering the non-linear stress-strain 

relationship of the soil, as an alternative to the linear elastic solution. 



The closed form  solution is proposed to be obtained  by  using a new tool, 

artificial neural networks, based on the results of  various finite element analyses. 

“MATLAB ver. 6.0 Neural Network Toolbox” is used to establish and train the 

neural networks in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 2 

 

 

LATERAL EARTH PRESSURE  
 

 

 

2.1 LATERAL EARTH PRESSURE  

 

Lateral earth pressure is the lateral force exerted by the soil to an adjoining 

retaining structure. It is dependent on the soil structure and the interaction of soil 

with the retaining structure.  

 

The classical solutions of lateral earth pressure are Coulomb’s (1773) and 

Rankine’s (1857) earth pressure theories. These fundamental solutions still form 

the basis  of  earth pressure  calculations today. All earth  pressure theories now 

available have their roots in Coulomb and Rankine’s work. ( Coduto, 2001 ) 

 

 

2.1.1 RANKINE’S THEORY OF EARTH PRESSURE  

 

Rankine’s theory considers the state of stress in a soil mass when the condition of 

plastic equilibirium has been reached. The Mohr circle representing the state of 

stress at failure in a two dimensional element is shown in Fig. 2.1. Shear failure 

occurs along a plane at an angle of ( 45 + φ/2 ) to the major principal plane. If the 

whole soil mass is stressed that the principal stresses are in the same directions for 

every point, there will be a network of failure planes as shown in Fig. 2.1. It 



should be noted that sufficient deformation is required for the development of the 

plastic equilibrium. 

 

A semi-infinite mass of soil with a horizontal surface and having a vertical 

boundary formed by a smooth wall surface extending to semi-infinite depth is 

considered as shown in Fig. 2.2. The soil is assumed to be homogenous and 

isotropic. A soil element at a depth  z  is subjected to a vertical and horizontal 

stress and since there can be no lateral transfer of weight if the surface is 

horizontal, no shear stresses exist on horizontal and vertical planes. Therefore the 

vertical and horizontal stresses are principal stresses. 

 

Active Case : 

 

Suppose that such a soil deposit is stretched in the horizontal direction by a 

movement of the wall away from the soil. The value of  σx  decreases due to 

expansion outwards; if the expansion is large enough, the value of  σx  decreases to 

a minimum value such that a state of plastic equilibrium develops. Therefore σx  

and σy  are minor and major effective stresses  (σ3  and  σ1)  respectively.  

 

 
Figure 2.1 State of plastic equilibrium (Craig 1992) 



 
Figure 2.2 Active and passive Rankine states (Craig 1992) 

 

The value of  σ3 ( = σx ) is determined when a Mohr circle through the point 

representing σ1 touches the failure envelope. The relationship between σ1  and σ3  

when the soil reaches a plastic equilibirum state can be derived from this Mohr 

circle as: 
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The horizontal stress for the above condition is defined as the active pressure (pa). 

If 
φ+
φ−

=
sin1
sin1K a    is defined as the active pressure coefficient, then Equation 2.1 

can be written as:  

 

aaa Kc2zKp −γ=              ( 2.2 ) 

 

When the horizontal stress becomes equal to the active pressure the soil is said to 

be in the active Rankine state. 



 

Passive Case : 

 

If  the wall is moved against the  soil mass the soil will be compressed in the 

horizontal direction  and the value of σx will increase until a state of plastic 

equilibirum is reached. Therefore σx  and σy  are major and minor effective stresses 

(σ1  and  σ3)  respectively.  

 

The maximum value of σ1   is reached when the Mohr circle through the point  

representing σ3  touches the failure envelope. In this case the horizontal stress is 

defined as the passive pressure ( pp ). Rearranging Equation  2.1 : 

 

φ−
φ+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φ+
φ+

σ=σ
sin1
sin1c2

sin1
sin1

31                       ( 2.3 ) 

 

If   
φ−
φ+

=
sin1
sin1K p   is defined as the passive pressure coefficient Equation 2.3 can 

be written as: 

 

ppp Kc2zKp +γ=              ( 2.4 ) 

 

When the horizontal stress becomes equal to the passive pressure the soil is said to 

be in the passive Rankine state.  

 

If a uniformly distributed surcharge pressure of  q  per unit area acts over the entire 

surface of the soil mass,  the vertical stress at any depth is increased to ( γz + q ), 

resulting in an additional earth pressure of  Kaq  in the active state or Kpq  in the 

passive state. 

 

 

 



2.1.2 COULOMB’S THEORY OF EARTH PRESSURE 

 

Coulomb’s theory considers the stability of a wedge of soil between a retaining 

wall and a trial failure plane. The force between the wedge and the wall surface is 

determined by considering the equilibrium of forces acting on the wedge when it is 

on the point of  sliding up or down the failure plane. 

 

Friction between the wall and the soil is taken into account. The angle of friction 

between the wall and soil material, denoted by δ and a constant component of 

shear resistance or wall adhesion, cw are considered. 

 

The shape of the failure surface is curved near the bottom of the wall due to wall 

friction in both active and passive cases ( Fig. 2.3 ), but in the Coulomb theory the 

failure surface is assumed to be plane in each case. The error due to this 

assumption is relatively small for the active case and for the passive case for 

values of δ  less than φ /3, but for the higher values of  δ  the error becomes 

relatively large. ( Craig, 1992 ) 

 

 
Figure 2.3 Curvature due to wall friction (Craig 1992) 

 

 

Active Case : 

 

The forces acting on the soil wedge between a wall surface and a trial failure plane 

are shown in Fig. 2.4 The cohesion parameter c is taken as zero. For the failure 

condition the soil wedge is in equilibrium under its own weight ( W ), the reaction 



force between the soil and the wall ( P ) and the reaction on the failure plane ( R ). 

Because the wedge tends to move down the plane at failure, P acts at an angle δ  

below the normal to the wall. At failure, when the shear strength of the soil has 

been fully mobilized, the direction of R is at an angle φ  below the normal to the 

failure plane. The directions of  the three forces and the magnitude of W are known 

so that the magnitude of P can be determinded from the triangle of forces         

(Fig. 2.4).  

 

 
Figure 2.4 Coulomb theory, active case with c = 0 (Craig 1992) 

 

Different failure planes have to be selected to obtain the maximum value of P. 

However the maximum value of P can be solved by expressing P in terms of W 

and the angles and differentiating with respect to θ,  ∂P/∂θ = 0 as : 
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The point of application of the total active thrust is assumed to act at a distance of 

H/3 above the base of the wall. 

 

The Coulomb theory can be extended to soils that have a cohesion parameter c 

greater than zero, a value is then selected  for the wall parameter cw. It is assumed 

that tension cracks may extend to a depth z0 , the trial failure plane extending from 

the heel of the wall to the bottom of the tension zone, as shown in Fig. 2.5. The 

forces acting on the wedge are the weight of the wedge ( W ), the reaction between 

the wall and soil ( P ), the force due to constant component of shearing resistance 

on wall ( Cw = cw x EB ), the reaction on the failure plane ( R ), the force on the 

failure plane due to constant component of shear strength ( C = c x BC ).  

 

The directions of all five forces are known together with the magnitudes of W, Cw 

and C so that the value of P can be determined from the force diagram. Again 

different trial failure planes have to be selected to obtain the maximum value of  P. 

(Craig, 1992) 

 

 
Figure 2.5 Coulomb theory, active case with c > 0 (Craig 1992) 

 

 

Passive Case : 

 

In the passive case the reaction P  acts at an angle δ  above the normal to the wall 

surface and the reaction R at an angle φ  above the normal to the failure plane.  In 



the triangle of forces the angle between the W and P is ( 180 - α + δ ) and the angle 

between  W and R is ( θ + φ ). The total passive resistance, equal to the minimum 

value of P, is given by : 

 

2
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2.1.3 EARTH PRESSURE AT REST 

 

If  lateral strain in the soil is zero the corresponding lateral pressure is called the 

earth pressure at-rest and is expressed as : 

 

z'Kp 00 γ=                  ( 2.9 ) 

 

where K0 is defined as the coefficient of earth pressure at-rest in terms of effective 

stress. 

 

At-rest condition does not involve the failure of the soil, K0 can be determined 

from laboratory  or in-situ tests and emprical correlations. 

 

Generally, for any condition intermediate to active and passive states the value of 

the lateral stress is unknown. The range of possible conditions can only be 

determined experimentally. Fig. 2.6 shows the relationship between strain and 



lateral pressure coefficient.The exact relationship depends on the initial value of  

K0  and on whether excavation or backfilling is involved in the construction.           

( Craig, 1992 ). 

 

For normally consolidated soils the value of  K0  can be  found  by the formula 

proposed by Jaky ( 1944 ): 

 

'sin1K 0 φ−=                ( 2.10 ) 

 

 
Figure 2.6 Relationship of lateral strain and lateral pressure coefficient  

(Craig 1992) 

 

 

2.2 LATERAL PRESSURE DUE TO SURFACE STRIP LOAD 

 

In many earth retaining problems, it is necessary to consider additional earth 

pressures produced by strip loads acting on the soil surface behind the wall. 

Retaining structures supporting continuous wall footing, highway and railroad 

loadings are practical examples in which the strip load type of surcharge is 

applicable.  

 



Some methods used to calculate the lateral earth pressures on  retaining structures 

due to surface strip load are summarized as : 

 

2.2.1 LINEAR ELASTIC SOLUTION  

 

The stresses within a semi-infinite, homogenous, isotropic mass, with a linear 

stress-strain relationship, due to a point load on the surface, were determined by 

Bousinessq in 1885. The stresses due to surface loads distributed over a particular 

area can be obtained by integration from the point load solutions. 

 

Assuming that the soil behaves as a linear elastic material of constant modulus of 

elasticity, the lateral earth pressure caused by strip surface load is (Jarquio, 1981) : 

 

σh = 2q/π .(β−sinβcos2α)                                  ( 2.11 ) 

 

 
Figure  2.7 Linear elastic solution (Jarquio 1981) 

 

 



2.2.2 GENERALIZED COULOMB ACTIVE EARTH PRESSURE FOR 

DISTANCED SURCHARGE  

  

This method is suggested by Motta(1994). The basic assumptions of this method 

are that the soil is homogenous, dry and cohesionless; the failure surface of the 

wedge is a plane; and the extesion of the uniformly distributed load  q is large 

enough that it is intersected by the failure plane as shown in Fig. 2.8.  

 

Based on the notations on Figures 2.8 and 2.9, cricital angle (αc ) for the failure 

plane, the angle that gives the maximum-earth pressure can be found by the 

following expression : 

 

( ) ( )
bcos  asinccosA
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   ( 2.12 ) 

 

where a = φ’ + δ − i ; b = φ’− i – θ ; c = θ + δ  and  

 

A = [(1+nq)sin(i)cos(i) + λnq ] / [(1 + nq) cos2(i)  

 

nq = 2q / γH ;  λ = d / H 

 

The active earth-pressure coefficient for the self-weight of the soil and the 

surcharge can be found as follows: 
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The total active earth pressure due to the self-weight and the surcharge is: 

 

Sa = 1 / 2 * γ H2 Ka,γq                        ( 2.14 ) 



 

The above equations are valid only if αc < α1, that is :  tan ( αc ) < tan (i) + 1 / λ 

 

 

Figure 2.8 Scheme for Earth Pressure Evaluation (Motta 1994) 

 

 
Figure 2.9 Limits for Boundary Conditions (Motta 1994) 

 

 

2.2.3 BETON KALENDER APPROACH  

 



For yielding retaining walls, Beton Kalender(1983) recommends the use of an 

approximate method ( As cited in Reference 9 ). As shown in Figure 2.10 a 

uniform or  triangular lateral surcharge pressure distribution can be obtined. 

 

 

1. For  uniform pressure distribution : 

 

σh1 = [q.b.cosδ.sin(45-φ/2)] / [d.cos(45 -  φ/2 − δ ]                     ( 2.15 ) 

 

2. For  triangular pressure distribution : 

 

σh11 = [q.b.cosδ.sin(45-φ/2)] / [2d.cos(45 -  φ/2 − δ ]                             ( 2.16 ) 

 

where δ  is the angle of wall friction in degrees. 

 

 

Figure 2.10 Beton Kalender Approach (Georgiadis and Anagnostopoulos 1998) 

 

 



2.2.4  45ʔ  DISTRIBUTION APPROACH  

 

This approach is suggested by Cernica(1995) for distanced surcharge loading and 

adopted to strip loading case by Georgiadis and Anagnostopoulos (1998). It 

considers that the strip load q is distributed at 45ʔ  angles as shown in Figure 2.11.  

The  lateral pressure is obtained by: 

 

q
2ab

b cosK a h +
δ= σ                                                                                     ( 2.17 ) 

 

where Ka = active earth pressure coefficient; δ= friction angle between the soil and 

the wall; a= distance between the load and the wall; b= width of the strip load. 

 

 
Figure 2.11 45o distribution approach (Georgiadis and Anagnostopoulos 1998) 

 

 

 

2.2.5 ADDITIONAL INFORMATION ABOUT LATERAL PRESSSURES 

DUE TO STRIP LOAD 

 



Georgiadis and Anagnostopoulos (1998) have presented an experimental 

investigation of the problem, in which model test measurements are compared to 

bending moments computed using the lateral earth pressure theories mentioned 

before. A cantilever sheet pile wall installed in a 1200 x 300 x 500mm-deep tank 

filled with fine to medium sand for the model tests. 

 

Lateral earth pressures obtained with these methods , for a strip load q=12 kPa 

applied at a distance a=200 mm from a 250 mm deep excavation are presented in 

Figure 2.12. Total bending moments computed using combined active earth 

pressures and surcharge pressures are compared to measured bending moments in 

Figure 2.13. It is clear from the figures that the best predicitions are obtained  by 

the Coulomb and  45o distribution approaches for the model sheet pile wall. The 

elastic solution gives extremely large bending moments, which were up to eight 

times larger than the measured values. No information regarding the displacement 

of the model sheet pile wall is given in the report by Georgiadis and 

Anagnostopoulos. 

 

Georgiadis and Anagnostopoulos have also performed finite element analyses. A 

rigid wall, supporting a uniform strip load q = 12kPa at a distance a = 200 mm, 

was analyzed considering rotation around a hinge placed at a depth of 500 mm. 

The soil was modelled as an elastic material and friction between the wall and the 

soil is neglected.  

 



 
Figure 2.12 Lateral surcharge pressure distributions for various methods 

(Georgiadis and Anagnostopoulos 1998) 

 

 
Figure 2.13 Comparison of measured and predicted bending moments 

(Georgiadis and Anagnostopoulos 1998) 

 



 
Figure 2.14 Effect of wall movement on lateral surcharge pressures 

(Georgiadis and Anagnostopoulos 1998) 

 

Fig. 2.14 shows the lateral earth pressures obtained for various wall rotations and 

corresponding wall movements (y0) at ground level. Fig. 2.15 shows the computed 

bending moments for these lateral pressure distributions. It can be seen from the 

figures that, even small lateral yielding of the wall significantly reduces lateral 

surcharge pressures and bending moments determined by elastic theory.  

 
Figure 2.15 Effect of wall movement on bending moments 

(Georgiadis and Anagnostopoulos 1998) 

 



 

 

Jarquio(1981) has derived  a direct solution for the total lateral surcharge pressure 

and for the location of the centroid of the total lateral surcharge pressure and the 

point of maximum unit lateral pressure based on Bousinessq’s equations. 

 

Based on notations on Figure 2.16, the total lateral surcharge pressure is : 

 

P = q[h(θ2-θ1)]/90            ( 2.18 ) 

 

where  θ1 and θ2 are expressed in degrees. 

 

Dimensions “a” and “b” should be included within the soil wedge defined by θ and 

x and y axes. 

 

For active pressure condition: θ = (45-φ/2) 

 

For  passive pressure condition : θ = (45+φ/2) 

 
Figure 2.16 Notations for total lateral surcharge pressure (Jarquio 1981) 

 



For further information ( about the determination of the point of application ) the 

reader is referred to Jarquio(1981). 

 

 

Jarquio(1981) suggests the use of  direct solutions based on  Bousinessq’s 

equations for both yielding or unyielding retaining wall structures with the soil 

wedge behind it either in the active or passive mode of failure depending on the 

given condition of  the problem.  

 

However, Steenfelt and Hansen(1983) reports that the presented formulas by 

Jarquio(1981) seem reasonable for only unyielding structures and suggests the use 

of Coulomb’s earth pressure theory for yielding walls. 

 

As shown in Fig. 2.14, wall movement has a considerable effect on the lateral 

pressure distributions and as shown in Fig. 2.13, and the linear elastic solution  is 

not applicable to yielding walls ( as for the cantilever sheet pile wall ) that the 

results can be very conservative. 

 

A non-displacing rigid retaining wall is  assumed in this study; the linear elastic 

solution is the most convenient one for this case among the solution methods 

mentinoned before. So the results of the obtained neural network solution (that 

considers the non-linear stress-strain behaviour of the soil ) will be compared to 

linear elastic solution. 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER  3 

 

 

MATERIAL MODEL 

 

 

 
3.1  INTRODUCTION 

 

A realistic assesment of the behaviour of the soil should be made by the 

geotechnical engineers in order to carry out a meaningful analysis.Accounting for 

the highly complex nature of soil behaviour,  some models  are obtained by 

simplification of the real behaviour of the soil. 

 

Linear elastic models based on Hooke’s law are generally used for the analysis of 

a soil mass when no failure is involved. This is known as the “elasticity problems”. 

On the other hand, theories of plasticity are used to deal with the conditions of 

failure of a soil mass. These are called “stability problems”. Due to the simplicity 

in practice and historical development of mechanics of solids, the elasticity 

problems and the stability problems in soil mechanics are frequently  treated 

seperately in some unrelated ways. The connection between the elasticity problems 

and the stability problems is known as the progressive failure problems that deal 

with the elastic-plastic transition from the initial linear elastic state to the ultimate 

state of the soil by plastic flow. The set of equations for the solutions of 

progressive failure problems is called the “constitutive equations of soils”, which 

give unique relationship of stress and strain for different geotechnical materials.  

 



Typical stress-strain relationships for soils in the triaxial tests are shown in Fig. 

3.1. It can be seen in the figure, the relation of the deviatoric stress σ3−σ1 v.s. axial 

strain ε1 for a normally consolidated clay in a drained test and overconsolidated 

clay in an undrained test is characterized by a non-linear response curve that rises 

at a slower rate after reaching a certain stress level. This phenomenon is known as 

“strain hardening” which will be discussed later in this chapter. The stress-strain 

curves for the overconsolidated clay in a drained test and normally consolidated 

clay in an undrained test have a peak that occurs at a low strain level. And the 

material becomes weaker for strains beyond the strain corresponding to the peak 

stress. This phenomenon is known as “strain softening”. 

 

 
Figure 3.1 Typical stress-strain curves for soil (Chen and Mizuno 1990) 



Similar conclusions can be made from Fig. 3.1 for sand. Dense sand in an 

undrained test and loose sand in a drained test show strain-hardening behaviour. 

On the other hand, dense sand in a drained test and loose sand in an undrained test 

show strain softening. (Chen and Mizuno 1990) 

 

Hardening soil model ( Schanz et al. 1999 ) which is used in this study to model 

the soil will be discussed in this chapter. To understand hardening soil model         

( which is a non-linear plastic model ) better, a review of plasticity and the well 

known   Duncan-Chang  hyperbolic model  is briefly outlined in this chapter.  

 

 

3.2  LINEAR  ELASTICITY 

 

The linear elastic model (Generalized Hooke’s Law) is the simplest model and 

gives a unique and linear relation between the state of stress and strain. If a linear 

elastic materail is stressed in the x direction only by a normal stress σx, then it 

experiences strains as :  

 

εx = σx / E              ( 3.1 ) 

εy = -υσx / E       ( 3.2 ) 

εz = -υσz / E              ( 3.3 ) 

 

where E is the modulus of elasticity (Young’s modulus) and υ  is the Poisson’s 

ratio. If a shear stress τxy is applied, the material experiences shear strain, γxy, as : 

 

γxy = G.τxy                 ( 3.4 ) 

 

where G is the shear modulus and can be expressed as : 

 

)1(2
EG

υ+
=               ( 3.5 ) 



Elastic bulk modulus K is expressed as  : 

 

)21(3
EK

υ−
=               ( 3.6 ) 

 

which relates the volumetric strain to mean normal stress as : 
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             ( 3.7 ) 

 

As described above, only two parameters ( E and υ ) are sufficient to define the 

stress-strain relationship for soil if it is assumed to be linear elastic. The 

disadvantage of this model is that, the strength of the soil has no influence on the 

stress distributions or displacements. Also the linear elastic model lacks of the 

effect of the variation of the soil properties with depth or different stress states.  

 

 

3.3 REVIEW ON PLASTICITY  

 

For many materials, the stress-strain relationship in not unique ( as in the linear 

elastic model ) and many states of strain can correspond to one state of stress and 

vice versa. The stress-strain curve obtained from a tension test on a metal bar is 

shown in Fig. 3.2. The relation between stress and strain is linear for the initial 

portion OA. The stress-strain relation is reversible in any unloading case from any 

point on OA. If the bar is loaded beyond A, subsequent unloading is also 

reversible but non-linear. However, there is a point B beyond which unloading is 

not reversible. This point is called as the yield point of the material. The points A 

and B can often be regarded as coincident for practical purposes. If the bar is 

loaded to point C and unloaded, the path CD is followed, resulting in a permanent 

strain represented by OD. This permanent strain is called as the plastic strain. 

When the material is loaded to point C, the total strain is the sum of the plastic 



strain, OD, and elastic strain, DE. Further loading beyond C continues until the bar 

fails ( at point F ). The stress at the point F is often called as the ultimate strength. 

 

Let’s consider two identical bars tested. The first has gone through a stress cycle 

OCD, but the second has not. It can be seen that  the first bar has a higher yield 

point than the second one. Then we can say that the first bar is harder than the 

second. The raising of the yield point is called as hardening. The term strain-

hardening is used to describe this kind of behaviour. ( Britto and Gunn 1987 ) 

 

 
Figure 3.2  Typical stress-strain curve for metals (Britto and Gunn 1987) 

 

To model the materials having plastic behaviour, some idealisations have to be 

made. In such idealisations, the main features of the behaviour are identified but 

aspects of secondary importance are ignored.  

 

Fig. 3.3 shows some widely used idealisations of plastic behaviour. In elastic-

perfectly plastic model, the material shows linear elastic behaviour until it yields. 

After yielding, the material continues to deform at constant yield stress. In elastic, 

strain-hardening plastic model, the stress-strain curve remains linear at a reduced 

slope after yielding. When only collapse loads are to be considered in a 

calculation, it is convenient to use rigid-plastic models in which no elastic strain 

exists.  



 
Figure 3.3 Idealisations of plastic behaviour (Britto and Gunn 1987) 



To completely describe the stress-strain relations for an elasto-plastic material, 

four different types of statement are required : ( Britto and Gunn 1987 ) 

 

1- A yield function : This generalises the concept of yield stress for one-

dimensional loading  to two or three dimensional stress states. 

 

2- A relationship between the directions of the principal plastic strain increments 

and the principal stresses. 

 

3- A hardening rule : This is the relationship between the amount of hardening and 

plastic strain when the material is yielding. Thus the hardening rule determines the 

changes  in the yield surface. 

 

4- A flow rule : This specifies the relative magnitudes of the incremental plastic 

strains when the material is yielding. 

 

 

3.3.1 YIELD FUNCTION 

 

If  a material is subjected to two or three dimensional states of stress, the state of 

the material ( elastic or plastic ) depend on all the stress components ( six in the 

fully three dimensional case ). If the material is isotropic, then it’s sufficient to 

consider only the principal stresses ( σa , σb and σc ), and generally the yield 

functions are expressed in terms of them. 

 

In general a yield function is written as: 

 

f( σa, σb, σc ) = 0, 

 

this equation representing a surface in three-dimensional stress space. Generally 

yield function is written in such a way that, the negative value of the function for 

the current stress state indicates that the behaviour is elastic (inside the yield 



surface). A zero value of the function indicates that yielding takes place and 

positive values are not allowed. 

 

 

3.3.2 A PARTICULAR YIELD FUNCTION : MOHR-COULOMB FAILURE 

CRITERION  

 

The Mohr-Coulomb failure criterion by Coulomb (1773) is the most commonly 

used yield function for soils. According to this criterion : 

 

)tan(cf φσ+=τ               ( 3.8 ) 

 

where τf is the shear strength (maximum shear stress) at a point on any plane 

within a soil mass and σ is the normal stress at the same point on the same plane. c 

and φ are the shear strength parameters described as the cohesion and the internal 

angle of friction respectively. Generally it is preferred to write this equation in 

terms of effective stresses : 

 

)tan(cf φ′σ′+′=τ               ( 3.9 ) 

 

This equation is generally treated by a Mohr’s circle, however it can be 

represented in three-dimensional stress space as : 

 

)cot(c2).(sin( 3131 φ′′+σ′+σ′φ′=σ′−σ′          ( 3.10 ) 

 

where 31 and σ′σ′   are the major and minor effective stresses respectively. There 

can be six possible permutations of the magnitudes of the three principal stresses 

such as: σa > σb > σc , σb > σc > σa , ... etc. Therefore six planes are generated in 

principal effective stress space and the Mohr-Coulomb criterion is represented by 

the surface of  an irregular hexagonal pyramid as shown in Fig. 3.4.  

 



 
Figure 3.4 Mohr-Coulomb yield surface (Britto and Gunn 1987) 

 

When the stress state of the material is inside the yield (failure) surface, the 

behaviour is elastic. The yielding occurs if the stress state is described by a point 

on the yield surface. Stress states outside the failure surface are impossible to 

attain. 

 

The disadvantage  of  the use of Mohr-Coulomb criterion for soils is that, soils 

show evidence of volumetric yielding under isotropic stress changes where Mohr-

Coulomb suggests elastic behaviour. ( Britto and Gunn 1987 ) 

 

 

3.3.3 HARDENING RULE  

 

The hardening rule is used to define the motion ( changes in size,shape and 

location ) of the yield surface during plastic loading. Hardening rules are classified 

as isotropic hardening, kinematic hardening and mixed hardening. The yield 

surface expands uniformly in isotropic hardening, while it moves as a rigid body in 

stress space in kinematic hardening. (See Fig. 3.5) Mixed hardening combines 



both of these types of hardening and permits the yield surface to expand or 

contract unifomly and to translate in stress space. 

 

If  the loading is monotonic, then the isotropc hardening rule is adequate to 

describe the material behaviour. The kinematic hardening rule is suitable for 

materials under cyclic and reversed type of loadings. ( Chen and Mizuno 1990 ) 

 

 

3.3.4 FLOW RULE  

 

The flow rule defines the ratios of plastic strain increments for a yielding material 

at a particular stress state. It defines only the relative sizes of individual strain 

increments, not their absolute sizes. The following expression is used to define the 

flow rule : 

 

σ∂
∂

δλ=δε
gp               ( 3.11 ) 

 

where pδε  is the plastic strain increment, δλ   is the proportionality factor and g is 

the plastic potential function. 

 

The plastic potential function, g (σa , σb , σc) = 0 defines such a surface in principal 

stress space that, the plastic strain increment vectors are normal to this surface. ( 

See Fig. 3.6 ) The yield function can be used as a potential function for many 

materials. This is called as the normality condition or associated flow rule. If a 

potential function different than the yield function is used, then it is called as non-

associated flow. 

 

 



 
Figure 3.5 Isotropic and kinematic hardening (Britto and Gunn 1987) 

 

 
Figure 3.6 The plastic potential (Britto and Gunn 1987) 

 

 



3.4 DUNCAN & CHANG HYPERBOLIC MODEL  

 

Konder and his co-workers approximated the stress-strain curves for both clays 

and sands by the hyperbolic relation : 
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σ−σ
ε
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ε
=σ−σ            ( 3.12 ) 

 

where  σ1 and σ3  are the major and minor principal stresses respectively, ε is the 

major principal strain, Ei is the initial tangent modulus and (σ1 - σ3 )ult  is the 

asymptotic value at infinite strain. This kind of hyperbola is shown in Fig. 3.7. 

 

 
Figure 3.7 Hyperbolic representation of a stress-strain curve (Duncan et al. 1980) 

 

Duncan and Chang (1970) suggested that Ei should be dependent on the confining 

pressure, σ3, and vary in the following manner : 
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where K is the modulus number and n is the modulus exponent, both of which are 

dimensionless numbers. Pa is the atmospheric pressure that should have the same 

units as  σ3. They further suggested that : 

 

ult31ff31 )(R)( σ−σ=σ−σ            ( 3.14 ) 

 

where ( σ1 - σ3 )f  is the compressive strength or principal stress difference at 

failure and Rf is the failure ratio. ( σ1 - σ3 )f  is always smaller than (σ1 - σ3 )ult  and 

Rf changes from 0.5 to 0.9 for most soils. 

 

The compressive strength can be calculated by Mohr-Coulomb failure criterion as : 
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f31            ( 3.15 ) 

 

where  c  is the cohesion intercept and  φ  is the internal angle of friction for the 

soil. The tangent modulus, Et can be calculated by differentiating Eq. 3.12 with 

respect to ε  and  substituting Eqs. 3.13, 3.14 and 3.15  into the resulting 

expression as : 
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In the case of unloading and reloading, Duncan and Chang (1970) proposed the 

use of unloading-reloading modulus, Eur, for both cases. Eur is expressed similarly 

to Ei as : 
n
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where Kur is the unloading-reloading modulus number. The modulus exponent, n, 

is assumed to be the same for both unloading-relading and primary loading. 



Duncan and Chang (1970) assumed  the second elastic constant, Poissons’s ratio, 

to be constant. This assumption is modified by Duncan et al. (1980) by introducing 

a bulk modulus ( B ) for the soil. The bulk modulus is assumed to be independent 

of stress level (σ1 - σ3 ) and vary with the confining pressure. The variation of B 

with σ3  approximated similarly to variation of Ei with σ3 as : 
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where Kb is the bulk modulus number and m is the bulk modulus exponent both of 

which are dimensionless. 

 

As a summary, the non-linear and stress dependent stress-strain characteristics of 

soils are defined by : ( Duncan et al. 1980 ) 

 

1- Tangent values of Young’s modulus ( Et ) which vary with confining pressure 

and the percentage of the strength mobilized. 

 

2- Values of bulk modulus ( B ) which vary with confining pressure and are 

independent of the percentage of the strength mobilized. 

 

The reader is referred to Reference 8 for more details (including determination of 

the hyperbolic parameters, advantages, limitations and typical values for various 

soil types) on the Duncan & Chang hyperbolic model. 

 

 

3.5 HARDENING SOIL MODEL 

 

Reviews of plasticity and Duncan & Chang hyperbolic model are briefly outlined 

in Sections 3.3 and 3.4. Reading these sections before  will help the reader to 

understand Hardening Soil model better. 



The hardening soil model by Schanz et al. (1999) is an advanced model based on 

the theory of plasticity for simulating the stress-strain behaviour of different types 

of soil.  

 

This model is used to represent the stress-strain characteristics of the soil in the 

finite element analyses using PLAXIS ver. 7.11 in this study. 

 

Isotropic hardening rule is used for the model, and distinction is made between 

two types of hardening : Shear hardening is used to model irreversible strains due 

to primary deviatoric loading. Compression hardening is used to model irreversible 

strains due to primary compression in oedometer loading and isotropic loading. 

Soil dilatancy and a yield cap is included in the model. 

 

 

3.5.1 CONSTITUTIVE EQUATIONS  

 

In the case of a primary deviatoric loading, soil shows a decreasing stiffness and 

irreversible plastic strains develop. In the special case of a drained triaxial test, the 

relationship between the axial strain and the deviatoric stress can be approximated 

by a hyperbola that can be described by : 
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The ultimate deviatoric stress, qf, is derived from the Mohr-Coulomb failure 

criterion as : 

 

)sin(1
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σ′−φ=            ( 3.20 ) 

 

where c and φ are the strength parameters of the soil. Note that  3σ′   is assumed to 

be negative for compression. The asymptotic value, qa, is defined as : 



ffa R/qq =               ( 3.21 ) 

 

where Rf  is the failure ratio, which is always smaller than 1. Rf = 0.9 is often a 

suitable value to use for most soils. This hyperbolic relationship is shown in Fig. 

3.8. 

 

The parameter 50E  is the confining stress dependent stiffness modulus for primary 

loading. It is expressed as : 
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ref
50E  is the reference stiffness modulus corresponding to the reference stress 

(effective confining pressure) refp . It is determined from a triaxial stress-strain 

curve for the mobilization of 50 % of the maximum shear strength qf ( See Fig.  

3.8 ). The amount of stress dependency is given by the power m. 

 

 
Figure 3.8 Hyperbolic stress strain relationship in primary loading for a  standart 

drained triaxial test (Schanz et al. 1999) 

 



For unloading and reloading, another stress-dependent stiffness modulus, urE  is 

used and expressed as : 
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where ref
urE  is the reference modulus for unloading and reloading corresponding to 

the reference pressure refp . 

 

To simulate the oedometer loading or isotropic loading, the tangent stiffness 

modulus for oedometer loading, oedE  is used as : 
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where ref
oedE  is the tangent stiffness at a vertical stress of  refp  as shown in Fig.  

3.9. 

 

 

Figure 3.9 Definition of ref
oedE  in oedometer test results (Schanz et al. 1999) 



3.5.2 YIELD SURFACE, FAILURE CONDITION, HARDENING LAW  

 

Considering the triaxial case, two yield functions f12 and f13  are defined as : 
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with the definition of pγ  as : 
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Here, the measure of plastic strain, pγ , is used as the relevant parameter for 

frictional hardening. In reality, plastic volumetric strain p
vε  will never be zero, but 

it is small compared to axial strain for hard soils, so it is neglected in the 

determination of pγ . 

 

For a given value of  pγ , the yield condition f12 = f13  =0 can be visualized in p’-q 

plane by means of a yield locus. The shape of the yield loci depend on the 

exponent m. Fig.  3.10 shows the shape of  successive yield loci for m=0.5 being 

typical for hard soils. For increasing loading, the failure surfaces approach the 

linear failure condition according to Eq. 3.20. 

 



 

Figure 3.10 Successive yield loci for various values of pγ  and failure surface 

(Schanz et al. 1999) 

 
 
3.5.3 FLOW RULE, PLASTIC POTENTIAL FUNCTIONS 

 

As for all plasticity models, the hardening soil model involves a relationship 

between rates of plastic strain. This flow rule has the linear form : 

 
p

m
p
v )sin( γψ=ε &&                        ( 3.27 ) 

 

where ψm is the mobilized dilatancy angle. The  reader is referred to References 20 

and  23  for details on ψm and the plastic potential functions. 

 

 

3.5.4 ON THE CAP YIELD SURFACE 

 

Plastic volumetric strains due to isotropic compression can not be explained in a 2-

D plot like the one in Fig. 3.11 that shows the shear yield surfaces. A second type 

of yield surface must be introduced to close the elastic region in the direction of 

the p-axis. A cap type of yield surface is required to formulate a model with 

independent inputs of  50E  and oedE . The triaxial modulus, 50E , largely controls 

the shear yield surface; and the oedometer modulus, oedE , controls the cap yield 



surface. In fact, ref
50E  largely controls the magnitude of the plastic strains 

associated wiith the shear yield surface. Similarly, ref
oedE  controls the magnitude of 

plastic strains that originate from the yield cap. 

 

The cap yield surface is considered as: 
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where α is an auxiliary model parameter related to nc
0K  as will be discussed later. 

Furthermore we have 3/)(p 321 σ+σ+σ−=  and 321 )1(q~ δσ−σ−δ+σ=  with 

))sin(3/())sin(3( φ−φ+=δ . q~  is a special stress measure for deviatoric stresses. 

In the special case of triaxial compression )( 321 σ−=σ−>σ− , it yields 

)(q~ 31 σ−σ−=  and for triaxial extension )( 321 σ−>σ−=σ− , q~  reduces to 

)(q~ 31 σ−σδ−= . The magnitude of the yield cap is determined by the isotropic 

pre-consolidation stress pp. We have a hardening law relating pp to volumetric cap 

strain pc
vε  as : 
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The volumetric cap strain is the plastic volumetric strain in isotropic compression. 

α and β are cap parameters which are not direct input parameters. Instead, we have 

relationships of the form : 

 
nc
0K↔α  

ref
oedE↔β  

 



such that  nc
0K  and ref

oedE  can be used to determine  α and β respectively. For 

understanding the shape of the yield cap, first it should be realised that it is an 

ellipse in p- q~  plane as shown in Figure 3.11.  

 

 
Figure 3.11 Yield surfaces in p- q~  plane (Schanz et al. 1999) 

 

The ellipse has length pp on the p-axis and αpp on the q~ -axis. Hence, pp 

determines its magnitude and α its aspect ratio. The ellipse is used both as a yield 

surface and a plastic potential. Hence : 
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This expression  for λ derives from the yield condition f c = 0 and Eq. 3.29 for pp. 

 

To understand the yield surfaces in full detail, one should consider both Figs 3.11 

and 3.12. Fig. 3.11 shows simple yield lines whereas Fig. 3.12 depicts yield 

surfaces in principal stress space. Both the shear locus and the yield cap have the 

hexagonal shape of the classical Mohr-Coulomb failure criterion. In fact, the shear 

yield locus can expand up to the ultimate Mohr-Coulomb failure surface, the yield 



surface expands as a function of the pre-consolidation stress pp. ( Schanz et al. 

1999) 

 

 
Figure 3.12 Representation of total yield contour in principal stress space for 

cohesionless soil (Schanz et al. 1999) 

 

For further information about the Hardening Soil model, the reader is referred to 

References 20 and 23. 

 

 

 

 

 

 

 

 

 
 

 

 



 

 

 

CHAPTER 4 
 

 

ARTIFICIAL NEURAL NETWORKS 

 

 

 
4.1 INTRODUCTION 

 

Artificial neural networks (ANNs) are computational devices which are inspired 

by the networks of nerve cells in the brain. Although ANNs do not approach the 

complexity of the brain, there are two key similarities. First, the building blocks of 

both networks are simple computatinal devices that are highly interconnected. 

Second, the connections between neurons determine the function of the 

network.(Hagan et al. 1996) 

 

Neural networks utilize a parallel processing structure that has large numbers of 

processors and many interconnections between them. Each processor is linked to 

many of its neighbours so that there are many more interconnects than processsors. 

The power of the neural network lies in the tremendous number of 

interconnections.(Dayhoff 1990)  

 

ANNs can be trained to perform a particular function by adjusting the 

interconnections (weights) between neurons. Neural networks are trained to 

perform complex functions in different fields of application such as pattern 

recognition, identification, classification, speech, vision and control systems.  

 

 



Engineers have used  various tools to perform casual modeling (mapping from 

cause to effect for estimation and predicition) and inverse mapping (mapping from 

effects to causes) which include statistics, regression, probability, optimization, 

knowledge-based systems, and others. The nature of a neural network is to map 

from the input patterns to output patterns. Therefore an artificial neural network is 

another tool for engineers to perform both casual modeling or inverse mapping. ( 

Kartam et al. 1997) 

 

Neural networks are  used in various fields of geotechnical engineering including 

parameter assesment, underground openings, foundations, site investigation, 

liquefaction, retaining structures, slopes and  ground movement. (Toll 1996) 

 

 

4.2 NEURON MODEL  AND  NETWORK  ARCHITECTURES 

 

 

4.2.1 NEURON MODEL 

 

SIMPLE NEURON : 

 

A simple neuron with a single input  is shown in Fig. 4.1. The scalar input (p) is 

multiplied by the weight (w) and wp is obtained. A bias (b) is added to wp and the 

net input (n) is formed. A transfer function (activation function), f,  is used to 

obtain the scalar neuron output (a) from the net input.  Then the neuron output is 

calculated as   a = f(wp + b).                                                                              

 

Bias may be considered as a weight that has an input value of 1. The bias can be 

omitted in some neural networks. 

 

The transfer function may be a linear or non-linear function of  n. Transfer 

functions are used to satisfy some specification of the problem that the neuron is 

attempting to solve.  One of the most commonly used transfer functions is the log-



sigmoid transfer function shown in Figure 4.2. This transfer function transfers the 

input into the range 0 to 1 as an output.  The log-sigmoid transfer function is 

generally used in backpropogation because that it is differentiable. Various transfer 

functions are used in neural networks to achieve the desired goal.  

 

 
Figure 4.1. Single neuron architecture (Hagan et al. 1996) 

 

 
Figure 4.2. Log-sigmoid transfer function (Hagan et al. 1996) 

 

 
Figure 4.3. Multiple input neuron (Hagan et al. 1996) 

 
 



NEURON WITH MULTIPLE INPUT : 

 

Generally, a neuron has more than one input. A neuron with a R-element input 

vector is shown in Fig. 4.3. The individual inputs p1, p2, ..., pR  are multiplied by 

the corresponding weights w1,1 , w1,2, ..., w1,R of the weight matrix W. The net 

input, n, is calculated as: n = w1,1p1 + w1,2p2 + ... + w1,R pR + b. This expression 

can also be written in the matrix form as : n = Wp + b. Then the output can be 

expressed as : a = f ( Wp + b ).  

 

 

4.2.2  NETWORK ARCHITECTURES 

 

A LAYER OF NEURONS : 

 

Multiple neurons are combined in parallel to form a layer. A single layer of  S 

neurons with R input elements is shown in Fig. 4.4. Each input is connected to 

each neuron with the weight matrix that has S rows and R columns. Each neuron 

has a bias bi, a summer, a transfer function f, and an output ai.  

 

 

The weight matrix is expressed as : 

 

 

where the row indices indicate the destination neuron, and the column indices 

indicate  the input source for that weight. Thus w1,2 indicates that this weight 

represents the connection to the second neuron from the first input. 

 

MULTIPLE LAYERS OF NEURONS : 

 

A single layered network is rarely capable of solving the problems. So generally 

several layers  take place in neural networks. A three layer netwok is shown in Fig. 

4.5. 



As shown in Fig. 4.5, the layer number is indicated as a superscript to the names of 

the variables. There are R inputs and S1 neurons in the first layer, S1 inputs and S2 

neurons in the second layer. It can be seen that the outputs of the first and second 

layers are inputs for the second and third layers respectively. Different layers can 

have different number of neurons. 

 

 
Figure 4.4. A layer of neurons (Hagan et al. 1996) 

 

 
Figure 4.5. Three-layer network (Hagan et al. 1996) 



A layer whose output is the network output is called as the output layer. The other 

layers are called as hidden layers. The network in Fig. 4.5 has two hidden layers 

which are layers 1 and 2, and one output layer that is layer 3. 

 

Multilayer networks are powerful. In general, a network of two layers where the 

first layer is sigmoid and the second layer is linear can be used to approximate any 

function. This kind of network is widely used in backpropogation which is 

discussed later in this chapter. 

 

 
4.3 TRAINING OF THE NETWORK 

 

Training can be defined as the modification of the connection strengths (weights) 

of the network by a specified learning rule to reach the desired solution. The 

learning rule defines how the network is modified in response to experience.   

 

A learning rule is defined as a procedure  for the modification of the weights and 

biases of the network. (This procedure is often referred as training algorithm.) The 

learning rule is applied to train the network to perform a particular task. In 

supervised learning, the learning rule is provided with the inputs and the outputs. 

In unsupervised learning, no target outputs are available and the weights are 

modified in response to inputs only. 

 

 

4.3.1 THE LMS ALGORITHM 

 

The least mean square (LMS) learning rule ( also called as standart delta rule ) by 

Widroff-Hoff (1960) is used in the training of linear filters ( See Fig. 4.6 )  which 

are one layered neural networks with linear transfer functions. 

 



The LMS algorithm adjusts the weights of the linear network to minimize the 

squares of differences between the actual and the desired (target) output values 

summed over the output layers and all pairs of input/output vectors. 

 

Let’s define 

 

( ) 2
pjpj

j
p ot

2
1E −= ∑              ( 4.1 ) 

as the measure of error on the input/output pattern p and let E = ΣEp  be the overall 

measure of error ( the error function or the performance function ). The index p 

ranges over the set of input patterns, j ranges over the set of output units, and Ep 

represents the error on pattern p. The variable tpj is the desired output and opj is the 

actual output of the j’th output unit for pattern p. It is desired to find the weights 

that minimize the error function which is described above. 

 

 
Figure 4.6 An example of linear filter with R input elements (Hagan et al. 1996) 

 

For this purpose, it is useful to consider how the error varies as a function of any 

weight. The LMS procedure finds the weights that minimize the error function 

using a method called as gradient descent. That is, after each pattern is presented, 

the error is computed and each weight is moved down the error gradient toward its 

minimum value for that pattern. Since the entire error function on each pattern 

presentation can not be mapped, a simple procedure to determine how much to 



increase or decrease each weight must be found. The idea of gradient descent is to 

make a change in the weight proportional to the negative of the derivative of the 

error, as measured on the current pattern with respect to each weight. Thus the 

learning rule becomes : 
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where k is the proportionality constant. To take the derivative  of  the performance 

function, the chain rule can be used to write the derivative as the product of two 

parts as : 
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The first part can be found from Equation  4.1 as : 
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Since we have linear  layers, 
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from which it can be concluded that : 
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where ipi is the i’th element of the input pattern p. Substituting back into Eq. 4.3, 
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Therefore ∆wji can be found as : 

 

∆wji = µ.δpj.ipi                  ( 4.8 ) 

 

where µ = 2k 

 

According to this learning procedure, each weght is changed until it reaches its 

minimum error value. When all the weights reach their minimum points, the 

system reaches equilibrium. Then the problem is entirely solved or the set of 

weights that produce as small an error as possible is obtained. (Mccelland and 

Rumelhart 1998 ) 

 

 

4.3.2 BACKPROPOGATION 

 

Backpropogations are a kind of neural networks which are widely used in solving 

problems that require pattern mapping ( an input pattern is given and the network 

produces associated output pattern ). They are cretaed by generalizing the standart 

delta rule to multiple-layer networks with nonlinear differentiable transfer 

functions. 

 

Backpropogation learning rules are based on the simple concept as in the delta rule 

: the error between the actual output and the desired output is lessened by 

modifying the weights and as a result future responses are more likely to be 

correct. When the network is given an input, the output units are obtained by 

simulation of the network. The output layers then provide the network’s response. 

When the network corrects its internal parameters, the correction mechanism starts 

with the output layers and back-propogates backward through each 



internal(hidden) layer. Hence the term  backpropogation is used for this kind of 

networks. (Dayhoff 1990) 

 

The power of backpropogation lies in its ability to train hidden layers and therefore 

escape the restricted capabilities of single layer networks (like linear filters in 

which the LMS learning procedure is used ).  

 

 

4.3.3 BACKPROPOGATION ALGORITHM  ( THE GENERALIZED 

DELTA   RULE ) 

 

It is shown how the standart delta rule implements gradient descent in sum-

squared error for linear activation(transfer) functions. There is no hidden unit in 

this case and the error surface is shaped like a bowl with only  one minimum. 

However if  hidden units exist, there is a possibility of getting stuck in local 

minima. Also, linear systems using LMS algorithms can not compute more in 

multiple layers than they can in a single layer. 

 

The basic idea of the backpropogation learning method is to combine a non-linear 

system capable of making decisions with the objective error function of LMS and 

gradient descent. To do this, the derivative of the error function with respect to any 

weight in the network is calculated and then the weight is changed according to the 

rule : 
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With an appropriate choice of non-linear transfer function, the backpropogation 

learning rule can be derived. ( See Reference 22 for derivation) The results of this 

derivation are summarized in three equations. (Rumelhart et al. 1986) : 

 



First, the generalized delta rule has  exactly the same form as the standart delta 

rule: The weight on each line should be changed by an amount proportional to the 

product of an error signal, δ, availbale to the layer receiving input along that line 

and the output of the layer sending activation along that line. In symbols, 

 

∆pwji = µ.δpj.opi              ( 4.10 ) 

 

The other  equations specify the error signal. The determination of the eror signal, 

δpj, is a recursive process and starts with the output layers. The error signal of an 

output layer is similar to the standart delta rule and can be expressed as : 

 

)net(f)ot( pjjpjpjpj
′−=δ            ( 4.11 ) 

 

where netpj is the net output and )net(f pjj
′  is the derivative  of the non-linear 

activation function that maps the total input to the layer to an output value. The 

error signal for hidden layers for which there is no specified target is determined 

recursively in terms of the error signals of the layers to which it directly connects 

and the weights of these connections. That is : 
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where the layer is not an output layer. 

 

Therefore, the generalized delta rule involves two phases : During the first phase, 

the input is presented and propogated forward through the network and the output 

value opj is calculated for each layer. This output is then compared with the target 

values and an error signal δpj  is computed for each output layer. In the second 

phase, a backward pass through the network is done during which the error signal 

is passed to each layer and the appropriate weight changes are made. This second 

phase involves the recursive computation of δ as indicated above.  



MOMENTUM : 

 

The generailized delta rule requires only that the change in weights be proportinal 

to (∂Ep / ∂w). The constant of proportionality is the learning rate. The larger this 

constant, the larger the changes in the weights. Generally, a learning rate as large 

as possible is chosen without leading to oscillation that offers the most rapid 

learning. One way to increase the learning rate without leading to oscillation is to 

modify the generalized delta rule by adding a momentum term. This can be 

accomplished by : 

 

∆wji(n+1) = µ(δpj.opi) + α∆wji(n)          ( 4.13 ) 

 

where n is the presentation number, µ is the learning rate and α is a constant that 

determines the effect of post weight changes on the current direction of movement 

in weight space. This provides a kind of momentum in weight space that 

effectively filters out high-frequency variations of the error surface in the weight 

space. (Rumelhart et al.  1986) 

 

 

4.3.4 A BRIEF INFORMATION ABOUT QUASI-NEWTON METHODS 

 

As described, standart backpropogation is a gradient descent algorithm in which 

the network weights are moved along the negative of the gradient of the 

performance function. One iteration of the standart backpropogation algorithm can 

be written as: 

 

Xk+1 = Xk - αk.gk              ( 4.14 ) 

 

where  Xk is the vector of current weights and biases, gk is the current gradient and 

αk is the learning rate. 

 



There are some methods which have variations on the basic algorithm and  based 

on other standart optimization techniques. Newton’s method is one of them and is 

an alternative to the standart gradient descent algorithms. The basic step of the 

method is : 
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where Ak is the Hessian matrix (second derivatives) of the performance function at 

the current values of the weights and biases. The disadvantage of this method is 

that the calculation of the Hessian matrix is very complex. However, there are 

some algorithms based on Newton’s method which don’t require the calculation of 

the second derivatives. These are called quasi-Newton (secant) methods. These 

algorithms make an approximation of the Hessian matrix at each iteration of the 

algorithm. 

 

 

4.3.5 A BRIEF INFORMATION ABOUT THE  LEVENBERG-

MARQUARDT ALGORITHM 

 

The Levenberg-Marquardt algorithm is similar to quasi-Newton methods and 

designed to approcah the second order training speed without  the computation of 

the Hessian matrix. If the performance function is in the form of a sum of squares 

(as in the delta rule), then the Hessian matrix can be approximated as : 

 

JJH T
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and the gradient can be computed as : 

 

eJg T
=              ( 4.17 ) 

 



where J is the Jacobian matrix that contains the firts derivatives of the network 

errors with respect to the weights, and e is a vector of network errors. 

 

The basic step of Levenberg-Marquardt algorithm is: 
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where µ is a positive scalar and I is a unit matrix. If µ is large, then the algorithm 

becomes gradient descent with a small step size. 

The Levenberg-Marquardt algorithm is very fast and effective compared to the 

standart gradient descent algorithms for some input/output patterns. Also the 

neural network training algorithm used in this study is the Levenberg-Marquardt 

algorithm with the performance function chosen as mean square of the errors. 

 

The reader is referred to References 10 and 11 for more information about the 

Levenberg-Marquardt algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

CHAPTER  5 

 

 

ANALYSES AND RESULTS 

 

 

 
5.1 ASSUMPTIONS AND THE FINITE ELEMENT MODEL 

 

The following assumptions are made in the calculation of the lateral pressures  due 

to surface strip load : 

 

- Plane strain condition is assumed 

- The ground surface is assumed to be horizontal  

- The wall is assumed to be vertical 

- The wall is assumed to be non-displacing and rigid 

- The backfill is assumed to be underlain by a rigid base 

- The friction between the wall and backfill is neglected and the wall is assumed to               

be perfectly smooth 

- Surface strip loading is assumed to be flexible 

 

These assumptions are valid for all of the analyses in this study. Fig. 5.1 shows a 

sketch of the problem geometry. In the figure; h is the height of the wall, a is the 

distance of the strip load to the wall, w is the width of the strip load, q is the 

magnitude of the strip load, σh is the lateral pressure due to strip load, P is the total 

lateral thrust on the wall due to only strip load and d is the distance between the 

point of application of P and the ground surface. 



 
Figure 5.1  Problem Geometry 

 

A A

 
Figure 5.2 Typical Finite Element Model  

 

Fig. 5.2 shows a typical finite element model of the problem used in this study. 

Because the wall is assumed to be rigid and perfectly smooth, it is sufficient to set 

only horizontal fixities ( which means that the nodes can move freely in the 



vertical direction and can not move in the horizontal direction ) in the wall 

boundary for the simulation of the wall. The rigid base assumption is simulated by 

setting vertical fixities ( nodes can move freely in the horizontal direction and can 

not move in the vertical direction ) in the lower boundary of the finite element 

model. A medium-coarse finite element mesh is used for all of the analyses (See 

Section 5.3 for the effect of the mesh coarseness).  

 

 

5.2 CALCULATION  PROCEDURE 

 

The  computer program  “PLAXIS ver. 7.11” in which finite element method is 

used is employed in the calculations. In the finite element method, the 

domain(continuum) is divided into a number of subdomains called finite elements 

which consist of  a number of nodes. Each node has a number of degrees of 

freedom ( which are the displacement components in this case ) that correspond to 

discrete values of the unknowns in the boundary value problem to be solved.  

 

Two kind of triangular elements are present in PLAXIS for the plane strain 

condition which are 6-node and 15-node elements. 15-node triangular elements are 

used in this study for a more accurate calculation of the stresses. The 15-node 

triangular element consists of 15 nodes as shown in Fig. 5.3. the displacements are 

calculated at these nodes. In contrast to displacements, stresses are calculated at 

individual stress points rather than at the nodes. The 15-node element has 12 stress 

points as shown in Fig. 5.3.  

 

 
Figure 5.3  Nodes and stress points of the 15-node element 



The lateral pressures due to strip load are calculated according to the following 

procedure : 

 

1- The initial stresses are calculated  according to Jaky’s formula ( K0 = 1-sinφ ). 

2- The total stresses are calculated after the surface strip load is applied. 

3- The lateral pressures due to surface strip load are obtained by substracting the 

initial stresses ( obtained at step 1 ) from the total stresses ( obtained at step 2 ). 

 

 

5.3 VERIFICATION OF THE PROGRAM 

 

At the beginning, the results of PLAXIS for a linear elastic soil model are 

compared to the results of the elastic solution for surface loading of a finite layer 

underlain by a rigid base recommended by Poulos&Davis(1974). The problem is 

summarized as : 

 

- 5 m long ,50 kN/m2  uniform pressure on a  10 m thick layer that is  underlain by 

a  rigid base 

- Poisson’s ratio (ν) is taken as 0.4. 

- Horizontal and vertical stresses beneath the edge of the uniform load are 

calculated by Poulos&Davis(1974) method. 

- The same problem is solved by PLAXIS by using linear elastic model. (The 

geometry and the finite element mesh is given in Fig.5.4 ) 

- The results for the both solution methods are shown in Fig. 5.5. 

 

It can be seen from Fig. 5.5 that the finite element solutions by PLAXIS are very 

similar to the analytical solution by Poulos&Davis (1974). 

 

 

The effect of the mesh coarseness is also investigated. For this purpose, the same 

problem is solved for three different mesh sizes included in the program as : very 

coarse mesh, medium mesh and very fine mesh.  
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Figure  5.4 Deformed mesh after loading 
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Figure 5.5 Comparison of the PLAXIS and Poulos&Davis solutions 

 

The analyses are made for a  4 m high wall and a strip load  at  a distance of 1 m to 

the wall. The width of the strip load is 1 m and  its magnitude is 25 kN/m. The 

finite element models are shown in Fig. 5.6. 

 

The lateral pressure distributions due to strip load for three different mesh 

coarseness are shown in Fig. 5.7.  It can be concluded from the figure that the the 

results are very similar and the mesh coarseness is not effective on the pressure 

distributions for this type of loading.  
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Figure  5.6  Deformed mesh plots for different mesh sizes 
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Figure 5.7 Lateral pressure distributions for different mesh sizes 

 

It is decided to use medium-coarse mesh in this study. 

 

 

5.4 THE EFFECT OF SOIL PARAMETERS 

 

Hardening Soil model ( which is discussed in detail in Chapter 3 Section 3.5) is 

used to represent the stress-strain relationship of the soil in the finite element 

calculations made by using  PLAXIS. The effect of the hardening soil 

parameters(that are used to represent stress-strain behaviour of the soil) on lateral 

pressure distributions is investigated. 

 

To investigate the effect of a specific parameter, the other parameters are taken as 

constant typical values. Then the analyses are made for various values of the 

specific parameter. 

 

The aim of this study is to find a general solution for the calculation of the total 

lateral thrust and its point of application. So the stiffness parameters, ref
50E  and 



ref
oedE  are taken as the same values as proposed for most soils  by the program 

manual. So  ref
50E  = ref

oedE  = 30000 kN/m2  is  taken for all the cases that is 

suggested for medim sand by the program manual. Similarly Rf is taken as  0.9  for 

all analyses which is the default value in the program. 

 

The investigated parameters are : 

 

- c : ( Effective ) cohesion of  the soil   ( kN/m2 ) 

 

- φ : ( Effective ) internal angle of friction of the soil  ( in degrees ) 

 

- ψ : Angle of dilatancy of  the soil    ( in degrees )  

 

- m : Power for stress-level dependency of stiffness  ( unitless ) 

 

- q : Strip load magnitude     ( kN/m2 ) 

 

 

5.4.1 THE EFFECT OF  “m” 

 

The stiffness parameters 50E  and oedE  are  dependent on the confining stress by 

the power m as in the Equations 3.22 and 3.24. The typical values of  m  are about 

0.5. So three values of  m  as 0.4,0.5 and 0.6 are considered to see the effect of m  

on the lateral pressure distributions. The other parameters are taken as : 

 

-height of the wall ( h ) : 8 m. 

-distance of the strip load to the wall ( a ) : 0 m 

- width of the strip load ( w ) : 1 m 

- cohesion of the soil ( c ) : 10 kN/m2 

- internal angle of friction of the soil ( φ ) : 30 
- dilatancy angle of the soil ( ψ ) : 0 



- magnitude of  the strip load ( q ) : 50 kN/m2 

 

The lateral pressure distributions for different m values are shown in Fig. 5.8.  It 

can be seen from the figure that the m parameter has no significant effect on the 

lateral pressure distributions in the case of a strip loading. So it is concluded that 

the m parameter can be omitted  for the rest of the calculations and a taking a 

typical value of  m as 0.5 is acceptable for a  general solution. 

 

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8
Depth (m)

La
te

ra
l P

re
ss

ur
e 

(k
Pa

)

m=0.4

m=0.5

m=0.6

 
Figure 5.8 Lateral pressure distributions for different m values 

 

 

5.4.2 THE EFFECT OF  DILATANCY ANGLE 

 

The effect of dilatancy angle, ψ, is investigated by  considering three typical 

values as 0, 5 and 10. For the three analyses, the other parameters are taken as: 

 

-height of the wall ( h ) : 8 m. 

-distance of the strip load to the wall ( a ) : 0 m 



- width of the strip load ( w ) : 1 m 

- cohesion of the soil ( c ) : 0 kN/m2 

- internal angle of friction of the soil ( φ ) : 40 
- parameter of stress dependency ( m ) : 0.5 
- magnitude of  the strip load ( q ) : 50 kN/m2 
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Figure 5.9 The effect of dilatancy angle on lateral pressures 

 

Figure 5.9 shows the lateral pressure distributions for different values of dilatancy 

angle. It is clear from the figure that the results for the three cases nearly coincide 

and the angle of dilatancy has no effect on the lateral pressure distributions for this 

type of loading. Therefore it is concluded to omit the dilatancy angle and to take 

the dilatancy angle as zero for the analyses to find a general solution. 

 

 

5.4.3 THE EFFECT OF LOAD MAGNITUDE 

 

For a linear elastic analysis, the lateral pressure value is affected by only two 

parameters : the strip load magnitude and the poisson’s ratio. The relationship 

between the lateral pressure at a point and the magnitude of the strip load  is  



linear. Thus if the lateral pressure at a specific point is p for a load magnitude q, 

the lateral pressure at the same point will be 2p for a load magnitude 2q.  

However, for the hardening soil model, the non-linear behaviour of the soil  effects 

the  relation between the lateral pressure and the load magnitude. 

 

To investigate the effect of non-linearity, the calculated  lateral pressure values are 

normalized with the strip load magnitude. For this purpose,  four different cases 

which are : q = 5 kN/m2, q = 10 kN/m2 , q = 25 kN/m2  and q = 50 kN/m2  are 

considered. The other parameters for these analyses are taken constant as : 

 

-height of the wall ( h ) : 8 m. 

-distance of the strip load to the wall ( a ) : 0 m 

- width of the strip load ( w ) : 1 m 

- cohesion of the soil ( c ) : 10 kN/m2 

- internal angle of friction of the soil ( φ ) : 30 
- dilatancy angle of the soil ( ψ ) : 0 
- parameter of stress dependency ( m ) : 0.5 

 

The results are shown in Fig. 5.10.  It can be seen in the figure that the normalized 

values do not coincide ( which would coincide for a linear elastic analysis ). So it 

is concluded that the load magnitude must be take part as an effective parameter in 

the general solution. 

 

 

5.4.4 THE EFFECT OF  COHESION  

 

The cohesion of the soil  is  one of  major parameters of the model. The ultimate 

deviatoric stress ( qf ) is calculated by using the cohesion value. which is used in 

the calculation of the hyperbolic relationship between the deviatoric stress and the 

vertical strain by Equations 3.19 and 3.21. The cohesion is also used in the 

calculation of  the confining stress dependent modulus as in Equations  3.22 and 



3.24.  So the cohesion of the soil is expected to have a significant effect on the 

lateral pressure distributions. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8
Depth (m)

La
te

ra
l P

re
ss

ur
e 

/ S
tr

ip
 lo

ad
 m

ag
ni

tu
de

q=5 kPa

q=10kPa

q=25kPa

q=50kPa

 
Figure  5.10 Normalized  lateral pressure distributions for different load 

magnitudes 

 

To investigate the effect of cohesion, four different cohesion values : c=0 kN/m2,  

c=5 kN/m2, c=10 kN/m2 and c=20 kN/m2 are used. The other parameters are held 

constant and taken as : 

 

-height of the wall ( h ) : 8 m. 

-distance of the strip load to the wall ( a ) : 0 m 

- width of the strip load ( w ) : 1 m 

- internal angle of friction of the soil ( φ ) : 30 
- parameter of stress dependency ( m ) : 0.5 
- dilatancy angle of the soil ( ψ ) : 0  
- magnitude of  the strip load ( q ) : 50 kN/m2 

 



Fig. 5.11 shows the effect of cohesion on the lateral pressures due to surface strip 

load.  It is clear from the figure that the cohesion has significant effect on the 

lateral pressure distributions as expected. Therefore it is decided to take the 

cohesion another effective parameter on the lateral pressures in the general 

solution.  
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Figure 5.11 Lateral pressure distributions for various cohesion values 

 

 

5.4.5 THE EFFECT OF THE ANGLE OF FRICTION 

 

Similar to cohesion, the internal angle of friction ( φ )  is used in the calculation of 

the confining stress dependent modulus and the hyperbolic relationship between 

the strain and the deviatoric stress. Angle of friciton is also used in the 

determination of the initial stresses by using Jaky’s formula. So the internal angle 

of friction is also expected to have a major effect on the lateral pressure 

distributions. 

 



The lateral pressure distributions for four different angles of internal friction as : 

φ=25, φ=30, φ=35 and φ=40 are calculated and shown on Fig. 5.11. The other 

parameters for these analyses are taken as: 

 

-height of the wall ( h ) : 8 m. 

-distance of the strip load to the wall ( a ) : 0 m 

- width of the strip load ( w ) : 1 m 

- cohesion of the soil ( c ) : 0 kN/m2 
- parameter of stress dependency ( m ) : 0.5 
- dilatancy angle of the soil ( ψ ) : 0  
- magnitude of  the strip load ( q ) : 50 kN/m2 
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Figure 5.12 The effect of angle of friction on lateral pressure  

 

From Fig. 5.12 it can be concluded that the internal angle of friction has a 

significant effect on the lateral pressure distributions. Therefore φ is also taken as a 

major effective parameter in the general solution. 

 

 



5.5  SELECTION OF THE PARAMETERS 

 

It is shown that the major effective soil parameters on lateral pressure due to 

surface strip load are the cohesion and the internal angle of friction. The load 

magnitude is found to be another parameter that should be considered because of 

the non-linearity in stress-strain behaviour of the soil. 

 

The height of the wall, the distance of the strip load to the wall and the strip load 

width are the dimensional parameters  used in the determination of  the  lateral 

pressures.  

Therefore we have six parameters to consider when calculating the lateral 

pressures. It is decided to obtain  a  solution  dependent on these six parameters 

which are : 

 

* Height of the wall ( h ) 

* Distance of the strip load to the wall ( a ) 

* Width of the strip load ( w ) 

* Magnitude of the strip load ( q ) 

* Internal angle of friction for the soil ( φ ) 

* Cohesin of  the soil ( c ) 

 

As discussed previously, the other required parameters for the analyses using 

Hardening Soil model are taken as typical values that are acceptable for a general 

solution. These parameters are summarized as : 

 

-  ref
50E   : 30000 kN/m2  ( for  pref = 100 ) 

-  ref
oedE  : 30000 kN/m2  ( for  pref = 100 ) 

-    m : 0.5 

-  Rf : 0.9 

-  ψ : 0 

-   γ : 20 kN/m3 



5.6  ANALYSES  FOR THE GENERAL SOLUTION 

 

To obtain a general solution for the calculation of the total lateral thrust on the wall 

and its point of application, artificial neural networks are proposed to be used. To 

obtain a solution by neural networks, an input-output pattern  is given to the 

network and the network is trained to find the relation between the input and 

output data.   

 

The input pattern  consists of six parameters as discussed previously. The input 

data is prepared to cover  sufficient  cases of different material and geometrical 

parameters. For this purpose, the range of the parameters are set as : 

 

- Height of the wall ( h ) : 2m – 10m 

- Distance of the strip load (a ) : 0m – 5m 

- Width of the strip load ( w ) : 0.5m – 3m 

- Magnitude of the strip load ( q ) : 2.5 kN/m2 – 50 kN/m2 

- Cohesion of the soil ( c ) : 0 kN/m2 – 20 kN/m2 

- Angle of friction ( φ ) : 25 – 40  

 

When strip loads exceeding 50 kPa are applied on soils with small strength 

parameters ( such as c = 0 and φ = 30 ), it is seen that the computer program used 

is unable to make the calculations due to failure in load-advancement procedure 

for the elements beneath the strip load. So the range of the strip load magnitude is 

set between 2.5 kPa and 50 kPa.  

 

It is noted that; in the manual of the program,for bearing capacity and collapse 

load calculations, it is recommended to use prescribed displacements instead of 

prescribed loads, so prescribed displacements are increased until failure instead of 

load magnitudes. Using prescribed displacements is not possible in this study, 

because the load magnitude can not be controlled since the stress-strain behaviour 

of soil is non-linear and also dependent on the strength parameters ( c and φ ) 

which vary in each case. 



Table 5.1. Considered cases and results 

h a q c Φ w   p d 
( m ) ( m ) ( kPa )  ( kPa ) ( o ) ( m )   ( kN ) ( m ) 

                  
2.00 0.00 5.00 0.00 30.00 1.00   2.30 0.48 
2.00 0.00 20.00 10.00 40.00 1.00   5.60 0.37 
2.00 0.00 50.00 15.00 35.00 1.00   16.00 0.40 
2.00 1.00 10.00 5.00 25.00 1.00   2.68 1.26 
2.00 1.00 25.00 20.00 30.00 1.00   5.26 1.26 
2.00 1.00 50.00 10.00 40.00 1.00   11.37 1.33 
2.00 2.00 20.00 15.00 35.00 1.00   3.60 1.50 
2.00 2.00 35.00 12.50 37.50 1.00   6.73 1.49 
2.00 2.00 12.50 2.50 30.00 1.00   3.18 1.50 
2.00 3.00 25.00 5.00 35.00 2.00   8.87 1.29 
2.00 3.00 2.50 0.00 30.00 3.00   1.29 1.30 
2.00 5.00 30.00 20.00 25.00 2.00   9.79 1.11 
2.50 1.50 42.50 7.50 27.00 0.50   6.98 1.41 
3.00 0.50 17.50 2.50 27.00 0.50   4.58 0.73 
3.00 1.50 32.50 12.50 25.00 1.50   16.43 1.80 
3.00 2.50 47.50 7.50 32.00 1.50   20.06 2.15 
3.50 0.50 32.50 17.50 25.00 1.50   19.17 1.11 
4.00 0.00 2.50 0.00 25.00 1.00   1.73 0.64 
4.00 0.00 40.00 20.00 35.00 1.00   20.00 0.53 
4.00 0.00 20.00 10.00 30.00 1.00   11.55 0.60 
4.00 1.00 30.00 5.00 32.50 1.00   13.05 1.40 
4.00 1.00 10.00 12.50 27.50 1.00   3.86 1.32 
4.00 1.00 5.00 0.00 25.00 1.00   2.70 1.40 
4.00 2.00 25.00 20.00 37.50 1.00   6.83 2.38 
4.00 2.00 50.00 17.50 40.00 1.00   14.16 2.35 
4.00 2.00 35.00 5.00 30.00 1.00   13.92 2.17 
4.00 3.00 10.00 5.00 30.00 3.00   7.91 2.93 
4.00 3.00 30.00 15.00 25.00 2.00   17.46 2.78 
4.00 5.00 20.00 10.00 30.00 2.00   8.79 2.93 
5.00 0.50 42.50 2.50 27.00 1.50   41.37 1.49 
5.00 1.50 7.50 17.50 35.00 2.50   5.24 2.66 
5.00 2.50 17.50 7.50 30.00 0.50   3.23 2.57 
6.00 0.00 10.00 0.00 25.00 2.00   13.81 1.29 
6.00 0.00 5.00 15.00 25.00 3.00   6.82 1.25 
6.00 1.00 15.00 20.00 35.00 1.00   5.98 1.41 
6.00 1.00 40.00 15.00 35.00 2.00   31.55 1.93 
6.00 2.00 25.00 10.00 30.00 3.00   28.24 3.21 
6.00 2.00 30.00 0.00 30.00 1.00   16.07 2.21 
6.00 3.00 35.00 0.00 30.00 3.00   42.74 3.77 
6.00 5.00 25.00 5.00 25.00 2.00   16.56 4.27 
6.00 5.00 20.00 5.00 35.00 3.00   16.67 4.45 
6.50 2.50 47.50 12.50 30.00 2.50   45.25 3.40 
7.00 3.50 42.50 12.50 25.00 0.50   9.27 3.28 
7.00 2.50 42.50 12.50 25.00 1.50   29.51 2.87 



Table 5.1. ( continued ) 

7.00 1.50 17.50 7.50 27.00 2.50   19.98 2.63 
7.50 1.50 27.50 7.50 32.00 0.50   7.21 1.73 
8.00 0.00 7.50 15.00 25.00 1.00   5.19 0.62 
8.00 0.00 50.00 2.50 27.50 1.00   43.92 1.14 
8.00 0.00 22.50 7.50 35.00 1.00   16.06 0.82 
8.00 1.00 12.50 2.50 32.50 1.00   8.17 1.84 
8.00 1.00 27.50 0.00 40.00 1.00   17.38 1.96 
8.00 1.00 37.50 17.50 37.50 1.00   19.80 1.71 
8.00 2.00 5.00 20.00 27.50 1.00   2.61 2.55 
8.00 2.00 25.00 0.00 32.50 1.00   15.96 2.67 
8.00 2.00 35.00 10.00 37.50 1.00   18.10 2.69 
8.00 3.00 10.00 5.00 35.00 2.00   8.37 4.04 
8.00 3.00 2.50 5.00 25.00 3.00   3.48 4.20 
8.00 5.00 50.00 10.00 30.00 3.00   53.47 5.24 
9.00 0.50 2.50 17.50 32.00 0.50   0.63 0.86 
9.00 1.50 32.50 2.50 30.00 2.50   45.44 2.84 
9.00 2.50 7.50 17.50 35.00 1.50   4.54 3.30 

10.00 0.00 10.00 20.00 30.00 2.00   11.10 1.05 
10.00 1.00 15.00 0.00 30.00 3.00   25.43 2.73 
10.00 1.00 45.00 5.00 25.00 2.00   59.03 2.25 
10.00 2.00 25.00 0.00 25.00 2.00   30.71 2.92 
10.00 2.00 40.00 15.00 30.00 1.00   19.93 2.39 
10.00 3.00 40.00 15.00 30.00 3.00   50.77 4.29 
10.00 3.00 10.00 10.00 35.00 2.00   8.15 4.07 
10.00 5.00 45.00 5.00 35.00 3.00   51.65 5.93 
10.00 5.00 15.00 10.00 30.00 2.00   12.16 5.65 

 

 

Analyses are made for various values  of  these parameters for the preparation of 

data for neural network solution. Seventy different cases  are considered in this 

study. The parameters and the calculated results for each case are given in Table 

5.1.  These results are proposed to be used for the determination of the neural 

network solution of the problem.  

 

 

 

 

 

   

 



 

 

 

 

CHAPTER 6 

 

 

NEURAL NETWORK STUDY 

 

 

 
6.1 INTRODUCTION  

 

The computer program “ MATLAB ver. 6.0  Neural Network Tolbox ” is 

employed for the neural network models is this study. The advantage of using this 

program is many types of networks are included in the program and many training 

algorithms with different properties can be used for a specific network model. 

 

It is proposed to find the relationship between the input data consisting of six 

parameters and output data consisting of two parameters as discussed in Chapter 5. 

A feed-forward backpropogation type neural network is  a convenient one for this 

case.  A two-layered network having a sigmoid transfer function in the first layer   

( hidden layer ) and a linear transfer  function in the second  layer ( output layer ) 

is recommended  by the program manual for the approximation of any function 

given sufficient neurons in the hidden layer. 

 

The modification of weights and biases to reach the best solution for the input-

output pattern is performed by training of the network. So the training algorithm is 

very important for the solution.  In this study, the Levenberg-Marquardt training 

algorithm ( LM ), which is  faster and more accurate than the other 

backpropogation algorithms based on standart gradient descent methods, is used in 



the training of the networks.   ( See Chapter 4 Section 4.3 for backpropogation 

algorithms ) 

 

The basic characteristics of the neural network model used in this study can be 

summarized as : 

 

* Network type :  Feed-forward backpropogation 

 

* Training algorithm : Levenberg-Marquardt algorithm ( TRAINLM ) 

 

* Adaption learning function : Gradient descent with momentum ( LEARNGDM ) 

 

* Performance function : Mean square error  ( MSE ) 

 

* Number of Layers : 2 

 

* Transfer function ( 1st layer ) : Sigmoid 

 

* Transfer function ( 2nd layer ) : Linear or sigmoid 

 

 

6.2  NEURAL  NETWORK  MODEL 

 

A two-layered network which has a sigmoid transfer function in the first ( hidden ) 

layer and  a linear or sigmoid transfer function in the second ( output ) layer is 

proposed to be used for the data given in Table 5.1. 

 

There are two sigmoid functions in “ Matlab Neural Network Toolbox ”. These are 

the log-sigmoid and the hyperbolic tangent-sigmoid transfer functions.The log-

sigmoid function ( logsig )  takes the input and squashes it between 0 and 1. The 

graph and the symbol of logsig is shown in Fig. 6.1. The logsig function can be 

expressed as : 



logsig(n) =  1 / ( 1+exp(-n) )             ( 6.1 ) 

 

where n is any value between minus and plus infinity. The other sigmoid function, 

hyperbolic  tangent-sigmoid function ( tansig ) takes the input and squashes it 

between –1 and 1. Fig. 6.2 shows the graph and symbol of tansig function. It is 

expressed as : 

 

tansig(n) = [ 2 / ( 1 + exp(-2n) ) ] – 1           ( 6.2 ) 

 

The linear transfer function ( purelin ) does not change the input, takes the input 

and returns the same value. The graph and symbol of purelin  is shown in Fig. 6.3.  

 

 
Figure 6.1 Log-sigmoid transfer function (Hagan et al. 1996) 

 

 
Figure 6.2 Tan-sigmoid transfer function (Hagan et al. 1996) 

 

Figure 6.4 shows a typical neural network model used in this study for an K 

element input pattern and M element output pattern. In the figure, the dimensions 

of the vectors and matrices are shown below the symbols indicating the 



corresponding vector or matrix. Superscripts are used to indicate the layers which 

the corresponding vector or matrix is  associated with.  

 

 
Figure 6.3 Linear transfer function (Hagan et al. 1996) 

 

 
Figure 6.4 Typical feed-forward backpropogation type neural network 

 

The input vector p1 is represented by the solid dark vertical bar at the left. The 

input vector is multiplied by the input weight matrix (  IW1,1 ). A constant 1 is 

multipled by the scalar bias vector b1. The net input to the transfer function ( 

which  is  tansig  for  the  first  layer ) , n1, is  the  sum  of   the   bias  b1   and the 

product  IW1,1p1. This sum is passed to the transfer function to get the first layer’s 

output vector a1. Note that, to obtain a Sx1 ouput vector, the dimensions of  IW1,1 

and b1 should be SxK and Sx1 where the input consists of  K elements. The output 

of the first layer, a1, can  be  accepted  as  an  input  vector  for  the  second  layer. 

Similar  to  the  first  layer, a1  is  multiplied  by  the  layer  weight ( LW2,1 ) and 

the bias vector b2 is added and the net input to the transfer function ( which is  



purelin for the second layer ), n2,  is obtained. The output of the second layer and 

the network is obtained by passing the n2 to the transfer function. Again it is noted 

that, to obtain an output vector of  M elements, the dimensions of LW2,1 and b2 are 

taken as MxS and Mx1 respectively. 

 

 

6.3 TRAINING  

 

Several networks with different properties are trained to find the relationship 

between the input-output pattern given in Table 5.1. For this purpose, networks 

with  different transfer functions ( 1st tansig – 2nd purelin, 1st logsig – 2nd purelin 

, 1st tansig – 2nd logsig ) are established and trained. Another important property 

of a network that effects the accuracy of the network is the number of neurons in 

the hidden layer ( the dimensions of the weight  and bias matrices in the hidden 

layer ). So networks  with various number of neurons in the hidden layer, having 

the same transfer functions are also trained. 

 

The graph of  a trained network is shown Fig. 6.5. 15 neurons are used in the 

hidden layer and the tansig and purelin transfer functions are selected for the first 

and second layer respectively.  

 

The results of  this network are given in Figures 6.6 and 6.7. In the figures, the 

error for each case ( network output – actual or desired output ) is given as 

percentage of the actual output values.   

 

Figure 6.6 shows the error in the total lateral thrust on the wall ( p ). It can be seen 

that the maximum error is about  20%  of the actual value.The error  varies 

between  -5%  and  5%  for except 8 cases and for only two cases an error greater 

than 10% is obtained. The neural network results are acceptable for  62 cases of 

total 70 cases but it is not  acceptable for a general solution. 

 



 
Figure 6.5 Neural network model with 15 neurons in the hidden layer 
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Figure 6.6 Error in p values as percentage of  the real value 

 

The error  of the neural network results for the distance between the point of 

application of   p  and the  ground surface ( d ) are shown in Figure 6.7. From the 

figure, it can be concluded that the neural network results are very different from 

the real values. The error is over 20% for 18 cases. Even this network gives a 

result having an error of –111% that means that the distance d  is negative. So the 

neural network solution for determination of  d  is unrealible. 
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Figure 6.7 Error in d values as percentage of the real value 

 

 

From the results of different neural networks ( including the one in Fig. 6.5 and 

similar networks as discussed before ), it is seen that the neural networks are 

unable to find an acceptable solution for the input-output pattern as the one in 

Table 5.1.  

 

It is shown that the neural network results do not reach the desired outputs when 

the six input parameters ( h, a, q, c, φ, w ) and the two output parameters ( p, d ) 

are given directly as input-output data to the network. However, it may be a good 

idea first to modify these parameters,  and then use in the network for training. 

For this purpose, the dimensional parameters : a ( distance of the strip load to the 

wall), w ( width of the strip load) and d ( distance betwen the point of application 

of the total thrust and surface ) are normalized by the height of the wall ( h ). The 

total lateral thrust is also normalized by the strip load magnitude q. Therefore the 

six input  and the two output parameters take the form as : 

 

Input   :  h ,  a/h ,  q ,  c ,  φ ,  w/h 

 

Output : p/q ,  d/h 



The modified values of the 70 cases  are given in Table 6.1 

 

Again  networks with different  properties are established and trained for the 

modified input-ouput data given in Table 6.1. The results are much better than the 

ones obtained from the direct input-ouput data given in Table 5.1. 

 

A very accurate solution is obtained  for the determination of  p and d using a 

network with 15 neurons in the hidden layer, using the tansig transfer function in 

the first layer and the  purelin transfer function in the second layer. The graph of 

this network ( will be called as the solution network from now on ) is shown in 

Fig. 6.5.  

 

The  results of  this network ( solution network ) are shown  in Figures 6.8 and 6.9. 

Again the error values are given as percentage of the real (desired output ) values. 

 

Figure 6.8 shows the percentage of the errors in p/q values. It can be seen that the 

maximum error does not exceed 0.25%  and the neural network is very succesful 

for the calculation of the total lateral thrust on the wall. The errors are below 0.1% 

for 67 cases and below 0.1% for 60 cases.  

 

We can see in Figure 6.9 that the solution network is also succesful in the 

determination of the point of application. The errors in d/h do not exceed 1%. The 

errors are above 0.2% for only 16 cases of 70. Although the solution network is 

not as succesful in the calculation of the point of application as  in the calculation 

of the total lateral thrust, both results have acceptable  accuracy  for a  general 

solution. 

 

 

 

 

 

 



Table 6.1 Modified parameters of  the cases and results 

h a/h q c Φ w/h   p/q d/h 
( m ) - ( kPa )  ( kPa ) ( o ) -   - - 

                  
2.00 0.00 5.00 0.00 30.00 0.50   0.46 0.24 
2.00 0.00 20.00 10.00 40.00 0.50   0.28 0.19 
2.00 0.00 50.00 15.00 35.00 0.50   0.32 0.20 
2.00 0.50 10.00 5.00 25.00 0.50   0.27 0.63 
2.00 0.50 25.00 20.00 30.00 0.50   0.21 0.63 
2.00 0.50 50.00 10.00 40.00 0.50   0.23 0.67 
2.00 1.00 20.00 15.00 35.00 0.50   0.18 0.75 
2.00 1.00 35.00 12.50 37.50 0.50   0.19 0.75 
2.00 1.00 12.50 2.50 30.00 0.50   0.25 0.75 
2.00 1.50 25.00 5.00 35.00 1.00   0.35 0.65 
2.00 1.50 2.50 0.00 30.00 1.50   0.52 0.65 
2.00 2.50 30.00 20.00 25.00 1.00   0.33 0.56 
2.50 0.60 42.50 7.50 27.00 0.20   0.16 0.56 
3.00 0.17 17.50 2.50 27.00 0.17   0.26 0.24 
3.00 0.50 32.50 12.50 25.00 0.50   0.51 0.60 
3.00 0.83 47.50 7.50 32.00 0.50   0.42 0.72 
3.50 0.14 32.50 17.50 25.00 0.43   0.59 0.32 
4.00 0.00 2.50 0.00 25.00 0.25   0.69 0.16 
4.00 0.00 40.00 20.00 35.00 0.25   0.50 0.13 
4.00 0.00 20.00 10.00 30.00 0.25   0.58 0.15 
4.00 0.25 30.00 5.00 32.50 0.25   0.44 0.35 
4.00 0.25 10.00 12.50 27.50 0.25   0.39 0.33 
4.00 0.25 5.00 0.00 25.00 0.25   0.54 0.35 
4.00 0.50 25.00 20.00 37.50 0.25   0.27 0.60 
4.00 0.50 50.00 17.50 40.00 0.25   0.28 0.59 
4.00 0.50 35.00 5.00 30.00 0.25   0.40 0.54 
4.00 0.75 10.00 5.00 30.00 0.75   0.79 0.73 
4.00 0.75 30.00 15.00 25.00 0.50   0.58 0.70 
4.00 1.25 20.00 10.00 30.00 0.50   0.44 0.73 
5.00 0.10 42.50 2.50 27.00 0.30   0.97 0.30 
5.00 0.30 7.50 17.50 35.00 0.50   0.70 0.53 
5.00 0.50 17.50 7.50 30.00 0.10   0.18 0.51 
6.00 0.00 10.00 0.00 25.00 0.33   1.38 0.22 
6.00 0.00 5.00 15.00 25.00 0.50   1.36 0.21 
6.00 0.17 15.00 20.00 35.00 0.17   0.40 0.24 
6.00 0.17 40.00 15.00 35.00 0.33   0.79 0.32 
6.00 0.33 25.00 10.00 30.00 0.50   1.13 0.54 
6.00 0.33 30.00 0.00 30.00 0.17   0.54 0.37 
6.00 0.50 35.00 0.00 30.00 0.50   1.22 0.63 
6.00 0.83 25.00 5.00 25.00 0.33   0.66 0.71 
6.00 0.83 20.00 5.00 35.00 0.50   0.83 0.74 
6.50 0.38 47.50 12.50 30.00 0.38   0.95 0.52 
7.00 0.50 42.50 12.50 25.00 0.07   0.22 0.47 
7.00 0.36 42.50 12.50 25.00 0.21   0.69 0.41 

 



Table 6.1 ( continued ) 

7.00 0.21 17.50 7.50 27.00 0.36   1.14 0.38 
7.50 0.20 27.50 7.50 32.00 0.07   0.26 0.23 
8.00 0.00 7.50 15.00 25.00 0.13   0.69 0.08 
8.00 0.00 50.00 2.50 27.50 0.13   0.88 0.14 
8.00 0.00 22.50 7.50 35.00 0.13   0.71 0.10 
8.00 0.13 12.50 2.50 32.50 0.13   0.65 0.23 
8.00 0.13 27.50 0.00 40.00 0.13   0.63 0.25 
8.00 0.13 37.50 17.50 37.50 0.13   0.53 0.21 
8.00 0.25 5.00 20.00 27.50 0.13   0.52 0.32 
8.00 0.25 25.00 0.00 32.50 0.13   0.64 0.33 
8.00 0.25 35.00 10.00 37.50 0.13   0.52 0.34 
8.00 0.38 10.00 5.00 35.00 0.25   0.84 0.51 
8.00 0.38 2.50 5.00 25.00 0.38   1.39 0.53 
8.00 0.63 50.00 10.00 30.00 0.38   1.07 0.66 
9.00 0.06 2.50 17.50 32.00 0.06   0.25 0.10 
9.00 0.17 32.50 2.50 30.00 0.28   1.40 0.32 
9.00 0.28 7.50 17.50 35.00 0.17   0.61 0.37 
10.00 0.00 10.00 20.00 30.00 0.20   1.11 0.11 
10.00 0.10 15.00 0.00 30.00 0.30   1.70 0.27 
10.00 0.10 45.00 5.00 25.00 0.20   1.31 0.23 
10.00 0.20 25.00 0.00 25.00 0.20   1.23 0.29 
10.00 0.20 40.00 15.00 30.00 0.10   0.50 0.24 
10.00 0.30 40.00 15.00 30.00 0.30   1.27 0.43 
10.00 0.30 10.00 10.00 35.00 0.20   0.82 0.41 
10.00 0.50 45.00 5.00 35.00 0.30   1.15 0.59 
10.00 0.50 15.00 10.00 30.00 0.20   0.81 0.57 
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Figure 6.8 Error in p/q values for the solution network 
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Figure 6.9 Error in d/h values for the solution network 

 

 

Table 6.2 gives a summary of the errors of  the  two identical networks one of 

which is trained using the direct input-output parameters and the other trained 

using  modified input-output data. 

 

Table 6.2 Summary of the network results 

 Determination of p-(p/q) Determination of d-(d/h) 
 Direct data Modified data Direct data Modified data

Maximum error ( % ) 20.69 0.22 111 0.95 
Average error ( % ) 2 0.02 16.9 0.14 

 

 

It is clear from Table 6.2 that the errors for the case of direct input of the 

parameters as in Table 5.1 are about 100 times the errros for the case of the 

modification of the data as in Table 6.1.   

 

Therefore we can say the response of the neural networks can be very different for 

two numerically different input-output pattern even they represent the same data 

and are identical from an engineering point of view. 

 



 6.4  CLOSED FORM SOLUTION  

 

The solution obtained by neural network shown in Fig. 6.5 can be expressed as : 

 

T =  LW * ( tansig( IW*K + B1) ) + B2            ( 6.3 ) 

 

where  * denotes the scalar multiplication of two matrices. The input vector, K, 

consists of the 6 input parameters ( knowns ) and by using the above equation, the 

output vector,T, consisting of the two output parameters ( unknowns ) can be 

calculated. The input vector K and the output vector T are :  

 

 
 
 
 
         and    

 

 

where : 

 

h : Height of the wall ( m ) 

a : Distance of the strip load to the wall ( m ) 

w : Strip load width ( m ) 

q : Strip load magnitude ( kPa ) 

c : ( Effective ) cohesion of the soil ( kPa ) 

φ : ( Effective ) angle of friction of the soil ( in degrees ) 

 

p : Total lateral force on the wall due to only strip load ( kN ) 

d : Distance between the point of application of P and the ground surface ( m ) 

 

 

 

h 

a/h 

q 

c 

φ 

K =   

w/h 

  p/q 
T = 

 d/h 



The  weight and bias matrices required for the solution ( LW, IW, B1 and B2 ) are 

given in Appendix A. 

 

The expression of  tansig function is given  by  Equation 6.2.  

 

Therefore a closed-form solution is obtained for the calculation of the total lateral 

thrust and its point of application as given by Equation 6.3. This solution is valid 

under the assumptions given in Section 5.1. Also it is noted that; to obtain  

accurate and reasonable results from this neural network solution, the input 

parameters must lie  between the range of the parameters used in the training of the 

network, as given in Section 5.6.  For example, it is not recommended to use this 

solution for a strip load width of  5m, because that the input-ouput pattern used in 

the solution consists of width parameters between 0.5m and 3m. 

 

 

6.5 NEURAL  NETWORK  RESULTS 

 

6.5.1  CHECK OF NETWORK RESULTS FOR DIFFERENT CASES 

 

It is shown that the  obtained neural network solution gives very accurate results  

for the considered 70 cases. However, the response of the network in any case 

excluding the considered 70 ones is also investigated  to see  the validity of the 

solution. 

 

For this purpose, 4 cases different than the considered 70 ones used in the solution 

are considered. The parameters for the cases are given in Table 6.3. 

 

These 4 cases are solved by both the solution network and PLAXIS and p and d 

values are obtained. The results of p, d and the moment at the base due to the total 

lateral thrust p ( that can be calculated as : moment = p x (h-d) ) are shown in 

Table 6.4  for the both solution methods. 

 



Table 6.3  Input parameters for the considered 4 cases 

case h(m) a(m) q(kPa) c(kPa) Φ( ο ) w(m) 
1 3 1.5 15 5 30 1.5 
2 5 2.5 25 15 35 2.5 
3 7 3 40 10 25 1 
4 9 1 30 0 30 2 

 

 

Table 6.4  Results for two solution methods 

  neural network results plaxis results 
case p(kN) d(m) Moment(kN.m) p  d Moment(kN.m)

1 7.0 2.0 14.0 7.1 1.9 13.5 
2 15.3 3.5 53.6 18.1 3.3 59.7 
3 20.6 3.2 65.9 18.7 3.1 58.0 
4 41.2 2.0 82.4 38.1 2.3 87.6 

 

 

It can be seen from Table 6.4 that the neural network results are very similar to the 

results calculated from PLAXIS analyses. So it is concluded that the neural 

network solution  given by Equation 6.3 is acceptable for any case excluding the 

considered ones used in the training of the neural network. 

 

 

6.5.2 THE EFFECT OF  INPUT PARAMETERS BY  NETWORK 

SOLUTION 

 

The individual effect of  input parameters a, w, q, c and φ are investigated by using 

the obtained neural network solution that is also given by Equation 6.3. To 

investigate the effect of each input paramater, the other paramaters are held 

constant and several cases are solved for various values of the  specific parameter. 

 

The results are also calculated according to the linear elastic solution and  plotted 

on the same graphs with the neural network solutions. 

 



To investigate the effect of the distance of the strip load ( a ), the other parameters 

are held constant as :  h = 6, w = 1, q = 25, c = 10, φ = 30  and  the results are 

obtained for different a values. The results are shown in Figures 6.10 and 6.11.  
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Figure 6.10 The effect of strip load distance (a) on p/q  
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Figure 6.11 The effect of strip load distance (a) on d/h  

 



It can be seen from the figures that p/q decreases and d/h increases with incresing 

a as expected. The linear elastic solution and the neural network solution  give 

very different results. Especially in p/q values, for a > 2 m the linear elastic 

solution gives much higher results than the neural network solution. 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

1 1.5 2 2.5 3
w(m)

p/
q 

p/q-neural network solution

p/q-linear elastic solution

 
Figure 6.12 The effect of strip load width (w) on p/q 
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Figure 6.13 The effect of strip load width (w) on d/h 

 



Figures 6.12 and 6.13 show the effect  of  strip load width (w) on p/q and d/h for 

the case : h=4, a=2, q=25, c=10, φ =30. It can be concluded that the results are 

very different . The linear elastic solution gives greater p/q values especially for 

larger values of w. On the other hand, the neural network results are greater for d/h 

values.  

 

 

The effect of q on p/q and d/h is investigated for the case: h=6, a=2, w=2, c=10 

and φ=30. As discussed before, the load magnitude has no effect on the normalized 

value p/q and d for the linear elastic solution.  

 

The results are shown in Fig. 6.14. It is clear from the figure that the neural 

network results are very similar to linear elastic solution adn nearly constant for 

d/h. However, there is a significant decrease of  p/q for increasing q in the neural 

network solution while it is constant for linear elastic solution. 
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Figure 6.14 The effect of strip load magnitude (q)  on p/q and d/h 

 

The effect of cohesion ( c ) while the other input parameters are held constant as : 

h=4, a=2, w=2, q=25, φ=30 is shown in Fig. 6.15. It can be seen that the d/h is 



nearly constant for varying  cohesion, but the value of d/h obtained by neural 

network is  significantly greater than the one obtained according to linear 

elasticity. It is also clear  that the p/q significantly decreases for increasing 

cohesion and the linear elastic solution gives much higher values for greater values 

of cohesion.  

 

The effect of angle of friction is very similar to cohesion as shown in Fig. 6.16. To 

investigate the effect of angle of friction, the case : h=5, a=1.5, w=2, q=25, c=5 is 

considered. Similar to cohesion results, the d/h values are nearly constant and 

greater than the linear ones obtained by linear elastic solution, and there is a 

significant decrease in p/q for increasing angle of friction resulting in a  big 

difference between the neural network and elastic solutions.  

 

Therefore it can be concluded that the cohesion and angle of friction have 

neglicible effect on the shape of the lateral pressure distribution, but the pressure 

values decrease with increasing soil strength ( cohesion or angle of friction ). 
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Figure 6.15 The effect of cohesion (c) on p/q and d/h 
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The  effect of angle of friction on p/q and d/h 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 
 

 



 

 

 

 

CHAPTER 7 

 

 

CONCLUSIONS 

 

 

 
In this study, an investigation of the lateral pressures acting on rigid retaining 

walls due to surface strip loading has been made. 

 

Analyses are made by a finite element program, “PLAXIS ver.7.11” and the soil is 

modelled as a non-linear elasto-plastic material. The effects of the material 

parameters used to represent the stress-strain relationship of the soil, on lateral 

pressures due to surface strip loading are investigated. 

 

It is concluded that shear strength parameters ( cohesion and angle of friction ) of 

the soil are major effective parameters affecting lateral pressures which can be 

determined by conventional laboratory or in-situ tests.  

 

A closed-form solution is obtained for the calculation of the total lateral thrust and 

its point of application, as a function of six parameters given below : 

 

- Height of the wall ( h )  

- Distance of the strip load (a )  

- Width of the strip load ( w )  

- Magnitude of the strip load ( q )  



 

- Cohesion of the soil ( c )  

- Angle of friction ( φ )  

 

For this purpose, 70 cases including various values of these parameters are 

considered and analysed by the finite element program. The total lateral thrust and 

distance of its point of application to the surface are calculated for each case. 

 

Artificial neural networks are used to find a closed from solution. The artificial 

neural network is trained by inputting the results obtained from the solutions of 

above mentioned 70 cases. Various combinations of input parameters are tried in 

order to reach a solution within 1% accuracy. 

 

A check of the obtained solution is made for the cases excluding the 70 cases used 

in the training of the network. It is seen that the closed from solution has sufficient 

accuracy for these additional cases. 

 

The effects of input parameters on the total lateral thrust and the point of 

application are investigated individually by the obtained solution and the results 

are compared with the linear elastic method. This investigation has led to the 

following conclusions: 

 

-  The shear strength of the soil has a considerable effect on the total lateral thrust. 

An increase in  the shear strength parameter (cohesion or angle of friction) results 

in a significant decrease in the total lateral thrust. The linear elastic solution is 

independent of the change in shear strength and gives relatively higher values than 

the neural network solution. 

 

-  Although the shear strength parameters affect the total lateral thrust, they have 

negligible effect on the distance of the point of application to the surface. This 

shows that  the shear strength of the soil does not change the shape of the lateral 



pressure distribution but affects the lateral pressure magnitudes due to surface strip 

loading. 

-  The results of the linear elastic solution for the total lateral thrust are generally 

higher than the results obtained from the neural network solution. The difference 

increases as strip load width, cohesion and friction angle increase. 

 

-  The distance of the point of application to the surface determined by the neural 

network solution is generally greater than  the distance obtained by the linear 

elastic solution.  

 

The neural network solution is valid for the assumptions given in Section 5.1. In 

the  future, new geometries or assumptions can be investigated. For example, a 

flexible wall instead of a rigid wall can be considered and the effect of the stiffness 

of this wall can be studied. Another approach may be the investigation of the effect 

of  K0, thus initial stresses. 
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