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ABSTRACT 

 

DEVELOPMENT OF A DISCRETE ADJOINT-BASED AERODYNAMIC 

SHAPE OPTIMIZATION TOOL FOR NATURAL LAMINAR FLOWS 

 

 

 

Kaya, Halil 

Doctor of Philosophy, Aerospace Engineering 

Supervisor: Prof. Dr. İsmail Hakkı Tuncer 

Co-Supervisor: Assoc. Prof. Dr. Hamdullah Yücel 

 

 

August 2020, 130 pages 

 

 

An adjoint-based aerodynamic shape optimization framework for natural laminar 

flows is developed. A Reynolds-Averaged Navier-Stokes flow solver with the 

Spalart-Allmaras turbulence model is coupled with the recently developed Bas-

Cakmakcioglu transition model in order to predict laminar to turbulent transition 

onset. In the gradient-based optimization process, the sensitivity derivatives required 

by the optimization algorithm is obtained by the discrete adjoint method, which is 

developed for the in-house flow solver and implemented for natural laminar flow 

airfoils and wings. In the development of the discrete adjoint method, an automatic 

differentiation tool is employed to take the discrete derivative of the modules in the 

in-house flow solver heavily modified. The parametrization of the aerodynamic 

surface is realized by the Free-Form Deformation technique. The sensitivity 

derivatives with respect to design parameters, which are computed by the adjoint 

method, are validated with the finite-difference method. The success of the adjoint-

based aerodynamic shape optimization methodology developed in this study is then 
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demonstrated by optimizing aerodynamic characteristics of several airfoils and 

wings for compressible turbulent and natural laminar flows. 

 

Keywords: Discrete Adjoint Method, Natural Laminar Flow, Aerodynamic Shape 

Optimization, Laminar to Turbulent Transition Model, Computational Fluid 

Dynamics 
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ÖZ 

 

DOĞAL LAMİNAR AKIŞLAR İÇİN AYRIK ADJOINT TABANLI 

AERODİNAMİK ŞEKİL ENİYİLEME ARACI GELİŞTİRİLMESİ 

 

 

 

 

Kaya, Halil 

Doktora, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Prof. Dr. İsmail Hakkı Tuncer 

Ortak Tez Yöneticisi: Doç. Dr. Hamdullah Yücel 

 

 

Ağustos 2020, 130 sayfa 

 

Doğal laminar akışlar için adjoint tabanlı aerodinamik şekil eniyileme yapısı 

geliştirilmiştir. Laminar akıştan türbülanslı akışa geçiş başlangıcını tahmin etmek 

için, Spalart-Allmaras türbülans modeli içeren bir Reynolds-Ortalama Navier-Stokes 

akış çözücü yakın zamanda geliştirilmiş Baş-Çakmakçıoğlu geçiş modeli ile 

birleştirilmiştir. Gradyan tabanlı eniyileme işleminde, eniyileme algoritmasının 

gerektirdiği hassasiyet türevleri, kurum içi akış çözü için geliştirilen ve doğal laminar 

akış kanat kesitleri ve kanatları için uygulanan ayrık bir adjoint yöntem ile elde 

edilmiştir. Ayrık bitişik yöntemin geliştirilmesinde yeniden yazılan akış çözücüdeki 

modüllerin ayrık türevini almak için bir otomatik türev aracı kullanılmıştır. 

Aerodinamik dış yüzeyin parametrizasyonu serbest şekil deformasyon yöntemi ile 

gerçekleştirilmiştir. Adjoint yöntemle hesaplanan şekil parametrelerine göre 

hassasiyet türevleri, ilk olarak sonlu farklar yöntemi ile doğrulanmıştır. Bu 

çalışmada geliştirilen adjoint tabanlı aerodinamik şekil eniyileme yönteminin 

başarısı, sıkıştırılabilir türbülanslı ve doğal laminar akışlar için kanat ve kanat 

kesitlerinin eniyilenmesi ile gösterilmiştir. 
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CHAPTER 1  

1 INTRODUCTION  

Aerodynamic shape optimization plays a significant role in the efficient design of 

aerial vehicles. It enables designing an aerial vehicle that has lower fuel consumption 

and CO2 emission, longer range, higher endurance, higher payload, lower noise level, 

etc. As an example, decreasing the drag coefficient of a subsonic civil transport 

aircraft by one drag count through a better aerodynamic design results in about 90 

kg more payload (Basha & Ghaly, 2007). Similarly, reducing the drag coefficient of 

a Lockheed C-5 airplane one drag count (which is less than 0.5% of the total drag 

coefficient of the Lockheed C-5), the payload capacity of the airplane at the cruise 

condition can be improved by around 450 kg (Basha & Ghaly, 2007). 

In the early days of the aerospace industry, a design was mainly driven by trial-error 

and wind tunnel testing. However, wind tunnel testing is, in general, an expensive, 

elaborated, and time-consuming process. Moreover, it is not feasible to assess 

numerous design options by conducting wind tunnel tests. Nowadays, thanks to 

modern computers, the aerodynamic characteristics of an aerial vehicle can be 

estimated within a short time and in a much more economical way by computational 

fluid dynamics (CFD) analyses. More importantly, to conduct comprehensive design 

optimization studies are only feasible by employing numerical tools coupled with 

CFD, and wind tunnel tests are generally performed at the final design stage for 

validation and verification. 

In the design optimization of competitive modern aerial vehicles, a design engineer 

should utilize a large number of design variables that provide sufficient design 

flexibility. The optimization algorithm instrumented in the study should, therefore, 
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be able to deal with the large number of design variables required by the optimum 

aerodynamic shape design efficiently. 

Gradient-based optimization algorithms are widely employed in aerodynamic shape 

optimization studies. Although gradient-free and surrogate-based optimization 

algorithms are both successful in achieving an optimum design, they both face the 

curse of dimensionality when dealing with a large number of design variables. That 

means the analyses required by the method grow exponentially with the increasing 

number of design variables. Even though the modern computers and CFD software 

packages enable conducting a high-fidelity analysis within hours, gradient-free 

algorithms may still be infeasible to utilize in an optimization problem with a large 

number of design variables. On the other hand, gradient-based algorithms do not 

scale with the dimension of the problem exponentially and are more feasible in a 

large dimensional aerodynamic shape optimization problem (Lyu, Xu, & Martins, 

2014), (Yu, Lyu, Xu, & Martins, 2018). 

Traditionally, the estimation of the sensitivity derivatives required in an optimization 

study is performed by the finite difference approximation. In the case of employing 

the finite difference approximation in a gradient-based algorithm, the computational 

cost of the algorithm is still much lower than the gradient-free and the surrogate-

based optimization algorithms. Nevertheless, the dependence of the dimensionality 

abides, and an optimization problem still scales linearly with the number of design 

variables. There are analytic methods in the context of partial differential equations 

(PDE) constrained optimization (Martins & Hwang, 2013), namely the direct method 

and the adjoint method, as well. They are both suitable to use in aerodynamic shape 

optimization problems to get sensitivity derivatives. In these methods, the governing 

equations that are the constraints of the problem are differentiated, and the 

differentiated equations are made use of computing the sensitivity derivatives. 

Similar to the finite difference method, the computational cost of the direct methods 

scales linearly with the dimension of the problem. On the other hand, the 

computational cost of the adjoint method has been exhibited to be essentially 

independent of the number of design variables. That makes them a powerful tool in 
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computing the sensitivity derivatives required in a gradient-based aerodynamic 

shape optimization problem. 

1.1 Adjoint Methods and Automatic Differentiation 

The adjoint methods that have been already instrumented in the context of the PDE 

constrained optimization over decades were firstly applied in fluid dynamics by 

Pironneau (1973) for Stokes flow. The method was further extended by Pironneau 

(1974) for laminar flows at higher Reynolds numbers. However, both studies were 

studied in an analytical sense. The method was firstly used by Glowinski & 

Pironneau (1975) in a CFD context to verify the previous works of Pironneau. 

Moreover, adjoint methods may be treated at either the continuous or the discrete 

level, known as optimize-then-discretize and discretize-then-optimize approach, 

respectively. In the context of adjoint methods, if the governing equations are firstly 

optimized and then discretized, hence the optimize-then-discretize approach, it is 

called a continuous adjoint method. Moreover, if the governing equations are firstly 

discretized and then optimized, hence the discretize-then-optimize approach, it is 

called a discrete adjoint method. 

A continuous adjoint formulation to develop a design methodology for the 

compressible potential flow equations and the Euler equations using conformal 

mapping is stated by Jameson (1988). Subsequently, Jameson and his colleagues 

published their optimum design studies using a continuous adjoint approach for 

flows governed by compressible potential flow equations, Euler equations, and 

finally, Reynolds-Averaged Navier-Stokes equations (Jameson & Reuther, 1994), 

(Jameson, 1995), (Reuther, Jameson, Farmer, Martinelli, & Saunders, 1996), 

(Jameson, Pierce, & Martinelli, 1997), (Jameson, 1999), (Reuther, Jameson, Alonso, 

Rimlinger, & Sauders, 1997). On the other hand, an application of discrete adjoint 

methods for a compressible potential flow was conducted by Angrad (1983). 

Moreover, Elliot & Peraire (1996) used a discrete adjoint method to compute the 

sensitivity gradient for two-dimensional and three-dimensional Euler equations. 
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Nielsen & Anderson (2000) developed a discrete adjoint method for aerodynamic 

design optimization on unstructured grids using the Navier-Stokes equations. 

In general, the discrete approach is considered more accurate since the gradients 

computed by a discrete adjoint method is consistent with the discrete objective 

function that is computed using the discrete form of the governing equations 

(Thomas, Hall, & Dowell, 2005). However, the gradients computed by the 

continuous adjoint approach are not necessarily consistent with the discrete objective 

function. Thus, it is more convenient to utilize discrete adjoint methods to validate 

the gradient with the finite-difference and to utilize them in a gradient-based 

optimization study. Furthermore, compared to discrete adjoint methods, continuous 

adjoint methods require noteworthy mathematical formulations, especially in the 

presence of viscous fluxes and turbulence models. Besides their disadvantages, it is 

also worthy of mentioning the advantages of continuous adjoint methods. They allow 

treating different discretization schemes in the adjoint form of the governing 

equations. They also provide an analytical adjoint form of the governing equations 

enabling us to study the characteristics of the equations. Finally, detailed 

comparisons of both methods can be found in the studies of Nadarajah & Jameson 

(2000), (2001), Carnarius, Thiele, Özkaya, & Gauger (2010), and Evgrafov, 

Gregersen, & Sorensen (2011). 

Although, in general, developing a discrete formulation is simpler than developing a 

continuous adjoint formulation, it is also an elaborating, tedious, error-prone, and 

challenging task for a complex CFD solver. However, recently, a technique that 

highly automates the development of sensitivity analysis codes has been devised. In 

the technique, the existing code is differentiated by systematically applying the chain 

rule line-by-line to generate a new code that computes the sensitivity. The technique 

is known as automatic differentiation (AD) (Griewank & Walther, 2008), (Naumann, 

2011) (also known as algorithmic differentiation or computational differentiation). 

The technique also employed in the development of a discrete adjoint solver. 

Automatic differentiation enables to develop a discrete adjoint solver either by 

differentiating the entire CFD code or by selectively using AD to compute the 
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elements of the Jacobian matrices appearing in the adjoint method with much less 

effort. 

There are two different approaches to develop a discrete adjoint method by using 

AD. In the first approach, AD is used to differentiate the entire flow solver (Albring, 

Sagebaum, & Gauger, 2016), (Djeddi & Ekici, 2019). In theory, the method requires 

minimum effort to develop an adjoint solver. However, due to the requirement of 

storing intermediate variables of the flow solver in the reverse mode of AD, 

employing AD to differentiate the entire flow solver is generally inefficient for large 

three-dimensional problems. Furthermore, the computational cost and memory 

requirement of the method are hindering. In order to alleviate the memory problem, 

advanced techniques such as checkpointing and local pre-accumulation by 

compromising from speed are employed although the problem size to use an adjoint 

method is still limited (Kenway, Mader, He, & Martins, 2019). On the other hand, in 

the latter approach, AD is selectively performed to construct the flux Jacobian 

matrices required by adjoint methods (Dilgen, Dilgen, Fuhrman, Sigmund, & 

Lazarov, 2018), (He, Mader, Martins, & Maki, 2020). In the approach, it is possible 

to compute each element of the Jacobian matrix using flow variables and the grid 

information. Therefore, it does not require to store the intermediate variables, and 

the computational cost and memory requirement of the method are not hindering. 

Finally, over decades adjoint methods have gained increasing popularity thanks to 

its usefulness in computing sensitivities. It is still a hot topic on aerodynamic shape 

optimization studies (Nemili, Özkaya, Gauger, Kramer, & Thiele, 2017), (Lozano, 

2018), (Cheylan, Fritz, Ricott, & Sagaut, 2019), (Albring, Beckett, & Gauger, 

Challenges in Sensitivity Computations for (D)DES and URANS, 2019), (Mengze, 

Qi, & Tamer, 2019), (Mader, Martins, & Maki, 2020), (Djeddi & Ekici, 2020). In 

addition to aerodynamic shape optimization studies, in the context of CFD, the 

adjoint methods have also been used in grid adaptation studies (Shei & Wang, 2016), 

(Balan, Park, & Anderson, 2019), in computing stability derivatives (Mader & 

Martins, 2014), etc. 
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1.2 Natural Laminar Flows 

Another topic in aerodynamic shape optimization is the Natural Laminar Flow (NLF) 

technology that has been shown over decades to be able to reduce drag, thus fuel 

consumption and emissions. The technology primarily aims to stabilize instabilities 

arising from boundary layer disturbances and pressure gradient by proper design. 

The researches in this area burgeoned thanks to initial implementations of linear 

stability theory that was used as an instrument to study the stabilization of the 

boundary layer by favorable pressure gradients. These researches led to the design 

of NACA (National Advisory Committee for Aeronautics) 6-series airfoils that are 

natural laminar flow airfoils (Eastman, Kenneth, & Pinkerton, 1933). The superiority 

of the NACA 6-series airfoils held out around twenty years. By the advent of the 

computers, the theory could be utilized to assess more complex flow fields even 

occurring around simple airfoils. Moreover, although stabilization or destabilization 

of a viscous boundary layer could be estimated by conducting stability analyses on 

the Orr-Sommerfeld and Squire equations, the ability to estimate the transition onset 

came with very useful semi-empirical 𝑒𝑛 method (Smith & Gamberoni, 1956), (van 

Ingen, 1956). Thus, airfoils with better performance were designed, such as airfoils 

of Wortman FX-series (Althaus, 1972), airfoils provided by McMasters (1974), or 

by Viken, Watson-Viken, Pfenninger, Morgan & Campell (1987). Subsequently, 

thanks to the relentless improvement in computational power, engineers could 

evaluate more complex flow fields for three-dimension as well as two-dimension, 

such as three-dimensional studies performed by Harris, Iyer, & Radwan (1987), 

Cummings & Garcia (1993), Iyer, Spall, & Dagenhart (1994), and Duck & Hall 

(1995). Around that time, some studies to couple transition methodologies with the 

existing turbulence models used in RANS equations were introduced. As an 

example, Warren & Hassan (Alternative to the e^n Method for Determining Onset 

of Transition, 1998), (Transition Closure Model for Predicting Transition Onset, 

1998) developed a methodology to combine transition onset prediction methods with 

a turbulence model that is 𝑘 − 𝜁 model (Robinson & Hassan, 1997). Subsequently, 
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many researchers suggested different laminar to turbulent transition models (Suzen 

& Huang, 2000), (Menter F. R., et al., 2004), (Walters & Leylek, 2004), (Walters & 

Cokljat, 2008), as well. Thus, the coupling of transition methodologies with the 

existing turbulence models used in RANS equations has allowed engineers to 

consider more complex geometries and have significantly contributed to the 

improvement of the NLF technology. 

Although, in the past, the NLF technology was primarily used on experimental 

aircraft and sailplanes; nowadays, thanks to the incorporation of laminar to turbulent 

transition models into RANS solver, NLF is finding its way onto long-endurance 

unmanned air vehicles (UAV), commercial aircraft, and business jets (Fujino, 

Yoshizaki, & Kawamura, 2003), (Fujino, 2005), (Campell, Campell, & Streit, 2011), 

(Crouch, 2015). Moreover, there are still numerous recently completed researches 

and projects, as well as ongoing researches and projects regarding NLF technology. 

For instance, the DLR (German Aerospace Center) project LamAiR (Laminar 

Aircraft Project) dealt with designing a laminar wing for short-medium range 

transport aircraft (Seitz, Kruse, Wunderlich, & Bold, 2011). Its successor project 

TuLam (Toughen up Laminar Technology) aimed to increase further the Technology 

Readiness Level of laminar flow technologies at the institute (Seitz, Hübner, & 

Risse, 2019). Moreover, as another example, researchers at NASA (National 

Aerospace Agency) and the Japan Aerospace Exploration Agency (JAXA) 

collaboratively studied on implementation of the NLF design method to a supersonic 

transport aircraft configuration called as the NASA/JAXA wing-body (NJWB.) 

(Lynde & Campell, 2016). NLF was also one of the critical topics of the Clean Sky 

Programme (CS) and is of importance in the Clean Sky 2 Programme (CS2). Just as 

NLF technology, laminar to turbulent transition modeling is a still ongoing and 

attractive issue (Wauters, Degroote, & Vierendeels, 2019), (Kaynak, Bas, 

Cakmakcioglu, & Tuncer, 2019), (Diakakis, Papadakis, & Voutsinas, 2019). 
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1.3 Motivation 

The usefulness of NLF technology and adjoint methods in an aerodynamic shape 

optimization enables high motivation to combine the methods for the design 

optimization of NLF air vehicles. Hence, in this study, it is aimed to combine these 

two essential and highly-interesting topics in aerodynamic shape optimization 

studies by the implementation of adjoint methods for a RANS flow solver coupled 

with a turbulence model and a laminar to turbulent transition model. 

In literature, there are some studies that combine adjoint methods with turbulence 

models employing a transition model to predict transition onset. For instance, 

Khayatzadeh & Nadarajah (2011), (2012) developed a discrete adjoint solver for the 

𝑘 − 𝑤 𝑆𝑆𝑇 turbulence model coupled with 𝛾 − 𝑅𝑒𝜃 transition model (Menter F. R., 

et al., 2004). In their studies, they also carried out optimization studies to minimize 

the drag coefficients of S809, NACA 0012, and NLF(1)-0416 airfoils by minimizing 

turbulent kinetic energy 𝑘 in the domain at a constant lift. Moreover, they optimized 

the 𝑐𝑙/𝑐𝑑 ratio of NACA 0012 and NLF(1)-0416 aifoils. Rashad & Zingg (2016) 

developed a two-dimensional discrete adjoint solver for the Spalart-Allmaras 

turbulence model coupled with an 𝑒𝑛 transition model. They conducted single-point 

and multi-point optimization studies on NLF airfoils by computing necessary 

gradients with their discrete adjoint solver. More recently, Yang & Mavriplis (2019) 

published an implementation of the adjoint solver for fully coupled turbulence-

transition equations. They optimized a NACA 0012 airfoil in viscous flow with free-

transition for decreasing drag and increasing 𝑐𝑙/𝑐𝑑 ratio. In the study, the turbulence 

model was the Spalart-Allmaras model and the transition model to predict transition 

onset was AFT2 model (Coder & Maughmer, 2014). 

Although there are studies that combine NLF and adjoint methods, they are limited 

to two-dimensional problems. Thus, another motivation for the present 

implementation is to evaluate the applicability of adjoint methods for RANS 

equations coupled with a turbulence model and a laminar to turbulent transition 

model in a three-dimensional problem. 
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In this context, it is aimed to develop an in-house adjoint solver. The adjoint solver 

is developed in a discrete manner. The reasons for employing the discrete approach 

are the consistency of the discrete form of the governing equations with the objective 

function and the convenience provided by AD in the development phase, in coding, 

and in adapting to changes in the flow solver. 

In order to develop a discrete adjoint solver, an aerodynamic flow solver to be 

differentiated is required. Moreover, since AD is taken advantage of the development 

of the discrete adjoint solver, it is better to have enough knowledge about the low-

level implementation of the solver to manage the automatic differentiation process 

smoothly. Therefore, it is decided to develop an aerodynamic flow solver, which 

would be mainly based on a predecessor in-house solver detailed in the reference 

(Gökhan, 2014). Moreover, developing an in-house flow solver allows having full 

knowledge of the algorithm, data structures, subroutines, etc. of the solver. In this 

way, the development of a discrete adjoint solver that requires to differentiate 

discretized flow equations is performed very easily. Furthermore, that enables to 

integrate easily different schemes, different turbulence models, transition models etc. 

in the flow and adjoint solver whose low-level implementations are mastered. 

In the solver, in order to estimate the transition onset, Bas-Cakmakcioglu (B-C) 

transition model (Cakmakcioglu, Bas, & Kaynak, 2017) is incorporated into the 

solver. The incorporated laminar to turbulent transition model is a relatively new 

model developed. The model is an algebraic transition model. Since it is an algebraic 

model, it does not introduce a new equation to solve. Hence, the size of the flux 

Jacobian matrix appearing in the adjoint method does not grow with the 

incorporation of the transition model, and that makes the model a favorable choice 

to implement in a RANS adjoint solver that considers the laminar to turbulent 

transition. Moreover, another motivation to implement the B-C transition model is 

that it will be the first study that considers the implementation of the B-C transition 

model in an adjoint approach. 
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1.4 Thesis Objective 

The present study aims at developing an adjoint-based aerodynamic shape 

optimization tool for three-dimensional natural laminar flows and implementing it 

for natural laminar flow airfoils and wings. An in-house, finite volume-based flow 

solver is adopted for further development and the addition of a discrete adjoint solver 

by means of automatic differentiation. The main objectives of the study may be 

itemized as follows: 

• To modify the in-house flow solver by rewriting it in Fortran 95 with more 

efficient schemes and data structures; 

• To couple the RANS solver with the Spalart-Allmaras and the correlation-

based Bas-Cakmakcioglu transition model; 

• To validate the flow solver for both turbulent and natural laminar flows; 

• To develop the discrete adjoint flow equations for natural laminar flows by 

means of an automatic differentiation tool and validate the sensitivity 

derivatives computed by the adjoint solver against the finite difference 

method; 

• To develop an aerodynamic shape optimization framework that enables to 

employ the sensitivity derivatives computed by the discrete adjoint solver 

and an open-source optimization tool; 

• To perform aerodynamic shape optimization studies for both turbulent and 

natural laminar flows over airfoils and wings. 

1.5 Thesis Outline 

In the following chapter, the methodology of the flow solver, and the adjoint solver 

are introduced. The structure of the optimization framework is explained. In the 

subchapter 2.1, the governing equations, the discretization, and the numerical 

implementation of the RANS flow solver are detailed. In the subchapter 2.2, the 

adjoint equations, and automatic differentiation are described. Subsequently, the 
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development of the adjoint method is mentioned. The solution of the adjoint system 

is explained. In the subchapter 2.3, the surface parametrization and the grid 

deformation method are described. The computation of the grid sensitivities and the 

algorithm employed in the optimization framework are presented. 

In chapter 3, the validation of the flow solver, the validation of the adjoint solver, 

and the optimization studies are delivered. In the subchapter 3.1, the validation of 

the RANS solver is performed through turbulent and natural laminar flow airfoil and 

wings. In subchapter 3.2, the validation studies of the adjoint solver are presented 

and discussed. In subchapter 3.3, optimization studies that are conducted to 

demonstrate the functionality of the adjoint method in ASO are described, and the 

results of the optimization studies are presented. 

Finally, in chapter 4, the summary of the thesis, concluding remarks and future 

studies are discussed. 
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CHAPTER 2  

2 METHOD 

In this chapter, the Reynolds-Averaged Navier-Stokes (RANS) flow solver, the 

adjoint solver, and the optimization framework developed in this study are 

introduced in detail, and the functionality of the adjoint solver in an aerodynamic 

shape optimization study is demonstrated.  

2.1 Reynolds-Averaged Navier-Stokes Flow Solver 

In this section, the newly developed flow solver that inherits many features from its 

predecessor solver is introduced and detailed. 

The flow solver is a finite volume (FV) based solver on unstructured grids. The 

integral forms of the governing equations are discretized in a cell-centered FV 

method with a second-order accurate flux evaluation. 

The temporal discretization scheme is a third-order explicit Runga-Kutta scheme. 

Furthermore, when a steady-state solution is concerned, in order to accelerate the 

convergence rate, a local time-stepping is employed. 

In the following subsections, the governing equations of the fluid flow, spatial and 

temporal discretization, turbulence modeling, transition modeling, and some 

implementation issues are detailed. 

2.1.1 Governing Equations 

The mathematical definition of a compressible fluid flow includes the conservation 

equations for mass, momentum, and energy, which are known as the Navier-Stokes 

equations, and the equation of state together with the proper boundary conditions. 
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The integral form of the conservation equations can be stated in vector notation as in 

Eq 2-1. 

𝜕

𝜕𝑡
∫𝑼𝑑𝛺 + 
 

𝛺

∮ (𝑭𝒄 − 𝑭𝒗).𝒏
 

𝜕𝛺

𝑑𝑠 = 0 Eq 2-1 

In Eq 2-1, 𝑼, 𝑭𝒄 and 𝑭𝒗 stand for the conservative flow variables, the tensor of the 

convective fluxes, and the tensor of the viscous fluxes, respectively. Furthermore, 

the vector of the conservative flow variables and the convective fluxes are defined 

in Eq 2-2. 

𝑼 = 

[
 
 
 
 

 

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝜌𝐸

 

]
 
 
 
 

, 𝑭𝒄 = 𝑭(𝑼) + 𝑮(𝑼) + 𝑯(𝑼) Eq 2-2 

In the equation, 𝜌 denotes the density, 𝑢, 𝑣, 𝑤 are the components of the velocity 

vector 𝑽, and 𝐸 is the total energy per unit mass. The components of the convective 

flux tensor 𝑭, 𝑮, 𝑯 are given in Eq 2-3. 

𝑭 =

[
 
 
 
 

 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

𝜌(𝐸 + 𝑝)𝑢

 

]
 
 
 
 

, 𝑮 =

[
 
 
 
 

 

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑣𝑤

𝜌(𝐸 + 𝑝)𝑣

 

]
 
 
 
 

, H=

[
 
 
 
 

 

𝜌𝑤
𝜌𝑢𝑤
𝜌𝑣𝑤

𝜌𝑤2 + 𝑝

𝜌(𝐸 + 𝑝)𝑤

 

]
 
 
 
 

 Eq 2-3 

The assumption of calorically perfect gas makes sense for practical aerodynamics 

problems. Hence, pressure 𝑝 in the Eq 2-3 can be estimated by the equation of the 

state (Eq 2-4). 

 𝑝 = (𝛾 − 1)𝜌 [𝐸 −
𝑢2+𝑣2+𝑤2

2
] Eq 2-4 

In the equation of the state, 𝛾 denotes the ratio of specific heat coefficients. 

The components of the viscous fluxes are given in the following equation. 
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𝑭𝒗 =

[
 
 
 
 

 

0
𝜏𝑥𝑥
𝜏𝑦𝑥
𝜏𝑧𝑥
Θ𝑥

 

]
 
 
 
 

𝒊 + 

[
 
 
 
 

 

0
𝜏𝑥𝑦
𝜏𝑦𝑦
𝜏𝑧𝑦
Θ𝑦

 

]
 
 
 
 

𝒋 + 

[
 
 
 
 

 

0
𝜏𝑥𝑧
𝜏𝑦𝑧
𝜏𝑧𝑧
Θ𝑧

 

]
 
 
 
 

𝒌 Eq 2-5 

In the equation, 𝜏𝑥𝑥, 𝜏𝑦𝑦, 𝜏𝑧𝑧  stand for the normal stresses and 𝜏𝑥𝑦, 𝜏𝑦𝑧 , 𝜏𝑥𝑧  stand for 

the shear stresses. They are the components of the symmetric stress tensor stated in 

Eq 2-6. 

�̿� = [

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

] Eq 2-6 

For a Newtonian fluid, the stress tensor is linearly correlated with the strain rate 

tensor. Moreover, the stress tensor of a Newtonian fluid is defined as follows, 

𝜏𝑖𝑗 = 𝜆 𝜃𝛿𝑖𝑗 + 2𝜇ϵ𝑖𝑗 Eq 2-7 

where 𝜇, 𝜆 are the dynamic viscosity coefficient and the second viscosity coefficient, 

respectively. The value of 𝜆 is estimated by the help of Stoke’s hypothesis as given 

in Eq 2-8. 

𝜆 = −
2

3
𝜇 Eq 2-8 

Moreover, ϵ𝑖𝑗 is the rate of the strain tensor, 

ϵ𝑖𝑗 = 
1

2
(𝑉𝑖,𝑗 + 𝑉𝑗,𝑖) Eq 2-9 

and 𝜃 is the volumetric dilatation rate, which is defined as stated in Eq 2-10. 

𝜃 =  𝑉𝑖,𝑖 Eq 2-10 

𝚯 denotes the work done by the fluid and the heat conduction in the fluid. The 

relation regarding 𝚯 is given in Eq 2-11, where 𝑘, and 𝑇 represent the thermal 

conductivity and the static temperature, respectively. 
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Θ𝑖 = 𝑉𝑖𝜏𝑖𝑗 + 𝑘
𝜕𝑇

𝜕𝑥𝑖
 

Eq 2-11 

Finally, the equations above are non-dimensionalized with freestream reference 

values, 𝜌∞, 𝑉∞, 𝑇∞ and a length scale 𝐿∞ that is, in general, mean aerodynamic chord 

length. That makes variables the same order of magnitude, and therefore, during 

numerical computations, loss of accuracy due to numerical round-off error is 

minimized. 

2.1.2 Spatial Discretization 

The spatial discretization of the flow solver is based on FV method. Thus, it is 

necessary to decompose the domain into finite volumes. 

In a cell-centered scheme, the finite volumes are the grid cells of the computational 

domain. In order to discretize the domain, a variety of cell types are used in CFD. 

The solver can operate on triangular, quadrilateral, tetrahedral, pyramid, prismatic, 

and hexahedral cells. 

2.1.3 Geometrical Properties of a Control Volume 

In a two-dimensional problem, the area vector of a cell is calculated by making use 

of vector cross products. The Euclidean norm of the cross product equals the area of 

a parallelogram with vectors formed by the side of the parallelogram. Since the faces 

are planar, the area evaluated by the method is exact. 
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Figure 2-1 A triangular and a quadrilateral element 

Hence, area vector 𝑨𝒕𝒓𝒊𝒂𝒏𝒈𝒖𝒍𝒂𝒓 of a triangle cell and area vector 𝑨𝒕𝒓𝒊𝒂𝒏𝒈𝒖𝒍𝒂𝒓 of a 

quadrilateral cell illustrated in Figure 2-1 are calculated by Eq 2-12 and Eq 2-13, 

respectively. 

𝑨𝒕𝒓𝒊𝒂𝒏𝒈𝒖𝒍𝒂𝒓 =
𝒍𝟏𝟐 × 𝒍𝟏𝟑

2
 Eq 2-12 

𝑨𝒕𝒓𝒊𝒂𝒏𝒈𝒖𝒍𝒂𝒓 = 𝒍𝟏𝟐 × 𝒍𝟏𝟒 Eq 2-13 

In the above equation, the vector 𝒍, e.g. 𝒍𝟏𝟐 stands for the vector connecting the 

vertices 1-2. Moreover, the edge vector of a cell always points outward as given in 

Figure 2-1. The edge vector 𝑺 of a cell, e.g., at the side 1-2, is computed by Eq 2-14. 

𝑺 = (𝑦2 − 𝑦1)𝒊 + (𝑥1 − 𝑥2)𝒋 Eq 2-14 

In a three-dimensional problem, the volume Ω of a cell is calculated based on the 

divergence theorem stated in Eq 2-15, 

Ω =
1

3
∑(𝒓𝑚𝑖𝑑 ∙ 𝑨)𝑖

𝑁𝐹

𝑖=1

 Eq 2-15 

where 𝑁𝐹 refers to the number of the faces constituting the control volume, and 𝒓𝑚𝑖𝑑 

is the vector from the center of the face 𝑖 to the cell center. The outward-pointing 

face vector 𝑨 of a cell is estimated as given in Eq 2-12 and Eq 2-13. The method 

gives the exact volume for a tetrahedral element. Furthermore, it also gives the exact 

volume for a prism and a hexahedral cell, unless the quadrilateral faces are bi-planar. 
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2.1.4 Discretization of Convective Fluxes 

The convective fluxes are discretized, such that they are the sum of the normal fluxes 

across the boundary segments of the control volume, 

∮𝑭𝒄 ∙ 𝒏 𝑑𝑠 =  ∑(𝑭(𝑼) + 𝑮(𝑼) + 𝑯(𝑼))𝒋 ∙ 𝒏𝑗∆𝑆𝑗 .

𝑁𝐹

𝑗=1

 Eq 2-16 

Similar to the predecessor solver, the multi-dimensional Euler equations are not 

solved by a dimensional-splitting scheme that carries out one-dimensional methods 

in each dimension, but by the unsplit finite volume method (Toro, 2009). In this 

scheme, the rotational invariance property of the Euler equations is exploited. 

Accordingly, by using a transformation matrix, the multi-dimensional Euler 

equations are rearranged, such that they are defined in an augmented one-

dimensional system that is normal to the face boundary. The rearranged convective 

flux at a face may be written as follows, 

(𝑭(𝑼) + 𝑮(𝑼) + 𝑯(𝑼))
𝒋
∙ 𝒏𝑗∆𝑆𝑗 = 𝑻

−𝟏�̂�(𝑻𝑼) ∙ 𝒏𝑗∆𝑆𝑗 Eq 2-17 

where �̂� is the convective flux corresponding to the augmented one-dimensional 

system, and 𝑻 is the three-dimensional rotation matrix defined in Eq 2-18. 

𝑻 =

[
 
 
 
 
1 0 0 0 0
0 𝑐𝑜𝑠𝜃𝑥𝑦𝑐𝑜𝑠𝜃𝑥𝑧 𝑐𝑜𝑠𝜃𝑥𝑦𝑠𝑖𝑛𝜃𝑥𝑧 𝑠𝑖𝑛𝜃𝑥𝑧 0
0 −𝑠𝑖𝑛𝜃𝑥𝑧 𝑐𝑜𝑠𝜃𝑥𝑧 0 0
0 −𝑠𝑖𝑛𝜃𝑥𝑦𝑐𝑜𝑠𝜃𝑥𝑧 −𝑠𝑖𝑛𝜃𝑥𝑦𝑠𝑖𝑛𝜃𝑥𝑧 𝑐𝑜𝑠𝜃𝑥𝑦 0
0 0 0 0 1]

 
 
 
 

 Eq 2-18 

In Eq 2-18, the angle 𝜃𝑥𝑦 stands for the angle between the face normal vector 𝒏𝑗 and 

x-y plane, akin to that, the angle 𝜃𝑥𝑧 stand for the angle between the face normal 

vector 𝒏𝑗 and x-z plane. When a two-dimensional case is considered, the rotation 

matrix is defined as in Eq 2-19. 
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𝑻 = [

1 0 0 0
0 𝑐𝑜𝑠𝜃𝑦 𝑠𝑖𝑛𝜃𝑦 0
0 −𝑠𝑖𝑛𝜃𝑦 𝑐𝑜𝑠𝜃𝑦 0
0 0 0 1

] Eq 2-19 

Moreover, in the augmented one-dimensional system, the vector of rotated flow 

variables �̂� defined in Eq 2-20 is considered. 

�̂� = 𝑻𝑼 Eq 2-20 

In the solver, the convective flux vector corresponding to the augmented one-

dimensional system �̂� can be computed by either the Roe’s approximate Riemann 

solver (Roe, 1981) or another Riemann solver (Nishikawa & Kitamura, 2008) that is 

a combination of the Roe’s solver and the Rusanov/HLL (hereafter referred to as 

Rotated-Roe-HLL). Numerical experiments performed show that the Rotated-Roe-

HLL scheme is more robust and to have a higher convergence rate comparing Roe’s 

scheme. In the original paper (Nishikawa & Kitamura, 2008) of the Rotated-Roe-

HLL scheme, the robustness and the high-convergence rate of the scheme are also 

emphasized and depicted by examples. Due to its robustness and high convergence 

rate, the Rotated-Roe-HLL scheme is preferred as the default convective flux scheme 

of the solver. In addition, in order to get a physically relevant non-unique solution, 

Harten’s entropy fix (Harten, Lax, & van Leer, 1983) is imposed. 

To sum up, the computation of the convective fluxes through a face is conducted by 

following the algorithm given in the study (Toro, 2009). The algorithm is 

I. Calculate the rotated left and right flow variables �̂�𝐿, �̂�𝑅 by the 

transformation given in Eq 2-20, 

II. Compute the convective fluxes corresponding to the augmented one-

dimensional system �̂� by either the Roe’s scheme or the Rotated-Roe-

HLL scheme, 

III. Rotate �̂� back to the inertial frame by multiplying 𝑻−𝟏. 
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Finally, the Roe scheme and the Rotated-Roe-HLL scheme have been implemented 

by modifying corresponding subroutines given on the website (Masatsuka, 2020) in 

terms of computational efficiency. 

2.1.5 Variable Reconstruction 

In the upwind schemes, face fluxes are computed using the left and right values. In 

the case of the cell-centered scheme, a first-order scheme reads the left and right state 

as the scalar flow field value at the cell center. Nevertheless, first-order schemes are 

too diffusive, which results in weaker, smeared shocks and excessive growth of the 

shear layer, hence inaccurate solutions. Therefore, a second-order scheme that 

assumes a linear variation in a cell is incorporated into the solver.  

In the solver, a second-order accuracy is achieved by the piecewise linear 

reconstruction given in the equations below. 

𝑈𝐿 = 𝑈𝑖 +𝚿𝒊 (𝛁𝑈𝑖 ∙ 𝒓𝐿) Eq 2-21 

𝑈𝑅 = 𝑈𝑗 +𝚿𝒋 (𝛁𝑈𝑗 ∙ 𝒓𝑅) Eq 2-22 

where 𝑈𝐿 and 𝑈𝑅 denote the left and right state, respectively. 𝚿 denotes for a limiter 

function detailed in the subchapter 2.1.7. 𝛁𝑈 is the gradient of the flow variables that 

are calculated by the methods given in the subchapter 2.1.6. 𝒓𝐿 and 𝒓𝑅 represent the 

vector from the cell-center to the mid point of the face, and the neighbor cell center 

to the midpoint of the face, respectively. Finally, in the above equations and the 

following equations, the subscripts 𝑖, and 𝑗 represent the cell of interest, and the 

neighbouring cells of it, respectively. 

2.1.6 Evaluation of Gradients of Flow Variables 

In a finite volume solver, the gradients of the scalar flow variables are necessary for 

the implementation of high-resolution advection schemes, and the computation of 

viscous fluxes dependent on velocity gradients. There are two basic strategies to 
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estimate gradients on an unstructured grid. The first one is based on Green-Gauss 

approaches, and the second one is based on least-square approaches. A variety of 

different implementations of Green-Gauss approaches (Barth & Jespersen, 1989), 

(Deka, Brahmachary, Thirumalaisamy, & Dalal, 2018), (Nishikawa, 2019) and 

Least-Squares approaches exist (Haider, Croisille, & Courbet, 2009), (Sozer, Brehm, 

& Kiris, 2014). Moreover, there are also hybrid methods to compute gradients, e.g., 

the study of Shima, Kitamura, & Haga (2013). The accuracy and robustness of the 

methods are assessed in many studies (Mavriplis, 2003), (Diskin & Thomas, 2008), 

(Diskin & Thomas, 2011), (Syrakos, Varchanis, Dimakopoulos, Goulas, & 

Tsamopoulos, 2017). 

In the solver, both approaches are implemented to estimate gradient values. The basic 

version of Green-Gauss approach is implemented. The approach is mathematically 

defined as given below in Eq 2-23. 

𝛁𝑈 = 
1

Ω
∮ 𝑈 𝒏
 

𝜕𝛺

𝑑𝑠 
Eq 2-23 

Moreover, the discretized form of Eq 2-23 was formulated. 

𝛁𝑈𝒊 = 
1

Ω
∑

1

2

𝑁𝐹

𝑗=1

(𝑈𝑖 + 𝑈𝑗)𝒏𝒋∆𝑆𝑗 

Eq 2-24 

The scalar flow field value 𝑈 at the face is computed by taking the arithmetic average 

of the flow field value of the cell itself 𝑈𝑖 and the neighbor cell 𝑈𝑗 . 

As stated before, a least-square approach to compute the gradients is also 

implemented to the solver. The approach is the weighted least square approach. The 

method is based on a linear fit over neighboring cells. Since the number of faces of 

an element is always greater than the dimension, the linear fit requires solving an 

overdetermined linear system 𝑨𝒙 = 𝒃, where the matrix 𝑨 and the vectors 𝒙, 𝒃 are 

defined in the following equations. 
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𝑨 = [

𝑤1(𝑥1 − 𝑥𝑖) 𝑤1(𝑦1 − 𝑦𝑖) 𝑤1(𝑧1 − 𝑧𝑖)
𝑤2(𝑥1 − 𝑥𝑖) 𝑤2(𝑦2 − 𝑦𝑖) 𝑤2(𝑧2 − 𝑧𝑖)

⋮ ⋮ ⋮
𝑤𝑁𝐹(𝑥𝑁𝐹 − 𝑥𝑖) 𝑤𝑁𝐹(𝑦𝑁𝐹 − 𝑦𝑖) 𝑤𝑁𝐹(𝑧𝑁𝐹 − 𝑧𝑖)

] Eq 2-25 

𝒙 = 𝛁𝑈𝒊 Eq 2-26 

𝒃 = [

𝑤1(𝑈1 − 𝑈𝑖)
𝑤2(𝑈2 − 𝑈𝑖)

⋮
𝑤𝑁𝐹(𝑈𝑁𝐹 − 𝑈𝑖)

] Eq 2-27 

In the implementation, the inverse-distance weighting is applied. The weights 𝑤 may 

be written as is given in Eq 2-28, 

𝑤𝑗 =
1

√(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2 + (𝑧𝑗 − 𝑧𝑖)2
 

Eq 2-28 

where 𝑥, 𝑦, 𝑧 denote the coordinates of the cell centers. The subscript 𝑖 refer to the 

cell itself and 𝑗 refer to the corresponding neighbor cell. The solution of the linear 

system requires the inversion of the matrix 𝑨. In order to avoid the possible problems 

with ill-conditioning, the pseudo-inverse of the matrix 𝑨 is computed by taking 

advantage of QR factorization. So, the matrix is decomposed into an orthogonal 

matrix 𝑸 and an upper triangular matrix 𝑹. Thus, the pseudo-inverse of the 𝑨 matrix 

reads 

𝑨−1 = 𝑹−1𝑹𝑇𝑨𝑻𝒃. Eq 2-29 

Moreover, the entries of the upper triangular matrix 𝑹 are computed as given in the 

study of Haselbacher & Blazek (2000). In the paper, QR factorization is performed 

utilizing the Gram-Shmidt orthogonalization. The entries 𝑟 of the upper triangular 

matrix 𝑹 read Eq 2-30. 

𝑟11 = √∑ 𝑤𝑗2(𝑥𝑗 − 𝑥𝑖)2
𝑁𝐹
𝑗=1 , 𝑟12 =

1

𝑟11
∑ 𝑤𝑗(𝑥𝑗 − 𝑥𝑖)𝑤𝑗(𝑦𝑗 − 𝑦𝑖)
𝑁𝐹
𝑗=1  

 

𝑟22 = √∑ (𝑤𝑗2(𝑦𝑗 − 𝑦𝑖)2) − 𝑟122
𝑁𝐹
𝑗=1 , 𝑟23 =

1

𝑟22
(𝑟23_1 −

𝑟12

𝑟11
𝑟23_2) 

 

𝑟23_1 = ∑ 𝑤𝑗(𝑦𝑗 − 𝑦𝑖)𝑤𝑗(𝑧𝑗 − 𝑧𝑖)
𝑁𝐹
𝑗=1   Eq 2-30 



 

 

23 

𝑟23_2 = ∑ 𝑤𝑗(𝑦𝑗 − 𝑦𝑖)𝑤𝑗(𝑧𝑗 − 𝑧𝑖)
𝑁𝐹
𝑗=1    

𝑟33 = √∑ (𝑤𝑗2(𝑧𝑗 − 𝑧𝑖)2) − (𝑟132 + 𝑟232)
𝑁𝐹
𝑗=1   

 

In a two-dimensional problem, the components of the matrix 𝑺 = 𝑹−1𝑹𝑇 reads, 

𝑠11 = (𝑟12𝑟12 + 𝑟22𝑟22) det(𝑹)⁄ , 𝑠12 = −𝑟11𝑟12 det(𝑹)⁄  

𝑠21 = 𝑠12, 𝑠22 = 𝑟12𝑟12/ det (𝑹). 
Eq 2-31 

In a three-dimensional problem, the components of the matrix 𝑺 reads, 

𝑠11 = ((𝑟22𝑟33)
2 + (𝑟12𝑟33)

2 + (𝑟12𝑟23 − 𝑟13𝑟22)
2) det(𝑹)⁄   

𝑠12 = −((𝑟12𝑟23 − 𝑟13𝑟22)𝑟11𝑟23 + 𝑟12𝑟23𝑟13𝑟11) det(𝑹)⁄   

𝑠13 = (𝑟12𝑟23 − 𝑟13𝑟22)𝑟11𝑟23 det(𝑹)⁄  

𝑠22 = ((𝑟11𝑟33)
2 + (𝑟11𝑟23)

2) det(𝑹)⁄  
Eq 2-32 

𝑠23 = −𝑟11𝑟23𝑟11𝑟22 det(𝑹)⁄   

𝑠12 = 𝑠21, 𝑠31 = 𝑠13, 𝑠32 = 𝑠23.  

At the cells neighboring a boundary, length between cell centers is assumed as twice 

the length between the cell center and the mid of the corresponding boundary face. 

The flow variables of the neighbor cell are computed from the corresponding ghost 

cell. 

Note that in the implementation, the robustness of the least-square is low. Therefore, 

in the analyses, gradient computations are performed by using the Green-Gauss 

approach for a second-order accuracy. 

2.1.7 Limiter Function for Variable Reconstruction 

Second and higher-order spatial discretization schemes require a flux limiter 

function to suppress the oscillations appearing in the vicinity of high gradients (e.g., 

shocks). The limiter functions achieve this goal by reducing or removing the 

gradients employed in the reconstruction, so they guarantee the monotonicity. 

In order to prevent such oscillations and spurious solutions, a limiter function is 

implemented to the solver. The implemented limiter function is the function 
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suggested by Venkatakrishnan (1993), (1995) because the function is considered to 

have a better convergence rate and to be more robust comparing the other limiter 

functions thanks to its smoothness. 

The Venkatakrishnan limiter function is stated in Eq 2-33, 

𝚿𝒊 = 𝑚𝑖𝑛𝑗

{
 
 

 
 
1

∆2
[
(∆1,𝑚𝑎𝑥

2 + 𝜀2)∆2 + 2∆2
2∆1,𝑚𝑎𝑥

∆1,𝑚𝑎𝑥
2 + 2∆2

2 + ∆1,𝑚𝑎𝑥∆2 + 𝜀2
]   𝑖𝑓 ∆2> 0

1

∆2
[
(∆1,𝑚𝑖𝑛

2 + 𝜀2)∆2 + 2∆2
2∆1,𝑚𝑖𝑛

∆1,𝑚𝑖𝑛
2 + 2∆2

2 + ∆1,𝑚𝑖𝑛∆2 + 𝜀2
]   𝑖𝑓 ∆2< 0

                                   1                               𝑖𝑓 ∆2= 0,

 Eq 2-33 

where 

∆1,𝑚𝑎𝑥= 𝑈𝑚𝑎𝑥 − 𝑈𝑖 Eq 2-34 

∆1,𝑚𝑖𝑛= 𝑈𝑚𝑖𝑛 − 𝑈𝑖 Eq 2-35 

∆2 = 𝛁𝑈𝑖 ∙ 𝒓𝐿 Eq 2-36 

𝜀2 = (𝐾∆�̂�).3 Eq 2-37 

In the equations above, 𝑈 denotes the scalar flow field variables. 𝑈𝑚𝑎𝑥 and 𝑈𝑚𝑖𝑛 

refer to the maximum and minimum scalar flow field variables of the neighboring 

cells and the cell itself, respectively. ∆�̂� denotes an average grid size. It is also 

possible to employ a local length scale ∆�̂�𝑖 rather than employing a global length 

scale ∆�̂�. The parameter of 𝐾 represents a threshold. Oscillations below the threshold 

value are allowed to occur and not treated by the limiter. To set the value to 0 means 

fully limiting. However, that may deteriorate the convergence of the solution. On the 

other hand, an increase in 𝐾 reduces the effectiveness of the limiter, but it ameliorates 

the convergence of the solution. 

In the solver, rather than employing a local length scale, a global value that is 0.01 

non-dimensional length for ∆�̂� is employed. Moreover, in the solver, the default 

value of 𝐾 is 5. 
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Figure 2-2 Effect of limiter function 

Finally, the effect of the limiter function is represented for an inviscid flow around 

RAE 2822 airfoil in Figure 2-2. The figure shows that the limiter remedies the 

solution by removing the spurious kink appearing in the vicinity of the shock. 

2.1.8 Discretization of Viscous Fluxes 

In order to compute viscous fluxes defined by Eq 2-5 in a discrete manner, velocities, 

velocity gradients, and dynamic viscosities at cell faces are required. Unlike 

convective fluxes that have a hyperbolic nature, viscous fluxes have an elliptic 

nature. Thus, the cell face values are simply obtained by averaging the neighboring 

cell, as expressed in the following equations. 

𝑈𝒊𝒋 = 
1

2
(𝑈𝑖 + 𝑈𝑗) 

Eq 2-38 

𝛁𝑈̅̅ ̅̅ 𝑖𝑗 = 
1

2
(𝛁𝑈𝑖 + 𝛁𝑈𝑗) 

Eq 2-39 

𝜇𝑖𝑗 = 
1

2
(𝜇𝑖 + 𝜇𝑗) 

Eq 2-40 
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Besides, the gradient values at faces are corrected by the directional derivative along 

the line connecting the cell centers. The correction prevents decoupling on 

quadrilateral and hexahedral grids, where the decoupling may increase the truncation 

error and reduce the convergence rate significantly. The modified gradient at the cell 

faces may be written as given in Eq 2-41. 

𝛁𝑈𝒊𝒋 = 𝛁𝑈̅̅ ̅̅ 𝑖𝑗 − (𝛁𝑈̅̅ ̅̅ 𝑖𝑗 ∙ 𝒕𝑖𝑗 − (
𝜕𝑈

𝜕𝑙
)
𝑖𝑗
) 𝒕𝒊𝒋 

Eq 2-41 

In Eq 2-41, (
𝜕𝑈

𝜕𝑙
)
𝑖𝑗

term is defined as the change in the flow variable U, form the 

center of the cell i to the center of the cell j. It is defined in Eq 2-42, 

(
𝜕𝑈

𝜕𝑙
)
𝑖𝑗
≈
𝑈𝑗 − 𝑈𝑖

𝑙𝑖𝑗
  

Eq 2-42 

where 𝑙𝑖𝑗 is the distance from the center of the cell i to the center of the cell j. 

𝒕𝑖𝑗  appearing in Eq 2-42 is a unit vector, which is defined as in Eq 2-43. 

𝒕𝑖𝑗 =
𝒓𝑖𝑗

𝑙𝑖𝑗
  Eq 2-43 

In the equation above, 𝒓𝑖𝑗 is the vector connecting the center of the cell i to the 

center of the cell j. 

2.1.9 Temporal Discretization 

The flow solver applies different discretization schemes in space and time. The 

spatial discretization is detailed in the previous subchapters. In this subchapter, the 

temporal discretization is explained. 

The conservation equation stated in Eq 2-1 is discretized formulation as followed. 

𝛺𝑖
𝜕𝑼𝒊
𝜕𝑡𝒊

+ ∑ (𝑭𝒄𝑗 − 𝑭𝒗 𝑗) ∙ 𝒏𝒋∆𝑆𝒋

𝑛𝑓𝑎𝑐𝑒

𝑗=1⏟                
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙,𝑹𝒊

= 0 
Eq 2-44 
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In Eq 2-44, the part defined as 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is formed by the summation of convective 

and viscous fluxes. The time integration is then performed. 

The time integration is employed by the third-order Runga-Kutta explicit scheme. 

Hence, the flow variables 𝑼𝒊 of a cell are updated as expressed in Eq 2-45. 

𝑼𝑖
(1) = 𝑼𝑖

𝒏 −∝1
∆𝑡𝑖
𝛺𝑖
𝑹(𝑼𝑖

𝑛) 

𝑼𝑖
(2) = 𝑼𝑖

(1) −∝2
∆𝑡𝑖
𝛺𝑖
𝑹(𝑼𝑖

(1)) 

𝑼𝑖
𝑛+1 = 𝑼𝑖

(2) −∝3
∆𝑡𝑖
𝛺𝑖
𝑹𝑼𝑖

(2)
 

Eq 2-45 

In Eq 2-45, ∝1, ∝2, ∝3 are the stage coefficients of the third-order Runga-Kutta 

scheme and are set to 0.333, 0.5, and 1, respectively. 

Finally, for a steady-state solution, to accelerate the convergence rate of the solver, 

a local time-stepping scheme is employed. The local time-stepping scheme 

employed in the solver is detailed in the following subchapter. 

2.1.10 Time Step and Local Time Stepping 

In the flow solver, the time step of a cell 𝑖 is estimated Courant–Friedrichs–Lewy 

(CFL) criterion expressed in Eq 2-46. The relation is given by Blazek (2001) that 

refers to (Vijayan & Kallinderis, 1994) for the implementation. 

∆𝑡𝑖 = 𝜎
Ω𝐼

(Λ̂𝑐
𝑥 + Λ̂𝑐

𝑥 + Λ̂𝑐
𝑥)𝐼 + 𝐶(Λ̂𝜈

𝑥 + Λ̂𝜈
𝑥 + Λ̂𝜈

𝑥)𝐼
 

Eq 2-46 

In Eq 2-46, 𝜎 denotes CFL number. The spectral radii are calculated as given in Eq 

2-47. 

Λ̂𝑐
𝑥 = (|𝑢| + 𝑐)Δ�̂�𝑥 

Λ̂𝑐
𝑦
= (|𝑣| + 𝑐)Δ�̂�𝑦 

Λ̂𝑐
𝑧 = (|𝑤| + 𝑐)Δ�̂�𝑧 

Eq 2-47 

The viscous spectral radii are computed as follows, 
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Λ̂𝑣
𝑥 = max (

4

3
,
𝛾

𝜌
) (
𝜇𝐿
𝑃𝑟𝐿

+
𝜇𝑇
𝑃𝑟𝑇

)
(Δ𝑆𝑥)2

Ω
, 𝑒𝑡𝑐. Eq 2-48 

where Δ𝑆𝑥, Δ𝑆𝑦, Δ𝑆𝑧, respectively, corresponds to the projected area of the control 

volume on the y-z, x-z, and x-y plane. Moreover, 𝐶 is set to 4. Finally, if a time-

accurate solution is aimed, the global time step is set to the minimum time step 

among all cells in the domain, as given in Eq 2-49. 

∆𝑡 = min𝑖(∆𝑡𝑖)  Eq 2-49 

2.1.11 Turbulence Modelling 

The Navier-Stokes equations provide a mathematical definition of compressible 

fluid flow, including turbulent flows. However, in the presence of turbulence, the 

simulation of fluid flow is problematic. The numerical simulation of turbulence, 

which is called Direct Numerical Simulation (DNS), requires a discretization in the 

Kolmogorov scale both in time and space. Therefore, it requires a very large number 

of cells in the flow domain that scales with 𝑅𝑒9/4 for a proper spatial resolution. 

Furthermore, the time step should be small enough to resolve even the smallest scale 

motion. Despite the high performance of the modern supercomputers, DNS is only 

feasible for relatively simple flows at low Reynolds numbers. In practical 

engineering problems, the average quantitative effects of turbulence play a more 

significant role rather than instantaneous quantitative effects of turbulence that are 

difficult or infeasible to compute. Therefore, the flow field variables in the Navier-

Stokes equation are expressed as the sum of the mean and the fluctuating part that 

has a zero mean, which is called the Reynolds-Averaged Navier-Stokes (RANS) 

equations. RANS equations are mostly identical to the Navier-Stokes equations. In 

RANS equations, the variables are the mean values except the additional time-

averaged term −𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅. 

The additional term −𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ is called the Reynolds stress because its effect on the 

mean flow is similar to that of stress term. Although the term is the mean of 
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multiplication of two fluctuating velocities, it is not equal to zero due to the existence 

of an auto-correlation between the fluctuating velocities. The presence of the 

Reynolds stress term causes the well-known closure problem in the RANS equations. 

In order to close the equations, the Reynolds stress term needs to be modeled in terms 

of the mean flow variables. These models required to close the RANS equations are 

called turbulence models. Turbulence models may be coupled with a laminar to 

turbulent transition submodel in order to predict the transition onset automatically. 

Since the present study considers natural laminar flows, both a turbulent and 

transition model are implemented into the RANS solver. The turbulence and a 

laminar to turbulent transition model implemented in this study are discussed in 

detail in the next subchapter. 

2.1.12 Spalart-Allmaras Turbulence Model 

In the RANS solver, the closure of the equations is achieved by using the Spalart-

Allmaras turbulence model (Spalart & Allmaras, 1992). The model is based on 

Boussinesq’s eddy viscosity hypothesis (Boussinesq, 1877), (Boussinesq, 1896). 

The hypothesis suggests relating the Reynolds stress tensor linearly with the mean 

strain rate tensor, as in the viscous stress tensor. In the relation given in Eq 2-50, the 

proportionality factor is named as the eddy (or turbulent) viscosity, 𝜇𝑇, 

−𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ = 2𝜇𝑇ϵ𝑖𝑗̅̅ ̅ −
2

3
𝜌𝑘𝛿𝑖𝑗 Eq 2-50 

where 𝑘 is the turbulent kinetic energy computed as given in Eq 2-51. 

𝑘 =
1

2
𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ Eq 2-51 

Now, the only unknown variable is the eddy viscosity, and unlike the kinematic 

viscosity, it does not represent any physical characteristics of the fluid. However, it 

depends on the local flow field variables. As it is stated earlier to model the eddy 

viscosity and to achieve closure in RANS equations, the Spalart-Allmaras turbulence 
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model is utilized. This model solves a transport equation for a turbulent working 

variable, 𝑣, which is related to the eddy viscosity through, 

𝜇𝑇 = 𝜌𝑣𝑓𝑣1 Eq 2-52 

where 

𝑓𝑣1 =
χ3

χ3 + 𝐶𝑣1
 Eq 2-53 

and 

χ =
𝑣

𝑣
 Eq 2-54 

The integral form of the equation is given in Eq 2-55. 

𝜕

𝜕𝑡
∫ �̃�𝑑𝛺 + 
 

𝛺

∮ (𝑭𝒄,𝑻 − 𝑭𝒗,𝑻) 𝒏
 

𝜕𝛺

𝑑𝑆 = ∫𝑄𝑇𝑑𝛺 
 

𝛺

 Eq 2-55 

𝑭𝒄,𝑻 is the advection of the turbulent working variable, 

𝑭𝒄,𝑻  = �̃�𝑉 Eq 2-56 

where 𝑉 is the contravariant velocity. In the solver, the advection of the turbulent 

working variable is discretized using a scalar upwind scheme. 

𝑭𝒗,𝑻 is the diffusive flux given by the relation, 

𝑭𝒗,𝑻  = (
1

𝜎
(𝜈𝐿 + �̌�)) (𝑛𝑥

𝜕�̌�

𝜕𝑥
+ 𝑛𝑦

𝜕�̌�

𝜕𝑦
+ 𝑛𝑧

𝜕�̌�

𝜕𝑧
). Eq 2-57 

𝑄𝑇 is the source term of the turbulent equation. The source term is given in Eq 2-58, 

𝑄𝑇 = 𝐶𝑏1�̃��̃� +  
𝐶𝑏2
𝜎
((
𝜕�̃�

𝜕𝑥
)
2

+ (
𝜕�̃�

𝜕𝑦
)
2

+ (
𝜕�̃�

𝜕𝑧
)
2

) − (𝐶𝑤1𝑓𝑤) (
�̃�

𝑑
)
2

, Eq 2-58 

where 

�̃� =  Ω + 
�̃�𝑓𝑣2

𝜅2𝑑2
, Ω =  √2ϵ𝑖𝑗ϵ𝑖𝑗, 𝑓𝑣2 = 1 − 

𝜒

1+𝜒𝑓𝑣1
 Eq 2-59 
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𝑓𝑤 = 𝑔(
𝑔−6 + 𝐶𝑤3

−6

1 + 𝐶𝑤3
−6 )

−6

, 𝑔 = 𝑟 + 𝐶𝑤2(𝑟
6 − 𝑟),   𝑟 =  

�̃�

�̃�𝜅2𝑑2
, Eq 2-60 

and the constants are given as in Eq 2-61.  

𝐶𝑏1 = 0.1355          𝜎 =
2

3
         𝐶𝑏2 = 0.622    𝐶𝑣1 = 7.1 

𝐶𝑤1 = 
𝐶𝑏1
𝜅2
+
(1 + 𝐶𝑏2)

𝜎
  ,   𝐶𝑤2 = 0.3 ,  𝐶𝑤2 = 2.0 

Eq 2-61 

Furthermore, at solid walls, the value of the turbulent working variable is assumed 

0, hence 𝜇𝑇. The initial dimensionless value of 𝑣 is set 3.0, which corresponds to 

𝜇𝑇 ≈ 0.21𝜇. At outflow boundaries, it is extrapolated. Finally, the turbulent working 

variable 𝑣 is added into the flow variable vector. 

2.1.13 Bas-Cakmakcioglu Transition Model 

The laminar-to-turbulent transition onset prediction plays an essential role in the 

simulation of flows over NLF airfoils and wings. The original Spalart-Allmaras 

turbulence models do not predict for laminar-to-turbulent transition in boundary 

layers. In the present study, the correlation-based algebraic B-C transition model 

(Cakmakcioglu, Bas, & Kaynak, 2017) is implemented in the flow solver. 

In the transition model, an intermittency factor 𝛾𝐵𝐶 multiplied with the production 

term that appears in the source term of the SA turbulence model in order to suppress 

the production of turbulence in laminar and transition regions, as stated in Eq 2-62.  

𝛾𝐵𝐶𝐶𝑏1�̃��̃� +
𝐶𝑏2
𝜎
((
𝜕�̃�

𝜕𝑥
)
2

+ (
𝜕�̃�

𝜕𝑦
)
2

+ (
𝜕�̃�

𝜕𝑧
)
2

) − (𝐶𝑤1𝑓𝑤) (
�̃�

𝑑
)
2

 Eq 2-62 

The intermittency factor 𝛾𝐵𝐶 is allowed to get a value between 0 and 1. In the model, 

until a defined transition onset criterion is satisfied, the model suppresses the 

production of turbulence by setting the intermittency factor to 0. Once the defined 

criterion is exceeded, the intermittency factor gets a value greater than 0, and the 

transition from laminar to turbulent flow starts. 
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The defined criterion is whether locally calculated momentum thickness Reynolds 

number 𝑅𝑒𝜃 exceeds the critical momentum thickness Reynolds number 𝑅𝑒𝜃𝑐 or not. 

The value of 𝑅𝑒𝜃𝑐 is determined by some empirical correlations related to turbulent 

intensity value. In the original paper, three relations, each of which corresponds to a 

different turbulence intensity range, are considered. The first transition onset 

correlation, which is utilized when the turbulence intensity is below 1%, is as 

presented in the study of Menter et al. (2004). The correlation is stated in Eq 2-63. 

𝑅𝑒𝜃𝑐 = 803.73(𝑇𝑈∞ + 0.6067)
−1.027 Eq 2-63 

When the turbulence intensity is between 1% and 3%, correlation is similar to the 

relation delivered in the study of Abu-Ghannam & Shaw (1980), 

𝑅𝑒𝜃𝑐 = 163 + 𝑒
(6.91−𝑇𝑈∞) Eq 2-64 

and for the turbulent intensity values higher than 3%, the correlation given by Mayle 

(1991) is employed. The relation is stated in Eq 2-65. 

𝑅𝑒𝜃𝑐 = 400 𝑇𝑈∞
−0.625

 Eq 2-65 

The value of the intermittency factor is determined by the relation given in Eq 2-66. 

𝛾𝐵𝐶 = 1 − 𝑒
(−√𝑇𝑒𝑟𝑚1−√𝑇𝑒𝑟𝑚2) Eq 2-66 

𝑇𝑒𝑟𝑚1 appears in Eq 2-66 to check the transition criterion. The relation regarding 

𝑇𝑒𝑟𝑚1 is given in Eq 2-67. 

𝑇𝑒𝑟𝑚1 =
max (𝑅𝑒𝜃 − 𝑅𝑒𝜃𝑐 , 0,0)

𝜒1
  Eq 2-67 

In the model, 𝑅𝑒𝜃 is correlated with the locally calculated vorticity Reynolds number 

𝑅𝑒𝑣 as stated in Eq 2-68. 

𝑅𝑒𝜃 =
𝑅𝑒𝑣
2.193

 Eq 2-68 

The vorticity Reynolds number 𝑅𝑒𝑣 is calculated by Eq 2-69, 
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𝑅𝑒𝑣 =
𝜌𝑑𝑤

2

𝜇
Ω Eq 2-69 

where 𝑑𝑤 is the closest wall distance, and Ω is vorticity. In the original paper of the 

transition model, it is stated that 𝑇𝑒𝑟𝑚1 is not enough to model turbulence generation 

inside the boundary layer. That is because 𝑅𝑒𝑣 is proportional to the closest wall 

distance, so it gets quite a low value in the vicinity of the wall. To alleviate this issue 

a new term, 𝑇𝑒𝑟𝑚2, is defined. The term allows intermittency produced by the 

𝑇𝑒𝑟𝑚1 to penetrate the boundary layer. 𝑇𝑒𝑟𝑚2 is defined by the relation in Eq 2-70, 

 𝑇𝑒𝑟𝑚2 =
max(𝜈𝐵𝐶−𝜒2,0.0)

𝜒2
  Eq 2-70 

where 𝜈𝐵𝐶 is given as 

𝜈𝐵𝐶 =
𝜈𝑡
𝑈𝑑𝑤

 . Eq 2-71 

𝜒1 and 𝜒2 are calibration constants, and the values are presented in Eq 2-72. 

𝜒1 = 0.002, 𝜒2 = 5.0/𝑅𝑒 Eq 2-72 

Moreover, when the transition model is enabled, the initial dimensionless value of 𝑣 

is set 0.015 instead of the value of 3.0 set in the turbulence model. 

2.1.14 Numerical Implementation and Parallelization 

In this subchapter, the implementation issues regarding the solution algorithm, 

Fortran data structures, and the parallelization of the modified flow solver are 

considered. 

The original flow solver is written in Fortran 77. In the present study, the solver 

converted into Fortran 95 with the use of proper modules, data structures, and 

allocatable arrays. In addition, the dimension of the problem is parameterized, and 

now the developed solver may be employed for the simulation of 2D and 3D flows. 
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The efficiency of the solution algorithm is also improved by looping over all the cell 

faces rather than over the cells. Such an approach removes the ‘if’ statements needed 

to eliminate the computation of edge fluxes twice and makes the implementation of 

boundary conditions easier. 

In accordance with the new solution algorithm, the cell-based data structure is 

changed to a face-based data structure. The face-based data structure face_type 

encapsulates the left and right cell indices, the normal vector, and the local face 

indices in the left and right cells. Moreover, all the cell faces are stored in a data 

structure that stores the array of interior faces, and the arrays of the boundary faces 

grouped with respect to the boundary type. Thus, the queries required to determine 

the face properties are avoided. 

In order to easily manage the data regarding the grid-related information, a data 

structure cell_type is also introduced. The structure encapsulates the type of the cell, 

the array of nodes, neighbors, face indices, and the direction of normal vector of 

faces (either outwards or inwards). All the array sizes are now allocatable to the 

extent that the size of a variable of cell_type changes with the type of the cell.  

In the grid input file, the nodes constituting a cell is given in a specific order 

compatible with the Visual Toolkit (VTK) format. The details of VTK format can be 

found in the references (Schroeder, Martin, & Lorensen, 2006), (Schroeder, 2010).  

In the numerical implementation, another data structure cellgeom_type is introduced 

that encapsulates geometric properties of cells, such as volume, face normals, tangent 

vectors, center coordinates, the distance to the closest wall. The vector or matrix 

components of the structure are similarly defined as allocatable arrays. Furthermore, 

in order to reduce arithmetic operations, some additional terms needed frequently in 

the computations are also encapsulated by the data structure. 

The computation of convective and viscous fluxes are now achieved by procedure 

pointers, which are easily set depending on the selected scheme. Thus, the queries 

performed before each call of the flux function regarding the type, the order of the 
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selected scheme, and the dimension of the problem are avoided, and the readability 

of the code is improved significantly. The use of modern tools in programming with 

Fortran 95 improves computational efficiency significantly. 

In the development of the solver, it is intended to write a cache-friendly code by 

considering memory latency. Memory latency is the time until the processor retrieves 

the requested data. The latency depends on the location of the data. The typical 

latency values of modern computers are given in Table 2.1. 

 Table 2.1 Typical latency values in modern computer architecture (Ajwani & 

Meyerhenke, 2010) 

Cache Type Latency (nanoseconds) 

Register ~1 

Caches ~10 

Main Memory ~5-70 

Hard Disk ~10000 

In order to reduce the memory latency, frequently accessed data appearing in large 

arrays are assigned to local variables, in this way, the temporal locality is considered. 

Moreover, the spatial locality is also essential in a cache-friendly code. Hence, loops 

are constructed by considering column-major order (used by Fortran) that is each 

column is juxtaposed one after the other in contiguous memory locations.  

Most of the present study is accomplished on a shared-memory rack server system 

having 32 cores. Therefore, the solver is easily parallelized by using OpenMP 

version 5.0 (OpenMP Architecture Review Board, 2018) compiler directives. The 

algorithm preserves the program structure of the serial version, and the parallel 

version of the solver is generated by compiler directives added before the main loops. 

Most of the loops at the top level of the solution algorithm are parallelized. Since 

most of the loop sizes are much larger than the number of cores, the nested level 

parallelism is not preferred. The speedup ratios of the computations are plotted in 

Figure 2-3 in terms of the elapsed time per iteration for a three-dimensional problem 

with 760 × 103 cells. 

https://www.sciencedirect.com/topics/computer-science/contiguous-memory


 

 

36 

 

Figure 2-3 Parallel Efficiency 

As seen in Figure 2-3 the parallel efficiency rapidly deteriorates, and 32 cores 

provide about 51% efficiency. Although the scalability of the computations may 

further be improved by the use of a profiler to detect the bottlenecks, it is left for a 

future study. 

2.2 Sensitivity Analysis 

2.2.1 Adjoint Equations 

In an aerodynamic shape optimization problem, objective function 𝐼, such as 𝐶𝐿 or 

𝐶𝐷, depend on the geometric variables that define the aerodynamic surfaces and the 

flow field 𝑼. 
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𝐼 = 𝐼(𝜶,𝑼(𝜶)) Eq 2-73 

A subset of geometric variables 𝜶, which define the aerodynamic surface to be 

optimized, is taken as the design variables. Since all the flow variables in the solution 

domain, 𝑼, depend on the geometric variables through the boundary conditions, the 

governing equations of flow, in the study the RANS equations, now become the 

constraints of the aerodynamic shape optimization problem. 

𝑹 = 𝑹(𝜶,𝑼(𝜶))=0 Eq 2-74 

The sensitivity of the objective functions to the design variables may be expressed 

as 

𝑑𝑰

𝑑𝜶
= 
𝜕𝑰

𝜕𝛂
+
∂𝑰

∂𝑼

𝑑𝑼

𝑑𝜶
 Eq 2-75 

On the other hand, the sensitivity of the governing fluid flow equations is similarly 

given as in Eq 2-76. Since the governing equations should always be satisfied, they 

are equal to zero. 

𝑑𝑹

𝑑𝜶
=  
𝜕𝑹

𝜕𝜶
+
∂𝑹

∂𝑼

𝑑𝑼

𝑑𝜶
= 0 Eq 2-76 

Note that the total derivative term, 𝑑𝑼 𝑑𝜶⁄ , which is present in both expressions is 

the most challenging term to evaluate due to the inherent coupling between the flow 

variables and the boundary conditions. If it is computed by a one-sided finite 

difference method, as many flow solutions as the design variables are needed. 

Note that Eq 2-76 leads to the following expression 

𝑑𝑼

𝑑𝜶
=  − [

∂𝑹

∂𝑼
]
−1 ∂𝑹

∂𝜶
 Eq 2-77 

Moreover, by substituting this statement into the sensitivity equation, the following 

statement is attained. 
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𝑑𝐼

𝑑𝜶
= 
𝜕𝐼

𝜕𝛂
−
∂𝐼

∂𝑼
[
∂𝑹

∂𝑼
]
−1 ∂𝑹

∂𝜶

⏞      
−𝑑𝑼 𝑑𝜶⁄

 
Eq 2-78 

  

Now, there are two ways to solve the linear system given in Eq 2-78, depending on 

which right-hand side is chosen. In the first method, the total derivative 𝑑𝑼 𝑑𝜶⁄  is 

calculated directly, the linear system given in Eq 2-79. Therefore, it is called the 

direct method. 

−
∂𝑹

∂𝑼

𝑑𝑼

𝑑𝜶
=
∂𝑹

∂𝜶
 Eq 2-79 

The alternative method is the adjoint method. In the adjoint method, a vector called 

the adjoint vector is introduced, and the linear system in Eq 2-78 is defined only by 

partial derivatives as, 

𝑑𝐼

𝑑𝜶
= 
𝜕𝐼

𝜕𝛂
+ 𝝀𝑇

∂𝑹

∂𝜶
 Eq 2-80 

where the adjoint vector λ is 

[
𝜕𝑹

𝜕𝑼
]
𝑻

𝝀 = − [
𝜕𝐼

𝜕𝑼
]
𝑻

 Eq 2-81 

Thus, in the direct method, the computational cost to solve the linear system given 

in Eq 2-79 scales with the number of design variables, 𝛂, however, in the adjoint 

method, the computational cost to solve the linear system given in Eq 2-81 scales 

with the number of objective functions. Furthermore, typically, aerodynamic shape 

optimization problems consider a single or a few objective functions like 

𝐶𝐿 𝐶𝐷⁄ ,  𝐶𝐿
3/2/𝐶𝐷 etc. However, the shape is generally defined and controlled by 

tens or hundreds of design variables. Hence, the adjoint method provides a prominent 

computational advantage in dealing with aerodynamic shape optimization problems. 

The adjoint formulation may also be defined by employing a Lagrange multiplier. 

By using a Lagrange multiplier to enforce the governing equation as constraints, an 

augmented objective function may be introduced. 

𝝀𝑇  
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𝐽 = 𝐼(𝜶, 𝑼(𝜶)) + 𝝀𝑇𝑹(𝜶,𝑼(𝜶)) Eq 2-82 

The sensitivity of the augmented objective function to the design variables may be 

expressed as given in the following equation. 

𝑑𝐽 =  
𝜕𝐼

𝜕𝑼
𝑑𝑼 +

𝜕𝐼

𝜕𝜶
𝑑𝜶 + 𝝀𝑇 (

∂𝑹

∂𝑼
𝑑𝑼 +

∂𝑹

∂𝜶
𝑑𝜶) Eq 2-83 

When the equation is grouped considering the perturbations, the following statement 

appears. 

𝑑𝐽 =  (
𝜕𝐼

𝜕𝑼
+ 𝝀𝑻

𝜕𝑹

𝜕𝑼
)𝑑𝑼 + (

∂I

∂𝜶
+ 𝝀𝑻

∂𝑹

∂𝜶
)𝑑𝜶 Eq 2-84 

When 𝝀𝑻 is chosen to satisfy the adjoint equation, 

𝜕𝐼

𝜕𝑼
+ 𝝀𝑻

𝜕𝑹

𝜕𝑼
= 0 ⇒ [

𝜕𝑹

𝜕𝑼
]
𝑻

𝝀 = − [
𝜕𝐼

𝜕𝑼
]
𝑻

 Eq 2-85 

the sensitivities are then obtained by the following equation. 

𝑑𝐽

𝑑𝜶
=
𝑑𝐼

𝑑𝜶
=  
𝜕𝐼

𝜕𝛂
+ 𝝀𝑇

∂𝑹

∂𝜶
 Eq 2-86 

Finally, in the present study, due to having a domain discretized through finite 

volumes, residual equations and flow variables are also a function of grid coordinates 

X. Thus, Eq 2-80 (or Eq 2-86) may be rewritten, as depicted in Eq 2-87. 

𝑑𝐼

𝑑𝑿

𝑑𝑿

𝑑𝜶
=  (

𝜕𝐼

𝜕𝑿
+ 𝝀𝑇

∂𝑹

∂𝑿
)
𝑑𝑿

𝑑𝜶
 Eq 2-87 

Accordingly, in the present study, firstly, the sensitivity derivatives of the objective 

function with respect to grid nodes, and the sensitivity derivatives of the grid nodes 

with respect to design variables are computed separately. Afterward, the sensitivities 

of the objective function with respect to design variables are computed by 

performing the dot product given in Eq 2-87. 



 

 

40 

2.2.2 Automatic Differentiation 

The adjoint approach requires the evaluation of the partial derivative terms of 

𝜕𝑹 𝜕𝑼⁄ , 𝜕𝑹 𝜕𝜶⁄ , 𝜕𝐼 𝜕𝑼⁄ , 𝜕𝐼 𝜕𝜶⁄  which appear in Eq 2-80, Eq 2-81. There are quite 

a few ways to compute these partial derivatives, such as by finite difference or 

complex-steps; however, the computational cost of these methods is prohibitive 

(Lyu, Kenway, Paige, & Martins, 2013). Another way is to derive these partial 

derivatives by differentiating all the related terms in the solver code by hand. 

However, this method is error-prone, requires lengthy development time, and is non-

trivial for complex CFD solvers. 

In the present study, an automatic differentiation (AD) tool is employed to evaluate 

these partial derivatives. AD is a method based on the systematic application of the 

differentiation by chain rule to a computer program (Griewank & Walther, 2008). 

The method is as accurate as of the analytical differentiation by hand. Moreover, 

since the method automatically differentiates the computer program, the 

development requires much less effort comparing to differentiating residual and 

objective function routines by hand. 

A computer program consists of a finite set of elementary operations. The derivatives 

of these elementary functions are known. An AD tool scans the computer program 

line by line, identifies the expressions with the variables to be differentiated, and 

systematically applies the chain rule to these elementary functions. It finally 

produces a new code that evaluates the partial derivatives described by the user. 

There are two possible modes of AD. The first one is the forward (or tangent) mode. 

In this case, the chain rule is applied from bottom to up in the order of computations. 

The variable is differentiated as soon as it is evaluated. In this mode, the total 

derivatives of functions with respect to an independent variable are computed. 

The other mode is the reverse (or adjoint) mode. In this mode, the algorithm firstly 

computes all the intermediate variables. Subsequently, it performs a reverse sweep, 

accumulating the derivatives from output to input. In other words, the chain rule is 
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applied from top to bottom. In this way, by performing one sweep, the total 

derivatives of an output function with respect to all independent variables are 

computed. 

There are two different implementations for an AD tool. The first one is the source 

transformation, and the latter is the operator overloading. The source transformation 

approach introduces new variables for derivatives and adds new source lines 

computing derivatives to the original code. On the other hand, the operator 

overloading approach does not make any changes in source code, but it changes the 

definition of operations and variable type. The overloaded operations now evaluate 

the derivatives of the function as well as the function itself, and the types of the 

variables are modified in such a way that they also contain the corresponding 

derivative values, as well as their original values (Martins & Hwang, 2013). There 

are numerous AD tools available for most of the programming languages. As 

examples of AD tools using source-code transformation approach, there are ADIC 

(Bischof, Roh, & Mauer, 1997), OpenAD (Utke, 2004) for C/C++; OpenAD/F 

(Utke, et al., 2008), TAPENADE (Hascoet & Pascual, 2013), TAF (Giering & 

Kaminski, 1998), ADIFOR (Bischof, Khademi, Mauer, & Carle, 1996), ADF95 

(Straka, 2005) for Fortran. CoDiPack (Sagebaum, Albring, & Gauger, 2019), 

ADOL-C (Griewank, Juedes, & Utke, 1996), ADOL-F (Shiriaev & Griewank, 1996) 

are some examples of AD tools using operator overloading approach. Furthermore, 

there are also AD tools available for Java, Julia, Python, MATLAB, R, OpenCL, 

.NET, C#, Delphi, etc. In the present study, the AD tool TAPENADE (Hascoet & 

Pascual, 2013) that utilizes the source-code transformation approach is employed.  

In order to provide a better understanding of the source-code transformation 

approach, the numerical example is given below. 

𝑓(𝑢3, 𝑢2, 𝑢1, 𝑥) =  𝑥 + 𝑢1𝑢3 + 𝑢2 sin(𝑢1) 

where 

𝑢3 = 𝑥𝑢2 + 𝑢1cos (𝑢2) 

Eq 2-88 
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𝑢2 = 𝑢1 + 𝑥𝑢1 

𝑢1 = 𝑥𝑠𝑖𝑛(𝑥). 

In this example, x is the input variable, which is an independent variable. 𝑢1, 𝑢2 and 

𝑢3 are the intermediate dependent variables. 𝑓 is the output variable. The 

corresponding computer program in Fortran may be written as follows: 

 

Figure 2-4 Sample Fortran code 

AD tool takes all the variables as a vector, 𝒗 = [𝑥 𝑢1 𝑢2 𝑢3 𝑓]
𝑇=[𝑣1 𝑣2 𝑣3 𝑣4 𝑣5]

𝑇, 

and treats each line of the source code as a function of 𝑽. 

𝑽 =

[
 
 
 
 

𝑥
𝑥𝑠𝑖𝑛(𝑥)

 

𝑢1 + 𝑥𝑢1
𝑥𝑢2 + 𝑢1𝑐𝑜𝑠(𝑢2)

𝑥 + 𝑢1𝑢3 + 𝑢2𝑠𝑖𝑛(𝑢1)

 

]
 
 
 
 

 Eq 2-89 

The forward mode of AD applies the chain rule. 

𝑑𝑣𝑖
𝑑𝑣𝑗

= 𝛿𝑖𝑗 +∑
𝜕𝑉𝑖
𝜕𝑣𝑘

𝑑𝑣𝑘
𝑑𝑣𝑗

𝑖−1

𝑘=𝑗

 Eq 2-90 

The system generated by the forward mode of AD that computes 

𝑑𝑓 𝑑𝑥⁄ (i. e. ,  𝑑𝑣5 𝑑𝑣1⁄ ) may be illustrated in matrix form, as in Eq 2-91. 
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[
 
 
 
 
 
 
 
 
 
1

−
𝜕𝑉2
𝜕𝑣1

1

−
𝜕𝑉3
𝜕𝑣1

−
𝜕𝑉3
𝜕𝑣2

1

−
𝜕𝑉4
𝜕𝑣1

−
𝜕𝑉4
𝜕𝑣2

−
𝜕𝑉4
𝜕𝑣3

1

−
𝜕𝑉5
𝜕𝑣1

−
𝜕𝑉5
𝜕𝑣2

−
𝜕𝑉5
𝜕𝑣3

−
𝜕𝑉5
𝜕𝑣4

1
]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑣1
𝑑𝑣1
𝑑𝑣2
𝑑𝑣1
𝑑𝑣3
𝑑𝑣1
𝑑𝑣4
𝑑𝑣1
𝑑𝑣5
𝑑𝑣1]

 
 
 
 
 
 
 
 
 
 
 

= 𝑰 Eq 2-91 

Note that each variable can only depend on the independent variables and the 

intermediate variables computed earlier. Therefore, the system always forms a lower 

triangular matrix. Hence, it is possible to compute the total derivatives with respect 

to x by using forward substitution. In Eq 2-92, the system illustrated in Eq 2-91 is 

given by equations. 

𝑑𝑥 = 𝑑x 

𝑑𝑢1 = sin(𝑥)𝑑𝑥 + 𝑥𝑐𝑜𝑠(𝑥)𝑑𝑥 

𝑑𝑢2 = 𝑑𝑢1 + 𝑢1𝑑𝑥 + 𝑥𝑑𝑢1 

𝑑𝑢3 = 𝑢2𝑑𝑥 + 𝑥𝑑𝑢2 + 𝑐𝑜𝑠(𝑢2)𝑑𝑢1 − 𝑢1𝑠𝑖𝑛(𝑢2)𝑑𝑢2 

𝑑𝑓 = 𝑑𝑥 + 𝑢3𝑑𝑢1 + 𝑢1𝑑𝑢3 + 𝑠𝑖𝑛(𝑢1)𝑑𝑢2 + 𝑢2cos(𝑢1)𝑑𝑢1 

Eq 2-92 

In order to generate a subroutine that computes the total derivatives with respect to 

x, AD adds each equation to the original subroutine line by line as a statement. Each 

statement is placed before the statement that computes the corresponding variable. 

The subroutine generated by TAPENADE for the example given above is depicted in 

Figure 2-5. 
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Figure 2-5 Subroutine generated by TAPENADE in the forward mode 

𝑑𝑥 (xd in the subroutine) is the input variable of the subroutine that TAPENADE 

generates. Hence, when it is intended to compute the total derivatives with respect 

to x, the input xd is given as 1, and the output variable fd will be the value of 𝑑𝑓 𝑑𝑥⁄ . 

That means in a forward mode by performing one forward substitution, the total 

derivatives with respect to one input variable can be computed. So, in order to 

compute all total derivatives with respect to input variables in a system, the forward 

mode requires solving as many systems as in the number of input variables. Thus, it 

is analogous to the direct method explained in the previous subchapter. 

On the other hand, the reverse mode of AD applies the chain rule from top to bottom, 

as is given below. 

𝑑𝑣𝑖
𝑑𝑣𝑗

= 𝛿𝑖𝑗 + ∑
𝑑𝑣𝑖
𝑑𝑣𝑘

𝜕𝑉𝑘
𝜕𝑣𝑗

𝑖

𝑘=𝑗+1

 Eq 2-93 

The system generated by the reverse mode of AD that computes 𝑑𝑓 𝑑𝑥⁄ (𝑑𝑣5 𝑑𝑣1⁄ ) 

may be illustrated in matrix form, as in Eq 2-94. 
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[
 
 
 
 
 
 
 
 
 1 −

𝜕𝑉2
𝜕𝑣1

−
𝜕𝑉3
𝜕𝑣1

−
𝜕𝑉4
𝜕𝑣1

−
𝜕𝑉5
𝜕𝑣1

1 −
𝜕𝑉3
𝜕𝑣2

−
𝜕𝑉4
𝜕𝑣2

−
𝜕𝑉5
𝜕𝑣2

1 −
𝜕𝑉4
𝜕𝑣3

−
𝜕𝑉5
𝜕𝑣3

1 −
𝜕𝑉5
𝜕𝑣4
1 ]

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝑑𝑣5
𝑑𝑣1
𝑑𝑣5
𝑑𝑣2
𝑑𝑣5
𝑑𝑣3
𝑑𝑣5
𝑑𝑣4
𝑑𝑣5
𝑑𝑣5]

 
 
 
 
 
 
 
 
 
 
 

= 𝑰 Eq 2-94 

In Eq 2-95, the system to compute the total derivatives of 𝑑𝑡5 is given. 

𝑓̅ = 1 

𝑢3̅̅ ̅ = 𝑢1𝑓 ̅

𝑢2̅̅ ̅ = (𝑥 − 𝑢1𝑠𝑖𝑛(𝑢2))𝑢3̅̅ ̅ + 𝑠𝑖𝑛(𝑢1)𝑓 ̅

𝑢1̅̅ ̅ =  𝑐𝑜𝑠(𝑢2)𝑢3̅̅ ̅ + (𝑥 + 1)𝑢2̅̅ ̅ + (𝑢2𝑐𝑜𝑠(𝑢1) + 𝑢3)𝑓 ̅

x̅ = 𝑢2𝑢3̅̅ ̅ + (𝑥𝑐𝑜𝑠(𝑥) + 𝑠𝑖𝑛(𝑥))𝑢1̅̅ ̅ + 𝑢1𝑢2̅̅ ̅ + 𝑓,̅ 

where  

( )̅̅ ̅̅ ̅ = 𝑑𝑓 𝑑( )⁄ . 

Eq 2-95 

In order to generate a subroutine that computes the total derivatives of f, AD firstly 

computes variables. AD then adds each equation to the original subroutine line by 

line as a statement. The subroutine generated for the numerical example is similarly 

depicted in Figure 2-6. 
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Figure 2-6 Subroutine generated by TAPENADE  in reverse mode 

In reverse mode, all variables need to be computed and stored since the algorithm 

computes the total derivatives in reverse order starting from the total derivative of f 

with respect to the variable that is computed the last. By using the intermediate 

variables stored, the total derivatives of the output function with respect to all the 

variables are evaluated in reverse order. Since a variable that is evaluated earlier can 

not be a function of a variable that is formed later, the reverse mode always forms 

an upper triangular matrix. Hence it is possible to compute the total derivatives of 

the output function with respect to all variables by performing one backward 

substitution. So, in order to compute all the derivatives of the output function with 

respect to all the input variables, reverse mode requires solving as many systems as 

in the number of output variables. 

As a summary, an AD tool, by applying the chain rule systematically either from 

bottom to top or top to bottom, generates a new subroutine that computes the 

derivatives of functions coded in a computer program. Since the derivatives are 

exact, the AD tool is as accurate as an analytical method, and the implementation is 
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straightforward. Further details of mathematical formulation, derivations, and 

examples of the forward and reverse modes can be found in References (Griewank 

& Walther, 2008), (Naumann, 2011), (Martins & Hwang, 2013). 

In the study, AD is employed in a way that is similar to the approach proposed by 

Mader, Martins, Alonso, & van der Weide  (2008), with some differences in the 

implementation. The details of the implementation are introduced in the following 

subchapters. 

2.2.3 Computation of Flux Jacobian Matrices 

The flux Jacobian matrix 𝜕𝑹 𝜕𝑼⁄  in the adjoint equation given in Eq 2-81 contains 

the sensitivity of cell residuals 𝑹𝑖, with respect to all flow variables of the cells 

involved in its evaluation 𝑼𝑗,𝑘. The matrix is of the dimension 𝑁𝑈𝑁𝑐𝑒𝑙𝑙 × 𝑁𝑈𝑁𝑐𝑒𝑙𝑙, 

where 𝑁𝑈 is the number of the flow variables and 𝑁𝑐𝑒𝑙𝑙 is the number of cells in the 

computational domain. Accordingly, the flux Jacobian matrix 𝜕𝑹 𝜕𝑼⁄  is given as is 

in Eq 2-96. Note that, in a turbulent flow case 𝑹𝑖 includes the residual of the eddy 

viscosity model and 𝑼𝑗 similarly includes the working variable  of the turbulence 

model. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑅1,1
𝜕𝑈1,1

𝜕𝑅1,1
𝜕𝑈2,1

…
𝜕𝑅1,1
𝜕𝑈𝑁𝑈,1

𝜕𝑅1,1
𝜕𝑈𝑁𝑈,2

⋯
𝜕𝑅1,1

𝜕𝑈𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑅2,1
𝜕𝑈1,1

𝜕𝑅2,1
𝜕𝑈2,1

…
𝜕𝑅2,1
𝜕𝑈𝑁𝑈,1

⋯
𝜕𝑅2,1

𝜕𝑈𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
⋮ ⋮ … ⋮ ⋯ ⋮

𝜕𝑅𝑁𝑈,1

𝜕𝑈1,1

𝜕𝑅𝑁𝑈,1

𝜕𝑈2,1
…

𝜕𝑅𝑁𝑈,1

𝜕𝑈𝑁𝑈,1
⋯

𝜕𝑅𝑁𝑈,1

𝜕𝑈𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑅1,2
𝜕𝑈1,1

⋮ ⋮ ⋮ ⋱
𝜕𝑅1,2

𝜕𝑈𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
⋮ ⋱ ⋮

𝜕𝑅𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑈1,1

𝜕𝑅𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑈2,1

…
𝜕𝑅𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑈𝑁𝑈,1

𝜕𝑅𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑈𝑁𝑈,2

⋯
𝜕𝑅𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑈𝑁𝑈,𝑁𝑐𝑒𝑙𝑙]

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Eq 

2-96 
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In Eq 2-96, the first subscript of 𝑅 is numbered after the residual of the conservation 

of mass, momentum, and turbulence equations, respectively. The first subscript of 𝑈 

denotes the solution variable, and the second subscript denotes the cell index. 

The flux Jacobian matrix 𝜕𝑹 𝜕𝑿⁄  in Eq 2-87 contains the partial derivatives of the 

cell residuals 𝑹𝑖 with respect to the coordinates of the grid nodes 𝑿𝑗. The dimension 

of the matrix is 𝑁𝑈𝑁𝑐𝑒𝑙𝑙 × 𝑁𝑑𝑖𝑚𝑁𝑛𝑜𝑑𝑒, where 𝑁𝑑𝑖𝑚 and 𝑁𝑛𝑜𝑑𝑒 stand for the 

dimension of the problem, and the number of grid nodes in the computational 

domain, respectively. The flux Jacobian matrix 𝜕𝑹 𝜕𝑿⁄  is then expressed given as is 

in Eq 2-97. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑅1,1
𝜕𝑋1,1

…
𝜕𝑅1,1
𝜕𝑋𝑁𝑑𝑖𝑚,1

𝜕𝑅1,1
𝜕𝑋1,2

⋯ ⋯
𝜕𝑅1,1

𝜕𝑋𝑁𝑑𝑖𝑚,𝑁𝑛𝑜𝑑𝑒
𝜕𝑅2,1
𝜕𝑋1,1

…
𝜕𝑅2,1
𝜕𝑋𝑁𝑑𝑖𝑚,1

𝜕𝑅2,1
𝜕𝑋1,2

⋯
𝜕𝑅2,1

𝜕𝑋𝑁𝑑𝑖𝑚,𝑁𝑛𝑜𝑑𝑒
⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝜕𝑅𝑁𝑈,1

𝜕𝑋1,1
…

𝜕𝑅𝑁𝑈,1

𝜕𝑋𝑁𝑑𝑖𝑚,1

𝜕𝑅𝑁𝑈,1

𝜕𝑋1,2
⋯

𝜕𝑅𝑁𝑈,1

𝜕𝑋𝑁𝑑𝑖𝑚,𝑁𝑛𝑜𝑑𝑒
𝜕𝑅1,2
𝜕𝑋1,1

⋮ ⋮ ⋮ ⋱
𝜕𝑅1,2

𝜕𝑋𝑁𝑑𝑖𝑚,𝑁𝑛𝑜𝑑𝑒
⋮ ⋱ ⋮

𝜕𝑅𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑋1,1

…
𝜕𝑅𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑋𝑁𝑑𝑖𝑚,1

𝜕𝑅𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑋1,2

⋯ ⋯
𝜕𝑅𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
𝜕𝑋𝑁𝑑𝑖𝑚,𝑁𝑛𝑜𝑑𝑒]

 
 
 
 
 
 
 
 
 
 
 
 
 

 Eq 2-97 

As in 𝜕𝑹 𝜕𝑼⁄  expression, the first subscript of 𝑅 denotes the governing equations, 

and the first subscript of 𝑋 denotes the 𝑥, 𝑦, and 𝑧 coordinates, respectively, whereas 

the second subscripts denote the node index. 

Prior to employing the AD tool to generate the modules, which provide the partial 

derivatives needed in the adjoint formulation, a Fortran routine that evaluates the 

cell residuals is recoded for compactness and numerical efficiency. As stated earlier 

(subchapter 2.1.14), the solution algorithm of the flow solver loops over the cell faces 

and computes all the face fluxes. The residuals of a cell 𝑹𝑖 then evaluated by 

summing the face fluxes of the cell. Hence, a face-based loop rather than a cell-based 

loop is employed in the flow solver. However, it would be more convenient to have 
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a cell-based loop to be used with the AD tool to evaluate the cell-based derivatives, 

𝜕𝑹 𝜕𝑼⁄ . Therefore, a stand-alone subroutine that computes the residuals of a single 

cell is formed. For a first-order scheme, this subroutine accepts the flow variables 

and the node coordinates of the cell and the neighboring cells as input arguments. 

For a second-order scheme, the flow variables and the coordinates of the cell nodes 

of the cells, which are neighbor to the immediate neighbor cells, are also included 

among the input arguments. The other input arguments of the subroutine are either 

constant values or not explicitly dependent on the flow variables and node 

coordinates. Therefore the subroutine recomputes all intermediate variables required 

to compute the cell residuals, such as turbulent viscosity, gradients of flow variables, 

face normals, the volume of cells. As a result, the stand-alone subroutine includes all 

the functional relations needed for the evaluation of the cell residual, 𝑹𝑖. 

The stand-alone subroutine is now used with the AD tool TAPENADE that applies 

the chain rule line by line and generates a subroutine that computes the partial 

derivatives of residuals of a cell i with respect to a flow variable j of a dependent cell 

k, 𝜕𝑹𝑖 𝜕𝑼𝑗,𝑘⁄ . By calling the subroutine for each flow variable of each dependent 

cells, the partial derivatives of residuals of a cell are computed. Similarly, when the 

subroutine is differentiated with respect to the grid node coordinates, TAPENADE 

applies the chain rule line by line and generates a subroutine that computes the partial 

derivatives of residuals of a cell i with respect to a coordinate t of a dependent node 

l, which is 𝜕𝑹𝑖 𝜕𝑋𝑡,𝑙⁄ . By calling the subroutine for each coordinate of each 

dependent node, the partial derivatives of residuals of a cell are computed. Finally, 

by looping over all the cells in the computational domain, the Jacobian matrices 

𝜕𝑹 𝜕𝑼⁄ , 𝜕𝑹 𝜕𝑿⁄  are constructed. Since residuals of a cell only depend on a relatively 

small number of neighbor cells, the CPU time required to compute the Jacobian 

matrices is relatively short. 

It should be noted that the S-A model equation and the intermittency factor appearing 

in the B-C transition model depend on wall distances, which creates an additional 

dependency of cell residuals on the wall distances. In order to simplify the 
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construction of the Jacobian matrices, this dependence is removed by providing wall 

distances as constant arguments. Thus, the implicit relationship between the wall 

distances and the node coordinates is concealed. A similar approach is also 

implemented in the study of Lyu, Kenway, Paige, and Martins (2013). Furthermore, 

to reduce the error introduced, the grid in the vicinity of the wall boundaries is 

deformed as small as possible (detailed in subchapter 2.3.1). 

In addition, since the limiters used in the second-order variable reconstruction do not 

continuously depend on the flow variables and therefore are not differentiable, they 

are removed from the residual computations in the stand-alone subroutine. 

2.2.4 Computation of Partial Sensitivities of Objective Function 

The computation of partial sensitivity of the objective function is accomplished by a 

similar approach given in the previous subchapter. In order to generate the 

subroutines computing the partial derivatives of an objective function by using 

TAPENADE, firstly, a subroutine that defines all explicit relations between the 

contribution of a cell to the objective function and flow variables and node 

coordinates 𝐼(�̂�, �̂�) is written, where �̂� and �̂� refer to the flow variables and node 

coordinates of the cell, the neighbor cells, and the next-neighboring cells, 

respectively. The subroutine accepts flow variables and grid nodes of neighboring 

cells as input arguments. Moreover, the other input arguments are either constant 

values or not explicitly-dependent on flow variables or grid. The subroutine performs 

all corresponding computation of the contribution of a cell to the objective function. 

AD is then employed to differentiate the subroutine with respect to grid coordinates 

and the flow variables. In this way, the subroutines that evaluate the sensitivities of 

the objective function are created. Finally, the sensitivities to each node coordinate 

and flow variable are evaluated by calling these subroutines. 

The dimension of the vector 𝜕𝐼 𝜕𝑼⁄  is 𝑁𝑈𝑁𝑐𝑒𝑙𝑙. The appearance of the vector is given 

in Eq 2-98. 
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[
𝜕𝐼

𝜕𝑈1,1

𝜕𝐼

𝜕𝑈2,1
⋯

𝜕𝐼

𝜕𝑈𝑁𝑈,1

𝜕𝐼

𝜕𝑈1,2
⋯

𝜕𝐼

𝜕𝑈𝑁𝑈−1,𝑁𝑐𝑒𝑙𝑙

𝜕𝐼

𝜕𝑈𝑁𝑈,𝑁𝑐𝑒𝑙𝑙
] Eq 2-98 

The partial sensitivity vector of an objective function with respect to grid node 

coordinates 𝜕𝐼 𝜕𝑿⁄  is given in Eq 2-99. The vector is in the dimension of 𝑁𝑑𝑖𝑚𝑁𝑛𝑜𝑑𝑒. 

[
𝜕𝐼

𝜕𝑋1,1
⋯

𝜕𝐼

𝜕𝑋𝑁𝑑𝑖𝑚,1

𝜕𝐼

𝜕𝑋1,2
⋯

𝜕𝐼

𝜕𝑈𝑁𝑑𝑖𝑚−1,𝑁𝑛𝑜𝑑𝑒

𝜕𝐼

𝜕𝑈𝑁𝑑𝑖𝑚,𝑁𝑛𝑜𝑑𝑒
] Eq 2-99 

In the present study, the objective functions are functions of aerodynamic loads, such 

as 𝐶𝐿 𝐶𝐷⁄ . However, it is possible to define any objective functions which are a 

function of flow variables or/and grid, e.g., total pressure recovery of an engine inlet. 

2.2.5 Solution of the Adjoint System of Equations 

The computation of the partial derivatives is followed by the solution of the adjoint 

system given in Eq 2-81. Once the adjoint variables are computed, the sensitivity 

derivatives 𝑑𝐼 𝑑𝑿⁄  are easily evaluated by Eq 2-100. 

𝑑𝐼

𝑑𝑿
=
𝜕𝐼

𝜕𝑿
+ 𝝀𝑇

∂𝑹

∂𝑿
 Eq 2-100 

As mentioned before, the residual vector of a cell is only dependent on the cell itself 

and a small number of neighboring cells. Hence, the flux Jacobian matrix 𝜕𝑹 𝜕𝑼⁄  is 

very sparse. In order to take advantage of the sparsity and solve the system 

efficiently, a very instrumental and efficient parallel sparse direct solver 

MUltifrontal Massively Parallel Solver (MUMPS) (Amestoy, Duff, L'excellent, & 

Koster, 2001), (Amestoy, Buttari, L'excellent, & Mary, 2019) is utilized under the 

Portable Extensible Toolkit for Scientific computation (PETSc) environment (Balay, 

Gropp, McInnes, & Smith, 1997), (Balay, et al., 2019), (Balay, et al., 2020). 

In order to solve the adjoint system and compute the sensitivity derivatives 𝑑𝐼 𝑑𝑿⁄  

by performing the operations given in Eq 2-100, a stand-alone program is written. It 

reads Jacobian matrices and partial derivatives of the objective function already 

evaluated. After reading matrices and vectors, the program stores them using PETSc 
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parallel matrix and vector data structures as sparse entities. Once the matrices and 

vectors are filled and distributed corresponding memories, the adjoint system is 

solved using a multifrontal lower-upper (LU) factorization provided by MUMPS. 

Moreover, all internal processor communications managed by Message Passing 

Interface (MPI) libraries. Thus, the adjoint solver can be run parallel on distributed-

memory systems, as well as shared-memory systems. 

In the present study, due to its robustness and accuracy, a direct solver is employed 

to solve the adjoint system. However, the huge memory requirement due to fill-in 

during LU decomposition may preclude the use of a direct solver. Therefore, 

relatively large problems (such as matrices having rank larger than 10 million) may 

be solved using an iterative solver, e.g., GMRES (Saad & Schultz, 1986), with a 

proper preconditioner. Nevertheless, iterative solvers suffer robustness problems, 

especially in the presence of turbulence equations that significantly increases the 

stiffness of the matrix. There are some possible treatments to alleviate this problem, 

like using an approximate Jacobian matrix instead of the exact flow Jacobian matrix. 

A common treatment is to employ the frozen turbulence assumption. Because tightly 

coupling turbulence equation with the mean flow equations considerably increases 

the stiffness of the matrix. Another approach is to add a time-like derivative in order 

to increase the diagonal dominance of the system (Nielsen & Anderson, 2000). In 

this way, the system is solved by marching in time, much like the flow solver. The 

approach may be stated as given below, 

Ω

Δ𝑡
𝑰 + [

𝜕𝑹

𝜕𝑼
]
𝑻

Δ𝑛𝝀 = −
𝜕𝐼

𝜕𝑼
− [
𝜕𝑹

𝜕𝑼
]
𝑻

𝝀𝑛 Eq 2-101 

where 

𝝀𝑛+1 = 𝝀𝑛 + Δ𝑛𝝀 Eq 2-102 

The usage of this approach results in a more robust adjoint solver. In the present 

study, the main focus is on the implementation of adjoint methods for a RANS flow 

solver coupled with a turbulence model and a laminar to turbulent transition model. 

Therefore, the implementation of a robust iterative solver is left as a further study. 
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2.3 Optimization Framework 

In the present study, the gradient-based optimization process is driven by the 

DAKOTA software environment (Adams, et al., 2014, updated 2019). DAKOTA is 

an open-source software developed by Sandia National Laboratories. It provides 

various gradient-based and gradient-free optimization algorithms. It also provides 

widely used algorithms for uncertainty quantification, parameter estimation, and 

sensitivity/variance analysis with design of experiment methods as well as parameter 

study methods. Due to its wide range of applicability and popular robust algorithms, 

DAKOTA is chosen as the main driver of the optimization study. 

 

Figure 2-7 Optimization flow chart 
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The flow chart of the optimization process is depicted in Figure 2-7. As shown in the 

figure, in the optimization study, the baseline configuration and the corresponding 

grid are provided. The aerodynamic surface to be optimized is parameterized by 

using a Free-Form Deformation (FFD) technique. The optimization algorithm then 

generates a new set of design variables 𝜶 that are the node coordinates of the FFD 

box. The volume grid is then deformed through an approach based on the linear 

elasticity equation. The flow solver computes the value of the objective function 𝐼 

and the partial derivatives required by the adjoint solver. The adjoint solver then 

calculates the grid sensitivities of the objective function, 𝑑𝐼 𝑑𝑿⁄ . Finally, the 

sensitivities to the design variables, 𝑑𝐼 𝑑𝜶⁄ , are evaluated by the dot product given 

in Eq 2-103. 

𝑑𝐼

𝑑𝜶
= 
𝑑𝐼

𝑑𝑿

𝑑𝑿

𝑑𝜶
 Eq 2-103 

The search for optimum design variables in the design space is then driven by 

DAKOTA, which uses the sensitivity derivatives and updates design variables. The 

optimization process continues until predefined convergence criteria are reached. 

The default stopping criteria are achieving a value of the 𝐿2 𝑛𝑜𝑟𝑚 of the gradient 

less than 0.0001 and value of normalized relative change less than 0.001. 

2.3.1 Surface Parametrization and Grid Deformation 

In the optimization process described in the previous subchapter, the initial surface 

geometry provided is parameterized by an FFD box, which provides the design 

variables to the optimization algorithm. Surface parameterization by an FFD box is 

achieved by an open-source SU2 module, SU2_DEF (Economon, Palacios, 

Copeland, Lukaczyk, & Alonso, 2016). SU2_DEF includes several geometry 

parametrization techniques, including FFD. The FFD technique implemented in 

SU2_DEF is the one proposed by Samareh (2004). In general, FFD techniques 

employ a trivariate representation to parameterize a volume (Sederberg & Parry, 

1986), (Coquillart, 1990), (Lamousin & Waggenspack, 1994). For the representation 
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of a surface, Samareh (2004) proposes a technique that compresses a trivariate 

volume deformation approach to bivariate surface deformation. The number of 

design variables that define a surface is then reduced by order of magnitude, but it 

still provides the needed flexibility in surface representation. An example of the 

surface deformation performed by the FFD technique is illustrated in Figure 2-8. 

 

Figure 2-8 A sample deformation carried out by SU2_DEF employing FFD 

approach 

The FFD approach utilized in SU2_DEF only deforms the surface nodes. The 

deformation of the volume grid is also accomplished by SU2_DEF. In order to 

deform the volume grid, SU2_DEF makes use of elastic deformations (Dwight, 

2006). It sets the system of the linear elasticity equations and solves them using a 

preconditioned GMRES method (Saad & Schultz, 1986). In order to reduce the 

boundary cell deformations and to keep the wall distances about constant, the 

stiffness coefficients are made inversely proportional to the wall distance. The use 

of inverse wall distance as a stiffness coefficient effectively keeps the boundary layer 

grid intact and causes deformations to be absorbed in the volume grid. 
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2.3.2 Grid Sensitivity 

The adjoint solver developed computes the sensitivities of the objective function to 

the grid coordinates, 𝑑𝐼 𝑑𝑿⁄ . The sensitivity of the objective function to the design 

variables, 𝑑𝐼 𝑑𝜶⁄ , are obtained by 𝑑𝑿 𝑑𝜶⁄  projecting the grid sensitivity of the 

objective function onto the design variables 𝑑𝐼 𝑑𝜶⁄ . The projection of the grid 

sensitivity of the objective function onto the design variables is performed through 

the inner product given in Eq 2-103. In the present study, the inner product operation 

is similarly performed by using the SU2_DOT_AD module of the SU2 software suit. 

The module is obtained by differentiating the FFD and grid deformation functions 

of SU2_DEF with respect to the design variables 𝜶 by using the AD tool CoDiPack 

(Sagebaum, Albring, & Gauger, 2019). SU2_DOT_AD evaluates 𝑑𝑿 𝑑𝜶⁄  by the 

chain rule, and performs the inner product operation defined in Eq 2-103. 

The adjoint solver developed computes the sensitivities of the objective function to 

grid coordinates 𝑑𝐼 𝑑𝑿⁄ . The sensitivity of the objective function to the design 

variables 𝑑𝐼 𝑑𝜶⁄  are obtained by 𝑑𝑿 𝑑𝜶⁄  projecting the grid sensitivity of the 

objective function onto the design variables 𝑑𝐼 𝑑𝜶⁄ . The projection of the grid 

sensitivity of the objective function onto the design variable sensitivity is performed 

through the inner product given in. In the present implementation, the computation 

of the grid sensitivity to design variables 𝑑𝑿 𝑑𝜶⁄  and the inner product operation is 

performed by using SU2_DOT_AD. 

2.3.3 Optimization Algorithm 

In the present study, among the optimization algorithms available in DAKOTA, the 

quasi-Newton method with a Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

approximation to the Hessians (Broyden, 1969), (Fletcher, 1970), (Goldfarb, 1970), 

(Shanno, 1980) is employed. In the present study, in order to perform the quasi-

Newton algorithm, the implementation of the OPT++ library (Meza, Olivia, Hough, 

& Williams, 2007) is utilized in the DAKOTA framework (referred to DAKOTA’s 
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optpp_q_newton method). Furthermore, in the study, the optimization problems are 

either unconstrained problems or converted into an unconstrained problem by 

employing a penalty function. 
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CHAPTER 3  

3 RESULTS AND DISCUSSION 

In this chapter, the RANS solver developed for natural laminar flows are first 

validated. The validation of the flow solver is performed for both two- and three-

dimensional, compressible, turbulent, and natural laminar flows over airfoils and 

wings. The validation of the flow solver is succeeded by the validation of the adjoint 

solver. In the validation studies, the sensitivities of an objective function with respect 

to both grid coordinates and design variables are compared against the sensitivities 

computed by the finite-difference approximation. Finally, full aerodynamic shape 

optimization studies are performed for the cases considered in the validation studies, 

including low and high aspect ratio natural laminar flow wings. 

3.1 Validation of RANS Solver 

In this subchapter, the validation studies regarding the developed RANS solver is 

presented. In order to validate the flow solver, several two-dimensional and three-

dimensional cases are performed. In two-dimensional cases, flow over flat plate 

cases with different free stream turbulent intensities, transonic flow over an airfoil, 

and flow over a natural laminar airfoil are considered. In three-dimensional cases, 

transonic flow over the well-known Onera M6 wing, natural laminar flow over a 

low, and a high aspect ratio wing are studied. 

3.1.1 Flow over a Flat Plate 

As the first test case, the flow over a flat plate is considered. The flow has a zero 

pressure gradient with 0.18% turbulent intensity, and 𝑅𝑒 per meter is around 



 

 

60 

3.4 × 106 for 1 m long (Schubauer & Klebanoff, 1956). The test case is also the 

model calibration test case of the B-C transition model. 

In the test case, the computational domain consists of 538×120 quadrilateral cells in 

the stream-wise and normal directions, respectively. There are 280 points on the flat 

plate. The size of the first layer is set to 2×10-6 unit that ensures 𝑦+ < 1. 

 

Figure 3-1 Flat plate computational grid 

In the analysis, the convective fluxes for the mean flow equations are computed using 

a second-order Roe scheme. The turbulence is modeled using the S-A model with 

the B-C transition model. 

 

Figure 3-2 Skin friction coefficient (𝑇𝑢∞ 0.18%) 
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In Figure 3-2, the skin friction coefficient computed by the flow solver is compared 

to the experimental data. Although the transition length is underestimated, there is a 

very good agreement on the transition onset location. Similar behavior is observed 

in the original paper of the B-C transition (Cakmakcioglu, Bas, & Kaynak, 2017). 

Although the transition model lacks a transition length correlation, the reference 

study (Cakmakcioglu, Bas, & Kaynak, 2017) concludes that the effect of such a 

correlation is minimal based on an additional comparison made with the two-

equation 𝛾 − 𝑅𝑒𝜃 model of Menter et al. (2004) that includes a transition length 

correlation. 

Next, another simulation, which is based on the experimental study of Savill (1993) 

on flow over a flat plate with a turbulence intensity of 3.0%, is considered in order 

to validate the effect of turbulence intensity and Reynolds number on the transition 

onset. The Reynolds number of the flow per meter is 360× 103. In the analysis, a 

grid similar to the one in the previous case is employed. The size of the first grid 

layer is now set to 2×10-5. Again, the convective fluxes for the mean flow equations 

are computed using the second-order Roe scheme. 

 

Figure 3-3 Skin friction coefficient (𝑇𝑢∞ 3.0%) 
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As observed in Figure 3-3, the variation of the skin friction coefficient predicted 

agrees well with the experimental data. A similar prediction is also made in the 

reference study (Cakmakcioglu, Bas, & Kaynak, 2017). Based on these validation 

studies, it is concluded that the B-C transition model is successfully implemented in 

the flow solver. 

3.1.2 Flow over RAE 2822 Airfoil 

Transonic flow over RAE 2822 airfoil is a well-known test case that is commonly 

considered to validate flux schemes and turbulence models. In the current study, the 

6th and 9th test cases of the AGARD report (Cook, McDonald, & Firmin, 1979) are 

considered. The flow conditions of test case 6 and test case 9, which are corrected 

by Slater, Dudek, & Tatum (2000) and by DLR (Rudnik, 1997) by accounting for 

wind tunnel influences respectively, are used. The corrected flow conditions are 

given in Table 3.1. It should be noted that in the experiments, a transition trip is 

applied near to the leading edge at 0.03 chord to fix laminar to turbulent boundary 

layer transition. 

Table 3.1 The corrected flow conditions for test case 6 and test case 9 

 Case 6 Case 9 

𝑀∞ 0.729 0.730 

∝ 2.31° 2.80° 

𝑅𝑒𝑐 6.5×106 6.5×106 

A C-type computational grid that has 439×120 quadrilateral cells in the stream-wise 

and normal directions, respectively, is used in the numerical simulations (Figure 

3-4). The size of the first grid layer is 1×10-6 unit that ensures 𝑦+ < 1, and there are 

240 points over the airfoil surface. 
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Figure 3-4 Computational grid for RAE 2822 airfoil 

In the numerical simulations, the convective fluxes are again computed using the 

second-order Roe scheme. The gradients of the flow variables required by the 

reconstruction of the flow variables and the evaluation of the viscous fluxes are 

computed using the Green-Gauss approach. The Spalart-Allmaras turbulence model 

is similarly employed. However, the transition model is not employed, since a 

transition trip is placed near the leading edge in the experimental study. 

  

Figure 3-5 Pressure distributions for case 6 (left), and case 9 (right) 
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Figure 3-6 Mach contours 

The pressure distributions predicted for both cases are compared to the experimental 

data in Figure 3-5. As observed, although the shock location for case 6 is 

underpredicted by about 3% chord, the predictions are, in general, in a very good 

agreement with the experimental data. Furthermore, the Mach contours for both 

cases are shown in Figure 3-6. 

 

Figure 3-7 Convergence history for case 6 

In the analyses regarding NLF(1)-0416 airfoil, it is aimed to decrease the continuity 

residuals more than six orders of magnitude for each angle of attack, and 300,000 

iterations are found enough to decrease the continuity residuals more than six orders 

of magnitude (Eq 3-7). Furthermore, it is enough to get convergence in the lift and 
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the drag coefficient. When all analyses regarding NLF(1)-0146 airfoil is considered, 

the changes in the lift and the drag coefficient are less than 0.0025 and 2 drag count 

in the last 50,000 iterations, respectively. 

3.1.3 Flow over Natural Laminar Airfoil 

The accuracy and the capability of the flow solver developed are next demonstrated 

by analyzing and then comparing the numerical and the experimental predictions for 

a natural laminar flow over the NLF(1)-0416 airfoil, for which there is an 

experimental study performed by Somers (1981). In the present study, flow over the 

NLF(1)-0416 airfoil at a Mach number of 0.1 and a Reynolds number of 2×106 is 

considered. 

In the analysis, a C-type computational grid with 439×120 quadrilateral cells is 

employed (Figure 3-8) in the stream-wise and normal direction, respectively. The 

size of the first grid layer of 5×10-6 unit ensures 𝑦+ < 1. There are similarly 240 grid 

nodes on the airfoil surface, and the farfield boundary is placed about 50 chord 

lengths away. 

  

Figure 3-8 Computational grid for NLF(1)-0416 airfoil 
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In order to validate the results of the flow solver, the lift curve, the drag polar of the 

airfoil, and the transition onsets at different lift coefficients are compared to the 

experimental results. 

 

Figure 3-9 Variation of lift (left) and drag coefficients (right) 

Figure 3-9 compares the aerodynamic coefficients of experimental and numerical 

results. It shows that the flow solver predicts slightly higher lift and lower drag 

coefficient. When the lift coefficient is greater than 1.0, the prediction of the drag 

coefficient is higher than measured in the experiment. In addition to possible 

turbulence and transition modeling errors, the reasons for such a discrepancy 

possibly stem from due to wall corrections or the presence of trailing edge with finite 

thickness used in the wind tunnel model. Although there is a slight discrepancy 

between experimental and numerical results, the results are in good agreement and 

encouraging. The deviation in the drag coefficient is not more than 10 drag counts, 

and the difference in the lift curve slope is less than 5%. 

In the experiment, a microphone was connected to the orifices on the model. This 

microphone was utilized to locate the location of the boundary layer transition 

laminar to turbulent flow. The transition location is determined by measuring the 

noise level. In the laminar part, it is virtually silent. So the transition is detected as 

an increase in noise level. In the following figure (Figure 3-10), open symbols 
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indicate the location of the last orifice on which flow is laminar, and closed symbols 

indicate the location of the first orifice on which flow is turbulent. 

 

Figure 3-10 Transition locations of the boundary layer from laminar to turbulent 

flow; open symbols indicate orifices on which flow is laminar, and closed symbols 

indicate orfices on which flow is turbulent 

Figure 3-10 depicts the comparison of the transition onsets between the locations 

predicted by the B-C transition model and measured by the experiment. The 

locations of the transition onsets predicted by the numerical method are in good 

agreement with the experimental results. As the angle of attack increases, transition 

onset on the upper surface moves steadily forward, and eventually at angles of attack 

above 0° lower transition onset sticks at around 60% chord. The change in the 

transition onset observed in the experiment is similar. 
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Figure 3-11 Convergence history for NLF(1)-0416 airfoil at the angle of attack 6° 

When the flow velocity is small compared to the acoustic speed, the convective terms 

in the time-dependent equations become stiff, and the convergence rate decreases 

(Choi & Merkle, 1993). Thus, in order to achieve a satisfactory convergence, the 

number of iterations performed is increased to 300,000. As seen from Figure 3-11, 

by the iterations, the continuity residuals are reduced more than six orders of 

magnitude. Moreover, it is also found enough to get convergence in the lift and the 

drag coefficient. When all analyses regarding NLF(1)-0146 airfoil is considered, the 

changes in the lift and the drag coefficient are less than 0.0025 and 2 drag count in 

the last 50,000 iterations, respectively. 

3.1.4 Flow over Onera M6 Wing 

The transonic flows over the Onera M6 wing, which are studied experimentally by 

(Schmitt & Charpin, 1979), are almost the standard validation cases for external 

flows. Although the wing has a simple geometry, it has complex transonic flow 

characteristics (i.e., local supersonic flow, lambda shock). In some cases, there may 

a shock emerging from the leading edge as well as a normal shock further aft. In this 

section, the transonic flows are considered for further validation of the flow solver. 

The three-dimensional, computational grid (Figure 3-12) includes around 200 × 103 

hexahedral elements. The size of the first layer is 1×10-6 unit that ensures 𝑦+ < 1. 
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There are around 4 × 103 quadrilateral elements that constitute the wing surface and 

the farfield boundary is placed around 20 mean aerodynamic chords long away. 

 

Figure 3-12 Computational grid for Onera M6 wing 

In the test case, the free-stream Mach number is 0.8395, and the angle of attack is 

3.06°. The Reynolds number based on the mean aerodynamic chord is 11.72×106. In 

the analysis, for the convective flux computation, a second-order Roe flux-difference 

splitting scheme is employed. In order to achieve second-order accuracy in space, 

conservative variables are reconstructed using the Green-Gauss approach. 

Turbulence effects are considered by the Spalart-Allmaras turbulence model. 

The comparisons between the numerical and experimental results in terms of 

pressure coefficients are carried out at six different locations corresponded to η = 

0.2, 0.44, 0.65, 0.8, 0.9, 0.95. 
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Figure 3-13 Pressure coefficients at different wingspan stations 

Figure 3-13 depicts that the numerical method estimated the presence of lambda 

shock and the locations of the shock emerging from the leading edge as well as the 

normal shock further aft. As seen from the figure, the lambda shock spans up to 80% 

percent of the half-span. The figure also illustrates that it merges to a single shock at 

90% of the half-span. This pattern agrees very well with the experimental results, 

and that is also illustrated through Mach contours in Figure 3-14. 
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Figure 3-14 Mach contours  

Due to the absence of the experimental values, the lift and drag coefficients are 

compared with the numerical studies of Kim & Rho (1998) and Radespiel et al. 

(1990) in Table 3.2. According to the results, there is a good agreement between the 

numerical studies. The maximum deviations in both the lift and drag coefficient are 

less than 1.5%.  

Table 3.2 Comparison of aerodynamic coefficients of ONERA M6 wing 

 𝐶𝐿 𝐶𝐷 

Present result 0.2663 0.01819 

Kim & Rho (1998) 0.2695 0.01817 

Radespiel et al. (1990) 0.2677 0.01782 
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Figure 3-15 Convergence history for ONERA M6 analysis 

In the analysis, around 75,000 iterations are performed, which results in more than 

six orders of magnitude decrease in continuity residual (Figure 3-15). Moreover, a 

satisfactory convergence in the lift and drag coefficient is achieved. The changes in 

the lift and the drag coefficient are less than 0.001 and 1 drag count in the last 50,000 

iterations, respectively. 

3.1.5 Flow over Low Aspect Ratio Laminar Wing  

In this validation case, a low aspect ratio wing is considered. The wing model is 

based on the dimensions of a full-scale wingtip structure that is studied within the 

framework of the international CRIAQ MDO505 Morphing Wing Project both 

experimentally and numerically. In the experimental studies, the transition region is 

captured through infra-red (IR) thermography camera visualizations. More detailed 

information regarding the project and the wind tunnel test of the wing can be found 

in the references (Kammegne, Botez, Manou, & Mebarki, 2016), (Koreanschi, et al., 

2017). 
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Figure 3-16 The wing section of the MDO505 Morphing Wing 

The geometric properties of the wing are given in Table 3.3, and the baseline wing 

section is illustrated in Figure 3-16. Since the exact wingtip model is not provided, a 

rounded wingtip is utilized in the computations. 

Table 3.3 Geometrical properties of MDO505 wing 

Half span length 1.5 m 

Length of root chord 1.5 m 

Taper ratio 0.72 

Aspect ratio 2.325 

Leading edge sweep angle 8° 

Trailing edge sweep angle 8° 

The grid (Figure 3-17) generated for this case consists of around 210 × 103 

hexahedral cells. The surface grid on the wing contains around 5 × 103 quadrilateral 

elements. The height of the first layer is 5×10-6 unit that ensures 𝑦+ < 1, and the 

farfield boundary is placed around 50 mean aerodynamic chords length away. 
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Figure 3-17 Computational grid for MDO 505 wing 

The first three cases in the reference (Koreanschi, et al., 2017) are considered in the 

study. The flow conditions of the cases are given in Table 3.4. 

Table 3.4 The flow conditions of the cases 

Case No. 1 2 3 

𝑀∞ 0.15 0.15 0.15 

∝ 0.68° 1.5° 2.1° 

𝑅𝑒 (per meter) 3.4×106 3.4×106 3.4×106 

In the reference study, the IR visualization of the laminar-to-turbulent transition 

region for case 3 is given. The distribution of the transition location on the upper 

surface for case 3 is compared against the experimental data in Figure 3-19. The 

black line in Figure 3-19 denotes the average transition line on the upper surface. On 

the right-hand side, the predicted skin friction distribution over the wing surface is 

made transparent and overlaid on top of the experimental data shown on the left for 

a better comparison. As seen in the figure, the dark contour levels indicate the 

laminar flow region with low skin friction values, and its downstream boundary 

marks the transition, which is in good agreement with the experimental observation. 

Furthermore, the pressure coefficient and the turbulent working variable distribution 
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at the midspan wing section is illustrated in Figure 3-18. The turbulent working 

variable distribution also indicates the transition onset. 

 

Figure 3-18 Pressure coefficient and turbulent working variable distribution at the 

midspan wing section (case 3) 

It is also observed that, in the experiments, the transition onset close to the wingtip 

moves abruptly to the leading edge. However, such behavior is not observed in the 

numerical predictions, which may be attributed to the geometrical differences 

between the original and the rounded wingtip employed in the present study. 

 

Figure 3-19 Skin friction coefficients. The IR image of the experiment 

(Koreanschi, et al., 2017) (left) and numerical results illustrated on the IR image 

(right) 
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The transition locations at the mid-span of the wing predicted by the solver are 

compared against the experimental values for all the cases in Table 3.5. The 

maximum difference between the experimental values and predictions is less than 

3% of the mid chord length. 

Table 3.5 Comparison of the transition onset at mid-span 

Case No. 

Numerical transition 

line (percentage of 

mid-span chord) 

Experimental average 

transition line 

(percentage of mid-

span chord) 

Difference 

(percentage 

of mid-span 

chord) 

1 47.7 50.57 2.9 

2 46.7 47.91 1.2 

3 46.4 48.26 1.9 

 

 

Figure 3-20 Convergence history for case 3 

Figure 3-20 shows the convergence history for case 3. Since the Mach number is 

smaller than the previous case, the number of iterations to get a satisfactory 

convergence increases. Thus, the number of iterations is increased to 300,000 in the 

analysis. The number of iterations is the same for the analyses regarding case 1 and 

case 2. By 300,000 iterations, the continuity residuals are reduced more than six 

orders of magnitude for all three cases, and the changes in the lift and the drag 
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coefficient are less than 0.001 and 1 drag count in the last 50,000 iterations, 

respectively. 

3.1.6 Flow over High Aspect Ratio Laminar Wing 

As the last validation case, a high aspect ratio wing that has a laminar flow section 

is considered. The wing is an experimental wing evaluated during a UAV 

development process at Turkish Aerospace Industries (TAI). 

The geometrical properties of the wing are given in Table 3.6. It is based on a 16% 

thick airfoil. 

Table 3.6 Geometrical properties of the experimental wing 

Span length 16 m 

Length of root chord 1.2 m 

Taper ratio 0.405 

Aspect ratio 18.8 

Sweep angle at quarter chord 0° 

Twist angle (linearly change) 1.5° 

The wind tunnel tests of the experimental wing are performed at the Indonesian Low-

Speed Wind Tunnel that is a 4 m × 3 m atmospheric closed-circuit subsonic wind 

tunnel. At the tests, a 1:6 scaled model is utilized. Flow visualization is performed 

using the surface oil-flow technique, which enables the observation of flow patterns 

on the wing surface, such as laminar separation and turbulent re-attachment. It is 

observed that the laminar-to-turbulent boundary layer transition on the upper surface 

of a wing at the angle of attack of interest is triggered by laminar separation and is 

followed by the reattachment of the turbulent boundary layer. The use of surface oil-

flow visualization makes it possible to capture the laminar separation bubble and 

predict the average transition line on the surface.  
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The grid (Figure 3-21) employed in the case consists of around 240 × 103 

hexahedral cells. The surface grid on the wing contains around 5.5 × 103 

quadrilateral elements. The size of the first grid layer is 2×10-5 unit that ensures 𝑦+ <

1, and the farfield boundary is placed around 30 mean aerodynamic chords length 

away. 

 

Figure 3-21 Computational grid for experimental wing 

The experiments are conducted at a Mach number of 0.2, a Reynolds number of 

600 × 103 based on the mean aerodynamic chord, and an angle of attack 6°. Similar 

to the previous case, the transition location on the upper wing surface is compared 

against the experimental data. 

 

Figure 3-22 Transition locations along the wing span (Permission for the oil-flow 

image is not granted) 
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In Figure 3-22, the green dashed line indicates the laminar separation, and the red 

dashed line indicates the turbulent re-attachment along the span. The transition 

occurs between the laminar separation line and the turbulent re-attachment line. 

 

Figure 3-23 The turbulent working variable 𝜈 and x-velocity 𝑢 distribution at the 

midspan wing section 

Figure 3-23 shows that the transition begins around 50% chord, and the recirculation 

zone predicted by the flow solver is between 47% and 51% chord at the midspan. It 

is observed that the transition onset predicted by the present solver equipped with 

the B-C transition model fairly matches the experiment. Therefore, it is now 

concluded that the flow solver developed is able to predict the transition onset and 

the natural laminar flow fairly accurately. 

 

Figure 3-24 Convergence history; normalized continuity residual (left), change in 

the lift and drag coefficient after the iteration of 50,000 (right) 
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Finally, in the figure above, the convergence history is illustrated. As seen from the 

figure, the continuity residual is reduced more than six orders of magnitude in 

150,000 iterations, and the change in the lift and the drag coefficient is less than 

0.001 and 1 drag count in the last 50,000 iterations, respectively. 

3.2 Validation of Adjoint Solver 

In this section, the results of the validation studies of the developed adjoint solver 

are presented. The methodology to validate the adjoint solver is the commonly-used 

finite difference technique. In the study, the finite central difference approximation 

is used. The sensitivity derivatives are calculated by the technique, as given in Eq 

3-1. 

𝑑𝐼

𝑑𝛼𝑖
=
𝐼(𝜶0 + ℎ𝒆𝑖) − 𝐼(𝜶0 − ℎ𝒆𝑖)

2ℎ
+ 𝒪(ℎ2)  Eq 3-1 

where 𝒆𝑖 is the 𝑖𝑡ℎ unit vector, and 𝒪(ℎ2) refers to a truncation error of 

approximation proportional to ℎ2. For an accurate approximation, the step size ℎ 

should be chosen as small as possible to keep the truncation error low, but not so 

small that finite differences are in the noise. By the numerical experiments, the step 

size of 0.001 is deemed suitable. Since the method compels to perform two analyses 

(to compute the values of 𝐼(𝜶0 + ℎ𝒆𝑖), and 𝐼(𝜶0 − ℎ𝒆𝑖)) for each design variable to 

get sensitivities with respect to each design variable, two new analyses are conducted 

for each design variable. The sensitivity derivatives calculated by the finite central 

difference approximation are compared against the sensitivity derivatives calculated 

by the adjoint solver. In order to validate the adjoint solver, the cases used in the 

validation of the flow solver are considered. 

3.2.1 Drag Sensitivity at Fixed Lift: RAE 2822 

In the first case, the transonic flow over an RAE 2822 airfoil at the flow conditions 

defined for case 9 studied in the subchapter 3.1.2 is examined. 
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The airfoil is parameterized by an FFD box with 22 control points, as illustrated in 

Figure 3-25. Since the control points at the leading and the trailing edges are fixed, 

the remaining 18 points are considered as the design variables. The design variables 

are only allowed to move in the y-direction. 

 

Figure 3-25 FFD box and the control points generated on RAE 2822 airfoil 

The objective function is taken as the drag coefficient, and the lift coefficient is 

constrained. The constraint on the lift coefficient is imposed by a penalty function 

defined in Eq 3-2. Therefore, a single adjoint analysis is enough to compute the 

derivatives of the objective function with respect to all the design variables. 

𝐼 = 𝑐𝑑 + 2(𝑐𝑙 − 𝑐𝑙
𝑖𝑛𝑖𝑡𝑖𝑎𝑙)2 Eq 3-2 

The gradients computed by the adjoint solver is validated against the gradients 

computed by the finite central difference approximation, as shown in Figure 3-26. 

As shown, the adjoint-based sensitivity derivatives are in very good agreement with 

the finite difference approximation. The maximum deviation is 2.1% of the 𝐿2 𝑛𝑜𝑟𝑚 

of the sensitivity derivatives computed by finite difference approximation. 
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Figure 3-26 Sensitivity derivatives computed by the finite difference method and 

the adjoint method 

3.2.2 Range Parameter Sensitivity: NLF(1)-0416 

In the second validation study the flow over NLF(1)-0416 airfoil at 𝑅𝑒 2 × 106, 𝑀 

0.1 is considered. The angle of attack is set as the angle of attack at which the lift 

coefficient is given as 1.0. The same computational grid used in the subchapter 3.1.3 

is again employed. In this case, it is intended to validate the sensitivity derivatives 

estimated by the adjoint solver in the presence of the laminar-to-turbulent transition. 

A similar parametrization, as is in the previous case, is applied. A similar FFD box 

employed in the previous case is again utilized, as illustrated in Figure 3-27. 
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Figure 3-27 FFD box and control points generated on NLF(1)-0416 airfoil 

In this case, the objective function is defined as the lift to drag ratio (i.e., range 

parameter). 

𝐼 = 𝑐𝑙/𝑐𝑑 Eq 3-3 

 

Figure 3-28 Sensitivity derivatives computed by the finite difference and the 

adjoint method 

In the case of two-dimensional natural laminar flow, comparing with the finite 

difference estimations, the adjoint solver developed computes the sensitivity 
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derivatives with high-accuracy (Figure 3-28). The presence of a natural laminar flow 

does not deteriorate the accuracy of gradient computation by the adjoint solver. The 

maximum deviation is only 2.3% of the 𝐿2 𝑛𝑜𝑟𝑚 of the sensitivity derivatives 

computed by finite difference approximation. Hence the results are encouraging to 

employ the adjoint solver to compute the sensitivity derivatives for natural laminar 

flows. 

3.2.3 Drag Sensitivity at Fixed Lift: ONERA M6 

Next, the three-dimensional adjoint solver developed is validated for three-

dimensional flows. First, a transonic flow over an Onera M6 wing is considered. The 

flow conditions are the same as given in subchapter 3.1.4, which are the angle of 

attack of 3.06°, 𝑅𝑒 is 11.72 × 106 and 𝑀 is 0.8395. In the validation study, the mesh 

defined in subchapter 3.1.4 is used. 

Similar to the two-dimensional cases, a three-dimensional FFD box is utilized for 

surface deformations. The FFD box and the control points in this study are illustrated 

in Figure 3-29. 36 control points define the surface of the wing. The control points 

at the leading and trailing edges are kept fixed, and the remaining 24 points are taken 

as the design variables. 

 

Figure 3-29 FFD box and control points (blue spheres depict active control points) 
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The objective function 𝐼 is taken as the drag coefficient constrained by the fixed lift 

coefficient. The constraint is similarly imposed by a penalty function. 

𝐼 = 𝐶𝐷 + 2(𝐶𝐿 − 𝐶𝐿
𝑖𝑛𝑖𝑡𝑖𝑎𝑙)2 Eq 3-4 

The sensitivity derivatives of the objective function with respect to the design 

variables located at the root, mid-span, and tip chord computed by adjoint solver 

against the derivatives computed by the finite central difference approximation is 

depicted respectively in Figure 3-30, 

 

Figure 3-30 Comparison of sensitivity derivatives computed by the finite difference 

and the adjoint methods at the root chord (red), at the mid-span chord (blue), at the 

tip chord (green) 

Figure 3-30 shows that the drag coefficient is much sensitive to the design variables 

placed upstream of the aft shock location. That is because the upstream flow of the 

shock is supersonic, and it is not affected by the downstream. The trends and the 

values of the sensitivity derivatives of the adjoint solver agree well with the results 

of the finite difference approximation. The maximum deviation is only 2.4% of the 
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𝐿2 𝑛𝑜𝑟𝑚 of the sensitivity derivatives computed by the finite difference 

approximation. 

3.2.4 Endurance Parameter Sensitivity: Low Aspect Ratio Wing 

In the subchapter, the validation of the adjoint solver in the presence of a laminar to 

turbulent transition for a three-dimensional flow is performed. To this end, flow 

around MDO 505 wing is regarded. The flow is at 𝑀 0.15, an angle of attack 2.1°, 

and 𝑅𝑒 3.4 × 106 per meter, which is the same flow condition regarded in case 3 

defined in the subchapter 3.1.5. 

Akin to the parametrization of the ONERA M6 wing, to manage the geometry, an 

FFD box with 36 control points is utilized (Figure 3-31). The perturbation of control 

points is limited in the vertical direction. 

 

Figure 3-31 FFD box and control points (blue spheres depict active control points) 

In this case, considering MALE/HALE type UAVs, the endurance parameter stated 

in Eq 3-5 is considered as the objective function. 

𝐼 = 𝐶𝐿
3/2/𝐶𝐷 Eq 3-5 

The results of the validation study are illustrated in Figure 3-32. 
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Figure 3-32 Comparison of sensitivity derivatives computed by the finite difference 

and the adjoint method at the root chord (red), at the mid-span chord (blue), at the 

tip chord (green) 

According to the results, the agreement of the adjoint derivatives with the derivatives 

computed by the finite difference approximation is well. The maximum deviation in 

derivative values is less than 1% of the the 𝐿2 𝑛𝑜𝑟𝑚 of the derivatives computed by 

the finite difference approximation. Hence, the accuracy of the sensitivity derivatives 

computed by the adjoint solver for three-dimensional natural laminar flow is 

encouraging to employ the adjoint solver in an aerodynamic shape optimization 

considering laminar to turbulent transition. 

3.2.5 Endurance Parameter Sensitivity: High Aspect Ratio Wing 

The accuracy of the adjoint solver developed is next validated against a three- 

dimensional natural laminar flow case. The natural laminar flow over the high aspect 

ratio wing, which is studied in the flow solver validation study (subchapter 3.1.6) is 

considered. The sensitivity derivatives for the optimization of the endurance 
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parameter are computed and compared against the finite difference based 

predictions. 

The three-dimensional wing is parametrized by a three-dimensional FFD box with 

36 control points (Figure 3-33), 12 of which are fixed in space. The remaining 24 

control points are allowed to move only in the vertical direction. 

  

Figure 3-33 FFD box and control points (blue spheres depict active control points) 

In this case, since the wing considered is a high-endurance UAV wing, the endurance 

parameter stated in Eq 3-6 is defined as the objective function to optimize. 

𝐼 = 𝐶𝐿
3/2/𝐶𝐷 Eq 3-6 

The adjoint and the finite difference based predictions are compared in Figure 3-34. 
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Figure 3-34 Comparison of sensitivity derivatives computed by the finite difference 

and the adjoint derivatives at the root chord (red), at the mid-span chord (blue), at 

the tip chord (green) 

Similar to the previous cases, the predictions of the adjoint method are consistent 

with the finite difference approximation. The maximum deviation in sensitivity 

derivative values is below 3% of the the 𝐿2 𝑛𝑜𝑟𝑚 of the gradient computed by finite 

central difference technique. Thus the comparison reaffirms the accuracy of the 

sensitivity derivatives computed by the adjoint solver for three-dimensional natural 

laminar flows. 

3.3 Optimization Studies 

In order to demonstrate the functionality of the sensitivity derivatives computed by 

the adjoint solver, sample optimization studies considering the cases in the validation 

studies regarding the adjoint solver are performed through the optimization 

framework detailed in the subchapter 2.3. Since the studies are performed through 

the framework, the optimization algorithm utilized in the optimization studies to 
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follow is the quasi-Newton method. In the studies, the parametrization and the 

objective functions are the same as in the corresponding validation studies. 

3.3.1 Drag Minimization at a Fixed Lift: RAE 2822 Airfoil 

The first optimization study is to minimize the drag coefficient of RAE 2822 airfoil 

at the flow condition of 2.8° angle of attack, 𝑀 0.73, and 𝑅𝑒 6.5 × 106 for a fixed 

lift. The constraint of the lift coefficient is imposed by a penalty function. Hence the 

optimization problem is an unconstrained single-point optimization that may be 

written as is stated below, 

min
𝜶
 𝐼(𝜶) = 𝑐𝑑(𝜶) + 2 (𝑐𝑙(𝜶) − 𝑐𝑙

𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝜶))
2

 Eq 3-7 

where 𝜶 refers to the design variables. The parametrization is the same as illustrated 

in Figure 3-25. 

 

Figure 3-35 The evolution of the objective function value along the optimization 

steps 

Figure 3-35 shows the history of the value of the objective function along 

optimization steps. The algorithm converges to the final design in 9 steps, excluding 

steps regarding line-search. 
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Figure 3-36 The baseline and optimized profile 

The final design is illustrated below. At the final design, the maximum thickness of 

the airfoil is reduced, and the maximum thickness location is shifted to a bit 

downstream. 

 

Figure 3-37 The pressure coefficient distributions of the baseline and optimized 

profile 

Figure 3-37 illustrating the pressure coefficient distribution of both the baseline and 

optimized airfoils shows that the strong shock that appeared on the upper surface of 

the baseline airfoil is considerably weakened by the optimization algorithm and 
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replaced with wiggles indicating two weak shocks appearing in between 0.45 and 

0.55 chord. The resulting weaker shock is also observed in the Mach distribution 

given in Figure 3-38. 

 

Figure 3-38 Mach distributions 

To weaken the shock leads to reducing the drag coefficient of the airfoil 66 drag 

counts. The drag coefficient of the airfoil is now reduced down to 0.0109 from 

0.0175. It should also be noted that by means of the penalty function, the constraint 

on the lift is satisfied, the lift coefficient stays almost constant as it drops from 0.821 

to 0.820. 

3.3.2 Maximization Range Parameter Maximization: NLF(1)-0.416 

In the second optimization study, the maximization of the 𝑐𝑙/𝑐𝑑 ratio (i.e., range 

parameter) of NLF(1)-0416 airfoil at the flow condition of 𝑀 0.1, and 𝑅𝑒 2 × 106 

for a fixed angle of attack that corresponds to 𝑐𝑙 1.0 is considered. The defined 

unconstrained single-point optimization problem may be written as, 

max
𝜶
 𝐼(𝜶) = 𝑐𝑙(𝜶) 𝑐𝑑⁄ (𝜶) Eq 3-8 

where 𝜶 refers to the design variables. The airfoil is parameterized with the same 

FFD box used in the validation study, as illustrated in Figure 3-27. Similar to the 
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previous case, the control points, excluding the points located at the leading and 

trailing edges, are perturbed in the optimization study. 

 

Figure 3-39 Evolution of 𝑐𝑙/𝑐𝑑 along the optimization steps 

Figure 3-39 shows the evolution of the objective function along the optimization 

steps. The local maximum design point has been achieved by five steps, excluding 

steps regarding line-search. 

 

Figure 3-40 The baseline and optimized airfoils 
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Figure 3-41 Pressure coefficient distributions on the baseline and optimized airfoils 

Figure 3-40 shows the baseline and the optimized profiles. The corresponding 

pressure and skin friction coefficients are given in Figure 3-41 and Figure 3-42. It is 

observed that the minimum pressure is decreased at the suction side, whereas the 

pressure at the lower side is increased. Hence the lift coefficient is increased. That is 

achieved by enlarging the maximum camber of the airfoil. Meanwhile, the maximum 

thickness is decreased to reduce the drag coefficient by the optimization algorithm. 

 

Figure 3-42 The pressure coefficient distributions of the baseline and optimized 

profile 

Figure 3-42 illustrates the comparison of the pressure coefficient and skin friction 

coefficient distributions of the baseline and the optimized airfoil. When the figure is 

evaluated, it is evident that the algorithm pushes not to amplify the adverse pressure 

x/c

c
p

0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

Optimized airfoil

Baseline airfoil

x/c

c
f

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008



 

 

95 

gradient on the upper surface, because an increase in the adverse pressure gradient 

results in a thicker boundary layer, hence higher pressure drag. It also causes an 

earlier transition onset. Therefore the algorithm does not make a significant change 

on the upper surface to keep the transition onset on the upper surface similar. An 

increase in lift is obtained by increasing the camber. 

As a result, the initial lift coefficient value of 1.0 has been increased to 1.12. The 

drag coefficient value has only increased by 1 drag count from 0.0086 to 0.0087, and 

the range parameter increases from 116.3 to 127.6. 

3.3.3 Drag Minimization at a Fixed Lift: ONERA M6 Wing 

As the first three-dimensional optimization study using sensitivity derivatives 

computed by the adjoint solver, the minimization of the drag coefficient of the 

ONERA M6 wing at a fixed lift coefficient is considered. Similar to the study 

performed on RAE 2822 airfoil, the constraint is imposed by a penalty function to 

convert the problem into an unconstrained optimization problem. Accordingly, the 

defined optimization problem may be written as is stated in Eq 3-9, 

min
𝜶
 𝐼(𝜶) = 𝐶𝐷(𝜶) + 2 (𝐶𝐿(𝜶) − 𝐶𝐿

𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝜶))
2

 Eq 3-9 

where 𝜶 refers to the design variables. The parametrization of the surface of the wing 

is carried out using the FFD box defined in Figure 3-29. 
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Figure 3-43 Evolution of objective function value along optimization steps 

Figure 3-43 illustrates the history of the defined objective function along the 

optimization cycles. The convergence of the optimization study is achieved within 5 

optimization steps, excluding the iterations performed regarding line-search. 

 

Figure 3-44 The wing sections of the baseline wing and the optimized wing (at 

η=0.33 and 0.66)  
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In order to minimize the drag coefficient, the algorithm decreases the maximum 

thickness of the wing sections. Moreover, the algorithm reduces the incidence angle 

such that the flow angle and the incidence angle of the wing are closer to each other. 

 

Figure 3-45 Pressure coefficients for baseline geometry and optimized geometry 

Reducing the maximum thickness and incidence angles of the wing sections resulted 

in that the aft shock is either removed or weakened along the spanwise (Figure 3-44, 

Figure 3-45). Furthermore, the lift decrease due to the reduction of the incidence 

angle has been compensated by alleviating the lift loss occurring due to shock. 
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Figure 3-46 Mach contours at different wingspan sections 

Consequently, although there are still shocks on the upper surface, as seen in Figure 

3-46, the optimization algorithm executes its duty properly, and the drag coefficient 

decreases from 0.0182 to 0.0157 by keeping the lift coefficient constant. 

3.3.4 Endurance Parameter Maximization: Low Aspect Ratio Wing 

In this case, the endurance parameter of the low aspect ratio MDO 505 wing 

considered in validation studies is optimized at a fixed angle of attack 2.1°. The 

optimization problem may be stated as in Eq 3-10, 
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max
𝜶
𝐼(𝜶) = 𝐶𝐿

3/2(𝜶)/𝐶𝐷(𝜶)  Eq 3-10 

where 𝜶 denotes the design variables of the problem. In the study, the gradients 

computed by the adjoint solver regards the physics of the transitional flow modeled 

by the B-C transition model, hence the optimization algorithm also does. The flow 

over the wing is at 𝑀 0.15, and 𝑅𝑒 3.4 × 106 for 1 m chord. 

The parametrization of the wing is employed by the same FFD box utilized earlier 

in validation studies (Figure 3-31). The FFD box has 36 control points 24 of which 

are taken as the design variables. The movement of them is limited in the vertical 

direction. 

 

Figure 3-47 Evolution of endurance parameter value throughout optimization steps 

The optimization process is similarly driven by the quasi-Newton algorithm 

available in Dakota. Figure 3-47 illustrates the evolution of the defined objective 

function throughout the optimization steps. The convergence of the optimization 

study is achieved within 10 optimization steps. 
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Figure 3-48 Maximum thickness and maximum camber to chord ratio distribution 

on the baseline and optimized wing along the span 

Figure 3-48 shows the variations of the thickness, the camber, and incidence angle 

along the wing span. The change in the maximum thickness is observed to be rather 

small, but the camber, in general, is increased all along the span. The effect of 

increased camber and incidence angle may be observed in the pressure coefficient 

contours given in Figure 3-49. It should also be noted that the relative decrease in 

the camber and the incidence angle towards the tip tends to create an elliptic lift 

distribution, which helps to lower the induced drag. 
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Figure 3-49 Pressure coefficient contours for the baseline and optimized wing 

In Figure 3-50, the change in the distribution of pressure and the skin friction 

coefficients are given in two spanwise stations. The optimized pressure distributions, 

which cause the lift to increase, have higher suction pressures due to increased 

camber. Whereas, the skin friction distribution at 𝜂 = 0.33 indicates an early 

transition onset closer to the root, which causes the skin friction drag to increase by 

3 counts. Yet, there is no flow separation observed on the optimized wing. 

Furthermore, it should be noted that the sensitivity derivatives computed by the 

adjoint solver account for the transitional flow modeled by the B-C transition model. 
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Figure 3-50 The wing sections of the baseline wing and the optimized wing 

To give a better insight, the skin friction contours on the upper surfaces of the 

baseline and optimized wing are given in Figure 3-51. 

 

Figure 3-51 Skin friction distribution on the upper surfaces of the baseline and 

optimized wing 

x/c

C
P

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

Optimized profile

Baseline profile

=0.33

x/c

C
P

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

=

x/c

C
F

0 0.2 0.4 0.6 0.8 1

0.001

0.002

0.003

0.004

x/c

t/
c

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

x/c

t/
c

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

x/c

C
F

0 0.2 0.4 0.6 0.8 1

0.001

0.002

0.003

0.004



 

 

103 

As a result of the optimization study, the endurance parameter of the wing is 

increased by around 16%. Thus, the framework demonstrates its capability in three-

dimensional aerodynamic shape optimization for natural laminar flows, as well. 

3.3.5 Endurance Parameter Maximization: High Aspect Ratio Wing 

In this optimization study, the endurance parameter of the experimental MALE UAV 

wing considered in validation studies is optimized at a fixed angle of attack. The 

optimization problem may be stated as is in Eq 3-11, 

max
𝜶
𝐼(𝜶) = 𝐶𝐿

3/2(𝜶)/𝐶𝐷(𝜶) , Eq 3-11 

where 𝜶 denotes the design variables of the problem. In the study, as is in the 

previous optimization study, the gradients computed by the adjoint solver regards 

the physics of the transitional flow modeled by the B-C transition model, hence the 

optimization algorithm also does. The flow over the wing is at 𝑀 0.2, and 𝑅𝑒 

600 × 103 at the mean aerodynamic chord, and an angle of attack 6°. 

Similar to previous cases, the parametrization technique is the FFD technique. The 

FFD box created for parametrization contains 36 control points. The FFD box and 

the control points are as demonstrated in Figure 3-31. 



 

 

104 

 

Figure 3-52 Evolution of endurance parameter value along optimization steps 

The optimization algorithm is the quasi-Newton algorithm. Figure 3-52 illustrates 

the history of the defined objective function along the optimization steps. In the 

study, the convergence is achieved within 11 optimization steps. 

 

Figure 3-53 Maximum thickness and maximum camber to chord ratio distribution 

on the baseline and optimized wing along the span 

Figure 3-53 shows that the optimization algorithm increases the camber and the 

incidence angle along the wingspan, whereas the thickness is reduced to decrease the 

drag coefficient. The effect of the change of the camber, thickness, and incidence 

angle along the span in aerodynamic efficiency may be evaluated through the lift 

distribution. 
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Figure 3-54 The lift distribution along the span 

Figure 3-54 depicts the normalized lift distributions of the baseline and the optimized 

wing, as well as the elliptic lift distribution. According to the results, the change in 

wing sections done by the optimization algorithm results in a lift distribution closer 

to an elliptic lift distribution, hence a lower induced drag at the corresponding lift. 

 

Figure 3-55 Skin friction coefficient distribution on the upper surfaces of the 

baseline and the optimized wing 

In the case, the algorithm focused on increasing the lift and reduce the induced drag. 

The drag occurring due to the viscosity remains in the background. Figure 3-55 

depicts skin friction coefficient distributions on the upper surface. According to the 

results, the transition onset moves forward towards the leading edge, which results 

in 25 drag counts increase in the skin friction coefficient. Nevertheless, the effect of 
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increasing the lift coefficient, and having a lift distribution closer to that of an elliptic, 

the endurance parameter is increased by around 18%. 
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CHAPTER 4  

4 CONCLUSION 

A discrete adjoint-based aerodynamic shape optimization framework for natural 

laminar flows is successfully developed. An in-house RANS solver is heavily 

modified in Fortran 95 and is equipped with the B-C transition model in order to 

predict the transition onset for natural laminar flows. Validation studies for both 

turbulent and natural laminar flows over airfoils and wings are successfully 

performed. It is also shown that the B-C transition model predicts the transition onset 

accurately and agrees well with the numerical and experimental studies.  

Following the further development and the validation of the in-house RANS solver, 

an accompanying discrete adjoint solver is next developed for natural laminar flows. 

In the development of the adjoint solver, an  AD tool, TAPENADE, is utilized to take 

the discrete derivatives of the flow solver, namely flux Jacobians. In the study, the 

usage of the AD tool is straightforward and less laboring. Since the computed 

Jacobian matrices are the exact Jacobians of the discrete flow solver, there is no 

simplification, such as frozen turbulence. The implementation of the B-C transition 

model does not increase the rank of the Jacobian matrices and does not degrade the 

computational efficiency and memory requirements. The solution of the adjoint 

variables is obtained by a multifrontal LU factorization provided by MUMPS library 

under PETSc environment. Although the memory requirement for the direct solution 

of the system of equations by the LU decomposition is large, the direct solution is 

free from numerical instabilities often faced in iterative solutions. 

In the aerodynamic shape optimization study, aerodynamic surfaces are 

parametrized by the FFD method. Once the sensitivity derivatives of the objective 

function with respect to grid coordinates are evaluated, their projection on the FFD 
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coordinates is obtained by the use of the SU2_DEF module provided by the SU2 

software suite. 

The development of the adjoint solver is followed by the validation studies against 

the finite difference based predictions. It is shown that the sensitivity gradients 

computed by the adjoint method are in very good agreement with the finite difference 

predictions for both turbulent and natural laminar flows. The present results also 

show that the usage of an AD provides an accurate method for the development of a 

discrete adjoint solver, as well as providing a straightforward and robust method. 

An open-source optimization tool, DAKOTA, is used to drive the optimization steps 

based on the sensitivity derivatives/gradients computed by the adjoint solver. The 

quasi-newton method available in DAKOTA is chosen as the optimization method. 

The framework parameterizes the shape by using the FFD technique. The 

framework, then, provides a new set of design variables, deforms the grid, and solves 

the flow over the modified shape. Moreover, the flow solver also computes the 

partial derivatives appearing in the adjoint system. Subsequently, the adjoint solver 

calculates the grid sensitivities of the objective function. The grid sensitivities are 

projected to design parameters by employing SU2_DOT_AD. Hence, the sensitivity 

of the objective function to design parameters are computed. The objective function 

and the sensitivity gradients are then delivered to the optimization algorithm. This 

cycle lasts until the convergence criterion is achieved. 

Finally, in order to demonstrate the functionality of the developed discrete adjoint 

method, the optimization of the aerodynamic characteristics of several airfoils and 

wings are performed via the optimization framework. In the optimization studies, the 

method succeeds in optimizing aerodynamic characteristics of the airfoils and wings 

for both turbulent and natural laminar flows. In the first optimization study, the drag 

coefficient of RAE 2822 in transonic flow is decreased from 175 drag counts to 109 

drag counts at a fixed lift. The lift coefficient of NLF(1)-0416 airfoil is then increased 

from 1.0 to 1.12, which only resulted in 1 drag count increase. The drag coefficient 

of the ONERA M6 wing is decreased by 25 drag counts at a fixed lift. Finally, the 
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MDO 505 wing and TAI’s experimental high aspect ratio wing is optimized for 

endurance, and the endurance parameters of them are increased by 16% and 18%, 

respectively. Thus, the implementation has shown the functionality of adjoint 

methods in high-fidelity aerodynamic shape optimization for natural laminar flows 

as well as turbulent flows. 

4.1 Further Studies 

Numerical results show that the incorporation of gradients into a surrogate model, 

can be used to break the curse of dimensionality (Dalbey, 2013). However, that is 

only attractive when the computational cost to compute the gradients is comparable 

to that of the objective function. Fortunately, that is possible by adjoint methods. 

Hence, as an extension of the study, we are currently looking into combining the 

adjoint method with a kriging surrogate-based model to achieve the global optimum. 

In this way, it is aimed to take advantage of the best features of both methods. 

The kriging surrogate-based optimization algorithms are successful in achieving the 

global optimum; however, they face the curse of dimensionality problem when 

dealing with a large number of design variables. On the other hand, the adjoint 

method is successful and computationally efficient to compute the gradients; 

however, when combined with a gradient-based optimization algorithm, it achieves 

the local optimum. 

Although, by incorporating the gradients into a surrogate model, the curse of 

dimensionality problem is overcome, there is still an open issue. The correlation 

matrices appearing in a gradient-enhanced kriging method are ill-conditioned, which 

is a problem to be solved to get a robust and efficient method. Therefore, in the 

extension study, a recently developed method (Özkaya & Gauger, 2020), that enables 

surrogate models to incorporate gradient information without causing robustness 

problems, will be implemented to overcome the problem. 
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