
MULTILEVEL OBJECT TRACKING ON BIG GRAPH DATA USING INTERVAL
TYPE-2 FUZZY SYSTEMS IN WIRELESS MULTIMEDIA SENSOR

NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CİHAN KÜÇÜKKEÇECİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

AUGUST 2020

Approval of the thesis:

MULTILEVEL OBJECT TRACKING ON BIG GRAPH DATA USING
INTERVAL TYPE-2 FUZZY SYSTEMS IN WIRELESS MULTIMEDIA

SENSOR NETWORKS

submitted by CİHAN KÜÇÜKKEÇECİ in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Adnan Yazıcı
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. İsmail Sengör Altıngövde
Computer Engineering, METU

Prof. Dr. Adnan Yazıcı
Computer Engineering, METU

Prof. Dr. Murat Koyuncu
Information Systems Engineering, Atılım University

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering, METU

Assoc. Prof. Dr. Tufan Kumbasar
Control and Automation Engineering, ITU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Cihan Küçükkeçeci

Signature :

iv

ABSTRACT

MULTILEVEL OBJECT TRACKING ON BIG GRAPH DATA USING
INTERVAL TYPE-2 FUZZY SYSTEMS IN WIRELESS MULTIMEDIA

SENSOR NETWORKS

Küçükkeçeci, Cihan

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Adnan Yazıcı

August 2020, 146 pages

Wireless multimedia sensor networks (WMSN) are the key elements of automation

systems applied in different domains from home security to immigrant surveillance

at a border station. In most of the applications, sensor data needs to be processed

for data analytics. However, the interpretation of raw sensor data and unveiling the

information inside remains a challenging issue from many aspects. As the interval of

the sensor data is frequent, data needs to be treated as big data because of the volume

and velocity. Unfortunately, traditional approaches do not perform well in big data

analytics, especially in extracting the complex relationships between data.

In this dissertation, a novel fuzzy object tracking approach which is developed using a

big graph data model is proposed by utilization of a multilevel fusion. This approach

consists of three main steps: intra-node fusion, inter-node fusion, and object trajec-

tory construction. Intra-node fusion exploits object detection and tracking in each

sensor while inter-node fusion uses spatiotemporal data along with neighbor sensors.

Then, all trajectories from all sensor nodes are integrated using fuzziness to construct

trajectories in the common ground-plane across the wireless multimedia sensor net-

v

work. Since uncertainty naturally exists in trajectory data, fuzzy logic systems have

been studied on the extracted trajectories as well as for further analytics like trajectory

prediction and anomaly detection.

A prototype system was implemented and several experiments were conducted to

evaluate the performance of the proposed approach with both synthetic and real world

datasets. The results show that usage of third-level fusion, in addition to inter-node

and intra-node fusions provides significantly better performance for object tracking

in WMSN applications. GeoLife Trajectories and Maritime Cadastre datasets were

used as input of two different real world use cases to perform experiments, and re-

sults validate that interval type-2 fuzzy logic utilization improves performance in both

trajectory extraction and analytics.

Keywords: big data analytics, Internet of things, fuzzy logic, nosql databases, graph

model, wireless multimedia sensor networks

vi

ÖZ

ÇOKLU ORTAM DUYARGA AĞLARINDA ARALIK TİP-2 BULANIK
SİSTEMLER KULLANARAK BÜYÜK ÇİZGE VERİLERDE

ÇOKKATMANLI NESNE TAKİBİ

Küçükkeçeci, Cihan

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Adnan Yazıcı

Ağustos 2020 , 146 sayfa

Kablosuz çoklu ortam duyarga ağları (KÇODA), ev güvenliğinden, bir sınır kara-

kolundaki göçmen gözetimine kadar farklı alanlarda uygulanan otomasyon sistem-

lerinin temel unsurlarıdır. Bu tip uygulamaların birçoğunda, veri analizi için sensör

verilerinin işlenmesi gerekir. Ancak, ham sensör verilerinin yorumlanması ve içeri-

sinde barındırdığı bilgilerin açığa çıkarılması birçok açıdan zor bir konudur. Sensör

verilerinin ölçüm aralığı sık olduğundan, hacim ve hız nedeniyle verinin büyük veri

olarak ele alınması gerekir. Ne yazık ki, geleneksel yaklaşımlar büyük veri analiz-

lerinde, özellikle de veriler arasındaki karmaşık ilişkilerin çıkarılmasında pek de iyi

performans göstermezler.

Bu tezde, büyük grafik veri modeli kullanılarak geliştirilen yeni bir bulanık nesne iz-

leme yaklaşımı, çokkatmanlı füzyondan yararlanılarak önerilmektedir. Bu yaklaşım

üç ana adımdan oluşur: düğüm-içi füzyon, düğümler-arası füzyon ve nesne yörüngesi

oluşturulması. Düğümler-arası füzyon, her sensör düğümde nesne algılama ve izle-

meden faydalanırken, düğümler-arası füzyon, komşu sensörler aracılığıyla zaman-

vii

mekansal verileri kullanır. Daha sonra, tüm sensör düğümlerindeki tüm yörüngeler,

kablosuz çoklu ortam duyarga ağı boyunca uzanan ortak yer düzlemindeki yörün-

geleri oluşturmak için bulanıklık kullanılarak birleştirilir. Yörünge verilerinde belir-

sizlik doğası gereği mevcut olduğundan, çıkartılmış yörüngelerin yanı sıra yörünge

tahmini ve anomali tespiti gibi diğer analitikler için bulanık mantık sistemleri çalışıl-

mıştır.

Prototip bir sistem geliştirildi ve hem sentetik hem de gerçek dünya veri kümeleriyle,

önerilen yaklaşımın performansını değerlendirmek için çeşitli deneyler yapıldı. So-

nuçlar göstermektedir ki, düğümler-arası ve düğüm-içi füzyonlara ek olarak üçüncü

katman füzyon kullanımı, KÇODA uygulamalarındaki nesne izleme için önemli öl-

çüde daha iyi performans sağlamaktadır. Deneyleri yapmak için GeoLife Trajectories

ve Maritime Cadastre veri kümeleri, farklı gerçek dünya senaryolarına girdi olarak

kullanıldı, ve sonuçlar aralık tip-2 bulanık mantık kullanımının hem yörünge çıkar-

mada hem de analizde performansı arttırdığını doğrulamaktadır.

Anahtar Kelimeler: büyük veri analizi, şeylerin Interneti, bulanık mantık, nosql veri-

tabanları, çizge modeli, kablosuz çoklu ortam duyarga ağları

viii

To my family...

ix

ACKNOWLEDGMENTS

There are many people who are sharing the success and pride of this thesis, and these

people were with me whatever it takes to put things on track for both in my thesis and

my life. One of them is my supervisor Prof.Dr.Adnan Yazıcı unhesitatingly. I feel

sincerely beholden to him for his endless advice, constructive criticisms, and excellent

feedback which had crucial effects on putting this dissertation into its current form.

Another one is undoubtedly my family who shared every moment of this journey with

me without taking a moment to pause. I sincerely thank each of my family members

for supporting and believing in me throughout my life.

And finally, I owe the members of my thesis monitoring committee, the juries of

my thesis defense, my friends, my relatives, my colleagues, and everyone who finds

something valuable for him/herself in this dissertation a debt of gratitude.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xvi

LIST OF FIGURES . xviii

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem . 2

1.2 Contributions . 3

1.3 Overview of the Thesis . 5

1.4 Declaration . 6

2 BACKGROUND AND RELATED WORK 7

2.1 Internet of Things . 7

2.2 Wireless Multimedia Sensor Networks 8

2.3 NoSQL Graph Databases . 9

2.4 Big Data . 10

xi

2.5 Big Data Analytics . 11

2.6 Machine Learning Algorithms . 12

2.7 Fuzzy Logic System . 14

3 GRAPH-BASED DATA MODEL . 17

3.1 Overview . 18

3.2 The Graph-Based Big Data Model 19

3.3 Graph Database Selection . 21

3.4 Model Implementation Over Graph Database 21

3.5 Experimental Work . 27

3.5.1 Comparison to Relational Data Model 27

3.5.1.1 Concepts Based Query 29

3.5.1.2 Video Based Query . 29

3.5.1.3 Recursive Query . 31

3.5.2 Doubling Sensed Raw Data Size 33

3.6 Remarks . 33

4 DATA SIMULATION . 37

4.1 Reference WSN System . 37

4.2 Generic Infrastructure for Simulator 39

4.3 System Architecture . 40

4.4 Simulation . 42

4.4.1 Network Topology Simulation 42

4.4.2 Data Flow Simulation . 44

4.4.3 Scenario Generator . 45

xii

4.5 A Case Study: Surveillance Application 47

4.6 Simulator Application . 49

4.7 Remarks . 52

5 OBJECT TRACKING AND TRAJECTORY ANALYTICS 53

5.1 Overview . 53

5.2 Object Tracking . 54

5.2.1 Intra-Node Fusion . 55

5.2.2 Inter-Node Fusion . 56

5.2.3 Rule Engine . 56

5.2.3.1 Definitions . 59

5.2.3.2 Rule Generation and Implementation 60

5.2.3.3 Sample Scenario Execution 63

5.2.4 Object Trajectory Construction 67

5.3 Interval Type-2 (IT2) Fuzzy Logic Trajectory Analytics 71

5.3.1 Fuzzy Geometry . 72

5.3.2 Extending Object Tracking with Fuzziness 74

5.3.3 IT2 Fuzzy Logic based Classification 82

5.3.4 Trajectory Prediction . 84

5.3.5 Anomaly Detection . 85

5.4 Real World Use Cases . 87

5.4.1 GeoLife Dataset . 88

5.4.2 Marine Cadastre Dataset . 89

5.5 Remarks . 92

xiii

6 EVALUATION . 95

6.1 Multilevel Object Tracking Experiments 95

6.1.1 Synthetic Data . 96

6.1.2 Real World Dataset . 101

6.2 Fuzzy Logic Experiments . 104

6.2.1 Global Trajectory Construction 104

6.2.2 Fuzzy Trajectory Extraction 110

6.2.3 Prediction and Anomaly Detection Analytics 110

6.3 Remarks . 115

7 CONCLUSIONS . 117

7.1 Discussion . 118

7.2 Future Work . 119

REFERENCES . 121

APPENDICES

A FUZZY RULES . 131

A.1 Type-1 Fuzzy Rules . 131

A.2 Interval Type-2 Fuzzy Rules . 135

B COMPLEXITY ANALYSIS OF ALGORITHMS 139

B.1 Rule Engine Algorithm . 140

B.2 Intra-Node Fusion Algorithm . 141

B.3 Inter-Node Fusion Algorithm . 142

B.4 Object Trajectory Construction Algorithm 143

xiv

CURRICULUM VITAE . 145

xv

LIST OF TABLES

TABLES

Table 3.1 Compare OrientDB and Neo4j Community Editions 22

Table 3.2 Node and Edge Types . 24

Table 3.3 Test Results (Numbers are in milliseconds) 33

Table 4.1 Defined Message Queues . 40

Table 4.2 Sample Thresholds To Identify Objects 47

Table 4.3 Simulated Entity Types . 50

Table 4.4 Sensed Values at Node(30,10) . 51

Table 4.5 Sensed Values at Node(40,10) . 51

Table 5.1 Rule Condition Parameter Values for Each Trajectory 67

Table 5.2 Sample Rule Engine Execution Scores for Each Trajectory 67

Table 5.3 Fuzzy-based Rule Engine Parameter Values for Each Trajectory . . . 81

Table 5.4 Fuzzified Input Parameters for Each Trajectory 81

Table 5.5 Output Values of the Fuzzy-based Rule Engine for Each Trajectory . 82

Table 5.6 Mapping from Transportation Mode to Concept Type 90

Table 6.1 Algorithm Scores with Various Parameters 101

Table 6.2 Mapping from Transportation Mode to Concept Type 103

xvi

Table 6.3 F-measure Comparison for Concept Types 104

Table 6.4 The Number of Rules Comparison for Type-1 and Interval Type-2 . 106

Table 6.5 Less Number of Rules in IT2 compared to T1 108

Table 6.6 PICP and PINAW evaluation for the IT2 fuzzy algorithm. 115

Table A.1 T1 Fuzzy Rules Used in Intra-Node Fusion (Part 1/2) 132

Table A.2 T1 Fuzzy Rules Used in Intra-Node Fusion (Part 2/2) 133

Table A.3 T1 Fuzzy Rules Used in Inter-Node Fusion 134

Table A.4 IT2 Fuzzy Rules Used in Intra-Node Fusion (Part 1/2) 136

Table A.5 IT2 Fuzzy Rules Used in Intra-Node Fusion (Part 2/2) 137

Table A.6 IT2 Fuzzy Rules Used in Inter-Node Fusion 138

xvii

LIST OF FIGURES

FIGURES

Figure 2.1 5 Vs of big data. 10

Figure 2.2 Type-1 fuzzy logic system. 14

Figure 2.3 Interval type-2 fuzzy logic system. 15

Figure 3.1 Graph-based data model. 20

Figure 3.2 Relational Database Schema 28

Figure 3.3 OrientDB query time and simulation duration. 34

Figure 4.1 Reference WMSN System Architecture [1] 38

Figure 4.2 System architecture. 41

Figure 4.3 Simulated wireless sensor network. (a) Grid-based deployment.

(b) Random deployment. 43

Figure 4.4 Data flow simulation. 45

Figure 4.5 Scenario generation. (a) Using scenario drawer. (b) Using JSON

file. 46

Figure 4.6 Surveillance application simulation. 48

Figure 4.7 Data simulator application. 49

Figure 5.1 Fuzzy logic system. 61

xviii

Figure 5.2 Sample fuzzy member functions. 62

Figure 5.3 Rule engine execution on a sample scenario. 64

Figure 5.4 Multilevel fusion step-by-step trajectory detection. (a) Actual

trajectory. (b) Intra-node fusion. (c) Inter-node fusion. (d) Trajectory

construction. 70

Figure 5.5 An IT2 Fuzzy Logic System. 71

Figure 5.6 A fuzzy point derived from possible positions. 73

Figure 5.7 A fuzzy trajectory representation. 73

Figure 5.8 Object Models for Fuzzy Trajectories. 74

Figure 5.9 Input member functions for IT2 FLS. 80

Figure 5.10 Success rates of classification algorithms in prediction with-

/without parameter tuning. 85

Figure 5.11 (a) Trained trajectories for analytics. (b) A sample anomaly in

which the object leaves suddenly while moving on Trajectory-3. 87

Figure 5.12 Utilization of real world dataset. 89

Figure 5.13 Sample AIS data exchange representation. 90

Figure 5.14 A sample trajectory from maritime dataset. 93

Figure 6.1 Scenario samples generated using developed simulator. (a) Straight

trajectories. (b) Circular trajectories. (c) Zig zag trajectories. (d) Wavy

trajectories. 97

Figure 6.2 F-measure scores for both grid-based and randomly deployed

nodes. 98

Figure 6.3 Comparison with Kalman filter and Particle filter. (a) Straight

trajectory. (b) Wavy trajectory. 99

xix

Figure 6.4 Error rates comparison with Kalman filter and Particle filter. (a)

Straight trajectory. (b) Wavy trajectory. 100

Figure 6.5 Object trajectory construction. (a) F-Scores. (b) Precision com-

parison with inter-node fusion. 102

Figure 6.6 Fuzzy logic usage compared to non-fuzzy approach in trajectory

construction. (a) Synthetically generated data. (b) GeoLife Trajectories

dataset. (c) Marine Cadastre dataset. 105

Figure 6.7 T-Test results. (a) For Baseline (Rule-Based Engine) and Type-1

Fuzzy Logic. (b) For Type-1 Fuzzy Logic and Interval Type-2 Fuzzy

Logic. 109

Figure 6.8 Comparison of representation of regular and fuzzy trajectories.

(a) Regular trajectory as a line. (b) Fuzzy trajectory as a polygon. 111

Figure 6.9 F-measure score comparison for proposed IT2 prediction algo-

rithm on synthetically generated data. 112

Figure 6.10 F-measure score comparison for proposed IT2 prediction algo-

rithm on GeoLife Trajectories dataset. 113

Figure 6.11 F-measure score comparison for proposed IT2 prediction algo-

rithm on Marine Cadastre dataset. 113

Figure 6.12 Anomaly detection success rates of fuzzy algorithms on synthet-

ically generated data. 114

Figure B.1 Complexity analysis of Rule Engine algorithm. 140

Figure B.2 Complexity analysis of Intra-Node Fusion algorithm. 141

Figure B.3 Complexity analysis of Inter-Node Fusion algorithm. 142

Figure B.4 Complexity analysis of Object Trajectory Construction algorithm. 143

xx

LIST OF ABBREVIATIONS

ABBREVIATIONS

CEP Complex Event Processing

ITS Intelligent Transport Systems

FVSA Fused Video Surveillance Architecture

IoT Internet of Things

API Application Program Interface

IT2 Interval Type-2

FLS Fuzzy Logic System

xxi

xxii

CHAPTER 1

INTRODUCTION

Wireless Multimedia Sensor Network (WMSN) is a very effective technology com-

monly used in automation systems applied in different domains from monitoring of

an industrial site to home security for detecting unexpected visitors, from traffic con-

trol in a metropolis to immigrant surveillance at a border station. Considering the fact

that these sensor nodes are 24/7 active and generating data each minute or even each

second, it easily becomes a big data subject because of the volume, velocity and vari-

ety. Since relational databases have some drawbacks in big data applications, NoSQL

databases are the savior in scalability and performance issues.

Big data was a huge hit in the last decade since the valuable information hidden in

large volumes of data got attraction by both commercial and academia. As big data

analytics evolved and hidden information in complex relationships was needed to

be revealed, the graph databases emerged as the key technology from other NoSQL

database types.

Surveillance is one of the most mission critical application domains with connected

data with multiple dimensions like space and time. Therefore, there are many research

studies in data analytics on surveillance applications for monitoring a zone. However,

extracting the information from the big sensor data and using that knowledge to help

better understanding the area for predictive analytics remains a challenging issue. To

facilitate such challenges, this thesis proposes a novel fuzzy object tracking approach

which is developed using a graph-based big data model by utilization of a multilevel

fusion. This approach consists of three main steps: intra-node fusion, inter-node fu-

sion, and object trajectory construction. Intra-node fusion exploits object detection

and tracking in each sensor while inter-node fusion uses spatiotemporal data along

1

with neighbor sensors. Since uncertainty naturally exists in trajectory data, an in-

terval type-2 fuzzy rule based engine is developed to be used in both intra-node and

inter-node algorithms to fuse trajectories. Then, all trajectories from all sensor nodes

are integrated to construct fuzzy trajectories in the common ground-plane across the

wireless multimedia sensor network. Extracted trajectories are utilized in advanced

analytics like prediction and anomaly detection.

Two different real world use cases were experimented using GeoLife Trajectory dataset

for surveillance on the ground and Maritime dataset for monitoring the vessels. Us-

age of real world application scenarios as well as the synthetically generated data,

justified that the interval type-2 fuzzy logic utilization improves performance in both

trajectory extraction and data analytics. My thesis increased the performance 10%-

30% on real world datasets.

In this chapter, firstly motivation for this thesis is declared. Then, the problem formu-

lation and definition is discussed. After that contributions are given in the following

section. And finally, the organization of the thesis is presented.

1.1 Motivation and Problem

Sensors are present in various forms all around the world such as mobile phones,

surveillance cameras, smart televisions, intelligent refrigerators and blood pressure

monitors. Usually, most of the sensors are a part of some other systems with similar

sensors that compose the sensor networks. Many studies have already been done on

sensor networks in diverse domains like fire detection, city surveillance, and early

warning systems. All those applications position sensor nodes and collect their data

for a long time period with real-time data flow, which is considered as big data.

Big data may be structured or unstructured and needs to be stored for further pro-

cessing and analyzing. However, analyzing multimedia big data is a challenging task

requiring a high-level modeling to efficiently extract valuable information from data.

Especially in surveillance applications, sensor nodes produce (near) realtime data

which usually needs to be treated as big data because of the volume and velocity of

data.

2

The hidden information inside the big data is revealed by data analytics. Some ana-

lytics on the surveillance domain can answer the following research questions;

• How can the path of an identified object be extracted?

• Where was the object at a given specific time?

• What is the possible position of an identified object after 10 minutes?

• Does the identified object behave abnormally?

To be able to deal with those problems, it is also needed to simulate and model the

real system to generate synthetic data because of the following reasons;

• A long period of time, maybe years, is needed to store enough data to be ana-

lyzed

• Different kinds of scenarios may never happen during that time period

Another problem is the uncertainty in trajectories. Simultaneous detection and track-

ing of objects moving through a trajectory using wireless sensor nodes without any

equipment attached on the object like GPS or RFID are challenging research topics,

because of the reason that detailed analysis of spatiotemporal sensor data is required.

There are several studies on trajectory extraction but uncertainty of the trajectory

points is still an open issue.

1.2 Contributions

Considering the defined problems and scope of the thesis, main contributions of this

dissertation are as follows:

• A new object tracking algorithm to extract trajectories on big surveillance data

that consists of three main algorithms: intra-node fusion, inter-node fusion, and

object trajectory construction. Intra-node fusion exploits object detection and

tracking in each sensor. The output of intra-node fusion is used together with

3

spatiotemporal data along with neighbor sensors to generate inter-node trajec-

tories. Then, all the trajectories from all sensor nodes are fused to construct

fuzzy trajectories for detected objects in the common ground-plane across the

WMSN. Usage of fuzzy logic and multilevel approach in trajectory extraction

performed better than the Kalman filter and Particle filter which are widely used

in this problem scope.

• Extracted trajectories can be used for further analytics. Since uncertainty nat-

urally exists in trajectory data, and analytics like prediction and anomaly de-

tection need increased fuzziness to be able to handle indefinite information in

a logically correct manner, interval type-2 fuzzy logic-based approach is pro-

posed to foreseen trajectories and detect the outliers. An object following a

trajectory causes an anomaly if it leaves the trajectory path. GeoLife Trajec-

tories and Maritime Cadastre datasets were used to perform experiments, and

results show that using fuzzy based approach performs better than the well-

known classification algorithms.

• A graph-based model for big data is proposed to be able to do analytics on

data with complex relations. Accordingly NoSQL graph database is used for

the purpose of addressing the big data related problems. The network infras-

tructure model is intertwined with the sensed and fused data model to reveal

the information from data. Although there have been some related studies in

the literature about the surveillance systems in the big data context, to the best

of our knowledge, there has not been an applicable big graph data model for

WMSNs using a graph database yet.

• A simulation infrastructure is implemented for simulating multimedia wireless

sensor networks and sensor node execution using both generated synthetic data

and available real world datasets. Two different datasets are used for verifica-

tion in order to test how applicable and effective are the proposed algorithms in

the real world use cases. In addition, developed simulator application is being

used by many other master and doctorate thesis.

4

1.3 Overview of the Thesis

This thesis is organized as follows: first chapter is the background information and

related works, and next chapter is about the proposed graph-based big data model.

Chapter 4 describes the developed big data compatible simulator using the reference

real wireless multimedia sensor network. And final chapter proposes multi level fu-

sion tracking algorithm and big data analytics using well-known classification algo-

rithms.

The dissertation starts with an introduction and gives the motivation for this thesis

afterward. Then, the problem and contributions of this dissertation are provided.

Thereafter, Chapter 2 gives background information about the key topics and related

works to this dissertation.

In Chapter 3, the first step of the research, defining a graph-based data-model and se-

lecting a suitable graph database is introduced. An overview about the related works

is given in Section 3.1. In Section 3.2, a new graph-based data model is proposed.

Comparison and selection of a graph database is presented in Section 3.3. Then, pro-

posed data model is implemented on selected graph database in Section 3.4. Finally,

conclusions are given accordingly in Section 3.6.

Next step of thesis study is using the implementation of proposed graph-based data

model, and this guides the reader to Chapter 4 where a comprehensive simulator to

generate both network and data flow is introduced and developed. In this chapter,

firstly specifications of the reference wireless sensor network system are given in

Section 4.1. Then, building components and generic infrastructure of the simulator

are provided in Section 4.2 and 4.3, respectively. Thereafter, in Section 4.4 system

simulation which covers both network topology and data flow generation is given. In

Section 4.5 a case study in surveillance, and in Sections 4.6 developed JavaFX data

simulator application are described. Then concluding remarks are also given in the

final Section 4.7 of this chapter.

Chapter 5 composed of many algorithms to track objects using semi-automatic fuzzy

rule engine which this dissertation mainly based upon. First, an overview is given in

Section 5.1. Then, a novel multilevel object tracking approach is provided in Section

5

5.2, and extracted trajectories are used for analytics in Section 5.3.3. Empirical stud-

ies on applying interval type-2 fuzzy logic on extracted trajectories are discussed in

Section 5.3. Finally, at the end of this chapter brief remarks are provided in Section

5.5.

Chapter 6 composed of several experiments to benchmark the proposed multilevel

object tracking algorithms and trajectory analytics. First, in Section 6.1, a synthetic

data generated by the data simulator and a real world dataset were used evaluate the

proposed algorithm. Then, various experiments were conducted using interval type-2

fuzzy logic in Section 6.2.

The final chapter of this dissertation, Chapter 7, encompasses conclusions, discussion,

and foreseen future work which conclude the dissertation.

1.4 Declaration

The content of this thesis is the result of the author’s original work, except where ref-

erenced or stated otherwise. Parts of this dissertation have been previously published

by the author.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

There are several topics that this dissertation is based on. As sensor networks inter-

twine with Internet of Things (IoT), big data is interlaced with NoSQL databases. In

this chapter, background information for key topics are provided.

In this chapter, firstly description of Internet of Things and how it is evolved is de-

scribed. Then, sensor networks is declared in the following section. After that,

NoSQL databases including Graph databases are provided. And last but not least,

big data and analytics of the big data are discussed.

2.1 Internet of Things

Kevin Ashton is the person who used the Internet of Things (IoT) naming for the

first time in 1999 [2] and it roughly means that devices, called Things, connected to

the Internet for various purposes from home security to weather forecast, and from

shopping to healthcare. In all use cases, Things will use the Internet instead of humans

to provide a service. The sensors, RFIDs, and nanotechnology help this mission to be

accomplished by taking away the need for human-entered data.

Pankesh et al.[3] propose a domain model for IoT to make a common understanding.

To define the model, they reference to the real world applications and summarize un-

der three headings; Intermittent Sensing for RFID kind of technologies, Regular Data

Collection for smart devices to interact with humans, and Sense-Compute-Actuate

loops for machine-to-machine communications between smart devices.

As parallel to Sense-Compute-Actuate cycle, Sensor-as-a-Service (Senaas) notion is

7

defined by Sarfraz et al. [4]. They virtualized the sensors as services by an abstraction

on technical details of sensors. They trigger services with an event in the sensor and

compute it to reply an action. Their IoT virtualization framework is validated by a

case study.

Atzori et al. [5] prepare a comprehensive survey about IoT. They identify the enabling

technologies as sensing, identification and communication systems like RFID, WiFi,

and sensors. In addition, middleware applications using Service Oriented Architec-

ture (SOA) are important for data distribution. In the end, they list open issues such

as privacy, addressing of things and non-standardized applications for the future.

IoT is fully connected to sensor technology and the researches about sensor networks

directly or indirectly improve the IoT. Hong et al. [6] propose an approach to Internet

of Things using IP-based wireless sensor networks. They realize that IoT probably

has the same problems that Internet itself had in the past. So, they identify problems

like mobility, security, time synchronization, and IP6 adaptation. They also share

evaluation results of an implementation of their proposed SNAIL platform.

2.2 Wireless Multimedia Sensor Networks

A set of sensors called sensor nodes connected to each other or connected to leading

gateways is simply called a sensor network (SN). If sensors have capability of col-

lecting multimedia data and have a communication infrastructure among the sensors,

it is called multimedia sensor network (MSN). If sensors are connected to each other

using wireless technology then it is a wireless multimedia sensor network (WMSN).

Akyıldız et al. [7] discuss the state of the art of research on WMSNs as well as

the challenges. The challenges related to WSN deployment configurations are sum-

marized by Perera et al. [8] in their research. Another survey paper [9] enlists the

challenging issues to design middleware systems for WSN. A couple of the identified

challenges are as follows:

• Data fusion

• Resource management

8

• Scalability and network topology

• Security

• Quality of Service

• Limited power

From the database point of view, Ramesh et al. [10] define a database layer on top of

sensor network so that a database query is mapped to traversing sensor nodes in the

WMSN.

2.3 NoSQL Graph Databases

NoSQL databases grouped under four categories which are key-value store (e.g. Ama-

zon’s Simple DB), big table databases (e.g. Google Cloud Bigtable), document-

oriented (e.g. CouchDB) and graph databases (e.g. OrientDB). Graph databases [11]

consist of nodes and edges (relations between nodes) which store data as properties.

Most of graph databases provide the capability to label nodes and edges. NoSQL

Graph databases provide many ways to query data such as;

• User interface via SQL-like query language (Cypher for Neo4j, SQL for Ori-

entDB)

• User interface via Graph visualization to interact with the nodes and edges

• Application program interface (API) to programmatically connect to database

Unfortunately, there is not any standardized way of querying, so that you have to write

database specific queries every time. There is an open-source framework Apache

TinkerPop to provide graph computing capabilities for graph databases. Gremlin is a

part of the TinkerPop to traverse the graphs. And by the support of most of the graph

databases, any gremlin query can be written once and work on every graph database.

Graph databases are generally preferred to handle social networks, fraud detection,

graph-based operations, real-time recommendations and hierarchical relations.

9

Figure 2.1: 5 Vs of big data.

Moniruzzaman et al. [12] evaluate NoSQL databases in the aspect of big data ana-

lytics. In their survey, they enlist different types of NoSQL databases according to

characteristics (features and benefits of NoSQL databases), classification (key-value,

document, column-based and graph); and evaluation with a matrix on the basis of few

attributes like design, integrity, indexing, distribution, and system.

2.4 Big Data

The definition of the Big Data is all in the name. An extremely large set of data is

called Big Data, and it is not exactly something new but the fact of the need to process

and analyze that data that holds out hidden knowledge inside is the reason why it is the

buzzword of recent years. Big Data is defined by a number of Vs; Velocity, Variety,

Volume, Value and Veracity as shown in Figure 2.1.

Volume is the quantity of stored data. Velocity is the speed of data generation or

processing. Variety is the type and structure of the data. Value is the importance of

information that data provides. Veracity is the variation in quality of data.

The survey paper [13] points the relation between IoT and big data. For example, jet

10

aircraft engines produce one terabyte of data per flight using various sensors. Think

about a huge number of flights in a day all around the world and then you can have

really big data. HP prepared a business-value white paper related to big data. Ac-

cording to the paper, 1 trillion sensors, roughly 150 sensors for every person will be

existed by 2030. The generated data will be mostly unstructured data and the value of

it depends on how the information is extracted from the data. As the number of sen-

sors increases,much more storage and processing will be required. And all of these

creates some new challenging issues.

Many papers [14, 15], state that relational database management systems are inade-

quate for big data and NoSQL databases are the solution at least for the time being.

2.5 Big Data Analytics

There are various challenges of applications to work on big data like storage, manage-

ment, security, analytics, and processing [16, 17]. Big data analytics is the ability of

extracting gold plated information from huge dataset and have some conclusions that

will support in decision-making. This can be challenging since volume and velocity

cause big problems for data analysis because of technological limitations. Addition-

ally, the variety of data types needs different approaches and algorithms for different

sources. Therefore, advanced analytical methods and techniques are needed to pro-

cess big data.

Depending on the used data mining techniques and algorithms, big data serves dif-

ferent kinds of information. Both historical statistics and predictive forecast can be

achieved by big data analytics. There are three main types of big data analytics meth-

ods.

• Descriptive analytics uses big data to represent the current state of the situation

as a statistical report using statistical methods, like standard deviation, median,

variance of values recorded in big data [18]. Historical big data is used in

descriptive analytics to apply statistical methods to extract patterns and under-

stand the past behaviors Descriptive analytics are kind of looking into history

and expose what happened.

11

• Predictive analytics helps to statistically model and forecast the future possibil-

ities. Learning models of predictive analytics can be supervised, unsupervised,

and semi-supervised.

• Prescriptive analytics is about optimization to analyze the cause-effect relation-

ship and produce improvement policies. This analytics method is brand new

compared to other methods and not common yet.

In surveillance applications, most challenging and widely used analytics are the tra-

jectory analytics [19]. Trajectory extraction is a descriptive analytics used by the raw

track data collected by sensors or radar systems. Trajectory prediction and anomaly

detection are in the scope of predictive analytics as there is an estimation of the next

location of moving objects.

2.6 Machine Learning Algorithms

Machine Learning algorithms have been widely used on temporal data models such

as time series and spatiotemporal data for years. Classification, regression, predictive

learning, outlier detection, and forecasting are some of the tasks that these algorithms

are applied.

Random Forest

A random forest [20] consists of a set of decision trees. Each tree is created using

randomly generated feature vectors which are individually sampled.

If lots of trees are used in the forest, many of the features are included. This results

in helping limit the generalization error due to variance and bias. If we didn’t use

randomly generated features, then trees would be highly correlated. The reason of

that correlation is that few features could be particularly predictive and thus, the same

features would be chosen in many of the base trees.

Random forests are assumed to be more robust than the decision trees. Because of

the fact that they aggregate mulitple decision trees to limit overfitting as well as error

due to bias and therefore yield useful results.

12

Naive Bayes

The Naive Bayesian [21] algorithm provides an approach to represent, use and learn

probabilistic knowledge. The approach is designed for using during the initiation

tasks in which the objective is to accurately predict which class test cases belong

to. Such a classification can be seen as a specialized form of Bayesian network,

described as naive because it is based on two major simplifying assumptions. The

former assumes that the predictive attributes are independent with regard to class

conditionally, and the latter accepts that no hidden or latent features can affect the

prediction process.

Decision Table Decision tables [22] is a popular method for machine learning of

classification and regression. It is widely used because of its many advantageous

such as being easy to interpret, handling continuous and discrete features, having

no need for feature scaling. As with other classification methodologies, this method

has a two-step process, namely training and classification. In training phase, pre-

labeled training data is analyzed by the classification algorithm to create a model. In

the classification phase, using the test data, classification rules are applied to give a

decision in order to generate the final output.

Logistic Regression

In statistics, logistic regression [23] is a statistical method to analyse a set ot data

which is composed of one ore more independent variables. The output is a binary

value that can be "0" or "1" to represent fail or pass, lose or win, dead or alive kinds

of information.

In cases where the output can have more than two values, then multinomial logistic

regression can be used.

Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) [24] is a neural network which is composed of several

layers and neurons.

From architectural point of view, several neurons with nonlinear activation function

are hierarchically connected to each other in MLP. It uses back-propagation approach

13

for training.

Sequential Minimal Optimization (SMO)

Sequential minimal optimization (SMO) [25] is generally used in the training phase

of the support vector machines. SMO transforms nominal attributes into binary at-

tributes to fulfil the necessary values. As default, all the attibutes are normalized.

Since SVM is widely used in character recognition and face recognition problems, its

training is more complex and time consuming compared to the SMO though.

2.7 Fuzzy Logic System

A fuzzy logic system (FLS) provides a nonlinear mapping of an input data to a scalar

output data [26]. In Figure 2.2, a type-1 (T1) fuzzy logic system representation is

given. T1 FLS has four main steps: fuzzification, rule evaluation, knowledge base,

and defuzzification.

During the fuzzification stage, the actual inputs are converted to fuzzy membership

functions. The knowledge base provides the list of rules in the application domain.

The big challenge is to design the correct list of rules for the problem. Then, experts

were used to filter and organize the rules generated automatically in the knowledge

base. The fuzzy logic system inputs are being processed by the rule evaluation pro-

cess, which uses the knowledge base to combine fuzzy inputs and produce outputs

mapped to fuzzy membership functions. In the defuzzification stage, the fuzzy out-

puts of the rule evaluation step are mapped to crisp outputs.

Figure 2.2: Type-1 fuzzy logic system.

14

Figure 2.3: Interval type-2 fuzzy logic system.

Despite being a cure for most of uncertainty cases, researches has shown that there

are restrictions in the ability of type-1 fuzziness to model the uncertainties [27]. The

reason of the drawback is that membership grades of type-1 fuzziness are crisp values,

and for more uncertain cases, type-2 fuzziness [28] evolved by making the member-

ship functions fuzzy. Because of the computational complexity, interval type-2 (IT2)

FLS [29] are more popular and widely used.

There are five components in an IT2 FLS; fuzzifier, fuzzy rules, inference engine,

type-reducer and defuzzifier. Figure 2.3 shows a representative diagram of an IT2

FLS which is similar to type-1 counterpart, but the main difference is that inference

engine works on IT2 fuzzy rules in the rule base. Accordingly, a type-reducer is

needed to convert the outputs of the inference engine, which are IT2 FSs, into a T1

FS before defuzzification step.

15

16

CHAPTER 3

GRAPH-BASED DATA MODEL

A graph consists of nodes and edges, which shows the relations between nodes.

Therefore, graphs are very efficient and convenient to handle data which has valuable

information in relations. Many application domains like social networks, recommen-

dation systems, and fraud detection in money transactions graphs are widely used

and data is stored in graph databases. While storage of the data is an important task,

processing the streaming data and taking action for mission-critical applications are

also crucial. In order to process that kind of data, it is needed to identify the data flow

well.

A graph-based big data model is proposed in a generic manner for handling multi-

media wireless sensor network data. Graph-based data model suits well for advanced

analytics like graph mining, and prediction using the complex relationships between

data. For that purpose, big sensor data is stored in a graph database in such a way

that proposed graph model represents both the sensor network topology and the data

flow among the nodes. The applicability of this solution is illustrated with a proto-

type implementation and experimental evaluations. A number of experiments have

been done for measuring the accuracy and efficiency of this solution. Simulation re-

sults show that proposed multimedia wireless sensor network model is applicable in

large-scale real life scenarios.

This chapter is organized as follows: next section provides an overview over related

work. Then, a new graph-based big model is proposed in Section 3.2. To implement

the model, the top graph databases are evaluated in Section 3.3. Implementation of

proposed model is presented in Section 3.4. Section 3.5 presents the experimental

results and evaluations. Finally, conclusions are drawn in Section 3.6.

17

3.1 Overview

Over the years, various methods are used for wireless sensor network data represen-

tation and management [30, 31, 32, 33]. Yang et al. [34] propose a hybrid data model

to store their wireless sensor network data. NoSQL part of the hybrid model is stored

with a key-value structure to provide higher scalability and better performance. Chris-

tine et al. [35] discuss big data with spatial data received from wireless sensors using

real life scenarios.

Renzo et al. [36] present a survey paper on graph database models. They compare

graph database models to other database models like a relational model and then

compare the representative graph database models. Mark et al. [37] introduce a

graph based model which is called HyperNode. They also define a language HNQL

(HyperNode Query Language) to query and update their model. Arati et al. focus on

the information retrieval from sensor networks and propose hybrid protocol which is

called APTEEN [38]. They have noticed that achieving an efficient model needs to

replace the conventional flat topology with a graph based model.

PipeNet [39] is multi layered wireless sensor network application on pipeline sce-

nario which is the similar multi layer architecture as proposed but in another domain.

They have developed the system to analyze the collected multi-modal data for de-

tection of the leaks. Another research about WSN related to surveillance domain is

a survey paper written by Felemban [40]. His survey research enlists the literature

for experimenting work done in border surveillance and intrusion detection using

the technology of WSN. This thesis differs from the existing works by employing a

graph based approach for surveillance domain and focusing on the simulation of the

big data.

The wireless sensor networks have been modeled using graphs in several studies.

Punyasha et al. [41] proposed an energy-efficient node distribution strategy to avoid

unnecessary data transmission. They have modeled the network topology as well

as the energy levels of sensor nodes. Mario et al. [42] analyzed the performance of

localization methods used in WSNs. They have modeled the wireless sensor networks

as a graph to be used to assess how the localization algorithms perform in different

18

network topologies. This dissertation not only models the network topology, but also

the data flow transmitted in the wireless sensor networks in order to do analytics on a

complete graph-based data model.

3.2 The Graph-Based Big Data Model

In order to model and simulate a multimedia wireless multimedia sensor network

from the point of network topology and the streaming data among the sensor nodes,

a reference WMSN system, which is designed and developed in CENG Multimedia

Laboratory, was used. Wireless nodes are connected to each other and equipped with

many multimedia and scalar sensors.

There are three main types of nodes; sensor node, gateway, and sink. The sink node

is the base station and many clusters are connected to the sink. Gateway nodes are

the cluster head, which is connected to a set of clustered sensor nodes [43].

On top of network topology, the data flow, from a sensor node to gateway and from

gateway to gateway (multi-hop) or sink, was modeled. The data in the reference

system is gathered using a camera and acoustic, seismic and PIR scalar sensors. There

is a multi-layered mechanism to ingest data from sensor nodes to the sink node. The

big graph-based data model is comprehensively designed to include the lifecycle of

data from sensing to analyzing.

Figure 3.1 shows a snapshot of proposed graph-based NoSQL database to represent a

sensor data ingested from a sensor node, fused and sent to the gateway. Actual Data

represents a real world physical event which causes a change in sensors deployed on

the sensor node and is used as a ground truth for simulation data. Sensor Raw Data

is the sensed data in the sensor node that represents the digitalized data captured

from the real world. If there is a camera recording of raw data, multimedia data

is represented by Multimedia Sensor Data. Raw Data is connected to the Sensor

Node, which sensed data by itself. After applying multi-layer fusion to raw data,

Fused Data is formed and enriched by each fusion layers. In order to fully cover the

lifecycle of the data, the fused data is being analyzed and an Action like triggering an

alarm or sending a notification message to another system is created.

19

Figure 3.1: Graph-based data model.

20

A graph database is a storage environment and data model is designed as a graph-

based big data model in parallel to the NoSQL database selection. Data stored in

graph databases is used for further analytical processes like tracking and event detec-

tion.

3.3 Graph Database Selection

This thesis includes applying the currently available databases to proposed graph-

based big data model. Salem et al. [44] compare a set of databases like Cougar and

TinyDB. Li-Yung Ho et al. [45] propose a distributed graph database based on an

open-source graph database which is called Neo4j. The options are limited if you are

looking for a graph database. Neo4j, Titan, and OrientDB are featured open-source

graph databases.

Neo4j is a well-known graph database and used by many researchers. In addition,

Neo4j is relatively easier to be used rapidly by developing some small pieces of code.

Spring Framework support is really helpful to put things together very fast.

Titan is another open-source option for a graph database but its development is stopped

and discontinued in early 2015. Therefore, it is not preferred to utilize Titan.

OrientDB is another open-source graph database which is not as popular as Neo4j

for now but has many advantages over it. Table 3.1 shows the comparison of Ori-

entDB and Neo4j Community Editions which is provided by the official website of

OrientDB. From all those compared features, "Multi-Master Replication", "SQL" and

"Elastic Scalability with Zero Configuration" are the most important features for us

to choose OrientDB.

3.4 Model Implementation Over Graph Database

Nodes (vertices) and relations (edges) are defined in graph databases to store data.

Compared to the traditional RDBMS approach, every row in a table is replaced with

a node and its properties. There are edges to represent cross-table references.

21

Table 3.1: Compare OrientDB and Neo4j Community Editions

Feature OrientDB Neo4j

Graph Database Support Yes Yes

Transaction Support Yes Yes

Hooks Yes Yes

User Management for Security Yes No

SQL Support Yes No

Full-text Search Support Yes Yes

Spatial Data Support Yes Yes

Database Triggers Yes No

Multiple Index Support Yes No

Multi-Master Replication Yes No

Sharding Yes No

Elastic Scalability Yes No

Data Types Extension Yes No

Server-Side Function Support Yes No

Embedded Mode without Restrictions Yes No

Sequences Yes No

22

At the first step, the node and edge types are defined. Node types are; Sink, Gate-

way, SensorNode, SensorRawData, SnFusedData (SensorFusedData), GwFusedData

(GatewayFusedData) and SinkFusedData. Edge types are; Lead, Collect, LastCol-

lected, Next, Fusion, FusedBy, LastFusion, Reported and Forwarded. The edge types

are defined for the usage between specific nodes. Table 3.2 lists the edge types in the

graph database.

Each sensor node has the capability to hold temporarily a set of data which are sensed

by sensors like PIR, seismic, acoustic and camera. That capability is provided by an

in-memory database. For the fusion at the sensor node level, this in-memory database

is used as a cache to analyze the changes in scalar sensors and provide some addi-

tional data to the first level fusion. The algorithm of the first level fusion is shown

in Algorithm 1. The fusion result is stored in the fusedData including the video,

silhouette, foreground and low level features.

Algorithm 1 Sample first level fusion algorithm executed on sensor nodes
1: procedure FIRSTLF(PIR, seismic, acoustic, threshold)

. PIR identifies if there is a movement or not, two integers seismic and acoustic

values are scalar data sensed by the node, threshold is used to identify that there

is an object with enough sound and vibration on sensor node

2: fusedData = ∅
3: if PIR = true and seismic ≥ threshold and acoustic ≥ threshold then

4: fusedData.video = startVideoRecording()

5: fusedData.frame = selectFrame(fusedData.video)

6: fusedData.frmFeat = findLowLevelFeatures(fusedData.frame)

7: fusedData.fgnd = selectForeground(fusedData.frame)

8: fusedData.fgndFeat = findLowLevelFeatures(fusedData.fgnd)

9: fusedData.silhouette = extractSilhouette(fusedData.fgnd)

10: end if

11: return fusedData;

12: end procedure

Sensor nodes apply the first level fusion and reports the output fusedData to leading

gateway. The gateway applies the second level fusion as in Algorithm 2. The purpose

of fusion at the gateway is a refinement of the sensor fused data before sending to

23

Table 3.2: Node and Edge Types

Edge Type From Node To Node

Lead Gateway SensorNode

Lead Gateway Gateway

Lead Sink Gateway

Collect SensorNode SensorRawData

LastCollected SensorNode SensorRawData

LastFusion SensorNode SnFusedData

LastFusion Gateway GwFusedData

Next SensorRawData SensorRawData

Next SnFusedData SnFusedData

Fusion SensorRawData SnFusedData

Fusion SnFusedData GwFusedData

Fusion GwFusedData SinkFusedData

FusedBy SnFusedData SensorNode

FusedBy GwFusedData Gateway

FusedBy SinkFusedData Sink

Reported SnFusedData Gateway

Forwarded GwFusedData Gateway

Forwarded GwFusedData Sink

24

the sink node. As a sample refinement algorithm, removing the duplications and

normalizing the data according to scalar data can be written.

Algorithm 2 Sample second level fusion algorithm executed on gateways
1: procedure SECONDLF(fusedDataList, threshold)

. The list of fusedData reported by leading sensor nodes, threshold is used to

identify the difference between two scalar value

2: filteredDataList = []

3: for i = 0 to fusedDataList.size do

4: current = fusedDataList[i]

5: previous = previous element of current

6:

7: diff = current.acoustic - previous.acoustic

8: diffRate = current.acoustic * threshold/100

9: if diff < diffRate then

10: mark current as duplicate and drop

11: else

12: add current to filteredDataList

13: end if

14: end for

15: return filteredDataList

16: end procedure

The output of the second level fusion is reported to the sink node. As the final decision

maker, the sink correlates the concepts forwarded by gateways and decides that if

an action is necessary or not. If an action is required, notification of the operator

is triggered as given in Algorithm 3. All those three fusion algorithms are sample

algorithms to provide the proof of concept execution of all phases of the simulated

environment.

All those three fusion algorithms are sample algorithms to provide the proof of con-

cept execution of all phases of the simulated environment.

25

Algorithm 3 Sample third level fusion algorithm executed on the sink
1: procedure THIRDLF(filteredDataList, threshold)

. The list of fusedData reported by reporting gateways, threshold is used to

identify the difference between two scalar value

2: actionList = []

3: for i = 0 to filteredDataList.size do

4: current = fusedDataList[i]

5: previous = previous element of current

6: if current.acoustic > threshold and previous.acoustic > threshold

then

7: action = createAction(current)

8: add action to actionList

9: notify operator using action

10: end if

11: end for

12: return actionList

13: end procedure

26

3.5 Experimental Work

A test environment was setup to make some experiments on proposed graph model.

Test environment specifications were;

• Intel i7-4710HQ Quad Core CPU

• 16 GB DDR3 RAM

• 240 GB SSD Storage

• 4 GB NVIDIA 860GTX GPU

Test environment had three database systems which were;

• OrientDB v2.2.17 (Graph database)

• Neo4j v2.3.12 (Graph database)

• MySQL v5.7.26 (Relational database)

The simulator explained in the next chapter was used to simulate a multimedia wire-

less sensor network with synthetic raw data. Sensor nodes were placed in a square

shaped area, and gateways were located in the center of each group of sensor nodes.

The sink node was placed in the center of the whole area as shown in Figure 4.6.

There was 25 million sensor nodes which were leaded by 2,500 gateways, and the

sink node was responsible to collect all data in the simulation environment.

3.5.1 Comparison to Relational Data Model

This experiment was done on all three databases installed in the test environment.

Many queries was run on both the graph data model and relational data model. Figure

3.2 shows the relational database representative of the graph data model on MySQL.

Below queries are randomly selected sample queries and Table 3.3 shows the test

results of the experiment.

27

Figure 3.2: Relational Database Schema

28

3.5.1.1 Concepts Based Query

This query finds the specific type of objects with the highest probability of its detec-

tion time and location.

OrientDB Query:

SELECT concept, weight, fusionDate,

out("fusedby").indexX, out("fusedby").indexY

FROM fuseddata

WHERE weight>0.90 AND concept = "Vehicle"

ORDER BY fusionDate

Neo4j Query:

MATCH (b:fuseddata)-[:fusedby]->(sd:sensornode)

WHERE b.concept = "Human"

AND b.weight>0.90

RETURN b.concept, b.weight, b.fusionDate,

sd.indexX, sd.indexY

Relational SQL Query:

SELECT b.concept, b.weight, a.fusion_Date,

sd.indexx, sd.indexy

FROM sinkfuseddata a, gatewayfuseddata g,

sensorfuseddata b, sensornode sd

WHERE a.concept = ’Vehicle’

AND a.weight>0.90 AND a.id = g.fusion

AND g.id = b.fusion AND b.fusedby = sd.id

ORDER BY a.fusion_Date ASC

3.5.1.2 Video Based Query

This query finds the possible explosions by identifying continued high volume around

the surveillance area with their recorded video paths and video duration. The value

29

bigger than 15 is assumed to be a high volume sound.

OrientDB Query:

SELECT in("collect").name[0], in("collect").indexX[0],

in("collect").indexY[0], acoustic,

out("video").videoPath[0],

out("video").videoDurationSec[0]

FROM sensorrawdata

WHERE acoustic>15

AND out("next").acoustic[0]>15

AND out("next").out("next").acoustic[0]>15 ORDER BY name

Neo4j Query:

MATCH

(sn:sensornode)-[:collect]->(sa:sensorrawdata)-[:next]->

(sb:sensorrawdata)-[:next]->(sc:sensorrawdata)-[:video]->

(sv:sensorrawvideodata)

WHERE sa.acoustic>15

AND sb.acoustic>15 AND sc.acoustic>15

RETURN sn.name, sa.acoustic, sn.indexX, sn.indexY,

sv.videoPath, sv.videoDurationSec ORDER BY sn.name

Relational SQL Query:

SELECT s.name, s.indexx, s.indexy, ra.collectDate,

ra.acoustic, v.video_path, v.duration

FROM sensornode s, sensorrawdata ra, sensorrawdata rb,

sensorrawdata rc, sensorrawvideodata v

WHERE ra.acoustic>15 AND rb.acoustic>15

AND rc.acoustic>15 AND s.id = ra.sensornode_id

AND ra.id = rb.next_id AND rb.id = rc.next_id

AND rc.video_id = v.id ORDER BY s.name ASC

30

3.5.1.3 Recursive Query

This query finds the detected “Human” typed objects with high accuracy and calcu-

lates the distance of the sensor node to the sink node.

OrientDB Query:

SELECT $nodeId, out(’fusedby’).name[0],

fusionDate, $deep.count

FROM fuseddata

LET $nodeId = out(’fusedby’).@rid,

$deep = SELECT COUNT(*)

FROM (TRAVERSE in(’lead’) FROM $nodeId)

WHERE concept = ’Human’ AND weight > 0.9

Neo4j Query:

MATCH p=(a:sink)-[:lead*]->(b:gateway)

WITH b.name as gname, length(p) AS depth

MATCH (sfd:fuseddata)-[:fusedby]->

(sn:sensornode)<-[:lead]-(g:gateway)

WHERE sfd.concept = "Human"

AND sfd.weight>0.9 AND g.name = gname

RETURN gname, sn.name, sfd.fusionDate, depth

Relational SQL Query:

WITH RECURSIVE search_graph(id, name, lead, depth)

AS SELECT g.id, g.name, g.lead, 0

FROM gateway g WHERE g.lead is null

UNION ALL

SELECT g.id, g.name, g.lead, 0 FROM gateway g

WHERE g.lead is null

UNION ALL SELECT g.id, g.name, g.lead, sg.depth + 1

FROM gateway g, search_graph sg

WHERE g.lead = sg.id

31

SELECT s.name, s2.name, s2.indexX, s2.indexY, s.depth

FROM search_graph s INNER JOIN

SELECT DISTINCT sn.id, sn.name, sn.indexX, sn.indexY,

sn.lead

FROM sinkfuseddata sfd, gatewayfuseddata gfd,

sensorfuseddata srfd, sensornode sn

WHERE srfd.fusion = gfd.id

AND gfd.fusion = sfd.id AND srfd.fusedby = sn.id

AND sfd.concept = ’Human’ AND sfd.weight>0.9 s2

ON s2.lead = s.id

Table 3.3 shows the performance results of example queries. For the first query is

a simple range query which is focused on the basic query performance. OrientDB

performed better than Neo4j because of the under-hood architecture of OrientDB

which is a multi-model graph database. And, graph model performed better than

the relational model since there was no join operation as promised by the NoSQL

databases.

For the second query, Neo4j performed better than OrientDB and the graph model was

again better than MySQL. That time again graph databases beat relational databases

because of their join-free query capability. To understand why Neo4j is faster than

OrientDB, it is needed to dive into queries. The query was type of neighbors and

neighbors of neighbors query, which is a typical graph matching problem considering

paths of length 1 or 2. In PostgreSQL, a relational table with id backed by an index

is used. Neo4j performed better because of its “index-free adjacency” for the edges.

The last query was to test the recursive SQL type of a query. The graph-based model

was much faster than the relational model. Neo4j failed for this recursive query.

There could be some optimizations possible while using the Cypher language (the

query language of Neo4j) but it was not possible to find them in the available Neo4j

documentation.

32

Table 3.3: Test Results (Numbers are in milliseconds)

Query OrientDB Neo4j MySQL

Concept Based 209 618 938

Video Based 355 145 422

Recursive 4,293 79,812 36,469

3.5.2 Doubling Sensed Raw Data Size

An OrientDB graph database was selected for the execution of experiments. Previ-

ous experiments were applied on generated synthetic data of one month where each

sensor node can sense data with 5 minutes of period. Now, the simulation duration

was increased from 1 month to 5 months step by step and diagnosed the query per-

formance.

Figure 3.3 shows the chart of query times affected by the increased simulation dura-

tion. The query time was increased and it was better than linear which was fairly well

compared to the doubled data size.

3.6 Remarks

A graph-based big data model was proposed to represent the multimedia sensor net-

works, and data model was implemented to simulate multimedia wireless sensor net-

works. The sensor data retrieved from the network and the video data streamed from

cameras were treated like big data. The storage environment of aforesaid big data

was selected as a graph database which suits well to the proposed graph model.

The network topology and the data flow between each sensor nodes, gateways and

sink were modeled so that all static and kinetic data was stored within the sensor

network which must be assumed to be big data. The database to store big data was

the NoSQL graph database. Because graph databases are good at representation of

complex relations and scalable to store big multimedia sensor data.

Proposed model was tested on both graph databases and a relational database. Test

33

Figure 3.3: OrientDB query time and simulation duration.

34

results showed that graph database model performs better that the relational database

model. To decide which graph database was more convenient and efficient,two well-

known graph databases, OrientDB and Neo4j, were chosen for experiments. Neo4j

is the market leading graph database, but it did not fit into the main requirement,

storing complex multimedia big data. Because Neo4j supports high availability with

the master-slave approach, which can scale vertically. But, in order to survive in the

big data world, the master-master approach is needed, which OrientDB supports. In

addition to that, experiments showed that OrientDB performs better than Neo4j.

Graph-based big data model successfully survived even with millions of data nodes.

Many complex query scenarios were tested on synthetic data and millions of data

could be efficiently queried, in a few seconds.

Proposed graph data model in this Chapter is the baseline of my thesis. Simulation

of the data flow with all its connection between sensor nodes was well represented

by the graph-based data model and all data stored in the graph database wa naturally

indexed by relationships, which provides faster access to data as compared with a

relational database.

Graph data model provides a flexible design for analyzing data based on relationships.

While looking for a relationship between two nodes, graph model is obviously more

efficient than other models as it is by nature of being a graph connected to each other

with edges/relations. Therefore graph data analytics is the a effective way to explore

complex relationships in data and mostly preferred. Since the focus of my dissertation

is data analytics on surveillance applications, graph based model fits quite well for

both wireless multimedia sensor network modeling and data flow from sensor node

to sink node with all relationship information.

35

36

CHAPTER 4

DATA SIMULATION

By using the proposed graph-based data model and selected graph database in pre-

vious chapter, we developed a simulator to simulate wireless sensor network deploy-

ment and data flow on the network.

There are three main components of the simulator; network topology generator, sen-

sor data generator, and scenario generator. The network topology generator is used

to create a simulation for a multimedia wireless sensor network infrastructure which

is composed of sensor nodes and gateways. Sensor data generator produces synthetic

data with position, PIR, seismic and acoustic information with end-to-end data flow

simulation from sensing at a sensor node to storage at the sink node. And, scenario

generator component is developed to build an execute custom scenarios to generate

experimental data for different use cases.

This chapter is organized as follows: the next section provides the information related

to real wireless sensor network configuration. Section 4.2 gives the overview of the

generic infrastructure, and system architecture is detailed in Section 4.3, respectively.

In Section 4.4, components of the simulator is given. A case study for surveillance

domain is described in Section 4.6 to realize the proposed model. Finally, conclusions

are given in Section 4.7.

4.1 Reference WSN System

The reference WMSN system is composed of wireless multimedia sensors and some

scalar sensors. The system is designed as a multi-tier automated surveillance system.

37

The first layer is the sensing layer with scalar sensors including acoustic, seismic, and

PIR. The second layer is triggered by first layer. Multimedia sensors like camera and

microphone are used capture video and audio. After applying the fusion, object type

and location of the sensor is extracted to be provided to the next layer, which is called

the sink layer. The sink layer provides the capability to do analytics on all collected

and generated information in the network.

The overall architecture is given in Figure 4.1. Sensor nodes are connected to the

gateway nodes via ZigBee (IEEE 802.15.4) interfaces. A special thread for serial

messaging is developed to send the events from sensor nodes to the gateway. The

gateway prepares XMPP messages using the gathered events coming from leading

nodes via broadcast messages. Those XMPP messages are transferred to the sink

node. The XMPP messages and multimedia data is transfered over IP based (IEEE

802.11) connection.

A Raspberry Pi (RPi) has been used as the hardware of a sensor node. Model B board

with 512 MB has been used and includes these hardware components:

• CPU: ARM1176 700MHz

Figure 4.1: Reference WMSN System Architecture [1]

38

• RAM: 512 MB SDRAM (shared with GPU)

• Storage: SD Card slot

• Network: 10/100 Mb Ethernet

• Other interface: 2x USB 2.0 ports, Video and audio outputs, GPIO ports,

• Power: 5V 700-mA microUSB

The following list is the components installed on a node in the reference WSN system

to fulfill its functions:

• Sensors: Vibration, Motion (PIR), Acoustic

• Camera: Raspicam

• Network: Xbee ZigBee (IEEE 802.15.4), Wi-Fi (IEEE 802.11)

• Power Source: 4400-mAh 5V 1A power bank

• Audio Input: Microphone

• Software: XMPP for instant message

Communication between sensor nodes, gateway and sink are established using Zig-

Bee interfaces. All nodes are equipped with ZigBee (IEEE 802.15.4) which is based

on low-bandwidth radio transmission. The line of sight of ZigBee can be up to of 1.5

Km. at outdoor applications and transmission rates can be around 250 Kbps at most.

In reference WSN system, sensor node and gateway roles are all predefined, there is

not any dynamic gateway selection. Because different roles may need different kinds

of hardware components.

4.2 Generic Infrastructure for Simulator

The simulator is developed by using Java 1.8 as maven projects to use Apache Maven

as the dependency management framework. To develop the simulator application of

this thesis beyond OrientDB, a generic infrastructure which can be easily adapted to

other database systems was designed. To achieve that, business logic without any

dependency to OrientDB was developed.

39

Table 4.1: Defined Message Queues

Queue Name Process Queue Element

Scalar Data Collected Raw Data SensorRawData

Fused Level 1 and 2 Fusion SnFusedData

Forward Forwarding to Sink GwFusedData

Action Level 3 Fusion SinkFusedData

There are two managers called DataManager and NetworkManager. DataManager

defines the necessary interfaces to populate data for the underlying database. Net-

workManager has the business logic to construct network topology and defines the

necessary interfaces to create network entities for the underlying database.

As there is a data flow between sensor nodes and gateways and sink, in order to cope

with the bottleneck of high throughput of streaming data, Apache ActiveMQ message

queues was positioned between each process. Message queues are defined as seen on

Table 4.1 below. Fusion logic is developed on top of messaging queues and there are

3 business logic handlers; Level1and2Fusion, GatewayForward and Level3Fusion.

4.3 System Architecture

To manage the big data and high throughput of many wireless multimedia sensors, a

scalable system architecture supported by NoSQL databases and messaging queues

was developed. Figure 4.2 shows a visualization of proposed multilayer system ar-

chitecture composed of four layers; Detection Layer, Message Layer, Data Layer, and

Analysis Layer. Each layer is responsible for different parts of the entire process of

analyzing big data in the proposed architecture.

The sense layer is composed of sensor nodes, gateways, and a sink. The raw data

generator, producing synthetic data with position, PIR, seismic and acoustic informa-

tion, simulates the sensor nodes activated by a moving object. Raw data is created

for each sensor node with the sensor data calculated as a function of the distance to

the position of the moving object. The detected data is collected at the sink using

40

Figure 4.2: System architecture.

41

the message brokers that are positioned in the message layer. In order to cope with

bottlenecks due to the high throughput of streaming sensor data, message queues are

positioned between each process. The message data is orchestrated and sent to the

data layer for retention by the message brokers.

In the data layer, NoSQL databases built using the OrientDB graph database system

are clustered to process big graph data. The graph structure better supports connec-

tivity analysis. Because object tracking is completely tied to the connection between

each piece of data that is detected, graph models work better by analyzing the rela-

tionship between different sensor nodes or by identifying anomalies in a trajectory.

Because the graph-based big data model allows you to query based on node attributes

and relationships between them, a sophisticated prediction model can be developed

and integrated into different domain applications. Since the streaming data is dis-

tributed by the message layer, the data layer must be aligned with the clustered big

data architecture.

Finally, in the analysis layer, the data stored in the graph database is used for data ana-

lytics by the data scientist, the external system, or the mobile application for end-user

reports and live portals. The object tracking algorithms, detailed in the last chapter of

this dissertation, are executed in the analysis layer.

4.4 Simulation

To develop and experiment the graph data model, a simulator was developed which

is mainly focused on data simulation but also supports network topology simulation

for both grid and random node deployment.

4.4.1 Network Topology Simulation

For data simulation, first of all it is needed to deploy sensor nodes, gateways, and a

sink node on a simulated area.

It is assumed that the WMSN is distributed with a grid layout in a simulation area.

Grid layout employed in this thesis is commonly used in research studies [46, 47] as

42

it is more convenient to monitor the whole area without any gap in between the sensor

nodes.

A testbed which is part of the territory of the university is selected. Figure 4.3b shows

a map view of the monitored area with 96 sensor nodes, composed of 4 different

clusters with a gateway node and a sink node in the center. The distance between the

two sensor nodes is estimated at about 60 meters.

Since main focus is the grid-based deployment of sensor nodes, the performance of

(a)

(b)

Figure 4.3: Simulated wireless sensor network. (a) Grid-based deployment. (b) Ran-

dom deployment.

43

proposed approach was also measured for randomly distributed wireless sensor net-

works (Figure 4.3a). To make it more realistic and well distributed, 10% of the nodes

are positioned distantly from each other and distribute the rest of the nodes without

any limitation, except that two sensor nodes cannot be closer than 2 meters.

4.4.2 Data Flow Simulation

Sensor Data Generator produces synthetic data with position, PIR, seismic and acous-

tic data. The data flow is simulated as if the data were detected by sensor nodes, close

to the position of the data generated. Raw sensor data is created for each sensor

node with the scalar data calculated as a function of the distance to the position of

the raw data. From a sensor node to a gateway and from a gateway to a sink node,

the data stream comprising the multilevel data fusion process is simulated to generate

more realistic data. In addition, the simulator uses the WGS84 geodetic datum, which

represents latitude and longitude coordinates, to support real world scenarios.

The data flow occurs from the sensor nodes to gateways and from gateways to the

other gateways (multi hop) and finally to the sink node. Each sensor node holds a set

of data sensed by the sensors and camera of the node. Sensor nodes include embedded

programs for handling correlation, transformation, and aggregation on the raw data,

which is called first level fusion. The sensor fused data are reported to the leading

gateway by all of its connected sensor nodes.

The gateway waits for all sensor nodes to report. When all reports are ready, the

gateway applies an aggregation or filtering on the received data. The second-level

fusion is done at this point and the output of the fusion is a summary of that cluster.

The gateway fused data are forwarded to the sink node for a final decision.

Similar to the second-level fusion, the sink waits for all gateways’ fused data. By

applying some patterns to detect anomalies or other kinds of analysis are done at the

third level fusion. The output of the last level fusion is an action like triggering an

alarm or a notification message to another system.

44

Figure 4.4: Data flow simulation.

4.4.3 Scenario Generator

This component utilizes generation of custom use cases to be able to experiment

various data. Scenarios can be created by both using a drawer and a JSON file (Figure

4.5a).

Scenario drawer provides a whiteboard which enables free style drawing using mouse

or any pointer on touch screen monitors. It is possible to select type of the object, and

specify date for the scenario. Then, you can generate the data for the scenario and

export it as a JSON file.

A scenario can be modified by opening and editing the JSON file, or a new scenario

can be created from scratch by writing the scenario information in JSON format into

45

(a)

(b)

Figure 4.5: Scenario generation. (a) Using scenario drawer. (b) Using JSON file.

46

a file. Simulator provides the capability to import JSON files to generate data from

the scenario file.

4.5 A Case Study: Surveillance Application

Surveillance systems need robust and scalable infrastructure. To achieve that, all data

flow and data itself are needed to be analyzed and modelled.

A set of sensors and video cameras are needed to monitor the whole city. Assume

that, sensors and cameras are clustered according to the districts and each cluster

forwards sensed data to the HQ (Head Quarter) which is the operation center. At the

HQ, an alarm is triggered, or a notification is sent to the officers to early detection of

violence.

Sensor types can be seismic, acoustic and PIR (Passive Infrared) which are types of

scalar sensors. In addition to them, video cameras or thermal cameras can be added

to critical locations. As the default, cameras are switched off. According to the

sensed information from scalar sensors, the predefined conditions can be extracted

using rule-based approaches. The motion or environmental change may be detected

and interpreted to activate the camera by providing a rough prediction of the moving

object.

Moving object can e categorized as; Animal, Human, and Vehicle. The data collected

from scalar sensors are analyzed to guess the category of the objects according to

predefined thresholds (Table 4.2).

After activation of the camera by analyzing scalar sensor data, video and audio streams

Table 4.2: Sample Thresholds To Identify Objects

Object Type PIR Seismic (Hz) Acoustic (dB)

Animal True 5 - 20 5 - 30

Human True 21 - 55 31 - 50

Vehicle True >35 >50

47

from the camera are started to be processed. That processing in the sensor node

is called the first level fusion. After fusion, the concept of the moving object, and

maybe even a silhouette, are revealed. Fusion output is reported to the gateway which

is the leading node of that district.

A gateway is connected to a set of sensors and cameras. The described operations are

done for all leaded sensors so that the gateway receives many concepts and silhou-

ettes. By applying some algorithms like filtering the duplicate concepts or aggregat-

ing them to normalize the received data, the gateway accomplishes the second level

fusion. After fusion, more accurate concepts and silhouettes are provided by many

sensors. Fusion output is forwarded to the HQ (Headquarter) for a final decision.

As there are many districts in a city, there are many gateways which are far away from

the HQ and not directly connected to it. In that case, data is forwarded over other

gateways. At the HQ, the received data from all districts are analyzed, aggregated

or filtered for the purpose of detecting anomalies or finding some patterns, which is

called the third level fusion. At the end, the fusion comes to the conclusion and an

alarm is triggered to the officers or the external system of the armed forces is notified.

Figure 4.6: Surveillance application simulation.

48

Figure 4.7: Data simulator application.

To be able to cover the whole area, nodes are usually distributed with a grid layout.

Figure 4.6 shows a simulation for surveillance of an HQ with 16 sensor nodes in each

cluster that has a gateway in the middle, and 9 gateways in total with the sink node in

the center. Between two sensor nodes, the distance is simulated as 10 meters.

4.6 Simulator Application

Figure 4.7 is the screenshot of the simulator application to generate the network topol-

ogy in Figure 4.6. “(Re)Create Database” button cleans the database and generates

sink, gateways and sensor nodes according to the given parameter related to node

count and cluster count.

“Start simulation” button starts simulation by sending an entity from one of the edges

of the area. Then, the entity moves randomly according to its speed and simulation

ends when the entity moves out of the area. Possible moves are going to north, south,

east, or west and don’t move.

49

It is possible to run parallel simulations by clicking the button at any time. And if

“Repeat Simulation” checkbox is checked, a new simulation is automatically started

when current simulation ends.

There are several Entity types to simulate. Each entity has its own speed, acoustic and

seismic values. Table 4.3 show each type and its simulation values. “Entity Speed”

selection combobox decreases or increases the speed value of the simulating entity.

Acoustic and seismic values are defined by the selection of "Entity Type" combobox

and according to entity’s distance from the sensor node, those values are recalculated

to degrade its effect on the sensor node.

Assume that simulation put an “Animal” entity at (37,120) position. The entity is

between the sensor nodes at (30,120) and (40,120). Table 4.4 and Table 4.5 show the

sensed values between those two nodes for Animal Type.

Another important capability of the simulation tool is Event generation. Events can

be generated at any time while the simulation is running. Currently, there are two

types of events.

• Attack: As seen in Figure 4.6, operational base is located at north. If something

comes from south and directly moves toward the base, this movement is an

Attack event for us.

• Smuggling: If a group of human is moving together with a group of animal

and they are coming from west and going in the direction of south-east, this

movement is smuggling event for us.

Table 4.3: Simulated Entity Types

Entity Type Speed Acoustic Seismic

Human 1 20 10

Animal 2 40 20

Vehicle 4 70 80

GroupOfHuman 1 60 30

GroupOfAnimal 2 80 60

50

Ta
bl

e
4.

4:
Se

ns
ed

V
al

ue
s

at
N

od
e(

30
,1

0)

A
N

IM
A

L
30

,1
0

31
,1

0
32

,1
0

33
,1

0
34

,1
0

35
,1

0
36

,1
0

37
,1

0
38

,1
0

39
,1

0
40

,1
0

A
co

us
tic

20
18

16
14

12
10

8
6

4
2

0

Se
is

m
ic

40
36

32
28

24
20

16
12

8
4

0

Ta
bl

e
4.

5:
Se

ns
ed

V
al

ue
s

at
N

od
e(

40
,1

0)

A
N

IM
A

L
30

,1
0

31
,1

0
32

,1
0

33
,1

0
34

,1
0

35
,1

0
36

,1
0

37
,1

0
38

,1
0

39
,1

0
40

,1
0

A
co

us
tic

0
2

4
6

8
10

12
14

16
18

20

Se
is

m
ic

0
4

8
12

16
20

24
28

32
36

40

51

When “Start Event” button is pressed, selected event is started to be simulated. Ad-

ditional event types can be added for further analysis.

4.7 Remarks

The chapter is the about the simulation which includes a simulator to produce syn-

thetic big sensor multimedia data and the simulation infrastructure which represents

the objects moving in the multimedia sensor networks.

A wireless sensor network with millions of data was simulated to test the proposed

graph data model. The query performance was tested with many complex scenarios,

and it was shown that generated millions of synthetic data can be efficiently queried

on the graph data model.

52

CHAPTER 5

OBJECT TRACKING AND TRAJECTORY ANALYTICS

A new object tracking method for surveillance applications is proposed using a big

data model and a multilevel fusion. The proposed approach is based on three main

algorithms: intra-node fusion, inter-node fusion, and object trajectory construction.

Intra-node fusion exploits the detection and tracking of objects in each sensor. The

output of the intra-node fusion is used with spatiotemporal data as well as neighboring

sensors to generate inter-node trajectories. Then, the fused data from all the sensor

nodes are combined to construct global trajectories for the detected objects in the

monitored area on the WMSN. The proposed method tracks moving objects, such

as vehicles, animals and humans, using wireless multimedia sensors for surveillance

purposes.

This chapter is organized as follows: next section provides an overview. Section

5.2 details the proposed object tracking approach, and extracted trajectories are used

for analytics in Section 5.3.3, respectively. Interval Type-2 Fuzzy Logic usage for

trajectory extraction and analytics is provided in Section 5.3. Finally, remarks are

given in Section 5.5.

5.1 Overview

Being very related to this chapter, the issue of multi-level track fusion has also been

studied by a number of researchers [48, 49, 50]. In the first level, an object is detected

from an image and calculate it’s location. Then trajectories generated by sensor nodes

in the same local area are fused. At the final step, global trajectories are constructed.

53

The main difference between this thesis and the previous studies mentioned here is

that all of these studies use track identification created in the first level and contin-

ues on based upon that assumption, but a more realistic and challenging approach

which don’t use any pre-identification is proposed. All trajectory information, like

spatiotemporal data, speed, direction and low-level features are extracted to be able

to track objects.

Regarding the object tracking approaches in Wireless Sensor Networks, Fayyaz [51]

presents a good survey on them. He categorizes tracking according to network ar-

chitecture, the algorithms used for tracking, sensor types, number of tracked objects

and wireless communication technologies. On the other hand, Mazimpaka and Timpf

[52] focus on tracking aspect of the trajectory mining methods and applications. They

point out that coping with massive big data is an open research issue for object track-

ing. Valsamis et al. [53] compare a couple of predictive analytics on real-time big data

for trajectory prediction in the literature. They only focus on the maritime data for

vessels which are real-time spatiotemporal time series. Besides, they used multi-scan

machine learning algorithms to train their models.

Trajectory modeling and prediction have been studied by many researchers [54, 55,

56]. Chengyang et al. [57] modeled trajectories in a way that all original trajecto-

ries transformed into fixed-length sequences. On the contrary, this thesis supports

using various lengths of trajectories. Another study proposed STWalk [58] which

learns trajectories in spatiotemporal data graphs by traversing the graphs based on the

timestamps. Yufan et al. [59] developed a method based on the long-short term mem-

ory (LSTM) prediction and used the detected trajectories in order to detect anomalies.

This thesis differentiates from other works since it uses a novel interval type-2 fuzzy

logic based approach for trajectory extraction, and not only the anomaly detection,

but also the trajectory prediction has been studied.

5.2 Object Tracking

The proposed object tracking approach was developed specifically for the surveillance

requirements, but it can also be easily adapted to other application areas. An object’s

54

tracking is mainly focused on detecting an object when it enters the surveillance zone,

from the moment it enters the zone until it leaves it. The tracking begins when the

object is detected by a sensor node using its physical sensors. According to the algo-

rithm implemented on the sensor nodes, a camera is activated if an object is detected

or if it is a false alarm caused by noise in the environment. Next, a snapshot of the

detected object is taken to ensure the possible presence of an object. The snapshot of

the connected camera is important for accurately detecting and then tracking objects,

as this multimedia data is used to estimate the approximate position of the detected

object using object localization algorithms, which use the position of the sensor node,

including ground height, camera lens specifications, and camera viewing angle.

The challenge of tracking an object without an associated identifier, such as GPS

or RFID, is that each physical event occurring on a sensor deployed on a node is

completely anonymous. Main goal was to look for relationships and correlations

between entire anonymous sensor data and to identify not only the objects but also

their movement over the time passing through the surveillance zone.

The main idea of the proposed object tracking approach is to make use of the position

and time of the sensor node in accordance with the fusion outputs, i.e., the concept

types, the features of the low-level, and speed of the object to solve the problem of

whether the object has already been detected or whether it is a completely new object.

The proposed object tracking algorithm solves this problem by using the multilevel

fusion approach with fuzzy rules. The first level of the fusion is the intra-node fusion

which processes data for each sensor node and the second level is the fusion between

the neighbors of a sensor node. Finally, the third level fusion is the construction of the

object’s trajectory in order to finalize the tracking and to extract the global trajectories

of the objects. In the following subsections, the algorithms as well as the fuzzy rule

engine used in each fusion level are explained.

5.2.1 Intra-Node Fusion

Intra-node fusion is the first level trajectory fusion that uses the local trajectories

detected by a sensor node. The last point of each local trajectory is analyzed with the

current sensor data to check if it corresponds to the existing trajectories, which are

55

stored as time-ordered trees.

An object moving around a sensor node triggers the sensors equipped on the node and

creates sensor data. The sensor data represents an actual object and it is examined

as if it belongs to any existing local trajectories, which means that it is currently

being tracked by the sensor node, or the new sensor data initiates a new trajectory to

be added into the local trajectories store, which means that a new tracking is being

started. The rule engine uses time, direction, distance and velocity to make a decision

about whether new sensor data belongs to a new or an existing trajectory. There can

be multiple objects in a trajectory. In that case objects are differentiated using the

time, speed and direction of the objects.

During the analysis, the geodesic distance between the current object and the last

object of the trajectory is calculated. The direction of movement and the elapsed

time between two objects are used during the analysis. The speed of the object is

referenced according to the object type, but the actual speed is calculated using the

elapsed time and distance.

5.2.2 Inter-Node Fusion

Inter-node fusion is the second level trajectory fusion that looks for trajectory corre-

lations between different sensor nodes. Each node is compared to its neighbor nodes.

Moreover, only the nodes in the same direction of the compared trajectory are con-

sidered to optimize the performances.

The inter-node fusion algorithm is presented in the Algorithm 5. This algorithm

mainly merges the trajectories identified by the sensor node s and its neighbor nodes.

Trajectories from two sensor nodes are compared to identify if they can be fused or

not.

5.2.3 Rule Engine

A generic rule engine for intra-node and inter-node fusions was designed and devel-

oped. The rule engine applies a list of rules on a given object for tracking purposes.

56

Algorithm 4 Intra-Node Fusion Algorithm

1: procedure INTRANODEFUSION(n, TT [])

. The trajectory tree-list (TT [])] is used to identify if the sensed object (n) is

already being tracked or a new object.

2: matchFound← false . Initialize variable

3: for each trajectory T in TT [] do

4: last← Last sensed item in the trajectory T

5: score← ruleEngine(last, n)

6: if score > λ then

. New data belongs to an existing trajectory

7: matchFound← true

8: insert n into T

9: exit loop

10: end if

11: end for

12: if matchFound = false then . New trajectory found

13: T ← {}

14: insert n into T

15: insert T into TT []

16: end if

17: end procedure

57

Algorithm 5 Inter-Node Fusion Algorithm
1: procedure INTERNODEFUSION(n, s, ε)

2: N []← findNeighbors(s)

3: θ ← findDirection(Ls, Ln)

4: for neighbor node sn in N [] do

5: θs ← findDirection(Ls, Lsn)

6: if θs in the same direction with θ then

7: Ts[]← Trajectories of sensor node s

8: Tsn[]← Trajectories of sensor node sn

9: for each trajectory ts in Ts[] and tsn in Tsn[] do

10: Mt ←Merge trajectories ts, tsn

11: p← ∅
12: c← Last sensed item in the trajectory Mt

13: same← true

14: for the last ε items do

15: p← Previous item of c in the trajectory Mt

16: if p is null then

17: exit loop

18: end if

19: score← ruleEngine(p, c)

20: if score < λ then

21: same← false

22: exit loop

23: end if

24: c← p

25: end for

26: if same = true then

27: Apply merged trajectory Mt in Ts[] and Tsn[]

28: end if

29: end for

30: end if

31: end for

32: end procedure

58

Each rule is classified in a category that has a positive or negative effect on the score

of the object being processed. Specifying different rules for the rule engine enables

the use of the rule engine by different algorithms and fusion levels.

5.2.3.1 Definitions

A rule (R) is a representation of an object state written in the form of a condition

statement that gives a Boolean value (true / false). Each rule is associated with a rule

category and defined as follows:

R = [cond, cat] (5.1)

where

• cond is the rule condition

• cat is the rule category

A category of rules (RC) is an abstraction based on the basic properties of objects

moving along trajectories. Categories allow us to group rules and assign different

priorities between rules. A rule category is defined as follows:

RC = [e, %] (5.2)

where

• e is the identifier for positive or negative effect on the score

• % is the weight of the rule category

The score (S) is the output of the rule engine that is calculated by applying all the

rules for the movement of a detected object. The score value is an aggregation of all

category scores and calculated using the following equations:

S =
i∑

n=1

f(

j∑
m=1

g(Rm, RCn), RCn) (5.3)

59

where i is the number of rule categories, j is the number of rules and,

g(R,RC) =

0, if R.cat 6= RC

0, if R.cat = RC,R.cond = false

1, if R.cat = RC,R.cond = true

f(s, RC) =

s× RC.%, if RC.e = positive

-s× RC.%, if RC.e = negative

5.2.3.2 Rule Generation and Implementation

A fuzzy logic rule generator that provides fuzzy rules, generated semi-automatically

using trained trajectories, was developed, and then the generated rules were fine-tuned

by experts.

A fuzzy inference system design and optimization tool, Fuzzy Inference System Pro-

fessional (FisPro) [60, 61], was used to generate and induce fuzzy rules using training

trajectories, and then the generated rules were adapted by assigning rule categories

by experts. FisPro is an open-source application to create fuzzy inference systems

in order to use those systems for reasoning. A fuzzy inference system (FIS) is a

powerful interface between symbolic and numerical spaces. The ability of FIS to in-

tegrate the human expert knowledge with its fuzzy rules is one of the key aspects of

the success of fuzzy systems. Besides, FIS represents the behavior of the system in a

human-understandable way.

As shown in Figure 5.1, the fuzzy logic system has four basic steps: fuzzification, rule

evaluation, knowledge base, and defuzzification. During the fuzzification stage, the

actual inputs are converted to fuzzy membership functions. The fuzzy logic system

inputs are being processed by the rule evaluation process, which uses the knowledge

base to combine fuzzy inputs and produce outputs mapped to fuzzy membership func-

tions. The knowledge base provides the list of rules in the application domain. The

challenge is to design the correct list of rules for the problem. To deal with it, experts

were used to filter and organize the rules generated automatically. Finally, in the de-

fuzzification stage, the fuzzy outputs of the rule evaluation step are mapped to crisp

60

Figure 5.1: Fuzzy logic system.

outputs.

Input member functions are created for each rule category. Figure 5.2 shows exam-

ples of fuzzy input member functions that are used to generate fuzzy rules. Crisp

location data in meters can be mapped to fuzzy values, such as "no change", "small

change" "medium change" or "big change". Similar to the change of location, the

time difference between two sensor data is compared and mapped to fuzzy values.

Domain experts were involved to define the boundaries of input member functions.

Below is a list of sample fuzzy rules which were used in the rule engine for fusion.

The full list of fuzzy rules can be found in Appendix A.

• IF sameDirection AND newTime AND smallChange AND humanSpeed THEN

sameTrajectory

• IF sameDirection AND newTime AND bigChange AND humanSpeed THEN

sameTrajectory

• IF sameDirection AND newTime AND noChange AND humanSpeed THEN

sameTrajectory

• IF differentDirection AND realtime AND noChange AND humanSpeed THEN

sameTrajectory

• IF sameDirection AND realtime AND bigChange AND vehicleSpeed THEN

sameTrajectory

• IF sameDirection AND oldTime AND bigChange AND animalSpeed THEN

sameTrajectory

61

Figure 5.2: Sample fuzzy member functions.

62

• IF sameDirection AND newTime AND bigChange AND animalSpeed THEN

sameTrajectory

• IF sameDirection AND newTime AND smallChange AND animalSpeed THEN

sameTrajectory

FisPro tool was used for rule generation and several rule induction methods are avail-

able in the tool. The OLS algorithm [62] converts the input data into a fuzzy rule.

Then it selects the convenient rule with the least squares criterion using the linear

regression as well as the Gram-Schmidt orthogonalization. After this step, an opti-

mization is made by applying a second pass to conclude the selected rules.

Finally concluded rules are linked to one of the rule categories described below:

• Direction: The direction of movement of the detected object is used in the rules.

(e.g., are they moving on the same direction?)

• Time: The time-based rules are associated with this category. (e.g., has the

object been seen in last 2 hours?)

• Velocity: The speed of the object is used in the rules to calculate its possible

location and decide whether it moves or waits in the same location. (e.g., how

far this object can go with this speed in that specific time?)

• Feature: The low-level SIFT [63] features of silhouette image are used in the

rules. (e.g., check the similarity of silhouette images!)

• Concept Type: The type of object concept is used in some rules. (e.g., check if

the concept types are identical or not?)

• Distance: The distance-based calculations are used to create rules. (e.g., is

it possible to move from previous location to current location in that specific

time?)

5.2.3.3 Sample Scenario Execution

Suppose there are two sensor nodes SN1 and SN2 positioned in (2,0) and (2,4) in

a grid-based area. Each sensor node maintains a local track store for recognized

63

trajectories used in track fusion calculations.

Let the trajectory T1 is in the local track store of the sensor node SN1 while T2 and

T3 are in SN2. Three trajectories can be defined as arrays of location and time pairs

like below;

• T1 = { [(0,4)-12:00:00], [(4,4)-12:00:02] }

• T2 = { [(4,2)-12:00:01], [(3,0)-12:00:07] }

• T3 = { [(0,2)-12:00:06], [(2,3)-12:00:08] }

Figure 5.3 shows an example scenario area with sensor nodes (SN1, SN2) and rec-

ognized trajectories (T1, T2, T3). The red dashed line represents the trajectory of the

moving object (TOBJ) where (3,3) is the last location of the object at 12:00:09.

Suppose there are three categories of rules and for each rule category, a rule is defined

in the rule engine. The categories of rules can be defined as follows:

Figure 5.3: Rule engine execution on a sample scenario.

64

• RC-1: Velocity

e: Positive(+), %: 0.4

• RC-2: Direction

e: Positive(+), %: 0.3

• RC-3: Time

e: Negative(-), %: 0.5

The rules can be defined as follows (refer to the Algorithm 6 for the variable defini-

tions in cond);

• R-1: Check if the distance between the previous location and the location of the

newly detected object is within the maximum and minimum limits that can be

moved by the newly detected object

cond: d <= vmax ×∆t AND d >= vmin ×∆t
cat: RC-1

• R-2: Check if the relative direction of the location of the newly detected object

from the previous location is in the same direction as the trajectory

cond: θ = p.direction

cat: RC-2

• R-3: Check whether the previous detection time is obsolete, as if it is earlier

than the detection time of the new object movement

cond: ∆t > 5 (5 minutes)

cat: RC-3

Table 5.1 shows the computed values of parameters which are used in rule conditions.

d represents the distance between trajectory’s last object and the moving object. v

represents the velocity calculated by location and time pairs of the trajectory. For this

sample scenario, vmax and vmin are computed by using a fixed 30% upper and lower

bound on v. θ is the relative direction between trajectory’s last object and moving

object.

Finally, execution of the scenario shown in Figure 5.3 using the rule engine results the

scores in Table 5.2 for each trajectory. According to the final scores, the new object

65

Algorithm 6 Rule Engine Algorithm
1: procedure RULEENGINE(p, c)

. The last object in the trajectory, the previous object (p), and the current object

(c) are compared to indicate whether the current object belongs to the trajectory

or not.

2: Lc ← (c.x, c.y) . Location of the current object

3: Lp ← (p.x, p.y) . Location of the previous object

4: d← distanceOnGeoid(Lc, Lp)

5: θ ← findDirection(Lc, Lp)

6: v ← (p.vx, p.vy)

7: ∆t← p.t− c.t
8: R[]← List of semi-automatically generated rules

9: S[]← {} . Used for rule category scores

10: for each rule r in R[] do

11: valid← r.process(d, θ, v,∆t, ε)

12: if valid = true then . Rule is accepted

13: i← Index of rule r’s category in S[]

14: S[i] + +

15: end if

16: end for

17: score← 0

18: for each rule category ct do

19: i← Index of rule category ct in S[]

20: if ct.e = Positive then

21: score← score+ (ct.% ∗ S[i])
22: else

23: score← score− (ct.% ∗ S[i])
24: end if

25: end for

26: return score

27: end procedure

66

Table 5.1: Rule Condition Parameter Values for Each Trajectory

Parameter T1 T2 T3

d 1.4 3.0 1.0

v 2 0.4 1.1

θ SW N E

Table 5.2: Sample Rule Engine Execution Scores for Each Trajectory

T1 T2 T3

R-1 0.4 0.0 0.4

R-2 0.0 0.0 0.3

R-3 -0.5 0.0 0.0

Score -0.1 0.0 0.7

belongs to the trajectory T3, which has a higher probability for the trajectory of the

new object than the other possible trajectories.

5.2.4 Object Trajectory Construction

The third level of the fusion is to cluster and construct the object trajectories gen-

erated at the inter-node fusion level using the rule engine outputs. Some inter-node

trajectories may be fused into other trajectories because they may overlap or be com-

plementary to one another. The purpose of this last level of fusion is to detect the

final global trajectories in the monitored area. Global object trajectories can be used

as input for intra-node and inter-node fusion. Another use is to detect anomalies if a

newly detected object trajectory does not correspond to any learned global trajectory.

The clustering algorithm is an unsupervised learning algorithm in which relationships

are discovered from an unlabeled dataset. The results of previous detections are used

as input parameters for future calculations.

The construction of global trajectories is shown in Algorithm 7, and the main idea

of the algorithm is based on the calculation of Hausdorff Similarity [64] between

67

Algorithm 7 Object Trajectory Construction Algorithm

1: procedure OBJECTTRAJECTORYCONSTRUCTION(T [], GLB[])

. Global object trajectories (GLB) are constructed using the inter-node fusion

generated trajectories (T).

2: for each trajectory t in T [] do

3: if t is a short trajectory then

4: Merge t with other trajectories

5: end if

6: end for

7: for each global trajectory gt in GLB[] do

8: ML[]← {}

9: T []← similarLengthTraj(GLB[], gt.length)

10: for each trajectory t in T [] do

11: m← hausdorffSimilarity(gt, t)

12: if m > SimilarityThreshold then

13: Mark as candidate trajectory

14: insert t into ML[]

15: end if

16: end for

17: if ML[].size > GlobalTrajectoryThreshold then

18: glbTraj ← fastDTWCluster(ML[])

19: insert glbTraj into GLB[]

20: end if

21: end for

22: end procedure

68

trajectories with similar lengths. The calculated value is normalized in the interval

[0, 1]. Higher measures indicate a high degree of similarity and it can be identified

that they can be grouped together in a global candidate trajectory. If several candidate

trajectories are detected, they can construct a global trajectory.

K-Nearest Neighbors (kNN) algorithm has been used by many studies for trajectories

[65, 66, 67, 68]. It is a supervised classification algorithm and can be used for either

prediction or extraction of the trajectories. A trajectory is compared with the other

trajectories based on the Euclidean distance, but in our approach we are using our

rule based approach in order to use additional input parameters like speed, direction

and time as well as the distance.

Since the length of trajectories can be different, the Dynamic Time Warping (DTW)

distance has been used to calculate the trajectory similarities. DTW aligns trajectories

by warping the time axis continuously till an optimal similarity has been detected. If

there is a high similarity, then centroids of the global trajectories were computed by

using the standard K-Means way.

Figure 5.4 shows how to detect a step by step trajectory using the multilevel fusion

approach. Suppose there are 12 sensor nodes that monitor an area and an object

passes through the surveillance zone (a). In order to describe the detection of a trajec-

tory of an object, a metaphor of the puzzle game can be used. The inter-node fusion

algorithm detects many pieces that are connected, but they belong to different parts

of the puzzle. Therefore, the algorithm is not aware of the situation as a whole (b).

Each sensor node detects and fuses its local data, a range limited to a single node.

Intra-node fusion is a phase in which you begin to merge different groups and form

shapes or images in the puzzle, but the entire image is still missing (c). The sensor

data from many sensor nodes are fused in the last step and finally the construction of

the overall object trajectory is performed. Thus, with this last step, all the pieces of

the puzzle are connected to each other and a certain number of trajectories are deter-

mined. These trajectories detected by many sensor nodes are then fused to identify

the overall trajectory.

69

(a) (b)

(c) (d)

Figure 5.4: Multilevel fusion step-by-step trajectory detection. (a) Actual trajectory.

(b) Intra-node fusion. (c) Inter-node fusion. (d) Trajectory construction.

70

5.3 Interval Type-2 (IT2) Fuzzy Logic Trajectory Analytics

A fuzzy logic system (FLS) can be defined as mapping from crisp values to vague

values for deducing based on a set of rules, and then remapping to crisp values to

provide a scalar output. There are five components in an interval type-2 (IT2) FLS;

fuzzifier, fuzzy rules, inference engine, type-reducer and defuzzifier (5.5).

Firstly, the crisp input data is fuzzified into a set of fuzzy variables by using input

membership functions, and this step is called Fuzzification. Afterwards, the inference

engine is executed using a set of rules to produce fuzzy outputs. Then, these resulting

outputs are utilized by the type-reducer to calculate the centroids of the fuzzy values,

which is known as the type-reduced sets. Lastly, in the defuzzification step, the re-

sulting reduced output is used to produce crisp outputs using the output membership

functions.

IT2 FLS can be thought of as a set of embedded type-1 (T1) fuzzy logic systems [69].

Therefore, IT2 FLS is more adaptive and it can realize more complex input-output

relationships which cannot be achieved by type-1 fuzziness.

Accordingly, number of rules in the rulebase will be less if IT2 FLS is used instead

of T1 FLS [70, 71], because the ability of representing more uncertainties using the

footprint of uncertainty (FOU) enables to cover the input/output situations with fewer

fuzzy sets. This has been experimented in the next Chapter in Section 6.2.

In the scope of IT2 studies, firstly fuzzy geometry was introduced to the data model.

Then, the rule engine was updated to use interval type-2 fuzzy logic system. Last but

Figure 5.5: An IT2 Fuzzy Logic System.

71

not least, new Maritime Dataset was used to show that this dissertation can be adjusted

to other application domains without an effort. To benchmark the performance gain

after using IT2 fuzzy logic, several experiments given in the next Chapter in Section

6.2 was conducted.

5.3.1 Fuzzy Geometry

The position of an object can be represented as a fuzzy point [72], which is a point

with an uncertainty for its position, but possible positions are known with a degree

of certainty which is called a membership value. Therefore, a fuzzy point can be

represented using a circle to encompass the fuzzy point 5.6.

For a fuzzy point FP (x, y, µ), position is derived from a set of possible positions

using the following equations:

FPx =

∑i
n=1 xi ∗ µi

i
(5.4)

FPy =

∑i
n=1 yi ∗ µi

i
(5.5)

FPµ =

∑i
n=1 µi
i

(5.6)

where i is the number of possible positions, µ ∈ [0, 1] and represents the membership

value which is the Euclidean distance between a sensor node and the location of a

sensed object.

By using two fuzzy points, a straight fuzzy line with uncertain boundaries can be

defined [73]. If more than two fuzzy points are concatenated, a fuzzy trajectory FT

can be represented as given in the following equation;

FT = [FP1(x1, y1, µ1), FP2(x2, y2, µ2), ..., FPn(xn, yn, µn))] (5.7)

where n is the number of fuzzy points in the trajectory (Figure 5.7). While a trajectory

is represented as a line, a fuzzy trajectory is visualized as an area. Each fuzzy point

of the fuzzy trajectory is represented as a circle whose radius is computed according

to the degree of certainty of the fuzzy point.

72

Figure 5.6: A fuzzy point derived from possible positions.

Figure 5.7: A fuzzy trajectory representation.

73

5.3.2 Extending Object Tracking with Fuzziness

The data of a moving object gathered from multiple sensor nodes has many values

for the specific location of an object at an exact time. In other words, there are many

variations of sensor data for a moving object. As discussed in previous sections, fuzzy

point can be used to represent the estimated position of an object at a specific time.

Over and above, by using a set of fuzzy points followed one after another, we can

have a fuzzy trajectory.

To be able to deal with fuzzy trajectories, the data model had to be enriched by adding

fuzziness. Firstly, new data models for fuzzy geometry was introduced as shown in

Figure 5.8: Object Models for Fuzzy Trajectories.

74

Figure 5.8. TrackData model represents the data sensed by a sensor node. Since

there can be many sensor data for a fuzzy point, there is a many-to-one relationship

between TrackData and FuzzyPoint. A similar relationship exists for FuzzyPoint and

FuzzyTrajectory as a set of fuzzy points is necessary to form a fuzzy trajectory.

Another improvement was adding interval type-2 fuzzy logic to object tracking. The

rule engine was extended to use IT2 FLS to fuse trajectories. First, a type-1 fuzzy

logic system has been implemented in order to identify the input and output member-

ship functions. Then, by using the T1 FLS as the base implementation, IT2 FLS has

been introduced by extending the membership functions by defining lower and upper

boundaries.

Type-1 input membership functions are;

• Direction MF: The direction change between two consecutive data (Unit: De-

gree)

– sameDirection

∗ Gaussian [-35, 0, 35]

– similarDirection

∗ Gaussian [-90, -45, -15]

∗ Gaussian [15, 45, 90]

– differentDirection

∗ Trapezoidal [-180, -180, -135, -80]

∗ Trapezoidal [80, 135, 180, 180]

• Time MF: The time difference between two consecutive data (Unit: Seconds)

– realTime

∗ Trapezoidal [0, 0, 5, 10]

– newTime

∗ Trapezoidal [5, 15, 30, 60]

– oldTime

∗ Trapezoidal [40, 60, MAX, MAX]

75

• Location MF: The distance between two consecutive data (Unit: Meters)

– sameLocation

∗ Trapezoidal [0, 0, 5, 10]

– smallChangeLocation

∗ Trapezoidal [5, 10, 20, 25]

– bigChangeLocation

∗ Trapezoidal [20, 50, 500, 500]

• Speed MF: The change in speed between two consecutive data (Unit: Percent-

age of the change)

– sameSpeed

∗ Trapezoidal [0, 0, 10, 20]

– smallChangeSpeed

∗ Trapezoidal [10, 20, 30, 40]

– bigChangeSpeed

∗ Trapezoidal [40, 50, 100, 100]

Type-1 output membership functions are;

• Similarity MF: The similarity of the two consecutive data

– differentTrajectory

∗ Gaussian [0.0, 0.0, 0.4]

– similarTrajectory

∗ Gaussian [0.25, 0.5, 0.75]

– sameTrajectory

∗ Gaussian [0.6, 1.0, 1.0]

The interval type-2 FLS has been constructed by blurring the type-1 FLS by shifting

the left and right MFs uniformly. In this thesis, symmetrical footprint of uncertainty

(FOU) was used for simplicity. For instance; The SameDirection Gaussian antecedent

76

in type-1 FLS has been extended from left and right to introduce the upper and lower

MFs in interval type-2 FLS.

Gaussian [-35, 0, 35] −→

Upper - Gaussian [-40, 0, 40]

Lower - Gaussian [-30, 0, 30]

Interval Type-2 input membership functions are;

• Direction MF: The direction change between two consecutive data (Unit: De-

gree)

– sameDirection

∗ Upper - Gaussian [-40, 0, 40]

∗ Lower - Gaussian [-30, 0, 30]

– similarDirection

∗ Union

· Upper - Gaussian [-95, -45, -10]

· Lower - Gaussian [-85, -45, -20]

∗ Union

· Upper - Gaussian [10, 45, 95]

· Lower - Gaussian [20, 45, 85]

– differentDirection

∗ Union

· Upper - Gaussian [-180.0, -135, -75]

· Lower - Gaussian [-175.0, -135, -85]

∗ Union

· Upper - Gaussian [75, 135, 180]

· Lower - Gaussian [85, 135, 175]

• Time MF: The time difference between two consecutive data (Unit: Seconds)

– realTime

∗ Upper - Trapezoidal [0, 0, 5, 12]

77

∗ Lower - Trapezoidal [0, 0, 5, 8]

– newTime

∗ Upper - Trapezoidal [3, 15, 30, 63]

∗ Lower - Trapezoidal [7, 15, 30, 57]

– oldTime

∗ Upper - Trapezoidal [38, 60, MAX, MAX]

∗ Lower - Trapezoidal [42, 60, MAX, MAX]

• Location MF: The distance between two consecutive data (Unit: Meters)

– sameLocation

∗ Trapezoidal [0, 0, 5, 10]

– smallChangeLocation

∗ Trapezoidal [5, 10, 20, 25]

– bigChangeLocation

∗ Trapezoidal [20, 50, 500, 500]

• Speed MF: The change in speed between two consecutive data (Unit: Percent-

age of the change)

– sameSpeed

∗ Trapezoidal [0, 0, 10, 20]

– smallChangeSpeed

∗ Trapezoidal [10, 20, 30, 40]

– bigChangeSpeed

∗ Trapezoidal [40, 50, 100, 100]

Interval Type-2 output membership functions are;

• Similarity MF: The similarity of the two consecutive data

– differentTrajectory

∗ Upper - Trapezoidal [0.0, 0.0, 0.2, 0.45]

78

∗ Lower - Trapezoidal [0.0, 0.0, 0.1, 0.45]

– similarTrajectory

∗ Upper - Trapezoidal [0.3, 0.45, 0.55, 0.7]

∗ Lower - Trapezoidal [0.3, 0.5, 0.5, 0.7]

– sameTrajectory

∗ Upper - Trapezoidal [0.5, 0.7, 1.0, 1.0]

∗ Lower - Trapezoidal [0.5, 0.8, 1.0, 1.0]

Figure 5.9 shows the input member functions of the fuzzy logic system. In Section

6.2.1, the results of comparison between without fuzzy logic, with type-1 fuzzy logic

and interval type-2 fuzzy logic were given.

Similar to the type-1 fuzzy rule generation explained in Section 5.2.3.2, same steps

were followed to generate IT2 fuzzy rules using the training data. Below is a list of

sample fuzzy rules which were used in the rule engine for fusion. The full list of IT2

fuzzy rules can be found in Appendix A.2.

• IF similarDirection AND smallChangeLocation AND realTime AND small-

ChangeSpeed THEN sameTrajectory

• IF differentDirection AND smallChangeLocation AND realTime AND small-

ChangeSpeed THEN sameTrajectory

• IF differentDirection AND sameLocation AND realTime AND sameSpeed THEN

sameTrajectory

• IF differentDirection AND smallChangeLocation AND realTime AND bigChange-

Speed THEN similarTrajectory

• IF similarDirection AND sameLocation AND realTime AND bigChangeSpeed

THEN sameTrajectory

• IF sameDirection AND sameLocation AND realTime AND smallChangeSpeed

THEN sameTrajectory

IT2-based rule engine has been used in multilevel object tracking in order to fuse the

trajectories. For the sample scenario specified in Section 5.2.3.3,

79

Figure 5.9: Input member functions for IT2 FLS.

80

Table 5.3: Fuzzy-based Rule Engine Parameter Values for Each Trajectory

Parameter T1 T2 T3

Calculation Direction Change: | 0-18 | | 244-18 | | 26-18 |

Direction Change (degree) 18 222 8

Time Difference (seconds) 7 2 1

Location Difference (meters) 1.4 3.0 1.0

Calculation Speed Change: | (2-0.2)/2 | | (0.4-1.5)/0.4 | | (1.1-1)/1.1 |

Speed Change (%) %90 %275 %9

Table 5.4: Fuzzified Input Parameters for Each Trajectory

Parameter T1 T2 T3

Direction Change (degree) sameDirection differentDirection sameDirection

Time Difference (seconds) realTime realTime realTime

Location Difference (meters) sameLocation sameLocation sameLocation

Speed Change (%) bigChangeSpeed bigChangeSpeed sameSpeed

Table 5.3 shows the computed values of parameters which are used as input for the

interval type-2 based rule engine. Direction Change represents the angle difference in

degrees between the last object of a trajectory and the moving object. Time Difference

represents the time difference in seconds between the time of the last object of a

trajectory and the detection time. Location Difference is the distance in meters from

the location of the last object of a trajectory and the location of the moving object.

Speed Change is the change of velocity in percentage.

These crisp values are transformed into fuzzy input parameters as given in Table 5.4.

Finally, the execution of the IT2 FLS system using these fuzzy inputs for the scenario

shown in Figure 5.3 results the scores in Table 5.5 for each trajectory. According

to the final scores, the new object belongs to the trajectory T3, which has a higher

probability for the trajectory of the new object than the other possible trajectories.

81

Table 5.5: Output Values of the Fuzzy-based Rule Engine for Each Trajectory

T1 T2 T3

Similarity 0.6 0.4 0.9

5.3.3 IT2 Fuzzy Logic based Classification

A new classification algorithm given in Algorithm 8 was developed using the interval

type-2 fuzzy logic in order to enhance the trajectory prediction and anomaly detection

analytics.

This classification algorithm has two parts, initialization and assessment. During the

initialization part, an internal trajectory model is generated for each class in order

to efficiently classify a point. During assessment part, trajectory models are used to

calculate the angle, distance and speed input values are computed and provided to the

IT2 fuzzy logic system to get the classification output.

The input of the FLS is the global trajectories extracted from the multilevel object

tracking algorithm. By using the input member functions, characteristics of the tra-

jectory is mapped to fuzzy values and as an output, the similarity of the compared

trajectories are generated in a fuzzy manner.

Rule base of the IT2 FLS has the following fuzzy rules to classify the data;

• IF sameDirection AND sameLocation THEN sameTrajectory

• IF sameDirection AND sameLocation AND sameSpeed THEN sameTrajectory

• IF sameDirection AND closeLocation AND sameSpeed THEN sameTrajectory

• IF similarDirection AND sameLocation AND sameSpeed THEN sameTrajec-

tory

• IF sameDirection AND sameLocation AND smallSpeedChange THEN same-

Trajectory

• IF sameDirection AND farLocation AND sameSpeed THEN differentTrajec-

tory

82

Algorithm 8 IT2 Fuzzy Logic Classification Algorithm

1: procedure IT2FUZZYCLASSIFIER(n[], T [])

. Trained by the global trajectories (T [])] and classifies the instance (n) using the

IT2 FLS.

2: fuzzyEngine← initializeIT2FLS()

3: output← [] . Classification output array for each trajectory

4: lat← n[0] . Latitude

5: lon← n[1] . Longitude

6: time← n[2] . Time difference

7: minDistance←Maximum value for initialization

8: closestPoint = ∅
9: i = 0

10: for each trajectory t in T [] do

11: for each point p in trajectory t do

12: ρ1← cartesianDistance(lat, lon, p)

13: if ρ1 < minDistance then . Find closest point

14: minDistance← ρ1

15: closestPoint← p

16: θ1← calculateAzimuth(t, p)

17: α1← getSpeed(t, p)

18: end if

19: end for

20: last← Last classified instance in the classifier

21: ρ2← cartesianDistance(lat, lon, closestPoint)

22: θ2← calculateAzimuth(lat, lon, last)

23: α2← getSpeed(T, p)

24: output[i]← fuzzyEngine.get(θ2− θ1, α2− α1, ρ2− ρ1)
25: increment i

26: end for

27: return output

28: end procedure

83

• IF differentDirection AND farLocation AND bigSpeedChange THEN differ-

entTrajectory

• IF similarDirection AND farLocation AND bigSpeedChange THEN different-

Trajectory

• IF differentDirection AND closeLocation AND bigSpeedChange THEN differ-

entTrajectory

• IF differentDirection AND farLocation AND bigSpeedChange THEN differ-

entTrajectory

Extracted global trajectories are used to train well-known classification algorithms for

the purpose of benchmarking the proposed IT2 classification algorithm. The selected

classification algorithms in our benchmarks are;

• Random Forest [20]

• Decision Table [22]

• Sequential Minimal Optimization (SMO) [25]

• Naive Bayes [21]

• Logistic Regression [23]

• Multilayer Perceptron (MLP) [24]

Experimental results to show the performance gain after using IT2 fuzzy logic are

given in the next Chapter in Section 6.2.

5.3.4 Trajectory Prediction

Classification algorithms are used for prediction in many studies [74, 75]. Well-

known classification algorithms were trained using the extracted global trajectories,

and once the learning phase is over, a new sensor data was classified to predict the

possible trajectory of the object.

84

Figure 5.10: Success rates of classification algorithms in prediction with/without pa-

rameter tuning.

The parameters of the classification algorithms were tuned to increase the success

rates of the predictions of the trajectories. Figure 5.10 shows the performance of

each classification algorithm with and without tuned parameters. The success rate is

calculated using the number of correct identifications of the trajectories. The SMO

algorithm is more efficient than the other machine learning algorithms used in the

experiments and which have been very successful. Moreover, it is important to em-

phasize that only the SMO algorithm can identify an equal possibility of overlapping

trajectories, which is an important case for the prediction. Executing algorithms with

optimized parameters gives better results than expected, but optimizing logistic re-

gression is one of the most affected by overall success.

The proposed prediction algorithm based on IT2 fuzzy logic classification is given

in Algorithm 9. Proposed algorithm performed better than the known algorithms.

Experimental results are given in the next Chapter in Section 6.2.3.

5.3.5 Anomaly Detection

Anomaly detection aims to find the patterns which are unexpected and this can help

to identify problems accurately or early detection of conflict situations to take action

85

Algorithm 9 IT2 Trajectory Prediction Algorithm

1: procedure IT2PREDICT(n[], T [])

. Trains the IT2 Fuzzy Classifier with global trajectories (T [])] and classifies the

instance (n). Returns the predicted trajectory.

2: classified[]← it2FuzzyClassifier(n, T) . Classification output array for

each trajectory

3: max = 0

4: ind = 0

5: for each classification value c in classified[] do

6: if c > max then . Find the highest classification score

7: max← c

8: ind← index of classification value

9: end if

10: end for

11: return T [ind]

12: end procedure

before potential problems occur.

Anomalies can occur for both objects and trajectories. An object moving along a tra-

jectory can deviate from an existing trajectory and it can be called an object anomaly.

Besides, there can be completely a new trajectory which has never been identified be-

fore and can be matched with any of the existing global trajectories, which is assumed

as a trajectory anomaly.

By using the global trajectories as the ground truth, it can be determined whether an

object is lined up on a path or not [76]. If the object deviates from the trajectory, this

can be accepted as an anomaly sign (Figure 5.11b) for the sample trajectories given

in Figure 5.11a.

The proposed anomaly detection algorithm based on IT2 fuzzy logic classification is

given in Algorithm 10. Proposed algorithm performed better than some of the known

algorithms. Experimental results are given in the next Chapter in Section 6.2.3.

86

5.4 Real World Use Cases

I used two different real world dataset in the scope of this dissertation; GeoLife Tra-

jectory dataset and Maritime Cadastre dataset. Former was used for surveillance ap-

plication in a rural area. Latter is used for monitoring the vessels in a zone.

To be able to use these datasets, I imported the dataset through my simulator to mimic

(a)

(b)

Figure 5.11: (a) Trained trajectories for analytics. (b) A sample anomaly in which the

object leaves suddenly while moving on Trajectory-3.

87

Algorithm 10 IT2 Anomaly Detection Algorithm

1: procedure IT2ANOMALY(n[], T [])

. Trains the IT2 Fuzzy Classifier with global trajectories (T [])] and classifies the

instance (n). Returns if there is an anomaly or not.

2: α← it2Predict(n, T) . Predicted trajectory

3: β ← Previously predicted trajectory

4: if α! = β then . Possible anomaly.

5: sβ ← Latest scores of trajectory β

6: sα ← Latest scores of trajectory α

7: if sβ is decreased AND sα is increased then

8: return true

9: end if

10: end if

11: return false;

12: end procedure

as if data is coming from the wireless multimedia sensors (Figure 5.12). This oper-

ation removed the identifier on the data, and fully anonymized the input data which

makes it more challenging problem.

Both GeoLife Trajectory dataset and Maritime Cadastre dataset are not exploited by

multiple sensors. Instead, each trajectory corresponds to a single object carrying a

geographic location providing device. To make it usable for the experiments, the

original trajectories were transformed into sensor data that can be detected by several

sensors via the simulator. The simulator reads actual trajectory as an input and gener-

ates motion at the exact location of the actual trajectory based on the type of object.

Then, the sensor nodes that can detect motion at that location are triggered as if there

is an object.

5.4.1 GeoLife Dataset

GeoLife dataset [77] was collected by the Microsoft Research as part of the GeoLife

project. It is a GPS trajectory dataset which is produced by 182 users in 5 years.

88

Figure 5.12: Utilization of real world dataset.

From 2007 to 2012, 17,621 trajectories that contains more than 1 million Km. dis-

tance and almost 50K hours of duration. The trajectories were recorded in a dense

representation which is every 1-20 seconds per point.

Each folder of the dataset contains GPS log data of a user, and each folder has a

number of PLT files in it. Each PLT file is named by starting time of a trajectory and

contains the GPS data. PLT files are typical text files with a GPS data in each line

which has Latitude, Longitude, Altitude and Date information. For more information

about content of the PLT files, please consult the [77].

An example data from the dataset is:

39.984611,116.318026,0,493,39744.1204861111,2008-10-23,02:53:30
39.984608,116.317761,0,493,39744.1205439815,2008-10-23,02:53:35
39.984563,116.317517,0,496,39744.1206018519,2008-10-23,02:53:40
39.984539,116.317294,0,500,39744.1206597222,2008-10-23,02:53:45
39.984606,116.317065,0,505,39744.1207175926,2008-10-23,02:53:50

In order to use GeoLife dataset in this thesis, the transport mode labels in the dataset

were mapped to simulation concept types used in the surveillance application domain.

Table 5.6 shows the mapping of the concept types "Vehicle" and "Human" because

there is no label associated with the type of concept "Animal" in the dataset.

5.4.2 Marine Cadastre Dataset

Publicly available maritime dataset is an Automatic Identification System (AIS) dataset

[78] from the U.S. Coast Guard. It has been collected using a navigation (AIS) device

89

Table 5.6: Mapping from Transportation Mode to Concept Type

Transportation Mode Concept Type

Walk Human

Car Vehicle

Taxi Vehicle

Bus Vehicle

Train Vehicle

which communicates the location of vessels in real time. Data is publicly available in

"www.marinecadastre.gov".

AIS is an automated system for exchanging the navigational information between

ships and shore stations like Vessel Traffic Services (VTS) stations (Figure 5.13).

Information such as ship type, location, time, and speed have been extracted from the

raw AIS data and provided as a dataset.

Each data is downloadable from the website of the U.S. Coastal guard as an Excel

Sheet File. The maritime data is available since 2009 and each year updated. Records

are filtered to one minute and formatted in monthly files by Universal Transverse

Mercator (UTM) zone. Below is the column names in which data provided;

• MMSI: This is the Maritime Mobile Service Identity, which is the unique iden-

Figure 5.13: Sample AIS data exchange representation.

90

tifier for vessels.

• BaseDateTime: Data timestamp

• LAT: Geographical latitude

• LON: Geographical longitude

• COG: Course Over Ground

• SOG: Speed Over Ground

• Heading: Current heading of the AIS vessel at the time of the last message

• VesselName: Name of the vessel

• IMO: IMO ship identification number

• CallSign: Callsign of the vessel

• VesselType: Ship type

• Status: Navigation status

• Length: Length of the vessel

• Width: Width of the vessel

• Draft: Name of the vessel

• Cargo: Cargo payload information

Some of the columns which are not a direct input for the algorithm was filtered.

Besides, the MMSI number was used as the identifier of moving vessels since most

of the AIS systems use the MMSI, not the IMO number, which is another unique

number for vessels. After that, the data simulator was adapted to use maritime dataset

as input.

Two new small applications was needed to be prepare the maritime dataset for exper-

itments. These applications are as follows;

91

• VesselDataCleaner: This application removes the unused columns, such as

width, length, cargo, and callsign, from CSV files. Also, it provides filtering

trajectories according to their length.

• VesselDataImporter: This application reads the maritime dataset stored in CSV

files and utilizes the data simulator functionality to import data as if it is sensed

from the sensor nodes.

An example data from the dataset is;

366940480,2017-01-04T13:51:07,52.41575,-174.60041,9.1,-154.0,251.0,EARLY
DAWN,IMO7821130,WDB7319,1001,undefined,32.95,8.82,4.0,31

After cleaning the data, only the columns necessary for our algorithms are left, like

below;

366940480,2017-01-04T13:51:07,52.41575,-174.60041

Figure 5.14 shows a sample trajectory from maritime dataset. It can be seen that some

part of the trajectory are wider, some of them not, which is a result of using the fuzzy

points in trajectory fusion calculations. The width of each fuzzy point is derived from

the set of possible positions by taking into account the degree of certainty values.

5.5 Remarks

An unsupervised object tracking approach which is developed using the graph-based

big data model was proposed. Management and storage of the big graph data in a

NoSQL graph-based big database system, namely OrientDB, was implemented and

an efficient object tracking approach was proposed. The approach for tracking objects

consist of three main algorithms as intra-node fusion, inter-node fusion, and object

trajectory construction.

Usage of two different datasets shows that this dissertation is not limited to only the

Surveillance domain, but it can also be used for other domains. As a matter of fact

92

Figure 5.14: A sample trajectory from maritime dataset.

that spatiotemporal data is not bounded to any domain, this thesis can be used without

any limitation on the application domain.

Data model extended to support fuzziness and trajectories are represented as fuzzy

trajectories to be able to define trajectories not as a line but as a polygon, which adds

the width aspect to a trajectory.

Trajectory prediction and anomaly detection analytics were applied on extracted global

trajectories using well-known classification algorithms. Then, an IT2 FLS was pro-

posed to make more accurate predictions and enhance anomaly detection analytics.

93

94

CHAPTER 6

EVALUATION

This chapter presents experimental studies which were conducted to evaluate the per-

formance of proposed multilevel object tracking algorithm and trajectory analytics.

In addition to those, interval type-2 fuzzy logic extension on top of the existing im-

plementation was tested to benchmark the improvements provided by the fuzziness.

6.1 Multilevel Object Tracking Experiments

A test environment to test proposed object tracking approach was prepared, and ex-

periments are realized in two different aspects. The first aspect was to visualize

the performance of the algorithm for different types of scenarios using the Scenario

Builder component of the simulator, which is described in Chapter 4. In parallel with

this, test results are also compared with the Kalman filter tracking approach [79, 80].

With the second aspect of the experiments, the performance of the proposed tracking

algorithms was evaluated with a real world data set. Because there are many pub-

lic datasets, most tracking applications are just video data sets such as Multi-Object

Tracking [81] or dataset with device tag, such as GPS or RFID, that do not conform

to this dissertation’s problem area. In addition, some data sets have focused on inter-

connected roads designed for wheeled vehicles and pedestrian traffic [82] but in this

experiments, a rural area was monitored which has no information on roads. There-

fore, to evaluate algorithms with real data, a dataset was needed to be adapted to the

surveillance application domain. The GeoLife trajectory dataset was used because it

has different types of transport modes and a wide variety of trajectory lengths.

95

6.1.1 Synthetic Data

The simulator described in previous chapter was used to produce synthetic data. Both

grid-based and random distributed wireless sensor networks were setup to evaluate

the performance for different topologies.

Figure 6.1 shows example scenarios generated by the simulator. Various scenarios

were created using different trajectory models and concept types to evaluate the per-

formance of proposed algorithms. The following formulas were used to calculate the

precision/recall values and the F-measure.

Precision =
TP

TP + FP
(6.1)

Recall =
TP

TP + FN
(6.2)

where TP is the number of true positives, FP is the number of false positives, and

FN is the number of false negatives. For a better evaluation, F-measure or balanced

F-score was used to combine precision and recall values in a metric.

F = 2.
Precision.Recall

Precision + Recall
(6.3)

Figure 6.2 represents the result of experiments by calculating the F-measure scores

of each scenario group for both grid-based and random deployment of sensors. Pro-

posed approach detects straight trajectories because they are easy to track with respect

to more complex trajectories. The detection performance of the circular and zigzag

trajectories are slightly lower than those of the other types. The zigzag pattern has

sharp turns and is not expected and treated as new objects. For circular patterns, the

behavior is not expected to move back and forth at the same point. However, the

overall performance looks promising. From the point of distribution of the nodes, if

sensor nodes are deployed randomly, the scores decrease. The loss of performance

in random positioning has two main causes. First, there are undetected areas and if

the trajectory of the object falls in this area, it causes disconnection. Second, some

densely positioned areas create multiple possible trajectories for a single trajectory

and make inter-node fusion more difficult to manage. To summarize, randomly de-

ployed nodes are not as good as grid positioning, but this is an expected result.

96

(a) (b)

(c) (d)

Figure 6.1: Scenario samples generated using developed simulator. (a) Straight tra-

jectories. (b) Circular trajectories. (c) Zig zag trajectories. (d) Wavy trajectories.

97

Figure 6.2: F-measure scores for both grid-based and randomly deployed nodes.

Since Kalman filters and Particle filters are widely used in object tracking [83, 84],

the performance of proposed algorithms were compared with these two filters. The

Kalman filter tries to balance the motion model and the measurements to provide

a better estimate of trajectories. It uses linear projections with Gaussian noise to

increase efficiency while the particle filter uses a sequential Monte Carlo method.

Both algorithms recursively update the state estimate. Kalman filter uses the system

model and the sensor observations to estimate the current state from the previous

states. Particle filter uses random sampling to generate different system states, then

assigns high weights to the states supported by the sensor data.

The results of performance comparisons and error rates are given in Figure 6.3 and

6.4. Error rates are calculated by the Euclidean distance between real trajectory and

the output of the algorithm. The results show that the proposed approach better de-

tects the trajectory of the object, with error rates lower than those of Kalman and

particles filters. In addition, it appears from the experimental results that even ob-

ject maneuvers, the proposed object tracking algorithms can continue to track objects

with a relatively low error rate. Kalman filter and particle filter algorithms need early

recovery time to produce optimized predictions. For this reason, some of the initial

values of the particle filter are ignored.

98

(a)

(b)

Figure 6.3: Comparison with Kalman filter and Particle filter. (a) Straight trajectory.

(b) Wavy trajectory.

99

(a)

(b)

Figure 6.4: Error rates comparison with Kalman filter and Particle filter. (a) Straight

trajectory. (b) Wavy trajectory.

100

Table 6.1: Algorithm Scores with Various Parameters

ε NodeBuffer=5 NodeBuffer=10

0.35 0.322058681 0.483088022

0.40 0.999631145 0.999631145

0.45 0.999631145 0.481668622

0.50 0.499815572 0.321112415

6.1.2 Real World Dataset

In order to evaluate the performance of the proposed object tracking algorithms, a

confusion matrix was used. The selection of the ε and NodeBuffer parameters affects

the sensitivity of the algorithm. ε is the threshold of the distance between the actual

distance and the calculated distance using speed and time. NodeBuffer is the param-

eter to specify the number of historical sensor data used to identify new sensor data.

that is, whether these data correlate with previous detections or not.

The scores of the parameters are calculated by normalizing the Hausdorff Distance

between real trajectory and extracted trajectory with the number of tracks found. Ta-

ble 6.1 illustrates the computed scores for different parameter values of ε and Node-

Buffer. The results show that the tracking algorithm works the best with ε = 0.40.

NodeBuffer depends on the ε parameter as a pivot. For bigger ε values NodeBuffer is

negatively correlated and with lower ε values NodeBuffer is positively correlated.

Therefore, parameters ε = 0.40 and NodeBuffer=5 were used as default values to

monitor the performance of the algorithm in GeoLife Trajectories dataset.

The measurement scores F are given in Figure 6.5a for different sizes of datasets.

The algorithm duplicates small pieces of longer tracks as different tracks. As a result,

tracks are correctly detected with smaller, noisy tracks. This provides lower accuracy

performance, but the effect of noisy data decreases as more sensor data is processed.

To show the positive effect of multilevel tracking, especially that of constructing the

trajectory of the object, the results were measured for fusion with and without third

level trajectory fusions. Improvement of the performance of inter-node fusion over

101

(a)

(b)

Figure 6.5: Object trajectory construction. (a) F-Scores. (b) Precision comparison

with inter-node fusion.

102

Table 6.2: Mapping from Transportation Mode to Concept Type

Transportation Mode Concept Type

Walk Human

Car Vehicle

Taxi Vehicle

Bus Vehicle

Train Vehicle

intra-node fusion has very little effect since it is impossible to continuously track an

object without inter-node fusion. Indeed, this is because intra-node tracking is simply

limited by the detection capability of the sensor nodes. The result of experiments

relating to the effect of the construction of the trajectory of the object is presented in

Figure 6.5a. From the experimental results, it has been observed that the construction

of the object’s trajectory significantly improves the overall performance of the object

tracking approach.

In order to see the improved performance of the object tracking algorithms with dif-

ferent types of concepts, the transport mode labels in the dataset were mapped to

simulation concept types. Table 6.2 shows the mapping of the concept types "Ve-

hicle" and "Human" because there is no label associated with the type of concept

"Animal" in the dataset.

Table 6.3 displays the F-measure scores for a selected set of datasets based on the sce-

narios chosen for validating the proposed approach. These datasets have trajectories

of the concept types "Vehicle" and "Human". Depending on the results obtained, the

trajectories belonging to the human type are well detected with respect to the type of

vehicle. The best performance of human objects is the difference in speed between

moving objects. Since a human typically moves more slowly than a vehicle, a sen-

sor node can track humans more easily and more accurately than a vehicle. In other

words, the vehicle sensor data collected by the sensors is much more scarce than the

human sensor data.

103

Table 6.3: F-measure Comparison for Concept Types

Dataset ID Vehicle Human

062 0.89 0.91

085 0.87 0.87

128 0.89 0.91

153 0.91 0.93

6.2 Fuzzy Logic Experiments

To test fuzzy data model and proposed interval type-2 fuzzy classification algorithm,

several experiments was conducted. In the first experiment, the object trajectory con-

struction was tested by applying the fuzziness to trajectory concept. Afterwards, ex-

periments on classification algorithms were extended to include the new IT2 FLS

based algorithm for both prediction and anomaly detection.

6.2.1 Global Trajectory Construction

While generating the global trajectories, throughout this thesis study, first a rule based

engine without using fuzzy logic has been used in multilevel object tracking, and this

was the baseline of this study. Then, type-1 fuzzy logic have been added by replacing

the existing rule-based engine with a semi-automatic fuzzy based rule engine. Finally,

fuzziness in this dissertation was improved by using interval type-2 fuzzy logic, and

this experiment evaluates all three approaches for global trajectory construction. Ex-

periments were conducted using both real world datasets and synthetic trajectories by

applying k-fold cross validation.

Figure 6.6 gives the results of the experiment for each datasets. Scores are evaluated

by computing Hausdorff Similarity between the extracted global trajectory and actual

trajectories using the following equations:

S = (
i∑

n=1

(

j∑
m=1

H(Tglb, Tm))/j)/i (6.4)

104

(a)

(b)

(c)

Figure 6.6: Fuzzy logic usage compared to non-fuzzy approach in trajectory construc-

tion. (a) Synthetically generated data. (b) GeoLife Trajectories dataset. (c) Marine

Cadastre dataset.

105

Table 6.4: The Number of Rules Comparison for Type-1 and Interval Type-2

Dataset Type-1 Inverval Type-2

Synthetic 41 32

GeoLife Trajectories 68 40

Marine Cadastre 24 21

where H is the number of Hausdorff Similarity, j is the number of actual trajectories

for a test scenario, and i is the number of test scenarios.

Even though interval type-2 performed best in Figure 6.6a, results are very close to

each other for with and without fuzzy logic systems. The reason for these similar

scores is that these fuzzy logic systems are built on top of the baseline by using

the synthetically generated data. The performance on the GeoLife dataset is better

than the Maritime dataset in this experiment which can be explained by the high

frequency of the GeoLife dataset. While the average interval for sensor data is around

5-10 seconds in GeoLife trajectories, the time between two maritime data is around

1-3 minutes. Therefore the construction of the trajectories on the GeoLife dataset

outperforms as it has denser data.

Table 6.4 gives the comparison of number of rules generated for each datasets on both

type-1 and interval type-2 fuzzy logic systems. It is clearly seen that the number of

rules in the rulebase is less if IT2 FLS is used instead of T1 FLS. Depending on the

rotations and differences in the navigational properties such as speed and direction

changes, number of the generated fuzzy rules are increasing or decreasing.

The number of rules in the rulebase of FLS will be less if IT2 FLS is used instead

of T1 FLS, because the ability of representing more uncertainties using the footprint

of uncertainty (FOU) which enables to cover the input/output situations with fewer

fuzzy sets. In order to justify this, assume that there was a simple trajectory such

as a straight line. We could train the T1 and IT2 fuzzy logic systems to generate

automatically the fuzzy rules as specified in Section 5.2.3.2. There would be 6 fuzzy

rules in order to setup the type-1 fuzzy logic system.

• IF sameDirection AND sameLocation AND realTime THEN sameTrajectory

106

• IF sameDirection AND sameLocation AND realTime THEN sameTrajectory

• IF similarDirection AND sameLocation AND realTime AND smallChange-

Speed THEN similarTrajectory

• IF similarDirection AND smallChangeLocation AND newTime AND small-

ChangeSpeed THEN similarTrajectory

• IF similarDirection AND bigChangeLocation AND newTime AND smallChange-

Speed THEN similarTrajectory

• IF similarDirection AND bigChangeLocation AND newTime AND smallChange-

Speed THEN differentTrajectory

• IF similarDirection AND smallChangeLocation AND realTime AND small-

ChangeSpeed THEN similarTrajectory

The interval type-2 fuzzy logic system would use only 4 fuzzy rules.

• IF sameDirection AND sameLocation AND realTime THEN sameTrajectory

• IF sameDirection AND sameLocation AND realTime THEN sameTrajectory

• IF similarDirection AND sameLocation AND realTime AND smallChange-

Speed THEN similarTrajectory

• IF similarDirection AND smallChangeLocation AND newTime AND small-

ChangeSpeed THEN similarTrajectory

• IF similarDirection AND bigChangeLocation AND newTime AND smallChange-

Speed THEN similarTrajectory

Missing two rules in IT2 FLS have been covered by the other IT2 fuzzy rules. Table

6.5 shows the mapping of how one IT2 fuzzy rule covers two T1 fuzzy rules. The

former IT2 fuzzy rule uses FOU of the Time Input MF, and the latter IT2 fuzzy rule

utilizes the ability of representing more uncertainties of the Similarity Output MF.

In order to satisfy that the results of the experiment are significant, an one-tailed

paired T-Test was conducted on the experiment results. With the t-test, we expected

107

Table 6.5: Less Number of Rules in IT2 compared to T1

IT2 Fuzzy Rule Covered Type-1 Fuzzy Rules

IF similarDirection AND small-

ChangeLocation AND newTime

AND smallChangeSpeed THEN

similarTrajectory

• IF similarDirection AND

smallChangeLocation

AND newTime AND

smallChangeSpeed THEN

similarTrajectory

• IF similarDirection AND

smallChangeLocation AND

realTime AND smallChange-

Speed THEN similarTrajec-

tory

IF similarDirection AND

bigChangeLocation AND new-

Time AND smallChangeSpeed

THEN similarTrajectory

• IF similarDirection AND

bigChangeLocation AND

newTime AND small-

ChangeSpeed THEN similar-

Trajectory

• IF similarDirection AND

bigChangeLocation AND

newTime AND small-

ChangeSpeed THEN differ-

entTrajectory

108

(a)

(b)

Figure 6.7: T-Test results. (a) For Baseline (Rule-Based Engine) and Type-1 Fuzzy

Logic. (b) For Type-1 Fuzzy Logic and Interval Type-2 Fuzzy Logic.

to show that the interval type-2 fuzzy logic statistically performs better than the type-

1 fuzzy logic, and type-1 fuzzy logic performs better than the baseline, rule-based

engine without fuzzy logic.

Microsoft Excel has been used to calculate the t-test values and Figure 6.7 gives the

T-Test results.

As the p value in Figure 6.7a is less than the 0.05 which is the scientific threshold for

T-Test, type-1 fuzzy logic algorithm significantly performs better than the baseline

algorithm which is a rule-based engine without any fuzzy logic.

Figure 6.7b is the T-Test results for type-1 fuzzy logic and interval type-2 fuzzy logic.

109

In science, 0.95 confidence is the threshold and our p value is 0.00009 which is far

less than the 0.05 which means Interval type-2 fuzzy logic statistically outperforms.

6.2.2 Fuzzy Trajectory Extraction

After introducing the fuzzy geometry, to be able to see the fuzzy trajectories, the tra-

jectory extraction code had to be adapted to export trajectories into KML not as a line,

but as a polygon. Figure 6.8 shows representation of an extracted global trajectory

as both a regular and a fuzzy trajectory on synthetically generated data. In Figure

6.8a, thick blue trajectories represent the source trajectories detected by the sensor

nodes, and the white trajectory is the extracted global trajectory. In Figure 6.8b, thin

red trajectories represent the source trajectories detected by the sensor nodes, and the

thick white trajectory is the extracted global fuzzy trajectory.

It can be seen that the last part of the fuzzy trajectory is exceptionally wider compared

to the other segments throughout the trajectory. The reason for the higher uncertainty

is some of the trajectories are ended before or after the fuzzy trajectory’s last point.

Therefore, the distance between the last point of the shorter trajectory and the longer

trajectory are mapped to the same fuzzy point that is the last point of the fuzzy trajec-

tory, so the coverage of the fuzzy point is effected by the sparsely positioned trajectory

data.

6.2.3 Prediction and Anomaly Detection Analytics

Well-known classification algorithms were used as baseline for the type-1 fuzziness

and interval type-2 fuzzy logic based classification algorithms. Experiments were

conducted to test whether some improvements could be gained in prediction perfor-

mance, or not.

Figure 6.9 shows the result of the experiments on synthetically generated data. Re-

sults show that type-1 and interval type-2 FLS perform better than the other algo-

rithms. The reason might be that these fuzzy logic systems are built using the syn-

thetic data.

110

Figure 6.10 and Figure 6.11 shows the result of the experiments on real world datasets.

Using fuzzy logic in prediction surely increased the accuracy of forecasting the ac-

tions to be taken. In the GeoLife Trajectories dataset, results show that interval type-2

FLS performs better than the type-1 FLS and most of the other algorithms. Type-1

is also better than the SMO and the Logistic Regression algorithms. In this experi-

ment, the performance on the Maritime Cadastre dataset is better than the GeoLife

Trajectories dataset which can be clarified by the blunter trajectories with more linear

fashion.

(a)

(b)

Figure 6.8: Comparison of representation of regular and fuzzy trajectories. (a) Regu-

lar trajectory as a line. (b) Fuzzy trajectory as a polygon.

111

It can be also observed that not only the fuzzy based algorithms but also the other

classification algorithms. Therefore, another reason why the algorithms outperform

on the Maritime dataset is that the distance between two different Maritime trajecto-

ries is further than the GeoLife trajectories.

In another experiment, the anomaly detection performance was analyzed by collecting

the outputs of the classification algorithms including the type-1 and interval type-2

fuzzy algorithms in order to identify whether the fuzzy logic is able to capture the

anomaly, or not.

Figure 6.12 shows results of the classifications for each algorithm on anomaly scenar-

ios. A synthetic scenario has been generated in order to produce an anomaly where

a moving object changes its trajectory from one to another. Success rate has been

calculated by whether the algorithm can detect the anomaly as soon as it starts or not.

Almost all the algorithms, except SMO and MultiLayer Perceptron, achieved to clas-

sify trajectories, but to identify the anomalies immediately, fuzzy logic algorithms,

Random Forest and Naive Bayes are the best. Logistic Regression and Multilayer

Perceptron have oscillation problem which makes them unreliable for the anomaly

detection case. Proposed IT2 FLS can be used in coordination with Random Forest

or Naive Bayes algorithms to gain some performance in trajectory analytics.

Figure 6.9: F-measure score comparison for proposed IT2 prediction algorithm on

synthetically generated data.

112

Figure 6.10: F-measure score comparison for proposed IT2 prediction algorithm on

GeoLife Trajectories dataset.

Figure 6.11: F-measure score comparison for proposed IT2 prediction algorithm on

Marine Cadastre dataset.

113

Figure 6.12: Anomaly detection success rates of fuzzy algorithms on synthetically

generated data.

The prediction intervals (PI) are composed of an upper and lower boundary with a

certain probability level. The prediction interval coverage probability (PICP) and the

prediction interval normalized average width (PINAW) metrics are the performance

indicators to quantitatively evaluate the performance of PI.

PICP is used to describe the reliability of the constructed PIs by quantifying the num-

ber of measured values belong to the interval defined by the IT2 fuzzy logic system.

PICP =
1

n

k∑
n=1

µk (6.5)

where n is the number of measurements, and µk = 1 if yk ∈ [Lk, Uk], otherwise µk

= 0. For the kth testing input, y is the target value, L and U are the lower and upper

bound of each PI. A PICP value with closer to the 1.0 has a lower false rate.

PINAW is used to measure the width of the interval and characterizes the sharpness of

the PIs. In other words, it is the average width of PIs as a percentage of the underlying

target range.

PINAW =
1

nr

k∑
n=1

(Uk − Lk) (6.6)

114

where r = ymax − ymin in which represents the range of the target values and is used

to normalize the average width of PIs.

The evaluation of the PICP and PINAW metrics of several test cases for various object

types are given in Table 6.6. It shows that most of the results were aligned with the

expected maximum coverage probability with the minimum interval width. Depend-

ing on the object type, there can be performance differences which is expected since

number of collected sensor data might be decreased and fuzziness and unpredictabil-

ity can be increased.

6.3 Remarks

Many experiments were conducted on various scenarios using real-life datasets, which

are GeoLife Trajectories and Maritime Cadastre Datasets, and as well as synthetically

created dataset using the simulator developed for this thesis. The results of the exper-

iments on both datasets show that proposed object tracking approach performs quite

well and it is robust to be used for other application domains. From the experiments

that It was observed that, the multi-layer fusion approach boosts the performance of

Table 6.6: PICP and PINAW evaluation for the IT2 fuzzy algorithm.

Object Test Cases

Type Case1 Case2 Case3

Type1:

PICP (%) 68.97 53.84 46.78

PINAW (%) 9.30 11.04 16.16

Type2:

PICP (%) 71.81 56.81 53.75

PINAW (%) 10.32 8.95 10.06

Type3:

PICP (%) 62.04 58.70 38.67

PINAW (%) 13.32 26.22 21.92

115

object tracking.

Regarding the trajectory analytics, experimental results showed that to do analytics

on trajectories there is not one best algorithm for all cases. While an algorithm is

successful for one case, it fails for the other case. Performance of the fuzzy prediction

algorithm is better than the well-known classification algorithms for our application

domain and dataset.

Lastly, interval type-2 fuzzy logic experiments validated that proposed interval type-2

fuzzy logic system performs better in prediction, and also can be used for anomaly

detection in coordination with Random Forest or Naive Bayes algorithms.

116

CHAPTER 7

CONCLUSIONS

This first aim of this thesis was to represent the wireless sensor networks with mul-

timedia data in a graph-based big data model. The implementation was composed

of two main modules. The former module was the implementation of the proposed

data model, and the latter module was the simulation which includes a simulator to

produce synthetic big sensor multimedia data and the simulation infrastructure which

represents the objects moving in a wireless multimedia sensor network.

The focus domain for this thesis was the surveillance applications, and proposed

graph-based data model was designed accordingly. The network topology and the

data flow between each sensor nodes, gateways and sink were modeled, therefore all

static and kinetic data within the WMSN was able to be stored, which can be treated

as big data. The database to store big data was the NoSQL graph database, called

OrientDB. Because graph databases are good at representation of complex relations

and scalable to store big multimedia sensor data.

The WMSN prototype system with millions of data was simulated to test the pro-

posed graph-base data model. The query performance was tested with many complex

scenarios and it was shown that generated millions of synthetic data can be efficiently

queried on proposed graph-based data.

Also, a new unsupervised object tracking approach using the big graph-based data

model was introduced. The object tracking approach includes three main algorithms:

intra-node fusion, inter-node fusion, and object trajectory construction. To validate

the proposed algorithms, several experiments was performed on different scenarios

using real datasets, GeoLife Trajectories and Marine Cadastre, as well as syntheti-

117

cally generated data using the simulator developed for this thesis. The results of the

experiments on both datasets showed that the proposed object tracking approach is

working well and is robust for use in other application domains. From the exper-

iments it was observed that the proposed multi-level fusion approach improves the

performance of object tracking.

Trajectory analyzes, such as prediction and anomaly detection, were applied on ex-

tracted global trajectories, and well-known classification algorithms were compared

for different trajectories. Experimental results showed that the best algorithm for

predicting all possible trajectories does not exist in all cases.

Afterwards, fuzzy logic was used to leverage the performance of both trajectory gen-

eration and trajectory analytics. Experiments showed that usage of fuzzy logic with

type-1 or interval type-2 provides performance improvement.

7.1 Discussion

The research in this dissertation is based on the research project supervised by TUBITAK

(The Scientific and Technological Research Council of Turkey) under Grant No.

114R082. The aim of the project was increasing accuracy of transferred information

and the wireless network energy efficiency. A wireless sensor network consuming

less energy than currently used was constructed and realized.

This dissertation starts with studies on big data analytics and how to store and utilize

the generated data in the wireless sensor network. This section is an introduction

to sensor networks, big data, NoSQL databases. After that, thesis motivation, the

problem, and contributions of this dissertation are provided.

Thereafter, graph based big data model is presented. This chapter covers comparison

of relational database and NoSQL graph datases as well as the graph database tool

selection for this thesis.

As the focus of this dissertation is data analytics, a data simulator was needed and

developed for the purpose of generating big data for a period of time. In addition to

be able to feed some external datasets in the format of wireless sensor networks, data

118

flow in the network has to be simulated as if data is collected and fused by the sensor

nodes. In this sense, a simulator is designed and implemented in Java language by

using several software products like graph databases, and publish/subscribe engines.

Then the proposed approach for object tracking and global trajectory extraction is

introduced. Baseline of the algorithm is challenged by the fuzzy logic with both

type-1 and interval type-2 systems. In this context, multi-level tracking algorithm

and fuzzy logic systems are provided in detail.

7.2 Future Work

A possible future work on analytics is to propose a hybrid approach using the best

performing classification algorithm according to the nature of the trajectory. This

way, trajectory analytics can be utilized by the advantage of various algorithms.

There are other machine learning algorithms based on Long-Short Term Memory

(LSTM) or Recurrent Neural Networks (RNNs) have been published recently for tra-

jectory prediction. It can be considered to analyze these new algorithms to improve

the performance of the proposed approach.

In addition, as another possible research topic can be usage of container based de-

ployments. Installation of OrientDB and Apache ActiveMQ servers can be moved

into the Docker containers which can provide easy to go setup and scaling.

Another future work can be investigation of automatically calculating the ε and Node-

Buffer parameters based on the dataset. This way, some enhancement in the perfor-

mance of the algorithms can be achieved.

119

120

REFERENCES

[1] M. Civelek, A Lightweight Wireless Multimedia Sensor Network Architecture

With Object Detection And Classification Capability. PhD thesis, Middle East

Technical University, 2017.

[2] K. Ashton, “That ‘internet of things’ thing,” RFiD Journal, vol. 22, no. 7,

pp. 97–114, 2009.

[3] P. Patel, A. Pathak, T. Teixeira, and V. Issarny, “Towards application develop-

ment for the internet of things,” in Proceedings of the 8th Middleware Doctoral

Symposium, p. 5, ACM, 2011.

[4] S. Alam, M. M. Chowdhury, and J. Noll, “Senaas: An event-driven sensor vir-

tualization approach for internet of things cloud,” in Networked Embedded Sys-

tems for Enterprise Applications (NESEA), 2010 IEEE International Conference

on, pp. 1–6, IEEE, 2010.

[5] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Com-

puter networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[6] S. Hong, D. Kim, M. Ha, S. Bae, S. J. Park, W. Jung, and J.-E. Kim, “Snail:

an ip-based wireless sensor network approach to the internet of things,” IEEE

Wireless Communications, vol. 17, no. 6, pp. 34–42, 2010.

[7] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multi-

media sensor networks,” Computer networks, vol. 51, no. 4, pp. 921–960, 2007.

[8] C. Perera, P. P. Jayaraman, A. Zaslavsky, D. Georgakopoulos, and P. Chris-

ten, “Sensor discovery and configuration framework for the internet of things

paradigm,” in Internet of Things (WF-IoT), 2014 IEEE World Forum on, pp. 94–

99, IEEE, 2014.

[9] X. Li and S. Moh, “Middleware systems for wireless sensor networks: A com-

121

parative survey,” Contemporary Engineering Sciences, vol. 7, no. 13, pp. 649–

660, 2014.

[10] R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Franklin, and S. Shenker,

“The sensor network as a database,” tech. rep., Citeseer, 2002.

[11] I. Robinson, J. Webber, and E. Eifrem, Graph Databases: New Opportunities

for Connected Data. " O’Reilly Media, Inc.", 2015.

[12] A. Moniruzzaman and S. A. Hossain, “Nosql database: New era of databases for

big data analytics-classification, characteristics and comparison,” arXiv preprint

arXiv:1307.0191, 2013.

[13] M. Chen, S. Mao, and Y. Liu, “Big data: a survey,” Mobile Networks and Appli-

cations, vol. 19, no. 2, pp. 171–209, 2014.

[14] J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql database,” in Pervasive

computing and applications (ICPCA), 2011 6th international conference on,

pp. 363–366, IEEE, 2011.

[15] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins, “A compar-

ison of a graph database and a relational database: a data provenance perspec-

tive,” in Proceedings of the 48th annual Southeast regional conference, p. 42,

ACM, 2010.

[16] U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, “Critical analysis

of big data challenges and analytical methods,” Journal of Business Research,

vol. 70, pp. 263–286, 2017.

[17] S. Khalifa, Y. Elshater, K. Sundaravarathan, A. Bhat, P. Martin, F. Imam,

D. Rope, M. Mcroberts, and C. Statchuk, “The six pillars for building big data

analytics ecosystems,” ACM Computing Surveys (CSUR), vol. 49, no. 2, p. 33,

2016.

[18] M. H. ur Rehman, V. Chang, A. Batool, and T. Y. Wah, “Big data reduction

framework for value creation in sustainable enterprises,” International Journal

of Information Management, vol. 36, no. 6, pp. 917–928, 2016.

122

[19] S. A. Ahmed, D. P. Dogra, S. Kar, and P. P. Roy, “Trajectory-based surveil-

lance analysis: A survey,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 29, pp. 1985–1997, July 2019.

[20] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[21] G. H. John and P. Langley, “Estimating continuous distributions in bayesian

classifiers,” in Proceedings of the Eleventh conference on Uncertainty in artifi-

cial intelligence, pp. 338–345, Morgan Kaufmann Publishers Inc., 1995.

[22] R. Kohavi, “The power of decision tables,” in Proceedings of the 8th European

Conference on Machine Learning, ECML’95, (Berlin, Heidelberg), pp. 174–

189, Springer-Verlag, 1995.

[23] S. Le Cessie and J. C. Van Houwelingen, “Ridge estimators in logistic regres-

sion,” Applied statistics, pp. 191–201, 1992.

[24] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, and classification,”

IEEE Transactions on neural networks, vol. 3, no. 5, pp. 683–697, 1992.

[25] T. Hastie and R. Tibshirani, “Classification by pairwise coupling,” in Advances

in neural information processing systems, pp. 507–513, 1998.

[26] J. M. Mendel, “Fuzzy logic systems for engineering: a tutorial,” Proceedings of

the IEEE, vol. 83, pp. 345–377, March 1995.

[27] J. M. Mendel and R. I. B. John, “Type-2 fuzzy sets made simple,” IEEE Trans-

actions on Fuzzy Systems, vol. 10, pp. 117–127, April 2002.

[28] H. Hagras, “Type-2 flcs: A new generation of fuzzy controllers,” IEEE Compu-

tational Intelligence Magazine, vol. 2, pp. 30–43, Feb 2007.

[29] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and

design,” Trans. Fuz Sys., vol. 8, pp. 535–550, Oct. 2000.

[30] O. Diallo, J. J. Rodrigues, and M. Sene, “Real-time data management on wire-

less sensor networks: a survey,” Journal of Network and Computer Applications,

vol. 35, no. 3, pp. 1013–1021, 2012.

123

[31] C. Hu, Z. Xu, Y. Liu, L. Mei, L. Chen, and X. Luo, “Semantic link network-

based model for organizing multimedia big data,” IEEE Transactions on Emerg-

ing Topics in Computing, vol. 2, no. 3, pp. 376–387, 2014.

[32] B. Bostan-Korpeoglu, A. Yazici, I. Korpeoglu, and R. George, “A new approach

for information processing inwireless sensor network,” in 22nd International

Conference on Data Engineering Workshops (ICDEW’06), pp. 34–34, IEEE,

2006.

[33] P. Zhang, Z. Yan, and H. Sun, “A novel architecture based on cloud com-

puting for wireless sensor network,” in Proceedings of the 2nd International

Conference on Computer Science and Electronics Engineering. Atlantis Press,

pp. 472–475, 2013.

[34] Y. Li, C. Wu, L. Guo, C.-H. Lee, and Y. Guo, “Wiki-health: A big data platform

for health,” Cloud Computing Applications for Quality Health Care Delivery,

p. 59, 2014.

[35] C. Jardak, P. Mähönen, and J. Riihijärvi, “Spatial big data and wireless net-

works: experiences, applications, and research challenges,” IEEE Network,

vol. 28, no. 4, pp. 26–31, 2014.

[36] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM Comput-

ing Surveys (CSUR), vol. 40, no. 1, p. 1, 2008.

[37] M. Levene and G. Loizou, “A graph-based data model and its ramifications,”

IEEE Transactions on Knowledge and Data Engineering, vol. 7, no. 5, pp. 809–

823, 1995.

[38] A. Manjeshwar and D. P. Agrawal, “Apteen: A hybrid protocol for efficient

routing and comprehensive information retrieval in wireless sensor networks.,”

in Ipdps, vol. 2, p. 48, 2002.

[39] I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline, “Pipenet: A wireless

sensor network for pipeline monitoring,” in 2007 6th International Symposium

on Information Processing in Sensor Networks, pp. 264–273, IEEE, 2007.

124

[40] E. Felemban, “Advanced border intrusion detection and surveillance using wire-

less sensor network technology,” International Journal of Communications,

Network and System Sciences, vol. 6, no. 5, p. 251, 2013.

[41] P. Chatterjee, S. C. Ghosh, and N. Das, “Load balanced coverage with graded

node deployment in wireless sensor networks,” IEEE Transactions on Multi-

Scale Computing Systems, vol. 3, no. 2, pp. 100–112, 2017.

[42] M. L. Ruz, J. Garrido, J. Jiménez, R. Virrankoski, and F. Vázquez, “Simulation

tool for the analysis of cooperative localization algorithms for wireless sensor

networks,” Sensors, vol. 19, no. 13, p. 2866, 2019.

[43] S. A. Sert, H. Bagci, and A. Yazici, “Mofca: Multi-objective fuzzy cluster-

ing algorithm for wireless sensor networks,” Applied Soft Computing, vol. 30,

pp. 151–165, 2015.

[44] S. Hadim and N. Mohamed, “Middleware: Middleware challenges and ap-

proaches for wireless sensor networks,” IEEE distributed systems online, vol. 7,

no. 3, p. 1, 2006.

[45] L.-Y. Ho, J.-J. Wu, and P. Liu, “Distributed graph database for large-scale so-

cial computing,” in Cloud Computing (CLOUD), 2012 IEEE 5th International

Conference on, pp. 455–462, IEEE, 2012.

[46] E. Masazade, R. Niu, and P. K. Varshney, “Dynamic bit allocation for object

tracking in wireless sensor networks,” IEEE Transactions on Signal Processing,

vol. 60, no. 10, pp. 5048–5063, 2012.

[47] O. Ozdemir, R. Niu, and P. K. Varshney, “Dynamic bit allocation for tar-

get tracking in sensor networks with quantized measurements,” in Acoustics

Speech and Signal Processing (ICASSP), 2010 IEEE International Conference

on, pp. 2906–2909, IEEE, 2010.

[48] G. Kayumbi, N. Anjum, and A. Cavallaro, “Global trajectory reconstruction

from distributed visual sensors,” in Distributed Smart Cameras, 2008. ICDSC

2008. Second ACM/IEEE International Conference on, pp. 1–8, IEEE, 2008.

125

[49] N. Anjum and A. Cavallaro, “Trajectory association and fusion across partially

overlapping cameras,” in Advanced Video and Signal Based Surveillance, 2009.

AVSS’09. Sixth IEEE International Conference on, pp. 201–206, IEEE, 2009.

[50] D. Cheng, Y. Gong, J. Wang, Q. Hou, and N. Zheng, “Part-aware trajecto-

ries association across non-overlapping uncalibrated cameras,” Neurocomput-

ing, vol. 230, pp. 30–39, 2017.

[51] M. Fayyaz, “Classification of object tracking techniques in wireless sensor net-

works,” Wireless Sensor Network, vol. 3, no. 04, p. 121, 2011.

[52] J. D. Mazimpaka and S. Timpf, “Trajectory data mining: A review of methods

and applications,” Journal of Spatial Information Science, vol. 2016, no. 13,

pp. 61–99, 2016.

[53] A. Valsamis, K. Tserpes, D. Zissis, D. Anagnostopoulos, and T. Varvarigou,

“Employing traditional machine learning algorithms for big data streams anal-

ysis: the case of object trajectory prediction,” Journal of Systems and Software,

vol. 127, pp. 249–257, 2017.

[54] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “Stgat: Modeling spatial-temporal

interactions for human trajectory prediction,” in Proceedings of the IEEE Inter-

national Conference on Computer Vision, pp. 6272–6281, 2019.

[55] C. E. Verdonk Gallego, V. F. Gómez Comendador, M. A. Amaro Carmona,

R. M. Arnaldo Valdés, F. J. Sáez Nieto, and M. García Martínez, “A machine

learning approach to air traffic interdependency modelling and its application to

trajectory prediction,” Transportation Research Part C: Emerging Technologies,

vol. 107, pp. 356 – 386, 2019.

[56] B. Zhu, C. Qian, X. Pan, and H. Chen, “A trajectory-based deep sequential

method for customer churn prediction,” in Proceedings of the 2020 5th Inter-

national Conference on Machine Learning Technologies, ICMLT 2020, (New

York, NY, USA), p. 114–118, Association for Computing Machinery, 2020.

[57] C. Qian, R. Jiang, Y. Long, Q. Zhang, M. Li, and L. Zhang, “Vehicle trajectory

modelling with consideration of distant neighbouring dependencies for desti-

126

nation prediction,” International Journal of Geographical Information Science,

vol. 33, no. 10, pp. 2011–2032, 2019.

[58] S. Pandhre, H. Mittal, M. Gupta, and V. N. Balasubramanian, “Stwalk: Learning

trajectory representations in temporal graphs,” in Proceedings of the ACM In-

dia Joint International Conference on Data Science and Management of Data,

CoDS-COMAD ’18, (New York, NY, USA), p. 210–219, Association for Com-

puting Machinery, 2018.

[59] Y. Ji, L. Wang, W. Wu, H. Shao, and Y. Feng, “A method for lstm-based

trajectory modeling and abnormal trajectory detection,” IEEE Access, vol. 8,

pp. 104063–104073, 2020.

[60] S. Guillaume and B. Charnomordic, “Learning interpretable fuzzy inference

systems with fispro,” International Journal of Information Sciences, vol. 181,

no. 20, pp. 4409–4427, 2011. Special Issue on Interpretable Fuzzy Systems.

[61] S. Guillaume and B. Charnomordic, “Fuzzy inference systems: an integrated

modelling environment for collaboration between expert knowledge and data

using fispro,” Expert Systems with Applications, vol. 39, pp. 8744–8755, August

2012.

[62] J. Hohensohn and J. M. Mendel, “Two-pass orthogonal least-squares algorithm

to train and reduce fuzzy logic systems,” Proceedings of 1994 IEEE 3rd Inter-

national Fuzzy Systems Conference, pp. 696–700 vol.1, 1994.

[63] D. G. Lowe, “Object recognition from local scale-invariant features,” in Pro-

ceedings of the Seventh IEEE International Conference on Computer Vi-

sion(ICCV), vol. 02, p. 1150, 09 1999.

[64] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing im-

ages using the hausdorff distance,” IEEE Transactions on pattern analysis and

machine intelligence, vol. 15, no. 9, pp. 850–863, 1993.

[65] K. Mironov and M. Pongratz, “Fast knn-based prediction for the trajectory of a

thrown body,” in 2016 24th Mediterranean Conference on Control and Automa-

tion (MED), pp. 512–517, 2016.

127

[66] G. Xu, X. Wang, X. Guo, S. Liang, and F. Wei, “The model of potential vi-

olation discovery based on knn and spatio-temporal trajectory of commercial

vehicle,” in 2019 IEEE Intl Conf on Parallel Distributed Processing with Ap-

plications, Big Data Cloud Computing, Sustainable Computing Communica-

tions, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom),

pp. 1466–1471, 2019.

[67] A. L. Duca, C. Bacciu, and A. Marchetti, “A k-nearest neighbor classifier for

ship route prediction,” in OCEANS 2017 - Aberdeen, pp. 1–6, 2017.

[68] H. Ramadhan, Y. Yustiawan, and J. Kwon, “A constrained k-nearest neighbor

approach for semantic indoor trajectory extraction,” in 2020 IEEE International

Conference on Big Data and Smart Computing (BigComp), pp. 13–16, 2020.

[69] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic systems,” IEEE

transactions on Fuzzy Systems, vol. 7, no. 6, pp. 643–658, 1999.

[70] D. Wu, “On the fundamental differences between interval type-2 and type-1

fuzzy logic controllers,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 5,

pp. 832–848, 2012.

[71] H. Hagras, “Type-2 flcs: A new generation of fuzzy controllers,” IEEE Compu-

tational Intelligence Magazine, vol. 2, no. 1, pp. 30–43, 2007.

[72] J. Buckley and E. Eslami, “Fuzzy plane geometry i: Points and lines,” Fuzzy

Sets and Systems, vol. 86, no. 2, pp. 179 – 187, 1997.

[73] D. Ghosh and D. Chakraborty, “Analytical fuzzy plane geometry i,” Fuzzy Sets

and Systems, vol. 209, pp. 66 – 83, 2012. Theme : Fuzzy numbers and Analysis.

[74] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based approach

for online lane change intention prediction,” in Intelligent Vehicles Symposium

(IV), 2013 IEEE, pp. 797–802, IEEE, 2013.

[75] B. T. Morris and M. M. Trivedi, “Learning and classification of trajectories in

dynamic scenes: A general framework for live video analysis,” in Advanced

Video and Signal Based Surveillance, 2008. AVSS’08. IEEE Fifth International

Conference on, pp. 154–161, IEEE, 2008.

128

[76] S. Agrawal and J. Agrawal, “Survey on anomaly detection using data mining

techniques,” Procedia Computer Science, vol. 60, pp. 708–713, 2015.

[77] Y. Zheng, X. Xie, and W.-Y. Ma, “Geolife: A collaborative social networking

service among user, location and trajectory.,” IEEE Data Eng. Bull., vol. 33,

no. 2, pp. 32–39, 2010.

[78] U. C. Guard, “Vessel traffic data,” 2009-2017.

[79] S. Vasuhi and V. Vaidehi, “Target tracking using interactive multiple model for

wireless sensor network,” Information Fusion, vol. 27, pp. 41–53, 2016.

[80] K. Hirpara and K. Rana, “Energy-efficient constant gain kalman filter based

tracking in wireless sensor network,” Wireless Communications and Mobile

Computing, vol. 2017, 2017.

[81] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “MOT16: A bench-

mark for multi-object tracking,” arXiv:1603.00831 [cs], Mar. 2016. arXiv:

1603.00831.

[82] M. A. Brovelli, M. Minghini, M. Molinari, and P. Mooney, “Towards an auto-

mated comparison of openstreetmap with authoritative road datasets,” Transac-

tions in GIS, vol. 21, no. 2, pp. 191–206, 2017.

[83] T. Zhang, S. Liu, C. Xu, B. Liu, and M.-H. Yang, “Correlation particle filter

for visual tracking,” IEEE Transactions on Image Processing, vol. 27, no. 6,

pp. 2676–2687, 2018.

[84] P. Prasad and A. Gupta, “Moving object tracking and detection based on kalman

filter and saliency mapping,” in Data Engineering and Intelligent Computing,

pp. 639–646, Springer, 2018.

129

130

APPENDIX A

FUZZY RULES

A.1 Type-1 Fuzzy Rules

Input Member Functions:

• Direction MF - [sameDirection, similarDirection, differentDirection]

• Time MF - [newTime, oldTime, realTime]

• Location MF - [sameLocation, smallChange, bigChange]

• Speed MF - [sameSpeed, smallChange, bigChange]

Output Member Functions:

• Similarity MF - [sameTrajectory, differentTrajectory]

131

Table A.1: T1 Fuzzy Rules Used in Intra-Node Fusion (Part 1/2)

Direction

(Input)

Location

(Input)

Time

(Input)

Speed

(Input)

Similarity

(Output)

sameDirection sameLocation realTime - sameTrajectory

differentDirection sameLocation realTime smallChange similarTrajectory

differentDirection smallChange newTime smallChange similarTrajectory

differentDirection bigChange newTime smallChange similarTrajectory

differentDirection bigChange newTime smallChange differentTrajectory

similarDirection sameLocation realTime smallChange similarTrajectory

similarDirection smallChange newTime smallChange similarTrajectory

similarDirection bigChange newTime smallChange similarTrajectory

similarDirection bigChange newTime smallChange differentTrajectory

similarDirection sameLocation realTime sameSpeed similarTrajectory

differentDirection sameLocation realTime sameSpeed similarTrajectory

similarDirection smallChange newTime bigChange similarTrajectory

similarDirection bigChange newTime bigChange similarTrajectory

similarDirection smallChange newTime sameSpeed similarTrajectory

similarDirection bigChange newTime sameSpeed similarTrajectory

differentDirection smallChange newTime sameSpeed similarTrajectory

similarDirection sameLocation newTime smallChange similarTrajectory

similarDirection sameLocation realTime bigChange similarTrajectory

similarDirection bigChange newTime bigChange differentTrajectory

similarDirection bigChange newTime sameSpeed differentTrajectory

sameDirection smallChange newTime sameSpeed similarTrajectory

sameDirection bigChange newTime smallChange similarTrajectory

sameDirection smallChange newTime smallChange similarTrajectory

sameDirection bigChange newTime smallChange differentTrajectory

sameDirection bigChange newTime bigChange differentTrajectory

132

Table A.2: T1 Fuzzy Rules Used in Intra-Node Fusion (Part 2/2)

Direction

(Input)

Location

(Input)

Time

(Input)

Speed

(Input)

Similarity

(Output)

sameDirection sameLocation newTime bigChange similarTrajectory

sameDirection smallChange newTime bigChange similarTrajectory

similarDirection smallChange newTime smallChange differentTrajectory

differentDirection smallChange newTime smallChange differentTrajectory

similarDirection sameLocation newTime smallChange differentTrajectory

differentDirection sameLocation newTime smallChange differentTrajectory

sameDirection sameLocation newTime smallChange differentTrajectory

sameDirection smallChange newTime smallChange differentTrajectory

differentDirection sameLocation newTime smallChange similarTrajectory

similarDirection smallChange newTime bigChange differentTrajectory

similarDirection sameLocation newTime bigChange differentTrajectory

sameDirection sameLocation newTime bigChange differentTrajectory

differentDirection sameLocation newTime bigChange differentTrajectory

sameDirection smallChange newTime bigChange differentTrajectory

differentDirection smallChange newTime bigChange differentTrajectory

differentDirection bigChange newTime bigChange differentTrajectory

133

Table A.3: T1 Fuzzy Rules Used in Inter-Node Fusion

Direction

(Input)

Location

(Input)

Time

(Input)

Speed

(Input)

Similarity

(Output)

sameDirection sameLocation realTime - sameTrajectory

differentDirection sameLocation realTime smallChange sameTrajectory

differentDirection smallChange newTime smallChange sameTrajectory

differentDirection bigChange newTime smallChange sameTrajectory

differentDirection bigChange newTime smallChange similarTrajectory

similarDirection smallChange newTime smallChange sameTrajectory

similarDirection sameLocation realTime smallChange sameTrajectory

similarDirection bigChange newTime smallChange sameTrajectory

similarDirection bigChange newTime smallChange similarTrajectory

similarDirection sameLocation newTime smallChange sameTrajectory

similarDirection sameLocation realTime sameSpeed sameTrajectory

similarDirection smallChange newTime sameSpeed sameTrajectory

similarDirection bigChange newTime sameSpeed sameTrajectory

similarDirection smallChange newTime bigChange similarTrajectory

differentDirection sameLocation realTime sameSpeed sameTrajectory

differentDirection smallChange newTime sameSpeed sameTrajectory

similarDirection smallChange newTime bigChange sameTrajectory

similarDirection sameLocation realTime bigChange sameTrajectory

similarDirection bigChange newTime bigChange sameTrajectory

differentDirection sameLocation realTime bigChange sameTrajectory

sameDirection smallChange newTime sameSpeed sameTrajectory

sameDirection smallChange newTime smallChange sameTrajectory

sameDirection bigChange newTime smallChange sameTrajectory

sameDirection bigChange newTime smallChange similarTrajectory

differentDirection sameLocation newTime smallChange sameTrajectory

134

A.2 Interval Type-2 Fuzzy Rules

Input Member Functions:

• Direction MF - [sameDirection, similarDirection, differentDirection]

• Time MF - [newTime, oldTime, realTime]

• Location MF - [sameLocation, smallChange, bigChange]

• Speed MF - [sameSpeed, smallChange, bigChange]

Output Member Functions:

• Similarity MF - [sameTrajectory, similarTrajectory, differentTrajectory]

135

Table A.4: IT2 Fuzzy Rules Used in Intra-Node Fusion (Part 1/2)

Direction

(Input)

Location

(Input)

Time

(Input)

Speed

(Input)

Similarity

(Output)

sameDirection sameLocation realTime sameSpeed sameTrajectory

differentDirection sameLocation realTime smallChange similarTrajectory

differentDirection smallChange newTime smallChange similarTrajectory

differentDirection bigChange newTime smallChange similarTrajectory

similarDirection sameLocation realTime smallChange similarTrajectory

similarDirection smallChange newTime smallChange similarTrajectory

similarDirection bigChange newTime smallChange similarTrajectory

similarDirection sameLocation newTime smallChange similarTrajectory

similarDirection smallChange newTime sameSpeed similarTrajectory

similarDirection sameLocation realTime bigChange similarTrajectory

similarDirection smallChange newTime bigChange similarTrajectory

similarDirection bigChange newTime bigChange similarTrajectory

similarDirection smallChange realTime bigChange differentTrajectory

similarDirection bigChange newTime sameSpeed similarTrajectory

differentDirection sameLocation realTime sameSpeed similarTrajectory

differentDirection smallChange newTime sameSpeed similarTrajectory

differentDirection bigChange newTime sameSpeed differentTrajectory

sameDirection smallChange newTime smallChange similarTrajectory

sameDirection smallChange newTime sameSpeed similarTrajectory

sameDirection bigChange newTime sameSpeed similarTrajectory

differentDirection sameLocation realTime bigChange similarTrajectory

similarDirection sameLocation realTime sameSpeed similarTrajectory

sameDirection bigChange newTime smallChange differentTrajectory

sameDirection sameLocation newTime bigChange similarTrajectory

differentDirection sameLocation newTime smallChange differentTrajectory

136

Table A.5: IT2 Fuzzy Rules Used in Intra-Node Fusion (Part 2/2)

Direction

(Input)

Location

(Input)

Time

(Input)

Speed

(Input)

Similarity

(Output)

sameDirection sameLocation newTime smallChange differentTrajectory

differentDirection bigChange newTime bigChange differentTrajectory

sameDirection bigChange newTime bigChange differentTrajectory

sameDirection smallChange newTime bigChange differentTrajectory

differentDirection sameLocation newTime bigChange differentTrajectory

differentDirection smallChange newTime bigChange differentTrajectory

similarDirection sameLocation newTime bigChange differentTrajectory

137

Table A.6: IT2 Fuzzy Rules Used in Inter-Node Fusion

Direction

(Input)

Location

(Input)

Time

(Input)

Speed

(Input)

Similarity

(Output)

sameDirection sameLocation realTime sameSpeed sameTrajectory

differentDirection sameLocation realTime smallChange sameTrajectory

differentDirection smallChange newTime smallChange sameTrajectory

similarDirection sameLocation realTime smallChange sameTrajectory

differentDirection bigChange newTime smallChange sameTrajectory

similarDirection smallChange newTime smallChange sameTrajectory

similarDirection bigChange newTime smallChange sameTrajectory

similarDirection smallChange newTime sameSpeed sameTrajectory

similarDirection sameLocation realTime sameSpeed sameTrajectory

similarDirection sameLocation realTime bigChange similarTrajectory

similarDirection smallChange newTime bigChange similarTrajectory

similarDirection smallChange realTime bigChange sameTrajectory

similarDirection bigChange newTime bigChange sameTrajectory

differentDirection sameLocation realTime sameSpeed sameTrajectory

differentDirection smallChange newTime sameSpeed sameTrajectory

differentDirection sameLocation realTime bigChange sameTrajectory

sameDirection smallChange newTime sameSpeed sameTrajectory

similarDirection bigChange newTime sameSpeed sameTrajectory

sameDirection sameLocation realTime smallChange sameTrajectory

sameDirection bigChange newTime sameSpeed sameTrajectory

sameDirection smallChange newTime smallChange sameTrajectory

sameDirection bigChange newTime smallChange sameTrajectory

138

APPENDIX B

COMPLEXITY ANALYSIS OF ALGORITHMS

Analysis of the algorithms is an important task in complexity theory to provide an es-

timation of the computer resources required by an algorithm while solving a problem.

Algorithm analysis is the determination of the amount of time known as time com-

plexity, which is the efficiency or execution time of an algorithm listed as a function

that relates the input length to the number of steps. In other words, it is the process

of analyzing the algorithm’s problem-solving capacity in terms of the size of mem-

ory required and the time needed during computation. In general, we perform the

following types of analysis:

• Worst case, the maximum number of steps performed for execution

• Best case, the minimum number of steps performed for execution

• Average case, an average number of steps needed for execution

To be able to asses the resource consumed by an algorithm while execution, there are

several strategies to be used and Asymptotic Analysis is one of them for assessment

of the complexity of the algorithms.

The asymptotic behavior of a function refers to the growth of that function when

the number of steps becomes large. We generally ignore small values of n, as we

generally want to estimate the slowness of the program on large inputs.

139

B.1 Rule Engine Algorithm

Rule Engine algorithm iterates over the list of rules and executes each rule which is

an execution of an instruction.

As shown in the below figure that the 10th and 18th lines of the algorithm iterates n

times, the complexity of this algorithm is O(n).

Figure B.1: Complexity analysis of Rule Engine algorithm.

140

B.2 Intra-Node Fusion Algorithm

Intra-Node Fusion algorithm iterates over the trajectory list and uses Rule Engine

algorithm to decide whether trajectories can be merged or not.

As shown in the below figure that the 3rd line iterates n times over the ruleEngine

algorithm whose complexity is O(n), the complexity of this algorithm is O(n2).

Figure B.2: Complexity analysis of Intra-Node Fusion algorithm.

141

B.3 Inter-Node Fusion Algorithm

Inter-Node Fusion algorithm iterates over the neighbor sensor nodes to find the similar

trajectories by comparing the trajectories using the rule engine.

As shown in the below figure that the 4th line iterates over the neighbor sensor nodes,

which is a constant number of nodes (1 <= c <= 8), to compare the trajectories with

each other whose complexity is O(n2), the complexity of this algorithm is O(c.n2),

which is O(n2).

Figure B.3: Complexity analysis of Inter-Node Fusion algorithm.

142

B.4 Object Trajectory Construction Algorithm

Object Trajectory Construction algorithm iterates over the inter-node trajectories to

find the matching global trajectories.

As shown in the below figure that the 7th line iterates over the existing global trajec-

tories, which is a constant number of global trajectories (1 <= c <= 10), to compare

with the candidate trajectories by using the Hausdorff Similarity algorithm whose

complexity is linear, the complexity of this algorithm isO(c.n2), which is stillO(n2).

Figure B.4: Complexity analysis of Object Trajectory Construction algorithm.

143

144

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Küçükkeçeci, Cihan

Nationality: Turkish

Date and Place of Birth: 1983, Konya

Marital Status: Married

Phone: +905326163114

EDUCATION

Degree Institution Year of Graduation

M.Sc. Computer Engineering, Bilkent University 2007

B.Sc. Computer Engineering, Hacettepe University 2005

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2019-Present Realdolmen NV Integration Architect/Technical Lead

2017-2019 Luciad NV Senior Software Engineer

2015-2017 Ayesaş Project Manager/Senior Software Expert Engineer

2012-2015 ATOS Software Team Lead/Senior Software Engineer

2009-2012 Milsoft Lead Software Engineer

2008-2009 Turkish Army Computer Engineer (Military Service)

2005-2007 Bilkent University Research Assistant/Software Engineer

145

PUBLICATIONS

International Journal Publications

C. Küçükkeçeci and A. Yazici, “Multilevel Object Tracking in Wireless Multimedia

Sensor Networks for Surveillance Applications Using Graph-based Big Data.“ IEEE

Access, 2019.

C. Küçükkeçeci and A. Yazıcı, “Big data model simulation on a graph database for

surveillance in wireless multimedia sensor networks,” Big Data Research, vol. 11,

pp. 33 – 43, 2018.

International Conference Publications

C. Küçükkeçeci and A. Yazici, “A graph-based big data model for wireless multi-

media sensor networks,“ in Advances in Big Data - Proceedings of the 2nd INNS

Conference on Big Data, October 23-25, 2016, Thessaloniki, Greece, pp. 205–215.

146

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation and Problem
	Contributions
	Overview of the Thesis
	Declaration

	BACKGROUND AND RELATED WORK
	Internet of Things
	Wireless Multimedia Sensor Networks
	NoSQL Graph Databases
	Big Data
	Big Data Analytics
	Machine Learning Algorithms
	Fuzzy Logic System

	GRAPH-BASED DATA MODEL
	Overview
	The Graph-Based Big Data Model
	Graph Database Selection
	Model Implementation Over Graph Database
	Experimental Work
	Comparison to Relational Data Model
	Concepts Based Query
	Video Based Query
	Recursive Query

	Doubling Sensed Raw Data Size

	Remarks

	DATA SIMULATION
	Reference WSN System
	Generic Infrastructure for Simulator
	System Architecture
	Simulation
	Network Topology Simulation
	Data Flow Simulation
	Scenario Generator

	A Case Study: Surveillance Application
	Simulator Application
	Remarks

	OBJECT TRACKING AND TRAJECTORY ANALYTICS
	Overview
	Object Tracking
	Intra-Node Fusion
	Inter-Node Fusion
	Rule Engine
	Definitions
	Rule Generation and Implementation
	Sample Scenario Execution

	Object Trajectory Construction

	Interval Type-2 (IT2) Fuzzy Logic Trajectory Analytics
	Fuzzy Geometry
	Extending Object Tracking with Fuzziness
	IT2 Fuzzy Logic based Classification
	Trajectory Prediction
	Anomaly Detection

	Real World Use Cases
	GeoLife Dataset
	Marine Cadastre Dataset

	Remarks

	EVALUATION
	Multilevel Object Tracking Experiments
	Synthetic Data
	Real World Dataset

	Fuzzy Logic Experiments
	Global Trajectory Construction
	Fuzzy Trajectory Extraction
	Prediction and Anomaly Detection Analytics

	Remarks

	CONCLUSIONS
	Discussion
	Future Work

	REFERENCES
	FUZZY RULES
	Type-1 Fuzzy Rules
	Interval Type-2 Fuzzy Rules

	COMPLEXITY ANALYSIS OF ALGORITHMS
	Rule Engine Algorithm
	Intra-Node Fusion Algorithm
	Inter-Node Fusion Algorithm
	Object Trajectory Construction Algorithm

	CURRICULUM VITAE

