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ABSTRACT

STUDIES ON NON-WEAKLY REGULAR BENT FUNCTIONS AND
RELATED STRUCTURES

Pelen, Rumi Melih
Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Ferruh Özbudak

July 2020, 84 pages

Interest in bent functions over finite fields arises both from mathematical theory and

practical applications. There has been lots of literature addressing various properties

of bent functions. They have a number of applications consisting of coding theory,

cryptography, and sequence designs. They’re divided into four subclasses: regular

bent functions that are contained within the class of weakly regular bent functions

that are contained within the class of dual-bent functions. Additionally, there are

non-weakly regular bent functions with no intersection with weakly regular, but an

intersection with the class of dual-bent functions. The present thesis studies various

combinatorial properties of non-weakly regular bent functions over finite fields.

The principal result in the thesis is the solution of the open problem "Is there any non-

weakly regular bent function f for which the dual f ∗ is weakly regular?" which is

proposed by Çeşmelioğlu, Meidl and Pott. We also generalize this result to plateaued

functions.

For an arbitray non-weakly regular bent function f , we define the partition B+(f)
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and B−(f) of Fpn . Then, we show that, if the corresponding partition for a non-

weakly regular bent function in the GMMF class gives a partial difference set then

it is trivial. Moreover, we exhibit that these subsets associated with the two of the

recognized sporadic examples of non-weakly regular bent functions correspond to

non-trivial partial difference sets, therefore, correspond to non-trivial strongly regular

graphs.

For the ternary non-weakly regular bent functions in a subclass of the GMMF class,

we also represent a construction method of two infinite families of translation asso-

ciation schemes of classes 5 and 6 in odd and even dimensions respectively. Further-

more, fusing the first or last three non-trivial relations of those association schemes

we obtain association schemes of classes 3 and 4.

Finally, for a non-weakly regular bent function f satisfying certain conditions, we

construct three-weight linear codes on the subsets B+(f) and B−(f) by using one of

the known conventional construction methods. Moreover, we determine the weight

distribution of the corresponding three-weight linear codes in the case of f belongs

to a subclass of the GMMF class. In addition to these, we prove that our construction

yields minimal linear codes nearly in all cases.

Keywords: bent, non-weakly regular bent, partial difference set, strongly regular

graph, association scheme, linear codes, minimal linear codes
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ÖZ

ZAYIF DÜZENLİ OLMAYAN BENT FONKSİYONLAR VE ALAKALI
YAPILAR ÜZERİNE ÇALIŞMALAR

Pelen, Rumi Melih
Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Ferruh Özbudak

Temmuz 2020 , 84 sayfa

Bent fonksiyonlara ilgi hem matematiksel teori hem de pratik uygulamalardan kay-

naklanıyor. Şu ana kadar, bent fonksiyonların çeşitli özelliklerini ele alan birçok yazılı

kaynak oldu. Kodlama teorisi, kriptografi ve dizi inşasını da içeren çeşitli uygulama-

ları var. Bent fonksiyonlar dört alt sınıfa ayrılıyor; düzenli bent fonksiyonlar zayıf

düzenli bent fonksiyonların, zayıf düzenli bent fonksiyonlar dual bent fonksiyonların

içinde kalıyor. Bunlara ek olarak bir de zayıf düzenli bent fonksiyonlarla kesişimi

olmayıp dual bent fonksiyonlar sınıfı ile kesişimi olan zayıf düzenli olmayan bent

fonksiyonlar var. Bu tez çalışması, sonlu cisimler üzerindeki zayıf düzenli olmayan

bent fonksiyonların çeşitli kombinatoryal özelliklerini ele alıyor.

Bu tezdeki ana sonuç, Çeşmelioğlu, Meidl ve Pott tarafından ortaya atılan " Duali

zayıf düzenli bent olup, kendisi zayıf düzenli olmayan bent bir fonksiyon var mıdır?"

açık probleminin çözümüdür. Ayrıca bu sonucu plato fonksiyonlara da genelledik.

Herhangi zayıf düzenli olmayan bir f bent fonksiyonu için Fpn nin B+(f) ve B−(f)

parçalanmasını tanımladık. Daha sonra, GMMF sınıfındaki zayıf düzenli olmayan bir
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bent fonksiyona karşılık gelen parçalanma bize bir kısmi fark kümesi verirse bunun

önemsiz kısmi fark kümesi olduğunu gösterdik. Ayrıca, zayıf düzenli olmayan bent

fonksiyonların bilinen iki nadir örneğine karşılık gelen alt kümelerin önemsiz olma-

yan kısmi fark kümelerine ve dolayısıyla önemsiz olmayan kuvvetli düzenli grafiklere

karşılık geldiğini gösterdik.

GMMF sınıfının bir alt sınıfındaki zayıf düzenli olmayan üçlü bent fonksiyonlar için

tek ve çift boyutlarda sırasıyla sınıfı 5 ve 6 olan 2 adet sonsuz öteleme bağlantı şeması

inşa eden bir yöntem sunduk. Ayrıca bu bağlantı şemalarının önemsiz olmayan ilk

veya son üç ilişkisinin füzyonuyla sınıfı 3 ve 4 olan bağlantı şemaları elde ettik.

Son olarak, belirli koşulları sağlayan zayıf düzenli olmayan bir f fonksiyonu için

bilinen jenerik inşa yöntemlerinden birini kullanarak B+(f) ve B−(f) alt kümeleri

üzerinde ağırlığı 3 olan doğrusal kodlar inşa ettik. Ayrıca, f ’in GMMF sınıfının bir alt

sınıfına dahil olduğu durumda bu kodların ağırlık dağılımlarını belirledik. Bunlara ek

olarak, inşaatımızın hemen hemen her durumda en düşük doğrusal kodları verdiğini

kanıtladık.

Anahtar Kelimeler: bent, zayıf düzenli olmayan bent, kısmi fark kümesi, kuvvetli

düzenli grafik, bağlantı şeması, doğrusal kodlar, en düşük doğrusal kodlar
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CHAPTER 1

INTRODUCTION

In this thesis, we study various properties of non-weakly regular bent functions and

related structures over finite fields. We can divide the thesis into four main part with

respect to the chronological order as follows

• The duals of non-weakly regular bent functions;

• The relation between non-weakly regular bent functions, cyclotomic cosets,

partial difference sets, and strongly regular graphs;

• The construction of translation association schemes from ternary bent functions

in a subclass of the GMMF class;

• The construction of three-weight linear codes from non-weakly regular bent

functions, the determination of their weight distributions when f belongs to a

subclass of the GMMF class and the mimimality of constructed codes.

1.1 Motivation and Problem Definition

In 1976, Rothaus defined the bent functions as Boolean functions having constant

magnitude Walsh transform. They have various applications including coding theory,

cryptography and sequence designs. In 1985, Kumar, Scholtz, and Welch [29] gener-

alized bent functions to arbitrary characteristics. Unlike the binary case, not all bent

functions are regular over finite fields of odd characteristic. They’re divided into four

subclasses: regular bent functions that are contained within the class of weakly reg-

ular bent functions that are contained within the class of dual-bent functions (which
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means that bent functions whose dual functions are also bent). Additionally there are

non-weakly regular bent functions with no intersection with weakly regular, but an

intersection with the class of dual-bent functions. It is known that duals of Boolean

bent functions are also bent. However, in odd characteristic, duals of bent functions

are not necessarily bent [14]. There are infinitely many non-weakly regular bent

functions having bent or non-bent duals [14, 15]. It is quoted in [14] that,“. . . The

existence of non-weakly regular bent functions with the dual f ∗ is weakly regular is

an open problem. . . " In this thesis, among other things, we solve this open problem.

Furthermore we show that if f : Fnp → Fp is a non-weakly regular bent function such

that its dual f ∗ is bent, then f ∗∗(−x) = f(x) for all x ∈ Fnp .

Partial difference sets (see the Definition 3.1.1 in Chapter 3) have been studied ex-

tensively because of their relations with different combinatorial structures such as

two-weight codes and strongly regular graphs. There are a number of constructions

of partial difference sets in elementary abelian groups, for a short survey see [31]. It

is known that Cayley graphs such that their connection sets as are regular partial dif-

ference sets are strongly regular graphs (see the Definition 3.1.4 in Chapter 3). One

of the instruments to build partial difference sets are bent functions. In [41], the au-

thors proved that pre-image sets of the ternary weakly regular even bent functions are

partial difference sets. Shortly after, this result is generalized to arbitrary odd charac-

teristics in [16]. As far as we know, no one introduced a relation between non-weakly

regular bent functions and partial difference sets. In this thesis, we also study the

two special subsets of a finite field of odd characteristic related with the non-weakly

regular bent functions which are introduced by the authors in [38]. We observe that

these two subsets associated with the two sporadic examples of ternary non-weakly

regular bent functions which are introduced in [24, 25] are non-trivial partial differ-

ence sets and are the union of the cyclotomic cosets with certain parameters. As a

consequence of this, they are 2-class fusion schemes of some cyclotomic association

schemes (see the definitions in Chapter 3) with certain parameters. We also present

a further construction giving non-trivial PDSs from certain p-ary functions which are

not bent functions. Moreover, we prove that if the corresponding subsets of non-

weakly regular even bent functions in the GMMF class are partial difference sets then

they are trivial.
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Association schemes had been introduced with the aid of R.C. Bose and T. Shi-

mamoto [7], studied similarly by way of the Bose–Mesner algebra brought in [6],

generalized and given the most essential motivation by P. Delsarte [19]. The first text

dedicated to the concept is [5]. A textual content that develops the idea each quite

normally and notably is [23]. Association schemes supply an appropriate framework

for treating certain issues from a range of exclusive areas of algebraic combinatorics,

for example, coding theory, design theory, algebraic graph theory, finite group the-

ory, and finite geometry. One of the tools to construct association schemes are bent

functions. It is proven that for any odd prime p the collection of the pre-image sets

of a p-ary weakly regular bent function form a p-class translation association scheme

[39]. As far as we know, no one introduced a relation between non-weakly regular

bent functions and d-class association schemes for some d ≥ 3. In this paper, we

construct association schemes of classes 5 and 6 from ternary non-weakly regular

dual-bent functions in the GMMF class by proving that if they satisfy certain con-

ditions then the collection of the pre-image sets of the dual functions with respect

to the subsets B±(F ) form translation schemes of classes 5 and 6 in odd and even

dimensions respectively. Furthermore, we also obtain association schemes of classes

3 and 4 by fusing the first or last 3 non-trivial relations of the association schemes of

classes 5 and 6 respectively.

Linear codes with a few weights have practices in secret sharing [1, 12, 22, 44], au-

thentication codes [20], association schemes [10], and strongly regular graphs [11].

They have been substantially studied in the literature via a massive range of re-

searchers and employed with the aid of many engineers. Some fascinating two-weight

and three-weight codes can be found in [32, 22, 18, 21, 43, 46, 33]. There are quite

a few methods to build linear codes, one of which is primarily based on functions

over finite fields. Two familiar constructions, which are referred to as the first and

second conventional constructions, of linear codes from functions have been extraor-

dinary from the others in the literature. Recently, Mesnager [32] has built a new

family of three-weight linear codes from weakly regular bent functions in odd char-

acteristic based totally on the first conventional construction. Within this framework,

we aim to build linear codes from non-weakly regular dual-bent functions based to-

tally on the first conventional construction. To do this, instead of the whole space we

3



use the subset B+(f) or B−(f) associated with a non-weakly regular bent function

f . We additionaly determine the weight distributions of the constructed codes when

the associated non-weakly regular bent functions belong to a certain subclass of bent

functions. As a specific type of linear codes, minimal linear codes have essential

practices in secret sharing and reliable two-party computation. Constructing minimal

linear codes with new and acceptable parameters has been an interesting research sub-

ject matter in coding theory and cryptography. Minimal linear codes have fascinating

implementations in secret sharing [12, 44, 34, 26] and secure two-party computation

[3, 17], and ought to be decoded with a minimal distance decoding method [2]. In

the closing section, we examine that all non-zero codewords of the built codes are

minimal for nearly all cases.

1.2 Contributions and Novelties

The main contributions of the present thesis study are followings:

• We solve the open problem which is quoted in [14] by proving that if the dual

of a non-weakly regular bent function is bent then it is also non-weakly regular.

• We suspect a relation between non-weakly regular bent functions and cyclo-

tomic association schemes. For some known sporadic examples of ternary non-

weakly regular bent functions, we observe that the corresponding sets B±(f)

can be written as union of certain cyclotomic cosets. Moreover, we show that

these sets are non-trivial regular partial different sets hence correspond to non-

trivial strongly regular graphs. In addition to these, we also present a further

construction that certain p-ary functions which are not bent also give non-trivial

partial difference sets.

• For the first time in literature, we construct an infinite family of (translation)

association schemes from non-weakly regular bent functions.

• For the first time in literature, we construct few weights linear codes from non-

weakly regular bent functions. We determine the weight distributions of the

constructed codes when the corresponding non-weakly regular bent functions

4



belongs to a subclass of the GMMF class. Moreover, we prove that our con-

struction yields minimal linear codes for almost all cases.

1.3 The Outline of the Thesis

The thesis is organized as follows.

In Chapter 2, we study the value distribution of duals of the non-weakly regular bent

functions whose duals are also bent. This gives us information about regularity of

the dual function f ∗. We obtain analogous results for the plateaued functions over

the finite fields of odd characteristic. In Chapter 3, we prove that if the two special

subsets associated with the non-weakly regular even bent functions in the GMMF

class are partial difference sets then they are trivial. We analyze the corresponding

subsets of the two sporadic examples of ternary non-weakly regular bent functions.

Our further construction giving non-trivial PDSs from certain p-ary functions which

are not bent functions is also given. In Chapter 4, we prove that if a non-weakly

regular ternary bent function in the GMMF class satisfies certain conditions then the

collection of the pre-image sets of the dual function F ∗ with respect to subsetsB±(F )

form a translation scheme of class 5 in odd dimension and class 6 in even dimension.

Furthermore by fusing the first or last 3 non-trivial relations of the corresponding

association schemes we obtain 3 and 4 classes fusion schemes. We also give numer-

ical examples. In Chapter 5, we build three-weight linear p-ary codes on B+(f) and

B−(f) from non-weakly regular bent functions based on the first conventional con-

struction. Moreover, we determine the weight distributions of the built codes when

the associated non-weakly regular bent functions belong to a certain subclass of the

GMMF bent functions. We observe that all non-zero codewords of the built codes are

minimal for nearly all cases. We conclude in Chapter 6.
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CHAPTER 2

THE DUALS OF NON-WEAKLY REGULAR BENT FUNCTIONS

In this chapter, we study the value distribution of duals of the non-weakly regular bent

functions whose duals are also bent. This gives us information about regularity of the

dual function f ∗. Hence we prove that if dual function of a non-weakly regular bent

function is bent then it is also non-weakly regular bent. We obtain analogous results

for the plateaued functions over the finite fields of odd characteristic.

2.1 Preliminaries

Let p be an odd prime and Fpn be the finite field of order pn. Since it is a vector space

of dimension n over Fp, we also use the notation Fnp which consists of n-tuples of

the prime field Fp. Let f be a function from Fnp to Fp. The Walsh transform of f at

α ∈ Fnp is defined as a complex valued function f̂ on Fnp

f̂(α) =
∑
x∈Fnp

εf(x)−α.x
p

where εp = e
2πi
p and α.x denotes the usual dot product in Fnp .

The function f is called bent function if |f̂(α)| = pn/2 for all α ∈ Fnp . The normalized

Walsh coefficient of a bent function f at α is defined by p−n/2f̂(α). The normalized

Walsh coefficients of a bent function f are characterized in [29] as follows

p−n/2f̂(α) =

 ±ε
f∗(α)
p if n even or n odd and p ≡ 1 mod 4,

±iεf
∗(α)
p if n odd and p ≡ 3 mod 4,

where f ∗ is a function from Fnp to Fp, which is called the dual of f.

7



A bent function f : Fnp → Fp is called regular if ∀ α ∈ Fnp , we have

p−n/2f̂(α) = εf
∗(α)
p

and is called weakly regular if ∀ α ∈ Fnp , we have

p−n/2f̂(α) = ξεf
∗(α)
p

where ξ ∈ {±1,±i} is independent from α, otherwise it is called non-weakly regular.

It is known that weakly regular bent functions appear in pairs since their duals are

also weakly regular. If f is non-weakly regular, then f ∗ may not be a bent function.

There are infinitely many examples of non-weakly regular bent functions f such that

the dual is bent (resp. not bent) [15].

Let a be a positive integer and p be an odd prime number. Let a ≡ ã (mod p). The

Legendre symbol is defined as

(
a

p

)
=


0 if ã = 0;

1 if
√
ã ∈ F?p;

−1 if
√
ã /∈ F?p.

The trace of α ∈ Fpn over Fp is defined as Trn(α) = α + αp + αp
2

+ · · ·+ αp
n−1 .

2.2 Value Distributions of the Duals of Non-weakly Regular Bent Functions

Let f : Fnp → Fp be a non-weakly regular bent function and f ∗ be its dual function.

Let B+(f) and B−(f) be the partitions of Fnp given by

B+(f) := {w : w ∈ Fnp | f̂(w) = ξp
n
2 εf

∗(w)
p }

B−(f) := {w : w ∈ Fnp | f̂(w) = −ξp
n
2 εf

∗(w)
p },

where ξ = 1 if n is even or n odd and p ≡ 1 (mod 4), and ξ = i if n is odd and

p ≡ 3 (mod 4). Note that these sets are non empty as f is a non-weakly regular bent

function. For any y ∈ Fnp and u ∈ Fp we further define the sums S0(f, y), S1(f, y)

of complex numbers and integers cf (y, u), df (y, u) and ef (y, u) as follows:

S0(f, y) =
∑

α∈B+(f)

εf
∗(α)+α.y
p , S1(f, y) =

∑
α∈B−(f)

εf
∗(α)+α.y
p ,

8



and cf (y, u) := #{α : α ∈ B+(f) | f ∗(α) + α.y = u}, df (y, u) := #{α : α ∈
B−(f) | f ∗(α) + α.y = u}, ef (y, u) = cf (y, u) − df (y, u). For an arbitrary bent

function g : Fnp → Fp we define the type of g as

g(x) is of type (+) if ĝ(0) = ξp
n
2 εg

∗(0)
p and of type (−) if ĝ(0) = −ξp

n
2 εg

∗(0)
p .

The following lemma is a generalization of the Lemma in [36, page 156].

Lemma 2.2.1 Let k be an integer. For a prime p there is a unique solution (A1, A2,

. . . , Ap−1) consisting of integers with Ai =
(
i
p

)
pk for 1 ≤ i ≤ p− 1, to the equation

A1εp + A2ε
2
p + · · ·+ Ap−1ε

p−1
p =


√
ppk for p ≡ 1 (mod 4),

i
√
ppk for p ≡ 3 (mod 4).

(21)

Proof. Let Q(εp) be the p-th cylotomic field. By a well known result on Gauss sums

we have ξ
√
p ∈ Q(εp) [30, Theorem 5.15]. Hence ξ

√
ppk ∈ Q(εp) for all k ∈ Z.

Since εp, ε2p, . . . , ε
p−1
p is a basis for Q(εp) over Q [30, Theorem 2.47 (i) ], there exist

uniquely determined coefficients Ai ∈ Q satisfying equation (21). Moreover again

using [30, Theorem 5.15] we obtain a solution Ai =
(
i
p

)
pk for 1 ≤ k ≤ p− 1. �

For an arbitrary function g : Fnp → Fp and i ∈ Fp, let Ni(g) denote the cardinality

#{x ∈ Fnp |g(x) = i}. In the following two propositions we determine Ni(g) for a

bent function g, depending on the type of g explicitly when n is odd and n is even,

respectively. We start with n odd as its proof is more involved.

Proposition 2.2.1 Let g : Fnp → Fp be a bent function and n is odd. For g∗(0) = i0

we have

Ni0(g) = pn−1, Ni0+j(g) = pn−1 ±
(
j

p

)
p
n−1
2 , for 1 ≤ j ≤ p− 1.

Here the sign is + (respectively −) if and only if the type of g is (+) (respectively

(−)).

Proof. Since g is bent and n is odd we have

ĝ(0) =

p−1∑
i=0

Ni(g)εip = η0ξp
n
2 εg

∗(0)
p

9



where η0 ∈ {−1, 1}, ξ = 1 if p ≡ 1 (mod 4) and ξ = i if p ≡ 3 (mod 4).

Assume that g is of type (+). Then η0 = 1. Recall that g∗(0) = i0. Then we have∑p−1
i=0 Ni(g)εip = ξ

√
pp

n−1
2 εi0p . Dividing by εi0p we get

ξ
√
pp

n−1
2 =

p−1∑
i=0

Ni(g)εi−i0p = Ni0(g) +

p−1∑
j=1

Ni0+j(g)εjp =

p−1∑
j=1

(Ni0+j(g)−Ni0(g))εjp.

Note that putting Aj = Ni0+j(g) − Ni0(g) we obtain that (A1, A2, . . . , Ap−1) is

a solution of the equation A1εp + A2ε
2
p + · · · + Ap−1ε

p−1
p = ξ

√
pp

n−1
2 . Hence by

Lemma 2.2.1 we obtain that

Ni0+j(g) = Ni0(g) +

(
j

p

)
p
n−1
2 .

As
∑p−1

j=1 Ni0+j(g) + Ni0(g) = pn we get Ni0(g) = pn−1. Then Ni0+j(g) = pn−1 +(
j
p

)
p
n−1
2 .

Assume that g is of type (−). Then η0 = −1. By similar arguments we obtain that

Ni0+j(g) = Ni0(g)−
(
j

p

)
p
n−1
2 for 1 ≤ j ≤ p− 1, and Ni0(g) = pn−1.

�

Proposition 2.2.2 Let g : Fnp → Fp be a bent function and n is even. For g∗(0) = i0

we have

Ni0(g) = pn−1 ± p
n
2 ∓ p

n
2
−1 and Ni(g) = pn−1 ∓ p

n
2
−1, for i 6= i0 ∈ Fp.

Here the sign is + (respectively −) if and only if the type of g is (+) (respectively

(−)).

Proof. Since g is bent and n is even we have ĝ(0) =
∑p−1

i=0 Ni(g)εip = ±pn2 εg
∗(0)
p .

Recall that g∗(0) = i0. Then

(Ni0(g)∓ p
n
2 )εi0p +

∑
i 6=i0

Ni(g)εip = 0.

Dividing by εi0p and using the Lemma 2.2.1 as in Proposition 2.2.1 we complete the

proof. �

Recall that f : Fnp → Fp is a non-weakly regular bent function and ef (y, u) is an

integer for y ∈ Fnp and u ∈ Fp defined above. From now on, if n is even then we put

n = 2m, and if n is odd then we put n = 2m+ 1.
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Lemma 2.2.2 Let n be odd. There exists an integer k such that for every y ∈ Fnp we

have

• If p ≡ 1(mod 4) then, ef (y, u0) = k and ef (y, u0 + i) = k +
(
i
p

)
pm for

1 ≤ i ≤ p− 1;

• If p ≡ 3(mod 4) then, ef (y, u0) = k and ef (y, u0 + i) = k −
(
i
p

)
pm for

1 ≤ i ≤ p− 1;

where u0 = f(y).

Proof. Consider first the case p ≡ 1 (mod 4). By inverse Walsh transform we have

p2m+1εf(y)
p =

∑
α∈F2m+1

p

εα.yp f̂(α).

As f is bent, for α ∈ F2m+1
p , we have f̂(α) = ξαp

m√pεf
∗(α)
p , where ξα ∈ {−1, 1}

depending on α. Therefore we get

pm
√
pεu0p =

∑
α∈F2m+1

p

ξαε
f∗(α)+α.y
p .

Using the definition of ef (y, u), this implies that

pm
√
pεu0p = ef (y, u0)εu0p +

∑
u∈Fp\{u0}

ef (y, u)εup .

Dividing by εu0p we have

pm
√
p = ef (y, u0) +

∑
u∈Fp\{u0}

ef (y, u)εu−u0p .

Putting ef (y, u0 + i) = bi for i ∈ Fp, we have∑
i∈Fp

biε
i
p = pm

√
p.

Using Lemma 2.2.1 we conclude that there exists an integer k such that

ef (y, u0) = k and ef (y, u0 + i) = k +

(
i

p

)
pm for 1 ≤ i ≤ p− 1.

Next we consider the case p ≡ 3 (mod 4). By inverse Walsh transform we have

−ipm√pεu0p = ef (y, u0)εu0p +
∑

u∈Fp\{u0}

ef (y, u)εup .
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Using similar arguments and putting −ef (y, u0 + i) = bi for i ∈ Fp we obtain∑
i∈Fp

biε
i
p = ipm

√
p.

Again from Lemma 2.2.1 we conclude that there exists an integer k such that

ef (y, u0) = k and ef (y, u0 + i) = k −
(
i

p

)
pm for 1 ≤ i ≤ p− 1.

Now let us show that k does not depend on y. Observe that for any y ∈ F2m+1
p and

j ∈ Fp we have

cf (y, j) =
Nj(f

∗(x) + x.y) + ef (y, j)

2
and df (y, j) =

Nj(f
∗(x) + x.y)− ef (y, j)

2
.

On the other hand,

#B+(f) =

p−1∑
j=0

cf (y, j) and #B−(f) =

p−1∑
j=0

df (y, j).

Combining them with the identity
∑p−1

j=0 Nj(f
∗(x) + x.y) = p2m+1 we get,

#B+(f) =
p2m+1 + pk

2
and #B−(f) =

p2m+1 − pk
2

.

As #B+(f) and #B−(f) are constants, we conclude that k is independent of y.

�

Lemma 2.2.3 Let n be even. There exists an integer k such that for every y ∈ Fnp we

have

ef (y, u) =

 k + pm if f(y) = u,

k otherwise.

Proof. By inverse Walsh transform we have

pmεf(y)
p =

∑
α∈F2m

p

εα.yp f̂(α).

As f is bent, for α ∈ F2m
p , f̂(α) = ξαp

mε
f∗(α)
p , where ξα ∈ {−1, 1}. Therefore we

get

pmεf(y)
p =

∑
α∈F2m

p

ξαε
f∗(α)+α.y
p .

12



Using the definition of ef (y, u) we get

pmεu0p = ef (y, u0)εu0p +
∑

u∈Fp\{u0}

ef (y, u)εup .

Dividing by εu0p and applying Lemma 2.2.1 we complete the proof. Moreover unique-

ness of k can be shown by using similar arguments as in the proof of Lemma 2.2.2.

�

Remark 2.2.1 In Lemmas 2.2.3 and 2.2.2, we do not determine k explicitly. In fact k

is independent of y, it only depends on the cardinalities #B+(f) and #B−(f). Using

Magma we determine k for the following sporadic examples of ternary non-weakly

regular bent functions [14, page 429].

Example 1 g1 : F36 → F3, g1(x) = Tr6(λ7x98) is a non-weakly regular bent func-

tion. We have #B+(g1) = 504, #B−(g1) = 225 and k = 84.

Example 2 g2 : F36 → F3, g2(x) = Tr6(λx20 + λ41x92) is non-weakly regular bent.

We have #B+(g2) = 648, #B−(g2) = 81 and k = 180.

From now on we further assume that the dual function f ∗ of f is bent as well. For

y ∈ Fnp , let gy : Fnp → Fp be the function

gy(x) := f ∗(x) + x.y,

which is a bent function affine equivalent to f ∗. For y, α ∈ Fpn , it follows from the

definition that

ĝy(α) = f̂ ∗(α− y). (22)

As f ∗ is bent, it follows from the definitions that

S0(f, y) + S1(f, y) = ±ξpn/2εiyp (23)

where 0 ≤ iy ≤ p − 1 depends on y. In the following two lemmas we determine the

sign and the value of iy in (23) exactly.
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Lemma 2.2.4 Let n be odd. Under notation and assumptions as above we have

f̂ ∗(−y) = S0(f, y) + S1(f, y) =

 ξpm
√
pε
f(y)
p if gy is of type (+),

−ξpm√pεf(y)
p if gy is of type (−),

(24)

where ξ ∈ {1, i} depending on p.

Proof. It follows from the definition that

ĝy(0) = S0(f, y) + S1(f, y). (25)

Using (22) and (25) we obtain that f̂ ∗(−y) = S0(f, y) + S1(f, y). In the rest of this

proof we show that the equality in the right hand side of (24) holds.

For y ∈ Fp2m+1 = Fpn let u0 = f(y) and i0 = g∗y(0). For u ∈ Fp by definition we

have

cf (y, u) =
Nu(gy) + ef (y, u)

2
and df (y, u) =

Nu(gy)− ef (y, u)

2
. (26)

Using the fact that cf (y, u) is an integer for u ∈ Fp, we prove that u0 = i0. Our

method of the proof of u0 = i0 is as follows: Assume the contrary that u0 6= i0. Let

t0 ∈ Fp \ {u0, i0}. There exists such t0 ∈ Fp \ {u0, i0} as p ≥ 3. We will show

that the fact cf (y, i0) is an integer implies that ef (y, u0) is an even integer. We will

also show that the fact cf (y, t0) is an integer implies that ef (y, u0) is an odd integer.

Hence these arguments will imply to the contradiction on the parity of ef (y, u0) and

we will obtain that u0 = i0.

Now we explain the details of these arguments. By Proposition 2.2.1 the integer

Ni0(gy) is odd. As cf (y, i0) = (Ni0(gy) + ef (y, i0))/2 by (26) and cf (y, i0) is

an integer, we get that ef (y, i0) is odd. Using Lemma 2.2.2 we have ef (y, i0) =

ef (y, u0) ±
(
i0−u0
p

)
pm as i0 6= u0. As ef (y, i0) is odd we obtain that ef (y, u0) is

even.

Similarly we consider cf (y, t0). By Proposition 2.2.1 we haveNt0 = p2m±
(
t0−i0
p

)
pm

as t0 6= i0. Hence the integer Nt0(gy) is even. As cf (y, t0) = (Nt0(gy) + ef (y, t0))/2

by (26) and cf (y, t0) is an integer, we get that ef (y, t0) is even. Using Lemma 2.2.2

we have ef (y, t0) = ef (y, u0)±
(
t0−u0
p

)
pm as t0 6= u0. As ef (y, t0) is even we obtain

that ef (y, u0) is odd. These arguments complete the proof of the fact that u0 = i0.
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The rest of the proof of the lemma is presented case by case. There are four cases to

consider.

Case p ≡ 1 (mod 4) and gy is of type (+):

Let k = ef (y, u0). Using Proposition 2.2.1, Lemma 2.2.2, the fact u0 = i0 and (26)

we obtain that

cf (y, u) =


p2m+k

2
. if u = u0,

p2m+k+2(u−u0p )pm
2

if u 6= u0,
df (y, u) =

 p2m−k
2

if u = u0,

p2m−k
2

if u 6= u0.

By definition we have S0(f, y) =
∑p−1

j=0 cf (y, j)ε
j
p. Putting the values of cf (y, u) in

the definition of S0(f, y) we obtain that

S0(f, y) = p2m+k
2

εu0p +
∑

u∈Fp\{u0}
p2m+k+2(u−u0p )pm

2
εup

= p2m+k
2

∑p−1
u=0 ε

u
p +

∑
u∈Fp\{u0}

(
u−u0
p

)
pmεup

=
∑

u∈Fp\{u0}

(
u−u0
p

)
pmεup ( as

∑p−1
u=0 ε

u
p = 0 )

= pmεu0p
∑

u∈Fp\{u0}

(
u−u0
p

)
εu−u0p .

Put Au−u0 =
(
u−u0
p

)
pm. Then by Lemma 2.2.1 we get S0(f, y) =

√
ppmεu0p =

√
ppmε

f(y)
p .

By definition we have S1(f, y) =
∑p−1

j=0 df (y, j)ε
j
p. Putting the values of df (y, u) in

the definition of S1(f, y) we obtain that

S1(f, y) =

p−1∑
j=0

p2m − k
2

εjp =
p2m − k

2

p−1∑
j=0

εjp = 0.

Case p ≡ 1 (mod 4) and gy is of type (−): By similar arguments we have,

cf (y, u) =

 p2m+k
2

. if u = u0,

p2m+k
2

if u 6= u0,
df (y, u) =


p2m−k

2
if u = u0,

p2m−k−2(u−u0p )pm
2

if u 6= u0.

Applying similar arguments as in the previous case, we obtain that S0(f, y) = 0 and

S1(f, y) = −pm√pεf(y)
p .
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Case p ≡ 3 (mod 4) and gy is of type (+): By similar arguments we have,

cf (y, u) =

 p2m+k
2

. if u = u0,

p2m+k
2

if u 6= u0,
df (y, u) =


p2m−k

2
if u = u0,

p2m−k+2(u−u0p )pm
2

if u 6= u0.

Applying similar arguments as in the first case, we obtain that S0(f, y) = 0 and

S1(f, y) = ipm
√
pε
f(y)
p .

Case p ≡ 3 (mod 4) and gy is of type (−): By similar arguments we have,

cf (y, u) =


p2m+k

2
. if u = u0,

p2m+k−2(u−u0p )pm
2

if u 6= u0,
df (y, u) =

 p2m−k
2

if u = u0,

p2m−k
2

if u 6= u0.

Applying similar arguments as in the first case, we obtain that S0(f, y) = −ipm√pεf(y)
p

and S1(f, y) = 0. �

Lemma 2.2.5 Let n be even. Under notation and assumptions as above we have

f̂ ∗(−y) = S0(f, y) + S1(f, y) =

 pmε
f(y)
p if gy is of type (+),

−pmεf(y)
p if gy is of type (−).

(27)

Proof. The proof is similar to the proof of Lemma 2.2.4. Using the same arguments

we get f̂ ∗(−y) = S0(f, y) + S1(f, y). We show the equality in the right hand side of

(27) below in this proof.

Again let u0 = f(y) and i0 = g∗y(0). Note that (26) holds here as well. We prove

that u0 = i0 similar to the proof of Lemma 2.2.4. The main differences are that we

use Proposition 2.2.2 instead of Proposition 2.2.1 and we use Lemma 2.2.3 instead

of Lemma 2.2.2. Assume that u0 6= i0. Let t0 ∈ Fp \ {u0, i0}. First we consider

the integer cf (y, i0). By Proposition 2.2.2, the integer Ni0(gy) is odd. As in the proof

of Lemma 2.2.4, using (26) and the fact that cf (y, i0) is an integer we obtain that

ef (y, i0) is an odd integer. Using Lemma 2.2.3 we have ef (y, i0) = ef (y, u0)− pm as

i0 6= u0. As ef (y, i0) is odd, we conclude that ef (y, u0) is an even integer.

Next we consider the integer cf (y, t0). By Proposition 2.2.2, we have Nt0(gy) =

p2m−1∓pm−1 as t0 6= i0. Hence the integerNt0(gy) is even. As in the proof of Lemma

2.2.4, using (26) and the fact that cf (y, t0) is an integer we obtain that ef (y, t0) is an
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even integer. Using Lemma 2.2.3 we have ef (y, t0) = ef (y, u0)− pm as t0 6= u0. As

ef (y, t0) is even, we conclude that ef (y, u0) is an odd integer.

These arguments lead to the contradiction on the parity of the integer ef (y, u0). Hence

our assumption is wrong and we complete the proof of the fact that u0 = i0.

For arbitrary t ∈ Fp \ {u0} let k = ef (y, t). Using Lemma 2.2.3 we note that k is

independent from the choice of t ∈ Fp \ {u0}.

Assume that gy is of type (+). Using Proposition 2.2.2, Lemma 2.2.3, the fact u0 = i0

and (26) we obtain that

cf (y, u) =

 p2m−1+2pm−pm−1+k
2

if u = u0,

p2m−1−pm−1+k
2

if u 6= u0,
df (y, u) =

 p2m−1−pm−1−k
2

if u = u0,

p2m−1−pm−1−k
2

if u 6= u0.

Putting these values in the definitions we obtain that S0(f, y) = pmε
f(y)
p and S1(f, y) =

0.

The proof of the case gy is of type (−) is similar. �

Now we are ready to state our first theorem.

Theorem 2.2.1 Let f : Fnp → Fp be a non-weakly regular bent function whose dual

function f ∗ is bent as well. Let f ∗∗ : Fnp → Fp be the dual function of f ∗. For y ∈ Fnp
we have

f ∗∗(y) = f(−y).

Proof. As f ∗ is bent we have

f̂ ∗(−y) = η−yξp
n
2 εf

∗∗(−y)
p , (28)

where η−y ∈ {−1, 1} depending on y. Combining Lemmas 2.2.4, 2.2.5 and (28) we

complete the proof. �

As an immediate consequence of Theorem 2.2.1, we solve the quoted open problem

of [14].
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Corollary 2.2.1 Let f : Fnp → Fp be a non-weakly regular bent function whose dual

function f ∗ is bent as well. Then f ∗ is also non-weakly regular.

Proof. Assume that f ∗ is weakly regular. Then its dual f ∗∗ must also be weakly

regular. However by Theorem 2.2.1 , f ∗∗ is equivalent to f and hence f ∗∗ is non-

weakly regular. �

2.3 The Duals of Plateaued Functions

In this section we generalize our results in Section 2.2 to plateaued functions. We

also generalize two results of Nyberg [36] on Hamming distance of bent functions to

a nearest affine function in Corollary 2.3.1 below.

We define non-weakly regular plateaued functions using the notation in [33] for

weakly regular plateaued functions.

Definition 2.3.1 A function f : Fnp → Fp is called s-plateaued if

|f̂(α)| = p
n+s
2 or 0

for all α ∈ Fnp .

The Walsh spectrum of s-plateaued functions is given as follows (see [27]).

Theorem 2.3.1 Let f : Fnp → Fp be an s-plateaued function then

f̂(α) =

 ±p
n+s
2 ε

f∗(α)
p , 0 if n+ s even or n+ s odd and p ≡ 1 mod 4,

±ipn+s2 ε
f∗(α)
p , 0 if n+ s odd and p ≡ 3 mod 4,

where f ∗ is a function from support of f̂ to Fp.

Let us call f ∗ the dual of f . We denote support of f̂ by Supp(f̂) and it is defined as

Supp(f̂) := {α : α ∈ Fnp | f̂(α) 6= 0}.

Observe that, if f is an s-plateaued function over Fnp , by Parseval identity we have

#Supp(f̂) = pn−s. Observe that if s ≥ 1 then f ∗ has restricted domain which is

different from the case of bent functions. The following definition is given in [33].

18



Definition 2.3.2 Let f : Fnp → Fp be an s-plateaued function such that for all α ∈
Supp(f̂)

f̂(α) = up
n+s
2 εf

∗(α)
p

where u ∈ {±1,±i} is independent from α. Then f is called a weakly regular s-

plateaued function. When u = 1 , f is called regular s-plateaued. If u changes with

respect to α then f is called non-weakly regular s-plateaued.

Definition 2.3.3 Let S be a subset of Fnp with cardinality N and f be a function from

S to Fp. If | f̂(α) |= N1/2 for all α ∈ Fnp , f is called bent relative to S where

f̂(α) =
∑

x∈S ε
f(x)−α.x
p .

Remark 2.3.1 Observe that if S = Fnp , the notion is the same as for bent functions.

Note that, we still continue to use the notation f̂ even if S 6= Fnp which can be viewed

as a restricted Walsh transform over S. Moreover, if N = pm for some m < n, by

using same techniques as in ([29]), one can derive that normalized Walsh coefficients

of corresponding relative bent function belongs to the set {±1,±i} which changes

with respect to p and parity of m, as in the case of bent functions.

Proposition 2.3.1 Let f : Fnp → Fp be a weakly regular s-plateaued function then f ∗

is bent relative to Supp(f̂). Moreover we have

f̂ ∗(α) = u−1p
n−s
2 εf(−α)

p for all α ∈ Fnp

where f̂(α) = up
n+s
2 ε

f∗(α)
p for all α ∈ Supp(f̂).

Proof. See, [33, Lemma 6]. �

Remark 2.3.2 Under the notation of Proposition 2.3.1 we also get that f ∗∗(x) is

weakly regular s-plateaued function over Fnp and f ∗ is weakly regular bent function

relative to Supp(f̂).

The situation is different for non-weakly regular plateaued functions. As in the case

of non-weakly regular bent functions, there are two possibilities for the dual of non-

weakly regular plateaued functions: the dual may be bent relative to Supp(f̂) and the

dual may not be bent relative to Supp(f̂). Both cases happen infinitely often.
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Example 3 Let g : Frp → Fp be a non-weakly regular bent whose dual is a bent (resp.

not bent) function. There are infinitely many such functions [14, 15]. For s ≥ 1 let

n = r + s and f : Frp × Fsp → Fp be the function defined as f(x, y) = g(x). Then f

is an s-plateaued function which is non-weakly regular and also the dual f ∗ is bent

(resp. not bent) relative to Supp(f).

Example 4 Note that the function f in Example 3 is partially bent. In fact there

are also infinitely many non-weakly regular µ-plateaued functions f with µ ≥ 1

whose dual f ∗ is bent (resp. not bent) with respect to Supp(f), and f is not partially

bent. These correspond to a different infinite class then the ones in Example 3. Let

g : Frp → Fp be a regular µ-plateaued function with µ ≥ 1, which has no nonzero

linear structure. Let h : Ftp → Fp be be a non-weakly regular bent whose dual is a

bent (resp. not bent) function. There are infinitely many such h functions [14, 15].

Let n = r + t and f : Frp × Ftp → Fp be the defined as f(x, y) = g(x) + h(y). Then

f has no nonzero linear structure (α, β) ∈ Frp × Ftp. Indeed if α 6= 0, then the map

(x, y) 7→ g(x+α)−g(x)+h(y+β)−h(y) cannot be constant on Frp×Ftp. Otherwise

for a fixed y0 ∈ Ftp we obtain a constant map x 7→ g(x + α) − g(x) + h(y0 + β) −
h(y0) on Frp, which is a contradiction as g has no nonzero linear structure. Recall

that a bent function cannot have a nonzero linear structure. Hence if β 6= 0, then

(α, β) ∈ Frp × Ftp cannot be a linear structure of f . These arguments show that f

has no nonzero linear structure and f is not partially bent. As g is µ-plateaued with

Supp(g) ( Frp, we get that f is µ-plateaued with Supp(f) = Supp(g)×Ftp ( Frp×Ftp.
If (x, y) ∈ Supp(f), then for the dual f ∗ we have f ∗(x, y) = g∗(x) + h∗(y), where

g∗ and h∗ are the duals of g and h. As g is regular and h is non-weakly regular we

obtain that f is non-weakly regular. Finally f ∗ is is bent (resp. not bent) with respect

to Supp(f) as h is bent (resp. not bent). We give an explicit example of a regular

µ-plateaued function with µ ≥ 1 which has no nonzero linear structure as follows:

Let g : F3
3 → F3 be the function given by g(x, y, z) = z if x = 0, g(x, y, z) = y if

x = 1, and g(x, y, z) = y + z if x = 2. Then g has no nonzero linear structure and

ĝ(α, β, γ) ∈ {0, 9ε3, 9ε3, 9ε23}.

Let f : Fnp → Fp be a non-weakly regular s-plateaued function such that its dual

f ∗ is bent relative to Supp(f̂). By Theorem 2.3.1 we have f̂(α) = ξαp
n+s
2 ε

f∗(α)
p for
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all α ∈ Supp(f̂) where ξα ∈ {±1,±i}. Let B+(f) and B−(f) be the partitions of

Supp(f̂) given by

B+(f) := {w : w ∈ Supp(f̂) | f̂(w) = ξp
n+s
2 εf

∗(w)
p },

B−(f) := {w : w ∈ Supp(f̂) | f̂(w) = −ξp
n+s
2 εf

∗(w)
p },

where ξ ∈ {1, i}.

For an arbitrary non-weakly regular plateaued function g : Fnp → Fp whose dual is

bent relative to Supp(ĝ), we define the type of g∗ as follows

g∗(x) is of type (+) if ĝ∗(0) = ξp
n−s
2 εg

∗∗(0)
p ,

g∗(x) is of type (+) if ĝ∗(0) = −ξp
n−s
2 εg

∗∗(0)
p .

For any y ∈ Fnp and u ∈ Fp, the definitions of the sums S0(f, y), S1(f, y) of complex

numbers and integers cf (y, u), df (y, u) and ef (y, u) are exactly same as in Section

4.2. For an arbitrary s-plateaued function g : Fnp → Fp we define the type of g as

• g(x) is of type (0) if ĝ(0) = 0 (i.e. g is balanced).

• g(x) is of type (+) if ĝ(0) = ξp
n+s
2 ε

g∗(0)
p .

• g(x) is of type (−) if ĝ(0) = −ξpn+s2 ε
g∗(0)
p .

Next we generalize [36, Theorems 3.2 and 3.4 ] to plateaued functions. In rest of the

section we skip the proofs if they are very similar to the ones in Section 4.2.

Proposition 2.3.2 Let g : Fnp → Fp be an unbalanced s-plateaued function. For

g∗(0) = i0 we have

• Ni0(g) = pn−1, Ni0+j(g) = pn−1±
(
j
p

)
p
n+s−1

2 , for 1 ≤ j ≤ p− 1, for n+

s odd.

• Ni0(g) = pn−1 ± pn+s2 ∓ pn+s2
−1 and Ni(g) = pn−1 ∓ pn+s2

−1, for i 6= i0 ∈
Fp, for n+ s even.

Here the sign is + (respectively −) if and only if the type of g is (+) (respectively

(−)).
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The next corollary follows from Proposition 2.3.2. It generalizes [36, Theorems 3.3

and 3.5] to plateaued functions.

Corollary 2.3.1 Let p be a prime. Then the Hamming distance of an s-plateaued

function g : Fnp → Fp to a nearest affine function is

• (p− 1)pn−1 − pn+s−1
2 , for n+ s odd.

• (p− 1)(pn−1 − pn+s2
−1), for n+ s even and g is of type(+).

• (p− 1)pn−1 − pn+s2
−1, for n+ s even and g is of type(−).

Proof. Let h : Fnp → Fp be an affine function. Then the Hamming distance of g to

h is d(g, h) =
∑

i∈Fp\{0}Ni(g− h). It is minimized if we choose N0(g− h) maximal

possible. Therefore by Proposition 2.3.2 we have

d(g, h) =


(p− 1)pn−1 − pn+s−1

2 if n+ s odd ,

(p− 1)(pn−1 − pn+s2
−1) if n+ s even and g is of type + ,

(p− 1)pn−1 − pn+s2
−1 if n+ s even and g is of type − .

�

Recall that f : Fnp → Fp is a non-weakly regular s-plateaued function and ef (y, u) is

an integer for y ∈ Fnp and u ∈ Fp defined above. For y ∈ Fnp let gy : Fnp → Fp be the

function

gy(x) := f ∗(x) + x.y,

which is a plateaued function affine equivalent to f ∗.

We generalize Lemmas 2.2.2, 2.2.3, 2.2.4, 2.2.5, and Theorem 2.2.1, Corollary 2.2.1

in the following theorem.

Theorem 2.3.2 Let f : Fnp → Fp be a non-weakly regular s-plateaued function.

Under notation and assumptions as above we have,

• Let n+ s be odd, there exists an integer k such that for every y ∈ Fnp we have
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– If p ≡ 1(mod 4) then, ef (y, u0) = k and ef (y, u0 + i) = k +
(
i
p

)
p
n−s−1

2

for 1 ≤ i ≤ p− 1;

– If p ≡ 3(mod 4) then, ef (y, u0) = k and ef (y, u0 + i) = k −
(
i
p

)
p
n−s−1

2

for 1 ≤ i ≤ p− 1;

where u0 = f(y).

• Let n+ s be even. There exists an integer k such that for every y ∈ Fnp we have

ef (y, u) =

 k + p
n−s
2 if f(y) = u,

k otherwise.

If f ∗ is bent relative to Supp(f̂) then we have

•

S0(f, y) + S1(f, y) =

 ξp
n−s
2 ε

f(y)
p if gy is of type (+),

−ξpn−s2 ε
f(y)
p if gy is of type (−),

where

ξ =

 1 if n even or n odd and p ≡ 1 mod 4,

i if n odd and p ≡ 3 mod 4.

• f ∗ is non-weakly regular bent relative to Supp(f̂).

• Let f ∗∗ : Fnp → Fp be the dual function of f ∗. For y ∈ Fnp we have f ∗∗(y) =

f(−y).

23



24



CHAPTER 3

STRONGLY REGULAR GRAPHS ARISING FROM NON-WEAKLY

REGULAR BENT FUNCTIONS

In this chapter, we prove that if the two special subsets associated with the non-weakly

regular even bent functions in the GMMF class are partial difference sets then they

are trivial. We prove that the corresponding subsets of the two sporadic examples

of ternary non-weakly regular bent functions are non-trivial PDSs. We also show

that special subsets associated with the two sporadic examples of ternary non-weakly

regular bent functions are union of certain cyclotomic cosets. Our further construction

giving non-trivial PDSs from certain p-ary functions which are not bent functions is

also given.

3.1 Preliminaries

Let f : Fnp → Fp be a function. For v ∈ Fnp let Dvf be the derivative function

Dvf(x) : Fpn → Fp given by Dvf(x) = f(x + v) − f(x). A function f : Fnp → Fp
is called partially bent if the following property holds: For v ∈ Fpn , if the derivative

function Dvf : Fpn → Fp is not balanced then Dvf is a constant function. Note

that partially bent functions are special subclass of plateaued functions, and most

of the known plateaued functions are partially bent. In the literature, only a few

construction methods for plateaued but not partially bent functions are known, for

example, see [45].

Definition 3.1.1 (Partial Difference Sets) Let G be a group of order v and D be

a subset of G with k elements. Then D is called a (v, k, λ, µ)- PDS in G if the

expressions g − h, for g and h in D with g 6= h, represent each non-identity element
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inD exactly λ times and represent each non-identity element not inD exactly µ times.

Definition 3.1.2 (Cayley Graph) Let G be a finite abelian group and D be a subset

of G such that 0 /∈ D and D = −D. Let E be the set defined as {(x, y)|x, y ∈
G, x− y ∈ D}. Then, (G,E) is called a Cayley graph, and denoted by Cay(G,D).

Here, D is called the connection set of (G,E). A PDS is called regular if e /∈ D and

D−1 = D. A subset D of G is called trivial if either D ∪ {e} or G/D ∪ {e} is a

subgroup of G. It is equivalent to saying that the Cayley graph generated by D \ {e}
is a union of complete graphs or its complement. Otherwise, D is called non-trivial.

Proposition 3.1.1 ( [31, Propostion 1.5]) Let D be a regular (v, k, λ, µ)− PDS with

D 6= G \ {e}. Then D is nontrivial if and only if 1 ≤ µ ≤ k − 1.

Remark 3.1.1 µ = 0 implies that that D ∪ {e} is a subgroup of G. The other case

µ = k implies that D is equal G/H for some subgroup H of G.

Definition 3.1.3 (Strongly Regular Graphs) A graph Γ with v vertices is said to be

a (v, k, λ, µ)− strongly regular graph if

1. it is regular of valency k, i.e., each vertex is joined to exactly k other vertices;

2. any two adjacent vertices are both joined to exactly λ other vertices and two

non-adjacent vertices are both joined to exactly µ other vertices.

Proposition 3.1.2 ( [31, Propostion 1.5]) A Cayley graph Γ , generated by a subset

D of the regular automorphism group G, is a strongly regular graph if and only if D

is a regular PDS in G.

Definition 3.1.4 (Association scheme ) Let V be a finite set of vertices, and let {R0, R1,

. . . , Rd} be binary relations on V with R0 := {(x, x) : x ∈ V }. The configuration

(V ;R0, R1, . . . , Rd) is called an association scheme of class d on V if the following

holds:
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1. V × V = R0 ∪R1 ∪ · · · ∪Rd and Ri ∩Rj = ∅ for i 6= j.

2. Rt
i = Ri′ for some i

′ ∈ {0, 1, . . . , d}, where Rt
i := {(x, y)|(y, x) ∈ Ri}. If

i
′
= i, we call Ri is symmetric.

3. For i, j, k ∈ {0, 1, . . . , d} and for any pair (x, y) ∈ Rk , the number #{z ∈
V |(x, z) ∈ Ri, and (z, y) ∈ Rj} is a constant, which is denoted by pkij.

Definition 3.1.5 (Translation Scheme) Let Γi := (G,Ei), 1 ≤ i ≤ d, be Cayley

graphs on an abelian group G, and Di be connection sets of (G,Ei) with D0 := {0}.
Then, (G, {Di}di=0) is called a translation scheme if (G, {Γi}di=0) is an association

scheme.

Given a d-class translation scheme (X, {Ri}di=0), we can take unions of classes to

form graphs with larger edge sets which is called a fusion.

Remark 3.1.2 (Fusion Scheme) Note that if the fusion gives a translation scheme

again, it is called fusion scheme. However, it is not the case every time. We refer to

[28] for further reading about fusion schemes.

Definition 3.1.6 (Cyclotomic Scheme) Let Fq be the finite field of order q, F?q be the

multiplicative group of Fq, and S be a subgroup of F?q s.t. S = −S. The partition Fq
by {0} and the multipicative cosets of S gives a translation scheme on (Fq,+), called

a cyclotomic scheme.

Each coset (called a cyclotomic coset) of F?q \ S is expressed as

Ci = wi〈wN〉, 0 ≤ i ≤ N − 1,

where N |q − 1 is a positive integer and w is a fixed primitive element of F?q.

3.2 Partial Difference Sets Associated with Non-Weakly Regular GMMF Bent

Functions are Trivial

Let p be an odd prime and F : Fnp × Fsp → Fp be the map (x, y) → fy(x), where

fy : Fnp → Fp is an s-plateaued function for each y ∈ Fsp such that Supp(f̂i) ∩
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Supp(f̂j) = ∅ for i 6= j, i, j ∈ Fsp. In [13], the authors showed that F is a bent

function. They use partially bent functions with disjoint supports to obtain plateaued

functions.

Remark 3.2.1 In fact, it is not easy to find s-plateaued but not partially bent func-

tions with disjoint supports. The plateaued functions fa used in [13] can be obtained

easily by adding a linear term to a bent function f , i.e. fa : Fn−sp × Fsp → Fp such

that fa(x, y) = f(x) + a.y, where f : Fn−sp → Fp, a ∈ Fsp. Then supp(f̂i)∩ supp(f̂j)
becomes the empty set for all i, j ∈ Fsp.

The bent functions of the form F (x, y) = fy(x) are called the GMMF (Generalized

Maiorana-McFarland) bent. The Walsh transform of F at (α, β) is given by

F̂ (α, β) =
∑

x∈Fnp

∑
y∈Fsp

ε
F (x,y)−α.x−β.y
p

=
∑

x∈Fnp
ε
fy(x)−α.x
p

∑
y∈Fsp

ε−y.βp

= f̂y0(x)(α)ε−y0.βp .

where y0 is the unique element of Fsp such that α ∈ supp(f̂y0). Then we have,

F̂ (α, β) = ξα,βp
n+s
2 ε

(fy0 )∗(α)−y0.β
p (31)

which follows from f̂y0(α) = ξα,βp
n+s
2 ε

(fy0 )∗(α)
p , where ξα,β ∈ {±1,±i}.

Observation: F is weakly regular if fy is weakly regular s-plateaued with the same

sign for all y ∈ Fsp in their non-zero Walsh coefficients. F is non-weakly regular bent

if fy is weakly regular s-plateaued for all y ∈ Fsp and there are y1, y2 ∈ Fsp such that

f (y1) and f (y2) have opposite signs in their non-zero Walsh coefficients or there exists

y ∈ Fsp such that fy is non-weakly regular s-plateaued.

Let us partition weakly regular s-plateaued functions into two subclasses as fy is

in subclass (+) if its non-zero Walsh coefficients are positive, and in subclass (−)

if its non-zero Walsh coefficients are negative. Let F ∈ GMMF be a non-weakly

regular bent function with F (x) = F (−x). Next, we determine the structure of the

sets B+(F ) and B−(F ) in two different cases.

Case 1 [ fy is weakly regular s-plateaued for all y ∈ Fs
p]
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By the observation above, one can partition Fsp into two subsets as W+(F ) := {y :

y ∈ Fsp|fy is in subclass (+)} and W−(F ) := {y : y ∈ Fsp|fy is in subclass (−)},
where F : Fnp × Fsp → Fp is given by F (x, y) = fy(x). Then by the equation (31) we

deduce that

B+(F ) =
( ⋃
y∈W+(F )

supp(f̂y)
)
× Fsp and B−(F ) =

( ⋃
y∈W−(F )

supp(f̂y)
)
× Fsp. (32)

Case 2 [ fy is non-weakly regular s-plateaued for some y ∈ Fs
p]

Let W+(F ),W−(F ) be as in the Case 1, and W0 := {y : y ∈ Fsp|fy is non-weakly

regular s-plateaued}. Again by the equation (31) we have

B+(F ) =
⋃
y∈W0

(
B+(fy)× Fsp

)
∪
( ⋃
y∈W+(F )

supp(f̂y)
)
× Fsp

)
,

B−(F ) =
⋃
y∈W0

(
B−(fy)× Fsp

)
∪
( ⋃
y∈W−(F )

supp(f̂y)
)
× Fsp

)
.

Remark 3.2.2 In Cases 1 and 2; the sets B+(F ) and B−(F ) can be viewed as a

union of some cosets of the subgroup {0} × Fsp in Fnp × Fsp.

Proposition 3.2.1 Let H be a subgroup of Fpn and K be one of its complement in

Fpn , i.e. H ∩K = {0} and H ⊕K = Fpn . Let L be a proper subset of K such that

0 /∈ L and for each v ∈ L, −v is also in L. Let D =
⋃
v∈L(H + v). If D is a PDS in

Fpn , then it is trivial.

Proof. Since 0 /∈ L, we have 0 /∈ D, and H ⊂ Fnp \ D. Since for v ∈ L, −v is

also in L, we have D = −D. Assume that D is a (pn, kr, λ, µ) PDS where #H = k,

#L = r. SinceH ⊂ Fpn\D, every non-zero elements inH can be represented as x−y
exactly µ times, for x 6= y ∈ D. Let x 6= y, x, y ∈ D. Let x = h1 + v1, y = h2 + v2,

for some h1, h2 ∈ H and v1, v2 ∈ L, then we get x − y = (h1 − h2) + (v1 − v2).

Clearly, if v1 6= v2 then x− y /∈ H. Hence x− y ∈ H if and only if x, y ∈ H + vj for

some vj ∈ L. Let x = h1 + vj, y = h2 + vj. Then x − y = h1 − h2 ∈ H. Since H

is a group, each non-zero h ∈ H can be expressed exactly k times by the differences

h1− h2 for h1, h2,∈ H. If h ∈ H; then for each vj ∈ L, h can be represented exactly

k times as (h1 + vj)− (h2 + vj) for h1 6= h2 ∈ H . Hence h can be expressed exactly
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#H#L = k.r times as the difference x− y for x 6= y ∈ D. Therefore, µ = k.r, and

by Proposition 3.1.1, we have D is a trivial PDS in Fpn . �

Corollary 3.2.1 LetF ∈GMMF such thatF (x) = F (−x). IfB+(F )(or equivalently

B−(F )) is a PDS, then it is trivial.

Proof. The proof follows from the Cases 3,4 and Proposition 3.2.1. �

In the following example, we use a non-weakly regular ternary bent function (see

[42]). In [13], the authors showed that it belongs to the GMMF class. By using

Magma, we observe that the set B+(f1) is a subgroup of F33 . Hence, it is a trivial

PDS in F33 . Moreover, in [14], the authors claim that f1 is self-dual bent. However,

by Magma computations, we observe that the dual function f ∗1 of f1 is indeed equal

to −f1, and it is not self-dual.

Example 5 f1 : F33 → F3, f1(x) = Tr3(x22 + x8) is non-weakly regular of Type

(+).

• B?
+(f1) is a (27, 8, 7, 0)-PDS in F33 .

• B−(f1) is a (27, 18, 9, 18)-PDS in F33 .

Remark 3.2.3 By the Corollary 3.2.1 it follows that if neither
⋃
y∈W+(F ) supp(f̂y)

nor
⋃
y∈W−(F ) supp(f̂y) is a subgroup of Fpn , then neither B+(F ) nor B−(F ) is a

PDS in Fnp×Fsp. Hence, we conclude that not all non-weakly regular bent functions of

the form f(x) = f(−x) have the property thatB+(f) orB−(f) is a partial difference

set. It is interesting to determine certain conditions on those sets, so that they become

non-trivial PDSs. To do this, in the following section we analyze the sets B+(f) and

B−(f) associated with two of the known sporadic examples of ternary non-weakly

regular bent functions.

3.3 Non-Trivial PDSs From Ternary Non-Weakly Regular Bent Functions

It is known that one of the tools to construct partial difference sets are bent functions.

In [41], the authors proved that pre-image sets of the ternary weakly regular even bent
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functions are partial difference sets.

Let f : Fpm → Fp be a p-ary function, and Di := {x : x ∈ Fpm|f(x) = i}. The

following is due to [41]

Theorem 3.3.1 Let f : F32m → F3 be ternary function satisfying f(x) = f(−x),

and f(0) = 0. Then f is weakly regular bent if and only if D1 and D2 are both

(32m, 32m−1 + ε3m−1, 32m−2, 32m−2 + ε3m−1)− PDSs,

where ε = ±1. Moreover, D0 \ {0} is a

(32m, 32m−1 − 1− 2ε3m−1, 32m−2 − 2− 2ε3m−1, 32m−2 − ε3m−1)− PDSs.

Later this result is generalized to arbitrary odd characteristic in [16] for the weakly

regular bent functions from Fp2m to Fp satisfying certain conditions. Namely, for a

weakly regular bent function f the following subsets

D := {x : x ∈ Fp2m \ {0}|f(x) = 0},
DS := {x : x ∈ Fp2m \ {0}|f(x) is square},
D
′
S := {x : x ∈ Fp2m \ {0}|f(x) is non-zero square},

DN := {x : x ∈ Fp2m \ {0}|f(x) is non-square}

are regular partial difference sets.

As far as we know, no one introduced a relation between non-weakly regular bent

functions and partial difference sets. In this section, we examine to a relation be-

tween the set B+(f) (or equivalently B−(f)) and cyclotomic schemes by analyz-

ing two known sporadic examples of non-weakly regular bent functions over F36

(see[24, 25]). We observe that the sets B+(f) (or equivalently B−(f)) corresponding

to these sporadic examples are non-trivial partial difference sets and they are fusion

scheme of some cyclotomic schemes for certain parameters. Hence, this is a dif-

ferent relation from the previous ones in the sense of while the pre-image sets of

some weakly regular bent functions give PDSs, the partition of Fp2m with respect to

the sign of the Walsh transformation of some non-weakly regular bent functions also

gives PDSs. For the following examples we have q = 729, and N = 13. Let w be a

fixed primitive element of F36 . LetC0 be the multiplicative subgroup of F36 generated
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by w13. For 1 ≤ i ≤ 12, Ci denotes the i-th cyclotomic coset of C0, and defined by

Ci = wiC0.

Example 6 f2 : F36 → F3, f2(x) = Tr6(w7x98) is non-weakly regular of Type

(−). The dual of f2 is not bent and corresponding partial difference sets and strongly

regular graphs are non-trivial.

• B+(f2) is a (729, 504, 351, 342)-PDS in F36

• B?
−(f2) is a (729, 224, 62, 71)-PDS in F36

By using Magma, we compute B+(f2) and B−(f2). We observe that B+(f2) =⋃
i∈{0,3,5,6,7,8,9,11,12}Ci and B−(f2) =

⋃
i∈{1,2,4,10}Ci. Hence B+(f2) and B?

−(f2) are

2-class fusion schemes and correspond to non-trivial strongly regular graphs.

Example 7 f3 : F36 → F3, f3(x) = Tr6(w7x14 + w35x70) is non-weakly regular

of Type (−). The dual of f3 is not bent. Corresponding partial difference sets are

non-trivial.

• B+(f3) is a (729, 504, 351, 342)- regular PDS in F36 .

• B?
−(f3) is a (729, 224, 62, 71)- regular PDS in F36 .

Again by Magma computations we have,B+(f3) =
⋃
i∈{0,1,2,4,5,6,9,11,12}Ci and B−(f3) =⋃

i∈{3,7,8,10}Ci.HenceB+(f3) andB?
−(f3) are 2-class fusion schemes and correspond

to non-trivial strongly regular graphs.

Remark 3.3.1 Non-trivial strongly regular graphs correspond to f2 and f3 are from

a unital: projective 9− ary [28, 3] code with weights 24, 27; V O−(6, 3) affine polar

graph (See, [9]).

In fact, these are not the only examples giving non-trivial strongly regular graph.

We easily obtain different non-trivial partial difference sets on F36 by preserving

the images of the functions f2 and f3 on C0. For example the functions; h1(x) =
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Tr6(w7kx154) and h2(x) = Tr6(w7kx658) are non-weakly regular bent for any odd in-

teger k. The corresponding subsetsB−(h1)\{0} andB−(h2)\{0}) are (729, 224, 62, 71)-

PDSs in F36 . On the other hand if we take k even the Walsh transform of the corre-

sponding functions h1 and h2 have the form;

ĥi(α) =


27ε

f∗(α)
3 ,

0,

−54,

as α runs through F?36 .

Let k be even,D := {α : α ∈ F36|ĥi(α) = 0}. We observe thatD is a (729, 252, 81, 90)-

PDS in F36 . The parameters ofD are different than the parameters of Examples 2 and

3. Moreover as k is even hi is not a bent function. This gives a construction of

non-trivial strongly regular graphs from certain p-ary functions which are not bent

functions.

It is an interesting problem to determine fusion schemes of an N -class cyclotomic

scheme on Fq. There are a lot of research papers devoted to this problem, for example,

see [4, 40, 28, 35]. Moreover, another interesting problem is to find an explicit relation

between non-weakly regular bent functions and 2-class fusion schemes of cyclotomic

schemes.
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CHAPTER 4

ASSOCIATIONS SCHEMES OF CLASSES 5 AND 6 ARISING FROM

TERNARY NON-WEAKLY REGULAR BENT FUNCTIONS

In this chapter we give a construction method of association schemes of class 5 and

class 6 in odd and even dimensions respectively by using ternary non-weakly regular

bent functions in GMMF class.

4.1 Preliminaries

Remember that any bent function g : Fnp → Fp is of two types (see Chapter 2)).

Type (+) if f̂(0) = εp
n
2 εf

∗(0)
p , ε ∈ {1, i}. (41)

Type (−) if f̂(0) = εp
n
2 εf

∗(0)
p , ε ∈ {−1,−i}. (42)

Remark 4.1.1 It is recognised that weakly regular bent functions show up in pairs

and given a weakly regular bent function f : Fnp → Fp we have (see [24])

f̂ ∗(α) = ξ−1p
n
2 εf(−α)
p (43)

where f̂(α) = ξp
n
2 ε
f∗(α)
p . It is easy to see that for pn ≡ 1 (mod 4) the types of f and

f ∗ are same, for pn ≡ 3 (mod 4) they are of different types.

Let f : Fnp → Fp be a non-weakly regular bent function. For any y ∈ Fnp we have
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ξ−1p
n
2 εf(y)
p = S0(f, y)− S1(f, y). (44)

By Equation 44 we have

S0(f, y)− S1(f, y) =

 p
n
2 ε
f(y)
p if n even or n odd and p ≡ 1 mod 4;

−ipn2 εf(y)
p if n odd and p ≡ 3 mod 4.

In Chapter 2, we prove that if f ∗ is bent then it is non-weakly regular. So, if f ∗ is

bent then the subsets B+(f ∗) and B−(f ∗) are well defined. Let Hi(f) := {x : x ∈
Fnp |f(x) = i}, Ci(f) := {x : x ∈ B+(f)|f ∗(x) = i} and Di(f) := {x : x ∈
B−(f)|f ∗(x) = i} for 0 ≤ ∀i ≤ p − 1. We further define the subsets H+

i (f) :=

B+(f ∗) ∩Hi(f) and H−i (f) := B−(f ∗) ∩Hi(f), for 0 ≤ ∀i ≤ p− 1.

From now on, all the plateaued functions we consider are partially bent. It is known

that all partially bent functions can be written as sum of a bent function and an affine

function. Let f (a) : Fnp → Fp be bent for all a ∈ Fps and fa : Fnp × Fsp → Fp be the

map (x, y)→ f (a)(x) + a.y. Then the function F : Fnp × Fsp × Fsp → Fp defined by

F (x, y, z) = fz(x, y) = f z(x) + z.y (45)

belongs to GMMF class. The Walsh transform of F at (α, β, γ) is given by

F̂ (α, β, γ) =
∑

x∈Fmp

∑
y∈Fsp

∑
z∈Fsp

ε
F (x,y,z)−α.x−β.y−γ.z
p

=
∑

x∈Fmp
ε
f (z)(x)−α.x
p

∑
y∈Fsp

ε
y.(z−β)
p

∑
z∈Fsp

ε−γ.zp

= psε−γ.βp f̂ (β)(α).

(46)

Then we have,

F̂ (α, β, γ) = ξα,βp
n+s
2 εf

(β)∗(α)−γ.β
p (47)

which follows from f̂ (β)(α) = ξα,βp
n
2 ε
f (β)

∗
(α)

p , where ξα,β ∈ {±1,±i}. Hence we

have

F ∗(x, y, z) = f (y)∗(x)− y.z. (48)

Observe that F is weakly regular if f (z) is weakly regular bent of the same type for
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all z ∈ Fsp. F is non-weakly regular bent if f (z) is weakly regular bent for all z ∈ Fsp
and there are z1, z2 ∈ Fsp such that f (z1) and f (z2) are of different types or there exists

z ∈ Fsp such that f (z) is non-weakly regular bent.

Let F ∈ GMMF be a non-weakly regular bent function. Next, we determine the

structure of the setsB+(F ) andB−(F ) in the case of f (z) is weakly regular bent for all

z ∈ Fsp. Note that this is a specific case of the general version for which we determine

the structure of the sets B+(F ) and B−(F ) in Chapter 3. By the observation above,

one can partition Fsp into two subsets as W+(F ) := {z : z ∈ Fsp|f (z) is of type (+)}
and W−(F ) := {z : z ∈ Fsp|f (z) is of type (−)}, where F : Fnp × Fsp × Fsp → Fp is

given by F (x, y, z) = fz(x, y). Then by the equation (47) we deduce that

B+(F ) = Fnp ×W+(F )× Fsp and B−(F ) = Fnp ×W−(F )× Fsp. (49)

Remark 4.1.2 Note that Equation (48) implies F ∗ is also bent and belongs to the

GMMF class.

The Walsh transform of F ∗ at (α, β, γ) is given by

F̂ ∗(α, β, γ) =
∑

x∈Fmp

∑
y∈Fsp

∑
z∈Fsp

ε
F ∗(x,y,z)−α.x−β.y−γ.z
p

=
∑

x∈Fmp
ε
f (y)

∗
(x)−α.x

p

∑
y∈Fsp

ε−y.βp

∑
z∈Fsp

ε
−z.(γ+y)
p

= psεγ.βp f̂ (−γ)∗(α).

(410)

Hence, we have

F ∗∗(x, y, z) = f (−z)∗∗(x) + y.z

= f (−z)(−x) + y.z,
(411)

where the second equality follows from Equation (43).

Definition 4.1.1 A character of a group G is a homomorphism from G to C?, where

C? denotes the multiplicative group of the field of complex numbers. Moreover, a

character is called trivial if it maps the all group elements to 1.

Remark 4.1.3 Note that fields have two kinds of characters as they have two different

group structures, namely, additive and multiplicative.
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4.2 Associations Schemes Related with Ternary Non-Weakly Regular Bent Func-

tions in GMMF Class

In this section we give a construction method of association schemes of class 5 and

class 6 in odd and even dimensions respectively by using ternary non-weakly regular

bent functions in GMMF class.

The functions χj : Fnp → C?, j ∈ Fnp , defined by

χj(x) = εj.xp

are all additive characters of Fnp . Let Ĝ denotes the character group of an finite abelian

groupG and χ0 be the trivial character. We assign a subsetA ofGwith the group ring

element
∑

x∈A x, which will also be denoted by means of A. By linearity, we extend

each character χ ∈ G to a homomorphism from C[G] to C, and we nevertheless

denote this homomorphism by χ. Let A0 = {0}, A1, . . . , Ad be an inversed-closed

partition of G. This partition induces a partition S0 = {χ0}, S1, S2, . . . , Se, of Ĝ :

Ψ,Φ ∈ Ĝ \ {χ0} are in the same Sj iff Ψ(Ai) = Φ(Ai) for 1 ≤ ∀i ≤ d.

The following theorem is given in [8].

Theorem 4.2.1 (Bridges-Mena, 1982) It holds that d ≤ e. In particular (G, {Ai}di=0)

forms a translation scheme iff d = e.

A0 A1 A2 A3 . . . Ad

Ψ0 ∈ S0 1 #A1 #A2 #A3 . . . #Ad

Ψ ∈ S1 1 a11 a12 a13 . . . a1d

Ψ
′ ∈ S2 1 a21 a22 a23 . . . a2d

Ψ
′′ ∈ S3 1 a31 a32 a33 . . . a3d

...
...

...
...

...
...

Ψ(e) ∈ Se 1 ae1 ae2 ae3 . . . aed

If d = e then the d by d matrix P = [aij] is called the principal part of the first

eigenmatrix of the translation scheme (G, {Ai}di=0).
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4.2.1 Construction in Even Dimension

From now on we further assume that s ∈ Z+ and F : F2
3 × Fs3 × Fs3 → F3 be a non-

weakly regular bent function defined by the Equation (45) such that f (z) is weakly

regular bent for all z ∈ Fs3.

Condition 1 f (0) is of type (−) and f (z) is of type (+) for all nonzero z ∈ Fs3;

f (0)(0) = 0 and f (z) = f (−z) for all z ∈ Fs3; f (z)(x) = f (z)(−x) for all x ∈ F32 .

It is easy to see that if F satisfies the Condition 1 then F (x, y, z) = F (−x,−y,−z)

and F̂ (α, β, γ) = F̂ (−α,−β,−γ) so that F ∗(x, y, z) = F ∗(−x,−y,−z). Denote

G1 = F2
3 × Fs3 × Fs3.

Theorem 4.2.2 Let F satisfies the Condition 1. Let A0 = {0}, Ai = Ci(F ) for 1 ≤
∀i ≤ 3, A4 = D?

0(F ), Aj = Dj−4(F ) for 5 ≤ ∀j ≤ 6. Let Γi := (G1, Ei), 0 ≤
i ≤ 6 be Cayley graphs on G1 with connection sets {Ai}6

i=0, then (G1, {Γi}6
i=0) is an

association scheme of class 6.

Proof. By Equation (44) we have

3s+1ε
F (θ)
3 =

2∑
i=0

χθ(Ci(F ))εi3 −
2∑
i=0

χθ(Di(F ))εi3. (412)

Since F ∗(x, y, z) = F ∗(−x,−y,−z) then Ci(F ) = −Ci(F ) and Di(F ) = −Di(F )

for all i ∈ F3. Since ε3 + ε̄3 = −1, χθ(Ci(F )) and χθ(Di(F )) are integers for all

i ∈ F3 and θ ∈ F2
3 × Fs3 × Fs3. The assumptions f (0) is of type (−), f (z) is of type

(+) for all nonzero z ∈ F3s and Equation (49) imply that B−(F ) = F2
3 × {0} × Fs3.

Since B−(F ) is a subgroup of G1 every character of B−(F ) can be represented by

the restriction of a character of G1 into B−(F ). Then by character theory of finite

abelian groups we have

χθ(B−(F )) =

 3s+2 if θ ∈ B−(F )⊥,

0 otherwise.
(413)

Since F ∗ is bent (see Remark 4.1.2)by Remarks 4.1.1, 4.1.2 and Equation (411) we

haveB+(F ∗) = F2
3×Fs3×Fs3? andB−(F ∗) = F2

3×Fs3×{0}. It is clear thatB−(F )⊥ =
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{0} × Fs3 × {0} and for any element (0, y,0) ∈ B−(F )⊥ we have F (0, y,0) =

f (0)(0) = 0 implying B−(F )⊥ ⊂ H0(F ). Moreover, since B−(F )⊥ ⊂ B−(F ∗) we

have B−(F )⊥ ⊂ H−0 (F ). Now we will prove that B−(F )⊥ = H−0 (F ). Since F ∗ is

bent we have F ∗∗(x) = F (x) by Theorem 2.2.1. By definition we have Ci(F ∗) =

{x ∈ B+(F ∗) : F (x) = i} and Di(F
∗) = {x ∈ B−(F ∗) : F (x) = i} for i ∈ F3. Let

us denote θ = (α, β, γ) ∈ G1 and v = (x, y, z) ∈ G1. By inverse Walsh transform

we have

3s+1ε
F ∗(θ)
3 =

∑
v∈B+(F ∗) ε

F (v)+v.θ
3 −

∑
v∈B−(F ∗) ε

F (v)+v.θ
3

=
∑2

i=0 χθ(Ci(F
∗))εi3 −

∑2
i=0 χθ(Di(F

∗))εi3.

Observe that H+
i (F ) = Ci(F

∗) and H−i (F ) = Di(F
∗) for all i ∈ F3. Put θ = 0.

Since F is of type (−) by Lemma 2.2.5 we have

−3s+1ε
F ∗(0)
3 = −3s+1 = #D0(F ∗) + #D1(F ∗)ε3 + #D2(F ∗)ε23. (414)

Since {ε3, ε23} is a basis for Q(ε3) over Q [30, Theorem 2.47 (i) ], there exist uniquely

determined coefficients in Q satisfying the equation

−(3s+1 + #D0(F ∗)) = #D1(F ∗)ε3 + #D2(F ∗)ε23. (415)

Then ε3 + ε̄3 = −1 implies #D1(F ∗) = #D2(F ∗) = #D0(F ∗) + 3s+1. Since

#D0(F ∗) + #D1(F ∗) + #D2(F ∗) = #B−(F ∗) and B−(F ∗) = F2
3 × Fs3 × {0},

we have #D0(F ∗) = 3s. On the other hand we have #B−(F )⊥ = 3s. Combining

B−(F )⊥ ⊂ H−0 (F ) and H−0 (F ) = D0(F ∗) we deduce that B−(F )⊥ = H−0 (F ).

Case 3 (θ ∈ H+
i (F )) By Lemma 2.2.5 we have S1(F, θ) = 0 and 3s+1ε

F (θ)
3 =∑2

i=0 χθ(Ci(F ))εi3. Then we have

0 = (χθ(Ci(F ))− 3s+1)εi3 +
∑

j 6=i∈F3

χθ(Cj(F ))εj3. (416)

0 =
∑
j∈F3

χθ(Dj(F ))εj3. (417)

By similar arguments above, there exist uniquely determined coefficients in Q satis-

fying Equations (416 and 417). It is clear that for all i ∈ F3 we have χθ(D0(F )) =

χθ(D1(F )) = χθ(D2(F )). Since θ /∈ H−0 (F ) = B−(F )⊥, by Equation (413) we have
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χθ(D0(F )) = χθ(D1(F )) = χθ(D2(F )) = 0 for all i ∈ F3. By character theory of

finite abelian groups we have∑
i∈F3

χθ(Ci(F ) +Di(F )) = 0 (418)

for θ 6= 0. Hence we have

χθ(C0(F )) + χθ(C1(F )) + χθ(C2(F )) = 0. (419)

On the other hand, Equation (416) implies

(χθ(Ci(F ))− 3s+1) = χθ(Ci+1(F )) = χθ(Ci+2(F )) (420)

for i ∈ F3. Combining Equations (419) and (420) we have χθ(Ci(F )) = 3s+1 − 3s

and χθ(Ci+1(F )) = χθ(Ci+2(F )) = −3s, for i ∈ F3.

Case 4 (θ ∈ H−i (F )) By Lemma 2.2.5 we have S0(F, θ) = 0 and −3s+1ε
F (θ)
3 =∑2

i=0 χθ(Di(F ))εi3. Then we have

0 = (χθ(Di(F )) + 3s+1)εi3 +
∑

j 6=i∈F3

χθ(Dj(F ))εj3. (421)

0 =
∑
j∈F3

χθ(Cj(F ))εj3. (422)

By similar arguments above we have

χθ(Di(F )) + 3s+1 = χθ(Di+1(F )) = χθ(Di+2(F )) (423)

for i ∈ F3. Let θ ∈ H−0 (F ) = B−(F )⊥. Then by Equation (413) we have

χθ(D0(F )) + χθ(D1(F )) + χθ(D2(F )) = 3s+2. (424)

Combining Equations (424) and (423) we get χθ(D0(F )) = 3s and χθ(D1(F )) =

χθ(D2(F )) = 3s+1 + 3s. Since 0 ∈ H−0 (F ) and χ0(Di(F )) = #Di(F ) for i ∈ F3,

we have #D0(F ) = 3s and #D1(F ) = #D2(F ) = 3s+1 + 3s. It is clear that

Equation (422) implies

χθ(C0(F )) = χθ(C1(F )) = χθ(C2(F )). (425)
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Hence we have χ0(Ci(F )) = #Ci(F ) = 32s+1 − 3s+1 for i ∈ F3. If θ 6= 0 then

by Equation (418) we have χθ(C0(F )) = χθ(C1(F )) = χθ(C2(F )) = −3s+1. Let

θ ∈ H−i (F ) for i ∈ {1, 2}. Since θ /∈ B−(F )⊥ by Equation (413) we have

χθ(D0(F )) + χθ(D1(F )) + χθ(D2(F )) = 0 (426)

Then by Equations (418), (426) and (425) we have χθ(C0(F )) = χθ(C1(F )) =

χθ(C2(F )) = 0.Combining Equations (423) and (426) we get χθ(Di(F )) = 3s−3s+1

and χθ(Di+1(F )) = χθ(Di+2(F )) = 3s for i ∈ {1, 2}.

Let S0 := {χ0}, Si := {χy : y ∈ H+
i−1(F )} for 1 ≤ ∀i ≤ 3 and S4 := {χy : 0 6=

y ∈ H−0 (F )}, Sj := {χy : y ∈ H−j−4(F )} for 5 ≤ ∀j ≤ 6. Then by Theorem 4.2.1

(G, {Ai}6
i=0) forms a translation scheme. �

Hence for any positive integer s we have translation scheme of class 6 with following

first eigenmatrix;



1 32s+1 − 3s+1 32s+1 − 3s+1 32s+1 − 3s+1 3s − 1 3s+1 + 3s 3s+1 + 3s

1 3s+1 − 3s −3s −3s −1 0 0

1 −3s 3s+1 − 3s −3s −1 0 0

1 −3s −3s 3s+1 − 3s −1 0 0

1 −3s+1 −3s+1 −3s+1 3s − 1 3s+1 + 3s 3s+1 + 3s

1 0 0 0 3s − 1 3s − 3s+1 3s

1 0 0 0 3s − 1 3s 3s − 3s+1


Moreover fusing the first three non-trivial classes of the those translation schemes we

obtain fusion schemes of class 4.



1 32s+2 − 3s+2 3s − 1 3s+1 + 3s 3s+1 + 3s

1 0 −1 0 0

1 −3s+2 3s − 1 3s+1 + 3s 3s+1 + 3s

1 0 3s − 1 3s − 3s+1 3s

1 0 3s − 1 3s 3s − 3s+1


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4.2.2 Construction in Odd Dimension

From now on we further assume that s ∈ Z+ and F : F3 × Fs3 × Fs3 → F3 be a non-

weakly regular bent function defined by the Equation (45) such that f (z) is weakly

regular bent for all z ∈ F3s .

Condition 2 f (0) is of type (−) and f (z) is of type (+) for all nonzero z ∈ Fs3;

f (0)(0) = 0 and f (z) = f (−z) for all z ∈ Fs3; f (z)(x) = f (z)(−x) for all x ∈ F3.

Condition 3 f (0) is of type (+) and f (z) is of type (−) for all nonzero z ∈ Fs3;

f (0)(0) = 0 and f (z) = f (−z) for all z ∈ Fs3; f (z)(x) = f (z)(−x) for all x ∈ F3.

It is easy to see that ifF satisfies the Condition 2 or 3 thenF (x, y, z) = F (−x,−y,−z)

and F̂ (α, β, γ) = F̂ (−α,−β,−γ) so that F ∗(x, y, z) = F ∗(−x,−y,−z). Denote

G2 = F3 × Fs3 × Fs3.

Proposition 4.2.1 If F satisfies the Condition 2 thenD2(F ) is empty set; if F satisfies

the Condition 3 then C1(F ) is empty set.

Proof 1 Let us assume that F satisfies the Condition 2. By Equation (47) we have

F̂ (0) = ξ0
√

33sε
f (0)

∗
(0)

3 . Since f (0) is of type (−) then by Equation (42) F is of type

(−). Then F ∗ is of type (+) (see Remark 4.1.2). By Equation (44) we have

−i
√

33sε
F (θ)
3 =

∑
v∈B+(F )

ε
F ∗(v)+v.θ
3 −

∑
v∈B−(F )

ε
F ∗(v)+v.θ
3 (427)

Put θ = 0. Since F ∗ is of type (+) then by Lemma 2.2.4 we have S0(F,0) = 0 and

i
√

33sε
F ∗(0)
3 =

2∑
i=0

χθ(Di(F ))εi3. (428)

By Equation (45) F (0) = 0 then we have i
√

33s =
∑2

i=0 χ0(Di(F ))εi3. Moreover it

is well known that i
√

3 =
∑

j∈F?3
( j

3
)εj3. Hence we have

#D0(F ) + (#D1(F )− (
1

3
)3s)ε3 + (#D2(F )− (

2

3
)3s)ε23 = 0 (429)

On the other hand

#D0(F ) + #D1(F ) + #D2(F ) = #B−(F ) = #F3 × {0} × Fs3 = 3s+1. (430)
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Combining Equations (429) and (430) we have #D0(F ) = 3s, #D1(F ) = 3s+1− 3s

and #D2(F ) = 0. We conclude that D2(F ) is the empty set.

Let us assume that F satisfies the Condition 3. Since f (0) is of type (+) then by

Equation (41) F is of type (+). Then F ∗ is of type (−) (see Remark 4.1.2). Put

θ = 0. Since F ∗ is of type (−) then by Lemma 2.2.4 we have S1(F,0) = 0 and

−i
√

33sε
F ∗(0)
3 =

2∑
i=0

χθ(Ci(F ))εi3. (431)

By Equation (45) F (0) = 0 then we have −i
√

33s =
∑2

i=0 χ0(Ci(F ))εi3. Hence we

have

#C0(F ) + (#C1(F ) + (
1

3
)3s)ε3 + (#C2(F ) + (

2

3
)3s)ε23 = 0 (432)

On the other hand

#C0(F ) + #C1(F ) + #C2(F ) = #B+(F ) = #F3 × {0} × Fs3 = 3s+1. (433)

Combining Equations (432) and (433) we have #C0(F ) = 3s, #C1(F ) = 0 and

#C2(F ) = 3s+1 − 3s. We conclude that C1(F ) is the empty set.

Proposition 4.2.2 If F satisfies the Condition 2 (resp. Condition 3) then F ∗ satisfies

the Condition 3 (resp. Condition 2).

Proof 2 The proof follows from the Equations (43) and (48) (see Remarks 4.1.1 and

4.1.2).

Corollary 4.2.1 If F satisfies the Condition 2 then H+
1 (F ) is empty set; if F satisfies

the Condition 3 then H−2 (F ) is empty set.

Proof. It is clear that for i ∈ F3 we have Ci(F ∗)=H+
i (F ) and Di(F

∗)=H−i (F ) by

definition. Hence the proof follows from the Propositions 4.2.1 and 4.2.2. �

Theorem 4.2.3 Let F : G2 → F3 be a non-weakly regular bent function satisfy-

ing the Condition 2. Let A0 = {0}, Ai = Ci(F ) for 1 ≤ ∀i ≤ 3, A4 =

D?
0(F ) and A5 = D1(F ). Let Γi := (G2, Ei), 0 ≤ i ≤ 5 be Cayley graphs on

G2 with connection sets {Ai}5
i=0, then (G2, {Γi}5

i=0) is an association scheme of

class 5.
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Proof. By similar arguments in Theorem 4.2.2 we have Ci(F ) = −Ci(F ) and

Di(F ) = −Di(F ) for all i ∈ F3; χθ(Ci(F )) and χθ(Di(F )) are integers for all

i ∈ F3 and θ ∈ F3 × Fs3 × Fs3.

Assume thatF satisfies the Condition 2 . Then the Equation (49) implies thatB−(F ) =

F3 × {0} × Fs3. Then by character theory of finite abelian groups we have

χθ(B−(F )) =

 3s+1 if θ ∈ B−(F )⊥,

0 otherwise.
(434)

By Remarks 4.1.1, 4.1.2 and Equation (411) we have B+(F ∗) = F3 × Fs3 × {0} and

B−(F ∗) = F2
3 × Fs3 × Fs3

?. It is clear that B−(F )⊥ = {0} × Fs3 × {0} and for any

element (0, y,0) ∈ B−(F )⊥ we have F (0, y,0) = f (0)(0) = 0 implying B−(F )⊥ ⊂
H0(F ). Moreover, since B−(F )⊥ ⊂ B+(F ∗) we have B−(F )⊥ ⊂ H+

0 (F ). Now

we will prove that B−(F )⊥ = H+
0 (F ). Since F ∗ is bent we have F ∗∗(x) = F (x)

by Theorem 2.2.1. Let us denote θ := (α, β, γ) ∈ G2 and v := (x, y, z) ∈ G2. By

inverse Walsh transform we have

−i
√

33sε
F ∗(θ)
3 =

∑
v∈B+(F ∗) ε

F (v)+v.θ
3 −

∑
v∈B−(F ∗) ε

F (v)+v.θ
3

=
∑2

i=0 χθ(Ci(F
∗))εi3 −

∑2
i=0 χθ(Di(F

∗))εi3.

Put θ = 0. Since F is of type (−) then by Lemma 2.2.4 we have

−i
√

33sε
F ∗(0)
3 = −i

√
33s = #C0(F ∗) + #C1(F ∗)ε3 + #C2(F ∗)ε23. (435)

By previous arguments we have

#C0(F ∗) = #C1(F ∗) +

(
1

3

)
3s = #C2(F ∗) +

(
2

3

)
3s. (436)

Since #C0(F ∗) + #C1(F ∗) + #C2(F ∗) = #B+(F ∗) and B+(F ∗) = F3×Fs3×{0}
combining with Equation (436) we have #C0(F ∗) = 3s. On the other hand we have

#B−(F )⊥ = 3s. Combining B−(F )⊥ ⊂ H+
0 (F ) and H+

0 (F ) = C0(F ∗) we deduce

that B−(F )⊥ = H+
0 (F ).

Case 5 (θ ∈ H+
i (F )) By Lemma 2.2.4 and Proposition 4.2.1 we have S0(F, θ) = 0

and i
√

33sε
F (θ)
3 = χθ(D0(F )) + χθ(D1(F ))ε3. Then we have

0 = χθ(D0(F )) + χθ(D1(F ))ε3 −
(

1

3

)
3sεi+1

3 −
(

2

3

)
3sεi+2

3 . (437)
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0 =
∑
j∈F3

χθ(Cj(F ))εj3. (438)

By Corollary 4.2.1 i ∈ {0, 2}. If i = 0 then by Equation 437 we have χθ(D0(F )) +

(χθ(D1(F ))−
(

1
3

)
3s)ε3−

(
2
3

)
3sε23 = 0. Then by previous arguments we have χθ(D0(F )) =

3s and χθ(D1(F )) = 3s+1 − 3s. On the other hand if θ 6= 0, the Equations (418) and

(438) imply that χθ(Cj(F )) = −3s for all j ∈ F3. In particular since 0 ∈ H+
0 we

have χ0(D0(F )) = #D0(F ) = 3s and χ0(D1(F )) = #D1(F ) = 3s+1 − 3s. Then

Equation (438) implies that #Cj(F ) = 32s − 3s for all j ∈ F3.

If i = 2 then by Equation 437 we have χθ(D0(F ))−
(

1
3

)
3s+(χθ(D1(F ))−

(
2
3

)
3s)ε3 =

0. Then by similar arguments we have χθ(D0(F )) = 3s and χθ(D1(F )) = −3s. Then

by Equations (418) and (438) we have χθ(Cj(F )) = 0 for all j ∈ F3.

Case 6 (θ ∈ H−i (F )) By Lemma 2.2.4 and Proposition 4.2.1 we have S1(F, θ) = 0

and −i
√

33sε
F (θ)
3 =

∑2
j=0 χθ(Cj)ε

j
3. Then we have

0 = χθ(Ci(F ))εi3 + (χθ(Ci+1(F )) +
(

1
3

)
3s)εi+1

3

+(χθ(Ci+2(F )) +
(

2
3

)
3s)εi+2

3 .
(439)

0 =
∑

j∈{0,1}

χθ(Dj(F ))εj3. (440)

Since 1 and ε3 are linearly independent over F3, Equation (440) implies that χθ(D0(F )) =

χθ(D1(F )) = 0 for all i ∈ F3. By previous arguments we have

χθ(Ci(F )) = (χθ(Ci+1(F )) +

(
1

3

)
3s) = (χθ(Ci+2(F )) +

(
2

3

)
3s) (441)

Combining Equations (418),(440), and (441) we have χθ(Ci(F )) = 0, χθ(Ci+1(F )) =

−3s and χθ(Ci+2(F )) = 3s for i ∈ F3.

Let S0 := {χ0}, S1 := {χy : 0 6= y ∈ H+
0 (F )}, S2 := {χy : y ∈ H+

2 (F )}, and

Sj := {χy : y ∈ H−j−3(F )} for 3 ≤ ∀j ≤ 5. Then by Theorem 4.2.1 (G2, {Ai}5
i=0)

forms a translation scheme. �
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Hence for any positive integer s we have translation scheme of class 5 with following

first eigenmatrix;

1 32s − 3s 32s − 3s 32s − 3s 3s − 1 3s+1 − 3s

1 −3s −3s −3s 3s − 1 3s+1 − 3s

1 0 0 0 3s − 1 −3s

1 0 −3s 3s −1 0

1 3s 0 −3s −1 0

1 −3s 3s 0 −1 0


Moreover fusing the first three non-trivial classes of the those translation schemes we

obtain fusion schemes of class 3.


1 32s+1 − 3s+1 3s − 1 3s+1 − 3s

1 −3s+1 3s − 1 3s+1 − 3s

1 0 3s − 1 −3s

1 0 −1 0


Theorem 4.2.4 Let F : G2 → F3 be a non-weakly regular bent function satisfying

Condition 3. LetA0 = {0}, A1 = C?
0(F ), and A2 = C2(F ), Aj = Dj−3(F ) for 3 ≤

∀j ≤ 5. Let Γi := (G2, Ei), 0 ≤ i ≤ 5 be Cayley graphs on G2 with connection sets

{Ai}5
i=0, then (G2, {Γi}5

i=0) is an association scheme of class 5.

Proof. By previous arguments we have Ci(F ) = −Ci(F ) and Di(F ) = −Di(F )

for all i ∈ F3; χθ(Ci(F )) and χθ(Di(F )) are integers for all i ∈ F3 and θ ∈ F3 ×
Fs3 × Fs3.

Assume that F satisfies Condition 3. Then Equation (49) implies that B+(F ) =

F3 × {0} × Fs3. Then by character theory of finite abelian groups we have

χθ(B+(F )) =

 3s+1 if θ ∈ B+(F )⊥,

0 otherwise.
(442)

By Remarks 4.1.1, 4.1.2 and Equation (411) we have B−(F ∗) = F3 × Fs3 × {0} and

B+(F ∗) = F3 × Fs3 × Fs3
?. It is clear that B+(F )⊥ = {0} × Fs3 × {0} and for any

element (0, y,0) ∈ B+(F )⊥ we have F (0, y,0) = f (0)(0) = 0 implying B+(F )⊥ ⊂
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H0(F ). Moreover, since B+(F )⊥ ⊂ B−(F ∗) we have B+(F )⊥ ⊂ H−0 (F ). Now we

will prove that B+(F )⊥ = H−0 (F ).

By previous arguments we have F ∗∗(x) = F (x). Put θ = 0. Since F is of type (+)

then by Lemma 2.2.4 we have

i
√

33sε
F ∗(0)
3 = i

√
33s = #D0(F ∗) + #D1(F ∗)ε3 + #D2(F ∗)ε23. (443)

By previous arguments we have

#D0(F ∗) = #D1(F ∗)−
(

1

3

)
3s = #D2(F ∗)−

(
2

3

)
3s. (444)

Since #D0(F ∗)+#D1(F ∗)+#D2(F ∗) = #B−(F ∗) and B−(F ∗) = F3×Fs3×{0}
combining with Equation (444) we have #D0(F ∗) = 3s. On the other hand we have

#B+(F )⊥ = 3s. Combining B+(F )⊥ ⊂ H−0 (F ) and H−0 (F ) = D0(F ∗) we deduce

that B+(F )⊥ = H−0 (F ).

Case 7 (θ ∈ H+
i (F )) By Lemma 2.2.4 and Proposition 4.2.1 we have S0(F, θ) = 0

and i
√

33sε
F (θ)
3 =

∑2
j=0 χθ(Dj)ε

j
3. Then we have

0 = χθ(Di(F ))εi3 + (χθ(Di+1(F ))−
(

1
3

)
3s)εi+1

3

−(χθ(Di+2(F )) +
(

2
3

)
3s)εi+2

3 .
(445)

0 =
∑

j∈{0,2}

χθ(Cj(F ))εj3. (446)

By similar arguments above, Equation (446) implies that χθ(C0(F )) = χθ(C2(F )) =

0 for all i ∈ F3.

By previous arguments we have

χθ(Di(F )) = (χθ(Di+1(F ))−
(

1

3

)
3s) = (χθ(Di+2(F ))−

(
2

3

)
3s). (447)

Combining Equations (418),(446) and (447) we have χθ(Di(F )) = 0, χθ(Di+1(F )) =

3s and χθ(Di+2(F )) = −3s for i ∈ F3.

Case 8 (θ ∈ H−i (F )) By Lemma 2.2.4 and Proposition 4.2.1 we have S1(F, θ) = 0

and −i
√

33sε
F (θ)
3 = χθ(C0(F )) + χθ(C2(F ))ε23. Then we have

0 = χθ(C0(F )) + χθ(C2(F ))ε23 +

(
1

3

)
3sεi+1

3 +

(
2

3

)
3sεi+2

3 . (448)
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0 =
∑
j∈F3

χθ(Dj(F ))εj3. (449)

By Corollary 4.2.1 i ∈ {0, 1}. If i = 0 then by Equation 448 we have χθ(C0(F )) +

(χθ(C2(F ))+
(

2
3

)
3s)ε23+

(
1
3

)
3sε3 = 0. Then by previous arguments we have χθ(C0(F )) =

3s and χθ(C2(F )) = 3s+1 − 3s. On the other hand if θ 6= 0, Equations (418) and

(449) imply that χθ(Dj(F )) = −3s for all j ∈ F3. In particular since 0 ∈ H−0 (F )

we have χ0(C0(F )) = #C0(F ) = 3s and χ0(C2(F )) = #C2(F ) = 3s+1 − 3s. Then

Equation (449) implies that #Dj(F ) = 32s − 3s for all j ∈ F3.

If i = 1 then by Equation 448 we have χθ(C0(F ))+
(

2
3

)
3s+(χθ(C2(F )+

(
1
3

)
3s)ε3 =

0. Then by similar arguments we have χθ(C0(F )) = 3s and χθ(C2(F )) = −3s. Then

by Equations (418) and (449) we have χθ(Dj(F )) = 0 for all j ∈ F3.

Let S0 := {χ0}, Si := {χy : y ∈ H+
i−1(F )} for 1 ≤ ∀i ≤ 3, and S4 := {χy :

0 6= y ∈ H−0 (F )}, S5 := {χy : y ∈ H−1 (F )}. Then by Theorem 4.2.1 (G2, {Ai}5
i=0)

forms a translation scheme. �

Hence for any positive integer s we have translation scheme of class 5 with following

first eigenmatrix;

1 3s − 1 3s+1 − 3s 32s − 3s 32s − 3s 32s − 3s

1 −1 0 0 3s −3s

1 −1 0 −3s 0 3s

1 −1 0 3s −3s 0

1 3s − 1 3s+1 − 3s −3s −3s −3s

1 3s − 1 −3s 0 0 0


Moreover fusing the last three non-trivial classes of the those translation schemes we

obtain fusion schemes of class 3.


1 3s − 1 3s+1 − 3s 32s+1 − 3s+1

1 −1 0 0

1 3s − 1 3s+1 − 3s −3s+1

1 3s − 1 −3s 0


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Remark 4.2.1 We observe that the first eigenmatrices of the translation schemes as-

sociated with Theorems 4.2.3 and 4.2.4 can be obtained from each other by multi-

plying one with a permutation matrix. Hence corresponding association schemes are

isometric. Therefore we should think as Theorems 4.2.3 and 4.2.4 are equivalent.

4.3 Numerical Examples

In the examples below, we evaluate the first eigenmatrices of the four different trans-

lation schemes by using the Magma Computational Algebra System.

Example 8 Let s = 1, f : F4
3 → F3, f(x1, x2, x3, x4) = x2

2x
2
4 + x2

1 + x2
2 + x3x4 be

a non-weakly regular bent function in the GMMF class satisfying Condition 1. Then

the first eigenmatrix of the corresponding translation scheme is

1 18 18 18 2 12 12

1 6 −3 −3 −1 0 0

1 −3 6 −3 −1 0 0

1 −3 −3 6 −1 0 0

1 −9 −9 −9 2 12 12

1 0 0 0 2 −6 3

1 0 0 0 2 3 −6


By fusing the first 3 non-trivial classes in the first eigenmatrix, we obtain the first

eigenmatrix of the fusing scheme of class 4.

1 54 2 12 12

1 0 −1 0 0

1 −27 2 12 12

1 0 2 −6 3

1 0 2 3 −6


Example 9 Let s = 2, f : F6

3 → F3, f(x1, x2, x3, x4, x5, x6) = x2
1x

2
5x

2
6 + 2x2

1x5x6 +

x2
1x

2
6 + x2

1 + x2
2x

2
5x

2
6 + x2

2x
2
5 + x2

2x5x6 + x2
2 + x3x5 + x4x6 be a non-weakly regular

bent function in the GMMF class satisfying Condition 1. Then the first eigenmatrix
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of the corresponding translation scheme is

1 216 216 216 8 36 36

1 18 −9 −9 −1 0 0

1 −9 18 −9 −1 0 0

1 −9 −9 18 −1 0 0

1 −27 −27 −27 8 36 36

1 0 0 0 8 −18 9

1 0 0 0 8 9 −18


By fusing the first 3 non-trivial classes in the first eigenmatrix, we obtain the first

eigenmatrix of the fusing scheme of class 4.

1 648 8 36 36

1 0 −1 0 0

1 −81 8 36 36

1 0 8 −18 9

1 0 8 9 −18


Example 10 Let s = 1, f : F3

3 → F3, f(x1, x2, x3) = 2x2
1x

2
3 + 2x2

1 + x2x3 be a

non-weakly regular bent function in the GMMF class satisfying Condition 2. Then

the first eigenmatrix of the corresponding translation scheme is

1 6 6 6 2 6

1 −3 −3 −3 2 6

1 0 0 0 2 −3

1 0 −3 3 −1 0

1 3 0 −3 −1 0

1 −3 3 0 −1 0


By fusing the first 3 non-trivial classes in the first eigenmatrix, we obtain the first

eigenmatrix of the fusing scheme of class 3.
1 18 2 6

1 −9 2 6

1 0 2 −3

1 0 −1 0


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Example 11 Let s = 2, f : F5
3 → F3, f(x1, x2, x3, x4, x5) = 2x2

1x
2
4x

2
5 + x2

1x
2
4 +

x2
1x

2
5 + x2

1 + x1x4 + x3x5 be a non-weakly regular bent function in the GMMF class

satisfying Condition 3. Then the first eigenmatrix of the corresponding translation

scheme is 

1 8 18 72 72 72

1 −1 0 0 9 −9

1 −1 0 −9 0 9

1 −1 0 9 −9 0

1 8 18 −9 −9 −9

1 8 −9 0 0 0


By fusing the last 3 non-trivial classes in the first eigenmatrix, we obtain the first

eigenmatrix of the fusing scheme of class 3.
1 8 18 72

1 −1 0 0

1 8 18 −27

1 8 −9 0


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CHAPTER 5

THREE WEIGHT LINEAR CODES FROM NON-WEAKLY REGULAR

BENT FUNCTIONS

In this chapter, we build the classes of three-weight linear p-ary codes on B+(f) and

B−(f) from non-weakly regular dual-bent functions based on the first conventional

construction. Moreover, we determine the weight distributions of the built codes

when the associated non-weakly regular bent functions belong to a certain subclass

of the GMMF bent functions. We examine that all non-zero codewords of the con-

structed codes are minimal for nearly all cases.

5.1 Preliminaries

5.1.1 Cyclotomic Fields

Let p be an odd prime. A cyclotomic field Q(εp) is obtained from the field Q by

adjoining εp. The ring of integers in Q(εp) is defined as OQ(εp) := Z(εp). An integral

basis of OQ(εp) is the set {εip : 1 ≤ i ≤ p− 1}.
Let p be an odd prime number. The quadratic Gauss sum is defined as

∑
i∈F?p

(
i

p

)
εip =


√
p if p ≡ 1 (mod 4);

i
√
p if p ≡ 3 (mod 4).

(51)

5.1.2 Linear Codes.

Let p be a prime number and n, k be positive integers. A linear code C of length

n and dimension k over Fp is a k-dimensional linear subspace of Fnp , denoted by
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[n, k]p. The elements of C are referred to as codewords. A linear code C of length n

and dimension k over Fp with minimum Hamming distance d is denoted by [n, k, d]p.

Note that the minimum Hamming distance d determine the error-correcting capability

of C. It is effortless to see that the minimum Hamming distance of C is the minimal

Hamming weight of its nonzero codewords. The Hamming weight of a vector v =

(v0, . . . , an−1) ∈ Fnp , denoted by wt(v), is the size of its support described as

supp(v) = {0 ≤ i ≤ n− 1 : vi 6= 0}.

Let Ea be indicating the number of codewords with Hamming weight a in C of length

n. Then, (1, E1, . . . , En) is the weight distribution of C and the polynomial 1+E1y+

· · ·+Eny
n is reffered to as the weight enumerator of C. The code C is reffered to as

a t-weight code if the number of nonzero Ea in the weight distribution is t.

The covering problem of linear codes. Let C be a linear [n, k, d]p code over Fp. We

say that a codeword v covers a codeword u if supp(u) ⊂ supp(v). If a nonzero code-

word v of C does not cover any other nonzero codeword of C, then v is referred to as

a minimal codeword of C. A linear code C is said to be minimal if each nonzero code-

word of C is minimal. The covering problem of C is to locate all minimal codewords

of C.

In [2], the authors give a simple criteria to determine whether a given linear code is

minimal.

Lemma 5.1.1 (Ashikhmin-Barg) Let C be a linear code over Fp. Then, all nonzero

codewords of C are minimal if

p− 1

p
<
amin

amax

, (52)

where amin and amax indicate the minimum and maximum weights of nonzero code-

words of C, respectively.
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5.2 Non-Weakly Regular Bent Functions and GMMF Class

Proposition 5.2.1 Let f : Fnp → Fp be a non-weakly regular bent function and its

dual function f ∗ is also bent. If n even or n odd and p ≡ 1 mod 4, then we have

S0(f, y) =

 p
n
2 ε
f(y)
p if f ∗(x) + x.y is of type (+);

0 if f ∗(x) + x.y is of type (−);

S1(f, y) =

 −p
n
2 ε
f(y)
p if f ∗(x) + x.y is of type (−);

0 if f ∗(x) + x.y is of type (+).

If n odd and p ≡ 3 mod 4, then we have

S0(f, y) =

 −ip
n−1
2
√
pε
f(y)
p if f ∗(x) + x.y is of type (−);

0 if f ∗(x) + x.y is of type (+);

S1(f, y) =

 ip
n−1
2
√
pε
f(y)
p if f ∗(x) + x.y is of type (+);

0 if f ∗(x) + x.y is of type (−).

Proof. The proof follows from Lemmas 2.2.4 and 2.2.5. �

Proposition 5.2.2 Let f : Fnp → Fp be a bent function such that f(0) = 0 and

f(x) = f(−x). Then f ∗(x) = f ∗(−x) and f ∗(0) = 0.

Proof. For all α ∈ Fnp , we have

f̂(−α) = ξ−αp
n
2 ε
f∗(−α)
p =

∑
x∈Fnp

ε
f(x)+α.x
p =

∑
x∈Fnp

ε
f(−x)−α.(−x)
p = f̂(α)

= ξαp
n
2 ε
f∗(α)
p .

Hence, we prove f ∗(x) = f ∗(−x). Put f ∗(0) = i0. If n is odd (resp. even), by

Proposition 2.2.1 (resp. 2.2.2), we have Ni0(f) is an odd integer. Since f(x) =

f(−x), it is possible if and only if i0 = 0. �

Let F be a non-weakly regular bent function defined by Equation 45 and f (z) is

weakly regular bent for all z ∈ F s
p . Then by Remarks 4.1.1, 4.1.2 and Equation

(410), we have
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B±(F ∗) =

 Fmp × Fsp ×W±(F ) if pn ≡ 1 mod 4;

Fmp × Fsp ×W∓(F ) if pn ≡ 3 mod 4.
(53)

Remark 5.2.1 Let f (z) = f (−z) and f (z)(x) = f (z)(−x) for all z ∈ Fsp, x ∈ Fmp .

Since F (−x,−y,−z) = f (−z)(−x)+y.z, then we have F (x, y, z) = F (−x,−y,−z).

Moreover, Equation (49) enables us to set B+(F ) or B−(F ) as a vector space of any

dimension k with m+ s ≤ k < m+ 2s.

In the following two sections, inspiring from the work of Mesnager in [32], we con-

struct three-weight linear codes based on the first conventional construction. Al-

though the regular concept of the building technique employed is a classical one,

but we are going to for the first time making use of non-weakly regular bent functions

to construct linear codes over subspaces of finite fields of odd characteristic.

5.3 Three-Weight Linear Codes on B+(f)

For any α ∈ Fp, β ∈ Fnp , we define a function

hα,β : Fnp −→ Fp,

x 7−→ hα,β(x) := αΨ(x) + β.x,

where Ψ is a mapping from Fnp to Fp such that Ψ(0) = 0.

Let f : Fnp → Fp be a non-weakly regular bent function such that f(x) = f(−x),

f(0) = 0, and f ∗ is bent. Then, for any y ∈ Fnp and u ∈ Fp, we have cf∗(y, u) =

#{α : α ∈ B+(f ∗) | f(α) + α.y = u}, df∗(y, u) = #{α : α ∈ B−(f ∗) |
f(α) + α.y = u}. Let B+(f) be an Fp-vector space with dim(B+(f)) ≥ bn

2
c + 1.

Put dim(B+(f)) = r and take Ψ(x) = f ∗(x). Then we also define a linear code CΨ

over Fp as

CΨ = {cα,β = (hα,β(ζ1), hα,β(ζ2), . . . , hα,β(ζpr−1)) : α ∈ Fp, β ∈ Fpn}, (54)

where ζ1, . . . , ζpr−1 are the elements of B+(f)? and cα,β denotes a codeword of CΨ.

The length of the linear code CΨ is pr − 1.
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Remark 5.3.1 Note that there are infinitely many non-weakly regular bent functions

such that f(x) = f(−x), B+(f) is a vector space and dim(B+(f)) ≥ bn
2
c + 1 (see,

Remark 5.2.1).

Proposition 5.3.1 The linear code Cψ of length pr − 1 over Fp defined by (54) is a

k-dimensional subspace of Fnp , where k = r + 1 and denoted by [pr − 1, r + 1]p.

Proof. Let θ : Fp×Fnp → Fpr−1
p such that (α, β)→ (hα,β(ζ1), hα,β(ζ2), . . . , hα,β(ζpr−1)),

where ζ1, . . . , ζpr−1 are the elements ofB+(f)?. Then Ker (θ) := {(α, β) ∈ Fp×Fnp |
αf ∗(x) = −β.x for all x ∈ B+(f)?}. If α 6= 0, then f ∗(x) = −α−1(β.x) for all

x ∈ B+(f). Since f ∗(x) is bent and r ≥ bn
2
c + 1, it is not possible. If α = 0,

then β.x = 0 for all x ∈ B+(f), which implies that β ∈
(
B+(f)

)⊥
. Hence, by the

isomorphism θ̄ : (Fp × Fnp )/Ker (θ)→ Im(θ), we have #CΨ = pn+1

pn−r
= pr+1. �

Let D be a subset of Fnp . Any function f : D −→ Fp is said to be balanced over Fp
if f takes each and every value of Fp the equal range of times. If D is a subspace of

Fnp and j /∈ D⊥, then it is well-known that j.x is balanced over Fp. From now on we

keep the above arguments and evaluate the weight of codewords in two cases. For

cα,β ∈ Cf∗ , we have the following.

Case 9 n is even.

• α = 0

wt(c0,β) = wt((β.ζ1, β.ζ2, . . . , β.ζpr−1) for all β ∈ Fnp . If β ∈
(
B+(f)

)⊥
, then

wt(c0,β) = 0. If β /∈
(
B+(f)

)⊥, then wt(c0,β) = (p− 1)pr−1 by balancedness.

• α 6= 0

wt(cα,β) = wt((αf ∗(ζ1) + β.ζ1, αf
∗(ζ2) + β.ζ2, . . . , αf

∗(ζpr−1) + β.ζpr−1)

for all α ∈ Fp, β ∈ Fnp . It is clear that wt(cα,β) = wt(c1,α−1β), where

α−1 is the multiplicative inverse of α ∈ F?p.

If α−1β ∈ B−(f ∗), by Proposition 5.2.1, we have

p−1∑
u=0

cf (α
−1β, u)εup =

∑
ζ∈B+(f)

εf
∗(ζ)+ζ.(α−1β)
p = 0,
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which implies −cf (α−1β, 0) =
∑p−1

u=1 cf (α
−1β, u)εup . As the set {εip : 1 ≤ i ≤

p−1} is an integral basis ofOQ(εp) and
∑p−1

i=1 ε
i
p = −1, we have cf (α−1β, 0) =

cf (α
−1β, u) for all u ∈ F?p. Hence f ∗(ζ) + ζ.(α−1β) is balanced over B+(f).

Since f ∗(0) = 0, we have wt(c1,α−1β) = (p − 1)pr−1. If α−1β ∈ B+(f ∗), by

Proposition 5.2.1, we have p
n
2 ε
f(α−1β)
p =

∑
ζ∈B+(f) ε

f∗(ζ)+ζ.(α−1β)
p . For f(α−1β) =

0, we have
p−1∑
u=0

cf (α
−1β, u)εup = p

n
2 .

Then cf (α−1β, 0) − p
n
2 +

∑p−1
u=1 cf (α

−1β, u)εup = 0. Since the set {εip : 1 ≤
i ≤ p − 1} is an integral basis of OQ(εp), there exists a unique integer a such

that cf (α−1β, 0) = a + p
n
2 and cf (α−1β, u) = a for all u 6= 0 ∈ Fp. On the

other hand, we have
∑p−1

u=0 cf (α
−1β, u) = pr. Therefore, a = pr−1 − pn2−1 and

wt(c1,α−1β) =
∑p−1

u=1 cf (α
−1β, u) = (p− 1)(pr−1 − pn2−1).

When f(α−1β) 6= 0, by similar arguments above, we have

wt(c1,α−1β) = (p− 1)(pr−1 − p
n
2
−1) + p

n
2 .

As a result of Case 9, we conclude even case with the following theorem.

Theorem 5.3.1 Let n be an even integer, and f : Fnp → Fp be a non-weakly regular

bent function such that f(0) = 0, f(x) = f(−x) and f ∗ is bent. Let B+(f) be an

r-dimensional Fp-vector space with r ≥ n
2

+ 1. Then the codewords cα,β of the linear

code Cf∗ defined by equation (54) has zero-weight if α = 0 and β ∈
(
B+(f)

)⊥ i.e.,

(α, β) ∈ Ker (θ). The non-zero weight codewords are as follows.

wt(cα,β) =
(p− 1)pr−1 if α = 0 and β /∈

(
B+(f)

)⊥
or α 6= 0 and α−1β ∈ B−(f∗);

(p− 1)(pr−1 − pn
2−1) if α 6= 0 and α−1β ∈ B+(f

∗) and f(α−1β) = 0 ;

(p− 1)(pr−1 − pn
2−1) + p

n
2 if α 6= 0 and α−1β ∈ B+(f

∗) and f(α−1β) 6= 0 .

Proposition 5.3.2 Let n = m+2s and denote Fmp ×Fsp×Fsp by Fnp . Let F : Fnp → Fp
be a non-weakly regular bent function defined by Equation (45) such that f (z) is

weakly regular bent for each z ∈ Fsp. Let F satisfies the conditions of Theorem 5.3.1.

With the above notations, the weight distribution of CF ∗ is as in Table 5.1.
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Table 5.1: The weight distribution of CF ∗ over B+(F ) when n is even.

Hamming weight a Multiplicity Ea

0 1

(p− 1)pr−1 pr − 1 + (p− 1)(pr − p2r−n)

(p− 1)(pr−1 − pn2−1) (p− 1)(pr−
n
2 + p2r−1−n − pr−n2−1)

(p− 1)(pr−1 − pn2−1) + p
n
2 (p− 1)2(p2r−1−n − pr−n2−1)

Proof. B+(F ) being an r-dimensional Fp-vector space implies that W+(F ) is an

r −m− s dimensional subspace of Fsp.

(i) wt(cα,β) = (p − 1)pr−1 i.e., α = 0 and β /∈
(
B+(F )

)⊥ or α 6= 0 and α−1β ∈
B−(F ∗).

Since #
(
B+(F )

)⊥
= pn−r, then #{(0, β) : β /∈

(
B+(F )

)⊥} = pn − pn−r. By

Equation (53), we have B+(F ∗) = Fmp × Fsp × W+(F ) and so it is an r- dimen-

sional vector space. Therefore, α−1β ∈ B−(F ∗) implies that β ∈ B−(F ∗). Hence,

#{(α, β) : α ∈ F?p, β ∈
(
B−(F ∗)

)
} = (p − 1)(pn − pr). Therefore, we have

#{(α, β) : (α, β) ∈ Fp×Fnp |wt(cα,β) = (p−1)pr−1} = pn−pn−r+(p−1)(pn−pr).

Since Ker (θ) has size pn−r, dividing the quantity pn − pn−r + (p − 1)(pn − pr) by

pn−r, we obtain Ea = pr − 1 + (p− 1)(pr − p2r−n) for a = (p− 1)pr−1.

(ii)wt(cα,β) = (p−1)(pr−1−pn2−1) i.e., α 6= 0 and α−1β ∈ B+(F ∗), and F (α−1β) =

0.

Since B+(F ∗) = Fmp × Fsp ×W+(F ), by similar arguments above α−1β ∈ B+(F ∗)

implies that β ∈ B+(F ∗). For any α ∈ F?p, the map from B+(F ∗) to itself de-

fined by x → α−1x is one-to-one. Hence, for any α ∈ F?p, we have #{β : β ∈
B+(F ∗)|F (α−1β) = 0} = #{β : β ∈ B+(F ∗)|F (β) = 0}. Remember that F ∗∗ = F

and observe that 0 ∈ B+(F ). Then by Proposition 5.2.1, we have S0(F ∗,0) =∑
u∈Fp cF ∗(0, u)εup =

∑
α∈B+(F ∗) ε

F (α)
p = p

n
2 . Then cF ∗(0, 0)−pn2 +

∑p−1
u=1 cF ∗(0, u)εup =

0. Since the set {εip : 1 ≤ i ≤ p − 1} is an integral basis of OQ(εp), there exists a

unique integer k such that cF ∗(0, 0) = k + p
n
2 and cF ∗(0, u) = k for all u 6= 0 ∈ Fp.
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On the other hand, we have
∑p−1

u=0 cF ∗(0, u) = pr. Therefore, k = pr−1 − p
n
2
−1

and cF ∗(0, 0) = pr−1 − p
n
2
−1 + p

n
2 . Hence, we have #{(α, β) : (α, β) ∈ Fp ×

Fnp |wt(cα,β) = (p − 1)(pr−1 − pn2−1)} = (p − 1)(pr−1 − pn2−1 + p
n
2 ). Dividing the

quantity (p − 1)(pr−1 − p
n
2
−1 + p

n
2 ) by pn−r, we obtain Ea = (p − 1)(p2r−1−n −

pr−
n
2
−1 + pr−

n
2 ) for a = (p− 1)(pr−1 − pn2−1).

(iii) wt(cα,β) = (p − 1)(pr−1 − p
n
2
−1) + p

n
2 i.e., α 6= 0 and α−1β ∈ B+(F ∗), and

F (α−1β) 6= 0.

From part (ii), we have cF ∗(0, u) = k for all u 6= 0 ∈ Fp and k = pr−1 − p
n
2
−1.

Therefore, we have Ea = (p−1)2(p2r−1−n−pr−n2−1) for a = (p−1)(pr−1−pn2−1)+

p
n
2 . �

Lemma 5.3.1 Let n be odd, and f : Fnp → Fp be a non-weakly regular bent function

such that f ∗ is bent. Put f(α−1β) = u0. Then there exists an integer k depending on

f such that

• p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (−) or p ≡ 3 (mod 4) and

f ∗(x) + (α−1β).x is of type (+):

cf (α
−1β, u) =

 pn−1+k
2

if u = u0;

pn−1+k
2

if u 6= u0.

• p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (+):

cf (α
−1β, u) =


pn−1+k

2
if u = u0;

pn−1+k+2(u−u0p )p
n−1
2

2
if u 6= u0.

• p ≡ 3 (mod 4) and f ∗(x) + (α−1β).x is of type (−):

cf (α
−1β, u) =


pn−1+k

2
if u = u0;

pn−1+k−2(u−u0p )p
n−1
2

2
if u 6= u0.

Proof.

The proof follows from Lemma 2.2.4. �
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Remark 5.3.2 For all β ∈ Fnp , we have #B+(f) =
∑p−1

u=0 cf (β, u). On the other

hand, we have #B+(f) = pr. Hence, by Lemma 5.3.1, we have

pr =
pn + pk

2
,

which implies that k = 2pr−1 − pn−1.

Case 10 n is odd.

• α = 0

We have wt(c0,β) = wt((β.ζ1, β.ζ2, . . . , β.ζpr−1) for all β ∈ Fnp . If β ∈(
B+(f)

)⊥, then we have wt(c0,β) = 0. If β /∈
(
B+(f)

)⊥, then wt(c0,β) =

(p− 1)pr−1 by balancedness.

• α 6= 0

If p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (−) or p ≡ 3 (mod 4) and

f ∗(x) + (α−1β).x is of type (+), then by Lemma 5.3.1 and Remark 5.3.2, we

have

wt(c1,α−1β) =

p−1∑
u=1

cf (α
−1β, u) = (p− 1)

pn−1 + k

2
= (p− 1)pr−1.

If p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (+), and f(α−1β) = 0, then

by Lemma 5.3.1 and Remark 5.3.2, we have

wt(c1,α−1β) =
∑p−1

u=1 cf (α
−1β, u)

=
∑p−1

u=1

pn−1+k+2(up )p
n−1
2

2

= (p− 1)p
n−1+k

2
= (p− 1)pr−1.

If p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (+), and f(α−1β) = u0,

where u0 is a square in F?p. Then by Lemma 5.3.1 and Remark 5.3.2, we have

wt(c1,α−1β) =
∑

u6=−u0 cf (α
−1β, u)

= pn−1+k
2

+ p−1
2

pn−1+k−2p
n−1
2

2
+ p−3

2
pn−1+k+2p

n−1
2

2

= (p− 1)p
n−1+k

2
− pn−1

2

= (p− 1)pr−1 − pn−1
2 .
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If p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (+), and f(α−1β) = u0,

where u0 is a non-square in F?p. Then by Lemma 5.3.1 and Remark 5.3.2, we

have

wt(c1,α−1β) =
∑

u6=−u0 cf (α
−1β, u)

= pn−1+k
2

+ p−3
2

pn−1+k−2p
n−1
2

2
+ p−1

2
pn−1+k+2p

n−1
2

2

= (p− 1)p
n−1+k

2
+ p

n−1
2

= (p− 1)pr−1 + p
n−1
2 .

If p ≡ 3 (mod 4) and f ∗(x) + (α−1β).x is of type (−), and f(α−1β) = 0, then

by Lemma 5.3.1 and Remark 5.3.2, we have

wt(c1,α−1β) =
∑p−1

u=1 cf (α
−1β, u)

=
∑p−1

u=1

pn−1+k−2(up )p
n−1
2

2

= (p− 1)p
n−1+k

2
= (p− 1)pr−1.

If p ≡ 3 (mod 4) and f ∗(x) + (α−1β).x is of type (−), and f(α−1β) = u0,

where u0 is a square in F?p. Then by Lemma 5.3.1 and Remark 5.3.2, we have

wt(c1,α−1β) =
∑

u6=−u0 cf (α
−1β, u)

= pn−1+k
2

+ p−3
2

pn−1+k+2p
n−1
2

2
+ p−1

2
pn−1+k−2p

n−1
2

2

= (p− 1)p
n−1+k

2
− pn−1

2

= (p− 1)pr−1 − pn−1
2 .

If p ≡ 3 (mod 4) and f ∗(x) + (α−1β).x is of type (−), and f(α−1β) = u0,

where u0 is a non-square in F?p. Then by Lemma 5.3.1 and Remark 5.3.2, we

have

wt(c1,α−1β) =
∑

u6=−u0 cf (α
−1β, u)

= pn−1+k
2

+ p−1
2

pn−1+k+2p
n−1
2

2
+ p−3

2
pn−1+k−2p

n−1
2

2

= (p− 1)p
n−1+k

2
+ p

n−1
2

= (p− 1)pr−1 + p
n−1
2 .

As a result of Case 10, we conclude the odd case with the following theorem.

Theorem 5.3.2 Let n be an odd integer, and f : Fnp → Fp be a non-weakly regular

bent function such that f(0) = 0, f(x) = f(−x) and f ∗ is bent. Let B+(f) be an
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r-dimensional Fp-vector space with r ≥ n+1
2
. Then, the codewords cα,β of the linear

code Cf∗ defined by Equation (54) has zero-weight if α = 0 and β ∈
(
B+(f)

)⊥
. If

p ≡ 1 (mod 4), then the non-zero weight codewords are as follows.

wt(cα,β) =
(p− 1)pr−1 if α = 0 and β /∈

(
B+(f)

)⊥ or α 6= 0 and α−1β ∈ B−(f∗) or α−1β ∈ B+(f∗) and f(α−1β) = 0;

(p− 1)(pr−1) + p
n−1
2 if α 6= 0 and α−1β ∈ B+(f

∗) and f(α−1β) = u0 where u0 is a non-square in F?p ;

(p− 1)(pr−1)− p
n−1
2 if α 6= 0 and α−1β ∈ B+(f

∗) and f(α−1β) = u0 where u0 is a square in F?p .

If p ≡ 3 (mod 4), then the non-zero weight codewords are as follows.

wt(cα,β) =
(p− 1)pr−1 if α = 0 and β /∈

(
B+(f)

)⊥ or α 6= 0,and α−1β ∈ B+(f∗), or α−1β ∈ B−(f∗) and f(α−1β) = 0;

(p− 1)(pr−1) + p
n−1
2 if α 6= 0 and α−1β ∈ B−(f∗) and f(α−1β) = u0 where u0 is a non-square in F?p ;

(p− 1)(pr−1)− p
n−1
2 if α 6= 0 and α−1β ∈ B−(f∗) and f(α−1β) = u0 where u0 is a square in F?p .

Proposition 5.3.3 Let n = m+2s and denote Fmp ×Fsp×Fsp by Fnp . Let F : Fnp → Fp
be a non-weakly regular bent function defined by Equation (45) such that f (z) is

weakly regular bent for all z ∈ Fsp. Let F satisfies the conditions of Theorem 5.3.2.

With the above notations, the weight distribution of CF ∗ are as in Table 5.2.

Table 5.2: The weight distribution of CF ∗ over B+(F ) when n is odd.

Hamming weight a Multiplicity Ea

0 1

(p− 1)pr−1 pr − 1 + (p− 1)(pr − p2r−n + p2r−1−n)

(p− 1)pr−1 + p
n−1
2

(p−1)2

2
(p2r−1−n − pr−n+1

2 )

(p− 1)pr−1 − pn−1
2

(p−1)2

2
(p2r−1−n + pr−

n+1
2 )

Proof. B+(F ) being an r-dimensional Fp-vector space implies that W+(F ) is an

r −m− s dimensional subspace of Fsp.

Case 11 p ≡ 1 (mod 4)
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(i) wt(cα,β) = (p − 1)pr−1 i.e., α = 0 and β /∈
(
B+(F )

)⊥ or α 6= 0 and α−1β ∈
B−(F ∗) or α−1β ∈ B+(F ∗) and f(α−1β) = 0. Since #

(
B+(F )

)⊥
= pn−r, then we

have #{(0, β) : β /∈
(
B+(F )

)⊥} = pn−pn−r. By Equation (53), we haveB+(F ∗) =

Fmp × Fsp ×W+(F ) and so it is an r- dimensional vector space. Therefore, α−1β ∈
B−(F ∗) implies that β ∈ B−(F ∗). Hence, #{(α, β) : α ∈ F?p, β ∈

(
B−(F ∗)

)
} =

(p − 1)(pn − pr). Similarly, α−1β ∈ B+(F ∗) implies that β ∈ B+(F ∗). By similar

arguments as in the proof of Proposition 5.3.2, for any α ∈ F?p, we have #{β : β ∈
B+(F ∗)|F (α−1β) = 0} = #{β : β ∈ B+(F ∗)|F (β) = 0}. By Proposition 5.2.2,

we have F ∗(0) = 0. Since F ∗∗ = F and 0 ∈ B+(F ), by Proposition 5.2.1, we

have S0(F ∗,0) =
∑

u∈Fp cF ∗(0, u)εup =
∑

α∈B+(F ∗) ε
F (α)
p = p

n
2 . Then by Equation

(51), we have
∑

u∈Fp cF ∗(0, u)εup = p
n−1
2

∑
i∈F?p

(
i
p

)
εip. Then

∑
u∈F?p

(cF ∗(0, u) −(
u
p

)
p
n−1
2 )εup + cF ∗(0, 0) = 0. Using similar arguments as in the proof of Proposition

5.3.2, we get cF ∗(0, 0) = pr−1. Hence, we arrive at #{(α, β) : (α, β) ∈ F?p ×
Fnp |wt(cα,β) = (p− 1)pr−1} = pn − pn−r + (p− 1)(pn − pr + pr−1). Therefore, we

have Ea = pr − 1 + (p− 1)(pr − p2r−n + p2r−n−1) for a = (p− 1)pr−1.

(ii)wt(cα,β) = (p−1)(pr−1)+p
n−1
2 i.e., α 6= 0 and α−1β ∈ B+(F ∗), and F (α−1β) =

u0, where u0 is a non-square in F?p. If u0 is a non-square in F?p, from the equation∑
u∈F?p

(cF ∗(0, u)−
(
u
p

)
p
n−1
2 )εup+cF ∗(0, 0) = 0, we obtain cF ∗(0, u0) = pr−1−pn−1

2 .

Moreover, there exist p−1
2

non-square elements in F?p. Hence, by previous arguments,

we have #{(α, β) : (α, β) ∈ F?p×Fnp |wt(cα,β) = (p−1)(pr−1)+p
n−1
2 = (p−1)2

2
(pr−1−

p
n−1
2 ). Therefore, we have Ea = (p−1)2

2
(p2r−n−1 − pr−n+1

2 ) for a = (p − 1)(pr−1) +

p
n−1
2 .

(iii) wt(cα,β) = (p − 1)(pr−1) − p
n−1
2 i.e. α 6= 0 and α−1β ∈ B+(F ∗), and

F (α−1β) = u0, where u0 is a square in F?p. If u0 is a square in F?p, from the

equation
∑

u∈F?p
(cF ∗(0, u) −

(
u
p

)
p
n−1
2 )εup + cF ∗(0, 0) = 0, we obtain cF ∗(0, u0) =

pr−1 + p
n−1
2 . By similar arguments above, we have Ea = (p−1)2

2
(p2r−n−1 + pr−

n+1
2 )

for a = (p− 1)(pr−1)− pn−1
2 .

Case 12 p ≡ 3 (mod 4)

(i) wt(cα,β) = (p − 1)pr−1 i.e., α = 0 and β /∈
(
B+(F )

)⊥ or α 6= 0 and α−1β ∈
B+(F ∗) or α−1β ∈ B−(F ∗) and F (α−1β) = 0. Since #

(
B+(F )

)⊥
= pn−r,
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then we have #{(0, β) : β /∈
(
B+(F )

)⊥} = pn − pn−r. By Equation (53), we

have B−(F ∗) = Fmp × Fsp × W+(F ) and so it is an r- dimensional vector space.

Therefore, α−1β ∈ B+(F ∗) implies that β ∈ B+(F ∗). Hence, #{(α, β) : α ∈
F?p, β ∈

(
B+(F ∗)

)
} = (p − 1)(pn − pr). Similarly, α−1β ∈ B−(F ∗) implies that

β ∈ B−(F ∗). By similar arguments above, for any α ∈ F?p, we have #{β : β ∈
B−(F ∗)|F (α−1β) = 0} = #{β : β ∈ B−(F ∗)|F (β) = 0}. By Proposition 5.2.2,

we have F ∗(0) = 0. Since F ∗∗ = F and 0 ∈ B+(F ), by Proposition 5.2.1, we

have S1(F ∗,0) =
∑

u∈Fp dF ∗(0, u)εup =
∑

α∈B−(F ∗) ε
F (α)
p = ip

n
2 . Then by Equa-

tion (51), we have
∑

u∈Fp dF ∗(0, u)εup = p
n−1
2

∑
j∈F?p

(
j
p

)
εjp and

∑
u∈F?p

(dF ∗(0, u)−(
u
p

)
p
n−1
2 )εup + dF ∗(0, 0) = 0. Using previous arguments, we get dF ∗(0, 0) = pr−1.

Hence, we obtain #{(α, β) : (α, β) ∈ F?p×Fnp |wt(cα,β) = (p−1)pr−1} = pn−pn−r+
(p−1)(pn−pr+pr−1). Therefore, we haveEa = pr−1+(p−1)(pr−p2r−n+p2r−n−1)

for a = (p− 1)pr−1.

(ii)wt(cα,β) = (p−1)(pr−1)+p
n−1
2 i.e., α 6= 0 and α−1β ∈ B−(F ∗), and F (α−1β) =

u0, where u0 is a non-square in F?p. If u0 is a non-square in F?p, from the equation∑
u∈F?p

(dF ∗(0, u)−
(
u
p

)
p
n−1
2 )εup +dF ∗(0, 0) = 0, we have dF ∗(0, u0) = pr−1−pn−1

2 .

Moreover, there exist p−1
2

non-square elements in F?p. Hence, by previous argu-

ments, we have #{(α, β) : (α, β) ∈ F?p × Fnp |wt(cα,β) = (p − 1)(pr−1) + p
n−1
2 } =

(p−1)2

2
(pr−1 − p

n−1
2 ). Therefore, we have Ea = (p−1)2

2
(p2r−n−1 − pr−

n+1
2 ) for a =

(p− 1)(pr−1) + p
n−1
2 .

(iii) wt(cα,β) = (p − 1)(pr−1) − p
n−1
2 i.e., α 6= 0 and α−1β ∈ B−(F ∗), and

F (α−1β) = u0, where u0 is a square in F?p. If u0 is a square in F?p, from the

equation
∑

u∈F?p
(dF ∗(0, u) −

(
u
p

)
p
n−1
2 )εup + dF ∗(0, 0) = 0, we obtain dF ∗(0, u0) =

pr−1 + p
n−1
2 . By similar arguments above, we have Ea = (p−1)2

2
(p2r−n−1 + pr−

n+1
2 )

for a = (p− 1)(pr−1)− pn−1
2 .

�

Next, we verify Theorem 5.3.2 by MAGMA program for the following ternary non-

weakly regular bent function (see,[42]).

Example 12 f : F33 → F3, f(x) = Tr3(x22 + x8) is non-weakly regular of Type

(+).
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• f(0) = 0, f(x) = f(−x) and f ∗(x) = −f(x) is bent;

• B+(f) is a 2-dimenisonal subspace of F33;

• The set Cf∗ is a two-weight ternary linear code with parameters [8, 3, 3]3, weight

enumerator 1 + 4y3 + 22y6 and weight distribution (1, 4, 22).

Remark 5.3.3 By Magma computation we observe that for any α 6= 0, there is no

α−1β ∈ B−(f ∗) such that f(α−1β) = u0, where u0 is a non-square in F?3 . Hence, the

linear code in Example 12 is two-weight. Therefore, we can say that our construction

gives at most three-weight linear codes.

5.4 Three-Weight Linear Codes on B−(f)

Let f : Fnp → Fp be a non-weakly regular bent function such that f(x) = f(−x),

f(0) = 0, and f ∗ is bent. Let B−(f) be an Fp-vector space with dim(B−(f)) ≥
bn

2
c+ 1. Put dim(B−(f)) = r. Then we also define a linear code Cf∗ over Fp as:

Cf∗ = {cα,β = (αf∗(ζ1) + β.ζ1, αf
∗(ζ2) + β.ζ2, . . . , αf

∗(ζpr−1) + β.ζpr−1)) : α ∈ Fp, β ∈ Fpn},

(55)

where ζ1, . . . , ζpr−1 are the elements of B−(f)? and cα,β denotes a codeword of Cf∗ .
The length of the linear code Cf∗ is pr − 1.

Proposition 5.4.1 The linear code Cf∗ of length pr − 1 over Fp defined by (55) is a

k-dimensional subspace of Fnp , where k = r + 1 and denoted by [pr − 1, r + 1]p.

Proof. Similar to proof of Proposition 5.3.1. �

From now on we keep the above arguments and evaluate the weight of codewords in

two cases. For cα,β ∈ Cf∗ , we have the following.

Case 13 n is even.

• α = 0

wt(c0,β) = wt((β.ζ1, β.ζ2, . . . , β.ζpr−1) for all β ∈ Fnp . If β ∈
(
B−(f)

)⊥, then

wt(c0,β) = 0. If β /∈
(
B−(f)

)⊥, then wt(c0,β) = (p− 1)pr−1 by balancedness.
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• α 6= 0

wt(cα,β) = wt((f ∗(ζ1) + β.ζ1, f
∗(ζ2) + β.ζ2, . . . , f

∗(ζpr−1) + β.ζpr−1) for all

β ∈ Fnp , where α−1 is the multiplicative inverse of α ∈ F?p. Then we have

wt(cα,β) = wt(c1,α−1β).

If α−1β ∈ B+(f ∗), by Proposition 5.2.1, we have

p−1∑
u=0

df (α
−1β, u)εup =

∑
ζ∈B−(f)

εf
∗(ζ)+ζ.(α−1β)
p = 0,

which implies that −df (α−1β, 0) =
∑p−1

u=1 df (α
−1β, u)εup . As the set {εip :

1 ≤ i ≤ p − 1} is an inetgral basis of OQ(εp) and
∑p−1

i=1 ε
i
p = −1, we have

df (α
−1β, 0) = df (α

−1β, u) for all u ∈ F?p. Hence, f ∗(ζ) + ζ.(α−1β) is bal-

anced over B−(f). Since f ∗(0) = 0, we have wt(c1,α−1β) = (p− 1)pr−1.

If α−1β ∈ B−(f ∗), by Proposition 5.2.1, we have

−p
n
2 εf(α−1β)
p =

∑
ζ∈B−(f)

εf
∗(ζ)+ζ.(α−1β)
p .

For f(α−1β) = 0, we have

p−1∑
u=0

cf (α
−1β, u)εup = −p

n
2 .

Then df (α−1β, 0) + p
n
2 +

∑p−1
u=1 df (α

−1β, u)εup = 0. Since the set {εip : 1 ≤
i ≤ p − 1} is an inetgral basis of OQ(εp), there exist an unique integer a such

that df (α−1β, 0) = a − pn2 and df (α−1β, u) = a for all u 6= 0 ∈ Fp. On the

other hand, we have
∑p−1

u=0 df (α
−1β, u) = pr. Therefore a = pr−1 + p

n
2
−1, and

wt(c1,α−1β) =
∑p−1

u=1 df (α
−1β, u) = (p− 1)(pr−1 + p

n
2
−1).

If f(α−1β) 6= 0, by similar arguments above, we have

wt(c1,α−1β) = (p− 1)(pr−1 + p
n
2
−1)− p

n
2 .

As a result of Case 13 we conclude even case with the following theorem.

Theorem 5.4.1 Let n be an even integer, f : Fnp → Fp be a non-weakly regular bent

function such that f(0) = 0, f(x) = f(−x) and f ∗ is bent. Let B−(f) be an r-

dimensional Fp-vector space with r ≥ n
2

+ 1. Then the codewords cα,β of the linear
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code Cf∗ defined by Equation (55) has zero-weight if α = 0 and β ∈
(
B−(f)∪{0}

)⊥
.

The non-zero weight codewords are as follows.

wt(cα,β) =
(p− 1)pr−1 if α = 0 and β /∈

(
B−(f)

)⊥
or α 6= 0 and α−1β ∈ B+(f

∗);

(p− 1)(pr−1 + p
n
2−1) if α 6= 0 and α−1β ∈ B−(f∗) and f(α−1β) = 0 ;

(p− 1)(pr−1 + p
n
2−1)− pn

2 if α 6= 0 and α−1β ∈ B−(f∗) and f(α−1β) 6= 0 .

Proposition 5.4.2 Let n = m + 2s and denote Fmp × Fsp × Fsp by Fnp . Let F : Fnp →
Fp be a non-weakly regular bent function defined by Equation (45)such that f (z) is

weakly regular bent for all z ∈ Fsp. Let F satisfies the conditions of Theorem 5.4.1.

With the above notations, the weight distribution of CF ∗ are as in Table 5.3.

Table 5.3: The weight distribution of CF ∗ over B−(F ) when n is even.

Hamming weight a Multiplicity Ea

0 1

(p− 1)pr−1 pr − 1 + (p− 1)(pr − p2r−n)

(p− 1)(pr−1 + p
n
2
−1) (p− 1)(−pr−n2 + p2r−1−n + pr−

n
2
−1)

(p− 1)(pr−1 + p
n
2
−1)− pn2 (p− 1)2(p2r−1−n + pr−

n
2
−1)

Proof. Similar to the proof of Proposition 5.3.2. �

Next, we verify Theorem 5.4.1 by MAGMA program for the following ternary non-

weakly regular bent function (see,[25]).

Example 13 f : F36 → F3, λ is a primitive element of F36 and f(x) = Tr6(λx20 +

λ41x92) is non-weakly regular bent of Type (−).

• f(0) = 0, f(x) = f(−x) and f ∗(x) is bent;

• B−(f) is an 4-dimensional subspace of F36;
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• The set Cf∗ is a three weight ternary linear code with parameters [80, 5, 45]3,

weight enumerator 1+16y45+224y54+2y72 and weight distribution (1, 16, 224, 2),

which is verified by MAGMA.

Lemma 5.4.1 Let n be odd, and f : Fnp → Fp be a non-weakly regular bent function

such that its dual function f ∗ is also bent. Put f(α−1β) = u0. Then there exists an

integer k depending on f such that

• p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (+) or p ≡ 3 (mod 4) and

f ∗(x) + (α−1β).x is of type (−):

df (α
−1β, u) =

 pn−1−k
2

if u = u0;

pn−1−k
2

if u 6= u0.

• p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (−):

df (α
−1β, u) =


pn−1−k

2
if u = u0;

pn−1−k−2(u−u0p )p
n−1
2

2
if u 6= u0.

• p ≡ 3 (mod 4) and f ∗(x) + (α−1β).x is of type (+):

df (α
−1β, u) =


pn−1−k

2
if u = u0;

pn−1−k+2(u−u0p )p
n−1
2

2
if u 6= u0.

Proof.

The proof follows from [38, Lemma 3.4]. �

Remark 5.4.1 Clearly for all β ∈ Fnp , we have #B−(f) =
∑p−1

u=0 df (β, u). On the

other hand, we have #B−(f) = pr. Hence, by Lemma 5.4.1, we have

pr =
pn − pk

2
,

which implies that k = pn−1 − 2pr−1.

Case 14 n is odd
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• α = 0

We have wt(c0,β) = wt((β.ζ1, β.ζ2, . . . , β.ζpr−1) for all β ∈ Fnp . If β ∈(
B−(f)

)⊥, then wt(c0,β) = 0. If β /∈
(
B−(f)

)⊥, then wt(c0,β) = (p − 1)pr−1

by balancedness.

• α 6= 0

If p ≡ 1 (mod 4) and α−1β ∈ B+(f ∗) or p ≡ 3 (mod 4) and α−1β ∈ B−(f ∗),

then by Lemma 5.4.1 and Remark 5.4.1, we have

wt(c1,α−1β) =

p−1∑
u=1

df (α
−1β, u) = (p− 1)

pn−1 − k
2

= (p− 1)pr−1.

If p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (−), and f(α−1β) = 0, then

by Lemma 5.4.1 and Remark 5.4.1, we have

wt(c1,α−1β) =
∑p−1

u=1 df (α
−1β, u)

=
∑p−1

u=1

pn−1−k−2(up )p
n−1
2

2

= (p− 1)p
n−1−k

2
= (p− 1)pr−1.

If p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (−), and f(α−1β) = u0,

where u0 is a square in F?p. Then by Lemma 5.4.1 and Remark 5.4.1, we have

wt(c1,α−1β) =
∑

u6=−u0 df (α
−1β, u)

= pn−1−k
2

+ p−1
2

pn−1−k+2p
n−1
2

2
+ p−3

2
pn−1−k−2p

n−1
2

2

= (p− 1)p
n−1−k

2
+ p

n−1
2

= (p− 1)pr−1 + p
n−1
2 .

If p ≡ 1 (mod 4) and f ∗(x) + (α−1β).x is of type (−), and f(α−1β) = u0,

where u0 is a non-square in F?p. Then by Lemma 5.4.1 and Remark 5.4.1, we

have

wt(c1,α−1β) =
∑

u6=−u0 df (α
−1β, u)

= pn−1−k
2

+ p−3
2

pn−1−k+2p
n−1
2

2
+ p−1

2
pn−1−k−2p

n−1
2

2

= (p− 1)p
n−1−k

2
− pn−1

2

= (p− 1)pr−1 − pn−1
2 .
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If p ≡ 3 (mod 4) and f ∗(x) + (α−1β).x is of type (+), and f(α−1β) = 0, then

by Lemma 5.4.1 and Remark 5.4.1, we have

wt(c1,α−1β) =
∑p−1

u=1 df (α
−1β, u)

=
∑p−1

u=1

pn−1−k+2(up )p
n−1
2

2

= (p− 1)p
n−1−k

2
= (p− 1)pr−1.

If p ≡ 3 (mod 4) and f ∗(x) + (α−1β).x is of type (+), and f(α−1β) = u0,

where u0 is a square in F?p. Then by Lemma 5.4.1 and Remark 5.4.1, we have

wt(c1,α−1β) =
∑

u6=−u0 df (α
−1β, u)

= pn−1−k
2

+ p−3
2

pn−1−k−2p
n−1
2

2
+ p−1

2
pn−1−k+2p

n−1
2

2

= (p− 1)p
n−1−k

2
+ p

n−1
2

= (p− 1)pr−1 + p
n−1
2 .

If p ≡ 3 (mod 4) and f ∗(x) + (α−1β).x is of type (+), and f(α−1β) = u0,

where u0 is a non-square in F?p. Then by Lemma 5.4.1 and Remark 5.4.1, we

have

wt(c1,α−1β) =
∑

u6=−u0 df (α
−1β, u)

= pn−1−k
2

+ p−1
2

pn−1−k−2p
n−1
2

2
+ p−3

2
pn−1−k+2p

n−1
2

2

= (p− 1)p
n−1−k

2
− pn−1

2

= (p− 1)pr−1 − pn−1
2 .

As a result of Case 14, we conclude the odd case with the following theorem.

Theorem 5.4.2 Let n be an odd integer, and f : Fnp → Fp be a non-weakly regular

bent function such that f(0) = 0, f(x) = f(−x) and f ∗ is bent. Assume that

B−(f) is an r-dimensional Fp-vector space with r ≥ n+1
2
. Then the codewords cα,β

of the linear code Cf∗ defined by equation (55) has zero-weight, if α = 0 and β ∈(
B−(f)

)⊥. If p ≡ 1 (mod 4), then the non-zero weight codewords are as follows

wt(cα,β) =
(p− 1)pr−1 if α = 0 and β /∈

(
B−(f)

)⊥ or α 6= 0 and α−1β ∈ B+(f∗) or α−1β ∈ B−(f∗) and f(α−1β) = 0;

(p− 1)(pr−1)− p
n−1
2 if α 6= 0 and α−1β ∈ B−(f∗) and f(α−1β) = u0 where u0 is a non-square in F?p ;

(p− 1)(pr−1) + p
n−1
2 if α 6= 0 and α−1β ∈ B+(f

∗) and f(α−1β) = u0 where u0 is a square in F?p.
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If p ≡ 3 (mod 4), then the non-zero weight codewords are as follows

wt(cα,β) =
(p− 1)pr−1 if α = 0 and β /∈

(
B−(f)

)⊥ or α 6= 0 and α−1β ∈ B−(f∗) or α−1β ∈ B+(f∗) and f(α−1β) = 0;

(p− 1)(pr−1)− p
n−1
2 if α 6= 0 and α−1β ∈ B+(f

∗), and f(α−1β) = u0, where u0 is a non-square in F?p ;

(p− 1)(pr−1) + p
n−1
2 if α 6= 0 and α−1β ∈ B+(f

∗), and f(α−1β) = u0, where u0 is a square in F?p .

Proposition 5.4.3 Let n = m+2s and denote Fmp ×Fsp×Fsp by Fnp . Let F : Fnp → Fp
be a non-weakly regular bent function defined by Equation (45) such that f (z) is

weakly regular bent for all z ∈ Fsp. Let F satisfies the conditions of Theorem 5.4.2.

With the above notations, the weight distribution of CF ∗ are as in Table 5.4.

Table 5.4: The weight distribution of CF ∗ over B−(F ) when n is odd.

Hamming weight a Multiplicity Ea

0 1

(p− 1)pr−1 pr − 1 + (p− 1)(pr − p2r−n + p2r−1−n)

(p− 1)pr−1 − pn−1
2

(p−1)2

2
(p2r−1−n + pr−

n+1
2 )

(p− 1)pr−1 + p
n−1
2

(p−1)2

2
(p2r−1−n − pr−n+1

2 )

Proof. Similar to the proof of Proposition 5.3.3. �

5.5 Minimality of Constructed Linear Codes

In this section, we look into the minimality of linear codes built in Section 5.3 and

5.4 from non-weakly regular bent functions.

The construction of linear codes all of whose non-zero codewords are minimal is

of great significance when you consider that minimal linear codes generate secret

sharing schemes with desirable access structures. Below, by Lemma 5.1.1, we show

that all non-zero codewords of the built codes are minimal for nearly all cases.
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We are now going to exhibit that the built linear p-ary code of Theorem 5.3.1 is

minimal for nearly all cases.

Theorem 5.5.1 Let Cf∗ be the linear [pr − 1, r + 1, (p − 1)(pr−1 − pn2−1)]p code of

Theorem 5.3.1. Then all non-zero codewords of Cf∗ are minimal for r ≥ n
2

+ 2.

Proof. We have amin = (p−1)(pr−1−pn2−1) and amax = (p−1)(pr−1−pn2−1)+p
n
2 .

Then the inequality

p− 1

p
<
amin

amax

can be written as p
n
2

+1 < (p − 1)(pr−1 − p
n
2
−1) + p

n
2 . For an odd prime p, this

inequality is satisfied when r ≥ n
2

+ 2. Hence, the proof is done from Lemma 5.1.1.

�

The following theorem proves that the built linear p-ary code of Theorem 5.3.2 is

minimal for nearly all cases.

Theorem 5.5.2 Let Cf∗ be the linear [pr − 1, r + 1, (p − 1)(pr−1) − pn−1
2 ]p code of

Theorem 5.3.2. Then every non-zero codewords of Cf∗ are minimal for r ≥ n+3
2

.

Proof. We have that amin = (p−1)(pr−1)−pn−1
2 and amax = (p−1)(pr−1)+p

n−1
2 .

Then the inequality given by (52) can be witten as 2p(n+1)/2 < (p− 1)(pr−1) + p
n−1
2 .

For an odd prime p, this inequality is satisfied when r ≥ n+3
2

. Hence, the proof is

done from Lemma 5.1.1.

�

The following theorem proves that the built linear p-ary code of Theorem 5.4.1 is

minimal for nearly all cases.

Theorem 5.5.3 Let Cf∗ be the linear [pr−1, r+ 1, (p−1)(pr−1 +p
n
2
−1)−pn2 ]p code

of Theorem 5.4.1. Then every non-zero codewords of Cf∗ are minimal for r ≥ n
2

+ 2.

Proof. We have amin = (p−1)(pr−1+p
n
2
−1)−pn2 and amax = (p−1)(pr−1+p

n
2
−1).
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Then the inequality

p− 1

p
<
amin

amax

can be written as p
n
2

+1 < (p − 1)(pr−1 + p
n
2
−1). For an odd prime p, this inequality

is satisfied when r ≥ n
2

+ 2. Hence, the proof is done from Lemma 5.1.1.

�

The following theorem proves that the built linear p-ary code of Theorem 5.4.2 is

minimal for nearly all cases.

Theorem 5.5.4 Let Cf∗ be the linear [pr − 1, r + 1, (p − 1)(pr−1) − pn−1
2 ]p code of

Theorem 5.4.2. Then every non-zero codewords of Cf∗ are minimal for r ≥ n+3
2

.

Proof. We have that amin = (p−1)(pr−1)−pn−1
2 and amax = (p−1)(pr−1)+p

n−1
2 .

Then the inequality given by (52) can be written as 2p(n+1)/2 < (p−1)(pr−1) +p
n−1
2 .

For an odd prime p, this inequality is satisfied when r ≥ n+3
2

. Hence, the proof is

done from Lemma 5.1.1.

�
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CHAPTER 6

CONCLUSION

The main objective of this thesis is to investigate the various properties of non-weakly

regular bent functions and to relate them with certain combinatorial structures. It

should be noted that the main techniques used in thesis are new. Also note that bent

functions over finite fields of odd characteristic have been intensely studied in re-

cent years. However, most of the known bent functions having relations with other

structures are weakly regular. For the first time we show that non-weakly regular

bent functions also have relations with other combinatorial structures such as partial

difference sets, strongly regular graphs, association schemes and few weight linear

codes. In this chapter, we briefly discuss the main results of the thesis emphasizing

the profiles of the methods to build them.

It is known that weakly regular bent functions appear in pairs i.e. their dual functions

are also weakly regular. On the other hand, the dual of a non-weakly regular bent

function even may not be a bent function. To solve the open problem proposed by

Çeşmelioğlu, Meidl and Pott, we partition the finite fields into two special subsets

with respect to the sign of the Walsh transform of non-weakly regular bent functions.

We use the value distributions of bent functions on these subsets to prove that if

the dual function f ∗ of a non-weakly regular bent function f is bent then we have

f(x) = f ∗∗(−x) which holds also for weakly regular bent functions. Moreover, we

also would like to mention that our contribution [38], in which we also generalize our

solution to plateaued functions.

One of the tools to construct partial difference sets are bent functions. The general

idea is to use pre-image sets of bent functions. However, it doesnt work for non-

weakly regular bent functions. Fortunately, the two special subsets which are obtained
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by the partition of the finite fields with respect to the sign of the Walsh transform of

non-weakly regular bent functions give rise to obtain partial difference sets in certain

cases. At this point, we also would like to express that our contribution [37], in which

we observe the relation between cyclotomic cosets and these special subsets, will give

a different perspective to the researchers in this area.

The concept of association schemes is a very vast theme that has connections with

numerous extraordinary areas of algebraic combinatorics, for example, coding the-

ory, design theory, algebraic graph theory, finite group theory, and finite geometry.

From graph theoretical point of view, association schemes can be seen as the general-

ization of strongly regular graphs. One of the tools to construct association schemes

are bent functions. Similar to the partial difference sets and hence to the strongly

regular graphs, most of the known methods in literature use pre-image sets of weakly

regular bent functions. We generalize this approach by using pre-image sets of non-

weakly regular ternary bent functions in a subclass of the GMMF class with respect

to the associated special subsets. We leave reader to generalize this result to arbitrary

characteristic as an open problem.

There are several approaches to build linear codes from bent functions over finite

fields. The two of the known approches are kept apart from others in the literature

which are called first and second conventional construction methods. Until now, the

only bent functions which are used to build linear codes are weakly regular bent func-

tions. In the present thesis, it is the first time that non-weakly regular bent functions

over finite fields are used to build linear codes. It should be stated that we used a

generic construction method, but the restricted domains B+(f) and B−(f) that we

used are new. More precisely, we obtained the class of three-weight p-ary linear

codes from non-weakly regular dual-bent functions and determined their weight dis-

tribution when corresponding non-weakly regular bent functions belong to a certain

subclass of GMMF bent functions. We subsequently found that the developed codes

are minimal for nearly all cases. The built codes are inequivalent to the recognised

ones in the literature as a ways as we know.
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