STUDIES ON NON-WEAKLY REGULAR BENT FUNCTIONS AND RELATED
STRUCTURES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

RUMI MELIH PELEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
MATHEMATICS

JULY 2020






Approval of the thesis:

STUDIES ON NON-WEAKLY REGULAR BENT FUNCTIONS AND
RELATED STRUCTURES

submitted by RUMI MELIH PELEN in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Mathematics Department, Middle East
Technical University by,

Prof. Dr. Halil Kalipcilar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yildiray Ozan
Head of Department, Mathematics

Prof. Dr. Ferruh Ozbudak
Supervisor, Mathematics, METU

Examining Committee Members:

Assoc. Prof. Dr. Ali Ozgiir Kisisel
Mathematics, METU

Prof. Dr. Ferruh Ozbudak
Mathematics, METU

Assoc. Prof. Dr. Murat Cenk
Institute Of Applied Mathematics, METU

Assoc. Prof. Dr. Baris Biilent Kirlar
Mathematics, Siileyman Demirel University

Assist. Prof. Dr. Eda Tekin
Business Administration, Karabiik University

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Rumi Melih Pelen

Signature

v



ABSTRACT

STUDIES ON NON-WEAKLY REGULAR BENT FUNCTIONS AND
RELATED STRUCTURES

Pelen, Rumi Melih
Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Ferruh Ozbudak

July 2020, 84 pages

Interest in bent functions over finite fields arises both from mathematical theory and
practical applications. There has been lots of literature addressing various properties
of bent functions. They have a number of applications consisting of coding theory,
cryptography, and sequence designs. They’re divided into four subclasses: regular
bent functions that are contained within the class of weakly regular bent functions
that are contained within the class of dual-bent functions. Additionally, there are
non-weakly regular bent functions with no intersection with weakly regular, but an
intersection with the class of dual-bent functions. The present thesis studies various

combinatorial properties of non-weakly regular bent functions over finite fields.

The principal result in the thesis is the solution of the open problem "Is there any non-
weakly regular bent function f for which the dual f* is weakly regular?" which is
proposed by Cesmelioglu, Meidl and Pott. We also generalize this result to plateaued

functions.

For an arbitray non-weakly regular bent function f, we define the partition B™(f)



and B~ (f) of F,». Then, we show that, if the corresponding partition for a non-
weakly regular bent function in the GMMF class gives a partial difference set then
it is trivial. Moreover, we exhibit that these subsets associated with the two of the
recognized sporadic examples of non-weakly regular bent functions correspond to
non-trivial partial difference sets, therefore, correspond to non-trivial strongly regular

graphs.

For the ternary non-weakly regular bent functions in a subclass of the GMMF class,
we also represent a construction method of two infinite families of translation asso-
ciation schemes of classes 5 and 6 in odd and even dimensions respectively. Further-
more, fusing the first or last three non-trivial relations of those association schemes

we obtain association schemes of classes 3 and 4.

Finally, for a non-weakly regular bent function f satisfying certain conditions, we
construct three-weight linear codes on the subsets B (f) and B~ (f) by using one of
the known conventional construction methods. Moreover, we determine the weight
distribution of the corresponding three-weight linear codes in the case of f belongs
to a subclass of the GMMF class. In addition to these, we prove that our construction

yields minimal linear codes nearly in all cases.

Keywords: bent, non-weakly regular bent, partial difference set, strongly regular

graph, association scheme, linear codes, minimal linear codes
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0z

ZAYIF DUZENLI OLMAYAN BENT FONKSIYONLAR VE ALAKALI
YAPILAR UZERINE CALISMALAR

Pelen, Rumi Melih

Doktora, Matematik Bolimii

Tez Yoneticisi: Prof. Dr. Ferruh Ozbudak

Temmuz 2020 , [84] sayfa

Bent fonksiyonlara ilgi hem matematiksel teori hem de pratik uygulamalardan kay-
naklaniyor. Su ana kadar, bent fonksiyonlarin ¢esitli 6zelliklerini ele alan bir¢ok yazili
kaynak oldu. Kodlama teorisi, kriptografi ve dizi insasin1 da iceren ¢esitli uygulama-
lar1 var. Bent fonksiyonlar dort alt sinifa ayriliyor; diizenli bent fonksiyonlar zayif
diizenli bent fonksiyonlarin, zayif diizenli bent fonksiyonlar dual bent fonksiyonlarin
icinde kaliyor. Bunlara ek olarak bir de zayif diizenli bent fonksiyonlarla kesisimi
olmayip dual bent fonksiyonlar sinifi ile kesisimi olan zayif diizenli olmayan bent
fonksiyonlar var. Bu tez ¢alismasi, sonlu cisimler iizerindeki zayif diizenli olmayan

bent fonksiyonlarin ¢esitli kombinatoryal 6zelliklerini ele aliyor.

Bu tezdeki ana sonug, Cesmelioglu, Meidl ve Pott tarafindan ortaya atilan " Duali
zayif diizenli bent olup, kendisi zayif diizenli olmayan bent bir fonksiyon var midir?"

acik probleminin ¢6ziimiidiir. Ayrica bu sonucu plato fonksiyonlara da genelledik.

Herhangi zayif diizenli olmayan bir f bent fonksiyonu i¢in F,» nin B*(f) ve B~ (f)

parcalanmasini tanimladik. Daha sonra, GMMF smifindaki zayif diizenli olmayan bir
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bent fonksiyona karsilik gelen parcalanma bize bir kismi fark kiimesi verirse bunun
onemsiz kismi fark kiimesi oldugunu gosterdik. Ayrica, zayif diizenli olmayan bent
fonksiyonlarin bilinen iki nadir 6rnegine karsilik gelen alt kiimelerin 6nemsiz olma-
yan kismi fark kiimelerine ve dolayisiyla onemsiz olmayan kuvvetli diizenli grafiklere

karsilik geldigini gosterdik.

GMMF siifinin bir alt stnifindaki zayif diizenli olmayan {ii¢lii bent fonksiyonlar i¢in
tek ve cift boyutlarda sirasiyla sinifi 5 ve 6 olan 2 adet sonsuz 6teleme baglant1 semasi
inga eden bir yontem sunduk. Ayrica bu baglanti semalarinin 6nemsiz olmayan ilk

veya son ii¢ iligkisinin fiizyonuyla sinift 3 ve 4 olan baglant1 semalar elde ettik.

Son olarak, belirli kosullar1 saglayan zayif diizenli olmayan bir f fonksiyonu i¢in
bilinen jenerik inga yontemlerinden birini kullanarak B*(f) ve B~ (f) alt kiimeleri
tizerinde agirlig1 3 olan dogrusal kodlar inga ettik. Ayrica, f’in GMMF sinifinin bir alt
sinifina dahil oldugu durumda bu kodlarin agirlik dagilimlarim belirledik. Bunlara ek
olarak, insaatimizin hemen hemen her durumda en diisiik dogrusal kodlar1 verdigini

kanitladik.

Anahtar Kelimeler: bent, zayif diizenli olmayan bent, kismi fark kiimesi, kuvvetli

diizenli grafik, baglanti semasi, dogrusal kodlar, en diisiik dogrusal kodlar
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CHAPTER 1

INTRODUCTION

In this thesis, we study various properties of non-weakly regular bent functions and
related structures over finite fields. We can divide the thesis into four main part with

respect to the chronological order as follows

e The duals of non-weakly regular bent functions;

e The relation between non-weakly regular bent functions, cyclotomic cosets,

partial difference sets, and strongly regular graphs;

e The construction of translation association schemes from ternary bent functions

in a subclass of the GMMF class;

e The construction of three-weight linear codes from non-weakly regular bent
functions, the determination of their weight distributions when f belongs to a

subclass of the GMMF class and the mimimality of constructed codes.

1.1 Motivation and Problem Definition

In 1976, Rothaus defined the bent functions as Boolean functions having constant
magnitude Walsh transform. They have various applications including coding theory,
cryptography and sequence designs. In 1985, Kumar, Scholtz, and Welch [29] gener-
alized bent functions to arbitrary characteristics. Unlike the binary case, not all bent
functions are regular over finite fields of odd characteristic. They’re divided into four
subclasses: regular bent functions that are contained within the class of weakly reg-

ular bent functions that are contained within the class of dual-bent functions (which



means that bent functions whose dual functions are also bent). Additionally there are
non-weakly regular bent functions with no intersection with weakly regular, but an
intersection with the class of dual-bent functions. It is known that duals of Boolean
bent functions are also bent. However, in odd characteristic, duals of bent functions
are not necessarily bent [14]. There are infinitely many non-weakly regular bent
functions having bent or non-bent duals [14} [15]]. It is quoted in [14] that,...The
existence of non-weakly regular bent functions with the dual f* is weakly regular is
an open problem. .. " In this thesis, among other things, we solve this open problem.
Furthermore we show that if f : )} — [, is a non-weakly regular bent function such

that its dual f* is bent, then f**(—xz) = f(z) forall z € [F}.

Partial difference sets (see the Definition [3.1.1] in Chapter [3) have been studied ex-
tensively because of their relations with different combinatorial structures such as
two-weight codes and strongly regular graphs. There are a number of constructions
of partial difference sets in elementary abelian groups, for a short survey see [31]. It
is known that Cayley graphs such that their connection sets as are regular partial dif-
ference sets are strongly regular graphs (see the Definition [3.1.4]in Chapter [3). One
of the instruments to build partial difference sets are bent functions. In [41], the au-
thors proved that pre-image sets of the ternary weakly regular even bent functions are
partial difference sets. Shortly after, this result is generalized to arbitrary odd charac-
teristics in [[16]. As far as we know, no one introduced a relation between non-weakly
regular bent functions and partial difference sets. In this thesis, we also study the
two special subsets of a finite field of odd characteristic related with the non-weakly
regular bent functions which are introduced by the authors in [38]. We observe that
these two subsets associated with the two sporadic examples of ternary non-weakly
regular bent functions which are introduced in [24, 25] are non-trivial partial differ-
ence sets and are the union of the cyclotomic cosets with certain parameters. As a
consequence of this, they are 2-class fusion schemes of some cyclotomic association
schemes (see the definitions in Chapter [3)) with certain parameters. We also present
a further construction giving non-trivial PDSs from certain p-ary functions which are
not bent functions. Moreover, we prove that if the corresponding subsets of non-
weakly regular even bent functions in the GMMF class are partial difference sets then

they are trivial.



Association schemes had been introduced with the aid of R.C. Bose and T. Shi-
mamoto [7]], studied similarly by way of the Bose—Mesner algebra brought in [6],
generalized and given the most essential motivation by P. Delsarte [19]. The first text
dedicated to the concept is [S]. A textual content that develops the idea each quite
normally and notably is [23]. Association schemes supply an appropriate framework
for treating certain issues from a range of exclusive areas of algebraic combinatorics,
for example, coding theory, design theory, algebraic graph theory, finite group the-
ory, and finite geometry. One of the tools to construct association schemes are bent
functions. It is proven that for any odd prime p the collection of the pre-image sets
of a p-ary weakly regular bent function form a p-class translation association scheme
[39]. As far as we know, no one introduced a relation between non-weakly regular
bent functions and d-class association schemes for some d > 3. In this paper, we
construct association schemes of classes 5 and 6 from ternary non-weakly regular
dual-bent functions in the GMMF class by proving that if they satisfy certain con-
ditions then the collection of the pre-image sets of the dual functions with respect
to the subsets B (F') form translation schemes of classes 5 and 6 in odd and even
dimensions respectively. Furthermore, we also obtain association schemes of classes
3 and 4 by fusing the first or last 3 non-trivial relations of the association schemes of

classes 5 and 6 respectively.

Linear codes with a few weights have practices in secret sharing [1} [12}, 22, 44]], au-
thentication codes [20], association schemes [[10], and strongly regular graphs [11].
They have been substantially studied in the literature via a massive range of re-
searchers and employed with the aid of many engineers. Some fascinating two-weight
and three-weight codes can be found in [32, 22| (18} 21} 43,46, 33]]. There are quite
a few methods to build linear codes, one of which is primarily based on functions
over finite fields. Two familiar constructions, which are referred to as the first and
second conventional constructions, of linear codes from functions have been extraor-
dinary from the others in the literature. Recently, Mesnager [32]] has built a new
family of three-weight linear codes from weakly regular bent functions in odd char-
acteristic based totally on the first conventional construction. Within this framework,
we aim to build linear codes from non-weakly regular dual-bent functions based to-

tally on the first conventional construction. To do this, instead of the whole space we



use the subset B, (f) or B_(f) associated with a non-weakly regular bent function
f. We additionaly determine the weight distributions of the constructed codes when
the associated non-weakly regular bent functions belong to a certain subclass of bent
functions. As a specific type of linear codes, minimal linear codes have essential
practices in secret sharing and reliable two-party computation. Constructing minimal
linear codes with new and acceptable parameters has been an interesting research sub-
ject matter in coding theory and cryptography. Minimal linear codes have fascinating
implementations in secret sharing [[12} 44} |34} [26]] and secure two-party computation
[3, [177], and ought to be decoded with a minimal distance decoding method [2]. In
the closing section, we examine that all non-zero codewords of the built codes are

minimal for nearly all cases.

1.2 Contributions and Novelties

The main contributions of the present thesis study are followings:

e We solve the open problem which is quoted in [14] by proving that if the dual

of a non-weakly regular bent function is bent then it is also non-weakly regular.

e We suspect a relation between non-weakly regular bent functions and cyclo-
tomic association schemes. For some known sporadic examples of ternary non-
weakly regular bent functions, we observe that the corresponding sets B (f)
can be written as union of certain cyclotomic cosets. Moreover, we show that
these sets are non-trivial regular partial different sets hence correspond to non-
trivial strongly regular graphs. In addition to these, we also present a further
construction that certain p-ary functions which are not bent also give non-trivial

partial difference sets.

e For the first time in literature, we construct an infinite family of (translation)

association schemes from non-weakly regular bent functions.

e For the first time in literature, we construct few weights linear codes from non-
weakly regular bent functions. We determine the weight distributions of the

constructed codes when the corresponding non-weakly regular bent functions

4



belongs to a subclass of the GMMF class. Moreover, we prove that our con-

struction yields minimal linear codes for almost all cases.

1.3 The Outline of the Thesis

The thesis is organized as follows.

In Chapter 2] we study the value distribution of duals of the non-weakly regular bent
functions whose duals are also bent. This gives us information about regularity of
the dual function f*. We obtain analogous results for the plateaued functions over
the finite fields of odd characteristic. In Chapter [3) we prove that if the two special
subsets associated with the non-weakly regular even bent functions in the GMMF
class are partial difference sets then they are trivial. We analyze the corresponding
subsets of the two sporadic examples of ternary non-weakly regular bent functions.
Our further construction giving non-trivial PDSs from certain p-ary functions which
are not bent functions is also given. In Chapter 4, we prove that if a non-weakly
regular ternary bent function in the GMMF class satisfies certain conditions then the
collection of the pre-image sets of the dual function F'* with respect to subsets B (F')
form a translation scheme of class 5 in odd dimension and class 6 in even dimension.
Furthermore by fusing the first or last 3 non-trivial relations of the corresponding
association schemes we obtain 3 and 4 classes fusion schemes. We also give numer-
ical examples. In Chapter |5 we build three-weight linear p-ary codes on B, (f) and
B_(f) from non-weakly regular bent functions based on the first conventional con-
struction. Moreover, we determine the weight distributions of the built codes when
the associated non-weakly regular bent functions belong to a certain subclass of the
GMMF bent functions. We observe that all non-zero codewords of the built codes are

minimal for nearly all cases. We conclude in Chapter [6]






CHAPTER 2

THE DUALS OF NON-WEAKLY REGULAR BENT FUNCTIONS

In this chapter, we study the value distribution of duals of the non-weakly regular bent
functions whose duals are also bent. This gives us information about regularity of the
dual function f*. Hence we prove that if dual function of a non-weakly regular bent
function is bent then it is also non-weakly regular bent. We obtain analogous results

for the plateaued functions over the finite fields of odd characteristic.

2.1 Preliminaries

Let p be an odd prime and IF,,» be the finite field of order p™. Since it is a vector space
of dimension n over I, we also use the notation F) which consists of n-tuples of
the prime field F,,. Let f be a function from [} to [F,,. The Walsh transform of f at

« € [ is defined as a complex valued function f on [}
fla) = 3 e
xeF;

27

where €, = e » and «.z denotes the usual dot product in .

The function f is called bent function if | f (a)| = p"/? for all o € 7. The normalized
Walsh coefficient of a bent function f at « is defined by p~"/2 f (). The normalized

Walsh coefficients of a bent function f are characterized in [29] as follows

+e" @ ifnevenorn odd and p = 1 mod 4,

pfn/Qf(a) = @)
+iep if n odd and p = 3 mod 4,

where f* is a function from [} to IF,,, which is called the dual of f.

7



A bent function f : )} — [, is called regular if V o € [}, we have

p (o) =
and is called weakly regular if V o € F), we have

p (o) = €6
where £ € {£1, +i} is independent from «, otherwise it is called non-weakly regular.
It is known that weakly regular bent functions appear in pairs since their duals are
also weakly regular. If f is non-weakly regular, then f* may not be a bent function.

There are infinitely many examples of non-weakly regular bent functions f such that

the dual is bent (resp. not bent) [[15]].

Let a be a positive integer and p be an odd prime number. Let @ = a (mod p). The

Legendre symbol is defined as
0 ifa=0;
a
(—) =1 1 ifVaeFy
~1 ifVa ¢ F.

The trace of a € Fpn over I, is defined as Tr,, (o) = a + o + a”” +--- + "

2.2 Value Distributions of the Duals of Non-weakly Regular Bent Functions

Let f : F} — F, be a non-weakly regular bent function and f* be its dual function.

Let B, (f) and B_(f) be the partitions of I} given by
Bo(f) = {w: w € B | flw) = &pFe ™)

B(f) = {w:w e Fy | f(w) = —gp¥e ™),
where £ = 1 if nis even or n odd and p = 1 (mod 4), and ¢ = ¢ if n is odd and
p = 3 (mod 4). Note that these sets are non empty as f is a non-weakly regular bent
function. For any y € F and u € [, we further define the sums So(f,y), Si(f,v)

of complex numbers and integers c;(y, u), ds(y,u) and ef(y, u) as follows:

Sf= Y @ Sy = 3 dee

a€BL(f) a€B_(f)



and cs(y,u) = #{a:a € Bi(f) | f* (o) +ay =u}, ds(y,u) =#{a:a¢€
B_(f) | f(a) +ay =u}, er(y,u) = cs(y,u) — ds(y,u). For an arbitrary bent

function g : F)) — [, we define the type of g as
g(x) is of type (+) if g(0) = §p%eg*(0) and of type (—) if g(0) = —ép%eg*(o).

The following lemma is a generalization of the Lemma in [36, page 156].

Lemma 2.2.1 Let k be an integer. For a prime p there is a unique solution (A, As,

..., A,_1) consisting of integers with A; = (i) p* for 1 < i < p—1, to the equation

Vop*  forp =1 (mod 4),

i\/ﬁpk for p = 3 (mod 4). D

A1€p + A26227 —+ -4 Ap,1€§71 =

Proof. LetQ(¢,) be the p-th cylotomic field. By a well known result on Gauss sums
we have £,/p € Q(¢,) [30, Theorem 5.15]. Hence &,/pp* € Q(¢,) for all k € Z.
Since €,, €2, ..., eb~" is a basis for Q(e,) over Q [30, Theorem 2.47 (i) ], there exist
uniquely determined coefficients A; € Q satisfying equation (2I). Moreover again
using [30, Theorem 5.15] we obtain a solution A; = (%) pPforl<k<p—-1 O
For an arbitrary function g : F) — F, and i € F,, let N;(g) denote the cardinality
#{z € Fp|g(x) = i}. In the following two propositions we determine N;(g) for a
bent function g, depending on the type of g explicitly when n is odd and n is even,

respectively. We start with n odd as its proof is more involved.

Proposition 2.2.1 Let g : F), — T, be a bent function and n is odd. For g*(0) = 1o

we have

n— n— ]
Nio(9) =P, Nigsj(g) =p" ' £ (—

)p for1<j<p-—1.
p

Here the sign is + (respectively —) if and only if the type of g is (+) (respectively

(=)

Proof. Since g is bent and n is odd we have

—_

.
9(0) =) Ni(g)e, = no&p2ed ©

i

I
=)



where 9 € {—1,1},¢ = 1ifp = 1 (mod 4) and £ = ¢ if p = 3 (mod 4).
Assume that ¢ is of type (+). Then 1y = 1. Recall that g*(0) = iy. Then we have
" Ni(g)e, = ¢ \/ﬁp%l €. Dividing by €/ we get

p—1 p—1 p—1

VPP T =) Nilg)e™ = Nig(9) + > _ Nigtj(9)e) = > (Nigwi(9) — Nig(g))e).-
i=0 j=1 j=1

Note that putting A; = N, +,;(g9) — N;,(g) we obtain that (Ay, Ay,..., A, 1) is

a solution of the equation Aye, + Azel + - + Ap_1eb™t = ¢ \/ﬁp%l. Hence by
Lemma [2.2.1] we obtain that

Nig+j(9) = Nio(g) + (j;) p.

As 3P71 Nig4s(9) + Nig(g) = p™ we get Ny (g) = p"~'. Then Ny, ;(g) = p" ' +

(}%) P T

Assume that g is of type (—). Then 1y = —1. By similar arguments we obtain that

J\ e | N
N'L()-i-j(g) = Nzo(g) — (]—)) p 2 for 1 S J S p— 1’ and Nzo(g) =p 1'

U

Proposition 2.2.2 Let g : F — T, be a bent function and n is even. For g*(0) = ig

we have
Ni(g) =p" ' +£p2 Fp2~" and Ni(g) =p" ' Fp2 ', fori#io€F,

Here the sign is + (respectively —) if and only if the type of g is (+) (respectively

(=))-

Proof.  Since g is bent and n is even we have §(0) = 370 N;(g)e} = +p3e)
Recall that g*(0) = 7. Then
(Niy(9) Fp2)el + > Ni(g)e, = 0.
i#io
Dividing by eg) and using the Lemma as in Proposition we complete the
proof. UJ

Recall that f : F} — T, is a non-weakly regular bent function and ey (y, u) is an
integer for y € ) and u € F, defined above. From now on, if n is even then we put

n = 2m, and if n is odd then we put n = 2m + 1.

10



Lemma 2.2.2 Let n be odd. There exists an integer k such that for every y € F we

have

o If p = 1(mod4) then, ef(y,ug) = k and ef(y,ug +1i) = k + <§> p™ for
I<i<p-1

o If p = 3(mod4) then, ef(y,up) = k and ef(y,ug +1i) = k — (%) p™ for
1<i<p-—-1,

where ug = f(y).

Proof. Consider first the case p = 1 (mod 4). By inverse Walsh transform we have

p2m+16£(y): Z Gg-yf(@).

aefRZm+!
As f is bent, for v € F2", we have Fla) = eap™ Bl @ where €, € {~1,1}
depending on «. Therefore we get
I S
agRzmt!
Using the definition of ef(y, u), this implies that

PUVPEY = er(yuo)esd + Y ep(y u)ep.
u€F,\{uo}

Dividing by €, we have

PP =er(yuo) + D> ep(y,u)en

u€Fp\{uo}

Putting ef(y, ug + i) = b; fori € F,,, we have

Z bie;) =p"\/p.

i€F,

Using Lemma we conclude that there exists an integer & such that
er(y,up) =k and ef(y,ug+1i) =k + (3) p™for 1<i<p-—1.
p

Next we consider the case p = 3 (mod 4). By inverse Walsh transform we have

—ip" /P = ep(y,uo)en + Y ep(y,u)en.
u€Fp\{uo}

11



Using similar arguments and putting —e(y, up + ) = b; for i € F,, we obtain

i€Fp

Again from Lemma we conclude that there exists an integer k£ such that
ef(y,up) =k and ef(y,uo+1) =k — (3) p™ for 1 <i<p-—1.
p

Now let us show that k& does not depend on y. Observe that for any y € Fim“ and

J € I, we have

N;(f*(x) +2.y) + ef(y, J)

N;(f*(2) +2.y) — ey, 5)

cr(y,7) = 5 and dy(y,j) = 5
On the other hand,
p—1 p—1
#B.(f) = sy, j) and #B_(f) = ds(y,J).
=0 §=0

Combining them with the identity zz;;é N;(f*(x) + z.y) = p™ ! we get,

P2t 4 pk PPl pk

#B() = and #B () =

As #B.(f) and #B_(f) are constants, we conclude that k is independent of y.

O

Lemma 2.2.3 Let n be even. There exists an integer k such that for every y € F}) we

have
k+p™ if f(y) = u,

er(y,u) =
k otherwise.

Proof. By inverse Walsh transform we have

2m
acly

As f is bent, for a € F2", F(o) = &p™e) ), where &, € {—1,1}. Therefore we

get
pmeg(y) _ Z gaeg*(a)—l—a-y‘

ack2m

12



Using the definition of e (y, u) we get
pe, = ey, uo)e,” + Z er(y,u)e,.
u€Fp\{uo}

Dividing by €,° and applying Lemma we complete the proof. Moreover unique-
ness of k can be shown by using similar arguments as in the proof of Lemma [2.2.2
O

Remark 2.2.1 In Lemmas[2.2.3|and[2.2.2} we do not determine k explicitly. In fact k
is independent of y, it only depends on the cardinalities # B, (f) and #B_(f). Using

Magma we determine k for the following sporadic examples of ternary non-weakly

regular bent functions [|14, page 429].

Example 1 g, : Fss — F3, gi(x) = Tre(\"2%) is a non-weakly regular bent func-
tion. We have # B, (g1) = 504, #B_(g1) = 225 and k = 84.

Example 2 gy : F3s — T3, go(x) = Tre(Az® + AN 2°?) is non-weakly regular bent.
We have #B.(g2) = 648, #B_(g2) = 81 and k = 180.

From now on we further assume that the dual function f* of f is bent as well. For

y € F), letg, : F) — F, be the function

gy(2) = f*(x) + 2.y,

which is a bent function affine equivalent to f*. For y,« € Fp, it follows from the

definition that

Gyla) = f(a—y). (22)

As f*is bent, it follows from the definitions that

So(f,y) + Si(f,y) = £&p™ ey (23)

where 0 <4, < p — 1 depends on y. In the following two lemmas we determine the

sign and the value of 4, in (23)) exactly.
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Lemma 2.2.4 Let n be odd. Under notation and assumptions as above we have

epm /ol if g, is of type (+),

—=&p™\/pep if gy is of type (—),
where £ € {1,i} depending on p.
Proof. It follows from the definition that
Gy(0) = So(f,y) + Si(f, v). (25)

Using 1’ and l) we obtain that f*(—y) = So(f,y) + S1(f,y). In the rest of this
proof we show that the equality in the right hand side of (24) holds.

For y € Fpami1 = Fyn let ug = f(y) and ig = g;(0). For u € F, by definition we

have

Nu(gy) + ey, v)
2

Nu(Qy) - ef(% u)
5 )

and df(y,u) =

cry,u) = (26)

Using the fact that c¢(y,u) is an integer for u € F,, we prove that uy = 4y. Our
method of the proof of uy = 7 is as follows: Assume the contrary that uy # 7. Let
to € Fp \ {uo,i0}. There exists such ¢y € F, \ {up,i0} as p > 3. We will show
that the fact c¢(y, 7o) is an integer implies that ef(y, uo) is an even integer. We will
also show that the fact c;(y, to) is an integer implies that e(y, uo) is an odd integer.
Hence these arguments will imply to the contradiction on the parity of e;(y, ug) and

we will obtain that ug = 7.

Now we explain the details of these arguments. By Proposition [2.2.1] the integer
Ni,(gy) is odd. As c;(y,i0) = (Niy(gy) + €s(y,i0))/2 by and c;(y, o) is
an integer, we get that e;(y, i) is odd. Using Lemma we have ef(y, i) =
er(y, up) £ (%) p™ as ip # ug. As es(y,ig) is odd we obtain that ef(y,ug) is

cven.

Similarly we consider c((y, ty). By Proposition|2.2.1|we have N, = p*"+ <t°f’°> pm

as ty # io. Hence the integer Ny, (g, ) is even. As ¢ (y, to) = (Ny,(gy) + ef(y,t0))/2

by and c;(y, to) is an integer, we get that e;(y, to) is even. Using Lemma

we have ef(y, to) = ef(y,uo) £ (“”T“O> p™ as ty # ug. As ef(y, tp) is even we obtain

that e(y, uo) is odd. These arguments complete the proof of the fact that uy = 1.

14



The rest of the proof of the lemma is presented case by case. There are four cases to
consider.

Case p = 1 (mod 4) and g, is of type (+):

Let k = ef(y, up). Using Proposition Lemma [2.2.2] the fact uy = i and (26)

we obtain that

p2m+k

5 ifu:uo, E 5 if’LL:UO,
Cr (ya u) = 2m | o4 o Y240 ) pym df(y> u) = m .
rr +2£ 2)r if u # o, v =k ifu # ug.
By definition we have Sy(f,y) = ?;(1) cs(y, j)e). Putting the values of c;(y, u) in

the definition of Sy(f,y) we obtain that

2 PP HE2(S0 )P,
SO(fuy) = I%epo_‘_ZuEIFp\{uo} g . ) €p

2m
I s o I Y 2t W) u—ug m
_ 2 Zuzo Ep + Zuer\{uo} ( D p €p

u—u m_u -1 4
= Zuer\{uo} < P O> pUEp (as Z:O € = 0)

— pmezo EuEFI,\{uO} <u—pug> 6zg—uo_

Put A, ,, = (%) p™. Then by Lemma 2.2.1) we get So(f,y) = /pp"e)° =
m f ()
/U U

By definition we have Si(f,y) = Z?;é dy(y, j)e). Putting the values of dy(y,u) in
the definition of S;(f,y) we obtain that

P—1 om 2m p—1
pr—k,; _p"—k :
Sl(f;y)zz 5 €, = 5 e, =0.
=0 =0

Case p = 1 (mod 4) and g, is of type (—): By similar arguments we have,

PR i = g, BTk
Cf(y, U) = df(y’ U) = p2m_k_2(u*u0 >pm

2m
p=+k :
I — lfU#U,O, 5 £

ifu= Up,

if u # .

Applying similar arguments as in the previous case, we obtain that Sy(f,y) = 0 and

Si(f,y) = —pm/pep?.
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Case p = 3 (mod 4) and g, is of type (+): By similar arguments we have,

2m7k.

D)
dy(y,u) = e
2

Ptk P

2

2m
p "tk .
O if u % Ug,

if u = wuy,

if u # wo.

if u = g,
cr(y,u) =

Applying similar arguments as in the first case, we obtain that Sy(f,y) = 0 and

Si(f,y) = ip"/pep”.
Case p = 3 (mod 4) and g, is of type (—): By similar arguments we have,

I B ifu=to =) Tr =
Cf y7 u) = p2m+k_2 u—ug pm i f y7u = Qm_k .
g o)) if u £ uo, = ifu # uo.

Applying similar arguments as in the first case, we obtain that Sy(f,y) = —ip™ pe) ®)

and S1(f,y) = 0. l

Lemma 2.2.5 Let n be even. Under notation and assumptions as above we have

m _f(y) ; H
. +),
fr) = Solfop) + Si(fy = TP T Eernpet) gy,

—pmepy if gy is of type (—).

Proof. The proof is similar to the proof of Lemma Using the same arguments
we get f*(—y) = So(f,y) + S1(f,y). We show the equality in the right hand side of
below in this proof.

Again let ug = f(y) and ip = g;(0). Note that holds here as well. We prove
that vy = i, similar to the proof of Lemma [2.2.4] The main differences are that we
use Proposition instead of Proposition and we use Lemma instead
of Lemma Assume that ug # 9. Letty € F), \ {uo,i0}. First we consider
the integer ¢;(y, o). By Proposition[2.2.2] the integer N;,(g,) is odd. As in the proof
of Lemma using and the fact that cf(y, i) is an integer we obtain that
es(y, %) is an odd integer. Using Lemma [2.2.3|we have e;(y, i) = e;(y, ug) — p™ as

io # up. As ef(y, i) is odd, we conclude that ef(y, 1) is an even integer.

Next we consider the integer cf(y,ty). By Proposition 2.2.2] we have Ny (g,) =
p*™tFp™tasty # ip. Hence the integer Ny, (g, ) is even. As in the proof of Lemma

2.2.4] using and the fact that c¢(y, to) is an integer we obtain that ef(y, t,) is an
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even integer. Using Lemma we have ef(y, to) = ef(y,ug) — p™ as tg # ug. As

ef(y, to) is even, we conclude that e¢(y, uo) is an odd integer.

These arguments lead to the contradiction on the parity of the integer e (y, uq). Hence

our assumption is wrong and we complete the proof of the fact that uy = 7.

For arbitrary t € I, \ {uo} let k = ef(y,t). Using Lemma we note that k is
independent from the choice of ¢ € F, \ {uo}.

Assume that g, is of type (+). Using Proposition[2.2.2] Lemma[2.2.3] the fact ug = i
and we obtain that

2m—1__ 'mfl_k

p2m71+2p7n_p7n71+k P P
2 _ 2
df(ya U) - 2m—1_, m—1_}

2m—1 m—1
p —p +k : p —p
s if u # o, 5

ifu= Ug,

if u # .

ifu= U,
cr(y,u) =

Putting these values in the definitions we obtain that So(f, y) = p™e) ®) and 5, (f,y) =
0.
The proof of the case g, is of type (—) is similar. U

Now we are ready to state our first theorem.

Theorem 2.2.1 Let f : F; — ), be a non-weakly regular bent function whose dual
function f* is bent as well. Let f** : F}) — [}, be the dual function of f*. Fory € Fy

we have

() = f(~y).

Proof. As f* is bent we have
fr(=y) = n-ytpie) "V, (28)

where 7, € {—1,1} depending on y. Combining Lemmas [2.2.4] and we

complete the proof. U

As an immediate consequence of Theorem [2.2.1] we solve the quoted open problem

of [14].
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Corollary 2.2.1 Let f : F; — F, be a non-weakly regular bent function whose dual

function f* is bent as well. Then f* is also non-weakly regular.

Proof.  Assume that f* is weakly regular. Then its dual f** must also be weakly
regular. However by Theorem , J** is equivalent to f and hence f** is non-
weakly regular. O

2.3 The Duals of Plateaued Functions

In this section we generalize our results in Section [2.2] to plateaued functions. We
also generalize two results of Nyberg [36] on Hamming distance of bent functions to

a nearest affine function in Corollary [2.3.T| below.

We define non-weakly regular plateaued functions using the notation in [33] for

weakly regular plateaued functions.

Definition 2.3.1 A function f : F; — F, is called s-plateaued if

forall o € F).

The Walsh spectrum of s-plateaued functions is given as follows (see [27]]).

Theorem 2.3.1 Let [ : F) — ), be an s-plateaued function then

f( ) ip"?*gf*(“),o ifn+ sevenorn+ soddandp=1mod 4,
a) = .
+Lip"s el 0 ifn+ soddand p = 3 mod 4,

where f* is a function from support of f tolF,.

Let us call f* the dual of f. We denote support of f by Supp( f ) and it is defined as

Supp(f) :=={a:a € Fy | fle) # 0}

Observe that, if f is an s-plateaued function over [y, by Parseval identity we have

#Supp(f) = p"°. Observe that if s > 1 then f* has restricted domain which is

different from the case of bent functions. The following definition is given in [33]].
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Definition 2.3.2 Let f : ) — [, be an s-plateaued function such that for all o €

~

Supp(f)

where u € {1, +i} is independent from . Then f is called a weakly regular s-
plateaued function. When w = 1, f is called regular s-plateaued. If u changes with

respect to o then f is called non-weakly regular s-plateaued.

Definition 2.3.3 Let S be a subset of F) with cardinality N and [ be a function from
StoF, If| f(a) |= N2 forall o € F7, f is called bent relative to S where

fla) =3, coeg ™",

Remark 2.3.1 Observe that if S = T, the notion is the same as for bent functions.
Note that, we still continue to use the notation f even if S # ) which can be viewed
as a restricted Walsh transform over S. Moreover, if N = p™ for some m < n, by
using same techniques as in ([29]), one can derive that normalized Walsh coefficients
of corresponding relative bent function belongs to the set {+1, +i} which changes

with respect to p and parity of m, as in the case of bent functions.

Proposition 2.3.1 Let [ : ) — ), be a weakly regular s-plateaued function then f*

is bent relative to Supp( f). Moreover we have

~

fa) = u’lp%ez(’a)for all o € Fy

n+s f*

where f(a) = up™= €} @) forall o € Supp(f).
Proof. See, [I33, Lemma 6]. ]

Remark 2.3.2 Under the notation of Proposition we also get that f**(x) is

weakly regular s-plateaued function over ¥, and [* is weakly regular bent function

relative to Supp(f).

The situation is different for non-weakly regular plateaued functions. As in the case

of non-weakly regular bent functions, there are two possibilities for the dual of non-
weakly regular plateaued functions: the dual may be bent relative to Supp( f ) and the

A

dual may not be bent relative to Supp( f). Both cases happen infinitely often.
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Example 3 Let g : F) — [, be a non-weakly regular bent whose dual is a bent (resp.
not bent) function. There are infinitely many such functions [I4} [15]. For s > 1 let
n=r+sand f : ¥, X F; — T, be the function defined as f(z,y) = g(z). Then f
is an s-plateaued function which is non-weakly regular and also the dual f* is bent

(resp. not bent) relative to Supp(f).

Example 4 Note that the function [ in Example |3|is partially bent. In fact there
are also infinitely many non-weakly regular p-plateaued functions f with u > 1
whose dual f* is bent (resp. not bent) with respect to Supp( f), and f is not partially
bent. These correspond to a different infinite class then the ones in Example 3| Let
g : ¥, — F, be a regular p-plateaued function with pn > 1, which has no nonzero
linear structure. Let h : IF; — ), be be a non-weakly regular bent whose dual is a
bent (resp. not bent) function. There are infinitely many such h functions [14, [15]].
Letn =r+tand f : F) x T} — ) be the defined as f(x,y) = g(x) + h(y). Then
[ has no nonzero linear structure (o, 3) € F) x IF;. Indeed if o # 0, then the map
(z,y) = g(z+a)—g(x)+h(y+B) —h(y) cannot be constant on Iy x . Otherwise
for a fixed y, € F}, we obtain a constant map x — g(x + ) — g(x) + h(yo + B) —
h(yo) on F7

» Which is a contradiction as g has no nonzero linear structure. Recall
that a bent function cannot have a nonzero linear structure. Hence if 5 # 0, then
(o, B) € Ty x IF;, cannot be a linear structure of f. These arguments show that f
has no nonzero linear structure and f is not partially bent. As g is p-plateaued with
Supp(g) C T}, we get that f is ji-plateaued with Supp(f) = Supp(g) xIF;, C F <},
If (x,y) € Supp(f), then for the dual f* we have f*(x,y) = g*(x) + h*(y), where
g* and h* are the duals of g and h. As g is regular and h is non-weakly regular we
obtain that f is non-weakly regular. Finally f* is is bent (resp. not bent) with respect
to Supp(f) as h is bent (resp. not bent). We give an explicit example of a regular
p-plateaued function with 1 > 1 which has no nonzero linear structure as follows:
Let g : T3 — T3 be the function given by g(x,y,2) = zifx = 0, g(z,y,2) = y if

x=1,and g(x,y,z) = y + z if v = 2. Then g has no nonzero linear structure and

g(OZ, 57 7) € {07 9637 9637 963}

Let f : F) — F, be a non-weakly regular s-plateaued function such that its dual

~

f* is bent relative to Supp(f). By Theorem we have f(a) = gap"é” eg*(a) for
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all « € Supp(f) where &, € {£1,+i}. Let B, (f) and B_(f) be the partitions of

~

Supp(f) given by

~ A n+s *(w
B_(f) = {w:w e Supp(f) | f(w) = —&p"= ¢ ™)},
where £ € {1,1i}.
For an arbitrary non-weakly regular plateaued function g : ;) — [, whose dual is
bent relative to Supp(g), we define the type of g* as follows
g*(z) isof type (+) if g*(0) =&p™z €O,

g*(x) is of type (+) if ¢*(0) = —fp%eg**(o),

For any y € [} and u € IF,, the definitions of the sums Sy(f,y), Si(f,y) of complex
numbers and integers c;(y, u), ds(y,u) and es(y,u) are exactly same as in Section

For an arbitrary s-plateaued function g : F) — F,, we define the type of g as

e g(z)isof type (0) if g(0) =0 (i.e. g is balanced).

o () is of type (+) if §(0) =¢&p™> ey .

e g(x)isof type (—) if g(0) = _5pnéseg*(0)'
Next we generalize [36, Theorems 3.2 and 3.4 ] to plateaued functions. In rest of the

section we skip the proofs if they are very similar to the ones in Section§.2]

Proposition 2.3.2 Let g : F) — F, be an unbalanced s-plateaued function. For

g*(0) = ip we have

n+

o Ni(9)=p"", Nim(g):p”‘li(ﬁ-;)p i, for1<j<p-1, forn+
s odd.

o N;(g) =p~! :I:p% qipnTJrS_l and N;(g) = p™ ! q:p"%s—17 fori # iy €

F,, forn+ s even.

Here the sign is + (respectively —) if and only if the type of g is (+) (respectively
(=))-
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The next corollary follows from Proposition [2.3.2] It generalizes [36, Theorems 3.3

and 3.5] to plateaued functions.

Corollary 2.3.1 Let p be a prime. Then the Hamming distance of an s-plateaued

function g : ¥ — [, to a nearest affine function is

o (p—1)p~t— pn+§_1, for n + s odd.

")

e (p—1L)(p'—p , forn+ s evenand g is of type(+).

o (p—1)p"t —p "L, for n+ s evenand g is of type(—).

Proof. Leth: ) — [, be an affine function. Then the Hamming distance of g to
hisd(g,h) =3 icr {0y Ni(g — h). It is minimized if we choose No(g — h) maximal
possible. Therefore by Proposition [2.3.2] we have

nt+s—1

(p—1p"t—p > ifn+ sodd,
d(g.h) =< (p—1D)(p™ ' —p"s 1) ifn+ sevenand g is of type + ,
(p—1Dp"t —p""~1  if n+ sevenand g is of type — .

0

Recall that f : F) — TF), is a non-weakly regular s-plateaued function and ey (y, u) is
an integer for y € F)) and u € F, defined above. For y € F let g, : F) — F, be the

function

gy(z) == f*(x) + 2.y,
which is a plateaued function affine equivalent to f*.

We generalize Lemmas [2.2.2] 2.2.3| 2.2.4] 2.2.5] and Theorem [2.2.1] Corollary

in the following theorem.

Theorem 2.3.2 Let f : F) — F, be a non-weakly regular s-plateaued function.

Under notation and assumptions as above we have,

e Let n + s be odd, there exists an integer k such that for every y € F)) we have
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i)

- If p = 1(mod 4) then, e;(y,uo) = k and e;(y,uo +1) = k + (;%) n—s—1
for1 <i<p-—1,;

— If p = 3(mod 4) then, e(y,up) = k and ef(y,up + 1) = k — (é) piE
Jor1 <i<p-—1;

where uy = f(y).

o Letn+ s be even. There exists an integer k such that for every y € F)) we have

k+p' 2 iffly) =u,

k otherwise.

er(y,u) =
If f* is bent relative to Supp( f ) then we have

ep"T Y ifg, is of type (+),
n=s f(y)

—€p 2 & if g, is of type (—),

SO(fv y) + Sl(fvy) =

where
1 ifnevenorn oddandp = 1mod 4,
1 ifnoddandp = 3 mod 4.

A

e f* is non-weakly regular bent relative to Supp(f).

o Let f™ : F} — T, be the dual function of f*. For y € F, we have f**(y) =
f(=y).
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CHAPTER 3

STRONGLY REGULAR GRAPHS ARISING FROM NON-WEAKLY
REGULAR BENT FUNCTIONS

In this chapter, we prove that if the two special subsets associated with the non-weakly
regular even bent functions in the GMMF class are partial difference sets then they
are trivial. We prove that the corresponding subsets of the two sporadic examples
of ternary non-weakly regular bent functions are non-trivial PDSs. We also show
that special subsets associated with the two sporadic examples of ternary non-weakly
regular bent functions are union of certain cyclotomic cosets. Our further construction
giving non-trivial PDSs from certain p-ary functions which are not bent functions is

also given.

3.1 Preliminaries

Let f : F} — [, be a function. For v € Fy let D,f be the derivative function
D, f(x) : Fpn — ), given by D, f(z) = f(x +v) — f(x). A function f : F} — T,
is called partially bent if the following property holds: For v € [, if the derivative
function D, f : F,» — I, is not balanced then D, f is a constant function. Note
that partially bent functions are special subclass of plateaued functions, and most
of the known plateaued functions are partially bent. In the literature, only a few
construction methods for plateaued but not partially bent functions are known, for

example, see [45].

Definition 3.1.1 (Partial Difference Sets) Let G be a group of order v and D be
a subset of G with k elements. Then D is called a (v,k,\, u)- PDS in G if the

expressions g — h, for g and h in D with g # h, represent each non-identity element
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in D exactly \ times and represent each non-identity element not in D exactly y times.

Definition 3.1.2 (Cayley Graph) Let G be a finite abelian group and D be a subset
of G such that 0 ¢ D and D = —D. Let E be the set defined as {(z,y)|z,y €
G, x —y € D}. Then, (G, E) is called a Cayley graph, and denoted by Cay(G, D).

Here, D is called the connection set of (G, E'). A PDS is called regular if e ¢ D and
D™! = D. A subset D of G is called frivial if either D U {e} or G/D U {e} is a
subgroup of G. It is equivalent to saying that the Cayley graph generated by D \ {e}

is a union of complete graphs or its complement. Otherwise, D is called non-trivial.

Proposition 3.1.1 ( [31] Propostion 1.5]) Let D be a regular (v, k, A, 1)— PDS with
D # G\ {e}. Then D is nontrivial if and only if 1 < u <k — 1.

Remark 3.1.1 1 = 0 implies that that D U {e} is a subgroup of G. The other case
w =k implies that D is equal G/ H for some subgroup H of G.

Definition 3.1.3 (Strongly Regular Graphs) A graph I" with v vertices is said to be
a (v, k, \, u)— strongly regular graph if

1. it is regular of valency k, i.e., each vertex is joined to exactly k other vertices;

2. any two adjacent vertices are both joined to exactly )\ other vertices and two

non-adjacent vertices are both joined to exactly | other vertices.

Proposition 3.1.2 ( [31, Propostion 1.5]) A Cayley graph 1" , generated by a subset
D of the regular automorphism group G, is a strongly regular graph if and only if D
is a regular PDS in G.

Definition 3.1.4 (Association scheme ) LetV be a finite set of vertices, and let { Ry, Ry,
..., R4} be binary relations on V with Ry := {(x,z) : x € V'}. The configuration
(Vi Ro, Ry, ..., Ry) is called an association scheme of class d on V' if the following
holds:
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1. VxV=RyUR U---URgand R, N R; = fori # j.

2. Rt = Ry for some i € {0,1,...,d}, where Rt := {(z,y)|(y,7) € R;}. If
i’ =i, we call R; is symmetric.

3. Fori,j, k € {0,1,...,d} and for any pair (x,y) € Ry , the number #{z €
V|(x,2) € R;, and (z,y) € Rj} is a constant, which is denoted by pf;.

Definition 3.1.5 (Translation Scheme) Let I'; := (G, E;), 1 < i < d, be Cayley
graphs on an abelian group G, and D; be connection sets of (G, E;) with Dy := {0}.
Then, (G,{D;},) is called a translation scheme if (G, {T;}%,) is an association

scheme.

Given a d-class translation scheme (X, {R;}% ), we can take unions of classes to

form graphs with larger edge sets which is called a fusion.

Remark 3.1.2 (Fusion Scheme) Note that if the fusion gives a translation scheme
again, it is called fusion scheme. However, it is not the case every time. We refer to

[28] for further reading about fusion schemes.

Definition 3.1.6 (Cyclotomic Scheme) Let ¥, be the finite field of order q, ¥ be the
multiplicative group of ¥, and S be a subgroup of F; s.t. S = —S. The partition F,
by {0} and the multipicative cosets of S gives a translation scheme on (F,, +), called

a cyclotomic scheme.

Each coset (called a cyclotomic coset) of F}; \ S is expressed as
C; =w'(w), 0<i<N-1,

where N|q — 1 is a positive integer and w is a fixed primitive element of I}

3.2 Partial Difference Sets Associated with Non-Weakly Regular GMMF Bent

Functions are Trivial

Let p be an odd prime and F' : F} x F; — T, be the map (v,y) — f,(x), where
fy + F} — T, is an s-plateaued function for each y € 7 such that Supp( f)n

27



Supp(fj) = () fori # j,i,j € ;. In [13], the authors showed that I is a bent
function. They use partially bent functions with disjoint supports to obtain plateaued

functions.

Remark 3.2.1 In fact, it is not easy to find s-plateaued but not partially bent func-
tions with disjoint supports. The plateaued functions f, used in [13] can be obtained
easily by adding a linear term to a bent function f, i.e. f, : F)7°% x F} — T, such
that fo(2,y) = f(x) +a.y, where f : F}=° — F,, a € F,. Then supp(f}) N supp(fj)
becomes the empty set for all i, j € F).

The bent functions of the form F'(x,y) = f,(x) are called the GMMF (Generalized
Maiorana-McFarland) bent. The Walsh transform of F at («, /3) is given by

; F(z,y)—a.a—p.
Fa,8) = erw;} Zyelﬁ‘; €p (r)—aa=by
fy(@)—o —y.
= Doerp & awzyelﬁ;, "

o —

= fu(@)(a)g ",

where yj is the unique element of [} such that « € supp(f\yo). Then we have,

~ nts *(a)—yo.-

which follows from fy\o(a) = 5a75pn35 ez(,fyo)*("), where &, 3 € {%1, £i}.

Observation: I’ is weakly regular if f, is weakly regular s-plateaued with the same
sign for all y € I} in their non-zero Walsh coefficients. F' is non-weakly regular bent
if f, is weakly regular s-plateaued for all y € IF; and there are y;,y, € I, such that
f@) and f2) have opposite signs in their non-zero Walsh coefficients or there exists

y € I} such that f, is non-weakly regular s-plateaued.

Let us partition weakly regular s-plateaued functions into two subclasses as f, is
in subclass (+) if its non-zero Walsh coefficients are positive, and in subclass (—)
if its non-zero Walsh coefficients are negative. Let /' € GMMF be a non-weakly
regular bent function with F'(x) = F(—xz). Next, we determine the structure of the

sets B, (F') and B_(F) in two different cases.

Case 1 [ fy is weakly regular s-plateaued for all'y € F] ]
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By the observation above, one can partition F; into two subsets as W (F) := {y :
y € F5|f, is in subclass (+)} and W= (F) := {y : y € F|f, is in subclass (—)},
where F' . ) x ¥, — T is given by F(x,y) = f,(x). Then by the equation (ﬂ) we

deduce that

By(F)=( |J suwp(f) xFy and B.(F)=( ] supp(f,)) xF;.(32)

yeEW+(F) yeW = (F)

Case 2 [ f, is non-weakly regular s-plateaued for some 'y € F} ]

Let WH(F),W~(F) be as in the Case and Wy = {y : y € F;|f, is non-weakly
regular s-plateaued}. Again by the equation we have

B+(F) = U (B-l-(fy) X F;) U ( U SUpp(fy)) X ]F;)v

yEWD yeW(F)
B(F)=J B-(f)xF)u( |J sup(f) xF;).
yeWo yeW—(F)

Remark 3.2.2 In Cases [I| and [2| the sets B, (F) and B_(F) can be viewed as a

union of some cosets of the subgroup {0} x F; in ) x 5.

Proposition 3.2.1 Let H be a subgroup of F,n and K be one of its complement in
Fyn,i.e. HNK = {0} and H & K = Fyn. Let L be a proper subset of K such that
0 ¢ L and for eachv € L, —vis alsoin L. Let D =, (H +v). If D is a PDS in

Fpn, then it is trivial.

Proof.  Since 0 ¢ L, wehave 0 ¢ D, and H C F \ D. Since forv € L, —v is
also in L, we have D = —D. Assume that D is a (p", kr, A\, u) PDS where #H = k,
#L = r.Since H C F,»\ D, every non-zero elements in H can be represented as x—y
exactly p times, forx # y € D.Letz # y,x,y € D.Letx = hy + vy, y = ho + vy,
for some hy,hy € H and vy, vy € L, then we get z — y = (hy — hg) + (v1 — va).
Clearly, if v # vy thenx —y ¢ H. Hence v —y € H if and only if x, y € H + v; for
some v; € L. Letx = hy +v;,y = hy +v;. Thenz —y = hy — hy € H. Since H
is a group, each non-zero h € H can be expressed exactly £ times by the differences
hy — hg for hy, he,€ H.If h € H; then for each v; € L, h can be represented exactly
k times as (hy 4+ vj) — (hy 4 v;) for hy # hy € H. Hence h can be expressed exactly
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#H+#L = k.r times as the difference © — y for z # y € D. Therefore, 1 = k.r, and
by Proposition [3.1.1] we have D is a trivial PDS in [F .. 0J

Corollary 3.2.1 Let ' € GMMF such that F(x) = F(—x). If B, (F')(or equivalently
B_(F)) is a PDS, then it is trivial.

Proof.  The proof follows from the Cases 34| and Proposition [3.2.1 [

In the following example, we use a non-weakly regular ternary bent function (see
[42]]). In [13], the authors showed that it belongs to the GMMF class. By using
Magma, we observe that the set B, (f;) is a subgroup of Fss. Hence, it is a trivial
PDS in F33. Moreover, in [[14], the authors claim that f; is self-dual bent. However,
by Magma computations, we observe that the dual function f; of f; is indeed equal

to — f1, and it is not self-dual.

Example 5 f; : F3s — F3, fi(z) = Tr3(2* + 28) is non-weakly regular of Type
(+)-

o B (fi)isa (27,8,7,0)-PDS in Fss.

e B_(f1)isa(27,18,9,18)-PDS in F3s.

Remark 3.2.3 By the Corollary |3.2.1| it follows that if neither Uyew+(F) supp(fy)

nor U, ew-(r) supp(f,) is a subgroup of Fyn, then neither B*(F) nor B~(F) is a
PDS inIF; X F7. Hence, we conclude that not all non-weakly regular bent functions of
the form f(x) = f(—x) have the property that B* (f) or B~ (f) is a partial difference
set. It is interesting to determine certain conditions on those sets, so that they become
non-trivial PDSs. To do this, in the following section we analyze the sets BY(f) and
B~ (f) associated with two of the known sporadic examples of ternary non-weakly

regular bent functions.

3.3 Non-Trivial PDSs From Ternary Non-Weakly Regular Bent Functions

It is known that one of the tools to construct partial difference sets are bent functions.

In [41], the authors proved that pre-image sets of the ternary weakly regular even bent
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functions are partial difference sets.
Let f : F,m — F, be a p-ary function, and D; := {z : © € Fym|f(z) = ¢}. The
following is due to [41]
Theorem 3.3.1 Let f : Fs2m — F3 be ternary function satisfying f(x) = f(—x),
and f(0) = 0. Then f is weakly regular bent if and only if Dy and Dy are both
(32m’ 32m—1 =+ 63m—17 32m—2’ 32m—2 =+ 63m—1) - PDSS,

where ¢ = £1. Moreover, Dy \ {0} is a

(3%m 32m=1 1 —2e3mt 3¥mT2 9 2e3m 1 322 e3m ) — PDSs.
Later this result is generalized to arbitrary odd characteristic in [[16] for the weakly

regular bent functions from F 2 to [F,, satisfying certain conditions. Namely, for a

weakly regular bent function f the following subsets

D = {z:z€Fp\{0}|f(x) =0},

Dg = {z:x €Fpen\{0}|f(z) is square},

Dy = {x:2 €T\ {0}|f(2) is non-zero square},
Dy := {z:z €Fpm\{0}|f(x) is non-square}

are regular partial difference sets.

As far as we know, no one introduced a relation between non-weakly regular bent
functions and partial difference sets. In this section, we examine to a relation be-
tween the set B, (f) (or equivalently B_(f)) and cyclotomic schemes by analyz-
ing two known sporadic examples of non-weakly regular bent functions over Fse
(see[24},25]). We observe that the sets B (f) (or equivalently B_( f)) corresponding
to these sporadic examples are non-trivial partial difference sets and they are fusion
scheme of some cyclotomic schemes for certain parameters. Hence, this is a dif-
ferent relation from the previous ones in the sense of while the pre-image sets of
some weakly regular bent functions give PDSs, the partition of F,2» with respect to
the sign of the Walsh transformation of some non-weakly regular bent functions also
gives PDSs. For the following examples we have ¢ = 729, and N = 13. Let w be a

fixed primitive element of F3s. Let Cy be the multiplicative subgroup of F3s generated
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by w'3. For 1 < i < 12, C; denotes the i-th cyclotomic coset of Cy, and defined by
CZ' = ’LUiCO.

Example 6 f, : Fss — F3, fo(z) = Tre(w'z®) is non-weakly regular of Type
(—). The dual of f5 is not bent and corresponding partial difference sets and strongly

regular graphs are non-trivial.

o B, (fs)isa (729,504,351, 342)-PDS in Fys

o B*(fs)isa(729,224,62,71)-PDS in F3s

By using Magma, we compute B, (f;) and B_(f;). We observe that B, (fs) =
Uie{0,3,5,6,778,9,11712} Ciand B_(f2) = Uie{1,274,10} C;. Hence B (fa) and B*(f;) are

2-class fusion schemes and correspond to non-trivial strongly regular graphs.

Example 7 f3 : F3s — F3, f3(z) = Tre(wz't + w¥2™) is non-weakly regular
of Type (—). The dual of f5 is not bent. Corresponding partial difference sets are

non-trivial.

o B.(f;)isa (729,504,351, 342)- regular PDS in Fas.

o B*(fs)isa(729,224,62,71)- regular PDS in [Fss.

Again by Magma computations we have, B (f3) = Ui€{071’274’576)9’11712} C;and B_(f3) =
Uic(z 7810y Ci- Hence B.(f3) and B* ( f3) are 2-class fusion schemes and correspond

to non-trivial strongly regular graphs.

Remark 3.3.1 Non-trivial strongly regular graphs correspond to f, and f5 are from
a unital: projective 9 — ary [28, 3| code with weights 24,27; VO~ (6, 3) affine polar
graph (See, [9]).

In fact, these are not the only examples giving non-trivial strongly regular graph.
We easily obtain different non-trivial partial difference sets on F3s by preserving

the images of the functions f> and f3 on Cy. For example the functions; hy(z) =
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Tre(w™x') and ho(x) = Tre(w™x558) are non-weakly regular bent for any odd in-
teger k. The corresponding subsets B_(h;)\{0} and B_(hy)\{0}) are (729, 224,62, 71)-
PDSs in [F36. On the other hand if we take £ even the Walsh transform of the corre-

sponding functions h; and hs have the form;

2763*((1),
hi(a) = { 0,
54,

as « runs through Fgﬁ.

Letkbeeven, D :={a:«a € IF;;a]l?i(a) = 0}. We observe that D is a (729, 252, 81, 90)-
PDS in [F36. The parameters of D are different than the parameters of Examples 2 and
3. Moreover as k is even h; is not a bent function. This gives a construction of
non-trivial strongly regular graphs from certain p-ary functions which are not bent

functions.

It is an interesting problem to determine fusion schemes of an /N-class cyclotomic
scheme on I,,. There are a lot of research papers devoted to this problem, for example,
see [4,140,128,135]. Moreover, another interesting problem is to find an explicit relation
between non-weakly regular bent functions and 2-class fusion schemes of cyclotomic

schemes.
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CHAPTER 4

ASSOCIATIONS SCHEMES OF CLASSES 5 AND 6 ARISING FROM
TERNARY NON-WEAKLY REGULAR BENT FUNCTIONS

In this chapter we give a construction method of association schemes of class 5 and
class 6 in odd and even dimensions respectively by using ternary non-weakly regular

bent functions in GMMF class.

4.1 Preliminaries

Remember that any bent function g : F) — I, is of two types (see Chapter ).

Type (+) if f(0) =ep2el @, e € {1,4}. (41)

Type (—) if f(0) =ep?el ® e e {—1,—i}. (42)

Remark 4.1.1 It is recognised that weakly regular bent functions show up in pairs
and given a weakly regular bent function f : F; — I, we have (see [24)])

frla) =& pie) (43)

where fA(oz) = gp%e;f*(“). It is easy to see that for p™ = 1 (mod 4) the types of [ and

f* are same, for p" = 3 (mod 4) they are of different types.

Let f : F) — [, be a non-weakly regular bent function. For any y € F} we have
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n

Ep2el @ = Sy(f,y) — Si(f.y). (44)

By Equation [44] we have
A if n even or n odd and p = 1 mod 4;

—ip3el™ ifn odd and p = 3 mod 4.

Sﬂ(fv y) - Sl(f7y) =

In Chapter 2, we prove that if f* is bent then it is non-weakly regular. So, if f* is
bent then the subsets B, (f*) and B_(f*) are well defined. Let H;(f) := {z : z
Fplf(z) =i}, Gi(f) == {z : x € B(N)f*(x) = i} and Di(f) := {z : z
B_(f)|f*(x) = i} for 0 < Vi < p — 1. We further define the subsets H;' (f) :=
By (f*) N H;(f) and H; (f) := B_(f*) N H(f), for 0 <Vi <p—1.

m m

From now on, all the plateaued functions we consider are partially bent. It is known
that all partially bent functions can be written as sum of a bent function and an affine
function. Let f(® : ) — IF, be bent for all a € Fs and f, : F) x ) — [, be the
map (z,y) — () + a.y. Then the function F : F? x F5 x F5 — F, defined by

F(xvyaz) :fz(fl:,y) :fz(x)+z-y (45)

belongs to GMMF class. The Walsh transform of F' at («, 3, 7) is given by

= Fa,,2)—oa—Bay—r.
F(a’é”f}/) = ZmG]F;” ZyE]F; ZZEFZ Ep(ﬂﬁyz) a.x—L.y—.z

_ f& (@) —aa (2=8) —7.z
= ZzngL €p Zyer E‘g ZZer €p v (46)
Then we have,

~ s £(8)*(0)—n.

Fla,8,7) =¢€app® ¢ @777 (47)
which follows from ﬁﬁ\)(a) = faﬁp%e{:(m*(a), where &, 5 € {£1,+i}. Hence we
have

F(x,y,2z) = fO"(x) — y.2. (48)

Observe that F is weakly regular if f*) is weakly regular bent of the same type for
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all z € 5. F is non-weakly regular bent if f(*) is weakly regular bent for all z € F
and there are 21, z € I, such that f (21) and f(#2) are of different types or there exists

z € % such that f(*) is non-weakly regular bent.

Let FF € GMMF be a non-weakly regular bent function. Next, we determine the
structure of the sets B, (F) and B_(F) in the case of f(*) is weakly regular bent for all
z € F,. Note that this is a specific case of the general version for which we determine
the structure of the sets B, (F') and B_(F’) in Chapter [3| By the observation above,
one can partition F§ into two subsets as W' (F) := {z : 2 € F5|f?) is of type (+)}
and W= (F) := {z: z € F3| f®) is of type (—)}, where F' : F x F5 x F$ — F,, is
given by F(z,y, z) = f.(x,y). Then by the equation (47) we deduce that

By(F)=F" x WH(F) x F5 and B_(F)=F"x W~ (F) x F5. (49)

Remark 4.1.2 Note that Equation {8) implies '™* is also bent and belongs to the
GMMF class.

The Walsh transform of F™* at («, /3, ) is given by

F(0,8,7) = 2acky 2oyery 2ozer g (AT By
N erwﬁ*mm > yers &7 Dems €0 =rty) (410)
= pseg'ﬁf(—v)*(a)'
Hence, we have
F(ey.2) = fO7 (@) 4y (411
= O (=2)+yz=,

where the second equality follows from Equation (43).

Definition 4.1.1 A character of a group G is a homomorphism from G to C*, where
C* denotes the multiplicative group of the field of complex numbers. Moreover, a

character is called trivial if it maps the all group elements to 1.

Remark 4.1.3 Note that fields have two kinds of characters as they have two different

group structures, namely, additive and multiplicative.
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4.2 Associations Schemes Related with Ternary Non-Weakly Regular Bent Func-
tions in GMMF Class

In this section we give a construction method of association schemes of class 5 and
class 6 in odd and even dimensions respectively by using ternary non-weakly regular

bent functions in GMMF class.

The functions y; : [y — C*, j € [}, defined by
Xj(z) = €”

are all additive characters of ). Let G denotes the character group of an finite abelian
group G and Yy be the trivial character. We assign a subset A of G with the group ring
element ) °__, =, which will also be denoted by means of A. By linearity, we extend
each character y € G to a homomorphism from C[G] to C, and we nevertheless
denote this homomorphism by y. Let Ag = {0}, Ay, ..., A; be an inversed-closed
partition of GG. This partition induces a partition Sy = {xo}, S1, 52, ..., Se, of G
U, ® e G\ {xo} are in the same S; iff W(A;) = ®(A;) for 1 <Vi < d.

The following theorem is given in [8]].

Theorem 4.2.1 (Bridges-Mena, 1982) It holds that d < e. In particular (G, {A;}L,)

forms a translation scheme iff d = e.

Ay Ay A, As . Ay
Uy €Sy 1 #HA | #Ay | #As | ... #Ay
e S 1 ai a2 a3 . a1q
U e S, 1 as1 a9 (93 . a9d
U’ e S, 1 as1 ass ass3 . a3q
Tl e S, 1 Qe Qe Q3 o Qed

If d = e then the d by d matrix P = [a;;] is called the principal part of the first

eigenmatrix of the translation scheme (G, {A;}L).
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4.2.1 Construction in Even Dimension

From now on we further assume that s € Z* and F : F2 x F§ x F§ — F3 be a non-
weakly regular bent function defined by the Equation such that f*) is weakly

regular bent for all z € F3.

Condition 1 f©) is of type (—) and %) is of type (+) for all nonzero » € F3;
fO0) =0and £ = f2 forall z € Fs; f&)(x) = f@)(—x) for all x € Fse.

It is easy to see that if F satisfies the Condition[l|then F(z,y, z) = F(—xz, -y, —2)
and ﬁ(a,ﬁ,v) = ﬁ(—a, —f3,—7) so that F*(x,y,2) = F*(—x,—y, —z). Denote
G, =F2 x F§ x Fs.

Theorem 4.2.2 Let F satisfies the Condition|l} Let Ay = {0}, A; = Ci(F) for1 <
\4) < 3, A4 = DS(F), Aj = Dj,4(F) for 5 < VJ < 6. Let Fz = (Gl,Ei), 0 <
i < 6 be Cayley graphs on G with connection sets {A;}S_,, then (G1,{T;}\_,) is an

association scheme of class 6.

Proof. By Equation (44)) we have

?“§@=2hMQG%%—XkM&UW% (412)

Since F*(z,y,2) = F*(—x,—y,—z) then C;(F) = —C;(F) and D;(F) = —D;(F)
for all i € F5. Since €3 + é3 = —1, xp(Ci(F)) and xo(D;(F)) are integers for all
i € Fyand 0 € F2 x F§ x F5. The assumptions £ is of type (—), f©) is of type
(+) for all nonzero z € Fs: and Equation imply that B~ (F) = F2 x {0} x F3.
Since B~ (F) is a subgroup of Gi; every character of B~ (F') can be represented by
the restriction of a character of G into B~ (F'). Then by character theory of finite
abelian groups we have
32 iff € B_(F)*,

Xo(B-(F)) = , (413)
0 otherwise.

Since F™* is bent (see Remark [4.1.2)by Remarks [4.1.1] and Equation (411) we
have B, (F*) = F2xF§xF5* and B_(F*) = F2x[F§x{0}. Itis clear that B_(F)* =
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{0} x F§ x {0} and for any element (0,y,0) € B_(F)* we have F(0,y,0) =
f©(0) = 0 implying B_(F)* C Hy(F). Moreover, since B_(F)* C B_(F*) we
have B_(F)* C H; (F). Now we will prove that B_(F)* = Hy (F). Since F* is
bent we have F**(z) = F'(x) by Theorem By definition we have C;(F*) =
{r € BL(F*): F(x) =i} and D;(F*) = {x € B_(F*) : F(z) =i} fori € Fs. Let
us denote 0 = (o, 3,7) € Gy and v = (z,y,2) € G;. By inverse Walsh transform
we have

F(v)+v.0 F(v)+v.0
ZUGB+(F*) €3 - ZUGB,(F*) €3

= Yo Xo(CiF*))el — 320 Xo(Di(F7))és.
Observe that H;' (F') = C;(F*) and H; (F) = D;(F*) for all i € Fs. Put§ = 0.
Since F is of type (—) by Lemma we have

38+163F*(9) —

—33HelT O = 35t — D (F*) + #D,(F*)es + #Do(F*)é2. (414)

Since {es3, €3} is a basis for Q(e3) over Q [30, Theorem 2.47 () ], there exist uniquely

determined coefficients in QQ satisfying the equation
—(3" + #Do(F")) = #D1(F")es + #Dx(F")es. (415)

Then €3 + €3 = —1 implies #D;(F*) = #Dy(F*) = #Do(F*) + 3*t1. Since
#Do(F*) + 4D\ (F*) + #Ds(F*) = #B_(F*) and B_(F*) = F2 x F3 x {0},
we have #Dy(F*) = 3°. On the other hand we have #B_(F)* = 3°. Combining
B_(F)* C Hy (F) and Hy (F) = Dy(F*) we deduce that B_(F)*+ = H; (F).

Case 3 (0 € H;"(F)) By Lemma we have S1(F,0) = 0 and 35“55(9) =
52  Xo(Ci(F))és. Then we have

0= (xo(Ci(F)) =3 e + Y xo(C;(F))él. (416)
JFIEFS
0= xo(D;(F))é. (417)
Jj€Fs

By similar arguments above, there exist uniquely determined coefficients in Q satis-

fving Equations and@17). It is clear that for all i € F3 we have x4(Do(F)) =
Xo(D1(F)) = xo(D2(F)). Since 0 ¢ Hy (F) = B_(F)*, by Equation we have

40



Xo(Do(F)) = xo(D1(F)) = xo(Do(F)) = 0 forall i € Fs. By character theory of

finite abelian groups we have
Y xo(Ci(F) + Di(F)) =0 (418)
for 8 # 0. Hence we have
Xo(Co(F)) + xo(CL(F)) + xo(C2(F)) = 0. (419)
On the other hand, Equation (#16)) implies
(o(Ci(F)) = 37) = Xo(Cita(F)) = xo(Cis2(F)) (420)

for i € F3. Combining Equations and we have xy(Ci(F)) = 35T — 3¢
and xo(Ci+1(F)) = xo(Ci2(F)) = =37, fori € F.

Cased (0 € H; (F)) By Lemma we have So(F,0) = 0 and _3s+1€§“(€) _
2 o Xo(Ds(F))€l. Then we have

0= (xo(Di(F)) +3" ek + > xo(D;(F))e}. (421)
JFIEFS
0="> xo(Cj(F))e}. (422)
Jj€Fs

By similar arguments above we have
Xo(Di(F)) + 3" = xo(Dig1 (F)) = Xo(Dis2(F)) (423)
fori € Fs. Let§ € Hy (F) = B_(F)*. Then by Equation we have
Xo(Do(F)) + xo(D1(F)) + xo(D2(F)) = 3772, (424)

Combining Equations and we get xo(Do(F)) = 3° and xo(D1(F)) =
Xo(D2(F)) = 3571 + 3%, Since 0 € Hy (F) and xo(D;(F)) = #D;(F) fori € Fs,
we have #Dy(F) = 3° and #D,(F) = #Dy(F) = 3t + 3%, It is clear that
Equation [@#22)) implies

Xo(Co(F)) = xo(C1(F)) = xo(Ca(F)). (425)

41



Hence we have xo(C;(F)) = #C;(F) = 3% — 3t fori € Fs. If 0 # 0O then

by Equation we have xo(Co(F)) = xo(C1(F)) = xo(Co(F)) = —35TL. Let
0 € H (F)forie {1,2}. Since § ¢ B_(F)* by Equation we have

Xo(Do(F')) + xo(D1(F)) + xo(D2(F)) =0 (426)

Then by Equations (#18), (426) and (#25) we have xo(Co(F)) = xo(Ci(F)) =
Xo(Cs(F)) = 0. Combining Equations and we get xo(D;(F)) = 3°—3°T!
and X9<D1+1(F)) = X@(DH_Q(F)) = 35f0ri c {]_, 2}

Let So == {x0}, Si:={xy:y € H (F)} for 1 <Vi<3 and S, :={x,:0#
y € Hy (F)}, Sj = {xy 1y € H_4(F)} for 5 < Vj < 6. Then by Theorem

(G, {A;}%_,) forms a translation scheme. O

Hence for any positive integer s we have translation scheme of class 6 with following

first eigenmatrix;

325+1 _ 35+1 325+1 _ 3s+1 325+1 _ 3s+1 35— 1 33+1 + 38 3s+1 + 35_

1

1 35t -3¢ —3° —3° -1 0 0

1 -3° 35+l — 38 —3° —1 0 0

1 —3° —3° 3stl — 3¢ -1 0 0

1 _ g+l _ g5+l _ g5+l 351 35tl 4y 3s gs+l g
1 0 0 0 3 —1 3% —3stt 3°

1 0 0 0 3 -1 3° 35 — 35+

Moreover fusing the first three non-trivial classes of the those translation schemes we

obtain fusion schemes of class 4.

1 32542 _ 3542 35 _ | g+l g gs gl | 33_
1 0 -1 0 0
1 =32 31 343 3l
1 0 3F—1 3°—3°tL 3°
_1 0 3°—1 3° 3% — 35+1_

42



4.2.2 Construction in Odd Dimension

From now on we further assume that s € Z" and F' : F3 x F§ x F§ — F3 be a non-
weakly regular bent function defined by the Equation such that f*) is weakly

regular bent for all z € Fss.

Condition 2 f©) is of type (=) and %) is of type (+) for all nonzero » € F3;
fO0) =0and £ = f2) forall z € F3; f&)(x) = f&(—z) for all v € Fs.

Condition 3 £ is of type (+) and %) is of type (=) for all nonzero z € Fs;
fO0) =0and f*) = 2 forall z € F; f&)(2) = f&)(—2) for all v € T,

It is easy to see that if F satisfies the Condition|or[3|then F'(z,y, z) = F(—z, —y, —2)
and F\(a,ﬁ,v) = ﬁ(—a, —3,—") so that F*(z,y,2) = F*(—x,—y,—z). Denote
G2:F3XF§XF§.

Proposition 4.2.1 If F satisfies the Condition2]then Dy(F') is empty set; if F satisfies
the Condition|3|then C(F) is empty set.

Proof 1 Let us assume that F' satisfies the Condition 2| By Equation ({#7) we have
ﬁ(O) = 50\/§3S€§(0>*(0). Since f©) is of type (—) then by Equation F is of type
(—). Then F* is of type (+) (see Remark . By Equation we have
—i\/§3865(9) _ Z 65*(1})—1—1}.0 - Z 65*(11)4-’0.9 427)
veB, (F) vEB_(F)

Put @ = 0. Since F* is of type (+) then by Lemma we have Sy(F,0) = 0 and

2

iV33%ey @ =" xo(Di(F))eh. (428)

By Equation F(0) = 0 then we have i7/33° = 3.7 xo(Di(F))éy. Moreover it

is well known that i/3 = JeFy (%)eg Hence we have

#D(F) + (#D1(F) — (0)8)es + #D(F) ~ C)3)d =0 (429)
On the other hand
#Do(F) + #D1(F) + #Do(F) = #B™ (F) = #F3 x {0} x F§ = 3°t1. (430)
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Combining Equations and we have #Dy(F) = 3%, #D,(F) = 3°T' — 3¢
and # D4 (F') = 0. We conclude that Do (F') is the empty set.
Let us assume that F satisfies the Condition @ Since f©) is of type (+) then by

Equation Fis of type (+). Then F* is of type (—) (see Remark §.1.2)). Put
0 = 0. Since F* is of type (—) then by Lemma we have S1(F,0) = 0 and

—iv/33%; ¥ =" xo(Ci(F))eb. (431)

By Equation F(0) = 0 then we have —i+/33° = Y7, xo(Ci(F))e. Hence we

have
HFOF) + (HO(F) + ()6 + (HO(F) + (C)3)G =0 @)
On the other hand

H#Co(F) + #C1(F) + #Co(F) = #B1(F) = #F3 x {0} x F§ = 3°t1. (433)

Combining Equations (432) and (433) we have #Co(F) = 3%, #C1(F) = 0 and
#Co(F) = 35T — 35, We conclude that Cy(F) is the empty set.

Proposition 4.2.2 If F satisfies the Condition[2|(resp. Condition[3) then F* satisfies
the Condition[3](resp. Condition 2).

Proof 2 The proof follows from the Equations {#3)) and (see Remarks and
F.1.2).

Corollary 4.2.1 If F satisfies the Condition|2|then H" (F) is empty set; if I satisfies
the Condition [3|then Hy (F) is empty set.

Proof. It is clear that for i € F3 we have C;(F*)=H. (F) and D;(F*)=H; (F) by
definition. Hence the proof follows from the Propositions [4.2.1]and 4.2.2] U

Theorem 4.2.3 Let F' : Gy — F3 be a non-weakly regular bent function satisfy-
ing the Condition Let Ay = {0}, A; = Ci{(F) for 1 < Vi < 3, Ay =
D§(F) and As = Dy(F). Let I'; == (Ga, E;), 0 < i < 5 be Cayley graphs on
G with connection sets {A;}>_o, then (Go,{T;}2_,) is an association scheme of

class b.
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Proof. By similar arguments in Theorem we have C;(F) = —C;(F) and
D;(F) = —D;(F) for all i € Fs; xo(Cy(F)) and x(D;(F')) are integers for all
iGFgandengngx]Fg.

Assume that F'satisfies the Condition[2]. Then the Equation (49) implies that B_(F) =
F3 x {0} x . Then by character theory of finite abelian groups we have
3t if0 € B_(F)*,

Xo(B_(F)) = , (434)
0 otherwise.

By Remarks [4.1.1] 4.1.2] and Equation we have B, (F*) = F3 x F§ x {0} and
B_(F*) = F2 x F5 x F5*. Itis clear that B_(F)* = {0} x F§ x {0} and for any
element (0,y,0) € B_(F)* we have F(0,y,0) = f©(0) = 0 implying B_(F)* C
Hy(F). Moreover, since B_(F)* C B, (F*) we have B_(F)* C Hf(F). Now
we will prove that B_(F)* = H (F). Since F* is bent we have F**(z) = F(x)
by Theorem 2.2.1] Let us denote 6 := («,3,7) € Gz and v := (z,y,z) € Go. By

inverse Walsh transform we have

. s F*(0 F(v)+wv.0 F(v)+wv.0
—iv/33 €3 @ = Zv€B+(F*) 63( : - ZveB,(F*) 63( :
= o Xo(Ci(F))es — 3o xa(Di(F*))éb.

Put § = 0. Since F is of type (—) then by Lemma we have
—iV33%h V) = —iV/33° = #Co(F*) + #CL(F)es + #Co(F*). (435)

By previous arguments we have

LCo(F*) = #C1(F7) + (%) 3 = #Co(F") + (;) 3. (436)

Since #Co(F*) + #C1(F*) + #Co(F*) = #B, (F*) and B, (F*) = F3 x F§ x {0}
combining with Equation we have #Cy(F*) = 3°. On the other hand we have
#B_(F)* = 3°. Combining B_(F)* C Hf (F) and Hy (F) = Co(F*) we deduce
that B_(F)* = HJ (F).

Case 5 (0 € H;'(F)) By Lemma and Proposition we have Sy(F,0) = 0
and i\/§3563F(9) = xo(Do(F)) + xo(D1(F))es. Then we have

0 = xo(Do(F)) + xo(D1(F))es — (%) 3ttt — (g) 35ekt?, (437)
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0="> xo(Cj(F))é}. (438)

By Corollary{.2.1i € {0,2}. If i = 0 then by Equation 437 we have xo(Do(F)) +
(Xo(D1(F))— (%) 3°)es—(2) 3°€3 = 0. Then by previous arguments we have xo(Do(F)) =
3% and xp(D1(F)) = 3°*1 — 3%. On the other hand if 0 # 0, the Equations and
imply that xo(C;(F)) = —3° for all j € Fs. In particular since 0 € H we
have xo(Do(F)) = #Do(F) = 3° and xo(D:1(F)) = #D,(F) = 3°T' — 3°. Then
Equation implies that #C;(F) = 3% — 3% for all j € Fs.

Ifi = 2 then by Equationwe have xo(Do(F))—(3) 3°+(xo(D1(F))—(3) 3%)es =

0. Then by similar arguments we have xo(Do(F')) = 3° and x¢(D1(F')) = —3°. Then
by Equations and we have xo(C;(F)) = 0 for all j € Fs.

Case 6 (0 € H; (F')) By Lemma and Proposition we have Sy (F,0) = 0
and —i\/§3se§(9) = Z?:o Xo(C;)e}. Then we have

0 = xo(Ci(F))eb + (xo(Cisr (F)) + (3) 3%)e5™ 439)
+(x0(Ciza(F)) + (%) 3%)eit?.

0= > xo(D;(F))eh. (440)

j€{0,1}

Since 1 and €3 are linearly independent over F3, Equation implies that xo(Do(F)) =
Xo(D1(F')) = 0 for all i € Fs. By previous arguments we have

WG = (a(Coa(F) + (3)3) = oGP + () 3) @)

Combining Equations (418),(#40), and (441) we have xo(C;(F)) = 0, xo(Ci11(F)) =
—3% and x¢(Ci12(F)) = 3° for i € F.

Let So := {xo}, S1:={xy: 0#y € H (F)}, Sy :={xy :y € Hf (F)}, and
S; = {xy 1y € H_3(F)} for 3 <Vj < 5. Then by Theorem (4.2.1| (G, {A;}7_)

forms a translation scheme. O
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Hence for any positive integer s we have translation scheme of class 5 with following

first eigenmatrix;

1 325935 325 _3s 925 _3s gs_ 1 3gs+l _ 3s
1 =3 —3° -3 3F—-1 3t -3
1 0 0 0 3°—1 -3°
1 0 —3° 3° -1 0
1 3° 0 —3° -1 0

_1 —3° 3° 0 -1 0 |

Moreover fusing the first three non-trivial classes of the those translation schemes we

obtain fusion schemes of class 3.

[ 32541 _ gs+1 gs _ | gs+l _ 3s]|
1 _gs+l 35 _ 1 35+l _3s
1 0 3 =1 —3°

1 0 -1 0 |

Theorem 4.2.4 Let F' : Gy — F3 be a non-weakly regular bent function satisfying
Condition[3] Let Ay = {0}, A, = C}(F), and Ay = Co(F), A;j = D;_3(F) for3 <
Vi <5.LetT; := (Go, E;), 0 < i <5 be Cayley graphs on Gy with connection sets

{A;}5_,, then (G2, {T;}3_,) is an association scheme of class 5.

Proof. By previous arguments we have C;(F') = —C;(F) and D;(F) = —D;(F)
forall i € F3; xo(C;(F)) and xo(D;(F)) are integers for all ¢ € F3 and 6 € F3 x
F35 x IFs.

Assume that F' satisfies Condition [3| Then Equation implies that B, (F) =

[F3 x {0} x 3. Then by character theory of finite abelian groups we have

3t ifge B (F)i,
Xo(B+(F)) = o (442)
0 otherwise.

By Remarks [4.1.1] 4.1.2] and Equation @11)) we have B_(F*) = F3 x F§ x {0} and
B, (F*) = F3 x F§ x F§*. Ttis clear that B (F)* = {0} x F§ x {0} and for any
element (0,y,0) € B, (F)* we have F(0,y,0) = f©(0) = 0 implying B, (F)* C
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Hy(F). Moreover, since B, (F)* C B_(F*) we have B, (F)* C H, (F). Now we
will prove that B, (F)* = Hy (F).

By previous arguments we have F**(x) = F(z). Put§ = 0. Since F is of type (+)
then by Lemma [2.2.4] we have

iV33%el O = iV/33% = Do (F*) + #Dy(F*)es + #Do(F*)é2. (443)
By previous arguments we have
1 2
#DUF) = #Du(F) — ()3 = #0008 - () 5 (444
Since #Do(F*) + #Dy (F*) + #Do(F*) = #B_(F*) and B_(F*) = F5 x F§ x {0}
combining with Equation (444) we have #Dy(F*) = 3°. On the other hand we have
#B, (F)* = 3%. Combining B, (F)* C Hy (F) and Hy (F) = Dy(F*) we deduce
that B, (F)* = H, (F).

Case 7 (9 € H; (F)) By Lemma and Proposition we have Sy(F,0) = 0
and i\/§356§(9) = Z?:o Xo(D;)e}. Then we have

0 = xo(Di(F))ey + (XG(Di—i-l(F)) —(3) 3%)est! (445)
—(xo(Diy2(F)) + (%) 3%)es.

0= > xo(Ci(F))e. (446)

7€{0,2}
By similar arguments above, Equation (#46)) implies that xo(Co(F)) = xo(C2(F)) =
0 foralli € Fs.

By previous arguments we have

WD) = (D (F) - (3 ) 3) = CaDisa(F) = (3) ).

Combining Equations (418),(#46) and (447) we have xo(D;(F)) = 0, xo(Di1(F)) =
3% and x¢(D;12(F)) = —3° fori € Fs.

Case 8 (¢ € H; (F')) By Lemma and Proposition we have Sy (F,0) =0
and —i\/§336§(9) = xo(Co(F)) + xo(Co(F))e3. Then we have

0 = xo(Co(F)) + xo(Ca(F))es + (%) 3ttt 4 (%) 35ekt?, (448)
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0= xo(D;(F))é}. (449)

By Corollary{-2.1i € {0,1}. If i = 0 then by Equation#48 we have x4(Co(F)) +
(Xo(Ca(F))+(2) 3°)e3+(3) 3%z = 0. Then by previous arguments we have x4(Cy(F))
3% and xy(Co(F)) = 3°T1 — 35, On the other hand if 6 # 0, Equations and
imply that xo(D;(F)) = —3° for all j € Fs. In particular since 0 € H; (F)
we have xo(Co(F)) = #Co(F) = 3% and xo(Co(F)) = #Co(F) = 35T — 35. Then
Equation implies that #D;(F) = 3% — 3° for all j € Fs.

Ifi = 1 then by Equationwe have xo(Co(F))+(2) 3°+(xo(Co(F)+ (3) 3°)es =
3% and x9(Co(F)) = —3°. Then
0 forall j € Fs.

0. Then by similar arguments we have xy(Co(F'))

by Equations and [{#49) we have xy(D;(F))

Let Sp := {xo0}, Si == {xy:y € HF(F)} for 1 <Vi <3, and S, := {xy :
04y e Hy(F)}, Ss:={xy,:y € Hy (F)}. Then by Theorem4.2.1| (G2, {4;}2_,)

forms a translation scheme. [l

Hence for any positive integer s we have translation scheme of class 5 with following

first eigenmatrix;

1 35_1 35+l _3s 325 _3s 325 _3s 92 _ 3s
1 -1 0 0 3° —3°

1 -1 0 —3° 0 3°

1 -1 0 3° -3° 0

1 3—1 3tt—-3 3¢ —3° —3°

_1 3 =1 —3° 0 0 0 |

Moreover fusing the last three non-trivial classes of the those translation schemes we

obtain fusion schemes of class 3.

'1 35 1 s+l _gs g2s+l _ 35+1'
1 -1 0 0

1 35_1 35+l _3s _gs+1
131 -3 0 |
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Remark 4.2.1 We observe that the first eigenmatrices of the translation schemes as-

sociated with Theorems [{.2.3] and [4.2.4) can be obtained from each other by multi-

plying one with a permutation matrix. Hence corresponding association schemes are

isometric. Therefore we should think as Theoremsd.2.3\and|d.2.4) are equivalent.

4.3 Numerical Examples

In the examples below, we evaluate the first eigenmatrices of the four different trans-

lation schemes by using the Magma Computational Algebra System.

Example 8 Let s = 1, f : F3 — Fs, f(x1, 72, 23, 74) = 2303 + 23 + 13 + 2374 be
a non-weakly regular bent function in the GMMF class satisfying Condition[l| Then

the first eigenmatrix of the corresponding translation scheme is

18 18 18 2 12 12

e e e e e e
|
w
|
w
(@]
|
—_
o
(@]

By fusing the first 3 non-trivial classes in the first eigenmatrix, we obtain the first

eigenmatrix of the fusing scheme of class 4.

54 2 12 12
0O -1 0 O
=27 2 12 12
0 2 -6 3
0 2 3 -6

g VG (U U Uy

Example 9 Let s =2, f : FS — Fa, f(x1, %9, T3, T4, Ts, Tg) = vix222 + 2030576 +
23zt + 2% + v3xiad + x5k + rixvsre + 73 + 1375 + 1476 be a non-weakly regular

bent function in the GMMF class satisfying Condition |l} Then the first eigenmatrix
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of the corresponding translation scheme is

1 216 216 216 8 36 36
1 18 -9 -9 -1 0 0
1 -9 18 -9 -1 O 0
1 -9 -9 18 -1 0 0
1 =27 =27 =27 8 36 36
1 0 0 0 8§ —18 9
1 0 0 0 8 9 —18

By fusing the first 3 non-trivial classes in the first eigenmatrix, we obtain the first

eigenmatrix of the fusing scheme of class 4.

(1 648 8 36 36
1 0 -1 0 0
1 -8l 8 36 36
1 0 8 -18 9
1 0 8 9 18

Example 10 Ler s = 1, [ : F3 — F3, f(x1, 79, 23) = 22222 + 227 + 2273 be a
non-weakly regular bent function in the GMMF class satisfying Condition [2| Then

the first eigenmatrix of the corresponding translation scheme is

6 6 6 2 6
-3 -3 -3 2 6
o 0 0 2 =3
0O -3 3 -1 0
3 0 -3 -1 0
-3 3 0 -1 0

1
1
1
1
1
1

By fusing the first 3 non-trivial classes in the first eigenmatrix, we obtain the first

eigenmatrix of the fusing scheme of class 3.

1 18 2 6]
1 -9 2 6
1 0 2 -3
1 0 -1 0|




Example 11 Ler s = 2, f : F — Fa, f(x1, 22,73, 24, 75) = 2030522 + 2323 +
w%x% + :E% + 124 + T375 be a non-weakly regular bent function in the GMMF class
satisfying Condition 3| Then the first eigenmatrix of the corresponding translation

scheme is

8§ 18 72 T2 72
-1 0 0 9 =9
-1 0 -9 0 9
-1 0 9 -9 0

8§ 18 -9 -9 -9

8 =9 0 0 0

g U (U U GHE U S

By fusing the last 3 non-trivial classes in the first eigenmatrix, we obtain the first

eigenmatrix of the fusing scheme of class 3.

1 8 18 72
1 -1 0 0
1 8 18 —27
18 -9 0
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CHAPTER 5

THREE WEIGHT LINEAR CODES FROM NON-WEAKLY REGULAR
BENT FUNCTIONS

In this chapter, we build the classes of three-weight linear p-ary codes on B, (f) and
B_(f) from non-weakly regular dual-bent functions based on the first conventional
construction. Moreover, we determine the weight distributions of the built codes
when the associated non-weakly regular bent functions belong to a certain subclass
of the GMMF bent functions. We examine that all non-zero codewords of the con-

structed codes are minimal for nearly all cases.

5.1 Preliminaries

5.1.1 Cyclotomic Fields

Let p be an odd prime. A cyclotomic field Q(¢,) is obtained from the field Q by
adjoining ¢,. The ring of integers in Q(¢,,) is defined as Og.,) := Z(¢€,). An integral
basis of Oy, is the set {e; 1<i<p-—1}.

Let p be an odd prime number. The quadratic Gauss sum is defined as

Z<z>€;: VP ifp=1(mod4); 1)
P iy/p if p=3(mod4).

iF3
5.1.2 Linear Codes.

Let p be a prime number and n, k be positive integers. A linear code C of length

n and dimension k over F, is a k-dimensional linear subspace of I, denoted by
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[n, k],. The elements of C are referred to as codewords. A linear code C of length n
and dimension & over F,, with minimum Hamming distance d is denoted by [n, k, d,,.
Note that the minimum Hamming distance d determine the error-correcting capability
of C. It is effortless to see that the minimum Hamming distance of C is the minimal
Hamming weight of its nonzero codewords. The Hamming weight of a vector v =

(vo, ..., an—1) € F}, denoted by wt(v), is the size of its support described as

supp(v) ={0<i<n—1:v; #0}.

Let £, be indicating the number of codewords with Hamming weight a in C of length
n. Then, (1, £y, ..., E,) is the weight distribution of C and the polynomial 1+ Fy+
-+ E,y" is reffered to as the weight enumerator of C. The code C is reffered to as

a t-weight code if the number of nonzero F, in the weight distribution is .

The covering problem of linear codes. Let C be a linear [n, k, d], code over [F,,. We
say that a codeword v covers a codeword u if supp(u) C supp(v). If a nonzero code-
word v of C does not cover any other nonzero codeword of C, then v is referred to as
a minimal codeword of C. A linear code C is said to be minimal if each nonzero code-
word of C is minimal. The covering problem of C is to locate all minimal codewords

of C.

In [2], the authors give a simple criteria to determine whether a given linear code is

minimal.

Lemma 5.1.1 (Ashikhmin-Barg) Let C be a linear code over F,. Then, all nonzero

codewords of C are minimal if

b — 1 Amin

g -~ 7 (52)

p amax

where Qi and ay,., indicate the minimum and maximum weights of nonzero code-

words of C, respectively.
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5.2 Non-Weakly Regular Bent Functions and GMMF Class

Proposition 5.2.1 Let [ : F) — F, be a non-weakly regular bent function and its

dual function f* is also bent. If n even or n odd and p = 1 mod 4, then we have

R W if f1(x) + zy is of type (+);
So(f,y) = . .
0 if f*(z) + z.y is of type (—);

0 if f*(z) + z.y is of type (+).
If n odd and p = 3 mod 4, then we have

—ip"s B if f*(x) + w.y is of type (—);

So(f,y) =
o(f,y) 0 if f*(x) + x.y is of type (+);

"7 ey if fr(x) + w.y is of type (+);

Sl(f7 ):
Y 0 if f*(x) + 2.y is of type (—).

Proof. The proof follows from Lemmas[2.2.4 and 2.2.3]

Proposition 5.2.2 Let f : F) — [, be a bent function such that f(0) =

f(z) = f(—x). Then f*(x) = f*(—z) and f*(0) =0

Proof. Forall o € IFZ, we have

fl=a) = €apte TV =%, T = 5, L T
= tapie, @

=f

0 and

(@)

Hence, we prove f*(z) = f*(—=z). Put f*(0) = iy. If n is odd (resp. even), by
Proposition (resp. [2.2.2), we have N, (f) is an odd integer. Since f(x) =

f(—x), it is possible if and only if iy = 0.

0

Let F' be a non-weakly regular bent function defined by Equation ﬁ 45| and f*) is
weakly regular bent for all = € FJ. Then by Remarks .1.T} {1.1.2] and Equation

(410), we have
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BL(F") F7' x FS x W*(F) if p" = 1 mod 4; 53)
:I: =
F < T2 x WH(F) if p" = 3 mod 4.

Remark 5.2.1 Let f*) = %) and f*)(2) = f&)(—z) for all z € F, = € .
Since F(—x, —y, —z) = f2)(—x)+y.z, then we have F(z,y,2) = F(—x, —y, —2).
Moreover, Equation (#9) enables us to set B..(F) or B_(F) as a vector space of any

dimension k withm + s < k <m + 2s.

In the following two sections, inspiring from the work of Mesnager in [32], we con-
struct three-weight linear codes based on the first conventional construction. Al-
though the regular concept of the building technique employed is a classical one,
but we are going to for the first time making use of non-weakly regular bent functions

to construct linear codes over subspaces of finite fields of odd characteristic.

5.3 Three-Weight Linear Codes on B, (f)

For any a € F), 8 € [}, we define a function

ha”g : FZ — Fp,

r > hap(x) =a¥(z)+ f.o,
where W is a mapping from I} to IF,, such that ¥(0) = 0.

Let f : F} — [, be a non-weakly regular bent function such that f(z) = f(—=),
f(0) = 0, and f* is bent. Then, for any y € F) and v € FF,, we have c;(y,u) =

#oa € B | f0) +ay = u} de(yu) = #{a o € B(f) |
f(a) + a.y = u}. Let B(f) be an F,-vector space with dim(B,(f)) > [5] + 1.
Put dim(B,(f)) = r and take W(x) = f*(z). Then we also define a linear code Cy

over [F,, as

C‘I’ = {Ca,ﬂ = (ha,5(<1)7 ha,5(<2)7 SR >ha,5(<p"—1)) RS Fp? B € Fp"}ﬂ (54)

where (i, ..., (,—1 are the elements of B, (f)* and ¢, 3 denotes a codeword of Cy.

The length of the linear code Cy is p" — 1.
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Remark 5.3.1 Note that there are infinitely many non-weakly regular bent functions
such that f(x) = f(—x), BL(f) is a vector space and dim(B,(f)) > [ 5] + 1 (see,

Remark[5.2.1)).

Proposition 5.3.1 The linear code Cy, of length p" — 1 over F,, defined by is a
k-dimensional subspace of F7, where k = r + 1 and denoted by [p" — 1,7 + 1],,.

Proof. Letf :F,xF} — F2' ' suchthat (a,8) = (ha,s(¢1): has(C2): - - - ha(Gpr—1)),
where (3, ..., (pr—1 are the elements of B (f)*. Then Ker (0) := {(a, 3) € F, xF} |
af*(z) = —fB.x forall z € B, (f)*}. If a« # 0, then f*(z) = —a~(B.z) for all
r € By(f). Since f*(x) is bent and » > [%]| + 1, it is not possible. If a = 0,
then 8.z = 0 for all z € B, (f), which implies that 8 € (B, (f))". Hence, by the

n+1

isomorphism 0 : (F, x Fy)/Ker (6) — Im(6), we have #Cy = 5= = p™* O

Let D be a subset of F}). Any function f : D — F, is said to be balanced over F,
if f takes each and every value of [F,, the equal range of times. If D is a subspace of
F7 and j ¢ D+, then it is well-known that j.x is balanced over F,,. From now on we
keep the above arguments and evaluate the weight of codewords in two cases. For

a3 € Cy+, we have the following.
Case 9 n is even.

e =20

wt(cop) = wt((B.C1, B-Cay -+, B.Gpr—1) forall B € Fy. If B € (B+(f))L, then
wt(cop) =0.If B ¢ (BJr(f))L, then wt(co5) = (p — 1)p"~! by balancedness.

o a#0

wt(cap) = wt((af*(G)+B.Cr,af*(C) + B.Cy -y af* (Gro1) + B.Gpro1)
forall o € F,, B € Fp. Itis clear that wt(ca3) = wt(c1q-18), Where

_1 . . . . . *
a”* is the multiplicative inverse of o € Iy,

Ifa™'3 € B_(f*), by Proposition we have

Zcf e = 3 O — g,

ceB+(f)
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which implies —c;(a™'5,0) = S2_ ¢p(a”15, u)es. As the set {e, : 1 < i <
p— 1} is an integral basis of Og,) and Y} : €, = —1, we have cj(a™'3,0) =
cp(a™ B, u) for all u € F}. Hence f*(C) 4 (.(a'B) is balanced over B.(f).
Since f*(0) = 0, we have wt(cla 15) =(p—1Dp L Ifa'p € B.(f*), by

Proposition|5.2. 1} we havep% dem f D) For fla™1B) =

0, we have
ZCf 1B u)e =p.

Then c;(a~'B,0) — p? + 30" ep(a'p, u)ey = 0. Since the set {e, : 1 <
i < p — 1} is an integral basis of Oqy.,), there exists a unique integer a such
that c;(a™3,0) = a + p? and c;(a~'B,u) = a forall u # 0 € F,. On the
other hand, we have Zﬁ;é ct(a™tB,u) = p'. Therefore, a = p"~! — p2~! and
wt(eraip) = Xty e Bu) = (p =Dt —p2 ).

When f(a~ ') # 0, by similar arguments above, we have

3

wt(cra-1g) = (p = )" = p= ") +p3.
As aresult of Case[9] we conclude even case with the following theorem.

Theorem 5.3.1 Let n be an even integer;, and f : ) — ), be a non-weakly regular
bent function such that f(0) = 0, f(x) = f(—x) and f* is bent. Let B, (f) be an
r-dimensional IF,-vector space with v > 5 + 1. Then the codewords c, g of the linear
code Cy+ defined by equation has zero-weight if « = 0 and 3 € (BJr(f))L Le.,

(o, B) € Ker (8). The non-zero weight codewords are as follows.

wt(ca,p) =
(p—1)p! ifa=0and 8 ¢ (By(f)) ora#0anda '€ B_(f*);
(- D' —piY)  fa#Oada 8 e By(f*) and fla~18) =0
(p—Dp~t—pi Y)Y +p: ifa#0anda='B € Bi(f*)and f(a™1B) #0.

Proposition 5.3.2 Letn = m+2s and denote F ) x F) X F) by ). Let F : F) — F,
be a non-weakly regular bent function defined by Equation such that f*) is
weakly regular bent for each z € F,. Let F satisfies the conditions of Theorem W
With the above notations, the weight distribution of Cp+ is as in Table
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Table 5.1: The weight distribution of Cr+ over B (F') when n is even.

Hamming weight a Multiplicity F,
0 1
(p— 1" P14+ (-1 -

-1 =p: ) | (-1 +p i
(p—D@ " —p> ") +p (p—1)2(p¥ 1" — 3

w[3

Proof. B, (F) being an r-dimensional F,-vector space implies that W*(F) is an

r — m — s dimensional subspace of F;.

(i) wt(cag) = (p—1)p"'ie,a =0and § ¢ (BJF(F))L ora # 0and a™'f €
B_(F*).

Since #(B.(F))" = p"", then #{(0,8) : 8 ¢ (B+(F))"} = p" —p"". By
Equation (53), we have B, (F*) = F}' x F; x W*(F) and so it is an 7- dimen-
sional vector space. Therefore, o~ € B_(F*) implies that 5 € B_(F*). Hence,
#{(a.8) : @« € F;, B € (B_(F*))} = (p— 1)(p" — p"). Therefore, we have
#{(a, B) : (@, B) € Fpy xFywi(cap) = (p—1)p" '} = p" —p" "+ (p—1)(p" —p").
Since Ker () has size p"~", dividing the quantity p” — p"~" + (p — 1)(p™ — p") by
p" ", weobtain B, =p" — 1+ (p—1)(p" —p* ") fora = (p—1)p~ L.

(i) wt(cap) = (p—1)(pt—p2ie,a#0anda"'3 € B, (F*),and F(a™'j3) =
0.

Since B (F*) = Fj* x F} x W*(F), by similar arguments above o3 € B, (F*)
implies that 3 € B, (F™). For any a € F7, the map from B, (F™) to itself de-
fined by z — o !z is one-to-one. Hence, for any o € %, we have #{B: B €
By (F*)|F(a ') =0} = #{B : B € B, (F*)|F(B) = 0}. Remember that F** = F’
and observe that 0 € B, (F). Then by Proposition we have So(F*,0) =
D uer, Cr (0, u)ey =37 cp. (g er = p%. Then cp-(0,0)—p2+37_4 ¢4 (0, u)es
0. Since the set {e; : 1 < i < p— 1} is an integral basis of O@(e,,), there exists a
unique integer k such that c-(0,0) = k + p2 and cp-(0,u) = k forall u # 0 € F,,.
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On the other hand, we have 37_{ ¢z« (0,u) = p’. Therefore, k = p"~' — p3~"
and cp-(0,0) = p"~t — p>~1 + p5. Hence, we have #{(a, 3) : (a,3) € F, x
Fplwt(cap) = (p ="' =p>~ ")} = (p— 1)(p"" = p>~' + p2). Dividing the
quantity (p — 1)(p"' — p>~1 + p2) by p"™", we obtain E, = (p — 1)(p* 17" —

prret4pe)fora=(p—1)(pt —pr ).

(iii) wt(cas) = (p— V(P ' —p2 ) +p2ie,a # 0and a3 € B, (F*), and
F(a™'p) #0.

|3

From part (i), we have ¢z« (0,u) = kforallu # 0 € F,and k = p"~! — p2—1.
Therefore, we have E, = (p—1)?(p* '™ —p' 2 V) fora = (p—1)(p" L —p2~1)+

pe. O

Lemma 5.3.1 Let n be odd, and | : ) — T, be a non-weakly regular bent function
such that f* is bent. Put f(a™'3) = ug. Then there exists an integer k depending on
f such that

o p =1 (mod4) and f*(x) + (a='B).x is of type (—) or p = 3 (mod 4) and
f*(x) + (a™1B).x is of type (+):

n—1 k .
b 2+ if u = uo;
n—1 k .
2 2+ if u # ug.

e p=1(mod4)and f*(x) + (a™'B).x is of type (+):

cf(oflﬁ,u) =

1 pn_;% if u = uo;
Cf(a /8? u) = pn—l+k+2(“7“‘0 )pnT—l

5 if u # uyg.

e p=3(mod4)and f*(x) + (a'B).x is of type (—):

Pk Ly
0By =1 T
9 n—1 _ u—ug -5
phT Ak 2(2 22 )p 7 if u = uy.
Proof.
The proof follows from Lemma[2.2.4] O

60



Remark 5.3.2 For all 3 € F?, we have #B.(f) = Y.°_{ ¢;(8,u). On the other
hand, we have # B (f) = p". Hence, by Lemma we have

. D"k

p = 5

which implies that k = 2p"~! — pn~ 1.
Case 10 n is odd.

e =20

We have wt(cop) = wt((8.C,B.Ca,---,B.Gpr1) for all B € Fp. If B €
(B+(f))L, then we have wt(cop) = 0. If f ¢ (B+(f))L, then wt(cop) =
(p — 1)p"~! by balancedness.

e a#0
Ifp=1(mod4) and f*(x) + (o 'B).x is of type (=) or p = 3 (mod 4) and
f*(x) + (a71B).x is of type (+), then by Lemma [5.3.1| and Remark[5.3.2} we

have

3
)

p 4k

wt(cra-15) = Y _cpla™B,u) = (p— =—F—=- p!
1

u

Ifp=1(mod4) and f*(x) + (a1 B).w is of type (+), and f(a~ ') = 0, then
by Lemma5.3.1)and Remark[5.3.2} we have

wt(cya-18) = D 0_ 1cf( 13, u)
1P k2(2)p e
=y 2
n 1
= (p-)E5HE=(p-1)p .

Ifp =1 (mod4) and f*(z) + (a™'B).x is of type (+), and f(a™'B) = uy,
where g is a square in Fy. Then by Lemma and Remark[5.3.2} we have

wt(cm—lg) = Zu;,équCf(a_lB?u)

n—1 1k T 3oy T
— pTl4k | polptTlak—2p T p3p"Tlikidp T
2 2



Ifp =1 (mod4) and f*(z) + (o '8).x is of type (+), and f(a™'B3) = uy,
where g is a non-square in 5. Then by Lemma and Remark we

have
_ —1
wt(CLale) - Zu;&—uo Cf(O[ /87 u)
—1 —1
_ pl4k p73 P Tlek—2p T | p—1p"Tlik42p T
- 2 + 5 2 + T 2

= @—1)n”k+p

= (p—p T +pT
Ifp = 3 (mod 4) and f*(z) + (o '8).x is of type (—), and f(a~'3) = 0, then
by Lemma[5.3.1)and Remark[5.3.2) we have

wt(cra-15) = Yooy cp(a™Bu)
h2(2)p" T

1P
=yl _

= (p-DE5E=(p -1y

If p = 3 (mod 4) and f*(x) + (a™'B).x is of type (=), and f(a™'3) = wuy,
where ug is a square in ;. Then by Lemma and Remark we have

wt(c1a-15) = ZU;A,“O crla™ B, u)
= Ptk p=3p"tht2p"T + Py k=27
2 2 2 2 2
n—1 n—1
= (p-1E5HE —p
n—1

Ifp = 3 (mod 4) and f*(z) + (a™'B).x is of type (—), and f(a™'B) = wuy,
where ug is a non-square in F,. Then by Lemma [5.3.1| and Remark [5.3.2} we

have
. -1
wt(cia-15) = Zu;ﬁ—uo cr(a™ B, u)
n—1 n—1
ik n p—1pt~l4k+2p 2 + p—3p" " l+k—2p 2
- 2 2 2 2 2

1

= @—Uﬂ1+p2

As a result of Case[I0] we conclude the odd case with the following theorem.

Theorem 5.3.2 Let n be an odd integer, and [ : ¥}, — F, be a non-weakly regular
bent function such that f(0) = 0, f(z) = f(—=x) and f* is bent. Let B, (f) be an
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r-dimensional F,-vector space with r > ”TH Then, the codewords c, g of the linear
code Cy~ defined by Equation has zero-weight if « = 0 and [ € (B+(f))L

f
p = 1 (mod 4), then the non-zero weight codewords are as follows.

wit(Ca,p) =
(p—Dp"™" fa=0andB ¢ (BL(f))" ora#0anda B € B_(f*)ora~'B € By(f*)and f(a™'B) = 0;
-1 —|—p% ifa#0and a™'B € BL(f*) and f(a™"'B) = uo where ug is a non-square in F} ;
(p—1D(p"h —pnT_1 ifa#0and a™'B € By (f*) and f(a™' B) = uo where ug is a square in F .

If p = 3 (mod 4), then the non-zero weight codewords are as follows.

wit(ca,p) =
(p—1)p™"  ifa=0adB ¢ (Bs(f)" ora0ada= e By(f*) ora='f € B_(f*)and f(a~'8) = 0;
-1 —|—p% ifa#0and a™'B € B_(f*)and f(a~'B) = uo where uq is a non-square in F} ;
(p—1D)(p"h — ;071771 ifa#0and a™ ' € B_(f*) and f(a™"'B) = uo where uo is a square in F .

Proposition 5.3.3 Letn = m+2s and denote F! X F) X F) by F}. Let F : F) — F,
be a non-weakly regular bent function defined by Equation such that &) is
weakly regular bent for all z € ¥, Let I’ satisfies the conditions of Theorem
With the above notations, the weight distribution of Cr+ are as in Table

Table 5.2: The weight distribution of Cr+ over B (F') when n is odd.

Hamming weight a

Multiplicity F,

0 1

(p—1)p P =14 (p—1)(pF — 2+ p¥iom)
(p—1)p—! —|—p"T_1 @(pzr—l—n _ pr_nTH)
(p—D)pt —pz @(pwfkn I )

Proof.

r — m — s dimensional subspace of F,.

Case 11 p =1 (mod 4)
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(i) wi(cap) = (p—1)p " ie, a=0and 8 ¢ (BJF(F))L ora # 0and a™'f €
B_(F*)ora™'p € By (F*)and f(a™'3) = 0. Since 717E(B+(F))L = p"~", then we
have #{(0,5) : 5 ¢ (B+(F))L} = p" —p"~". By Equation (53)), we have B, (F*) =
7 x T2 x W*(F) and so it is an r- dimensional vector space. Therefore, a”'p e
B_(F*) implies that § € B_(F*). Hence, #{(c,8) : « € F}, § € (B_(F*))} =
(p—1)(p™ — p"). Similarly, '3 € B, (F*) implies that 3 € B, (F*). By similar
arguments as in the proof of Proposition for any o € Ty, we have #{3 : B €
B (F*)|F(a™18) = 0} = #{B : B € B,(F*)|F(8) = 0}. By Proposition[5.2.2)
we have F*(0) = 0. Since F** = F and 0 € B.(F), by Proposition [5.2.1] we
have So(F*,0) = 3 cp cr(0,u)ey = 3 cp. (o) 5 = pi. Then by Equation
, we have 37, cp-(0,u)e; = T D icF (%) €. Then 2 uery (cre(0,u) —
<%> p%l )€, +cr+(0,0) = 0. Using similar arguments as in the proof of Proposition
we get cp-(0,0) = p'~'. Hence, we arrive at #{(c, 5) : (a, ) € F} x
Fowh(cas) = (p— D'} = " — 0" + (p— )" — 17 + 7). Therefore, we
have B, = p" — 1+ (p—1)(p" —p> " +p* ") fora= (p—1)p"".

(i) wt(co5) = (p—1)(p" V) +p T ie,a#0anda™8 € B, (F*), and F(a™'8) =

ug, where ug is a non-square in ¥, If ug is a non-square in Fy, from the equation
1

Zuer(CF*(O, u)— (;—;) pnT_l)e;ijcF*(O, 0) = 0, we obtain cp-(0,up) = p’' ' —p'7 .
Moreover, there exist ’%1 non-square elements in F;. Hence, by previous arguments,
* n r— n-l e R
we have #{(c, B) : (v, B) € FyxFplwt(cas) = (p=1) (7" ") +p"2 = U5~
pnT_l). Therefore, we have E, = @(p%_"_1 — p”—nTH)for a=(p-1)0p 1)+

n—1

pz.

(i) wi(cas) = (p — V(™™ —p"T ie. a # 0and o' € B,(F*), and

F(a™'B) = wg, where ugy is a square in 5. If uo is a square in F}, from the
. P N R .
equation ZueF;(CF*(O»U) - (;) p 2 )& +cr-(0,0) = 0, we obtain cp+(0,ug) =
n— _1)2 n
prt 4 pTl. By similar arguments above, we have E, = %(p”—”—1 + pr_Tl>
n—1

fora=@p-1)p ") -p=.

Case 12 p = 3 (mod 4)

(i) wi(cap) = (p—1)p " ie, a=0and 8 ¢ (BJF(F))L ora # 0and a™1f €

B.(F*) or '8 € B_(F*) and F(a™'8) = 0. Since #(Bs(F))" = p",
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then we have #{(0,8) : f ¢ (BJF(F))L} = p" — p"". By Equation , we
have B_(F*) = Fy x F5 x W*(F) and so it is an r- dimensional vector space.
Therefore, a'3 € B.(F*) implies that 3 € B, (F*). Hence, #{(a,8) : a €
Fx, B € (B+(F*)} = (p— 1)(p" — p"). Similarly, a3 € B_(F*) implies that
B € B_(F*). By similar arguments above, for any o € F*, we have #{p : 5 €
B_(F")|F(a™'8) = 0} = #{B : B € B_(F*)|F(B) = 0}. By Proposition [5.2.2}
we have F*(0) = 0. Since F** = F and 0 € B, (F), by Proposition [5.2.1} we
have S1(F*,0) = 3 cp dr+(0,0)ey = 3" cp (pr 5@ = ip%. Then by Equa-
tion , we have . cp dp-(0,u)e; = P Zjeur; (%) e} and ZueF;(dF*(O, u) —
(%) pnT_l)eg + dp+(0,0) = 0. Using previous arguments, we get dp~(0,0) = p™—1.
Hence, we obtain #{(a, B) : (a, B) € FyxFplwt(cap) = (p—1)p" '} = p"—p" "+
(p—1)(p"—p"+p""). Therefore, we have E, = p"—1+(p—1)(p"—p* "+p* ")

fora=(p—1)pL.

(ii) wt(cap) = (p—1)(p" ) +p"T ie,a#0anda8 € B_(F*), and F(a™'8) =
ug, where ug is a non-square in ¥,. If ug is a non-square in F;, from the equation

U n_1 u r— n—1
2 uery (dp+(0,u) = (5) pz )en+dp-(0,0) =0, we have dp-(0,up) =p" ' —p = .
Moreover, there exist p%l non-square elements in F;. Hence, by previous argu-

ments, we have #{(c, ) : (a,8) € Fj x F}|lwt(cap) = (p — 1)(p"") —|—p"T_1} —

—(p_21)2 (p -1 _ p%). Therefore, we have E, = _(p—21)2 (pQT—”—l — pT*”TH)

(p—D(p ) +p7.

r for a =

(iii) wi(cas) = (p — D) — p"= ie, a # 0and a3 € B_(F*), and

F(a™'B) = wg, where ug is a square in 5. If uo is a square in I}, from the

equation Zuer(dF*(O, u) — <%> pnT_l)eg + dp+(0,0) = 0, we obtain dp+(0,uy) =
n— _1)2 n

prt 4 pTl. By similar arguments above, we have E, = %(}92’"—”—1 + p“%l)

n—1

fora=@p-1)@E ") -p=.

O

Next, we verify Theorem by MAGMA program for the following ternary non-

weakly regular bent function (see,[42]).

Example 12 f : F3s — F3, f(z) = Tr3(2?* + 2°) is non-weakly regular of Type
(+).
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e f(0)=0, f(z) = f(—=x) and f*(x) = — f(x) is bent;
e B.(f) is a 2-dimenisonal subspace of F3s;

o The set Cy- is a two-weight ternary linear code with parameters 8, 3, 3|3, weight

enumerator 1 + 4y> + 22y and weight distribution (1, 4, 22).

Remark 5.3.3 By Magma computation we observe that for any o # 0, there is no
o~ € B_(f*) suchthat f(a™'3) = ug, where ug is a non-square in F5 . Hence, the
linear code in Example[I2]is two-weight. Therefore, we can say that our construction

gives at most three-weight linear codes.

5.4 Three-Weight Linear Codes on B_(f)

Let f : F} — [, be a non-weakly regular bent function such that f(z) = f(—=z),
f(0) = 0, and f* is bent. Let B_(f) be an F,-vector space with dim(B_(f)) >
| 5] + 1. Put dim(B_(f)) = r. Then we also define a linear code Cy- over IF, as:

Cf* = {CQ,B = (af*(CI) + 5(1704][*@2) + /8~C27 .- -aaf*(Cprl) + 6-<prfl)) Lo E ]pré) S Fpn},
(55)

where (i, ..., (,r_ are the elements of B_(f)* and ¢, s denotes a codeword of Cy-.

The length of the linear code Cy- is p" — 1.

Proposition 5.4.1 The linear code C¢+ of length p" — 1 over IF,, defined by is a
k-dimensional subspace of ¥, where k = r + 1 and denoted by [p" — 1,7 + 1],,.

Proof.  Similar to proof of Proposition[5.3.1] O

From now on we keep the above arguments and evaluate the weight of codewords in

two cases. For ¢, 3 € Cy+, we have the following.
Case 13 n is even.

e =0

wi(co) = wt((B.C1, B-Cas -, B-Gyr1) forall B € FL If B € (B_(f))", then
wt(cop) =0.If B ¢ (B_(f))l, then wt(cog) = (p — 1)p"~* by balancedness.
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e a#£0
wt(ca,p) = wt((f*(C1) + B.C, f*(C2) + BCoy oo, [¥(Gro1) + B.Gpr—1) forall

B € F,, where a~ ! is the multiplicative inverse of o € 5. Then we have

wt(ca,p) = wWt(c10-15).

If o™ € B(f*), by Proposition we have

p—1
Yo dia B = Y Ol =,
u=0 ¢eB-(f)

which implies that —d(a™'3,0) = SP71 dp(a™'B,u)e. As the set {€, :
1 <i < p— 1} is an inetgral basis of Og(,) and Zf;ll e, = —1, we have

dg(a™'3,0) = ds(a' B, u) for all u € F}. Hence, f*(¢) + ¢.(a™'3) is bal-
anced over B_(f). Since f*(0) = 0, we have wt(cy o-15) = (p — 1)p" "

If o™ € B_(f*), by Proposition we have

2 _fla™1B) _ FH(O)+¢. (a1
_pzep( ) — Z el (©)+< ( ).
¢eB_(f)

For f(a™'B) = 0, we have

-1

3

n
2

cr(a™' B u)ey = —p2.

IS
Il
o

Then dy(a™'B,0) + p% + 30"  ds(a™B,u)e = 0. Since the set {€, : 1 <
i < p— 1} is an inetgral basis of Og.,), there exist an unique integer a such
that d;(a='83,0) = a — p> and dy(a™B,u) = a for all u # 0 € F,. On the
other hand, we have Z‘Z;é di(a™'B,u) = p". Therefore a = p'~* + p>~*, and
wt(cra-15) = by dy(a™'Bu) = (p— (" +p571).

If f(a™'B) # 0, by similar arguments above, we have

n

wt(cra-1p) = (p = 1) +p2 ") - p2.
As aresult of Case (13| we conclude even case with the following theorem.

Theorem 5.4.1 Let n be an even integer, [ : ¥ — I, be a non-weakly regular bent
function such that f(0) = 0, f(z) = f(—=z) and f* is bent. Let B_(f) be an r-

dimensional ¥ -vector space with r > % + 1. Then the codewords c, g of the linear
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code Cy~ defined by Equation has zero-weight if o = 0 and 8 € (B_(f)U{0}) -

The non-zero weight codewords are as follows.

wt(ca,p) =
(p—1)p—t ifa=0and S ¢ (B_(f))l ora#0and a3 € By (f*);
-V +pF)  ifas0anda B e B_(f*)and fla~B) = 0;
(=D " +p2 ") —p? fa#0anda 'S e B_(f*)and f(a™'8) #0.

Proposition 5.4.2 Let n = m + 2s and denote F' X ¥ X F) by F. Let F' : F) —
F, be a non-weakly regular bent function defined by Equation such that %) is
weakly regular bent for all z € F;. Let F satisfies the conditions of Theorem W

With the above notations, the weight distribution of Cp+ are as in Table|5.3

Table 5.3: The weight distribution of Cp+ over B_(F') when n is even.

Hamming weight a Multiplicity E,
0 1
(p—1p"" pr—1+p-10E —p*™")
(p=DE " +p2) |- T Y
(p—1)(p* +p%—1) —p3 (p— 1)2(p¥ L +p7"—%—1)
Proof. Similar to the proof of Proposition ]

Next, we verify Theorem [5.4.1 by MAGMA program for the following ternary non-

weakly regular bent function (see,[25]).

Example 13 f : Fyo — F3, ) is a primitive element of Fss and f(x) = Tre(Az* +
A1292) is non-weakly regular bent of Type (—).

e f(0)=0, f(z) = f(—x) and f*(x) is bent;

o B_(f) is an 4-dimensional subspace of Fss;
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o The set Cy- is a three weight ternary linear code with parameters [80, 5, 45|,
weight enumerator 1+16y*+224y5*+2y"™ and weight distribution (1, 16,224, 2),
which is verified by MAGMA.

Lemma 5.4.1 Let n be odd, and f : ¥ — T, be a non-weakly regular bent function
such that its dual function f* is also bent. Put f(a~'3) = ug. Then there exists an

integer k depending on f such that

o p =1 (mod4) and f*(x) + (a™'f).x is of type (+) or p = 3 (mod 4) and
fr(@) + (a7'B).x is of type (—):

ik .

o sy =3 2, 1T

n—lik .
P if u # uyg.

o p=1(mod4)and f*(x) + (o 'B).x is of type (—):

pnfl_k . o .
_ 2 lfu = Uo;
dy(a B u) = pnfl_k_g(w)pngl

5 if u # uyg.

o p=3(mod4)and f*(x)+ (a™1B).x is of type (+):

1 pn_zl_k if u = uo;
df<04 /87 u) = prz—l_k+2<“_“0 )panl
p

5 if u # uyg.

Proof.

The proof follows from [38, Lemma 3.4]. O

Remark 5.4.1 Clearly for all € F?, we have #B_(f) = Z;é d¢(B,u). On the
other hand, we have #B_(f) = p". Hence, by Lemma we have

pr:p”—pk
2 Y

which implies that k = p"~! — 2p"L.

Case 14 n is odd
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e =20

We have wt(cop) = wt((8.C1,B8.Ca,...,B.Gr1) forall B € Fp. If B €
(B_(f))", then wt(cop) = 0. If B ¢ (B_(f))", then wt(co ) = (p — 1)~

by balancedness.

e a#0

Ifp=1(mod4)and a '3 € B, (f*) orp =3 (mod 4) and o= '3 € B_(f*),
then by Lemma and Remark we have

nfl_k

te1am1s) de Bou) = (p— DF—— = (p— 1y’

Ifp=1(mod4)and f*(z) + (a™'8).x is of type (=), and f(a~'3) = 0, then
by Lemma and Remark[5.4.1) we have

wi(eramg) = Yoy dp(a” B u)
ol ozt

_ Zplp -
= (p-DE5E=(p -1y

Ifp =1 (mod4) and f*(z) + (o 'B).z is of type (—), and f(a™'B) = uy,
where g is a square in 5. Then by Lemma and Remark[5.4.1} we have

—1

Wt(Cra-18) = D ysy, di(a™!B,u)

—1
_ p"’l—k'_,_p—lp"’l—krﬁpnT 4 p=3p"Tlok=2p 7
2 2 2 2

_ (p_l)pn1k+p —1
—1
= (p-1p~t+p7

Ifp =1 (mod4) and f*(z) + (o 'B).x is of type (—), and f(a™'B) = uy,
where g is a non-square in F%. Then by Lemma and Remark we

have

wh(Cra-18) = Vs Al B, u)

p" -k p—3 Pkt 2T | pelpnil k2"
. ot
2 2 2 2

= (p— 1) - —pT




Ifp = 3 (mod 4) and f*(x) + (a™'B).x is of type (+), and f(a™'3) = 0, then
by Lemma and Remark we have

wt(cra-1g) = 2y ds(a”B,u)

p—1 P kA2(%)p 2
u=1 2

= (- =(p-1p

If p = 3 (mod 4) and f*(x) + (a'8).x is of type (+), and f(a™'B3) = uy,
where g is a square in Fy. Then by Lemma and Remark we have

wt(clvaflﬁ) = Zu;é—uo df(ailﬁv U)

—1
_ Ptk p=3p"lok-2p"2 4+ p=lptTiok42p 2
2 2 2

2 2
"’L—lfk n—1

= (- DI
= (p—1p 4T

If p = 3 (mod 4) and [*(z) + (o '8).x is of type (+), and f(a™'B3) = uy,
where g is a non-square in ¥, Then by Lemma and Remark[5.4.1} we

have

Wt(Cra18) = Doupu, df(a™ B, 1)

n—1__ _ n—1_ 1. n-1 _ n—1__ n-1
_ P k+p 1p k—2p—2 +p3p k+2p 2
- 2 2 2 2
—1_ —1
= (p—l)pn2 k —pn2

r—1 n—l

= (p—p " —p=.
As aresult of Case[I4] we conclude the odd case with the following theorem.

Theorem 5.4.2 Let n be an odd integer, and [ : ¥} — ), be a non-weakly regular
bent function such that f(0) = 0, f(x) = f(—x) and f* is bent. Assume that
B_(f) is an r-dimensional F,-vector space with r > ™tL. Then the codewords c, s
of the linear code Cy+ defined by equation (]3_3[) has zero-weight, if « = 0 and B €
(B, (f )) * If p =1 (mod 4), then the non-zero weight codewords are as follows

wt(ca,p) =
(p— 1)pr71 ifa=0and B ¢ (B_(f))J' ora#0anda™'B8 € By(f*)ora™'p € B_(f*)and f(a~'B) = 0;
-1 —p% ifa#0and a™" B € B_(f*) and f(a™'B) = uo where uq is a non-square in F}, ;

(
(p—1D(p"™h —|—pnT_1 ifa#0and a™'B € By (f*) and f(a™'B) = uo where ug is a square in F.

71



If p = 3 (mod 4), then the non-zero weight codewords are as follows

wi(Ca,p) =
(p—Dp"™" ifa=0andB ¢ (B-(f))" ora#0anda '€ B_(f*)ora~'B € By(f*)and f(a™'B) = 0;
(r—1)
(r—1)

(1) — p% ifa#0and ™' B € BL(f*), and f(a™'B) = uo, where ug is a non-square in F}, ;
(™1 —|—pnT_1 ifa#0and a™'B € By (f*), and f(a™"'B) = wo, where ug is a square in F .
Proposition 5.4.3 Letn = m+2s and denote F! x F) X F by ). Let F : F) — F,
be a non-weakly regular bent function defined by Equation such that &) is
weakly regular bent for all z € F,. Let F satisfies the conditions of Theorem [5.4.2]

With the above notations, the weight distribution of Cp+ are as in Table

Table 5.4: The weight distribution of C+ over B_(F') when n is odd.

Hamming weight a Multiplicity E,
0 1
(p—1)p—t p— 14 (p—1)(p" — P 4 o)
(p—1p ' —pT @(p%*lfn +prE)
(p—Dpt+pT @(pw—l—” —p)
Proof.  Similar to the proof of Proposition [5.3.3] 0

5.5 Minimality of Constructed Linear Codes

In this section, we look into the minimality of linear codes built in Section and

[5.4]from non-weakly regular bent functions.

The construction of linear codes all of whose non-zero codewords are minimal is
of great significance when you consider that minimal linear codes generate secret
sharing schemes with desirable access structures. Below, by Lemma [5.1.1) we show

that all non-zero codewords of the built codes are minimal for nearly all cases.
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We are now going to exhibit that the built linear p-ary code of Theorem [5.3.1] is

minimal for nearly all cases.

Theorem 5.5.1 Let Cy- be the linear [p" — 1,7+ 1,(p — 1)(p"~t — p2~1)], code of
Theorem Then all non-zero codewords of Cy- are minimal for v > 4 + 2.

Proof. Wehave ay, = (p—1)(p" ' —p2 1) and ayayx = (p—1)(p" ' —p2 1) +p2.
Then the inequality

-1 Amin
p <

p amax

can be written as p2*! < (p — 1)(p"' — pz~!) 4 p2. For an odd prime p, this
inequality is satisfied when r > 3 + 2. Hence, the proof is done from Lemma[5.T.1]

O

The following theorem proves that the built linear p-ary code of Theorem [5.3.2] is

minimal for nearly all cases.

Theorem 5.5.2 Let Cy+ be the linear [p" — 1,7+ 1,(p — 1)(p"!) — p%]p code of
Theorem Then every non-zero codewords of C¢+ are minimal for r > ”T+3

Proof. We have that ay,;, = (p—1)(p" 1) —p"7 and aya, = (p—1)(p" 1) +piT.

Then the inequality given by can be witten as 2p"/2 < (p— 1)(p" V) +p"T.

n+3
2

For an odd prime p, this inequality is satisfied when r > . Hence, the proof is

done from Lemma[5. 1.1l

O

The following theorem proves that the built linear p-ary code of Theorem [5.4.1] is

minimal for nearly all cases.

Theorem 5.5.3 Let C;- be the linear [p" — 1,7+ 1, (p—1)(p" L +p2 1) — p2], code
of Theorem Then every non-zero codewords of Cy« are minimal for r > 4 + 2.

Proof. Wehave i, = (p—1)(p" ' 4p2~Y)—p2 and ey = (p—1)(p" ' 4+p271).
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Then the inequality

-1 Amin
p <

p amax

can be written as p2+! < (p — 1)(p"~* + p>~1). For an odd prime p, this inequality
is satisfied when » > % + 2. Hence, the proof is done from Lemma

O

The following theorem proves that the built linear p-ary code of Theorem [5.4.2] is

minimal for nearly all cases.

Theorem 5.5.4 Let C- be the linear [p" — 1,7+ 1,(p — 1)(p""!) — p“ ], code of
Theorem Then every non-zero codewords of Cy+ are minimal for r > "T*‘g

Proof. We have that apmi, = (p—1)(p" 1) —p"7 and amex = (p—1)(p" 1) +p"7 .
Then the inequality given by (52) can be written as 2p™ /2 < (p—1)(p") +p"z .

For an odd prime p, this inequality is satisfied when r > "T” Hence, the proof is
done from Lemma
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CHAPTER 6

CONCLUSION

The main objective of this thesis is to investigate the various properties of non-weakly
regular bent functions and to relate them with certain combinatorial structures. It
should be noted that the main techniques used in thesis are new. Also note that bent
functions over finite fields of odd characteristic have been intensely studied in re-
cent years. However, most of the known bent functions having relations with other
structures are weakly regular. For the first time we show that non-weakly regular
bent functions also have relations with other combinatorial structures such as partial
difference sets, strongly regular graphs, association schemes and few weight linear
codes. In this chapter, we briefly discuss the main results of the thesis emphasizing

the profiles of the methods to build them.

It is known that weakly regular bent functions appear in pairs i.e. their dual functions
are also weakly regular. On the other hand, the dual of a non-weakly regular bent
function even may not be a bent function. To solve the open problem proposed by
Cesmelioglu, Meidl and Pott, we partition the finite fields into two special subsets
with respect to the sign of the Walsh transform of non-weakly regular bent functions.
We use the value distributions of bent functions on these subsets to prove that if
the dual function f* of a non-weakly regular bent function f is bent then we have
f(z) = f**(—x) which holds also for weakly regular bent functions. Moreover, we
also would like to mention that our contribution [38], in which we also generalize our

solution to plateaued functions.

One of the tools to construct partial difference sets are bent functions. The general
idea is to use pre-image sets of bent functions. However, it doesnt work for non-

weakly regular bent functions. Fortunately, the two special subsets which are obtained
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by the partition of the finite fields with respect to the sign of the Walsh transform of
non-weakly regular bent functions give rise to obtain partial difference sets in certain
cases. At this point, we also would like to express that our contribution [37], in which
we observe the relation between cyclotomic cosets and these special subsets, will give

a different perspective to the researchers in this area.

The concept of association schemes is a very vast theme that has connections with
numerous extraordinary areas of algebraic combinatorics, for example, coding the-
ory, design theory, algebraic graph theory, finite group theory, and finite geometry.
From graph theoretical point of view, association schemes can be seen as the general-
ization of strongly regular graphs. One of the tools to construct association schemes
are bent functions. Similar to the partial difference sets and hence to the strongly
regular graphs, most of the known methods in literature use pre-image sets of weakly
regular bent functions. We generalize this approach by using pre-image sets of non-
weakly regular ternary bent functions in a subclass of the GMMF class with respect
to the associated special subsets. We leave reader to generalize this result to arbitrary

characteristic as an open problem.

There are several approaches to build linear codes from bent functions over finite
fields. The two of the known approches are kept apart from others in the literature
which are called first and second conventional construction methods. Until now, the
only bent functions which are used to build linear codes are weakly regular bent func-
tions. In the present thesis, it is the first time that non-weakly regular bent functions
over finite fields are used to build linear codes. It should be stated that we used a
generic construction method, but the restricted domains B, (f) and B_(f) that we
used are new. More precisely, we obtained the class of three-weight p-ary linear
codes from non-weakly regular dual-bent functions and determined their weight dis-
tribution when corresponding non-weakly regular bent functions belong to a certain
subclass of GMMEF bent functions. We subsequently found that the developed codes
are minimal for nearly all cases. The built codes are inequivalent to the recognised

ones in the literature as a ways as we know.
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