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ABSTRACT

SYNTHESIS OF NEW PYRROLE DERIVATIVES FROM N-
PROPARGYLIC B-ENAMINONES

Kanova, Nilay
Master of Science, Chemistry
Supervisor : Prof. Dr. Metin Zora

July 2020, 187 pages

Heterocyclic compounds are a momentous area of synthetic organic chemistry
because of their existence in bioactive molecules. Pyrroles, which are one of the most
important classes of heterocyclic compounds, have great importance in
pharmaceutical chemistry due to their biological activities. Having these
characteristics makes them drawn attention of most chemists to develop new
methodologies for the synthesis of pyrroles. Recently, the cyclization of N-
propargylic p-enaminones has been used for the synthesis of heterocyclic

compounds, especially pyrroles.

In this study, we have investigated the synthesis of new 2-acetylpyrrole derivatives
which may have potential biological activities. VVarious pyrrole derivatives have been
synthesized with two unprecedented way which are synthesis method from 1,4-
oxazepines and one-pot two-step synthesis method from N-propargylic p-

enaminones.

Firstly, a,B-alkynic ketone derivatives have been synthesized via Sonogashira
coupling reaction between benzoyl chlorides and terminal alkynes. After

synthesizing a,B-alkynic ketone derivatives, N-propargylic -enaminone derivatives



have been synthesized by the conjugate addition between propargylamine and the

corresponding a,B-alkynic ketones.

Secondly, the cyclization of N-propargylic f-enaminones have been carried out for
the synthesis of 2-methylene-2,3-dihydro-1,4-oxazepines. A number of 2-
methylene-2,3-dihydro-1,4-oxazepine derivatives have been synthesized in the

presence of ZnClo.

Lastly, we have investigated the synthesis of 2-acetylpyrroles by using 1,4-
oxazepines and N-propargylic B-enaminones as starting materials. We have achieved
that the synthesis of the mentioned pyrroles via two original synthesis procedures. In

the light of these two methods, 19 novel pyrrole derivatives have been synthesized.

Keywords: Heterocyclic compounds, N-propargylic -enaminones, pyrroles, 1,4-

oxazepines.
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YENI PIROL TUREVLERININ N-PROPARJILIK B-ENAMINONLARDAN
SENTEZI

Kanova, Nilay
Yiiksek Lisans, Kimya
Tez Yoneticisi: Prof. Dr. Metin Zora

Temmuz 2020, 187 sayfa

Heterohalkali bilesikler biyoaktif molekiilelerin yapisinda bulunmalar1 nedeniyle
sentetik kimyanin 6nemli alanlarindan biridir. Heterohalkali bilesiklerin ¢ok 6nemli
siniflarindan biri olan pirollerin ilag kimyasindaki 6nemi onlarin biyolojik
aktifliklerinden dolay1 oldukca biiyliktiir. Bu karakteristik ozelliginden dolay1
piroller birgok kimyacinin ilgisini sentezleri i¢in yeni yontemler gelistimek i¢in
cekmislerdir. Son zamanlarda, N-proparjilik p-enaminonlarin halkalagsmasi

heterohalkali bilesiklerin, 6zellikle pirollerin sentezleri i¢in kullanilmistir.

Bu ¢alismada, biyolojik aktiviteye sahip olabilecek yeni 2-asetil pirol tiirevlerinin
sentezlerini arastirilmistir. 1,4 oxazepinlerden sentezleme yontemi ve N-proparjilik
B-enaminonlardan tek kap iki agamali sentezleme yOntemi olmak lizere iki yeni

sentez yollar1 kullanilarak ¢esitli pirol tlirevleri sentezlenmistir.

[k olarak, Sonogashira kenetlenme tepkimesi kullanilarak ariloyil kloriirlerden ve
terminal alkinlerden a,B-alkinik keton bilesikleri sentezlenmistir. o,f-alkinik keton
bilesiklerinin sentezinden sonra, proparjilamin ve ilgili a,B-alkinik ketonlar
arasindaki konjuge katilma tepkimesi ile N-proparjilik p-enaminon bilesikleri

sentezlenmistir.

vii



Ikinci asamada, N-proparjilik B-enaminon bilesiklerinin halkalasmas1 sonucunda 2-
metilen-2,3-dihidro-1,4-oksazepinler elde edilmistir. Birgok 2-metilen-2,3-dihidro-

1,4-oksazepin tiirevi ZnCl; varliginda sentezlenmistir.

Son olarak, 2-asetil pirollerin sentezi 1,4-oxazepin ve N-proparjilik B-enaminon
bilesikleri baslangic maddesi olarak kullanilarak arastirilmistir. Bahsi gecen
pirollerin sentezinin iki orjinal sentez prosediirii ile miimkiin oldugu gosterilmistir.

Bu bulgularin 15181nda, 19 yeni pirol tiirevleri sentezlendi.

Anahtar Kelimeler: Heterohalkali bilesikler, N-proparjilik B-enaminonlar, piroller,

1,4-oksazepinler.
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CHAPTER 1

INTRODUCTION

Organic chemistry is the study of the carbon-containing compounds.! Besides carbon
atom, organic molecules can include all atoms in periodic table in their structures.

Organic compounds are found in living organisms such as DNA, lipids and proteins.?

It is also possible to synthesize organic molecules in laboratory conditions. In
addition, organic molecules can be used as starting materials for synthesizing
important compounds which can be used in manufacturing polymers,

pharmaceuticals, food additives, dyes and related industrial important compounds.®

One of the most important branches of organic chemistry is heterocyclic chemistry
which deals with the properties, applications and synthesis of the heterocyclic
compounds. More than half of the organic compounds which are identified until the
end of the second millennium are heterocycles.* That’s why heterocyclic compounds

have great importance.

1.1 Heterocyclic Compounds

Heterocyclic compounds are cyclic compounds which have at least one heteroatom,
such as sulfur, oxygen, nitrogen, in their ring skeletons (Figure 1).> Heterocyclic
compounds can be classified as nitrogen, oxygen and sulfur based heterocycles
according to the type of heteroatom in their ring skeletons; within each of these
classes the compounds are arranged by the ring size such as three-, four-, five-, six-
and seven-membered.® Their physical and chemical properties depend on both the
size of the ring and the heteroatom in the ring.



/ O-N

pyrrole thiophene pyridine  1,2-oxazepine

Figure 1. Some examples of heterocyclic compounds.

Heterocycles play very important role on biological systems. They are the core
components of the many natural products such as nucleic acids, carbohydrates,
amino acids, alkaloids, and vitamins.” Some important heterocycles are present in
amino acids are proline, histidine and tryptophan; some other like vitamin and
coenzymes are riboflavin, biotin, pyridoxine, thiamine, folic acid, vitamin B12 and

vitamin E (Figure 2).8

0] o) HN O]
N ) ~
(NOH HO)J\/\/ "’@NH
HN NH, S
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o
OH
OH
NH; OH
=
” N~ “CHj
Tryptophan Pyridoxine

Figure 2. Some examples of amino acids, vitamins and coenzymes.

Heterocyclic compounds are very important for medicinal chemistry, especially for
drug design. They have a broad range of biological activities such as antifungal,

analgesic and anti-inflammatory, antibacterial, neurological, antiallergic, anticancer



and cardiovascular properties.® For example, coumarin containing compounds have
anticancer properties.!® New derivatives of coumarin containing compounds have
been synthesized lately (Figure 3).1! These compounds have anticancer activity

against two human tumor cell lines.
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Figure 3. Some examples of coumarin containing anticancer compounds.

In addition, heterocyclic compounds are found in many natural and synthetic drugs.
Theobromine, theophylline, procaine, atropine, emetine, reserpine and morphine are
heterocyclic compounds and they are also some examples of natural drugs.
Azidothymidine, antipyrine, metronidazole, barbiturates, diazepam and

methotrexate are also heterocycles and they are known as synthetic drugs (Figure 4).*
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Figure 4. Some examples of natural and synthetic drugs.

1.2 Nitrogen Containing Heterocyclic Compounds

Nitrogen containing heterocyclic molecules are very important heterocycles for
natural products, pharmacologically and biologically active molecules.? Due to
these properties, this topic always caught attention of organic chemists in synthesis,
materials science and medicinal chemistry. Some examples for nitrogen-based
heterocycles are pyridines, piperidines, pyrroles, azepines, pyrrolines and

oxazepines (Figure 5).

B )

pyridine piperidine pyrrole

=0 O
\
N H —
H
azepine 3-pyrroline 1,2-oxazepine

Figure 5. Some examples of nitrogen containing heterocyclic compounds.



Pyridines are a class of six-membered nitrogen containing aromatic compounds.
They are found in many drugs because of having biological importance (Figure 6).1
They can be used as anticancer, antidiabetic, antioxidant, antiviral and antimicrobial

agents.®®

antimicrobial activity

Me NH, |\
Db 7 N
Me” NZ S NHNH, N.\H
S)\NHZ

anticancer activity

X
(@) (@)
N/
Me;[NH HN;[Me
O CI) CI) (@]
Me Me

antibacterial activity

Figure 6. Pyridine containing molecules found in various drugs.

Oxazepines are another class of nitrogen-based heterocycles. 1,4-oxazepines,
especially, are important compounds in terms of having biological activities. They
are found in mostly antidepressant, antiviral, hypnotic and anticancer drugs.'* Some
of the examples for 1,4-oxazepine containing drugs are Loxapine and Amoxapine
(Figure 7).1°



Loxapine Amoxapine

Figure 7. 1,4-Oxazepine containing drugs.

Pyrrolines and pyrroles are also important nitrogen containing heterocycles. They
have great importance due to their biological applications. 1-Pyrrolines are found in
many natural products such as Gelsenicine, Broussonetine U etc (Figure 8).%° They
are also used as synthetic building blocks for catalysts, drugs and alkaloids.!’ In
addition, pyrroles have many important biological properties. In other respects, they

have significant role in material science and synthetic organic chemistry.*®

Broussonetine U

Figure 8. An example of 1-pyrroline containing natural product.

Consequently, heterocyclic molecules which are containing nitrogen are important
class of organic chemistry. Pyrroles, which are one of the nitrogen-based

heterocycles, are the main area of focus in synthetic chemistry.



1.3 Pyrroles

Pyrroles are one of the most important classes of heterocyclic compounds. They are
five-membered heterocyclic compounds, and the core general formulas are
CsHaNH.®

Pyrrole belongs to the group of aromatic heterocyclic compounds. Also, pyrrole is a
basic compound, but its basicity is less than that of amine because of the
delocalization of electrons of nitrogen atom in the aromatic ring.?! Pyrrole is best
described as the weak acid by generating potassium and sodium salts (Figure 10).%2
It is a colorless volatile liquid and it is unstable upon exposure to air. When it reacts

with air, its color turns to darker.

N KR )
[@ Q@+ H,O
K

Scheme 1. Acidic property of pyrrole.

Pyrrole is first detected by F.F. Runge in 1834 as a component of coal.? Later, it is
discovered in bone for the first time, in 1857.2* Pyrroles are found in many natural
products and cofactors. They are constituents of vitamin B12, heme, chlorophyll,
bacteriochlorins and biliverdin. However, pyrroles are not naturally occurred

compounds.?®

Pyrrole unit contained molecules have various kind of activities such as being
biologically active compounds.?® Pyrroles have a great importance for the synthesis
of pharmaceutical and natural compounds such as medicines, agrochemicals, dyes,
photographic chemicals and perfumes.*® They are found in important pharmaceutical

products like aloracetam for treatment of Alzheimer’ disease and tolmetin which is



a rheumatoid arthritis pain drugs (Figure 11). In addition to these, they show

anticancer, antibacterial, anti-fungal, anti-viral and antioxidant activities.?’

/Q\ O
/ OH
N
Oﬁ/ NH o |
Aloracetam Tolmetin

Figure 9. Some examples of pyrrole containing drugs.

Furthermore, pyrroles are used as a corrosion inhibitor, preservative, and catalyst for
polymerization process.?’ They can be functionalized in luminescence chemistry,
metallurgical operation and spectrochemical analysis.*® Because of widely usage

range of pyrrole, it is an important area for chemists to work.

Several methods have been improved for the synthesis of pyrrole and its derivatives.
Some of them are Hantzsch procedure, 1,3-dipolar cycloaddition reaction, aza-
Wittig reaction, conjugate addition, transition metal-mediated cyclization and Paal-
Knorr reaction.?* Paal-Knorr reaction, which contains the condensation of 1,4
dicarbonyl with ammonia or a primary amine, is accepted as the most important and

simple method for synthesis of pyrroles (Scheme 2).



Scheme 2. Mechanism of Paal Knorr pyrrole synthesis.

1.4 Synthesis of Pyrroles

Several methods were developed for the synthesis of pyrrole derivatives.

First, Zhang research group synthesized N-substituted pyrroles 9 under solvent free
conditions by using Paal-Knorr reaction. Then, they investigated the reaction scope
by using different substituted 1,4-dicarbonyl compounds with different primary

amines (Scheme 3).28



o) Me
SN 3 mol% Mgly (OE), 1N =
+  R-NH, - N-R
R R3 solvent free =
2 70 °C Ry
Rs3
7 8 S

Scheme 3. Synthesis of N-substituted pyrrole derivatives.

Aziz et al. also synthesized N-substituted pyrroles 12 by using 2,5-
dimethoxytetrahydrofuran 10 and primary aromatic amides 11 as the starting
materials in the presence of catalytic amount of iron (I11) chloride and water. This
method is an example to practical and inexpensive synthesis of pyrrole derivatives
(Scheme 4).%°

R
|
MeO-_O FeCl,-7H,0 N
UOMe N R-NH, 3 2 . \ /
H,0, 60 °C, 1-4 h \/—\/
10 1 12

Scheme 4. Synthesis of iron catalyzed N-substituted pyrrole derivatives.

Bunrit et al. developed a new method for the synthesis of B-substituted pyrroles 15
in the presence of transition metal catalysts. They used Pd, Fe and Ru catalysts to get
the pyrroles in high yields (Scheme 5).%°

10



R\N/\/ 5 mol% Ru catalyst N 5 mol% FeCl;.6H,0 N
- _ =\
DCM, r.t., 6h 6h
Rl

'R talyst
Cl\R\u:\ u catalys
Cl PCy3Ph

Scheme 5. Synthesis of iron-catalyzed N-substituted pyrrole derivatives.

Kumar research group carried out the synthesis of 4-alkyl-3-benzoylpyrroles 19 from
tosylmethylisocyanide and aromatic aldehydes with the Wittig approach. The
reaction was performed as one-pot reaction under mild basic conditions with good

yields (Scheme 6).3!

©)K/PPh3 Br 2q. NaOH ©)vaph3 DCM, i-PrCHO
PhsPO
16 17
@
®/,C
N~ o EtOH Q
g TosMIC F
0=8=0 \ N -
: TosMIC NH
19 18

Scheme 6. Synthesis of 4-alkyl-3-benzoylpyrroles.

Huang and coworkers synthesized 1,3,4-trisubstituted pyrroles with the reaction of

aliphatic amines 20 and substituted phenylacetaldehydes 21 under copper-catalyzed

11



and aerobic conditions. The reaction produced trisubstituted pyrroles 22 in good to
high yields (Scheme 7).%2

Cu(OTf), (5 mol%)
RiNH, + 2/©/\cHo -
R DMF, 40 °C, air ]\

2

20 21 22

Scheme 7. Synthesis of 1,3,4-trisubstituted pyrrole derivatives.

A new type of cyclization of acetylenes or alkynes has been achieved to synthesize
2-amino-3-iodoacrylates 25 in the presence of palladium catalyst, LiCl, K.COz and

DMF. In this reaction, pyrrole has been obtained in one step and regioselective
manner (Scheme 8).%

1 3
Rl | R3 Pd(OAc), (5mol%) R R
| + LICLK,COs o/ \
A0 NHR? ]

R4
) DMF, 65 °C N
O R o RZ
23 24 25

Scheme 8. Regioselective synthesis of substituted pyrroles.
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1.5  N-Propargylic p-Enaminones

B-Enaminones are widely used in the synthesis of heterocyclic compounds because
they have high reactivity due to having O=C—C=C-N conjugated structure.3* B-
Enaminones also are important intermediates for synthetic organic chemistry
because of their dual behavior. They show both nucleophilic and electrophilic
character resulting from enamine and enone functional groups, respectively.®®
Intermolecular and intramolecular reactions of B-enaminones by utilizing their

electronic properties have been investigated intensely.*

In particular, N-propargylic [-enaminones 26, are reactive compounds for
intramolecular reactions because they have different functional groups such as
alkyne, alkene, enamine, enone, enaminone and propargylamine (Figure 12).%" Five-
, SiX- and seven-membered heterocyclic molecules can be obtained by the cyclization

of N-propargylic f-enaminones under proper conditions.

R1

fo

R2” “NH
\\\

26

Figure 10. Structure of N-propargylic B-enaminones.
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1.6 Reactions of N-propargylic p-enaminones

There are many studies that show the usage of N-propargylic B-enaminones as
intermediates for the synthesis of 1,2-dihydropyridines, pyrroles, pyrrolidinones,
oxazepines and thiazepines. In literature, their cyclization can be seen frequently.

Martins et al. synthesized dihydropyridines from trifluoromethylated N-propargylic
B-enaminones 27. The cyclization of N-propargylic f-enaminones was achieved by
silver nitrate (10 mol%) in chloroform at 25 °C to obtain 1,2-dihydropyridines 28
(Scheme 9).%8

0 O
F. || AgNO; (10 mol%) _ ac%
2 | N CHCl,, 25°C R2NN
% w
27 28

Scheme 9. Ag-catalyzed cyclization of trifluoromethylated N-propargylic -

enaminones.

Karunakar and co-workers showed that synthesis of fused pyridines 31 is possible
by the reaction of N-propargylic p-enaminones 29 with acetylenecarboxylates 30.
The reaction was achieved under catalyst free conditions in acetonitrile (Scheme
10).%

14



R3 R3
o) o o o
MeCN, 60°C (0]
1 | | 5&—42 ’ o o
R Jﬁ\ J + = " 1 |
2 R X
R ” R2”°N
29 30 31

Scheme 10. Synthesis of fused pyridine ring systems.

Xin et al. reported a new method for the synthesis of pyridines from N-sulfonyl, N-
propargylic f-enaminones. They have indicated that the cyclization proceeds via
one-pot three-step reaction. Substituted pyridine derivatives 33 were obtained from
N-sulfonyl, N-propargylic p-enaminones 32 by aza-Claisen rearrangement,

electrocyclization and elimination, respectively (Scheme 10).%

2
R 1. EtOH, 70°C, 16 h R2
2. Removal of EtOH
- coMe 3 our. 140°C, 4n N COMe
| - [
R’ N~ ~CO,Me R °N” ~CcoO,Me
SO,R3
32 33

Scheme 11. Synthesis of pyridine derivatives.

In another study of Karunakar and co-workers, they reported that 1-pyrrolines 36 can
be synthesized by the cyclization of N-propargylic f-enaminones 34 under gold-
catalyzed condition. First, they investigate the reaction conditions with different
catalysts and solvents and then they explored substrate scope for the synthesis of 1-

pyrroline derivatives (Scheme 12).%°
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o CsF (3 eq.)
OTf AUCIPEt;/AgSbFg o
phﬁ J| ©i (10/15 mol%)
+ t
Ph N TMS ACN, 80°C Ph ~
H Ph™ °N
34 35 36

Scheme 12. Synthesis of 4-methylene-1-pyrroline derivatives.

Zora research group developed a new methodology for the synthesis of 1,4
oxazepines (Scheme 12).* In this study, the aim was to show 7-exo-dig cyclization
of N-propargylic B-enaminones 26 to synthesize corresponding 2-methylene-2,3-
dihydro-1,4 oxazepines 37 in the presence of ZnCl, and dichloromethane or
chloroform. After this study, this research group also showed the synthesis of 1,4-
thiazepines under similar conditions. They showed that when N-propargylic B-
enaminothiones 38 reacted with ZnCly, 2-methylene-2,3-dihydro-1,4-thiazepines 39
can be obtained in good to high yields (Scheme 13).%?
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ZnC'Z R1 o)
fo DCM, 40°C Z'\(
or =N

R?” "NH
\ CHCl3, 61°C R2
X
26 37

Lawesson's reagent
CgHg, 60°C

\J

R2

R'I
R1
s ZnCl, / S\{
NH CHCl,, 61°C i
\ R2
ES
38

Scheme 13. Synthesis of 1,4-oxazepine and 1,4-thiazepine derivatives.

Cacchi et al. showed that N-propargylic p-enaminones could be used for the
synthesis of pyrrole and pyridine derivatives. They developed a new method for the
synthesis of polysubstituted pyrrole derivatives 41 by the cyclization of N-
propargylic B-enaminones 40 in the presence of Cs,COzin DMSO (Scheme 14).%

R 0
R1 R3
fo 032003 / \
R2”NH DMSO, rt R*>N
H
X

X =3

40 41

Scheme 14. Synthesis of polysubstituted pyrroles.
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Saito and Hanzawa showed a new synthetic method for the synthesis of pyrroles 43.
They reported that when N-propargylic B-enaminones 42 were catalyzed with gold(l)
in CH2Clz, they underwent amino-claisen rearrangement to yield pyrroles 43
(Scheme 15).%3

N
X

R2
(0] R2
‘ | [(IPr)Au(MeCN)]BF, o)
Y > ]\ R3
| CH,Cl,, rt R
R °N” "R®
X

42 43

Scheme 15. Synthesis of pyrroles by gold(l) catalyzed amino-claisen

rearrangement.

Synthesis of 2,4-disubstituted pyrrole derivatives 45 was accomplished by Cheng
research group. Base-promoted cyclization of N-propargylic -enaminones 44 in
NMP at 90°C yielded the target molecule 45. However, in one case, they reported
that the formation of 2-acetylpyrrole 46 as minor product with the yield of 7%
(Scheme 16).* Although 2-acetylpyrroles have great potential in terms of

derivatization, pyrrole 46 has obtained as minor product.

O K,COs (1 equiv) R! R!
RJK/’L NMP, air, 90°C, 24h U\Rz . I\ .
=z NTR N g M
87% 7%
1 sample
44 45 46

Scheme 16. Synthesis of 2,4-disubstituted pyrroles.
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In summary, it is clearly seen that three types of pyrroles according to the
arrangement of substituents have been synthesized from N-propargylic pB-
enaminones up to now. In addition to them, there is also fourth pyrrole type that have
not been synthesize as major product in the literature yet. The general scheme of the
synthesis of the different types of pyrroles from same starting compounds which are

different derivatives of N-propargylic B-enaminones is shown below (Scheme

17) .36,43,44

0 R o)
R‘1 R1
Cs,(CO)5 0] [(IPr)Au(MeCN)]BF4
Ay — - I
RN\ pmMso, it R® NH CH,Cly, rt RN
H \ H
N
Type 1 N H Type 2
pyrroles pyrroles
K,CO4
NMP, air
90°C, 24h
R! R!
/ \ /\
QRZ + N R?
H O H
Type 3 Type 4
pyrroles pyrroles

Scheme 17. Synthesis of types of pyrroles from N-propargylic 3-enaminones.
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1.7  Aim of the Study

So far, the importance of heterocyclic compounds and the studies on them have been
shown. It is clearly seen that N-propargylic B-enaminones are very important
compounds for synthetic organic chemistry and they are commonly used as the
starting materials for the synthesis of N-heterocycles. In this regard, our research
group have also used N-propargylic f-enaminones as the starting compounds for the

synthesis of desired pyrrole derivatives.

In our research group, generally five-, six- and seven-membered heterocyclic
compounds are studied. We try to develop new methodologies for the synthesis of
new heterocyclic molecules. Previously, in Zora research group, 2-methylene-2,3-
dihydro-1,4-oxazepine 37 have been synthesized from N-propargylic p-enaminone
26 (Scheme 18).4

1
R ZnCl, R o
fo DCM, 40°C j \f
R2” "NH or =N
\ CHC|3, 61°C R2
NV
AN
26 37

Scheme 18. Synthesis of 2-methylene-2,3-dihydro-1,4-oxaepines 37.

This work had remarkable results. Then, it was decided to repeat same work by using
a polar protic solvent instead of halogenated solvents. After doing the experiment, it
was seen that a type of pyrrole has been obtained as minor product (Scheme 19).

Thus, it was aimed to synthesize this type of pyrrole as major product.
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R1 R2
R'_O
fo ZnC|2 . | + R1 / \
2 polar protic solvent =N N
R NH H
reflux R2
minor
\

26 37 46

Scheme 19. Synthesis of pyrrole 42 as minor product.

For this reason, we try to develop new methodology for the synthesis of desired
pyrrole derivatives. In this study, our aim is to synthesize a new type of 2-

acetylpyrrole derivatives by using two unprecedented ways.

For the first part of this study, synthesis method from 1,4-oxazepines 37 will be
applied to synthesize desired pyrrole. 2-Methylene-2,3-dihydro-1,4-oxazepines will
be synthesized by using N-propargylic f-enaminones 26 according to our previous
studies (Scheme 18).** Then, we will convert 2-methylene-2,3-dihydro-1,4-

oxazepines into pyrrole derivatives (Scheme 20).

Solvent
R2 Temperature

R! o{ R?
ZnCl
| SN
H

37 46

Scheme 20. Synthesis of pyrrole derivatives from 2-methylene-2,3-dihydro-1,4-

oxazepines (37).

For the second part of the study, one-pot two-step synthesis of the same pyrrole
derivatives will be performed. In this method, N-propargylic f-enaminones 26 will
be used as starting materials, and then 1,4-oxazepines 37 will be obtained as the
intermediates in the reaction medium. Finally, the in situ formed 2-methylene-2,3-

21



dihydro-1,4-oxazepines will be converted into desired pyrrole derivatives (Scheme
21).

R! B ]
R'_© R
fo ZnCl, _ \Q:{ ZnCl, _ T
R2” "NH CHCl,, 61°C =N MeOH, 65°C RN
R2 H O
X L _
26 37 46
no isolation

Scheme 21. Synthesis of pyrrole derivatives from N-propargylic f-enaminones
26 via one-pot two-step synthesis method.

In brief, in this thesis, optimization studies and suggested mechanism for the
synthesis of pyrrole derivatives 46 will be discussed in detail.
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CHAPTER 2

RESULTS AND DISCUSSION

2.1  Synthesis of a,B-alkynic ketones

In the first phase of the project, we synthesized a,B-alkynic ketones 49. For their
synthesis, benzoyl chlorides 47 with terminal alkynes 48 coupled by sonogashira
cross coupling reaction. PdCI>(PPhs)2, Cul, EtsN and THF were used as catalyst,

co-catalyst, base and solvent, respectively (Scheme 22).

2 mol% PdCl,(PPhs),
j\ 5 mol% Cul o
+ R———H >
CI™ “Ar Et;N, THF, rt < % Ar
a7 48 49

Scheme 22. Synthesis of a,B-alkynic ketones 49.

The synthesis of 20 derivatives of o,B-alkynic ketones 49 were achieved in 60-98%

yields by employing Sonogashira cross coupling reaction as depicted in Table 1.
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Table 1. Synthesis of a,p-alkynic ketone derivatives 49. 2

2 mol% PdCl,(PPhs),

j\ 5 mol% Cul 0
+ R——H
I~ “Ar EtsN, THF, rt R/Ar
a7 48 49
o}
sull= ’/H‘
(HsC),N
49a (97%) 49b (78%) 49c (87%)
o} o} 0
Z O O Z O O Z O
FsC O H5C H;CO
49d (60%) 49e (88%) 49f (78%)
0
CHs,
499 (93%) 49h (88%) 49i (97%)
0
Z 10 # O
C :
cl
49j (85%) 49k (78%) 491 (77%)
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Table 1. Continued.

2 mol% PdCIz(PPh3)2

i 5 mol% Cul 0
+ R———H >
CI™ “Ar EtsN, THF, rt . % Ar
47 48 49
o)
Z U
® o o
F
49m (90%) 49n (80%) 490 (85%)
o} o) o}
“C “C -
N
O CH, O cl S __ CH
49p (93%) 49q (98%) 49r (77%)
/,/‘\‘\CHS /‘/‘\‘\CH3
49s (74%) 49t (81%)

3solated yields.

!H and 3C NMR spectra were used to identify the structures of the synthesized
compounds. As an example, *H and *C NMR spectra of 1,3-diphenylprop-2-yn-1-
one (49a) are illustrated in Figures 13 and 14, respectively. In the *H NMR spectrum
of compound 49a, ten aromatic hydrogens resonate as multiplet at 7.36-8.24 ppm

(Figure 13). In Figure 14, which shows the *C spectrum of compound 49a, carbonyl
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carbon resonates at 177.9 ppm and two alkynic carbons appear at 86.9 and 93.1 ppm.
The remaining eight carbons of phenyl groups are observed at 120.0-136.8 ppm.

7.8 7
f1 (ppm)

120 115 110 105 100 95 90 85 80 75 70 65 6f.;)( 5.)5 50 45 40 35 30 25 20 15 1.0 05 00 -O.
ppm.

Figure 11. *H NMR spectrum of 1,3-diphenylprop-2-yn-1-one (49a).
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Figure 12. 1*C NMR spectrum of 1,3-diphenylprop-2-yn-1-one (49a).
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2.2 Synthesis of N-propargylic g-enaminones

After synthesizing a,p-alkynic ketones 49, we have prepared N-propargylic -
enaminones 26 via conjugate addition of propargylamine to a,fB-alkynic ketones 49
in refluxing methanol (Scheme 23). It is very important to say that we have isolated
only Z isomers of N-propargylic p-enaminones derivatives. Cacchi and coworkers3®
and Zora research group® have assigned the formation of single Z isomer by NOESY
experiments. NOESY experiments have also demonstrated the presence of
intramolecular hydrogen bonding. Clearly, H-bonding between amine hydrogen and
carbonyl oxygen plays an important role in the formation of Z isomers of N-

propargylic -enaminones.

\J

Ar
gz Ar |
7 MeOH, 65°C

R™ 'NH

49 26 \

H

R

Scheme 23. Synthesis of N-propargylic -enaminones 26.

Twenty derivatives of N-propargylic B-enaminones 26 containing different electron-
withdrawing and electron-donating groups were synthesized in 70-97% by

employing this conjugate addition reaction (Table 2).
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Table 2. Synthesis of N-propargylic f-enaminone derivatives 26. 2

0 HAN" n

/J\Ar /ﬁo
7 MeOH, 65°C R NH

\J

R
49 26 \
H
\ (HC), \ FsC
H
26a (97%) 26b (89%) 26¢ (78%) 26d (93%)
| ° | ° | ° | °
O NH O NH HyC O NH & NH
HsC \ H3CO \ \ g \
H H H H
26e (93%) 26f (92%) 269 (91%) 26h (92%)
>(‘/¥H\ ,/?
26i (93%) 26j (92%) 26k (91%) 261 (89%)
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Table 2. Continued.

Ar
Q N7 fo
/J\Ar . - |
R MeOH, 65°C R”>NH
49 26 \
H
Cl
| O
O NH NH O NH
F \ \ \
W H
26m (92%) 26n (80%) 260 (90%) 26p (87%)
cl CH,4 CHy
| © | ° | ©
o D DA
\ Cl \ Cl \
H Cl H H
26q (86%) 26r (86%) 265 (70%) 26t (71%)

3solated yields.

As an example, H and ¥C NMR spectra of (Z)-1,3-diphenyl-3-(prop-2-yn-1-

ylamino)prop-2-en-1-one (26a) are shown in figures 15 and 16, respectively. In H

NMR spectrum of compound 26a (Figure 15), N-H proton gives a triplet peak at

11.34 ppm. As we discussed earlier, due to hydrogen bonding between amine

hydrogen and carbonyl oxygen, amine hydrogen resonates at lower field. Aromatic

hydrogens give multiplet signals between 7.93-7.36 as expected. Vinylic hydrogen
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appears as a singlet at 5.85 ppm. Acetylenic hydrogen resonates as a triplet at 2.31
ppm. In 3C NMR spectrum of compound 26a (Figure 16), 14 different signals are
seen. One peak belongs to carbonyl carbon which resonates at 189.1 ppm. The
aromatic carbons give signals between 127.2-140.0 ppm. At 165.9 ppm, B-carbon
peak is observed while a-carbon appears at 94.7 ppm. The other signals resonating
at 79.8, 72.5 and 34.2 ppm belongs to two alkynic and methylene protons,
respectively.

—11.34

{
{

3.96
3.95
3.94
3.94
2.32
2.31
2.31

nnnnnnnn

S5SNI

ZL7%
\7.89
.51
a8
45
44
43
42
40
39

" r NH
o \
80 79 78 77 76 75 74 73 ! N
f1 (ppm)
l L

Q Q
o L]
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Q Q Q
.-| N
‘

1.00———
T

r T T T T T T T T T T T T T T T T T T T T T T T 1
120 115 11.0 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1.0 05 00 -0.
f1 (ppm)

Figure 13. *H NMR spectrum of (2)-1,3-diphenyl-3-(prop-2-yn-1-ylamino)prop-2-

en-1-one (26a).
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Figure 14. *C NMR spectrum of (Z)-1,3-diphenyl-3-(prop-2-yn-1-ylamino)prop-
2-en-1-one (26a).

2.3 Synthesis of 1,4-Oxazepines

In this part of the project, 1,4-oxazepine derivatives 37 have been synthesized via
zinc-mediated cyclization of N-propargylic B-enaminones 26. Our group have shown
that synthesis of 2,3-dihydro-1,4-oxazepines is possible by ZnCl, mediated
cyclization of N-propargylic p-enaminones in refluxing chloroform (Scheme 24).%
The reaction time is nearly 1.5 h and yields are good to high. That’s why this method

has been convenient way for the synthesis of our starting materials.

Ar
Ar o
| o) ZnCl, |
R” NH CHCls, 61°C =N
\ R
26 37

Scheme 24. Synthesis of 1,4-oxazepines 37.
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By using this method, synthesis of twenty different derivatives of 2-methylene-2,3-
dihydro-1,4-oxazepines (37) with different electron-withdrawing and electron-

donating groups were achieved in good to high yields (Table 3).

Table 3. Synthesis of 1,4-oxazepines derivatives 37.2

Ar
Ar o
l @] ZnCl, |
} —N

R NH CHCl3, 61°C
\\ R
26\ 37

37a (95%)

37e (70%) 37f (72%) 379 (74%) 37h (82%)
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Table 3. Continued.

Ar
Ar 0o
l (@] ZnC'Z |
R” "NH CHCl3, 61°C =N
" R
26 37

37i (88%) 37j (85%)

37m (74%) 37n (87%) 370 (82%) 37p (64%)

37q (84%) 37r (79%) 37s (80%) 37t (80%)

3solated yields.
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The structures of 2,3-dihydro-1,4-oxazepine derivatives were mainly identified with
analysis of their *H and *C NMR spectra. For example, *H and *3C NMR spectra of
2-methylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (37a) were illustrated in
Figures 17 and 18, respectively. In the *H NMR spectrum (Figure 17), ten aromatic
hydrogens give peaks as multiplets between 7.94-7.37 ppm as expected. The olefinic
hydrogen resonates as singlet at 6.40 ppm. In the higher field of the spectrum, there
are 3 characteristic peaks for 1,4-oxazepine 37a. The exo-methylenic hydrogens give
signal as singlet and doublets at 4.76 and 4.39 ppm, respectively. The third signal,
which is in between these peaks, is originated from two methylenic hydrogens on
the ring. They resonate as singlet at 4.57 ppm. In the *C NMR spectrum (Figure 18),
there are three peaks which belong to the endo-olefinic carbons of the oxazepine
ring, which appear at 167.1, 158.9 and 158.2 ppm. Eight different aromatic carbons
resonate between 126.3 and 136.8 ppm. The signals seen at 99.8, 93.9 and 55.6 ppm

belong to exo-double bond carbons and methylenic carbon on the ring, respectively.
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Figure 15. *H NMR spectrum of 2-methylene-5,7-diphenyl-2,3-dihydro-1,4-
oxazepine (37a).
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Figure 16. 13C NMR spectrum of 2-methylene-5,7-diphenyl-2,3-dihydro-1,4-
oxazepine (37a).

2.4  Synthesis of Pyrroles

After synthesizing N-propargylic -enaminones, we have investigated the synthesis
of pyrroles by using the cyclization of N-propargylic B-enaminones. We were
inspired by previous work of our research group about the synthesis of 2,3-dihydro-
1,4-oxazepines.*! We tried to analyze cyclization of N-propargylic B-enaminones by
using ZnCl> as in the 1,4-oxazepine synthesis. However, in pyrrole synthesis,
different type of solvents was used to achieve cyclization. Therefore, optimization
reactions were employed in order to determine the best reaction conditions for the

synthesis of target pyrrole compounds.

35



Ar
0] ZnCl
| 2 - / \
R >NH modified conditions R™™N
H O
\

26 H 46

Scheme 25. Synthesis of pyrroles 46 in modified conditions.

In this regard, pyrroles have been synthesized by using 1,4-oxazepines 37 as starting
material firstly. According to our previous study, we thought that formation of 2,3-
dihydro-1,4-oxazepines are important step for the synthesis of desired pyrroles.
That’s why, firstly we synthesized 2,3-dihydro-1,4-oxazepines 37 via known
procedure in literature.*t Then, 1,4-oxazepine compound was isolated after
performing work-up and column chromatography. After taking the pure product, we
treated it with ZnCl, in different protic solvents at reflux conditions. Various

optimization conditions were studied to find best reaction condition (Table 4).
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Table 4. Optimization studies for synthesis of pyrroles 46 from 1,4-oxazepines 37.

(>

ZnC|2
/ \
Solvent O N
Temperature H o)
37a 46a
Entry ZnCl2 Solvent Temperature Time Yield
(equiv.) (°C) (h) (%)
1 - MeOH 65 35.0 77
2 1.0 MeOH 65 3.0 88
3 1.5 MeOH 65 1.5 84
4 2.0 MeOH 65 1.0 80
5 1.0 EtOH 78 3.0 71
6 1.0 n-PrOH 97 3.5 74
7 1.0 n-BuOH 116 2.0 63

We used various amount of ZnCl> in different solvents at this study. First, we
performed the reaction in refluxing methanol without using ZnCl; (Table 4, entry 1).
The reaction took very long time (35 h). The obtained yield was 77%. The yield was
not poor, but this try was not very useful because of its reaction time. And then, we
tried the same reaction by using 1.0 equiv. of ZnCl, in MeOH at reflux condition
(Table 4, entry 2). The yield of pyrrole product was 88% in 3 h. In addition, we did
the same reaction by using 1.5 equiv. of ZnCl» (Table 4, entry 3). The reaction time
was decreased, but the yield was also decreased in this experiment (1.5 h, 84%).
Then, 2.0 equiv. of ZnCl, was employed to optimize the reaction conditions (Table
4, entry 4). After performing reaction by using 2.0 equiv. of ZnCl; in refluxing
MeOH, the yield of the product was 80%. After that, solvent was changed to carry
out the reaction at higher temperature than 65°C. By refluxing EtOH at 78 °C for 3.0
h, the target product was obtained in 71% yield (Table 4, entry 5). Notably, changing
the solvent to n-PrOH did not increase the yield so much (74%) (Table 4, entry 6).
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As the last optimization study, we performed the reaction in n-BuOH at 116 °C by
using 1.0 equiv. of ZnCl, (Table 4, entry 7). The yield was decreased to 63% at the
end of this reaction. By using the best reaction condition from Table 4, which is entry
2, derivatives of pyrroles have been synthesized as depicted in Table 5.

Table 5. Synthesis of pyrrole derivatives 46 from 1,4-oxazepines 37.2

Ar ON{ ZnCl ~
n
| G /\
=N MeOH RTON

R 65°C H (0]

37 46

IZ

/ \\ CHs
oy Oy
H O © (H3C)N H

46a (88%) 46b (76%) 46¢ (64%)
/ \\_ CHs / \\_ CHs / \\_ CHs
; Oy Oy
FsC H 0O H,;C H o H,;CO H o)
46d (88%) 46e (79%) 46f (73%)
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Table 5. Continued.

Ar
ZnCl, m
MeOH R N
65°C O
46

469 (73%)

46 (75%)

46m (78%)

46h (67%) 46i (79%)

- -

/\ CH3 /\ H3
D O
Br H o H
H,C
46k (82%) 461 (81%)
Cl Cl
/ \ CHs / \\_ CH,
Oy Oy
S H O H o

46n (85%) 460 (78%)

39



Table 5. Continued.

Ar o{ - Ar
n
| 2 I\
=N MeOH R N

R 65°C O

37 46

CH, ci CHs

46p (81%) 46q (77%) 46r (83%)

465 (69%) 46t (63%)

4lsolated yields.

After carrying the reactions in Table 4, we decided to change the reaction pathway
to decrease time in total and to prevent the usage of some extra chemicals (usage of
extra silica gel, EtOH etc.). In this regard, one-pot reactions were carried out (Table
6). Therefore, it was aimed to obtain target pyrrole by using the same procedure as
in the oxazepine case, but with different type of solvents. In this regard, all reactions
were performed by using 1.0 equiv. of N-propargylic B-enaminone with varying

amounts of ZnCl, in different solvents. All reactions were carried out in reflux
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conditions. At the end of the reactions, column chromatography was used to purify

the products.

Table 6. Optimization studies for synthesis of pyrroles 46 via one-pot reactions.

(J s

ZnC|2

-

| O - /A CHs

Solvent, Temp.
O NH Time ” o

26a H 46a
Entry ZnCl Solvent Temperature Time Yield
(equiv.) (%)
1 1.0 MeOH 65 24 46
2 1.5 MeOH 65 12 51
3 2.0 MeOH 65 11 51
4 2.5 EtOH 78 8 46
5 2.5 n-PrOH 97 5 34

In these optimization studies, equivalent of ZnCl, and solvents were changed to
obtain best yield. Firstly, we used 1.0 equiv. of ZnCl; in refluxing methanol for 24
h. At the end of this reaction, the product was obtained in 46% vyield (Table 6, entry
1). Then the same reaction was performed by using 1.5 equiv. of ZnCl to increase
the yield and decrease the reaction time; the yield was 51% (Table 6, entry 2).
Moreover, the reaction was repeated by 2.0 equiv. ZnClz in methanol and there was
no change in the yield (Table 6, entry 3). Then we decided to try different solvent
and we replaced MeOH with EtOH to achieve cyclization at higher temperature. We
used 2.5 equiv. of ZnCl> in refluxing EtOH to increase the yield, but instead it was

decreased to 46% (Table 6, entry 4). For the relatively low yield, the possible reason
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might be decomposition of the product at higher temperature. As a last optimization
reaction, we used 2.5 equiv. of ZnCl; in refluxing n-PrOH (Table 6, entry 5). The
yield was decreased to 34% due to the same reason with the EtOH case. Clearly,

higher temperatures have decreased the yield of the pyrrole product.

After carrying the reactions in Table 6, it is seen that the yields were relatively low.
Therefore, we decided to change the reaction pathway. We thought that, in one-pot
reactions, the formation of 1,4-oxazepine 37 cannot be achieved properly because of
using polar protic solvents. This situation might be the reason of the low yields.
That’s why we decided to improve yields by performing reactions as one-pot two-
step reactions. In the light of optimization Table 6, we decided to continue with
MeOH as solvent; because the best reaction condition was achieved by using MeOH
as solvent. That’s why we carried out the reaction as one-pot two-steps in refluxing
methanol (Table 7). Firstly, we synthesized 2,3-dihydro-1,4-oxazepines 37 by the
cyclization of N-propargylic B-enaminones 26 and then the product from the first
reaction was used as the starting material for the synthesis of the targeting pyrrole.
It means that 1,4-oxazepine was used as intermediate in this experiment. After all
the starting material is gone, the solvent was removed. Without doing any work-up
or column chromatography, ZnCl, and MeOH were added to the reaction medium.
Then the reaction scope was investigated to achieve the best reaction conditions.
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Table 7. Optimization studies for synthesis of pyrroles 46 from N-propargylic -
enaminones 26 via one-pot two-step reactions.

| (0] ZnCl, ZnCly Y
O NH CHCl;, 61°C MeOH, 65°C O N
H O
S _ _
26a 37a 46a
no isolation
Entry ZnClz Solvent Temperature Time Yield
(equiv.) (%)
1 - MeOH 65 3.0 57
2 0.5 MeOH 65 15 75
3 1.0 MeOH 65 1.0 85
4 15 MeOH 65 1.0 75

First, we carried out the synthesis without using ZnCl» (Table 7, entry 1). However,
the product was obtained in low yield, which was 57%. Then, 0.5 equiv. ZnCl, was
added to reaction medium in methanol (Table 7, entry 2), and the reaction was carried
out in refluxing methanol for 1.5 h. This reaction afforded the product in 75% vyield.
To increase yield and decrease reaction time, we decided to increase the amount of
ZnCl, more in the same solvent. When we increased the amount of ZnCl> to 1.0
equiv., the reaction time was decreased to 1.0 h. The obtained yield from this reaction
was 85% (Table 7, entry 3). Then we performed the same reaction by adding 1.5
equiv. of ZnCly, but the reaction time stayed same and the yield was decreased (1h,
75%) (Table 7, entry 4). The reaction conditions of entry 3 from Table 7 was used to

synthesize different derivatives of pyrrole.
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Table 8. Synthesis of pyrrole derivatives 46 from N-propargylic f-enaminones 26
via one-pot two-step reactions. 2

Ar
Ar o Ar
. @) ZnCl, _ | ZnCl, _ I\
R "NH CHCI3, 61°C —N MeOH, 65°C R ”
R (0]
X L _
26 37 46
no isolation
/ \_ CHs / \\_ CHs /' \  CHs,
O o'y
O H o H O (HsC)oN H O

46a (85%)

46d (69%)

469 (73%)

46b (63%)

46e (62%)

46h (76%)

46¢ (51%)

-

46f (66%)

46i (85%)
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Table 8. Continued.

Ar
ﬁo ZnCl,
R >NH CHCl3, 61°C
X
26

A © ZnCl N
n
| 2 - Rﬂ\(
/N ° N
MeOH, 65°C N

37 46
no isolation

46 (67%)

46p (53%)

Cl
g o
Br O H o] H 0
HsC
46k (75%) 461 (71%)
Cl Cl
/\ CH; I\ CHj3
@Qg
S H O H o
46n (77%) 460 (78%)
Cl CHs
/ \\_ CHs / \\ CHjs
@/qg
H 0 S H o]
46q (75%) 46r (67%)




Table 8. Continued.

Ar o Ar
ﬁO ZnCI2 N | ZnCI2 N / \
R” > NH CHCl,, 61°C =N MeOH, 65°C R N
R
X _ _
26 37 46
no isolation
CH; CH;

46s (62%) 46t (73%)

3solated yields.

Twenty derivatives of the pyrroles have been synthesized by using the determined
optimization conditions which is obtained from Table 4 and Table 7. Different
derivatives of the desired pyrrole compound have been synthesized by using
different electron donating and electron withdrawing groups. When we evaluate the
yield of the pyrrole derivatives from 1,4-oxazepines 37, the lowest yield (63%) also
was belonged to pyrrole 46t. The highest yield was 88% and this yield was obtained
for pyrroles 46a and 46d. On the other hand, when we look at the yields of the pyrrole
derivatives from of N-propargylic f-enaminones 26 via one-pot two-step reactions,
the lowest yield was obtained as 51% for pyrrole 46¢. On the contrary, the highest
yield (85%) was belonged to pyrroles 46a and 46i.

The structures of compounds were identified by NMR spectra of compounds. As an
example, *H and **C NMR spectra of pyrrole 46a are given in Figures 19 and 20. In
the *H NMR spectrum (Figure 19), N-H proton appears at 10.17 ppm as a broad
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singlet. Ten aromatic hydrogens are seen as multiplets between 7.70 and 7.33 ppm
as expected. In addition, B-hydrogen of pyrrole gives a peak at 6.58 ppm as doublet.
Methyl hydrogens resonate at 2.12 ppm as a singlet. In the *C NMR spectrum
(Figure 20), carbonyl carbon resonates at 188.8 ppm. One of pyrrole carbons on the
ring (=CH) resonates at 110.9 ppm. Eleven different aromatic carbons on pyrrole and
phenyl rings appear between 136.7 and 125.3 ppm. Methyl carbon gives a peak at
27.6 ppm.
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Figure 17. *H NMR spectra of 1-(3,5-diphenyl-1H-pyrrol-2-yl)ethanone (46a).
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Figure 18. 3C NMR spectra of 1-(3,5-diphenyl-1H-pyrrol-2-yl)ethanone (46a).

The suggested mechanism for the synthesis of pyrrole derivatives is shown in
Scheme 25. Firstly, coordination of zinc chloride through triple bond of N-
propargylic B-enaminone 26 gives intermediate 50. And then, carbonyl oxygen is
coordinated by zinc and it generates intermediate 51, providing closeness of carbonyl
oxygen to the alkynyl group. After that, vinyl zinc intermediate 52 is formed by 7-
exo-dig cyclization. Afterwards, 2,3-dihydro-1,4-oxazepine 37 is generated due to in
situ quenching by HCI. Enhancement of electrophilicity of o carbon because of
coordination of zinc chloride through nitrogen enables nucleophilic attack of protic
solvent to intermediate 53 in order to give hemiketal 54. Then, ring opening occurs
to produce intermediate 55, which becomes to be isomer 56 via enol-keto
tautomerization. Intermediate 57 is formed via enol-keto tautomerization to get rid
of carbonyl group. After that, cyclization is achieved to afford compound 58, which
rearranges to 59 via intramolecular hydrogen shift. Subsequently, compound 59
gives the isomer of 1H-pyrrole derivatives 46 via eliminating an alcohol. Lastly,

isomerization of compound 60 gives 1H-pyrrole derivatives 46.
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Scheme 26. Proposed mechanism for the desired pyrrole 46.

49




50



CHAPTER 3

CONCLUSION

In summary, potentially biologically active pyrrole derivatives 46 have been
synthesized from 1,4-oxazepines 37 and N-propargylic f-enaminones 26. General

synthetic pathway for the synthesis of pyrroles 46 is shown in Scheme 26.

o
Ar | { ZnCl,
™ =N MeoH
j\ R 65°C
ClI” Ar A 37 R
a7 2 mol% PdCl,(PPhs), o) r
5 mol% Cul HZN\ o ZnCl, 7\
+ F Ar | Ar N
s Et;N, THF, rt R MeOH, 65°C R~ “NH CHCl3, 61°C H o
48 49 26

MeOH
65°C

46
H

r O

| ZnCl,

L
=N
R
37

no isolation

Scheme 27. General synthetic pathway for the synthesis of pyrroles 46.

Firstly, synthesis of starting compounds was described in detail (Scheme 26). a,f-
Alkynic ketones have been synthesized via Sonogashira cross coupling reaction.
Benzoyl chlorides were coupled with corresponding terminal alkynes under
palladium and copper catalyzed conditions to achieve derivatives of a,B-alkynic
ketone. The yields were between 60% and 98%. Then, N-propargylic -enaminone
derivatives were synthesized by the conjugate addition of propargylamine to the

corresponding o,p-alkynic ketones. Therefore, derivatives of N-propargylic (-
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enaminone have been synthesized in good to high yields which were between 70%-
93%.

After synthesis of starting materials, suitable reaction conditions for the preparation
of target pyrrole derivatives have been investigated. After carrying out optimization
studies, it was seen that desired pyrrole derivatives can be synthesized in good to
high yields via two original synthesis procedures.

In the first part of the study, we used 1,4-oxazepines 37 as starting compounds for
the synthesis of pyrrole derivatives. In this regard, N-propargylic f-enaminones 26
were treated with ZnCl; in refluxing CHCI3 to give 2-methylene-2,3-dihydro-1,4-
oxazepines via cyclization. Derivatives of 2-methylene-2,3-dihydro-1,4-oxazepine
were synthesized with the yields ranging between 61%-88%. After 1,4-oxazepines
have been isolated, reaction scope was investigated for the synthesis of pyrrole
derivatives from 1,4-oxazepines. As a result of the optimization reactions, the best
yield (88%) was obtained by using 1.0 eq. of ZnCl; in refluxing MeOH. By using

this reaction condition, 19 novel derivatives of pyrrole have been synthesized.

In the second part of the study, our aim was to decrease total time and the usage of
some extra chemicals (usage of extra silica gel, EtOH etc.). Therefore, in this part
we synthesized pyrrole derivatives via one-pot two-step reactions from N-
propargylic B-enaminones 26. In this study, 2-methylene-2,3-dihydro-1,4-oxazepine
derivatives 37 were obtained as intermediate in the reaction medium. Then, the in-
situ formed 1,4-oxazepines were converted into desired pyrrole by using several
optimization reaction conditions. Consequently, the highest yield (85%) was
obtained by using 1.0 eqg. of ZnCl> in refluxing MeOH. 19 novel derivatives of
pyrrole have been synthesized with the optimized reaction conditions.

The structures of the new compounds were identified by using *H and 3C NMR

spectra, IR and HRMS spectroscopy.
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CHAPTER 4

EXPERIMENTAL

!H and 3C NMR spectra were recorded at 400 and 100 MHz. Chemical shifts are
indicated in parts per million (ppm) by using TMS (trimethylsilane) as reference
point. Spin multiplicities are reported as singlet (s), doublet (d), triplet (t), quartet
(9), pentet, sextet, m (multiplet), and broad (br), doublet of doublets (dd), doublet of
triplets (dt), triplet of triplets (tt), triplet of doublets (td) and coupling constants (J)
are indicated in hertz (Hz). Attenuated total reflection (ATR) was used to record
Infrared spectra (IR). High resolution mass spectra (HRMS) was performed using
Electrospray lonization (ESI). Thin layer chromatography (TLC) was performed
with commercially obtained 0.25 mm silica gel plates and it was visualized by UV
lamp. Flash chromatography was carried out using silica gel (Merck 230-400 mesh).
Different proportions of solvents are represented in volume:volume ratio. All
solvents, which are used in flash chromatography, were used after distillation
process; while all commercially available solvents were used directly. Argon gas (ca.
0.1 psi) was used to generate inert atmosphere. All equipments were clean and all

glassware were dried in oven.
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4.1  General procedure 1 for the synthesis of a,p-alkynic ketone Derivatives
49

To a stirred solution of corresponding benzoyl chloride (1.2 mmol), PdCI>(PPh3)2
(0.2 mmol), EtsN (1.2 mmol) and Cul (0.2 mmol) in anhydrous THF (5.0 ml) were
added at room temperature under argon atmosphere for 10 min. Then, proper
terminal alkyne (1.0 mmol) was added to the reaction mixture. The resulting mixture
was stirred for approximately 4 h. During the reaction, the progress was monitored
by TLC (19:1 hexane/ethyl acetate) (Note that the reaction was continued until
terminal alkyne was completely consumed). When the reaction was over, the solvent
was removed by rotary evaporator and extraction was performed with ethyl acetate
(50 ml), 0.1 N HCI (10 ml) and saturated NH4CI (10 ml). After the separation of
organic and aqueous phases, aqueous phase was extracted with ethyl acetate (50 ml).
After combining organic phases, organic phase dried over MgSQO4 and evaporated
on a rotary evaporator to give the crude product. Flash chromatography on silica gel
was used to purify crude product by using hexane/ethyl acetate (19:1) as the eluent

and to afford corresponding a,B-alkynic ketone derivative 49.

4.1.1 1,3-Diphenylprop-2-yn-1-one (49a)

General procedure 1 was followed by employing benzoyl chloride (407.7 mg, 2.9
mmol), PdCI>(PPhs), (35.1 mg, 0.05 mmol), EtsN (295.5 mg, 2.9 mmol), Cul (9.5
mg, 0.05 mmol) and phenylacetylene (247.2 mg, 2.4 mmol), which yielded 485.1
mg (97%) of the indicated product 49a as a yellow oil (Rf = 0.38 in 4:1 hexane/ethyl
acetate). 'H NMR (400 MHz, CDCls) § 8.24-8.19 (m, 2H), 7.69-7.64 (m, 2H), 7.63—
7.57 (m, 1H), 7.53-7.42 (m, 3H), 7.42-7.36 (m, 2H); 3C NMR (100 MHz, CDCl5)
3 177.9 (C=0), 136.8 (C), 134.1 (CH), 133.0 (CH), 130.8 (CH), 129.5 (CH), 128.7
(CH), 128.6 (CH), 120.0 (C), 93.1 (C), 86.9 (C). The spectral data were in agreement

with those reported previously for this compound.*®
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4.1.2 3-(3-Fluorophenyl)-1)phenylprop-2-yn-1-one (49b)

General procedure 1 was followed by employing benzoyl chloride (295.3 mg, 2.1
mmol), PdCI>(PPhz)2 (28.1 mg, 0.04 mmol), EtsN (214.0 mg, 2.1 mmol), Cul (7.6
mg, 0.04 mmol) and 1-ethynyl-3-fluorobenzene (216.2 mg, 1.8 mmol), which
yielded 314.7 mg (78%) of the indicated product 49b as a yellow solid (Rf = 0.68 in
4:1 hexane/ethyl acetate). 'H NMR (400 MHz, CDCls) § 8.18-8.05 (m, 2H), 7.57—
7.53 (m, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.38 (d, J = 7.7 Hz, 1H), 7.32-7.26 (m, 2H),
7.10 (m, 1H); 3C NMR (100 MHz, CDCls) § 177.8 (C=0), 162.4 (d, 1J = 248.2 Hz,
CF), 136.8 (C), 134.4 (CH), 130.6 (d, 3J = 8.4 Hz, CH), 129.7 (CH), 129.0 (d, 4J =
3.1 Hz, CH), 128.8 (CH), 122.0 (d, 3J = 9.1 Hz, C), 119.7 (d, 2J = 23.3 Hz, CH),
118.3 (d,2J=21.2 Hz, CH), 91.1 (d, *J = 3.4 Hz, C), 87.2 (C). The spectral data were
in agreement with those reported previously for this compound.*®

4.1.3 3-(4-(Dimethylamino)phenyl)-1-phenylprop-2-yn-1-one (49c)

General procedure 1 was followed by employing benzoyl chloride (337.4 mg, 2.4
mmol), PdCI>(PPhz)2 (28.1 mg, 0.04 mmol), EtsN (244.6 mg, 2.4 mmol), Cul (7.6
mg, 0.04 mmol) and 4-ethynyl-N,N-dimethylaniline (290.4 mg, 2.0 mmol), which
yielded 435.0 mg (87%) of the indicated product 49c as a yellowish green oil (Rf =
0.41 in 4:1 hexane/ethyl acetate). *H NMR (400 MHz, CDCls) § 8.27-8.23 (m, 2H),
7.61-7.55 (m, 3H), 7.52 (t, J = 7.4 Hz, 2H), 6.70-6.62 (m, 2H), 3.04 (s, 6H); 1°C
NMR (100 MHz, CDClz) 8 177.5(C=0), 151.5 (C), 137.1 (C), 134.9 (CH), 133.3
(CH), 129.0 (CH), 128.3 (CH), 111.3 (CH), 104.9 (C), 97.8 (C), 87.8 (C), 39.6
(N(CHs)2). The spectral data were in agreement with those reported previously for

this compound.*’
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4.1.4 1-Phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (49d)

General procedure 1 was followed by employing benzoyl chloride (309.3 mg, 2.2
mmol), PdCI>(PPhz)2 (28.1 mg, 0.04 mmol), EtsN (224.2 mg, 2.2 mmol), Cul (7.6
mg, 0.04 mmol) and 4-ethynyl-a,a,a-trifluorotoluene (306.2 mg, 1.8 mmol), which
yielded 300.5 mg (60%) of the indicated product 49d as a yellow solid (Rf = 0.66 in
4:1 hexane/ethyl acetate). 'H NMR (400 MHz, CDCl3) & 8.24-8.20 (m, 2H), 7.80—
7.76 (m, 2H), 7.70-7.60 (m, 3H), 7.53 (t, J = 7.7Hz, 2H); *C NMR (100 MHz,
CDCl3) § 177.5 (C=0), 136.5 (C), 134.4 (CH), 133.1 (CH), 132.1 (g, 4J = 32.5 Hz,
C), 129.5 (CH), 128.7 (CH), 125.5 (q, 3J = 3.5 Hz, CH), 124.9 (C), 123.9 (q, }J =
272.7 Hz, CF3), 90.3 (C), 88.0 (C). The spectral data were in agreement with those

reported previously for this compound.*®

4.1.5 1-Phenyl-3-(p-tolyl)prop-2-yn-1-one (49e)

General procedure 1 was followed by employing benzoyl chloride (379.6 mg, 2.7
mmol), PdCIl>(PPhs). (35.1 mg, 0.05 mmol), EtsN (275.1 mg, 2.7 mmol), Cul (9.5
mg, 0.05 mmol) and 4-ethynyltoluene (267.2 mg, 2.3 mmol), which yielded 440.5
mg (88%) of the indicated product 49e as a brownish-orange solid (Rf = 0.56 in 4:1
hexane/ethyl acetate). *H NMR (400 MHz, CDCls) § 8.19-8.10 (m, 2H), 7.58-7.49
(m, 3H), 7.44 (t, J = 7.8 Hz, 2H), 7.16 (t, J = 7.5 Hz, 2H), 2.33 (s, 3H); 3C NMR
(100 MHz, CDClz) 6 178.0 (C=0), 141.6 (C), 136.9 (C), 134.0 (CH), 133.1 (CH),
129.5 (CH), 128.6 (CH), 116.9 (C), 93.8 (C), 86.8 (C), 21.7 (CHs) (Note that two
CH peaks overlap on each other). The spectral data were in agreement with those

reported previously for this compound.*

4.1.6 3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (49f)

General procedure 1 was followed by employing benzoyl chloride (351.5 mg, 2.5
mmol), PdCl2(PPhs)2 (28.1 mg, 0.04 mmol), EtsN (254.8 mg, 2.5 mmol), Cul (7.6
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mg, 0.04 mmol) and 4-ethynylanisole (277.5 mg, 2.1 mmol), which yielded 390.5
mg (78%) of the indicated product 49f as a yellow solid (Rf=0.40 in 4:1 hexane/ethyl
acetate). *H NMR (400 MHz, CDCls) § 8.29-8.18 (m, 2H), 7.70 — 7.60 (m, 3H), 7.53
(t, J=7.6 Hz, 2H), 6.97-6.91 (m, 2H), 3.87 (s, 3H); *C NMR (100 MHz, CDCls) §
177.9 (C=0), 161.7 (C), 137.0 (C), 135.1 (CH), 133.9 (CH), 129.4 (CH), 128.6 (CH),
114.4 (CH), 111.7 (C), 94.4 (C), 86.9 (C), 55.4 (OCHz3). The spectral data were in
agreement with those reported previously for this compound.*®

4.1.7 1-Phenyl-3-(m-tolyl)prop-2-yn-1-one (499)

General procedure 1 was followed by employing benzoyl chloride (379.6 mg, 2.7
mmol), PdCl2(PPhs)2 (35.1 mg, 0.05 mmol), EtsN (275.1 mg, 2.7 mmol), Cul (9.5
mg, 0.05 mmol) and 3-ethynytoluene (266.9 mg, 2.3 mmol), which yielded 465.0
mg (93%) of the indicated product 49g as a green solid (Rf = 0.63 in 4:1 hexane/ethyl
acetate). 'H NMR (400 MHz, CDCls) § 8.29-8.19 (m, 2H), 7.67-7.60 (m, 1H), 7.56—
7.47 (m, 4H), 7.34-7.28 (m, 2H), 2.39 (s, 3H); 13C NMR (100 MHz, CDCl3) § 177.9
(C=0), 138.4(C), 136.8 (C), 134.0 (CH), 133.5 (CH), 131.8 (CH), 130.2 (CH), 129.5
(CH), 128.57 (CH), 128.55 (CH), 119.8 (C), 93.5 (C), 86.6 (C), 21.11 (CHg). The

spectral data were in agreement with those reported previously for this compound.*®

4.1.8 1-Phenyl-3-(thiophen-3-yl)prop-2-yn-1-one (49h)

General procedure 1 was followed by employing benzoyl chloride (393.7 mg, 2.8
mmol), PdCIl2(PPhs)2 (35.1 mg, 0.05 mmol), EtsN (285.3 mg, 2.8 mmol), Cul (9.5
mg, 0.05 mmol) and 3-ethynythiophene (248.8 mg, 2.3 mmol), which yielded 441.8
mg (88%) of the indicated product 49h as a orange-brown oil (Rt = 0.67 in 4:1
hexane/ethyl acetate). *H NMR (400 MHz, CDCl3) § 8.09-8.02 (m, 2H), 7.71-7.65
(m, 1H), 7.45 (t, J = 7.3 Hz, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.19 (dd, J = 4.9, 3.0 Hz,
1H), 7.14 (dd, J = 4.9, 0.9 Hz, 1H); **C NMR (100 MHz, CDCls) § 177.8 (C=0),
136.6 (C), 134.01 (CH), 133.96 (CH), 130.1 (CH), 129.4 (CH), 128.5 (CH), 126.3
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(CH), 119.1 (C), 88.5 (C), 87.1(C). The spectral data were in agreement with those

reported previously for this compound.*

4.1.9 3-(4-(tert-Butyl)phenyl)-1-phenylprop-2-yn-1-one (49i)

General procedure 1 was followed by employing benzoyl chloride (323.4 mg, 2.3
mmol), PdCIl>(PPhs), (28.1 mg, 0.04 mmol), EtsN (234.4 mg, 2.3 mmol), Cul (7.6
mg, 0.04 mmol) and 1-(tert-butyl)-4-ethynylbenzene (300.7 mg, 1.9 mmol), which
yielded 460.0 mg (97%) of the indicated product 49i as a yellow oil (Rf=0.68 in 4:1
hexane/ethyl acetate). *H NMR (400 MHz, CDCls) & 8.14-8.08 (m, 2H), 7.53-7.44
(m, 3H), 7.38 (t, J = 7.5 Hz, 2H), 7.30 (d, J = 7.7 Hz, 2H), 1.19 (s, 9H); °C NMR
(100 MHz, CDClz) 6 178.0 (C=0), 154.6 (C), 137.0 (C), 134.0 (CH), 133.0 (CH),
129.5 (CH), 128.6 (CH), 125.8 (CH), 117.0 (C), 93.8 (C), 86.8 (C), 35.1 (C), 31.0
(CH3); IR (neat): 3065, 2961, 2867, 1637, 1597, 1448, 1394, 1313, 1288, 1171, 1107,
1029, 1008, 834, 792, 697, 650, 563, 524, 414 cm; MS (ESI, m/z): 263.14 [M+H]";
HRMS (ESI) calcd. for C19H190: 263.1430 [M+H]*, found: 263.1430.

4.1.10 3-(4-Chlorophenyl)-1-phenylprop-2-yn-1-one (49j)

General procedure 1 was followed by employing benzoyl chloride (351.5 mg, 2.5
mmol), PdCIl2(PPhs)2 (35.1 mg, 0.05 mmol), EtsN (254.8 mg, 2.5 mmol), Cul (9.5
mg, 0.05 mmol) and 1-chloro-4-ethynylbenzene (286.8 mg, 2.1 mmol), which
yielded 425.3 mg (85%) of the indicated product 49j as a yellow solid (R = 0.63 in
4:1 hexane/ethyl acetate). 'H NMR (400 MHz, CDCl3) & 8.07-7.99 (m, 2H), 7.47—
7.37 (m, 3H), 7.33 (t, J = 7.6 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H); 1*C NMR (100 MHz,
CDCl3) § 177.5 (C=0), 137.0 (C), 136.5 (C), 134.1 (CH), 129.4 (CH), 129.0 (CH),
128.6 (CH), 118.4 (C), 91.5 (C), 87.5 (C) (Note that two CH peaks overlap on each
other). The spectral data were in agreement with those reported previously for this

compound.*
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4111 3-(4-Bromophenyl)-1-phenylprop-2-yn-1-one (49k)

General procedure 1 was followed by employing benzoyl chloride (295.2 mg, 2.1
mmol), PdCIl>(PPhs)2 (28.1 mg, 0.04 mmol), EtsN (214.0 mg, 2.1 mmol), Cul (7.6
mg, 0.04 mmol) and 1-bromo-4-ethynylbenzene (325.9 mg, 1.8 mmol), which
yielded 387.7 mg (78%) of the indicated product 49k as a pale yellow solid (Rf =
0.66 in 4:1 hexane/ethyl acetate); mp 117.1-119.0 °C. *H NMR (400 MHz, CDCls)
§ 8.19-8.13 (m, 2H), 7.62—7.56 (m, 1H), 7.52—7.44 (m, 6H); 3C NMR (100 MHz,
CDClI3) 8 177.6 (C=0), 136.6 (C), 134.3 (C), 134.2 (CH), 132.0 (C), 129.5 (CH),
128.6 (CH), 125.6 (CH), 118.9 (CH), 91.6 (C), 87.7 (C); IR (neat): 3054, 2195, 1912,
1630, 1598, 1578, 1474, 1447, 1394, 1315, 1292, 1205, 1170, 1062, 1030, 1007,
817, 791, 711, 692,639 cm™t; MS (ESI, m/z): 284.99 [M+H]*; HRMS (ESI) calcd.
for C1sH10"°BrO: 284.9910 [M+H]*, found: 284.9916.

4.1.12 1-(4-Chlorophenyl)-3-(m-tolyl)prop-2-yn-1-one (49l)

General procedure 1 was followed by employing 4-chlorobenzoyl chloride (420.0
mg, 2.4 mmol), PdCl>(PPhas)2 (28.1 mg, 0.04 mmol), EtsN (244.6 mg, 2.4 mmol), Cul
(7.6 mg, 0.04 mmol) and 3-ethynyltoluene (223.3 mg, 2.0 mmol), which yielded
384.7 mg (77%) of the indicated product 49l as a pale yellow solid (Rf = 0.67 in 4:1
hexane/ethyl acetate); mp 80.1-81.5 °C. *H NMR (400 MHz, CDCl3) § 7.93 (dd, J =
6.8, 1.8 Hz, 2H), 7.30-7.23 (m, 4H), 7.11-7.05 (m, 2H), 2.16 (s, 3H); 1°C NMR
(100 MHz, CDCls) 6 176.2 (C=0), 140.4 (C), 138.4 (C), 135.1 (C), 133.4 (CH),
131.8 (CH), 130.6 (CH), 130.1 (CH), 128.8 (CH), 128.5 (CH), 119.4 (C), 93.8 (C),
86.2 (C), 21.0 (CH3); IR (neat): 2853, 2185, 1668, 1627, 1583, 1479, 1453, 1397,
1283, 1222, 1033, 1007, 913, 897, 839, 781, 745, 715, 685 cm™!; MS (ESI, m/z):
255.06 [M+H]*; HRMS (ESI) calcd. for Ci6H12CIO: 255.0571 [M+H]*, found:
255.0568.
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4.1.13 1-(4-Chlorophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (49m)

General procedure 1 was followed by employing 4-chlorobenzoyl chloride (402.5
mg, 2.3 mmol), PdCI>(PPhsz)2(28.1 mg, 0.04 mmol), EtsN (234.4 mg, 2.3 mmol), Cul
(7.6 mg, 0.04 mmol) and 1-ethynyl-3-fluorobenzene (228.2 mg, 1.9 mmol), which
yielded 449.3 mg (90%) of the indicated product 49m as a pale orange solid (R =
0.70 in 4:1 hexane/ethyl acetate); mp 125.1-126.3 °C. *H NMR (400 MHz, CDCls)
§ 8.13-8.07 (m, 2H), 7.49-7.42 (m, 3H), 7.41-7.36 (m, 1H), 7.35-7.30 (m, 1H),
7.21-7.14 (m, 1H); C NMR (100 MHz, CDCls3) § 176.4 (C=0), 162.3 (d, 1J = 248.7
Hz, CF), 141.0 (C), 135.1 (C), 130.9 (CH), 130.6 (d, 3J = 8.4 Hz, CH), 129.1 (CH),
129.0 (d, #J = 3.1 Hz, CH), 121.7 (d, 3J = 9.3 Hz, C), 119.7 (d, 2J = 23.3 Hz, CH),
118.6 (d, 23 =20.9 Hz, CH), 91.6 (d, *J = 3.2 Hz, C), 86.8 (C); IR (neat): 3059, 2203,
1634, 1538, 1481, 1428, 1399, 1360, 1305, 1248, 1168, 1154, 1108, 1088, 1031,
1009, 954, 890, 784 cm™; MS (ESI, m/z): 259.03 [M+H]*; HRMS (ESI) calcd. for
C15HoCIFO: 259.0320 [M+H]*, found: 259.0319.

4.1.14 1-(4-Chlorophenyl)-3-(thiophen-3-yl)prop-2-yn-1-one (49n)

General procedure 1 was followed by employing 4-chlorobenzoyl chloride (420.0
mg, 2.4 mmol), PdCI2(PPhz)2(28.1 mg, 0.04 mmol), EtsN (244.6 mg, 2.4 mmol), Cul
(7.6 mg, 0.04 mmol) and 3-ethynythiophene (216.3 mg, 2.0 mmol), which yielded
400.4 mg (80%) of the indicated product 49n as a brownish yellow solid (R = 0.63
in 4:1 hexane/ethyl acetate); mp 109.5-111.0 °C. *H NMR (400 MHz, CDCls) & 7.96
(d, J=8.4 Hz, 2H), 7.74-7.63 (m, 1H), 7.30 (d, J = 8.4 Hz, 2H), 7.23-7.18 (m,1H),
7.14 (d, J = 4.5 Hz, 1H); **C NMR (100 MHz, CDCls) § 176.4 (C=0), 140.5 (C),
135.1 (CH), 134.2 (CH), 130.7 (CH), 130.2 (CH), 128.9 (C), 126.4 (CH), 119.0 (C),
89.1(C), 86.9 (C); IR (neat): 3200, 2376, 2178, 1629, 1582, 1481, 1398, 1357, 1267,
1213, 1161, 1088, 1023, 1007, 921, 873, 840, 826, 779, 741, 710, 675, 621 cm™*; MS
(ESI, m/z): 247.00 [M+H]*; HRMS (ESI) calcd. for C13HsCIOS: 246.9977 [M+H]",
found: 246.9979.
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4.1.15  3-(4-(tert-Butyl)phenyl)-1-(4-chlorophenyl)prop-2-yn-1-one (490)

General procedure 1 was followed by employing 4-chlorobenzoyl chloride (350.0
mg, 2.0 mmol), PdCI>(PPhz)2 (21.1 mg, 0.03 mmol), EtsN (203.8 mg, 2.0 mmol), Cul
(5.7 mg, 0.03 mmol) and 1-(tert-butyl)-4-ethynylbenzene (269.0 mg, 1.7 mmol),
which yielded 425.9 mg (85%) of the indicated product 490 as a yellow solid (Rf =
0.78 in 4:1 hexane/ethyl acetate); mp 104.0-106.0 °C. *H NMR (400 MHz, CDCls)
§ 8.04-8.00 (m, 2H), 7.51-7.46 (m, 2H), 7.35-7.29 (m, 4H), 1.20 (s, 9H); 13C NMR
(100 MHz, CDCl3) 6 176.6 (C=0), 154.8 (C), 140.5 (C), 135.4 (C), 133.1 (CH),
130.8 (CH), 129.0 (CH), 125.8 (CH), 116.8 (C), 94.3 (C), 86.5 (C), 35.1 (C), 31.0
(CH3); IR (neat): 2964, 2193, 1629, 1584, 1571, 1504, 1484, 1399, 1363, 1300, 1289,
1265, 1215, 1190, 1162, 1108, 1090, 1025, 1005, 838, 746, 675 cm™; MS (ESI, m/z):
297.10 [M+H]*; HRMS (ESI) calcd. for C1sH1sCIO: 297.1041 [M+H]*, found:
297.1046.

4.1.16 3-Phenyl-1-(p-tolyl)prop-2-yn-1-one (49p)

General procedure 1 was followed by employing 4-methylbenzoyl chloride (355.6
mg, 2.3 mmol), PdCl>(PPhz)2 (35.1 mg, 0.05 mmol), EtsN (234.4 mg, 2.3 mmol), Cul
(9.5 mg, 0.05 mmol) and phenylacetylene (194.0 mg, 1.9 mmol), which yielded
389.2 mg (93%) of the indicated product 49p as a orange-yellow solid (Rf = 0.67 in
4:1 hexane/ethyl acetate). *H NMR (400 MHz, CDCl3) § 7.98 (d, J = 7.8 Hz, 2H),
7.58-7.47 (m, 2H), 7.35-7.30 (m, 1H), 7.29-7.23 (m, 2H), 7.15 (d, J = 7.2 Hz, 2H),
2.28 (s, 3H); 3C NMR (100 MHz, CDCls) § 177.6 (C=0), 145.2 (C), 134.5 (C),
133.0 (CH), 130.7 (CH), 129.6 (CH), 129.3 (CH), 128.6 (CH), 120.1 (C), 92.6 (C),
87.0 (C), 21.8 (CHg). The spectral data were in agreement with those reported
previously for this compound.*®
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4.1.17 1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-one (49q)

General procedure 1 was followed by employing 4-chlorobenzoyl chloride (437.5
mg, 2.5 mmol), PdCI>(PPhsz)2(28.1 mg, 0.04 mmol), EtsN (254.8 mg, 2.5 mmol), Cul
(7.6 mg, 0.04 mmol) and phenylacetylene (214.5 mg, 2.1 mmol), which yielded
495.1 mg (98%) of the indicated product 49q as a yellow solid (Rf = 0.68 in 4:1
hexane/ethyl acetate). *H NMR (400 MHz, CDCls3) & 8.17-8.07 (m, 2H), 7.69-7.60
(m, 2H), 7.49-7.42 (m, 3H), 7.42-7.35 (m, 2H); 3C NMR (100 MHz, CDCls) &
176.5 (C=0), 140.6 (C), 135.2 (C), 133.1 (CH), 131.0 (CH), 130.8 (CH), 129.0 (CH),
128.7 (CH), 119.8 (C), 93.6 (C), 86.6 (C). The spectral data were in agreement with

those reported previously for this compound.*®

4.1.18 3-(Thiophen-3-yl)-1-(p-tolyl)prop-2-yn-1-one (49r)

General procedure 1 was followed by employing 4-methylbenzoyl chloride (417.4
mg, 2.7 mmol), PdCI2(PPhz)2 (28.1 mg, 0.04 mmol), EtzN (275.1 mg, 2.7 mmol), Cul
(7.6 mg, 0.04 mmol) and 3-ethynythiophene (238.0 mg, 2.2 mmol), which yielded
386.6 mg (77%) of the indicated product 49r as a yellow solid (Rf = 0.49 in 4:1
hexane/ethyl acetate); mp 96.9-97.9 °C. 'H NMR (400 MHz, CDClz) § 8.05 (d, J =
8.2 Hz, 2H), 7.77 (dd, J = 2.9, 1.2 Hz, 1H), 7.30 (dd, J = 5.0, 3.0 Hz, 1H), 7.25-7.19
(m, 3H), 2.35 (s, 3H); *C NMR (100 MHz, CDCls3) § 177.3 (C=0), 145.0 (C), 134.3
(C), 133.6 (CH), 130.0 (CH), 129.4 (CH), 129.2 (CH), 126.2 (CH), 119.2 (C), 87.9
(C), 87.1 (C), 21.6 (CHs); IR (neat): 2349, 2182, 1987, 1617, 1600, 1357, 1317,
1276, 1166, 1032, 1015, 923, 871, 833, 807, 734, 711, 679, 627 cm™*; MS (ESI, m/z):
227.05 [M+H]*; HRMS (ESI) calcd. for C14H110S: 227.0531 [M+H]*, found:
227.0536.
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4.1.19 3-(3,4-Dichlorophenyl)-1-(p-tolyl)prop-2-yn-1-one (49s)

General procedure 1 was followed by employing 4-methylbenzoyl chloride (324.6
mg, 2.1 mmol), PdCI>(PPhsz)2 (21.1 mg, 0.03 mmol), EtsN (214.0 mg, 2.1 mmol), Cul
(5.7 mg, 0.03 mmol) and 1,2-dichloro-4-ethynylbenzene (290.7 mg, 1.7 mmol),
which yielded 363.6 mg (74%) of the indicated product 49s as a yellow solid (Rf =
0.58 in 4:1 hexane/ethyl acetate); mp 124.5-125.2 °C. *H NMR (400 MHz, CDCls)
§ 7.95 (d, J = 8.1 Hz, 2H), 7.61-7.58 (m, 1H), 7.38-7.34 (m, 2H), 7.19 (t, J= 7.9
Hz, 2H), 2.33 (s, 3H); *C NMR (100 MHz, CDCls3) § 177.1 (C=0), 145.7 (C), 135.4
(C), 134.4 (CH), 134.3 (C), 133.1 (C), 132.0 (CH), 130.8 (CH), 129.7 (CH), 129.5
(CH), 120.2 (C), 89.3 (C), 88.1 (C), 21.9 (CHa); IR (neat): 3390, 2610, 2212, 2196,
2147, 2134, 2036, 1993, 1847, 1595, 1046, 942, 838, 812, 741, 716, 693, 624 cm™;
MS (ESI, m/z): 289.02 [M+H]"; HRMS (ESI) calcd. for C16H11CI20O: 289.0182
[M+H]*, found: 289.0187.

4.1.20 3-(4-Chlorophenyl)-1-(p-tolyl)prop-2-yn-1-one (49t)

General procedure 1 was followed by employing 4-methylbenzoyl chloride (324.6
mg, 2.1 mmol), PdCl>(PPhs)2 (21.1 mg, 0.03 mmol), EtsN (214.0 mg, 2.1 mmol), Cul
(5.7 mg, 0.03 mmol) and 1-chloro-4-ethynylbenzene (232.2 mg, 1.7 mmol), which
yielded 350.8 mg (81%) of the indicated product 49t as a white solid (Rf = 0.64 in
4:1 hexane/ethyl acetate); mp 126.3-127.4 °C. *H NMR (400 MHz, CDCls) § 8.02—
7.91 (m, 2H), 7.52-7.40 (m, 2H), 7.31-7.11 (m, 4H), 2.32 (s, 3H); 3C NMR (100
MHz, CDCl3) & 177.4 (C=0), 145.4 (C), 137.0 (C), 134.4 (C), 134.2 (CH), 129.7
(CH), 129.4 (CH), 129.1 (CH), 118.7 (C), 91.1 (C), 87.7 (C), 21.9 (CH3); IR (neat):
2915, 2195, 1626, 1587, 1485, 1397, 1310, 1287, 1207, 1166, 1085, 1009, 832, 816,
781, 736, 680, 636 cm™; MS (ESI, m/z): 255.06 [M+H]*; HRMS (ESI) calcd. for
C16H12CIO: 255.0571 [M+H]*, found: 255.0576.
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4.2 General procedure 2 for the synthesis of N-propargylic f-enaminones 26

To a stirred solution of corresponding o.,p-alkynic ketone 49 (1.0 mmol) in MeOH
(5.0 ml) was added propargylamine (1.2 mmol). Then, the reaction mixture was
refluxed for approximately 2 h. During the course of the reaction, the progress was
monitored by TLC (9:1 hexane/ethyl acetate) (Note that the reaction was continued
until a,B-alkynic ketone 49 was completely consumed). When the reaction was over,
the solvent was removed by using rotary evaporator to give the crude product. Flash
chromatography on silica gel was used to purify crude product by using hexane/ethyl
acetate (9:1 followed by 4:1) as the eluent and to afford corresponding B-enaminone

derivative 26.

4.2.1 1,3-Diphenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26a)

General procedure 2 was followed by employing 1,3-diphenylprop-2-yn-1-one (49a)
(450.0 mg, 2.2 mmol) and propargylamine (143.2 mg, 2.6 mmol), which yielded
556.9 mg (97%) of the indicated product 26a as a yellow solid (Rf = 0.44 in 4:1
hexane/ethyl acetate). *H NMR (400 MHz, CDCls) & 11.34 (s, 1H), 7.93-7.87 (m,
2H), 7.52-7.36 (m, 8H), 5.85 (s, 1H), 3.95 (dd, J = 6.3, 2.3 Hz, 2H), 2.31 (t, J = 2.5
Hz, 1H); 3C NMR (100 MHz, CDCl3) § 189.1 (C=0), 165.9 (C), 140.0 (C), 134.9
(C), 131.0 (CH), 129.9 (CH), 128.7 (CH), 128.3 (CH), 127.9 (CH), 127.2 (CH), 94.7
(CH), 79.8 (C), 72.5 (CH), 34.2 (CH>). The spectral data were in agreement with
those reported previously for this compound.®

422 3-(3-Fluorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-
one (26b)

General procedure 2 was followed by employing 3-(3-fluorophenyl)-1-phenylprop-
2-yn-1-one (49b) (336.3 mg, 1.5 mmol)and propargylamine (99.1 mg, 1.8 mmol),
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which yielded 373.8 mg (89%) of the indicated product 26b as a pale yellow solid
(Rr = 0.50 in 4:1 hexane/ethyl acetate); mp 93.8-94.8 °C. 'H NMR (400 MHz,
CDCl3) 6 11.13 (s, 1H), 7.85-7.73 (m, 2H), 7.36-7.24 (m, 4H), 7.20-7.00 (m, 3H),
5.72 (s, 1H), 3.79 (dd, J = 6.4, 2.5 Hz, 2H), 2.21 (t, J = 2.5 Hz, 1H); 3C NMR (100
MHz, CDClz) § 189.5 (C=0), 164.2 (C), 162.6 (d, 1J = 248.4 Hz, CF), 139.8 (C),
137.0(d, 3J=7.6 Hz, C), 131.3 (CH), 130.6 (d, 3J = 8.2 Hz, CH), 128.4 (CH), 127.3
(CH), 123.7 (d, 3 = 3.2 Hz, CH), 116.9 (d, 2J = 21.0 Hz, CH), 115.2 (d, 2J = 22.6
Hz, CH), 94.8 (CH), 79.7 (C), 72.7 (CH), 34.2 (CH>); IR (neat): 3222, 1600, 1570,
1549, 1520, 1474, 1431, 1323, 1299, 1284, 1265, 1250, 1226, 1203, 1025, 1000,
965, 876, 788 cm™; MS (ESI, m/z): 280.11 [M+H]*; HRMS (ESI) calcd. for
Ci1gH1sFNO: 280.1132 [M+H]", found: 280.1134.

4.2.3 3-(4-(Dimethylamino)phenyl)-1-phenyl-3-(prop-2-yn-1-
ylamino)prop-2-en-1-one (26¢)

General procedure 2 was followed by employing 3-(4-(dimethylamino)phenyl)-1-
phenylprop-2-yn-1-one (49c) (623.3 mg, 2.5 mmol) and propargylamine (165.2 mg,
3.0 mmol), which yielded 593.6 mg (78%) of the indicated product 26¢ as a yellow
oil (Rf=0.10 in 4:1 hexane/ethyl acetate). *H NMR (400 MHz, CDCl3) § 11.47 (s,
1H), 8.01-7.80 (m, 2H), 7.48-7.30 (m, 5H), 6.73 (d, J = 8.9 Hz, 2H), 5.88 (s, 1H),
4.06 (dd, J = 6.3, 2.5 Hz, 2H), 3.00 (s, 6H), 2.34 (t, J = 2.5 Hz, 1H); 3C NMR (100
MHz, CDCls) 6 188.2 (C=0), 166.9 (C), 151.4 (C), 140.4 (C), 130.6 (CH), 129.2
(CH), 128.1 (CH), 127.0 (CH), 121.7 (C), 111.5 (CH), 94.0 (CH), 80.3 (C), 72.3
(CH), 40.1 (N(CHz3)2), 34.4 (CH>). IR (neat): 3208, 2884, 2805, 2111, 1614, 1579,
1502, 1481, 1446, 1328, 1264, 1233, 1194, 1141, 1054, 928, 815, 797, 743, 729 cm’
1 'MS (ESI, m/z): 305.17 [M+H]"; HRMS (ESI) calcd. for C20H21N20: 305.1648
[M+H]*, found: 305.1653.
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4.2.4 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(4-
(trifluoromethyl)phenyl)prop-2-en-1-one (26d)

General procedure 2 was followed by employing 1-phenyl-3-(4-
(trifluoromethyl)phenyl)prop-2-yn-1-one (49d) (521.1 mg, 1.9 mmol) and
propargylamine (126.7 mg, 2.3 mmol), which yielded 582.1 mg (93%) of the
indicated product 26d as a brown solid (R = 0.63 in 4:1 hexane/ethyl acetate); mp
100.9-102.0 °C. *H NMR (400 MHz, CDCl3) 6 11.30 (t, J = 5.8 Hz, 1H), 7.96-7.86
(m, 2H), 7.73 (d, J = 8.1 Hz, 2H), 7.64-7.57 (m, 2H), 7.47-7.35 (m, 3H), 5.84 (m,
1H), 3.94-3.78 (m, 2H), 2.36 (t, J = 2.4 Hz, 1H); **C NMR (100 MHz, CDCls3) §
189.3 (C=0), 163.9 (C), 139.5 (C), 138.4 (C), 131.6 (q, 2J = 32.7 Hz, C), 131.2
(CH), 128.4 (CH), 128.3 (CH), 127.1 (CH), 125.6 (q, 3J = 3.7 Hz, CH), 125.1 (q, 1J
=272.4 Hz, CF3), 94.8 (CH), 79.5 (C), 72.7 (CH), 34.1 (CH>); IR (neat): 3055, 2116,
1600, 1583, 1548, 1502, 1430, 1321, 1294, 1240, 1225, 1163, 1104, 1072, 1050,
1015, 925, 849, 737 cm; MS (ESI, m/z): 330.11 [M+H]*; HRMS (ESI) calcd. for
C19H15F3NO: 330.1100 [M+H]*, found: 330.1100.

4.2.5 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(p-tolyl)prop-2-en-1-one (26€)

General procedure 2 was followed by employing 1-phenyl-3-(p-tolyl)prop-2-yn-1-
one (49e) (396.5 mg, 1.8 mmol) and propargylamine (121.2 mg, 2.2 mmol), which
yielded 462.5 mg (93%) of the indicated product 26e as a reddish orange oil (Rf =
0.50 in 4:1 hexane/ethyl acetate). *H NMR (400 MHz, CDCl3) § 11.27 (s, 1H), 7.85—
7.79 (m, 2H), 7.40-7.27 (m, 5H), 7.22-7.18 (m, 2H), 5.76 (s, 1H), 3.89 (dd, J = 6.3,
2.5 Hz, 2H), 2.34 (s, 3H), 2.23 (t, J = 2.5 Hz, 1H); **C NMR (100 MHz, CDCls) &
188.9 (C=0), 166.1 (C), 140.0 (C), 131.9 (C), 130.9 (C), 129.3 (CH), 128.2 (CH),
127.8 (CH), 127.1 (CH), 94.5 (CH), 79.9 (C), 72.5 (CH), 34.2 (CH2), 21.4 (CHs>)
(Note that two CH peaks overlap on each other); IR (neat): 3288, 3056, 3025, 2919,
1579, 1554, 1498, 1326, 1295, 1141, 1055, 1023, 825, 754, 690 cm™*; MS (ESI, m/z):
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376.14 [M+H]"; HRMS (ESI) calcd. for CioHisNO: 276.1383 [M+H]*, found:
276.1390.

4.2.6 3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-
1-one (26f)

General procedure 2 was followed by employing 3-(4-methoxyphenyl)-1-
phenylprop-2-yn-1-one (49f) (496.2 mg, 2.1 mmol) and propargylamine (137.7 mg,
2.5 mmol), which yielded 565.1 mg (92%) of the indicated product 26f as a reddish
orange oil (Rr = 0.29 in 4:1 hexane/ethyl acetate). *H NMR (400 MHz, CDCl3) &
11.36 (s, 1H), 7.90 (dd, J= 7.9, 1.4 Hz, 2H), 7.47-7.36 (m, 5H), 7.00-6.95 (m, 2H),
5.84 (s, 1H), 3.98 (dd, J = 6.3, 2.5 Hz, 2H), 3.86 (s, 3H), 2.32 (t, J = 2.4 Hz, 1H); *C
NMR (100 MHz, CDClz) & 188.7 (C=0), 165.8 (C), 160.8 (C), 140.0 (C), 130.8
(CH), 129.3 (CH), 128.1 (CH), 127.0 (CH), 126.9 (C), 114.0 (CH), 94.4 (CH), 79.9
(C), 72.4 (CH), 55.2 (OCH3), 34.2 (CH>). IR (neat): 3285, 3056, 2931, 2837, 1593,
1559, 1497, 1247, 1173, 1142, 1023, 836, 757, 689 cm™; MS (ESI, m/z): 292.13
[M+H]"; HRMS (ESI) calcd. for C19H18NO2: 292.1332 [M+H]", found: 292.1337.

4.2.7 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (269)

General procedure 2 was followed by employing 1-phenyl-3-(m-tolyl)prop-2-yn-1-
one (49g) (506.6 mg, 2.3 mmol) and propargylamine (154.2 mg, 2.8 mmol), which
yielded 573.5 mg (91%) of the indicated product 26g as a red oil (Rf = 0.51 in 4:1
hexane/ethyl acetate). *H NMR (400 MHz, CDCls) § 11.37 (s, 1H), 7.95-7.91 (m,
2H), 7.49-7.28 (m, 7H), 5.86 (s, 1H), 3.97 (dd, J = 6.2, 2.4 Hz, 2H), 2.44 (s, 3H),
2.34 (t, J = 2.4 Hz, 1H); *C NMR (100 MHz, CDCls) & 188.8 (C=0), 166.1 (C),
139.8 (C), 138.4 (C), 134.7 (C), 130.9 (CH), 130.5 (CH), 128.5 (CH), 128.3 (CH),
128.1 (CH), 127.0 (CH), 124.8 (CH), 94.3 (CH), 79.8 (C), 72.4 (CH), 34.1 (CHy),
21.3 (CH3); IR (neat): 3224, 3055, 2113, 1667, 1594, 1550, 1476, 1324, 1270, 1226,
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1173, 1134, 1054, 1024, 789, 733 cm™*; MS (ESI, m/z): 276.14 [M+H]*; HRMS
(ESI) calcd. for C19H1sNO: 276.1383 [M+H]*, found: 276.1380

4.2.8 1-Phenyl-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop-2-en-1-one
(26h)

General procedure 2 was followed by employing 1-phenyl-3-(thiophen-3-yl)prop-2-
yn-1-one (49h) (552.0 mg, 2.6 mmol) and propargylamine (170.7 mg, 3.1 mmol),
which yielded 639.3 mg (92%) of the indicated product 26h as a yellow solid (R =
0.50 in 4:1 hexane/ethyl acetate); mp 77.4-78.3 °C. *H NMR (400 MHz, CDCls) §
11.43 (s, 1H), 7.94 — 7.89 (m, 2H), 7.66-7.63 (m, 1H), 7.48-7.39 (m, 4H), 7.31-7.27
(m, 1H), 5.95 (s, 1H), 4.04 (dd, J = 6.3, 2.2 Hz, 2H), 2.38 (t, J = 2.4 Hz, 1H); *3C
NMR (100 MHz, CDClz) & 189.0 (C=0), 160.6 (C), 139.9 (C), 135.5 (C), 131.0
(CH), 128.3 (CH), 127.3 (CH), 127.1 (CH), 126.7 (CH), 126.3 (CH), 94.2 (CH), 80.0
(C), 72.7 (CH), 34.2 (CHy); IR (neat): 3249, 3214, 1653, 1593, 1577, 1290, 1247,
1227, 1079, 1057, 799, 754, 720 cm™*; MS (ESI, m/z): 268.08 [M+H]*; HRMS (ESI)
calcd. for C16H14aNOS: 268.0796 [M+H]*, found: 268.0775.

4.2.9 3-(4-(tert-Butyl)phenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-
en-1-one (26i)

General procedure 2 was followed by employing 3-(4-(tert-butyl)phenyl)-1-
phenylprop-2-yn-1-one (49i) (397.3 mg, 1.6 mmol) and propargylamine (104.7 mg,
1.9 mmol), which yielded 436.6 mg (86%) of the indicated product 26i as a yellow
solid (Rf = 0.57 in 4:1 hexane/ethyl acetate); mp 108.8-109.8 °C. *H NMR (400
MHz, CDClz) & 11.28 (s, 1H), 7.83-7.75 (m, 2H), 7.36-7.24 (m, 7H), 5.73 (s, 1H),
3.84 (dd, J=6.3, 2.4 Hz, 2H), 2.20 (t, J = 2.4 Hz, 1H), 1.23 (s, 9H); 3C NMR (100
MHz, CDCls) § 188.8 (C=0), 166.0 (C), 153.1 (C), 140.0 (C), 131.9 (C), 130.9 (CH),
128.2 (CH), 127.6 (CH), 127.1 (CH), 125.6 (CH), 94.5 (CH), 79.9 (C), 72.5 (CH),
34.8 (C), 34.3 (CH2), 31.2 (CH3); IR (neat): 3252, 2953, 2863, 1578, 1547, 1497,
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1353, 1290, 1266, 1147, 1107, 1054, 1022, 930, 840, 806, 756, 742, 706, 687 cmL;
MS (ESI, m/z): 318.18 [M+H]"; HRMS (ESI) calcd. for Cz2H2sNO: 318.1852
[M+H]*, found: 318.1859.

4.2.10 3-(4-Chlorophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-
one (26))

General procedure 2 was followed by employing 3-(4-chlorophenyl)-1-phenylprop-
2-yn-1-one (49j) (385.1 mg, 1.6 mmol) and propargylamine (104.7 mg, 1.9 mmol),
which yielded 425.5 mg (90%) of the indicated product 26j as a pale yellow solid (Rt
=0.50 in 4:1 hexane/ethyl acetate); mp 91.9-93.1°C. *H NMR (400 MHz, CDCls) §
11.26 (s, 1H), 7.94-7.82 (m, 2H), 7.48-7.37 (m, 7H), 5.81 (s, 1H), 3.92 (dd, J = 6.4,
2.4 Hz, 2H), 2.32 (t, J = 2.3 Hz, 1H); 3C NMR (100 MHz, CDCl3) § 189.1 (C=0),
164.4 (C), 139.6 (C), 135.8 (C), 133.2 (C), 131.1 (CH), 129.2 (CH), 128.9 (CH),
128.2 (CH), 127.1 (CH), 94.6 (CH), 79.6 (C), 72.7 (CH), 34.1 (CH>); IR (neat): 3229,
3065, 3027, 2184, 2164, 2114, 2026, 1983, 1895, 1593, 1561, 1543, 1518, 1477,
1431, 1395, 1352, 1327, 1295, 1267, 1144, 1091, 1074, 1015, 927, 838, 801, 774,
753, 698 cm™!; MS (ESI, m/z): 296.08 [M+H]"; HRMS (ESI) calcd. for C1gH15CINO:
296.0837 [M+H]*, found: 296.0848.

4211 3-(4-Bromophenyl)-1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-
one (26k)

General procedure 2 was followed by employing 3-(4-bromophenyl)-1-phenylprop-
2-yn-1-one (49Kk) (342.2 mg, 1.2 mmol) and propargylamine (77.1 mg, 1.4mmol),
which yielded 378.8 mg (93%) of the indicated product 26k as a brown solid (R =
0.51 in 4:1 hexane/ethyl acetate); mp 95.1-96.9 °C. *H NMR (400 MHz, CDCls) &
11.26 (s, 1H), 7.88 (d, J = 7.9 Hz, 2H), 7.57 (d, J = 8.1 Hz, 2H), 7.45-7.30 (m, 5H),
5.80 (s, 1H), 3.88 (dd, J = 6.2, 1.9 Hz, 2H), 2.33 (s, 1H); 1*C NMR (100 MHz, CDCls)
3 189.1 (C=0), 164.4 (C), 139.6 (C), 133.6 (C), 131.9 (C), 131.1 (CH), 129.4 (CH),
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128.2 (CH), 127.1 (CH), 124.1 (CH), 94.6 (CH), 79.6 (C), 72.7 (CH), 34.1 (CH>).
The spectral data were in agreement with those reported previously for this

compound.®

4.2.12 1-(4-Chlorophenyl)-3-(prop-2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-
1-one (26l)

General procedure 2 was followed by employing 1-(4-chlorophenyl)-3-(m-
tolyl)prop-2-yn-1-one (49l) (458.5 mg, 1.8 mmol) and propargylamine (121.2 mg,
2.2 mmol), which yielded 498.0 mg (89%) of the indicated product 261 as a pale
yellow solid (R = 0.54 in 4:1 hexane/ethyl acetate); mp 119.4-120.1°C. *H NMR
(400 MHz, CDCl3) 6 11.39 (t, J = 5.8 Hz, 1H), 7.83 (d, J = 8.3 Hz, 2H), 7.41-7.23
(m, 6H), 5.78 (s, 1H), 3.94 (dd, J = 6.2, 2.4 Hz, 2H), 2.41 (s, 3H), 2.35 (t, J = 2.4 Hz,
1H); 3C NMR (100 MHz, CDCl3) § 187.2 (C=0), 166.4 (C), 138.5 (C), 138.2 (C),
136.9 (C), 134.5 (C), 130.6 (CH), 128.51 (CH), 128.48 (CH), 128.3 (CH), 128.2
(CH), 124.7 (CH), 93.9 (CH), 79.7 (C), 72.5 (CH), 34.2 (CHy), 21.3 (CH3); IR (neat):
3242, 3089, 3059, 3029, 2974, 2857, 2112, 1589, 1518, 1394, 1352, 1293, 1269,
1229, 1174, 1134, 1105, 1088, 1072, 1011, 961, 929, 914, 887, 872, 838, 797, 786,
762,696 cm; MS (ESI, m/z): 310.10 [M+H]*; HRMS (ESI) calcd. for C19H17CINO:
310.0993 [M+H]*, found: 310.0989.

4.2.13 1-(4-Chlorophenyl)-3-(3-fluorophenyl)-3-(prop-2-yn-1-
ylamino)prop-2-en-1-one (26m)

General procedure 2 was followed by employing 1-(4-chlorophenyl)-3-(3-
fluorophenyl)prop-2-yn-1-one (49m) (388.0 mg, 1.5 mmol) and propargylamine
(99.1 mg, 1.8 mmol), which yielded 431.8 mg (92%) of the indicated product 26m
as a pale yellow solid (Rf = 0.48 in 4:1 hexane/ethyl acetate); mp 132.8-133.6°C. H
NMR (400 MHz, CDClz) 6 11.28 (s, 1H), 7.90-7.78 (m, 2H), 7.49-7.41 (m, 1H),
7.30-7.26 (m, 2H), 7.28 (d, J=7.0 Hz, 1H), 7.24-7.15 (m, 2H), 5.78 (s, 1H), 3.98-

70



3.88 (m, 2H), 2.36 (s,1H); **C NMR (100 MHz, CDCls3) § 187.8 (C=0), 164.6 (C),
162.6 (d, 1J = 248.4 Hz, CF), 138.1 (C), 137.3 (C), 136.7 (d, 3J = 7.8 Hz, C), 130.6
(d, 3 =8.3 Hz, CH), 128.6 (CH), 128.5 (CH), 123.7 (d, *J = 3.0 Hz, CH), 117.0 (d,
2J=21.1 Hz, CH), 115.2 (d, 2J = 22.9 Hz, CH), 94.3 (CH), 79.5 (C), 72.9 (CH), 34.3
(CH>); IR (neat): 3232, 1570, 1545, 1473, 1325, 1282, 1265, 1231, 1092, 1065, 898,
764 cm™*; MS (ESI, m/z): 314.07 [M+H]*; HRMS (ESI) calcd. for C1sH14CIFNO:
314.0743 [M+H]*, found: 314.0746.

4.2.14 1-(4-Chlorophenyl)-3-(prop-2-yn-1-ylamino)-3-(thiophen-3-yl)prop-
2-en-1-one (26n)

General procedure 2 was followed by employing 1-(4-chlorophenyl)-3-(thiophen-3-
yl)prop-2-yn-1-one (49n) (444.1 mg, 1.8 mmol) and propargylamine (121.2 mg, 2.2
mmol),which yielded 431.9 mg (80%) of the indicated product 26n as a yellow solid
(Rf = 0.51 in 4:1 hexane/ethyl acetate); mp 110.0-112.0 °C. 'H NMR (400 MHz,
CDCl3) 6 11.42 (s, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.68-7.62 (m, 1H), 7.43 (dd, J =
4.8, 2.9 Hz, 1H), 7.37 (d, J = 7.7 Hz, 2H), 7.30-7.26 (m,1H), 5.87 (s, 1H), 4.10-
3.99 (m, 2H), 2.38 (s, 1H); *C NMR (100 MHz, CDCls) § 187.4 (C=0), 161.0 (C),
138.3 (C), 137.1 (C), 135.3 (C), 128.6 (CH), 128.5 (CH), 127.3 (CH), 126.8 (CH),
126.5 (CH), 93.9 (CH), 79.9 (C), 72.8 (CH), 34.3 (CH2); IR (neat): 3219, 1574, 1548,
1497, 1479, 1412, 1369, 1312, 1274, 1246, 1224, 1169, 1130, 1091, 1059, 1013,
931, 898, 869, 840, 826, 793, 760, 732, 708, 676, 627 cm™; MS (ESI, m/z): 302.04
[M+H]"; HRMS (ESI) calcd. for C16H13NOS: 302.0401 [M+H]", found: 302.0410.

4.2.15 3-(4-(tert-Butyl)phenyl)-1-(4-chlorophenyl)-3-(prop-2-yn-1-
ylamino)prop-2-en-1-one (260)

General procedure 2 was followed by employing 3-(4-(tert-butyl)phenyl)-1-(4-
chlorophenyl)prop-2-yn-1-one (490) (385.8 mg, 1.3 mmol) and propargylamine
(88.1 mg, 1.6 mmol), which yield 410.6 mg (90%) of the indicated product 260 as a
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reddish brown oil (Rf = 0.63 in 4:1 hexane/ethyl acetate). 'H NMR (400 MHz,
CDCl3) 6 11.28 (s, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.30 (d, J
= 8.3 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 5.67 (s, 1H), 3.86 (dd, J = 6.2, 2.3 Hz, 2H),
2.22 (t, J = 2.3 Hz, 1H), 1.24 (s, 9H); *C NMR (100 MHz, CDCl3) § 187.3 (C=0),
166.4 (C), 153.3 (C), 138.4 (C), 136.9 (C), 131.7 (C), 128.6 (CH), 128.4 (CH), 127.6
(CH), 125.7 (CH), 94.1 (CH), 79.8 (C), 72.6 (CH), 34.8 (C), 34.3 (CH>), 31.2 (CH?3);
IR (neat): 3296, 2961, 1575, 1548, 1498, 1478, 1397, 1362, 1324, 1295, 1267, 1147,
1107, 1090, 1058, 1011, 841, 776, 660 cm™; MS (ESI, m/z): 352.14 [M+H]*; HRMS
(ESI) calcd. for C22H23CINO: 352.1463 [M+H]", found: 352.1471.

4.2.16 3-Phenyl-3-(prop-2-yn-1-ylamino)-1-(p-tolyl)prop-2-en-1-one (26p)

General procedure 2 was followed by employing 3-phenyl-1-(p-tolyl)prop-2-yn-1-
one (49p) (506.6 mg, 2.3 mmol) and propargylamine (154.2 mg, 2.8 mmol), which
yielded 550.6 mg (87%) of the indicated product 26p as a yellowish orange solid (Rt
= 0.48 in 4:1 hexane/ethyl acetate). *H NMR (400 MHz, CDCl3) & 11.31 (s, 1H),
7.82 (d, J = 8.2 Hz, 2H), 7.51-7.42 (m, 5H), 7.21 (d, J = 8.0 Hz, 2H), 5.83 (s,1H),
3.93 (dd, J = 6.3, 2.5 Hz, 2H), 2.36 (s,3H), 2.31 (t, J = 2.5 Hz, 1H); *C NMR (100
MHz, CDCls3) § 189.0 (C=0), 165.6 (C), 141.4 (C), 137.3 (C), 135.0 (C), 129.8 (CH),
129.0 (CH), 128.7 (CH), 127.9 (CH), 127.3 (CH), 94.6 (CH), 79.9 (C), 72.5 (CH),
34.2 (CH2), 21.5 (CHzs). The spectral data were in agreement with those reported for

this compound.®®

4.2.17 1-(4-Chlorophenyl)-3-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-
one (26q)

General procedure 2 was followed by employing 1-(4-chlorophenyl)-3-phenylprop-
2-yn-1-one (49q) (433.2 mg, 1.8 mmol) and propargylamine (121.2 mg, 2.2 mmol),
which yielded 459.2 mg (86%) of the indicated product 269 as a yellow solid (R =
0.45 in 4:1 hexane/ethyl acetate). 'H NMR (400 MHz, CDCl3) & 11.37 (s, 1H), 7.88—
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7.80 (m, 2H), 7.49 (s, 5H), 7.40-7.34 (m, 2H), 5.80 (s, 1H), 3.96 (dd, J = 6.3, 2.5
Hz, 2H), 2.35 (t, J = 2.5 Hz, 1H); **C NMR (100 MHz, CDCl3) § 187.5 (C=0), 166.2
(C), 138.3 (C), 137.1 (C), 134.7 (C), 130.0 (CH), 128.8 (CH), 128.6 (CH), 128.5
(CH), 127.8 (CH), 94.2 (CH), 79.7 (C), 72.7 (CH), 34.3 (CH>). The spectral data

were in agreement with those reported previously for this compound.3®

4.2.18 3-(Prop-2-yn-1-ylamino)-3-(thiophen-3-yl)-1-(p-tolyl)prop-2-en-1-
one (26r)

General procedure 2 was followed by employing 3-(thiophen-3-yl)-1-(p-tolyl)prop-
2-yn-1-one (49r) (407.3 mg, 1.8 mmol) and propargylamine (121.2 mg, 2.2 mmol),
which yielded 435.2 mg (86%) of the indicated product 26r as a brown oil (Rf=0.31
in 4:1 hexane/ethyl acetate). *tH NMR (400 MHz, CDCl3) & 11.39 (s, 1H), 7.83 (d, J
= 8.1 Hz, 2H), 7.66-7.55 (m, 1H), 7.47-7.34 (m, 1H), 7.27 (d, J = 5.0 Hz, 1H), 7.21
(d, J=7.9 Hz, 2H), 5.93 (s, 1H), 4.01 (d, J = 5.7 Hz, 2H), 2.37 (s, 3H), 2.36 (s, 1H);
13C NMR (100 MHz, CDCls) § 188.7 (C=0), 160.2 (C), 141.3 (C), 137.2 (C), 135.5
(C), 128.9 (CH), 127.2 (CH), 127.1 (CH), 126.5 (CH), 126.1 (CH), 94.0 (CH), 80.1
(C), 72.5 (CH), 34.1 (CH2), 21.4 (CH3); IR (neat): 3286, 3100, 2917, 1667, 1573,
1487, 1369, 1278, 1178, 1132,1057, 1016, 768, 635 cm™; MS (ESI, m/z): 282.10
[M+H]"; HRMS (ESI) calcd. for C17H1sNOS: 282.0953 [M+H]", found: 282.0948.

4.2.19 3-(3,4-Dichlorophenyl)-3-(prop-2-yn-1-ylamino)-1-(p-tolyl)prop-2-
en-1-one (26s)

General procedure 2 was followed by employing 3-(3,4-dichlorophenyl)-1-(p-
tolyl)prop-2-yn-1-one (49s) (318.1 mg, 1.1 mmol) and propargylamine (71.6 mg, 1.3
mmol), which yielded 265.1 mg (70%) of the indicated product 26s as a yellow solid
(R = 0.44 in 4:1 hexane/ethyl acetate); mp 116.5-117.1°C. 'H NMR (400 MHz,
CDCl3) 8 11.13 (t,J=6.0 Hz, 1H), 7.79 (d, J = 8.1 Hz, 2H), 7.60 (d, J = 1.9 Hz, 1H),
7.52(d, J=8.2 Hz, 1H), 7.34 (dd, J = 8.2, 2.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 5.79

73



(s, 1H), 3.88 (dd, J = 6.4, 2.5 Hz, 2H), 2.37 (s, 3H), 2.33 (t, J = 2.5 Hz, 1H); 3°C
NMR (100 MHz, CDCls) 5 189.3 (C=0), 162.7 (C), 141.9 (C), 136.9 (C), 134.9 (C),
134.2 (C), 133.1 (C), 130.8 (CH), 129.9 (CH), 129.1 (CH), 127.3 (CH), 94.9 (CH),
79.7 (C), 72.8 (CH), 34.2 (CHy), 21.5 (CHzs) (Note that two CH peaks overlap on
each other); IR (neat): 3210, 2960, 1596, 1570, 1544, 1459, 1372, 1297, 1258, 1182,
1140, 1054, 1015, 891, 795, 768, 664, 628 cm™; MS (ESI, m/z): 344.06 [M+H]";
HRMS (ESI) calcd. for C19H16CI2NO: 344.0604 [M+H]*, found: 344.0612.

4.2.20 3-(4-Chlorophenyl)-3-(prop-2-yn-1-ylamino)-1-(p-tolyl)prop-2-en-1-
one (26t)

General procedure 2 was followed by employing 3-(4-chlorophenyl)-1-(p-
tolyl)prop-2-yn-1-one (49t) (280.2 mg, 1.1 mmol) and propargylamine (71.6 mg, 1.3
mmol), which yielded 241.9 mg (71%) of the indicated product 26t as a brown oil
(Rr = 0.53 in 4:1 hexane/ethyl acetate). *H NMR (400 MHz, CDClz) § 11.23 (t,J =
5.9 Hz, 1H), 7.80 (d, J = 8.2 Hz, 2H), 7.43 (s, 4H), 7.20 (d, J = 8.0 Hz, 2H), 5.80 (s,
1H), 3.89 (dd, J = 6.4, 2.5 Hz, 2H), 2.37 (s, 3H), 2.31 (t, J = 2.5 Hz, 1H); 3C NMR
(100 MHz, CDCl3) 6 189.1 (C=0), 164.2 (C), 141.6 (C), 137.0 (C), 135.9 (C), 133.4
(C), 129.3 (CH), 129.02 (CH), 128.99 (CH), 127.3 (CH), 94.7 (CH), 79.8 (C), 72.6
(CH), 34.2 (CH>), 21.5 (CH?3); IR (neat): 3290, 2216, 1658, 1576, 1554, 1323, 1299,
1179, 1141, 1088, 1055, 1014, 835, 769, 661 cm™; MS (ESI, m/z): 310.10 [M+H]";
HRMS (ESI) calcd. for C19H17CINO: 310.0993 [M+H]", found: 310.1002.

4.3  General procedure 3 for the synthesis of 2,3-dihydro-1,4-oxazepines 37

To a stirred solution of corresponding N-propargylic B-enaminone 26 (1.0 mmol) in
CHCIs (10.0 ml) was added ZnCl> (1.0 mmol). Then, the reaction mixture was
refluxed under argon atmosphere for approximately 2 h. During the course of the
reaction, the progress was monitored by TLC (9:1 hexane/ethyl acetate) (Note that

the reaction was continued until N-propargylic f-enaminone 26 was completely
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consumed). When the reaction was over, the solvent removed by rotary evaporator
and extraction was performed with ethyl acetate (40 ml) and saturated NH4Cl (15
ml). After the separation of organic and aqueous phases, aqueous phase was
extracted with ethyl acetate (2 x 35 ml). After combining organic phases, organic
phase dried over MgSO4 and evaporated on a rotary evaporator to give the crude
product. Flash chromatography on silica gel was used to purify crude product by
using hexane/ethyl acetate (9:1 followed by 4:1) as the eluent and to afford
corresponding 2,3-dihydro-1,4-oxazepine derivative 37.

4.3.1 2-Methylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (37a)

General procedure 3 was followed by employing 1,3-diphenyl-3-(prop-2-yn-1-
ylamino)prop-2-en-1-one (26a) (287.5 mg, 1.1 mmol) and ZnCl, (149.9 mg, 1.1
mmol), which yielded 273.2 mg (95%) of the indicated product 37a as a brown solid
(Rf = 0.26 in 4:1 hexane/ethyl acetate); mp 94.2-95.9 °C. 'H NMR (400 MHz,
CDClI3) 6 7.94-7.69 (m, 4H), 7.53-7.37 (m, 6H), 6.40 (s, 1H), 4.76 (s, 1H), 4.57 (s,
2H), 4.39 (d, J = 1.3 Hz, 1H); *C NMR (100 MHz, CDCls3) § 167.1 (C), 158.9 (C),
158.2 (C), 139.8 (C), 135.2 (C), 130.2 (CH), 130.0 (CH), 128.6 (CH), 128.4 (CH),
127.4 (CH), 126.3 (CH), 99.8 (CH), 93.9 (CH2), 55.6 (CHz); IR (neat): 3104, 3059,
2994, 2955, 2837, 1656, 1627, 1587, 1570, 1491, 1446, 1361, 1313, 1290, 1260,
1230, 1191, 1176, 1110, 1076, 1055, 1027, 999, 946, 926, 882, 832, 804, 762 cm™;
MS (ESI, m/z): 262.12 [M+H]"; HRMS (ESI) calcd. for CigH1sNO: 262.1226
[M+H]", found: 262.1236. The spectral data were in agreement with those reported

previously for this compound.*!

4.3.2 5-(3-Fluorophenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-
oxazepine (37b)

General procedure 3 was followed by employing 3-(3-fluorophenyl)-1-phenyl-3-
(prop-2-yn-1-ylamino)prop-2-en-1-one (26b) (251.4 mg, 0.9 mmol) and ZnCl;
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(122.7 mg, 0.9 mmol), which yielded 211.3 mg (84%) of the indicated product 37b
as an orange solid (Rr = 0.45 in 4:1 hexane/ethyl acetate); mp 67.7-68.5 °C. *H NMR
(400 MHz, CDCl3) & 7.79-7.74 (m, 2H), 7.59-7.56 (m, 1H), 7.55-7.51 (m, 1H),
7.47-7.41 (m, 3H), 7.37 (td, J = 8.0, 5.9 Hz, 1H), 7.13 (ddd, J = 8.3, 5.1, 1.8 Hz,
1H), 6.35 (s, 1H), 4.78 (s, 1H), 4.56 (s, 2H), 4.41 (d, J = 1.5 Hz, 1H); *3C NMR (100
MHz, CDCls) § 166.0 (C), 162.9 (d, 1J = 246.3 Hz, CF), 159.4 (C), 158.0 (C), 142.1
(d, 3J = 7.1 Hz, C), 135.1 (C), 130.4 (CH), 130.0 (d, 3J = 8.0 Hz, CH), 128.7 (CH),
126.4 (CH), 123.2 (d, *J = 2.6 Hz, CH), 117.0 (d, 2J = 21.6 Hz, CH), 114.5 (d, 2] =
22.7 Hz, CH), 99.2 (CH), 94.4 (CH), 55.6 (CH>); IR (neat): 3102, 2993, 2951, 2837,
1731, 1704, 1656, 1624, 1569, 1483, 1447, 1431, 1361, 1313, 1296, 1261, 1248,
1196, 1174, 1104, 1077, 1055, 874, 825, 790, 762 cm™; MS (ESI, m/z): 280.11
[M+H]*; HRMS (ESI) calcd. for C1sH1sFNO: 280.1132 [M+H]*, found: 280.1137.

4.3.3 N,N-Dimethyl-4-(2-methylene-7-phenyl-2,3-dihydro-1,4-oxazepin-5-
yDaniline (37c)

General procedure 3 was followed by employing 3-(4-(dimethylamino)phenyl)-1-
phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26¢) (334.8 mg, 1.1 mmol) and
ZnCl3 (149.9 mg, 1.1 mmol), which yielded 204.5 mg (61%) of the indicated product
37c as a brownish yellow oil (Rt = 0.30 in 4:1 hexane/ethyl acetate). *H NMR (400
MHz, CDCls) § 7.80-7.75 (m, 2H), 7.74-7.69 (m, 2H), 7.49-7.40 (m, 3H), 6.70 (d,
J = 8.9 Hz, 2H), 6.43 (s, 1H), 4.69 (s, 1H), 4.51 (s, 2H), 4.35 (d, J = 1.2 Hz, 1H),
3.01 (s, 6H); *3C NMR (100 MHz, CDCl3) § 166.5 (C), 159.0 (C), 158.5 (C), 151.8
(C), 135.5 (C), 130.0 (CH), 128.8 (CH), 128.6 (CH), 127.2 (C), 126.3 (CH), 111.5
(CH), 100.3 (CH), 93.2 (CHy), 54.8 (CH2), 40.3 (N(CH3)2); IR (neat): 2891, 2828,
1737, 1646, 1629, 1606, 1578, 1548, 1523, 1490, 1447, 1357, 1317, 1267, 1189,
1107, 1059, 811, 758, 683 cm; MS (ESI, m/z): 305.17 [M+H]*; HRMS (ESI) calcd.
for C2oH2:N20: 305.1648 [M+H]*, found: 305.1662.
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4.3.4 2-Methylene-7-phenyl-5-(4-(trifluoromethyl)phenyl)-2,3-dihydro-
1,4-oxazepine (37d)

General procedure 3 was followed by employing 1-phenyl-3-(prop-2-yn-1-ylamino)-
3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (26d) (230.5 mg, 0.7 mmol) and
ZnCl; (95.4 mg, 0.7 mmol), which yielded 172.9 mg (75%) of the indicated product
37d as a yellowish orange solid. (Rf = 0.67 in 4:1 hexane/ethyl acetate); mp 101.9—
103.4 °C. 'H NMR (400 MHz, CDCl3) 6 7.91 (d, J = 8.1 Hz, 2H), 7.79-7.74 (m, 2H),
7.67 (d, J = 8.2 Hz, 2H), 7.50-7.40 (m, 3H), 6.35 (s, 1H), 4.79 (d, J = 0.6 Hz, 1H),
458 (s, 2H), 4.42 (d, J = 1.5 Hz, 1H); *C NMR (100 MHz, CDCls3) & 165.8 (C),
159.6 (C), 157.8 (C), 143.1 (C), 134.9 (C), 131.7 (g, 2J = 32.4 Hz, C), 130.4 (CH),
128.7 (CH), 127.8 (CH), 126.3 (CH), 125.3 (q, 3J = 3.7 Hz, CH), 124.1 (q, 10 = 272.2
Hz, CFs3), 98.9 (CH), 94.5 (CH2), 55.8 (CH.); IR (neat): 3109, 3085, 3054, 3039,
1660, 1623, 1568, 1565, 1491, 1446, 1408, 1365, 1326, 1315, 1264, 1201, 1183,
1153, 1105, 1067, 1014, 947, 884, 861, 819, 759 cm™; MS (ESI, m/z): 330.11
[M+H]"; HRMS (ESI) calcd. for C19H15FsNO: 330.1100 [M+H]*, found: 330.1101.

4.3.5 2-Methylene-7-phenyl-5-(p-tolyl)-2,3-dihydro-1,4-oxazepine (37¢€)

General procedure 3 was followed by employing 1-phenyl-3-(prop-2-yn-1-ylamino)-
3-(p-tolyl)prop-2-en-1-one (26e) (220.3 mg, 0.8 mmol) and ZnCl, (109.0 mg, 0.8
mmol), which yielded 154.1 mg (70%) of the indicated product 37e as a brownish
solid (Rr = 0.48 in 4:1 hexane/ethyl acetate); mp 73.0-75.0 °C. *H NMR (400 MHz,
CDCl3) 8 7.78-7.74 (m, 2H), 7.69 (d, J = 8.1 Hz, 2H), 7.46-7.41 (m, 3H), 7.21 (d, J
= 8.0 Hz, 2H), 6.39 (s, 1H), 4.73 (s, 1H), 4.54 (s, 2H), 4.37 (d, J = 1.4 Hz, 1H), 2.39
(s, 3H); 3C NMR (100 MHz, CDCl3) § 166.7 (C), 158.6 (C), 158.3 (C), 140.0 (C),
136.9 (C), 135.1 (C), 130.0 (CH), 129.0 (CH), 128.5 (CH), 127.3 (CH), 126.2 (CH),
99.8 (CH), 93.5 (CHy), 55.3 (CH>), 21.3 (CHg); IR (neat): 3112, 3055, 3025, 3000,
2962, 2836, 1659, 1624, 1584, 1561, 1508, 1492, 1446, 1362, 1316, 1292, 1264,
1229, 1198, 1179, 1109, 1063, 1028, 950, 882, 854, 812, 758 cm™; MS (ESI, m/z):
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276.14 [M+H]"; HRMS (ESI) calcd. for CioHisNO: 276.1383 [M+H]*, found:
276.1386.

4.3.6 5-(4-Methoxyphenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-
oxazepine (37f)

General procedure 3 was followed by employing 3-(4-methoxyphenyl)-1-phenyl-3-
(prop-2-yn-1-ylamino)prop-2-en-1-one (26f) (203.9 mg, 0.7 mmol) and ZnCl; (95.4
mg, 0.7 mmol), which yielded 146.8 mg (72%) of the indicated product 37f as a
yellow solid (Rf = 0.21 in 4:1 hexane/ethyl acetate); mp 112.0-113.5 °C. *H NMR
(400 MHz, CDCl3) 6 7.79-7.73 (m, 4H), 7.46-7.40 (m, 3H), 6.92 (d, J = 8.7 Hz,
2H), 6.39 (s, 1H), 4.72 (s, 1H), 4.52 (s, 2H), 4.37 (d, J = 1.1 Hz, 1H), 3.84 (s, 3H);
13C NMR (100 MHz, CDCls3) § 166.1 (C), 161.1 (C), 158.54 (C), 158.49 (C), 135.1
(C), 132.2 (C), 130.0 (CH), 128.8 (CH), 128.5 (CH), 126.2 (CH), 113.5 (CH), 99.8
(CH), 93.3 (CH2), 55.2 (OCHB3), 55.1 (CH?2); IR (neat): 3081, 3052, 2996, 2953, 2835,
1656, 1630, 1604, 1586, 1562, 1510, 1492, 1462, 1432, 1367, 1315, 1299, 1254,
1199, 1172, 1109, 1063, 1029, 999 869, 856, 820 762 cm™; MS (ESI, m/z): 292.13
[M+H]*; HRMS (ESI) calcd. for C1oH1sNO»: 292.1332 [M+H]", found: 292.1346.

4.3.7 2-Methylene-7-phenyl-5-(m-tolyl)-2,3-dihydro-1,4-oxazepine (379)

General procedure 3 was followed by employing 1-phenyl-3-(prop-2-yn-1-ylamino)-
3-(m-tolyl)prop-2-en-1-one (269) (385.5 mg, 1.4 mmol) and ZnCl; (190.8 mg, 1.4
mmol), which yielded 285.3 mg (74%) of the indicated product 379 as an orange oil
(Rr = 0.48 in 4:1 hexane/ethyl acetate). *H NMR (400 MHz, CDCl3) § 7.86—7.79 (m,
2H), 7.70 (s, 1H), 7.63 (d, J = 7.5 Hz, 1H), 7.52-7.45 (m, 3H), 7.38-7.26 (m, 2H),
6.44 (s, 1H), 4.81 (s, 1H), 4.60 (s, 2H), 4.44 (d, J = 1.3 Hz, 1H), 2.45 (s, 3H); 13C
NMR (100 MHz, CDCls) & 167.1 (C), 158.7 (C), 158.2 (C), 139.7 (C), 138.0 (C),
135.1 (C), 130.7 (CH), 130.1 (CH), 128.5 (CH), 128.2 (CH), 127.9 (CH), 126.2
(CH), 124.6 (CH), 99.8 (CH), 93.8 (CH2), 55.4 (CH2), 21.4 (CHg); IR (neat): 3056,
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3026, 2920, 1707, 1657, 1622, 1596, 1546, 1491, 1447, 1373, 1315, 1260, 1198,
1067, 1044, 1024, 999, 907, 831, 787, 764 cm™X; MS (ESI, m/z): 276.14 [M+H]";
HRMS (ESI) calcd. for C19H1sNO: 276.1383 [M+H]*, found: 276.1394.

4.3.8 2-Methylene-7-phenyl-5-(thiophen-3-yl)-2,3-dihydro-1,4-oxazepine
(37h)

General procedure 3 was followed by employing 1-phenyl-3-(prop-2-yn-1-ylamino)-
3-(thiophen-3-yl)prop-2-en-1-one (26h) (294.1 mg, 1.1 mmol) and ZnCl, (149.9 mg,
1.1 mmol), which yielded 241.1 mg (82%) of the indicated product 37h as a yellow
solid (Rr = 0.42 in 4:1 hexane/ethyl acetate); mp 98.0-100.0 °C. *H NMR (400 MHz,
CDCl3) 6 7.81-7.75 (m, 2H), 7.70-7.67 (m, 1H), 7.60 (d, J = 5.0 Hz, 1H), 7.46 (s,
3H), 7.35-7.29 (m, 1H), 6.42 (s, 1H), 4.78 (s, 1H), 4.55 (s, 2H), 4.42 (s, 1H); ©°C
NMR (100 MHz, CDCls3) 8 162.1 (C), 158.3 (C), 158.0 (C), 142.7 (C), 135.0 (C),
130.1 (CH), 128.5 (CH), 126.7 (CH), 126.2 (CH), 125.9 (CH), 125.6 (CH), 99.3
(CH), 93.9 (CH2), 55.2 (CH>); IR (neat): 3098, 2989, 2954, 2832, 1656, 1626, 1577,
1492, 1448, 1352, 1312, 1283, 1261, 1194, 1110, 1057, 1028, 872, 764, 689 cm:;
MS (ESI, m/z): 268.08 [M+H]"; HRMS (ESI) calcd. for C16H12NOS: 268.0791
[M+H]*, found: 268.0791.

4.3.9 5-(4-(tert-Butyl)phenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-
oxazepine (37i)

General procedure 3 was followed by employing 3-(4-(tert-butyl)phenyl)-1-phenyl-
3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26i) (253.9 mg, 0.8 mmol) and ZnCl;
(209.0 mg, 0.8 mmol),which yielded 223.8 mg (88%) of the indicated product 37i as
a brownish orange oil (Rs = 0.58 in 4:1 hexane/ethyl acetate). *H NMR (400 MHz,
CDCl3) § 7.89-7.75 (m, 4H), 7.52-7.43 (m, 5H), 6.47 (s, 1H), 4.79 (s, 1H), 4.60 (s,
2H), 4.42 (d, J = 1.3 Hz, 1H), 1.40 (s, 9H); *C NMR (100 MHz, CDCls) § 166.8
(C), 158.6 (C), 158.3 (C), 153.3 (C), 137.0 (C), 135.2 (C), 130.1 (CH), 128.6 (CH),
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127.2 (CH), 126.3 (CH), 125.3 (CH), 99.9 (CH), 93.7 (CH>), 55.5 (CH2), 34.8 (C),
31.3 (CHa). IR (neat): 2960, 1654, 1622, 1573, 1493, 1448, 1361, 1313, 1291, 1261,
1192, 1106, 1061, 1019, 999, 946, 820, 763, 731, 683, 613 cm; MS (ESI, m/z):
318.19 [M+H]"; HRMS (ESI) calcd. for CasHasNO: 318.1859 [M+H]*, found:
318.1852.

4.3.10 5-(4-Chlorophenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-
oxazepine (37))

General procedure 3 was followed by employing 3-(4-chlorophenyl)-1-phenyl-3-
(prop-2-yn-1-ylamino)prop-2-en-1-one (26j) (207.0 mg, 0.7 mmol) and ZnCl; (95.4
mg, 0.7 mmol), which yielded 175.9 mg (85%) of the indicated product 37j as a
brown solid (Rf = 0.61 in 4:1 hexane/ethyl acetate); mp 112.9-114.8 °C. *H NMR
(400 MHz, CDCl3) 6 7.80-7.66 (m, 4H), 7.46-7.30 (m, 5H), 6.32 (s, 1H), 4.77 (s,
1H), 4.54 (s, 2H), 4.39 (d, J = 8.2 Hz, 1H); *C NMR (100 MHz, CDCl3) § 165.7
(C), 159.2 (C), 158.0 (C), 138.1 (C), 136.0 (C), 134.9 (C), 130.2 (CH), 128.7 (CH),
128.6 (CH), 128.4 (CH), 126.2 (CH), 99.1 (CH), 94.0 (CH), 55.5 (CH>); IR (neat):
2961, 1660, 1624, 1584, 1559, 1487, 1446, 1397, 1363, 1315, 1290, 1263, 1197,
1115, 1103, 1083, 1062, 1026, 1011, 944, 881, 855, 815, 760, 730, 688, 606 cm™;
MS (ESI, m/z): 296.08 [M+H]"; HRMS (ESI) calcd. for C1gH1sCINO: 296.0842
[M+H]*, found: 296.0837.

4.3.11 5-(4-Bromophenyl)-2-methylene-7-phenyl-2,3-dihydro-1,4-
oxazepine (37Kk)

General procedure 3 was followed by employing 3-(4-bromophenyl)-1-phenyl-3-
(prop-2-yn-1-ylamino)prop-2-en-1-one (26k) (204.1 mg, 0.6 mmol) and ZnCl; (81.8
mg, 0.6 mmol), which yielded 177.9 mg (87%) of the indicated product 37k as an
orange solid (R = 0.42 in 4:1 hexane/ethyl acetate); mp 120.3-121.9 °C. *H NMR
(400 MHz, CDCl3) 6 7.81-7.74 (m, 2H), 7.69 (t, J = 7.8 Hz, 2H), 7.58-7.51 (m,
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2H), 7.50-7.41 (m, 3H), 6.34 (d, J = 7.2 Hz, 1H), 4.79 (d, J = 7.1 Hz, 1H), 4.56 (d,
J=7.3 Hz, 2H), 4.45-4.39 (m, 1H); 1*C NMR (100 MHz, CDCls) § 166.0 (C), 159.3
(C), 158.0 (C), 138.6 (C), 135.0 (C), 131.5 (CH), 130.3 (CH), 129.0 (CH), 128.6
(CH), 126.3(CH), 124.6 (C), 99.1 (CH), 94.2 (CH>), 55.6 (CH2); IR (neat): 2960,
1661, 1623, 1585, 1557, 1483, 1446, 1393, 1363, 1315, 1297, 1262, 1197, 1114,
1102, 1068, 1025, 1008, 949, 883, 855, 826, 814, 760, 723, 688 cm™:; MS (ESI, m/2):
340.03 [M+H]*; HRMS (ESI) calcd. for C1gH15™°BrNO: 340.0334 [M+H]", found:
340.0332.

4.3.12 7-(4-Chlorophenyl)-2-methylene-5-(m-tolyl)-2,3-dihydro-1,4-

oxazepine (371)

General procedure 3 was followed by employing 1-(4-chlorophenyl)-3-(prop-2-yn-
1-ylamino)-3-(m-tolyl)prop-2-en-1-one (261) (247.8 mg, 0.8 mmol) and ZnCl;
(109.0 mg, 0.8 mmol), which yielded 214.8 mg (87%) of the indicated product 37|
as a pale yellow solid (Rr= 0.42 in 4:1 hexane/ethyl acetate); mp 89.0-91.0 °C. 'H
NMR (400 MHz, CDCl3) & 7.71 (d, J = 8.7 Hz, 2H), 7.65 (s, 1H), 7.57 (d, J = 7.5
Hz, 1H), 7.41 (d, J = 8.7 Hz, 2H), 7.35-7.25 (m, 2H), 6.38 (s, 1H), 4.77 (s, 1H), 4.57
(s, 2H), 4.42 (d, J = 1.4 Hz, 1H), 2.42 (s, 3H); 1*C NMR (100 MHz, CDCls3) § 167.0
(C), 158.1 (C), 157.6 (C), 139.6 (C), 138.1 (C), 136.2 (C), 133.6 (C), 130.9 (CH),
128.8 (CH), 128.3 (CH), 127.9 (CH), 127.6 (CH), 124.6 (CH), 100.0 (CH), 94.1
(CHy), 55.5 (CH2), 21.5 (CHBa); IR (neat): 3053, 2960, 1645, 1624, 1572, 1491, 1404,
1361, 1318, 1262, 1200, 1114, 1087, 1063, 1010, 908, 874, 934, 809, 779, 696, 668,
631, 607 cm™; MS (ESI, m/z): 310.10 [M+H]*; HRMS (ESI) calcd. for C19H17CINO:
310.1000 [M+H]*, found: 310.0993.
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4.3.13 7-(4-Chlorophenyl)-5-(3-fluorophenyl)-2-methylene-2,3-dihydro-

1,4-oxazepine (37m)

General procedure 3 was followed by employing 1-(4-chlorophenyl)-3-(3-
fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26m) (219.6 mg, 0.7
mmol) and ZnCl> (95.4 mg, 0.7 mmol), which yielded 163.0 mg (74%) of the
indicated product 37m as an orange solid (Rs = 0.48 in 4:1 hexane/ethyl acetate); mp
114.5.0-115.6 °C. *H NMR (400 MHz, CDCls) § 7.67 (d, J = 8.6 Hz, 2H), 7.55-7.47
(m, 2H), 7.40-7.32 (m, 3H), 7.15-7.07 (m, 1H), 6.30 (s, 1H), 4.76 (s, 1H), 4.54 (s,
2H), 4.40 (d, J = 1.4 Hz, 1H); 3C NMR (100 MHz, CDCls3) § 165.6 (C), 162.8 (d, 1J
= 246.6 Hz, CF), 158.1 (C), 157.8 (C), 141.9 (d, ®J = 7.1 Hz, C), 136.4 (C), 133.4
(C), 129.9 (d, 3J=8.1 Hz, CH), 128.9 (CH), 127.6 (CH), 123.1 (d, *J = 2.6 Hz, CH),
117.0 (d, 2J = 21.6 Hz, CH), 114.3 (d, 2J = 22.7 Hz, CH), 99.3 (CH), 94.5 (CH>),
55.6 (CH>); IR (neat): 3297, 2997, 1657, 1623, 1591, 1573, 1484, 1439, 1402, 1362,
1314, 1259, 1178, 1090, 1055, 1010, 984, 881, 819, 783 cm™’; MS (ESI, m/z): 314.08
[M+H]*; HRMS (ESI) calcd. for C1gH14CIFNO: 314.0743 [M+H]*, found: 314.0750.

4.3.14 7-(4-Chlorophenyl)-2-methylene-5-(thiophen-3-yl)-2,3-dihydro-1,4-

oxazepine (37n)

General procedure 3 was followed by employing 1-(4-chlorophenyl)-3-(prop-2-yn-
1-ylamino)-3-(thiophen-3-yl)prop-2-en-1-one (26n) (241.5 mg, 0.8 mmol) and
ZnCl; (109.0 mg, 0.8 mmol), which yielded 210.6 mg (87%) of the indicated product
37n as a yellow solid (R = 0.32 in 4:1 hexane/ethyl acetate); mp 121.0-122.9 °C. 'H
NMR (400 MHz, CDCls) 6 7.66 (d, J = 8.5 Hz, 3H), 7.55 (dd, J = 5.0, 1.1 Hz, 1H),
7.37 (d, J = 8.6 Hz, 2H), 7.31-7.28 (m, 1H), 6.35 (s, 1H), 4.74 (s, 1H), 4.51 (s, 2H),
4.40 (d, J=1.4 Hz, 1H); 3C NMR (100 MHz, CDCls3) § 161.8 (C), 157.8 (C), 157.1
(C), 1425 (C), 136.0 (C), 133.4 (C), 128.7 (CH), 127.5 (CH), 126.7 (CH), 125.9
(CH), 125.6 (CH), 99.4 (CH), 94.1 (CH), 55.1 (CH>); IR (neat): 3100, 3952, 2834,
1652, 1621, 1578, 1520, 1488, 1402, 1349, 1312, 1260, 1231, 1194, 1111, 1088,
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1055, 1011, 874, 837, 818, 787, 693, 605 cm™; MS (ESI, m/z): 302.04 [M+H]*;
HRMS (ESI) calcd. for C16H13CINOS: 302.0410 [M+H]*, found: 302.0401.

4.3.15 5-(4-(tert-Butyl)phenyl)-7-(4-chlorophenyl)-2-methylene-2,3-
dihydro-1,4-oxazepine (370)

General procedure 3 was followed by employing 3-(4-(tert-butyl)phenyl)-1-(4-
chlorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (260) (246.3 mg, 0.7
mmol) and ZnCl> (95.4 mg, 0.7 mmol), which yielded 202.3 mg (82%) of the
indicated product 370 as an orange oil (R = 0.48 in 4:1 hexane/ethyl acetate). ‘H
NMR (400 MHz, CDCl3) § 7.77-7.70 (m, 4H), 7.47 (d, J = 8.4 Hz, 2H), 7.42 (d, J
= 8.6 Hz, 2H), 6.41 (s, 1H), 4.76 (s, 1H), 4.57 (s, 2H), 4.41 (d, J = 1.3 Hz, 1H), 1.37
(s, 9H); 3C NMR (100 MHz, CDCls) § 166.6 (C), 158.2 (C), 157.5 (C), 153.4 (C),
136.9 (C), 136.1 (C), 133.7 (C), 128.8 (CH), 127.6 (CH), 127.2 (CH), 125.4 (CH),
100.0 (CH), 94.0 (CH2), 55.4 (CH>), 34.8 (C), 31.3 (CHj3); IR (neat): 2960, 1737,
1654, 1623, 1581, 1489, 1405, 1361, 1313, 1260, 1192, 1092, 1059, 1012, 909, 813,
736, 682, 632 cm™; MS (ESI, m/z): 352.15 [M+H]"; HRMS (ESI) calcd. for
C22H23CINO: 352.1473 [M+H]", found: 352.1463.

4.3.16 2-Methylene-5-phenyl-7-(p-tolyl)-2,3-dihydro-1,4-oxazepine (37p)

General procedure 3 was followed by employing 3-phenyl-3-(prop-2-yn-1-ylamino)-
1-(p-tolyl)prop-2-en-1-one (26p) (220.3 mg, 0.8 mmol) and ZnCl, (109.0 mg, 0.8
mmol), which yielded 140.6 mg (64%) of the indicated product 37p as a yellow solid
(Rf = 0.42 in 4:1 hexane/ethyl acetate); mp 81.0-83.0 °C. 'H NMR (400 MHz,
CDCl3) & 7.87-7.81 (m, 2H), 7.70 (d, J = 8.2 Hz, 2H), 7.49-7.43 (m, 3H), 7.27 (d, J
= 8.1 Hz, 2H), 6.41 (s, 1H), 4.79 (s, 1H), 4.59 (s, 2H), 4.42 (d, J = 1.2 Hz, 1H), 2.44
(s, 3H); *C NMR (100 MHz, CDCl3) § 167.1 (C), 159.0 (C), 158.2 (C), 140.4 (C),
139.9 (C), 132.3 (C), 130.0 (CH), 129.3 (CH), 128.3 (CH), 127.4 (CH), 126.2 (CH),
99.1 (CH), 93.7 (CHy), 55.5 (CH>), 21.4 (CHg); IR (neat): 3106, 2995, 2837, 1657,
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1626, 1588, 1569, 1509, 1445, 1359, 1312, 1292, 1261, 1193, 1113, 1076, 1055,
1028, 952, 926, 908, 882, 813, 765, 705, 692, 616 cm™; MS (ESI, m/z): 276.14
[M+H]*; HRMS (ESI) calcd. for C19H1sNO: 276.1386 [M+H]", found: 276.1383.

4.3.17 7-(4-Chlorophenyl)-2-methylene-5-phenyl-2,3-dihydro-1,4-
oxazepine (37q)

General procedure 3 was followed by employing 1-(4-chlorophenyl)-3-phenyl-3-
(prop-2-yn-1-ylamino)prop-2-en-1-one (26q) (236.6 mg, 0.8 mmol) and ZnCl;
(109.0 mg, 0.8 mmol), which yielded 197.9 mg (84%) of the indicated product 37q
as a yellow solid (Rf = 0.42 in 4:1 hexane/ethyl acetate); mp 125.8-127.1 °C. 'H
NMR (400 MHz, CDCls) 6 7.83-7.75 (m, 2H), 7.72—7.63 (m, 2H), 7.47-7.35 (m,
5H), 6.35 (s, 1H), 4.75 (d, J = 0.6 Hz, 1H), 4.54 (s, 2H), 4.40 (d, J = 1.6 Hz, 1H);
13C NMR (100 MHz, CDCl3) § 166.7 (C), 158.0 (C), 157.6 (C), 139.6 (C), 136.1 (C),
133.5(C), 130.0 (CH), 128.8 (CH), 128.3 (CH), 127.5 (CH), 127.3 (CH), 99.8 (CH),
94.1 (CH>), 55.4 (CH>); IR (neat): 2953, 2837, 1656, 1625, 1587, 1569, 1488, 1445,
1402, 1362, 1312, 1290, 1258, 1192, 1110, 1088, 1054, 1028, 1010, 885, 858, 820,
769, 714, 691, 601 cm™; MS (ESI, m/z): 296.08 [M+H]"; HRMS (ESI) calcd. for
C1gH15CINO: 296.0842 [M+H]", found: 296.0837.

4.3.18 2-Methylene-5-(thiophen-3-yl)-7-(p-tolyl)-2,3-dihydro-1,4-oxazepine
(37r)

General procedure 3 was followed by employing 3-(prop-2-yn-1-ylamino)-3-
(thiophen-3-yl)-1-(p-tolyl)prop-2-en-1-one (26r) (225.1 mg, 0.8 mmol) and ZnCl;
(109.0 mg, 0.8 mmol), which yielded 188.7 mg (84%) of the indicated product 37r
as a yellow solid (Rr = 0.23 in 4:1 hexane/ethyl acetate); mp 88.0-90.1 °C. *H NMR
(400 MHz, CDCls) & 7.71-7.65 (m, 3H), 7.57 (dd, J = 5.1, 1.1 Hz, 1H), 7.35-7.31
(m, 1H), 7.26 (d, J = 8.0 Hz, 2H), 6.40 (s, 1H), 4.76 (s, 1H), 4.54 (s, 2H), 4.41 (d, J
= 1.1 Hz, 1H), 2.43 (s, 3H); 3C NMR (100 MHz, CDCls3) & 162.4 (C), 158.7 (C),
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158.1 (C), 143.0 (C), 140.5 (C), 132.3 (C), 129.3 (CH), 126.9 (CH), 126.3 (CH),
125.9 (CH), 125.7 (CH), 98.8 (CH), 93.9 (CHy), 55.4 (CH2), 21.4 (CH3); IR (neat):
2196, 1623, 1580, 1409, 1345, 1312, 1266, 1200, 1182, 1110, 1059, 1017, 865, 805,
778, 753, 695, 654 cmt; MS (ESI, m/z): 282.09 [M+H]*; HRMS (ESI) calcd. for
C17H1sNOS: 282.0942 [M+H]*, found: 282.0947.

4.3.19 5-(3,4-Dichlorophenyl)-2-methylene-7-(p-tolyl)-2,3-dihydro-1,4-
oxazepine (37s)

General procedure 3 was followed by employing 3-(3,4-dichlorophenyl)-3-(prop-2-
yn-1-ylamino)-1-(p-tolyl)prop-2-en-1-one (26s) (275.4 mg, 0.8 mmol) and ZnCl;
(109.0 mg, 0.8 mmol), which yielded 220.3 mg (80%) of the indicated product 37s
as a yellow solid (Rf = 0.53 in 4:1 hexane/ethyl acetate); mp 119.0-120.8 °C. 'H
NMR (400 MHz, CDCls3) 6 7.82 (d, J = 2.0 Hz, 1H), 7.59-7.52 (m, 3H), 7.39 (d, J =
8.4 Hz, 1H), 7.19-7.14 (m, 2H), 6.18 (s, 1H), 4.69 (d, J = 0.5 Hz, 1H), 4.45 (s, 2H),
4.32 (d, J = 1.5 Hz, 1H), 2.33 (s, 3H); *C NMR (100 MHz, CDCls3) & 164.9 (C),
159.9 (C), 157.8 (C), 140.8 (C), 139.8 (C), 134.1 (C), 132.7 (C), 132.0 (C), 130.3
(CH), 129.41 (CH), 129.39 (CH), 126.7 (CH), 126.3 (CH), 97.9 (CH), 94.4 (CH>),
55.7 (CHy), 21.5 (CHa); IR (neat): 2915, 1655, 1579, 1469, 1372, 1317, 1264, 1233,
1191, 1062, 1027, 854, 809, 754, 717, 676, 644 cm™; MS (ESI, m/z): 344.06
[M+H]*; HRMS (ESI) calcd. for C19H16CI2NO: 344.0604 [M+H]*, found: 344.0613.

4.3.20 5-(4-Chlorophenyl)-2-methylene-7-(p-tolyl)-2,3-dihydro-1,4-

oxazepine (37t)

General procedure 3 was followed by employing 3-(4-chlorophenyl)-3-(prop-2-yn-
1-ylamino)-1-(p-tolyl)prop-2-en-1-one (26t) (247.8 mg, 0.8 mmol) and ZnCl;
(109.0 mg, 0.8 mmol), which yielded 198.3 mg (80%) of the indicated product 37t
as an orange solid (Rf = 0.50 in 4:1 hexane/ethyl acetate); mp 115.4-116.0 °C. 'H
NMR (400 MHz, CDClz) 6 7.64-7.60 (m, 2H), 7.54 (d, J = 8.3 Hz, 2H), 7.28-7.24
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(m, 2H), 7.13 (d, J = 8.1 Hz, 2H), 6.19 (s, 1H), 4.65 (s, 1H), 4.42 (s, 2H), 4.28 (d, J
= 1.5 Hz, 1H), 2.30 (s, 3H); 3C NMR (100 MHz, CDCl3) § 166.1 (C), 159.5 (C),
158.1 (C), 140.7 (C), 138.3 (C), 136.1 (C), 132.2 (C), 129.4 (CH), 128.8 (CH), 128.6
(CH), 126.3 (CH), 98.5 (CH), 94.1 (CHy), 55.6 (CH2), 21.4 (CHg); IR (neat): 2961,
1650, 1583, 1488, 1409, 1366, 1312, 1260, 1196, 1088, 1060, 1011, 863, 843, 802,
727,679 cm™; MS (ESI, m/z): 310.10 [M+H]*; HRMS (ESI) calcd. for C19H17CINO:
310.0993 [M+H]*, found: 310.0996.

4.4  General procedure 4 for the synthesis of 2-acetyl-1H-pyrroles 46

a. Synthesis method from 1,4-oxazepines 37.

To a stirred solution of corresponding 2,3-dihydro-1,4-oxazepine 37 (0.5 mmol) in
MeOH (5.0 ml) was added ZnCl, (0.5 mmol). Then, the reaction mixture was
refluxed under argon atmosphere for approximately 2 h. During the course of the
reaction, the progress was monitored by TLC (19:1:0.2 hexane/ethyl acetate/acetone)
(Note that the reaction was continued until N-propargylic B-enaminone 26 was
completely consumed). When the reaction was over, the solvent removed by rotary
evaporator and extraction was performed with ethyl acetate (40 ml) and saturated
NH4Cl (15 ml). After the separation of organic and aqueous phases, aqueous phase
was extracted with ethyl acetate (2 x 35 ml). After combining organic phases, organic
phase dried over MgSO4 and evaporated on a rotary evaporator to give the crude
product. Flash chromatography on silica gel was used to purify crude product by
using hexane/ethyl acetate (9:1 followed by 4:1) as the eluent and to afford
corresponding pyrrole derivatives 46.

b. One-pot two-step synthesis method from N-propargylic -enaminones 26.

To a stirred solution of corresponding N-propargylic B-enaminone 26 (0.5 mmol) in
CHCIz (5.0 ml) was added ZnCl> (0.5 mmol). Then, the reaction mixture was

refluxed under argon atmosphere for approximately 2 h. During the course of the
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reaction, the progress was monitored by TLC (9:1 hexane/ethyl acetate) (Note that
the reaction was continued until N-propargylic f-enaminone 26 was completely
consumed). After the reaction was over, CHCIs is removed by rotary evaporator.
Subsequently, MeOH (5 ml) and ZnCl, (0.5 mmol) were added to the crude product.
Then, the reaction mixture was refluxed under argon atmosphere for approximately
2 h. During the course of the reaction, the progress was monitored by TLC (19:1:0.2
hexane/ethyl acetate/acetone) (Note that the reaction was continued until 2,3-
dihydro-1,4-oxazepine 37 was completely consumed). When the reaction was ended,
the solvent was removed by rotary evaporator and extraction was performed with
ethyl acetate (40 ml) and saturated NH4ClI (15 ml). After the separation of organic
and aqueous phases, aqueous phase was extracted with ethyl acetate (2 x 35 ml).
After combining organic phases, organic phase dried over MgSO4 and evaporated
on a rotary evaporator to give the crude product. Flash chromatography on silica gel
was used to purify crude product by using hexane/ethyl acetate (9:1 followed by 4:1)
as the eluent and to afford corresponding pyrrole derivative 46.

44.1 1-(3,5-Diphenyl-1H-pyrrol-2-yl)ethanone (46a)

a. General procedure 4a was followed by employing 2-methylene-5,7-diphenyl-
2,3-dihydro-1,4-oxazepine (37a) (130.7 mg, 0.5 mmol) and ZnCl; (68.1 mg, 0.5
mmol), which yielded 115.0 mg (88%) of the indicated product 46a as a white
crystal solid.

b. General procedure 4b was followed by employing 1,3-diphenyl-3-(prop-2-yn-1-
ylamino)prop-2-en-1-one (26a) (130.7 mg, 0.5 mmol) and ZnCl; (111.1 mg, 1.0
mmol), which yielded 113.1 mg (85%) of the indicated product 46a as a white
crystal solid.

(Rf = 0.26 in 4:1 hexane/ethyl acetate); mp 147.0-149.0 °C. *H NMR (400 MHz,
CDCls) 6 10.17 (s, 1H), 7.70 (d, J = 7.4 Hz, 2H), 7.52-7.38 (m, 7H), 7.33 (t, J = 7.3
Hz, 1H), 6.58 (d, J = 2.9 Hz, 1H), 2.12 (s, 3H); *C NMR (100 MHz, CDCl3) & 188.8
(C=0), 136.7 (C), 136.4 (C), 134.6 (C), 130.9 (C), 129.8 (CH), 129.6 (C), 129.0
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(CH), 128.3 (CH), 128.2 (CH), 127.7 (CH), 125.3 (CH), 110.9 (CH), 27.6 (CH3); IR
(neat): 3251, 1612, 1597, 1492, 1461, 1438, 1356, 1291, 1269, 1184, 1075, 992, 956,
914, 826, 760, 703, 688, 671, 613 cm™; MS (ESI, m/z): 262.12 [M+H]*; HRMS
(ESI) calcd. for C1gH1sNO: 262.1226 [M+H]", found: 262.1232.

442 1-(5-(3-Fluorophenyl)-3-phenyl-1H-pyrrol-2-yl)ethanone (46b)

a. General procedure 4a was followed by employing 5-(3-fluorophenyl)-2-
methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (37b) (111.8 mg, 0.4 mmol) and
ZnCl; (54.5 mg, 0.4 mmol), which yielded 85.0 mg (76%) of the indicated
product 46b as a white solid.

b. General procedure 4b was followed by employing 3-(3-fluorophenyl)-1-phenyl-
3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26b) (139.8 mg, 0.5 mmol) and ZnCl;
(136.3 mg, 1.0 mmol), which yielded 88.1 mg (63%) of the indicated product
46b as a white solid.

(Rf = 0.38 in 4:1 hexane/ethyl acetate); mp 176.0-177.0 °C. *H NMR (400 MHz,
CDCls) & 10.20 (s, 1H), 7.48-7.34 (m, 8H), 7.05-6.98 (m, 1H), 6.57 (d, J = 3.0 Hz,
1H), 2.12 (d, J = 0.9 Hz, 3H); $3C NMR (100 MHz, CDCls) § 189.2 (C=0), 163.4
(d, 1J = 246.2 Hz, CF), 136.2 (C) , 135.5 (C), 134.6 (C), 133.2 (d, %J = 8.3 Hz, C) ,
130.6 (d, 3] = 8.5 Hz, CH), 129.92 (CH), 129.86 (C), 128.4 (CH), 127.9 (CH), 121.0
(d,*J=1.9 Hz, CH), 115.1 (d, 2J = 21.3 Hz, CH), 112.4 (d, 2J = 23.1 Hz, CH), 111.5
(CH), 27.7 (CH3); IR (neat): 3301, 3288, 3062, 1628, 1489, 1454, 1434, 1414, 1357,
1271, 1206, 1176, 1107, 1076, 991, 977, 957, 892, 848, 814, 784, 766, 729, 704,
680, 613 cm™; MS (ESI, m/z): 280.11 [M+H]*; HRMS (ESI) calcd. for C1sH1sFNO:
280.1132 [M+H]"*, found: 280.1136.
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443 1-(5-(4-(Dimethylamino)phenyl)-3-phenyl-1H-pyrrol-2-yl)ethanone
(46c)

a. General procedure 4a was followed by employing N,N-dimethyl-4-(2-
methylene-7-phenyl-2,3-dihydro-1,4-oxazepin-5-yl)aniline (37c) (121.8 mg, 0.4
mmol) and ZnCl, (54.5 mg, 0.4 mmol), which yielded 78.0 mg (64%) of the
indicated product 46c as a yellow solid.

b. General procedure 4b was followed by employing 3-(4-(dimethylamino)phenyl)-
1-phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26¢) (152.2 mg, 0.5 mmol)
and ZnCl> (136.3 mg, 1.0 mmol), which yielded 77.7 mg (51%) of the indicated

product 46¢ as a yellow solid.

(Rf = 0.22 in 4:1 hexane/ethyl acetate); mp 193.6-195.9 °C. *H NMR (400 MHz,
CDCl3) 6 9.88 (s, 1H), 7.56 (d, J = 8.9 Hz, 2H), 7.46-7.38 (m, 5H), 6.74 (d, J = 8.8
Hz, 2H), 6.44 (d, J = 3.0 Hz, 1H), 3.00 (s, 6H), 2.10 (s, 3H); **C NMR (100 MHz,
CDCl3) 6 187.9 (C=0), 150.4 (C), 137.8 (C), 136.7 (C), 135.0 (C), 129.8 (CH), 128.6
(C), 128.2 (CH), 127.6 (CH), 126.3 (CH), 118.7 (C), 112.4 (CH), 109.3 (CH), 40.4
(N(CHz3)2), 27.4 (CHa); IR (neat): 3303, 3276, 2802, 1594, 1498, 1463, 1411, 1383,
1353, 1272, 1209, 1184, 1102, 1069, 948, 819, 798, 766, 699, 676, 632, 612 cm™,;
MS (ESI, m/z): 305.16 [M+H]"; HRMS (ESI) calcd. for CxoH2:N2O: 305.1648
[M+H]", found: 305.1651.

4.4.4 1-(3-Phenyl-5-(4-(trifluoromethyl)phenyl)-1H-pyrrol-2-yl)ethanone
(46d)

a. General procedure 4a was followed by employing 2-methylene-7-phenyl-5-(4-
(trifluoromethyl)phenyl)-2,3-dihydro-1,4-oxazepine (37d) (131.7 mg, 0.4 mmol)
and ZnClz (54.5 mg, 0.4 mmol), which yielded 115.4 mg (88%) of the indicated
product 46d as a yellowish white solid.

b. General procedure 4b was followed by employing 1-phenyl-3-(prop-2-yn-1-
ylamino)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (26d) (131.7 mg, 0.4
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mmol) and ZnCl, (109.0 mg, 0.8 mmol), which yielded 91.0 mg (69%) of the

indicated product 46d as a yellowish white solid.

(R = 0.41 in 4:1 hexane/ethyl acetate); mp 196.0-198.0 °C. *H NMR (400 MHz,
CDCl3) 6 10.00 (s, 1H), 7.77 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.49-7.38
(m, 5H), 6.64 (d, J = 3.0 Hz, 1H), 2.12 (s, 3H); *3C NMR (100 MHz, CDCl3) § 189.3
(C=0), 136.0 (C), 134.9 (C), 134.5 (C), 134.3 (C), 130.3 (C), 130.2 (q, 2J = 32.4 Hz,
C), 129.9 (CH), 128.5 (CH), 128.0 (CH), 126.1 (g, ®J = 3.5 Hz, CH), 125.4 (CH),
124.2 (q, 1 = 272.0 Hz, CF3), 112.1 (CH), 27.8 (CH3); IR (neat): 3290, 1618, 1465,
1450, 1411, 1318, 1295, 1262, 1159, 1106, 1062, 1017, 957, 841, 815, 767, 704,
676, 626, 612 cm™; MS (ESI, m/z): 280.11 [M+H]*; HRMS (ESI) calcd. for
C19H15F3NO: 330.1100 [M+H]*, found: 330.1109.

445 1-(3-Phenyl-5-(p-tolyl)-1H-pyrrol-2-yl)ethanone (46e)

a. General procedure 4a was followed by employing 2-methylene-7-phenyl-5-(p-
tolyl)-2,3-dihydro-1,4-oxazepine (37e) (110.1 mg, 0.4 mmol) and ZnCl> (54.5
mg, 0.4 mmol), which yielded 87.1 mg (79%) of the indicated product 46e as an
off white solid.

b. General procedure 4b was followed by employing 1-phenyl-3-(prop-2-yn-1-
ylamino)-3-(p-tolyl)prop-2-en-1-one (26e) (110.1 mg, 0.4 mmol) and ZnCl;
(109.0 mg, 0.8 mmol), which yielded 67.9 mg (62%) of the indicated product

46e as an off white solid.

(Rr = 0.38 in 4:1 hexane/ethyl acetate); mp 164.5-165.9 °C. *H NMR (400 MHz,
CDCl3) 8 10.02 (s, 1H), 7.58 (d, J = 8.2 Hz, 2H), 7.48-7.38 (m, 5H), 7.23 (d, J = 8.0
Hz, 2H), 6.53 (d, J = 2.9 Hz, 1H), 2.38 (s, 3H), 2.11 (s, 3H): 13C NMR (100 MHz,
CDCl3) § 188.6 (C=0), 138.3 (C), 136.9 (C), 136.5 (C), 134.6 (C), 129.8 (CH), 129.7
(C), 129.3 (CH), 128.3 (CH), 128.1 (CH), 127.7 (C), 125.2 (CH), 110.5 (CH), 27.6
(CHs), 21.3 (CH3); IR (neat): 3299, 3277, 1620, 1495, 1462, 1409, 1287, 1262, 1181,
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1100, 1071, 1017, 952, 801, 766, 700, 634, 610 cm?; MS (ESI, m/z): 276.14
[M+H]*; HRMS (ESI) calcd. for C1oH1sNO: 276.1383 [M+H]*, found: 276.1391.

4.4.6 1-(5-(4-Methoxyphenyl)-3-phenyl-1H-pyrrol-2-yl)ethanone (46f)

a. General procedure 4a was followed by employing 5-(4-methoxyphenyl)-2-
methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (37f) (116.5 mg, 0.4 mmol) and
ZnCl; (54.5 mg, 0.4 mmol), which yielded 84.8 mg (73%) of the indicated
product 46f as a yellowish white solid.

b. General procedure 4b was followed by employing 3-(4-methoxyphenyl)-1-
phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26f) (145.7 mg, 0.5 mmol)
and ZnCl> (136.3 mg, 1.0 mmol), which yielded 96.4 mg (66%) of the indicated
product 46f as a yellowish white solid.

(Rf = 0.25 in 4:1 hexane/ethyl acetate); mp 174.1-177.0 °C. *H NMR (400 MHz,
CDCl3) 6 10.15 (s, 1H), 7.66—7.62 (m, 2H), 7.46-7.37 (m, 5H), 6.97-6.92 (m, 2H),
6.47 (d, J = 3.0 Hz, 1H), 3.83 (s, 3H), 2.11 (s, 3H); **C NMR (100 MHz, CDCls) §
188.5 (C=0), 159.8 (C), 136.9 (C), 136.5 (C), 134.8 (C), 129.8 (CH), 129.1 (C),
128.3 (CH), 127.7 (CH), 126.7 (CH), 123.6 (C), 114.5 (CH), 110.1 (CH), 55.4
(OCHa), 27.5 (CHa); IR (neat): 3274, 1612, 1599, 1495, 1463, 1440, 1421, 1387,
1294, 1275, 1245, 1175, 1103, 1071, 1027, 954, 824, 793, 765, 716, 699, 641, 608
cm®; MS (ESI, m/z): 292.13 [M+H]"; HRMS (ESI) calcd. for C19H1sNO2: 292.1332
[M+H]*, found: 292.1340.

4.4.7 1-(3-Phenyl-5-(m-tolyl)-1H-pyrrol-2-yl)ethanone (46Q)

a. General procedure 4a was followed by employing 2-methylene-7-phenyl-5-(m-
tolyl)-2,3-dihydro-1,4-oxazepine (37g) (137.7 mg, 0.5 mmol) and ZnCl; (68.1
mg, 0.5 mmol), which yielded 100.9 mg (73%) of the indicated product 469 as
an off white solid.
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b. General procedure 4b was followed by employing 1-phenyl-3-(prop-2-yn-1-
ylamino)-3-(m-tolyl)prop-2-en-1-one (26g) (137.7 mg, 0.5 mmol) and ZnCl>
(136.3 mg, 1.0 mmol), which yielded 100.7 mg (73%) of the indicated product
469 as an off white solid.

(Rf = 0.38 in 4:1 hexane/ethyl acetate); mp 130.0-131.0 °C. *H NMR (400 MHz,
CDCls) § 10.38 (s, 1H), 7.58-7.51 (m, 2H), 7.49-7.39 (m, 5H), 7.35-7.28 (m, 1H),
7.16 (d, J = 7.5 Hz, 1H), 6.61-6.53 (m, 1H), 2.42 (s, 3H), 2.15 (s, 3H); *C NMR
(100 MHz, CDCls) § 188.7 (C=0), 138.6 (C), 136.9 (C), 136.4 (C), 134.6 (C), 130.8
(C), 129.8 (CH), 129.4 (C), 129.0 (CH), 128.9 (CH), 128.3 (CH), 127.6 (CH), 125.9
(CH), 122.5 (CH), 110.9 (CH), 27.6 (CHs), 21.5 (CHa); IR (neat): 3275, 3224, 1625,
1492, 1451, 1358, 1273, 1206, 1109, 994, 956, 909, 822, 786, 768, 694, 613 cm™;
MS (ESI, m/z): 276.14 [M+H]*; HRMS (ESI) calcd. for CigH1sNO: 276.1383
[M+H]*, found: 276.1390.

4.4.8 1-(3-Phenyl-5-(thiophen-3-yl)-1H-pyrrol-2-yl)ethanone (46h)

a. General procedure 4a was followed by employing 2-methylene-7-phenyl-5-
(thiophen-3-yl)-2,3-dihydro-1,4-oxazepine (37h) (133.7 mg, 0.5 mmol) and
ZnCl; (68.1 mg, 0.5 mmol), which yielded 89.9 mg (67%) of the indicated
product 46h as a yellow solid.

b. General procedure 4b was followed by employing 1-phenyl-3-(prop-2-yn-1-
ylamino)-3-(thiophen-3-yl)prop-2-en-1-one (26h) (133.7 mg, 0.5 mmol) and
ZnCl; (136.3 mg, 1.0 mmol), which yielded 101.7 mg (76%) of the indicated
product 46h as a yellow solid.

(Rf = 0.38 in 4:1 hexane/ethyl acetate); mp 173.9-176.0 °C. *H NMR (400 MHz,
CDCl3) 6 10.32 (s, 1H), 7.72—-7.65 (m, 1H), 7.55-7.33 (m, 7H), 6.51-6.40 (m, 1H),
2.11 (s, 3H); 3C NMR (100 MHz, CDCls) 5 188.8 (C=0), 136.4 (C), 134.7 (C),
133.0 (C), 132.6 (C), 129.9 (CH), 128.9 (C), 128.4 (CH), 127.8 (CH), 126.7 (CH),
125.6 (CH), 120.9 (CH), 111.1 (CH), 27.6 (CHa); IR (neat): 3286, 3092, 1620, 1473,
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1450, 1409, 1380, 1266, 1212, 1075, 1021, 992, 957, 851, 818, 788, 764, 705, 679,
606 cm™; MS (ESI, m/z): 268.08 [M+H]*; HRMS (ESI) calcd. for C16H14NOS:
268.0791 [M+H]", found: 268.0795.

4.4.9 1-(5-(4-(tert-Butyl)phenyl)-3-phenyl-1H-pyrrol-2-yl)ethanone (46i)

a. General procedure 4a was followed by employing 5-(4-(tert-butyl)phenyl)-2-
methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (37i) (127.0 mg, 0.4 mmol) and
ZnClz (54.5 mg, 0.4 mmol), which yielded 100.0 mg (79%) of the indicated
product 46i as a white solid.

b. General procedure 4b was followed by employing 3-(4-(tert-butyl)phenyl)-1-
phenyl-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26i) (127.0 mg, 0.4 mmol)
and ZnCl (109.0 mg, 0.8 mmol), which yielded 108.5 mg (85%) of the indicated
product 46i as a white solid.

(R = 0.47 in 4:1 hexane/ethyl acetate); mp 168.0-169.0 °C. *H NMR (400 MHz,
CDClI3) 6 10.16 (s, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.52—-7.39 (m, 7H), 6.60—6.56 (m,
1H), 2.16 (s, 3H), 1.39 (s, 9H); *C NMR (100 MHz, CDCl3) & 188.6 (C=0), 151.5
(C), 136.8 (C), 136.4 (C), 134.6 (C), 129.9 (CH), 129.3 (C), 128.3 (CH), 128.1 (C),
127.7 (CH), 126.0 (CH), 125.0 (CH), 110.6 (CH), 34.8 (C), 31.3 (CH3), 27.6 (CHs3);
IR (neat): 3273, 2961, 1626, 1494, 1452, 1415, 1289, 1261, 992, 957, 821, 772, 699,
673, 610 cm™; MS (ESI, m/z): 318.19 [M+H]*; HRMS (ESI) calcd. for C2,H24NO:
318.1852 [M+H]*, found: 318.1861.

4.4.10 1-(5-(4-Chlorophenyl)-3-phenyl-1H-pyrrol-2-yl)ethanone (46j)

a. General procedure 4a was followed by employing 5-(4-chlorophenyl)-2-
methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (37j) (118.3 mg, 0.4 mmol) and
ZnCl> (54.5 mg, 0.4 mmol), which yielded 89.0 mg (75%) of the indicated

product 46j as an off white solid.
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b. General procedure 4b was followed by employing 3-(4-chlorophenyl)-1-phenyl-
3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26j) (118.3 mg, 0.4 mmol) and ZnCl;
(109.0 mg, 0.8 mmol), which yielded 79.7 mg (67%) of the indicated product 46j
as an off white solid.

(Rf = 0.40 in 4:1 hexane/ethyl acetate); mp 173.3-175.1 °C. *H NMR (400 MHz,
CDCl3) 6 10.57 (s, 1H), 7.69 (d, J = 8.5 Hz, 2H), 7.48-7.39 (m, 5H), 7.37 (d, J = 8.6
Hz, 2H), 6.55 (d, J = 2.9 Hz, 1H), 2.12 (s, 3H); 13C NMR (100 MHz, CDCl3) & 189.0
(C=0), 136.2 (C), 135.8 (C), 134.8 (C), 134.0 (C), 129.83 (CH), 129.80 (C), 129.5
(CH), 129.2 (CH), 128.4 (CH), 127.8 (C), 126.7 (CH), 111.2 (CH), 27.7 (CH3); IR
(neat): 3286, 1621, 1488, 1462, 1411, 1355, 1284, 1261, 1086, 1013, 956, 832, 812,
765, 738, 702, 666, 611 cm™; MS (ESI, m/z): 296.08 [M+H]*; HRMS (ESI) calcd.
for C1sH1sCINO: 296.0837 [M+H]*, found: 296.0844.

4411 1-(5-(4-Bromophenyl)-3-phenyl-1H-pyrrol-2-yl)ethanone (46k)

a. General procedure 4a was followed by employing 5-(4-bromophenyl)-2-
methylene-7-phenyl-2,3-dihydro-1,4-oxazepine (37k) (102.1 mg, 0.3 mmol) and
ZnCl; (40.9 mg, 0.3 mmol), which yielded 83.7 mg (82%) of the indicated
product 46k as an off white solid.

b. General procedure 4b was followed by employing 3-(4-bromophenyl)-1-phenyl-
3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26k) (136.1 mg, 0.4 mmol) and ZnCl;
(109.0 mg, 0.8 mmol), which yielded 102.3 mg (75%) of the indicated product
46k as an off white solid.

(Rf = 0.43 in 4:1 hexane/ethyl acetate); mp 184.0-186.0 °C. *H NMR (400 MHz,
CDCl3) & 10.43 (s, 1H), 7.71-7.33 (m, 9H), 6.61-6.51 (m, 1H), 2.14 (s, 3H); 13C
NMR (100 MHz, CDCls) § 189.0 (C=0), 136.1 (C), 135.7 (C), 134.7 (C), 132.1 (C),
129.88 (CH), 129.86 (C), 129.8 (CH), 128.4 (CH), 127.8 (CH), 126.9 (C), 122.2
(CH), 111.2 (CH), 27.7 (CHs); IR (neat): 3854, 3284, 2008, 1618, 1485, 1462, 1408,
1282, 1261, 1068, 1007, 955, 810, 769, 739, 705, 611 cm™*; MS (ESI, m/z): 340.03
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[M+H]*; HRMS (ESI) calcd. for CigHis"BrNO: 340.0332 [M+H]*, found:
340.0333.

4.4.12 1-(3-(4-Chlorophenyl)-5-(m-tolyl)-1H-pyrrol-2-yl)ethanone (46l)

a. General procedure 4a was followed by employing 7-(4-chlorophenyl)-2-
methylene-5-(m-tolyl)-2,3-dihydro-1,4-oxazepine (371) (123.9 mg, 0.4 mmol)
and ZnCl> (54.5 mg, 0.4 mmol), which yielded 100.2 mg (81%) of the indicated
product 461 as an off white solid.

b. General procedure 4b was followed by employing 1-(4-chlorophenyl)-3-(prop-
2-yn-1-ylamino)-3-(m-tolyl)prop-2-en-1-one (261) (123.9 mg, 0.4 mmol) and
ZnCl; (109.0 mg, 0.8 mmol), which yielded 88.3 mg (71%) of the indicated
product 461 as an off white solid.

(Rf = 0.37 in 4:1 hexane/ethyl acetate); mp 178.8-179.6 °C. *H NMR (400 MHz,
CDCl3) 6 10.14 (s, 1H), 7.51-7.46 (m, 2H), 7.43-7.34 (m, 4H), 7.31 (t, J = 7.6 Hz,
1H), 7.15 (d, J = 7.4 Hz, 1H), 6.53-6.50 (m, 1H), 2.40 (s, 3H), 2.11 (s, 3H); 3C
NMR (100 MHz, CDCls) 6 188.4 (C=0), 138.8 (C), 137.0 (C), 134.8 (C), 133.8 (C),
133.0 (C), 131.1 (CH), 130.6 (C), 129.4 (C), 129.2 (CH), 129.0 (CH), 128.6 (CH),
125.9 (CH), 122.5 (CH), 110.8 (CH), 27.7 (CH3), 21.6 (CHs3); IR (neat): 3303, 3220,
1624, 1440, 1270, 1086, 1016, 952, 905, 837, 808, 782, 726, 694, 634, 613 cm™*; MS
(ESI, m/z): 310.10 [M+H]*; HRMS (ESI) calcd. for C1gH17CINO: 310.0993 [M+H]",
found: 310.1001.

4.4.13 1-(3-(4-Chlorophenyl)-5-(3-fluorophenyl)-1H-pyrrol-2-yl)ethanone
(46m)

a. General procedure 4a was followed by employing 7-(4-chlorophenyl)-5-(3-
fluorophenyl)-2-methylene-2,3-dihydro-1,4-oxazepine (37m) (94.1 mg, 0.3
mmol) and ZnCl> (40.9 mg, 0.3 mmol), which yielded 73.5 mg (78%) of the

indicated product 46m as an off white solid.
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b. General procedure 4b was followed by employing 1-(4-chlorophenyl)-3-(3-
fluorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26m) (125.5 mg, 0.4
mmol) and ZnCl> (109.0 mg, 0.8 mmol), which yielded 90.7 mg (72%) of the
indicated product 46m as an off white solid.

(Rf = 0.40 in 4:1 hexane/ethyl acetate); mp 199.0-201.0 °C. *H NMR (400 MHz,
CDCl3) § 10.42 (s, 1H), 7.51-7.44 (m, 2H), 7.44-7.39 (m, 2H), 7.39-7.34 (m, 3H),
7.05-6.98 (m, 1H), 6.54 (d, J = 3.0 Hz, 1H), 2.13 (s, 3H); 3C NMR (100 MHz,
CDCls3) § 189.0 (C=0), 163.4 (d, 1J = 246.0 Hz, CF), 135.7 (C), 134.6 (C), 134.0
(C), 133.1 (C), 133.0 (d, 3J = 8.2 Hz, C), 131.2 (CH), 130.7 (d, 3J = 8.4 Hz ,CH),
129.9 (C), 128.7 (CH), 121.0 (d, “J = 2.5 Hz, CH), 115.19 (d, 2J = 21.3 Hz, CH),
112.38 (d, 2] = 23.2 Hz, CH), 111.4 (CH), 27.8 (CHa); IR (neat): 3294, 3060, 1631,
1491, 1432, 1356, 1274, 1204, 1175, 1089, 1014, 977, 955, 887, 841, 805, 777, 737,
720, 683, 627 cm™; MS (ESI, m/z): 314.07 [M+H]*; HRMS (ESI) calcd. for
C18H14CIFNO: 314.0743 [M+H]", found: 314.0752.

4.4.14 1-(3-(4-Chlorophenyl)-5-(thiophen-3-yl)-1H-pyrrol-2-yl)ethanone
(46n)

a. General procedure 4a was followed by employing 7-(4-chlorophenyl)-2-
methylene-5-(thiophen-3-yl)-2,3-dihydro-1,4-oxazepine (37n) (120.7 mg, 0.4
mmol) and ZnCl, (54.5 mg, 0.4 mmol), which yielded 102.9 mg (85%) of the
indicated product 46n as a pale yellow solid.

b. General procedure 4b was followed by employing 1-(4-chlorophenyl)-3-(prop-
2-yn-1-ylamino)-3-(thiophen-3-yl)prop-2-en-1-one (26n) (120.7 mg, 0.4 mmol)
and ZnCl, (109.0 mg, 0.8 mmol), which yielded 93.3 mg (77%) of the indicated

product 46n as a pale yellow solid.

(Rf = 0.34 in 4:1 hexane/ethyl acetate); mp 195.1-196.3 °C. *H NMR (400 MHz,
CDCl3) 6 10.35 (s, 1H), 7.69-7.66 (m, 1H), 7.44—7.33 (m, 6H), 6.42 (d, J = 2.9 Hz,
1H), 2.11 (s, 3H); 3C NMR (100 MHz, CDCl3) § 188.5 (C=0), 134.8 (C) , 133.9
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(C), 133.2 (C), 132.4 (C), 131.2 (CH), 128.9 (C), 128.6 (CH), 126.8 (CH), 125.6
(CH), 121.0 (CH), 111.0 (CH), 27.7 (CHa) (Note that two C peaks overlap on each
other); IR (neat): 3310, 3217, 3088, 2349, 2027, 1617, 1533, 1492, 1467, 1446, 1377,
1266, 1216, 1086, 1015, 993, 973, 952, 854, 829, 782, 735, 672, 648, 635, 605 cm’
1 MS (ESI, m/z): 302.04 [M+H]*; HRMS (ESI) calcd. for C16H13CINOS: 302.0401
[M+H]", found: 302.04009.

4.4.15 1-(5-(4-(tert-Butyl)phenyl)-3-(4-chlorophenyl)-1H-pyrrol-2-
yl)ethanone (460)

a. General procedure 4a was followed by employing 5-(4-(tert-butyl)phenyl)-7-(4-
chlorophenyl)-2-methylene-2,3-dihydro-1,4-oxazepine (370) (105.6 mg, 0.3
mmol) and ZnCl, (40.9 mg, 0.3 mmol), which yielded 82.4 mg (78%) of the
indicated product 460 as off white solid.

b. General procedure 4b was followed by employing 3-(4-(tert-butyl)phenyl)-1-(4-
chlorophenyl)-3-(prop-2-yn-1-ylamino)prop-2-en-1-one (260) (140.7 mg, 0.4
mmol) and ZnCl; (109.0 mg, 0.8 mmol), which yielded 109.6 mg (78%) of the
indicated product 460 as an off white solid.

(Rf = 0.46 in 4:1 hexane/ethyl acetate); mp 222.0-224.0 °C. *H NMR (400 MHz,
CDCl3) § 10.15 (s, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.47-7.35 (m, 6H), 6.51 (d, J = 3.0
Hz, 1H), 2.12 (s, 3H), 1.35 (s, 9H); *C NMR (100 MHz, CDCl3) § 188.3 (C=0),
151.7 (C), 137.0 (C), 134.9 (C), 133.8 (C), 133.1 (C), 131.2 (CH), 129.3 (C), 128.5
(CH), 127.9 (C), 126.0 (CH), 125.1 (CH), 110.5 (CH), 34.8 (C), 31.3 (CHg), 27.7
(CHa); IR (neat): 3279, 2947, 1619, 1491, 1460, 1413, 1358, 1290, 1259, 1185, 1085,
1016, 994, 954, 832, 812, 757, 723, 671, 634, 610 cm™; MS (ESI, m/z): 352.15
[M+H]"; HRMS (ESI) calcd. for C22H23CINO: 352.1463 [M+H]", found: 352.1472.
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4.4.16 1-(5-Phenyl-3-(p-tolyl)-1H-pyrrol-2-yl)ethanone (46p)

a. General procedure 4a was followed by employing 2-methylene-5-phenyl-7-(p-
tolyl)-2,3-dihydro-1,4-oxazepine (37p) (110.1 mg, 0.4 mmol) and ZnCl, (54.5
mg, 0.4 mmol), which yielded 89.1 mg (81%) of the indicated product 46p as an
off white solid.

b. General procedure 4b was followed by employing 3-phenyl-3-(prop-2-yn-1-
ylamino)-1-(p-tolyl)prop-2-en-1-one (26p) (110.1 mg, 0.4 mmol) and ZnCl>
(109.0 mg, 0.8 mmol), which yielded 58.9 mg (53%) of the indicated product
46p as an off white solid.

(Rf = 0.43 in 4:1 hexane/ethyl acetate); mp 148.7-150.1 °C. *H NMR (400 MHz,
CDCls) & 10.20 (s, 1H), 7.76-7.68 (m, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.39-7.33 (m,
3H), 7.30-7.27 (m, 2H), 6.58 (d, J = 3.0 Hz, 1H), 2.46 (s, 3H), 2.17 (s, 3H); 3C
NMR (100 MHz, CDCl3) & 188.8 (C=0), 137.5 (C), 136.6 (C), 134.6 (C), 133.3 (C),
131.0 (C), 129.7 (CH), 129.6 (C), 129.0 (CH), 128.2 (CH), 125.3 (CH), 111.0 (CH),
27.6 (CHs), 21.3 (CH3) (Note that two CH peaks overlap on each other); IR (neat):
3281, 3227, 1624, 1497, 1460, 1438, 1358, 1289, 1268, 1106, 1021, 996, 955, 913,
839, 823, 806, 762, 690, 670, 637 cm™*; MS (ESI, m/z): 276.14 [M+H]*; HRMS
(ESI) calcd. for C19H1sNO: 276.1383 [M+H]", found: 276.1389.

4.4.17 1-(3-(4-Chlorophenyl)-5-phenyl-1H-pyrrol-2-yl)ethanone (46q)

a. General procedure 4a was followed by employing 7-(4-chlorophenyl)-2-
methylene-5-phenyl-2,3-dihydro-1,4-oxazepine (37q) (118.3 mg, 0.4 mmol) and
ZnCl; (54.5 mg, 0.4 mmol), which yielded 91.1 mg (77%) of the indicated
product 46q as a yellowish white solid.

b. General procedure 4b was followed by employing 1-(4-chlorophenyl)-3-phenyl-
3-(prop-2-yn-1-ylamino)prop-2-en-1-one (26q) (118.3 mg, 0.4 mmol) and ZnCl>
(109.0 mg, 0.8 mmol), which yielded 89.1 mg (75%) of the indicated product
46 as a yellowish white solid.
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(R = 0.37 in 4:1 hexane/ethyl acetate); mp 173.0-174.0 °C. *H NMR (400 MHz,
CDCl3) 6 10.28 (s, 1H), 7.72—7.67 (m, 2H), 7.45-7.31 (m, 7H), 6.53 (d, J = 3.0 Hz,
1H), 2.11 (s, 3H); *C NMR (100 MHz, CDCl3) § 188.5 (C=0), 136.9 (C), 134.8 (C),
133.8 (C), 133.1 (C), 131.1 (CH), 130.7 (C), 129.5 (C), 129.1 (CH), 128.6 (CH),
128.4 (CH), 125.3 (CH), 110.8 (CH), 27.7 (CHa); IR (neat): 3282, 3227, 1623, 1488,
1460, 1433, 1396, 1359, 1289, 1267, 1086, 1016, 994, 953, 914, 837, 809, 759, 688,
671, 632, 610 cm™; MS (ESI, m/z): 296.08 [M+H]*; HRMS (ESI) calcd. for
C1gH15CINO: 296.0837 [M+H]", found: 296.0842.

4.4.18 1-(5-(Thiophen-3-yl)-3-(p-tolyl)-1H-pyrrol-2-yl)ethanone (46r)

a. General procedure 4a was followed by employing 2-methylene-5-(thiophen-3-
yl)-7-(p-tolyl)-2,3-dihydro-1,4-oxazepine (37r) (112.5 mg, 0.4 mmol) and ZnCl;
(54.5 mg, 0.4 mmol), which yielded 93.2 mg (83%) of the indicated product 46r
as a yellow solid.

b. General procedure 4b was followed by employing 3-(prop-2-yn-1-ylamino)-3-
(thiophen-3-yl)-1-(p-tolyl)prop-2-en-1-one (26r) (112.5 mg, 0.4 mmol) and
ZnCl> (109.0 mg, 0.8 mmol), which yielded 75.3 mg (67%) of the indicated

product 46r as a yellow solid.

(Rf = 0.37 in 4:1 hexane/ethyl acetate); mp 167.0-169.0 °C. *H NMR (400 MHz,
CDClI3) 4 10.50 (s, 1H), 7.76-7.72 (m, 1H), 7.46 (dd, J =5.0, 0.8 Hz, 1H), 7.39-7.32
(m, 3H), 7.27 (d, J = 7.9 Hz, 2H), 6.46 (d, J = 2.8 Hz, 1H), 2.45 (s, 3H), 2.17 (s, 3H);
13C NMR (100 MHz, CDCls) § 188.9 (C=0), 137.5 (C), 134.8 (C), 133.3 (C), 133.0
(C), 132.7 (CH), 129.7 (C), 129.1 (CH), 128.9 (C), 126.6 (CH), 125.7 (CH), 120.8
(CH), 111.1 (CH), 27.6 (CHa), 21.4 (CHs3); IR (neat): 3286, 3100, 2917, 1667, 1573,
1486, 1369, 1277, 1178, 1132, 1058, 1016, 768, 653 cm™; MS (ESI, m/z): 282.09
[M+H]"; HRMS (ESI) calcd. for C17H16NOS: 282.0947 [M+H]", found: 282.0956.
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4.4.19 1-(5-(3,4-Dichlorophenyl)-3-(p-tolyl)-1H-pyrrol-2-yl)ethanone (46s)

a. General procedure 4a was followed by employing 5-(3,4-dichlorophenyl)-2-
methylene-7-(p-tolyl)-2,3-dihydro-1,4-oxazepine (37s) (137.7 mg, 0.4 mmol) and
ZnCl> (54.5 mg, 0.4 mmol), which yielded 95.0 mg (69%) of the indicated product
46s as a white solid.

b. General procedure 4b was followed by employing 3-(3,4-dichlorophenyl)-3-
(prop-2-yn-1-ylamino)-1-(p-tolyl)prop-2-en-1-one (26s) (137.7 mg, 0.4 mmol)
and ZnCl, (109.0 mg, 0.8 mmol), which yielded 85.4 mg (62%) of the indicated
product 46s as a white solid.

(Rf = 0.50 in 4:1 hexane/ethyl acetate); mp 224.0-226.0 °C. *H NMR (400 MHz,

CDCl3) § 10.21 (s, 1H), 7.76 (d, J = 1.8 Hz, 1H), 7.45 — 7.37 (m, 2H), 7.20 (dd, J =

22.6, 8.3 Hz, 4H), 6.46 (d, J = 3.0 Hz, 1H), 2.35 (s, 3H), 2.07 (s, 3H); 3C NMR (100

MHz, CDCl3) § 189.3 (C=0), 137.8 (C), 134.8 (C), 134.2 (C), 133.4 (C), 132.9 (C),

132.1(C), 131.14 (C), 131.06 (CH), 130.2 (C), 129.7 (CH), 129.2 (CH), 127.1 (CH),

124.5 (CH), 111.8 (CH), 27.8 (CH3), 21.4 (CHa); IR (neat): 3271, 1617, 1485, 1442,

1417, 1359, 1281, 1180, 1134, 1107, 1027, 993, 954, 870, 814, 758, 697, 655 cm™;

MS (ESI, m/z): 344.06 [M+H]*; HRMS (ESI) calcd. for C19H16CIoNO: 344.0604

[M+H]*, found: 344.0601.

4.4.20 1-(5-(4-Chlorophenyl)-3-(p-tolyl)-1H-pyrrol-2-yl)ethanone (46t)

a. General procedure 4a was followed by employing 5-(4-chlorophenyl)-2-
methylene-7-(p-tolyl)-2,3-dihydro-1,4-oxazepine (37t) (123.9 mg, 0.4 mmol)
and ZnCl2 (54.5 mg, 0.4 mmol), which yielded 78.1 mg (63%) of the indicated
product 46t as a white solid.

b. General procedure 4b was followed by employing 3-(4-chlorophenyl)-1-(p-
tolyl)prop-2-yn-1-one (26t) (123.9 mg, 0.4 mmol) and ZnCl, (109.0 mg, 0.8
mmol), which yielded 90.1 mg (73%) of the indicated product 46s as a white
solid.
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(Rf = 0.58 in 4:1 hexane/ethyl acetate); mp 199.1-201.0 °C. *H NMR (400 MHz,
CDCI13) 6 10.13 (s, 1H), 7.56-7.52 (m, 2H), 7.30-7.26 (m, 2H), 7.22 (d, J = 8.0 Hz,
2H), 7.16 (d, J = 8.1 Hz, 2H), 6.42 (d, J = 3.0 Hz, 1H), 2.33 (s, 3H), 2.03 (s, 3H);
13C NMR (100 MHz, CDCls) § 189.0 (C=0), 137.7 (C), 135.5 (C), 134.8 (C), 134.0
(C), 133.1 (C), 129.8 (C), 129.7 (CH), 129.5 (C), 129.3 (CH), 129.1 (CH), 126.5
(CH), 111.2 (CH), 27.7 (CHa), 21.4 (CHs3); IR (neat): 3290, 1631, 1493, 1443, 1356,
1284, 1260, 1181, 1087, 1011, 955, 831, 817, 799, 729, 656 cm™’; MS (ESI, m/z):
310.10 [M+H]+; HRMS (ESI) calcd. for C19H17CINO: 310.0993 [M+H]+, found:
310.1001.
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APPENDICES

NMR SPECTRA

!H and 3C NMR spectra were recorded in 400 and 100 MHz, respectively. Bruker
Spectrospin Avance DPX400 Ultrashield spectrometer was used for recording *H
and *C NMR spectra .

'H and 3C NMR spectra of each synthesized compounds are shown below.
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154



[44 4N
SS'v—
8Ly —

wo—
€L
€L
€L
€L
€L
wv.m\
65,
092
89°L
69°L
69°L
LLL
8L,
6L,

—+00'T |

[

€L
€L /
L —
€L
€L

oL —

T
7.5
f1 (ppm)

T
7.6

= o]

11.5 11.0 105 100 9.5

12.0

Figure 113. *H NMR spectrum of compound 37h.

6165 —

¥8'9L
wHNNW
w¢.mm

06'€6 —
€€'66 —

09°5¢T
[1: 74
0'9zZT

bL'9TT
0S°8ZT
L0°0€ET
TO'SET
om.mvﬁ \

G6'LST~
€€'85T
11291

09'sz1 "
S8'STT —
07'92T~_ _

vL9TT —

0S'82T — -

L00ET —

200 190 180 170 160 150 140 130 120

210

Figure 114. *C NMR spectrum of compound 37h.

155



ob'T

Lﬁo.m

Nv.v
mv.¢w
09

6Ly

[r'9—
YalA
YA A
8b'L
8v'L
s,/
6L°L
182
182
€8°L
€8°L

e
AN
8v'L 7
8yt

05 7

6LL
8L
8L V
£€8'L-T
£8°L

f1 (ppm)

00T
-—=00'C
N 00T

-—=00'T

11.5 11.0 105 100 9.5

12.0

Figure 115. 'H NMR spectrum of compound 37i.

6C'TE —
LLPE—

Sb'SS —

¥8'9L
oHNNW
w¢.mm

69°€6 —
9866 —

62°SCT
sz9Ct %
LTeT =
85°871 /1
60°0€T

YTSET \

T0°LET

[TEST~.
TE'8ST
29'85T

S/'99T —

Lo
)
=1
o
R
o
- &
(=3
<
o
+ 3
o
-3
o
R
o
- o
(=3
o
= —~
€
(=3
\Ow
se
=
z
o
LS
=
o
L&
S
_ —£
o
L&
a
- [=)
- <
I
o
L3
- 3
3 _
L7esT—
= 8
% ra
]
n T o
[} rs
&
o
=y o
oS L&
= 1
~
;3
— (=3
L&
Z
o
7]
. ]
TE'85T — o
29'85T — . r
)
3
o
LS
N

Figure 116. *C NMR spectrum of compound 37i.

156



9Ey
LEY
1984
or'v
0S5t~
[4°R4
1404
[ 7A4
SLY
LLY

wN.m
mN.mW
0€9
(4"}

S€'L
mm.m/
'L

WL
'L
'L

UL
vLL
9L

Cl

679
0€'9
€9

SEL
LE'L /
WL
WL X
€L N

L

weL N

bLL—s -
s

78 76 74 72 7.0 68 66 64
f1 (ppm)

11.5 11.0 105 100 9.5

12.0

Figure 117. *H NMR spectrum of compound 37j.

Sb'GS —

¥8'9L
wHNNW
w¢.mm

06 —
80'66 —

17°9e1
5821 /
55821 W
69821

zzoet /.
06'b€T x
10°9€T \
90°8€T

S6°£5T —

sTesT/
0£°59T —

Cl

19T — —

EVBIT~_
5681 — —
69'8CT " T

TT0ET —

60 50

70

200 190 180 170 160 150 140 130 120 110 100 _ 90 80
f1 (ppm)

210

Figure 118. *C NMR spectrum of compound 37j.

157



or'v
ﬂva
(444

SSv

LSV
wh.v*S
08t

€69~
se9/
bbL
Sb'L
i
'L
e
95°L
9L
89°L
7L
L't
wi
6L

Br

1 (ppm)

11.5 11.0 105 100 9.5

12.0

Figure 119. *H NMR spectrum of compound 37Kk.

Br

L5685 — -

89/ \

oﬁ.mm\
8v'LL /

6146 —

R

T1°66 — -

SS'PCT
0€'9zT /

¥9'8¢T -

€0'6¢T -, =

1e0cT /
8 TET \
86'bET
19°8€T

T
126

€T — ~—
[6°L5T —
0651/ r
§6°59T —

127

T
128

f1 (ppm)

$9'82T — -
€0°62T — = r

129

T
130

TE0ET — =

8P TET —  —

e

200 190 180 170 160 150 140 130 120 110 _ 100
f1 (ppm)

210

Figure 120. *C NMR spectrum of compound 37k.
158



we—

vy
Nv.¢W
Sy

v/

8¢9 —

9L
8¢'L
€L
€€°L~

s/
ov'L

L

95,
85,
59/
oL
L

9L~
8TL—
ﬁm&“
€L

mm&\
oL —
wL—

95, —
85°L—

S9L

0L~
UL~

<S00°€|

11.5 11.0 105 100 9.5

12.0
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Figure 122. *C NMR spectrum of compound 371.
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Figure 162. *C NMR spectrum of compound 46l.
179



A

597
579
66'9 1
0072
10°
20/
20, 1
€0
40"/
9T'L |
vE'L
S/
9"/ +
LE°LA
LE°1
Le°L]
ov'L]
e
e
s
o'/ ]
Lyl
8b°/
6b°L 1
057/

0T —

Cl

66'9
oo.m/
10°L =

wL—rF

0L
€0°L
v0'L

CHj

/ \

ZT

7.0

72 71
1 (ppm)

7.3

7.4

7.5

—=T0°€

-—<00'T

11.5 11.0 105 100 95 90 85 8.0 75 7.0 65 Gf.U( 5.)5 50 45 40 35 30 25 20 1.5 1.0 05 0.0
1 (ppm|

12.0

Figure 163. *H NMR spectrum of compound 46m.
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Figure 164. 1*C NMR spectrum of compound 46m.
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Figure 165. *H NMR spectrum of compound 46n.
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Figure 166. 1*C NMR spectrum of compound 46n.
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Figure 167. *H NMR spectrum of compound 460.
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Figure 168. 1*C NMR spectrum of compound 460.
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Figure 169. *H NMR spectrum of compound 46p.
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Figure 170. *C NMR spectrum of compound 46p.
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Figure 171. *H NMR spectrum of compound 46q.
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Figure 172. *C NMR spectrum of compound 46q.
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Figure 173. 'H NMR spectrum of compound 46r.
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Figure 174. *C NMR spectrum of compound 46r.
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Figure 175. *H NMR spectrum of compound 46s.
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Figure 176. *C NMR spectrum of compound 46s.
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Figure 177. 'H NMR spectrum of compound 46t.
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Figure 178. 1*C NMR spectrum of compound 46t.
187



