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ABSTRACT

FINITE ELEMENT FORMULATIONS FOR KIRCHHOFF-LOVE
MICROPLATES

Kandaz, Murat
Ph.D., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Hüsnü Dal

July 2020, 136 pages

Micro- and nano-electromechanical systems (MEMS-NEMS) are integral parts of the

modern world today and have gained importance since they were first introduced.

There is still a huge demand for accurate electromechanical analyses of MEMS de-

vices in order to reach even better design and manufacturing methods. It is vital that

these devices are accurately modelled and analyzed based on the physical phenomena

occurring within their inner structure as a result of the conditions they are subjected

to.

Classical continuum mechanics approaches are highly accurate for large scale struc-

tures where the structural length scale is several order of magnitudes higher than the

microstructural length scale. However, they fail to describe the mechanical behavior

of smaller parts, i.e. MEMS-NEMS devices, as the structural length scale becomes

comparable to grain size. Hence, the effect of discontinuities in field variables at

grain boundaries and other imperfections should be considered. This phenomenon is

known as size effect or scale effect. To model such structures in the scale of microns,

several techniques have been developed, the dominating and most well-proven being
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the modified gradient elasticity theories. Within this context, micron-scaled parts and

materials are modelled using gradients, and in turn, higher order terms are introduced

with relevant length scale parameters into the constitutive theory which take the size

effects into account.

In this study, sample microstructures and MEMS-NEMS devices are analyzed using

finite element method (FEM) based on variational formulation of modified strain gra-

dient theories. In this framework, new finite elements are developed and verified for

Kirchhoff-Love plate theory, making it possible to model complex planar MEMS-

NEMS geometries. Structural behavior is elaborated using codes based on numerical

analyses, that are also developed within this study. The results are then compared

with experimental results and literature for verification. The convergence and validity

of model results and the extent upto which they are applicable within the general con-

tinuum approach are also discussed. Length scale parameters for gold microstructures

are proposed based on theoretical-computational-experimental framework.

Keywords: size effect, higher order finite element method, modified strain gradient

theory, length scale parameter, microplates, MEMS, higher order elasticity, higher

order Kirchhoff-Love plate theory
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ÖZ

KİRCHHOFF-LOVE MİKROPLAKALARI İÇİN SONLU ELEMANLAR
FORMÜLASYONLARI

Kandaz, Murat
Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Hüsnü Dal

Temmuz 2020 , 136 sayfa

Mikro- ve nano-elektromekanik sistemler (MEMS-NEMS) yaşadığımız modern dün-

yanın vazgeçilmez parçalarıdır ve ilk kullanmaya başlanıldığı günden beri önem ka-

zanmaya devam etmektedir. Halen daha da iyi tasarım ve üretim yöntemlerine ulaş-

mak için ilgili yapılarda daha doğru ve hassas elektromekanik analizlere ihtiyaç bu-

lunmaktadır. Bu yapıların maruz kaldıkları şartlara bağlı olarak iç yapılarındaki fi-

ziksel değişim ve olayları baz alarak yapılacak hassas modelleme ve analizler büyük

önem taşımaktadır.

Klasik sürekli ortam mekaniği yaklaşımları, büyük boyutlardaki yapılar için doğru

sonuçlar vermektedir. Ancak MEMS-NEMS yapıları gibi boyutların birkaç tanecik

boyutunda mikro boyuttaki parçaların mekanik davranışını modelleyememektedirler.

Bu yüzden alan değişkenlerinin tanecik kenarlarındaki süreksizlikleri ve diğer yapı-

sal bozukluklar dikkate alınmalıdır. Bu fenomen boyut etkisi olarak bilinmektedir.

Mikron seviyelerindeki yapıları modellemek için, en etkili ve kanıtlanmış olanı mo-

difiye gradyan elastisite kuramları olmak üzere çok çeşitli yöntemler geliştirilmiştir.

İlgili teorilerde mikron boyutta olan parçalar ve malzemeler, gradyanlar kullanarak,
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ve bunun sonucu olarak esas yapısal denklemlere boyut etkisi parametrelerini içeren

yüksek mertebe terimlerinin eklenerek modellenmektedir.

Bu çalışmada örnek mikroyapılar ve MEMS-NEMS yapıları, modifiye gradyan teori-

lerinin varyasyonel formülasyonuna dayalı sonlu elemanlar yöntemi (SEY) kullanı-

larak analiz edilmiştir. Bu kapmsada, Kirchhoff-Love plak teorisi için yeni sonlu ele-

manlar geliştirilmiş, dolayısıyla komplike şekillere sahip düzlemsel MEMS-NEMS

yapılarının modellenmesi mümkün olmuştur. İlgili yapıların davranışları sayısal ana-

liz tabanlı olarak gene bu çalışma içerisinde geliştirilen bilgisayar kodları ile gerçek-

leştirilmiştir. Sonuçlar, yapılan deneyler ve literatürdeki bulgular ile karşılaştırılmıştır.

Genel sürekli ortam yaklaşımı içerisinde model sonuçlarının doğruluğu ve yakınsama

davranışları ile hangi derecede uygulanabilir olduğu da ayrıca tartışılmıştır. Sözü edi-

len kuramsal-hesaplamalı-deneysel çerçeve kapsamında altın mikroyapılar için boyut

etkisi parametreleri önerilmiştir.

Anahtar Kelimeler: boyut etkisi, yüksek mertebe sonlu elemanlar yöntemi, modifiye

gerinim gradyanı teorisi, boyut ölçeği parametresi, mikroplakalar, MEMS, yüksek

mertebe elastisite, yüksek mertebe Kirchhoff-Love plaka teorisi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

The potential application areas of MEMS-NEMS are almost limitless and steadily

growing given their small size, low weights, ease of implementation in integrated cir-

cuits, low energy consumption and low manufacturing costs. These features earn

them vast utilization areas from automotive to defense industry, from biomedical

engineering to consumer electronics, and from optics to communication systems.

MEMS and NEMS are used in pressure sensors, accelerometers, computer and smart

phone hardware, gyros, resonators, micro-power terminals, actuators, RF switches

and biomedical devices [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

The feature size of MEMS and NEMS devices is decreasing day by day and ap-

proaching to orders of a few microns and nanometers respectively as given in Figure

1.1. The deformations are almost always in the elastic regime during their appli-

cations. It is in fact known that behavior of materials change both elastically and

plastically as their feature size decrease to certain limits [22, 23, 24, 25, 26, 27]. This

phenomenon is known as size effect or scale effect in structures which have feature

sizes and dimensions in the order of magnitude of their grain sizes, i.e. at mesoscale

level as seen in Figure 1.2. Several parameters regarding crystallographic texture,

grain morphology, surface morphology, self-diffusion, secondary grain growth, de-

fect structure, and inter-diffusion [28, 29, 30] are responsible for size effects. These

factors hinder deformation and make structures at mesoscale level relatively stiffer

than their counterparts, making classical theories of continuum mechanics invalid.

In fact, the first of many studies considering these led to the effect named after its

1



 0

 8

 16

 24

 0

 6

 4

 2

 1970  1980  1990  2000  2010  2020

F
ea

tu
re

si
ze

[µ
m
]

L
o
g
ar

it
h
m

ic
fe

at
u
re

si
ze

[l
o
g
10

3
µ
m
]

Years

Feature size

Logarithmic feature size

Figure 1.1: Feature sizes of MEMS and NEMS with years

Atomic Mesoscale Macroscale

nanometer micrometer milimeter meter

10−9 m 10−6 m 10−3 m 1m

Figure 1.2: Material length scales per [2]

originators, i.e. Hall-Petch effect, that inversely relates yield strength with grain size

[31, 32]. In any microstructure, manufacturing and operating conditions, particularly

temperature and loading rate, also affect these parameters, as also investigated in

literature [33, 34, 35, 36, 37, 38, 39].

Being used in extensive industries and products, requirements and specifications vary

for MEMS and NEMS devices depending on application. In turn, they can be made
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of metallic, polymeric, silicon-based or functionally graded materials. This study

focuses on MEMS structures made of gold, since several properties render it a popu-

lar material in MEMS and NEMS applications. It possesses excellent mechanical

and electrical properties such as electrical conductivity, chemical inertness, resis-

tance to surface wear, relatively lower residual stress after manufacturing due to ther-

momechanical loads, and relatively lower thermal fluctuation. Size effects in gold

micro-structures were also experimentally shown under tensile [40, 41], compressive

[42, 43], bending [44, 45, 46] tests, respectively. Also, many studies and tests to-

wards understanding microstructure of gold have been performed in literature, given

the fact that gold is one of the most popular materials in MEMS-NEMS community

[47, 48, 49, 50, 51, 52, 53, 54].

The early works regarding modelling of size effect in engineering materials were

oriented towards understanding the physical phenomena rather than accurate mathe-

matical description. That is for instance, Voigt’s pioneering work [55] provided an

extensive approach containing kinematics, balance laws, and constitutive relations,

but yielded a complicated differential equations set, solutions of which included fur-

ther simplifying assumptions [56].

1960’s became a so-called “renaissance” period for higher order theories [56]. Couple

stress concept was introduced [57] which depended on Voigt’s work [55], in which

surface loads are in fact both force and moment vectors. New theories making use

of this concept were introduced in full compliance with continuum approach [58,

59, 60, 61, 62, 63]. Eringen also included micro inertia (which allows incorporation

of dynamic effects) and founded Micropolar Elasticity [64]. He also developed the

notion of Nonlocal Elasticity [65] and compiled years of research in his invaluable

book [66]. Unlike classical continuum theory, which assumes that the stress at a

point is a function of strain at that particular point, the founding principle of nonlocal

elasticity is the assumption that the stress at a point is a function of strain variaton in

the neighbourhood of the continuum as well [67].

In 2000’s, the development of computing power and the increasing demand in mi-

crostructures led to pioneering works in nonlocal theory. Many landmark studies and

comprehensive contributions were made considering the theories mentioned above.
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Those included advanced materials such as functionally graded materials (FGM), as

well as various boundary conditions applied in real microstructures [68, 69, 70, 71,

72, 73, 74, 75, 76, 77, 78, 79, 80, 81].

The general theories considering MEMS and NEMS were also developed first in

1960’s. Originally, they were oriented towards modelling microstructures with im-

proved accuracy as well as finding satisfactory solutions to problems of singularities

in classical elasticity theory, e.g. concentrated loads, regions around crack tips, neg-

ative slope regime in stress-strain curve of strain softening [60, 57, 82, 62, 83, 84].

Most of the originating theories of higher order elasticity are also known as “MTK

theories” after capitals of Mindlin, Toupin and Koiter. Fleck and Hutchinson [85, 86,

87] used the previous concept of strain gradients and extended them in an improved

Strain Gradient Theories (SGT) pioneering the framework of higher order theories

implemented in this study, originally oriented towards solving plasticity problems.

These were fundamentally similar to the nonlocal theories introduced by Eringen

[88]. Lam et al. [6] decreased this number from five to three in SGT using new

equilibrium conditions and new strain and stress metrics, leading to Modified Strain

Gradient Theory (MSGT). Yang et al. [89] introduced a new equilibrium equation

which decreased the number of independent length scale parameters from two to one,

also leading to Modified Couple Stress Theory (MCST).

MSGT has been proven to be an accurate, consistent, and mathematically complete

model. This enabled the intensive use of MSGT in the analysis microstructures and

MEMS [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103]. The implementa-

tion of MCST can be interpreted as a modification of MSGT, reducing the number of

length scale and other parameters from three to one, providing practicality especially

in beam applications [104, 105, 106, 107, 108, 95, 109, 110, 111, 112, 113, 114, 115,

116, 117].

Since MEMS and NEMS are evolving to have more geometrically complex shapes,

one-dimensional (1D) beam solutions are becoming insufficient in modelling, with

the need for two-dimensional (2D) solutions. Despite there are many studies regard-

ing implementation of higher order theories on microbeams as above, microplates did

not receive such attention so far [118]. Several valuable contributions provide analyti-
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cal plate solutions [5, 119, 120, 121, 122], but are applicable to ideal boundary condi-

tions and geometries. However, stable and convergent finite element implementations

allow the analysis and design of MEMS and NEMS structures of any geometry.

The most common and proven method to obtain general quadrilateral shapes is dis-

crete Kirchhoff-Love quadrilaterals (DKQ) and discrete Kirchhoff-Love triangles,

based on eight serendipity shape functions [123]. Here, the Kirchhoff-Love theory is

applied only at certain discrete points on the element boundary, relaxing the require-

ment of having C1-continuity [124]. Similarly, forming a general quadrilateral by

combining four triangles are also used by Clough and Felippa [125] and de Veubeke

[126] to obtain conventional Kirchhoff-Love plate elements applicable to general

quadrilaterals. These methods apply static condensation at internal nodes of the trian-

gles forming the quadrilateral. In order to relax Kirchhoff-Love theory requirements,

Reissner-Mindlin (RM) theory for moderately thick plates is applied. Therein, the

continuity requirement for the displacement interpolation is reduced to C0 instead

of C1. However, RM plate elements suffer from shear locking. Quadrilateral ele-

ments that overcome shear locking problem and decrease parasitic effects have been

developed by e.g. [127, 128, 129, 130, 131, 132, 133]. Triangular elements followed

the same path. Although many successfully proven non-conforming Kirchhoff-Love

elements in C1 have been formulated [3, 134, 135, 136, 137, 138], insensitiveness

to aspect ratio and failure in several patch tests have led to implementations in RM

theory in C0 or similar methods described above to avoid C1 requirements. Although

discrete penalty constraints, reduced interpolation procedures, penalty-strain interpo-

lations, and penalty parameter modifications have been introduced, several schemes

may lead to locking [139, 140, 132, 141]. Several examples overcoming locking in

bending dominated problems include [142, 143, 144, 145, 146, 147, 148]. These have

been successfully used in many applications and considered to overcome bending

problems, despite the fact the formulation is quite complicated and computationally

expensive considering numerical implementations in complex problems.

This study however, focuses in modelling the divergence of microstructures from

those predicted by the classical theories with all aspects - theoretically, numerically,

and experimentally. Hence Kirchhoff-Love plate theory and Euler-Bernoulli beam

theory are adopted. Another aim is to fill an important gap in bending problems which
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are the foundations of a majority of design and analysis issues in MEMS and NEMS

industry. This is done by introducing novel plate finite elements, so that geometries

that can not be reduced to beam structures can be modelled, and without the need for

idealized cases that can be solved with finite element analysis. Recognizing most, if

not all, of the MEMS and NEMS structures can be modelled with rectangular plate

elements, Kirchhoff-Love rectangular plate elements applicable in that domain are

developed, from a single basis function that satisfies the higher order plate equation.

Also considering a minority of the relevant MEMS and NEMS structures include

triangular regions, Kirchhoff-Love triangular plate elements applicable in that domain

are also developed, using the same approach in the basis function satisfying the higher

order plate equation.

As far as the experiments in the literature are considered, despite the fact that the

size effects have been demonstrated for gold, the experimental data have been shared

in the form of force-displacement curves in only one study according to the best of

the author’s knowledge [1]. Moreover, length scale parameters and size effects for

gold, a material of wide-range usage and a great potential, haven’t been quantified in

literature. Hence in this study, the data of Espinosa et al. along with several bending

experiments on gold microstructures using atomic force miscoscopy (AFM) are used

to propose length scale parameters for gold materials.

1.2 Proposed Methods and Models

The study stands on three pillars for the solutions of the above mentioned problems.

These are theoretical, numerical, and experimental aspects in modelling microstruc-

tures. Moreover, all of them introduced a novelty in the respective area as discussed

in the forthcoming section.

The theoretical framework of the study is performed by first deriving the weak forms.

This is done by using variational methods. Then the set of algebraic equations for the

numerical formulation are derived. Computer codes using Octave and Matlab® are

developed, in which the finite element equations are solved by Gaussian quadrature.

New higher order Kirchhoff-Love plate elements are developed, filling an important
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gap in literature. To compare higher order and classical theories, the numerical study

also includes the use of ANSYS® Mechanical to simulate the experiments. The

experimental studies involves bending of gold microstructures. Then using the nu-

merical studies, the length scale parameters for gold are found. This in turn yields the

size effect for gold microstructures.

Mathematical models for the microstructures are selected to be Euler-Bernoulli beam

theory and Kirchhoff-Love plate theory respectively. That is, microstructures are

assumed to be relatively thin so that shear effects are negligible. Most MEMS and

NEMS structures used in the modern world today are aligned with this assumption.

Although thick beam and thick plate assumptions leading to Timoshenko beam and

Mindlin-Reissner plate theories have also been utilized in literature, it is evaluated

that Euler-Bernoulli beam and Kirchhoff-Love plate theories are both the most widely

used and feasible. The gaps between the structures at which they are subjected to

loads and deformations are also much lower, even comparable to the thicknesses of

the structures. Hence a fully liner elastic regime is assumed for bending of the gold

microstructures.

MSGT and MCST are the main higher order theories utilized. MSGT is a mathe-

matically complete, elegant, proven, and one of the most commonly used theories in

higher order elasticity, developed by Lam et al [6], as thoroughly explained in Chap-

ter 2. It is also generally accepted in literature as a theory that compromises between

accuracy and computational feasibility, with three length scale parameters. The major

part of the study focuses on MSGT, with respect to:

• identifying length scale parameters for gold with respect to Euler-Bernoulli

microbeams,

• development of a variational model for Kirchhoff-Love plate finite elements,

• development of rectangular and triangular Kirchhoff-Love plate finite elements,

• development of finite element codes based on the newly developed rectangular

and triangular Kirchhoff-Love plate elements,

• identifying length scale parameters for gold with the newly developed Kirchhoff-

Love plate elements via literature and bending experiments conducted within.
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MCST has advantages in practicality, however lacks the mathematical completeness

of MSGT. The single length scale parameter makes it very feasible to use. It is also

one of the most widely used methods in microstructure modelling, developed by Yang

et al [89], as described in Chapter 2. In this study, it is the secondary higher order

theory which is used in:

• identifying length scale parameters for gold with Euler-Bernoulli microbeam

modelling,

• comparing with MSGT and the classical theories.

1.3 Contributions and Novelties

Bending experiments on gold microbeams and microplates are performed by an atomic

force microscope (AFM). Before performing these experiments, all specimens have

been assessed in a clean room for dimensions, gaps, initial deformations, and surface

roughness parameters. Using these experiments length scale parameters for gold are

identified for the first time in literature. These parameters are based on models and

numerical methods based on literature (regarding microbeams), as well as the novel

models and methods (regarding microplates). Outcomes of limited experimental data

from literature are also compared with the results. The beam and plate assumptions

are those of Euler-Bernoulli Beam Theory and Kirchhoff-Love Plate Theory respec-

tively.

A complete higher order mathematical model based on variational formulation for

Kirchhoff-Love plates are developed based on MSGT. It paves the way for numerical

analysis mentioned below.

Several rectangular and triangular higher order Kirchhoff-Love plate finite elements

are newly developed for the Modified Strain Gradient Theory. Rectangular elements

can be considered as extensions of Adini-Clough-Melosh (ACM) elements [149, 150]

and Bogner–Fox–Schmit (BFS) elements [151]. There are four types with 20, 24, 28,

and 32 degree of freedoms (DOF’s) - corresponding to 5, 6, 7, and 8 DOF’s per node.

Triangular elements are based on 18 DOF elements with 6 DOF’s per node as in
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Bell element [135], complementary to 24-DOF rectangular elements. Finite element

codes and routines are developed making use of these elements, that is able to model

microstructures with both rectangular and triangular finite element meshes. This is

also a first in literature, providing means to analyze MEMS and NEMS structures that

can not be modelled by beam elements by MSGT.

Real MEMS structures are analyzed with the newly developed higher order rectan-

gular plate elements in MSGT. The necessity of using higher order theories is also

demonstrated for these cases, as well as the need for using plate models, again as a

novel aspect.

1.4 Thesis Outline

After the brief introduction in Chapter 1, Chapter 2 focuses on higher order contin-

uum mechanics and specifically strain gradient theories, with comparisons, physical

and numerical relations to classical theory. Chapter 3 introduces finite element imple-

mentation and newly developed rectangular and triangular elements. The conformity,

continuity, applicability and patch tests of the proposed elements, as well as the mod-

els for the experiments conducted within the scope of this study are discussed in

Chapter 4. The experiments conducted with the use of AFM are discussed in Chapter

5. Chapter 6 includes conclusions, recommendations, and several aspects that need

to be emphasized or addressed.
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CHAPTER 2

FUNDAMENTALS OF HIGHER ORDER CONTINUUM MECHANICS AND

STRAIN GRADIENT THEORIES

The foundation of this study, i.e. theoretical framework of higher order elasticity,

is laid in this chapter. Implementation to Euler-Bernoulli beam and Kirchhoff-Love

plate formulations are performed based on higher order theories. This framework is

then utilized in forthcoming sections to be developed numerically and experimentally.

2.1 Variational Formulation of Classical Elasticity

The formulation of finite elasticity for any structure depends on a potential functional

in the form

Π(u) := Π int(u)−Πext(u) . (2.1)

Herein, Π int and Πext are the energy stored in the body and the work associated

with external forces respectively, with u as the displacement field. The internal and

external potentials are expressed as

Π int(u) :=

∫
B
ψ(ε)dV , and Πext(u) :=

∫
B
u·ρ0bdV+

∫
∂B
u·tdA . (2.2)

where ρ0, b, t denote density, prescribed body force tensor, and surface traction ten-

sor, respectively. B refers to any 3D Riemannian manifold in an Eucledian space

consisting of material points within. ε denotes the strain tensor defined as

ε =
1

2
(∇u+∇Tu) . (2.3)

The free energy function for the linear isotropic solid is

ψ(ε) =
1

2
λ(tr ε)2 + µε : ε , (2.4)
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where

λ =
Eν

(1− 2ν)(1 + ν)
and µ =

E

2(1 + ν)
(2.5)

are the the first Lamé constant and the shear modulus, respectively, whereas E is the

isotropic elastic modulus and ν is the Poisson’s ratio.

The boundary value problem for the static equilibrium of an isotropic linear elastic

solid is governed by the principle of minimum potential energy

u = arg

{
inf
u∈B

Π(u)

}
. (2.6)

The principle of minimum potential energy requires the variation of the total potential

vanish at equilibrium. From (2.1),

δΠ = δΠ int − δΠext = 0 . (2.7)

The Euler-Lagrange equation resulting from the variational formulation is the balance

of linear momentum

divσ + ρ0b = 0 . (2.8)

subjected to the following Dirichlet and Neumann-type boundaries

1. u = ū on ∂Bu ,

2. σ · n = t̄ on ∂Bt ,
(2.9)

see Figures 2.1 and 2.2 for beam and plate geometries and corresponding Riemannian

manifolds B. Therein ∂Bu and ∂Bt may refer to the physically identical surfaces or

points, however they are always considered discrete based on the type of boundary

conditions, i.e. Dirichlet or Neumann.

The stress tensor for linear isotropic solid can then be derived from the free energy

(2.4).

σ := ∂εψ(ε) = λ tr ε 1 + 2µε . (2.10)

2.2 Variational Formulation of Strain Gradient Elasticity

Strain gradient elasticity is implemented by the addition of higher order strains into

the free energy function in the sense of Mindlin [62]

ψ = f(ε,η) where η = ∇∇u (2.11)
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is the second gradient of the displacement field, and hence the higher order strain

tensor, or the strain gradient tensor. For isotropic materials, the following specific

form is adopted [86, 83] to additively incorporate the higher order strains into the free

energy function

ψ(ε,η) = ψC(ε) + ψH(η) where ψC(ε) =
1

2
λ (tr ε)2 + µε : ε (2.12)

is the same formulation given in Equation 2.4 representing the classical part of the

free energy function and

ψH(η) = a1 (η .. 1) · (η .. 1) + a2 (1 .. η) · (η .. 1) + a3 (1 .. η) · (1 .. η)

+a4 (η
... η) + a5(η

... η
13
T )

(2.13)

is the higher order part of the free energy function. Herein, (..) and (...) represent the

double dot product and the triple dot product respectively as given in Appendix A. η
13
T

refers to the third order transpose operator of η as also given there. The terms with

five additional material parameters ai in Equation 2.13 represent the most general

case for the higher order part of the free energy function.

From (2.12)1, the first variation of the free energy can be derived as

δψ = σ : δε+ τ
... δη where σ := ∂εψC(ε) and τ := ∂ηψH(η) (2.14)

are the second and third order stress tensors, respectively. Here, the stress tensors σ

and τ are the work conjugates of the second order strain ε and the third order strain

η. The strain gradient tensor η can be represented as the summation of its symmetric

and antisymmetric in the sense of Fleck [86]

η = ηs + ηa . (2.15)

The symmetric part can be additively decomposed into volumetric η0 and deviatoric

η1 parts so that

η = η0 + η1 + ηa , (2.16)

leading the way to develop MSGT and MCST as introduced in the forthcoming sec-

tions.
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2.2.1 Modified Strain Gradient Theory (MSGT)

After several manipulations, Lam et al. [6] used another set of strain and stress metrics

to develop the modified version of the ansatz (2.11,2.14)

ψ = ψ̃(ε,∇ε,η1,χ) leading to δψ = σ ..δε+p·δ∇ε+τ 1 ...δη
1+m..δχ , (2.17)

which leads to Modified Strain Gradient Theory (MSGT) in the sense of Lam et

al. [6].

The stress tensors

σ := ∂εψC(ε) , p := ∂∇εψH(η1,∇ε,χ) , τ 1 := ∂η1ψH(η1,∇ε,χ) ,

and m := ∂χψH(η1,∇ε,χ)
(2.18)

are the work conjugates of the strain tensors ε, ∇ε, η1, χ respectively. Herein,

η1 :=
1

3
∇pε− 1

15
(1⊗∇ε)

− 1

15

[
2 (1⊗ tr(∇ε)) + (1⊗∇ε)

13
T + 2 (1⊗ tr(∇ε))

13
T

]
+

1

15

[
(1⊗∇ε)

23
T + 2 (1⊗ tr(∇ε))

23
T

]
, and

χ :=
1

2

[
∇θ +∇Tθ

]
where θ :=

1

2
curl u .

(2.19)

p, τ 1, m are the pressure gradient vector, the double stress tensor and the couple

stress tensor, respectively. ∇p is the permutational gradient defined as ∇pε = εjk,i +

εki,j + εij,k. ⊗ refers to the dyadic product, see Appendix A. The higher order strain

metrics are the deviatoric strain or namely stretch gradient tensor η1 in addition to

the rotation gradient tensor or curvature tensor χ, and the dilatation gradient vector

∇ε.

The total internal energy for MSGT then takes the following form

Π int(u) :=

∫
B
ψ̃(ε,∇ε,η1,χ) dV . (2.20)

Also,

ψH = ψ̃(∇ε,χ) = µl20∇ε · ∇ε+ µl21 η
1 ... η

1 + µl22 χ : χ . (2.21)
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Incorporation of the internal potential (2.20) and the external work potential (2.2)2

into the total potential expression (2.1), the Euler-Lagrange equations of the mini-

mization principle (2.6) reads

divσ +∇[divp] + div[divτ ] +
1

2
curl[divm] + ρ0b = 0 . (2.22)

The corresponding stress measures as work conjugates of the strain measures ε, η1,

∇ε and χ respectively are

σ = λ (tr ε) 1+2µε , p = 2µl20 ∇ε , τ = 2µl21 η
1 and m = 2µl22 χ , (2.23)

where l0, l1, l2 are the three length scale parameters introduced to capture the size

effects in MSGT.

2.2.2 Modified Couple Stress Theory (MCST)

Further simplification of MSGT by disregarding the effects of the strains resulting

from the stretch gradient η1 and the dilatation gradient∇ε leads to Modified Couple

Stress Theory (MCST) in the sense of Yang et al. [89]. To do this, taking l0 = 0, l1 =

0 leads to the Euler-Lagrange equations. There is only one length scale parameter

l2 = l.

divσ+
1

2
curl[divm]+ρ0b = 0 , where σ = λ (tr ε) 1+2µε and m = 2µl22 χ .

(2.24)

The length scale effect is incorporated through single length scale parameter l2 ap-

pearing in the definition of the couple stress tensorm.

2.3 Implementation to Euler-Bernoulli Beams

A brief introduction of classical Euler-Bernoulli beams is given in Section 2.3.1, fol-

lowed by the implementation of MSGT and MCST in Sections 2.3.2 and 2.3.3.

2.3.1 Euler-Bernoulli Beams in Classical Theory

Euler-Bernoulli beam is based on the kinematic assumptions [152] that all rotations

are small and plane sections remain plane and perpendicular to the neutral axis during
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rotation. The displacement field according to Figure 2.1(a) is

ux(x) = −z∂w
∂x

, uz(x) = w , (2.25)

and w=w(x). The rotation and curvature can be represented as

θ =
dw

dx
and κ =

d2w

dx2
, M = EIκ . (2.26)

where I is the area moment of inertia of the beam cross section and the beam geom-

etry is as given in Figure 2.1(a). Accordingly, rotations are assumed to be small and

plane sections are assumed to remain plane and perpendicular to neutral axis. The

displacement vector u consists of vertical displacements w and rotations θ. Surface

traction vector t also consists of shear forces V and moments M .

z

x

L

h

∂Bu

∂Bt∂B = ∂Bu ∪ ∂Bt

Bu = ū t = t̄

q = q̄

(a)
(b)

Figure 2.1: (a) Kirchhoff-Love plate geometry and (b) Dirichlet ∂Bu and Neumann

∂Bt boundary conditions imposed. Note that ∂B = ∂Bu ∪ ∂Bt.

Due to kinematic equations, shearing, torsional, longitudinal effects are neglected.

Hence strain energy is governed solely by bending action. Incorporation of (2.26)1

and (2.26)2 into (2.2) leads to the internal potential

Π int =
1

2

∫
L

Mκdx =
1

2

∫ L

0

[
EI

(
d2w

dx2

)2
]
dx (2.27)

for an Euler-Bernoulli beam having a length L in x direction. The external potential

has the following form

Πext =

∫
L

q̄wdx+
∑
∂Bt

[V w]
∣∣∣
∂Bt

+
∑
∂Bt

[Mθ]
∣∣∣
∂Bt

. (2.28)

As the first variation of the total potential Π has to vanish at the equilibrium state.

Incorporation of (2.27) and (2.28) into (2.7) yields

δΠ =

∫ L

0

[δκ EI κ] dx−
∫
L

q δwdx−
∑
∂Bt

[V δw]
∣∣∣
∂Bt
−
∑
∂Bt

[Mδθ]
∣∣∣
∂Bt

= 0 . (2.29)
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Use of integration by parts twice leads to

δΠ =

L∫
0

(
EI

d4w(x)

dx4
− q(x)

)
δwdx+

(
−EI d

3w(x)

dx3
− V (x)

)
δw
∣∣∣L
0

+

(
−EI d

2w(x)

dx2
−M(x)

)
δθ
∣∣∣L
0

= 0 .

(2.30)

The Euler-Lagrange equation of the minimization principle (2.1) can then be derived

as given in e.g. [153]

EI
d4w(x)

dx4
− q(x) = 0 , (2.31)

along with the relations

V (x) = −EI d
3w(x)

dx3
and M(x) = EI

d2w(x)

dx2
(2.32)

for shear force V and bending moment M .

2.3.2 Euler-Bernoulli Beams in Modified Strain Gradient Theory

Making use of the strain expressions (2.19) and the stress expressions (2.23) together

with the kinematic assumptions associated with the Euler-Bernoulli beam theory, the

following strain energy equation can be found

Π int =
1

2

∫ L

0

c1

(
d2w

dx2

)2

dx+
1

2

∫ L

0

c2

(
d3w

dx3

)2

dx (2.33)

where

c1 = E∗I + µbh

(
2l20 +

8

15
l21 + l22

)
and c2 = µI

(
2l20 +

4

5
l21

)
, (2.34)

where E∗ is given as [154]

E∗ =
E(1− ν)

(1− 2ν)(1 + ν)
. (2.35)

Note that various authors take different values forE∗ with an additional simplification

of disregarding ν at various points of derivation of equation (2.35). Kahrobaiyan

et al. [92] take E∗ = E for general case and Zhao et al. [96] take it to be E∗ =

E/2(1 + ν) for plane strain case. There are also different opinions of the requirement

of Poisson’s ratio in the relevant formulation. Ma et al. [106] argue that it is necessary,
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whereas Dehrouyeh-Semnani and Nikkhah-Bahrami [155] argue vice versa. In this

study, (2.35) is considered to be valid.

The external potential for the MSGT based beam theory takes the following form

Πext =

∫ L

0

q(x)wdx+ [V (x)w]
∣∣∣L
0

+

[
M(x)

dw

dx

] ∣∣∣L
0

+

[
Q(x)

d2w

dx2

] ∣∣∣L
0
. (2.36)

Here, Q(x) is the higher order moment conjugate to the curvature κ. The first varia-

tion of the internal potential leads to

δΠ int =

∫ L

0

δ
d2w

dx2
c1
d2w

dx2
dx+

∫ L

0

δ
d3w

dx3
c2
d3w

dx3
dx . (2.37)

Making use of integration by parts twice for the first term on the right hand side of

the equality (2.37) and three times for the second term leads to

δΠ int =

∫ L

0

(
c1
d4w

dx4
− c2

d6w

dx6

)
δwdx+

(
−c1

d3w

dx3
+ c2

d5w

dx5

)
δw
∣∣∣L
0

+

(
c1
d2w

dx2
− c2

d4w

dx4

)
δθ
∣∣∣L
0

+ c2
d3w

dx3
δκ
∣∣∣L
0
.

(2.38)

Similarly, the first variation of the external work potential can be derived as

δΠext =

∫ L

0

q(x)δwdx+ [V (x)δw]
∣∣∣L
0

+ [M(x)δθ]
∣∣∣L
0

+ [Q(x)δκ]
∣∣∣L
0
. (2.39)

Inserting (2.38) and (2.39) into (2.7):

δΠ =

∫ L

0

[
c1
d4w

dx4
− c2

d6w

dx6
− q(x)

]
δwdx+

[
−c1

d3w

dx3
+ c2

d5w

dx5
− V (x)

]
δw
∣∣∣L
0

+

[
c1
d2w

dx2
+ c2

d4w

dx4
−M(x)

]
δθ
∣∣∣L
0

+

[
c2
d3w

dx3
−Q(x)

]
δκ
∣∣∣L
0

= 0

(2.40)

The Euler-Lagrange equation of the minimization principle based on the MSGT takes

the following form

c1
d4w

dx4
− c2

d6w

dx6
− q(x) = 0 , (2.41)

along with the relations for shear force V (x), bending momentM(x) and higher order

moment Q(x)

V (x) = −c1
dw3

dx3
+ c2

dw5

dx5
, M(x) = c1

dw2

dx2
− c2

dw4

dx4
, and Q(x) = c2

dw3

dx3
.

(2.42)

18



Therein (2.41) represents the primary difference in MSGT and classical theory, and

MCST in that regard, as will seen in the next section: The beam equation in MSGT

is of sixth order, whereas it is of fourth order in classical theory (2.31). The force

and moment equations are similarly of two orders more than those in classical theory,

with an introduction of a higher order moment term Q.

2.3.3 Euler-Bernoulli Beams in Modified Couple Stress Theory

The strain energy formulation, the starting point in all relevant theories, is indepen-

dent of dilatation gradient vector ∇ ε and deviatoric stretch gradient tensor η1, but

dependent on only conventional strain tensor ε and rotation gradient tensor χ

Π int =
1

2

∫
B

(σ .. ε+m · χ) dV. (2.43)

With one length scale parameter l2 as given previously and with l0 = l1 = 0, the total

internal energy becomes

Π int =

L∫
0

(
E∗I + µbhl22

)(d2w

dx2

)2

dx . (2.44)

The Euler-Lagrange equation of the minimization principle based on the MCST takes

the following form

c1
d4w

dx4
− q(x) = 0 , (2.45)

along with relevant relations given in (2.42) with c2 = 0. The order of the beam, force

and moment equations are hence the same as those of the classical theory.

Note that internal potential (2.44) has a similar structure with the classical Euler-

Bernoulli beam theory. By replacing EI → c1 where c1 = E∗I + µbhl22 in the

aforementioned variational formulation through equations (2.27-2.32), classical for-

mulation turns into MCST formulation.

2.4 Implementation to Kirchhoff-Love Plates

A majority, if not most of MEMS and NEMS structures can not be modelled by beam

theories. Plate theories are required in order to sufficiently design and analyze those.
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And since in many MEMS and NEMS structures, thickness is considerably less than

the largest dimension (length) of the plate (t < 0.1L), Kirchhoff-Love plate theory is

adopted in the scope of this study.

A brief introduction of classical Kirchhoff-Love plates is given in Section 2.4.1 below.

It is followed by Sections 2.4.2 and 2.4.3 in which the implementation of MSGT and

MCST are discussed.

2.4.1 Kirchhoff-Love Plates in Classical Theory

The Kirchhoff-Love plate theory is the extension of Euler-Bernoulli beam theory in

2D. Generally all the formulations presented herewith can be achieved from those in

Section 2.3 by including the omitted dimension in y. Accordingly, rotations are as-

sumed to be small and plane sections are assumed to remain plane and perpendicular

to neutral axis, based on the displacement field

ux(x, y, z) = −z∂w
∂x

, uy(x, y, z) = −z∂w
∂y

, uz(x, y) = w , (2.46)

where the plate axes and geometry are as defined as in Figure 2.2(a) and w=w(x, y).

Therein L is the length, W is the width, and h is the thickness of the plate. The

out-of-plane rotations and the curvatures can be described as

θx =
∂w

∂x
, θy =

∂w

∂y
, κxx =

∂2w

∂x2
, κyy =

∂2w

∂y2
, and κxy = 2

∂2w

∂x∂y
. (2.47)

The small-strain linear isotropic material response leads to the constitutive relation

between the moment and the curvature

M := E κ where


Mxx

Myy

Mxy

 = D


1 ν 0

ν 1 0

0 0
1

2
(1 + ν)



κxx

κyy

κxy

 . (2.48)

Herein, ν is the Poisson’s ratio, andD = Eh3/12(1−ν2) is the isotropic plate rigidity.

The displacement vector u consists of vertical displacements w and rotations θ and

surface traction vector t consists of shear forces V and momentsM as given in Figure

2.2(b).

Again, due to kinematic equations, shearing, torsional, longitudinal effects are ne-

glected. Therefore strain energy is governed by bending action solely.
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∂Bu ∂Bt
B

u = ū t = t̄

q = q̄

x

z, w

y

(a) (b)

L

W

h

M = M̄x

M = M̄y

V = V̄

Figure 2.2: (a) Kirchhoff-Love plate geometry and (b) Dirichlet ∂Bu and Neumann

∂Bt boundary conditions imposed. Note that ∂B = ∂Bu ∪ ∂Bt.

For a Kirchhoff-Love plate, incorporation of (2.47) and (2.48) into (2.2) leads to the

internal and the external potential

Π int =
1

2

∫
B

(M .. κ) dA andΠext =

∫
B
q̄w̄ dA+

∫
∂Bt

V̄ w̄ ds+

∫
∂Bt

M̄θ̄ ds . (2.49)

Herein,

M̄ =

M̄x

M̄y

 and θ̄ =

θ̄x
θ̄y

 . (2.50)

Since the first variation of the total potential Π has to vanish at the equilibrium state,

incorporation of (2.49)1 and (2.49)2 into (2.7) yields

δΠ =

∫
B

[
δκxxD(κxx + νκyy) + δκyyD(κyy + νκxx) + δκxyD

1

2
(1− ν)κxy

]
dA

−
∫
B
q̄δw̄ dA+

∫
∂Bt

V̄ δw̄ ds+

∫
∂Bt

M̄δθ̄ ds = 0 .

(2.51)

The Euler-Lagrange equation of the minimization principle (2.1) can be derived as

D

(
∂4w(x, y)

∂x4
+ 2

∂2w(x, y)

∂x2∂y2
+
∂4w(x, y)

∂y4

)
−q(x, y) = 0 or D∇2∇2(w)−q = 0 ,

(2.52)

where ∇2∇2(•) is the biharmonic operator. The Dirichlet (essential) and Neumann

(natural) boundary conditions are respectively,

1. w=w̄ θx=θ̄x θy=θ̄y at ∂Bu ,

2. V=V̄ Mx=M̄x My=M̄y at ∂Bt .
(2.53)
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2.4.2 Kirchhoff-Love Plates in Modified Strain Gradient Theory

With the displacement field given in (2.46) and kinematic relations given in (2.47)

valid, an additional set of higher order out-of-plane curvatures are defined as

%xxx =
∂3w

∂x3
, %xxy =

∂3w

∂x2y
, %xyy =

∂3w

∂xy2
, and %yyy =

∂3w

∂x3
. (2.54)

The constitutive relations between the moment & curvature and higher order forces

& higher order curvatures are, respectively

M := EC κ :


Mxx

Myy

Mxy

 =


d1 d2 0

d2 d1 0

0 0 d3



κxx

κyy

κxy

 (2.55)

and

Q := EH % :


Qxxx

Qxxy

Qxyy

Qyyy

 =


d4 0 d5 0

0 d6 0 d5

d5 0 d6 0

0 d5 0 d4




%xxx

%xxy

%xyy

%yyy

 (2.56)

where

d1 = D + µh

(
2l20 +

8

15
l21 + l22

)
, d4 = µh3

(
l20
6

+
l21
15

)
,

d2 = Dν + µh

(
2l20 −

2

15
l21 − l22

)
, d5 = µh3

(
l20
6
− l21

10

)
,

d3 = 2D(1− ν) + µh

(
4

3
l21 + 4l22

)
, d6 = µh3

(
l20
6

+
l21
5

)
.

(2.57)

Derivation of the above equations along with the relevant stress and strain metrics are

given in Appendix B.

For the MSGT based higher order Kirchhoff-Love plate, incorporation of (2.47,2.54)

and (2.55) into (2.2) leads to the internal potential

Π int =
1

2

∫
B

(M .. κ+Q
... %) dA . (2.58)

The external potential reads

Πext =

∫
B
q̄w̄ dA+

∫
∂Bt

V̄ w̄ ds+

∫
∂Bt

M̄θ̄ ds+

∫
∂Bt

Q̄κ̄ ds (2.59)
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where

Q̄ =

Q̄xxx

Q̄yyy

 and κ̄ =

κ̄xx
κ̄yy

 . (2.60)

Q is therefore the work conjugate of the curvature κ, similar to the work conjugate

couples V - w and M - θ. The first variation of the internal potential leads to

δΠ int =

∫
B
[δκxx(d1κxx + d2κyy) + δκyy(d2κxx + d1κyy) + δκxyd3κxy

+ δ%xxx(d4%xxx − d5%xyy) + δ%xxy(d6%xxy + d5%yyy)

+ δ%xyy(d5%xxx + d6%xyy) + δ%yyy(d5%xxy + d4%yyy)]dA .

(2.61)

Similarly, the first variation of the external work potential can be derived as

δΠext =

∫
B
q̄δw̄ dA+

∫
∂Bt

V̄ δw̄ ds+

∫
∂Bt

M̄δθ̄ ds+

∫
∂Bt

Q̄δκ̄ ds . (2.62)

Incorporation of above equations into (2.7) yields the Euler-Lagrange equation of the

minimization principle as

d1

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
−d4

(
∂6w

∂x6
+ 3

∂6w

∂x4∂y2
+ 3

∂6w

∂x2∂y4
+
∂6w

∂y6

)
−q = 0 .

(2.63)

The Dirichlet and Neumann boundary conditions are respectively,

1. w=w̄ θx=θ̄x θy=θ̄y κx=κ̄x κy=κ̄y at ∂Bu ,

2. V=V̄ Mx=M̄x My=M̄y Qx=Q̄x Qy=Q̄y at ∂Bt .
(2.64)

2.4.3 Kirchhoff-Love Plates in Modified Couple Stress Theory

As discussed in Section 2.2.2 the number of the additional length scale parameter is

one in MCST. That length scale parameters corresponds to l2, with l0 = l1 = 0 in

MSGT. The strain energy formulation, the starting point in all relevant theories, is

independent of dilatation gradient vector ∇ ε and deviatoric stretch gradient tensor

η1, but dependent on only conventional strain tensor ε and rotation gradient tensor χ

Π int =
1

2

∫
B

(σ .. ε+m · χ) dV. (2.65)
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With the workflow given in the section above, the Euler-Lagrange equation of the

minimization principle can be written as:(
D + µhl22

)(∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
− q = 0 , (2.66)

noting that it is equivalent to (2.63) when l0 = l1 = 0. It is also equivalent to (2.52)

with D replaced by the term D + µhl22.
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CHAPTER 3

HIGHER ORDER FINITE ELEMENTS

Euler-Bernoulli beam and Kirchhoff-Love plate finite elements are discussed within

the frameworks of MSGT and MCST in this chapter. The finite element implementa-

tion starts with the discussion of classical elements, then proceeds with implementa-

tion in MSGT and then MCST.

3.1 Euler-Bernoulli Beam Elements

3.1.1 Classical Euler-Bernoulli Beam Elements

Let us consider a classical Euler-Bernoulli beam element domain Be as depicted in

given in Figure 2.1(a). Therein, generalized nodal displacements at the element nodes

can be prescribed as

1. w = w1 and θ = θ1 @ x = 0 ,

2. w = w2 and θ = θ2 @ x = L ,
(3.1)

see also Figure 3.1(a). Similarly, the generalized nodal force resultants are prescribed

as

1. V = V1 and M = M1 @ x = 0 ,

2. V = V2 and M = M2 @ x = l ,
(3.2)

see also Figure 3.1(b). Hence, the element nodal displacement vector d and the ele-

ment nodal force vector f read

dT = [ w1 θ1 w4 θ2 ] , fT = [ V1 M1 V2 M2 ] . (3.3)
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(a) (b)

M1

V1

M2

V2

θ1 θ2
w1 w2

x

Figure 3.1: (a) Nodal degrees of freedom and (b) corresponding nodal forces for a

classical Euler-Bernoulli beam formulation

For discretization of the beam element, the displacement field w(x) within the ele-

ment domain Be is interpolated as

w(x) = Nd =

nDOF∑
i=1

nnodes∑
j=1

N j
i d

j
i where N =

[
N1

1 N1
2 N2

1 N2
2

]
, (3.4)

is the row vector including the set of interpolation/shape functions. nDOF = 2 is the

number of degrees of freedom (DOFs) per node and nnodes = 2 is the number of

nodes per element, with N j
i , i denoting the relevant DOF of the node and j denoting

the relevant node. The number of DOFs per element is hence 4. This representation

is adopted all throughout this study.

The homogenous solution of the ordinary differential equation (2.31) is

w(x) = a1 + a2x+ a3x
2 + a4x

3 (3.5)

satisfying the C1 continuity requirement. The interpolation functions are found as

Hermite cubic functions as

N1
1 (x) = 1− 3

(x
L

)2

+ 2
(x
L

)3

, N1
2 (x) = x

(
1− x

L

)2

,

N1
1 (x) = 3

(x
L

)2

− 2
(x
L

)3

, N2
2 (x) =

x3

L2
− x2

L
.

(3.6)

Then, the displacement w, rotation θ, and the curvature κ fields can be approximated

as

w(x) = N (x)d , θ(x) =
dw

dx
=
dN (x)

dx
d , κ(x) =

d2w

dx2
=
d2N (x)

dx2
d . (3.7)

Consequently, the variation of the displacement w, rotation θ, and the curvature κ

fields can be written as

δw(x) = N (x)δd , δθ(x) = δ
dw

dx
=
dN (x)

dx
δd , δκ(x) = δ

d2w

dx2
=
d2N (x)

dx2
δd .

(3.8)
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Incorporation of the discrete counterpart of the curvature in equation (3.7)3 and its

variation (3.8)3 into (2.29)

δΠ =
nelem

A
e=1

δdTe ke de −
nelem

A
e=1

δdTe fe = 0 , (3.9)

where

ke =

∫ L

0

[(
d2N (x)

dx2

)T
EI

(
d2N (x)

dx2

)]
dx and fe =

∫ L

0

NT q(x)dx (3.10)

are the element stiffness matrix and the element nodal force vector, respectively, for

an element of having length L. Herein, A refers to the standard assembly of element

contributions at the local element nodes where nelem denotes the total number of

elements.

The global stiffness matrix, generalized nodal displacement vector and the general-

ized force vector assembled from local force vectors read

K =
nelem

A
e=1

ke , D =
nelem

A
e=1

de and F =
nelem

A
e=1

fe , (3.11)

respectively. No variation exists δd = 0 at essential boundary ∂Bu where the dis-

placements are prescribed d = d̄. The equilibrium is satisfied for arbitrary variation

of the displacement δd leading to the set of linear algebraic equations

KD = F . (3.12)

Substituting the shape functions (3.6) into (3.10), the element stiffness matrix for the

Euler-Bernoulli beam element is obtained as

ke =
EI

L3


12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

 . (3.13)
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3.1.2 Higher Order Euler-Bernoulli Beam Elements

3.1.2.1 Higher Order Euler-Bernoulli Beam Elements for MSGT

For the Euler-Bernoulli beam based on MSGT, the prescribed nodal displacements

are
1. w = w1 and θ = θ1 and κ = κ1 @ x = 0 ,

2. w = w2 and θ = θ2 and κ = κ2 @ x = L .
(3.14)

and the nodal force resultants are

1. M = M1 and V = V1 and Q = Q1 @ x = 0 ,

2. M = M2 and V = V2 and Q = Q2 @ x = L .
(3.15)

as given in Figure 2.1(a) and (b) respectively.

(a) (b)

Q1 Q2

M1

V1

M2

V2

θ1 θ2
w1 w2

κ1 κ2

x

Figure 3.2: (a) Nodal degrees of freedom and (b) corresponding nodal forces for a

higher order Euler-Bernoulli beam formulation based on MSGT.

The element nodal displacement vector d and the element nodal force vector f read

dT = [ w1 θ1 κ1 w2 θ2 κ2 ] , fT = [ V1 M1 Q1 V2 M2 Q2 ] . (3.16)

For discretization of the beam element, displacement function within Be is interpo-

lated as

w(x) = Nd =

nDOF∑
i=1

nnodes∑
j=1

N j
i d

j
i where N =

[
N1

1 N1
2 N2

1 N2
2

]
, (3.17)

where nDOF = 3 is the number of degrees of freedom (DOFs) per node, with the

number of DOFs per element as 6.

The homogenous solution of the ordinary differential equation (2.22) is

w(x) = a1 + a2x+ a3x
2 + a4x

3 + a5sinh(

√
c1

c2

x) + a6cosh(

√
c1

c2

x) (3.18)
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The solution satisfies C2 continuity. and are given in Appendix C. These shape func-

tions are verified per those given in the study of Kahrobaiyan et al [92] and are drawn

in Figure 3.3(a). The shape functions are symmetric with their nodal counterparts (i.e.

N1
1 with N2

1 , N1
2 with N2

2 , N1
3 with N2

3 ) as in the classical case, therefore only the

first three shape functions are shown in Figure 3.3(b)-(d). Different from those of the

classical theory, the shape functions of MSGT exhibit dependency on the thickness

of the beam as shown in Figure 3.3(b)-(c).
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Figure 3.3: Shape functions for MSGT, (a) all elements of shape function matrix N ,

(b) N1
1 , (c) N1

2 , and (d) N1
3 . For (b)-(d), the curves do not change significantly even

if h is increased more than those given as the upper bound in the figures. They also

approach to classical hermite cubic shape functions with decreasing values of h.

Incorporation of the discrete counterpart of the curvature in (3.7)3 and its variation
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(3.8)3 into (2.29) one obtains the discrete counterpart for the equilibrium

δΠ =
n

A
e=1

δdTe ke de −
n

A
e=1

δdTe fe = 0 , (3.19)

where

ke =

∫ L

0

[(
d2N

dx2

)
c1

(
d2NT

dx2

)
+

(
d3N

dx3

)
c2

(
d3NT

dx3

)]
dx . (3.20)

In implementation of this method, it is suggested to set higher order moments Q as

zero.

3.1.2.2 Higher Order Euler-Bernoulli Beam Elements for MCST

With the prescribed nodal displacements and forces along with the solution to the

homogeneous plate equation the same as in classical theory as given in Section 2.3.3,

the shape functions are also equvalent to those in classical beam theory. With a similar

derivation, the stiffness matrix can be found as

ke =

∫ l

0

[(
d2N (x)

dx2

)T (
EI + µbhl22

)(d2N (x)

dx2

)]
dx (3.21)

or

ke =
EI + µbhl22

L3


12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

 . (3.22)

Again, the formulation yields the same results with MSGT when l0 = l1 = 0.

3.2 Kirchhoff-Love Plate Elements

3.2.1 Classical Kirchhoff-Love Plate Elements

A classical Kirchhoff-Love plate that is the direct extension of an Euler-Bernoulli

beam including 4 nodes with 12 DOFs. The generalized nodal displacements and
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generalized nodal force resultants are

1. w = w1, θx = θx1 and θy = θy1 at x = 0, y = 0 ,

2. w = w2, θx = θx2 and θy = θy2 at x = L, y = 0 ,

3. w = w3, θx = θx3 and θy = θy3 at x = L, y = W ,

4. w = w4, θx = θx4 and θy = θy4 at x = 0, y = W ,

(3.23)

and

1. V = V1, Mx = Mx1 and My = My1 at x = 0, y = 0 ,

2. V = V2, Mx = Mx2 and My = My2 at x = l, y = 0 ,

3. V = V3, Mx = Mx3 and My = My3 at x = l, y = b ,

4. V = V4, Mx = Mx4 and My = My4 at x = 0, y = b ,

(3.24)

see Figure 3.4. Note that the subscripts for M terms are reduced, i.e. Mx=Mxx and

(a) (b)

Mx1 Mx2My1 My2

V1 V2

θx1 θx2θy1 θy2
w1 w2

Mx3Mx4 My3My4

V3
V4

θx3θx4 θy3θy4

w3
w4

4

Figure 3.4: (a) Nodal degrees of freedom and (b) corresponding nodal forces for a

classical Kirchhoff-Love plate formulation

My=Myy hereinafter in this study.

Accordingly, the element nodal displacement vector d and the element nodal force

vector f read

dT = [w1 θx1 θy1 ... w4 θx4 θy4] , fT = [V1 Mx1 My1 ... V4 Mx4 My4] .

(3.25)

Then, the displacement field within Be is interpolated as

w(x, y) = Nd =

nDOF∑
i=1

nnodes∑
j=1

N j
i d

j
i where N =

[
N1

1 N
1
2 N

1
3 ...N

4
1 N

4
2 N

4
3

]
,

(3.26)
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is the row vector including the set of interpolation/shape functions. Herein nDOF = 3

and nnodes = 4, indicating the number of degrees of freedom (DOFs) per node and

the number of nodes per element similar to Section 3.1. Again for N j
i , i denotes the

relevant DOF of the node and j denotes the relevant node. The number of DOFs per

element is hence 12.

The homogenous solution of the partial differential equation (2.52) is

w(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2

+a7x
3 + a8x

2y + a9xy
2 + a10y

3 + a11x
3y + a12xy

3 .
(3.27)

This equation yields a 12-DOF plate element that is known as the ACM quadrilateral

[149, 150]. It does not satisfy the C1 continuity requirement, and therefore it is a non-

conforming element. It is also an incomplete element and does not pass the patch test

[156]. The first three of the twelve shape functions are as given in Figure 3.5, where

the remaining nine are symmetric with respect to the two centroidal principal axes x̄

and ȳ around the geometric center of the element. Their analytical expressions are

given in Appendix D [125]. The displacement w, rotation θ, and the curvature κ

N1

1
N1

2
N1

3

11

1
1

1

11
1

1

0

0
00

0

00

0

0

10−110−1

Figure 3.5: 12-DOF element shape functions from N1 to N3.

fields 2.47 can be approximated as

w(x, y) = N (x, y)d , θx(x, y) = w,x(x, y) =
∂N (x, y)

∂x
d ,

θy(x, y) = w,y(x, y) =
∂N (x, y)

∂y
d , κxx(x, y) = w,xx(x, y) =

∂2N (x, y)

∂x2
d ,

κyy(x, y) = w,yy(x, y) =
∂2N (x, y)

∂y2
d , κxy(x, y) = w,xy(x, y) =

∂2N (x, y)

∂x∂y
d .

(3.28)
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Consequently, the variation of these field variables in (2.51) are

δw(x, y) = N (x, y)δd , δθx(x, y) = δw,x(x, y) =
∂N (x, y)

∂x
δd ,

δθy(x, y) = δw,y(x, y) =
∂N (x, y)

∂y
δd , δκxx(x, y) = δw,xx(x, y) =

∂2N (x, y)

∂x2
δd ,

δκyy(x, y) = δw,yy(x, y) =
∂2N (x, y)

∂y2
δd ,

δκxy(x, y) = δw,xy(x, y) =
∂2N (x, y)

∂x∂y
δd .

(3.29)

Incorporation of the discrete counterpart of the curvature in equation (3.28) and their

variation (3.29) into (2.51)

δΠ =
n

A
e=1

δdTe ke de −
n

A
e=1

δdTe fe = 0 , (3.30)

where

ke =

∫
∂B

[
(∇CN )T D (∇CN )

]
dA and fe =

∫
∂B
NT q(x)dA (3.31)

are the element stiffness matrix and the element nodal force vectors. Herein, the

operator∇C is defined as

∇C =

[
∂2

∂x2

∂2

∂y2
2
∂2

∂x∂y

]T
, (3.32)

and A refers to the standard assembly of element contributions at the local element

nodes where n denotes the total number of elements. In (3.31) the strain-displacement

matrix is

B = ∇CN . (3.33)

The global force vector assembled from local force vectors is F = An
e=1 fe and sim-

ilarly, the global nodal displacement vector is D = An
e=1 de. The variation δd = 0

at essential boundaries where the displacements are prescribed d = d̄. The equilib-

rium should be satisfied for arbitrary variations δd yielding the set of linear algebraic

equations as

KD = F , (3.34)
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where K = An
e=1 ke is the global stiffness matrix. Substituting the shape functions

into (3.31), the element stiffness matrix for the Kirchhoff-Love plate element is ob-

tained.

3.2.2 Higher Order Kirchhoff-Love Plate Elements

Higher order Kirchhoff-Love microplate finite elements for MSGT have been devel-

oped as a novel aspect for the analysis of plate microstructures in Sections 3.2.2.1 and

3.2.2.2.

It is also noted that Kirchoff plate elements for MCST can be derived by:

• either by using the higher order formulation given in Sections 3.2.2.1 and 3.2.2.2

by inserting l0 = l1 = 0

• or using the classical formulation given in Section 3.2.1 by introducingD+µhl22

instead of D terms.

based on the discussions in Section 2.

As in the higher order beam elements, in implementation of the methods discussed

hereinafter, it is suggested to set higher order moments Q as zero.

3.2.2.1 Higher Order Rectangular Kirchhoff-Love Plate Elements for MSGT

3.2.2.1.1 20-DOF Elements

As a higher order extension of the ACM element, the generalized nodal displacements

and the generalized nodal force resultants are proposed as

1. w = w1, θx = θx1, θy = θy1, κxx = κxx1, κyy = κyy1, at x = 0, y = 0 ,

2. w = w2, θx = θx2, θy = θy2, κxx = κxx2, κyy = κyy2, at x = L, y = 0 ,

3. w = w3, θx = θx3, θy = θy3, κxx = κxx3, κyy = κyy3, at x = L, y = W ,

4. w = w4, θx = θx4, θy = θy4, κxx = κxx4, κyy = κyy4, at x = 0, y = W .

(3.35)
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and

1. V = V1, Mx = Mx1, My = My1, Qxx = Qxx1, Qyy = Qyy1, at x = 0, y = 0 ,

2. V = V2, Mx = Mx2, My = My2, Qxx = Qxx2, Qyy = Qyy2, at x = L, y = 0 ,

3. V = V3, Mx = Mx3, My = My3, Qxx = Qxx3, Qyy = Qyy3, at x = L, y = W ,

4. V = V4, Mx = Mx4, My = My4, Qxx = Qxx4, Qyy = Qyy4, at x = 0, y = W .

(3.36)

as given in Figure 3.6. Note that the subscripts forQ terms are reduced, i.e. Qxx=Qxxx

and Qyy=Qyyy hereinafter in this study.

(a) (b)

Qxx1 Qxx2

Mx1 Mx2

Qyy1 Qyy2

My1 My2

V1 V2

θx1 θx2θy1 θy2
w1 w2

κxx1 κxx2κyy1 κyy2

Qxx3
Qxx4

Mx3Mx4

Qyy3Qyy4

My3My4

V3
V4

θx3θx4 θy3θy4
w3

w4

κxx3
κxx4

κyy3κyy4

Figure 3.6: (a) Nodal degrees of freedom and (b) corresponding nodal forces for a

20-DOF higher order Kirchhoff-Love plate formulation based on MSGT.

Similarly, the element nodal displacement vector d and the element nodal force vector

f read

dT = [ w1 θx1 θy1 κxx1 κyy1 ... w4 θx4 θy4 κxx4 κyy4 ] ,

fT = [ V1 Mx1 My1 Qxx1 Qyy1... V4 Mx4 My4 Qxx1 Qyy1 ] .
(3.37)

Then, the displacement field within Be is interpolated as

w(x, y) = Nd =
∑nDOF

i=1

∑nnodes
j=1 N j

i d
j
i where

N = [N1
1 N

1
2 N

1
3 N

1
4 N

1
5 ... N

4
1 N

4
2 N

4
3 N

4
4 N

4
5 ] .

(3.38)

Herein nDOF = 5 and nnodes = 4. The number of DOFs per element is hence 20.

We propose the homogenous solution for the partial differential equation (2.63) in the
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form

w(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2+

a7x
3 + a8x

2y + a9xy
2 + a10y

3 + a11x
3y + a12xy

3+

a13 sinh(Ax) + a14 cosh(Ax) + a15 sinh(By) + a16 cosh(By)+

a17 sinh(Ax)y + a18 cosh(Ax)y + a19 sinh(By)x+ a20 cosh(By)x .

(3.39)

with

A = L

√
d1

d4

, B = W

√
d1

d4

(3.40)

The use of hyperbolic sine and hyperbolic cosine terms are in fact motivated by the na-

ture of the plate equation with fourth and sixth order terms (2.63). This solution natu-

rally extends the MSGT based Euler-Bernoulli beam solution to Kirchhoff-Love plate

solution, see reference [157]. We propose 20 shape functions that satisfy the homoge-

neous solution 3.39 that extends the ACM element to the higher order Kirchhoff-Love

plate element. The first five of these shape functions (i.e. those for the first node) are

shown in Figure 3.7. The remaining fifteen are symmetric with respect to two cen-

troidal principal axes of the element. The analytic expressions for the shape functions

N j
i of the MSGT-based Kirchoff plate element are given in ?E. The shape functions

N j
1 , N j

2 and N j
3 recover their classical counterparts in ACM element for j’th node

whereas N j
4 and N j

5 vanish as length scale parameters tends to zero.
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Figure 3.7: First five shape functions for the new Kirchhoff-Love plate element in

MSGT (of the 1st node). l0 = l1 = l2 = 3.71 µm as given in the forthcoming section.
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The higher order out-of-plane curvatures (2.54) are

%xxx(x, y) = w,xxx (x, y) =
∂3N (x, y)

∂x3
d ,

%xxy(x, y) = w,xxy (x, y) =
∂3N (x, y)

∂x2∂y
d ,

%xyy(x, y) = w,xyy (x, y) =
∂3N (x, y)

∂x∂y2
d ,

%yyy(x, y) = w,yyy (x, y) =
∂3N (x, y)

∂y3
d .

(3.41)

Consequently, the variation fields for the relevant terms in (2.61) are then

δ%xxx(x, y) = δw,xxx (x, y) =
∂3N (x, y)

∂x3
δd ,

δ%xxy(x, y) = δw,xxy (x, y) =
∂3N (x, y)

∂x2∂y
δd ,

δ%xyy(x, y) = δw,xyy (x, y) =
∂3N (x, y)

∂x∂y2
δd ,

δ%yyy(x, y) = δw,yyy (x, y) =
∂3N (x, y)

∂y3
δd .

(3.42)

along with those in (3.29). These are also the variatonal derivatives of displacement

field appearing in (B.50).

Incorporation of the discrete counterpart of the curvature in (3.28) and higher order

curvature in (3.41), and consequently their variations in equations (3.29,3.42) along

with (2.61,2.62) into (2.7) yields

δΠ =
n

A
e=1

δdTe ke de −
n

A
e=1

δdTe fe = 0 . (3.43)

where

ke =
∫
∂B

[
(∇CN )T EC (∇CN ) + (∇HN )T EH (∇HN )

]
dA and

fe =
∫
∂BN

T q(x)dA
(3.44)

are the element stiffness matrix and the element nodal force vector (Figure 3.6b)

respectively. ∇C is defined as before and∇H is defined as

∇H =

[
∂3

∂x3
3

∂3

∂x2∂y
3

∂3

∂x∂y2

∂3

∂y3

]T
. (3.45)
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There are two strain-displacement matrices in (3.44) that can be expressed as B and

B′ as

B = ∇CN , B′ = ∇HN . (3.46)

The expressions for these are given in Appendix F.

By changing of variables (x, y) with (ξ1, ξ2), the stiffness matrix can be written as

ke =

∫ 1

−1

∫ 1

−1

[
(∇CN )T EC (∇CN ) + (∇HN )T EH (∇HN )

] ∣∣∣
x=g1(ξ1,ξ2)

∣∣∣
y=g2(ξ1,ξ2)

det(J)dξ1dξ2 ,

(3.47)

where the Jacobian of the transformation, i.e.

J =


∂x

∂ξ1

∂x

∂ξ2

∂y

∂ξ1

∂y

∂ξ2

 , (3.48)

see Figure 3.8.

Making use of two-point Gaussian quadrature, the element stiffness matrix is approx-

imated as

ke =
2∑
i=1

2∑
j=1

[
(∇CN )T EC (∇CN ) + (∇HN )T EH (∇HN )

]
det(J) Ω(ξ1, ξ2)

∣∣∣
ξ1=ξ1(i)

∣∣∣
ξ2=ξ2(j)

(3.49)

where ξ1(i), ξ2(j) and Ω(ξ1(i), ξ2(j)) are the Gaussian quadrature points and the

weight factors, respectively.

Since the energy equation (B.50) involves terms with third derivatives of displace-

ment fieldw(x, y), C2 continuity is required for conformity. For an element boundary

AB as given in Figure 3.9, this conformity would require w, δw/δy, and δ2w/δy2 to

be uniquely defined in terms of the nodal degrees of freedoms, i.e. w, δw/δx, δw/δy,

δ2w/δx2 and δ2w/δy2 at points A and B respectively (ten nodal variables). Similarly

for an element boundary BC given in the same figure, w, δw/δx, and δ2w/δx2 need

to be defined by the same nodal variables at B and C. For boundary AB, i.e. with x
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Figure 3.8: Coordinate transformation from (a) original coordinates to (b) mapped

coordinates. Node numbers are indicated in bold.

constant:

w = C0 + C1y + C2y
2 + C3y

3 + C4 sinh(By) + C5 cosh(By) (3.50)

δw

δy
= D0 +D1y +D2y

2 +D3 cosh(By) +D4 sinh(By) (3.51)

δ2w

δy2
= E0 + E1y + E2 sinh(By) + E3 cosh(By) (3.52)

where Cn, Dn, En indicate fifteen unknown constants. However, for AB boundary,

the nodal variables are prescribed are w, δw/δx, and δ2w/δx2, δw/δy, and δ2w/δy2

at nodes A and B, i.e. ten values. Hence, just like its conventional counterpart [156],

it is not possible to specify a polynomial set for the shape functions that ensure com-

patibility. The applicability of the finite element is therefore validated by several tests

as given in Section 4.1. Even if the element can be used for rectangular shapes, i.e.

does not pass the patch test, an a posteriori error estimation could be made as given in

the said section, along with convergence and numerical performance of the element.

3.2.2.1.2 24-DOF Elements

Another variant of the 20-DOF element is proposed in this study, i.e the 24-DOF plate

element. Herein an additional generalized nodal displacement and generalized nodal

force resultant to those of the 20-DOF version, i.e. those in Equations 3.35 and 3.36
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A B

CD

y

x

Figure 3.9: Element interfaces AB, BC, CD, and DA, at which either x or y is con-

stant.

respectively are:
1. κxy = κxy1 at x = 0, y = 0 ,

2. κxy = κxy2 at x = L, y = 0 ,

3. κxy = κxy3 at x = L, y = W ,

4. κxy = κxy4 at x = 0, y = W ,

(3.53)

and
1. Qxy = Qxy1 at x = 0, y = 0 ,

2. Qxy = Qxy2 at x = L, y = 0 ,

3. Qxy = Qxy3 at x = L, y = W ,

4. Qxy = Qxy4 at x = 0, y = W ,

(3.54)

see Figure 3.10.

(a) (b)

Qxx1 Qxx2

Mx1 Mx2

Qyy1 Qyy2

My1 My2

V1 V2

θx1 θx2θy1 θy2
w1 w2

κxx1 κxx2κyy1 κyy2

Qxx3
Qxx4

Mx3Mx4

Qyy3Qyy4

My3My4

V3
V4

θx3θx4 θy3θy4
w3

w4

κxx3
κxx4

κyy3κyy4

Qxy1 Qxy2

Qxy3Qxy4

κxy1 κxy2

κxy3κxy4

Figure 3.10: (a) Nodal degrees of freedom and (b) corresponding nodal forces for a

24-DOF higher order Kirchhoff-Love plate formulation based on MSGT.

In this manner, it could be considered as the higher order extension of the BFS ele-
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ment [151]. Since the basics of the ACM element is given in Section 3.2.1, the same

formulation is not given for BFS element in this study.

The element nodal displacement vector and the element nodal force vector are

dT = [ w1 θx1 θy1 κxx1 κyy1 κxy1 ... w4 θx4 θy4 κxx4 κyy4 κxy4 ] ,

fT = [ V1 Mx1 My1 Qxx1 Qyy1 Qxy1 ... V4 Mx4 My4 Qxx4 Qyy4 Qxy4 ] .

(3.55)

Then, the displacement field within Be is interpolated as

w(x, y) = Nd =
∑nDOF

i=1

∑nnodes
j=1 N j

i d
j
i where

N = [N1
1 N

1
2 N

1
3 N

1
4 N

1
5 N

1
6 ... N

4
1 N

4
2 N

4
3 N

4
4 N

4
5 N

4
6 ] .

(3.56)

Herein nDOF = 6 and nnodes = 4, yielding the number of DOFs per element as 24.

The homogenous solution for the partial differential equation (2.63) is proposed as

w(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2+

a7x
3 + a8x

2y + a9xy
2 + a10y

3 + a11x
3y + a12x

2y2+

a13xy
3 + a14x

2y3 + a15x
3y2 + a16x

3y3+

a17 sinh(Ax) + a18 cosh(Ax) + a19 sinh(By) + a20 cosh(By)+

a21 sinh(Ax)y + a22 cosh(Ax)y + a23 sinh(By)x+ a24 cosh(By)x .

(3.57)

The five shape functions corresponding to common DOFs are similar to those of 20-

DOF element, with the additional twist shape functions given as N j
6 . N1

6 is depicted

in Figure 3.11. The other N j
6 functions are geometrically symmetrical to N1

6 .

3.2.2.1.3 28- and 32-DOF Elements

Another set of 28- and 32-DOF elements are proposed, as variants of 20- and 24-DOF

elements respectively, with the addition of the following generalized nodal displace-

ments and generalized nodal force resultants:

1. κxxy = κxxy1 and κxyy = κxyy1, at x = 0, y = 0 ,

2. κxxy = κxxy2 and κxyy = κxyy2, at x = L, y = 0 ,

3. κxxy = κxxy3 and κxyy = κxyy3, at x = L, y = W ,

4. κxxy = κxxy4 and κxyy = κxyy4, at x = 0, y = W ,

(3.58)
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6

Figure 3.11: Additional twist DOF shape functions N1
6 . Other N j

6 terms are symmet-

ric with respect to

and

1. Qxxy = Qxxy1 and Qxyy = Qxyy1, at x = 0, y = 0 ,

2. Qxxy = Qxxy2 and Qxyy = Qxyy2, at x = L, y = 0 ,

3. Qxxy = Qxxy3 and Qxyy = Qxyy3, at x = L, y = W ,

4. Qxxy = Qxxy4 and Qxyy = Qxyy4, at x = 0, y = W ,

(3.59)

see Figures 3.12 and 3.13 respectively.

For the 28-DOF version, the element nodal displacement vector and the element nodal

force vector are

dT = [w1 θx1 θy1 κxx1 κyy1 κxxy1 κxyy1...w4 θx4 θy4 κxx4 κyy4 κxxy4 κxyy4] ,

f = [V1 Mx1 My1 Qxx1 Qyy1 Qxxy1 Qxxy1...V4 Mx4 My4 Qxx4 Qyy4 Qxxy4 Qxyy4] .

(3.60)

The displacement field within Be is interpolated as

w(x, y) = Nd =
∑nDOF

i=1

∑nnodes
j=1 N j

i d
j
i where

N = [N1
1 N

1
2 N

1
3 N

1
4 N

1
5 N

1
6 N

1
7 ... N

4
1 N

4
2 N

4
3 N

4
4 N

4
5 N

4
6 N

4
7 ] .

(3.61)

Herein nDOF = 7 and nnodes = 4, yielding the number of DOFs per element as 28.

The following homogenous solution for the partial differential equation 2.63 is pro-
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Figure 3.12: (a) Nodal degrees of freedom and (b) corresponding nodal forces for a

28-DOF higher order Kirchhoff-Love plate formulation based on MSGT.
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Figure 3.13: (a) Nodal degrees of freedom and (b) corresponding nodal forces for a

32-DOF higher order Kirchhoff-Love plate formulation based on MSGT.
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posed as

w(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2

+ a7x
3 + a8x

2y + a9xy
2 + a10y

3 + a11x
3y + a12xy

3

+ a13 sinh(Ax) + a14 cosh(Ax) + a15 sinh(By) + a16 cosh(By)

+ a17 sinh(Ax)y + a18 cosh(Ax)y + a19 sinh(By)x+ a20 cosh(By)x

+ a21 sinh(Ax)y2 + a22 cosh(Ax)y2 + a23 sinh(By)x2 + a24 cosh(By)x2

+ a25 sinh(Ax)y3 + a26 cosh(Ax)y3 + a27 sinh(By)x3 + a28 cosh(By)x3 .

(3.62)

The element nodal displacement vector and the element nodal force vector for the

32-DOF element are

dT =[w1 θx1 θy1 κxx1 κyy1 κxy1 κxxy1 κxyy1

...w4 θx4 θy4 κxx4 κyy4 κxy4 κxxy4 κxyy4] ,

f =[V1 Mx1 My1 Qxx1 Qyy1 Qxy1 Qxxy1 Qxxy1

...V4 Mx4 My4 Qxx4 Qyy4 Qxy4 Qxxy4 Qxyy4] .

(3.63)

The displacement field within Be is interpolated as

w(x, y) = Nd =
∑nDOF

i=1

∑nnodes
j=1 N j

i d
j
i where

N = [N1
1 N

1
2 N

1
3 N

1
4 N

1
5 N

1
6 N

1
7 N

1
8 ...N

4
1 N

4
2 N

4
3 N

4
4 N

4
5 N

4
6 N

4
7 N

4
8 ] .

(3.64)

Herein nDOF = 8 and nnodes = 4, yielding the number of DOFs per element as 32.

The homogenous solution for the partial differential equation (2.63) is proposed as

w(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2

+ a7x
3 + a8x

2y + a9xy
2 + a10y

3 + a11x
3y + a12x

2y2

+ a13xy
3 + a14x

2y3 + a15x
3y2 + a16x

3y3

+ a17 sinh(Ax) + a18 cosh(Ax) + a19 sinh(By) + a20 cosh(By)

+ a21 sinh(Ax)y + a22 cosh(Ax)y + a23 sinh(By)x+ a24 cosh(By)x

+ a25 sinh(Ax)y2 + a26 cosh(Ax)y2 + a27 sinh(By)x2 + a28 cosh(By)x2

+ a29 sinh(Ax)y3 + a30 cosh(Ax)y3 + a31 sinh(By)x3 + a32 cosh(By)x3 .

(3.65)
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For 28-DOF and 32-DOF elements to be derived from 20-DOF and 24-DOF elements

respectively, 8 additional DOFs are required. These come from κxxy and κxyy terms,

see (3.58) and (3.59). The shape functions for the first node associated with these

DOFs are depicted in Figure 3.14, noting that the rest are symmetric to them with

respect to the two principal centroidal axes. They are defined as

• N j
6 and N j

7 for the 28-DOF element, and

• N j
7 and N j

8 for the 32-DOF element (N j
6 are allocated for the twist shape func-

tion introduced in the 24-DOF element in Section 3.2.2.1.2).

1
11

1

00

00

00

6 6
10−210−2

N1

6
for 28-DOF, N1

7
for 32-DOF N1

7
for 28-DOF, N1

8
for 32-DOF

Figure 3.14: Two of the additional higher order twist DOF shape functions for 28-

DOF and 32-DOF elements.

3.2.2.2 Higher Order Triangular Kirchhoff-Love Plate Elements for MSGT

A 18-DOF higher order triangular element based on MSGT is introduced in order to

be used in combination with the 24-DOF rectangular elements. This enables one to

analyze complex polygonal domains using both rectangular and triangular elements.
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It has the following generalized nodal displacements as

1. w = w1, θx = θx1, θy = θy1,

κxx = κxx1, κyy = κyy1, κxy = κxy1 at x = 0, y = 0 ,

2. w = w2, θx = θx2, θy = θy2,

κxx = κxx2, κyy = κyy2, κxy = κxy2 at x = L, y = 0 ,

3. w = w3, θx = θx3, θy = θy3,

κxx = κxx3, κyy = κyy3, κxy = κxy3 at x = 0, y = W .

(3.66)

These generalized nodal displacements are the same as those in Bell element [135],

see Figure 3.15(a). The generalized nodal force resultants are

1. V = V1, Mx = Mx1, My = My1,

Qxx = Qxx1, Qyy = Qyy1, Qxy = Qxy1 at x = 0, y = 0 .

2. V = V2, Mx = Mx2, My = My2,

Qxx = Qxx2, Qyy = Qyy2, Qxy = Qxy2 at x = L, y = 0 .

3. V = V3, Mx = Mx3, My = My3,

Qxx = Qxx3, Qyy = Qyy3, Qxy = Qxy3 at x = 0, y = W ,

(3.67)

see Figure 3.15(b).

(a) (b)

Qxx1 Qxx2

Mx1 Mx2

Qyy1 Qyy2

My1 My2

V1 V2

θx1 θx2θy1 θy2
w1 w2

κxx1 κxx2κyy1 κyy2

Qxx3

Mx3

Qyy3

My3

V3

θx3 θy3
w3

κxx3 κyy3

Qxy1 Qxy2

Qxy3

κxy1 κxy2

κxy3

4

Figure 3.15: (a) Nodal degrees of freedom and (b) corresponding nodal forces for a

18-DOF higher order triangular Kirchhoff-Love plate formulation based on MSGT.
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The element nodal displacement vector and the element nodal force vector are

dT = [ w1 θx1 θy1 κxx1 κyy1 κxy1 ... w3 θx3 θy3 κxx3 κyy3 κxy3 ] ,

fT = [ V1 Mx1 My1 Qxx1 Qyy1 Qxy1 ... V3 Mx3 My3 Qxx3 Qyy3 Qxy3 ] .

(3.68)

The displacement field within Be is interpolated as

w(x, y) = Nd =
∑nDOF

i=1

∑nnodes
j=1 N j

i d
j
i where

N = [N1
1 N1

2 N1
3 N1

4 N1
5 N1

6 ... N3
1 N3

2 N3
3 N3

4 N3
5 N3

6 ] .
(3.69)

Similar to the 24-DOF rectangular element, nDOF = 6. With nnodes = 3, the number

of DOFs is 18.

A homogenous solution for the partial differential equation (2.63) is proposed in the

form of hyperbolic sine and cosine terms added to the hermite cubic polynomials,

such that

w(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8x

2y + a9xy
2 + a10y

3+

a11 sinh(Ax) + a12 cosh(Ax) + a13 sinh(By) + a14 cosh(By)+

a15 sinh(Ax)y + a16 cosh(Ax)y + a17 sinh(By)x+ a18 cosh(By)x .

(3.70)

The shape functions for the corresponding 6 DOFs at the first node N1
i are depicted

in Figure 3.16. The comparison of the corresponding shape functions for the relevant

DOFs with those of the rectangular 24-DOF element are also given in Figure 3.17

and Figure 3.18 with multiple views from top and bottom.

Having the exactly same DOFs as in Bell element [135], the interpolation functions

and inclusion of the length scale parameter differ significantly. Despite this, the shape

function of the element seems to be in good alignment with those of Argyris element

[3] as discussed further (see Figure 3.19).

As seen from the Figures 3.17(a)-(e) and 3.18, all the shape functions from N1
1 to N5

1

of the triangular element are in complete alignment with those of the 24-DOF rectan-

gular element. This is also verified by the relatively lower order of magnitude of the

differences. Moreover, the maximum difference occurs at the triangular diagonal, i.e.

the boundary where the triangular shape functions should vanish, whereas rectangular
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Figure 3.16: Shape functions for the first node for the newly developed 18-DOF

triangular element.
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Figure 3.17: The first five shape functions for the first node (a)-(e) for the newly

developed 18-DOF triangular element (left column) and for the newly developed 24-

DOF rectangular element (middle column), along with the difference of two (right

column).
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Figure 3.18: The sixth shape function for the first node for the newly developed

18-DOF triangular element (left column) and for the newly developed 24-DOF rect-

angular element (middle column), along with the difference of two (right column).

shape functions should not, as expected. The N j
6 associated with the in-plane twist

DOF for the triangular element need to be divided by a factor, particularly 2.47, to be

aligned as given in Figure 3.18. In the finite element formulation, the reduction by

2.47 is utilized for the triangular element to match the elastic behavior introduced by

the 24-DOF rectangular element.

The new triangular element is also compared with the classical elements in literature,

namely 10-DOF cubic Hermite triangular elements [4] and 21-DOF Argyris elements

[3], in terms of corresponding shape functions for the available ones, i.e. N1
1 and N1

2

in Figure 3.19.

The newly developed 18-DOF element is in alignment with the Argyris element for

as in Figure 3.19(a) and (b). It does not seem to be in good compliance with the

cubic Hermite element (Figure 3.19(c) and (d) given the higher order of magnitude.

However, since both cubic Hermite and Argyris elements are extensively used in fi-

nite element analysis, the 18-DOF triangular element also seems fit particularly when

the shape functions are analyzed. The shape functions also seem to be in good align-

ment with studies in literature [158], especially with that of Ferreira and Bittencourt’s

classical fifth order hermite Kirchhoff-Love element [159].
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Figure 3.19: Comparison of the shape functions: (a) N1
1 for Argyris and 18-DOF

elements, (b) N1
2 for Argyris and 18-DOF elements, (c) N1

1 for cubic Hermite and

18-DOF elements, (d) N1
2 for cubic Hermite and 18-DOF elements [3, 4].
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CHAPTER 4

NUMERICAL STUDIES

In order to assess the performances of the finite elements proposed and discussed in

Chapter 3 and furthermore propose length scale parameters for gold, several hypo-

thetical cases and examples from literature are solved numerically. To this end, the

finite element method developed previously is implemented into the finite element

program developed within the scope of this study.

Throughout this section material parameters specific to gold are used unless otherwise

specified [157]. Herein, different length scale parameters are specified for rectangular

and triangular elements as justified in the examples. Benchmarks are performed based

on studies conducted with epoxy. All material properties are outlined in Table 4.1.

Table 4.1: Material parameters used for gold and epoxy.

gold epoxy

parameter value unit parameter value unit

E 80 [GPa] E 1.44 [GPa]

ν 0.42 [–] ν 0.38 [–]

l0 = l1 = l2 3.71 [µm] (rectangular) l = l0 = l1 = l2 17.6 [µm]

l0 = l1 = l2 4.77 [µm] (triangular) N/A

4.1 Assessment of Element Performance

In this section, the performance of the proposed MSGT-based Kirchhoff-Love plate

element formulations are assessed under bending dominated loading conditions. There
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are two major parts in this assessment, namely rectangular and triangular plate ele-

ments respectively.

The first part is about the rectangular elelements and is initiated with a comparative

analysis between the 20-, 24-, 28-, and 32-DOF elements. For both rectangular and

triangular elements, two examples are concerned with the assessment of the perfor-

mance of the proposed element formulation with respect to mesh irregularity. The

mesh convergence of the elements are also studied for a square microplate subjected

to various boundary and loading conditions. Several representative boundary value

problems are investigated as a benchmark and the results are compared with those

obtained from the classical theory. The convergence of the new MSGT elements are

also discussed.

4.1.1 Rectangular Elements

4.1.1.1 Comparison

The newly developed 20-, 24-, 28-, and 32-DOF elements are compared with a case

study in this section. For this purpose, a fixed-fixed plate with dimensions 20 µm ×
5 µm×1 µm [157] is selected. A concentrated midpoint load of Fz=1 mN is applied

as shown in Figure 4.1. Therein, square elements are used with a mesh of 32x8

elements, i.e. with a mesh density of 1.6 elements/µm at the edges.

(a) (b)

x

y

z

Fz

L=20 µm

W
=

5
µ
m

h=1 µm

Figure 4.1: (a) Geometry and boundary conditions for the plate with dimensionsL=20

µm, W=5 µm, h=1 µm under a load of Fz = 1 mN applied towards +z direction at

the midpoint with the material properties given as in Table 4.1, (b) relevant mesh for

the comparative analysis.

The resulting deflection field is shown in Figure 4.2. The deflection profiles of the
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principal centroidal axes of the plates are depicted in Figure 4.3(a) and (b) respec-

tively. The difference between the models constructed with 20-, 24-, 28-, and 32-DOF

elements are so insignificant -i.e. in the order of magnitude of 10−5 µm and smaller

than 1% of the total tip deflection-, that the deflection profile looks almost the same in

Figure 4.3(a). In Figure 4.3(b) the difference can be seen, along with a slight saddle

effect that is expected due to Poisson effect [122].

min max

{min,max}={0,58}

10−4 µmµm

Figure 4.2: Deflection field for the 20×5×1 µm plate under a midpoint load F = 1

mN and boundary conditions given in Figure 4.1 with the material properties given

as in Table 4.1.

Since the results turn out to be almost equivalent with different types of elements, 20-

DOF element is selected to be used hereinafter in this study for rectangular elements

unless otherwise stated, for the sake of convenience and brevity.

4.1.1.2 Irregular Mesh and Refinement Tests

The proposed MSGT-based Kirchhoff-Love microplate element can be used for rect-

angular elements similar to its classical counterpart, the ACM plate element. The

developed higher order microplate recovers the ACM element for vanishing length

scale parameters. Although some respectable sources indicate that the ACM element
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Figure 4.3: Deflection profiles of the two principal centroidal axes for the models

constructed with 20-, 24-, 28-, 32-DOF elements, (a) for the principal axis along

x-direction, and (b) for the principal axis along y-direction.

passes the patch test, they also conclude that the usage area should be confined to

rectangular meshes [156]. The proposed formulation shows similar performance to

ACM element under distorted element geometries. For this purpose the investigation

of the convergence behavior upon mesh refinement and the element performance is

confined to irregular rectangular meshes. To this end, the convergence of the dis-

placement field for a square plate subjected to a point load is investigated for various

boundary conditions, Additionally, the sensitivity of the displacement field to mesh

irregularity under prescribed displacement/rotation field is investigated.

4.1.1.2.1 Microplate Response to Point Load

A fixed fixed 6 µm×6 µm×1 µmmicroplate is subjected to a concentrated load of 1

mN applied at the centroid, as depicted in Figure 4.4(a). The problem is investigated

with several meshes as shown in Figure 4.4 in order to assess its sensitivity to mesh

irregularity. The corresponding deflection profiles are depicted in Figure 4.5(a), (b),

(c), and (d).

The difference between centroidal deflections is smaller than 1% as seen in Figure

4.5, with the displacement fields aligned to a reasonably acceptable extent. In order

to assess the largest difference in displacement fields, the midline deflections for the

relevant nodes at x = 0 and y = 0 for the regular mesh and the irregular mesh
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Figure 4.4: (a) Geometry and boundary conditions for square microplate. Thickness

is taken as 1 µm and Fz = 1 mN .The problem is solved for (b) regular and (c), (d),

(e) irregular mesh discretizations.

(a) (b) (c) (d)

{min,max}={0,124} {min,max}={0,125}{min,max}={0,125}{min,max}={0,125}

[10−6 µm]min max

Figure 4.5: Contour plots depicting vertical displacement for the aspect ratio test

given in Figure 4.4 for (a) regular mesh and (b, c, d) irregular meshes.
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Figure 4.6: Midline deflections along x− and y−axes obtained from the regular and

irregular meshes depicted in Figure 4.5 for (a) classical theory (li = 0) and (b) pro-

posed element formulation.
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given in Figure 4.5(b) are given in Figure 4.6(a). The points correspond to the nodal

displacement values along x = 0 and y = 0. The problem is also solved with ACM

element and similar midline deflections are indicated in Figure 4.6(b). Therein, curves

inbetween nodal values are interpolated with the element shape functions. It is seen

that the deflections of the nodes for the regular and irregular meshes complement each

other, to a degree slightly better than ACM element does for midline deflections in

both directions. Although it is suggested that the element size variation such as aspect

ratio change to be minimum as a best practice, varying aspect ratios does not yield

erroneous results at least upto some extent, regarding displacement results.

4.1.1.2.2 Microplate response to displacement and rotation

In order to check the integrity of the formulation and consistency of the numerical

implementation in x- and y-directions, the 6 µm × 6 µm × 1 µm microplate is sub-

jected to a unit displacement and rotation at two perpendicular edges, respectively,

see Figure 4.7 (first column).

Therein, the left edge is fixed along y-axis and the right edge is displaced 1µm in

z-direction, see Figure 4.7(a). Then, the same plate is subjected to a unit rotation (1

rad) about y-axis, see Figure 4.7(b). The same procedure is repeated for the perpen-

dicular direction in 4.7(c) and 4.7(d), respectively. The simulation is first carried out

with 4×4 regular mesh (second column) and for an irregular mesh (third column). Al-

though the proposed element is shown to be nonconforming in Section 3.2.2.1.1, the

displacement fields obtained from the regular and irregular meshes are nearly identi-

cal. The maximum difference in the displacement fields obtained from two different

meshes less than 1%.

4.1.1.2.3 Mesh-refinement and convergence

The 6 µm×6 µm×1 µm is subjected to a concentrated midpoint load of 1 mN with

both classical ACM elements and the proposed higher order microplate element. The

the boundary conditions are specified as (i) fixed-fixed (two opposite edges clamped,

two opposite edges free) and (ii) all sides fixed (all four edges clamped), see Fig-
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Figure 4.7: Geometry and boundary conditions (left) and corresponding displacement

fields for the aspect ratio test considering response to prescribed displacements, for

regular mesh (middle) and irregular mesh (right). The thickness of the plates is 1 µm

for (a, b, c, d).
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ure 4.8 (first column). The displacement profile for these boundary conditions on a

4x4 mesh are given in Figure 4.8 (second column). The midpoint deflections versus

element per edge results are depicted in Figure 4.9(a)-(d), for the proposed element

formulation and the ACM element, respectively. The proposed element formulation

is converging slightly faster than the classical counterpart. The convergence behavior

of the proposed element upon mesh-refinement, similar to the classical ACM element,

is quite satisfactory for rectangular meshes.

(a)

(b)

{min,max}={0,125}

{min,max}={0,67.4}

{min,max}={0,126}

{min,max}={0,67.5}

min max[pm]

x

x

y

y

z

z

6 µm

6 µm

6
µ
m

6
µ
m

Fz

Fz

Figure 4.8: Geometry and boundary conditions (left) together with displacement pro-

files for deflected shapes for mesh refinement tests on a 4x4 and a 32x32 mesh, (a)

fixed-fixed, and (b) all sides fixed. Fz=1 mN . Thickness is 1 µm.

4.1.1.3 Applicability to General Quadrilateral Elements

Although not satisfying patch test requirements, it is be advantageous to analyze er-

rors resulting from using general quadrilateral shapes. For this purpose a microstruc-

ture with dimensions 20 µm × 5 µm × 1 µm [157] is selected and an external force

of F = 1 mN is applied at midpoint of the plate as in Figure 4.1(a). The problem is
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Figure 4.9: Mesh convergence of the microplate element: Loading point deflection

versus element per edge for (a) MSGT-based KL solution for the fixed-fixed plate, (b)

classical KL solution for the fixed-fixed plate, (c) MSGT-based KL solution for the

plate with all sides fixed, (d) classical KL solution for the plate with all sides fixed.

solved for various meshes as given in Figure 4.10. Although the displacement fields

look similar for rectangular and quadrilateral meshes as given in Figure 4.10, the dis-

placement results yield a discrepancy of 10.3 % between those in (a) and (b), 7.1 %

between (b) and (c), 3.4 % between (a) and (c). Hence, even though it may be possi-

ble to confine the errors in a bound with usage of several element types, the general

quadrilateral version of the element is not recommended to be used.

4.1.1.4 Square microplate subjected to different boundary conditions

The 20 µm× 20 µm× 1 µm microplate that is used in previous sections is subjected

to a point load is analyzed under various boundary conditions with the classical ACM

plate and the proposed higher order microplate element formulations, respectively.

Four different boundary conditions are considered, see Figure 4.11: (a) CFCF, (b)
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min max

(a) (b) (c)

{min,max}={0,52} {min,max}={0,56}{min,max}={0,58}

[10−4 µm]

Figure 4.10: Displacement fields for (a) distorted patch (b) regular patch for a mid-

point load of 1 N applied upwards. Values are in µm.

CFFF, (c) CCFC and (d) CCFC. The boundary conditions are abbreviated by "C" for

clamped ends and by "F" for free ends. In example (a) a centrodial, (b) midpoint

of the free edge, (c) centroidal and (d) midpoint of the free edge, respectively. The

domain is discretized with 20 × 20 higher order microplate elements proposed in

this contribution. The results obtained from the classical ACM plate element and

the higher order microplate element formulations are also visualized in Figure 4.11.

From the results obtained, one observes that not only the maximum deflections but

also the deformation patterns change significantly by considering the size effect in

terms of the modified strain gradient theory.

The higher order stresses in MSGT formulation for CFCF case discussed above are

evaluated via substituting displacement field equations of a Kirchhoff plate into equa-

tions given in Chapter 2.

Stresses are normally evaluated within elements, and they should be extrapolated to

nodes. To this end, relevant strain-displacement matrices are evaluated in Gaussian
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Figure 4.11: Deflected shapes for a microplate with classical theory (second column)

and MSGT (third column). Boundary conditions are (a) CFCF, point load applied at

midpoint, (b) CFFF, point load applied at endpoint, (c) CCCF, point load applied at

midpoint of the plate, (d) CCCF, point load applied at midpoint of the free end. Fz=1

mN . Thickness is 1 µm.
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points of each element as, followed by acquiring stress values at these points i.e. A-D

given in Figure 4.12. Then, using nodal extrapolation transformation


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where σ′ indicates any stress metric given in Equation (2.23), corresponding stresses

at nodes 1-4 of each element are found.

ξ1

ξ2

1 2

34 1

1−1

−1

A B

CD

Figure 4.12: Coordinate transformation from (a) original coordinates to (b) mapped

coordinates. Node numbers are indicated in bold.

The distribution of them along with classical stress resultants are given in Figures

4.13 and 4.14.

When inserted into Equations B.51-B.57 in B, respective moment resultants (Mij) and

higher order moment resultants (Qijk) can be found. Stress resultants (σij) shown in

Figure 4.13 should be multiplied with the first power of z and to be integrated over dz

per Equations B.51-B.53 in B. Similarly higher order stress resultants (mij , pi, and

τijk) should be integrated over dz (after multiplied with with the zeroth power of z,

i.e. 1) per the same equations.

To find the higher order moment resultants in Equations B.54-B.57 per B, higher

order stress resultants should be multiplied with the first power in z to be integrated

over dz.
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maxmin

σxx

σxx

σyy

σyy

σxy

σxy

mxx myy mxy

px py pz

τxxx τxxy τxyy

Classical:

MSGT:

[MPa] for σij , [MPa x µm] for mij , pi, and τijk

{min,max}={0, 5} {min,max}={−1, 5} {min,max}={−3, 3× 10−1}

{min,max}={−2, 12× 10−4} {min,max}={−6, 14× 10−4} {min,max}={−6, 6× 10−5}

{min,max}={−1, 1× 10−2} {min,max}={−1, 1× 10−2} {min,max}={−3, 3× 10−2}

{min,max}={−4, 4× 10−3} {min,max}={−8, 8× 10−3} {min,max}={−5, 15× 10−2}

{min,max}={−6, 6× 10−4} {min,max}={−3, 3× 10−3} {min,max}={−15, 15× 10−4}

Figure 4.13: Classical and higher order stress metrics per Equations B.51-B.57. It

must be noted that mzz=mzx=mxz=myz=mzy=0, τxxy=τxyx=τyxx, τxyy=τyyx=τyxy.
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maxmin

τyyy τxzz τyzz

τxxz τyyz τzzz

τxyz

MSGT (continued):

[MPa x µm]

{min,max}={−1, 1× 10−3} {min,max}={−15, 15× 10−4} {min,max}={−8, 8× 10−4}

{min,max}={−20, 25× 10−3} {min,max}={−6, 12× 10−3} {min,max}={−35, 10× 10−3}

{min,max}={−3, 3× 10−2}

Figure 4.14: Higher order stress metrics (continued) per Equations B.51-B.57. It

must be noted that τxzz=τzxz=τzzx, τyzz=τzyz=τzzy, τxxz=τzxx=τxzx, τyyz=τzyy=τyzy,

τxyz=τyxz=τyzx=τzxy=τzyx.

ThereforeMij terms are given in terms of moment per unit length of the relevant edge

of the plate and have units of [force] x [length]/[length], whereas Qijk are given in

terms of moment in units of [force]x[length] in Equations B.51-B.57. Stress resultants

given in Figure 4.13, after multiplied by z, and higher order stress resultants, given in

Figures 4.13 and 4.14 have units of [force]/[length]. More elaboration on the resultant

concepts in plates can be found in references ([160, 161]).

From Figures 4.13 and 4.14 it is seen that, like deflections, higher order stress met-

rics also have different orders of magnitudes with classical counterparts. Pressure

gradient pz has the biggest magnitude in this case with a distribution profile as the

superposition of σxx and σyy, and it can be treated as the prevailing axial stress met-
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ric. Couple stresses mxx and myy are the prevailing shear stress metrics in this case.

The distributions and magninutes change with microstructure geometry and boundary

conditions, and treatment of these are left outside the scope of this study.

4.1.1.5 Benchmark Example: Rectangular Microplates Subjected to Evenly

Distributed Load

Three cases solved in Movassagh and Mahmoodi’s study using extended Kantarovich

method (EKM) [5] are replicated numerically with the proposed higher order mi-

croplate elements, see Figure 4.15(a)-(c). The dimensions are in terms of the length

scale parameters l = l0 = l1 = l2. A distributed load of 1 kN/m2 is applied similarly

for all cases as in the said study. Therein, the material parameters specific to epoxy

are used [6], see Table 4.1.

xz

y

xz

y

xz

y

(a) (b) (c)

W
=

5
0
l

L=50 l L=75 l L=100 l

Figure 4.15: Geometry and boundary conditions for the there cases (a)-(c) in [5]

replicated numerically with the proposed higher order microplate elements. The di-

mensions are in terms of the length scale parameters l = l0 = l1 = l2, with thickness

h = l in all cases. A distributed load of 1 kN/m2 is applied for all cases as in the said

study. Therein, the material parameters specific to epoxy are used [6], see Table 4.1.

The normalized midpoint deflections (w/l) versus number of elements per length

results are depicted in Figure 4.16(a)-(c). Both the convergence behavior and the

compatibility of the results when compared to the referred cases demonstrate that the

proposed higher order microplate elements perform acceptably.
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Figure 4.16: Midpoint deflections of the cases in Figure 4.15 versus number of rect-

angular elements per element length versus results obtained with EKM in [5].

4.1.2 Triangular element (18 DOF)

4.1.2.1 Assessment of element performance

The triangular element is subjected to the same tests and numerical studies as the rect-

angular elements. The material parameters given in Table 4.1 for triangular elements

are used.

4.1.2.1.1 Microplate response to point load

The same test as in Section 4.1.1.2.1 is conducted with triangular elements. The nodal

force is applied to the midpoint of the fixed-fixed plate, see Figure 4.17(a). Basically

the meshes given in Figure 4.4(b)-(e) is constructed with triangular elements as given

in Figure 4.17(b)-(e).
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Figure 4.17: (a) Geometry and boundary conditions for square microplate. Thickness

is taken as 1 µm and Fz = 1 mN .The problem is solved for (b) regular and (c), (d),

(e) irregular mesh discretizations.
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(a) (b) (c) (d)
{min,max}={0,124}{min,max}={0,124}{min,max}={0,124} {min,max}={0,124}

[10−6 µm]min max

Figure 4.18: Contour plots depicting vertical displacement for the aspect ratio test

given in Figure 4.4 for (a) regular mesh and (b, c, d) irregular meshes.

The comparison of deflection profiles with triangular elements (see Figure 4.18(a)

and rectangular elements (see Figure 4.8(a)) is given in Figure 4.19.

{min,max}={0,124}{min,max}={0,125}

min max[pm]

x

y

z

6 µm

6
µ
m

Fz

Figure 4.19: Geometry and boundary conditions (left) together with displacement

profiles for rectangular elements and triangular elements. Fz=1 mN . Thickness is 1

µm.

4.1.2.1.2 Microplate response to displacement and rotation

The same unit displacements and rotations are applied to the same plate as in Sec-

tion 4.1.1.2.2 to check the integrity and consistency of the numerics with triangular

elements. The meshes and the corresponding displacement fields are given in Figure

4.20. It is seen that the results are in perfect alignment not only when both regular-

distorted meshes are analyzed, but also when rectangular-triangular elements are con-

69



sidered, when compared to the results in Figure 4.7.
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Figure 4.20: Geometry and boundary conditions (left) and corresponding displace-

ment fields for the aspect ratio test considering response to prescribed displacements,

for regular mesh (middle) and irregular mesh (right). The thickness of the plates is 1

µm for (a, b, c, d).

4.1.2.1.3 Mesh Refinement and Convergence

The same boundary conditions as in Section 4.1.1.2.3 is applied. That is, 6 µm ×
6 µm×1 µm is subjected to a concentrated midpoint load of 1mN with the boundary
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conditions are specified as (i) fixed-fixed (two opposite edges clamped, two opposite

edges free) and (ii) all sides fixed (all four edges clamped). The midpoint deflections

versus element per edge results are depicted in Figure 4.21(a)-(b). The convergence

behavior of the proposed element upon mesh-refinement, similar to the proposed rect-

angular element.
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Figure 4.21: Refinement results with triangular elements, i.e. midpoint deflections

per number of elements for (a) MSGT, fixed-fixed, (b) MSGT, all sides fixed.

4.1.2.2 Symmetry and Orientation Considerations

Triangular elements can be used in several orientations for modelling orthogonal

shapes. In these cases, the node numbering should be counter-clockwise, and prefer-

ably in a counter-compatible fashion as given in Figure 4.22.

The regular mesh in Section 4.1.2.1 is changed to be in different orientations and

almost the same results and field displacement profiles are obtained as given in Figure

4.23.

4.1.2.3 Applicability to General Triangles

Similar to the analysis performed in Section 4.1.1.3, errors resulting from using gen-

eral triangular shapes are assessed. The same microstructure in Section 4.1.1.3 with

dimensions 20 µm × 5 µm × 1 µm [157] is selected and an external force of F = 1

mN is applied at midpoint of the plate as in Figure 4.1(a).
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Figure 4.22: Node numbering convention for triangular elements in different orienta-

tions.
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{min,max}={0,124}{min,max}={0,124}{min,max}={0,124}

min max

Figure 4.23: Displacement fields for different mesh orientations for triangular ele-

ments.

The problem is again solved for various meshes as given in Figure 4.24. Herein,

the quadrilateral meshes in Figure 4.10 are divided into two to obtain quadrilateral

shapes. The displacement fields look similar for triangular meshes as given in Fig-

ure 4.24, but the displacement results yield a discrepancy of 17.2 % between those

in (a) and (b), 4.0 % between (b) and (c), 13.8 % between (a) and (c). Since the

discrepancies are found to be even larger than the discrepancies found with general

quadrilateral elements in Section 4.1.1.3, the general triangular version of the element
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can not to be used.

(a) (b) (c)

{min,max}={0,58} {min,max}={0,48} {min,max}={0,50}

[10−4 µm]min max

Figure 4.24: Displacement fields for (a) distorted patch (b) regular patch for a mid-

point load of 1 N applied upwards. Values are in µm.

4.1.2.4 Benchmark Example: Rectangular Microplates Subjected to Evenly

Distributed Load

The same benchmark that is performed in Section 4.1.1.5 [5] is performed with tri-

angular elements constructed in a symmetric fashion as given in Figure 4.23(a). The

results are given in Figure 4.25.

Accordingly, the results are similar to those found in Figure 4.16. Similarly, the more

the aspect ratio diverges from 1, the gap between EKM and FEA analyses increase.

4.2 Length Scale Parameters for Gold

Various numerical studies are performed in this section to propose length scale pa-

rameters for gold. These length scale parameters are used to reveal and predict how

gold microstructures behave under load and deformation in comparison with those
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Figure 4.25: Midpoint deflections of the cases in Figure 4.15 versus number of trian-

gular elements per element length versus results obtained with EKM in [5].

predicted by classical theories.

4.2.1 Experiments in the Literature

The codes developed in association with the newly developed plate elements and the

beam elements are used to model a number of bending experiments conducted with

gold specimens, results of which are published as load-displacement curves [1, 162,

163, 78].

However, all beam bending experiments except for Espinosa’s study [1], utilize only

one specimen. Each of these may have different material parameters due to different

grain sizes, grain orientation, dislocation densities and so on, as a result of different

manufacturing techniques and raw materials. Modeling them separately in order to

analyze elastic material characteristics may result in misleading results, and hence

these are disregarded. Five experiments on each of the two specimens in Espinosa’s

study [1] are selected to be simulated with the codes.

4.2.1.1 Beam Geometry Assumption with Plate Elements

The specimens in the study of Espinosa et al. [1] are geometrically reduced to be

modelled as a beam by ignoring the differences in the cross sections and the middle

surface on which the load is applied, for the sake of convenience. The as-is specimens

are as given in Figure 4.26(a) whereas the reduced model are given in Figure 4.26(b)-
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(c) and Table 4.2.[1].

(a)

(b) (c)

L/2L/2

h

W

F

Figure 4.26: (a) Specimens from Espinosa et al. [1], top view. (b) Idealization for

beam geometry, front view. (c) Idealization for beam geometry, side view.

Despite a slight non-linearity it is assumed that initial force-displacement behavior

is linear elastic, see Table 4.2. Herein the force-displacement values are graphically

acquired from Espinosa’s study for the linear elastic regime. Elastic parameters E

and ν for Specimens 1 and 2 are assumed to be the same. The length scale parameters

l0, l1, l2 are taken as the same, i.e. l.

Table 4.2: Model reduction of specimens per Figure 4.26 [1]. Both are fixed-fixed as

given in the relevant figure.

Specimen W [µm] h [µm] L [µm] F [µm] w [µm]

1 10 0.5 400 0.3 15

2 10 1.0 400 0.3 9

For quantification of elastic modulus E and length scale parameter l, an error param-

eter Err is defined as the L2-norm of the residual vector, for the quantification of the
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best fit at which Err is minimum.

Err = (wsim1 − wexp
1 )2 + (wsim2 − wexp

2 )2 . (4.2)

Here wsim1 and wsim2 are the midpoint deflections predicted by higher order theories,

wexp
1 and wexp

2 are the actual midpoint deflections from experiments for specimens 1

and 2 respectively. Err is evaluated for different values of E and l, E varying from

20 GPa to 140 GPa as given in Figure 4.27. The minimum and maximum values of E

are chosen according to the upper and lower limits reported in literature, while values

lower than E=20 GPa are not found realistic.
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Figure 4.27: Corresponding Err, E, and l values for (a) MSGT and (b) MCST with

rectangular plate elements.

It is seen that the error function is minimum along a curve as given in Figure 4.27).

It is also found that the error values are monotonically decreasing as E decreases.

Hence a realistic evaluation for E and l0=l1=l2 at the minimum error point could

not be made. Instead, sets of values for E and l0=l1=l2 are come up with based on

minimum error. However, for all reported values, considerable size effect is present.

It is found that for the minimum error for bulk elastic modulus of gold i.e. E=80 GPa,

l0=l1=l2=3.71 µm for rectangular elements, see Table 4.1. It is l0=l1=l2=4.77 µm for

triangular elements, again see Table 4.1.
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4.2.1.2 Beam Geometry Assumption with Beam Elements

The specimens are assumed to be beams as in Section 4.2.1.1 and Table 4.2. The

same Err function is defined with the same assumptions. For MSGT, the length

scale parameters are found to be l0=l1=l2=3.60 µm, and for MCST, the length scale

parameter is found as l2=6.73 µm, see [157].

4.2.1.3 As-Is Geometry with Plate Elements

The specimens are then modelled as they are with the original dimensions (i.e. as-is

plate models) without the beam reduction, as given in the study of Espinosa et al. [1],

see Figure 4.26(a).

First, an ANSYS Mechanical model is run in static-structural mode based on the force

values in Table 4.2. The deflection values yielded by ANSYS simulations with both

models are given in table 4.3. The ANSYS Mechanical model is given in Figure 4.28.

F

Figure 4.28: ANSYS Mechanical model of the experiments in Espinosa et al. [1].

The force applied is 0.3 mN per Table 4.2. This figure is given for specimen 2, the

thickness of which is 1.0 µm.

The as-is plate model that is given in Figure 4.26(a) is then modelled with the code

developed with the novel MSGT rectangular and triangular plate elements as given in
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Figure 4.29: Mesh for modelling the specimens in Espinosa et al. [1] with plate el-

ements developed in this study. The circled numbers indicate the type of elements.

Type 1 and 2 refer to square and rectangular elements and 3-6 refer to triangular ele-

ments with different orientation. The mesh is symmetric with respect to the indicated

vertical cut "sym", and hence only the left side is shown. The cumulative force of 0.3

mN is equally applied to the four nodes of the central element indicated by bold dots

(0.075 mN to each node).

Table 4.3: Comparison of ANSYS Mechanical models with the plate models with

length scale parameters set to zero - i.e. converging to classical models.

Model Specimen

tag no

Max. deflection w

[mm] for l0=l1=l2=0

Accuracy [%] for

l0=l1=l2=0

ANSYS 1 5.665 Reference

20 DOF rectangular 1 5.519 97.4%

24 DOF rectangular

+ 18 DOF triangular

1 5.703 99.3%

18 DOF triangular 1 5.564 98.2%

ANSYS 2 0.708 Reference

20 DOF rectangular 2 0.696 98.3%

24 DOF rectangular

+ 18 DOF triangular

2 0.711 99.5%

18 DOF triangular 2 0.700 98.9%
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Figure 4.29(a). Therein, the mesh involves six types of elements, type 1 and 2 being

square and rectangular respectively and 3-6 being triangular with different orienta-

tion. The following approaches are taken each with their advantages and drawbacks.
1. Modelling with 20-DOF rectangular elements for types 1-6. The number of

elements is 271 and the number of nodes is 331.

2. Modelling with 24-DOF rectangular elements for types 1 and 2, 18-DOF alter-

native triangular elements for types 3-6. Again, the number of elements is 271

and the number of nodes is 331.

3. Modelling with 18-DOF triangular elements for types 1-6. Therein each rect-

angular and square element is divided into two triangular elements.

The models discussed above are run with l=0, in order to analyze the convergence

to classical model, ultimately to compare with the ANSYS Mechanical model. The

deflections found with these are indicated in Table 4.3 along with the accuracy com-

pared with the ANSYS models which are taken as reference, in the rightmost column.

Although having several drawbacks as discussed below, all models seem to be suffi-

ciently close to ANSYS Mechanical models when length scale parameters are taken

as zero. Hence, all are deemed to be acceptable, especially 24-18 DOF (triangu-

lar+rectangular) models.

The comparison of the models in terms of nominal midline displacements are given

in Figure 4.30. It is seen that MSGT reveals a stiffer behavior in regions closer to the

clamped edges, however converges faster towards the node(s) on which the loads are

applied, see also [157].

The 20 DOF rectangular model incorporates a few triangular elements, i.e. types 3-

6. Using quadrilateral, yet alone rectangular elements for triangular shapes is almost

always undesirable, when mesh skewness is considered. Also when combined with

mesh smoothness, which is slightly disrupted with the use of 1.5:1.0 plate elements,

these may create inaccuracies. However, since these elements bear no load or are

subjected to any boundary condition, and moreover their placement in the global

stiffness matrix is not dominant (i.e. they are connecting few elements being in a

non-central position), the deviation is confined such that the accuracy is ca. 97-98

%. However, the use of this element for triangular shapes should be made carefully,
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Figure 4.30: Displacement profiles for different models, normalized by dividing to

the maximum displacement (of the midnode).

depending on the number of them, location, and boundary conditions imposed on

these.

The most accurate model according to Table 4.3 is 24 DOF rectangular + 18 DOF

triangular model. This introduces 8 DOF’s per node, i.e. highest among all the mod-

els, which in turn results in a considerably higher computation time. So these are

proposed in fidelity benchmarks, rather than in speed benchmarks.

18 DOF triangular model is also more accurate than 20 DOF model, yet computa-

tionally more expensive with 6 DOF’s per node and the number of elements of almost

twice.

The choise of pure triangular or rectangular+triangular elements in such as case hence

depends on several constraints, majorly speed vs fidelity. Also, full rectangular ele-

ments can be used as discussed above, if circumstances permit these to some extent.

Based on the approach adopted previously with an error function Err, the length

scale parameters are also found with each model, see Table 4.4. All reveal a length

scale parameter of around 1.7 µm which is quite different from those found by model

reduction, i.e. 3.71 µm for rectangular elements and 4.77 µm for triangular elements.

This shows the necessity of using plate elements in an as-is geometry. In fact, as-
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Table 4.4: Comparison of ANSYS Mechanical models with the plate models with

length scale parameters set to zero - i.e. converging to classical models.

Model Length scale parameters l0=l1=l2

[µm] for minimum Err

ANSYS N/A (classical)

20 DOF rectangular 1.72

24 DOF rectangular

+ 18 DOF triangular

1.73

18 DOF triangular 2.55

suming a non-quadrilateral shape for rectangular elements is even more accurate then

model reduction from as-is geometries.

4.2.2 Analysis of Realistic MEMS Switches

Three real MEMS switch structures from Patel and Rebeiz [8] and Stefanini et al.

[7] are considered. The geometry and the boundary conditions are depicted in Figure

4.31.

Stefanini et al. [7] discusses an actuation electrode and the corresponding MEMS

structure (see Figure 4.31(a)) to transfer the majority of the electrostatic force to the

contact force, i.e.

Fc = 0.64 Fe − Fr (4.3)

where Fc is the contact force, Fr is the release force, and Fe is the electrostatic force.

Therein, Fc = 34.7 µN , Fr = 15.5 µN , and hence the electrostatic force is found as Fe

= 77.2 µN . This force is equally distributed to the nodes that are electrostatically ac-

tuated, see Figure 4.31(a). The deflection of the plate should be equal to the clearance

of 0.3 µm for contact condition. The electrostatic loads are applied to the structures

and the deflected shapes, which are obtained from classical and the MSGT-based KL

plate theory, are shown in Figure 4.32.

The analyses reveal, as expected, considerably softer response with the classical

theory, see Figure 4.32(a) and Figure 4.33(a). The normalized deflection curves
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Figure 4.31: Real MEMS structures that are modelled with new plate elements from

Stefanini et al. [7] (a) and from Patel and Rebeiz [8] (b and c). The total loads of Fz

= 77.2 µN (a) and Fz = 3 mN (b and c) are distributed to the bold circled nodes as

given in corresponding meshes. Note that the structure in (c) is the untethered part of

the one in (b). All dimensions in µm.

that demonstrates the difference between the deflection profiles are given in Figure

4.34(a). With rectangular elements in MSGT and with the length scale parameters

l0=l1=l2=0.69 µm, the contact condition can be achieved, as seen from the same fig-

ures. For triangular elements in MSGT, the length scale parameters for the contact

condition is l0=l1=l2=1.04 µm.

The study of Patel and Rebeiz [8] focuses on two MEMS switches (see Figure 4.31(b)-

(c)) for which the electrostatic force for contact condition is given between 2.5-3.5

mN . It is hence assumed that an average electrostatic force of 3.0 mN is applied.

This force is again equally distributed to the relevant nodes, see Figure 4.31(b)-(c).

The clearance in the design of these MEMS switches is 0.55 µm. As in the exam-

ple above, a considerably larger tip deflection deflection is found with the classical

theory. The analyses with MSGT-based KL plate yield the required deflection, see

Figure 4.32(b)-(c) and Figure 4.33(b)-(c). Similarly, Figure 4.34(b)-(c) indicate the
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Figure 4.32: The corresponding deflected shapes of the microplates given in Figure

4.31, using classical theory (left column) and MSGT (right column). Structures are

from Stefanini et al. [7] (a) and from Patel and Rebeiz [8] (b and c).
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Figure 4.33: Deflection profiles from AA’ sections as given in Figure 4.31. Structures

are (a) from Stefanini et al. [7] and (b-c) from Patel and Rebeiz [8].
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Figure 4.34: Deflection profiles from AA’ sections as given in Figure 4.31. Structures

are (a) from Stefanini et al. [7], and (b-c) from Patel and Rebeiz [8].

normalized deflection curves that demonstrates the difference between the deflection

profiles. The corresponding length scale parameters that are adopted for these MEMS

switches are, for rectangular elements, l0=l1=l2=2.87 µm and l0=l1=l2=3.16 µm re-

spectively (see parts (b) and (c) of Figure 4.32, Figure 4.33, and Figure 4.34. They

are l0=l1=l2=4.14 µm and l0=l1=l2=4.58 µm respectively for triangular elements.

In these three examples one can observe that higher order theories significantly im-

prove the analysis results. It is also revealed that complex planar structures that

couldn’t be reduced to beam structures and couldn’t be modelled with MSGT pre-

viously, examples of which are given in Figure 4.31(a)-(b), can now be designed and

analyzed more effectively making use of the new MSGT plate elements.

The MEMS community traditionally use higher elasticity parameters such as Young’s

modulus µ and shear modulus µ. This choice, for uniform thickness and under pure

bending deformations leads to satisfactory results in line with the modified couple
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stress theory (MCST). This is mainly due to the fact that, MCST, when applied to

KL plate theory, leads to the same differential equation as the classical counterpart,

where the nonlocal effects are merely reflected to the material parameters. In order to

assess the difference between two theories, we depict the normalized tip deflections

corresponding to each switch structure in Figure 4.34. The normalized tip deflections

of the classical and the MCST-based KL theory will lead to equivalent result. The

idea here is to show, how the deflection pattern changes as we switch to the MSGT-

based Kirchhoff plate theory from the classical counterpart or the MCST-based KL

plate theory. As seen from, Figure 4.34, where pure bending governs the deformation,

normalized results overlap. However, for the second geometry, where highly complex

local and nonlocal deformations exist due to the relatively complex geometry and

boundary conditions, the normalized deflection patterns are quite dissimilar, revealing

the necessity for the MSGT-based KL plate theory.

For the case of Stefanini et al. [7] the force and deflection values are assumed to be

slightly lower than the contact force at 1.5 times the pull-in voltage and the gap re-

spectively, based on the given data in the reference. For the case of Patel and Rebeiz

[8] the force and deflection values are taken from voltage vs. deflected shape indicated

in the study. In order to achieve these deflections, the length scale parameters for the

MSGT rectangular plate elements are found to be different than found above using

the study of Espinosa et al [1], which can be attributed to different manufacturing

techniquies, and hence different grain sizes which drastically affect material proper-

ties. However the length scale parameters are still in the same order of magnitude of

µm level. It is found that l=0.85 µm for the structure in Figure 4.31(a), l=1.25 µm

for the structure in Figure 4.31(b), and l=1.50 µm for the structure in Figure 4.31(c).

The deflected shapes and the deflection profiles from sections of these are given in

Figure 4.32 and 4.33. It is seen that plate elements improve modelling deflections for

complex shapes that can not be simulated with beam theories in MSGT.
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CHAPTER 5

EXPERIMENTAL STUDIES

Several experimental studies are performed with gold specimens to acquire the length

scale parameters in bending. For this purpose, fixed-fixed gold specimens are manu-

factured in METU MEMS Center with the dimensions as given in Table 5.1. They are

subjected to a midpoint load by an atomic force microscope (AFM) as given in Figure

5.1. The (AFM) used is the hpAFM model of Nanomagnetics Instruments® [164].

The AFM tool is AFM WorkshopTM ACLA-10 [165].

The application of the bending force is repeated four times for each specimen, then

one of them is disregarded and the most consistent three are taken as given in Figure

5.2.

Table 5.1: Specimens on which bending experiments are conducted.

Specimen tag no Width, b [µm] Thickness, h [µm] Length, l [µm]

1 8 0.3 50

2 8 0.3 33

3 8 0.6 50

4 8 0.6 33

As seen from Figure 5.2, nearly all specimens are loaded initially in a linear elastic

region. Hence, also considering the orders of magnitudes of the gaps in modern

MEMS-NEMS devices, 0-0.3 µm is taken to be the displacement interval for analysis.

The following procedure is developed for the interpretation of the experiments. The

values and the results mentioned at each step are summarized in Table 5.2.

1. For each specimen, the force-displacement data from the closest three repeti-
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Figure 5.1: Photo of the specimens and the AFM tool from the top and relevant

idealizations.

tions are drawn as given in Figure 5.2. Each of these correspond to 25 force-

displacement values starting from the onset of the contact of the AFM tool and

the specimen. The data from the curves are then trimmed to represent an elastic

region with a displacement set to be dAFM=0.3 µm and a corresponding force

F different for each repetition and specimen. The F values among repetitions

are averaged.

2. In order to assess the assumption that the AFM tool is stiff enough so that the

whole displacements measured are for the specimen but does not account for

the AFM tool’s displacements, the experiments are modelled using a commer-

cial finite element code, ANSYS Mechanical - using transient structural mode.
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Figure 5.2: Force-displacement data from conducted experiments for (a) specimen 1,

(b) specimen 2, (c) specimen 3, (d) specimen 4, per Table 5.1

Therein a constant displacement of dAFM=0.3 µm is applied to the AFM. The

end of the AFM tool is in constrained rotation with a downward velocity of 0.1

µm/s for each step. The analysis is therefore conducted in 3 steps, with au-

totime stepping on and a minimum time step of 0.01 seconds and a maximum

time step of 0.1 seconds. As expected, these efforts yielded different force re-

sults for the specimens, to be designated as Fclassical. Naturally, Fclassical <

F for the same displacement field, since classical theory results in less stiffer

beams than higher order theories. The displacement of the midpoint of the

specimens are also designated as dmid. The difference between dAFM and dmid

indicates the deformation in the AFM tool. Hence, the smaller this difference

is, the closer is the experiment to the ideal bending case. See Figure 5.4.

3. F and dAFM values found from the experiments are used to simulate the ex-
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periments using a fixed-fixed plate model with the developed higher Kirchoff

plate elements as discussed in Section 3.2.2.1.1 and the corresponding code,

yielding a distinct length scale parameter for each experiment, represented as

lideal. Therein dAFM is assumed to be equal to dmid, hence an ideal experiment

without the deformation of the AFM tool is assumed.

4. F from the experiments and dmid values found from the ANSYS simulations are

similarly used to simulate the experiments using a fixed-fixed plate model with

the developed higher Kirchoff plate elements as discussed in Section 3.2.2.1.1

and the corresponding code, yielding another distinct length scale parameter,

respresented as lreal. Therein deformation of the AFM tool according to AN-

SYS simulations are taken into account.

Table 5.2: Results of the experiments and length scale parameters found for each of

the samples with 20-DOF plate element in MSGT.

Specimen

tag no

Force -

measured,

F [mN ]

AFM dis-

placement

dAFM

[µm]

Force -

classical,

Fclassical

[mN ]

Midpoint

displacement,

dmid [µm]

Length scale

parameter

- ideal case

lideal [µm]

Length scale

parameter -

real case lreal

[µm]

1 24.84 3 1.12 0.29 0.72 0.73

2 36.88 3 3.53 0.28 0.48 0.50

3 50.28 3 5.13 0.27 0.69 0.72

4 93.72 3 11.54 0.23 0.49 0.57

With ANSYS simulations, the specimens 1-3 reveal displacements close enough to

the ideal case (0.3 µm) with a maximum error of 8%. The assumption of a much

stiffer AFM tool can be considered valid there, also given the nominal stiffness value

in the datasheet as 58 N/m [165]. For specimen 4 however, the deformation in

the AFM tool can be considered to affect this specimen’s validity. Yet the length

scale parameter revealed turns out to be very close to that of specimen 2, at around

l0=l1=l2=0.5 µm. Modelling the experiments with specimens 1 and 3 also reveal a

length scale parameter of ca. l0=l1=l2=0.7 µm. Slightly different lengh scale parame-

ters for long specimens (1 and 3) and short specimens (2 and 4) yield that although not

captured in the original MSGT, length may have a nonlinear effect on elastic behav-
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AFM tool

specimen

(a)

(b)mid

Figure 5.3: ANSYS simulations of the experiments - boundary conditions and

velocity-rotation constraints on the edge shown with a yellow arrow (a), respective

mesh and force reaction at the contact point (b).

ior (in some other way than direct proportionality with L3 as taken in both classical

theory and MSGT), like thickness in MSGT.

It can also be said that there is a size effect that can be characterized by a length scale

parameter not as high as found previously (around 1.72 µm by modelling the original

structure for Espinosa et al. study [1], and around 1-1.5 µm for real MEMS structures

[8, 7] with 20-DOF elements), but in such a way that it still needs to be considered.

The difference may also result from the manufacturing methods of gold in all these
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Figure 5.4: Deflections of the AFM tool dAFM and the relevant specimen dmid, at the

beginning of the experiments (a) and after the experiments (b).

studies and examples.

The experiments are also modelled using the codes developed with the finite elements

discussed in Section 3. Therein, different values found for short and long specimens

and the difference between lideal and lreal for Specimen 4 are neutralized by again

finding and Err value based on L2-norm of the residual vector as in Equation 4.2.

The final length scale parameters for each type of model is given as in Table 5.3

based on the experiments conducted as a part of this study.

Table 5.3: Length scale parameters found for bending experiments with gold speci-

mens for each type of model.

Model Theory Length scale parameter l

6 DOF beam element MSGT 0.66

20 DOF plate element, rectangular MSGT 0.67

24 and 18 DOF plate elements, rect-

angular and triangular

MSGT 0.69

18 DOF plate elements, triangular MSGT 0.68

4 DOF beam element MCST 1.24

12 DOF plate element, rectangular MCST 1.37

92



CHAPTER 6

CONCLUSIONS

In this Thesis, novel higher order plate bending finite elements are developed for the

modified strain gradient theory (MSGT). The formulations for the theoretical back-

ground is developed with a variational approach, leading to the development of higher

order finite elements. Length scale parameters for gold are also identified.

The said finite elements are developed to analyze micro- and nano-electro-mechanical

system (MEMS and NEMS) structures with finite element analysis. This presents a

huge leverage in designing and modelling microstructures that can not be geomet-

rically reduced to beam elements. Several numerical problems are addressed and

further complementary numerical tests are conducted. It is concluded that the newly

developed finite elements can be used with sufficient accuracy, being in compliance

with various examples. They also performs better than or at least the same as their

classical counterparts in several tests.

It is demonstrated to the MEMS and NEMS community that using the classical plate

theory in predicting microplate behavior results in significant errors. These errors

further increase with decreasing plate thickness. Due to the lack of accessible ex-

perimental data in literature, bending experiments are also conducted that verify and

back this argument as a part of this study. A commercial software is used to verify

the mechanics of the adopted experimentation technique.

Length scale parameters for gold, a very important material for MEMS structures,

are identified via new experiments, existing experiments in the literature, and real

structures. This is done for several models using both MSGT and MCST. Therein,

existing beam elements and newly developed plate finite elements are made use of.
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It is seen in timing benchmarks that analysis with MSGT with the newly developed

elements takes upto 14 times longer than classical analyses, ceteris paribus. This is

in fact why the Gaussian quadrature method is adopted, which decreases the com-

putational duration ratio upto 6, when compared to the classical theory, again ceteris

paribus. It is noted however, most MEMS-NEMS structures can be modelled with

very small number of nodes and elements than macrostructures, hence the increase

in the computational time can be tolerated with the state of the art CPUs and paral-

lelization techniques. All simulations are carried out on a standard Laptop with Intel

I7 processor having 8× 2.4GHz cores and 8GB Ram, without any parallelization, re-

quiring several minutes computation time for the most demanding simulation. Future

work will be devoted to the development of higher DOF rectangular and triangular

elements satisfying C2-continuity requirement.

Discrete techniques and static condensation may also be utilized to come up with con-

forming higher order plate finite elements applicable to general quadrilaterals. How-

ever, it is also worth mentioning that many, if not most, of the MEMS and NEMS

microplates can be modelled with only rectangular elements, similar to the real ex-

amples modelled and analyzed in this study. Focusing on finding the length scale

parameters and divergence from the classical behavior is, to the author’s opinion, is a

major challenge that should be heavily investigated in the future.
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Appendix A

TENSOR OPERATORS

The tensor operators used in Section 2 are summarized in the table below.

Table A.1: Description of tensor operators used in Section 2, i.e. (·), (...), (:), (⊗), (•)T

and (•)
13
T in compact and indicial notation

Operator Symbol Compact notation Indicial notation

Dot product (·) a · b aibi

Double contraction (:) σ : ε σijεij

Triple contraction (...) η
... η ηijkηijk

Dyadic product (⊗) a⊗ b aibj

Transpose operator (•)T σT (σT )ij = σji

(Second order)

Transpose operator (•)
13
T η

13
T (η

13
T )ijk = ηkij

(Third order)
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Appendix B

DERIVATION OF STRESS AND STRAIN METRICS IN MSGT FOR

KIRCHHOFF PLATES

The internal energy equation with the strain and stress metrics of MSGT can be writ-

ten as

Π int =
1

2

∫
B

(
σ .. ε+ p · ∇ε+ τ

... η
1 + m · χ

)
dV. (B.1)

Equation B.1 can be rewritten in indicial notation as:

Π int =
1

2

∫
B

(σijεij + piγi + τijkηijk +mijχij) dV, (B.2)

where γ is expressed as the dilation gradient vector as

γ = ∇ε (compact notation), γi = εmm,i (indicial notation) (B.3)

in compact notation and indicial notation respectively. Then, for a general plate struc-

ture,

δΠ int =

∫
V

(σxxδεxx + 2σxyδεxy + σyyδεyy + pxδγx + pyδγy + pzδγz

+τ 1
xxxδη

1
xxx + 3τ 1

xxyδη
1
xxy + 3τ 1

xxzδη
1
xxz + 3τ 1

xyyδη
1
xyy

+τ 1
yyyδη

1
yyy + 3τ 1

yyzδη
1
yyz + 3τ 1

xzzδη
1
xzz + 3τ 1

yzzδη
1
yzz

+τ 1
zzzδη

1
zzz + 6τ 1

xyzδη
1
xyz +mxxδχxx + 2mxyδχxy

+myyδχyy) dV.

(B.4)

In order to evaluate above, the terms are identified. Using the displacement field of a

Kirchhoff plate given in Equation 2.46 the classical strain terms can be found as:

εxx = −z w,xx, εyy = −z w,yy, εxy = −z w,xy. (B.5)

The dilatation gradient terms can then be derived as:

γx = εmm,x = −z ∂
∂x

(
∇2w

)
= −z (w,xxx +w,yyx ) , (B.6)

115



γy = εmm,y = −z ∂
∂y

(
∇2w

)
= −z (w,yxx +w,yyy ) , (B.7)

γz = εmm,z = ∇2w = w,xx +w,yy . (B.8)

The indicial expression for deviatoric stretch gradient terms (η1) is:

η1
ijk = ηSijk −

1

5

(
δijη

S
mmk + δjkη

S
mmiδkiη

S
mmj

)
(B.9)

where

ηSijk =
1

3
(ui,jk + uj,ki + uk,ij) , (B.10)

and where δij is the Kronecker’s delta. After several steps,

η1
xxx =

z

5

(
−2

∂3w

∂x3
+ 3

∂3w

∂y2∂x

)
, (B.11)

η1
xxy =

z

5

(
−4

∂3w

∂x2∂y
+
∂3w

∂y3

)
, (B.12)

η1
xyy =

z

5

(
−4

∂3w

∂x∂y2
+
∂3w

∂x3

)
, (B.13)

η1
yyy =

z

5

(
−2

∂3w

∂y3
+ 3

∂3w

∂x2∂y

)
, (B.14)

η1
xxz =

1

15

(
−4

∂2w

∂x3
+
∂2w

∂y2

)
, (B.15)

η1
xzz =

z

5

(
∂3w

∂x3
+

∂3w

∂x∂y2

)
=
z

5

∂

∂x

(
∇2w

)
, (B.16)

η1
yzz =

z

5

(
∂3w

∂y3
+

∂3w

∂y∂x2

)
=
z

5

∂

∂y

(
∇2w

)
, (B.17)

η1
zzz =

1

5

(
∂2w

∂x2
+
∂2w

∂y2

)
=

1

5
∇2w, (B.18)

η1
xyz = −1

3

∂2w

∂x∂y
, (B.19)

with

η1
xyx = η1

yxx = η1
xxy, (B.20)
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η1
xzx = η1

zxx = η1
xxz, (B.21)

η1
yxy = η1

yyx = η1
xyy, (B.22)

η1
zxz = η1

zzx = η1
xzz, (B.23)

η1
zyz = η1

zzy = η1
yzz, (B.24)

η1
yzx = η1

zxy = η1
zyx = η1

yxz = η1
xzy = η1

xyz. (B.25)

The indicial expression for the rotation gradient terms (χ) is:

χij =
1

4
(eimn un,mj + ejmn un,mi) (B.26)

where eijk is the Levi-Civita symbol. Hence, again after several steps:

χxx =
∂2w

∂x∂y
, (B.27)

χyy = − ∂2w

∂x∂y
, (B.28)

χxy =
1

2

(
∂2w

∂y2
− ∂2w

∂x2

)
, (B.29)

with

χzz = χzx = χxz = χyz = χzy = 0. (B.30)

Taking the variations of above expressions and multiplying with their stress conju-

gates as appearing in Equation B.4, the following are acquired:

σxx δεxx = −σxxz δw,xx, (B.31)

2σxy δεxy = −2σxyz δw,xy, (B.32)

σyy δεyy = −σyyz δw,yy, (B.33)
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px δγx = −pxz δw,xxx − pxz δw,xyy (B.34)

py δγy = −pyz δw,yyy − pyz δw,xxy (B.35)

pz δγz = −pz δw,xx − pz δw,yy (B.36)

τ 1
xxx δη

1
xxx = −2

5
zτ 1
xxx δw,xxx +

3

5
zτ 1
xxx δw,xyy (B.37)

3τ 1
xxy δη

1
xxy = −12

5
zτ 1
xxy δw,xxy +

3

5
zτ 1
xxy δw,yyy (B.38)

3τ 1
xxz δη

1
xxz = −−4

5
τ 1
xxz δw,xx +

1

5
τ 1
xxz δw,yy (B.39)

3τ 1
xyy δη

1
xyy = −12

5
zτ 1
xyy δw,xyy +

3

5
zτ 1
xyy δw,xxx (B.40)

τ 1
yyy δη

1
yyy =

3

5
zτ 1
yyy δw,xxy −

1

5
zτ 1
yyy δw,yyy (B.41)

3τ 1
yyz δη

1
yyz =

1

5
τ 1
yzz δw,xx −

4

5
τ 1
yyz δw,yy (B.42)

τ 1
xzz δη

1
xzz =

3

5
zτ 1
xzz δw,xxx −

3

5
zτ 1
xzz δw,xyy (B.43)

τ 1
yzz δη

1
yzz =

3

5
zτ 1
yzz δw,xxy −

1

5
zτ 1
yzz δw,yyy (B.44)

τ 1
zzz δη

1
zzz =

1

5
τ 1
zzz δw,xx −

1

5
τ 1
zzz δw,yy (B.45)

6τ 1
xyz δη

1
xyz = −2τ 1

xyz δw,xy (B.46)

mxx δχxx = mxx δw,xy (B.47)
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2mxy δχxy = mxy δw,yy −mxy δw,xx (B.48)

myy δχyy = −myy δw,xy (B.49)

Given the above expressions, Equation B.4 can now we written as:

δΠ int =

∫
Ω

(Mxx δw,xx +Mxy δw,xy +Myy δw,yy

+Qxxx δw,xxx +Qxxy δw,xxy +Qxyy δw,xyy +Qyyy δw,yyy) dΩ.

(B.50)

where Ω is 2D domain of the undeformed mid-plane of the plate bounded by a piece-

wise smooth curve Γ. Then

Mxx =

∫ h/2

−h/2

[
−σxxz − pz −

4

5
τ 1
xxz +

1

5
τ 1
yyz +

1

5
τ 1
zzz −mxy

]
dz (B.51)

Mxy =

∫ h/2

−h/2

[
−2σxyz − 2τ 1

xyz +mxx −myy

]
dz (B.52)

Myy =

∫ h/2

−h/2

[
−σyyz − pz +

1

5
τ 1
xxz −

4

5
τ 1
yyz +

1

5
τ 1
zzz +mxy

]
dz (B.53)

Qxxx =

∫ h/2

−h/2

[z
5

(
−5px − 2τ 1

xxx + 3τ 1
xyy + 3τ 1

xzz

)]
dz (B.54)

Qxxy =

∫ h/2

−h/2

[z
5

(
−5px + 2τ 1

xxx − 12τ 1
xyy + 3τ 1

xzz

)]
dz (B.55)

Qxyy =

∫ h/2

−h/2

[z
5

(
−5py − 12τ 1

xxy + 3τ 1
yyy + 3τ 1

yzz

)]
dz (B.56)

Qyyy =

∫ h/2

−h/2

[z
5

(
−5py + 3τ 1

xxy − 2τ 1
yyy + 3τ 1

yzz

)]
dz (B.57)

Inserting the stress metrics,

Mxx = µh

(
h2

6(1− ν)
+ 2µl20 +

8

15
µl21 + µl22

)
w,xx+

µh

(
νh2

6(1− ν)
+ 2µl20 −

2

15
µl21 − µl22

)
w,yy

(B.58)

Mxy = µh

(
h2

3
+

4

3
µl21 + 4µl22

)
w,xy (B.59)
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Myy = µh

(
h2

6(1− ν)
+ 2µl20 −

2

15
µl21 + µl22

)
w,xx+

µh

(
νh2

6(1− ν)
+ 2µl20 +

8

15
µl21 − µl22

)
w,yy

(B.60)

Qxxx =
µh3

6

(
l20 +

2

5
l21

)
w,xxx +

µh3

6

(
l20 −

3

5
l21

)
w,xyy (B.61)

Qxxy =
µh3

6

(
l20 +

12

5
l21

)
w,xxy +

µh3

6

(
l20 −

3

5
l21

)
w,yyy (B.62)

Qxyy =
µh3

6

(
l20 −

3

5
l21

)
w,xxx +

µh3

6

(
l20 +

12

5
l21

)
w,xyy (B.63)

Qyyy =
µh3

6

(
l20 −

3

5
l21

)
w,xxy +

µh3

6

(
l20 +

2

5
l21

)
w,yyy (B.64)

Now, using the divergence theorem for Equation B.50 and minimum potential energy

principle with

Πext =

∫
Ω

q(x, y) δwdΩ (B.65)

the following equation is found:

Mxx,xx +Mxy,xy +Myy,yy −Qxxx,xxx −Qxxy,xxy −Qxyy,xyy −Qyyy,yyy = q (B.66)

Inserting Equations B.58-B.64 to above also leads to Equation 2.63.
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Appendix C

6 DOF HIGHER ORDER BEAM ELEMENT - ANALYTICAL

EXPRESSIONS OF SHAPE FUNCTIONS N1
1 TO N1

3

The first three elements of the shape function N for MSGT, i.e. N1
1 , N1

2 , and N1
3 are

as given below. N2
1 , N2

2 , and N2
3 are symmetric with N1

1 , N1
2 , and N1

3 respectively as

given in Figure 3.3.

N1
1 = [12cosh(q(s− 1))− 12cosh(qs) + 12cosh(q) + 6q2s2 − 4q2s3

+8q2cosh(q)− q3sinh(q) + 6qsinh(qs)− 6q2s− 18qsinh(q) + 4q2

+6qsinh(q(s− 1)) + 12qssinh(q)− 6q2scosh(q)− 6q2s2cosh(q)

+4q2s3cosh(q) + 3q3s2sinh(q)− 2q3s3sinh(q)− 12]/D ,

N1
2 = −[12sinh(q(s− 1))− 12sinh(qs) + 12sinh(q)− 2q3s3 + 4q2sinh(q)

−12qs+ 4q2sinh(q(s− 1)) + 2q3s− 12qcosh(q) + 12qcosh(q(s− 1))

+2q2sinh(qs) + 12qscosh(q) + 4q3scosh(q)− 12q2ssinh(q)− q4ssinh(q)

−6q3s2cosh(q) + 2q3s3cosh(q) + 6q2s2sinh(q) + 2q4s2sinh(q)

−q4s3sinh(q)]L/(−qD) ,

N1
3 = −[6sinh(q(s− 1))− 2q − 6sinh(qs) + 6sinh(q) + q3s2 − q3s3 + q2sinh(q)

+6qs+ q2sinh(q(s− 1)) + 2qcosh(qs)− 12qs2 + 4qs3 − 4qcosh(q)

+4qcosh(q(s− 1))− 6qscosh(q) + 12qs2cosh(q)− 4qs3cosh(q)

−q3scosh(q) + 4q2ssinh(q) + 2q3s2cosh(q)− q3s3cosh(q)− 9q2s2sinh(q)

+4q2s3sinh(q)]L2/(−qD) .

(C.1)
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where:

q = L/
√
c1/c2, s = x/L,

D = 24cosh(q) + 8q2cosh(q)− q3sinh(q)− 24qsinh(q) + 4q2 − 24
(C.2)

122



Appendix D

12 DOF CLASSICAL PLATE ELEMENT ANALYTICAL EXPRESSIONS OF

SHAPE FUNCTIONS N1
1 TO N1

3

The first three elements of the shape functionN for classical theory, which are shown

in Figure 3.5, are as given below.

N1
1 =− 2x3y + 2x3 + 3x2y − 3x2 − 2xy3 + 2y3 + 3xy2 − 3y2 − xy + 1

N1
2 =− xy3 + y3 + 2xy2 − 2y2 − xy + y

N1
3 =x3y − x3 − 2x2y + 2x2 + xy − x

(D.1)
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Appendix E

20 DOF PLATE ELEMENT ANALYTICAL EXPRESSIONS OF SHAPE

FUNCTIONS N1
1 TO N1

5

The first five elements of the shape functionN for MSGT, which are shown in Figure

3.7, are as given below.

N1
1 = −(144A sinh(Aξ1)− 288ξ2 − 288 cosh(Aξ1)− 288 cosh(Bξ2)− 288ξ1

+144B sinh(Bξ2) + 576ξ1ξ2 + 288ξ2 cosh(Aξ1) + 288ξ1 cosh(Bξ2)

−144A sinh(A)− 144B sinh(B)− 96A2ξ1 − 96B2ξ2 + 288ξ1 cosh(A)

+48B2 cosh(Aξ1) + 288ξ1 cosh(B) + 288ξ2 cosh(A) + 48A2 cosh(Bξ2)

+288ξ2 cosh(B) + 288 cosh(Aξ1) cosh(A) + 288 cosh(Aξ1) cosh(B)

+288 cosh(Bξ2) cosh(A) + 288 cosh(Bξ2) cosh(B)

−288 sinh(Aξ1) sinh(A)− 288 sinh(Bξ2) sinh(B) + 48A2 − 16A2B2

+48B2 + 96A2 cosh(A)− 48A2 cosh(B)− 48B2 cosh(A)

+96B2 cosh(B)− 12A3 sinh(A)− 12B3 sinh(B) + 144A2ξ2
1 − 96A2ξ3

1

+144B2ξ2
2 − 96B2ξ3

2 + 288ξ2 sinh(Aξ1) sinh(A)

+288ξ1 sinh(Bξ2) sinh(B) + 24A2B2ξ1 + 24A2B2ξ2 − 48A2ξ1 cosh(A)

+96A2ξ1 cosh(B) + 96B2ξ2 cosh(A)− 48B2ξ2 cosh(B)

−48B2 cosh(Aξ1) cosh(A)− 288ξ1 cosh(A) cosh(B)

+96B2 cosh(Aξ1) cosh(B) + 96A2 cosh(Bξ2) cosh(A)

−288ξ2 cosh(A) cosh(B)− 48A2 cosh(Bξ2) cosh(B)

−288 cosh(Aξ1) cosh(A) cosh(B)− 12A3ξ1 sinh(A)− 12B3ξ2 sinh(B)

−12B3 cosh(Aξ1) sinh(B)− 12A3 cosh(Bξ2) sinh(A)

+48B2 sinh(Aξ1) sinh(A) + 48A2 sinh(Bξ2) sinh(B)

+288 sinh(Bξ2) cosh(A) sinh(B)− 144A2ξ2
1ξ2 + 96A2ξ3

1ξ2 − 144B2ξ1ξ
2
2

+96B2ξ1ξ
3
2 − 32A2B2 cosh(A)− 32A2B2 cosh(B)

−96A2 cosh(A) cosh(B)− 96B2 cosh(A) cosh(B) + 4A3B2 sinh(A)
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+4A2B3 sinh(B) + 12A3 cosh(B) sinh(A) + 12B3 cosh(A) sinh(B)

−24A2B2ξ2
1 + 16A2B2ξ3

1 − 24A2B2ξ2
2 + 16A2B2ξ3

2

−144A2ξ2
1 cosh(A) + 96A2ξ3

1 cosh(A)− 144A2ξ2
1 cosh(B)

+96A2ξ3
1 cosh(B)− 144B2ξ2

2 cosh(A) + 96B2ξ3
2 cosh(A)

−144B2ξ2
2 cosh(B) + 96B2ξ3

2 cosh(B) + 72A3ξ2
1 sinh(A)

−48A3ξ3
1 sinh(A) + 72B3ξ2

2 sinh(B)− 48B3ξ3
2 sinh(B)

−144Aξ2 sinh(Aξ1)− 144Bξ1 sinh(Bξ2)− 24AB2 sinh(Aξ1)

−144Aξ2 sinh(A)− 144Bξ1 sinh(B)− 144A cosh(Aξ1) sinh(A)

+144A sinh(Aξ1) cosh(A)− 24A2B sinh(Bξ2)

−144A sinh(Aξ1) cosh(B)− 288B cosh(Aξ1) sinh(B)

−288A cosh(Bξ2) sinh(A)− 144B sinh(Bξ2) cosh(A)

−144B cosh(Bξ2) sinh(B) + 144B sinh(Bξ2) cosh(B)

+48A2ξ1ξ2 + 48B2ξ1ξ2 − 576ξ1ξ2 cosh(A)− 48A2ξ1 cosh(Bξ2)

−48B2ξ2 cosh(Aξ1)− 576ξ1ξ2 cosh(B)− 288ξ2 cosh(Aξ1) cosh(A)

−288ξ1 cosh(Bξ2) cosh(A)− 288ξ2 cosh(Aξ1) cosh(B)

−288ξ1 cosh(Bξ2) cosh(B) + 72AB2 sinh(A) + 72A2B sinh(B)

+144A cosh(B) sinh(A) + 144B cosh(A) sinh(B)

−A3B3 sinh(A) sinh(B) + 24A2B2ξ2
1 cosh(A)

−16A2B2ξ3
1 cosh(A)− 48A2B2ξ2

1 cosh(B) + 32A2B2ξ3
1 cosh(B)

−48A2B2ξ2
2 cosh(A) + 32A2B2ξ3

2 cosh(A) + 24A2B2ξ2
2 cosh(B)

−16A2B2ξ3
2 cosh(B) + 144A2ξ2

1 cosh(A) cosh(B)

−96A2ξ3
1 cosh(A) cosh(B) + 144AB sinh(Aξ1) sinh(B)

+144B2ξ2
2 cosh(A) cosh(B)− 96B2ξ3

2 cosh(A) cosh(B)

+144AB sinh(Bξ2) sinh(A)− 12A3B2ξ2
1 sinh(A) + 8A3B2ξ3

1 sinh(A)

+6A2B3ξ2
1 sinh(B)− 4A2B3ξ3

1 sinh(B) + 6A3B2ξ2
2 sinh(A)

−4A3B2ξ3
2 sinh(A)− 12A2B3ξ2

2 sinh(B) + 8A2B3ξ3
2 sinh(B)

−72A3ξ2
1 cosh(B) sinh(A) + 48A3ξ3

1 cosh(B) sinh(A)

−72B3ξ2
2 cosh(A) sinh(B) + 48B3ξ3

2 cosh(A) sinh(B)

+288Aξ1ξ2 sinh(A) + 24AB2ξ2 sinh(Aξ1) + 24A2Bξ1 sinh(Bξ2)

+288Bξ1ξ2 sinh(B) + 144Aξ2 cosh(Aξ1) sinh(A)

−144Aξ2 sinh(Aξ1) cosh(A) + 288Aξ1 cosh(Bξ2) sinh(A)

+144Aξ2 sinh(Aξ1) cosh(B) + 144Bξ1 sinh(Bξ2) cosh(A)
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+288Bξ2 cosh(Aξ1) sinh(B) + 144Bξ1 cosh(Bξ2) sinh(B)

−144Bξ1 sinh(Bξ2) cosh(B)− 288AB sinh(A) sinh(B)

−48AB2ξ1 sinh(A)− 120A2Bξ1 sinh(B)− 120AB2ξ2 sinh(A)

−48A2Bξ2 sinh(B) + 24AB2 cosh(Aξ1) sinh(A)

−24AB2 sinh(Aξ1) cosh(A)− 48AB2 sinh(Aξ1) cosh(B)

+144Bξ1 cosh(A) sinh(B) + 144Aξ2 cosh(B) sinh(A)

−48A2B sinh(Bξ2) cosh(A) + 144A cosh(Aξ1) cosh(B) sinh(A)

−144A sinh(Aξ1) cosh(A) cosh(B) + 24A2B cosh(Bξ2) sinh(B)

−24A2B sinh(Bξ2) cosh(B) + 288B cosh(Aξ1) cosh(A) sinh(B)

+288A cosh(Bξ2) cosh(B) sinh(A) + 144B cosh(Bξ2) cosh(A) sinh(B)

−144B sinh(Bξ2) cosh(A) cosh(B) + 6AB3 sinh(Aξ1) sinh(B)

+6A3B sinh(Bξ2) sinh(A)− 32A2B2ξ1ξ2 − 48A2ξ1ξ2 cosh(A)

−48A2ξ1ξ2 cosh(B)− 48B2ξ1ξ2 cosh(A)− 48B2ξ1ξ2 cosh(B)

−96A2ξ1 cosh(Bξ2) cosh(A) + 48B2ξ2 cosh(Aξ1) cosh(A)

+576ξ1ξ2 cosh(A) cosh(B) + 48A2ξ1 cosh(Bξ2) cosh(B)

−96B2ξ2 cosh(Aξ1) cosh(B)− 288B sinh(Aξ1) sinh(A) sinh(B)

+288ξ2 cosh(Aξ1) cosh(A) cosh(B)− 288A sinh(Bξ2) sinh(A) sinh(B)

+24A3ξ1ξ2 sinh(A) + 24B3ξ1ξ2 sinh(B) + 12A3ξ1 cosh(Bξ2) sinh(A)

+288ξ1 cosh(Bξ2) cosh(A) cosh(B) + 144AB2 cosh(B) sinh(A)

+144A2B cosh(A) sinh(B) + 288 sinh(Aξ1) cosh(B) sinh(A)

−288 cosh(Bξ2) cosh(A) cosh(B) + 12B3ξ2 cosh(Aξ1) sinh(B)

−48B2ξ2 sinh(Aξ1) sinh(A)− 18AB3 sinh(A) sinh(B)

−18A3B sinh(A) sinh(B)− 48A2ξ1 sinh(Bξ2) sinh(B)

−288ξ2 sinh(Aξ1) cosh(B) sinh(A)− 288ξ1 sinh(Bξ2) cosh(A) sinh(B)

+24A2B2ξ1 cosh(A) + 48A2B2ξ1 cosh(B) + 48A2B2ξ2 cosh(A)

+24A2B2ξ2 cosh(B) + 48A2ξ1 cosh(A) cosh(B)

+48B2ξ2 cosh(A) cosh(B)− 96B2 cosh(Aξ1) cosh(A) cosh(B)

−96A2 cosh(Bξ2) cosh(A) cosh(B) + 144A2Bξ2
1 sinh(B)

−96A2Bξ3
1 sinh(B)− 6A2B3ξ1 sinh(B) + 144AB2ξ2

2 sinh(A)

−96AB2ξ3
2 sinh(A)− 6A3B2ξ2 sinh(A) + 12A3ξ1 cosh(B) sinh(A)

+12B3ξ2 cosh(A) sinh(B) + 12B3 cosh(Aξ1) cosh(A) sinh(B)

+12A3 cosh(Bξ2) cosh(B) sinh(A) + 96B2 sinh(Aξ1) cosh(B) sinh(A)
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+96A2 sinh(Bξ2) cosh(A) sinh(B) + 24A2B2ξ1ξ
2
2 + 24A2B2ξ2

1ξ2

−16A2B2ξ1ξ
3
2 − 16A2B2ξ3

1ξ2 + 144A2ξ2
1ξ2 cosh(A)− 96A2ξ3

1ξ2 cosh(A)

+144A2ξ2
1ξ2 cosh(B) + 144B2ξ1ξ

2
2 cosh(A)− 96A2ξ3

1ξ2 cosh(B)

−96B2ξ1ξ
3
2 cosh(A) + 144B2ξ1ξ

2
2 cosh(B)− 96B2ξ1ξ

3
2 cosh(B)

−64A2B2 cosh(A) cosh(B)− 12B3 sinh(Aξ1) sinh(A) sinh(B)

−12A3 sinh(Bξ2) sinh(A) sinh(B)− 72A3ξ2
1ξ2 sinh(A)

+48A3ξ3
1ξ2 sinh(A)− 72B3ξ1ξ

2
2 sinh(B) + 48B3ξ1ξ

3
2 sinh(B)

+8A2B3 cosh(A) sinh(B) + 8A3B2 cosh(B) sinh(A)

+288Aξ1 sinh(Bξ2) sinh(A) sinh(B) + 288Bξ2 sinh(Aξ1) sinh(A) sinh(B)

−96AB2ξ1 cosh(B) sinh(A)− 96A2Bξ1 cosh(A) sinh(B)

−96AB2ξ2 cosh(B) sinh(A)− 96A2Bξ2 cosh(A) sinh(B)

+48AB2 cosh(Aξ1) cosh(B) sinh(A)− 48AB2 sinh(Aξ1) cosh(A) cosh(B)

+48A2B cosh(Bξ2) cosh(A) sinh(B)− 48A2B sinh(Bξ2) cosh(A) cosh(B)

+12AB3ξ1 sinh(A) sinh(B)− 6A3Bξ1 sinh(A) sinh(B)

−6AB3ξ2 sinh(A) sinh(B) + 12A3Bξ2 sinh(A) sinh(B)

−6AB3 cosh(Aξ1) sinh(A) sinh(B) + 6AB3 sinh(Aξ1) cosh(A) sinh(B)

−6A3B cosh(Bξ2) sinh(A) sinh(B) + 6A3B sinh(Bξ2) cosh(B) sinh(A)

−40A2B2ξ1ξ2 cosh(A)− 40A2B2ξ1ξ2 cosh(B) + 48A2ξ1ξ2 cosh(A) cosh(B)

+48B2ξ1ξ2 cosh(A) cosh(B) + 96A2ξ1 cosh(Bξ2) cosh(A) cosh(B)

+96B2ξ2 cosh(Aξ1) cosh(A) cosh(B)− 144AB2ξ1ξ
2
2 sinh(A)

+96AB2ξ1ξ
3
2 sinh(A) + 2A3B2ξ1ξ2 sinh(A)− 144A2Bξ2

1ξ2 sinh(B)

+96A2Bξ3
1ξ2 sinh(B) + 2A2B3ξ1ξ2 sinh(B)− 24A3ξ1ξ2 cosh(B) sinh(A)

−24B3ξ1ξ2 cosh(A) sinh(B)− 12A3ξ1 cosh(Bξ2) cosh(B) sinh(A)

−12B3ξ2 cosh(Aξ1) cosh(A) sinh(B)− 96A2ξ1 sinh(Bξ2) cosh(A) sinh(B)

−96B2ξ2 sinh(Aξ1) cosh(B) sinh(A) + 48A2B2ξ1 cosh(A) cosh(B)

+48A2B2ξ2 cosh(A) cosh(B) + 12A3ξ1 sinh(Bξ2) sinh(A) sinh(B)

+12B3ξ2 sinh(Aξ1) sinh(A) sinh(B)− 144A2Bξ2
1 cosh(A) sinh(B)

+96A2Bξ3
1 cosh(A) sinh(B)− 6A2B3ξ1 cosh(A) sinh(B)

−144AB2ξ2
2 cosh(B) sinh(A) + 96AB2ξ3

2 cosh(B) sinh(A)

−6A3B2ξ2 cosh(B) sinh(A) + 72A3Bξ2
1 sinh(A) sinh(B)

−48A3Bξ3
1 sinh(A) sinh(B) + 72AB3ξ2

2 sinh(A) sinh(B)

−48AB3ξ3
2 sinh(A) sinh(B) + 48A2B2ξ1ξ

2
2 cosh(A)− 24A2B2ξ2

1ξ2 cosh(A)
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−32A2B2ξ1ξ
3
2 cosh(A) + 16A2B2ξ3

1ξ2 cosh(A)− 24A2B2ξ1ξ
2
2 cosh(B)

+48A2B2ξ2
1ξ2 cosh(B) + 16A2B2ξ1ξ

3
2 cosh(B)− 32A2B2ξ3

1ξ2 cosh(B)

−144A2ξ2
1ξ2 cosh(A) cosh(B) + 96A2ξ3

1ξ2 cosh(A) cosh(B)

−144B2ξ1ξ
2
2 cosh(A) cosh(B) + 96B2ξ1ξ

3
2 cosh(A) cosh(B)

−144ABξ1 sinh(Bξ2) sinh(A)− 144ABξ2 sinh(Aξ1) sinh(B)

−6A3B2ξ1ξ
2
2 sinh(A) + 12A3B2ξ2

1ξ2 sinh(A) + 4A3B2ξ1ξ
3
2 sinh(A)

−8A3B2ξ3
1ξ2 sinh(A) + 12A2B3ξ1ξ

2
2 sinh(B)− 6A2B3ξ2

1ξ2 sinh(B)

−8A2B3ξ1ξ
3
2 sinh(B) + 4A2B3ξ3

1ξ2 sinh(B) + 72A3ξ2
1ξ2 cosh(B) sinh(A)

−48A3ξ3
1ξ2 cosh(B) sinh(A) + 72B3ξ1ξ

2
2 cosh(A) sinh(B)

−48B3ξ1ξ
3
2 cosh(A) sinh(B) + 48A2B2ξ2

1 cosh(A) cosh(B)

−32A2B2ξ3
1 cosh(A) cosh(B) + 144ABξ1 sinh(A) sinh(B)

+48A2B2ξ2
2 cosh(A) cosh(B)− 32A2B2ξ3

2 cosh(A) cosh(B)

+144ABξ2 sinh(A) sinh(B)− 144AB cosh(Aξ1) sinh(A) sinh(B)

+144AB sinh(Aξ1) cosh(A) sinh(B)− 144AB cosh(Bξ2) sinh(A) sinh(B)

+144AB sinh(Bξ2) cosh(B) sinh(A)− 6A2B3ξ2
1 cosh(A) sinh(B)

−24A3B2ξ2
1 cosh(B) sinh(A) + 4A2B3ξ3

1 cosh(A) sinh(B)

+16A3B2ξ3
1 cosh(B) sinh(A)− 24A2B3ξ2

2 cosh(A) sinh(B)

−6A3B2ξ2
2 cosh(B) sinh(A) + 16A2B3ξ3

2 cosh(A) sinh(B)

+4A3B2ξ3
2 cosh(B) sinh(A) + 96AB2ξ1ξ2 sinh(A)

+96A2Bξ1ξ2 sinh(B) + 3A3B3ξ2
1 sinh(A) sinh(B)

−2A3B3ξ3
1 sinh(A) sinh(B)− 24AB2ξ2 cosh(Aξ1) sinh(A)

+24AB2ξ2 sinh(Aξ1) cosh(A)− 288Aξ1ξ2 cosh(B) sinh(A)

+3A3B3ξ2
2 sinh(A) sinh(B)− 2A3B3ξ3

2 sinh(A) sinh(B)

+48AB2ξ2 sinh(Aξ1) cosh(B) + 48A2Bξ1 sinh(Bξ2) cosh(A)

−288Bξ1ξ2 cosh(A) sinh(B)− 24A2Bξ1 cosh(Bξ2) sinh(B)

+24A2Bξ1 sinh(Bξ2) cosh(B)− 144Aξ2 cosh(Aξ1) cosh(B) sinh(A)

+144Aξ2 sinh(Aξ1) cosh(A) cosh(B)− 288Aξ1 cosh(Bξ2) cosh(B) sinh(A)

−288Bξ2 cosh(Aξ1) cosh(A) sinh(B)− 144Bξ1 cosh(Bξ2) cosh(A) sinh(B)

+144Bξ1 sinh(Bξ2) cosh(A) cosh(B)− 6AB3ξ2 sinh(Aξ1) sinh(B)

−6A3Bξ1 sinh(Bξ2) sinh(A)− 48A2B2ξ1ξ
2
2 cosh(A) cosh(B)

−48A2B2ξ2
1ξ2 cosh(A) cosh(B) + 32A2B2ξ1ξ

3
2 cosh(A) cosh(B)

+32A2B2ξ3
1ξ2 cosh(A) cosh(B) + 144ABξ2 cosh(Aξ1) sinh(A) sinh(B)
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−144ABξ2 sinh(Aξ1) cosh(A) sinh(B) + 144ABξ1 cosh(Bξ2) sinh(A) sinh(B)

−144ABξ1 sinh(Bξ2) cosh(B) sinh(A) + 24A2B3ξ1ξ
2
2 cosh(A) sinh(B)

+6A2B3ξ2
1ξ2 cosh(A) sinh(B) + 6A3B2ξ1ξ

2
2 cosh(B) sinh(A)

+24A3B2ξ2
1ξ2 cosh(B) sinh(A)− 16A2B3ξ1ξ

3
2 cosh(A) sinh(B)

−4A2B3ξ3
1ξ2 cosh(A) sinh(B)− 4A3B2ξ1ξ

3
2 cosh(B) sinh(A)

−16A3B2ξ3
1ξ2 cosh(B) sinh(A)− 3A3B3ξ1ξ

2
2 sinh(A) sinh(B)

−3A3B3ξ2
1ξ2 sinh(A) sinh(B) + 2A3B3ξ1ξ

3
2 sinh(A) sinh(B)

+2A3B3ξ3
1ξ2 sinh(A) sinh(B) + 48AB2ξ1ξ2 cosh(B) sinh(A)

+48A2Bξ1ξ2 cosh(A) sinh(B)− 48AB2ξ2 cosh(Aξ1) cosh(B) sinh(A)

+48AB2ξ2 sinh(Aξ1) cosh(A) cosh(B)− 48A2Bξ1 cosh(Bξ2) cosh(A) sinh(B)

+48A2Bξ1 sinh(Bξ2) cosh(A) cosh(B) + 12AB3ξ1ξ2 sinh(A) sinh(B)

+12A3Bξ1ξ2 sinh(A) sinh(B) + 6AB3ξ2 cosh(Aξ1) sinh(A) sinh(B)

−6AB3ξ2 sinh(Aξ1) cosh(A) sinh(B) + 6A3Bξ1 cosh(Bξ2) sinh(A) sinh(B)

−6A3Bξ1 sinh(Bξ2) cosh(B) sinh(A)− 32A2B2ξ1ξ2 cosh(A) cosh(B)

+144AB2ξ1ξ
2
2 cosh(B) sinh(A) + 144A2Bξ2

1ξ2 cosh(A) sinh(B)

−96AB2ξ1ξ
3
2 cosh(B) sinh(A)− 96A2Bξ3

1ξ2 cosh(A) sinh(B)

−2A2B3ξ1ξ2 cosh(A) sinh(B)− 2A3B2ξ1ξ2 cosh(B) sinh(A)

−72AB3ξ1ξ
2
2 sinh(A) sinh(B)− 72A3Bξ2

1ξ2 sinh(A) sinh(B)

+48AB3ξ1ξ
3
2 sinh(A) sinh(B) + 48A3Bξ3

1ξ2 sinh(A) sinh(B)

+A3B3ξ1ξ2 sinh(A) sinh(B))/DC ,

N1
2 = ((ξ2 − 1)(12 sinh(A)− 12 sinh(Aξ1) + 12 sinh(A(ξ1 − 1))− 12Aξ1

−12A cosh(A) + 2A3ξ1 + 12A cosh(A(ξ1 − 1)) + 2A2 sinh(Aξ1)

+4A2 sinh(A)− 2A3ξ3
1 + 4A2 sinh(A(ξ1 − 1)) + 4A3ξ1 cosh(A)

−12A2ξ1 sinh(A)− A4ξ1 sinh(A)− 6A3ξ2
1 cosh(A) + 2A3ξ3

1 cosh(A)

+6A2ξ2
1 sinh(A) + 2A4ξ2

1 sinh(A)− A4ξ3
1 sinh(A) + 12Aξ1 cosh(A)))

/(DA/L) ,

N1
3 = ((ξ1 − 1)(12 sinh(B)− 12 sinh(Bξ2) + 12 sinh(B(ξ2 − 1))− 12Bξ2

−12B cosh(B) + 2B3ξ2 + 12B cosh(B(ξ2 − 1)) + 2B2 sinh(Bξ2)

+4B2 sinh(B)− 2B3ξ3
2 + 4B2 sinh(B(ξ2 − 1)) + 4B3ξ2 cosh(B)

−12B2ξ2 sinh(B)−B4ξ2 sinh(B)− 6B3ξ2
2 cosh(B) + 2B3ξ3

2 cosh(B)

+6B2ξ2
2 sinh(B) + 2B4ξ2

2 sinh(B)−B4ξ3
2 sinh(B) + 12Bξ2 cosh(B)))
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/(DB/W ) ,

N1
4 = ((ξ2 − 1)(6 sinh(A)− 6 sinh(Aξ1)− 2A+ 6 sinh(A(ξ1 − 1)) + 6Aξ1

+2A cosh(Aξ1)− 4A cosh(A)− 12Aξ2
1 + 4Aξ3

1 + 4A cosh(A(ξ1 − 1))

+A2 sinh(A) + A3ξ2
1 − A3ξ3

1 + A2 sinh(A(ξ1 − 1)) + 12Aξ2
1 cosh(A)

−4Aξ3
1 cosh(A)− A3ξ1 cosh(A) + 4A2ξ1 sinh(A) + 2A3ξ2

1 cosh(A)

−A3ξ3
1 cosh(A)− 9A2ξ2

1 sinh(A) + 4A2ξ3
1 sinh(A)− 6Aξ1 cosh(A)))

/(DA/L
2) ,

N1
5 = ((ξ1 − 1)(6 sinh(B)− 6 sinh(Bξ2)− 2B + 6 sinh(B(ξ2 − 1)) + 6Bξ2

+2B cosh(Bξ2)− 4B cosh(B)− 12Bξ2
2 + 4Bξ3

2 + 4B cosh(B(ξ2 − 1))

+B2 sinh(B) +B3ξ2
2 −B3ξ3

2 +B2 sinh(B(ξ2 − 1)) + 12Bξ2
2 cosh(B)

−4Bξ3
2 cosh(B)−B3ξ2 cosh(B) + 4B2ξ2 sinh(B) + 2B3ξ2

2 cosh(B)−
B3ξ3

2 cosh(B)− 9B2ξ2
2 sinh(B) + 4B2ξ3

2 sinh(B)− 6Bξ2 cosh(B)))

/(DB/W
2) .

(E.1)

where

A = L
√
d1/d4, B = W

√
d1/d4, ξ1 = x/L, ξ2 = y/W , (E.2)

with the terms in the denominators defined as

DA = (24A− 24A cosh(A)− 4A3 − 8A3 cosh(A)

+24A2 sinh(A) + A4 sinh(A)) ,

DB = (24B − 24B cosh(B)− 4B3 − 8B3 cosh(B)

+24B2 sinh(B) +B4 sinh(B)) ,

DC = (24 cosh(A)− 24A sinh(A) + 4A2 + 8A2 cosh(A)− A3 sinh(A)− 24)

(24 cosh(B)− 24B sinh(B) + 4B2 + 8B2 cosh(B)−B3 sinh(B)− 24)) .

(E.3)
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Appendix F

STRAIN-DISPLACEMENT MATRICES FOR MSGT

The expression for the elements of the strain dislacement matrices B (3 x 20 in size)

and B′ (4 x 20 in size) are given in this section. Null elements are also indicated. B

converges to the classical strain-displacement matrix, and B′, i.e. the higher order

strain-displacement matrix converges to zero, when l0=l1=l2=0.

The strain-displacement matrixB similar to the classical counterpart and higher order

strain-displacement matrixB′ are given as below.

B = ∇CN =
[
B1 B2 B3 B4

]
, (F.1)

where

Bj =



∂2N j
1

∂x2
0

∂2N j
3

∂x2
0

∂2N j
5

∂x2

∂2N j
1

∂y2

∂2N j
2

∂y2
0

∂2N j
4

∂y2
0

2
∂2N j

1

∂x∂y
2
∂2N j

2

∂x∂y
2
∂2N j

3

∂x∂y
2
∂2N j

4

∂x∂y
2
∂2N j

5

∂x∂y


, (F.2)

and

B′ = ∇HN =
[
B′1 B′2 B′3 B′4

]
, (F.3)
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where

B′j =



∂3N j
1

∂x3
0

∂3N j
3

∂x3
0

∂2N j
5

∂x3

3
∂3N j

1

∂x2∂y
0 3

∂3N j
3

∂x2∂y
0 3

∂3N j
5

∂x2∂y

3
∂3N j

1

∂x∂y2
3
∂3N j

2

∂x∂y2
0 3

∂3N j
4

∂x∂y2
0

∂3N j
1

∂y3

∂3N2

∂y3
0

∂3N j
4

∂y3
0


. (F.4)
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