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ABSTRACT 

 

FILLING OUT MISSING DAILY STREAMFLOW DATA USING FUZZY 

RULE-BASED MODELS 

 

 

 

Akgün, Ömer Burak 

Master of Science, Civil Engineering 

Supervisor : Prof. Dr. Elçin Kentel Erdoğan 

 

 

 

June 2020, 118 pages 

 

 

Daily streamflow observations are used for many purposes including analysis of 

current water-resources conditions in a basin, development of water-resources 

planning and management strategies and climate change adaptation measures. 

Streamgages are used to collect streamflow data; however, many streamgages suffer 

from a common problem: data-gaps. In this study, a Takagi-Sugeno Fuzzy Rule-

Based (TS_FRB) Model that uses Subtractive Clustering (SC) for rule generation is 

developed to fill out missing daily streamflow data due to a streamgage becoming 

inoperative for a long period. Fuzzy Rule-Based (FRB) model uses only daily 

streamflow data of neighboring streamgages, thus is very advantageous in terms of 

data requirement. Ergene Basin, Turkey is used as the case study and FRB models 

are developed to fill out missing daily streamflow data at four streamgages found in 

this basin. Numerous models are built to investigate the effect of the SC parameters 

(i.e., the number of cluster centers and the cluster radius) by which the rule-base of 

the FRB is identified, and the number of input variables on the performance of the 

models. Small cluster radius results in similar fuzzy rules to be devised, which 
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reveals the needs for more rules. On the other hand, as the number of cluster centers 

increases, the risk of overfitting increases. Thus, selection of the best cluster radius 

and number of cluster centers combination is a challenging task and requires a trial-

and-error procedure. FRB models developed in this study provides good and robust 

(𝑁𝑆𝐸 values around 0.67) estimations for the closely spaced streamgages located on 

the same tributary. On the other hand, FRB model performance is poor for the 

streamgage that is located far away from its neighboring streamgages and for the 

streamgage that is located on a different tributary than its neighbors. Moreover, 

anthropogenic effects in the Ergene Basin, makes the training of the FRB challenging 

and influences the model performance negatively.  

 

Keywords: Subtractive Clustering, Takagi-Sugeno Fuzzy Rule-Based Models, 

Missing Data, Infilling, Daily Streamflow 
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ÖZ 

 

GÜNLÜK AKIM VERİLERİNDEKİ EKSİKLİKLERİ KURAL TEMELLİ 

BULANIK MANTIK MODELLERİ KULLANARAK TAMAMLAMA 

 

 

 

Akgün, Ömer Burak 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Yöneticisi: Prof. Dr. Elçin Kentel Erdoğan 

 

 

Haziran 2020, 118 sayfa 

 

Günlük akım tahminleri, havzalardaki su kaynaklarının mevcut durumlarının 

analizinde, su kaynakları planlama ve yönetim stratejileri geliştirilmesinde ve iklim 

değişikliği ile mücadele çalışmaları gibi birçok alanda kullanılır. Akım verilerindeki 

eksiklikler birçok akım gözlem istasyonunda (AGİ) karşılaşılan genel bir 

problemdir. Bu çalışmada, günlük akım verilerinde, AGİ’lerin aktif olmaması 

nedeniyle oluşan uzun boşlukları tamamlamak için, Eksiltmeli Kümeleme (EK) ile 

kuralları belirlenmiş Takagi-Sugeno tipi Kural Temelli Bulanık Mantık (TS_KTBM) 

modelleri geliştirilmiştir. Kural Temelli Bulanık Mantık (KTBM) modeli yalnızca 

komşu AGİ’lerde ölçülen günlük akım değerlerini kullandığı için veri gereksinimi 

açısından oldukça avantajlıdır. Çalışma sahası olarak Ergene Havzası seçilmiştir ve 

bu havzada bulunan dört AGİ için verilerdeki boşluklar doldurulmuştur. Girdi 

parametrelerinin miktarının ve EK parametrelerinin (küme merkezi sayısı ve küme 

yarıçapı) – KTBM modelinin kural temeli bu parametreler kullanılarak oluşturulur- 

model performansındaki etkilerini araştırmak amacıyla pek çok model kurulmuştur.  

Küçük küme yarıçapları birbirine yakın küme merkezlerinin seçilmesine sebep 

olacağı için, ihtiyaç duyulan bulanık kural sayısını artırır. Öte yandan küme merkezi 

sayısı arttıkça, modelin fazla eğitilme riski de artar. Bu yüzden en iyi küme merkezi 
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sayısı ve küme yarıçapı kombinasyonunun seçilimi zorlu bir işlemdir ve deneme-

yanılma yöntemi gerektirir. Birbirine yakın ve aynı kollardaki AGİ’lerde KTBM 

modeli iyi ve tutarlı tahminler (0.67 civarında 𝑁𝑆𝐸 değerleri) sağlarken, 

komşularıyla farklı kollarda ve birbirinden uzakta bulunan AGİ’ler için KTBM 

modeli kötü performans sergilemiştir. Bunun yanısıra, Ergene Havzası’ndaki insan 

kaynaklı etkiler, KTBM modelinin eğitilmesini zorlaştırmış ve modelin 

performansını kötü etkilemiştir. 

 

 

Anahtar Kelimeler: Eksiltmeli Kümeleme, Takagi-Sugeno Tipi Kural Temeli 

Bulanık Mantık Modelleri, Eksik Veri, Tamamlama, Günlük Akım 

 



 

 

ix 

 

To the Mother Earth,



 

 

x 

 

ACKNOWLEDGEMENTS 

 

I would like to express my deepest gratitude to my supervisor Dr. Elçin Kentel for 

her wisdom and patience. She taught me a lot. The main reason that I stayed 

motivated throughout this thesis study is her endless support.  

I would like to thank my mother Safiye Akgün, my father Atalay Akgün and my 

sister Firdevs Elif Akgün for their unconditional love and endless support through 

my entire life.  

I would like to thank to Özge Akkoç Hanım for her presence, to Enis Oğuzhan Eren  

for our “happy” breakfast,  to Merve Aygenç for standing by me, to Serhat Bayram 

for his no-judgement-space, to Mustafa Kemal Atik for his wisdom, to Göksu 

Taşçeviren for her advices and last but not least Okan Yılmaz for his mental support.   

The streamflow data used in this study is obtained within the scope of TÜBİTAK 

(Scientific and Technological Research Council of Turkey) project numbered 

115Y064. 



 

 

xi 

 

TABLE OF CONTENTS 

 

ABSTRACT ............................................................................................................... v 

ÖZ ........................................................................................................................... vii 

ACKNOWLEDGEMENTS ....................................................................................... x 

TABLE OF CONTENTS ......................................................................................... xi 

LIST OF TABLES ................................................................................................. xiii 

LIST OF FIGURES ............................................................................................... xvi 

LIST OF ABBREVIATIONS .............................................................................. xviii 

LIST OF SYMBOLS ............................................................................................. xix 

CHAPTERS 

1. INTRODUCTION ............................................................................................. 1 

2. LITERATURE REVIEW .................................................................................. 5 

2.1. Fuzzy Set Theory ........................................................................................... 5 

2.1.1. Fuzzy Rule-Based (FRB) Systems ............................................................. 7 

2.1.2. Takagi-Sugeno Fuzzy Rule-Based System .............................................. 12 

2.2. Clustering ..................................................................................................... 13 

2.2.1. Subtractive Clustering .............................................................................. 14 

2.3. Takagi-Sugeno Fuzzy Rule-Based Model that uses Subtractive Clustering 15 

2.4. Filling Missing Streamflow Data ................................................................. 16 

3.     METHODOLOGY .......................................................................................... 19 

3.1. Subtractive Clustering-Based Takagi-Sugeno Fuzzy Rule-Based Model ... 19 

3.1.1. Subtractive Clustering .............................................................................. 21 

3.1.2. TS_FRB Model Development ................................................................. 22 



 

 

xii 

 

3.1.3. Parameter Estimation with Recursive Least Square Method .................. 25 

4.     CASE STUDY: MERIC-ERGENE BASIN .................................................... 27 

5.     RESULTS AND DISCUSSIONS ................................................................... 35 

5.1. Estimation of Streamflow Using Subtractive Clustering-based Takagi 

Sugeno Fuzzy Rule-Based Model ........................................................................... 36 

5.1.1. Yenicegoruce Streamgage ....................................................................... 37 

5.1.2. Inanli Streamgage .................................................................................... 51 

5.1.3. Luleburgaz streamgage ............................................................................ 63 

5.1.4. Hayrabolu Streamgage ............................................................................ 70 

5.1.5. Prediction of Luleburgaz with Fuzzy Rule-Based Extreme Model ......... 76 

5.1.6. Effect of Input Parameter Selection on Model Performance ................... 77 

5.1.7. Effect of Validation Period Selection on the Model Performance .......... 81 

5.1.8. Summary of Results ................................................................................ 85 

6.     CONCLUSION ............................................................................................... 87 

REFERENCES ........................................................................................................ 93 

APPENDICES 

A. The results of sub-models for Yenicegoruce Streamgage ............................. 101 

B. The results of the sub-models for Inanli Streamgage .................................... 106 

C. The results of the sub-models for Luleburgaz Streamgage ........................... 111 

D. The results of the sub-models for Hayrabolu Streamgage ............................ 115 

 

 



 

 

xiii 

 

 

LIST OF TABLES 

 

Table 4.1. Monthly mean values for training, validation, and testing periods for all 

streamgages ............................................................................................................. 29 

Table 4.2. Monthly maximums for training, validation, and testing periods for all 

streamgages ............................................................................................................. 30 

Table 4.3. Monthly standard deviations for training, validation, and testing periods 

for all streamgages .................................................................................................. 31 

Table 4.4. Basic statistical measures for training, validation, and testing periods for 

all streamgages ........................................................................................................ 32 

Table 5.1. Performance evaluation criteria for evaluating statistical measures, 

namely 𝑅2, 𝑁𝑆𝐸 and 𝑃𝐵𝐼𝐴𝑆 (%),  for daily, monthly, and yearly flow predictions 

of basin-scale models (adapted from Moriasi et al., 2015) ..................................... 37 

Table 5.2. FRB model architectures used for Yenicegoruce streamflow predictions 

 ................................................................................................................................. 40 

Table 5.3. Model performances of selected models for daily streamflow 

predictions of Yenicegoruce Streamgage for training and validation periods ........ 42 

Table 5.4. 𝑁𝑆𝐸 values of 𝑀6𝑌 for training phase computed with different number 

of 𝑐 and 𝑟𝑎 ............................................................................................................... 43 

Table 5.5. 𝑁𝑆𝐸 values of 𝑀6𝑌 for validation phase computed with different 

number of 𝑐 and 𝑟𝑎 .................................................................................................. 43 

Table 5.6. Model performances for daily streamflow predictions of Yenicegoruce 

Streamgage for the testing period  .......................................................................... 50 

Table 5.7. Model architectures used for Inanli streamflow predictions  ................ 52 

Table 5.8. Model performances of selected models for daily streamflow 

predictions of Inanli Streamgage for training and validation periods  .................... 53 



 

 

xiv 

 

Table 5.9.  𝑁𝑆𝐸 values of 𝑀6𝐼 for training phase computed with different number 

of 𝑐 and 𝑟𝑎 ................................................................................................................ 55 

Table 5.10. 𝑁𝑆𝐸 values of 𝑀6𝐼 for validation phase computed with different 

number of 𝑐 and 𝑟𝑎 ................................................................................................... 55 

Table 5.11. The cluster centers (fuzzy rules) for 𝑀6𝐼 ............................................ 56 

Table 5.12. Model performances for daily streamflow predictions of Inanli 

Streamgage for the testing period  ........................................................................... 61 

Table 5.13. Model architectures used for Luleburgaz streamflow predictions ...... 63 

Table 5.14. Model performances of selected for daily streamflow predictions of 

Luleburgaz Streamgage for training and validation periods ................................... 64 

Table 5.15. 𝑁𝑆𝐸 values of 𝑀5𝐿 for training phase computed with different number 

of 𝑐 and 𝑟𝑎 ................................................................................................................ 66 

Table 5.16. 𝑁𝑆𝐸 values of 𝑀5𝐿 for validation phase computed with different 

number of 𝑐 and 𝑟𝑎 ................................................................................................... 66 

Table 5.17. Model performances for daily streamflow predictions of Luleburgaz 

Streamgage for the testing period  ........................................................................... 68 

Table 5.18. Model performances for daily streamflow predictions of Hayrabolu 

Streamgage .............................................................................................................. 70 

Table 5.19. Model performances of selected models for daily streamflow 

predictions of Hayrabolu Streamgage ..................................................................... 72 

Table 5.20. 𝑁𝑆𝐸 values of 𝑀3𝐻 for the training phase with different number of 𝑐 

and 𝑟𝑎 ....................................................................................................................... 73 

Table 5.21. 𝑁𝑆𝐸 values of 𝑀3𝐻 for the validation phase with different number of 𝑐 

and 𝑟𝑎 ....................................................................................................................... 73 

Table 5.22. Model performances for daily streamflow predictions of Hayrabolu 

Streamgage for the testing period ............................................................................ 75 

Table 5.23. Additional model architectures used for Inanli streamflow     

predictions ............................................................................................................... 78 



 

 

xv 

 

Table 5.24. The best model and additional models performances used for Inanli 

streamflow predictions ............................................................................................ 78 

Table 5.25. Additional model architectures used for Luleburgaz streamflow 

predictions ............................................................................................................... 79 

Table 5.26. The best model and the additional model performances used for 

Luleburgaz streamflow predictions ......................................................................... 80 

Table 5.27. Model performances of selected models for daily streamflow 

predictions of all Streamgages for Training and Test periods for Case 2 ............... 82 

Table 5.28. Model performances of the best models for daily streamflow 

predictions of all streamgages ................................................................................. 85 

 



 

 

xvi 

 

LIST OF FIGURES 

 

Figure 2.1. Diagrams for (𝑎) crisp set boundary and (𝑏) fuzzy set boundary (Ross, 

2004) .......................................................................................................................... 5 

Figure 2.2. The membership functions for fuzzy sets “young” and  “middle-aged” 

 ................................................................................................................................... 7 

Figure 2.3.  Mean max membership principle and centroid method (Modified from 

Ross, 2004) ................................................................................................................ 9 

Figure 2.4. Typical FRB system (Modified from Ross,2004; Jang, 1993) ............ 10 

Figure 2.5. Commonly used fuzzy rule-based systems (Modified from Jang, 1993)

 ................................................................................................................................. 12 

Figure 2.6. Clustered Data (Kriegel et al. 2011) .................................................... 13 

Figure 2.7. Distances from data point A and B to all other data (Adapted from 

Angelov and Yager, 2013) ...................................................................................... 15 

Figure 3.1. SC-based TS_FRB model .................................................................... 20 

Figure 3.2. Membership functions for antecedent fuzzy sets ................................. 24 

Figure 4.1. The topography of the Meric-Ergene Basin (Tezel et al., 2019) ......... 27 

Figure 4.2. Industrial facilities found on the study area (Tezet et al., 2019) .......... 34 

Figure 5.1.  Hydrographs of Inanli, Luleburgaz, Hayrabolu and Yenicegoruce 

streamgages in two different periods: February and October  ................................ 39 

Figure 5.2. Change in NSE according to number of cluster center for 𝑀6𝑌 with 

various cluster centers ............................................................................................. 45 

Figure 5.3.  Hydrographs obtained from FRB for Yenicegoruce streamgage for the 

training period ......................................................................................................... 48 

Figure 5.4.  Hydrographs obtained from FRB for Yenicegoruce streamgage for the 

validation period ...................................................................................................... 49 

Figure 5.5.  Hydrographs obtained from FRB for Yenicegoruce streamgage for the 

testing period ........................................................................................................... 51 

Figure 5.6. Membership functions of the Fuzzy Rules for 𝑀6𝐼 ............................. 57 



 

 

xvii 

 

Figure 5.6. Membership functions of the Fuzzy Rules for 𝑀6𝐼 (Cont’d) .............. 58 

Figure 5.7. Hydrographs obtained from FRB for Inanli streamgage for the training 

period ...................................................................................................................... 59 

Figure 5.8. Hydrographs obtained from FRB for Inanli streamgage for the 

validation period  .................................................................................................... 60 

Figure 5.9. Hydrographs obtained from FRB for Inanli streamgage for the testing 

period ...................................................................................................................... 61 

Figure 5.10. Hydrographs obtained from the overtrained FRB model                                               

(𝑀6𝐼 with 𝑐 = 15,    𝑟𝑎 = 0.30)  for Inanli streamgage for the validation period  . 62 

Figure 5.11. Hydrographs obtained from FRB for Luleburgaz streamgage for the 

training period ......................................................................................................... 67 

Figure 5.12. Hydrographs obtained from FRB for Luleburgaz streamgage for the 

validation period  .................................................................................................... 68 

Figure 5.13. Hydrographs obtained from FRB for Luleburgaz streamgage for the 

testing period ........................................................................................................... 69 

Figure 5.14. Hydrographs obtained from FRB for Hayrabolu streamgage for the 

training period ......................................................................................................... 74 

Figure 5.15. Hydrographs obtained from FRB for Hayrabolu streamgage for the 

validation period ..................................................................................................... 75 

Figure 5.16. Hydrographs obtained from FRB for Hayrabolu streamgage for the 

testing period ........................................................................................................... 76 

Figure 5.17. Hydrographs obtained from FRB and FRB-Extreme for Luleburgaz 

streamgage for the testing period ............................................................................ 77 

Figure 5.18. Hydrographs obtained from FRB for Yenicegoruce streamgage for 

Case 2 ...................................................................................................................... 83 

Figure 5.19. Hydrographs obtained from FRB for Inanli streamgage for Case 2 .. 83 

Figure 5.20. Hydrographs obtained from FRB for Luleburgaz streamgage for   

Case 2 ...................................................................................................................... 84 

Figure 5.21. Hydrographs obtained from FRB for Hayrabolu streamgage for    

Case 2 ...................................................................................................................... 84 



              

 

xviii 

LIST OF ABBREVIATIONS 

 

 

AGİ : Akım Gözlem İstasyonu 

ANN : Artificial Neural Networks 

ARIMA : Autoregressive Integrated Moving Average 

EK : Eksiltmeli Kümeleme 

FIS : Fuzzy Inference System 

FRB : Fuzzy Rule-Based 

FRB-Extreme : Fuzzy Rule-Based Extreme  

KTBM : Kural Temelli Bulanık Mantık 

mASL : Meters Above Sea Level 

OT : Overtrained 

RCC : The models with repeated cluster centers 

SC : Subtractive Clustering 

TS : Takagi-Sugeno 

TS_FRB : Takagi-Sugeno Fuzzy Rule-Based 

TS_KTBM : Takagi-Sugeno tipi Kural Temelli Bulanık Mantık 

Und : Undefined models 

VL : The models with very low 𝑁𝑆𝐸 

   



              

 

xix 

LIST OF SYMBOLS 

 

 

𝜇 : Membership 

𝐴̃ : Fuzzy set A 

𝑐 : Cluster centers 

𝑟𝑎 : Cluster radius 

𝑃𝑖 : Potential of the normalized data point 𝑖 

𝑃𝑘
∗ : Potential of the cluster center 𝑘 

𝑟𝑏 : User-defined positive number 

𝑅 : Correlation 

𝑅2 : Coefficient of Determination 

𝑁𝑆𝐸 : Nash Sutcliffe Efficiency 

𝑃𝐵𝐼𝐴𝑆 (%) : Percent Bias 

𝑄𝑖,𝑗 : Discharge measured at streamgage 𝑖 at time 𝑗 

𝑀𝑋𝐴 : Xth model of subbasin A 

Y : Yenicegoruce  

I : Inanli 

L : Luleburgaz 

H : Hayrabolu 

   





              

 

1 

 

CHAPTER 1  

1. INTRODUCTION  

Rapid population growth brings along increases in water demand for municipal, 

agricultural, commercial, and industrial purposes. Therefore, water resources 

planning and management should be carried out effectively to meet existing and 

future demands. Complete data sets of hydrological variables are required for water 

resources planning and management; however, missing data is one of the problems 

that hydrologists are often faced with (Aissia et al., 2017).  Especially in developing 

countries, inoperative streamgages due to various reasons such as maintenance or 

budget cuts cause data gaps, which can compromise data series’ utility (Harvey et 

al., 2012). Being a developing country, Turkey experiences this problem as well. 

High industrialization and agricultural activities in Meric-Ergene Basin threaten the 

sustainability of water resources in the basin. Realizing the existing threats such as 

extensive use and deterioration in water quality, the Republic of Turkey Ministry of 

Agriculture and Forestry – General Directorate of Water Management initiated many 

projects in the Meric-Ergene Basin (MoEU, 2020). However, data availability 

problems limit both assessment of the current status of water resources and the 

development of management strategies for the basin. Similar to the rest of Turkey, a 

dense network of streamgages is not found in the Meric-Ergene basin, and data of 

most of the streamgages are not complete. Thus, filling long gaps of missing 

streamflow data is an essential prerequisite in developing sustainable water resources 

management strategies for the basin.  

In this thesis, we dealt with a special type of infilling problem, where the goal is 

forecasting a long period of missing daily streamflow data, such as a year or two in 

the presence of historical records both for the streamgage with missing data and 
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neighboring gages. SC-based TS_FRB model is trained, validated, and used to 

predict streamflow for the long period of missing records. The models are built by 

using the training period, which contains streamflow records of neighboring stations 

together with those of streamgage that later became inoperative (from hereafter will 

be referred to as “subsequently ungaged”). FRB models have two parameters to be 

set by the developer, the number of clusters and cluster radius. In order to determine 

best combination of the number of clusters and cluster radius, the trained models are 

evaluated for the validation period. Afterward, the trained and validated models are 

used to predict the streamflow at subsequently ungauged locations for the testing 

period. The method is applied at the Meric-Ergene Basin of Turkey. To the best of 

our knowledge, the application of the SC-based TS_FRB model is limited in 

hydrology, and this is its first application in long-term forecasting of daily 

streamflow data by solely using neighboring streamgage observations. 

The FRB model provides good estimation for the streamgages located in the same 

tributary and closely spaced sub catchments, while it fails to provide satisfactory 

performance for streamgages located far away from the gages whose data is used as 

inputs or located in a different tributary. The lagged streamflow input enhances the 

model performances for some basins but introduces the risk of overfitting. The robust 

predictions by the FRB model are obtained for different periods for the streamgages 

having close neighboring gages. However, unmonitored anthropogenic effects in the 

basin worsen the performance of the FRB. 

The organization of this study is as follows. In Chapter 2, a literature review about 

Fuzzy Set Theory, FRB systems, TS_FRB, Clustering, SC, SC-based TS_FRB and 

Filling Missing Streamflow Data is provided. In Chapter 3, the development of the 

SC-based TS_FRB Model is explained in detail. In Chapter 4, information about the 

study area (i.e., Meric-Ergene Basin) and statistical measures about the dataset used 

in this study are provided. In Chapter 5, first the results of the FRB models for 

Yenicegoruce, Inanli, Luleburgaz and Hayrabolu streamgages are given and 

discussion about the results and performances of these model are provided. Then, 

effect of clustering parameters selection, lagged inputs, utilization of different 



              

 

3 

validation periods on FRB model performances are investigated. In addition to these, 

the FRB model trained using data points corresponding to extreme events (FRB-

Extreme) is introduced and its results are given in this section. In Chapter 6, major 

findings are highlighted, and remarks for future research are provided. 
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CHAPTER 2  

2. LITERATURE REVIEW 

2.1. Fuzzy Set Theory 

A fuzzy set, which is introduced by Zadeh (1965), is a class of elements with a 

continuum of grades of membership. Such a set is characterized by a membership 

function that assigns to each element a grade of belongingness ranging between zero 

and one. A classical (nonfuzzy or crisp) set is defined by crisp boundaries, i.e., there 

is no uncertainty in the prescription or location of the boundaries of the set, as shown 

in Figure 2.1(a). Thus, the boundary of a crisp set 𝐴 is unambiguously defined. On 

the other hand, a fuzzy set has ambiguously defined boundaries, as shown for fuzzy 

set 𝐴̃ in Figure 2.1(b). Hence, the boundary of a fuzzy set is fuzzily defined. 

 

Figure 2.1. Diagrams for (𝑎) crisp set boundary and (𝑏) fuzzy set boundary (Ross, 

2004) 

Point 𝑎 in Figure 2.1(a) is definitely a member of the crisp set 𝐴 while point 𝑏 is 

unambiguously not a member of the set 𝐴. However in Figure 2.1(b), the boundary 

𝐴̃ 
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of the fuzzy set 𝐴̃ which is represented by the shaded area is ambiguous. Point 𝑎 

which is located in the central (unshaded) area of the fuzzy set 𝐴̃ is a full member of 

the set. In other words, point 𝑎 fully belongs to 𝐴̃. Likewise, point 𝑏, which is located 

outside the boundary region of the fuzzy set is clearly not a member of the fuzzy set. 

On the other hand, point 𝑐, which is located in the fuzzy boundary region, partially 

belongs to the fuzzy set 𝐴̃. If full membership to a fuzzy set, such as point 𝑎 in Figure 

2.1(b), is represented by the number 1 and no-membership to a fuzzy set, such as 

point 𝑏 in Figure 2.1(b) is represented by the number 0, the point 𝑐 has an 

intermediate value of membership (partial membership) for the fuzzy set 𝐴̃ in the 

interval [0,1]. Furthermore, linguistic variables representing human cognitive 

patterns primarily on conceptual basis rather than numerical quantities are simple 

and vague; thus, they can be interpreted by fuzzy sets owing to their ambiguous and 

vague definitions (Ross, 2004). For instance, “age” is a linguistic variable when its 

values are represented linguistically rather than numerically, such as young, middle-

aged, old rather than crisp numbers like 20, 35, 75. In fuzzy logic, the statement 

“Burak is young” indicates that Burak belongs to the fuzzy set of “young” with a 

certain degree. For instance, let's assume that Burak is 30 years old. Considering the 

fuzzy set “young,” which is shown in Figure 2.2, Burak belongs to the fuzzy set 

“young” with a membership value of 0.4. If there is another fuzzy set called “middle-

aged”, Burak also belongs to the fuzzy set “middle-aged” with a membership value 

of 0.8, as seen in Figure 2.2. The membership values indicate how compatible the 

age of the Burak is to the fuzzily defined sets “young” and “middle-aged” (Zadeh, 

1975). Building blocks of Fuzzy Inference Systems (FISs) or FRB Models, which 

are explained in the following sections, use fuzzy sets in their premises. 
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Figure 2.2. The membership functions for fuzzy sets “young” and  “middle-aged” 

 

2.1.1. Fuzzy Rule-Based (FRB) Systems 

One of the most common ways to represent human knowledge is to express it in the 

following form: 

 IF premise (antecedent), THEN conclusion (consequent) (2.1) 

The form in Equation (2.1) is referred to as the IF-THEN rule-based form. It typically 

expresses an inference such that if a fact (premise, antecedent) is known, then another 

fact called conclusion (consequent) can be inferred. An example of an IF-THEN rule 

may be as follows: 

 IF an apple is red, THEN it is delicious (2.2) 

Equation (2.2) expresses human empirical and heuristic knowledge in the language 

of communication (Ross, 2004). Human knowledge expressed in Equation (2.2) can 

be mathematically expressed by fuzzy sets. The element apple can be defined by 

adjectives red and delicious which are ambiguous concepts, so can be represented by 

fuzzy sets. Then each apple will belong to these fuzzy sets with varying degrees. 

A fuzzy rule does not necessarily compose of a single antecedent. Multiple 

antecedents of a rule can be connected by logical connectors such as “AND” or “OR” 

young middle-aged 

Membership value (µ) 

Age 

30 (Burak) 

0.8 

0.4 
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which refer to conjunction and disjunction, respectively (Ross, 2004). For example, 

Equation (2.2) can be modified with multiple antecedents to the following form: 

 IF an apple is red AND shiny, THEN it is delicious (2.3) 

In general, a fuzzy rule with multiple antecedents connected with “AND” operators 

looks like: 

 IF 𝑥1 is 𝐴̃1 AND 𝑥2 is 𝐴̃2 AND… AND 𝑥𝑛 is 𝐴̃𝑛, THEN 𝑦 is 𝐵̃ (2.4) 

where 𝐴̃𝑖 is the fuzzy set representing the 𝑖th antecedent pair, 𝐵̃ is the fuzzy set 

representing the consequent, 𝑥𝑖 is the element defined by fuzzy set 𝐴̃𝑖  and 𝑦 is the 

element defined by fuzzy set 𝐵̃. The models which use fuzzy rules to make inferences 

are referred to as FRB models. A typical FRB model is shown in Figure 2.3 where 𝑥 

and 𝑦 are the inputs, 𝑧 is the output, 𝑥∗ and 𝑦∗ are the crisp values of the inputs, and 

𝑍∗ is the crisp output of the system. The membership functions of the fuzzy sets 

employed in the fuzzy rules are determined and stored in the data-base while fuzzy 

rules are stored in the rule-base (see Figure 2.4). Inputs to the system, commonly as 

crisp numbers, are fuzzified using these fuzzy sets (i.e., membership function values 

of each input are determined using the corresponding fuzzy sets). This process is 

called fuzzification. The degree of match between crisp quantities and linguistic 

variables is obtained as a result of the fuzzification process, which is indicated by 

membership values, as mentioned in Section 2.1. For example, the membership value 

of the input Burak (30 years old) for the fuzzy sets “young” and “middle-aged” are 

0.8 and 0.4, respectively, as shown in Figure 2.2. This shows that Burak satisfies the 

fuzzy set “young at a grade of 0.4, whereas he satisfies the fuzzy set “middle-aged” 

at a grade of 0.8. 
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Figure 2.3.  Mean max membership principle and centroid method (Modified from 

Ross, 2004) 
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Figure 2.4. Typical FRB system (Modified from Ross, 2004; Jang, 1993) 

The antecedent parts of the fuzzy rules are built based on the governing 

processes/rules of the system that is being modeled. A fuzzy rule can have a single 

or multiple antecedent part which is connected by logical operators. When there is a 

fuzzy rule with multiple antecedents connected with the “AND” operator, the 

membership values obtained from each antecedent part should be combined, which 

is usually carried out by the minimum or multiplication operations to obtain the firing 

degree for the corresponding fuzzy rule (Jang, 1993). On the other hand, to obtain 

the firing degree of a rule where “OR” operator is used to connect its antecedents, 

the maximum of membership values is commonly used (Ross, 2004). Detailed 

information about other operators that can be used to execute the “AND” and “OR” 

operators can be found in Ross (2004). The firing degree is used to evaluate how 

strongly the consequence of that rule will affect the overall output. Fuzzy rules stored 

in the rule-base are logical rules that describe the behavior of the modeled system 

for different conditions. The consequent of the fuzzy rule can be a fuzzy set as in the 

Mamdani type FRB models or a function as in the Takagi-Sugeno (TS) type FRB 

(Takagi and Sugeno, 1985) models (Ross, 2004).  

Knowledge-base 

Data-base Rule-base 

Fuzzification Defuzzification Inference 

Crisp 

Input 

Crisp 

Output 



              

 

11 

The fuzzy rules are used to make inferences. The output of the model is determined 

by combining all the consequences of all the fuzzy rules. In the inference phase, 

firing degrees are used to weigh the impact of each fuzzy rule on the final output 

(Ross, 2004; Jang, 1993). A crisp or a fuzzy output is generated for each rule in 

correspondence of their firing degrees (Jang, 1993). Then the outputs of each fuzzy 

rule are aggregated into a single output. For the Mamdani type model, the 

aggregation can be carried out using the union operation, as shown in Figure 2.3. 

Then the resulting fuzzy output is converted into a single number using a 

defuzzification method such as the centroid method where the output is obtained by 

taking the centroid of the area or by taking the mean of the crisp numbers 

corresponding to the maximum membership value of the resulting fuzzy output, as 

shown in the last two rows of Figure 2.3 (Ross, 2004). When a TS_FRB model is 

used, the crisp outputs of each fuzzy rule are aggregated to obtain the overall output 

(Ross, 2004) (see Figure 2.5). Since TS_FRB models are used in this study, its details 

are given in the following section. 

Different FRB models that have been proposed in the literature can be classified into 

three main types based on the inference used and the rule structure (Jang, 1993). For 

a two-rule fuzzy system with two antecedents connected with the logical connector 

“AND” three main types of inferences (i.e., Type 1, Type 2, and Type 3) are 

explained in Figure 2.5. According to Jang (1993), for Type 1, the firing degree of a 

fuzzy rule (i.e., R1 of Type 1 in Figure 2.5) is obtained by taking the minimum of 

the firing degrees from each premise. Using the firing degree found in the premise 

part (i.e., w1 of Type 1 in Figure 2.5), the crisp output (i.e., z1 of Type 1 in Figure 

2.5) is obtained by using the monotonic membership function for the rule. Then the 

output of the FRB model is calculated by weighing the crisp output of each rule 

corresponding to their firing degrees. Mamdani Type FRB model is presented as 

Type 2. The fuzzy output is obtained by using the max membership principle on the 

membership functions of the consequent parts for each fuzzy rule according to the 

membership values obtained in the antecedent part by taking the minimum of each 

premise. After the fuzzy output is obtained, the defuzzification is carried out using 
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the centroid method to get the crisp output. TS_FRB model is shown as Type 3. The 

output of each rule is computed as a linear function of the input variables. The output 

of the system is calculated as the weighted average of the output of each rule. Since 

crisp outputs are obtained, time-consuming defuzzification methods necessary for 

the Mamdani type FRB (Type 2) is not required for TS_FRB models (Jang, 1993; 

Ross, 2004). TS_FRB models are developed in this thesis to estimate daily 

streamflows; thus, this method is explained in detail in the next sections. 

 

Figure 2.5. Commonly used FRB systems (Modified from Jang, 1993) 

 

2.1.2. Takagi-Sugeno Fuzzy Rule-Based System  

Owing to their efficiency, transparency, and flexibility, TS_FRB models have been 

widely used in the analysis of complex systems. Since TS_FRB models are capable 

of simulating non-linear behavior, they are suitable for complex systems (Angelov, 

2004). The fields of application of TS_FRB has wide implications for many fields, 

including adaptive non-linear control, knowledge extraction, robotics, forecasting 

(Angelov and Filev, 2004). Recently, TS_FRB model applications in the field of 

hydrology started appearing in the literature as well as other soft computing 
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techniques like Artificial Neural Networks (ANN), genetic programming, etc. For 

example, Vernieuwe et al. (2005) compared TS_FRB models for rainfall-discharge 

dynamics, Kisi et al. (2012) carried out hybrid TS_FRB model to predict daily lake 

levels, Xiong et al. (2001) applied TS_FRB to analyze rainfall-runoff dynamics and, 

Jacquin and Shamseldin (2009) reviewed the application of FRB models including 

TS for flow forecasting. In this thesis, TS_FRB models are developed to predict 

streamflow at ungaged catchments. The behavior of the system, relations between 

the responses of neighboring catchments to the ungaged one are represented using a 

number of fuzzy rules, which are formulated utilizing the SC algorithm. 

2.2.Clustering 

As explained in Jain et al. (1999), cluster analysis is the organization of a collection 

of patterns (usually represented as a vector of measurements, or a point in 

multidimensional space) into clusters based on similarity. Intuitively, patterns within 

a valid cluster are more similar to each other than they are to a pattern belonging to 

a different cluster. An example of clustered data is shown in Figure 2.6. 

 

 

Figure 2.6. Clustered Data (Kriegel et al., 2011) 

Radius 

Center 
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Clustering is one of the most effective approaches used in the data mining process 

for discovering groups and identifying distributions and patterns in the underlying 

data (Jain et al., 1999). Clustering methods are used for pattern-analysis, decision-

making, data mining, image segmentation, document retrieval, and pattern 

classification (Jain et al., 1999). Each cluster can be defined by its cluster center and 

its radius. The focal point of a cluster is called its cluster center. The cluster center 

represents the cluster’s behavior at most. The cluster radius defines the distance 

between the cluster center and the outermost data in that cluster. This outermost data 

is the last one that represents that cluster’s behavior, maybe to the least extent 

(Batistakis et al., 2001).  

In the field of hydrology, various clustering algorithms have been used in the 

literature, e.g., partitional clustering, hierarchical clustering, fuzzy c-means 

clustering and SC. Kentel (2009) applied fuzzy c-means clustering in the analysis of 

river flow, Nayak and Sudheer (2008) applied SC to forecast reservoir inflow and 

Dogulu and Kentel (2017) provided an overview of clustering methods for runoff 

predictions in ungauged basins. In this study, SC is used in developing fuzzy rules; 

thus, it is explained in detail in the following section. 

 

2.2.1. Subtractive Clustering 

SC, which is one of the first density-based clustering algorithms, is proposed by Chiu 

(1994). In density-based approaches, clusters are formed based on the density 

concept. In SC, density is referred to as the potential. In other words, the data points 

are grouped into a cluster based on their potentials. Each data point is considered as 

a candidate to be a cluster center, and the potential of each data is reversely 

proportional to the distance between that data point and all other data points as shown 

in Figure 2.7. In other words, as the centrality of a data point increases the potential 

of it to be a cluster center increases as well (Angelov and Yager, 2013). Besides the 

distance, the potential also depends on the cluster radius that defines the 

neighborhood between cluster centers. As the cluster radius decreases, cluster centers 
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get closer to each other. SC is one of the clustering algorithms proposed by Chiu 

(1994) to generated fuzzy rules since each cluster center is, in essence, a prototypical 

data point that exemplifies a characteristic behavior of the dataset. Therefore, each 

cluster center can be used as the basis of a rule that describes the system behavior. 

In this thesis, SC is used in formulating rules of the fuzzy models. 

 

Figure 2.7. Distances from data point A and B to all other data (Adapted from 

Angelov and Yager, 2013) 

 

2.3. Takagi-Sugeno Fuzzy Rule-Based Model that uses Subtractive 

Clustering 

The simultaneous application of a set of fuzzy rules enables the simulation of non-

linear processes by TS_FRB models. Although, the consequent part of each rule is a 

constant or a linear combination of the inputs used in the antecedent part, the 

simultaneous firing of multiple rules to generate the output allows modeling 

complex, non-linear phenomena. The simplicity of the consequent parts of the fuzzy 

rules increases the computational efficiency of TS_FRB models. TS_FRB model can 

be developed via the formulation of the structure (rule-base), firing degrees 

(membership functions), and estimation of parameters, which can be solved as a least 

square problem for fixed antecedent parameters (Angelov, 2004).  
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TS_FRB models are formulated by using SC in this thesis. Similar to the other 

clustering methods, a cluster can be defined by its clustering parameters, which are 

the center and the radius in the SC algorithm, as explained earlier. Therefore, 

clustering parameters affect the rule-base (see Figure 2.4) of the TS_FRB. While the 

number of cluster centers set the number of fuzzy rules, the cluster radius affects the 

satisfaction degree (or degree of belongingness) of crisp inputs in the fuzzy sets used 

in the antecedent part of the fuzzy rules. A large or small number of cluster centers 

might result in too many or not enough fuzzy rules than required, to adequately 

represent the system. In other words, a large cluster radius might lead to a coarse 

model which usually lacks the ability to fit highly nonstationary phenomenon and 

might result in underfitting, whereas a small radius might cause an overcomplicated 

model which learn from noise and leads to overfitting (Demirli et al., 2003; Ge and 

Zeng, 2018). Chiu (1994) suggested to assign a constant value for the cluster radius 

and set a threshold for the number of cluster centers based on the centrality of the 

generated cluster center at the latest. Akgun and Kentel (2018) investigated the 

impact of the number of rules on model performance. They concluded that increasing 

the number of cluster centers improves the performance up to a point, and this point 

should be determined based on an extensive trial-and-error procedure. After this 

point, the performance of the model decreases due to the increased dimension of the 

search space. Banakar and Azeem (2006) applied the Genetic Algorithm to 

determine the cluster radius used for SC-based TS_FRB. In this thesis, a trial and 

error procedure is used to select the cluster radii and the number of cluster centers.  

 

2.4.  Filling Missing Streamflow Data 

In the literature, the filling of missing streamflow data often refers to the estimation 

of streamflow data where there is no record or only a short record of record (Hirsch, 

1979). The drainage-area ratio method, which is based on the linearity assumption 

between drainage-area and streamflow, is commonly used for the reconstruction of 

streamflow, where there is no record (Asquith et al., 2006). Besides, tree-ring 



              

 

17 

information-based methods are widely used for reconstruction of historical 

streamflow records for long periods (Akkemik et al., 2008; Shah et al., 2013; Young 

1994; Lara et al. 2005; Strachan et al., 2011; Bekker et al., 2014; Allen et al., 2013; 

Woodhouse and Lukas, 2006; Meko et al., 2001).  

When there is enough data, various statistical methods have been used for infilling 

missing streamflow records (Beauchamp et al., 1989; Boakye and Schultz, 1994), 

including ANN approaches (Ayvaz et al., 2018; Khalil et al., 2001; Cigizoglu, 2003) 

and chaos theory principles (Elshorbagy et al., 2002). The model choice is influenced 

by the length and the season of the missing data, availability of hydro-meteorological 

data, corresponding climatic region, and the length of the available data from the past 

observations (Mwale et al., 2012). One of the most straightforward approaches for 

infilling daily streamflow data is replacing the missing values by the sample mean 

or mean of the subgroup. However, replacing a missing value with the sample mean 

might cause underestimation of the variance, and improper identification of 

subgroup might mislead the results (Kamwaga et al., 2018; Yozgatligil et al., 2012). 

Similar to the mean substitution method, Autoregressive Integrated Moving Average 

(ARIMA) (Lettenmaier, 1980) and interpolation (Boakye and Schultz, 1994) are two 

methods that use historical records of the streamgage with missing data for infilling. 

On the other hand, a large group of infilling techniques relies upon functions for 

transferring data from donor gauging stations (Harvey et al., 2012). These methods 

vary from simple regression (Harvey et al., 2012) to complex ANN (Dastrorani et 

al., 2010) and dynamic regression models, which include seasonal ARIMA with 

regression (Tencaliec et al., 2015). For both cases, numerous reviews and studies on 

the comparison of methods are conducted (Aissia et al., 2017; Boakye and Schultz 

1994; Khalil et al. 2001; Harvey et al. 2012; Ng et al. 2009). More recently, 

geospatial methods such as Map-Correlation Method are proposed (Archfield and 

Vogel, 2010) and used in predicting daily streamflows at ungaged locations as well 

(Ergen and Kentel, 2016; Krasnogorskaya et al., 2019). 

In this thesis study, the infilling problem where the aim is to forecast a long period 

of missing daily streamflow data, such as a year or two, is solved using the TS_FRB 
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model. Similar studies using heuristic methods have appeared in the literature, but 

they generally focused on the infilling of a short period of streamflow data. Valipour 

et al. (2013) compared the performance of ARIMA models and dynamic 

autoregressive ANN models in forecasting monthly inflows to a dam reservoir. As a 

result, ARIMA provides better performance in the short term (12 months) forecasting 

while dynamic autoregressive ANN shows better performance in the long term (60 

months) forecasting. Kentel (2009) developed a tool for a one-step-ahead forecast of 

daily streamflow using ANN and evaluated the efficiency of the estimation with 

fuzzy clustering. Shiau and Hsu (2016) used ANN in their study to extend daily 

streamflow records and concluded that ANN is suitable for it. For long-term and 

short-term flow forecasting, numerous comparisons of methods and reviews have 

been carried out (Aissia et al., 2017; Boakye and Schultz, 1994; Khalil et al., 2001; 

Harvey et al., 2012; Ng et al., 2009).  

In this thesis, we developed TS_FRB models based on SC to estimate missing daily 

streamflow data for long periods. TS_FRB based on SC was previously applied by 

Akgun and Kentel (2018) for one-step-ahead forecasting of monthly streamflow, by 

Vernieuwe et al. (2005) for rainfall-runoff modeling, by Nayak and Sudheer (2008) 

for inflow forecasting of the reservoir and by Nayak et al. (2005) and Lohani et al. 

(2014) for flood forecasting. To the best of our knowledge, the application of the 

TS_FRB model based on SC is limited in hydrology, and this is its first application 

in long-term forecasting of daily streamflow data by solely using neighboring 

streamgage observations. 
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CHAPTER 3  

     METHODOLOGY 

3.1.Subtractive Clustering-Based Takagi-Sugeno Fuzzy Rule-Based Model  

The framework of the SC-based TS_FRB model is given in Figure 3.1. First, the             

SC-based TS_FRB model is developed, trained, and validated; then, it is used to 

make predictions. The first step is clustering daily streamflow data obtained from all 

the streamgages used in this study. Each cluster center is then used to develop a rule 

that represents the behavior of the system (i.e., in this study, the relations between 

hydrologic responses of sub-catchments represented by streamgages at their outlets). 

As the case study, it is assumed that all streamgages collected daily streamflow data 

between 1996 and 2003. Then one of the streamgages became inoperative (i.e. 

subsequently ungaged) and stopped collecting daily streamflow data while the 

remaining gages continued to collect data. SC-based TS_FRB models are developed 

for the subsequently ungaged locations to predict its daily streamflows. Input to SC 

are vectors of streamflow measurements of all the streamgages that are used in the 

study for each day of the observation period (i.e., the period used for training). Thus, 

the observation period is the period along which daily streamflow measurements are 

collected from all the neighboring streamgages and the subsequently ungaged one. 
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SC-based TS_FRB models are developed based on user-defined parameters of SC, 

namely the number of cluster centers (𝑐) and cluster radius (𝑟𝑎). Effect of different 

number of cluster centers and cluster radii is investigated in this study. In other 

words, for each 𝑐 and 𝑟𝑎 pair, a SC-based TS_FRB is trained using data of the training 

period. Then the trained model is used to make predictions for the validation period. 

This analysis is carried out to avoid overfitting. The model with the best validation 

performance is then used to test the robustness of the FRB model. The testing is 

carried out with the test data set which is different from training and validation data 

sets.   

3.1.1. Subtractive Clustering 

Formulation of the SC-based TS_FRB model that estimates the discharge at the 

subsequently ungaged location in day 𝑡, using discharges measured at the 

surrounding (𝑚 − 1) streamgages in day 𝑡, 𝑄𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑙𝑦 𝑢𝑛𝑔𝑎𝑔𝑒𝑑(𝑡) =

𝑓(𝑄1(𝑡), 𝑄2(𝑡), … , 𝑄𝑚−1(𝑡)), is explained below. For an observation period of 𝑛 

days and 𝑚 streamgages, there will be 𝑛 data points {𝑉1, 𝑉2, 𝑉3 … , 𝑉𝑛} (i.e., samples 

or patterns), where 𝑉𝑖 is a vector with 𝑚 elements. Daily streamflow observations at 

each streamgage form the 𝑚-dimensional feature space, which includes 𝑚 − 1 

dimensional input space (i.e. surrounding streamgages that collect daily streamflow 

data) and 1-dimensional output space (i.e. subsequently ungaged location). Prior to 

clustering log-transformation is applied to the dataset and the feature space is 

normalized so that all data are bounded by a unit hypercube. 

In SC, each data point is treated as a candidate to be a cluster center and potential of 

each data point to be a cluster center is calculated using the following equation (Chiu, 

1994): 

 

𝑃𝑖 = ∑ 𝑒
−(

4

𝑟𝑎
2)‖𝑋𝑖−𝑋𝑗‖

2𝑛

𝑗=1

(𝑖 = 1,2,3, … , 𝑛) (3.1) 



              

 

22 

where 𝑋𝑖 is the normalized data point 𝑖, 𝑃𝑖 is the potential of normalized data point 

𝑖, 𝑟𝑎 is a user-defined positive constant representing cluster radius of the first cluster 

center and 𝑛 is the number of data points.  

The potential of a data point decays exponentially (see Equation 3.1) with the square 

of the distance between that data point and all other data points, which ensures that 

a data point with many closeby neighbors has a high potential. The constant, 𝑟𝑎, is 

the radius defining the neighborhood. At the end of the potential calculation process, 

the data with the highest potential is selected as the first cluster center. Afterward, 

the potentials are updated using the following equation (Chiu, 1994): 

 𝑃𝑖 ← 𝑃𝑖 − 𝑃𝑘
∗ 𝑒−(4/𝑟𝑏

2)‖𝑋𝑖−𝑋𝑘
∗‖

2

  (𝑖 = 1,2,3, … , 𝑛)                   (3.2) 

where 𝑋𝑘
∗ is the cluster center 𝑘, 𝑃𝑘

∗ is the potential of cluster center 𝑘 and 𝑟𝑏 is a 

user-defined positive constant. When 𝑟𝑏 is chosen to be a small number, closer 

cluster centers are formulate. 

The updated potential decays exponentially with the square of the distance from each 

data point to the previous cluster center as well. In this way, the potential of the data 

point located near the previous cluster center drops significantly compared to the 

other data points that are far away from the previous cluster center. After the updating 

process, the data point with the highest potential is chosen as the next cluster center. 

Note that, while updating potentials, predecessor cluster center is used. This 

procedure continues until the user-defined number of cluster centers are identified. 

Each cluster center is in essence a prototypical data point that exemplifies a 

characteristic behavior of the dataset. Therefore, each cluster center can be used as 

the basis of a fuzzy rule that describes the system behavior (Chiu, 1994).  

3.1.2. TS_FRB Model Development 

Each cluster center is obtained in the 𝑚-dimensional space. In order to convert 

cluster centers into fuzzy rules, each cluster center is decomposed into two vectors. 

For example, cluster center 𝑐 is decomposed into 𝑌𝑐
∗ and 𝑍𝑐

∗ vectors, where 𝑌𝑐
∗ is 
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composed of (𝑚 − 1) dimensions which is the total number of input variables and 

𝑍𝑐
∗ is composed of 1-dimension which represents the output (i.e. the discharge at the 

streamgage assumed to be the subsequently ungaged location for the validation and 

testing periods). In this study, each fuzzy rule is designed to have the following form:  

 

 Rule 𝑟: IF 𝑦1 is 𝐴1
𝑟 & 𝑦2 is 𝐴2

𝑟  & … & 𝑦𝑚−1 is 𝐴𝑚−1
𝑟  , THEN 𝑧 =

𝐺1
𝑟𝑦1 + ⋯ + 𝐺𝑚−1

𝑟 𝑦𝑚−1 + 𝐻𝑟 
(3.3) 

 

where 𝑦1, 𝑦2,…𝑦𝑚−1 are the input variables and 𝑧 is the output variable; 

𝐴1
𝑟 , 𝐴2

𝑟 , … , 𝐴𝑚−1
𝑟  are antecedent fuzzy sets for rule 𝑟 which are defined by Gaussian 

membership functions, 𝐺1
𝑟 , 𝐺2

𝑟 , … , 𝐺𝑚−1
𝑟  and 𝐻𝑟 are the coefficients of the linear 

function for rule 𝑟 and they need to be estimated using the training data points. 

The cluster centers are used as the mean values of the membership functions. For 

example, if 𝑌1
∗ = (𝑦1,1

∗ , 𝑦1,2
∗ , … , 𝑦1,𝑚−1

∗ ) is identified as the first cluster center (used 

to generate the first fuzzy rule), then the membership functions for 𝐴1
1, 𝐴2

1 , … , 𝐴𝑚−1
1  

are given in Figure (3.2). In this study, a linear function of the input variables is used 

to calculate the output according to Takagi and Sugeno (1985a) inference mechanism 

as given in Equation (3.3). Moreover, multiplication is used to carry out the AND 

operation. Thus, for an input vector of 𝑌𝑘 = (𝑦𝑘,1, 𝑦𝑘,2, … , 𝑦𝑘,𝑚−1) the firing degree 

(or fulfillment degree) of the first fuzzy rule (represented by the first cluster center, 

𝑌1
∗) is calculated using the following equaiton (Chiu, 1994): 

 𝜇𝑘,1 = 𝑒−(4/𝑟𝑎
2)‖𝑌𝑘−𝑌1

∗‖2
 (3.4) 

 and the output (of the input vector 𝑌𝑘 for the first rule) is calculated using: 

 𝑧𝑘
1 = 𝐺1

1𝑦𝑘,1 + ⋯ + 𝐺𝑚−1
1 𝑦𝑘,𝑚−1 + 𝐻1 (3.5) 
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Figure 3.2. Membership functions for antecedent fuzzy sets 

 

Equation (3.4) is used to calculate firing degrees of all fuzzy rules for each input 

vector and Equation (3.5) is used to calculate the output of each input vector for all 

the rules. For each input vector, 𝑖 there will be one firing degree for each rule and 

the output of this input vector, 𝑧𝑖 for a fuzzy inference system with 𝑐 rules is 

calculated using: 

 

 
𝑧𝑖 =

𝜇𝑖,1𝑧𝑖
1 + 𝜇𝑖,2𝑧𝑖

2 + ⋯ + 𝜇𝑖,𝑐𝑧𝑖
𝑐

∑ 𝜇𝑖,𝑝
𝑐
𝑝=1

 (3.6) 

 

Therefore if there are 𝑛 observation points (i.e., each observation point has 𝑚 

dimensions of which (𝑚 − 1) is for inputs and one is for the output in this study) 

then there will be 𝑛 linear equations generated by aggregating results of 𝑐 rules using 

Equation (3.5). Each of these linear equations has unknown parameters (i.e. 𝐺𝑟
𝑝
 and 

𝐻𝑝, 𝑟 = 1,2, … , 𝑚 − 1 and 𝑝 = 1,2, … , 𝑐) that need to be estimated/calibrated using 

the outputs of the observation points. This results in a system of linear equations of 

the form 𝐴𝑥 = 𝑅, where 𝐴 is 𝑛 × [(𝑚 − 1)𝑐 + 𝑐] dimensional coefficient matrix, 𝑥 

is the unknown column vector with [(𝑚 − 1)𝑐 + 𝑐] elements and the right hand side 

vector 𝑅 is composed of the output values of the 𝑛 observation points (i.e. 𝑛 × 1 

column vector). In this study, the unknown parameters of the system of linear 

𝑦1 

𝜇 = 𝑒
−

4

𝑟𝑎
2(𝑦1−𝑦1,1

∗ )2

 

𝑦1,1
∗  

𝑦2 

𝜇 = 𝑒
−

4

𝑟𝑎
2(𝑦2−𝑦1,2

∗ )2

 

𝑦1,2
∗  

𝑦𝑚−1 

𝜇 = 𝑒
−

4

𝑟𝑎
2(𝑦𝑚−1−𝑦1,𝑚−1

∗ )2

 

𝑦1,𝑚−1
∗  

... 
𝑨𝟏

𝟏 𝑨𝟐
𝟏 𝑨𝒎−𝟏

𝟏  
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equations are estimated using computationally efficient and well-behaved recursive 

least square estimation to avoid singularity problem caused by the ordinary least 

square estimation.  

3.1.3. Parameter Estimation with Recursive Least Square Method 

For an equation in the form 𝐴𝑥 = 𝑅, the parameters are estimated iteratively by the 

Recursive Least Square Method as follows (Chiu, 1994): 

 

 𝑋𝑗+1 = 𝑋𝑗 + 𝑆𝑗+1𝑎𝑗+1(𝑟𝑗 − 𝑎𝑗+1
𝑇 𝑋𝑗) (3.7) 

 

 
𝑆𝑗+1 = 𝑆𝑗 −

𝑆𝑗𝑎𝑗+1𝑎𝑗+1
𝑇 𝑆𝑗

1 + 𝑎𝑗+1
𝑇 𝑆𝑗𝑎𝑗+1

  ( 𝑗 = 0,1,2, … . 𝑛 − 1) (3.8) 

 

where 𝑋𝑗 is the estimate of 𝑥 obtained at iteration 𝑗, 𝑆𝑗 is the covariance matrix, 𝑎𝑗
𝑇 

is the 𝑖th row vector of 𝐴 and 𝑟𝑗 is the 𝑗th element of vector 𝑅. 𝑆𝑗 is a 𝑐𝑚 × 𝑐𝑚 

dimensional square matrix. Initial conditions for iteration are 𝑋0 = 0 and 𝑆0 = 𝛾𝐼, 

where 𝛾 is the large positive number and 𝐼 is the identity matrix having the same 

dimensions with 𝑆. The least-square estimate of 𝑥 corresponds to 𝑋𝑛 (Chiu, 1994). 
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CHAPTER 4  

CASE STUDY: MERIC-ERGENE BASIN 

The proposed method is applied for four streamgages, D01A020 – Inanli, D01A008 

– Luleburgaz, E01A006 – Hayrabolu and E01A012 – Yenicegoruce located in 

Meric-Ergene Basin (see Figure 4.1).  Meric – Ergene River drains a surface area of 

12,438 km2 (MoEF, 2008) within the boundaries of North-Western Turkey in the 

Thrace Region. Yenicegoruce streamgage is located upstream of the conjunction of 

the Ergene River with the main stream of the Meric River (Mesta et al., 2018; Mesta 

et al., 2019).  

 

Figure 4.1. The topography of the Meric-Ergene Basin (Tezel et al., 2019) 
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The elevation of the study area ranges between 6 mASL and 1012 mASL. Historical 

daily temperatures recorded at the Luleburgaz (Station No: 17631 as shown in Figure 

4.1) meteorological station within the catchment for the period between 1997 and 

2017 indicate that the mean annual temperature is 14.4°C and the mean annual 

precipitation is 570 mm. Monthly mean values for 21 years average (1997-2017) 

show that December and August are the wettest (65.5 mm average) and driest (10.3 

mm average) months, respectively.  The highest and lowest mean temperatures 

recorded in this period are 35.7°C (July 2000) and -13.7°C (January 2010), 

respectively. Agricultural lands in Meric-Ergene Basin form the most dominant land 

covering around 65% of the entire basin. Other main land cover types are forests and 

shrubbery (27%), and meadows and pastures (5.7%). Water bodies cover 0.5% of 

the entire Meric-Ergene Basin (MoEF, 2008). Surface runoff forms the main source 

of water potential in the basin. Groundwater contribution is around 20% of the 

basin’s water potential (MoEF, 2008).  

 SC-based TS_FRB models are built for Yenicegoruce station located at the outlet of 

the basin, for Hayrabolu station located at the upstream of the Yenicegoruce located 

on Ergene river, for Luleburgaz station located at the upstream of the Yenicegoruce 

and Inanli station located at the upstream of the Luleburgaz station as shown in 

Figure 4.1 (Mesta et al., 2018). Only daily streamflow records are used to build SC-

based TS_FRB models. Based on the availability of data, training and validation 

periods are selected as 1997-2003 and 2004-2005, respectively. Monthly mean 

flows, monthly maximum flows, monthly standard deviation values and some basic 

statistical measures of all streamgages for the training and validation periods are 

given in Table 4.1, Table 4.2, Table 4.3 and Table 4.4, respectively.  
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Irrigation water demand is supplied from reservoirs and ponds in the basin and from 

Ergene River and its tributaries through direct water abstraction (Tezel et al., 2019). 

Upper tributaries of   Ergene River (streams in Inanli and Luleburgaz subbasins) are 

under high pollution stress due to heavy industrialization at the East of the basin as 

shown in Figure 4.2 (Tezel et al., 2019). Industrial water demand is mainly met by 

groundwater abstraction (Kahraman and Ozkul, 2018). Flowrate in the Ergene River 

is significantly affected by industrial effluent discharges (Gunes and Taninli, 2013; 

Sungur et al., 2014; Tezyapar et al., 2018). Turkish Ministry of Environment and 

Urbanization reports that industrial effluent discharges contribution to the 

streamflow in the basin may reach up to three times higher than the natural surface 

runoff during the low flow season (MoEU, 2015). Most of the industrial discharges 

are intermittent and irregular. The volumes of irrigational and industrial water 

extractions and discharges, particularly from industrial establishments, are not 

continuously monitored and hence not available to researchers. In fact, as reported 

by the chair of a local irrigation union during one of the site visits, especially during 

heavy rainfall events, the industrial establishments discharge their effluents to 

Ergene River in an uncontrolled manner (Tezel et al., 2019). Unmonitored 

anthropogenic effect on basin may affect the prediction skills of SC-based TS_FRB 

being data-driven method.  
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Figure 4.2. Industrial facilities found on the study area (Tezet et al., 2019)  
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CHAPTER 5  

RESULTS AND DISCUSSIONS 

SC-based TS_FRB models are developed using R computer language in this study. 

The code runs in approximately 20 seconds in a computer with i9-9900K processor 

and 32GB RAM for one simulation with three input parameter and eight cluster 

centers (i.e., training, validation and testing of a single model). In the developed code 

“openxlsx” R package is used to read data from excel files (Walker and Bragliga, 

2018). The rest of the model is self-coded. 

Streamflow predictions obtained by using SC-based TS_FRB (from hereafter will be 

referred to as FRB models) within the study catchment are given and analyzed in this 

section. The study catchment has four streamgages, Yenicegoruce (E01A012), Inanli 

(D01A020), Luleburgaz (D01A008), and Hayrabolu (E01A006). A total of 22 

different type of models (i.e., different sets of inputs are used) are built, six FRB 

models each for Yenicegoruce and Inanli, five models each for Luleburgaz and 

Hayrabolu using different sets of input. To determine the best parameter set (i.e., 

cluster radius and number of cluster centers) of each type of FRB model, 150 

variations (from here after they will be referred to as sub-models) of each type is 

developed. These sub-models are built based on different fuzzy rules generated using 

a different number of cluster centers and cluster radii. In other words, 3300 models 

are built.. 

Streamflow data is divided into three parts for training, validation and testing. 

Training data set is used to train FRB models while the validation data set is used to 

identify the best parameter set. Then testing data set is used to evaluate the 

performance of the trained model. For four streamgages, the models which provide 

the best estimates and analysis with respect to cluster centers and cluster radii are 
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presented in this section. The results of the remaining models are given in the 

Appendices.  

To test robustness of the models, same procedure is applied (i.e., 3300 models are 

built) by interchanging the datasets of the validation and testing periods (i.e., these 

runs are referred to as Case 2). Thus, 6600 models are built in total in this study. 

5.1. Estimation of Streamflow Using Subtractive Clustering-based Takagi 

Sugeno Fuzzy Rule-Based Model 

Within the study catchment, each of the streamgages is assumed to be subsequently 

ungaged and SC-based TS_FRB models are developed to estimate its daily 

streamflow values. FRB model used to predict streamflow at the subsequently 

ungaged location, 𝑄𝑠𝑢 using streamflow observations at three neighboring 

streamgages, 𝑄𝑛1, 𝑄𝑛2, 𝑄𝑛3, can be expressed mathematically as follows: 

 𝑄𝑠𝑢 = 𝑓(𝑄𝑛1, 𝑄𝑛2, 𝑄𝑛3)  (5.1) 

Statistical model performance measures used in this study to evaluate the efficiency 

of the FRB models are 𝑅, 𝑅2, 𝑁𝑆𝐸 and 𝑃𝐵𝐼𝐴𝑆: 

 
𝑅 =

∑ [(𝑄𝑡
𝑜−𝑄̅𝑜)×(𝑄𝑡

𝑠−𝑄̅𝑠)]
𝑛𝑡
𝑡=1

√∑ (𝑄𝑡
𝑜−𝑄̅𝑜)

2𝑛𝑡
𝑡=1 ×∑ (𝑄𝑡

𝑠−𝑄̅𝑠)
2𝑛𝑡

𝑡=1

  
(5.2) 

 

 𝑅2 = 𝐶𝑜𝑟𝑟2  (5.3) 

 

 
𝑁𝑆𝐸 = 1 −

∑ (𝑄𝑡
𝑠−𝑄𝑡

𝑜)2𝑛𝑡
𝑡=1

∑ (𝑄𝑡
𝑜−𝑄̅𝑜)

2𝑛𝑡
𝑡=1

  
(5.4) 
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𝑃𝐵𝐼𝐴𝑆 =

∑ (𝑄𝑡
𝑜−𝑄𝑡

𝑠)
𝑛𝑡
𝑡=1

∑ (𝑄𝑡
𝑜)

𝑛𝑡
𝑡=1

× 100  
(5.5) 

where 𝑡 stands for the time steps, 𝑄𝑡
𝑠 and 𝑄𝑡

𝑜 are simulated and observed streamflows 

at time 𝑡, 𝑄̅𝑠 and 𝑄̅𝑜 are the corresponding mean values of simulated and observed 

streamflows throughout the entire duration of the simulation/observation, 

respectively and 𝑛𝑡 is the total number of streamflow data. The mean and 

instantaneous streamflows are expressed in m3/s in the equations. Performance of 

FRB models evaluated using Table 5.1.  

 

Table 5.1. Performance evaluation criteria for evaluating statistical measures, 

namely 𝑅2, 𝑁𝑆𝐸 and 𝑃𝐵𝐼𝐴𝑆 (%),  for daily, monthly, and yearly flow predictions 

of basin-scale models (adapted from Moriasi et al., 2015) 

Statistical 

Measure 

Performance Evaluation Criteria 

Very Good Good Satisfactory Unsatisfactory 

𝑅2 𝑅2 > 0.85 0.75 < 𝑅2 ≤ 0.85 0.60 <𝑅2 ≤ 0.75 𝑅2 ≤ 0.60 

𝑁𝑆𝐸 𝑁𝑆𝐸 > 0.8 0.7 < 𝑁𝑆𝐸 ≤ 0.8 0.5 < 𝑁𝑆𝐸 ≤ 0.7 𝑁𝑆𝐸 ≤ 0.5 

𝑃𝐵(𝑃𝐵𝐼𝐴𝑆) (%) 𝑃𝐵 < ±5 ±5 ≤ 𝑃𝐵 < ±10 ±10 ≤ 𝑃𝐵 < ±15 𝑃𝐵 ≥ ±15 

 

5.1.1. Yenicegoruce Streamgage 

5.1.1.1. Analysis of the number of cluster center and the cluster radius 

First, Yenicegoruce streamgage is assumed to be the subsequently ungaged location 

and Inanli, Luleburgaz and Hayrabolu streamgages are used to predict its 

streamflow. Initially, the first type of the model, the base model, 𝑀1𝑌 is developed 

where streamflow observations at time 𝑡 at Inanli (𝑄𝐼,𝑡), Luleburgaz (𝑄𝐿,𝑡) and 

Hayrabolu (𝑄𝐻,𝑡) are used to predict streamflow at time 𝑡 at Yenicegoruce (𝑄𝑌,𝑡) (see 
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Table 5.2). Then, five other types of FRB models where the effect of travel time is 

considered are developed. Yenicegoruce streamgage is located at the outlet of the 

basin (see Figure 4.1). Since the basin has a drainage area of 10,402 km2, it takes a 

few days for the peak of the hydrograph to travel from Inanli streamgage to 

Yenicegoruce streamgage. As demonstrated in Figure 5.1, the travel time changes, 

while it took around six days in October 1997 for the peak of the hydrograph to travel 

from Inanli to Yenicegoruce streamgage; it only took around three days in January 

2004. Considering different travel times, six types of FRB models using streamflow 

measurements at 𝑡, (𝑡 − 1), (𝑡 − 2), (𝑡 − 3), (𝑡 − 4) and (𝑡 − 5) at Inanli, 

Luleburgaz, and Hayrabolu streamgages are developed and trained to estimate 

streamflow at 𝑡 at Yenicegoruce streamgage. The architectures of these models are 

shown  

in Table 5.2. In Table 5.2, 𝑄𝑖,𝑗 is the discharge measured at streamgage 𝑖 at time 𝑗. 

To predict streamflow at Yenicegoruce (𝑌) at 𝑡, 𝑄𝑌,𝑡, Luleburgaz (𝐿), Inanli (𝐼), and 

Hayrabolu (𝐻) are used as the neighboring streamgages (i.e., 𝑖 = 𝑌, 𝐿, 𝐼, 𝐻). 
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Figure 5.1.  Hydrographs of Inanli, Luleburgaz, Hayrabolu and Yenicegoruce 

streamgages in two different periods: February and October 
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Table 5.2. FRB model architectures used for Yenicegoruce streamflow predictions 

Type 

of 

Model  

Input Parameters Output 

𝑀1𝑌  𝑄𝐼,𝑡, 𝑄𝐿,𝑡, 𝑄𝐻,𝑡 𝑄𝑌,𝑡 

𝑀2𝑌  𝑄𝐼,𝑡−1, 𝑄𝐼,𝑡, 𝑄𝐿,𝑡−1, 𝑄𝐿,𝑡, 𝑄𝐻,𝑡−1, 𝑄𝐻,𝑡 𝑄𝑌,𝑡 

𝑀3𝑌  𝑄𝐼,𝑡−2, 𝑄𝐼,𝑡−1, 𝑄𝐼,𝑡, 𝑄𝐿,𝑡−2, 𝑄𝐿,𝑡−1, 𝑄𝐿,𝑡, 𝑄𝐻,𝑡−2, 𝑄𝐻,𝑡−1, 𝑄𝐻,𝑡 𝑄𝑌,𝑡 

𝑀4𝑌  𝑄𝐼,𝑡−3, 𝑄𝐼,𝑡−2, 𝑄𝐼,𝑡−1, 𝑄𝐼,𝑡, 𝑄𝐿,𝑡−3, 𝑄𝐿,𝑡−2, 𝑄𝐿,𝑡−1, 

𝑄𝐿,𝑡, 𝑄𝐻,𝑡−3, 𝑄𝐻,𝑡−2, 𝑄𝐻,𝑡−1, 𝑄𝐻,𝑡 

𝑄𝑌,𝑡 

𝑀5𝑌 

𝑄𝐼,𝑡−4 , 𝑄𝐼,𝑡−3, 𝑄𝐼,𝑡−2, 𝑄𝐼,𝑡−1, 𝑄𝐼,𝑡 , 𝑄𝐿,𝑡−4, 𝑄𝐿,𝑡−3, 𝑄𝐿,𝑡−2, 𝑄𝐿,𝑡−1, 

𝑄𝐿,𝑡, 𝑄𝐻,𝑡−4 , 𝑄𝐻,𝑡−3, 𝑄𝐻,𝑡−2, 𝑄𝐻,𝑡−1, 𝑄𝐻,𝑡 

𝑄𝑌,𝑡 

𝑀6𝑌 

𝑄𝐼,𝑡−5, 𝑄𝐼,𝑡−4 , 𝑄𝐼,𝑡−3, 𝑄𝐼,𝑡−2, 𝑄𝐼,𝑡−1, 𝑄𝐼,𝑡, 𝑄𝐿,𝑡−5, , 𝑄𝐿,𝑡−4, 𝑄𝐿,𝑡−3, 

𝑄𝐿,𝑡−2, 𝑄𝐿,𝑡−1, 𝑄𝐿,𝑡, 𝑄𝐻,𝑡−5, 𝑄𝐻,𝑡−4 , 𝑄𝐻,𝑡−3, 𝑄𝐻,𝑡−2, 𝑄𝐻,𝑡−1, 𝑄𝐻,𝑡 
𝑄𝑌,𝑡 

 

First, all the sub-models of all six types of models are trained using daily 

streamflow data of Inanli, Luleburgaz, Hayrabolu and Yenicegoruce streamgages 

for the duration of October 1996 to November 2003 (1997-2003 water years). Then 

for each type of model, the best sub-model is selected based on the highest 𝑁𝑆𝐸 

value for the validation phase, which is from October 2003 to November 2005 

(2004-2005 water years). These sub-models are referred to as the selected models 

of each type. Then the best model of the selected models is used to predict daily 

streamflow at Yenicegoruce streamgage for the testing period, which is from 

October 2012 to November 2015 (2013-2015 water years). 
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For each type of model (i.e., models with different inputs), the results of only the 

selected model are presented in this section. The performances of the selected FRB 

models of each type for both training and validation periods for Yenicegoruce 

streamgage are given in Table 5.3. The number of cluster centers, 𝑐 and cluster 

radius, 𝑟𝑎 are user-defined parameters of an FRB model. In this study, to limit the 

search space, up to 15 cluster centers and maximum 𝑟𝑎 of 0.5 are assumed, and 150 

sub-models are developed and evaluated to identify the best 𝑐 and 𝑟𝑎 combination 

for each type of model. The parameter, 𝑟𝑏  is taken as 1.5𝑟𝑎 for all models in this 

thesis (Chiu, 1994). Based on the validation period’s performance, the best model is 

selected for each type. In evaluating the model performance 𝑁𝑆𝐸 values are used; 

however, the stability of the model with respect to the increase in the number of 

cluster centers is also assessed. The model with 1 cluster center is equivalent to 

multiple linear regression (MLR); therefore, in this study performances of the linear 

model (i.e., MLR) and non-linear models (FRB) are compared as well.  

The best type of model is selected as 𝑀6𝑌 (i.e., 𝑐 = 8 and 𝑟𝑎 = 0.25) based on the 

performance indicators given in Table 5.3; so results of all of its sub-models for 

training and validation periods are given in Tables 5.4 and 5.5, respectively. 

Although, 𝑀6𝑌 with 13 cluster center and cluster radius of 0.5 provides slightly 

higher performance in terms of 𝑁𝑆𝐸 in the validation period, 𝑀6𝑌 with 8 cluster 

center and cluster radius of 0.25 (see the last row of Table 5.3) is selected, because 

the model performance for the radius of 0.25 is more stable than that of the model 

with radius 0.5. On the other hand, 𝑀5𝑌 with 12 cluster centers and cluster radius of 

0.2 (see Table 5.3) providing similar performance in terms of 𝑁𝑆𝐸 and better 

performance in terms of 𝑃𝐵𝐼𝐴𝑆 compared to 𝑀6𝑌 with 8 cluster centers and cluster 

radius of 0.25, can be a another good candidate to be the best model. But having 

slightly better performance in terms of 𝑁𝑆𝐸 in the validation period (see Table 5.3), 

the best model for Yenicegoruce Streamgage is selected to be 𝑀6𝑌 . According to 

Table 5.1, the 𝑀6𝑦 has “Satisfactory” performance in terms of 𝑅2 and 𝑁𝑆𝐸, and 

“Good” performance in terms of  𝑃𝐵𝐼𝐴𝑆(%) for the validation period. On the other 
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hand, for the training period the performance of 𝑀6𝑦 is “Very Good” in terms of all 

goodness of fit measures. The details of 𝑀6𝑦 is presented here, and all the sub-

models of other types of models are given in Appendix A.   

 

Table 5.3. Model performances of selected models for daily streamflow 

predictions of Yenicegoruce Streamgage for training and validation periods 

Training Validation 

Yenicegoruce 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

Selected Model 

𝑀1𝑌 (𝑐 = 7, 𝑟𝑎 = 0.35) 

𝑀2𝑌 (𝑐 = 12, 𝑟𝑎 = 0.25) 

𝑀3𝑌 (𝑐 = 9, 𝑟𝑎 = 0.50) 

𝑀4𝑌 (𝑐 = 12, 𝑟𝑎 = 0.50) 

𝑀5𝑌 (𝑐 = 12, 𝑟𝑎 = 0.20) 

 𝑀6𝑌 (𝑐 = 8, 𝑟𝑎 = 0.25) 

 

0.77 

0.83 

0.89 

0.92 

0.88 

0.88 

 

0.59 

0.69 

0.80 

0.85 

0.77 

0.77 

 

0.57 

0.68 

0.80 

0.85 

0.76 

0.76 

 

12.68 

8.43 

5.63 

4.32 

5.70 

5.84 

 

0.66 

0.71 

0.80 

0.80 

0.83 

0.83 

 

0.44 

0.51 

0.63 

0.63 

0.69 

0.68 

 

0.40 

0.38 

0.53 

0.59 

0.63 

0.64 

 

-4.53 

-6.59 

-3.13 

0.31 

-0.87 

-5.41 
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Table 5.4. 𝑁𝑆𝐸 values of 𝑀6𝑌 for training phase computed with different number 

of 𝑐 and 𝑟𝑎 

𝑀6𝑌  (Training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und Und Und 0.63 0.63 0.63 0.63 0.63 0.63 

2 Und Und Und 0.64 0.64 0.64 0.65 0.66 0.75 0.76 

3 Und Und Und 0.69 0.67 0.73 0.74 0.76 0.76 0.76 

4 Und Und Und 0.72 0.74 0.77 0.77 0.77 0.77 0.77 

5 Und Und Und 0.73 0.74 0.77 0.77 0.77 0.77 0.77 

6 Und Und Und 0.72 0.76 0.77 0.78 0.78 0.77 0.77 

7 Und Und Und 0.75 0.76 0.78 0.78 0.79 0.79 0.79 

8 Und Und Und 0.75 0.76 0.77 0.78 0.79 0.79 0.80 

9 Und Und Und 0.76 0.76 0.78 0.78 0.79 0.80 0.80 

10 Und Und Und 0.76 0.78 0.78 0.79 0.81 0.82 0.82 

11 Und Und Und 0.76 0.78 0.79 0.81 0.81 0.82 0.89 

12 Und Und Und 0.78 0.77 0.79 0.81 0.81 0.82 0.89 

13 Und Und Und 0.78 0.77 0.80 0.81 0.84 0.83 0.90 

14 Und Und Und 0.78 0.79 0.80 0.81 0.84 0.89 0.91 

15 Und Und Und 0.77 0.79 0.80 0.81 0.85 0.90 0.95 

Und: Undefined Model         

 

Table 5.5. 𝑁𝑆𝐸 values of 𝑀6𝑌 for validation phase computed with different 

number of 𝑐 and 𝑟𝑎 

𝑀6𝑌  (Validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und Und Und 0.52 0.52 0.52 0.52 0.52 0.52 

2 Und Und Und 0.51 0.52 0.52 0.53 0.54 0.58 0.58 

3 Und Und Und 0.60 0.52 0.51 0.50 0.58 0.59 0.60 

4 Und Und Und 0.61 0.57 0.61 0.61 0.61 0.62 0.63 

5 Und Und Und 0.61 0.57 0.61 0.61 0.61 0.60 0.60 

6 Und Und Und 0.61 0.64 0.61 0.59 0.59 0.61 0.62 

7 Und Und Und 0.58 0.64 0.61 0.59 0.58 0.52 0.53 

8 Und Und Und 0.59 0.64 0.61 0.59 0.55 0.52 0.52 

9 Und Und Und 0.64 0.64 0.62 0.58 0.55 0.45 0.44 

10 Und Und Und 0.64 0.61 0.62 0.54 0.55 0.55 0.55 

11 Und Und Und 0.64 0.61 0.57 0.53 0.51 0.54 0.48 

12 Und Und Und 0.62 0.63 0.52 0.52 0.36 0.54 0.47 

13 Und Und Und 0.62 0.62 0.45 0.52 0.24 0.59 0.67 

14 Und Und Und 0.62 0.55 0.44 0.51 0.29 0.39 0.25 

15 Und Und Und 0.63 0.55 0.49 0.44 0.28 0.09 VL 

VL: Model with very low 𝑁𝑆𝐸        
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𝑀6𝑦 (see the last model in Table 5.3) which uses previous five days measurements 

in addition to the prediction day’s streamflow measurements at all three neighboring 

stations to predict Yenicegoruce streamflow provides the best 𝑁𝑆𝐸 for the validation 

phase. For 𝑀6𝑦, as can be seen in Tables 5.4 and 5.5, for the models with a 

comparatively low cluster radius, cluster centers are chosen too close to each other, 

as they are selected amongst the most frequently observed data points. Hence, the 

firing degrees for the data points corresponding to extreme events are very low for 

all rules, so they are rounded to zero, and a division by zero error occurs. Outputs of 

such models are marked as “Und” to represent undefined in Tables 5.4 and 5.5. In 

Table 5.4, as the number of cluster centers increases, better 𝑁𝑆𝐸 values are obtained 

as expected. Since the increase in the number of cluster centers results in a higher 

dimensional model, the prediction performance of the FRB increases for the training 

period. However, for the validation period (see Table 5.5), an increase in the number 

of cluster centers results in lower 𝑁𝑆𝐸 performance due to overfitting. This effect is 

most obvious for cluster radii of 0.35, 0.4, 0.45, and 0.5 (see last four columns of 

Tables 5.4 and 5.5). The change in 𝑁𝑆𝐸 with the increase of the number of cluster 

centers for 𝑀6𝑌 for training and validation data sets for each different cluster radii 

are given in Figure 5.2. Legend information and axis titles of graphs in Figure 5.2 

are presented at the bottom right corner of the figure. To clearly demonstrate the 

overfitting point, the number of cluster centers is increased up to 20. Furthermore, 

the number of cluster centers where the validation performance decreases (i.e., 

overfitting occurs) is different for different cluster radius, as can be seen from Figure 

5.2. For instance, for 𝑟𝑎=0.2, the overfitting starts around fifteen cluster centers; 

while, for 𝑟𝑎=0.35, the overfitting starts around nine cluster centers. The selection of 

the cluster radius is a critical, yet an unresolved issue. One commonly used approach 

is to carry out runs for different combinations; thus, to conduct a trial-and-error 

procedure as applied in this study. Overfitting might result in very low (below zero) 

𝑁𝑆𝐸 values for the validation phase. The details about the models with very low 

𝑁𝑆𝐸 referred to as “VL” in the tables (see Table 5.5), are given in the following 

sections.  



              

 

45 

Figure 5.2. Change in NSE according to number of cluster center for 𝑀6𝑌 with 

various cluster centers 
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An increase in the cluster radius causes cluster centers to be more distant from each 

other; thus, events other than usual have better chances to be identified as cluster 

centers and the data points corresponding to extreme events have higher chances to 

fire these rules. This may cause the model performance to increase in the training 

period, as presented in Table 5.4. However, if similar events to the identified unusual 

events as cluster centers are not observed, the performance of the validation period 

does not improve. In other words, if unusual events of the training and validation 

data sets are not similar, the trained model performs poorly for the unusual data 

points of the validation period since the model has not adjusted/trained properly. 

Thus, increasing the cluster radius increases the performance for the training period 

but not necessarily for the validation period.  

𝑀1𝑌 is the simplest FRB Model that uses only prediction day’s discharges at the 

three neighboring stations, and it has unsatisfactory prediction performance for 𝑁𝑆𝐸 

and  𝑅2. As explained at the beginning of this section, the drainage area of the 

modeled basin is very large and the travel time of streamflow from Inanli to 

Yenicegoruce streamgage is generally more than three days. Thus, when streamflow 

observations of the previous couple of days are included into the model as inputs, 

the performance of the model improves. This shows that analysis of the streamflow 

data leads to better understanding of the hydrologic response of the studied 

catchment and provides valuable information for the soft computing method-based 

model development (i.e., SC-based TS_FRB Model in this study).  

FRB model with one cluster centers corresponds to MLR; while investigating effect 

of the clustering parameters on model performance, the comparison between linear 

model (i.e., MLR) and non-linear model (i.e., FRB with more than one cluster centers 

in this study) is carried out as well. The coefficients of the regression equation are 

obtained by recursive least square algorithm (see Equations 3.7 and 3.8). Coefficients 

obtained by using the recursive least square algorithm are compared to those 

obtained using Excel Regression tool. For, 𝑀1𝑌, the regression equation obtained by 

Excel Regression tool is 𝑄𝑌,𝑡 = −0.123(𝑄𝐼,𝑡) + 0.029(𝑄𝐿,𝑡) + 3.429(𝑄𝐻,𝑡) + 14.860. 
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Exactly same equation is obtained from the FRB model with one rule as well. For 

example for 𝑟𝑎 = 0.25 (see Tables 5.4 and 5.5), while linear model (i.e., MLR 

equivalent) provides NSE values of 0.63 and 0.52 for training and validation periods, 

respectively, FRB model with eight cluster centers results in 0.76 and  0.64 for these 

periods. As can be seen from Table 5.4 and 5.5, most of the FRB model outperformed 

the linear model. 

5.1.1.2. Predictions for Yenicegoruce with the test data 

The predictions of 𝑀6𝑌  together with the observations for Yenigoruce streamgage 

for the training period are presented in Figure 5.3. The goodness of fit measures 

shown in Table 5.1 indicate that the performance of the model is “ Very Good”. The 

model results follow the general trend in the observation for the training period as 

shown in Figure 5.3 and provides reasonable estimates for the peaks on December 

28, 2001 (i.e., 554 m3/s) and on February 8, 2003 (i.e., 576 m3/s); on the other hand, 

the model significantly underestimates the peaks on December 8, 1998 (i.e., 857 

m3/s) and February 11, 1999 (i.e., 909 m3/s). However, although the peaks on 

December 8, 1998 and February 11, 1999 are higher than the peak on December 28, 

2001 and on February 8, 2003, the model’s predictions for the peaks on December 

8, 1998 and February 11, 1999 are considerably lower than that of the peak on 

December 28, 2001 and on February 8, 2003. It indicates that in addition to the 

magnitude of the data to be predicted, input variables in addition to the selected 

cluster centers has an important influence on the model performance for extreme 

events. 
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Figure 5.3.  Hydrographs obtained from FRB for Yenicegoruce streamgage for the 

training period  

 

Hydrographs obtained from 𝑀6𝑌  for Yenicegoruce streamgage together with the 

observations for the validation period are given in Figure 5.4. The graph indicates 

that predictions of the model follow the general trend in the observations. The largest 

peak is 184 m3/s and observed on February 2, 2004. This peak is reasonably well 

estimated by the model. The peak on February 17, 2005, which is 147 m3/s, is 

correctly predicted as 145 m3/s with two days lag (February 19, 2005). These results 

indicate that the model has seen similar behavior during the training period and 

devised appropriate rules to represent these cases. For the peak February 17, 2005 

(i.e., 147 m3/s), 𝑀6𝑦 which uses previous five days streamflow measurements in 

addition to the prediction day’s discharges at all three neighboring stations provide 

nearly exact prediction in terms of the amount of discharge with two days lag. This 

causes low 𝑁𝑆𝐸 values for the validation period (see Table 5.5). Thus, lagged inputs 

which are aimed to represent the travel times (see Figure 5.1) in the basin requires 

improvement or additional variables need to be added as inputs to the model. 

Selection of the lagged inputs is challenging because drainage area of Yenicegoruce 

(i.e., 10402.1 km2) is much greater than the drainage areas of Luleburgaz, Hayrabolu, 

and Inanlı (i.e., 2794.5 km2, 1389.8 km2, and  1405.1 km2, respectively); thus the 

0

200

400

600

800

1000

1-Oct-96 13-Feb-98 28-Jun-99 9-Nov-00 24-Mar-02 6-Aug-03

D
is

ch
ar

ge
 (

m
3 /

s)

Days

Observations FRB



              

 

49 

travel times are large and vary with respect to basin characteristics (i.e., initial 

moisture content, vegetation, etc.) among the study streamgages. Moreover, 

discharges and abstractions due to industrial facilities and irrigation purposes are 

significant in the basin and no input variables are used to quantify these 

anthropogenic effects on the discharges (Mesta et al., 2019; Gunes and Taninli, 2013; 

Sungur et al., 2014).  

 

Figure 5.4.  Hydrographs obtained from FRB for Yenicegoruce streamgage for the 

validation period  

 

𝑀6𝑦 amongst all sub-models is the best model based on performance for the 

validation period for Yenicegoruce. The performance of 𝑀6𝑦 for the testing period 

is given in Table 5.6. According to Table 5.6, 𝑀6𝑦 has “Unsatisfactory” performance 

based on all statistical measures. For Yenicegoruce, mean, maximum and the 

standard deviation values for the validation period are 18.51 m3/s, 184 m3/s, and 

18.49 m3/s, respectively. On the other hand, for testing period, mean, maximum and 

standard deviation values are 65.56 m3/s, 701 m3/s, and 84.03 m3/s. It clearly shows 

that the streamflow at Yenicegoruce has very different behavior for the validation 

and the testing periods. Therefore, since the FRB is selected based on its performance 
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for the validation period, “Unsatisfactory" predictions for this streamgage is obtained 

for the testing period.  

Table 5.6. Model performances for daily streamflow predictions of Yenicegoruce 

Streamgage for the testing period 

  Test 

Yenicegoruce 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

𝑀6𝑌 (𝑐 = 8, 𝑟𝑎 = 0.25) 0.67 0.45 0.24 49.5 

 

Hydrographs obtained from 𝑀6𝑌  for Yenicegoruce streamgage together with the 

observations for the testing period, are given in Figure 5.5. The graph indicates that 

the model considerably underestimates the observations. Similar to the training 

period, there are large peaks in the testing period and these peaks are poorly 

estimated by the FRB model. Since the number of large peaks is higher in the testing 

period the performance of the model is poor compared to the training period. The 

biggest peak (i.e., 701 m3/s) observed on February 6, 2015 is estimated by the model 

as 121 m3/s. On the other hand, on February 5, 2015 (one day before February 6, 

2015) the model estimate 245 m3/s streamflow where the observation is 572 m3/s. 

This might be the underestimated prediction of the highest peak with one day lag. 

These results indicate that travel times from upstream streamgages to downstream 

ones varies, may be due to current basin characteristics such as vegetation, initial 

moisture content, etc. and also meteorological conditions. Since only streamflow 

observations of neighboring gages are used as inputs for the FRB models, such 

effects are not considered. Thus, although introduction of lagged streamflow 

observations improves the performance of the FRB model for the validation period, 

it does not have the same effect for the testing period. This might be due to overfitting 

of the higher dimensional FRB model.  
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Figure 5.5.  Hydrographs obtained from FRB for Yenicegoruce streamgage for the 

testing period  

 

5.1.2. Inanli Streamgage 

5.1.2.1.Analysis on the number of cluster center and the cluster radius 

Similar to the procedure followed for Yenicegoruce, Inanli streamgage is assumed 

to be the subsequently ungauged location as Luleburgaz, Hayrabolu, and 

Yenicegoruce streamgages are used to predict Inanli’s streamflow. Initially, the first 

type of the model, the base model, 𝑀1𝐼 is developed where streamflow records at 

time 𝑡 at Luleburgaz (𝑄𝐿,𝑡), Hayrabolu (𝑄𝐻,𝑡) and Yenicegoruce (𝑄𝑌,𝑡) to predict 

streamflow at Inanli streamgage at time 𝑡 (𝑄𝐼,𝑡) (see Table 5.7). As shown in Figure 

4.1, Inanlı streamgage is located at the upstream of Luleburgaz streamgage, which is 

located at the upstream of Yenicegoruce streamgage. Hayrabolu is located at the 

upstream of Yenicegoruce but on a different tributary. Therefore, to include the 

effect of the travel times between streamgages, other than 𝑀1𝐼, five other types of 

FRB models are developed to predict 𝑄𝐼,𝑡. The architectures of these models are 

given in Table 5.7. 
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Table 5.7. Model architectures used for Inanli streamflow predictions 

Type 

of 

Model 

Input Parameters Output 

𝑀1𝐼  𝑄𝐿,𝑡, 𝑄𝐻,𝑡, 𝑄𝑌,𝑡 𝑄𝐼,𝑡 

𝑀2𝐼  𝑄𝐿,𝑡, 𝑄𝐻,𝑡, 𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 𝑄𝐼,𝑡 

𝑀3𝐼  𝑄𝐿,𝑡, 𝑄𝐻,𝑡, 𝑄𝐻,𝑡+1, 𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 𝑄𝐼,𝑡 

𝑀4𝐼  𝑄𝐿,𝑡, 𝑄𝐿,𝑡+1, 𝑄𝐻,𝑡, 𝑄𝐻,𝑡+1, 𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 𝑄𝐼,𝑡 

𝑀5𝐼 𝑄𝐿,𝑡, 𝑄𝐿,𝑡+1, 𝑄𝐻,𝑡, , 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 𝑄𝐼,𝑡 

𝑀6𝐼 𝑄𝐿,𝑡, 𝑄𝐻,𝑡+1, 𝑄𝑌,𝑡 𝑄𝐼,𝑡 

 

Similar to the Yenicegoruce, training, validation, and testing phases are conducted 

for Inanli streamgage and results are presented in the following paragraphs.  

For each type of model, the performances of the selected models are represented in 

Table 5.8 for training and validation periods. As shown in Table 5.8,  𝑀6𝐼 (see the 

last row of Table 5.8) that uses streamflow measurement at 𝑡 at Luleburgaz (𝑄𝐿,𝑡) 

and Yenicegoruce (𝑄𝑌,𝑡), and 𝑡 + 1 at Hayrabolu (𝑄𝐻,𝑡+1) to predict streamflow at 

𝑡 at Inanlı (𝑄𝐼,𝑡), is the best type of model so the results of all of its sub-models for 

training and validation periods are given in Table 5.9 and 5.10, respectively. As can 

be seen from Table 5.10, 𝑀6𝐼, the model that provides the best validation 

performance, has 6 cluster centers and the cluster radius is  0.4 (see the last row of 

Table 5.8). According to Table 5.8, the model has “Satisfactory” performance in 

terms of 𝑁𝑆𝐸, “Good” performance in terms of 𝑅2 and “Unsatisfactory” 

performance in terms of 𝑃𝐵𝐼𝐴𝑆 for the validation phase. The model also provides 

similar performances in terms of all goodness of fit measures for the training phase. 
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Table 5.8. Model performances of selected models for daily streamflow 

predictions of Inanli Streamgage for training and validation periods. 

Training Validation 

Inanli 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

Selected Model 

 𝑀1𝐼 (𝑐 = 11, 𝑟𝑎 = 0.25) 

 𝑀2𝐼 (𝑐 = 3, 𝑟𝑎 = 0.20) 

 𝑀3𝐼 (𝑐 = 5, 𝑟𝑎 = 0.45) 

 𝑀4𝐼 (𝑐 = 8, 𝑟𝑎 = 0.40) 

      𝑀5𝐼 (𝑐 = 10, 𝑟𝑎 = 0.25) 

      𝑀6𝐼 (𝑐 = 6, 𝑟𝑎 = 0.40) 

 

0.86 

0.76 

0.85 

0.87 

0.85 

0.84 

 

0.74 

0.57 

0.72 

0.75 

0.73 

0.70 

 

0.72 

0.52 

0.72 

0.75 

0.72 

0.69 

 

8.23 

6.12 

7.78 

7.15 

7.44 

8.43 

 

0.87 

0.86 

0.85 

0.83 

0.84 

0.89 

 

0.76 

0.74 

0.73 

0.68 

0.71 

0.79 

 

0.63 

0.59 

0.63 

0.59 

0.59 

0.68 

 

39.89 

42.51 

40.29 

39.68 

39.98 

39.87 

 

The results of the sub-models other than 𝑀6𝐼 are given in Appendix B. As can be 

seen from Table 5.9 and 5.10,  𝑀6𝐼 provides 0.69 𝑁𝑆𝐸 value with 6 cluster center 

and 0.40 cluster radius. For Inanlı streamgage, the mean flow is 7.76 m3/s, the 

maximum flow is 280 m3/s, and the standard deviation is 17.22 m3/s for the training 

phase as presented in Table 4.4. On the other hand, 𝑀6𝑌 provides 0.78 𝑁𝑆𝐸 value 

with 6 cluster center and 0.4 cluster radius for Yenicegoruce streamgage which has 

34.36 m3/s as the mean flow, 909 m3/s as the maximum flow, and 62.97 m3/s as the 

standard deviation for the training phase (see Table 4.4). The reason that FRB 

provides better 𝑁𝑆𝐸 with the same number of cluster centers and cluster radius for 

Yenicegoruce which has more severe extreme events in comparison to Inanlı for the 

training phase, may be that input pattern of 𝑀6𝑌 provides more degrees of freedom 

than 𝑀6𝐼 to FRB (i.e., a total of 18 and 3 input variables are used for 𝑀6𝑌 and 𝑀6𝐼, 

respectively). 
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Clusters are formed based on their potential for the SC algorithm. After the first 

cluster center is assigned having the highest potential amongst all data points, the 

potentials of the data points are updated to assign the next cluster center. In the 

potential updating process, the potential of the data point decays exponentially with 

the square of the distance between that data point and the most previously assigned 

cluster center (see Equation 3.2). Furthermore, the potential of the current cluster 

center is updated to zero so that it will not be selected as the next cluster center as 

well. However, when 𝑟𝑏 which is proportional to 𝑟𝑎, increases, the potentials of the 

data points decay so much that the potentials of the data points become negative. 

Hence, having zero potential, previous cluster center becomes the data with the 

highest potential and it is assigned as the next cluster center. This problem repeats 

while identifying new cluster centers since all the potentials are negative except the 

one that belongs to the previous cluster center. In other words, the same cluster center 

is selected as the next cluster center repeatedly. Since, using the same cluster center 

more than once does not bring any additional information into the model, the 

performance of the model stays almost the same. Due to the same cluster center being 

identified repeatedly, for the cluster radius of 0.4, the performance of the model 

changes very slightly in the training period and validation period as can be seen in 

Tables 5.9 and 5.10. The models with repeated cluster centers for 𝑀6𝐼 with the 

cluster radius of 0.4 are shaded with grey for demonstration purposes in Tables 9 and 

10. In all the other tables instead of gray shade, these kind of models are marked as 

“RCC” to represent Repeated Cluster Center.  
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Table 5.9. 𝑁𝑆𝐸 values of 𝑀6𝐼 for training phase computed with different number 

of 𝑐 and 𝑟𝑎 

𝑀6𝐼  (Training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 

2 Und 0.41 0.45 0.43 0.49 0.49 0.49 0.49 0.49 0.50 

3 Und 0.47 0.49 0.49 0.50 0.52 0.57 0.60 0.62 0.67 

4 Und 0.48 0.49 0.48 0.50 0.66 0.59 0.63 0.68 0.69 

5 Und 0.46 0.49 0.47 0.53 0.66 0.69 0.69 0.70 0.69 

6 Und 0.47 0.49 0.50 0.62 0.66 0.71 0.69 0.72 RCC 

7 Und 0.51 0.49 0.54 0.63 0.66 0.70 0.69 0.72 RCC 

8 Und 0.51 0.50 0.59 0.68 0.69 0.71 0.71 RCC RCC 

9 Und 0.51 0.53 0.59 0.68 0.71 0.72 0.71 RCC RCC 

10 Und 0.50 0.56 0.59 0.70 0.76 0.77 0.72 RCC RCC 

11 Und 0.50 0.56 0.69 0.70 0.78 0.77 0.72 RCC RCC 

12 Und 0.50 0.55 0.69 0.72 0.80 0.76 0.72 RCC RCC 

13 Und 0.50 0.59 0.69 0.72 0.80 0.80 0.72 RCC RCC 

14 Und 0.50 0.59 0.70 0.74 0.82 0.80 0.73 RCC RCC 

15 Und 0.52 0.61 0.70 0.75 0.84 RCC 0.73 RCC RCC 

RCC: Repeated Cluster Centers       

 

Table 5.10. 𝑁𝑆𝐸 values of 𝑀6𝐼 for validation phase computed with different 

number of 𝑐 and 𝑟𝑎 

𝑀6𝐼  (Validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 

2 Und 0.60 0.58 0.59 0.58 0.58 0.58 0.58 0.58 0.58 

3 Und 0.59 0.59 0.59 0.57 0.56 0.56 0.57 0.56 0.59 

4 Und 0.58 0.59 0.59 0.57 0.58 0.58 0.60 0.64 0.63 

5 Und 0.58 0.59 0.59 0.60 0.59 0.63 0.68 0.66 0.63 

6 Und 0.58 0.59 0.57 0.55 0.59 0.64 0.68 0.67 RCC 

7 Und 0.58 0.59 0.56 0.57 0.62 0.66 0.68 0.64 RCC 

8 Und 0.58 0.57 0.56 0.62 0.67 0.66 0.67 RCC RCC 

9 Und 0.58 0.56 0.57 0.62 0.67 0.63 0.67 RCC RCC 

10 Und 0.58 0.59 0.57 0.60 0.66 0.43 0.67 RCC RCC 

11 Und 0.58 0.59 0.59 0.59 0.52 0.55 0.67 RCC RCC 

12 Und 0.57 0.59 0.59 0.64 0.32 0.53 0.67 RCC RCC 

13 Und 0.57 0.56 0.56 0.64 0.26 0.43 0.67 RCC RCC 

14 Und 0.57 0.56 0.54 0.66 0.03 0.33 0.66 RCC RCC 

15 Und 0.56 0.52 0.54 0.66 VL RCC 0.66 RCC RCC 
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The rule-base of M6I is presented in Table 5.11. The membership functions of each 

fuzzy rule are given in Figure 5.6. As the number of cluster centers increases, the 

data points corresponding to extreme events have higher chances of becoming cluster 

centers. For example, while the first cluster center consists of lower streamflow 

measurements, the sixth cluster center consists of much higher streamflow values, as 

presented in Table 5.11 and Figure 5.6. If similar behavior to the ones identified by 

the higher number of cluster centers are observed during the training and testing 

periods the performance of the model improves. However, it is observed that 

generally utilization of only streamflow observations of neighboring gages is not 

sufficient to model system behavior (i.e., rainfall-runoff relationship). One remedy 

for this may be adding other input variables – demonstrating existing basin 

characteristics such as vegetation, initial moisture content, etc. – and meteorological 

conditions – season, previous rainfall events, etc. – to the FRB model.  

 

Table 5.11. The cluster centers (fuzzy rules) for 𝑀6𝐼 

 

# Year Month Day 

Cluster Centers (in m3/s) 

 Antecedent Part of the Fuzzy Rules Output 

 𝑄𝐿,𝑡 𝑄𝐻,𝑡+1 𝑄𝑌,𝑡 𝑄𝐼,𝑡 

O
ri

g
in

a
l 

1 1999 7 31 4.51 1.14 9.58 2.90 

2 2003 2 20 14.80 11.80 64.70 10.40 

3 2003 2 11 46.40 33.60 222.00 31.30 

4 2003 4 14 12.30 6.59 69.30 8.41 

5 2003 2 3 171.00 39.20 112.00 135.00 

6 1998 12 12 84.50 72.60 293.00 115.00 

N
o

rm
a

li
ze

d
 

1 1999 7 31 0.10 0.14 0.33 0.14 

2 2003 2 20 0.29 0.51 0.60 0.36 

3 2003 2 11 0.49 0.72 0.79 0.57 

4 2003 4 14 0.26 0.40 0.61 0.32 

5 2003 2 3 0.72 0.76 0.69 0.85 

6 1998 12 12 0.60 0.88 0.83 0.82 
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5.1.2.2.Predictions for Inanli with the test data 

The predictions obtained from 𝑀6𝐼 together with the observations for Inanli 

streamflow for the training period are presented in Figure 5.7. Although the model 

results follow the trend in observations for the training phase on Inanli, the peak 

flows are not reasonably predicted. The reason for this may be insufficient 

representation of extreme events in the rule-base. As can be seen from Table 5.11, 

the largest streamflow for Inanlı corresponds to the fifth fuzzy rule and it is 135 m3/s. 

Thus, prediction of higher streamflow values with the rule-base given in Table 5.11 

is limited. “Good” predictions of high streamflow values at Inanlı can only be 

generated with streamflow patterns that are similar to the ones given in the fifth fuzzy 

rule in Table 5.11. Different streamflow patters which may result from different 

rainfall patterns in the basin may generate high streamflow values at Inanlı, but there 

are not any rules in the rule-base to represent these cases. Moreover, basin conditions 

are not included in the FRB model at all and they may affect rainfall-runoff response 

as well. As can be seen from Table 5.9, the model provides 𝑁𝑆𝐸 values up to 0.84 

for the training period for Inanli streamgage. However, this model provides very low 

𝑁𝑆𝐸 values for the validation period.  

 

 

Figure 5.7. Hydrographs obtained from FRB for Inanli streamgage for the training 

period 
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Hydrographs obtained from 𝑀6𝐼 for Inanli streamflow for the validation period are 

presented in Figure 5.8. According to these hydrographs, the model follows the 

general trend in the observations. Both peaks, which are 153 m3/s observed on 

January 30, 2004 and 120 m3/s observed on January 23, 2004 are reasonably well 

predicted by the model. However, as can be seen from Figure 5.8, for the period from 

February 2004 to July 2004, although the model can simulate the trend in 

observations, predicted values are less than the observations. This might be due to 

the problem of external discharges (i.e., discharges of industrial facilities) or 

malfunctioning of the gage during this period. 

 

 

Figure 5.8. Hydrographs obtained from FRB for Inanli streamgage for the 

validation period 

 

𝑀6𝐼 amongst all sub-models provides the highest 𝑁𝑆𝐸 value for the validation 

period for Inanli streamgage. The predictions using 𝑀6𝐼 are obtained and the 

performance of the model for the testing period is presented in Table 5.12. According 

to Table 5.12., the 𝑀6𝐼 provides “Satisfactory” performance in terms of  𝑅2, 
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“Satisfactory (almost Good)” performance in terms of 𝑁𝑆𝐸 and “Good” performance 

in terms of 𝑃𝐵𝐼𝐴𝑆 for the testing period. The reason for this may be the fact that the 

validation and the test period have similar flow behavior so that the model provides 

“Satisfactory” estimations for the testing period. 

 

Table 5.12. Model performances for daily streamflow predictions of Inanli 

Streamgage for the testing period 

  Test 

Inanli 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

𝑀6𝐼 (𝑐 = 6, 𝑟𝑎 = 0.40) 0.84 0.70 0.69 7.67 

 

Hydrographs obtained from 𝑀6𝐼 and observations for Inanli streamflow for the 

testing period are presented in Figure 5.9. The model reasonably estimated the peak 

flows for the testing period. The reason is that similar streamflow behavior that are 

presented by the rule-base given in Table 5.11 occurred in the testing period. In 

addition to Table 5.12, Figure 5.9 also indicates that the model has been adequately 

trained and can provide “Good” estimations. 

 

Figure 5.9. Hydrographs obtained from FRB for Inanli streamgage for the testing 

period 
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As can be seen in Table 5.10, some the number of cluster center and radius 

combinations result in very low 𝑁𝑆𝐸 values. For example, 𝑁𝑆𝐸 value provided by 

𝑀6𝐼 with 15 cluster centers and cluster radius of 0.3 is −0.88 (see last row of Table 

5.10) as “VL”. This model is an example of an overtrained model. The hydrograph 

obtained from the overtrained (OT) FRB (𝑀6𝐼 with 15 cluster centers and cluster 

radius of 0.3) for Inanlı for the validation phase is given in Figure 5.10. The OT FRB 

follows the general trend in the observation similar to 𝑀6𝐼 as presented in Figure 

5.10. However, two streamflow observations 48.3 m3/s observed on January 29, 2004 

and 153 m3/s observed on January 30, 2004 are predicted by the OT FRB as 391.3 

m3/s and 322.5 m3/s, respectively. Due to overtraining, these streamflow 

observations are overestimated by the OT FRB which results in very low 𝑁𝑆𝐸.  

 

Figure 5.10. Hydrographs obtained from the overtrained FRB model                                               

(𝑀6𝐼 with 𝑐 = 15,    𝑟𝑎 = 0.30)  for Inanli streamgage for the validation period 
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5.1.3. Luleburgaz streamgage 

5.1.3.1. Analysis of the number of cluster center and the cluster radius 

Similar to Yenicegoruce and Inanlı streamgages, Luleburgaz is assumed to be the 

subsequently ungauged location and Inanli, Hayrabolu, and Yenicegoruce 

streamgages are used to predict Luleburgaz’s streamflow. The first type of the model, 

the base model 𝑀1𝐿, which uses streamflow records at time 𝑡 at Inanli (𝑄𝐼,𝑡), 

Hayrabolu (𝑄𝐻,𝑡) and Yenicegoruce (𝑄𝑌,𝑡) to predict streamflow at Luleburgaz 

streamgage at time 𝑡 (𝑄𝐿,𝑡) is developed initially. Similar to Yenicegoruce and Inanli, 

considering different travel times, four other types of FRB models, in addition to the 

base model are built to make predictions at Luleburgaz streamgage. The architectures 

of these models are presented in Table 5.13. 

 

Table 5.13. Model architectures used for Luleburgaz streamflow predictions 

Type of 

Model 
Input Parameters Output 

𝑀1𝐿  𝑄𝐼,𝑡, 𝑄𝐻,𝑡, 𝑄𝑌,𝑡 𝑄𝐿,𝑡 

𝑀2𝐿  𝑄𝐼,𝑡, 𝑄𝐻,𝑡, 𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 𝑄𝐿,𝑡 

𝑀3𝐿  𝑄𝐼,𝑡−1, 𝑄𝐼,𝑡, 𝑄𝐻,𝑡, 𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 𝑄𝐿,𝑡 

𝑀4𝐿  𝑄𝐼,𝑡−1, 𝑄𝐼,𝑡, 𝑄𝐻,𝑡, , 𝑄𝐻,𝑡+1, 𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 𝑄𝐿,𝑡 

𝑀5𝐿 𝑄𝐼,𝑡, 𝑄𝐻,𝑡, 𝑄𝑌,𝑡+3 𝑄𝐿,𝑡 

 

Similar to Yenicegoruce and Inanli, training, validation and testing is performed for 

Luleburgaz streamgage and presented in the following paragraphs.  

For each type of model, the performances of the selected models are represented in 

Table 5.14 for the training and validation periods. The model with 5 cluster centers 
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and the cluster radius of 0.15 (see the last row of Table 5.14) provides the best 

validation performance; thus, the results of all of its sub-models for training and 

validation periods are given in Tables 5.15 and 5.16, respectively. The model with 

11 cluster centers and 0.1 radius provides an 𝑁𝑆𝐸 of 0.83 for the validation period 

as shown in Table 5.16. This is only slightly better than the performance of the model 

with 5 cluster centers and radius of 0.15. Thus, it is considered that introduction of 

six additional cluster centers is not justified, so the model with five cluster centers is 

identified as the best model. 𝑀5𝐿 which uses streamflow measurement at time 𝑡 at 

Inanli (𝑄𝐼,𝑡) and Hayrabolu (𝑄𝐻,𝑡), and at time 𝑡 + 3 at Yenicegoruce to predict 

streamflow at time 𝑡 at Luleburgaz is the best model. The results of other sub-models 

for Luleburgaz streamgage are given in Appendix C. 

 

Table 5.14. Model performances of selected for daily streamflow predictions of 

Luleburgaz Streamgage for training and validation periods 

Training Validation 

Luleburgaz 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

Selected Model 

𝑀1𝐿 (𝑐 = 5, 𝑟𝑎 = 0.20) 

𝑀2𝐿 (𝑐 = 2, 𝑟𝑎 = 0.25) 

𝑀3𝐿 (𝑐 = 2, 𝑟𝑎 = 0.15) 

𝑀4𝐿 (𝑐 = 2, 𝑟𝑎 = 0.15) 

𝑀5𝐿 (𝑐 = 5, 𝑟𝑎 = 0.15) 

 

0.73 

0.78 

0.78 

0.78 

0.75 

 

0.53 

0.61 

0.61 

0.60 

0.56 

 

0.50 

0.56 

0.55 

0.54 

0.52 

 

10.34 

10.14 

10.44 

10.56 

10.04 

 

0.91 

0.85 

0.81 

0.81 

0.92 

 

0.83 

0.71 

0.66 

0.65 

0.84 

 

0.80 

0.69 

0.60 

0.59 

0.82 

 

-22.78 

-21.00 

-26.56 

-26.94 

-19.35 

 

 

According to Table 5.14, the model has “Very Good” performance in terms of 𝑁𝑆𝐸, 

“Good” performance in terms of  𝑅2 and “Unsatisfactory” performance in terms of 
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𝑃𝐵𝐼𝐴𝑆 for the validation period. However, for the training period, the model has 

lower prediction performance compared to its prediction performance in the 

validation period. This is because of the differences between the frequency and 

magnitude of the extreme event of the training and validation periods, as presented 

in Table 4.4. While Luleburgaz streamgage has 12.13 m3/s as the mean flow, 32.20 

m3/s as the standard deviation, and 800 m3/s as its maximum flow for the training 

period, it has 7.88 m3/s as the mean flow, 10.61 m3/s as the standard deviation, and 

211 m3/s as its maximum flow for the validation period. This indicates that the 

training period has examples of all types of flow behaviors found in the validation 

period; thus, the model is trained well to predict the streamflows of the validation 

period.  
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Table 5.15. 𝑁𝑆𝐸 values of 𝑀5𝐿 for training phase computed with different number 

of 𝑐 and 𝑟𝑎 

𝑀5𝐿 (Training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 

2 Und 0.50 0.50 0.50 0.51 0.51 0.52 0.52 0.52 0.52 

3 Und 0.52 0.51 0.51 0.52 0.53 0.52 0.52 0.51 0.51 

4 Und 0.52 0.51 0.52 0.52 0.53 0.52 0.52 0.51 0.52 

5 Und 0.51 0.52 0.52 0.53 0.52 0.52 0.52 0.53 0.54 

6 Und 0.51 0.52 0.52 0.53 0.52 0.52 0.53 0.54 RCC 

7 Und 0.52 0.53 0.53 0.53 0.53 0.53 0.54 0.61 RCC 

8 Und 0.53 0.53 0.53 0.52 0.53 0.59 RCC RCC RCC 

9 Und 0.52 0.55 0.53 0.52 0.60 0.59 RCC RCC RCC 

10 Und 0.52 0.53 0.52 0.52 0.61 0.58 RCC RCC RCC 

11 Und 0.53 0.53 0.52 0.56 0.61 0.63 RCC RCC RCC 

12 Und 0.53 0.53 0.52 0.61 0.61 RCC RCC RCC RCC 

13 Und 0.52 0.53 0.52 0.63 0.61 RCC RCC RCC RCC 

14 Und 0.53 0.53 0.52 0.63 0.62 RCC RCC RCC RCC 

15 Und 0.55 0.52 0.53 0.63 0.65 RCC RCC RCC RCC 

                

Table 5.16. 𝑁𝑆𝐸 values of 𝑀5𝐿 for validation phase computed with different 

number of 𝑐 and 𝑟𝑎 

𝑀5𝐿 (Validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 

2 Und 0.78 0.79 0.79 0.80 0.81 0.80 0.80 0.80 0.79 

3 Und 0.79 0.79 0.79 0.78 0.77 0.76 0.75 0.75 0.74 

4 Und 0.78 0.79 0.78 0.75 0.77 0.75 0.73 0.71 0.70 

5 Und 0.78 0.82 0.78 0.76 0.76 0.73 0.71 0.67 0.66 

6 Und 0.78 0.80 0.77 0.76 0.76 0.74 0.64 0.52 RCC 

7 Und 0.77 0.77 0.73 0.78 0.74 0.72 0.57 0.45 RCC 

8 Und 0.81 0.76 0.76 0.77 0.74 0.63 RCC RCC RCC 

9 Und 0.81 0.74 0.77 0.76 0.60 0.68 RCC RCC RCC 

10 Und 0.81 0.73 0.77 0.75 0.53 0.70 RCC RCC RCC 

11 Und 0.83 0.73 0.76 0.67 0.54 0.70 RCC RCC RCC 

12 Und 0.83 0.73 0.76 0.59 0.53 RCC RCC RCC RCC 

13 Und 0.80 0.75 0.77 0.44 0.51 RCC RCC RCC RCC 

14 Und 0.78 0.79 0.77 0.44 0.52 RCC RCC RCC RCC 

15 Und 0.76 0.78 0.75 0.44 0.55 RCC RCC RCC RCC 
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5.1.3.2. Predictions for Luleburgaz with the test data 

The hydrographs obtained from 𝑀5𝐿 together with the observations are given for the 

training period in Figure 5.11. The model underestimates all the peak flows observed 

during the training period. It indicates that the number of cluster centers and cluster 

radius used to build the model, are not capable of predicting streamflow at 

Luleburgaz.  

 

Figure 5.11. Hydrographs obtained from FRB for Luleburgaz streamgage for the 

training period  

 

The hydrographs obtained from 𝑀5𝐿 and observations for the validation period are 

given in Figure 5.12. The peak flow, which is 89.3 m3/s and observed on January 23, 

2004, is reasonably predicted by the model; however, the other peak flow, which is 

211 m3/s and observed on January 30, 2004, is underestimated by the model. It 

indicates that the model has seen similar discharges to the discharges to the one 

observed on January 23, 2004; however, discharges observed on January 30, result 

from a different meteorological condition and basin characteristics combination from 

what the FRB is trained for.  
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Figure 5.12. Hydrographs obtained from FRB for Luleburgaz streamgage for the 

validation period  

 

𝑀5𝐿 providing the highest 𝑁𝑆𝐸 for the validation period is selected as the best type 

of model for Luleburgaz. The predictions for the testing period are obtained by using 

𝑀5𝐿. The performance of the model for the testing period is presented in Table 5.17. 

According to Table 5.17, FRB provides “Satisfactory (almost “Good”)” performance 

in terms of 𝑅2 and 𝑁𝑆𝐸, and “Good” performance in terms of 𝑃𝐵𝐼𝐴𝑆. It indicates 

that FRB is trained and validated efficiently. Trial-and-error procedure to determine the 

number of cluster centers and the cluster radius provides satisfactory results for Luleburgaz 

streamgage. 

 

Table 5.17. Model performances for daily streamflow predictions of Luleburgaz 

Streamgage for the testing period 

  Test 

Luleburgaz 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

𝑀5𝐿 (𝑐 = 5, 𝑟𝑎 = 0.15) 0.86 0.73 0.69 9.65 
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The hydrographs obtained from the 𝑀5𝐿 are given for the testing period in Figure 

5.13. According to the hydrographs, the model follows the general trend in the 

observations for the testing period. Considering that the peak flows observed on the 

testing period are more extreme and occur more frequently compared to the ones 

observed in the validation period, the model provides reasonable estimations for 

these peak flows. The highest peak, which is 376 m3/s observed on December 2, 

2012 is estimated by FRB as 245 m3/s. The other peak flow which is 365 m3/s and 

observed on February 3, 2015 is estimated by FRB as 255 m3/s, which are acceptable 

estimates. 

 

Figure 5.13. Hydrographs obtained from FRB for Luleburgaz streamgage for the 

testing period  

 

 

 

 

 

 

0

50

100

150

200

250

300

350

400

1-Oct-12 19-Apr-13 5-Nov-13 24-May-14 10-Dec-14 28-Jun-15

D
is

ch
ar

ge
 (

m
3 /

s)

Days

Observation FRB



              

 

70 

5.1.4. Hayrabolu Streamgage 

5.1.4.1. Analysis of the number of cluster center and the cluster radius 

Similar to the procedure followed for Yenicegoruce, Inanli and Luleburgaz, 

Hayrabolu is assumed to be subsequently ungaged location as records of Inanli, 

Luleburgaz and Yenicegoruce streamgages are used to predict streamflow at 

Hayrabolu. Initially, the first type of the model, the base model 𝑀1𝐻, is developed 

by using the streamflow records at time 𝑡 at Inanli (𝑄𝐼,𝑡), Luleburgaz (𝑄𝐿,𝑡) and 

Yenicegoruce (𝑄𝑌,𝑡) to predict streamflow at Hayrabolu streamgage at time 𝑡 (𝑄𝐻,𝑡). 

Considering the travel time of streamflow between subbasins, in addition to the base 

model, four different type of models are built to predict 𝑄𝐻,𝑡. The architectures of 

these models are given in Table 5.18. 

 

Table 5.18. Model performances for daily streamflow predictions of Hayrabolu 

Streamgage 

Type 

of 

Model  

Input Parameters Output 

𝑀1𝐻  𝑄𝐼,𝑡, 𝑄𝐿,𝑡, 𝑄𝑌,𝑡 𝑄𝐻,𝑡 

𝑀2𝐻  𝑄𝐼,𝑡, 𝑄𝐿,𝑡, 𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 𝑄𝐻,𝑡 

𝑀3𝐻  𝑄𝐼,𝑡−1, 𝑄𝐼,𝑡, 𝑄𝐿,𝑡, 𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 𝑄𝐻,𝑡 

𝑀4𝐻  𝑄𝐼,𝑡−1, 𝑄𝐼,𝑡, 𝑄𝐿,𝑡−1, 𝑄𝐿,𝑡, 𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 𝑄𝐻,𝑡 

𝑀5𝐻 𝑄𝐼,𝑡, 𝑄𝐿,𝑡−1, 𝑄𝐿,𝑡, 𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2 𝑄𝐻,𝑡 

 

Similar to the Yenicegoruce, Inanli, and Luleburgaz, training, validation and testing 

is carried out for Hayrabolu streamgage and results are presented below. 
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For each type of model, the performances provided by the selected model for both 

training and validation periods are given in Table 5.19 for Hayrabolu. As presented 

in Table 5.19, 𝑀3𝐻  (see the third row of Table 5.19) that uses streamflow records at 

Inanli at time 𝑡, 𝑡 − 1 (𝑄𝐼,𝑡−1, 𝑄𝐼,𝑡), at Luleburgaz at time 𝑡 (𝑄𝐿,𝑡) and at 

Yenicegoruce at time 𝑡, 𝑡 + 1, 𝑡 + 2, 𝑡 + 3 (𝑄𝑌,𝑡, 𝑄𝑌,𝑡+1, 𝑄𝑌,𝑡+2, 𝑄𝑌,𝑡+3 ) is selected as 

the best type of model; therefore, the results of its sub-models for training and the 

validation periods are presented in Tables 5.20 and 5.21, respectively.  Although, 

𝑀5𝐻 provides slightly higher performance than  𝑀3𝐻, 𝑀3𝐻 is selected as the best 

model, since the large number of cluster centers used in 𝑀5𝐻 makes the model 

computationally expensive and introduces risk of overfitting without significant 

improvement in the goodness of fit measures. According to Table 5.19, 𝑀3𝐻 has 

“Satisfactory” performance in terms of 𝑅2 and 𝑁𝑆𝐸, and “Unsatisfactory” 

performance in terms of “𝑃𝐵𝐼𝐴𝑆” for the validation period. On the other hand, the 

model has “Very good” performance in terms of  𝑁𝑆𝐸 and “Good” performance in 

terms of 𝑅2 and  𝑃𝐵𝐼𝐴𝑆 for the training period. In comparison, the other models 

presented in table 5.19, better performance of  𝑀3𝐻 with a relatively low number of 

cluster centers on the training period might be because of the relatively higher cluster 

radius, which allows the model to select the extreme events as cluster centers.  
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Table 5.19. Model performances of selected models for daily streamflow 

predictions of Hayrabolu Streamgage 

Training Validation 

Hayrabolu 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

Selected Model 

𝑀1𝐻 (𝑐 = 7, 𝑟𝑎 = 0.25) 

𝑀2𝐻 (𝑐 = 13, 𝑟𝑎 = 0.30) 

𝑀3𝐻 (𝑐 = 6, 𝑟𝑎 = 0.45) 

𝑀4𝐻 (𝑐 = 8, 𝑟𝑎 = 0.30) 

𝑀5𝐻 (𝑐 = 7, 𝑟𝑎 = 0.50) 

 

0.83 

0.92 

0.91 

0.90 

0.90 

 

0.68 

0.84 

0.82 

0.80 

0.81 

 

0.68 

0.84 

0.82 

0.80 

0.81 

 

13.69 

9.04 

9.89 

8.24 

9.52 

 

0.66 

0.79 

0.79 

0.74 

0.76 

 

0.43 

0.63 

0.63 

0.54 

0.60 

 

0.42 

0.56 

0.55 

0.49 

0.54 

 

8.77 

16.30 

16.33 

15.58 

14.93 

 

For relatively low number of cluster centers and cluster radii, the 𝑁𝑆𝐸 values 

provided by the model for validation and training phase are low, as can be seen from 

Table 5.20 and Table 5.21. The results of the other sub-models of other types of 

models for Hayrabolu streamgage are given in Appendix D. 
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Table 5.20. 𝑁𝑆𝐸 values of 𝑀3𝐻 for the training phase with different number of 𝑐 

and 𝑟𝑎 

𝑀3𝐻  

(Training) 
𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

2 Und Und 0.69 0.64 0.64 0.64 0.64 0.64 0.65 0.65 

3 Und Und 0.65 0.64 0.63 0.63 0.61 0.62 0.65 0.63 

4 Und Und 0.64 0.65 0.69 0.65 0.75 0.76 0.76 0.77 

5 Und Und 0.64 0.59 0.69 0.75 0.72 0.77 0.81 0.79 

6 Und Und 0.65 0.60 0.61 0.76 0.77 0.79 0.82 0.83 

7 Und Und 0.62 0.64 0.77 0.76 0.80 0.82 0.84 0.84 

8 Und Und 0.62 0.65 0.78 0.79 0.83 0.82 0.86 0.86 

9 Und Und 0.62 0.66 0.78 0.83 0.83 0.85 0.87 0.87 

10 Und Und 0.63 0.71 0.81 0.83 0.85 0.86 0.87 0.87 

11 Und Und 0.64 0.75 0.82 0.85 0.86 0.87 0.88 0.87 

12 Und 0.63 0.65 0.75 0.82 0.86 0.87 0.87 0.90 RCC 

13 Und 0.63 0.69 0.75 0.82 0.87 0.87 0.87 0.89 RCC 

14 Und 0.61 0.74 0.75 0.82 0.88 0.86 0.89 0.91 RCC 

15 Und 0.61 0.73 0.75 0.82 0.87 0.87 0.89 0.92 RCC 

 

Table 5.21. 𝑁𝑆𝐸 values of 𝑀3𝐻  for the validation phase with different number 

of 𝑐 and 𝑟𝑎 

𝑀3𝐻  

   (Validation) 
𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 

2 Und Und 0.41 0.43 0.43 0.43 0.44 0.44 0.44 0.44 

3 Und Und 0.43 0.43 0.44 0.43 0.44 0.44 0.44 0.44 

4 Und Und 0.43 0.43 0.45 0.38 0.46 0.50 0.46 0.47 

5 Und Und 0.43 0.43 0.45 0.45 0.43 0.46 0.52 0.50 

6 Und Und 0.43 0.43 0.36 0.47 0.41 0.46 0.55 0.52 

7 Und Und 0.43 0.43 0.46 0.47 0.43 0.46 0.50 0.48 

8 Und Und 0.43 0.43 0.43 0.45 0.44 0.48 0.51 0.52 

9 Und Und 0.43 0.36 0.44 0.44 0.44 0.47 0.50 0.44 

10 Und Und 0.42 0.37 0.45 0.44 0.46 0.45 VL 0.44 

11 Und Und 0.42 0.43 0.44 0.53 0.47 0.42 VL 0.41 

12 Und 0.43 0.35 0.43 0.44 0.54 0.44 0.40 VL RCC 

13 Und 0.43 0.36 0.44 0.44 0.42 0.43 0.60 0.34 RCC 

14 Und 0.43 0.42 0.43 0.44 0.40 0.41 VL VL RCC 

15 Und 0.43 0.39 0.43 0.44 0.59 0.45 VL VL RCC 
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5.1.4.2. Predictions for Hayrabolu with the test data 

The predictions obtained from the 𝑀3𝐻 and observations for Hayrabolu are given in 

Figure 5.14 for the training period. Most of the peak flows observed in the training 

period are reasonably estimated by the model.  

 

Figure 5.14. Hydrographs obtained from FRB for Hayrabolu streamgage for the 

training period  

 

The predictions obtained from 𝑀3𝐻 and observations for Hayrabolu for the 

validation period are given in Figure 5.15. The peak flow, which is 143 m3/s and 

observed on January 30, 2004, and another peak flow, which is 103 m3/s and 

observed on February 15, 2005, are significantly underestimated by the model. The 

maximum observed flow at Hayrabolu during the training period is 127 m3/s. 

Therefore, the model has failed to predict the peak flow, which has higher magnitude 

(i.e., 143 m3/s) for the validation period compared the maximum flow observed in 

the training period (i.e., 127 m3/s). The vital problem about using black-box models 

(FRB in this study) to analyze natural phenomenon is that they are only capable of 

performing what they have been trained for. 

0

20

40

60

80

100

120

140

1-Oct-96 13-Feb-98 28-Jun-99 9-Nov-00 24-Mar-02 6-Aug-03

D
is

ch
ar

ge
 (

m
3 /

s)

Days

Observation FRB



              

 

75 

 

Figure 5.15. Hydrographs obtained from FRB for Hayrabolu streamgage for the 

validation period  

𝑀3𝐻 providing the highest 𝑁𝑆𝐸 value for the validation period on Hayrabolu 

streamgage amongst all sub-models is the best type of model. The daily streamflow 

predictions are obtained by using 𝑀3𝐻 for the testing period at Hayrabolu. The 

performance measures of the model for the testing period is presented in Table 5.22. 

According to Table 5.22, the 𝑀3𝐻 has “Unsatisfactory” performance in terms of all 

statistical measures. The statistical measures for the validation and the testing periods 

are quite different from each other for Hayrabolu as shown in Table 4.4. This may 

be an indicator of different flow behavior in these two periods and the reason for 

poor model performance. 

Table 5.22. Model performances for daily streamflow predictions of Hayrabolu 

Streamgage for the testing period 

  Test 

Hayrabolu 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

𝑀3𝐻 (𝑐 = 6, 𝑟𝑎 = 0.45) 0.58 0.34 0.12 -54.19 
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Hydrographs obtained from 𝑀3𝐻  for Hayrabolu streamgage, together with the 

observations for the testing period, are given in Figure 5.16. According to the 

hydrographs, the model could be evaluated as unsuccessful in following the trends 

in observations. Most of the peak flows are either over or underestimated.  

 

Figure 5.16. Hydrographs obtained from FRB for Hayrabolu streamgage for the 

testing period 

 

5.1.5. Prediction of Luleburgaz with Fuzzy Rule-Based Extreme Model 

The FRB model only takes streamflow observations of the surrounding gages as 

input. Based on these observations, one can expect to predict high or low streamflow 

at the ungaged location. To test the use of this idea, a new FRB model for Luleburgaz 

streamgage, called FRB-Extreme, is developed and trained only for the high flow 

periods since the FRB models experience difficulties in estimating especially high 

flows. Streamflow observations of the nearest streamgage to Luleburgaz, namely 

Inanli streamgage is used to select high flow periods, and streamflow data of the 

selected periods are used to train FRB-Extreme. Streamflow observations higher 

than 15 m3/s which corresponds to 90th percentile of the Inanli dataset is used for 

training 𝑀5𝐿  (with 𝑐 = 5, 𝑟𝑎 = 0.15). Then, the trained model is used to estimate 

only high flows of the testing period. The results are demonstrated in Figure 5.17 for 
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the testing period. FRB-Extreme predicts the largest two flows which are 376 m3/s 

and 365 m3/s better than the FRB (𝑀5𝐿) model; however, the improvement is not 

significant. The main reason for this is the fact that there is a very limited number of 

high flow values that are used in the training of the FRB-Extreme model. It is 

expected to have better model performances when longer streamflow data is 

available for training purposes. 

 

 

Figure 5.17. Hydrographs obtained from FRB and FRB-Extreme for Luleburgaz 

streamgage for the testing period 

 

 

5.1.6. Effect of Input Parameter Selection on Model Performance 

As can be seen in Figure 4.1, Inanli and Luleburgaz streamgages are located close to 

each other and the best model performances are achieved for these two gages. To 

investigate the effect of input parameters on model performance, some of the input 

parameter are removed from the best models’ set up. For example, for Inanli, the best 

model is 𝑀6𝐼 which uses streamflow measurement at 𝑡 at Luleburgaz (𝑄𝐿,𝑡) and 

Yenicegoruce (𝑄𝑌,𝑡), and 𝑡 + 1 at Hayrabolu (𝑄𝐻,𝑡+1) to predict streamflow at 𝑡 at 
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Inanlı (𝑄𝐼,𝑡). Streamflow measurement at Hayrabolu and Yenicegoruce are removed 

individually and together from 𝑀6𝐼 and 𝑀7𝐼 (without Hayrabolu, 𝑄𝐻,𝑡+1), 𝑀8𝐼 

(without Yenicegoruce, 𝑄𝑌,𝑡) and 𝑀9𝐼 (without both Hayrabolu and Yenicegoruce) 

are obtained. The architectures and the performances of these additional models are 

presented in Table 5.23 and Table 5.24, respectively. 

Table 5.23. Additional model architectures used for Inanli streamflow predictions 

Type 

of 

Model 

Input Parameters Output 

𝑀7𝐼  𝑄𝐿,𝑡, 𝑄𝑌,𝑡 𝑄𝐼,𝑡 

𝑀8𝐼  𝑄𝐿,𝑡, 𝑄𝐻,𝑡+1 𝑄𝐼,𝑡 

𝑀9𝐼  𝑄𝐿,𝑡 𝑄𝐼,𝑡 

 

Table 5.24. The best model and additional models performances used for Inanli 

streamflow predictions 

 
Training 

 (1996-2003) 
Validation 

 (2004-2005) 

Testing  

(2013-2015) 

 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

The Best Model          

𝑀6𝐼 

(𝑐 = 6, 𝑟𝑎 = 0.40) 
0.70 0.69 8.43 0.79 0.68 39.87 0.70 0.69 7.67 

The Additional Models         

𝑀7𝐼  
(𝑐 = 6, 𝑟𝑎 = 0.40)  

0.69 0.68 9.32 0.85 0.67 41.17 0.63 0.63 10.30 

𝑀8𝐼 

 (𝑐 = 6, 𝑟𝑎 = 0.40)  
0.70 0.69 9.00 0.82 0.59 42.90 0.63 0.62 12.88 

𝑀9𝐼 

 (𝑐 = 6, 𝑟𝑎 = 0.40) 
0.70 0.69 9.02 0.85 0.62 42.52 0.50 0.49 7.01 
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As can be seen from Table 5.24, 𝑀7𝐼 and 𝑀8𝐼 provides similar performances for 

training and testing, and outperformed by 𝑀6𝐼. It indicates that although model 

performances are similar to that of the best model (i.e., 𝑀6𝐼) for the training period, 

the value of the information coming from streamflow measurement at time 𝑡 + 1 at 

Hayrabolu and at time 𝑡 at Yenicegoruce is revealed in the performance of the testing 

period. Thus, the set of inputs used in the best model results in the best performance. 

For Luleburgaz, the same procedure is applied and new models referred to as 𝑀6𝐿 , 

𝑀7𝐿 and 𝑀8𝐿 are formulated (see Table 5.25). The performances of these additional 

models are presented in Table 5.26. 

 

 

Table 5.25. Additional model architectures used for Luleburgaz streamflow 

predictions 

Type 

of 

Model 

Input Parameters Output 

𝑀6𝐿  𝑄𝐼,𝑡, 𝑄𝑌,𝑡+3 𝑄𝐿,𝑡 

𝑀7𝐿  𝑄𝐼,𝑡, 𝑄𝐻,𝑡 𝑄𝐿,𝑡 

𝑀8𝐿 𝑄𝐼,𝑡 𝑄𝐿,𝑡 
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Table 5.26. The best model and the additional model performances used for 

Luleburgaz streamflow predictions 

 

 
Training 

 (1996-2003) 
Validation 

 (2004-2005) 

Testing  

(2013-2015) 

 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

The Best Model          

𝑀5𝐿  
(𝑐 = 5, 𝑟𝑎 = 0.15) 

0.56 0.52 10.04 0.84 0.82 -19.35 0.73 0.69 9.65 

The Additional Models         

𝑀6𝐿  
(𝑐 = 5, 𝑟𝑎 = 0.15)  

0.58 0.54 9.33 0.86 0.85 -13.64 0.71 0.69 9.04 

𝑀7𝐿 

 (𝑐 = 5, 𝑟𝑎 = 0.15)  
0.53 0.50 10.94 0.84 0.75 -34.07 0.67 0.60 19.53 

𝑀8𝐿 

 (𝑐 = 5, 𝑟𝑎 = 0.15) 
0.51 0.48 11.56 0.69 0.44 -52.20 0.74 0.68 14.87 

 

As can be seen from Table 5.26, 𝑀6𝐿 and 𝑀5𝐿 provides similar performances for 

training, validation and testing periods. It indicates streamflow measurement at time 

𝑡 at Hayrabolu does not provide additional information to the FRB model, thus can 

be removed from the input parameter set of the FRB model. On the other hand, 

removing the streamflow measurement at time 𝑡 + 3 at Yenicegoruce worsen the 

performance of the model. 
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5.1.7. Effect of Validation Period Selection on the Model Performance 

In previous sections, FRB models are trained using the daily streamflow records of 

1997-2003 water years. Afterward, the model performances are evaluated to identify 

the best number  of cluster center and cluster radius combination using streamflow 

records of 2004-2005 water years (i.e., the validation period) and the best performing 

model (i.e., the best combination of the number of the cluster center and the cluster 

radius) is selected (referred to as the selected model). The selected model (trained 

and validated) is used to make predictions for 2013-2015 water years (i.e., the testing 

period).  Thus, the data is divided into three pieces as follows: i) training composed 

of streamflow observations of 1997-2003 water years, ii) validation composed of 

streamflow observations of 2004-2005 water years, and iii) testing composed of 

streamflow observations of 2013-2105 water years. Predictions are made for all four 

streamgages. 

In this section, to investigate the effect of the validation period selection on the model 

performance, the test period and validation period are interchanged as follows:                   

i) training composed of streamflow observations of 1997-2003 water years,                 

ii) validation composed of streamflow observations of 2013-2015 water years, and 

iii) testing composed of streamflow observations of 2004-2005 water years. Again, 

predictions are made for all four streamgages. This set of calculations are referred to 

as Case 2 from here after. The results are summarized for Case 2 in Table 5.27. 

As can be seen in Table 5.27, the FRB models provide “Good” performance for 

Luleburgaz, “Satisfactory” performance for Inanli and Yenicegoruce, and 

“Unsatisfactory” performance for Hayrabolu in terms of 𝑁𝑆𝐸 for Case 2. The 

hydrographs obtained from the models for all streamgages, together with the 

observations for Case 2 are given in Figures 5.18, 5.19, 5.20, 5.21 for Yenicegoruce, 

Inanli, Luleburgaz and Hayrabolu, respectively.  
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Table 5.27. Model performances of selected models for daily streamflow 

predictions of all Streamgages for Training and Test periods for Case 2 

  Training (1996-2003) Test (2004-2005) 

 Selected Model 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

Ye
n

ic
eg

o
ru

ce
 

 

𝑀1𝑌 (𝑐 = 7, 𝑟𝑎 = 0.25) 0.74 0.55 0.53 13.24 0.62 0.38 0.15 -6.87 

𝑀2𝑌 (𝑐 = 7, 𝑟𝑎 = 0.15) 0.78 0.61 0.61 8.55 0.66 0.43 0.01 -14.62 

𝑀3𝑌 (𝑐 = 7, 𝑟𝑎 = 0.20) 0.86 0.73 0.73 6.04 0.73 0.53 0.25 -10.42 

𝑀4𝑌 (𝑐 = 4, 𝑟𝑎 = 0.35) 0.87 0.76 0.76 4.61 0.79 0.62 0.41 -6.02 

𝑀5𝑌 (𝑐 = 4, 𝑟𝑎 = 0.45) 0.88 0.77 0.76 5.71 0.83 0.69 0.61 -5.73 

𝑀6𝑌 (𝑐 = 7, 𝑟𝑎 = 0.40) 0.89 0.79 0.79 5.47 0.81 0.65 0.58 -6.20 

In
an

li 
 

𝑀1𝐼 (𝑐 = 6, 𝑟𝑎 = 0.20) 0.77 0.59 0.57 7.11 0.83 0.70 0.57 41.89 

𝑀2𝐼 (𝑐 = 6, 𝑟𝑎 = 0.30) 0.78 0.61 0.59 6.92 0.80 0.64 0.56 39.48 

𝑀3𝐼 (𝑐 = 8, 𝑟𝑎 = 0.20) 0.79 0.62 0.61 7.13 0.79 0.63 0.54 39.77 

𝑀4𝐼 (𝑐 = 4, 𝑟𝑎 = 0.25) 0.81 0.66 0.65 6.80 0.85 0.72 0.53 42.61 

𝑀5𝐼 (𝑐 = 6, 𝑟𝑎 = 0.15) 0.79 0.63 0.62 6.44 0.84 0.70 0.52 43.70 

𝑀6𝐼 (𝑐 = 6, 𝑟𝑎 = 0.20) 0.74 0.55 0.50 6.89 0.88 0.78 0.57 42.18 

Lu
le

b
u

rg
az

 
 

𝑀1𝐿 (𝑐 = 6, 𝑟𝑎 = 0.20) 0.73 0.53 0.50 10.17 0.90 0.80 0.76 -23.46 

𝑀2𝐿 (𝑐 = 5, 𝑟𝑎 = 0.35) 0.78 0.61 0.61 7.09 0.78 0.60 0.49 -19.81 

𝑀3𝐿 (𝑐 = 5, 𝑟𝑎 = 0.30) 0.81 0.66 0.64 6.68 0.78 0.61 0.43 -24.00 

𝑀4𝐿 (𝑐 = 5, 𝑟𝑎 = 0.40) 0.81 0.65 0.64 6.25 0.76 0.58 0.28 -25.69 

𝑀5𝐿 (𝑐 = 4, 𝑟𝑎 = 0.45) 0.74 0.55 0.51 9.84 0.86 0.74 0.71 -23.35 

H
ay

ra
b

o
lu

 
 

𝑀1𝐻 (𝑐 = 12, 𝑟𝑎 = 0.25) 0.86 0.74 0.73 13.49 0.60 0.36 0.36 -5.38 

𝑀2𝐻 (𝑐 = 6, 𝑟𝑎 = 0.25) 0.83 0.70 0.68 9.91 0.68 0.46 0.40 14.52 

𝑀3𝐻 (𝑐 = 6, 𝑟𝑎 = 0.25) 0.82 0.67 0.61 8.39 0.61 0.38 0.36 16.73 

𝑀4𝐻 (𝑐 = 7, 𝑟𝑎 = 0.25) 0.88 0.77 0.77 8.72 0.67 0.45 0.36 -39.08 

𝑀5𝐻 (𝑐 = 8, 𝑟𝑎 = 0.20) 0.82 0.67 0.62 8.76 0.69 0.47 0.39 13.91 
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Figure 5.18. Hydrographs obtained from FRB for Yenicegoruce streamgage for 

Case 2 

 

 

Figure 5.19. Hydrographs obtained from FRB for Inanli streamgage for Case 2 
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Figure 5.20. Hydrographs obtained from FRB for Luleburgaz streamgage for   

Case 2 

 

Figure 5.21. Hydrographs obtained from FRB for Hayrabolu streamgage for    

Case 2 

 

As shown in Figures 5.18, 5.19, and 5.20, the models follow the general trend in 

observation and reasonably predict peak flows at Yenicegoruce, Inanli and 

Luleburgaz for Case 2. On the other hand, at Hayrabolu, although the model follows 
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the general trend in observations, it underestimates the peak flow as shown in Figure 

5.21 for Case 2. 

5.1.8. Summary of Results 

In this study, in order to investigate the effect of clustering parameters, namely the 

number of the cluster center and the cluster radius on model performance, the models 

with various number of cluster centers and cluster radii are built. Furthermore, 

models with different input parameters are built to include the effect of travel time 

of water between streamgages. All the models are trained and validated, then, 

validated models are used to make predictions for the testing period. To investigate 

the effect of the selection of the validation period on the model performance for the 

testing period, a second case, Case 2 is designed where validation and testing periods 

are changed. For all the models, the performance of the best models for both cases 

are Summarized in Table 5.28.  

 

Table 5.28. Model performances of the best models for daily streamflow 

predictions of all streamgages 

 Testing period: 2013-2015 Testing Period: 2004-2005 

Streamgage 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 𝑅 𝑅2 𝑁𝑆𝐸 𝑃𝐵𝐼𝐴𝑆 

Yenicegoruce 0.67 0.45 0.24 49.5 0.83 0.69 0.61 -5.73 

Inanli 0.84 0.7 0.69 7.67 0.88 0.78 0.57 42.18 

Luleburgaz 0.86 0.73 0.69 9.65 0.89 0.80 0.76 -23.46 

Hayrabolu 0.58 0.34 0.12 -54.19 0.68 0.46 0.40 14.52 

 

 

 



              

 

86 

Except for Inanli, the best models validated by using the period between 2013-2015 

outperform the best models validated by using the period between 2004-2005. For 

Inanli, best models of both cases provide similar performances for test periods as 

presented in Table 5.28. Statistical measures in Table 4.4 indicate that higher flows 

are observed on the testing period (2013-2015) compared to the validation period 

(2004-2005). This might be due to various reasons such as change in rainfall regime 

and increase in snow-melt due to global warming. Therefore, the models selected 

based on the validation period of Case 2 which contain higher flow data, resulted in 

better performances for the testing period.  This indicates that utilization of a time 

period with higher streamflow observations as the validation period results in 

identification of a better model (i.e., model performing better in the testing period).  
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CHAPTER 6  

CONCLUSION 

 

Missing long time series of streamflow observations is filled using streamflow 

observations of neighboring catchments through SC-based TS_FRB models in this 

study. Daily streamflow values for extended periods are estimated for streamgages 

that become inoperative after a period of data collection using FRB models. In 

developing countries, such as Turkey, continuous time series of streamflow data is 

not available most of the time, and this hinders water resources planning studies. 

Similar to the case at Meric-Ergene Basin, water extractions and discharges from 

rivers are not monitored and recorded sufficiently, and this makes the calibration of 

hydrological models challenging. Many industrial establishments withdraw their 

process water from groundwater wells and discharge their effluents to rivers without 

licenses or permissions. To lessen the effects and visibility of their contaminated 

discharges, some of these facilities release their effluents to waterways, especially 

during massive rainfall events. Such practices result in unexpected oscillations (i.e., 

different than the natural rainfall-runoff response of the basin) in streamflow and 

make it very hard to calibrate hydrological models. The impact of such 

anthropogenic effects is embedded in the streamflow observations of sub-catchments 

of a basin and it may be possible to capture these effects through utilization of data-

driven methods. With this aim, in this study, streamflow observations of neighboring 

catchments are used to predict missing streamflow data using data-driven models 

(FRB in this study). 
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The following conclusions are reached: 

• SC is used to build the rule-base of the FRB. Selection of the clustering 

parameters, namely the number of the cluster center and cluster radius, is 

critical since they affect the architecture of the data-driven model. The goal 

is to identify the best architecture that is capable of representing the system’s 

behavior adequately. In this study, to determine the best number of the cluster 

center and the cluster radius combination, a large number of FRB models are 

built and trained. The performances of these sub-models for the validation 

period are evaluated to identify the best combination of the number of the 

cluster center and the cluster radius. Then the performance of the best model 

is tested for a completely different time interval. When small cluster radius 

is used, cluster centers are formed close to each other and low and average 

flows are selected as cluster centers. FRB model having low and average 

flows as fuzzy rules, can successfully predicts the regular flow, while it fails 

to predicts extreme values. Therefore, for smaller cluster radius, many cluster 

centers should be chosen to avoid rule-base being composed of just low 

flows. However, choosing a large number of cluster centers might result in 

overfitting. On the other hand, for bigger cluster radius, the cluster centers 

are formed far from each other. In other words, the data points corresponding 

to high flows have a chance to be selected as a cluster center. However, if the 

radius is too high, the data points corresponding to extreme events of the 

training period might be assigned as cluster centers. If similar extreme events 

are not observed in the testing period, the performance of the model 

decreases. These observations are made in this study and can be used as 

guiding principles, however devising a methodology for the identification of 

the best cluster radius and the number of cluster center combination still 

remains a challenge. 

• In this study, a comparison between linear and non-linear models is carried 

out as well. The FRB model with one cluster center is equivalent to MLR. 

For all streamgages, FRB outperformed MLR. This indicates that the non-
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linear models (i.e., FRB with multiple rules) provide better predictions 

compared to the linear model (i.e., MLR) in the study area. 

• In this study, FRB models with different input variables, representing the 

lagged streamflows at neighboring basins, are trained and tested as well. As 

explained in Section 4 in detail, due to variation in the areas of subbasins, the 

distances between streamgages are different from each other; and it takes 

time for water to travel from a streamgage to another. To include this effect, 

lagged time series of streamflows are used. Including lagged time series of 

streamflow to models, enhances the model for Yenicegoruce at most, because 

Yenicegoruce, which is located at the outlet of the basin, has the biggest 

subbasin area amongst other stations. However, this introduces the risk of 

overfitting as well. Thus, the training performance increases however the 

prediction performance does not improve. For Luleburgaz and Inanli, 

including the lagged time series of streamflows to models slightly enhances 

the model performance. Flow characteristics (i.e., rainfall-runoff response) 

being similar in training, validation and testing periods improves 

development of better performing models.     

• The performance of the FRB models trained solely by using neighboring 

streamgages, can be considered as “Good” in estimating daily streamflow 

values at the subsequently ungaged location for closely spaced streamgages 

such as Inanli and Luleburgaz gages. Thus, with relatively less site-specific 

data, daily streamflow estimations for long data gaps is achieved by the FRB 

model. The proposed model can be used to generate continuous streamflow 

time series that can be used in hydrodynamic and water quality assessment 

studies for closely spaced streamgages. On the other hand, for Yenicegoruce 

and Hayrabolu streamgages, the FRB models failed to generate 

“Satisfactory” prediction. Yenicegoruce is located at the outlet of the basin 

and has much larger drainage area compared to others; thus is located far 

away from the closest neighboring streamgage. On the other hand, Hayrabolu 

streamgage is located at a different tributary than Inanli, Luleburgaz and 
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Yenicegoruce. Thus, hydrological responses of Yenicegoruce and Hayrabolu 

basins are not properly represented using the responses of other three basins. 

It is not possible to sufficiently represent basin characteristics like current 

vegetation and initial moisture content, current meteorological conditions 

affecting the rainfall-runoff responses and travel times between the 

streamgages in the FRB model solely by the streamflow observations of other 

streamgages. Inclusion of additional inputs such as indicators of basin 

characteristics or meteorological conditions may improve the performances 

of the FRB models.  

• Similar to hydrological models, the general trend in streamflow 

measurements is reasonably predicted by FRB models, but both models 

experiences difficulties in predicting peak flows. The possibility of 

developing separate models for low and high flow periods using a FRB 

approach is investigated in this study as well. Training is carried out using 

the same dataset. However, selection of the best FRB models is performed 

by using two separate datasets namely, low flow period and high flow period. 

FRB models selected according to the high flow period provides significantly 

better performance compared to FRB models selected by using the low flow 

period. The reason for this is that the rule-base of FRB models selected by 

using low flow period, is not capable of predicting high flow events. On the 

other hand, rules devised according to the high flow events, have good 

representation capability for low flow events as well. 

• The variety of FRB models with different rule-bases (i.e., the number of the 

cluster center and the cluster radius combinations) are build and trained. 

Then, the models’ performances are evaluated (validated) to select the best 

performing model amongst all trained models. Finally, trained and validated 

models are used to make predictions for the test period. To test the robustness 

of the FRB models, the best models are identified by using two different 

validation periods (i.e., swapping the validation and test periods). For Inanli 

and Luleburgaz, NSE values changes from 0.57 to 0.69 and 0.69 to 0.76, 
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respectively. It shows that the FRB models built for Inanli and Luleburgaz 

are robust models. On the other hand, for Yenicegoruce and Hayrabolu, NSE 

values vary significantly. This indicates that FRB models for Yenicegoruce 

and Hayrabolu are not robust and their performance highly depends on flow 

behaviors of training and validation periods. For these streamgages addition 

of new inputs which may act as indicators of basin characteristics and 

meteorological conditions seems to be necessary to improve the performance 

of the models. 

 

Remark for future research. 

• A wider range of inputs (i.e., catchment characteristics, meteorological 

data) may improve the performance of the FRB. Especially, for 

streamgages that are separated from each other with larger distances, then 

better models can be calibrated. 

• Currently, selection of the best cluster radius and the number of cluster 

centers combination is a challenging task. Development of a robust 

methodology for the identification of the best combination will be very 

useful for data-driven model development. 
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APPENDICES 

A. The results of sub-models for Yenicegoruce Streamgage 

A.1. 𝑁𝑆𝐸 values of 𝑀1𝑌 for training phase computed with different number of 𝑐 and 𝑟𝑎 

 

A.2. 𝑁𝑆𝐸 values of 𝑀1𝑌 for validation phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀1𝑌   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und VL VL VL VL VL VL VL VL 

2 Und Und VL VL VL VL 0.04 0.09 0.11 0.12 

3 Und Und VL VL 0.16 0.25 0.15 0.13 0.12 0.17 

4 Und Und VL 0.04 0.17 0.25 0.11 0.11 0.17 0.32 

5 Und VL VL 0.22 0.11 0.26 0.26 0.29 0.08 0.14 

6 Und VL 0.09 0.24 0.11 0.30 0.27 0.31 0.12 0.17 

7 Und VL 0.13 0.24 0.15 0.29 0.40 0.25 RCC 0.07 

8 Und VL 0.13 0.29 0.28 0.25 0.31 0.21 RCC RCC 

9 Und VL 0.19 0.30 0.30 0.24 0.09 0.30 RCC RCC 

10 Und 0.00 0.19 0.22 0.31 VL 0.19 RCC RCC RCC 

11 Und 0.00 0.20 0.22 0.32 0.15 0.23 RCC RCC RCC 

12 Und 0.11 0.20 0.24 0.33 0.13 0.24 RCC RCC RCC 

13 Und 0.12 0.20 0.33 0.30 0.20 0.18 RCC RCC RCC 

14 Und 0.06 0.20 0.33 0.03 0.23 0.12 RCC RCC RCC 

15 Und 0.16 0.27 0.36 VL VL 0.14 RCC RCC RCC 

 

𝑀1𝑌   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und VL VL VL VL VL VL VL VL 

2 Und Und 0.04 0.34 0.44 0.47 0.48 0.49 0.49 0.49 

3 Und Und 0.47 0.48 0.49 0.50 0.52 0.53 0.53 0.53 

4 Und Und 0.47 0.48 0.49 0.53 0.52 0.53 0.54 0.56 

5 Und 0.36 0.48 0.51 0.52 0.53 0.54 0.54 0.56 0.58 

6 Und 0.37 0.48 0.51 0.52 0.55 0.54 0.55 0.56 0.58 

7 Und 0.47 0.48 0.51 0.53 0.55 0.57 0.58 RCC 0.59 

8 Und 0.48 0.48 0.53 0.55 0.57 0.58 0.59 RCC RCC 

9 Und 0.48 0.49 0.54 0.55 0.58 0.60 0.59 RCC RCC 

10 Und 0.48 0.51 0.54 0.56 0.62 0.61 RCC RCC RCC 

11 Und 0.48 0.51 0.54 0.55 0.61 0.62 RCC RCC RCC 

12 Und 0.48 0.52 0.54 0.57 0.62 0.62 RCC RCC RCC 

13 Und 0.48 0.52 0.55 0.58 0.62 0.63 RCC RCC RCC 

14 Und 0.51 0.52 0.55 0.62 0.62 0.62 RCC RCC RCC 

15 Und 0.51 0.53 0.56 0.62 0.63 RCC RCC RCC RCC 
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A.3. 𝑁𝑆𝐸 values of 𝑀2𝑌 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀2𝑌   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und VL VL VL VL VL VL VL VL 

2 Und Und VL 0.28 0.34 0.42 0.58 0.60 0.61 0.62 

3 Und Und 0.59 0.31 0.55 0.61 0.59 0.65 0.66 0.67 

4 Und Und 0.62 0.55 0.57 0.61 0.63 0.65 0.67 0.68 

5 Und Und 0.46 0.61 0.61 0.62 0.64 0.68 0.67 0.68 

6 Und Und 0.59 0.62 0.62 0.66 0.68 0.68 0.68 0.70 

7 Und Und 0.61 0.62 0.63 0.66 0.67 0.68 0.71 0.69 

8 Und Und 0.61 0.63 0.64 0.67 0.68 0.69 0.72 0.70 

9 Und Und 0.61 0.63 0.66 0.68 0.70 0.71 0.75 0.70 

10 Und Und 0.63 0.64 0.66 0.70 0.70 0.73 0.76 0.75 

11 Und Und 0.63 0.66 0.68 0.70 0.72 0.74 0.76 0.76 

12 Und Und 0.63 0.66 0.68 0.70 0.73 0.75 0.80 RCC 

13 Und Und 0.63 0.66 0.68 0.70 0.73 0.75 0.81 RCC 

14 Und Und 0.66 0.66 0.68 0.70 0.80 0.76 0.81 RCC 

15 Und Und 0.66 0.66 0.68 0.72 0.82 0.78 0.81 RCC 

 

A.4. 𝑁𝑆𝐸 values of 𝑀2𝑌 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀2𝑌   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und VL VL VL VL VL VL VL VL 

2 Und Und VL VL VL VL VL VL 0.04 0.06 

3 Und Und 0.02 VL VL 0.06 VL 0.22 0.16 0.12 

4 Und Und 0.15 VL VL 0.06 0.17 0.23 0.08 0.03 

5 Und Und VL 0.00 0.01 0.10 0.20 0.26 0.08 0.03 

6 Und Und VL 0.09 0.11 0.16 0.01 0.23 0.06 VL 

7 Und Und 0.01 0.09 0.21 0.16 VL 0.19 VL 0.06 

8 Und Und 0.02 0.21 0.10 0.05 VL VL 0.29 VL 

9 Und Und 0.08 0.20 0.13 0.07 0.17 VL 0.13 VL 

10 Und Und 0.21 0.10 0.05 0.18 0.15 VL 0.09 VL 

11 Und Und 0.21 0.13 0.37 0.17 VL VL VL VL 

12 Und Und 0.21 0.12 0.38 VL VL VL VL VL/RCC 

13 Und Und 0.21 0.13 0.36 VL 0.04 VL VL VL/RCC 

14 Und Und 0.16 0.07 0.04 VL VL VL VL VL/RCC 

15 Und Und 0.13 0.05 0.05 0.20 VL 0.39 VL VL/RCC 
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A.5. 𝑁𝑆𝐸 values of 𝑀3𝑌 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀3𝑌   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und Und 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

2 Und Und Und 0.14 0.16 0.61 0.64 0.68 0.73 0.73 

3 Und Und Und 0.63 0.59 0.71 0.72 0.73 0.74 0.74 

4 Und Und Und 0.66 0.69 0.71 0.74 0.73 0.74 0.74 

5 Und Und 0.64 0.67 0.73 0.73 0.75 0.75 0.74 0.76 

6 Und Und 0.72 0.73 0.74 0.74 0.75 0.75 0.76 0.76 

7 Und Und 0.72 0.73 0.74 0.74 0.75 0.75 0.76 0.77 

8 Und Und 0.72 0.74 0.74 0.74 0.74 0.77 0.77 0.79 

9 Und Und 0.73 0.73 0.74 0.76 0.76 0.77 0.79 0.80 

10 Und Und 0.73 0.73 0.74 0.76 0.76 0.77 0.80 0.80 

11 Und Und 0.73 0.74 0.75 0.77 0.76 0.81 0.80 0.85 

12 Und Und 0.73 0.76 0.75 0.77 0.77 0.86 0.81 0.86 

13 Und Und 0.73 0.75 0.76 0.77 0.78 0.86 0.82 0.88 

14 Und Und 0.74 0.75 0.76 0.78 0.78 0.83 0.82 0.89 

15 Und Und 0.74 0.76 0.77 0.78 0.80 0.83 0.83 0.89 

 

A.6. 𝑁𝑆𝐸 values of 𝑀3𝑌 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀3𝑌   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und Und VL VL VL VL VL VL VL 

2 Und Und Und VL VL VL VL VL 0.17 0.18 

3 Und Und Und VL VL 0.09 0.15 0.24 0.27 0.27 

4 Und Und Und VL 0.00 0.12 0.20 0.24 0.27 0.28 

5 Und Und VL VL 0.24 0.23 0.23 0.25 0.24 0.28 

6 Und Und 0.10 0.23 0.25 0.26 0.24 0.24 0.21 0.28 

7 Und Und 0.14 0.25 0.27 0.26 0.24 0.17 0.20 0.48 

8 Und Und 0.15 0.24 0.25 0.25 0.22 0.22 0.42 0.26 

9 Und Und 0.25 0.28 0.25 0.18 0.27 0.21 0.21 0.53 

10 Und Und 0.25 0.27 0.24 0.15 0.26 0.42 0.18 VL 

11 Und Und 0.25 0.24 0.15 0.25 0.25 VL 0.17 VL 

12 Und Und 0.25 0.23 0.15 0.26 0.39 VL VL VL 

13 Und Und 0.25 0.15 0.17 0.10 0.40 VL VL VL 

14 Und Und 0.13 0.15 0.14 0.07 0.39 VL VL VL 

15 Und Und 0.27 0.18 0.28 0.08 0.08 0.36 VL VL 
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A.7. 𝑁𝑆𝐸 values of 𝑀4𝑌 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀4𝑌   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und Und 0.44 0.44 0.44 0.44 0.44 0.44 0.44 

2 Und Und Und 0.45 0.45 0.47 0.68 0.72 0.75 0.76 

3 Und Und Und 0.71 0.65 0.73 0.75 0.76 0.76 0.76 

4 Und Und Und 0.72 0.76 0.76 0.75 0.77 0.76 0.77 

5 Und Und Und 0.73 0.76 0.76 0.76 0.78 0.76 0.77 

6 Und Und Und 0.76 0.76 0.77 0.76 0.78 0.77 0.79 

7 Und Und Und 0.76 0.76 0.77 0.77 0.78 0.79 0.80 

8 Und Und Und 0.76 0.77 0.77 0.78 0.78 0.79 0.80 

9 Und Und Und 0.76 0.77 0.77 0.79 0.79 0.82 0.83 

10 Und Und Und 0.77 0.77 0.78 0.80 0.80 0.82 0.84 

11 Und Und Und 0.77 0.78 0.79 0.81 0.81 0.84 0.85 

12 Und Und 0.76 0.77 0.78 0.79 0.81 0.81 0.84 0.85 

13 Und Und 0.76 0.77 0.79 0.79 0.81 0.81 0.84 0.92 

14 Und Und 0.76 0.77 0.79 0.80 0.82 0.81 0.85 0.93 

15 Und Und 0.78 0.77 0.79 0.80 0.82 0.85 0.87 0.94 

 

A.8. 𝑁𝑆𝐸 values of 𝑀4𝑌 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀4𝑌   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und Und 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

2 Und Und Und 0.07 0.08 0.10 0.20 0.29 0.39 0.42 

3 Und Und Und 0.28 0.12 0.31 0.40 0.44 0.43 0.45 

4 Und Und Und 0.32 0.41 0.41 0.41 0.42 0.43 0.47 

5 Und Und Und 0.31 0.42 0.42 0.49 0.42 0.44 0.43 

6 Und Und Und 0.42 0.46 0.46 0.47 0.40 0.42 0.46 

7 Und Und Und 0.48 0.46 0.46 0.45 0.40 0.35 0.41 

8 Und Und Und 0.48 0.45 0.42 0.42 0.32 0.31 0.40 

9 Und Und Und 0.48 0.45 0.42 0.33 0.32 0.48 0.24 

10 Und Und Und 0.39 0.45 0.37 0.21 0.39 0.42 0.51 

11 Und Und Und 0.45 0.42 0.31 0.31 0.47 0.01 0.56 

12 Und Und 0.48 0.46 0.39 0.30 0.28 0.47 0.01 0.59 

13 Und Und 0.47 0.46 0.27 0.23 0.21 0.46 0.01 0.18 

14 Und Und 0.47 0.46 0.27 0.22 0.32 0.48 VL VL 

15 Und Und 0.41 0.40 VL 0.21 0.31 0.10 VL VL 
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A.9. 𝑁𝑆𝐸 values of 𝑀5𝑌 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀5𝑌   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und Und Und 0.57 0.57 0.57 0.57 0.57 0.57 

2 Und Und Und 0.58 0.59 0.60 0.61 0.74 0.75 0.76 

3 Und Und Und 0.62 0.73 0.71 0.74 0.75 0.76 0.77 

4 Und Und Und 0.68 0.75 0.76 0.76 0.76 0.76 0.77 

5 Und Und Und 0.74 0.76 0.77 0.77 0.77 0.77 0.79 

6 Und Und Und 0.76 0.76 0.77 0.77 0.78 0.77 0.79 

7 Und Und Und 0.76 0.75 0.77 0.78 0.78 0.79 0.79 

8 Und Und Und 0.77 0.78 0.77 0.78 0.78 0.79 0.80 

9 Und Und Und 0.76 0.77 0.78 0.79 0.80 0.79 0.82 

10 Und Und Und 0.76 0.77 0.78 0.80 0.80 0.82 0.87 

11 Und Und Und 0.76 0.78 0.79 0.80 0.80 0.83 0.88 

12 Und Und Und 0.76 0.78 0.80 0.80 0.83 0.83 0.88 

13 Und Und Und 0.78 0.78 0.80 0.80 0.83 0.83 0.89 

14 Und Und Und 0.77 0.79 0.80 0.80 0.83 0.88 0.91 

15 Und Und 0.77 0.77 0.79 0.80 0.82 0.89 0.89 0.91 

 

A.10. 𝑁𝑆𝐸 values of 𝑀5𝑌 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀5𝑌   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und Und Und 0.48 0.48 0.48 0.48 0.48 0.48 

2 Und Und Und 0.47 0.47 0.48 0.49 0.55 0.56 0.58 

3 Und Und Und 0.46 0.54 0.44 0.56 0.57 0.58 0.56 

4 Und Und Und 0.57 0.57 0.59 0.59 0.60 0.61 0.57 

5 Und Und Und 0.54 0.57 0.57 0.59 0.58 0.57 0.49 

6 Und Und Und 0.31 0.62 0.59 0.57 0.55 0.56 0.51 

7 Und Und Und 0.37 0.62 0.61 0.56 0.55 0.49 0.51 

8 Und Und Und 0.41 0.58 0.61 0.56 0.54 0.48 0.47 

9 Und Und Und 0.62 0.60 0.56 0.52 0.50 0.45 0.57 

10 Und Und Und 0.62 0.60 0.54 0.51 0.50 0.55 0.34 

11 Und Und Und 0.62 0.55 0.45 0.49 0.52 0.61 VL 

12 Und Und Und 0.63 0.50 0.42 0.38 0.57 0.60 VL 

13 Und Und Und 0.58 0.53 0.41 0.40 0.55 0.61 VL 

14 Und Und Und 0.60 0.48 0.45 0.40 0.55 0.41 VL 

15 Und Und 0.59 0.58 0.21 0.10 0.44 0.40 VL VL 
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B. The results of the sub-models for Inanli Streamgage 

B.1. 𝑁𝑆𝐸 values of 𝑀1𝐼 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀1𝐼   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 

2 Und 0.41 0.45 0.46 0.48 0.49 0.49 0.49 0.50 0.50 

3 Und 0.49 0.50 0.50 0.50 0.52 0.60 0.64 0.64 0.68 

4 Und 0.50 0.50 0.47 0.50 0.67 0.62 0.64 0.69 0.69 

5 Und 0.47 0.51 0.56 0.62 0.67 0.70 0.66 0.70 0.73 

6 Und 0.47 0.48 0.57 0.62 0.68 0.69 0.70 0.72 0.77 

7 Und 0.51 0.50 0.57 0.64 0.71 0.69 0.72 RCC 0.78 

8 Und 0.51 0.50 0.61 0.69 0.71 0.70 0.74 RCC RCC 

9 Und 0.49 0.50 0.63 0.70 0.72 0.78 0.79 RCC RCC 

10 Und 0.49 0.55 0.67 0.72 0.81 0.80 RCC RCC RCC 

11 Und 0.49 0.55 0.67 0.72 0.81 0.83 RCC RCC RCC 

12 Und 0.49 0.61 0.68 0.75 0.82 0.86 RCC RCC RCC 

13 Und 0.49 0.62 0.69 0.75 0.83 0.87 RCC RCC RCC 

14 Und 0.53 0.62 0.69 0.80 0.87 0.87 RCC RCC RCC 

15 Und 0.54 0.64 0.71 0.81 0.87 RCC RCC RCC RCC 

 

B.2. 𝑁𝑆𝐸 values of 𝑀1𝐼 for validation phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀1𝐼   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 

2 Und 0.61 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

3 Und 0.60 0.60 0.60 0.60 0.58 0.57 0.58 0.59 0.60 

4 Und 0.59 0.61 0.61 0.60 0.61 0.58 0.59 0.62 0.62 

5 Und 0.60 0.60 0.57 0.58 0.61 0.60 0.59 0.64 0.67 

6 Und 0.60 0.61 0.57 0.58 0.61 0.60 0.59 0.17 0.53 

7 Und 0.60 0.60 0.57 0.58 0.60 0.61 0.61 RCC 0.55 

8 Und 0.60 0.60 0.57 0.61 0.60 0.65 VL RCC RCC 

9 Und 0.61 0.60 0.58 0.61 0.58 VL 0.53 RCC RCC 

10 Und 0.61 0.58 0.61 0.63 VL VL 0.56 RCC RCC 

11 Und 0.61 0.58 0.61 0.63 VL VL 0.59 RCC RCC 

12 Und 0.60 0.58 0.60 0.53 VL VL 0.61 RCC RCC 

13 Und 0.60 0.58 0.60 0.63 VL VL 0.63 RCC RCC 

14 Und 0.58 0.58 0.59 VL VL VL 0.64 RCC RCC 

15 Und 0.58 0.60 0.60 VL VL VL 0.65 RCC RCC 
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B.3. 𝑁𝑆𝐸 values of 𝑀2𝐼 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀2𝐼   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 

2 Und Und 0.48 0.52 0.52 0.53 0.54 0.56 0.57 0.57 

3 Und Und 0.52 0.52 0.56 0.57 0.57 0.56 0.57 0.57 

4 Und Und 0.52 0.53 0.60 0.58 0.60 0.58 0.58 0.60 

5 Und Und 0.55 0.56 0.60 0.59 0.62 0.69 0.62 0.64 

6 Und Und 0.56 0.56 0.62 0.59 0.76 0.71 0.75 0.77 

7 Und Und 0.56 0.60 0.63 0.67 0.76 0.71 0.75 0.79 

8 Und Und 0.56 0.61 0.63 0.68 0.75 0.76 0.75 0.79 

9 Und Und 0.56 0.61 0.68 0.69 0.75 0.76 0.79 0.85 

10 Und 0.56 0.59 0.63 0.68 0.69 0.77 0.82 0.79 0.88 

11 Und 0.56 0.61 0.63 0.70 0.78 0.79 0.87 RCC RCC 

12 Und 0.56 0.61 0.64 0.80 0.82 0.79 0.89 RCC RCC 

13 Und 0.56 0.63 0.65 0.80 0.82 0.80 0.91 RCC RCC 

14 Und 0.59 0.63 0.65 0.81 0.82 0.85 0.93 RCC RCC 

15 Und 0.59 0.63 0.65 0.82 0.80 0.89 0.94 RCC RCC 

 

B.4. 𝑁𝑆𝐸 values of 𝑀2𝐼 for validation phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀2𝐼   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 

2 Und Und 0.59 0.59 0.59 0.59 0.59 0.58 0.58 0.57 

3 Und Und 0.59 0.59 0.58 0.56 0.55 0.58 0.57 0.56 

4 Und Und 0.59 0.59 0.54 0.53 0.51 0.52 0.50 0.51 

5 Und Und 0.59 0.58 0.54 0.56 0.53 0.58 0.54 0.51 

6 Und Und 0.58 0.58 0.53 0.56 0.55 0.43 0.56 0.52 

7 Und Und 0.58 0.54 0.50 0.55 0.55 0.43 0.45 0.51 

8 Und Und 0.58 0.57 0.50 0.57 0.48 0.49 0.45 0.44 

9 Und Und 0.58 0.52 0.52 0.53 0.47 0.37 VL 0.57 

10 Und 0.59 0.55 0.51 0.52 0.53 0.46 VL 0.31 VL 

11 Und 0.58 0.54 0.51 0.48 0.38 0.42 VL RCC VL/RCC 

12 Und 0.58 0.53 0.51 0.34 0.39 0.34 VL RCC VL/RCC 

13 Und 0.58 0.52 0.50 0.34 0.38 0.21 VL RCC VL/RCC 

14 Und 0.56 0.52 0.50 0.37 0.36 VL VL RCC VL/RCC 

15 Und 0.56 0.50 0.50 0.38 0.37 VL VL RCC VL/RCC 
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B.5. 𝑁𝑆𝐸 values of 𝑀3𝐼 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀3𝐼   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 

2 Und Und 0.47 0.47 0.52 0.53 0.54 0.54 0.56 0.57 

3 Und Und 0.49 0.52 0.53 0.54 0.56 0.56 0.59 0.57 

4 Und Und 0.52 0.53 0.56 0.56 0.59 0.61 0.59 0.60 

5 Und Und 0.53 0.54 0.56 0.59 0.60 0.62 0.72 0.62 

6 Und Und 0.54 0.56 0.58 0.60 0.60 0.63 0.75 0.76 

7 Und Und 0.54 0.57 0.59 0.60 0.69 0.72 0.78 0.79 

8 Und Und 0.55 0.61 0.61 0.64 0.69 0.76 0.78 0.79 

9 Und Und 0.56 0.61 0.62 0.67 0.75 0.77 0.79 0.79 

10 Und Und 0.57 0.60 0.65 0.67 0.75 0.77 0.84 0.81 

11 Und Und 0.57 0.62 0.65 0.67 0.77 0.79 0.88 RCC 

12 Und Und 0.61 0.62 0.66 0.67 0.77 0.82 0.91 RCC 

13 Und Und 0.59 0.62 0.66 0.68 0.80 0.88 0.93 RCC 

14 Und Und 0.60 0.63 0.68 0.76 0.82 0.91 RCC RCC 

15 Und Und 0.60 0.63 0.73 0.76 0.82 0.94 RCC RCC 

 

B.6. 𝑁𝑆𝐸 values of 𝑀3𝐼 for validation phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀3𝐼   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

2 Und Und 0.60 0.60 0.59 0.59 0.59 0.59 0.58 0.58 

3 Und Und 0.59 0.59 0.59 0.59 0.55 0.53 0.47 0.56 

4 Und Und 0.59 0.59 0.58 0.57 0.49 0.51 0.47 0.46 

5 Und Und 0.58 0.59 0.58 0.51 0.51 0.52 0.63 0.51 

6 Und Und 0.58 0.58 0.50 0.53 0.51 0.52 0.50 0.63 

7 Und Und 0.58 0.52 0.50 0.53 0.57 0.58 0.58 0.41 

8 Und Und 0.58 0.54 0.58 0.53 0.57 0.55 0.58 0.41 

9 Und Und 0.58 0.54 0.56 0.55 0.46 0.57 VL 0.41 

10 Und Und 0.52 0.50 0.50 0.55 0.52 0.61 VL VL 

11 Und Und 0.52 0.48 0.50 0.55 0.50 0.53 VL VL/RCC 

12 Und Und 0.54 0.48 0.49 0.55 0.50 0.40 VL VL/RCC 

13 Und Und 0.49 0.48 0.49 0.55 0.46 VL VL VL/RCC 

14 Und Und 0.49 0.51 0.49 0.50 VL VL VL/RCC VL/RCC 

15 Und Und 0.49 0.51 0.57 0.49 0.57 VL VL/RCC VL/RCC 
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B.7. 𝑁𝑆𝐸 values of 𝑀4𝐼 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀4𝐼   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 

2 Und Und 0.62 0.62 0.63 0.64 0.64 0.64 0.65 0.66 

3 Und Und 0.63 0.63 0.65 0.65 0.66 0.66 0.66 0.66 

4 Und Und 0.63 0.63 0.65 0.66 0.67 0.67 0.66 0.66 

5 Und Und 0.66 0.68 0.65 0.67 0.67 0.68 0.69 0.68 

6 Und Und 0.66 0.65 0.67 0.68 0.67 0.69 0.77 0.77 

7 Und Und 0.65 0.66 0.68 0.69 0.73 0.74 0.79 0.77 

8 Und Und 0.65 0.66 0.68 0.69 0.73 0.75 0.86 0.76 

9 Und Und 0.65 0.66 0.68 0.70 0.73 0.80 0.90 0.80 

10 Und Und 0.65 0.68 0.68 0.71 0.79 0.84 0.92 0.85 

11 Und Und 0.66 0.69 0.68 0.76 0.80 0.87 0.93 0.89 

12 Und Und 0.66 0.68 0.68 0.76 0.80 0.88 0.93 0.90 

13 Und Und 0.67 0.68 0.68 0.78 0.81 0.90 0.94 0.92 

14 Und Und 0.69 0.69 0.69 0.83 0.85 0.95 0.96 0.94 

15 Und Und 0.69 0.69 0.75 0.83 0.86 0.95 0.97 RCC 

 

B.8. 𝑁𝑆𝐸 values of 𝑀4𝐼 for validation phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀4𝐼   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 

2 Und Und 0.53 0.53 0.52 0.52 0.52 0.52 0.52 0.52 

3 Und Und 0.52 0.52 0.53 0.53 0.53 0.53 0.53 0.52 

4 Und Und 0.52 0.52 0.53 0.52 0.52 0.52 0.53 0.51 

5 Und Und 0.52 0.52 0.53 0.52 0.52 0.51 0.51 0.51 

6 Und Und 0.52 0.53 0.53 0.53 0.52 0.51 0.55 0.56 

7 Und Und 0.52 0.52 0.52 0.52 0.54 0.56 0.52 0.56 

8 Und Und 0.52 0.52 0.53 0.52 0.56 0.59 0.38 0.48 

9 Und Und 0.53 0.52 0.52 0.52 0.55 0.46 VL 0.37 

10 Und Und 0.53 0.53 0.52 0.48 0.53 0.46 VL 0.34 

11 Und Und 0.52 0.53 0.52 0.51 0.51 0.06 VL 0.40 

12 Und Und 0.53 0.50 0.54 0.51 0.51 0.30 VL 0.35 

13 Und Und 0.52 0.50 0.54 0.42 0.52 0.34 VL VL 

14 Und Und 0.53 0.51 0.51 0.28 0.56 VL VL VL 

15 Und Und 0.53 0.51 0.54 0.28 0.32 VL VL VL/RCC 
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B.9. 𝑁𝑆𝐸 values of 𝑀5𝐼 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀5𝐼   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 

2 Und Und 0.60 0.60 0.61 0.62 0.63 0.63 0.63 0.63 

3 Und Und 0.60 0.61 0.64 0.65 0.65 0.65 0.66 0.68 

4 Und Und 0.61 0.63 0.64 0.65 0.71 0.72 0.67 0.72 

5 Und Und 0.61 0.65 0.64 0.68 0.71 0.72 0.74 0.76 

6 Und Und 0.62 0.65 0.64 0.69 0.71 0.72 0.78 0.79 

7 Und Und 0.62 0.64 0.65 0.70 0.71 0.72 0.80 RCC 

8 Und Und 0.62 0.64 0.71 0.73 0.79 0.77 0.84 RCC 

9 Und Und 0.64 0.67 0.71 0.73 0.80 0.79 0.87 RCC 

10 Und Und 0.65 0.67 0.72 0.78 0.81 0.81 0.90 RCC 

11 Und Und 0.65 0.70 0.72 0.84 0.83 0.86 RCC RCC 

12 Und Und 0.65 0.70 0.74 0.84 0.87 0.88 RCC RCC 

13 Und Und 0.65 0.71 0.74 0.84 0.91 0.89 RCC RCC 

14 Und 0.63 0.65 0.71 0.81 0.86 0.93 0.91 RCC RCC 

15 Und 0.63 0.65 0.71 0.83 0.90 0.94 0.92 RCC RCC 

 

B.10. 𝑁𝑆𝐸 values of 𝑀5𝐼 for validation phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀5𝐼   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 

2 Und Und 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 

3 Und Und 0.52 0.52 0.53 0.53 0.52 0.53 0.54 0.54 

4 Und Und 0.52 0.52 0.53 0.53 0.56 0.57 0.53 0.56 

5 Und Und 0.52 0.53 0.53 0.54 0.56 0.57 0.57 0.46 

6 Und Und 0.52 0.53 0.53 0.54 0.56 0.57 0.55 0.49 

7 Und Und 0.51 0.52 0.54 0.54 0.56 0.58 0.28 RCC 

8 Und Und 0.51 0.52 0.56 0.56 0.50 0.50 VL RCC 

9 Und Und 0.52 0.54 0.56 0.56 0.50 0.48 VL RCC 

10 Und Und 0.51 0.54 0.59 0.24 0.51 0.32 0.14 RCC 

11 Und Und 0.52 0.56 0.59 0.43 0.31 VL VL/RCC RCC 

12 Und Und 0.53 0.56 0.59 0.31 VL VL VL/RCC RCC 

13 Und Und 0.54 0.55 0.58 0.31 VL VL VL/RCC RCC 

14 Und 0.51 0.54 0.55 0.52 0.28 VL 0.02 VL/RCC RCC 

15 Und 0.51 0.54 0.58 0.40 VL VL VL VL/RCC RCC 
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C. The results of the sub-models for Luleburgaz Streamgage 

C.1. 𝑁𝑆𝐸 values of 𝑀1𝐿 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀1𝐿   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 

2 Und 0.46 0.47 0.47 0.48 0.48 0.48 0.49 0.49 0.49 

3 Und 0.48 0.48 0.48 0.49 0.50 0.49 0.49 0.48 0.48 

4 Und 0.48 0.48 0.49 0.49 0.49 0.49 0.49 0.48 0.48 

5 Und 0.47 0.48 0.50 0.49 0.49 0.48 0.49 0.53 0.52 

6 Und 0.47 0.49 0.50 0.49 0.51 0.48 0.49 0.53 0.61 

7 Und 0.48 0.49 0.50 0.51 0.49 0.48 0.73 RCC 0.67 

8 Und 0.48 0.49 0.50 0.48 0.73 0.73 0.75 RCC RCC 

9 Und 0.49 0.50 0.50 0.48 0.74 0.72 0.81 RCC RCC 

10 Und 0.49 0.50 0.51 0.48 0.75 0.75 RCC RCC RCC 

11 Und 0.49 0.50 0.51 0.63 0.78 0.79 RCC RCC RCC 

12 Und 0.49 0.50 0.51 0.63 0.78 0.89 RCC RCC RCC 

13 Und 0.49 0.50 0.51 0.75 0.84 0.91 RCC RCC RCC 

14 Und 0.51 0.50 0.51 0.80 0.88 0.90 RCC RCC RCC 

15 Und 0.51 0.51 0.48 0.86 0.88 RCC RCC RCC RCC 

 

C.2. 𝑁𝑆𝐸 values of 𝑀1𝐿 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀1𝐿   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

2 Und 0.71 0.74 0.73 0.75 0.76 0.77 0.78 0.78 0.78 

3 Und 0.66 0.73 0.73 0.77 0.80 0.80 0.80 0.80 0.81 

4 Und 0.64 0.73 0.77 0.77 0.80 0.78 0.81 0.79 0.76 

5 Und 0.74 0.73 0.80 0.79 0.81 0.79 0.76 0.79 0.78 

6 Und 0.74 0.76 0.76 0.78 0.77 0.78 0.77 0.77 0.78 

7 Und 0.74 0.77 0.76 0.76 0.82 0.79 0.35 RCC 0.78 

8 Und 0.74 0.76 0.75 0.77 0.39 0.41 0.45 RCC RCC 

9 Und 0.75 0.76 0.76 0.77 0.40 0.58 0.63 RCC RCC 

10 Und 0.75 0.74 0.76 0.72 0.16 0.60 RCC RCC RCC 

11 Und 0.75 0.74 0.76 0.51 0.02 0.64 RCC RCC RCC 

12 Und 0.76 0.75 0.73 0.59 0.15 0.78 RCC RCC RCC 

13 Und 0.77 0.75 0.74 0.46 0.53 VL RCC RCC RCC 

14 Und 0.78 0.75 0.76 0.27 VL VL RCC RCC RCC 

15 Und 0.75 0.77 0.78 0.31 VL VL/RCC RCC RCC RCC 
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C.3. 𝑁𝑆𝐸 values of 𝑀2𝐿 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀2𝐿   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 

2 Und Und 0.55 0.56 0.56 0.57 0.57 0.59 0.59 0.60 

3 Und Und 0.56 0.56 0.59 0.59 0.59 0.59 0.59 0.59 

4 Und Und 0.56 0.57 0.59 0.60 0.61 0.59 0.61 0.61 

5 Und Und 0.57 0.59 0.59 0.60 0.61 0.62 0.61 0.62 

6 Und Und 0.59 0.59 0.60 0.60 0.66 0.64 0.67 0.67 

7 Und Und 0.59 0.58 0.60 0.61 0.66 0.64 0.69 0.73 

8 Und Und 0.59 0.60 0.60 0.61 0.68 0.74 0.76 0.76 

9 Und Und 0.59 0.59 0.62 0.62 0.68 0.80 0.75 0.80 

10 Und Und 0.59 0.59 0.62 0.62 0.68 0.79 0.75 0.95 

11 Und 0.59 0.59 0.59 0.62 0.73 0.73 0.79 RCC RCC 

12 Und 0.59 0.60 0.59 0.62 0.72 0.79 0.91 RCC RCC 

13 Und 0.59 0.60 0.60 0.72 0.72 0.87 0.93 RCC RCC 

14 Und 0.59 0.60 0.60 0.72 0.82 0.87 0.94 RCC RCC 

15 Und 0.59 0.60 0.60 0.72 0.85 0.88 0.96 RCC RCC 

 

C.4. 𝑁𝑆𝐸 values of 𝑀2𝐿 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀2𝐿   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 

2 Und Und 0.54 0.69 0.69 0.69 0.69 0.67 0.67 0.66 

3 Und Und 0.68 0.69 0.66 0.65 0.64 0.66 0.66 0.66 

4 Und Und 0.68 0.68 0.62 0.56 0.52 0.58 0.53 0.51 

5 Und Und 0.68 0.67 0.62 0.52 0.49 0.44 0.49 0.49 

6 Und Und 0.66 0.67 0.59 0.52 0.40 0.44 0.36 0.40 

7 Und Und 0.66 0.64 0.52 0.45 0.39 0.44 0.34 0.42 

8 Und Und 0.66 0.58 0.55 0.43 0.35 0.43 0.31 0.62 

9 Und Und 0.66 0.54 0.49 0.46 0.35 0.40 0.31 0.53 

10 Und Und 0.63 0.54 0.49 0.46 0.35 0.04 VL 0.31 

11 Und 0.67 0.59 0.57 0.49 0.42 0.45 0.13 RCC RCC 

12 Und 0.68 0.57 0.57 0.49 0.42 0.16 0.20 RCC RCC 

13 Und 0.69 0.57 0.53 0.42 0.43 0.16 VL RCC RCC 

14 Und 0.68 0.60 0.53 0.43 0.44 VL VL RCC VL/RCC 

15 Und 0.68 0.58 0.53 0.42 0.44 VL VL RCC VL/RCC 
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C.5. 𝑁𝑆𝐸 values of 𝑀3𝐿 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀3𝐿   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 

2 Und Und 0.55 0.57 0.57 0.57 0.57 0.58 0.61 0.61 

3 Und Und 0.56 0.57 0.61 0.62 0.62 0.63 0.61 0.62 

4 Und Und 0.57 0.57 0.64 0.64 0.63 0.64 0.64 0.64 

5 Und Und 0.57 0.61 0.64 0.64 0.64 0.64 0.65 0.65 

6 Und Und 0.57 0.61 0.63 0.65 0.64 0.64 0.72 0.67 

7 Und Und 0.59 0.63 0.64 0.65 0.65 0.79 0.72 0.72 

8 Und Und 0.59 0.63 0.64 0.64 0.67 0.79 0.80 0.79 

9 Und Und 0.60 0.64 0.64 0.66 0.67 0.81 0.79 0.90 

10 Und Und 0.62 0.64 0.66 0.66 0.71 0.84 0.88 0.90 

11 Und Und 0.63 0.64 0.66 0.67 0.71 0.92 0.93 0.95 

12 Und Und 0.64 0.64 0.66 0.77 0.72 0.92 0.93 RCC 

13 Und Und 0.64 0.63 0.66 0.81 0.86 0.95 0.96 RCC 

14 Und Und 0.64 0.63 0.66 0.89 0.90 0.95 0.98 RCC 

15 Und Und 0.64 0.63 0.66 0.90 0.89 0.98 0.99 RCC 

 

C.6. 𝑁𝑆𝐸 values of 𝑀3𝐿 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀3𝐿   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 

2 Und Und 0.60 0.54 0.54 0.54 0.54 0.54 0.52 0.52 

3 Und Und 0.54 0.54 0.52 0.47 0.48 0.46 0.52 0.51 

4 Und Und 0.54 0.54 0.46 0.45 0.47 0.44 0.41 0.42 

5 Und Und 0.54 0.52 0.46 0.43 0.37 0.42 0.45 0.44 

6 Und Und 0.48 0.52 0.38 0.44 0.41 0.43 0.43 0.48 

7 Und Und 0.53 0.50 0.41 0.45 0.49 0.36 0.43 0.21 

8 Und Und 0.53 0.50 0.45 0.46 0.38 0.46 0.46 0.59 

9 Und Und 0.53 0.41 0.45 0.45 0.38 0.16 0.25 VL 

10 Und Und 0.49 0.41 0.45 0.45 0.27 0.10 VL VL 

11 Und Und 0.50 0.44 0.44 0.47 0.27 0.33 VL VL 

12 Und Und 0.43 0.45 0.44 0.47 0.26 0.35 VL VL/RCC 

13 Und Und 0.42 0.45 0.44 0.35 0.32 0.25 VL VL/RCC 

14 Und Und 0.42 0.45 0.43 0.39 VL 0.36 VL VL/RCC 

15 Und Und 0.43 0.45 0.43 0.36 VL VL VL VL/RCC 
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C.7. 𝑁𝑆𝐸 values of 𝑀4𝐿 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀4𝐿   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 

2 Und Und 0.54 0.54 0.57 0.58 0.58 0.58 0.59 0.61 

3 Und Und 0.55 0.57 0.57 0.58 0.62 0.62 0.62 0.61 

4 Und Und 0.57 0.57 0.61 0.62 0.62 0.64 0.62 0.64 

5 Und Und 0.58 0.58 0.61 0.62 0.65 0.64 0.65 0.64 

6 Und Und 0.58 0.59 0.62 0.64 0.65 0.64 0.67 0.67 

7 Und Und 0.59 0.61 0.62 0.64 0.64 0.65 0.67 0.79 

8 Und Und 0.59 0.61 0.64 0.64 0.65 0.65 0.73 0.85 

9 Und Und 0.61 0.62 0.64 0.64 0.65 0.67 0.84 0.90 

10 Und Und 0.61 0.63 0.65 0.64 0.65 0.82 0.94 0.91 

11 Und Und 0.62 0.64 0.65 0.65 0.66 0.90 0.96 0.94 

12 Und Und 0.62 0.64 0.65 0.65 0.66 0.91 0.98 0.94 

13 Und Und 0.62 0.64 0.65 0.65 0.66 0.96 0.99 0.97 

14 Und Und 0.63 0.65 0.64 0.65 0.82 0.96 0.99 0.97 

15 Und Und 0.64 0.65 0.64 0.67 0.83 0.96 0.99 0.98 

 

C.8. 𝑁𝑆𝐸 values of 𝑀4𝐿 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀4𝐿   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 

2 Und Und 0.59 0.59 0.56 0.56 0.56 0.56 0.55 0.53 

3 Und Und 0.59 0.56 0.56 0.56 0.51 0.50 0.49 0.52 

4 Und Und 0.56 0.56 0.53 0.52 0.50 0.37 0.50 0.38 

5 Und Und 0.54 0.54 0.53 0.51 0.32 0.28 0.38 0.33 

6 Und Und 0.54 0.54 0.50 0.38 0.32 0.28 0.39 0.40 

7 Und Und 0.55 0.52 0.50 0.37 0.39 0.42 0.41 VL 

8 Und Und 0.56 0.52 0.42 0.38 0.47 0.46 VL VL 

9 Und Und 0.53 0.49 0.41 0.39 0.46 0.37 0.03 VL 

10 Und Und 0.53 0.47 0.42 0.40 0.46 0.48 VL VL 

11 Und Und 0.49 0.40 0.42 0.45 0.49 VL VL VL 

12 Und Und 0.50 0.40 0.42 0.45 0.49 VL VL VL 

13 Und Und 0.50 0.44 0.41 0.45 0.49 VL VL VL 

14 Und Und 0.44 0.44 0.44 0.44 0.49 VL VL VL 

15 Und Und 0.41 0.44 0.47 0.45 VL VL VL VL 
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D. The results of the sub-models for Hayrabolu Streamgage 

D.1. 𝑁𝑆𝐸 values of 𝑀1𝐻 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀1𝐻   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

2 Und 0.62 0.64 0.60 0.60 0.61 0.62 0.62 0.62 0.63 

3 Und 0.59 0.60 0.60 0.65 0.66 0.67 0.67 0.68 0.68 

4 Und 0.59 0.60 0.61 0.65 0.68 0.68 0.67 0.68 0.68 

5 Und 0.63 0.60 0.63 0.65 0.68 0.69 0.69 0.70 0.71 

6 Und 0.63 0.61 0.66 0.66 0.69 0.69 0.70 0.72 0.72 

7 Und 0.64 0.65 0.66 0.68 0.71 0.70 0.71 RCC 0.74 

8 Und 0.64 0.65 0.62 0.70 0.72 0.71 0.73 RCC RCC 

9 Und 0.60 0.65 0.63 0.70 0.72 0.73 0.74 RCC RCC 

10 Und 0.60 0.66 0.70 0.71 0.74 0.74 RCC RCC RCC 

11 Und 0.60 0.66 0.70 0.71 0.75 0.74 RCC RCC RCC 

12 Und 0.63 0.67 0.71 0.73 0.75 0.74 RCC RCC RCC 

13 Und 0.63 0.67 0.72 0.72 0.75 0.75 RCC RCC RCC 

14 Und 0.67 0.67 0.72 0.74 0.75 0.75 RCC RCC RCC 

15 Und 0.67 0.65 0.73 0.75 0.76 RCC RCC RCC RCC 

 

D.2. 𝑁𝑆𝐸 values of 𝑀1𝐻 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀1𝐻   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

2 Und 0.32 0.27 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

3 Und 0.32 0.32 0.32 0.33 0.34 0.37 0.39 0.39 0.40 

4 Und 0.32 0.32 0.32 0.33 0.40 0.40 0.40 0.40 0.38 

5 Und 0.32 0.32 0.34 0.38 0.40 0.40 0.40 0.37 0.34 

6 Und 0.32 0.32 0.35 0.38 0.44 0.40 0.40 0.34 0.34 

7 Und 0.32 0.33 0.35 0.42 0.35 0.36 0.39 RCC 0.29 

8 Und 0.32 0.32 0.39 0.35 0.34 0.38 0.35 RCC RCC 

9 Und 0.32 0.32 0.39 0.35 0.43 0.34 0.35 RCC RCC 

10 Und 0.32 0.37 0.37 0.35 0.37 0.36 RCC RCC RCC 

11 Und 0.32 0.36 0.37 0.35 0.42 VL RCC RCC RCC 

12 Und 0.32 0.35 0.38 0.36 0.41 VL RCC RCC RCC 

13 Und 0.32 0.36 0.37 0.37 VL VL RCC RCC RCC 

14 Und 0.36 0.36 0.37 0.35 VL VL RCC RCC RCC 

15 Und 0.36 0.39 0.36 0.31 VL VL/RCC RCC RCC RCC 
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D.3. 𝑁𝑆𝐸 values of 𝑀2𝐻 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀2𝐻   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 

2 Und Und 0.70 0.69 0.69 0.69 0.69 0.68 0.68 0.68 

3 Und Und 0.68 0.69 0.65 0.63 0.62 0.68 0.65 0.65 

4 Und Und 0.68 0.68 0.72 0.74 0.74 0.73 0.76 0.77 

5 Und Und 0.68 0.63 0.72 0.73 0.74 0.79 0.72 0.77 

6 Und Und 0.65 0.63 0.68 0.73 0.81 0.80 0.79 0.80 

7 Und Und 0.65 0.71 0.74 0.79 0.81 0.80 0.80 0.80 

8 Und Und 0.65 0.72 0.74 0.80 0.81 0.82 0.80 0.82 

9 Und Und 0.64 0.73 0.80 0.81 0.81 0.82 0.80 0.82 

10 Und 0.66 0.65 0.73 0.80 0.81 0.81 0.84 0.84 0.85 

11 Und 0.65 0.72 0.73 0.81 0.83 0.82 0.85 RCC RCC 

12 Und 0.65 0.72 0.74 0.83 0.84 0.84 0.85 RCC RCC 

13 Und 0.65 0.73 0.75 0.83 0.84 0.84 0.86 RCC RCC 

14 Und 0.65 0.73 0.75 0.83 0.84 0.85 0.88 RCC RCC 

15 Und 0.65 0.73 0.75 0.83 0.84 0.85 0.89 RCC RCC 

 

D.4. 𝑁𝑆𝐸 values of 𝑀2𝐻 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀2𝐻   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

2 Und Und 0.35 0.36 0.36 0.37 0.37 0.38 0.39 0.39 

3 Und Und 0.37 0.36 0.38 0.39 0.39 0.38 0.39 0.39 

4 Und Und 0.37 0.37 0.41 0.42 0.42 0.41 0.40 0.41 

5 Und Und 0.37 0.38 0.41 0.39 0.37 0.45 0.38 0.48 

6 Und Und 0.38 0.38 0.40 0.39 0.36 0.43 0.35 0.45 

7 Und Und 0.38 0.40 0.40 0.44 0.36 0.43 0.43 0.47 

8 Und Und 0.38 0.34 0.40 0.45 0.42 0.47 0.42 0.50 

9 Und Und 0.38 0.40 0.43 0.43 0.42 0.50 0.48 VL 

10 Und 0.37 0.37 0.42 0.43 0.42 0.39 0.47 0.44 VL 

11 Und 0.37 0.37 0.41 0.44 0.39 0.48 VL RCC VL/RCC 

12 Und 0.37 0.40 0.43 0.40 0.51 0.49 VL RCC VL/RCC 

13 Und 0.37 0.40 0.43 0.40 0.56 0.44 VL RCC VL/RCC 

14 Und 0.36 0.40 0.43 0.38 0.51 0.42 VL RCC VL/RCC 

15 Und 0.36 0.40 0.43 0.39 0.47 VL VL RCC VL/RCC 
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D.5. 𝑁𝑆𝐸 values of 𝑀4𝐻 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀4𝐻   (training) 𝑟𝑎  

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 

2 Und Und 0.67 0.60 0.60 0.61 0.60 0.61 0.62 0.63 

3 Und Und 0.62 0.60 0.60 0.61 0.59 0.59 0.65 0.60 

4 Und Und 0.62 0.59 0.68 0.66 0.72 0.74 0.69 0.77 

5 Und Und 0.61 0.58 0.68 0.73 0.75 0.79 0.80 0.79 

6 Und Und 0.62 0.57 0.61 0.75 0.77 0.83 0.80 0.83 

7 Und Und 0.63 0.61 0.77 0.75 0.83 0.84 0.82 0.84 

8 Und Und 0.56 0.61 0.77 0.80 0.84 0.84 0.82 0.86 

9 Und Und 0.56 0.67 0.77 0.80 0.84 0.86 0.85 0.87 

10 Und 0.37 0.57 0.70 0.77 0.83 0.85 0.87 0.85 0.88 

11 Und 0.37 0.61 0.72 0.77 0.84 0.85 0.89 0.87 0.89 

12 Und 0.37 0.63 0.74 0.82 0.85 0.88 0.89 0.89 0.90 

13 Und 0.37 0.69 0.74 0.83 0.86 0.89 0.90 0.89 0.90 

14 Und 0.36 0.72 0.74 0.83 0.87 0.89 0.92 0.91 0.92 

15 Und 0.36 0.72 0.76 0.83 0.88 0.90 0.93 0.91 0.93 

 

D.6. 𝑁𝑆𝐸 values of 𝑀4𝐻 for validation phase computed with different number of 𝑐 and 

𝑟𝑎 

𝑀4𝐻   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

2 Und Und 0.42 0.44 0.45 0.45 0.45 0.45 0.45 0.45 

3 Und Und 0.44 0.44 0.45 0.44 0.45 0.45 0.44 0.45 

4 Und Und 0.44 0.44 0.45 0.41 0.47 0.48 0.44 0.48 

5 Und Und 0.44 0.44 0.45 0.41 0.43 0.46 0.51 0.51 

6 Und Und 0.44 0.44 0.37 0.47 0.45 0.44 0.49 0.48 

7 Und Und 0.44 0.43 0.44 0.46 0.45 0.43 0.49 0.50 

8 Und Und 0.44 0.43 0.42 0.49 0.46 0.47 0.45 0.45 

9 Und Und 0.44 0.39 0.42 0.49 0.46 0.42 0.46 0.48 

10 Und 0.37 0.44 0.39 0.42 0.46 0.44 0.48 0.50 0.41 

11 Und 0.37 0.42 0.40 0.43 0.46 0.42 0.45 VL 0.32 

12 Und 0.37 0.42 0.41 0.42 0.47 0.45 0.22 VL 0.26 

13 Und 0.37 0.38 0.41 0.43 0.48 0.49 VL 0.44 VL 

14 Und 0.36 0.43 0.41 0.44 0.46 0.47 VL VL VL 

15 Und 0.36 0.41 0.42 0.44 0.49 VL VL VL VL 
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D.7. 𝑁𝑆𝐸 values of 𝑀5𝐻 for training phase computed with different number of 𝑐 and 𝑟𝑎 

𝑀5𝐻   (training) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 

2 Und Und 0.54 0.48 0.47 0.45 0.44 0.41 0.42 0.43 

3 Und Und 0.46 0.46 0.32 0.30 0.35 0.68 0.73 0.76 

4 Und Und 0.44 0.43 0.60 0.68 0.74 0.68 0.72 0.76 

5 Und Und 0.45 0.29 0.60 0.70 0.77 0.79 0.73 0.79 

6 Und Und 0.46 0.28 0.55 0.78 0.82 0.83 0.82 0.81 

7 Und Und 0.35 0.48 0.72 0.81 0.82 0.84 0.82 0.81 

8 Und Und 0.37 0.62 0.72 0.81 0.83 0.84 0.82 0.82 

9 Und Und 0.41 0.63 0.72 0.81 0.84 0.85 0.84 0.82 

10 Und Und 0.41 0.69 0.81 0.82 0.85 0.86 0.87 0.85 

11 Und Und 0.59 0.69 0.81 0.84 0.85 0.86 0.87 RCC 

12 Und Und 0.61 0.69 0.81 0.84 0.87 0.86 0.89 RCC 

13 Und 0.34 0.61 0.70 0.82 0.84 0.87 0.88 0.90 RCC 

14 Und 0.40 0.66 0.70 0.83 0.85 0.89 0.88 0.90 RCC 

15 Und 0.40 0.67 0.65 0.83 0.85 0.90 0.90 0.90 RCC 

 

D.8. 𝑁𝑆𝐸 values of 𝑀5𝐻 for validation phase computed with different number of 𝑐 and  

𝑟𝑎 

𝑀5𝐻   (validation) 𝑟𝑎 

number of 𝑐 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1 Und Und 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 

2 Und Und 0.41 0.41 0.42 0.42 0.42 0.42 0.43 0.43 

3 Und Und 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.44 

4 Und Und 0.42 0.42 0.42 0.43 0.44 0.43 0.43 0.46 

5 Und Und 0.42 0.42 0.42 0.39 0.45 0.47 0.43 0.53 

6 Und Und 0.42 0.42 0.40 0.41 0.46 0.46 0.45 0.53 

7 Und Und 0.42 0.40 0.46 0.46 0.45 0.48 0.38 0.54 

8 Und Und 0.42 0.39 0.45 0.46 0.44 0.49 0.39 0.49 

9 Und Und 0.41 0.40 0.45 0.47 0.44 0.41 0.38 0.53 

10 Und Und 0.41 0.40 0.44 0.44 0.44 VL 0.40 0.53 

11 Und Und 0.37 0.40 0.44 0.43 0.44 VL 0.30 RCC 

12 Und Und 0.37 0.39 0.44 0.39 0.35 VL VL RCC 

13 Und 0.41 0.37 0.40 0.43 0.42 0.34 VL VL RCC 

14 Und 0.40 0.40 0.40 0.44 0.40 0.21 VL VL RCC 

15 Und 0.40 0.44 0.44 0.44 0.40 VL VL VL RCC 
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