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ABSTRACT

MINIMUM WEIGHTED PERFECT NEIGHBORHOOD SET PROBLEM

Hastürk, Umur
M.S., Department of Operational Research

Supervisor: Assist. Prof. Dr. Mustafa Kemal Tural

July 2020, 118 pages

Given an undirected simple graph G = (V,E), the open neighborhood of a vertex

j ∈ V , denoted by δ(j), is defined as the set of all vertices that are adjacent to j ,

i.e., δ(j) = {i| {i, j} ∈ E}. The closed neighborhood of a vertex j, denoted by ∆(j),

is defined as ∆(j) = δ(j) ∪ {j}. For a set S ⊆ V , a vertex j is said to be perfect

with respect to S, i.e., S-perfect, if |∆(j) ∩ S| = 1. The set S is said to be a perfect

neighborhood set if the set of S-perfect vertices dominate G.

Hedetniemi et al. (1997) [1] proposed a linear-time algorithm for the minimum car-

dinality perfect neighborhood set problem when G is a tree. We observe some flaws

in the proposed algorithm and correct them. Moreover, we consider the weighted

version of the problem, where the weight of a perfect neighborhood set S is defined

as
∑

j∈V (wjyj + vjxj). Here yj and xj are binary parameters taking the value 1 if

and only if j is in S and j is S-perfect, respectively, and wj and vj are the weights

associated with vertex j. We extend the algorithm proposed by Hedetniemi et al. for

trees to the weighted case and check its correctness by comparing its solutions with

the solutions of an integer programming formulation that we propose for arbitrary

graphs.
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Additionally, we provide some valid inequalities for the integer programming formu-

lation to make it stronger, and characterize the perfect neighborhood set polytope for

star graphs and complete graphs by the help of these valid inequalities. Finally, we

conduct computational experiments to see the effects of these valid inequalities.

Keywords: Perfect Neighborhood Set, Integer Programming, Valid Inequality, Tree,

Dominating Set
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ÖZ

MİNİMUM AĞIRLIKLI MÜKEMMEL KOMŞULUK KÜMESİ PROBLEMİ

Hastürk, Umur
Yüksek Lisans, Yöneylem Araştırması Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Mustafa Kemal Tural

Temmuz 2020 , 118 sayfa

Yönsüz basit bir çizge G = (V,E) üzerinde, δ(j) ile gösterilen j ∈ V düğümünün

açık komşuluk kümesi, j’ye bitişik tüm komşuların kümesi olarak tanımlanır, diğer

bir deyişle δ(j) = {i| {i, j} ∈ E}. ∆(j) ile gösterilen j düğümünün kapalı komşuluk

kümesi ise ∆(j) = δ(j) ∪ {j} olarak tanımlanır. Bir küme S ⊆ V için, eğer |∆(j) ∩
S| = 1 ise j düğümü S’ye göre mükemmel, diğer bir deyişle S-mükemmel kabul

edilir. Eğer S-mükemmel düğümler kümesi, G çizgesinin bir baskınlık kümesi ise, S

kümesine mükemmel komşuluk kümesi denir.

Hedetniemi ve diğ. (1997) [1], G bir ağaç olduğunda en az eleman sayılı mükem-

mel komşuluk kümesi problemini çözen ve doğrusal zamanda çalışan bir algoritma

önerdi. Biz, önerilen algoritmada bazı kusurlar gözlemledik ve bu çalışmada bunları

düzelttik. Ayrıca, sorunun ağırlıklı versiyonunu ele alarak bir S mükemmel komşuluk

kümesinin ağırlığını
∑

j∈V (wjyj + vjxj) ile belirledik. Burada yj ve xj , j’nin S’nin

içinde ve S-mükemmel olduğu durumlarda 1 değerini alan ikili değişkenlerdir, ve

wj ve vj , j düğümü ile ilişkilendirilen ağırlık değerleridir. Biz önerilen algoritmayı,

ağırlıklı versiyonu ele alacak şekilde genişlettik ve algoritmanın doğruluğunu, her-

vii



hangi bir çizge için önerdiğimiz bir tam sayılı programlama formülasyonundan gelen

çözüm değerleri ile kendisinin çözümlerini kıyaslayarak kontrol ettik.

Ayrıca, tam sayılı programlama formülasyonunu daha güçlü hale getirmek için ek

geçerli eşitsizlikler sağladık, ve bu geçerli eşitsizliklerin yardımıyla yıldız çizgeler

ve tam çizgeler için mükemmel komşuluk kümesi politopunu karakterize ettik. Son

olarak, bu geçerli eşitsizliklerin etkilerini görmek için hesaplama deneyleri yaptık.

Anahtar Kelimeler: Mükemmel Komşuluk Kümesi, Tam Sayı Programlama, Geçerli

Eşitsizlik, Ağaç, Baskınlık Kümesi
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CHAPTER 1

INTRODUCTION

Let G = (V,E) be an undirected simple graph, where V is the set of its vertices and

E is the set of its edges. The vertices i ∈ V and j ∈ V (i 6= j) are said to be adjacent

if {i, j} ∈ E. The open neighborhood of a vertex j, denoted by δ(j), is defined as

the set of all vertices that are adjacent to j , i.e., δ(j) = {i| {i, j} ∈ E}. The closed

neighborhood of a vertex j, denoted by ∆(j), is defined as ∆(j) = δ(j) ∪ {j}. The

cardinality, i.e., number of elements, of a set A is denoted as |A|. The order of a

graph G = (V,E) is the cardinality of V . The degree of a vertex j is the number

of edges connected to it, which is equal to |δ(j)|. A vertex j is called pendant if

|δ(j)| = 1. If a vertex is adjacent to a pendant vertex, then it is named as a support

vertex. Therefore, the set of pendant and support vertices are defined as Pen =

{j| |δ(j)| = 1} and Sup = {j| {i, j} ∈ E, i pendant}, respectively. A set D ⊆ V is

said to be a dominating set of G if each vertex in V − D is adjacent to at least one

vertex in D.

Given a set S ⊆ V , a vertex j is said to be perfect with respect to S if |∆(j)∩S| = 1.

In this case, vertex j is said to be S-perfect. We also denote the set of all S-perfect

vertices of G by S − perfect. If the set of S-perfect vertices, i.e. S − perfect, is a

dominating set of G, then S is called a perfect neighborhood set (PN set) of G.

As an example, let G = (V,E) be the graph with V = {1, 2, 3} and E = {{1, 2}
, {2, 3}} (see Figure 1.1). Note that in this graph, we have ∆(1) = {1, 2}, ∆(2) =

{1, 2, 3} and ∆(3) = {2, 3}.

Let us assume that S = {1}. In this case, it can be seen that the vertices 1 and 2

are S-perfect as we have |∆(j) ∩ S| = 1 for j = 1, 2. This example is displayed in
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1 2 3

Figure 1.1: An example graph with three vertices.

Figure 1.2. If a vertex is selected to be in the set S (here the vertex 1), then the vertex

is colored in black. Moreover, if a vertex is S-perfect (here the vertices 1 and 2), then

a square is placed outside the vertex. It can be observed the set of S-perfect vertices

is a dominating set of G (since vertices 1 and 2 are in the set of S-perfect vertices

and vertex 3 is adjacent to a vertex in the set of S-perfect vertices, namely vertex 2).

Therefore, it can be concluded that the set S = {1} is a PN set of G.

1 2 3

Figure 1.2: Graphical display of the vertices in S and S − perfect when S = {1}.

For the same graph, now let us assume that S = {1, 2} (see Figure 1.3). In this case,

we have |∆(1)∩S| = | {1, 2}∩{1, 2} | = 2, |∆(2)∩S| = | {1, 2, 3}∩{1, 2} | = 2 and

|∆(3) ∩ S| = | {2, 3} ∩ {1, 2} | = 1, implying that the only vertex that is S-perfect is

vertex 3. Since the set of S-perfect vertices is not a dominating set of G in this case,

we have that S = {1, 2} is not a PN set of G.

1 2 3

Figure 1.3: Graphical display of the vertices in S and S − perfect when S = {1, 2}.

Given a graph G, the minimum (maximum) cardinality PN set problem, abbreviated

as MinCPNSP (MaxCPNSP), is the problem of finding a PN set of minimum (max-

imum) cardinality in G. Note that both problems MinCPNSP and MaxCPNSP take

into account the cardinalities of PN sets, but not the cardinalities of the sets of perfect
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vertices with respect to PN sets. In this thesis, we also consider the cardinalities of

the sets of perfect vertices with respect to the PN sets by proposing the minimum

weighted perfect neighborhood set problem (MinWPNSP) which aims to find a PN

set S in a given graphG of minimum weight, where the weight of a set S is defined as∑
j∈S wj+

∑
j∈S−perfect vj . Here wj and vj are the weights associated with the vertex

j. Whenwj = 1 and vj = 0 for all j ∈ V , the MinWPNSP reduces to the MinCPNSP.

On the other hand, when wj = −1 and vj = 0 for all j ∈ V , the MinWPNSP reduces

to the MaxCPNSP.

In the next chapter, we provide a literature review on perfect neighborhood sets. Then,

in Chapter 3, we show that the algorithm proposed by Hedetniemi et al. (1997) [1] to

solve the MinCPNSP in trees has some flaws and does not work correctly. In addition

to fixing this algorithm, we also extend it to make it work for the weighted problem,

i.e., the MinWPNSP, in trees. In Chapter 4, we propose an integer programming (IP)

formulation for the MinWPNSP that is applicable to any graph G and in Chapter

5, we compare the IP formulation with our extended algorithm in terms of solution

time and check the correctness of the algorithm by comparing the objective function

values of the two approaches. In Chapter 6, we provide some valid inequalities for

the MinWPNSP and characterize the perfect neighborhood set polytope in star and

complete graphs. In Chapter 7, we study the effects of the valid inequalities and

finally, we conclude in Chapter 8 with some future research directions.
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CHAPTER 2

LITERATURE REVIEW

Perfect neighborhood sets were introduced by Fricke et al. (1999) [2]. The authors

defined the lower and upper perfect neighborhood numbers of G, denoted by θ(G)

and Θ(G), respectively, as the cardinality of the optimal solutions of MinCPNSP and

MaxCPNSP, respectively.

A set S ⊆ V of a graph G = (V,E) is called a 2-dominating set if each vertex in

V − S is within a distance of at most two edges with at least one vertex of S. A

2-dominating set S is minimal if S − {j} is not a 2-dominating set for all j ∈ S.

The minimum (maximum) cardinality among all minimal 2-dominating sets of G is

denoted by γ2(G) (Γ2(G)). It can be shown that every PN set is also a 2-dominating

set (see Proposition 6.1 for the proof in our context), and therefore as argued in [2]

we have that γ2(G) ≤ θ(G).

Let γ(G) (Γ(G)) denote the minimum (maximum) cardinality among all minimal

dominating sets of a graph G. It has been proved in [2] that for any minimal dom-

inating set D, there exists a PN set of G of cardinality |D|. This proof gives the

immediate results as θ(G) ≤ γ(G) and Θ(G) ≥ Γ(G). The authors also show that

for any graph G, Θ(G) ≤ Γ(G) holds true. Overall, the final result is Θ(G) = Γ(G)

for an arbitrary graph G.

Closed neighborhood of a set S is defined as the union of the closed neighborhoods

of the vertices in S, i.e., ∆(S) = ∪v∈S∆(v). The S-private neighborhood set of a

vertex v ∈ S is defined as pn[v, S] = ∆(v) − ∆(S − {v}). A set S is irredundant

if for every vertex v ∈ S, pn[v, S] 6= ∅. ir(G) (IR(G)) represents the lower (upper)

irredundance number which is the minimum (maximum) cardinality of a maximal
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irredundant set in G. The authors also mentioned a conjecture as for all graphs G,

θ(G) ≤ ir(G).

This conjecture has been proved to be true for any tree T by Cockayne et al. (1998)

[3]. It is also proved in this paper that if S is a PN set, then S is irredundant. Moreover,

the conjecture has also been proved to be true for a graph G if G is claw-free or if

G has a maximal irredundant set S of minimum cardinality for which the subgraph

induced by S has at most six non-isolated vertices by Cockayne et al. (1999) [4].

However, Favaron and Puech (1999) [5] had a counterexample to this conjecture and

proved that the conjecture is not necessarily correct for an arbitrary graph G and

θ(G)− ir(G) can be arbitrarily large.

Hedetniemi et al. (1997) [1] continued to work on θ(G). They proved that the de-

cision problem of computing θ(G) (i.e., computing if a graph has a PN set of cardi-

nality at most k) is NP-complete for bipartite and chordal graphs. Additionally, some

bounds are provided for θ(G). The authors combined the result of θ(G) ≤ γ(G) with

the result that γ(G) ≤ n/2 which holds true for every connected graph G of order

n ≥ 2 (see Haynes et al. (1998) [6]) and showed that if G is a connected graph of

order n ≥ 2, then θ(G) ≤ n/2. Moreover, they have also proposed and proved that

θ(G) ≤ n/3 is satisfied if G is a connected graph of order n ≥ 3 and if the minimum

degree of the vertices is 2. Lastly, they presented a linear time algorithm to compute

θ(T ) for any tree T . This algorithm has some flaws and does not work as intended.

This is discussed in Chapter 3 in detail.

Later, Xie et al. (2007) [7] worked on the MaxCPNSP. They provided an algorithm

that finds Θ(T ) for a given tree T in O(n2) time (n = |V |).

Denoting G[S] as the subgraph induced by S in G = (V,E), a set S is independent if

all vertices of G[S] are isolated, i.e., if the edge set of G[S] is an empty set. Favaron

and Puech (1999) [5] have introduced that a set S ⊆ V is called an “Independent

perfect neighborhood set” if S is a PN set and if S is an independent set. The authors

denote by θi(G) the minimum cardinality of an independent PN set and mention that

θ(G) ≤ θi(G) is satisfied. They prove that ifG is a claw-free graph, I an independent

set of G and ∆2[I] = V , then I is a PN set of G. Here, ∆2(I) represents the double

neighborhood, i.e., the set of all vertices of G that can be reached from the set I

6



within at most two edges. Additionally, Xie et al. (2007) [7] made a conjecture

that Θi(T ) = Θ(T ) = IR(T ), where Θi(T ) denotes the maximum cardinality of

an independent PN set for a tree T . Favaron (2000) [8], later, mentions that every

maximal independent set is a PN set.

A similar definition to PN sets, named as “Open perfect neighborhood sets”, is in-

troduced by Hedetniemi (2006) [9]. For these sets, it is still expected that S-perfect

vertices are dominating the given graph G, and a vertex j is assumed to be S-perfect

if |δ(j)∩S| = 1. The problems of finding the minimum and maximum cardinality of

open perfect neighborhood sets have never been studied in any paper in the literature

[10].

The reader should note that in addition to the perfect neighborhood set definition

made by Fricke et al. (1999) [2], there has been another definition of perfect neigh-

borhood sets in the literature which is introduced by Sampathkumar and Neeralagi

(1994) [11]. The authors define the set S ⊆ V as a PN set if for all u, v ∈ S (u 6= v),

∆(u)∩∆(v) = ∅ is satisfied. There is no direct relationship between these definitions,

so one set might be a PN set for only one of the two definitions.

PN sets have direct relations with many concepts in graph theory such as dominating

sets, irredundant sets, and packings, see e.g. [1, 2, 7]. Thus, many complicated char-

acteristics of several graph theory problems can be encountered within the problems

involving PN sets. Additionally, PN sets can find applications in computer networks,

physiology, transportation, etc (see Xie et al. (2007) [7]).

We also observe that the concept is applicable on a security problem on a graph

G = (V,E). We place weapons and controllers on the vertices and we assume that

a weapon in i ∈ V should be controlled by a controller in j ∈ V if j ∈ ∆(i).

Thus, both the weapon and the controller can be placed on the same vertex. How-

ever, neither more than one weapon nor controller can be placed on the same vertex.

A controller can control more than one weapon at a time and for a weapon in i, we

assume that the control is only possible if there does not exist any other controller in

∆(i) because of interference. If this is satisfied, we assume that the weapon protects

∆(i). The aim of the problem is to place weapons and their controllers in a way that

all vertices in V are protected. If we also assume the cost of installing weapons or
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controllers on the vertices are different than each other, then this problem would be

an example of MinWPNSP, where controllers and weapons represent the set S and

S − perfect, respectively.

Optimization problems related to PN sets in the literature focused on the cardinality

of PN sets. Therefore it is assumed that the weights of all vertices are equal to each

other. Moreover, none of the studies focused on using IP techniques to solve these

optimization problems. Our motivation is to fill these gaps of the literature for the PN

sets.
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CHAPTER 3

A LINEAR TIME ALGORITHM FOR TREES

In this section, we propose a linear time algorithm for the MinWPNSP in trees. This

algorithm generalizes the algorithm proposed by Hedetniemi et al. (1997) [1] for the

MinCPNSP in trees. While doing that, we have also changed the authors’ algorithm

to make it work as intended.

3.1 The Algorithm of Hedetniemi et al. (1997) [1] to Compute θ(G)

Assume that T0 = (V,E) is a tree with a specified root. For a vertex i, any vertex

j of T0 (j 6= i) that lies on the unique path from i to the root of the tree is called

an ascendant of i. In this case, we also say that i is a descendant of j. If j is an

ascendant of i and {i, j} ∈ E, then j is called the parent of i and i is called a child

of j. Hedetniemi et al. (1997) [1] assume that the vertex set of the tree T0 is V =

{1, 2, 3, . . . , p}, where 1 is the root node of T0 and for any i < j they have that j is not

an ascendant of i. Their algorithm uses an input vector parent, called the parent array,

where parent[i] represents the parent of i. The algorithm starts with p trees which are

all isolated vertices and then joins p to parent[p] by adding an edge between them.

Next, it joins p − 1 to parent[p − 1] and continues in this manner finally joining

2 to parent[2] = 1. Throughout these iterations new trees are formed and after all

iterations tree T0 is constructed. In this thesis, we assume that p = n = |V |.

Hedetniemi et al. (1997) [1] start by characterizing all possible (rooted) tree-subset

pairs (T, S) which may lead to a PN set of T0 after the iterations described above are

performed. In this notation, T represents a subtree of T0 which is obtained during

the iterations described above and S represents a subset of the vertices of T . Let us
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assume that r is the root of T . If none of the conditions below hold true, then the

corresponding tree-subset pair cannot yield a PN set of T0. We call these conditions

as Item i and Item ii.

i. If r ∈ ∆(S), then every vertex of T , except possibly for r, is S-perfect or adja-

cent with an S-perfect vertex,

ii. If r /∈ ∆(S), then every vertex of T , except for r and possibly for some neighbors

of r, is S-perfect or adjacent with an S-perfect vertex.

Assume that we have two tree-subset pairs, (T1, S1) and (T2, S2), where r1 is the root

of T1 and r2 is the root of T2. Hedetniemi et al. (1997) [1] combine (T1, S1) and

(T2, S2) by putting an edge between r1 and r2, and calling r1 as the root of the new

tree obtained. After this combination, a new tree-subset pair (T, S) is obtained with

T having r1 as its root. This combination operation, denoted by the symbol o, is

displayed below

(T1(V1, E1), S1 ⊆ V1) o (T2(V2, E2), S2 ⊆ V2) = (T (V,E), S ⊆ V )

where

V = V1 ∪ V2

E = E1 ∪ E2 ∪ {r1, r2}

S = S1 ∪ S2

An example of a combination is shown in Figure 3.1. In this example, S1 = ∅ and

therefore S = S2. In the figure, the vertices in S1, S2, and S are colored in black.

Note that the root of T which is denoted by r is the same as r1. Observe that after the

combination, the set S obtained is a PN set of T (vertices in squares dominate T ).

Then, authors classify possible tree-subset pairs (T, S) (with root r) that may lead to

a PN set of T0 by defining 14 different classes that are listed below.

10



(a) (T1, S1) (b) (T2, S2)
(c) (T, S)

Figure 3.1: Two tree-subset pairs and their combination.

[1] = {(T, S)| r ∈ S, S is a PN set of T , r is S-perfect, r is adjacent with an S-

perfect vertex, r has a neighbor that is not S-perfect and has r as its unique S-perfect

neighbor},

[2] = {(T, S)| r ∈ S, S is a PN set of T , r is S-perfect, r is adjacent with an S-perfect

vertex, every neighbor of r is either S-perfect or is adjacent with an S-perfect vertex

different from r},

[3] = {(T, S)| r ∈ S, S is a PN set of T , r is S-perfect, r is not adjacent with an

S-perfect vertex, r has a neighbor that has r as its unique S-perfect neighbor},

[4] = {(T, S)| r ∈ S, S is a PN set of T , r is S-perfect, r is not adjacent with an

S-perfect vertex, every neighbor of r is adjacent with an S-perfect vertex different

from r},

[5] = {(T, S)| r ∈ S, S is a PN set of T , r is not S-perfect},

[6] = {(T, S)| r ∈ S, S is not a PN set of T},

[7] = {(T, S)| r /∈ S, S is a PN set of T , r is S-perfect, r is adjacent with an S-

perfect vertex, r has a neighbor that is not S-perfect and has r as its unique S-perfect

neighbor},

[8] = {(T, S)| r /∈ S, S is a PN set of T , r is S-perfect, r is adjacent with an S-perfect

vertex, every neighbor of r is either S-perfect or is adjacent with an S-perfect vertex

different from r},
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[9] = {(T, S)| r /∈ S, S is a PN set of T , r is S-perfect, r is not adjacent with an

S-perfect vertex, r has a neighbor that has r as its unique S-perfect neighbor},

[10] = {(T, S)| r /∈ S, S is a PN set of T , r is S-perfect, r is not adjacent with an

S-perfect vertex, every neighbor of r is adjacent with an S-perfect vertex different

from r},

[11] = {(T, S)| r /∈ S, S is a PN set of T , r is not S-perfect},

[12] = {(T, S)| r /∈ ∆(S), S is not a PN set of T , every neighbor of r is adjacent

with an S-perfect vertex},

[13] = {(T, S)| r /∈ ∆(S), S is not a PN set of T , r has a neighbor that is neither

S-perfect nor is adjacent with an S-perfect vertex},

[14] = {(T, S)| r /∈ S, S is not a PN set of T , |∆(r) ∩ S| ≥ 2}.

After the classification of these tree-subset pairs, Hedetniemi et al. create a multipli-

cation table, showing the result of each combination of ordered pairs of 14 classes

in Table 3.1. In this table, “×” represents tree-subset pairs that cannot fit into the

definitions of Item i or ii. Thus, they are eliminated since they can never form a PN

set with any combination.

For example, in Figure 3.1, we have the combination [13] o [2] = [7] since the tree-

subset pairs (T1, S1), (T2, S2), and (T, S) are in classes [13], [2], and [7], respectively.

In the multiplication table, the combination of [13] and [2] (in this order) is claimed

to result in the class [8] which is not correct.

The algorithm is initialized with |V | trees, each having a unique vertex of T0 and no

edge. For a tree T consisting of a single vertex i and a class [`], a value is assigned

and stored in vector[i, `] to represent the minimum cardinality of S over all possible

subsets S making (T, S) a tree-subset pair that is in class [`]. Here vector is indeed a

matrix with |V | rows and 14 columns. We keep this notation in order not to deviate

too much from the notation used in Hedetniemi et al. (1997) [1].

For a tree with a single vertex, say vertex i, we only have two possible tree-subset
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Table 3.1: Multiplication table of classes in Hedetniemi et al. (1997) [1].

o [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

[1] × × × × × × × [1] × [1] [1] [1] [1] [1]

[2] × [5] × × [5] × × [2] × [1] [2] [2] [2] [1]

[3] × × × × × × × [3] × × [3] [1] [1] [3]

[4] × [6] × × [6] × × [4] × [3] [4] [2] [2] [3]

[5] × [5] × × [5] × × [5] × × [5] [5] [5] ×
[6] × [6] × × [6] × × [6] × × [6] [5] [6] ×
[7] × × × × × × [7] [7] [7] [7] [7] [7] [7] [7]

[8] [11] [11] [11] [11] [11] × [8] [8] [8] [8] [8] [7] [7] [7]

[9] × × × × × × [9] [9] [9] [9] [9] [9] [9] [9]

[10] [11] [11] × [11] [14] × [8] [8] [8] [8] [10] [9] [9] [9]

[11] [11] [11] [11] [11] [11] × [11] [11] [11] [11] [11] × × ×
[12] [8] [8] [8] [8] [10] [9] [11] [11] [11] [11] [12] [13] [13] [13]

[13] [8] [8] [8] [8] [10] [9] [11] [11] [11] [11] [13] [13] × [13]

[14] [11] [11] [11] [11] [14] × [11] [11] [11] [11] [14] × × ×

pairs. One is where we select the vertex to be in S and the other is where S = ∅. For

example, if we define a tree-subset pair (T, S) such as T = ({i}, ∅) and S = {i},
then (T, S) would be in class [4] with |S| = 1. Otherwise, if S = ∅, then (T, S)

would be in class [12] with |S| = 0. Finally, these cardinalities initialize the ith row

of vector, denoted by vector[i], as [−,−,−, 1,−,−,−,−,−,−,−, 0,−,−], where

“−” denotes undefined. The steps of the algorithm of Hedetniemi et al. (1997) [1] is

shown in Algorithm 1 which starts with this initialization step.

In the line 8 of the Algorithm 1, update procedure of vector[k] is done according to

the multiplication table in Table 3.1. For example, vector[k, 10] is updated as follows.

vector[k, 10] := min{vector[k, 10] + vector[j, 11], vector[k, 12] + vector[j, 5],

vector[k, 13] + vector[j, 5]}.

In the multiplication table, there are three combinations [a] o [b] resulting in [10].

These are [10] o [11] = [10], [12] o [5] = [10], and [13] o [5] = [10]. Thus, in the up-

date of vector[k, 10], among the combinations resulting in class [10], the one with the
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Algorithm 1 Algorithm for θ(T ) in Hedetniemi et al. (1997) [1] .

1: procedure θ(T )

2: for i := 1 to p do

3: initialize vector[i] to [−,−,−, 1,−,−,−,−,−,−,−, 0,−,−];

4: end for

5: for j := p down to 2 do

6: k := parent[j];

7: Combine the tree with root j with the tree with root k;

8: Update vector[k] with the combination;

9: end for

10: return min{vector[1, 1], vector[1, 2], vector[1, 3], vector[1, 4], vector[1, 5],

11: vector[1, 7], vector[1, 8], vector[1, 9], vector[1, 10], vector[1, 11]};

12: end procedure

minimum objective function value, i.e., minimum value of |S|, is taken into account.

Then, the same update applies to vector[k, `] for all 14 classes [`] in line 8.

Finally, in line 11, authors list all classes with the property that “S is a PN set of T ” for

the tree-subset pairs (T, S) in which vertex 1 is the root of T . This implies that T =

T0. The classes that have this property are [1], [2], [3], [4], [5], [7], [8], [9], [10], and [11].

For each such class [`], vector[1, `] represents the minimum size of a PN set S in T0,

where (T0, S) is in class [`]. Therefore, the minimum of {vector[1, 1], vector[1, 2],

vector[1, 3], vector[1, 4], vector[1, 5], vector[1, 7], vector[1, 8], vector[1, 9], vector[

1, 10], vector[1, 11]} gives the cardinality of the minimum cardinality PN set in T0.

3.2 Corrections on the Algorithm for θ(T ) in Hedetniemi et al. (1997) [1]

As we mentioned before, the algorithm of Hedetniemi et al. (1997) [1] might not work

as intended because some of the values in the multiplication table are not correct.

Moreover, with the current definitions of the classes, some of the multiplications

might result in more than one class, and some classes are unnecessarily split into

two subclasses. We now go over these issues.
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We assume that two tree-subset pairs (T1, S1) and (T2, S2) with roots r1 and r2, re-

spectively, are combined resulting in the tree-subset pair (T, S) having root r = r1.

Moreover, we assume that the tree-subset pairs (T1, S1), (T2, S2), and (T, S) are of

classes [a], [b], and [c], respectively. Therefore, we have that [a] o [b] = [c]. If a

combination of two tree-subset pairs does not yield a valid tree-subset pair, then [c] is

taken as ×.

One of the issues is with the combination [13] o [5]. In the case when r1 is adjacent to

an S1-perfect vertex, the result would be in class [7], and otherwise it would be in class

[9]. In the multiplication table given in Table 3.1, it is stated that [13] o [5] = [10].

Examples of combinations [13] o [5] resulting in [7] and [9] are given in Figure 3.2.

We solve this issue by removing the classes [7] and [9], and creating a new class [7′]

which is the union of [7] and [9]. We have checked that defining this new class does

not create any problem in the other parts of the multiplication table. The new class

[7′] is defined below.

[7′] = {(T, S)| r /∈ S, S is a PN set of T , r is S−perfect, r has a neighbor that is not

S-perfect and has r as its unique S-perfect neighbor}.

(a) [13] (b) [5] (c) [13] o [5] = [7]

(d) [13] (e) [5] (f) [13] o [5] = [9]

Figure 3.2: Examples to the combination [13] o [5].

Next, we observe the classes [1] and [3] are unnecessarily split. Therefore we also take

their union and create a new class [1′] instead of them. This decreases the number of
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classes by one as well. The definition of the new class [1′] is given below.

[1′] = {(T, S)| r ∈ S, S is a PN set of T , r is S-perfect, r has a neighbor that is not

S-perfect and has r as its unique S-perfect neighbor}.

In the new multiplication table, each combination that results in either [7] or [9] is

changed into [7′] and each combination that results in either [1] or [3] is changed into

[1′].

An update is also necessary for the class [11], because there might be two possible

outcomes of the combination [11] o [1′]. Note that this issue exists with [11] o [1]

as well; so it is not a result of redefining class [1]. The class [11] has the property

that “r is not S-perfect” which implies that |∆(r) ∩ S| 6= 1. In this case, either

|∆(r) ∩ S| = 0 or |∆(r) ∩ S| ≥ 2. In the former case, r would be S-perfect after

the combination [11] o [1′], whereas in the latter one it would continue being not S-

perfect. Specifically, we have that [11] o [1′] = [8] in the former case and [11] o [1′] =

[11] in the latter case. To solve this issue, we split the class [11] into two new classes

[11.1] and [11.2] by also storing the information about the cardinality of the set ∆(r)∩
S. The definitions of these new classes are given below.

[11.1] = {(T, S)| r /∈ S, S is a PN set of T , r is not S-perfect, |∆(r) ∩ S| = 0},
[11.2] = {(T, S)| r /∈ S, S is a PN set of T , r is not S-perfect, |∆(r) ∩ S| ≥ 2}.

After the updates of the classes, the outer part of the multiplication table, i.e., the

classes, and a subset of the inner part of the multiplication table, i.e., results of the

combinations, are updated in Table 3.2. Examples of tree-subset pairs belonging to

each class according to the new class definitions are given in Appendix A.

In Table 3.2, the cells that are grayed out have to be updated. These include the

combinations that either result in [11], or one of the classes combined is either [11.1]

or [11.2]. Now, we will update the grayed out combinations.

Proposition 3.1. [8] o [b] = [11.2] where [b] is a class with “r ∈ S” and “S is a PN

set of T ”.

Proof. Since we have r1 /∈ S1, it is clear that “r /∈ S” since S ⊇ S1.
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Table 3.2: Updated table with the redefinition of classes.

o [1′] [2] [4] [5] [6] [7′] [8] [10] [11.1] [11.2] [12] [13] [14]

[1′] × × × × × × [1′] [1′] [1′] [1′] [1′] [1′] [1′]

[2] × [5] × [5] × × [2] [1′] [2] [2] [2] [2] [1′]

[4] × [6] × [6] × × [4] [1′] [4] [4] [2] [2] [1′]

[5] × [5] × [5] × × [5] × [5] [5] [5] [5] ×
[6] × [6] × [6] × × [6] × [6] [6] [5] [6] ×
[7′] × × × × × [7′] [7′] [7′] [7′] [7′] [7′] [7′] [7′]

[8] [11] [11] [11] [11] × [8] [8] [8] [8] [8] [7′] [7′] [7′]

[10] [11] [11] [11] [14] × [8] [8] [8] [10] [10] [7′] [7′] [7′]

[11.1] [11] [11] [11] [11] × [11] [11] [11] [11] [11] × × ×
[11.2] [11] [11] [11] [11] × [11] [11] [11] [11] [11] × × ×
[12] [8] [8] [8] [10] [7′] [11] [11] [11] [12] [12] [13] [13] [13]

[13] [8] [8] [8] [10] [7′] [11] [11] [11] [13] [13] [13] × [13]

[14] [11] [11] [11] [14] × [11] [11] [11] [14] [14] × × ×

r1 is S1-perfect, having |∆(r1) ∩ S1| = 1. With the combination, it is connected with

r2 ∈ S. Thus, we can add that “|∆(r)∩S| = |∆(r1)∩S1|+ 1 = 2”, which also

implies “r is not S-perfect”.

r1 has lost its perfectness with the combination but since r1 is adjacent with an S1-

perfect vertex, it is still dominated by the set of S-perfect vertices. Rest of the vertices

of T1 is also dominated by the set of S-perfect vertices since every neighbor of r1 is

either S1-perfect or is adjacent with an S1-perfect vertex different from r1. Addition-

ally, S2 is a PN set of T2 and r2 is connected to r1 /∈ S. Therefore, its perfectness

will remain the same with the combination and the set of S-perfect vertices would be

dominating T2. Overall, all of the vertices of T are dominated, thus “S is a PN set of

T ”.

The class that have these properties is [11.2].

Proposition 3.1 implies the following changes in the Table 3.2:

[8] o [1′] = [11.2]
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[8] o [2] = [11.2]

[8] o [4] = [11.2]

[8] o [5] = [11.2]

Proposition 3.2. [10] o [b] = [11.2] where [b] is a class with “r ∈ S”, “r is S-perfect”,

and “S is a PN set of T ”.

Proof. See the proof Proposition 3.1. The only difference is that, now, r is dominated

by r2 (only), since r1 is not adjacent with an S1-perfect vertex. That is the reason we

need that [b] has the property of “r is S-perfect”.

Following changes are valid after Proposition 3.2:

[10] o [1′] = [11.2]

[10] o [2] = [11.2]

[10] o [4] = [11.2]

Proposition 3.3. [14] o [b] = [11.2] where [b] is a class with “r is S-perfect” and “S

is a PN set of T ”.

Proof. Since we have r1 /∈ S1, it is clear that “r /∈ S”.

Moreover, we have |∆(r1) ∩ S1| ≥ 2. Since S ⊇ S1, we add that “|∆(r) ∩ S| ≥
|∆(r1) ∩ S1| ≥ 2”. This also implies “r is not S-perfect”.

S2 is a PN set for T2 and r2 is connected with r1 /∈ S1 with the combination. Thus,

r2 remains to be perfect and then it can be observed that the set of S-perfect vertices

dominates T2. We also know that S1 is not a PN set for T1 because r1 is not dominated

by the set of S1-perfect vertices. After the combination, it is dominated by r2 and T1

gets dominated by the set of S-perfect vertices as well. Thus, “S is a PN set of T ”.

The class that satisfies those properties is [11.2].

With the Proposition 3.3, the following changes occurred on Table 3.2:

18



[14] o [1′] = [11.2]

[14] o [2] = [11.2]

[14] o [4] = [11.2]

[14] o [7′] = [11.2]

[14] o [8] = [11.2]

[14] o [10] = [11.2]

Proposition 3.4. [13] o [b] = [13] where [b] is a class with “r /∈ S” and “S is a PN set

of T ”.

Proof. Since we have r1 /∈ ∆(S1), ∆(r) = ∆(r1) ∪ {r2} and r2 /∈ S2, it is clear that

“r /∈ ∆(S)”.

While combining two trees where both of the roots are not in S1 and S2, respectively,

we can say that S − perfect = S1− perfect∪ S2− perfect. Since we know S2 is a

PN set of T2, we can add that T2 is dominated by the set of S-perfect vertices as well.

Therefore, since |∆(r1)∩S1| = |∆(r)∩S| = 0, we can add that both of the properties

of [13] as “S is not a PN set of T ” and “r has a neighbor that is neither S-perfect

nor is adjacent with an S-perfect vertex” remain the same. Moreover, resulting

class would not be × since we have shown that all of the vertices that are outside of

the ∆(r) are dominated (note that T2 is dominated by the set of S-perfect vertices).

All of the properties of [13] remain the same with this combination, thus we can

conclude that [13] o [b] = [13].

By the proof of Proposition 3.4, the following values are updated on the Table 3.2:

[13] o [7′] = [13]

[13] o [8] = [13]

[13] o [10] = [13]
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Note that the values we have changed here were initially [11] and now they are neither

[11.1] nor [11.2]. This is because the initial value of [11] were mistaken.

Proposition 3.5. [12] o [b] = [11.1] where [b] is a class with “r /∈ S”, “r is S-perfect”,

and “S is a PN set of T ”.

Proof. Since we have r1 /∈ S1, it is clear that “r /∈ S”.

With the combination, r1 is connected to r2 /∈ S2, which does not change the perfect-

ness of r1. Thus, “r is not S-perfect”.

Moreover, since r2 is S2-perfect and r1 /∈ S1, r2 will remain to be perfect after the

combination and thus, the set of S-perfect vertices will dominate T2. Then, r2 will

dominate r and the remaining vertices of the T1 is already dominated by the set of

S1-perfect vertices. Overall, “S is a PN set of T ”.

[12] claims r1 /∈ ∆(S1) and we have ∆(r) = ∆(r1) ∪ {r2}. Since r2 /∈ S, last claim

would be “|∆(r) ∩ S| = 0”.

These properties are satisfied by class [11.1].

The following values are changed on Table 3.2 after Proposition 3.5:

[12] o [7′] = [11.1]

[12] o [8] = [11.1]

[12] o [10] = [11.1]

Proposition 3.6. [11.1] o [b] = [8] where [b] is a class with “r ∈ S” and “S is a PN

set of T ”.

Proof. Since we have r1 /∈ S1, it is clear that “r /∈ S”.

We have |∆(r1) ∩ S1| = 0. With the combination, it is connected with r2 ∈ S. Thus,

we can add that “|∆(r)∩S| = |∆(r1)∩S1|+1 = 1”, which implies “r is S-perfect”.

Before the combination, S1 is a PN set of T1 and r1 /∈ ∆(S1). Therefore, there exists

at least one vertex, say u ∈ δ(r1), which is S1-perfect and dominates r1, and remains
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to be S-perfect with the combination. Since u ∈ ∆(r), we add that “r is adjacent

with an S-perfect vertex”.

Moreover, r1 /∈ S1, the perfectness of r2 does not change with the combination. Thus,

S− perfect = S1− perfect∪S2− perfect∪{r}. Since, both the sets of S1-perfect

and S2-perfect vertices dominate T1 and T2, respectively, it is implied that “S is a PN

set of T ”. Additionally, S1 − perfect ∪ S2 − perfect defines a PN set of T without

r, thus we have “every neighbor of r is either S-perfect or is adjacent with an

S-perfect vertex different from r”.

The resulting class of the combination, then, would be [8].

Proposition 3.6 implies the following changes on the Table 3.2:

[11.1] o [1′] = [8]

[11.1] o [2] = [8]

[11.1] o [4] = [8]

[11.1] o [5] = [8]

Proposition 3.7. [11.1] o [b] = [11.1] where [b] is a class with “r /∈ S” and “S is a

PN set of T ”.

Proof. Since we have r1 /∈ S1, it is clear that “r /∈ S”.

We have |∆(r1)∩S1| = 0. With the combination, r1 is connected with r2 /∈ S. Thus,

we can add that “|∆(r) ∩ S| = |∆(r1) ∩ S1| = 0”, which also implies “r is not

S-perfect”.

Additionally, we know that r1 /∈ S1 and r2 /∈ S2. Thus, none of the perfectness of

the vertices are changed with the combination, S − perfect = S1 − perfect ∪ S2 −
perfect. Since, both the sets of S1-perfect and S2-perfect vertices dominate T1 and

T2, respectively, it is implied that “S is a PN set of T ”.

All of these properties are satisfied with [11.1].

By the Proposition 3.7, following combinations are changed on Table 3.2:
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[11.1] o [7′] = [11.1]

[11.1] o [8] = [11.1]

[11.1] o [10] = [11.1]

[11.1] o [11.1] = [11.1]

[11.1] o [11.2] = [11.1]

Proposition 3.8. [a] o [6] = [7′] where [a] is a class with “r /∈ ∆(S)”.

Proof. Note that “r /∈ ∆(S)” is equivalent of |∆(r) ∩ S| = 0.

Since we have r1 /∈ ∆(S1), it is clear that “r /∈ S”.

r1 is connected with r2 ∈ S2 with the combination. Thus, |∆(r) ∩ S| = |∆(r1) ∩
S1|+ 1 = 1, implying “r is S-perfect”.

In [6], every vertex except r2 is dominated by the set of S2-perfect vertices. With the

combination, since r is S-perfect, r2 would also be dominated by r. This results that

the set of S-perfect vertices dominates T2. Then, [a] is a class with r /∈ ∆(S). We

know by Item ii that the set of S1 of such a class would be a PN set if we assume

that the root, r1, is also perfect. It is already implied that r1 gets perfect with the

combination. Thus, we add that the set of S-perfect vertices dominates T1 as well.

Overall, “S is a PN set of T ”.

Since r2 is not dominated by the set of S2-perfect vertices and is dominated by the

set of S-perfect vertices, it is implied that r2 is only dominated by r. Thus, “r has a

neighbor that is not S-perfect and has r as its unique S-perfect neighbor”.

The class satisfies all properties would be [7′].

Proposition 3.8 enables us to change the following combination:

[11.1] o [6] = [7′]

Proposition 3.9. [a] o [b] = [13] where [a] is a class with “r /∈ ∆(S)”, and [b] is a

class with “r /∈ S”, “S is not a PN set of T ”, and “every neighbor of r is adjacent
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with an S-perfect vertex”.

Proof. Note that [a] includes the classes [11.1], [12] and [13]. Moreover, [b] includes

[12] and [14]. “Every neighbor of r is adjacent with an S-perfect vertex” is not men-

tioned in class [14], but if it is not true, [14] has no chance of returning a PN set with

any combination and then will not fit into the definition of Item ii. Thus, this is a valid

information for [14].

Since we have r1 /∈ ∆(S1), ∆(r) = ∆(r1) ∪ {r2} and r2 /∈ S2, it is clear that

“r /∈ ∆(S)”, which also implies that r is not S-perfect.

Additionally, every neighbor of r2 is adjacent with an S2-perfect vertex and S2 is not

a PN set of T2. Thus, r2 is not dominated by the set of S2-perfect vertices. By the

combination with [a], it is connected with r /∈ S, which is not an S-perfect vertex.

Thus, r2 is also not dominated by the set of S-perfect vertices. Thus, “r has a neigh-

bor that is neither S-perfect nor is adjacent with an S-perfect vertex”, which

also implies that “S is not a PN set of T ”.

By the definition in Item ii, we know that all the vertices such that u /∈ ∆(r1) are

dominated by the set of S1-perfect vertices. This is again valid with the combination,

where all the vertices such that u /∈ ∆(r) are dominated by the set of S-perfect

vertices since every neighbor of r2 is adjacent with an S2-perfect vertex. Overall, the

combined class would still be in the definition of Item ii and would not be classified

as ×.

These properties are, then, satisfied by class [13] only.

The following changes on Table 3.2 are done with the Proposition 3.9:

[11.1] o [12] = [13]

[11.1] o [14] = [13]

Proposition 3.10. [a] o [13] = × where [a] is a class with “r /∈ S”.

Proof. In [13], we have at least one vertex, say u ∈ δ(r2), that is neither S2-perfect nor

is adjacent with an S2-perfect vertex. Additionally, it can be observed that |∆(r2) ∩
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S2| = 0 (see Item ii). With the combination of [a] o [13], we add an edge between r2

and r /∈ S, implying that |∆(r2) ∩ S| = |∆(r2) ∩ S2| + 0 = 0. Thus, r2 would still

not be perfect and u will not be dominated by the set of S-perfect vertices. After the

combination of [a] o [13], distance between r and u would be 2, implying u /∈ ∆(r).

A tree-subset pair would not fit into Item i or ii if it has at least one vertex that is

neither S-perfect nor is adjacent with an S-perfect vertex outside of ∆(r). Therefore,

all of these combination will result “×”.

Proposition 3.10 gives the proof of [11.1] o [13] = × and [11.2] o [13] = ×. Addi-

tionally, following list of changes have made in Table 3.2 with the Proposition 3.10:

[7′] o [13] = ×

[8] o [13] = ×

[10] o [13] = ×

[12] o [13] = ×

Proposition 3.11. [11.2] o [b] = [11.2] where [b] is a class with “S is a PN set of T ”.

Proof. Since r1 /∈ S1, it is clear that “r /∈ S”.

We know that |∆(r1) ∩ S1| ≥ 2 and it is clear that |∆(r) ∩ S| ≥ |∆(r1) ∩ S1|. Thus,

it is implied that “r is not S-perfect” and “|∆(r) ∩ S| ≥ 2”.

Additionally, none of the perfectness of the vertices changes with the combination.

We have already shown that r1 will remain to be not perfect. r2, on the other hand,

is connected with r1 /∈ S, which implies that the perfectness of r2 will not change as

well. Overall, since both [11.2] and [b] are classes with the property of “S is a PN set

of T ”, it is implied that the sets of S1-perfect and S2-perfect vertices dominate T1 and

T2, respectively. We, then, conclude that “S is a PN set of T ”.

These results are combined on the class [11.2].

After Proposition 3.11, we change the following combinations on Table 3.2:

[11.2] o [1′] = [11.2]
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[11.2] o [2] = [11.2]

[11.2] o [4] = [11.2]

[11.2] o [5] = [11.2]

[11.2] o [7′] = [11.2]

[11.2] o [8] = [11.2]

[11.2] o [10] = [11.2]

[11.2] o [11.1] = [11.2]

[11.2] o [11.2] = [11.2]

Proposition 3.12. [11.2] o [b] = × where [b] is a class with “S is not a PN set of T ”.

Proof. We know that |∆(r1) ∩ S1| ≥ 2 and it is clear that |∆(r) ∩ S| ≥ |∆(r1) ∩
S1|. Thus, it is implied that “r is not S-perfect”, which also means r will never be

perfect by any combination because |∆(r) ∩ S| never decreases. Additionally, r2 is

connected with r1 /∈ S1, which implies that the perfectness of r2 will not change by

this combination as well.

Overall, we have S − perfect = S1 − perfect ∪ S2 − perfect. Since S2 is not a

PN set of T2, there exists at least one vertex, say u2 ∈ V2, which is not dominated by

the set of S-perfect vertices will never be dominated by any combination that is made

by edge connections from r. Therefore, the result of the combined tree-subset pair

would be “×”.

None of the values of the Table 3.2 are changed with the Proposition 3.12, but we

mentioned about it since we are covering all combinations that are grayed out on the

table.

Proposition 3.13. [a] o [11.1] = [a] where [a] is a class with “r ∈ S” and that has not

the property of “r is not adjacent with an S-perfect vertex”.

Proof. Note that there are three classes that satisfy the properties listed for [a]; [1′],

[2] and [5]. [4] is not valid since it has the property of “r is not adjacent with an S-

perfect vertex”. Even though it is not explicitly written, same applies for [6] because
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otherwise, [6] would be a class with the property “S is a PN set of T ”. Overall, in all

classes of [a], we have “S is a PN set of T ”.

With such a combination, all of the properties of class [a] remains the same. First of

all, r1 ∈ S1 implies r ∈ S.

Next, since r1 ∈ S1 is connected to r2 /∈ S2 with the combination, the perfectness of

r1 is not changed. r2 gets, on the other hand, perfect with the combination and we

can imply the set of S-perfect (or S2-perfect) vertices dominates T2. In such a case S

would be PN set for T , since S1 is a PN set of T1.

If every neighbor of r1 is S1-perfect or is adjacent with an S1-perfect vertex differ-

ent from r1, this property will remain the same with the combination since ∆(r) =

∆(r1) ∪ {r2}, and r2 becomes an S-perfect vertex with the combination. Else, there

exist u ∈ δ(r1) which is only dominated by r1 before the combination, implying u

will only be dominated by r since none of the perfectness of the vertices changes

after the combination. Therefore, this property also remains to be the same with the

combination.

To sum up, all of the properties are valid after the combination.

By the Proposition 3.13, we do not change any value in Table 3.2 but give the proof

of combinations [1′] o [11.1] = [1′], [2] o [11.1] = [2], and [5] o [11.1] = [5].

Proposition 3.14. [4] o [11.1] = [2] and [6] o [11.1] = [5].

Proof. See Proposition 3.13. The only different is that this time r1 is not adjacent

with an S1-perfect vertex. After the combination, r would be adjacent with S-perfect

vertex, r2, and the combination class will not have this property. Instead, it will have

that “r is adjacent with an S-perfect vertex”. For the class [4] ([6]), if we make r to

be adjacent with an S-perfect vertex, we will end up having the class of [2] ([5]).

Both of the combinations in Proposition 3.14 are changed on Table 3.2.

Proposition 3.15. [a] o [11.1] = [a] where [a] is a class with “r /∈ S”.
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Proof. None of the properties of [a] changes with such a combination, similar to the

ones that are explained in Proposition 3.13. First of all, r1 /∈ S1 implies r /∈ S.

Additionally, if r1 /∈ ∆(S1), then we have r /∈ ∆(S) since r2 /∈ S2.

Since r1 /∈ S1 and r2 /∈ S2, we have S − perfect = S1 − perfect ∪ S2 − perfect.
Thus, S would (not) be a PN set for T , if and only if S1 is (not) a PN set of T1.

Additionally, r1 is connected to r2 /∈ S, implying that the perfectness of r1 will not

change as well, which also implies |∆(r) ∩ S| = |∆(r1) ∩ S1|.

Finally, unlike in the situation of Proposition 3.13, r2 is now connected with r1 /∈ S1.

Thus, the perfectness of r2 does not change with the combination. This adds that the

information of “r1 is (not) adjacent with a S1-perfect vertex” does not change with

the connection to r2 as well.

Overall, all properties of [a] are still satisfied by the combination.

With Proposition 3.15, all values remain to be same in the Table 3.2.

Proposition 3.16. [a] o [11.2] = [a] for all classes [a].

Proof. See Proposition 3.13 and 3.15.

The difference is that, now, r1 ∈ S1 might be valid for some classes. If r1 ∈ S1 , then

r ∈ S, so the property remains.

Additionally, the set of S2-perfect vertices will always dominate T2 with any combi-

nation since S2 is a PN set of T2 and r2 is not an S2-perfect vertex. Then, S would

(not) be a PN set for T , if and only if S1 is (not) a PN set of T1.

r2 will have not any chance to be perfect with any combination since |∆(r2)∩S2| ≥ 2.

Because the cardinality of this set never decreases, the property of “r1 is (not) adjacent

with a S1-perfect vertex” will not be affected by the combination for all classes [a].

Note that this proposition does not change any value in the Table 3.2. Moreover, with

the Proposition 3.16, we covered all combinations that are grayed out in Table 3.2.
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However, before finalizing our table, some of the initial values of some combinations

are changed to make the function work as intended. Now, we will go over those

changes.

Proposition 3.17. [6] o [13] = [5].

Proof. r1 ∈ S1 and r = r1 imply that “r ∈ S”. Additionally, since r1 ∈ ∆(S1) and

S1 is not a PN set of T1, we have that r1 is neither S1-perfect nor is adjacent to an

S1-perfect vertex (see Item i). Thus, we have that |∆(r1) ∩ S1| 6= 1, implying that

|∆(r)∩S| = |∆(r1)∩S1| 6= 1 since r2 /∈ S, which means that “r is not S-perfect”.

Next, we have that r2 /∈ ∆(S2), implying that |∆(r2) ∩ S2| = 0. After the combi-

nation, ∆(r2) is updated to ∆(r2) ∪ {r1}. With r1 ∈ S, we have that |∆(r2) ∩ S| =

|∆(r2)∩S2|+ 1 = 1, implying that r2 is S-perfect. With the definition of Item ii, it is

known that the vertices in T2 are all dominated by the set of S-perfect vertices when

r2 is S-perfect. In this case, r2 dominates r as well, and we have that the remaining

vertices of T1 are dominated by the set of S1-perfect vertices (see Item i), implying

that “S is a PN set of T ”.

By combining these results, it is observed that (T, S) would be in class [5].

Proposition 3.18. [13] o [b] = [7′] where [b] is a class with “r ∈ S".

Proof. r1 /∈ ∆(S1) and r = r1 imply that “r /∈ S”. Next, we have that |∆(r1) ∩
S1| = 0. r1 gets connected to r2 ∈ S2 after the combination. Thus, |∆(r) ∩ S| =

|∆(r1) ∩ S1|+ 1 = 1, implying that “r is S-perfect”.

Item i implies that for a class with r ∈ ∆(S), every vertex except possibly the root,

is dominated by the set of S-perfect vertices. Since r is S-perfect, r2 is dominated by

the set of S-perfect vertices after the combination, implying that all the vertices of T2

are dominated by the set of S-perfect vertices in the combination. Additionally, the

vertices of T1 are also dominated by the set of S-perfect vertices in the combination

since r is S-perfect (see Item ii). Overall, “S is a PN set of T ”. r1 has a neighbor that

is neither S1-perfect nor is adjacent to an S1-perfect vertex. Thus “r has a neighbor

that is not S-perfect and has r as its unique S-perfect neighbor”. The class with

these properties is [7′].
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Proposition 3.18 enables us to make the following changes on the Table 3.2:

[13] o [1′] = [7′]

[13] o [2] = [7′]

[13] o [4] = [7′]

[13] o [5] = [7′]

After Proposition 3.18, we finalized our updated table which can be found in Table

3.3.

Table 3.3: Final version of the multiplication table.

o [1′] [2] [4] [5] [6] [7′] [8] [10] [11.1] [11.2] [12] [13] [14]

[1′] × × × × × × [1′] [1′] [1′] [1′] [1′] [1′] [1′]

[2] × [5] × [5] × × [2] [1′] [2] [2] [2] [2] [1′]

[4] × [6] × [6] × × [4] [1′] [2] [4] [2] [2] [1′]

[5] × [5] × [5] × × [5] × [5] [5] [5] [5] ×
[6] × [6] × [6] × × [6] × [5] [6] [5] [5] ×
[7′] × × × × × [7′] [7′] [7′] [7′] [7′] [7′] × [7′]

[8] [11.2] [11.2] [11.2] [11.2] × [8] [8] [8] [8] [8] [7′] × [7′]

[10] [11.2] [11.2] [11.2] [14] × [8] [8] [8] [10] [10] [7′] × [7′]

[11.1] [8] [8] [8] [8] [7′] [11.1] [11.1] [11.1] [11.1] [11.1] [13] × [13]

[11.2] [11.2] [11.2] [11.2] [11.2] × [11.2] [11.2] [11.2] [11.2] [11.2] × × ×
[12] [8] [8] [8] [10] [7′] [11.1] [11.1] [11.1] [12] [12] [13] × [13]

[13] [7′] [7′] [7′] [7′] [7′] [13] [13] [13] [13] [13] [13] × [13]

[14] [11.2] [11.2] [11.2] [14] × [11.2] [11.2] [11.2] [14] [14] × × ×

Since the multiplication table has changed, we have also made a couple of changes

in Algorithm 1. The only change in the algorithm is indeed due to the changes in the

multiplication table. The steps and the running time of the updated algorithm are the

same with those of the original one.

First change is on line 3 in Algorithm 1, where we initialized vector for two classes

only ([4] and [12]) for each one vertex tree-subset pairs. After the index of the classes

changes with the update, we changed line 3 to

initialize vector[i] to [−,−, 1,−,−,−,−,−,−,−, 0,−,−]; .
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Here the `th entry of vector[i] corresponds to the `th class in the new multiplication

table. Next, update procedure is now done according to the new table. For example,

vector[k, 10] is now updated as

vector[k, 10] := min{vector[k, 10] + vector[j, 11.1], vector[k, 10] + vector[j, 11.2],

vector[k, 12] + vector[j, 5]}.

Finally, in line 11, we list all the classes with the property that “S is a PN set of T ”

for the tree-subset pairs in which vertex 1 is the root. With the current table, the list

of the classes that have the property would be [1′], [2], [4], [5], [7′], [8], [10], [11.1],

and [11.2]. Thus, the corresponding line is changed into

return min{vector[1, 1′], vector[1, 2], vector[1, 4], vector[1, 5], vector[1, 7′],

vector[1, 8], vector[1, 10], vector[1, 11.1], vector[1, 11.2]}; .

Algorithm 2 is the final version of the algorithm for θ(T ) in which all of the modifi-

cations listed above are implemented.

Algorithm 2 Updated version of the algorithm for θ(T ).

1: procedure θ(T )

2: for i := 1 to n do

3: initialize vector[i] to [−,−, 1,−,−,−,−,−,−,−, 0,−,−];

4: end for

5: for j := n down to 2 do

6: k := parent[j];

7: Combine the tree with root j with the tree with root k

8: Update vector[k] with the combination;

9: end for

10: return min{vector[1, 1′], vector[1, 2], vector[1, 4], vector[1, 5], vector[1, 7′],

11: vector[1, 8], vector[1, 10], vector[1, 11.1], vector[1, 11.2]};
12: end procedure
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3.3 Generalization of the Algorithm for the Weighted Cardinality

In this section, we extend Algorithm 2 to the weighted case in order to solve the

MinWPNSP. In the MinWPNSP, we are given a tree T0 = (V,E) and two weights wj

and vj for each vertex j ∈ V and we aim to find a PN set S in T0 of minimum weight,

where the weight of a set S is defined as
∑

j∈S wj +
∑

j∈S−perfect vj . Here wj and vj

are the weights associated with the vertex j. The weight of selecting the vertex in the

set S and S − perfect would be wj and vj , respectively.

The extended algorithm will be very similar to Algorithm 2 because the same mul-

tiplication table, i.e., Table 3.3, is used since the results of the combinations are not

related with the weights. The only changes will be in the initialization step, i.e., line

3 of Algorithm 2, and in the update of vector[k] in line 8 of Algorithm 2.

First, we modify the initialization step of the algorithm. For a tree with a single

vertex, say vertex i, we only have two possible tree-subset pairs. In the first one, we

select the vertex to be in S and in the second one S = ∅. For example, if we define

a tree-subset pair (T, S) such as T = ({i}, ∅) and S = {i}, then (T, S) would be in

class [4] with the set S having weight wi+vi. Otherwise, if S = ∅, then (T, S) would

be in class [12] with S having weight 0. Finally, these weights initialize the ith row of

vector, denoted by vector[i], as [−,−, wi + vi,−,−,−,−,−,−,−, 0,−,−].

Next, we modify the update step in line 8 of Algorithm 2. When two tree-subset

pairs (T1, S1) and (T2, S2) are combined to give us another tree-subset pair (T, S),

we know that S = S1∪S2. However, the weight of S does not need to be equal to the

sum of the weights of S1 and S2. This is because S-perfect is not necessarily equal to

S1− perfect∪S2− perfect. However, it can be shown that S− perfect/{r1, r2} =

(S1 − perfect/{r1}) ∪ (S2 − perfect/{r2}), where r1 and r2 are the roots of T1

and T2, respectively. Therefore, when computing the weight of S, we have to give

special attention to r1 and r2. There are 4 cases to consider with respect to r1. If

r1 is S1-perfect (before the combination) and S-perfect (after the combination) or

if r1 is neither S1-perfect nor S-perfect, then the weight of S1 and its contribution

to the weight of S are the same. On the other hand, if r1 is S1-perfect (before the

combination), but not S-perfect (after the combination), then the contribution of S1
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to the weight of S becomes the weight of S1 minus vr1 . Similarly, if r1 is S-perfect,

but not S1-perfect, then the contribution of S1 to the weight of S becomes the weight

of S1 plus vr1 . For this purpose, we create Table 3.4, which is a matrix named per,

that stores what happens to the perfectness of the root of T1 when (T1, S1) that is in

class [i] and (T2, S2) that is in class [j] are combined. For example, the table shows

that if (T1, S1) is in class [1′] and (T2, S2) is in class [2], then r1 was perfect before the

combination and became non-perfect after the combination. The value of per[1′, 2]

in the table which is −1 represents the fact that r1 lost its perfectness. Similarly 1 in

the table means that r1 was not perfect before the combination and became perfect

after the combination. A value of 0 in the table means that the perfectness of r1 did

not change by the combination. To see what happens to the perfectness of r2 when

(T1, S1) that is in class [1′] and (T2, S2) that is in class [2] are combined, we have to

consider the value in the intersection of the row corresponding to class [2] and the

column corresponding to class [1′], i.e., per[2, 1′]. In the table, the values that are not

0 are grayed out.

Table 3.4: Changes in perfectness of r1.

per [1′] [2] [4] [5] [6] [7′] [8] [10] [11.1] [11.2] [12] [13] [14]

[1′] −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0

[2] −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0

[4] −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0

[5] 0 0 0 0 0 0 0 0 0 0 0 0 0

[6] 0 0 0 0 0 0 0 0 0 0 0 0 0

[7′] −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0

[8] −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0

[10] −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0

[11.1] 1 1 1 1 1 0 0 0 0 0 0 0 0

[11.2] 0 0 0 0 0 0 0 0 0 0 0 0 0

[12] 1 1 1 1 1 0 0 0 0 0 0 0 0

[13] 1 1 1 1 1 0 0 0 0 0 0 0 0

[14] 0 0 0 0 0 0 0 0 0 0 0 0 0

With the introduction of the matrix per, we are now ready to modify the update step

of the algorithm. For example, vector[k, 10] is now computed in the update step as
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vector[k, 10] := min{vector[k, 10] + vector[j, 11.1]

+ per[10, 11.1]vk + per[11.1, 10]vj, vector[k, 10]

+ vector[j, 11.2] + per[10, 11.2]vk + per[11.2, 10]vj,

vector[k, 12] + vector[j, 5] + per[12, 5]vk + per[5, 12]vj}.

The updated algorithm is given in Algorithm 3.

Algorithm 3 Algorithm for the MinWPNSP in trees
1: procedure

2: for i := 1 to n do

3: initialize vector[i] to [−,−, wi + vi,−,−,−,−,−,−,−, 0,−,−];

4: end for

5: for j := n down to 2 do

6: k := parent[j];

7: Combine the tree with root j with the tree with root k;

8: Update vector[k] with the combination using “per”;

9: end for

10: return min{vector[1, 1′], vector[1, 2], vector[1, 4], vector[1, 5], vector[1, 7′],

11: vector[1, 8], vector[1, 10], vector[1, 11.1], vector[1, 11.2]};
12: end procedure

Now, we give an illustrative example. In this example, let T0 be the tree given in Fig-

ure 3.3. The input to Algorithm 3 is the parent array which is parent = [0, 1, 2, 3, 2].

The value 0 in this array means that vertex 1 does not have any parent, i.e., it is the

root of the tree.

Additionally, let us assume that we have the following weights.

w 0.84 0.40 0.67 −0.69 0.19

v 0.86 −0.77 −0.63 −0.05 −0.53

According to Algorithm 3, the combination operations in line 7 are done in the order

given in Figure 3.4. The root of each connected component is shown with r in the
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Figure 3.3: The tree used for the illustrative example.
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(e)

Figure 3.4: Combination operations in line 7 of Algorithm 3 for the illustrative exam-

ple.

The first step of Algorithm 3 is the initialization step where the rows of vector are

initialized. In our example, we have the following vectors after the initialization step.
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

vector[1]

vector[2]

vector[3]

vector[4]

vector[5]


=



− − 1.70 − − − − − − − 0 − −
− − −0.37 − − − − − − − 0 − −
− − 0.04 − − − − − − − 0 − −
− − −0.74 − − − − − − − 0 − −
− − −0.34 − − − − − − − 0 − −



Then, according to the order “j := 5 down to 2", the algorithm connects the tree in

which vertex 5 is the root with the tree in which its parent, vertex 2 (parent[5] = 2),

is the root (see Figure 3.4(b)). Next, the tree in which vertex 4 is the root is connected

with the tree in which its parent, vertex 3 (parent[4] = 3), is the root (see Figure

3.4(c)), and so on.

At the end of the execution of Algorithm 3, vector[1] would be found as vector[1] =

[−,−0.44,−0.01,−,−0.03,−,−0.78, 1.35,−2.48,−,−0.35,−,−]. The updates in

vector after each combination step of the algorithm are given in Table 3.5. Then, the

algorithm returns min{vector[1, 1′], vector[1, 2], vector[1, 4], vector[1, 5], vector[1,

7′], vector[1, 8], vector[1, 10], vector[1, 11.1], vector[1, 11.2]}. In this case, the min-

imum value occurs for class [11.1] with vector[1, 11.1] = −2.48. The solution with

this objective function value is given in Figure 3.5.

1 2

3 4

5

Figure 3.5: The optimal solution of the illustrative example.
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Table 3.5: Updates in vector after each combination step of Algorithm 3.

(a) After vertex 5 is joined with vertex 2

vector[1] − − 1.7 − − − − − − − 0 − −
vector[2] − −0.9 − − − − −1.11 − − − − 0 −
vector[3] − − 0.04 − − − − − − − 0 − −
vector[4] − − −0.74 − − − − − − − 0 − −
vector[5] − − −0.34 − − − − − − − 0 − −

(b) After vertex 4 is joined with vertex 3

vector[1] − − 1.7 − − − − − − − 0 − −
vector[2] − −0.9 − − − − −1.11 − − − − 0 −
vector[3] − −0.01 − − − − −1.37 − − − − 0 −
vector[4] − − −0.74 − − − − − − − 0 − −
vector[5] − − −0.34 − − − − − − − 0 − −

(c) After vertex 3 is joined with vertex 2

vector[1] − − 1.7 − − − − − − − 0 − −
vector[2] − −1.64 − 0.49 − −0.78 −2.48 − − −0.35 − −1.37 −
vector[3] − −0.01 − − − − −1.37 − − − − 0 −
vector[4] − − −0.74 − − − − − − − 0 − −
vector[5] − − −0.34 − − − − − − − 0 − −

(d) After vertex 2 is joined with vertex 1

vector[1] − −0.44 −0.01 − −0.03 − −0.78 1.35 −2.48 − −0.35 − −
vector[2] − −1.64 − 0.49 − −0.78 −2.48 − − −0.35 − −1.37 −
vector[3] − −0.01 − − − − −1.37 − − − − 0 −
vector[4] − − −0.74 − − − − − − − 0 − −
vector[5] − − −0.34 − − − − − − − 0 − −
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CHAPTER 4

AN INTEGER PROGRAMMING FORMULATION FOR THE MINWPNSP

Now, we propose an integer programming formulation for the MinWPNSP. The in-

puts of this solution approach are an undirected simple graphG = (V,E) and weights

wj and vj for each vertex j ∈ V . Note that the input graph G does not need to be

a tree in this case. We use two sets of binary decision variables. For every vertex

j ∈ V , we define

yj =

1, if vertex j is in S

0, otherwise
(4.1)

xj =

1, if vertex j is S-perfect

0, otherwise
(4.2)

With these definitions, we are now ready to give an integer programming formulation

for the MinWPNSP.

minimize
∑
j∈V

(wjyj + vjxj) (4.3)

subject to
∑
i∈∆(j)

xi ≥ 1 ∀j ∈ V (4.4)

xj ≤
∑
i∈∆(j)

yi ∀j ∈ V (4.5)

xj + y` + yk ≤ 2 ∀j ∈ V, ∀k, ` ∈ ∆(j), k 6= ` (4.6)

xj +
∑
i∈∆(j)
i 6=k

yi ≥ yk, ∀j ∈ V, ∀k ∈ ∆(j) (4.7)
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xj, yj binary ∀j ∈ V (4.8)

The objective function of this formulation minimizes the weight of S, where the set

S is defined as {j ∈ V |yj = 1}. The constraints enforce that S is a PN set of G.

Constraint 4.4 ensure that the set {j ∈ V |xj = 1} which is equal to S − perfect

dominates G. Constraints in 4.5, 4.6, and 4.7 make sure that {j ∈ V |xj = 1} is equal

to S − perfect. For a vertex j, if
∑

i∈∆(j) yi = 0, then j cannot be S-perfect. This is

accomplished with Constraint 4.5 by enforcing xj to 0. Similarly, if
∑

i∈∆(j) yi ≥ 2,

then j cannot be S-perfect as well. In this case, xj is forced to 0 by Constraint 4.6.

Now, if
∑

i∈∆(j) yi = 1, the constraints 4.5 and 4.6 become redundant and in this case

Constraint 4.7 make sure that xj = 1.
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CHAPTER 5

CORRECTNESS OF ALGORITHM 3

When developing Algorithm 3, we have checked several times the correctness of the

multiplication table that we generated. But, in any case, there is a possibility that

something is overlooked. For this reason, we wanted to have another exact solution

approach for the MinWPNSP for trees. Now, we compare the two solution approaches

to check whether the optimal solutions returned are the same or not. Secondly, we also

compare the two approaches in terms of solution time. Both solution approaches are

run on a computer with Intel Core i7-4770S CPU @3.10GHz (8 CPUs) and 16.00GB

RAM. We use C++ API (Visual Studio 2019, v142) for both approaches and CPLEX

12.9 to solve the integer programming formulation.

For this purpose, we consider different values for |V | ∈ {50, 100, 150, . . . , 950, 1000}
by generating 1000 trees at random for each |V | value. Furthermore, we generate 100

trees randomly for each |V | ∈ {2000, 3000, 4000, 5000}. To create a random tree,

T , an algorithm similar to the Prim’s algorithm to create a minimum spanning tree is

applied. Prim’s algorithm work by connecting two disjoint sets of the vertices with

a minimum possible cost, while our algorithm work by connecting these sets with a

random edge, which can be found in Algorithm 4.

The weights, both w’s and v’s, are selected uniformly at random from the interval

[−1, 1] for all instances. We observe that for each instance generated, the optimal

objective function values of both solution approaches are the same. For each value

of |V |, the average solution times of the instances are shown in Figure 5.1 for both

approaches. As |V | increases, the increase in average solution times of Algorithm 3 is

very small and therefore it is difficult to see this change in Figure 5.1. For this reason,

Figure 5.2 is provided to show the solution times of Algorithm 3 separately as well.

39



Algorithm 4 Algorithm to randomize a tree with |V | = n.
1: procedure T (n)

2: initialize T = (V,E) with V = {1, 2, . . . , n} and E = ∅.
3: assing two sets as C1 := {1} and C2 := V − {1}.
4: for i := 1 to n− 1 do

5: Select a random item from both C1 and C2 as v1 and v2, respectively.

6: E := E ∪ {v1, v2}.
7: C1 := C1 ∪ {v2}.
8: C2 := C2 − {v2}.
9: end for

10: return T = (V,E).

11: end procedure

From the figures, a linear trend can be seen in the average solution times of Algorithm

3. Moreover, as |V | increases, the rate at which the average solution times increase

gets higher for the integer programming formulation.
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Figure 5.1: Average solution times of both solution approaches.
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Figure 5.2: Average solution times of Algorithm 3.
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CHAPTER 6

VALID INEQUALITIES

An inequality is valid for a set if it is satisfied by all points of the set. The IP formu-

lation provided in Chapter 4 is enough to define the solution set of the MinWPNSP

when the decision variables are restricted to be binary. However, when the integrality

restrictions of the decision variables are relaxed, i.e. when the linear programming

(LP) relaxation is considered, the optimal solution is not necessarily a feasible so-

lution for the IP, since the LP relaxation might return a non-integral solution which

would not represent a PN set. With the aim making the formulation stronger, we try to

find some valid inequalities for the feasible region of the IP problem. If an inequality

is valid for a polytope, we call it as a valid inequality for the problem as well. Let-

ting PIP denote the feasible region of the IP formulation, if we can find an inequality

description of conv(PIP ) (which is the perfect neighborhood set polytope) by adding

some valid inequalities, then the LP relaxation would return an integral solution and

thus would solve the MinWPNSP.

To do this, we take the LP relaxation of the formulation in Chapter 4 as the a base

model, given below.

minimize
∑
j∈V

(wjyj + vjxj)

subject to
∑
i∈∆(j)

xi ≥ 1 ∀j ∈ V

xj ≤
∑
i∈∆(j)

yi ∀j ∈ V

xj + y` + yk ≤ 2 ∀j ∈ V, ∀{k, `} ∈ ∆(j), k 6= `
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xj +
∑

i∈∆(j),i 6=k

yi ≥ yk ∀j ∈ V, ∀k ∈ ∆(j)

0 ≤ xj, yj ≤ 1, ∀j ∈ V (6.1)

We started with solving the LP relaxation for the graph given in Figure 1.1 with

wj = 1 and vj = 0 for all j ∈ V . The solution returned is in Figure 6.1.

Figure 6.1: The solution of the LP relaxation of the base model for the graph given in

Figure 1.1.

We, then, realized that this solution can be cut off by the following valid inequality.

∑
i∈∆2(j)

yi ≥ 1, ∀j ∈ V (6.2)

In 6.2, ∆2(j) represents the double neighborhood, i.e., the set of all vertices that can

be reached from j within at most two edges. For the graph in Figure 6.1, we have

∆2(1) = ∆2(2) = ∆2(3) = {1, 2, 3}. Thus, the constraint (for any j in the graph)

would be y1+y2+y3 ≥ 1, which cuts the current optimal solution of the LP relaxation

off.

Proposition 6.1. Constraint 6.2 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Proof. For some vertex j of a graph, if we have
∑

i∈∆2(j) yi = 0, then we can say that∑
k∈∆(i) yk = 0 for all i ∈ ∆(j). Since

∑
k∈∆(i) yk = 0, then we can add that xi = 0

for all i ∈ ∆(j) and
∑

i∈∆(j) xi = 0. In conclusion, this vertex is not dominated by

the set of S-perfect vertices and contradicts with Constraint 4.4.

After adding Constraint 6.2 to our model, we solved and found another non-integral

solution for the following graph in Figure 6.2. Note that the weights are taken as

wj = −1 and vj = 0 for all j ∈ V . In other words, the aim is selected to find Θ(G).
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Figure 6.2: An optimal solution of the LP relaxation after the addition of Constraint

6.2.

To cut off this solution from the solution set, we came up with the following valid

inequality:

∑
i∈∆(j)

yi ≤ |∆(j)| − 1, ∀j ∈ V, |∆(j)| ≥ 2 (6.3)

Note that for the graph given in Figure 6.2, we have |∆(1)| = |∆(3)| = |∆(4)| = 2

and |∆(2)| = 4. For the vertex 1 in the graph, Constraint 6.3 is y1 + y2 ≤ 1, that cuts

the current optimal solution of the LP relaxation off.

Proposition 6.2. Constraint 6.3 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Proof. Proof is by contradiction. Let us assume that for a vertex j of an arbitrary

graph with |∆(j)| ≥ 2, we have
∑

i∈∆(j) yi > |∆(j)| − 1.

Case 1.
∑

i∈∆(j) yi > |∆(j)|. The model restricts that yj ≤ 1 for all j ∈ V . If we sum

this inequality for all i ∈ ∆(j), then we have
∑

i∈∆(j) yi ≤ |∆(j)|. Contradiction.

Case 2.
∑

i∈∆(j) yi = |∆(j)|. This implies that all of the vertices in the closed

neighborhood of vertex j is selected to be in the set S. In this case we can add∑
k∈∆(i) yk ≥ 2 for all i ∈ ∆(j). Because it is clear that yj = 1 and yi = 1 for all

i ∈ ∆(j), and j ∈ ∆(i) for all i ∈ ∆(j). Since
∑

k∈∆(i) yk ≥ 2, then we can add that

xi = 0 for all i ∈ ∆(j) and
∑

i∈∆(j) xi = 0. This contradicts with Constraint 4.4.
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We continued to solve the LP relaxation for some graphs after adding Constraint 6.3

to our model. The next solution with fractional optimal values is given in Figure 6.3

below.

Figure 6.3: An optimal solution of the LP relaxation after the addition of Constraint

6.3.

To cut this fractional solution off, we added the following constraint into our model:

∑
i∈∆(j)
i 6=k

yi ≤ |∆(j)| − 2 + xk, ∀j ∈ V, ∀k ∈ δ(j), |∆(j)| ≥ 3 (6.4)

This constraint is written for the case where j = 3 and k = 2 since {2} ∈ δ(3) and

|∆(3)| = 3. In the open form, the constraint y3 + y4 ≤ 1 + x2 cuts off the solution in

Figure 6.3.

Proposition 6.3. Constraint 6.4 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Proof. The inequality is always valid for the case where
∑

i∈∆(j),i 6=k yi ≤ |∆(j)|− 2.

If
∑

i∈∆(j),i 6=k yi > |∆(j)| − 2, then we can say
∑

i∈∆(j),i 6=k yi = |∆(j)| − 1 since

the decision variables can be at most 1. Thus,
∑

t∈∆(i) yt ≥ 2 for all i ∈ ∆(j), i 6=
k and xi = 0 for all i ∈ ∆(j), i 6= k. Constraint 4.4 implies that

∑
i∈∆(j) xi =

xk +
∑

i∈∆(j),i 6=k xi ≥ 1. Since
∑

i∈∆(j),i 6=k xi = 0, we have xk ≥ 1. In other

words, vertex k must be S-perfect in all feasible solutions of this case. Overall,∑
i∈∆(j),i 6=k yi ≤ |∆(j)|−2+xk is again valid with |∆(j)|−1 ≤ |∆(j)|−2+1.

Continuing in the same manner, the next fractional solution we came up with is given

in Figure 6.4.
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Figure 6.4: An optimal solution of the LP relaxation after the addition of Constraint

6.4.

Then, this solution is cut off by the following inequality.

∑
i∈∆(j)

yi + xj ≥ 2, ∀j ∈ Sup (6.5)

In Figure 6.4, we have |∆(1)| = |∆(3)| = |∆(4)| = 2, thus {2} ∈ Sup, as Sup

represents the support vertices of G. For vertex 2, Constraint 6.5 would be y1 + y2 +

y3 + y4 + x2 ≥ 2 and cuts the current solution off.

Proposition 6.4. Constraint 6.5 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Proof. Let j ∈ Sup and k ∈ Pen, as Pen represents the pendant vertices of G, that

is adjacent to j. From Constraint 4.4, we have
∑

t∈∆(k) xt ≥ 1. Since k is a pendant

vertex, Constraint 4.4 would be xk + xj ≥ 1. Thus, we have either xk = 1 or xj = 1

(or both). In other words, we have either
∑

i∈∆(j) yi = 1 or
∑

t∈∆(k) yt = 1 (or both).

If
∑

t∈∆(k) yt = 1, then
∑

i∈∆(j) yi ≥ 1 since ∆(k) ⊆ ∆(j). Thus, for any case we

can say
∑

i∈∆(j) yi ≥ 1.

Case 1.
∑

i∈∆(j) yi = 1. Then we know j is perfect, so xj = 1. Therefore,∑
i∈∆(j) yi + xj = 2.

Case 2.
∑

i∈∆(j) yi ≥ 2.
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For both of the cases, Constraint 6.5 is satisfied.

After adding Constraint 6.5, the following fractional solution in Figure 6.5 is found

as optimal to the LP relaxation. Note that the weights of the vertices are uniformly

randomized in [−1, 1].

Figure 6.5: An optimal solution of the LP relaxation after the addition of Constraint

6.5.

This solution is, then, cut off by the following equation.

yi + yj = xi, ∀i ∈ Pen, {i, j} ∈ E (6.6)

In Equation 6.6, vertex j would be the support of vertex i. For vertex 6 of Figure 6.5,

Constraint 6.6 would be y6 + y1 = x6 that cuts the current solution off.

Proposition 6.5. Constraint 6.6 is a valid equality for an arbitrary graph for the Min-

WPNSP.

Proof.

Case 1. yi + yj = 2. Then, yi + yj =
∑

k∈∆(i) yk = 2 and
∑

t∈∆(j) yt ≥ 2 since

∆(i) ⊆ ∆(j). Overall, we have xi = xj = 0.
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Case 2. yi + yj = 1. Then we have
∑

k∈∆(i) yk = 1, so xi = 1.

Case 3. yi + yj = 0. Then we have
∑

k∈∆(i) yk = 0, so xi = 0.

First case cannot occur since it violates Constraint 4.4 for vertex i. For the rest of the

cases, Constraint 6.6 is always satisfied.

After adding Constraint 6.6, we came up with another fractional solution given in

Figure 6.6.

Figure 6.6: An optimal solution of the LP relaxation after the addition of Constraint

6.6.

For this graph, the following cut is used in Constraint 6.7.

yj + yk + y` + xj + xk ≤ 3, ∀j ∈ V, ∀{k, `} ∈ δ(j), k 6= ` (6.7)

Here, one of the constraints would be y1 + y2 + y4 + x1 + x2 ≤ 3, cutting the current

solution off.

Proposition 6.6. Constraint 6.7 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Proof.

Case 1. yj + yk + y` = 3. Then, we add that
∑

i∈∆(j) yi ≥ 3 and
∑

t∈∆(k) yt ≥ 2.

Thus, xj = xk = 0. Constraint 6.7 is valid with 3 ≤ 3.
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Case 2. yj + yk + y` = 2. Then,
∑

i∈∆(j) yi ≥ 2, so xj = 0. Constraint 6.7 is always

valid with 2 + xk ≤ 3.

Case 3. yj + yk + y` ≤ 1. For any case, we can add xj + xk ≤ 2. Therefore,

yj + yk + y` + xj + xk ≤ 3.

Constraint 6.7 is satisfied for all cases.

The next fractional solution is given in Figure 6.7.

Figure 6.7: An optimal solution of the LP relaxation after the addition of Constraint

6.7.

This solution is cut off by the following inequality:

xj + xk + x` ≤ 2 + yj, ∀{k, `} ∈ Pen, ∀{k, `} ∈ δ(j), k 6= ` (6.8)

For the case where j = 1, k = 3 and ` = 4, we have x1 + x3 + x4 ≤ 2 + y1. This

inequality cuts the current solution off.

Proposition 6.7. Constraint 6.8 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Proof. If xj +xk +x` ≤ 2, then 6.8 is always feasible. Otherwise, we have xj +xk +

x` = 3. In other words, we have
∑

i∈∆(j) yi =
∑

m∈∆(k) ym =
∑

t∈∆(l) yt = 1. Since

{k, `} ∈ Pen and {k, `} ∈ δ(j), we can add that yk + yj = y` + yj = 1. Thus, we

have yk = y`.
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Figure 6.8: An example case for Constraint 6.8.

Case 1. yk = y` = 0 and yj = 1. Since {k, `} ∈ δ(j), we can add that
∑

i∈∆(j) yi ≥
yj + yk + y` = 1. Then, in order to j being S-perfect,

∑
i∈∆(j),i 6={j,k,`} yi = 0 should

occur.

Case 2. yk = y` = 1 and yj = 0. Then, we can add that
∑

i∈∆(j) yi ≥ yj+yk+y` = 2.

Contradiction with
∑

i∈∆(j) yi = 1.

Since second case never occurs; if xj + xk + x` = 3, then yj = 1, which satisfies the

Constraint 6.8.

The next fractional solution after adding Constraint 6.8 into the model is given in

Figure 6.9.

Figure 6.9: An optimal solution of the LP relaxation after the addition of Constraint

6.8.
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To cut this solution off, we created the following constraint.

yj + yt +
∑
i∈∆(l)
i 6={j,`}

yi +
∑

m∈∆(k)
m6={j,k}

ym + 1 ≥ x` + xk, ∀t ∈ Pen, ∀{t, k, `} ∈ δ(j)

(6.9)

In the graph given in Figure 6.9, for j = 1, t = 2, k = 3 and ` = 4, Constraint 6.9

would be y1 + y2 + 1 ≥ x3 + x4, which cuts the current solution off.

Proposition 6.8. Constraint 6.9 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Figure 6.10: An example case for Constraint 6.9.

Proof. Constraint 6.9 is always valid if x` + xk ≤ 1. It only cuts off the solutions

with x` + xk = 2 and yj + yt +
∑

i∈∆(`)
i 6={j,`}

yi +
∑

m∈∆(k)
m6={j,k}

ym = 0.

Let us assume that we have a solution with x` = xk = 1 and yj = yt =
∑

i∈∆(`)
i 6={j,`}

yi =∑
m∈∆(k)
m6={j,k}

ym = 0. Since x` = xk = 1, we have
∑

i∈∆(`) yi =
∑

m∈∆(k) ym = 1. By

subtracting the sums, for example for the vertex `, we have
∑

i∈∆(`) yi−
∑

i∈∆(`)
i 6={j,`}

yi =

1 = yj + y`. Overall, yj + y` = yj + yk = 1. We already know that yj = 0, thus

y` = yk = 1.

Since
∑

p∈∆(j) yp ≥ y` + yk = 2, we have xj = 0. Moreover, since
∑

r∈∆(t) yr =

yj+yt = 0, we have xt = 0. By Constraint 4.4 for the vertex t, we have
∑

r∈∆(t) xr =

xj + xt ≥ 1. Contradiction with xj + xt = 0.
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After adding Constraint 6.9, the LP relaxation finds the following solution optimal

given in Figure 6.11.

Figure 6.11: An optimal solution of the LP relaxation after the addition of Constraint

6.9.

To cut this solution off, we use Constraint 6.10.

xi + xj + yk ≤ 2, ∀i ∈ Pen, ∀{i, k} ∈ δ(j) (6.10)

In Figure 6.11, {3} ∈ Pen and {1, 3} ∈ δ(4). Thus, the constraint for this case would

be x3 + x4 + y1 ≤ 2 which makes the current optimal solution infeasible.

Proposition 6.9. Constraint 6.10 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Figure 6.12: An example case for Constraint 6.10.

Proof. Let us assume that we have a solution with xi + xj + yk > 2, i.e., xi =

xj = yk = 1. Then, we know that
∑

l∈∆(i) y` =
∑

t∈∆(j) yt = 1. Since {i} ∈
Pen and {i, k} ∈ δ(j), we can add ∆(i) ⊆ ∆(j) and {k} ∈ ∆(j) \ ∆(i). Thus,
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∑
t∈∆(j) yt −

∑
l∈∆(i) y` =

∑
r∈∆(j)\∆(i) yr = 0. Since {k} ∈ ∆(j) \ ∆(i), we can

add yk = 0, which contradicts with yk = 1.

The next fractional solution the model gives as output after adding Constraint 6.10 is

given in Figure 6.13.

Figure 6.13: An optimal solution of the LP relaxation after the addition of Constraint

6.10.

This solution is cut off by the following constraint:

(|∆(j)| − 2)xj +
∑
i∈∆(j)

yi ≤ |∆(j)| − 1, ∀j ∈ V (6.11)

For vertex 1 in Figure 6.13, we have the constraint 3x1 + y1 + y2 + y3 + y4 + y5 ≤ 4,

which cuts the current solution off.

This constraint, unlike the previous ones, is not created from scratch. Rather, it is a

stronger version of Constraint 6.3. Additionally, this stronger version is valid for each

vertex of each graph, i.e., we do not need to have a vertex with |∆(j)| ≥ 2 as stated

in Constraint 6.3.

Proposition 6.10. Constraint 6.11 is a valid inequality for an arbitrary graph for the

MinWPNSP.
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Proof.

Case 1. xj = 0 and |∆(j)| ≥ 2. This case has been proved to be valid in Proposition

6.2.

Case 2. xj = 0 and |∆(j)| = 1. This case cannot occur with the current set of

constraints because Constraint 4.4 for vertex j would be xj ≥ 1.

Case 3. xj = 1. Then, it is clear that
∑

i∈∆(j) yi = 1. Thus, the constraint is satisfied

with (|∆(j)| − 2) + 1 ≤ |∆(j)| − 1.

Since Constraint 6.11 is a stronger version of Constraint 6.3, the model that is to be

used in the following solutions is updated by adding Constraint 6.11 to it and deleting

Constraint 6.3 from it. Then, we came up with the following fractional solution.

Figure 6.14: An optimal solution of the LP relaxation after the addition of Constraint

6.11.

This solution is cut off by the following inequality:

yi − xj − xk ≤ y`, {{i, j}, {j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| = 3 (6.12)
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In the graph given in Figure 6.14, one of the constraints of 6.12 would be y4 − x6 −
x1 ≤ y5. This inequality cuts the current optimal solution off.

Proposition 6.11. Constraint 6.12 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Figure 6.15: An example case for Constraint 6.12.

Proof.

Case 1. yi − xj − xk ≤ 0. Then, the constraint is always satisfied.

Case 2. yi − xj − xk > 0. Then, the only feasibility would be yi − xj − xk = 1 with

yi = 1, xj = 0 and xk = 0. The constraint is still satisfied if y` = 1, so the solutions

with y` = 0 is cut off by the inequality.

Let us assume that we have a solution with yi = 1, xj = 0, xk = 0 and y` = 0.

Constraint 4.4 for vertex j would be xi + xj + xk ≥ 1. We already know that xj =

xk = 0, thus xi = 1 which implies
∑

t∈∆(i) yt = 1 for all feasible solutions. Since

yi = 1, then
∑

t∈δ(i) yt = 0 which implies that yj = 0.

Next, we have xj = 0, thus
∑

r∈∆(j) yr = yi + yj + yk 6= 1. When yi = 1 and

yj = 0, the only possible case we have is yk = 1. Similarly, we have xk = 0, thus∑
m∈∆(k) ym = yj + yk + y` 6= 1. Since yj = 0 and yk = 1, the only possible case

would be y` = 1, which contradicts with the assumption of y` = 0.

After adding Constraint 6.12 into our model, the solution given in Figure 6.16 is found

as optimal.

This solution, then, is cut off by Constraints 6.13 and 6.14.
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Figure 6.16: An optimal solution of the LP relaxation after the addition of Constraint

6.12.

yi + y` ≤ 1 + xj, {{i, j}, {j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| = 3 (6.13)

yi + y` ≤ 1 + xk, {{i, j}, {j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| = 3 (6.14)

Note that the case of {{i, j}, {j, k}, {k, `}} ∈ E and |∆(j)| = |∆(k)| = 3 is the

same of the previous case, where the example is also given in Figure 6.15. One of the

constraints of 6.13 and 6.14 for the graph in Figure 6.16 would be y6 + y4 ≤ 1 + x1,

which cuts the current solution off.

Proposition 6.12. Constraints 6.13 and 6.14 are valid inequalities for an arbitrary

graph for the MinWPNSP.

Proof. If yi + y` ≤ 1, then both of the constraints are always valid. If yi + y` = 2,

then xj = xk = 1 is implied by the constraints.

Let us assume the opposite, that we have a solution with yi = y` = 1 and xj = 0

(Note that the case where yi = y` = 1 and xk = 0 is the same if we rename the

indices by switching i with ` and j with k). Since xj = 0, we have yi + yj + yk 6= 1.

Moreover, since yi = 1, we have yj + yk > 0.
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Case 1. yj = 1. Constraint 4.4 for vertex j implies that xi + xj + xk ≥ 1. Since we

have yi = yj = y` = 1, all of the vertices of i, j and k has at least two vertices from

set S (as y’s) in their closed neighborhoods, making them as not S-perfect vertices,

i.e., xi + xj + xk = 0 . Contradiction.

Case 2. yk = 1. This case is very similar to the previous case. Since yi = yk = y` =

1, we conclude that xj + xk + x` = 0. Contradiction with Constraint 4.4 for vertex k.

Since none of the cases are valid, any solution with yi = y` = 1 and xj = 0 (or

xk = 0) is infeasible for the base formulation.

After adding constraints 6.13 and 6.14 into our model, we came up with the following

fractional solution:

Figure 6.17: An optimal solution of the LP relaxation after the addition of Constraint

6.13 and 6.14.

To cut the fractional solution in Figure 6.17 off, we used Constraint 6.15:

yj + xk ≤ 1 + yi + xj, {{i, j}, {j, k}} ∈ E, |∆(j)| = 3 (6.15)

One of the constraints of inequality 6.15 would be y1 +x4 ≤ 1+y6 +x1 for the graph

in Figure 6.17, which cuts off the current solution of it.
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Proposition 6.13. Constraint 6.15 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Figure 6.18: An example case for Constraint 6.15.

Proof. Constraint 6.15 would be infeasible if and only if yj = xk = 1 and yi = xj =

0. Let us assume we have such a solution. In this case, it is clear that yk = 1, because

otherwise xj would have been 1. Then, since yj = yk = 1, we can say that xk = 0.

Contradiction with the initial assumption as xk = 1.

Similarly, we added Constraint 6.15 into our model and tried to find other fractional

solutions. One of them is given below in Figure 6.19:

Figure 6.19: An optimal solution of the LP relaxation after the addition of Constraint

6.15.

To cut this solution off, the following constraint is used:
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xj ≤ yi + y` + xk, {{i, j}, {j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| = 3 (6.16)

One of Constraint 6.16 for the graph in Figure 6.19 would be x3 ≤ y2 +y1 +x6 which

cuts off the current solution.

Proposition 6.14. Constraint 6.16 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Proof. Constraint 6.16 is infeasible if and only if xj = 1 and yi = y` = xk = 0. Let

us assume we have such a solution. Since xj = 1, we know that yi + yj + yk = 1.

Moreover, since yi = 0, we add that yj + yk = 1. If we sum both sides of this

inequality by y` which is 0, we will have that yj + yk + y` = 1. This equation implies

that xk = 1 since |∆(k)| = {j, k, `}. Contradiction with our initial assumption of

xk = 0.

With the addition of Constraint 6.16, one of the fractional solutions the model re-

turned is given in Figure 6.20:

Figure 6.20: An optimal solution of the LP relaxation after the addition of Constraint

6.16.

To cut the solution given in Figure 6.20 off, we used Constraint 6.17.
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(|∆(j)| − 3)xj +
∑
i∈∆(j)
i 6=k

yi ≤ |∆(j)| − 2 + xk, ∀j ∈ V, ∀k ∈ δ(j), |∆(j)| ≥ 3

(6.17)

This constraint is a stronger version of Constraint 6.4. The left hand side is added

with (|∆(j)| − 3)xj . In Figure 6.20, we have |∆(4)| = 4. Thus, for j = 4 and k = 1,

Constraint 6.17 would be x4 + y4 + y5 + y6 ≤ 2 + x1. This makes the solution in

Figure 6.20 infeasible.

Proposition 6.15. Constraint 6.17 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Proof.

Case 1. xj = 0. This case has been proved to be valid in Proposition 6.3.

Case 2. xj = 1. Then, we know that
∑

i∈∆(j) yi = 1 and
∑

i∈∆(j),i 6=k yi ≤ 1. If we

sum both sides with (|∆(j)| − 3)xj , we have that (|∆(j)| − 3)xj +
∑

i∈∆(j),i 6=k yi ≤
(|∆(j)| − 2). In this case, Constraint 6.17 is always valid.

Similar to the Constraints 6.3 and 6.11, at this point, the model is updated by adding

Constraint 6.17 to it and by deleting Constraint 6.4 from it for further solutions. Then,

the solution in Figure 6.21 is found as optimal.

To cut this solution off, the following constraint is used:

(|∆(j)| − 2)xj +
∑
i∈∆(j)

yi = |∆(j)| − 1, ∀j ∈ Sup (6.18)

where all the other vertices in the set of V − {j} should be pendant vertices and

adjacent to j. In other words, the graph must be a star graph. Therefore, this is the

first constraint used in this chapter which is not valid in general for an arbitrary graph.
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Figure 6.21: An optimal solution of the LP relaxation after the addition of Constraint

6.17.

Since the graph in Figure 6.21 is a star graph, Constraint 6.18 would be 2x4 + y1 +

y2 + y3 + y4 = 3. The current solution, then, would be infeasible with 2 6= 3 by

adding Constraint 6.18.

Proposition 6.16. Constraint 6.18 is a valid equality for a star graph for the MinWP-

NSP.

Proof. Since j is the support of the star graph, we have |∆(j)| = n and ∆(j) = V .

Case 1. xj = 1. Then, it is known that
∑

i∈V yi = 1. Thus the sum would be

(n− 2) + 1 = (n− 1).

Case 2. xj = 0. Since for a vertex i ∈ V − {j}, we have xi + xj ≥ 1 by Constraint

4.4, we add that xi = 1 for all i ∈ V − {j}. In other words, yi + yj = 1. Here,

yj cannot be 1 since if yj = 1, then yi = 0 for all i ∈ V − {j}, which implies∑
k∈V yk = 1 and xj = 1. This contradicts with our assumption of xj = 0. Thus, we

add that yj = 0 and yi = 1 for all i ∈ V − {j}. In this case, the constraint would be

satisfied with (n− 2)0 + (n− 1) = (n− 1).

The constraint is valid for both cases.

After adding Constraint 6.18 into our model, the solution given in Figure 6.22 is found

as optimal by the model.
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Figure 6.22: An optimal solution of the LP relaxation after the addition of Constraint

6.18.

Then, we use Constraint 6.19 to cut off the solution given in Figure 6.22.

xj + yi ≥ 1, |∆(j)| = n, |∆(i)| = 2 (6.19)

This constraint would be written for i = 2 and j = 4 for the graph in Figure 6.22

since we have |∆(2)| = 2 and |∆(4)| = 5. Then, x4 + y2 ≥ 1 would cut the current

optimal solution off.

Proposition 6.17. Constraint 6.19 is a valid equality for an arbitrary graph for the

MinWPNSP.

Proof. The constraint would cut off the solutions with xj + yi < 1. In other words,

xj = yi = 0. Let us assume that we have a solution with xj = yi = 0. Since

|∆(j)| = n and |∆(i)| = 2, we know that i is a pendant vertex and {i, j} ∈ E.

Moreover, by Constraint 4.4 for vertex i, we have the condition that xi + xj ≥ 1.

Since xj = 0, we have xi = 1 which implies yi + yj = 1. Since also yi = 0, we

know that yj = 1. Additionally, xj = 0 and yj = 1 imply that
∑

k∈V yk 6= 1 and∑
k∈V yk ≥ 1, respectively. Overall, we have that

∑
k∈V yk ≥ 2.

Case 1. n > 2. Then, there exists at least one vertex, say t, in the set of V − {i, j}
which has yt = 1. Since |∆(j)| = n, we can add that |∆(t)| ⊆ |∆(j)|. Thus, any
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vertex in |∆(t)| would also be adjacent to vertex j. Since we have yj = yt = 1, we

can say that
∑

m∈∆(`) ym ≥ 2 for all ` ∈ ∆(t), implying x` = 0 for all ` ∈ ∆(t). This

would be infeasible since Constraint 4.4 for vertex t implies that
∑

`∈∆(t) x` ≥ 1.

Case 2. n ≤ 2. We assumed that we have two distinct vertices i and j, thus n ≥ 2,

implying n = 2. Thus,
∑

k∈V yk ≥ 2 converts into yi + yj ≥ 2. This is not possible

since we initially assumed that yi = 0.

Addition of Constraint 6.19 into our model gives us another fractional solution as

follows:

Figure 6.23: An optimal solution of the LP relaxation after the addition of Constraint

6.19.

The solution in Figure 6.23 is, then, cut off by the following constraint, where C ⊆ V

is a maximal clique:

xj =
∑
i∈C

yi, ∆(j) = C (6.20)

For the graph in Figure 6.20, we have one maximal clique as C = {1, 2, 3} and

∆(1) = ∆(2) = ∆(3) = C. Thus, one of the constraints of the new equation would

imply that x3 = y1 + y2 + y3, which cuts the current fractional solution off.
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Proposition 6.18. Constraint 6.20 is a valid equality for an arbitrary graph for the

MinWPNSP.

Proof.

Case 1.
∑

i∈C yi = 0. Then, since ∆(j) = C, we have
∑

i∈∆(j) yi = 0, implies

xj = 0 =
∑

i∈C yi.

Case 2.
∑

i∈C yi = 1. Then, vertex j would be perfect by the definition since∑
i∈C yi =

∑
i∈∆(j) yi = 1, thus xj = 1 =

∑
i∈C yi.

Case 3.
∑

i∈C yi ≥ 2. Then, xj = 0 since
∑

i∈C yi =
∑

i∈∆(j) yi ≥ 2. By the

Constraint 4.4 for vertex j, we add that there exists at least one vertex k ∈ ∆(j)

which is perfect, xk = 1 for each feasible solution of the problem. We also know that

k ∈ ∆(j) = C and C ⊆ ∆(k) since C is a clique and k should be adjacent to each

vertex of the clique that is consisted of. Thus, we have
∑

i∈∆(k) yi ≥
∑

i∈C yi ≥ 2,

implying xk = 0 since
∑

i∈∆(k) yi 6= 1. Contradiction with xk = 1.

Constraint 6.20 is valid for the first two cases and last case is not possible to occur for

any feasible solution of the problem.

Constraint 6.20 implies Constraint 6.6 because 6.6 is the same of 6.20 when |C| = 2.

Thus, we updated our model by adding Constraint 6.20 and removing Constraint 6.6

for the further solutions. After this update, we came up with the fractional solution in

Figure 6.24.

To cut this solution off, we created the following constraint:

xi = xj, ∆(i) = ∆(j) (6.21)

For the graph in Figure 6.24, Constraint 6.21 implies that x2 = x3 since ∆(2) =

∆(3) = {1, 2, 3, 4} which cuts off the current fractional solution.

Proposition 6.19. Constraint 6.21 is a valid equality for an arbitrary graph for the

MinWPNSP.
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Figure 6.24: An optimal solution of the LP relaxation after the addition of Constraint

6.20.

Proof. If xi = 1, then
∑

k∈∆(i) yk = 1, thus
∑

m∈∆(j) ym = 1 since ∆(i) = ∆(j),

which implies xj = 1 = xi. Else, xi = 0 implies
∑

k∈∆(i) yk 6= 1, thus
∑

m∈∆(j) ym 6=
1 since ∆(i) = ∆(j), which implies xj = 0 = xi.

Continuing in the same manner, we had the following fractional solution after adding

Constraint 6.21 into our model:

Figure 6.25: An optimal solution of the LP relaxation after the addition of Constraint

6.21.

For the solution in Figure 6.25, we came up with the constraint y1 + x1 ≤ 1 + x3

which cuts off the current optimal. In the general form, the constraint is
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yk + xj ≤ 1 + xi, k ∈ ∆(i) ⊆ ∆(j) (6.22)

Proposition 6.20. Constraint 6.22 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Proof. The constraint is always feasible if yk+xj ≤ 1. If yk = xj = 1, it implies that

xi = 1. Thus, it only cuts the subset of solutions in which yk = xj = 1 and xi = 0.

Let us assume that we have a solution in which yk = xj = 1 and xi = 0. xj = 1

implies that
∑

`∈∆(j) y` = 1 and
∑

m∈∆(i) ym ≤ 1 since ∆(i) ⊆ ∆(j). Additionally,

we have yk = 1 and k ∈ ∆(i), which implies
∑

m∈∆(i) ym ≥ 1. By the combination

of the results, we have
∑

m∈∆(i) ym = 1, implying xi = 1. This contradicts with our

initial assumption of xi = 0.

With the addition of Constraint 6.22 in our model, we came up with the fractional

optimal solution in Figure 6.26.

Figure 6.26: An optimal solution of the LP relaxation after the addition of Constraint

6.22.

To cut this solution off, the following constraint is used:

yi + yj + yk + y` ≤ 2, {{i, j}, {j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| = 3 (6.23)

In Figure 6.26, one of the constraints of this form would be y3+y1+y4+y2 ≤ 2, which

cuts the current optimal solution off. (Note that the demonstration of Constraint 6.23

is given in Figure 6.15)

Proposition 6.21. Constraint 6.23 is a valid inequality for an arbitrary graph for the

MinWPNSP.
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Proof. Let us assume that we have a solution of yi + yj + yk + y` > 2, {{i, j},
{j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| = 3.

Case 1. yi = 1, yj = 1, yk = 1, and y` = 0. This contradicts with Constraint 6.11 for

j which implies xj +
∑

m∈∆(j) ym = xj + yi + yj + yk ≤ |∆(j)| − 1 = 2.

Case 2. yi = 1, yj = 1, yk = 0, and y` = 1. This implies that
∑

m∈∆(i) ym ≥
2,

∑
m∈∆(j) ym = 2, and

∑
m∈∆(k) ym = 2, implying xi = xj = xk = 0. This

contradicts with Constraint 4.4 for j which implies that
∑

m∈∆(j) xm = xi+xj+xk ≥
1.

Case 3. yi = 1, yj = 0, yk = 1, and y` = 1 (Symmetric case with Case 2). This

implies that
∑

m∈∆(j) ym = 2,
∑

m∈∆(k) ym = 2, and
∑

m∈∆(`) ym ≥ 2, implying

xj = xk = x` = 0. This contradicts with Constraint 4.4 for k which implies that∑
m∈∆(k) xm = xj + xk + x` ≥ 1.

Case 4. yi = 0, yj = 1, yk = 1, and y` = 1 (Symmetric case with Case 1). This

contradicts with Constraint 6.11 for k which implies xk +
∑

m∈∆(k) ym = xk + yj +

yk + y` ≤ |∆(k)| − 1 = 2.

Case 5. yi = 1, yj = 1, yk = 1, and y` = 1. This contradicts with Constraint 6.11 for

j which implies xj +
∑

m∈∆(j) ym = xj + yi + yj + yk ≤ |∆(j)| − 1 = 2.

All of the cases contradict with the current set of constraints.

With the addition of Constraint 6.23 into our model, the next fraction solution the

updated model returned is given in Figure 6.27

Figure 6.27: An optimal solution of the LP relaxation after the addition of Constraint

6.23.

A valid constraint as y1 + y4 ≤ x2 + x3 cuts off the current optimal solution. In the

general form, the constraint is
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yi + y` ≤ xj + xk, {{i, j}, {j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| = 3 (6.24)

Here, for i = 1, j = 2, k = 3 and ` = 4, the constraint is generated since |∆(2)| =

|∆(3)| = 3 and these vertices are adjacent to each other for each consecutive pair.

Thus, the current optimal solution is successfully cut.

Proposition 6.22. Constraint 6.24 is a valid inequality for an arbitrary graph for the

MinWPNSP.

Proof.

Case 1. yi + y` = 0. Then, xj + xk ≥ 0 is always satisfied and Constraint 6.24 is

redundant.

Case 2. yi + y` = 1. Since the case of {{i, j}, {j, k}, {k, `}} ∈ E and |∆(j)| =

|∆(k)| = 3 is symmetric (see Figure 6.15), we assume that yi = 1 and y` = 0 without

loss of generality. In such a case, Constraint 6.24 implies that xj + xk ≥ 1, so it cuts

off the solutions with xj + xk = 0.

Let us assume that we have a feasible solution with yi = 1, xj = 0, xk = 0 and

y` = 0. xj = 0 implies that
∑

m∈∆(j) ym = yi + yj + yk 6= 1. Since yi = 1, we

have yj + yk 6= 0 by combining these two results. It has already been proved that

yj + yk = 2 is infeasible for this case (see Case 1 of Proposition 6.21). Thus, we only

have one possibility as yj + yk = 1. Then, one can observe that the sum of y values

in the closed neighborhood of vertex k is 1, i.e.,
∑

t∈∆(k) yt = yj + yk + y` = 1,

implying xk = 1. This contradicts with out initial assumption as xk = 0.

Case 3. yi+y` = 2. The model implies that yi+yj +yk +y` ≤ 2 by Constraint 6.23,

thus we have that yj = yk = 0. Since
∑

m∈∆(j) ym = yi + yj + yk = 1 + 0 + 0 = 1,

we have xj = 1. Similarly, since
∑

t∈∆(k) yt = yj + yk + y` = 0 + 0 + 1 = 1, we also

have xk = 1. So, yi + y` ≤ xj + xk is satisfied with 2 ≤ 2.

Overall, Constraint 6.24 is always valid for an arbitrary graph for the MinWPNSP.
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Constraint 6.24 is stronger than Constraint 6.12, 6.13 and 6.14, these constraints

would always be redundant by the addition of 6.24. Constraint 6.12 implies that

yi − xj − xk ≤ y` for a case as in Figure 6.15. In other words, it implies yi + y` ≤
2y` + xj + xk. It is clear that this is always satisfied by the current model where all

of the feasible solutions satisfy Constraint 6.24, which implies yi + y` ≤ xj + xk

for the same case in Figure 6.15 and we have xj + xk ≤ 2y` + xj + xk. Similarly,

Constraint 6.24 also implies 6.13 and 6.14 since yi + y` ≤ xj + xk ≤ 1 + xk and

yi + y` ≤ xj + xk ≤ 1 + xj are valid when decision variables are bounded to be at

most 1.

At this point, we stopped adding constraints into our model. After the elimination

of the implied constraints, the finalized model for the MinWPNSP can be found as

follows.

minimize
∑
j∈V

(wjyj + vjxj)

subject to∑
i∈∆(j)

xi ≥ 1 ∀j ∈ V

xj ≤
∑
i∈∆(j)

yi ∀j ∈ V

xj + y` + yk ≤ 2 ∀j ∈ V, ∀{k, `} ∈ ∆(j), k 6= `

xj +
∑

i∈∆(j),i 6=k

yi ≥ yk ∀j ∈ V, ∀k ∈ ∆(j)

xj, yj binary ∀j ∈ V∑
i∈∆2(j)

yi ≥ 1 ∀j ∈ V

∑
i∈∆(j)

yi + xj ≥ 2 ∀j ∈ Sup

yj + yk + y` + xj + xk ≤ 3 ∀j ∈ V, ∀{k, `} ∈ δ(j), k 6= `

xj + xk + x` ≤ 2 + yj ∀{k, `} ∈ Pen, ∀{k, `} ∈ δ(j), k 6= `

yj + yt +
∑
i∈∆(l)
i 6={j,`}

yi +
∑

m∈∆(k)
m6={j,k}

ym + 1 ≥ x` + xk, ∀t ∈ Pen, ∀{t, k, `} ∈ δ(j)

xi + xj + yk ≤ 2 ∀i ∈ Pen, ∀{i, k} ∈ δ(j)
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(|∆(j)| − 2)xj +
∑
i∈∆(j)

yi ≤ |∆(j)| − 1, ∀j ∈ V

yj + xk ≤ 1 + yi + xj {{i, j}, {j, k}} ∈ E, |∆(j)| = 3

xj ≤ yi + y` + xk {{i, j}, {j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| = 3

(|∆(j)| − 3)xj +
∑
i∈∆(j)
i 6=k

yi ≤ |∆(j)| − 2 + xk, ∀j ∈ V, ∀k ∈ δ(j), |∆(j)| ≥ 3

(|∆(j)| − 2)xj +
∑
i∈∆(j)

yi = |∆(j)| − 1, ∀j ∈ Sup (and G is a star graph)

xj + yi ≥ 1 |∆(j)| = n, |∆(i)| = 2

xj =
∑
i∈C

yi ∆(j) = C

xi = xj ∆(i) = ∆(j)

yk + xj ≤ 1 + xi k ∈ ∆(i) ⊆ ∆(j)

yi + yj + yk + y` ≤ 2 {{i, j}, {j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| = 3

yi + y` ≤ xj + xk {{i, j}, {j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| = 3

(6.25)

In this model, we did not list the constraints that are implied by one of the other con-

straints. For example, Constraint 6.11 and 6.17 are created by making Constraint 6.3

and 6.4 stronger, respectively. We realized that
∑

i∈S yi ≤ 1 if xj = 1 and S ⊆ ∆(j).

Thus, we added xj with a coefficient to Constraint 6.3 and 6.4 to create Constraints

6.11 and 6.17. This direct relationship enabled us to easily remove Constraints 6.3

and 6.4 since they are implied by the new ones.

However, there might be more complex relationships between two or more constraints

of the finalized model, and there might other constraints that are implied by one or

more other constraints of the finalized model.

One important thing is that the constraints in the finalized model are given with the

same order as listed in this chapter. They are all created to cut a fractional solution off

that is found to be optimal to the LP relaxation with the previous set of constraints.

For example, there is at least one fractional solution (see Figure 6.27) that is cut by

Constraint 6.24, yi+y` ≤ xj+xk, {{i, j}, {j, k}, {k, `}} ∈ E, |∆(j)| = |∆(k)| =
3, and that solution is found to be optimal with the previous set of constraints (all
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other constraints). Thus, we can say that Constraint 6.24 is not a redundant constraint

in the finalized model. However, the same does not apply for the other constraints.

It is clear that a constraint cannot be implied by the previous set of constraints, but

there is a chance that it is implied by the set of constraints that are added after the

constraint (or implied by the combination of the previous set of constraints and the

set of constraints that are added after the constraint).

Additionally, while adding the valid inequalities, we found a couple of other valid

inequalities that are not listed here. Some of these are eliminated because they are

exponentially many (note that all of the constraints of our finalized model are polyno-

mially many) or because they are too specific. Now, we will go over these constraints.

Proposition 6.23.
∑

i∈S2
xi + |S1| − 1 ≥

∑
k∈S1

yk + (|S1| − 2)xj, ∀j ∈ V where

S1∪S2 = ∆(j), S1∩S2 = ∅, j ∈ S1 and |S1| ≥ 2 is a valid inequality for an arbitrary

graph for the MinWPNSP.

Proof.

Case 1. xj = 1. Then we have
∑

k∈S1
yk ≤ 1 since since xj = 1 implies

∑
k∈∆(j)

yk = 1 and we have S1 ⊂ ∆(j). It is, then, implied that
∑

k∈S1
yk + (|S1| − 2)xj ≤

|S1| − 1. In this case, the constraint will always be valid for all values of
∑

i∈S2
xi.

Case 2. xj = 0 and
∑

k∈S1
yk ≤ |S1| − 1. Then, similar to the Case 1, we have∑

k∈S1
yk + (|S1| − 2)xj ≤ |S1| − 1 and always satisfy the constraint.

Case 3. xj = 0 and
∑

k∈S1
yk = |S1|. In this case, it is clear that yk = 1 for all

k ∈ S1. Since S1 ⊂ ∆(j), we have that j ∈ ∆(k) for all k ∈ S1 and
∑

`∈∆(k) y` ≥ 2,

implying xk = 0 for all k ∈ S1.

Constraint 4.4 implies that
∑

i∈∆(j) xi =
∑

k∈S1
xk +

∑
i∈S2

xi ≥ 1. In our case, we

have
∑

k∈S1
xk = 0, thus constraint will imply

∑
i∈S2

xi ≥ 1. Overall, left-hand side

of the constraint will be
∑

i∈S2
xi + |S1| − 1 ≥ |S1| and the right-hand side will be

equal to |S1|, which is always feasible.

This constraint is a generalized version of Constraint 6.11. For a vertex j, if S2 is
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selected to be an empty set, then the constraint in Proposition 6.23 will be the same of

Constraint 6.11 for vertex j. Thus, it implies Constraint 6.11. Additionally, the reader

may observe that the number of constraints in Proposition 6.23 will be exponentially

many. For a vertex j, there will be O(2|∆(j)|) many constraints in Proposition 6.23

Another constraint class with exponentially many constraints is given in the following

proposition.

Proposition 6.24. |S1| ≥
∑

k∈S1
yk + (|S1| − 1)xj, ∀j ∈ V where S1 ⊆ ∆(j) is a

valid inequality for an arbitrary graph for the MinWPNSP.

Proof.

Case 1. xj = 1. Then we have
∑

k∈S1
yk ≤ 1 since since xj = 1 implies

∑
k∈∆(j)

yk = 1 and we have S1 ⊆ ∆(j). It is, then, implied that
∑

k∈S1
yk + (|S1| − 1)xj ≤

|S1|.

Case 2. xj = 0. Then, the constraint is again satisfied since all decision variables are

bounded to be at most 1.

This constraint set, similar to the constraint in Proposition 6.23 will have O(2|∆(j)|)

many constraints for a vertex j.

The constraint in Proposition 6.24 can be written for all subsets of ∆(j) as S1. If

S1 = ∅, it implies xj ≥ 0. Else if |S1| = 1, say S1 = {i}, then it implies yi ≤ 1. Else

if |S1| = 2, say S1 = {i, k}, then it implies xj + yi + yk ≤ 2 which is also implied

by Constraint 4.6. Else if |S1| = ∆(j), |∆(j)| ≥
∑

k∈∆(j) yk + (|∆(j)| − 1)xj would

be a valid constraint for the problem but will be implied by Constraint 6.11 for vertex

j. For the rest of the cardinalities of S1, the constraint might not be implied by the

current model.

The next constraint that we found and did not add to the model is given below.

Proposition 6.25.
∑

i∈S1
yi +

∑
i∈S2

xi ≤ |C| + 1 where C is a clique, j, t ∈ C,

k ∈ ∆(j)−C, S1 = C ∪{k} and S2 = S1−{t}, is a valid inequality for an arbitrary

graph for the MinWPNSP.
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Proof. In this proposition, we are given with a clique, C, which includes two distinct

vertices as j and t, and k is a vertex that is adjacent to j but do not belong to C.

Additionally, note that we have |S1| = C + 1 and |S2| = C. Because of these three

vertices, we naturally have |S1| ≥ 3.

First of all, let us assume that we have
∑

i∈S1
yi ≥ 3, then we have

∑
i∈C yi ≥ 2 since

S1 = C∪{k}. In this case,
∑

i∈C xi = 0 since at least two vertices from C is selected

to be in the set S, making all of the vertices in the clique as not S-perfect vertices.

Overall, if
∑

i∈S1
yi ≥ 3, then

∑
i∈S2

xi = xk, or
∑

i∈S2
xi ≤ 1.

Case 1.
∑

i∈S1
yi = |S1|. Then, we have

∑
i∈S2

xi = xk. In this case, xk = 0 because

we have yk = yj = 1, making
∑

i∈∆(k) yi ≥ 2. Overall,
∑

i∈S1
yi +

∑
i∈S2

xi =

|S1|+ 0 = |S1| implies and the constraint would be satisfied.

Case 2. 3 ≤
∑

i∈S1
yi < |S1|. First of all, note that in this case, we have |S1| ≥ 4.

Similar to the Case 1, we have
∑

i∈S2
xi ≤ 1 since

∑
i∈S1

yi ≥ 3. Thus,
∑

i∈S1
yi +∑

i∈S2
xi ≤ |S1| is implied and the constraint, then, will be satisfied.

Case 3.
∑

i∈S1
yi = 2. Then, xj = 0 since there exists at least two vertex in ∆(j)

which are selected to be in S. Thus, we have
∑

i∈S2
xi ≤ |S2|−1 = |C|−1. Overall,∑

i∈S1
yi +

∑
i∈S2

xi ≤ 2 + |C| − 1, which satisfies the constraint.

Case 4.
∑

i∈S1
yi ≤ 1. We naturally have

∑
i∈S2

xi ≤ |S2| = |C| and the constraint

is always satisfied with
∑

i∈S1
yi +

∑
i∈S2

xi ≤ 1 + |C|.

When |S1| = 3, the constraint in Proposition 6.25 will be equal to Constraint 6.7.

We created constraint in Proposition 6.25 to generalize Constraint 6.7 for more cases,

since Constraint 6.7 is seen to be effective in densely connected graphs. The effects

of the constraints will be discussed in more detail in Chapter 7.

6.1 Perfect Neighborhood Set Polytope

While working on the additional valid inequalities, we tried to characterize the con-

vex hull of the feasible region of the IP formulation which is called as the perfect
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neighborhood set polytope for specific graph classes. We will now go over these in

this section.

6.1.1 Star Graph

A star graph is a tree with one vertex having the degree of |V | − 1 and the rest of the

vertices having 1. Consider the graph G = (V,E) where V = {0, 1, 2, . . . , n} and

E = {{0, 1}, {0, 2}, . . . , {0, n}}. This graph defines the star graph in Figure 6.28. In

the literature, notation of Sn and “n-star” are used to represent a star graph where the

order, |V |, of the star graph is n. In our example in the figure, the order is n+ 1.

Figure 6.28: A star graph with order of n+ 1.

To possibly define the perfect neighborhood set polytope of a star graph, we first listed

all of the PN sets on a star graph as given in Figure 6.28. Overall, we have three types

of PN sets.

1. S = {0}, implying S-perfect = V .

2. S = {i}, where i ∈ V − {0}, implying S-perfect = {0, i}.

3. S = {1, 2, . . . , n}, implying S-perfect = {1, 2, . . . , n}.

In the first solution, we select only vertex 0 to be in S. In this case, all of the vertices

of the star graph are perfect. Thus, S-perfect vertices define a dominating set where

each vertex dominates itself.
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In the second PN sets, we select one of the vertices with a degree of 1, let it be denoted

by i ∈ V − {0}. In such a scenario, vertices 0 and i are identified as perfect vertices.

Since vertex 0 is adjacent to the whole graph, S-perfect vertices define a dominating

set. Thus, this scenario also defines a feasible solution.

In the third solution, we select all of the vertices except vertex 0 to be in S, which

makes all of the vertices except vertex 0 perfect. The only vertex that is not perfect,

i.e. vertex 0, is dominated by one of the other vertices.

First and third solutions are unique. We have, however, n different second solutions

for each i ∈ V −{0}. Overall, for a star graph of order n+ 1, we have n+ 2 different

PN sets.

After identifying these solutions, we created the incidence vectors of all solutions.

For a star graph of order n + 1, we have two different sets of decision variables, y

and x, each is defined for each vertex of the star graph. Thus, each incidence vector

is in 2n+ 2-dimensional space. Overall, Equation 6.26 is the set of feasible solutions

to the IP for a star graph of order n + 1, where vertex 0 is the vertex having degree

|V | − 1.
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



1

0

0
...

0

1

1

1
...

1



,



0

1

0
...

0

1

1

0
...

0



,



0

0

1
...

0

1

0

1
...

0



, . . . ,



0

0

0
...

1

1

0

0
...

1



,



0

1

1
...

1

0

1

1
...

1





(6.26)

First and last vectors of the set of feasible solutions in Equation 6.26 are for the first

and the third solution listed above, respectively. In between, we have n different

vectors for each solution of the second item.

Then, we defined the convex hull of the perfect neighborhood set polytope, conv(S),
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by adding additional variables, αj for each solution where j ∈ {0, 1, 2, . . . , n+ 1}.

conv(S) =





y0

y1

y2

...

yn

x0

x1

x2

...

xn



;α0



1

0

0
...

0

1

1

1
...

1



+ α1



0

1

0
...

0

1

1

0
...

0



+ α2



0

0

1
...

0

1

0

1
...

0



+ · · ·+ αn



0

0

0
...

1

1

0

0
...

1



+ αn+1



0

1

1
...

1

0

1

1
...

1




(6.27)

where

α0 + α1 + · · ·+ αn+1 = 1, (6.28)

αj ≥ 0, ∀j ∈ {0, 1, . . . , n+ 1} (6.29)

Here, Equation 6.27 defines a total of 2n + 2 equations for each decision variable of

the PN sets. These are listed below:

y0 = α0 (6.30)

y1 = α1 + αn+1 (6.31)

y2 = α2 + αn+1 (6.32)
...

yi = αi + αn+1, ∀i ∈ {1, . . . , n}
(6.33)

...

yn = αn + αn+1 (6.34)

x0 = α0 + α1 + · · ·+ αn (6.35)

x1 = α0 + α1 + αn+1 (6.36)

x2 = α0 + α2 + αn+1 (6.37)
...

xi = α0 + αi + αn+1, ∀i ∈ {1, . . . , n}
(6.38)

...

xn = α0 + αn + αn+1 (6.39)

Then, we tried to reduce the number of variables of the convex hull definition by
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defining the vector of α in terms of vectors of y and x. By Equation 6.30, we have

that α0 = y0. Moreover, Equation 6.33 implies that αi = yi − αn+1 for each i ∈
{1, 2, . . . , n}. Combining these two results in Equation 6.35, we have the following

equation:

x0 = y0 + (y1 − αn+1) + (y2 − αn+1) · · ·+ (yn − αn+1)

By leaving αn+1 in one side, we have the equation as:

αn+1 =
y0 + y1 + · · ·+ yn − x0

n
(6.40)

Moreover, if we add the result in Equation 6.40 into Equation 6.33, we have:

αi = yi −
y0 + y1 + · · ·+ yn − x0

n
, ∀i ∈ {1, . . . , n} (6.41)

Combining the results, we were able to define α in terms of the rest of the variables,

y and x:

α0 = y0 (6.42)

α1 = y1 −
y0 + y1 + · · ·+ yn − x0

n
(6.43)

α2 = y2 −
y0 + y1 + · · ·+ yn − x0

n
(6.44)

...

αn = yn −
y0 + y1 + · · ·+ yn − x0

n
(6.45)

αn+1 =
y0 + y1 + · · ·+ yn − x0

n
(6.46)

Including that, we have yi = αi + αn+1 by Equation 6.33 and xi = α0 + αi + αn+1

by Equation 6.38. Inserting 6.33 into the other, we have xi = α0 + yi for each

i ∈ {1, . . . , n}. By Equation 6.42, we have α0 = y0 and the combination of these

results gives us the following equation:
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xi = y0 + yi, ∀i ∈ {1, . . . , n} (6.47)

This equation is directly implied by our model with Equation 6.6. In our star graph, i

would be a pendant vertex and {i, 0} ∈ E.

Moreover, Equation 6.28 implies the sum of α values are 1. We already have α0 +

α1 + · · · + αn = x0 and αn+1 = (y0 + y1 + · · · + yn − x0)/n. By summing those

equations, we have;

α0 + α1 + · · ·+ αn+1 = x0 +
y0 + y1 + · · ·+ yn − x0

n
= 1

and

nx0 + (y0 + y1 + · · ·+ yn − x0) = n

Overall, this equation gives us the following;

(n− 1)x0 +
∑
j∈V

yj = n (6.48)

This, again, is also implied by our model with Equation 6.18. Note that in our exam-

ple, we have |V | = n+ 1.

Lastly, convex hull implies Equation 6.29. Each of the α values must be nonnegative.

α0 = y0 ≥ 0

α1 = y1 −
y0 + y1 + · · ·+ yn − x0

n
≥ 0

α2 = y2 −
y0 + y1 + · · ·+ yn − x0

n
≥ 0

...

αn = yn −
y0 + y1 + · · ·+ yn − x0

n
≥ 0
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αn+1 =
y0 + y1 + · · ·+ yn − x0

n
≥ 0

By the first and the last one of nonnegativity constraints respectively, we have

y0 ≥ 0 (6.49)

x0 ≤
∑
j∈V

yj (6.50)

Equation 6.49 is directly implied by our model with the LP relaxation of Equation 4.8

in Equation 6.1. Moreover, Equation 6.50 is implied by Equation 4.5 for j = 0 since

∆(0) = V .

Additionally, the nonnegativity constraints corresponding to α values from α1 to αn

implies that

yi −
y0 + y1 + · · ·+ yn − x0

n
≥ 0, ∀i ∈ {1, . . . , n}

and

nyi + x0 ≥
∑
j∈V

yj, ∀i ∈ {1, . . . , n} (6.51)

Proposition 6.26. Equation 6.51 is implied by our model with additional valid in-

equalities.

Proof. Equation 6.19 of the model implies that xj + yi ≥ 1, |∆(j)| = n, |∆(i)| =
2 and note that for this equation we have |V | = n, i.e. it is valid when |∆(j)| = |V |.
Thus, this is written for our star graph representation when j = 0 and i ∈ {1, . . . , n}.
Overall, model implies that

x0 + yi ≥ 1, ∀i ∈ {1, . . . , n}

and by multiplying each side by n and subtracting (n − 1)x0 from both of the sides,

model implies
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nyi + x0 ≥ n− (n− 1)x0, ∀i ∈ {1, . . . , n} (6.52)

Moreover, Equation 6.18 of the model implies that (|∆(j)| − 2)xj +
∑

i∈∆(j) yi =

|∆(j)| − 1, ∀j ∈ Sup if the graph is a star graph. For our case, 0 ∈ Sup, |∆(0)| =
n+ 1, and ∆(0) = V . Overall, model implies the following equation

(n− 1)x0 +
∑
j∈V

yj = n

by subtracting (n− 1)x0 from both sides, we imply

∑
j∈V

yj = n− (n− 1)x0 (6.53)

By combining Equation 6.52 and 6.53, the model implies

nyi + x0 ≥ n− (n− 1)x0 =
∑
j∈V

yj, ∀i ∈ {1, . . . , n}

and finally,

nyi + x0 ≥
∑
j∈V

yj, ∀i ∈ {1, . . . , n}

With the reduction of α values, the convex hull of the perfect neighborhood set prob-

lem on star graph converts into Equation 6.54, where each of the constraints on the

right hand side proved to be implied by our model with additional valid inequalities.

Let us assume that P is the polytope of our model with all additional valid inequalities

and P1 is the polytope that implies the convex hull in (6.54), which is the union of

the model with valid inequalities 6.6, 6.18 and 6.19.

Since all of the valid inequalities are defined to be valid for the perfect neighborhood

set polytope of a star graph, we have that
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conv(S) ⊆ P

conv(S) =





y0

y1

y2

...

yn

x0

x1

x2

...

xn



:

subject to

y0 ≥ 0

x0 ≤
∑

j∈V yj

xi = y0 + yi ∀i ∈ {1, . . . , n}

nyi + x0 ≥
∑

j∈V yj ∀i ∈ {1, . . . , n}

(n− 1)x0 +
∑

j∈V yj = n

xj, yj urs ∀j ∈ V



(6.54)

Additionally, P includes all of the constraints of P1 and an addition of the rest of the

valid inequalities, we have

conv(S) ⊆ P ⊆ P1

Moreover, we have proved that all of the constraints of conv(S) are defined by P1.

Thus,

P1 ⊆ conv(S)

implying

conv(S) = P = P1 (6.55)

for a star graph.

Proposition 6.27. Dimension of the perfect neighborhood set polytope in star graphs,

dim(P ), is |V |.

Proof. The list of solutions for a star graph (with |V | = n+1 where vertex 0 being the

support vertex) was given in 6.26. It is known that x1, x2, . . . , xk ∈ IRn are affinely
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independent if the only solution of the system
∑

i=1,...,k αix
i = 0 and

∑
i=1,...,k αi = 0

is αi = 0 for all i = 1, . . . , k. Let us create such a system of equations for the list of

the solutions of a star graph.

α0



1

0

0
...

0

1

1

1
...

1



+ α1



0

1

0
...

0

1

1

0
...

0



+ α2



0

0

1
...

0

1

0

1
...

0



+ · · ·+ αn



0

0

0
...

1

1

0

0
...

1



+ αn+1



0

1

1
...

1

0

1

1
...

1



= 0 (6.56)

α0 + α1 + · · ·+ αn+1 = 0 (6.57)

By solving the first |V | equations of 6.56, we have

α0 = 0 (6.58)

α1 + αn+1 = 0 (6.59)

α2 + αn+1 = 0 (6.60)
...

αn + αn+1 = 0 (6.61)

These equations imply that α0 = 0 and α1 = α2 = · · · = αn = −αn+1. Additionally,

we have α0 + α1 + · · · + αn+1 = 0 by 6.57 and α0 + α1 + · · · + αn = 0 by the

|V | + 1th equation of 6.56, implying αn+1 = 0. Then, it is implied that α1 = α2 =

· · · = αn = 0, which implies that list of the solutions of the perfect neighborhood set

problem on a star graph are affinely independent of each other. Then, we can add that

dim(P ) ≥ |V | since the number of affinely independent vectors of the solution set is

|V |+ 1.

83



Additionally, the system of equations of the convex hull of the star graph, 6.54, imply

two types of equality constraints as (n − 1)x0 +
∑

j∈V yj = n and xi = y0 + yi for

all i ∈ {1, . . . , n}. Since each of these equality constraints include a unique x value

with a nonzero multiplier, we can add that the rank of the equality constraints of the

star graph, rank(A=), is at least |V | (assuming that the polytope of the star graph is

in the form P =
{
x ∈ IR2|V ||Ax ≤ b

}
and A= is the submatrix of the A including all

the equality constraints).

It is known that if P 6= ∅ and P ⊆ IR2|V |, then dim(P ) + rank(A=) = 2|V |. Since

we have already shown that dim(P ) ≥ |V | and rank(A=) ≥ |V |, we conclude that

dim(P ) = |V |.

6.1.2 Complete Graph

A complete graph, denoted by Kn, is a graph that includes one edge for any pair of

vertices. A graph, G = (V,E) where V = {1, 2, . . . , n} and E = {{i, j}|i ∈ V,

j ∈ V, i 6= j} is a complete graph denoted as Kn.

(a) K2 (b) K3 (c) K4

(d) K5 (e) K6 (f) K7

Figure 6.29: Illustration of complete graphs from K2 to K7.
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Similar to Section 6.1.1, we started by listing of all the PN sets in a complete graph

of order n. For a complete graph, there is only one type of a solution: one of the

vertices is selected to be in the set of S, which implies S − perfect = V . In a

case that more than one vertex is selected to be in S, we have S − perfect = ∅
since each of the vertices of the graph includes two or more vertices from S in its

closed neighborhood. Overall, Equation 6.62 includes the list of all feasible solution

of perfect neighborhood set problem on a complete graph of order n.



y1

y2

y3

...

yn

x1

x2

x3

...

xn



∈





1

0

0
...

0

1

1

1
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

,


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

,


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

, . . . ,



0

0
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1

1

1

1
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1





(6.62)

With the addition of α values, the convex hull of the MinWPNSP on complete graphs

is defined as in Equation 6.63.

conv(Kn) =




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...

xn



;α1


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

+ α2


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

+ α3


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1



+ · · ·+ αn



0

0

0
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1

1

1

1
...

1





(6.63)

where
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α1 + α2 + · · ·+ αn = 1, (6.64)

αi ≥ 0, ∀i ∈ {1, 2, . . . , n} (6.65)

More explicitly, Equation 6.63 defines the following equations

yj = αj, ∀j ∈ V (6.66)

xj = α1 + α2 + · · ·+ αn, ∀j ∈ V (6.67)

In this case, we directly define the vector of α by y and x values as αi = yi, ∀i ∈
{1, 2, . . . , n}. Additionally, by Equation 6.64 and 6.67, we have xj = 1, ∀j ∈ V .

By combining the results of Equation 6.65 and 6.66, we have yj ≥ 0, ∀j ∈ V .

Finally, if we sum all of Equation 6.66, we have
∑

j∈V yj = α1 + α2 + · · ·+ αn = 1.

By eliminating the α values and combining these results, we can characterize the

perfect neighborhood set polytope in complete graphs as in Equation 6.68.

conv(Kn) =





y1

y2

...

yn

x1

x2

...

xn



:

subject to

yj ≥ 0 ∀j ∈ V

xj = 1 ∀j ∈ V∑
i∈V yi = 1



(6.68)

Proposition 6.28. Addition of Constraints 6.2 and 6.20 to the LP relaxation of base

model defines the pefect neighborhood set polytope in complete graphs.

Proof. The relaxed version of the binary constraint, given in Constraint 6.1 directly

implies the first constraint of the convex hull description above; yj ≥ 0, ∀j ∈ V .

Additionally, Constraint 6.20 is written for each maximal clique, C, of a graph. In

a complete graph, there is only one maximal clique, say C1, as C1 = V . More-

over, since each vertex is adjacent to all the other vertices of the graph, we have
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∆(j) = V = C1, ∀j ∈ V . Thus, Constraint 6.20 implies that xj =
∑

i∈C1
yi =∑

i∈V yi, ∀j ∈ V .

Constraint 6.2 implies that at least one vertex should be selected to be in the set of S

from the double neighborhood of each vertex of the graph. In a complete graph, we

have ∆(j) = ∆2(j) = V, ∀j ∈ V . Thus, all of these constraints of 6.2 define the

same which is
∑

i∈V yi ≥ 1.

By combining the results, we have xj =
∑

i∈V yi ≥ 1, ∀j ∈ V . Since the relaxed

version of the binary constraint, Constraint 6.1, also implies that xj ≤ 1, ∀j ∈ V ,

we have xj =
∑

i∈V yi = 1, ∀j ∈ V , which implies the second and the third

constraint of the convex hull description of a complete graph given in Equation 6.68.

Let PKn define the polytope of the LP relaxation of the base model with the addition

of Constraints 6.2 and 6.20. We have proved that

PKn ⊆ conv(Kn)

Since all of the valid inequalities are defined to be valid for a polytope of a graph, we

have

conv(Kn) ⊆ P ⊆ PKn

Combination of the results give us

conv(Kn) = P = PKn (6.69)

for a complete graph.

Proposition 6.29. Dimension of the perfect neighborhood set polytope in complete

graphs, dim(PKn), is |V | − 1.

Proof. The set of feasible solution of a complete graph, as given in Equation 6.62

are all affinely independent of each other since each includes a unique y value with a

nonzero coefficient. Since we found |V | affinely independent vectors in the polytope,

we can add that dim(PKn) ≥ |V | − 1.
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Additionally, we can easily see that rank(A=
Kn

) ≥ |V | + 1 from Equation 6.68. All

of those xj = 1 for all j ∈ V constraints have a unique x value with a nonzero

coefficient and have zero coefficient on yj values for all j ∈ V . Then, we can add

that |V | many constraints of x values being equal to 1 and the one constraint as all of

the y values should sum to one are linearly independent of each other. That implies

that rank(A=
Kn

) ≥ |V |+ 1, as total number of linearly independent constraints of the

convex hull description of the polytope.

By using the fact that if P 6= ∅ and P ⊆ IR2|V |, then dim(P ) + rank(A=) = 2|V |,
we conclude that dim(PKn) = |V | − 1.
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CHAPTER 7

EFFECTS OF THE VALID INEQUALITIES

The runs in this chapter are taken on a computer with Intel Core i7-4770S CPU

@3.10GHz (8 CPUs) and 16.00GB RAM. We use CPLEX 12.9 through C++ API

(Visual Studio 2019, v142) to solve the mathematical models.

We will first go over the effects of the additional valid inequalities for different graph

classes. To do that, we created a couple of models. All of those models share the

same objective function; minimization of the weighted case of the problem, and have

the base constraints that are given at the beginning of Chapter 6 in (6.1). Note that

the binary constraints are relaxed in (6.1).

minimize
∑
j∈V

(wjyj + vjxj)

subject to
∑
i∈∆(j)

xi ≥ 1 ∀j ∈ V

xj ≤
∑
i∈∆(j)

yi ∀j ∈ V

xj + yl + yk ≤ 2 ∀j ∈ V, ∀{k, l} ∈ ∆(j), k 6= l

xj +
∑

i∈∆(j),i 6=k

yi ≥ yk ∀j ∈ V, ∀k ∈ ∆(j)

0 ≤ xj, yj ≤ 1, ∀j ∈ V

We created a set of 10 different objective functions. Half of them weights only the

vertices that are selected to be in the set S, and the second half of them weights for

both sets S and S − perfect. Each of these 5 objective functions includes a different

range to randomize the weights in between. These are [1, 1], [−1,−1], [0, 1], [−1, 0],

and [−1, 1].
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For example, we discussed the number θ(G) (Θ(G)) for MinCPNSP (MaxCPNSP),

in which the cardinality of the set of S-perfect vertices are ignored. In our context,

this objective function represents the one where we weight only the vertices that are

selected to be in the set S, thus vj = 0 for all j ∈ V , and the range we randomize

the parameter w will be in [1, 1] ([−1,−1]), i.e., w will be a vector of all (minus)

ones. In other words, the first two ranges of the weights, [1, 1] and [−1,−1], does not

randomize the weights and assign the value of 1 and −1 to all of them, respectively.

[0, 1] and [−1, 0] represent the ones that we minimize and maximize the weighted

cardinality among all PN sets of G, respectively. Lastly, [−1, 1] creates an objective

function where a mixture of minimization and maximization applies.

7.1 Effects of the Valid Inequalities in Trees

We first test our valid inequalities on trees. By using Algorithm 4, we have cre-

ated 1000 trees for each number of vertices of the set |V | ∈ {5, 10, 25, 50, 75, 100}.
Then, we have created the corresponding weight values for these trees individually

and solved them with the base constraints that are given in (6.1). The reader can find

the percentage values of these solutions in which the LP relaxation gives an integral

solution in Table 7.1. In this table, 1 and −1 are used to represent the ranges of [1, 1]

and [−1,−1], respectively, and a value is written with bold if it is exactly 0 or 100

percent.

Table 7.1: Percentage of the integral solutions of 1000 trees with the base LP relax-

ation model.

|V |
weight on both y and x weight on y

1 -1 [0, 1] [−1, 0] [−1, 1] Avg. 1 -1 [0, 1] [−1, 0] [−1, 1] Avg.

5 0.0% 9.3% 10.1% 41.0% 36.0% 19.3% 5.5% 9.3% 37.3% 8.1% 41.6% 20.4%

10 6.7% 12.8% 11.2% 20.4% 14.5% 13.1% 10.3% 0.6% 15.3% 0.9% 17.5% 8.9%

25 0.3% 0.3% 0.3% 1.4% 1.2% 0.7% 0.1% 0.0% 0.3% 0.0% 1.5% 0.4%

50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%

75 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Avg. 1.2% 3.7% 3.6% 10.5% 8.6% 5.5% 2.7% 1.7% 8.8% 1.5% 10.1% 4.9%
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Then, to understand the cumulative effect of the valid inequalities, we have solved

the same trees with the same objective function values with the combination of the

base model with all valid inequalities that are given in the finalized model in Chapter

6. The percentage values of these solutions are given in Table 7.2.

Table 7.2: Percentage of the integral solutions of 1000 trees with the finalized model.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 98.4% 100.0% 99.0% 99.5% 100.0% 100.0% 100.0% 100.0% 99.8% 100.0%

10 89.4% 100.0% 94.6% 98.9% 90.5% 94.7% 99.8% 89.7% 98.2% 81.9% 92.7% 92.5%

25 79.6% 99.9% 79.7% 96.8% 72.7% 85.7% 99.5% 71.4% 96.6% 55.3% 75.4% 79.6%

50 57.8% 99.8% 61.8% 94.4% 54.1% 73.6% 93.0% 48.1% 94.6% 28.6% 55.9% 64.0%

75 44.8% 99.4% 48.2% 88.5% 35.7% 63.3% 93.6% 34.4% 90.7% 14.9% 40.5% 54.8%

100 37.7% 99.0% 37.6% 83.7% 28.0% 57.2% 90.0% 21.5% 87.0% 7.2% 31.5% 47.4%

Avg. 68.2% 99.7% 70.1% 93.7% 63.3% 79.0% 96.0% 60.9% 94.5% 48.0% 66.0% 73.1%

If the solution of the LP relaxation with the additional valid inequalities is integral,

then the solution would also be the optimal solution of the corresponding IP model.

Thus, by the help of the valid inequalities, the average percentage of the solutions

which can be found with the LP relaxation increases from 5.5% and 4.9% to 79.0%

and 73.1% with the valid inequalities, for the weights on both y and x and the weight

on only y, respectively.

It is found that valid inequalities are significantly helpful on the instances where

weights are assigned as−1 for both y and x, because the average percentage increases

from 3.7% to 99.7%. Even for a large tree with |V | = 100, the average percentage of

the integral solutions is found as 99.0%. Another significant improvement with the

valid inequalities occurs for the problems with weights in between [0, 1] for only y.

The average percentage of the integral solutions for these problems increases from

8.8% to 94.5%. Lastly, a similar improvement occurs on the range [−1, 0] for both y

and x where the percent increases from 10.5% to 93.7%.

With the addition of the valid inequalities, the number θ(T ) can be found by solving

an LP relaxation with 96.0% chance for our instances. Even for a large tree with

|V | = 100, the percentage is increased from 0.0% to 90.0%.

We also analyzed the effects of the valid inequalities individually. Even though indi-
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vidual effects are dependent on the previous set of constraints, we take the order of

our finalized model into account and solved the same problems by adding the valid

inequalities one by one into the model and produced the same percentage tables after

each of those additions. The tables can be found in Appendix B. We provide the av-

erage percentages of the integral solutions from these tables for both y and x and for

y only in Figure 7.1. In this figure, “Base” is used to represent the percentages of the

solutions with the base model without any addition of valid inequalities.

Base 6.2 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24

20

40

60

80

100

Weight on both y and x
Weight on y

Figure 7.1: Average percentages of the integral solutions of trees with the addition of

each valid inequality in the order of the finalized model.

In the figure, it can be seen that constraints 6.7, 6.6 and 6.2 create the most significant

increases in average percentages, 22.13%, 17.97% and 11.27%, respectively. Fourth

best increase is for Constraint 6.17 with 3.01%.

It is usually expected that an addition of valid inequality increases the percentage.

However, there are some cases where the percentage decreases. For example, the

average percentage of the problems with weight on only y decreases from 60.9%

to 60.3% with the addition of Constraint 6.15. This is because in some problems,

the model finds an integral solution even though there are other feasible non-integral

solutions with the same objective value. By the addition of a new valid inequality,

since the constraints are changed, the model might return one of the alternative non-

integral solutions if the addition of new constraint does not cut the alternative solution,

causing a decrease in the percentage. However, the same does not apply for the

optimal value; the optimal objective function value of a problem cannot decrease (for

a minimization problem) with an addition of a valid inequality. Thus, it might also be
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helpful to find the “optimal objective function values” of the solutions returned.

Secondly, there might be a valid inequality where its improvement might be relatively

small in terms of the percentage but relatively high in the optimal objective function

value. Assume there exists a valid inequality, where change within the optimal objec-

tive function value of the LP relaxation model before and after the constraint is added

is significant, but the solution is still returned non-integral after the addition. In the

percentage study, it is shown as there is no change with the addition of this inequality,

since both solutions are non-integral. However, we might have an objective function

value which is much more closer (or even equal) to the optimal objective function

value of the IP after the addition of the inequality. To see such effects, we did the

same study for the optimal objective function values of the problems with the addi-

tion of each constraint, which can be found in Figure 7.2. Note that we did not split

the solutions into two groups according their weights, similar to Figure 7.1, for this

figure.

Base 6.2 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24

−7.5

−7

−6.5

−6
·105

LP relaxation
IP

Figure 7.2: Total optimal objective function values of the solutions of trees with the

addition of each valid inequality in the order of the finalized model.

The total optimal objective function values of the IP solutions are also provided,

where the decision variables are restricted to be binaries. We observe that 97.70%

of the difference of the total optimal objective function values in between the LP

relaxation model of the base formulation to IP is cut by the addition of valid inequal-

ities given in the finalized model. Additionally, to find the cumulative effects of the

inequalities that are given after the finalized model in Proposition 6.23 to 6.25, we

solved the LP relaxation by adding these inequalities and found that the percentage
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increases from 97.70% to 98.06%.

We also observe that, similar to the percentage study, constraints 6.7, 6.6 and 6.2 in-

crease the total optimal objective function values the most. However, the increase of

the optimal objective function values are more significant for Constraint 6.6 then Con-

straint 6.7, even though Constraint 6.7 has the highest increase in the percentage of

the integral solutions. Lastly, Constraint 6.5 also increases the objective significantly.

While these two figures show the solution quality, we would also like to analyze the

solution times of these instances. For this, Figure 7.3 is provided.

Base 6.2 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24

80

100

120

140

160

180

200

Figure 7.3: Total time of the solutions (in seconds) of trees with the addition of each

valid inequality in the order of the finalized model.

We observe that Constraint 6.6 is very useful. With the addition of it, the percentage

of the integral solutions increases by 17.97%, the average optimal objective function

values increases by 47.21% of the difference between base LP relaxation to IP, and

the solution time decreases by 0.62% compared to the case before its addition.

It is also realized that, Constraint 6.7 and 6.2, the remaining two of the top three

constraints with the highest effects on both percentage and total optimal objective

function value study, have the highest increase in solution time. Thus, there is a

chance that their addition on an IP problem might increase the solution time. Even

though their addition creates a stronger model which may decrease the solution time,

the time of one LP relaxation solution with these constraints increases, for example,

on a branch-and-bound algorithm for IP.

We observe that the constraints that are added earlier have generally better effects on
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the solution quality and time. As mentioned earlier, their effects are dependent on the

previous set of constraints. Observe that with the addition of the inequalities given

after the finalized model, we found that the model decreases the difference between

base LP relaxation and IP in terms of the optimal objective function value by 98.06%.

This means that an additional of a valid inequality to our finalized model with the

inequalities in Proposition 6.23 to 6.25 can only increase this percentage by 1.94%

even though it might be very crucial, possibly defining the perfect neighborhood set

polytope in trees. Thus, such a valid inequality has no chance to be seen as more

effective then, for example, Constraint 6.6. Therefore, we wanted to do the same

study but with a different order, and we take the opposite order of the finalize model.

The same figures for the opposite order can be found in Figures 7.4, 7.5 and 7.6.

Base 6.24 6.23 6.22 6.21 6.20 6.19 6.18 6.17 6.16 6.15 6.11 6.10 6.9 6.8 6.7 6.6 6.5 6.2

20

40

60

80

100
Weight on both y and x

Weight on y

Figure 7.4: Average percentages of the integral solutions of trees with the addition of

each valid inequality in the opposite order of the finalized model.

Base 6.24 6.23 6.22 6.21 6.20 6.19 6.18 6.17 6.16 6.15 6.11 6.10 6.9 6.8 6.7 6.6 6.5 6.2
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−6
·105
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IP

Figure 7.5: Total optimal objective function values of the solutions of trees with the

addition of each valid inequality in the opposite order of the finalized model.
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Base 6.24 6.23 6.22 6.21 6.20 6.19 6.18 6.17 6.16 6.15 6.11 6.10 6.9 6.8 6.7 6.6 6.5 6.2
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Figure 7.6: Total time of the solutions (in seconds) of trees with the addition of each

valid inequality in the opposite order of the finalized model.

Lastly, we consider one random order of our inequalities and done the same study for

the order. The figures for this order can be found in Figures 7.7, 7.8 and 7.9.

Base 6.9 6.6 6.22 6.17 6.10 6.23 6.20 6.11 6.8 6.21 6.2 6.5 6.7 6.24 6.19 6.15 6.16 6.18

20

40

60

80

100
Weight on both y and x

Weight on y

Figure 7.7: Average percentages of the integral solutions of trees with the addition of

each valid inequality in the random order of the finalized model.

Combining the results for the three orders, we observe that constraints 6.5, 6.6, 6.11

and 6.23 are the most important valid inequalities for trees. Either the ratio of the

increase in percentage and the optimal objective function values to the increase in

solution time is the highest for them, or they are the ones that increase the percentage

and the optimal objective function values while decreasing the solution time.

A second group of constraints are selected as 6.2, 6.10 and 6.24, which gives a good

results in terms of the solution quality and time but not as good as the constraints that

listed above for trees. We have made additional computational studies to find their

96
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Figure 7.8: Total optimal objective function values of the solutions of trees with the

addition of each valid inequality in the random order of the finalized model.
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Figure 7.9: Total time of the solutions (in seconds) of trees with the addition of each

valid inequality in the random order of the finalized model.

effects further.

Constraint 6.7 is not listed here because while it creates one of the most increases in

the solution quality, it also increases solution time sharply, and the ratio to increase in

quality to time is much smaller than those listed above.

7.2 Effects of the Valid Inequalities in G(n, 2/n+ 0.03)

We made the same study that is done for the trees for arbitrary graphs in order to

further study the constraints. To randomize an arbitrary graph, we used Erdős–Rényi

random graph model with G(n, p). Given two inputs n and p where n is a positive
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integer and 0 ≤ p ≤ 1, a graph with n vertices is randomized in which the probability

of occurrence of each edge is p. We assumed that the graphs are connected (otherwise,

each connected component can be input to the model individually), and randomized

another graph if the output of G(n, p) is not a connected graph.

We first considered graphs with low densities, where the set of number of vertices

|V | ∈ {5, 10, 25, 50} and p = 2/n + 0.03 are used. For each combination of |V | and

weight, we have randomized 500 connected graphs and solved them with LP relax-

ation to see the percentages of the integral solutions. The percentages for the base

model without any valid inequalities, and the final model with all valid inequalities

can be found in Table 7.3 and 7.4.

Table 7.3: Percentage of the integral solutions of 500 connected graphs ofG(n, 2/n+

0.03) with the base LP relaxation model.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 0.0% 2.0% 3.8% 18.6% 24.0% 9.7% 2.0% 1.8% 33.8% 4.0% 35.2% 15.4%

10 0.6% 0.0% 3.0% 5.6% 9.2% 3.7% 11.6% 0.0% 20.8% 0.0% 19.2% 10.3%

25 0.0% 0.0% 0.0% 0.0% 0.4% 0.1% 0.8% 0.0% 3.6% 0.0% 2.4% 1.4%

50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 0.2%

Avg. 0.2% 0.5% 1.7% 6.1% 8.4% 3.4% 3.6% 0.5% 14.8% 1.0% 14.2% 6.8%

Table 7.4: Percentage of the integral solutions of 500 connected graphs ofG(n, 2/n+

0.03) with the finalized model.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 52.0% 57.6% 58.8% 73.6% 81.4% 64.7% 60.2% 76.0% 100.0% 89.6% 95.8% 84.3%

10 24.4% 33.0% 30.6% 57.6% 43.4% 37.8% 52.6% 24.4% 91.8% 35.8% 62.6% 53.4%

25 3.2% 7.8% 3.8% 23.2% 9.6% 9.5% 55.8% 0.4% 73.4% 1.4% 17.8% 29.8%

50 0.0% 0.2% 0.0% 2.0% 0.0% 0.4% 11.0% 0.0% 45.8% 0.0% 0.2% 11.4%

Avg. 19.9% 24.7% 23.3% 39.1% 33.6% 28.1% 44.9% 25.2% 77.8% 31.7% 44.1% 44.7%

We observe that the effects of the valid inequalities decreases when we consider non-

tree graphs, even though these graphs G(n, 2/n + 0.03) are very close to trees. A

graph withG(n, 2/n) would have n−1 edges on average which is equal to the number

of edges of a tree, and we only increase this probability by 0.03 in these instances. We
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observe that the average percentages for both y and x, and for only y are increased

from 3.4% and 6.8% to 28.1% and 44.7%, respectively.

Similar to the ones of trees, we have made the figures of these solutions in terms of

the solution quality and time. These can be found in Figure 7.10, 7.11 and 7.12.
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Weight on both y and x

Weight on y

Figure 7.10: Average percentages of the integral solutions of G(n, 2/n + 0.03) with

the addition of each valid inequality in the order of the finalized model.
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Figure 7.11: Total optimal objective function values of the solutions of G(n, 2/n +

0.03) with the addition of each valid inequality in the order of the finalized model.

We observe that Constraint 6.20 creates a significant improvement on percentages,

which is written for all maximal cliquesC. In a tree, we have |C| ≤ 2 which decreases

the effect of the constraint. Additionally, other constraints that found to be helpful

for trees are still the ones that increase the solution quality the most for the graphs

G(n, 2/n+ 0.03).

Similar to the trees, Constraint 6.7 increases both solution quality and time. For
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Figure 7.12: Total time of the solutions (in seconds) of G(n, 2/n + 0.03) with the

addition of each valid inequality in the order of the finalized model.

G(n, 2/n + 0.03), time increases sharply with 82.22% with its addition, which de-

creases the ratio of the increase in solution quality to time from trees to G(n, 2/n +

0.03).

7.3 Effects of the Valid Inequalities in G(n, 0.8)

Lastly, we have done the test for more densely connected graphs. We have cre-

ated 200 graphs of G(n, 0.8) for each weight and each number of vertices in |V | ∈
{5, 10, 25, 50}. The percentages for the base model without any valid inequalities,

and the final model with all valid inequalities can be found in Table 7.5 and 7.6.

Table 7.5: Percentage of the integral solutions of 200 connected graphs of G(n, 0.8)

with the base LP relaxation model.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 0.0% 0.0% 0.0% 6.0% 14.0% 4.0% 0.0% 0.0% 7.0% 0.5% 27.5% 7.0%

10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.5% 0.9%

25 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Avg. 0.0% 0.0% 0.0% 1.5% 3.5% 1.0% 0.0% 0.0% 1.8% 0.1% 8.0% 2.0%

With the addition of valid inequalities, the model is capable of solving all the prob-

lems by the LP relaxation of the model for the weight on only y in the range [0, 1],
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Table 7.6: Percentage of the integral solutions of 200 connected graphs of G(n, 0.8)

with the finalized model.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 24.5% 41.5% 25.5% 73.0% 68.0% 46.5% 33.0% 82.0% 100.0% 83.5% 93.5% 78.4%

10 0.0% 0.0% 0.0% 4.5% 5.0% 1.9% 32.5% 1.5% 100.0% 3.0% 11.5% 29.7%

25 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 20.0%

50 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.0% 100.0% 0.0% 0.0% 20.1%

Avg. 6.1% 10.4% 6.4% 19.4% 18.3% 12.1% 16.5% 20.9% 100.0% 21.6% 26.3% 37.1%

i.e., the weighted case of θ(G). We observed that this starts with the addition of Con-

straint 6.2, that means, the base model with the addition of Constraint 6.2 is capable of

solving the weighted case of θ(G) for our instances, i.e., gives an average of 100.0%

integral solutions with LP relaxation for these problems. This is one of the cuts that

is found to be the most significant for the other test instances as well.

The figures for the solution quality and the time, similar to the previous instances, can

be found in Figures 7.13, 7.14 and 7.15.

Base 6.2 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24
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Weight on both y and x

Weight on y

Figure 7.13: Average percentages of the integral solutions of G(n, 0.8) with the ad-

dition of each valid inequality in the order of the finalized model.

In the solution quality, we observe that the same constraints that are found to be effec-

tive for the trees and the graphs of G(n, 2/n + 0.03) are also effective for G(n, 0.8).

We observe almost no effect in terms of the percentage of the integral solutions and

the increase in the total optimal objective function values for the constraints except

6.2, 6.7, 6.11 and 6.20 for G(n, 0.8).
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Figure 7.14: Total optimal objective function values of the solutions ofG(n, 0.8) with

the addition of each valid inequality in the order of the finalized model.
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Figure 7.15: Total time of the solutions (in seconds) of G(n, 0.8) with the addition of

each valid inequality in the order of the finalized model.

Additionally, Constraint 6.7 again increases the time for these instances with Con-

straint 6.17. The increase in time for Constraint 6.17 occurs more drastically in

G(n, 0.8), then for G(n, 2/n + 0.03). The reason behind this could be that the

constraint is written for a vertex j which satisfies |∆(j)| ≥ 3. In a more densely

connected graph, this occurs more frequently, resulting increase in the number of

constraints, and then possibly increase in time for one LP relaxation solution.

7.4 Selection of a Subset of Valid Inequalities

According to the results of our instances, we select a subset of additional valid in-

equalities in order to decrease the solution time of the IP model without any valid
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inequality. We observed that Constraints 6.2, 6.7, 6.11 and 6.20 are much more effec-

tive in terms of the solution quality than the others, but Constraint 6.7 also increases

the solution time significantly. The increases in percentage are 82.22% and 83.15%

for the instances G(n, 2/n + 0.03) and G(n, 0.8), respectively. Similar to Constraint

6.7, we observe that Constraint 6.2 increases the solution time significantly as well.

However, the increase is less than Constraint 6.7 and it is the one that increases the

percentage of integral solutions with the weight on only y for graphs G(n, 0.8), in the

range [0, 1], from 1.8% to 100.0%. Thus, we did not eliminate Constraint 6.2 and we

have selected Constraints 6.2, 6.11 and 6.20 to be in our subset of valid inequalities

by discarding only Constraint 6.7 from these constraints.

We have also made a ratio analysis and sorted the constraints in terms of their ratios

of the increase in solution quality to increase in solution time (or possible decrease in

solution time), which also enabled us to discard Constraint 6.7, for example. In this

analysis, even though their effects are seen to be less significant, we observed that

constraints 6.5, 6.6, 6.8, 6.16, 6.23, and 6.24 can be added into the subset.

In this list, constraints 6.5, 6.6, and 6.23 are mentioned to be effective on trees but

their effects were smaller for arbitrary graphs. That is because all of these constraints

are written more in loosely connected graphs, which maximizes their effects on trees.

Yet, their ratios are one of the highest ones in our analysis for G(n, 2/n + 0.03) and

G(n, 0.8) graphs as well.

Overall, we have created the subset of valid inequalities to be added into the model to

possible decrease the solution time of IP. The subset is selected to be constraints 6.2,

6.5, 6.6, 6.8, 6.11, 6.16, 6.20, 6.23, and 6.24.

7.5 Effects of the Subset of the Valid Inequalities in the Solution Time of IP

We compare two models, the base IP model with the IP model with additional valid

inequalities listed in the subset in terms of the solution time. We considered G(n, p)

model with the number of vertices values of n = {100, 150, 200} and probability

values of p = {3/n, 4/n, 5/n}. In all of the instances, we randomized the weights

in the range of [−1, 1] for both y and x. For each combination of n and p, we have
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randomized 50 connected graphs. Moreover, we have selected a time limit for the

solution of the model as 1 hour and used the default MIP gap limits of CPLEX.

Average and median of the solution times for each combination can be found in Table

7.7 and 7.8, respectively. Additionally, ratios of the values of advanced model to

base model are also provided. We call the model with additional valid inequalities

advanced model.

Table 7.7: Average solution times (in seconds) of the 50 instances of each combina-

tion with the base model and the advanced model with the subset of valid inequalities.

Base Model Advanced Model Ratio (Adv / Base)

n
p 3/n 4/n 5/n 3/n 4/n 5/n 3/n 4/n 5/n

100 1.00 4.13 10.03 0.53 2.45 6.94 0.54 0.59 0.69

150 7.19 38.11 153.5 3.90 30.31 118.6 0.54 0.80 0.77

200 33.02 476.9 2824 21.79 348.2 2723 0.66 0.73 0.96

Table 7.8: Median solution times (in seconds) of the 50 instances of each combination

with the base model and the advanced model with the subset of valid inequalities.

Base Model Advanced Model Ratio (Adv / Base)

n
p 3/n 4/n 5/n 3/n 4/n 5/n 3/n 4/n 5/n

100 0.96 2.61 10.09 0.41 1.71 4.79 0.43 0.65 0.47

150 4.35 26.06 72.76 2.11 25.48 60.61 0.48 0.98 0.83

200 23.95 128.1 3601 11.74 84.67 3709 0.49 0.66 1.03

Even though we found that the solution times for both models might be much more

than 1 hour without a time limit in preliminary experiments, we observe that the MIP

gap is found as negligibly small with a time limit of 1 hour in all instances. Average

objective function values and best objective function values can be found in Table 7.9

and 7.10, respectively. “Diff.” represents the difference.

We observe that 30% and 33% improvement occurred on the average and median of

the solution times for our instances with the additional valid inequalities, respectively,

while the MIP gap decreases with the additional valid inequalities.
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Table 7.9: Average objective function value of the 50 instances of each combination

with the base model and the advanced model with the subset of valid inequalities.

Base Model Advanced Model Diff. (Adv - Base)

n
p 3/n 4/n 5/n 3/n 4/n 5/n 3/n 4/n 5/n

100 −30.07 −28.97 −29.75 −30.07 −28.97 −29.75 0.00 0.00 0.00

150 −43.90 −43.62 −44.03 −43.90 −43.62 −44.03 0.00 0.00 0.00

200 −58.98 −59.37 −58.86 −58.98 −59.38 −58.97 0.00 −0.01 −0.11

Table 7.10: Average best objective function value of the 50 instances of each combi-

nation with the base model and the advanced model with the subset of valid inequal-

ities.

Base Model Advanced Model Diff. (Adv - Base)

n
p 3/n 4/n 5/n 3/n 4/n 5/n 3/n 4/n 5/n

100 −30.07 −28.97 −29.75 −30.07 −28.97 −29.75 0.00 0.00 0.00

150 −43.91 −43.62 −44.03 −43.91 −43.62 −44.03 0.00 0.00 0.00

200 −58.99 −59.46 −60.27 −58.99 −59.44 −60.07 0.00 0.02 0.20
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CHAPTER 8

CONCLUSION

In this thesis, we studied the minimum weighted perfect neighborhood set problem.

Only, the unweighted version of this problem has been studied before in the liter-

ature. We first propose a linear time algorithm for trees for the MinWPNSP. This

algorithm is a generalization of the algorithm proposed by Hedetniemi et al. (1997)

[1]. Moreover, we have observed that the original algorithm had many flaws. We have

corrected the multiplication table that is used in the original algorithm. To check the

correctness of the generalized algorithm, we proposed an integer programming (IP)

formulation for the MinWPNSP that is applicable to general graphs. We observed

that the generalization of the algorithm of Hedetniemi et al. (1997) [1] runs much

faster than the IP formulation on randomly generated trees.

We, then, made this formulation stronger with additional valid inequalities. We char-

acterized the perfect neighborhood set polytope for star graphs and complete graphs

by the help of the valid inequalities. Then, we made a detailed analysis of the individ-

ual effects of the valid inequalities, and selected a subset of these valid inequalities

for the comparison. We compared the IP formulation with and without the selected

subset of the valid inequalities in terms of the time and observed that the solution

times decrease about 30% for the Erdős–Rényi random graph model with G(n, p)

with lower densities.

The MinWPNSP can be considered in future studies. In particular, specific algo-

rithms can be designed for some graph classes that beat the IP formulation in terms

of solution time. Moreover, the case when wj’s are all zero and vj’s are all 1 or −1

can deserve some attention.
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Appendix A

APPENDIX

(a) [1′] (b) [2] (c) [4]

(d) [5] (e) [6] (f) [7′]

(g) [8] (h) [10] (i) [11.1]

Figure A.1: Example of classes from [1′] to [11.1].
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(a) [11.2] (b) [12] (c) [13]

(d) [14]

Figure A.2: Example of classes from [11.2] to [14].
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Appendix B

APPENDIX

Table B.1: Percentage of the integral solutions of 1000 trees after Constraint 6.2 is

added to the base model.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 0.0% 9.3% 15.1% 41.0% 36.8% 20.4% 92.6% 9.3% 100.0% 8.1% 51.8% 52.4%

10 23.7% 13.5% 16.2% 20.4% 15.4% 17.8% 70.5% 0.6% 93.0% 0.9% 24.9% 38.0%

25 2.1% 0.3% 1.0% 1.4% 1.3% 1.2% 55.2% 0.0% 84.4% 0.0% 3.8% 28.7%

50 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 20.6% 0.0% 68.7% 0.0% 0.3% 17.9%

75 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 3.4% 0.0% 54.9% 0.0% 0.0% 11.7%

100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.1% 0.0% 45.5% 0.0% 0.0% 9.9%

Avg. 4.3% 3.9% 5.4% 10.5% 8.9% 6.6% 41.1% 1.7% 74.4% 1.5% 13.5% 26.4%

Table B.2: Percentage of the integral solutions of 1000 trees after Constraint 6.5 is

added to the model of Table B.1.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 0.0% 9.3% 30.2% 41.0% 42.5% 24.6% 100.0% 9.3% 100.0% 8.1% 51.8% 53.8%

10 25.8% 13.5% 30.0% 20.4% 19.2% 21.8% 92.1% 0.6% 93.0% 0.9% 24.9% 42.3%

25 2.2% 0.3% 4.3% 1.4% 2.2% 2.1% 88.4% 0.0% 84.4% 0.0% 3.8% 35.3%

50 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 45.4% 0.0% 68.7% 0.0% 0.3% 22.9%

75 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 10.4% 0.0% 54.9% 0.0% 0.0% 13.1%

100 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 25.0% 0.0% 45.5% 0.0% 0.0% 14.1%

Avg. 4.7% 3.9% 10.8% 10.5% 10.7% 8.1% 60.2% 1.7% 74.4% 1.5% 13.5% 30.3%
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Table B.3: Percentage of the integral solutions of 1000 trees after Constraint 6.6 is

added to the model of Table B.2.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 9.3% 93.5% 47.3% 82.3% 66.5% 100.0% 66.1% 100.0% 74.4% 87.8% 85.7%

10 72.1% 14.5% 81.9% 25.3% 62.0% 51.2% 96.7% 34.9% 93.0% 48.1% 71.6% 68.9%

25 57.4% 0.3% 58.5% 3.0% 27.0% 29.2% 91.6% 5.8% 84.4% 15.5% 40.8% 47.6%

50 29.7% 0.0% 33.9% 0.1% 7.9% 14.3% 72.0% 0.7% 68.7% 2.7% 17.1% 32.2%

75 14.5% 0.0% 19.6% 0.0% 3.2% 7.5% 43.9% 0.0% 54.9% 0.2% 7.1% 21.2%

100 8.4% 0.0% 10.3% 0.0% 1.2% 4.0% 37.9% 0.0% 45.5% 0.0% 3.6% 17.4%

Avg. 47.0% 4.0% 49.6% 12.6% 30.6% 28.8% 73.7% 17.9% 74.4% 23.5% 38.0% 45.5%

Table B.4: Percentage of the integral solutions of 1000 trees after Constraint 6.7 is

added to the model of Table B.3.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 93.5% 92.9% 89.0% 95.1% 100.0% 100.0% 100.0% 79.5% 90.0% 93.9%

10 73.1% 99.9% 83.5% 86.3% 72.6% 83.1% 99.8% 74.2% 96.8% 56.2% 77.8% 81.0%

25 57.4% 99.5% 64.2% 69.6% 46.4% 67.4% 99.4% 43.2% 95.2% 23.1% 51.7% 62.5%

50 30.9% 97.7% 40.3% 48.0% 22.5% 47.9% 91.3% 16.0% 90.1% 5.1% 27.4% 46.0%

75 15.4% 93.2% 24.2% 32.6% 10.4% 35.2% 81.7% 6.6% 85.0% 0.9% 13.9% 37.6%

100 9.7% 91.3% 13.8% 23.4% 5.8% 28.8% 75.8% 2.2% 79.2% 0.0% 7.0% 32.8%

Avg. 47.8% 96.9% 53.3% 58.8% 41.1% 59.6% 91.3% 40.4% 91.1% 27.5% 44.6% 59.0%

Table B.5: Percentage of the integral solutions of 1000 trees after Constraint 6.8 is

added to the model of Table B.4.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 93.5% 95.3% 89.4% 95.6% 100.0% 100.0% 100.0% 79.5% 90.2% 93.9%

10 73.1% 99.8% 83.5% 89.0% 73.2% 83.7% 99.8% 74.2% 96.8% 56.2% 78.0% 81.0%

25 57.4% 99.5% 64.2% 75.6% 47.6% 68.9% 99.4% 43.2% 95.2% 23.1% 52.7% 62.7%

50 31.0% 97.7% 40.3% 57.8% 23.1% 50.0% 91.0% 16.4% 90.1% 5.1% 28.1% 46.1%

75 15.8% 94.3% 24.2% 41.0% 11.0% 37.3% 81.8% 6.4% 85.0% 0.9% 14.3% 37.7%

100 10.0% 90.9% 13.8% 31.7% 6.0% 30.5% 74.4% 2.1% 79.2% 0.0% 7.3% 32.6%

Avg. 47.9% 97.0% 53.3% 65.1% 41.7% 61.0% 91.1% 40.4% 91.1% 27.5% 45.1% 59.0%
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Table B.6: Percentage of the integral solutions of 1000 trees after Constraint 6.9 is

added to the model of Table B.5.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 94.2% 95.3% 90.1% 95.9% 100.0% 100.0% 100.0% 79.5% 91.8% 94.3%

10 72.7% 99.8% 83.5% 89.0% 74.5% 83.9% 100.0% 74.2% 98.2% 56.2% 79.8% 81.7%

25 57.5% 99.5% 64.3% 75.6% 49.3% 69.2% 99.7% 43.2% 96.6% 23.1% 54.1% 63.3%

50 31.0% 97.3% 40.7% 57.8% 25.8% 50.5% 92.2% 16.4% 93.8% 5.1% 29.8% 47.5%

75 16.0% 94.5% 24.5% 41.0% 12.0% 37.6% 82.0% 6.8% 89.7% 0.9% 15.7% 39.0%

100 9.1% 92.2% 14.2% 31.7% 6.6% 30.8% 76.0% 2.1% 85.3% 0.0% 8.3% 34.3%

Avg. 47.7% 97.2% 53.6% 65.1% 43.1% 61.3% 91.7% 40.5% 93.9% 27.5% 46.6% 60.0%

Table B.7: Percentage of the integral solutions of 1000 trees after Constraint 6.10 is

added to the model of Table B.6.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 94.2% 98.0% 91.9% 96.8% 100.0% 100.0% 100.0% 80.2% 93.0% 94.6%

10 72.8% 99.8% 83.5% 95.5% 79.0% 86.1% 100.0% 74.2% 98.2% 57.1% 82.5% 82.4%

25 57.5% 99.7% 64.3% 88.0% 56.8% 73.3% 99.7% 43.4% 96.6% 24.9% 59.1% 64.7%

50 30.0% 97.9% 40.7% 78.8% 33.5% 56.2% 91.2% 16.8% 93.8% 5.7% 35.1% 48.5%

75 16.4% 96.7% 24.5% 66.6% 17.1% 44.3% 80.9% 6.4% 89.7% 0.9% 19.6% 39.5%

100 9.8% 94.2% 14.2% 58.2% 9.5% 37.2% 78.7% 2.2% 85.3% 0.1% 11.4% 35.5%

Avg. 47.8% 98.1% 53.6% 80.9% 48.0% 65.6% 91.8% 40.5% 93.9% 28.2% 50.1% 60.9%

Table B.8: Percentage of the integral solutions of 1000 trees after Constraint 6.11 is

added to the model of Table B.7.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 94.2% 99.5% 92.9% 97.3% 100.0% 100.0% 100.0% 82.6% 94.5% 95.4%

10 73.0% 100.0% 84.6% 98.0% 82.0% 87.5% 94.1% 76.8% 98.2% 61.9% 84.7% 83.1%

25 57.7% 99.9% 65.5% 93.6% 61.7% 75.7% 97.9% 45.3% 96.6% 28.8% 63.6% 66.4%

50 31.3% 99.7% 41.2% 88.2% 39.3% 59.9% 91.8% 18.1% 94.6% 8.6% 40.7% 50.8%

75 16.2% 99.1% 25.7% 80.4% 21.1% 48.5% 62.6% 8.3% 90.7% 1.7% 24.3% 37.5%

100 10.0% 99.0% 15.7% 73.4% 13.7% 42.4% 55.3% 3.3% 87.0% 0.3% 15.7% 32.3%

Avg. 48.0% 99.6% 54.5% 88.9% 51.8% 68.6% 83.6% 42.0% 94.5% 30.7% 53.9% 60.9%
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Table B.9: Percentage of the integral solutions of 1000 trees after Constraint 6.15 is

added to the model of Table B.8.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 96.5% 99.5% 93.6% 97.9% 100.0% 100.0% 100.0% 82.6% 94.5% 95.4%

10 83.0% 100.0% 87.7% 98.0% 83.4% 90.4% 95.0% 77.0% 98.2% 61.9% 84.7% 83.4%

25 70.1% 99.9% 69.7% 93.6% 63.4% 79.3% 97.0% 45.4% 96.6% 28.8% 63.6% 66.3%

50 46.9% 99.7% 47.2% 88.2% 40.7% 64.5% 76.2% 18.1% 94.6% 8.6% 40.7% 47.6%

75 32.0% 99.4% 32.6% 80.4% 23.0% 53.5% 60.4% 8.2% 90.7% 1.7% 24.3% 37.1%

100 24.3% 98.8% 22.6% 73.4% 15.4% 46.9% 55.1% 3.2% 87.0% 0.3% 15.7% 32.3%

Avg. 59.4% 99.6% 59.4% 88.9% 53.3% 72.1% 80.6% 42.0% 94.5% 30.7% 53.9% 60.3%

Table B.10: Percentage of the integral solutions of 1000 trees after Constraint 6.16 is

added to the model of Table B.9.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 97.1% 99.5% 94.3% 98.2% 100.0% 100.0% 100.0% 82.6% 94.5% 95.4%

10 87.3% 100.0% 90.6% 98.0% 84.1% 92.0% 98.1% 76.9% 98.2% 61.9% 84.7% 84.0%

25 75.0% 99.9% 73.6% 93.6% 65.7% 81.6% 98.6% 45.4% 96.6% 28.8% 63.6% 66.6%

50 54.5% 99.6% 53.8% 88.2% 43.6% 67.9% 93.9% 18.2% 94.6% 8.6% 40.7% 51.2%

75 40.1% 99.2% 37.8% 80.4% 25.4% 56.6% 87.4% 8.2% 90.7% 1.7% 24.3% 42.5%

100 31.8% 98.8% 28.3% 73.4% 17.4% 49.9% 86.1% 3.2% 87.0% 0.3% 15.7% 38.5%

Avg. 64.8% 99.6% 63.5% 88.9% 55.1% 74.4% 94.0% 42.0% 94.5% 30.7% 53.9% 63.0%

Table B.11: Percentage of the integral solutions of 1000 trees after Constraint 6.17 is

added to the model of Table B.10.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 98.2% 99.5% 95.3% 98.6% 100.0% 100.0% 100.0% 86.8% 96.2% 96.6%

10 87.2% 100.0% 91.2% 98.7% 86.2% 92.7% 98.3% 80.6% 98.2% 75.3% 88.9% 88.3%

25 75.9% 99.9% 75.0% 96.4% 69.3% 83.3% 98.1% 52.3% 96.6% 46.0% 70.6% 72.7%

50 55.6% 99.8% 56.5% 93.6% 48.3% 70.8% 93.6% 25.4% 94.6% 19.8% 50.1% 56.7%

75 41.3% 99.3% 41.2% 87.2% 29.4% 59.7% 86.1% 13.6% 90.7% 8.8% 32.9% 46.4%

100 34.8% 99.0% 32.1% 82.8% 20.5% 53.8% 84.3% 5.4% 87.0% 3.0% 24.7% 40.9%

Avg. 65.8% 99.7% 65.7% 93.0% 58.2% 76.5% 93.4% 46.2% 94.5% 40.0% 60.6% 66.9%
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Table B.12: Percentage of the integral solutions of 1000 trees after Constraint 6.18 is

added to the model of Table B.11.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 98.2% 99.5% 96.1% 98.8% 100.0% 100.0% 100.0% 86.8% 96.2% 96.6%

10 87.2% 100.0% 91.2% 98.7% 86.2% 92.7% 98.3% 80.6% 98.2% 75.3% 88.9% 88.3%

25 75.9% 99.9% 75.0% 96.4% 69.3% 83.3% 98.1% 52.3% 96.6% 46.0% 70.6% 72.7%

50 55.6% 99.8% 56.5% 93.6% 48.3% 70.8% 93.6% 25.4% 94.6% 19.8% 50.1% 56.7%

75 41.3% 99.3% 41.2% 87.2% 29.4% 59.7% 86.1% 13.6% 90.7% 8.8% 32.9% 46.4%

100 34.8% 99.0% 32.1% 82.8% 20.5% 53.8% 84.3% 5.4% 87.0% 3.0% 24.7% 40.9%

Avg. 65.8% 99.7% 65.7% 93.0% 58.3% 76.5% 93.4% 46.2% 94.5% 40.0% 60.6% 66.9%

Table B.13: Percentage of the integral solutions of 1000 trees after Constraint 6.19 is

added to the model of Table B.12.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 98.2% 99.5% 96.1% 98.8% 100.0% 100.0% 100.0% 86.8% 96.2% 96.6%

10 87.2% 100.0% 91.2% 98.7% 86.2% 92.7% 98.3% 80.6% 98.2% 75.3% 88.9% 88.3%

25 75.9% 99.9% 75.0% 96.4% 69.3% 83.3% 98.1% 52.3% 96.6% 46.0% 70.6% 72.7%

50 55.6% 99.8% 56.5% 93.6% 48.3% 70.8% 93.6% 25.4% 94.6% 19.8% 50.1% 56.7%

75 41.3% 99.3% 41.2% 87.2% 29.4% 59.7% 86.1% 13.6% 90.7% 8.8% 32.9% 46.4%

100 34.8% 99.0% 32.1% 82.8% 20.5% 53.8% 84.3% 5.4% 87.0% 3.0% 24.7% 40.9%

Avg. 65.8% 99.7% 65.7% 93.0% 58.3% 76.5% 93.4% 46.2% 94.5% 40.0% 60.6% 66.9%

Table B.14: Percentage of the integral solutions of 1000 trees after Constraint 6.20 is

added to the model of Table B.13.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 98.2% 99.5% 96.1% 98.8% 100.0% 100.0% 100.0% 86.8% 96.2% 96.6%

10 87.0% 100.0% 91.2% 98.7% 86.2% 92.6% 99.5% 80.4% 98.2% 75.3% 88.9% 88.5%

25 75.9% 99.9% 75.0% 96.4% 69.3% 83.3% 99.1% 51.7% 96.6% 46.0% 70.6% 72.8%

50 55.6% 99.8% 56.5% 93.6% 48.3% 70.8% 93.5% 26.2% 94.6% 19.8% 50.1% 56.8%

75 39.8% 99.2% 41.2% 87.2% 29.4% 59.4% 87.7% 14.2% 90.7% 8.8% 32.9% 46.9%

100 34.2% 99.0% 32.1% 82.8% 20.5% 53.7% 84.4% 5.3% 87.0% 3.0% 24.7% 40.9%

Avg. 65.4% 99.7% 65.7% 93.0% 58.3% 76.4% 94.0% 46.3% 94.5% 40.0% 60.6% 67.1%
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Table B.15: Percentage of the integral solutions of 1000 trees after Constraint 6.21 is

added to the model of Table B.14.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 98.2% 99.5% 96.1% 98.8% 100.0% 100.0% 100.0% 86.8% 96.2% 96.6%

10 87.0% 100.0% 91.2% 98.7% 86.2% 92.6% 99.5% 80.4% 98.2% 75.3% 88.9% 88.5%

25 75.9% 99.9% 75.0% 96.4% 69.3% 83.3% 99.1% 51.7% 96.6% 46.0% 70.6% 72.8%

50 55.6% 99.8% 56.5% 93.6% 48.3% 70.8% 93.5% 26.2% 94.6% 19.8% 50.1% 56.8%

75 39.8% 99.2% 41.2% 87.2% 29.4% 59.4% 87.7% 14.2% 90.7% 8.8% 32.9% 46.9%

100 34.2% 99.0% 32.1% 82.8% 20.5% 53.7% 84.4% 5.3% 87.0% 3.0% 24.7% 40.9%

Avg. 65.4% 99.7% 65.7% 93.0% 58.3% 76.4% 94.0% 46.3% 94.5% 40.0% 60.6% 67.1%

Table B.16: Percentage of the integral solutions of 1000 trees after Constraint 6.22 is

added to the model of Table B.15.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 98.2% 99.5% 96.1% 98.8% 100.0% 100.0% 100.0% 86.8% 96.2% 96.6%

10 87.0% 100.0% 91.2% 98.7% 86.2% 92.6% 100.0% 80.4% 98.2% 75.3% 88.9% 88.6%

25 75.7% 99.9% 75.0% 96.4% 69.3% 83.3% 99.4% 52.2% 96.6% 46.0% 70.6% 73.0%

50 55.2% 99.7% 56.5% 93.6% 48.3% 70.7% 93.1% 26.3% 94.6% 19.8% 50.1% 56.8%

75 40.3% 99.3% 41.2% 87.2% 29.4% 59.5% 93.8% 15.4% 90.7% 8.8% 32.9% 48.3%

100 34.3% 98.9% 32.1% 82.8% 20.5% 53.7% 89.6% 5.5% 87.1% 3.0% 24.7% 42.0%

Avg. 65.4% 99.6% 65.7% 93.0% 58.3% 76.4% 96.0% 46.6% 94.5% 40.0% 60.6% 67.5%

Table B.17: Percentage of the integral solutions of 1000 trees after Constraint 6.23 is

added to the model of Table B.16.

|V |
weight on both y and x weight on y

1 −1 [0, 1] [−1, 0] [−1, 1] Avg. 1 −1 [0, 1] [−1, 0] [−1, 1] Avg.

5 100.0% 100.0% 98.3% 100.0% 97.7% 99.2% 100.0% 100.0% 100.0% 100.0% 99.8% 100.0%

10 86.9% 100.0% 91.7% 98.9% 88.2% 93.1% 99.8% 91.9% 98.2% 81.9% 92.6% 92.9%

25 76.1% 99.9% 76.3% 96.8% 71.8% 84.2% 99.4% 66.3% 96.6% 55.2% 75.1% 78.5%

50 55.7% 99.8% 57.7% 94.4% 50.9% 71.7% 93.1% 38.3% 94.6% 28.2% 55.5% 61.9%

75 40.3% 99.3% 42.8% 88.5% 32.1% 60.6% 94.0% 25.9% 90.7% 14.9% 39.7% 53.0%

100 34.3% 99.1% 33.3% 83.7% 24.3% 54.9% 89.9% 15.6% 87.1% 7.2% 31.1% 46.2%

Avg. 65.6% 99.7% 66.7% 93.7% 60.8% 77.3% 96.0% 56.3% 94.5% 47.9% 65.6% 72.1%
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