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ABSTRACT

GRAPHICAL MODELS IN INFERENCE OF BIOLOGICAL NETWORKS

Farnoudkia, Hajar

Ph.D., Department of Statistics

Supervisor : Prof. Dr. Vilda Purutçuoğlu

July 2020, 70 pages

In recent years, particularly, on the studies about the complex system’s diseases, bet-

ter understanding the biological systems and observing how the system’s behaviors,

which are affected by the treatment or similar conditions, accelerate with the help of

the explanation of these systems via the mathematical modeling. Gaussian Graphical

Models (GGM) is a model that describes the relationship between the system’s ele-

ments via the regression and represents the states of the system via the multivariate

Gaussian (normal) distribution. This distribution also explains the structure of bio-

logical systems by means of its "conditional independence" feature. Therefore, in the

inverse of the covariance matrix of the multivariate normal distribution, the "zero"

value implies no functional interaction, and the "non-zero" value stands for the inter-

action between the proteins in the estimate of the system’s structure. In this study,

as the novelty, we use the Copula Gaussian Graphical Models (CGGM) in model-

ing the steady-state activation of the biological networks and make the inference of

the model parameters under the Bayesian setting. We suggest the reversible jump

Markov chain Monte Carlo (RJMCMC) algorithm to estimate the plausible interac-
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tions (conditional dependence) between the systems’ elements which are proteins or

genes. Several data sets are used to illustrate the out-performance of the proposed

RJMCMC in comparison with most of its alternatives. Also, we used some semi-

Bayesian RJMCMC method to estimate the autoregressive coefficient matrix where

GGM repeated through time. We improved the model by full-Bayesian approach and

followingly, by a tuning parameter to increase the accuracy of the estimated matri-

ces. Some simulated data sets are used to show the accuracy of the different proposed

methods. Finally, we suggested a method to discover the relationships between vari-

ables through copula which is more flexible and it is more appropriate for the non-

symmetric or tail dependent cases. We applied the suggested ways in four real data

set and we saw that copula can discover the joint density structure in addition to the

available relationships in terms of the shape of the joint distribution to see whether it

is symmetric or non-symmetric or even tail dependent or not.

Keywords: Gaussian Graphical Models, Reversible jump Markov Chain Monte Carlo

Methods, Time series, Copula
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ÖZ

BİYOLOJİK AĞLARIN ÇIKARIMINDA GRAFİK MODELLER
KULLANIMI

Farnoudkia, Hajar

Doktora, İstatistik Bölümü

Tez Yöneticisi : Prof. Dr. Vilda Purutçuoğlu

Temmuz 2020 , 70 sayfa

Son yıllarda, özellikle, karmaşık sistemin hastalıkları ile ilgili çalışmalar, biyolojik

sistemleri daha iyi anlamak ve tedavi veya benzer koşullardan etkilenen sistem dav-

ranışları gözlemlemek bu sistemlerin matematiksel modellerle açıklaması sayesinde

hızlanmıştır. Gauss Grafiksel Modeller (GGM), regresyon yoluyla sistemin eleman-

ları arasındaki ilişkiyi tanımlayan ve çok değişkenli Gauss (normal) dağılım yoluyla

sistemin durumlarını temsil eden bir modeldir. Bu dağılım biyolojik sistemlerin yapı-

sını "koşullu bağımsızlık" özelliği ile de açıklamaktadır. Bu nedenle, çok değişkenli

normal dağılımın kovaryans matrisinin tersinde, "sıfır" değeri hiçbir işlevsel etkile-

şim anlamına gelmez ve "sıfır olmayan" değer, sistemin yapısı tahmininde protein-

ler arasındaki etkileşimi ifade eder. Bu çalışmada, yenilik olarak, biyolojik ağların

kararlı durum aktivasyonunu modellemek için Copula Gaussian Grafiksel Modelleri

(CGGM) kullanıyoruz ve Bayesian kurulumu altında model parametrelerinin çıkarı-

mını yapıyoruz. Sistem elemanları olan proteinler veya genlerin arasındaki olası etki-

leşimi (koşullu bağımlılık) tahmin etmek için tersine atlamalı Markov zinciri Monte
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Karlo (RJMCMC) algoritmasını önermekteyiz.. Önerilen RJMCMC’nin alternatifle-

rinin çoğuna kıyasla yüksek performansını göstermek için çeşitli veri setleri kullan-

maktadır. Ayrıca, GGM’nin zaman içinde tekrarladığı otoregresif katsayı matrisini

tahmin etmek için bazı yarı Bayes RJMCMC yöntemini kullandık. Modeli tam Ba-

yesci yaklaşımla ve ardından tahmini matrislerin doğruluğunu artırmak için bir ayar

parametresi ile geliştirdik. Bazı simüle edilmiş veri setleri, önerilen farklı yöntemlerin

doğruluğunu göstermek için kullanıldı. Son olarak, daha genel veriler için özellikle

simetrik olmayan veya kuyruğa bağlı durumlar için daha esnek olan kopula yoluyla

değişkenler arasındaki ilişkileri keşfetmek için bir yöntem önerdik. Dört gerçek veri

setinde önerilen yolları uyguladık ve kopula’nın simetrik veya simetrik olmayan veya

hatta kuyruğa bağlı olup olmadığını görmek için birleşik (ortak) dağılımının şekli

açısından, mevcut ilişkilere ek olarak birleşik dağılımının yapısını keşfedebileceğini

gördük.

Anahtar Kelimeler: Gauss Grafik Modelleri, Tersine atlamalı Markov Zinciri Monte

Carlo Yöntemleri, Zaman Serileri, Kopula
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CHAPTER 1

INTRODUCTION

Describing the biological network in term of the mathematical models has been in-

creasing gradually in recent years as mathematical models can explain the model

easier and catch the details better than other models. Furthermore, to make the mod-

els easy to understand to anyone, the graphical representation is used especially in

the studies about the complex system’s diseases. This study’s purpose is to find the

relationship between each variable which is the gene in the biological data sets. To

model the network, the linear regression model is used in a way that each gene can be

described as a linear combination of all other remaining relevant genes. So, the model

parameters which are the regression model coefficients should be estimated by some

mathematical or statistical ways. Then, it is seen that to infer the main parameters,

the precision matrix is needed to be estimated when the data come from the normal

distribution. In the case of non-Gaussian data or categorical data and etc., the copula

approach is used to make the data normally distributed with the same structure. It is

like the standardization or scaling the data. Once the main assumptions are provided,

RJMCMC is suggested to estimate the precision matrix by using a Bayesian approach

in three steps suggested by [11]. The application section of Chapter 2 includes some

real data sets to illustrate the outperformance of the proposed method with its alter-

natives by using some accuracy measures.

The time series chain graphical model is a generalized form of Gaussian graphical

models, and is gained by repeating the GGM through time. The mathematical de-

scription of the model, here, is a VAR(1) (vector of autoregression model with lag

1) model which includes the autoregressive coefficient matrix apart from the preci-

sion matrix. The mathematical description of this model is presented in Chapter 3.
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Hereby, in this thesis, We proposed a semi-Bayesian and full-Bayesian RJMCMC to

estimate the parameters of the underlying models. By applying to some simulated

data, we are able to compute the accuracy of our proposed methods and compare

them with the penalized likelihood method proposed by [1] in the application section

of that chapter.

Until here, the main assumption has been the normality of the data so that we can

use the exclusive properties of the normal distribution while estimating the parame-

ters. In Chapter 4, we suggest a copula approach to discover the relationship between

two genes (variable) by defining the most appropriate joint distribution according

to Sklar’s theorem [32] without using the normality constants in our calculations.

Thereby, in order to diminish the complexity of the model, we propose the vine cop-

ula which decomposes the joint density function into bivariate densities. So with the

help of this decomposition, each relationship can be investigated independently from

all other pairs in a specific structure without any elimination of pair or particular as-

sumption about distributions. Similarly, in Chapter 4, we present all of the underlying

details and show the accuracy of the copula in inference of the networks. These re-

sults are also compared with proposed RJMCMC in Chapter 2 by using two special

kinds of vine copula. Furthermore, in Chapter 4, we use two real data sets in order to

illustrate the general kind of vine copula’s accuracy.

Accordingly, we can summarize the aim of this thesis as below:

• In order to construct realistic and complex biological network models, we sug-

gest the application of the Copula Gaussian Graphical model whose inference

is conducted by the reversible jump MCMC algorithm. By this way, we can

take into account the high correlation between system’s elements, which are

genes and proteins, their nonlinear and sparse relationships in the mathematical

description of the systems. Then, we propose alternatives Bayesian algorithm

besides RJMCMC in order to gain the computational efficiency without losing

accuracy. For this purpose, we suggest the Gibbs sampling and compare out

results with the Birth-and-Death method and QUIC (quadratic approximation

for sparse inverse covariance estimation) approach.

• Later, we extend our model by including the time effect and suggest a fully

2



Bayesian, and semi-Bayesian approach for this new complex model, called time

series chain graphical model, that is based on the normality assumption of the

variables.

• Finally, we propose the vine copula approach for the construction of the under-

lying complex biological model in order to relax the normality assumption of

the variables. For this purpose, we apply C-Vine, D-Vine and R-Vine copulas,

generate a special plan to construct the model and estimate the model param-

eters step by step. At the end, we compare all these modeling approaches in

terms of accuracy and computational time.

As a result, in the light of this thesis study, we aim to better understand the actual

complexity of the biological networks and describe the true activation of the systems.

We consider that the suggested approaches in this thesis can be also applicable in

other networks in different fields, too.
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CHAPTER 2

COPULA GAUSSIAN GRAPHICAL MODEL

Copula Gaussian Graphical model is used to show the relationship between variables

graphically. In the biological data, the variables are genes and their relationship is

denoted in terms of the conditional dependence. Among defined distributions, only

in Gaussian, being correlated implies the independence. Therefore, we are interested

in to work with the Gaussian distribution. The first section of this chapter is allo-

cated to some definitions. In the second section, Copula Gaussian graphical model

(CGGM) is defined with details. Furthermore, the model parameter is described to be

estimated by the Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach.

RJMCMC was firstly introduced by Green [13] in the cases when the parameter di-

mension is not fixed. The third section consists some useful details about RJMCMC

in the estimation of the precision matrix in three steps which were suggested by Dobra

and Lenkoski [11] by using a Bayesian approach. Accordingly, in the third section,

some powerful alternatives of RJMCMC are defined that were used in the application

part, too.

Finally, in the application part, we use four real data sets to compare RJMCMC with

its alternatives in terms of some accuracy measures like F1-score and Mathew Corre-

lation Coefficient (MCC).

2.1 Some fundamental definitions

Firstly, the Graphical model which is the base of CGGM is explained by its types

in order to know what it shows or what is needed to be estimated and also to have a

5



general view about their pros and cons. Then, the Gaussian graphical model is defined

with its structure and the mathematical model with details to identify the parameter(s).

Finally, Copula Gaussian graphical model is explained to show how it acts when the

normality assumption does not hold for the data.

2.1.1 Graphical Model

Graphical models are used to make a better understanding of the models and also to

observe the behavior of the system which is mainly divided by two categories:

• Directed Acyclic Graphs (DAG)

• Undirected Graphs

Before defining their mathematical structures, it is necessary to define child and par-

ents relationships in graphs. When there is a direction in a graph from A to B which

is shown as A→ B, A is called as the B’s parent and B is named the A’s child.

2.1.1.1 DAG

In Figure 2.1 you can see a directed acyclic graph. As seen in the figure, every

Figure 2.1: A directed acyclic graphical model with five variables.

node is independent of other nodes given its parents, children, and parents of chil-

dren. So according to Figure 2.1, the joint distribution function can be written as

6



P (A,B,C.D.E) = P (A)P (B)P (C|A,B)P (D|C)P (E|B,C).

Hence, in the coming sections of this study that we will see, the conditional depen-

dence is a crucial issue as it can discover the regression coefficient defined as the

model of the biological data. But in graphical model, there are two definitions for

independence: marginally and conditionally independence. To see the difference be-

tween them, we suggest their graphical representations for three variables which is

the simplest shown in Figures 2.2, 2.3 and 2.4.

Figure 2.2: : A and B are marginally dependent (Top graph) and conditionally inde-
pendent (Bottom graph).

2.1.1.2 Undirected graphs

As it is clear from its name, there is no direction between variables in this kind of

graph. Hence, the main goal is to find a relationship between variables regardless

of their directions. In the Gaussian Graphical model, the conditional dependencies

are defined as their relationships under an undirected graph. Figures 2.5 and 2.7 illus-

trates some simple examples of the undirected graphs In this kind of graphs, the main

assumption is that every node is independent of all other nodes given its neighbors.

Accordingly, in the network represented in Figure 2.5, the joint density function can

be decomposed as f(A,B,C,D,E, F ) = f1(A,C)f2(B,C)f3(C,D,E)f4(D,E, F )

Figure 2.3: A and B are marginally dependent (Left graph) and conditionally inde-
pendent (Right graph).
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Figure 2.4: A and B are marginally independent (Left graph) conditionally dependent
(Right graph).

Figure 2.5: An example of an undirected graph with six variables.

where f1, ..., f4 are multivariate joint density functions with a lower dimension. By

this way, the new density function becomes less complicated. Therefore, the advan-

tage of a directed and undirected graph can be described as the separation of the

complex structures of networks into small sub-network represented in Figure 2.6 and

2.7 in order.

Figure 2.6: A representation of a marginal independence that an undirected graph
cannot describe.
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Figure 2.7: A representation of a conditional independence that a directed graph can-
not describe.

2.1.2 Gaussian Graphical Models

Gaussian Graphical Model (GGM) is used to represent a model structure in a graph-

ical way. The main assumption is the normality of the data, so that, it is called a

Gaussian graphical model. In the future section of this chapter, it will be discussed

by details with its alternatives, as well. Hence, to visualize the model, suppose that

we have a data matrix with p variables and n samples and we are interested in obtain-

ing the relationship between the variables. In this kind of network which is common

in social surveys and biological fields, each variable is shown by a node in a graph

and the conditional dependence between two nodes is shown by an undirected edge

connecting those corresponding nodes. So a graphical model can be represented by

G = (V,E) where V = 1, 2, ..., p and E is the set of available edges. Furthermore,

here, undirected edge means that if (i, j) ∈ E is equivalent to (j, i) ∈ E, Yi and Yj

are taken as dependent given the remaining variables and denoted by

Yi 6⊥⊥ Yj | YV {i,j},

where V = {1, 2, .., p}. This is called the pairwise Markov property.

The pairwise term comes from being investigated two by two and the Markov’s state-

ment comes from the property that the other remaining variable is taking account but

not directly.

Accordingly, if we turn back the description of the model, we can assume that the

data vector Y follows a p-dimensional multivariate normal distribution Np(0,Θ
−1)

where Θ is the inverse of the covariance matrix K. With n samples, the likelihood
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function can be written proportional to

p(y1:n | Θ) ∝ det(Θ)n/2exp
{
−1

2
tr(ΘTU)

}
,

where U is the trace of Y ′Y matrix, det(.) and tr(.) denote the determinant and trace

of the matrix, respectively. Furthermore, (.)T shows the transpose of the matrix. So,

a graphical model with V nodes and E edges, i.e., (V,E) from Np(0,Θ
−1) is called

the Gaussian graphical model. To better understand the structure of the data, we can

assume a (n× p)-dimensional matrix like

Y =


y11 y12 . . y1p

y21 y22 . . y2p

. . . . .

yn1 yn2 . . ynp



when the data are supposed to have a multivariate normal distribution with a mean

vector µ = {µ1, µ2, ..., µp} and the inverse covariance matrix which is called the

precision matrix as

Θ =


θ11 θ12 . . θ1p

θ21 θ22 . . θ2p

. . . . .

θp1 θn2 . . θpp



In this description of the precision matrix Θ, Θ is a symmetric matrix meaning that

θij = θji and a positive definite matrix because of being the inverse of the covariance

matrix [9]. So according to the Cholesky decomposition [10], this matrix can be de-

composed into two upper and lower triangular matrices as Θ = ϕϕT .

In the Gaussian graphical model (GGM), the nodes, also called states, are described

by a multivariate normal distribution as shown above with a p-dimensional mean vec-

tor µ = (µ1, µ2, ..., µp) and a (p × p)-dimensional covariance matrix Θ for totally p

nodes. Therefore, indeed, the precision matrix Θ is the expression to represent the

conditional dependence between nodes in a way that the significantly large values

point a highly possible dependency between the two related nodes given the remain-

ing ones in the network that cannot be realized by the covariance matrix. So an exclu-

sive property of the Gaussian distribution is that the covariance value determines the
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correlation implying the dependent structure between variables. At the same time, its

inverse realizes the conditional dependence structure.

Thereby, the mathematical description of the graphical model is denoted as below.

Yp = βY−p + ε (2.1)

where Yp stands for the state of the pth node and Y−p shows the states of all other

nodes except the pth node. β is a vector of the regression coefficient associated to

Y−p and ε refers to the p-dimensional vector for the random error. Accordingly, the

distribution of Y is denoted as

f(y|µ,Θ) = (2π)−
n
2 det(Θ)−

1
2 exp

{
−1

2
(y − µ)TΘ(y − µ)

}
(2.2)

Hence, in inference of this model, β has a direct relation with Θ via β = Θ−pp
Θpp

in

which Θ−pp is the ((p − 1) × p)-dimensional submatrix of Θ when the associated

term of the pth node is discarded. Thus, the knowledge of β implies the knowledge of

Θ, resulting in the information about the conditional dependency between the related

nodes. Briefly, the "zero" elements of Θ implies non-significant or "zero" β. So, after

now, to estimate the β values, it is enough to estimate the precision matrix.

2.2 Copula Gaussian graphical models

If the normality assumption does not hold for the data matrix, the copula can solve

the problem by combining the data in a way that their joint distribution is Gaus-

sian with the same covariance matrix. For binary and ordinal categorical data, [24]

introduced a continuous latent variable Z by defining some increasing thresholds

τν = (τν,0, ..., τν,ων ). So,

yjυ =
ωυ∑
l=1

l × 1τυ,l−1<z
j
υ≤τυ,l . (2.3)

The relationship between Yij and Zij satisfies the constraint below.

yij < yik ⇒ zij < zik and zij < zik ⇒ yij ≤ yik

11



Then, by defining the interaction of the correlation matrix in terms of Θ as

γij(θ) =
θ−1
ij√

θ−1
ii θ

−1
jj

(2.4)

and Zv ∼ Np(0,Θ
−1), we can get a one-to-one correspondence with observed data

via

Yi = F−1

(
Φ(

Zi√
θ−1
ii

)

)
. (2.5)

In Equation 2.5 , θii and θjj indicate the diagonal entries of the ith and the jth node,

in order. Accordingly, θij means the precision value between the ith and the jth node.

On the other hand, in Equation 2.5, F−1 and Φ stand for the inverse of the cumulative

distribution function (CDF) and CDF of the normal distribution, respectively. Hence,

by denoting C(u1, ..., up|γ) as the Gaussian copula with (p× p)-dimensional correla-

tion matrix for the p random sample from the standard uniform distribution, we have

p(Y1 < y1, ..., Yp < yp) = C(F1(y1), ..., Fp(yp)|γ(Θ)). (2.6)

Roughly speaking, by the thresholds, the old value is going to be projected to the nor-

mal distribution by ordering them and choosing the best normally distributed value

that fits according to its position in the density function.

In this study, we decompose the multivariate normal distribution of the states via the

Gaussian copula model with the normal marginal distributions. This new probability

distribution function is used in the calculation of the likelihood within the Bayesian

framework which will be explained by details later in this chapter. As discussed be-

fore in Section 2.1.2, the base of the model is a linear regression model in which to

estimate the coefficient parameter β the precision matrix is needed to be estimated

according to the knowledge about the data.In order to infer the precision matrix, sev-

eral methods are suggested in the literature, such as the maximum likelihood (MLE)

biased estimator [33], penalized MLE [6], least absolute selection and shrinkage Op-

erator (LASSO) regression [36] and other parametric or robust estimation methods

[25]. But in some cases using those methods could be difficult due to the larger num-

ber of parameters (the elements of the precision matrix is equal to d(d−1)
2

where p is

the number of variables (columns) in data set ) towards a smaller number of samples

or in a case of sparsity which is very common in biology is the case. If we define a

matrix with some values regarding the relationship between every two variables, the
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sparsity rate is the ratio of zero values in the upper triangular part of the matrix to

the number of the parameter in the precision matrix. In most of the biological data

set, in spite of a large number of variables (genes), only some of them have some

relationship which means that we deal with a sparse adjacency (an upper triangular

matrix with one and zero elements) matrix. Furthermore, in some cases, the number

of samples is less than the number of parameters. So, the Markov Chain Monte Carlo

method can be applied to these kinds of cases which start with a random matrix and

in each step and then it becomes closer to the true (target) matrix iteratively. The

well-known property of the Markov chain model is that in each step or iteration is in-

dependent on all other previous iteration except the last one.That is, only the previous

step will be accounted. Thus, the Monte Carlo method means by taking the mean of

random samples and with the help of the law of large numbers the estimation con-

verges to the real value of the parameter. By taking into account of the explanation

about the Markov Chain and Monte Carlo method, we have a general image of the

MCMC process.

Accordingly, to estimate the precision matrix by the MCMC method, we cannot use

it directly, as MCMC is appropriate for the model with a fixed number of parame-

ters. But in the precision matrix, the dimension depends on the non-zero elements

of the upper-triangular part of the symmetric matrix. So RJMCMC is suggested by

[13] which deals with changing dimensions in each iteration. Therefore in an article

published by Dobra and Lenkoski [11] by updating the matrix and the graph in the

separate steps by using some latent variables, an accurate estimation is achieved for

some economical data set.

In the following section, the proposed RJMCMC [11] method is explained. Follow-

ingly, some powerful alternative of RJMCMC will be listed. Finally, in the applica-

tion section, we applied RJMCMC to some biological data sets as well as economical

data to measure its accuracy according to the true graph of the data and compare the

accuracy of RJMCMC with some of its explained alternatives.

13



2.3 Reversible Jump Markov Chain Monte Carlo method

A Bayesian approach is used for a better estimation of the precision matrix as an

estimation done by Bayesian is more robust because it is a linear combination of the

estimated parameter based on the prior distribution and MLE. As pointed beforehand,

the precision matrix is the inverse of the covariance matrix. On the other hand, for

one-parameter model, if Y ∼ N(µ, σ2) then (v−1)s2

σ2 is Chi-squared distributed via

χ2
(n−1) where n is the number of samples and s2 denotes the sample covariance. So

the inverse of σ2 has some chi-square distribution. The generalized version of the

multivariate χ2 is G-Wishart distribution which is used as a good prior distribution

for the precision matrix. The G-Wishart distribution with parameters D and δ know-

ing the graph(G) is in the form of p(Θ|G) = 1
IG(δ,D)

det Θ(δ−2)/2 exp
{
−1

2
tr(ΘTD)

}
with some normalization constant IG(δ,D) which is not straightforward to obtain

when the graph is not a full graph (all of the elements are non-zero). It that circum-

stance, another MCMC approach is used to obtain it through an algorithm suggested

by Lenkoski [18].

Another interesting property of the G-Wishart distribution is that it is conjugate with

a normal distribution such that if Θ ∼ Wishart(δ,D) and y = (y1, ..., yn) ∼
MVN(0, 1), then the posterior distribution of Θ for the given y is (Θ|y) ∼ Wishart(n+

δ,D + U).

Another fact about the G-Wishart distribution is that the precision matrix can be de-

composed by the Cholesky decomposition method into two normally distributed ma-

trices Θ = ϕTϕ where ϕ is a upper triangle matrix which was discussed in Section 2.

Each zero element in ϕ implies a zero element in Θ for the corresponding variables.

Hence, the main goal in the estimation of the precision matrix is to discover if there is

a conditional dependence between every two variables or not. Furthermore, the goal

can change the process in order to see the zero and non-zero elements in the final or

estimated graph. Therefore, instead of working with the G-Wishart distribution with

its normalization constant and other difficulties, in some steps of the RJCMCM, it is

preferred to use normal distribution by applying the Cholesky decomposition.

The main idea about the relationship between Gaussian and G-Wishart distribution

comes from the one-parameter version of normal and Chi-square in such a way that

if Y ∼ N(0, 1) then Y 2 ∼ χ2
(n−1) where n is the length of the Y vector. So, the
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way of how χ2 can be rooted in normally distributed variables shows us the Cholesky

decomposition of the G-Wishart distribution into two normally distributed matrices.

Another method that was used in the proposed algorithm by Dobra and Lenkoski [11]

in three steps, is the Metropolis Hasting algorithm [14]. In this algorithm to do any

change in the value of a matrix, a ratio is calculated and if the ratio is bigger than

any random numbers between zero and one, then that move is done. Otherwise, there

happens no change. To better understand the Metropolis Hasting algorithm, by defin-

ing π(x) and π(y) as the target density of data and q as the conditional density, also

called the proposal kernel or the candidate kernel, the algorithm can be also written

in the following way

• Calculate the ratio p = π(y)q(x|y)
π(x)q(y|x)

.

• Generate a random number ω in the interval (0, 1)

• If p > ω, then x will be changed to y.

• Otherwise, x remains without change.

Hence, we can describe the three-steps RJCMC algorithm of Dobra and Lenkoski

[11] as below.

2.3.1 Resample the latent data

In this step, we transform the original variables to some latent variables, called as Z.

Thus, Z is a (n×p)-dimensional matrix and for each column, which is related to each

node, we calculate its minimum L and its maximum U as the vectors of p elements

based on the original variables.

In this calculation, by using the θ matrix and L as well as U vectors, we generate

another Zis from a truncated normal in the Li and Ui distributions to control the

fluctuations in each iteration in a way that
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Zi | ZV \i ∼ N(µi, σ
2
i )

where Zi | ZV \i denotes the ith variable conditioned on all other variables and µi =

−
∑

y∈bd(i)
θi,y
θi,i
zy,j for bd(i) = {y ∈ (1, . . . , p) : (i, y) ∈ E} when E = {(i, y)|θi,y 6=

0, i 6= y} and σ2
i = 1

θi,i
. In the next step of the algorithm, the underlying zi,js are

used.

2.3.2 Resample the precision matrix

The inverse of the covariance matrix is computed by using the latent variables from

step 1. Firstly, the precision matrix Θ is decomposed by the Cholesky decomposition

method. Then, for each element of ϕ, the following calculations are repeated:

(i) For non-zero diagonal elements Metropolis-Hasting update of ϕ is done by

sampling a γ from a normal distribution truncated below at zero (because for

diagonal elements we cannot use any negative value) with a mean ϕi,i and a

variance σ2
p . Then, γ is replaced to the related diagonal elements of ϕ and ϕ is

transformed to ϕ′ with a probability min{Rp, 1} where

Rp =
Φ(ϕi,i/σp)

(γ/σg)

(
γ

ϕi,i

)δ+n+nb(i)−1

R′p (2.7)

for R′p = exp
{
−1

2
tr(θ′ − θ)T (D + tr(ZTZ))

}
.

(ii) For non-diagonal elements of ϕ, a new γ′ is sampled from N(ϕi,jσ
2
p). In these

cases, ϕ is transformed to ϕ′ with a probability min{R′p, 1}.

2.3.2.1 Resample the graph

In this step, only one element of the decomposed matrix, ϕi,j is selected randomly. In

this selection,
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(i) If there is no edge between Yi and Yj , it will be changed by a value from

N(ϕi,j, σ
2
p) in ϕ with a probability min{1, Rp} where

Rp = σp
√

2πϕi,i
IG(δ,D)

IG′(δ,D)
×

exp

{
−1

2
tr((Θ′ −Θ)T (D + tr(ZTZ)) +

(ϕ′i,j − ϕi,j)2

2σ2
p

}
.

(2.8)

(ii) If there is an edge between Yi and Yj , it will be replaced by a zero in ϕ with a

probability min{1, R′p} where

R′p = (σp
√

2πϕi,i)
−1 IG(δ,D)

IG′(δ,D)
×

exp

{
−1

2
tr((Θ′ −Θ)T (D + tr(ZTZ)) +

(ϕ′i,j − ϕi,j)2

2σ2
p

}
.

(2.9)

We repeat the steps by updating the latent variables, the precision matrix and the

graph in each iteration while starting with a random matrix as the initial matrix to

achieve the best posterior distribution meaning that the convergence is obtained if the

difference between the graphs is the iterated steps is infinitesimal. During this con-

vergence regarding the dimension of the estimated precision matrix, a large number

of MCMC iterations can be taken as burn-in such as half of the whole iteration num-

ber. Then after discarding the burn-in period, the average of the remaining iterations

is taken as the point estimate of the model parameters. In the final stage, in order to

convert the estimated precision into the binary form, we determine a threshold value

by considering the sparsity rate of the target graph.

2.4 RJMCMC Alternatives

In this section, some alternatives of RJMCMC are introduced. Most of them are used

in the application part to compare the accuracy of RJMCMC by some measures.

2.4.1 Birth-Death MCMC

This method is introduced by Mohammadi and Wit [21] based on the continuous time

approach where the dimension of the parameter is not fixed. In this approach, new
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components are born according to the Poisson process with a rate λB and the ith

component in a k- component configuration which dies with a rate

λD(i) =
π(k − 1, θ1:i−1, θi+1:k)

π(k, θ1:k)
× λBq(θi). (2.10)

In Equation 2.10, π(.) is the density kernel when θ1:k implies the first k parameters

and q(θi) represents the proposal kernel for the ithe component of the parameter θ, as

used previously.

The choice of the birth and death rates determines the birth-death process and is made

in such a way that the stationary distribution is precisely the posterior distribution of

interest. Contrary to the RJMCMC approach, the moves between models are always

accepted, which makes the BDMCMC approach extremely efficient and fast.

2.4.2 Carlin-Chib algorithm

In the application of the MCMC technology to any problem involving a choice be-

tween K competing the Bayesian model specification, M is defined as an integer-

valued parameter that indexes the model collection. The Carlin-Chib algorithm [7]

shows how the Gibbs sampling methodology may be a specific method to choose

across finite collections of models without destroying the convergence.

Thereby, suppose that f(y|θj,M = j) is the corresponding likelihood of the model j

and P (θj|M = j) is the prior distribution of the parameter under the model j. Here, y

is independent on θi 6=j given that M = j(j = 1, ..., k). As it is mentioned before, M

is a model indicator and for the given M , various θ′js are assumed to be completely

independent.

By defining πi = P (M = j) such that
∑k

j=1 πj = 1, the joint distribution of y and θ

when M = j is as below.

P (y, θ,M = j) = f(y, θj,M = j)× πj × {
k∏
i=1

P (θi|M = j)}. (2.11)

The following equation shows the full conditional independence of each θj and M .

P (θj|θi 6=j,M, y) ∝

{
f(y|θj,M = j)P (θj|M = j) for M = j,

P (θj|M 6= j) for M 6= j,
(2.12)

where P (θj|M 6= j) is called “pseudoprior". When M = j, and as the name sug-

gests, pseudoprior is not really a prior but only a conveniently chosen linking density,

18



required to define completely the joint model specification. we generate the graph

from the usual model of the full conditional distribution and when M 6= j, we gener-

ate from the linking density.

Hence for the model M , we have

P (M = j|θ, y) =
f(y|θj,M = j)

∏k
i=1 p(θi|M = j)πj∑k

n=1 f(y|θn,M = n)
∏k

i=1 p(θi|M = n)πn
.

In the usual condition, the algorithm produces samples from the correct joint posterior

distribution. In particular, the ratio

P̂ (M = j|y) =
the number of (M (g) = j)

total number of M (g)

is a simple estimate to compute the Bayes factor between any two of models while

g denotes the number of samples. Thus, M (g) = j means the jth model for the gth

sample.

2.4.3 Gibbs Sampling

As discussed earlier, RJMCMC is the modified version of the Metropolis-Hasting

method which provides jumps between spaces of different dimensionality. In this

algorithm, the move from (k, θk) to (k′, θk
′
) is not always possible because of the

modality of the Metropolis-Hasting calculation. The acceptance probability for this

movement is computed as

Rk,k′ =
P (k′, θk

′|y)q̃(k, θk|k′, θk′)
P (k, θk|y)q̃(k′, θk′|k, θk)

, (2.13)

where k is the dimension of the precision matrix θ and y refers to the normal random

variables of the current position and finally, k′ and θ′ denote the associated proposal

terms of k and θ, respectively. Hereby, in Equation 2.13, P shows the likelihood

function and q̃ presents the kernel density.

Under the “dimension matching" condition, (dim(θk
′
, x) = dim(θk, y)), where x and

y are variables drawn from the proposal distribution q̃1, the acceptance probability is

equivalent to

Rk,k′ =
P (k′, θk

′|x)

P (k, θk|y)
× q̃1(k|k′)q̃2(x)

q̃1(k′|k)q̃2(y)
×
∣∣∣∣∂(θk

′
, x)

∂(θk, y)

∣∣∣∣. (2.14)
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In Equation 2.14, q̃2(.) refers to the kernel for the given random variable and
∣∣∣∣∂(θk

′
,x)

∂(θk,y)

∣∣∣∣
represents the determinant of the Jacobin matrix.

By using the Bayes theorem, a complete model for a joint density for j = 1, 2, ... can

be written as

p(y, θj, k) = p(y, θk, k)p(θ1|θ2)..p(θk−1|θk)p(θk+1|θk)p(θk+2|θk+1)... (2.15)

If we denote πk as the prior distribution for the unknown dimension of a parameter k

and πk(θk) as the prior distribution for θk|k, we can represent the joint distribution of

the state y with a model parameter θ under the k dimension via

p(y, θk, k) = p(y|θk, k)πk(θ
k)πk. (2.16)

Here, to move between dimensions, we have infinity choices that cause the precise

probabilities which cannot be found. To solve the problem, Walker (2009) [34] intro-

duces an auxiliary variable u which helps us to have finite choices to move between

dimensions. On the other hand, the latent variable u has a distribution in which u = k

with a probability q and u = k + 1 with a probability 1− q.
Since u depends only on k and the complete model can be stated as

p(u, y, θj, k) = p(u|k)p(y, θj, k). (2.17)

Thereby, the steps of the algorithm base on the Gibbs sampling method which is

explained first by [12], can be listed as below:

1- Sample θ(k) from πk(θ
k|y, k).

Sample θ(k+1) from p(θk+1|θk) and sample θ(k−1) from p(θk−1|θk).

2- Sample u from some kind of a binomial distribution in which p(u = k+1) = q

and p(u = k) = 1− q.

3- For the given k, sample j, which will be the next k, from the distribution below:

j = k|u = k + 1 ∝ (1− q)p(y, θk+1, k + 1)p(θk|θk+1).

j = k + 1|u = k + 1 ∝ qp(y, θk, k)p(θk+1|θk).
j = k|u = k ∝ (1− q)p(y, θk, k)p(θk−1|θk).
j = k − 1|u = k ∝ qp(y, θk−1, k − 1)p(θk|θk−1).
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In these expressions, the sampling strategy is simplified by the following equality.

P (θk|θk+1)× πk+1(θk+1) = P (θk+1|θk)× πk(θk) (2.18)

that is valid under the Gaussian Copula graphical model. So the simplified version of

the third step of the algorithm can be shown as follows.

j = k|u = k + 1 ∝ (1− q)p(y|θk+1, k + 1)π(θ(k+1)).

j = k + 1|u = k + 1 ∝ qp(y|θk, k)π(θ(k)).

j = k|u = k ∝ (1− q)p(y|θk, k)π(θ(k)).

j = k − 1|u = k ∝ qp(y|θk−1, k − 1)π(θ(k−1)).

2.4.4 Quadratic Approximation for Sparse Inverse Covariance Estimation

This algorithm is suggested by Hsieh et al (2014) [17] to estimate the inverse of a

sparse covariance matrix where the data are Gaussian. In this calculation, there is

a penalty term in the general formula which controls the sparsity rate of the related

graph. By increasing the underlying term, the precision matrix becomes more sparse.

Hereby, in the algorithm, let Y be an (n×p)−dimensional data matrix and the sample

covariance matrix is denoted by

S =
1

n− 1

n∑
k=1

(yk − µ̂)(yk − µ̂)T (2.19)

where µ̂ = 1
n

∑n
k=1 yk.

Given the regularization penalty term λ > 0, the regularized log-determinate is de-

fined as below.

argmin{− log |Y |+ tr(SY ) + λ

p∑
i,j=1

|Yij|}. (2.20)

Here, tr and log show the trace of the matrix and logarithm, respectively, and |Y | de-

notes the determinant of Y . Then, the algorithm computes the optimal Λ by taking the

(p × p)-dimensional empirical covariance matrix S, which is positive semi-definite,

and the regularization matrix Λ as inputs and initializing Y on the first iteration via

Y0 > 0 in t = 0, 1, ... until reach the best Yt that minimize the function in Equation

2.20.
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2.5 Application

In this section to compare its accuracy with some or all of the explained alternatives

we use three data sets: the Ovarian cancer data, the Rochdale data, and Cellsignal

data. The accuracy measures which are used in this part are F1-score and Matthew’s

correlation coefficient (MCC) whose definitions are listed below.

F1 − score =
2TP

(2TP + FP + FN)
, (2.21)

MCC =
(TP× TN)− (FP× FN)√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
, (2.22)

In Equations 2.21 and 2.22, TP is the number of truly found edges, FP presents the

numbers of falsely found edges (similar to type one error) and FN denotes the number

of edges that exist, but are not recognized (similar to type two error). They create a

matrix called the confusion matrix which can be shown in a very simple way in Table

2.1. As an explanation, the perfection level of F1−score is 1 and the range lies from

Table2.1: Definition of the confusion matrix

Positive edge in true graph Negative edge in true graph

Estimated edge True Positive False Positive

Non-estimated edge False Negative True Negative

0 to 1. On the other hand, the Matthew’s correlation coefficient is also known as phi

coefficient turns a value between −1 and +1. A coefficient +1 represents a perfect

prediction, 0 implies no better than a random prediction and −1 indicates the total

disagreement between the prediction and the observation.

In the last part of this section, we try to estimate the precision matrix under singularity

situation which is one of the common obstacles in data analyses. In our calculation,

we used one data set in which most of the variables are highly correlated.
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2.5.1 Ovarian Cancer data

In this analysis, weapply the gynecological cancer data. The gynecological cancer

consists of the ovarian, cervix and endometrial cancer and this cancer type is the

second most common cancer in women in the world after breast cancer. In our study,

we use 11 core genes that validated in the literature that they are active in this cancer

type. These genes are named as MPK2K1, MK01, CEBPB, CTNNB1, TFAM, TP53,

PDIA3, IMP3, ERBB2, CHD4, and MBD3. Then, from the ArrayExpress database

[26], we take an Affymetrix dataset, which is collected under ovarian cancer, and

choose the observations belonging to the underlying 11 genes.

In the data, each gene has 14 samples and the true network composed of these genes is

complete, i.e., its adjacency matrix has the value one in all entries. In the estimation,

10,000 MCMC iterations are conducted and the first 2,000 runs are discarded as the

burn-in period. From the outcomes, we calculate F1-score=1 for RJMCMC and F1-

score=0.79 for BDMCMC. Thereby, as observed from other analyses, the findings

show that RJMCMC overperforms BDMCMC with a higher accuracy.

2.5.2 The Rochdale data

The second data set which is is implemented in our study is presented in Table 2.2.

Thus data set is a binary dataset collected from 665 samples in order to assess the

relationship among eight factors affecting the women’s economic activity. The data

presents the eight binary (yes or no) factors that influence women activities, which are

named by a: wife economically active, b: wife’ age > 38, c: husband unemployed,

d: the number of children 4, e: education level of wife, (high-school+), f: education

level of husband ( high-school+), g: Asian origin, and h: other household member

working.

For instance, the first cell of Table 2.2 shows that 5 of the 665 persons, a=1, b=1, c=1,

d=1, e=1, f=1, g=1, h=1 and also, for 57 persons in the 9th row and the 13th column,

a=2, b=1, c=1, d=1, e=2, f=2, g=1, h=1. Accordingly, the true network based on the

study by Wittaker (1990) [35] is in the form of f g, e f, dh, dg, cg, c f, ce, bh, be, bd, ag,
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Table2.2: The Rochdale data

5 0 2 1 5 1 0 0 4 1 0 0 6 0 2 0
8 0 11 0 13 0 1 0 3 0 1 0 26 0 1 0
5 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0
4 0 8 2 6 0 1 0 1 0 1 0 0 0 1 0

17 10 1 1 16 7 0 0 0 2 0 0 10 6 0 0
1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0
4 7 3 1 1 1 2 0 1 0 0 0 1 0 0 0
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

18 3 2 0 23 4 0 0 22 2 0 0 57 3 0 0
5 1 0 0 11 0 1 0 11 0 0 0 29 2 1 1
3 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41 25 0 1 37 26 0 0 15 10 0 0 43 22 0 0
0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0
2 4 0 0 2 1 0 0 0 1 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ae, ad, ac. Table 2.3 indicates the estimated graph in term of a symmetric 0−1 matrix.

Table2.3: The estimated graph for the Rochale data

a b c d e f g h
a 0 0 1 1 1 0 1 0
b 0 0 0 1 1 0 0 1
c 1 0 0 0 1 1 1 0
d 1 1 0 0 0 0 1 1
e 1 1 1 0 0 1 0 0
f 0 0 1 0 1 0 1 0
g 1 0 1 1 0 1 0 0
h 0 1 0 1 0 0 0 0

Hereby, in Table 2.3, 1 refers to the existence of an edge between two related nodes

and 0 stands for the conditional independence between two nodes. The accuracy of

RJMCMC and some alternatives are shown in Table 2.4.

In our calculation, the number of iteration for RJMCMC, BDMCMC, and Gibbs is

taken as 106 and for QUIC, it sets to 1000 iterations. According to the results pre-

sented in Table 2.4, it is seen that after QUIC, Gibbs sampling and RJMCMC have the

same highest accuracy among alternatives. Here, although QUIC is the most speedy
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Table2.4: The comparison between accuracies of different methods for the Rachdale
data

Methods TP FP FN TN F1-score MCC
True graph 13 0 0 15 1 1
RJMCMC 12 1 1 14 0.923 0.856
BDMCMC 10 9 3 9 0.625 0.272
Gibbs (q = 0.5) 12 2 1 13 0.888 0.787
QUIC (λ = 0.12) 13 2 0 13 0.928 0.866

method, it is completely non-parametric and suggests a numeric solution for the in-

ference of the precision.

On the other hand, the remaining approaches are fully parametric and can be grouped

in the same class. Whereas, if we compare the computational demand of RJMCMC

and Gibbs sampling, it is seen that the Gibbs sampling reduces the computational

time of RJMCMC significantly without losing accuracy.

2.5.3 The CellSignal Data

This dataset firstly was investigated by Sachs et al., (2005) [30] and it is attached to

the BDgraph package [22] in 11672 samples in which each independent measurement

consists of quantitative amounts of each of the 11 phosphorylated molecules, simul-

taneously measured from single cells. Figure 2.8 shows the true undirected network

of the 11 genes via the Bayesian network analysis to the multivariate flow of the cy-

tometry data.

Moreover, the performance of the accuracy in the estimation of the precision matrix

via all the suggested approaches is shown in Table 2.5. According to the results in

Table2.5: The comparison between accuracy of different methods for the CellSignal
dataset

Methods TP FP FN TN F1-score
True graph 17 0 0 38 1
RJMCMC 13 27 5 10 0.448
BDMCMC 16 32 5 2 0.485
Gibbs (q = 0.5) 18 37 0 0 0.493
QUIC (λ = 0.2) 10 22 8 31 0.40

Table 2.5, it can be seen that the Gibbs sampling performance is better than others
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Figure 2.8: The true undirected network of the CellSignal data

by F1-score. So, the Gibbs sampling not only needs less time in the comparison with

RJMCMC, its performance is better than RJMCMC and BDMCMC.

2.5.4 The geneExpression data

Singularity Problem

Here, we introduce our suggested approach to deal with the problem of singularity

in the inference of the RJMCMC algorithm. This challenge is commonly observed

if the calculation is done for real biological systems. The reason is that from the de-

scription of the real systems, some of the proteins or genes can be defined in terms

of other components in the systems and this can happen typically if these proteins are

only seen in the product or reactant side of the complete reaction list at one time. In

this case, since the firing of the underlying protein is merely dependent on a particu-

lar single reaction and its associated reactants, the change in the concentration of this

protein can be explained by means of those underlying proteins during whole biolog-

ical activations. Accordingly, the variance-covariance matrix of the system becomes

singular as the associated column (or row) of the matrix can be found via the lin-

ear combination of other columns (or rows). Under this condition, since the inverse

26



of the matrix cannot be computed, the likelihood in RJMCMC cannot be calculated

too. Furthermore, the underlying singularity does not only result in a problem in

the likelihood, but also, results in an infeasible candidate generator due to the linear

dependence on some of the state values that directly affect the acceptance probabil-

ities Rp and R′p which cannot be defined under these conditions. In order to unravel

this problem, we propose a pre-processing step in advance of RJMCMC by check-

ing the eigenvalues of the correlation matrix of the raw data. The entries one in this

matrix present a perfect correlation between the corresponding pair of nodes, lead-

ing to zero eigenvalues in the associated variance-covariance matrix. Therefore, we

eliminate these columns and associated rows from the variance-covariance matrix as

they are formed from a linear combination of some independent columns. On the

other hand, in the statistical sense, such elimination does not lead to any loss of in-

formation in the inference because of the fact that the perfect correlation implies the

certainty in the calculation of the likelihood if all independent components are in-

cluded in the computation. Hereby, in the RJMCMC algorithm, we apply the inverse

of the reduced variance-covariance matrix as the starting precision matrix of RJM-

CMC. Then, following by the estimated precision matrix as the mean of the entries of

matrices at the end of each iteration after the burn-in period, we get its inverse as the

estimated variance-covariance matrix. Finally, by using the knowledge of the linear

dependency obtained from the initial correlation matrix which are the coefficients of

the linear expression assigned to the eliminated columns, we fill again the reduced

estimated variance-covariance matrix. At this stage, since our ultimate aim is to infer

the structure of the network which has a binary form, i.e., zero and one entry, we do

not lead to an overestimation in the final estimated adjacency matrix. As a result,

we do not change the biological validation of the system and we prevent the loss of

information in the interpretation of the biological explanation.

Description of data

The "geneExpression" dataset is freely available in the "bdgraph" package [20] in

the R programming language. This dataset contains the human gene expressions of

100 transcripts (with unique Illumina TargetID) measured on 60 unrelated individu-

als. The genotypes of the proteins can be found from the Sanger Institute website

at ftp://ftp.sanger.ac.uk/pub/genevar. For this dataset, even though the true network

has not been known yet, resulting in the complete list of all interactions cannot be
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Figure 2.9: Biologically validated links of the gene expression data according to the
study of [4]

validated, 55 links in this system can be biologically controlled by using the study of

[4]. In Figure 2.9, we present the links that can be biologically validated. Hereby,

in the detection of the singularity over 100 proteins, in the system, we eliminate 49

of them and conduct the inference based on 51 proteins, each has 60 samples. In the

computation, the number of iterations is set to 10000 MCMC runs and the first 2000

iterations are discarded as the burn-in period. From the results in Table 2.6, it is seen

that RJMCMC which takes into account the structural dependency in the systems, is

more accurate than the findings of BDMCMC in terms of F1-score and MCC values

while BDMCMC can be applicable without eliminating those components. On the

other hand, if we compare the computational demand of both approaches, we see that

RJMCMC uses more CPU time but we think that the advantage of BDMCMC is not

due to the plausible high computational demand of the improved RJMCMC. Further,

it may be caused by the programming language of each algorithm. The RJMCMC

approach is originally written in R which is an interpreted language, whereas, BDM-

CMC is written in C which is a compiled language.

So we could propose an alternative solution to infer complex protein-protein interac-
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Table2.6: The comparison between accuracy of different methods for the CellSignal
dataset

Methods TP FP FN TN F1-score MCC CPU
True graph 175 0 0 4775 1 1 -
RJMCMC 130 1497 45 3275 0.144 0.168 0.37
BDMCMC 175 4392 0 383 0.074 0.055 0.03
BDMCMC2 57 384 118 4391 0.1857 0.159 0.37

tion networks that have highly dependent components. We have considered a two-step

calculation in the estimation. At the first step, we have eliminated highly correlated

proteins and kept their linear relationships, with other components and then the RJM-

CMC algorithm to construct a smaller dimensional pathway. Later, we have included

those dependent proteins in the estimated precision matrix which is enrolled by the

Gaussian graphical model.
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CHAPTER 3

TIME SERIES CHAIN GRAPHICAL MODELS

3.1 Introduction

In this chapter, we particularly deal with a graphical representation of a generalized

version of the Gaussian Graphical models which was introduced and discussed in

Chapter2. This extended model enables us to combine the observations from differ-

ent time points and it can detect the relationship between variables (genes) in different

lags. In the study of Abegaz and Wit [1], the model parameters of this model, called

the time series chain graphical model (TSCGM), is estimated by the penalized likeli-

hood approach under the state-space model defined by Sima et al. (2009) [31]. Here,

we use the Pearson correlation for the autoregressive coefficient correlation matrix

which shows the time dependency structure between variables as the data assumed to

be normally distributed not only in each time step but also, between time steps. We

suggest the reversible jump Markov chain Monte Carlo (RJMCMC) algorithm [11,13]

to estimate the plausible interactions between the systems’ elements. Thereby, this

paper first gives a brief overview of RJMCMC and the Copula Gaussian graphical

Model (CGGM) [15, 19, 20] and RJMCMC which is the fundamental modeling of

TSCGM. Section 3.2 begins by laying out the theoretical dimensions of the research

and looks at how the state-space model fits TSCGM, the definition of RJMCMC that

is previously inserted in CGGM for CGGM and TSCGM as well. Later, we continue

our proposed method based on RJMCMC for the generalized CGGM with/without

tuning parameter. To examine the performance of all of the mentioned methodolo-

gies, we used simulated data sets in the application section.
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3.2 Time Series Chain Graphical Model

Time Series Chain Graphical model (TSCGM) is a generalized version of the Gaus-

sian graphical model in such a way that the GGM is repeated through time steps. To

depict the model, it is better to explain the data as Y = Y1, ..., YT where each Yj is in

the form of (n× p)-dimensional sub-matrix and T is the number of total time points

of the data array as below. In this representation yijt denotes the ith sample of the jth

protein at time t.

Y =


y111 y121 . y1p1 y112 y122 . y1p2 . y11T y12T . y1pT

y211 y221 . y2p1 y212 y222 . y2p2 . y21T y22T . y2pT

. . . . . . . . . . . . .

yn11 yn21 . ynp1 yn12 yn22 . ynp2 . yn1T yn2T . ynpT



According to the first-order Markov property, the joint probability density of Y1, ..., YT

can be written as

f(Y1, ..., YT ) = f(Y1)f(Y2|Y1)× ...× f(YT |YT−1) (3.1)

By dividing both sides of Equation 3.1 by the initial term f(Y1), the conditional like-

lihood for TSCGM can be written as

f(Y1, ..., YT |Y1) =
T∏
t=2

f(Yt|Yt−1).

We assume that for t = (1, 2, ..., T ), f(Yt|Yt−1) ∼ N(ΓYt−1 + εt) where εt ∼
N(0,Θ−1). In the case of real data, the normality assumption of the conditional

distribution can be provided but it should be noted that Yt|Yt−1s are not identically

distributed because their mean vectors are not the same. Therefore, in order to test

if Yt|Yt−1s are identically and independently distributed as the main assumption, it

is enough to investigate whether the error terms εt are identically and independently

distributed or not.

In the proposed graphical model in Section 2.1.2, we define only indirect edges be-

tween nodes such that every zero elements in the precision matrix Θ implies the

conditional independence between the corresponding nodes. Here in the TSCGM,

there are two types of edges, directed and undirected edge. The directed edges come
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from the autoregressive coefficient matrix shown by Γ which is a non-symmetric and

non-diagonal matrix that represents the relationship between variables comes from

time points (different lags). It means that a variable in time t is correlated with any

variable even itself in time (t + 1). The undirected edges are obtained through the

precision matrix Θ in the TSCGM model similar to CGGM.

Therefore, the proposed model in this study connects the graphical models through

time in the vector autoregressive model with lag (1), i.e., VAR(1).

TSCGM can be also defined by the state-space model as follows [1].

Zt = AZt−1 +BYt−1 + ωt (3.2)

where

Yt = CZt +DYt−1 + vt (3.3)

In Equations 3.2 and 3.3, Zts are unobserved hidden factors, ωt and vt denote inde-

pendent noise terms for Zt and Yt, respectively.

Thereby, the above statements can be assembled under a single equation in the form

of the VAR(1) model as below:

Yt = (CB +D)Yt−1 + rt, (3.4)

where rt = vt + Cωt + CAZt−1. So, the matrix CB + D plays the role of Γ matrix

in the VAR(1) model. Therefore, every non-zero element in the Γ matrix corresponds

to a directed edge between the related nodes in a way that

Y1,t+1

Y2,t+1

.

.

Yp,t+1


= Γ



Y1,t

Y2,t

.

.

Yp,t


.

In the above equation, the matrix Γ is the correlation of nodes in consecutive times

such that Γij is the correlation of Yi at time t = (1, 2, ..., T − 1) and Yj at time

t = (2, ..., T ) and if it is far from zero, we can conclude that there is a directed edge

from Yi to Yj .

So, there are two kinds of matrices to be estimated:
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i) The symmetric precision matrix shows the undirected graph inside of each time

step.

ii) The non-symmetric auto-regressive coefficient matrix which shows the directed

graph between time steps.

In the estimation of the model parameters we proposed two main methods: i) Semi-

Bayesian and ii) fully-Bayesian. In the semi-Bayesian approach, we suggest an al-

gorithm based on two methods, RJMCMC and BDMCMC and in the fully-Bayesian

approach, we consider an alternative way by defining an extra tuning hyper parame-

ter in order to control the fluctuations to increase the accuracy of the fully-Bayesian

approach.

3.2.1 Semi-Bayesian RJMCMC for the Estimation of Parameter Matrices of

TSCGM

Once Γ is estimated by the Pearson correlation, the precision matrix can be obtained

by RJMCMC by the following algorithm:

1. If the normality holds for data, we estimate the autoregressive coefficient matrix

by the Pearson correlation and the precision matrix by RJMCMC or BDMCMC

method based on n × T samples for p variables and call them Γ1 and Θ1, re-

spectively.

2. We use Γ1 and Θ1 to simulate new data from the multivariate density (MVN)

according to the method as explained below.

• Initially, we sample a random variable Y1 from MVN with a mean zero

and a covariance matrix Θ−1, i.e., MVN (0,Θ−1).

• Then, we sample random variables Yt from MVN with a mean ΓY(t−1)

and a covariance matrix Θ−1, i.e., MVN (ΓY(t−1),Θ
−1) for t = 2, . . . , T .

3. We estimate the autoregressive coefficient matrix by the Pearson correlation

and the precision matrix by RJMCMC or BDMCMC method and call them Γ2

and Θ2, respectively.
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4. We turn back to the second step until the convergence.

In this computation, if the normality assumption does not hold for data, Copula can

make them normally distributed to be used in order to estimate the unknown parame-

ters.

3.2.2 Full Bayesian approach by Reversible Jump Markov Chain Monte Carlo

Method in TSCGM

As defined in Section 2.3, RJMCMC is applied to estimate the precision matrix in

CGGM. In TSCGM, we deal with two kinds of matrices that RJMCMC can estimate

both of them simultaneously. Finally, under the normality of data, the strictly positive

precision parameters σp = σg = 0.1 is used in the prior and the posterior conditional

distributions for the precision and an autoregressive coefficient matrix, respectively.

The procedure is similar to both proposed full-Bayesian approaches. The difference

is only fixed or changing σg to control the fluctuation in the burn-in period.

3.2.2.1 Fulyl Bayesian RJMCMC without a tuning parameter

Hereby, we take the following conditional posteriors in the calculation of the joint

posterior density.

Γ|(Γ0, σ,Θ
−1) ∼ N(Γ0,

1

σ
Θ−1), (3.5)

(Θ−1|D) ∼ IW(Θ, D, ν), (3.6)

(Γ,Θ−1) ∼ NIW(Γ0, σ,D, ν), (3.7)

(Γ,Θ−1)|Y ∼ NIW(Γn, σn, Dn, νn), (3.8)

where IW and NIW denote the inverse G-Wishart and the joint distribution of the

normal-inverse-G Wishart distribution, respectively. Furthermore,
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Γn =
σΓn + nȲ

σ + n
, (3.9)

σn = σ + n, (3.10)

Dn = D + nU +
σn

σ + n
tr(Y − Γ0), (3.11)

νn = ν + n. (3.12)

in which tr(.) shows the trace of the given matrix. Moreover, σ = 3, D = Ip,

ν = p and Γ0 indicates a (p × p)-dimensional zero matrix. For more information,

the study of [8] provides more details about the natural prior and the best selection of

the hyperparameters σp and σg. Then, RJMCMC repeats the following steps until the

convergence of the parameter satisfies:

Resample the latent data

Here, Z is a ((n × T ) × P )-dimensional matrix where T denotes the time steps, n

refers to the sample size for each node or variable, and p is the number of variables. In

inference of the model parameters in each column, which is related to each node, we

calculate its minimum L and its maximum U as the vectors of p elements based on the

original data. In this step, by using the Θ matrix and L as well as U vectors, we gener-

ate anotherZ1ii’s from the truncated normal density inLi andUi distributions in a way

that for i = 1, 2, ..., p, we have Z1i|Zl\li ∼ N(µi, σ
2
i ), where µi = −Σy∈bd(i)

Θi,y
Θi,i

zy,j

for bd(f) = y ∈ (1, . . . , p) : (f, j) ∈ E when E = (f, j)|Θf,y 6= 0, f 6= y and σ2
i =

1
Θi,i

. Then, for t = 2, . . . , T , we simulate Zti from the truncated normal in the Li

and Ui from Zti|Zt\ti ∼ N(ΓZ(t−1)i + µi, σ
2
i ). Then, in the second step, these zijt s

j = 1, 2, . . . , n are used.

Resample the precision matrix

In this step, the Cholesky decomposition is applied for non-zero diagonal elements

and the Metropolis- Hasting update of ϕ is done by sampling γ from a normal distri-

bution truncated below at zero with a mean ϕi,i and a variance σ2
p . Later, γ is replaced

to the related diagonal elements of ϕ and ϕ is transformed to ϕ′ with a probability

min{Rp, 1} where
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Rp =
Φ(

φi,i
σp

)

Φ( γ
σp

)
(
γ

φi,i
)ω+n+nb(i)−1R′p,

where

R′p = exp

{
−1

2
tr(Θ′ −Θ)T (D + tr(ZTZ))

}
.

Thus, Φ is the cumulative distribution function of the multivariate normal density.

Here, tr(.) and (.)T describe the trace and the transpose of the given term. For non-

diagonal elements of ϕ, a new γ is sampled from N(ϕi, σ
2
p). In these cases, ϕ is

transformed to ϕ′ with a probability min{R′p, 1}.

Resample the autoregressive coefficient matrix

In this step, all of the elements of the Γ matrix will be perturbed by the Metropolis-

Hasting algorithm. In the calculation for the non-zero diagonal elements, the update

of Γ is done by sampling a ω from a normal distribution truncated below at zero with

a mean Θi,i and variance σ2
g . Then, ω is replaced to the related diagonal elements of

Γ and Γ is transformed to Γ′ with a probability min{Rp, 1} in which

Rp =
p(Γ′|z(1:n), Gs)

p(Γs|z(1:n), Gs)
× q(Γi,i|ω)

q(ω|Γi,i)
=

Φ(Γi,i/σg)

Φ(ω/σg)

(
ω

Γi,i

)δ+n+nb(i)−1

R′p.

Herein, R′p = exp
{
−1

2
tr(Γ′ − Γ)T (D + tr(ZTZ))

}
. On the other hand, in the up-

date of the non-diagonal elements of Γ, a new ω′ is sampled from N(Γi,j, σ
2
g). In

these cases, Γ is transformed to Γ′ with a probability min{R′p, 1}.

Resample the undirected graph

In this step, only one element of the Cholesky matrix ϕi,j , which is obtained in the

previous step, is selected randomly. If there is no edge between Yi and Yj , it will be

changed by a value from N(ϕi,j, σ
2
p) in ϕ with a probability min{Rp, 1} where

Rp = σp
√

2πϕi,i
IG(δ,D)

IG′(δ,D)
×exp

{
−1

2
tr((Θ′ −Θ)T (D + tr(ZTZ)) +

(ϕ′i,j − ϕi,j)2

2σ2
p

}
.

If there is an edge between Yi and Yj , it will be replaced by a zero in ϕ with a proba-

bility min{1, R′p} where

R′p = (σp
√

2πϕi,i)
−1 IG(δ,D)

IG′(δ,D)
×exp

{
−1

2
tr((Θ′ −Θ)T (D + tr(ZTZ)) +

(ϕ′i,j − ϕi,j)2

2σ2
p

}
.
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In these expressions, IG implies the normalization constant of the G-Wishart distri-

bution as implemented beforehand.

Resample the directed graph

Here, only one element of the Γ matrix is selected randomly. If there is no directed

edge from Yi to Yj , it will be changed by a value fromN(0, σ2
g) in Γ with a probability

min{1, Rp} while

Rp = σg
√

2πΓi,i × exp

{
−1

2
tr((Γ′ − Γ)T (D + tr(ZTZ)) +

(Γ′i,j)
2

2σ2
g

}
.

If there is an edge between Yi and Yj , it will be replaced by a zero in ϕ with a proba-

bility min{1, R′p} where

R′p = (σg
√

2πΓi,i)
−1 × exp

{
−1

2
tr((Γ′ − Γ)T (D + tr(ZTZ)) +

(Γi,j)
2

2σ2
g

}
.

3.2.2.2 Modified fully-Bayesian RJMCMC with an Adaptable Tuning Param-

eter

From the results of the Γ estimation, it is seen that a fluctuated value can be included

in the generation of the proposed value in RJMCMC since a novel proposal can be

almost around the first simulated value otherwise. The parameter in the modified

RJMCMC which controls the number of allowed changes in every step for the esti-

mation of Γ matrix is σg. So, we suggest an adaptive algorithm to control the amount

of change in every 100-iteration in the burn-in-period of the inference whose steps

are listed below.

• If the sum of non-coincided values of two matrices in Γi+1th and Γi+100th for

i = 0, 100, 200, . . . until the end of burn-in-period is more than 0.6, the new

value of σg will be updated as σg × 1.1. By applying this, we expect more

fluctuation in the burn-in time but more accurate Γ̃.

• If the acceptance probability of the proposal between Γi+1th and Γi+100th is

less than 0.05, σg is taken as σg/1.1 so that we can search the target posterior

density with a small posterior density under small fluctuations.
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• Finally, if the acceptance probability of the proposal of Γi+1th and Γi+100th is

around 0.30, we do not change σg during the burn-in period.

In the calculation, we select 0.3 and the condition of the optimal mixing probability

since an acceptance probability for a single parameter is suggested around 0.24 a

good mixing [12]) which is close to the best value for the tightness hyperparameter,

σg in the study of [8] . On the other hand, for a large number of parameters, this

probability can be taken very low like 0.05 and mixing of it can be chosen around 0.6

as most as the mixing of the proposal distribution and the convergence of the model

can be difficult [28].

3.3 Application

This section has three parts which indicate the accuracy of two suggested methods

(one semi-Bayesian and two Fully-Bayesian approaches) in Section 3.2. The accu-

racy of the first method is computed through measures, namely,
Accuracy = (TP+TN)/N

Sensitivity = TP/(TP+FN)

The meaning of TP, FP, TN, and FN are true positive, false positive, false positive

and false negative edges in the graphical model which were introduced previously.

In the second scenario, we compare the proposed modified RJMCMC method with its

alternative penalized likelihood method by Abegaz and Wit (2013) [1] by using only

the specificity measure (Specificity=TN/(TN+FP)) since the available comparison in

the study of Abegaz and Wit (2015) [2] applies this measure.

3.3.1 Accuracy of Semi-Bayesian RJMCMC for a Simulated Dataset

The accuracy of the estimated Γ and Θ by BDMCMC (left) and RJMCMC (right)

under different dimensional systems (p), number of observations (n) and number of

time points (T ) is shown in Table 3.1. In this comparison, Θ indicates the ultimate

estimated precision matrix of the system while Γ shows the correlation structure be-

tween time points, Γ is more important than Θ for us to correctly infer the biological
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system. Here, from the outputs, it is seen that the semi-Bayesian approach gives tol-

erable results under small n, p and T , but the performance of the estimates improves

significantly when n, p or T increases. On the other side, the accuracy of the esti-

mated Θ is high particularly to catch the true negative elements via BDMCMC and

with a negligible difference via RJMCMC. But in general, for both ways, we ob-

tain promising estimated outputs for such complex systems having a large number of

parameters as seen in Table 3.1.

Table3.1: Results of accuracy (Acc) and sensitivity (Sens) measures for the simulated
dataset under different sample size (n), number of genes (p) and number of time
points (T ).

BDMCMC RJMCMC
Θ Γ Θ Γ

n p T Acc Sens Acc Sens Acc Sens Acc Sens
10 10 5 0.42 0.80 0.86 0.00 0.64 0.76 0.18 0.83
20 10 5 0.57 1.00 0.82 0.00 0.47 0.58 0.67 0.00
50 10 5 0.75 0.00 0.80 0.00 0.56 0.39 0.44 1.00
20 20 5 0.31 0.40 0.89 0.00 0.67 1.00 0.34 0.88
50 20 5 0.80 0.10 0.81 0.00 0.48 0.43 0.41 0.79

100 50 5 0.95 0.00 0.90 0.00 0.59 0.30 0.40 0.76
10 10 10 0.42 0.50 0.93 0.00 0.64 0.74 0.33 1.00
20 10 10 0.75 0.00 0.91 0.00 0.53 0.58 0.22 1.00
50 10 10 0.77 0.00 0.84 0.50 0.63 1.00 0.49 0.80
20 20 10 0.76 0.30 0.90 0.00 0.50 0.49 0.33 0.89
50 20 10 0.91 0.28 0.90 0.20 0.53 1.00 0.59 0.40

100 50 10 0.97 0.10 0.90 0.20 0.77 0.14 0.47 0.79
10 10 50 0.88 0.30 0.95 0.67 0.53 0.29 0.67 0.90
20 10 50 0.89 0.00 0.93 0.67 0.73 0.00 0.42 1.00
50 10 50 0.97 1.00 0.86 0.00 0.38 0.92 0.83 0.07
20 20 50 0.79 0.10 0.84 0.46 0.83 0.07 0.38 1.00
50 20 50 0.79 0.00 0.84 0.63 0.96 0.00 0.50 1.00

100 50 50 0.99 0.00 0.91 0.16 0.99 0.00 0.40 0.92

3.3.2 Accuracy of Fully-Bayesian RJMCMC for a Simulated Dataset

We compare our proposed method with its alternative, penalized likelihood model

which is introduced by Abegaz and Wit (2013) [1]. The results are shown in Table

3.2.

From the tabulated outcomes, it is observed that the performance of both methods is
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Table3.2: Results of specificity for the fully-Bayesian method with a likelihood based
method under different sample sizes (n), number of genes (p) and number of time
points (T ).

Fully-Bayesian RJMCMC Likelihood-based
p n T Θ Γ Θ Γ
10 10 5 0.87 0.82 0.85 0.97

15 1.00 0.84 0.91 1.00
50 5 0.92 0.99 0.94 0.99

15 0.95 1.00 0.99 1.00
50 10 5 1.00 0.85 0.96 0.98

15 1.00 0.85 0.98 0.99
50 5 0.54 0.99 0.99 0.99

15 0.88 0.99 0.99 0.99
100 5 0.77 0.99 0.99 0.99

15 0.98 0.98 0.99 1.00

good especially for the precision matrix Θ. The likelihood-based method is better in

the estimation of the autoregressive coefficient matrix especially for low n. But the

performance of both methods becomes closer while p and T increase. In general, both

approaches are acceptable and the likelihood-based method is better under certain

conditions.

3.3.3 Accuracy of Fully-Bayesian RJMCMC with Adaptive Tuning Parameter

for a Simulated Dataset

In the implementation of the adaptive tuning parameter run with 100000 MCMC runs

and take the first 20000 iterations as the burn-in-period in order to calibrate this value.

Then, we compute the accuracy and the sensitivity measures as listed in Table 3.3.

Later, we also compute MCC accuracy measure whose expressions were presented

in Equations 2.22 in order to check the gain in accuracy via the proposal calibration.

The results are represented in Table 3.3. In Table 3.3, we present the outcomes with-

out tuning strategy in RJMCMC via the index A, which corresponds to the proposed

RJMCMC plan in Section 3.2.2. Accordingly, we indicate the outputs of new find-

ings under adaptive RJMCMC via an index B. Finally, the specificity measure of the

likelihood-based approach of Abegaz and Wit (2013) [1] is reported via an index L.

The findings show that adaptive RJMCMC is almost as accurate as of the likelihood-

based method.
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Table3.3: Results of Matthew correlation coefficient (MCC) of the modified RJM-
CMC method with adaptable tuning parameter (MCCA), without tuning parameter
(MCCB) and also the likelihood based method (MCCL).

Γ Θ
p n T MCCA MCCB MCCL MCCA MCCB MCCL

10 10 5 0.41 0.09 0.56 0.51 0.78 0.60
15 0.60 0.05 0.82 0.57 0.70 0.74

50 5 0.64 0.00 0.83 0.66 0.58 0.76
15 0.62 0.00 0.92 0.68 0.11 0.94

50 10 5 0.51 0.01 0.45 0.65 1.00 0.54
15 0.52 0.01 0.71 0.68 0.78 0.75

50 5 0.62 0.02 0.82 0.70 0.21 0.85
15 0.63 0.00 0.91 0.73 0.55 0.95

100 5 0.64 0.01 0.92 0.94 0.41 0.92
15 0.66 0.00 0.94 0.97 0.80 0.92

From Table 3.3 and Table 3.2, it is seen that under all scenarios, adaptive RJMCMC

has better accuracy than RJMCMC without calibration in the tuning parameter. This

result shows that the new RJMCMC strategy can be a promising alternative to esti-

mate TSCGM via fully Bayesian approaches.

3.4 Conclusion

In the case of some accuracy measures like specificity, our proposed method could

be compared with its alternative likelihood-based method which was done by Abegaz

and Wit (2013) [1]. In the first part of our study, we compared the first proposed

method and compared RJMCMC and BDMCMC. However, RJMCMC has better

accuracy measures than BDMCMC in terms of accuracy and sensitivity measures. In

the second part, we compared the RJMCMC based method with the likelihood-based

study done by Abegaz and Wit (2013) [1] by their specificity measures. As a result,

the fully-Bayesian method could perform somehow as same as the likelihood-based

method in the estimation of Θ in all scenarios while its performance for small values

of n and T is worse than the likelihood-based method. In the last part, we compared

the RJMCMC based method with and without tuning parameter with their powerful

alternatives as well as the likelihood-based method. Here, we observed a significant

improvement in the selected accuracy measure, i.e., Matthew Correlation Coefficient.
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Furthermore, we found that the estimation of the precision matrix Θ is more accurate

than the autoregressive coefficient matrix in all scenarios about RJMCMC. In the

likelihood-based method, the estimation of Γ is slightly more accurate than Θ for

small n, p and T s. Finally, for all scenarios, all accuracy measures increase as the

sample size and the number of time points increases. As a conclusion, we consider

that the RJMCMC based approach with the tuning parameter can be a good alternative

to the likelihood-based method with a comparable accuracy.
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CHAPTER 4

COPULA GRAPHICAL MODELS IN THE CONSTRUCTION

OF BIOLOGICAL NETWORKS

4.1 Introduction

In CGGM which was explained in Chapter 2, the captured dependence structure is

the undirected edge between the nodes and the used copula is the Gaussian copula

because of its exclusive property that the uncorrelateness implies the independence.

But in some cases, Gaussian may not be an appropriate model between the marginals

of the variables since it requires the symmetry and the tail dependency is zero. So

another copula could be more appropriate for modeling this type of datasets. Thereby,

in this chapter, we aim to use the vine copulas which enables us the flexibility to select

the non-Gaussian copula in the construction of protein-protein interaction networks’

models. Accordingly, in the first section, the Copula aspect is introduced in terms of

its foundations, types and properties of Copula pair families. Then, data analysis and

model building worked by Copula are explained briefly. Finally, in the Application

and Conclusion parts, we compare the mentioned methodologies by some accuracy

measures such as F1 –score and Matthews correlation coefficient and summarize our

results, respectively.

4.2 Copula

The Sklar’s theorem is the most fundamental theorem which constitutes the impor-

tant role of copulas for describing dependence in statistics. It establishes the link
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between multivariate distribution functions and their univariate margins. Let F be

the d-dimensional distribution function of the random vector Y = (Y1, Y2, .., Yd)
T

with margins F1, F2, .., Fd. Then there exists a copula C such that for all y =

(y1, y2, .., yd) ∈ (−∞,+∞)d, F (y) = C(F1(y1), .., Fd(yd). C is unique ifF1, F2, .., Fd

are continuous.

To show the pair copula construction model, we show it for d = 3. The data set

has three variables Y1, Y2, Y3. Their joint distribution function is f(y1, y2, y3) =

f1(y1)f(y2|y1)f(y3|y2, y1)

f(y2|y1) =
f(y1, y2)

f1(y1)
=
c1,2(F (y2)F (y1))f1(y1)f2(y2)

f1(y1)
= c1,2(F (y2)F (y1))f2(y2)

Accordingly f(y3|y2, y1) = c2,3|1(F (y2|y1), F (y3|y1))c1,3(F1(y1), F3(y3))f3(y3)

By combining the past two equations, we have:

f(y1, y2, y3) = f1(y1)f2(y2)f3(y3)c1,2(F (y2)F (y1))

c1,3(F1(y1), F3(y3))c2,3|1(F (y2|y1), F (y3|y1))
(4.1)

Therefore, the whole structure is shown in terms of pair copulas in a way that each of

them can be investigated independently. It means in Equation 4.1, instead of working

with three variables Y1, Y2 and Y3 at the same time (shown as 1-2-3), we work with

1-2, 1-3 and 2-3|1 in one scenario, 1-2, 2-3 and 1-3|2 in another scenario and also

changing the order of variables which can be written as a model itself. So, there are

many ways (p(p−1)
2

) to write a multivariate structure in terms of pair copula. So, one of

the most challenging issues is to choose the best model among all available models.

In the case of analysis by the pair copula, we have three phases: a regular vine, a

canonical vine and a drawable vine shown briefly as R, C, and D vine. Each has a

different structure. R-Vine is a general form of vine copula which can be written

as a combination of the other two models. Their structures are different but both of

them deals with pair-copulas. It depends on the way the joint distribution function is

written. A good way to show their structure and difference is their graphical repre-

sentation in Figure 4.1. It is for a data set with 4 variables.

In the C-vine, the first edge (variable) is selected in the first tree, the second root is

selected in the second tree and so on. So for d-dimensional data, we should choose

d − 1 roots for every tree. The order of variables in the left side of Figure 4.1 is
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Figure 4.1: Examples of a four-dimensional C-Vine (left panel with order {2, 4, 1, 3})
and a D-vine structure (with order{2, 4, 3, 1} ) in the right panel)

{2, 4, 1, 3}.
In the D-vine copulas, the nodes of the first tree determine the whole model. And

finally, both vine copulas look like a vine and they include bivariate cases, only. The

order of variables in the right side of figure 4.1 is {2, 4, 3, 1}.
In each ith tree i = 1, 2, d − 1 there are d − i + 1 nodes (links) and d − i edges.

Each edge can be represented by an appropriate copula. The empirical copula which

is used in data analysis with the copula approach is defined as

Cn(u) =
1

n

n∑
i=1

1(Ûi < u), u ∈ [0, 1]d

where Ûi = Ri/(n+ 1) in which Ri = (Ri1, ..., Rid) and Rij is the rank of Yij among

Y1j, ..., Ynj for i = 1, 2, ..., n and j = 1, 2, ..., d. this transformation makes the data in

the interval of (0, 1) to be used as a copula data.

4.2.1 Types of Copula families

Once the structure of vine copula is determined, the connection between variable

(nodes) needs to be defined by a pair of the copula family. The pair- copula can be
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from two main categories: Elliptical and Archimedean copula. Of course, there are

other copula families, However, in this study we will not cover them.

The Elliptical copulas are in the form of C(u1, u2) = F (F−1
1 (u1), F−1

2 (u2)) where

uis are from the uniform (0, 1) distribution. The most famous elliptical copulas are

the bivariate Gaussian (one parameter) and the bivariate student’s t copula (two pa-

rameters).

Table4.1: The denotation and properties of the bivariate Elliptical families

Distribution Parameter range Kendall’s τ Tail dependence
1 Gaussian ρ ∈ (−1, 1) 2

π
arcsin(ρ) 0

2 Student’s t ρ ∈ (−1, 1), ν > 2 2
π

arcsin(ρ) 2tν+1(−
√
ν + 1

√
1−ρ
1+ρ

)

In Table 4.1 the properties of these two copulas are written. In this family, there is

a one-to-one corresponding between the correlation parameter ρ and the well-known

non-parametric correlation measure τ . So, the model parameters can be estimated by

Kendall’s τ and vise versa. In t-copula, there is the tail dependence, too. When two

variables Y1 and Y2 are tail-dependent, means in the very small or very large values

of Y1, there is some expectancy to face very small or very large values for Y2 and

vice versa. One of the facts that achieved by copula is to realize the tail dependence,

which is not negligible especially in the data sets sensitive to the extreme values.

The tail dependence can be seen clearly in Figure 4.2 which is in terms of the copula

parameters, the correlation parameter ρ and the degrees of freedom ν. As ν increases,

the t-copula converges to the Gaussian copula and the tail dependence value con-

verges to zero.

In Figure 4.2, you can see an example of a copula CDF and PDF of a bivariate stu-

dent’s t copula with a dependence parameter ρ = 0.7 and df = 4. Figure 4.3 shows

PDF and scatter plot of simulated Gaussian copula for different values of τ in order

to emphasize the effect of the correlation in the elliptical copula family structure.

On the other side, the archimedean copulas are in the form of

C(u1, u2) = ψ[−1](ψ1(u1) + ψ2(u2)) (4.2)
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Figure 4.2: CDF and PDF of a bivariate student’s t copula

where ψ is the generator function and ψ[−1] is the inverse function of positive values.

We present the generator function in Table 4.2. To clear the relationship between the

generator function and the bivariate copula, for instance, in the Clayton family, the

generator function is taken as ψ(t) = 1
θ
(tθ − 1). So the inverse of the generator func-

tion can be written as ψ−1(t) = (tθ+1)−
1
θ . Herein, the pseudo-inverse is equal to the

inverse when the inverse is not negative which is equivalent to the rectifier function.

In order to get the copula formula, the bivariate Clayton family uses Equation 4.2 and

puts u1 and u2 in it, i.e, C(u1, u2) = ψ[−1](1
θ
(u−θ1 −1))+ 1

θ
(u−θ2 −1)) which is equal to

max((u−θ1 + u−θ2 − 1), 0)−
1
θ . Therefore, we see that the generator function is simpler

to write especially for the archimedean families with more than one parameter such as

BB1, BB6, BB7 and BB8 which stand for the Clayton-Gumbel, the Joe Gumbel, the

Joe-Clayton and the Joe-Frank copulas, respectively. These families with more than

one parameter (two-parameter families) are made by a combination of one parameter

archimedean families to provide a more flexible structure like covering one and two-

sided tail dependence and also most of them are appropriate for a non-symmetric joint

distribution. Table 4.2 shows the generator function and also some other properties

of the members of the archimedean copula families.

As an example of the archimedean copula family, Figure 4.4 represents some one-

parameter bivariate archimedean copula families with the same Kendall’s τ .

All of the families can rotate regarding the best fit for the data set according to the
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Figure 4.3: PDF and the scatter plot of the simulated Gaussian copula for ρ = 0.8
(left) and ρ = 0.2 (right)

Table4.2: the notation and the properties of the bivariate archimedean families

# Name Generator function Parameter range Tail dependence
3 Clayton 1

θ
(t−θ − 1) θ > 0 (2−

1
θ , 0)

4 Gumbel −(log t)θ θ ≥ 1 (0, 2− 2−
1
θ )

5 Frank − log( e
−θt−1
e−θ−1

) θ ∈ R (0,0)

6 Joe − log(1− (1− t)θ) θ > 1 (0, 2− 2−
1
θ )

7 BB1 (t−θ − 1)σ θ > 0, σ ≥ 1 (2−
1
θσ , 2− 2

1
σ )

8 BB6 (− log(1− (1− t)θ))σ θ > 0, σ ≥ 1 (0, 2− 2−
1
θσ )

9 BB7 (1− (1− t)θ)−σ − 1 θ ≥ 1, σ > 0 (2−
1
σ , 2− 2

1
θ )

10 BB8 − log( 1−(1−σθ)θ

1−(1−σ)θ ) θ ≥ 1, σ ∈ (0, 1) (0, 0)

following way:

C90(u1, u2) = u2 − C(1− u1, u2),

C180(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2),

C270(u1, u2) = u1 − C(u1, 1− u2),

where Ci represents the i degrees rotated version of the copula for i = 90, 180, 270.

Figure 4.5 indicates an example of the rotation for the bivariate Clayton copula with

Kendall’s τ = 0.5.
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Figure 4.4: Gumbel, Clayton and Frank copulas, respectively, from left to right with
parameters corresponding to Kendall’s τ values of 0.5.

Figure 4.5: Samples from the Clayton copulas rotated with Kendall’s τ = 0.5

4.3 Vine Copula in Inference of Complex Data

As the model dimensionality increases, the model becomes more complicated and in

most cases, the relationship between every two variables is not the same for all of the

variables that means all of the edges cannot be modeled by a specific copula family.

In Equation 4.1 which is represented as the simplest form of the joint distribution

for a three cases function, we saw that it could be decomposed to some pair copula

terms in a way that some of the conditioned and the rest not conditioned without any

specific assumption or elimination.

There are several ways to construct the best model. As mentioned earlier, a regular

vine is a general form of the vine copula that can be a C-vine in the tree and D-vine

in another tree or even their combinations. So in every data set, there are p(p−1)
2

edges

that should be determined with a pair copula from different families and from any

rotation for each pair copula. There are some tests that determine the best-fitted pair

copula for every two variables (given some others) as well as some goodness of fit

tests. There are also some tests that compare two models based on the Maximum-
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likelihood values [5]. The diagram in Figure 4.6 shows the process of the analysis

by considering the available suitable functions in R. There are several functions in

Figure 4.6: Proposed data analysis and model building work by some functions in
package VineCopula in R

the "CD-Vine" or its last version "VineCopula" package in R to be used in analyzing

the data by vine copula but the function which is written in the diagram, is the most

important ones. In Table 4.3, their action is indicated very briefly.

On the other hand, the order of variables determines the root of each tree in the C-

vine and the path in the first tree in the D-vine. The algorithm of the order selection

is briefly described as follows:

• Compute the empirical distribution function of the data to transform them into

the uniformly distributed data.

• Compute the Kendall’s τ correlation coefficient of the new data and select the

variable with the largest τ as the first root.

• Select the best copula for each node between the first root and other variables

and then, estimate the parameter(s). (The model parameters can be estimated

by the MLE method for one or two-parameter families and by Kendall’s τ in
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Table4.3: The most important functions’ names and descriptions according to the
VineCopula package in R [5].

Name Explanation
1 BiCopMetaContour Contour Plot of Bivariate Meta Distribution.
2 BiCopLambda Lambda-Function (Plot) for Bivariate Copula Data.
3 BiCopChiPlot Chi-plot for Bivariate Copula Data.
4 BiCopKPlot Kendall’s Plot for Bivariate Copula Data.
5 BiCopSelect Selection and MLE of Bivariate Copula Families.
6 BiCopVuongClarke Scoring GOF Test based on Vuong And Clarke Tests.
7 BiCopGofTest Goodness-of-Fit Test for Bivariate Copulas.
8 BiCopIndTest Independence Test for Bivariate Copula Data.
9 RVineClarkeTest Clarke Test Comparing Two R-Vine Copula Models.
10 BiCopEst Parameter Estimation for Bivariate Copula Data.
11 RVineSeqEst Sequential Estimation of an R-Vine Copula Model.
12 RVineMLE Maximum Likelihood Estimation of an R-Vine Copula Model.
13 RVineAIC AIC and BIC of an R-Vine Copula Model.
14 RVineClarkeTest Clarke Test Comparing Two R-Vine Copula Models.
15 RVineVuongTest Vuong Test Comparing Two R-Vine Copula Models.
16 RVineTreePlot Visualization of R-Vine Tree Structure.

only one-parameter copula families.)

• Transform the data by conditioning to the first selected variable via the h func-

tion by using the parameters estimated from the previous step as

h(x|ν, θ) :=
∂Cxνj(F (x|ν−j),F (νj |ν−j)|θ)

∂F (νj|ν−j)

where ν is the estimated parameter(s) in the previous step and νj refers to an

arbitrary component.

• Select the variable among the new data which has the largest Kendall’s τ as the

second root.

• Continue the process until the (d− 1)th root is found.

The algorithm is somehow similar to the forward selection in the multiple regression.

To estimate the model parameters by the maximum likelihood estimation (MLE), the

order and the copula families should be determined before. There are some methods

to select the best pair copula between the nodes such as graphical tools like the con-

tour plot and some other statistical tests like the Voung and Clarke or the goodness of

fit test. In Voung and Clarke, the test compares all available choices two by two and

gets a score for each family if it was better than its alternative. The family with the
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maximum score is chosen as the best one and then another goodness of fit test based

on a χ2 statistics determines if the proposed family is well fitted or not by giving a

p-value. Similarly, there are some other tools to compare two models by using the

AIC and BIC criteria or the Vungo test as well. All of the details for the mentioned

tests are available in [5].

4.4 Application

In this chapter, we use five bench-mark data sets. The "CellSignal" data which was

introduced in Section 2.5 and the second data which consist of ten proteins in 285

samples as used in [29] are analyzed by the C-Vine approach. The remaining data set

are analyzed through R-Vine method which are the "Rochdale" data which was used

in Section 2.5, too, and two additional real data sets gained from STRING database

with 23 and 50 genes in 53 samples, respectively. In our analysis, we compare the

accuracy between RJMCMC and vine-copula methods for each data sets and in the

comparison, we use the F1-score and MCC values whose expressions were firstly

represented in Chapter 2.

4.4.1 The "CellSignal" data

We used this data set to see how our algorithm works for C-Vine. The output pre-

sented in Table 4.4 is the estimated matrix of the families obtained by the "VineCop-

ula" package [5] with the R programming language.

By comparing Table 4.4 with its true graph in the study of [30], we obtain F1-score=

0.45 and MCC=0.14. In this table, the values are related to a pair of copula and all

of the zero’s in the upper triangle of the adjacency matrix imply the (conditional)

independence between associated genes. On the other side, the results applied by

RJMCMC under the Gaussian copula have F1-score= 0.63 and MCC=0.09. Hence, it

is seen that F1-score decreases under the vine copula with the MLE method in infer-

ence, whereas, MCC improves. Additionally, since the inference can be conducted

under MLE, it can decrease the computational demand in the estimation regarding
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Table4.4: The upper triangular of the estimated adjacency matrix of the CellSignal
data with the copula families via numbers in the "VineCopula" package.

Name AKT PKC PIP2 Pmek Pjnk PIP3 Plcy PkA Praf P38 Erk
AKT 0 10 10 10 10 5 10 2 10 10 17
PKC 0 0 2 16 10 13 1 2 40 2 9
PIP2 0 0 0 1 1 9 10 30 1 13 9
pmek 0 0 0 0 9 13 40 29 40 2 20
Pjnk 0 0 0 0 0 30 6 30 7 5 20
PIP3 0 0 0 0 0 0 0 26 0 0 0
Plcy 0 0 0 0 0 0 0 0 0 0 0
PkA 0 0 0 0 0 0 0 0 0 0 0
praf 0 0 0 0 0 0 0 0 0 0 0
p38 0 0 0 0 0 0 0 0 0 0 0
Erk 0 0 0 0 0 0 0 0 0 0 0

RJMCMC. Furthermore, the values in Table 4.4 came from the codes defined in the

"VineCopula" package in R as the following list.

0=independence

1=Gaussian

2=Student’s t

3=Clayton 13=180◦ rotated Clayton 23=90◦ rotated Clayton 33=270◦ rotated Clayton

4=Gumbel 14=180◦ rotated Gumbel 24=90◦ rotated Gumbel 34=270◦ rotated Gumbel

5=Frank

6=Joe 16 =180◦ rotated Joe 26=90◦ rotated Joe 36=270◦ rotated Joe

7=BB1 17 =180◦ rotated BB1 27=90◦ rotated BB1 37=270◦ rotated BB1

8=BB6 18 =180◦ rotated BB6 28=90◦ rotated BB6 38=270◦ rotated BB6

9=BB7 19 =180◦ rotated BB7 29=90◦ rotated BB7 39=270◦ rotated BB7

10=BB8 20 = 180◦ rotated BB8 30=90◦ rotated BB8 40=270◦ rotated BB8

4.4.2 Data 2

The second data which we used to see the performance of the Vine copula, is a gyne-

cological cancer network whose observations are assembled from the ArrayExpress

database. In these kinds of data sets, we need to have the true graph which is obtained

from the biological literature. This data set includes ten proteins, named as MAP2K1,

PDIA3, MAPK1, IMP3, ERBB2, TFAM, MBD3, CHD4, CTNNB1 and CEBPB with
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order {4, 6, 5, 7, 8, 2, 10, 9, 1, 3} [29]. These genes are selected as the core genes in

the literature of gynaecological cancer and the quasi true network structure of these

genes is represented by a complete graph meaning that all the entries of the adjacency

matrix are composed of ones [3]. Thereby, in this study, we present the C-vine copula

model for the data in Table 2 in order to estimate the true complete graph. Finally, in

the construction of the network, we apply the “VineCopula” package in R. As seen

in Table 2, the graph related to this network is a full graph. By comparing it with the

related true network, we find F1-score=1 indicating a higher accuracy via the C-Vine

copula for Data 2. Whereas, the F1-score is computed as 0.94 with RJMCMC. On the

other side, MCC cannot be computed for this data set as both TP and FN are observed

as zero. This result indicates a better accuracy under the C-Vine copula model. As

Table4.5: The upper triangular of the estimated adjacency matrix of Data 2 with the
copula families via numbers in the "VineCopula" package

Name mp2k pdia mpk1 imp erb2 tfm mbd3 chd4 ctnb1 cbpb
mp2k 0 5 1 5 14 5 5 5 5 14
pdia 0 0 3 13 1 1 19 5 2 1
mpk1 0 0 0 40 5 3 23 10 30 23
imp 0 0 0 0 23 10 1 5 13 1
erb2 0 0 0 0 0 3 1 5 1 2
tfm 0 0 0 0 0 0 14 5 1 2
mbd3 0 0 0 0 0 0 0 33 33 5
chd4 0 0 0 0 0 0 0 0 1 5
ctnb1 0 0 0 0 0 0 0 0 0 5
cbpb 0 0 0 0 0 0 0 0 0 0

seen in Table 4.5, the graph related to this network is a full graph. By comparing it

with the related true network, we find F1-score=1 presenting a higher accuracy via

the C-Vine copula for Data 2. Whereas, the F1-score is computed as 0.94 with RJM-

CMC. On the other hand, MCC cannot be computed for this dataset as both TP and

FN are observed as zero.

4.4.3 The "Rochdale" data

As we analyzed this data set in Section 2.5, as a reminder, this data set consists of

eight binary variables for 665 women to investigate the relationship between the ef-
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fective factor on women economical activities. To be used in copula methodology,

we transformed the data to the Gaussian data through a method suggested by Hoff

(2007) [16] and the R-Vine method was applied to this latent data to see the relation-

ship the variables named from a to h. According to our proposed method, R-Vine,

the significant non-zero edges are estimated as ef, dg, cg, cf, ce, bh, be, bd, ag, ae,

ad, cd meaning that 10 of 13 relationships are estimated correctly and cd is the over-

estimated edge. By these outputs, we computed TP=10, FP=1, FN=3 and TN=14.

Accordingly, F1-score= 0.83 and MCC=0.72 while in the work done by Purutcuoglu

and Farnoudkia (2017) [27], these values are found as F1-score= 0.93 and MCC=0.86,

respectively.

4.4.4 23 gene

The data came from a categorized and normalized data from Mok et al. (2009) [23]

with an accession number GSE18520 in GEO. Moreover, these data were selected

from the second category of the mentioned big data, i.e., 23 genes. Besides, the true

network is obtained by the STRING database.

The name of the proteins in this data set is listed as "S100A8", "SOX9", "UBE2C",

"RGS1", "C7" ,"MTSS1" ,"PAPSS2" ,"CAV1" ,"DAPK1" ,"GLS", "GATM" ,"ALDH1A3"

,"CDK1" ,"ST3GAL5" ,"PDLIM5" ,"BAMBI" ,"CAV2" , "PSD3" ,"EZH2" ,"MAD2L1"

,"TBC1D4" ,"NELL2" and "PDGFRA" with a very sparse true network shown in Fig-

ure 4.7

The true graph has eight significant edges. We examined C-Vine and D-Vine to realize

the edges but there were so many extra positive edges. Therefore, as it is clear from

the true graph, too, the true network differs from C or D vine. That is why R-Vine is

used as it is a general format of the vine copula. Through R-Vine, we detect 4 true

positives (TP), 2 false positives, 4 false negatives (FN) and 243 true negatives (TN).

Accordingly, F1-measure and MCC are found as 0.57 and 0.59, respectively. Finally,

the corresponding nodes of the realized edges with a copula family are shown in Table

4.6
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Figure 4.7: The quasi tree structure of 23 genes obtained from the STRING database.

Table4.6: Four positive edges, the best appropriate pair copula and associated
Kendall’s τ for data with 23 genes.

Pair of genes Copula family Kendall’s τ
MAD2L1and CDK1 180o rotated Joe-Clyton 0.62
EZH2 and UBE2C Gumbel 0.52
CDK1 and UBE2C t 0.50
TBC1D4 and CAV2 Joe 0.46

4.4.5 50 genes

Similarly to the data set in the Section 4.4.4, these data are selected randomly from the

third cluster of data sets with 50 proteins. The name of available proteins of this data

arelisted as "NKX3.1", "SERPINB9", "CHRDL1", "CD24", "ZNF330", "VLDLR",

"RIPOR2", "TSPAN5", "SLIT2", "SLC16A1", "TGFB2", "GATA6", "IDH2", "TPX2",

"PMP22", "PLA2G4A", "SF1", "TNFAIP8", "FHL1", "TPD52L1", "PTGER3", "SCTR",

"DEFB1", "CLEC4M", "CDK1", "WSB1", "TFPI", "LGALS8", "DAB2", "DHRS7",

"ELF3", "PLPP1", "TPM1", "IL6ST", "TCEAL2", "CASP1", "SULT1C2", "DPP4",

"HSPA2", "LRIG1", "LAMB1", "MDFIC", "HBB", "TRO", "DCN", "IGFBP5", "CD44",

"C1R", "ADGRG1" and "SPTBN1". Furthermore, its true network is obtained from

the STRING data base, as well, which is presented in Figure 4.8. So that it is not

difficult to see its accuracy by comparing with the true network. According to the

58



Figure 4.8: The quasi tree structure of 50 genes obtained from the STRING database

true graph represented in Figure 4.8, there are eight significant edges. C-Vine and

D-Vine are tested to fit a model for these data but the number of false positive edges

was large as they caught many more edges than the true network. On the other hand,

it is clear from the true graph that the structure differs from C or D vine. That is why

R-Vine is used as it is a general format of the vine copula. Through R-Vine, we detect

TP=2, FP=1, FP=6, and TN=1216. Accordingly, F1-measure and MCC are obtained

as 0.36 and 0.41, respectively. The corresponding nodes of the realized edges with a

copula family are shown in Table 4.7.

Table4.7: Two positive edges, the best appropriate pair copula and the associated
Kendall’s τ for data with 50 genes.

Pair of genes Copula family Kendall’s τ
TPX2 and CDK1 Joe-Clyton 0.60
PMP22 and LAMB1 Joe 0.54
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4.5 Conclusions

In this chapter, the copula method is introduced as a solution to some obstacles such

as relating the normality assumption or dealing with the complex or high dimensional

systems. The application of the copula starts with non-parametric methods via ap-

plying only the order of the data to have a uniformly distributed data set. Then, it is

converted to a completely parametric method as it makes an exclusive joint density

(distribution) function by using the marginal densities (distributions). By this way, the

other advantage is shown in a way that all of the model parameters can be estimated

by MLE. A better scenario of the Copula is the pair copula that makes it possible to

model the data by the vine Copula. The determination of the orders of variables in the

vine structure can be challenging, but, the algorithm is similar to the forward method

in the multiple regression. The R-Vine copula in the vine’s general format fits the

model to data by the pair copula, but, its structure is not necessarily like C or D vine.

In the application section, we saw that C or D vine could be a good model for some

data set and its accuracy is almost the same as the RJMCMC method. We analyzed

some data set by implementing the R-Vine to show its performance which is verified

through some accuracy measures. But in the confusion matrix, we need to decrease

the number of false negative edges as it is more crucial than false positive. To do it,

we need to diminish the threshold and in this case, some false positive edges show

up. So, depending on the data, and also the sparsity rate, the threshold value can play

a main role in the determination of the confusion matrix.
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CHAPTER 5

RESULTS AND CONCLUSIONS

In this study, the main target is to detect the relationship between the variables in

every kind of data set which is mostly observed in the biological data regarding the

increased attention to the mathematical modeling in biology, especially in the past

decades. In Chapter 2, the relationship is the conditional dependence between genes

based on a regression model of the data. In order to use the correlation matrix, the

normality assumption is needed. For the continuous data, the Gaussian copula is the

only choice and for the categorical data, by defining some thresholds, the normality

can be caught for the joint density between the genes with the same covariance be-

fore the transformation. The whole model is called the Copula Gaussian Graphical

(CGGM) which has a parameter, the precision matrix which can be estimated by the

Reversible Jump Markov Chain Monte Carlo (RJMCMC) method. We investigate

RJMCMC’s most relevant alternatives and we compared the proposed method with

them by some accuracy measures. According to the results, RJMCMC is more ac-

curate than its alternative which is based on Bayesian approach or is not completely

parametric. All of the codes are written in R, and so are not so fast. That is why we

tried to start with a good initial matrix which is the inverse of the covariance matrix

in the estimation of the precision matrix. We tried to catch the convergence, on the

other hand.

In Chapter 3, a generalized version of CGGM was investigated by some semi-Bayesian

and fully Bayesian approaches. CGGM which is repeated through time is called the

Time Series Chain Graphical model (TSCGM) which includes two parameters: the

precision and an autoregressive coefficient matrix. Firstly, the semi-Bayesian model

was proposed as the data is supposed to have more samples by considering the time
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steps as a multiplication of the sample size. Accordingly, the autoregressive coeffi-

cient matrix is estimated by the Pearson correlation method as the data is supposed to

be normally distributed. But the accuracy was not different from the random approxi-

mation for the autoregressive coefficient matrix. So, we tried to update the three-steps

algorithm in the first chapter to a five-steps algorithm to estimate both matrices, si-

multaneously. Again, we saw that the convergence is very hard to catch as there were

so fluctuations. To shorten the burn-in period or on other words, to catch the target

matrices earlier, we used a strategy that controls the fluctuation ranges by hiring a

tuning parameter which was the variance of the prior distribution for the precision

matrix as well as the autoregressive matrix. By this, we could see its help to see a

much better output.

Chapter 4 was about the Copula method which is more flexible and applicable than

RJMCMC as it can model the non-symmetric or heavy-tailed models, too. The cop-

ula’s definition, types and families are described in that chapter as well as the data

analyzing format. In the application part, we examined different types of pair copula

models for some real data sets. As a result, it was seen that the accuracy of the cop-

ula is almost as same as RJMCMC besides some advantages that copula has, such as

detecting the tail dependence and the joint density which is very important in some

cases.

To sum up, the RJMCMC performs better than its alternatives while it is not fast

enough. Also, the Copula is a robust method to model the data and to estimate

the joint density parameters very easily. Their accuracy is acceptable and for both

methods i.e., RJMCMC and R-Vine, the determination of the threshold (and other

hyper-parameters) should be done very carefully as it defines the confusion matrix to

evaluate them in terms of some measures.
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• Purutçuoğlu, V., and H. Farnoudkia., Gibbs Sampling in Inference of Cop-

ula Gaussian Graphical Model Adapted to Biological Networks. Acta Physica

Polonica, A. 132.3 (2017).
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