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ABSTRACT 

 

DEEP LEARNING FOR PREDICTION OF DRUG-TARGET 
INTERACTION SPACE AND PROTEIN FUNCTIONS 

 
 
 

Rifaioğlu, Ahmet Süreyya 
Doctor of Philosophy, Computer Engineering 
Supervisor: Prof. Dr. Mehmet Volkan Atalay 
Co-Supervisor: Prof. Dr. Rengül Çetin-Atalay 

 
 

June 2020, 224 pages 

 

With the advancement of sequencing and high-throughput screening technologies, 

large amount of sequence and compound data have been accumulated in biological 

and chemical databases. However, only small number of proteins and compounds 

have been annotated by wet-lab experiments due to the huge compound and chemical 

space. Therefore, computational methods have been developed to annotate protein 

and compound space. In this thesis, we describe the design and implementation of 

several methods for accurate drug-target interaction prediction and functional 

annotations of proteins within the framework of Comprehensive Resource of 

Biomedical Relations with Deep Learning and Network Representations 

(CROssBAR) project whose aim is to integrate biological and chemical data 

scattered in different sources and to create prediction methods for drug discovery 

based on deep learning. The first method, DEEPred is a sequence based automated 

protein function prediction method that employs a stacked multi-task deep neural 

networks based on Gene Ontology (GO) directed acyclic graph hierarchy. The 

performance of DEEPred was compared with state-of-the-art methods and its source 

code is available at https://github.com/cansyl/deepred. DEEPScreen is the second 

method and it is a drug-target interaction (binary) prediction method. In 
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DEEPScreen, the idea is to learn compound features automatically using compound 

images via convolutional neural networks. DEEPScreen was trained for 704 target 

proteins and the input compounds predicted as active or inactive against trained 

targets. The performance of DEEPScreen was compared with the state-of-the art 

methods using different benchmarking datasets. The source code is available at 

https://github.com/cansyl/DEEPScreen. The third method is called MDeePred which 

is a binding affinity prediction method. MDeePred is a chemogenomic method where 

both protein and compounds features were fed to a hybrid pairwise deep neural 

network structure. The main difference between MDeePred and DEEPScreen in 

terms of features is that MDeePred employs compound-target feature pairs whereas 

in DEEPScreen only compound features were used. The main novelty of MDeePred 

is the proposed multi-channel featurization approach for protein sequences where 

each channel represents a different property of input protein sequences. The 

performance of MDeePred was calculated on multiple benchmarking datasets and 

compared its performance with the state-of-the-art methods. The source code for 

MDeePred is available at https://github.com/cansyl/MDeePred. The fourth method 

is called iBioProVis which is an online interactive visualization tool for chemical 

space. The main purpose of iBioProVis is to embed and visualize compound features 

on 2-D space. It relies on the assumption that topologically and chemically similar 

compounds have similar bioactivity profiles. The inputs for iBioProVis are target 

protein identifiers and optionally, SMILES strings of user-input compounds. The 

tool then generates circular fingerprints for active compounds of targets and user-

input compounds and then, t-Stochastic Neighbor Embedding (t-SNE) method is 

used to embed compounds on 2-D space. The tool also provides cross-references for 

well-known databases for input targets and compounds. iBioProVis is available at 

https://ibioprovis.kansil.org/. 

Keywords: Virtual Screening, Deep Learning, Protein Function Prediction, Binding 

Affinity Prediction, Drug-Target Interaction Prediction 
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ÖZ 

 

İLAÇ-HEDEF PROTEİN ETKİLEŞİM UZAYI VE PROTEİN 
FONKSİYONLARININ TAHMİNİ İÇİN DERİN ÖĞRENME 

 
 
 

Rifaioğlu, Ahmet Süreyya 
Doktora, Bilgisayar Mühendisliği 

Tez Yöneticisi: Prof. Dr. Mehmet Volkan Atalay 
Ortak Tez Yöneticisi: Prof. Dr. Rengül Çetin-Atalay 

 

 

Haziran 2020, 224 sayfa 

 

Sekanslama ve yüksek çıktılı tarama teknolojilerinin ilerlemesi ile biyolojik ve 

kimyasal veri tabanlarında büyük miktarda protein ve bileşik verisi birikmiştir. 

Bununla birlikte, protein ve bileşik uzaylarının büyüklüğü sebebiyle bu verilerin çok 

azı laboratuvar deneyleriyle anlamlandırılabilmiştir. Bu nedenle, protein ve bileşik 

uzayını anlamlandırılabilmek için hesaplamalı yöntemler geliştirilmektedir. Bu 

tezde; amacı farklı kaynaklardaki biyolojik ve kimyasal verileri birleştirmek ve ilaç 

keşfi için derin öğrenme tabanlı yöntemler geliştirmek olan Biyomedikal İlişkilerin 

Kapsamlı Kaynağı ve Biyomedikal İlişkileri (CROssBAR) projesi kapsamında, ilaç-

hedef protein etkileşimi tahmini ve proteinlerin fonksiyonel anlamlandırılması için 

çeşitli yöntemlerin tasarlanması ve uygulanmasını tarif ediyoruz. İlk yöntem olan 

DEEPred, Gen Ontoloji’sinin yönlü düz ağaç hiyerarşisine dayanan ve yığılmış çok 

görevli derin sinir ağlarını kullanan protein fonksiyon tahmin yöntemidir. 

DEEPred’in performansı, literatürdeki iyi bilinen yöntemlerle karşılaştırılmıştır ve 

kaynak kodu https://github.com/cansyl/deepred adresinde bulunmaktadır. 

Geliştirilen ikinci yöntem, ilaç-protein hedefi etkileşimi (ikili) tahmin yöntemi olan 

DEEPScreen’dir. DEEPScreen’deki ana fikir, evrişimli sinir ağları aracılığıyla 
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bileşik görüntülerini kullanarak özelliklerini otomatik olarak öğrenmektir. 

DEEPScreen, 704 hedef protein için eğitilmiş ve girdi bileşikleri, eğitilmiş hedeflere 

karşı aktif ya da inaktif olarak tahmin edilmiştir. DEEPScreen’in performansı, farklı 

kıyaslama veri kümeleri kullanılarak literatürdeki yöntemlerle karşılaştırılmıştır. 

Yöntemin kaynak kodu https://github.com/cansyl/DEEPScreen adresinde 

bulunmaktadır. Üçüncü yöntem olan MDeePred protein-bileşik bağlanma değeri 

tahmini yöntemidir. MDeePred, hem protein hem de bileşik özelliklerinin çift girdili 

melez derin sinir ağı yapısına beslendiği kemogenomik bir yöntemdir. Girdi olarak 

kullanılan özellikler açısından MDeePred ve DEEPScreen arasındaki temel fark, 

MDeePred’in bileşik hedef özellik çiftlerini kullanması, bunun yanında 

DEEPScreen’de sadece bileşik özelliklerinin kullanılmasıdır. MDeePred’in sunduğu 

ana yenilik, her bir kanalın girdi protein dizilerinin farklı bir özelliğini temsil ettiği 

çok kanallı özelliklendirme yaklaşımıdır. MDeePred’in performansı birden fazla 

kıyaslama veri kümesinde hesaplanmış ve performansı literatürde iyi bilinen 

yöntemlerle karşılaştırılmıştır. MDeePred’in kaynak kodu 

https://github.com/cansyl/MDeePred adresinde yer almaktadır. Dördüncü yöntem 

olan iBioProVis, kimyasal uzay için çevrimiçi ve etkileşimli bir görüntüleme 

aracıdır. iBioProVis’in temel amacı, bileşik özellikleri 2 boyutlu uzaya yerleştirmek 

ve bu bağlamda bileşikleri görselleştirmektir. Bu araç, topolojik ve kimyasal olarak 

benzer bileşiklerin benzer biyoaktivite profillerine sahip olduğu varsayımına 

dayanır. iBioProVis için girdiler, hedef protein tanımlayıcıları ve isteğe bağlı olarak 

kullanıcılar tarafından verilen bileşiklerinin SMILES gösterimleridir. Araç, daha 

sonra hedeflerin aktif bileşikleri ve kullanıcı girdi bileşikleri için dairesel parmak 

izlerini üretir ve bileşikleri 2 boyutta göstermek için t-Stokastik Yakınlık Gömmesi 

yöntemi kullanılır. Aynı zamanda, girdi hedef proteinleri ve bileşikleri için iyi 

bilinen veri tabanları için çapraz referanslar sağlanmaktadır. iBioProVis’e 

https://ibioprovis.kansil.org/ adresinden ulaşılabilir.  

Anahtar Kelimeler: Sanal Tarama, Derin Öğrenme, Protein Fonksiyonu Tahmini, 

Bağlanma Değeri Tahmini, İlaç-Hedef Protein Etkileşimi Tahmini
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CHAPTER 1  

1 INTRODUCTION  

1The development of new drugs and understanding functions of proteins are the key 

problems and challenges to improve the current field of biomedicine. Computational 

methods have been used in bioinformatics and cheminformatics studies for nearly 

three decades, to aid discovering the molecular mechanisms of proteins and to 

propose novel treatment options for several diseases. Recent advances in 

computational power (e.g., massively parallel and GPU computing) and in data 

analysis and inference techniques (e.g., artificial intelligence, machine learning, deep 

learning) provide opportunities for various fields including biomedicine. 

My thesis is done as a part of Comprehensive Resource of Biomedical Relations with 

Deep Learning and Network Representations (CROssBAR) project which is funded 

by TÜBİTAK and British Council. The first aim of CROssBAR project is to integrate 

biological and chemical data coming from different resources in the context of drug 

discovery. The second aim of the project is to create computational drug discovery 

and repositioning methods based on deep learning algorithms. The last objective of 

the project is the generation of multi-partite networks where nodes will represent 

different entities and edges will relations between biological and chemical entries. 

The terminology used in this thesis is given below: 

• A ligand is a molecular structure that physically binds another molecular 

structure and modulates its function.  

• A compound is a chemical structure that is formed by the combination of two 

or more atoms that are connected by chemical bonds.  

                                                
 

1 Some parts of this chapter were published in Briefings in Bioinformatics journal in 2019 [7]. Please 
note that only the parts that I worked on were included from our publication. 
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• Some of the compounds, bioactive compounds, modulates the functions of 

bio-molecules such as proteins. 

• A drug is an approved (by Food and Drug Administration, for example) 

bioactive compound that acts on protein targets to cure/decelerate a specific 

disease or to promote the health of a living being. 

• A target protein (or just a target) is a naturally occurring bio-molecule of an 

organism that is bound by a ligand and have its function modulated, which 

results in a physiological change in the body of the organism. 

• The Anatomical Therapeutic Chemical (ATC) Classification System is a 

controlled vocabulary to classify drugs hierarchically based on their 

therapeutic, pharmacological and chemical properties. There are five levels 

in each ATC code and each level of an ATC code represents a different 

property of drugs. The first level represents anatomical groups; the second 

level shows a therapeutic main group; the third level represents a therapeutic 

and pharmacological subgroup; the fourth level represents a chemical, 

therapeutic and pharmacological subgroup; and the fifth level shows the 

indicated chemical substance. 

• Cheminformatics is the application of computational techniques to the field 

of chemistry. Most of the virtual screening methods are considered to be 

cheminformatics-based. 

• Gene Ontology (GO) is a controlled vocabulary that represents relationship 

among functions and locations of proteins in the form of directed acyclic 

graph structure where each node (i.e. GO term) represents a different 

property. GO has three categories which are molecular function, biological 

process and cellular component. Molecular function GO terms represent 

events occur at molecular level within the cells. Biological process GO terms 

denote series of events happening in the cells. Finally, cellular component 

GO terms show subcellular compartments. 

It is important to note that, “small molecule”, “ligand” and “compound” were used 

synonymously to refer to the “chemical substances”. The term “bioactive 
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compound” corresponds to chemical substances with biological activities. The term 

“ligand” represents a chemical substance that interact with a target biomolecule to 

accomplish a biological purpose. The term “drug” is used to represent approved 

bioactive compounds, which are currently being used in the clinics. “Active 

pharmaceutical ingredients” (APIs) refers to the biologically active ingredient in a 

drug, and are responsible for the interactions with cellular polymeric 

macromolecules as well as small secondary messenger molecules. The terms 

“biomolecule”, “receptor”, “target” and “protein” refer to the cellular biological 

molecules targeted by APIs and/or bioactive compounds. 

In terms of the statistics, there are tens of millions of compounds available in 

compound and bioactivity databases [1]–[4]. There are about 9,000 FDA approved 

small molecule drugs (approved + experimental) [5], roughly 560,000 reviewed 

protein records available (20,244 of which are human proteins) in protein sequence 

and annotations resources (e.g., UniProtKB/Swiss-Prot) and nearly 2,700 of human 

proteins are known to be targeted by either approved or experimental drugs [1], [6].  

 
Figure 1.1. Statistics of current chemical and protein spaces in open access chemical 

and biological data repositories (Adapted from our publication [7]). 

3D structure information of proteins and compounds provide important qualities of 

these molecules to determine their functions and bioactivities. However, 3D 
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structures of a relatively small sub-set of compounds (i.e., around 24,000) and human 

proteins (i.e., about 6,200) are experimentally known (partly or completely) and 

currently available in Protein Data Bank - PDB (Figure 1.1) [5]. 

The main role of drugs, which are bioactive compounds, is the alteration of cellular 

events involved in disease conditions for treatment purposes. The following two 

problems are of importance for the hit discovery, one of the initial steps in the 

development of new drugs: 

• identification of novel bioactive compounds for a target protein,  

• and identification of new targets for known bioactive compounds. 

Drug discovery is defined as the process of identifying the roles of bioactive 

compounds to develop new drugs, and it is usually one of the initial steps in a drug 

development pipeline. Traditionally, drug research and development starts with the 

identification of the biomolecular targets for an intended treatment and it proceeds 

with the high-throughput screening experiments to identify bioactive compounds for 

the defined targets, together with the corresponding bioactivity levels. The aim of 

high-throughput screening is to find suitable drug candidates. With the advancement 

of high-throughput screening technology, it is now possible to conduct experiments 

to scan thousands of different compounds and detect their bioactivity levels on 

selected target proteins [8]. However, designing high-throughput screening 

experiments is expensive, it is a time-consuming process and it requires advanced 

laboratories having chemical and biological libraries. Furthermore, it is not feasible 

to conduct high-throughput screening experiments for all expressed proteins in the 

human genome and for all known compounds [9]. Another problem with high-

throughput screening is its high failure rates, which limits the identification of novel 

drugs [10]. The problem escalates when we consider the process of drug 

development. The term drug development refers to the whole process to bring a drug 

to the market, starting with the drug discovery and ending with clinical trial phases. 

In Figure 1.2, main phases of the drug development procedure are shown. Most of 

the drug candidates fail to become an approved drug in the late phases of clinical 

trials due to the unexpected side effects and toxicity problems. In 2010, the cost of 
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developing a single drug was estimated about 1.8 billion US dollars and the process 

requires about 13 years on average [9]. Another important topic in drug discovery is 

drug repurposing whose aim is to find new usages of existing drugs. Drug 

repurposing significantly decreases duration of the overall drug discovery process as 

the repurposed drugs have already passed the main phases. 

 

Figure 1.2. A broad overview of drug development and the place of virtual screening 

in this process (Adapted from our publication [7]). 

Proteins play many important roles in the cells of living beings such as catalyzing 

cellular events, transferring other molecules and so on. Therefore, identification of 

functions and subcellular localizations of proteins are essential to understand inner 

mechanisms of cellular events within cells. For example, determining subcellular 

locations of targeted proteins should be known to develop drugs, so that drugs could 

reach the subcellular location that targeted proteins exist and bind them. Protein 

functions are traditionally determined by wet-lab experiments and many biocurators 

are working to annotate protein in terms of their functions by extracting relevant 

information from scientific papers. However, number of protein sequences in protein 

databases is rapidly growing and traditional methods cannot keep up with this 

growth. For example, in the current release (2020_05) of UniProt Knowledgebase 

(UniProtKB), there are about 181 million protein sequences and only 562,253 of 

them have been manually curated by biocurators [11].  
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1.1 Problem Statement 

The ability of traditional machine learning to extract features from its raw data is 

quite limited. Therefore, in standard machine learning applications, the majority of 

the time is spent on careful preprocessing and feature engineering steps based on 

domain expertise with the aim of extracting meaningful and useful features to be fed 

to machine learning algorithms. Only then, these traditional machine learning 

algorithms can be used to create predictive models for certain tasks. Deep learning 

algorithms are capable of extracting complex features from raw input data. They 

create multiple levels of representations of raw input data by applying non-linear 

operations at each layer and they inherently learn and extract complex features 

automatically from raw data. Although the history of deep learning algorithms goes 

back to decades ago, these algorithms could not be applied due to the limitations in 

hardware technologies and the problems such as overfitting and lack of efficient 

implementations. The advancement in hardware technologies and the development 

of highly efficient deep learning frameworks have enabled the applications of deep 

learning algorithms in several fields in recent years and these algorithms have been 

shown to outperform the state-of-the-art methods in the fields such as computer 

vision, natural language processing and bioinformatics. 

Several computational methods have been developed in the last decades for both 

computational drug discovery and protein function prediction problems. In protein 

function prediction, the aim is to infer functions of proteins by using different 

features of proteins such as their sequence properties, domains etc. The input is 

generally protein sequences and computational methods are used to extract features 

from the input sequences. The field of in silico estimation of unknown drug-target 

pairs using statistical models is called virtual screening -VS- (i.e., drug-target 

interaction -DTI- prediction). In drug development pipelines, VS methods are mostly 

placed just before the high-throughput screening, so that the unlikely drug-target 

pairs are eliminated; as a result, only potentially active combinations are run through 

the experimental screening procedure (Figure 1.2). The results published so far 
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shows that there are still room for significant improvements in these areas. In this 

thesis, I proposed solutions to four different problems which are protein function 

prediction, drug-target interaction prediction, binding affinity prediction and 

visualization of chemical space.   

1.2 Contributions 

In this thesis, several methods and tools were developed for drug-target interaction 

prediction and protein function prediction. Specifically, the major contributions can 

be explained as follows: 

In Chapter 3 (DEEPred): 

• A hierarchical prediction system was proposed which utilizes Gene Ontology 

directed acyclic graph structure to create stacked models for protein function 

prediction; 

• Automated annotations of UniProt were included in the training set of the 

predictor, with the aim of enriching training data (especially for the GO terms 

with insufficient number of training instances). 

In Chapter 4 (DEEPScreen): 

• The idea of using compound images for predicting the interactions with target 

proteins and employing established convolutional neural network 

architectures; 

• A reliable and open access reference dataset was created by filtering and 

preprocessing entire ChEMBL database whose aim is to use in DEEPScreen 

and other future studies; 

In Chapter 5 (MDeePred): 

• A novel protein representation method was proposed based on the amino acid 

pair properties in a protein sequence. Protein represented as multiple 2D 

feature channels where channels represent diverse properties of these amino 
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acid pairs. The proposed featurization approach can be applied to other fields 

of bioinformatics such as protein function prediction. 

• A hybrid pairwise input neural network was created which extracts complex 

representations of compounds and proteins separately from individual inputs 

of them and then merges these complex representations to infer the binding 

relation of the input pair.  

In Chapter 6 (iBioProVis): 

• An interactive web-based tool was prepared for the researchers which allows 

investigation and analysis of how active compounds of different target 

proteins are distributed on a 2-D space and prediction of bioactivity profiles 

of new/existing/user-input compounds. 

1.3 Achievements and Highlights 

Achievements and highlights in this thesis are given below: 

• DEEPred was one of the earliest applications of deep learning on protein 

function prediction area and it was among top five methods in CAFA PI 

protein function prediction challenge. 

• Initial version of MDeePred performed fourth among 241 prediction 

submissions in DREAM Drug-Kinase Binding Prediction Challenge. 

• Although there are several methods published in the literature in the last 

years, many of them do not provide open-access datasets and source codes 

for reproducibility. In all of our methods, source codes and datasets were 

made open to public for reproducibility and open-access tools were provided 

for researchers.  

• For each method, thousands of models were trained and fine-tuned and made 

available for researchers. 
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• For each method, novel training/test/validation datasets were created for 

positive and negative datasets by carefully preprocessing and filtering 

corresponding databases. 

1.4 Structure of the Thesis 

This thesis was divided into six main chapters. The first chapter, introduction, 

defines the basic terminology, provide statistics regarding the relevant information 

stored in source biological and chemical databases, summarizes the experimental 

procedures along with computational approaches in drug discovery. The problem 

statement and the contributions are also given in the introduction part. In the second 

chapter, our protein function prediction method called DEEPred is explained in 

detail. The third chapter describes proposed DEEPScreen method for drug-target 

interaction prediction. In the fourth chapter, our binding affinity prediction method 

called MDeePred is explained. Fifth chapter demonstrates our bioactivity space 

visualization method called iBioProVis. Finally, discussion, conclusion and 

perspectives are given in the sixth chapter. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2Virtual screening has the potential to greatly reduce the cost and time required for 

high-throughput screening [12]. Although the main purpose of virtual screening is to 

identify new drug candidates for specified targets, it also has other applications such 

as finding beneficial drug pairs [13] and the prediction of ATC codes for known 

drugs [14], [15]. In addition, the computational approaches mainly employed in 

virtual screening can also be used for drug repurposing and off target effect 

identification, where the aim is to find new uses for the already approved drugs [16]. 

Drug repurposing is an important research area since the approved drugs are already 

tested for safety issues; therefore, the cost and the required time for marketing 

repurposed drugs is much less than discovering and marketing novel drugs [17].  

There are various examples of repurposed drugs in the market, most of which are 

being used for treatments of multiple diseases [18]. 

There have been several successful applications of virtual screening in detecting 

compounds with high affinities against pre-specified targets [19]. Some of these drug 

candidate compounds have also passed the clinical trials and became marketed drugs 

[20]–[24]. Doman et al. showed that their virtual screening approach substantially 

improved the rate of identified drug candidates against protein tyrosine phosphatase-

1B (PTP1B) enzyme. The authors experimentally showed that the hit rate of their 

method was 34.8%, whereas the hit rate of the high-throughput screening experiment 

was only 0.021% [25]. Another successful application of virtual screening was 

                                                
 

2 Some parts of this chapter were published in Briefings in Bioinformatics journal in 2019 [7]. Please 
note that only the parts that I worked on were included from our publication. 
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proposed by Powers et al. which led to the discovery of a novel inhibitor of AmpC 

ß-Lactamase [26]. 

Both in high-throughput screening experiments and in conventional virtual screening 

approaches, the aim is to identify whether a given set of compounds are bound to a 

pre-specified target protein or not. In these applications, off-target effects are 

generally overlooked and other possible targets of the compounds cannot be 

identified. However, it is known that most of the bioactive compounds act on 

multiple targets (which causes these off target effects); in fact, the cases where a 

compound interacts with only a one target protein are considered as exceptional [27], 

[28]. The identification of the off-target effects is crucial to obtain potential side 

effect and toxicity information of the test compounds. For this purpose, another type 

of computational approach, target prediction (also known as the reverse virtual 

screening), was proposed [29], [30]. In target prediction, a compound is screened 

against a large set of proteins with the aim of identifying all possible targets of the 

corresponding compound (Figure 2.1). Generally speaking, the goal of both 

approaches is the prediction of unknown interactions between various compound-

protein pairs. 

In this literature review, the objective is to provide an overview of recent applications 

of computational drug discovery methods, called virtual screening, where the aim is 

to predict the bio-interactions between drug-like small molecules (i.e., compounds) 

and potential target proteins for the identification of novel drugs, using structural and 

physicochemical properties of compounds and targets along with the experimentally 

known (i.e., validated) bioactivities. Various data resources were explored that 

provide vast amount of information, which is essential for conducting virtual 

screening studies. Novel machine learning approaches were also investigated with 

recent applications to drug-target interaction prediction. In this framework, we 

discussed in detail the recent applications of deep learning techniques, which 

outperformed state-of-the-art virtual screening methods. Finally, we stated our 

observations and comments about the current status of the field of virtual screening. 
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Figure 2.1. (A) In conventional virtual screening, multiple compounds are screened 

against a pre-specified target and candidate interacting compounds (i.e., ligands) are 

identified; whereas (B) in target prediction (i.e., reverse virtual screening), a 

compound is searched against multiple proteins and candidate targets are identified 

(Adapted from our publication [7]). 

Most of the virtual screening methods make use of biological, topological and 

physicochemical properties of compounds and/or targets along with the 

experimentally validated bioactivity values of compound-target pairs to predict the 

unknown activities [31], [32]. For this, it is required to computationally record the 

compounds and targets as quantitative vectors (i.e., representations and descriptors) 

according to their molecular features. Virtual screening methods use these feature 

vectors as input in order to model the interactions between compounds and target 

molecules. VS methods can be divided into three groups based on the employed input 

features: 

• Structure-based virtual screening employs 3D structure of targets and 

compounds to model the interactions [33], [34], 
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• Ligand-based virtual screening uses the molecular properties of 

compounds (mostly non-structural) in order to model the interactions with 

targets [31], [35], [36], 

• Proteochemometric modeling (PCM) approach models the interactions by 

combining non-structural descriptors of both compounds and targets at the 

input level [37]–[40]. 

Previously, virtual screening was mainly divided in two groups (i.e., structure-based 

and ligand-based methods) [41], [42]; however, recent advances in PCM have put 

this field forward to be considered as a third group [39]. Both ligand-based and PCM 

methods can be considered as non-structure-based virtual screening methods. The 

field of ligand-based virtual screening have been extensively reviewed by Geppert 

et al., and Lavecchia and Di Giovanni  [35], [36]. In another study, Glaab reviewed 

the recent developments in both ligand and structure-based virtual screening 

approaches. The author defined a comprehensive pipeline for virtual screening over 

a target protein of interest and overviewed workflow management systems. The 

whole process was divided into four main steps such as data collection, pre-

processing, screening, selectivity and ADMETox (i.e., absorption, distribution, 

metabolism, excretion and toxicity) filtering; and explained each step with a focus 

on relevant open-access software and databases. The author also implemented a 

downloadable cross-platform software by integrating open-access screening tools 

using the Docker platform [43]. Qiu et al. introduced the emergence of PCM and 

mentioned its advantages by referring to studies in which PCM models outperform 

conventional QSAR models in DTI modelling. The authors focused on the recent 

progress in PCM modelling in terms of target descriptors, cross-term descriptors and 

application scope of PCM including protein-small molecule and protein-macro 

molecule interactions. The authors reported that, with further advancements in 

molecular representations, machine learning techniques and the available bioactivity 

data, it may be possible to generate PCM models for more complicated systems such 

as ligand-catalyst-target reactions, which could provide help to identify biochemical 
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reactions more accurately [39]. The field of PCM was also reviewed by van Westen 

et al. and Cortés-Ciriano et al. [38], [40]. 

Structure-based virtual screening methods can only be applied when the 3D structure 

of both targets and the candidate compounds are available, which are either 

experimentally determined by X-ray crystallography or NMR, or predicted by 

computational approaches such as the homology modelling. Once the 3D structural 

information is obtained, docking can be applied to find interactions between a 

compound and a target, which predicts compound conformations in the binding site 

of the target using search algorithms and ranks them via scoring functions 

representing estimated binding affinities [25], [29]. Some of the most commonly 

used docking tools are AutoDock [44], DOCK [45], Glide [46], GOLD [47], FlexX 

[48] and Fred [49]. These methods rely on the conformations of atoms in 3D space; 

as a result, they are computationally intensive since the number of possible 

conformations of proteins and compounds increase exponentially with the increasing 

number of rotatable bonds. Moreover, the calculation of binding energies is a 

problematic issue [19]. In addition to these traditional methods, there are also 

similarity-based docking approaches such as HomDock [50], eSimDock [51] and 

fkcombu [52] that utilize structural similarities of compounds to predict their protein-

bound states by aligning them on the experimentally determined 3D structure of a 

reference compound that is in complex with a target protein or evolutionarily related 

structures of that target protein [51]. Therefore, they do not require searching for low 

energy conformations of compounds contrary to conventional methods, which 

reduces the computational cost and makes them faster than traditional docking 

methods [50]. Both approaches can achieve high performance in estimating the 

interactions; however, their applicability is limited since the structural information 

is not available for the majority of the proteins and compounds, and the experimental 

identification of the 3D structures is challenging [9].  Although homology models of 

proteins can be used as templates for docking, it is not possible to obtain a reliable 

model for all proteins due to lack of a reference protein structure that is evolutionarily 

close to the target protein to be modelled. Even if similarity-based docking 
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approaches are less sensitive to weakly homologous protein models [51], they are 

not feasible in the absence of similar compounds to the reference compound. 

Therefore, non-structure-based virtual screening methods are more preferable if a 

reliable target structure is not available [53]. It was reported in the literature that the 

non-structure-based methods have a similar potential to detect drug targets as the 

structure-based methods [54]. In addition, several studies showed that structure and 

non-structure-based methods often provide complementary results [30], [55]–[57]. 

There are also hybrid-type methods that combine 3D structure information along 

with the ligand-based information in the literature [53]. Structure-based virtual 

screening methods are out of the scope of this study and information about this field 

can be obtained from the literature [33], [34], [54], [58], [59].  

2.1 Machine Learning Applications in Virtual Screening 

The field of machine learning has been extensively reviewed and discussed in several 

books [60]. There are two main approaches in machine learning literature in terms 

of how the learning process is carried out, supervised learning and unsupervised 

learning. In supervised learning, the objective is to infer a function that maps the 

input data to the output class labels [61]. Whereas the aim in unsupervised learning 

is to learn the hidden structure of input data without having class labels. 

Unsupervised learning algorithms employ techniques to discover relationships 

among the non-labeled input samples. The most popular applications of 

unsupervised learning are clustering and dimensionality reduction. Once the groups 

and clusters are obtained with the application of an unsupervised learning method, 

each group can be inspected to assign semantic meanings by experts [62]. Both 

supervised and unsupervised machine learning techniques are used in 

cheminformatics on a wide range of topics including virtual screening [63], [64], 

[73], [74], [65]–[72] yet most of the methods so far assumed the supervised 

approach. A plethora of methods have been proposed for virtual screening purposes 

in the last decade. These virtual screening methods use experimentally validated 
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compound-target pairs and their features along with the bioactivity information to 

create predictive models for future predictions of activities. 

In terms of the methodological utilization of the input properties, virtual screening 

methods can be divided into similarity-based and feature-based methods, although 

there is no such technical classification in the machine learning literature [60], [61], 

[67], [75]. In the following sections, similarity-based and feature-based virtual 

screening methods are investigated, which is followed by the recently popularized 

deep learning based applications in virtual screening. For this, we have mostly 

focused on the studies published in the last five years, some of which have aims 

beyond DTI prediction (e.g., estimation of beneficial drug-drug combinations or 

ATC code prediction).  

2.1.1 Similarity-based Approach 

Similarity-based methods rely on the assumption that biologically, topologically and 

chemically similar compounds have similar functions and bioactivities and therefore 

they have similar targets [73], [76]–[78].  In the similarity-based approach, the target 

associations of similar compounds (or the compound associations of similar target 

proteins) are transferred between each other. Therefore, transfer approach is a term 

used interchangeably to define similarity-based methods. In chemical space, 

similarities are calculated by searching molecular substructure and isomorphism 

based on the representations of molecules such as SMILES and InChI. In target 

space, similarities are mainly calculated by sequence alignment methods. The 

methods under this approach construct similarity matrices either for compounds or 

targets, or for both them [75]. Subsequently, constructed similarity matrices are used 

by the machine learning models. Below, we provided reviews for three similarity-

based VS methods, which were published in the last few years. 

With the aim of identifying biologically and structurally similar clusters of 

compounds, weighted clustering was proposed by integrating multiple similarity 
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matrices [73]. Two datasets were used: the epidermal (EGFR) and the fibroblast 

growth factor receptor (FGFR) datasets. EGFR dataset contained bioactivity assay 

readouts and gene expression profiles for 35 compounds and 3595 genes. In FGFR 

dataset, the chemical structure information, gene expression data and bioactivity 

assay readouts were available for 94 compounds and 1056 genes. Two similarity 

matrices were generated based on the structural and the phenotypic properties. 

Structural properties of compounds were represented by ECFP6 fingerprints and 

similarities of compounds were calculated using the Tanimoto coefficient. For the 

phenotypic similarity matrix calculation, bioactivity readouts were used. The 

Euclidean distance was employed to calculate the phenotypic similarities between 

two compounds based on their bioactivity results on the same assays. Subsequently, 

generated similarity matrices were used to perform clustering using a weighted 

clustering algorithm. The weighted clustering technique was shown to be more 

efficient in terms of identifying structurally and biologically similar compounds 

compared to the individual clustering methods. 

A supervised similarity based PCM method was described for the detection of: (i) 

interactions between new drug candidates and known targets and (ii) interactions 

between new drug candidates and new targets [77]. The similarity between two 

compounds was measured by a combination of non-structure-based score (ATC-

based semantic similarity score) and 2D graph structure-based score. ATC-based 

semantic similarity score was calculated by counting the common subgroups 

between ATC code annotations of two compounds. 2D structure-based similarity 

calculation was performed by aligning graph structures of compounds. The similarity 

score for a pair of targets was computed using a combination of a functional-

similarity-based (using Enzyme Commission -EC- numbers) score and a sequence-

based similarity score. Functional similarity-based score was calculated by counting 

the number of common EC number annotations. For sequence-based similarity score 

calculation, subsequences in the ligand-binding domains were extracted and they 

aligned the extracted subsequences to calculate similarity scores between targets. 

The datasets constructed by Yamanishi et al. [79] for four classes of targets (i.e., 
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GPCRs, ion channels, enzymes and nuclear receptors) were employed for the tests. 

A concept called “super-target” was proposed to overcome the problem of the 

scarcity of training instances in terms of targets. Similar targets were clustered and 

it was assumed that if the drug interacted with a target, it would also interact with 

the other targets in the same super-target cluster. For the prediction of new drug 

candidates for a known target, the following methodology was pursued: When a new 

compound was given as input to the system, for each known target tx, a confidence 

score was calculated between the query compound and the super-target cluster that 

tx belonged to, based on the drug associations of the targets in that super-target 

cluster. Subsequently, another confidence score was calculated between query 

compound and tx based only on the drug associations of tx. Finally, these two scores 

were combined as a single prediction score. For the prediction of new drug 

candidates for a new target, a similar procedure was followed. In this case, the new 

target was considered as a member of most similar super-target cluster based on its 

functional and sequence similarities. 

SwissTargetPrediction is a supervised similarity-based method that combines 2D 

similarity and 3D similarity of compounds with the aim of identifying new targets 

for query compounds [76]. ChEMBL database was employed to obtain known 

compound–target pairs. The training dataset consisted of 280,381 small compounds 

for 2,686 targets. When a compound was given as input to the system, a combination 

of 2D and 3D similarity scores were calculated between the query compound and all 

compounds with known targets. In order to obtain 2D similarity score, a compound 

was represented by FP2 fingerprints and the 2D similarity scores between the query 

compound and other compounds were calculated by the Tanimoto coefficient. For 

the 3D similarity score, 20 different conformations of compounds were generated 

and the Manhattan distance was used to calculate distances among all conformations 

of two compounds. The smallest distance was then chosen among the 20x20 distance 

scores and it was converted into a 3D similarity score. 2D and 3D similarity scores 

were combined as a single prediction score for targets. Finally, the system outputs a 

ranked list of targets based on the combined similarity scores. Users can get 
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predictions for a compound using SMILES string of the query compound or by 

drawing 2D structure of compounds using the web tool provided. 

SwissTargetPrediction is available at http://www.swisstargetprediction.ch. 

2.1.2 Feature-based Approach 

In Feature-based virtual screening methods each instance (i.e., compound and/or 

target) is represented by a numerical feature vector, which reflects various types of 

physicochemical and molecular properties of the corresponding molecules. Targets 

are usually modelled using their physical and chemical properties, subsequence 

distributions or functional attributes; whereas the compounds are usually modelled 

using structural properties. In a typical feature-based virtual screening application, a 

set of compounds that is known to interact with a specific target is extracted from 

compound and bioactivity databases. Subsequently, feature vectors are generated for 

each compound. Finally, the constructed feature vectors are fed to a machine learning 

algorithm to create a predictive model for the interaction with the corresponding 

target. When a new query compound’s feature vector is given to the trained model 

as input, the output of the predictive model is either active or inactive against the 

corresponding target protein (Figure 2.2). This is the so-called ligand-based 

approach in terms of the incorporated input feature types (i.e., compound features). 

PCM methods also assume a similar methodology, but they jointly model the target 

properties at the input level along with the compounds, so that the query can be a 

compound-protein pair, and the model predicts the presence of that specific 

interaction. Examples of feature-based virtual screening methods are given below. 
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Figure 2.2. The steps of a typical feature-based virtual screening method for training 

a predictive model (Adapted from our publication [7]). 

A supervised machine learning methodology was proposed by Liu et al. [14] using 

a combination of both similarity and feature-based approaches to predict drug–ATC 

code associations. DrugBank database was employed to create their positive and 

negative training datasets. The total set was composed of 1333 small molecule drugs 

and their ATC codes at various levels. ATC code prediction problem was described 

as a binary classification problem. Therefore, for each ATC code a positive training 

dataset and a negative training dataset were constructed. Known drug-ATC code 

pairs were retrieved to construct the positive training datasets. To construct a 

negative training dataset for each ATC code, they first removed the positive drug-

ATC code pairs from all possible drug-ATC code pairs and randomly selected 

samples from the remaining set. Then six scores were defined to calculate drug–drug 

similarities, which are based on chemical structures, functional groups, target 

proteins, drug-induced gene expression profiles, side-effects and chemical–chemical 

associations. Each drug was represented as a 6-dimensional feature vector.  The 

value of a certain feature was determined by taking the largest similarity score 

between the input drug and the drugs associated with the corresponding ATC code. 

Once the drugs were converted into feature vectors, the logistic regression method 
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was used to train predictive models for each ATC code. When a new query 

compound is given to the system, first it is converted to the feature vector based on 

the similarity values; then, it is given to the predictive models as input to predict the 

candidate ATC codes. The method, SPACE, is available at 

http://www.bprc.ac.cn/space. 

In the work by Cano et al. [80], the main objective was the inherent selection/ranking 

of features and training a DTI prediction classifier using random forest. Directory of 

Useful Decoys (DUD) was used to create their training dataset, which was composed 

of kinases, nuclear hormone receptors and other proteins. The constitutional, charged 

partial surface area and fingerprint-based descriptors were the input to the system. 

The performance of the model was compared with SVM and neural network 

classifier based models and the random forest classifier was successful to select and 

rank most representative features given a large set of input features. In this setting, 

it was also observed that a reduced number of features drastically decreased the 

computational complexity of DTI prediction models. 

For drug repurposing, a combination of similarity and feature-based supervised 

method was proposed by integrating drug/compound, target protein, phenotypic 

effect and disease association data from several sources [56]. The chemical structures 

of drugs and compounds were retrieved from the ChEMBL database. Three different 

molecular descriptors were used to represent compounds, which are Extended 

Connectivity Fingerprints (ECFP4), Chemistry Development Kit (CDK) 

Fingerprints, and KEGG Chemical Function and Sub-structures (KCF-S). The 

compounds were thus represented by 1024, 1024 and 475,692 dimensional 

fingerprints.    The obtained feature vectors were referred as the "chemical profile" 

of the compounds. Phenotypic effects of drugs were obtained from Food and Drug 

Administration (FDA) Adverse Event Reporting System (FAERS) and each of the 

2,594 drugs were represented as a 16,075-dimensional feature vector, where each 

dimension represents the presence or absence of a phenotypic effect. This dataset 

was named as the "phenotypic profile" of a drug. Compound-target interactions and 

the bioactivity values were obtained from seven different databases. Their total 
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activity set was comprised of 1,287,404 interactions involving 519,061 compounds 

and 3,736 targets. This dataset was referred as the "chemical protein interactome 

dataset". Molecular features of diseases were obtained from the International 

Classification of Diseases (ICD10) and the KEGG DISEASE database. The diseases 

were represented as 6342-dimensional binary feature vectors, where each dimension 

represents presence or absence of a molecular feature. Drug-disease associations 

were obtained from medical books and from the KEGG DRUG database. This 

dataset was comprised of 5,830 drug-disease associations involving 2,271 drugs and 

463 diseases. Disease-target associations were obtained from the KEGG DRUG 

database. They created a dataset consisting of 2,062 disease-target associations for 

250 diseases and 462 therapeutic target proteins and this dataset was named as the 

"disease-target association template". Their prediction method was composed of 

three parts, which were called as the Target Estimation with Similarity Search 

(TESS), Indication Prediction by Template Matching (IPTM) and Indication 

Prediction by Supervised Classification (IPSC). In TESS, the aim was to predict 

potential targets of a given drug based on similarity search. Each compound was 

represented by a 3,736-dimensional target interaction profile. The similarity search 

was performed against the compounds in the chemical-protein interactome dataset 

based on the chemical and phenotypic profiles of the compounds. Subsequently, for 

each target, the compounds that were associated with the corresponding target were 

retrieved and the drug-target similarity score was assigned using the similarity score 

between query drug and the most similar compound that were associated with the 

corresponding target. In IPTM, the aim was to predict novel drug indications for the 

query drugs. First, target proteins of the query drug were retrieved. For each target, 

the diseases that were associated with the corresponding target were obtained from 

the disease target association template. This way, the query drug was linked to the 

diseases based on their target associations. In IPSC, the aim was to predict novel 

drug indications using a supervised classification method. In this method, target 

proteins of the query drug and molecular features of diseases were used. Each drug-

disease pair was represented by a feature vector and drug indication prediction was 
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formulized as a binary classification problem, where the output of the regression-

based classifier shows if the drug could be applicable to the paired disease. The 

cross-validation results showed that IPCM and IPSC methods outperformed the 

previous methods from the literature. 

A supervised feature-based PCM method was proposed for GPCR and protein kinase 

targets [81]. The positive training dataset was generated using the GLIDA database 

by extracting experimental compound-target interactions, containing 5,207 

interactions for 317 targets and 866 compounds [82]. Negative training samples were 

generated among the unknown compounds-target pairs. Compounds were converted 

into 929-dimensional molecular descriptors. Descriptors for targets were generated 

using a string kernel, resulting in 400-dimensional feature vectors. Finally, two 

vectors, that is, compound and target descriptors, were concatenated for each positive 

and negative interaction. Finally, the generated feature vectors were fed to an SVM 

classifier to train predictive models for each target family. Selected novel drug 

predictions were also experimentally validated for both GPCR and protein kinase 

families. 

A supervised feature-based PCM method for the identification of novel drug 

combinations was described by Iwata et al. [13]. Orange Book and the KEGG 

databases were proposed to extract beneficial drug-drug combinations [83], [84]. 

Interacting drug–target pairs were collected from seven different databases. 4,007 

drug-target interactions were incorporated for 588 drugs and 930 targets. Each drug 

was represented by a 1,078-dimensional binary feature vector where 930 of them 

represent the presence or absence of each target and 148 of them represent the 

presence or absence of ATC code annotations. Subsequently, each drug–drug pair 

was represented as a binary feature vector by combining individual feature vectors 

of the corresponding drug pairs. Finally, the obtained feature vectors were fed to a 

logistic regression classifier. When a new drug–drug pair is given as a query to the 

system, the output was calculated as potentially beneficial or not. 
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Another supervised PCM method was proposed for drug-target interaction prediction 

[85]. In this approach, compounds were represented using fingerprints and targets 

were expressed as sequence alignment based profiles. First, the position specific 

scoring matrices were generated for all target protein sequences. Subsequently, local 

binary pattern method was adapted to extract features from position specific scoring 

matrices. In the end, targets and compounds were represented by 256 and 615-

dimensional feature vectors. Next, principal component analysis was applied for 

both target and compound feature vectors to obtain an uncorrelated and a reduced 

number of features. Four different datasets were employed: enzymes, GPCRs, ion 

channels and nuclear receptors. The positive samples were interacting compounds-

target pairs and same number of negative samples were selected randomly from 

remaining interaction sets. Finally, obtained features were fed into discriminative 

vector machine classifier which was proposed by the same group. Support vector 

machine classifier based on the same features were trained and the performance of 

two classification methods was compared. The results were compared with three 

conventional methods and this method had a better performance. 

In terms of the methodological approach used in modelling the pairwise 

relationships, a highly studied topic is the development of network or graph analysis 

based DTI prediction methods. In these methods, compounds and targets are 

represented as nodes on a graph, where the edges connecting these nodes indicate 

interactions. Modelled this way, estimation of unknown DTIs becomes a link 

prediction task. Various techniques, borrowed from the fields of graph theory and 

social and biological network analysis, are employed to solve the problem at hand. 

Frequently, the relationships in-between the compounds (i.e., in terms of 

molecular/structural similarities) and in-between the targets (i.e., in terms of 

homology or protein-protein interactions) have been incorporated in the generated 

networks to enrich the input information. An advantage of the network/graph-based 

approach is that the system can work well even when the number of training 

instances is very low. Network/graph-based DTI prediction methods can be 

similarity-based, feature-based or a combination of both. One seminal work on this 
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subject is by Yamanishi et al. [86], where the authors integrated both the similarities 

within the genomic space (using pairwise sequence alignment) and within the 

chemical space (using molecular and pharmacological effect similarities) in their 

network, for the first time. In this study, chemical, pharmacological and genomic 

spaces are unified and used together with the known DTIs to generate predictions for 

target families of enzymes, ion channels, GPCRs and nuclear receptors. In another 

study, Gönen [87] incorporated target protein sequence similarities and compound 

molecular structure similarities in a kernelized Bayesian matrix factorization 

framework to predict unknown DTIs. Other examples for network/graph based 

methods can be given as Shi et al. [77], Sawada et al. [56] and Li et al. [85], which 

are reviewed in this study. It is also important to note that the gold-standard dataset 

generated by Yamanishi et al. (explained in the section entitled: "Gold Standard 

Datasets for Virtual Screening") is suitable for testing network/graph-based DTI 

prediction methods. 

In a review study by Chen et al. the available resources for DTI prediction were 

presented including databases, web servers and computational methods [88]. 

Methodological approaches were categorized as graph/network-based, machine 

learning-based and other methods, and the advantages and disadvantages of each 

approach were discussed. For graph/network-based drug discovery, the integration 

of different network models and sequencing technologies have been indicated to 

provide significant improvements for personalized medicine. As a suggestion to 

further improve the DTI prediction performance, the employment of heterogeneous 

training data by combining different data sources was recommended. The 

graph/network-based approach (excluding artificial neural networks), which was 

highly employed in the DTI studies especially between 2006 and 2013 [79], [86], 

[87], [89]–[94], was mostly left out of this study in order to focus on novel DTI 

prediction approaches.  

Both the similarity and the feature-based approaches are used extensively in the 

literature. One of the main advantages of similarity-based approach is that when the 

problem involves heterogeneous data, different types of similarity matrices can be 
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combined in the same model. Another advantage of similarity-based methods is that, 

sophisticated kernel methods can be applied [75]. They are also relatively simple and 

easy to model. However, they are computationally not practical to apply on large 

datasets since they require extremely high number of similarity calculation 

operations. Considering the feature-based methods, one advantage is that, they can 

reveal intrinsic properties of compounds and targets that play critical roles in DTIs, 

which leads to more interpretable results. Another advantage is that, a problem-

specific feature selection can be performed to obtain relatively more accurate 

predictions. One of the challenges about the feature-based methods is the selection 

of negative samples for the construction of negative training sets. Although chemical 

databases include experimentally validated drug-target interactions, they do not 

provide sufficient number of experimentally validated non-interacting compound–

target pairs. When this is the case, the frequently employed approach for negative 

sample selection is to randomly select pairs from the set remained after excluding 

the positive training samples. However, this approach is problematic since the 

randomly selected pairs may also include pairs that are interacting, which is 

unknown (and therefore not recorded in the source database) at the time being. 

Negative sample selection is not only a problem for the virtual screening field, but 

also a problem for cheminformatics and bioinformatics in general [95]–[97]. There 

are alternative algorithmic methods to construct more reliable negative training 

datasets [75], [88], [98]–[100]. The lack of sufficient negative training datasets also 

leads to the class imbalance problem, which highly effects the prediction 

performances of computational systems. The class imbalance problem may produce 

a bias towards the class having most training samples, causing the model to give 

excessive number predictions for this class, resulting in high number of false positive 

predictions. In their recent studies, Soufan et al. focused on the class imbalance and 

false positive prediction problems. Models using five different solutions were trained 

to overcome class imbalance problem and the performances of these systems were 

compared. Classifier performance aware methods were also used along with several 

evaluation metrics in order to reduce the false positive rates [101], [102]. Another 
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challenge for the feature-based methods is the high-dimensionality of feature 

vectors, which can reach the order of millions [92], [103]. Extremely high-

dimensional vectors create computational overhead, and they often lower the 

accuracy of predictions. Usually combining different types of informative features 

increases the performance of classifiers; however, after a certain point, adding more 

features to the system starts to decrease the performance, which is known as curse 

of dimensionality [104]. Therefore, feature-based methods may require the 

application of feature selection techniques to reduce dimensions and to keep only the 

most relevant and distinctive features in the model. Various studies have been 

performed to analyse and compare feature reduction and selection techniques in the 

literature [105]–[110]. 

2.1.3 Deep Learning Applications in Virtual Screening 

Deep learning algorithms have been widely used in recent years due to their 

successful results in computer vision, speech recognition and bioinformatics [111]–

[114]. The term deep learning represents a group of machine learning approaches, 

which contain multiple data processing layers. Deep learning algorithms yield 

successful learning of the representations of the input data through multiple levels of 

abstraction  [115]. Deep neural networks (DNNs) are artificial neural network 

methods that have multiple hidden layers. In this sense, DNNs are considered as a 

group of deep learning algorithms. DNNs convert the low-level features obtained 

from the input into more and more complex features in each subsequent layer. An 

example of a basic feed-forward DNN (i.e., a multilayer perceptron - MLP) 

architecture is given in Figure 2.3, along with other popular DNN architectures. In 

this figure, nodes correspond to neurons and the edges between nodes correspond to 

neural connections, where the signal is transmitted. According to the model choice, 

neurons at different layers can be fully-connected to each other or not. At each 

neuron, a non-linear activation function, whose coefficients are determined during 

the training procedure, takes the input signal from multiple connected neurons at the 
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preceding layer and modifies it before transmitting it to the next neuron. A standard 

feed-forward artificial deep neural network has three different types of layers: the 

input layer, hidden layers and the output layer, each of which are composed of 

multiple parallel-connected neurons. A neural network with two or more hidden 

layers is considered as a deep neural network [111] The input features are directly 

fed to the input layer and after a number of non-linear transformations using hidden 

layers the predictions are generated at the output layer. Each output node corresponds 

to a task (i.e., class) to be predicted.  If there is only one node in the output layer then 

the corresponding network is referred as a single-task DNN. Otherwise, it is called a 

multi-task DNN. 

 

Figure 2.3. Schematic representations of different deep neural network (DNN) 

architectures frequently used in the literature (Adapted from our publication [7]). 

A deep learning algorithm won the Kaggle Virtual Screening Challenge, which was 

sponsored by Merck, and it drew considerable attention to employing deep learning 

techniques for virtual screening purposes [116], [117]. Recently, it was shown that 
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deep learning algorithms outperformed the state-of-the-art methods in numerous 

virtual screening studies [63], [116], [118]–[124]. Several advantages of deep 

learning architectures have been reported for virtual screening: 

• deep learning algorithms inherently build relationships between multiple 

targets, therefore they are suitable for multi-task learning; 

• they provide higher level abstractions by building complex features from raw 

input data in a hierarchical manner and able to identify the unknown structure 

in the data, and the observed high performance of DNNs is usually attributed 

to this ability; 

• shared hidden units among the targets enhances the prediction results of the 

targets having less training samples. 

There are several DNN techniques (or architectures) and each has advantages and 

disadvantages according to the nature of the data being analyzed and the types of 

features employed. The most commonly used ones can be listed as feed-forward 

DNNs with multiple hidden layers [117] which can be considered as the standard 

application, deep convolutional neural networks -CNNs- (highly used in computer 

vision) where each of the several convolutional layers will capture a specific feature 

from the multi-structured input data [118], [123], and pairwise input neural networks 

(PINN) where the features belonging to compounds and proteins can be fed to the 

model together [125]. DNN-based techniques are also divided into two according to 

the number of prediction tasks in a model, such as the single-task and multi-task 

DNNs. Single task networks are modelled in such a way that one model can only 

produce answer for one specific question (e.g., is there an interaction between this 

compound-protein pair) [126]; whereas, multitask networks are modelled to infer 

multiple unknowns in one model (e.g., which of the 20 potential target proteins can 

interact with the input compound) [116]. All of these DNN architectures can be 

considered under the title of feature-based machine learning methods. Below we 

review a large collection of studies of deep learning applications in computational 

drug discovery with an emphasis on DTI prediction. Table 2.1 summarizes 
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frequently used DNN architectures in the field of virtual screening and groups the 

reviewed studies in terms of the employed DNN architectures. Figure 2.3 shows the 

schematic representations of those DNN architectures explained in Table 2.1. 

Table 2.1 Deep learning architectures together with the virtual screening studies 

that utilize each architecture. 

Architecture Name Description DNN-based Virtual Screening Studies 

Citation Input Protein 
Features 

Input 
Compound 
Features 

Feed-forward Deep 
Neural Network – 
FFDNN (an 
interchangeably used 
term in some of the 
resources: multi-layer 
perceptron - MLP) 

A feed forward deep neural network 

can be considered as the most basic 

DNN architecture, which have 

multiple hidden layers that are 

usually fully-connected to each other 

(Figure 5). These networks are 

mostly structured to predict multiple 

number of tasks (usually targets in 

DTI prediction) in a single model 

(i.e. multi-task networks).  

Dahl et al. 
[116] 

- Several 
different 
molecular 
descriptors 

Ma et. al. 
[117] 

- Atom pairs and 
donor-acceptor 
pair descriptors 

Unterthiner 
et al. [124] 

- ECFP12 

Ramsundar 
et al. [121] 

- ECFP4 

Koutsoukas 
et al. [126] 

- ECFP4 

Pairwise Input Neural 
Network (PINN) 

PINNs are feed-forward neural 

networks that take two different 

feature vectors as input and predicts 

their relation as output. In some of 

the PINN applications, the two 

individual input vectors are 

processed by separate groups of 

neurons before they are merged at a 

subsequent fully-connected layer. 

PINNs are especially suitable for 

the prediction of pairwise relations 

such as DTIs. 

Wang et al. 
[125] 

Binding sites 2D structural 
fingerprints 

Wan et al. 
[127] 

Amino acid triplets 
in protein sequences  

2D structural 
fingerprints 

Lenselink et 
al. [128]  

Physicochemical 
properties 

Morgan 
fingerprints 
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Table 2.1 (continued) 

Recurrent Neural 
Network (RNN) 

RNNs are specialized artificial 

neural networks that contain 

feedback loops to extract patterns 

using not only the current input but 

also the previously perceived inputs. 

RNNs successfully extract patterns 

from sequential data such as texts, 

protein sequences, audio signals and 

time series data. RNNs mainly have 

applications in speech recognition. 

• Goh et al. 
[129] 

- SMILES strings 

Restricted Boltzmann 
Machine (RBM) / 
Deep Belief Network 
(DBN) 

RBMs are single layer generative 

artificial neural networks, which can 

learn probability distributions given 

the training data. Deep Belief 

Networks (DBN) are constructed by 

stacking RBMs to solve more 

complex problems. Different from 

FFDNNs, DBNs are trained stack-

by-stack. DBNs are used in several 

applications such as clustering and 

generating objects such as images. 

• Wen et al. 
[130] 

• Sequence 
composition 
descriptors 

• 2D structural 
fingerprints 

• Wang et al. 
[131] 

• Direct (e.g. compound-target binding) 
and indirect (e.g. compound changes the 
level of expression of the target) 
interactions on the multi-dimensional 
DTI network 

Convolutional Neural 
Network (CNN) 

CNNs inherently extract the features 

hidden in the input samples by 

applying sequential layers of 

convolutions and pooling modules. 

The convolution layers extract local 

patterns (sub-features) by moving a 

window over the sample and the 

pooling layers are used to sub-

sample and reduce the features. 

CNNs are mainly used in image 

processing applications. 

Wallach et 
al. [123] 

3D binding sites 3D structures of 
compounds 

Gonczarek 
et al. [132] 

• Binding pockets 3D structural 
fingerprints 

• Goh et al. 
[133] 

• - • 2D structure 
images of 
compounds 

Graph Convolutional 
Neural Network 
(GCN) 

GCNs are created by applying 

convoluting operations on graph 

encodings. GCNs can be used to 

model any entity that is expressed as 

a graph such as social networks and 

chemical compounds.  

• Kearnes et 
al. [134] 

- • 2D graphs of 
compounds 

• Altae-Tran 
et al. [135] 

- • 2D graphs of 
compounds 
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One of the early studies employed multi-task feed-forward DNNs for the prediction 

of activities of compounds against 19 target assays from the PubChem database 

[116]. Active and inactive labels of compounds were used against each of the 19 

targets and the training dataset was comprised of 69,396 active and 70,331 inactive 

compounds.  The problem was stated as a classification problem, where inputs were 

the compound descriptors and outputs were the presence of interaction against the 

modelled targets. 3,764 dimensional molecular descriptors were generated to 

represent the compounds. The performance of multi-task neural network was 

compared with random forests, gradient boosted decision tree ensembles and logistic 

regression methods. The results showed that multi-task neural networks performed 

best in most of the cases. The performance of single-task and multi-task neural 

networks were compared as well and multi-task neural networks achieved better 

performance in the test cases. Feature selection was further performed However, no 

significant performance gain due to feature selection was observed. 

In order to select hyper-parameters and compare single-task and multi-task DNNs, 

Ma et al. [117] made use of Merck's Kaggle challenge dataset along with the Merck's 

in-house datasets. Each compound was represented as molecular descriptors based 

on atom pairs and donor-acceptor pair descriptors. In total, there was 30 datasets, 

which included 129,295 unique compounds. Several models were created using 

different hyper-parameters and it was reported that the use of a single set of hyper-

parameters can perform better than using optimized parameters for different datasets. 

The performance was compared with the performances of models trained with 

random forest classifier and DNNs achieved higher performance. Furthermore, on 

the average, multi-task DNNs obtained better prediction performance than the 

single-task DNNs. The performance of the single-task DNNs was reported to 

increase with the increasing size of training datasets. 

In another early study, Unterthiner et al. [124] used multi-task DNNs for the 

prediction of activities of compounds for targets. ChEMBL database was used to 

obtain known compound-target interactions and the corresponding bioactivity 

values, which were discretized as active, weakly active, weakly inactive and inactive 
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based on pre-defined bioactivity thresholds. This way, a dataset was generated that 

comprised of 2,103,018 (972,268 active - 1,130,750 inactive) bioactivity 

measurements distributed across 5,069 targets and 743,336 compounds.  In the 

models, each compound was represented as about 13 million dimensional 

fingerprints using ECFP12 features and then number of features were reduced to 

43,340 dimensions by discarding the features that were absent in the majority of 

compounds. Finally, multi-task DNNs were trained where the inputs were compound 

feature vectors and the outputs were target activity values. The performance of their 

multi-task neural network was compared with support vector machine, binary kernel 

discrimination, logistic regression, k-nearest neighbour and Parzen-Rosenblatt 

methods. Multi-task neural network outperformed all other algorithms. 

A particular type of DNNs, pyramidal multi-task DNNs was described and applied 

for virtual screening [121]. In this pyramidal architecture layers are organized such 

that each layer has less number of neurons than its previous layer Training datasets 

were collected from four different publicly available data sources, which consisted 

of nearly 37.8 million experimental compound-protein interactions for 1.6 million 

compounds and 259 targets. The compounds were represented by ECFP4 

fingerprints. Several experiments were conducted by changing the number of tasks 

and training samples in their models. The performance of pyramidal multi-task 

neural networks was compared with logistic regression, random forest, single-task 

neural network, pyramidal single-task neural network and 1-hidden layer multi-task 

neural network. Pyramidal multi-task neural network performed best among the 

other methods. The following important observations were reported: 

• the multi-task deep architecture achieved significant improvement over 

standard machine learning algorithms; 

• the performance of multi-task networks increased as more tasks and data 

points were added; 

• shared bioactive compounds among targets had a significant positive impact 

on performance. 
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The main difference between the study by Ramsundar et al. and the study by 

Unterthiner et al. is that, the number of known ligands for each target was much 

higher in this study (i.e., ~2 million samples for 1,230 targets vs. ~40 million samples 

for 259 targets). In addition, the main concern of the study by Ramsundar et al. was 

to discover the causes of performance changes based on parameter selections (i.e., 

number of tasks, training data sizes and layer organizations), whereas in Unterthiner 

et al. the main aim was to demonstrate the performance gain of multi-task DNNs 

over other baseline methods. 

An investigative study was performed for virtual screening by Koutsoukas et al. 

[126] using single-task feed-forward DNNs. Their study was composed of two major 

parts: first of all, the effects of the hyper-parameter choices on the performance were 

investigated. In the second part, the aim was to compare the DNNs with other types 

of classifiers in terms of performance. ChEMBL database was used to create training 

datasets for seven different targets from diverse protein families and an individual 

prediction model was constructed for each target. 7,218 active compounds was tested 

against these targets and the compounds were represented as 1024-dimensional 

molecular fingerprints. The rectified linear unit activation function performed better 

than the other activation functions during the experiments. It was also reported that 

the number of neurons at each layer that give the best performance was highly 

dependent on the dataset and should be determined separately for each model. The 

drop-out regularization helped to gain better performances around 50% drop-out 

rate. In the second part of the study, the performance of DNNs was compared with 

Bernoulli Naive Bayes, k-nearest neighbour, random forest and SVM classifiers, and 

DNNs outperformed all of them. 

Pairwise input neural networks where inputs represented pairs of target-ligand 

feature vectors are also a popular type of DNNs.  Pursuing a PCM approach, Wang 

et al. considered target-ligand interaction as a binary classification problem, where 

inputs represented pairs of target-ligand feature vectors and the binary output 

represented the interaction prediction for the corresponding pair [125]. The training 

dataset was obtained from sc-PDB database and comprised of 836 targets, 2710 
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ligands and 6830 target-ligand pairs [136]. Binding sites of proteins were used as 

target features, which were represented as 199-dimensional vectors. The compounds 

were represented as 413 dimensional fingerprints. Subsequently, each known 

interacting target and ligand pair was labelled as a positive example and the 

remaining pairs were considered as the negative examples. This information was 

used then to train a four-layered pairwise neural network model. The method 

achieved better performance than the conventional methods from the literature in 

terms of several criteria. 

Wan et al. [127] proposed a DNN for DTI prediction. Their framework also included 

an unsupervised representation learning for feature generation by identifying low-

dimensional representations of the initial input features. The initial input features 

were composed of Morgan fingerprints for compounds and protein sequences for 

targets, which were embedded to a fixed low dimensional space (i.e., 200 dimensions 

for compounds and 100 for proteins) using natural language processing (NLP) 

techniques (i.e., latent semantic analysis and Word2vec). Sub-structures in 

compounds and amino acid triplets in proteins were treated as words for the 

embeddings. The system was trained on large-scale ChEMBL bioactivity data by 

generating training set sizes of 360,835 positive and 93,903 negative examples. 

These examples were selected using activity measurement values (i.e., IC50/Ki 

values ≤ 1 µM for positive and ≥ 30 µM for negatives). The performance was 

measured using k-fold cross-validation in different settings and it was compared 

against random forest as the baseline classifier, where the proposed approach 

significantly surpassed on the difficult-to-predict setting. The prediction 

performance was also measured on a test set composed of DUD-E gold-standard 

dataset interactions and compared to another deep learning based DTI prediction 

method AtomNet [123]. The elevated performance has indicated effectiveness of the 

of the word-embedding approach. 

Lenselink et al. [128] proposed a PCM deep learning solution to drug-target 

interaction prediction. The training dataset was generated using verified bioactivities 

in the ChEMBL database. Target protein sequences were represented as 169-
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dimensional feature vectors based on their physicochemical properties. Compounds 

were represented by varying lengths of Morgan fingerprints (e.g., 4096, 2048, 512, 

256-dimensional). The interacting target-compound pairs were fed to multi-task 

DNN to create the predictive models. The performance change was investigated 

based on multiple criteria such as the length of the fingerprints, input feature 

utilization approach (i.e., ligand-based against PCM), the depth and the architecture 

of the DNNs. The performance was compared with the models trained by naive 

Bayes, random forest, support vector machines and logistic regression classifiers for 

both ligand-based and PCM approaches, where possible. As a result, the DNN 

models outperformed the models generated using conventional techniques and the 

average performance of PCM-based models was slightly higher compared to the 

ligand-based ones. 

SMILES2vec is a RNN deep learning solution to predict the same physical properties 

of compounds directly using the SMILES representations as the input [129]. The aim 

here was also similar to their previous study in terms of performing minimal amount 

of feature engineering and pre-processing for model construction. Recurrent DNNs 

were used to train the predictive models and Bayesian optimization technique was 

used to select the best hyperparameters. The performance results of SMILES2vec 

was compared with the performances of DNNs trained using engineered features. 

According to the results, SMILES2vec outperformed other methods on regression 

tasks and underperformed on classification tasks. The results of these two studies 

indicated the potential of deep learning in extracting relevant properties from the 

training data even without carefully constructed features, which may render feature 

extraction and selection applications unnecessary in the future. 

In one of the earliest applications of DNNs for DTI prediction, restricted Boltzmann 

machines (RBM), which is a two-layer undirected graphical model was employed 

[131]. An RBM is not considered as a deep architecture since it only contains one 

hidden layer. However, an individual RBM was generated for each target and a large 

network composed of multiple RBMs was implemented as the final model. The main 

aim in this study was to construct a multidimensional DTI network model by 
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incorporating DTIs from diverse set of compounds and targets with different types 

of interactions. The interaction types were divided between ligands and receptors 

into two groups as direct and indirect interactions. The physical binding of small 

molecule drugs to target proteins was referred to as direct interaction. The indirect 

interactions corresponded to the effects of the compounds on proteins by means other 

than direct binding (e.g., changing the expression level of the gene that encodes the 

target). The interaction type information was incorporated by adding edge properties 

to their network. Besides, additional models were constructed for predicting drug 

modes of action (e.g., activation and inhibition). DTI information in the MATADOR 

and STITCH databases were used for the training and testing of their method, and it 

was found that the method was able to predict different types of DTIs and drug modes 

of action with high accuracy. The proposed method was compared with a simple 

logic-based approach, and it performed better. Finally, new DTI predictions were 

produced using the proposed method, and verified through literature evidence. 

DeepDTIs were developed for the prediction of drug-target interactions using deep 

belief network (DBN), which is constructed by stacking multiple Restricted 

Boltzmann Machines (RBM) [130]. In DeepDTIs, targets are not separated into 

classes according to protein families to train individual models, instead all targets in 

the training data are pooled to train one predictive model. The training data was 

composed of drug-target interactions from the DrugBank database (i.e., 6262 DTIs 

between 1412 approved drugs and 1520 targets). To generate input features, ECFP 

fingerprints were employed for compounds and sequence composition descriptors 

were used for target proteins and they were all merged to represent drug-target pairs 

(i.e., a 14564-dimensional vector for each pair). Experimental drug-target pairs from 

DrugBank was used to assess the performance of DeepDTIs and to compare it with 

other ML methods (i.e., Bernoulli naive Bayesian model, decision trees and random 

forests). The method was also applied to predict the unknown DTIs between all 

combinations of drug and targets in their training set and the most probable 

predictions were manually verified through literature-based evidence. Finally, in 

order to test the ability of DBN in abstracting the input and generating a more 
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informative representation of the data in each successive hidden layer, the 

transformed data generated at each layer was used to train a simple logistic 

regression classification model for the prediction of DTIs. The performance of the 

LR model increased with the increasing hidden layer depth, which indicated the 

effectiveness of the approach. 

The method "AtomNet" by Wallach et al. [123] is one of the earliest applications of 

CNNs for structure-based virtual screening. The proposed method incorporated both 

the compound and target features for training by using the 3D structural information 

of ligand-receptor (i.e., compound-target) complexes. 3D grids placed over the 

atomic coordinates in the ligand-receptor complexes were used as input to their 

CNN, where each grid contained numerical structural features such as atom type 

enumerations and structural protein-ligand interaction fingerprints. Three datasets 

(i.e., the DUD-E set and two generated datasets: a DUDE-like benchmark set 

composed of 78,904 active compounds, 2,367,120 inactive compounds and 290 

targets and another dataset with experimentally-verified inactive molecules 

composed of 78,904 active compounds, 363,187 inactive compounds for 290 targets, 

both constructed using ChEMBL) were employed to train and validate their method. 

For the training of the system, targets that have at least one annotated binding site in 

sc-PDB database were used. The prediction results were compared with two state-

of-the-art structure-based virtual screening (i.e., docking) methods using 

abovementioned datasets and the described method outperformed the other 

algorithms with a large margin. This study is significant in terms of indicating that 

CNNs can be used to model the structural properties of ligand-receptor complexes 

with a performance better than conventional docking based approaches. 

A CNN architecture with a mixture of PCM and structure-based DTI prediction 

approach was also proposed [132]. The method takes protein 3D structure 

information (i.e., the specific binding pocket of the target) along with compound 

descriptors (i.e., fixed-size 3D structural fingerprints based on learnable atom 

convolution operations generated from ECFPs) in a pairwise-input format. The 

insufficiency of current benchmarking datasets for testing structure-based methods 
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was discussed and instead, a new dataset generated from DUD-E, PDBBind and 

MUV datasets was described. The method was trained and tested by this described 

dataset. The method was compared with the state-of-the-art methods (i.e., docking 

methods and AtomNet: another DNN-based approach) and the models trained with 

learnt compound features resulted in better performance compared to the models 

trained with simple ECFPs. 

Another CNN based method for the prediction of chemical properties of compounds 

such as binding, toxicity and free energy solvation was described by Goh et al. [133]. 

CNN-based techniques are highly utilized in computer vision with high performance. 

The focus of this study was constructing predictive models with minimal amount of 

feature engineering and chemical knowledge. In this method, each compound was 

represented as an 80x80 pixel sized image based on their 2D drawings as shown in 

chemical databases. These images were then fed to the CNN for classification. Three 

different datasets were obtained from MoleculeNet benchmark database. The first 

dataset was Tox21, which was composed of 8,014 compounds labelled as "toxic" or 

"non-toxic". The second dataset was freeSolv dataset, including 643 compounds with 

measured hydration free energies of small-molecules. Lastly, HIV dataset included 

bioactivity measurements of 41,913 compounds against the inhibition of HIV 

replication. Two classification models were separately trained using HIV and Tox21 

datasets and a regression model was trained using freeSolv dataset. The results were 

compared with the results of the models that were trained with conventional ECFP4 

fingerprints using multi-task DNNs. The descrobed method slightly outperformed 

the conventional feature utilization method in HIV and freeSolv datasets and slightly 

underperformed in Tox21 dataset.  

A graph convolution deep learning method was described to extract learnable 

features from the graph representations of compounds (the vertices in the graphs 

correspond to atoms and edges correspond to bonds between atoms) and to perform 

learning using the extracted features for DTI prediction [134]. Several datasets 

coming from PubChem, Tox21, MUV and DUD-E were combined to achieve a total 

of 38 million data points. The graph structures of compounds were generated using 
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SMILES representations and the extracted graphs were fed to the proposed DNN to 

train the system. The described models were compared with the models trained with 

multi-task DNN, random forest and logistic regression methods, which were trained 

using ECFP4 fingerprints. The described method could not outperform the other 

methods but achieved a comparable performance. Nevertheless, this work stands as 

a proof of concept that indicates graph convolutions can be a good alternative for 

employing deep learning for virtual screening with a simple compound feature 

encoding. 

A novel deep-learning architecture "iterative refinement long short-term memory" 

(IterRefLSTM) was developed using graph convolutional neural networks especially 

for protein targets with low number of training instances [135]. The method allows 

the learning of sophisticated small molecule features using one-shot learning 

methodology, and yield more reliable predictions when the training dataset is small. 

Training datasets were generated using assay results from three different sources, 

which were Tox21 challenge dataset, SIDER database and Maximum unbiased 

validation (MUV) dataset [120], [137], [138]. Drug-target prediction problem was 

designed again as a binary classification problem and multiple models were trained 

for each target, where inputs were 2D graph structures of compounds and outputs 

were binary variables as active or inactive. One-shot deep learning architecture was 

combined with iterative refinement long short-term memories and graph 

convolutions. Graph convolutional features of compounds were used as feature 

vectors to train neural network models. This novel method was compared with 

random forest as a baseline classifier. The proposed method obtained significant 

performance improvement on datasets having low number of training samples 

compared to the baseline classifier. The models were released as a part of the open-

source DeepChem framework (https://github.com/deepchem/deepchem). 

DeepDTA is a non-structure based binding affinity prediction method that employs 

pair-wise input deep neural network. In DeepDTA, an integer value is assigned for 

each possible symbol in SMILES notation and for each amino-acid and the input 

compounds and protein sequences are encoded based on the assigned values for 
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SMILES symbols and amino acids, respectively. The encoded ligand and protein 

representations are fed to embedding layers which are followed by 1-D convolutional 

and pooling layers. The last convolutional layers are flattened and concatenated and 

the concatenated layer is connected to fully-connected layers. The output of 

DeepDTA is the predicted binding affinity prediction value. The aim of the method 

is to minimize the difference between the predicted and measured binding affinity 

values.  They used two different datasets (Davis [139] and KIBA [140] datasets) to 

compare their method with state-of-the-art methods and showed that their method 

outperformed the other methods.  

DeepConvDTI is another method that uses pairwise input deep neural network. In 

this method, the aim is to predict binary drug-target interaction prediction based-on 

predefined active and inactive drug-target pairs. This method transforms raw protein 

sequences into learnable embedding vectors which are passed through convolutional 

layers. Ligands are represented as 2,048 dimensional Morgan/Circular fingerprints 

and the constructed feature vectors (i.e. fingerprints) are fed to fully-connected 

layers. The last layer of convolutional layer and the last layer of fully-connected layer 

are concatenated to construct a fully-connected layer. The output of the method is 

the binary drug-target interaction (active or inactive) for the input drug-target pair. 

The active and inactive data pairs for training are collected from three databases 

which are DrugBank [141], International Union of Basic and Clinical Pharmacology 

(IUPHAR) [142], and Kyoto Encyclopedia of Genes and Genomes (KEGG) [83]. 

Authors also created independent active and inactive test datasets from PubChem 

Bioassays datasets. 

According to the "deep learning for virtual screening" studies published so far, 

DNNs are especially convenient for analysing the relationship between the 

compounds and targets since the data is high-dimensional and the attributes 

contributing to molecular interactions are not clearly known [116]. In these studies, 

the deep models have exhibited elevated drug-target interaction prediction 

performance even with minimal data pre-processing and minimal parameter 

optimization. In these works, the authors mostly focus on discussing the applicability 
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of deep learning techniques on drug-target interaction prediction problem over the 

architecture and hyper-parameter selections [121], [123], [124], concluding that deep 

learning has a substantial potential to advance the field of computational drug 

discovery [117], [118]. 

Apart from DTI prediction, deep learning techniques are also employed for other 

drug discovery related purposes. For instance, Mayr et al. developed DeepTox, an 

ensemble deep learning based compound toxicity prediction method and won the 

Tox21 data challenge [120]. Related to this, Maltarollo et al. reviewed the 

applications of various machine learning approaches including DNNs for ADME-

Tox (i.e., absorption, distribution, metabolism, excretion and toxicity) prediction 

[143]. Aliper et al. proposed a DNN-based therapeutic effect predictor for 

compounds, using only the drug-induced transcriptomic profiles in different cell 

lines as input [144]. In one of the earliest applications of deep learning in drug 

discovery Lusci et al. proposed an ensemble of recursive neural networks to predict 

the molecular properties of compounds such as the aqueous solubility. The authors 

developed a web-based tool "AquaSol" for the prediction of the aqueous solubility 

of compounds, which takes SMILES representations as input [145].  

There are several review articles on deep learning applications on the biomedical 

data [69], [113], [114], [118], [119], [133], [146], [147]. In some of these studies, 

the authors explained several DNN architectures that has been successfully applied 

on non-biomedical fields and discussed the current and potential applications on 

biomedicine [69], [113], [114], [118], [119], [148]. In a few of these review studies, 

specific applications of DNNs in virtual screening has been discussed as well [118], 

[147], [148]; however, most of the original research articles on this topic came out 

just recently (in late 2016 and in 2017), which were not included in these reviews. 

Apart from the machine learning based prediction methodologies, some review 

studies focused on available toolkits, frameworks, databases and 

representations/descriptors for computational drug discovery [39], [43], [88], [148]. 
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2.1.4 Evaluation Metrics and Performance Comparison of Virtual 

Screening Methods                        

Evaluating the performance of machine learning methods is crucial to be able to 

assess how well a method performs, and to fairly compare the performances of 

different methods. Here, we demonstrate the most widely used evaluation metrics in 

the literature, which are precision, recall, F1-score, F0.5-score, accuracy and 

Matthews correlation coefficient (formulations are given below together with 

quantitative ranges).  
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In the equations above, TP, FP, TN and FN represent he number of true positives, 

false positives, true negatives and false negatives, respectively. Each of these metrics 

have different properties. For example, precision refers to fraction of the correctly 

predicted samples (TP) among all positively predicted targets, whereas recall (i.e., 

true positives rate) denotes the fraction of correctly predicted samples among all truly 

positive samples. Evaluating the performance of methods using only precision or 

only recall may result in unrealistic conclusions. For example, if using only precision 

as the evaluation metric would results in overlooking the high number of FN 

predictions, since precision does not take false negatives into account. The same case 

is applied for the recall and the false positives. To overcome this issue, F1-score is 

employed, which is a harmonic mean of precision and recall, to consider both the 

FPs and FNs. F1-score gives equal weights to precision and recall, therefore both 

metrics are treated same. However, in some virtual screening studies, reducing the 

number of FPs is considered to be an important issue to provide more reliable 

predictions [101], [102]. For this, F0.5-score is used, where twice the weight is given 

to precision compared to recall, in order to minimize number of FP predictions; in 

other words, to increase the probability of a positive prediction to be a TP. Accuracy 

measure can be defined as the fraction of correctly predicted samples among all 

samples in the training dataset. Evaluating the system performance based on 

accuracy may result in high bias, especially when the positive and the negative 

classes are imbalanced. Considering the virtual screening data, the number of 

negative samples are usually significantly higher than number of positive samples. 

For a failing predictive model which classifies all instances as negative (i.e., inactive 
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or non-interacting), the accuracy measure would result in overestimated 

performance. Matthews correlation coefficient (MCC) is another measure which also 

is a balanced performance calculation metric similar to the F1-score. It was reported 

that MCC can very well be used for performance evaluation when classes are 

imbalanced [149]. The main difference between MCC and F1-score is that F1-score 

does not take TNs into account, whereas MCC does. Therefore, using MCC for 

performance evaluation can be more convenient especially when one have a reliable 

negative training dataset. All of the metrics explained above are used to measure the 

performance of a predictive model at one point (i.e., at a selected prediction score 

threshold, above which the corresponding compound-target pair is predicted to be 

interacting/active, and below which they are estimated to be non-

interacting/inactive). However, the generalization of the performance over the whole 

threshold spectrum is also required especially to fairly compare the performance of 

multiple methods. The area under the receiver operating characteristic (AUROC) 

curve (i.e., a 2-dimensional plot where the horizontal and the vertical axis correspond 

to false positives rate and the true positives rate, respectively; drawn considering the 

performance measures at different arbitrarily selected score thresholds) or the area 

under the precision vs. recall curve – AUPR (i.e., a similar plot where the precision 

and recall values are used as the 2 dimensions) are employed for this purpose. It is 

also important to note that the discriminative power of AUROC diminishes at low 

false positives rates; as a result,  AUROC is usually considered inferior to AUPR. 

Considering the range of values that can be obtained using these metrics, 1 usually 

indicates a perfect classifier and the classifier performance decreases with the 

resulting measure getting closer to 0. As for MCC where the range is between -1 and 

1, the measure of 0 indicates a random classifier and -1 indicates a perfect negative 

correlation. As a conclusion, the evaluation metrics should be selected based on 

nature of the problem at hand. Calculating the performance of different systems 

using multiple evolution metrics is generally preferred to be able to observe the 

system behavior from different perspectives. 
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2.2 Databases and Gold Standard Datasets for Virtual Screening 

The aim of this s is to provide a brief overview of the open access chemical and 

biological data repositories as well as the available gold standard datasets that are 

widely used in virtual screening. Compound and bioactivity databases, together with 

the tools that they provide, are crucial for the development of novel virtual screening 

methods. The databases for compounds, bioactivities and proteins, and their statistics 

are given in Table 2.3. 

2.2.1 Compound and Bioactivity Databases 

With the improvements in the drug screening technologies and virtual screening 

methods, the amount of both the experimental bioassay data and computationally 

produced DTI data are increasing. Therefore, researchers require structured chemical 

and biological databases to store and publish this vast amount of data in a well-

organized way.  A chemical database of bioactive molecules (i.e., a compound 

database) is a resource that contains several properties of chemical substances such 

as 2D and 3D structures, physical and chemical attributes, molecular descriptors, 

side effects and clinical information; as well as, targets and activity measurements. 

The public release of large scale experimental bioactivity data (mostly from HTS 

assays) have started a new era in computational biomedical research. Research 

groups from all around the world have started to access and analyse the data, which 

boost the field of computational drug discovery (specifically virtual screening) in the 

last decade. In this sense, the prominent bioactivity and compound data resources 

can be listed as PubChem [1], ChEMBL [2], DrugBank [5], STITCH [150], 

BindingDB [151], BindingMoad [152], KEGG [83], SIDER [137], DCDB [153], 

HMDB [154] and T3DB [155]. Although the discussed databases have common 

properties, they also complement each other by providing different features. For 

example, PubChem contains the largest bioactivity data for compounds -mainly 

retrieved from HTS experiments- and the other databases generally import data from 
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PubChem. ChEMBL is also a large-scale compound and bioactivity database. 

However, one of the most significant differences of ChEMBL from the other large-

scale sources is that the provided data is manually curated by experts from the 

literature in a comprehensive manner, making ChEMBL a more reliable resource, 

whereas the PubChem data is non-curated. ChEMBL also categorizes targets as 

“Single Protein”, “Protein Family” and “Protein Complex” and assigns a confidence 

score to state the specificity of compound activity. The main advantage of using 

PubChem over the other resources is its unmatched high volume (i.e., in terms of the 

number of bioassays, bioactivities, compounds and targets). Another bioactivity 

database BindingDB contains only experimentally validated bioactivity values of 

compound-target complexes without considering other functional assay results. 

BindingDB directly provides validation data sets for computational drug design 

studies. In contrary to PubChem, ChEMBL and BindingDB, BindingMoad is a 

small-scale bioactivity database, which includes high-resolution 3D structures of 

proteins and their ligand annotations for related protein-ligand interactions. In this 

sense, BindingMoad is especially convenient to be employed for the structure based 

virtual screening approaches. As an extensive network of biological systems, KEGG 

is a valuable resource for understanding functional hierarchies of biological events 

involving molecular interactions, pathways and disease mechanisms from 

molecular-level information of genes and genomes extracted from large-scale 

datasets of genome sequencing or other high-throughput experimental techniques. 

DrugBank database includes information regarding the approved and experimental 

drugs along with their target associations; hence, it is a small-scale database. 

However, DrugBank covers almost all aspects of drugs as a manually curated 

biomedical resource with high-quality standards. The data obtained from DrugBank 

is often used in test sets for novel large-scale virtual screening methods. SIDER and 

STITCH are sister projects, where the former focuses on side effect information and 

the latter focuses on the compound-target interactions under biological networks 

point of view. Therefore, it is quite common to combine complementary features 

from these databases, when applicable. In addition to the abovementioned resources, 
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there are also useful databases such as DCDB, HMDB and T3DB, which focus on 

drug combinations, human metabolites and toxic substances, respectively. 

Considering these bioactivity databases, PubChem, ChEMBL, Binding MOAD and 

BindingDB represent activity data with quantitative measurements such as the IC50, 

EC50, Ki and potency; while DrugBank, STITCH, KEGG, DCDB, HMDB and 

T3DB only provide the information regarding presence of an activity/interaction 

between the corresponding drug-target pairs. 

Table 2.2 Statistics of compounds, bioactivities and target protein databases 

Compound& 

Bioactivity 

Databases 

Statistics* 

Version 
Compounds Targets Interactions 

PubChem [1] 
93,977,773(C) 

235,653,627(S) 
10,341(P) 

233,799,255(I) 

1,252,820(E) 
03.12.2017  

ChEMBL [2] 1,735,442(C) 11,538 (P) 
14,675,320(I) 

1,302,147(E) 
v23 

DrugBank [5] 9,591(D) 4,270 (P) 16,748(I) v5.0 

STITCH [150] ~500,000(C) 9,643,763(P) ~1,6billion(I) v5.0 

BindingDB 

[151] 
635,301(C) 7,000 (P) 1,419,347(I) 03.12.2017 

BindingMoad 

[152] 
12,440(C) 7,599 (F) 25,769(I) Rel. 2014 

KEGG [83] 
18,211(C) 

10,484(D) 
976 (P) 6,502(I) Rel. 84.1 

DCDB [153] 
904(D) 

1,363(DC) 
805(P) - v2.0 
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Table 2.2 (continued) 

T3DB [155] 3,673(T) 2,087(P) 42,471(I) v2.0 

SIDE Effect  

Databases 
Statistics* Version 

SIDER [137] 1,430 (D), 5,868 (SE), 139,756 (A) v4.1 

Metabolome 

Databases 
Statistics* Version 

HMDB [154] 114,089 (M) v4.0 

Chemical  

Databases 
Compounds Version 

ChemSpider [3] ~62,000,000(C) 03.12.2017 

ChEBI [4] 53,495(C) Rel. 158 

ZINC [156] ~100,000,000(C) ZINC 15 

2.2.2 Gold Standard Datasets for Virtual Screening 

In machine learning, the term "gold standard datasets" refer to reliable sets of 

information created to address a particular problem, which can be used for the 

following purposes: 

• Development (i.e., training and testing) of computational methods; 

• adjustment of the parameters of computational methods; 

• evaluation of the performance of trained models; 

• benchmarking to compare the performances of various prediction models.  
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In virtual screening, gold standard datasets generally comprise of manually curated 

compound-target pairs and their bioactivity values. The abovementioned data 

repositories provide data that can be used for model training and benchmarking; 

however, it is not easy to understand which database to employ at which step, to 

obtain the required data. Therefore, dataset construction is one of the critical steps in 

virtual screening studies. Although these databases provide cross-references to each 

other to some extent, the data is mostly disconnected and it is often non-trivial to 

carry out data integration operations on different resources; which requires expert 

level knowledge. As a result, expert curated gold-standard datasets are extremely 

valuable for the community. 

Due to the lack of adequate experimental data and publicly available data 

repositories, it was a significant problem to define a suitable gold standard dataset 

for benchmark studies until 10 years ago. The early datasets were either too small or 

proprietary. For example, a dataset generated in 1988 for comparative molecular 

field analysis (CoMFA) included only 21 varied steroid structures for the analysis of 

their binding affinities to human corticosteroid- and testosterone-binding globulins 

[157]. In 2001, Hert et al. generated a dataset for the comparison of different types 

of 2D fingerprints used in similarity-based virtual screening with a total of 11 activity 

class each of which was involving active compounds in a range of approximately 

300-1200. However, this dataset was derived from MDL Drug Data Report database, 

which is licensed and not publicly available [158]. 

As one of the first gold standard datasets that is large enough and freely accessible, 

Yamanishi et al. created a dataset with four classes (i.e., families) of targets that are 

enzymes, ion channels, G-protein coupled receptors (GPCRs) and nuclear receptors 

[79]. The dataset by Yamanishi et al. involves only human proteins and was 

constructed using KEGG BRITE, BRENDA, SuperTarget and DrugBank databases; 

and generated mainly for evaluating and training of their own VS method. This 

dataset can be reached via: http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. 

The numbers of targets in these datasets are 664, 204, 95 and 26; whereas the 

numbers of drug-target interactions are 2926, 1476, 635, 90, respectively for each 
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class. An updated version of the dataset was later created again by Yamanishi et al., 

including the same target classes [86]; this time using the JAPIC database 

(http://www.japic.or.jp/). The numbers of the targets in the updated set are the same 

as previous dataset, and the numbers of the interactions are 1515, 776, 314 and 44, 

respectively for each class. Yamanishi’s sets were generated to train and to test the 

performances of network/graph base DTI prediction methods; thus, they are among 

the most utilized benchmarking datasets for network/graph based approaches.  

However, they usually are not suitable for machine learning approaches, which 

require large training datasets. Yamanishi’s gold-standard sets can be downloaded 

from http://cbio.mines-paristech.fr/~yyamanishi/pharmaco/. 

Huang, Irwin and Shoichet have generated a benchmarking dataset called DUD 

(directory of useful decoys) for testing virtual screening methods, by curating 

challenging decoys that have a very low probability of interacting with the selected 

targets. The DUD dataset contained active compounds for the selected targets 

together with 50 decoys for each active compound, which have similar 

physicochemical properties but different topology [159]. As an updated and 

enhanced version of DUD with more diverse target classes such as GPCRs and ion 

channels (along with enzymes and nuclear receptors) DUD-E contains 22,886 

ligands and their affinities against 102 targets retrieved from the ChEMBL database, 

together with property-matched decoys obtained from the ZINC database.  The 

dataset is freely available at http://dude.docking.org [160]. 

Another benchmark dataset designed for virtual screening is Maximum Unbiased 

Validation (MUV), which was generated from PubChem bioactivity data by 

topological optimization based on a refined nearest neighbour analysis. MUV 

provides randomly distributed sets of active compounds -selected from potential 

actives (PA) and inactive compounds -selected from potential decoys (PD) that 

minimizes the influence of dataset bias on validation results. The workflow used for 

the generation of optimized MUV dataset is also freely available as a software 

package that can be applied on other activity datasets for optimization. The dataset 
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and the software package can be accessed via https://www.tu-

braunschweig.de/pharmchem/forschung/baumann/muv [138]. 

In 2012, Merck sponsored a drug target interaction challenge over Kaggle data 

competition service (https://www.kaggle.com/c/MerckActivity). They provided 

164,024 compounds for 15 biologically relevant targets. For each activity, they 

provided a list of chemicals along with their molecular descriptors and bioactivity 

measurement values. The participating teams tried to predict the experimentally 

known held-out interactions among the overall dataset. The evaluation mechanism 

and the performance results of the teams are available in the competition page. 

Following the end of the competition, the held-out evaluation sets were released, 

which can now be used as benchmarking datasets for different virtual screening 

approaches. The datasets are explained in the publication by Ma et al. [117] and 

available at https://www.kaggle.com/c/MerckActivity/data. 

Another dataset called Tox21 is also commonly used in machine learning based 

computational drug discovery applications. This dataset has been generated by The 

Tox21 Data Challenge community in 2014 to evaluate the performances of different 

computational methods in terms of toxicity prediction. The dataset comprises 

approximately 12,000 environmental chemicals and approved drugs screened in 12 

different bioassays related to nuclear receptor signaling and stress response pathways 

to reveal their toxic effects based on the disruption of these processes [161]. 

There are also novel approaches for generating gold standard datasets especially for 

deep learning applications in DTI prediction. Wu et al. developed a platform, 

MoleculeNet, as a benchmark collection for machine learning methods used in 

molecular systems. The curated dataset of MoleculeNet contains nearly 700,000 

compounds retrieved from publicly available databases such as QM7/QM7b, QM8, 

QM9, ESOL, FreeSolv, Lipophilicity and PDBBind for regression datasets and 

PCBA, MUV, HIV, BACE, BBBP, Tox21, ToxCast, ClinTox and SIDER for 

classification datasets. The data was split into training/validation/test subsets and 

tested on a range of categories, such as quantum mechanics, physical chemistry, 



 
 

54 

biophysics and physiology. Furthermore, MoleculeNet provided evaluation metrics 

and open-source implementations of several well-known molecular featurization 

methods and machine learning algorithms. All parts of MoleculeNet have also been 

integrated into DeepChem open-source framework 

(https://github.com/deepchem/deepchem) [162]. Apart from these gold-standard 

sets, there has also been efforts to generate purpose specific data sets [163], often 

using the ZINC database [156] as their resource. With the increased volume of open 

access experimental data in repositories such as PubChem, ChEMBL, ZINC and etc., 

the data resources for virtual screening studies has been significantly changed, 

compared to 10 years ago. Novel datasets derived from these resources such as the 

DUD and MUV, together with the new algorithmic approaches, are highly promising 

in terms of developing the field of computational drug discovery. The field of 

generating and utilizing gold-standard/benchmarking datasets for virtual screening 

has been extensively discussed in the recent works by Lagarde et al. and Xia et al. 

[163], [164]. 
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CHAPTER 3  

3        DEEPred: AUTOMATED PROTEIN FUNCTION PREDICTION WITH 
MULTI-TASK FEED-FORWARD DEEP NEURAL NETWORKS 

3.1 Chapter Overview 

3Automated protein function prediction is critical for the annotation of 

uncharacterized protein sequences, where accurate prediction methods are still 

required. Recently, deep learning based methods have outperformed conventional 

algorithms in computer vision and natural language processing due to the prevention 

of overfitting and efficient training. Here, we propose DEEPred, a hierarchical stack 

of multi-task feed-forward deep neural networks, as a solution to Gene Ontology 

(GO) based protein function prediction. DEEPred was optimized through rigorous 

hyper-parameter tests, and benchmarked using three types of protein descriptors, 

training datasets with varying sizes and GO terms form different levels. Furthermore, 

in order to explore how training with larger but potentially noisy data would change 

the performance, electronically made GO annotations were also included in the 

training process. The overall predictive performance of DEEPred was assessed using 

CAFA2 and CAFA3 challenge datasets, in comparison with the state-of-the-art 

protein function prediction methods. Finally, we evaluated selected novel 

annotations produced by DEEPred with a literature-based case study considering the 

‘biofilm formation process’ in Pseudomonas aeruginosa. We participated CAFA PI 

challenge and ranked fourth in Motility prediction category of the challenge. This 

study reports that deep learning algorithms have significant potential in protein 

function prediction; particularly when the source data is large. The neural network 

                                                
 

3 The main content of this chapter was published in Scientific Reports journal in 2019 [191]. Please 
note that only parts that I worked on were included from the corresponding publication. 
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architecture of DEEPred can also be applied to the prediction of the other types of 

ontological associations. The source code and all datasets used in this study are 

available at: https://github.com/cansyl/DEEPred. 

This chapter consists of the parts that I mainly worked in DEEPred. The rest of the 

conducted research and analysis can be reached from our publication. My specific 

contributions in DEEPred are listed below: 

• Development and design of the proposed method; 

• Implementation of the overall system;  

• Investigation of state-of-the-art methods and benchmarking datasets; 

• Training of models for CAFA PI challenge and running models on target 

datasets; 

• Implementation of scripts for the analysis and discussions. 

3.2 Introduction 

Functional annotation of proteins is crucial for understanding the cellular 

mechanisms, identifying disease-causing functional changes in genes/proteins, and 

for discovering novel tools for disease prevention, diagnosis, and treatment. 

Traditionally, gene/protein functions are first identified by in vitro and in vivo 

experiments and recorded in biological databases via literature-based curation. 

However, wet-lab experiments and manual curation efforts are cumbersome and time 

consuming. Thus, they are unable to resolve the knowledge gap that is being 

produced due to the continuous growth of biological sequence data [165]. Therefore, 

accurate computational methods have been sought to automatically annotate 

functions of proteins. 

The Gene Ontology (GO) provides a controlled vocabulary to classify the attributes 

of proteins based upon representative terms, referred to as "GO terms" [166]. The 

GO system divides protein attributes into three main categories: molecular function 

(MF), biological process (BP) and cellular component (CC). Each GO term 
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represents a unique functional attribute and all terms are associated to each other in 

a directed acyclic graph (DAG) structure based on inheritance relationships. Several 

GO term-based protein function prediction methods have been proposed in the last 

decade to automatically annotate protein sequences using machine learning and 

statistical analysis techniques [167]–[172]. Considering the prediction performances 

of the current methods, it can be stated that there is still room for significant 

improvement in this area. Critical Assessment of Protein Function Annotation 

(CAFA) is an initiative, whose aim is the large-scale evaluation of protein function 

prediction methods, and the results of the first two CAFA challenges showed that 

protein function prediction is still a challenging area [173], [174]. 

Numerous types of machine learning techniques have been employed for protein 

function prediction; one of which is the artificial neural networks (ANNs). ANNs 

can be considered as a framework of interconnected processing units, that 

was inspired from the central nervous systems of animals and are usually employed 

to process complex data inputs[175]. ANNs can be constructed as classifiers to 

distribute query instances to pre-defined classes. In this case, the ANN accepts a 

feature vector as input and applies nonlinear transformations before providing a class 

prediction as output. ANNs consist of a single input layer and a single output layer 

along with one or more intermediate layers called ‘hidden layers’. Each layer 

includes a certain number of nodes (i.e., neurons or processing units), which are 

linked to the nodes of the next layer via a system of weighted connections, to transmit 

signals. Deep Neural Network (DNN) algorithms, a sub-group of ANNs, have 

multiple hidden layers. DNNs take low level features as input and build more 

advanced features at each subsequent layer. DNN-based methods have already 

become industry standards in the fields of computer vision and natural language 

processing [112], [114], [176]–[178]. Recent improvements in affordable 

computational power have allowed the scientific community to apply DNN-based 

methods on numerous research fields including biomedical data analysis; where, 

DNN algorithms have been shown to outperform the traditional predictive methods 

in bioinformatics and cheminformatics [115], [118]–[120], [179]. DNNs are divided 
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into two groups in terms of the task modelling approach. Multi-task DNNs are 

designed for classifying the input instances into multiple pre-defined classes/tasks 

[180], as opposed to single-task DNNs, where the aim is to make a binary prediction. 

In terms of the model architecture and properties, DNNs are classified into multiple 

groups, the most popular architectures are feed-forward DNN,  recurrent neural 

network (RNN),  restricted Boltzmann machine (RBM) and deep belief network 

(DBN), auto encoder deep neural networks, convolutional neural network (CNN),  

and graph convolutional network (GCN) [114], [118], [119], [177], [180], [181]. 

Investigative studies showed that, applications of multi-task DNNs provided a 

significant performance increase in ligand-based drug discovery.  Ligand-based drug 

discovery can be considered similar to the problem of protein function prediction 

[63], [179]; where in protein function prediction, the identification of associations is 

between the ontology-based function defining terms (e.g., GO terms) and a protein, 

and a protein may have more than one function. Therefore, protein function 

prediction is a multi-label learning problem and thus can be solved using multi-task 

deep neural networks similar to the drug discovery [54]. Multi-task DNN algorithms 

inherently extract the relationships between multiple classes by building complex 

features from the raw input data at each layer in a hierarchical manner. Additionally, 

shared hidden units among different classes enhance the prediction results of the 

classes that have a low number of training samples, which often has a positive impact 

on the predictive performance. 

To the best of our knowledge, deep learning algorithms have not been thoroughly 

investigated in terms of generating practical large-scale protein function prediction 

pipelines.  However, there have been a small number of studies mostly confined to 

small sets of proteins and functional classes. In these studies, DNNs were applied to 

protein function prediction using different types of protein features such as  amino 

acid sequences [182]–[185], 3-D structural properties [186], protein-protein 

interaction networks [184], [187] or other molecular and functional aspects [185], 

[188]–[190], and various types of DNN architectures such as  single or multi-task 

feed-forward DNNs [188],  recurrent neural networks [182], [183], deep autoencoder 
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neural networks [187], [189], deep restricted Boltzmann machines [190] or 

convolutional neural networks [184]–[186]. 

One of the most critical obstacles against developing a practical DNN-based 

predictive tool is the computationally intensive training processes that limits the size 

of input data and the number of functional categories that can be included in the 

system. Due to this reason, previous studies mostly focused on a small number of 

protein families or GO terms. Whilst methods covering large sets of GO terms 

suffered from long training duration and reduced predictive performance issues. 

Therefore, there is a need for new predictive methods not only with high 

performance, but also with real-world usability, to be able to support in vitro studies 

in protein function identification.  

In this study, we propose a novel multi-task hierarchical deep learning method, 

DEEPred, for the prediction of GO term associations to protein sequence records in 

biological data resources such as the UniProtKB, as well as for poorly and 

uncharacterized open reading frames. We also provide a comprehensive 

investigation on DNN-based predictive model characteristics when applied on 

protein sequence and ontology data. 

3.3 Materials and Methods 

3.3.1 Training Dataset Construction 

The training dataset was created using the UniProtKB/Swiss-Prot database version 

2017_08 protein entries. UniProt supports each functional annotation with one of the 

21 different evidence codes, which indicate the source of the particular annotation. 

In this study, we used annotations with manual curation or experimental evidences, 

which are considered to be highly reliable. In order to generate the training dataset, 

the corresponding annotations were extracted from the UniProt-GOA database, 

propagated to their parent terms according to the "true path rule", which defines the 
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inheritance relationship between GO terms [166]. Using this dataset, a positive 

training dataset was constructed for each GO term. In short, proteins that are 

annotated either with the corresponding GO term or with one of its children terms, 

were included in the positive training dataset of the corresponding GO term. Since 

our multi-task DNN models are composed of multiple GO terms, the positive 

training dataset for one GO term, in a model, constitute the negative training dataset 

of the other GO terms in the same model, except the proteins that are annotated with 

both GO terms. 

In order to analyze the effect of the extent of training datasets on the predictive 

performance, we constructed multiple "training-set-size-based" datasets, taking into 

account the number of protein associations of GO terms. For example, one of our 

training-set-size-based datasets includes all GO terms that have more than or equal 

to 30 protein associations. Hence, we created six different datasets, where GO terms 

in each dataset have greater than 30, 100, 200, 300, 400 and finally 500 protein 

associations respectively. These datasets comprise each other (e.g., GO-terms-with-

greater-than-30-proteins dataset covers the GO-terms-with-greater-than-100-

proteins dataset). The statistics (i.e., number of annotations, GO terms and proteins) 

about these datasets are given in the Results chapter. 

3.3.2 DEEPred Architecture 

DEEPred was built as a stack of multi-task feed-forward deep neural networks, 

connected to each other.  In DEEPred, each DNN was modelled to predict 4 or 5 GO 

terms, thus multiple DNNs were required to cover thousands of terms. Figure 3.1 

displays a representative DNN model in DEEPred. 

The selection of GO terms for each DNN model was based on the levels of the terms 

on the GO DAG. The main objective of this approach was to create a multi-task deep 

neural network model for each level. For this, the levels of all GO terms were 
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extracted and the terms were separated into groups based on the level information 

(via topological sorting). 

 

Figure 3.1. The representation of an individual multi-task feed-forward DNN model 

of DEEPred. Here, each task at the output layer (i.e., red squares) corresponds to a 

different GO term. In the example above, a query input vector is fed to the trained 

model N and a score greater than the pre-defined threshold is produced for GON,3, 

which is marked as a prediction. (Adapted from our publication [191]) 

We started the level numbering from generic terms; thus, they received low numbers 

(e.g., level 1, 2, 3, …) and the levels of specific terms received high numbers (e.g., 

level 10, 11, 12, …). In most cases, the number of protein associations of GO terms 

within a level were highly variable; therefore, we created subgroups to further avoid 

bias (i.e., tendency of a classifier to give predictions to classes with significantly 
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higher number of training instances). Here, each subgroup included GO terms with 

similar number of annotations. Another reason behind generating multiple models 

under a specific GO level was the high number of GO terms. According to our tests, 

when the number of tasks under a model exceed 5 or 6, the models usually perform 

poorly. Due to this reason, we limited the number of tasks under a model to 5 in most 

cases. This procedure generated 1,101 different models concerning all GO 

categories. Figure 3.2 represents the GO-level-based arrangement of the individual 

DNN models in DEEPred. 

 

Figure 3.2. Illustration of the GO-level-based architecture of DEEPred on a 

simplified hypothetical GO DAG. We omitted highly generic GO terms (shown with 

red colored boxes) at the top of the GO hierarchy (e.g., GO:0005488 - Binding) from 

our models, since they are less informative and their training datasets are highly 
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heterogeneous. In the illustration, DNN model 1.1 incorporates GO terms: GO1,1 to 

GO1,5 from GO-level 1. In the real application, most of the GO levels were too 

crowded to be modeled in one DNN; in these cases, multiple DNN models were 

created for the same GO level (red dashed lines represent how GO terms are grouped 

to be modeled together). In this example, DNN models N.1, N.2 and N.3 incorporates 

GO terms: GON,1 to GON,5, GON,6 to GON,10, GON,11 to GON,15; respectively, 

due to the high number of GO terms on level N. At the prediction step, when a list 

of query sequences is run on DEEPred, all sequences are transformed into feature 

vectors and fed to the multi-task DNN models. Afterwards, GO term predictions 

from each model are evaluated together in the hierarchical post-processing procedure 

to present the finalized prediction list. (Adapted from our publication [191]) 

In a feed-forward DNN, forward propagation (z) for the layer l is calculated by the 

following equation:  

HI = 	 JI +KI ∗ /IMN 

where	JI is the bias vector, KI is the weight matrix for the lth layer and /IMN is the 

activation value vector of the neurons at the previous layer. Subsequently, an 

activation function, GI(∗), is applied to the calculated HI vector and the result of the 

activation function is used to compute the outputs of the lth layer:  

/I = 	GI(HI) 

GI = 	O/P(0, HI) 

There are alternative activation functions such as sigmoid, tanh and rectified linear 

unit (ReLU). Here, we employed ReLU activation function for the hidden layers. 

The prediction scores are calculated by applying softmax function to the neurons at 

the output layer. The score for the jth task is calculated by the following equation: 

RS = 	
#S

#TT
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where k is the number of tasks to be trained within a model. At the end of the forward 

propagation step, prediction scores are used to calculate a cost function, C, based on 

the labels of the input samples. In this study, we used cross entropy to calculate the 

cost function. Once the cost function is calculated, it is used to determine how much 

the weights (w) will be changed after the last iteration by taking the partial 

derivatives of the cost function with respect to the weights: 

UV = UV − W	
X<

XUV
 

where W is the learning rate in the equation. The forward and back propagation steps 

were performed until the stopping criteria was met (e.g., after certain number 

iterations or after the objective performance is reached). For the training of the 

models of DEEPred, 100 iterations were selected. 

In DEEPred, each model was independently trained using the feature vectors of the 

proteins annotated with the corresponding GO terms of that model. Considering the 

technical work to accomplish the multi-task training, we created a binary "true label 

vector" for each protein sequence using one-hot encoding, where each dimension 

represented a GO term to be trained in the corresponding model. The index of the 

GO term that was associated with the corresponding protein sequence was set to 1 

and the remaining dimensions were set to 0. These true label vectors were employed 

to calculate the prediction errors at the output layer, which was then used by the 

optimizer to update weights with the aim of minimizing prediction error at each 

iteration.  

At the prediction stage, a query protein sequence feature vector is first fed to the 

level 1 predictor model to receive its probabilistic scores for the corresponding GO 

terms and then fed to the level 2 predictor model to receive probabilistic scores for a 

different set of GO terms. At the end of the process, GO terms that obtained scores 

above the pre-determined thresholds were fed to the hierarchical post-processing 

(explained below under the section entitled: “Hierarchical Post-processing of 

Predictions”) and the finalized predictions were produced. 
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3.3.3 Hyper-parameters and The Optimization of Networks 

A hyper-parameter is a parameter, the value of which cannot be adjusted during the 

training step, and thus should be selected beforehand. For this reason, the same 

machine learning models are trained multiple times using different hyper-parameter 

values, to select the ones that provided the best predictive performance.  The number 

of hyper-parameters can be huge in deep learning algorithms; therefore, selection of 

best hyper-parameters is a challenge. It is known that the success of any hyper-

parameter selection is dependent on the data and the architecture of the system [177]. 

Hence, optimal hyper-parameters should be searched for each model to be trained, 

individually. Below we discussed different types of hyper-parameters that we tested 

for DEEPred. 

The most basic hyper-parameters are the number of hidden layers and the number of 

neurons at each of these layers. Generally, the system performance increases with 

the increasing number of hidden layers and the number of neurons in these layers, 

until it saturates at some point. However, the main disadvantage behind using 

excessive number of layers and neurons is the computational burden. There is a 

tradeoff between computational complexity, which can easily render these models 

impractical to run, and the predictive performance. Finding the optimal point is a 

challenging task and an active area of research. The strategy currently followed in 

the literature is testing a large number of parameter values, which was also assumed 

in this study. 

Deep learning algorithms generally suffer from the problem of overfitting, where 

predictive models may perform well on training data but not on test data. Several 

approaches were proposed to avoid overfitting during the training of deep neural 

networks, known as the regularization techniques [192]–[194]. One of the most 

popular regularization techniques is the dropout method [193]. Dropout method 

randomly removes some of the neurons from different layers along with their 

connections at every iteration during the training procedure, so that the system is 

directed to find a more generalized state, that is not dependent on a few neurons and 
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connections. Another widely used regularization technique is the input 

normalization, where input features are normalized to zero mean and a variance of 

one. Batch normalization is another method that was proposed to reduce the effect 

of parameter initialization, to speed up the training and to reduce overfitting. Batch 

normalization is similar to input normalization;  however, the aim here is the 

normalization of inputs of each hidden layer instead of the normalization of the input 

feature vectors [195].  

Optimization algorithms are used to minimize an objective function, which includes 

learnable parameters (i.e., weights and biases) of a deep learning system. The 

learnable parameters are updated at each iteration using the optimization algorithm 

so that the system converges to an optimal solution. Several optimization algorithms 

were proposed in recent years, each containing one or more hyper-parameters [177]. 

Most widely used optimization algorithms are ADAM, RMSProp and Momentum 

[196], [197]. A critical hyper-parameter that is related to the optimizer is the learning 

rate. Briefly, learning rate value decides how much the weights should be changed 

(in the direction of the gradient) at each iteration. If it is selected to be very low, the 

training would be more reliable; however, the training process takes longer time. If 

it is selected to be very high, the training would be fast but unreliable (i.e., produces 

low performance models). Finding the optimal point for the learning rate is critical. 

There are also other optimizer dependent hyper-parameters such as momentum 

(Momentum), beta1-beta2 (Adam) and decay (RMSProp). In this study, we used 

default hyper-parameters for these optimizers. 

In DEEPred, the total number of possible model-training-runs was huge due to the 

high number of selected hyper-parameter value combinations. In order to select the 

hyper-parameter values, we trained three sets of GO terms, chosen from different 

levels of GO hierarchy, with varying number of protein associations. The aim of 

selecting the GO terms in this way was to come up with a small GO term set, which 

can represent the whole system, since employing all GO terms in this test was not 

possible due to extremely high computational complexity. Based on the predictive 

performance results of different runs, we reduced the number of hyper-parameters 
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into a smaller set of options for the training of the whole system. We used 

TensorFlow framework for training the models and all computations were 

distributed on 2500 CPU cores in our supercomputing cluster [198]. The statistics 

and results of the hyper-parameter optimization tests are explained in the Results 

section. 

3.3.4 Protein Feature Types and Vector Generation 

In order to select the best protein feature representation for DEEPred, we 

implemented three alternative protein descriptor generation methods: (i) Conjoint 

triad [199], (ii) Pseudo amino acid composition [200] and (iii) Subsequence profile 

map (SPMap) [201]. Each of these feature types were used individually to train and 

to test the system. The details about this analysis is given in the Results chapter. The 

employed protein features are explained below: 

Conjoint triad feature [199] considers the frequencies of amino acid triplets (i.e., 

consecutive three residues on the sequence). Here, query protein sequences are 

encoded by the frequency of the occurrence of each triplet combination. Since the 

total number of combinations are quite high (i.e., 20x20x20 = 8,000), Conjoint triad 

considers reduced alphabet by using amino acid groups generated by considering 

their physicochemical properties. This way, each protein is represented as a 343-

dimensional (i.e., 7x7x7) feature vector. There exist several studies in the literature 

that employ the conjoint triad feature [202]–[205].  

Pseudo-amino acid composition (PAAC) feature [200] incorporates single amino 

acid frequency information (i.e., conventional amino acid composition) together 

with sequence correlation factors without losing the sequence-order information in a 

protein sequence. This method computes a set of coupling factors using the 

physicochemical properties of amino acids (i.e., hydrophobicity, hydrophilicity 

value and the side chain mass) and records them in a 50-dimensional descriptor 
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vector in an ordered fashion. PAAC feature has frequently been employed in the 

literature  [206]–[210]. 

Subsequence profile map (SPMap) is a method for functional classification of 

protein sequences, based on the extraction and clustering of short sub-sequence 

features [201]. Here we only incorporated the sub-sequence based feature vector 

generation module of the SPMap method. For this, all fixed-length subsequences are 

extracted from the protein sequences and the extracted subsequences are grouped 

using a hierarchical clustering approach, based on BLOSUM-62 matrix. Finally, 

obtained clusters are transformed into probabilistic profiles and protein sequences 

are converted into feature vectors based on the distribution of their sub-sequences 

over the generated probabilistic profiles. The original SPMap method constructs a 

profile for each GO term (i.e., for each model) individually. This results in protein 

feature vectors with varying sizes. In this study, we modified the SPMap algorithm 

to generate a single reference probabilistic profile using all protein sequences in the 

training dataset associated with all GO terms in a specific GO category. Therefore, 

each protein sequence was represented by a fixed-dimensional feature vector for all 

models, resulting in 1893, 1861 and 1901-dimensional vectors for MF, BP and CC 

categories, respectively. Conjoint triad and pseudo-amino acid composition features 

were extracted from protein sequences using the ProtR software [211]. SPMap 

features were calculated using our in-house software. For all methods, we used 

default parameters to generate the feature vectors. 

3.3.5  Determining the Probabilistic Score Thresholds 

When a query protein is fed to a prediction model of DEEPred, an individual 

probabilistic score is calculated for each GO term (i.e., task) within that model, 

representing the probability of the query protein possessing the function defined by 

the corresponding GO term. In some cases, this can be confusing because scores are 

on a continuous scale (i.e., it is not clear at which point one can conclude that the 

query protein contains the corresponding function). Usually, the requirement from a 
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model is to make a binary prediction instead of producing a probability. Setting a 

probabilistic score threshold for each GO term at each model solves this problem. At 

the prediction step, if the received score is equal to or greater than the pre-defined 

threshold, the model outputs a positive prediction for the corresponding GO term. 

To determine these thresholds in a validation setting (using the hold-out validation 

datasets), we calculated F1-score performance values for arbitrary threshold 

selections using the success of the binary predictions obtained when we fed the 

system with protein sequences with already known labels (i.e., GO term 

associations). We considered each GO term separately within a model and 

determined an individual threshold for each term by choosing the value providing 

the highest F1-score. These threshold values are stored in ready-to-use predictive 

models of DEEPred. 

3.3.6 Hierarchical Post-processing of Predictions 

We implemented a methodology to eliminate the unreliable predictions by 

considering the prediction scores received for the parents of the predicted GO term. 

This way, we aimed to reduce the potential of false positive hits. The reason behind 

applying such a post-processing step was that, multi-task DNNs tended to classify 

query instances to at least one of the tasks at the output layer. Such a classification 

scheme would not be a problem if we could generate one model that contain all of 

the GO terms at its output layer. However, having thousands of nodes in the output 

layer would be highly impractical and thus we divided GO terms into different 

models. This time, the problem occurs when a query protein is fed to a model, where 

the protein does not contain any of the functions defined by the GO terms in the 

corresponding model. The model often predicts one of the unrelated GO terms for 

the query protein, producing a false positive. We observed that separating a false 

positive hit (produced this way) from a reliable prediction would be possible by 

checking the prediction results for the parents of the predicted GO term. If the query 

protein consistently received high prediction scores for most of the parent terms as 
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well, we can conclude that this case is probably a reliable prediction; otherwise, it 

may be a false positive hit. 

To construct this methodology, we first topologically sorted the DAG for each GO 

category and determined all possible paths from each GO term to the root of the 

corresponding category, and stored this information. When a query protein is run on 

DEEPred, its feature vector is fed to all trained models to obtain the prediction scores 

for all GO terms. Starting from the most specific level of GO, the method checks 

whether the prediction score of the query protein is greater than the previously 

calculated score thresholds. If the prediction score of a target GO term is greater than 

its threshold, the method checks the scores it received for the parent terms on all 

paths to the root, using the previously stored possible-paths-to-root. If the prediction 

scores given to the majority of parent terms are greater than their individual 

thresholds, the method presents the case as a positive prediction. This procedure is 

represented in Figure 3.3 with a toy example. 

 

Figure 3.3. Post-processing of a prediction (GO:10) for a query protein sequence on 

a hypothetical GO DAG. Each box corresponds to a different GO term, with 

identification numbers written inside. The blue colored boxes represent GO terms 
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whose prediction scores are over the pre-calculated threshold values (i.e., predicted 

terms), whereas the red colored boxes represent GO terms, whose prediction scores 

are below the pre-calculated threshold values (i.e., non-predicted terms). The arrows 

indicate the term relationships. There are four different paths from the target term 

(i.e., GO:10) to the root (i.e., GO:01) in this hypothetical DAG. Since there is at least 

one path, where the majority of the terms received higher-than-threshold scores 

(shown by the shaded green line), the target term GO:10 is given as a finalized 

positive prediction for the query sequence. (Adapted from our publication [191]) 

3.3.7 Predictive Performance Evaluation Tests 

According to the current deep learning practice, it is not feasible to carry out a fold-

based cross validation analysis, since it usually requires extremely high 

computational power. This issue was also valid for DEEPred due to the presence of 

elevated number of models. For this reason, the assessment of DEEPred system was 

performed using two datasets: (i) Hold-out validation dataset, and (ii) CAFA2 

challenge benchmark dataset. 

The hold-out validation aims to determine and fine tune the hyper-parameter values 

and to observe the performance of the system. The hold-out datasets were 

constructed as follows: the training dataset for each GO term (see the "Training 

Dataset Construction" section) was randomly divided into two datasets such that 

80% of the annotations were reserved for the training and 20% of the samples were 

used for the hold-out validation dataset. The proteins in the validation dataset were 

fed to the trained models to produce GO term predictions. We then compared the 

resulting predictions with the true annotations of these proteins to calculate the 

performance metrics.  

We used CAFA2 challenge benchmark dataset for the independent performance 

evaluation and for the comparison with the state of the art methods (i.e., the methods 

participated to the CAFA2 challenge). Since there is a temporal difference between 
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CAFA2 challenge and the date we trained our system, (to yield a fair comparison) 

we had to remove the training instances (i.e., annotations) that were released in 

UniProt-GOA after the CAFA2 participation deadline, from our training dataset, and 

re-train our system. We then directly fed CAFA2 challenge benchmark dataset 

proteins as query instances to our trained models (the annotations in the CAFA2 

benchmark dataset did not overlap with our training datasets). The CAFA2 

benchmark dataset contained 1,828 proteins, 997 GO terms and 3,187 annotations 

for MF; 2,618 proteins, 3,375 GO terms and 7,956 annotations for BP; 2,938 

proteins, 587 GO terms and 5,085 annotations for CC category of GO. 

3.3.8 Performance Evaluation Metrics 

Recall, precision, F-max and Smin measures, which are given below; were used to 

evaluate the performance of the system. TP, FP, TN and FN represent the number of 

true positives, false positives, true negatives and false negatives; respectively. 

 

 

 

 

 

In equations; τi represent the ith probabilistic score threshold. Fmax correspond to the 

maximum of the F1-score values, calculated for each arbitrarily selected 

probabilistic score threshold. i=1...N represents there are N different arbitrarily 

selected probabilistic score thresholds. Ruτi and Miτi corresponds to remaining 

uncertainty and normalized misinformation, respectively. Smin is the minimum 

semantic distance. 

For CAFA2 and CAFA3 benchmark tests, we calculated the F-max scores in exactly 

the same way as it was described in CAFA2 GitHub repository [212]. Performance 
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evaluation scripts released by CAFA team were directly used for this purpose. 

Additional information regarding CAFA performance measures and scripts can be 

obtained from Jiang et al. [173]. 

3.4 Results 

3.4.1 Input Feature Type Performance Analysis 

Input data was quantized as feature vectors in the predictive models. These feature 

vectors are required to reflect the intrinsic properties of the samples they represent, 

which should also be correlated with their known labels (i.e., GO function terms in 

our case). For this reason, finding and generating the best representative feature type 

is important for any machine learning application. In this analysis, our aim was to 

investigate the best representative feature type, to be incorporated in DEEPred. For 

this purpose, we randomly selected three DEEPred DNN models that contain MF 

GO terms from different levels on the GO hierarchy, and trained each model using 

three different feature types (i.e., SPMap, pseudo amino acid composition - PAAC 

and conjoint triad) as explained in the Methods. The reason behind using MF GO 

term models was because molecular function is the most clearly defined aspect of 

GO and also the easiest one to predict. 

We measured the performance of the models using cross-validation settings at 80% 

to 20% separation of the source training data to observe the best representative 

feature. Table 3.1 shows the selected models together with the incorporated GO 

terms, their GO levels, the number of annotated proteins and the performances for 

each feature type. The performances (F1-score) were calculated as 0.63, 0.36 and 

0.43 for SPMap, PAAC and conjoint triad features, respectively. Since the predictive 

performance with SPMap feature was the best, we incorporated SPMap into the 

DEEPred system for the rest of the study. 

 



 
 

74 

Table 3.1 Input feature type performance comparison results. 

Model & 

GO level 
GO term id 

# of 

annotated 

proteins 

Predictive performance (F1-score) 

SPMap 
Pseudo-amino 

acid composition 

Conjoint 

triad 

Model 1  
(GO 
level: 2) 

GO:0036094 1 847 0.49 0.29 0.23 
GO:0003700 1 652 
GO:0004872 1 332 
GO:0044877 1 296 
GO:0097367 1 252 

Model 2  
(GO 
level: 4) 

GO:0004529 50 0.68 0.53 0.38 
GO:0045309 50 
GO:0008395 49 
GO:0008649 49 
GO:0015645 49 

Model 3  
(GO 
level: 7) 

GO:0001012 818 0.74 0.53 0.47 
GO:0016887 764 
GO:0046873 685 
GO:0001159 504 
GO:0015077 480 

 

For all models, large-scale hyper-parameter optimization test served as a preliminary 

elimination analysis to reduce the training run times. As observed from Table 3.2, 

the average performances were close to each other in most cases. This was mainly 

due to selecting hyper-parameter values that are frequently employed in the DNN 

literature. The reason behind selecting 2 hidden layers instead of 3 was that, the 

observed performance gain was not sufficient to compensate for the increased 

computational run times. The learning rate 0.01 was selected among 0.001 and 

0.0005 even though it produced an inferior average performance; however, in some 

of the models 0.01 produced significantly better results compared to the other values. 

Considering the number of neurons at each hidden layer, values such as (600,400), 

(2200,600), (200,25) etc. were selected as pairs for the first and second hidden layers, 

respectively. 
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3.4.2 DEEPred Hyper-parameter Optimization Results 

The average performance result for each hyper-parameter selection is shown in Table 

3.2. For example, the performance value given for the dropout rate 0.6 is the average 

performance of all the tests, where the dropout rate was kept constant at 0.6 and the 

rest of the parameters changed across the given ranges in Table 3.2. This way, 

different values of the same hyper-parameter became comparable to each other. 

Selected hyper-parameter values at the end of this performance test are highlighted 

with bold font. For some of the hyper-parameters, more than one value has been 

selected. This means that, all of these selected values were used during the training 

of the whole system, and the value that provide best training performance was finally 

selected for the corresponding model.  

Table 3.2. Hyper-parameter names, their ranges used in this study and the 
optimization test performance results. 

Hyper-parameter Name Range 
Average Model Perf.  

(F1-score) 

Input Normalization 
Yes 0.50 

No 0.50 

Learning rate 

0.0005 0.53 

0.001 0.52 

0.01 0.47 

0.1 0.43 

Number of hidden layers 
2 0.50 

3 0.51 

# of neurons at each layer 100, 200, 400, 1000, , … Different combinations 
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Table 3.2.  (continued) 

Optimizer 

Adam (default) 0.51 

Momentum (default) 0.48 

RMSprop (default) 0.52 

Mini-batch size 
32 0.51 

64 0.50 

Drop-out rate 
0.6 0.49 

0.8 0.51 

Batch Normalization 
Yes 0.53 

No 0.47 

 

3.4.3 Effect of Training Dataset Sizes on System Performance 

DNN models usually require a high number of training instances in order to produce 

accurate predictions. Large-scale biological training datasets are not generally 

available in most cases. One solution to this problem would be to discard GO terms 

with a low number of training instances from the system. In this case, the problem is 

that there are only a small number of GO terms available for prediction, most of 

which are shallow (i.e., generic terms). In order to investigate the effect of training 

dataset sizes on the predictive performance, we carried out a detailed analysis with 

multiple training and testing processes.  
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Table 3.3 Statistics for the training datasets created by only using annotations with 
manual experimental evidence codes and the training datasets created by using 
annotations with all evidence codes. 

  Manual experimental evidence 
codes 

Annotations with 

all evidence codes 

 
Annot 

Count 

# of 

levels 

#  of 

GO 

terms 

# of 

annotations 

# of 

levels 

#  of 

GO 

terms 

# of 

annotations 

MF 

³ 30 9 838 281 125 11 2 776 6 451 530 

³ 100 9 605 272 235 10 1 598 6 386 105 

³ 200 9 395 257 404 10 1 174 6 326 109 

³ 300 8 226 233 476 9 942 6 269 643 

³ 400 8 165 218 591 9 809 6 223 762 

³ 500 8 142 210 790 9 698 6 173 867 

BP 

³ 30 10 4 215 1 433 220 12 8 404 16 537 812 

³ 100 10 2 993 1 386 588 12 4 768 16 335 538 

³ 200 9 1 782 1 302 577 11 3 299 16 129 271 

³ 300 9 1 059 1 199 604 10 2 631 15 965 583 

³ 400 8 743 1 123 037 9 2 233 15 828 012 

³ 500 8 603 1 075 353 9 1 978 15 713 431 

CC 

³ 30 7 606 340 995 8 1 268 4 167 000 

³ 100 6 460 335 445 8 750 4 138 327 

³ 200 6 324 325 687 7 549 4 110 383 

³ 300 6 206 309 390 6 442 4 083 834 

³ 400 6 155 296 929 6 377 4 061 654 

³ 500 5 118 283 616 6 335      4 043 150 
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We constructed 6 different training datasets based on the annotated protein counts of 

different GO terms, as described in the Methods. Table 3.3 summarizes the training 

datasets’ sizes and contents based upon molecular function annotations. There are 

two vertical blocks in Table 3.3, the first one belongs to "Annotations with only 

manual experimental evidence codes"; and the second block belongs to "Annotations 

with all evidence codes". As observed from the first block, the number of available 

GO levels and GO terms decreases as the minimum compulsory number of 

annotations increases, since specific GO terms usually have less number of 

annotations. We trained the DEEPred system with each of these training datasets 

(i.e., annotations with only manual experimental evidence codes) and measured the 

predictive performance individually. And, then compared them with each other to 

observe if there is a correlation. The average performance of the models for each 

training dataset is given in Table 3.4 and Figure 3.4. Each column in Table 3.4 

corresponds to an average F1-score value of the GO terms belonging to a particular 

training dataset. Box plots in Figure 3.4 additionally displays median and variance 

values. There is a strong correlation between the training sample size and 

performance. As expected, increasing the training dataset sizes elevated the 

classification performance for all GO categories. High variance values at low 

training dataset sizes indicates that these models are less stable. 

Table 3.4 The average prediction performance (F1-score) for GO term models 
belonging to different training dataset size bins. In this analysis, the training was 
done using only the annotations with manual experimental evidence codes. 

G GO categories   Performance measures (F1-score) for different  
training dataset sizes 

 ³ 30 ³ 100 ³ 200 ³ 300 ³ 400 ³ 500 

Molecular Function 0.66 0.68 0.77 0.82 0.82 0.83 

Biological Process 0.42 0.50 0.52 0.52 0.56 0.55 

Cellular Component 0.50 0.59 0.64 0.63 0.64 0.65 
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Figure 3.4. Box plots for training dataset size specific performance evaluation. Each 

box plot represents variance, mean and standard deviations of F1-score values 

(vertical axis) for models with differently sized training datasets (horizontal axis), 
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for each GO category. The training was done using only the annotations with manual 

experimental evidence codes.(Adapted from our publication [191]) 

3.4.4 Performance evaluation of training with electronic annotations 

In DEEPred, the minimum required number of annotated proteins for each GO term 

(to be used in the training) is 30, which was considered as the minimum number 

required for statistical power. Due to this threshold, all GO terms with less than 30 

annotated proteins were eliminated from the system. The eliminated terms 

corresponded to 25,257 out of 31,352 GO terms (31,352 is the total number of terms 

that have been annotated to at least one UniProtKB/Swiss-Prot protein entry with 

manual experimental evidence codes), which can be considered as a significant loss. 

The same problem exists for most of the machine learning based methods in the 

automated protein function prediction domain. Moreover, the DNN models with a 

low or moderate number of training instances (i.e., between 30 to 100 for each 

incorporated GO term) displayed lower performance compared to the models with 

high number of training samples, as discussed above. In this section, we investigated 

a potential way to increase the statistical power of our models by enriching the 

training datasets. 

In the UniProtKB/SwissProt database, only 1% of the total number of GO term 

annotations are tagged with manual experimental evidence codes. The remaining of 

the GO term annotations are electronically made (evidence code: IEA), and these 

annotations are usually considered as less reliable due to potential errors (i.e., false 

positives). Normally, electronic annotations are not used for system training to avoid 

error propagation. In this test, we investigated the performance change when all 

annotations (including electronic ones) were included in the training procedure of 

DEEPred, and to discuss whether deep learning algorithms could handle noisy 

training data, as stated in the literature. For this, we calculated the predictive 

performances of selected models trained with all evidence code annotations and 

compared it with the performance of our original models. 
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To perform this experiment, we first identified the MF GO terms whose annotation 

count was increased at least four times, when electronically made annotations were 

incorporated. We randomly selected 25 MF GO terms that satisfied this condition, 

and trained/evaluated the models with 80% to 20% training-test separation, similar 

to our previous tests. The training dataset sizes and performance values for the "all-

annotation-training" analysis are given in Table 3.5. In this table, we divided GO 

terms into two main categories as "previously high performance models" and 

"previously low performance models" based on the performances when the system 

was trained only with annotations of manual experimental evidence codes. The 

results showed that adding electronic annotations to the training procedure increased 

the performances of selected "previously low performance models". On the other 

hand, including electronic annotations in the training of "previously high-

performance models" decreased their performances in some of the cases. Overall, 

the performance change was positive. 

Table 3.5 Performance (F1-score) changes for the selected GO terms after the 
enrichment of training datasets with electronic annotations. In this analysis, the 
training was done using all of the available annotations, without any selection based 
on the evidence code. *NoA : Number of Annotations, ME : Manual-Experimental 
Evidence, AE : All Evidence. 

 GO Term 
NoA* 

(ME*) 

NoA 

(AE*) 

F1-score 

perf. (ME) 

F1-score 

perf. 

(AE) 

Perf. 

Change 

Pr
ev

io
us

ly
 lo

w
-p

er
fo

rm
an

ce
  

m
od

el
s 

GO:0070569 35 970 0.58 0.88 0.30 

GO:0019203 63 681 0.51 0.84 0.33 

GO:0004197 100 853 0.45 0.40 -0.05 

GO:0005524 596 85 442 0.53 0.93 0.40 

GO:0030554 689 86 319 0.51 0.90 0.39 

GO:0035639 834 98 924 0.43 0.80 0.37 
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Table 3.5   (continued) 

GO:0032555 951 99 286 0.51 0.89 0.38 

GO:0097367 1 395 10 413 0.41 0.73 0.32 

GO:0000166 1 487 116 408 0,53 0.82 0.29 

GO:0036094 2 059 12 634  0.40 0.72 032 

GO:0043169 2 145 119 698 0.48 0.71 0.23 

GO:0043167 4 132 20 278 0.33 0.79 0.46 

Pr
ev

io
us

ly
 h

ig
h-

pe
rf

or
m

an
ce

 m
od

el
s 

GO:0004784    38 459 0.81 0.68 -0.13 

GO:0004004 48 954 0.75 0.73 -0.02 

GO:0005525 258 14 479 0.95 0.79 -0.16 

GO:0032550 286 14 496 0.89 0.62 -0.27 

GO:0001883 289 14 506 0.89 0.87 -0.02 

GO:0032549 296 15 460 0.78 0.80 0.02 

GO:0001882 304 15 508 0.92 0.79 -0.13 

GO:0008270 520 11 385 0.83 0.71 -0.12 

GO:0032559 673 85 691 0.80 0.80 0.00 

GO:0017076 975 99 924 0.91 0.65 -0.26 

GO:0032553 1 025 100 844 0.87 0.61 -0.26 

GO:0046872 1 985 118 577 0.81 0.80 -0.01 

GO:0004784    38 459 0.81 0.68 -0.13 

 Average 861 47 658 0.68 0.77 0.10 
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3.4.5 Evaluation of the Overall System Performance 

Here, for the final system training we used the training dataset which was the largest 

one among the six different training datasets with varying sizes shown in Table 3.4 

(i.e., all annotations with GO terms with at least 30 annotated proteins with manual 

and experimental evidence codes); this dataset was also used to measure the overall 

performance of DEEPred. 

The overall system performance was evaluated by considering all 1,101 predictive 

models. For testing, the hold-out dataset (see Methods) was employed, which was 

not used during training. The test proteins were fed to all of the models and the 

system performance was calculated using precision, recall and F1-score (Table 3.6). 

The average prediction performance (F1-score) was calculated as 0.62, 0.46 and 0.55 

for MF, BP and CC categories respectively, without using the hierarchical post-

processing method (see Methods). When we employed the hierarchical post-

processing procedure, which represents the finalized version of DEEPred, the overall 

average system performance (F1-score) was increased to 0.67, 0.51 and 0.58 for MF, 

BP and CC categories respectively. 

Table 3.6 Performance (F1-score) changes for the selected GO terms after the 
enrichment of training datasets with electronic annotations. In this analysis, the 
training was done using all of the available annotations, without any selection based 
on the evidence code. *NoA : Number of Annotations, ME : Manual-Experimental 
Evidence, AE : All Evidence. 

  without Hierarchical Post-processing with Hierarchical Post-processing 

  F1-score Precision  Recall F1-score Precision Recall 

MF 0.62 0.52 0.77 0.67 0.61 0.74 

BP 0.46 0.36 0.65 0.51 0.44 0.62 

CC 0.55 0.50 0.61 0.58 0.58 0.58 
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3.4.6 Performance Comparison Against the State-of-the-art 

Two analyses were carried out for the comparison against the state-of-the-art. The 

first one used the CAFA2 challenge data. In CAFA2, GO term based function 

predictions of 126 methods from 56 research groups were evaluated. The 

performance results of best performing 10 methods are available in the CAFA2 

report [173]. In order to yield a fair comparison with the CAFA2 participating 

methods, DEEPred models were re-trained using the GO annotation data from 

September 2013. Afterwards, DEEPred was run on the CAFA2 benchmark protein 

sequences and the performance results (F-max) of 0.49, 0.26, and 0.43 were obtained 

for MF, BP, and CC categories respectively; considering the no-knowledge 

benchmark set in the full evaluation mode (the official CAFA2 performance 

calculation parameters). For the CC category, DEEPred was among the 10 best 

performing methods. 

Figure 3.5.A, B and C displays the 10 top performing methods in CAFA2 in terms 

of F-max measure along with the results of DEEPred, for the selected taxonomies 

where DEEPred performed well. As observed from Figure 3.5.A and B, DEEPred is 

among the best performers in terms of predicting MF GO terms for all prokaryotic 

sequences (Figure 3.5.A), specifically for E. coli (Figure 3.5.B). Figure 3.5.C shows 

that DEEPred came third in predicting BP terms for the mouse (Mus musculus) 

proteins. These results (Figure 3.5.A, B and C) also indicate that DEEPred has an 

added value over the conventional baseline predictors (i.e., BLAST and naive). In 

Figure 3.5.D, we also compared our results with the BLAST baseline classifier in 

terms of the GO term-centric mean area under the ROC curve (AUC) for predicting 

MF terms for CAFA2 benchmark sequences. As it can be seen in Figure 3.5.D, the 

performance of DEEPred is slightly higher than the BLAST classifier in the overall 

comparison considering all MF GO terms. Whereas, the performance is low for 

DEEPred when a comparably low number of training instances (< 1,000) of MF GO 

terms was used (i.e., low terms). Finally, when the MF GO terms with comparably 

high number of training instances (> 1,000) was employed (i.e., high terms), 
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DEEPred’s performance surpassed BLAST. The results indicate that DEEPred is 

especially effective and have a significant added value over conventional methods, 

when the number of training instances are high. 

 

Figure 3.5. The prediction performance of DEEPred on CAFA2 challenge 

benchmark set. Dark gray colored bars represent the performance of DEEPred, 

whereas the light gray colored bars represent the state-of-the-art methods. The 

evaluation was carried out in the standard mode (i.e., no-knowledge benchmark 

sequences, the full evaluation mode), more details about the CAFA analysis can be 

found in CAFA GitHub repository; (A) MF term prediction performance (F-max) of 

top 10 CAFA participants and DEEPred on all prokaryotic benchmark sequences; 

(B) MF term prediction performance (F-max) of top 10 CAFA participants and 

DEEPred on E. coli benchmark sequences; (C) BP term prediction performance (F-

max) of top 10 CAFA participants and DEEPred on mouse benchmark sequences; 

and (D) MF GO term-centric mean area under the ROC curve measurement 

comparison between BLAST and DEEPred for all MF GO terms, bars represent 
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terms with less than 1000 training instances (i.e., low terms) and terms with more 

than 1000 training instances (i.e., high terms). (Adapted from our publication [191]) 

The second performance analysis was done using CAFA3 challenge data, the 

submission period of which has ended in February 2017. The finalized benchmark 

dataset (protein sequences and their GO annotations) of CAFA3 was downloaded 

from the CAFA challenge repository on Synapse system ("benchmark20171115.tar" 

from https://www.synapse.org/#!Synapse:syn12278085). In total, this dataset 

contains 7,173 annotations (BP: 3,608, CC: 1,800 and MF: 1,765) for 3,312 proteins. 

The DEEPred models were re-trained using UniProt-GOA manual experimental 

evidence coded GO annotation data from September 2016 (the date of the official 

training data provided by CAFA3 organizers), and the predictions were generated 

for benchmark dataset protein sequences. For this analysis, we could not directly use 

the officially announced performance data of the top challenge performers since the 

results are yet to be published as of December 2018. Instead, three other sequence-

based function prediction methods, namely FFPred3 [213], GoFDR [214] and 

DeepGO [184], were selected to be compared with DEEPred. These methods were 

developed and published in the last 2 years, and reported predictive performances 

that are better than the state-of-the-art in their own publications. For DeepGO, we 

downloaded the stand-alone tool, train the models with the provided training data 

(considering the CAFA3 submission deadline) and produced the benchmark dataset 

predictions. The stand-alone tool was not available for FFPred3 and GoFDR; 

however, CAFA3 target set function predictions were already available, as a result, 

we directly employed those prediction files for our analysis. We also built baseline 

predictors (i.e., Naïve Bayes and Blast) with CAFA3 data, as described by CAFA 

team. We employed performance evaluation scripts released by the CAFA team in 

order to calculate the performances of DEEPred, the state-of-the-art methods and the 

baseline classifiers. DEEPred is composed of multiple independent classifiers, each 

of which has its own best score threshold. For the calculation of F-max, CAFA 

evaluation script applies the same prediction score threshold to all predictions, which 

would result in the underestimation of DEEPred’s performance. To avoid this, we 
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transformed DEEPred’s prediction scores and made them comparable to each other 

by applying min-max normalization. 

Table 3.7, Table 3.8 and Table 3.9 displays the performance results for Molecular 

function (MF), biological process (BP)  and cellular component (CC) categories, 

respectively, in terms of F-max, precision, recall and Smin measures. Only the 

precision and recall values corresponding to the given F-max are shown. A better 

performance is indicated by higher F-max, precision and recall values and lower 

Smin values. "No-knowledge" and "All" indicates 2 different evaluation modes, 

where the former indicates that the methods are evaluated only using the proteins 

that did not have any manually curated GO annotation in the training dataset (i.e., 

before the challenge submission deadline), and the latter indicates that the methods 

are evaluated using all benchmark proteins. DEEPred was analzyed in terms of two 

different versions: (i) raw predictions coming from all predictive models, without 

any post-processing (i.e., DEEPred_raw), and (ii) finalized predictions after the 

hierarchical post-processing process (i.e., DEEPred_hrchy). The results are shown 

in Table 3.7, Table 3.8 and Table 3.9 respectively for MF, BP and CC categories of 

GO, where the best results for each GO category and for each performance measure 

is highlighted with bold font. When the second best method’s performance was close 

to the best one, both of them are highlighted. As observed from results, the finalized 

version of DEEPred (i.e., DEEPred_hrchy) consistently beat the performance of the 

raw DEEPred predictions, indicating the effectiveness of the proposed hierarchical 

post-processing approach. In MF term prediction, DEEPred_hrchy shared the top 

place with GoFDR in terms of F-max, precision and recall (GOFDR performed 

slightly better in terms of Smin).  Considering CC term prediction, DeepGO shared 

the first place with the naïve classifier, in terms of both F-max and Smin. 

DEEPred_hrchy was the best (in terms of F-max) for predicting BP terms of the no-

knowledge proteins, and shared the first place with DeepGO and FFPred3 

considering all benchmark proteins. DEEPred_hrchy was also the first in terms of 

Smin, for the BP category. In all GO categories, DEEPred_hrchy had a perfect 

precision but a low recall value, this was due to the fact that most of the prediction 
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scores are accumulated either close to 0 (lowest) or close to 1 (highest). During the 

calculation of F-max, predictions at the arbitrarily selected score thresholds are 

evaluated, which resulted in either a very high recall and a very low precision, or a 

very low recall and a very high precision for DEEPred. In CAFA3 analysis, the 

maximum performance of DEEPred was found around the high precision values. 

 

Table 3.7 The prediction performance of DEEPred and the state-of-the-art protein 
function prediction methods on CAFA3 challenge benchmark dataset (MF Category) 

 Fmax Precision (Fmax) Recall (Fmax) Smin 

 N-K All N-K All N-K All N-K All 

Naive 0.35 0.29 0.49 0.41 0.27 0.23 6.87 6.43 

Blast 0.40 0.39 0.42 0.36 0.38 0.44 6.99 6.48 

FFPred3 0.32 0.31 0.34 0.30 0.30 0.32 7.35 6.66 

GoFDR* 0.55 0.45 0.67 0.55 0.46 0.38 5.06 4.41 

DeepGO 0.40 0.34 0.58 0.48 0.30 0.27 6.36 6.01 

DEEPred_raw 0.32 0.33 1.00 1.00 0.19 0.19 6.63 6.16 

DEEPred_hrchy 0.49 0.50 1.00 1.00 0.32 0.33 5.41 5.03 

3.4.7 P. aureginosa Case Study on biofilm formation process 

We analyzed the biological relevance of the results of DEEPred over selected 

example predictions. For this purpose, we employed the recent CAFA PI biological 

process GO term assignment challenge. One of the goals in CAFA PI was the 

prediction of the proteins responsible for the biofilm formation (GO:0042710) 

process using electronically translated open reading frames (ORFs) from a specific 

Pseudomonas aureginosa strain (UCBPP-PA14) genome. 
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Table 3.8 The prediction performance of DEEPred and the state-of-the-art protein 
function prediction methods on CAFA3 challenge benchmark dataset (BP Category) 

 Fmax Precision (Fmax) Recall (Fmax) Smin 

 N-K All N-K All N-K All N-K All 

Naive 0.26 0.30 0.25 0.39 0.26 0.24 24.27 20.85 

Blast 0.28 0.32 0.22 0.27 0.37 0.38 25.11 21.35 

FFPred3 0.26 0.34 0.23 0.29 0.30 0.40 24.74 21.48 

GoFDR* 0.19 0.18 0.25 0.26 0.15 0.14 24.75 28.83 

DeepGO 0.28 0.34 0.40 0.52 0.21 0.26 23.41 20.19 

DEEPred_raw 0.16 0.16 1.00 1.00 0.09 0.09 24.65 22.05 

DEEPred_hrchy 0.32 0.33 1.00 1.00 0.19 0.19 22.04 19.69 

 

Table 3.9 The prediction performance of DEEPred and the state-of-the-art protein 
function prediction methods on CAFA3 challenge benchmark dataset (CC Category) 

 Fmax Precision (Fmax) Recall (Fmax)  Smin 

 N-K All N-K All N-K All N-K All 

Naive 0.55 0.54 0.56 0.58 0.55 0.50 7.61 7.65 

Blast 0.46 0.45 0.39 0.39 0.56 0.53 9.74 9.94 

FFPred3 0.54 0.52 0.54 0.54 0.53 0.50 8.61 8.44 

GoFDR* 0.48 0.45 0.46 0.42 0.51 0.48 10.98 10.86 

DeepGO 0.54 0.53 0.61 0.58 0.48 0.49 7.68 7.55 

DEEPred_raw 0.30 0.29 0.19 0.18 0.69 0.69 10.68 10.41 

DEEPred_hrchy 0.34 0.35 1.00 1.00 0.20 0.22 9.85 9.53 
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Pseudomonas aureginosa is a gram-negative pathogenic bacteria with high medical 

importance due to its ability to cause infection in human (e.g., pneumonia) and its 

highly effective antibiotic resistance mechanisms [215]. An important factor 

contributing to the infectious capabilities of various bacterial and fungal species is 

their ability to form biofilms. A biofilm is a matrix layer made up of extracellular 

polymers and the microorganisms themselves. Biofilms adhere to solid surfaces and 

provide a medium for the cells to proliferate and resistance to environmental stress. 

Due to this reason, understanding the biofilm formation mechanisms in pathogenic 

microorganisms have high importance [216], [217]. 

In order to annotate ORF sequences from P. aureginosa UCBPP-PA14 strain with 

biofilm formation GO term using DEEPred, we generated a single task feed-forward 

DNN model. The reason behind not using a multi-task model here was to prevent the 

potential effect of the selection of the accompanying GO terms to the predictive 

performance. The positive training dataset for this model was generated from all 

UniProtKB/Swiss-Prot protein records that were annotated either with the 

corresponding GO term or with its descendants with manual and experimental 

evidence codes, yielding 254 proteins. The negative training dataset was selected 

from the protein entries that were neither annotated with the corresponding GO term 

nor any of its descendants (the same number of samples were selected randomly to 

match the positive training dataset). The model was trained by optimizing the hyper-

parameters and its performance was measured via 5-fold cross validation. The 

performance results in terms of precision, recall and F1-score were 0.71, 0.84 and 

0.77 respectively. The finalized models were then employed to predict functions for 

CAFA PI P. aureginosa ORF targets. 

From a literature review, we identified 8 genes (wspA, wspR, rocR, yfiN, tpbB, fleQ, 

fimX and PA2572) in the P. aureginosa reference genome that are associated with 

biofilm formation, but not annotated with the corresponding GO term or its 

functionally related neighboring terms, in the source databases at the time of this 

analysis (as a result, they are not presented in our training dataset).  Out of these 8 

genes/proteins wspR, yfiN, tpbB and fimX contain the GGDEF domain, which is 
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responsible for synthesizing cyclic di-GMP and thus take part in the biofilm 

formation process [218]. Two of these genes/proteins, yfiN and tpbB, additionally 

contain the CHASE8 sensor domain, which controls the levels of extracellular DNA 

and regulates biofilm formation [219]. The mechanism by which these 8 

genes/proteins contribute to the formation of biofilm are explained in two articles by 

Cheng [220] and Ryan et al. [221].We obtained the protein sequences of these genes 

from the UniProt database, then aligned them to the CAFA PI P. aureginosa 

UCBPP-PA14 strain’s target ORF sequences to identify the CAFA PI target 

sequences corresponding to these genes with a cut-off of greater than 98% identity. 

The reason behind this application was that the CAFA PI target dataset ORF 

sequences were unknown. Finally, we analyzed the equivalent P. aureginosa ORFs 

of these 8 genes in the target dataset using DEEPred’s biofilm formation process 

model and examined the prediction scores. 

Table 3.10 displays the gene symbols, protein (UniProt) accessions and biofilm 

formation GO term prediction scores produced by DEEPred for the selected 

genes/proteins. As observed in Table 3.10, 4 out of 8 genes/proteins (i.e., gene 

symbols: wspA, wspR, rocR and PA2572) received high prediction scores for the 

biofilm production term and thus successfully identified by DEEPred. Two 

genes/proteins (i.e., gene symbols: yfiN and tpbB) received moderate scores, which 

were still sufficient to produce a prediction. The remaining two genes/proteins (i.e., 

gene symbols: fleQ and fimX) could not be associated with the corresponding GO 

term at all. We also carried out a BLAST search in order to observe if these 

predictions could be produced by a conventional sequence similarity search. For this, 

the amino acid sequence of each of the 8 genes/proteins was searched against the 

whole UniProtKB with an e-value threshold of 100. The BLAST search revealed that 

none of the best 1,000 BLAST hits (50% or greater identity) possessed the biofilm 

formation GO term or any of its ancestor or descendant terms as annotations, and 

thus BLAST failed to annotate these genes/proteins. Since none of these 8 

genes/proteins (or their BLAST hits) have been annotated with a GO term related to 

the biofilm formation function on the GO DAG; there were no protein sequences in 
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the training dataset of DEEPred that were similar to these genes. As a result, the 

accurate predictions cannot be the result of a simple annotation transfer between 

close homologs. 

Table 3.10 DEEPred’s biofilm formation term (GO:0042710) prediction results for 
the selected P. aureginosa proteins. 

Gene symbol Protein accession (UniProt) DEEPred prediction score 

wspA A0A0H2ZEY3 0.99 

rocR A0A0C7D525 0.98 

PA2572 Q9I0R4 0.98 

wspR A0A0H2ZEX4 0.95 

yfiN A0A0C7ADU5 0.68 

tpbB Q9I4L5 0.68 

fleQ A0A0H2Z7X4 0.05 

fimX A0A0H2ZHA6 0.02 

3.4.8 Participation of CAFA PI Challenge and Ranking 

We also participated CAFA PI challenge with DEEPred method where the objective 

was to provide of term-centric predictions for a given set of protein sequences 

coming from two species which are P. aeruginosa and Candida albicans [222]. 

Participants were asked to provide funtional predictions for two functions which are 

motility (GO:0001539) and biofilm formation (GO:0042710) for 5,892 P. 

aeruginosa proteins and only biofilm formation (GO:0042710) predictions for   

12,421 proteins from Candida albicans. 49 participants (25 teams and 24 individual 

participants) were registered for CAFA PI challenge and each team or individual 

researchers were allowed to submit up to 3 independent predictions. The prediction 

results were evaluated based on genome-wide screening experiments which were  
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performed to identify the genes that are associated with biofilm formation and 

motility functions [222]. The experiments were performed by experimental 

biologists from Dartmouth College. 403 genes from P. aeruginosa were associated 

with the motility function based on screening experiments. The performances of the 

participants were evaluated based on the data coming from novel experimental 

results. Our team (METU-CanSyL) ranked fourth among all participants in motility 

category [222]. The results of the top performing five teams are given in Figure 3.6. 

 

Figure 3.6. CAFA PI Top 5 best performed method based on Area Under Curve 

(AUC) results. Our team (METU-CanSyL) ranked fourth among all teams. (Adapted 

from CAFA 3/PI publication [222]) 

3.5 Discussion and Conclusion 

Deep learning algorithms have shown to significantly enhance the classification 

performances in various fields; however, it was not thoroughly investigated in terms 

of their applications to the protein function prediction area at large-scale. In this 

study, we described the DEEPred method for predicting GO term based protein 
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functions using a stack of feed-forward multi-task deep neural networks. As input, 

DEEPred only requires the amino acid sequences of proteins. We carried out several 

tests to investigate the behavior of DNN-based models in protein function prediction. 

The input feature type selection test revealed that our in-house protein descriptor 

SPMap had a better performance compared to the conventional conjoint triad and 

pseudo-amino acid composition features. However, this performance increase comes 

with a cost in terms of higher vector dimensionality (i.e., SPMap has between 1000 

to 2000-dimensions as opposed to 373 for conjoint triad and 50 for pseudo-amino 

acid composition), which elevates the computational complexity. It would also be 

interesting to analyze additional protein feature types, especially the amino acid 

descriptors frequently used in protein-ligand binding prediction studies [223]. 

The reasons behind choosing DEEPred’s specific DNN architecture was first, this is 

a basic form and thus it is straightforward to train and apply. In other words, it 

requires minimal amount manual design work compared to specialized complex 

networks such as the Inception Network [224]. This is especially important 

considering the fact that more than one thousand independent networks should have 

been trained.  Second, computational resources required to train this architecture is 

lower compared to, again, the complex networks. 

In DEEPred, we considered multi-task DNNs (as opposed to single-task DNNs) due 

to various advantages attributed to multi-task networks such as: (i) the ability to share 

knowledge between tasks; which supports the system in the case where there are a 

low number of training instances and (ii) training with less models to improve the 

training run times. However, multi-task DNNs also have disadvantages especially 

when the high number of tasks compels the generation of multiple models. The 

problem here is the efficient grouping of the tasks (i.e., GO terms in our case) so that 

the tasks under a model would become alternatives (i.e. orthogonal) to each other. 

We tried to achieve this by first, grouping GO terms from the same level and second, 

where possible placing the sibling terms together under the same model. In most 

cases, it was not possible to find a sufficient number of sibling terms and thus 

semantically unrelated terms from the same level ended up in the same model. 
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Nevertheless, this was not a crucial problem since it is possible for a multi-functional 

query protein to receive high prediction scores for multiple GO terms under the same 

model. Another important point during the term grouping was placing GO terms with 

similar number of annotated proteins under the same group. According to our 

observations, models containing tasks with highly unbalanced number of training 

instances perform poorly (this is also one of the reasons why generating only one 

model to predict all GO terms would be a poor design choice). Due to these reasons, 

generating the models required a considerable amount of manual work, none of 

which would be required if we employed single-task networks. It would also be 

possible to achieve higher performance values with single-task DNNs, especially 

where there is sufficient number of training instances. We did not consider single-

task networks mainly because it is not feasible to train tens of thousands of networks 

(when the hyper-parameter optimization step is considered the number would 

increase to billions of training jobs) to cover the whole functional space. In the future, 

it would be interesting to see algorithmic solutions to the feasibility problems related 

to single-task networks. With such solutions we could construct and test a single-

task DNN-based system for protein function prediction. 

In this study, we trained several DNN models using 6 different groups of training 

datasets containing GO terms with differing number of training samples to 

investigate the performance changes due to changes in the training sample size. Our 

training dataset size performance evaluation results showed that there is a general 

trend of performance increase with the increasing number of training samples, which 

means that including GO terms with a small number of protein associations into 

models decreased the overall performance. Therefore, our findings are in accordance 

with the literature regarding training data sizes being one of the key factors that affect 

the predictive performance of deep learning algorithms; though, the research 

community started to focus on developing novel deep learning based approaches to 

address training dataset size related problems [135]. 

In this work, we also investigated if there is a relationship between levels of GO 

terms on the GO DAG and the classification performances and we found out that 
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there is no such correlation. In addition, we observed that the variance in 

performance between different GO levels decreases as the training dataset size 

increases for molecular function and cellular component categories. For the 

biological process category, the overall performance increases with increasing GO 

training dataset sizes, however the variance is relatively higher. The main reason 

behind this may be attributed to the biological process GO terms representing 

complex processes (e.g., GO:0006099 - tricarboxylic acid cycle) that involves 

several molecular events, which is hard to associate with a sequence signature. The 

results also showed that performance variance of cellular component GO terms is 

lower compared to the molecular function and biological process categories. The 

reason for such observation could be that the hierarchy between cellular 

compartment GO terms is inherently available within cells, which results in better 

defined hierarchical relationships between cellular component GO terms. 

In most of the protein function prediction methods, training was performed using 

only the annotations with manual and experimental evidence codes. The 

disadvantage of this approach is that most GO terms are left with a small number of 

annotated proteins, which is usually not sufficient for a machine learning model 

training. Therefore, the functions defined by these terms cannot be predicted 

efficiently. One solution would be to include the annotations with non-experimental 

evidence codes such as the electronic annotations (i.e., the annotations produced by 

other automated approaches). For example, the number of MF GO terms that have 

more than 30 protein associations is calculated as 911 when we only considered the 

annotations with manual experimental evidence codes. However, when we 

considered the annotations with all evidence codes, this number increases to 2,776, 

meaning that, if the annotations with all evidences are included, it is possible to 

provide predictions for significantly more GO terms. The main downside of adding 

annotations with non-manual/experimental evidence codes to the training dataset is 

the false positive samples, which would result in error propagation. Another potential 

limitation of this application would be that the predictive performance of the models 

with training datasets dominated by the electronic annotations would still be low 
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(even though the number of training instances are increased), due to the fact that the 

sequences of most of the electronically annotated genes/proteins under a distinct GO 

term would be extremely similar to each other; and thus, would not provide the 

required sample diversity. 

To investigate this issue of training dataset enrichment, we observed a performance 

change when the annotations with all evidence codes were included in the training 

and compared the performance results (Table 3.5). The evaluation results showed 

that the performance of the previously low performance GO term models were 

increased significantly, which indicates that deep learning algorithms are tolerant to 

noise in the learning data. Therefore, annotations with less reliable evidence codes 

can be included in the training of low performed models, where there is still room 

for significant performance improvement. However, including less reliable 

annotations in the training dataset of previously high performance models decreased 

the performance for more than half of them. 

In DEEPred, we employed a hierarchical post-processing method (in order to avoid 

false positive hits) by taking the prediction scores of the parents of the target GO 

term into account, along with the score of the target term. The evaluation results 

indicated that the recall values were slightly decreased and the precision scores were 

noticeably increased when we employed the hierarchical post-processing procedure, 

producing an increased overall performance in terms of F1-score (Table 3.6). In this 

setting,  the resulting predictions can be considered more reliable. This is also 

indicated by the improved F-max values at the CAFA3 benchmark test (Table 3.7, 

3.8 and 3.9). 

In our performance tests, DEEPred performed slightly better than the state-of-the-art 

methods in some cases, and produced roughly similar results in others. However, we 

did not observe an unprecedented performance increase; probably because we did 

not focus on specific functional families to optimize the system performance. 

Instead, we investigated the applicability of DNNs for constructing large-scale 

automated protein function prediction pipelines. We believe that this investigation 
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will be valuable for computational scientists in terms of developing DNN-based 

biological prediction methods. According to our observations, it is feasible to use 

DNNs in large-scale biological data analysis pipelines, where it may be possible to 

achieve performances higher than the state-of-the-art methods with additional 

optimization. However, feed-forward DNN based modeling is probably not a good 

choice for the functional terms with low or moderate number of annotated proteins 

(at least without a pre-processing step such as the training dataset enrichment), for 

which conventional machine learning solutions or DNN-based methods specialized 

in low-data training may be considered. 

Generally, function prediction methods that incorporate multiple types of protein 

features at once (e.g., sequence, protein-protein interactions - PPIs, 3-D structures 

and annotations and etc.) perform better compared to methods that incorporate 

sequences, solely [173], [174]. However, there are two main disadvantages of this 

approach. First of all, query proteins are required to have a substantial amount of 

characterization (especially in terms of PPIs and 3-D structures) in order for these 

methods to accept them as queries. Structurally well characterized proteins usually 

have a high-quality functional annotations, thus, function prediction methods are not 

required in the first place. Second, running times of these methods are generally 

multiple orders of magnitude higher compared to the sequence-based predictors, 

which significantly hinders their large-scale use such as the analysis of newly 

sequenced genomes. 

Finally, we carried out a case study to discuss the biological relevance of the results 

produced by DEEPred, by predicting the Pseudomonas aureginosa ORF sequences 

that take part in the biofilm formation biological process. DEEPred managed to 

identify 6 out of 8 proteins that are reported to play roles in the biofilm formation 

process, which are not yet annotated with the corresponding GO term (or any of its 

descendent terms) in the source biological databases as of April 2018. As a result, it 

can be said that without any prior knowledge DEEPred produced biologically 

relevant predictions considering the selected process. It is also evident that DEEPred 

performed significantly better in this test, compared to the baseline classifier (i.e., 
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BLAST). It is difficult to identify how deep neural networks managed to annotate 

these proteins where BLAST failed significantly; however, it can be attributed to 

DNN’s ability to extract signatures (relevant to the task at hand) hidden in the 

sequences, by consequent levels of data abstraction. 

The methodological approach proposed in this study can easily be translated into the 

prediction of various types of biomolecular ontologies/attributes (e.g., protein 

families, interactions, pathways, subcellular locations, catalytic activities, EC 

numbers and structural features) and biomedical entity associations (e.g., gene-

phenotype-disease relations and drug-target interactions).





 
 

101 

CHAPTER 4  

4 DEEPScreen: DRUG-TARGET INTERACTION PREDICTION WITH 

CONVOLUTIONAL NEURAL NETWORKS USING 2-D STRUCTURAL 

COMPOUND REPRESENTATIONS 

4.1 Chapter Overview 

4The identification of physical interactions between drug candidate compounds and 

target biomolecules is an important process in drug discovery. Since conventional 

screening procedures are expensive and time consuming, computational approaches 

are employed to provide aid by automatically predicting novel drug–target 

interactions (DTIs). In this study, we propose a large-scale DTI prediction system, 

DEEPScreen, for early stage drug discovery, using deep convolutional neural 

networks. One of the main advantages of DEEPScreen is employing readily available 

2-D structural representations of compounds at the input level instead of 

conventional descriptors that display limited performance. DEEPScreen learns 

complex features inherently from the 2-D representations, thus producing highly 

accurate predictions. The DEEPScreen system was trained for 704 target proteins 

(using curated bioactivity data) and finalized with rigorous hyper-parameter 

optimization tests. We compared the performance of DEEPScreen against the state-

of-the-art on multiple benchmark datasets to indicate the effectiveness of the 

proposed approach and verified selected novel predictions through molecular 

docking analysis and literature-based validation. Finally, JAK proteins that were 

predicted by DEEPScreen as new targets of a well-known drug cladribine were 

                                                
 

4 The content of this chapter was published in Chemical Science journal in 2020 [266]. Please note 
that only the parts that I worked on were included from our publication. 
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experimentally demonstrated in vitro on cancer cells through STAT3 

phosphorylation, which is the downstream effector protein. The DEEPScreen system 

can be exploited in the fields of drug discovery and repurposing for in silico 

screening of the chemogenomic space, to provide novel DTIs which can be 

experimentally pursued. The source code, trained "ready-to-use" prediction models, 

all datasets and the results of this study are available at https://github.com/cansyl/ 

DEEPScreen. 

This chapter consists of the parts that I mainly worked in DeepScreen. The rest of 

the conducted research and analysis can be reached from our publication. My 

specific contributions in DeepScreen are listed below: 

• Development and design of the proposed method; 

• Implementation of the overall system ; 

• Investigation of ChEMBL database and defining preprocessing and filtering 

rules to create reliable dataset; 

• Investigation of state-of-the-art methods and benchmarking datasets; 

• Implementation of scripts for the analysis and discussions. 

4.2 Introduction 

One of the initial steps of drug discovery is the identification of novel drug-like 

compounds that interact with the predefined target proteins. In vitro / In vivo and 

high-throughput screening experiments are performed to detect novel compounds 

with the desired interactive properties. However, high costs and temporal 

requirements makes it infeasible to scan massive target and compound spaces[9]. 

Due to this reason, the rate of the identification of novel drugs has substantially been 

decreased [10]. Currently, there are more than 90 million drug candidate compound 

records in compound and bioactivity databases such as ChEMBL [225] and 

PubChem [226] (combined), whereas, the size estimation for the whole “drug-like” 

chemical space is around 1060 [227]. On the other hand, the current number of drugs 
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(FDA approved or at the experimental stage) is around 10,000, according to 

DrugBank [141]. In addition, out of the 20,000 proteins in the human proteome, less 

than 3,000 of them are targeted by known drugs [1], [11]. As the statistics indicates, 

the current knowledge about the drug-target space is limited, and novel approaches 

are required to widen our knowledge.  

The studies published so far have indicated that DTI prediction is an open problem, 

where not only novel ML algorithms but also new data representation approaches 

are required to shed light on the un-charted parts of the DTI space [89], [122], [232]–

[234], [123], [134], [135], [223], [228]–[231], and for other related tasks such as 

reaction [235] and reactivity predictions [236] and de novo molecular design [237], 

[238]. This effort comprises the identification of novel drug candidate compounds, 

as well as the repurposing of the existing drugs on the market  [239]. Additionally, 

in order for the DTI prediction methods to be useful in real-world drug discovery 

and development research, they should be made available to the research community 

as tools and/or services via open access repositories. Some examples to the available 

deep learning based frameworks and tools in the literature for various purposes in 

computational chemistry based drug discovery can be given as: gnina, a DL 

framework for molecular docking (repository: https://github.com/gnina/gnina) 

[240]–[243]; Chainer Chemistry, a DL framework for chemical property prediction, 

based on Chainer (repository: https://github.com/chainer/chainer-chemistry) [244]; 

DeepChem, a comprehensive open-source toolchain for DL in drug discovery 

(repository: https://github.com/deepchem/deepchem) [245]; MoleculeNet, a 

benchmarking system for Molecular Machine Learning, which builds on DeepChem 

(repository: http://moleculenet.ai/) [234]; and SELFIES, a sequence-based 

representation of semantically constrained graphs, which is applicable to represent 

chemical compound structures as graphs (repository: https://github.com/aspuru-

guzik-group/selfies) [246]. 

In this study, we propose DEEPScreen, a deep convolutional neural network 

(DCNN) based DTI prediction system that utilizes readily available 2-D structural 

compound representations as input features, instead of using conventional 
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descriptors such as the molecular fingerprints [247]. The main advantage of 

DEEPScreen is increasing the DTI prediction performances with the use of 2-D 

compound images, that is assumed to have a higher coverage in terms of compound 

features, compared to the conventional featurization approaches (e.g., fingerprints), 

which have issues related to generalization over the whole DTI space [134], [248]. 

DEEPScreen system's high-performance DCNNs inherently learn these complex 

features from the 2-D structural drawings, to produce highly accurate novel DTI 

predictions at large scale. Image-based representations of drugs and drug candidate 

compounds reflect the natural molecular state of these small molecules (i.e., atoms 

and bonds), which also contain the features/properties determining their physical 

interactions with the intended targets. Recently, image-based or similar structural 

representations of compounds have been incorporated as input for predictive tasks 

under different contexts (e.g., toxicity, solubility, and other selected biochemical and 

physical properties) in the general field of drug discovery and development [248]–

[251], but have not been investigated in terms of the binary prediction of physical 

interactions between target proteins and drug candidate compounds, which is one of 

the fundamental steps in early drug discovery. In this work, we aimed to provide 

such investigation, and as output, we propose a highly-optimised and practical DTI 

prediction system that covers a significant portion of the known bio-interaction 

space, with a performance that surpasses the state-of-the-art. 

The proposed system, DEEPScreen, is composed of 704 predictive models, each one 

is independently optimized to accurately predict interacting small molecule ligands 

for a unique target protein. DEEPScreen has been validated and tested using various 

benchmarking datasets, and compared with the state-of-the-art DTI predictors using 

both conventional and deep ML models. Additionally, DEEPScreen target models 

were run on more than a million compound records in ChEMBL database to produce 

large-scale novel DTIs. We also validated selected novel predictions using three 

different approaches: (i) from the literature, in terms of drug repurposing, (ii) with 

computational structural docking analysis, and (iii) via in vitro wet-lab experiments. 

Finally, we constructed DEEPScreen as a ready to use collection of predictive 
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models and made it available through an open access repository together with all of 

the datasets and the results of the study at: https://github.com/cansyl/DEEPScreen. 

4.3 Methods 

4.3.1 Generation of the Fundamental Training Dataset  

ChEMBL database (v23) was employed to create the training dataset of 

DEEPScreen. There are 14,675,320 data points (i.e., DTIs) in ChEMBL v23. We 

applied several filtering and pre-processing steps on this data to create a reliable 

training dataset. First of all, data points were filtered with respect to “target type” 

(i.e., single protein), “taxonomy” (i.e., human and selected model organisms), “assay 

type” (i.e., binding and functional assays) and “standard type” (i.e., IC50, EC50, 

AC50, Ki, Kd and Potency) attributes, which reduced the set to 3,919,275 data 

points. We observed that there were duplicate measurements inside this dataset that 

are coming from different bioassays (i.e., 879,848 of the bioactivity data points 

belonged to 374,024 unique drug-target pairs). To handle these cases, we identified 

the median bioactivity value for each pair and assigned this value as the sole 

bioactivity measurement. At the end of this application, 3,413,451 bioactivity 

measurements were left. This dataset contained data points from both binding and 

functional assays. In order to further eliminate a potential ambiguity considering the 

physical binding of the compounds to their targets, we discarded the functional 

assays and kept the binding assays with an additional filtering on “assay type”. 

Finally, we removed the bioactivity measurements without a pChEMBL value, 

which is used to obtain comparable measures of half-maximal response on a negative 

logarithmic scale in ChEMBL. The presence of a pChEMBL value for a data point 

indicates that the corresponding record has been curated, and thus, reliable. After the 

abovementioned processing steps, the number of bioactivity points were 769,935. 

Subsequently, we constructed positive (active) and negative (inactive) training 

datasets as follows: For each target, compounds with bioactivity values £ 10 µM 
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were selected as positive training samples and compounds with bioactivity values ³ 

20 µM were selected as negative samples. In DEEPScreen, only the target proteins 

with at least 100 active ligands were modelled, in order not to lose the statistical 

power. This application provided models for 704 target proteins from multiple highly 

studied organisms. These organisms, together with the distribution of target proteins 

for each organism are: Homo sapiens (human): 523, Rattus norvegicus (rat): 88, Mus 

musculus (mouse): 34, Bos taurus (Bovine): 22, Cavia porcellus (Guinea pig): 13, 

Sus scrofa (Pig): 9, Oryctolagus cuniculus (Rabbit): 5, Canis familiaris (dog): 3, 

Equus caballus (horse): 2, Ovis aries (Sheep): 2, Cricetulus griseus (Chinese 

hamster): 1, Mesocricetus auratus (Golden hamster): 1 and Macaca mulatta (Rhesus 

macaque): 1. The UniProt accessions, encoding gene names, ChEMBL ids and the 

taxonomic information of these proteins are given in the repository of DEEPScreen. 

Each target’s training set contained a mixture of activity measurements with roughly 

comparable standard types (e.g., IC50, EC50, AC50, Ki, Kd and Potency).  

The selection procedure explained above generated positive and negative training 

datasets with varying sizes for each target. In order to balance the positive and 

negative datasets, we selected negative samples equal to the number of positive 

instances. However, for many targets, the number of negative points were lower than 

the positives. In these cases, we applied a target similarity-based inactive dataset 

enrichment method to populate the negative training sets (instead of randomly 

selecting compounds), using the idea of similar targets have similar actives and 

inactives. For this, we first calculated pairwise similarities between all target proteins 

within a BLAST search. For each target having insufficient number of inactive 

compounds, we sorted all remaining target proteins with descending sequence 

similarity. Then, starting from the top of the list, we populated the inactive dataset 

of the corresponding target using the known inactive compounds of similar targets, 

until the active and inactive datasets are balanced. We applied 20% sequence 

similarity threshold, meaning that we did not consider the inactives of targets, whose 

sequence similarity to the query protein is less than 20%. The finalized training 

dataset for 704 target proteins contained 412,347 active data points (£ 10 µM) and 
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377,090 inactive data points (³ 20 µM). Before the negative dataset enrichment 

procedure, the total number of inactive instances for 704 targets were only 35,567. 

Both the pre-processed ChEMBL dataset (769,935 data points) and the finalized 

active and inactive training datasets for 704 targets are provided in the repository of 

DEEPScreen. We believe the resulting bioactivity dataset is reliable, and it can be 

used as standard training/test sets in future DTI prediction studies. The training data 

filtering and pre-processing operations are shown in Figure 4.1.  

 

Figure 4.1. Data filtering and processing steps to create the training dataset of each 

target protein model. Predictive models were trained for 704 target proteins, each of 

which have at least 100 known active ligands in the ChEMBL database. 
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4.3.2 Representation of Input Samples and the Generation of Feature 

Vectors  

In DEEPScreen system, each compound is represented by a 200-by-200 pixel 2-D 

image displaying the molecular structure (i.e., skeletal formula). Although 2-D 

compound images are readily available in different chemical and bioactivity 

databases, there is no standardization in terms of the representation of atoms/bonds, 

functional groups and the stereochemistry. Due to this reason, we employed SMILES 

strings of compounds to generate the 2-D structural images, since SMILES is a 

standard representation that can be found in open access bioactivity data repositories, 

which contain the whole information required to generate the 2-D images. We 

employed the RDkit tool Python package (v2016.09.4) for image generation [252]. 

A few examples from the generated images are shown in Figure 4.2. 

2-D images generated by RDkit are reported to have standard and unique 

representation, which is achieved by applying a canonical orientation in all cases 

[253]. There are special cases, which are not handled well, such as the 

stereochemistry. However, this problem is not related to the generation of 2-D 

images by RDkit, but to the SMILES representations being non-stereospecific. In 

this study, we omitted stereochemistry since the cases correspond an insignificant 

portion of the whole ChEMBL database [254]. 

We carried out a small scale analysis to determine the input image size of the 

DEEPScreen system. We selected 100-by-100, 200-by-200 and 400-by-400 pixel 

image sizes for the test (sizes smaller than 100-by-100 were inadequate to draw 

molecules and sizes higher than 400-by-400 were too large to train the system with 

due to increased complexity). We generated the training and test compound images 

with the selected sizes for 3 target proteins: Muscarinic acetylcholine receptor M5 

(CHRM5) - CHEMBL2035, Carbonic anhydrase VB (CA5B) - CHEMBL3969 and 

Renin - CHEMBL286. After that, we trained 9 models (3 targets for 3 different 

images sizes) and optimized the hyper-parameters with grid-search. The finalized 

models were subjected to performance analysis by querying the test dataset 
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compounds. We also recorded the average computational parameters in terms of run 

time and memory (the same amount of CPU power have been used for each model 

train/test run). The test results are given in Table 4.1.  

Table 4.1 The performance results and the computational requirements (in training) 
of 3 target protein models in the input image size analysis. 

  Input Image Size 

Test performance results of the best model 
(average of 3 target protein models): 100x100 200x200 400x400 

MCC 0.59 0.69 0.65 

F1-score 0.79 0.84 0.83 

Accuracy 0.79 0.84 0.83 

Precision 0.83 0.87 0.84 

Recall 0.76 0.83 0.83 

Computational requirements for in-house 
DCNN and Inception model training 
(average of 3 target protein models): 

      

CNNModel run time (min) 8 46 192 

Inception run time (min) 75 470 - 

CNNModel memory (Gb) 0.7 2.6 7.9 

Inception memory (Gb) 3.3 7.3 - 
 

As shown in Table 4.1, the average predictive performance (in terms of MCC) 

significantly increased by 17% when the input image size is changed from 100-by-

100 to 200-by-200. A similar performance increase was not observed when the input 

image size is changed from 200-by-200 to 400-by-400. Considering the run times, 

there was a significant increase both between 100-by-100 and 200-by-200; and 200-

by-200 and 400-by-400. The run times for DCNN models were acceptable; however, 

it was not feasible to train the Inception model with 400-by-400 due to extremely 

long run times. Considering the performance results along with the computational 

requirements, 400-by-400 was found to be non-feasible. Finally, for memory 
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requirements, again the results were reasonable for DCNN models and for Inception 

models when the image sizes are either 100-by-100 or 200-by-200. These results 

indicated that, the best performances were achieved with 200-by-200 image sizes, 

with reasonable computational requirements. As a result, 200-by-200 image size was 

chosen as default for the DEEPScreen system. Moreover, we observed in several 

cases that the size 100-by-100 was not sufficient to express large compounds 

properly. The whole image size analysis results are given in the repository of the 

study.  

4.3.3 Neural Network Architecture of DEEPScreen  

Deep convolutional neural networks are a specialized group of artificial neural 

networks consisting of alternating, convolution and pooling layers, which extracts 

features automatically [115], [255]. DCNNs have been dominating the image 

processing area in the last few years, achieving significantly higher performances 

compared to the state-of-the-art of the time [115], [224], [256]. DCNNs run a small 

window over the input feature vector at both training and test phases as a feature 

detector and learn various features from the input regardless of their absolute position 

within the input feature vector. Convolution layers compute the dot product between 

the entries of the filter and the input, producing an activation map of that filter. 

Suppose that the size of the layer, on which the convolution operation is to be 

performed	(layer	#:	0 − 1) is  1P1 and the following convolutional layer has the 

layer #: 0. Then, the value of the unit PVS in the 0th layer, PVSI , is calculated by the 

convolution operation (assuming no padding and stride of 1) using the following 

equation: 

 

PVS
I = U[r

sMN
r`t :(Vu[)(Sur)

IMNsMN
[`t   
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In the equation above, v stands for filter size, U stands for vPv filter and :VSIMNstands 

for the value of the %th row and wth column in the (0 − 1)th layer. Subsequently, a non-

linear function x such as the rectified linear unit (ReLU) is applied to PVSI : 

 

:VS
I = 	x(PVSI )  

 

At the end of the convolution operation, the size of the 0th layer becomes 

1 − v + 1 P(1 − v + 1). The parameters of the networks are optimized during the 

backpropagation step, by minimizing the following cross-entropy loss function: 

 

ℒ :, : = 	−
1

z
:V log :V + (1 − :V) log(1 − :V)

}

V

 

 

In the equation above, : stands for prediction score, : stands for actual label and z 

stands for number of examples in mini-batches. Although the most standard form of 

DCNNs employ 2-D convolutions, 1-D or 3-D convolutions are possible. 

Pooling layers combine the output of neuron clusters at one layer into a single neuron 

in the subsequent layer (i.e., down-sampling) with the aim of reducing the number 

of parameters and the computational work, and to prevent overfitting. Max pooling 

layer is commonly used in DCNNs and it works by running a window sequentially 

and taking the maximum of the region covered by the window, where each maximum 

value becomes a unit in the next layer.  One of the most popular and widely used 

regularization techniques is dropout [193]. This method randomly deactivates some 

of the neurons at various layers along with their connections at every epoch during 

the training procedure. By this, the system prevents overfitting, thus, the constructed 

models are more generalized. 
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In this study, we considered the DTI prediction as a binary classification problem, 

where the output can either be positive (i.e., active, interacting or "1") or negative 

(i.e., inactive, non-interacting or "0"), referring to the relation between the query 

compound and the modelled target protein. For this purpose, an individual model 

was created for each target protein (i.e., the single task approach). In terms of the 

employed DCNN architectures, we initially chose 3 options: Inception [224], 

AlexNET [256]; and an in-house built DCNN architecture. AlexNET architecture is 

a DCNN with stacked convolutional layers. It contains 5 convolutional and 3 fully 

connected layers. Inception is a highly specialized DCNN architecture. In standard 

DCNNs, filters with a uniform size are used in each level of convolutional layers, 

whereas in Inception, multiple filters with different sizes are combined in the same 

level (i.e., Inception modules), to be able capture highly complex features. Various 

combinations of Inception modules are designed to create extremely deep and wide 

networks to achieve high predictive performance in practical training run times. 

Detailed information about the Inception network can be found in Szegedy et al. 

[224]. Both AlexNET and Inception displayed top performances in image 

classification tasks [224], [256]. For our in-house designed DCNN models, we used 

a simpler architecture (compared to Inception), which is composed of 5 

convolutional + pooling and 1 fully-connected layer preceding the output layer. Each 

convolutional layer was followed by a ReLU activation function and max pooling 

layers. The last convolutional layer is flattened and connected to a fully-connected 

layer, followed by the output layer. We used Softmax activation function in the 

output layer. A generic representation of the constructed DCNN models is given in 

Figure 4.2. TFLearn framework version 0.3.2, cairosvg 2.1.2, rdkit 2016.09.4 were 

employed for the construction of the DEEPScreen system [257].  
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Figure 4.2. Illustration of the deep convolutional neural network structure of 

DEEPScreen, where the sole input is the 2-D structural images of the drugs and drug 

candidate compounds (generated from the SMILES representations as a data pre-

processing step). Each target protein has an individual prediction model with 

specifically optimized hyper-parameters (please refer to the Methods section). For 

each query compound, the model produces a binary output either as active or 

inactive, considering the interaction with the corresponding target. 

4.3.4 System Training and Test Procedures  

For each target protein model, 80% of the training samples (from both the positives 

and the negatives datasets) were randomly selected as the training/validation dataset, 

and the remaining 20% was reserved for later use in the independent performance 

test procedure. Also, 80% of the training/validation dataset was employed for system 

training and 20% of this dataset was used for validation, during which the hyper-

parameters of the models were optimized. 

With the purpose of selecting the architecture(s) to be used in DEEPScreen, we 

initially trained and tested models for a small number of target proteins using a wide-

range of hyper-parameters. At the end of these initial tests, we eliminated the 

AlexNET architecture since its performance was inferior to the performances of 

other two architectures. After this point, we continued our tests with Inception and 

our in-house DCNN architecture. We created and trained one model for each hyper-
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parameter selection, for each target, for each architecture. The list of the hyper-

parameters and the value selections are given in Table 4.2. The models were run on 

the validation datasets during training to obtain the predictive performance (i.e., 

accuracy, precision, recall, F1-score and MCC), which indicates the effectiveness of 

the pre-selected hyper-parameter values. At the end of the validation procedure, the 

best performing model (in terms of MCC) was selected for each target. At the end of 

this analysis, our in-house DCNN architecture was selected for 397 of the target 

proteins, and the Inception architecture was selected for the remaining 307 target 

proteins (out of the total of 704 targets). As a result, the finalized DEEPScreen 

system is composed of both Inception and in-house designed DCNN architectures. 

Next, test performances were calculated by running the finalized models on their 

corresponding independent test datasets, which have never been used before this 

point (i.e., performances reported in the Results Section). All of the training, test and 

prediction runs described in this study were carried out in parallel at the EMBL-EBI 

large-scale CPU cluster. 

Table 4.2 Hyper-parameter types and the tested values during the training of 
DEEPScreen. 

Hyper-parameter Name Test values 

Input Normalization 
Yes 

No 

Learning rate 

0.0005 

0.0001 

0.005 

0.001 

0.01 
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Table 4.2   (continued) 

Filter size 
3 

5 

Stride 1 

Padding "same" 

Number of convolutional layers * 

Number of filters in each convolutional layer ** 

Number of neurons in each fully-connected layer *** 

Optimizer 

Adam (default) 

Momentum (default) 

RMSprop (default) 

Mini-batch size 
32 

64 

Drop-out rate 

0.5 

0.6 

0.8 

Batch Normalization Yes 

* Values between 3 and 8 were tested for the in-house DCNN architecture. For 

AlexNET and Inception, the default architectures were directly used without any 

change. 

** Numerous "# of filter" value combinations were tested between 16 and 256. 
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*** For the two fully-connected layers (just before the output layer) in AlexNET, 

the number of neurons that were tested: (128,16), (256,128), (512,32), (1024,32) and 

(2048,2048). For the in-house DCNN, there were one fully connected-layer (before 

the output layer) and # of neurons tested were: 16, 32, 128, 256 and 512. 

In order to investigate the possible reasons behind the performance differences 

between the Inception and the in-house DCNN architectures in DEEPScreen, we 

conducted a target protein family based comparison over our pre-trained 704 target 

protein models to observe if there is a performance difference between the two 

architectures for a specific protein family (i.e., for how many members of a target 

protein family the Inception model was the best performer, and for how many of 

them the in-house DCNN was the best). We found out that the architectures 

performed nearly the same for nuclear receptors. Considering the rest of the families, 

DCNN architecture performed better between 28% and 50%, compared to the 

Inception models. We believe the only reason behind observing this performance 

difference is that the Inception architecture is significantly more complex and 

computationally more demanding compared to the in-house DCNN architecture, as 

a result, the hyper-parameters space we were able to scan during the grid search 

analysis was smaller for Inception. A grid search with the same hyper-parameters 

space size for Inception models would probably result in predictive performances 

greater than or equal to the performance of the DCNN models. However, a grid 

search of this magnitude would require a very long time to finish even on a strong 

computing resource. To test this idea, we analyzed the Inception and in-house DCNN 

performances over 114 target proteins, all of which were difficult to model, as 

pointed out by the low predictive performances in our initial tests. For these 114 

targets, we trained our predictive models and searched large hyper-parameter spaces 

for both the Inception and for the in-house DCNN models, and selected the best 

Inception and the best in-house DCNN for each of the 114 targets by checking the 

highest test performance in terms of the MCC measure. After that, we compared the 

best Inception model with the best in-house DCNN model, for each target (i.e., 114 

comparisons in total). We found that in-house DCNN models performed better for 
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42 of the targets and the Inception model performed better for 35 of them (the 

performance was exactly the same for the remaining 37 targets). We also calculated 

the actual performance differences between the best in-house DCNN and the best 

Inception models for each target, and found that, the average performance difference 

was the same when we compared two groups: 1) targets, on which DCNN performed 

better, and 2) targets, on which Inception performed better. These results indicated 

that there is no significant performance difference between Inception and the in-

house DCNN, when similar hyper-parameters spaces are searched during the model 

optimization step. The results of the Inception vs. in-house DCNN performance 

analysis has been provided in the repository of the study.  

4.3.5 Benchmark Datasets for The Predictive Performance Comparison 

All of the four non-random split datasets used in the performance analyses are 

constructed by considering scaffold/structure/temporal train-test sample divisions, 

as a result, they accurately simulate real-case prediction scenarios, where the 

predictive systems are queried with completely new compounds with different 

features (e.g., never-seen-before scaffolds). 

First of all, we aimed to generate our own bias free benchmark dataset using our 

fundamental ChEMBL training set. For this, we first focused on further eliminating 

the negative selection bias, even though we previously showed that similarity among 

negative samples was around the same level as the similarity between negative 

(inactive) samples, in our fundamental datasets (please see the Results section), 

mainly due to the fact that we only included compounds with real experimental 

bioactivity measurements (coming from binding assays) against the intended target. 

For further elimination of negative selection bias, we identified the negative dataset 

compounds, whose all activity data points (against all targets) in the ChEMBL 

database are in the inactives range (i.e., ³ 20 µM xC50) and discarded them. The 

compounds, which have at least one data point in the actives range (for any target) 

were kept in the negative datasets. Considering the rigorous filtering operations 
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applied to generate our source/fundamental bioactivity dataset (explained in the 

Methods section in detail), we assumed that even one active data point (i.e., £ 10 µM 

xC50) would be sufficient to accept that the corresponding molecule does not possess 

features that make it an all-inactive / invalid compound. To eliminate chemical bias 

from our datasets, we applied the Murcko scaffold [258] detection and train-test split 

(based on the detected scaffolds) module in the RDKit package. This way, for each 

target, all compounds with a distinct scaffold either ended up in the training set or in 

the test set; in other words, the compounds with the same scaffold were not 

distributed to both training and test. Following these rules, we carefully constructed 

train and test datasets for 17 representative targets spanning the main target families 

of enzymes, GPCRs, ion channels, nuclear receptors and others, with dataset sizes 

ranging from 143 to 5229. The total number of data points in the finalized dataset 

was 21200. The targets were selected mostly based on the representative drug targets 

list given in another study [259]. We selected 10 targets from the list given in 

Mysinger et al. (many of the remaining targets listed in this article were not among 

704 DEEPScreen targets so they could not be covered), we additionally included 

Renin and JAK1 (since these two targets were also selected as use cases for further 

validation) and 5 additional randomly selected targets proteins (from different 

families), to reflect the target protein family distribution for 704 DEEPScreen 

targets. The gene names of the selected 17 targets are: MAPK14, JAK1, REN, DPP4, 

LTA4H, CYP3A4, CAMK2D, ADORA2A, ADRB1, NPY2R, CXCR4, KCNA5, 

GRIK1, ESR1, RARB, XIAP, NET; summing into 7 enzymes (taking the 

distribution of the enzyme sub-families into account as well), 4 GPCRs, 2 ion 

channels,  2 nuclear receptors and 2 others. We named this set as the representative 

targets benchmark dataset. 

The second benchmark dataset we used in our study was directly obtained from the 

study by Lenselink et al. [231]. In this study, the authors created a high quality 

ChEMBL (v20) bioactivity dataset that includes 314,767 bioactivity measurements 

corresponding to target proteins with at least 30 bioactivity data points. They used 

pChEMBL = 6.5 (roughly 300 nM) bioactivity value threshold to create active and 
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inactive compound datasets for each target. The authors evaluated their method with 

a test dataset created by a temporal split, where for each target protein, all of the 

bioactivity data points reported in the literature prior to 2013 were used in the 

training, and the newer data points were gathered for the test dataset. This test dataset 

is more challenging for ML classifiers compared to any random-split dataset. 

The third dataset we used was Maximum Unbiased Validation (MUV), another 

widely-used benchmark set, composed of active and inactive (decoy) compounds for 

17 targets [260]. MUV dataset was generated from the PubChem Bioassay database. 

The active compounds in this dataset was selected to be structurally different from 

each other. Therefore, it is a challenging benchmark dataset, which avoids the bias 

rooting from highly similar compounds ending up in both training and test splits (i.e., 

chemical bias). There are 17 targets in MUV dataset, together with 30 actives and 

15000 decoys for each target. 

The fourth benchmarking dataset employed in this study was DUD-E, a well-known 

set for DTI prediction, which includes curated active and inactive compounds for 

102 targets. The active compounds for each target was selected by first clustering all 

active compounds based on the scaffold similarity and selecting representative 

actives from each cluster. The inactive compounds were selected to be similar to the 

active compounds in terms of the physicochemical descriptors, but dissimilar 

considering the 2-D fingerprints [259]. The benchmark dataset consists of 102 

targets, 22,886 actives (an average of 224 actives per target) and 50 property-

matched decoys for each active, which were obtained from the ZINC database [259]. 

It is also important to note that DUD-E benchmark dataset is reported to suffer from 

negative selection bias problem, as a result, we did not conclude our results on the 

performance on the DUD-E dataset. We just used DUD-E dataset to make a highly 

generic performance comparison with the literature, since DUD-E is a widely used 

benchmark dataset. 
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4.3.6  Literature Based Validation of Novel DTI Predictions 

DEEPScreen produced 21.2 million completely novel DTI predictions. As a result, 

it was not possible to manually check the literature if a research group has already 

studied these specific drug/compound-target interactions for validation. Instead we 

assumed a more directed approach, where the validation cases were determined from 

a newer version of ChEMBL and from the literature first, then, DEEPScreen’s novel 

prediction results were searched to observe if these interactions were identified by 

DEEPScreen as well. The selected cases are composed of two types of data points. 

The first one concerns the already approved drugs (or the ones in the experimental 

development phases), where the given target interactions are novel (i.e., not part of 

the already approved or experimental treatment for these drugs), thus, serve the 

purposes of drug repositioning. For this, we found the cases where the corresponding 

drug has bioactivity data points for new targets in ChEMBL v24, that was not part 

of v23 (ChEMBL v23 was used for the training of DEEPScreen). As such, these 

cases correspond to the recently curated data. Using this set, we only selected the 

cases where the corresponding targets were among the 704 target proteins of 

DEEPScreen, and the source publications of the reported bioactivities were novel 

(i.e., from 2016 and 2017). It was not possible to find any cases with 2018 

publications since these articles are not curated in ChEMBL yet. We then searched 

DEEPScreen large-scale prediction results to find if these cases were predicted. The 

results only display a few of the coinciding data points with the most novel source 

publications. The second type of data points consist of completely novel bio-

interactions that has not entered ChEMBL or any other bioactivity database yet. 

Since these compounds are not incorporated in ChEMBL, our large-scale prediction 

results did not include them. To observe if DEEPScreen can predict the reported 

activities given in 2 selected drug design and development publications from 2018 

[261], [262], we generated the SMILES representations and the 2-D structural 

images of the documented compounds using their molecular formula as reported in 

the corresponding publications. After that, we run the query compounds against their 
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newly identified targets (which were reported in the respective articles) to see if 

DEEPScreen can predict these highly novel interactions. For the literature-based 

validation analysis, the approved and experimental drug information was obtained 

from the DrugBank database [141]. 

4.3.7 Performance Evaluation Metrics 

We mainly used 3 evaluation metrics, F1-score, Matthews Correlation Coefficient 

(MCC) and area under receiver operating characteristic curve (AUROC) to evaluate 

the predictive performance of DEEPScreen and to compare its results with other DTI 

prediction methods. The formulas of these evaluation metrics are given below 

together with precision and recall that make up F1-score: 

!"#$%&%'( = 	
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+! + -!
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-1 − R$'"# = 	
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;<< = 	
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In the equations above, TP (i.e., true positive) represents the number of correctly 

predicted interacting drug/compound-target pairs, FN (i.e., false negative) represents 

the number of interacting drug/compound-target pairs, that are predicted as non-

interacting (i.e., inactive). TN (i.e., true negative) denotes the number of correctly 

predicted non-interacting drug/compound-target pairs, whereas FP (i.e., false 

positive) represents the number of non-interacting drug/compound-target pairs, 

which are predicted as interacting. 
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4.4 Results 

4.4.1 Drug-Target Interaction Prediction with DEEPScreen 

In this study, we approached DTI prediction as a binary classification problem. 

DEEPScreen is a collection of DCNNs, each of which is an individual predictor for 

a target protein. The system takes drugs or drug candidate compounds in the form of 

SMILES representations as query, generates 200-by-200 pixel 2-D 

structural/molecular images using SMILES, run the predictive DCNN models on the 

input 2-D images, and generates binary predictions as active (i.e., interacting) or 

inactive (i.e., non-interacting) for the corresponding target protein (Figure 4.2). In 

order to train the target specific predictive models of DEEPScreen with a reliable 

learning set, manually curated bio-interaction data points were obtained from the 

ChEMBL bioactivity database, and extensively filtered (Figure 4.1). The technical 

details regarding both the methodology and the data is given in the Methods section. 

Following the preparation of datasets, we extracted target protein based statistics, in 

terms of amino acid sequences [11], domains [263],[168], functions, interacting 

compounds and disease indications [264],[265]. The results of this analysis can be 

found the manuscript [266].  

4.4.2 System Robustness Against Input Image Transformations 

We also carried out several tests to examine the robustness of the DEEPScreen 

system against input image transformations, since this is a critical topic for CNN 

architectures that process 2-D images. One of the critical points in the computer 

vision tasks is the system robustness concerning the differences in the 

representations of the object of interest, such as the viewing angle or the scale. In 

DEEPScreen, input images are standardized by computationally generating them 

from SMILES representations, this way all images have similar representations in 

terms of viewing angle (i.e., rotation). However, we investigated the question of how 
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the models would behave if they are provided with rotated compound images as the 

query. For this, we have selected 3 target protein models (i.e., BCHE gene - 

CHEMBL5077, GSK3beta gene - CHEMBL3638364, PTGS1 gene - CHEMBL221) 

and we constructed the rotated compound images of the positive and negative 

performance test dataset compounds of these targets. 7 new samples were generated 

from each test compound image, by rotating the original image by 45 degree angle. 

We fed these rotated images to the original pre-trained predictive models as the query 

set. Since the original models have never seen these rotated images before (during 

training), the performances were decreased by 29%, 23% and 32% in terms of the 

MCC measure and by 22%, 18% and 18% in terms of accuracy for BCHE, GSK3beta 

and PTGS1 models, respectively (compared to the original test performances of these 

models, when there is no rotated images in the query set). It was argued in the 

literature that the application of training data augmentation by generating and adding 

new samples to the training set by rotating the existing images solves this problem 

[267]. To observe if this is the case for DEEPScreen, we generated rotated compound 

images for each and every positive and negative training dataset instance (using the 

same 45 degree rotation approach), and re-trained the same predictive models using 

the enhanced training datasets and performed the hyper-parameter optimization tests 

with grid-search. After that, we measured the performance of these newly trained 

models by querying them with the rotation-added test datasets used in the previous 

test. Finally, we compared the performance of the rotation-trained models with the 

performance of the original models (i.e., models without any rotated images in 

training or in test datasets). The results showed that, when the rotated images were 

added to the training, the performance remained roughly the same for all 3 selected 

models (i.e., 0-2% performance decrease in both MCC and accuracy for BCHE, 

GSK3beta and PTGS1), which indicates that training with data augmentation by 

generating rotated data points worked well. However, it was not possible to apply 

this methodology to train all of 704 target protein models of DEEPScreen due to 

significantly increased computational complexity. The application of rotated 

compound images increased the training dataset size of each model 8 times relative 
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to the original training datasets. This was a huge burden especially for the complex 

Inception architecture-based models. Considering the fact that whole hyper-

parameter optimization by grid search procedure should have been repeated, it was 

not possible to construct a rotation invariant system for DEEPScreen in the end. 

Instead, we relied on generating canonical images for both the training and query 

compounds from SMILES as the input, which worked well in practice. There are 

also novel alternative solutions proposed lately in the literature such as the approach 

proposed by Thomas et al.,  where the authors developed a DCNN architecture that 

is equivariant to rotations by using filters from spherical harmonics [268]. Similar 

approaches may be applied in the future to modify DEEPScreen to make it 

completely rotation invariant so that the user drawn images can directly be fed to the 

system as the input (through a web-interface) instead of SMILES. 

Another important transformation type for computer vision tasks is the scaling. In 

DEEPScreen, the compounds are drawn as images by fully occupying the 200-by-

200 pixel frame no matter what their actual molecular sizes are. This means that a 

certain component (i.e., a sub-structure such as a benzene ring) in a large (i.e., high 

molecular weight) compound will occupy fewer number of pixels (i.e., appear 

smaller in the image) compared to the size of the same sub-structure as a part of a 

smaller (i.e., low molecular weight) compound. The predictive system should be 

invariant to these scaling variances, in other words, it should perceive, for example, 

a benzene ring structure independent from its size on the compound images. This is 

generally achieved by training CNN-based systems by using input instances 

containing the features of interest in different scales [267]. In DEEPScreen, this is 

automatically achieved since the training dataset compounds of each target protein 

contain both relatively larger and smaller molecules. In order to examine this issue, 

we conducted a scaling analysis on our case study model: renin. In this analysis, we 

augmented the test dataset of renin target protein model by scaling both the positive 

and negative test dataset molecules by decreasing the sizes by 10%, 20% and 30% 

(i.e., molecules occupy a smaller area on the 200-by-200 pixel images). In the end, 

we obtained a test dataset 4 times larger compared to the original set (i.e., original + 
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10% + 20% + 30% scaled down compounds for all test samples). We fed the newly 

generated scaled test dataset as query to the original pre-trained predictive model of 

renin target protein. The assumption here was that, since the training dataset 

compounds of renin contained samples in different scales (i.e., same sub-structures 

automatically drawn in different sizes in different images due their presence in both 

large and small compounds) the system will be robust against the variance in the 

artificially scaled samples in the test dataset. The performance results of this test 

have indicated that decreasing the molecule size by 10% affected the predictive 

performance by reducing precision, recall, F1-score and accuracy by 9%, 7%, 8% 

and 9%, respectively. A same trend was observed for 20% and 30% size reductions 

(i.e., 8-10% performance reduction compared to the test results of the previous 

scaling), as well, pointing out a linear relation between molecule size scales and the 

performance. The results pointed out that the performance change observed with a 

10% scaling is acceptable. 

Nevertheless, it is possible to query a target protein model with a compound that is 

significantly larger or smaller compared to all training dataset samples of the model. 

In this case, the system may misinterpret a feature/sub-structure since it will be 

scaled very differently compared to the scales it is aware of (from the training data). 

However, a molecule that is significantly larger or smaller compared to all known 

ligands of a target would be less likely to interact with the intended target due to its 

inability to occupy the intended binding region/pocket. In order to test this, we 

analyzed the size distribution of the compounds in the active and inactive training 

datasets of renin, in terms of molecular weights, since the molecular weight can be a 

good indicator of the scale of the compounds on the 2-D images. The molecular 

weight is only consist of a number (i.e., we can compare different molecular weights 

on a 1 dimensional space), whereas in images, compounds are represented over 2 

dimensions (where there is more space), as a result, 2-D scaling differences are 

roughly equivalent to the square of the molecular weight differences (e.g., a 10% 

size difference in 2-D images is roughly equivalent to 31.5% difference in molecular 

weight). We also manually checked several compound images from the original 
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training datasets of different target proteins and observed that the abovementioned 

relation between the molecular weight change and 2-D scaling change holds true. 

The analysis of the training dataset compounds of an example target protein: 

"Complement factor D" (gene name: CFD, ChEMBL id: CHEMBL2176771), which 

has 732 active ligands (close to the average number of active ligands for all 

DEEPScreen targets: 728), revealed that the molecular weight distribution is normal 

and the active compounds have a mean of 504 g/mol and a standard deviation of 38 

g/mol, which indicates a weight change of 26% between +/- two standard deviations 

from the mean (i.e., 580 to 428 g/mol), translating into roughly 7% (i.e., 0.26^2) 

scaling difference on 2-D. It is important to note that two standard deviations from 

the mean covers nearly 95% of all data points in a normal distribution. This places 

the expected scaling difference between the potential ligands of a target within an 

acceptable zone in terms of model performance reduction (i.e., < 10%). 

4.4.3 Sources of Dataset Bias in Model Evaluation 

Labelled ground-truth data are split into training/validation/test partitions in order to 

train, optimize and evaluate predictive models. There are two basic strategies in the 

field of virtual screening (or DTI prediction) in terms of dataset split. The first and 

the most basic one is the random-split, where the data points are separated randomly 

without any particular consideration. Evaluations using random-split datasets are 

good indicators of what would be the model performance in predicting new binders 

that are structurally similar (e.g., containing the same scaffolds) to the compounds 

in the training dataset. The second widely used data split strategy in DTI prediction 

is the similarity-based (or non-random) split, where data points are divided according 

to similarities between compounds/targets/bioactivities, according to the assumed 

modelling approach. Here, the aim is to prevent very similar data points from ending 

up both in training and test sets. In ligand-based prediction approaches (such as 

DEEPScreen), the input samples are compounds, as a result, datasets are split 

according to molecular similarities between compounds. This can be done by 
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checking the shared scaffolds in these compounds and applying a scaffold-based split 

or by calculating pairwise structural similarities and clustering the compounds based 

on this. 

There are critical points and risks in constructing training and test datasets for 

developing a virtual screening system and analysing its predictive performance. The 

first risk would be the introduction of chemical bias to the tests, where structurally 

similar compounds end up both in training and test datasets. This often makes the 

task of accurate prediction a somewhat trivial task, since structurally similar 

compounds usually have similar (or the same) targets. Random-split datasets usually 

suffer from this problem. Another risk is the negative selection bias, where negative 

samples (i.e., inactive or non-binder compounds) in the training and/or test datasets 

are structurally similar to each other in a way, which is completely unrelated to their 

binding related properties [269]. So that, a machine learning classifier can easily 

exploit this feature to successfully separate them from the positives. Both of these 

cases would result an overestimation of the model performance during benchmarks, 

especially when the tests are made to infer to performance of the models in predicting 

completely novel binders to the modelled target proteins. It was reported that a 

widely used benchmark dataset DUD-E [259] suffers from the negative selection 

bias problem, even though the chemical bias issue was properly addressed during the 

construction of this benchmark. In DUD-E, most of the property matched decoys 

(i.e., negatives) were found to be highly biased, as the models trained on specific 

targets were highly successful in identifying the negatives of completely different 

targets [269]. In other words, most of the decoys shared features that make them non-

binders to nearly all target proteins, and care should be taken while evaluating 

predictive models on this benchmark. In this study, we evaluated the performance of 

DEEPScreen on 5 different datasets (e.g., large-scale random-split dataset, both 

chemical and negative selection bias free representative targets dataset, ChEMBL 

temporal/time split dataset, MUV and DUD-E) in order to observe the behaviour of 

the system and its comparison with the state-of-the-art on benchmarks with differing 
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strengths and weaknesses. The content and properties of these datasets are explained 

in the Methods section. 

4.4.4 Analysis of the DEEPScreen Dataset in terms of Negative Selection 

Bias 

To examine DEEPScreen source dataset in terms of negative selection bias, we 

compared the average molecular similarities among the member compounds of each 

target specific negative training dataset, also, we make a cross comparison of average 

molecular similarity of the compounds in the positive training dataset a target against 

the compounds in the negative training  dataset of the same target, to uncover if there 

is a statistically significant  structural difference between positives and negatives. 

For this, we employed Morgan Fingerprints (ECFP4) and the pairwise Tanimoto 

similarity calculation between all compound pair combinations. According to the 

results of this analyses on the datasets of 704 target proteins, there was no target 

where the inactive training dataset compounds are more similar to each other 

compared to the inter group similarities between the active and inactive dataset 

compounds of that target protein model, with statistical significance according to t-

test (at 95% confidence interval). Actually, mean active to inactive similarity was 

higher than the similarity among the inactives for 211 targets, indicating that 

inactives do not share a global similarity that separates them from actives, that would 

otherwise make it easy to distinguish them, and introduce a bias to the performance 

analysis. These results are displayed in Figure 4.3 as target based mean pairwise 

compound similarity curves for intra-group (among inactives) and inter-group 

(actives to inactives) similarities with error bands. The most probable reason behind 

the observation of no significant difference was that, we directly used the 

experimental bioassay results reported in the ChEMBL database to construct our 

negative datasets by setting an activity threshold (i.e., £ 10 µM), instead of manually 

constructing decoy datasets. Thus, the compounds in our negative datasets are able 
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to interact with the intended targets, with very low affinities. The results indicated 

that the negative selection bias is not an issue for the DEEPScreen source dataset. 

 

Figure 4.3. Target-based (x-axis) average pairwise compound similarity (y-axis) 

curves for intra-group (among inactives) and inter-group (actives to inactives) 

similarities with error bands for 704 DEEPScreen targets. 

4.4.5 Performance Evaluation of DEEPScreen and Comparison with 

Other Methods 

4.4.5.1 Large-scale Performance Evaluation and Comparison on Random-

Split Dataset 

According to our basic performance tests, for 613 of the target protein models (out 

of 704), DEEPScreen scored an accuracy ≥ 0.8, with an overall average accuracy: 

0.87, F1-score: 0.87 and Matthews Correlation Coefficient (MCC): 0.74. 

Additionally, high-level target protein family based average model performances 

indicated that DEEPScreen performs sufficiently well on all target families (average 

MCC for enzymes: 0.71, GPCR: 0.80, ion channels: 0.76, nuclear receptors: 0.76, 

others: 0.69). All performance evaluation metrics used in this study are explained in 

the Methods section. 

Following the calculation of DEEPScreen's performance, we compared it against 

conventional DTI prediction approaches (classifiers: random forest - RF, support 
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vector machines - SVM and logistic regression - LR) using the exact same random-

split training/test sets under two different settings. In the first setting, conventional 

classifiers were trained with circular fingerprints (i.e., ECFP4 [247]) of the 

compounds, which represents the current state-of-the-art in DTI prediction. The 

model parameters of the conventional classifiers were optimized on the validation 

dataset and the finalized performances were measured using the independent test 

dataset, similar to the evaluation of DEEPScreen. In the second setting, the same 

feature type (i.e., 2-D molecular representations) is employed. These conventional 

classifiers normally accept 1-D (column-type) feature vectors, therefore, we 

flattened our 200-by-200 images to be used as input. Thus, the performance 

comparison solely reflects the gain of employing DCNNs as opposed to 

conventional/shallow classification techniques. It is possible to argue that 

conventional classifiers such as LR, RF and SVM may not directly learn the from 

the raw image features, and thus, sophisticated image pre-processing applications, 

such as constructing and using histogram of oriented gradients [270], are required to 

train proper image feature based predictive models. Here, our aim was to identify the 

most prominent factor behind the performance increase yielded by DEEPScreen (i.e., 

is it only the use of DNNs, mostly independent from the featurization approach, or 

is it the use of image-based features together with the employment of DNNs to 

classify them), without a possible affect from a third-party data processing 

application. As a result, we directly used the raw image features. Figure 4.4.a 

displays the overall ranked target based predictive performance curves, in MCC, 

accuracy and F1-score, respectively. We did not include RF-Image and SVM-Image 

performance in Figure 4.4 since RF models performed very similar to the LR models 

on nearly all models, and SVM models were unable to learn the hidden features in 

most of the cases and provided a very low performance. It is possible to observe the 

results of RF-Image and SVM-Image in the performance tables provided in the 

repository of this study. DEEPScreen performed better compared to all conventional 

classifiers employed in the test according to both mean and median performance 

measures. Especially, the performance difference was significant when MCC was 
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used, which is considered to be a good descriptor of DTI prediction performance. 

For all performance measures, among the best 200 target models for each method, 

LR-ECFP and RF-ECFP models have higher performance compared to 

DEEPScreen, however, DEEPScreen takes over after the 200th model and displayed 

a much better performance afterwards. Overall, DEEPScreen performed 12% and 

23% better in terms of mean and median performances respectively, compared to its 

closest competitors (i.e., LR-ECFP and RF-ECFP) in terms of MCC. According to 

our results, the best classifier was DEEPScreen for 356 targets (LR-ECFP for 250, 

RF-ECFP for 141, SVM-ECFP for 24 targets). The results indicate that 

DEEPScreen’s performance is stable over the whole target set. On the other hand, 

state-of-the-art classifiers perform very well for some targets but quite bad at others, 

pointing out the issues related to generalization of conventional fingerprints. 

(a) 
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(b) 

 

(c) 

 

Figure 4.4. (a) DEEPScreen vs. state-of-the-art classifiers overall predictive 

performance comparison. Each point in the horizontal axis represents a target protein 

model, the vertical axis represents performance in: MCC, accuracy and F1-score, 

respectively. For each classifier, targets are ranked in a descending performance 

order. Average performance values (mean and median) are given inside the plots. (b) 

Target-based maximum predictive performance (MCC-based) heatmap for 

DEEPScreen and conventional classifiers (columns) (LR: logistic regression, RF: 

random forest, SVM: support vector machine; ECFP: fingerprint-based models, 

Image: 2-D structural representation-based models). For each target protein (row), 

classifier performances are shown in the shades of red (i.e., high performance) and 

blue (i.e., low performance) colours according to Z-scores (Z-scores are calculated 

individually for each target). Rows are arranged in blocks according to target 
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families. The height of a block is proportional to the number of targets in its 

corresponding family (enzymes: 374, GPCRs: 212, ion channels: 33, nuclear 

receptors: 27, others: 58). Within each block, targets are arranged according to 

descending performance from top down with respect to DEEPScreen. Grey colour 

signifies the cases, where learning was not possible. (c) MCC performance box plots 

in 10-fold cross-validation experiment, to compare DEEPScreen with the state-of-

the-art DTI predictors. 

Figure 4.4.b shows target protein based predictive performance (in terms of MCC) 

z-score heatmap for DEEPScreen and the conventional classifiers, where each 

horizontal block corresponds to a target family. As displayed in Figure 4.4.b, 

DEEPScreen performed significantly better for all families (solid red blocks), LR-

ECFP and RF-ECFP came second, LR-Image took the third place, and SVM-ECFP 

came at the last place. An interesting observation here is that, image-based (i.e., 

DEEPScreen and LR-Image) and fingerprint-based classifiers display opposite 

trends in predictive performance for all families, indicating that the image-based 

approach complements the fingerprint approach. Also, LR-ECFP and LR-Image 

performances were mostly opposite, indicating a pronounced difference between the 

information obtained from fingerprints and images. Although LR-Image's overall 

performance was lower compared to LR-ECFP, it was still higher compared to SVM-

ECFP, implying LR-Image managed to learn at least part of the relevant hidden 

features. There was no significant difference between the protein families in terms 

of the classifier rankings, though, DEEPScreen’s domination was slightly more 

pronounced on the families of GPCR, ion channel, and nuclear receptor.  

In order to compare the performance of DEEPScreen with the conventional 

classifiers on a statistical basis, we carried out 10 fold cross-validation on the 

fundamental random-split datasets of the same 17 representative target proteins (i.e., 

gene names: MAPK14, JAK1, REN, DPP4, LTA4H, CYP3A4, CAMK2D, 

ADORA2A, ADRB1, NPY2R, CXCR4, KCNA5, GRIK1, ESR1, RARB, XIAP, 

NET) that were employed for the construction of chemical and negative selection 

bias free scaffold-split benchmark dataset (please see Methods section for 
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information about the selection procedure for these target proteins). We applied 

Bonferroni corrected t-tests to compare the performance distribution of each method 

on each target independently (10 measurements from each 10-fold cross-validation 

experiment constitute a distribution). The statistical tests were conducted on MCC 

performance metric due to its stability under varying dataset size partitions. Figure 

4.4.c displays the MCC performance results as box plots, for 17 targets. Each box 

represents a classifier's 10 MCC measures on 10 different folds of a target's training 

dataset, in the cross-validation. In these plots, the top and bottom borders of the box 

indicate the 75th and 25th percentiles, the whiskers shows the extension of the most 

extreme data points that are not outliers, and plus symbols indicate outliers. The 

number written under the gene names of the respective targets indicate the size of 

the training datasets (actives). According to results, there was no observable relation 

between dataset sizes and a classifier's performance. According to the results of the 

multiple pairwise comparison test (Bonferroni corrected t-tests), DEEPScreen 

performed significantly better (compared to the best conventional classifier for each 

target) for 9 of the 17 representative targets (i.e., genes: MAPK14, REN, DPP4, 

LTA4H, CYP3A4, ADRB1, NPY2R, ESR1, XIAP), which constitutes 71%, 50%, 

50% and 50% of enzymes, GPCRs, nuclear receptors and 'others' families, 

respectively (p-value < 0.001). Whereas, the best conventional classifier managed to 

significantly beat DEEPScreen only on 2 representative targets (i.e., genes: JAK1 

and RARB), which constitute 14% and 25% of enzymes and GPCRs, respectively 

(p-value < 0.001). For the rest of the representatives (6 targets), there was no 

statistically significant difference between DEEPScreen and the conventional 

classifiers. The results indicate that DEEPScreen's dominance is mostly statistically 

significant. 

To examine the test results in relation to potential performance effecting factors, we 

first checked the correlation between the performances of different classifiers to 

observe the overlap and the complementarity between different ML algorithms and 

featurization approaches. Spearman rank correlation between the performance 

(MCC) distribution of DEEPScreen and the state-of-the-art (i.e., LR, RF and SVM 
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with fingerprint-based features) were around 0.25 (against LR-ECFP and RF-ECFP) 

and 0.51 (against SVM-ECFP), indicating only a slight relation, and thus, a potential 

complementarity (as also indicated in Figure 4.4.b). However, the rank correlation 

between LR-ECFP and RF-ECFP was 0.97 indicating a high amount of overlap and 

possibly no complementarity. The correlation between LR-ECFP (or RF-ECFP) and 

SVM-ECFP was around 0.62, just slightly higher than DEEPScreen vs. SVM-ECFP. 

It was interesting to observe DEEPScreen's performance rank was more similar to 

SVM-ECFP than LR-ECFP or RF-ECFP. To check if the difference between 

DEEPScreen and LR/RF is due to the employed algorithmic approach or due to the 

featurization approach, we checked the correlation between DEEPScreen and LR 

that used image features (i.e., LR-Image), which resulted in a correlation value of 

0.68. Whereas, the rank correlation between LR-ECFP and LR-Image was only 0.21. 

These results demonstrated that the low correlation between DEEPScreen and LR-

ECFP (or RF-ECFP) was mainly due to the difference in featurization, and there is 

possibly a complementarity between the featurization approaches of using molecular 

structure fingerprints and 2-D images of compounds. Also, the observed high 

performance of DEEPScreen indicated that deep convolutional neural networks are 

successful in extracting knowledge directly from the 2-D compound images.  

Subsequently, we checked if there is a relation between training dataset sizes and the 

performance of the models, since deep learning-based methods are often reported to 

work well with large training sets. For this, we calculated the Spearman rank 

correlation between DEEPScreen performance (MCC) and the dataset sizes of 704 

target proteins, and the resulting value was -0.02, indicating no correlation. The 

results were similar when LR and RF were tested against the dataset sizes (-0.08 and 

-0.02, respectively). However, the result for SVM was 0.20, indicating a slight 

correlation. Finally, we checked the average dataset size of 356 target proteins, on 

which DEEPScreen performed better (MCC) compared to all conventional 

classifiers and found the mean value as 629 active compounds, we also calculated 

the average dataset size of the models where the state-of-the-art approaches 

performed better compared to DEEPScreen, and found the mean value as 542 active 
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compounds. The difference in the mean dataset sizes indicates DEEPScreen 

performs generally better on larger datasets. 

Next, we applied a statistical test to observe if there are significantly enriched 

compound scaffolds in the training datasets of target proteins, where DEEPScreen 

performed better compared to the state-of-the-art approaches. For this, we first 

extracted Murcko scaffolds [258] of both active and inactive compounds of 704 

DEEPScreen targets, using the RDkit scaffold module. Scaffold extraction resulted 

in o total of 114269 unique Murcko scaffolds for 294191 compounds. Then, we 

divided each scaffold's statistics to four groups: (i) the number of occurrences in the 

active compound datasets of targets where DEEPScreen performed better, (ii) the 

number of occurrences in the active compound datasets of targets where the state-

of-the-art classifiers performed better, (iii) the number of occurrences in the inactive 

compound datasets of targets where DEEPScreen performed better, and (iv) the 

number of occurrences in the inactive compound datasets of targets where state-of-

the-art classifiers performed better. Using these four groups, we calculated the 

Fisher’s exact test significance (p-value) for the decision on the null hypothesis that 

there are no non-random associations between the occurrence of the corresponding 

scaffold in the DEEPScreen dominated target models and the state-of-the-art 

classifier dominated models. With a p-value threshold of 1x10-5, we identified 140 

scaffolds, 61 of which were enriched in the DEEPScreen dominated target models. 

With the aim of reducing the extremely high number of unique scaffolds, we repeated 

the exact same procedure by using the generalized versions of the identified 

scaffolds. The generalization procedure (using RDkit) reduced the number of unique 

scaffolds to 55813. The statistical test resulted in a total of 211 significant 

generalized scaffolds, 101 of which were enriched in the DEEPScreen dominated 

target models. Although we managed to identify several significant scaffolds, most 

of them were presented in the datasets of only a few targets. The most probable 

reason behind was the high diversity of compounds in the DEEPScreen training 

datasets. SMILES representations of significant scaffolds and significant generalized 
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scaffolds are given together with their respective p-values in tabular format, in the 

repository of DEEPScreen. 

4.4.5.2 Performance Evaluation and Comparison on Similarity-based Split 

Datasets 

We compared the results of DEEPScreen with multiple state-of-the-art methods and 

highly novel DL-based DTI prediction approaches by employing four non-random 

split datasets (i.e., representative targets benchmark, temporal/time split dataset, 

MUV and DUD-E). 

4.4.5.3 Comparison with the State-of-the-art Using our Scaffold Split 

Dataset 

In order to test DEEPScreen free from chemical and negative selection biases, and 

to identify its potential to predict completely novel interacting drug candidate 

compounds for the intended target proteins, we carefully constructed target specific 

active/inactive compound datasets with a structural train-test split and collectively 

named it the representative targets benchmark dataset (please see the Methods 

section for more information on this dataset). The newly constructed representative 

targets benchmark dataset was used to train and test DEEPScreen along with the 

same state-of-the-art approaches used in virtual screening (i.e., LR, RF and SVM 

with fingerprint-based features). Figure 4.5.a displays the performance results 

(MCC) on different representative targets. As observed, on average, DEEPScreen 

was the best performer with a median MCC of 0.71, whereas, the best state-of-the-

art method LR scored a median MCC of 0.6. RF performed similar to LR on average 

and on most of the targets individually, and SVM could not manage to learn from 

the challenging datasets of 4 targets, where it scored MCC = 0. Out of the 17 

representative targets, DEEPScreen was the best performer for 13 of them, where the 

combined performance of the state-of-the-art methods managed to beat DEEPScreen 
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on 4 targets. Considering the target protein families, DEEPScreen was the best 

performer for 71% of the enzymes, 100% of GPCRs and ion channels, 50% of the 

nuclear receptors and 'others' families. The results indicate the effectiveness of the 

proposed approach in terms of producing interacting compound predictions with 

completely different scaffolds compared to the scaffolds present in the training 

datasets. Chemical and negative bias eliminated representative targets benchmark 

datasets is shared in the repository of DEEPScreen. 

To benchmark DEEPScreen on an additional structural train-test split dataset, and to 

compare it with the state-of-the-art, we employed the Maximum Unbiased 

Validation (MUV) dataset. Since MUV is a standard reference dataset that is 

frequently used to test virtual screening methods, our results are also comparable 

with other works that employed the MUV benchmark. We trained DEEPScreen 

prediction models for 17 MUV targets using the given training split and calculated 

performance on the test split. We repeated the procedure using the conventional 

classifiers LR and RF that use fingerprint feature vectors. We left SVM out of this 

analysis based on its significantly inferior performance in the previous tests. The 

MUV performance results are shown in Figure 4.5.b with MCC bar plots for 

DEEPScreen, LR and RF. As observed from this figure, DEEPScreen had a higher 

performance on 15 out 17 targets, DEEPScreen and RF had the same performance 

on 1 target and there was a performance draw on the remaining target. Out of the 15 

targets that DEEPScreen performed better, the performance difference was highly 

pronounced on 14 of them. The mean MCC for DEEPScreen, LR and RF were 0.81, 

0.43 and 0.63, respectively; indicating a clear performance difference on a bias free 

benchmark dataset. 
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(a) 
 

 

 

 

(b) 
 

 

Figure 4.5. Predictive Performance evaluation and comparison of DEEPScreen 

against the state-of-the-art DTI prediction approaches, on scaffold-split benchmarks: 

(a) Bar plots of MCC values on representative targets dataset; (b) Bar plots of MCC 

values on the MUV dataset. 
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4.4.5.4  Comparison with Novel DL-based DTI Prediction Methods Using 

Multiple Benchmarks 

For the DL-based DTI prediction method comparison analysis, we employed three 

benchmarks: temporal split, MUV and DUD-E (please refer to the Methods section 

for more information on these benchmark sets). We re-trained and tested 

DEEPScreen using the exact same experimental settings and evaluation metrics that 

were described in the respective articles [121], [123], [134], [231], [232]. Two of 

these datasets (i.e., MUV and DUD-E) are frequently employed in DTI prediction 

studies and the performance results of DEEPScreen on these datasets will also be 

comparable with future studies, where the same benchmark sets (together with the 

same train/test methodology) are employed. The results of this analysis reflect both 

the benefits of using 2-D images of compounds as the input, and the constructed 

DCNN-based architecture. It is important to mention that in each of these benchmark 

tests, DEEPScreen was trained with only the training portion of the corresponding 

benchmark dataset (i.e., MUV, DUD-E or ChEMBL temporal split set); in other 

words, our fundamental training dataset was not used at all. As a result, the number 

of training instances was significantly lower, which resulted in lower performances 

compared to what could have been achieved by using the regular predictive models 

of DEEPScreen. 

Table 4.3 shows the results of DEEPScreen along with the performances reported in 

the respective articles (including both novel DL-based methods and the state-of-the-

art approaches). As shown, DEEPScreen performed significantly better compared to 

all methods on the ChEMBL temporal split dataset. Lenselink et al. employed 

Morgan fingerprints (i.e., ECFPs [247]) at the input level as the compound feature, 

which currently is the most widely used (state-of-the-art) ligand feature type for DTI 

prediction. On their temporal split test dataset, DEEPScreen performed 36% better 

compared to the best model in the study by Lenselink et al. (i.e., multi-task DNN 

PCM – proteochemometics, also a deep learning based classifier), indicating the 

effectiveness of employing 2-D image-based representations as input features.  
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Table 4.3 The average predictive performance comparison between DEEPScreen 
and various novel DL-based and conventional DTI predictors. 

Dataset Reference Method/Architecture Performance 
(Metric) 

ChEMBL 

Temporal-split 

Dataset 

 DEEPScreen: DCNN with 

2-D Images 

0.45 (MCC) 

Lenselink et 

al. [231] 

Feed-forward DNN PCM 

(best model) 

0.33 (MCC) 

Feed-forward DNN 0.30 (MCC) 

SVM 0.29 (MCC) 

LR 0.26 (MCC) 

RF 0.26 (MCC) 

Naïve Bayes 0.10 (MCC) 

Maximum 

Unbiased 

Validation (MUV) 

Dataset 

 DEEPScreen: DCNN with 

2-D Images 

0.88 (AUROC) 

Kearnes et al. 

[134] 

Graph convolution NNs 

(W2N2) 

0.85 (AUROC) 

Ramsundar et 

al. [121] 

Pyramidal Multitask Neural 

Net (PMTNN) 

0.84 (AUROC) 

Multitask Neural Net 0.80 (AUROC) 

Single-Task Neural Net 0.73 (AUROC) 

RF 0.77 (AUROC) 

LR 0.75 (AUROC) 
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DEEPScreen was the best performer on the MUV dataset (Table 4.3), by a small 

margin, compared to the graph convolutional neural network (GCNN) architecture 

proposed by Kearnes et al. [134]. It is interesting to compare DEEPScreen with 

GCNN models since both methods directly utilize the ligand atoms and their bonding 

information at the input level, with different technical featurization strategies. 

Nevertheless, the classification performance of both methods on the MUV dataset 

was extremely high and more challenging benchmark datasets are required to analyse 

their differences comprehensively. The performance difference between 

DEEPScreen (or GCNN) and most of the DL-based methods with conventional 

features such as the molecular fingerprints (as employed in Ramsundar et al. [121]) 

indicates the improvement yielded by novel featurization approaches. It is also 

important to note that the performance results given for LR and RF on the MUV 

results section of Table 4.3 were calculated by Ramsundar et al.; however, LR and 

RF MUV benchmark results we provided in Figure 4.5.b were calculated by us. 

We also tested DEEPScreen on the DUD-E dataset and obtained a mean performance 

of 0.85 area under receiver operating characteristic curve (AUROC). DTI prediction 

methods utilizing 3-D structural information such as AtomNet [123], Gonczarek et 

al. [232], and Ragoza et al. [241] also employed this dataset and reached similar 

predictive performances. However, their results are not directly comparable with 

DEEPScreen since these methods utilize both target and ligand information at the 

input level and reserved some of the targets (along with their ligand information) for 

the test split during the performance analysis. Also, structure-based methods are 

usually benchmarked by their success in ranking several docking poses and/or 

success in minimizing the atomic distances from native binding poses, instead of 

providing binary predictions as active/inactive. It is important to note that the 

methods employing 3-D structural features of the target proteins may provide better 

representations to model DTIs at the molecular level; however, they are highly 

computationally intensive. Also, 3-D structural information (especially the target-

ligand complexes) is only available for a small portion of the DTI space, as a result, 

their coverage is comparably low, and they generally are not suitable for large-scale 
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DTI prediction. It is also important to note that DUD-E benchmark dataset is reported 

to suffer from negative selection bias problem [269], and thus, the results based on 

this dataset may not be conclusive. 

4.4.6 Large-Scale Production of the Novel DTI Predictions with 

DEEPScreen 

DEEPScreen system was applied on more than a million small molecule compound 

records in the ChEMBL database (v24) for the large-scale production of novel DTI 

predictions. As a result of this run, a total of 21,481,909 DTIs were produced (i.e., 

active bio-interaction predictions) between 1,339,697 compounds and 532 targets. 

Out of these, 21,151,185 DTIs between 1,308,543 compounds and 532 targets were 

completely new data points, meaning they are not recorded in ChEMBL v24 (the 

prediction results are available in the repository of DEEPScreen). Apart from this, 

newly designed compounds that are yet to be recorded in ChEMBL database can 

also be queried against the modelled targets using the stand alone DEEPScreen 

models available in the same repository. 

We carried out a statistical analysis in order to have an insight about the properties 

of the compounds predicted for the members of the high level protein families in the 

large-scale DTI prediction set. For this, an ontology based enrichment test was 

conducted (i.e., drug/compound set enrichment) to observe the common properties 

of the predicted compounds. In enrichment analysis, over-represented annotations 

(in terms of ontology terms) are identified for a query set and ranked in terms of 

statistical significance[271]. The enrichment tests was done for ChEBI structure and 

role definitions[272], chemical structure classifications and ATC (Anatomical 

Therapeutic Chemical Classification System) codes [273], together with 

experimentally known target protein and protein family information of the predicted 

compounds (source: ChEMBL, PubChem and DrugBank), functions of these 

experimentally known target protein and families (Gene Ontology[274]), disease 

indications of these experimentally known target protein and families (MESH 
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terms[275] and Disease Ontology[276]). Multiple online tools have been used for 

this analysis: CSgator [271], BiNChE [277] and DrugPattern[278] . 

Since the compounds in the query sets have to be annotated with the abovementioned 

ontology based property defining terms, we were able to conduct this analysis on a 

subset of the compounds in the DTI prediction set (i.e., nearly 30,000 ChEMBL 

compounds for the ChEBI ontology and 10,000 small molecule drugs from 

DrugBank v5.1.1 for the rest of the ontology types, with a significant amount of 

overlap between these two). The overall prediction set used in the enrichment 

analysis was composed of 377,250 predictions between these 31,928 annotated 

compounds and 531 target proteins. It was not possible to carry out an individual 

enrichment analysis for the predicted ligand set of each target protein due to high 

number of targets (i.e., 704). Instead, we analyzed the ligand set predicted for each 

target protein family (i.e., enzymes, GPCRs, nuclear receptors, ion channels and 

others) together with an individual protein case study considering the renin protein. 

For each protein family, the most frequently predicted 100 compounds, each of 

which has been predicted as active for more than 10% of the individual members of 

the respective target family are selected and given as input to the enrichment analysis 

(i.e., a compound should be annotated o at least 38 enzymes in order to be included 

in the enrichment analysis set of the enzymes, since there are 374 enzymes in total). 

The reason behind not using all predicted compounds was that, there were high 

number of compounds predicted for only 1 or 2 members of a target family, which 

add noise to the analysis when included. ChEMBL ids of the compounds predicted 

for each target family is given in the repository of the study together with their 

prediction frequencies. 

4.5 Discussion and Conclusion 

In this study, we proposed DEEPScreen, a novel deep learning based 

drug/compound-target prediction system. The major contributions of DEEPScreen 

to the literature can be listed as: 
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(i) the idea of using compound images for predicting the interactions with 

target proteins and employing established convolutional neural network 

architectures that showed high performance in image 

recognition/analysis tasks; 

(ii) constructing (and open access sharing) a reliable experimental DTI 

dataset to be used as training/test sets, both in this study and in other 

future studies. The existing reference DTI datasets are usually small-

scale, thus, there is a requirement for high quality large-scale datasets 

especially for deep learning based model training; 

(iii) generating highly optimized, high performance predictive models for 704 

different target proteins, each of which was independently trained and 

optimized with rigorous tests. This approach gave way to a significant 

performance improvement over the state-of-the-art; 

(iv) conducting high number of experiments and data analysis processes in 

terms of benchmarks / performance tests and comparisons with the state 

of the art to understand the model/system behavior under different 

conditions. 

(v) publishing the method as an open access tool. DEEPScreen is practical to 

use since it is composed of independent modules (i.e., each target protein 

model), where only the model of the target of interest should be 

downloaded and run to produce predictions; 

(vi) executing a systematic large-scale DTI prediction run between 704 

targets and 1.3 million drug candidate compounds recorded in the 

ChEMBL database. Selected examples from the novel predictions has 

been tested and validated by molecular docking analysis and in vitro 

experiments on cancer cells for potential future drug discovery and 

repurposing applications. 
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Considering the main reason why DEEPScreen works better compared to the state-

of-the-art DTI prediction approach: molecular descriptors such as fingerprints make 

assumptions regarding what parts in a molecule are important for target binding and 

generate feature vectors for storing the information of the presence or absence of 

these groups (i.e., feature engineering), thus, the information that is deemed 

unimportant for binding is eliminated. As such, the ML predictor is provided only 

with a limited piece of information to work with. Besides, it is not possible to 

generalize these assumptions to the whole DTI space, which is indicated by the 

limited predictive performance obtained with the conventional approach. By 

employing 2-D structures generated from SMILES, the system does not make any 

prior assumptions and just provide a vector displaying the entire molecule with a 

representation similar to its state in the nature, to let the DCNN to identify the parts 

necessary for the interaction with the corresponding target protein. Provided with a 

sufficient number and structural variety of active data points, DEEPScreen was able 

to learn the relevant interactive properties and provided accurate DTI predictions. 

Based on the performance results obtained in this study, it is possible to state that the 

performance improvement of DEEPScreen comes from both using image features 

and a deep learning approach that is suitable to extract information from images. It 

is possible that adding the 3-D representations of molecules (i.e., conformational 

information) to the system would provide a more accurate modelling; however, 

DCNNs that employ 3-D convolutions are computationally highly intensive, which 

prevents practical applications at large-scale. 

In DEEPScreen, we modelled the interactive properties of each target protein 

independently in a separate DCNN. This allowed the learning of target specific 

binding properties during the training process (i.e., the optimization of hyper-

parameters and the regular model parameters). In most of the ML method 

development studies, hyper-parameters are arbitrarily pre-selected without further 

optimization (especially when there are high number of models as in the case of 

DEEPScreen), due to extremely high computational burden. However, hyper-

parameters are an important part of the model architecture and significantly 
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contribute to the predictive performance. In this study, we evaluated hundreds to 

thousands of models for each target, resulting in more than 100,000 model training 

and evaluation jobs in total (considering the hyper-parameter value options in Table 

S.1 and their combinations with each other).  As a result, a strong computing cluster 

and extensive levels of parallelization were required to practically run the 

computational jobs. Whereas, the main advantage of this approach is the elevated 

predictive performance, which was indicated by the results of the performance tests. 

An important concern in ML method development is the problem of overfitting. We 

employed the neuron drop-out technique, a widely accepted approach for DCNN 

training, in order to prevent this issue. The results of the independent tests and 

benchmarking experiments confirmed that overfitting was not a problem for 

DEEPScreen.  

One direction on which DEEPScreen can be improved would be the incorporation 

of target proteins with only a few known small molecule interactions and the ones 

without any (i.e., target discovery). DEEPScreen only takes the features of 

compounds at the input level and treats the target proteins as labels, which allowed 

ligand predictions for only 704 highly-studied proteins (i.e., the major limitation of 

DEEPScreen). Within a multi-task modelling approach, targets with only a few 

known interactions can be incorporated together with the well-studies targets. In this 

scheme, data augmentation techniques can be incorporated such as the generative 

adversarial networks to balance the training datasets. To be able to provide 

predictions for proteins without known interactions, target descriptors may be 

incorporated at the input level along with compound features, within a 

chemogenomic modelling approach. Image or graph based structural representations 

of proteins can be used for this purpose.
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CHAPTER 5  

5 MDeePred: MULTI-CHANNEL DEEP CHEMOGENOMIC PREDICTION OF 

BINDING AFFINITY IN DRUG DISCOVERY 

5.1 Chapter Overview 

5 Identification of interactions between bioactive small molecules and target proteins 

is crucial for novel drug discovery, drug repurposing and uncovering off-target 

effects. Due to the tremendous size of the chemical space, experimental bioactivity 

screening efforts require the aid of computational approaches. Although deep 

learning models have been successful in predicting bioactive compounds, effective 

and comprehensive featurization of proteins, to be given as input to deep neural 

networks, remains a challenge. Here, we present a novel protein featurization 

approach to be used in deep learning-based compound-target protein binding affinity 

prediction. In the proposed method, multiple types of protein features such as 

sequence, structural, evolutionary and physicochemical properties are incorporated 

within multi-channel 2-D vectors, which is then fed to state-of-the-art pairwise input 

hybrid deep neural networks to predict the real-valued compound-target protein 

interactions. The method adopts the chemogenomic approach, where both the 

compound and target protein features are employed at the input level to model their 

interaction. The whole system is called MDeePred and it is a new method that 

produce compound-target binding affinity predictions with high-performance, for 

the purposes of computational drug discovery and repositioning. We evaluated 

MDeePred on well-known benchmark datasets and compared its performance with 

                                                
 

5 The content of this chapter is under review in Bioinformatics journal. Please note that only the 
parts that I worked on were included from our publication. 
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the state-of-the-art methods. We also performed in vitro comparative analysis of 

MDeePred predictions with selected kinase inhibitors’ action on cancer cells. 

MDeePred is a scalable method that can handle the available big data from the 

chemical space, with sufficiently high predictive performance. The featurization 

approach proposed here can also be utilized for other protein-related predictive tasks.  

The source codes, datasets, additional information and user instructions of 

MDeePred are available at https://github.com/cansyl/MDeePred. 

This chapter consists of the parts that I mainly worked in MDeePred. The rest of the 

conducted research and analysis can be reached from our publication. My specific 

contributions in MDeePred are listed below: 

• Development and design of the proposed method; 

• Implementation of the overall system;  

• Investigation of state-of-the-art methods and benchmarking datasets; 

• Training of models for DREAM Kinase-Drug Prediction challenge and 

running models on target datasets; 

• Implementation of scripts for the analysis and discussions. 

5.2 Introduction 

The identification of new compounds with high binding affinities for intended target 

proteins is an important step in early drug discovery. Traditionally, drug discovery 

starts by target protein selection, which is followed by high-throughput assays to 

screen candidate interacting compounds. However, conducting high-throughput 

screening experiments is not feasible for the massive compound and protein space 

as it is a time-consuming and expensive process. Therefore, several computational 

methods have been proposed with the aim of providing accurate binding affinity 

predictions. The predicted bioactive small molecules (i.e., ligands) with desired 

binding affinities (i.e. strong binders) can then be used as drug candidates for further 

experimental validation against their target proteins (i.e., receptors). 
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Machine learning approaches for drug-target binding affinity prediction can be 

categorized into two groups in terms of the input representation type:  feature-based 

and similarity-based. In the feature-based approach, features of each compound or 

target protein  are individually extracted and the extracted features are represented 

as a vector [13], [14], [56], [81], [85], [228]. In the similarity-based approach, the 

similarity for a pair of compounds or for a pair of target proteins is calculated and 

often utilized within a network based link prediction approach [73], [76], [79], 

[279]–[281]. Drug-target binding affinity prediction methods can also be categorized 

based on the type of the prediction output as either qualitative values, which can be  

independent classes (i.e., classification methods) or quantitative values, which are 

the actual binding affinity values (i.e., regression methods). A classification method 

may provide binary output for an input sample as active/interacting or inactive/non-

interacting. One important drawback of the classification approach is that the binding 

affinity values are not estimated, and the knowledge of whether a compound-target 

pair is active or inactive alone is not always informative. On the other hand, 

predicting actual binding affinity values between compounds and target proteins is 

more informative in terms of interpretability of results, albeit being a more 

challenging problem. Computational drug discovery methods can also be classified 

in terms of the employed featurization approach, where the conventional methods 

only use the ligand features for the modelling [7]. A rather new paradigm introduced 

the chemogenomic approach, where both compounds and target proteins are 

featurized and fed to the prediction model at the input level [282]–[284]. Recently, 

a few studies aimed to aid the drug discovery research by providing binding affinity 

value predictions [284]–[287]. The results reported in these studies indicated that 

there is a requirement for new approaches with improved performance before these 

methods can be integrated to actual drug discovery pipelines.  

Thanks to  the advances in computing and the exponential growth of available data, 

deep learning algorithms, have been successfully applied in several fields such as 

speech recognition, image analysis, bioinformatics, cheminformatics and 

computational chemistry [7], [114], [115], [177], [288]–[290]. Among the deep 
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learning approaches for drug-target binding affinity prediction, DeepDTA is a non-

structure based binding affinity value prediction method that employs the 

chemogenomic approach, where both drug and target protein features are used at the 

input level, together with deep neural networks [284]. Encodings for amino acids in 

protein sequences and characters in SMILES strings are generated by assigning 

unique integer values to each of them. Drugs and proteins are represented by 1-D 

numerical feature vectors based on these encodings. Then, the feature vectors are fed 

to convolutional neural netwoeks (CNN), with 1-D convolutional and feed-forward 

layers. The output of DeepDTA is the predicted binding affinity value of the input 

drug-target protein pair. DeepDTA is compared with state-of-the-art methods. 

Among the methods that use a machine learning method and also the similarity-based 

approach, SimBoost has been developed to predict binding affinity values [291]. In 

SimBoost, three types of features are calculated: individual features for each drug 

and target protein and two types of network-based features. The extracted features 

are then fed to the gradient boosting machine method to predict binding affinities of 

drug-target protein pairs. 

Performance evaluation is an important issue for the prediction of binding affinity in 

drug discovery. MoleculeNet is a benchmarking platform designed for evaluating 

and testing computational methods for molecular property predictions [234]. It 

includes multiple benchmarking datasets and the evaluation results for several 

machine learning algorithms (e.g. deep neural networks, random forest) and feature 

types (e.g. extended connectivity fingerprints-ECFP, graph convolutional features, 

grid featurizer, and etc.). The benchmarking datasets, along with the 

training/validation/test splits, are also provided.  

So far in the literature, chemogenomics based binding affinity prediction systems 

incorporated the target proteins in their system only using the information provided 

by the fact that a protein sequence is composed of a special order of 20 different 

characters. However, there is a wealth of accumulated knowledge regarding the 

structural, evolutionary and physico-chemical properties of these proteins, which can 

be incorporated in a binding affinity prediction model. The hypothesis in this study 
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is that, drug-target protein interactions can be modelled in a more successful manner 

with the inclusion of various attributes of proteins, and this would be reflected as a 

prediction performance increase in this field. Convolutional neural networks (CNN) 

have outperformed state-of-the-art methods, especially in the field of image analysis, 

where inputs are generally the 2-D images to be classified. In a 2-D color image, 

there are 3 input color channels (RGB channels) and therefore, 3 matrices containing 

intensity values for each pixel. Each input channel can be considered as a feature of 

the corresponding image. In fact, one can generate other input channels, possibly 

more than three, where each input channel represents a different type of feature 

belong to the input sample. 

In this study, we propose Multi-channel Deep Chemogenomic Predictor for Binding 

Affinity (MDeePred), a novel compound-target protein interaction prediction 

system, by pursuing the idea of constructing multiple channels that represent the 

input proteins from different aspects. MDeePred follows the chemogenomic 

modeling approach, where both protein features and compound features are used as 

input to the system. For this, we defined multiple feature matrices (as our input 

channels) to represent protein sequences. For each feature matrix, we calculated a 

specific property of each amino acid pair in that protein sequence, such as mutational 

probabilities, probabilistic residue-residue contact distances, physicochemical 

properties and a simple encoding by enumerating each amino acid pair. We also 

represented compounds using ECFP4 circular fingerprints. We first fed the multi-

channel feature matrices to a convolutional neural network, which constitutes the 

target protein side of the model and the compound feature vectors to a separate feed-

forward deep neural network, which constitutes the compound side of the model. At 

a second stage of MDeePred, the output of the target protein side is concatenated 

with the last layer of compound side. The final output of MDeePred is a single neuron 

that produces a prediction for binding affinity value of the input drug-target protein 

pair, via a regressor. MDeePred was implemented with PyTorch framework [292]. 

The source code, datasets, experimental settings and instructions about usage of the 

system are available at the GitHub Repository https://github.com/cansyl/MDeePred. 
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5.3 Materials and Methods 

5.3.1 Data 

We used three popular benchmarking datasets to assess the performance of 

MDeePred and to compare its results with those of the state-of-the-art methods. 

Davis et al. performed screening experiments to determine the binding affinity values 

of 68 kinase inhibitors against 442 protein kinases in human catalytic protein kinome 

[139]. This dataset is called Davis Dataset and there are 30,056 bioactivity values 

(Kd values) which span all compound-target protein pairs. In this dataset, about 70% 

of the bioactivity values (20,931 out of 30,056) are recorded as 10 µM. These binding 

affinity values indicate compound-target protein pairs for which no binding were 

observed in the primary screen, where authors screened ligands against the panel at 

a single concentration of 10µM [139]. As a result, it is not suitable to use these data 

points in a regression based prediction system. In addition, incorporating these data 

points into the training datasets may cause biased predictive models and misleading 

performance results. For example, a predictive model can achieve a low mean 

squared error value by predicting all binding affinity values around 10µM. Hence, 

we filtered out the data points with 10 µM bioactivity values and the new dataset, 

containing 9,125 binding affinity values, is named the Filtered Davis Dataset. 

PDBBind is a comprehensive resource of experimentally measured binding affinity 

data for protein-ligand complexes, which are derived from the Protein Data Bank 

[293]. It contains binding affinity values and 3-D structures of protein-ligand 

complexes. PDBBind Refined Dataset is a subset of PDBBind and a widely-used 

benchmark set [294]. There are 3,706 receptor-ligand complexes and their binding 

affinity values in PDBBind Refined Dataset. 
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5.3.2 Protein Feature Matrices 

The aim here is to create numerical representations of protein sequences, to be used 

as the input to the predictor model. As the base input channel of the convolutional 

neural network, protein sequences are represented by encoding matrices. Let 8 

represents the set of 20 standard amino acids. We can then define the cartesian 

product of 8 by itself: 

8	×8	 = 〈/, J〉; 	/, J	 ∈ 8  

Let ; be set of integers which is defined as 

;	 = {É	 ∈ 	Ñu	|	É ≤
8 j − 8 	

2
+	 8 }	 

We can define a surjective mapping function v ∶ 	8	×8	 → ; such that pairs 〈/, J〉 

and 〈J, /〉 are mapped to a unique integer É in set ;. For example, 〈8, 8〉 is mapped 

to 1, ordered amino acid pairs 〈8, .〉	and  〈., 8〉	are both mapped to 10, and so on.  

If a protein sequence R is represented as R = 〈&N, &j, … , &e〉 where &V represents %äã 

amino acid in the sequence, we can then construct an encoding matrix 1 whose size 

(×(, where rows and columns are amino acids of  R from the N terminus to the C 

terminus. We can use the mapping function v to determine the value of the element 

1VS	1 ≤ %, w ≤ (  as follows: 

1VS = v 〈&V, &S〉  

    Following this methodology, we constructed an encoding matrix for each protein 

sequence. The diagonal elements of the encoding matrix represent the sequence 

itself. The remaining elements represent the amino acid matches in different 

positions of the corresponding protein sequence. Since protein sequences have 

varying lengths, we selected a maximum allowed length value and truncated the rest 

of the proteins, in order to have fixed-size matrices. For the maximum length, we 

tested 500 and 1000 amino acids. For protein sequences shorter than the maximum 

length, the matrices were zero padded. The idea behind the protein encoding matrix 
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proposed here is similar to the 1-D protein representation idea described in previous 

methods such as DeepDTA. 

   AAindex is a database of indices and matrices that represent physicochemical and 

biochemical properties of amino acids and pairs of amino acids (Kawashima et al., 

2008). In this study, we generated additional input channels using numerical 20x20 

amino acid matrices from the AAindex database, where each channel represents a 

different property of the protein sequence. These feature matrices were generated 

pursuing the same methodology as described above, with the difference that we used 

the values from the corresponding AAindex amino acid matrices. This way, we were 

able to represent protein sequences as multi-channel input features. We used 

ZHAC000103 (the first protein structure representing feature), BLOSUM62 

(representing the evolutionary information), GRAR740104 (physico-chemical part) 

and SIMK990101 (the second protein structure representing feature) matrices from 

the AA index database. The information about these matrices are given in Table 5.1. 

Inclusion of these four matrices make MDeePred stand out from the previous studies 

in this field. Construction of feature matrices for sample partial protein sequences 

are demonstrated in Figure 5.1. 

Table 5.1 Amino acid matrices selected from the AAindex database to generate the 

input channels. 

AAindex DB 

Identifier  

Feature 

 Type 

Name of the  

Matrix Reference 

ZHAC000103 
Structure-Based 

Environment-dependent residue 

contact energies  
[295] 

BLOSUM62 Evolutionary Amino acid substitution [296] 

GRAR740104 Physicochemical Chemical distance [297] 

 

SIMK990101 Structure-Based 

Distance-dependent statistical 

potential (contacts within 0-5 

Angstroms) 

[298] 
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Figure 5.1. Construction of multi-channel input protein feature vectors for an 

example of 4 amino acid peptide sequence: "M A R V", using the protein encoding 

matrix (a), substitution scoring matrix (b), physicochemical property difference 

matrix (c), statistical potential and residue contact energy matrices (d). For the 

channels except the protein encoding, corresponding 20-by-20 AAindex matrices are 

used to construct 500-by-500 or 1000-by-1000 2-D feature matrix of the input 

proteins. 

5.3.3 Pairwise-input Hybrid Neural Network 

We developed a pairwise-input hybrid neural network for chemogenomic modeling. 

On the target protein side, a CNN is used and protein feature matrices are fed as input 

channels to CNN.  CNN consisted of two convolutional + pooling layers, which were 

followed by an inception module. On the compound side, we generated ECFP4 

fingerprints using the SMILES strings of compounds, which were fed to a feed-

forward neural network. Protein input CNN and compound input feed-forward 

neural network constitute the first stage of the system. The output of inception 
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module (of the protein side) was flattened and it is concatenated with the last layer 

of compound-side and the concatenation layer was followed by two fully connected 

layers, constituting the second stage of the system. The output is a single neuron that 

gives a prediction for the binding affinity value of the input drug-target protein pair 

using a regressor (Figure 5.2). Rectified Linear Unit (ReLU) was used as the 

activation function in both convolutional and feed forward layers [299]. After each 

layer, batch normalization was applied preceding ReLU activation function.  The 

objective of the model is to minimize the mean squared error (MSE) during training 

which measures how much the prediction values differ from the real binding affinity 

values.  

;Rå = 	
N

e
çV − !V

je
V`N                  

where çV stands for the real binding affinity values for the %äã	input pair and !V 

represents the prediction value for the same input pair. 

Figure 5.2. Construction of multi-channel input protein feature vectors for an 

example amino acid sequence. For channels 3, 4 and 5, the corresponding 20-by-20 

AAindex matrix is used to construct the 2-D feature, similar to the substitution 

(BLOSUM62) channel construction. 



 
 

159 

5.4 Results 

We evaluated MDeePred under different settings, in multiple tests. First of all, we 

measured the performance of MDeePred using different channel combinations to 

evaluate the effectiveness of the multi-channel protein representation approach. 

Second, we compared the finalized version of MDeePred with the state-of-the-art 

methods in the field, which were CGKronRLS, DeepDTA, SimBoost and four other 

methods in the MoleculeNet Benchmarking platform [234], [284], [291], [300], 

using 3 different benchmark datasets.  These methods, evaluation metrics and the 

experimental settings are explained in the following subsections.  

5.4.1 Performance Evaluation Metrics 

To evaluate the performance in binding affinity prediction as a continuous value, we 

used concordance index (CI) measure [301] and the Spearman rank correlation. CI 

(over a set of paired data) measures the probability of two randomly selected 

compound-target protein pairs with different binding affinity values to be in the 

correct order. 

<é = 	
N

è
	 ℎ(vV − vS)êëíêì

  

where vV and îV represents the predicted and real binding affinity values for the %th 

pair, respectively. Ñ is a normalization constant which is equal to the number of drug-

target protein pairs and ℎ P  is a step function defined below:  

ℎ P = 	

1.0	%v	P	 > 0

0.5	%v	P = 0

0.0	%v	P < 0

  

We also considered the problem of binding affinity prediction as a binary 

classification problem (i.e., active/binder vs. inactive/non-binder) based on four 

different bioactivity cut-off values (10 µM, 1 µM, 100 nM and 30 nM) and calculated 

two other metrics to assess the performances of the systems under these cut-off 
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values. These evaluation metrics were Matthews Correlation Coefficient (MCC) and 

Area Under Precision-Recall Curve (AUPRC). The real values bioactivity 

predictions below the selected cut-off values were considered to be active/binder 

predictions and the ones above the cut-off values were considered to be inactive/non-

binder predictions. Precision, recall and MCC metrics are defined below: 

!"#$%&%'( = 	
+!

+! + -!
 

.#$/00 = 	
+!

+! + -1
 

;<< = 	
+!	×	+1 − -!	×	-1

+! + -! 	×	 +! + -1 	×	 +1 + -! 	×	 +1 + -1
 

5.4.2 Training, Validation and Test Settings 

We employed two settings (i.e., Setting-1 and Setting-2) for training, validation and 

test of the methods, based on the benchmarking datasets. Setting-1 and Setting-2 

were derived from DeepDTA and MoleculeNet studies, respectively, and these 

settings were applied exactly as described in the corresponding studies for a fair 

comparison. In Setting-1, a nested cross-validation was employed, where the whole 

dataset was randomly divided into six parts; five of them were used for 5-fold cross 

validation and the remaining part was used as the independent test dataset. The 

hyper-parameter values of the models were estimated using 5-fold cross validation 

and the final performance of the system was evaluated using the independent test set. 

Evaluation of the methods was carried out with Setting-1 on Davis Dataset and 

Filtered Davis Dataset. In Setting-2, we employed time-splitting and divided the 

dataset into three subsets as training, validation and test datasets. Data points coming 

from earlier publications (up to year 2011) were used as the training dataset, while 

newer data points (from the year 2012) made up the validation dataset. Finally, the 

latest data points (year 2013 and 2014) were chosen as the test dataset.  The details 



 
 

161 

are explained in the MoleculeNet article [234]. The evaluation of the methods on the 

PDBBind Refined Dataset was carried out under the Setting-2. 

5.4.3 Deep Neural Network Architectures and Their Hyper-Parameters 

In the compound side (i.e., the feed-forward network) of the MDeePred system, 2 

and 3 hidden layers were tested with varying number of neurons on each layer. The 

information about the network architecture of the protein side (i.e., the convolutional 

network) of MDeePred is given in Table 5.2. Several different values (including their 

combinations) were tested for the hyperparameters such as the learning rate, number 

of neurons in each layer, the drop-out rate and etc., to obtain optimal predictive 

models. Also, the information on the exact network architectures and hyper-

parameters are provided in our GitHub repository at 

https://github.com/cansyl/MDeePred. 

Table 5.2 Layers and parameters of the CNN architecture of the protein side. The 

output of each operation is the input of the following layer. 

Operation Filter size / Stride / Padding Output 

Channel 

Input 

Convolutional 7×7		/ 3  / 4 16 5×	500×	500 

Pooling 2×2	 / 2 / 0 NA 16×168×	168 

Convolutional 3×3	 / 1 / 1 32 16×84×	84 

Pooling 2×2	 / 2 / 0 NA 32×84×	84 

Inception 

Module 

NA 320 32×42×	42 

Pooling 2×2	 / 2 / 0 NA 320×42×	42 
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5.4.4 Evaluation of Protein Feature Matrices 

To select the feature matrices for the input and to analyze their effects on the 

performance, we trained MDeePred with different combinations of input channels 

over the same set of hyperparameters on PDBBind Refined Dataset. For this, we first 

trained MDeePred using only the base encoding matrix. Subsequently, new models 

were trained by adding different input channels and the performances of these 

models were calculated. Same sets of hyperparameters were used for a fair 

comparison and the obtained lowest mean squared error values were considered. The 

results (given in the GitHub Repository) showed that adding input channels 

improved the performance, compared to only using the proposed encoding matrix. 

The best performance is obtained with five-input-channeled network where the first 

channel was the proposed encoding matrix (please refer to Method section) and the 

remaining four channels were generated based on the amino acid matrices derived 

from AAindex database (Table 5.1). With the observation of these results, we 

decided to employ the full five-channel protein representation to construct 

MDeePred. The whole set of amino acid matrices that were used to construct the 

input channels, the test performance results for different channel combination (based 

on different hyperparameters) are given in the GitHub Repository. 

5.4.5 Performance Comparison with State-of-the-art Methods 

Performance evaluation is an important topic for the problem of binding affinity 

prediction in the field of computational drug discovery. With aim of making a 

comprehensive evaluation, the performance of MDeePred was compared with 

CGKronRLS, DeepDTA, SimBoost, Grid-RF (MoleculeNet), Grid-DNN 

(MoleculeNet), ECFP4-RF (MoleculeNet) and ECFP-RF (MoleculeNet) methods, 

which can be considered as the state-of-the-art. The datasets used for the 

performance comparison were the Davis dataset, Filtered Davis dataset and the 

PDBBind Refined dataset. MDeePred and state-of-the-art methods were trained 
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using the same experimental settings for a fair comparison, which means that the 

data points in training, validation and test datasets were exactly the same. The real 

valued binding affinity value predictions obtained from different methods were 

evaluated using the concordance index (CI), mean squared error (MSE) and 

Spearman rank correlation. We also calculated classification performances (i.e., 

MCC and AUPRC) of these methods based on different binarization thresholds, all 

of which were previously defined as important activity thresholds for different target 

protein families [302]. For PDBBind Refined dataset analysis, we directly used the 

predictions for train/validation/test splits, which were provided by the authors of the 

MoleculeNet study.  

For the performance assessment, we first used Davis dataset and the filtered Davis 

dataset under the setting-1 (please refer to Train-validation-test Settings sub-section 

under the Methods section). The performance calculation procedure was applied for 

MDeePred, CGKronRLS, DeepDTA and SimBoost methods on the Davis dataset. 

The results are available in Table 5.3, where higher values indicate better 

performance except for the MSE. Here, MDeePred achieved the best performance in 

terms of all metrics on the Davis dataset. 

We also trained MDeePred, CGKronRLS and DeepDTA methods using the Filtered 

Davis dataset and the results are given in the Table 5.4. In this analysis, we could not 

train SimBoost, as the implementation were not suitable to train the method on 

different datasets and it also relies on pre-calculated inputs that were not available 

for the Filtered Davis dataset. As it can be observed from the performance results, 

MDeePred and CGKronRLS outperformed DeepDTA in all of the evaluation 

metrics. The performance difference becomes more pronounced in the lower 

bioactivity thresholds as DeepDTA’s performance drops significantly as the 

bioactivity threshold is decreased. When MDeePred’s performance is compared with 

that of CGKronRLS, it is observed MDeePred achieves the lowest MSE and it also 

gets better results in the majority of the cases. 
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We used setting-2 for training the methods on the PDBBind refined dataset and the 

performance results on the independent test split are given in Table 5.5. When we 

consider the overall performance results, MDeePred was the best performing 

method. The models that were trained with the grid features (Grid-RF, Grid-DNN) 

had better performance compared to the models trained with the molecular 

fingerprint-based features. Considering the classification performances based on 

different bioactivity thresholds, it was observed that the performances of Grid-RF 

and Grid-DNN methods significantly decreased as the bioactivity threshold is 

decreased. For example, the MCC score of Grid-RF was almost random (0.091) at 

30 nM threshold, whereas MDeePred’s MCC score at the same threshold was 0.453. 

 

Table 5.3 Davis dataset average performance test results on the independent test fold 

for MDeePred, CGKronRLS, DeepDTA and SimBoost methods (under setting-1). 

Standard deviations are given in parenthesis and the best results are highlight with 

bold font. 

Method CI MSE Spearman Average 

AUPRC 

MCC 

(30nM) 

MDeePred 0.886 
(0.001) 

0.254 
(0.002) 

0.69 
(0.003) 

0.744 
(0.003) 

0.626 
(0.012) 

CGKronRLS 0.873 
(0.001) 

0.284 
(0.003) 

0.671 
(0.002) 

0.724 
(0.004) 

0.604 
(0.011) 

DeepDTA 0.867 
(0.006) 

0.310 
(0.016) 

0.665 
(0.007) 

0.679 
(0.016) 

0.576 
(0.030) 

SimBoost 0.876 
(0.002) 

0.284 
(0.004) 

0.677 
(0.003) 

0.705 
(0.004) 

0.557 
(0.020) 
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Table 5.4 Filtered Davis dataset average performance test results on the independent 

test fold for MDeePred, CGKronRLS and DeepDTA methods (under setting-1). 

Standard deviations are given in parenthesis and the best results are highlight with 

bold font. 

Method CI MSE Spearman Average 

AUPRC 

MCC 

(30nM) 

MDeePred 0.733 
(0.004) 

0.545 
(0.007) 

0.618 
(0.009) 

0.803 
(0.006) 

0.585 
(0.010) 

CGKronRLS 0.740 
(0.003) 

0.591 
(0.015) 

0.643 
(0.008) 

0.773 
(0.010) 

0.617 
(0.029) 

DeepDTA 0.653 
(0.005) 

0.866 
(0.028) 

0.430 
(0.013) 

0.529 
(0.018) 

0.208 
(0.035) 

 

 

Table 5.5 PDBBind refined dataset performance results for MDeePred and the 

MoleculeNet benchmarking methods (under setting-2). 

 

Method CI MSE Spearman Average  

AUPRC 

MCC  

(30nM) 

MDeePred 0.754 2.494 0.681 0.768 0.453 

Grid RF 0.729 3.4 0.634 0.723 0.091 

Grid DNN 0.67 3.616 0.505 0.643 0.314 

ECFP4 RF 0.657 3.207 0.483 0.638 0.186 

ECFP RF 0.608 5.255 0.344 0.545 0.138 
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Figure 5.3 presents the predicted bioactivity values against the measured bioactivity 

values of MDeePred and DeepDTA for Filtered Davis Dataset. Similar plots of 

MDeePred, DeepDTA, SimBoost and four methods from MoleculeNet framework 

for Davis Dataset, Filtered Davis Dataset and PDBBind Refined Dataset are 

available in the GitHub Repository. A perfect predictive model is expected to 

provide predictions over the y=x line (red line) in these plots. As it can be observed 

in Figure 5.3, the points in MDeePred's plot is much more aligned with the red line 

than those in DeepDTA’s plot. On the Davis Dataset, DeepDTA’s predictions is 

highly biased towards pKd value of 5.0 whereas MDeePred and SimBoost is more 

robust (shown in the GitHub Repository). For PDBBind Refined dataset, 

MDeePred’s prediction performance is better than the four methods of 

MoleuculetNet in general, and it can be seen that the prediction accuracy of the other 

methods is getting worse as the actual bioactivity value decreases (GitHub 

Repository). 

Figure 5.3. Measured (true) vs. predicted binding affinity plots for MDeePred, 

DeepDTA and CGKronRLS, on Davis and the filtered Davis datasets 
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5.4.6 in vitro Comparative Analysis of MDeePred Pre-dictions with 

Selected Kinase Inhibitors’ Action on Cancer Cells 

We have selected small molecule inhibitors (Staurosporine, Rapamycine, NVP-

BEZ235 and Alsterpaullone) to perform a comparative analysis between MDeePred 

bioactivity predictions and the effect of these compounds on two human cancer cell 

lines Huh7 and Mahlavu. Initially, we identified IC50 values of the selected 

compounds on Huh7 and Mahlavu cell lines. We then performed RNAseq whole-

transcriptome profiling which were used to globally identify the genes that are 

differentially regulated in the presence of selected small molecule inhibitors (DEG 

data is given in the GitHub repository). In parallel we trained an MDeePred kinase 

model using an in-house kinase dataset derived from ChEMBL database. An initial 

training dataset was created by filtering and preprocessing bioactivities from 

ChEMBL database which resulted in 139,826 bioactivities over 346 protein kinases 

and 90,518 ligands. ECFP4 fingerprints of ligands were then generated and clustered 

based on the Tanimoto coefficient value of 0.7 in order to avoid chemical series bias 

during training and evaluation of the model. The final dataset consisted of 49,277 

bioactivities which spanned 346 protein kinases and 29,214 ligands. Subsequently, 

the final dataset was randomly divided into training (64%), validation (16%) and 

independent test (20%)  and the performance was calculated on the independent test 

dataset which is given in Table 5.6. 

Table 5.6 The performance results of the MDeePred kinase model. 

Model CI MSE Spearman Average  

AUPRC 

MCC  

(30nM) 

MDeePred-
kinase 

0.779 0.693 0.747 0.815 0.567 

 

Using this newly trained MDeePred kinase model the binding affinities for 

Staurosporine, Rapamycine, NVP-BEZ235 and Alsterpaullone toward 346 protein 
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kinases were predicted (given in the Github repository). The experimental results 

and related discussion are available in MDeePred manuscript. 

5.5 Discussion and Conclusion 

In this study, we presented a novel featurization approach to represent protein 

sequences as numerical matrices, based on their physical, chemical and biological 

properties. By using the proposed featurization approach, we tackled the problem of 

predicting bio-interactions at large scale in the framework of computational drug 

discovery. More precisely, we developed a chemogenomics-based method, 

MDeePred, to predict the binding affinities between drugs/drug like small molecule 

compounds and target proteins based only on their most common representations; 

amino acid sequences for proteins and SMILES strings for compounds. In order to 

achieve better generalizations, we preferred to present the target protein and the 

compound as a pair, at the input level of MDeePred. The output of MDeePred is a 

quantitative value representing the binding affinity between the input compound and 

the target protein (equivalent to IC50). MDeePred contains a hybrid deep neural 

network structure with a regressor attached to the output layer, to process the input 

feature matrices and to provide the real-valued prediction result. 

Our featurization approach is expressed as multiple channels that represent the input 

proteins from different aspects and these channels constitute the protein input of 

MDeePred. Performance tests on these channels indicated that the model with input 

channels of amino acid substitution scores, physicochemical property comparisons 

and 3-D structural features together with the baseline encoding scheme performed 

the best, which supported our initial claim of representing a protein sequence from 

multiple aspects would lead to better modeling. It is also important to note that, the 

architecture of MDeePred is suitable to take in additional channels, that is input 

protein feature matrices, as desired.  Therefore, MDeePred is able to draw out 

complex features from multiple and diverse representations of proteins. We believe 

that the described feature matrix construction approach is a significant improvement 
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for protein sequence representation in the field of chemogenomics-based 

drug/compound-target protein interaction prediction. 

We evaluated MDeePred with comparisons against other binding affinity prediction 

methods. For this, MDeePred and 7 state-of-the-art methods were rigorously 

assessed on the Davis dataset, filtered Davis dataset and the PDBBind refined 

dataset. The results of MDeePred were in general more consistent and better than 

those of other 7 state-of-the-art methods. Furthermore, the performance of 

MDeePred was stable for different bioactivity thresholds. Improvements over the 

existing literature, brought by this study can be listed as follows: 

• Featurization: The novel protein featurization approach proposed in this 

study, together with the proposed predictive modeling approach, can be used 

for other protein related automated annotation tasks in bioinformatics, such 

as the prediction of protein-protein interactions or the prediction of protein 

functions. 

• Deep learning architecture: MDeePred extracts complex representations 

separately from target proteins and compounds, and then merges these 

complex representations to infer the binding properties of these pairs. The 

hybrid deep neural network model is carefully designed considering its 

architecture and fine-tuned in terms of its parameters, so that it usually 

achieves a better prediction performance compared to the state-of-the-art 

methods in recent literature.  

• Open access repository: The source code, datasets, results and user 

instructions of MDeePred are available at: 

https://github.com/cansyl/MDeePred. Furthermore, trained prediction 

models are accessible, especially to predict binding affinity values between 

various compounds and protein kinases. Also, it is easy to train other target 

family-based models using the provided code. 

We believe that there is still room for improvement for the prediction of 

drug/compound-target protein binding affinities at large scale, especially considering 
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novel ways of representing input samples and the cutting-edge machine learning 

algorithms. For further analysis, inference and prediction; the output of the 

drug/compound-target protein interaction prediction methods can provide essential 

information to represent complex relations between drugs/compounds, 

genes/proteins, pathways and diseases for systems such as biological knowledge 

graphs [303], and to find interactions between the characteristics of drugs and patient 

specific disease cell lines [304] for novel precision medicine applications.
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CHAPTER 6  

6 iBioProVis: DRUG-TARGET INTERACTION PREDICTION WITH 

CONVOLUTIONAL NEURAL NETWORKS USING 2-D STRUCTURAL 

COMPOUND REPRESENTATIONS 

6.1 Chapter Overview 

iBioProVis is an interactive platform for visual analysis of the compound bioactivity 

space in the context of target proteins, drugs, and drug candidate compounds. 

iBioProVis framework takes target protein identifiers and, optionally, compound 

SMILES as input, and uses the state-of-the-art non-linear dimensionality reduction 

method t-Distributed Stochastic Neighbor Embedding (t-SNE) to plot the 

distribution of compounds embedded in a 2-D map, based on the similarity of 

structural properties of compounds and in the context of compounds’ cognate targets. 

Similar compounds, which are embedded to proximate points on the 2-D map, may 

bind the same or similar target proteins. Thus, iBioProVis can be used to easily 

observe the structural distribution of one or two target proteins’ known ligands on 

the 2-D compound space, and to infer new binders to the same protein, or to infer 

new potential target(s) for a compound of interest, based on this distribution. 

iBioProVis also provides detailed information about drugs and drug candidate 

compounds through cross-references to widely used and well-known databases, in 

the form of linked table views 

This chapter consists of the parts that I mainly worked in iBioProVis. The rest of the 

conducted research and analysis can be reached from our publication. My specific 

contributions in iBioProVis are listed below: 

• Investigation of embedding algorithms such as t-SNE, UMAP and PCA; 
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• Application and analysis of the embedding results for t-SNE, UMAP and 

PCA based on ECFP4 fingerprints; 

• Investigation of visualization frameworks such as Plotly, Bokeh, Seaborn and 

deciding the framework to be used based on the analysis; 

• Investigation of other databases such as Clinical Trials, IntAct, PubChem, 

DrugBank and getting cross-references from them; 

• Implementation of backend development of iBioProVis based on t-SNE and 

UMAP algorithms; 

• Implementation of first version of iBioProVis using Bokeh framework and 

making improvements on the tool. 

6.2 Introduction 

The ChEMBL database (version 25) has 1,879,206 distinct compounds with 12,482 

target proteins and 15,506,670 reported bioactivities [225]. Even if only the data in 

ChEMBL are considered, there are more than 11 billion possible compound-target 

protein pairs to be tested in vitro experimentally. Unfortunately, public databases or 

datasets have limited coverage as only partial information is available regarding the 

compound-target interaction space, mainly due to high costs and labor requirements 

associated with large-scale screening experiments. Therefore, prior knowledge about 

the eventual target proteins or cellular signaling events in which a small molecule is 

involved in becomes crucial for novel drug-target discovery [305]. Furthermore, the 

representation of drugs and their targets in databases lack the comparative holistic 

view of the molecular action on multiple targets and structural similarity of the 

compounds.  

A few number of studies have recently become available to visualize the chemical 

space and the compound bioactivity space [305]–[308]. Karlov et al. [306] and Drug 

Discovery Maps [307] made visualization tools available, only for pre-computed 

datasets. In webDrugCS [308], visualization is performed by PCA which is a linear 

and global method and PCA is known to miss non-linear and local relations among 
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the input drug molecules. Another study, Gaspar et al. only present their results and 

no tool is made available [309].  There are no target proteins in CheS-Mapper [305], 

however, the user can apply clustering on the compounds to observe their groupings.  

We describe a framework called iBioProVis, which uses a map-based method to 

embed active compounds, in the context of their cognate target proteins, as points 

onto a real coordinate-based 2-D space, based on the structural descriptors of the 

active compounds. iBioProVis allows the interactive visualization of the 

embeddings. The input to iBioProVis is a set of ChEMBL identifiers or UniProt 

identifiers for target proteins and the output is the 2-D embedding of the active 

compounds of these proteins. By looking at the distribution of active compounds as 

points in this embedding, the user can infer that the compounds that are close to each 

other may possess similar protein target characteristics. We use the extended 

connectivity fingerprint [247] with bond diameter four (ECFP4) as the compound 

descriptor and t-Stochastic Neighbor Embedding (t-SNE) to generate the 2-D 

embeddings. We also provide a reliable compound-target bioactivity measurement 

dataset, which is a carefully processed and filtered subset of ChEMBL (v25), to be 

used with iBioProVis. 

6.2.1 Material and Methods 

iBioProVis has its own in-house dataset processed and filtered from ChEMBL (v25), 

which originally contains a total of 15,506,670 data points (i.e., bioactivity 

measurements) [225].  After the application of several filtering and pre-processing 

steps to generate the iBioProVis compound-target protein dataset, the number of 

bioactivity measurements was reduced to 890,886 which contains 3,803 unique 

target proteins and 581,442 unique compounds.   iBioProVis embedding operations 

are applied on this filtered dataset. Upon a user submission of target protein 

identifier(s), iBioProVis first extracts ECFP4 for the compounds of the given target 

protein(s), to be used as compound feature vectors. The tool then generates a distance 
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matrix for the given compounds, based on the Tanimoto coefficient whose equation 

is given below: 

 

+/(%O'A'	<'#vv%$%#(A =
$

/ + J + $
 

 

In the above equation; given two compounds, compound A and compound B, and 

their fingerprints DA and DB: a is the number of dimensions set to 1 in DA but not in 

DB. b is a is the number of dimensions set to 1 in DB but not in DA. c is the number 

of dimensions set to 1 in both DA and DB. The distance matrix becomes the input to 

the t-SNE algorithm which produces the 2-D embeddings of the compound feature 

vectors [310]. Finally, these 2-D embeddings are plotted as a scatter plot and the 

point that corresponds to each compound is color-labelled based on the target protein 

that the compound is reported to bind to. It is also possible to give the representations 

of drugs or compounds of interest in SMILES notations during the input phase, to 

obtain their 2-D embeddings along with the binders of the given target proteins. Once 

the embedding process is completed and displayed, the user is able to select a set of 

compounds on the constructed plot and observe their ChEMBL identifiers and the 

target proteins that they actively bind to. The steps that are followed to generate the 

embeddings of compounds in iBioProVis are given in Algortihm 1.  

Several cross-references to widely used and well-known biological databases are 

also provided so that the user can easily relate the entities and navigate to those 

databases by clickable links. The cross-referenced databases are UniProt, IntAct, 

PubChem, DrugBank and Clinical Trials. The Bokeh library is employed to generate 

interactive and user-friendly visualizations [311]. 
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Algorithm 1: iBioProVis algorithm to produce compound embeddings 

 

User Input: A set of target protein ChEMBL identifiers and optionally SMILES 

strings of a set of user-defined compounds 

Output: 2-D embedding plot of color-labeled compounds 

  1: Get ChEMBL identifiers of active compounds of input target proteins    

 C = {c1, c2, …, cN} 

 

  2: Get SMILES strings of compound set C   S = {s1, s2, …, sN } 

 

  3: Calculate ECFP4 descriptors as feature vectors for set S    F = { f1, f2, 

…, fN } 

 

  4: Calculate distance matrix D for all feature vectors in F using Tanimoto 

coefficient 

 

  5: Feed D to t-SNE algorithm as input to get 2-D embeddings of 

compounds    

 E = {(x1,y1 ), (x2,y2), …, (xN,yN) } 

 

   6: Plot embeddings E and apply color labeling based on the target proteins 

that compounds actively bind to. 
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6.2.2 Case Study 

A sample embedding is given in Figure 6.1. The active compounds of the target 

proteins AGPAT2 (CHEMBL4772) and PLK2 (CHEMBL5938) are embedded on 

the 2-D space, where the active compounds of AGPAT2 are colored in blue and the 

active compounds of PLK2 are in green. Additional user-input compounds are 

represented by the red color and drugs (approved and experimental drugs found in 

the DrugBank database) are represented by diamond shapes. When a user selects a 

set of compounds, the information about these compounds and their target proteins 

is shown in two different tables (side table: compounds, bottom table: drugs), where 

the compounds (rows) are grouped by their respective target proteins. An additional 

group is created for the user-input compounds since their target information is not 

presented. This information is shown under the “Target Information” column. 

iBioProVis provides UniProt protein accessions, gene names and ChEMBL 

identifiers for the target proteins. In addition to these, compound ChEMBL ID, 

molecular formulas and PubChem cross references are given under this table, for the 

selected compounds. The second (bottom) table is reserved to present only the 

approved or experimental drugs in the user selection.  Here, iBioProVis provides 

drug names, and clinical trial cross references in addition to the aforementioned      

information. At the top right side of the plot, there are buttons for easy navigation on 

the plot such as pan, box zoom, box select, wheel zoom, tap, reset and save. There is 

a bioactivity value filter at the bottom of the plot, which can be used interactively to 

remove the compounds that do not satisfy the selected bioactivity threshold (against 

the corresponding target protein(s)), from the plot. 
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Figure 6.1.  Interactive output of the iBioProVis framework. (A) Embedding output 

without user selection. (B) The same embedding output (including tables) after user 

selection of compounds. Visual clusters and the nodes in close vicinity may indicate 

the same or similar target proteins. 

6.3 Discussion and Conclusion 

iBioProVis is an unprecedented framework that can be utilized for virtual screening 

and for chemical genomics. It can be used for several purposes, including the 

investigation and analysis of how active compounds of different target proteins are 

distributed on a 2-D space, as well as the prediction of bioactivity profiles for new 
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or uncharacterized compounds, based on the features of compounds with known 

bioactivity information. Furthermore, it may provide insight to drug repurposing 

studies by identifying the compounds that are embedded close to an approved drug, 

especially when those compounds are known binders of a different target protein.  
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CHAPTER 7  

7 DISCUSSION & CONCLUSION 

In this thesis, several deep learning solutions were proposed for protein function 

prediction and drug-target interaction problems. In Chapter 2, our deep learning-

based protein function prediction method, DEEPred, was explained. DEEPred uses 

stacked feed-forward deep neural networks by incorporating GO hierarchy to 

provide reliable prediction. The performance of DEEPred was compared with the 

state-of-the art methods and it is showed that DEEPred performs better than the 

existing methods in general. In addition, new models were trained with DEEPred for 

CAFA PI challenge and DEEPred ranked fourth in one of the three categories in 

CAFA PI. In Chapter 3, DeepScreen method is described which is a drug-target 

interaction prediction that employs convolutional neural networks which takes 

compound images as input to the neural network with the aim of extracting 

compound features automatically from the input images. Benchmarking results of 

DeepScreen were compared with state-of-the art on multiple datasets and in vitro 

experimental validations were also performed for selected predictions in Cancer 

Systems Laboratory. In Chapter 4, MDeePred method was explained for binding 

affinity prediction which uses pairwise input neural networks along with the 

proposed multi-channel protein input representations. The performance of 

MDeePred was compared with recently proposed binding affinity prediction 

methods using the same experimental settings. In Chapter 5, iBioProVis tool was 

explained which is a visualization tool for chemical space. 

Although the proposed methods achieved better predictive performances than the 

state-of-the art methods in majority of the cases, there are still room for significant 

improvements and limitations in the field. Below, my observations are first discussed 

along with the current limitations and possible solutions. Finally, the perspectives 

and future work are explained. 
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7.1 Observations, Limitations and Solutions 

One of the most important steps in drug-target interaction prediction method 

development is the training dataset construction. Therefore, as in all machine 

learning applications, training sets should contain reliably labelled data. For 

example, compounds should be labelled as active and inactive against target proteins 

based on predefined thresholds. Although IC50 values of 10 µM/1 µM (or lower) 

values are widely used in the literature, selection of the activity threshold is a 

problem specific issue and it is not clear what should be the activity threshold value 

to assume positive interaction. 

Even though there are millions of entries in the compound and bioactivity databases, 

the quality of available data is an important issue. For example, in PubChem database 

the entries mostly consist of the deposited data by different providers and majority 

of the drug-target interactions are just reported as active or inactive without 

providing binding affinity values. In addition, the experimental conditions of the 

experiments are not known in majority of the data points. Therefore, it is not possible 

to infer the real bioactivity values for these entries. In order to overcome this issue; 

well-defined, solid protocols should be introduced to publish the outcomes of 

experimental results so that the noise will be reduced and accurate annotations can 

be done. 

Another limitation regarding dataset construction is the difference between the 

number of active and inactive compounds after the activity thresholds are applied 

which is known as class imbalance problem in machine learning. In compound and 

bioactivity databases such as ChEMBL, majority of the bioactivity values 

correspond to lower bioactivity values (i.e., less than 10 µM). Therefore, when a 

threshold such as 10 µM is applied, it is seen that in several cases number of negative 

samples is less than number of positive samples which means that negative data point 

scarcity is more pronounced in negative training dataset selection. Since low IC50 

values are generally desirable, experimentally observed high activity values are often 

not reported in the literature and in the bioactivity databases. In the end, there very 
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few instances to be used as negative training instances. One of the widely accepted 

solutions to this problem is selecting random data points (after removing positive 

data points) from all possible drug-target pairs with the assumption that the ratio of 

truly active to inactive pairs is so low that random selection would yield a good 

quality negatives set. However, this is not always guaranteed as knowledge regarding 

the truly active to inactive ratio is not known. There are also alternative solutions to 

this problem such as the advanced sampling techniques [312]. 

Although training of very deep and complex networks become possible with the 

advancement of technology, training of these networks requires to adjust extensive 

hyperparameter set which takes significant amount of time. Therefore, one of the 

most important challenges regarding the training of deep learning-based methods is 

still the computational complexity. Although there is a growing field of research on 

new algorithmic approaches to reduce the complexity of DNN-based techniques 

without compromising from the prediction performance and more advanced 

GPU/TPU hardware technologies are being developed, there is still some time before 

these systems (in terms of both hardware and software) to become easily affordable.  

Most of the deep learning-based studies so far emphasized the potential and 

applicability of DNNs for the development of efficient virtual screening methods; 

however, there are no public production pipelines to predict and publish large-scale 

DTIs. Considering the current availability of the chemical structures and bioactivity 

information in public databases, which is required for constructing such pipelines, 

we expect to see DNN-based large scale analyses and novel web-services presenting 

their results in the near future.  

7.2 Perspectives and Future Directions 

Deep learning techniques have shown significantly better performance for DTI 

prediction compared to the conventional machine learning methods. In conventional 

methods, the problem is divided into different parts and each part is solved 
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individually. Whereas the main advantage deep learning algorithms is automatic 

feature extraction from raw data. Therefore, it is more suitable for end-to-end 

learning. As a result, we expect a significant shift, not only in virtual screening but 

also in the drug discovery field in general, towards utilizing novel deep learning 

based architectures in the near future. Besides, the flexibility of deep learning 

architectures allows researchers to model drug-target interactions in various ways, 

each of which may have specific advantages.  

Recently, de novo drug design using deep generative neural networks is becoming 

more popular in computational drug discovery where the aim is to generate 

compounds with desired properties based on the previous experimental results. We 

expect that, with the employment of DNN based models, the field of de novo drug 

design will start to produce truly novel drug candidates in the near future. One of the 

advantages of generating drug-like compounds is that generated compounds can be 

searched and purchased from the databases such as MolPort database. 

Deep learning applications have shown significant improvements compared to 

traditional machine learning methods in recent years. However, interpretability of 

the deep learning models and their predictions still remains as the key limitation of 

deep learning studies. Several studies have been proposed in order to overcome 

interpretability issue in deep learning methods [313], [314]. For example, Grad-Cam 

is a method that produce visual explanations of predictions by analyzing the change 

of gradients and neuron activations [315]. Although there are a few studies in the 

drug discovery literature that proposed solutions for interpretability, this area should 

be investigated thoroughly which could be a future direction in computational drug 

discovery area [316]–[318]. 

We expect that integration of large-scale omic data (e.g., transcriptomics, 

interactomics, epigenomics, metabolomics, functional genomics, etc.) at the input 

level will become popular in the near future to increase both the quality and the 

coverage of DTI predictions. Conventionally, known bioactivities are used along 

with the structural attributes of compounds and/or target proteins to model the drug-
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target interactions. However, the recent accumulation of the omic data presents 

opportunities for the identification of the unknown parts of the drug-target 

interaction space. The expected contribution of the omic approach mainly comes 

from integrating different types of features in an ensemble/hybrid setting, where 

different features complement each other to produce a more complete picture. Since 

components of the omic data have different structures (e.g., interactomic data mostly 

define the pairwise relations between proteins, transcriptomic data displays 

quantitative measurements in terms of how the expression of genes change under 

different conditions), generation of the feature vectors with the standardization of the 

information have critical importance. 

Majority of the targets have low number of bioactivity data associated with them and 

it is not possible to train robust models using conventional classifiers for these targets 

due to the low number of training samples. Recently, one-shot and low-shot-learning 

methods have been proposed to overcome this issue and these methods can provide 

predictions even for the classes with a few samples [135], [319]–[321]. More studies 

are expected to be published on this issue. 

The Anatomical Therapeutic Chemical (ATC) Classification System provides 

valuable information for the classification of drugs in terms of their therapeutic 

effect, and their pharmacological and physicochemical properties. Assigning an 

ATC code to a compound requires curation efforts, as a result, only approved and 

experimental drugs have ATC code annotations. Large-scale prediction of ATC 

codes for all compounds recorded in chemical databases can help to identify the roles 

for these compounds. In addition, predicting new ATC codes for known drugs can 

be used to aid drug repositioning. Currently, there are only a few ATC code 

prediction studies in the literature, most of which have been proposed in the last few 

years [14], [322], [323]. It is expected to see more studies of this kind in the future.  

Researchers are now focusing on incorporating different entities (e.g., drugs, targets, 

pathways, diseases etc.) into large knowledge graphs and perform predictions by 

running algorithms to predict different relations among entities. Recently, several 
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deep learning algorithms have been proposed recently to be run on large knowledge 

graphs [233], [324]. I believe that this will be one of the major research directions in 

the near future. 

Recently, there are a few examples of in-silico generated drug candidates have been 

shown to pass first stages of drug discovery pipeline. I believe that in the near future, 

more of these works will be conducted and artificial intelligence and machine 

learning algorithms will play an increasingly important role in drug discovery. It is 

expected that novel compounds will be designed, synthesized and tested 

automatically and more accurate drug candidates will be produced with the 

combined work of experts and machine learning algorithms. 

Finally, as mentioned earlier, although several algorithms have been proposed, these 

methods are mostly developed to show the applicability and potential of 

computational methods in drug discovery field. Therefore, they are far from to be 

integrated in a real drug discovery and development pipeline. As a future work, our 

aim is to collaborate with pharmaceutical researchers and companies to better 

understand their needs and integrate our methods to a real drug discovery pipeline.
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